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ABSTRACT 

 

Described herein are two reviews and three projects related to the asymmetric 

syntheses of tetrahydroisoquinoline (THIQs) alkaloids, and the progress toward the total 

synthesis of (+)-cyanocycline A. In Chapter 1, a review of the development of asymmetric 

methodologies for the preparation of enantioenriched N-heteroarenes is detailed. In 

Chapter 2, the development of an iridium-catalyzed enantio- and diastereoselective 

hydrogenation of 1,3-disubstituted isoquinolines to achieve cis-THIQs is reported. Chapter 

3 describes the iridium-catalyzed asymmetric hydrogenation of 1,3-disubstituted 

isoquinolines that can afford trans-THIQs in a single transformation. Preliminary 

mechanistic insights to the iridium-catalyzed asymmetric hydrogenation method using 

deuterium experiments are detailed.  

Chapter 4 details a comprehensive review of the advances in the total syntheses of 

complex THIQ alkaloids from 2000 – 2020, ranging from simple benzyl THIQ natural 

products to complex THIQ alkaloids such as Ecteinascidin-743. In Chapter 5, efforts 

toward the total synthesis of (+)-cyanocycline A are described, harnessing a non-

biomimetic synthetic route through a convergent cross-coupling of two heterocyclic 

fragments followed by a global hydrogenation event.   
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CHAPTER 1 

Advances in Homogeneous Catalysts for the  

Asymmetric Hydrogenation of Heteroarenes (2000 – 2020)†  

 

1.1  INTRODUCTION 

Heterocycles are important structural motifs found frequently in natural products1 

and industrial products, such as pharmaceuticals 2  and agrochemicals. 3  Nitrogen 

heterocycles constitute approximately 59% of recent FDA-approved small-molecule drugs, 

with an average of two to three nitrogen atoms per drug.2a In the context of pharmaceutical  

development, a significant positive correlation exists between key structural elements of 

drug candidates, such as degree of saturation and number of stereogenic centers, with 

observed clinical success.2c,d Thus, the ability to access stereochemically complex 

heterocyclic scaffolds has been of great interest in recent years. Considering the ubiquity 

of both aromatic and saturated heterocycles in pharmaceuticals, the direct access to 

enantiopure heterocycles via heteroarene hydrogenation continues to be an important 

research area in both academia and industry.2  
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   While significant progress has been made in the area of asymmetric heteroarene 

hydrogenation, these transformations continue to pose a challenge for catalytic processes, 

ostensibly due to the high energetic cost of breaking aromaticity, and the presence of 

heteroatoms that may poison and deactivate the catalyst.4 Nevertheless, the asymmetric 

hydrogenation of heteroarenes, including quinolines, isoquinolines, quinoxalines, 

pyridines, indoles, furans, and benzoxazines has been extensively explored, and several 

comprehensive reviews have been published on this subject (Figure 1.1).4 The  

hydrogenation of many common heteroarenes can be achieved using a variety of catalyst 

systems, including homogeneous and heterogeneous catalysts, such as metal 

nanoparticles.4d Among these, homogeneous catalyst systems have found widespread 

application for the asymmetric hydrogenation of heteroarenes, often providing access to 

different enantioenriched motifs with a simple adjustment of the chiral ligand.4, 5  This 

Perspective is focused on highlighting homogeneous catalyst systems that have recently 

been developed for the asymmetric hydrogenation of heteroarenes, evaluating the general  

relationships between different catalyst complexes and their reactivity for various 

heterocycles. The following sections will feature reports that have been published since 

2011, as previous reports have already been discussed comprehensively in prior review 

articles.4  

1.2  GENERAL MECHANISTIC CONSIDERATIONS 

Heteroarenes pose a significant challenge for asymmetric catalysis due to their 

inherent thermodynamic stability and the tendency of both reactants and products to 
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deactivate catalysts. Three general strategies have been employed to overcome these 

difficulties: catalyst activation, substrate activation, and relay catalysis.4a 

Figure 1.1 Overview of the total number of published reports on the asymmetric 
hydrogenation of common heteroarenes (≥90% ee, minimum of three substrates). 

 

Catalyst activation involves either the preformation of the active catalyst or the addition of 

reagents to form a more active catalyst species in situ. For instance, the addition of halide 

sources to an iridium precatalyst was reported by Mashima and coworkers to prevent the 

irreversible formation of catalytically inactive dimeric iridium hydride species 3 (Scheme 

1.1A).6  The substrate activation approach introduces reagents to overcome the inherent 

aromatic stability of heteroarenes through in situ generation or pre-formation of activated 

substrates, such as quinolinium or pyridinium salts  (e.g., 6, Scheme 1.1B).7 Finally, relay 

catalysis involves the use of two or more catalysts for the asymmetric hydrogenation of 

heteroarenes. For example, an achiral transition metal catalyst is often employed to induce 

initial partial hydrogenation of the substrate 8, followed by an enantioselective 

hydrogenation of an intermediate such as imine 9 aided by a chiral Brønsted acid catalyst 
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(Scheme 1.1C).8 Overall, these distinct strategies enable high stereoselectivity and functional 

group tolerance in the asymmetric hydrogenation of heteroarenes. 

Scheme 1.1. Examples for the asymmetric hydrogenation of heteroarenes. 

 

             The general mechanism of the asymmetric hydrogenation of  

heteroarenes can be thought of to involve the following steps  (depending on the degree of 

unsaturation): formation of the active catalyst species, hydride addition from the catalyst to 

the substrate, and regeneration of the catalyst from a hydrogen source.9 However, several 

questions regarding the mechanism of asymmetric hydrogenation that could be  

addressed include the order of hydride addition (1,2- vs. 1,4-addition), substrate coordination 

to the catalyst (inner- vs. outer-sphere), the rate-determining step, and the enantio-

determining step.4a–d,9c For instance, both inner-sphere and outer-sphere processes have been 
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proposed to explain the mechanism for the iridium-catalyzed hydrogenation of 2-

methylquinoline 11 (Scheme 1.2).9b In an outer-sphere pathway, protonation of the substrate 

occurs to form iminium intermediate 12, followed by external hydride delivery to the 

activated substrate from the transition metal center. In contrast, an inner-sphere process 

involves a substrate that is bound to the metal hydride species (13) that undergoes a  

hydride transfer step. While other catalyst systems have been proposed to undergo an outer-

sphere mechanism for the hydrogenation of various heterocycles (vide infra), other  

studies also support an inner-sphere coordination of the substrate to the catalyst.10 Thus, the 

coordinating ability of different heteroatom-containing substrates to the catalyst  

complex is not explicitly defined, and therefore difficult to predict how it would behave under 

different hydrogenation systems. 

Scheme 1.2. Possible mechanistic pathways for the hydrogenation of 2-methylquinoline 11. 

 

   Although the asymmetric hydrogenation of heteroarenes is often difficult to 

monitor due to the use of high-pressure reactors, several mechanistic studies have been 

conducted using empirical data and computational modeling to elucidate the mechanisms 

of transition metal-catalyzed and organic-catalyzed heteroarene hydrogenation reactions. 
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The proposed catalytic cycles of these studies will be addressed in the following sections 

of this Perspective for each transition metal and organic catalyst system. 

 

1.3  RUTHENIUM-CATALYZED ASYMMETRIC HYDROGENATION 

   With regards to homogeneous catalysis, ruthenium was among the first transition 

metals explored in asymmetric hydrogenation reactions. In 1995, Noyori and coworkers  

introduced a Ru(II) catalyst with a chiral diamine ligand that promotes the highly 

stereoselective reduction of aromatic ketones through an asymmetric transfer 

hydrogenation process.11 Shortly after, this catalyst system was applied to the asymmetric 

hydrogenation of imines with a formic acid–triethylamine mixture as the hydrogen 

source. 12  Since then, several established ruthenium catalyst systems with common  

ligand scaffolds were developed for the asymmetric hydrogenation of heteroarenes (Figure 

1.2), as well as the hydrogenation of carbocyclic aromatic compounds.13  

The air-stable Ru/TsDPEN catalyst (TsDPEN = N-(p-toluenesulfonyl)-1,2-

diphenylethylenediamine), initially developed by Fan and Chan for the hydrogenation of  

quinolines, has found widespread applications in the asymmetric hydrogenation of N-

heterocycles (Figure 1.2).14–19 In these reports, hydrogen gas is activated by the catalyst to  

reduce quinolines at ambient temperatures in ionic liquids and even under solvent-free 

conditions. Subsequent studies also utilize this system for sequential reductive amination 

and asymmetric hydrogenation cascade reactions of quinoline  

derivatives to access structurally diverse scaffolds.15 Since 2011, the Ru/TsDPEN catalyst 
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system has evolved with important applications toward the development of novel chiral 

ligands. Fan and coworkers demonstrated that chiral Ru/TsDPEN catalysts can reduce 2,2’- 

bisquinoline and bisquinoxaline derivatives with high stereoselectivity.16  

Figure 1.2. Common Ru-based catalyst systems for the asymmetric hydrogenation of 
heteroarenes (≥90% ee, minimum three substrates). Only one enantiomer of ligand shown 
for simplicity. 
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More recently, the system was applied to hydrogenate 2-(pyridine-2-yl)quinoline 

derivatives for the synthesis of novel N,P-ligands (Scheme 1.3).17 Using chiral catalyst 

complex 16 (Scheme 1.3A), selective hydrogenation of the quinoline ring was observed in 

a range of substrates 15 with high enantioselectivities. Although ortho-substituents on the 

pyridine ring are necessary to prevent catalyst deactivation, this requirement further 

enables the tuning of the steric effect of the chiral ligand generated. 

   The hydrogenated products 17a–d can then be transformed into a novel class of chiral 

N,P-ligands by treatment with PPh2Cl in NEt3. After recrystallization, these ligands are 

then treated with [Ir(COD)Cl]2, followed by anion metathesis to yield chiral iridium 

complexes 19a–d.17 These catalysts are then successfully used for the asymmetric 

hydrogenation of olefins and seven-membered cyclic imines (Scheme 1.3B).  

Notably, replacement of the phenyl substituent on the pyridine ring of 19d with an alkyl 

group (19a–c) improves the enantioselectivity of the hydrogenation of  

trisubstituted olefin 20 to 21 in 88–92% ee. Catalyst 19b is further utilized in the 

asymmetric hydrogenation of benzazepines and benzodiazepines, providing products 23 in 

up to 99% ee and 20:1 dr. The efficient synthesis of a novel class of chiral ligands through 

the asymmetric hydrogenation of heteroarenes is a promising application of this 

hydrogenation technology. The Ru/TsDPEN catalyst system is also effective for the 

asymmetric hydrogenation of unprotected indoles, which traditionally require protection 

of the indole nitrogen to prevent catalyst deactivation,18 C(3)-substituted benzoxazines,19 

and a variety of polycyclic heteroarenes.20 
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   Based on experimental results and theoretical calculations, Fan and coworkers propose a 

catalytic cycle for the asymmetric hydrogenation of quinolines with Ru/TsDPEN catalysts 

(Figure 1.3). The Ru(II) catalyst activates molecular H2 to form dihydrogen complex 24. 

After heterolytic cleavage of H2 to generate complex 27 and the activated substrate 26,  

subsequent 1,4-hydride addition affords an enamine intermediate 29.4e,15a  

Scheme 1.3. Ru-catalyzed asymmetric hydrogenation of quinolines and applications of 
hydrogenated products. 
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Tautomerization then occurs to form imine 30, which is protonated by complex 24 

to produce iminium 31. Intermediate 31 undergoes an asymmetric 1,2-hydride transfer 

from complex 27 to deliver product 32 via TS1. The enantioselectivity is proposed to 

originate from the attractive CH/π interaction between the η6-arene ligand and the 
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carbocyclic ring of the dihydroquinoline via a 10- membered transition state with 

participation of the triflate anion, as shown in TS1.15a,21  

Although Ru/TsDPEN systems are efficient catalysts for the hydrogenation of 

bicyclic aromatic compounds, preformation of the active catalyst is required. Alternatively, 

other common chiral bisphosphine ligands that are explored in ruthenium-catalyzed 

asymmetric hydrogenations include PhTRAP (2,2”-bis[1-(diphenylphosphino)-ethyl]-

1,1”-biferrocene), a C2 symmetric biferrocene framework. 22  Kuwano and coworkers 

demonstrate that ruthenium catalysts bearing PhTRAP ligand (L1) are productive in the 

hydrogenation of N-Boc-protected indoles (Scheme 1.4A), as well as substituted N-Boc-

protected pyrroles and imidazoles (Scheme 1.4B, C).23  Considering the high aromatic 

stability of single-ring aromatic compounds, the exhaustive hydrogenation of trisubstituted 

pyrroles to yield chiral pyrrolidines under this catalyst manifold is a significant 

advancement.4a,23c The Ru/PhTRAP catalyst can also be applied to the hydrogenation of 

other 5-membered heterocycles such as disubstituted imidazoles and oxazoles, however, 

only partial hydrogenation is observed in these cases.23d 

 

 
 
Figure 1.3. Proposed catalytic cycle for the asymmetric hydrogenation of quinolines with a 
Ru/TsDPEN catalyst. 
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Finally, ruthenium N-heterocyclic carbene (NHC) complexes have found many 

applications in the transfer hydrogenation of ketones, nitriles, as well as the regioselective 

hydrogenation of heterocycles.24 

Scheme 1.4. Ru-catalyzed asymmetric hydrogenation with PhTRAP ligand L1. 
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Glorius and coworkers first demonstrated the regioselective hydrogenation of the aromatic 

carbocyclic ring of quinoxalines, albeit with moderate enantioselectivity. They observed 

that the identity of NHC ligand was critical in determining the regioselectivity of  

hydrogenation, and found that these catalytic systems can also be applied toward the 

asymmetric hydrogenation of furans and benzofurans. 25  Using chiral NHC ligand 

SINpEt•HBF4 (L2), the asymmetric hydrogenation of disubstituted furans and 2-

substituted benzofurans proceeded in high yields and enantioselectivities (Scheme 1.5). A 

wide range of substituted furans were hydrogenated with this catalyst system,  
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demonstrating a significant correlation between strongly electron-withdrawing groups on 

the substrate and diminished enantioselectivity.25a Overall, the Ru/NHC complex  

demonstrated its capability to hydrogenate a range of heteroarenes, particularly oxygen-

containing heterocycles, allowing direct access to natural metabolites such as  

(+)-corsifuran A (Scheme 1.5A). Further studies of the Ru/L2 catalyst system by Glorius 

and coworkers revealed that hydrogenation of the naphthyl substituents of the NHC ligand 

was a key step in accessing the active catalyst.26 

Scheme 1.5. Ru-catalyzed asymmetric hydrogenation of furans and benzofurans with NHC 
ligand L2. 
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Following the initial disclosure of the enantioselective  

hydrogenation of quinolines using [Ir(cod)Cl]2 and bisphosphine ligand MeO-BIPHEP 

(L3) in 2003 (Scheme 1.6),27 much attention has been devoted toward the development of 

the iridium-catalyzed hydrogenation of heteroarenes. Most studies have focused on the 

exploration of different types of activating agents to reduce substrate aromaticity, as well 

as to prevent the irreversible formation of catalytically inactive dimeric iridium hydride 

species 3.6,27 Common ligand scaffolds utilized in this transformation include atropisomeric 

biaryl bisphosphine ligands, as well as phosphine-phosphite ligands, N,P-ligands, and 

chiral diamine ligands that have been explored for the asymmetric hydrogenation of a range 

of heterocycles (Figure 1.4). 

Scheme 1.6. First reported Ir-catalyzed asymmetric hydrogenation of quinolines. 

 

The biaryl bisphosphine ligand scaffold is most common in iridium-catalyzed 

asymmetric hydrogenation due to its excellent steric and electronic tunability. Structural 

variations of the ligand include alteration of P-substitution and modifications of the phenyl 

backbone, including the synthesis of supramolecular chiral ligands appended with crown 

ethers that induce strong complexation between the ligand and alkali cations.28  
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Figure 1.4. Common Ir-based catalyst systems for the asymmetric hydrogenation of 
heteroarenes (≥90% ee, minimum three substrates). Only one enantiomer of ligand shown 
for simplicity.  
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The mechanism and the role of iodine as an activator was initially proposed by 

Zhou and Li (Figure 1.5).27b Starting from [Ir(cod)Cl]2, the addition of I2 oxidizes the Ir(I) 

precursor to an Ir(III) species 51. Subsequent heterolytic cleavage of H2 with release of HI 

forms catalytically active Ir(III) complex 53. The heteroarene then coordinates to generate 

octahedral complex 54, followed by a 1,4-hydride transfer to form intermediate 55. An 

additional molecule of H2 regenerates the iridium hydride species 53 and protonates the 

enamine, which can isomerize to imine 30 and undergo a second reduction. The 

enantiodetermining step is proposed to be a 1,2-hydride addition that establishes the 

stereogenic center, with the addition of H2 releasing the product and regenerating Ir(III) 

species 53. It is unclear, however, whether substrate coordination to the metal center 

occurs, as other studies have proposed an outer-sphere pathway for the homogeneous 

iridium-catalyzed hydrogenation of quinolines and isoquinolines (vide supra).6,9b  

Recently, Zhou and coworkers employed trichloroisocyanuric acid (TCCA) as a 

traceless activating reagent for the iridium-catalyzed hydrogenation of  

isoquinolines and pyridines (Scheme 1.7). This method circumvents the additional steps of 

installing and removing the N-acyl group to activate the substrates. Pairing [Ir(cod)Cl]2 and 

bisphosphine ligand (R)-SEGPHOS (L4), a range of disubstituted isoquinolines and 

pyridines were hydrogenated in high yield and excellent enantioselectivity.30e The use of 

TCCA as a halogen-bond activator gave the highest enantioselectivity compared to N-

chlorosuccinimide or N-iodosuccinimide. Notably, 2,3,6-trisubstituted pyridines 60 were 

also converted to chiral piperidines 61 with higher enantioselectivity than previous 

methods, which often require more activated pyridinium salts as substrates.7 
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Figure 1.5. Proposed catalytic cycle for the Ir-catalyzed asymmetric hydrogenation of 
quinolines with I2 as additive. 

 

 Extending BINAP-derived ligand scaffolds, biaryl spirocyclic ligands have emerged 

as powerful tools for asymmetric catalysis due to their higher rigidity. 34  Nagorny and 

N R

H2

Ir
P

P Cl

I
[Ir(cod)Cl]2

1. ligand

2. I2 S

I
H2

–HI

H2

N
H

R

*

51

Ir
P

P Cl

I

I

*

52

Ir
P

P Cl

H

I

*

53

Ir
P

P Cl

H

I

*

54

NR

Ir
P

P Cl
I

*

55

NR

Ir
P

P Cl
I

*

56

NR
H

P P

*

= chiral bisphosphine ligand    S = solvent molecule

50

25

N
H

R

29

tautomerization

30

32

Second 
Reduction

N R

Ir
P

P Cl

H

I

*

53

Ir
P

P Cl
I

*

57

NR

First 
Reduction

1,2-hydride 
addition

1,4-hydride 
addition

H H



 
Chapter 1 – Recent Advances in Homogeneous Catalysts for the Asymmetric 
Hydrogenation of Heteroarenes 
 

19 

coworkers reported that chiral spiroketal-based bisphosphinite ligand (SPIRAPO) (L5) is 

effective in the asymmetric hydrogenation of quinolines, quinoxalines, and benzoxazinones 

(Scheme 1.8).35 Using 10 mol % I2 and low catalyst loadings, the synthesis of a range of 

enantioenriched saturated heterocycles was achieved at 24 atm H2 and room temperature. 

Scheme 1.7. Ir-catalyzed asymmetric hydrogenation of isoquinolines and pyridines using TCCA 
as the activator. 

 

 While there has been extensive development of biaryl bisphosphine (vide supra) and 
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asymmetric hydrogenation of bis-isoquinoline 64 to generate pentacyclic intermediate 65 in 

one step as a single diastereomer in 88% ee (1.9).37 

Scheme 1.8. Ir-catalyzed asymmetric hydrogenation of quinolines, quinoxalines, and 
benzoxazinones. 

 

Scheme 1.9. Key Ir-catalyzed enantioselective hydrogenation step in the total synthesis of 
jorumycin. 
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well tolerated with previous hydrogenation methods.30 However, Stoltz and coworkers have 

extended this application of using a hydroxymethyl directing group toward the asymmetric 

hydrogenation of a range of 1,3-disubstituted isoquinolines. Using 1.25 mol % of 

[Ir(cod)Cl]2 and 3 mol % of chiral Josiphos ligand (L7), a range of differentially substituted 

isoquinolines were hydrogenated in high yields and enantio- and diastereoselectivity 

(Scheme 1.10, see Chapter 2).37b Heterocyclic substituents, such as furan and thiophene, at 

the C(3) position were also tolerated in this transformation. Interestingly, altering the 

directing groups at the C(1) position of the isoquinoline lowered the levels of conversion 

but maintained similar levels of stereoselectivity. Stoltz and coworkers later reported the 

first trans-selective asymmetric hydrogenation of 1,3-disubstituted isoquinolines as well 

with a similar catalyst system, wherein non-coordinating chlorinated solvents and halide 

additives were necessary to enable trans-selectivity (see Chapter 3).37c   

Scheme 1.10. Ir-catalyzed asymmetric hydrogenation of 1,3-disubstituted isoquinolines. 
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the enantioselective synthesis of indolines from unprotected indoles,38b as well as the  

asymmetric hydrogenation of benzoxazines and benzothiazinones.38c Although 

stoichiometric amounts of sulfonic acids are needed to promote isomerization to the iminium 

intermediate, the transformation can be carried out using only 0.5 mol % of [Ir(cod)Cl]2 

(Scheme 1.11).38 

Scheme 1.11. Ir-catalyzed asymmetric hydrogenation with P–OP ligand L8. 
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tolerance, using 1 mol % of catalyst loading and mild reaction conditions.39a Although  

preformation of the Ir/SpinPHOX catalyst complex is necessary, up to 99% isolated yield 

and 99% enantiomeric excess are observed across differentially substituted indole and 

benzofuran substrates. 

Scheme 1.12. Ir-catalyzed asymmetric hydrogenation with SpinPHOX ligand L9. 
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Scheme 1.13. Ir-catalyzed asymmetric hydrogenation of quinolines with Ir/TsDPEN catalyst 
78. 

 

1.5  RHODIUM-CATALYZED ASYMMETRIC HYDROGENATION 

 Apart from iridium and ruthenium catalyst systems in the asymmetric hydrogenation 

of heteroarenes, rhodium catalysts have also been effective for the reduction of quinolines,  

isoquinolines, and indoles (Figure 1.6). The combination of a rhodium(I) source and either a 
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Figure 1.6. Common Rh-based catalyst systems for the asymmetric hydrogenation of 
heteroarenes (≥90% ee, minimum three substrates). Only one enantiomer of ligand shown for 
simplicity. 

 

 Zhang and coworkers performed DFT calculations to gain insight into the mechanism 

of the Rh-catalyzed transformation (Figure 1.7).43c Rh(I) catalyst 86 undergoes oxidative 

addition with H2 to generate the active Rh(III) species 88. Protonation of the indole substrate 

with HCl allows anion binding with the thiourea moiety to form intermediate 90, allowing 

hydrogen bonding interactions between the chloride ion and the indole N–H group. Hydride 
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91 and complex 92. Addition of another molecule of H2 facilitates heterolytic cleavage of 

dihydrogen in complex 93 to generate Rh(III) catalyst 94 and HCl, in what was computed to 

be the rate-determining step. Overall, the thiourea–chloride anion binding proved to be 

crucial for inducing high enantioselectivity and reactivity in this system.43c 

Scheme 1.14. Rh-catalyzed asymmetric hydrogenation of N-heteroarenes using ZhaoPhos 
ligand L10. 
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2010, Zhou and Zhang reported the first Pd-catalyzed asymmetric hydrogenation of N–H 

indoles using Pd(OCOCF3)2, a chiral H8-BINAP ligand, and (–)-camphorsulfonic acid.44 

Figure 1.7. Proposed catalytic cycle for the Rh-catalyzed asymmetric hydrogenation of indoles 
with ZhaoPhos ligand L10. 

 

Since their seminal report, the homogeneous palladium catalyst system has been extended to 

accommodate a range of N-heteroarenes, including quinolines,45 indoles,46 quinoxalinones,47 

and the partial hydrogenation of pyrroles (Figure 1.8).48 Common amongst all these catalytic 

systems is the use of chiral biaryl bisphosphine ligands with different steric environments of 

the naphthyl ring. 

 Zhou and coworkers have extensively developed palladium catalyst systems for the 

hydrogenation of N-heteroarenes, as palladium complexes demonstrate a higher tolerance for 

Rh
Cl

P

P
[Rh(cod)Cl]2

1. ligand

2. H2

HCl

H
H

88

N
H

R

Rh
Cl

H P

PH

Ar
N

N

S

90

ClN

R

N
H

R

H2

*
86 87

89

H
H

91

Rh
Cl

Cl P

PH
92

*

*

Rh
Cl

P

PH

Ar
N

N

S

93

H
H

*
H

H

Cl

Rh
Cl

H P

PH
94

*

Rh
Cl

H P

PH

Ar
N

N

S

H
H

*

H

Rh(III) Catalytic
Cycle

Ar
N

N

S

H
H

Ar
N

N

S

H
HHCl



 
Chapter 1 – Recent Advances in Homogeneous Catalysts for the Asymmetric 
Hydrogenation of Heteroarenes 
 

28 

strong Brønsted acids. Using chiral ligand (R)-H8-BINAP (L11), palladium(II) 

trifluoroacetate, and 1 equivalent of (–)-camphorsulfonic acid or TsOH•H2O, the asymmetric  

hydrogenation of 2-substituted and 2,3-disubstituted indoles is achieved to synthesize 

enantioenriched indolines in up to 99% yield and 98% ee (Scheme 1.15).46c Isotope-labeling 

studies demonstrate that the acid is necessary for formation of the iminium salt, which then 

undergoes hydrogenation by a Pd–H species. 

Figure 1.8. Common Pd-based catalyst systems for the asymmetric hydrogenation of 
heteroarenes (≥90% ee, minimum three substrates). Only one enantiomer of ligand shown for 
simplicity. 
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hydrogen-bonding interactions with the trifluoroacetate ligand to generate intermediate 99. 

A hydride transfer from the Pd(II) center to the hydrogen-bound iminium of complex 100 is 

proposed to be the enantiodetermining step. 

Scheme 1.15. Pd-catalyzed asymmetric hydrogenation of N–H indoles. 

 

Figure 1.9. Proposed catalytic cycle for the Pd-catalyzed asymmetric hydrogenation of indoles. 
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chiral bisphosphine ligand. After dissociation of the chiral indoline product 102, palladium  

hydride species 98 is regenerated with the release of TsOH from activation of H2. Additional 

mechanistic studies of palladium-catalyzed asymmetric hydrogenation of N-heteroarenes 

may provide key insights for further chiral catalyst design to improve the substrate scope of 

this transformation. 

1.7  IRON-CATALYZED ASYMMETRIC HYDROGENATION 

Despite the development of many efficient transition metal catalysts for the 

asymmetric hydrogenation of heteroarenes, the application of earth-abundant metals such 

as iron as hydrogenation catalysts are a promising avenue of further  

development. The first report of the homogeneous asymmetric hydrogenation of imines 

using first-row transition metals has only recently been published in 2011.49 Beller and 

coworkers developed a novel cooperative catalytic system combining an achiral iron 

hydrogenation catalyst with a chiral Brønsted acid that facilitates the enantioselective 

reduction of quinoxalines and benzoxazines. 50  Using chiral phosphoric acid 105 to  

activate the substrate and control the enantioselectivity, an iron complex (104) reacts with 

the activated intermediate to deliver enantioenriched tetrahydroquinoxalines and  

dihydrobenzoxazines in high yields and selectivity (Scheme 1.16).50a Notably, both 

electron-donating and electron-withdrawing substituents on the C2-substituted phenyl ring, 

as well as meta- and para-substituted substrates, had little impact on the reactivity and 

enantioselectivity of the hydrogenation reaction. The levels of selectivity observed with 
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the iron catalyst system rival those of late transition metal-based catalysts for the 

hydrogenation of the same heteroarenes.  

Scheme 1.16. Fe-catalyzed asymmetric hydrogenation of quinoxalines and benzoxazines 
with chiral phosphoric acid 105. 

 

Although the mechanism for this transformation has been  

previously investigated computationally using acyclic imines,51 Hopmann has proposed an 

alternative mechanism with benzoxazine as the substrate (Figure 1.10).52  Calculations  

indicate that hydrogenation may likely occur through a stepwise mechanism, in which 
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complex. A molecule of H2 generates dihydrogen complex 108, subsequently splitting H2 

through proton abstraction by the phosphate to yield iron hydride species 109. Benzoxazine 

110 then coordinates to the chiral acid through hydrogen bonding interactions, allowing 

hydride transfer to occur to form catalyst species 112. Finally, product 113 is  
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enantioselectivities are in excellent agreement with experimental values, and the proposed 

mechanism is consistent with experimental observations by Beller and coworkers on 

possible reaction intermediates.50 
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Figure 1.10. Proposed cooperative catalytic cycle for the Fe-catalyzed asymmetric 
hydrogenation of benzoxazines in the presence of a chiral phosphoric acid. 

 

1.8  BORANE-CATALYZED ASYMMETRIC HYDROGENATION 

Avoiding the use of transition metals for catalysis, the metal-free asymmetric 

hydrogenation of heteroarenes is an emerging research field for further development. 

Recently, frustrated Lewis pair (FLP) catalysis has been explored for the hydrogenation of 

heteroarenes with hydrogen gas or NH3•BH3 as the hydrogen source.53 Du and coworkers  

reported a novel FLP catalyst system using a chiral borane catalyst (115), generated in situ 

from the direct hydroboration of chiral dienes 114 with HB(C6F5)2 (Scheme 1.17).54 The  

binaphthyl substituent presumably serves to control the stereoselectivity of the 

transformation, often requiring bulky aryl groups to achieve high selectivity. Although the  

mechanism for the asymmetric hydrogenation of heteroarenes using chiral borane catalysts 

107
CO

COO
Fe

TMS

TMS
HO

O
O

R

R

P
O

H2

108
CO

CO
Fe

TMS

TMS
HO

O
O
P
O

O
H
H

109
CO

CO
Fe

TMS

TMS
HO

O
O
P
O

OH H

111

CO
CO

Fe
TMS

TMS
HO

O
O
P
O

O
H

112

CO
CO

Fe
TMS

TMS
HO

O
O
P
O

O

110

113

N

O

R

*

*

*

*

O

N R
H

O

N R
H

N
H

O

R

Fe(II) Catalytic
Cycle



 
Chapter 1 – Recent Advances in Homogeneous Catalysts for the Asymmetric 
Hydrogenation of Heteroarenes 
 

33 

has not been investigated thoroughly, FLP catalysts are well known to activate H2  

splitting and undergo hydride transfer.55  

Scheme 1.17. In situ formation of chiral borane catalyst 115 from chiral dienes. 

 

Chiral borane catalysts such as 115 are effective for the  

asymmetric hydrogenation of trisubstituted quinolines and disubstituted quinoxalines.53 Du 

optimized the catalyst system to generate the borane catalyst in situ with 2 to 5 mol % of 

the chiral diene ligand 117 and HB(C6F5)2 in the presence of molecular H2 gas (Scheme 

1.18). Under mild reaction conditions, a range of chiral tetrahydroquinolines and  

tetrahydroquinoxalines were synthesized in high yield and enantioselectivity.53a–d Overall, 

this catalyst system is a promising step toward the in situ generation of a library of chiral 

borane catalysts, and their application to the asymmetric hydrogenation of other 

heteroarenes could be explored. 

In 2019, Wang and coworkers developed a similar catalytic system, employing 

chiral spiro-bicyclic bisborane catalysts for the asymmetric hydrogenation of C(2)-

substituted quinolines.53e The novel spiro-bicyclic bisborane catalyst 122 exhibited 

excellent activity and selectivity for alkyl-substituted quinolines at the C(2)-position, 

which previously have not been well tolerated (Scheme 1.19). A range of quinolines  
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enantioselectivity, and chemoselectivity, demonstrating the catalyst’s broad functional 

group tolerance. 

Scheme 1.18. Metal-free asymmetric hydrogenation of heteroarenes through in situ formation 
of a chiral borane catalyst from ligand 117. 

 

Scheme 1.19. Asymmetric hydrogenation of quinolines using spiro-bicyclic bisborane catalyst 
122. 
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1.9  CHIRAL PHOSPHORIC ACID-CATALYZED ASYMMETRIC 

HYDROGENATION 

 Since Rueping’s first report of an organic-catalyzed asymmetric reduction of 

heteroarenes in 2006, various chiral Brønsted acid catalysts have emerged as powerful agents 

for asymmetric arene hydrogenation (Scheme 1.20).4,56 Asymmetric transfer hydrogenation 

(ATH) reactions are promising alternatives to the use of transition metals or high pressure 

reactors, instead employing hydrogen sources like Hantzsch esters (HEH), 

dihydrophenanthridine (DHPD), and 4,5-dihydropyrrolo[1,2-a]quinoxalines. 57  In most 

cases, however, an unrecyclable excess of reductant is required for hydrogenation. 

Scheme 1.20. First reported chiral phosphoric acid-catalyzed asymmetric hydrogenation of 
quinolines. 
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hydrogenation of pyridines (Figure 1.11). 61  Rueping, Zhou, Gong, and Bhanage have  
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More recently, Shi and coworkers have developed a new class of CPA catalysts with a 1,1’-

spirobiindane-7,7’-diol (SPINOL) backbone for the enantioselective hydrogenation of a 

range of quinolines and benzoxazines.58f Using 1 mol % of CPA 135 and 1.25 to 2.5 

equivalents of HEH (126), electron-withdrawing and electron-donating substituents at the 

C(2)-position are all well tolerated and afforded excellent enantioselectivities (Scheme 

1.21).58f The metal-free and mild reaction conditions of this transformation is an appealing 

alternative to transition metal catalyst systems. 

Figure 1.11. Common chiral phosphoric acid catalyst systems for the asymmetric 
hydrogenation of heteroarenes (≥90% ee, minimum three substrates). Only one enantiomer 
of ligand shown for simplicity. 
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precedented that two subsequent reduction cycles occur, each with one equivalent of the 

hydride source and a chiral phosphoric acid. 

Scheme 1.21. Asymmetric transfer hydrogenation with SPINOL-derived phosphoric acid 135. 

 

Quinoline 25 is first activated through a proton transfer from the phosphoric acid to the 

substrate, followed by a 1,4-hydride addition using HEH. The resulting dihydroquinoline can 

then isomerize to the imine, entering a second reduction cycle involving a similar stepwise 

process (Figure 1.12). Although previous studies have proposed the hydride transfer from 
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Figure 1.12. Proposed catalytic cycle for the asymmetric transfer hydrogenation of quinolines 
using a chiral phosphoric acid and Hantzch ester. 
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Using relay catalysis, Zhou and coworkers took inspiration from NAD(P)H models 

that enable the biomimetic asymmetric hydrogenation of heteroarenes, harnessing the in 

situ generation of dihydrophenanthridine (DHPD) from catalytic amounts of ruthenium, 

phenanthridine, and H2 as the terminal reductant.58c, 64  Using 0.5 mol % of [Ru(p-

cymene)I2]2, 10 mol % of DHPD, and 1 mol % of CPA 130 or 131, the asymmetric 

hydrogenation of 2-substituted quinolines, quinoxalines, and benzoxazines proceeded in 

up to 99% yield and 97% ee (Scheme 1.22A).  

 The mechanism of the biomimetic asymmetric hydrogenation reaction is proposed to 

involve two catalytic cycles, initially with Ru-catalyzed hydrogenation of  

phenanthridine 149 to generate DHPD 153. DHPD then coordinates to the chiral phosphoric 

acid to enantioselectively reduce the substrate 154, which is then regenerated to DHPD by 

the ruthenium hydride species (Scheme 1.22B). Interestingly, using a Hantzsch ester as the 

hydride source reverses the stereoselectivity due to the different steric demands of the 

coordination of the substrate and CPA, favoring the Re-face reduction instead.58c Although a 

transition metal is employed to recycle the hydride source, the biomimetic cascade  

hydrogenation can be performed under mild conditions with excellent activities and 

enantioselectivities. 

1.10  CONCLUSION 

Over the past decade, many effective catalyst systems have been developed for the 

asymmetric hydrogenation or asymmetric transfer hydrogenation of heteroarenes. 

Although transition metal catalysts are most commonly employed for stereoselective 
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hydrogenation with molecular hydrogen gas, a number of organic catalysts and dual 

catalytic systems have also been successfully applied for the synthesis of  

enantioenriched saturated heterocycles. 

Scheme 1.22. Biomimetic asymmetric transfer hydrogenation of heteroarenes. 
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different heteroarenes has still not been achieved. Moreover, many asymmetric 

hydrogenation systems rely on acid activation of the substrates, which can be a limitation 

for more basic products. Development of novel ligand scaffolds and homogeneous catalyst 

systems will continue to be explored to design hydrogenation catalysts with improved 

selectivity. Creative activation strategies for these transformations should also be 

considered to extend the substrate scope, whether it be through pendant directing groups 

or recyclable activating reagents. Exploring these strategies will also provide insight into 

the challenge of developing a technology for the exhaustive asymmetric hydrogenation of 

simple 5- or 6-membered heteroarenes and benzene derivatives. Finally, a thorough 

mechanistic understanding of these asymmetric transformations is necessary to advance 

this field. Although experimental mechanistic studies are often limited by high pressure 

reactors and catalyst deactivation pathways, further investigation is needed to guide the 

development of the next generation of hydrogenation catalyst systems. 

   The asymmetric hydrogenation of heteroarenes using homogeneous catalysts 

continues to be a valuable technology for the direct synthesis of enantioenriched, saturated  

heterocycles. These small molecules are critical structural motifs in natural products,1 as 

well as pharmaceuticals,2 and other molecules of industrial importance.3 Thus, the 

development of efficient catalyst systems for the enantioselective hydrogenation of a broad 

range of heteroarenes in good yields, stereoselectivity, and chemoselectivity remains 

highly desirable. We anticipate further advances in asymmetric hydrogenation technology 

that will revolutionize this field of research. 
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CHAPTER 2 

Iridium-Catalyzed Enantioselective and Diastereoselective 

Hydrogenation of 1,3-Disubstituted Isoquinolines†  

 

2.1  INTRODUCTION 

 The stereocontrolled synthesis of nitrogen-containing heterocycles remains a 

challenge of great importance, as it provides direct access to chiral compounds that are 

prevalent structural motifs in many biologically active molecules. 1  As a result, the 

asymmetric hydrogenation of various hetero-aromatic compounds has been extensively 

explored as a direct, efficient synthesis of enantiopure cyclic amines. 2  Despite recent 

progress made toward the asymmetric hydrogenation of N-heterocycles such as quinolines, 

quinoxalines, and pyridines, the synthesis of 1,2,3,4-tetrahydroisoquinolines (THIQs) from 

isoquinolines remains significantly under-developed (Figure 2.1A).2 This is due in part to the 

stronger basicity and coordinating ability of the THIQ products compared to those of other 
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heterocycles (e.g., quinolines), leading to catalyst deactivation, as well as the overall lower 

reactivity of isoquinoline substrates. 3  Although a few effective strategies toward the 

asymmetric hydrogenation of substituted isoquinolines have been reported, these typically 

require preparation of the isoquinolinium salt, substrate activation with halogenides, and 

harsher hydrogenation reaction conditions (Figure 2.1B).4  

 Furthermore, previous to our research, there were only 2 catalytic systems describing 

efficient methods to access chiral 1,3-disubstituted tetrahydroisoquinolines,4c,e,g a more 

complex and sterically challenging system that generates two stereogenic centers. In 

addition, the limited substrate scope from these reports demonstrates the low tolerance of 

additional Lewis basic functionalities, such as alcohols or heteroaryl-substituted 

isoquinolines, which limit the applicability of these methodologies in synthesis. Since 1,3-

disubstituted tetrahydroisoquinolines with Lewis basic moieties are ubiquitous motifs 

present in a wide range of natural products, such as the saframycin, naphthyridinomycin, and 

quinocarcin families,5 a general method for highly enantioselective and diastereoselective 

hydrogenation of neutral disubstituted isoquinolines under mild reaction conditions would 

be a significant advancement toward the preparation of chiral amine-containing cyclic 

molecules. 

Recently, our group has successfully completed the total synthesis of jorumycin 

(156) and jorunnamycin A (157), two bis-tetrahydroisoquinoline natural products that exhibit 

potent antiproliferative activity, as well as strong Gram-positive and Gram-negative 

antibiotic character.6 Through an unprecedented, nonbiomimetic synthetic route, we were  

successful in harnessing catalysis to allow expedient access to these natural products, as well 
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as a diverse range of non-natural analogs that are otherwise inaccessible using prior 

biomimetic synthetic approaches.  

Figure 2.1 A) Limitations in enantioselective hydrogenation of N-heterocycles. B) Previous 
examples of iridium-catalyzed enantioselective and diastereoselective hydrogenation of mono- 
and di-substituted isoquinolines. 

 
 

 

 One of the key steps of this synthesis involves a catalytic enantioselective 

hydrogenation of bis-isoquinoline 64 to afford the THIQ motif, a crucial  

intermediate that forms the pentacyclic carbon skeleton 65 in one step by further 

hydrogenation of the second isoquinoline and eventual amide ring closure (Figure 2.2). 
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Figure 2.2 Our research on iridium-catalyzed enantioselective and diastereoselective 
hydrogenation of 1,3-disubstituted isoquinolines. 
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hydrogenation technology for bis-isoquinolines, herein we disclose a mild, general method 

for the enantioselective and diastereoselective hydrogenation of 1,3-disubstituted 

isoquinolines. 

2.2 SUBSTRATE SYNTHESES 

Due to a limited number of methods for the syntheses of 1,3-disubstituted 

isoquinolines,7  we first established a simple and divergent sequence to access a wide 

variety of 1-(hydroxymethyl)-3-arylisoquinoline substrates (i.e., 162, Scheme 2.1). 

Utilizing Pd-catalyzed arylation of ester enolates reported by Donohoe and coworkers,8 

monoarylated tert-butyl acetate 158 was isolated in an excellent 92% yield. Cyclization to 

isoquinoline triflate 160 was then achieved via hydrolysis of the ketal, followed by 

isoquinoline annulation with aqueous ammonium hydroxide, and alcohol triflation.9 At this 

stage, different aryl or heteroaryl groups could be coupled with intermediate 160 using 

Suzuki coupling conditions to deliver a wide range of 1,3-disubstituted  

isoquinolines (i.e., 161), highlighting the divergent synthesis of our synthetic route. Finally, 

SeO2 oxidation to the aldehyde and subsequent NaBH4 reduction provided our desired  

isoquinoline starting materials 162a–r. It is worth noting that this sequence allows for an 

introduction of various aryl and heteroaryl groups at the C3-position of isoquinolines, as 

well as different substituents with varied electronics on the isoquinoline carbocycle (e.g., 

164a–f, vide infra, Scheme 4). Currently in the literature, the 1,3-disubstituted isoquinoline 

motif is typically accessed via transition-metal-catalyzed tandem C–H 

activation/annulation of arenes with alkynes.10 These methods have shown limited success 

in producing C3-heteroaryl isoquinolines.11 
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Scheme 2.1. Syntheses of 1-(hydroxymethyl)-3-aryl isoquinoline substrates. 
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on the bis-isoquinoline system (Table 1). An initial experiment,  

employing 1.25 mol % [Ir(cod)Cl]2 and 3 mol % of the BTFM-xyliphos ligand (L6), gave 

high conversion of the substrate but surprisingly modest enantioselectivity (49% ee, entry 

1). Seeking to improve the ee, we surveyed a wide variety of chiral ligand scaffolds (see 

Supporting Information) and found the xyliphos ligand framework to be optimal. By 

exploring different electronics of this ligand scaffold, we observed that replacing the 3,5-

bistrifluoromethylphenyl (BTFM) with more electron-rich aryl groups provided the 

product with both excellent conversion and higher enantio-selectivity (entries 1–5). Ligand 
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providing the product in excellent conversion and diastereoselectivity (entry 6). From this 

finding, we obtained all racemic hydrogenated products by simply performing the 

hydrogenation in the absence of ligand, affording the cis-product as a single diastereomer. 

Table 2.1. Optimization of the enantioselective hydrogenation of isoquinolines to afford cis-
THIQs.a 

 

[a] Reaction conditions: 0.04 mmol of 162a, 1.25 mol % [Ir(cod)Cl]2, 3 mol % ligand, 7.5 mol % 
TBAI, 60 bar H2 in 2.0 mL 9:1 solvent:AcOH. [b] Determined from crude 1H NMR using 1,3,5-
trimethoxybenzene as standard. [c] Determined by chiral SFC analysis of Cbz-protected product. [d] 
Opposite enantiomer of ligand used. [e] Reaction performed on a 0.2 mmol scale at 23 °C, 20 bar 
H2, and 0.1 M concentration of 162a. BTFM = 3,5-bis(trifluoromethyl)phenyl; DMM = 4-methoxy-
3,5-dimethylphenyl.  

 

Investigation of different solvents with L7 as the optimal ligand reveals that while 

the use of CH2Cl2 provided similar results to toluene (entry 7), the diastereoselectivity 

could be improved with the use of ethereal solvents (entries 8–11).  
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Although bulkier ethereal solvents proved to worsen conversion (entries 8 and 10), we were 

delighted to find that THF and the more sustainable solvent 2-MeTHF delivered the 

product in excellent conversion with high levels of diastereoselectivity and 

enantioselectivity (entries 9 and 11). The absence of AcOH resulted in low conversion,12 

while further exploration of different additives (e.g., LiI, NaI, KI, etc.) demonstrated that 

TBAI is the optimal additive (see Table 2.3, Section 2.7.3). Finally, we were excited to 

observe that lowering the temperature to 23 °C and H2 pressure to 20 bar maintained 

excellent levels of conversion, diastereo-selectivity, and enantioselectivity (entry 12). To 

the best of our knowledge, these are the mildest reaction conditions reported for 

isoquinoline hydrogenation to afford chiral THIQs to date.4 

 

2.4 SUBSTRATE SCOPE 

 With optimized reaction conditions identified, we explored the general substrate 

scope for this transformation (Scheme 2.2). Gratifyingly, a wide variety of aryl substituents 

at the 3-position of the isoquinoline are well tolerated under the mild reaction conditions 

of 20 bar H2 at ambient temperature. Substitution at the para-position of the 3-aryl ring 

delivered the hydrogenated products 163a–g in consistently high yields and 

enantioselectivity. Electron-rich substrates such as the 3-(p-tert-butylphenyl)isoquinoline 

(162b) and the p-methoxyphenyl (162d) afforded chiral THIQs with excellent yields, 

diastereoselectivity, and enantioselectivity, similar to 162a. Interestingly, however, a 

general trend of lower diastereoselectivity was observed with electron-withdrawing 

substituents both at the para- and meta- positions (163f–i). We envision that the observed 

lower diastereoselectivity arises from the weaker coordinating ability of the nitrogen to the 
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iridium catalyst in electron-poor substrates, discouraging coordination to the catalyst in a 

bidentate fashion,13 and thus resulting in poorer facial selectivity in the second hydride  

addition step. However, at this time, we still cannot rule out the possibility that 

epimerization in situ also influences the trend seen in diastereoselectivity.14 Investigation 

of steric effects revealed that more sterically encumbered isoquinolines such as the 3-

napthyl and 3-xylyl substrates furnished the products (163j–k) in excellent isolated yields 

with similarly high enantioselectivity (95% and 92% ee, respectively) as a single 

diastereomer. The most sterically demanding substrate 162m, bearing an ortho-tolyl 

substituent, provided product 163m in a modest 64% yield with lower enantioselectivity 

(49% ee), albeit still with a high 10.1:1 diastereoselectivity. Additionally, we were pleased 

to find that the nitrile and nitro functional groups as well as the napthyl substituent were 

not reduced (163g, 163h, and 163j), highlighting the chemoselectivity of this catalytic 

process. 

Pleased to find the reaction tolerable to a range of 3-aryl substituted isoquinolines, 

we sought to further extend the scope of the transformation by exploring heteroaryl-

substituted isoquinolines (Scheme 2.3). Although performing the hydrogenation at 23 °C 

and 20 bar H2 resulted in lower conversion, partially due to solubility issues, we found that 

heterocyclic substituents including furan, thiophene, pyrazole, and pyridine were well 

tolerated at 60 °C and under higher pressure of 60 bar H2, producing THIQs 163n–r. We 

also observed that the substitution pattern on the heteroaryl groups strongly affects the 

reaction conversion. For instance, an isoquinoline with a 3-substituted thiophene proceeded 

with a significantly lower conversion than the 2-thiophene substrate (163o and 163p). 
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Scheme 2.2. Substrate scope of different aryl substituents.a 

 

[a] Reactions performed on a 0.2 mmol scale. [b] Reaction performed at 60 °C and 60 bar H2. [c] 
CH2Cl2 cosolvent used to improve substrate solubility. 

 

Similarly, no conversion was observed with 3- and 4-pyridyl substrates, whereas 2-

pyridyl THIQ 163r was isolated in 48% yield under the same reaction conditions. We 

speculate that this may be due to the competitive binding of the catalyst by the more distal 

heteroatom of 3- and 4-substituted heterocycles that inhibits directed hydrogenation of the 

isoquinoline ring. From product 163p we were successful in obtaining an X-ray crystal 
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structure to confirm the relative and absolute stereochemistry of our hydrogenation 

product. 

Scheme 2.3. Substrate scope of heteroaryl substituents.a 

 

[a] Reactions performed on a 0.2 mmol scale. 

 

Furthermore, we were interested in exploring the substrate scope of isoquinolines 
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the electron-rich dioxolane-appended isoquinolines (164d–e) afforded lowered conversion 

under the same reaction conditions, due in part to the poor solubility of the substrates in 

THF. Nevertheless, executing the reaction at 60 °C and 60 bar H2 with CH2Cl2 as cosolvent 

improved the solubility and conversion to yield products 165d–e with high diastereo-

selectivity.15 

Scheme 2.4. Substrate scope of IQ backbone substituents.a 

 
[a] Reactions performed on a 0.2 mmol scale. [b] Reaction performed at 60 °C and 60 bar H2. [c] 
CH2Cl2 cosolvent used to improve substrate solubility. 

 

Interestingly, we observed significantly lower enantioselectivity for the dioxolane 

THIQs, which is observed in other reports as well.4a,g Finally, the napthyl-fused THIQ 165f 

was obtained with high diastereoselectivity and enantio-selectivity, despite its extended 
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aromatic system and larger steric hindrance. Although we observed modest conversion for 

these highly decorated isoquinolines, we were pleased to see that we were able to isolate 

unreacted starting material after column chromatography to obtain 80%, 99%, and 79% 

yield, respectively, of 165d–f based on recovered starting material. Consistent with our 

results for THIQs 163j and 163r, we observed that only the ring with the least degree of 

aromatic stabilization was reduced for 165f. 

Having demonstrated that this transformation is general for a wide variety of 1,3-

disubstituted isoquinolines, we then turned our attention to investigate the effects of different 

“directing” groups at the C1-position (Scheme 2.5). Isoquinolines bearing other polar groups 

such as an ester (167a), ethers (167b–c), and a Boc-protected amine (167d) delivered the 

products in lower yields than the hydroxy-directed substrate at 23 °C and 20 bar H2. 

However, to our delight, by increasing the temperature and H2 pressure, these yields could 

be improved with no erosion of enantioselectivity and diastereoselectivity. 

Additionally, we found that aldehyde 166f was reduced to the alcohol in situ, 

affording the hydroxymethyl THIQ 163a in comparable yield, enantioselectivity, and 

diastereoselectivity to that of the hydroxy-directing substrate 162a (vide supra).  

Interestingly, an isoquinoline lacking a potential directing group (167e) also afforded chiral 

THIQs with no erosion of enantioselectivity (90% ee),16 although elevated temperature and 

pressure are needed to obtain a synthetically useful yield (64%). While the hydroxy-directing 

aspect is the enabling feature in the context of our total synthesis of jorumycin, we are pleased 

to find that we can obviate this requirement in our developed hydrogenation technology. 

Nevertheless, surveying a variety of different directing groups demonstrates the  

importance of a functional group for directed hydrogenation, with the hydroxy functionality 
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acting as the best directing group for mild and efficient asymmetric hydrogenation.  

Notably, this is the first asymmetric hydrogenation method of isoquinolines in which 

additional Lewis basic functionalities are tolerated. It is also the first report investigating the 

effects of different directing groups in enantioselective hydrogenation of isoquinolines. 

Scheme 2.5. Substrate scope of different directing groups.a 

 

[a] Reactions performed on a 0.2 mmol scale. [b] Reaction performed at 60 °C and 60 bar H2. [c] 
Relative and absolute stereochemistry determined by experimental and computed VCD and optical 
rotation, see Section 2.7.4. 
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2.5 SYNTHETIC UTILITY 

Overall, the broad application of our hydrogenation technology to afford chiral 

THIQs provides access to a range of decorated analogs that are difficult to synthesize via 

biomimetic approaches (e.g., Pictet-Spengler, Bischler-Napieralski). These often require 

electron-rich substrates to undergo cyclization (eq 1).17 

 

With the scope of the transformation established, we sought to demonstrate the 

synthetic utility of the produced chiral THIQs toward more complex scaffolds that could 

be applicable to natural products. Additionally, we envisioned taking advantage of the 

chiral β-amino alcohol that is generated in our product as a building block to forge more 

complex enantioenriched heterocyclic scaffolds (Scheme 2.6).18 

Prior to our investigation into the synthetic utilitiy of THIQ products, we performed 

the hydrogenation of isoquinoline 162l on a larger scale (1 mmol). We were pleased to find 

that the hydrogenated product 163l was still obtained in good yield (91% isolated yield) 

with excellent selectivity (>20:1 dr, 88% ee). With an ample amount of 163l in hand, we 

subjected THIQ 163l to aqueous fomaldehyde solution and found that the tricyclic 1,2-

fused oxazolidine THIQ 168 was formed rapidly via the cyclization of the alcohol onto the  

iminium generated in situ. Furthermore, the reaction of amino alcohol 163l with 

carbonyldiimidazole (CDI) afforded oxazolidinone-fused THIQ 169 in 84% yield.19 To our 

delight, we found that these 6,6,5-tricyclic systems are conserved structural motifs in a 

number of natural products such as quinocarcin, tetrazomine, and bioxalomycin.5 Lastly, a  

R1

NH2
R

aldehyde R1

NH
R

R2R = electron-donating substituents
R1, R2 = alkyl, aryl
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different tricyclic scaffold containing fused morpholinone (170) can be isolated in 41% 

yield by the addition of excess glyoxal to 163l at room temperature.20 Being able to access 

a variety of complex heterocyclic scaffolds in one step from our hydrogenated THIQs 

further highlights the advantages of the hydroxymethyl functionality at the C1 position, 

beyond directing hydrogenation. 

In addition to the tricyclic scaffold, we were pleased to find that an analog of 

tetrahydroprotoberberine alkaloids, a family of natural products with a tetracyclic bis-

THIQ core,21 can be synthesized via a 2-step sequence. First, reaction of 163l with glyoxal 

dimethyl acetal delivered the oxazolidine-fused intermediate with a dimethoxy acetal 

substituent at the carbinol-amine carbon. Subsequently, exploration of both Brønsted and 

Lewis acid-mediated Pomeranz-Fritsch reaction revealed that the use of Eaton’s reagent22 

delivered pentacyclic THIQ 171 in 38% yield as a single diastereomer. This complex 

scaffold could be of medicinal interest, as previous studies have shown that 

tetrahydroprotobeberine derivatives possess a wide array of interesting biological 

activities.17,23 

Scheme 2.6. Derivatization of hydrogenated product 163l. 
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2.6 CONCLUSION 

We have developed a general, efficient enantioselective hydrogenation reaction of 

1,3-disubstituted isoquinolines toward the syntheses of chiral THIQs. Key to the success 

of this reaction is the installation of a directing group at the C1-position that facilitates 

hydrogenation to reduce a variety of isoquinolines under mild reaction conditions. The  

developed method affords chiral THIQs in good yields, with high levels of 

diastereoselectivity and enantioselectivity. The reaction conditions tolerate a wide range of 

substitution on the 1-, 3-, 6-, 7-, and 8-position of the isoquinoline core. To date, this report 

represents the broadest scope and highest tolerance of Lewis-basic functionality of any 

asymmetric isoquinoline reduction technology currently known. Furthermore, this method 

is amenable to the production of electron-deficient THIQs that are difficult to obtain 

through the classical Pictet–Spengler approach. To demonstrate the synthetic utility of the 

hydrogenated products, we utilize the hydroxyl directing group as a functional handle for 

further synthetic manipulations. As a result, we have completed the syntheses of various 

tricyclic and pentacyclic skeletons that are of potential medicinal interest. Further 

exploration of the mechanism, and other applications of this technology are  

currently underway. 

 

2.7 EXPERIMENTAL SECTION 

2.7.1 MATERIALS AND METHODS 

Unless otherwise stated, reactions were performed in flame-dried glassware under 

an argon or nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried by 
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passage through an activated alumina column under argon. 24  Reaction progress was 

monitored by thin-layer chromatography (TLC) or Agilent 1290 UHPLC-MS.  TLC was 

performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and 

visualized by UV fluorescence quenching, p-anisaldehyde, oxr KMnO4 staining.  Silicycle 

SiliaFlash® P60 Academic Silica gel (particle size 40–63 µm) was used for flash 

chromatography. 1H NMR spectra were recorded on Varian Inova 500 MHz and Oxford 

600 MHz spectrometers and are reported relative to residual CHCl3 (δ = 7.26 ppm) or TMS 

(δ = 0.00 ppm). 13C NMR spectra were recorded on a Bruker 400 MHz spectrometer (100 

MHz) and are reported relative to CHCl3 (δ = 77.16 ppm), C6D6 (δ = 128.06 ppm) . Data 

for 1H NMR are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant 

(Hz), integration).  Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, 

q = quartet, p = pentet, sept = septuplet, m = multiplet, br s = broad singlet, br d = broad 

doublet.  Data for 13C NMR are reported in terms of chemical shifts (δ ppm).  IR spectra 

were obtained by use of a Perkin Elmer Spectrum BXII spectrometer or Nicolet 6700 FTIR 

spectrometer using thin films deposited on NaCl plates and reported in frequency of 

absorption (cm–1).  Optical rotations were measured with a Jasco P-2000 polarimeter 

operating on the sodium D-line (589 nm), using a 100 mm path-length cell. High resolution 

mass spectra (HRMS) were obtained from Agilent 6200 Series TOF with an Agilent 

G1978A Multimode source in electrospray ionization (ESI+), atmospheric pressure 

chemical ionization (APCI+), or mixed ionization mode (MM: ESI-APCI+). Reagents 

were purchased from commercial sources and used as received unless otherwise stated.  
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2.7.2 EXPERIMENTAL PROCEDURES AND SPECTROSCOPIC DATA 

2.7.2.1 Syntheses of hydroxymethyl 1,3-disubstituted isoquinolines 

General Sequence: 

 

General Procedure 1: Enolate Alkylation of Aryl Bromide 

 

 
tert-butyl 2-(2-(2-methyl-1,3-dioxolan-2-yl)phenyl)acetate (159a): This procedure has 

been adapted from a previous report.8 In a Schlenk flask was added P(t-Bu)3•HBF4 (119 

mg, 0.41 mmol), Pd2(dba)3 (188 mg, 0.21 mmol), a solution of 2-(2-bromophenyl)-2-

methyl-1,3-dioxolane (158a) (1.0 g, 4.1 mmol, 0.42 M), and tert-butyl acetate (0.95 g, 8.2 

mmol), respectively. The reaction mixture was cooled to –78 °C and sparged with nitrogen 

for 15 minutes. A degassed solution of LiHMDS (1.72 g, 10.25 mmol, 1 M in toluene) was 
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then added via syringe. The reaction mixture was degassed for an additional 15 minutes at 

–78 °C, and allowed to slowly warm to room temperature. The reaction was stirred at room 

temperature for 18 hours, and then quenched with saturated aqueous NaHCO3. The 

aqueous layer was extracted with Et2O twice. The combined organic phases were dried 

over MgSO4, filtered, and the solvent was removed in vacuo. The crude product was 

purified by silica gel flash chromatography (5% EtOAc in hexanes) to afford 159a as a 

yellow oil (1.05 g, 92% yield): 1H NMR (400 MHz, CDCl3) δ 7.53 – 7.45 (m, 1H), 7.20 – 

7.06 (m, 3H), 3.96 – 3.83 (m, 2H), 3.71 (s, 2H), 3.68 – 3.55 (m, 2H), 1.60 (s, 3H), 1.39 (s, 

9H); 13C NMR (100 MHz, CDCl3) δ 171.6, 141.1, 132.6, 132.3, 128.2, 127.1, 126.4, 109.2, 

80.4, 64.3, 40.4, 28.2, 28.2, 27.6; IR (Neat Film, NaCl) 3454, 3062, 2977, 2936, 2893, 

1731, 1484, 1455, 1392, 1368, 1218, 1196, 1168, 1037, 952, 869, 763, 706 cm-1; HRMS 

(MM:ESI-APCI+) m/z calc’d for C16H23O4 [M+H]+: 279.1591, found 279.1589. 

 

tert-butyl 2-(4-fluoro-2-(2-methyl-1,3-dioxolan-2-yl)phenyl)acetate (159b): Compound 

159b was prepared from aryl bromide (2-(2-bromo-5-fluorophenyl)-2-methyl-1,3-

dioxolane) (158b) using general procedure 1, and purified by column chromatography 

(10% EtOAc in hexanes) to afford 159b with impurities. The compound was then subjected 

to the second column chromatography (15% Et2O in hexanes) to obtain 159b as a colorless 

solid (74 mg, 61% yield); 1H NMR (400 MHz, CDCl3) δ 7.28 (dd, J = 10.3, 2.8 Hz, 1H), 

7.15 (dd, J = 8.4, 5.7 Hz, 1H), 6.94 (td, J = 8.2, 2.9 Hz, 1H), 4.06 – 3.90 (m, 2H), 3.74 (s, 

Ot-BuO

O O

159b

F



Chapter 2 – Iridium-Catalyzed Enantioselective and Diastereoselective 
Hydrogenation of 1,3-Disubstituted Isoquinolines 
 

 
 

71 

2H), 3.72 – 3.69 (m, 2H), 1.65 (s, 3H), 1.45 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 171.5, 

161.9 (d, J = 245.1 Hz), 143.9 (d, J = 6.2 Hz), 134.2 (d, J = 7.8 Hz), 127.9 (d, J = 3.3 Hz), 

114.9 (d, J = 21.1 Hz), 113.5 (d, J = 23.0 Hz), 108.6, 80.6, 64.4, 39.6, 28.2, 27.3; 19F NMR 

(282 MHz, CDCl3) δ –115.6 (ddd, J = 10.3, 8.0, 5.8 Hz); IR (Neat Film, NaCl) 2980, 1732, 

1613, 1493, 1412, 1392, 1368, 1340, 1256, 1200, 1179, 1147, 1037, 947, 878 cm-1; HRMS 

(MM:ESI-APCI+) m/z calc’d for C16H22FO4 [M+H]+: 297.1497, found 297.1494. 

 

 

tert-butyl 2-(6-(2-methyl-1,3-dioxolan-2-yl)benzo[d][1,3]dioxol-5-yl)acetate (159c): 

Compound 159c was prepared from aryl bromide (5-bromo-6-(2-methyl-1,3-dioxolan-2-

yl)benzo[d][1,3]dioxole)  (158c) using general procedure 1, and purified by column 

chromatography (5% to 15% EtOAc in hexanes) to afford 159c as a pale yellow oil (83.4 

mg, 63% yield): 1H NMR (400 MHz, CDCl3) δ 7.07 (s, 1H), 6.66 (s, 1H), 5.93 (s, 2H), 

3.95 – 3.93 (m, 2H), 3.72 – 3.69 (m, 2H), 3.62 (s, 2H), 1.64 (s, 3H), 1.46 (s, 9H); 13C NMR 

(100 MHz, CDCl3) δ 171.7, 147.2, 146.7, 135.2, 125.9, 112.3, 109.1, 107.0, 101.3, 80.6, 

64.3, 40.0, 28.3, 27.6; IR (Neat Film, NaCl) 2978, 2897, 1732, 1504, 1486, 1369, 1332, 

1259, 1197, 1166, 1142, 1041, 929, 869, 935 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d 

for C17H23O6 [M+H]+: 323.1489, found 323.1501. 

Ot-BuO

O O

159c
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tert-butyl 2-(2-(2-methyl-1,3-dioxolan-2-yl)naphthalen-1-yl)acetate (159d): 

Compound 159d was prepared from aryl bromide (2-(1-bromonaphthalen-2-yl)-2-methyl-

1,3-dioxolane) (158d) using general procedure 1, and purified by column chromatography 

(0% to 5% EtOAc in hexanes) to afford 159d as a pale yellow oil (2.15 g, 98% yield): 1H 

NMR (400 MHz, CDCl3) δ 7.93 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.76 (s, 2H), 

7.48 (ddd, J = 7.9, 6.7, 1.4 Hz, 2H), 4.38 (s, 2H), 4.04 – 4.00 (m, 2H), 3.79 – 3.73 (m, 2H), 

1.78 (s, 3H), 1.45 (s, 9H);  13C NMR (100 MHz, CDCl3) δ 171.4, 139.3, 133.6, 128.7, 

128.6, 127.8, 126.5, 125.8, 124.3, 124.1, 109.7, 80.7, 64.4, 36.2, 28.2, 27.8. IR (Neat Film, 

NaCl) 2980, 2890, 1732, 1454, 1368, 1336, 1142, 1100, 1037, 951, 884, 870, 822, 750 cm-

1; HRMS (MM:ESI-APCI+) m/z calc’d for C20H25O4 [M+H]+: 329.1747, found 329.1739. 

General Procedure 2: Isoquinoline Annulation and Triflation 
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1-methylisoquinolin-3-yl trifluoromethanesulfonate (160a): This procedure has been 

adapted from a previous report.9 In a RBF were added ester 159a (2.78 g, 10.0 mmol), 

anhydrous CH2Cl2 (75 mL, 0.13 M), and TFA (25 mL, 33% volume of CH2Cl2), 

respectively. The reaction was stirred at room temperature for 2 hours, and then 

concentrated in vacuo. The crude was transferred to a Schlenk tube, dissolved in MeCN 

(10 mL, 1 M), and aqueous NH4OH (28–30%, 20 mL, 200% volume of MeCN). The tube 

was sealed with Kontes valve to prevent loss of gaseous ammonia and stirred at 70 °C. 

Within 1 hour, the yellow solid of the 3-hydroxyisoquinoline began to precipitate from the 

reaction solution. After stirring for 18 hours at 70 °C, the reaction was cooled to room 

temperature, then placed in a –20 °C freezer, and the yellow solid was collected via vacuum 

filtration. This yellow powder was then washed with cold MeCN and dried at high vacuum 

to provide 3-hydroxyisoquinoline intermediate (0.70 g, 4.39 mmol). If any starting material 

remains, the filtrate could be transferred to a flask and concentrated in vacuo to undergo a 

second condensation reaction.  

To a separate flame-dried RBF containing CH2Cl2 (22 mL, 0.2 M) and distilled 

pyridine (3.6 mL, 44 mmol), the collected yellow powder (0.70 g, 4.39 mmol) was added, 

and the resulting mixture was cooled to 0 °C. Trifluoromethanesulfonic anhydride (1.5 mL, 

8.8 mmol) was then added dropwise at 0 °C, and the reaction was stirred at 0 °C for 1 hour. 

The reaction was then quenched with saturated aqueous NaHCO3 at 0 °C, and then slowly 

warmed to room temperature. The reaction was extracted with CH2Cl2, dried over Na2SO4, 

N

Me

OTf

160a
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and concentrated in vacuo. The crude product was purified by column chromatography 

(10% EtOAc in hexanes) to afford 160a as a pale yellow oil (1.11 g, 38% yield over 3 

steps): 1H NMR (400 MHz, CDCl3) δ 8.17 (dd, J = 8.5, 1.0 Hz, 1H), 7.88 (dt, J = 8.3, 1.0 

Hz, 1H), 7.76 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.67 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H), 7.42 (s, 

1H), 2.97 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 160.3, 151.3, 138.6, 131.5, 128.1, 127.8, 

127.6, 126.1, 118.9 (q, J = 320.5 Hz), 109.0, 22.1; 19F NMR (282 MHz, CDCl3) δ –73.0; 

IR (Neat Film, NaCl) 1624, 1600, 1563, 1422, 1327, 1213, 1138, 1116, 987, 958, 891, 832, 

742, 616 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C11H9F3NO3S [M+H]+: 292.0250, 

found 292.0253. 

 

7-fluoro-1-methylisoquinolin-3-yl trifluoromethanesulfonate (160b): Compound 160b 

was prepared from ester 159b using general procedure 2 and purified by column 

chromatography (10% EtOAc in hexanes) to provide a pale brown oil (384 mg, 31% yield 

over 3 steps): 1H NMR (400 MHz, CDCl3) δ 7.90 (dd, J = 9.0, 5.3 Hz, 1H), 7.76 (dd, J = 

9.6, 2.5 Hz, 1H), 7.56 (ddd, J = 8.9, 8.0, 2.5 Hz, 1H), 7.43 (s, 1H), 2.92 (s, 3H); 13C NMR 

(100 MHz, CDCl3) δ 161.4 (d, J = 251.1 Hz), 159.4 (d, J = 6.1 Hz), 151.1 (d, J = 3.3 Hz), 

135.5, 130.3 (d, J = 8.7 Hz), 128.5 (d, J = 8.3 Hz), 122.2 (d, J = 25.6 Hz), 118.9 (q, J = 

320.5 Hz), 109.8 (d, J = 21.8 Hz), 108.9, 22.1; 19F NMR (282 MHz, CDCl3) δ –73.0, –

109.0 (ddd, J = 9.5, 8.0, 5.4 Hz); IR (Neat Film, NaCl) 1598, 1573, 1516, 1416, 1209, 

1136, 1114, 986, 960, 933, 875, 805, 764 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for 

C11H8F4NO3S [M+H]+: 310.0156, found 310.0149.  
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5-methyl-[1,3]dioxolo[4,5-g]isoquinolin-7-yl trifluoromethanesulfonate (160c): 

Compound 160c was prepared from ester 159c using general procedure 2 and purified by 

column chromatography (10 to 20% EtOAc in hexanes) to provide a white solid (608 mg, 

58% yield over 3 steps): 1H NMR (400 MHz, CDCl3) δ 7.35 (s, 1H), 7.23 (s, 1H), 7.10 (s, 

1H), 6.15 (s, 2H), 2.82 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 156.9, 151.9, 150.9, 149.2, 

137.3, 124.8, 118.8 (q, J = 321.2 Hz), 108.4, 103.3, 102.2, 101.8, 22.2; 19F NMR (282 

MHz, CDCl3) δ –73.0; IR (Neat Film, NaCl) 2918, 1584, 1504, 1464, 1416, 1223, 1134, 

1038, 964, 940, 873, 840 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C12H9F3NO5S 

[M+H]+: 336.0148, found 336.0146. 

 

4-methylbenzo[f]isoquinolin-2-yl trifluoromethanesulfonate (160d): Compound 160d 

was prepared from ester 159d using general procedure 2 and purified by column 

chromatography (5 to 10% EtOAc in hexanes) to provide a white solid (497 mg, 65% yield 

over 3 steps): 1H NMR (400 MHz, CDCl3) δ 8.63 – 8.57 (m, 1H), 8.15 (s, 1H), 8.01 – 7.95 

(m, 2H), 7.90 (d, J = 9.2 Hz, 1H), 7.81 – 7.73 (m, 2H), 3.01 (s, 3H); 13C NMR (100 MHz, 

CDCl3) δ 158.8, 152.5, 138.6, 133.3, 129.6, 129.1, 128.9, 128.6, 127.8, 125.8, 123.6, 122.2, 

118.8 (q, J = 321.2 Hz), 105.1, 22.4; 19F NMR (282 MHz, CDCl3) δ –78.3; IR (Neat Film, 
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NaCl) 1588, 1416, 1377, 1207, 1180, 1138, 972, 878, 846, 817, 754 cm-1; HRMS 

(MM:ESI-APCI+) m/z calc’d for C15H11F3NO3S [M+H]+: 342.0406, found 342.0399. 

General Procedure 3: Suzuki Cross-Coupling 

 

 

1-methyl-3-phenylisoquinoline (161a): This procedure has been adapted from a previous 

report.25 To a flame-dried 20-mL scintillation vial capped with a PTFE-lined septum was 

added XPhos Pd G3 (11.63 mg, 0.014 mmol) and phenyl boronic acid (126 mg, 1.03 

mmol). The reaction vial was then evacuated and backfilled with N2 three times. The 

isoquinoline triflate 160a (200 mg, 0.687 mmol) in degassed THF (2 mL, 0.3 M) was then 

added to the vial, followed by degassed 0.5 M K3PO4 solution (4 mL, 0.2 M). The reaction 

was then stirred at 40 °C for 2 hours. Afterwards, the reaction was diluted with water and 

the aqueous layer was extracted with Et2O. The combined organic phases were dried over 

Na2SO4, concentrated in vacuo, and purified by column chromatography (5% EtOAc in 

hexanes) to afford 161a as a white solid (138 mg, 92% yield): 1H NMR (400 MHz, CDCl3) 

δ 8.15 – 8.13 (m, 3H), 7.93 (s, 1H), 7.86 (dt, J = 8.3, 1.0 Hz, 1H), 7.67 (ddd, J = 8.2, 6.9, 

1.2 Hz, 1H), 7.57 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.52 – 7.48 (m, 2H), 7.42 – 7.38 (m, 1H), 

3.05 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 158.7, 150.2, 140.0, 136.9, 130.2, 128.9, 
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128.4, 127.8, 127.1, 126.9, 126.7, 125.8, 115.4, 22.9; IR (Neat Film, NaCl) 3060, 1621, 

1589, 1571, 1501, 1440, 1390, 1332, 1030, 902, 880, 786, 765, 692 cm-1; HRMS (MM:ESI-

APCI+) m/z calc’d for C16H14N [M+H]+: 220.1121, found 220.1129. 

 

3-(4-(tert-butyl)phenyl)-1-methylisoquinoline (161b): Compound 161b was prepared 

from triflate 160a using general procedure 3 and purified by column chromatography (5% 

EtOAc in hexanes) to provide a pale yellow oil (177 mg, 93% yield); 1H NMR (400 MHz, 

CDCl3) δ 8.12 (d, J = 8.4 Hz, 1H) 8.06 (d, J = 8.5 Hz, 2H), 7.90 (s, 1H), 7.85 (d, J = 8.2 

Hz, 1H), 7.66 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 7.57 – 7.52 (m, 3H), 3.04 (s, 3H), 1.38 (s, 

9H); 13C NMR (100 MHz, CDCl3) δ 158.6, 151.5, 150.3, 137.3, 136.9, 130.1, 127.7, 126.8, 

126.7, 126.6, 125.8, 125.8, 115.0, 34.8, 31.5, 22.8; IR (Neat Film, NaCl) 2961, 1622, 1591, 

1568, 1515, 1442, 1390, 1362, 1333, 1268, 1112, 1017, 837, 754, 743, 685 cm-1; HRMS 

(MM:ESI-APCI+) m/z calc’d for C20H22N [M+H]+: 276.1747, found 276.1749. 

 

3-([1,1'-biphenyl]-4-yl)-1-methylisoquinoline (161c): Compound 161c was prepared 

from triflate 160a using general procedure 3 and purified by column chromatography (5% 

EtOAc in hexanes) to provide a colorless solid (191 mg, 94% yield); 1H NMR (400 MHz, 

N

Me

161b

N

Me

161c

Ph



Chapter 2 – Iridium-Catalyzed Enantioselective and Diastereoselective 
Hydrogenation of 1,3-Disubstituted Isoquinolines 
 

 
 

78 

CDCl3) δ 8.24 – 8.22 (m, 2H), 8.14 (d, J = 8.4 Hz, 1H), 7.98 (s, 1H), 7.88 (d, J = 8.1 Hz, 

1H), 7.75 – 7.73 (m, 2H), 7.70 – 7.67 (m, 3H), 7.58 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H), 7.50 – 

7.46 (m, 2H), 7.39 – 7.37 (m, 1H), 3.06 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 158.8, 

149.7, 141.2, 141.0, 138.9, 136.9, 130.2, 128.9, 127.8, 127.6, 127.5, 127.5, 127.2, 126.9, 

126.8, 125.8, 115.2, 22.9; IR (Neat Film, NaCl) 3028, 1621, 1568, 1488, 1440, 1389, 1334, 

842, 766, 730, 696 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C22H18N [M+H]+: 

296.1434, found 296.1426. 

 

3-(4-methoxyphenyl)-1-methylisoquinoline (161d): Compound 161d was prepared from 

triflate 160a using general procedure 3 and purified by column chromatography (5% 

EtOAc in hexanes) to afford a white solid (79 mg, 93% yield): 1H NMR (400 MHz, CDCl3) 

1H NMR (400 MHz, CDCl3) δ 8.14 – 8.07 (m, 3H), 7.84 (s, 1H), 7.81 (d, J = 8.5, 1H), 7.64 

(ddd, J = 8.2, 6.8, 1.2 Hz, 1H), 7.53 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.06 – 7.01 (m, 2H), 

3.88 (s, 3H), 3.03 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 160.0, 158.4, 149.8, 136.9, 132.6, 

130.0, 128.2, 127.5, 126.4, 126.3, 125.7, 114.1, 114.1, 55.4, 22.7; IR (Neat Film, NaCl) 

3060, 2955, 2835, 1608, 1568, 1514, 1439, 1390, 1290, 1249, 1174, 1034, 833, 751, 730 

cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C17H16NO [M+H]+: 250.1226, found 

250.1220. 
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3-(4-fluorophenyl)-1-methylisoquinoline (161e): Compound 161e was prepared from 

triflate 160a using general procedure 3 and purified by column chromatography (10% 

EtOAc in hexanes) to provide a white solid (155 mg, 95% yield); 1H NMR (400 MHz, 

CDCl3) δ 8.17 – 8.07 (m, 3H), 7.89 – 7.81 (m, 2H), 7.68 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 

7.58 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.20 – 7.16 (m, 2H), 3.04 (s, 3H); 13C NMR (100 MHz, 

CDCl3) δ 163.3 (d, J = 247.3 Hz), 162.1, 158.8, 149.1, 136.9, 136.0 (d, J = 3.3 Hz), 130.3, 

128.8 (d, J = 8.2 Hz), 127.7, 127.0, 126.6, 125.8, 115.8, 115.6, 115.1, 22.8; 19F NMR (282 

MHz, CDCl3) δ –114.2; IR (Neat Film, NaCl) 1605, 1570, 1510, 1440, 1390, 1332, 1231, 

1156, 836, 749, 723 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C16H13FN [M+H]+: 

238.1027, found 238.1030. 

 

1-methyl-3-(4-(trifluoromethyl)phenyl)isoquinoline (161f): Compound 161f was 

prepared from triflate 160a using general procedure 3 and purified by column 

chromatography (2% to 3% EtOAc in hexanes) to afford a white solid (89 mg, 91% yield): 

1H NMR (400 MHz, CDCl3) δ 8.26 (d, J = 8.1 Hz, 2H), 8.15 (d, J = 8.4, 1H), 7.96 (s, 1H), 

7.88 (d, J = 8.2 Hz, 1H), 7.78 – 7.73 (m, 2H), 7.73 – 7.67 (m, 1H), 7.63 – 7.59 (m, 1H), 

3.05 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 159.1, 148.5, 143.3, 136.7, 130.4, 130.2 (q, J 
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= 32.5 Hz), 127.9, 127.5, 127.3, 127.1, 125.8, 125.7 (q, J = 3.8 Hz), 124.4 (q, J = 271.9 

Hz), 116.1, 22.8; 19F NMR (282 MHz, CDCl3) δ –62.4; IR (Neat Film, NaCl) 3070, 2357, 

1622, 1573, 1418, 1390, 1324, 1162, 1122, 1066, 1015, 842, 754, 742, 682 cm-1; HRMS 

(MM:ESI-APCI+) m/z calc’d for C17H13F3N [M+H]+: 288.0995, found 288.0988. 

 

4-(1-methylisoquinolin-3-yl)benzonitrile (161g): Compound 161g was prepared from 

triflate 160a using general procedure 3 and purified by column chromatography (10% to 

20% EtOAc in hexanes) to provide a white solid (144 mg, 86% yield); 1H NMR (400 MHz, 

CDCl3) δ 8.38 – 8.22 (m, 2H), 8.16 (d, J = 8.3 Hz, 1H), 7.99 (s, 1H), 7.89 (d, J = 8.3, 1H), 

7.82 – 7.75 (m, 2H), 7.73 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 7.64 (ddd, J = 8.2, 6.9, 1.3 Hz, 

1H), 3.05 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 159.3, 147.6, 144.0, 136.6, 132.7, 130.7, 

128.0, 127.9, 127.6, 127.3, 125.9, 119.3, 116.6, 111.8, 22.8; IR (Neat Film, NaCl) 2224, 

1618, 1570, 1508, 1441, 1390, 1334, 878, 844, 748, 731 cm-1; HRMS (MM:ESI-APCI+) 

m/z calc’d for C17H13N2 [M+H]+: 245.1073, found 245.1070. 

 

1-methyl-3-(3-nitrophenyl)isoquinoline (161h): Compound 161h was prepared from 

triflate 160a using general procedure 3 and purified by column chromatography (10% 
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EtOAc in hexanes) to provide a white solid (139 mg, 77% yield); 1H NMR (400 MHz, 

CDCl3) δ 9.01 (t, J = 2.0 Hz, 1H), 8.51 (ddd, J = 7.8, 1.8, 1.1 Hz, 1H), 8.24 (ddd, J = 8.2, 

2.3, 1.1 Hz, 1H), 8.16 (dd, J = 8.3, 1.0 Hz, 1H), 8.01 (s, 1H), 7.90 (dd, J = 8.1, 0.7 Hz, 1H), 

7.72 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 7.72 – 7.59 (m, 2H), 3.05 (s, 3H); 13C NMR (100 MHz, 

CDCl3) δ 159.3, 149.0, 147.3, 141.7, 136.6, 132.8, 130.6, 129.7, 127.9, 127.8, 127.2, 125.9, 

123.0, 121.9, 116.0, 22.8; IR (Neat Film, NaCl) 1619, 1568, 1524, 1442, 1390, 1350, 880, 

806, 749, 692 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C16H13N2O2 [M+H]+: 

265.0972, found 265.0974. 

 

1-methyl-3-(3,4,5-trifluorophenyl)isoquinoline (161i): Compound 161i was prepared 

from triflate 160a using general procedure 3 and purified by column chromatography (5% 

EtOAc in hexanes) to afford a white solid (103 mg, 87% yield): 1H NMR (400 MHz, 

CDCl3) δ 8.13 (d, J = 8.4, 1H), 7.86 – 7.78 (m, 4H), 7.72 – 7.68 (m, 1H), 7.65 – 7.58 (m, 

1H), 3.02 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 159.1, 151.6 (ddd, J = 248.4, 10.1, 4.1 

Hz), 146.5, 140.0 (dt, J = 252.6, 15.7 Hz), 136.6, 136.0 (td, J = 7.5, 4.5 Hz), 130.6, 127.8, 

127.7, 127.1, 125.8, 115.4, 110.9 – 110.7 (m), 22.7; 19F NMR (282 MHz, CDCl3) δ –134.4 

(dd, J = 20.5, 9.2 Hz), –161.1 – –161.3 (m); IR (Neat Film, NaCl) 1619, 1570, 1526, 1446, 

1392, 1352, 1237, 1034, 879, 847, 753 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for 

C16H11F3N [M+H]+: 274.0838, found 274.0841. 
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1-methyl-3-(naphthalen-2-yl)isoquinoline (161j): Compound 161j was prepared from 

triflate 160a using general procedure 3 and purified by column chromatography (5% 

EtOAc in hexanes) to provide a white solid (159 mg, 86% yield); 1H NMR (400 MHz, 

CDCl3) δ 8.68 (s, 1H), 8.27 (dd, J = 8.6, 1.8 Hz, 1H), 8.16 (dq, J = 8.3, 1.0 Hz, 1H), 8.07 

(s, 1H), 8.00 – 7.96 (m, 2H), 7.91 – 7.86 (m, 2H), 7.70 (ddd, J = 8.2, 6.8, 1.2 Hz, 1H), 7.59 

(ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.56 – 7.46 (m, 2H), 3.09 (s, 3H); 13C NMR (100 MHz, 

CDCl3) δ 158.9, 149.9, 137.2, 137.0, 133.9, 133.5, 130.2, 128.9, 128.5, 127.8, 127.8, 127.0, 

126.8, 126.3, 126.3, 125.8, 124.9, 115.7, 22.9; IR (Neat Film, NaCl) 3059, 1621, 1585, 

1567, 1508, 1439, 1390, 879, 848, 816, 744 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for 

C20H16N [M+H]+: 270.1277, found 270.1270. 

 

3-(3,5-dimethylphenyl)-1-methylisoquinoline (161k): Compound 161k was prepared 

from triflate 160a using general procedure 3 and purified by column chromatography to 

provide a white solid (156 mg, 92% yield); 1H NMR (400 MHz, CDCl3) δ 8.13 (dd, J = 

8.4, 1.1 Hz, 1H), 7.90 (s, 1H), 7.85 (dd, J = 8.2, 0.7 Hz, 1H), 7.75 (s, 2H), 7.66 (ddd, J = 
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8.2, 6.8, 1.2 Hz, 1H), 7.56 (ddd, J = 8.2, 6.9, 1.3 Hz, 1H), 7.05 (s, 1H), 3.05 (s, 3H), 2.43 

(s, 6H); 13C NMR (100 MHz, CDCl3) δ 158.6, 150.5, 139.9, 138.3, 136.9, 130.2, 130.1, 

127.7, 126.8, 126.7, 125.8, 125.0, 115.4, 22.8, 21.7; IR (Neat Film, NaCl) 2919, 2358, 

1622, 1582, 1568, 1443, 1391, 1335, 874, 846, 786, 750, 711 cm-1; HRMS (MM:ESI-

APCI+) m/z calc’d for C18H18N [M+H]+: 248.1434, found 248.1434. 

 

3-(3,4-dimethoxyphenyl)-1-methylisoquinoline (161l): Compound 161l was prepared 

from triflate 160a using general procedure 3 and purified by column chromatography (20% 

EtOAc in hexanes) to provide a white solid (195 mg, 99% yield); 1H NMR (400 MHz, 

CDCl3) δ 8.11 (d, J = 8.4, 1H), 7.89 – 7.81 (m, 2H), 7.77 (d, J = 2.1 Hz, 1H), 7.71 – 7.61 

(m, 2H), 7.55 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H), 6.99 (d, J = 8.4 Hz, 1H), 4.04 (s, 3H), 3.95 

(s, 3H), 3.04 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 158.6, 149.8, 149.6, 149.3, 137.0, 

132.9, 130.2, 127.6, 126.7, 126.5, 125.8, 119.5, 114.5, 111.4, 110.3, 56.1, 22.8; IR (Neat 

Film, NaCl) 2936, 2833, 1568, 1516, 1454, 1436, 1317, 1259, 1236, 1170, 1026, 874, 817, 

751 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C18H18NO2 [M+H]+: 280.1332, found 

280.1337. 
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1-methyl-3-(o-tolyl)isoquinoline (161m): Compound 161m was prepared from triflate 

160a using general procedure 3 and purified by column chromatography (10% EtOAc in 

hexanes) to provide a white solid (153 mg, 96% yield); 1H NMR (400 MHz, CDCl3) δ 8.17 

(d, J = 8.4, 1H), 7.84 (d, J = 8.3, 1H), 7.70 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.65 – 7.57 (m, 

2H), 7.53 – 7.45 (m, 1H), 7.32 – 7.30 (m, 3H), 3.04 (s, 3H), 2.43 (s, 3H); 13C NMR (100 

MHz, CDCl3) δ 158.1, 152.7, 140.9, 136.5, 136.3, 130.9, 130.1, 130.1, 128.1, 127.5, 127.0, 

126.2, 126.0, 125.7, 118.9, 22.6, 20.6; IR (Neat Film, NaCl) 3053, 2950, 2920, 2355, 1622, 

1584, 1567, 1498, 1446, 1392, 1360, 1330, 1144, 1033, 969, 906, 884, 763, 752, 726 cm-

1; HRMS (MM:ESI-APCI+) m/z calc’d for C17H16N [M+H]+: 234.1277, found 234.1286. 

 

3-(furan-2-yl)-1-methylisoquinoline (161n): Compound 161n was prepared from triflate 

160a using general procedure 3 and purified by column chromatography (5% EtOAc in 

hexanes) to provide a white solid (106 mg, 99% yield): 1H NMR (400 MHz, CDCl3) δ 8.06 

(d, J = 8.4 Hz, 1H), 7.86 (s, 1H), 7.80 (dd, J = 8.4 Hz, 1H), 7.67 – 7.59 (m, 1H), 7.57 – 

7.49 (m, 2H), 7.13 (dd, J = 3.4, 0.8 Hz, 1H), 6.56 (dd, J = 3.4, 1.8 Hz, 1H), 2.99 (s, 3H); 

13C NMR (100 MHz, CDCl3) δ 159.0, 154.4, 142.9, 142.3, 136.5, 130.2, 127.6, 126.7, 

126.6, 125.8, 113.0, 112.0, 108.1, 22.6; IR (Neat Film, NaCl) 3067, 1622, 1568, 1488, 
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1447, 1390, 1325, 1288, 1216, 1157, 1007, 970, 883, 814, 736 cm-1; HRMS (MM:ESI-

APCI+) m/z calc’d for C14H12NO [M+H]+: 210.0913, found 210.0910. 

 

1-methyl-3-(thiophen-2-yl)isoquinoline (161o): Compound 161o was prepared from 

triflate 160a using general procedure 3 and purified by column chromatography (3% 

EtOAc in hexanes) to provide a white solid (103 mg, 92% yield): 1H NMR (400 MHz, 

CDCl3) δ 8.07 (dt, J = 8.4 Hz, 1H), 7.82 (s, 1H), 7.79 (dd, J = 8.2 Hz, 1H), 7.69 (dd, J = 

3.6, 1.1 Hz, 1H), 7.64 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 7.52 (ddd, J = 8.2, 6.8, 1.2 Hz, 1H), 

7.38 (dd, J = 5.1, 1.1 Hz, 1H), 7.14 (dd, J = 5.0, 3.6 Hz, 1H), 2.99 (s, 3H); 13C NMR (100 

MHz, CDCl3) δ 158.8, 145.5, 145.4, 136.6, 130.2, 128.1, 127.4, 126.7, 126.6, 125.8, 123.8, 

113.1, 22.5; IR (Neat Film, NaCl) 3068, 1620, 1586, 1568, 1446, 1387, 1330, 1238, 1194, 

1036, 876, 820, 748, 704 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C14H12NS 

[M+H]+: 226.0685, found 226.0680. 

 

1-methyl-3-(thiophen-3-yl)isoquinoline (161p): Compound 161p was prepared from 

triflate 160a using general procedure 3 and purified by column chromatography (5% 

EtOAc in hexanes) to provide a white solid (148 mg, 95% yield); 1H NMR (400 MHz, 

CDCl3) δ 8.10 (dd, J = 8.4, 1.0 Hz, 1H), 8.04 (dd, J = 3.1, 1.3 Hz, 1H), 7.81 (dt, J = 8.2, 
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0.9 Hz, 1H), 7.79 (s, 1H), 7.73 (dd, J = 5.0, 1.3 Hz, 1H), 7.65 (ddd, J = 8.2, 6.8, 1.2 Hz, 

1H), 7.54 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H), 7.42 (dd, J = 5.0, 3.1 Hz, 1H), 3.01 (s, 3H); 13C 

NMR (100 MHz, CDCl3) δ 158.8, 146.4, 142.7, 136.9, 130.2, 127.6, 126.7, 126.6, 126.3, 

126.2, 125.8, 123.2, 114.7, 22.8; IR (Neat Film, NaCl) 3056, 2920, 1622, 1591, 1568, 1496, 

1446, 1388, 1317, 874, 842, 795, 749, 696 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for 

C14H12NS [M+H]+: 226.0685, found 226.0687. 

 

1-methyl-3-(1-methyl-1H-pyrazol-4-yl)isoquinoline (161q): Compound 161q was 

prepared from triflate 160a using general procedure 3 and purified by column 

chromatography (50% to 60% EtOAc in hexanes) to provide a white solid (112 mg, 99% 

yield): 1H NMR (400 MHz, CDCl3) δ 8.07 (d, J = 8.4 Hz, 1H), 8.04 – 8.00 (m, 2H), 7.77 

(dd, J = 8.2, 1.1 Hz, 1H), 7.67 – 7.60 (m, 2H), 7.54 – 7.47 (m, 1H), 3.98 (s, 3H), 2.97 (s, 

3H); 13C NMR (100 MHz, CDCl3) δ 158.8, 137.4, 136.8, 130.1, 128.9, 127.1, 126.2, 126.1, 

125.7, 113.3, 39.1, 22.6; IR (Neat Film, NaCl) 2940, 2351, 1620, 1601, 1568, 1556, 1493, 

1416, 1182, 983, 840, 750, 702 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C14H14N3 

[M+H]+: 224.1182, found 224.1176. 
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1-methyl-3-(pyridin-2-yl)isoquinoline (161r): Compound 161r was prepared from 

triflate 160a using a procedure adapted from a previous report.6 To a microwave vial was 

added flame-dried K2CO3 (142 mg, 1.03 mmol), Pd(OAc)2 (5.8 mg, 0.026 mmol), P(t-

Bu)3•HBF4 (15 mg, 0.052 mmol), and the N-oxide (147 mg, 1.55 mmol). The vial was then 

evacuated and backfilled with argon three times. A solution of 160a (150 mg, 0.52 mmol) 

in toluene (2 mL, 0.3 M) was then added, and the reaction was stirred at 130 °C overnight. 

The reaction was then cooled to room temperature, filtered through celite, and dissolved in 

CH2Cl2 (10 mL, 0.05 M). The reaction flask was then cooled to 0 °C and PCl3 (0.27 mL, 

3.1 mmol) was added dropwise, then the reaction stirred for 30 minutes at 0 °C. The 

reaction was then quenched with saturated aqueous K2CO3, extracted with EtOAc, and 

dried over Na2SO4. The crude product was purified by column chromatography (30% 

EtOAc in hexanes + 1% NEt3) to provide a pale yellow solid (56 mg, 50% yield over 2 

steps); 1H NMR (400 MHz, CDCl3) δ 8.72 (dd, J = 4.8, 1.9 Hz, 1H), 8.62 (s, 1H), 8.56 (dd, 

J = 8.0, 1.1 Hz, 1H), 8.14 (dd, J = 8.3, 1.0 Hz, 1H), 7.95 (dt, J = 8.2, 1.0 Hz, 1H), 7.84 (td, 

J = 7.7, 1.8 Hz, 1H), 7.68 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 7.60 (ddd, J = 8.2, 6.9, 1.4 Hz, 

1H), 7.29 (ddd, J = 7.5, 4.8, 1.2 Hz, 1H), 3.05 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 

158.5, 156.9, 149.4, 148.7, 137.1, 136.9, 130.2, 128.6, 127.7, 127.5, 125.8, 123.3, 121.4, 

116.5, 22.9; IR (Neat Film, NaCl) 3053, 3004, 2916, 1621, 1580, 1568, 1474, 1443, 1426, 

N

Me

161r

N
N
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1391, 1335, 1142, 891, 796, 742, 681, 624 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for 

C15H13N2 [M+H]+: 221.1073, found 221.1076. 

 

7-fluoro-1-methyl-3-phenylisoquinoline (172a): Compound 172a was prepared from 

triflate 160b using general procedure 3 and purified by column chromatography (5% 

EtOAc in hexanes) to provide a white solid (110 mg, 93% yield): 1H NMR (400 MHz, 

CDCl3) δ 8.14 – 8.11 (m, 2H), 7.90 (s, 1H), 7.85 (dd, J = 9.2, 5.7 Hz, 1H), 7.73 – 7.68 (m, 

1H), 7.54 – 7.48 (m, 2H), 7.48 – 7.38 (m, 2H), 2.99 (s, 3H); 13C NMR (100 MHz, CDCl3) 

δ 160.7 (d, J = 248.3 Hz), 158.0 (d, J = 5.8 Hz), 149.8 (d, J = 2.8 Hz), 139.7, 133.9, 130.3 

(d, J = 8.5 Hz), 128.9, 128.5, 127.3 (d, J = 7.8 Hz), 127.0, 120.6 (d, J = 25.3 Hz), 114.9 (d, 

J = 1.7 Hz), 109.4 (d, J = 21.0 Hz), 22.8; 19F NMR (282 MHz, CDCl3) δ –109.7 – –111.8 

(m);  IR (Neat Film, NaCl) 3031, 2358, 1576, 1506, 1446, 1393, 1372, 1313, 1230, 1183, 

1028, 972, 922, 904, 881, 822, 777, 764, 704 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d 

for C16H13FN [M+H]+: 238.1027, found 238.1027. 

 

7-fluoro-3-(4-methoxyphenyl)-1-methylisoquinoline (172b): Compound 172b was 

prepared from triflate 160b using general procedure 3 and purified by column 

chromatography (5% EtOAc in hexanes) to provide a white solid (110 mg, 99% yield): 1H 
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NMR (400 MHz, CDCl3) δ 8.10 – 8.04 (m, 2H), 7.87 – 7.81 (m, 2H), 7.70 (dd, J = 9.9, 2.6 

Hz, 1H), 7.44 (ddd, J = 9.0, 8.3, 2.5 Hz, 1H), 7.06 – 6.99 (m, 2H), 3.88 (s, 3H), 2.98 (s, 

3H); 13C NMR (100 MHz, CDCl3) δ 160.4 (d, J = 248.5 Hz), 160.1, 157.7 (d, J = 5.7 Hz), 

149.4 (d, J = 2.8 Hz), 133.9, 132.2, 130.0 (d, J = 8.5 Hz), 128.1, 126.7 (d, J = 7.7 Hz), 

120.5 (d, J = 25.3 Hz), 114.2, 113.7 (d, J = 1.8 Hz), 109.3 (d, J = 20.9 Hz), 55.4, 22.7; 19F 

NMR (282 MHz, CDCl3) δ –111.9 (ddd, J = 9.3, 9.1, 5.7 Hz); IR (Neat Film, NaCl) 1608, 

1514, 1443, 1393, 1288, 1252, 1186, 1029, 878, 863, 836, 821 cm-1; HRMS (MM:ESI-

APCI+) m/z calc’d for C17H15FNO [M+H]+: 268.1132, found 268.1133. 

 

7-fluoro-1-methyl-3-(4-(trifluoromethyl)phenyl)isoquinoline (172c): Compound 172c 

was prepared from triflate 160b using general procedure 3 and purified by column 

chromatography (5% EtOAc in hexanes) to provide a white solid (150 mg, 98% yield): 1H 

NMR (400 MHz, CDCl3) δ 8.22 (d, J = 8.0 Hz, 2H), 7.94 (s, 1H), 7.90 – 7.85 (m, 1H), 7.74 

(d, J = 8.0 Hz, 2H), 7.71 – 7.69 (m, 1H), 7.53 – 7.43 (m, 1H), 2.99 (s, 3H); 13C NMR (100 

MHz, CDCl3) δ 161.1 (d, J = 249.4 Hz), 158.4 (d, J = 6.2 Hz), 148.1, 143.0, 133.7, 130.4 

(d, J = 8.5 Hz), 130.2 (q, J = 32.4 Hz), 127.8 (d, J = 8.1 Hz), 127.2, 125.8 (q, J = 3.8 Hz), 

124.5 (q, J = 272.7 Hz), 120.9 (d, J = 24.9 Hz), 115.6, 109.5 (d, J = 21.4 Hz), 22.8 ; 19F 

NMR (282 MHz, CDCl3) δ –62.5, –110.2 (ddd, J = 9.9, 8.2, 5.5 Hz); IR (Neat Film, NaCl) 

1592, 1418, 1393, 1330, 1157, 1126, 1107, 1067, 880, 868, 847, 816 cm-1; HRMS 

(MM:ESI-APCI+) m/z calc’d for C17H12NF4 [M+H]+: 306.0900, found 306.0895. 
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5-methyl-7-phenyl-[1,3]dioxolo[4,5-g]isoquinoline (172d): Compound 172d was 

prepared from triflate 160c using general procedure 3 and purified by column 

chromatography (10% EtOAc in hexanes) to provide a white solid (153 mg, 97% yield): 

1H NMR (400 MHz, CDCl3) δ 8.08 (d, J = 7.2 Hz, 2H), 7.77 (s, 1H), 7.52 – 7.44 (m, 2H), 

7.41 – 7.32 (m, 2H), 7.11 (s, 1H), 6.10 (s, 2H), 2.92 (s, 3H); 13C NMR (100 MHz, CDCl3) 

δ 156.4, 150.5, 149.5 148.1, 140.0, 135.1, 128.7, 128.1, 126.8, 123.5, 115.1, 103.4, 101.9, 

101.6, 23.0; IR (Neat Film, NaCl) 2914, 1591, 1486, 1462, 1232, 1189, 1039, 945, 878, 

846, 695, 684 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C17H14NO2 [M+H]+: 

264.1019, found 264.1021. 

 

7-(3,4-dimethoxyphenyl)-5-methyl-[1,3]dioxolo[4,5-g]isoquinoline (172e): Compound 

172e was prepared from triflate 160c using general procedure 3 at 65 °C and purified by 

column chromatography via dry loading (40% EtOAc in hexanes) to provide a white solid 

(202 mg, 82% yield); 1H NMR (400 MHz, CDCl3) δ 7.72 (d, J = 2.1 Hz, 1H), 7.69 (s, 1H), 

7.60 (dd, J = 8.3, 2.0 Hz, 1H), 7.34 (s, 1H), 7.09 (s, 1H), 6.96 (d, J = 8.4 Hz, 1H), 6.09 (s, 

2H), 4.02 (s, 3H), 3.94 (s, 3H), 2.91 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 156.2, 150.5, 
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149.3, 149.2, 147.9, 135.2, 134.3, 133.0, 123.2, 119.1, 114.3, 111.2, 110.0, 103.3, 101.8, 

101.5, 56.0, 56.0, 23.0; IR (Neat Film, NaCl) 2935, 1591, 1517, 1462, 1267, 1230, 1165, 

1143, 1024, 872, 731 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C19H18NO4 [M+H]+: 

324.1230, found 324.1229. 

 

4-methyl-2-phenylbenzo[f]isoquinoline (172f): Compound 172f was prepared from 

triflate 160d using general procedure 3 and the product was collected via vacuum filtration 

to provide a white solid (246 mg, 63% yield); 1H NMR (400 MHz, CDCl3) δ 8.55 – 8.40 

(m, 2H), 7.96 – 7.88 (m, 2H), 7.73 (t, J = 8.7 Hz, 1H), 7.69 – 7.61 (m, 1H), 7.54 (t, J = 8.3 

Hz, 1H), 7.45 – 7.42 (m, 2H), 7.26 (td, J = 7.6, 1.7 Hz, 2H), 7.16 (td, J = 7.3, 1.7 Hz, 1H), 

2.81 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 157.9, 152.0, 140.3, 135.6, 133.4, 129.3, 

128.8, 128.7, 128.5, 128.4, 127.7, 127.2, 127.1, 124.4, 123.4, 122.9, 111.0, 23.1; IR (Neat 

Film, NaCl) 2342, 1574, 1506, 1483, 1444, 1386, 1242, 1028, 876, 824, 760, 725, 692 cm-

1; HRMS (MM:ESI-APCI+) m/z calc’d for C20H16N [M+H]+: 270.1277, found 270.1289. 

General Procedure 4: Oxidation and Reduction to Hydroxymethyl Isoquinoline 
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(3-phenylisoquinolin-1-yl)methanol (162a): This procedure has been adapted from a 

previous report.6 To a 20-mL microwave vial containing a stir bar was added SeO2 (140 

mg, 1.26 mmol), isoquinoline 161a (138 mg, 0.63 mmol), and 1,4-dioxane (13 mL, 0.05 

M). The reaction vial was then sealed and heated to 110 °C while stirring for 2 hours. The 

reaction was then cooled to room temperature, filtered through celite, and rinsed with 

EtOAc. The filtrate was then concentrated in vacuo to afford the aldehyde intermediate, 

which was used in the next step without further purification.  

 

A scintillation vial containing the crude in 4:1 DCM:MeOH (0.1 M) was added sodium 

borohydride (24 mg, 0.63 mmol) at room temperature. The reaction was stirred until no 

starting material remained by TLC, and then quenched by the addition of citric acid 

monohydrate (132 mg, 0.63 mmol). The reaction was stirred for an additional 10 minutes 

then basified by the addition of saturated aqueous NaHCO3. The layers were separated and 

the aqueous phase was extracted with CH2Cl2. The combined organic phases were dried 

over Na2SO4 and concentrated in vacuo. The crude product was purified by column 

chromatography (20% acetone in hexanes) to afford 162a as a white solid (100 mg, 68% 

yield over 2 steps): 1H NMR (400 MHz, CDCl3) δ 8.18 – 8.15 (d, J = 7.0 Hz, 2H), 8.03 (s, 

1H), 7.94 – 7.92 (m, 2H), 7.73 (ddd, J = 8.3, 6.9, 1.1 Hz, 1H), 7.61 (ddd, J = 8.1, 6.9, 1.2 

Hz, 1H), 7.53 (t, J = 7.6 Hz, 2H), 7.46 – 7.42 (m, 1H), 5.31 (s, 2H), 5.26 (br s, 1H, OH); 

N
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13C NMR (100 MHz, CDCl3) δ 157.4, 148.7, 138.9, 137.1, 130.9, 129.0, 128.9, 128.0, 

127.5, 127.0, 124.2, 123.3, 116.3, 61.6; IR (Neat Film, NaCl) 3378, 3060, 2867, 1624, 

1574, 1502, 1461, 1443, 1370, 1331, 1304, 1088, 1072, 1024, 1009, 882, 782, 766, 693 

cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C16H14NO [M+H]+: 236.1070, found 

236.1078. 

 

((3-(4-(tert-butyl)phenyl)isoquinolin-1-yl)methanol (162b): Compound 162b was 

prepared from isoquinoline 161b using general procedure 4 and purified by column 

chromatography (20% EtOAc in hexanes) to provide a white solid (162 mg, 95% yield); 

1H NMR (400 MHz, CDCl3) δ 8.20 – 8.06 (m, 2H), 8.00 (s, 1H), 7.97 – 7.85 (m, 2H), 7.72 

(ddd, J = 8.4, 6.9, 1.2 Hz, 1H), 7.62 – 7.58 (m, 1H), 7.58 – 7.52 (m, 2H), 5.30 (s, 3H), 1.40 

(s, 9H); 13C NMR (100 MHz, CDCl3) δ 157.2, 152.1, 148.7, 137.1, 136.2, 130.8, 127.9, 

127.3, 126.7, 125.9, 124.1, 123.3, 115.9, 61.5, 34.9, 31.5; IR (Neat Film, NaCl) 3385, 2958, 

1626, 1574, 1514, 1446, 1416, 1360, 1333, 1265, 1088, 1014, 841, 744, 680 cm-1; HRMS 

(MM:ESI-APCI+) m/z calc’d for C20H22NO [M+H]+: 292.1696, found 292.1696. 
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(3-([1,1'-biphenyl]-4-yl)isoquinolin-1-yl)methanol (162c): Compound 162c was 

prepared from isoquinoline 161c using general procedure 4 and purified by column 

chromatography (20% EtOAc in hexanes) to provide a colorless solid (181 mg, 92% yield); 

1H NMR (400 MHz, CDCl3) δ 8.30 – 8.20 (m, 2H), 8.07 (s, 1H), 7.98 – 7.88 (m, 2H), 7.81 

– 7.66 (m, 5H), 7.62 (ddd, J = 8.4, 6.9, 1.2 Hz, 1H), 7.49 (dd, J = 8.2, 6.8 Hz, 2H), 7.43 – 

7.34 (m, 1H), 5.32 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 157.4, 148.3, 141.7, 140.7, 

137.8, 137.1, 130.9, 129.0, 128.0, 127.7, 127.7, 127.6, 127.3, 127.2, 124.2, 123.3, 116.2, 

61.6; IR (Neat Film, NaCl) 3382, 3060, 2359, 1623, 1574, 1488, 1445, 1412, 1374, 1334, 

1088, 1006, 840, 766, 729, 697 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C22H18NO 

[M+H]+: 312.1382, found 312.1383. 

 

(3-(4-methoxyphenyl)isoquinolin-1-yl)methanol (162d): Compound 162d was prepared 

from isoquinoline 161d using general procedure 4 and purified by column chromatography 

(20% EtOAc in hexanes) to provide a white solid (48 mg, 73% yield): 1H NMR (400 MHz, 

CDCl3) δ 8.14 – 8.07 (m, 2H), 7.93 (s, 1H), 7.91 – 7.85 (m, 2H), 7.69 (ddd, J = 8.2, 6.9, 

1.1 Hz, 1H), 7.56 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.06 – 7.03 (m, 2H), 5.28 (s, 3H), 3.89 
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(s, 3H); 13C NMR (100 MHz, CDCl3) δ 160.3, 157.0, 148.3, 137.1, 131.4, 130.7, 128.1, 

127.7, 127.0, 123.7, 123.1, 115.0, 114.2, 61.4, 55.4; IR (Neat Film, NaCl) 3376, 2928, 

2836, 1608, 1573, 1515, 1442, 1372, 1334, 1287, 1250, 1175, 1087, 1032, 1010, 832, 750, 

730 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C17H16NO2 [M+H]+: 266.1176, found 

266.1185. 

 

 

(3-(4-fluorophenyl)isoquinolin-1-yl)methanol (162e): Compound 162e was prepared 

from isoquinoline 161e using general procedure 4 and purified by column chromatography 

(20% EtOAc in hexanes) to provide a colorless solid (149 mg, 95% yield); 1H NMR (400 

MHz, CDCl3) δ 8.13 (dd, J = 8.9, 5.4 Hz, 2H), 7.96 (s, 1H), 7.95 – 7.89 (m, 2H), 7.73 (ddd, 

J = 8.3, 6.9, 1.1 Hz, 1H), 7.61 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 7.21 (dd, J = 8.9, 8.5 Hz, 

2H), 5.30 (s, 2H), 5.17 (br s, 1H, OH); 13C NMR (100 MHz, CDCl3) δ 163.5 (d, J = 248.3 

Hz), 157.5, 147.8, 137.0, 135.1 (d, J = 3.2 Hz), 131.0, 128.7 (d, J = 8.2 Hz), 127.9, 127.6, 

124.1, 123.3, 116.0, 115.8, 61.6; 19F NMR (282 MHz, CDCl3) δ –113.3 – –113.4 (m); IR 

(Neat Film, NaCl) 3382, 3059, 2354, 1622, 1604, 1574, 1512, 1446, 1331, 1230, 1157, 

1087, 1011, 837, 750, 725 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C16H13FNO 

[M+H]+: 254.0974, found 254.0976. 
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(3-(4-(trifluoromethyl)phenyl)isoquinolin-1-yl)methanol (162f): Compound 162f was 

prepared from isoquinoline 161f using general procedure 4 and purified by column 

chromatography (10% to 20% EtOAc in hexanes) to provide a white solid (23 mg, 25% 

yield); 1H NMR (400 MHz, CDCl3) δ 8.26 (d, J = 7.8 Hz, 2H), 8.07 (s, 1H), 8.00 – 7.92 

(m, 2H), 7.82 – 7.73 (m, 3H), 7.70 – 7.61 (m, 1H), 5.32 (s, 2H), 5.10 (br s, 1H, OH); 13C 

NMR (100 MHz, CDCl3) δ 157.9, 147.1, 142.3, 136.8, 131.2, 130.7 (q, J = 32.5 Hz), 128.2, 

128.1, 127.2, 125.9 (q, J = 3.8 Hz), 124.6, 124.4 (q, J = 273.7 Hz), 123.4, 117.2, 61.6; 19F 

NMR (282 MHz, CDCl3) δ –62.5; IR (Neat Film, NaCl) 3408, 1623, 1574, 1418, 1324, 

1166, 1111, 1075, 1014, 842, 753, 682 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for 

C17H13F3NO [M+H]+: 304.0944, found 304.0934. 

 

4-(1-(hydroxymethyl)isoquinolin-3-yl)benzonitrile (162g): Compound 162g was 

prepared from isoquinoline 161g using general procedure 4 and purified by column 

chromatography (30% EtOAc in hexanes) to provide a white solid (138 mg, 92% yield); 

1H NMR (400 MHz, CDCl3) δ 8.31 – 8.18 (m, 2H), 8.09 (s, 1H), 7.97 (m, 2H), 7.86 – 7.74 

(m, 3H), 7.68 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 5.32 (s, 2H), 4.99 (s, 1H); 13C NMR (100 
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MHz, CDCl3) δ 158.2, 146.5, 143.2, 136.7, 132.8, 131.4, 128.5, 128.2, 127.4, 124.7, 123.5, 

119.0, 117.7, 112.3, 61.7; IR (Neat Film, NaCl) 3404, 2895, 2358, 2224, 1416, 1332, 1303, 

1085, 1006, 840, 764, 682 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C17H13N2O 

[M+H]+: 261.1022, found 261.1032. 

 

(3-(3-nitrophenyl)isoquinolin-1-yl)methanol (162h): Compound 162h was prepared 

from isoquinoline 161h using general procedure 4 and purified by column chromatography 

(20% EtOAc in CH2Cl2) to provide a white solid (67 mg, 38% yield); 1H NMR (400 MHz, 

CDCl3) δ 8.95 (t, J = 2.0 Hz, 1H), 8.52 (dt, J = 7.9, 1.3 Hz, 1H), 8.27 (ddd, J = 8.2, 2.3, 1.1 

Hz, 1H), 8.11 (s, 1H), 8.04 – 7.90 (m, 2H), 7.78 (ddd, J = 8.0, 6.9, 1.2 Hz, 1H), 7.73 – 7.60 

(m, 2H), 5.33 (s, 2H), 4.96 (br s, 1H, OH); 13C NMR (100 MHz, CDCl3) δ 158.2, 149.0, 

146.1, 140.7, 136.8, 132.7, 131.4, 129.9, 128.4, 128.2, 124.7, 123.5, 123.4, 121.6, 117.2, 

61.7; IR (Neat Film, NaCl) 3389, 2614, 1538, 1520, 1505, 1353, 1333, 1088, 1007, 892, 

751, 690 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C16H13N2O3 [M+H]+: 281.0921, 

found 281.0930. 
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(3-(3,4,5-trifluorophenyl)isoquinolin-1-yl)methanol (162i): Compound 162i was 

prepared from isoquinoline 161i using general procedure 4 and purified by column 

chromatography (20% EtOAc in hexanes) to provide a white solid (90 mg, 82% yield); 1H 

NMR (400 MHz, CDCl3) δ 7.99 – 7.89 (m, 3H), 7.84 – 7.71 (m, 3H), 7.65 (ddd, J = 8.2, 

6.9, 1.3 Hz, 1H), 5.30 (s, 2H), 4.89 (br s, 1H, OH); 13C NMR (100 MHz, CDCl3) δ 158.0, 

151.7 (ddd, J = 249.3, 10.2, 4.1 Hz), 145.4 (d, J = 2.5 Hz), 140.2 (dt, J = 253.9, 15.7 Hz), 

136.7, 135.1 (td, J = 7.6, 4.5 Hz), 131.4, 128.3, 128.0, 124.5, 123.4, 116.6 (d, J = 1.4 Hz), 

110.9 – 110.7 (m), 61.7; 19F NMR (282 MHz, CDCl3) δ –133.8 – –133.9 (m), –160.1 – –

160.3 (m); IR (Neat Film, NaCl) 3351, 2882, 1557, 1531, 1451, 1350, 1326, 1080, 1039, 

1008, 864, 848, 778, 747, 706 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C16H11F3NO 

[M+H]+: 290.0787, found 290.0795. 

 

(3-(naphthalen-2-yl)isoquinolin-1-yl)methanol (162j): Compound 162j was prepared 

from isoquinoline 161j using general procedure 4 and purified by column chromatography 

(20% EtOAc in hexanes) to provide a white solid (158 mg, 97% yield); 1H NMR (400 
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MHz, CDCl3) δ 8.67 (s, 1H), 8.27 (dd, J = 8.6, 1.8 Hz, 1H), 8.16 (s, 1H), 8.05 – 7.93 (m, 

4H), 7.91 – 7.89 (m, 1H), 7.75 (ddd, J = 8.2, 6.9, 1.1 Hz, 1H), 7.62 (ddd, J = 8.2, 6.9, 1.2 

Hz, 1H), 7.58 – 7.47 (m, 2H), 5.34 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 157.5, 148.5, 

137.1, 136.2, 133.7, 133.7, 130.9, 128.8, 128.6, 128.0, 127.8, 127.6, 126.7, 126.6, 126.3, 

124.6, 124.2, 123.3, 116.6, 61.6; IR (Neat Film, NaCl) 3393, 3056, 1622, 1573, 1506, 1445, 

1410, 1375, 1344, 1314, 1086, 1008, 856, 817, 744 cm-1; HRMS (MM:ESI-APCI+) m/z 

calc’d for C20H16NO [M+H]+: 286.1231, found 286.1226. 

 

(3-(3,5-dimethylphenyl)isoquinolin-1-yl)methanol (162k): Compound 162k was 

prepared from isoquinoline 161k using general procedure 4 and purified by column 

chromatography (20% EtOAc in hexanes) to provide a white solid (155 mg, 95% yield); 

1H NMR (400 MHz, CDCl3) δ 8.00 (s, 1H), 7.94 – 7.91 (m, 2H), 7.78 – 7.76 (m, 2H), 7.72 

(ddd, J = 8.3, 6.9, 1.2 Hz, 1H), 7.60 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.09 (s, 1H), 5.30 (s, 

3H), 2.44 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 157.2, 149.0, 138.9, 138.5, 137.1, 130.8, 

130.6, 127.9, 127.4, 124.8, 124.1, 123.3, 116.3, 61.6, 21.7; IR (Neat Film, NaCl) 3382, 

2913, 2338, 1622, 1574, 1503, 1444, 1379, 1332, 1084, 1011, 882, 849, 824, 750, 709 cm-

1; HRMS (MM:ESI-APCI+) m/z calc’d for C18H18NO [M+H]+: 264.1382, found 264.1383. 
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(3-(3,4-dimethoxyphenyl)isoquinolin-1-yl)methanol (162l): Compound 162l was 

prepared from isoquinoline 161l using general procedure 4 and purified by column 

chromatography (40% EtOAc in hexanes) to provide a white solid (180 mg, 91% yield); 

1H NMR (400 MHz, CDCl3) δ 7.95 (s, 1H), 7.93 – 7.90 (m, 2H), 7.77 – 7.67 (m, 3H), 7.58 

(ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.03 – 7.01 (m, 1H), 5.30 (s, 2H), 5.26 (br s, 1H, OH), 4.03 

(s, 3H), 3.97 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 157.0, 149.8, 149.3, 148.3, 137.0, 

131.8, 130.7, 127.7, 127.1, 123.8, 123.2, 119.5, 115.3, 111.3, 110.0, 61.4, 56.1, 56.0; IR 

(Neat Film, NaCl) 3372, 2936, 2838, 1623, 1604, 1573, 1518, 1456, 1438, 1314, 1260, 

1237, 1134, 1027, 1008 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C18H18NO3 

[M+H]+: 296.1284, found 296.1283. 

 

(3-(o-tolyl)isoquinolin-1-yl)methanol (162m): Compound 162m was prepared from 

isoquinoline 161m using general procedure 4 and purified by column chromatography 

(15% EtOAc in hexanes) to provide a white solid (130 mg, 79% yield); 1H NMR (400 

MHz, CDCl3) δ 7.96 (dd, J = 8.4, 1.1 Hz, 1H), 7.91 (dd, J = 8.2, 1.2 Hz, 1H), 7.75 (ddd, J 

= 8.3, 6.9, 1.2 Hz, 1H), 7.71 (s, 1H), 7.64 (ddd, J = 8.3, 6.8, 1.3 Hz, 1H), 7.53 (d, J = 6.6 
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Hz, 1H), 7.39 – 7.29 (m, 3H), 5.30 (s, 2H), 5.14 (s, 1H), 2.45 (s, 3H); 13C NMR (100 MHz, 

CDCl3) δ 156.8, 151.4, 140.1, 136.7, 136.5, 131.0, 130.8, 130.2, 128.4, 127.8, 127.6, 126.1, 

123.7, 123.3, 120.0, 61.6, 20.9; IR (Neat Film, NaCl) 3389, 3057, 2932, 1626, 1573, 1502, 

1455, 1402, 1377, 1330, 1087, 1069, 1008, 884, 786, 757, 727 cm-1; HRMS (MM:ESI-

APCI+) m/z calc’d for C17H16NO [M+H]+: 250.1226, found 250.1232.  

 

(3-(furan-2-yl)isoquinolin-1-yl)methanol (162n): Compound 162n was prepared from 

isoquinoline 161n using general procedure 4 and purified by column chromatography (20% 

EtOAc in hexanes) to provide a white solid (56 mg, 52% yield): 1H NMR (400 MHz, 

CDCl3) δ 7.94 – 7.92 (m, 1H), 7.90 – 7.82 (m, 2H), 7.70 – 7.66 (m, 1H), 7.60 – 7.50 (m, 

2H), 7.16 – 7.14 (m, 1H), 6.58 – 6.56 (m, 1H), 5.23 (s, 2H), 5.05 (br s, 1H, OH); 13C NMR 

(100 MHz, CDCl3) δ 157.5, 153.7, 143.1, 140.9, 136.6, 130.9, 127.8, 127.2, 124.0, 123.3, 

113.6, 112.1, 108.6, 61.3; IR (Neat Film, NaCl) 3390, 3118, 2886, 1624, 1574, 1492, 1372, 

1323, 1306, 1157, 1092, 1079, 1006, 884, 836, 743 cm-1; HRMS (MM:ESI-APCI+) m/z 

calc’d for C14H12NO2 [M+H]+: 226.0863, found 226.0871.  

 

(3-(thiophen-2-yl)isoquinolin-1-yl)methanol (162o): Compound 162o was prepared 

from isoquinoline 161o (0.5 mmol) using general procedure 4 and purified by column 
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chromatography (10% to 20% EtOAc in hexanes) to provide a white solid (46 mg, 38% 

yield): 1H NMR (400 MHz, CDCl3) δ 7.89 (s, 1H), 7.88 – 7.83 (m, 2H), 7.75 – 7.65 (m, 

2H), 7.55 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.41 (dd, J = 5.0, 1.2 Hz, 1H), 7.16 (dd, J = 5.0, 

3.6 Hz, 1H), 5.25 (s, 2H), 5.02 (br s, 1H, OH); 13C NMR (100 MHz, CDCl3) δ 157.4, 144.4, 

144.1, 136.8, 131.0, 128.2, 127.6, 127.2, 127.0, 124.1, 124.0, 123.3, 114.0, 61.3; IR (Neat 

Film, NaCl) 3382, 3066, 2868, 1621, 1589, 1573, 1501, 1452, 1402, 1329, 1084, 1006, 

878, 822, 748, 701 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C14H12NOS [M+H]+: 

242.0634, found 242.0637. 

 

(3-(thiophen-3-yl)isoquinolin-1-yl)methanol (162p): Compound 162p was prepared 

from isoquinoline 161p (0.58 mmol) using general procedure 4 and purified by column 

chromatography (20% EtOAc in hexanes) to provide a white solid (127 mg, 91% yield); 

1H NMR (400 MHz, CDCl3) δ 8.06 (dd, J = 3.1, 1.3 Hz, 1H), 7.94 – 7.84 (m, 3H), 7.76 

(dd, J = 5.1, 1.3 Hz, 1H), 7.71 (ddd, J = 8.2, 6.9, 1.1 Hz, 1H), 7.58 (ddd, J = 8.2, 6.9, 1.1 

Hz, 1H), 7.45 (dd, J = 5.1, 3.0 Hz, 1H), 5.27 (s, 2H), 5.19 (br s, 1H); 13C NMR (100 MHz, 

CDCl3) δ 157.4, 145.0, 141.7, 137.0, 130.9, 127.8, 127.3, 126.6, 126.0, 124.1, 123.4, 123.4, 

115.6, 61.5; IR (Neat Film, NaCl) 3372, 3098, 2888, 2363, 1622, 1594, 1573, 1456, 1350, 

1318, 1299, 1086, 1008, 880, 842, 793, 748, 697 cm-1; HRMS (MM:ESI-APCI+) m/z 

calc’d for C14H12NOS [M+H]+: 242.0634, found 242.0631. 
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(3-(1-methyl-1H-pyrazol-4-yl)isoquinolin-1-yl)methanol (162q): Compound 162q was 

prepared from isoquinoline 161q using general procedure 4 and purified by column 

chromatography (70% to 80% EtOAc in hexanes + 1% NEt3) to provide a pale beige solid 

(72 mg, 62% yield): 1H NMR (400 MHz, CDCl3) δ 8.08 – 7.95 (m, 2H), 7.85 – 7.79 (m, 

2H), 7.71 – 7.59 (m, 2H), 7.53 – 7.49 (m, 1H), 5.21 (s, 2H), 3.98 (s, 3H); 13C NMR (100 

MHz, CDCl3) δ 157.3, 143.2, 137.3, 136.9, 130.8, 128.8, 127.2, 126.7, 123.5, 123.2, 114.1 

61.2, 39.2; IR (Neat Film, NaCl) 3370, 3068, 2937, 1626, 1603, 1573, 1503, 1416, 1321, 

1278, 1186, 1092, 1011, 845, 753, 702 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for 

C14H14N3O [M+H]+: 240.1131, found 240.1123. 

 

(3-(pyridin-2-yl)isoquinolin-1-yl)methanol (162r): Compound 162r was prepared from 

isoquinoline 161r using general procedure 4 and purified by column chromatography (10% 

to 20% acetone in CH2Cl2 + 1% NEt3) to provide a pale cream solid (52 mg, 86% yield); 

1H NMR (400 MHz, CDCl3) δ 8.74 – 8.72 (m, 2H), 8.52 (d, J = 8.2 Hz, 1H), 8.00 (d, J = 

8.3 Hz, 1H), 7.94 (d, J = 8.3 Hz, 1H), 7.86 (td, J = 7.8, 1.8 Hz, 1H), 7.78 – 7.69 (m, 1H), 

7.63 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 7.33 (ddd, J = 7.5, 4.8, 1.2 Hz, 1H), 5.31 (s, 2H), 5.13 
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(br s, 1H, OH); 13C NMR (100 MHz, CDCl3) δ 157.2, 155.8, 149.5, 147.3, 137.2, 137.0, 

130.9, 128.7, 128.1, 125.1, 123.6, 123.3, 121.1, 117.6, 61.6; IR (Neat Film, NaCl) 3390, 

3048, 2359, 1622, 1583, 1474, 1428, 1333, 1309, 1166, 1087, 1009, 897, 793, 747, 681 

cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C15H13N2O [M+H]+: 237.1022, found 

237.1020. 

 

(7-fluoro-3-phenylisoquinolin-1-yl)methanol (164a): Compound 164a was prepared 

from isoquinoline 172a using general procedure 4 and purified by column chromatography 

(10% EtOAc in hexanes) to provide a white solid (94 mg, 81% yield): 1H NMR (400 MHz, 

CDCl3) δ 8.13 (d, J = 8.0 Hz, 2H), 8.00 (s, 1H), 7.96 – 7.87 (m, 1H), 7.57 – 7.47 (m, 4H), 

7.44 (td, J = 6.9, 6.4, 1.4 Hz, 1H), 5.21 (s, 2H), 5.11 (br s, 1H, OH); 13C NMR (100 MHz, 

CDCl3) δ 161.0 (d, J = 250.3 Hz), 156.8 (d, J = 5.9 Hz), 148.4, 138.6, 134.1, 130.5 (d, J = 

8.6 Hz), 129.0, 126.8, 124.7 (d, J = 8.5 Hz), 121.4 (d, J = 25.2 Hz), 115.9 (d, J = 2.0 Hz), 

107.2 (d, J = 21.3 Hz), 61.6; 19F NMR (282 MHz, CDCl3) δ –109.5 – –109.6 (m); IR (Neat 

Film, NaCl) 3393, 3063, 2878, 1594, 1579, 1506, 1417, 1392, 1321, 1232, 1185, 1085, 

1015, 930, 777, 694 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C16H13FNO [M+H]+: 

254.0976, found 254.0968. 
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(7-fluoro-3-(4-methoxyphenyl)isoquinolin-1-yl)methanol (164b): Compound 164b was 

prepared from isoquinoline 172b using general procedure 4 and purified by column 

chromatography (20% EtOAc in hexanes) to provide a white solid (116 mg, 99% yield): 

1H NMR (400 MHz, CDCl3) δ 8.10 – 8.08 (m, 2H), 7.93 (s, 1H), 7.92 – 7.88 (m, 1H), 7.52 

– 7.45 (m, 2H), 7.07 – 7.02 (m, 2H), 5.21 (s, 2H), 5.14 (s, 1H), 3.90 (s, 3H); 13C NMR (100 

MHz, CDCl3) δ 160.8 (d, J = 249.0 Hz), 160.5, 156.6 (d, J = 5.9 Hz), 148.3 (d, J = 2.9 Hz), 

134.3, 131.3, 130.4 (d, J = 8.6 Hz), 128.1, 124.3 (d, J = 8.2 Hz), 121.4 (d, J = 25.3 Hz), 

114.8 (d, J = 1.7 Hz), 114.4, 107.2 (d, J = 21.3 Hz), 61.6, 55.6; 19F NMR (282 MHz, CDCl3) 

δ –110.2 (ddd, J = 8.9, 8.8, 5.5 Hz); IR (Neat Film, NaCl) 3388, 2936, 1608, 1593, 1516, 

1389, 1289, 1251, 1180, 1069, 1032, 1015, 929, 835 cm-1; HRMS (MM:ESI-APCI+) m/z 

calc’d for C17H15FNO2 [M+H]+: 284.1081, found 284.1074. 

 

(7-fluoro-3-(4-(trifluoromethyl)phenyl)isoquinolin-1-yl)methanol (164c): Compound 

164c was prepared from isoquinoline 172c using general procedure 4 and purified by 

column chromatography (10% EtOAc in hexanes) to provide a white solid (80 mg, 60% 

yield): 1H NMR (400 MHz, CDCl3) δ 8.20 (d, J = 8.1 Hz, 2H), 8.02 (s, 1H), 7.95 (dd, J = 
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9.8, 5.4 Hz, 1H), 7.74 (d, J = 8.3 Hz, 2H), 7.58 – 7.47 (m, 2H), 5.21 (s, 2H), 4.94 (br s, 1H, 

OH); 13C NMR (100 MHz, CDCl3) δ 161.3 (d, J = 251.5 Hz), 157.3 (d, J = 5.9 Hz), 146.8 

(d, J = 2.9 Hz), 141.8 (d, J = 1.5 Hz), 133.8, 130.7 (d, J = 8.7 Hz), 130.7 (q, J = 33.3 Hz), 

127.0, 125.9 (q, J = 3.8 Hz), 125.2 (d, J = 8.4 Hz), 124.3 (q, J = 272.7 Hz), 121.7 (d, J = 

25.3 Hz), 116.8 (d, J = 1.7 Hz), 107.4 (d, J = 21.5 Hz), 61.7; 19F NMR (282 MHz, CDCl3) 

δ –62.5, –108.4 (ddd, J = 8.7, 8.7, 5.4 Hz); IR (Neat Film, NaCl) 3410, 2886, 1619, 1597, 

1504, 1416, 1391, 1328, 1233, 1165, 1124, 1111, 1074, 1016, 931, 847, 680 cm-1; HRMS 

(MM:ESI-APCI+) m/z calc’d for C17H12F4NO [M+H]+: 322.0850, found 322.0839. 

 

(7-phenyl-[1,3]dioxolo[4,5-g]isoquinolin-5-yl)methanol (164d): Compound 164d was 

prepared from isoquinoline 172d using general procedure 4 and purified by column 

chromatography (30% to 40% EtOAc in hexanes) to provide a white solid (135 mg, 83% 

yield): 1H NMR (400 MHz, CDCl3) δ 8.13 – 8.05 (m, 2H), 7.82 (s, 1H), 7.50 (m, 2H), 7.44 

– 7.37 (m, 1H), 7.15 – 7.06 (m, 2H), 6.10 (s, 2H), 5.28 (br s, 1H, OH), 5.10 (s, 2H); 13C 

NMR (100 MHz, CDCl3) δ 154.9, 151.1, 148.6, 147.8, 138.9, 135.4, 128.8, 128.5, 126.6, 

120.9, 115.9, 103.6, 101.9, 99.3, 61.4; IR (Neat Film, NaCl) 3324, 2914, 2355, 1597, 1497, 

1463, 1436, 1422, 1236, 1066, 1036, 995, 940, 877, 775, 692 cm-1; HRMS (MM:ESI-

APCI+) m/z calc’d for C17H14NO3 [M+H]+: 280.0968, found 280.0975. 
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(7-(3,4-dimethoxyphenyl)-[1,3]dioxolo[4,5-g]isoquinolin-5-yl)methanol (164e): 

Compound 164e was prepared from isoquinoline 172e using general procedure 4 and 

purified by column chromatography (40% EtOAc in hexanes) via dry-loading to provide a 

pale pink solid (126 mg, 65% yield): 1H NMR (400 MHz, CDCl3) δ 7.77 (s, 1H), 7.69 – 

7.60 (m, 2H), 7.16 – 7.07 (m, 2H), 6.99 (d, J = 8.2 Hz, 1H), 6.11 (s, 2H), 5.26 (br s, 1H, 

OH), 5.11 (s, 2H), 4.01 (s, 3H), 3.96 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 154.7, 151.1, 

149.7, 149.2, 148.4, 147.7, 135.5, 131.9, 120.6, 119.2, 115.1, 111.3, 109.7, 103.5, 101.8, 

99.3, 61.4, 56.0, 56.0; IR (Neat Film, NaCl) 3378, 2912, 2353, 1595, 1519, 1496, 1463, 

1456, 1435, 1258, 1234, 1034, 862, 730 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for 

C19H18NO5 [M+H]+: 340.1179, found 340.1172. 

 

(2-phenylbenzo[f]isoquinolin-4-yl)methanol (164f): Compound 164f was prepared from 

isoquinoline 172f using general procedure 4 and purified by column chromatography (20% 

EtOAc in hexanes) to provide a white solid (51 mg, 62% yield): 1H NMR (400 MHz, 

CDCl3) δ 8.78 – 8.76 (m, 2H), 8.23 – 8.20 (m, 2H), 7.94 – 7.92 (m, 1H), 7.88 – 7.78 (m, 

1H), 7.78 – 7.62 (m, 3H), 7.57 (t, J = 7.5 Hz, 2H), 7.48 (t, J = 7.3 Hz, 1H), 5.46 – 5.19 (m, 
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3H); 13C NMR (100 MHz, CDCl3) δ 156.3, 150.4, 139.2, 135.9, 133.5, 129.0, 129.0, 129.0, 

128.8, 128.6, 127.5, 127.1, 123.5, 122.1, 120.0, 120.0, 111.7, 61.7; IR (Neat Film, NaCl) 

3322, 3064, 2890, 1589, 1494, 1428, 1386, 1304, 1242, 1081, 1050, 814, 747 cm-1; HRMS 

(MM:ESI-APCI+) m/z calc’d for C20H16NO [M+H]+: 286.1226, found 286.1235. 

2.7.2.2 Syntheses of isoquinolines with different directing groups 

 

(3-phenylisoquinolin-1-yl)methyl acetate (166a): To a scintillation vial containing a stir 

bar and isoquinoline 162a (165 mg, 0.70 mmol) in THF (7 mL, 0.1 M) was added DMAP 

(8.6 mg, 0.07 mmol) and pyridine (0.14 mL, 1.75 mmol). Acetic anhydride (0.1 mL, 1.05 

mmol) was then added dropwise. The reaction was stirred overnight at room temperature 

then diluted with Et2O and washed with saturated aqueous NH4Cl. The organic phase was 

collected, dried over Na2SO4 and concentrated in vacuo. The crude product was purified 

by column chromatography (10% EtOAc in hexanes) to afford 166a as a colorless viscous 

oil (194 mg, >99% yield): 1H NMR (400 MHz, CDCl3) δ 8.19 – 8.13 (m, 2H), 8.11 (dd, J 

= 8.4, 1.0 Hz, 1H), 8.07 (s, 1H), 7.92 (dt, J = 8.3, 0.9 Hz, 1H), 7.71 (ddd, J = 8.2, 6.8, 1.2 

Hz, 1H), 7.61 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.54 – 7.47 (m, 2H), 7.45 – 7.38 (m, 1H), 

5.79 (s, 2H), 2.20 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 170.9, 154.4, 150.2, 139.3, 137.5, 

130.5, 128.9, 128.7, 128.0, 127.6, 127.1, 126.0, 124.8, 117.2, 66.1, 21.1; IR (Neat Film, 

NaCl) 2826, 2364, 1704, 1574, 1455, 1333, 1054, 904, 783, 764, 748, 719, 678 cm-1; 

HRMS (MM:ESI-APCI+) m/z calc’d for C18H16NO2 [M+H]+: 278.1176, found 278.1178. 

N

OH

N

OAc

Ac2O, pyridine
DMAP

THF, 23 °C

166a162a
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1-(methoxymethyl)-3-phenylisoquinoline (166b): To a scintillation vial containing a stir 

bar and isoquinoline 162a (165 mg, 0.70 mmol) in THF (7 mL, 0.1 M) was added KOt-Bu 

(86 mg, 0.77 mmol) at room temperature. The resulting mixture was stirred for 5 minutes, 

then cooled to 0 °C, and MeI (0.05 mL, 0.77 mmol) was added. The reaction was allowed 

to slowly warm to room temperature overnight and then was quenched with saturated 

aqueous NH4Cl. The organic phase was collected and the aqueous phase was extracted with 

EtOAc. The organic phases were combined, dried over MgSO4, and concentrated in vacuo. 

The crude product was purified by column chromatography (5% EtOAc in hexanes) to 

afford 166b as a white solid (79 mg, 45% yield): 1H NMR (400 MHz, CDCl3) δ 8.36 (dd, 

J = 8.4, 1.1 Hz, 1H), 8.20 – 8.13 (m, 2H), 8.04 (s, 1H), 7.89 (d, J = 8.3 Hz, 1H), 7.69 (ddd, 

J = 8.2, 6.8, 1.2 Hz, 1H), 7.60 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.51 (td, J = 7.3, 6.5, 1.2 Hz, 

2H), 7.45 – 7.37 (m, 1H), 5.14 (s, 2H), 3.51 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 157.1, 

149.9, 139.7, 137.5, 130.4, 128.9, 128.6, 127.7, 127.3, 127.1, 126.5, 125.9, 117.1, 75.8, 

58.7; IR (Neat Film, NaCl) 3058, 2918, 2817, 1622, 1590, 1500, 1455, 1338, 1188, 1104, 

885, 770, 752, 695, 668 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C17H16NO [M+H]+: 

250.1226, found 250.1236. 

N

OH

N

OMe

MeI, t-BuOK

THF, 0 to 23 °C

166b162a
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1-((benzyloxy)methyl)-3-phenylisoquinoline (166c): This procedure has been adapted 

from a previous report.26 To a flame-dried RBF equipped with a stir bar was added NaH 

(36.4 mg, 60% w/w in oil, 0.91 mmol) and THF (7 mL, 0.1 M). To this suspension, 

isoquinoline 162a (165 mg, 0.70 mmol) was added. After 5 minutes of stirring at room 

temperature, the reaction mixture was cooled to 0 °C and BnBr (0.91 mL, 0.91 mmol) was 

added. The reaction was allowed to slowly warm to room temperature overnight. Silica (1 

g) was then added and the solvent was evaporated under vacuum. The crude product was 

purified by column chromatography (5% EtOAc in hexanes) to afford 166c as a colorless 

viscous oil (153 mg, 67% yield): 1H NMR (400 MHz, CDCl3) δ 8.39 (dd, J = 8.4, 1.1 Hz, 

1H), 8.21 – 8.14 (m, 2H), 8.04 (s, 1H), 7.89 (d, J = 8.3 Hz, 1H), 7.69 (ddd, J = 8.2, 6.8, 1.2 

Hz, 1H), 7.58 (ddd, J = 8.3, 6.8, 1.2 Hz, 1H), 7.51 (dd, J = 8.4, 6.9 Hz, 2H), 7.45 – 7.27 

(m, 6H), 5.24 (s, 2H), 4.67 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 157.2, 149.9, 139.7, 

138.2, 137.6, 130.4, 128.9, 128.6, 128.5, 128.3, 127.9, 127.7, 127.3, 127.1, 126.6, 126.1, 

117.1, 73.6, 72.8; IR (Neat Film, NaCl) 3062, 2858, 1622, 1574, 1496, 1454, 1384, 1337, 

1207, 1094, 1030, 885, 796, 768, 737, 696 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for 

C23H20NO [M+H]+: 326.1539, found 326.1544. 

N

OH

N

OBn

NaH, BnBr

THF, 0 to 23 °C

166c162a
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tert-butyl ((3-phenylisoquinolin-1-yl)methyl)carbamate (166d): This procedure has 

been adapted from a previous report.27 To a solution of aldehyde 166f (150 mg, 0.64 mmol) 

and t-butyl carbamate (150 mg, 1.28 mmol) in MeCN (6.5 mL, 0.1 M) were added 

trifluoroacetic acid (0.15 mL, 1.92 mmol) and triethylsilane (1.0 mL, 6.4 mmol). The 

reaction was stirred at room temperature overnight and then quenched with saturated 

aqueous Na2CO3 and extracted with EtOAc. The combined organic phases were washed 

with brine, dried over Na2SO4 and concentrated in vacuo. The crude product was purified 

by column chromatography (15% EtOAc in hexanes) to afford 166d as a white solid (160 

mg, 75% yield): 1H NMR (400 MHz, CDCl3) δ 8.16 (d, J = 7.7 Hz, 2H), 8.10 (d, J = 8.4 

Hz, 1H), 8.00 (s, 1H), 7.90 (d, J = 8.2 Hz, 1H), 7.70 (ddd, J = 8.1, 6.9, 1.1 Hz, 1H), 7.61 

(ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.53 (t, J = 7.6 Hz, 2H), 7.48 – 7.40 (m, 1H), 6.43 (br s, 

1H), 5.03 (d, J = 4.4 Hz, 2H), 1.54 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 156.3, 155.0, 

149.3, 139.4, 137.1, 130.6, 128.9, 128.8, 127.9, 127.6, 127.0, 125.1, 124.0, 116.3, 79.6, 

43.5, 28.7; IR (Neat Film, NaCl) 3418, 2976, 1713, 1622, 1574, 1487, 1367, 1251, 1167, 

1056, 882, 765, 695 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C21H23N2O2 [M+H]+: 

335.1754, found 335.1760. 

N

O

N

NHBoc

Boc-amide
TFA, Et3SiH

MeCN, 23 °C

H

166d166f
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3-phenylisoquinoline-1-carbaldehyde (166f): To a Schlenk flask containing a stir bar 

was added SeO2 (140 mg, 1.26 mmol) and isoquinoline 161a (138 mg, 0.63 mmol) in 1,4-

dioxane (13 mL, 0.05 M). The reaction vial was then sealed and heated to 110 °C while 

stirring for 2 hours. The reaction was then cooled to room temperature and filtered through 

celite rinsing with EtOAc. The crude product was then purified by column chromatography 

(5% EtOAc in hexanes) to afford 166f as a pale yellow solid (1.32 g, 96% yield): 1H NMR 

(400 MHz, CDCl3) δ 10.50 (s, 1H), 9.32 (d, J = 8.2 Hz, 1H), 8.31 (s, 1H), 8.24 (d, J = 8.1 

Hz, 2H), 7.97 (d, J = 7.3 Hz, 1H), 7.84 – 7.67 (m, 2H), 7.56 (t, J = 7.5 Hz, 2H), 7.47 (t, J 

= 7.4 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 196.2, 150.8, 149.7, 138.5, 138.1, 131.0, 

129.9, 129.3, 129.1, 127.5, 127.1, 125.9, 125.5, 121.3; IR (Neat Film, NaCl) 2826, 2364, 

1704, 1574, 1455, 1333, 1054, 904, 783, 764, 748, 719, 678 cm-1; HRMS (MM:ESI-

APCI+) m/z calc’d for C16H12NO [M+H]+: 234.0913, found 234.0914. 

2.7.2.3 Hydrogenation reactions 

General Procedure 5: Hydrogenation Reactions 

 

To an oven-dried 20-mL scintillation vial equipped with a stir bar and isoquinoline (0.2 

mmol) was capped with a PTFE-lined septum and pierced with two 21 gauge green needles. 

N

O

SeO2

dioxane, 110 °C

H
166f

N

Me
161a

N

Ar/Het

X

[Ir(cod)Cl]2 (1.25 mol %)
ligand (3 mol %)

H2 (20 bar), TBAI (7.5 mol %)

9:1 THF:AcOH (0.1 M)
23 °C, 18 h

NH

Ar/Het

X

Fe
P(DMM)2

P(Xyl)2

Me

ligand: SL-J418-1
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The vials were then placed in a Parr bomb and brought into the glovebox, with the 

exception of the pressure gauge. A layer of plastic wrap and a rubber band were also 

brought in to seal the top of the bomb. In a nitrogen-filled glovebox, a solution of the ligand 

(SL-J418-1) (4.53 mg, 0.006 mmol per reaction) and [Ir(cod)Cl]2 (1.68 mg, 0.0025 mmol 

per reaction) in THF (1.8 mL per reaction) was prepared and allowed to stand for 10 

minutes. Meanwhile, a solution of TBAI (5.54 mg, 0.015 mmol per reaction) in AcOH (0.2 

mL per reaction) was prepared in a 1-dram vial, and 0.2 mL of the solution was added to 

each reaction vial via a syringe. Afterwards, 1.8 mL of the homogeneous iridium catalyst 

solution was added to each reaction vial via a syringe. After re-capping the vials with caps 

equipped with needles, the reactions were placed in the bomb and the top was covered 

tightly with plastic wrap secured by a rubber band. The bomb was then removed from the 

glovebox, and the pressure gauge was quickly screwed in place and tightened. The bomb 

was charged to 5-10 bar H2 and slowly released. This process was repeated two more times, 

before charging the bomb to 20 bar of H2 (or 60 bar H2). The bomb was then left stirring 

at 200 rpm at room temperature (or placed in an oil bath and heated to 60 °C) for 18 hours. 

Then, the bomb was removed from the stir plate and the hydrogen pressure was vented. 

The reaction vials were removed from the bomb and each solution was basified by the 

addition of saturated aqueous K2CO3. The layers were separated, and the aqueous layer 

was extracted with EtOAc. The combined organics layers were then dried over Na2SO4, 

and concentrated in vacuo. The product was then purified by column chromatography to 

furnish the product as an inseparable mixture of diastereomers.  

Please note that the NMR data listed is for the major diastereomer, and that the 

provided spectra for the following compounds reflect the inseparable mixture of cis- and 
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trans-products. The enantiomeric excess was determined by chiral SFC analysis of the 

Cbz-protected amine (see Table 2.4). The absolute configuration was determined for 

compound 163p via x-ray crystallographic analysis. Absolute configuration of compound 

167e were determined using vibrational circular dichroism (VCD), vide infra. The absolute 

configuration for all other products has been inferred by analogy.  

 

((1S,3R)-3-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (163a): Compound 

163a was prepared from isoquinoline 162a using general procedure 5 and purified by 

column chromatography (5% MeOH in CH2Cl2) to provide a tan solid as a mixture of 

diastereomers (47 mg, 98% yield) (dr = 15.7:1); 92% ee for major diastereomer; [α]D25 

+110.2 (c 1.02, CHCl3); Cis-diastereomer: 1H NMR (400 MHz, CDCl3) δ 7.50 – 7.43 (m, 

2H), 7.41 – 7.34 (m, 2H), 7.34 – 7.28 (m, 1H), 7.25 – 7.17 (m, 3H), 7.15 – 7.10 (m, 1H), 

4.43 – 4.41 (m, 1H), 4.10 (dd, J = 11.1, 3.5 Hz, 1H), 4.02 (dd, J = 10.8, 3.3 Hz, 1H), 3.90 

(dd, J = 10.9, 5.4 Hz, 1H), 3.02 (ddt, J = 15.9, 11.1, 1.4 Hz, 1H), 2.90 (dd, J = 15.7, 3.5 

Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 144.3, 136.7, 134.9, 129.3, 128.8, 127.7, 126.8, 

126.7, 126.5, 125.5, 66.7, 58.7, 57.7, 39.0; IR (Neat Film, NaCl) 3296, 3060, 2910, 2360, 

1494, 1455, 1314, 1116, 1036, 909, 742, 700 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d 

for C16H18NO [M+H]+: 240.1383, found 240.1385; SFC Conditions: 45% IPA, 3.5 

mL/min, Chiralpak AD-H column, λ = 210 nm, tR (min): major = 2.34, minor = 4.02.	

NH

OH

163a
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Trans-diastereomer: 1H NMR (400 MHz, CDCl3) δ 7.49 – 7.43 (m, 2H), 7.42 – 

7.38 (m, 2H), 7.36 – 7.27 (m, 1H), 7.26 – 7.10 (m, 4H), 4.23 (dd, J = 10.5, 4.8 Hz, 1H), 

4.16 (dd, J = 11.2, 3.9 Hz, 1H), 3.80 (dd, J = 10.8, 4.8 Hz, 1H), 3.71 (t, J = 10.7 Hz, 1H), 

3.07 (dd, J = 16.4, 3.9 Hz, 1H), 2.95 (dd, J = 15.9, 11.2 Hz, 1H); 13C NMR (100 MHz, 

CDCl3) δ 143.5, 135.5, 134.7, 129.5, 128.8, 127.5, 127.0, 126.7, 126.6, 126.4, 63.8, 57.4, 

50.7, 36.8. 

 

((1S,3R)-3-(4-(tert-butyl)phenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (163b):  

Compound 163b was prepared from isoquinoline 162b using general procedure 5 and 

purified by column chromatography (50% EtOAc in hexanes) to provide a tan solid as a 

mixture of diastereomers (51 mg, 87% yield) (dr = 13.3:1); 91% ee for major diastereomer; 

[α]D25 +78.8 (c 1.03, CHCl3); Major diastereomer: 1H NMR (400 MHz, CDCl3) δ 7.42 – 

7.38 (m, 4H), 7.26 – 7.21 (m, 2H), 7.21 – 7.17 (m, 1H), 7.12 (d, J = 7.7 Hz, 1H), 4.42 – 

4.40 (m, 1H), 4.08 (dd, J = 11.2, 3.4 Hz, 1H), 4.01 (dd, J = 10.8, 3.3 Hz, 1H), 3.89 (dd, J 

= 10.8, 5.4 Hz, 1H), 3.03 (dd, J = 15.8, 11.2 Hz, 1H), 2.89 (dd, J = 15.7, 3.4 Hz, 1H), 1.34 

(s, 9H); 13C NMR (100 MHz, CDCl3) δ 150.7, 141.2, 136.7, 135.0, 129.3, 126.7, 126.5, 

126.5, 125.7, 125.5, 66.6, 58.7, 57.3, 38.8, 34.7, 31.5; IR (Neat Film, NaCl) 3318, 2961, 

2868, 1494, 1454, 1362, 1312, 1270, 1116, 1038, 820, 743 cm-1; HRMS (MM:ESI-APCI+) 

NH

OH

163b
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m/z calc’d for C20H26NO [M+H]+: 296.2009, found 296.2005; SFC Conditions: 45% IPA, 

3.5 mL/min, Chiralpak AD-H column, λ = 210 nm, tR (min): major = 1.81, minor = 2.73. 

 

((1S,3R)-3-([1,1'-biphenyl]-4-yl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (163c):  

Compound 163c was prepared from isoquinoline 162c using general procedure 5 and 

purified by column chromatography (50% EtOAc in hexanes) to provide a tan solid as a 

mixture of diastereomers (50 mg, 79% yield) (dr = 9.0:1); 92% ee for major diastereomer; 

[α]D25 +73.2 (c 1.03, CHCl3); Major diastereomer: 1H NMR (400 MHz, CDCl3) δ 7.65 – 

7.58 (m, 4H), 7.55 – 7.53 (m, 2H), 7.47 – 7.44 (m, 2H), 7.39 – 7.32 (m, 1H), 7.28 – 7.16 

(m, 3H), 7.15 (d, J = 6.2 Hz, 1H), 4.46 – 4.44 (m, 1H), 4.15 (dd, J = 11.2, 3.4 Hz, 1H), 

4.04 (dd, J = 10.9, 3.3 Hz, 1H), 3.91 (dd, J = 10.9, 5.5 Hz, 1H), 3.12 – 3.00 (m, 1H), 2.94 

(dd, J = 15.6, 3.4 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 143.2, 141.0, 140.7, 136.5, 

134.9, 129.3, 128.9, 127.5, 127.4, 127.3, 127.2, 126.8, 126.6, 125.5, 66.6, 58.7, 57.4, 38.9; 

IR (Neat Film, NaCl) 3318, 3029, 2924, 2365, 1487, 1455, 1312, 1218, 1112, 1038, 833, 

763, 748, 699 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C22H22NO [M+H]+: 

316.1696, found 316.1686; SFC Conditions: 45% IPA, 3.5 mL/min, Chiralpak AD-H 

column, λ = 210 nm, tR (min): major = 4.08, minor = 5.18. 

NH

OH

163c

Ph
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((1S,3R)-3-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (163d): 

Compound 163d was prepared from isoquinoline 162d using general procedure 5 and 

purified by column chromatography (50% to 60% EtOAc in hexanes + 1% NEt3) to provide 

a pale yellow solid as a mixture of diastereomers (40 mg, 75% yield) (dr = 13.3:1); 92% 

ee for major diastereomer; [α]D25 +69.3 (c 1.01, CHCl3); Major diastereomer: 1H NMR 

(400 MHz, CDCl3) δ 7.39 – 7.36 (m, 2H), 7.24 – 7.15 (m, 3H), 7.12 (d, J = 7.6 Hz, 1H), 

6.94 – 6.90 (m, 2H), 4.41 – 4.39 (m, 1H), 4.07 – 3.97 (m, 2H), 3.86 (dd, J = 10.9, 5.9 Hz, 

1H), 3.83 (s, 3H), 3.06 – 2.95 (m, 1H), 2.86 (dd, J = 15.7, 3.4 Hz, 1H); 13C NMR (100 

MHz, CDCl3) δ 159.0, 136.6, 136.3, 134.8, 129.2, 127.8, 126.6, 126.3, 125.3, 114.0, 66.5, 

58.6, 57.0, 55.4, 38.8; IR (Neat Film, NaCl) 3342, 2929, 2835, 1612, 1514, 1494, 1453, 

1302, 1250, 1176, 1108, 1036, 824, 801, 743 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d 

for C17H20NO2 [M+H]+: 270.1489, found 270.1486; SFC Conditions: 45% IPA, 2.5 

mL/min, Chiralpak AD-H column, λ = 210 nm, tR (min): major = 2.59, minor = 3.61. 

 

((1S,3R)-3-(4-fluorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (163e): 

Compound 163e was prepared from isoquinoline 162e using general procedure 5 and 

NH

OH

163d

OMe

NH

OH

163e

F
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purified by column chromatography (40% EtOAc in hexanes + 1% NEt3) to provide a pale 

yellow solid as a mixture of diastereomers (51 mg, 99% yield) (dr = 10.1:1); 93% ee for 

major diastereomer; [α]D25 +79.2 (c 1.00, CHCl3); Major diastereomer: 1H NMR (400 

MHz, CDCl3) δ 7.45 – 7.41 (m, 2H), 7.24 – 7.18 (m, 3H), 7.12 (d, J = 6.9 Hz, 1H), 7.08 – 

7.04 (m, 2H), 4.42 – 4.40 (m, 1H), 4.08 (dd, J = 11.0, 3.5 Hz, 1H), 4.02 (dd, J = 10.8, 3.3 

Hz, 1H), 3.88 (dd, J = 10.9, 5.5 Hz, 1H), 3.03 – 2.91 (m, 1H), 2.87 (dd, J = 15.7, 3.5 Hz, 

1H); 13C NMR (100 MHz, CDCl3) δ 162.3 (d, J = 245.5 Hz), 140.0 (d, J = 3.0 Hz), 136.4, 

134.8, 129.3, 128.4 (d, J = 7.9 Hz), 126.6 (d, J = 19.9 Hz), 125.5, 115.5 (d, J = 21.2 Hz), 

66.7, 58.6, 57.1, 39.1; 19F NMR (282 MHz, CDCl3) δ –115.0 – –115.1 (m); IR (Neat Film, 

NaCl) 3310, 3069, 2924, 2828, 1605, 1511, 1494, 1454, 1225, 1158, 1063, 1040, 844, 826, 

744 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C16H17FNO [M+H]+: 258.1289, found 

258.1286; SFC Conditions: 45% IPA, 2.5 mL/min, Chiralpak AD-H column, λ = 210 nm, 

tR (min): major = 1.93, minor = 2.87. 

 

((1S,3R)-3-(4-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol 

(163f): Compound 163f was prepared from isoquinoline 162f using general procedure 5 

and purified by column chromatography (30% EtOAc in hexanes + 1% NEt3) to provide a 

yellow solid as a mixture of diastereomers (49 mg, 80% yield) (dr = 4.6:1); 92% ee for 

major diastereomer; [α]D25 +35.5 (c 1.01, CHCl3); Major diastereomer: 1H NMR (400 

MHz, CDCl3) δ 7.57 – 7.55 (m, 2H, integration overlapped with minor diastereomer), 7.51 

NH

OH

163f

CF3
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(d, J = 8.3 Hz, 2H), 7.18 – 7.10 (m, 3H), 7.10 – 7.03 (m, 1H), 4.36 – 4.34 (m, 1H), 4.08 

(dd, J = 10.6, 4.0 Hz, 1H), 3.97 (dd, J = 10.8, 3.3 Hz, 1H), 3.81 (dd, J = 10.9, 5.8 Hz, 1H), 

2.95 – 2.78 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 148.1, 135.9, 134.6, 129.1, 127.1, 

127.0, 126.9, 126.7, 126.7, 126.6, 126.5, 125.7 – 125.5 (m), 125.4, 66.6, 58.4, 57.3, 38.8; 

19F NMR (282 MHz, CDCl3) δ –115.1 (qd, J = 8.7, 5.6 Hz); IR (Neat Film, NaCl) 3304, 

2917, 1621, 1418, 1325, 1166, 1123, 1068, 1018, 844, 745 cm-1; HRMS (MM:ESI-APCI+) 

m/z calc’d for C17H17F3NO [M+H]+: 308.1257, found 308.1265; SFC Conditions: 25% 

IPA, 2.5 mL/min, Chiralpak AD-H column, λ = 210 nm, tR (min): major = 3.11 minor = 

5.54. 

 

 

4-((1S,3R)-1-(hydroxymethyl)-1,2,3,4-tetrahydroisoquinolin-3-yl)benzonitrile (163g):  

Compound 163g was prepared from isoquinoline 162g using general procedure 5 and 

purified by column chromatography (30% EtOAc in CH2Cl2 + 1% NEt3) to provide a pale 

tan solid as a mixture of diastereomers (44 mg, 83% yield) (dr = 2.4:1); 82% ee for major 

diastereomer; [α]D25 +57.4 (c 1.00, CHCl3); Major diastereomer: 1H NMR (400 MHz, 

CDCl3) δ 7.69 – 7.66 (m, 2H), 7.60 – 7.57 (m, 2H), 7.26 – 7.17 (m, 3H, integration 

overlapped with minor diastereomer), 7.16 – 7.12 (m, 1H), 4.43 – 4.41 (m, 1H), 4.16 (dd, 

J = 10.0, 4.6 Hz, 1H), 4.06 (dd, J = 10.9, 3.3 Hz, 1H), 3.89 (dd, J = 10.9, 5.8 Hz, 1H), 2.99 

– 2.84 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 149.6, 135.7, 134.5, 132.6, 129.2, 127.6, 

NH

OH
163g

CN
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126.9, 126.8, 125.5, 118.9, 111.5, 66.7, 58.5, 57.4, 38.8; IR (Neat Film, NaCl) 3314, 3060, 

2925, 2227, 1608, 1494, 1454, 1311, 1115, 1040, 910, 846, 826, 780, 740 cm-1; HRMS 

(MM:ESI-APCI+) m/z calc’d for C17H17N2O [M+H]+: 265.1335, found 265.1336; SFC 

Conditions: 45% IPA, 3.5 mL/min, Chiralpak AD-H column, λ = 210 nm, tR (min): major 

= 2.03, minor = 3.33. 

 

 

((1S,3R)-3-(3-nitrophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (163h): 

Compound 163h was prepared from isoquinoline 162h using general procedure 5 and 

purified by column chromatography (0% to 2% MeOH in CH2Cl2) to provide a pale yellow 

solid as a mixture of diastereomers (44 mg, 78% yield) (dr = 3.2:1); 86% ee for major 

diastereomer; [α]D25 +54.4 (c 1.02, CHCl3); Major diastereomer: 1H NMR (400 MHz, 

CDCl3) δ 8.34 (s, 1H), 8.15 (d, J = 8.2 Hz, 1H), 7.81 (d, J = 8.1 Hz, 1H), 7.62 – 7.47 (m, 

1H), 7.25 – 7.07 (m, 4H, integration overlapped with minor diastereomer), 4.43 – 4.41 (m, 

1H), 4.20 (dd, J = 9.2, 5.4 Hz, 1H), 4.07 (dd, J = 10.9, 3.2 Hz, 1H), 3.91 – 3.83 (m, 1H), 

3.15 – 3.02 (m, 1H), 2.98 – 2.91 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 148.7, 146.5, 

135.7, 134.6, 133.2, 129.8, 129.4, 127.0, 126.9, 125.6, 122.9, 122.0, 66.8, 58.7, 57.2, 38.9; 

IR (Neat Film, NaCl) 3388, 2924, 1635, 1531, 1495, 1454, 1350, 1220, 1117, 1038, 802, 

781, 748, 738, 682 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C16H17N2O3 [M+H]+: 

NH

OH
163h

NO2
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285.1234, found 285.1234; SFC Conditions: 45% IPA, 3.5 mL/min, Chiralpak AD-H 

column, λ = 210 nm, tR (min): major = 2.45, minor = 3.23. 

 

 

((1S,3R)-3-(3,4,5-trifluorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol 

(163i): Compound 163i was prepared from isoquinoline 162i using general procedure 5 

and purified by column chromatography (5% to 10% EtOAc in CH2Cl2 + 1% NEt3) to 

provide a pale yellow solid as a mixture of diastereomers (55 mg, 94% yield) (dr = 3.5:1); 

89% ee for major diastereomer; [α]D25 +61.6 (c 1.02, CHCl3); Major diastereomer: 1H 

NMR (400 MHz, CDCl3) δ 7.25 – 7.18 (m, 2H, integration overlapped with minor 

diastereomer), 7.16 – 7.08 (m, 4H), 4.40 – 4.38 (m, 1H), 4.09 – 4.00 (m, 2H), 3.87 (dd, J 

= 10.9, 5.9 Hz, 1H), 2.88 (d, J = 8.4 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 157.0, 151.4 

(ddd, J = 250.1, 9.8, 3.6 Hz), 139.0 (dt, J = 250.9, 15.6 Hz), 135.5, 134.4, 129.2, 127.0, 

126.8, 125.5, 110.9 – 110.6 (m), 66.7, 58.5, 56.2, 38.8; 19F NMR (282 MHz, CDCl3) δ –

133.6 – –134.4 (m), –161.8 – –162.0 (m); IR (Neat Film, NaCl) 3307, 2928, 1621, 1532, 

1454, 1372, 1340, 1235, 1043, 866, 804, 748, 698 cm-1; HRMS (MM:ESI-APCI+) m/z 

calc’d for C16H15F3NO [M+H]+: 294.1100, found 294.1095; SFC Conditions: 40% IPA, 

2.5 mL/min, Chiralpak AD-H column, λ = 210 nm, tR (min): major = 1.67, minor = 2.20. 

 

NH

OH
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((1S,3R)-3-(naphthalen-2-yl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (163j): 

Compound 163j was prepared from isoquinoline 162j using general procedure 5 and 

purified by column chromatography (30% EtOAc in hexanes + 1% NEt3) to provide a pale 

yellow solid as a single diastereomer (49 mg, 80% yield); 95% ee; [α]D25 +90.7 (c 1.00, 

CHCl3);  1H NMR (400 MHz, CDCl3) δ 7.90 (s, 1H), 7.88 – 7.84 (m, 3H), 7.60 (dd, J = 

8.5, 1.8 Hz, 1H), 7.53 – 7.45 (m, 2H), 7.28 – 7.20 (m, 3H), 7.15 (d, J = 6.8 Hz, 1H), 4.48 

– 4.46 (m, 1H), 4.27 (dd, J = 11.1, 3.5 Hz, 1H), 4.06 (dd, J = 10.9, 3.3 Hz, 1H), 3.94 (dd, 

J = 10.8, 5.4 Hz, 1H), 3.14 – 3.07 (m, 1H), 2.98 (dd, J = 15.7, 3.5 Hz, 1H); 13C NMR (100 

MHz, CDCl3) δ 141.8, 136.7, 135.1, 133.7, 133.2, 129.4, 128.6, 128.1, 127.9, 126.9, 126.7, 

126.4, 126.1, 125.6, 125.3, 66.8, 58.8, 57.9, 39.1; IR (Neat Film, NaCl) 3056, 2917, 2356, 

1602, 1494, 1454, 1425, 1366, 1314, 1276, 1112, 1047, 862, 820, 743 cm-1; HRMS 

(MM:ESI-APCI+) m/z calc’d for C20H20NO [M+H]+: 290.1539, found 290.1540; SFC 

Conditions: 45% IPA, 3.5 mL/min, Chiralpak AD-H column, λ = 210 nm, tR (min): major 

= 3.61, minor = 5.81. 

 

NH

OH
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((1S,3R)-3-(3,5-dimethylphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (163k): 

 Compound 163k was prepared from isoquinoline 162k using general procedure 5 and 

purified by column chromatography (30% EtOAc in hexanes + 1% NEt3) to provide a pale 

yellow solid as a single diastereomer (49 mg, 80% yield); 92% ee; [α]D25 +93.5 (c 0.98, 

CHCl3): 1H NMR (400 MHz, CDCl3) δ 7.25 – 7.16 (m, 3H), 7.12 (d, J = 6.5 Hz, 1H), 7.07 

(s, 2H), 6.95 (s, 1H), 4.41 – 4.39 (m, 1H), 4.02 (dd, J = 10.9, 3.3 Hz, 2H), 3.90 (dd, J = 

10.8, 5.4 Hz, 1H), 3.04 – 3.00 (m, 1H), 2.88 (dd, J = 15.8, 3.4 Hz, 1H), 2.34 (s, 6H); 13C 

NMR (100 MHz, CDCl3) δ 144.2, 138.3, 136.8, 135.0, 129.3, 126.7, 126.4, 125.4, 124.6, 

66.6, 58.7, 57.6, 38.9, 21.5; IR (Neat Film, NaCl) 3318, 3014, 2916, 1607, 1494, 1454, 

1313, 1117, 1038, 854, 782, 746, 725 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for 

C18H22NO [M+H]+: 268.1696, found 268.1702; SFC Conditions: 45% IPA, 3.5 mL/min, 

Chiralpak AD-H column, λ = 210 nm, tR (min): major = 1.95, minor = 3.02. 

 

((1S,3R)-3-(3,4-dimethoxyphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol 

(163l):  

NH

OH
163k

Me

Me

NH

OH
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OMe
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Compound 163l was prepared from isoquinoline 162l using general procedure 5 and 

purified by column chromatography (1% MeOH in CH2Cl2 + 1% NEt3) to provide a pale 

yellow solid as a single diastereomer (49 mg, 80% yield); 88% ee; [α]D25 +62.4 (c 1.00, 

CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.22 – 7.16 (m, 3H), 7.12 (d, J = 6.7 Hz, 1H), 7.04 

– 6.94 (m, 2H), 6.87 – 6.84 (m, 1H), 4.38 – 4.36 (m, 1H), 4.01 (dt, J = 11.2, 4.0 Hz, 2H), 

3.90 (s, 3H), 3.88 (s, 3H), 3.84 (dd, J = 11.0, 6.0 Hz, 1H), 3.08 – 3.00 (m, 1H), 2.87 (dd, J 

= 15.8, 3.3 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 149.2, 148.5, 136.5, 136.4, 134.6, 

129.3, 126.7, 126.4, 125.3, 119.0, 111.2, 110.0, 66.3, 58.8, 57.6, 56.1, 38.7; IR (Neat Film, 

NaCl) 3332, 2934, 2832, 1593, 1518, 1494, 1454, 1264, 1238, 1141, 1028, 745, 720 cm-1; 

HRMS (MM:ESI-APCI+) m/z calc’d for C18H22NO3 [M+H]+: 300.1594, found 300.1600; 

SFC Conditions: 45% IPA, 3.5 mL/min, Chiralpak AD-H column, λ = 210 nm, tR (min): 

major = 2.28, minor = 2.93. 

 

((1S,3R)-3-(o-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (163m): Compound 

163m was prepared from isoquinoline 162m using general procedure 5 and purified by 

column chromatography (30% EtOAc in hexanes + 1% NEt3) to provide a pale beige solid 

as a mixture of diastereomers (49 mg, 80% yield) (dr = 10.1:1); 49% ee from major 

diastereomer; [α]D25 +53.7 (c 1.01, CHCl3): 1H NMR (400 MHz, CDCl3) δ 7.60 (d, J = 7.1 

Hz, 1H), 7.29 – 7.26 (m, 1H), 7.26 – 7.17 (m, 5H), 7.14 (d, J = 7.3 Hz, 1H), 4.44 – 4.42 

(m, 1H), 4.32 (dd, J = 10.9, 3.5 Hz, 1H), 4.04 (dd, J = 10.8, 3.2 Hz, 1H), 3.92 (dd, J = 10.8, 

NH

OH
163m

Me
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5.3 Hz, 1H), 3.03 – 2.92 (m, 1H), 2.88 (dd, J = 15.8, 3.5 Hz, 1H), 2.39 (s, 3H); 13C NMR 

(100 MHz, CDCl3) δ 142.2, 136.9, 135.2, 135.0, 130.6, 129.4, 127.3, 126.7, 126.5, 125.6, 

125.5, 66.6, 58.9, 53.4, 37.7, 19.5; IR (Neat Film, NaCl) 3318, 3022, 2925, 2354, 1492, 

1454, 1316, 1117, 1037, 864, 751, 743, 727 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for 

C17H20NO [M+H]+: 254.1539, found 254.1539; SFC Conditions: 30% IPA, 2.5 mL/min, 

Chiralpak AD-H column, λ = 210 nm, tR (min): major = 5.91, minor = 6.39. 

 

((1S,3R)-3-(furan-2-yl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (163n): 

Compound 163n was prepared from isoquinoline 162n using general procedure 5 and 

purified by column chromatography (40% EtOAc in hexanes + 1% NEt3) to provide a pale 

yellow solid as a mixture of diastereomers (34 mg, 74% yield) (dr = 3.3:1); 92% ee for 

major diastereomer; [α]D25 +35.5 (c 1.00, CHCl3); Major diastereomer: 1H NMR (400 

MHz, CDCl3) δ 7.41 – 7.39 (m, 1H), 7.24 – 7.14 (m, 4H, integration overlapped with minor 

diastereomer), 6.37 (dd, J = 3.3, 1.9 Hz, 1H), 6.28 (d, J = 3.2 Hz, 1H), 4.37 – 4.35 (m, 1H), 

4.20 (dd, J = 11.0, 3.7 Hz, 1H), 4.03 (dd, J = 11.0, 3.3 Hz, 1H), 3.86 – 3.75 (m, 1H), 3.18 

– 3.05 (m, 1H), 3.05 – 2.95 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 141.8, 135.5, 134.7, 

129.4, 126.9, 126.7, 126.5, 125.3, 110.2, 105.3, 66.2, 57.9, 50.7, 34.5; IR (Neat Film, NaCl) 

3304, 2920, 1495, 1454, 1316, 1146, 1114, 1062, 1037, 1009, 883, 740 cm-1; HRMS 

(MM:ESI-APCI+) m/z calc’d for C14H16NO2 [M+H]+: 230.1176, found 230.1181; SFC 

NH

OH

O

163n
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Conditions: 35% IPA, 2.5 mL/min, Chiralpak OJ-H column, λ = 210 nm, tR (min): major 

= 1.52, minor = 1.82. 

 

 

((1S,3R)-3-(thiophen-2-yl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (163o): 

Compound 163o was prepared from isoquinoline 162o using general procedure 5 and 

purified by column chromatography (40% EtOAc in hexanes + 1% NEt3) to provide a pale 

beige solid as a mixture of diastereomers (46 mg, 94% yield) (dr = 3.6:1); 90% ee for major 

diastereomer; [α]D25 +57.4 (c 1.04, CHCl3); Major diastereomer: 1H NMR (400 MHz, 

CDCl3) δ 7.34 – 7.28 (m, 1H), 7.28 – 7.21 (m, 3H, integration overlapped with minor 

diastereomer), 7.19 – 7.15 (m, 1H), 7.11 – 7.09 (m, 1H), 7.07 – 7.04 (m, 1H), 4.47 – 4.42 

(m, 2H), 4.06 (dd, J = 10.9, 3.4 Hz, 1H), 3.87 (dd, J = 11.0, 5.9 Hz, 1H), 3.19 – 2.98 (m, 

2H); 13C NMR (100 MHz, CDCl3) δ 148.1, 135.8, 134.7, 129.1, 126.7, 126.7, 126.6, 125.3, 

124.2, 123.5, 66.4, 58.5, 53.1, 39.3; IR (Neat Film, NaCl) 3312, 2923, 2360, 1494, 1454, 

1424, 1310, 1280, 1112, 1038, 850, 830, 744, 704 cm-1; HRMS (MM:ESI-APCI+) m/z 

calc’d for C14H16NOS [M+H]+: 246.0947, found 246.0941; SFC Conditions: 35% IPA, 2.5 

mL/min, Chiralpak OJ-H column, λ = 210 nm, tR (min): major = 2.86, minor = 6.02. 
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((1S,3R)-3-(thiophen-3-yl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (163p): 

Compound 163p was prepared from isoquinoline 162p using general procedure 5 and 

purified by column chromatography (30% EtOAc in hexanes + 1% NEt3) to provide a pale 

beige solid as a mixture of diastereomers (25.5 mg, 52% yield) (dr = 7.3:1). The isolated 

product contained long-chain hydrocarbon impurities, so it was repurified by partitioning 

between acetonitrile and hexanes. The acetonitrile layer was collected and concentrated to 

afford 163p as a pale yellow solid (24.0 mg, 49% yield); 89% ee for major diastereomer; 

[α]D25 +86.8 (c 0.99, CHCl3): 1H NMR (400 MHz, CDCl3) δ 7.24 (dd, J = 4.9, 3.0 Hz, 1H), 

7.18 – 7.16 (m, 1H), 7.13 – 7.07 (m, 4H), 7.05 – 7.02 (m, 1H), 4.28 – 4.26 (m, 1H), 4.10 

(dd, J = 10.8, 3.8 Hz, 1H), 3.93 (dd, J = 10.9, 3.4 Hz, 1H), 3.73 (dd, J = 11.0, 6.1 Hz, 1H), 

2.99 – 2.90 (m, 1H), 2.86 (dd, J = 15.8, 3.8 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 145.3, 

136.2, 134.9, 129.3, 126.7, 126.5, 126.5, 126.2, 125.3, 120.9, 66.3, 58.5, 53.3, 38.1; IR 

(Neat Film, NaCl) 3318, 2924, 2366, 1494, 1454, 1424, 1313, 1279, 1218, 1116, 1038, 

854, 782, 748 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C14H16NOS [M+H]+: 

246.0947, found 246.0952; SFC Conditions: 35% IPA, 2.5 mL/min, Chiralpak AD-H 

column, λ = 210 nm, tR (min): major = 3.19, minor = 4.05.  

NH
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((1S,3R)-3-(1-methyl-1H-pyrazol-4-yl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol 

(163q): Compound 163q was prepared from isoquinoline 162q using general procedure 5 

and purified by column chromatography (5% to 10% MeOH in EtOAc + 1% NEt3) to 

provide a pale yellow solid as a mixture of diastereomers (48 mg, 98% yield) (dr = 2.9:1); 

87% ee for major diastereomer; [α]D25 +37.1 (c 1.021, CHCl3); Major diastereomer: 1H 

NMR (400 MHz, CDCl3) δ 7.63 – 7.61 (m, 2H), 7.26 – 7.16 (m, 2H, integration overlapped 

with minor diastereomer), 7.19 – 7.06 (m, 2H), 4.50 – 4.98 (m, 1H), 4.20 (dd, J = 11.8, 3.3 

Hz, 1H), 4.02 (dd, J = 11.6, 3.3 Hz, 1H), 3.84 (s, 3H), 3.34 – 3.22 (m, 1H), 3.13 – 2.89 (m, 

2H); 13C NMR (100 MHz, CDCl3) δ 138.2, 134.7, 132.2, 129.3, 129.2, 127.2, 126.9, 125.4, 

121.5, 64.6, 58.6, 49.1, 39.0, 36.1; IR (Neat Film, NaCl) 3315, 2931, 2371, 1560, 1494, 

1455, 1408, 1295, 1169, 1031, 1008, 986, 748, 724 cm-1; HRMS (MM:ESI-APCI+) m/z 

calc’d for C14H18N3O [M+H]+: 244.1444, found 244.1448; SFC Conditions: 25% IPA, 2.5 

mL/min, Chiralpak OJ-H column, λ = 210 nm, tR (min): minor = 1.84, major = 2.60. 

 

((1S,3R)-3-(pyridin-2-yl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (163r): 

Compound 163r was prepared from isoquinoline 162r using general procedure 5 and 
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purified using reverse-phase (C18) preparative-HPLC (MeCN/0.4% acetic acid in water, 

5.0 mL/min, monitor wavelength = 255 nm, 5–23% MeCN over 6 min, ramp to 95% MeCN 

over 0.5 min, and hold at 95% for 3.5 min) to provide a tan solid as a mixture of 

diastereomers (49 mg, 80% yield) (dr = 2.5:1). This compound appears to be unstable and 

significant decomposition was observed under prolonged storage; 85% ee for major 

diastereomer; [α]D25 +49.0 (c 1.01, CHCl3); Major diastereomer: 1H NMR (400 MHz, 

CDCl3) δ 8.60 – 8.57 (m, 1H), 7.72 – 7.67 (m, 2H), 7.43 (d, J = 7.8 Hz, 1H), 7.22 – 7.11 

(m, 4H, integration overlapped with minor diastereomer), 4.41 – 4.39 (m, 1H), 4.23 – 4.20 

(m, 1H, integration overlapped with minor diastereomer), 4.07 (dd, J = 11.1, 3.4 Hz, 1H), 

3.85 (dd, J = 11.0, 6.4 Hz, 1H), 3.08 – 3.00 (m, 2H, integration overlapped with minor 

diastereomer); 13C NMR (100 MHz, CDCl3) δ 162.2, 149.4, 137.0, 136.0, 135.3, 129.4, 

126.7, 126.5, 125.4, 122.6, 121.1, 66.4, 58.6, 58.0, 36.5; IR (Neat Film, NaCl) 3300, 3056, 

2934, 1592, 1574, 1473, 1454, 1435, 1316, 1142, 1060, 910, 744 cm-1; HRMS (MM:ESI-

APCI+) m/z calc’d for C15H17N2O [M+H]+: 241.1335, found 241.1334; SFC Conditions: 

30% IPA, 2.5 mL/min, Chiralpak OD-H column, λ = 210 nm, tR (min): minor = 2.52, major 

= 2.79. 

 

((1S,3R)-7-fluoro-3-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (165a): 

Compound 165a was prepared from isoquinoline 164a using general procedure 5 and 

purified by column chromatography (30% EtOAc in hexanes + 1% NEt3) to provide a pale 

NH
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yellow solid as a mixture of diastereomers (49 mg, 94% yield) (dr = 11.5:1); 93% ee for 

major diastereomer; [α]D25 +76.9 (c 1.04, CHCl3); Major diastereomer: 1H NMR (400 

MHz, CDCl3) δ 7.47 – 7.42 (m, 2H), 7.40 – 7.36 (m, 2H), 7.33 – 7.30 (m, 1H), 7.08 (dd, J 

= 8.4, 5.8 Hz, 1H), 6.97 – 6.87 (m, 2H), 4.38 – 4.36 (m, 1H), 4.06 (dd, J = 10.8, 3.7 Hz, 

1H), 3.99 (dd, J = 10.9, 3.3 Hz, 1H), 3.86 (dd, J = 10.9, 5.2 Hz, 1H), 3.00 – 2.82 (m, 2H); 

13C NMR (100 MHz, CDCl3) δ 161.5 (d, J = 243.8 Hz), 144.0, 136.9 (d, J = 6.8 Hz), 132.2 

(d, J = 3.0 Hz), 130.6 (d, J = 7.9 Hz), 128.8, 127.8, 126.8, 113.9 (d, J = 21.3 Hz), 112.1 (d, 

J = 21.8 Hz), 66.4, 58.6 (d, J = 2.1 Hz), 57.7, 38.2; 19F NMR (282 MHz, CDCl3) δ –116.2 

– –116.4 (m); IR (Neat Film, NaCl) 3309, 2918, 1614, 1498, 1455, 1428, 1255, 1221, 1031, 

911, 868, 808, 758, 745, 700 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C16H17FNO 

[M+H]+: 258.1289, found 258.1281; SFC Conditions: 40% IPA, 2.5 mL/min, Chiralpak 

AD-H column, λ = 210 nm, tR (min): major = 2.56, minor = 3.04. 

 

((1S,3R)-7-fluoro-3-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol 

(165b): Compound 165b was prepared from isoquinoline 164b using general procedure 5 

and purified by column chromatography (30% to 40% EtOAc in hexanes + 1% NEt3) to 

provide a pale yellow solid as a single diastereomer (57 mg, 99% yield); 90% ee; [α]D25 

+57.8 (c 0.99, CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.38 – 7.34 (m, 2H), 7.07 (dd, J = 

8.4, 5.8 Hz, 1H), 6.97 – 6.84 (m, 4H), 4.36 – 4.34 (m, 1H), 3.99 (ddd, J = 12.3, 10.9, 3.4 

Hz, 2H), 3.86 – 3.84 (m, 1H), 3.82 (s, 3H), 2.99 – 2.87 (m, 1H), 2.83 (dd, J = 15.6, 3.5 Hz, 
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1H); 13C NMR (100 MHz, CDCl3) δ 161.5 (d, J = 243.7 Hz), 159.2, 136.9 (d, J = 6.7 Hz), 

136.2, 132.3, 130.6 (d, J = 7.9 Hz), 127.9, 114.1, 113.8 (d, J = 21.3 Hz), 112.1 (d, J = 21.8 

Hz), 66.4, 58.7 (d, J = 2.0 Hz), 57.1, 55.5, 38.3; 19F NMR (282 MHz, CDCl3) δ –116.3 – –

116.4 (m); IR (Neat Film, NaCl) 3305, 2930, 2838, 1614, 1591, 1514, 1498, 1304, 1249, 

1178, 1111, 1034, 912, 868, 830, 816, 736 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for 

C17H19FNO2 [M+H]+: 288.1394, found 288.1404; SFC Conditions: 30% IPA, 2.5 mL/min, 

Chiralpak OJ-H column, λ = 210 nm, tR (min): major = 1.93, minor = 2.42. 

 

((1S,3R)-7-fluoro-3-(4-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydroisoquinolin-1-

yl)methanol (165c): Compound 165c was prepared from isoquinoline 164c using general 

procedure 5 and purified by column chromatography (20% to 30% EtOAc in hexanes + 

1% NEt3) to provide a pale yellow solid as a mixture of diastereomers (50 mg, 77% yield) 

(dr = 6.7:1); 94% ee for major diastereomer; [α]D25 +44.2 (c 1.002, CHCl3); Major 

diastereomer: 1H NMR (400 MHz, CDCl3) δ 7.64 (d, J = 8.3 Hz, 2H), 7.58 (d, J = 8.1 Hz, 

2H), 7.09 (dd, J = 8.4, 5.7 Hz, 1H), 7.00 – 6.87 (m, 2H), 4.39 – 4.37 (m, 1H), 4.13 (dd, J 

= 8.9, 5.7 Hz, 1H), 4.02 (dd, J = 10.9, 3.3 Hz, 1H), 3.88 (dd, J = 10.9, 5.4 Hz, 1H), 2.94 – 

2.84 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 161.6 (d, J = 244.2 Hz), 148.0, 136.7 (d, J = 

6.7 Hz), 131.5 (d, J = 3.1 Hz), 130.6 (d, J = 7.9 Hz), 130.1 (q, J = 32.5 Hz), 127.2, 125.7 

(q, J = 3.8 Hz), 124.2 (q, J = 272.1 Hz), 114.0 (d, J = 21.3 Hz), 112.1 (d, J = 21.9 Hz) 66.4, 

58.5 (d, J = 2.0 Hz), 57.4, 38.2; 19F NMR (282 MHz, CDCl3) δ –62.5, –115.8 – –115.9 
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(m); IR (Neat Film, NaCl) 3304, 2922, 1620, 1593, 1500, 1428, 1326, 1255, 1222, 1165, 

1125, 1068, 1018, 868, 836, 816 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for 

C17H16F4NO [M+H]+: 326.1163, found 326.1175; SFC Conditions: 20% IPA, 2.5 mL/min, 

Chiralpak AD-H column, λ = 210 nm, tR (min): major = 3.93, minor = 4.46. 

 

((5S,7R)-7-phenyl-5,6,7,8-tetrahydro-[1,3]dioxolo[4,5-g]isoquinolin-5-yl)methanol 

(165d): Compound 165d was prepared from isoquinoline 164d using general procedure 5 

and purified by column chromatography (75% EtOAc in hexanes + 1% NEt3) to provide a 

pale beige solid as a mixture of diastereomers (17 mg, 30% yield) (dr = 4.9:1); 58% ee for 

major diastereomer; [α]D25 +29.2 (c 0.940, CHCl3); Major diastereomer: 1H NMR (400 

MHz, CDCl3) δ 7.47 – 7.41 (m, 2H), 7.39 – 7.37 (m, 2H), 7.33 – 7.27 (m, 1H), 6.71 (s, 

1H), 6.60 – 6.58 (m, 1H), 5.95 – 5.89 (m, 2H), 4.32 – 4.30 (m, 1H), 4.04 (dd, J = 11.1, 3.4 

Hz, 1H), 3.93 (dd, J = 10.9, 3.2 Hz, 1H), 3.82 (dd, J = 10.9, 5.1 Hz, 1H), 2.97 – 2.88 (m, 

1H), 2.78 (dd, J = 15.5, 3.4 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 146.5, 146.4, 144.2, 

130.0, 128.8, 127.9, 127.7, 126.8, 109.0, 105.5, 101.0, 66.7, 58.6, 57.7, 39.0; IR (Neat 

Film, NaCl) 3324, 3028, 2897, 1504, 1486, 1454, 1434, 1384, 1306, 1279, 1231, 1128, 

1038, 936, 910, 858, 750, 733, 701 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for 

C17H18NO3 [M+H]+: 284.1281, found 284.1276; SFC Conditions: 45% IPA, 2.5 mL/min, 

Chiralpak AD-H column, λ = 210 nm, tR (min): major = 5.00, minor = 7.22. 
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((5S,7R)-7-(3,4-dimethoxyphenyl)-5,6,7,8-tetrahydro-[1,3]dioxolo[4,5-g]isoquinolin-

5-yl)methanol (165e): Compound 165e was prepared from isoquinoline 164e using 

general procedure 5 and purified by column chromatography (100% EtOAc to 10% MeOH 

in EtOAc + 1% NEt3) to provide a pale yellow solid as a single diastereomer (28 mg, 41% 

yield); 54% ee; [α]D25 +25.5 (c 0.197, CH3OH); 1H NMR (400 MHz, CDCl3) δ 6.99 – 6.96 

(m, 2H), 6.87 – 6.85 (m, 1H), 6.71 (s, 1H), 6.60 – 6.58 (m, 1H), 5.94 – 5.91 (m, 2H), 4.32 

– 4.30 (m, 1H), 3.99 (dd, J = 11.1, 3.4 Hz, 1H), 3.94 (dd, J = 11.1, 3.4 Hz, 1H), 3.91 (s, 

3H), 3.89 (s, 3H), 3.83 (dd, J = 11.0, 5.0 Hz, 1H), 2.97 – 2.85 (m, 1H), 2.76 (dd, J = 15.6, 

3.4 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 149.3, 148.7, 146.7, 146.5, 136.9, 130.1, 

127.8, 119.0, 111.4, 110.0, 109.1, 105.6, 101.1, 66.7, 58.8, 57.7, 56.2, 39.1; IR (Neat Film, 

NaCl) 3374, 2890, 2360, 1505, 1487, 1268, 1260, 1237, 1140, 1076, 1024, 971, 932, 918, 

730 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C19H22NO5 [M+H]+: 344.1492, found 

344.1483; SFC Conditions: 45% IPA, 2.5 mL/min, Chiralpak AD-H column, λ = 210 nm, 

tR (min): major = 3.89, minor = 5.16. 
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((2R,4S)-2-phenyl-1,2,3,4-tetrahydrobenzo[f]isoquinolin-4-yl)methanol (165f): 

Compound 165f was prepared from isoquinoline 164f using general procedure 5 and 

purified by column chromatography (40% to 60% EtOAc in hexanes + 1% NEt3) to provide 

a pale yellow solid as a mixture of diastereomers (25 mg, 43% yield) (dr = 15.7:1); 82% 

ee for major diastereomer; [α]D25 +85.7 (c 1.01, CHCl3); Major diastereomer: 1H NMR 

(400 MHz, CDCl3) δ 7.93 – 7.91 (m, 1H), 7.85 – 7.82 (m, 1H), 7.75 (d, J = 8.6 Hz, 1H), 

7.55 (d, J = 7.2 Hz, 2H), 7.50 – 7.47 (m, 2H), 7.45 – 7.34 (m, 4H), 4.61 – 4.59 (m, 1H), 

4.20 (dd, J = 11.0, 3.4 Hz, 1H), 4.09 (dd, J = 10.9, 3.2 Hz, 1H), 4.01 (dd, J = 10.9, 4.8 Hz, 

1H), 3.50 – 3.39 (m, 1H), 3.23 – 3.10 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 144.4, 132.2, 

132.1, 132.0, 131.9, 128.8, 128.4, 127.7, 126.8, 126.7, 126.3, 125.5, 123.4, 122.9, 66.4, 

59.1, 57.6, 35.4; IR (Neat Film, NaCl) 3306, 3056, 2918, 1417, 1308, 1034, 910, 884, 813, 

762, 700, 736, 682 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C20H20NO [M+H]+: 

290.1539, found 290.1534; SFC Conditions: 45% IPA, 2.5 mL/min, Chiralpak AD-H 

column, λ = 210 nm, tR (min): major = 5.31, minor = 10.01. 

 

 

 

NH

OH
165f



Chapter 2 – Iridium-Catalyzed Enantioselective and Diastereoselective 
Hydrogenation of 1,3-Disubstituted Isoquinolines 
 

 
 

135 

 

((1S,3R)-3-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)methyl acetate (167a): 

Compound 167a was prepared from isoquinoline 166a using general procedure 5 and 

purified by column chromatography (5% EtOAc in CH2Cl2 + 1% NEt3) to provide a yellow 

oil as a single diastereomer (32 mg, 56% yield); 86% ee; [α]D25 +103.8 (c 1.01, CHCl3); 1H 

NMR (400 MHz, CDCl3) δ 7.51 – 7.45 (m, 2H), 7.41 – 7.37 (m, 2H), 7.34 – 7.30 (m, 1H), 

7.27 – 7.24 (m, 1H), 7.23 – 7.18 (m, 2H), 7.16 – 7.10 (m, 1H), 4.78 (dd, J = 10.8, 3.5 Hz, 

1H), 4.54 – 4.51 (m, 1H), 4.14 (dd, J = 10.8, 8.7 Hz, 1H), 4.05 (dd, J = 11.1, 3.4 Hz, 1H), 

3.08 – 3.01 (m, 1H), 2.90 (dd, J = 15.5, 3.6 Hz, 1H), 2.08 (s, 3H); 13C NMR (100 MHz, 

CDCl3) δ 171.1, 144.4, 136.3, 134.1, 129.5, 128.8, 127.7, 126.9, 126.9, 126.3, 125.3, 69.1, 

57.9, 56.4, 39.2, 21.2; IR (Neat Film, NaCl) 3024, 2926, 2802, 1741, 1494, 1454, 1386, 

1366, 1314, 1229, 1118, 1034, 754, 701 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for 

C18H20NO2 [M+H]+: 282.1489, found 282.1492; SFC Conditions: 20% IPA, 2.5 mL/min, 

Chiralpak OJ-H column, λ = 210 nm, tR (min): major = 3.32, major = 3.93. 

 

(1S,3R)-1-(methoxymethyl)-3-phenyl-1,2,3,4-tetrahydroisoquinoline (167b): 

Compound 167b was prepared from isoquinoline 166b using general procedure 5 and 
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purified by column chromatography (10% EtOAc in CH2Cl2+ 1% NEt3) to provide a 

viscous yellow oil as a single diastereomer (40 mg, 80% yield); 89% ee; [α]D25 +94.3 (c 

0.98, CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.48 – 7.46 (m, 2H), 7.39 – 7.35 (m, 2H), 

7.32 – 7.27 (m, 1H), 7.25 – 7.20 (m, 1H), 7.20 – 7.15 (m, 2H), 7.16 – 7.10 (m, 1H), 4.45 – 

4.42 (m, 1H), 4.07 – 3.94 (m, 2H), 3.59 (t, J = 8.7 Hz, 1H), 3.43 (s, 3H), 3.06 (dd, J = 16.0, 

11.1 Hz, 1H), 2.92 (dd, J = 16.0, 3.6 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 144.5, 136.3, 

135.4, 129.5, 128.7, 127.5, 126.9, 126.6, 126.1, 124.8, 59.3, 58.1, 57.4, 39.0; IR (Neat 

Film, NaCl) 3028, 2895, 2812, 1604, 1494, 1454, 1313, 1194, 1112, 1072, 1030, 958, 923, 

840, 744, 700 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C17H20NO [M+H]+: 

254.1539, found 254.1531; SFC Conditions: 20% IPA, 2.5 mL/min, Chiralpak OD-H 

column, λ = 210 nm, tR (min): major = 4.82, major = 5.25. 

 

(1S,3R)-1-((benzyloxy)methyl)-3-phenyl-1,2,3,4-tetrahydroisoquinoline (167c): 

Compound 167c was prepared from isoquinoline 166c using general procedure 5 and 

purified by column chromatography (5% EtOAc in CH2Cl2 + 1% NEt3) to provide a pale 

yellow oil as a single diastereomer (60 mg, 90% yield); 88% ee; [α]D25 +80.4 (c 1.02, 

CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.48 – 7.46 (m, 2H), 7.40 – 7.34 (m, 6H), 7.32 – 

7.28 (m, 2H), 7.22 – 7.16 (m, 3H), 7.14 – 7.11 (m, 1H), 4.61 (s, 2H), 4.48 (dd, J = 8.7, 3.4 

Hz, 1H), 4.12 (dd, J = 9.0, 3.6 Hz, 1H), 4.04 (dd, J = 11.1, 3.5 Hz, 1H), 3.67 (t, J = 8.7 Hz, 

1H), 3.05 (dd, J = 15.9, 11.1 Hz, 1H), 2.91 (dd, J = 15.8, 3.5 Hz, 1H); 13C NMR (100 MHz, 
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CDCl3) δ 144.6, 138.3, 136.3, 135.3, 129.5, 128.7, 128.6, 127.9, 127.8, 127.5, 126.9, 126.6, 

126.1, 124.9, 74.8, 73.6, 58.1, 57.5, 39.2; IR (Neat Film, NaCl) 3060, 3028, 2862, 1494, 

1454, 1366, 1312, 1098, 1028, 742, 698 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for 

C23H24NO [M+H]+: 330.1852, found 330.1857; SFC Conditions: 25% IPA, 2.5 mL/min, 

Chiralpak OD-H column, λ = 210 nm, tR (min): major = 5.66, major = 6.38. 

 

tert-butyl (((1S,3R)-3-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)methyl)carbamate 

(167d): Compound 167d was prepared from isoquinoline 166d using general procedure 5 

and purified by column chromatography (15% EtOAc in hexanes + 1% NEt3) to provide a 

white solid as a mixture of diastereomers (44 mg, 71% yield) (dr = 9.0:1); 90% ee for major 

diastereomer; [α]D25 +50.4 (c 0.99, CHCl3); Major diastereomer: 1H NMR (400 MHz, 

CDCl3) δ 7.46 (d, J = 7.1 Hz, 2H), 7.38 (t, J = 7.5 Hz, 2H), 7.36 – 7.26 (m, 2H), 7.26 – 

7.14 (m, 2H), 7.11 (d, J = 6.7 Hz, 1H), 5.02 (s, 1H), 4.44 (s, 1H), 4.04 (dd, J = 11.0, 3.5 

Hz, 1H), 3.77 – 3.72 (m, 1H), 3.49 (dt, J = 13.2, 6.3 Hz, 1H), 3.00 (dd, J = 15.8, 10.9 Hz, 

1H), 2.89 (dd, J = 15.8, 3.5 Hz, 1H), 1.41 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 156.4, 

144.4, 136.4, 135.2, 129.2, 128.7, 127.7, 126.8, 126.6, 126.4, 125.7, 79.4, 58.0, 57.1, 46.3, 

39.1, 28.5; IR (Neat Film, NaCl) 3352, 2978, 2932, 1704, 1495, 1455, 1392, 1366, 1247, 

1171, 752, 701 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C21H27N2O2 [M+H]+: 

339.2067, found 339.2063; SFC Conditions: 40% IPA, 2.5 mL/min, Chiralpak AD-H 

column, λ = 210 nm, tR (min): major = 1.41, major = 1.76. 
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(1R,3R)-1-methyl-3-phenyl-1,2,3,4-tetrahydroisoquinoline (167e): Compound 167e 

was prepared from 1-methyl-3-phenylisoquinoline 161a using general procedure 5 and 

purified by column chromatography (10% to 20% EtOAc in hexanes + 1% NEt3) to provide 

a colorless oil as a single diastereomer (29 mg, 64% yield); 90% ee; [α]D25 +133.3 (c 0.79, 

CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.49 – 7.46 (m, 2H), 7.41 – 7.37 (m, 2H), 7.33 – 

7.29 (m, 1H), 7.28 – 7.23 (m, 1H), 7.23 – 7.14 (m, 2H), 7.11 (d, J = 6.9 Hz, 1H), 4.34 (q, 

J = 6.6 Hz, 1H), 4.08 (dd, J = 11.1, 3.9 Hz, 1H), 3.12 – 3.01 (m, 1H), 2.96 (dd, J = 16.2, 

4.1 Hz, 1H), 1.55 (d, J = 6.5 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 144.5, 139.9, 135.2, 

129.1, 128.7, 127.5, 126.7, 126.2, 126.2, 125.4, 58.8, 53.6, 38.9, 22.4; IR (Neat Film, NaCl) 

3024, 2962, 2926, 2792, 1602, 1494, 1453, 1372, 1352, 1306, 1140, 1118, 1031, 790, 753, 

733, 700 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C16H18N [M+H]+: 224.1434, found 

224.1426; SFC Conditions: 20% IPA, 3.5 mL/min, Chiralpak AS-H column, λ = 210 nm, 

tR (min): major = 2.16, minor = 2.62. 
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2.7.2.4 Product transformations 

 

(5R,10bS)-5-(3,4-dimethoxyphenyl)-1,5,6,10b-tetrahydro-3H-oxazolo[4,3-

a]isoquinoline (168): 

To a 1-dram vial equipped with a stir bar was added tetrahydroisoquinoline 163l (20.0 mg, 

0.067 mmol) in 1,2-dichloroethane (1.3 mL, 0.05 M). Formaldehyde solution (37 wt% in 

H2O, 9.2 µL, 0.124 mmol) was then added and the reaction was stirred for 15 minutes at 

room temperature. The reaction was then basified with K2CO3, and extracted with CH2Cl2. 

The collected organic layers were dried over Na2SO4, and concentrated under vacuum. The 

crude product was purified by column chromatography (50% EtOAc in hexanes + 1% 

NEt3) to afford 168 as a white solid (19.3 mg, 93% yield): [α]D25 +134.8 (c 1.03, CHCl3); 

1H NMR (400 MHz, CDCl3) δ 7.25 – 7.14 (m, 3H), 7.04 (d, J = 2.0 Hz, 1H), 7.02 – 6.90 

(m, 2H), 6.83 (d, J = 8.2 Hz, 1H), 4.58 – 4.43 (m, 2H), 3.97 (t, J = 7.6 Hz, 1H), 3.94 – 3.87 

(m, 2H), 3.89 (s, 6H), 3.83 (dd, J = 10.6, 4.8 Hz, 1H), 3.23 (dd, J = 16.8, 10.6 Hz, 1H), 

3.11 (dd, J = 16.8, 4.8 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 149.4, 148.7, 135.1, 134.7, 

134.6, 128.6, 127.2, 126.3, 125.0, 119.6, 110.9, 110.2, 84.2, 71.5, 62.9, 61.3, 56.1, 56.0, 

37.3; IR (Neat Film, NaCl) 2930, 1592, 1513, 1454, 1263, 1237, 1167, 1060, 1027, 918, 

752, 680 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C19H22NO3 [M+H]+: 312.1594, 

found 312.1594. 
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(5R,10bS)-5-(3,4-dimethoxyphenyl)-1,5,6,10b-tetrahydro-3H-oxazolo[4,3-

a]isoquinolin-3-one (169): 

To a 1-dram vial equipped with a stir bar was added tetrahydroisoquinoline 163l (10.0 mg, 

0.033 mmol), THF (0.7 mL, 0.05 M), and CDI (21.7 mg, 0.134 mmol). The solution was 

stirred at 50 °C for 15 h. After complete conversion of the starting material monitored by 

TLC, the reaction concentrated and the crude product was purified by preparative-TLC 

(100% EtOAc) to afford 169 as a white solid (9.2 mg, 84% yield): [α]D25 +71.4 (c 0.76, 

CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.34 (dd, J = 8.3, 7.0 Hz, 1H), 7.30 – 7.23 (m, 1H), 

7.08 (t, J = 6.6 Hz, 2H), 6.66 (d, J = 8.2 Hz, 1H), 6.52 (dd, J = 8.2, 2.1 Hz, 1H), 6.33 (d, J 

= 2.1 Hz, 1H), 5.14 – 5.02 (m, 2H), 4.92 (t, J = 7.9 Hz, 1H), 4.49 (dd, J = 10.1, 8.2 Hz, 

1H), 3.78 (s, 3H), 3.60 (s, 3H), 3.36 (dd, J = 14.9, 6.4 Hz, 1H), 2.99 (dd, J = 14.9, 2.7 Hz, 

1H); 13C NMR (100 MHz, CDCl3) δ 156.1, 148.7, 148.3, 136.0, 134.2, 133.9, 129.4, 128.5, 

127.5, 122.4, 118.5, 110.9, 109.3, 67.5, 55.9, 55.6, 54.6, 53.4, 36.8; IR (Neat Film, NaCl) 

2933, 1756, 1515, 1464, 1396, 1260, 1234, 1139, 1025, 779, 762, 748 cm-1; HRMS 

(MM:ESI-APCI+) m/z calc’d for C19H20NO4 [M+H]+: 326.1387, found 326.1386. 
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H

O

OMe
OMe

84% yield

OMe
OMe

163l 169
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(6R,11bS)-6-(3,4-dimethoxyphenyl)-1,6,7,11b-tetrahydro-[1,4]oxazino[3,4-

a]isoquinolin-3(4H)-one (170): 

To a 1-dram vial equipped with a stir bar was added tetrahydroisoquinoline 163l (20.0 mg, 

0.067 mmol) in 1,2-dichloroethane (1.3 mL, 0.05 M). Glyoxal solution (40 wt% in H2O, 

0.15 mL, 1.336 mmol) was then added, and the reaction was stirred at room temperature 

overnight. After complete conversion of the starting material monitored by TLC, the 

reaction was diluted with H2O, and extracted with CH2Cl2. The collected organic layers 

were dried over Na2SO4, and concentrated under vacuum. The crude product was purified 

by preparative-TLC (50% EtOAc in hexanes) to afford 170 as a white solid (9.2 mg, 41% 

yield): [α]D25 +187.8 (c 0.61, CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.29 – 7.20 (m, 2H), 

7.20 – 7.10 (m, 2H), 6.95 – 6.81 (m, 3H), 4.84 (dd, J = 10.5, 3.4 Hz, 1H), 4.33 (t, J = 10.7 

Hz, 1H), 4.04 – 3.94 (m, 1H), 3.90 (s, 6H), 3.62 (d, J = 17.7 Hz, 1H), 3.43 (dd, J = 11.2, 

3.2 Hz, 1H), 3.32 – 3.19 (m, 1H), 2.98 – 2.85 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 

167.7, 149.8, 149.1, 135.0, 132.8, 130.6, 129.1, 127.7, 126.7, 124.7, 120.5, 111.4, 110.2, 

73.3, 63.8, 59.5, 56.1, 56.1, 54.9, 38.9; IR (Neat Film, NaCl) 2932, 1745, 1511, 1463, 1421, 

1263, 1242, 1137, 1028, 809, 746 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for 

C20H22NO4 [M+H]+: 340.1543, found 340.1545. 

NH

OH

OMe
OMe

163l

N

H

OMe
OMe

41% yield

glyoxal (aq)

DCE, 23 °C

170
O O
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(4bS,6aS,7S,11bR)-9,10-dimethoxy-4b,5,6a,7,11b,12-

hexahydrodibenzo[a,g]oxazolo[2,3,4-de]quinolizin-7-ol (171): 

To a 1-dram vial equipped with a stir bar was added tetrahydroisoquinoline 163l 

(10.0 mg, 0.033 mmol) in 1,2-dichloroethane (0.5 mL, 0.07 M). 2,2-

Dimethoxyacetaldehyde solution (60 wt% in H2O, 9.2 µL, 0.061 mmol) was then added 

and the reaction stirred at room temperature overnight. The reaction was then concentrated 

under vacuum to afford a yellow oil, which was then used in the next step without further 

purification.  

To a 1-dram vial was added the crude product and CH2Cl2 (0.5 mL, 0.07 M). 

Eaton’s reagent (0.28 mL, 0.134 mmol) was then added dropwise, and the reaction was 

stirred for 3 hours. The reaction was then quenched by slow addition of saturated aqueous 

NaHCO3, diluted with H2O and extracted with CH2Cl2. The collected organic phases were 

dried over Na2SO4, and concentrated under vacuum. The crude product was purified by 

preparative-TLC (100% EtOAc) twice to afford 171 as a white solid as a single 

diastereomer (4.3 mg, 38% yield over 2 steps): [α]D25 +32.0 (c 0.29, CHCl3); 1H NMR (400 

MHz, CDCl3) δ 7.29 – 7.26 (m, 1H), 7.24 – 7.20 (m, 1H), 7.16 (d, J = 6.0 Hz, 1H), 7.08 

(d, J = 6.8 Hz, 1H), 6.97 (s, 1H), 6.69 (s, 1H), 4.89 – 4.82 (m, 1H), 4.79 (t, J = 7.8 Hz, 1H), 

4.71 (dd, J = 8.3, 2.1 Hz, 1H), 4.65 (d, J = 2.1 Hz, 1H), 4.47 (dd, J = 9.1, 7.0 Hz, 1H), 3.93 

N

OMe
OMe

OH

H

H

171

O
H

NH

OH

OMe
OMe

163l

38% yield over 2 steps

1. 60% aq. 2,2-dimethoxyacetaldehyde 
DCE, 23 °C, 18 h

2. Eaton’s Reagent
CH2Cl2, 23 °C, 3 h
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(s, 3H), 3.91 (s, 3H), 3.86 (dd, J = 7.9, 5.3 Hz, 1H), 2.89 – 2.87 (m, 2H), 2.79 (d, J = 8.4 

Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 149.4, 148.6, 136.5, 133.1, 130.9, 129.3, 127.3, 

127.3, 126.8, 126.6, 113.6, 109.2, 86.7, 74.4, 67.9, 57.3, 56.2, 56.1, 54.2, 31.1; IR (Neat 

Film, NaCl) 3442, 2918, 1610, 1515, 1464, 1380, 1353, 1270, 1242, 1160, 1117, 1074, 

1010, 868, 762, 732, 642 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C20H22NO4 

[M+H]+: 340.1543, found 340.1548. 

The stereochemistry of 171 was assigned using diagnostic nOe correlations 

(highlighted arrows, vide infra). Due to the ambiguous nOe correlations observed in 171, 

the stereochemistry was determined by derivatizing the hydroxyl group of 171 to the 

methoxy group.  
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2.7.3 Additional optimization results 

Table 2.2. Additional ligand screen. 

 

 

N

Ph

OH

Ir(cod)Cl (2.5 mol %)
ligand (3.0 mol %)

H2 (60 bar), TBAI (7.5 mol %)
9:1 PhMe: AcOH (0.02 M), 60 °C

NH

Ph

OH

Fe
P(BTFM)2 Fe

P(Cy)2
P(Ph)2

Me

SL-J004-1SL-J008-2

Fe
P(Ph)2

Me

PPh2

Walphos (SL-002-1)

O

O

O

O

F

F

F

F

PPh2

PPh2

O

O

O

O

PPh2

PPh2

PPh2

PPh2

O

O
O

O

PPh2

PPh2

N

N

PPh2

PPh2

MeO

OMe

MeO

OMe

O
O

PPh2

PPh2
(CF3Ph)2P

CF3

N

O

t-Bu

> 95% conversion
86% yield, 49% ee

56% conversion
37% yield, –61% ee

23% conversion
9% yield, ee ND

59% conversion
59% yield, –61% ee

36% conversion
23% yield, 19% ee

50% conversion
20% yield, ee ND

15% conversion
16% yield, ee ND

59% conversion
46% yield, –41% ee

50% conversion
20% yield, ee ND

65% conversion
71% yield, 2% ee

NH HN
O O

PAr2 Ar2P

>95% conversion
80% yield, –40% ee

(xyl)2P

Me

Fe
P(Ph)2

Me2N

P(Ph)2

Fe

P

P

Et

Et

Et Et

>62% conversion
48% yield, –44% ee

(C6F5)2P

CF3

N

O

t-Bu

55% conversion
39% yield, –4% ee

(CF3FPh)2P

CF3

N

O

t-Bu

74% conversion
46% yield, 5% ee

F3C CF3

0% conversion
0% yield, ee ND

Fe
P(DMM-Ph)2

P(t-Bu)2

Me
Fe

P(DMM-Ph)2
P(Cy)2

Me

SL-J013-1
0% conversion

0% yield

SL-J007-1
16% conversion
6% yield, ee ND

Fe
P(Ph)2

Me2N

P(Ph)2

(Ph)2P

Ph
NMe2

SL-M001-2
> 61% conversion
51% yield, 49% ee

Me

PPh2

PPh2

Me

(R, R)-chiralphos
78% conversion

57% yield, –37% ee

O

O

Me
Me

PPh2

PPh2

(R, R)-DIOP
37% conversion
28% yield, 5% ee

PPh2

PPh2

Norphos
31% conversion
20% yield, ee ND

P
P

Me

Me
Me

Me

Me-BPE
22% conversion
10% yield, ee ND

Monophos
42% conversion
29% yield, 5% ee

O
O

P N PPh2
PPh2

PhanePhos
67% conversion

74% yield, –19% ee
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Table 2.3. Additive effects in Ir-catalyzed enantio- and diastereoselective hydrogenation.a 

 

[a] Reaction conditions: 0.04 mmol of 162a, 1.25 mol % [Ir(cod)Cl]2, 3 mol % ligand, 7.5 mol % 
TBAI, 60 bar H2 in 2.0 mL 9:1 solvent:AcOH. [b] Determined by crude 1H NMR using 1,3,5-
trimethoxybenzene as a standard. [c] Determined by chiral SFC analysis of Cbz-protected product. 

2.7.4 Determination of enantiomeric excess  

Table 2.4. Determination of enantiomeric excess.  

 

entry acid cis:transbsalt additive % conversionb % ee of cisc

1 TBAI >95 89AcOH
2 LiI >95 89AcOH
3 NaI >95 90AcOH
4 KI 92 87AcOH
5 TBACl >95 31AcOH
6 TBABr >95 63AcOH
7 none 50 27AcOH
8 TBAI 31 67none
9 TBAI >95 90TFA

10 TBAI >95 84(n-BuO)2PO2H

10:1
10:1
10:1
10:1
1:1.2
1.2:1
1:1

10:1
7:1

N

Ph

OH

[Ir(cod)Cl]2 (1.25 mol %)
 L7 (3 mol %)

H2 (60 bar), salt (7.5 mol %)

9:1 THF:acid (0.02 M)
60 °C

NH

Ph

OH
162a 163a

ND

Fe
P(DMM)2

P(Xyl)2

Me

L7: SL-J418-1

entry compound SFC analytic conditions ee (%)

1

2

92

91

Chiralpak AD-H, λ = 210 nm
45% IPA/CO2, 3.5 mL/min
tR (min) major 2.34, minor 4.02

Chiralpak AD-H, λ = 210 nm
45% IPA/CO2, 3.5 mL/min
tR (min) major 1.81, minor 2.73

NCbz

OH

163a-Cbz

NCbz

OH

163b-Cbz
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3

4

92
Chiracel AD-H, λ = 210 nm
45% IPA/CO2, 3.5 mL/min
tR (min) major 4.08, minor 5.18

Chiralpak AD-H, λ = 210 nm
45% IPA/CO2, 2.5 mL/min
tR (min) major 2.59, minor 3.61

92

NCbz

OH

163c-Cbz

Ph

NCbz

OH

163d-Cbz

OMe

NCbz

OH

163e-Cbz

F

5
Chiralpak AD-H, λ = 210 nm
45% IPA/CO2, 2.5 mL/min
tR (min) major 1.93, minor 2.87

93

NCbz

OH

163f-Cbz

CF3

6
Chiralpak AD-H, λ = 210 nm
25% IPA/CO2, 2.5 mL/min
tR (min) major 3.11, minor 5.54

92

entry compound SFC analytic conditions ee (%)

7

8

82

86

Chiralpak AD-H, λ = 210 nm
45% IPA/CO2, 3.5 mL/min
tR (min) major 2.03, minor 3.33

Chiralpak AD-H, λ = 210 nm
45% IPA/CO2, 3.5 mL/min
tR (min) major 2.45, minor 3.23

NCbz

OH

163g-Cbz

CN

NCbz

OH

163h-Cbz

NO2
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entry compound SFC analytic conditions ee (%)

9

10

89
Chiracel AD-H, λ = 210 nm
40% IPA/CO2, 2.5 mL/min
tR (min) major 1.67, minor 2.20

Chiralpak AD-H, λ = 210 nm
45% IPA/CO2, 3.5 mL/min
tR (min) major 3.61, minor 5.81

95

11
Chiralpak AD-H, λ = 210 nm
45% IPA/CO2, 3.5 mL/min
tR (min) major 1.95, minor 3.02

92

12
Chiralpak AD-H, λ = 210 nm
45% IPA/CO2, 3.5 mL/min
tR (min) major 2.28, minor 2.93

88

NCbz

OH

163i-Cbz

F
F

F

NCbz

OH

163j-Cbz

NCbz

OH

163k-Cbz

Me

Me

NCbz

OH

163l-Cbz

OMe
OMe

13 49
Chiralpak AD-H, λ = 210 nm
30% IPA/CO2, 2.5 mL/min
tR (min) major 5.91, minor 6.39

NCbz

OH

163m-Cbz

Me
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entry compound SFC analytic conditions ee (%)

14

15

16

92

90
Chiracel OJ-H, λ = 210 nm
35% IPA/CO2, 2.5 mL/min
tR (min) major 2.86, minor 6.02

Chiralpak OJ-H, λ = 210 nm
35% IPA/CO2, 2.5 mL/min
tR (min) major 1.52, minor 1.82

Chiralpak AD-H, λ = 210 nm
45% IPA/CO2, 3.5 mL/min
tR (min) major 3.19, minor 4.05

89

17
Chiralpak OJ-H, λ = 210 nm
25% IPA/CO2, 2.5 mL/min
tR (min) minor 1.84, major 2.60

87

18
Chiralpak OD-H, λ = 210 nm
30% IPA/CO2, 2.5 mL/min
tR (min) major 2.52, minor 2.79

85

NCbz

OH

O

163n-Cbz

NCbz

OH

S

163o-Cbz

NCbz

OH

S

163p-Cbz

NCbz

OH

N
N

Me

163q-Cbz

NCbz

OH

N

163r-Cbz

19 93
Chiralpak AD-H, λ = 210 nm
40% IPA/CO2, 2.5 mL/min
tR (min) major 2.56, minor 3.04

NCbz
F

OH
165a-Cbz
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entry compound SFC analytic conditions ee (%)

20

21

22

90

94
Chiracel AD-H, λ = 210 nm
20% IPA/CO2, 2.5 mL/min
tR (min) major 3.93, minor 4.46

Chiralpak OJ-H, λ = 210 nm
30% IPA/CO2, 2.5 mL/min
tR (min) major 1.93, minor 2.42

Chiralpak AD-H, λ = 210 nm
45% IPA/CO2, 2.5 mL/min
tR (min) major 5.00, minor 7.22

58

23
Chiralpak AD-H, λ = 210 nm
45% IPA/CO2, 2.5 mL/min
tR (min) major 3.89, minor 5.16

54

24
Chiralpak AD-H, λ = 210 nm
45% IPA/CO2, 2.5 mL/min
tR (min) major 5.31, minor 10.01

82

NCbz
F

OH
165b-Cbz

OMe

NCbz
F

OH
165c-Cbz

CF3

NCbz

OH
165d-Cbz

O

O

NCbz

OH
165e-Cbz

O

O

OMe
OMe

NCbz

OH
165f-Cbz
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entry compound SFC analytic conditions ee (%)

25

26

27

28

90

86

89
Chiracel OD-H, λ = 210 nm
20% IPA/CO2, 2.5 mL/min
tR (min) major 4.82, minor 5.25

Chiralpak AS-H, λ = 210 nm
20% IPA/CO2, 3.5 mL/min
tR (min) major 2.16, minor 2.62

Chiralpak OJ-H, λ = 210 nm
20% IPA/CO2, 2.5 mL/min
tR (min) major 3.32, minor 3.93

Chiralpak OD-H, λ = 210 nm
25% IPA/CO2, 2.5 mL/min
tR (min) major 5.66, minor 6.38

88

29

Chiralpak AD-H, λ = 210 nm
40% IPA/CO2, 2.5 mL/min
tR (min) major 1.41, minor 1.76

90

NCbz

Me

167e-Cbz

NCbz

OAc
167a-Cbz

NCbz

OMe
167b-Cbz

NCbz

OBn
167c-Cbz

NCbz

NHBoc
167d-Cbz
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2.7.5  Determination of relative and absolute configuration  

Method 1 – Vibrational Circular Dichroism (VCD) 

Experimental Protocol.  A solution of 167e (60 mg/mL) was prepared in CDCl3 and 

loaded into a front-loading SL-4 cell (International Crystal Laboratories) possessing BaF2 

windows and 100 μm path length.   Infrared (IR) and VCD spectra were acquired on a 

BioTools ChiralIR-2X VCD spectrometer as a set of set of 27 one-hour blocks (27 blocks, 

3120 scans per block) in dual PEM mode.  A 15-minute acquisition of neat (-)-α-pinene 

control (separate 75 μm BaF2 cell) yielded a VCD spectrum in agreement with literature 

spectra.  IR and VCD spectra were background-corrected using a 30-minute block IR 

acquisition of the empty instrument chamber under gentle N2 purge, and were solvent 

corrected using an 8-hour (8 blocks, 3120 scans per block) IR/VCD acquisition of CDCl3 

in the same 100 μm BaF2 cell as used for 167e.  The reported spectra represent the result 

of block averaging. 

Computational Protocol.  The arbitrarily chosen (S,S) stereoisomer of compound 167e 

((S) at methyl, (S) at phenyl; thus cis) was subjected to an exhaustive initial molecular 

mechanics-based conformational search (MMFF94 force field, 0.08 Å geometric RMSD 

cutoff, and 30 kcal/mol energy window) as implemented in MOE 2019.0102 (Chemical 

Computing Group, Montreal, CA).  All conformers retained the (S) configuration at both 

centers.  Separately, a study involving the trans stereoisomer possessing the (R) 

configuration at the methyl group and (S) configuration at phenyl was performed in 

identical fashion, with stereochemical integrity again retained throughout the stochastic 

conformational search. All MMFF94 conformers within a 10 kcal/mol energy window 

were then subjected to geometry optimization, harmonic frequency calculation, and VCD 
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rotational strength evaluation using density functional theory.  All quantum mechanical 

calculations first utilized the B3LYP functional, small 6-31G* basis, and IEFPCM model 

(chloroform solvent) as an initial filter, followed by subsequent optimization using 

B3PW91 functional, cc-pVTZ basis, and implicit IEFPCM chloroform solvation model on 

all IEFPCM-B3LYP/6-31G* conformers below 5 kcal/mol.   All calculations were 

performed with the Gaussian 16 program system (Rev. C.01; Frisch et al., Gaussian, Inc., 

Wallingford, CT).  Resultant IEFPCM-B3PW91/cc-pVTZ harmonic frequencies were 

scaled by 0.98. All structurally unique conformers possessing all positive Hessian 

eigenvalues were Boltzmann weighted by relative free energy at 298.15 K.  The predicted 

IR and VCD frequencies and intensities of the retained conformers were convolved using 

Lorentzian line shapes (γ = 4 cm-1) and summed using the respective Boltzmann weights 

to yield the final predicted IR and VCD spectra of the species described above.  The 

predicted VCD of the corresponding enantiomers were generated by inversion of sign.  

From a combination of (a) the best overall agreement of (R,R)-167e with experiment 

among all of the theoretical spectra in the useful range of the VCD (~ 1000-1450 cm-1, 

regions A-D; see below) coupled with (b) support of this assignment by the agreement 

between predicted versus measured optical rotation (see Method 2) the absolute 

configuration of 167e was established as cis and (R,R). 
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Figure 2.3. Experimental (left) and computed (right) IR and VCD spectra for the cis isomers of 167e. 

 

The better agreement with the (R,R) stereoisomer, upon alignment of the achiral IR spectra 

and correlation to VCD signals, is readily evident. 

Figure 2.4. Experimental (left) and computed (right) IR and VCD spectra for the trans isomers of 

167e. 
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The worse agreement with experiment between either of the predicted trans stereoisomers, 

compared to the cis- and (R,R) stereoisomer above, can be seen.  This assertion is further 

supported to an extent by the optical rotation data below. 

Method 2 – Optical Rotation (OR) 

Computational Protocol.  The ensemble of unique IEFPCM-B3PW91/cc-pVTZ 

conformers of 167e generated in Method 1 above were subjected to optical rotation 

calculation at 589.0 nm using the B3LYP hybrid density functional, the large and diffuse 

6-311++G(2df,2pd) basis set, and the IEFPCM implicit chloroform solvent model.  The 

computed IEFPCM-B3LYP/6-311++G(2df,2pd) optical rotations (weighted by IEFPCM-

B3PW91/cc-pVTZ free energies at 298.15 K) along with those resulting from alternatively 

weighting by either the IEFPCM-B3PW91/cc-pVTZ total energies or IEFPCM-B3LYP/6-

311++G(2df,2pd)//IEFPCM-B3PW91/cc-pVTZ total energies are reported in (a)-(d) 

below. 

(a)  

Predicted OR, weighted by IEFPCM-B3PW91/cc-pVTZ free energies:  -144.5° 

Predicted OR, weighted by IEFPCM-B3PW91/cc-pVTZ total energies: -144.6° 

Predicted OR, weighted by IEFPCM-B3LYP/6-311++G(2df,2pd)//IEFPCM-B3PW91/cc-

pVTZ total energies:  -147.0°     

(b)  

NH

CH3
(S)

(S)

NH

CH3
(R)

(R)
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Predicted OR, weighted by IEFPCM-B3PW91/cc-pVTZ free energies:  +144.5° 

Predicted OR, weighted by IEFPCM-B3PW91/cc-pVTZ total energies:  +144.6° 

Predicted OR, weighted by IEFPCM-B3LYP/6-311++G(2df,2pd)//IEFPCM-B3PW91/cc-

pVTZ total energies:  +147.0°     

(c)  

Predicted OR, weighted by IEFPCM-B3PW91/cc-pVTZ free energies:  -94.5° 

Predicted OR, weighted by IEFPCM-B3PW91/cc-pVTZ total energies:  -101.0° 

Predicted OR, weighted by IEFPCM-B3LYP/6-311++G(2df,2pd)//IEFPCM-B3PW91/cc-

pVTZ total energies:  -100.1°     

(d)  

Predicted OR, weighted by IEFPCM-B3PW91/cc-pVTZ free energies:  +94.5° 

Predicted OR, weighted by IEFPCM-B3PW91/cc-pVTZ total energies:  +101.0° 

Predicted OR, weighted by IEFPCM-B3LYP/6-311++G(2df,2pd)//IEFPCM-B3PW91/cc-

pVTZ total energies:  +100.1°     

Measured optical rotation: [α]D25 +133.3 (c 0.79, CHCl3). Assuming only that the 

sign of the optical rotation is correctly predicted by theory, given the experimentally 

measured value of  +133.3°, the absolute configuration of 167e must either be:   (i) (R) at 

both chiral centers (and therefore cis); or (b)  (S) at phenyl and (R) at methyl (trans).   

Scenario (b) is unlikely, given the wrong (opposite) directionality of the VCD signals in 

NH

CH3
(R)

(S)

NH

CH3
(S)

(R)
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regions C and D of the experimental spectrum.   Scenario (a) also gives rise to the best 

agreement between the predicted and measured VCD spectra. 
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Figure A1.2 Infrared spectrum (Thin Film, NaCl) of compound 159a. 
 

Figure A1.3 13C NMR (100 MHz, CDCl3) of compound 159a. 
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Figure A1.5 Infrared spectrum (Thin Film, NaCl) of compound 159b. 
 

Figure A1.6 13C NMR (100 MHz, CDCl3) of compound 159b. 
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Figure A1.7 19F NMR (282 MHz, CDCl3) of compound 159b. 
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Figure A1.9 Infrared spectrum (Thin Film, NaCl) of compound 159c. 
 

Figure A1.10 13C NMR (100 MHz, CDCl3) of compound 159c. 
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Figure A1.12 Infrared spectrum (Thin Film, NaCl) of compound 159d. 
 

Figure A1.13 13C NMR (100 MHz, CDCl3) of compound 159d. 
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Figure A1.15 Infrared spectrum (Thin Film, NaCl) of compound 160a. 
 

Figure A1.16 13C NMR (100 MHz, CDCl3) of compound 160a. 
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Figure A1.17 19F NMR (282 MHz, CDCl3) of compound 160a. 
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Figure A1.19 Infrared spectrum (Thin Film, NaCl) of compound 160b. 
 

Figure A1.20 13C NMR (100 MHz, CDCl3) of compound 160b. 
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Figure A1.21 19F NMR (282 MHz, CDCl3) of compound 160b. 
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Figure A1.23 Infrared spectrum (Thin Film, NaCl) of compound 160c. 
 

Figure A1.24 13C NMR (100 MHz, CDCl3) of compound 160c. 
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Figure A1.25 19F NMR (282 MHz, CDCl3) of compound 160c. 
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Figure A1.27 Infrared spectrum (Thin Film, NaCl) of compound 160d. 
 

Figure A1.28 13C NMR (100 MHz, CDCl3) of compound 160d. 
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Figure A1.29 19F NMR (282 MHz, CDCl3) of compound 160d. 
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Figure A1.31 Infrared spectrum (Thin Film, NaCl) of compound 161a. 
 

Figure A1.32 13C NMR (100 MHz, CDCl3) of compound 161a. 
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Figure A1.34 Infrared spectrum (Thin Film, NaCl) of compound 161b. 
 

Figure A1.35 13C NMR (100 MHz, CDCl3) of compound 161b. 
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Figure A1.37 Infrared spectrum (Thin Film, NaCl) of compound 161c. 
 

Figure A1.38 13C NMR (100 MHz, CDCl3) of compound 161c. 
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Figure A1.40 Infrared spectrum (Thin Film, NaCl) of compound 161d. 
 

Figure A1.41 13C NMR (100 MHz, CDCl3) of compound 161d. 
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Figure A1.43 Infrared spectrum (Thin Film, NaCl) of compound 161e. 
 

Figure A1.44 13C NMR (100 MHz, CDCl3) of compound 161e. 
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Figure A1.45 19F NMR (282 MHz, CDCl3) of compound 161e. 
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Figure A1.47 Infrared spectrum (Thin Film, NaCl) of compound 161f. 
 

Figure A1.48 13C NMR (100 MHz, CDCl3) of compound 161f. 
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Figure A1.49 19F NMR (282 MHz, CDCl3) of compound 161f. 
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Figure A1.51 Infrared spectrum (Thin Film, NaCl) of compound 161g. 
 

Figure A1.52 13C NMR (100 MHz, CDCl3) of compound 161g. 
 



Appendix 1 – Spectra Relevant to Chapter 2
   

199 

1
2

3
4

5
6

7
8

9
1
0

p
p
m

 
  

N

M
e

16
1h

N
O
2

Fi
gu

re
 A

1.
53

 1
H

 N
M

R
 (4

00
 M

H
z,

 C
D

C
l 3

) o
f c

om
po

un
d 
1
6
1
h
. 

 



Appendix 1 – Spectra Relevant to Chapter 2
   

200 

102030405060708090100110120130140150160170

ppm

 
  

Figure A1.54 Infrared spectrum (Thin Film, NaCl) of compound 161h. 
c 

Figure A1.55 13C NMR (100 MHz, CDCl3) of compound 161h. 
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Figure A1.57 Infrared spectrum (Thin Film, NaCl) of compound 161i. 
c 

Figure A1.58 13C NMR (100 MHz, CDCl3) of compound 161i. 
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Figure A1.59 19F NMR (282 MHz, CDCl3) of compound 161i. 
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Figure A1.61 Infrared spectrum (Thin Film, NaCl) of compound 161j. 
c 

Figure A1.62 13C NMR (100 MHz, CDCl3) of compound 161j. 
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Figure A1.64 Infrared spectrum (Thin Film, NaCl) of compound 161k. 
c 

Figure A1.65 13C NMR (100 MHz, CDCl3) of compound 161k. 
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Figure A1.67 Infrared spectrum (Thin Film, NaCl) of compound 161l. 
c 

Figure A1.68 13C NMR (100 MHz, CDCl3) of compound 161l. 
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Figure A1.70 Infrared spectrum (Thin Film, NaCl) of compound 161m. 
c 

Figure A1.71 13C NMR (100 MHz, CDCl3) of compound 161m. 
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Figure A1.73 Infrared spectrum (Thin Film, NaCl) of compound 161n. 
c 

Figure A1.74 13C NMR (100 MHz, CDCl3) of compound 161n. 
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Figure A1.76 Infrared spectrum (Thin Film, NaCl) of compound 161o. 
c 

Figure A1.77 13C NMR (100 MHz, CDCl3) of compound 161o. 
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Figure A1.79 Infrared spectrum (Thin Film, NaCl) of compound 161p. 
c 

Figure A1.80 13C NMR (100 MHz, CDCl3) of compound 161p. 
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Figure A1.82 Infrared spectrum (Thin Film, NaCl) of compound 161q. 
c 

Figure A1.83 13C NMR (100 MHz, CDCl3) of compound 161q. 
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Figure A1.85 Infrared spectrum (Thin Film, NaCl) of compound 161r. 
c 

Figure A1.86 13C NMR (100 MHz, CDCl3) of compound 161r. 
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Figure A1.88 Infrared spectrum (Thin Film, NaCl) of compound 172a. 
c 

Figure A1.89 13C NMR (100 MHz, CDCl3) of compound 172a. 
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Figure A1.90 19F NMR (282 MHz, CDCl3) of compound 172a. 
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Figure A1.92 Infrared spectrum (Thin Film, NaCl) of compound 172b. 
c 

Figure A1.93 13C NMR (100 MHz, CDCl3) of compound 172b. 
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Figure A1.94 19F NMR (282 MHz, CDCl3) of compound 172b. 
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Figure A1.96 Infrared spectrum (Thin Film, NaCl) of compound 172c. 
c 

Figure A1.97 13C NMR (100 MHz, CDCl3) of compound 172c. 
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Figure A1.98 19F NMR (282 MHz, CDCl3) of compound 172c. 
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Figure A1.100 Infrared spectrum (Thin Film, NaCl) of compound 172d. 
c 

Figure A1.101 13C NMR (100 MHz, CDCl3) of compound 172d. 
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Figure A1.103 Infrared spectrum (Thin Film, NaCl) of compound 172e. 
c 

Figure A1.104 13C NMR (100 MHz, CDCl3) of compound 172e. 
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Figure A1.106 Infrared spectrum (Thin Film, NaCl) of compound 172f. 
c 

Figure A1.107 13C NMR (100 MHz, CDCl3) of compound 172f. 
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Figure A1.109 Infrared spectrum (Thin Film, NaCl) of compound 162a. 
c 

Figure A1.110 13C NMR (100 MHz, CDCl3) of compound 162a. 
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Figure A1.112 Infrared spectrum (Thin Film, NaCl) of compound 162b. 
c 

Figure A1.113 13C NMR (100 MHz, CDCl3) of compound 162b. 
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Figure A1.115 Infrared spectrum (Thin Film, NaCl) of compound 162c. 
c 

Figure A1.116 13C NMR (100 MHz, CDCl3) of compound 162c. 
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Figure A1.118 Infrared spectrum (Thin Film, NaCl) of compound 162d. 
c 

Figure A1.119 13C NMR (100 MHz, CDCl3) of compound 162d. 
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Figure A1.121 Infrared spectrum (Thin Film, NaCl) of compound 162e. 
c 

Figure A1.122 13C NMR (100 MHz, CDCl3) of compound 162e. 
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Figure A1.123 19F NMR (282 MHz, CDCl3) of compound 162e. 
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Figure A1.125 Infrared spectrum (Thin Film, NaCl) of compound 162f. 
c 

Figure A1.126 13C NMR (100 MHz, CDCl3) of compound 162f. 
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Figure A1.127 19F NMR (282 MHz, CDCl3) of compound 162f. 
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Figure A1.129 Infrared spectrum (Thin Film, NaCl) of compound 162g. 
c 

Figure A1.130 13C NMR (100 MHz, CDCl3) of compound 162g. 
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Figure A1.132 Infrared spectrum (Thin Film, NaCl) of compound 162h. 
c 

Figure A1.133 13C NMR (100 MHz, CDCl3) of compound 162h. 
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Figure A1.135 Infrared spectrum (Thin Film, NaCl) of compound 162i. 
c 

Figure A1.136 13C NMR (100 MHz, CDCl3) of compound 162i. 
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Figure A1.137 19F NMR (282 MHz, CDCl3) of compound 162i. 
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Figure A1.139 Infrared spectrum (Thin Film, NaCl) of compound 162j. 
c 

Figure A1.140 13C NMR (100 MHz, CDCl3) of compound 162j. 
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Figure A1.142 Infrared spectrum (Thin Film, NaCl) of compound 162k. 
c 

Figure A1.143 13C NMR (100 MHz, CDCl3) of compound 162k. 
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Figure A1.145 Infrared spectrum (Thin Film, NaCl) of compound 162l. 
c 

Figure A1.146 13C NMR (100 MHz, CDCl3) of compound 162l. 
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Figure A1.148 Infrared spectrum (Thin Film, NaCl) of compound 162m. 
c 

Figure A1.149 13C NMR (100 MHz, CDCl3) of compound 162m. 
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Figure A1.151 Infrared spectrum (Thin Film, NaCl) of compound 162n. 
c 

Figure A1.152 13C NMR (100 MHz, CDCl3) of compound 162n. 
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Figure A1.154 Infrared spectrum (Thin Film, NaCl) of compound 162o. 
c 

Figure A1.155 13C NMR (100 MHz, CDCl3) of compound 162o. 
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Figure A1.157 Infrared spectrum (Thin Film, NaCl) of compound 162p. 
c 

Figure A1.158 13C NMR (100 MHz, CDCl3) of compound 162p. 
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Figure A1.160 Infrared spectrum (Thin Film, NaCl) of compound 162q. 
c 

Figure A1.161 13C NMR (100 MHz, CDCl3) of compound 162q. 
 



Appendix 1 – Spectra Relevant to Chapter 2
   

274 

1
2

3
4

5
6

7
8

9
1
0

p
p
m

 
  

N

16
2r

N

O
H

Fi
gu

re
 A

1.
16

2  
1 H

 N
M

R
 (4

00
 M

H
z,

 C
D

C
l 3

) o
f c

om
po

un
d 
1
6
2
r.

 
 



Appendix 1 – Spectra Relevant to Chapter 2
   

275 

30405060708090100110120130140150160170

ppm

 
  

Figure A1.163 Infrared spectrum (Thin Film, NaCl) of compound 162r. 
c 

Figure A1.164 13C NMR (100 MHz, CDCl3) of compound 162r. 
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Figure A1.166 Infrared spectrum (Thin Film, NaCl) of compound 164a. 
c 

Figure A1.167 13C NMR (100 MHz, CDCl3) of compound 164a. 
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Figure A1.168 19F NMR (282 MHz, CDCl3) of compound 164a. 
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Figure A1.170 Infrared spectrum (Thin Film, NaCl) of compound 164b. 
c 

Figure A1.171 13C NMR (100 MHz, CDCl3) of compound 164b. 
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Figure A1.172 19F NMR (282 MHz, CDCl3) of compound 164b. 
 



Appendix 1 – Spectra Relevant to Chapter 2
   

282 

1
2

3
4

5
6

7
8

9

p
p
m

 
  

N
F

16
4c

C
F 3

O
H

Fi
gu

re
 A

1.
17

3  
1 H

 N
M

R
 (4

00
 M

H
z,

 C
D

C
l 3

) o
f c

om
po

un
d 
1
6
4
c.

 
 



Appendix 1 – Spectra Relevant to Chapter 2
   

283 

2030405060708090100110120130140150160170

ppm

 
  

Figure A1.174 Infrared spectrum (Thin Film, NaCl) of compound 164c. 
c 

Figure A1.175 13C NMR (100 MHz, CDCl3) of compound 164c. 
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Figure A1.176 19F NMR (282 MHz, CDCl3) of compound 164c. 
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Figure A1.178 Infrared spectrum (Thin Film, NaCl) of compound 164d. 
c 

Figure A1.179 13C NMR (100 MHz, CDCl3) of compound 164d. 
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Figure A1.181 Infrared spectrum (Thin Film, NaCl) of compound 164e. 
c 

Figure A1.182 13C NMR (100 MHz, CDCl3) of compound 164e. 
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Figure A1.184 Infrared spectrum (Thin Film, NaCl) of compound 164f. 
c 

Figure A1.185 13C NMR (100 MHz, CDCl3) of compound 164f. 
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Figure A1.187 Infrared spectrum (Thin Film, NaCl) of compound 166a. 
c 

Figure A1.188 13C NMR (100 MHz, CDCl3) of compound 166a. 
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Figure A1.190 Infrared spectrum (Thin Film, NaCl) of compound 166b. 
c 

Figure A1.191 13C NMR (100 MHz, CDCl3) of compound 166b. 
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Figure A1.193 Infrared spectrum (Thin Film, NaCl) of compound 166c. 
c 

Figure A1.194 13C NMR (100 MHz, CDCl3) of compound 166c. 
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Figure A1.196 Infrared spectrum (Thin Film, NaCl) of compound 166d. 
c 

Figure A1.197 13C NMR (100 MHz, CDCl3) of compound 166d. 
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Figure A1.199 Infrared spectrum (Thin Film, NaCl) of compound 166f. 
c 

Figure A1.200 13C NMR (100 MHz, CDCl3) of compound 166f. 
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Figure A1.202 Infrared spectrum (Thin Film, NaCl) of compound 163a. 
c 

Figure A1.203 13C NMR (100 MHz, CDCl3) of compound 163a. 
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Figure A1.205 13C NMR (100 MHz, CDCl3) of compound trans-163a. 
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Figure A1.207 Infrared spectrum (Thin Film, NaCl) of compound 163b. 
c 

Figure A1.208 13C NMR (100 MHz, CDCl3) of compound 163b. 
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Figure A1.210 Infrared spectrum (Thin Film, NaCl) of compound 163c. 
c 

Figure A1.211 13C NMR (100 MHz, CDCl3) of compound 163c. 
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Figure A1.213 Infrared spectrum (Thin Film, NaCl) of compound 163d. 
c 

Figure A1.214 13C NMR (100 MHz, CDCl3) of compound 163d. 
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Figure A1.216 Infrared spectrum (Thin Film, NaCl) of compound 163e. 
c 

Figure A1.217 13C NMR (100 MHz, CDCl3) of compound 163e. 
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Figure A1.218 19F NMR (282 MHz, CDCl3) of compound 163e. 
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Figure A1.220 Infrared spectrum (Thin Film, NaCl) of compound 163f. 
c 

Figure A1.221 13C NMR (100 MHz, CDCl3) of compound 163f. 
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Figure A1.222 19F NMR (282 MHz, CDCl3) of compound 163f. 
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Figure A1.224 Infrared spectrum (Thin Film, NaCl) of compound 163g. 
c 

Figure A1.225 13C NMR (100 MHz, CDCl3) of compound 163g. 
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Figure A1.227 Infrared spectrum (Thin Film, NaCl) of compound 163h. 
c 

Figure A1.228 13C NMR (100 MHz, CDCl3) of compound 163h. 
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Figure A1.230 Infrared spectrum (Thin Film, NaCl) of compound 163i. 
c 

Figure A1.231 13C NMR (100 MHz, CDCl3) of compound 163i. 
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Figure A1.232 19F NMR (282 MHz, CDCl3) of compound 163i. 
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Figure A1.234 Infrared spectrum (Thin Film, NaCl) of compound 163j. 
c 

Figure A1.235 13C NMR (100 MHz, CDCl3) of compound 163j. 
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Figure A1.237 Infrared spectrum (Thin Film, NaCl) of compound 163k. 
c 

Figure A1.238 13C NMR (100 MHz, CDCl3) of compound 163k. 
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Figure A1.240 Infrared spectrum (Thin Film, NaCl) of compound 163l. 
c 

Figure A1.241 13C NMR (100 MHz, CDCl3) of compound 163l. 
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Figure A1.243 Infrared spectrum (Thin Film, NaCl) of compound 163m. 
c 

Figure A1.244 13C NMR (100 MHz, CDCl3) of compound 163m. 
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Figure A1.246 Infrared spectrum (Thin Film, NaCl) of compound 163n. 
c 

Figure A1.247 13C NMR (100 MHz, CDCl3) of compound 163n. 
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Figure A1.249 Infrared spectrum (Thin Film, NaCl) of compound 163o. 
c 

Figure A1.250 13C NMR (100 MHz, CDCl3) of compound 163o. 
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Figure A1.252 Infrared spectrum (Thin Film, NaCl) of compound 163p. 
c 

Figure A1.253 13C NMR (100 MHz, CDCl3) of compound 163p. 
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Figure A1.255 Infrared spectrum (Thin Film, NaCl) of compound 163q. 
c 

Figure A1.256 13C NMR (100 MHz, CDCl3) of compound 163q. 
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Figure A1.258 Infrared spectrum (Thin Film, NaCl) of compound 163r. 
c 

Figure A1.259 13C NMR (100 MHz, CDCl3) of compound 163r. 
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Figure A1.261 Infrared spectrum (Thin Film, NaCl) of compound 165a. 
c 

Figure A1.262 13C NMR (100 MHz, CDCl3) of compound 165a. 
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Figure A1.263 19F NMR (282 MHz, CDCl3) of compound 165a. 
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Figure A1.265 Infrared spectrum (Thin Film, NaCl) of compound 165b. 
c 

Figure A1.266 13C NMR (100 MHz, CDCl3) of compound 165b. 
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Figure A1.267 19F NMR (282 MHz, CDCl3) of compound 165b. 
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Figure A1.269 Infrared spectrum (Thin Film, NaCl) of compound 165c. 
c 

Figure A1.270 13C NMR (100 MHz, CDCl3) of compound 165c. 
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Figure A1.271 19F NMR (282 MHz, CDCl3) of compound 165c. 
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Figure A1.273 Infrared spectrum (Thin Film, NaCl) of compound 165d. 
c 

Figure A1.274 13C NMR (100 MHz, CDCl3) of compound 165d. 
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Figure A1.276 Infrared spectrum (Thin Film, NaCl) of compound 165e. 
c 

Figure A1.277 13C NMR (100 MHz, CDCl3) of compound 165e. 
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Figure A1.279 Infrared spectrum (Thin Film, NaCl) of compound 165f. 
c 

Figure A1.280 13C NMR (100 MHz, CDCl3) of compound 165f. 
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Figure A1.282 Infrared spectrum (Thin Film, NaCl) of compound 167a. 
c 

Figure A1.283 13C NMR (100 MHz, CDCl3) of compound 167a. 
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Figure A1.285 Infrared spectrum (Thin Film, NaCl) of compound 167b. 
c 

Figure A1.286 13C NMR (100 MHz, CDCl3) of compound 167b. 
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Figure A1.288 Infrared spectrum (Thin Film, NaCl) of compound 167c. 
c 

Figure A1.289 13C NMR (100 MHz, CDCl3) of compound 167c. 
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Figure A1.291 Infrared spectrum (Thin Film, NaCl) of compound 167d. 
c 

Figure A1.292 13C NMR (100 MHz, CDCl3) of compound 167d. 
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Figure A1.294 Infrared spectrum (Thin Film, NaCl) of compound 167e. 
c 

Figure A1.295 13C NMR (100 MHz, CDCl3) of compound 167e. 
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Figure A1.297 Infrared spectrum (Thin Film, NaCl) of compound 168. 
c 

Figure A1.298 13C NMR (100 MHz, CDCl3) of compound 168. 
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Figure A1.300 Infrared spectrum (Thin Film, NaCl) of compound 169. 
c 

Figure A1.301 13C NMR (100 MHz, CDCl3) of compound 169. 
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Figure A1.303 Infrared spectrum (Thin Film, NaCl) of compound 170. 
c 

Figure A1.304 13C NMR (100 MHz, CDCl3) of compound 170. 
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Figure A1.306 Infrared spectrum (Thin Film, NaCl) of compound 171. 
c 

Figure A1.307 13C NMR (100 MHz, CDCl3) of compound 171. 
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APPENDIX 2 

X-Ray Crystallography Reports Relevant to Chapter 2: 

Iridium-Catalyzed Enantioselective and Diastereoselective 

Hydrogenation of 1,3-Disubstituted Isoquinolines 
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A2.1  GENERAL EXPERIMENTAL 

A crystal was mounted on a polyimide MiTeGen loop with STP Oil Treatment and 

placed under a nitrogen stream. Low temperature (100K) X-ray data were collected with a 

Bruker AXS KAPPA APEX II diffractometer diffractometer running at 50 kV and 30 mA 

(Mo Ka = 0.71073 Å; PHOTON 100 CMOS detector with TRIUMPH graphite 

monochromator). All diffractometer manipulations, including data collection, integration, 

and scaling were carried out using the Bruker APEX3 software. An absorption correction 

was applied using SADABS in point group 2. The space group was determined and the 

structure solved by intrinsic phasing using XT.  Refinement was full-matrix least squares 

on F2 using XL. All non-hydrogen atoms were refined using anisotropic displacement 

parameters. Hydrogen atoms were placed in idealized positions and the coordinates refined 

(each of the two disordered pairs were constrained to the same position). The isotropic 

displacement parameters of all hydrogen atoms were fixed at 1.2 times (1.5 times for 

methyl groups and alcohol) the Ueq value of the bonded atom. 

A2.2  X-RAY CRYSTAL STRUCTURE ANALYSIS OF THIQ 163P 

The tetrahydroisoquinoline (THIQ) product 163p (87% ee) was crystallized by 

slow evaporation from chloroform at 23 °C to provide crystals suitable for X-ray analysis. 

Compound d19110 (163p) crystallizes in the monoclinic space group P21(#4) with one 

molecule in the asymmetric unit. The S atom and one C atom were disordered 60:40; the 

anisotropic displacement parameters of each of the C S bonded pairs were constrained to 

be the same. 
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Figure A2.1 X-ray crystal structure of THIQ 163p. 

 

Table A2.1 Crystal data and structure refinement for product 163p. 

Identification code  d19110 

Empirical formula  C14 H15 N O S 

Formula weight  245.33 

Temperature  100 K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P 1 21 1 

Unit cell dimensions a = 8.3309(19) Å a= 90° 

 b = 6.6556(18) Å b= 96.337(8)° 

 c = 10.916(3) Å g = 90° 

Volume 601.6(3) Å3 

Z 2 

Density (calculated) 1.354 g/cm3 

Absorption coefficient 0.251 mm-1 

F(000) 260 

Crystal size 0.38 x 0.17 x 0.08 mm3 

Theta range for data collection 1.877 to 35.613°. 

Index ranges -13 £ h £ 13, -10 £ k £ 10, -17 £ l £ 17 
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Reflections collected 25734 

Independent reflections 5228 [R(int) = 0.0337] 

Completeness to theta = 25.242° 99.5 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 1.0000 and 0.9299 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 5228 / 1 / 209 

Goodness-of-fit on F2 1.058 

Final R indices [I>2sigma(I)] R1 = 0.0383, wR2 = 0.0909 

R indices (all data) R1 = 0.0484, wR2 = 0.0960 

Absolute structure parameter [Flack] 0.04(2) 

Absolute structure parameter [Hooft] 0.03(2) 

Extinction coefficient n/a 

Largest diff. peak and hole 0.457 and -0.227 e.Å-3 

 

Table A2.2 Atomic coordinates (x 10
5
), and equivalent isotropic displacement 

parameters (Å
2
x 10

4
), and population for 163p.  U(eq) is defined as one third of the 

trace of the orthogonalized Uij tensor. 
________________________________________________________________________
 x y z U(eq)                   pop 
________________________________________________________________________  
S(1) -1782(9) 10112(13) 8554(8) 192(2) 0.61(1) 
S(1A) -12835(17) 26880(20) 15351(16) 200(4) 0.40(1) 
O(1) 46731(15) 90530(20) 2239(13) 250(3) 1 
N(1) 38190(14) 60130(20) 16462(10) 126(2) 1 
C(1) 31520(15) 47500(20) 25761(12) 119(2) 1 
C(2) 45361(17) 34360(20) 31317(14) 146(2) 1 
C(3) 59104(16) 47440(20) 36870(12) 135(2) 1 
C(4) 69583(19) 40430(30) 46858(14) 193(3) 1 
C(5) 81732(19) 52630(30) 52519(15) 236(3) 1 
C(6) 83610(20) 71900(30) 48189(15) 243(4) 1 
C(7) 73300(20) 79110(30) 38302(15) 210(3) 1 
C(8) 60916(17) 66970(20) 32554(13) 140(2) 1 
C(9) 49394(17) 75610(20) 22155(13) 133(2) 1 
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C(10) 58373(18) 84320(30) 11976(14) 174(3) 1 
C(11) 16954(16) 36170(20) 20222(13) 127(2) 1 
C(12) 17083(17) 18760(20) 13110(13) 147(2) 1 
C(13) -10370(60) 29940(90) 16190(50) 192(2) 0.61(1) 
C(13A) 1840(80) 11730(130) 9760(70) 200(4) 0.40(1) 
C(14) 1166(19) 42160(30) 21889(15) 177(3) 1 

 
Table A2.3 Bond lengths [Å] and angles [°] for 163p. 
_____________________________________________________  
S(1)-C(12)  1.6959(16) 
S(1)-C(13)  1.755(6) 
S(1A)-C(13A)  1.746(9) 
S(1A)-C(14)  1.6492(19) 
O(1)-H(1)  0.93(3) 
O(1)-C(10)  1.419(2) 
N(1)-H(1A)  0.90(2) 
N(1)-C(1)  1.4732(18) 
N(1)-C(9)  1.4799(19) 
C(1)-H(1B)  1.03(2) 
C(1)-C(2)  1.5193(19) 
C(1)-C(11)  1.4985(19) 
C(2)-H(2A)  0.98(2) 
C(2)-H(2B)  1.00(2) 
C(2)-C(3)  1.511(2) 
C(3)-C(4)  1.400(2) 
C(3)-C(8)  1.396(2) 
C(4)-H(4)  0.91(3) 
C(4)-C(5)  1.389(2) 
C(5)-H(5)  0.93(3) 
C(5)-C(6)  1.382(3) 
C(6)-H(6)  0.85(3) 
C(6)-C(7)  1.388(3) 
C(7)-H(7)  0.99(3) 
C(7)-C(8)  1.403(2) 
C(8)-C(9)  1.517(2) 
C(9)-H(9)  0.99(2) 
C(9)-C(10)  1.521(2) 
C(10)-H(10A)  0.96(3) 
C(10)-H(10B)  1.01(3) 
C(11)-C(12)  1.395(2) 
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C(11)-C(14)  1.405(2) 
C(12)-C(13A)  1.365(6) 
C(12)-H(12)  0.94(2) 
C(12)-H(12A)  0.94(2) 
C(13)-H(13)  0.91(5) 
C(13)-C(14)  1.357(5) 
C(13A)-H(13A)  1.04(8) 
C(14)-H(14A)  0.90(3) 
C(14)-H(14)  0.90(3) 
 
C(12)-S(1)-C(13) 91.08(18) 
C(14)-S(1A)-C(13A) 91.0(2) 
C(10)-O(1)-H(1) 112.9(17) 
C(1)-N(1)-H(1A) 108.6(14) 
C(1)-N(1)-C(9) 112.10(10) 
C(9)-N(1)-H(1A) 106.4(15) 
N(1)-C(1)-H(1B) 110.5(13) 
N(1)-C(1)-C(2) 106.04(11) 
N(1)-C(1)-C(11) 111.07(11) 
C(2)-C(1)-H(1B) 108.3(12) 
C(11)-C(1)-H(1B) 106.3(12) 
C(11)-C(1)-C(2) 114.61(12) 
C(1)-C(2)-H(2A) 112.8(13) 
C(1)-C(2)-H(2B) 110.8(13) 
H(2A)-C(2)-H(2B) 106(2) 
C(3)-C(2)-C(1) 109.66(12) 
C(3)-C(2)-H(2A) 108.2(13) 
C(3)-C(2)-H(2B) 109.0(13) 
C(4)-C(3)-C(2) 120.00(14) 
C(8)-C(3)-C(2) 120.42(12) 
C(8)-C(3)-C(4) 119.48(14) 
C(3)-C(4)-H(4) 117.4(15) 
C(5)-C(4)-C(3) 120.85(16) 
C(5)-C(4)-H(4) 121.3(15) 
C(4)-C(5)-H(5) 120.5(18) 
C(6)-C(5)-C(4) 119.70(16) 
C(6)-C(5)-H(5) 119.6(18) 
C(5)-C(6)-H(6) 122.3(19) 
C(5)-C(6)-C(7) 120.17(15) 
C(7)-C(6)-H(6) 117.3(19) 
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C(6)-C(7)-H(7) 122.1(15) 
C(6)-C(7)-C(8) 120.68(17) 
C(8)-C(7)-H(7) 117.2(15) 
C(3)-C(8)-C(7) 119.12(14) 
C(3)-C(8)-C(9) 121.50(12) 
C(7)-C(8)-C(9) 119.33(14) 
N(1)-C(9)-C(8) 111.60(12) 
N(1)-C(9)-H(9) 108.5(13) 
N(1)-C(9)-C(10) 107.26(12) 
C(8)-C(9)-H(9) 111.2(13) 
C(8)-C(9)-C(10) 111.69(12) 
C(10)-C(9)-H(9) 106.4(14) 
O(1)-C(10)-C(9) 107.91(12) 
O(1)-C(10)-H(10A) 111.9(15) 
O(1)-C(10)-H(10B) 111.6(13) 
C(9)-C(10)-H(10A) 109.0(14) 
C(9)-C(10)-H(10B) 110.1(14) 
H(10A)-C(10)-H(10B) 106(2) 
C(12)-C(11)-C(1) 125.94(13) 
C(12)-C(11)-C(14) 111.87(13) 
C(14)-C(11)-C(1) 122.19(13) 
S(1)-C(12)-H(12) 119.9(15) 
C(11)-C(12)-S(1) 112.40(11) 
C(11)-C(12)-H(12) 127.7(16) 
C(11)-C(12)-H(12A) 127.7(16) 
C(13A)-C(12)-C(11) 111.7(4) 
C(13A)-C(12)-H(12A) 120.6(16) 
S(1)-C(13)-H(13) 105(3) 
C(14)-C(13)-S(1) 111.3(4) 
C(14)-C(13)-H(13) 143(3) 
S(1A)-C(13A)-H(13A) 105(3) 
C(12)-C(13A)-S(1A) 112.0(5) 
C(12)-C(13A)-H(13A) 143(4) 
S(1A)-C(14)-H(14A) 120.7(15) 
C(11)-C(14)-S(1A) 113.35(14) 
C(11)-C(14)-H(14A) 125.9(15) 
C(11)-C(14)-H(14) 125.9(15) 
C(13)-C(14)-C(11) 113.4(3) 
C(13)-C(14)-H(14) 120.7(15) 
_____________________________________________________________  
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Table A2.4 Anisotropic displacement parameters (Å
2
x 10

4
) for 163p. The anisotropic 

displacement factor exponent takes the form: -2p
2
[ h2 a*2U11 + ...  + 2 h k a* b* 

U12 ] 
________________________________________________________________________ 

 U11 U22  U33 U23 U13 U12 
________________________________________________________________________ 
S(1) 146(4)  220(4) 204(4)  -44(3) -7(3)  -76(3) 
S(1A) 121(7)  246(7) 223(6)  -49(5) -15(4)  -92(4) 
O(1) 205(6)  302(7) 251(6)  151(5) 60(4)  14(5) 
N(1) 133(5)  113(5) 131(5)  14(4) 8(4)  -15(4) 
C(1) 109(5)  126(5) 121(5)  0(4) 13(4)  -11(4) 
C(2) 129(6)  135(6) 168(6)  39(5) -7(4)  -20(5) 
C(3) 101(5)  182(6) 123(5)  1(5) 14(4)  5(5) 
C(4) 157(6)  274(8) 144(6)  12(6) 2(5)  45(5) 
C(5) 127(6)  437(10) 143(6)  -57(6) 2(5)  35(6) 
C(6) 148(6)  416(11) 167(6)  -123(7) 23(5)  -95(6) 
C(7) 191(7)  255(8) 193(6)  -75(6) 54(5)  -94(6) 
C(8) 125(5)  173(6) 126(5)  -31(5) 35(4)  -21(5) 
C(9) 150(6)  94(5) 161(6)  -5(5) 45(4)  -16(4) 
C(10) 171(6)  166(6) 191(6)  30(5) 53(5)  -35(5) 
C(11) 124(5)  138(6) 114(5)  5(4) -2(4)  -20(4) 
C(12) 150(6)  141(6) 147(6)  -16(5) 10(4)  -27(5) 
C(13) 146(4)  220(4) 204(4)  -44(3) -7(3)  -76(3) 
C(13A) 121(7)  246(7) 223(6)  -49(5) -15(4)  -92(4) 
C(14) 153(6)  197(7) 186(6)  -13(5) 45(5)  -5(5) 
________________________________________________________________________ 

Table A2.5 Hydrogen coordinates (x 10
4
) and isotropic displacement parameters 

(Å
2
x 10

3
) for 163p. 

________________________________________________________________________  
 x  y  z  U(eq) 
________________________________________________________________________   
H(1) 5130(30) 9700(50) -410(30) 38 
H(1A) 3010(30) 6680(40) 1220(20) 15 
H(1B) 2770(20) 5620(40) 3270(20) 14 
H(2A) 4220(30) 2540(40) 3780(20) 18 
H(2B) 4930(30) 2550(40) 2490(20) 18 
H(4) 6740(30) 2820(40) 5010(20) 23 
H(5) 8820(30) 4820(50) 5950(20) 28 
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H(6) 9050(30) 8010(40) 5180(20) 29 
H(7) 7390(30) 9310(40) 3530(20) 25 
H(9) 4290(30) 8670(40) 2510(20) 16 
H(10A) 6490(30) 9530(40) 1520(20) 21 
H(10B) 6600(30) 7400(40) 910(20) 21 
H(13) -2130(60) 2800(70) 1480(40) 23 
H(13A) -450(70) -40(120) 550(60) 24 
H(12) 2610(30) 1210(40) 1060(20) 21 
H(12A) 2610(30) 1210(40) 1060(20) 21 
H(14A) -150(30) 5310(40) 2600(20) 21 
H(14) -150(30) 5310(40) 2600(20) 21 

 
Table A2.6 Torsion angles [°] for 163p. 
________________________________________________________________  
S(1)-C(13)-C(14)-C(11) 0.6(4) 
N(1)-C(1)-C(2)-C(3) 58.56(14) 
N(1)-C(1)-C(11)-C(12) 78.77(18) 
N(1)-C(1)-C(11)-C(14) -102.09(16) 
N(1)-C(9)-C(10)-O(1) 52.73(16) 
C(1)-N(1)-C(9)-C(8) 44.46(15) 
C(1)-N(1)-C(9)-C(10) 167.09(12) 
C(1)-C(2)-C(3)-C(4) 151.33(13) 
C(1)-C(2)-C(3)-C(8) -25.09(17) 
C(1)-C(11)-C(12)-S(1) 179.50(12) 
C(1)-C(11)-C(12)-C(13A) 178.1(4) 
C(1)-C(11)-C(14)-S(1A) -177.87(13) 
C(1)-C(11)-C(14)-C(13) -179.8(3) 
C(2)-C(1)-C(11)-C(12) -41.36(19) 
C(2)-C(1)-C(11)-C(14) 137.77(14) 
C(2)-C(3)-C(4)-C(5) -176.42(14) 
C(2)-C(3)-C(8)-C(7) 176.81(13) 
C(2)-C(3)-C(8)-C(9) -0.66(19) 
C(3)-C(4)-C(5)-C(6) -0.5(2) 
C(3)-C(8)-C(9)-N(1) -7.99(18) 
C(3)-C(8)-C(9)-C(10) -128.05(14) 
C(4)-C(3)-C(8)-C(7) 0.4(2) 
C(4)-C(3)-C(8)-C(9) -177.09(13) 
C(4)-C(5)-C(6)-C(7) 0.7(2) 
C(5)-C(6)-C(7)-C(8) -0.3(2) 
C(6)-C(7)-C(8)-C(3) -0.3(2) 
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C(6)-C(7)-C(8)-C(9) 177.26(14) 
C(7)-C(8)-C(9)-N(1) 174.55(12) 
C(7)-C(8)-C(9)-C(10) 54.49(17) 
C(8)-C(3)-C(4)-C(5) 0.0(2) 
C(8)-C(9)-C(10)-O(1) 175.30(13) 
C(9)-N(1)-C(1)-C(2) -71.23(14) 
C(9)-N(1)-C(1)-C(11) 163.67(12) 
C(11)-C(1)-C(2)-C(3) -178.55(11) 
C(11)-C(12)-C(13A)-S(1A) 0.4(6) 
C(12)-S(1)-C(13)-C(14) -0.3(4) 
C(12)-C(11)-C(14)-S(1A) 1.37(18) 
C(12)-C(11)-C(14)-C(13) -0.6(3) 
C(13)-S(1)-C(12)-C(11) 0.0(2) 
C(13A)-S(1A)-C(14)-C(11) -0.9(3) 
C(14)-S(1A)-C(13A)-C(12) 0.3(5) 
C(14)-C(11)-C(12)-S(1) 0.29(16) 
C(14)-C(11)-C(12)-C(13A) -1.1(4) 
________________________________________________________________  
 
Table A2.7  Hydrogen bonds for 163p [Å and °]. 
________________________________________________________________________ 
D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 
________________________________________________________________________ 
 O(1)-H(1)...N(1)#1 0.93(3) 1.90(3) 2.8310(18) 177(2) 
________________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 -x+1,y+1/2,-z       
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CHAPTER 3 

Iridium-Catalyzed Asymmetric Trans-Selective 

Hydrogenation of 1,3-Disubstituted Isoquinolines†  

 

3.1  INTRODUCTION 

 The asymmetric hydrogenation of heteroarenes has recently emerged as a powerful 

strategy to directly access enantioenriched, saturated heterocycles. 1 , 2  While significant 

progress has been made in this field, controlling selectivity in the formation of multiple 

stereocenters in a single reaction remains challenging. Transition metal-catalyzed 

hydrogenation of arenes typically proceeds through initial dearomative reduction of the 

substrate and subsequent rapid hydrogenation, resulting in high cis-selectivity of product 

(Figure 3.1A, path A).3,4 In contrast, accessing the trans-isomer requires a p-facial exchange 

of the arene to allow hydride delivery from the more sterically hindered face, rendering its 

synthesis significantly more difficult (Figure 3.1A, path B). While several reports describe 

the trans-selective hydrogenation of arenes, most are limited in scope and not 
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enantioselective. 5 , 6  Considering the synthetic value of trans-substituted saturated 

heterocycles, a general method for an asymmetric trans-selective hydrogenation of 

heteroarenes would be a highly desirable and powerful strategy.7,8 

Figure 3.1 A) Challenges in diastereoselectivity of trans-selective arene hydrogenation. B) Our 
research on iridium-catalyzed asymmetric hydrogenation of 1,3-disubstituted isoquinolines. 

 

Recently, our group has reported the asymmetric hydrogenation of 1,3-disubstituted 

isoquinolines to access enantioenriched cis-1,2,3,4-tetrahydroisoquinolines (THIQs).9 This 
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method enables the asymmetric hydrogenation of isoquinolines with Lewis basic 

functionalities, such as primary alcohols and heteroaryl-substituted isoquinolines, that 

significantly expanded the scope of the transformation compared to prior reports.10 During 

the course of this investigation, we also observed formation of the trans-THIQ under certain 

conditions with excellent enantioselectivity, albeit in small amounts. Herein, we disclose our 

efforts to develop the first examples of an asymmetric trans-selective hydrogenation of 1,3-

disubstituted isoquinolines to access enantioenriched trans-THIQs (Figure 3.1B). 

3.2 REACTION OPTIMIZATION 

We began our hydrogenation studies with 1-(hydroxymethyl)-3-phenylisoquinoline 

(173a) as our model substrate. An initial experiment employing 1.25 mol % [Ir(cod)Cl]2, 3 

mol % of chiral Josiphos ligand L7, and 7.5 mol % of TBAI in THF delivered the THIQ 

product with high cis-selectivity (Table 3.1, entry 1).9 We observed that using CH2Cl2 as 

solvent gave higher levels of diastereoselectivity for trans-isomer 174, with excellent 

enantioselectivity as well (97% ee, entry 2).11 Gratified by this result, we explored different 

additives and observed that smaller halides afforded higher levels of the desired 

diastereoselectivity, albeit with diminished conversion of 173a. Overall, TBABr provided 

the best combination of diastereo- and enantioselectivity (entry 3). Other additives such as 

TBAPF6 previously investigated by Pfaltz and coworkers completely shut down the reaction, 

demonstrating that halide salts were crucial for this transformation (entry 5).12  

Seeking to improve the diastereoselectivity, we surveyed a variety of chiral ligand 

scaffolds and found the xyliphos ligand framework to be optimal (Table 3.4). We observed 

that more electron-rich aryl groups on the chiral ligand provided the trans-product with 

higher selectivity, with the DMM-substituted phosphine L7 affording the highest 
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diastereoselectivity of 2:1 trans:cis (entry 3 vs. entries 6–9). In contrast, more electron-

withdrawing aryl groups such as L6 favored the formation of the cis-product (entry 9). 

Table 3.1. Optimization of the asymmetric trans-selective hydrogenation.a 

 

[a] Reaction conditions: 0.04 mmol of 173a, 1.25 mol % [Ir(cod)Cl]2, 3 mol % ligand, 7.5 mol % 
additive, 20 bar H2 in 2.0 mL 9:1 solvent:AcOH. [b] Determined from crude 1H NMR using 1,3,5-
trimethoxybenzene as standard. [c] Determined by chiral SFC analysis of Cbz-protected trans-product. 
BTFM = 3,5-bis(trifluoromethyl)phenyl; DMM = 4-methoxy-3,5-dimethylphenyl 
 

Having identified L7 as the optimal ligand, we briefly investigated different solvents. 

We observed that non-coordinating chlorinated solvents such as chloroform and 1,2-

dichloroethane (1,2-DCE) delivered product 174 with the highest trans-selectivity (entries 

12–13), while non-chlorinated solvents toluene and ethyl acetate gave nearly a 1:1 

diastereomeric ratio (entries 10–11).13 

N

Ph

OH

[Ir(cod)Cl]2 (1.25 mol %)
ligand (3 mol %)

H2 (20 bar), additive (7.5 mol %)

9:1 solvent:AcOH (0.02 M)
23 °C, 18 h

NH

Ph

OH

Fe
P(Ar)2

P(Xyl)2

Me

entry solvent trans:cisbligand % conversionb % ee of transc

1 L7 >95 –THF
2 L7 >95 97CH2Cl2
3 L7 >95 93CH2Cl2
4 L7 75 80CH2Cl2
5 L7 <10 –CH2Cl2
6 L12 >95 94CH2Cl2
7 L13 95 99CH2Cl2
8 L14 45 35CH2Cl2
9 L6 83 81CH2Cl2

10 L7 >95 91PhMe

1:15.7
1:1.5
2:1

2.3:1
–

1.8:1
1.4:1
1:2.3
1:2.9
1.2:1

11 L7 >95 89EtOAc 1:1.1

L6: Ar = BTFM

L12: Ar = Ph

L13: Ar = 2-napthyl
L14: Ar = furylL7: Ar = DMM

173a 174

12 L7 68 93CHCl3 2.4:1

additive

TBAPF6

TBAI
TBAI

TBABr
TBACl

TBABr
TBABr
TBABr
TBABr
TBABr
TBABr
TBABr

13 L7 >95 921,2-DCE 2.4:1TBABr
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We also explored different directing groups at the C1 position to probe their effects 

on the diastereoselectivity of this reaction. Isoquinolines bearing functionalities such as a 

methyl ether, benzyl ether, or acetate substituent (166a–c) solely provided the cis-THIQ, 

suggesting that they are not functioning as directing groups in the reaction (Table 3.2, entries 

1–3). Indeed, the hydrogenation of isoquinoline 166e that lacks any potential directing group 

also afforded only the cis-diastereomer of product (entry 4).  

Table 3.2. Investigation of different directing groups to optimize the asymmetric trans-
selective hydrogenation. 

 

[a] Reaction conditions: 0.04 mmol of substrate, 1.25 mol % [Ir(cod)Cl]2, 3 mol % L7, 7.5 mol % TBABr, 
20 bar H2 in 2.0 mL 9:1 1,2-DCE:AcOH. [b] Determined from crude 1H NMR using 1,3,5-
trimethoxybenzene as standard. [c] Determined by chiral SFC analysis of Cbz-protected trans-product.  

 

While Boc-protected amine 166d provided the product in 1.4:1 dr favoring the trans-

THIQ, basic amine functionalities such as primary amine 166g gave trace product, 

potentially due to catalyst deactivation (entries 5–6). Nevertheless, the investigation of 

different directing groups demonstrates that the hydroxyl functionality serves as the best 

directing group to selectively access the trans-diastereomer by enabling a p-facial exchange 

N

Ph

X

[Ir(cod)Cl]2 (1.25 mol %)
L7 (3 mol %)

H2 (20 bar), TBABr (7.5 mol %)

9:1 1,2-DCE:AcOH (0.02 M)
23 °C, 18 h

NH

Ph

X

entry trans:cisbX % conversionb % ee of transc

7 OH (173a) >95 92

1 OAc (166a) 57 –

2 OMe (166b) >95 –

3 OBn (166c) >95 –

4 H (166e) 92 –

5 NHBoc (166d) >95 25

6 NH2 (166g) 0 –

2.4:1

1:>20

1:17

1:>20

1:>20

1.4:1

–

173a, 166a–f 174, 167a–f
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of the substrate and facilitating hydride delivery from the more sterically hindered face via a 

directed hydrogenation (entry 7). 

 
 

3.3 SUBSTRATE SCOPE 

 With optimized reaction conditions identified, we explored the substrate scope for 

this transformation (Scheme 3.1). Due to the inseparable nature of the cis- and trans- 

diastereomers of the hydrogenated products, the crude reaction mixture was subsequently 

treated with 1,1-dicarbonyldiimidazole (CDI) to afford the oxazolidinone-fused THIQs that 

were then easily separable by column chromatography. From 175a, the relative and absolute 

stereochemistry of the trans-THIQ product was confirmed by X-ray crystallography.14  

Gratifyingly, a wide variety of aryl substituents at the 3-position of the isoquinoline 

were well tolerated, selectively yielding the trans-product in moderate to excellent ee.15 

Substitution at the para-position of the 3-aryl ring delivered hydrogenated products 175b–

175g in high selectivities, ranging from electron-rich substrates 175b–175c to more electron-

withdrawing substrates 175d–175f. Sterically encumbered substrates such as 3-naphthyl, 3-

xylyl isoquinolines also afforded products 175h–175i in good isolated yields, with slightly 

diminished enantioselectivity. Furthermore, the nitrile functional group in 175f and naphthyl 

substituent of 175h were not reduced in this process, highlighting the chemoselectivity of 

this transformation. 
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Scheme 3.1. Substrate scope of the trans-selective hydrogenation of 1,3-disubstituted 
isoquinolines.a 

 

[a] Isolated yields of the trans-isomer on a 0.2 mmol scale. SFC analysis was used to determine ee.  [b] 
Determined by 1H NMR analysis of crude reaction.  

 
Additionally, we were pleased to observe that heteroaryl-substituted isoquinolines 

were well tolerated at 60 °C and 60 bar H2 to produce trans-THIQs 175k,l in high 

enantioselectivities (97% and 94% ee, respectively), and with no erosion of 

diastereoselectivity (Scheme 3.2). Finally, different electronics of the isoquinoline 
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carbocycle such as fluorinated isoquinolines (173m–173n) were hydrogenated to afford 

electron-poor THIQs 175m–175n in high selectivities under our standard conditions. 

Scheme 3.2. Substrate scope of heteroaryl and fluorinated isoquinolines.a 

 

[a] Isolated yields of the trans-isomer on a 0.2 mmol scale. SFC analysis was used to determine ee.  [b] 
Determined by 1H NMR analysis of crude reaction. [c] Performed at 60 bar H2 and 60 °C. [d] Total 
isolated yield of inseparable diastereomers.  

 

3.4 SYNTHETIC UTILITY 

Having demonstrated that this transformation is general for a wide range of 1,3-

disubstituted isoquinolines, we sought to derivatize the oxazolidinone-fused THIQs (Scheme 

3.3). We were pleased to find that the oxazolidinone functional group could be efficiently 

removed with Ba(OH)2 •8H2O to afford THIQ 174 in 81% yield.16,17 Alternatively, reduction 
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with DIBAL afforded N-methyl THIQ 176 in 73% yield, providing a facile access of our 

hydrogenated products to N-methyl protected THIQs. 

Scheme 3.3. Synthetic derivatizations of product 175a. 

 

3.5 PRELIMINARY MECHANISTIC INSIGHTS 

 To elucidate the factors controlling the trans-selectivity in this transformation, 

several control experiments were conducted to probe the reaction mechanism (Scheme 3.4). 

Substituting TBABr for TBAI as the additive gave a 1:1.2 dr favoring the cis-product, with 

high enantioselectivities exhibited for both products. This suggests that the bromide ligand 

facilitates p-facial exchange of the substrate over iodide to afford higher levels of the trans-

diastereomer. 18 , 19  Replacing 1,2-DCE solvent for THF also delivered similar results, 

indicating that ethereal solvents inhibit the formation of trans-174 through stronger 

coordination with iridium (Scheme 3.4B).20 Overall, the combination of non-coordinating, 

chlorinated solvents and smaller halides are crucial in governing the observed trans-

selectivity. 
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Scheme 3.4. Control experiments of the asymmetric trans-selective hydrogenation. 

 

 Deuterium experiments were also conducted to determine the degree of deuteration 

of our hydrogenated products (Scheme 3.5). Interestingly, the combination of both D2 and 

CD3COOD delivered deuterium at the C1-, C3-, and C4-positions of the THIQ, as well as at 

the methylene carbon of the hydroxymethyl functional group (Scheme 3.5A). We attribute 

this exocyclic deuteration to a competitive b-hydride elimination pathway that is operative 

in situ under our trans-hydrogenation conditions (Scheme 3.5B).21,22 However, this is likely 

not a critical pathway toward the trans-product, as deuterium incorporation in the 

corresponding cis-isomer (cis-174) is also observed. Exchanging either D2 or CD3COOD for 

their protic counterparts demonstrated deuteride delivery primarily from the gas at the C1- 

and C3-positions of 174, yet the acid also enables reduction of the isoquinoline ring. This 

suggests a proton-hydride exchange occurring between the acid and the iridium hydride 

species for hydrogenation.19,23 Further investigation of the mechanism and other applications 

of this technology will be reported in due course.24 
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Scheme 3.5. Deuterium experiments of substrate 173a. 

 

 

3.6 CONCLUSIONS 

In conclusion, we have developed an asymmetric trans-selective hydrogenation 

reaction of 1,3-disubstituted isoquinolines for the syntheses of enantioenriched trans-THIQs. 

Key to this enantio- and diastereoselective reaction is the hydroxymethyl directing group at 

the C1-position which enables p-facial exchange of the substrate and facilitates hydride 
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delivery from the sterically more hindered face. This method tolerates a wide range of 

electronics, Lewis basic functionalities, and substitution at the C1, C3, and C8-positions of 

the isoquinoline core, representing one of the first examples of an asymmetric hydrogenation 

technology to selectively access the trans-diastereomer of hydrogenated aromatic 

compounds. 

 

3.7 EXPERIMENTAL SECTION 

3.7.1 MATERIALS AND METHODS 

Unless otherwise stated, reactions were performed in flame-dried glassware under an 

argon or nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried by 

passage through an activated alumina column under argon. 25  Reaction progress was 

monitored by thin-layer chromatography (TLC) or Agilent 1290 UHPLC-MS.  TLC was 

performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and visualized 

by UV fluorescence quenching, p-anisaldehyde, oxr KMnO4 staining.  Silicycle SiliaFlash® 

P60 Academic Silica gel (particle size 40–63 µm) was used for flash chromatography. 1H 

NMR spectra were recorded on Varian Inova 500 MHz and Oxford 600 MHz spectrometers 

and are reported relative to residual CHCl3 (δ = 7.26 ppm) or TMS (δ = 0.00 ppm). 13C NMR 

spectra were recorded on a Bruker 400 MHz spectrometer (100 MHz) and are reported 

relative to CHCl3 (δ = 77.16 ppm), C6D6 (δ = 128.06 ppm) . Data for 1H NMR are reported 

as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration).  

Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, p = 

pentet, sept = septuplet, m = multiplet, br s = broad singlet, br d = broad doublet.  Data for 

13C NMR are reported in terms of chemical shifts (δ ppm).  IR spectra were obtained by use 
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of a Perkin Elmer Spectrum BXII spectrometer or Nicolet 6700 FTIR spectrometer using 

thin films deposited on NaCl plates and reported in frequency of absorption (cm–1).  Optical 

rotations were measured with a Jasco P-2000 polarimeter operating on the sodium D-line 

(589 nm), using a 100 mm path-length cell. High resolution mass spectra (HRMS) were 

obtained from Agilent 6200 Series TOF with an Agilent G1978A Multimode source in 

electrospray ionization (ESI+), atmospheric pressure chemical ionization (APCI+), or mixed 

ionization mode (MM: ESI-APCI+). Reagents were purchased from commercial sources and 

used as received unless otherwise stated.  

3.7.2 EXPERIMENTAL PROCEDURES AND SPECTROSCOPIC DATA 

3.7.2.1 Syntheses of hydroxymethyl 1,3-disubstituted isoquinolines 

General Sequence: 
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tert-butyl 2-(2-(2-methyl-1,3-dioxolan-2-yl)phenyl)acetate (159a): This procedure has 

been adapted from a previous report.9 In a Schlenk flask was added P(t-Bu)3•HBF4 (119 mg, 

0.41 mmol), Pd2(dba)3 (188 mg, 0.21 mmol), a solution of 2-(2-bromophenyl)-2-methyl-1,3-

dioxolane (158a) (1.0 g, 4.1 mmol, 0.42 M), and tert-Butyl acetate (0.95 g, 8.2 mmol), 

respectively. The reaction mixture was cooled to –78 °C and sparged with nitrogen for 15 

minutes. A degassed solution of LiHMDS (1.72 g, 10.25 mmol, 1 M in toluene) was then 

added via syringe. The reaction mixture was degassed for an additional 15 minutes at –78 

°C, and allowed to slowly warm to room temperature. The reaction was stirred at room 

temperature for 18 hours, and then quenched with saturated aqueous NaHCO3. The aqueous 

layer was extracted with Et2O twice. The combined organic phases were dried over MgSO4, 

filtered, and the solvent was removed in vacuo. The crude product was purified by silica gel 

flash chromatography (5% EtOAc in hexanes) to afford 159a as a yellow oil (1.05 g, 92% 

yield): 1H NMR (400 MHz, CDCl3) δ 7.53 – 7.45 (m, 1H), 7.20 – 7.06 (m, 3H), 3.96 – 3.83 

(m, 2H), 3.71 (s, 2H), 3.68 – 3.55 (m, 2H), 1.60 (s, 3H), 1.39 (s, 9H); All characterization 

data match those reported.9 

 

 

Ot-BuO

O O

159a
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tert-butyl 2-(4-fluoro-2-(2-methyl-1,3-dioxolan-2-yl)phenyl)acetate (159b): Compound 

159b was prepared using general procedure 1 and purified by column chromatography (10% 

EtOAc in hexanes) to provide a colorless solid (1.9 g, 60% yield); 1H NMR (400 MHz, 

CDCl3) δ 7.28 (dd, J = 10.3, 2.8 Hz, 1H), 7.15 (dd, J = 8.4, 5.7 Hz, 1H), 6.94 (td, J = 8.2, 2.9 

Hz, 1H), 4.06 – 3.90 (m, 2H), 3.74 (s, 2H), 3.72 – 3.69 (m, 2H), 1.65 (s, 3H), 1.45 (s, 9H); 

All characterization data match those reported.9 

General Procedure 2: Isoquinoline Annulation and Triflation 

 

 

 

1-methylisoquinolin-3-yl trifluoromethanesulfonate (160a): To a RBF was added ester 

159a (2.78 g, 10.0 mmol), anhydrous CH2Cl2 (75 mL, 0.13 M), and TFA (25 mL, 33% 

volume of CH2Cl2), respectively. The reaction was stirred at room temperature for 2 hours, 

and then concentrated in vacuo. The crude was transferred to a Schlenk tube, dissolved in 

MeCN (10 mL, 1 M), and aqueous NH4OH (28–30%, 20 mL, 200% volume of MeCN). The 

Ot-BuO

O O

159b

F

O Ot-Bu

O O

R N

Me

OH
R

N

Me

OTf
R

1. 33% TFA in CH2Cl2
23 °C

2. NH4OH, MeCN
70 °C, 12 h

pyridine, Tf2O

CH2Cl2, 0 °C

160a–b159a–b

N

Me

OTf

160a



Chapter 3 – Iridium-Catalyzed Asymmetric Trans-Selective Hydrogenation of  
1,3-Disubstituted Isoquinolines   

 

400 

tube was sealed with Kontes valve to prevent loss of gaseous ammonia and stirred at 70 °C. 

Within 1 hour, the yellow solid of the 3-hydroxyisoquinoline began to precipitate from the 

reaction solution. After stirring for 18 hours at 70 °C, the reaction was cooled to room 

temperature, then placed in a –20 °C freezer, and the yellow solid was collected via vacuum 

filtration. This yellow powder was then washed with cold MeCN and dried at high vacuum 

to provide 3-hydroxyisoquinoline intermediate (0.70 g, 4.39 mmol). If any starting material 

remains, the filtrate could be transferred to a flask and concentrated in vacuo to undergo a 

second condensation reaction.  

To a separate flame-dried RBF containing CH2Cl2 (22 mL, 0.2 M) and distilled 

pyridine (3.6 mL, 44 mmol), the collected yellow powder (0.70 g, 4.39 mmol) was added, 

and the resulting mixture was cooled to 0 °C. Trifluoromethanesulfonic anhydride (1.5 mL, 

8.8 mmol) was then added dropwise at 0 °C, and the reaction was stirred at 0 °C for 1 hour. 

The reaction was then quenched with saturated aqueous NaHCO3 at 0 °C, and then slowly 

warmed to room temperature. The reaction was extracted with CH2Cl2, dried over Na2SO4, 

and concentrated in vacuo. The crude product was purified by column chromatography (10% 

EtOAc in hexanes) to afford 160a as a pale yellow oil (1.11 g, 38% yield over 3 steps): 1H 

NMR (400 MHz, CDCl3) δ 8.17 (dd, J = 8.5, 1.0 Hz, 1H), 7.88 (dt, J = 8.3, 1.0 Hz, 1H), 7.76 

(ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.67 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H), 7.42 (s, 1H), 2.97 (s, 3H); 

All characterization data match those reported.9 
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7-fluoro-1-methylisoquinolin-3-yl trifluoromethanesulfonate (160b): Compound 160b 

was prepared from ester 159b using general procedure 2 and purified by column 

chromatography (10% EtOAc in hexanes) to provide a pale brown oil (384 mg, 31% yield 

over 3 steps): 1H NMR (400 MHz, CDCl3) δ 7.90 (dd, J = 9.0, 5.3 Hz, 1H), 7.76 (dd, J = 9.6, 

2.5 Hz, 1H), 7.56 (ddd, J = 8.9, 8.0, 2.5 Hz, 1H), 7.43 (s, 1H), 2.92 (s, 3H); All 

characterization data match those reported.9 

General Procedure 3: Suzuki Cross-Coupling 

 

 

1-methyl-3-phenylisoquinoline (166e): To a flame-dried 20-mL scintillation vial capped 

with a PTFE-lined septum was added XPhos Pd G3 (11.63 mg, 0.014 mmol) and phenyl 

boronic acid (126 mg, 1.03 mmol). The reaction vial was then evacuated and backfilled with 

N2 three times. The isoquinoline triflate 160a (200 mg, 0.687 mmol) in degassed THF (2 

mL, 0.3 M) was then added to the vial, followed by degassed 0.5 M K3PO4 solution (4 mL, 

0.2 M). The reaction was then stirred at 40 °C for 2 hours. Afterwards, the reaction was 

diluted with water and the aqueous layer was extracted with Et2O. The combined organic 

N

Me

OTf

F

160b

N

Me

OTf
R

N

Me

Ar/Het
R

XPhos Pd G3

2:1 K3PO4(0.5 M aq):THF
40 °C, 2 h

Ar/Het–B(OH)2+

160a–b 161b–s, 166e, 172a,c

N

Me

166e



Chapter 3 – Iridium-Catalyzed Asymmetric Trans-Selective Hydrogenation of  
1,3-Disubstituted Isoquinolines   

 

402 

phases were dried over Na2SO4, concentrated in vacuo, and purified by column 

chromatography (5% EtOAc in hexanes) to afford 166e as a white solid (138 mg, 92% yield): 

1H NMR (400 MHz, CDCl3) δ 8.15 – 8.13 (m, 3H), 7.93 (s, 1H), 7.86 (dt, J = 8.3, 1.0 Hz, 

1H), 7.67 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.57 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.52 – 7.48 (m, 

2H), 7.42 – 7.38 (m, 1H), 3.05 (s, 3H); All characterization data match those reported.9 

 

3-(4-(tert-butyl)phenyl)-1-methylisoquinoline (161b): Compound 161b was prepared 

from triflate 160a using general procedure 3 and purified by column chromatography (5% 

EtOAc in hexanes) to provide a pale yellow oil (177 mg, 93% yield); 1H NMR (400 MHz, 

CDCl3) δ 8.12 (d, J = 8.4 Hz, 1H) 8.06 (d, J = 8.5 Hz, 2H), 7.90 (s, 1H), 7.85 (d, J = 8.2 Hz, 

1H), 7.66 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 7.57 – 7.52 (m, 3H), 3.04 (s, 3H), 1.38 (s, 9H); All 

characterization data match those reported.9 

 

3-([1,1'-biphenyl]-4-yl)-1-methylisoquinoline (161c): Compound 161c was prepared from 

triflate 160a using general procedure 3 and purified by column chromatography (5% EtOAc 

in hexanes) to provide a colorless solid (191 mg, 94% yield); 1H NMR (400 MHz, CDCl3) δ 

8.24 – 8.22 (m, 2H), 8.14 (d, J = 8.4 Hz, 1H), 7.98 (s, 1H), 7.88 (d, J = 8.1 Hz, 1H), 7.75 – 

N

Me

161b

N

Me

161c
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7.73 (m, 2H), 7.70 – 7.67 (m, 3H), 7.58 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H), 7.50 – 7.46 (m, 2H), 

7.39 – 7.37 (m, 1H), 3.06 (s, 3H); All characterization data match those reported.9 

 

3-(4-methoxyphenyl)-1-methylisoquinoline (161d): Compound 161d was prepared from 

triflate 160a using general procedure 3 and purified by column chromatography (5% EtOAc 

in hexanes) to afford a white solid (79 mg, 93% yield): 1H NMR (400 MHz, CDCl3) 1H NMR 

(400 MHz, CDCl3) δ 8.14 – 8.07 (m, 3H), 7.84 (s, 1H), 7.81 (d, J = 8.5, 1H), 7.64 (ddd, J = 

8.2, 6.8, 1.2 Hz, 1H), 7.53 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.06 – 7.01 (m, 2H), 3.88 (s, 3H), 

3.03 (s, 3H); All characterization data match those reported.9 

 

3-(4-fluorophenyl)-1-methylisoquinoline (161e): Compound 161e was prepared from 

triflate 160a using general procedure 3 and purified by column chromatography (10% EtOAc 

in hexanes) to provide a white solid (155 mg, 95% yield); 1H NMR (400 MHz, CDCl3) δ 

8.17 – 8.07 (m, 3H), 7.89 – 7.81 (m, 2H), 7.68 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.58 (ddd, J = 

8.2, 6.8, 1.3 Hz, 1H), 7.20 – 7.16 (m, 2H), 3.04 (s, 3H); All characterization data match those 

reported.9 
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1-methyl-3-(4-(trifluoromethyl)phenyl)isoquinoline (161f): Compound 161f was 

prepared from triflate 160a using general procedure 3 and purified by column 

chromatography (2% to 3% EtOAc in hexanes) to afford a white solid (89 mg, 91% yield): 

1H NMR (400 MHz, CDCl3) δ 8.26 (d, J = 8.1 Hz, 2H), 8.15 (d, J = 8.4, 1H), 7.96 (s, 1H), 

7.88 (d, J = 8.2 Hz, 1H), 7.78 – 7.73 (m, 2H), 7.73 – 7.67 (m, 1H), 7.63 – 7.59 (m, 1H), 3.05 

(s, 3H); All characterization data match those reported.9 

 

 

4-(1-methylisoquinolin-3-yl)benzonitrile (161g): Compound 161g was prepared from 

triflate 160a using general procedure 3 and purified by column chromatography (10% to 20% 

EtOAc in hexanes) to provide a white solid (144 mg, 86% yield); 1H NMR (400 MHz, 

CDCl3) δ 8.38 – 8.22 (m, 2H), 8.16 (d, J = 8.3 Hz, 1H), 7.99 (s, 1H), 7.89 (d, J = 8.3, 1H), 

7.82 – 7.75 (m, 2H), 7.73 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 7.64 (ddd, J = 8.2, 6.9, 1.3 Hz, 1H), 

3.05 (s, 3H); All characterization data match those reported.9 
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1-methyl-3-(naphthalen-2-yl)isoquinoline (161j): Compound 161j was prepared from 

triflate 160a using general procedure 3 and purified by column chromatography (5% EtOAc 

in hexanes) to provide a white solid (159 mg, 86% yield); 1H NMR (400 MHz, CDCl3) δ 

8.68 (s, 1H), 8.27 (dd, J = 8.6, 1.8 Hz, 1H), 8.16 (dq, J = 8.3, 1.0 Hz, 1H), 8.07 (s, 1H), 8.00 

– 7.96 (m, 2H), 7.91 – 7.86 (m, 2H), 7.70 (ddd, J = 8.2, 6.8, 1.2 Hz, 1H), 7.59 (ddd, J = 8.2, 

6.8, 1.3 Hz, 1H), 7.56 – 7.46 (m, 2H), 3.09 (s, 3H); All characterization data match those 

reported.9 

 

3-(3,5-dimethylphenyl)-1-methylisoquinoline (161k): Compound 161k was prepared 

from triflate 160a using general procedure 3 and purified by column chromatography to 

provide a white solid (156 mg, 92% yield); 1H NMR (400 MHz, CDCl3) δ 8.13 (dd, J = 8.4, 

1.1 Hz, 1H), 7.90 (s, 1H), 7.85 (dd, J = 8.2, 0.7 Hz, 1H), 7.75 (s, 2H), 7.66 (ddd, J = 8.2, 6.8, 

1.2 Hz, 1H), 7.56 (ddd, J = 8.2, 6.9, 1.3 Hz, 1H), 7.05 (s, 1H), 3.05 (s, 3H), 2.43 (s, 6H); All 

characterization data match those reported.9 
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3-(3,4-dimethoxyphenyl)-1-methylisoquinoline (161l): Compound 161l was prepared 

from triflate 160a using general procedure 3 and purified by column chromatography (20% 

EtOAc in hexanes) to provide a white solid (195 mg, 99% yield); 1H NMR (400 MHz, 

CDCl3) δ 8.11 (d, J = 8.4, 1H), 7.89 – 7.81 (m, 2H), 7.77 (d, J = 2.1 Hz, 1H), 7.71 – 7.61 (m, 

2H), 7.55 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H), 6.99 (d, J = 8.4 Hz, 1H), 4.04 (s, 3H), 3.95 (s, 3H), 

3.04 (s, 3H); All characterization data match those reported.9 

 

 

1-methyl-3-(1-methyl-1H-pyrazol-4-yl)isoquinoline (161q): Compound 161q was 

prepared from triflate 160a using general procedure 3 and purified by column 

chromatography (50% to 60% EtOAc in hexanes) to provide a white solid (112 mg, 99% 

yield): 1H NMR (400 MHz, CDCl3) δ 8.07 (d, J = 8.4 Hz, 1H), 8.04 – 8.00 (m, 2H), 7.77 (dd, 

J = 8.2, 1.1 Hz, 1H), 7.67 – 7.60 (m, 2H), 7.54 – 7.47 (m, 1H), 3.98 (s, 3H), 2.97 (s, 3H); All 

characterization data match those reported.9 

 

N

Me

161l

OMe
OMe

N

Me

161q

N
N
Me



Chapter 3 – Iridium-Catalyzed Asymmetric Trans-Selective Hydrogenation of  
1,3-Disubstituted Isoquinolines   

 

407 

 

3-(6-methoxypyridin-3-yl)-1-methylisoquinoline (161s): Compound 161s was prepared 

from triflate 160a using general procedure 3 and purified by column chromatography (15% 

EtOAc in hexanes) to afford a white solid (232 mg, 90% yield): 1H NMR (400 MHz, CDCl3) 

δ 8.89 (dd, J = 2.5, 0.8 Hz, 1H), 8.36 (dd, J = 8.6, 2.5 Hz, 1H), 8.11 (dd, J = 8.4, 1.0 Hz, 

1H), 7.85 – 7.83 (m, 2H), 7.67 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.56 (ddd, J = 8.1, 6.9, 1.3 Hz, 

1H), 6.87 (dd, J = 8.6, 0.8 Hz, 1H), 4.01 (s, 3H), 3.02 (s, 3H); 13C NMR (100 MHz, CDCl3) 

δ 164.4, 159.0, 147.7, 145.7, 137.6, 136.8, 130.3, 129.2, 127.6, 126.9, 126.6, 125.8, 114.5, 

110.8, 53.8, 22.8; IR (Neat Film, NaCl) 2937, 2363, 1604, 1568, 1498, 1443, 1326, 1278, 

1254, 1119, 1021, 831, 745; HRMS (MM:ESI-APCI+) m/z calc’d for C16H15N2O [M+H]+: 

251.1184, found 251.1185. 

 

7-fluoro-1-methyl-3-phenylisoquinoline (172a): Compound 172a was prepared from 

triflate 160b using general procedure 3 and purified by column chromatography (5% EtOAc 

in hexanes) to provide a white solid (110 mg, 93% yield): 1H NMR (400 MHz, CDCl3) δ 

8.14 – 8.11 (m, 2H), 7.90 (s, 1H), 7.85 (dd, J = 9.2, 5.7 Hz, 1H), 7.73 – 7.68 (m, 1H), 7.54 – 

7.48 (m, 2H), 7.48 – 7.38 (m, 2H), 2.99 (s, 3H); All characterization data match those 

reported.9 
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7-fluoro-1-methyl-3-(4-(trifluoromethyl)phenyl)isoquinoline (172c): Compound 172c 

was prepared from triflate 160b using general procedure 3 and purified by column 

chromatography (5% EtOAc in hexanes) to provide a white solid (150 mg, 98% yield): 1H 

NMR (400 MHz, CDCl3) δ 8.22 (d, J = 8.0 Hz, 2H), 7.94 (s, 1H), 7.90 – 7.85 (m, 1H), 7.74 

(d, J = 8.0 Hz, 2H), 7.71 – 7.69 (m, 1H), 7.53 – 7.43 (m, 1H), 2.99 (s, 3H); All 

characterization data match those reported.9 

General Procedure 4: Oxidation and Reduction to Hydroxymethyl Isoquinoline 

 

 

(3-phenylisoquinolin-1-yl)methanol (173a): To a 20-mL microwave vial containing a stir 

bar was added SeO2 (140 mg, 1.26 mmol), isoquinoline 166e (138 mg, 0.63 mmol), and 1,4-

dioxane (13 mL, 0.05 M). The reaction vial was then sealed and heated to 110 °C while 

stirring for 2 hours. The reaction was then cooled to room temperature, filtered through celite, 

and rinsed with EtOAc. The filtrate was then concentrated in vacuo to afford the aldehyde 

intermediate, which was used in the next step without further purification.  
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A scintillation vial containing the crude in 4:1 DCM:MeOH (0.1 M) was added sodium 

borohydride (24 mg, 0.63 mmol) at room temperature. The reaction was stirred until no 

starting material remained by TLC, and then quenched by the addition of citric acid 

monohydrate (132 mg, 0.63 mmol). The reaction was stirred for an additional 10 minutes 

then basified by the addition of saturated aqueous NaHCO3. The layers were separated and 

the aqueous phase was extracted with CH2Cl2. The combined organic phases were dried over 

Na2SO4 and concentrated in vacuo. The crude product was purified by column 

chromatography (20% acetone in hexanes) to afford 173a as a white solid (100 mg, 68% 

yield over 2 steps): 1H NMR (400 MHz, CDCl3) δ 8.18 – 8.15 (d, J = 7.0 Hz, 2H), 8.03 (s, 

1H), 7.94 – 7.92 (m, 2H), 7.73 (ddd, J = 8.3, 6.9, 1.1 Hz, 1H), 7.61 (ddd, J = 8.1, 6.9, 1.2 Hz, 

1H), 7.53 (t, J = 7.6 Hz, 2H), 7.46 – 7.42 (m, 1H), 5.31 (s, 2H), 5.26 (br s, 1H, OH); All 

characterization data match those reported.9 

 

(3-(4-methoxyphenyl)isoquinolin-1-yl)methanol (173b): Compound 162d was prepared 

using general procedure 4 and purified by column chromatography (20% EtOAc in hexanes) 

to provide a white solid (48 mg, 73% yield): 1H NMR (400 MHz, CDCl3) δ 8.14 – 8.07 (m, 

2H), 7.93 (s, 1H), 7.91 – 7.85 (m, 2H), 7.69 (ddd, J = 8.2, 6.9, 1.1 Hz, 1H), 7.56 (ddd, J = 

8.2, 6.9, 1.2 Hz, 1H), 7.06 – 7.03 (m, 2H), 5.28 (s, 3H), 3.89 (s, 3H); All characterization 

data match those reported.9 
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((3-(4-(tert-butyl)phenyl)isoquinolin-1-yl)methanol (173c): Compound 173c was 

prepared using general procedure 4 and purified by column chromatography (20% EtOAc in 

hexanes) to provide a white solid (162 mg, 95% yield); 1H NMR (400 MHz, CDCl3) δ 8.20 

– 8.06 (m, 2H), 8.00 (s, 1H), 7.97 – 7.85 (m, 2H), 7.72 (ddd, J = 8.4, 6.9, 1.2 Hz, 1H), 7.62 

– 7.58 (m, 1H), 7.58 – 7.52 (m, 2H), 5.30 (s, 3H), 1.40 (s, 9H); All characterization data 

match those reported.9 

 

(3-(4-fluorophenyl)isoquinolin-1-yl)methanol (173d): Compound 173d was prepared 

using general procedure 4 and purified by column chromatography (20% EtOAc in hexanes) 

to provide a colorless solid (149 mg, 95% yield); 1H NMR (400 MHz, CDCl3) δ 8.13 (dd, J 

= 8.9, 5.4 Hz, 2H), 7.96 (s, 1H), 7.95 – 7.89 (m, 2H), 7.73 (ddd, J = 8.3, 6.9, 1.1 Hz, 1H), 

7.61 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 7.21 (dd, J = 8.9, 8.5 Hz, 2H), 5.30 (s, 2H), 5.17 (br s, 

1H, OH); All characterization data match those reported.9 
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(3-(4-(trifluoromethyl)phenyl)isoquinolin-1-yl)methanol (173e): Compound 173e was 

prepared using general procedure 4 and purified by column chromatography (10% to 20% 

EtOAc in hexanes) to provide a white solid (23 mg, 25% yield); 1H NMR (400 MHz, CDCl3) 

δ 8.26 (d, J = 7.8 Hz, 2H), 8.07 (s, 1H), 8.00 – 7.92 (m, 2H), 7.82 – 7.73 (m, 3H), 7.70 – 7.61 

(m, 1H), 5.32 (s, 2H), 5.10 (br s, 1H, OH); All characterization data match those reported.9 

 

4-(1-(hydroxymethyl)isoquinolin-3-yl)benzonitrile (173f): Compound 173f was prepared 

using general procedure 4 and purified by column chromatography (30% EtOAc in hexanes) 

to provide a white solid (138 mg, 92% yield); 1H NMR (400 MHz, CDCl3) δ 8.31 – 8.18 (m, 

2H), 8.09 (s, 1H), 7.97 (m, 2H), 7.86 – 7.74 (m, 3H), 7.68 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 

5.32 (s, 2H), 4.99 (s, 1H); All characterization data match those reported.9 

 

(3-([1,1'-biphenyl]-4-yl)isoquinolin-1-yl)methanol (173g): Compound 173g was prepared 

using general procedure 4 and purified by column chromatography (20% EtOAc in hexanes) 
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to provide a colorless solid (181 mg, 92% yield); 1H NMR (400 MHz, CDCl3) δ 8.30 – 8.20 

(m, 2H), 8.07 (s, 1H), 7.98 – 7.88 (m, 2H), 7.81 – 7.66 (m, 5H), 7.62 (ddd, J = 8.4, 6.9, 1.2 

Hz, 1H), 7.49 (dd, J = 8.2, 6.8 Hz, 2H), 7.43 – 7.34 (m, 1H), 5.32 (s, 3H); All characterization 

data match those reported.9 

 

(3-(naphthalen-2-yl)isoquinolin-1-yl)methanol (173h): Compound 173h was prepared 

using general procedure 4 and purified by column chromatography (20% EtOAc in hexanes) 

to provide a white solid (158 mg, 97% yield); 1H NMR (400 MHz, CDCl3) δ 8.67 (s, 1H), 

8.27 (dd, J = 8.6, 1.8 Hz, 1H), 8.16 (s, 1H), 8.05 – 7.93 (m, 4H), 7.91 – 7.89 (m, 1H), 7.75 

(ddd, J = 8.2, 6.9, 1.1 Hz, 1H), 7.62 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.58 – 7.47 (m, 2H), 5.34 

(s, 3H); All characterization data match those reported.9 

 

(3-(3,5-dimethylphenyl)isoquinolin-1-yl)methanol (173i): Compound 173i was prepared 

using general procedure 4 and purified by column chromatography (20% EtOAc in hexanes) 

to provide a white solid (155 mg, 95% yield); 1H NMR (400 MHz, CDCl3) δ 8.00 (s, 1H), 

7.94 – 7.91 (m, 2H), 7.78 – 7.76 (m, 2H), 7.72 (ddd, J = 8.3, 6.9, 1.2 Hz, 1H), 7.60 (ddd, J = 

N
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8.2, 6.9, 1.2 Hz, 1H), 7.09 (s, 1H), 5.30 (s, 3H), 2.44 (s, 6H); All characterization data match 

those reported.9 

 

(3-(3,4-dimethoxyphenyl)isoquinolin-1-yl)methanol (173j): Compound 173j was 

prepared using general procedure 4 and purified by column chromatography (40% EtOAc in 

hexanes) to provide a white solid (180 mg, 91% yield); 1H NMR (400 MHz, CDCl3) δ 7.95 

(s, 1H), 7.93 – 7.90 (m, 2H), 7.77 – 7.67 (m, 3H), 7.58 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.03 

– 7.01 (m, 1H), 5.30 (s, 2H), 5.26 (br s, 1H, OH), 4.03 (s, 3H), 3.97 (s, 3H); All 

characterization data match those reported.9 

 

(3-(1-methyl-1H-pyrazol-4-yl)isoquinolin-1-yl)methanol (173k): Compound 173k was 

prepared using general procedure 4 and purified by column chromatography (70% to 80% 

EtOAc in hexanes + 1% NEt3) to provide a pale beige solid (72 mg, 62% yield): 1H NMR 

(400 MHz, CDCl3) δ 8.08 – 7.95 (m, 2H), 7.85 – 7.79 (m, 2H), 7.71 – 7.59 (m, 2H), 7.53 – 

7.49 (m, 1H), 5.21 (s, 2H), 3.98 (s, 3H); All characterization data match those reported.9 
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(3-(pyridin-2-yl)isoquinolin-1-yl)methanol (173l): Compound 173l was prepared from 

isoquinoline 161s using general procedure 4 and purified by column chromatography (20% 

to 30% EtOAc in hexanes) to provide a white solid (177 mg, 72% yield); 1H NMR (400 

MHz, CDCl3) δ 8.94 (dd, J = 2.6, 0.7 Hz, 1H), 8.34 (dd, J = 8.7, 2.5 Hz, 1H), 7.94 – 7.91 (m, 

3H), 7.73 (ddd, J = 8.2, 6.9, 1.1 Hz, 1H), 7.61 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 6.89 (dd, J = 

8.7, 0.7 Hz, 1H), 5.30 (s, 2H), 5.10 (br s, 1H, OH), 4.03 (s, 3H); 13C NMR (100 MHz, CDCl3) 

δ 164.6, 157.7, 146.4, 145.7, 137.2, 137.0, 131.1, 128.2, 127.8, 127.6, 124.1, 123.3, 115.4, 

111.1, 61.6, 53.9; IR (Neat Film, NaCl) 3380, 3058, 2948, 2363, 1624, 1606, 1573, 1504, 

1447, 1380, 1326, 1286, 1088, 1024, 832, 747 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d 

for C16H15N2O2 [M+H]+: 267.1128, found 267.1131. 

 

(7-fluoro-3-phenylisoquinolin-1-yl)methanol (173m): Compound 173m was prepared 

using general procedure 4 and purified by column chromatography (10% EtOAc in hexanes) 

to provide a white solid (94 mg, 81% yield): 1H NMR (400 MHz, CDCl3) δ 8.13 (d, J = 8.0 

Hz, 2H), 8.00 (s, 1H), 7.96 – 7.87 (m, 1H), 7.57 – 7.47 (m, 4H), 7.44 (td, J = 6.9, 6.4, 1.4 

Hz, 1H), 5.21 (s, 2H), 5.11 (br s, 1H, OH); All characterization data match those reported.9 
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(7-fluoro-3-(4-(trifluoromethyl)phenyl)isoquinolin-1-yl)methanol (173n): Compound 

173n was prepared using general procedure 4 and purified by column chromatography (10% 

EtOAc in hexanes) to provide a white solid (80 mg, 60% yield): 1H NMR (400 MHz, CDCl3) 

δ 8.20 (d, J = 8.1 Hz, 2H), 8.02 (s, 1H), 7.95 (dd, J = 9.8, 5.4 Hz, 1H), 7.74 (d, J = 8.3 Hz, 

2H), 7.58 – 7.47 (m, 2H), 5.21 (s, 2H), 4.94 (br s, 1H, OH); All characterization data match 

those reported.9 

3.7.2.2 Syntheses of isoquinolines with different directing groups 

 

(3-phenylisoquinolin-1-yl)methyl acetate (166a): To a scintillation vial containing a stir 

bar and isoquinoline 173a (165 mg, 0.70 mmol) in THF (7 mL, 0.1 M) was added DMAP 

(8.6 mg, 0.07 mmol) and pyridine (0.14 mL, 1.75 mmol). Acetic anhydride (0.1 mL, 1.05 

mmol) was then added dropwise. The reaction was stirred overnight at room temperature 

then diluted with Et2O and washed with saturated aqueous NH4Cl. The organic phase was 

collected, dried over Na2SO4 and concentrated in vacuo. The crude product was purified by 

column chromatography (10% EtOAc in hexanes) to afford 166a as a colorless viscous oil 

(194 mg, >99% yield): 1H NMR (400 MHz, CDCl3) δ 8.19 – 8.13 (m, 2H), 8.11 (dd, J = 8.4, 

1.0 Hz, 1H), 8.07 (s, 1H), 7.92 (dt, J = 8.3, 0.9 Hz, 1H), 7.71 (ddd, J = 8.2, 6.8, 1.2 Hz, 1H), 
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7.61 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.54 – 7.47 (m, 2H), 7.45 – 7.38 (m, 1H), 5.79 (s, 2H), 

2.20 (s, 3H); All characterization data match those reported.9 

 

 

1-(methoxymethyl)-3-phenylisoquinoline (166b): To a scintillation vial containing a stir 

bar and isoquinoline 173a (165 mg, 0.70 mmol) in THF (7 mL, 0.1 M) was added KOt-Bu 

(86 mg, 0.77 mmol) at room temperature. The resulting mixture was stirred for 5 minutes, 

then cooled to 0 °C, and MeI (0.05 mL, 0.77 mmol) was added. The reaction was allowed to 

slowly warm to room temperature overnight and then was quenched with saturated aqueous 

NH4Cl. The organic phase was collected and the aqueous phase was extracted with EtOAc. 

The organic phases were combined, dried over MgSO4, and concentrated in vacuo. The crude 

product was purified by column chromatography (5% EtOAc in hexanes) to afford 166b as 

a white solid (79 mg, 45% yield): 1H NMR (400 MHz, CDCl3) δ 8.36 (dd, J = 8.4, 1.1 Hz, 

1H), 8.20 – 8.13 (m, 2H), 8.04 (s, 1H), 7.89 (d, J = 8.3 Hz, 1H), 7.69 (ddd, J = 8.2, 6.8, 1.2 

Hz, 1H), 7.60 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.51 (td, J = 7.3, 6.5, 1.2 Hz, 2H), 7.45 – 7.37 

(m, 1H), 5.14 (s, 2H), 3.51 (s, 3H); All characterization data match those reported.9 
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1-((benzyloxy)methyl)-3-phenylisoquinoline (166c): This procedure has been adapted 

from a previous report.26 To a flame-dried RBF equipped with a stir bar was added NaH 

(36.4 mg, 60% w/w in oil, 0.91 mmol) and THF (7 mL, 0.1 M). To this suspension, 

isoquinoline 173a (165 mg, 0.70 mmol) was added. After 5 minutes of stirring at room 

temperature, the reaction mixture was cooled to 0 °C and BnBr (0.91 mL, 0.91 mmol) was 

added. The reaction was allowed to slowly warm to room temperature overnight. Silica (1 g) 

was then added and the solvent was evaporated under vacuum. The crude product was 

purified by column chromatography (5% EtOAc in hexanes) to afford 166c as a colorless 

viscous oil (153 mg, 67% yield): 1H NMR (400 MHz, CDCl3) δ 8.39 (dd, J = 8.4, 1.1 Hz, 

1H), 8.21 – 8.14 (m, 2H), 8.04 (s, 1H), 7.89 (d, J = 8.3 Hz, 1H), 7.69 (ddd, J = 8.2, 6.8, 1.2 

Hz, 1H), 7.58 (ddd, J = 8.3, 6.8, 1.2 Hz, 1H), 7.51 (dd, J = 8.4, 6.9 Hz, 2H), 7.45 – 7.27 (m, 

6H), 5.24 (s, 2H), 4.67 (s, 2H); All characterization data match those reported.9 

 

3-phenylisoquinoline-1-carbaldehyde (166f): To a Schlenk flask containing a stir bar was 

added SeO2 (140 mg, 1.26 mmol) and isoquinoline 166e (138 mg, 0.63 mmol) in 1,4-dioxane 

(13 mL, 0.05 M). The reaction vial was then sealed and heated to 110 °C while stirring for 2 

hours. The reaction was then cooled to room temperature and filtered through celite rinsing 
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with EtOAc. The crude product was then purified by column chromatography (5% EtOAc 

in hexanes) to afford 166f as a pale yellow solid (1.32 g, 96% yield): 1H NMR (400 MHz, 

CDCl3) δ 10.50 (s, 1H), 9.32 (d, J = 8.2 Hz, 1H), 8.31 (s, 1H), 8.24 (d, J = 8.1 Hz, 2H), 7.97 

(d, J = 7.3 Hz, 1H), 7.84 – 7.67 (m, 2H), 7.56 (t, J = 7.5 Hz, 2H), 7.47 (t, J = 7.4 Hz, 1H); 

All characterization data match those reported.9 

 

tert-butyl ((3-phenylisoquinolin-1-yl)methyl)carbamate (166d): To a solution of 

aldehyde 166f (150 mg, 0.64 mmol) and t-butyl carbamate (150 mg, 1.28 mmol) in MeCN 

(6.5 mL, 0.1 M) were added trifluoroacetic acid (0.15 mL, 1.92 mmol) and triethylsilane (1.0 

mL, 6.4 mmol). The reaction was stirred at room temperature overnight and then quenched 

with saturated aqueous Na2CO3 and extracted with EtOAc. The combined organic phases 

were washed with brine, dried over Na2SO4 and concentrated in vacuo. The crude product 

was purified by column chromatography (15% EtOAc in hexanes) to afford 166d as a white 

solid (160 mg, 75% yield): 1H NMR (400 MHz, CDCl3) δ 8.16 (d, J = 7.7 Hz, 2H), 8.10 (d, 

J = 8.4 Hz, 1H), 8.00 (s, 1H), 7.90 (d, J = 8.2 Hz, 1H), 7.70 (ddd, J = 8.1, 6.9, 1.1 Hz, 1H), 

7.61 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.53 (t, J = 7.6 Hz, 2H), 7.48 – 7.40 (m, 1H), 6.43 (br s, 

1H), 5.03 (d, J = 4.4 Hz, 2H), 1.54 (s, 9H); All characterization data match those reported.9 
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(3-phenylisoquinolin-1-yl)methanamine (166g): To a solution of carbamate 166d (225 

mg, 0.67 mmol) in CH2Cl2 (2.2 mL, 0.3 M) was added trifluoroacetic acid (1.03 mL, 13.48 

mmol, 20 equiv). The reaction was stirred at 23 °C for 1 hour and then neutralized to neutral 

pH with 1M NaOH. The organic phase was washed with water and extracted with CH2Cl2 (2 

x 20 mL), then dried over Na2SO4 and concentrated in vacuo. The crude product was purified 

by column chromatography (5% MeOH in CH2Cl2 with 1% NEt3) to afford 166g as a yellow 

solid (113 mg, 72% yield): 1H NMR (400 MHz, CDCl3) δ 8.21 – 8.18 (m, 2H), 8.09 (d, J = 

8.5 Hz, 1H), 7.97 (s, 1H), 7.88 (d, J = 7.8 Hz, 1H), 7.68 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.58 

(ddd, J = 8.2, 6.9, 1.3 Hz, 1H), 7.53 – 7.49 (m, 2H), 7.44 – 7.39 (m, 1H), 4.56 (s, 2H), 2.31 

(br s, 2H); 13C NMR (100 MHz, CDCl3) δ 159.9, 149.5, 139.6, 137.1, 130.3, 128.9, 128.6, 

128.0, 127.2, 127.0, 125.2, 124.1, 115.7, 44.6; IR (Neat Film, NaCl) 3276, 3054, 2968, 2924, 

1622, 1574, 1501, 1456, 1439, 1365, 1326, 1201, 882, 784, 766, 694 cm–1; HRMS (MM:ESI-

APCI+) m/z calc’d for C16H15N2 [M+H]+: 235.1235, found 235.1231. 

 

3.7.2.3 Hydrogenation reactions 

General Procedure 5: Hydrogenation Reactions 
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An oven-dried 20-mL scintillation vial containing a magnetic stir bar and an 

isoquinoline substrate (0.2 mmol) was capped with a PTFE-lined septum and pierced with 

two 21-gauge needles. The vials were then placed in a Parr bomb and brought into a N2-filled 

glovebox, with the exception of the pressure gauge. In a nitrogen-filled glovebox, a solution 

of the ligand (SL-J418-1) (4.53 mg, 0.006 mmol per reaction) and [Ir(cod)Cl]2 (1.68 mg, 

0.0025 mmol per reaction) in 1,2-DCE (1.8 mL per reaction) was prepared and allowed to 

stand for 10 minutes. Meanwhile, a solution of TBABr (4.83 mg, 0.015 mmol per reaction) 

in AcOH (0.2 mL per reaction) was prepared in a 1-dram vial, and 0.2 mL of the solution 

was added to each reaction vial by syringe. Afterwards, 1.8 mL of the homogeneous iridium 

catalyst solution was added to each reaction vial by syringe. After re-capping the vials with 

caps equipped with needles, the reaction vials were placed in the bomb and the top was 

covered tightly with plastic wrap secured by a rubber band. The bomb was then removed 

from the glovebox, and the pressure gauge was quickly screwed in place and tightened. The 

bomb was charged to 5-10 bar H2 and slowly released. This process was repeated two more 

times, before charging the bomb to 20 bar of H2 (or 60 bar H2). The bomb was then left 

stirring at 200 rpm at 23 °C (or placed in an oil bath and heated to 60 °C) for 18 hours. Then, 

the bomb was removed from the stir plate and the hydrogen pressure was vented. The 

reaction vials were removed from the bomb and each solution was basified by the addition 

of saturated aqueous K2CO3 (2 mL). The layers were separated and the aqueous layer was 

extracted with EtOAc (3 x 2 mL). The combined organics layers were then dried over 

Na2SO4 and concentrated in vacuo. The diastereoselectivity of the hydrogenation reaction 

was determined by crude 1H NMR analysis.  
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Then, to a scintillation vial containing the crude reaction mixture in THF (0.05 M) 

was added 1,1’-carbonyldiimidazole (CDI) (130 mg, 0.8 mmol, 4 equiv) and heated at 50 °C 

for 15 hours. The reaction mixture was then cooled to 23 °C, concentrated, and purified by 

column chromatography to separate the diastereomers and isolate the trans-product. 

Please note that the NMR data listed is for the major diastereomer. The enantiomeric 

excess was determined by chiral SFC analysis of the trans-product (see Table 3.5). The 

absolute configuration was determined for compound 175a via X-ray crystallographic 

analysis, and the absolute configuration for all other products has been inferred by analogy.  

 

 

((1S,3R)-3-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)methyl acetate (167a): Compound 

167a was prepared from isoquinoline 166a using general procedure 5 and determined by 1H 

NMR spectroscopy of the crude reaction mixture to consist of a mixture of diastereomers; 

(dr = >20:1); 1H NMR (400 MHz, CDCl3) δ 7.51 – 7.45 (m, 2H), 7.41 – 7.37 (m, 2H), 7.34 

– 7.30 (m, 1H), 7.27 – 7.24 (m, 1H), 7.23 – 7.18 (m, 2H), 7.16 – 7.10 (m, 1H), 4.78 (dd, J = 

10.8, 3.5 Hz, 1H), 4.54 – 4.51 (m, 1H), 4.14 (dd, J = 10.8, 8.7 Hz, 1H), 4.05 (dd, J = 11.1, 

3.4 Hz, 1H), 3.08 – 3.01 (m, 1H), 2.90 (dd, J = 15.5, 3.6 Hz, 1H), 2.08 (s, 3H); All 

characterization data match those reported.9 

NH

OAc
167a
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(1S,3R)-1-(methoxymethyl)-3-phenyl-1,2,3,4-tetrahydroisoquinoline (167b): 

Compound 167b was prepared from isoquinoline 166b using general procedure 5 and 

determined by 1H NMR spectroscopy of the crude reaction mixture to consist of a mixture 

of diastereomers; (dr = 17:1); 1H NMR (400 MHz, CDCl3) δ 7.48 – 7.46 (m, 2H), 7.39 – 7.35 

(m, 2H), 7.32 – 7.27 (m, 1H), 7.25 – 7.20 (m, 1H), 7.20 – 7.15 (m, 2H), 7.16 – 7.10 (m, 1H), 

4.45 – 4.42 (m, 1H), 4.07 – 3.94 (m, 2H), 3.59 (t, J = 8.7 Hz, 1H), 3.43 (s, 3H), 3.06 (dd, J = 

16.0, 11.1 Hz, 1H), 2.92 (dd, J = 16.0, 3.6 Hz, 1H); All characterization data match those 

reported.9 

 

(1S,3R)-1-((benzyloxy)methyl)-3-phenyl-1,2,3,4-tetrahydroisoquinoline (167c): 

Compound 167c was prepared from isoquinoline 166c using general procedure 5 and 

determined by 1H NMR spectroscopy of the crude reaction mixture to consist of a mixture 

of diastereomers; (dr = >20:1); 1H NMR (400 MHz, CDCl3) δ 7.48 – 7.46 (m, 2H), 7.40 – 

7.34 (m, 6H), 7.32 – 7.28 (m, 2H), 7.22 – 7.16 (m, 3H), 7.14 – 7.11 (m, 1H), 4.61 (s, 2H), 

4.48 (dd, J = 8.7, 3.4 Hz, 1H), 4.12 (dd, J = 9.0, 3.6 Hz, 1H), 4.04 (dd, J = 11.1, 3.5 Hz, 1H), 

3.67 (t, J = 8.7 Hz, 1H), 3.05 (dd, J = 15.9, 11.1 Hz, 1H), 2.91 (dd, J = 15.8, 3.5 Hz, 1H); All 

characterization data match those reported.9 

NH

OMe
167b

NH

OBn
167c
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tert-butyl (((1S,3R)-3-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)methyl)carbamate 

(167d): Compound 167d was prepared from isoquinoline 166d using general procedure 5 

and determined by 1H NMR spectroscopy of the crude reaction mixture as a mixture of 

diastereomers; (dr = 1.4:1); 25% ee for major diastereomer; [α]D25 –1.3 (c 0.53, CHCl3); 

Major diastereomer: 1H NMR (400 MHz, CDCl3) δ 7.47 – 7.45 (m, 2H), 7.40 – 7.36 (m, 2H), 

7.32 – 7.28 (m, 1H), 7.20 – 7.18 (m, 3H), 7.14 – 7.12 (m, 1H), 5.12 (br s, 1H), 4.18 (dd, J = 

10.7, 4.0 Hz, 1H), 3.59 – 3.54 (m, 1H), 3.39 (ddd, J = 14.2, 10.7, 4.9 Hz, 1H), 3.02 (dd, J = 

16.3, 4.2 Hz, 1H), 2.94 (dd, J = 16.3, 10.8 Hz, 1H), 1.44 (s, 9H); 13C NMR (100 MHz, CDCl3) 

δ 155.0, 142.8, 134.5, 134.3, 128.2, 127.6, 126.4, 126.0, 125.7, 125.7, 125.1, 55.2, 50.1, 43.6, 

36.1, 28.9, 27.4; IR (Neat Film, NaCl) 3733, 3330, 2924, 2368, 2335, 1699, 1492, 1394, 

1366, 1268, 1258, 1171, 754 cm-1; HRMS (MM:ESI-APCI+) m/z calc’d for C21H27N2O2 

[M+H]+: 339.2073, found 339.2075; SFC Conditions: 30% IPA, 2.5 mL/min, Chiralpak AD-

H column, λ = 210 nm, tR (min): major = 1.95, minor = 4.28. 

 

(1R,3R)-1-methyl-3-phenyl-1,2,3,4-tetrahydroisoquinoline (167e): Compound 167e was 

prepared from isoquinoline 166e using general procedure 5 and determined by 1H NMR 

spectroscopy of the crude reaction mixture to consist of a mixture of diastereomers; (dr = 

NH

NHBoc
167d

NH

Me

167e
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>20:1); 1H NMR (400 MHz, CDCl3) δ 7.49 – 7.46 (m, 2H), 7.41 – 7.37 (m, 2H), 7.33 – 7.29 

(m, 1H), 7.28 – 7.23 (m, 1H), 7.23 – 7.14 (m, 2H), 7.11 (d, J = 6.9 Hz, 1H), 4.34 (q, J = 6.6 

Hz, 1H), 4.08 (dd, J = 11.1, 3.9 Hz, 1H), 3.12 – 3.01 (m, 1H), 2.96 (dd, J = 16.2, 4.1 Hz, 

1H), 1.55 (d, J = 6.5 Hz, 3H); All characterization data match those reported.9 

 

 

((1S,3R)-3-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (174): Compound 174 

was prepared from isoquinoline 173a from general procedure 5 and purified by column 

chromatography (5% MeOH in CH2Cl2) to provide a tan solid as a mixture of diastereomers 

(47 mg, 98% yield) (dr = 2.4:1); 92% ee for major diastereomer; [α]D25 –8.3 (c 0.15, CHCl3);  

Trans-diastereomer: 1H NMR (400 MHz, CDCl3) δ 7.49 – 7.43 (m, 2H), 7.42 – 7.38 

(m, 2H), 7.36 – 7.27 (m, 1H), 7.26 – 7.10 (m, 4H), 4.23 (dd, J = 10.5, 4.8 Hz, 1H), 4.16 (dd, 

J = 11.2, 3.9 Hz, 1H), 3.80 (dd, J = 10.8, 4.8 Hz, 1H), 3.71 (t, J = 10.7 Hz, 1H), 3.07 (dd, J 

= 16.4, 3.9 Hz, 1H), 2.95 (dd, J = 15.9, 11.2 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 143.5, 

135.5, 134.7, 129.5, 128.8, 127.5, 127.0, 126.7, 126.6, 126.4, 63.8, 57.4, 50.7, 36.8. 

Cis-diastereomer: 1H NMR (400 MHz, CDCl3) δ 7.50 – 7.43 (m, 2H), 7.41 – 7.34 

(m, 2H), 7.34 – 7.28 (m, 1H), 7.25 – 7.17 (m, 3H), 7.15 – 7.10 (m, 1H), 4.43 – 4.41 (m, 1H), 

4.10 (dd, J = 11.1, 3.5 Hz, 1H), 4.02 (dd, J = 10.8, 3.3 Hz, 1H), 3.90 (dd, J = 10.9, 5.4 Hz, 

1H), 3.02 (ddt, J = 15.9, 11.1, 1.4 Hz, 1H), 2.90 (dd, J = 15.7, 3.5 Hz, 1H); All 

characterization data match those reported.9 

NH

OH

174
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(5S,10bS)-5-phenyl-1,5,6,10b-tetrahydro-3H-oxazolo[4,3-a]isoquinolin-3-one (175a): 

Compound 175a was prepared from isoquinoline 173a using general procedure 5 and 

purified by column chromatography (20% to 40% to 60% EtOAc in hexanes) to provide a 

clear solid (33 mg, 63% yield); 91% ee; [α]D25 +124.3 (c 1.04, CHCl3); 1H NMR (400 MHz, 

CDCl3) δ 7.28 – 7.19 (m, 8H), 6.91 (d, J = 7.3 Hz, 1H), 5.31 (dd, J = 6.7, 2.8 Hz, 1H), 4.74 

(t, J = 8.0 Hz, 1H), 4.69 – 4.66 (m, 1H), 4.29 (dd, J = 7.8, 5.9 Hz, 1H), 3.41 (dd, J = 16.8, 

6.7 Hz, 1H), 3.22 (dd, J = 16.7, 2.8 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 157.5, 138.8, 

134.4, 133.2, 129.4, 128.8, 128.1, 127.9, 127.2, 127.2, 124.4, 68.7, 51.7, 51.5, 31.4; IR (Neat 

Film, NaCl) 2910, 1751, 1601, 1494, 1452, 1402, 1221, 1114, 1066, 1030, 758, 701 cm–1; 

HRMS (MM:ESI-APCI+) m/z calc’d for C17H16NO2 [M+H]+: 266.1176, found 266.1177; 

SFC Conditions: 40% MeOH, 3.5 mL/min, Chiralpak IC column, λ = 210 nm, tR (min): 

major = 2.61, minor = 2.41. 

 

(5S,10bS)-5-(4-methoxyphenyl)-1,5,6,10b-tetrahydro-3H-oxazolo[4,3-a]isoquinolin-3-

one (175b): Compound 175b was prepared from isoquinoline 173b using general procedure 

5 and purified by column chromatography (20% to 30% to 40% EtOAc in hexanes) to 

provide a pale yellow oil (38 mg, 64% yield); 96% ee; [α]D25 +150.4 (c 1.01, CHCl3); 1H 

N

175a
O

O

N

175b

OMe

O

O
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NMR (400 MHz, CDCl3) δ 7.29 – 7.24 (m, 3H), 7.22 – 7.20 (m, 2H), 6.94 (d, J = 8.0 Hz, 

1H), 6.82 – 6.78 (m, 2H), 5.32 (dd, J = 6.7, 2.4 Hz, 1H), 4.77 (t, J = 8.0 Hz, 1H), 4.71 – 4.67 

(m, 1H), 4.30 (dd, J = 8.0, 6.2 Hz, 1H), 3.75 (s, 3H), 3.44 (dd, J = 16.6, 6.8 Hz, 1H), 3.23 

(dd, J = 16.7, 2.5 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 159.1, 157.4, 134.4, 133.2, 130.7, 

129.4, 128.4, 128.1, 127.2, 124.5, 114.1, 68.8, 55.3, 51.6, 50.8, 31.4; IR (Neat Film, NaCl) 

2907, 2836, 1750, 1610, 1513, 1402, 1304, 1251, 1178, 1066, 1030, 828, 756 cm–1; HRMS 

(MM:ESI-APCI+) m/z calc’d for C18H18NO3 [M+H]+: 296.1281, found 296.1280; SFC 

Conditions: 10% MeOH, 3.5 mL/min, Chiralcel OJ-H column, λ = 210 nm, tR (min): major 

= 8.66, minor = 7.52. 

 

(5S,10bS)-5-(4-(tert-butyl)phenyl)-1,5,6,10b-tetrahydro-3H-oxazolo[4,3-a]isoquinolin-

3-one (175c): Compound 175c was prepared from isoquinoline 173c using general 

procedure 5 and purified by column chromatography (20% to 30% to 40% EtOAc in 

hexanes) to provide a clear oil (43 mg, 67% yield); 95% ee; [α]D25 +115.6 (c 1.01, CHCl3); 

1H NMR (400 MHz, CDCl3) δ 7.29 – 7.26 (m, 4H), 7.24 – 7.22 (m, 1H), 7.21 – 7.19 (m, 

2H), 6.93 (d, J = 7.2 Hz, 1H), 5.31 (dd, J = 6.8, 2.5 Hz, 1H), 4.74 (t, J = 8.0 Hz, 1H), 4.72 

– 4.68 (m, 1H), 4.29 (dd, J = 7.3, 5.3 Hz, 1H), 3.42 (dd, J = 16.6, 6.9 Hz, 1H), 3.23 (dd, J = 

16.7, 2.6 Hz, 1H), 1.24 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 157.5, 150.8, 135.7, 134.5, 

133.4, 129.4, 128.1, 127.1, 126.9, 125.7, 124.5, 68.7, 51.6, 51.1, 34.6, 31.4, 31.3; IR (Neat 

Film, NaCl) 3010, 2962, 1754, 1455, 1401, 1267, 1215, 1115, 1068, 1026, 828, 757 cm–1; 

N

175c
O

O
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HRMS (MM:ESI-APCI+) m/z calc’d for C21H24NO2 [M+H]+: 322.1802, found 322.1801; 

SFC Conditions: 20% MeOH, 3.5 mL/min, Chiralpak AD-H column, λ = 210 nm, tR (min): 

major = 5.04, minor = 5.44. 

 

(5S,10bS)-5-(4-fluorophenyl)-1,5,6,10b-tetrahydro-3H-oxazolo[4,3-a]isoquinolin-3-one 

(175d): Compound 175d was prepared from isoquinoline 173d using general procedure 5 

and purified by column chromatography (20% to 30% to 40% EtOAc in hexanes) to provide 

a clear oil (40 mg, 70% yield); 95% ee; [α]D25 +150.5 (c 1.01, CHCl3); 1H NMR (400 MHz, 

CDCl3) δ 7.28 – 7.21 (m, 5H), 6.96 – 6.91 (m, 3H), 5.29 (dd, J = 6.8, 2.8 Hz, 1H), 4.76 (t, J 

= 8 Hz, 1H), 4.67 (ddd, J = 8.7, 6.2, 1.1 Hz, 1H), 4.30 (dd, J = 8.1, 6.2 Hz, 1H), 3.42 (ddd, J 

= 16.7, 6.6, 1.3 Hz, 1H), 3.19 (dd, J = 16.7, 2.9 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 

162.3 (d, J = 246.8 Hz), 157.5, 134.6 (d, J = 3.3 Hz), 134.3, 132.9, 129.4, 129.0 (d, J = 8.1 

Hz), 128.3, 127.4, 124.5, 115.7 (d, J = 21.5 Hz), 68.7, 51.6, 50.9, 31.6; 19F NMR (282 MHz, 

CDCl3) δ –114.4 – –114.5 (m); IR (Neat Film, NaCl) 2910, 1753, 1605, 1510, 1402, 1223, 

1161, 1068, 1043, 1029, 885, 828, 758, 745 cm–1; HRMS (MM:ESI-APCI+) m/z calc’d for 

C17H15FNO2 [M+H]+: 284.1081, found 284.1078; SFC Conditions: 35% MeOH, 3.5 

mL/min, Chiralpak IC column, λ = 210 nm, tR (min): minor = 2.39, major = 2.58. 

 

N
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F
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(5S,10bS)-5-(4-(trifluoromethyl)phenyl)-1,5,6,10b-tetrahydro-3H-oxazolo[4,3-

a]isoquinolin-3-one (175e): Compound 175e was prepared from isoquinoline 173e using 

general procedure 5 and purified by column chromatography (20% to 30% to 40% EtOAc in 

hexanes) to provide a white solid (43 mg, 64% yield); 91% ee; [α]D25 +118.2 (c 1.02, CHCl3); 

1H NMR (400 MHz, CDCl3) δ 7.56 (d, J = 8.2 Hz, 2H), 7.45 (d, J = 8.0 Hz, 2H), 7.32 – 7.26 

(m, 3H), 7.00 – 6.97 (m, 1H), 5.35 (dd, J = 6.7, 3.4 Hz, 1H), 4.82 (t, J = 8.0 Hz, 1H), 4.76 – 

4.72 (m, 1H), 4.38 (dd, J = 8.1, 5.9 Hz, 1H), 3.47 (ddd, J = 16.6, 6.6, 1.2 Hz, 1H), 3.24 (dd, 

J = 16.6, 3.5 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 157.6, 143.0, 143.0, 134.2, 132.7, 

130.2 (q, J = 32.6 Hz), 129.3, 128.4, 127.5, 125.9 (q, J = 3.8 Hz), 124.4, 124.0 (q, J = 271.0 

Hz), 68.6, 51.8, 51.5, 31.6; 19F NMR (282 MHz, CDCl3) δ 62.7; IR (Neat Film, NaCl) 2916, 

1753, 1620, 1402, 1326, 1225, 1162, 1114, 1068, 1017, 889, 829, 757 cm–1; HRMS 

(MM:ESI-APCI+) m/z calc’d for C18H15F3NO2 [M+H]+: 334.1049, found 334.1048; SFC 

Conditions: 25% MeOH, 3.5 mL/min, Chiralpak IC column, λ = 210 nm, tR (min): minor = 

2.22, major = 2.37. 

 

4-((5S,10bS)-3-oxo-1,5,6,10b-tetrahydro-3H-oxazolo[4,3-a]isoquinolin-5-

yl)benzonitrile (175f): Compound 175f was prepared from isoquinoline 173f using general 

N

175e

CF3

O

O

N
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O
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procedure 5 and purified by column chromatography (25% to 35% to 50% EtOAc in 

hexanes) to provide a white solid (27 mg, 47% yield); 83% ee; [α]D25 +112.3 (c 1.00, CHCl3); 

1H NMR (400 MHz, CDCl3) δ 7.61 – 7.58 (m, 2H), 7.46 – 7.43 (m, 2H), 7.32 – 7.27 (m, 

3H), 7.01 – 6.99 (m, 1H), 5.31 (dd, J = 6.5, 3.8 Hz, 1H), 4.83 (t, J = 8.4 Hz, 1H), 4.76 – 4.72 

(m, 1H), 4.40 (dd, J = 8.3, 5.9 Hz, 1H), 3.45 (dd, J = 16.5, 6.4 Hz, 1H), 3.20 (dd, J = 16.6, 

3.9 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 157.6, 144.5, 134.1, 132.7, 132.5, 129.3, 128.5, 

127.9, 127.7, 124.3, 118.6, 111.9, 68.5, 51.9, 51.8, 31.7; IR (Neat Film, NaCl) 2909, 2228, 

1747, 1679, 1608, 1402, 1224, 1160, 1114, 1043, 1031, 829, 764, 733 cm–1; HRMS 

(MM:ESI-APCI+) m/z calc’d for C18H15N2O2 [M+H]+: 291.1134, found 291.1137; SFC 

Conditions: 40% MeOH, 3.5 mL/min, Chiralpak IC column, λ = 210 nm, tR (min): minor = 

3.97, major = 4.48. 

 

(5S,10bS)-5-([1,1'-biphenyl]-4-yl)-1,5,6,10b-tetrahydro-3H-oxazolo[4,3-a]isoquinolin-

3-one (175g): Compound 175g was prepared from isoquinoline 173g using general 

procedure 5 and purified by column chromatography (20% to 30% to 40% EtOAc in 

hexanes) to provide a white solid (38 mg, 56% yield); 75% ee; [α]D25 +108.5 (c 1.01, CHCl3); 

1H NMR (400 MHz, CDCl3) δ 7.55 – 7.51 (m, 4H), 7.44 – 7.37 (m, 4H), 7.36 – 7.31 (m, 

3H), 7.30 – 7.25 (m, 1H), 6.98 (d, J = 7.1 Hz, 1H), 5.40 (dd, J = 6.7, 2.8 Hz, 1H), 4.83 – 4.76 

(m, 2H), 4.39 – 4.32 (m, 1H), 3.49 (dd, J = 16.7, 6.7 Hz, 1H), 3.31 (dd, J = 16.7, 2.8 Hz, 1H); 

13C NMR (100 MHz, CDCl3) δ 157.5, 140.8, 140.6, 137.8, 134.4, 133.2, 129.4, 128.9, 128.2, 

127.6, 127.6, 127.5, 127.3, 127.1, 124.5, 68.7, 51.7, 51.3, 31.5; IR (Neat Film, NaCl) 3028, 
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2908, 1751, 1487, 1454, 1402, 1220, 1162, 1070, 1042, 886, 830, 760 cm–1; HRMS 

(MM:ESI-APCI+) m/z calc’d for C23H20NO2 [M+H]+: 342.1489, found 342.1501; SFC 

Conditions: 45% MeOH, 3.5 mL/min, Chiralcel OJ-H column, λ = 210 nm, tR (min): minor 

= 5.72, major = 6.80. 

 

(5S,10bS)-5-(naphthalen-2-yl)-1,5,6,10b-tetrahydro-3H-oxazolo[4,3-a]isoquinolin-3-

one (175h): Compound 175h was prepared from isoquinoline 173h using general procedure 

5 and purified by column chromatography (20% to 30% to 40% EtOAc in hexanes) to 

provide a pale white solid (34 mg, 54% yield); 89% ee; [α]D25 +91.3 (c 1.00, CHCl3); 1H 

NMR (400 MHz, CDCl3) δ 7.82 – 7.79 (m, 2H), 7.73 – 7.70 (m, 1H), 7.68 (s, 1H), 7.50 (dd, 

J = 8.6, 1.9 Hz, 1H), 7.47 – 7.42 (m, 2H), 7.38 – 7.30 (m, 2H), 7.27 – 7.23 (m, 1H), 6.93 (d, 

J = 8.0 Hz, 1H), 5.52 (dd, J = 6.5, 3.2 Hz, 1H), 4.79 (t, J = 8.0 Hz, 1H), 4.74 – 4.70 (m, 1H), 

4.35 (dd, J = 8.0, 6.0 Hz, 1H), 3.54 (dd, J = 16.7, 6.6 Hz, 1H), 3.41 (dd, J = 16.8, 2.9 Hz, 

1H); 13C NMR (100 MHz, CDCl3) δ 157.6, 136.1, 134.4, 133.2, 133.1, 132.9, 129.4, 128.8, 

128.2, 128.1, 127.7, 127.2, 126.4, 126.3, 125.9, 125.4, 124.5, 68.8, 51.8, 51.6, 31.3; IR (Neat 

Film, NaCl) 3017, 1750, 1454, 1401, 1327, 1215, 1070, 1030, 818, 756 cm–1; HRMS 

(MM:ESI-APCI+) m/z calc’d for C21H18NO2 [M+H]+: 316.1332, found 316.1332; SFC 

Conditions: 40% MeOH, 3.5 mL/min, Chiralpak IC column, λ = 210 nm, tR (min):, minor = 

4.21, major = 4.61. 

N

175h
O

O
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(5S,10bS)-5-(3,5-dimethylphenyl)-1,5,6,10b-tetrahydro-3H-oxazolo[4,3-a]isoquinolin-

3-one (175i): Compound 175i was prepared from isoquinoline 173i using general procedure 

5 and purified by column chromatography (10% to 20% to 30% to 40% EtOAc in hexanes) 

to provide a pale white solid (36 mg, 61% yield); 86% ee; [α]D25 +125.3 (c 1.03, CHCl3); 1H 

NMR (400 MHz, CDCl3) δ 7.30 – 7.23 (m, 3H), 6.97 (d, J = 7.1 Hz, 1H), 6.92 (s, 2H), 6.89 

(s, 1H), 5.26 (dd, J = 6.7, 3.2 Hz, 1H), 4.82 – 4.75 (m, 2H), 4.39 – 4.32 (m, 1H), 3.42 (dd, J 

= 16.6, 6.7 Hz, 1H), 3.24 (dd, J = 16.6, 3.2 Hz, 1H), 2.25 (s, 6H); 13C NMR (100 MHz, 

CDCl3) δ 157.5, 138.9, 138.3, 134.5, 133.4, 129.5, 129.3, 128.1, 127.1, 124.8, 124.3, 68.5, 

51.8, 51.5, 31.7, 21.5; IR (Neat Film, NaCl) 3010, 2916, 1752, 1606, 1454, 1402, 1265, 1220, 

1070, 1043, 1030, 758, 747 cm–1; HRMS (MM:ESI-APCI+) m/z calc’d for C19H20NO2 

[M+H]+: 294.1489, found 294.1489; SFC Conditions: 40% MeOH, 3.5 mL/min, Chiralpak 

IC column, λ = 210 nm, tR (min): minor = 2.47, major = 2.71. 

 

(5S,10bS)-5-(3,4-dimethoxyphenyl)-1,5,6,10b-tetrahydro-3H-oxazolo[4,3-

a]isoquinolin-3-one (175j): Compound 175j was prepared from isoquinoline 173j using 

general procedure 5 and purified by column chromatography (40% to 50% to 75% EtOAc in 

N

175i

Me

Me

O

O

N

175j

OMe
OMe

O

O
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hexanes) to provide a pale yellow oil (33 mg, 51% yield); 87% ee; [α]D25 +120.9 (c 1.00, 

CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.30 – 7.28 (m, 2H), 7.27 – 7.23 (m, 1H), 6.95 (d, J 

= 6.8 Hz, 1H), 6.86 (d, J = 2.0 Hz, 1H), 6.75 (dd, J = 8.3, 2.0 Hz, 1H), 6.71 (d, J = 8.3 Hz, 

1H), 5.32 (d, J = 6.7, 2.3 Hz, 1H), 4.78 (t, J = 8.0 Hz, 1H), 4.70 – 4.66 (m, 1H), 4.30 (dd, J 

= 8.1, 6.2 Hz, 1H), 3.81 (s, 3H), 3.79 (s, 3H), 3.45 (dd, J = 16.8, 6.5 Hz, 1H), 3.24 (dd, J = 

16.8, 2.4 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 157.4, 149.2, 148.7, 134.4, 133.3, 131.1, 

129.3, 128.1, 127.2, 124.5, 119.1, 111.0, 110.9, 68.9, 56.0, 56.0, 51.6, 51.1, 31.4; IR (Neat 

Film, NaCl) 2929, 2836, 1748, 1592, 1516, 1403, 1259, 1237, 1142, 1026, 758, 749 cm–1; 

HRMS (MM:ESI-APCI+) m/z calc’d for C19H20NO4 [M+H]+: 326.1387, found 326.1385; 

SFC Conditions: 40% MeOH, 3.5 mL/min, Chiralpak AD-H column, λ = 210 nm, tR (min): 

major = 2.13, minor = 2.74. 

 

(5S,10bS)-5-(1-methyl-1H-pyrazol-4-yl)-1,5,6,10b-tetrahydro-3H-oxazolo[4,3-

a]isoquinolin-3-one (175k): Compound 175k was prepared from isoquinoline 173k using 

general procedure 5 and purified by column chromatography (80% to 90% to 100% EtOAc 

in hexanes) to provide a pale yellow oil as a mixture of diastereomers (47 mg, 88% overall 

yield) (dr = 3.0:1); 97% ee for major diastereomer; [α]D25 +113.6 (c 1.00, CHCl3); Major 

diastereomer: 1H NMR (400 MHz, CDCl3) δ 7.28 (s, 1H), 7.27 – 7.21 (m, 3H), 7.17 (s, 1H), 

6.96 – 6.94 (m, 1H), 5.34 (dd, J = 6.6, 2.0 Hz, 1H), 4.77 – 4.74 (m, 2H), 4.29 – 4.23 (m, 1H), 

3.78 (s, 3H), 3.42 (dd, J = 16.5, 6.7 Hz, 1H), 3.03 (dd, J = 16.4, 1.9 Hz, 1H); 13C NMR (100 

N

N
N
Me

175k
O

O
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MHz, CDCl3) δ 157.1, 138.1, 134.1, 132.8, 129.7, 128.8, 128.0, 127.3, 124.7, 119.7, 69.1, 

51.5, 44.2, 39.1, 32.3; IR (Neat Film, NaCl) 2930, 1750, 1444, 1401, 1276, 1216, 1070, 1021, 

988, 761, 751 cm–1; HRMS (MM:ESI-APCI+) m/z calc’d for C15H16N3O2 [M+H]+: 

270.1237, found 270.1238; SFC Conditions: 40% MeOH, 3.5 mL/min, Chiralpak AD-H 

column, λ = 210 nm, tR (min): minor = 2.24, major = 2.67. 

 

(5S,10bS)-5-(6-methoxypyridin-3-yl)-1,5,6,10b-tetrahydro-3H-oxazolo[4,3-

a]isoquinolin-3-one (175l): Compound 175l was prepared from isoquinoline 173l using 

general procedure 5 and purified by column chromatography (25% to 35% to 50% EtOAc in 

hexanes) to provide a pale yellow oil (38 mg, 64% yield); 95% ee; [α]D25 +124.9 (c 1.02, 

CHCl3); 1H NMR (400 MHz, CDCl3) δ 8.03 (d, J = 2.6 Hz, 1H), 7.54 (dd, J = 8.7, 2.6 Hz, 

1H), 7.29 – 7.27 (m, 2H), 7.25 – 7.23 (m, 1H), 6.95 (dd, J = 6.9 Hz, 1H), 6.68 (d, J = 8.6 Hz, 

1H), 5.31 (dd, J = 6.7, 2.5 Hz, 1H), 4.78 (t, J = 8.0 Hz, 1H), 4.69 (dd, J = 8.8, 6.2 Hz, 1H), 

4.31 (dd, J = 8.1, 6.0 Hz, 1H), 3.86 (s, 3H), 3.45 (dd, J = 16.7, 6.8 Hz, 1H), 3.21 (dd, J = 

16.8, 2.5 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 163.8, 157.4, 145.4, 138.3, 134.1, 132.6, 

129.5, 128.3, 127.4, 126.9, 124.6, 111.3, 68.9, 53.5, 51.6, 49.3, 31.1; IR (Neat Film, NaCl) 

2945, 1752, 1608, 1494, 1400, 1288, 1262, 1068, 1027, 827, 758, 742 cm–1; HRMS 

(MM:ESI-APCI+) m/z calc’d for C17H17N2O3 [M+H]+: 297.1234, found 297.1236; SFC 

Conditions: 40% MeOH, 3.5 mL/min, Chiralpak AD-H column, λ = 210 nm, tR (min): minor 

= 2.80, major = 3.30. 
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OMe

O

O



Chapter 3 – Iridium-Catalyzed Asymmetric Trans-Selective Hydrogenation of  
1,3-Disubstituted Isoquinolines   

 

434 

 

(5S,10bS)-9-fluoro-5-phenyl-1,5,6,10b-tetrahydro-3H-oxazolo[4,3-a]isoquinolin-3-one 

(175m): Compound 175m was prepared from isoquinoline 173m using general procedure 5 

and purified by column chromatography (20% to 30% to 40% EtOAc in hexanes) to provide 

a white solid (38 mg, 67% yield); 95% ee; [α]D25 +163.7 (c 1.00, CHCl3); 1H NMR (400 

MHz, CDCl3) δ 7.29 – 7.21 (m, 6H), 6.98 (td, J = 8.6, 2.5 Hz, 1H), 6.65 (dd, J = 8.9, 2.4 Hz, 

1H), 5.33 (dd, J = 6.6, 2.7 Hz, 1H), 4.74 (t, J = 8.5 Hz, 1H), 4.67 – 4.63 (m, 1H), 4.28 (dd, J 

= 8.2, 5.9 Hz, 1H), 3.38 (dd, J = 16.6, 6.4 Hz, 1H), 3.22 (dd, J = 16.6, 2.8 Hz, 1H); 13C NMR 

(100 MHz, CDCl3) δ 161.7 (d, J = 246.6 Hz), 157.4, 138.4, 136.1 (d, J = 6.6 Hz), 131.0 (d, 

J = 7.8 Hz), 128.9, 128.8 (d, J = 3.3 Hz), 128.0, 127.1, 115.4 (d, J = 21.3 Hz), 111.4 (d, J = 

22.1 Hz), 68.4, 51.7 (d, J = 2.2 Hz), 51.4, 30.6; 19F NMR (282 MHz, CDCl3) δ –114.3 – –

114.4 (m); IR (Neat Film, NaCl) 3061, 2914, 1752, 1613, 1593, 1499, 1450, 1430, 1402, 

1327, 1241, 1216, 1162, 1069, 1034, 868, 814, 756 cm–1; HRMS (MM:ESI-APCI+) m/z 

calc’d for C17H15FNO2 [M+H]+: 284.1081, found 284.1083; SFC Conditions: 40% MeOH, 

3.5 mL/min, Chiralpak IC column, λ = 210 nm, tR (min): minor = 2.09, major = 2.53. 

 

(5S,10bS)-9-fluoro-5-(4-(trifluoromethyl)phenyl)-1,5,6,10b-tetrahydro-3H-

oxazolo[4,3-a]isoquinolin-3-one (175n): Compound 175n was prepared from isoquinoline 

173n using general procedure 5 and purified by column chromatography (20% to 30% to 

N
F
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O

O

N
F

175n

CF3

O

O



Chapter 3 – Iridium-Catalyzed Asymmetric Trans-Selective Hydrogenation of  
1,3-Disubstituted Isoquinolines   

 

435 

40% EtOAc in hexanes) to provide a pale yellow oil (38 mg, 54% yield); 92% ee; [α]D25 

+115.7 (c 1.02, CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.56 (d, J = 8.2 Hz, 2H), 7.43 (d, J = 

8.1 Hz, 2H), 7.29 (dd, J = 8.6, 5.4 Hz, 1H), 7.02 (td, J = 8.4, 2.5 Hz, 1H), 6.71 (dd, J = 8.8, 

2.4 Hz, 1H), 5.35 (dd, J = 6.6, 3.4 Hz, 1H), 4.80 (t, J = 8.5, 1H), 4.69 (dd, J = 8.6, 5.9 Hz, 

1H), 4.35 (dd, J = 8.4, 5.8 Hz, 1H), 3.42 (dd, J = 16.6, 6.3 Hz, 1H), 3.22 (dd, J = 16.6, 3.4 

Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 161.9 (d, J = 247.2 Hz), 157.5, 142.7, 136.0 (d, J = 

6.8 Hz), 131.0 (d, J = 7.9 Hz), 130.3 (q, J = 32.6 Hz), 128.4 (d, J = 3.3 Hz, 1H), 127.5, 125.9 

(q, J = 3.7 Hz), 124.0 (q, J = 271.0 Hz), 115.7 (d, J = 21.3 Hz), 111.5 (d, J = 22.4 Hz), 68.3, 

51.9 (d, J = 2.2 Hz), 51.5, 30.8; 19F NMR (282 MHz, CDCl3) δ –62.7, –113.7 – –113.8 (m); 

IR (Neat Film, NaCl) 2921, 1754, 1620, 1594, 1500, 1402, 1326, 1241, 1162, 1115, 1068, 

1018, 839, 759 cm–1; HRMS (MM:ESI-APCI+) m/z calc’d for C18H14F4NO2 [M+H]+: 

352.0955, found 352.0954; SFC Conditions: 40% MeOH, 3.5 mL/min, Chiralpak IC column, 

λ = 210 nm, tR (min): minor = 1.43, major = 1.60. 

 

3.7.2.4 Product transformations 

 

((1S,3S)-3-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (174): 

This procedure has been adapted from a previous report.27 To a 1-dram vial equipped with a 

stir bar was added a solution of tetrahydroisoquinoline 175a (4.4 mg, 0.02 mmol) in 1:1 1,4-

dioxane:H2O (0.4 mL total, 0.05 M). Barium hydroxide octahydrate (24 mg, 4.1 equiv, 0.07 

mmol) was then added and the vial was capped with a PTFE-lined septum and sealed with 

81% yield

Ba(OH)2 • 8H2O

1,4-dioxane:H2ON

O

O

175a

NH

OH
174
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electrical tape. The reaction mixture was heated to 120 °C and stirred for 3 hours until TLC 

analysis indicated complete consumption of the starting material. The reaction was then 

diluted with H2O, extracted with EtOAc, and the collected organic layers were dried over 

Na2SO4 and concentrated under vacuum. The crude product was purified by column 

chromatography (50% EtOAc in hexanes + 1% NEt3) to afford 174 as a white solid (3.2 mg, 

81% yield): [α]D25 –8.3 (c 0.15, CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.47 – 7.44 (m, 2H), 

7.42 – 7.38 (m, 2H), 7.33 – 7.29 (m, 1H), 7.22 – 7.18 (m, 2H), 7.17 – 7.13 (m, 2H), 4.23 (dd, 

J = 10.6, 4.8 Hz, 1H), 4.15 (dd, J = 11.2, 3.9 Hz, 1H), 3.80 (dd, J = 10.8, 4.8 Hz, 1H), 3.71 

(t, J = 10.7 Hz, 1H), 3.07 (dd, J = 16.4, 3.9 Hz, 1H), 2.95 (dd, J = 16.3, 11.2 Hz, 1H); 13C 

NMR (100 MHz, CDCl3) δ 143.5, 135.5, 134.7, 129.5, 128.8, 127.5, 127.0, 126.7, 126.6, 

126.4, 63.8, 57.4, 50.7, 36.8; IR (Neat Film, NaCl) 3411, 2357, 2086, 1733, 1716, 1700, 

1652, 1558, 1540, 1457, 678 cm–1; HRMS (MM:ESI-APCI+) m/z calc’d for C16H18NO 

[M+H]+: 240.1388, found 240.1387. 

 

((1S,3S)-2-methyl-3-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)methanol (176): 

This procedure has been adapted from a previous report.28 To a 1-dram vial equipped with a 

stir bar was added a solution of tetrahydroisoquinoline 5a (5.0 mg, 0.02 mmol) in CH2Cl2 

(0.4 mL, 0.05 M). The reaction mixture was cooled to 0 °C, and a solution of DIBAL (1.0 M 

in THF, 0.38 mL, 0.2 mmol) was added dropwise. After stirring for 1 hour, the reaction 

mixture showed complete consumption of starting material by TLC, and was quenched with 

MeOH, H2O, and saturated aqueous Rochelle’s salt and stirred for an additional hour. The 

73% yield

DIBAL

CH2Cl2, 0 °C, 30 minN

O

O

175a

NMe

OH
176
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reaction was then diluted with H2O, extracted with CH2Cl2 (2 x 5 mL), and the collected 

organic layers were dried over Na2SO4 and concentrated under vacuum. The crude product 

was purified by column chromatography (30% EtOAc in hexanes) to afford 6a as a clear oil 

(3.5 mg, 73% yield): [α]D25 +115.8 (c 0.50, CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.47 – 

7.45 (m, 2H), 7.42 – 7.38 (m, 2H), 7.33 – 7.29 (m, 1H), 7.25 – 7.22 (m, 3H), 7.17 – 7.13 (m, 

1H), 4.34 (dd, J = 12.2, 4.0 Hz, 1H), 3.93 (dd, J = 10.5, 5.3 Hz, 1H), 3.81 (dd, J = 10.8, 5.3 

Hz, 1H), 3.72 (t, J = 10.6 Hz, 1H), 3.37 (dd, J = 16.5, 12.2 Hz, 1H), 2.92 (dd, J = 16.5, 4.0 

Hz, 1H), 2.21 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 140.9, 134.5, 133.7, 129.5, 128.5, 

127.9, 127.8, 127.4, 126.9, 126.7, 65.8, 63.4, 53.2, 35.7, 25.1; IR (Neat Film, NaCl) 3423, 

3058, 3024, 2918, 2854, 2366, 1496, 1450, 1406, 1222, 1130, 1044, 774, 752, 699 cm–1; 

HRMS (MM:ESI-APCI+) m/z calc’d for C17H20NO [M+H]+: 254.1545, found 254.1543. 

 

 

 

 

 

 

 

 

 

 

 

3.7.3 Additional optimization results 
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Table 3.3. Additional additive, acid, and pressure studies.a 

 

[a] Reaction conditions: 0.04 mmol of 173a, 1.25 mol % [Ir(cod)Cl]2, 3 mol % ligand, 7.5 mol % salt 
additive, 20 bar H2 in 0.5 mL 9:1 CH2Cl2:acid. [b] Determined by crude 1H NMR using 1,3,5-
trimethoxybenzene as a standard. [c] Determined by chiral SFC analysis of Cbz-protected product. 
 

Table 3.4. Additional ligand screen.a 

 
[a] Reaction conditions: 0.04 mmol of 173a, 1.25 mol % [Ir(cod)Cl]2, 3 mol % ligand, 7.5 mol % TBABr, 
20 bar H2 in 0.5 mL 9:1 CH2Cl2:AcOH. Determined by crude 1H NMR using 1,3,5-trimethoxybenzene 
as a standard. 

3.7.4 Deuterium incorporation experiments 

entry acid cis:transbsalt additive % conversionb % ee of transc

1 TBACl 75 90AcOH
2 TBAI >95 97AcOH
3 TBAPF6 <10 –AcOH
4 TBABF4 <10 –AcOH
5 TBABPh4 <10 –AcOH
6 LiBr >95 91AcOH
7 NaBr 90 89AcOH
8 KBr 35 86AcOH
9 TBABr <10 –TFA

10 TBABr <10 –MsOH

1:2.3
1.5:1

–
–
–

1:2.3
1:2.3

–
–

N

Ph

OH

[Ir(cod)Cl]2 (1.25 mol %)
 L7 (3 mol %)

H2 (X bar), salt (7.5 mol %)

9:1 CH2Cl2:acid (0.02 M)
23 °C, 18 h

NH

Ph

OH
173a 174

1:2.4

Fe
P(DMM)2

P(Xyl)2

Me

L7: SL-J418-1

pressure

20 bar
20 bar
20 bar
20 bar
20 bar
20 bar
20 bar
20 bar
20 bar
20 bar

11 TBABr >95 91AcOH 1:2.310 bar
12 TBABr >95 93AcOH 1:2.660 bar

N

Ph

OH

[Ir(cod)Cl]2 (1.25 mol %)
ligand (3.0 mol %)

H2 (20 bar), TBABr (7.5 mol %)
9:1 CH2Cl2: AcOH (0.02 M), 18 h

NH

Ph

OH

PPh2

PPh2

62% conversion
>20:1 cis:trans, ee ND

Fe
P(DMM-Ph)2

P(t-Bu)2

Me
Fe

P(DMM-Ph)2
P(Cy)2

Me

SL-J013-1
<10% conversion

SL-J007-1
15% conversion

2:1 cis:trans, ee ND

173a 174

(CF3Ph)2P

CF3

N

O

t-Bu
<10% conversion
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Deuterium experiments were conducted according to general procedure 5 for the 

hydrogenation of isoquinoline 173a using deuterium gas instead of hydrogen gas, and/or d4-

AcOH instead of protio acetic acid. 

 

Due to the inseparable nature of the cis- and trans-diastereomers, the hydrogenated products 

were subsequently protected with benzyl chloroformate (6.3 µL, 0.044 mmol, 1.1 equiv) in 

1:1 saturated aq. NaHCO3 and EtOAc (1 mL total). After the reaction showed full conversion 

of the hydrogenated product, the crude reaction mixture was washed with ethyl acetate and 

the collected organic layers were dried over Na2SO4 and concentrated under vacuum. Both 

the cis- and trans-isomers were isolated by preparative TLC (40% EtOAc in hexanes) of the 

Cbz-protected THIQ, then subsequently deprotected using 10 wt% Pd/C catalyst (1 mg) 

under a H2 balloon in MeOH (0.1 M) to afford deuterium-labelled 174. The major trans-

isomer was analyzed by 1H and 2H NMR spectroscopy. 

 

 

N

[Ir(cod)Cl]2 (1.25 mol %)

then CbzCl (1.1 equiv)
1:1 aq. NaHCO3:EtOAc

L7 (3 mol %)
H2/D2 (20 bar), TBABr (7.5 mol %)

9:1 1,2-DCE:AcOH/CD3COOD

OH
173a Cbz-174

NCbz

OH

Dn

MeOH (0.1 M)

10 wt % Pd/C
H2 (1 atm)

174

NH

OH

Dn

N

[Ir(cod)Cl]2 (1.25 mol %)

9:1 1,2-DCE:CD3COOD
23 °C, 18 h

L7 (3 mol %)
D2 (20 bar), TBABr (7.5 mol %)

OH
173a

NH

OH
100%

99%

98–99%

54–55%

174 cis-174

+D

D D

DD
D

NH

OH
94%

91%

97%

32–33%

D

D D

DD
D

N

[Ir(cod)Cl]2 (1.25 mol %)

9:1 1,2-DCE:AcOH
23 °C, 18 h

L7 (3 mol %)
D2 (20 bar), TBABr (7.5 mol %)

OH
173a 174

NH

OH
91%

89%

85–86%

22–35%

D

D D

DD
D
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3.7.5 Proposed catalytic cycle 

Figure 3.2 Proposed catalytic cycle. 

 

Based on preliminary mechanistic studies and literature precedent, a proposed 

catalytic cycle for the trans-selective asymmetric hydrogenation is described. Pre-formation 

of the chiral catalyst using [Ir(cod)Cl]2, chiral ligand, and TBABr, followed by oxidative 

addition with H2 delivers the halogen-bridged dinuclear IrIII catalyst complex 177. Without 

the halide, the iridium bisphosphane catalysts tend to irreversibly form dimeric iridium 

hydride complexes that are catalytically inactive.10c Addition of the isoquinoline substrate 

N

[Ir(cod)Cl]2 (1.25 mol %)

9:1 1,2-DCE:CD3COOD
23 °C, 18 h

L7 (3 mol %)
H2 (20 bar), TBABr (7.5 mol %)

OH
173a 174
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OH
16%

14%

59–61%

22%

D
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D
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then undergoes bidentate coordination to the metal to generate the corresponding 

mononuclear IrIII complex 178, followed by a 1,2-hydride addition to establish the C1-

stereocenter (179).19 Isomerization and tautomerization of the substrate then enables a 

directed hydrogenation (180) guided by the hydroxymethyl group to deliver the hydride on 

the opposite face of the molecule. The addition of H2 in the presence of acid regenerates the 

catalyst species and liberates the enantioenriched trans-THIQ product. Alternatively, based 

on our deuterium experiments, β-hydride elimination can also proceed from intermediate 181 

to generate aldehyde intermediate 182, which is subsequently reduced to provide the same 

THIQ product. However, the possibility of β-hydride elimination occurring at other 

intermediates still cannot be ruled out, and further investigations of the mechanism are 

currently underway. 

3.7.6 Determination of enantiomeric excess  

Table 3.5. Determination of enantiomeric excess.  

 

 

 

entry compound SFC analytic conditions ee (%)

1

2

92
Chiralpak AD-H, λ = 210 nm
45% IPA/CO2, 3.5 mL/min
tR (min) major 1.69, minor 2.04

NCbz

174•Cbz
OH

25
Chiralpak AD-H, λ = 210 nm
30% IPA/CO2, 2.5 mL/min
tR (min) major 1.95, minor 4.28

NCbz

167d•Cbz
NHBoc
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entry compound SFC analytic conditions ee (%)

3

4

91

96

95
Chirapak IC, λ = 210 nm
35% MeOH/CO2, 3.5 mL/min
tR (min) minor 2.39, major 2.58

Chiralpak IC, λ = 210 nm
40% MeOH/CO2, 3.5 mL/min
tR (min) minor 2.41, major 2.61

Chiralcel OJ-H, λ = 210 nm
10% MeOH/CO2, 3.5 mL/min
tR (min) minor 7.52, major 8.66

N

175a

175b

5

6

Chiralpak AD-H, λ = 210 nm
20% MeOH/CO2, 3.5 mL/min
tR (min) major 5.04, minor 5.44

95

O

O

N

O

O

OMe

175d

N

O

O

F

175c

N

O

O

tBu

Chiralpak IC, λ = 210 nm
25% MeOH/CO2, 3.5 mL/min
tR (min) minor 2.22, major 2.37

91

Chiralpak IC, λ = 210 nm
40% MeOH/CO2, 3.5 mL/min
tR (min) minor 3.97, major 4.48

83

175e

N

O

O

CF3

175f

N

O

O

CN

7

8
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entry compound SFC analytic conditions ee (%)

9

10

75

89

86
Chirapak IC, λ = 210 nm
40% MeOH/CO2, 3.5 mL/min
tR (min) minor 2.47, major 2.71

Chiralcel OJ-H, λ = 210 nm
45% MeOH/CO2, 3.5 mL/min
tR (min) minor 5.72, major 6.80

Chiralpak IC, λ = 210 nm
40% MeOH/CO2, 3.5 mL/min
tR (min) minor 4.21, major 4.61

Chiralpak AD-H, λ = 210 nm
40% MeOH/CO2, 3.5 mL/min
tR (min) major 2.13, minor 2.74

87

N

175g

175h

11

12

O

O

N

O

O

175i

N

O

O

175j

N

O

O

OMe

Ph

Me

Me

OMe

Chiralpak AD-H, λ = 210 nm
40% MeOH/CO2, 3.5 mL/min
tR (min) minor 2.24, major 2.67

97

Chiralpak AD-H, λ = 210 nm
40% MeOH/CO2, 3.5 mL/min
tR (min) minor 2.80, minor 3.30

95

175k

N

O

O

175l

N

N

O

O

OMe

N
N

Me

13

14
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3.7.7  Determination of relative and absolute stereochemistry  

Experimental Protocol.  A solution of the isolated trans isomer of 174 (11 mg) was prepared 

in CDCl3 (225 μL; 49 mg/mL) and loaded into a front-loading SL-4 cell (International 

Crystal Laboratories) possessing BaF2 windows and 100 μm path length.   Infrared (IR) and 

VCD spectra were acquired on a BioTools ChiralIR-2X VCD spectrometer as a set of 30 

one-hour blocks (30 blocks, 3120 scans per block) at 4 cm–1 resolution in dual PEM mode.  

A 15-minute acquisition of neat (–)-α-pinene control (separate 75 μm BaF2 cell) yielded a 

VCD spectrum in agreement with literature spectra and identical to those previously acquired 

on the same instrument.  IR and VCD spectra were background corrected using a 30-minute 

block IR acquisition of the empty instrument chamber under gentle N2 purge, and were 

solvent corrected using a 6-hour (6 blocks, 3120 scans per block) IR/VCD acquisition of 

CDCl3 in the same 100 μm BaF2 cell as used for 174.  The reported spectra represent the 

result of block averaging.  The baseline of the resultant VCD spectrum (top left panel below) 

was vertically offset by a constant such that that the y-value was zero at a frequency of 1000 

cm-1 for ease of viewing and assignment. 

entry compound SFC analytic conditions ee (%)

15

16

95

92

Chiralpak IC, λ = 210 nm
40% MeOH/CO2, 3.5 mL/min
tR (min) minor 2.09, major 2.53

Chiralpak IC, λ = 210 nm
40% MeOH/CO2, 3.5 mL/min
tR (min) minor 1.43, major 1.60

N

175m

175n

O

OF

N

O

OF

CF3
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Computational Protocol.  The arbitrarily chosen (R,R) enantiomer of 174 (ultimately 

corresponding to ent-174) was subjected to an initial exhaustive stochastic molecular 

mechanics-based conformational search (MMFF94 force field, 0.06 Å geometric RMSD 

cutoff, and 30 kcal/mol energy window) as implemented in MOE 2019.0102 (Chemical 

Computing Group, Montreal, CA).  All conformers retained the (R,R) configuration and were 

subjected to geometry optimization, harmonic frequency calculation, and VCD rotational 

strength evaluation using density functional theory utilizing the B3PW91 functional, cc-

pVTZ basis, and implicit IEFPCM chloroform solvation model.   All calculations were 

performed with the Gaussian 16 program system (Rev. C.01; Frisch et al., Gaussian, Inc., 

Wallingford, CT).  Resultant IEFPCM-B3PW91/cc-pVTZ harmonic frequencies were scaled 

by 0.98. All structurally unique conformers possessing all positive Hessian eigenvalues were 

Boltzmann weighted by relative free energy at 298.15 K.  The predicted IR and VCD 

frequencies and intensities of the retained conformers were convolved using Lorentzian line 

shapes (γ = 4 cm–1) and summed using the respective Boltzmann weights to yield the final 

predicted IR and VCD spectra.  The predicted VCD spectrum of the (S,S) enantiomer 

(ultimately agreeing with the experimentally measured spectrum of isolated 174) was 

generated by inversion of sign.  From alignment of the experimentally measured and 

theoretical IR spectra, in particular regions A-E corresponding to unambiguous regions of 

the experimental VCD spectrum (see below) the absolute configuration of the isolated and 

measured 174 could be confidently assigned as (S,S). 

 

 

 



Chapter 3 – Iridium-Catalyzed Asymmetric Trans-Selective Hydrogenation of  
1,3-Disubstituted Isoquinolines   

 

446 

Figure 3.3 Experimental (left) and theoretical (right) IR and VCD spectra of 174. 
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APPENDIX 3 

Spectra Relevant to Chapter 3: 

Iridium-Catalyzed Asymmetric Trans-Selective 

Hydrogenation of 1,3-Disubstituted Isoquinolines  
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Figure A3.2 Infrared spectrum (Thin Film, NaCl) of compound 161s. 
 

Figure A3.3 13C NMR (100 MHz, CDCl3) of compound 161s. 
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Figure A3.5 Infrared spectrum (Thin Film, NaCl) of compound 173l. 
 

Figure A3.6 13C NMR (100 MHz, CDCl3) of compound 173l. 
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Figure A3.8 Infrared spectrum (Thin Film, NaCl) of compound 166g. 
 

Figure A3.9 13C NMR (100 MHz, CDCl3) of compound 166g. 
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Figure A3.11 Infrared spectrum (Thin Film, NaCl) of compound 167d. 
 

Figure A3.12 13C NMR (100 MHz, CDCl3) of compound 167d. 
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Figure A3.14 Infrared spectrum (Thin Film, NaCl) of compound 175a. 
 

Figure A3.15 13C NMR (100 MHz, CDCl3) of compound 175a. 
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Figure A3.17 Infrared spectrum (Thin Film, NaCl) of compound 175b. 
 

Figure A3.18 13C NMR (100 MHz, CDCl3) of compound 175b. 
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Figure A3.20 Infrared spectrum (Thin Film, NaCl) of compound 175c. 
 

Figure A3.21 13C NMR (100 MHz, CDCl3) of compound 175c. 
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Figure A3.23 Infrared spectrum (Thin Film, NaCl) of compound 175d. 
 

Figure A3.24 13C NMR (100 MHz, CDCl3) of compound 175d. 
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Figure A3.25 19F NMR (282 MHz, CDCl3) of compound 175d. 
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Figure A3.27 Infrared spectrum (Thin Film, NaCl) of compound 175e. 
 

Figure A3.28 13C NMR (100 MHz, CDCl3) of compound 175e. 
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Figure A3.29 19F NMR (282 MHz, CDCl3) of compound 175e. 
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Figure A3.31 Infrared spectrum (Thin Film, NaCl) of compound 175f. 
 

Figure A3.32 13C NMR (100 MHz, CDCl3) of compound 175f. 
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Figure A3.34 Infrared spectrum (Thin Film, NaCl) of compound 175g. 
 

Figure A3.35 13C NMR (100 MHz, CDCl3) of compound 175g. 
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Figure A3.37 Infrared spectrum (Thin Film, NaCl) of compound 175h. 
 

Figure A3.38 13C NMR (100 MHz, CDCl3) of compound 175h. 
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Figure A3.40 Infrared spectrum (Thin Film, NaCl) of compound 175i. 
 

Figure A3.41 13C NMR (100 MHz, CDCl3) of compound 175i. 
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Figure A3.43 Infrared spectrum (Thin Film, NaCl) of compound 175j. 
 

Figure A3.44 13C NMR (100 MHz, CDCl3) of compound 175j. 
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Figure A3.46 Infrared spectrum (Thin Film, NaCl) of compound 175k. 
c 

Figure A3.47 13C NMR (100 MHz, CDCl3) of compound 175k. 
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Figure A3.49 Infrared spectrum (Thin Film, NaCl) of compound 175l. 
c 

Figure A3.50 13C NMR (100 MHz, CDCl3) of compound 175l. 
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Figure A3.52 Infrared spectrum (Thin Film, NaCl) of compound 175m. 
c 

Figure A3.53 13C NMR (100 MHz, CDCl3) of compound 175m. 
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Figure A3.54 19F NMR (282 MHz, CDCl3) of compound 175m. 
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Figure A3.56 Infrared spectrum (Thin Film, NaCl) of compound 175n. 
c 

Figure A3.57 13C NMR (100 MHz, CDCl3) of compound 175n. 
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Figure A3.58 19F NMR (282 MHz, CDCl3) of compound 175n. 
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Figure A3.60 Infrared spectrum (Thin Film, NaCl) of compound 174. 
c 

Figure A3.61 13C NMR (100 MHz, CDCl3) of compound 174. 
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Figure A3.63 Infrared spectrum (Thin Film, NaCl) of compound 176. 
c 

Figure A3.64 13C NMR (100 MHz, CDCl3) of compound 176. 
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Figure A3.66 2H NMR (61 MHz, CDCl3) of compound d5-174. 
c 
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APPENDIX 4 

X-Ray Crystallography Reports Relevant to Chapter 3: 

Iridium-Catalyzed Asymmetric Trans-Selective 

Hydrogenation of 1,3-Disubstituted Isoquinolines 
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A4.1  GENERAL EXPERIMENTAL 

 A crystal was mounted on a polyimide MiTeGen loop with STP Oil Treatment and 

placed under a nitrogen stream. Low temperature (100K) X-ray data (f-and w-scans) were 

collected with a Bruker AXS D8 VENTURE KAPPA diffractometer coupled to a 

PHOTON II CPAD detector with Cu Ka radiation (l = 1.54178 Å) from an IμS micro-

source for the structure of compound V21097. The structure was solved by direct methods 

using SHELXS and refined against F2 on all data by full-matrix least squares with 

SHELXL-2017 using established refinement techniques. All non-hydrogen atoms were 

refined using anisotropic displacement parameters. Hydrogen atoms were placed in 

idealized positions and the coordinates refined (each of the two disordered pairs were 

constrained to the same position). The isotropic displacement parameters of all hydrogen 

atoms were fixed at 1.2 times (1.5 times for methyl groups and alcohol) the Ueq value of 

the bonded atom. 

A4.2  X-RAY CRYSTAL STRUCTURE ANALYSIS OF THIQ 175a 

The tetrahydroisoquinoline (THIQ) product 175a (91% ee) was crystallized by 

slow evaporation from chloroform at 23 °C to provide crystals suitable for X-ray analysis. 

Compound V21097 crystallizes in the orthorhombic space group P212121 with one 

molecule in the asymmetric unit.  

 

 

 



Appendix 4 – X-Ray Crystallography Reports Relevant to Chapter 3
   
 

503 

Figure A4.1 X-ray crystal structure of THIQ 175a. 

 

Table A4.1 Crystal data and structure refinement for product 175a. 

Identification code  V21097 

Empirical formula  C17 H15 N O2 

Formula weight  265.30 

Temperature  100(2) K 

Wavelength  1.54178 Å 

Crystal system  Orthorhombic 

Space group  P212121 

Unit cell dimensions a = 6.5620(8) Å a= 90°. 

 b = 14.2320(17) Å b= 90°. 

 c = 14.4563(19) Å g = 90°. 

Volume 1350.1(3) Å3 

Z 4 

Density (calculated) 1.305 Mg/m3 

Absorption coefficient 0.687 mm-1 

F(000) 560 

Crystal size 0.300 x 0.150 x 0.150 mm3 

Theta range for data collection 4.359 to 79.624°. 

Index ranges -8<=h<=8, -17<=k<=18, -18<=l<=18 

Reflections collected 23786 
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Independent reflections 2903 [R(int) = 0.0368] 

Completeness to theta = 67.679° 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7543 and 0.6141 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2903 / 0 / 181 

Goodness-of-fit on F2 1.106 

Final R indices [I>2sigma(I)] R1 = 0.0314, wR2 = 0.0806 

R indices (all data) R1 = 0.0317, wR2 = 0.0807 

Absolute structure parameter 0.04(5) 

Extinction coefficient n/a 

Largest diff. peak and hole 0.157 and -0.228 e.Å-3 

 

 

Table A4.2 Atomic coordinates (x 10
4
), and equivalent isotropic displacement 

parameters (Å
2
x 10

3
), and population for 175a.  U(eq) is defined as one third of the 

trace of the orthogonalized Uij tensor. 

________________________________________________________________________ 
 x y z U(eq) 
________________________________________________________________________ 
C(1) 5632(2) 5374(1) 8245(1) 20(1) 
O(1) 7103(2) 4818(1) 8618(1) 26(1) 
O(2) 3839(2) 5236(1) 8370(1) 30(1) 
C(2) 9070(3) 5142(1) 8341(2) 39(1) 
C(3) 8729(2) 6082(1) 7842(1) 20(1) 
C(4) 9357(2) 6972(1) 8337(1) 18(1) 
C(5) 10846(3) 7016(1) 9020(1) 24(1) 
C(6) 11296(3) 7867(2) 9444(1) 32(1) 
C(7) 10246(3) 8669(2) 9192(1) 35(1) 
C(8) 8766(3) 8632(1) 8500(1) 28(1) 
C(9) 8329(2) 7787(1) 8060(1) 19(1) 
C(10) 6807(2) 7701(1) 7288(1) 19(1) 
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C(11) 5305(2) 6893(1) 7469(1) 16(1) 
C(12) 3921(2) 6716(1) 6645(1) 16(1) 
C(13) 4020(3) 5903(1) 6111(1) 20(1) 
C(14) 2681(3) 5771(1) 5375(1) 22(1) 
C(15) 1261(3) 6451(1) 5150(1) 23(1) 
C(16) 1180(3) 7277(1) 5665(1) 22(1) 
C(17) 2487(2) 7401(1) 6413(1) 19(1) 
N(1) 6496(2) 6060(1) 7731(1) 19(1) 
________________________________________________________________________ 
 
Table A4.3 Bond lengths [Å] and angles [°] for 175a. 

_____________________________________________________  
C(1)-O(2)  1.206(2) 
C(1)-N(1)  1.352(2) 
C(1)-O(1)  1.360(2) 
O(1)-C(2)  1.428(2) 
C(2)-C(3)  1.536(2) 
C(2)-H(2A)  0.9900 
C(2)-H(2B)  0.9900 
C(3)-N(1)  1.474(2) 
C(3)-C(4)  1.512(2) 
C(3)-H(3)  1.0000 
C(4)-C(5)  1.391(2) 
C(4)-C(9)  1.401(2) 
C(5)-C(6)  1.389(3) 
C(5)-H(5)  0.9500 
C(6)-C(7)  1.383(3) 
C(6)-H(6)  0.9500 
C(7)-C(8)  1.395(3) 
C(7)-H(7)  0.9500 
C(8)-C(9)  1.390(2) 
C(8)-H(8)  0.9500 
C(9)-C(10)  1.503(2) 
C(10)-C(11)  1.537(2) 
C(10)-H(10A)  0.9900 
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C(10)-H(10B)  0.9900 
C(11)-N(1)  1.4693(19) 
C(11)-C(12)  1.518(2) 
C(11)-H(11)  1.0000 
C(12)-C(13)  1.392(2) 
C(12)-C(17)  1.395(2) 
C(13)-C(14)  1.393(2) 
C(13)-H(13)  0.9500 
C(14)-C(15)  1.382(3) 
C(14)-H(14)  0.9500 
C(15)-C(16)  1.391(2) 
C(15)-H(15)  0.9500 
C(16)-C(17)  1.391(2) 
C(16)-H(16)  0.9500 
C(17)-H(17)  0.9500 
 
O(2)-C(1)-N(1) 127.52(16) 
O(2)-C(1)-O(1) 122.54(15) 
N(1)-C(1)-O(1) 109.93(14) 
C(1)-O(1)-C(2) 110.03(13) 
O(1)-C(2)-C(3) 106.31(14) 
O(1)-C(2)-H(2A) 110.5 
C(3)-C(2)-H(2A) 110.5 
O(1)-C(2)-H(2B) 110.5 
C(3)-C(2)-H(2B) 110.5 
H(2A)-C(2)-H(2B) 108.7 
N(1)-C(3)-C(4) 109.86(13) 
N(1)-C(3)-C(2) 100.27(13) 
C(4)-C(3)-C(2) 117.83(15) 
N(1)-C(3)-H(3) 109.5 
C(4)-C(3)-H(3) 109.5 
C(2)-C(3)-H(3) 109.5 
C(5)-C(4)-C(9) 120.26(15) 
C(5)-C(4)-C(3) 124.42(15) 
C(9)-C(4)-C(3) 115.32(14) 
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C(6)-C(5)-C(4) 120.11(17) 
C(6)-C(5)-H(5) 119.9 
C(4)-C(5)-H(5) 119.9 
C(7)-C(6)-C(5) 119.90(17) 
C(7)-C(6)-H(6) 120.1 
C(5)-C(6)-H(6) 120.1 
C(6)-C(7)-C(8) 120.27(17) 
C(6)-C(7)-H(7) 119.9 
C(8)-C(7)-H(7) 119.9 
C(9)-C(8)-C(7) 120.30(17) 
C(9)-C(8)-H(8) 119.9 
C(7)-C(8)-H(8) 119.9 
C(8)-C(9)-C(4) 119.13(15) 
C(8)-C(9)-C(10) 123.21(15) 
C(4)-C(9)-C(10) 117.66(14) 
C(9)-C(10)-C(11) 111.16(13) 
C(9)-C(10)-H(10A) 109.4 
C(11)-C(10)-H(10A) 109.4 
C(9)-C(10)-H(10B) 109.4 
C(11)-C(10)-H(10B) 109.4 
H(10A)-C(10)-H(10B) 108.0 
N(1)-C(11)-C(12) 112.78(13) 
N(1)-C(11)-C(10) 107.82(12) 
C(12)-C(11)-C(10) 111.92(12) 
N(1)-C(11)-H(11) 108.0 
C(12)-C(11)-H(11) 108.0 
C(10)-C(11)-H(11) 108.0 
C(13)-C(12)-C(17) 118.59(15) 
C(13)-C(12)-C(11) 122.95(14) 
C(17)-C(12)-C(11) 118.46(14) 
C(12)-C(13)-C(14) 120.40(15) 
C(12)-C(13)-H(13) 119.8 
C(14)-C(13)-H(13) 119.8 
C(15)-C(14)-C(13) 120.71(15) 
C(15)-C(14)-H(14) 119.6 
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C(13)-C(14)-H(14) 119.6 
C(14)-C(15)-C(16) 119.42(15) 
C(14)-C(15)-H(15) 120.3 
C(16)-C(15)-H(15) 120.3 
C(15)-C(16)-C(17) 119.92(15) 
C(15)-C(16)-H(16) 120.0 
C(17)-C(16)-H(16) 120.0 
C(16)-C(17)-C(12) 120.94(15) 
C(16)-C(17)-H(17) 119.5 
C(12)-C(17)-H(17) 119.5 
C(1)-N(1)-C(11) 120.07(13) 
C(1)-N(1)-C(3) 111.82(13) 
C(11)-N(1)-C(3) 122.70(12) 
_____________________________________________________________  
 
Table A4.4 Anisotropic displacement parameters (Å

2
x 10

3
) for 175a. The anisotropic 

displacement factor exponent takes the form: -2p
2
[ h2 a*2U11 + ...  + 2 h k a* b* 

U12] 

________________________________________________________________________ 
 U11 U22  U33 U23 U13 U12 
________________________________________________________________________ 
C(1) 20(1)  19(1) 20(1)  2(1) 2(1)  2(1) 
O(1) 22(1)  23(1) 34(1)  12(1) 1(1)  5(1) 
O(2) 20(1)  26(1) 43(1)  11(1) 7(1)  0(1) 
C(2) 20(1)  28(1) 68(1)  18(1) -9(1)  -2(1) 
C(3) 14(1)  21(1) 25(1)  2(1) 1(1)  1(1) 
C(4) 14(1)  25(1) 16(1)  1(1) 5(1)  0(1) 
C(5) 16(1)  36(1) 20(1)  0(1) 2(1)  4(1) 
C(6) 20(1)  49(1) 26(1)  -11(1) -6(1)  6(1) 
C(7) 27(1)  39(1) 39(1)  -21(1) -7(1)  3(1) 
C(8) 23(1)  28(1) 35(1)  -10(1) -6(1)  4(1) 
C(9) 16(1)  24(1) 18(1)  -3(1) 1(1)  0(1) 
C(10) 19(1)  17(1) 19(1)  2(1) -1(1)  -1(1) 
C(11) 16(1)  17(1) 16(1)  2(1) 1(1)  1(1) 
C(12) 13(1)  19(1) 15(1)  3(1) 2(1)  -2(1) 
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C(13) 20(1)  20(1) 18(1)  2(1) 2(1)  1(1) 
C(14) 25(1)  24(1) 18(1)  0(1) 3(1)  -6(1) 
C(15) 21(1)  32(1) 16(1)  5(1) -2(1)  -8(1) 
C(16) 16(1)  27(1) 22(1)  8(1) 0(1)  1(1) 
C(17) 17(1)  20(1) 20(1)  2(1) 2(1)  0(1) 
N(1) 14(1)  20(1) 22(1)  6(1) 0(1)  0(1) 
________________________________________________________________________ 
 

Table A4.5 Hydrogen coordinates (x 10
4
) and isotropic displacement parameters 

(Å
2
x 10

3
) for 175a. 

________________________________________________________________________ 
 x  y  z  U(eq) 
________________________________________________________________________ 
H(2A) 9723 4683 7921 47 
H(2B) 9959 5231 8888 47 
H(3) 9391 6060 7219 24 
H(5) 11557 6463 9197 29 
H(6) 12322 7897 9906 38 
H(7) 10535 9249 9491 42 
H(8) 8054 9187 8328 34 
H(10A) 7534 7586 6698 22 
H(10B) 6043 8297 7227 22 
H(11) 4430 7072 8007 20 
H(13) 5007 5436 6250 24 
H(14) 2744 5208 5024 27 
H(15) 348 6356 4649 28 
H(16) 234 7755 5505 26 
H(17) 2402 7959 6770 22 
________________________________________________________________________ 
 
Table A4.6 Torsion angles [°] for 175a. 

________________________________________________________________  
O(2)-C(1)-O(1)-C(2) 179.11(18) 
N(1)-C(1)-O(1)-C(2) -0.1(2) 
C(1)-O(1)-C(2)-C(3) 8.0(2) 
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O(1)-C(2)-C(3)-N(1) -11.7(2) 
O(1)-C(2)-C(3)-C(4) 107.34(18) 
N(1)-C(3)-C(4)-C(5) 138.89(15) 
C(2)-C(3)-C(4)-C(5) 25.0(2) 
N(1)-C(3)-C(4)-C(9) -41.39(18) 
C(2)-C(3)-C(4)-C(9) -155.28(15) 
C(9)-C(4)-C(5)-C(6) 1.2(2) 
C(3)-C(4)-C(5)-C(6) -179.11(16) 
C(4)-C(5)-C(6)-C(7) 0.6(3) 
C(5)-C(6)-C(7)-C(8) -1.3(3) 
C(6)-C(7)-C(8)-C(9) 0.2(3) 
C(7)-C(8)-C(9)-C(4) 1.6(3) 
C(7)-C(8)-C(9)-C(10) -177.85(17) 
C(5)-C(4)-C(9)-C(8) -2.3(2) 
C(3)-C(4)-C(9)-C(8) 178.00(15) 
C(5)-C(4)-C(9)-C(10) 177.19(14) 
C(3)-C(4)-C(9)-C(10) -2.5(2) 
C(8)-C(9)-C(10)-C(11) -130.25(17) 
C(4)-C(9)-C(10)-C(11) 50.33(18) 
C(9)-C(10)-C(11)-N(1) -48.40(16) 
C(9)-C(10)-C(11)-C(12) -172.99(12) 
N(1)-C(11)-C(12)-C(13) -9.5(2) 
C(10)-C(11)-C(12)-C(13) 112.26(16) 
N(1)-C(11)-C(12)-C(17) 170.44(13) 
C(10)-C(11)-C(12)-C(17) -67.77(18) 
C(17)-C(12)-C(13)-C(14) -1.4(2) 
C(11)-C(12)-C(13)-C(14) 178.59(14) 
C(12)-C(13)-C(14)-C(15) 1.3(2) 
C(13)-C(14)-C(15)-C(16) 0.3(2) 
C(14)-C(15)-C(16)-C(17) -1.7(2) 
C(15)-C(16)-C(17)-C(12) 1.5(2) 
C(13)-C(12)-C(17)-C(16) 0.0(2) 
C(11)-C(12)-C(17)-C(16) -179.99(14) 
O(2)-C(1)-N(1)-C(11) 17.7(3) 
O(1)-C(1)-N(1)-C(11) -163.14(14) 
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O(2)-C(1)-N(1)-C(3) 172.42(17) 
O(1)-C(1)-N(1)-C(3) -8.43(19) 
C(12)-C(11)-N(1)-C(1) -80.48(17) 
C(10)-C(11)-N(1)-C(1) 155.43(14) 
C(12)-C(11)-N(1)-C(3) 127.63(15) 
C(10)-C(11)-N(1)-C(3) 3.6(2) 
C(4)-C(3)-N(1)-C(1) -112.36(15) 
C(2)-C(3)-N(1)-C(1) 12.38(19) 
C(4)-C(3)-N(1)-C(11) 41.6(2) 
C(2)-C(3)-N(1)-C(11) 166.32(16) 
________________________________________________________________  
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CHAPTER 4 

Advances in the Total Synthesis of the   

 Tetrahydroisoquinoline Alkaloids (2002 – 2020) †  

 

4.1  INTRODUCTION 

The tetrahydroisoquinoline (THIQ) alkaloids make up one of the largest groups of 

natural products with a wide range of structural diversity and biological activity.1 From 

simple tetrahydroisoquinolines such as salsolidine 183, to complex tris-

tetrahydroisoquinoline systems like Ecteinsacidin 743 184, there is a wide variety in structure 

and activity between the families of isoquinoline alkaloids that possess the 1,2,3,4-

tetrahydroisoquinoline ring system (Figure 4.1). Thus, the chemical syntheses of these 

alkaloids have been extensively investigated toward the development of efficient total 

syntheses and understanding of their biological activity.2 

While several review articles on the total synthesis of isoquinoline alkaloids have 

been published, including Williams’ seminal review on the THIQ antitumor antibiotics,3 

there has been no comprehensive review of the chemical syntheses of tetrahydroisoquinoline 

alkaloids over the past several decades. Moreover, recent total syntheses have emerged 
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harnessing modern chemical methods and novel technology. As these synthetic strategies 

diverge from biomimetic approaches, they often provide a highly efficient route toward 

complex THIQ alkaloids compared to previous syntheses. This review will cover literature 

from 2002 to 2020, highlighting the chemical syntheses of a range of THIQ alkaloids that 

especially feature creative, novel synthetic approaches (Figure 4.2).  

Figure 4.1 Tetrahydroisoquinoline alkaloids (–)-salsolidine 183 and Ecteinascidin 743 184. 

 
 
 
 

4.2  TETRAHYDROISOQUINOLINE ALKALOIDS 

4.2.1 GENERAL STRUCTURE AND BIOSYNTHESIS 

Most simple THIQ alkaloids come from the Cactaceae,  

Chenopodiaceae, and Fabaceae cacti families.1 These cactus species contain β-

phenylethylamine alkaloids, as well as simple tetrahydroisoquinolines that bear a stereogenic 

center at the C1 carbon with various oxidation patterns on the arene ring (Figure 4.3). 

Figure 4.3 General structure of simple THIQ alkaloids. 
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Figure 4.2 General structures of THIQ alkaloid families. 
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From the Fabaceae family, the Erythrina genus consists of about 143 alkaloids that 

are characterized by the spirocyclic motif embedded in the tetracyclic scaffold (Figure 4.4).1 

There are three main classes of Erythrina alkaloids referred to as the dienoid, alkenoid, and 

lactonic alkaloids.5 The dienoid alkaloids feature a conjugated diene system, whereas the 

alkenoids have a 1,6-double bond in the A ring, and the lactonic alkaloids possess a lactone 

ring in ring D. These alkaloids have been discovered to possess an array of  

biological activity, including antiepileptic, anticonvulsant, and CNS depressing properties. 

Figure 4.4 General structure of the Erythrina alkaloids. 
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enantioselective fashion. Three general strategies toward the construction of the THIQ core 

have been described, either through the disconnection of the C1–C8a,7 C1–N,8 and/or the N–

C3 bond (Figure 4.6). While electrophilic aromatic substitution chemistry through iminium 

ion cyclization is most common to assemble the scaffold, other novel disconnections have 

also been explored to build the A, B, and C rings. 

Figure 4.5 Proposed biosynthesis of the Erythrina alkaloids. 

 

 In 2004, Matsumoto sought to construct the Erythrinan scaffold utilizing substitution 

chemistry for the key spirocyclization of ortho-quinone monoacetal 197 to establish the C 

ring.8a Toward the synthesis of O-methylerysodienone 199, Matsumoto and coworkers 

initially access the biphenyl precursor 194 from a Suzuki–Miyaura coupling of arylboronic 

acid 192 and aryl bromide 193 (Scheme 4.1). Further oxidative manipulations and 

substitution chemistry results in the installation of the nucleophilic nitrogen functional group 

in intermediate 196. The C-ring was then established through the key spirocyclization step 

NH

MeO

HO

OMe
OH

Norreticuline (185)

MeO
OH

MeO
OH

NH
H

MeO
OH

MeO
O

NH
H

Norisosalutaridine (186)

MeO
OH

NH
H

O
O

187

MeO
OH

O
O

Dibenzazonine (188)

NH – 2e-

– H+

MeO
O

O
O

189

NH

N

O

O

O

MeO

190

N

O

O

MeO

Erythraline (191)



Chapter 4 – Advances in the Total Synthesis of the Tetrahydroisoquinoline 
Alkaloids (2002 – 2020)  

517 

from ortho-quinone acetal 197, using BF3•OEt2 as the optimal Lewis acid compared to other 

metal triflates. Finally, N-alkylation to furnish the B-ring occurred smoothly under methanol 

and phosphate buffer.  

Figure 4.6 Synthetic approaches to Erythrina alkaloids. 

 

Scheme 4.1 Matsumoto’s total synthesis of O-methylerysodienone 199. 
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transmitting axial chirality of the biphenyl intermediate from its hindered rotation to the 

spirocyclic center of the natural product (Scheme 4.1).  Adding a trimethylsilyl group ortho 

to the biphenyl bond that was easily cleaved with Bu4NF allowed separation of both 

enantiomers and enabled the enantioselective synthesis of (+)-O-methylerysodienone. 

Scheme 4.2 Matsumoto’s enantioselective synthesis of O-methylerysodienone 199. 
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tetrahydroisoquinoline 205 with NBS in CH3CN. Reduction of the bromide and elimination 

of the alcohol then produces 206, which undergoes stereoselective allylic oxidation, 

subsequent reduction, and O-methylation to synthesize erysotramidine 208.  

Scheme 4.4 Padwa’s total synthesis of erysotramidine 208. 
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secondary alcohol followed by exposure to BF3•OEt2 formed an acyliminium intermediate 

that allowed cyclization to occur with diastereocontrol. Wacker oxidation of 216 and 

subsequent reduction removed the amide carbonyl, and aldol cyclization of the two oxidized 

ketones yielded (+)-demethoxyerythratidinone 213 in 50% yield, allowing access to both 

enantiomers of the natural product in simply eight steps. 

Scheme 4.5 Padwa’s total synthesis of demethoxyerythratidinone 213. 

 

 

Scheme 4.6 Simpkin’s enantioselective synthesis of (+)-demethoxyerythratidinone 213. 
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diastereoselective 1,2-addition of organometallic reagents to benzoquinone monoketal-

derived sulfinimines, they established spirocyclic THIQ 221 through addition of aryllithium 

220 to bromosulfinimine 219 to provide a single diastereomer in 74% yield (Scheme 4.7). 

Stille coupling then furnished the corresponding enol ether, with sulfinamide deprotection 

and in situ condensation accessing the natural product scaffold 223. Selective hydrogenation 

of triene 223 then completed the elegant and rapid total synthesis of (–)-

demethoxyerythratidinone in only six steps and 26% overall yield.  

Scheme 4.7 Reisman’s enantioselective synthesis of (–)-demethoxyerythratidinone 213. 
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lactams 229 and 230. Reduction of the mixture of products and acidic hydrolysis then 

resulted in the total synthesis of (+)-213. 

Scheme 4.8 Ciufolini’s enantioselective synthesis of (+)-demethoxyerythratidinone 213. 
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diacetate 235 (Scheme 4.10). Silver-catalyzed cyclization then furnished dihydrofuranyl 

derivative 236, with further reduction accessing key intermediate 237. Preparation of the (Z)-

vinyl iodide for the late-stage Heck cyclization was achieved through Swern oxidation, then 

Wittig olefination of the crude aldehyde and protection of the hydroxyl group to provide 239. 

A Heck cyclization then established the A ring of the natural product scaffold, providing 240 

in 62% yield as the sole product. A final methylation step of the alcohol furnished the 

unnatural enantiomer (–)-erysotramidine 208 in good yield.   

Scheme 4.9 Ciufolini’s enantioselective synthesis of (+)-erysotramidine 208. 
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methionine-(SAM)-dependent O-methyl transferase to access (S)-coclaurine 244. After N-

methylation to yield intermediate 245, hydroxylation by N-methylcoclaurine 3’-hydroxylase 

(NMTC) followed by O-methylation produces the key precursor (S)-reticuline 247. From 

this key intermediate, the biosynthetic pathways branch to form a variety of different 

structural classes of THIQ alkaloids (Figure 4.8). 

Scheme 4.10 Kaluza’s enantioselective synthesis of (–)-erysotramidine 208. 

 

Figure 4.7 Early biosynthetic pathways to yield (S)-reticuline 247. 
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4.4.1  APORPHINE ALKALOIDS 

4.4.1.1.  GENERAL STRUCTURE AND BIOSYNTHESIS 

The aporphine alkaloids are based on the 4H-dibenzo[de,g]quinoline structure or its 

N-methyl derivative, with a tetracyclic core as distinguished in Figure 4.9.16 They contain a 

biphenyl ring system and highly oxidized substitution patterns, with hydroxyl, methoxy, and  

methylenedioxy moieties situated over all four rings. 

Figure 4.8 Diverging biosynthetic pathways from (S)-reticuline 247 that access a wide variety 
of structural classes of THIQ alkaloids. 
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to be promising agents in the prevention and treatment of metabolic syndrome due to their 
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Figure 4.9 General structure of the aporphine alkaloids. 

 
The aporphine alkaloids are presumably derived from reticuline 247, which 

undergoes an intramolecular bis-phenol coupling to construct the core.18  The CYP80G 

subfamily of cytochrome P450 monooxygenases has been correlated with aporphine 

biosynthesis, in which CYP80G2 (corytuberine synthase) catalyzes conversion of (S)-

reticuline 247 to (S)-corytuberine 248 via intramolecular C–C coupling (Figure 4.10). N-

methylation of corytuberine 248 by reticuline N-methyl transferase (RNMT) enzyme then 

delivers one of the aporphine natural products magnoflorine 249. Other related aporphine 

members of the family are proposed to arise from a similar route, either delivering the N–H, 

N-methyl aporphine or the quaternary aporphine salt. 

Figure 4.10 Proposed biosynthesis of aporphine alkaloid (S)-magnoflorine 249. 
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THIQ 252 in 55% yield. A Pd-catalyzed intramolecular phenol ortho-arylation then 

delivered the key aporphine scaffold 253 in moderate yield. Finally, removal of the hydroxyl 

group and the sulfonamide followed by reductive amination with 37% aqueous 

formaldehyde in the presence of NaBH4 afforded aporphine 255. Similar synthetic strategies 

have also been utilized in subsequent reports to access different aporphine natural products.20 

Scheme 4.11 Cuny’s synthesis of aporphine 255. 
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Scheme 4.12 Vicario’s synthesis of (+)-glaucine 260. 

 

Alternatively, Fürstner and co-workers constructed the aporphine scaffold through a 
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261, a Suzuki coupling with 2-formylbenzeneboronic acid yielded functionalized biphenyl 
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Hydrolysis of 269 followed by reductive amination delivered aporphine 255, which was then 

subjected to chiral resolution using (+)-DBTA to provide the enantiomer of the aporphine 

alkaloid. Raminelli and coworkers were further able to demonstrate the syntheses of different 

aporphine alkaloids using benzyne chemistry to couple isoquinoline derivatives and various 

silylaryl triflates, allowing rapid access to functionalized aporphine scaffolds.24 

Scheme 4.13 Fürstner’s synthesis of O-methyl-dehydroisopiline 264. 

 

Scheme 4.14 Raminelli’s synthesis of (–)-aporphine 255. 
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the THIQ core (Scheme 4.15).25 From dihydroisoquinoline 270 that was established from a 

Bischler–Napieralski reaction, treatment with oxalyl chloride and NEt3 afforded dione 271. 

A radical cyclization using SnBu3H in the presence of 1,1’-azobis(cyclohexanecarbonitrile) 

(ACCN) then delivered telisatin A 272 and other telisatin alkaloids in 30–34% yields. 

Scheme 4.15 Nimgirawath’s synthesis of telisatin A 272. 
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to form the biaryl C–C bond (Scheme 4.16).26 From carbamate 273, selective reduction of 

the methyl ester using DIBAL, followed by an acid-mediated cyclization with BF3•OEt2 
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condensation with nitromethane followed by reduction and acetylation delivered amide 278. 

After removal of the benzyl group, a Bischler–Napieralski reaction with POCl3 then acylation 

with trifluoroacetic anhydride yielded enamide 279 for the key aromatic oxidation. 

Ultimately, the oxidation of 279 with iodobenzene diacetate (PIDA) was successful in 

allowing cyclization to stepharine 280 in 90% yield. N-methylation of 280 further delivered 

pronuciferine 281. Alternatively, Magnus and coworkers demonstrated that the 

spirocyclization could be achieved through an intramolecular displacement of a mesylate 

derivative 282 using CsF in NMP at 150 °C to deliver stepharine 280 as well (Scheme 

4.17B).28 

Scheme 4.16 Cuny’s synthesis of (–)-artabonatine A 276. 
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deliver tetracycle 285. After several protecting group manipulations, a benzylic oxidation 

with CrO3 furnished ketone 286. Next, to establish the THIQ core, the 2-oxoethyl group was 

incorporated into the benzene ring via a Claisen rearrangement to afford the C-allylated 

product 287, then ozonolysis followed by deoxygenation to produce aldehyde 289. Finally, 

reductive amination and removal of the TBS group afforded (–)-misramine 290 as a single 

diastereomer. 

Scheme 4.17 A. Honda’s synthesis of stepharine 280 and pronuciferine 281. B. Magnus’ 
synthesis of stepharine 280. 
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reduced to THIQ 292 using NaBH4 in MeOH. After protection of the secondary amine, the 

key direct arylation step was explored for each substrate, enabling the direct coupling of aryl 

bromides, chlorides, and iodides, as well as different N-protecting groups (Scheme 4.19A). 

Scheme 4.18 Takao’s synthesis of (–)-misramine 290. 

 

Fagnou also performed SAR studies to probe the effects of C2-substitutents on their 

biological activity. In this experiment, aporphine derivative 295 was coupled with different 

nucleophilic coupling partners, installing a range of functionalities such as a morpholine, 

pyridine, and pyrazine N-oxides (Scheme 4.19B). This strategy was also employed for the 

synthesis of (R)-nornuciferine 302 and (R)-nuciferine 301 by utilizing a Ru-catalyzed 

asymmetric transfer hydrogenation after Bischler–Napieralski cyclization to provide THIQ 

298 in 99% yield and with 95% ee (Scheme 4.19C) Then, Pd-catalyzed arylation followed 

by reduction or deprotection of the Boc group delivered both natural products. Overall, these 

HO

MeO
OH

O

283

C1 (30 mol %)
H2O (1 equiv)

p-bromophenol (1 equiv)
PhH, 65 °C

60% yield, 73% ee

N N

NH2

C1

OH O
MeO

HO

284

1) MOMCl, i-Pr2NEt
    DMAP, CH2Cl2
2) LDA, TMSCl, NEt3
    THF, –78 to 0 °C
3) DMDO, acetone
    then 1 M aq. HCl
4) CSA, HC(OMe)3
    MeOH
57% yield (4 steps)

OH
MeO

O

HO
MeO

285

1) BzCl, K2CO3
    acetone, reflux
2) TBSCl, imidazole
    DMAP, CH2Cl2
3) CrO3
    3,5-dimethylpyrazole
    CH2Cl2, reflux

65% yield (3 steps)

OBz
MeO

O

TBSO
MeO

286

O

1) K2CO3, MeOH
2) allyl bromide
    K2CO3, acetone
3) N,N-diethylaniline
    230 °C

81% yield (3 steps)

OH
MeO

O

TBSO
MeO

287

O

1) PhNTf2, NaH
2) O3, CH2Cl2, 
    then Me2S
3) PPTS, HC(OEt)3
    EtOH, reflux

95% yield (3 steps)

MeO

O

TBSO
MeO

289

O

O
MeO

O

TBSO
MeO

288

O

OTf

EtO OEt 1) Pd/C, HCO2NH4
    MeOH, reflux

63% yield (2 steps)

2) TFA, H2O
    CH2Cl2

1) MeNH2, AcOH
    NaBH3CN, MeOH

47% yield (2 steps)

2) HF•Py
    Py:THF

MeO

O

HO
MeO

(–)-Misramine (290)

NMe

H



Chapter 4 – Advances in the Total Synthesis of the Tetrahydroisoquinoline 
Alkaloids (2002 – 2020)  

534 

syntheses highlight the utility of direct arylation methodology for both target-oriented and 

diversity-oriented synthesis.  

Scheme 4.19 Fagnou’s synthesis of aporphine alkaloids. 
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The bisbenzyltetrahydroisoquinoline alkaloids consist of two monomeric benzyl 

THIQ fragments linked through diphenyl ether or biphenyl bonds (Figure 4.11). The 

substitution on the arene mainly consist of hydroxyl, methoxy, or methylenedioxy groups. 

Over hundreds of bisbenzyl THIQ alkaloids have been isolated and characterized, with the 

diaryl ether linkage either involved in “tail-to-tail” coupling of the benzyl unit, or “head-to-

tail” coupling of the THIQ linked to the benzyl C ring.   

Figure 4.11 General structure of bisbenzyl THIQ alkaloids. 

 

The bisbenzyl THIQ alkaloids have been isolated from an array of plant species, 

including Chondrodendron tomentosum, and opium poppy Papaver somniferum.31 They are 

widely known for their dopaminergic, antitumor, and neuroprotectant properties. This class 

of alkaloids is proposed to be formed from the coupling of two monomer units derived from 

N-methylcoclaurine (NMC) 245 in either the (R) or (S)-configuration, catalyzed by enzyme 

CYP80A1 (Figure 4.12). First, epimerization of 245 is performed by dehydroreticuline 

synthase-dehydroreticuline reductase (DRS-DRR) to yield (R)-245, then either (R)+(R) 

coupling or (R)+(S) coupling delivers guattegaumerine 303 or berbamunine 304, 

respectively. However, dimerization of benzyl THIQs can occur either between both benzyl 

units or between the THIQ moiety to a benzyl unit, and thus the structural diversity of these 

alkaloids is extensive.31 
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Figure 4.12 Proposed biosynthesis of bisbenzyl THIQ alkaloids 303 and 304. 

 

4.4.2.2. TOTAL SYNTHESIS OF BISBENZYL THIQ ALKALOIDS 

In 2011, Opatz and coworkers described the modular syntheses of (+)-

tetramethylmagnolamine 313 and (+)-O-methylthalibrine 312 from a common intermediate 

THIQ 305 (Scheme 4.20). 32  Alkylation of deprotonated aminonitrile 305 with benzyl 

bromide 306 and subsequent reductive methylation gives THIQ monomer 307, while 

bromination of 308 followed by formamide reduction yielded the other THIQ monomer 309. 

Finally, an Ullman coupling of 307 forged the biaryl ether linkage with THIQ 310 to afford 

(+)-O-methylthalibrine dimer 312, or alternatively with THIQ 309 and 311 to synthesize (+)-

tetramethylmagnolamine 313. Opatz and coworkers utilized a similar synthetic strategy for 
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curare alkaloids as well.32b 
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copper(I) bromide-dimethylsulfide complex with Cs2CO3 in pyridine to yield 318. After 

deprotection, a second Pictet–Spengler reaction with enol ether 319 delivered seco-

bisbenzylisoquinoline 320 in 42–46% overall yield. A second Ullmann coupling using the 

same optimized conditions then afforded the macrocycle and accessed both natural products 

tetrandine 321 and isotetrandine 322 after reduction with LiAlH4. 

Scheme 4.20 Opatz’s synthesis of (+)-tetramethylmagnolamine 313 and (+)-O-
methylthalibrine 312. 

 

Apart from macrocyclic bisbenzyltetrahydroisoquinoline alkaloids, several novel 
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catalyzed C–O coupling of phenol 327 with phenyl boronic acid 328, which was then 

hydrolyzed to carboxylic acid 329.  

Scheme 4.21 Bracher’s synthesis of tetrandine 321 and isotetrandine 322. 

 

 

With the two partners in hand, a diastereoselective Bischler–Napieralski reaction was 
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Scheme 4.22 Georghiou’s synthesis of (–)-tejedine 334. 
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dechlorination reaction was also developed by passing a methanol solution of 338 through a 

Pd tube (cathode) and a Pt wire (anode) in aqueous H2SO4 solution outside the flow cell. 

Hydrogen, which was generated by electrolysis, was absorbed into the Pd tube and thus the 

successive reduction was conducted to give 339 in 76% yield.35a After hydrolysis, the 

reaction of the resulting diacid with phenylethylamine 340 provided the corresponding bis-

amide which underwent a Bischler–Napieralski cyclization followed by reduction to deliver 

bis-THIQ in 75% overall yield. Finally, a one-pot conversion of removing the chiral 

auxiliaries and N-methylation afforded the natural product 312.  

Scheme 4.23 Nishiyama’s electrochemical synthesis of (+)-O-methylthalibrine 312. 
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formed oxygenated radical intermediate 342 (Scheme 4.24). Upon treatment of another 

THIQ molecule 343, a radical C–O coupling afforded the desymmetrized bis-THIQ dimer 

344 after reductive workup. Subsequent methylation and reduction of the Boc groups 

furnished tetramethylmagnolamine 313 in 7 steps with 21% overall yield. By taking 

advantage of the natural product’s pseudosymmetry and biosynthesis, this synthetic approach 

concisely assembles the target by only preparing a single coupling partner. 

Scheme 4.24 Lumb’s synthesis of tetramethylmagnolamine 313. 

 

4.4.3. PROTOBERBERINE ALKALOIDS 
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phenolic oxidation and coupling with the N-methyl group, which serves as the “berberine 

bridge” carbon (Figure 4.13).37 

 

H
N

MeO
OMe

OH

341 53% yield (2 steps)

1) Boc2O, MeOH
2) CuPF6 (4 mol %)
    DBED (5 mol %)
    O2 (1 atm), CH2Cl2

Boc
N

MeO
OMe

O

342

O
CuLn

NBoc
MeO

MeO

OH

343
then Na2S2O4 work up

Boc
N

MeO
OMe

OH

344

OH

O

Boc
N

OMe
OMe

44% yield (2 steps)

1) MeI, Cs2CO3
    DMSO
2) LiAlH4, THF Me

N

MeO
OMe

OMe

Tetramethylmagnolamine (313)

OMe

O

Me
N

OMe
OMe



Chapter 4 – Advances in the Total Synthesis of the Tetrahydroisoquinoline 
Alkaloids (2002 – 2020)  

542 

Figure 4.13 General structure of the protoberberine THIQ alkaloids. 

 

Primarily isolated from the Papaveraceae (e.g., Corydalis, Papaver), Berberidaceae 

(e.g., Berberis, Mahonia), and Menispermaceae family, the protoberberine alkaloids consist 

of several variations of the tetracyclic ring system: the protoberberines such as berberine 345, 

the tetrahydroprotoberberines like tetrahydropalmatine 346, and C14-oxo derivatives, such 
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skeleton types identified. 
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Figure 4.14 Proposed biosynthesis of protoberberine alkaloids 345 and 351. 

 

4.4.3.2. TOTAL SYNTHESIS OF PROTOBERBERINE ALKALOIDS 

While there have been vast reports on the syntheses of the protoberberine alkaloids, 
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Rozwadowska43 have also harnessed this synthetic approach of the addition of nucleophiles 

to enantiopure sulfinimines to synthesize other members of the protoberberine alkaloid 

family. 

Scheme 4.25 Davis’ synthesis of (–)-xylopinine 356. 

 

Scheme 4.26 Ruano’s synthesis of (–)-xylopinine 356. 
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Scheme 4.27 Cho’s synthesis of oxypalmatine 364. 

 

Utilizing lithiated oxazoline or oxazolidine chiral auxiliaries to add into 
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as a mixture of diastereomers. Removing the hydroxyl group was achieved using BF3•OEt2 

and Et3SiH to ultimately synthesize (–)-tetrahydropalmatine 346 in 92% yield with 98% ee. 

Scheme 4.28 Chrzanowska’s synthesis of A. Oxoberberine 367 and B. (–)-oxoxylopinine 370. 

 

Scheme 4.29 Ender’s synthesis of (–)-tetrahydropalmatine 346. 
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induced from the chiral auxiliary (Scheme 4.30). Then, introduction of the methyl ester 

through a lithium halogen exchange and quenching with methyl chloroformate, and 

intramolecular cyclization of the amine delivered protoberberine scaffold 378. Yang was then 

able to achieve the synthesis of (–)-stepholidine 379 after carbonyl reduction and protecting 

group removal. Similarly, Harding utilized amide 380 with a pendent methyl ester to undergo 

Bischler–Napieralski cyclization and reduction to access the protoberberine scaffold 381 

directly (Scheme 4.31). Methylation and reduction of the carbonyl then delivered 

isocorypalmine 382. 

Scheme 4.30 Yang’s synthesis of (–)-stepholidine 379. 

 

Scheme 4.31 Harding’s synthesis of isocorypalmine 382. 
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reduction of amide 383 to achieve THIQ 384, upon which addition of formaldehyde followed 

by NaBH3CN reduction delivered (–)-corytenchine 385 (Scheme 4.32).50 

Scheme 4.32 Georghiou’s synthesis of (–)-corytenchine 385. 

 

Alternatively, Hiemstra 51  and van Maarseveen 52  and coworkers demonstrated a 

regioselective ortho- or para-directed Pictet–Spengler reaction to construct the THIQ core. 

First, a Pictet–Spengler condensation of protected amine 386 with aldehyde 387 afforded 

THIQ 388 in 85% yield with 90% ee (Scheme 4.33). Then, a second Pictet–Spengler reaction 

was effected with another equivalent of aldehyde 387 to deliver either the para- or ortho-

isomer depending on the solvent. Increasing H-bonding character of the solvent such as HFIP 

and trifluoroethanol increased the amount of para-substituted product 391, while aprotic, 

apolar solvents such as toluene gave the highest selectivity of ortho-isomer 390. Treatment 

with BBr3 led to the formation of (+)-javaberine A 392 and (+)-javaberine B 393. Van 

Maarseveen and coworkers demonstrated an ortho-selective Pictet–Spengler reaction using 

aldehyde 395 with equimolar amounts of 394 in toluene as solvent to achieve the ortho-

isomer 396 in good selectivity (Scheme 4.34). Debenzylation and cyclization of the C-ring 

using formaldehyde under acidic conditions produced (–)-govaniadine 397 in 61% yield, 

allowing access to several other ortho-oxygenated alkaloids as well. 

 

 

 

383

MeO

MeO
N

Me

Ph

64% yield, 95% ee 
(2 steps)

1) POCl3;
    NaBH4, MeOH
2) H2, Pd/C
    EtOH

O

HO

MeO

NH

MeO

MeO
OH

OMe

384

95% yield

1) CH2O, CH3CN
2) NaBH3CN, AcOH

N

OH
OMe

H
MeO

MeO

(–)-Corytenchine (385)



Chapter 4 – Advances in the Total Synthesis of the Tetrahydroisoquinoline 
Alkaloids (2002 – 2020)  

549 

Scheme 4.33 Hiemstra’s synthesis of (+)-javaberine A 392 and (+)-javaberine B 393. 

 

Scheme 4.34 van Maarseveen’s synthesis of (–)-govaniadine 397. 
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pseudopalmatine 401 from 398 and 399 using DIPEA as base, and aromatization under air 

to protoberberine alkaloid 401 (Scheme 4.35B).55 

Scheme 4.35 Opatz’s synthesis of A. Xylopinine 356. B. Pseudopalmatine 401. 
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oxidant, 407 first underwent amidation to assemble the THIQ, followed by C–H activation 

of the arene to allow cyclization to oxotetrahydropalmitine 408 in 55% yield. 

Scheme 4.36 Donohoe’s synthesis of palmatine 405. 

 

Scheme 4.37 Mhaske’s synthesis of oxotetrahydropalmitine 408. 

 

In 2016, Cheng and coworkers developed a general Rh-catalyzed C–H activation and 

annulation method to afford various natural and unnatural protoberberine alkaloids.58 An 

array of substituted benzaldehydes, such as 409, were coupled with alkyne 410 using 

[RhCp*(CH3CN)3][SbF6]2 as catalyst with Cu(BF4)2•6 H2O and O2 as oxidant to deliver 

protoberberine alkaloid corysamine 411 in 92% yield (Scheme 4.38). This one-pot 

transformation was successfully employed for a variety of benzaldehydes and alkyne amines 

to provide a library of protoberberine salts in good yield and selectivity. 

Scheme 4.38 Cheng’s synthesis of corysamine 411. 
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catalyst, benzamide 412 underwent alkyne insertion, reductive C–N bond formation and N–

O bond cleavage to achieve isoquinolone 413 in a single transformation (Scheme 4.39). A 

Mitsunobu reaction then constructed the oxyprotoberberine scaffold 414 in 80% yield, which 

could be further elaborated into the protoberberine or tetrahydroprotoberberine alkaloids. 

Scheme 4.39 Glorius’ general synthesis of protoberberine alkaloids. 

 

Harnessing a Cu-catalyzed three component coupling reaction of an amine, aldehyde, 

and alkyne, Tong and coworkers optimized a general annulation strategy that enabled the 

syntheses of over 30 natural protoberberine alkaloids. 60  To this end, THIQ 415, 

benzaldehyde 416, and trimethylsilylacetylene were employed in a three component 

condensation reaction to afford THIQ 417 in 81% yield (Scheme 4.40). Then, a Pd-catalyzed 

reductive carbocyclization reaction successfully provided the desired tetracycle 418 of the 

protoberberine core. Hydrogenation of the exo-olefin delivered the natural product 

thalictricavine 419 as a single diastereomer. A Rh-catalyzed isomerization of 418 with 

concomitant oxidation under air also provided the protoberberine salt dehydrothalictricavine 

420 in 65% yield. With this highly efficient synthetic route, a variety of 13-methyl-
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Scheme 4.40 Tong’s synthesis of thalictricavine 419 and dehydrothalictricavine 420. 

 

Finally, Ward and coworkers employed a novel chemoenzymatic cascade toward the 

synthesis of the tetrahydroprotoberberine alkaloids.61 From dopamine 241, first a Pictet–

Spengler condensation using a transaminase enzyme (TAm) from CV2025 

Chromobacterium violaceum and a norcoclaurine synthase enzyme (NCS) delivered THIQ 

421 in 87% yield with 99% ee (Scheme 4.41). Then, the addition of formaldehyde induced 

a second Pictet–Spengler reaction to deliver tetrahydroprotoberberine alkaloid 422 in 64% 

yield.   

Scheme 4.41 Ward’s chemoenzymatic synthesis of tetrahydroprotoberberine alkaloid 422. 
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The morphinan alkaloids are distinguished by their phenanthrene core with a bridging 

piperidine ring and a fused benzodihydrofuran moiety. They are famous THIQ-derived 

natural products well-known for their analgesic and anesthetic bioactivity. Morphine 423 is 

commonly used to treat severe pain, while other members such as naltrexone 424 and 

naloxone 425 are commercially produced for treatment of opiate overdoses and alcohol 

addiction (Figure 4.15).62 Isolated primarily from opium poppy Papaver somniferum, the 

global production of opium poppy concentrate is estimated to be around 8700 tons per year, 

of which morphine and codeine are the principal ingredients.63 

Figure 4.15 General structure of the morphinan THIQ alkaloids. 

 

The biosynthesis of morphine and its related congeners stems from key intermediate 
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off the methyl group to give neopinone 429, which can undergo isomerization and reduction 

of the carbonyl by codeinone reductase (COR) to yield codeine 430.64 Finally, demethylation 

catalyzed by codeine O-demethylase (CODM) produces morphine 423.    

Figure 4.16 Proposed biosynthesis of morphine 423 and related morphinan alkaloids. 
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431 to construct the morphine skeleton via a Friedel–Crafts cyclization and dehydration to 

deliver 432 (Scheme 36). 68  Hydroxyselenenylation of the resulting olefin followed by 

oxidation and elimination generates allylic alcohol 433 which undergoes a retro-aldol/aldol 

sequence to furnish enone 434. Construction of the dihydrofuran ring commenced with 

Baeyer–Villiger oxidation and methanolysis of the lactone to afford dienone 435. Luche 

reduction of the enone followed by treatment with HCl then caused formation of a dienyl 

cation and interception with the phenol to furnish the dihydrofuran ring 436. With the 

tetracyclic scaffold in place, functional manipulations with the pendent methyl ester moiety 

to the protected tertiary amine 437 set up for oxidation with singlet oxygen to give 

endoperoxide 438. Treatment with triethylamine induced cleavage of the O–O bond to afford 

hydroxyenone 439, with dehydration of the alcohol and removal of the DNs group 

facilitating 1,6-addition to access natural products neopinone 429 and codeinone 440, with 

further reduction to deliver codeine 430 and morphine 423.  

In an alternative fashion, Chida and coworkers sought to access (–)-morphine 423 

through an elegant sequential Claisen rearrangement of an allylic vicinal diol, resulting in 

the stereoselective formation of two C–C bonds and two contiguous stereocenters in a single 

operation (Scheme 4.43).69 Starting from allylic vicinal diol 441, a Johnson-type Claisen 

rearrangement with MeC(OEt)3 in the presence of 2-nitrophenol initiated the sequential 

Claisen/Claisen rearrangement to provide 442. In this transformation, both vicinal quaternary 

and tertiary stereocenters were installed in a single transformation. Construction of the 

benzofuran moiety then was accomplished by treatment of 442 with mCPBA, inducing 

demethylative etherification of the epoxide to deliver 443. Further oxidative manipulations 

afforded enone 444, and following reduction, protection of the resulting alcohol, global 
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reduction, and Swern oxidation, dialdehyde 445 was accessed to construct the tetracyclic 

scaffold. A Friedel–Crafts cyclization using p-TsOH•H2O allowed the installation of the 

tetracycle 446 with concomitant removal of the TBS group. Finally, reductive amination and 

protection of the secondary amine generated late-stage intermediate 447, which was only two 

steps away from the natural product synthesis.65,70 

Scheme 4.42 Fukuyama’s synthesis of (–)-morphine 423. 
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catalyst. Photocyclization of 450 then proceeded smoothly to deliver cis-fused 451 as the 

sole product. After subsequent functional group manipulations to install the terminal alkyne 

and vinyl ketone in 452, the cascade ene-yne-ene metathesis was accomplished using 

Hoveyda–Grubbs II catalyst (C3). It is proposed that the transformation proceeds via reaction 

of the ruthenium catalyst with the allyl component of 452 first, followed by an intramolecular 

reaction with the alkyne to generate alkylidene intermediate 453. Ring closing metathesis 

with the vinyl ketone then afforded tetracycle 454 which was subjected further to 

deprotection of the amine and 1,6-addition to afford the morphine scaffold 455. 

Diastereoselective reduction of the ketone delivered codeine 430 as a single diastereomer, as 

well as morphine 423 after demethylation. 

Scheme 4.43 Chida’s formal synthesis of (–)-morphine 423. 
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steps from commercially available materials, an intramolecular Michael addition followed 

by Robinson annulation was thoroughly investigated and optimized. Ultimately, 

spiropyrrolidine catalyst C4 with triisopropylbenzoic acid as an additive proved to be most 

effective in delivering tricycle 458 in 66% yield with 94% ee (Scheme 4.45). This key 

transformation performed well on up to a 5-gram scale to rapidly build stereochemical 

complexity toward the morphine scaffold. 

Scheme 4.44 Smith’s total synthesis of morphine 423. 

 

With large amounts of 458 in hand, prenylation followed by ozonolysis and treatment 

with a catalytic amount of polyphosphoric acid induced a Friedel–Crafts cyclization to afford 

tetracycle 460. After selective epoxidation and Wharton reaction to achieve allylic alcohol 

461, cleavage of the benzyl group and an intermolecular Mitsunobu reaction delivers amine 

462. Inversion of the allylic alcohol stereocenter and deprotection of the tosyl group 

promoted the hydroamination reaction to access (–)-codeine 430, and subsequent 

demethylation to synthesize (–)-morphine 423. 
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Scheme 4.45 Tu’s total synthesis of (–)-morphine 423. 

 

Toward the synthesis of other related morphine alkaloids, Fukuyama and coworkers 

disclosed the synthesis of oxycodone 474, which is distinguished from morphine by the 

ketone and additional hydroxyl functionality.73 Their synthetic approach commenced with 
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Upon treatment with Cs2CO3, an intramolecular Michael addition proceeded to deliver the 

desired lactone 471 after two additional manipulations. Selective a-bromination of the 

ketone allowed the formation of the benzofuran moiety 472 by displacement with the phenol. 
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Functionalization of the acetate to the amide set up for a Hofmann rearrangement, followed 

by hydrolysis of the resulting isocyanate to the primary amine, and amidation to form the 

desired lactam 473. Finally, reduction of the lactam, N-methylation, and oxidation of the 

secondary alcohol furnished (–)-oxycodone 474.  

Scheme 4.46 Fukuyama’s total synthesis of (–)-oxycodone 474. 
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deliver morphinan scaffold 480. Protection of the ketone followed by amidation and 

reduction led to the formation of amine 481, which furnished oxycodone 474 after 

desaturation and deprotection steps. This developed sequence demonstrated a shorter step-

count in comparison to the original Fukuyama synthesis.  

Scheme 4.47 Chen’s total synthesis of (+)-oxycodone 474. 

 

Chen and coworkers’ alternative synthetic approach to the morphinan family of 
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dihydrobenzofuran ring 488, with subsequent olefin isomerization and detosylation to 

synthesize dihydrocodeinone 489. 489 serves as a valuable intermediate to access a variety 

of morphinan alkaloids including codeine, morphine, thebaine, and oxycodone. 

Scheme 4.48 Chen’s total synthesis of (+)-dihydrocodeinone 489. 
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dihydrocodeine 497 in 81% yield. Intermediate 497 also constitutes the formal synthesis of 

thebaine 428, while 496 served as a precursor for the synthesis of codeine and morphine. 

Scheme 4.49 Opatz’s total synthesis of (–)-dihydrocodeine 497. 

 

This synthetic strategy toward the morphinan alkaloids as well as their biosynthesis 

also further inspired the development of an electrochemical oxidative coupling of benzyl 

THIQs. 77  Toward the synthesis of thebaine 428, Opatz and coworkers optimized an 

electrochemical oxidative coupling of THIQ 498 using Pt electrodes in an undivided cell, 

achieving tetracycle 499 regio- and diastereoselectively (Scheme 4.50A). With this 
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Scheme 4.50 A. Opatz’s electrochemical oxidative coupling. B. Application toward the total 
synthesis of (–)-thebaine 428. 

 

The synthesis of the morphinan alkaloids, and in particular oxycodone, has been 
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63% yield. Oxidative manipulations to transform the acetate to a methyl ester delivered 

intermediate 509, then deprotection of the acetal afforded an aldehyde intermediate, which 

was treated with N-methyl hydroxylamine to provide nitrone 510. Treatment with SmI2 then 

induced cyclization to the lactone with the desired stereochemistry, which upon Raney nickel 

reduction furnished lactam 511. Finally, further reduction of the amide carbonyl and 

oxidation of the alcohol delivered ent-oxycodone 474. Overall, the fourth-generation 

synthesis of oxycodone was accomplished in 11 steps from phenethyl acetate via a key 

nitrone intermediate to achieve the correct stereochemistry. 

Scheme 4.51 Hudlicky’s total synthesis of (+)-oxycodone 474. 

 

More recent synthetic approaches to the morphinan alkaloids harness C–H activation 

strategies to efficiently establish the natural product scaffold. For instance, Zhang and 

coworkers report the total synthesis of codeine and morphine featuring a cascade cyclization 

dihydroxylation

502

E. coli JM109

83% yield

MeO

TBSO

O

507

OAc

503

OAc

OH
OH

504

OAc

OTBS
OH

MeO

HO
I

OMe

OMe

505
TMAD, PBu3

THF, 0 °C

506

OAc

OTBS

O

I

MeO

OMe

OMe

87% yield

Pd(OAc)2, dppp
Ag2CO3, DMF

OMe

OMe

OAc
51% yield (3 steps)

1) OsO4, NMO
2) MsCl, NEt3
3) DBU, PhMe

MeO

TBSO

O

508

OMe

OMe

OAc

O

70% yield (3 steps)

1) 3 M NaOH
2) TPAP, NMO
3) EDC•HCl
    DMAP, MeOH

MeO

TBSO

O

509

OMe

OMe

CO2Me

O

1) TFA, PhMe
2) MeNHOH•HCl
    NaOAc, EtOH

MeO

TBSO

O

510

N

CO2Me

O

Me

OH

1) SmI2
    THF, –78 °C
2) Raney Ni
    H2, EtOH

29% yield 
(4 steps)

MeO

TBSO

O

511

OH
NMe

O
1) BH3
    THF, 65 °C
2) TBAF, THF
3) DMP, CH2Cl2

47% yield (3 steps)
(+)-Oxycodone (474)

MeO

OHO

O

NMe

2 steps



Chapter 4 – Advances in the Total Synthesis of the Tetrahydroisoquinoline 
Alkaloids (2002 – 2020)  

567 

to construct the dihydrofuran ring, and an intramolecular Pd-catalyzed C–H olefination of an 

unactivated alkene to install the morphinan skeleton (Scheme 4.52).79 Starting from phenol 

512 which was quickly accessed by a Suzuki coupling, treatment with ethyl vinyl ether 

followed by Michael addition with vinyl magnesium bromide in the presence of copper(I) 

bromide delivered ketone 513 in 1.8:1 dr relative to the ketal center. The undesired 

diastereomer could be converted to 513 upon treatment with 2N HCl. Treatment of 513 with 

NaH afforded spiro-ketone 514 as a single diastereomer, with subsequent manipulations of 

the ketone to give epoxide 515. Then, the key cascade cyclization was accomplished using 

MeOH in the presence of NaOH by opening the lactone ring and attacking the epoxide to 

deliver 516. Next, an intramolecular Pd-catalyzed C–H alkenylation was performed to 

deliver 517 in high regioselectivity. With the tetracycle established, 517 was eventually 

converted to the natural product using oxidative manipulations to achieve enone 518, DIBAL 

reduction and reductive amination to furnish amine 519, and a radical cyclization to 

synthesize codeine 430. 

Ellman and coworkers alternatively devised a Rh-catalyzed C–H alkenylation and 

electrocyclization cascade strategy to synthesize the THIQ framework toward the total 

synthesis of (–)-naltrexone 424 (Scheme 4.53).80 From imine 520, which was prepared in 8 

steps from commercial starting materials, a Rh(I)-catalyzed C–H activation of the olefin was 

initiated, followed by alkyne insertion to deliver an azatriene intermediate 521. Triene 521 

undergoes rapid electrocyclization in situ to access dihydropyridine 522, which was 

subsequently reduced to deliver THIQ 523. Treatment of 523 with dilute H3PO4 then afforded 

morphinan scaffold 525 in 66% yield. They propose that this transformation likely proceeded 

through removal of the silyl and acetonide protecting groups, followed by allylic alcohol 
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ionization and hydride shift to provide ketone 525. A Grewe cyclization then established the 

desired morphinan skeleton. Treatment of 525 with Br2 then afforded a dibrominated 

intermediate due to facile bromination of the electron-rich aromatic ring, followed by 

nucleophilic displacement to establish the dihydrofuran ring. Triflation of the phenol 

followed by dehydrogenation of the ketone using Pd(TFA)2 installed enone 526. Finally, a 

late-stage C–H hydroxylation of enone 526 was explored to access the natural product. Using 

pyridine as solvent and ketoglutaric acid to reduce the peroxide intermediate, treatment of 

526 with CuSO4 and O2 successfully installed the hydroxyl group with the correct 

stereochemistry to yield 527. Removing the bromide and triflate groups, reduction of the 

enone, and demethylation with BBr3 ultimately afforded (–)-naltrexone 424. 

Scheme 4.52 Zhang’s total synthesis of codeine 430. 

 

In 2020, Metz and coworkers described the total synthesis of thebainone A 536, 

harnessing an intramolecular nitrone cycloaddition and a Heck cyclization to construct the 

natural product scaffold (Scheme 4.54).81  
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Scheme 4.53 Ellman’s total synthesis of (–)-naltrexone 424. 
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534 in 21% yield over two steps. Finally, protection of the ketone was required to reduce the 

carbamate and acetate group, and deprotection with 1N HCl ultimately provided thebainone 

A 536. 

Scheme 4.54 Metz’s total synthesis of thebainone A 536. 

 

4.4.5. PAVINE AND ISOPAVINE ALKALOIDS 

4.4.5.1. GENERAL STRUCTURE AND BIOSYNTHESIS 

The pavine and isopavine alkaloids contain a characteristic tetracyclic 

tetrahydroisoquinoline core structure consisting of a dibenzo-9-azabicyclo[3.3.1]nonane and 

dibenzo-9-azabicyclo[3.2.2]nonane, respectively (Figure 4.17). 82  They are mainly found in 

four plant families, the Papaveraceae, Berberidaceae, Lauraceae, and Ranunculaceae 

families. These alkaloids have been shown to possess interesting bioactivity for the treatment 

of nerve system disorders such as Alzheimer’s, Parkinson’s disease, and Huntington’s 

chorea.83 
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likely that they are derived from benzyl THIQ reticuline 247 or a similar analog thereof, 

which undergoes cyclization at either the C3 or C4 position of the THIQ ring to achieve the 

pavine or isopavine scaffold, respectively.84 For the isopavine alkaloids, a 4-hydroxybenzyl 

THIQ is postulated as a precursor that could undergo dehydration and cyclization to achieve 

the azabicyclo[3.2.2]nonane core.85 Alternatively, it has been suggested that pavine alkaloids 

are derived from a similar intermediate such as 4-hydroxynorlaudanosoline, from which a 

dehydration reaction and cyclization at the C3 position would yield the pavine skeleton.84 

More recently, Ng and coworkers elucidated the structure of an N-methyltransferase enzyme 

(pavine NMT) that is involved in the N-methylation of the pavine alkaloids.86 

Figure 4.17 General structure of the pavine and isopavine THIQ alkaloids. 

 

4.4.5.2. TOTAL SYNTHESIS OF PAVINE AND ISOPAVINE ALKALOIDS 

In 2004, Marazano reported the synthesis of (–)-argemonine 542, enabled by a key 

enantioselective transformation of isoquinolinium salt 537 to 1-benzyl isoquinoline 

derivative 539 (Scheme 4.55).87 Isoquinolinium salt 539 was prepared in two steps from salt 

537, and reduction of 539 with LiAlH4 formed tertiary amine 540. Cyclization of 540 in the 

presence of formic acid and H3PO4 supplied benzylamine 541 with 93:7 dr. Hydrogenolysis 
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acid and aqueous formaldehyde to furnish the methylated natural product (–)-argemonine 

542. 
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Nishigaichi and coworkers also developed a modular synthesis of argemonine  363 

and eschscholtzidine 371 from the coupling of isoquinolines and electron-rich potassium 

trifluoroborate reagents (Scheme 4.56). 88  After synthesizing potassium trifluoroborate 

reagent 366 from benzyl chloride 364, treatment of 366 with isoquinolines 367–368 under 

thermal or photochemical conditions followed by reduction with LiAlH4 resulted in the 

concise syntheses of argemonine 363 and eschscholtzidine 371. 

Scheme 4.55 Marazano’s enantioselective synthesis of (–)-argemonine 542. 

 

Scheme 4.56 Nishigaichi’s synthesis of argemonine 542 and eschscholtzidine 550. 

 

Jiang and coworkers reported a general approach to access isopavines, including  

(–)-amurensinine, (–)-reframidine,  (–)-reframine, and other non-natural isopavine 

N

539

Ph
H

Me

MeO

MeO
MeO

MeO

77% yield
THF, –78 °C

LiAlH4

N

537

Ph
H

Me

MeO

MeO

K3Fe(CN)6, KOH
MeOH, 0 °C

H2O:PhMe, 45 °C
N

538

Ph
H

Me

MeO

MeO
O62% yield

CeCl3, (MeO)2PhCH2MgCl

92% yield

PhMe, THF
then HBr, H2O

N

540

Ph
H

Me

MeO

MeO
MeO

MeO

77% yield

HCO2H
H3PO4 OMe

OMeMeO

MeO
N

Ph
H

Me

541

50% yield (2 steps)

 Pd/C, H2

OMe

OMeMeO

MeO
MeN

(–)-Argemonine (542)

Cl Br

OMe

OMeMeO

MeO
NH

HCO2H, HCHO

H2O

HCl, AcOEt, EtOH

37% yield (2 steps)

1) Pd(PPh3)4, K2CO3
    dioxane

2) KHF2, MeOH/H2O
+

MeCN
400 nm light

544

O
B

O

Cl

Me

Me

Me

Me
B

O

O
Me

Me

Me
Me

BF3
+ N

R1

R2

HC(OMe)3
R1

R2

N

CO2Me
OMe

OMe

546: R1, R2 = -OCH2O-
547: R1 = R2 = OMe543 545

MeO

MeO

MeO

MeO

LiAlH4

548: R1, R2 = -OCH2O-
74% yield

549: R1 = R2 = OMe
>99% yield

THF

R1

R2

N

Me
OMe

OMe

550: R1, R2 = -OCH2O-
(–)-Eschscholtzidine

64% yield
542: R1 = R2 = OMe

(–)-Argemonine
41% yield

K



Chapter 4 – Advances in the Total Synthesis of the Tetrahydroisoquinoline 
Alkaloids (2002 – 2020)  

573 

derivatives within five or six steps with >95% ee.89 Their retrosynthetic strategy began with 

the formation of bridging C–N and C–C bonds through Pictet–Spengler reaction of an amino 

dimethyl acetal 554 (Scheme 4.57). From aldehyde 551, a Henry reaction with nitromethane, 

followed by dehydration with methanesulfonyl chloride and excess trimethylamine delivered  

β-nitrostyrene 552. A Pd-catalyzed asymmetric addition of 552 with aryl boronic acid 553, 

followed by reduction and conversion to the carbamate yielded 554. The Pictet–Spengler 

reaction of carbamate 554, followed by reduction of carbamate 555 formed (–)-amurensinine 

556. 

Scheme 4.57 Jiang’s enantioselective synthesis of (–)-amurensinine 556. 

 

In 2006, Stoltz and coworkers reported the enantioselective total synthesis of 

amurensinine 556.90 They envisioned to apply their developed Pd-catalyzed oxidative kinetic 
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provided 561. Oxidative kinetic resolution using Pd(sparteine)Cl2 and (–)-sparteine as the 

chiral ligand provided enantioenriched (–)-561 with 99% ee. Conversion of the alcohol to 

the azide with inversion using (PhO)2P(O)N3 (DPPA) produced azido alcohol (–)-562 with 

no loss of optical purity. After oxidation of the alcohol, reduction of the azide delivered the 

desired lactam (+)-563. Reductive methylation produced (+)-amurensinine 556 with 99% ee. 

Scheme 4.58 Stoltz’s enantioselective synthesis of (+)-amurensinine 556. 
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Scheme 4.59 Martin’s synthesis of roelactamine 568. 

 

Finally, the first synthesis of a pavine alkaloid with C7 functionalization was reported 

by Nakagawa-Goto.92 From amine 569, which was prepared in three steps, amidation with 

carboxylic acid 570 using carbonyldiimidazole (CDI) provided amide 571 (Scheme 4.60). A 

Bischler–Napieralski reaction with POCl3 formed benzylisoquinoline 572. Treatment of 572 

with methyl iodide delivered isoquinolinium salt 573. Subsequent reduction with NaBH4 to 
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Scheme 4.60 Nakagawa-Goto’s synthesis of neocaryachine 574. 
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natural products in this family features the intricate pentacyclic skeleton, having five six-

membered rings condensed into the core scaffold (Figure 4.18). Well known for their potent 

anticancer/antitumor activities, natural products in this family have been popular targets in 

numerous synthetic endeavors. 

Figure 4.18 Core skeleton of THIQ alkaloids in the saframycin family. 

 

4.5.1. SAFRAMYCIN ALKALOIDS 

4.5.1.1. GENERAL STRUCTURE AND BIOSYNTHESIS 

The very first set of saframycins, namely safrmycins A–E, were isolated in 1977 from 

bacteria Streptomyces lavendulae.93 In the ensuing studies, four additional saframycins (F, 
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Ad-1, Y2b, and Y2b-d) were obtained by a directed biosynthesis through the 

supplementation of different amino acids.96 

Among the currently known saframycin alkaloids, the shared structural motif is the 

amide side chain, which is appended on the B-ring at the C1 position (Figure 4.19). 

Additionally, the A-ring of all saframycins is in the quinone oxidation state, while the E-ring 

can be in various oxidation levels, ranging from phenol, hydroquinone, and quinone. The 

amino nitrile or carbinol amine functionality on the central piperazine subunit functions as a 

latent electrophilic iminium species, which can alkylate DNA, and is largely responsible for 

N
NH

A B C

D
E  Pentacyclic skeleton

 Central piperazine subunit
 A and E rings are quinone/hydroquinone



Chapter 4 – Advances in the Total Synthesis of the Tetrahydroisoquinoline 
Alkaloids (2002 – 2020)  

577 

saframycins’ potent antitumor/antimicrobial activity. 97  Saframycins voided of a leaving 

group at C21 typically exhibit significantly lower biological activities.93  

Figure 4.19 General structure and representative examples of saframycin alkaloids. 

 

Early biochemical studies of saframycins were conducted via feeding/isotope-

labelling experiments, and the results suggest that one alanine, one glycine, and two tyrosine 

derivatives constitute the backbone of saframycin A.98 By exploiting the cloned biosynthetic 
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responsible for the production of dipeptidyl intermediate A from alanine and glycine 
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Pictet–Spengler reactions to construct the bis-tetrahydroisoquinoline (bis-THIQ) 

intermediate, and b) the reduction domain (Red) which reduces the thioester intermediates 

and releases aldehyde precursors (B, E, and F) for following reactions. Interestingly, they 

also noted that the relatively less strict substrate specificity of the PS domain might allow for 

an incorporation of synthetic aldehydes into the core skeleton. Once the pentacycle is 

constructed, late-stage tailoring modifications, including hydroquinone oxidation, N-

methylation, and hydrolysis of the fatty acid chain proceed to afford Saframycin A.101 This 

thorough understanding of the biosynthetic mechanism serves as a foundation for future 

developments of a chemoenzymatic total synthesis of saframycin alkaloids and their related 

analogs (vide infra). 

Scheme 4.61 A. Domain organization of saframycin A NRPS. B. Proposed biosynthetic 
mechanism for the construction of saframycin A’s pentacyclic skeleton. 
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4.5.1.2. TOTAL SYNTHESIS OF SAFRAMYCIN ALKALOIDS 

After the publication of a comprehensive review by William in 2002,3 there have 

been only three reports detailing the synthesis of saframycin alkaloids, all targeted 

saframycin A. In 2011, Liu employed L-tyrosine as a chiral building block in the preparation 

of (–)-saframycin A (Scheme 4.62). 102  They commenced their synthetic studies by 

converting L-tyrosine methyl ester into the desired amino acid 584 in 12 steps and 

tetrahydroisoquinoline 583 in 11 steps, which served as the eastern and western portions of 

the natural product, respectively. Although the regioselectivity issue for mono-hydroxy 

phenol substrate is a common problem in the Pictet–Spengler cyclization reaction,103 they 

noted that the selectivity, in this case, can be controlled by carefully maintaining the reaction 

temperature at 0 °C with a slow addition of the aldehyde starting material, furnishing THIQ 

583 in 86% yield. 

Scheme 4.62 Liu’s total synthesis of (–)-saframycin A 575. 
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second Pictet–Spengler cyclization requires a bromine atom on the eastern half of the 

molecule to function as a blocking group and provide the correct regiochemical outcome for 

the cyclization. They further advanced this intermediate to the targeted natural product via a 

7-step peripheral modification, concluding a 24-step total synthesis of (–)-saframycin A 575 

in an overall 9.7% yield. Of note, the key synthetic strategy in this report is reminiscent of 

Corey’s approach to prepare the pentacyclic core of ecteinascidin and phthalascidin where 

an amide coupling is used to merge the western and eastern halves of the molecule.104 

In 2018, Saito and coworkers published a racemic synthesis of saframycin A 575 

(Scheme 4.63), which is a follow-up study to correct the stereochemistry at the C1 position 

of the western THIQ.105 The tricyclic lactam 587, which was prepared in 14 steps from 

commercially available material,106 first underwent reductive cleavage and Boc removal to 

provide hydroxymethyl isoquinoline 588. This compound served as a Pictet–Spengler 

substrate, and cyclization with allyl ethyl oxomalonate ester (589) delivered bis-THIQ 590.  

From this intermediate, the pentacyclic core 591 was constructed via the Swern oxidation of 

the primary alcohol to afford the aldehyde, which underwent ring-closure to generate the 

hemiaminal C-ring. By subjecting TMSCN to the same pot, the amino nitrile formation 

proceeded to furnish the desired product 591 in 82% yield over 2 steps. They subsequently 

performed a decarboxylation and stereoselective protonation to correctly install the 

stereochemistry at the C1 position of the western THIQ (592). In the final stage, the ethyl 

ester in 592 was converted to the pyruvamide through a 4-step sequence, consisting of a) 

LiBH4 reduction, b) Mitsunobu reaction with phthalimide, c) removal of phthalimide to 

reveal the free amine, and d) acylation of amine with pyruvic acid. Finally, selective 
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demethylation and ceric ammonium nitrate (CAN) oxidation were performed to deliver (±)-

saframycin A 575 in an overall 27 steps for the longest linear sequence.  

Scheme 4.63 Saito’s total synthesis of saframycin A 575. 
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and allows for a rapid access to the elaborated pentacyclic scaffolds only in a single day. 

4.5.2. SAFRACIN ALKALOIDS 
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4.5.2.1. GENERAL STRUCTURE AND BIOSYNTHESIS 

Isolated from Pseudomonas fluorescens,108  safracins are structurally similar to the 

saframycins, except for having a phenol E-ring instead of a quinone/hydroquinone (Figure 

4.20). Optimization of the fermentation process of this bacteria resulted in a multikilogram 

isolation of cyanosafracin B, having a nitrile moiety at the C21 position, which served as an 

inexpensive precursor to prepare ecteinascidin 743 (Et-743), an anticancer drug.109 

Biosynthetically, the pentacyclic core of safracins is believed to be assembled from 

one alanine, one glycine, and two functionalized tyrosine via the nonribosomal peptide 

synthetase (NRPS), resembling the mechanism reported for the saframycins.110 In the most 

recent study, Tang and coworkers essentially established the entire safracin biosynthetic 

pathway by investigating post-NRPS modifications. These include the A-ring oxidation, N-

methylation, and removal of the fatty acyl chain.111 

Figure 4.20 General structure of safracin alkaloids. 
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much progress has been reported. This could perhaps be attributed to the ample quantities of 

safracins obtained from the isolation process. 

4.5.3. RENIERAMYCIN ALKALOIDS 

4.5.3.1. GENERAL STRUCTURE AND BIOSYNTHESIS 

The general structure of renieramycins is highly similar to that of the saframycin 

alkaloids. The main difference is at the C1-position, where renieramycins possess an ester or 

alcohol functionality instead of an amide side chain found in the saframycins (Figure 4.21).   

Renieramycin alkaloids are typically isolated from marine organisms, such as 

different species of blue sponges and nudibranchs, collected in various parts of the world. 

Before 2002, only the structures of renieramycins A–G, I, cribrostatin 4 (or renieramycin H), 

and jorumycin were disclosed. However, in the past 20 years, more than 20 new 

renieramycins were reported.113 These new compounds are mostly artifacts resulting from 

the attempts to improve the stability of renieramycin alkaloids. 

In 2003–2004, the structures of renieramycins J–O, and Q–S were isolated from the 

Thai sponge Xestospongia sp. pretreated with potassium cyanide (KCN) by Saito, 

Suwanborirux, and coworkers.114 They found that the addition of KCN helps stabilizing the 

labile amino alcohol moiety via the conversion to a more stable amino nitrile and improves 

the isolated yields of renieramycins by approximately 100-fold. This developed isolation 

protocol also allowed for the discovery of minor components of renieramycins in 

Xestospongia sp., including renieramycins T–U which possess an ecteinascidin-

renieramycin hybrid structure,115 as well as renieramycin V which contains a sterol unit 

appended to the C14-position.116 Additionally, jorunnamycins A–C were isolated from the 

aqueous KCN-pretreated Jorunna funebris collected in Thailand.117 
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Figure 4.21 General structure and representative examples of renieramycin alkaloids. 
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Xestospongia sp. collected in the Philippines.118 Structurally, renieramycins W and X are the 

first to have tiglic acid ester functionality instead of the angelate ester or the alcohol. Most 

recently, Guo and coworkers successfully isolated and disclosed the structures of 

fennebricins A–D from the South China Sea nudibranch J. funebris.119 

Biosynthetically, the core pentacyclic skeleton of renieramycins were also reported 

to be assembled through a non-ribosomal peptide synthetase (NRPS) pathway, similar to the 

NRPS system of saframycin A.120 Donia and coworkers recently discovered that there are 

three NRPS modules, namely, RenE, RenF, and RenK, which are responsible for the 

production of the renieramycin E core structure (Scheme 4.64A). The first two modules 

(RenK and RenE) promote the formation of aldehyde building block 615, while RenF 

catalyzes multi-step transformations to ultimately deliver pentacycle 617 (Scheme 4.64B). 

Of note, RenK module is missing an adenylation domain (A) consistent with the fact that 

renieramycin E is one amino acid shorter than saframycin A. 

Scheme 4.64 A. Domain organization of renieramycins NRPS. B. Proposed biosynthetic 
mechanism for the construction of renieramycin E’s pentacyclic skeleton. 
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In the past 20 years, chemical syntheses of renieramycins have been an active 

research area with a number of synthetic studies towards these molecules  and >10 reports 

successfully preparing naturally occurring renieramycin alkaloids. The first total synthesis 

of (–)-cribrostatin 4 (602, aka renieramycin H) was disclosed by Danishefsky and coworkers 

in 2005 utilizing asymmetric reductions as key transformations to prepare both western and 

eastern halves of the molecule (Scheme 4.65).121 With the two enantioenriched fragments in 

hand, they convergently coupled them together through an amide coupling, followed by a 

“lynchpin Mannich” cyclization to deliver pentacycle 621. Of note, the stereochemistry at 

the C3 position is opposite to that existing in the saframycin-like backbone. Nonetheless, this 

is inconsequential because the targeted natural product has the C3=C4 benzylic olefin. 

Accordingly, the ketone functionality at the C4 position was reduced and subsequently 

eliminated, affording intermediate 622. 

Finally, the last steps of the total synthesis involves the adjustment of oxidation levels 

of the A- and E- rings, the installation of the ketone at C14, and the introduction of the 

angeloyl group. By first converting intermediate 622 to monoquinone 623, regioselective 

benzylic oxidation with SeO2 proceeded smoothly, followed by DMP oxidation and quinone 

reduction to generate bis-hydroquinone 624. Despite the difficulty met in their initial 

attempts to perform angelation on a similar substrate, they adjusted the A-ring oxidation state 

and were able to perform esterification on this specific intermediate using angeloyl chloride 

625, followed by TBS deprotection to prepare 626. Selective air oxidation of the ring A 

hydroquinone eventually provided cribrostatin 4 (602) in 34 steps for the longest linear 

sequence from commercially available 2,3-dimethoxytoluene. They additionally noted that 
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the high stability of the E-ring hydroquinone can be attributed to the presence of the C14 

ketone, while the resting state of the A ring is in the quinone oxidation level. 

Scheme 4.65 Danishefsky’s total synthesis of (–)-cribrostatin 4 602. 
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molecule. On the other hand, the enantioenriched tyrosine derivative 628 was synthesized 

using chiral glycine template as a chiral auxiliary. The assembly of these two molecules was 

then performed through an acid chloride intermediate to provide amide 629 without 

detectable epimerization at the C13 position. Treatment of 629 with TBAF resulted in the 

removal of both the TBS and Fmoc protecting groups to give 630. 

Scheme 4.66 William’s total synthesis of (–)-cribrostatin 4 602. 
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and d) double oxidation to install a ketone functionality at the C14 position. It is worth noting 

here that the order of this sequence proves critical to the success of this synthesis, as 

Danishefsky previously found that the pentacyclic alcohol (deangelated cribrostatin 4) was 

highly unstable, and attempts to perform esterification on this particular intermediate all led 

to decomposition of the starting material.121 Overall, Williams and coworkers completed a 

25-step (longest linear sequence) asymmetric total synthesis of (–)-cribostatin 4 (602), 

starting from commercially available 2,6-dimethoxytoluene. 

Within the same year, Zhu and coworkers described the third asymmetric total 

synthesis of (–)-cribrostatin 4 (602).124 The key synthetic strategy to access the pentacyclic 

skeleton (639) features a domino sequence, involving the formation of iminium ion 636, 

followed by b-elimination and Pictet–Spengler cyclization, which greatly resembles 

Williams’ strategy (Scheme 4.67). In Zhu’s case, the thiol group at the C4 position acts as a 

leaving group to unveil a,b-unsaturated iminium ion 638. This intermediate then underwent 

cyclization to form pentacycle 639 and its constitutional isomer, arising from the undesired 

regioselectivity, in 51% yield and 15% yield, respectively. The desired isomer (639) was 

transformed into cribrostatin 4 (602) following a similar strategy to previous syntheses, 

providing the natural product in the longest linear sequence of 26 steps from commercially 

available starting material. 

More recently, Saito reported a racemic total synthesis of cribrostatin 4 from 

commercial material.125 Instead of building the pentacyclic core from an amide coupling to 

join the two halves of the molecule, they completed the synthesis by employing 

diketopiperazine as a central building block and consequently constructing the B- and D-

rings to generate the pentacyclic framework. The endgame of this synthesis follows the 
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sequence reported by Williams.122 The Saito group also realized an alternative synthetic plan 

to cribrostatin 4 in 2015,126 where they slightly modified the order of transformations in the 

early stage to prepare the pentacyclic skeleton. With this improved strategy, they were able 

to perform reactions on larger scale and prepared 81 mg of cribrostatin 4 with 8.3% overall 

yield in addition to renieramycin I, which contains a methoxy substituent at the C14 position. 

Scheme 4.67 Zhu’s strategy to prepare the pentacyclic skeleton of (–)-cribrostatin 4 602. 
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both the western and eastern fragments. The use of chiral glycine template 641 as a chiral 

auxiliary allows for the preparation of benzylated oxazinone 642 which can be further 

transformed into enantioenriched 1,3-cis-THIQ 643 over 10 steps and tyrosine derivative 

644 over 5 steps. 

Scheme 4.68 William’s total synthesis of (–)-renieramycin G 597 and (–)-jorumycin 613. 
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followed to provide alcohol 646. The pentacycle was then obtained after oxidation of the 

primary alcohol, formation of the carbinol amine, and Pictet–Spengler cyclization to 

construct the D-ring. Reductive amination afforded intermediate 647 that is a precursor to 

both (–)-renieramycin G (597) and (–)-jorumycin (613). Interestingly, the use of different 

protecting groups on the eastern nitrogen atom, which requires basic conditions for 

deprotection, resulted in the generation of the C3-epi variant (649) through epimerization 

(Scheme 4.69). They, nonetheless, successfully advanced this unexpected epimer to 3-epi-

renieramycin G and 3-epi-jorumycin for further biological evaluation studies. 

Scheme 4.69 William’s unexpected C3-epimerization toward the synthesis of 3-epi-
renieramycin G, and 3-epi-jorumycin. 
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thioaminal 651 serves as a diverging point to access renieramycin G or lemonomycinone 

amide, where a lactam enolate alkylation with benzyl chloride 652 was performed for the 

synthesis of renieramycin G. This provided the undesired epimer of tetracycle 653 at the C13 

position as a single diastereomer, which they were able to correct via a diastereoselective 

reprotonation with in situ trityl removal to deliver 654. Treatment of this intermediate (654) 

with AgBF4 then triggered cyclization to generate the D-ring in pentacycle 655. Finally, 

reductive amination, hydrogenolysis, ceric ammonium nitrate (CAN) oxidation, and 

esterification afforded racemic renieramycin G (597). In this same report, a lemonomycinone 

amide was also prepared by adapting this developed synthetic strategy. 

Scheme 4.70 Magnus’ total synthesis of renieramycin G 597. 
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aziridine as a lynchpin, they took a different approach to construct the pentacyclic skeleton. 

Instead of relying on the amide coupling to merge the western and eastern parts of the 

molecule, they exploited aziridine ring-opening to forge the desired pentacycle. Starting with 

a CuBr-mediated ring-opening of enantioenriched aziridine 657, which was prepared from a 

chiral pool starting material (N-trityl-L-serine methyl ester), the Boc-protected amino ester 

658 was formed in 80% yield. Following Boc removal, the Pictet–Spengler cyclization of 

the free amine with formyl aziridine 659 and global benzylation were performed to afford 

the eastern THIQ building block (660). From here, another CuBr-promoted aziridine ring-

opening was utilized, and a sequence consisting of a debenzylation with in situ methylation 

and tandem Boc removal/Pictet–Spengler reaction delivered the key bis-THIQ (664). This 

intermediate was then subjected to two different synthetic sequences to prepare a variety of 

renieramycin alkaloids. First, conversion of the ester to the aldehyde and a Strecker reaction 

provided pentacycle 665. This intermediate can be further advanced to jorunnamycin A 

(608), renieramycin M (599), and jorumycin (613) over 2, 3, and 4 steps, respectively. On 

the other hand, renieramycin G (597) was obtained via a) an amide coupling to form 

pentacycle 666, b) hydrogenolysis with Pearlman’s catalyst, c) angelation of the primary 

alcohol, and c) DDQ oxidation of the bis-phenols. 

By exploiting the common strategy in the construction of the bis-THIQ pentacyclic 

scaffold, i.e., the amide coupling with subsequent elaboration of the C–E rings through 

Pictet–Spengler cyclization, the Liu group reported an asymmetric total synthesis of (–)-

renieramycin G (597).130 The use of L-tyrosine methyl ester as a chiral pool starting material, 

similar to their total synthesis of saframycin A (vide supra), allows for diastereocontrol in 
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ensuing transformations which ultimately resulted in the successful preparation of 

enantiopure (–)-renieramycin G in 21 steps for the longest linear sequence.  

Scheme 4.71 Zhu’s total synthesis of (–)-renieramycins G 597, M 599, (–)-jorunnamycin A 
608, and (–)-jorumycin 613. 
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After the disclosure of this report, the group extended this synthetic strategy to 

prepare 15 analogs of renieramycin G with varying groups at the angelate ester,131 15 analogs 

of jorumycin with varying groups at the primary alcohol, 132  as well as 3 additional 

stereoisomers of renieramycin G.133  These analogs were biologically evaluated for their 

cytotoxic activities against multiple cancer cell lines. 

In 2011, Saito and coworkers reported the total synthesis of (±)-renieramycin G 

(Scheme 4.72),134 in which the synthetic strategy closely followed their previously reported 

pathway for the synthesis of saframycin B.135 From tricyclic lactam 667, they performed a 

Pictet–Spengler cyclization with diethoxyacetate, delivering pentacycle 668 in 76% yield, 

albeit with the opposite stereochemistry at the C1 position. By converting the pendent ester 

to the aldehyde 669, they were able to correct this stereochemical problem via a base-

mediated epimerization over a total of 6 steps. Finally, the racemic renieramycin G (597) was 

obtained by performing a reduction of the aldehyde to the alcohol, followed by 

debenzylation, CAN oxidation, and angelation. 

Scheme 4.72 Saito’s total synthesis of renieramycin G 597. 
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Most recently, Yang and coworkers accomplished the total syntheses of the 

renieramycin alkaloids by a unified strategy (Scheme 4.73).136 The key transformations to 

construct the pentacycle are not significantly different from previous reports (i.e., the amide 

coupling with subsequent formation of the C,D-rings) however, they were able to expediently 

prepare tyrosine derivatives 672 and 673 through the utilization of C–H functionalization 

methodology.  

Scheme 4.73 Yang’s strategy to assemble the pentacyclic core of renieramycin alkaloids. 
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yield of arylated products 672 and 673, which were transformed into the same amino ester 

674 via the removal of the CONHArF directing group and phthalimide protecting group, 

respectively. Amino ester 674 was used to prepare both the western (675) and eastern (676) 

fragments of the renieramycin alkaloids. Treatment of 1,3-cis-THIQ 675 and Boc-protected 

amino acid 676 with BOPCl and Et3N provided amide product 677 in 90% yield. With 677 

in hand, pentacycle 678 was obtained from DMP oxidation, removal of the phenolic TBS 

protecting groups, acid-promoted intramolecular Pictet–Spengler cyclization, and reductive 

amination. Subsequently, enantioenriched (–)-renieramycins, G, M, J, (–)-jorunnamycin A, 

and (–)-fennebricin A were prepared from this same pentacycle 678. Of note, this research 

represents the first asymmetric total syntheses of renieramycin J and fennebricin A. 

The recently isolated renieramycin T (606), which features a hybrid structure of 

ecteinascidin–renieramycin, was also a target for a total synthetic endeavor by Yokoya and 

Williams.138 By adapting the strategy used in their total synthetic studies of Et-743,139 they 

completed the synthesis of (–)-renieramycin T through the use of L-tyrosine as a chiral pool 

starting material (Scheme 4.74). Amide coupling of highly decorated THIQ 679 and Fmoc-

protected amino acid chloride 680, followed by swapping of amine protecting groups 

provided amide 681 in 89% overall yield. Removal of the acetonide, then Dess-Martin 

oxidation, and intramolecular Pictet–Spengler cyclization delivered pentacycle 682 in 75% 

yield over 4 steps. From this key intermediate, they performed several functional group 

manipulations to obtain phenol 683. This phenolic hydroxyl group was benzyl protected prior 

to the partial reduction of the central amide, cyanation of the in-situ generated iminium ion, 

and oxidation of the eastern phenol to afford mono-quinone 684. Finally, debenzylation with 

BCl3 and subsequent esterification with angeloyl chloride completed the total synthesis of 
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renieramycin T (606). This natural product along with other compounds in this synthetic 

sequence were evaluated for their cytotoxicities and revealed to exhibit moderate activities 

against human cancer cell lines. 

Scheme 4.74 Yokoya’s and Williams’ total synthesis of (–)-renieramycin T 606. 

 

Seeking to develop an alternative strategy for the production of renieramycin T, Saito 

and coworkers applied the stereoselective decarboxylative reprotonation strategy previously 

discovered in the synthesis of saframycin A (Scheme 4.63, vide supra) in the context of this 

natural product.140 To this end, the group completed a formal synthesis of renieramycin T by 

concluding at intermediate 684 reported by Yokoya and Williams. 

The Chen group also achieved a total synthesis of (–)-renieramycin T in 2016.141 By 

mimicking the reported biosynthesis of Et-743, 142  they performed a Pictet–Spengler 

cyclization under a unique ternary solvent system (PhMe, CH2Cl2, and 2,2,2-trifluoroethanol) 

NH

679

AllylO
Me

O

OBn

COCl

NHFmoc

H

680

Br
Me

MeO
OTBS

O

O
O

MeMe

+

1) 2,6-lutidine
    CH2Cl2

2) Et2NH, CH2Cl2
3) Boc2O, EtOH
    CH2Cl2 N

681

AllylO
Me

OO

O
O

MeMe

O
BnO

H

O
OMe

Me

Br

TBS

HN Boc

1) Dowex 50W-X8
    MeOH
2) DMP oxidation

3) TBAF, THF
4) TFA, anisole
    CH2Cl2

75% yield
(4 steps)

89% yield
(3 steps)

74% yield
(4 steps)

N

Me
AllylO

OBn
O

N

OMe
MeHO

682

Br

HO
O

H

1) HCHO, MeCN, 2N HCl
    NaCH3CN, AcOH, 60 °C
2) Ac2O, DMAP
    Et3N, CH2Cl2

3) Pd(PPh3)4, n-Bu3SnH
    AcOH, CH2Cl2
4) Raney Ni, H2
    EtOH, 60 °C

N

Me
HO

OH
O

N

OMe
MeAcO

683

HO
O

Me
H

42% yield
(4 steps)

1) BnBr, K2CO3
    acetone, reflux
2) LiAlH2(OEt)2
    THF, 0 °C

3) KCN, AcOH
4) Salcomine, O2
    THF

N

Me
BnO

OH

N

OMe
MeO

684

HO
O

Me
H

CN

O
N

Me
OH

O

N

OMe
MeO

HO
O

Me
H

CN

O

O
Me

Me

1) BCl3, CH2Cl2
    –78 °C, (CH3)5C6H

2) angeloyl chloride
    DCE, 80 °C

60% yield
(2 steps)

(–)-Renieramycin T (606)



Chapter 4 – Advances in the Total Synthesis of the Tetrahydroisoquinoline 
Alkaloids (2002 – 2020)  

600 

to construct the D-ring of bis-THIQ intermediate 687 (Scheme 4.75). Protection/deprotection 

chemistry was followed, then a Swern oxidation with a subsequent ZnCl2-promoted Strecker 

reaction eventually closed the C-ring, forming pentacycle 688 in 78% yield over 5 steps. 

With this intermediate in hand, they discovered that the chloroacetyl protecting group needed 

to be chemo- and regioselectively installed on the A-ring phenol (690) prior to oxidation and 

installation of the angeloyl group. Accordingly, they successfully prepared (–)-renieramycin 

T (606) in an additional 4 steps with 39% yield. Overall, this asymmetric total synthesis 

consists of 22 steps for the longest linear sequence, with a 6.2% overall yield from known 

starting materials. Apart from (–)-renieramycin T, the Chen group successfully prepared 

three other renieramycin-type alkaloids: (–)-jorunnamycin A, (–)-jorunnamycin C, and (–)-

jorumycin through this similar synthetic strategy.143 

Scheme 4.75 Chen’s total synthesis of (–)-renieramycin T 606. 
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Aiming to devise a complementary synthetic route to prepare bis-THIQ alkaloids that 

specifically avoids the Pictet–Spengler reaction, the Stoltz group completed a synthetic study 

toward jorumycin (613) via a two-part strategy, consisting of a cross-coupling reaction for 

the convergent construction of the requisite carbon-based skeleton and an enantioselective 

hydrogenation to install all of the key stereochemistry (Scheme 4.76).144 Specifically, we 

successfully exploited the N-oxide C–H functionalization developed by Fagnou and 

coworkers in the coupling of the eastern (692) and western (691) isoquinoline fragments. 

With the coupled product 693 in hand, the advancement of this intermediate to the bis-

isoquinoline hydrogenation precursor (694) was performed through isoquinoline 

oxidation/mono-N-oxide rearrangement, followed by the N–O bond cleavage and oxyl-

mediated oxidation. 

Scheme 4.76 Stoltz’s total synthesis of (–)-jorunnamycin A 608 and (–)-jorumycin 613. 
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Another key transformation in this synthetic strategy is the sequential stereoselective 

hydrogenation to construct the pentacyclic scaffold of bis-THIQ molecules. The use of 

[Ir(cod)Cl]2 in conjunction with electron-poor Josiphos BTFM-xyliphos ligand was found to 

promote the desired hydrogenation-lactamization cascade, providing the pentacycle (695) as 

a single diastereomer in 83% yield, and with 88% ee. Furthermore, this intermediate was 

recrystallized from a slowly evaporating acetonitrile solution to enantiopurity. The relative 

and absolute stereochemistry of the product was confirmed via X-ray crystallographic 

analysis. 

The final stage of the synthesis consists of a 5-step sequence. First, reductive 

amination was employed to methylate the piperazinone N–H. Bis-chlorination of the A- and 

E-rings with N-chlorosaccharin (NCS) was then followed, and the subsequent C–O bond 

coupling provided a dihydroxylated compound. Lastly, partial reduction of the central lactam 

with cyanide trapping and DDQ oxidation delivered jorunnamycin A (608). Conversion of 

jorunnamycin A (608) into jorumycin (613) was achieved in one additional step, concluding 

the 16-step total synthesis. As a result of his unique approach, access to electronically 

modulated aromatic substitution patterns are readily attainable. 

4.5.4. ECTEINASCIDIN ALKALOIDS 

4.5.4.1. GENERAL STRUCTURE AND BIOSYNTHESIS 

The ecteinascidin alkaloids are known to be extremely potent antitumor agents, with 

Et-743 2 (Yondelis®) approved for clinical use for the treatment of advanced soft tissue 

sarcoma.145 Apart from other THIQ alkaloids, these agents are unique in their structure with 

the pentacyclic skeleton linked to a 10-membered lactone bridge through a benzylic sulfide 

linkage (Figure 4.22). Most ecteinascidin alkaloids contain an additional THIQ ring attached 
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to the lactone bridge as a spirocycle, which is a key distinguishing feature from other THIQ 

natural product families. 

Figure 4.22 Ecteinascidin natural products. 
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C ring. Hydrolysis of the pendent N-acyl moiety subsequently proceeds, and the 10-

membered lactone bridge is proposed to be assembled via the tailoring EtuO module. This 

produces Et-583 (704) as a late-stage intermediate, leading to other isolable ecteinascidins 

(Et-597, Et-596, and Et-594) and finally Et-743. 

Scheme 4.77 A. Domain organization of Et-743 NRPS. B. Proposed biosynthetic mechanism 
for the construction of Et-743’s pentacyclic skeleton. 
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Approaches to the chemical syntheses of these natural products generally utilize 

electrophilic aromatic substitution strategies for construction of the THIQ motifs. After 

Corey’s seminal total synthesis of Et-743 184 in 1996, other groups have attempted to target 

this molecule and its congeners with distinct disconnections.148 In 2002, Fukuyama and 

coworkers reported the second total synthesis of 184, envisioning key intermediate 711 to 

assemble the natural product scaffold through electrophilic aromatic substitution with the 

requisite oxidation state at the C4 position (Figure 4.23).149  

Figure 4.23 Fukuyama’s synthetic strategy toward Et-743 184. 
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intermediate 719 then underwent hydrogenolysis of the benzyl ether to induce spontaneous 

cyclization and deliver the desired pentacycle 720.  

Scheme 4.78 Fukuyama’s total synthesis of Et-743 184. 
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lactone bridge 723 under acidic conditions. A biomimetic transamination reaction afforded 

the α-ketolactone 724 to undergo a subsequent Pictet–Spengler reaction with 725 to install 

the third THIQ moiety. Generating the labile hemiaminal last with AgNO3 in CH3CN and 

H2O completed the natural product 184 in 93% yield.  

Since their completed total synthesis of 184 in 2002, Fukuyama and coworkers have 

revised their strategy to render its synthesis more efficient and practical.150 They instead 

envisioned accessing intermediate 728 from dihydropyrrole 727, assembled via a Heck 

reaction between amine 726 and enamide 727 (Scheme 4.79). Construction of the B-ring and 

the 10-membered lactone bridge would then proceed according to their initial synthetic 

strategy. With the functionalized fragments in hand, treatment of 726 with tert-butyl nitrite 

and BF3•OEt2 generated the diazonium salt in situ to undergo the key intermolecular Heck 

reaction with 727 in the presence of a palladium catalyst. Dihydroxylation of 728 and 

oxidative cleavage of the resulting 1,2-diol with H5IO6 formed dialdehyde intermediate 729, 

which could then be liberated by heating in m-xylene and trapped intramolecularly by the 

electron-rich arene to establish the THIQ B-ring and deliver 730. Substitution at the C1-

position of 731 was then elaborated to construct the 10-membered cyclic sulfide and access 

the natural product based on their previous synthetic strategy. Overall, the synthetic route to 

184 was successfully shortened to 28 steps (as compared to 45 steps in their previous study) 

and 1.1% overall yield by efficiently constructing the B-ring. 

Other synthetic strategies to construct the THIQ B-ring of Et-743 (184) were reported 

in 2006, wherein Danishefsky and coworkers demonstrated a novel vinylogous Pictet–

Spengler cyclization from an ortho-hydroxystyrene intermediate 732 (Scheme 4.80). 151 

Treatment of 734 with DMDO then oxidized the C4 position, which produced ketone 736 as 
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the major product through either a concerted rearrangement or a 1,2-hydride migration from 

epoxide 735.  After installation of the nitrile functionality, the MOM group was cleaved to 

reveal their final intermediate 738, which constituted a formal total synthesis of Et-743 (184). 

 

Scheme 4.79 Fukuyama’s revised total synthesis of Et-743 184. 
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Scheme 4.80 Danishefsky’s formal total synthesis of Et-743 184. 
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Scheme 4.81 Zhu’s total synthesis of ecteinascidin 770 699 and ecteinascidin 743 184. 
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After several oxidative manipulations to deliver aldehyde 747, cyclization under 

acidic conditions afforded 748 with concomitant removal of the MOM-protecting group. 

After installing the side chain at the C1 position to deliver 750, the 10-membered lactone 

bridge was installed from dissolving 750 in TFE containing 1% of TFA through in situ 

generation of an ortho-quinone methide followed by an intramolecular Michael addition to 

access the key C–S bond in 751. Following Corey’s protocol, installation of the final THIQ 

was accomplished via oxidation to the ketoester 753 and Pictet–Spengler cyclization with 

754 to provide Et-770 (699) in 97% yield.148a Treatment of Et-770 with AgNO3 in a mixture 

of CH3CN and H2O provided Et-743 (184) in 92% yield. Within the same year, Zhu and 

coworkers reported a similar synthetic strategy for the total syntheses of Et-597 (705) and 

Et-583 (704), instead using phenol 755 to build the natural product scaffold through a 

sequence of aldol condensations followed by a Pictet–Spengler reaction (Scheme 4.82).153 

Scheme 4.82 Zhu’s total synthesis of ecteinascidin 597 705 and ecteinascidin 583 704. 
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and tyrosine derivative 758 (Scheme 4.83).154 Using the same intermediate 758 to construct 

both the western and eastern fragments of Et-743, a Pictet–Spengler reaction with 

benzyloxyacetaldehyde 759 and subsequent Boc-protection provided the western THIQ 760 

in 83% overall yield. After oxidation of phenol 760 to quinone 761, a light-mediated C–H 

bond functionalization using blue LED light in THF allowed cyclization to deliver 

benzo[1,3]dioxole 762 in 83% yield. The formation of 762 could be scaled up to a multi-

decagram scale without compromising the yield. 

After protection of the phenol and oxidation of 762 to the aldehyde 763, an 

intermolecular Pictet–Spengler reaction with amino alcohol 758 provided cyclization 

product 764 as the major isomer in 67% yield. This key coupling event allowed efficient 

construction of the natural product scaffold to install four of the six rings in a single step. 

Oxidation of the hydroxymethyl group then prepared for a subsequent Strecker reaction to 

construct the amino nitrile 765. With decagram quantities of the hexacyclic intermediate 765, 

oxidation of the phenol with benzeneseleninic anhydride provided dihydroxy dienone 766, 

which underwent elimination and macrocyclization according to Corey’s one-pot procedure 

to obtain lactone 767.148a Finally, oxidation to the keto ester 753 and Pictet–Spengler reaction 

with phenethylamine 725 or tryptamine 768 followed by hydrolysis delivered either Et-743 

(184) or lurbinectedin (769), respectively. 

4.6. THIQ ALKALOIDS FROM THE NAPHTHYRIDINOMYCIN FAMILY 

4.6.1. GENERAL STRUCTURE AND BIOSYNTHESIS 

Most alkaloids from the naphthyridinomycin family possess a hexacyclic skeleton, 

including four six-membered rings, a five-membered bridged ring, and an oxazolidine 

fragment (Figure 4.24). 
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Scheme 4.83 Ma’s total synthesis of ecteinascidin 743 184 and lurbinectedin 769.  
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The A-ring can either be in the quinone or hydroquinone oxidation state. Members 

of this family are the naphthyridinomycin (591), cyanocyclines (592–593, 596), 

bioxalomycins (594–595), aclidinomycins (597–598), and dnacins (599–600). 

The biosynthesis of cyanocycline A was studied by Zmijewski and coworkers, where 

they discovered through feeding experiments that the core structure was assembled from 

tyrosine, methionine, glycine or serine, and ornithine.155  Later in 2013, the Tang group 

analyzed the naphthyridinomycin gene cluster and proposed a pathway for the core formation 

via nonribosomal peptide synthetase (NRPS) NapL and NapJ modules.156 The completed 

biosynthetic pathway, especially how the five-membered bridged ring is formed in the core 

structure, however, still have not been fully elucidated in this study. 

Figure 4.24 Core skeleton of THIQ alkaloids in the naphthyridinomycin family and examples. 
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4.6.2. TOTAL SYNTHESIS OF NAPHTHYRIDINOMYCIN ALKALOIDS 

Although no recent total synthesis of the naphthyridinomycin alkaloids have been 

reported, several approaches for the formal synthesis of these natural products have been 

explored.157 In 2007, Garner and coworkers disclosed an efficient synthetic approach toward 

the cyanocycline and bioxalomycin alkaloids harnessing their developed silver-catalyzed 

coupling reaction.158  This key [C+NC+CC] coupling reaction provided rapid access to 

highly functionalized pyrrolidines which could be converted to the target in one-third of the 

total number of steps than previously reported total syntheses. 

The key coupling reaction was effected by combining aldehyde 780 and Oppolzer’s 

camphorsultam 781 in methyl acrylate solvent with 10 mol% AgOAc (Scheme 4.84). The 

[3+2] cycloaddition was proposed to proceed through a pre-TS model such as 782, in which 

the acrylate dipolarophile approaches the ylide from the least hindered endo-si face approach. 

The endo-selective asymmetric coupling allowed the construction of pyrrolidine 783 as a 

single diastereomer. 

To construct the rest of the natural product scaffold, 783 was subjected to 

hydrogenolysis to construct the lactam, and removal of the Boc group followed by a Pictet–

Spengler reaction with benzyloxyacetaldehyde produced THIQ 784. After protection of the 

phenol, reduction with LiAlH4 released the chiral auxiliary and converted the carbamate to 

the required N-methyl group. Oxidation of the primary alcohol 785 allowed construction of 

the diazobicyclo[3.2.1]octane core followed by cyanide addition to deliver 786. Finally, the 

oxazolidine ring was constructed from reduction of 786 to the imine that was reacted with 

hot ethylene oxide in MeOH to afford the late-stage intermediate 787, a late-stage Fukuyama 

intermediate that was two steps away from the synthesis of cyanocycline A 771. 159 
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Bioxalomycin b2 was known to be convertible from 771, demonstrating a formal synthesis 

of this natural product as well. Overall, the successful application of the asymmetric Ag-

catalyzed coupling reaction to install functionalized pyrrolidines allowed a rapid approach to 

this family of natural products.   

Scheme 4.84 Garner’s formal synthesis of cyanocycline A 771 and bioxalomycin b2 788. 
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a 3,8-diazobicyclo[3.2.1]octane core (Figure 4.25). Quinocarcin and tetrazomine possess an 

additional oxazolidine ring, while lemonomycin contains a 2,6-dideoxy-4-amino sugar 

(lemonose) that is rarely found in nature. Compounds within the quinocarcin family display 

varying levels of antitumor and antibiotic properties. In particular, quinocarcin has exhibited 

potent antitumor activity against a variety of tumor cell lines and its citrate salt (KW2152) 

had been in clinical trials in Japan.161 

Figure 4.25 General skeleton of THIQ alkaloids in the quinocarcin family. 
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The reductive release of this species affords an aldehyde, which spontaneously undergoes an 

intramolecular cyclization to furnish the C-ring of the quinocarcin scaffold (800). In addition 

to the quinocarcin biosynthetic core assembly mechanism, this study also investigated the 

biosynthetic pathway for SF-1739, which is a member of the naphthyridinomycin family of 

THIQ alkaloids. The authors concluded that the mechanisms for the core assembly of these 

THIQ-pyrrolidine alkaloids are essentially the same but start from amino acids with different 

substitution patterns on the aromatic portion. 

Scheme 4.85 Proposed biosynthetic mechanism for the construction of the quinocarcin core. 
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TFE resulted in the cyclization of the C- and D-rings, forming the tetracyclic core 804. 

Bismethylation, followed by oxidative cleavage of the olefinic side chain and Jones oxidation 

furnished acid 805. Debenzylation in BCl3 produced quinocarcin and its uncyclized 

precursor (DX-52-1) 806, and treatment with silver nitrate in aqueous methanol converted 

the mixture entirely to yield (–)-quinocarcin (789). 

Scheme 4.86 Myers’ total synthesis of (–)-quinocarcin 789. 
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Scheme 4.87 Zhu’s total synthesis of (–)-quinocarcin 789. 

 

815 was then converted to amino thioether 816 in the presence of EtSH and Hf(OTf)4. 

The undesired diastereomer was recycled in the presence of PhSH and Hf(OTf)4, before 

subjecting the resulting compound to the previous thioether forming conditions again. A 

chemoselective Swern oxidation, silyl enol ether formation, and intramolecular Mannich 

reaction in the presence of silver tetrafluoroborate, an activator of the electrophile and 

nucleophile, led to a 5-endo-trig cyclization to furnish tetracyclic compound 817 with an exo-

oriented aldehyde moiety. Jones oxidation of 817 followed by global deprotection, N-

OH

CHO

807
79% yield (3 steps)

>95% ee

1) Ph2C=NCH2CO2t-Bu
    C6, CsOH●H2O
    CH2Cl2, —78°C
2) THF/AcOH/H2O (1:1:1)
3) TBAF, THF, 0 °C

91% yield

4 Å MS, AcOH
CH2Cl2

OH

811

Br
CO2t-Bu

NH2

OTBS

808

Br Br CHO

OBn

OH

Br
CO2t-Bu

NH

OBn 74% yield (3 steps)

1) Boc2O, DIPEA, CH3CN
2) Me2SO4, Cs2CO3, acetone

3) SOCl2, MeOH, reflux

812
OMe

Br
CO2Me

NH

OBn

+
HO2C

NHCbz

OTBS
813

71% yield

HATU, HOAt, DIPEA
DMF, 0 to 23 °C

814

OMe

Br
CO2Me

N

OBn
O

NHCbz

TBSO 86% yield
2:3 dr

1) LiBH4, MeOH, Et2O
2) (COCl)2, DMSO, –78 °C
    then Et3N, –78 C to 0 °C

815

OMe

Br

N

OBn
O

NCbz

TBSO

OH

A B

88% yield
or 62% yield (2 steps)

EtSH, Hf(OTf)4, CH2Cl2
or

1) PhSH, Hf(OTf)4, CH2Cl2
2) EtSH,Hf(OTf)4, CH2Cl2

C

816

OMe

Br

N

OBn
O

NCbz

SEt

81% yield

1) (COCl)2, DMSO, –78 °C
    then Et3N, –78 to 0 °C

2) TIPSOTf, Et3N, Et2O
3) AgBF4, THF

817

OMe

Br

N

OBn
O

N
Cbz

CHO

71% yield

CrO3, aq. H2SO4

acetone, 0 °C

H

818

OMe

Br

N

OBn
O

N
Cbz

CO2H
H

(–)-789
83% yield (3 steps)

1) Pd/C, H2 (1 atm), MeOH
2) HCHO, HCO2H, NaBH3CN

3) Li/NH3 (l), THF then 2 N HCl

OH

809

810
N

O
N

Br

C6

H

H H

H

N
N

Me

OMe

OH

H

H

H

O

O

H

H



Chapter 4 – Advances in the Total Synthesis of the Tetrahydroisoquinoline 
Alkaloids (2002 – 2020)  

621 

methylation, partial lactam reduction, and ring closure under acidic conditions produced  

(–)-quinocarcin (789). 

Harnessing a different approach toward the synthesis of (–)-quinocarcin, Stoltz and 

coworkers demonstrate the use of an aryne annulation reaction to assemble an isoquinoline 

precursor toward the THIQ moiety.165 Drawing from the synthetic strategy used by their 

group to synthesize (–)-lemonomycin (vide infra), Stoltz and coworkers began with the 

cyclization of a deprotonated oxidopyrazinium bromide 819 with the acrylamide of 

Oppolzer’s sultam 820 to deliver 821 with 99% ee (Scheme 4.88). Basic methanolysis on the 

desired diastereomeric product, followed by acylation with benzyloxyacetyl chloride 822 

produced imide 823. Regioselective methanolysis at the lactam carbonyl was conducted with 

yttrium(III) triflate to produce enamine 824. The enamine and aryne precursor 825 were 

combined in the presence of tetra-n-butylammonium difluorotriphenylsilicate (TBAT) to 

generate isoquinoline 826. Two consecutive reductions produced separable THIQs, with 

desired diastereomer 827 as the major product obtained in 55% yield over two steps. After 

condensation to form the lactam, Pearlman’s catalyst was used to remove the two benzyl 

groups and methylate the unmasked amine to afford 828. Saponification of methyl ester 828, 

followed by partial reduction of the lactam and treatment of the resulting hemiaminal with a 

protic source resulted in ring closure to form the oxazolidine ring and afford (–)-quinocarcin 

(789).  

In a convergent approach toward the quinocarcin core, Ohno and coworkers 

employed a Sonogashira coupling and Au(I)-catalyzed intramolecular alkyne 

hydroamination to construct the scaffold of the THIQ core. 166  Bromoallene 830 was 
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constructed from γ-butyrolactone 829 and treated with NaH to provide 2,5-cis-pyrrolidine 

831 (Scheme 4.89). Further transformation produced pyrrolidine 832. 

Scheme 4.88 Stoltz’s total synthesis of (–)-quinocarcin 789. 
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Scheme 4.89 Ohno’s total synthesis of (–)-quinocarcin 789. 
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Scheme 4.90 Williams’ total synthesis of (–)-tetrazomine 791. 
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produced epimerized compound 850. Subsequent reduction followed by trapping of the 

resulting carbinolamine afforded the aminonitrile moiety. TIPS protection of the two primary 

alcohols followed by hydrolysis of the methyl carbamate afforded aniline 851. Acid chloride 

852 was prepared in three steps and coupled with aniline 851 in the presence of DMAP. 

Subsequent cleavage of the Fmoc group with DBU afforded 853 with 1:1 dr, which were 

isolable and carried on separately. Treatment of aminonitrile 853 with silver trifluoroacetate 

induced cyclization to form the oxazolidine ring, and addition of Amberlyst ion-exchange 

resin (Cl– form) followed by filtration and lyophilization afforded tetrazomine 791. The other 

diastereomer of 853 was treated to the same steps to afford ent, epi-tetrazomine 791. 

In attempts to probe the biological activity of tetrazomine and its analogues, several 

novel analogues were prepared as shown in Scheme 4.91. Late-stage intermediate 854 was 

coupled to N-Fmoc-L-pipecolic acid chloride 855 followed by cleavage of the Fmoc and 

TIPS groups to afford both diastereomers 856 and 857 with 1:1 dr.  Treatment of both 

isomers with AgOCOCF3 and TFA afforded two deoxytetrazomine analogs 858 and 859. 

Scheme 4.91 Williams’ synthesis of tetrazomine analogues. 
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To examine the interaction of tetrazomine 791 and analogues 858–859 with DNA 

cleavage, these compounds were incubated with a synthetic 32P-5’-end-labeled 45 bp duplex 

at pH 7 in phosphate buffer. While some analogues did not exhibit any DNA damage, 

tetrazomine 791 did display DNA cleavage in a non-sequence-specific manner. Additionally, 

all four oxazolidine and aminonitrile analogues were assayed against a Gram-(+) bacteria 

(Staphylococcus aureus) and a Gram-(–) bacteria (Klebsiella pneumoniae) via the disk 

diffusion method.  Interestingly, deoxy compounds 858 and 859 displayed slightly better 

activity than either tetrazomine 791 or ent, epi-tetrazomine. 

4.7.4. TOTAL SYNTHESIS OF LEMONOMYCIN 

While there have been reports toward the formal synthesis of lemonomycin,168 Stoltz 

and coworkers demonstrated a total synthesis of (–)-lemonomycin employing a 

stereoselective dipolar cycloaddition and diastereoselective Pictet–Spengler cyclization to 

form the tetracyclic compound. 169  Cyclization of deprotonated bromide salt 860 with 

Oppolzer’s sultam-derived acrylamide 861 provided bicycle 862 with high ee (Scheme 4.92). 

Enamide 862 was then converted to a silyl ether and treated with ICI to produce Z-

iodoenamide 863. Suzuki coupling with aryl boronic ester 864 provided aryl enamide 865 

and subsequent hydrogenation and protection of the amine and phenol produced amide 866. 

Aminotriol 867 was accessed in three steps with 81% overall yield from simultaneous 

activation of the amide and protection of the phenol with Boc2O, reduction with NaBH4, and 

cleavage of the Boc and TIPS moieties using methanolic HCl. Aldehyde 868 was separately 

prepared in eight steps (not shown) for Pictet–Spengler reaction with aminotriol 867 to 

deliver THIQ 869. Hydrogenolytic cleavage of the Cbz group, Swern oxidation, and 

treatment with CAN ultimately provided (–)-lemonomycin 792. 
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Scheme 4.92 Stoltz’s total synthesis of (–)-lemonomycin 792. 
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group, ozonolysis, and subsequent reduction. Key intermediate 877 was coupled with 

functionalized lemonose 878 by treatment with TMSOTf and Drierite at –40 °C to deliver 

879. After several functional group manipulations, exposure of primary alcohol 880 to Swern 

oxidation produced the geminal diol, and hemiaminal installation followed by CAN-

mediated oxidation of the A-ring produced (–)-lemonomycin 792. 

Scheme 4.93 Fukuyama and Kan’s total synthesis of (–)-lemonomycin 792. 
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4.8 CONCLUSIONS 

The THIQ natural products are one of the most prominent family of alkaloids that 

exhibit a diverse range of biological activity as well as structural complexity. It is noteworthy 

that from simple benzyl THIQ alkaloids to complex ecteinascidin THIQ natural products, all 

possess interesting biological properties and reactivity that are of great interest to synthetic, 

biological, and medicinal chemists. From 2002–2020, research in the total synthesis of THIQ 

alkaloids has advanced greatly, especially in the development of novel methodologies that 

enable creative synthetic approaches to these molecules. Not only do these modern chemical 

methods allow efficient chemical syntheses, but they also provide access to a library of 

natural product analogues to uncover more of their biological activity. 

Their challenging molecular architecture along with their important therapeutic 

effects will surely continue to drive research to develop novel reactions toward their chemical 

syntheses and uncover new biosynthetic pathways. As of yet, there are still several families 

of natural products of which their biosynthesis is not fully understood, and the chemical 

syntheses of some THIQ alkaloids have not yet been explored. Thus, this review hopefully 

serves as a guide for the recent developments in THIQ alkaloid chemistry, and also addresses 

some of the remaining challenges in the synthesis of this family of natural products for further 

medicinal and biological advancement. 
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CHAPTER 5 

Progress Toward the Total Synthesis  

of (+)-Cyanocycline A†  

 

5.1  INTRODUCTION 

 The tetrahydroisoquinoline (THIQ) alkaloids make up one of the largest groups of 

natural products with a wide range of structural diversity and biological activity. 1  In 

particular, THIQ alkaloids of the naphthyridinomycin family have long served as challenging 

synthetic targets due to their structural complexity and significant bioactivity as antibiotic 

and antitumor agents (Figure 5.1).2 Its congeners possess a hexacyclic carbon framework 

containing the THIQ core, a pyrrolidine-bridged ring, and a labile oxazolidine moiety as the 

F-ring. Members of this family include naphthyridinomycin (770), cyanocyclines (771–772, 

775), bioxalomycins (773–774), aclindomycins (776–777), and dnacins (778–779).  

 In 1982, cyanocycline A (771) was isolated from the fermentation broth of 

Streptomyces flavogriseus No. 49 that displayed significant antibiotic and antitumor 

activity.3 Cyanocycline A (771) possesses a caged, hexacyclic scaffold that is characterized 

by the aminonitrile moiety at C(22) in place of a carbinolamine or hydroxyl functionality 
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(Figure 5.2). Cyanocycline A (771) contains eight stereocenters, five of which are contiguous 

stereocenters centered on the piperidine E-ring. Three basic tertiary amines, a quinone, 

aminonitrile, and oxazolidine moieties are particularly distinguished functionalities of 

cyanocycline A that render this natural product a formidable synthetic challenge. 

Figure 5.1 General skeleton of THIQ alkaloids in the naphthyridinomycin family and examples. 

 

 

Figure 5.2. Structure of Cyanocycline A (771). 
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 The biosynthesis of cyanocycline A and related congeners was studied by Zmijewski 

and coworkers, where they discovered through feeding experiments that the core structure 

was assembled from tyrosine, methionine, glycine or serine, and ornithine.4 Later in 2013, 

the Tang group analyzed the naphthyridinomycin gene cluster and proposed a pathway for 

the core formation via nonribosomal peptide synthetase (NRPS) NapL and NapJ modules.5 

The completed biosynthetic pathway, especially how the five-membered bridged ring is 

formed in the core structure, however, still have not been fully elucidated in this study. 

 To date, only two completed syntheses of cyanocycline A have been reported by 

Evans and coworkers in 1986,6 and Fukuyama and coworkers in 1987.7 Both groups have 

later reported an asymmetric synthesis of (+)-cyanocycline A (771) utilizing a similar 

synthetic strategy, accomplishing the synthesis of the natural product in over 30 linear 

steps.8,9 More recently, Garner and coworkers disclosed an efficient formal synthesis of 

cyanocycline A (771) and the bioxalomycin alkaloids harnessing their developed silver-

catalyzed [C+NC+CC] coupling reaction (Scheme 4.83, vide supra).10 Thus, the natural 

product scaffold was efficiently synthesized in one-third of the total number of steps than the 

previously reported total syntheses, constituting a formal synthesis of cyanocycline A (771) 

and bioxalomycin b2 (788).  

 While these previously reported strategies pioneered the syntheses of the 

naphthyridinomycin alkaloids, they all feature electrophilic aromatic substitution chemistry 

for the construction of the THIQ core. Alternatively, we envision a novel, nonbiomimetic 

route to these alkaloids that could construct the natural product scaffold with high efficiency 

harnessing modern transition-metal catalysis.  
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5.2 RETROSYNTHETIC ANALYSIS  

Inspired by our development of an asymmetric hydrogenation technology to reduce 

heteroaryl-substituted isoquinolines, we sought to target cyanocycline A (771) by a key 

global hydrogenation event of a pyrrole-substituted isoquinoline intermediate (Chapter 2–

3, vide supra). To this end, our first retrosynthetic analysis accessed cyanocycline A (771) 

by oxidation of arene 881 to afford the quinone, and aminonitrile formation via partial 

lactam reduction and cyanide trapping (Figure 5.3). To construct the piperidine E-ring, we 

envision a late-stage benzylic oxidation event of phenol 883 to generate an ortho-quinone 

methide intermediate 882 in situ, enabling cyclization of the pendent oxazolidine ring to 

afford the hexacyclic scaffold 881. Usage of highly reactive ortho-quinone methide 

intermediates for the construction of complex natural products have been precedented, 

including the total synthesis of a THIQ alkaloid Et-743 (184) reported by Corey and 

coworkers.11,12   

Phenol 883 will be accessed from arene oxidation of THIQ 884, with reduction of 

the oxazoline ring to deliver the oxazolidine, which we anticipate will reduce from the 

more sterically accessible convex face. Oxazoline formation and cyclization of the 

secondary amine onto the pendent methyl ester of the pyrrolidine ring in 885 then delivers 

884. THIQ 885 is then forged from a key asymmetric hydrogenation event of isoquinoline 

886, utilizing our developed hydrogenation technology to sequentially reduce both the 

isoquinoline and pyrrole ring that could potentially enable cyclization to the amide as 

well.13 Finally, a cross-coupling event of two heterocyclic fragments 887 and 888 followed 

by allylic oxidation will afford the key hydrogenation precursor 886. 
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Figure 5.3. Initial retrosynthetic analysis of (+)-cyanocycline A (771). 
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precursor was accessed from carbamate cleavage and triflation of the intermediary phenol 

to synthesize the silyl triflate 892 in 99% yield. Silyl aryl triflate 892 was then treated with 

cesium fluoride to generate the aryne intermediate in situ, which underwent aryne acyl-

alkylation with in situ condensation to deliver 3-hydroxy-isoquinoline 893 in a range of 

20–45% yield. Finally, triflation of isoquinoline 893 with trifluoromethanesulfonic 

anhydride provided the electrophilic coupling partner 887 in 94% yield.  

Scheme 5.1. Synthesis of the western isoquinoline fragment 887. 
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Scheme 5.2. Synthesis of the eastern pyrrole fragment 898. 
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and ethanol addition to the iminium generated (entry 1). Increasing the catalyst loading to 

5 mol % afforded full conversion of isoquinoline triflate 887, but with only 19% yield of 

product 899 and 43% yield of protodetriflation observed (entry 2).18 Thus, we turned to 

other cross-coupling strategies to improve the convergent coupling of the two heterocyclic 

fragments. 

We next investigated Stille cross-coupling reactions to improve the key cross-

coupling event. To this end, pyrrole 895 was protected with a Boc group instead to provide 

pyrrole 900 in 98% yield, followed by reduction of the aldehyde to deliver alcohol 901 in 

99% yield (Scheme 5.4). Next, a-lithiation of the pyrrole directed by the Boc group was 

performed using LiTMP, and the generated lithiated species was trapped with Bu3SnCl to 

deliver the nucleophilic coupling partner 902 in 91% yield.19  

Scheme 5.4. 2nd generation synthesis of pyrrole fragment 902.  
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functionalized pyrrole-substituted isoquinoline 903, we were then poised to explore our 

key asymmetric hydrogenation step.  

Scheme 5.5. Stille cross-coupling of heterocycles 887 and 902.  
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key hydrogenation reaction, prompting us to explore other functionalities that could be 

later utilized to install the oxazoline ring.  

Scheme 5.6. Key asymmetric hydrogenation of pyrrole-substituted isoquinoline 904. 
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We then revisited the Stille cross-coupling of heterocyclic fragments 887 and 908 

to advance to the key hydrogenation precursor (Scheme 5.8). We were pleased to see that 

we could even further optimize the Stille coupling to obtain a 96% yield of cross-coupled 

intermediate 909 employing 1:1 equivalents of both coupling partners. Further elaboration 

of the C1-substituent of the isoquinoline using the same oxidation sequence afforded the 

hydroxymethyl group 910 in an improved 75% yield over 2 steps. With a more efficient 

synthetic route to access hydrogenation precursor 910, we were poised to extensively 

investigate our key hydrogenation step.  

Scheme 5.8. Stille cross-coupling and synthesis of hydrogenation precursor 910. 
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facile abstraction of the Boc group.21 Revealing the unprotected NH-pyrrole then impedes 

further hydrogenation presumably due to catalyst deactivation.22 

Scheme 5.9. Key asymmetric hydrogenation attempts of isoquinoline 910. 
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To better understand the reactivity of isoquinoline precursor 910 and whether the 

system can be reduced, we investigated heterogeneous hydrogenation conditions utilizing 

a variety of metal catalysts. Under 60 bars of H2 in AcOH, we observed mostly DHIQ 

intermediate 912 using 1 equivalent of PtO2, however we were pleased to see we could 

access the fully hydrogenated product 915 of both the isoquinoline and pyrrole rings 

(Scheme 5.10). Using Pd/C as catalyst afforded a range of byproducts, including both the 

Boc-protected and deprotected THIQ 911 and 913, respectively (entry 2).  

Gratifyingly, when using Rh/C as catalyst, we could now achieve 47% conversion 

of the fully hydrogenated intermediate 915, and additionally observe trace amounts of the 

cyclized product 916 from the secondary amine condensing onto the ethyl ester. Overall, 

Rh/C and PtO2 provided cleaner reaction profiles, but provided significant amounts of 

deprotected byproducts under acetic acid solvent and heat.   

We next investigated different solvents of the heterogeneous hydrogenation to 

suppress any deprotection pathways of the Boc group that impedes further hydrogenation 

(Scheme 5.11). Using 5% Rh/C and acetic acid as solvent, we observe 27% conversion to 

the fully hydrogenated intermediate 915 as well as the deprotected THIQ 913 and DHIQ 

914 (entry 1).  

However, under less acidic solvents such as HFIP and TFE, there was no 

conversion to pyrrolidine 915, instead resulting in high levels of deprotected THIQ 913 

and DHIQ 914 (entries 2 & 3). On the other hand, little conversion to the deprotected 

byproducts 913 and 914 was observed using PtO2 in less acidic solvents. Under TFE 
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solvent, hydrogenation to the pyrrolidine 915 occurred in 5% conversion, as well as 50% 

conversion to THIQ intermediate 911 (entry 6).  

Scheme 5.10. Heterogeneous hydrogenation investigation of isoquinoline 910.a  

 

[a] Reaction conditions: 0.01 mmol of 910 in 0.5 mL solvent. Relative levels of conversion 
determined by LC/MS analysis. 
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at ambient temperature using CHCl3 as solvent, we observed 53% conversion to fully 

hydrogenated intermediate 915 (Scheme 5.12, entry 4). Overall, key to the hydrogenation 

of both the isoquinoline and pyrrole ring was the suppression of deprotection pathways that 

results in byproducts 913 and 914 by using less acidic solvents and ambient temperature.  

Scheme 5.11. Investigation of solvent in heterogeneous hydrogenation of isoquinoline 910. 

 

[a] Reaction conditions: 0.01 mmol of 910 in 0.5 mL solvent. Relative levels of conversion 
determined by LC/MS analysis. 
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Moreover, in attempts to cyclize pyrrolidine 915 to the desired tetracycle 916 by 

hydrolyzing the ester, we observe competitive cyclization onto the methyl ester moiety at 

the C3-position of the pyrrolidine as well to deliver 917 (Scheme 5.13). 

Scheme 5.12. Investigation of solvent in heterogeneous hydrogenation of isoquinoline 910 
at ambient temperature. 

 
[a] Reaction conditions: 0.01 mmol of 910 in 0.5 mL solvent. Relative levels of conversion 
determined by LC/MS analysis. 
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a different approach toward (+)-cyanocycline A (771) that would enable faster reduction 

and higher diastereoselectivity toward tetracycle 916. 

Scheme 5.13. Competitive cyclization of secondary amine on to esters at C3- and C5-
positions of the pyrrolidine ring.  
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generated enolate with Tf2O delivers vinyl triflate 921 in 51% yield. However, further 

attempts to optimize the yield of the triflation were unsuccessful due to the instability of 

intermediate 921.   

Figure 5.4. 2nd generation retrosynthetic analysis of (+)-cyanocycline A (771). 

 

 

Scheme 5.14. Synthesis of dihydropyrrole coupling partner 921. 
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Conversion of the isoquinoline triflate 887 to a nucleophilic coupling partner was 

more challenging than anticipated. We first attempted Pd-catalyzed borylation conditions 

using B2pin2 and HBpin, but no conversion of starting material was observed (Scheme 

5.15). 26  Using nickel-catalyzed borylation conditions developed by Molander and 

coworkers resulted in little conversion to the boronic acid 926, but mostly produced 

leftover starting material and protodetriflation.27 To our delight, Pd-catalyzed stannylation 

conditions inspired by Nechaev and coworkers gave smooth conversion of the isoquinoline 

triflate 887 to organostannane 927 in 77% yield.28  

Scheme 5.15. Conversion of isoquinoline triflate 887 to a nucleophilic coupling partner. 
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decomposition of the vinyl triflate 921 (Scheme 5.16, entry 1). When we explored other 

additives, we observed that adding LiCl that is known to accelerate the oxidative addition 

event of the vinyl triflate to palladium improved the yield to 64% (entry 2).29 Thus, using 

Pd(PPh3)4, CuI, LiCl, and 1:1 equivalents of both coupling partners, we could achieve 

cross-coupled product 928 by reversing the electronics of both fragments.  

Scheme 5.16. Cross-coupling of heterocycles 921 and 927 and synthesis of hydrogenation 
precursor. 
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5.5 THIRD GENERATION APPROACH 

To this end, we considered installing the oxazoline ring onto the dihydropyrrole 

fragment (932) that maps directly onto ring F of the natural product. Not only would this 

reduce the number of subsequent steps from the global hydrogenation event to install the 

oxazoline ring, but would also impart a significant electron-withdrawing effect to enable 

reduction of the tetrasubstituted olefin (Figure 5.5). Moreover, we sought to utilize the 

oxazoline ring as a potential directing group for the cross-coupling with isoquinoline 

triflate 887 through either a Heck or a Pd-catalyzed concerted metalation deprotonation 

(CMD) reaction of the dihydropyrrole olefin.31 Such transformations using unactivated 

cyclic enamides are not well precedented, which we envision could be an opportunity for 

novel reaction development for the coupling of enamides and heteroaryl electrophiles.32 

Synthesis of the oxazoline-appended dihydropyrrole 932 commences with lactam 

923, which instead undergoes a dehydration event to access dihydropyrrole 933 (Scheme 

5.17).33 Vilsmeier–Haack formylation using POCl3 in DMF affords aldehyde 934 in 70% 

yield, which is subjected to Pinnick oxidation to deliver carboxylic acid 935 in 76% yield. 

Then, amidation of 935 with ethanolamine and HATU reagent gives amide 936 in 80% 

yield that can be treated with DAST reagent at –78 °C to cleanly afford the oxazoline 

coupling partner 932 in 79% yield. 

With efficient access to dihydropyrrole fragment 932, we were then poised to 

explore the key cross-coupling event of isoquinoline triflate 887 and dihydropyrrole 932 

without prefunctionalization of the olefin. First, a variety of Pd-catalyzed conditions were 

investigated based on precedent of direct C–H arylation reactions (Scheme 5.18).34 
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Figure 5.5. 3rd generation retrosynthetic analysis of (+)-cyanocycline A (771). 

 

Scheme 5.17. Synthesis of oxazoline dihydropyrrole coupling partner 932. 
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After surveying a wide range of transition-metal catalysts, we were pleased to see 

that an initial reaction employing Pd(PPh3)4, phenanthroline as ligand, and Ag2CO3 as base 

gave trace conversion to product (entry 1). Surveying a variety of carbonate bases did not 

improve conversion to product 937, but Cs2CO3 in particular showed full consumption of 

starting material 932 to the hydrolyzed carboxylic acid (entry 2). Considering the unique 

reactivity of Cs2CO3, we hypothesized whether reducing the ester moiety to the alcohol to 

avoid hydrolysis of the substrate would activate the substrate toward cross-coupling. Thus, 

dihydropyrrole 932 was converted to the primary alcohol 938 via LiBH4 generated in situ.35   

Scheme 5.18. Initial Pd-catalyzed CMD cross-coupling reaction of triflate 887 and 
dihydropyrrole 932. 
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concentration to 0.04 M improved the yield to 25%, suggesting that a concerted metalation 

deprotonation (CMD) reaction pathway may be taking place over a Heck-type 

mechanism. 36  Yet, the reaction suffers from significant protodetriflation and 

homocoupling of isoquinoline triflate 887.  

Scheme 5.19. Optimization of Pd-catalyzed CMD cross-coupling reaction of triflate 887 and 
dihydropyrrole 938.a 

 

[a] Reaction conditions: 0.014 mmol of 887 in 0.34 mL solvent. Yields determined from 
crude 1H NMR using 1,3,5-trimethoxybenzene as standard. 
 

Employing CsOPiv as an additive that is known to be directly involved in the rate-

determining C–H bond cleavage/palladation event decreased the amount of 

protodetriflation and homocoupling byproducts, affording 939 in 11% yield.37 Lowering 

the catalyst loading to 2.5 mol % of palladium and 5 mol % of phosphine ligand also 

+N

Me

MeO
Me

OTf

OMe
1 equiv

887

cross-
coupling conditions

N

Me

MeO
MeOMe

N
Boc

939
entry results

1
10% yield

16% homocoupling
45% protodetriflation

conditions

2

Pd(OAc)2 (10 mol %), Pt-Bu3 (25 mol %) 
Cs2CO3 (1 equiv), PhMe (0.07 M)

Pd(OAc)2 (10 mol %), Pt-Bu3 (25 mol %)
Cs2CO3 (3.5 equiv), PhMe (0.04 M)

25% yield
19% homocoupling

41% protodetriflation

O

N

N
Boc

1.5 equiv
938

O
N

OH

OH
PhMe, 110 °C, 18 h

3 Pd(OAc)2 (10 mol %), Pt-Bu3 (20 mol %)
Cs2CO3 (3.5 equiv), CsOPiv (50 mol %)

11% yield
14% homocoupling
9% protodetriflation

4 Pd(OAc)2 (2.5 mol %), Pt-Bu3 (5 mol %)
Cs2CO3 (3.5 equiv), CsOPiv (12.5 mol %)

36% yield
8% homocoupling

5% protodetriflation

5 Pd(OAc)2 (2.5 mol %), PPh3 (5 mol %)
Cs2CO3 (3.5 equiv), CsOPiv (12.5 mol %)

34% yield
3% homocoupling

9% protodetriflation

6 Pd(OAc)2 (2.5 mol %), PCy3 (5 mol %)
Cs2CO3 (3.5 equiv), CsOPiv (12.5 mol %)

47% yield
8% homocoupling

10% protodetriflation



Chapter 5 – Progress Toward the Total Synthesis of (+)-Cyanocycline A 
 

 

 

669 

significantly reduced the levels of homocoupling and protodetriflation while increasing the 

yield of 939 to 36% (entry 4). Finally, exploring more electron-deficient phosphine ligands 

such as PPh3 and PCy3 ultimately improved the yield of the cross-coupling to 47% while 

suppressing other undesired reaction pathways (entries 5 & 6). Efforts to continue 

improving the yield of this key cross-coupling reaction and access the hydrogenation 

precursor are currently ongoing. 

5.6 CONCLUSION AND FUTURE DIRECTIONS 

Toward the total synthesis of (+)-cyanocycline A (771), we have developed a highly 

convergent strategy to cross-couple isoquinoline triflate 887 and dihydropyrrole 938 that 

installs four out of six rings of the natural product in a single transformation. With 

intermediate 939 in hand, we anticipate that oxidation of 939 will be relatively facile using 

previously employed oxidation conditions that installs the hydroxymethyl group at the C1-

position of the isoquinoline (Scheme 5.20). With hydrogenation precursor 931, a global 

hydrogenation event using PtO2 will be explored to access 930, which has already been 

demonstrated to reduce both the isoquinoline and pyrrole ring (e.g., 915). Due to the 

presence of one methyl ester substituent, cyclization of the secondary amine onto the ester 

should be selective to yield bicycle 884 with the oxazoline ring already in place. After 

arene oxidation to deliver phenol 883 which has been performed on a similar substrate in 

the jorumycin synthesis,14 benzylic oxidation of either oxazolidine 883 or the oxazoline 

will be extensively explored to generate an ortho-quinone methide intermediate 882 that 

enables cyclization of the pendent heterocycle to access the natural product scaffold 881. 
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Finally, oxidation of the arene to the quinone and aminonitrile formation are both well 

precedented in previous syntheses of THIQ alkaloids to deliver (+)-cyanocycline A (771).2  

Scheme 5.20. Proposed completion of (+)-cyanocycline A (771). 
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hydrogenation method using PtO2 and 60 bar H2 at ambient temperature that enables the 

reduction of both the isoquinoline and pyrrole ring. We anticipate application of this 

technology to our most advanced intermediate to reduce a dearomatized dihydropyrrole-

substituted isoquinoline effectively. Efforts are currently underway to access this 

hydrogenation precursor toward the total synthesis of (+)-cyanocycline A (771).  

 

5.7 EXPERIMENTAL SECTION 

5.7.1 MATERIALS AND METHODS 

Unless otherwise stated, reactions were performed in flame-dried glassware under 

an argon or nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried by 

passage through an activated alumina column under argon. 38  Reaction progress was 

monitored by thin-layer chromatography (TLC) or Agilent 1290 UHPLC-MS.  TLC was 

performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and 

visualized by UV fluorescence quenching, p-anisaldehyde, or KMnO4 staining.  Silicycle 

SiliaFlash® P60 Academic Silica gel (particle size 40–63 µm) was used for flash 

chromatography. 1H NMR spectra were recorded on Varian Inova 500 MHz and Oxford 

600 MHz spectrometers and are reported relative to residual CHCl3 (δ = 7.26 ppm) or TMS 

(δ = 0.00 ppm). 13C NMR spectra were recorded on a Bruker 400 MHz spectrometer (100 

MHz) and are reported relative to CHCl3 (δ = 77.16 ppm), C6D6 (δ = 128.06 ppm) . Data 

for 1H NMR are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant 

(Hz), integration).  Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, 

q = quartet, p = pentet, sept = septuplet, m = multiplet, br s = broad singlet, br d = broad 
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doublet.  Data for 13C NMR are reported in terms of chemical shifts (δ ppm).  IR spectra 

were obtained by use of a Perkin Elmer Spectrum BXII spectrometer or Nicolet 6700 FTIR 

spectrometer using thin films deposited on NaCl plates and reported in frequency of 

absorption (cm–1).  Optical rotations were measured with a Jasco P-2000 polarimeter 

operating on the sodium D-line (589 nm), using a 100 mm path-length cell. High resolution 

mass spectra (HRMS) were obtained from Agilent 6200 Series TOF with an Agilent 

G1978A Multimode source in electrospray ionization (ESI+), or mixed ionization mode 

(MM: ESI-APCI+). Reagents were purchased from commercial sources and used as 

received unless otherwise stated.  

5.7.2 EXPERIMENTAL PROCEDURES AND SPECTROSCOPIC DATA 
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conversion to a single borylated product. The vial was cooled to room temperature and the 

cap was removed. N-methylmorpholine-N-oxide (2.37 g, 20.2 mmol, 3 equiv) was added 

in a few small portions and the vial was resealed and returned to the 80 °C oil bath for 3 h, 

at which time TLC (20% EtOAc in hexanes) indicated complete oxidation to the 

intermediate phenol. NEt3 (4.7 mL, 33.7 mmol, 5 equiv) and isopropyl isocyanate (2.6 mL, 

26.9 mmol, 4 equiv) were added at room temperature and the solution was stirred 16 h, at 

which time TLC (50% EtOAc/hex) indicated complete conversion to carbamate 890. 10% 

aq. Na2S2O3 was added to quench the remaining oxidant and citric acid hydrate (4.5 g, >3 

equiv) was added to chelate the boron. This solution was stirred 1 h, and concentrated HCl 

was added 1 mL at a time until an acidic pH was achieved. The layers were separated and 

the aqueous phase was extracted with EtOAc. The combined organic phases were then 

washed with aqueous K2CO3, dried over MgSO4 and concentrated. The product was 

purified by silica column chromatography (25% EtOAc in hexanes) to afford a colorless 

solid (1.35 g, 4.6 mmol, 79% yield); 1H NMR (400 MHz, CDCl3) δ 6.55 (d, J = 2.6, 1H), 

6.52 (d, J = 2.8, 1H), 4.84 (d, J = 7.8 Hz, 1H), 3.88 (ddd, J = 16.1, 13.9, 7.6 Hz, 1H), 3.82 

(s, 3H), 3.76 (s, 3H), 2.24 (s, 3H), 1.23 (s, 3H), 1.21 (s, 3H); All characterization data 

match those reported. 

 

3,4-dimethoxy-5-methyl-2-(trimethylsilyl)phenyl isopropylcarbamate (891) 

Compound 891 was prepared according to literature procedure.14a  Carbamate 890 (17.30 

g, 68.2 mmol, 1 equiv) was dissolved in Et2O (340 mL, 0.2 M) N,N,Nʹ,Nʹ-

Me

MeO
OMe

890

O NHi-Pr

O
TMEDA, TBSOTf, n-BuLi

then TMSCl, Et2O, –78 °C

Me

MeO
OMe

891

O NHi-Pr

O
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tetramethylethylenediamine (TMEDA, 11.3 mL, 75.1 mmol, 1.1 equiv) was added and the 

solution was cooled to 0 °C before tert-butyldimethylsilyl triflate (TBSOTf, 17.25 mL, 

75.1 mmol, 1.1 equiv) was added in a slow stream. The solution was stirred 10 min at 0 

°C, removed from the ice bath and stirred at room temperature for 30 min. A second portion 

of TMEDA (41 mL, 273 mmol, 4 equiv) was added and the solution was cooled to –78 °C. 

n-Butyllithium (2.4 M, 114 mL, 274 mmol, 4 equiv) was added in a dropwise fashion 

through a flame-dried addition funnel over the course of 1 h, being sure to not let the 

temperature rise significantly. The resulting yellow suspension was stirred vigorously for 

4 h at –78 °C, taking care not to let the temperature rise during the course of the reaction. 

Trimethylsilyl chloride (61 mL, 478 mmol, 7 equiv) was then added dropwise via addition 

funnel over the course of 30 min and the suspension was stirred at –78 °C for 30 min, then 

was removed from the dry ice bath and stirred at room temperature for 16 h. The reaction 

was quenched by the addition of 300 mL aqueous NH4Cl (30 mL saturated solution diluted 

to 300 mL) through an addition funnel, the first 50 mL of which were added dropwise, 

followed by the addition of the remainder in a slow stream. The aqueous phase was then 

further acidified by the addition of small portions of concentrated HCl until an acidic pH 

was achieved (~30 mL required). The layers were separated and the aqueous phase was 

extracted twice with Et2O. The combined organic phases were washed with saturated 

aqueous NH4Cl, dried over MgSO4 and concentrated. The product was purified by silica 

column chromatography (20 → 30% Et2O in hexanes) to afford a colorless solid (20.61 g, 

63.3 mmol, 93% yield); 1H NMR (400 MHz, CDCl3) δ 6.63 (s, 1H), 4.69 (d, J = 8.1 Hz, 
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1H), 3.96–3.85 (m, 1H), 3.83 (s, 3H), 3.76 (s, 3H), 2.23 (s, 3H), 1.24 (s, 3H), 1.22 (s, 3H), 

0.30 (s, 9H); All characterization data match those reported. 

 

3,4-dimethoxy-5-methyl-2-(trimethylsilyl)phenyl trifluoromethanesulfonate (892) 

Compound 892 was prepared according to literature procedure.14a  Carbamate 891 (8.08 g, 

24.8 mmol, 1 equiv) was dissolved in THF (100 mL, 0.25 M) and diethylamine (3.85 mL, 

37.2 mmol, 1.5 equiv) was added and the solution was cooled to –78 oC. n-Butyllithium 

(2.5 M, 15 mL, 37.5 mmol, 1.5 equiv) was added slowly over the course of 15 min. The 

solution was stirred at that temperature for 30 min, then removed from its bath and stirred 

at 23 oC for 30 min. N-Phenyl triflimide (10.6 g, 29.8 mmol, 1.2 equiv) was added in one 

portion and the solution was stirred 30 min. A second portion of diethylamine (4.6 mL, 

44.7 mmol, 1.8 equiv) was added and the solution was stirred 2 h. The solution was filtered 

through a 1 inch pad of silica gel with 50% Et2O in hexanes and concentrated. The product 

was purified by silica column chromatography (10% Et2O in hexanes) to afford a colorless 

oil (9.15 g, 24.6 mmol, 99% yield); 1H NMR (400 MHz, CDCl3) δ 6.87 (s, 1H), 3.87 (s, 

3H), 3.78 (s, 3H), 2.28 (d, J = 0.7 Hz, 3H), 0.38 (s, 9H); All characterization data match 

those reported. 

 

7,8-dimethoxy-1,6-dimethylisoquinolin-3-ol (893) 

Me
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Compound 893 was prepared according to literature procedure.14a  Cesium fluoride (204 

mg, 1.34 mmol, 2.5 equiv) was dissolved in acetonitrile (5.4 mL, 0.1 M) in a 20 mL 

microwave vial and water (9.7 μL, 0.537 mmol, 1.0 equiv) and methyl acetoacetate (58 μL, 

0.537 mmol, 1.0 equiv) were added. Aryne precursor 892 (250 mg, 0.671 mmol, 1.25 

equiv) was added neat via syringe, and the vial was placed in a preheated 80 °C oil bath. 

After 2 h, TLC revealed complete consumption of 892, so NH4OH (28–30%, 5.4 mL) was 

added in one portion. The vial was moved to a preheated 60 °C oil bath and stirred for 8 h. 

The solution was poured into brine inside a separatory funnel and the solution was 

extracted with EtOAc (2x 30 mL). The aqueous phase was brought to pH 7 by the addition 

of concentrated HCl and was extracted with EtOAc (2x 30 mL). The aqueous phase was 

discarded. The organic phase was then extracted with 2M HCl (5x 20 mL). The organic 

phase was checked by LCMS to confirm that all of product 893 had transferred to the 

aqueous phase and was subsequently discarded. The aqueous phase was then brought back 

to pH 7 by the addition of 100 mL 2M NaOH and was extracted with EtOAc (5x 20 mL). 

The combined organic phases were washed with brine, dried over Na2SO4 and 

concentrated, providing product 893 as a yellow solid (56.9 mg, 0.243 mmol, 45% yield); 

1H NMR (400 MHz, CDCl3) δ 6.92 (d, J = 0.7 Hz, 1H), 6.51 (s, 1H), 3.90 (s, 3H), 3.81 (s, 

3H), 3.03 (d, J = 0.7 Hz, 3H), 2.28 (d, J = 1.0 Hz, 3H); All characterization data match 

those reported. 

 

7,8-dimethoxy-1,6-dimethylisoquinolin-3-yl trifluoromethanesulfonate (887) 

N

Me
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Compound 887 was prepared according to literature procedure.14a Isoquinoline 893 (2.60 

g, 11.1 mmol, 1 equiv) was dissolved in CH2Cl2 (70 mL, 0.16 M) and pyridine (11.4 mL, 

140.6 mmol, 12.7 equiv) was added and the solution was cooled to 0 °C. 

Trifluoromethanesulfonic anhydride (Tf2O, 3.00 mL, 17.8 mmol, 1.6 equiv) was added 

dropwise, causing the yellow solution to turn dark red. After 30 min TLC (10% 

EtOAc/hex) revealed complete conversion, so the reaction was quenched by the addition 

of saturated aqueous NaHCO3 (70 mL). The solution was stirred vigorously until bubbling 

ceased, at which time the layers were separated. The organic phase was extracted with 

CH2Cl2 and the combined organic phases were dried over Na2SO4 and concentrated. The 

product was purified by silica column chromatography (10% Et2O in hexanes) to afford a 

yellow oil (3.82 g, 10.5 mmol, 94% yield); 1H NMR (400 MHz, CDCl3) δ 7.39 (d, J = 1.0 

Hz, 1H), 7.21 (s, 1H), 3.98 (s, 3H), 3.93 (s, 3H), 3.07 (d, J = 0.7 Hz, 3H), 2.44 (d, J = 1.0 

Hz, 3H); All characterization data match those reported. 

 

Ethyl 4-formyl-1H-pyrrole-2-carboxylate (895) 

Compound 895 was prepared according to literature procedure.15  To a stirred solution of 

pyrrole 894 (20.0 g, 100 mmol, 1.0 equiv) in dry CH2Cl2 and MeNO2 (600 mL, 1:1) was 

added powdered AlCl3 (39.2 g, 144.4  mmol, 2 equiv) in portions. After stirring for 5 min, 

dichloromethyl methyl ether (98.0 g, 300 mmol, 1.2 equiv) was added dropwise at –15 °C 

over 10 minutes.  The resulting mixture was stirred for 2 hours at –15 ºC.  Upon full 

consumption of starting material determined by LCMS analysis, the mixture was quenched 

N
H

CO2Et

894

dichloromethyl methyl ether
AlCl3 (2 equiv)

1:1 CH2Cl2:MeNO2, –15 °C N
H
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with H2O (30 mL) and extracted with EtOAc (2 x 30 mL).  The organic layer was washed 

with saturated aq. NaHCO3 (30 mL), brine (30 mL), dried over Na2SO4, and concentrated 

in vacuo. The residue was crystallized using 10% EtOAc in hexanes to afford pyrrole 895 

as a green solid (35.61 g, 114.36 mmol, 99% yield); 1H NMR (400 MHz, CDCl3) δ 9.86 (s, 

1H), 9.74 (br s, 1H), 7.57 (dd, J = 3.3, 1.5 Hz, 1H), 7.33–7.32 (m, 1H), 4.37 (q, J = 7.2 Hz, 

2H), 1.38 (t, J = 7.2 Hz, 3H); All characterization data match those reported. 

 

Ethyl 5-bromo-4-formyl-1H-pyrrole-2-carboxylate (896)   

A flame-dried round bottom flask was charged with pyrrole 895 (1.34 g, 8 mmol, 

1.0 equiv) in DCM (70 mL) and cooled to 0 °C.  A solution of Br2 (0.45 mL, 8.8 mmol, 

1.1 equiv) in 10 mL DCM was then added dropwise, and the solution was stirred overnight 

at room temperature.  After 18 hours, the reaction was quenched with saturated aqueous 

Na2S2O3 (35 mL) and extracted with DCM (3 x 30 mL). The combined organic layers were 

dried over Na2SO4, filtered, and concentrated. The crude reaction mixture was then purified 

by silica column chromatography (20 → 30% EtOAc in hexanes) to afford pyrrole 896 as 

a yellow solid (1.96 g, 5.9 mmol, 74% yield); 1H NMR (400 MHz, CDCl3) δ 9.80 (s, 1H), 

7.28 (d, J = 2.7 Hz, 1H), 4.37 (q, J = 7.1 Hz, 2H), 1.38 (t, J = 7.1 Hz, 3H); 13C NMR (100 

MHz, CDCl3) δ 184.8, 160.2, 125.8, 124.6, 114.9, 112.9, 61.7, 14.4; IR (Neat Film, NaCl) 

3210, 2987, 1698, 1674, 1653, 1554, 1462, 1446, 1377, 1250, 1208, 1012, 847, 821, 773 

cm–1; HRMS (ESI+) m/z calc’d for C8H9BrNO3 [M+H]+: 245.9760, found 245.9759. 
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Ethyl 5-bromo-4-formyl-1-methyl-1H-pyrrole-2-carboxylate (897)  

 A flame-dried round bottom flask was charged with pyrrole 896 (500 mg, 2 mmol, 

1 equiv) and K2CO3 (1.4 g, 10.2 mmol, 5 equiv) in degassed acetone (20 mL, 0.1 M). 

Dimethyl sulfate (0.25 mL, 2.64 mmol, 1.3 equiv) was then added dropwise, and the 

reaction was stirred for 1 hour at room temperature.  After full consumption of starting 

material by TLC analysis, the reaction was quenched with saturated aqueous NH4Cl (50 

mL), and extracted with EtOAc (3 x 20 mL). The combined organic layers were dried over 

Na2SO4, filtered, and concentrated. The crude reaction mixture was then purified by silica 

column chromatography (10 → 20% EtOAc in hexanes) to afford pyrrole 897 as a pink-

red solid (468 mg, 1.8 mmol, 90% yield); 1H NMR (400 MHz, CDCl3) δ 9.81 (s, 1H), 7.42 

(s, 1H), 4.30 (q, J = 7.1 Hz, 2H), 4.00 (s, 3H), 1.35 (t, J = 7.1 Hz, 3H); 13C NMR (100 

MHz, CDCl3) δ 185.0, 160.4, 126.1, 122.9, 119.4, 117.3, 61.0, 34.9, 14.4; IR (Neat Film, 

NaCl) 2978, 1713, 1668, 1651, 1469, 1442, 1369, 1352, 1293, 1281, 1242, 1203, 1081, 

1036, 764, 739, 667 cm–1; HRMS (ESI+) m/z calc’d for C9H11BrNO3 [M+H]+: 259.9917, 

found 259.9921. 

 

Ethyl 5-bromo-4-(hydroxymethyl)-1-methyl-1H-pyrrole-2-carboxylate (898)  
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A flame-dried round bottom flask was charged with pyrrole 897 (436 mg, 1.7 

mmol, 1 equiv) in 4:1 DCM:MeOH (13.6 mL:3.4 mL, 0.1 M total) and cooled to 0 °C. 

NaBH4 (190 mg, 5 mmol, 3 equiv) was then added to the flask, and the reaction was stirred 

for 30 minutes. After full consumption of starting material by TLC analysis, the reaction 

was quenched by adding citric acid monohydrate (714 mg, 2 equiv) and stirring rapidly for 

10 minutes. The solution was then basified by the slow addition of saturated aqueous 

NaHCO3 (20 mL) and extracted with DCM (3 x 20 mL). The combined organic layers were 

dried over Na2SO4, filtered, and concentrated. The crude reaction mixture was then purified 

by silica column chromatography (10 → 20% EtOAc in hexanes) to afford pyrrole 898 as 

a yellow oil (440 mg, 1.68 mmol, 99% yield); 1H NMR (400 MHz, CDCl3) δ 7.04 (s, 1H), 

4.50 (s, 2H), 4.27 (q, J = 7.1 Hz, 2H), 3.93 (s, 3H), 1.33 (t, J = 7.1 Hz, 3H); 13C NMR (100 

MHz, CDCl3) δ 160.6, 123.9, 122.9, 117.5, 112.0, 60.3, 58.1, 34.8, 14.5;  IR (Neat Film, 

NaCl) 3414, 2978, 2945, 2877, 1702, 1553, 1507, 1463, 1437, 1405, 1244, 1156, 1105, 

1081, 1057, 999, 833, 759, 667 cm–1; HRMS (ESI+) m/z calc’d for C9H13BrNO3 [M+H]+: 

262.0073, found 262.0080.  

 

Ethyl 5-(7,8-dimethoxy-1,6-dimethylisoquinolin-3-yl)-4-(ethoxymethyl)-1-methyl-
1H-pyrrole-2-carboxylate (899)  

This procedure was adapted from the method of Molander et al.17 In a flame-

dried µW vial was charged with XPhos Pd G2 catalyst (9.44 mg, 0.012  mmol, 5 mol %), 

XPhos ligand (11.4 g, 0.024 mmol, 10 mol %), bis-boronic acid (65 mg, 0.72 mmol, 3 
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equiv), KOAc (71 mg, 0.72 mmol, 3 equiv), and pyrrole 898 (63 mg, 0.24 mmol, 1 equiv). 

The vial was then sealed, and vacuum purged/refilled with N2 four times. Then, 0.14 M 

degassed EtOH (1.7 mL) was added, and heated to 80 °C for 1 to 2 hours until no starting 

material was observed. Upon full conversion of starting material, the vial was cooled to 

room temperature, and 1.8 M of degassed aq. K2CO3 solution (0.4 mL) was added to the 

vial. After stirring for 5 minutes, triflate 887 (105 mg, 0.29 mmol, 1.2 equiv) in 0.4 mL 

THF was added to the vial, then heated to 80 °C over 18 hours. The reaction vial was then 

cooled to room temperature, filtered over celite, and washed with EtOAc (2 x 1 mL). The 

crude reaction mixture was concentrated and directly purified by silica column 

chromatography (30% EtOAc in hexanes + 1% NEt3) to yield isoquinoline 899 as a brown 

oil (19 mg, 0.046 mmol, 19% yield); 1H NMR (400 MHz, CDCl3) δ 7.66 (s, 1H), 7.37 (s, 

1H), 7.10 (s, 1H), 4.34–4.24 (m, 4H), 4.01 (s, 3H), 4.00 (s, 3H), 3.95 (s, 3H), 3.52 (q, J = 

7.0 Hz, 2H), 3.13 (s, 3H), 2.46 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H); 13C NMR (100 MHz, 

CDCl3) δ 161.7, 157.0, 151.0, 149.8, 141.5, 138.9, 137.7, 134.8, 124.1, 123.2, 121.6, 120.7, 

120.1, 118.8, 65.4, 65.3, 60.9, 60.3, 59.9, 34.7, 27.3, 17.1, 15.5, 14.6; IR (Neat Film, NaCl) 

2971, 2930, 2858, 2367, 1701, 1591, 1557, 1492, 1462, 1438, 1390, 1330, 1239, 1207, 

1086, 1005, 907, 831, 765 cm–1; HRMS (ESI+) m/z calc’d for C24H31N2O5 [M+H]+: 

427.2227, found 427.2240. 

 

1-(tert-butyl) 2-ethyl 4-formyl-1H-pyrrole-1,2-dicarboxylate (900)  
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A flame-dried round bottom flask was charged with pyrrole 895 (2 g, 12 mmol, 1 

equiv), DMAP (146 mg, 1.2 mmol, 10 mol %), and a magnetic stirring bar in DCM (5 mL, 

2.4 M). A solution of Boc2O (2.9 g, 13.2 mmol, 1.1 equiv) in DCM (6 mL, 2 M) was then 

added dropwise, and stirred overnight at room temperature.  Upon full consumption of the 

starting material, the crude reaction was quenched with 1 M HCl (10 mL) and extracted 

with Et2O (3 x 10 mL). The combined organic layers were dried over MgSO4, filtered, and 

concentrated. The crude reaction mixture was then purified by silica column 

chromatography (10 → 30% EtOAc in hexanes) to yield pyrrole 900 as a clear oil (3.1 g, 

11.8 mmol, 98% yield); 1H NMR (400 MHz, CDCl3) δ 9.83 (s, 1H), 7.88 (d, J = 1.8 Hz, 

1H), 7.18 (d, J = 1.8 Hz, 1H), 4.33 (q, J = 7.2 Hz, 2H), 1.61 (s, 9H), 1.36 (t,  J = 7.2 Hz, 

3H); 13C NMR (100 MHz, CDCl3) δ 185.1, 160.3, 147.5, 132.3, 127.7, 126.3, 117.0, 86.8, 

61.6, 27.7, 14.3; IR (Neat Film, NaCl) 3127, 2981, 2812, 1766, 1731, 1687, 1560, 1417, 

1371, 1340, 1281, 1225, 1152, 1112, 1074, 1012, 832, 774, 667 cm–1; HRMS (ESI+) m/z 

calc’d for N–H 900 C8H9NO3 [M+H]+: 168.0655, found 168.0656. 

 

1-(tert-butyl) 2-ethyl 4-(hydroxymethyl)-1H-pyrrole-1,2-dicarboxylate (901)  

A flame-dried round bottom flask was charged with pyrrole 900 (500 mg, 2 mmol, 

1 equiv) in 4:1 DCM:MeOH (19 mL, 0.1 M total) and cooled to 0 °C. NaBH4 (213 mg, 5.6 

mmol, 3 equiv) was then added in portions, and stirred for 30 minutes at room temperature.  

After full consumption of starting material by TLC analysis, the reaction was quenched by 

adding citric acid monohydrate (840 mg, 2 equiv) and stirred rapidly for 10 minutes. The 
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solution was then basified by the slow addition of saturated aqueous NaHCO3 (20 mL) and 

extracted with DCM (3 x 20 mL). The combined organic layers were dried over Na2SO4, 

filtered, and concentrated. The crude reaction mixture was then purified by silica column 

chromatography (20 → 30% EtOAc in hexanes) to afford pyrrole 901 as a clear oil (533 

mg, 1.98 mmol, 99% yield); 1H NMR (400 MHz, CDCl3) δ 7.29 (d, J = 1.8 Hz, 1H), 6.84 

(d, J = 1.8 Hz, 1H), 4.52 (d, J = 5.4 Hz, 2H), 4.30 (q, J = 7.1 Hz, 2H), 1.57 (s, 9H), 1.34 (t, 

J = 7.1 H, 3H); 13C NMR (100 MHz, CDCl3) δ 160.9, 148.3, 126.3, 124.2, 120.0, 119.9, 

85.0, 61.1, 58.1, 27.8, 14.4; IR (Neat Film, NaCl) 3437, 2979, 2938, 2876, 1750, 1720, 

1475, 1410, 1370, 1329, 1276, 1232, 1155, 1072, 1019, 980, 848, 831, 775 cm–1; HRMS 

(ESI+) m/z calc’d for N–H 901 C8H12NO3 [M+H]+: 170.0812, found 170.0808. 

 

1-(tert-butyl) 2-ethyl 4-(hydroxymethyl)-5-(tributylstannyl)-1H-pyrrole-1,2-

dicarboxylate (902)  

A flame-dried round bottom flask was charged with 2,2,6,6-tetramethylpiperidine 

(TMP) (0.5 mL, 2.93 mmol, 2.05 equiv) in THF (5.4 mL, 0.26 M) and cooled to –78 °C. 

n-BuLi (2.5 M in hexanes, 1.2 mL, 2.93 mmol, 2.05 equiv) was then added dropwise, and 

stirred for 10 minutes at –78 °C, then 30 minutes at 0 °C.  The solution was cooled again 

to –78 °C, and pyrrole 901 (385 mg, 1.43 mmol, 1 equiv) in THF (1.8 mL, 0.79 M) was 

added dropwise, and stirred for 20 minutes at –78 °C. Then, Bu3SnCl (0.78 mL, 2.86 mmol, 

2 equiv) was added dropwise, and stirred for 4 hours as the cooling bath slowly warms to 

room temperature. After full consumption of starting material by TLC analysis, the reaction 

then Bu3SnClN CO2Et
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was quenched with H2O (10 mL), extracted with Et2O (3 x 10 mL). The combined organic 

phases were dried over Na2SO4, filtered, and concentrated. The crude reaction mixture was 

then purified by silica column chromatography (0 → 5% → 10% EtOAc in hexanes) to 

afford pyrrole 902 as a clear oil (726 mg, 1.3 mmol, 91% yield); 1H NMR (400 MHz, 

CDCl3) δ 6.92 (s, 1H), 4.46 (d, J = 5.6 Hz, 2H), 4.28 (q, J = 7.1 Hz, 2H), 1.55 (s, 9H), 

1.51–1.42 (m, 6H), 1.37–1.26 (m, 7H), 1.21 (t, J = 7.1 H, 3H), 1.13–1.05 (m, 5H), 0.88 (t, 

J = 7.3 Hz, 9H); 13C NMR (100 MHz, CDCl3) δ 161.3, 151.1, 141.4, 135.9, 129.2, 121.5, 

84.9, 66.0, 60.9, 59.1, 29.3, 27.6, 27.4, 13.8, 12.3; IR (Neat Film, NaCl) 3448, 2955, 2927, 

2870, 1727, 1550, 1477, 1463, 1369, 1321, 1236, 1206, 1158, 1073, 1043, 995, 847, 779, 

667 cm–1; HRMS (ESI +) m/z calc’d for C25H46NO5Sn [M+H]+: 552.2419, found 552.2412. 

 

1-(tert-butyl) 2-ethyl 5-(7,8-dimethoxy-1,6-dimethylisoquinolin-3-yl)-4-

(hydroxymethyl)-1H-pyrrole-1,2-dicarboxylate (903)  

A flame-dried round bottom flask was charged with isoquinoline 887 (261 mg, 0.72 

mmol, 1 equiv) and a magnetic stirring bar, and brought in a N2-filled glovebox. A solution 

of organostannane 902 (399 mg, 0.72 mmol, 1 equiv) in NMP (11.9 mL, 0.06 M) was then 

added to the flask, and stirred in the glovebox for 10 minutes at ambient temperature. Then, 

Pd(PPh3)4 (83 mg, 0.072 mmol, 10 mol %) was added, followed by addition of CuTC (150 

mg, 0.79 mmol, 1.1 equiv). The flask was brought out of the glovebox and stirred for 2 

hours at room temperature. Upon full consumption of starting material, the reaction was 

quenched with saturated aq. NaHCO3 (10 mL) and extracted with EtOAc (3 x 10 mL). The   

+
Pd(PPh3)4 (10 mol %)
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NMP (0.06 M), 25 °C
N

Me

MeO
Me

OTf

OMe

887

N CO2Et

HO

Bu3Sn

Boc

902

N

Me

MeO
MeOMe
903

N
Boc

CO2Et

HO



Chapter 5 – Progress Toward the Total Synthesis of (+)-Cyanocycline A 
 

 

 

685 

combined organic phases were washed again with 5% aq. LiCl solution (2 x 10 mL), brine 

(10 mL), and dried over Na2SO4. The crude reaction was mixture was filtered, 

concentrated, and purified by silica column chromatography (20 → 40% EtOAc in 

hexanes) to yield isoquinoline 903 as a yellow solid (8.06 g, 30.6 mmol, 94% yield); 1H 

NMR (400 MHz, CDCl3) δ 7.59 (s, 1H), 7.33 (s, 1H), 6.96 (s, 1H),  4.52 (s, 1H),  4.43 (s, 

2H), 4.33 (q, J = 7.1 Hz, 2H), 3.99 (s, 3H), 3.94 (s, 3H), 3.11 (s, 3H), 2.44 (s, 3H), 1.49 (s, 

9H), 1.36 (t, J = 7.1 H, 3H); 13C NMR (100 MHz, CDCl3) δ 160.4, 157.2, 151.2, 150.0, 

149.9, 140.6, 138.5, 136.1, 134.5, 126.4, 124.2, 123.9, 121.8, 119.9, 118.4, 85.8, 61.1, 60.9, 

60.8, 60.3, 57.5, 27.5, 17.1, 14.6; IR (Neat Film, NaCl) 3391, 2978, 2934, 1763, 1717, 

1596, 1558, 1492, 1448, 1393, 1370, 1331, 1282, 1220, 1154, 1078, 1005, 914, 845 cm–1; 

HRMS (ESI+) m/z calc’d for C26H33N2O7 [M+H]+: 485.2282, found 485.2310. 

 

1-(tert-butyl) 2-ethyl 4-(hydroxymethyl)-5-(1-(hydroxymethyl)-7,8-dimethoxy-6-

methylisoquinolin-3-yl)-1H-pyrrole-1,2-dicarboxylate (904)  

In a flame-dried µW vial was charged with SeO2 (105 mg, 0.95  mmol, 2 equiv) 

and a magnetic stir bar. The vial was vacuum purged/refilled with N2 three times. A 

solution of isoquinoline 903 (229 mg, 0.47 mmol, 1 equiv) in 1,4-dioxane (9.5 mL, 0.05 

M) was then added to the vial, and heated to reflux for 2 hours. After full consumption of 

starting material observed by LCMS analysis, the vial was cooled to room temperature and 

the crude reaction mixture was filtered through celite, rinsing with EtOAc. The crude 

reaction was concentrated, then dissolved in 4:1 DCM:MeOH (4.7 mL, 0.1 M total). 

1) SeO2
    1,4-dioxane, 110 °C

2) NaBH4
    4:1 CH2Cl2:MeOH
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NaBH4 (18 mg, 0.47 mmol, 1 equiv) was then added, and the reaction was stirred for 30 

minutes at room temperature. After full conversion of the aldehyde intermediate observed 

by LCMS analysis, the reaction was quenched with citric acid monohydrate (199 mg, 0.95 

mmol, 2 equiv) and water, and the solution was stirred rapidly for 10 minutes. The solution 

was then basified by the addition of saturated aq. NaHCO3 (10 mL), the layers were 

separated and the aqueous phase was extracted with DCM (3 x 10 mL). The combined 

organic phases were dried over Na2SO4, filtered, and concentrated. The crude reaction 

mixture was purified by silica column chromatography (40 → 50% EtOAc in hexanes) to 

yield isoquinoline 904 as a white solid (8.06 g, 30.6 mmol, 61% yield); 1H NMR (400 

MHz, CDCl3) δ 7.72 (s, 1H), 7.45 (s, 1H), 7.03 (s, 1H), 5.29 (s, 2H), 4.52 (s, 2H),  4.34 (q, 

J = 7.1 Hz, 2H), 4.03 (s, 3H), 3.93 (s, 3H), 2.46 (s, 3H), 1.43 (s, 9H), 1.37 (t, J = 7.1 H, 

3H); 13C NMR (100 MHz, CDCl3) δ 160.3, 157.5, 151.0, 149.5, 149.3, 139.6, 138.8, 135.4, 

134.5, 124.5, 124.3, 124.2, 119.8, 119.8, 118.1, 85.8, 64.8, 60.9, 60.9, 60.3, 57.5, 27.4, 

17.1, 14.6;  IR (Neat Film, NaCl) 3409, 2979, 2937, 2365, 1766, 1713, 1560, 1494, 1447, 

1381, 1329, 1217, 1153, 1076, 1006, 911, 833, 734, 668 cm–1; HRMS (ESI+) m/z calc’d 

for C26H33N2O8 [M+H]+: 501.2231, found 501.2242. 

 

1-(tert-butyl) 2-ethyl 4-methyl 1H-pyrrole-1,2,4-tricarboxylate (907)  

A flame-dried round bottom flask was charged with pyrrole 900 (1 g, 3.8 mmol, 1 

equiv) in 1:1 1,4-dioxane:H2O (100 mL, 0.04 M total). The flask was then cooled to 0 °C, 

and sulfamic acid (2.18 g, 22 mmol, 6 equiv) was added in portions. A solution of NaClO2 

N CO2Et

O

900
Boc

1) NaClO2, KH2PO4
    sulfamic acid
    1,4-dioxane:H2O

N

MeO2C

CO2Et
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2) (MeO)2SO2, K2CO3
    CH3COCH3
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(440 mg, 4.9 mmol, 1.3 equiv) and KH2PO4 (6.1 g, 44.9 mmol, 12 equiv) in 40 mL of H2O 

was then added dropwise via an addition funnel over 30 minutes. The flask was then 

removed from the ice bath and stirred overnight at room temperature. After full conversion 

of the starting material was observed, the reaction was extracted with EtOAc (3 x 20 mL). 

The organic phases were washed with brine (20 mL), dried over Na2SO4, filtered, and 

concentrated.  The crude reaction mixture was then dissolved in sparged acetone (38 mL, 

0.1 M). Solid K2CO3 (2.6 g, 18.7 mmol, 5 equiv) was added, then dimethyl sulfate (0.46 

mL, 4.9 mmol, 1.3 equiv) was added dropwise. The reaction was stirred at room 

temperature until full consumption of the starting material was observed. The reaction was 

then quenched with saturated aq. NH4Cl (20 mL), extracted with EtOAc (3 x 10 mL), and 

the combined organic phases were dried over Na2SO4. The crude reaction mixture was then 

filtered, concentrated, and purified by silica column chromatography (5 → 10% EtOAc in 

hexanes) to yield pyrrole 907 as a clear oil (1.1 g, 3.38 mmol, 89% yield); 1H NMR (400 

MHz, CDCl3) δ 7.85 (d, J = 1.8 Hz, 1H), 7.17 (d, J = 1.8 Hz, 1H), 4.31 (q, J = 7.1 Hz, 2H), 

3.83 (s, 3H), 1.59 (s, 9H), 1.35 (t,  J = 7.1 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 163.8, 

160.3, 147.6, 130.3, 126.4, 119.8, 117.4, 86.3, 61.4, 51.8, 27.7, 14.3;  IR (Neat Film, NaCl) 

3141, 2982, 2902, 2365, 1762, 1724, 1570, 1479, 1396, 1371, 1283, 1237, 1152, 1073, 

997, 847, 776, 763, 567 cm–1; HRMS (ESI+) m/z calc’d for N–H 907 C9H12NO4 [M+H]+: 

198.0761, found 198.0754. 
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1-(tert-butyl) 2-ethyl 4-methyl 5-(tributylstannyl)-1H-pyrrole-1,2,4-tricarboxylate 

(908)  

A flame-dried round bottom flask was charged with 2,2,6,6-tetramethylpiperidine 

(TMP) (0.19 mL, 1.1 mmol, 1.1 equiv) in THF (2.5 mL, 0.4 M) and cooled to –78 °C. n-

BuLi (2.5 M in hexanes, 0.48 mL, 1.2 mmol, 1.2 equiv) was then added dropwise, and 

stirred for 10 minutes at –78 °C, then 30 minutes at 0 °C.  The solution was cooled again 

to –78 °C, and pyrrole 907 (297 mg, 1 mmol, 1 equiv) in THF (2.5 mL, 0.4 M) was added 

dropwise, and stirred for 20 minutes at –78 °C. Then, Bu3SnCl (0.3 mL, 1.1 mmol, 1.1 

equiv) was added dropwise, and stirred for 4 hours as the cooling bath slowly warms to 

room temperature. After full consumption of starting material by TLC analysis, the reaction 

was quenched with H2O (10 mL), extracted with Et2O (3 x 10 mL). The combined organic 

phases were dried over Na2SO4, filtered, and concentrated. The crude reaction mixture was 

then purified by silica column chromatography (0 → 2.5% → 5% EtOAc in hexanes) to 

afford pyrrole 908 as a clear oil (527 mg, 0.9 mmol, 90% yield); 1H NMR (400 MHz, 

CDCl3) δ 7.22 (s, 1H), 4.29 (q, J = 7.1 Hz, 2H), 3.80 (s, 3H), 3.83 (s, 3H), 1.58 (s, 9H), 

1.51–1.43 (m, 5H), 1.37–1.27 (m, 11H), 1.12–1.08 (m, 5H), 0.87 (t, J = 7.2 Hz, 9H); 13C 

NMR (100 MHz, CDCl3) δ 165.6, 160.6, 150.4, 150.0, 128.8, 126.6, 120.4, 85.9, 61.0, 

51.6, 29.1, 27.6, 27.4, 13.9, 12.6;  IR (Neat Film, NaCl) 2955, 2924, 2870, 1750, 1719, 

1534, 1461, 1424, 1370, 1308, 1253, 1224, 1203, 1156, 1076, 1020, 848, 780, 667 cm–1; 
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HRMS (MM:ESI-APCI+) m/z calc’d for C26H46NO6Sn [M+H]+: 580.2368, found 

580.2370. 

 

1-(tert-butyl) 2-ethyl 4-methyl 5-(7,8-dimethoxy-1,6-dimethylisoquinolin-3-yl)-1H-

pyrrole-1,2,4-tricarboxylate (909)  

A flame-dried round bottom flask was charged with isoquinoline 887 (198 mg, 0.54 

mmol, 1 equiv) and a magnetic stirring bar, and brought in a N2-filled glovebox. A solution 

of organostannane 908 (319 mg, 0.54 mmol, 1 equiv) in NMP (9.3 mL, 0.06 M) was then 

added to the flask, and stirred in the glovebox for 10 minutes at ambient temperature. Then, 

Pd(PPh3)4 (63 mg, 0.054 mmol, 10 mol %) was added, followed by addition of CuTC (114 

mg, 0.6 mmol, 1.1 equiv). The flask was brought out of the glovebox and stirred for 2 hours 

at room temperature. Upon full consumption of starting material, the reaction was 

quenched with saturated aq. NaHCO3 (10 mL) and extracted with EtOAc (3 x 10 mL). The   

combined organic phases were washed again with 5% aq. LiCl solution (2 x 10 mL), brine 

(10 mL), and dried over Na2SO4. The crude reaction was mixture was filtered, 

concentrated, and purified by silica column chromatography (10 → 20% EtOAc in 

hexanes) to yield isoquinoline 909 as a yellow solid (265 mg, 0.52 mmol, 96% yield); 1H 

NMR (400 MHz, CDCl3) δ 7.80 (s, 1H), 7.43 (s, 1H), 7.33 (s, 1H),  4.34 (q, J = 7.1 Hz, 

2H), 3.98 (s, 3H), 3.94 (s, 3H), 3.70 (s, 3H), 3.07 (s, 3H), 2.43 (s, 3H), 1.40 (s, 9H), 1.37 

(t, J = 7.1 H, 3H); 13C NMR (100 MHz, CDCl3) δ 163.9, 160.0, 156.3, 151.3, 149.7, 147.5, 

148.3, 140.0, 137.6, 134.2, 124.4, 124.3, 122.2, 121.7, 118.9, 85.8, 61.1, 60.9, 60.3, 51.5, 

N

MeO2C

CO2Et
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Boc
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27.4, 17.0, 14.5; IR (Neat Film, NaCl) 2978, 2903, 2365, 1775, 1715, 1555, 1506, 1442, 

1394, 1332, 1281, 1237, 1215, 1152, 1080, 1045, 1005, 834, 757 cm–1; HRMS (ESI+) m/z 

calc’d for C27H33N2O8 [M+H]+: 513.2231, found 513.2246. 

 

1-(tert-butyl) 2-ethyl 4-methyl 5-(1-(hydroxymethyl)-7,8-dimethoxy-6-

methylisoquinolin-3-yl)-1H-pyrrole-1,2,4-tricarboxylate (910)  

In a flame-dried µW vial was charged with SeO2 (115 mg, 1.03  mmol, 2 equiv) 

and a magnetic stir bar. The vial was vacuum purged/refilled with N2 three times. A 

solution of isoquinoline 909 (265 mg, 0.52 mmol, 1 equiv) in 1,4-dioxane (10 mL, 0.05 M) 

was then added to the vial, and heated to reflux for 2 hours. After full consumption of 

starting material observed by LCMS analysis, the vial was cooled to room temperature and 

the crude reaction mixture was filtered through celite, rinsing with EtOAc. The crude 

reaction was concentrated, then dissolved in 4:1 DCM:MeOH (5 mL, 0.1 M total). NaBH4 

(20 mg, 0.52 mmol, 1 equiv) was then added, and the reaction was stirred for 30 minutes 

at room temperature. After full conversion of the aldehyde intermediate observed by LCMS 

analysis, the reaction was quenched with citric acid monohydrate (218 mg, 1.04 mmol, 2 

equiv) and water, and the solution was stirred rapidly for 10 minutes. The solution was then 

basified by the addition of saturated aq. NaHCO3 (10 mL), the layers were separated and 

the aqueous phase was extracted with DCM (3 x 10 mL). The combined organic phases 

were dried over Na2SO4, filtered, and concentrated. The crude reaction mixture was 
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purified by silica column chromatography (20 → 30% EtOAc in hexanes) to yield 

isoquinoline 910 as a white solid (207 mg, 0.39 mmol, 75% yield); 1H NMR (400 MHz, 

CDCl3) δ 7.91 (s, 1H), 7.49 (s, 1H), 7.36 (s, 1H), 5.28 (d, J = 4.3 Hz, 2H), 4.35 (q, J = 7.1 

Hz, 2H), 3.93 (s, 3H), 3.72 (s, 3H), 2.45 (s, 3H), 1.38–1.36 (m, 12H); 13C NMR (100 MHz, 

CDCl3) δ 163.9, 160.0, 156.7, 151.2, 149.3, 148.5, 138.6, 138.4, 134.1, 124.5, 124.4, 122.7, 

120.2, 118.7, 114.8, 86.6, 64.3, 61.2, 60.9, 51.6, 27.2, 17.0, 14.5; IR (Neat Film, NaCl) 

3413, 2980, 2939, 2836, 2365, 1774, 1716, 1558, 1443, 1382, 1330, 1237, 1215, 1152, 

1077, 1005, 905, 736, 668 cm–1; HRMS (ESI+) m/z calc’d for C27H33N2O9 [M+H]+: 

529.2181, found 529.2199. 

 

1-(tert-butyl) 2-ethyl 4-methyl 5-(1-(hydroxymethyl)-7,8-dimethoxy-6-

methylisoquinolin-3-yl)-1H-pyrrole-1,2,4-tricarboxylate (911)  

To an oven-dried 1-dram vial equipped with a stir bar and isoquinoline 910 (5 mg, 

0.01 mmol, 1 equiv) was capped with a PTFE-lined septum and pierced with one 21 gauge 

green needle. The vial was then placed in a Parr bomb and brought into the glovebox, with 

the exception of the pressure gauge. A layer of plastic wrap and a rubber band were also 

brought in to seal the top of the bomb. In a nitrogen-filled glovebox, a solution of the 

BTFM-xyliphos ligand (SL-J008-2) (1.9 mg, 0.0021 mmol, 21 mol %) and [Ir(cod)Cl]2 

(0.67 mg, 0.001 mmol, 10 mol %) in THF (0.45 mL per reaction) was prepared and allowed 

to stand for 10 minutes. Meanwhile, a solution of TBAI (2.2 mg, 0.006 mmol, 0.6 equiv) 
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in AcOH (0.05 mL per reaction) was prepared in a 1-dram vial, and 0.05 mL of the solution 

was added to each reaction vial via a syringe. Afterwards, 0.45 mL of the homogeneous 

iridium catalyst solution was added to each reaction vial via a syringe. After re-capping the 

vials with caps equipped with needles, the reactions were placed in the bomb and the top 

was covered tightly with plastic wrap secured by a rubber band. The bomb was then 

removed from the glovebox, and the pressure gauge was quickly screwed in place and 

tightened. The bomb was charged to 5-10 bar H2 and slowly released. This process was 

repeated two more times, before charging the bomb to 60 bar H2. The bomb was then placed 

in an oil bath and heated to 80 °C for 42 hours. Then, the bomb was removed from the stir 

plate and the hydrogen pressure was vented. The reaction vials were removed from the 

bomb and each solution was basified by the addition of saturated aqueous K2CO3 (1 mL). 

The layers were separated, and the aqueous layer was extracted with EtOAc (3 x 1 mL). 

The combined organics layers were then dried over Na2SO4, and concentrated in vacuo. 

The crude reaction mixture was purified by silica column chromatography (50 → 75% 

EtOAc in hexanes + 1% NEt3) to yield isoquinoline 911 as a white solid (2 mg, 0.004 

mmol, 40% yield); 1H NMR (400 MHz, CDCl3) δ 7.26 (s, 1H), 6.48 (s, 1H), 4.83 (dd, J = 

11.2, 3.6 Hz, 1H), 4.06 (dd, J = 11.1, 3.4 Hz, 1H), 3.84–3.82 (m, 2H), 3.81 (s, 3H), 3.79 

(s, 3H), 3.65 (s, 3H), 3.24–3.18 (m, 1H), 2.70 (dd, J = 15.7, 11.2 Hz, 1H), 2.13 (s, 3H), 

1.40 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 163.9, 160.0, 156.7, 151.2, 149.3, 148.5, 

138.6, 138.4, 134.1, 124.5, 124.4, 122.7, 120.2, 118.7, 114.8, 86.6, 64.3, 61.2, 60.9, 51.6, 

27.2, 17.0, 14.5; IR (Neat Film, NaCl) 2979, 2877, 2835, 2364, 1697, 1682, 1674, 1582, 
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1362, 1293, 1202, 1136, 1084, 1025, 911, 832, 775, 737, 667 cm–1; HRMS (ESI+) m/z 

calc’d for N–H 911 C22H29N2O7 [M+H]+: 433.1969, found 433.1985. 

 

2-ethyl 4-methyl 5-(1-(((tert-butoxycarbonyl)oxy)methyl)-7,8-dimethoxy-6-

methylisoquinolin-3-yl)-1H-pyrrole-2,4-dicarboxylate (912)  

To an oven-dried 1-dram vial equipped with a stir bar and isoquinoline 910 (5 mg, 

0.01 mmol, 1 equiv) was capped with a PTFE-lined septum and pierced with one 21 gauge 

green needle. The vial was then placed in a Parr bomb and brought into the glovebox, with 

the exception of the pressure gauge. A layer of plastic wrap and a rubber band were also 

brought in to seal the top of the bomb. In a nitrogen-filled glovebox, a solution of the 

BTFM-xyliphos ligand (SL-J008-2) (1.9 mg, 0.0021 mmol, 21 mol %) and [Ir(cod)Cl]2 

(0.67 mg, 0.001 mmol, 10 mol %) in THF (0.45 mL per reaction) was prepared and allowed 

to stand for 10 minutes. Meanwhile, a solution of TBAI (2.2 mg, 0.006 mmol, 0.6 equiv) 

in AcOH (0.05 mL per reaction) was prepared in a 1-dram vial, and 0.05 mL of the solution 

was added to each reaction vial via a syringe. Afterwards, 0.45 mL of the homogeneous 

iridium catalyst solution was added to each reaction vial via a syringe. After re-capping the 

vials with caps equipped with needles, the reactions were placed in the bomb and the top 

was covered tightly with plastic wrap secured by a rubber band. The bomb was then 

removed from the glovebox, and the pressure gauge was quickly screwed in place and 

tightened. The bomb was charged to 5-10 bar H2 and slowly released. This process was 
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repeated two more times, before charging the bomb to 60 bar H2. The bomb was then placed 

in an oil bath and heated to 80 °C for 42 hours. Then, the bomb was removed from the stir 

plate and the hydrogen pressure was vented. The reaction vials were removed from the 

bomb and each solution was basified by the addition of saturated aqueous K2CO3 (1 mL). 

The layers were separated, and the aqueous layer was extracted with EtOAc (3 x 1 mL). 

The combined organics layers were then dried over Na2SO4, and concentrated in vacuo. 

The crude reaction mixture was purified by silica column chromatography (40% EtOAc in 

hexanes) to yield isoquinoline 912 as a white solid (2.1 mg, 0.004 mmol, 40% yield); (207 

mg, 0.39 mmol, 44% yield); 1H NMR (400 MHz, CDCl3) δ 10.69 (br s, 1H), 9.43 (s, 1H), 

7.46 (s, 1H), 7.16 (s, 1H), 5.70 (s, 2H), 4.38 (q, J = 7.1 Hz, 2H), 4.01 (s, 3H), 3.98 (s, 3H), 

3.91 (s, 3H), 2.35 (s, 3H), 1.52 (s, 9H), 1.41 (t, J = 7.1 Hz, 3H); 13C NMR (100 MHz, 

CDCl3) δ 165.0, 160.7, 159.2, 155.3, 153.6, 151.7, 138.4, 128.0, 126.4, 121.8, 120.1, 116.7, 

113.6, 108.6, 97.8, 82.9, 68.2, 60.9, 56.0, 51.7, 31.1, 27.9, 14.6, 9.9; IR (Neat Film, NaCl) 

2975, 2900, 2364, 1787, 1715, 1555, 1510, 1442, 1394, 1337, 1281, 1240, 1215, 1170, 

1080, 1058, 934, 830, 750 cm–1; HRMS (ESI+) m/z calc’d for C27H33N2O9 [M+H]+: 

529.2181, found 529.2199. 

 

2-ethyl 4-methyl 5-(1-(hydroxymethyl)-7,8-dimethoxy-6-methyl-1,2-

dihydroisoquinolin-3-yl)-1H-pyrrole-2,4-dicarboxylate (914)  
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To an oven-dried scintillation vial equipped with a stir bar and isoquinoline 910 (50 

mg, 0.1 mmol, 1 equiv) was charged with PtO2 (21 mg, 0.1 mmol, 1 equiv). The reaction 

mixture was dissolved in AcOH (0.95 mL, 0.1 M), and was capped with a PTFE-lined 

septum and pierced with two 21 gauge green needles. The reaction vial was then placed in 

the bomb reactor, and the pressure gauge was quickly screwed in place and tightened. The 

bomb was charged to 5-10 bar H2 and slowly released. This process was repeated two more 

times, before charging the bomb to 60 bar H2. The bomb was then placed in an oil bath and 

heated to 60 °C for 42 hours. Then, the bomb was removed from the stir plate and the 

hydrogen pressure was vented. The reaction vials were removed from the bomb and each 

solution was basified by the addition of saturated aqueous K2CO3 (1 mL). The layers were 

separated, and the aqueous layer was extracted with EtOAc (3 x 1 mL). The combined 

organics layers were then dried over Na2SO4, and concentrated in vacuo. The crude 

reaction mixture was purified by silica column chromatography (20 → 40% EtOAc in 

hexanes) to yield isoquinoline 914 as a white solid (34 mg, 0.08 mmol, 80% yield); 1H 

NMR (400 MHz, CDCl3) δ 9.70 (br s, 1H), 7.32 (s, 1H), 6.79 (s, 1H), 6.42 (s, 1H), 5.96 

(dd, J = 9.4, 3.8 Hz, 1H), 4.32 (q, J = 7.1 Hz, 2H), 3.93 (s, 3H), 3.82 (s, 3H), 3.81 (s, 3H), 

3.75–3.69 (m, 1H), 3.63–3.56 (m, 1H), 2.24 (s, 3H), 1.34 (t, J = 7.1 Hz, 3H); 13C NMR 

(100 MHz, CDCl3) δ 164.5, 160.7, 153.1, 151.6, 148.7, 132.1, 127.0, 124.0, 123.2, 121.5, 

118.0, 117.6, 113.9, 81.4, 62.1, 61.0, 61.0, 60.2, 51.8, 27.8, 16.0, 14.5; IR (Neat Film, 

NaCl) 3483, 3264, 2978, 2938, 2251, 1712, 1697, 1572, 1477, 1462, 1369, 1327, 1258, 

1200, 1117, 1076, 911, 766, 733 cm–1; HRMS (ESI+) m/z calc’d for C22H27N2O7 [M+H]+: 

431.1813, found 431.1829. 
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1-(tert-butyl) 2-ethyl 4-methyl 5-(1-(hydroxymethyl)-7,8-dimethoxy-6-methyl-1,2,3,4-

tetrahydroisoquinolin-3-yl)pyrrolidine-1,2,4-tricarboxylate (915)  

To an oven-dried scintillation vial equipped with a stir bar and isoquinoline 910 (50 

mg, 0.1 mmol, 1 equiv) was charged with PtO2 (21 mg, 0.1 mmol, 1 equiv). The reaction 

mixture was dissolved in CHCl3 (0.95 mL, 0.1 M), and was capped with a PTFE-lined 

septum and pierced with two 21 gauge green needles. The reaction vial was then placed in 

the bomb reactor, and the pressure gauge was quickly screwed in place and tightened. The 

bomb was charged to 5-10 bar H2 and slowly released. This process was repeated two more 

times, before charging the bomb to 60 bar H2, and stirred at room temperature for 42 hours. 

Then, the bomb was removed from the stir plate and the hydrogen pressure was vented. 

The reaction vials were removed from the bomb and each solution was basified by the 

addition of saturated aqueous K2CO3 (1 mL). The layers were separated, and the aqueous 

layer was extracted with EtOAc (3 x 1 mL). The combined organics layers were then dried 

over Na2SO4, and concentrated in vacuo. The crude reaction mixture was purified by silica 

column chromatography (1:1 DCM:EtOAc + 1% MeOH + 1% NEt3) to yield 

tetrahydroisoquinoline 915 as a colorless oil (24 mg, 0.04 mmol, 44% yield); Due to the 

inseparable nature of diastereomers and the poor diastereoselectivity of this reaction, the 

dr cannot be determined and only the major diastereomer is reported. 1H NMR (400 MHz, 

CDCl3) δ 6.73 (s, 1H), 5.14 (s, 1H), 5.03–5.00 (m, 1H), 4.57–4.52 (m, 1H), 4.34–4.25 (m, 
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2H), 4.20 (q, J = 7.1 Hz, 2H), 3.89 (s, 3H), 3.78 (s, 3H), 3.77 (s, 3H), 3.55–3.48 (m, 1H), 

3.25–3.14 (m, 1H), 3.06–2.99 (m, 1H), 2.68–2.58 (m, 2H), 2.51–2.36 (m, 2H), 2.23 (s, 3H), 

1.45 (s, 9H), 1.28 (t, J = 7.1 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 173.3, 150.4, 150.3, 

133.4, 131.8, 126.0, 125.7, 83.6, 81.4, 64.3, 62.1, 61.5, 60.4, 60.0, 59.2, 54.9, 53.1, 31.7, 

30.9, 28.6, 28.3, 28.1, 15.8, 14.2, 14.0; IR (Neat Film, NaCl) 3388, 2977, 2946, 2890, 2836, 

2521, 1783, 1738, 1695, 1461, 1392, 1371, 1198, 1177, 1163, 1082, 910, 821, 736 cm–1; 

HRMS (ESI+) m/z calc’d for C27H41N2O9 [M+H]+: 537.2807, found 537.2825. 

 

Tetracycle (916 + 917)  

In a flame-dried 1-dram vial was charged with tetrahydroisoquinoline 915 (4.6 mg, 

0.009 mmol, 1 equiv) in 2:1 THF:H2O (0.3 mL, 0.03 M total). LiOH (1 mg, 0.043 mmol, 

5 equiv) was then added to the vial, and heated to 50 °C for 1 hour. After full consumption 

of starting material observed by LC-MS analysis, the crude reaction mixture was directly 

purified using reverse-phase (C18) preparative HPLC (MeCN/0.1% TFA in water, 5.0 

mL/min, monitor wavelength = 230 nm, 20–75% MeCN over 8 minutes, hold at 80% for 

2 minutes. Product 916 and 917 has tR = 4.2 minutes). Yellow film, (1 mg, 0.002 mmol, 

23% yield); Due to the inseparable nature of both cyclized products 916 and 917, we are 

unable to assign each structure, respectively, by 1H NMR (see Figure A6.51). However, we 

are confident that the two isomers are indeed two different cyclized products, as we observe 
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trace formations of both cyclized products with either the appended methyl (i.e., 916) or 

ethyl ester (i.e., 917) during this reaction by LC-MS analysis. 

 

1-(tert-butyl) 2-methyl (S)-5-oxopyrrolidine-1,2-dicarboxylate (921)  

A flame-dried round bottom flask was charged with (S)-pyroglutamic acid 922 (1 

g, 7.7 mmol, 1 equiv) in MeOH (30 mL, 0.26 M) and cooled to 0 °C. Thionyl chloride 

(0.06 mL, 0.8 mmol, 0.1 equiv) was then added dropwise, and the mixture was allowed to 

warm up to room temperature and stirred for 24 hours. Upon full consumption of starting 

material, solid K2CO3 (790 mg, 9.2 mmol, 1.2 equiv) was added to the reaction mixture, 

and the resulting solution was filtered over celite. The crude reaction was then concentrated 

and carried forward to the next step. The crude reaction mixture was dissolved in DCM 

(7.7 mL, 1 M), and charged with DMAP (94 mg, 0.77 mmol, 0.1 equiv) and NEt3 (1 mL, 

7.7 mmol, 1 equiv). Then, a solution of Boc2O (3.4 g, 15.4 mmol, 2 equiv) in DCM (2.7 

mL, 2.9 M) was added dropwise, and the resulting reaction mixture was stirred for 18 hours 

at room temperature. Upon full consumption of starting material, the reaction was 

quenched with 1 N HCl (10 mL) and extracted with DCM (3 x 10 mL). The combined 

organic phases were washed with brine (10 mL), dried over Na2SO4, and concentrated. The 

crude reaction mixture was purified by silica column chromatography (40 → 50% EtOAc 

in hexanes) to yield lactam 923 as a clear oil (1.4 g, 5.9 mmol, 76% yield); 1H NMR (400 

MHz, CDCl3) δ 4.20 (dd, J = 8.2, 4.3 Hz, 1H), 3.70 (s, 3H), 3.60–3.30 (m, 2H), 2.30–1.75 

(m, 2H), 1.40 (s, 9H); All characterization data match those reported.33 
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1-(tert-butyl) 2,4-dimethyl (2S)-5-oxopyrrolidine-1,2,4-tricarboxylate (921)  

A flame-dried round bottom flask was charged with lactam 923 (535 mg, 2.2 mmol, 

1 equiv) in THF (13 mL, 0.17 M) and cooled to –78 °C. A solution of LiHMDS (1 M in 

THF, 4.4 mL, 4.4 mmol, 2 equiv) was then added dropwise, and the mixture was stirred 

for 30 minutes at –78 °C. Mander’s reagent (0.21 mL, 2.64 mmol, 1.2 equiv) was then 

added dropwise, and the resulting solution was stirred for 1 hour. Upon full consumption 

of starting material, the reaction was quenched with saturated aq. NH4Cl (10 mL) at –78 

°C, and the resulting solution was warmed to room temperature. The reaction mixture was 

extracted with EtOAc (3 x 10 mL), dried over Na2SO4, and concentrated. The crude 

reaction mixture was purified by silica column chromatography (20 → 50% EtOAc in 

hexanes) to yield lactam 924 as a clear oil (556 mg, 1.85 mmol, 84% yield) (dr = 1.5:1); 

[α]D25 –12.6 (c 0.99, CHCl3); 1H NMR (400 MHz, CDCl3) δ 4.67 (dd, J = 9.5, 2.6 Hz, 1H), 

3.78 (s, 3H), 3.77 (s, 3H), 3.67 (dd, J = 10.2, 9.0 Hz, 1H), 2.72 (ddd, J = 13.5, 10.2, 9.5 

Hz, 1H), 2.57–2.51 (m, 1H), 1.48 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 171.5, 168.6, 

167.9, 149.1, 84.4, 57.2, 53.2, 52.9, 48.5, 27.9, 25.4; IR (Neat Film, NaCl) 3470, 2978, 

2955, 2345, 1795, 1741, 1652, 1458, 1437, 1394, 1370, 1312, 1293, 1265, 1253, 1024, 

903, 771, 736 cm–1; HRMS (MM:ESI+) m/z calc’d for N–H-924 C8H11NO5 [M+H]+: 

202.0710, found 202.0716. 
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1-(tert-butyl) 2,4-dimethyl (S)-5-(((trifluoromethyl)sulfonyl)oxy)-2,3-dihydro-1H-

pyrrole-1,2,4-tricarboxylate (921)  

A flame-dried round bottom flask was charged with 2,6-di-tert-butyl-4-

methylpyridine (43 mg, 0.21 mmol, 2.1 equiv), and the flask was vacuum purged/refilled 

with N2 three times. A solution of lactam 924 (30 mg, 0.1 mmol, 1 equiv) in 1,2-DCE (0.5 

mL, 0.2 M) was then added to the reaction mixture, stirred for 10 minutes, and cooled to 0 

°C. Freshly distilled Tf2O (0.02 mL, 0.12 mmol, 1.2 equiv) was added dropwise at 0 °C, 

then the ice bath was removed and allowed to warm to room temperature over 3 hours. 

Upon full consumption of starting material, the reaction flask was cooled to 0 °C, and 

quenched with saturated aq. NaHCO3 (2 mL), and the resulting solution was warmed to 

room temperature. The reaction mixture was extracted with DCM (3 x 1 mL), dried over 

Na2SO4, and concentrated. The crude reaction mixture was purified by silica column 

chromatography (15 → 35% EtOAc in hexanes) to yield dihydropyrrole 921 as a colorless 

oil (22 mg, 0.05 mmol, 51% yield); [α]D25 –58.3 (c 1.07, CHCl3); 1H NMR (400 MHz, 

CDCl3) δ 4.73 (dd, J = 12.1, 4.1 Hz, 1H), 3.78 (s, 3H), 3.75 (s, 3H), 3.19 (dd, J = 16.4, 12.1 

Hz, 1H), 2.84 (dd, J = 16.4, 4.0 Hz, 1H), 1.47 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 

170.5, 162.8, 149.3, 145.5, 118.5 (q, J = 321.1 Hz), 99.6, 84.6, 57.8, 52.9, 51.9, 29.1, 28.0; 

19F NMR (282 MHz, CDCl3) δ –73.4; IR (Neat Film, NaCl) 2981, 2957, 2356, 2341, 1747, 

1714, 1658, 1651, 1439, 1395, 1372, 1269, 1251, 1228, 1177, 1134, 907, 828, 767 cm–1; 

N

MeO2C

CO2MeTfO

Boc
921

N CO2MeO

924
Boc

MeO2C
2,6-di-tert-butyl-4-methylpyridine;

Tf2O

1,2-DCE, 0 → 23 °C



Chapter 5 – Progress Toward the Total Synthesis of (+)-Cyanocycline A 
 

 

 

701 

HRMS (MM:ESI+) m/z calc’d for N–H-921 C9H10F3NO7S [M+H]+: 334.0203, found 

334.0197. 

 

7,8-dimethoxy-1,6-dimethyl-3-(tributylstannyl)isoquinoline (927)  

In a flame-dried µW vial was charged with isoquinoline 887 (40 mg, 0.11 mmol, 1 

equiv) and a magnetic stirring bar, and brought in a N2-filled glovebox. To the reaction vial 

was added LiCl (23 mg, 0.55 mmol, 5 equiv), Pd(PPh3)4 (13 mg, 0.01 mmol, 0.1 equiv), 

and then Sn2Bu6 (0.06 mL, 0.12 mmol, 1.1 equiv) dissolved in 1,4-dioxane (3.7 mL, 0.03 

M). The reaction vial was then sealed and taken out of the glovebox and heated to 100 °C 

over 18 hours. Upon full consumption of starting material, the reaction flask was cooled to 

room temperature, and filtered over celite rinsing with EtOAc. The crude reaction mixture 

was directly purified by silica column chromatography (0 → 5% → 10% EtOAc in hexanes 

+ 1% NEt3) to yield isoquinoline 927 as a clear oil (43 mg, 0.08 mmol, 77% yield); 1H 

NMR (400 MHz, CDCl3) δ 8.57 (s, 1H), 7.52 (s, 1H), 4.00 (s, 3H), 3.96 (s, 3H), 3.21 (s, 

3H), 2.45 (s, 3H), 1.68–1.54 (m, 7H), 1.36 (h, J = 7.1 Hz, 6H), 1.16–1.09 (m, 5H), 0.89 (t, 

J = 7.2 Hz, 9H); 13C NMR (100 MHz, CDCl3) δ 156.7, 150.6, 148.1, 137.0, 134.0, 128.9, 

128.7, 124.8, 115.1, 60.9, 60.3, 29.3, 27.7, 27.5, 17.1, 13.9, 10.0; IR (Neat Film, NaCl) 

3052, 2952, 2923, 2843, 1616, 1572, 1555, 1474, 1433, 1394, 1368, 1326, 1241, 1144, 

1117, 1080, 1002, 889, 683 cm–1; HRMS (ESI+) m/z calc’d for C25H42NO2Sn [M+H]+: 

500.2258, found 500.2262. 
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1-(tert-butyl) 2,4-dimethyl (S)-5-(7,8-dimethoxy-1,6-dimethylisoquinolin-3-yl)-2,3-

dihydro-1H-pyrrole-1,2,4-tricarboxylate (928)  

In a flame-dried µW vial was charged with triflate 921 (18.7 mg, 0.045 mmol, 1 

equiv) and a magnetic stirring bar, and brought in a N2-filled glovebox.  To the reaction 

vial was added CuI (10 mg, 0.052 mmol, 1.2 equiv), LiCl (2.3 mg, 0.054 mmol, 1.24 

equiv), and Pd(PPh3)4 (2.5 mg, 0.002 mmol, 0.05 equiv). Then, a solution of isoquinoline 

927 (22 mg, 0.045 mmol, 1 equiv) in THF (0.5 mL, 0.1 M) was added to the reaction vial 

and sealed. The reaction vial was taken out of the glovebox and heated to 65 °C over 18 

hours. Upon full consumption of starting material, the reaction was quenched with 

saturated aq. NaHCO3 (1 mL) and extracted with EtOAc (3 x 1 mL). The combined organic 

phases were dried over Na2SO4, filtered, and concentrated. The crude reaction mixture was 

purified by silica column chromatography (40% EtOAc in hexanes + 1% NEt3) to yield 

isoquinoline 928 as a white solid (14 mg, 0.03 mmol, 64% yield); [α]D25 –99.5 (c 0.70, 

CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.44 (s, 1H), 7.36 (s, 1H), 4.91 (dd, J = 12.3, 5.0 

Hz, 1H), 3.96 (s, 3H), 3.92 (s, 3H), 3.83 (s, 3H), 3.47 (s, 3H), 3.33 (dd, J = 16.5, 12.3 Hz, 

1H), 3.10 (s, 3H), 2.94 (dd, J = 16.5, 5.0 Hz, 1H), 2.42 (s, 3H), 1.02 (s, 9H); 13C NMR (100 

MHz, CDCl3) δ 172.1, 171.3, 164.8, 156.2, 150.9, 149.7, 142.5, 137.3, 134.4, 124.1, 122.2, 

118.7, 110.2, 81.9, 60.8, 60.5, 60.3, 60.2, 52.7, 51.3, 32.7, 27.7, 27.1, 17.0; IR (Neat Film, 

NaCl) 2950, 2597, 1744, 1703, 1641, 1591, 1556, 1483, 1442, 1394, 1330, 1236, 1176, 
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1147, 1118, 1006, 892, 768, 733 cm–1; HRMS (ESI+) m/z calc’d for C26H33N2O8 [M+H]+: 

501.2231, found 501.2210. 

 

1-(tert-butyl) 2,4-dimethyl (S)-5-(1-(hydroxymethyl)-7,8-dimethoxy-6-

methylisoquinolin-3-yl)-2,3-dihydro-1H-pyrrole-1,2,4-tricarboxylate (929)  

In a flame-dried µW vial was charged with SeO2 (2.8 mg, 0.03 mmol, 1.5 equiv) 

and a magnetic stir bar. The vial was vacuum purged/refilled with N2 three times. A 

solution of isoquinoline 928 (8.4 mg, 0.02 mmol, 1 equiv) in 1,4-dioxane (0.5 mL, 0.04 M) 

was then added to the vial, and heated to reflux for 2 hours. After full consumption of 

starting material observed by LCMS analysis, the vial was cooled to room temperature and 

the crude reaction mixture was filtered through celite, rinsing with EtOAc. The crude 

reaction was concentrated, then dissolved in 4:1 DCM:MeOH (0.2 mL, 0.1 M total). 

NaBH4 (0.6 mg, 0.02 mmol, 1 equiv) was then added, and the reaction was stirred for 30 

minutes at room temperature. After full conversion of the aldehyde intermediate observed 

by LCMS analysis, the reaction was quenched with citric acid monohydrate (8.4 mg, 0.04 

mmol, 2 equiv) and water, and the solution was stirred rapidly for 10 minutes. The solution 

was then basified by the addition of saturated aq. NaHCO3 (1 mL), the layers were 

separated and the aqueous phase was extracted with DCM (3 x 1 mL). The combined 

organic phases were dried over Na2SO4, filtered, and concentrated. The crude reaction 

mixture was purified by silica column chromatography (40% EtOAc in hexanes) to yield 
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isoquinoline 929 as a white solid (4.8 mg, 0.01 mmol, 55% yield); [α]D25 –35.9 (c 0.75, 

CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.59 (s, 1H), 7.43 (s, 1H), 5.53 (br s, 1H), 5.28 (s, 

2H), 4.93 (dd, J = 12.0, 4.5 Hz, 1H), 4.00 (s, 3H), 3.91 (s, 3H), 3.85 (s, 3H), 3.51 (s, 3H), 

3.37 (dd, J = 16.6, 12.1 Hz, 1H), 2.99 (dd, J = 16.6, 4.5 Hz, 1H), 2.43 (s, 3H), 1.06 (s, 9H); 

13C NMR (100 MHz, CDCl3) δ 172.0, 164.7, 156.1, 150.9, 150.8, 149.3, 138.2, 134.1, 

124.2, 120.4, 120.2, 110.5, 82.1, 64.2, 60.8, 60.6, 60.3, 60.2, 52.8, 51.4, 33.0, 27.7, 27.1, 

17.0; IR (Neat Film, NaCl) 3362, 2946, 2928, 2903, 1751, 1736, 1700, 1637, 1560, 1466, 

1436, 1387, 1328, 1236, 1175, 1154, 1013, 892, 763 cm–1; HRMS (ESI+) m/z calc’d for 

C26H33N2O9 [M+H]+: 517.2181, found 517.2195. 

 

1-(tert-butyl) 2-methyl (S)-2,3-dihydro-1H-pyrrole-1,2-dicarboxylate (933)  

In a flame-dried round bottom flask was charged with lactam 923 (1 g, 4.1 mmol, 

1 equiv) in PhMe (5.6 mL, 0.7 M) and cooled to –78 °C. A solution of LiBHEt3 (1M in 

PhMe, 4.5 mL, 4.5 mmol, 1.1 equiv) was then added dropwise to the reaction flask at –78 

°C, and stirred for 1 hour. Upon full consumption of starting material by TLC analysis, 

DMAP (5 mg, 0.04 mmol, 0.01 equiv) and DIPEA (4 mL, 23 mmol, 5.7 equiv) was then 

added to the reaction mixture at –78 °C, followed by TFAA (0.7 mL, 4.9 mmol, 1.2 equiv) 

dropwise. The dry ice bath was then removed and allowed to warm to room temperature 

over 6 hours. Upon full consumption of the lactol, the reaction was quenched with H2O (10 

mL), extracted with Et2O (3 x 10 mL), dried over Na2SO4, and concentrated. The crude 

reaction mixture was purified by silica column chromatography (5 → 10% EtOAc in 
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hexanes) to yield dihydropyrrole 933 as a clear oil (679 mg, 3 mmol, 73% yield) (rr = 

1.1:1); 1H NMR (400 MHz, CDCl3) δ 6.65 (s, 1H), 4.96 (s, 1H), 4.59 (dd, J = 11.9, 5.4 Hz, 

1H), 3.76 (s, 3H), 3.12–3.01 (m, 1H), 2.72–2.62 (m, 1H), 1.44 (s, 9H); All characterization 

data match those reported.33 

 

1-(tert-butyl) 2-methyl (S)-4-formyl-2,3-dihydro-1H-pyrrole-1,2-dicarboxylate (934)  

In a flame-dried round bottom flask was charged with DMF (0.62 mL, 8 mmol, 4 

equiv) and cooled to 0 °C. POCl3 (0.38 mL, 4 mmol, 2 equiv) was then added dropwise to 

the reaction flask, and stirred rapidly at 0 °C for 30 minutes. The reaction was diluted with 

DCM (11 mL, 0.18 M), and a solution of dihydropyrrole 933 (457 mg, 2 mmol, 1 equiv) 

in DCM (4.5 mL, 0.44 M) was added dropwise at 0 °C and stirred for 1 hour. Upon full 

consumption of starting material, the reaction flask was poured into a separatory funnel 

with ice-cold 2M NaOH (10 mL), extracted with DCM (3 x 10 mL), dried over Na2SO4, 

and concentrated. The crude reaction mixture was purified by silica column 

chromatography (20 → 30% EtOAc in hexanes) to yield dihydropyrrole 934 as a clear oil 

(357 mg, 1.4 mmol, 70% yield) (rr = 1.3:1); 1H NMR (400 MHz, CDCl3) δ 9.57 (s, 1H),  

7.54 (s, 1H), 4.80 (dd, J = 12.4, 5.1 Hz, 1H), 3.78 (s, 3H), 3.28–3.18 (m, 1H), 2.94–2.80 

(m, 1H), 2.11 (s, 9H); All characterization data match those reported.35 
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(S)-1-(tert-butoxycarbonyl)-5-(methoxycarbonyl)-4,5-dihydro-1H-pyrrole-3-

carboxylic acid (935)  

In a flame-dried round bottom flask was charged with aldehyde 934 (1.7 g, 6.5 

mmol, 1 equiv) in 3:1 1,4-dioxane:H2O (40 mL, 0.16 M total). To this solution was added 

NaH2PO4 (3.92 g, 32.7 mmol, 5 equiv) and 2-methyl-2-butene (2.8 mL, 26.2 mmol, 4 

equiv), then NaClO2 (416 mg, 4.6 mmol, 0.7 equiv) was added in one portion and stirred 

for 18 hours at room temperature. Upon full consumption of starting material, the reaction 

was quenched with saturated aq. NaHCO3 (20 mL) and stirred for 30 minutes. The reaction 

mixture was washed with 1 M HCl (20 mL), extracted with EtOAc (3 x 10 mL), dried over 

Na2SO4, and concentrated. The crude reaction mixture was purified by silica column 

chromatography (20 → 70% EtOAc in hexanes + 1% AcOH) to yield dihydropyrrole 935 

as a white solid (1.3 g, 4.94 mmol, 76% yield) (rr = 1.3:1); [α]D25 –41.7 (c 0.99, CHCl3);  

1H NMR (400 MHz, CDCl3) δ 7.53 (s, 1H), 4.80 (dd, J = 12.2, 5.0 Hz, 1H), 3.78 (s, 3H), 

3.29–3.17 (m, 1H), 2.91–2.83 (m, 1H), 1.51 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 171.0, 

170.3, 150.5, 142.5, 109.6, 83.3, 59.5, 52.8, 32.3, 28.2; IR (Neat Film, NaCl) 2978, 2362, 

1754, 1727, 1673, 1620, 1434, 1371, 1268, 1240, 1214, 1166, 1150, 1023, 921, 890, 836, 

766, 753 cm–1; HRMS (ESI+) m/z calc’d for N–H-935 C7H9NO4 [M+H]+: 172.0604, found 

172.0598. 
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1-(tert-butyl) 2-methyl (S)-4-((2-hydroxyethyl)carbamoyl)-2,3-dihydro-1H-pyrrole-

1,2-dicarboxylate (936)  

In a flame-dried round bottom flask was charged with carboxylic acid 935 (469 mg, 

1.73 mmol, 1 equiv) in DCM (35 mL, 0.05 M) and sparged with N2 for 10 minutes. To the 

resulting mixture was added DIPEA (0.45 mL, 2.6 mmol, 1.5 equiv) and ethanolamine 

(0.13 mL, 2.1 mmol, 1.2 equiv), and the reaction mixture was stirred for 15 minutes. HATU 

(798 mg, 2.1 mmol, 1.2 equiv) was then added in one portion, and stirred for 18 hours at 

room temperature. Upon full consumption of starting material, the reaction was filtered, 

concentrated, and directly purified by silica column chromatography (2 → 10% MeOH in 

DCM) to yield amide 936 as a white amorphous solid (435 mg, 1.4 mmol, 80% yield) (rr 

= 1.1:1); [α]D25 –51.4 (c 1.04, CHCl3);  1H NMR (400 MHz, CDCl3) δ 7.32 (s, 1H), 6.65 

(br s, 1H), 4.67 (dd, J = 12.2, 5.1 Hz, 1H), 3.74 (s, 3H), 3.69–3.67 (m, 2H), 3.43–3.41 (m, 

2H), 3.29–3.11 (m, 1H), 2.89–2.77 (m, 1H), 1.40 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 

171.6, 165.4, 151.0, 135.5, 113.8, 82.5, 62.1, 59.5, 52.6, 42.5, 34.2, 28.1; IR (Neat Film, 

NaCl) 3333, 3108, 2978, 2359, 1748, 1715, 1643, 1540, 1455, 1368, 1285, 1256, 1155, 

1062, 975, 918, 848, 763, 679 cm–1; HRMS (ESI+) m/z calc’d for C14H23N2O6 [M+H]+: 

315.1551, found 315.1560. 
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1-(tert-butyl) 2-methyl (S)-4-(4,5-dihydrooxazol-2-yl)-2,3-dihydro-1H-pyrrole-1,2-

dicarboxylate (932)  

In a flame-dried round bottom flask was charged with amide 936 (389 mg, 1.24 

mmol, 1 equiv) in DCM (11.3 mL, 0.11 M) and cooled to –78 °C. To this solution was 

added DAST (0.18 mL, 1.37 mmol, 1.1 equiv) dropwise at –78 °C, and stirred for 1 hour. 

Upon full consumption of starting material, the reaction was quenched with saturated aq. 

NaHCO3 (10 mL), extracted with DCM (3 x 5 mL), dried over Na2SO4, and concentrated. 

The crude reaction mixture was purified by silica column chromatography (100% EtOAc) 

to yield dihydropyrrole 932 as a colorless amorphous solid (290 mg, 0.98 mmol, 79% yield) 

(rr = 1.3:1); [α]D25 –38.4 (c 1.09, CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.13 (s, 1H), 4.75 

(dd, J = 12.1, 4.9 Hz, 1H), 4.26 (t, J = 9.2 Hz, 2H), 3.88 (t, J = 9.3 Hz, 2H), 3.75 (s, 3H), 

3.35–3.22 (m, 1H), 2.96–2.86 (m, 1H), 1.48 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 171.3, 

161.6, 150.9, 135.4, 107.5, 82.5, 67.4, 58.8, 54.9, 52.7, 33.5, 28.3; IR (Neat Film, NaCl) 

3127, 2976, 2877, 2364, 1754, 1715, 1660, 1610, 1478, 1370, 1328, 1263, 1163, 1046, 

970, 905, 830, 762, 690 cm–1; HRMS (ESI+) m/z calc’d for C14H21N2O5 [M+H]+: 297.1445, 

found 297.1449. 
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tert-butyl (S)-4-(4,5-dihydrooxazol-2-yl)-2-(hydroxymethyl)-2,3-dihydro-1H-pyrrole-

1-carboxylate (938)  

In a flame-dried round bottom flask was charged with NaBH4 (102 mg, 2.69 mmol, 

3 equiv), LiCl (114 mg, 2.69 mmol, 3 equiv) in EtOH (3.7 mL, 0.24 M). The reaction flask 

was cooled to 0 °C, and stirred for 10 minutes. To the resulting mixture was added a 

solution of dihydropyrrole 932 (263 mg, 0.89 mmol, 1 equiv) in THF (3.7 mL, 0.24 M) 

dropwise at 0 °C. The ice bath was then removed and allowed to warm to room temperature 

over 18 hours. Upon full consumption of starting material, the reaction was quenched with 

H2O (5 mL), extracted with Et2O (3 x 5 mL), dried over Na2SO4, and concentrated. The 

crude reaction mixture was purified by silica column chromatography (10% MeOH in 

EtOAc) to yield dihydropyrrole 938 as a white solid (177 mg, 0.66 mmol, 74% yield); 

[α]D25 –118.9 (c 1.07, CHCl3); 1H NMR (400 MHz, CD3OD) δ 7.15 (s, 1H), 4.87 (s, 2H), 

4.35–4.30 (m, 2H), 3.90–3.85 (m, 2H), 3.64–3.61 (m, 1H), 3.06–3.00 (m, 1H), 2.88–2.77 

(m, 1H), 1.51 (s, 9H); 13C NMR (100 MHz, CD3OD) δ 164.6, 137.6, 109.3, 83.0, 68.6, 

63.2, 61.2, 54.8, 33.4, 32.3, 28.5;  IR (Neat Film, NaCl) 3258, 2976, 2933, 2878, 2357, 

2330, 1708, 1653, 1476, 1455, 1430, 1369, 1307, 1240, 1164, 1048, 997, 825, 761 cm–1; 

HRMS (ESI+) m/z calc’d for C13H21N2O4 [M+H]+: 269.1496, found 269.1510. 
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tert-butyl (S)-4-(4,5-dihydrooxazol-2-yl)-5-(7,8-dimethoxy-1,6-dimethylisoquinolin-3-

yl)-2-(hydroxymethyl)-2,3-dihydro-1H-pyrrole-1-carboxylate (939)  

In a flame-dried µW vial was charged with isoquinoline 887 (5 mg, 0.014 mmol, 1 

equiv), dihydropyrrole 938 (5.5 mg, 0.02 mmol, 1.5 equiv) and a magnetic stirring bar, and 

brought in a N2-filled glovebox. In the glovebox, Cs2CO3 (15.6 mg, 0.05 mmol, 3.5 equiv) 

and CsOPiv (0.4 mg, 0.0017 mmol, 0.125 equiv) were weighed out and added to the 

reaction vial. A stock solution of the catalyst was prepared by adding Pd(OAc)2 (0.08 mg, 

0.0003 mmol for each reaction vial, 2.5 mol %) and PCy3 (0.2 mg, 0.0007 mmol for each 

reaction vial, 5 mol %) dissolved in PhMe (0.34 mL for each reaction vial, 0.04 M) in a 

separate 1-dram vial. Upon complete dissolution of the catalyst, 0.34 mL of the solution 

was transferred to the reaction vial. The vial was then removed from the glovebox, and 

placed in an oil bath to stir for 18 hours at 110 °C. Upon full consumption of starting 

material, the reaction vial was cooled to room temperature, and filtered over celite. The 

crude reaction mixture was directly purified by silica column chromatography (1:1 

DCM:EtOAc + 1% MeOH + 1% NEt3) to yield isoquinoline 939 as a yellow oil (3.1 mg, 

0.006 mmol, 47% yield); [α]D25 –99.5 (c 0.70, CHCl3);  1H NMR (400 MHz, CDCl3) δ 7.18 

(s, 1H), 6.67 (s, 1H), 4.74–4.63 (m, 1H), 4.50 (dd, J = 9.8, 3.7 Hz, 1H), 4.42–4.36 (m, 1H), 

4.27 (t, J = 9.3 Hz, 2H), 3.94 (s, 3H), 3.91 (t, J = 9.3 Hz, 2H), 3.89 (s, 3H), 3.17–3.12 (m, 

1H), 3.03 (dd, J = 4.1, 1.5 Hz, 1H), 3.01 (s, 3H), 2.38 (s, 3H), 1.49 (s, 9H); 13C NMR (100 

+N

Me
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MHz, CDCl3) δ 164.7, 158.9, 156.4, 149.8, 148.2, 138.4, 137.4, 135.5, 122.4, 119.3, 108.7, 

98.4, 81.8, 67.3, 66.1, 60.8, 60.3, 57.6, 54.9, 53.6, 28.4, 27.3, 26.8, 17.1; IR (Neat Film, 

NaCl) 3332, 2927, 1994, 1797, 1711, 1652, 1508, 1440, 1360, 1326, 1269, 1236, 1123, 

1036, 1008, 902, 828, 749, 680 cm–1; HRMS (ESI+) m/z calc’d for C26H34N3O6 [M+H]+: 

484.2442, found 484.2446. 
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Scheme A5.1 Synthesis of the western isoquinoline fragment 887. 

 

 

Scheme A5.2 Synthesis of the eastern pyrrole fragment 898. 

 

 

Scheme A5.3 2nd generation synthesis of pyrrole fragment 902. 
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Scheme A5.4 Cross-coupling of heterocycles 887 and 902, and synthesis of hydrogenation 
precursor 904. 

 
 

Scheme A5.5 3rd generation synthesis of pyrrole fragment 908. 

 
 

Scheme A5.6 Stille cross-coupling and synthesis of hydrogenation precursor 910. 
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Scheme A5.7 Hydrogenation attempts of isoquinoline 910. 

 
 
 
 
Scheme A5.8 Synthesis of dihydropyrrole coupling partner 921. 
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Scheme A5.9 Stannylation of isoquinoline triflate 887 and synthesis of dihydropyrrole  
hydrogenation precursor 929. 

 
 
 
 

Scheme A5.10 Synthesis of oxazoline dihydropyrrole coupling partner 932. 
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Scheme A5.11 Reduction of oxazoline 932 and Pd-catalyzed CMD cross-coupling of 
heterocycles 887 and 938. 
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Figure A6.2 Infrared spectrum (Thin Film, NaCl) of compound 896. 
 

Figure A6.3 13C NMR (100 MHz, CDCl3) of compound 896. 
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Figure A6.5 Infrared spectrum (Thin Film, NaCl) of compound 897. 
 

Figure A6.6 13C NMR (100 MHz, CDCl3) of compound 897. 
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Figure A6.8 Infrared spectrum (Thin Film, NaCl) of compound 898. 
 

Figure A6.9 13C NMR (100 MHz, CDCl3) of compound 898. 
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Figure A6.11 Infrared spectrum (Thin Film, NaCl) of compound 899. 
 

Figure A6.12 13C NMR (100 MHz, CDCl3) of compound 899. 
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Figure A6.14 Infrared spectrum (Thin Film, NaCl) of compound 900. 
 

Figure A6.15 13C NMR (100 MHz, CDCl3) of compound 900. 
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Figure A6.17 Infrared spectrum (Thin Film, NaCl) of compound 901. 
 

Figure A6.18 13C NMR (100 MHz, CDCl3) of compound 901. 
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Figure A6.20 Infrared spectrum (Thin Film, NaCl) of compound 902. 
 

Figure A6.21 13C NMR (100 MHz, CDCl3) of compound 902. 
 



Appendix 6 – Spectra Relevant to Chapter 5
   

736 

1
2

3
4

5
6

7
8

p
p
m

 
 
 
  

Fi
gu

re
 A

6.
22

 1
H

 N
M

R
 (4

00
 M

H
z,

 C
D

C
l 3

) o
f c

om
po

un
d 

90
3.

 
 

N

M
e

M
eO

M
e

O
M
e

90
3

N B
oc

C
O
2E
t

H
O



Appendix 6 – Spectra Relevant to Chapter 5
   

737 

102030405060708090100110120130140150160170

ppm

 
  

Figure A6.23 Infrared spectrum (Thin Film, NaCl) of compound 903. 
 

Figure A6.24 13C NMR (100 MHz, CDCl3) of compound 903. 
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Figure A6.26 Infrared spectrum (Thin Film, NaCl) of compound 904. 
 

Figure A6.27 13C NMR (100 MHz, CDCl3) of compound 904. 
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Figure A6.29 Infrared spectrum (Thin Film, NaCl) of compound 907. 
 

Figure A6.30 13C NMR (100 MHz, CDCl3) of compound 907. 
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Figure A6.32 Infrared spectrum (Thin Film, NaCl) of compound 908. 
 

Figure A6.33 13C NMR (100 MHz, CDCl3) of compound 908. 
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Figure A6.35 Infrared spectrum (Thin Film, NaCl) of compound 909. 
 

Figure A6.36 13C NMR (100 MHz, CDCl3) of compound 909. 
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Figure A6.38 Infrared spectrum (Thin Film, NaCl) of compound 910. 
 

Figure A6.39 13C NMR (100 MHz, CDCl3) of compound 910. 
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Figure A6.41 Infrared spectrum (Thin Film, NaCl) of compound 911. 
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Figure A6.43 Infrared spectrum (Thin Film, NaCl) of compound 912. 
c 

Figure A6.44 13C NMR (100 MHz, CDCl3) of compound 912. 
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Figure A6.46 Infrared spectrum (Thin Film, NaCl) of compound 914. 
c 

Figure A6.47 13C NMR (100 MHz, CDCl3) of compound 914. 
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Figure A6.49 Infrared spectrum (Thin Film, NaCl) of compound 915. 
c 

Figure A6.50 13C NMR (100 MHz, CDCl3) of compound 915. 
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Figure A6.53 Infrared spectrum (Thin Film, NaCl) of compound 924. 
c 

Figure A6.54 13C NMR (100 MHz, CDCl3) of compound 924. 
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Figure A6.56 Infrared spectrum (Thin Film, NaCl) of compound 921. 
c 

Figure A6.57 13C NMR (100 MHz, CDCl3) of compound 921. 
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Figure A6.58 19F NMR (282 MHz, CDCl3) of compound 921. 
c 
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Figure A6.60 Infrared spectrum (Thin Film, NaCl) of compound 927. 
c 

Figure A6.61 13C NMR (100 MHz, CDCl3) of compound 927. 
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Figure A6.63 Infrared spectrum (Thin Film, NaCl) of compound 928. 
c 

Figure A6.64 13C NMR (100 MHz, CDCl3) of compound 928. 
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Figure A6.66 Infrared spectrum (Thin Film, NaCl) of compound 929. 
c 

Figure A6.67 13C NMR (100 MHz, CDCl3) of compound 929. 
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Figure A6.69 Infrared spectrum (Thin Film, NaCl) of compound 935. 
c 

Figure A6.70 13C NMR (100 MHz, CDCl3) of compound 935. 
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Figure A6.72 Infrared spectrum (Thin Film, NaCl) of compound 936. 
c 

Figure A6.73 13C NMR (100 MHz, CDCl3) of compound 936. 
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Figure A6.75 Infrared spectrum (Thin Film, NaCl) of compound 932. 
c 

Figure A6.76 13C NMR (100 MHz, CDCl3) of compound 932. 
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Figure A6.78 Infrared spectrum (Thin Film, NaCl) of compound 938. 
c 

Figure A6.79 13C NMR (100 MHz, CD3OD) of compound 938. 
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Figure A6.81 Infrared spectrum (Thin Film, NaCl) of compound 939. 
c 

Figure A6.82 13C NMR (100 MHz, CD3OD) of compound 939. 
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