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Abstract

The thesis deals with the theory of high temperature superconductivity from
the standpoint of three-band Hubbard models.

Chapter 1 of the thesis proposes a strongly coupled variational wavefunction
that has the three-spin system of an oxygen hole and its two neighboring copper
spins in a doublet and the background Cu spins in an eigenstate of the infinite
range antiferromagnet. This wavefunction is expected to be a good “zeroth order”
wavefunction in the superconducting regime of dopings. The three-spin polaron is
stabilized by the hopping terms rather than the copper-oxygen antiferromagnetic
coupling J,q. Considering the effect of the copper-copper antiferromagnetic cou-
pling J4q4, we show that the three-spin polaron cannot be pure Emery (Dg), but
must have a non-negligible amount of doublet-u (D,,) character for hopping stabi-
lization. Finally, an estimate is made for the magnitude of the attractive coupling
of oxygen holes.

Chapter 2 presents an exact solution to a strongly coupled Hamiltonian for
the motion of oxygen holes in a 1-D Cu-O lattice. The Hamiltonian separates into
two pieces: one for the spin degrees of freedom of the copper and oxygen holes,
and the other for the charge degrees of freedom of the oxygen holes. The spinon
part becomes the Heisenberg antiferromagnet in 1-D that is soluble by the Bethe
Ansatz. The holon piece is also soluble by a Bethe Ansatz with simple algebraic
relations for the phase shifts.

Finally, we show that the nearest neighbor Cu-Cu spin correlation increases

linearly with doping and becomes positive at z ~ 0.70.
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Chapter 1

The Infinite Range Heisenberg Model and

High Temperature Superconductivity

ABSTRACT

A new strongly coupled variational wavefunction, the doublet spin projected
Néel state (DSPN), is proposed for a single oxygen hole in three-band models of
high temperature superconductors. This wavefunction has the three-spin system of
the oxygen hole plus the two neighboring coppers coupled in a spin 1/2 doublet.
The remaining copper spins of the crystal are in an eigenstate of the infinite range
Heisenberg antiferromagnet (SPN state). The doublet three-spin magnetic polaron
or hopping polaron (HP) is stabilized by the hopping terms ¢, t,, rather than
by the copper-oxygen antiferromagnetic coupling Jpqs. Although, the HP has a
large projection onto the Emery (D,) polaron, a non-negligible amount of doublet-
u (D,,) character is required for optimal hopping stabilization. This is due to Jyq4,
the copper-copper antiferromagnetic coupling.

The SPN state allows simple calculations of various couplings of the oxygen
hole with the copper spins. For doping in the range 0.06 to 0.25 oxygen holes per
in plane copper (the superconductive phase), the copper-copper antiferromagnetic
coupling can be considered to be almost infinite ranged.

The general DSPN wavefunction is constructed for the motion of a single
quasiparticle in an antiferromagnetic background. The energy minimum is found
at symmetry (7/2,7/2) and the bandwidth scales with J44. These results are in

agreement with exact computations on a lattice.
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The coupling of the quasiparticles leads to an attraction of holes and its mag-

nitude is estimated.



I. INTRODUCTION

The copper-oxide high T, superconductors generally involve unpaired spins
on the Cu™t sites that couple with each other antiferromagnetically plus holes
resulting from doping that lead to unpaired spins predominantly on the bridging
oxygen atoms. The copper sites residing in the CuQOs planes are in Cu™* (d?)
states and can be described by a single spin 1/2 hole with orbital symmetry d>_,.
Doping of the system leads to holes that tend to localize on the oxygen sites with
an unpaired spin in the p orbital pointing towards the adjacent copper atoms. This
hole is denoted as p,, where the axis of symmetry is to its two neighboring copper
sites. The mixing of the spins in these copper d,2_,» orbitals and the oxygen p,
orbitals lead to the three-band Hubbard models of superconductivity.!»?

The important interactions in this system are!=>

(i) Antiferromagnetic coupling between adjacent Cu spins, Hqq = Jaa > Si - Sj.
The ground state spin coupling is complicated but adjacent spins tend to be
opposite.

(ii) Direct hopping of the oxygen hole between oxygen sites, Hyp = —tpp > PhyoPno
where only the diagonally adjacent oxygen sites need be considered.

(iii) Bond pairing of the O p, orbital with the two adjacent Cu d orbitals,
Hyq = Jpa),Si - Sy. Considering a single oxygen hole and the two adja-
cent copper spins leads to a doublet ground state referred to as the Emery

polaron.!»?

(iv) Copper mediated hopping Hpgp = —to Y. Pl oPno + (ta +1b) Epfng,pmdzadw,.
The Cu-O bonding interactions lead to additional O-O hopping terms that

leave the O spin unaltered (the —t, term) or swap the O spin with the inter-



mediate Cu (the ¢, + 5 term).

The details of these Hamiltonians will be discussed more below. Because these five
terms are strongly coupled, particularly at the high dopings necessary for the best
superconductors, it has been difficult to obtain a simple description adequate for

qualitative reasoning.

A major obstacle to a theoretical understanding of high temperature super-
conductivity is the lack of a “zeroth order” wavefunction that is valid in the super-
conducting regime of doping. In this paper, we propose the Hopping Polaron (HP)
wave function that reproduces the major effects observed in accurate calculations.
This HP wavefunction is factored in terms of two pieces: (a) the three-spin system
of the hole and its two adjacent coppers, and (b) the effective configuration of the

remaining copper spins.

Since the background copper spins are included in this wavefunction, the HP
is optimized for the complete Hamiltonian (1) with the J4q coupling (in contrast
to the models of Emery,'? and of Zhang and Rice®). We believe this formalism is

useful for both qualitative reasoning and for semi-quantitative calculations.

Our starting point is the Spin Projected Néel (SPN) description of the Cu
d spins that we use to model spins in the vicinity of a hole. In the SPN state,
the background Cu sites are partitioned into two interpenetrating lattices A and B
with the total spin on each sublattice taking its maximum allowed value and coupled
together to form a total spin S = S4 + Sp = 0,1,2,.... The SPN states are the
low energy eigenstates of the Infinite Range Heisenberg Antiferromagnet (IRHA).
Although the range of J4 in Hgq is one lattice spacing, we argue that SPN coupling

(which is correct for infinite ranged Jz4) is an accurate approximation for highly
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doped systems. A justification for considering SPN as a good approximation is
provided by neutron scattering experiments’ that indicate the correlation length
of the copper spins is equal to the mean separation of holes and does not change
appreciably over a large temperature range. For dopings in the superconducting
phase, we argue that SPN is the best simple description for the background Cu

spins.

Considering the three-spin system consisting of the hole on the oxygen and
its two neighboring copper spins, the optimum bonding for Hamiltonian H,4 leads
to a particular doublet (J = 1/2) state known as the Emery polaron (denoted Dy).
There is a second possible doublet state (denoted D,,) and a quartet (J = 3/2)
state (denoted Q). For Hpq, the D, state is Jpq above D, while Q is 3/2.J,4 above
D,.

Considering only copper mediated hopping, H,4p, in a sea of Cu spins, we
show that the three-spin polaron is predominantly doublet. In fact, for J,q = 0,
the three-spin polaron remains an almost exact doublet. However, the three-spin

polaron favored by Hpgp, is a mixture of D, (the Emery polaron) and D,,.

Combining the SPN background with the doublet quasiparticle leads to the
Doublet Spin Projected Néel (DSPN) wavefunction. For a system with total spin
1/2, there are only two SPN states that may couple to the three-spin doublet. They
are Jspny = 0,1. There are two independent doublets for the Cu-O-Cu set: Dy and
D,. The D, state is symmetric under reflection about the oxygen or identically
under interchange of the two coppers. D, is antisymmetric under reflection. Dy is
the three-spin state originally suggested by Emery? as the quasiparticles for high

T, systems and is known as the Emery polaron. It has the two coppers adjacent
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to the hole coupled into a triplet; D, has the coppers coupled in a singlet. Hence,
there are four independent doublet SPN states for an oxygen hole at a given site.
Using translational invariance leads to an 8 x 8 matrix for the Hamiltonian in
two dimensions with symmetry vector k. This reduction of the state space and
the simplicity of the SPN states permits us to analytically evaluate the necessary
matrix elements of the Hamiltonian for a single hole in an arbitrarily large lattice.
For total spin 1/2, the DSPN state has a minimum at (7/2,7/2) in agreement with
exact calculations.®® We find that the three-spin polaron is stabilized by a mizture
of the Dy (Emery) and D, states (about 75% Emery for J,q = 0). This mixing of
D, into D, is primarily due to the Jgq coupling of the background copper spins.
We believe the DSPN wavefunction provides a useful framework for describing and

predicting properties of these systems.

The paper is arranged as follows. Section II. evaluates the eigenstates of the
infinite range Heisenberg antiferromagnet and defines the SPN states. The spin
correlation of the SPN states is also evaluated. In Section III. A, the hole hopping
terms Hp, and H,q4, are written in a form that makes the total spin symmetry
manifest. This leads naturally to the definitions of singlet hops, t,, and triplet
hops, t,. The expressions for ¢,, t, are derived in terms of the t,, t, t,, of Hy,
and H,g4,. For the parameters of interest in superconductivity, the singlet hop
t, ~ 3t, for hops along the same axis, whereas for diagonal hops, t, ~ 20t,.
Section III. B defines the states of the three-spin Cu-O-Cu subsystem: the two
doublets (Dg, D,,) and the quartet (Q). They are eigenstates of Hp4. The doublets
are written as a sum of terms with the hole coupled to one or the other of the

coppers in a pure singlet, whereas, the quartet has only triplet coupling to the
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coppers. Thus we expect negligible quartet character in the lowest eigenstates of
the Hamiltonian. In Section IV. A, the Hamiltonian matrix for the total spin one-
half DSPN wavefunctions is calculated in one dimension. We show that even for a
single oxygen hole in an infinitely large lattice, there is always finite scattering into
SPN configurations from the total Hamiltonian (1). The matrix is then generalized
to two dimensions in Section IV. B. Since the form of the SPN states is independent
of the dimensionality of the system, this process is straightforward. Finally, Section
V. discusses the qualitative effect of two holes moving in a SPN type background.
We find a short range attraction between the holes.

The phases of the copper d and oxygen p hole orbitals are chosen so that each
Cu-O bond has positive overlap as in figure 1. This Bonding Phase Convention re-
sults in copper hopping interactions having the same sign regardless of the direction
of the hopping. This convention leads to a shift in momentum of (m, ) from the
standard phase convention in which the phases of the orbitals are the same in every

unit cell. The total Hamiltonian is the sum of (i)-(iv),

H=Jy Z S; Sj — tpp Z pjngpna + Jpa Z Si - Sn

<i3> <Mn>diag <in>
o
E pmgpna + t + tb § pmo"pno'd gdia’- (1)
<min> <min>
o oo’

In this equation, m, n are oxygen sites and ¢, j are copper sites. < msn > represents
two oxygen sites neighboring the copper at ¢. The < 75 > are adjacent copper sites
and < mn >g4;,4 represents diagonally adjacent oxygen sites, i.e., sites on different
axes. pl _ creates a hole of spin ¢ on the oxygen site n, and similarly dja creates

no

a hole of spin ¢ on copper site i. Jy4 is the antiferromagnetic coupling of adjacent
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coppers and t,, is the direct oxygen-oxygen hopping between diagonally adjacent
sites. Jpq is the antiferromagnetic coupling of an oxygen hole to neighboring coppers.
The t, and t; are copper mediated hopping processes.®>* They are second order in
tpd, the matrix element representing mixing of copper d and oxygen p orbitals. In
the Bonding Phase Convention, all parameters in (1) are positive. The summations
in equation (1) are to be taken over every pair just once. Thus, the energy separation
between the singlet and triplet states for two copper ions is J4q similarly for J,4. For
typical high T, superconductors, ¢, tp, tpp, Jpq are approximately equal and around
4 to 5 times as large as Jy4.2°>8710 J;4 is 0.13eV for Las_,Sr,CuQy, while Jgq is
0.12ev'1 =13 for Y1 BasCus0¢. There are relationships between these parameters,

but for formal analysis, we may vary them independently.

With no holes on the oxygen sites, J44 is the only nonzero term and the Hamil-
tonian reduces to the spin 1/2 Heisenberg antiferromagnet. Recent experiments®?
find the magnon spectrum for a two-dimensional antiferromagnet to be identical to
the spin wave theory spectrum with a quantum scale factor Z ~ 1.18. This has been
observed theoretically using slave boson techniques!® and by exactly diagonalizing
the 4 x 4 system with periodic boundary conditions.'® The energy maxima are at
symmetry vectors k = (w/2,7/2), (0, 7) and symmetry equivalents. The minimum
is at k = (0,0). The gap between the lowest k& = (m,7) and the ground state at

(0,0) tends to zero as N — oc.

If, the direct oxygen-oxygen hopping t,, is the only nonzero parameter, then

the minimum is at k£ = (0,0). (This is £ = (7, 7) in the standard phase convention.)

Calculations of a single hole in a 4 x4 lattice®*17 for the complete Hamiltonian

(1) find the minimum to be at (w/2, 7/2) for a large range of parameters. Also, the
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bandwidth for the lowest excited states is found to scale as Jy,.

II. THE INFINITE RANGE HEISENBERG MODEL AND THE SPN
STATES

Consider an infinite lattice of spins S = 1/2 that can be partitioned into two
sublattices A, B such that the nearest neighbor of every A site is a B site and vice
versa. For the Hamiltonian Hg; in two dimensions, there is little hope at present
of writing down explicit wavefunctions for the ground state and the lowest energy
excitations. However, there is a sister system that can be solved exactly. This is
the Infinite Ranged Heisenberg Antiferromagnet (IRHA).

If every A spin interacts with every B spin with the same coupling, then the
Hamiltonian can be written as,

H'HA = Jig >~ S, S; = JaaS 4 - Sp, (2)
i€ A
jEB
where S 4, Sp are the total spins on the A, B lattices respectively. This is easily
diagonalized,

1
H = SJu(S” = 4% = 85%), (3)

where S is the total spin angular momentum S, + Sp of the lattice. The ground
state and the lowest energy excitations have each sublattice in a state of maximum
spin, (i.e., ferromagnetic), but coupled to form a state of small total spin, S =
0,1,2,.... These states are exactly the spin projections'® of the classical Néel state
onto states of total spin § = 0,1,2,.... This can be seen by observing that the
two sublattices of the Néel state have maximum spin and opposite z-projections.

We denote these states as the Spin Projected Néel (SPN) states and write the SPN
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state of total spin S and z-projection M as |[SM >gpn. The nearest neighbor spin
correlation for the SPN state is easy to evaluate by noticing that in the SPN state
there is no information on the separation between spins. In the SPN state, every A
site looks the same as every other A site and the correlation of two neighboring A

and B sites is the same as the correlation between any two A and B sites.

spN < 00[S; - 8500 >spn=(2/N) <S4Sy >=(2/N)> <S4 -Sp >,
where N is the total number of sites, half A and half B. Since, S = S% =
(N/4)[(N/4) + 1], we obtain,

1
N (4)

>~ =

<§1.§2>:_

As N — o0, < §1-5% >— —i, the correlation of the classical Néel state. This
is not a good approximation to the ground state of the Heisenberg Hamiltonian
(where with only nearest neighbor coupling, < Sy - Sy >= —0.3346 £+ 0.0001 for a
square lattice!®=23). On the other hand, for small N the SPN states become good
representations of the eigenstates of the Heisenberg Antiferromagnet.

For periodic 4 x 1 and 2 x 2 copper lattices, the system is effectively infinite
ranged and the SPN states are indeed the exact eigenstates. For 1-D, the k = 7/2
state is not a SPN state since the two sublattices have different spins. However,
it is an eigenstate of (2), the infinite range Hamiltonian. A single oxygen hole in
the 4 x 1 and 2 x 2 copper lattices has only 22 — 2 = 2 remaining copper spins
participating in the SPN state. In this case, the spins on the two sublattices are
necessarily the same (S4 = Sp = 1/2) and the background is exactly represented

by SPN states.
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From direct calculations, the 4 x 4 lattice with periodic boundary conditions
has nearest neighbor spin correlation'®24 —0.3509 whereas the SPN singlet gives
—0.3125. When the lattice has a single hole, there are 42 —2 = 14 remaining spins to
form an SPN state. This leads to a correlation of —0.3214 for this doping of 1/16 =
6.25%. This doping is at the lower end of the range for high T, superconductors and
hence the SPN description should be a good approximation for the superconductive

phase.

The SPN states have either £ = (0,0) or (7, 7). Thus the SPN states cannot be
used directly to model the excitation spectrum of the Heisenberg antiferromagnet.
However, for small systems, the SPN singlet and triplet are good approximations

to the ground state and first excited state.

The correlation length of the copper spins is found by neutron scattering” to be
equal to the mean separation of the oxygen holes and is independent of temperature
in the superconducting range of dopings. Hence, we may consider the copper spins
surrounding an oxygen hole as antiferromagnetically coupled to each other but not
strongly coupled to the copper spins more than one hole-hole separation apart. If
the number of copper spins surrounding an oxygen hole is small, then the lowest
excitations of the spins are well approximated by SPN states. As the doping is
increased, fewer copper spins per hole are available to form an SPN state leading
to increasingly better approximations to the antiferromagnetic ground state. In the
superconducting regime, the SPN states describe the effect of the antiferromagnetic

coupling of the copper spins.

For dopings in the superconducting regime, the following sections incorporate

the effects of the Jy; term by requiring the background to be in an SPN state.
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Increased doping leads to an effective lattice size of the Heisenberg Antiferromag-
netic Hamiltonian that is reduced, yet the range of the J;4 term remains one lattice
spacing. The ratio of the range of the antiferromagnetic coupling to the size of the
system tends to unity so that the system behaves more and more like an Infinite
Ranged Heisenberg Antiferromagnetic. Thus, above ~ 6% doping, no knowledge of
the excitations of the Heisenberg Antiferromagnet is required. The system has “no
options” but to become more and more SPN-like as information about the relative

separation of spins is lost.

III. THE THREE-SPIN POLARON

A. SINGLET AND TRIPLET HOPPING TERMS

Consider an oxygen hole and a single neighboring copper spin coupled into
a state of spin S and z-projection M. If the hole hops to another oxygen bound
to the same copper site, then total spin symmetry implies that the hole and the
copper spin in the new configuration have the same S and M. Suppressing the
orbital part, this can be written as, |[SM >— C|SM > where S, M are the spin
and z-projection of the hole-copper pair and C' is a constant that can be a function
of S. The state of the remaining spins not involved in the hop remains unchanged
and so is not written. The only possible pairs are singlet J = 0 and triplet J = 1.
The most general singlet and triplet hops (singlet and triplet copper-oxygen bond

resonances) can be written as,

1M >— t.|1M >, (5a)

|00 >— —t,]00 > . (5b)



13
The minus sign on the singlet bond resonance is chosen so that t., t, will be positive
and in defining the singlet and triplet states, the hole spin is always taken first.
Typically, ¢, ~ 3t, when direct oxygen-oxygen hopping (¢,,) is not considered. In
band theory, there is no coupling to the background spins so t, = —t,.

To find expressions for t,,t, in terms of t,,t,, we consider separately the
hopping of singlet and triplet pairs. Assume a hole hops to the right. Represent
the hole spin by an arrow and the copper spin by a plus or minus sign. For singlet
hopping,

V2100 5= (+ =) = (L 4) = = ta(= 1) + (fa + 1) (+ ) + ta(F 1) — (fa + 1) (= 1),
= —@ta+t)[(- 1) — (+ D)
Therefore,
ty = 2t + by, (6a)
and similarly,
tr =t (6b)

Next we include the H,, hopping terms with H,q4,. t,, represents the delo-
calization of the p, orbital into its neighboring diagonally adjacent hole sites. In
the Bonding Phase Convention, t,, as defined in (1) is always positive, t,, = |tpp|.
Let tPP tPP be the total matrix elements for triplet and singlet hops in the diagonal

directions. Then, the combined H,q, and H,, leads to,
7 =tr — |tppl, (7a)

tgp =ts + |tpp|- (7b)

Typically, t,, ~ t,,t, so singlet hops dominate for diagonal hops. There is a wide

range of parameters®19 that may be used in calculations. We find that there is no
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qualitative difference for different choices. In this paper, we take, t,, = 3, t, = 2.5,
ty = 3.5, Jpa = 5, resulting in ¢, = 3.5, t, = 8.5, t?¥ = 0.5, tP? = 11.5 in units of
Jaqa. For oxygen hops along the same axis, the t,, hopping term is much smaller

(our Hamiltonian neglects it) so that ¢, cannot be neglected in comparison to .

B. DOUBLET AND QUARTET STATES

By lattice translational invariance, the eigenstates of the Hamiltonian are
completely specified by the symmetry vector £ and linear combinations of all the
configurations with the hole restricted to the x-axis and y-axis site in a single unit
cell. Tt is convenient to classify the eight possible states that can be formed with
a hole at a fixed site and its two adjacent copper spin sites. We use as a basis the
eigenstates of the Hamiltonian containing solely the J,4 antiferromagnetic coupling
of the hole with the two copper sites. There are three eigenstates: two doublets
J =1/2 and one quartet J = 3/2. The ground state (denoted D) has energy —Jy,q
and spin J = 1/2 with the two copper spins in a triplet; it is symmetric under

reflection about the oxygen site. D, is the Emery"? state and can be written,

1 2 1
(+3)p, = \/;¢ 1> —\/;T|10>- (8a)

In this expression, the +1/2 is the spin projection along the z direction (in spin
space), the subscript is the symmetry, the arrows are the hole spin projections, and
|JM > represents the state of the two copper spins. The D, and Q states are

defined as,
1

(+§)Du =1 100 >, (8b)

(+g)Q =111 >, (8¢)
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with energies Ep, = 0, Eg = +%de. The Hamiltonian is taken to be H,; =
Jpala - S;, + a - Sgl; L, R are the copper spins to the left and right of the hole.
For two dimensions, the hole may also be on the y-axis site and a convention is
necessary for the ordering of the adjacent copper sites. For a hole on the x-axis,
the adjacent spins can be considered as the East and West spins and for a hole on
the y-axis, the South and North spins. We take the West and South copper spins
to be first when constructing the coupled copper spin states adjacent to the hole.

The D, and D, states both involve a resonance between the two states with
the hole singlet coupled to one or the other of the adjacent copper spins. The Q
state, having total spin 3/2 cannot have the hole singlet coupled to either copper
spin. The D, and Q states have the two coppers triplet coupled whereas, in D,,
they are singlet coupled. Letting (00) represent the hole and adjacent copper in a
spin singlet state, these relations are,

(0)p, = ——7= [ ((00)) + ((00)a)]. (9a)

B

S
>
g

I

(0(00)) — ((00)0). (o0
o can take values + or —. Once again, the hole spin is always taken first when
coupled to an adjacent copper. When the hole hops to a new site around the right
copper, the first term on the right hand side of (9) leads to a singlet hop with matrix
element —t,. The second term represents the hole bonded to the left copper spin.
This term needs to be rewritten in terms of configurations where the hole is coupled
to the copper on the right. The relations for the transformation of a singlet bond

to bonds on the opposite copper are,

((00)+) = —=(—(11)) — §(+(10>) + §(+(00>), (10a)

Sl



((00)=) = === (+(1 = 1) + 5 (=(10)) + 5(~(00). (100)
(4+(00)) = %((11)—) — %((10)+) + %((00)+), (10c)
(=(00)) = ~—((1 = D+) + 5((10)-) + 5 (00)-). (10d)

It is most convenient for further development to write the expressions for
the Dy and D, states as linear combinations of terms with the hole coupled to a
particular copper site. Both states have total spin 1/2 and since the singlet bonding
configuration (e.g., (¢(00)) has J = 1/2, the terms with triplet coupling must also
have J = 1/2. There is only one way to make a total J = 1/2 from a triplet and
a j = 1/2 spinor. Let (0’)? be the right side triplet coupled J = 1/2 state with
z-projection o. The superscript is the copper site to which the hole is coupled; the

subscript is the total spin (in this case 1/2). The spin 1/2 triplet states can be

written,
R (2 1
(H)1 = g(_(”)) — %(Hm)), (11a)
R /[2 1
(D) =—\/3H0-1)+ %(—(10)). (11b)

The relations for left triplet coupling are obtained by interchanging the left and

right spins,

L /2 1
()1 = g((ll)_) — %((10)+), (11c)
(=i =- g(u —1)+) + %((10)—). (11d)

Combining (9),(10),(11),
(0)p, = —?(0(00)) ~ (o) = —\/73((00)0) —~ %(a)g, (12a)



@10, = 3e00) - L) = L)+ Lok, a2
with corresponding inverse relations,
(0(00) = - (o), + (o). (130)
(00)0) ==L}, - (@), (131
@) = —2(@)n, - L. (130)
@} = 2@, + L (). (134)

For completeness, the transformations between QQ states and triplet coupled

states is included.

(+5)e = (+(11)), (14a)
(+%)Q = %(—(11)) + \/§(+(10)), (14b)
(_%)Q = %(—(1 - 1))+ §(+(10)), (14¢)
(-3)e = (-1~ 1). (14d)

The inverse relations for triplet coupling in terms of the j = 1/2, 3/2 states are,
(+(11) = (+3)e. (150)

2 1, 1, 1

(D) = /36T + 5 (e (15)
(+(10)) = —%H%)’; + §(+%)Q, (15¢)



+—=(=3)e (15d)

(~(10)) = =(-5)f + NEEN (15¢)

(-1 -1)=(=3)e- (15)

Again, interchanging the left and right spins gives the equivalent relations for left
coupling.

If t,,tP?, and J,q are the only non-zero interactions, then because the (Q state
has no singlet bond character, the D states cannot mix at all with Q. Therefore, one
expects to see very little Q character when the t,,t?P, J;4 interactions are turned
on. This can be inferred from the calculations of Lang et al.> who calculated the
ground state energy and wavefunction at each symmetry £ for a single mobile hole
in a 4 x 4 lattice with periodic boundary conditions. The spin-spin correlation was
evaluated for the hole with its two adjacent Cu spins and also the correlation of the
left and right Cu with each other is calculated.

To extract the amount of Q character from the results of Ref. 5, we use the
following observation. Using the notation from above, we define o to be the hole
spin and S, Sp the spins of the adjacent copper sites. Form the total angular
momentum operator of the three spins J = o + Sg + S. J can take the values
1/2, 3/2. Now the sum of the correlations of the hole to the Cu plus the Cu-Cu

correlation is,
<a-SR>+<a-SL>+<SR-SL>:5J—g. (16)

For the D state, J = 1/2 and the sum is —3/4; for pure Q, J = 3/2 and the sum

becomes +3/4. For parameters typical of high T, systems, Lang et al.’> find the
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sum is at most 2% larger than —0.75 leading to less than 2% Quartet character.

Therefore, we can neglect all scattering into () states.

IV. SINGLE HOLE INTERACTING WITH Cu SPIN BACKGROUND

A. ONE DIMENSION

Allowing those states in which the three spins copper-hole-copper form a dou-
blet and the remaining spins form an SPN configuration, we find the minimum
energy at m/2.

Here we calculate the energies of the states with total spin of 1/2. The for-
malism is most easily developed in 1-D. The generalization to 2-D is carried out in
the following section.

Assume that the effect of Jy4 is to drive the background spin into an SPN
configuration. This is only valid for sufficiently large doping, but we assume SPN
regardless of doping. We first construct a general DSPN (doublet SPN) state. To
make a total spin of one half, the background SPN spins must be either singlet or
triplet. There are only two possibilities for each of the three-spin systems, D, or
D,,. This leads to a total of four possible spin one half states. (In 2-D, there will
be exactly eight possible states, four on the x-axis and four on the y-axis.) Due to
total spin conservation, we need to consider only the +1/2 z-projection.

In general, the Hamiltonian can be written in terms of six hopping coefficients
containing all the information about the lattice size. Three of the coefficients arise
from singlet hops and the other three from triplet hops.

We define four singlet bond states:

10 >5pn=[+(00)]]00 >spn, (17a)
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1 >8pn= \/g[—(oo)ﬂll >sPN —%H(UU)HIU >SPN, (17b)
10 >5pn=1[(00)+]]00 >spn, (17¢)
|1 >§pN: \/%[(00)—”11 >SPN —%[(00)4—”10 >SPN - (17d)

The convention on the ordering of the spin sublattices is the site to the left of the
three-spin system is always on the A sublattice and the site to the right is always
on the B sublattice. In the SPN state, the A lattice spins are taken first.

Taking t, = —1 in equation (5b), define the constants A,, B,,Cy, D, by the

mixing of a right hop,
0 >8pn— As|0 >Epy +B4 |1 >5pn, (18a)

11 >8, 0= Crl0>L oy +Ds 1 >E0 . (18b)

If there are N sites in the SPN state, there are N/2 on each sublattice making
the total spin of each sublattice J = N/4. Under inversion about the hole site,
the two sublattices are swapped. Therefore, |00 >spn— s|00 >spn, [IM >spy—
(—s)[IM >gpn where s = (—)27. Applying the inversion operator to equations

(17) gives the corresponding relations for left hops of left coupled states. Since the

Hamiltonian is Hermitian, C,, = —B,. The general formulas for the coefficients are,
_ 2741, L
Ay = (77 (=), (190)
1 /J+1
B, = (=) (24— 19b
1,.J-1
Dy = (—)”“[—(T)]- (19¢)

2
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These equations are derived in the appendix. As J — oo, —A, = B, = D, —
1/2(—)27*1. No matter how large the lattice becomes, there is always finite scat-
tering into SPN states. Also, note that A,, B, are never zero while D, = 0 at
J =1

We now define the four states,

|1 >= (+)Dg|00 >SPN, (20&)
12 >= \/5( )p, |11 > = (+)p, |10 > (200)
- 3 D, SPN \/g D, SPN,
13 > \/5( )p, |11 > = (+)p,|10 > (20¢)
— . JZ(_ - c
3\ 7)D, SPN /3 Dy SPN,
|4 >= (+)Du |00 >SPN - (20d)

|1 > and |2 > transform with parity +s under inversion while |3 > and |4 > have
parity —s.
Using equations (9) and (18), the Hamiltonian matrix for the ¢, hops is,

%AU cos k ?Bg cos k —i%Bg sin k —i@AU sin k
?BU cos k —%DU cos k i?DU sin k —i%Bg sin k

H = P(—t,
( ) i%BU sin k —i?DU sin k %DU cos k —@BJ cos k
i@AU sin k i%BU sin k —éBJ cos k —%AU cos k
(21)

where k is the symmetry vector or momentum. P is the parity of the translation
operator used after a hole hop to translate the system so that the hole returns to
its starting position. It arises from the total antisymmetry of the wave function.
This is most easily seen by the following simple example. Consider a hole in a
2 x 1 lattice that is originally in the state (T ++) = pﬁdhd%“vacuum >. A hop

to the right and then a translation to the left gives the state tTp$d£+dL|vac >=
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—tTp1de$+|vac >. Therefore P = —1. In one dimension, P is just the parity of
the cycle (1,2,..., L) where L is the number of copper spins. For L even, this cycle
is always odd. In two dimensions, P = 1 for L x L lattices with L even. Physically,
the parity is not important; it can be absorbed into the momentum k — k + 7 for

P=-1.

If t, is the only non-zero parameter (Jgq, Jpa, tr all zero), then the ground
state of the Hamiltonian has £ = m and the three-spin polaron is pure Emery (D,).
The background copper spins are completely ferromagnetic and the total spin of the
ground state is Jy,q. — 1, Wwhere J,, 4, is the maximum possible spin of the complete
copper and oxygen hole system. This is true regardless of the dimensionality of the
lattice for pure singlet hops only. The proof uses the method of Lieb, Schultz, and
Mattis2® for the spin symmetry of the ground state of the Heisenberg Antiferro-
magnet. Thus the ground state is DSPN with maximum Jgpy. For the state with

total spin Jp,4, only triplet (¢,) hops are possible and so E(Jyq2) = 0.

When Jgq is non-zero, the pure D, ground state is unfavorable due to the
ferromagnetic background. Hg; prefers a small total spin whereas, t, prefers a
large spin. This suggests that the background becomes ferromagnetic when the
doping is increased sufficiently (since the number of background copper spins per
oxygen hole is reduced). Figures 2a and 2b show the energies for a single hole in a
4 x 1 lattice assuming the three-spin polaron can only be a doublet. Figures 3a and
3b show the projection onto the D, state. Figures 2a and 3a have Jgq = 0, while
figures 2b and 3b have Jz4 = 0.1t,. For nonzero Jy4, the ground state has spin 1/2
and there is strong mixing of Dy and D, for all k [see (21)]. It is the coupling of

the background copper spins that strongly mizes Dy (Emery) with D,,. The effect
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of Hyq has been directly incorporated into the SPN background.

For triplet hops, equations analogous to (17) may be defined with the three
spin states from equations (13a), (13b) replaced by the corresponding .J = 1/2 triplet
coupled states in equations (13c¢), (13d). In the same way, coefficients A,, B, D
are defined that contain all the lattice size information in the Hamiltonian for triplet

hops. The triplet hop coefficients are derived in the appendix; their values are,

1

A= (P (), (220)
B = ()7 (o[ T (220)
Dy = ()P, (220)

As J = oo, —A; = Dy — (=) 71(1/2), By — (—)?/T(—%). There is always finite
triplet scattering into SPN states regardless of the lattice size.
From (9), the Hamiltonian for triplet hops is,
%AT cos k —?BT cos k —i%BT sin k i@AT sin k
—%BT cos k —%DT cos k —iéDT sin k —i%BT sin k

i%BT sin k i@DT sin k %DT cos k @BT cos k
—i@AT sin k i%BT sin k @BT cos k —%AT cos k

H = P(t,) (23)

In this basis, the J,4 contribution to the Hamiltonian is diagonal, equations
(8), (20). The matrix is,
-1

H = (Jpq) (24)

o O OO
o O OO

0
0
0

The contribution to the Hamiltonian due to the Jz4 coupling can be broken

into two pieces: the first matrix (25a) containing the coupling of the three-spin
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polaron to the two neighboring copper spins and the second matrix (25b) containing
the energies of the SPN spin background states plus the energy of the two copper
spins neighboring the hole.
Since Sy - Sy = %6’172 , where C 5 is the transposition swapping the 1,2
spins, it is the C' term that mixes various hole states. The action of the C' operator

leads to exchange coefficients in correspondence to (19),(22). The first matrix

becomes,
H/(3Jaa) =
3 4C | 1 4C V3 npC _ f c
SAG +5AY -1 By — 3 B¢ 0 0
TN Y Y 0 0
3 1 nHC V3 pC _ V3 pC
0 0 5\1; +51?} 1 5B; — % 5;
3 pC C 1 4C | 3 4C
0 0 V3BT 3BT 140 4340 1

There is a factor of 1/2 in front of the matrix because for 1-D, there is only one
copper spin adjacent to one of the coppers in the polaron. In 2-D, there are three
copper spins adjacent to either copper spin in the polaron leading to a factor of 3/2.
The coefficients AY, BS, etc. can be written in terms of the A,, B,, etc. as shown
in the appendix. The relations are: AY = sA,, BY = (-s)B,, D¢ = (—s)D, and
similarly for A¢, etc.

The second matrix is very simple. The nearest neighbor spin correlation for the
SPN state with total spin o is (302)(2/N)? — . This correlation is multiplied
by the number of possible nearest neighbor spin pairs that can be formed; in one
dimension, this is (N+2)—3 = N —1 or 4J — 1 where J is total spin on a sublattice.
For the two-dimensional lattice, this is 2(N +2) — 7 = 8J — 3. Define G to be this

number. There is a total energy shift of Fgpifr = G(—1/4 — 1/N)J4q. For states
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with the SPN total spin of one, there is an additional term +(2/N)2GJy4. Finally,
for D, states, there is a +(1/4)J4q and for D,,, —(3/4)J4q due to the two copper

spins adjacent to the hole. Thus the second matrix is,

1 0 0 0
B 0 (57)°G-3 0 0 ,
H — (Jdd) 0 0 (%)2G + i 0 + ESh’Lft' (25b)
0 0 0 -3

The sum of equations (21), (23) — (25) is the full one-dimensional Hamiltonian
for a total spin 1/2. The effect of Jy4 is incorporated by the choice of spin one-half
DSPN wavefunctions.

For the final Hamiltonian, the minimum energy is found at 7 /2 for all lattice
sizes (see figure 4). The projection of these eigenstates onto the Emery polaron is
typically from 65% to 80% even when the hole-copper antiferromagnetic coupling
Jpa is zero. The singlet and triplet hopping terms are sufficient to select a large
projection onto the Emery state. The hopping terms have no knowledge of the
Emery and D,, states; they select between singlet coupling and triplet coupling
configurations. Since singlet hops are the dominant effect, the Hamiltonian for the
singlet hopping term (21) is most important.The diagonal elements for the Emery
states (20a), (20c) are about three times as large as the D,, diagonal terms. For all
k values, the off diagonal terms in (21) for the mixing of the two Emery states are
three times larger than the mixing of the two D, states. This leads to an Emery
projection that is three times larger than the D, projection, or Emery is ~ 75%.

Hence, the hopping polaron (HP) must always have some D,, character.
B. SINGLE HOLE IN TWO DIMENSIONS

The power of using the SPN state becomes obvious in higher dimensions.

Since for the SPN state, (i) every spin on a particular sublattice looks exactly the
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same as any other spin on the same sublattice and (ii) spin-spin correlations between
sublattices are independent of the particular spins chosen, then the background spins
do not know from which direction the hole hopped. This enormous simplification
allows the same six hopping coefficients, equations (19), (22), and spin interchange
coefficients, to be used in constructing the total Hamiltonian.

The first step in writing the 8 x8 matrix for the Hamiltonian in two dimensions,
is defining a convention on the ordering of spins in the D, and the SPN parts of
the wavefunction. In two dimensions it is not correct to label the adjacent copper
spins to a hole by whether they are left or right of the hole. In Section III. B., the
spin positions were defined by the directions East, West, South, and North. When
constructing the coupled copper spins for a hole on the x-axis, the West spin is
taken first and for the y-axis, the South spin is taken first. The first copper spin to
the West (South) of the hole and its adjacent copper is always on the A sublattice
and the spin to the East (North) is always on the B sublattice. This is illustrated
in Figure 5.

We define the corresponding states to equation (20) for the hole on the y-axis

as,
|5 >= (+)Dg|00 >SPN, (26&)
6 >= \/5( )p, |11 > = (+)p, |10 > (26b)
— 3 D, SPN \/g D, SPN,
7> \f( Vo [11 > L ()p 10> (26¢)
— . J2(_ - c
37D, SPN 73 D, SPN,
|8 >= (+)Du |00 >SPN - (26d)

There are two kinds of hops in the Hamiltonian; hops to the same axis or diagonal

hops to the other axis. For hops to the same axis, the Hamiltonian for the 1-D



27
system is correct, the only change being k& — kg, ky and P = 1. For diagonal hops,

the matrix is,

H(-tr) =

$Aosfe(ka)f2(ky)  EBosfal(k)fi(ky)  PBosfo(ka)filky) BAosfo(k:)fi(ky)
2B, sfs(ka)filky) —1Dosfs(ke)fi(ky) —EDosf(ka)filky) Bosf(k.)fy(ky)
3Bosfi(ks)fr(ky) —%EDosfs(ks)frlhy) —3Dgsf(k)f2(ky) L3B,sf_(ks)f2(ky)
Ehpsfalke)folhy) 1Bosfy(k)fr(ky)  LBosf_(ke)fr(ky) Acsf_(k)f2(ky)

(27)

where fi(k) = 14 se'® and s = (—)?’ is the parity of |00 >spn under reflection,
as before. Equation (27) represents the singlet hopping of x-axis states to y-axis
states. There is a similar contribution due to hops from the y-axis to the x-axis.
This is obtained from (27) by interchanging k., k, and taking the transpose.

The triplet hop matrix can be obtained easily from the singlet hop matrix (27)

by the following transformations:

A — A, B,— B, D,— D, (28a)
P THID .~ 1/ﬂllﬂﬂ ~ D TN - 9 - N lIrn -
< Dgl“l-‘/g P § N gl g << Uul.l.l.|.l./u ST O N Ly (LI Ly 2y
< Dy|H|Dy >— — < D4|H|D, >, (28b)

) (28¢)

The Dy and D, in equation (28b) just represent those states that have doublet g
or u character respectively. For example, < 1|H;, |8 > is a matrix element of type
< Dy|H|Dy >, so under the transformation it acquires a minus sign.

We find that (7/2,7/2) is the minimum for all reasonable values of the param-

eters regardless of the lattice size. Figures 6a and 6b show the energy and Emery
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projections for t, = 8.5, t; = 3.5, t,, = 3, and J,q = 0 and 5 in units of Jy4 for a
4 x 4 lattice. Lang et al.® find that the minimum energy states for (7/2,7/2) and
(m,m/2) have total spin of one half. They find the separation of these states to be
~ Jgq for a large range of parameters. Similar results are observed by Frenkel et
al.® This is in agreement with the results obtained from the above 8 x 8 matrix. The
projection onto the Emery polaron is in the range 65 — 80% (figure 6b) compared

to 90% for the exact calculations.3®

C. ATTRACTION OF HOLES

A simple qualitative argument makes it clear that there is a net short range
attraction between holes. The argument is based upon the number of nearest neigh-
bor background spin pairs G (see IV. A.). The attractive coupling arises from the
changes in antiferromagnetic energy of the background spins that comprise the SPN
states. When the holes are sufficiently close, there are more nearest neighbor back-
ground spin pairs as compared to when the spins are sufficiently far apart. For
example, consider two holes on a 4 x 4 lattice, figures 7a and 7b. The doping is
12.5% and there are 16 — 4 = 12 background spins in the SPN configuration. When
the holes are far apart (figure 7a), two extra pairs become available and there are
a total of 18 nearest neighbor bonds for the background spins. This change gives
a lowering of the antiferromagnetic energy of 2(4+1/4 + 1/12).J4q or (2/3)J4q4. Due
to Coulomb repulsion of the two holes, we only allow hole configurations in which
the two three-spin polarons do not overlap. This leads to 12 configurations with
an extra bond for the background spins and 3 configurations with two extra bonds.

There are 10 configurations with no extra background bonds. Averaging over these
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configurations leads to a binding energy for the pair

12:1+3-2 1 1
ABpaip =~ (7 + 55)
P 12+ 3+ 10 (+4+12) dd
IN L (29)
pazr—25 dd-

For Jgq = 1450K, AE,q;, = 348K.

This calculation leads to only a qualitative estimate of the attractive coupling.
No account has been taken of the possible momenta of the holes and with it the
probabilities of the holes being on the different axes. Also, in the above discussion
the background spins are assumed to be predominantly in a singlet configuration.
There is also the issue of whether the 12 background spins form a single SPN state
as above, or two SPN states with 6 spins in each. For scaling arguments to make
sense, the latter should be the case. Breaking the 12 spins into two 6 spin SPN
states corresponds to keeping the correlation length of the copper spins the same
as the mean separation of the holes.

A second estimate of the pairing energy is as follows. The energy is —81.00.J44
for two holes in a 4 x 4 periodic lattice with the 12 remaining background cop-
per spins in a single SPN state. The total spin is taken to be singlet. The
three-spin polarons are not allowed to overlap as above. The ground state is at
k = (0,0),(m,0),(0,7) with (0,0) doubly degenerate (figure 8). Adding this to
the energy of a 4 x 4 Heisenberg Antiferromagnet (Eap = —11.23J44) leads to an
energy —92.23.J;4, more than twice the energy of a single DSPN hole in a 4 x 4 pe-
riodic lattice by 0.60.J3¢ = 870K using the parameters in figure 8. We believe this
method of calculating the binding energy of two holes is not reliable, since energies

are compared at different dopings (in this case 6.25% and 12.5%).
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V. CONCLUSIONS

By writing the Hamiltonian in a form that makes spin conservation most
apparent, we see that the matrix elements for singlet hops are about three times
greater than triplet hops for hops along the same axis. For diagonal hops, the
direct oxygen-oxygen delocalization ?,,, reduces the triplet hopping further while
enhancing singlet hops, leading to ¢ ~ 20t2P.

The hole-copper antiferromagnetic coupling .J,,4, gives a natural basis of states
for representing the three-spin system of a hole and its two neighbors. The two dou-
blet states, D, and D,,, can be written solely as linear combinations of configurations
with singlet coupling of the hole to one of the coppers. The state Q has no singlet
coupling; it is unfavorable not only because of the J,4 term but also because singlet
hops are dominant. These observations allow the Quartet polaron configuration
to be neglected in calculating the ground state and low energy excitations of the
system. The Hopping Polaron (HP) is a linear combination of the D, (Emery) state
and D, with a projection onto D, that for J,; = 0 is about three times larger than
D,,. Mixing of D,, into the HP is a result of the hopping terms and the J;3 Cu-Cu

antiferromagnetic coupling. The D,, term cannot be neglected even for nonzero J,q4.

The antiferromagnetic coupling is included by the observation that the Heisen-
berg Antiferromagnet becomes effectively infinite ranged for small lattice sizes. The
effects of doping the system destroy the long range order of the antiferromagnet and
allow eigenstates of the IRHA to be used locally to model the copper-copper spin
coupling. The low energy excitations of the infinite range Hamiltonian are spin
projections of the classical Néel state and are denoted SPN states. In an SPN

state, every spin on one sublattice is equally correlated to every spin on the other
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sublattice and the sublattices take the maximum spin allowed.

A variational wavefunction is constructed that contains only doublet three-
spin polaron character with the remaining spins in an SPN state. These are the
DSPN states. Only states with total spin 1/2 are considered. In evaluating the
mean energy of the trial state, one sees that there is always finite scattering into
SPN states by singlet or triplet hops regardless of the lattice size.

The minimum at (7/2, 7/2) observed in accurate calculations (of a single hole
in a 4 x 4 lattice) is obtained by minimizing this simpler DSPN wavefunction. The
bandwidth scales as Jyq4, in agreement with calculations. With an SPN background,
the minimum at this symmetry persists as the lattice size becomes infinite.

Finally, a qualitative argument is given for a net attraction between holes at
12.5% doping, leading to AE,4i, &~ 6/25J4q4. This is based on the geometry of the
SPN state. The energy of a SPN state can be reduced solely by increasing the
connectivity of the spins in this state. A short range attraction is expected due to

this effect.

VI. APPENDIX

To evaluate the coefficients in (19), (22), explicit representations of the singlet
and triplet SPN states are needed. In the SPN state, each sublattice has maximum

spin, say j. The SPN singlet and triplet states with each sublattice of spin 7 can

be written,%

_\i—m
|00>SPN::§:Lﬁ—mz>A|ﬁnz>B-£—l——- (30a)

V2i+ 1

m

3(j—m)(j+m+1)
(J+1)(25 +1)(29)
(300)

11 >spn= > |ji—m >4 ljim+1>p (—)j_m+1(—)2j+1\/
m
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(27 + 1) +1)j°

m

. . . 3
10 >spx= 3 ljim > s —m 5 (- m\/ L (B0

where the subscript A, B refers to the sublattice. Note that under interchange of

m

sublattices, A <> B, the SPN singlet transforms as, |00 >spn— $[00 >spn where
s = (—)%. The triplet states transform with parity —s. Equations (30) are useful
with A and B interchanged. For example, in (30b), this requires —m — m+ 1. One
final relation is necessary. That is the Clebsch-Gordon coefficients for the coupling
ofaj— % spin with a spin % to form a total spin j. This is derived by applying the

spin lowering operator to [jj >=|j — %;j — % >1, and gives,

_ j+m, . 1 1 [j—m . 1 1
ljm >= 9 |J—§;m—§>T+ Tj|.7—§;m+§>¢- (31)

Consider equation (18a) and t, = —1. The site to the left of the three spin
polaron is on the A sublattice, therefore the site to the right of the polaron is on
the B sublattice. For a hop to the right, the B sublattice spin becomes part of the
polaron and the + spin that was part of the polaron becomes the spin to the left.
But then the A and B sublattices must be interchanged in order that the spin to

the left is again on the A sublattice. Equation (32) shows this process explicitly.
(o7 o [+(00)] oF o) —pigns (o7 o +[(00)0] )
—acn (o8 oF +4[(00)e] o7). (32)
Applying (31) to the B sublattice in (30a),

) —m . 1 1
J m— - >pt

00)]|00 = oo
[+(00)]/00 > 5P Siom

1 iem
W;_) { 2j
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i+m. 1 1 .
+ JTjIJ—§;—m+5 >B¢}[+(00)]IJ;m>A, (33)

where 1, | represent the spin on the B sublattice site to the right of the polaron.

Hopping to the right and letting A <> B gives,

\/% ;(_)j—m{ I, _% —m — % >a1 [(00)+]
+ J%;jmu - %; —m + % >AT}[(00)—]IJ'; m>p, (34)

The overlap of (34) with [(00)+]|00 >spn is Ay

_ Z 2j — [J jm] (_)j+m(_)j—m

91 1 1
= (—) {5 23+1‘2j(2j+1)2m},

Ay = (—)HH (—%) (35)

Taking the overlap of (34) with [(00)+]|10 >spn will give —1/v/3B,,

=]

M

_ J+m+1m 3
738 = ) \/j<2j DG+

2j 1 2
= e\ Gy ="

Using the relation,

2j+1 1
>, m=ZiRi+ 10+, (36)
m=—(25+1)

leads to,

(37)

; 1 [7+1
Bgz(—)27+1 [5 % .
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For —1/v/3D,, the overlap of [(00)+]|10 >spn with aright hop of 1/2/3[—(00)]|11 >spn

—1/V/3]10 >gpy is required.

(7 +1)(27 +1)(25)

+m+1
{\/j gim+t s >BT+\/ 3im+3 >B¢}|J, —m >4 .

Hopping to the right with sublattice interchange leads to,

[—(00)]|11 >spN= [—(00) ]Z )7 2”1\/3('7 —m)(j+m+1)

[(00)+] Z(_)j—m+1(_)2j+1\/i(jj:gb()é? :[ ;f)b(ﬂ;?l)) \/j + ;r; +1 |j—%; m+% oal i om>p
+(term with [(00)—]).

Overlap with [(00)+]]10 >gpn s,

_\i—mAl_yi—m,, 3(j—m)(j+m+1)x
2P \/<j+1><2j+1><2j>

3 Jj+m+1 [j—m
27+ +1) 25 25

(J + 1)(21' +1)52

Similarly the contribution from /2/3[—(00)]|11 >gpn is,

2j+1 § m?(j —m)
> (=)t (2> IO T 0P (39)

Adding (38), (39) and multiplying by —+/3,

; 3
D, = (_)21+1 5

-1
(7 +1)(27 +1)52
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D, = (_)Zj—i-l [% (%)] . (40)

The triplet coefficients (22) may be derived by the same methods as in the sin-

Therefore,

glet case. The algebra is a little more involved due to the the triplet bonded DSPN
states having more terms. The A, coefficient is the overlap of [(11)—]|00 >gpn
with a right triplet hop (¢, = 1) of [—(11)]|00 >gspx. This is formally identical to
the derivation of A, with the singlet bond (00) in (34) replaced everywhere with

the triplet bond (11). Hence,

A, = (—)H (—%) (41)

The B coefficient may be determined by calculating the scattering into the states

[(11)—]|10 >spn, [(10)+]|10 >gpn and subtracting the quartet three-spin polaron

J+m
2)

= (- oy [ (12)

piece. The [—(11)]|00 >spn— [(11)—]|10 >spn overlap is,

2

j—m J+m+1 m 3
2Ty \/2j+1'\/(2j+1)(j+1)j

The overlap [+(10)]|00 >spn— [(10)+]|10 >spN is equal to,
S (i (e 2 ’ Iom
V2i I\ (i + DG+ D5\ 2

= (-)uH! (—%) Il (43)

37
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This is exactly the negative of (42). Hence,

\/g[—(ll)HOO >SPN —\/ig[+(10)]|00 >SPN— K{\/g[(ll)—]—k%[(m)%—]}ﬂo >SPN,

where K is the right hand side of (42) and only those terms with a projection onto
(+)%]10 >spn are shown. Using equations (11) for the left bonded triplets, leads
2

to the expression for B,

1 2 ’ 1 -1
‘%BT:K(N?] 77)

B, = ()% (—é) R (44)

J

Once again, the quartet scattering has to be subtracted in order to de-
termine D,. This is most easily done by finding the coefficient of [(11)+]|1 —
1 >spn. Only —1/\/§(+)§|10 >spnN can scatter into this state and then only
the term, (—1/v/3)(1/2/3)[—(11)]]10 >spy. The overlap \/ﬂ(—){gm >spPN
—1/\/§(+)l_§|10 >spy— [(11)+]|]l — 1 >gpny has coefficient, (—)2+1[—1/(67)].

Therefore,

2 1 2 1
\/;(—)gul >SPN —%(4—)?10 >gpn— D, [\/;(—)I%’Hl >9PN —%(—F)I%'HO >spN]

1 3 1 1 1 1

+Q EHQ)QU —1>spN _7§(+§)Q|10 >SPN +%(_§)Q|11 >SPN]7 (45)

and

Q= ()t (—ﬁ) (46)

In (45), the scattering into SPN singlet states is not shown. Once the coefficient for

scattering of the left hand side of (45) into [(1 —1)+]|11 >gpn is known, then from
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the right hand side of (45) and (46), D, can be determined. The only term in (45)

that can scatter into [(1 — 1)+]|11 >gpn is —2/3[+(1 — 1)]|11 >gpn. The overlap

j+m+1
25

[+(1 — 1)]|11 >SpN— [(1 — 1)+]|11 >9PN iS,
CNjAmy \2i+1( \j—m+1/ \25+1 _3(j —m)(j+m+1)
2O O e o)

(2 + 1)

_ (_\2j+1
) n

Equating the two sides of (45) for the coefficient of [(1 — 1)+]|11 >spn,

2 1 B _g 2541
_§DT+3—\/§Q’_( 3)( )J+

2j + 1
45

and solving for D,
; 37 +1
D, =(=)¥H | 22— ). 47
) ( 5 ) (47)

AY B, D¢ are defined in complete analogy to the singlet hopping coefficients
in equations (18) where instead of a right singlet hop, the right copper spin in the
polaron is swapped with the adjacent spin in the SPN state. Denote this operation

by C'r with an analogous definition for C',.
0 >8pn— AS[0 >5pn +BS 11 >5pns (48a)

11 >8pn— —BS|0 >5py +DS |1 >5py - (480)

These coefficients are related in a simple way to the singlet hopping coefficients
already derived in this appendix. Consider equation (32). The intermediate step
before the sublattice exchange A <> B, just represents the interchanging of a B

sublattice spin with the + spin in the polaron. Note that by definition of the SPN
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state, it is irrelevant which B sublattice spin is involved in the swap with the polaron.
Thus, the effect of a singlet right hop (t, = —1) without sublattice interchange
on [+(00)]|00 >spn gives the same result as Cr acting on [(00)+]. Therefore, by
applying sublattice interchange A <+ B to the right hand side of equations (18) gives
equations (48). The parity of a singlet SPN state under interchange is s = (—)?

and —s for SPN triplets. Therefore,

Similarly,

AY =sA., BY =(-s)B,, D¢ =(-s)D,. (50)
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FIGURE CAPTIONS

1. The Bonding Phase Convention. With this choice of phases, the first three
terms in (1) have the same sign regardless of the direction of the hole hop.

2. Energy of a single hole in a 4 x 1 periodic Cu-O lattice. The three-spin polaron
is assumed to be a doublet. The total spin is S = 1/2 (e) and S = 3/2 (o)
where, (a) Jgq =0, and (b) Jgq = 0.1¢,. Jpq and ¢, are zero.

3. Dy (Emery) projection of a single hole in a 4 x 1 periodic lattice. As in
figure 2, the three-spin polaron is assumed to be a doublet. The total spin is
S =1/2(e) and S = 3/2 (o), where J4q = 0in (a) and J4q = 0.1¢, in (b). All
remaining parameters are zero.

4. (a) Energy and (b) Emery projection for a single Doublet hole in an infinite
SPN 1-D Cu-O lattice. The values of the parameters are, t, = 8.5, t, = 3.5,
Jaa = 1.0, with J,q = 0 (e) and Jpq = 5.0 (o).

5. Definition of the A and B sublattices of the copper spins (e), for a hole (o) on
the x and y axes. For an oxygen hole on the x-axis, the West copper site is
on the A sublattice and for a hole on the y-axis, the South copper is on the A
sublattice. For the D, state on the x(y) axis, the Western(Southern) copper
spin is taken first.

6. (a) Energy and (b) Emery projection for a single hole in a 4 x 4 periodic
lattice. We take ¢, = 8.5, t; = 3.5, t,, = 3.0, Jgq = 1.0, with Jpq = 0.0 (e)
and Jpq = 5.0 (o).

7. Two holes in a 4 x 4 lattice with periodic boundary conditions. The dotted
lines connect copper adjacent pairs that are not counted in calculating the

energy of the SPN state of the remaining background copper spins of the
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lattice. In (a), there are 14 such pairs leading to G = 32 — 14 = 18 pairs in the
SPN background. In (b), the holes are closer together increasing the number
of available pairs for the SPN state by 2. So G' = 20.

. Energies of the lowest and first excited states of two Doublet holes in a single
SPN background on a 4 x4 periodic lattice. We assume that the two three-spin
polarons do not overlap. The parameters are, t, = 8.5, t, = 3.5, t,, = 3.0,
Jaa = 1.0, Jpq = 5.0. k = (0,0) is doubly degenerate and has the same energy
as (m,0) and (0, ).



43

igure 1

F



44

~0.4

-0.6

A3rouyy

—-1.2 L

~1.4 L

-1.6

-0.4

-0.6

A3soug]

-1.6

-T2 0 2

-

—~1t/2 0 2

-

Figure 2b

Figure Za

PRSI W

P ST W WS

—1/2 0 2

-

100

Q o Q
=4} © -t

1
©
o

uonosfoxd Arsury

PR

ISR OO NS G

PRI AU TN

<
oG

3 2

uonnafoid Azowy

(=3
ol

~T/2 0 /2

-7

Figure 3b

Figure 3a



Energy

Emery projection

100
95
90
85
80
75
70
65
60

45

e *®

- RS

- ] e

. & ®

- a ®

- e ®

C M SN

>- 0-9

- ‘o

r Q GO

r \Q @]

- a o

- o o

- S5 .a.0©

E r |

0 /4 /2 3n/2 Y
Figure 4a

<E 0-4

- o

- Q. o)

- Q‘ O

u o 0

— O__ Red

€. ©-0-0-0-%

. e?

- ®

- * e &

— 0.' ,0"

C | 0o g0 @ °

L = 1

0 /4 /2 3m/4 T

Figure 4b



46

O O

B A
o @ o e

North

O O

B
O m o e

y

O O

x
o (Jo 9
O O

A B
O @ o @

South

East

c @

Figure 5




47

|
I
(@)
T

Energy

Fony
RTTTTT
©

I
(@)
T rTT

—48 | | | ! !
(m,m) (®/2,%/2)  (0,0) (w2,0) (m,0) (n,w/2) (%7

Figure 6a

85

| ]

S~

80

75

Emery projection

70

I\!%[I!II

65 | | | 1
(mm) w22y (©,0 @20 (w0 (®r2y (T,E)

Figure 6D



48

Figure 7a




49

Figure 7b




Energy

50

]llllll!llll;lll]

€199

(n/2,%/2)

0,00 @2,0)

Figure 8

(w,0)

(m,m/2)

(m,m)



ol
Chapter 2

An Exact Solution to a Strongly Coupled Hubbard
Model in 1-D for High T. Superconductors:

Cu Ferromagnetism in 1-D

ABSTRACT

A stongly coupled Hamiltonian for the motion of oxygen holes in a 1-D Cu-
O lattice is solved exactly for all dopings. The Hamiltonian is based upon the
three-band Hubbard models for high T, superconductors with the restrictions that
oxygen holes may only hop to neighboring oxygen sites, exchanging spin with the
intervening copper in the process, and that oxygen holes may not reside on the same
site.

The spin and charge degrees of freedom (spinons and holons) of the system
decouple. The spinon spectrum is the spectrum of the 1-D Heisenberg Antiferro-
magnet. The holons are spinless non-interacting fermions in a cosine band.

The Cu-Cu spin correlation in the ground state increases linearly with doping
from the value for an infinite antiferromagnet (—0.443) to the value of the next
nearest spin correlation (& 0.19) for an antiferromagnet. At doping, = ~ 0.70, the

correlation becomes positive.
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THE MODEL

The copper sites in the CuOs sheets of high temperature superconductors may
be described by a single spin 1/2 hole with orbital symmetry d,>_,>. Doping of the
system leads to unpaired spins on the oxygen sites that can be described by a spin
1/2 hole in a p orbital (p, ) pointing towards the two adjacent copper sites. Adjacent
copper spins are coupled antiferromagnetically and the mixing of the copper and
oxygen orbitals leads to the three-band Hubbard models of superconductivity [1,2].

Consider a one-dimensional Cu-O lattice as shown in figure 1. In this letter,

we solve the following “spin-exchange hopping” Hamiltonian for J,q = J4q,

/ 1
H=P|Jyq Z Si - Sj+ Jpa Z Si - Sm + §tem Z p;,,:pmadzgdw' P, (1)
<ij> <im> <lim>

!
oo

where the first term H)}; = Jqq Z/ S;-S;, is the antiferromagnetic coupling between
adjacent copper spins < ¢5 >. The prime on the summation indicates that the
terms coupling two copper spins surrounding an oxygen hole to each other are not
included in this sum. The second term Hpg = Jpq Y, Si-Sm, is the antiferromagnetic
coupling of the oxygen holes S,, to neighboring copper spins S;. The final term
H., = %tem Y pipdid, is the copper mediated hopping of oxygen holes with spin
exchange of the hole and the intervening copper. pl _ creates an oxygen hole of spin
o at m and leU creates a copper hole of spin ¢ at 4. The operator P = [[(1-717m,)
in (1) projects out states that have two oxygen holes on the same site. This is due to
the large on-site coulomb repulsion of holes. In (1), the sum over nearest neighbor

pairs and O-Cu-O triples is taken once. The effect of the first two terms of (1),

H),;, + Hpg, is shown in figure 2.
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Two other terms in three-band Hubbard models are not included in (1). These
are the direct O-O hopping —t,, > p;rapmg and the copper mediated O-O hopping
without spin exchange Hpqp = —tpap Y, p;rapm,,. The direct O-O hopping (t,, term)
is usually neglected for hops along the same axis in three-band Hubbard models. In
two dimensions, the t,, term for diagonal hops (from say the x-axis to the y-axis)

cannot be neglected.

We use the Bonding Phase Convention illustrated in figure 3, that leads to
positive values for the parameters in (1), and also for t,, and #,4,. Typical values
for the parameters [3] are Jpq = 5.1, teg = 10.3, tpap = 2.6, tg;“g = 5.2 in units of
Jaq. For LayCuOy, Jyq = 0.13eV [4].

When Jp,q = J44, the first two terms in (1) reduce to the 1-D antiferromagnetic

Hamiltonian on N + M sites, where N is the number of copper spins and M is the

number of oxygen holes.

We define a new representation for the general description of eigenstates of
(1) as the product of two states: (i) (o1,...,0n10) Where o; is the z-projection
(in spin space) of the i*® spin (copper or oxygen hole) on the N + M periodic
lattice, and (ii) ¥n,,... n, where ni,...,ny are the locations of the oxygen holes
with n; < ... < mnp. This is shown clearly in figure 4. We call (o1,...,0n1) the

spinon state and 1y, .. ., the holon state.

In this Coupled Representation (CR), the projection operator P in (1) due

to Coulomb repulsion, requires that the holon states 9y, . are not allowed, if

NSV
niy1 = n; + 1 for some ¢. The Coulomb repulsion becomes a hard-core repulsion of
one lattice spacing in the CR. If oxygen holes were permitted to reside on the same

site, then the CR would not unambiguously define the eigenstates of (1). P in (1)
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is necessary in order to use the CR.
The effect of H,, is particularly simple in the CR of the states. H,., acts only

on the holon piece of the wavefunction (figure 5),

M
1
Hemwnl,...,nM — Etew E (Qpnl,...,ni—l,...,nM + wnl,...,nrl—l,...,nM)- (2)
=1

In the CR, spin-exchange hopping (H;) is completely analogous to direct
hopping (Hpap) in the standard representation. In fact, direct hopping in the CR is
analogous to spin-exchange hopping in the standard representation. By transform-
ing to the CR, the strong coupling Hamiltonian (1) has been mapped into a band
theory problem for the motion of spinless holes with a hard-core Coulomb repulsion
that we exactly solve below. Since the spin-exchange term (1/2)t., is typically two
times larger than ¢,4p,, it is not reliable to apply perturbation theory assuming small
tez. The above approach takes us directly into the strong coupling regime and from
there perturbation theory may be applied.

The Hamiltonian (1) separates into two independent pieces: (i) the spin 1/2
Heisenberg Antiferromagnet in 1-D on a periodic N + M site lattice, Hypinon =
H!, + H,q, that acts on the spinon part of the wavefunction, and (ii) nearest
neighbor hopping of M holons on an N + M site periodic lattice with an infinitely
hard-core repulsion of one lattice spacing, Hpoion = Heyz- Her acts only on 1), the
holon wavefunction.

The Hamiltonian Hgpinon, for the spin degrees of freedom of the system is
soluble by the Bethe Ansatz (BA) [5-8]. We show that the second Hamiltonian for
the charge degrees of freedom of the system, Hpoon, is also soluble by a BA. The

BA for the antiferromagnet results in non-trivial transcendental equations for the
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momentum (phase) shifts of the magnons, whereas, the phase shifts for Hyjop, are
simple.

To uniquely specify a state in the CR, we require that the first spin is always
an oxygen hole at a fixed oxygen site. By translational symmetry, a complete set
of states can be specified by the total symmetry K, the spinon state, and the holon
state withny =0 and nyy < N+M. If nyy = N+ M —1, then the holon state is not
allowed due to Coulomb repulsion with the hole at n; = 0. This is the boundary
condition.

Let O(p)I be an eigenstate of the total Hamiltonian (1) where the spinon state
O©(p), is an eigenstate of the N + M site antiferromagnet (Hspinon) with momen-
tum p and I' = > ap(n1,...,n0)¥n,,... ny- Assume O(p)I' has total translational
symmetry K. The eigenvalue equation for the coefficients a,(n1,...,na) (we write

ny for notational simplicity) is,

ei(K+p)ap(n1,n2 —1,...,np— 1)+ e_i(K+p)ap(n1,n2 +1,...,ny+ 1)+
M
Z[ap(nl,...,ni—l,...,nM)+ap(n1,...,nﬁ—l,...,nMﬂ = %ap(nl,...,nM),
=2 ex
(3)
with the boundary condition,
ap(O,nz,...,nM_l,N+M—1):0. (4)

To solve (3), consider a single hole (M = 1) in an N site copper lattice. There
is only one value of a(ny), a(0) = 1, leading to Ehoion = tes cos(K + p).

For two holes, M = 2, and we try the BA with ny < ng,

. 1 ) .
ap(nhnz) — ez(k1n1+k2n2+2tp) + el(k2n1+k1n2 24;). (5)
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For this choice of a(ni,ns) to be an eigenstate of Hpoion, Eholon must equal
tex(cosky + cosky) and ki + ky = K + p. Due to the hard-core repulsion, we

require a(ny,n; + 1) = 0. The solution is
(,0:]?1—]?2:*:7['. (6)
Substituting the above BA into the boundary condition (4) leads to
1 1
(N+1)k2+ 5&0: (N+1)k1 — 5(,0—27'[')\+’H',
where A is an integer. From (6), we see that the boundary condition is satisfied if
2w

kl—kzz T, (7)

where k1 = ks is not allowed because (5) becomes identically zero.

The general case M > 2 can be solved by the BA,

M
. 1
ap(ni,-..,nyp) = E exp @[E kpyn: + 3 E SO(kP(i)ka(j))]7 (8)
P i—1

i<j
where the first sum is over all permutations P on the integers (1,..., M) and
n_JE—K+m k<K,
90(k7k)_{k—k’—7‘r, k>k/ (9)
The spin-exchange momenta, ki,...,ky satisfy > k; = K 4+ p and Epgon =
teg Y cosk;.

To show that the phase shifts in (9) satisfy the hard-core repulsion condition,
let n;41 = n; + 1 for some i. For every even permutation P in (8), with P(i) = ¢

and P(i 4+ 1) = ¢', there is an associated odd permutation P’ such that P’'(i) = ¢
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and P'(i + 1) = ¢q. The contribution to ay(ni,...,n;,n; +1,...,np) due to the

permutations P and P’ is proportional to,

eilanita'nivitse(@d)) 4 pildnitanini—30(0.4) — (.

as in the two hole case.

The only condition that remains is the boundary condition (4). Consider
the even permutation P such that kpny = ¢ and kpy = ¢'. Let P’ be the
corresponding odd permutation with P'(1) = P(M) and P'(M) = P(1). If the
contribution to the left hand side of (4) from P and P’ is zero for all P, then the

boundary condition is satisfied. This leads to the condition,

1 1
(N+M—1)¢ + 3 Z [e(a, kpgy) + e(kpgy, 4)] + 580(11, q')
1<i<M-—-1

1 1

=(N+M-1)q+5 >, [e(d k) +elkre, )]+ 500 0) +2mu+m. (10)
1<i<M—1

From (9), we see that p(k, k') = —p(k’, k) and that ¢(q, k) +¢(k,q") = ¢—q + 27y,

where v is an integer. Hence, (10) becomes, ¢ — ¢’ = 2rA/N, where X\ is an integer.

Therefore, the boundary conditions lead to,

27N
ki — by = = (11)

with integer A;;. As in the two hole case, a, is identically zero unless all the £;
are different. Thus, the allowed shifted momenta for M holons in an N + M site
lattice are the allowed momenta for a non-interacting holon in an N site lattice.
The dispersion relation for the holon band is €(k) = te;cosk. As N — oo, the

ground state of (1) has total momentum K = 0, the spinon piece is the ground
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state of the 1-D antiferromagnet (singlet with p = 0), and the holons fill all the &
states from 7(1 — x) to (1 + x), where z is the doping M/N.

Lieb and Mattis [9] proved that there is no ferromagnetism in one dimension
at T' = 0. We show that, in the ground state, the nearest neighbor copper spin
correlation increases linearly with doping from the value of the nearest neighbor
spin correlation < Sy - Sy >4p of the Heisenberg antiferromagnet in 1-D (—0.443)
[6] to the value of the next nearest neighbor correlation < Sy - S3 >ap of the
antiferromagnet in 1-D (& 0.19 [10]).

In the ground state of (1), the spinon state is the ground state of the antifer-
romagnet and the holon state has Fermi energy ep = —t., cos mx. Evaluating the
mean value of the Cu-Cu spin correlation, leads to the result,

N-M M
(7]\7)<S]_'SQ>AF+N<SI'S3>AF7

or,

(1—.’17)<Sl'82>AF+$<Sl'Sg>AF. (12)

Thus the Cu-Cu correlation becomes ferromagnetic when x =~ 0.70.

This is not in contradiction to the result of Lieb and Mattis. Although the
total copper spin has significant high spin character (ferromagnetic), the combined
spin symmetry of the copper and oxygen spins is singlet for the ground state.

For both 1-D and 2-D, the preference for antiferromagnetic pairing decreases
with doping. It is interesting to consider whether higher doping in the 2-D systems

will lead to the ferromagnetic pairing we find in 1-D for high doping.
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FIGURE CAPTIONS

1. The 1-D Cu-O infinite lattice.

2. The coupling of copper and oxygen spins due to H); + Hp4. The oxygen spin
is represented by the arrow and the dotted line indicates the copper coupling
not included in H},.

3. The Bonding Phase Convention on the Cu d,>_,» and O p, orbitals.

4. The Coupled Representation (CR). The first line shows a particular Cu and
O hole state in the standard representation. The second line is the same state
in the CR. The arrows are O hole spins.

5. The effect of a right spin-exchange hop in the standard and coupled represen-
tations (CR). As before, the arrow is an O hole spin and the circle is an O site

without a hole. In the CR, the spinon part is unchanged due to the hole hop.
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