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ABSTRACT

A theory of an Earth satellite has been developed by consid-
ering the Earth's bulge, atmospheric drag and the rotation of the
atmosphere simultaneously. The equations of motion have been set
up on a tilted equatorial plane coordinate system. All of the orbital
variables have been expanded in a series in terms of a perturbative
force parameter based on the Keplerian orbit. These equations have
been linearized and then solved. By means of geometrical arguments,
all of the above solutions have been expressed in the form of conven-
tional orbital elements. In the limiting case, these solutions agree
with the classical values. One previously neglected effect, the rota-
tion of the line of apsides by drag, is identified and evaluated. The
results have been used to show the correction due to the effect of the

above-mentioned forces on the Earth's gravitational potential.
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I. INTRODUCTION

To describe the motion of a celestial body in its orbit is a
very old desire of man and has been ‘subjected to an intensive study
since the early ages. An impetus was given to this desire when the
artificial satellite was launched. The understanding of the motion
of these man-made celestial bodies has become essential.

In this paper, the Earth's bulge and aerodynamic resistance
effects upon an artificial satellite within a single coordinate system,
have been successfully analyzed. Various authors have solved the
problem of bulge cffcct and drag effect separately. As perturbative
forces are small, their solutions can be added to get the integrated
effect. However, it is more desirable to obtain the complete solu-
tion of the combined effects directly. The equations of motion have
been set up in such a way that the solutions would indicate the depar-
ture from the classical unperturbed Keplerian orbit. The drag treat-
ment is similar to that of Chien (Ref, 1). The bulge effect has been
analyzed only up to the second harmonic, but a generalization to
include the higher harmonics is possible. ‘Lhe atmosphere has been
assumed to be spherically symmetric and rotating with the Earth.
The effect of perturbations is given by an indefinite integral, and the
integration can be performed for any given interval in terms of the
orbital angle. The secular perturbation in the rotation of line of
apsides, given by this analysis, permits a correction to the value of
the second harmonic, or the flattening of the Earth. This correction
is small.

It is hoped that the present analysis will help in understanding

further the motion of a satellite and also the shape of the Earth.
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II. ANALYSIS
1. Choice of the Coordinate System

The problem of the motion of an artificial close larth satellite
is quite different from the traditionai natural satellite. Applications
to natural satellites did not require a solution, as specific and de-
tailed, as was needed to represent the motions of artificial satellites.
Equations of motion will change with different coordinate systems.
The traditional classical approach to satellite motion was based on
Lagrange's six planetary equations (Ref. 2), These equations have
also been called the variation of parameters method. In order to
determine the complete history of a moving body in a space, one
needs six variables to determine six degrees of freedom. Each of
the six equations is expressed in such a way as to represent the
time derivative of a particular element, or a variable due to the
corresponding change of its forcing components. Of course, these
equations can be simplified or reduced in some cases, when a
proper approximation procedure is used. Most of the earlier papers
dealing with artificial satellites follow this traditional approach.

The most complete, typical, and up-to-date paper, written in the
traditional approach, is by Kozai (Ref. 3).

The orbit of a particle moving in a central attraction force
field is an ellipse. For such an elliptical orbit, the total angular
momentum and its energy are constants. The artificial satellite,
moving about the Earth, has a nearly elliptical path. It is natural

to look for a method of solving the equations of motion that makes

use of the fact that the total angular momentum and its energy is
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nearly constant. The Hamiltonian formulation of the equations of
motion provides such a method. It is clear that the Hamiltonian
method may be suitably applied to a potential force field, but not to
a dissipating force field. A typical p‘apcr using this approach was
worked out by Brouwer (Ref. 4), Brouwer considered the separa-
tion of Hamiltonian in the Hamilton-Jacobi equation similar to that
used in Delanny's Lunar theory.

The Hamiltonian method gives a clear insight into the dynamics
of the motion of a satellite. However, the above method is not neces-
sary in describing this motion. Integrating equations of motion in
suitable coordinate systems is the most efficient way to approach
the satellite problem. The first pioneer to adopt this method was
King-Hele early in 1958 (Ref. 5).

Modification of King-Hele's approach has been proposed by
Brenner and Latta (Ref., 6}, The coordinate systems of King-Hele
and Brenner and Latta are suitable for considering the gravitational
effect, but not for the aerodynamic drag perturbations. To relate
the drag perturbation forces to these coourdinate systems makes the
equations of motion not only highly coupled but also complicated.
Further modification of the above approach is necessary to arrive
at a suitable coordinate system. The present analysis uses spheri-
cal polar coordinates which are fixed in space, The reference
plane is tilted from the equatorial plane, and only coincides with
the osculating orbital plane at the initial instant. In this study,

"m-plane."

as in King-Hele, the reference plane is designated the
The equations of motion have been set up as perturbations from

this fixed reference plane.
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Using the tilted spherical coordinates mentioned above, with
proper manipulation, the equations of motion can be properly de-
coupled. The equations of motion can be directly integrated, result-
ing in the variation of radius vector. When dealing with the drag
perturbation case, it is more convenient to assume that all of the
values are perturbed from the Keplerian ones. The Keplerian
trajectory is confined in a plane; hence the so-called "instantaneous
orbital plane method" is the natural choice., On the other hand, it
is better to use the fixed in space, geocentric latitude-longitude
polar coordinates, as used by King-Hele, in dealing with the secular
change. The transformation of equations of motion from the inertia
frame to the language of the Keplerian variables through angle rela-
tionships is very complicated., In the present analysis, a combina-
tion of the above two methods is attempted. The spherical polar
coordinates are now based on a w-plane, rather than the equatorial
plane as is shown in Figure 1. The w-plane has been connected to

the inertia frame, through definite angle relationships.

2. The Perturbation Forces

The gravity field of the Earth is nearly that of a point mass,
or, in other words, the satellite is moving in a close to -1/r poten-
tial field. Other forces acting on the satellite are very small in
magnitude. Due to the above factors, the satellite orbit is very
close to the classical Keplerian ellipse. However, other forces
than the -1/r potential field will cause the satellite motion to devi-
ate from the Keplerian trajectory. The perturbation forces are

the non-spherical components of the Earth's gravitational force,
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the air resistance, the attractions of Sun, Moon, and other planets,
the light pressure, the electromagnetic forces, the relativity effects,
and so on (for treatment of these minor perturbation forces see
References 7 to 11). Major perturba‘tive forces will include the
non-uniform gravitational force and the aerodynamic resistance,
if the satellite orbit is close enough to the Earth. Other perturbing
forces are minor in comparison to the two above-mentioned forces,
for the ordinary Earth satellite. The influence of the Earth's
oblateness and the atmospheric drag effect, have a coupled effect
on the satellite orbit, since they act on the satellite simultaneously.
Fortunately these two sources produce perturbations of different
types, and, as a first approximation, it can be assumed that their
effects are linearly separable. A discussion of the coupling effect
on the forcing function of the equations of motion has been carried
out in the second part of the applications of theory in this analysis.

Traditionally, it has been assumed that the external force

field of the Earth can be expressed by the potential function U, If

so, U must satisfy Laplace's equation, since

2

f=-VU then V. (-f)=VU=0, (2. 1)

where f is the gravitational force acting on a unit mass outside of
the Earth's surface.

Assuming that the Earth is symmetrical about its polar axis,
there is no longitudinal dependence. Longitudinal dependence, or
the sectorial harmonics, will not be considered in this analysis.

The solution of Laplacc's cquation can be expressed in the Legendre



polynomials, Pn (sin B), as

U(r,ﬁ)kz 2030 N

n=0 n

-1 P_(sinp), (2.2)

¢

where r is a radial distance from the center of the Earth, § is the

latitude and Pn(Z)’ the Legendre polynomials, are defined as

n
1 _51____(2 )n

P (Z) = A |
2%n1 az®

n

<

From Newton's universal gravitational law, we know that for the

central gravitational field of the Earth
u=-Lk,
r
where p = GM(B . G = universal gravitational constant and

M@ = Mass of the Earth,

So, when factoring this out from the above expression, we have

n
U=%[l—°2° R)

n=1] 1 T

P (sin B)] (2. 3)

where R is the mean radius of the Earth, J'n are numerical coef-
ficients.

Equation 3 gives the Earth's gravitational potential which is
symmetrical to its polar axis. This kind of potential has been

called the zonal harmonics of the Earth, When one does not assume

a symmetrical form of the Earth in solving equation 2.1, additional
terms of the associated Liegendre polynomials will appear in the
solution 2.2. Longitudinal dependent quantities have been called

tesseral and sectorial harmonics (for instance, cf. Ref. 12).

n
w
H
®
A
N
®
[
A
S
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pary
h

Thege harmonic
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secular perturbations, or perturbations of a long time period. In
the long range, longitudinal dependent perturbative effects are ex-
pected to be damped out by cancelling each other, and will not affect
the final results, Only zonal harmonics have been considered in
this analysis.

In representing the actual field of the Earth's axially sym-
metrical potential in the form of equation 2.3, one necds an infinite
series to handle the problem. Due to difference in the order of
magnitude of the coefficient of the zonal harmonics, a further sim-
plification can be made by neglecting the small order terms. First
of all n = 1, the Jl case, has been omitted in the calculation. This
is the consequence of the fact that the .Il case will be zero if the
origin of the geocentric coordinate system coincides with the Earth's
center of gravity. It is believed that these two centers fail to coin-
cide by not more than 200 meters (Ref, 13), Therefore the Jl effect
is very minor, and is usually not taken into account.

The physical properties of the other zonal harmonics were
indicated by Jastrow in his Wright Brothers Lecture speech (Ref.
14). These harmonics represent the departure of geoid from its
hydrostatic equilibrium status. An interesting exaggerated com-
parison of the J’n of the geoid has been quoted here in Figure 3.
Among all of the .Tn‘s, the largest in order of magnitude is JZ’
which indicates the Earth's oblateness effect. The other Jn’s are
on the order of one thousandth of .TZ., Therefore, in the first ap-
proximation only Jz is retained in the equation 2. 3.

The other major perturbative force taken into account is

aerodynamic resistance, which is a dissipating force field and
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fades away very swiftly with increases in altitude. Aerodynamic
resistance is a strong function of the altitude. The order of mag-
nitude of this force compared to the gonal harmonics is entirely
dependent on the perigee height of the satellite. At really high
altitude the other perturbative forces, namely, the attractions of
the Moon, Sun, etc., might become more significant than aerody-
namic resistance., In the ordinary range of the satellite, the
drag force still appears to be a major perturbative force.

Drag force is produced by the relative motion of the satellite
and the atmospheric media, The relative motion is composed of
two parts, namely, the direct motion of the satellite, and the motion
of the atmosphere, which is caused by the rotation of the Earth,
Therefore, the drag of a satellite will differ, depending on whether
it is moving in an easterly or westerly direction. The angular
velocity of the atmosphere in this analysis has been assumed to
be the same as that of the Earth. This may not be true at very
high altitudes, due to the fact that the mean free paths of the at-
mospheric molecules are quite large. However, the lag in the
angular velocity of the atmosphere and the Earth is very minute.
This lag in angular velocity is a higher order effect. A correction
can be made by adding an empirical factor upon the angular ve-
locity in the analysis, when necessary.,

The drag force, D, is generally defined in terms of a

dimensionless coefficient, CD, and can be written

D =%pV2‘SCD
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where S is some characteristic area of the body,

The drag coefficient Cp at high altitude, where the Newtonian
theory is applicable, i.e., the body is small compared to the mean
free path of the air molecules, is approximately a constant value
close to 2. We may rewrite the above equation as the drag per unit

mass and define pg @s the air density at some reference point. Then:

SCDp

- D's (pyye o
5o (pS)V Ko(r) V

2 (2.4)

§1o

where K can be treated as a constant in the analysis and o(r) is the
density ratio.

The atmosphere has been treated as spherically symmetric
in shape. The atmosphere is obviously distorted by the Earth's
bulge; however it is likely that this effect can be neglected for long
lived satellites which pass through many cycles of the motion of
the latitude of perigee. DBesides this, if one properly chooses an
average density, the change of density during the day and night at

high altitude will not affect the ultimate result.

3. Derivations of the Equations of Motion

As stated in sections 1 and 2, we have used a fixed-in-space,
tilted-equatorial-plane coordinate system to derive the equations of
motion. We defined a w-plane, which is a Keplerian orbital plane
defined at a convenient point on the trajectory, as our fundamental
reference plane in spherical polar coordinates (see Figure 1). In
this coordinate system, the Earth's equatorial is tilted., The nomen-
clature and sense of all the angles are indicated in Figure 3. The

kinematic angle relationships will be discussed later. It is
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worthwhile to point out here that OT is a reference line on the equa-
torial plane of the vernal equinox for some epoch, and 2 is a nodal
angle measured along the equator. 6 is a polar angle measured on
the m~plane from the ascending nodaltline. ¢ is also a polar angle

but is measured on the equatorial plane, that is ¢ is a longitude of

the Earth. All the i's are the unit vectors in the direction indicated
on their subscript. The § angle will be a latitude-like angle measured
away from the w-plane, and B is a latitude angle measured from the
equatorial plane.

The linear velocity of the satellite moving in this tilted

spherical polar coordinate is:

+rcosupé?'i_e-i-rfp_i__kp (3.1)

w = sin Y4 i -Cpg_9+cos¢9°_;¢ (3.2)

where the dots indicate differentiation with respect to time, and
5 = 8 because 5 = Ba + 8, and 9a has been treated as a constant
within one revolution,

The acceleration of a unit mass particle is therefore:

v~ 9y
T e TexY
2o 4 A 1 d 2 2,480
=(r -rcos Y@ -r¢)ir+rcos¢a?:—(r cos 419)_1_6

°

+ 'il-’{"&% (r%) + rlsiny cosy § 4] L (3. 3)
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In order to get the drag perturbation forces, we have to know
the directional velocity components in_ir, —i—ﬂ' and_i_LP respectively.
The resultant velocity is composed of the orbiting velocity, and the
relative velocity of the satellite to the rotating atmosphere of the

Earth. When expressed mathematically, this velocity is

-.-V_. :-.Y_.+_Y..e (3'4)

R

where V has been given in equation 3. 1. y—e can be written in terms

of the angular velocity, W of the rotation of the Earth, as follows:
vV, =1w_cosp [(sing cos & - cos¢ cosisind )—ir
- (cos¢ cosi cos 6 + sing sinb )—-1-9 + cos¢ 31n1_1q/] (3.5)

From the geometrical consideration of our specific coordinate

system, we have the following angle relationships (see Figure 4):
cosb cosy = cosf cosd
sin 8 cos J = sinf sini + cosP cosi sin¢
siny = sinp cosi - cospP sini sin¢ . (3.6)

From these equations, Ve can be rewritten in terms of our orbital
variables. Egquation 3.5 becomes:
_ 3 si 2.
V = ~rw_cos sin ¢ sin"1 i
—e e il o

-Tw_ (cos i cos ¢ - sini sin § sin ) i,

trw  cos 0 sini cos xp_qu . (3.7)
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This equation applies only to a satellite moving on an easterly
course, as is most usual. However, for the westerly moving
satellite, the sign should be reversed. The resultant velocity,
—Y—R’ is therefore a vector sum of eqt;ations 3.1 and 3.7. By

using the above equations, we can write the drag force per unit

mass as follows:

gllc
H
1
i«
<
el

=—E:-d:Fdr~}- + F i, +F i

-KG(r)VR [(f - W, cosb sinzi simp)_i_r

+({cosyb - W, cosi cosy + w sini sin@ sind) ig

+ (\p + w, cos ? sini cosy) i (3.8)

ol -
For the non-spherical perturbation potential forces of the
Earth, which we have described in the previous section, we will
consider only the first order perturbation. This means only the
effects produced by Jz will be considered. J3, J4 and so on are in
the order of J‘;, or a thousandth of JZ, hence can be regarded as
the higher order terms, which are neglected in the first calculation.
In other words, we consider only the oblateness effect of the Earth
at the present time. Let ¢ be the perturbation potential. By using
equations 2.3 and 3.6 which represent the geometrical angle rela-

tions, we obtain:
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6 =5 7, % (1 -3 sin’p)
= —P—J'Z (—?—)Z [1-3 (sin 9 sini‘cos Y + cosi sin\p)z] (3.9)

Therefore, the perturbation force due to oblateness JZ alone can

be derived as:

F =F i +F i, +F i

~p pr—r pb -6 pb—y
_9¢ . 1 9% 19¢ ,
“orir’ rcosy 00 —0 +?§$~}—Lp

REI R

579280 &)

]

{[ 1-3(sinb sini cosy + cosi sim}J)Z] i,

+ [s:LnZi sin 26 cosy + sin 2i cosB siny] ig

+ [sin8 sin2i cos2y + sin2y (cosai—sinz@' sinzi)]_i_q)}

(3.10)
The total perturbation force is therefore the sum of the

forces of equations 3.8 and 3.9, namely,

i

=
+
b

F
tF Ay (3.11)

The next step is to derive the inclination angle of the orbital
plane, i, in terms of the other orbital elements (refer to Figure 4).
It can be seen that the cross product of vectors r and v will be per-
pendicular to the orbital plane, and the angle between this cross
product vector and the polar axis of the Earth, will be the actual

instantaneous inclination angle, i.
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rcosqjé rx:b

e

= ~r \}1364-1'2(:03415&

b

By normalizing this vector we have:

—:}J__i_e + cos q)é_1_

fH
i<

8 Y
= - R 3.12
lr X vl [qJZ I c0624‘9*‘2.12 ( )

n =

Let the direction of the polar axis of the Earth be denoted by the
unit vector_i_z. This vector can be decomposed into -ir’ —i—G » and

"i‘LP directions in the orbital plane as follows:

~

i, = (cosi siny + sini sinf cosp)i_ + sini cos 6 ig
+ (cosi cosy - sini sinb siny) iy (3.13)

The components of vector_i_Z will vary as the orbital variables
change their values. However, the inclination angle of the orbital
plane remains the same, since we are referring the polar axis to
the same coordinate system. The angle between n and iz will be
the instantaneous inclination angle i, From analytical geometry
we know that the angle between the two vectors can be expressed
by the sum of its directional cosine products. Wc obtain:

. o ,_,_1.'. N ~
cosi = (4;2 + cosznp 0 2) 210 cosy(cosijcosy-sinij sinf siny)

- sinio cos 0 41] . (3.14)
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This equation relates the inclination angle to the known orbital var-
iables.

By the above derivations, we can write down the equations
of motion of a satellite in the Earth's oblate gravitational potential

field, with a rotating spherical atmosphere by combining equations

3.3, 3.4, 3,11, and 3,14 as follows:

¥ - rcosly 02 - rif = - go(}l:i)Z +E_ (3.15)
2cosytl - 2rsiny 941 + r cosy .90: Fg (3.16)
:c'.qzJrZ.i'C]J+rsiancosq,‘é‘?'=F4J (3.17)
Vg =%+ rz COSZLIJé 2+r2:}12+2r2 w cosy (cosg sinin'p

- cosi cosy 6) + Olw_siny, wi) (3.18)

oy

d I “—Z- . ~
cosi = (¢Z+coszw92) [ 8 cosylcosi,cosy-sini.sinf siny)

0 0

-sinij cosh LI,J] , (3.19)

where Fr, 1-7‘9 and F, are the perturbation force components in r, 6,

Yy
and | directions respectively, they are given by equations 3.11, 3.8
and 3.10, 'lhe subscript U refers to the Keplerian values. The five
equations listed above are for the five unknowns, namely r, 0, U,
VR and i.

These equations of motion should be able to reduce to the
Keplerian situation as a limiting case if all the perturbation forces

vanish. This can be easily examined. Considering the second

equation, we have:
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a%(rze) =0, or %6 = ¢ = constant,

this gives the constancy of the angular momentum. Similarly, the

third equation becomes:

-(% (rch) = 0, or r?‘fp = constant.

From the initial conditions ¢ = 0, ¢ = 0, we obtain ¢ = 0 as a
result. This proves that the satellite motion is in a plane. Then,

by putting this result into the fifth equation, we have

cos 1 =cos i or i=1

0’ 0"

This further proves that the plane is fixed in space. Now, the first

equation can be reduced to

. c2

R.\2
I'-—;—-B"+go():

T

0.
This is Kepler's equation of motion.

4. Rearrangement of the Equations

The equations as they stand are highly non-linear and coupled
together. The perturbation forces in general are very small in mag-
nitude, compared to the central gravitational attractions of the
Earth., As a result, the variations inr, 6, §, and i are also very
small. A linearization process is thus applicable. Since the Kep-~
lerian trajectory corresponds to the situation where all of the per-
turbation forces vanish, linearization is possible by expanding all

of the variables around their Keplerian values.
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A direct linearization will completely decouple equation

3.17 from 3.15and 3.16. Equations 3.15 and 3.16 remain coupled
together. The coupled equations canibe solved directly by elimi-
nating one variable from the other. However, a rearrangement has
been tried for these two equations. By this rearrangement, we not
only have simplified the manipulation, but also arrive at the expres-
sion for the orbital velocity V., It is useful to know V to understand
the satellite motion. The above rearrangement was inspired through
consideration of the plane trajectory case.

From equation 3.1 we know the orbital velocity, V, and:

VZ' = %2 + rZ cosq;é + I‘ZK.IJZ (4.1)

Differentiation of this gives:

VV=rr+rrzr cosz¢éz s siny cos¢¢92

+r2c052¢99+ri¢2+r2&;fp‘ (4.2)
Rewrite equation 3.15:

2 @

* 0o . R e Z . 2 -oZ
rrzFrr—gO(—;) r+rcosyrb6 - +rry

Substituting this into equation 4.2, we have:

V“\f:._go(-i—{—) r+Frr+2rr¢Z+2rcosZ¢r92
-rzsian cosy 9qu + chosZLp 66 + I'ZCIJ lJJ

By substituting equations 3.16 and 3.17 into the above equation, we

have:
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2

N R . R - .

V‘V:mgo (;-) r+Frr+rcos¢F09+rF\P¢. (4. 3)
This is

a 2 ZgORZ . . .

-a-.t—[V -————i——-—]:ZFrrJrZrcosqueG +2rFq)4} . (4. 4)

Similarly, equation 4.1 combined with equations 3.15 and 3.16 gives:

szi'z-krz cosztpé2+r2 l:]JZ
2
goR 1 r . 25 d ,r
I —IFr+cos¢F9-+rea?(;-g)
+2rr § tan § . (4.5)

Equations 4.4 and 4.5 are equivalent differential equations of the
plane orbital case, in which the force components have been taken
along and perpendicular to the velocity vector.

By first changing the time derivative t to 8, or by changing

the dynamic problem to an orbital problem, in equation 4.4 we have:

d_pd
dt =~ df
50
o 2 28R dr d
—d—é-[V - ]:ZEFFT+ZTCOS¢FQ+ZI'F¢.&% . (4.6)
Similarly, equation 4.5 becomes
.. 2
52 &2 (l)_}_COSQJOZ:gOR Ll 1 dr
ags T r r4 L4 T rTcosy 0 46
+éi(9—‘£)2-—5—tan 62 dx dy (4.7)
rlae! Tz g :

The equations 3.15 and 3.16 have been replaced by the equations 4.6
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and 4.7,

5. Linearization
As we stated previously, the orbital trajectories of conven-
tional Earth satellites are very close to that of Keplerian ones., It
is reasonable to assume that all of the orbital parameters are slightly
perturbed from the Keplerian values. Using subscript 0 to indicate
the Keplerian parameters, and A{ ) to indicate the first order per-

turbed quantities, we can write:

r=r0+Ar
9:90+A9
V=VO+AV
(5.1)
i=iO+Ai
=Gyt MY
= Ay
because
Yo =0 (5.2)

Based on the above relations, the equations of motion derived in
sections 3 and 4 can be linearized,
With the assumptions 5.1, we can linearize the derivative

operators as:
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4a _ Od_(l_dAG)d
do do df, df,’ do,
d s d . dab dAf, d > d
== =0 =5=60,(1+ M1 - ) = 0 =
dt de 0 dGO dGO dGO OdGO
& s d (6, -4 - 42 a® s 2% 4
dtz 0 dBO 0 d@o 0 d98 0d 0 dGO

2

dbg 0
For the Keplerian case, we know that:

2

2g,R
d 2 0
- [V - ———] = 0. (5.4)
dGO g

Hence, by equations 5.1 and 5.3, the linearized equation 4.6 can be

written as:

d ZgOR dr

g, [2Vyav + N ao. Fr 0¥o * (5.5)

where the variables in Fr and FO should be properly linearized too.

For convenience, the variable can be changed by letting:

1
u==—-—,
T
then:
1 1 Ar
u=u,+ Au = = = (1 - ==+ ---)
0 r0+Ar ro rO

hence:



Auz_ég. and Ar=—é%. (5.6)
I'O‘ U-O

When equation 5.6 is rewritten in terms of uy and Au, we have:

du
d

o

F +2
r U.O

|

Fg - (5.7)

D
(@]

d V2 2
——[2V, AV - 2g,.R“ Au] = - ==
d90 0 0 uOZ
Next, we will treat equation 4.7 similarly, since for the

Keplerian case we know that:

2
2 g,R
d 0
— (—-—-1,1)+—~—r1 =z (5.8)
dée 0 0 r. 8@
0 070

hence, subtracting this from the linearized equation 4.7, and also

changing the variable to u, we have:

a2 (au) 4 &R aa0) o a?(a0)
a6% - [P It 2u, dfy  dfy g2
0 0 0
Fr 1 du
= Z ;2 3c2 df, Fo (5.9)
Yo ~o 0-0

where CO = ré@o is the angular momentum of the Keplerian case.
In order to eliminate V from equation 5.5 at a later time,

we must also linearize equation 4.1. Therefore:

o d(Ar) 2 d(A9)
AV = 62 [Z'dG ———9-——+z oA t 21y ]

ZVO

By rewriting this equation in terms of variable u, we obtain:

du du, 2
Y0 d(Au) 4 0 , .2 d(a8)
ZVOAV C 2 "-"9—— —'—6—6— - [E—(; (—d—é—6~) +ZU.O] Au + &uo H—p—a— . (5»10)

When solving § at a later time, we need to linearize the third equa-

tion of motion, namely, equation 3.17:



L dl‘ F

a®(ay) , 1 a6 . 2 %o, aa Ty
ottt ——

a0% 6, Yo To o % r 6

rOGO = CO = constant
therefore:

1 % 2 %

9'0 dGO rs d@o

The above equation is reduced to a forced pendulum equation:

2 F

ATAY) |y opy =Y (5.11)
de(z) : ugCé

6. Solutions for Ar, and the Assumptions

Equations 5.7 and 5.9 may be solved by the help of equation
5.10. The equation for y, namely, equation 5.11 will be solved sepa-
rately.

The merit of section 4, Rearrangement of the Equations,
can be seen immediately, since with the known initial conditions,
equation 5.7 can be immediately integrated. For convenience, the
initial point of the satellite at its apogee position is chosen. Conse-

quently:

_ d{au) _ d(af) _ _d(ay) _ _ _
a =g =G ~A¢.-@—§’—uo att=0, or 6, =0. (6.1)

Substituting equation 5.10 into 5.7 and performing one integration,

taking into account the initial conditions, we obtain:
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2
du du, 2 g,R
0d(au) 4 Yo 0 2 d(a0)
TN [u (Td ) +Zu0+2—————2 ]Au+2u0 ST
0 70 0 0 CQ 0
e0 2 duo 6O 2
=-§ > TdOFrdG +§ CZFBdG
0 “0~o 0 “0~o
which may be rewritten as:
2
aa0) _ 1 9o d(Au)+[_2.__(duO)2+_l__+gOR ] A
ag, 2 d9. 40 3 "0 u 2.2+ o
u 0 0 u 0 0 C
0 0 070
1 Yo 1 9y 1 %0 1
?g o -CT——(-)-Fr a6 +:Z§ - Fpdo . (6.2)
0 0 070 00 070
When differentiating once, this results in:

, 2 2
a®(a0) _ 1 o 4P(an) +[_4__(duo)z 1 9% 1, 8o ] diew)
dGZ U.Z d 0 dGZ u3 d 0 uz d92 %o C‘2 2 d 0

0 0 0 0 0 0 0o
2 2
du, 3 du, d7u du du, g,R
T A e P S e
4d0 u3d0d92' 2 df ungCZ
%0 0 o ‘o 0 0
6
1 duo - +_§_ duo gO 1 duo -
C24d0ru3do CZZdOr
oo 0 0 0o
6
du 0
1 2 0 1
+ 23F9—~§-&_—§ S— Fgdo . (6.3)
Co%o ug 0 "o Co4g

Substituting both equations 6.2 and 6.3 into equation 5.8 to eliminate

A8, we obtain:
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[1+—=

du, 2 du,. 2 0 du
1 0 2 1 0 1 0
) Ve T ) § 27z ag, ¥ 90
o%o Yo el 0o ~o%o

o

9
du, 2 0
2 1 0 1 ) ¢
R R U (6. 4)
0 Uy 0

A reduction is then possible by considering:

du, 2
so that a factor of [1 + 1 (—Egg-) ] can be found in the coefficient

2
d(Au) Y0 0 .
of =0 and Au, As a result the above equation can be reduced to:
0

2
duOZ. 2 duO

a0 " u. 2
0 0 dey

]Au

2
0 ~o%o
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Changing the variable from Au back to Ar will eliminate the first

order derivative and the coefficient of Ar becomes exactly the same

2
as that of -El-——iél—‘——) . This results in:
dBO
2 O du
d™(Ar) 1 2. 1 0 1
0 0“0 “ 0 ULo

The complicated equations of 5.7 and 5.9 are combined, resulting
in a simplified form of equation 6.6. The solution of this equation
in the general form, with the given initial conditions as indicated in

equation 6.1, may be immediately written down as:
0

0
= 5 sin (0,-0) B (6) d6 (6.7)
0

Ar(@o)

where E(6) is the forcing function. In order to carry out the inte-
gration of equation 6.7, we must know the precise form of the forcing
function, =(0). In other words, the perturbing forcing functions F

FO , and later F, must be known explicitly as a function of 6. Refer

P

to equations 3.8, 3.10, and 3,11, from which we may derive:

3 R 4 ~ 2
Fr = - —ZJZgO(fo) [1—3(sineosini0cos¢o + cosiO Sinl.l.lo) 1
-Ko(r )V (r,.-r . @ cos 8 sinzi sini )
0'"Rg Y0 70" 0 0 0
3 4 2,
Fg = ngo( O) (sin i, 81n29 cosy + s1n210 cosd 31an0
—KG(rO)VROrO(cosq;OéO - wecosio cos¢0+wesiniosineosin¢o)
3 R % 2 25 . 2
ka =-3 ngo(;——) [sinGO sin2i cos2y,tsin2y,(cos™i;-sin 6 4sin io)]

0

-Ko (ro) VROrO(LpO + w, cos 60 sinio cosqlo)
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where o(r) = £ is a density function as mentioned in equation 2.4
s
and

<
1

R [i'z +I‘ZCOSZ\JJé2 +I'ZL|°JZ +ér2wecos¢(cosévsiniLL—cosicosq;é)

[T e

+ O(c.oC sinf, w 2')]

<

The above perturbing functions are very complex in their
present form. However a simplification is possible, if the proper
assumptions are made.

Let us focus our attention on the density function first. As
mentioned in the introduction, assuming the atmosphere is spherical
in shape, the pressure will vary with altitude. This variation of
pressure is due to the weight of the atmosphere, and may be ex-

pressed as:

d 2 2

ar [4m r“p] dr = -4n r“ pgdr, (6.8)
or

+

1

I
=P =-pg

where g 1s the local gravitational acceleration,
Usually it is true that:

2p << 1 or Z/QT
rpg rg

<< 1.

If the atmosphere obeys the perfect gas law,

p:pRTo
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Equation 2,47 may then be reduced to:

This can be integrated at once, if the temperature at satellite orbital

height can be treated as a constant. This results in:

2
8% 1 1, a1,
Rt * Ts T
P -P -ofr)=e =e (6.9)
Ps Py
goR4
where v = —— = a constant depends on the specific orbital altitude,
T

and T is a radius of a reference point measured from the center of
the Earth,

In current literature density ratio is often treated in the
form of

)\(rs—-r)

—5—; =o(r)=e (6.10)
where N\ is also a constant equal to the reciprocal of the scale
height., Equation 6.10 is derived as a consequence of treating the
gravitational acceleration g as a constant in addition to the above
assumptions. Equation 6,10 is equivalent to the plane Earth's case.
Therefore equation 6.9 is expressed more accurately than equation
6.10. In the limiting case, as the eccentricity of the satellite's
orbit is vanishingly small, the expression of equations 6.10 and
6.9 becomes similar. The relation between the two constants is

approximately as follows:

AR 2y,
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In this analysis, equation 6.9 has been used for the density
function o(r). For the Keplerian orbital case
1-€ cos 90

1 0
- = = (1 -e€cosf,).
To a(l-€%) cg 0

If the reference point is taken at perigee, i.e., r, = rp, then:

1 _
ez Lte).
p Cy
Therefore:
Be e
v(;l— _ _r_l__) -y Cz (1+cos@o) CZ
o(rg)=e 0 Tp =e ~O =e “0q[x(g,)]. (6.11)

Furthermore, this can be expanded into a series of modified Bessel
functions (for the details see Appendix). 6.11 may then be rewritten

in the following form:

G(rO) =e b ]:IO(Z_,) - 2cos9011(z;) + ZcosZGOIZ(g)

+ ... +2(—l)ncosn901n(§.)+ eool (6.12)
where { = zﬁ;— , and In(g) are the modified Bessel functions with
C
0

argument .

Next, the resultant velocity VR may be simplified as the

following:

[

VR=[V2+2r2weCos $(cosfsinif-cosi cosy6) +O(wesin\p,wi)]

~ ° . 1
=V{l + —}—2 [Zrzwecoqu(cosGsininp—cosi cosyb) +O(wz)]}z
v
=V [l + A rzwecosq;(cos'ésinin—cosicosqzé) +..e]. (6.13)

VZ
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Therefore, we obtain:

| 12 o
VR =V0[1 ST Ty W, c051000+ ces ]
0 VO .
CO ’
=V, [1- —5 W, cos10] . (6.14)
VO

From the results of equations 6.12 and 6.14 the perturbation forcing

functions Fr’ FG’ and FLP may be rewritten in a simpler form as:

du

C
F = Ke_{’C ——-—QV [1 -9 w cosi,] [I,(L)+ % (- 1) ZcosnGI (t)]
r 0 d6 0 2 e 0 0
0 V, =
0
_3 JZgOR4ug [1-3 sinZ(QO + Ga) sinzio}
-t Co . 1
FG = -Ke uOVOCO [1 (——74— —) wecosio] . [IO(Q)
Yo o

0
+ = (-1)n2cosn901n(t_,)] - —;’—JZgOR4ugsinziosin2(60+6a)
n=1

F = —Ke—g-l-—V sini W COS (6 +9 [I (L)t % (-1)"2cosn6.I (¢)]
Y u, ' 0% =z oln

3 R4u4sin(60+8 )sin2i
a

0"
A further simplification may be made, by assuming that
the eccentricity, €, of the orbit is minute and that terms higher
than 62 may be neglected. This situation is true for most satel-
lites. An extension to cover a higher order € case can be made
without any essential difficulties. This point will be discussed

later.
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In order to be correct to the € order terms in the rotation of
the line of apsides, we must accurately carry out calculations to

2 . dAr . .
the €~ order terms in the Jg_ expression. This means that the
O &

Ar(@o) equation must be correct up to the ez order terms.

Through the above assumption, binomial expansion may be

used to simplify the expression U.S,Vg in the forcing functions of

6.15, u, is a solution of Keplerian equation 5.8 which is:

-';—H'——(I—ECUSGO).

Yo~ 72
0

0O

By correcting up to the 62 order terms we obtain:

w2 (1-2¢cos6, + €%cos20.)
0 C4 0 0
0
4
C
2, 20 2 2
u,” ® ;—2- (1+ 2¢ cos@0 + 3€"cos 90)
-4 Cg 2
g = E (1 + 4e cos@o + 106 cos 90)
1
.2 2 2.2
VO = [r0+ L 60]
du, 2 %
1 0,72
=Couo 1+ (g5 ]
u 0
0
X Jé~0 (1 - ¢ cos@o + %ezsinzeo) and so on. (6.16)

From equations 6.15 and the above simplifications, the expression

for Ar(0), correct to the second order of €, may be written as:
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2 0
2 %g sin(eo-e)[1—3 sin2 (6+96 )sinzi 1de
0 a 0
-0
0 (O 5 ©
— S‘Osin(GO-G)sine[l—F (1+Zecose)wecosio] [IO+213 {-1) ZcosnGIn] de
4 3 0,
+3€2Ke_gco[l——c—9w cosi,] s?n(@ -8)sinfBcoso[l +§(—])n?cosn91 1de
e 0 o L VA R n

NZ pz 0

JZ 2 0 2 2
+3€———ﬂ—2 (1+3€ cose)sin(90-6)§Sine'[l—l’asin (9'+Ga)sin io] d6'de

g
0 CO 0 0
292 p% 0 ’ 2 2
-pe“ L sin(0 —9)§ sinB'cos®'[1-3sin”(0'+6_)sin”i.] d6'd0
g 2 0 7, a 0
0 CO 0 0
2 -gcg Cg 90 P 2 Z n
-2€"Ke °— [l-—5 w _cosi ]S‘ sin(0 —9)§sin 0'[I,+Z (-1) 2cosnb'I ] do'de
HZ HZ e 0" Jg 0 0 07 n

S 2 2
N P L 8in{0,-0)| (1-3€cos8'+2¢“cos”0')sin2(0'+0_)d0'd0
Ol 0 O O a

e .

J 2 0
—9E—~%-&zsinzi Ssin(eo—e)coseg‘(l~3€cose')sin2(9‘+9 )de'de
g8oct % o a
2322 2. (0 2 ¢
+15¢ ——-E—2 sin iO‘g sin(eo—e)cos G§ sin2(6'+6_)de'de
g0 cj 0 0 &
-t Cg % 2 2
-2Ke —Z§ sin(eo—e)(l+3 €cosb+b€e cos 0) x
M 0
0 C3
{ ‘S‘ (1-€ cose'+%ezsin26‘—€Zcosze‘)[1-—2—0(2+4€cose'—€2+762cosze‘)wecosio]
0 M
© n
x [IO +? (-1)" 2 cosnG‘In] de'}de (6.17)
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Ar(@o) may be integrated explicitly for any arbitrary 00. We may
then calculate the perturbation of the radius length to any point.
The integration is straightforward, though lengthy.

In general, the change of orbital elements during the motion
of the satellite may be classified into the following three categories:
short periodic changes within one revolution, the long periodic
changes according to the position of the argument of perigeec or
apogee, and the secular changes. The perturbing forcing functions
are a function of 90, consequently the perturbing quantities will
change from point to point on the trajectory. These short periodic
changes are not of interest in this study. This study is concerned
with the secular and the long periodic changes in the satellite tra-
jectory. For this reason the integration limit is zero to 2w,

For the convenience of analysis at a later time, the symbol
{ ) !f will be used to indicate the perturbed quantities, which are
evaluated after one complete revolution of the satellite. The symbol
of subscript f is used to denote the values at point 90 = 2w, This

may be expressed as:

A(eo) if = A(Qo) 190:,2_“_ (6.18)

The result of integration of the perturbation of radial length

Ar to the € order, after one complete revolution, is as follows:

c? c’
Ar ‘f - —Keﬁg’ ;L_gﬂ {4(1—2 [:ZgweCOSiO) (IO(L)‘*'II(T:.))

C

<o W

|

re [2(3T0(E)+21, (£)-1, (6 (L (§ 6L (L HIST, (£) —-w cosigl . (6.19)

-
L\
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It is interesting to note that the oblateness effect of the Earth, which
has been expressed in terms of JZ’ produces no perturbations.
There is no secular change in the radiys due to the effect of JZ; that
is, JZ will not affect the life time of the satellite, since the bulge
effect is part of a potential force field. It is surprising though to
realize that there is no long periodic change to the first order per-
turbation assumptions in this study. The paper by Kozai (Ref. 3)
also has proved that there is no long-periodic perturbation of the
first order in the semi-major axis of the satellite trajectory.

The Earth's rotational effect, w,, has a considerable influ-
ence on the above expression Ar, The solution 6.19, as stated
before, represents the trajectory of the easterly moving satellite,
The sign of W, for the trajectory of the westerly moving satellite
should be changed. Ar is subject to an order of 10 per cent, plus
or minus, error in its calculation when the rotational effect of the
Earth is ignored. Consequently, the estimation of the lifetime of
the satellite, which is based on the shrinkage of the radius, will be
subjected to an order of 10 per cent error if we do not take into
account the Earth's rotational effect. For the above reason, the
rotational atmospheric correction of Ar seems to be significant.
The magnitude of the correction of Ar is about the same for most
ordinary close Earth satellites, since the angular momentum of

the satellite trajectory CO is only a weak function of the altitude.
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7. The Other Solutions

The other solutions of the equations of motion will be dis-
cussed in this section. In order to arrive at the perturbations in
the line of apsides, the line of nodes, and so on, we have to solve
not only for Ar, A6, Ay, but also their first derivatives. It is es-
sential to carry out the first derivative of Ar to the 62 order. The
perturbations in the line of nodes, the line of apsides, etc. will be
discussed in the successive sections,

Since the expression for Ar(eo) is known, its derivative can
be obtained by direct differentiation of equation 6,17. The pertur
bation of the derivative of Ar, correct to the € 2 order, after one

full revolution of the satellite, is obtained as follows:

J 2

d(ar), _ 3 2 p= _ , 2, 2 :l

deO ‘f =-= e—-(—)— Cz m(1-3€) ‘:(2 3 sin 10) + 3 sin 10 cos 29a
0
be K : % 21, (0 1(@)26‘3’ (I (L)€ L (L)
- 0€ Ke ;—Zﬂ 0 61~;-Zwecos1oo—€1
. d(Aar); .
as a result the perturbation, 30 l includes both the secular and
0 f

the long-periodic terms., Due to the rotation of the line of apsides,
the argument of the apogee, Ga, has a periodic value, Those terms
containing Ga will therefore have a long periodic change., The bulge
and the drag effects of the above perturbation are of the order of

€ and higher.

The next calculation derived from equation 6.1 solves N



2
a(ae) _ 1 99 d(Au)+[_§_(duO)2+ 1, 808 ] a
a8, = L2 d8g Tds 3 7d6 ) 2.2 u
0 0 Yo0~0
e -
0 du
1 1 0 1
'szg [“‘Z GOFr—EaFG] dé
oo 0 Yo

To simplify this equation, terms higher than the EZ order
are neglected as in equation 6,16, By substituting the forcing

function of 6,15, we obtain!

= et ginp, HAT) @ oo 3 ___Jf_ -
do ECZ sin 6 a5, 2(2 ecosGO)Ar+26 2o ot (1 cos )
0 0 0
3]
J 3 0
- % e 2 J:‘z sinzio S' in® sin’ (6+6_)ae
€0 Co 0
J 3
3 26in% i B (1+2€ecos0,) | sin2 (0+0 )ae
2 0.4 0 a
0 CO 0
6 (7.2)
9 T2 2 3 0
t5€e—=sin 10—“—4 cos 0 sin2 (6+6 ) de
g0 Cqy Y0 a
2 3
S0, %0
(1 2— w_cosi )(1+2€coseo)§ [I (O)+ 2( " 2cosnbl ()] de
H
¢ cz ¢l % ©
+€eKe -—}1-(1'*-4 ;——Z« w, cos i0)§00059 [IO(Z,H-% (-1) Zcosn@,’[n(l;)] de .

Carrying out the indicated integration for 60 = 2w, we arrive at the

following:
2 3
C C
a(a0); _ N D .

CZ (7.3)
el 210(0+T ()-2L, (L1 TT5(2)-161, (1)-151,(L)] 2w, cosig]
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This perturbation is due to the drag force of the atmosphere,
The perturbation of A@ may be obtained by directly integrat-
ing equation 7.2. Substituting the expression for Ar, namely equa-

tion 6,17 into cquation 7.2 and integrating, we obtain

J, 3
Aelf = %é‘% —é&—é a[ 2(2-3 sinzio)—Se (2-35in25.0)+(3+€ )sinziocos.?.ea]
0
-t Co . 2 Co .
+6Ke™® —C 7 {Io(m—e[210<z;>-11(z;)]+—3—7wecos10[10<c)-e11<;>]}

(7.4)
which is correct to the order of € and contains both the secular and
the long-periodic terms. The meaning and the significance of the
above perturbation will be elaborated on in the latter sections of
this study.,

It has been shown in the previous section, after lineariza-
tion, that the third equation of motion will be completely decoupled
from the other equations. By rewriting equation 5.10 and consid-

ering cquation 6.15, we may obtain

2 J
d“(av) 1 (3%2 2.4 o
_d_9.§‘£. + AP = - Cz 3 {-—Z--—a by sin(90+9a)51n 210
0 oo
-¢Yo ., . 2 n
+Ke E—O— sini weccs(90+9a)[lo(§)+ 212 (-1) ZcosnBOIn( g)]}.(?.,S)

The solution of this equation may be immediately written down with
the given initial conditions 6.1. If €<< 1, and its higher than 62

terms are neglected, the resulting solution is:



I, 3 % -41-
3 2 .
Ap(O ) = - o = B sin2i; | sin (0,-8)(1-€cos8)sin(6+6_)d6
0 2 4 0 a
0 C 0
5 0 0
¢ Cg 0
-Ke ° — w sini g 51n(9 -6)(1+3€ cos6)cos( 8+6 [I
H3 e 0 J

© n
+ §(- 1) 2 cosn6 In(t_.)] de .

(7.6)

Therefore, the perturbation A}, after a complete revolution of the

satellite will be:

JZ 3

£ B sin2i_coso

g0 C% 0 a
5 (7.7)
-£ ©0 L 3 .

~-rKe —;—3 w, sin 15[ 15(¢) - 7 €1,(0)] sin6_

ALPlfS%’fT

P\l If includes only the long-periodic change caused by the oblateness

of the Earth, and the drag effects of the atmosphere,

By differentiating equation 7,6 for one satellite revolution

we obtain:

J
%(—01le=~% 2 —E“—— 8in2i sm@
0 0 C
Cs (7.8)
_7rK<-:-—g ;—3— w sinig [I (¢) - 611(4;)] cos®

which is also a long-periodic perturbation. The perturbation Ay and

its first derivative, may be used in describing the motion of the

satellite's orbital plane.

The perturbation of the velocity, i.e., AV may be obtained

by simplifying equation 5.9. By considering the relations expressed

in 6,16, equation 5.9 may be written as:

2 2
d(A6
AV (8 )= £ (1-2€cos8,)Ar+e o sing M+—E— (L-€ecos® )—(—9—2(7.9)
0 C3 0 C3 0 dQO CO 0
0 0
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The perturbation of the satellite's orbiting velocity, AV(GO),
can be calculated at any instant, by substituting Ax(6,), 3y (,4),
0 HGO 0
and %%_9_ (60) into the above equation. By letting 6y = 2w, we obtain
0
the following expression for one complete revolution of the satellite:
t S,
AV, = Ke bnC {(1-2 — wacosig)[21,(8)+41,(2)]
B 3
C0
-e[1011(z;)+212(c,)+(z710(z;)+5411(g)+1512(g));-2- wecosio]} . (7.10)
This shows that only the drag force of the atmosphere causes
the perturbation in the orbital velocity. It is interesting to note that
the presence of air drag on the satellite results in an increase of
velocity, when travelling in a near circular orbit. This paradox
can be explained through considering the phenomenon of energy bal-
ance. The potential energy drop in this situation appears as an
increase in kinetic energy, which is larger than the dissipating
energy loss. The above equation demonstrates that the eccentricity
of the satellite orbit will produce a negative perturbation in orbital
velocity. Therefore, in a large eccentric orbit the perturbation
result may be negative.
The last perturbation solvable directly from the equations

of motion is the inclination angle i. By referring to equation 3.19

and applying the proper linearization, we obtain:

. N e s . . . dA ~
c0510-(1_\1)sm iy = cos 10{1-tan 10[A\p smeo + a—e—gcos 90

+ higher order terms]} . (7.11)

This equation, correct to the first order, can be written for any

instant as:
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Ai(0 ) = AY(6)sin(6  +6_ +—-—9’_ oJeos(8+8_) . (7.12)

The perturbation, Ai, after one complete revolution of the satellite

is:
o d(Ay)
Al £ 81n6a ALHf + cos ea —-d-?é_g—lf
- C(S) 3
= -Ke Z-’ F weSin iO[IO(Q)-3€ Il(g)" ~2—-€C0829a11(§)] (7. 13)

which proves that the inclination angle of the orbit has slow varying
secular, and long periodic perturbations which are caused by the
rotational effect of the Earth's atmosphere. This long periodic
change is only proportional to the orbital eccentricity € . Observa-
tion of the true satellite trajectory indicates that there is a very
slow varying secular change in the orbital inclination angle. Other
studies usually discount the atmospheric rotational effect, and are
therefore unable to explain the observed secular change in the
inclination angle of the orbital plane. This secular perturbation has
a tendency to decrease the inclination angle of the easterly moving

satellite's trajectory plane,

8. The Rotation of Line of Nodes
To determine the motion of the orbital plane of the satellite,
we must know the motion of either of the ascending or descending
nodes, and the orbital inclination angle as measured from the Earth's
equator. To understand the motion of the satellite in the orbital
plane, we must determine the amount of rotation of line of apsides,

in addition to the previously discussed changes in radius and orbital
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velocity. The line of nodes locates the orbital plane of the trajectory.
The line of apsides locates the orientation of the orbital ellipse.
Both lines are vital in discussing any satellite theory. In this sec-
tion we will derive the motion of line of nodes. In the next section
we will treat the line of apsides.

The particular arrangement of coordinates in this study
determines the specific angle relationships between various angles
as indicated in equations 3.6. These angle relationships are purely

geometrical. By combining the second and third equations of 3.6,

we obtain:
sin B = sin i sin 6 cos ¢ + cos i sin Y (8.1)

This relation is true at any instant. p is the latitude angle, meas-
ured from the equator as we have previously indicated. We know
that the argument of latitude ® will be perturbed from its initial
Keplerian value at any moment. The same is true for the { angle.

That is:

~

8=0_+A0=(0_+0.)+A0
0 a

o)

By referring to the initial coordinate system, the latitude angle will

change by the amount AB, i.e.

B =Pyt AP
Since B is measured in the initial coordinate system, the inclina-
tion angle of the orbital plane remains the same. That is, the new
latitude resulting from the change of ® and Y can be arrived at by

considering equation 8.1 as follows:
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sin (B, + AB) = siniy sin(B tAB) cos Ay +cosigsinAy . (8.1')

0 0

At the final instant, 90 = 21, after the satellite makes one
revolution, 60 to 2w, we may redéﬁne the corresponding new Kep-
lerian trajectory. This trajectory may be redefined by its osculating
orbital values at that instant. The above concept will be elaborated
on in the next section of the study. After one complete revolution,
the satellite will be in a new orbital plane. In this new orbital plane
Yy = 0, The perturbation of the line of nodes is defined by the angle
difference between this new instantaneous orbital plane, and the
initial plane, as measured on the equatorial plane extending from
the center of Earth.

By using (7)) notation to indicate the values on the new .

orbital plane, and referring to equation 8.1, we obtain:

sin B = sin i sin © (8.2)
which is due to the fact that, in the new orbital plane, f[] = 0, There-

fore;

B=Byt LBl

sin B = sin ([30 + Aﬁlf) . (8.3)

At the final instant of 6, = 2w, we can equate 8.2 and 8.1',

0

thereby obtaiuing:

sin’i sin® = sin io sin (60+A9] cos AL}J, £t cosi sinAqJ‘ f.(8.4)

)

The 1 in the new orbital plane is composed of:
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=1, + Ai £
When considering 6 in the new orbital plane, we must take into ac-
count the shift of the nodal line of the plane, since @ is measured

from the new nodal line. When £ is the angle of the ascending nodal

line, the perturbation in 2 will be (referring to Figure 5):

Q=QO+AQ

then:

0 =[0, +20] - A Q| cos(ip + Ail ]

f
By substituting 1 and 6 into equation 8.4 and neglecting the
higher order terms, since the perturbation angles are minute, we

obtain

tan®

A¢|f+—§{5—%£§ilf° (8.5)

1

A8 f: " sini.cos 0
0 a

Substituting Anplf, equation 7.7, and Ailf , equation 7.11, into

the above equation, we obtain:

5, 3 c?
AR = -3 "é% }%71 cosio+%€Ke_§n ——39 w I, (¢)sin2@ (8.6)
0 2

which represents the perturbation of the line of nodes accurately

to the first order, after the satellite makes one complete revolution.
The secular change of the line of nodes is a result of the

bulge effect. The long periodic change is an effect of the atmos-

pheric rotational effect of the Earth. The secular perturbation,

or the regression of the line of nodes, in the above solution, is

a well-known phenomenon., This means that the orbital plane of the

satellite is rotating about the polar axis of the Earth. The minus
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Figure 5. 'The Rotation of Line of Nodes



48 -
sign indicates that the nodal line regresses, that is, moves con-

trary to the satellite as measured along the equatorial plane.

9. The Rotation of Line of Apsides

At any point on a satellite frajectory, for a given set of
orbital elements, a corresponding Keplerian orbit can always be
found which has the same exact element values. Therefore, at
every point on the orbital trajectory, a corresponding Keplerian
ellipse may be formulated. That is, at any particular instant it
may be assumed that, if the perturbation forces were suddenly
nullified, the satellite trajectory would become a Keplerian el-
lipse. There is an analogy between this concept and the total
pressure concept of fluid dynamics. In the total pressure con-
cept, when fluid at any point is brought to rest isentropically, then
the static pressure value of the fluid will reduce to the total pres-
sure, that is, the corresponding stagnation values.

When considering the perturbation nullification concept,
we become interested in two particular ellipses. These ellipses
correspond to points 60 # 0 and 90 = 27, since our integration limit
is from 00 # 0 to 27. The initial ellipse, point 90 = 0, and second
ellipse, point 90 = 27, are indicated in Figure 6.

() notation is used to indicate the values of the second
ellipse, and ( )]f is used to indicate the values which have been
evaluated at poin 90 = 27, Three plane orbital elements must be
known in order to completely determine the values and orientation
of the second ellipse. This process may be accomplished by match-

ing the second ellipse elements with the known quantitiés at point £,
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FINAL LINE OF

APSIDES
INTIAL LINE OF
APSIDES

POINT f
AT 6,=27 INITIAL

POINT

ACTUAL

PATH INE OF NODES
INITIAL
ELLIPSE -AQcosi

NEW LINE
OF NODES

SECOND ELLIPSE

Figure 6. Schematic Diagram of Initial and Second Ellipse and
Their Angle Relationships
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It is knowu that at poiat [ the radius length aud its first dervivative
must be the same. The angular momentum of the second ellipse
may be derived in the following manner:
C = rzé is the definition for angular momentum where:
r:rO+Ar, and8280+A9°

- - 2
C~CO+AC~(rO+Ar) 6

dA©

),
dGO

If we neglect the higher order terms, we obtain

0(l+

= dA8 °
C, = (1+8§€[f)co+z[r090Aﬂf° (9.1)

For the Keplerian trajectory, it is known that:
ol
[

d Uy

A
0

= M
tupg=—"3
ae cé

Therefore, its solution is:

=—i52—(1 - €cos ©

o

For the second Keplerian ellipse, it is known that:

Uy O) .

- u i —_
ug = > (I ~€ecos®
CO

0) )
The above equation must equal the value of u at point £. That is:

Eulf = “’i’ ’

which results in:

P o[1-FcosB,.].= 1 _— (1 -=)
C‘él O£ G oran)|, folt Tols

= uglg [1-uglg Ar)]c]

"

£ -l -5 a-egar] (9.3
C

Z
Co 0
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1-€ Cosﬁolfzw(l—e)[1——%(1-6)A1‘ff] . (9.4)

The derivatives of u must be matched at point f:
dug g 2 dr 2, dar

= = - —— = -1 s
dGO f dGO f f dGO Pf f dGO lf (9.5)

where we used the relation of
dr

By using equation 9.3 and carrying out the differentiation, we obtain:

—'Ez—-.g Sin—6—

2
= ~—H—(1-6)Z[1 - B (1-e)ar ]Zd(Ar) .(9.6)
o off o4 o2 ]f e, lf

0 0 0

Equation 9.1 may be rewritten, since:

90“;7‘C0u »
0

C 2
0
therefore:

(x99 = Couols =&
and equation 9.1 becomes:

dA®

T,=(1+ s, l¢) €, +2Ji—( €) Ar|

0

f ° (90 7)
From these three equations, Namely equations 9.4, 9.6, and 9.7,

d(AB)
dOO lf

for the three new orbital elements, 90 lf’ €, and CO" Therefore the

with the known quantities of Ar lf’ de ‘f’ nd we may solve
elements of the second ellipse may be completely determined. The
above three equations are valid for any order of the €.

From the geometrical considerations apparent in Figure 7,

we find that the new argument of the latitude §a may be expressed as!
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B, =6, +a6[ -B[, (9.8)

hence the perturbation of the true anomaly, for one complete revo-

lution of the satellite is:
6 -0 =26 -8 . (9.9)

If the orbital plane of the satellite remains in a fixed position, the
above expression should be equal to the rotation of the line of ap-
sides., However, the argument of the apogee is defined as measured
from the line of nodes, which after one revolution regresses the
amount, A, as was proved in the previous section of the study.
Therefore, the perturbation of line of apsides should take the change
of 2 into account. Projecting the movement of the line of nodes

into the orbital plane, we obtain:

Aw]f = Aelf - ﬁO'f - Aﬂlf cos (iO+Ai]f) . (9.10)

The above equation is the final expression for the perturbation of
the line of apsides.

In order to evaluate equation 9.10, we must first calculate
the value of 50 l £ By studying the equations for the second ellipse,

equations 9.4, 9.6, and 9.7, 6 may be calculated. 62 and the

0 {f
higher terms will be dropped as in previous simplifications. Next
d(ae

0
following equation:

we substitute

!f and Ar If from equations 7.3 and 6.19 into the

*[1+dA6

‘f] CO+ZC‘%(1-€) Al‘lf. (9011)
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The result is:

c3 c3
60 = CO - 1rKe-é ——‘19 {2(1—2 —l;g-we cos iO)IO(C)
‘ 3
C
0 .
€ [2.]:1(1_',)~Z(ZOIO(§)+4311(§)+1512(?;)) —w,_ Cos 10] } . (9.12)

v

This equation indicates that only dissipating drag force contributes
to the change in angular momentum of the satellite's orbital trajec-
tory. Bulge effect plays no part in this change of angular momen-
tum, since only the dissipating forces consume the orbital energy.

By combining equations 9.4 and 9.6 we obtain:

ol
% a-e)n- —&-l -€)ar | ] 2-%ﬁ¥2[
tanBg | = - o 2 (9.13)
olf Cz

1--5—%- (1-€) [1 “E:Eg (1-€) ar| ]
By modifying equation 9.11 and keeping within the first order per-
turbation terms, we obtain:

— =1+ 25| + 4t ar| - 46 £ oar| . (9.14)

0 0 Co

By substituting the above into equation 9.13, neglecting the higher

order terms, and realizing that Go‘f is a very small quantity, we

obtain!

S gie)? 142 dAel +2(1-e)~% Ar|] d(Ar ]

Gz de,
- — 0
5 |.%tan 8|, = - (9.15)
0'f oif 4AD " >

€ - 2(l-€) Fg— - 35 (1-6)7 arf;

o]f Co

A further simplification of the equation is possible ifi

€ >>§—A—9 and € >>—E—Art . (9.16)
de, If 2 f
0 CO
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Usually the above statements are true., since the perturbations of

dA©

dGO C

order of magnitude in one satellite period will be very minute. In

lf and —%Ar}f are produced only by the drag effect, and their

general, equations 9.16 will hold true in most satellite cases.

Assuming this, the denominator of the equation 9. 15 may be ex-

panded. Now we see why it is necessary to carry out %gj cor-
0if

rectly to the 62 order terms, since the denominator is an order
of €. The expression for eOIf as indicated in equation 9,15 will not
degencrate, duc to the small denominator, since the numerator

itself is proportional to dar , Which is on the order of €.

de

0 If
After a simplification, _éolf becomes:
= 3 JZ. _&__3_ Z 2
eoff = —2-.—5 o 7 (1-5€¢ [(2-3 sin 1O)+ 3sin™i, cos zea]
2 0 3
10 2 o
TOKe “—=m" [Ig(L)-2 eIy(L)te I (L)-2 ;Z"weCOSiO(IO(Q)—ZEIO(Q)~611(§))].
(9.17)

Now, we have all of the elements needed to solve for the

and

perturbation of the line of apsides. Substituting A0 £ 6O]f

AR P from equations 7.4, 9.17, and 8.6 into equation 9.10, we

obtain the following result:

J 3

372 R .2,
Awl =2 LB 4 [(4-5 sin®i,) + 16€sin”i, cos 26_]
£ 2 0 C4 0 0 a
0
+Ke 4.:3. o cos iy [8m(2-3€)I(1)-16 exT, (L)

oofw

611(2;,) sin 2 ea] . (9.18)
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This equation gives the rotation of line of apsides per satel-
lite revolution. The first order secular term in the equation contains
only .]'2., Surprisingly, all of the secular parts of EJZ, and the drag
effects of the order of K and €K are cancelled out during the substi-
tutions in equation 9.10. The secular part of the line of apsides,
caused by the drag effect is due to the rotation of the Earth's atmos -
phere. However, the dominating major secular part is due to PP

and is:

ty

L3 2
Lo m (4-5 sin®i)
o

The rotation of the line of apsides, caused by the JZ or

~

3
2

0
< v

Aw .
maj. sec.

flattening effect of the Earth is one of the most well-known features
of satellite motion. When the inclination angle, i = iC, and ic =
639430, that is sin'2 iC = 4/5, the rotation of the major axis of the
satellite trajectory, due to the first order perturbation stops. The
inclination angle ic has usually been called the critical inclination
angle. The importance of this critical angle is related to the fact
that for 0< i< ic, the motion of the argument of apogee is positive,
or advanced, and for i <i< 7/2, the motion of the argument of
apogee is negative, or regressed. 'The rotation of the major axis
advances about 15 degree/day for near equatorial orbits, and re-
gresses about 4 degree/day for near polar orbits.,

Besides this major perturbation, we found that the line of
apsides will rotate due to the drag caused by atmospheric rotation
of the Earth. Due to this drag, the line of apsides advances for an
easterly moving satellite, and regresses for a westerly moving

satellite. JZ is the dominant effect in the secular part of the
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rotation of the major axis and drag is a very minor effect, never-
theless the drag effect is significant in precisely tracking the

satellite, or in doing a geodetic study,

10, The Description of the Satellite Motion
In this section we are going to put together the results of
the foregoing analysis, thereby giving a complete description of
the motion of a satellite,
First, we will calculate the change in eccentricity of the
orbit per revolution. Through considering the second and the

initial Keplerian ellipses as introduced in the last section, we

obtain:
. PN
€ cos eglfz 1 ——(—:—2—(1—6)[1 g (l—E)ArIf] , (10.1)
0 ‘0
and
T =Co(1+320 )10 (1) ar|, . (10.2)
0 0 a6 f
o|f C,

It can be seen that -é_O'f is the first order perturbing quantity,
O(m), therefore the left hand side of equation 10.1 may be expanded.

From equation 10.2 we obtain:

T=1-[1-et2(1-6) 22 +301-0)% & Ax| +0(+F)] .
de,, | z e
0 If Cs
Therefore:
Ae :'E—-£:=~2(1~6)——§ —3(14ﬂ2-i1 Ar] +O(n2)° (10.3)
f ey, | o2 f

0

The above equation is the perturbation of the eccentricity of
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the orbit, per satellite revolution. KEquation 10.3 is valid for any
value of €., In order to be consistent with previous calculations,

we will neglect in present calculations both the higher perturbing

and eccentric terms. By substituting Ar If an from equa-

dAB
q 82v

a8, |
tions 6.19 and 7.3 into equation 10,3, we obtain:

¢ So4,., Co

A€ if = -Ke ®7 T {4(1-& —- @, cos 10) Il({;)

p C3
v ) 0 .
+E[[2;[IO(§)—IZ(§)] + 2 [510(§)+811(g)+1512(§)] — wec0810]] } (10. 4)
-

From the above result, we see that the perturbation in
cccentricity is caused by the drag effect alone,

After the change in eccentricity of the orbit is found, it is
relatively easy to calculate the change in major axis a, and the

perigee distance rpo From the geometrical relationship of the

elliptical trajectory, we have:

raza(1+€) and rp:a(l—e)o (10.5)
Therefore:

Aa = o [Ar_ - ane]
and:

Da| = o [Br], - abe ] . (L0. 6)

By substituting Ar}f and A€ If from equations 6.19 and 10,4, then

neglecting O(Ea) and higher terms, we obtain:

c? c?
Aa]f = —Ke—?;n -——g {4(1—2 —;-g w, cos 13(?) IO(Z;)
C
+ € {[411(4)-[10(@ + 1512(@] -—-;:’ w, cos io]]}. (10.7)

M
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From equation 10.5, we obtain the perturbation of the

perigee distance Arp as follows:

Arp‘f = (1-¢€) Aa]f - al€ ‘f

. Co Cq
= -Ke ’IT-}:Z' {4(1—2 ;—gwecosio) [IO(?’) - Il(é)]

+e [[610(2;) - 4:11(§)” ZIZ(E)
C3

+[9IO(?§,)—2411(§,)+4512(§)] —-g w_ cos ioﬂ} (10.8)
M

The loss of orbital energy per revolution can also be calcu-

lated, since the energy of the orbit is given by!

o _
2a
Therefore:
S
AElf 5 Aalf
2a
¢ C
= -Ke °1 H{Z(l-z — w, cos 10) IO(Q)
B
C3

+e [[211(g) - %[Io(g) + 1512(9] —%)wecos ioﬂ} (10.9)
M

The satellite motion can be completely determined from the
preceding work, if the initial conditions are given. Our initial point
in the satellite orbit has been chosen at apogee, and the values of
the orbital elements at this instant have been designated by the sub-
script 0.

After one complete satellite revolution, the apogee distance
measured from the center of Earth, will be decreased by the amount

given in equation 6.19, which is correct to the first order as follows:
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4 3
¢ o €y
Ar - Ar!f =~ -Ke ° w;—z 4(1-2 —;2 w_ cos iO)[IO(§)+Il(l;)]

+e ([ 21310(2) + 21(2)-1,(8)]

+ [IO(§)+1611(§)+1512(§)] -——g w, cos io] (6.19)
&

The perigee drop is given in equation 10.8.

The satellite orbit will spiral in, with a drop in eccentricity,
A€ £ after one revolution, as is shown in equation 10,4, The orbital
velocity of the satellite will be changed by the amount AV g0 @s given
in equation 7,10, The orbital plane will rotate about the polar axis
in a direction contrary to the satellite. The amount of rotation,
AR £ is given in equation 8.6. During the rotation of the orbital
plane, the inclination angle will be changed by the amount Al ’E given
in equation 7.12. The elliptical path of the trajectory is rotating in
the direction of the moving satellite, as is evidenced by the rotation

of the line of apsides. Awlf, the amount of rotation of the major

axis, is obtained from equation 9.18.

11. Numerical Examples

Two numerical calculations will be carried out to estimate
the perturbations of various orbital elements. The numerical data
of the first example corresponds to the first United States manned
orbiting satellite case, 1962 Gamma 1. The data of the second
example corresponds to Vanguard I, 1958 Beta 2, which has been
tracked carefully for many geodetic studies. The above-mentioned
cases represent two extreme situations in satellite altitudes and

eccentricities.
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The data about the Earth used in this study is adopted as

follows (p. 63, Ref. 15):

R = mean radius of the Earth = 6,367456 x 106 m
b= GMg = g R® = 3.986016 x 10" % m>/sec?
JZ = second coefficient of harmonics of the gravitational

potential = 1.0825 x 107>
w, = angular velocity of the Earth = 0,7292 x 10"4 rad/sec
The density and the molecular-scale temperature data are
obtained from '"'U, S, Standard Almosphere, 1962'"" (p. 8 and p. 11,
Ref, 16), The numerical values of modified Bessel functions In(g)
are computed from their asymptotic form. Since the argument of
these In(ﬁ)’s in our cases are found to be great enough, their asymp-

totic form may be used, The asymptotic form is as follows (Ref-

erence 17):

¢ 2 .2 2 44 & i
I (¢) = e {1 _4n"-1 N (4n~ -1 )(4n2-3 ) (11.1)
n VZng 118¢ 21 (82)

In fact the above series converges very rapidly for small n.

Case 1.

Adopted data for 1962 Gamma 1:

Zp = perigee altitude = 98 miles = 158 Km

Z_ = apogee altitude = 160 miles = 257 Km

S = frontal surface area = 28.2 ftZ

m = mass of the satellite = 2900 1bs = 90 slugs
1 = inclination angle to equator = 34, 5°

C = drag coefficient = 2
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The eccentricity € of this orbit can be calculated from:

r -Ir

=2 P _ ;
€ = ra+r = .00759 , (11.2)

O

where: r_ = geocentric radius of apogee = 4120 miles
T, geocentric radius of perigee = 4058 miles
The density and the molecular-scale temperature of the atmosphere

at perigee height are:

p = 1.265x 10" kg /m> = 2.45 x 1074 slugs/ft°

o (11.3)
TM = 1080" K
Using the gas constant at sea level:
/\JO = 2,875 % 106 cmz/secZ OK,
we can compute the non-dimensional parameter { as:
¢ = Wi_ = 7 pe =1.49 . (11.4)
CO OTMrp(i+€ )
The drag parameter K can also be obtained as follows:
SC_.p ;
D¥s _ -1z
K=——— =0.77 x 10 1/ft (11.5)

From the asymptotic form of equation (11.1), we obtain:

1,(1.49) = . 378 x ol+49

1,(1.49) = .227 x o149

1.49

12(1,49):.104xe (11.6)

The semilatus rectum is:

p=rp(1+€):6.56x106m=2.15x107ft0, (11.7)
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and the angular momentum is:

Co= Vpp =5.11x 1019 mz/sec = 5.5% 101 ftz/sec (11.8)

From these values we can obtain the following perturbation quantities

per satellite revolution.

The perturbation in apogee radial distance is:

ct cl
Ara = -K ﬁ e—z"v {4(1—2 ;29 w, cosio)[IO(C,) + Il(é)]
3
C
re 2 3Lp(0)+21, (0T, (0] +[1(L+ 161, (£)+151, (0] -2 w_cosigl}
[
= -2480 ft/cycle (11.9)

It is surprising that the correction factor due to the rotation of

atmosphere in the above equation is about 10% of the total value,

since:

c3

0 .
Z;—.—Z— wec051o-—91035,

(11.10)

therefore the above correction is quite significant.

The secular part of the regression of the line of nodes is:

7, 3 5
AR = -37 = Lo cosi = -.815 x 107 rad./cycle (11.11)
50 C,

The secular part of the rotation of line of apsides is:

3 )
Aw-*-}-ﬂ——éL (4 -5 sinzi )
2 4 0
0 C
0
5
t% 2 . .
+ 8Ke — T ey c0910[(Z—3E)Hﬁ§)«2€ll(&)] (11.12)
B
. -2 -4 . -2
=1.235% 10 “+.506x 10" "=1,2411 x 10" “ rad./cycle
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In the above equation the drag efiect is about a half-percent of that of
the bulge effect, The secular part in the perturbation of the inclina-
tion angle is:

5
%o

2
P

-6

.644 x 10 rad./cycle, (11.13)

Al = _Ke"é T o sin io[lo(é) - 3¢ Il(z;)]

H

which is quite small.

The perturbation in true anomaly is:

O -0_=.5531x 107 rad./cycle . (11.14)

a

The orbiting velocity of the satellite will increase by the amount AV

at apogee, as follows:
3

o
AV = Ke"z—w COTI'{(l-'Z — w_cos i, i [ZI 2_1,)+4I ()]
M C‘.3
-€ [[1011(g)+212(§ M+ [27IO(§)+5411(§,)+1512(2_;)] ——Z(-Jme cos 1011}
M
= 19,3 ft/sec,cycle (11.15)

As before, the correction of AV, due to the rotation of atmosphere,
is of the order of 10%.

The perturbation in eccentricity of the orbit is:

2 3
C C
A€ = —Keﬁé TT""Q {(1—2 O cosio) 41 ()
B 2 e 1
b 3 l
+e [ 21,(1)-21, (042 [ S1o(L1+8I (1)+151, (1] —-%w c081O]]’

P

= 428 x 1074 1/cycle , (11.16)
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which is very small,

The perturbation of the major axis is:

1 a3
Aa Te [Ara~aA€ 1 =-1.55x 10 ft/cycle,

i

and the period of the satellite can be obtained as follows:

3

T = 27 (2-)" = 5320 sec, = 1,478 hr,
sat. M

|

Case 2,

Adopted data from 1958 Beta 2:

a = major axis = 1.3618 R

€ = eccentricity of the orbit = 0.1903

i = inclination angle to equator = 0.5977 rad.
d = diameter of the satellite = 6.4 in.

m = mass of the satellite = 3,25 lbs

CD = drag coefficient = 2

The perigee radius rp may be calculated as follows:

rp = a(l-€)=7.018 x 106 m = 4360 miles .

(11.17)

(11.18)

At the above altitude, the density and the molecular-scale tempera-

ture of the atmosphere are:
b = 6x 10712 Kg/m> = 1,165 x 10717 slugs/t>

o
TM = 26507 K

The parameter { and K are:

£ =11,92

-14

K=,261x10 1/ft

(11.19)

(11.20)
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The modified Bessel functions are:

1,(11.92) = . 1215 x 1192
1,(11.92) = . 112 x el 92
12<11.,9z):.098xe”°9Z (11.21)
The semilatus rectum and the angular momentum are:
6 . 7
p=8.37Tx 10m = 2.75x 10" ft
CO = 5,77 x 1010 mz/sec = 6.2 x 1011 ftz‘/sec (11.22)

The corrections in Ar, AV, and A¢, due to the effect of the

rotation of atmosphere are as great as 14, 6%, since:

C3

. 0 _— ~
&—?we cosigy = 14,6 x 10

38

Z (11.23)

The perturbation in the length of the radius of the apogee is

very minute, as is shown by:
Ar_ = -6.35 ft/cycle (11.24)
The rotations of line of nodes and the line of apsides are:

A= -.498 x 10”4 rad, /cycle

H

‘o .0 x 107" rad. /cycle (11.25)

Aw = .73 x 107

i

. , -5
The drag portion of the rotation is about 10 7 of that of the bulge
effect,
The perturbation of the inclination angle Ai and thc cccen

tricity, A€, of the satellite orbit are:
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Al = -, 64 x 1077 rad/cycle
-7
Ac = -.91 x 107" 1/cycle (11.26)

The perturbation of true anomaly is:

G, -6, =.318x10"" rad./cycle (11.27)

The perturbation of the orbiting velocity, AV, and the major

axis, Aa, are:
AV = .173 x 1074 ft/sec, cycle (11.28)
Aa = -3,18 ft/cycle (11.29)
Finally, the period of the satellite can be computed as:

T = 8.05 x 10° sec = 2.238 hr. (11.30)
sat.

12. The Possibility of Extension of Theory

A satellite motion theory has been developed which may be
used in most artificial satellite cases. One of the merits of this
analysis is the ability to handle the bulge and drag perturbations
simultaneously, within one reference coordinate system. This
permits us to further study the higher order perturbations, and
their coupling relations. The set up of the equations of motion,
3.15 through 3.19, is rather general.

In order to simplify the calculations, the eccentricity €

of the orbit in this study has been kept to the first order accuracy.

(A T)

dQO

Exceptions to this are the perturbations of Ar and » which
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have been evaluated to the second order accuracy. In principle,
the present theory can be carried to the higher order of € without
much difficulty.

In this study the atmosphere has been assumed spherically
symmetric. The effect of the ellipticity of the atmosphere is very
small, but would be of interest in a further study.

Other minor perturbations caused by the celestial bodies,
the electro-magnetic effect, the light pressure, and so on, can be

included in the forcing functions if a further study is undertaken.
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III. APPLICATIONS
1. Corrections to the Spherical Harmonics of the Earth

The major object of any satellite theory is the prediction,
determination, modification, and selecti;on of satellite orbits.
Furthermore a satellite theory provides a method for geodetic
study. Since an artificial satellite orbit is much affected by the
external gravity field of the Earth, this field may be studied by
observing changes in the satellite orbit.

Estimates of the shape of the Earth have been tremendously
improved since the launching of satellites, Geodetic studies using
satellite orbital data are superior to studies measuring the gravi-
tational variations along the Earth's surface.

As stated in the second section of the previous chapter, the

external potential of the Earth can be written as (Ref. 18):

n
U=E[1+ s 2 (B—) P™(sinp) (C cosm\+S sinm\)|  (1.1)
r aeln=0 T n n,m n,m

C =-J =C S =0

n, 0 n n’ n, 0

where P‘;n is the assoclated Liegendre polynomial, N\ the longitudinal
angle, and C and Sn m 2Fe the numerical coefficients. If the
2 2

Earth is symmetrical about the polar axis, the above equation may

be reduced to:

u=E1- 25 & P (sinp)] . (1.2)
r n=] BT n

The above form was used in this analysis. To determine the coef-

ficients of spherical harmonics, or Jn, is equivalent to determining
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the shape of the Earth; since Jn's are proportional to the amount of
departure from a shape in hydrostatic equilibrium.

It may be seen from the pr evi;ous chapter in this study that
the perturbations of the orbital elements will contain J"n's. The
difference between adopted and actual Jn’ s yields the discrepancies
in the observed data and theoretical calculations. From these dis-
crepancies, a method for obtaining more accurate information about
the actual Jn's may be established. There are many papers by
various authors which estimate Jn values. An example of extensive
study of Jn's is a paper by Lecar, Sorenson, and Eckels (Ref. 19).

This study estimated the value of J, and J4 , without considering

2
the effects of drag and Lunar and Solar attraction on the satellite.
Later, O'Keefe, Eckels and Squares (Ref. 13) corrected the Jn
values of Liecar et al., by including previously unaccounted for
minor perturbations. The O'Keeafe et al. study corrected not only
the even order of Jn’s proposed by Lecar et al., but also discovered
and estimated the existence and values of the odd harmonics of the
Earth. However, the present analysis has considered a factor
not accounted for in the study by O'Keefe et al.; as a result of
new considerations, a correction of the even order spherical har-
monics has been carried out in this study.

O'Keefe et al. obtained the rate of movement of the lines of
apsides and nodes due to Jn‘s alone. In a satellite tracking situation
the observed data contains the effects of drag coupling, and Lunar

and Solar attraction. Therefore one must decouple these effects

from the actual observed data before such data can be used for
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estimating the Earth's spherical harmonics. O'Keefe et al. noticed
that drag coupling contributes to the change of eccentricity and
major axis length of the satellite orbit. Their paper also related
the change in the length of the majoxj axis to the change in the mean
anomaly. The perturbation of the mean anomaly due to drag can be
obtained from satellite tracking data. O'Keefe et al. estimated the
drag coupling effect on the rate of rotations of the apsidal and nodal
lines from observed data on the mean anomaly.

O'Keefe et al.'s approach is expressed in mathematical
terms in the following presentation.

The secular part of the perturbation in the rate of change

of the lines of apsides and nodes is:

J. 3
& = 3n—-2-li-4 (1 —-?l-sinzi) (1.3)
80 C
0
J. 3
Q:-in——&—-&——cosi (1.4)
Z g cg

The notation uscd above is slightly different from that used
by O'Keefe et al. Where they used A2°0 = pJZRZ, we use JZ
explicitly. In the above equations, n = mean motion, which is de-
fined as:

Vo 3

n=-LX= pa?, (1.5)
where VC is the equivalent circular velocity.

By making use of equation 1.5, & and Q can be expressed as:
1, (1-2sind)
2 JZR e (1.6)

22 (1—62)2

5):3p
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o

= 3 2 cos i
2 = > P JZR 7
az' (1-€

(1.7)
2,2

)
The major secular drag effect on the satellite will decrease

the length of major axis a, and the eccentricity € of the orbit. There-

fore the change of @ and £, brought about by the above perturbations,

will be:
N 1 9%
Aw~—a? A€ +—5—£Aa (108)
19 o2
ML= 5= A€ F o= Aa (1.9)

If it is assumed that the satellite's perigee radius will not be per-

turbed, A¢ can be written in terms of Aa, as follows:
A€ = l—é——g ha (1.10)

The integration of Aa may be related to the mean anomaly through

the relation:
i

g‘Aadt '-:-'—E a>
A 3
0

&

3]

AM , (1.11)

By neglecting terms of higher order than GZ, the expressions

for Aw and A2, from equations 1.6 and 1.7, may be written as:

1 )
_ 3 2 1 5 . 2., rT-€ .
Aw = p? J R™ — (1 7 sin i) [-——-—-—He} J, AM (1.12)
P
1
- _ 1 3 2 1 L r(-€
A= -3 JZR = COSl[———~1+€] JZ AM (1.13)

where p = semilatus rectum = a(l~€a),

Equations 1.12 and 1.13 represent the perturbations of w and
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2, due to the coupling effect of drag with the oblateness of the Earth.
Subtracting the values of Aw and Af2 from the observed data, O'Keefe
et al. arrived at their so-called ''corrected'' values. In addition,
they subtracted the effects due to the Moon and Sun, according to
Kozai's calculations (Ref, 8).

In the present analysis, it was found that the line of apsides
has a secular perturbation., due to the drag caused by atmospheric
rotation, For the satellite Vanguard I case, which was used by
O'Keefe et al, and various authors in their geodetic studies, the
mentioned drag perturbation is very minute at very high altitudes.
O'Keefe et al, neglected this minute drag perturbation in their
study. As a result the error introduced is equivalent to almost
one half of the solar effect, or one fifth of the lunar effect.

There exists a perturbation of the line of apsides caused by

drag, therefore the correct expression for the rate of rotation of

this line should be the sum of all of the perturbation effects. If the

total rate of rotation of the apsidal line is btot , then:
. =Gt Gt T W TG .
ot = 7 T @pg T eg T egr T 9 (1.14)
where:
CoJ = rate of rotation of apsidal line due to the bulge of Earth
Zde = rate of rotation of apsidal line due to the effect of
coupling of drag with &y
&d = rate of rotation of apsidal line due to drag
c‘de = rate of rotation of apsidal line due to the effectl of

coupling of bulge to &)d
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°

Wy, = rate of rotation of apsidal line due to the other
cclestial bodics
Usually &)cb considers only the Lunar and Solar effects,

namely:

° o

w = @ +
cb moon sun

€

(1.15)
O'Keefe et al. considered only a portion of equation 1.14, that is:

“tot. = 7, T “5,4 T o (1.16)

Therefore their correction was not complete,

In the Vanguard I case, it was found that wy and Wy rotate in
2
the same direction. Therefore Zod should be subtracted from the ob-

served data. The w,. term, representing the drag caused by the

dJ
non-spherical atmosphere, should be negligible, since &)d itself is
very minute. Therefore it is reasonable to neglect the fodj term

completely. The paper of O'Keefe et al. did not take into considera-

tion effects of the order of @ or higher. @, will be on the order
J4d .I4

of a thousandth of &)J o In the correction of the observed data, :Ud
2
and wr 4 do not cancel each other out, since the direction of these

4
rates is similar. In this study, the effect due to drag is considered,
thereby obtaining a closer approximation of the NI values.

To compute Zod for the Vanguard I case, we refer to equation

9.18 of II. From this equation, the secular portion of the rotation

of line of apsides may be stated as:
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C

O Ut

6y = gKe ™ © - v, cos ig [(2-3€)I(Lr2€ (1)) (1.17)

o

V8

The numerical value of wy may be computed from section 11 of II as

follows:
-7
W, = 0.586 x 10" " rad,/cycle . (1.18)

The period of the satellite in the Vanguard I case is:

3.3l 3
_ 2
Tsato ~2Tr(“) 8.05 x 107 sec,

therefore, the rate of rotation of the line of apsides in this case is:

&dz 0‘,63:»(10"6 rad./day . (1.19)

&)d is quite small indeed; in fact, it is in the order of one
fifth of the Solar, and one tenth of the Lunar effects, respectively.
However, in the paper by O'Keefe et al,, there is a difference
between the observed data and the calculated value of &. The dif-
ference between the real observed data and the calculated value
of & in O'Keefe et al. is accumulated. The error introduced by
neglecting é’od is almost of the order of one half of the Solar and one
fifth of the Liunar effects, respectively. This small error quite
possibly could produce a slight modification in the numerical value
of JZ’ or a correction to the value representing the shape of the
Earth.

Discrepancies between the observed data and the calculated
values for & and € may be adjusted through using the following error

equations:
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9w I
w= AJ_. + AT, = Aw
87, Tz T aT, T4
a2 of2 e ,
—B’j—gAJZ + EAJ4 - AQ (10&0)

By referring to the paper of Lecar et al., the coefficients of the

above equations can be calculated as follows:

3% _ 3mwR% 5 2

—_— = (2 - = sin™i)

o7, " 2 2
. 4 ﬂ _

5?3 - . 30mR [(1+%:EZHI—SSinZi+%?sin4ﬂ+cosziﬂx%éﬁa)ﬂ.wzsinziﬂ
4 4p° g 4

o _ 37R%

aJ. = - 2 COs 1
Z p

o _ 307r% 3 2 7 .2

-—a-j:——-:: > coSs 1 (1 + —Z—E ) (1 —Zsin 1) (1021)
4 4p

By using the above equations, the numerical values for the Vanguard

I case can be computed as follows:

g%i.: 6.6105 g§i-= -1.3744

2 4
98 45005 282 _ 3. 0848 (1.22)
8T, 97,

As a result, we may carry out the correction of the Van-
guard I case data by using equations 1.20. The modifications of the
data will he based on the numerical values which were computed by
Lecar et al. O'Keefe et al., also used these numerical values,

which are:

JZ =1082.1 x 10"6

6

J,=-2.359 x 10~ (1.23)

4
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O'Keefe et al., using the ahove values, calculated the rate of rota

tion of the apsidal and the nodal lines of the Vanguard I case, as

follows:
& = +.0767684 12d.
cal day
o _ , rad, )
Qcal = -, 0525610 Tay . (1.24)

The actual observed values in the Vanguard I case are:

° - rooan Fade
Sop = ++ 0767920 ZEC
> _ : . rad. -
Qcal = =% 05&56&24 azzly: . (19&J)

The Solar and Lunar effects in this case are:

® (rad./day) Q (rad./day)
Solar Portion +.31x107° -.23x107°
Lunar Portion +.68 x 10_5 -.49 x 10‘5 .
(1.26)

Therefore, by referring to the value of &)d in equation 1.23, we
obtain the discrepancies between the calculated and observed values,

resulting from the bulge effects. The discrepancies are:

131 x 107 % rad. /day = .1222 x 10™° rad. /cycle

>
€
i

= .6 x 10" % rad. /day = .5595 x 107° rad. /oycle . (1.27)

5

By substituting the above values of Ab and AQ and the coefficients

in equations 1.22 into equations 1.20, we may solve for AJZ and

AJ4, as follows:
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AJ ., =

> .32 x 10"6

_ -6
AJ4- .651 x 10

The above values for AJZ and AJ4 may be used in modifying
the values of JZ and J4 in (1.23), as follows:

= 1082.42 x 10*6
corr,

= -1,71 % 10“6

COorTr,.

A comparison table of values arrived at in three studies follows:

Liecar et al, O'Keefe et al,

Cur values
) -6 -6 -6
» 1082.1 % 10 1082.53 x 10 1082.42 x 10
J4 —2‘,359x10—6 ~1.7;><;1()~6 —-1.71x10—6
f 1 1 1
298.32 296.24 2986.27

f is the flattening of the Earth defined by
_a-b
f= 5

a

H

semi-major axis, b = semi-minor axis.

It is interesting to observe from the following table that

men have been working to improve their knowledge of this planct

Earth for the past hundred years.
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FLATTENING OF THE EARTH

Name of Authors Year 1/
Everest 1830 300.80
Bessel 1841 299.15
Clarke 1866 294,98
Clarke 1880 293,47

International before
Adopted 1957 297,00
O'Keefe 1958 298.38
Jacchia 1958 298.28

Lccar, Sorcnson, Eckels 1959 298.32

O'Keefe, Eckels, Squares 1959 298.24
King-Hele 1960 298.24
Kozai 1960 298.30
Kaula 1961 298.24
de Vaucouleurs 1961 298,20

o,
B

Reproduced from References 15 and 20,

2. Coupling Effect in the Forcing Function
In satellite motion, orbital elements are constantly changing
their values, Strictly speaking, all of these changes should be con-
sidered in our calculations. Changes in orbital elements appear
on both sides of the equations of motion; yet changes in the forcing
function more significantly affect our solutions.
The values of orbital elements are affected by both the

oblateness of the Earth and drag effects, As a result, we expect
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2
2
drag parameter, has been defined as: K = (SCDpS)/Zm. The above

to arrive at terms such as O(J7), O(JZK) and O(KZ). The term K,
expressions are the self and cross coupling terms. In order of
magnitude, these terms may be significant, when compared to higher

order harmonics like J3, J JS’ and so on. Many authors consider

4’
the higher order harmonics in their calculations, without investi-
gating the possible coupling terms as illustrated above.

From prior analysis, we know that the forcing functions

which contain JZ and K, in their —i—r’ ~i—6 anc‘i__i_l1lJ direction components,
are as follows:

3 R 4 2
Fr = - EJZgO (;-) {1-3[51n(e+6a)sm1 cosy + cosi smtp] }‘

. . L.,
-KG(I‘)VR [r - Tw cos(6+6a) sin”i sin Y]

4
3 R /P NP ,
Fg=-57,8, () [sin”i sin2(6+6,) cosy + sin2i cos(6+0_)siny]
~KG(r)VRr [cosx{;é - W, cosi cosy + W sini sin (9+Qa)sim\11
3 A
FLP = - -?:ngo(?) {sm (6+6a) sin 2i cos 2y

+ sin 2y [coszi - sinzi sin(6+6a)]}

- KO(I‘)VR r [q) tw_ cos (6+6a) sini cos ¢} . (2.1)

Next we shall calculate the perturbations of the above components.
Taking Fr as an example, we know that after perturbing it

will become:
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F,=F, +AF (J,,K)

0
J 2 . * , ,

- .Z: 2 {1-3[s:’mz(GOjL9a+A9)sinz(iO+Ai)cos&Aq;
80 (r +AT)

+ % sin (0,746, +A0)sin2 (i +A1)sin2Ay + cosz(iO+Ai)sinZALp]}

- KG(r)(VO+AV)[(i'O+Ai')~(r +Ar)wecos(6

0 +0_tA0)

0

X sin&(io + Ai) sinZALp]

Expansion and simplification of the above results in the following

two parts. The main part is:

2 C

Fr = - %_é—;ﬁzi (1-3 sillzgosillzio)~Ko(r0)i’OVO(l———%wecosio) ,
0 0 ry VO

and the perturbing part is:

I, 2 . )
3 2pS i AT, 2w 2 L N2,
AFr(JZ,K) = -3 2 4[4 r0(3s1n 0,sin"i, 1)-3A6 5in2@ ) sin"i
o
- 3A1 sinZiO sinzao - 3AY sin@o sinZiO]
Co _ ~ . 2 . ,‘
+K0(r0)[A¢rOVO(1— ;—Z-wecomo)wecoseo sin 10——AV1'0] . (2.2)
0

A similar treatment of ', aud F | results lu:

0 $
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F_=F +AF6(J2,K)

e 90
2 : C
_ __?1___@_ - S 0 1
=-3 2 r4 sin 1051112.90 KG(rO)VOrOE)O[ (;—Z—+g—)w cos10]
0 0 0
J 2 , o )
—%—Z— EZ [ZAesindiOcosZ(—) S 4l sin%i sin2O
g 0 T 0 0
0 r 0
0
+ Aisin2i sinzé'o + Ay sin2ig cos § ]
CO = dAB Ar
_Ko(ro)rOVO(l - —_\7-2—036 00510) {GO a-ga + (é0~wec0510)[—£~6
0
AV . .~ -
+ = ]+(A1+ Axpsmeo)wesmlo } (2.3)
v (1———~9w cosin) ”
0 VZ e 0
0
F =F + AF
J, 2 C
- 372p" L= . 0 . -
=-5 2, r4 ameo SanlO o(r O)Voro( VZ' wecole)wecoseosmlO
0 0
- —Zg(—)-s:z [Aecoseosin210~4 ?6 sineosinZiO+ZAi cosZio sin@o
0
+ Ay (coszio - sinzgo sinzio)]
CO o dMN\ . Ar
~Ko(ry)Vory(l - "““Z‘weCOSiO)[eO 30, e wecoseo sini
VO o
-ABw sinb siniy + Al cosb cosio]. (2.4)

Since A6 is proportional to JZ and K, Ar is proportional to
K and so on, we see that the coupling terms O(Jé, JK and Kd) exist,

In order to compare the order of magnitude of the above coupling
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B
terms with the higher order harmonics JS, J4_, o003 We must

examine the perturbing gravitational potential, ¢, of the Earth,

since:
o0 n
u=E1-zyg (5) P (sinp)],
re =] nT n

where

sinf = sinf sini cosy t cosi siny .
Therefore:
6= L8 B 5 1seinte) - 1E R 5 (5 sind - 3 sinp)

=57 2 sin™f 57 (7 3 sin”f -~ 3 sinf
1 g R4 2 4
"5 T (—r-—) J4(3—3051nﬁ+35sm B+ cose (2.5)

As a result of the above, the force components due to gravitational

potential are:

_ 99
Fpr”’a—;
J 2 2p J
372 Z R "3 .3 .
z_z?ﬂz(1~3smﬁ)+2&—~———5-(551nﬁ~3s1n6)
O r 0 r
574 3 2 4
tg—— B2 (3 - 30 sin"B + 35 5in"B) (2.6)
8gO:r
P oo 1w

p8@ rcosy 00

J J

Z
1p ~ L 2 . R "3 .2
= -~ =+~ cosB cosB sini [6 — sinf + 3 — — (5 sin"PB-1
7 cosp co (652 sinp + 3 2= (5 sin’p-1)
2J )
+5) 2 sin (7 sinp - 3)] (2.7)
0

“Others usually have considered the even harmonics in their calcu-
lations since the odd harmonics give the long-periodic type change
only. Nevertheless, J, has been included here for generality.
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1 8¢
F =59
py r Oy
18 = ’2
= »Z—Ez (sin® sini siny - cosi cosy) cosp [6 P sinf
r
J ) 2J )
+ 32 35 5in%-1) + 5&) —2 sing (7sinp -3)] . (2.8)
T g Tog

In this study the order of magnitude of various terms will
be compared. For easier calculation, several assumptions are
going to be made, in order to simplify our problem. In a more
accurate calculation, the following simplifications need not be made.
Assumptions:

1. The satellite trajectory is so close to a circular orbit
that terms for eccentricity higher than the € order may
be neglected.

2. The modified Bessel functions In(é) for n = 0,1 and the
large argument { cases can be approximated by retain-

ing only the first order term in the following series:

I (¢) = e’ {1 _anfo1f }

Vi 11 8¢t
Hence:
. e®
Iy(8) = 1, (%) N\/frr_l,—

3. The effect due to the rotation of atmosphere may be
neglected in this particular calculation,

4. If any term in the forcing function oscillates, we con-
sider the oscillating term’s amplitude only.

From these simplifications and prior calculations, we obtain
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<
Ar ~ - 8Kn
povang
I, 3 ]
AB~ by -2 B+ 6Kn”
€o Cy

oy

5 3

Ay ~ é—w 2 P
2 C4

0

- 2m
AV ~ 3KC T
2
C
HLO) o 14Ky D
0 By 2nl
J. 3
day) 3 T2 po
deo 2 g9 C4
0
. d{4r)
L1~ 0, a6 0

<%
ro~ — , Vo~
0
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Z
0

pvand

(2.9)

The forcing function components, including the coupling terms and

the higher order harmonics up to J4, in ~i—r’ i

may be expressed in terms of the above equations, as follows:

directions,
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In order to calculate the numerical values of each term
appearing in equations 2.10, 2.11, and 2,12, we must calculate
the drag parameter K and the non-dimensional parameter (.

The drag parameter K is proportional to the parameter (SCD)/:m.

SCp [ftz ]
2
m psat.d slug
where Poat is the average density of the satellite, and d is the

characteristic length of the satellite. For ordinary satellites the
value for the above is slightly greater than 1. For the balloon
type satellite, such as Echo I, the value for the above is nearly
3000, For extremely small particles like meteorites, this value
is very large and may be somewhere between 200 - 1000, The
drag parameter K vs, the altitude of conventional satellites has
been plotted in Figure 7, The non-dimensional parameter {,
vs, the satellite's altitude, for small eccentricities of the orbit,
is shown in Figure 8,

From Figures 7 and 8, the numerical values of the order
of magnitude of various terms in equations 2.10, 2.11 and 2.12,
for conventional satellites, have been calculated. The results
of these calculations are shown in Figure 9. It is interesting to
see in Figure 9 that terms such as [Ji] are of the same order
as [J3] and [J4] , whose values are almost independent of the
satellite's altitude. The cross coupling terms in Figure 9, such
as [JZK] are strong functions of the satellite's altitude. Around

100 miles above sea level, the indicated cross coupling terms
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are as significant as the [J?)] or [14] terms. At an altitude of
200 miles, the values of the cross coupling terms quickly drops
to only a few percent of the [J,] or [J4] terms. Terms such
as [KZ] are very much smaller than [J3] and [J41 at an
altitude of 100 miles or more, therefore in practice they may

be neglected.
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IV, CONCLUSION

In this study, in order to include the bulge and the drag per-
turbative forces in a single fixed reference frame, the conventional
spherical polar coordinates have been modified. This modification
results in a geocentric coordinate system, with a tilted equatorial
plane.

Equations of motion based on the above-mentioned system
were found to decouple properly after linearization. The third equa-
tion of motion is completely decoupled from the otherl equations.
I'he first and the second equations may be combined to produce a
forced pendulum type equation, for the variable Ar. The above is
a very desirable form to work with, since the solution of the equa-
tion may always be written as an integral, in terms of the forcing
function. The decoupled third equation, like that for Ar, is also a
forced pendulum type equation for the variable Ay, All of the other
solutions arrived at in this study may be derived from these two
solutions,

Since the coordinate system being used is based on the Kep-
lerian trajectory, the solutions indicate the extent of departure
from the perturbation free orbit. The equations of motion have
been decoupled in such a way that their solutions clearly indicate
in-plane and out-plane motions. Perturbations in Ar and A9 deter-
mine the new position in the orbital plane. Perturbations in A and
%g‘ﬂ determine the extent of shifting and twisting of the orhital

0

plane. The above perturbations are not easily seen in other studies.

By considering the geometrical situations, the solutions
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for all perturbations derived have been expressed in the language
of conventional orbital elementa. Geometrical considerations lead
to the idea of the so-called second Keplerian ellipse, based on the
values at point 90 = 27, The differences between the second and
initial ellipse determines the amount of perturbation, since these
differences are caused by the perturbative forces.

The amount of correction arrived at by considering the
effects of atmospheric rotation is extensive and significant. Effects
of atmospheric rotation appear in both the secular and long-periodic
terms. The perturbation of the inclination angle is caused solely
by the above effect.

The perturbation of true anomaly is represented by Ga - Ga
in this analysis. It is interesting to observe that the bulge effect
in the secular part of the above perturbation is caused by the forcing
function of the equativa in the r-direction. The other forcing func-
tion components have no effect on the above perturbation, when just
the first order of accuracy is considered.

It is found that the line of apsides rotates, due to the effect
of the Earth's atmospheric rotation. The magnitude of apsidal
rotation is minute; nevertheless we obtain a basis for reexamining
the existing harmonic values of J, and J 4. In this study, a com-
pletely accurate estimate of the above value is not claimed. In
precisely calculating the above harmounlecs, one must consider drag
effect on the apsidal line, a factor neglected by most authors,

The extent of correction to the zonal harmonics has been shown,

We have shown the order of magnitude of the coupling terms
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in the forcing functions of the equations of motion. These coupling
terms for the bulge and the drag effects are significant in calcula-
tions of higher order accuracy,

Treatment in this analysis has been quite general. This
study may be extended to include terms of higher order of eccen-
tricity €. Principally, all of the other minor perturbative forces,
such as non-spherical atmosphere, Solar, Lunar or the electro-

magnetic force effects can be included in the analysis if desired.
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APPENDIX
Expansion of the Density Function o in a Series of Bessel Functions

The density ratio function, o(r), derived as an exponential

form in equation 6,11 in II, is:

“VE%(H’COSG)
C
o’[r(e)] = e O - e"é(l‘*'cose) . <1)
1
z(=-3)
The exponential type function of e can be expanded

into a series of Bessel functions (see, for example, p. 101 and

p. 357 of Reference 21}, as follows:

X(z-3)
eZ Z:JO(X)+Z31(X)+Z2J2(X)+ —~—+szn(x)+__,
—-—1-J (x)+—1—-J () + -~ +._(.:..]‘_.)_I.1.J (x) + ---.(2)
z 1 ZZ 2 e n :

Now let z = iel(b, x = iy, and by the definition of modified Bessel

function In(y) = i—an(iy), the above series becomes:

iy . id,. -id
—-ZY-(un, +ie )

o - e-ycos¢

J

"

O(x)+zJ1(x)+ —_— —;—Jl(x) + ZLZJZ(X) e

=
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oe]
+ 3L
1 "
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(16100 J_(iy) + > (-1)%(1e10) 7 (y)
1
3 liy) + % (-1n)" e‘md}i“%n(iy)

i21{1 eln(f)i—n
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12 L )+ 2 (1" e )
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Io(y) + Pi) (-1)" 2cosnd I (y) . (3)
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Therefore, equation 1 can be expanded into a series. From equation

3 wc obtain:

o[r(0)] = e"C[Hﬂg)—ZCOSGII(§)+ ZCOSZGIZ(§)+ ———

+2(—1f1cosn@IHJ§)+ -] . (4)

The above is equation 6.12 in II,



