Model Validation, Control,
and Computation

Thesis by
Matthew Philip Newlin

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California,
1996
Submitted September 22, 1995

il

©1996
Matthew Philip Newlin
All rights reserved

1

Acknowledgments

First, I thank my advisor, Professor John Doyle, who contributed to my
education more than I ever would have guessed. 1 would also like to thank
my committee members, Professors Joel Burdick, Richard Murray, and Roy
Smith. I greatly appreciate all their time and efforts.

Most of Chapter 2 is a summary of the work of others; it is presented
because it provides the context for much of the remaining chapters. The rank
one solution in Section 2.5, however, is new. The work in Chapter 3 was
completed with Sonja Glavaski, while the work in Chapter 4 was shared with
Peter Young. Chapters 5 and 6 were influenced by Peter Young and Roy Smith,
respectively. A good deal of Chapter 7 is the work of Fernando Paganini and
Raffaello D’Andrea.

Most importantly, I thank my friends and family, who have meant every-
thing to me. None of this would have been possible without them.

iv

Abstract

Engineering in general is concerned with controlling and predicting fu-
ture behavior with some certainty despite having only imperfect information.
Although feedback can be an exceptionally effective engineering tool and is
often easy to apply, the behavior of a system under feedback can be extremely
sensitive to model mismatch, which is always present. The potential for un-
predictable behavior is a major drawback to the engineering application of
feedback. Robust control theory addresses this difficulty by parametrizing a
family of feedback controllers that are less sensitive to model mismatch.

Despite encouraging early applications, robust control theory has so far
been deficient in analysis of systems, synthesis of controllers, connection to
real problems, and applicability to nonlinear problems. F urther, results on the
computational complexity of robust control problems that necessitate either
bounds computation or a restricted class of problems have cast doubts about
the potential utility of the area.

Initial work in robust control focused on complex uncertainty in the fre-
quency domain. A perceived deficiency is that such model sets are unrealis-
tic: uncertainty in mass, stiffness, aero-coefficients, and the like are naturally
modeled as real variations. This thesis includes initial work on practical up-
per bound computation and substantially improved lower bound computation
for moderately large robust control analysis problems that include such real
parametric uncertainty, despite the computational complexity of the problems.
Although better upper bound computation than that described here is now
available for small problems, such is not the case for large problems. The im-
proved lower bound computation chronicled here is desirable because the initial
lower bound computation for problems with real parametric uncertainty is not
as reliable as in the complex case. Additionally, this thesis shows that branch
and bound is a limited but critical tool for better computation, a fact that
previously has gone unrecognized.

Together, these contributions allow for the practical computation of ro-
bust control problems of engineering interest and provide the basis not, only
for applications that may ultimately determine the utility of the robust con-
trol paradigm but also for the computation of various outgrowths of the b

v

framework, which is the basis for computational robust control.

One such outgrowth is the model validation problem. Model validation
tests whether a robust control model in the u framework is consistent with ex-
perimentally determined time histories—quite a different problem than stan-
dard system identification. This thesis shows that the model validation prob-
lem is indeed closely related to the standard p problem and its computation.

The practical computation of the model validation problem, which
should follow naturally from the work presented here, provides the basis for the
connection between robust control theory and practical applications. Future
work along these lines should elevate the application of robust control theory
from chance and intuition to a standard engineering tool.

Further, the techniques that render the model validation problem similar
to the standard p problem are applicable to a great variety of systems analysis
and design problems. This newly perceived generality of the 1 paradigm may
ultimately provide a unifying framework for the many seemingly disparate
aspects of systems and control design.

vi

Table of Contents

Acknowledgments iii
Abstract iv
List of Figures viii
1 Introduction 1
L Ao 7217 o) s B TP 5)
1.2 A Review of u: Robust Stability and Robust Performance 11
1.3 LET Examples. ..o 14
2 Fundamental Properties of ;4 Computation 17
78 R) 1111111 1) AR TP 18
2.2 NP Completeness and Computational Complexity.................. 19
2.3 Problems with Special Structure; Restrictions on A 21
2.4 Restrictions on M and Kharitonov-Type Results 23
2.5 The Rank One g Problemcocoooiiiiiiiiiiii i 23
2.6 Convex Problemscooooiiiiiiiiii 25
2.7 Generating Test MatriCeso.ovvuiuiiiiiieiiiiiiciei e, 25
3 The Lower Bound 30
3.1 A Maximization Problemcooiiiiiiiiiiiiiii 31
3.2 A Lower Bound Power Algorithmcccccoiii, 33
3.3 The SPA Using the Rank One Solution................................ 36
3.4 The Wrap in Reals Algorithm (WRA)cooviiiiiiniiiinn, 39
3.5 Shift and Inverse Algorithm (STA)cccooiiiiiiiniiniiinn, 41
3.6 Combining the Algorithmscocooiiiiiiiiii 42
3.7 Numerical EXperienceoooiiviiiiiiiiiiiiiii i 43
4 The Upper Bound 46
4.1 An Infimization Problem.........................o 46
4.2 A Theoretical Framework for the Problem 50
4.3 The Upper Bound Algorithmcooii . 52

4.4 Algorithm Performanceoccooiviiiiiniii 54

vii

4.5 Practical Examples..............cccooo i
5 Branch and Bound

9.1 Branch and Bound Algorithms...............coooooiviei

5.2 L ON & BOX.uuuiiiiiiiiiiiie e

5.3 The Lower Bound................coooeiineinei

5.4 The Upper Boundcc.ooooueriiii

5.5 ComPUtationoooueiii e
6 Model Validation

6.1 The Model Validation Problemiiii .

6.2 A Generalization of the Structured Singular Value

6.3 1y Solves the Model Validation Problem

6.4 The Upper Boundcooovuiiiiiii

6.5 The Lower Bound...............coooooimnii
7 Implicit Formulations: A Unifying Framework

7.1 Robustness Analysis in Implicit Form.................cocooivi

7.2 Model Validation and Identification

7.3 Time Domain Data and

Dynamical ModelS..............ooooooeiiiiii
7.4 Computation for Implicit Analysisccoiiiii
7.5 The Least Squares Problem Revisited...............cooovv

Bibliography

63
64
69
70
71
74

83
85
88
92
95
98

107
109
112

116
117
120

123

viii

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6

2.1
2.2

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
3.3
5.4
9.5
5.6
5.7
2.8
5.9

6.1
6.2
6.3

Generic robust control model structure ..o 7
Robust stability p analysis framework 8
Mass-spring-damper SySteImccoovviiiiiiiiieiiai e 8
Example interconnection of LETs ..., 10
Macroscopic representation of Figure 1.4........................ 10
The quadratic programming p problem. ..., 14
Comparison of polynomial and exponential time growth.......... 20
Standard robust stability problem...............oo 22
Ratio of SPA lower bound to NPSOL lower bound 36
Flop counts for SPA and NPSOL lower bounds 37
Algorithm performance on 500 hard problems 43
Computation cost vs. problem Size............ccocviviiiiiiiiiiiininn., 44
Mixed p vs. complex-p computation time requirements........... 55)
Mixed p vs. complex-u computation requirements in flops 56
Ratio of bounds for crand matrices..........cooevviiiiiieininennn. 57
Ratio of bounds for mixed and complex &ooovvvvviiviiiiiiiiiin. 58
Bounds for the missile autopilot problem...................col. 60
Bounds for the flexible structure problem 61
Branch and bound progress on a difficult problem.................. 74
Progress on a problem with a large repeated block 75
Progress on a problem with only v continuous bounds 76
Progress on a problem with 20 parameters............................ 77
Growth rate of branch and bound computation 78
Comparison of branch and bound schemes............................ 79
Branch and bound computational cost vs. accuracy................ 80
Progress of branch and bound for a hard problem 81
Branch and bound vs. no branching................c...coooiinn, 82
Block diagram of the model validation problem 85
Equivalent system with no signal constraints......................... 87

Equivalent system as a generalized p problem 87

6.4
6.5

7.1
7.2
7.3
7.4
7.5
7.6

ix

Interconnection structure for the generalization of p............... 89
Generic robust control model structure ... 92
Implicit LET Systemcoocoviiiiiiiiiiiiiciein 109
Standard input-output MV/ID setup..........c.cccoveviniiiiinnn... 114
Standard MV/ID setup in implicit form....................oeni. 114
MV/ID setup with data inside the matrix 115
MV/ID as an analysis problem..............coccoeoniiniiniin... 115
Least squares problem ... 121

Chapter 1

Introduction

Although our knowledge of real engineering problems remains incomplete,
experience with real problems has led to an understanding of the underlying
physics that describe real engineering problems and has led to engineering
judgment about the limitations of typical applications of physics to real engi-
neering problems. Because mathematical descriptions do not exactly represent
real problems, we cannot eliminate the role of engineering judgment. Research
in the field of control should lead to better engineering judgment; we do not
merely want more tools and techniques, we want also to understand their use.
Of particular concern in real engineering problems, perhaps the entire reason
for engineering, is the prediction of future behavior. We want to do more than
characterize the past. This concern is the principal motivation for model-based
control rather than black box control based on some “intelligent” scheme with
no explicit model, such as neural nets. Further, the engineer should be able
to understand the model, in order to have some confidence in its predictive
value.

The prediction of the future behavior of real engineering problems is diffi-
cult principally because mathematical models and problem statements cannot
exactly represent a real engineering problem. In many instances this difference
is minor and can be overlooked without concern. With feedback, however, even
minor differences often must not be overlooked.

Since it is difficult both to develop theory for complicated performance ob-
jectives and to capture every concern of the engineer in a mathematical per-
formance objective, the control theory applied to a real engineering problem is
typically some easily specified optimization problem for a simple mathemati-
cal model. The optimal solution of such a problem compromises unspecified
performance objectives and is frequently not suitable for use on the real prob-
lem. An extreme example of this deficiency occurs in optimal feedback control
designed with an inexact model. Often, the “optimal” solution is worse than
no control whatsoever and frequently drives a stable system unstable. In less
extreme examples, the predicted behavior may still be far from reality. This is
not a condemnation of feedback but of the haphazard application of feedback

2

to real problems; the careful application of feedback can provide dramatic
improvements that are not easily unobtained any other way. Feedback can,
however, be sensitive to modeling error.

Robust control theory addresses the issue of modeling error by requiring
performance for every member in a family of models rather than for a single
model. We might think of this as an attempt to include some “true” model
that exactly describes the physical system in the set description. Since we do
not want to be excessively conservative, we do not want extra elements in the
set, and, by this reasoning, we do not want a set at all. Rather, we have a
set because of our limited knowledge of the physical system and because we
are willing to accept additional conservatism in order to have a simpler model.
(A set description can easily be simpler than a description of some particular
element in the set.) Further, heroic efforts to include the “true” model in the
set might be pointless when we cannot exactly specify our true performance
objectives.

Alternatively, we might think of the specification of the set of models as
a way to parametrize a family of controllers. The idea is that if the family is
rich enough, a controller that does well for every member of the family will
not compromise too far in favor of performing particularly well for a single
member of the family. Robust control theory mimics the effect of modeling
error by requiring performance for each member in a family of models. Of
course, accurately characterizing modeling error is difficult in the same way
that accurately characterizing the model is difficult. From this point of view,
the idea is not to cover the modeling error but rather to parametrize controllers
that are typically insensitive to modeling error. Thus by specifying additional
(possibly meaningless) performance objectives, we hope to satisfy meaningful
but unspecified and perhaps mathematically unspecifiable requirements. Ro-
bust control theory concerns itself with the formulation and solution of such
problems.

A particularly fruitful approach to robust control theory is the u frame-
work, described later, and its generalizations. The p framework is appealing
because it is both sufficiently general to include many other approaches and
problems as special cases, and sufficiently structured to allow for practical
computation of the general problem (rather than having a different method
for each problem), while providing a relatively natural way to formulate engi-
neering problems.

The application of the u framework to real engineering problems has had
two significant limitations: a restricted family of allowable uncertainty set
descriptions; and little connection to the data beyond first principles modeling.
The work presented here provides two principal contributions. The first is
providing practical computation of both upper and lower bounds for the mixed

3

1 problem despite NP completeness results, thus providing a more useful family
of allowable uncertainty descriptions. The second contribution is showing that
the p framework is easily extended to be more powerful, incorporating many
more problems of engineering interest, particularly the inclusion of measured
data in the problem formulation, allowing modeling and model validation to be
part of the same framework and thus providing a practical way of connecting
robust control models to real problems. While each of these two contributions
is interesting in its own right, together they provide the foundation for the
practical application of the u framework to real problems.

An outline of the thesis, which presents these two contributions along with
some introductory material and a look at what might lie ahead, follows.

The usefulness of the structured singular value p, introduced by Doyle
in [13], lies in the fact that many robustness problems can be recast as prob-
lems of computing u with respect to some block structure. In recent years a
great deal of interest has arisen with regard to robustness problems involving
uncertain parameters that are not only norm-bounded but also constrained
to be real. This type of problem falls within the p framework by extending
the original definition of x4 to allow both real and complex uncertainties in the
block structure (see Young et al., [43], for example). This mixed p problem has
fundamentally different properties than the complex u problem, with impor-
tant implications for computation. In the remainder of this chapter we give
a brief introduction to this type of analysis and the engineering motivation
behind it. The bulk of this work, however, is concerned with the theoreti-
cal and computational issues that subsequently arise. For more engineering
motivation for the use of these approaches, see [27, 2, 14] and the references
therein.

Chapter 2 outlines previous work on the computational nature of the prob-
lems considered subsequently and provides the motivation and context for the
solutions presented here. It is now well known that real u problems can be dis-
continuous in the problem data and that computation for the general mixed g
problem is NP hard. While the discontinuities have little relevance to problems
motivated by engineering applications, the NP hardness results are extremely
important, having adverse implications for certain research directions.

Roughly speaking, the fact that mixed p is NP hard means that it cannot
be computed exactly in the worst case without entirely unacceptable growth
in computation cost with problem size. To obtain acceptable computation one
is forced either to consider special cases or to relax the requirement for exact
computation on worst-case problems. In Sections 2.3 and 2.4 we consider
several special cases, including those of Kharitonov’s theorem ([20]) and its
extensions. These special cases are problems where p is equal to a particular
upper bound, which is relatively easy to compute. Unfortunately, these special

4

cases are of limited practical value because they fit few engineering problems,
and the NP hardness results strongly suggest that they cannot be usefully
extended.

Since the general mixed p problem is NP hard, we do not attempt to solve it
exactly but rather to obtain good bounds. Furthermore, recent results suggest
that even approximate methods are also NP hard, so we do not expect good
worst-case behavior but rather aim for good typical behavior.

Fortunately, engineering problems do not require exact mixed p computa-
tion: mathematical models are only approximations of real physical systems,
and the uncertainties cover the deficiencies in our knowledge of those systems.
Thus it is somewhat naive to think that we can have precise knowledge of the
uncertainty levels in real engineering problems. For engineering purposes, 10
to 20 percent accuracy is usually adequate, and it is more important to get
answers in a reasonable amount of time than it is to achieve higher accuracy.
It also matters little to the engineer that there are intractable problems so
long as we can obtain reasonable solutions to problems of engineering inter-
est. These problems may have many dozens of parameters, so algorithms with
polynomial growth rate are highly desirable.

A power iteration to compute a lower bound for complex i was generalized
to the mixed case by Young and Doyle in [41]. Even though each iteration
of the scheme is inexpensive, involving only matrix-vector multiplications and
vector inner products, the algorithm’s convergence properties are typically
good. Unfortunately, the lower bound power iteration does not converge on a
significant number of problems. Although one can still obtain a lower bound
from the scheme in such cases, the bound may be poor. In Chapter 3 we
present new approaches to computing an improved p lower bound. Young's
standard power algorithm (SPA) from [41] is our starting point. We develop
several new algorithms after examining the convergence properties of the SPA.
These algorithms are then combined to yield a substantially improved power
algorithm. A comparison among the new algorithms presented here and those
described in previous work is shown in Section 3.7.

The practical computation of an upper bound to mixed p is presented in
Chapter 4, involving the minimization of the eigenvalues of a Hermitian matrix.
Algorithms for the computation of these bounds are described in Section 4.3.
The quality of these bounds, along with their computational requirements as
a function of problem size, is explored in Section 4.4.

Since the upper bound can be formulated as a linear matrix inequality
(LMI) optimization problem, the continuing research in this area should ul-
timately render the algorithms of Chapter 4 obsolete. Unfortunately current
LMI computation is inadequate for large problems with thousands of optimiza-
tion parameters because the methods generally form pseudo-Hessians and have

5

numerical conditioning difficulties as well, so the algorithms in Chapter 4 are
still relevant.

Chapter 5 investigates the practical application of branch and bound tech-
niques to the computation of the mixed p problem. A selection of results from
a fairly extensive numerical study is presented. These numerical experiments
suggest that if one is interested in solving fairly large problems, then one cannot
expect the branch and bound scheme to achieve a greater degree of accuracy
than the bounds usually produce alone, which in this case is approximately
20 percent. Thus the branch and bound scheme is being used not as a gen-
eral computation scheme per se, but only to correct the occasional problems
for which the bounds are poor, and for these problems, to achieve the degree
of accuracy that the bounds typically get. This investigation emphasizes the
necessity for good bounds. Fortunately, computing p to within 20 percent
accuracy is generally quite adequate for engineering purposes. The results in
Chapter 5 suggest a clearly defined role for branch and bound techniques in
mixed g computation.

The model validation problem, originally formulated in the robust control
context by Smith and Doyle in [35], provides a connection between control
theory and reality: the model validation problem is to determine whether
there is an element of the robust control model set that accounts for the
experimental observation.

In Chapter 6 we present a generalization of u, denoted by 4, that solves
the model validation problem. Because the similarity to u is pronounced, the
approach taken for the calculation of y, involves the development of more
readily calculated upper and lower bounds that are also quite similar to the
upper and lower bounds for pu. Further, many of the techniques described in
Chapters 3 and 4 are readily applicable to the computation of .

Chapter 7 puts forth the argument that the u framework and its generaliza-
tions are applicable to a broader range of problems and consequently provide
a unified framework for the application of modeling and control. Whether the
unified framework is ultimately useful depends on future research, particularly
in the computation of the implicit formulation presented there. While the im-
plicit formulation is more general, the computation presented in preceding
chapters should prove useful in the implicit case.

1.1 Notation

If a and b are real numbers with a < b, then (a,b) is an open interval and
[a,b] is a closed interval, while {a,b} is the set containing the two elements
a and b. The set of real numbers is denoted by R, and the set of complex
numbers is denoted by C. R = {a |0 <a € R}, and the closure is denoted

with an overbar: Rt ={a |0 <a e R}.

The transpose and conjugate transpose of a matrix, A, are denoted by AT
and A* respectively. The spectral radius is denoted by p(A), while the largest
real eigenvalue and the absolute value of the largest magnitude real eigenvalue
are denoted by X.(A) and p.(A). If A is Hermitian the subscript r may be
dropped. The maximum and minimum singular values of A are denoted by
7(A) and g(A). The dimension of A is dim(A), and the kernel of A4 is ker(A).

The norm of a vector, ||w(|, is the Euclidean norm, and <z, y> is the inner
product of the vectors z and y. The induced vector norm is used in the matrix
case:

JAl = sup | Aw] = 7(4).

llwll=1

The norm of a signal, w, is taken to be the 2-norm,

Jull = [| nw<t>u2dt]m,

and the set of bounded energy signals is denoted by L,:
Ly={w |[lw] <oco}.

The unit ball of £, is denoted by B.,. Similarly, if A is a normed set, then
B is the subset of elements with norm less than or equal to 1.

Frequently, our vectors are in product spaces, e.g.,, X = X; x ... x X,,
naturally defining a partitioning of vectors in X. If X and Z both have such
a structure, then an operator M : X — Z also has a partitioning, and M;;:
X; —> Z; denotes the resulting “blocks” of M. We similarly partition the
spaces that the operators live in. Conversely, a collection of z; or M;; defines
the relevant product spaces.

Often we group some of these subspaces together and denote this with a
new subscript. For example, if J = {1,2}, then X; = X; x Xy, and M,y :
X; — Zz

A block diagonal operator is one where i # j = M;; = 0. In this case we
define M; = M;;. For a block diagonal operator, the input and output spaces
X and Z must be partitioned into the same number of blocks.

We also have occasion to use subscripts to denote different elements of a
set, with no particular product space implied.

Block Diagrams and LFTs

Block diagrams represent sets of equations and interconnections of systems.
The block diagram for the generic robust control model shown in Figure 1.1

A

My My —= A

J

A
S

Yy <—— My Mo

Figure 1.1: The generic robust control model structure.

represents the equations

z = Mlll' + Mlg’u,
y = MQliL' -+ M22u
T

We can eliminate z and z from these equations and solve for y in terms of
M, A, and u, resulting in

Yy = (M22+M21A(I—M11A)_‘1M12)U. (11)

This operator is a linear fractional transformation (LFT) on M and is referred
to as the star product of A and M. Equation (1.1) is abbreviated to

y=(AxM)u.

Similarly, M x A = My + My A(I — MapA) ™+ My;.

The LFT A « M is said to be well posed if and only if there is a unique
solution to the loop equations shown in Figure 1.1. It is easy to see that the
LET A % M is well posed if and only if (I — M;;A) is invertible.

If AxM is well posed, then the only solution to the equations (I —My;A)z =
0and (I — AMy;)x =01is z =2 = 0. If [— My;A is not invertible, then there
are infinitely many solutions, with ||z|| and ||| arbitrarily large. The equations
(I — M11A)z =0 and (I — AMi;)z = 0 are equivalent to the equations

Mllﬂ?

r = Az

which are in turn equivalent to Figure 1.2. This figure is a special case of
Figure 1.1 in that the equations representable by Figure 1.2 are a subset of
the equations representable by Figure 1.1 with z = 0.

Figure 1.2: The robust stability x4 analysis framework.

If the LFT A x M is not well posed, then the nonzero solutions to the
equations in Figure 1.2 are solutions to the equations in Figure 1.1 with u = 0
and y typically nonzero. Thus, when the LFT A x M is not well posed, the
gain from the input u to the other signals in Figure 1.1 is infinite, and the
feedback loop is in some sense unstable.

Although A x Mj; is not an operator and cannot be defined the way that
Ax M is, we may still refer to the well posedness of A% M as the stability and

well posedness of A x M;;.
J Iy
m

k — ¢
/e

SR

+lgr ko
y+ oty =

Figure 1.3: A mass-spring-damper system.

Transfer functions are an important example of LFTs. Consider the state
space realization of a discrete time system

R R | B b

This system’s transfer function,

G(z) = D+ C(zl — A)'B = é* M,

is an LFT on %I , a repeated complex scalar. If A is an eigenvalue of A, then
the LFT is not well posed at z = }, just as -1- is not well posed at z = a.

Systems having uncertainty also can be represented easily using LETs. A
natural type of uncertainty is unknown coeflicients in a state space model.
The following simple example is taken from Packard and Doyle ([27]). Begin
with a familiar idealized mass-spring-damper system as shown in Figure 1.3.
Suppose m, ¢, and k are fixed but uncertain, with

m = m(l+ wnlm)
c(1 4+ wede)
k =]C(l + wkék),

where §,,, d., and &, are all uncertain real scalars that are known to lie in the
interval [—1, 1] but are otherwise unknown. The known parameters m, ¢, and
k may be thought of as the nominal values of m, ¢, and k respectively, and
the known weights w,,, w., and wy serve to normalize the uncertainty range
to the unit ball.

Then, by defining z; = y and x, = y, we can write the differential equation
in state-space form with A = diag(d,,, 0., k) as

HEIH

[—w, =W —wx =k —c 17
m m m m m
0 0 0 0 ¢ O
0 0 0 k£ 0 0

M =
0 0o o0 0 1 0
—up e S S
0 0 0 1 0 0|

More generally, the perturbed state-space system

Tet1 = A(5)$k+B(5)Uk
y = C(0)xzy + D(0)uy,

where ¢ is a vector of parameters that enter rationally, can be written as an
LFT on a diagonal matrix A made up of the (possibly repeated) elements of 4.
The one exception is that % cannot be represented as an LF'T because LFTs
are well posed at 6 = 0.

10

A fundamental property of LFTs that contributes to their importance in
linear systems theory is that interconnections of LFTs are again LFTs. For
example, suppose we have three components, each with an LFT uncertainty
model, interconnected as in Figure 1.4. By simply reorganizing the diagram,
collecting all of the known systems together, and collecting all of the pertur-
bations (the various A;) together, we get the diagram shown in Figure 1.5,
where M depends on G, G, G3 and the diagram layout in Figure 1.4, but
not on the A; or the d;, y;, or u. Note that the feedback operator in Figure 1.5
is block diagonal.

It is simple to find the matrix M in Figure 1.5: the arrows in Figure 1.5
represent the same vectors represented by the arrows in Figure 1.4, and the
M;; block of M is the operator from the j** vector on the input side of M to
the i vector on the output side, with all other vectors on the input side of
M and all other operators set to zero. Figure 1.5 and Figure 1.4 represent the
exact same equations.

1 d1

| Gy ;;_‘ Gs |
] el
Aq | Ag |

da

—_—

Gy g2,

o

Figure 1.4: An example interconnection of LFTs.

Ay
< A2 -«
M =
d,
"N
[Y2 J) 2
(41

Figure 1.5: The macroscopic representation of Figure 1.4.

11

Because additive and multiplicative uncertainty, G + A and G(I + A) re-
spectively, are special cases of linear fractional uncertainty descriptions, we can
convert problems with additive and/or multiplicative uncertainty, or indeed
any interconnection of systems with uncertainty entering in a linear fractional
manner, into the standard framework of Figure 1.2.

1.2 A Review of u:
Robust Stability and Robust Performance

The definition of y is dependent upon A, the underlying block structure of
the uncertainties. Typically A is a set of block diagonal operators defined in
terms of simpler sets corresponding to the partioning of the input and output
spaces. Typically, this partitioning is the same for all A € A. We partition
the set of subscripts into three disjoint subsets r, ¢, and C, corresponding to
three types of operators. The sets A, have the form

{61 |6, € R},

the sets A, have the form
{61 |0.€C},

and the sets A are sets of all complex matrices of the correct dimension.
These blocks of the block structure are referred to as repeated real scalar
blocks or real blocks, repeated complex scalar blocks, and full complex blocks
or full blocks, respectively. When the set r is empty, we have a complex p
problem; when ¢ and C are empty, we have a real p problem; otherwise, we
have a mixed p problem.

Definition 1.1 ([13]) The structured singular value, (M), of a con-
stant complex matriz M with respect to a block structure A is defined
as

(M) 2 maX{OU{E(A)_l | A€ A,det(] — AM) :o}}. (1.3)

It is easy to see from the definition that the LF'T A % M in Figure 1.1 is well
posed for all A € B, if and only if p(M;) is less than 1. Thus p is defined
to be the answer to a large family of robust stability problems.

Sometimes each A; is a full complex block, and is not necessarily square.
An equivalent definition of p in this case, introduced by Fan and Tits in [15],
is now given because it is the basis for the definition of p, in Chapter 6. Let
z = Mz and let J be the set of indices of the partitioning of M.

12

WD) 2 max (7 [yl < [l vi € 7} (14)
— max {7 |lalv=ll, Vi€ 7).

The equivalence to the second maximization problem, where the inequality is
replaced by equality, is due to Doyle ([13]).

While p does provide an exact test for robust stability, it is not obvious
from Definition (1.3) how the value of ;1 may be computed. However, it is easy
to obtain the following bounds:

pr(M) < p(M) < 5(M). (1.5)

These bounds by themselves are usually too crude for our purposes, but they
can be refined as shown in Chapters 3, 4, and 5.

We define the following sets of block diagonal matrices (which depend on
the block structure of A) to refine the bounds for y in Equation (1.5) and to
apply branch and bound to the p problem. These sets are used in subsequent
chapters; they are collected here for easy reference.

Ba = {A]A€A e [-1L1L|[6] < 1,5(A¢) <1}
Ba, = {A]Ae€A b ele—rne+r] 0] <1,7(A0) <1}
Bac = {A]A€AS€C|6] <16 <1,5Ac) <1}
Ba, = {A]7(A)<1}
0Ba = {A|A€Ab e[-1,1],8:6,=1,0c0¢=1}
0Ba, = {A|AeA b€l —rre+1],000.=1,A58¢c =1}
Q = {A|AeA s e{-1,1},86. =1, A Ac=1}
D = {diag(eje"Dr,Dc,dCI) ~O<Di,i€rUc,dC€R+}
D = {D]D:D*eﬁ}
G = {diag(G,,0) |G, =G}, rer}

G = {G |GeGisdiagonal}.

The following two theorems, which address robust stability and perfor-
mance questions for LFT feedback interconnections, were proved for complex
uncertainty descriptions by Packard and Doyle in {27]. Let A be partitioned
into Ay and Ay, defining p; and sy respectively.

13

Theorem 1.2 (Well Posedness) Let § > 0. The LFT Ay x M s
wellposedfor{ Ay l A € A, T(A) < %} if and only if py (M71) < 8.

Theorem 1.3 (Main Loop Theorem) Let 5> 0. Then u(M) < 3
if and only if both py (M) < B and A, € { A f Ay € Ay, T(A) < %}
implies po(Aq % M) < S.

The proofs are identical to those given in [27] for the complex case (a
number of minor variations to these theorems similarly extend to the mixed
case). For a more complete feedback interpretation of these results, see [27]
and the references therein.

The following theorems address the problems of stability and performance,
for all elements of the model set, in the frequency domain. See [27], for exam-
ple, for more details.

Theorem 1.4 Consider Figure 1.1. Let M(s) and A(s) be linear
time-invariant and stable. Then

(A(8) x M(s)) is stable VA(s) € Ba <= sup p(My1(jw)) <1,
where the block structure for the p calculation is defined by Ba.

Theorem 1.5 Consider Figure 1.1. Let M(s) and A(s) be linear
time-invariant and stable. Then

1A+ M), < 1V A(s) € Ba = supu(M(jw) <1,

where the block structure, 3, for the p calculation 1s

3 — {dlag (A, Cdim(u)xdim(y))})

These two theorems are sufficient to motivate the (complex) constant ma-
trix pu problem, where the operators are constant matrices with elements in C
and the signals are constant vectors, also with elements in C. The fact that
these two theorems are still true in the mixed case means that mixed p still
provides an exact test for robust stability and robust performance problems,
but now with real uncertainties allowed. The LFT machinery for rearranging
various robustness problems into u problems (such as the conversion of robust
performance problems into robust stability problems, as above) is also applica-
ble to the mixed case, so that mixed p retains its versatility and applicability
to a large class of problems.

14
1.3 LFT Examples

This section contains a few simple examples of the conversion of problems
to a standard LET form. The reformulations are both illustrative and will also
be useful later.

Quadratic Programming

The indefinite quadratic programming problem given by

Is max |[z"Az+p'r+c| > 17 (1.6)
blfilffbu
for A € R**", z, p, b, and b, € R”, and ¢ € R is easily reformulated to
replace the set b; < z < b, with the set —1 < y; < 1 so the following problem
is equivalent.

Is max |y*May+ Myy+ Mss|| > 17 (1.7)
—1<y;<1

for My € RV™ Mz € R*, and M33 and y; € R. Then, defining M;, =
[1...1] € R*, M3 = ML, and A = diag(y;), the real p problem Is p(M) > 17
depicted in Figure 1.6 is also equivalent.

0 0 Ms| A)
A
My 0 0
PO E— -
Mz Mszy Mgy

Figure 1.6: The quadratic programming g problem.

Interval Polynomials

An interval polynomial is a set of polynomials whose coeflicients are real
and lie in some specified interval. Consider the interval polynomial

ai (k)

15

and assume that P(s,0) # 0. Suppose further that the parameter variation
is affine in k: a = Fk + g. We want to know if there is a root of the interval
polynomial at s. Define

A = diag(k;)
1
andu = :
1

so that a = FAu + g. Then

P(s,k) = s"+[s" ' +...+ ") (FAu+g)
= P(5,0)+[s" ' +...+ 5% FAu.

Now define
. s+ SF
v P(s,0)
and M = —uw*
so that
0 = P(s,k)

< 0 = 1+v"Au=det({ - MA).

Since the roots of a polynomial are continuous in its coefficients, checking sta-
bility of the interval polynomial (no roots in C*) requires checking P(s,0)
and P(jw, k) Vw € R. Thus problems of robust stability of an interval poly-
nomial (or a ratio of such polynomials for that matter) are examples of linear
fractional uncertainty, and hence can be recast as mixed p problems.

Mapping Disks in the Complex Plane
There is always a scalar LF'T

az +b

cz+d

that maps any three given distinct points in the complex plane to any other
three given distinct points in the complex plane. Each set of three points
defines a generalized disc in the complex plane: if the points are colinear, the
generalized disc is a halfplane, and the order of the points defines which of
the two subsets of the plane is the interior. Thus any halfplane or disk in C
can be mapped to the unit disc in C with a scalar LF'T. Such mappings make
sense for repeated complex scalar blocks as well. Consequently, the theorems

16

for Ba are quite general. The set Ba could just as well be any generalized
disk, D. An easy way of handling such sets is to map the unit disk to them:
D = Ba * M. (It is routine to show that the scalar LFT can be put in the
form of Figure 1.1 if d is not zero.)

Similarly, covering a real interval with a disk need not be done with a
disk that is symmetric about the real axis. Also, the boundary of disks and
halfplanes map to the boundary of the unit disk with an LFT, and rays, arcs,
and line segments map to portions of the boundary of the unit disc with an
LFT.

17

Chapter 2

Fundamental Properties
of ;1 Computation

Since p is defined to be the answer to a great many control problems, it is
not surprising that p is, in general, difficult to compute. For the same reason,
the effective computation of u is desirable. In later chapters we shall see that
effective computation is possible. We shall also see that it is important to keep
in mind the theoretical nature of the problem when developing effective com-
putation. This chapter addresses the theoretical nature of the computation
and its implications. Although the motivation for effective y computation is
quite general, the problem of analyzing robustness with respect to real param-
eter variation has been the motivation for many of the advences presented in
later chapters.

The problem of analyzing robustness with respect to real parameter vari-
ations has received a great deal of attention in recent years. Although many
different approaches to the problem have been attempted, each approach can
be classified in one of two major research programs. One program is typified
by the approach taken here and may be thought of as extending the complex
i theory to real perturbations. The other program, referred to here as the
polynomial approach, has focused on extending Kharitonov’s celebrated result
on interval polynomials ([20]) to more general uncertainty structures. In this
chapter the polynomial approach is placed in the u/LFT framework in order
to consider the implications of several recent results that are relevant to both
research programs.

We first consider the implications of the fact that the purely real p problem
is discontinuous in the problem data. We argue that although discontinuities
do not actually occur in problems of engineering interest, these results suggest
that mixed p computation may sometimes be poorly conditioned.

In contrast, the result that mixed u is, in general, an NP hard problem
has important and direct implications for practical application of any compu-
tational scheme. Indeed, this result suggests that entire classes of algorithms
that attempt to compute mixed p will be prohibitively expensive, even on

18

problems of moderate size.

Two strategies are available to deal with this apparent intractability of
mixed p computation. One possibility is to consider only a subset of problems
where p is easy to calculate explicitly. Unfortunately, such problems are rele-
vant to few problems of engineering interest; so another strategy, such as the
one proposed here, is needed.

A consequence of the computational complexity of the mixed y problem is
the need to evaluate computational schemes by evaluating their typical per-
formance on a large class of typical problems. This chapter concludes with
a discussion of classes of randomly generated problems used for evaluating p
computation.

2.1 Continuity

It is easy to see that u(M) is continuous in M when all blocks of A are
complex: det(yu — MA) is a polynomial in y, and the roots of the polynomial,
{p | det{(p — MA) =0}, are continuous in its coefficients, which are in turn
continuous in M and A. Each complex root corresponds to a real root with A
rotated appropriately, since A € A = e/?A € A whenever A is a complex
block structure.

In contrast, real p and mixed p are not continuous in their argument. For
example, the real y problem p(z +iy), z,y € R, at t = 1is 1 if y = 0 and is
0 otherwise. This discontinuity clearly adds computational difficulties to the
problem, because any method involving some type of search over a family of
M, such as a frequency response plot, must address the possibility of missing a
point of discontinuity. More important, however, serious doubt is shed on the
usefulness of real p as a robustness measure in such cases: the system model is
always a mathematical abstraction from the real world and is computed only
to finite precision, so it is desirable that any type of robustness measure we
use be continuous in the problem data.

Packard and Pandey address the problem of “regularizing” discontinuous
p problems in [29]. They show a variety of ways to construct a sequence
of continuous problems that converges to the original discontinuous problem.
The continuous problems may be constructed for example by adding a small
amount of complex uncertainty to each real uncertainty. This regularization
is well motivated for conventional engineering applications, where unmodeled
dynamics always produce some phase uncertainty.

Packard and Pandey also show that mixed p problems containing some
complex uncertainty are typically continuous, even without the regulariza-
tion procedure outlined above. This result is reassuring, since one is usually
interested either in robust performance problems, which contain at least one

19

complex block, or in robust stability problems with some unmodeled dynamics,
which are naturally represented by complex uncertainty. Thus, in problems
of engineering interest, the potential discontinuity of should not arise. A
further consequence, relevant to engineering problems, is that the numerical
conditioning of mixed y computation could cause difficulties and thus deserves
more study.

2.2 NP Completeness and
Computational Complexity

The decision problem Is p > 1?7 with real block structure is shown by
Rohn and Poljak in [32] to be NP hard. Furthermore, Demmel ([12]) shows
that even approximate solutions are also NP hard. Since a set of problems
is NP hard whenever a subset is, the general mixed p problem is NP hard as
well.

A presentation of these results by Braatz et al. ([7]) is based on the re-
formulation, shown in Chapter 1, of the indefinite quadratic programming
problem

* * > ? .
Is , ax lz* Az +p*z+c|| > 1 (2.1)

with A € R™™, z, p, b, and b, € R", and ¢ € R as a real or mixed p
problem. It is well known that the indefinite quadratic programming problem
is NP complete. The idea is simple: the number of corners in the constraint
grows exponentially with problem size, and none of the corners can be ruled
out without some computation. This is in contrast to linear programming,
where interior point methods allow for polynomial time computation despite
an exponential growth in number of corners. Since any quadratic programming
problem can be solved by solving a p problem, it follows that the mixed pu
problem is NP hard.

Given that the decision problem Is p > 17 is NP hard, we conclude that
it is also NP complete since it as easily seen that the decision problem is also
polynomial time verifiable: whenever the answer to the decision problem is
Yes, there is a A that, if known, allows us to verify in polynomial time that
@ > 1. Clearly, calculating u is at least as difficult. Although it is not a precise
use of the terminology, we will say that u computation is NP hard.

It remains a fundamental open question in the theory of computational
complexity to determine the exact consequences of NP completeness in a prob-
lem, and we refer the reader to Garey and Johnson ([18]) for a treatment of the
subject. It is generally accepted, however, that if a problem is NP complete
that it cannot be computed in polynomial time in the worst case. Typically,
worst-case computation cost grows exponentially with problem size.

20

For the reader not familiar with these concepts, we offer the following
illustration. Figure 2.1 shows two different growth rates of computation time
versus problem size n. For each of two growth rates there are two algorithms,
one that can solve a problem of size n = 10 in 10 seconds, and another that
can solve the same problem in 0.01 seconds. The first growth rate is n®, a
polynomial time growth rate typical of algorithms for eigenvalues, singular
values, multiplication of two matrices, and so forth. The second growth rate
is 2", an exponential time growth rate typical of algorithms that check all the
edges or vertices of some polytope, for example.

Growth Problem Size (n)
Rate 10 20 30 40 50
0.01 0.08 0.27 0.64 1.25
seconds | seconds | seconds | seconds | seconds
n? 10 1.33 4.50 10.67 20.83

seconds | minutes | minutes | minutes | minutes
0.01 10.24 2.91 124.3 348.7

seconds | seconds | hours days years
2" 10 2.84 121.4 | 340.5 | 3.49 x 10°
seconds | hours days years years

Figure 2.1: A comparison of computation time growth with problem size for
polynomial and exponential time growth rates.

It is readily seen that given an algorithm with a polynomial time growth
rate we can apply the algorithm to larger and larger problems with a reason-
able increase in the computational requirements. In contrast, an algorithm
with an exponential time growth rate implies a dramatic increase in com-
putational requirements with problem size, and for even moderate sizes the
problem rapidly becomes intractable. Even when the exponential time algo-
rithm is much faster on small problems, it still rapidly becomes impractical as
the problem size increases—compare the middle two rows of Figure 2.1.

It is important to realize that looking for polynomial time exact compu-
tation for y is the same as for many other problems. Such research is rightly
in the field of computational complexity, not control. These problems are the
same because any of them can be converted into any other in polynomial time.

With this in mind, we see that proofs of guaranteed convergence to u are
irrelevant. Any such proof is meaningless for any computation other than
those that are trivially small and consequently easy. Large problems demand
polynomial time algorithms, regardless of the speed on small problems. The
fact that the mixed p problem is NP hard means that we cannot expect to
find such algorithms if we attempt to solve the general problem exactly for

21

all cases. Any practical effort to compute the answer to an NP hard problem
must be measured by its performance on a large number of typical problems.

A good deal of research in robust control computation has ignored this
issue entirely.

NP completeness is a property of a problem, not a property of an algorithm;
it sets a limit on how fast an algorithm that computes exact answers can be.
If mixed u problems were shown to have polynomial time growth, it would be
a dramatic result in the theory of computational complexity. Certainly, some
algorithms can be much worse than others; for example, an algorithm may
exhibit exponential growth for a problem that is computable in polynomial
time. Such an algorithm would be intolerable for large problems, as shown in
Figure 2.1.

Since the mixed yu problem is NP hard, we expect that given any algorithm
to compute p there will be problems for which the algorithm cannot find the
answer in polynomial time. Thus, for all practical purposes, even moderately
large examples of such problems are computationally intractable; practical
computation requires giving up exact computation in the worst case.

An approach to practical computation is to consider special cases of the
general problem that may be easier to solve. The difficulty with this approach
is that we would like the resulting algorithm to be widely applicable to a large
number of engineering problems, and the special cases that are easily solvable
may be too restrictive. For this reason, subsequent chapters do not adopt this
approach but rather concentrate on the general problem. Nevertheless, since
special cases have been the focus of so much research, the next few sections
consider those special cases for which computation of yu is relatively easy.

2.3 Problems with Special Structure;
Restrictions on A

In light of the NP completeness results presented in the preceding section,
it is natural to ask if there are special cases of the mixed p problem that
are relatively easy to compute. There are, and in practically all such cases
it can be verified a priori that p is equal to its upper bound which can be
computed as a convex optimization problem. (The upper bound is the subject
of Chapter 4.) Unfortunately, these special cases are relevant to few problems
of engineering interest.

Although somewhat artificial, it is useful to separately consider restrictions
on the nominal system and on the uncertainty structure (respectively M and
A in Figure 2.2), because restrictions on each one result in easily computable
special cases. Computation is easier when M is highly structured, while less
structure on A makes computation easier. However, these easier problems are

22

not particularly useful: problems motivated by real engineering applications
typically have unstructured nominal systems combined with highly structured
uncertainty, and they consequently are difficult to compute.

For simplicity, consider the standard problem of robust stability for the
system in Figure 2.2 where A is norm-bounded by 1. The least structured
A is a single block that is allowed to be an arbitrary nonlinear, time-varying
operator. In that case the small gain condition is necessary and sufficient, and
the test is simply ||M||,, < 1. This test remains necessary and sufficient when
A is restricted to be causal, and also when it is further restricted to be either
linear time-varying (LTV) or linear time-invariant (LTT).

Figure 2.2: The standard robust stability problem.

Additional structure on A leads to p tests of increased complexity, but
some special cases exist when py is equal to its upper bound. If A is block
diagonal with any number of LTV perturbations, then recent results, obtained
independently by Shamma ([33]) and Megretsky ([23]), show that the exact test
for this case is equivalent to the upper bound to a complex constant matrix
problem (the upper bound may be found in Theorem 4.3). Frequently however,
the smallest destabilizing perturbation for such a problem has a memory much
longer than might seem reasonable in a practically motivated problem, so we
might wonder whether a set described by such a A is too large.

Also, in the constant matrix case, if A consists of three or fewer full complex
blocks, or if A consists of one full and one repeated scalar block, then p is equal
to its upper bound. In general, however, u is not equal to its upper bound for
more elaborate uncertainty structures unless additional structure is imposed
on M. The case of structural restrictions on M is considered in the next
section.

23

2.4 Restrictions on M and
Kharitonov-Type Results

A recently popular research program has focused on extending Kharit-
onov’s celebrated result on interval polynomials (see [20]) to more general
uncertainty structures. An interval polynomial is a set of polynomials whose
coefficients are real and lie in some specified interval. Kharitonov showed that
one need check only four polynomials to determine whether every polynomial
in the interval polynomial is stable. Several additional results have since been
proved for similar problems, such as polynomials whose coefficients are affine
in some real parameters (see Bartlett et al., [5], for example), and the solu-
tions typically involve checking the edges or vertices of some polytope in the
parameter space. The family of interval polynomial stability problems where
the coefficient perturbation dependence is affine is readily converted into a
family of real y problems on matrices that are rank one, as in Section 1.3.

The rank one mixed p problem is studied in detail by Chen et al. in [8],
where an easily computed expression for the solution to this problem is devel-
oped. They then solve several problems from the literature, that are special
cases of rank one p problems, hence relatively easy. The need to check a
combinatoric number of edges, often a feature of Kharitonov-type results, is
unnecessary. Checking edges is an example of an expensive algorithm for an
easy problem.

The next section presents a simple and intuitive algorithm for solving the
rank one p problem. This solution is also useful as a step in the computation
of a lower bound to the general problem, where the matrix need not be rank
one.

2.5 The Rank One i Problem

The rank one mixed p problem is simply the special case of computing
(M) where M is a dyad. The simplicity of the rank one mixed x problem is
apparent in the following graphical interpretation in the complex plane.

Let M = uv*, A € Ba, and o € R*. Then

A
0 = det(/——M)=det(l~- v*éu)
a «
= vAu=aq«
= Z druruy + Z ScUntle + Z velAcue = o

rer cEc CceC

Recalling the definition of u, Equation (1.3), we see that

AeBA

po= max{a det([——é—M):O}
«

24

c€c CceC

= R R velAcuc | -
Ané%)i (TZ& rUTUT‘FZ cUcUc'f'Z cAc 0)

This equation is the basis for the graphical interpretation of the rank one
mixed z problem. The problem is solved by choosing 6y, d., and A¢ so that the
complex vectors 0,v}u,, d.viu., and vizAcuc add up to the largest possible
positive real number. The contributions of the complex blocks cannot be
optimal unless they are colinear; they must all have the same phase. Thus

> dvtuc+ Y viAcuc = Le (2.2)

cEe CeC

and the rank one mixed p problem reduces to choosing real numbers d, €
[-1,1] and ¥ € [—7, 7] to maximize o where

Z o,viu, + eV L, = a. (2.3)

rer

By thinking of Equation (2.3) as a vector sum in the complex plane, it is
apparent that the solution to this problem easily can be obtained geometrically.
The following algorithm is guaranteed to compute mixed p exactly for the
rank one matrix M = wv*. It also allows us to find an optimal perturbation

Q € 0BA.
e Start with 6, = sgn(Re(v}u,)).

e Compute S =sgn(Im(}_ . 6.0 u,)).

rer

e Rank all the components d,v u, by argument, £(S9,v}u,), in descending
order.

» For the highest rank component not yet considered, assign the optimal
value of this §, unrestricted in sign or magnitude to 4, (the optimal value
depends on L¢ and £(Sd,v}u,)).

o If sgn(cg;) = —sgn(6,) and 0, & (—1,1), and this is not the last possible
component, then go back to the previous step », else proceed. In either
case, reassign §, = max(—1, min(é,,1)).

e We now have an optimal &, and can easily compute the optimal value of
U and then the perturbation Q.

The algorithm requires at most a search over real parameters, the cost
of which grows linearly with the number of real blocks. Thus we have a
closed form solution for both 1(Af) and the associated @@ € 0Ba, with trivial
computational requirements.

25

A version of this algorithm tailored to Matlab' implementation is efficient
and also has proved useful in the computation of lower bound to the more
general u problem, as explained in Chapter 3.

2.6 Convex Problems

The rank one mixed p problem also can be addressed within the upper
bound framework described in Chapter 4.

Theorem 2.1 ([40]) Suppose we have a rank one matriz M € C*™*",
then u(M) equals its upper bound from Theorem 4.4.

Thus rank one problems as well as the problems of Section 2.3 are equivalent to
LMI optimization problems. Such problems are convex and are comparatively
easy to compute.

Although solving the upper bound LMI optimization problem is not the
best way to solve a rank one y problem, all easy p problems are ones where
1 is equal to its upper bound. Indeed, if p is not equal to its upper bound in
Theorem 4.4, it is generally difficult even to verify the value of u. Typically,
we can verify the value of x only by showing that the upper and lower bounds
are equal.

This theorem reinforces the results of Chen et al. ([8]) and offers some
insight into why the problem becomes so much more difficult when we move
away from the affine parameter variation case to the multilinear or polynomial
cases ([34]). These cases correspond to u problems where M is not necessarily
rank one and hence may no longer be equal to the upper bound, and so may
no longer be equivalent to a convex optimization problem (there are rank
two matrices for which g does not equal its upper bound). There are no
practical general algorithms based on edge-type theorems, because the results
are relevant only to a small class of problems. Furthermore, even in the affine
parameter case, there is a combinatoric number of edges to check.

2.7 Generating Test Matrices

Although the material in this section relies on results from Chapters 3
and 4, it is presented here because the need for test matrices is a direct conse-
quence of the computational complexity of the mixed p problem. The results
in this section are due to Young ([39]).

We have seen that the mixed g problem is NP hard, which implies that
the worst-case performance of any algorithm is poor, in terms of either the

'Matlab is a convenient language for writing such algorithms and is available from The
MathWorks, Inc., Cochituate Place, 24 Prime Park Way, Natick, MA 01760

26

accuracy of the bounds or the growth rate in computation. In fact, we can
construct examples for which the bounds in Theorems 3.2 and 4.4 are arbi-
trarily far apart. For our purposes the real issue is whether we can develop a
practical algorithm whose typical performance is acceptable. In order to ex-
amine the typical performance in Section 4.4, we run the algorithm repeatedly
on a large number of test matrices, randomly generated from within certain
classes, then collect statistical data. In this section we describe the three
specific types of random matrices used.

The most straightforward way to generate random complex matrices in
Matlab is with the p-Tools command crand. This command generates ma-
trices whose elements are random variables, and by setting rand (’normal’)
in Matlab we can choose these elements to be normally distributed with zero
mean. We refer to this type of random matrix as a crand matrix.

Unfortunately crand matrices are not at all representative of matrices aris-
ing from control problems. A more natural class is formed by randomly gen-
erating State Space A, B, C, and D matrices using the p-Tools command
sysrand and evaluating the transfer function at some frequency, usually placed
roughly in the middle of the modes. We refer to this type of random matrix
as a sysrand matrix.

For the purposes of testing algorithms it is desirable to be able to generate
problems for which we know the answers a priori. The following algorithm
provides us with the means to generate such problems:

e Randomly generate matrices De ﬁ, G e 6;, and @ € Q. In addition
randomly generate a unitary matrix ¥ € C**™ and a real nonnegative
diagonal matrix ¥ = diag(oy .. .o,) with

o,=1 for ie{l...r}and
o;<1 for ie{r+1...n} (2.4)

where 7 is some integer satisfying 1 < r < n. Finally generate a random
unit norm vector 7 € C* with the restriction that

=0 for 1e{r+1...n} (2.5)

e Compute X € C"™™ as any unitary matrix that satisfies the equation
Xn=(Q " —jG)I+G) Yy (2.6)

The matrix (@~ — jG)(I + G?)~2Y is unitary, so that we can always
find such an X.

o Compute M € C**" 35

M =D ((1+@)ixsy (1 +6%)t 4 i@) D. (2.7)

27

Before proving that this algorithm does indeed generate problems for which
we know the answers a priori, we need a preliminary result.

Theorem 2.2 Suppose we have M € C"" and a compatible block
structure. If the infimization in the p upper bound, Equation (4.4), is
achieved and is equal to (M), then

max pr (QM) = u(M). (2.8)

This theorem says that if u is equal to its upper bound, Equation (4.4), and
the infimum in the upper bound is achieved, then the worst-case perturbation
may be taken to be on a vertex.

Proof: From Equation (3.2) we immediately conclude that

max p, (QM) < pu(M).

Hence the result is trivial for u(M) = 0, so consider the case where
p(M) > 0. Then by a simple scaling argument we may without loss
of generality assume p(M) = 1. Suppose we have the perturbation
Q € 0Ba achieving the maximum in Equation (3.2), so there is an
x € C" with z # 0 such that

QMzx = x.

This implies that the block components of the vectors z and z = Mz
satisfy

Gr2r = Ty for rer
QeZe = Te for cEc
Qczc =z for CeC. (2.9)

Now by assumption we have D € D and G € G such that
(M*DM + j(GM — M*G) — D) <0
so that in particular
2" (M*DM + j(GM — M*G) — D)z < 0.
Expanding this expression, and substituting Equation (2.9), we see that

> Y
rer rer

1 1 2
Dy z, D}z, (2.10)

28

(note that all the complex blocks ¢, and Q¢ are unitary). Since [|¢-|| < 1
forallrer

Il <1 = HD?zr = 0. (2.11)

Since D, > 0, Equation (2.11) implies z, = 0 and hence, by Equation
(2.9), z, = 0. Thus we may take ¢, = 1 for all such blocks and satisfy
QMzx = x with Q € Q. n

Theorem 2.3 Suppose we have a matriz M € C**" and a compatible
block structure. Denote the upper bound from Theorem 4.6 by [i. Then
the following two conditions are equivalent.

a: There exist matrices D € D and G € G achieving the infimum in
Theorem 4.6, and (M) = p(M) = 1.

b: M can be generated by the above algorithm.
Proof: (b = a) Equation (2.7) implies
(I+@G) #(DMD™ - jG)(I+G*) i = XTV*
and hence
7 ((1+6* H(DMD™ — G I+ G = 1. (2.12)

Then Theorem 4.6 implies that (M) < 1, with D € D and G € G
achieving this bound. By construction XY*Y7n = 7, so Equation (2.6)
implies

XSY*Yn = (Q ' —jG)I+ G 7Y

Rearranging this equation and noting that any D € D and Q€ Q
commute, we get

QD ((I+G)iXSY*(1+G?)t + jG) DDH(1 +G?) vy
= DI+ G vy,

Substituting M from Equation (2.7) and defining
z=D"YI+G* 1Yy,
where z is not zero, we have
QMz =z,

hence (M) > 1. Together with Equation (2.12) this implies a.

29

heorems 3.2 and 4.6, together with a imply that there are

o~

G, and @) € 0BA such that

o
l
=
m =

<I+G2)y-1(DMD- 1—]G)(1+G2)—%) 1 (2.13)
QMz =2 (2.14)

with £ # 0. By Theorem 2.2 we may assume ¢ € Q without loss
of generality. Furthermore, by continuity of singular values and by
Theorem 4.6, we have equality in Equation (2.13). Let XXY™* be a
singular value decomposition of Equation (2.13):

XYY* = (I +GY)"3(DMD™ — jG)(I + G*)1. (2.15)

The algorithm could choose these 13, @, @, Y, and . From Equa-
tion (2.15) we see that M satisfies Equation (2.7), so it remains to
show that our algorithm could choose this X.

Substituting for M in Equation (2.14) we obtain

XSY*(I +G?)iDz = (Q7' — jG)(I + G ~:(I + G*)1 Dz
Define y = (I +G2)1Dz # 0 and § = L so that

XV = Q! — &) (I + G*) 27 (2.16)

Since (Q~!—jG)(I+G?)~% and X are unitary, we see that [|SY*F]| = 1.
Defining n = Y*7 and noting that ||n}] = 1, we see that the structure
of ¥ implies that 7 satisfies Equation (2.5) and thus could have been
chosen by the algorithm. Then Equation (2.16) becomes

Xy =@ — &I +G) =Yy
so our algorithm could choose this X and hence generate M. n

Remarks: The above algorithm was first developed for the purely
complex case by Fan et al. ([15, 28]). Note that we can select the
number of singular values coalesced at the minimum of the upper bound
function in Theorem 4.6, and a simple extension to the algorithm allows
us also to select the number of eigenvalues coalesced at the maximum
of the lower bound function in Theorem 3.2.

This algorithm can randomly generate any problem with the upper bound
achieved and equal to u = 1, together with optimal scaling matrices achieving
the upper and lower bounds. For these problems there is no gap between
the bounds from Theorems 3.2 and 4.4, although the lower bound is still a
nonconvex maximization problem. We refer to a random matrix generated by
the above algorithm as a nogap matrix.

30

Chapter 3
The Lower Bound

In Chapter 2 we saw that the computation of p is inherently difficult
and effective computation requires approximation. Although upper and lower
bounds to x each have their own system interpretation in the original prob-
lem, neither is terribly interesting in isolation: a bound is typically of little
use without some measure of its quality. Such a measure is provided by upper
and lower bounds that are close together.

While Chapter 4 addresses the computation of an upper bound to pu, the
present chapter addresses the computation of a lower bound to mixed p. A
power iteration to compute a lower bound for the complex p problem (see
Packard et al., [28]) was generalized to the mixed case by Young as follows.
First, mixed p is reformulated as the real eigenvalue maximization problem
maxg p, (QM). Chapter 2 explains why the goal is to find a local maximum
rather than the global maximum. Second, a local maximum of p,(QM) implies
an alignment between the right and left eigenvectors of QM. This alignment
condition is in turn associated with the solution to a certain set of matrix-
vector equations. Third, a power iteration is developed whos equilibrium
points satisfy the alignment conditions and thus provide a local maximum.
The theoretical development of the power iteration, together with some as-
pects of its implementation, is fully described by Young and Doyle in [41].

Even though each iteration of the scheme is inexpensive, involving only
matrix-vector multiplications and vector inner products, it often converges
quickly to a large local maximum. Unfortunately, the lower bound power
iteration is not guaranteed to converge to even a local maximum, and does not
converge on a significant number of problems. Although we can still obtain
a lower bound from the scheme in such cases by holding the real blocks of
the perturbation constant, the resulting lower bound is generally not a local
maximum and may be poor. The first effort to enhance the performance of
the standard power algorithm (SPA) is presented by Tierno and Young in [37],
with encouraging results.

In this chapter we present the SPA and several new approaches to comput-
ing an improved yu lower bound. We begin with the reformulation of 4 as an

31

eigenvalue maximization problem and the characterization of local maximums
in Section 3.1. An alternative, more general, derivation is in Chapter 6, but for
now we follow a more traditional development. We then present the SPA and
an analysis of its convergence properties. Subsequently, we describe a variety
of modifications to the SPA which result in algorithms with better conver-
gence properties. These algorithms are then combined to yield a substantially
improved power algorithm, and the resulting performance is presented in Sec-
tion 3.7.

3.1 A Maximization Problem

First consider the computation of a lower bound to the mixed p problem.
We cannot simply replace the real perturbations with complex perturbations
and then use the complex p lower bound since that would include perturbations
from outside the permissible set A, and so would not yield a valid lower bound.

If A, and Ay are both in both in Ba then A,A, is too, so we may replace
the lower bound p,(M) < u(M) in Equation (1.5) with

< .
Joax pr(AM) < p(M)
From the definition of p it is easy to see that the inequality may be replaced
by equality.

Lemma 3.1 For any matriz M € C*" and any compatible block
structure

W) = max p,(AM). (3.1)

Furthermore, since 0B C Ba it is easy to see that

ax pr(QM) < p(M).

Again, the inequality may be replaced by equality.

Theorem 3.2 ([41)) For any matriz M € C™™ and any compatible
block structure
Juax pr(QM) = u(M). (3.2)
Note that p,(QM) = p,(MQ).
Since this maximization problem is not convex in @) and there are examples
with strictly local maxima, we are in general only able to find local maxima.
We would like this lower bound to be close to u, therefore our goal is to find

an efficient way to compute a (large) local maximum of the function p,(QM)
over (€ 0B4.

32

When Algorithms Fail to Converge

The algorithms described in Sections 3.2 through 3.7 are iterative and try
to converge to a local maximum of p,(QM). When these algorithms fail to
converge, as they occasionally do, we can still find a lower bound. The idea
is simple: if we cannot find a local maximum of p,(QM), then a lower bound
is found by evaluating p,.(QM) at a @ that does not correspond to a local
maximum. Some care is required because the () must yield a real eigenvalue.

With a candidate mixed perturbation from the iteration scheme (i.e. a
scaling matrix @) € 0Ba) and a guess for the lower bound one can construct
a valid perturbation. Suppose we have a matrix M partitioned as

My M, }

3.3
Mo Ma (3:3)

M= [
and block structures A; and A, compatible with M;; and M, respectively.
Then the block structure A defined as

A= { diag(Al, Ag) I Al € Al, Ay € AQ} (34)

is compatible with M. Further assume we have arranged the problem so that
A consists of purely real uncertainties, and A, consists of purely complex
uncertainties. Then we have the following lemma.

Lemma 3.3 Suppose we have a matriz M € C**™ as above, a pertur-
bation A € Ba as above, and a real scalar oo > 0. If det(I — —A%—Ai) =0
define f = « else define 3 as

B=p (A2 (—Aa—l *M)) (3.5)

then min(e,) < u(M).

Proof: If det(] — 2181) = 0 then A = diag(2},0) sets det(] —
AM) = 0 so that min(e, 8) = @ < p(M). Otherwise, either 3 in
Equation (3.5) = 0 and min(a, 8) < (M), or A = diag(2, %e“ﬂ’)
sets det(] — AM) = 0 for some 0 € [0, 27] so that min(a, 8) < u(M).

|

This lemma gives us the means to compute a lower bound to u given the
candidate guesses for the perturbation and the lower bound @ and « provided
we are not in the pure real case. (In the pure real case our bound is « if
det(I — #1181} = (and zero otherwise.) This scheme is included in all Jower
bound algorithms so they always return a valid lower bound, regardless of
convergence.

The remainder of the chapter addresses the problem of finding local max-
imums, rather than the problem of what to do when we fail.

33

Characterization of Local Maximums

Efforts to compute a lower bound to u have focused on finding a local
maximum of Equation (3.2) rather than the NP hard problem of finding the
global maximum. This section presents conditions that must be satisfied at
every local maximum. The characterization of a maximum point of p,(QM)
at @ = I is in terms of an alignment of the right and left eigenvectors of M.

For the rest of this chapter we make a non-degeneracy assumption w}z; #
0,7 € r|Jc|JC. For any matrix Q € 0Ba define the index set

72 {ier|[all<1) (3.6)
and define the allowable perturbation set
Ba, 2 {A|A€Ba, forig J,||Ai|<l+eforiec J,AcA}. (3.7)

If @ € OB A we see that for sufficiently small e > 0, A € By, implies QA € Ba
and AQ € Ba.

Theorem 3.4 ([41]) Suppose the matriz M € C*" has a distinct
real eigenvalue Ao > 0 with right and left eigenvectors, x and w respec-
tively, satisfying the non-degeneracy assumption. Further suppose that
pr(M) = Xo. If, for some € > 0, the function p,(QM) attains a local
mazimum over the set Q € Ba, at QQ = I, then there ezists a matrix
D € D with 0; = % for every i € J, and a real scalar ¢ € (=%, T),
such that w = /¥ Dx.

Remarks: The condition w = /¥ Dz is referred to as alignment of
the eigenvectors w and z.

A partial converse to Theorem 3.4 was shown in [41]: if w = /¥ Dx
under the above assumptions, then no directional derivative of the
eigenvalue achieving p,(QM) over the set () € Ba, is real and posi-
tive at Q = 1.

3.2 A Lower Bound Power Algorithm

In the first part of this section we review the SPA as developed by Young
and Doyle in [41], following the tradition established by Packard et al. in [28] for
the complex only case. In the second part we show the results of a comparison
between the SPA and standard optimization code on the same problems. These
results support the assertion that the SPA is a good starting point for the
development of better algorithms for 4 lower bound computation.

34

The SPA

Satisfying the alignment conditions for x(M) can be reduced to finding
matrices @ € OB and D € D with 6, = +7 for ¢ € J(Q) and non-zero
vectors v, w, &, and z such that the following set of equations holds.

Bz= Mz Bw = M*v
T =Qz z =Dty
v=Q*'QDz v=Qw. (3.8)

Finding such solutions may be attempted via the power iteration below.
We do not go into any of the details of the theoretical development here, but
merely present the final result.

We explicitly write the formulae only for the simple block structure with
one repeated real scalar block, one repeated complex scalar block, and one
full complex block. This is for notational simplicity only. The formulae for an
arbitrary block structure are obtained simply by repeating the formulae for
each type of block appropriately. Except for the power steps Equations (3.11)
and (3.13), the blocks are updated independently.

With this block structure,

8BA = { dlag(qr-[a C]c:QC) l qr € [_17 1]7 q:qc = 19@2’@0 = I} . (39)

Partition the four vectors v, w, z, and z € C» compatibly as

Uy W, Zp 2y
v= | v, w= | w, zr= | =z, 2= | z (3.10)
Vo We Tc zZc

The SPA iteration is as follows.
Ek-}—lzk—l—l = Mxk . Ek—i—l € R+, “Zk-HH =1 (311)

UT'k+1 = Qk-f—lwrk

w2,
Vopyy = Tty (3.12)
”kaZCk-H ”
|we, |
U = Z
- ”ch+1 H Gl
Brr1Why1 = M*z, - Bk+1 €RT, flwpn| =1 (3.13)

Lrypr = qk+1sz+1

*
V4 w
Ch41 " Ch41
'Tck+1 - Z, (3].4)

Ck+1
3
ch-H wck+1

35

2C
vo,.. = I k+1”wck+l
” Ck+l”
where g1 and g, evolve as
~ ~ T %
Qpp1 = sgn(qk)M+Re(zrk+lwrk) (3.15)
Th+1
Gk+1 = min(max(—1,a),1)
~ ~ lzrl s
Opi1 = Sgn(Qk-{—l)”Z ok ” +Re(zrk+1wrk+1)
Tk+1
Qe+1 = min(max(—1,a4,),1).

An important feature of these relationships is that they do not involve the ma-
trices () and D; @ and D are defined implicitly by the vectors at equilibrium.

If the above iteration converges to an equilibrium point then we have a
matrix () € O0Ba such that QMz = Bz and w* QM = //B\w*, so that max{ﬁ, B}
gives us a lower bound to u(M). Furthermore if B = E then this bound
corresponds to a local maximum of Equation (3.2). In a significant number of
cases the iteration does not converge, and the application of Lemma 3.3 yields
a poor lower bound to y. These are precisely the cases that need improvement,

motivating the work in Sections 3.3 through 3.6.

The SPA vs. Standard Optimization

In order to examine the average computational requirements both for the
SPA implemented in Matlab (with no .mex files) and for directly solving Equa-
tion (3.2) via the standard optimization techniques of NPSOL!, also imple-
mented in Matlab (with .mex files), we ran both algorithms 100 times on
random complex matrices with independent normally distributed elements,
and collected statistical data. This was repeated for problems of various sizes.

The ratio of computed lower bounds and computational requirement ver-
sus matrix size are shown in Figure 3.1 and F igure 3.2 respectively for block
a structure consisting of complex scalar uncertainties. The flop count for
the SPA includes an upper bound computation, while the flop count for the
standard optimization does not include the .mex file flops, where most of the
computation occurs, so the difference between the algorithms is even more
pronounced than that shown in Figure 3.2.

It can be seen that the SPA is much faster, even though the lower bound
obtained is better. This advantage becomes more significant as the size of
the problem grows. Note that NPSOL is finding local maximums for these
problems; the SPA computes better bounds because it tends to find larger

!Information about NPSOL is available from the Stanford Office of Technology Licensing,
350 Cambridge Ave, Suite 250, Palo Alto, CA 94306

36

SPA vs. NPSOL

0.14 ! ; ! ; ! e T
=
R USROS USRS SNSRI VORI RS TSR SR MO ot
008k JERTINE S P S S il
ot
y I
T T s s s o &

0.02F ,

0
002 g
—0'040 10 20 30 40 50 60 70 80 90 100

% of cases when In (ratio of lower bounds) <y

Figure 3.1: In((SPA lower bound)/(NPSOL lower bound)) for problems of size
4 through size 30—the curves are not labeled as they are qualitatively the
same. The SPA computes better bounds: its bounds are often significantly
better, and seldom significantly worse than NPSOL’s bounds.

local maximums. Larger local maximums have relatively larger regions of
attraction in the SPA than they do in the gradient search.

For these reasons, our quest for better computation is based on improve-
ments to the SPA.

3.3 The SPA Using the Rank One Solution

In this section we explain a connection between local maximums of p,(QM)
and the solution of a rank one y problem. The power iteration attempts to
force the right and left eigenvectors of QM to satisfy the alignment condition
of Theorem 3.4 associated with a local maximum of p,(QM). It turns out that
this alignment condition is also associated with the solution to a certain rank
one y problem formed from the eigenvectors.

The resulting rank one p problem leads to a new way of updating Q in

37

SPA vs. NPSOL

108 S

w

107

106

10° 5

10*

problem size

Figure 3.2: SPA flop count and a partial NPSOL flop count for problems of
sizes 4, 8, 12, 20, and 30. A line connecting the data for each method shows
the trend. Clearly, the SPA can solve much larger problems than NPSOL can.

the SPA. The new algorithm is nearly as fast as the SPA and provides better
bounds. This is the simplest improvement over the SPA in this chapter.

The Rank One Algorithm (ROA)

The relationship between each p problem and a corresponding rank one
problem is shown by the following two theorems that connect the alignment
conditions of Theorem 3.4 with a particular rank one p problem.

Theorem 3.5 ([40]) Suppose we have M = zw* and a compatible
block structure, with z and w € C" satisfying the non-degeneracy as-
sumptions. Further suppose we have Q) € ABa with g, # 0 for all real
blocks r € t such that p.(QM) = 3 > 0. Then we have 8 = u(M) iff
there exists D € D with 0; = £Z for |l¢.|| < 1 and ¢ € (=%, %) such

(
T
, 272
that w = ¥ DQz.

38

Remarks: The proof of Theorem 3.5 relies on Theorem 3.4, the fact
that ()M has only one nonzero eigenvalue, and the fact that a local
maximum for the rank one problem is global.

Theorem 3.6 ([40]) Suppose we have the matriz M € Cr<n and Q) €
OBAa such that QM has a real positive eigenvalue. Further suppose that
gr # 0 for all real blocks v € r, and that the corresponding right and
left eigenvectors of QM, denoted by = and w respectively, satisfy the
non-degeneracy assumption. Then there exists D € D with 0; = +% for
larll <1 and+p € (=%, %) such that w = /¥ Dz iff the matriz Q € 0Ba
solves the rank one u problem MaX5eam, Pr (@Ml) where My = zw* and
z2=Q z.

Proof: By assumption we have w*z > 0 so that w*Qx > 0 and hence
pr(QM;) > 0. The result follows from Theorem 3.5. n

Theorems 3.5 and 3.6 follow the notation in Theorem 3.4, and thus obscure
the simplicity of the equivalent rank one solution. Since the local maximum at
QM is characterized by conditions on the eigenvectors of QM corresponding
to some eigenvalue (3, we define an equivalence class of matrices M that have
an eigenvalue § and the same corresponding eigenvectors at QM. The set
of problems p(M), where M is in the equivalence class, are equivalent in the
sense that all satisfy the alignment conditions at Q. Furthermore, the problem
of computing 4 of rank one member of the equivalent class has no other local
maximums. This rank one problem is easily solved, as in Section 2.4, and
allows us to find @ € OBA that is consistent with the alignment condition.
This is used to modify the standard power iteration as follows.

e Start with initial guesses for 2 and w € C".

» Update z with the power step Ez = Mz.

e Compute the Q € 0B, that maximizes pr(Qzw*).
e Update v with v = Q*w.

e Update w with the power step Bw = M*v.

o Compute the Q € B that maximizes pr(Qzw*).
e Update z with z = Q2.

e If converged, then stop, else g0 to ».

39

Sometimes the rank one problem constructed from the eigenvectors of a
local maximum has multiple solutions. Some of these solutions of the rank one
mixed p problem might not correspond to equilibrium points of the original
problem. This can happen when two or more products w’z,. have the same
phase or opposite phase. The ROA should be modified to deal with these cases
better.

3.4 The Wrap in Reals Algorithm (WRA)

This section presents a more substantial modification to the SPA. The prin-
cipal difficulty with the SPA is that if p,(QM) < p(QM) then the algorithm
often does not converge. One way of thinking of this is that the “power” steps
Equations (3.11) and (3.13) are increasing the component corresponding to
p(QM) faster than the rest of the steps can move towards the solution corre-
sponding to p,(QM). The idea in this section is to utilize the good convergence
properties of the SPA on complex blocks, while proceeding more cautiously on
the real blocks.

For the remainder of this section we denote all complex blocks with the
subscript ¢ and separate the perturbation @ into its real and complex compo-
nents, ¢, and @,, as follows.

o o
Q‘[o Qc]

We partition the vectors v, w, z, and 2 and the matrix M compatibly:

e] =[] = [

V= w = xTr = A

Ve We X Ze

MT‘T M'I"C

MCT MCC .

The following theorem gives alignment conditions in terms of the real and

complex block components in a way that allows for an algorithm that updates
the real blocks independently of the complex blocks.

|

Theorem 3.7 ([37]) For a given matriz M € C™™ gnd 4 given un-
certainty structure A, suppose we have Q € Q, non-zero vectors v, w,
%, and z, and a positive scalar 8 such that BI — M,.Q, is nonsingular.
Further assume that b, # 0, z, # 0 and all the diagonal elements of Q,
are nonzero.

Then the following conditions hold

Bz = Mx Bw = M*v (3.16)
T =Qz z=D1w (3.17)
v=Q"'QDz v=Q"w

40

iff there exist non-zero vectors v,, w,, ., and 2z satisfying the following

conditions
pro= (Sada, pu. = (Gamre (319)
Te = Q2 z. = D 'w, (3.19)

Ve = Q:QchZc Ve = Q:wc
Qr(ﬂf — MTTQT)_IMTCxC = Dr_l(ﬂf — M:TQT)_IM:TUC. (3.20)

Remarks: The proof involves nothing more than writing Equations
(3.16) and (3.17) in the new notation and eliminating v,, w,, ,, 2, from
the equations. The resulting equations allow us to characterize a local
maximum over (), for a fixed (), and further, to characterize when this
is a local maximum over Q, too.

An iterative algorithm that separates the real and complex blocks in this
way follows.

e Start with some given values for z, w, 3, @, and M.
» Update z, and § with the power step Bzc = (% * M)x..

e Update v, as in the SPA.

e Update w, and J with the power step fw, = (% * M)*v,.

e Update z, as in the SPA.
e If converged, then go to the next step, else go to ».

e Compute 2, = (8] — M,,Q,) *M,.z, and
w, = (81 — M2Q,) " M,

T

e Update Q,.

Update 3.

e If converged, then stop, else go to ».

This specifies a class of algorithms that may update @, in a variety of ways.
In the implementation of this algorithm, we run one rank one iteration first in
order to get the starting values of w, z, B, and @, needed for the WRA.

Compared to the ROA, the WRA is computationally more expensive, but
the convergence properties are much better, even with a simple), update.
It is thus reasonable to mix the two procedures, and only use the slower and
more reliable one in the cases where the faster scheme fails to converge.

41

In the SPA at a local maximum of p,(MQ), the vector 2 is not necessarily
in the direction of the largest eigenvalue of M @, and the algorithm might not
converge if p,(MQ) < p(MQ). In the WRA, however, at a local maximum
of p,(MQ) the vector z, always corresponds to the largest eigenvalue of (% *
M)Q.. The WRA may be thought of as first implementing the SPA on the
complex part of the problem with the real part fixed (the SPA has very good
convergence properties on complex problems), then improving the real part of
the problem with the complex part fixed. While Tierno and Young ([37]) first
used this idea of separating the real and complex parts of the problem, they
did not exploit the convergence properties of the SPA on complex problems.
Thus it is not surprising that the WRA has significantly better convergence
properties than both the SPA and the algorithm in [37].

3.5 Shift and Inverse Algorithm (SIA)

Another way to find an eigensolution that does not correspond to
p(MQ) is based on the observation that if Az — M Q7 and 3 is not an eigen-
value then

A=8°)"2=(MQ - 5°1) .
When A and 8° are close to each other, (A — 8%)7! is a large eigenvalue of
(MQ — 8°I)~Y, and a power iteration based on this equation converges to the
eigensolution Az = MQz of MQ. Such an iteration is called a shift and inverse
iteration.

We use this idea to modify the SPA. The @ updates are as in the SPA,

except that now @ must be formed explicitly. This algorithm, called the SIA,
proceeds as follows.

e Start with a @, a 5° close to an eigenvalue of MQ, a z close to a right
eigenvector of M@, and a w close to a left eigenvector of QM.

> U~pdate 2 and B’ with the inverse power step
(8—8°)" 2, = (MQ — 8°I)~2_; with § € R* and llze]] = 1.

e Update @ € 0B, and f°.

° Update wy, and B with the inverse power step
(B —B°)wy = (M*Q* — B°1) " wy_; with B € R and |lwy|| = 1.

) Update () € 0BA and 3°.

o If converged, then stop, else go to ».

42

We may also perform the inverse power step multiple times before updating
Q@ and S.

This algorithm converges quickly when we start close to an eigensolution.
When we do not start close to an eigensolution, however, it performs poorly.
Thus it is appropriate to use it only in conjunction with some other algorithm
that gets near a solution first.

3.6 Combining the Algorithms

In previous sections we introduced three new algorithms for mixed 1 lower
bound computation. Here, we combine them in a way that utilizes their re-
spective good qualities and avoids their bad qualities. All the algorithms have
enhanced convergence properties compared to the SPA, but are also more
computationally costly.

Since the ROA is computationally the least expensive—nearly as inexpen-
sive as the SPA—we want to preserve the efficiency of the ROA for those
problems where the ROA converges, while improving convergence and there-
fore accuracy for those problems where the ROA fails to converge.

In the cases where the ROA fails to converge we need to continue looking
for a local maximum with one of our other algorithms. Note that all our
algorithms start with some guess for the perturbation or the vectors as input.
If these guesses are close to a local maximum then the algorithms perform
particularly well. Consequently, when we decide to switch to another algorithm
in the middle of the computation, we can take advantage of the computation
already performed. Knowing that the SIA has particularly good properties
only when we are quite close to the equilibrium point, we choose to continue
with the WRA because it works better than the SIA when we are not so close
to an equilibrium point. In the case that the WRA also fails to converge—
typically it just slows down, often near the optimum (this might be remedied
with a better (), update)—we continue with the SIA.

The following combination of the algorithms defines a new algorithm, de-
noted as CPA, for combined power algorithm. This is the CPA algorithm used
in the next section, (i.e. this is the scheduling used).

Run the ROA for up to 50 iterations.

If not yet converged, then run the WRA for up to 90 iterations.

If not yet converged, then run the SIA for up to 50 iterations.

If not converged, then construct a lower bound from the current pertur-
bation.

43

This scheduling reflects experience from testing not presented here. Cer-
tainly, there is room for improvement. In particular, the scheduling should
depend on a priori knowledge of the problem.

3.7 Numerical Experience

The nature of the mixed y problem is such that the only meaningful way
to evaluate an algorithm is by testing it on a large number of representative
problems. This section presents a comparison of several algorithms, each run
on the same type of problems. It also shows how the performance of the best
algorithm depends on problem size.

Performance of The Algorithms

1 T T —
: =T :
f =T : :
- : : :
Lo ‘APA :
..... i e T A]
... Py
: : : r
: : : r
: : : v
R P OIS U
: : e
: : -
S
2R T R G S S -
- :
: - : :
.5 SPA
' ST,
......... o -
[] I L

70 80 90 100
% of problems with lower bound <y

Figure 3.3: Algorithm performance on 500 hard problems.

As discussed in Chapter 2, it is desirable to be able to generate nontrivial
problems for which we know 4 in order to test algorithms. We use the pro-
cedure in Section 2.7 to generate a class of nogap matrices that also typically
satisfy p,(QM) < p(QM). We denote these matrices as the set Rs. We em-
phasize that these are particularly difficult problems for mixed 1 lower bound

44

computation. This is desirable because existing algorithms work well on most
problems; the point of this research is to do better in the cases where existing
code is inadequate.

Figure 3.3 shows a comparison between the algorithms described here and
also the algorithm of Tierno and Young in [37], denoted as APA. The SIA
is not included because it performs poorly unless it is given a good starting
point; it is only meaningful in conjunction with another algorithm. We tested
the algorithms on 500 matrices in the set Rz each with 4 real parameters, 2
scalar complex blocks and one 2x2 complex block in the block structure, and
with p = 1. The CPA is a dramatic improvement over the SPA.

Performance of the CPA for Various Sized Hard Problems

oot/ Lo T __________ -
ostf S LSS
ossl(3/ __________ -
o __________ __________ T TN S
ol /S USSR T S W
ol __________ N
ossff S .

0 10 20 30 40 50 60 70 80 90 100
% of problems with lower bound < y

Figure 3.4: Computation becomes more difficult as problem size increases from

2 to 12 real parameters. A line is plotted for each set of problems. Each set

contains problems of a single size, either 2, 4, 6, 8, 10, or 12 real parameters.
The computation is the CPA on Rz matrices.

Figure 3.4 shows how the bound computation using the best algorithm,
the CPA, becomes more difficult as the problem size increases. The best
performance shown is with 2 real parameters, and the worst is with 12. All
problems were particularly hard problems from the set Rz with p# =1, and

45

with 2 scalar complex blocks and one 2x2 complex block in the block structure.
These results further motivate research in better bounds computation.

46

Chapter 4
The Upper Bound

Although the lower bound computation described in the preceding chapter
typically calculates p quite accurately, the lower bound by itself is not satis-
factory. Without a high quality upper bound, we have no way of knowing if
the lower bound is reasonably accurate for a particular problem.

Since the p upper bound from Theorem 4.4 is a convex optimization prob-
lem, we could try to solve it using a variety of convex programming techniques.
For instance we know that gradient search methods lead us to the minimum
eventually, although they may be slow. (Even though the upper bound is not
in general differentiable if the maximum eigenvalue is repeated, it is possi-
ble to compute a generalized gradient that gives a descent direction.) Since
such approaches to the problem have not been entirely satisfactory, we would
like to exploit the specific structure of the problem in order to speed up the
computation.

4.1 An Infimization Problem

We now consider an upper bound to p. First note that for any A € Ba and
any D € D, DA = AD. From the simple equivalence det(I — AM) = det(] —
AD7IDM) = det(I — D"'ADM) = det(I — ADMD') we immediately have
the following invariance property.

Lemma 4.1 For any matrizx M € C"" any compatible block struc-
ture, and any D € D,

w(M) = p(DMD™). (4.1)

In light of Equation (4.1), we refine the upper bound in Equation (1.5) to
obtain the following.

Theorem 4.2 For any matrix M € CY" and any compatible block
structure,

p(M) < inf F(DMD™). (4.2)

47

This is the standard upper bound from complex p theory.
The upper bound in Theorem 4.2 is equivalent to the LMI upper bound in
Theorem 4.3 in that the two infima in Equations (4.2) and (4.3) are the same.

Theorem 4.3 For any matriz M € C**" and any compatible block
structure,

p(M) < inf |min { a | (M*DM —o’D) <0}]. (4.3)

" DED | 4cRF

The set D is the same for mixed p problems as for complex p problems.
If we use Equation (4.2) or Equation (4.3) for an upper bound for a mixed x
problem, we are doing nothing more than replacing the real parameters with
complex parameters (thus covering the admissible perturbation set Ba with
a larger set) and using the complex upper bound. Thus this bound does not
exploit the phase constraint of the real perturbations. For this reason one
might expect that this is often a poor bound to the mixed p problem, and
indeed this is the case.

The upper bound presented in [16] by Fan et al. does exploit this phase
constraint and gives a bound that is never worse than the standard upper
bound from complex u theory, and is frequently much better.

Theorem 4.4 ([16]) For any matriz M € C**" and any compatible
block structure,

w(M) < inf |min { o | (M*DM + j(GM — M*G) —o’D) < 0}] .
feg Loes

(4.4)

Remarks: Both Theorem 4.4 and Theorem 4.3 are special cases of
Theorem 5.9, which is proved in Chapter 5.

The difference between Equation (4.3) and Equation (4.4) is fairly intuitive.
If z € ker(I — AM), then z*j(GM — M*G)z = 0. Theorem 4.4 uses the scaled
small gain of Theorems 4.2 and 4.3 on the subspace (g, ker({ — AM).

It is clear that if we enforce the choice G = 0 in Equation (4.4), then we
recover the standard complex u upper bound in Equation (4.3). Thus the
phase constraint of the real parameters is being exploited to give us extra
degrees of freedom in the G scaling matrix and to obtain a better bound.

Since the above minimization involves an LMI it is convex, so that all local
minima are global, and hence is computationally attractive.

The algorithm implementation described in Section 4.3 relies on the fact
that the upper bound may be reformulated several different ways, as stated in
the following lemma.

48

Lemma 4.5 Suppose we have a matriz M € C™" and a real scalar
a > 0. Then the following statements are equivalent.

I There exist matrices D; € D and G, € G such that

X (M*D:M + (G, M — M*G,) — o*D,) < 0. (4.5)

II There exist matrices D,, € D and G, € G (or D;; € D and
G € G) such that

by (M}, Mp,, + j(Gi Mp,, — Mp, G)) < o? (4.6)

where we denote Mp £ DMD™!.

IIT There exist matrices D,;, € D and G, € G (or D;;; € D and
Gur € G) such that

o ((“MD_I” - jGIII> (I+ G?H)_%> S L. (4‘7)

«

IV There exist matrices D,, € D and G, € G (or D;, € D and
G.v € G) such that

7 (w6 (F2 — i)+ Gyt <t ug)

«

Proof: With the singular value decompositions for D and G and the
definitions

D =UpEpUs D, = D?
D.=(1+G*» YD D, = (1+%%)"V*UusD
My =DMD™ M,, = U,DMD™'Ug
G = UgZeUp G, = aDGD
Gy = oG Gy, = aZg
Gy = (I+ G2 Gop = (I +X2)~1/2
G, = (I +G?*)~Y4 Gy = (I+33)~ 1,

it is easy to see that the following are equivalent.

M*DyM + j(GaM — M*G,) — 2D, < 0

MM*DoM + j(G M — M*G,) — o2D,) < 0

M*D,M + j(G,M — M*G,) < o?D,

MMy + §(GyMy — MpGy) < oI
MMMy + §(GoMy — M Gy)) < o
XM My, + (G, My, — M, Ghy)) < 0
Mg My, + (G, My, — My, Gy,) < 021

M.,.j((;b%_%’igb) <I

(& —iG) (R —iG) —G* < 1
— jGy) - < 2
(L — jGy)" (2 - jG,) < T+ G

(% = jGb) G2)" (P2 = JGy) G2) < 1

[0

[0

The equivalences in the Lemma (and more) follow easily. [|

Remarks: The equivalence between I, II, III for D,, D,,, and D;;;
and € D and G, G;;, and G;;; and € G was shown by Fan et al. ([16]).
From the proof we can easily obtain the formulae to convert between
the various forms.

A useful consequence of the lemma is the following theorem.

Theorem 4.6 For any matrizc M € C*™ and any compatible block
structure let

B(Ma D7G7 a) =0 (([—-*—Gz)_% (%-D— _jG) (I+G2)_Z) .

(87
Then
u(M) < inf [mlﬂ{ a !B(M, D.Ga) < 1}} , (4.9)
Qe]? a€R+
GeG

and this infimum is the same as the infimum in Theorem 4.4.

49

90

Each of the two different formulations of the upper bound, in Theorems 4.4
and 4.6, has its advantages. The problem statement from Equation (4.4) has
the advantages that it is linear in the matrices D and G and is convex, and
hence does not have difficulties associated with local but not global minima.
The problem statement from Equation (4.9) has the advantages that it is
minimizing the norm of a matrix, offering some numerical advantages, that D
enters the problem exactly as in the standard complex p upper bound, that G
enters the problem in a balanced symmetric fashion, and that G is now a real
diagonal matrix.

Since the upper bound is convex there is a wide variety of numerical tech-
niques we could apply to this minimization. However, even for medium size
problems (n < 100), the optimization over the D and G scaling matrices could
involve several thousand parameters, depending on the block structure A.
Therefore, in order to handle problems of this size with reasonable computa-
tion times, a straight forward application of standard optimization techniques
will not suffice. Instead, we must exploit the specific structure of the problem
to develop an efficient algorithm that can handle problems of this size.

4.2 A Theoretical Framework for the Problem

This section provides a further connection between p and the upper bound
of Theorem 4.4. The material in this section is largely due to Young ([39)),
and is included for completeness only; we do not use the results elsewhere.

To examine the equivalence between p and its upper bound, we first con-
sider under what conditions a given pair of scaling matrices Dy and Gq yields
a value of « that is equal to the minimum of the upper bound infimization,
and under what conditions « is equal to . The remainder of this subsection
presents some of the ideas and states without proof four theorems that address
these issues.

Suppose we have matrices M € C"*", Dy € D and Gy € G and a real
scalar @ > 0 such that A(M*DyM + j(GoM — M*Gy) — a?Dy) = 0 with r
eigenvalues coalesced at the maximum. Further suppose that the eigenvectors
are given by Uy € C**" where (M*DoM + j(GoM — M*Gy) — o?Dy)Uy = 0
and U;DyUy = I.. Then the question of whether or not we can find a pair
of scaling matrices D € D and G € G to improve upon Dy and Gy can be
related to whether or not there exists a vector 7 € C, ||7j]] = 1 such that
the quantity ¢pe(n) = n*Us(M*DM + j(GM — M*G) — o2D)Uyy satisfies
$¢p,c() < 0. The function ¢p () can in turn be written as ¢p g(n) =<
(D,G),(D(n),G(n))>=<D,D(n)> + <G,G(n)>, an inner product between
the pair (D, G) and the pair (D(n), G(n)) parametrized by the vector 7. This
can be used to define a set Vy as the set of all such pairs (D(n), G(n)) for ||n|| =

ol

1, together with an extended set €7y D Vy. The details of these constructions
are given by Young and Doyle in [42], and the analogous constructions for
the complex u case are given by Packard and Doyle in [26]. The relationship
between the minima of the upper bound function and yx is intimately related
to the nature of these two sets. This is stated explicitly in the following two
theorems.

Theorem 4.7 Suppose we have matrices M € C** D, € D and
Go € G and a real scalar a > 0 such that A(M*DoM + j(GoM —
M*Gy) — &®Dy) = 0 with r eigenvalues coalesced at the mazimum.
Further suppose that the eigenvectors are given by U, € C* " where
(M*DoM + j(GoM — M*Gy) — o?Dy)Uy = 0 and UsDoUy = I.. Then
Dy and Gy are minimizing arguments of the upper bound problem

a= inf Imin { & | (M*DM + j(GM — M"G) — a*D) <0}
DeD acR+
GeG
(4.10)

if and only if 0 € co(Vy).

Theorem 4.8 Suppose we have M € C**" and Uy € C**" and o > 0
defined as in Theorem 4.7. Then o= u(M) if and only if 0 € Vy.

This type of theoretical framework has been quite successful in analyzing
the complex 4 problem, and should be similarly useful for the mixed [problem.
The following theorem, due to Fan et al. is also reminiscent of an earlier result
for complex p.

Theorem 4.9 ([16]) Suppose we have M € C™™" then provided the
infimum in Equation (4.4) is achieved and the corresponding largest
esgenvalue of (M*DM + j(GM — M*G) — o2D) is distinct, then (M)
is equal to its upper bound from Theorem 4.4.

It is not always possible to improve upon the complex u upper bound via
the G scaling matrix as is illustrated in the following theorem, stated without
proof.

Theorem 4.10 Suppose we have a real matriz M € R™" and a block
structure with none of the real scalars repeated. Then an optimal choice
Jor G in Equation (4.4) is G = 0.

This is an important class of problems: we encounter p problems where M
is real at both low and high frequencies when M is constructed from State
Space A, B, C, and D matrices. This theorem does not apply if any of the
real parameters are repeated.

92

4.3 The Upper Bound Algorithm

The upper bound algorithm described here uses a mixture of the formula-
tions in Lemma 4.5. We begin with the problem in the form of Equation (4.9),
so we can use some methods from the complex y computation, together with
various other techniques, to obtain a fairly good estimates of D, G and «.
These are then converted into an initial guess for the problem in the form of
Equation (4.4) and the algorithm improves on these. More specifically, the
algorithm is as follows:

1.

In order to balance the matrix M we first compute the D that solves

inf 5 ”ﬁM ﬁ_lll using a generalization of Osborne’s method ([24]),
P

DeD
as in the standard complex p upper bound. The matrix M 2 DMD!
is balanced and sat1sﬁes ,u(M) = u(DM D- 1), This procedure provides
our initial guess for D eD. O'(M) is an upper bound to the complex
version of the problem.

The lower bound is now computed using the SPA algorithm from Chap-
ter 3, applied to the balanced matrix M.

For any fixed level of a form each (nonzero) block of G as G, = 57 (M —

MT*) where MT is the corresponding sub-matrix of M (so that jG, cancels
the skew-Hermitian part of Ag’) Then bisect between the lower and

current upper bound to find the smallest o such that

5 ((I+ G2 <%— - jG) (I + G?)-%) <1

Convert to G € G by performing the singular value decomp081t1on G =
U/ AU*, redefining G as A, and absorbing the U matrix into DeD and
M.

Now that we have initial guesses for DeDand G e é, we compute a
descent direction for G € G together with an appropriate step length.
This step and a second are taken, resulting in a new G.

The matrix D € D is updated by computing a diagonal matrix ﬁd eD
(so that it commutes with G) which minimizes

——

Dy(I+G?+ (% - jG) (I+G*)iD;

F

again usmg a generalization of Osborne’s method. We then absorb Dd
into D € D.

33

6. Step 4 is repeated.

7. We now have guesses for D e]3, G ¢ G and « for the upper bound
problem in Equation (4.9). These are converted into D € D and G € G
that form guesses for the upper bound problem in Equation (4.4). We
now improve these guesses using a descent algorithm which iteratively
computes a descent direction and an appropriate step length, for both
D € D and GG € G simultaneously. At each step we compute a new upper
bound by solving the associated eigenvalue problem, and quit when the
bound stops decreasing (within tolerance).

The balancmg in step 1 of the algorithm serves several _purposes. First
we obtain a D € D that approximately solves infz_p O'(DM D- 1), or in other
words the standard upper bound to the associated complex p problem. Since
we have reformulated the problem in Equation (4.9) so that the D matrix
enters exactly as in the complex p upper bound, and the G matrix enters
in a balanced symmetric fashion, this D matrix also serves as a good first
guess for the mixed p upper bound. A good deal of numerical experience with
the generalized Osborne’s method for computing the complex p upper bound
has shown that it is fast and usually works well. Thus by reformulating the
problem in this fashion we can exploit these properties in the mixed p upper
bound too. This balancing also numerically preconditions the problem, and
can greatly improve the performance of the subsequent steps.

In step 3 of the algorithm we generate our initial guess for G. The ap-
proach is somewhat intuitive, and although there are no guarantees, it appears
to work quite well. Thus our D and G estimates, which require little compu-
tation time, are usually fairly good before we enter the descent portion of the
algorithm, and hence we can restrict ourselves to a small number of descent
steps. This is crucial in obtaining a fast implementation, since the descent
steps are quite computationally expensive, and may require many steps for
even modest improvement.

In step 7 we compute a descent direction for D € D and G € G, together
with an appropriate step length. We compute matrix descent directions for
D and G simultaneously by computing a generalized gradient of the upper
bound function. In this way we avoid separate computation for the individual
elements of the D and G matrices. This is important not only for speed of
computation, but also because in the case of repeated eigenvalues there may
not be a descent direction with respect to any individual elements of D and
GG, when there is a descent direction if all the elements are allowed to move
simultaneously. In the case that the maximum eigenvalue is distinct, this
descent direction coincides with the usual gradient direction. The step length
computation is somewhat ad hoc, but ensures that the maximum eigenvalue of
the upper bound function decreases, and that we satisfy the constraint D > 0.

54

Similar comments with regard to the computation of descent directions and
step lengths apply to steps 4 and 6.

This implementation of the upper bound results in an algorithm that is
quite efficient and can handle medium size problems (n < 100) with rea-
sonable computational requirements. Results regarding both the quality of
the bounds and their computational requirements (as a function of problem
size) are presented in Section 4.4. This algorithm has been implemented as
as Matlab function (.m file), and is currently available in conjunction with
the u-Tools toolbox ([2]). The algorithm returns upper and lower bounds for
p(M), together with appropriate scaling matrices D € D, G € G for the upper
bound problem in Equation (4.9), and Q € 8B, for the lower bound problem
Equation (3.2).

The mixed 4 upper bound in the form of Equation (4.4) is a class of LMI
problems. The solution of LMIs is a subject of much research interest right
now, since they appear in many control problems (see Doyle et al., [14]). This
algorithm represents a first attempt at solving one particular LMI. As more
refined algorithms for the solution of LMIs appear, then they can be used to
improve the y upper bound computation (see Beck and Doyle, [6]).

4.4 Algorithm Performance

The main issues we are interested in with regard to the algorithm perfor-
mance are the computational requirements of the algorithm and the accuracy
of the resulting bounds. Recalling Chapter 2, we are interested in the typi-
cal performance of the algorithm, rather than the worst-case performance, so
we run the algorithm repeatedly on a class of random problems and collect
statistical data.

One test is to examine the average computational requirements for the
algorithm versus matrix size. The results are shown in Figure 4.1. The test
problems were crand matrices with block structures consisting of all scalar
uncertainties, 90 percent of them chosen as real and the rest complex. The
results are typical of other block structures. The same data for the appropriate
complex p problem is shown for comparison. The results were obtained by
running Matlab on a Sparc 1 workstation, and it can be seen that we can
reasonably expect to handle problems of size 10 in about 10 seconds, and
problems of size 50 in about 2-3 minutes. Modern computers are substantially
faster.

It also can be seen that the experimental growth rate in computation time
for the existing implementation is approximately n?. This is probably an
artifice of the implementation in Matlab, an interpretive language. A more
realistic measure of the computational growth rate is in terms of total floating

59

Computation Time

140

120 /

100 /
%] rd
2 80
3 7
] ‘o'
Q ¢

<.

E 60
H "‘4’

40 P -

e}
(=
4
'
A
.
}
A
'
[y
A}
L]
\“

5 10 15 20 25 30 35 40 45 50

Matrix Size

Figure 4.1: Typical computation time requirements versus matrix size for
mixed p problem (solid) and complex-x problem (dashed).

point operations (flops). If this measure is adopted, as in Figure 4.2, then
it is seen that the experimental growth rate in flops is approximately n®. In
any case the algorithm growth rate appears reasonable whether measured in
terms of time or flops required, and in fact it is easy to show that for a fixed
maximum number of iterations, which is enforced in the code whether or not
the algorithm has converged, the computational cost is not more than of order
n3 flops.

The next set of tests evaluates the accuracy of the bounds. Again we used
crand matrices, and the same class of block structures except with 80 percent
of the uncertainties chosen to be real. This time we compared the upper and
lower mixed p bounds, and also the mixed x4 and complex g upper bounds. The
complex u bounds were obtained by simply replacing all the real perturbations
with complex ones, but without changing the matrix. Thus the complex upper
bound is strictly larger than the mixed upper bound. The results are shown in
Figure 4.3, and indicate that for these problems we are obtaining fairly tight
bounds, even for large problems.

It is also apparent that for these problems there is typically not much of a

56
Flops Required
16
14 /
12 ‘ //

10 3
l”
’
0“

Flops/10’
(=) [0.0]

Matrix Size

Figure 4.2: Typical computation requirements in flops versus matrix size for
mixed y problem (solid) and complex-z problem (dashed).

gap between mixed p and complex p. This class of matrices is interesting from
the point of view of the lower bound performance, since the lower bound with
a mixed perturbation is close to the size of the lower bound with a complex
perturbation. On the other hand, it is not too interesting from the point
of view of the upper bound performance, since the G scaling matrix cannot
greatly reduce the upper bound.

A similar set of tests was performed with sysrand matrices rather than
crand matrices. Some results from these tests are shown in Figure 4.4. It
can be seen that the bounds are usually reasonably tight, even for the largest
(n = 50) problems, and the gap between the mixed and complex upper bounds
is often reasonably large.

A number of tests used nogap matrices, and it was found that the upper
bound computation was typically within 1 to 2 percent of the optimum for
these matrices. The lower bound performance was not as good, and in fact
the lower bound computation—the SPA—often fails to converge on this type
of matrix, and provides a poor bound, motivating the work in Chapter 3.

The algorithm was also tested on a variety of other block structures and

57

Cumulative Distribution Curve

100

Percentage

N W B W N

S & & & &
T T T T

—_
o

g

0.5
Lower/Upper Mixed Bounds

Cumulative Distribution Curve

S
!

Percentage
Y o
=)
I

LELLLET e
S e

[T,
amnnnn.
1eimimy

O .
30| .
20 —
10 — —

OO 1

0.5
Mixed/Complex Upper Bounds

Figure 4.3: Ratios of mixed-y lower to upper bounds, and mixed-u to complex-
p upper bounds, for a sample of crand matrices. Matrices of sizes 10 (solid),
20 (dashed), 30 (dotted), and 50 (dashdot).

100 Cumulative Distribution Curve

2w
S o &
S

Percentage
2 U
S O

l

=N W
o oS S
b

0.5
Lower/Upper Mixed Bounds

Cumulative Distribution Curve

Percentage
= NN W b A
o S S o & O
T T T

=
<
[

0.5
Mixed/Complex Upper Bounds

Figure 4.4: Typical ratios of mixed-u lower to upper bounds, and mixed-u to
complex-y upper bounds, for sysrand matrices of sizes 10 (solid), 20 (dashed),
30 (dotted), and 50 (dashdot).

39

the properties appear similar to those described above. An exception to this is
the pure real case, which appears to have significantly poorer properties than
any other.

4.5 Practical Examples

While the results from the previous section are encouraging, the real issue
is the algorithm’s performance on actual engineering examples. A number of
interesting applications of the software to problems arising from real physi-
cal systems have already been undertaken. The control design of a missile
autopilot is considered by Balas and Packard in [3]. The software is used to
examine the robust performance of the control design subject to perturba-
tions in Mach number (real), angle of attack (real), and unmodeled dynamics
(complex). This results in a mixed p problem with two repeated real scalar
blocks and three full complex blocks. The robust performance u plots for this
problem, and the associated complex y problem (simply “covering” the real
uncertainties with complex ones), are shown in Figure 4.5. The mixed 1 lower
bound (the SPA) is performing poorly where the problem has degenerated to
a nearly pure real problem.

It can be seen that the mixed u bounds are quite different from the complex
p bounds. In particular the complex y approximation to the problem indicates
that the controller robustness properties are poor around 40 rad /s, whereas the
mixed p analysis indicates that there is no difficulty at this frequency. The
performance predictions for different controllers are also different, and the
closed-loop performance predictions from the mixed 4 bounds are consistent
with the simulations (see [3] for details).

Control of a flexible structure is considered by Balas et al. in [4], and the
robustness of the design is evaluated with respect to variations in the natural
frequencies of the structural modes (real perturbations), as well as unmodeled
dynamics (complex perturbations). This results in a mixed 1 problem with
five real scalar blocks and three full complex blocks. The robust performance
p plots for this problem, and the associated complex y problem are shown in
Figure 4.6.

In this case the mixed and complex bounds are quite close (see [4] for a
physical interpretation of these results). The control design predictions were
verified in simulation and experiment. For these and several other examples
the software worked well, providing tight bounds for the associated mixed 1
problems.

60

Complex Mu Upper and Lower Bounds

1.8
1.6f
1.4
1.2}

0.8}]
0.6
0.4} |
0.2

102 10T 100 e T s

Mixed Mu Upper and Lower Bounds

2
1.8} -
1.6 -
1.4F ' -

102101 o0 T T s
Frequency - rad/s

Figure 4.5: Robust performance p plots for the missile autopilot problem.

61

Complex Mu Upper and Lower Bounds

1 n— T rriseey

T rrrs

]
—
0.1 |-
0 M PR T 2 PR T T A M IR W A W
10-1 100 101 102
i Mixed Mu Upper and Lower Bounds
_(
0.1
O N PR S S R A N PR U T S L PR VT S N A
10-1 100 101 102

Frequency - rad/s

Figure 4.6: Robust performance p plots for the flexible structure problem.

62

Concluding Remarks

In the previous sections we encountered problems, both randomly gener-
ated and practically motivated, where the values of mixed # and complex p
could be far apart or close together. Since it is hard to know a priori which
case one will encounter it is important to have good performance from both
the upper and lower bound algorithms.

All the previous tests were aimed at evaluating the typical performance of
the algorithm, and it appears that the algorithm is performing well for most
problems. This does not mean however that one cannot encounter mixed 7
problems where the gap between the upper and lower bounds is large, and it
can be seen from Figure 4.4 that a few such cases were found. Furthermore it
is possible to construct matrices for which the gap between mixed w and the
optimal upper bound from Theorem 4.4 is arbitrarily large, regardless of the
computation method. For these cases one must consider improving the bounds
themselves. A promising approach is to use the existing bounds as part of a
branch and bound scheme which iteratively refines them.

63

Chapter 5
Branch and Bound

The previous two chapters addressed the issue of computing bounds for the
mixed p problem. The lower bound in Chapter 3 is an optimization problem
whose maximum achieves p. Unfortunately, we can find only local maxima
efficiently. In contrast, the upper bound in Chapter 4 is a convex optimization
problem, and can be computed efficiently and reliably. However, the optimum
of the upper bound problem does not, in general, achieve u, and there can be
large gaps between the optimal bounds when the block structure of the mixed
1 problem includes real blocks or repeated complex scalar blocks. This chapter
shows that the careful application of branch and bound techniques results in
substantially improved computation.

Branch and bound is a general technique that is applicable to optimiza-
tion problems where upper and lower bounds which depend on the domain
of optimization are computed. Branch and bound partitions the domain to
get better bounds. The finer the domain of optimization is partitioned, the
smaller the gap between the upper and lower bounds.

Branch and bound is inherently iterative and convergence proofs come
easily. Nevertheless, it is important to remember the algorithm limitations
imposed by the nature of the problem as discussed in Chapter 2; if we have an
algorithm that is guaranteed to converge to u, then we can expect exponential
growth in computational cost with problem size, which is unacceptable. Thus,
even with the application of new techniques such as branch and bound, we
expect computation that is qualitatively similar to that of Chapters 3 and 4.

While other authors have proposed branch and bound algorithms for com-
puting stability margins with respect to real perturbations (see [1, 11, 34] and
the references therein), they have not specifically addressed the issue of avoid-
ing obviously exponential growth in computational expense with problem size.
Balakrishnan et al. ([1]) use inexpensive bounds that result in an exponential
growth in the number of required branches, while DeGaston and Safonov ([11])
use bounds that are themselves exponentially expensive to compute.

In contrast, we look to branch and bound to see if we can get better bounds
computation with reasonable cost. In particular, we want to see if branch

64

and bound helps on problems where the previously described computation
is inadequate—problems with excessive gaps between the upper and lower
bounds. We consider the application of branch and bound techniques with
the goal of improving approximate solutions quickly even for problems with
many dozens of parameters; the work that has gone before in the control
community has not.

Branch and bound provides strong motivation for improved bounds com-
putation, since mildly better bounds computation branch and bound is much
more effective. Better bounds computation will not obviate the need for branch
and bound: in any lower bound computation, we need an upper bound that
is close to ensure its quality; in any upper bound computation, there may be
a large gap between the infimum in Equation (4.4) and u.

In order to efficiently apply branch and bound techniques to the mixed
1 problem, we develop an extension to p in Section 5.2. This new function
allows us to evaluate p on subsets of Ba constructed by partitioning the real
interval corresponding to a real perturbation. It is easy and important to do
this partitioning along repeated complex variables also, but for clarity we do
not do so here. (Any connected strict subset of 9B can be invertibly mapped
to [—1,1] with a simple LFT.)

In Section 5.5 we investigate the performance of a variety of branch and
bound algorithms on mixed p problems. The tests show that, when used with
the best bounds available, branch and bound is quite effective at achieving
good bounds for most difficult problems. However, it is also clear that if
the convergence tolerance is set too tight then the difficult problems require
an excessive number of iterations. This suggests that branch and bound is
useful only when it does not need to be used very much or very often. Thus
the branch and bound scheme should not be used as a general computation
scheme per se, but only to as a way to fix the occasional problems for which
the bounds are poor, and for these problems to achieve the degree of accuracy
that the bounds typically get.

5.1 Branch and Bound Algorithms

Branch and bound algorithms may be considered to be an advanced form
of gridding the parameter space, so we first consider gridding. We need a few
definitions.

Definition 5.1 Let A be a compact subset of a metric space. A finite
6 cover of A is a finite collection of sets {A;} such that each A; is
contained in a 6 ball and A C |J; A;.

Remarks: We refer to a finite § cover of A as a gridding of A.

65

Throughout this chapter the subscripts on the A do not denote the
components of a product space; A; is a subset of the same metric space
that contains A.

Definition 5.2 Let A be a compact subset of a metric space and
UB(A) and LB(A) be upper and lower bounds to the real valued func-
tion f(A). The bounds UB and LB are continuous on A if, given any
point Ay € A and any € > 0, there is a & such that any Ay that contains
A and is in a § ball satisfies UB(A1) — LB(A) < e.

The following theorem follows easily from the definitions and the assump-
tion that A is compact.

Theorem 5.3 Let M € C**™ be a matriz, A be a compact subset of a
metric space, and UB(M,A) and LB(M,A) be continuous upper and
lower bounds of f(M,A) = maxgea 9(M,Q), an optimization problem.
Then Ye > 0 there is a § such that any 6 cover {A;} of A satisfies
max; UB(M, A;) — max; LB(M, A;) < e.

Remarks: Since max; UB(M,4;) > f(M,A) > max; LB(M,A;),
gridding “solves” the optimization problem. The mixed u problem is a
special case of the problems addressed by the theorem. An easy way
to find a 6 cover of A is to repeatedly bisect each of the parameters
independently. This results in an exponential growth of the number of
sets in the d cover with the number of parameters in A, consistent with
the analysis of Chapter 2.

Branch and bound can be thought of as a smarter way of gridding the
parameter space. As a branch and bound algorithm proceeds, the parameter
space A is partitioned into more and more subsets. At each iteration, the
collection of subsets forms a cover of A and the bounds at that step are
max; UB(M, A;) > f(M,A) > max; LB(M, A;). The partitioning, however,
is often substantially more efficient than gridding. We start with the branch
and bound algorithm from [1]. Here the parameter space is the subset of R®
where each element is constrained to lie in a finite interval.

66

Initialize {A;} =2

Let UB = max; UB(M, A;)
LB = max; LB(M, A;)

while UB-LB>c¢
Let A be any element of {A;} with UB(M,A) =UB.
Partition A into A, and A by bisecting A along one
of its longest edges.
Add A, and Ay to {A;}.
Remove A from {A;}.

endwhile

Theorem 5.4 This branch and bound algorithm converges. (Eventu-
allyUB — LB < ¢.)

Proof: By contradiction suppose the algorithm does not converge.
Then for all 7 such that UB(M,A;) = UB, UB — LB > ¢ implies
UB(M,A;) — LB(M,A;) > ¢, which in turn implies A; is not in a §
ball. So the longest edge of each of the A; is too long and therefore
must not be getting bisected. This is a contradiction. [

Remarks: Any element of {A;} for which UB(M,A;) < LB will
never again be partitioned and need not be considered further. In a
computer implementation of this algorithm, all such elements can be
deleted from memory. This is called pruning. Also, it is clear that this
algorithm can exhibit exponential growth in the number of branching
parameters.

We have two primary reasons for looking at more general branch and bound
algorithms. The first is that we would like to apply branch and bound tech-
niques to a wider class of problems, using bounds that do not meet the con-
ditions necessary to guarantee convergence. These problems correspond to p
problems where we choose the branching space to be a subset of the optimiza-
tion space Ba. In this case, we could guarantee convergence to within e of
the worst-case gap (this is stated more precisely in the theorem below). For
the mixed p problem, this alternative is particularly attractive: it is impor-
tant to include repeated scalar blocks in the branching space because the gaps
between the bounds can be too large otherwise, and these blocks require only
one branching parameter each; it is important not to include full blocks in the
branching space since the number of required branching parameters is large,
and the gaps between our bounds are reasonable when we do not branch on
these parameters.

67

The other motivation for more general branch and bound schemes is the
desire for more freedom to choose how to partition A, the domain of opti-
mization. This is motivated by the fact that we can construct problems that
exhibit any of the following characteristics.

e bisecting one particular variable will bring the bounds within tolerance
while bisecting any other will not

e a single off-center cut will bring the bounds within tolerance, while many
bisections would be necessary to bring the bounds within tolerance

e bisecting a single variable along a short side will bring the bounds within
tolerance, while bisection along any of the longer sides will not

Potential remedies to these difficulties include

e careful selection of which parameter to cut
¢ allowing off-center cuts

e allowing a cut of a shorter side

Consequently we allow a larger class of bounds in our general branch and
bound algorithms.

Deﬁnii;,ion 5.5 Let A be a compact subset of a metric space and
UB(A) and LB(A) be upper and lower bounds to the real valued func-
tion f(A). The bounds UB and LB are 7 continuous in A if, given
any point Ay € A and any € > 0, there is a § such that any A, that
contains Ao and is in a § ball satisfies UB(A;) — LB(Ay) <vy+e.

Now consider the effect of gridding the parameter space with v continuous
bounds. Given any € > 0, there is a ¢ such that any 0 cover of A; satisfies
max; UB(M, A;) — max; LB(M, A;) < v+ ¢ so gridding “solves” the mixed u
problem to within v + e.

In order to allow a wide class of partitioning schemes we need to define a
notion of cutting convergence.

Definition 5.6 A4 partitioning scheme is convergent if, gwen ¢ > 0,
there is an N such that every subdomain resulting from at least N par-
titioning steps is contained in a § ball.

68

We now define a general class of branch and bound algorithms:

Imitialize {A;} = A4

Choose Our partitioning scheme to be any
convergent partitioning scheme

Let UB = max; UB(M, A;)
LB = max; LB(M, A;)

while UB—-LB>vy+e¢
choose A to be any element of {A;}
with UB(M,A) = UB.
Partition A into A, and A, according to
our partitioning scheme.
Add A; and A, to {A;}.
Remove A from {A;}.

endwhile

Theorem 5.7 This branch and bound algorithm converges to within
7. (Eventually UB — LB < y +¢.)

Since the bounds for x on a box in Section 5.2 fit this framework, we can
guarantee convergence for a mixed p branch and bound scheme. However, as
we are looking for an algorithm that efficiently finds approximate solutions to
most of the problems we are interested in, our convergence guarantees are of
little help because they are unacceptably slow. Furthermore, any convergence
guarantees for the general problem will also be unacceptably slow. In fact,
if any single problem requires branch and bound, then we can construct a
sequence of problems with exponential growth in the number of iterations
required with problem size.

The real issue is whether or not we can produce a practical scheme whose
typical computation time is polynomial despite the fact that the worst-case
computation time is exponential. An important feature of branch and bound
algorithms is that we always have the bounds UB and LB ; we do not have to
wait until the algorithm converges in order to get bounds. Consequently we
can investigate the performance of branch and bound algorithms in the context
of efficient computation with nonexponential growth despite the exponential
nature of convergent branch and bound algorithms.

Once we give up our convergence guarantees and strive for improved bounds
with moderate computational expense, we may alter our algorithm to branch
only on the parameters that are likely to result in significant improvement.
Thus we branch only on real blocks and repeated complex scalar blocks, but
not on full blocks. In order to implement such a branch and bound scheme we
need to extend the bounds for mixed # on Ba to be able to compute bounds
for (M) on A;.

69
9.2 pon a Box

It is not immediately apparent from the definition of 1 in Definition 1.1
that branch and bound can even be applied to this problem. We need the
reformulation of the problem in Lemma 3.1

(M) = max pr(AM)

so that there is an obvious parameter space that can be partitioned in a branch
and bound scheme: the maximization is of a function defined on a matrix M
over a compact set Ba in a metric space.

Clearly if we have sets Ba, C Ba with | JBa, = Ba then

wM) = max pr(AM) = max ABax pr (AM).

We define p on a box to be

A
(M) = A pr(AM). (5.1)

Then it follows that
w(M) = max i (M). (5.2)

Denote upper and lower bounds for t; as ub; and Ib; respectively, so that
Ib; < pi < ubj, and define L = max;lb; and U £ max; ub;. Then

max [b; < max p; < max ub;
? 13 K3

so that
L<u<U.

Thus L and U are upper and lower bounds for w(M) that depend on the local
bounds Ib; and ub;, and on the partitioning | /B A, = Ba.

Recalling the definition of Ba, we see that Equation (5.1) is useful for
branch and bound algorithms which branch on the real parameters only. Note
that it is easy, using Theorem 5.8 and simple manipulations, to transform
the problem so that we can conveniently branch on repeated complex scalar
blocks. For the remainder of this chapter we consider only By, that result
from partitioning the intervals that contain the real variables in 0,1 blocks of
Ba.

This definition is obviously quite similar to the original definition for 4 on
the unit box Ba. The following sections show that the computation of bounds
for 11 on a box is quite similar to the computation of bounds for u on the unit
box, as developed in Chapters 3 and 4.

70
5.3 The Lower Bound

In this section we show how the lower bound computation for y can be
generalized to calculate a lower bound to x on a box. As in the standard case,
the maximum occurs on the boundary:

Theorem 5.8 For any matriz M € C*", any compatible block struc-
ture OBa, and any Ba, that results from partitioning the real variables
in 0,1 blocks of Ba,

QM) = pi(M).
QIE%%XP(Q) = (M)

Remarks: This is a trivial extension of Theorem 3.2.

To explain the generalization of the lower bound computation, we must
explain a bit more about the SPA than we did in Chapter 3. The SPA is
based on characterizations of local maxima of p,.(QM). We parametrize all
allowable perturbations to @ as E(t) = (I + Gt)(I — Gt)~! for ¢ > 0 (and
small enough), where G € G and G is the set of all allowed perturbation
directions. As before, there are some non-degeneracy assumptions. With the
above perturbation 3, x and w are functions of ¢ satisfying

Bz = E{t)QMzx
pw* = wE@)QM.

If 3 is at a local maximum at ¢t = 0 for all G € G then
Re(w'Gz) < 0 VGeG att=0. (5.3)

Defining z = QQ*x and partitioning z and w to conform to the blocks of A,
we get the following conditions equivalent to Equation (5.3).

Q = w2
w o= dQz N
i > 0 [[wl]
2]
2w
w'qp > 0 = ¢ = ——
lz5w]l

Re(w*qz) > 0

. 4= sgn(Re(w*z)) (if Re(w*z) # 0)
(0 for internal q) q

e [-1,1] (if Re(w*z) = 0)

for full blocks, repeated complex scalar blocks, and real blocks respectively.
For the full blocks, @ can be different than the above so long as its action
on z and w is the same as the @) above. In fact the full blocks of @ must be

71

different for () to be in 9B a—all the singular values of the full blocks must

be 1.
For 1 on a box, the first two equivalent conditions stay the same and the
last becomes

Re(w*z)
Re(w*z)
Re(w*z) = 0 = ¢ could be internal.

> 0 = g is at its upper limit
< 0 = g is at its lower limit

The SPA is easily modified to agree with the new version of these equations.
This modified power algorithm seems to work quite well. Similarly, the more

advanced lower bound algorithms of Chapter 3 can be generalized to calculate
a lower bound to p on a box, though we will not go into that here.

5.4 The Upper Bound

In this section we develop an upper bound to p on a box. This bound con-
tains the conventional bound as a special case, and is suitable for computation
in the same way the old bound is. Current upper bound algorithms have been
generalized to calculate an upper bound to x on a box.

We first need to define the matrix S;. Let » > 0 and ¢ be the diagonal
matrices that satisfy Ba, = ¢+ rBa, and let

[

so that Ba, = Ba + S;. In this capacity, S; maps the real interval [—1,1] to
the real interval [c — r, ¢+ 7]

Theorem 5.9 For any matric M € C™*™, any compatible block struc-
ture, and any Ba,, suppose that det(I — c2) £ 0. Let M = (S;» 4).
Then

pi(M) < inf [myl{ a ‘ (M*DM + j(GM — M*G) — D) < 0}] .
558 acR+

(5.4)

Note that if det(I — c%) = 0 then « is a lower bound to ;.
In order to prove this theorem, we first present some convenient machinery.

Lemma 5.10 Let ALy and MLy be square. If det(I — ALy;) # 0
and det(I — MLyy) # 0, define

AxL = L22 +L21([— ALH)—IALH
LxM = Lu +L12(I— MLQQ)—IMLzl.

72

Then (%)

det (I — [A Y, } L)
= det(I — ALyy)det(] — (A% L)M)
= det(I — M Lgo) det(I — A(L % M))
and (it)

A
(- [2 1) =
= det(I — (AxL)M) =0
= det(I — A(L*M)) =0.
Proof: (i)—recalling that det(I — AB) = det(I — BA), we see that

(4) is merely Schur’s complement for

I—-AL;y —ALyp j|

det [MLy I— ML

(i1)—follows trivially from (i). |

We also need to define the matrix L: Let Ba, = { A |7(A) < 1} and, for

any Ge é, define

JGI+GH)F (I+GY)s
(I+G? 1 0

so that BAo € Ba, * L C Ba, x L, where Ba, is the unit ball for the block
structure with the repeated real scalar blocks replaced with repeated complex
scalar blocks. Each real interval [—1,1] in Ba is contained in an offset disk in
the complex plane, and the real scalar g; (a component of G\) determines the
center and radius of the complex disk.

The following theorem is a simple version of Lemma 4.5, and is stated here

for convenience.

Theorem 5.11 Suppose we have a matriz M € C**" and a real scalar
a > 0, then there exist matrices D € D, G € G such that

A (M*DM + j(GM — M*G) — D) <0 (5.5)
if and only if there exist matrices De]3, G € G such that

v ((1+ G?)~i (M —j@> (I+ (?2)—%) <1 (5.6)

73

We are now ready to prove the upper bound theorem. The proof uses
Theorem 5.11. Theorems 4.3 and 4.4 are special cases of the following theorem.
We also can easily see where the conservativeness of these theorems arises.

Proof (Theorem 5.9): Recall the definition for 4 on a box:

a>pu <= 0¢det(a—Ba,M) Va € [a, o)
< 0¢det(I —Ba, %) Va € [@, 00)
<> 0¢&det(I — (BaxS;)M) Vo € [@, 00)
< 0¢det(I —Ba(Si*4)) Va € [@, 00)
= 0¢det(] — (Ba, *xL)(Si*Y)) Vo e [a,)
& 0¢det(] —Ba,(Lx(S;*2))) Va e [a, o)
— T(Lx(SixY) <1 Vo € [@, 00).

(Tt is easy to check that the conditions of Lemma 5.10 hold.) We
can replace M by DMD~! because p;(M) = ,ui(ﬁMﬁ_l) vD € D.
Note also that D(S;*2) D" = S;x (DX D). Thus the last inequality
can be expanded as

5 ((1 + &%) <ﬁ\/7‘«%(1 - C%)—lﬁﬁ—l _ j@) (I+ @2)—%> <1
(5.7)
Now apply Theorem 5.11. |

The condition in Equation (5.6) is used in computation in Chapter 4 as
follows: choose G and D to reduce 7, search for an « (smaller is better) that
satisfies Equation (5.6) and repeat. The condition Equation (5.7) can be used
in exactly the same way.

The condition in Equation (5.5) is used similarly, except that « is solved for
explicitly-—with everything else held constant, finding the smallest « satistying
the inequality in Equation (5.5) is a generalized eigenvalue problem. This also
can be done for Equation (5.4) with the help of the following theorem.

Theorem 5.12 The smallest a satisfying the inequality in FEquation
(5.4) is given by

[M~ jVrGDTEM rDyTM ++/fGD TG M
" VFD~L\rM* cM + j/rD7 G \rM

74

Upper and Lower Bounds vs. Branches

20 10 20 30 40 50 60 70 5555 100

No. of Branches

Figure 5.1: Progress on the most difficult of 10,000 problems with 4 scalar
reals and 1 scalar complex.

5.5 Computation

In this section we investigate the performance of branch and bound algo-
rithms on mixed 4 problems. Since we would like the problems to be repre-
sentative of control problems, we use sysrand matrices.

A preliminary investigation of the effect off-center cuts and careful choice
of cutting parameter (not always among those with the longest sides) for these
random problems showed little indication that these choices were worth the
added expense and complication. Consequently, the tests and examples pre-
sented here are for algorithms that bisect along a longest side. Nevertheless
it is quite possible that there are other classes of problems with engineering
motivation where more careful choices are important.

First we show the progress of our branch and bound algorithm on four
specific problems. The problem in Figure 5.1 is the result of a search for
a particularly difficult problem from a set of 10,000 problems with a block
structure of 4 real scalars and 1 complex scalar. (We did not run branch
and bound on all these problems, instead we ran branch and bound on the
100 with the worst relative gaps before any branch and bound computation.)
The branch and bound algorithm we used on this problem utilizes the bounds
computation code by Beck and Doyle in [6] and by Tierno and Young in [37],
modified for x on a box.

79

Upper and Lower Bounds vs. Branches
24 T - T ' ' T

1)
-

23.5
23} -
22.5 .

21.5¢ i
21} -

20.5

) B
1 1

20

19.5

196 2) 6 8 10 12 14 16 8

No. of Branches

Figure 5.2: Progress with 1 size 12 repeated real, 4 scalar reals, and 1 complex
full block of size 3.

Figure 5.2 shows a typical problem with a block structure of 1 size 12
repeated real block, 4 scalar real blocks, and 1 size 3 complex full block. The
repeated real block seems to make the y computation harder, but it only adds
one branching parameter. It seems that branch and bound is particularly
useful in these cases.

In Figure 5.3 we see the progress on a problem with a block structure
of 4 scalar reals and 4 scalar complex blocks. Here the bounds are only v
continuous, and the algorithm converges quickly to the theoretical gap.

Finally Figure 5.4 shows the progress on a problem with 20 parameters,
where the progress is slower than on the smaller problems. It is not clear how
much of the gap is due to slow progress and how much is due to bounds that
are only 7 continuous.

Next we consider the effect of the quality of the bounds. Clearly we should
get faster convergence with better bounds, but there remains the question of
whether the increased computational effort the better bounds entail is worth
the benefits. Figure 5.5 compares two branch and bound schemes on a prob-
lem closely related to the mixed p problem. The labeling is best explained
by example. The label “B50” means that this is the most difficult problem
encountered by algorithm B, from among the easiest (for algorithm B) 50 per-
cent of the problems, that is, 50 percent of the problems are easier than this
problem.

76

Upper and Lower Bounds vs. Branches

L L]

9.4 - T

8.6} -
8.4¢ :

8.2 4

186020 30 40 30 80 70 80 90 100

No. of Branches

Figure 5.3: Progress on a problem with only v continuous bounds.

Figure 5.5 shows that the growth rate for algorithm B, which uses inex-
pensive bounds (the induced norm for the upper bound and evaluation in the
center of the box for the lower bound), is unacceptable for any of the levels
“B100”-“B10.” On the other hand, algorithm A, which uses expensive bounds,
is quite efficient.

In contrast to Figure 5.5, which compares the progress of a branch and
bound scheme with good but expensive bounds to one with crude but cheap
bounds, Figure 5.6 compares the progress of the branch and bound scheme
with good but expensive bounds to one with bounds that are nearly as good
and nearly as expensive. The upper plot was generated using a branch and
bound scheme using the mixed p upper bound in Theorem 5.9 (scheme A),
while the lower plot came from a scheme (scheme C) employing the same
lower bound and an upper bound obtained by covering the real parameters
with complex ones and evaluating the complex u upper bound (equivalent to
enforcing the choice G = 0 in Equation (5.4)). This bound is a little cheaper to
compute but not quite as good as Equation (5.4). We have plotted the relative
gap between the upper and lower bounds versus the number of branches on a
log-log scale. It is clear that even this level of reduction in the quality of the
bounds markedly affects the performance of the overall scheme. Thus we are
led to conclude once more that the performance of the bounds is crucial to the

77

Upper and Lower Bounds vs. Branches

144 —~ . : : . . : —
142F -
140} 1
138} .
136} -
134} -
132}]
130 —— - - . . : - s

0 10 20 30 40 50 60 70 80 90 100

No. of Branches

Figure 5.4: Progress on a problem with 20 parameters.

performance of the overall scheme, and that for a high performance branch
and bound scheme it is important to use the best bounds available.

In Figure 5.7 we have plotted the required number of branches versus num-
ber of real parameters for a series of branch and bound tests of differently spec-
ified convergence criteria. The uncertainties consisted of 2 to 64 real scalars,
depending on the problem, and approximately one fourth as many complex
scalars. Each curve is a plot of the most difficult problem encountered from
a pre-set number of runs, where for each problem the requirement for con-
vergence was to reach a pre-specified tolerance between the upper and lower
bounds, as labeled on the curve. Tolerances of 1 percent, 5 percent, 10 percent
and 20 percent were considered, and for any problem the run was terminated
if it failed to converge to the required tolerance within 100 branches. (Some
of the curves terminate prematurely if the next problem size did not converge
in time.) The graph is plotted on a log-linear scale, so that any straight line
with non-zero slope represents an exponential growth rate.

It is clear from Figure 5.7 that if the tolerance is set tight enough then
the typical growth rate is unacceptable (see the 1 percent curve for example).
Thus as the problem size increases the required computation quickly becomes
impractical, so we cannot expect to be able to achieve these tolerances. For
the 20 percent curve, however, the computational requirements remain modest

78

No. of Branches vs. Problem Size

3 | | . I i v L
10 - “B100 -
u ' , j
: #B50 q
| -
1025 B10O é
| :
t d
| i
101% |
: -
| A100]
+ -------------------- ﬁ
100 - | | | | |
0 20 25 30 G - . J

No. of Real Parameters

Figure 5.5: The growth rate of branch and bound computation steps versus
number of real parameters, for scheme A and scheme B.

even for the largest problems tested. Fortunately this degree of accuracy is
usually quite sufficient for engineering purposes. This suggests that branch
and bound should be applied only in a carefully limited way.

Thus the branch and bound scheme should not be used as a general com-
putation scheme per se, but only to fix the occasional problems for which the
bounds are poor, and for these problems to achieve the degree of accuracy of
the normal bounds on more typical problems. This emphasizes the necessity
of good bounds.

To further illustrate this point consider the plot in Figure 5.8. This plot
shows a mixed p computation for a problem with 1 complex and 4 real scalar
uncertainties, where the initial bounds were quite poor (85 percent relative
gap as opposed to a typical level of less than 20 percent). We have plotted
the current upper and lower bounds for the problem versus the number of
branches, so that the progress of the branch and bound scheme on the problem
can be seen. Initially quite rapid progress is made so that in only 29 steps
the new bounds are within 20 percent. It is also apparent that the progress of
the scheme slows quite dramatically after this point, so that achieving greater
levels of accuracy requires substantially more computational effort and rapidly
becomes impractical.

\]

9

Scheme A: (UB-LB)/UB
100 r——r——r—r—rr '

Il -\ N\ - — — o ______ —

10-2

.1.0 . s T

[u—

100

10-1

10-2

10
No. of Branches

Figure 5.6: A comparison of branch and bound schemes.

80

No. of Branches vs. Problem Size for Various Tolerances

102 — — . - -
E 1%]
r— =
I 5%]
i 10% T
i T

101 1
: ;
I]
I |
[20%
r -

100 : : ~
0 10 20 30 40 50 60 70

No. of Real Parameters

Figure 5.7: Branch and bound computational requirements for varying degrees
of required accuracy.

We conclude that the sensible application of branch and bound techniques
to the mixed p problem requires some restraint: we must use branch and
bound only on the worst problems (those with the biggest gaps between the
upper and lower bounds) and use it only until the gaps are tolerably small.
Any more aggressive use of branch and bound can easily result in unaccept-
ably large computation requirements. Even with the proposed application of
branch and bound there will occasionally be problems which we must give
up on, because the require too much computation to bring the bounds within
tolerance. Figure 5.9 shows the results of the proposed application of branch
and bound to 49 problems with 16 real blocks. The branch and bound scheme
requires three times the computation to achieve adequate bounds for all of
the problems where the standard computation, without branch and bound, is
inadequate.

Upper and Lower Bounds vs. Branches

81

4.5

3.5

2.5

1.5

0.5

"‘----.

10 20 30 40 30 60 70 5955

No. of Branches

Figure 5.8: Progress of branch and bound for a hard problem.

100

82

Improving the Difficult Problems
1 L] 1 L] T L] ¥ L] T T

0.9 .

0.8 .

0.7} .

y 0.6} .

0.5

0.4} .

0.3} .

00T o5 o3 o1 o= 0.6 07 08 09 1
% of problems with (lower bound)/(upper bound) < v

Figure 5.9: The proposed application of branch and bound to the mixed pu
problem vs. no branch and bound. The branch and bound scheme required
three times as much computation in order to ensure that each of the 49 prob-
lems satisfied (1b/ub)> 0.8.

83

Chapter 6
Model Validation

In previous chapters we have seen that robust control theory gives us the
power to represent physical systems with a model that includes a particular
type of uncertainty: block structured norm-bounded uncertainty, representing
perturbations to the nominal model, entering the model in a linear fractional
manner. We have also seen that computation for evaluating worst-case per-
formance of the (model of the) closed loop system is practical. This is robust
performance analysis. Before the robust control methods can be applied, we
are faced with the difficulty of selecting good models for the analysis of a sys-
tem and for the synthesis of controllers. The uncertainty, both perturbations
and noise, must, in some sense, be identified.

Current identification methods are well developed for models where all of
the residuals are attributed to additive noise, but these are not adequate for
robustness analysis in that they cannot account for a commonly encountered
circumstance: the loss of stability under feedback not predicted by the nominal
model. Robust control models can predict such sitnations, since they include
norm-bounded unmodeled dynamics. This in not an issue in the SISO case be-
cause good margins imply robust performance. The natural MIMO extension
of SISO margins is norm-bounded uncertainty.

Presently, no identification techniques exist for models with additive noise
and norm-bounded perturbations. It is in fact a poorly posed problem: the
physical system can only be observed by input output measurements and, for
reasonably posed problems, the residuals can be attributed either entirely to
additive noise or entirely to norm-bounded perturbations. In practice, an we
would run many experiments attempting to isolate the effects of noise from
those of perturbations.

The model validation problem, originally formulated in the robust control
context by Smith and Doyle in [35], provides a connection between control
theory and reality. The model validation procedure evaluates the applicability
of a specified robust control model with respect to an input output experiment.
It determines whether or not there is an element of the robust control model set
which accounts for the experimental observation. The model validation test

84

therefore provides a necessary condition for a model to describe a physical
system. The work presented in this chapter begins to address the difficult
issue of obtaining suitable robust control models for physical systems.

In this chapter we present a generalization of 4, denoted by u,4, because it
solves the model validation problem. The similarity to x is pronounced. The
principal difference is that in p, each perturbation, A, in the set of perturba-
tions, A, is now divided into two parts, A; and Ak, and the system is stable
when ||Ay|| < 1/ug and ||Ag]] > pg- A similar result for a special case in
which a particular part of the system is square is due to Packard ([25]). Here,
we treat the general case.

Although the generalization of the u framework and computation is impor-
tant beyond the model validation problem, we reserve that topic for Chapter 7.
Here, we study the model validation problem and its computation in detail.

The approach taken for the calculation of p involves the development of
more readily calculated upper and lower bounds and we take a similar approach
for pg. A high quality p, upper bound can be formulated as an LMI, and thus
poses no more difficulties than the convex LMI calculation of the p upper
bound. The lower bound computation is also similar to the p lower bound
computation, and the techniques of Chapter 3 are generally applicable.

The model validation problem is introduced in Section 6.1 and the constant
matrix case considered in this chapter is formulated. The generalization of p
is introduced in Section 6.2. Necessary and sufficient conditions for the well
posedness of p, problems are also presented.

Section 6.3 formulates the model validation problem as a well posed g,
problem. The connection is made through a robust minimum gain interpreta-
tion of the p, problem, also presented in Section 6.3. In some special cases the
g Problem can be reformulated as a standard robust performance problem for
an inverted system. The conditions under which a p, problem can be easily
recast as a y problem in this way are given.

Critical to the application of p, to the model validation problem is the
calculation of an upper bound for u,, which is studied in Section 6.4. It is
shown that an upper bound can be calculated as a convex LMI optimization
problem. Under certain conditions, also presented in this section, this upper
bound is exactly equal to i,. The lower bound is presented in Section 6.5, along
with an algorithm for its calculation, and the theory behind the algorithm. The
theoretical development presented here contains the standard p results as an
easy special case.

85
6.1 The Model Validation Problem

As with much of robust control theory, the model validation problem is
naturally stated in the continuous time domain. In practical applications
however, data is taken by sampling, and LTI problems can be transformed to
the frequency domain as matrix problems at a finite number of frequencies.
This section introduces the model validation problem somewhat abstractly,
then states precisely the constant matrix problem addressed subsequently.

An assumption, inherent in the use of any model, is that the model can
describe any observed input output behavior of the physical system, past,
present, or future. Model validation addresses a necessary condition: that
the model be able to describe all previously observed input output behavior
of the system. Consistency with all experimental data provides little hard
information about the applicability of the model. There may be experiments,
as yet unperformed, which will invalidate the model. Model validation is
misleading term: it is not possible to validate a model of any descriptive
value, it is possible only to invalidate a model. Model validation is the process
of collecting data and invalidating models.

> A
z z
Py, Py P [«
< d
¥y = T Py Py Py e u
W, |« n

Figure 6.1: The block diagram of the model validation problem.

A generic model validation structure is shown in Figure 6.1. The unknown
inputs acting directly on the output y, corresponding to measurement error and
sensor noise, are denoted by n. The unknown inputs acting on the plant model
itself are denoted by d. Note that Figure 6.1 is a special case of Figure 6.5,
with the input partitioned into three distinct parts, two unknown and one
known, and with the output known.

86

The formulation here differs slightly from that considered in previous work
in that the measurement noise, n, is explicitly distinguished from the other
disturbances, d. This distinction, along with the condition that W, be invert-
ible, is a convenient way to insure that the problem meets the requirement that
every measured output, y, is modeled as being corrupted by additive noise.
This requirement is reasonable in any physically motivated problem, and can
be met with more general formulations, but the resulting notation is awkward.

The perturbation, A, has a prescribed block structure, A € A, and norm
bound, A € Bao. We assume that the models under consideration are stable
forall A € Ba to insure that (I —P;;A)~! is always well defined. Again, this is
a reasonable practical assumption since a model set which includes both stable
and unstable models is unlikely to be a good description of a given physical
system.

Note that if y — Posu = 0 then the model validation problem is solved
trivially with n, d and A all zero. In the following, we assume that this is not
the case.

A formal statement of the model validation problem is now given.

Problem 6.1 (Model Validation) Let P be a robustly stable plant
model with block structure A as in Figure 6.1. Given measurements
(w,y), do there ezist a A € Ba and signals d and n satisfying ldll <1
and ||n|| <1, such that

y:Wnn-l-(A*P)[Z}? (6.1)

Any (A, d, n) satisfying these conditions are referred to as admissible. The
existence of and admissible (A, d, n) is a necessary condition for the model
to be able to describe the system. On the other hand, if no such A, d, and n
exist the model cannot account for the observation and we say that y and u
invalidate the model. Model validation gives conclusive information only when
there is no model in the set that is consistent with y and u; there is no way of
proving that a model is valid simply because there is no way of testing every
experimental condition.

If the system is in the continuous time domain the model validation test
should be performed for continuous time measurements y and u. In practice,
however, data is taken by sampling, and LTI problems can be reformulated
as matrix tests at a finite number of frequencies. Then, at each frequency, P
and A are complex valued matrices and n and d are complex valued vectors.
In this case, the statement of the model validation problem remains the same,
except that now all signals and operators are vectors and matrices. In the
work presented here we consider this formulation of the problem.

87

Y

T z
Py P Piu e Ap‘

l =—— 0 o0 I d

4
p—t

—7N +—] P21 P22 P23U,—"y

Figure 6.2: The equivalent system with no signal constraints.

x [=z
My My, Mg d A, 1

1 | —n
Mo My Mo e Ay -
My Msy Mss JAWS

with

Miy =Pin Mz =P Mz = Pisu
My =0 Msy =0 Mag =1
M3y = Po1 Mss =Pay Msz = Poau—y

Figure 6.3: The equivalent system as a generalized p problem.

Solving for n in terms of z, d, y and u then absorbing the known signals y
and u into P results in the relationships represented by Figure 6.2. Solutions
to Figure 6.2 are equivalent to solutions to Figure 6.1. The advantage of this
manipulation is that there are no signal constraints among the solutions we
seek.

The difference between the model validation problem as represented in
Figure 6.2 and the robust performance analysis problem (which has a similar
block diagram) is that we are not looking for solutions with the largest gain
from input to output. Rather, we want the norm of the output, —n, to be
small. Figure 6.3 represents the same equations as those represented by Fig-
ure 6.2, with A,, and A, defined so that 1 — Ap(—n) and d = A4, so a small
n corresponds to a large A,. Thus the model validation problem motivates

88

a generalization of y where we look for a A that satisfies det(/ — M A)y=0
with some of the delta blocks as small as possible and some of the delta blocks
as large as possible. Solutions of this generalization of u are solutions to Fig-
ure 6.1 with the smallest (A, n, d) possible. These solutions answer questions
such as

e What are the smallest (A,, n, d) that are consistent with the data (y,u)?

e Given a norm bound on A,, what is the smallest noise (n,d) consistent
with the data?

* Given a norm bound on (n,d), what is the smallest perturbation A,
consistent with the data?

e Is a model with specified norm bounds on n, d, and A, consistent with
the observed data?

Answering this last question solves the model validation problem.

6.2 A Generalization of
the Structured Singular Value

The p framework considers perturbation blocks, A, satisfying a maximum
norm constraint. Here we introduce a second class of perturbations which
satisfy a minimum gain constraint. To formalize this class, consider a block
structure, A, partitioned in two with the index sets J and K as follows.

A= [AOJ AOKJ (6.2)

where

Consider a matrix, M, partitioned in accordance with A,

My Mk J
M= .
[Mg; Mgy
Let z = Mz as in Figure 6.4. The positive function tg(M) is defined for
M € dom(u,) by

(6.5)

flzll=1

po(M) £ maX{v

lzilly < llzll,vieJ }
lzelly < lwll, Vke K |

89

Zg

My Mg |« Ay

zJ

A

Tk K
Mgy Mgg A |

Figure 6.4: The interconnection structure for the generalization of .

The domain of definition of y,, dom(p,), is discussed in the next section.

The form of this definition (and that of Equation (1.4)) is similar to
the more general Integral Quadratic Constraints (IQCs, see Megretski and
Treil [22]).

Well Posedness and a Simple Bound

A well posed p, problem is one where the maximization problem in Equa-
tion (6.5) has a well defined finite solution. The above definition of Hg is well
posed if and only if Mg does not have a nontrivial kernel. The collection of
such problems is denoted dom(y,). More formally,

dOIIl(/,Lg):{M IMKKJZKZO — £L"K:0}

Clearly, if Mgy has a nontrivial kernel then choosing z; = 0, zx €
ker{Mxx}, [|lzk|| = 1, allows all v to satisfy the inequalities of Equation (6.5),
thus rendering the definition of [y Vacuous.

The well posedness requirement implies that dim(zx) > dim(zg). (See
Figure 6.4.) In the case where dim(zg) = dim(zx), well posedness is equiva-
lent to the invertibility of My x. This case leads to a reformulation of Log (M)
as a u problem on another matrix,as described shortly. All other results are
stated for the more general and, as we shall see, more applicable nonsquare
case.

The following lemma shows that the answer to every (1,(M) problem in
which Mg g does not have a nontrivial kernel is finite by giving an easily
calculated upper bound to u,(M). The bound also can be used to initialize
the computation of the more precise upper bound discussed in Section 6.4.

90

Lemma 6.2 If M € dom(p,) then

Myl || Mg, + 1

pg(M) < || M| + o(Mkk)

Proof: Let M € dom(y,), z # 0, and

lzsly < “MJJ$J+MJKxKH
|Miszs 4+ Mggzgl|y < |z

Then we have one of the following four cases.
1. z;=0. Then
loxll o 1
7050 Y S el S wiry
2. ZIJ#O, MJK:O Then

My
v Waresll <y

v < HMJJzJ+MJK$KH

Izl
M M -1
< | Myl| + | M)] KZIHH sx]|

a(Mg
| Mk ||| Mx.s]|+1
a(Mgkx) '

I+ Mok
o(Mgk)

. Then

= | My +]

loscll (M|l | Moxc|””
4. xz; #0, Mg #0, IEX > (M) . Then
=kl lzkllllzg]I~*

<
V= Misar Micgan]] < aiclexlies =~ o]
< UMrs|[+|Mixc || HeMur) || Mg ||| M| +1

M|l +| M|~ || M| (Mg)

And the lemma is proved. [

Similar arguments lead to the tighter but messier upper bound

i a(Mkx)]'?
v < M)+ “WﬂgﬁﬂywwxM)J

where N'= 1+ || Mk || | M| = | Mgl o(Mic).
Thus we see that M € dom(u,) if and only if tg(M) is well posed, so that
the definition of dom(u,) above is justified.

A Special Case: Formulation as a 1 Problem

In this section we present the first of two distinct cases of (1, computation.
When Mgy is square the Mg problem can be recast as a u problem and 7
calculation approaches can be used. In the general nonsquare case the bounds

91

computation of previous chapters must be generalized. These generalizations
are addressed in subsequent sections.

When Mk is square and p,(M) is well posed, the g problem is equivalent
to a u problem. This is stated precisely in the following theorem.

Theorem 6.3 If M € dom(u,) and Mgy is square then
:U'g(M) = N(M)a

where

2 [My — MyxMgg ™ "Mg; MyxMygg™ J
—Mgg™ "My, Myx™ ’

and the block structure for the /L(]\/f) problem is
A = diag(Ay, AL).

Proof: M € dom(p,) and My is square implies that A/ xx ! exists.
Noting that

Yy = MKJ.I' + MKKU
z MJJ.’B + MJKU

= {u ~Myx"Mygjz + Mgx™y
z = MJJx+MJK(—MKK_1MKJ.TE -+ MKK_ly)

l

we see that d and & below are equivalent.
. H:MH wa { 175 1l }
y u lylly < lull

S P R MR il]S

Now,
Mg(M) >y
<~ J(v,z,9,2): &
<~ J(u,z,y,2): &
= (M) >,
SO
po(M) =v == u(M) >+, and
pe(M) >y = p(M)=~
Thus p,(M) = p(3M). =

Theorem 6.3 is applicable to model validation only in the case where the
output, y, is a scalar. Section 6.4 presents an upper bound for the general
case, where Mg is not square.

92

A z
Mp; Mg A
Yy <—— Mgy Mgg | u

Figure 6.5: The generic robust control model structure.

6.3 u, Solves the Model Validation Problem

This section shows that the model validation problem is a special case of the
generalized i problem. It is convenient to first show that the {4g Problem solves
a robust minimum gain problem, where the minimum L, to L, induced gain
of an LFT system is bounded below for all perturbations in a ball. In contrast,
the standard robust performance problem of Section 1.2 states performance as
a maximum gain problem.

To pose the robust minimum gain problem more precisely, consider the
generic system illustrated in Figure 6.5. The nominal (A = 0) transfer function
18 y = Mkx(s)u, and the new performance requirement is lyll > |lul] for all
u € L,. The nominal performance requirement is equivalent to

inf o (Mg (jw)) > 1.
Now consider the performance requirement for the perturbed system,
y=(A(s) x M(s))u, A(s) € Ba.
In this context, robust performance is equivalent to
igfg(A*M(jw)) =1, VA € Ba.

The appropriate constant matrix test, i.e. the test for each fixed w, is formu-
lated as a p, problem in Theorem 6.4 below. We assume that (A * M) is ro-
bustly stable, which is equivalent to (M 1) <1 (recall Theorem 1.4), and that
the nominal system satisfies the performance criteria so that ker(Mgg) = 0.

Theorem 6.4 Let u(M,;) <1, and M ¢ dom(py). Then

i o(AxM)>1 = (M) <1,

93

where the block structure, 5, for the ug problem is Ay = A, Ax =
Cdim(wxdim{y) 5nd A = diag(A;, Axk).
Proof: pn(M;;) < 1 implies that (A x M) is well defined, and M €
dom(u,) implies that u,(M) is well defined. Let [Z] =M [2 J as
in Figure 6.5. Then the following are equivalent.

o (M) <1.

* By u) izl < |z Vi€ Jand [fy)| < |ull.

o llgll <llzlIVie T = lyl| > flul.

e minaep, o(Ax M) > 1.

Thus the theorem is proved. [|

The negation of Theorem 6.4 is stated as a corollary below because we use
it directly in the proof that g solves the model validation problem.

Corollary 6.5 Let u(M;;) <1, and M € dom(u,). Then
{AJAEBa,c(AxM)<1} 40

where the block structure, ZS, Jor the pg problem is Ay = A, Ay =
Climuxdim(y) - gngd A = diag(Ay, Ag).

Comparing p,(M) to 1 in Theorem 6.4 obscures the relationship for other
values. For completeness we state below a scaled version of the theorem.

Corollary 6.6 Let u(M;;) < 8, and M € dom(pg). Then

inig a(AxM)>1/8 < p,(M) < 8,
€
llaji<i/g

where the block structure, 3, Jor the p, problem is A; = A, Ax =
Clim(uxdim(y) - gng A = diag(A,, Axk).

Application to the Model Validation Problem

Recall the model validation problem from Section 6.1. This problem is a
special case of the generalized p problem. Define the matrix P, formed from
P, Wy, y, and u, as

_ P11 P12 P13U,
P = 0 0 1 . (6.6)
W iPy WPy Wil (Pyu — y)

94

Define a block structure, 5, for p, (ﬁ) in the following manner.

A; = {diag(A,Ay) [AeA, A€ Cdim(@x1
A £ { A, | A, € Clxdimm)) (6.7
& = diag(AJ7 AK)

With these definitions, u,(P) is well posed: these dimensions partition P such
that Pxx = W (Pau —y); a(Pxk) > 0 because Pogu —y 7é~0 by assumption
(so that the model validation problem is nontrivial), and dim(Pg k) = dim(y) x
1.

The following theorem gives the solution to the model validation problem
in the yu, framework.

Theorem 6.7 Let P and A be defined as in Equations (6.6) and (6.7)
above. Then

~

He(P) 21 <= FJAE€Ba, ||d| <1, and In]l <1

such thatyngn—%—(A*P)[ZJ.

Proof: Simple algebra shows

Aq

y:Wnn-l—(A*P)[B

J e n=—(A;xP).

(Observe that A, and (A + P) are vectors.) Corollary 6.5 implies that
the following are equivalent.

o 1y(P)>1.

e FA;€B4,: g(A;xP)< 1.

° JAEBa, d: |d| <1, |In] <1,
where y = W,n + (A x P) [Z]

Thus the theorem is proved. [

~

Note that p,(P) < 1 (or any upper bound to Hg being less than one) implies
that the model is invalid. Therefore, the calculation of an upper bound is
critical to obtaining conclusive information from the model validation problem.
A convex optimization problem that gives an upper bound to [tg 18 given in
Section 6.4.

95
6.4 The Upper Bound

In this section we show that an LMI optimization problem provides an
upper bound to p,. LMIs are convex optimization problems with convex con-
straints, and as such are computable with a wide variety of techniques. For
simplicity, we treat only the case where the blocks of A are full complex blocks.
The more general structures of Chapter 4 follow easily. Although the LMI de-
veloped here is new, the various optimization methods that have been applied
to existing LMI problems are easily modified to address the computation of
our LMI.

Invertible matrices are used to scale and sum the inequalities in the defi-
nition of p,. Let

d£ {(..d..)]|d>0VieJand di<0Vie K}.
Given a d € d, define the scaling matrices Dy(d) and Dy(d) by
Dx(d) £ diag(...dIx;...)

where Ix; and Iz; result from the partitioning of the identity operators on X
and Z respectively.

Note that Dx and Dz may differ in dimension. In the case where all A; are
square, Dx(d) and Dz(d) are identical. In any case, Dy (d) and Dz(d) satisfy

A; 0 A; 0
D —
X[o AK] [o AKJDZ

for all d € d.

These scaling matrices differ from the 4 case in that the d; scalings corre-
sponding to the Ag block are negative. In the p case, where K is empty, all
scalings are positive.

Now define I(v) as

1(7) £ dla’g(ﬁyIJ’ ’)/_IIK):

where I is the identity operator on X s and Ik is the identity operator on Xy .
The upper bound can be stated as follows.

Theorem 6.8 Let d € d, Dx(d), Dyg(d), and I(y) with v > 0 be as
above. Then

M*DgM — I1(v)*Dg <0 = > pu,(M). (6.8)

96

This gives a means of computing an upper bound; for a specified 7, search-
ing for Dx(d) and Dg(d) is an LMI problem. One can iterate on ~ to find the
smallest v such that Equation (6.8) is satisfied for some d. The search for d
and v is typically simultaneous for greater efficiency.

Proof: Let 2= Mz and I = J|J K. Consider the converse of Equa-
tion (6.8). If v < ,(M) then, by Equation (6.5), 3z # 0 such that

lzilly < llgll Vied,
lzelly < J|lzkl| VEkeK.

By squaring these conditions, we see that they are equivalent to the
existence of & # 0 such that

iz < iz Vi€,

6.9
ziay? < mimp VkEK. (6.9)

Scaled versions of these equations also hold. Therefore Equation (6.9)
is equivalent to the existence of z # 0 such that

zidjziy? < Zidiz; Vi€,

.Z‘;;dka?k’y—2 < z;;dkzk VkeK, (610)
for all d; > 0 and all d, < 0. Equivalently, 3z 0 such that
z* (M I pd; I M — VI dili)z >0 Ve (6.11)

JJ*(M*I;,Idek,[M — ’}/-—QI;:,Idek’[)x >0 Vke K,

for all d; > 0 and all d;, < 0. Here I; 1, for example, is a partitioning of
the appropriate identity operator. Note that

> Itdili; = Dg(d) or Dg(d)

el

depending on whether I operates on X or on Z.

The sum of the positive terms of Equation (6.11) is also positive. In
other words, v < p,(M) implies that, for all d € d and corresponding
Dx(d) and Dz(d), 3z # 0 such that

l‘*(M*DzM - [(’y)ZDx)IL’ Z 0.

The negation of this statement gives the following. If there exists a
d € d and a corresponding Dx(d) and Dy(d) such that

M*DzM — [(’)/)QDX < 0,

then v > p,(M). n

97

When the Upper Bound is Exact

This section demonstrates the quality of the LMI upper bound for the p,
problem of Section 6.2 by showing it is exact for three or fewer blocks in the
A structure in Equation (6.2), just as in the standard y case. It might be
reasonably expected, then, that the LMI upper bound for g for more than
three blocks is as accurate as the LMI upper bound for u for more than three
blocks. In the standard p case with more than three blocks, the gap between
the upper bound and y is typically only a few percent and is very rarely more
than ten percent. With more elaborate block structures, however, the gap
can on occasion be quite large, so computation continues to be the subject of
research.

The main theorem below states the result. The proof relies on the lemma
presented here and on a theorem from Fradkov and Yakubovich in [17].

We begin with the main result.

Theorem 6.9 Let M and A be defined as in Section 6.2 with A
having three or fewer blocks. Let d € d, Dx(d), Dy(d), and I(v) with
v > 0 be defined compatibly with M and A. Then

pg(M) <y <= 3ded: M*Dy(d)M — I(v)*Dx(d) < 0.
In order to prove the theorem, we need the following lemma.

Lemma 6.10 Let Q" = {2 |2€R®, >0 forl € {1,2,3}}, L =
{z|zeX z#£0}, and I = J|JK. Let

gj(l‘) = l'*(M*I;I[]‘,[M —’)/QI;:IIJ',[).’E V] < J,

k(@) = —a" (ML Lt M — 7_21,’:,[1';6,1)90 Vkek,

and ¢(z) = (...g(x)...). Then

ded: M*Dy(d)M — I(y)?Dx(d) < 0
<= d a separating hyperplane between S(L) and QF.

Proof: Given d € d, let ¢ = (..dj...—dy...) € QF, and let ¢; be
the elements of ¢q. Then the following are equivalent.

o M*Dz(d)M — I(v)?Dx(d) < O.
o " (M*Dy(d)M — I(v)?Dx(d))z < 0 Vze L.
e > . as(z) < 0Vzrel.
e <g,5(z)> < 0Vzel.
The separating hyperplane is defined by its normal, g. [

98

Note that the ¢; are Hermitian forms.

Proof of Theorem 6.9: If v > p, so that there are no solutions,
z, to Equation (6.5), then ¢(z)(YQ" = 0 V = € L, and, by the S-
procedure losslessness theorem for three or fewer Hermitian forms on a
complex space (in [17]), there is a ¢ such that <¢,¢(z)> € R™ Vz € L.
Lemma 6.10 tells us this is equivalent to M*DyzM —I(y)?*Dx < 0. |

Thus, in this case, uy(M) = infyeq { v | M*Dz(d)M — I(v)*Dx(d) < 0}.

6.5 The Lower Bound

The upper bound for the generalized u problem allows us to invalidate
models: there are no A, d, and n, with norms less than the inverse of the
upper bound, that are consistent with Equation (6.1) represented by the block
diagram in Figure 6.1. In contrast, the lower bound does not allow us to
validate models: the lower bound finds a A, d, and n with norms less than
or equal to the inverse of the lower bound. The difference is that the upper
bound allows us to say “this data is inconsistent, hence the model is not
representative of the true system” while the lower bound only allows us to say
“this data is consistent, but more might not be;” we cannot conclude that the
model is representative of the true system. The lower bound provides no hard
information about the relevance of the model.

The value of the lower bound is that we typically want more than a simple
yes or no answer; we want to fine tune our model by adjusting the sizes of the
uncertainties and disturbances. Further, the lower bound can verify the quality
of the upper bound: if they are close together, then both bounds are good,
while if they are not close together, it may be that the data invalidates the
model and the upper bound fails to indicate this. Under these circumstances it
is difficult to tell what is consistent and what is a reasonable model. Without
the lower bound, we have no indication of the quality of the upper bound.

This section develops a lower bound for the generalized p problem. The
lower bound algorithms of Chapters 3 and 5 rely upon alignment conditions
(see [28] and [41]) derived from rather inaccessible results about the analyticity
of eigenvalue decompositions ([19]). These results are not applicable to the
generalized p problem. Instead, we pursue a simpler perturbation analysis
that contains the conditions for the standard lower bound as a special case.

The Form of Solutions

We used the form of the definition of y, in Equation (6.5) only to simplify
the subsequent exposition. The following characterization of p, is necessary

99

to explain the lower bound computation for p,. We want solutions of the
following form.

z = Mz
v A*w
w = M
x = Az
AK = iO'K—Z*&‘y
16l |z |l

where b is a vector and o is a scalar.

For regular blocks—those with the subscript J—this is just as for regular
p: A enforces the constraint between z; and z;. The w and v are found easily
from the A. For the generalized blocks—those with the subscript K—the Ak
above ensures ||zx|| = ||Ak]| ||zk ||, so [|Ak || is the gain from zx to zx. Note
that Ax = kxgzj, for some k € R. Although z € ker(I — M A) as before, now
the operator A depends on the kernel.

The Solution Occurs on the Boundary

An important feature of the generalized p problem is that the maximum
in Equation (6.5) occurs on the boundary. The proof of the following theorem
treats the general case where there may be real blocks in the A structure. Note
that R C C has no interior. This is no different than the standard case in
Chapter 3. The proof relies on a nondegeneracy assumption that the problem
does not decouple into two independent problems so we may assume that none
of the blocks of the vector z are zero.

Theorem 6.11 Subject to the nondegeneracy assumption, a definition
equivalent to Definition (6.5) of the positive function p,(M) for M €
dom(ug) is

Iy = llzl,VieJ

Proof: If z; = 0 for some j, put A; on the boundary. Thus without
loss of generality, assume z; # 0 for all j in J.

Assume (I — My;A1)7 ! is well defined.

Assume there is a solution with A, not on the boundary:

a) =]
B

In the following, we construct a solution of the form

{Zl‘l-ﬁClJ _ M[$1+€X1}

29 + €(o 4
1+ €x1 _ A, 0 [z1 + €(; }
To 0 Ay 29 + €(y

with A1 strictly better than A; (smaller gain J blocks and larger gain K
blocks) and Az still not on the boundary, which contradicts the above

assumption.
Away from det(] — M;;A;) = 0, the three vectors

2 = (I- M11A1)_1M12$2
T = A(I - M) Mgz,
2 = (Mag+ My A (I — M11A1)_1M12)332

are all continuous in A;, thus an order ¢ change in A; results in order
€ changes in 21, z1, and z,.

Next, multiply the standard blocks of A; by 1—£ and the generalized
blocks by 1 + Z. With this new A, and the same z, the vectors 21, T1,
and zy are replaced by 21 + €(1, z1 + €x, and 2z, + €(s. Since these new
generalized blocks of A; are not in the standard form of Equation 6.12,
we replace them blockwise as follows. For these blocks,

r4+ex = (1+ E)A(z—#.fg)

= MNU+@HH@+%)

= g € zZ _ﬁ(z + GC)
“uw(+>”+“an+<u

= (U—l—e)l]z—f—eCH(l-l-Oe)

i
= 62 0' 6(+6C)* Z €
“(mN“*O” R m)<+<%

N ﬂ 2l (o E(Z"‘fg)
A= <wﬂ“+ol“'%Nu+wJ'

Note that this & is in our standard form and is a strict improvement
over the old block of A;. Note also that we have assumed z # 0.
Next, we must find a A2 that satisfies

Ty = A2(Z2 +ely) = KQ(ZQ + eMox)

while remaining internal. If the 2 block is a standard block (a J block),

this is trivial and the size of A2 only increases by H@L‘QA}LIXH’ so the

100

101

change is of order e. If the 2 block is a K block, the required change in
size is similarly of order ¢:

*

Z = iai—z
SRENE

b zle (24« e
(W) 0

- b o (z+e0)
a2 (an T2+ <C uz+ecn> |

Thus we have an improved solution in the sense that the loop equa-
tions are satisfied with a A whose sizes are strictly better, so the original
solution is not a local maximum. We conclude that interior points are
not local maximums. [|

A Perturbation Analysis

Here we perturb a solution and ignore the higher order terms. Let @ be
the additive perturbation to « so that the perturbed o is ao + &. The loop
equations

z = Mx
v = A%w
w = M*
r = Az

with no perturbation to M imply

T—Az=0
= T-Az-AZ=0
= w'Az = W' — w*AZ
= v'Mz —v*MZx

any perturbation which still satisfies the loop equations must also satisfy
w*Az = 0 to first order.

A Family of Perturbations

Since local maximums occur on the boundary, we are interested in per-
turbations to A from 0B4. Although this need not parametrize all such
perturbations, we shall consider perturbations of the form

A =GA.

102

It is easily verified that if G+G* < 0 and G is small enough then (I +G) < 1
while if G 4+ G* > 0 then (I + G) > 1. Denote the sets of such G as G, and
G respectively:

Gn = {G|G+G*<0,5I+G) <1}
G, = {G|G+G*>0}.

We define the set G, which parametrizes a set of allowable perturbations
to A, blockwise as follows.

Full blocks: Go = { G |G € G,,NAc)}
5.1 blocks: G, = { g.T | g.I € G () Ac}

01 blocks: on the boundary relative to R, G, ={gI |gIe€CGrNA},
and in the interior relative to R, G, = { g,I | g,I € A}

Ak blocks: G, = { G |G € G,N Ay}

For the Ag blocks note that

b 2

_ I+6k (H(I+G)b”0> 2
Iz + @)l 18] 2]l

I
1 48]] > a(A) [|b]|. If we further constrain G to have small enough norm, then

it is easy to see that G € G implies that (I + G)A is an improvement over A
in that it provides a larger value in the maximization problem if det(7 — (I +

G)AM) = 0.

and that (Ma> > 0. Also recall that 7(AB) < 7(A)7(B) and that

The Alignment Conditions

A solution to the equations is not a local maximum of Equation (6.12) if
there is a G € G (which corresponds to a better A) that satisfies w*Az =
w*Gz = 0. Thus a necessary condition for a solution to be a local maximum is
that w*Gz ()0 = (). We satisfy this condition if all the wiG;z; C C. (Other
halfplanes correspond to other eigenvector normalizations.)

In the following presentation of the consequent alignment conditions for
each type of block, the subscripts are omitted.

Full blocks: w = az, o € Rt =— w*Ge — ar*'Gr C C°. If w # ax
(and = # 0 # w), then there is a z such that Z'r = 0, 2*w # 0, and
G = e(—zz" —wrw*) € G, but w*Ge = 0. Thus we require w = ax.

103

5.1 blocks: w*z € Rt = w*Gr C C~. If w*z & RT, then thereisa G € G
such that w*Gz € CT. Thus we require w*z € R*.

5,I blocks: w'z € Ct = w*Gz c C. If w*z ¢ C* and this block is
on the boundary, then there is a G € G such that w*Gz € C*. Thus
we require w*z € CV for boundary blocks. If the block is internal,
however, we need Re{w*z) = 0. Otherwise there is a G € G such that
w*Gz € C*. When Re(w*z) = 0, w*Gz = 0 € C, but this is not an
issue because it does not allow us to improve any of the boundary A; we
might be able to move the internal A, but this does not help us find a
better solution. There is also the curious case of the perturbation that
is internal in the sense that Re(w*z) = 0, but also happens to be the
size of the perturbations on the boundary.

Aj blocks: w = az, a € R~ = w'Gr = az*Gez C C. lf w # ax
(and z # 0 # w), then there is a z such that z*z = 0, z*w # 0, and
G = e(zz* + wrw'") € G, but w*Gz = 0. Thus we require w = az.

These alignment conditions, satisfied at all local maximums, imply certain
conditions on the A at alignment, as follows.

Full blocks: w = az,a € R",z = Az together imply that A is wz* normal-
ized plus something orthogonal.

5.1 blocks: w*z € R,z = Az imply that A is the identity times z*w nor-
malized.

6.1 blocks: Re(w*z) = 0 puts no constraint on A, while w*z € C,z = Az
imply that A is the identity times sgn(Re(w*z)), normalized.

Ak blocks: w = ax,a € R,z = Az together imply that A is —wz* normal-
ized.

The normalizations are determined by the fact that the solution occurs on the
boundary. Note that we have not assumed anywhere that the matrix M is not
rank one.

An Equivalent Rank One Problem

For each local maximum of a generalized i problem there is a corresponding
rank one generalized p problem. Both problems satisfy the same loop equations
and alignment conditions at the local maximum, and the local maximum is
also the global maximum of the rank one problem. Let M denote the original
problem, and M, denote the corresponding rank one problem. Then z = M,z
and w = M}v imply M, = azw*, and z = 2 g further implies that M, = 2%

w*zr w*x®

104

Thus we need z, w, and z (or M, w, and x) to construct M, from the original
problem. It is routine to verify that the remainder of the alignment conditions
are satisfied with this rank one matrix.

For the generalized p power algorithm, however, we need a different rank
one matrix. At a local maximum the alignment conditions are satisfied and
Wg = %{"ﬁ—”, where (3 is the size of the local maximum. This follows di-
rectly from wx = azg, o € R, and vg = Ay wg. Similarly, the alignment
conditions imply that zx = %Ellf{”

When we replace wg and zg, the resulting rank one matrix is

2y wy '
—vr|lzx]| —zx|lvk|
M, = L Tvxlls S (6.13)

it | [2]
—zk|lvk]| .
laxls | LK

If we use this rank one matrix in a power iteration for the generalized p
lower bound, then the flow of information in the A problem is preserved.
Equivalently, the use of this rank one problem encompasses the ROA on the
M problem as a special case.

The Rank One Solution

Here we consider the calculation of generalized p for the rank one matrix
zw*. Note that this is different than the rank one matrix in Equation (6.13) and
that generalized u is not linear in scalar multiplication (typically, u(aM) #
apu(M), a € RY). The solution to the rank one generalized y satisfies the
following equation.

_ LAy 0

0 = det (I W [0 Ap J)
= 1-w* Ay 0 z
B 0 Ag

= I—Zw:‘Azzl

= 1- (,u_lejech + e’ Ly + ut Z(Srw;fzr) ,
T

L, = szAczc
T

LK = Zw;(AKZK
K

where L. and Ly are chosen so that L. is as large as possible, as in the standard
case in Section 2.5, and so that Ly is as small as possible. If there are two or

105

more K blocks, then L, can be taken to be zero, and the choice of A K 1S not
unique.
Scaling the above equation by u, we wish to satisfy

w=e%[, + p2eIK [+ Z Opwi 2y
r

with 4 as large as possible. (A larger value for 4 makes p2e/%< [too large
for a solution.) The L, and Lx combine optimally as (u*Ly — L.)e’".

If Ly is zero, the solution is just as in the standard case. Otherwise, the
contribution of the real blocks is better the more negative it is and the larger
the complex part. (Remember that we wish to maximize i and that a p that
is too large makes (u”Lg — L.)e?’ too large.) The graphical solution is similar
to the solution in Section 2.5.

A Power Iteration

At equilibrium, a power iteration must be consistent with the loop equa-

tions
z = Mz
v = A*w
w = M
z = Az,

and A and the vectors must be consistent with the alignment conditions.

To define a particular power algorithm, we must select the order and way
we use the equations for updates as well as how and when we make A consistent
with the alignment conditions.

Key to a successful power iteration is the direction of flow. To allow the
largest solution to dominate, we wish to use the power steps as follows. Use

2]=ul]

to find a new z; and zx, and the equation

o] =[]

Wk Uk

t/o\ find a new w; and vyx. With these choices, the flow of information in the

M problem is preserved. Analogous to the algorithms of Chapter 3, we use

these z;, g, wy, and vy to update A according to the alignment conditions.
Thus a natural generalization of power algorithms for the largest eigenvalue

and largest singular value is

the equation

106
e initialize
» get new zj, Tk, and § from 2 = Mz
e select A from the rank one solution for the matrix in Equation (6.13)
e get new v; and wx from v = A*w
e get new wy, vk, and 8 from w = M*v
e select A from the rank one solution for the matrix in Equation (6.13)

e get new z; and zx from z = Az

if converged then done, else go to »

Many of the refinements and techniques of Chapter 3 are applicable to the
computation of generalized u, as are techniques of Chapter 5. These topics
are not covered here, however.

107

Chapter 7

Implicit Formulations:
A Unifying Framework

In previous chapters we have seen that f solves many robustness analysis
problems and that x can be computed effectively despite poor worst-case com-
putation. We have also seen that the definition and computation of y can be
extended to salve a related but different problem, the model validation prob-
lem. This chapter discusses extensions to the p paradigm in a more general
way.

The main motivation behind this chapter is the belief that control theory
needs to play a broader role in technology; in fact, of the multiple technological
problems involving mathematical tools of the dynamical systems theory, only
a small fraction reduce to the design of a feedback system for a well defined
plant. A broad class of problems in modeling, system identification, system
design, simulation, and optimization are addressed with similar mathematical
tools; a natural objective is therefore the development of a more unified theory,
in which a common language of mathematical and computational machinery
is used to perform the previous range of activities. Although this goal may
seem ambitious, this chapter documents some progress in this direction by
exhibiting a framework that captures as special cases robustness analysis and
system identification.

The connection between these two problems is that they both are special
cases of the following analysis question:

Q: Given a mathematical description in terms of equations involy-
ing uncertainty, are there values of the uncertainty in a given class
such that the equations have a solution?

For the case of robustness analysis, this question is specialized as follows.
The mathematical description is a dynamical system with uncertainty, for ex-
ample parametric or dynamic uncertainty. Loosely speaking, to solve a robust
stability problem, (such problems encompass many robust performance prob-

108

lems,) is to test whether there are uncertainty values for which loop equations
admit nontrivial solutions, and is therefore a special case of answering Q.

Most activity in robustness analysis has focused on obtaining computable
answers to this question for a rich variety of uncertainty descriptions, which can
usually be fit into the LF'T and p paradigms. A class of perturbation structures
which lead to particularly tractable computation are those corresponding to
Integral Quadratic Constraints (IQCs, see Megretski and Treil, [22]) on signals:
in this case the problem reduces to a convex feasibility problem, the solution
of an LMI. For tighter descriptions of uncertainty such as real parameters,
worst-case computation is provably NP hard (see Chapter 2).

A recent development in robustness analysis (see Paganini et al., [30]),
exploited in this chapter, is that a larger class of analysis problems, involv-
ing uncertain systems and an arbitrary number of IQCs, can be formulated
and solved in implicit form. This is related to the behavioral paradigm for
system theory (see Willems, [38], and references therein) and is described in
Section 7.1.

A large research field under the umbrella of control theory is the area
of system identification, which obtains dynamical models from experimental
data, and the related model validation problem, which checks consistency of a
model with data. Mathematically, this area has relied on extending methods
of statistics, mainly time series analysis. A standard reference is Ljung ([21]).
Since these models are typically stochastic, it has been difficult to reconcile
this theory with robust control, which relies on deterministic descriptions.

The main argument to base this unification is the recognition that model
validation/ID problems are special cases of Q: given a model and experimental
data, are values of the uncertainty (parameters, disturbances, etc.) that solve
the equations? This is, strictly speaking, a model validation question; system
identification involves additionally finding the parameter values, but this is
often no harder—existence of a solution is usually shown by finding a solution.

It is shown in Section 7.2 that the implicit LF'T formulation over constant
matrices provides a natural framework in which to cast a large class of model
validation/ID problems, and therefore is a unifying paradigm.

In addition to providing a conceptual framework in which to relate robust-
ness analysis and identification, the formulation pursued here suggests that
computational tools developed to deal with the implicit robustness analysis
formulation could be applied to system identification. These tools are dis-
cussed in Section 7.4.

Finally, Section 7.5 contains an example where the conventional least
squares identification problem is reviewed from this perspective.

109
7.1 Robustness Analysis in Implicit Form

We begin by considering an uncertain LFT system in implicit form, de-
picted in Figure 7.1. Note that the output is constrained to be zero.

Figure 7.1: An Implicit LFT system.

A

C D
is a structured uncertainty operator, described below. The manifest variables

w (the signals of interest) are described implicitly by the above equations,
since (AxM)w = 0, where it is assumed that (I — AA)7!is well defined. Note
that there is no partition of the manifest variables into inputs and outputs. In
this respect, this formulation is consistent with the behavioral framework for
system theory, introduced by Willems ([38]). D’Andrea and Paganini ([10, 9))
provide motivation and introductory material on these representations.

An internal description of the same system in terms of the generalized state

In this formulation, M = [J is in principle an arbitrary map, and A

sO(A,M)MJ = 0, (7.1)
(A M) = [I‘OAA P (7.2)

As in standard robust control, A varies in A, which is the class of struc-
tured uncertainty operators of the form

A :diag[éllrl,...,(5LITL,AL+1,...,AL+F] (73)

where the blocks in A represent real parameters or dynamic (linear time-
invariant (LTI), linear time-varying, or nonlinear) perturbations. Usually these
perturbations are restricted to Ba = { A | ||Al| < 1} in some operator norm.

In addition to allowing the representation of any standard input-output
uncertain LF'T system, the implicit representation allows the formulation of

110

over constrained problems, which have more equations than free variables 1.
A special case of this is considered by Paganini et al. in [30], where it is
shown that a finite number of IQCs on w can be given a kernel representation
as in Figure 7.1. An example of the use of such additional constraints is
the case of whiteness constraints to pose a robust H, performance problem
(see [30]). Therefore a richer class of robust performance analysis problems
can be formulated in this paradigm and converted to a robust stability test in
the sense described below. The following definition, and much of the remainder
of this section, is from Paganini and Doyle ([31]).

Definition 7.1 Consider the implicit system in Equation (7.1), where
A, B, C, D, and A are linear operators in a vector valued L, space.
The system has robust L, stability if for each A € Ba,

e [2]] 2]

According to the definition (where L, could be replaced by any Banach
space of signals), £, stability implies that there are no nontrivial signals satis-
fying Equation (7.1) for any A € Ba. This is a condition of the type expressed
in the analysis question Q of the introduction; £, stability is equivalent to a
negative answer to Q.

Note that in this infinite dimensional case, the £, stability definition has
the technical requirement that nontrivial approximate solutions z and w to
Equation (7.1) cannot exist with an arbitrarily small amount of equation er-
ror. This is equivalent to saying that apart from being injective, the operator
©(A, M) has a left inverse which is a bounded operator in L,.

The following proposition from [31] reduces the representation to a simpler
form.

z,w € Ly,

':1}>u (7.4)

Proposition 7.2 The implicit system in FEquation (7.1) has robust
L, stability if and only if both (i) and (1) hold.
(i) D has a bounded left inverse L.

} - I-AA
(i) The implicit system [6AA } z =0 has robust L, stability,

where A= A— BLC, C = C — DILC.

Condition (7) is a nominal stability condition which, if not satisfied, says
there are nontrivial solutions to Dw = 0 and the system is not stable at
A = 0. In (#), where from now on we replace 4 and € by A and C, the left
—AA

C

invertibility condition on [J for each A € B, resembles a PBH test

111

for detectability of the pair A, C. Tests for robust L, stability of this implicit
representation are given in [31].

In many important cases, the robustness analysis can be conducted in a
constant matrix representation, which is essential if computational tests are
to be derived. These have the form

[d *CAA J 2=0 (7.5)

where A and C are constant matrices and A € A C x|

One such case is that of state space implicit descriptions in discrete time
(see Paganini and D’Andrea, [9, 30]). Assume that M in Figure 7.1 is a finite
dimensional LTI system. By writing a state space realization of this system we
obtain a new implicit description, where M is replaced by a constant matrix,
the delta structure A is replaced by an augmented structure Ag = diag[A\], A],
where) is the delay operator. It is shown by Paganini et al. in [30] that under
mild assumptions the analysis can be reduced to a constant matrix problem
such as Equation (7.5).

Another constant matrix case is when M and A are time-invariant. Then
the robust stability test reduces to (see [31])

k =0 VAjeBa, Y 7.
er ,: C(]w) 0 € Ay W, (6)
where A(jw) and C(jw) are the frequency responses of the LTT systems A and
C, and A is a constant complex perturbation with the same structure as the
original A. This is a constant matrix test at each frequency.

These conditions are reminiscent of i, which corresponds to the case where
C = 0. We give the following definition from [31]:

Definition 7.3 The structured singular value of the matriz A with
respect to the structure A C C™", subject to the implicit constraints C
is defined as

pac(4) 20 if ker [[a4

c

pac(d) & (min { F(A) ! A€ A ker { I‘OAA } + o}) ‘1.
(7.7)

J =0VA € A, otherwise

Note that the structure A could be specified to be real, or to be mixed with
real and complex blocks.

When we formulate the special case of the analysis question Q for these
constant matrix problems as follows

112

Qu: Given Equations (7.5) where A, C are constant matrices and
Ba C C™" as in Equation (7.8), is there a A € Ba such that the
Equations (7.5) admit nontrivial solutions?

We see that Q,, can be restated as the test Is ta,c(A) > 17 A negative answer
to Q, is equivalent to robust stability.

Thus the class of analysis questions which can be stated in the form Q.
can all be answered if we can compute the quantity ua ¢(A4). As in the stan-
dard case (C = 0), exact computation of ua ¢(A) is difficult in general. In
Section 7.4 we consider upper and lower bounds for this problem and their
computation.

7.2 Model Validation and Identification

The basic element of any quantitative approach to scientific and techno-
logical problems is a mathematical model. Typically, the model is obtained
using some combination of first principles analysis and identification from ex-
perimental data. In general, one might start with a model with some a priori
structure, perhaps using some first principles knowledge, that includes some
description of the a priori uncertainty (parameters, disturbances, etc.). Af-
ter performing an experiment, one is faced with the mathematical problem of
finding values of the uncertainty that agree with our data.

An extensive field of research pursues the answer to this problem. For the
case of dynamical models, a standard reference is Ljung ([21]). A canonical
example of the methods of standard system identification is the fitting of a
parametric model by using prediction error methods (PEMs) described next.
Assume the following model structure,

y =G\ 0)u+ H(\ 0)d (7.8)

where) is the shift operator, 6 is a vector of parameters, G and H are discrete
time systems, and d is a disturbance. Given data u and y, these methods
attempt to find values of 6 and d which agree with the data. Since many
solutions may exist, the standard approach is to search for the solution which
minimizes some norm of d.

A related problem is model validation: given a model and data, is the
model consistent with the data? In the PEM example, it may be that values
of § have already been chosen, and we wish to determine whether the model
is consistent with a set of data with a plausible (e.g. small enough) instance
of d. The model validation problem clearly fits into the analysis question Q
stated in the introduction: given the equations, the parameters and the data,
that must check whether there are values of the uncertainty (in this case d,
satisfying some constraints, e.g. ||d|| <) which verify the equations.

113

The identification problem is different in that the parameters 6 are also
unknown. Consequently in Q we inquire whether there are values of d and
0 verifying the equations. To minimize ||d||, we can ask Q for various sizes
of d. Additionally, in conventional identification in general and in the PEM
problem in particular, we want to find the values of 8 that give the affirmative
answer to Q. Traditionally, the model is said to be identified when a fixed
value of @ is chosen.

More generally, we might prefer a final identified model where, for exam-
ple, some parametric uncertainty is left. This entails a somewhat expanded
notion of identification. Other choices will arise as we include other sources
of uncertainty. Also, we may have multiple experiments, where some of the
uncertainty is fixed to have a common value across experiments, and other
uncertainty (e.g., noise, parametric variations due to changes in experimental
conditions, unmodeled dynamics) is allowed to vary from one experiment to
another.

Therefore, a general methodology for model validation and system identi-
fication (henceforth denoted MV/ID) should provide computational tools for
answering the above general question Q for rich uncertainty structures, in-
cluding noise, unmodeled dynamics, and parameters.

MV/ID in an Implicit LFT Setting

We now consider a general class of MV/ID problems which are described
in terms of LFTs. In Chapter 6 we see how this type of problem is strongly
related to robustness analysis machinery. In this section it is shown how
these problems are naturally formulated as implicit LF'T analysis problems
considered in Section 7.1.

Figure 7.2 shows a generic input-output MV/ID structure, where we ag-
sume all the elements in the diagram are constant vectors and matrices. In
Section 7.3 we briefly explain how dynamical models based on finite time
histories may be converted to this form. The vector of unknown inputs (dis-
turbances) d is constrained by ||d|| < 1; A is in Ba; « and y are the measured
inputs and outputs. The MV/ID problem is, again, to find values of A and d
consistent with Figure 7.2. The problem is assumed to be well posed in the
sense that there are no nontrivial solutions with d = 0 when y and u are 0.

This LFT structure captures a rich variety of linear identification problems.
As a simple example, consider the standard linear regression problem

y=M0+d (7.9)

where M and y are known, 6 is a vector of unknown parameters and d is a
vector of unknown errors. These equations are of the form of Figure 7.2, with

114

Pn Py, Py [A
- d
Yy — Py Py Py - u

Figure 7.2: A standard input-output MV/ID setup.

A=6,u=1, and
0 01
P_[M I O]

In Figure 7.3 the equations of Figure 7.2 are represented in implicit form,
with u and y combined into the vector v which includes all the known data:

v:[ﬂ, Py=[Ps 0], Pu=[Py -I]. (7.10)

Figure 7.3: A standard MV/ID setup in implicit form.

The distinction between input and output in Figure 7.2 has been eliminated
in Equation (7.10). Note that the input-output partition has been eliminated
from the model. In fact, it could well be that we wish to validate some model
based on observations of a system where this distinction is not available. Then
we would arrive directly at Figure 7.3. For example, in the linear regression
above, the input is an artifice of the representation.

115

Py Py ﬁ13’l}

0 =——— Py Py]523'0 B 1

Figure 7.4: The MV/ID setup with data inside the matrix.

We can now incorporate the data v into the matrix by considering a ficti-
tious scalar input of value 1. This results in Figure 7.4.

The representation has up to now two different sources of uncertainty: A
and d. This distinction disappears and the constraint ||d|| < 1 is included in
the problem when we introduce the uncertainty block A, = d, 1A4]] <1, and
write d = Ayl. This is shown in Figure 7.5. Note that A, is just a new name
for d that reflects its location in the diagram.

Pll P12 ﬁlgv - A -
0 0 1 < Ad < d
0 Py Py ﬁ237} “ 1

Figure 7.5: MV/ID as an analysis problem.

The MV/ID question is now reduced to the question Are there nontrivial
signals satisfying the implicit equations of Figure 7.5 for A € B ? This is
an instance of a constant matrix problem of F igure 7.1. The fact that one
signal is constrained to be 1 is irrelevant since everything can be normalized
by linearity if the problem is well posed.

Unless the nominal model satisfies the data, 152311 is left invertible (it is
a nonzero column). Then Proposition 7.2 tells us the MV/ID analysis can

116

I-AA
C
question is precisely Q,, posed in Section 7.1, and entails the same computation
as in the robustness analysis problem. A positive answer to Q,, is equivalent

to establishing that the model and the data are consistent.

be reduced to the question Is ker [] =% 0 for some A € Ba? This

7.3 Time Domain Data and
Dynamical Models

Section 7.2 was based on static representations for models and data, with
no explicit time variable. System Identification, however, deals with dynami-
cal models and observations across time. Since the time horizon is finite, the
dynamic MV/ID problem is always represented by a finite, albeit large, num-
ber of equations that can be represented in terms of constant matrices. To
illustrate, consider an autoregressive model

ANy =d, AN =1+ar+...+ap\" (7.11)

with y known and the a; and d unknown. Over a finite horizon [0, N], the
equations can be written as

) 1o, [d0)
y(1) y(0) . d(1)
y(2) y(1) Pl=1d@) |, (7.12)
L) gy] L [|

which has the form y = M6 + d, a special case of Equation (7.9). Thus this
problem has a constant matrix LFT representation.

This example is particularly simple because it reduces to a linear regres-
sion. More generally the disturbance d may enter the equations through some
dynamics which contain uncertainty. Such is the case of the ARMA model
A(N)y = B(A)d. Here, the unknown parameters in B(A) are convolved in time
with the unknown disturbance. A constant matrix representation of these
equations features repetition of the parameters in B()), resulting in large 67
blocks in A and consequently more difficult computation. Progress has been
made recently in computation with large problems involving such repetition.
See Tierno and Doyle ([36]) for more details on the general formulation of
finite time horizon analysis problems and the related computation.

117
7.4 Computation for Implicit Analysis

In this section we address the issue of obtaining computational tools to
answer the general question Q,, of which both constant matrix robustness
analysis and MV/ID are special cases. The idea is to extend the upper and
lower bounds for standard p analysis (C = 0 in Definition 7.3). Except in
special cases, the upper and lower bounds must be close to know that either
is close to pa c(4).

If the lower bound is > 1, then we have a solution to the Equations (7.5)
and the system is not robustly stable. Thus a lower bound > 1 is a sufficient
condition for the absence of robust stability. For MV/ID, a lower bound > 1
is a sufficient condition for the existence of a solution to the problem.

On the other hand, an upper bound < 1 guarantees the absence of a
solution and is thus a sufficient condition for robust stability and a sufficient
condition for the absence of a solution to the MV/ID problem.

Upper Bounds

The upper bounds to the structured singular value extend in a natural
way to our implicit formulation. We first define the set X of positive scaling
matrices which commute with the elements in A. They have the structure

X:diag[Xl,...,XL, .’L‘L+1I,...,Z'L+FI]. (713)
Now consider the two LMI feasibility conditions

X € {X|A'XA-pX-C"C <0} (7.14)
X € {X|CLAXA-FX)C: <0}, (7.15)

In Equation (7.15), C% is a matrix whose columns form a basis for the kernel
of C. It is not difficult to show that these LMIs are equivalent.
Define the upper bound to y

Aac(A) = inf { § | (7.14) is satisfied } . (7.16)

It is easy to show (see Paganini and Doyle, [31]) that pa c(A) < Ziac(A).
Thus if Equation (7.14) is satisfied for § < 1 then the answer to the question
Q, is negative.

A natural question is under which conditions the upper bound is exact
(. = [). From the point of view of A, we inquire which structures are -
simple (i.e. which structures ensure y = p for any matrices A, C). The
answer from [31] is the following:

118

Proposition 7.4 The following structures are j1-simple in the implicit

Ccase.
(i)Az{dI | 6§ € Mk,}
(ii) A = C¥"

(iii) A = { diag[A1, Aq] | A; € CMixmi }
(iv) A = { diag[A, D] | A; € R™>™ L, for A, C real

Remarks: In standard p, two additional complex structures are p-
simple (diag[d,], As] and diag[Ai, Ag, As]) (see [27]), but this does not
carry through to the implicit case (see [31]).

The upper bound is an exact robust stability test for the dynamic
problem where the uncertainty is in a class of time-varying operators
(see [31}).

Even if the structure is not p-simple, special cases on the matrices
A, C can yield p = 1. An example of this is when A is rank 1 in the
kernel of C.

In the case where A contains blocks of repeated real perturbations, a
tighter upper bound can be defined as Chapter 4 by adding a term j(A*G—~GA)
to the LMI in Equation (7.14). In this case G = G* = diag[G; ... G,,0...0],
where the G; blocks correspond to the real 61 blocks.

Although the upper bound can in principle be computed exactly by solving
an LMI, MV/ID problems can have very large matrices with extensive repe-
tition in uncertainty blocks. In these cases the LMI involves very large full
blocks, which standard LMI solvers cannot handle. By taking advantage of
special structure in these repeated problems (see Tierno and Doyle, [36]), some
reduction in complexity should be possible, but further research is required.

Lower Bounds

In contrast to an upper bound, which guarantees that there there are no
solutions to the equations in Q,, a lower bound guarantees that there is a
solution to the equations. This suggests an equivalent definition of ua ¢(A):

pac(4) 2 max{ 8 | (3,8) € S|_H{(0,0}] (7.17)

I—-AA
S & {(ﬂ,A) HAHzl,ker[ﬂ . }750}. (7.18)
If a point is found in S with 8 > 1, then the answer to the question Q,, is
yes.
For a general problem, the set S may be disjoint, it may have isolated
points, or it may be empty. We do not consider the general problem here;

119

our problems are easier. The MV /ID problems are continuous in the following
sense: if we have a point in S then a small change in uncertainty or unknown
parameters, along with the appropriate small change in measurement noise or
equation error, provides us with another point in S. We can find a point in S
for a MV/ID problem by choosing any values for the uncertainty and finding
the output noise that is consistent. This allows a perturbation analysis of
optimality.

Proposition 7.5 Let P parametrize ker(C) and let 0 = (81— AA)Pz
so that (B,A) € S. If 35 >0, A <0, and T such that

0= (8- AA)Pz + (8 — AA)PZ (7.19)

then (B,A) is not a local mazimum of Equation (7.17).

Remarks: Note that this test is a linear programming feasibility test
on B, A, and Z.

More generally we may encounter problems that are not continuous.
We then face the question of the physical or engineering interpretation
of such a problem. Often such a problem is poorly posed. If one chooses
to proceed with a discontinuous problem, one can go through a regu-
larization procedure completely analogous to the one in Section 2.1.

The approach to the computation of the maximization problem in Equa-
tion (7.17) is heavily influenced by the fact that the problem is NP hard (u is
a special case of Equation (7.17) and is NP complete).

As before, to obtain acceptable computation for the large problems we
are interested in, one is forced either to consider special cases, e.g. u-simple
problems, or relax the requirement for exact computation.

Lower bound computation for the special case C' = 0 in Chapter 3 shows
that specialized algorithms are much better than standard optimization code.
The successful algorithms can be separated roughly into the two classes dis-
cussed below, which look for a local maximum of 4 in S.

The first class of algorithms is based on conditions on 5, A, and z consistent
with a local maximum. These are called alignment conditions. The algorithms
try to satisfy these conditions directly. If these local maximum conditions are
not achieved, then no lower bound is provided. The SPA and ROA described in
Chapter 3 are of this type and are efficient and usually calculate the structured
singular value reasonably accurately. The principal difficulty in generalizing
the algorithms of this type is that the conditions for a local maximum derived
from Proposition 7.5 are considerably more expensive to compute than the
alignment conditions of the C' = 0 case. Since it is difficult to analyze a power

120

algorithm mathematically, the performance of such algorithms is measured by
testing the algorithm on a large set of representative problems.

The second class of algorithms moves from one point in S to another, so a
lower bound is constantly being provided and improved upon. The first step
is to find a point in S, which is easy in our case. Next, we check conditions
in Equation (7.19) to decide if we are done. If we are not done, then a better
point can be found nearby. This can be proved using a contraction mapping
and starting in the direction of (B\, &) Although standard optimization code
is in this second class of algorithms, the algorithms developed in Chapter 3
suggest that specialized code incorporating elements of algorithms of the first
class will be much better.

7.5 The Least Squares Problem Revisited

A canonical example of a computationally easy problem in system identifi-
cation is the least squares problem: in the linear regression setup y = M6O+d
of Equation (7.9) we wish to find the values of 8 which satisfy the equations
and minimize the 2 norm of the vector d. Assuming M is full column rank, this
problem has an explicit solution § = (M*M)~'M*y, which gives a minimum
of ||d||* equal to

% =y (I = M(M* M) M*)y. (7.20)

An important requirement to validate our approach to MV/ID is to ensure
that this simple problem does not turn into a hard one when recast in our anal-
ysis framework. Of course, no solution is more efficient than the least squares
solution, and we would not expect a method which is developed to encompass
quite general problems to be optimal in a special case. We do, however, want
the problem to be tractable in the new formulation. Fortunately, as is shown
below, the resulting implicit analysis problem is indeed tractable and we can
recover the least squares solution.

We first specialize the MV/ID setup of Figure 7.5 to the linear regression
case. This is done by following the steps in Section 7 .2, and yields the diagram
on Figure 7.6.

The only modification to the setup in Figure 7.5 is that scalings &, ~
are added to fix the allowable sizes of 6, d respectively. In the least squares
problem, we attempt to find the smallest value of 7 such that the corresponding
Q.. gives an affirmative answer for some value of k& (we do not have constraints
on parameter size in this case). So the strategy is to let & == o0 in the
analysis, and attempt to minimize .

For simplicity assume ||y|| = 1. Therefore the D matrix in the implicit rep-
resentation (refer to Figure 7.1) is left invertible, and Proposition 7.2 converts

121

0 0 K |« 0 I
0 0 7T e Ad~ d
0 — M I~y | 1

Figure 7.6: The least squares problem.

it to the standard form of Equation (7.5), with

ky*M ky* }
A = 7.21
[yy*Mo oy (7.21)

C = (I-—yw)[M I].

The structure A consists in this case in two real full blocks. Although they
are nonsquare (they are columns) the analysis in Proposition 7.4 (iv) remains
valid; therefore the structure is y-simple and the LMIs in Equations (7.14)
and (7.15) with 3 = 1 capture exactly the answer to Q.. This fact is already an
indication that our problem remains tractable in the new formulation, although
a solution based on LMIs is less efficient than the least squares solution.

To make the point clearer, we can show explicitly that the LMI approach
gives the least squares solution as k& = oo0. Consider the LMI in Equa-
tion (7.15) with § = 1; the X scaling in this case consists of two scalar pa-
rameters, one for each of the full blocks. Let us call the first one 7 > 0, and

we can normalize the second one to 1. Some algebra gives C* = [I 0 J,

-M vy
—(zI + M*M) —M*y
C(axa-x)0r = | @ .
J—(X)C_L —y*M /{32.’L‘+"}/2—1 J (7 22)
A Schur complement operation reduces Equation (7.15) to
e{z |[Fr+y - 1+y* M@l + M M) "My < 0}. (7.23)

As k = oo, the unknown z must go to zero if (7.23) is to be satisfied;
this implies that (I + M*M)™! == (M*M)~! and the LMI is feasible for
large k if and only if

V< 1=y MM M) My = 2. (7.24)

122
Recapitulating,

e For 7 < 7 the LMI is feasible and therefore fia,c(4) = pac(4) < 1,
which in turn implies that the answer to Q. is negative (no solutions
with ||d]| <).

® For v > 7 and large enough & the LMI is not feasible, bac(A) =
ta,c(A) > 1 and therefore there are solutions to the MV/ID problem.

So we again find that 7o is the minimum norm for d, as expected. We have
not shown how to solve for 6 and d, but this information also can be obtained
from the LMI approach.

We reiterate that we are not advocating this method for a least squares
problem; this is a method suitable for a large class of problems. We have
simply shown that it remains tractable in this simple case.

123

Bibliography

[1]

V. Balakrishnan, Stephen Boyd, and S. Balemi. Branch and bound
algorithm for computing the minimum stability degree of parameter-
dependent linear systems. International Journal of Robust and Nonlinear
Control, 1(4):295-317, October—December 1991.

Gary J. Balas, John C. Doyle, Keith Glover, Andrew K. Packard, and Roy
Smith. The p analysis and synthesis toolbox. MathWorks and MUSYN,
1991.

Gary J. Balas and Andrew K. Packard. Development and application of
time-varying u-synthesis techniques for control design of missile autopi-
lots. John Hopkins Applied Physics Laboratories, Final Report, January,
1992.

Gary J. Balas, Peter M. Young, and John C. Doyle. x based control design
as applied to a large space structure: Control design for the minimast
facility. NASA CSI/GI final report, June 1992.

A. C. Bartlett, C. V. Hollot, and H. Lin. Root locations of an entire
polytope of polynomials: It suffices to check the edges. In Mathematics
of Control, Signals and Systems. Springer Verlag, 1988.

Carolyn Beck and John C. Doyle. Mixed p upper bound computation.
In Proceedings of the 31°° Conference on Decision and Control, pages
3187-3192, 1992.

Richard D. Braatz, Peter M. Young, John C. Doyle, and Manfred Morari.
Computational complexity of u calculation. IEEE Transactions on Au-
tomatic Control, 39:1000-1002, 1994.

Jie Chen, Michael K. H. Fan, and Carl N. Nett. The structured singular
value and stability of uncertain polynomials: A missing link. Control of
Systems with Inezact Dynamic Models, ASME, pages 15-23, 1991.

Raffaello D’Andrea and Fernando Paganini. Interconnection of uncertain
behavioral systems for robust control. In Proceedings of the 32" Confer-
ence on Decision and Control, pages 3642-3647, 1993.

[10]

[11]

[12]

[13]

[14]

[15]

[17]

18]

124

Raffaello D’Andrea, Fernando Paganini, and John C. Doyle. Uncertain
behavior. In Proceedings of the 32" Conference on Decision and Control,
pages 3891-3896, 1993.

Raymond R. E. de Gaston and Michael G. Safonov. Exact calculation of
the multiloop stability margin. IEEE Transactions on Automatic Control,
33:156-171, 1988.

James Demmel. The componentwise distance to the nearest singular ma-
trix. STAM Journal on Matriz Analysis and Applications, 13:10-19, 1992.

John C. Doyle. Analysis of feedback systems with structured uncertainty.
IEE Proceedings, Part D, 129(6):242-250, November 1982.

John C. Doyle, Andrew K. Packard, and Kemin Zhou. Review of LFTs,
LMIs and p. In Proceedings of the 30°* Conference on Decision and Con-
trol, pages 1227-1232, 1991.

Michael K. H. Fan and Andre L. Tits. Characterization and efficient
computation of the structured singular value. IEEE Transactions on Au-
tomatic Control, AC-31:734-743, 1986.

Michael K. H. Fan, Andre L. Tits, and John C. Doyle. Robustness in
the presence of mixed parametric uncertainty and unmodeled dynamics.
IEEE Transactions on Automatic Control, AC-36:25-38, 1991.

A. L. Fradkov and V. A. Yakubovich. The S-procedure and duality theo-
rems for nonconvex problems of quadratic programming. Technical report,
Leningrad. Univ., 1973.

Michael R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP Completeness. W. H. Freeman, New York,
1979.

Tosio Kato. A Short Introduction to Perturbation Theory for Linear Op-
erators. Springer Verlag, New York, 1982.

V. L. Kharitonov. Asymptotic stability of an equilibrium position of a
family of systems of linear differential equations. Differential Equations,
14:1483-1485, 1979.

Lennart Ljung. System Identification, Theory for the User. Information
and System Sciences Series. Prentice-Hall, New Jersey, 1987.

A. Megretski and S. Treil. Power distribution inequalities in optimization
and robustness of uncertain systems. Journal of Mathematical Systems,
FEstimation, and Control, 3, No. 3:301-319, 1993.

23]

24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

125

A. Megretsky. Power distribution approach in robust control. Techni-
cal report, Department of Mathematics, Royal Institute of Technology,
Stockholm, Sweden, 1992.

E. E. Osborne. On preconditioning of matrices. Journal of the Association
for Computing Machinery, 7:338-345, 1960.

Andrew K. Packard. What’s new with u: Structured Uncertainty in Mul-
tivariable Control. PhD thesis, University of California, Berkeley, 1988.

Andrew K. Packard and John C. Doyle. Structured singular value with re-
peated scalar blocks. In Proceedings of the American Control Conference,
pages 1213-1218, 1988.

Andrew K. Packard and John C. Doyle. The complex structured singular
value. Automatica, 29:71-109, 1993.

Andrew K. Packard, Michael K. H. Fan, and John C. Doyle. A power
method for the structured singular value. In Proceedings of the 27" Con-
ference on Decision and Control, pages 2132-2137, 1988.

Andrew K. Packard and Pradeep Pandey. Continuity properties of the
real/complex structured singular value. IEEE Transactions on Automatic
Control, AC-38:415-428, 1993.

Fernando Paganini, Raffaello D’Andrea, and John C. Doyle. Behavioral
approach to robustness analysis. In Proceedings of the American Control
Conference, pages 2782-2786, 1994.

Fernando Paganini and John C. Doyle. Analysis of implicitly defined
systems. In Proceedings of the 8¢ Conference on Decision and Control,
pages 3673-3678, 1994.

J. Rohn and S. Poljak. Checking robust nonsingularity is NP-hard. Math-
ematics of Control, Signals and Systems, 6(1):1-9, 1993.

Jeff S. Shamma. Robustness analysis for time-varying systems. In Pro-
ceedings of the 31%* Conference on Decision and Control, pages 3163-3168,
1992,

Athanasios Sideris and Ricardo S. Sanchez Pena. Fast computation of the
multivariable stability margin for real interrelated uncertain parameters.
IEEE Transactions on Automatic Control,, 34(12):1272-1276, December
1989.

[35]

[36]

[37]

[38]

[39]

[40]

126

Roy S. Smith and John C. Doyle. Model validation: A connection be-
tween robust control and identification. IEEE Transactions on Automatic
Control, 37(7):942-952, July 1992.

Jorge E. Tierno and John C. Doyle. Finite time horizon robust perfor-
mance analysis. In Proceedings of the 35 Conference on Decision and
Control, pages 3080-3085, 1994.

Jorge E. Tierno and Peter M. Young. An improved p lower bound via
adaptive power iteration. In Proceedings of the 815t Conference on Deci-
sion and Control, pages 3181-3186, 1992.

Jan C. Willems. Paradigms and puzzles in the theory of dynamical sys-
tems. IEEE Transactions on Automatic Control, 36:259-294, 1991.

Peter M. Young. Robustness with Parametric and Dynamic Uncertainty.
PhD thesis, California Institute of Technology, 1993.

Peter M. Young. The rank one mixed p problem and “Kharitonov-type”
analysis. Automatica, 30(12):1899-1911, December 1994.

Peter M. Young and John C. Doyle. Computation of y with real and
complex uncertainties. In Proceedings of the 29" Conference on Decision
and Control, pages 1230-1235. IEEE, 1990.

Peter M. Young and John C. Doyle. Properties of the mixed x problem ,
and its bounds, 1993. Submitted to IEEE Transactions on Automatic
Control.

Peter M. Young, Matthew P. Newlin, and John C. Doyle. x analysis with
real parametric uncertainty. In Proceedings of the 30" Conference on
Decision and Control, pages 1251-1256. IEEE, 1991.

