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An electron force field for simulating large scale excited electron

dynamics

by

Julius T. Su

In Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Summary

Much interesting chemistry involves the motion of large numbers of excited elec-

trons, yet theory is limited in its ability to simulate such systems. We introduce

an electron force field (eFF) that makes simulation of large scale excited electron

dynamics possible and practical. The forces acting on thousands of electrons and

nuclei can be computed in less than a second on a single modern processor.

Just as conventional force fields parameterize the ground state potential be-

tween nuclei, with electrons implicitly included, electron force fields parameterize

the potential between nuclei and simplified electrons, with more detailed degrees of

freedom implicitly included. The electrons in an electron force field are Gaussian

wave packets whose only parameters are its position and its size.

Using a simple version of the electron force field, we compute the dissocia-

tion and ionization behavior of dense hydrogen, and obtain equations of state and

shock Hugoniot curves that are in agreement with results obtained from vastly

more expensive path integral Monte Carlo methods. We also compute the Auger

dissociation of hydrocarbons, and observe core hole decays, valence electron ion-

izations, and nuclear fragmentation patterns consistent with experiment.

Despite the simplicity of the electron representation, with a judicious choice of

potentials we are able to describe electrons of different shapes in different environ-

ments.
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In one chapter, we show we can describe p-like valence electrons using spherical

Gaussian functions, enabling us to compute accurate ionization potentials and po-

larizabilities for first row atoms, and accurate dissociation energies and geometries

of atom hydrides and hydrocarbons.

In another chapter, we show that we can describe delocalized electrons in a

uniform electron gas using localized eFF orbitals. We reproduce the energy of

a uniform electron gas, including correlation effects; and following the historical

development of density functional theory, we develop a preliminary eFF that can

compute accurate exchange and correlation energies of atoms and simple molecules.

In the following pages, we have highlighted successes of eFF, but have not shied

away from analyzing in depth areas where it could be improved. We hope that

this combination of promising results and critical analysis stimulates and assists

further research in this exciting field.
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Chapter 1

The electron force field, a method for

simulating large-scale excited electron

dynamics

Simulating excited electron dynamics in condensed matter

From semiconductor etching to molecular memories, from fuel cells to photosynthe-

sis, much essential chemistry is driven by the collective motion of excited electrons

(Figure 1.1). Yet computing the dynamics of strongly coupled, nonadiabatic, con-

densed system electrons on a large scale remains a challenge to theory. We have

developed a method called the electron force field, which in conjunction with an-

other method called wave packet molecular dynamics, makes simulations of these

systems practical.

In wave packet molecular dynamics [5, 16, 3], nuclei are propagated as clas-

sical particles, and electrons as localized wave packets described by their average

position and size.

In the electron force field (eFF), energies and forces are calculated from an

energy expression parameterized as a function of nuclear and electron coordinates,

with terms that capture key chemical features like covalent and ionic bonding, core-

valence separation, lone pairs, correlation, and the mixing of metallic electrons.

Details of the energy expression, as well as an analogy to classical force fields, are

given in more depth below.
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With our method, we expect simulations of 105 excited electrons over 103

picoseconds to be practical for a wide range of strongly coupled condensed systems.
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Figure 1.1: Excited condensed state electrons drive essential chemistry.

Electron force field makes large scale simulations possible.

To understand how electron force fields can help us compute approximate excited

state dynamics quickly, we make an analogy to traditional force field methods for

calculating ground state dynamics (Figure 1.2).

In the ground state, we assume that nuclei are well-localized, so that they can

be represented classically; and that since electrons are much lighter than nuclei,

the electron wavefunction and energy is a parameteric function of the nuclear

coordinates (Born-Oppenheimer approximation [4]):

Helec(R)ψ(r) = Eelec(R)ψ(r) (1.1)

Etotal(R) =
∑

i<j

ZiZj

Rij
+ Eelec(R) (1.2)
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Figure 1.2: Electron force field makes feasible simulations of large scale excited

electron dynamics.

where R are the nuclear coordinates and r are the electron coordinates.

To compute how the nuclei move over time, we can solve the time-independent

electronic Schrodinger equation at each time step, compute forces on the nuclei,

get new positions and velocities by integration, and repeat. The forces are calcu-

lated using the Hellman-Feynman theorem [5], which states that the force on each

nucleus in the presence of a normalized wavefunction ψ is the sum of the electric

field from the other electrons and nuclei, as well as a Pulay force [6, 7] that goes

to zero if ψ is an eigenfunction of H:

F = −∇E = −∇〈ψ|H|ψ〉

= −〈ψ|∇H|ψ〉︸ ︷︷ ︸
Felectrostatic

−〈∇ψ|H|ψ〉 − 〈ψ|H|∇ψ〉︸ ︷︷ ︸
FPulay

. (1.3)

However, this method, called Born-Oppenheimer molecular dynamics [8], is

slow, because it requires a quantum mechanics calculation at each step. We may

speed this up by only partially optimizing the wavefunction at each step, as in

the Car-Parinello approach [9], or by using particularly efficient density-functional

theory methods [10], but in practice ab initio based MD simulations remain limited

to hundreds of atoms over picoseconds [3].

Is there any way to get around solving Schrodinger’s equation at each step?

After all, the Born-Oppenheimer approximation states that the total energy should
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be a function of nuclear coordinates alone. In fact, the most common way to

perform dynamics on large systems over long times is to use a force field, an

approximate energy expression that is a function of nuclear coordinates. A force

field typically combines covalent terms between and about bonds with pairwise

noncovalent terms between atoms [12, 1, 2]

Etotal(Rnuc) =
∑

i<j

Ebond(Rij) +
∑

ijk

Eangle(θijk) +
∑

ijkl

Edihedral(φijkl)

+
∑

i<j

qiqj

Rij
+

∑

i<j

EvdW (Rij) (1.4)

The ability to parameterize high-accuracy quantum and experimental data into a

lower-accuracy nuclear potential is fundamental to being able to simulate systems

ranging from homogeneous [15] to hetergeneous [16] catalysts, from amino acids

to proteins with solvent effects included [17]. In most force fields, the partitioning

of energy terms is physically motivated, and it requires some artistry to determine

the functional forms needed to reproduce a broad range of chemical phenomena.

The reward for undertaking the laborious procedure of force field development

is a function that can be orders of magnitude faster to evaluate than quantum

mechanics.

In an electron force field, we consider the situation where electrons are not in

the lowest energy state: the bandgap may be small, the temperature may be high,

a current may be flowing, light may have excited electrons, or free electrons may be

present. In many of these cases, the Born-Oppenheimer approximation no longer

holds, and we write the force field energy as a function of both nuclear positions

and a reduced set of electron parameters. Which electron parameters to include

is a balancing act — too few, and our description will be inadequate to explain

chemistry; too many, and the resulting function will be as expensive to evaluate

as quantum mechanics.

Following a systematic investigation into the terms needed to capture a broad

range of chemical phenomena, we have developed a force-field expression that is a

function of nuclear positions Ri, average electron positions xi, and average electron
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sizes si:

Etotal(R,x, s) =
∑

i∈elec

Ekinetic(si)

+
∑

i,j∈nuc

ZiZj

Rij
+

∑

i∈elec
j∈nuc

Velec−nuc(Rij , si, Zj) +
∑

i,j∈elec

Velec−elec(xij , si, sj)

+
∑

i,j∈↑↑elec
Eexch(xij , si, sj) +

∑

i,j∈↑↑elec
k∈nuc

Ep−like
exch (xik, xjk, θikj , si, sj , Zk)

+
∑

i,j∈↑↓elec
Ecorr(xij , si, sj) (1.5)

where all pairs are counted once, and the nuclei have charge Z. The energy is a sum

of electronic kinetic energies (larger for small electrons); screened electrostatic in-

teractions between all pairs of nuclei, electrons, and electrons and nuclei; repulsive

Pauli exchanges between same spin electrons; attractive Pauli exchanges between

same spin electrons near the same nucleus; and attractive correlations between

opposite spin electrons.

We emphasize similarities and differences between eFF and traditional force

fields. Our electron force field is like traditional force fields in that it is fast, and

all the methods used to speed up evaluation of traditional force fields, such as

neighbor lists [18], multigrid Poisson solvers [19], particle mesh Ewald [20], and

so on, can be used to make the electron force field faster as well. In that respect

it advances our goal of making large-scale excited electron dynamics simulation

practical.

However, the electron force field is different from traditional force fields in that

properties such as bonding, hybridization, lone pairs, bond geometry preferences,

steric effects, transition state energies, charge distributions, number of electrons

in valence shells, spin multiplicity effects, and ionization potentials all appear as

emergent properties of the interactions between nuclei and electrons. It is our hope

that features of our force field may be incorporated into traditional force fields, so

that they can be made more general while requiring fewer parameters.

We note finally that force field development serves a pedagogical as well as a
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practical purpose. Force fields break interaction energies into components that are

both convenient to calculate and easy to understand in an physical way: terms like

bond stretching, van der Waals interactions, electrostatics, and so on. The price

paid for the accuracy of high-level theory is often a loss in our ability to analyze

results; force fields are a way to recapture this understanding [21].

Wave packet molecular dynamics

In wave packet molecular dynamics, we represent nuclei as classical particles, and

electrons as spherical Gaussian wave packets whose positions x and extents s vary

over time:

Ψ ∝
∏

j

exp
[
−

(
1
s2
− 2ps

s
i

)
(r− x)2

]
· exp[ipx · x]. (1.6)

In a harmonic potential, Gaussian wave packets stay Gaussian over time, and it

is meaningful to talk about the evolution of the coordinates x, s, and momenta

px and ps. Substituting the wave packet into the time-dependent Schrodinger

equation gives the Hamilton equations of motion (Appendix A)

ṗR = −∇RV, ṗx = −∇xV, ṗs = −∂V/∂s

pR = mnucR, px = melecx, ps = (3melec/4)s (1.7)

assuming a locally harmonic interaction potential. These equations can be viewed

as a generalization of Ehrenfest’s theorem [22], which states that the average po-

sition of a wave packet obeys classical dynamics, with the addition that the size

of the wave packet obeys classical dynamics as well. The 3/4 factor in front of

the mass multiplying the radial coordinate is related to the dimensionality of the

Gaussian packet, and becomes 2/4 for a 2D Gaussian, 1/4 for a 1D Gaussian, and

so on.

Heller showed these equations could be applied profitably to anharmonic re-

action potentials to describe processes such as collinear He + H2 scattering [5].

Klakow later applied the same procedure to the anharmonic Coulomb potentials
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Nuclear temperature Tnuc = 1
3kB

〈∑
nuc d.o.f.

1
2miẋi

2
〉

Electron temperature Telec = 1
4kB

〈∑
elec d.o.f.

1
2miẋi

2
〉

Pressure P = 2〈Ktotal〉
V − 1

3V

〈∑
all d.o.f. xi

∂E
∂xi

〉

Current J =
∑

i∈nuc ZiṘi +
∑

i∈elec(−1) · Ṙi

Conductivity σ = 1
3V kbT

∫ ∫
J(t) · J(t + τ)dtdτ

Excitation response function υ(τ) =
∫ ∑

i∈elec Ṙi(t)Ṙi(t + τ)dt

Excitation spectrum A(ω) =
∣∣∫ υ(t) cos(ωt)dt

∣∣2

Electron density ρ(x) =
∑

i∈elec |φ(x−Ri; ri)|2

Spin polarization ζ(x) = (ρ↑(x)− ρ↓(x))/ρ(x)

Table 1.1: Quantities that can be calculated from wave packet molecular dynamics.

in hydrogen plasma and lithium metal, and found he was able to reproduce equilib-

rium pair distribution functions well [16]. He also extracted the conductivity of a

hydrogen plasma by using a Green-Kubo expression [23, 24] relating the fluctuation

of current — obtained from nucleus and electron positions — to the dissipation of

current given an applied potential. Indeed, since electrons are just another particle

in these molecular dynamics simulations, we can use relations traditionally applied

to nuclear positions and velocities to compute a wide range of electrical properties

(Table 1.1).

In our simulations, we usually set melectron = mH , so that we may use a longer

time step t = 0.1− 0.5fs. There are additional reasons that can be given for this

choice — for example, anharmonic potentials tend to damp out radial oscillations

in the wavefunction (Appendix A); the Landau theory of Fermi liquids uses heavy

quasiparticles that obey fermion statistics [25] — but it would be best to rerun our

simulations with a smaller electron mass to make sure our choice does not have

too large an adverse effect.

We are making an assumption of mean field dynamics [26, 27] by propagating

electron dynamics via the time-dependent Schrodinger equation. In our approach,

the electron exists as a superposition of stationary states (Ψi, Ei), and the nuclei
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move in a potential that is a linear combination of those states:

E =
∑

i

|ci|2Ei. (1.8)

There are conditions under which this is not a good assumption. For example, if

our system has only a few well-separated states, and is prepared into a stationary

state through a monochromatic light pulse, that state will tend to stay on one

adiabatic path for a long period of time, and switch to other states via conical

intersections. In these cases, a surface hopping stochastic dynamics scheme would

be more appropriate, as mean field dynamics would split the difference between

adjacent paths. A stochastic scheme is also appropriate for cases where the spacing

between states changes rapidly during the course of the simulation, for example

in the case of an electron scattering off a surface, where the electron goes from a

continuum of states in free space to an insulator-like state on the surface.

Most cases we are interested in, however, contain many excited electrons and

many closely-spaced states (Figure 1.3), where the entire dynamics of the system

take place in a phase space packed with conical intersections with high Massey

parameter [28] (see Appendix B). Here, the system is constantly jumping between

adiabatic states, and the mean field trajectory is a good approximation of the

nonadiabatic motions of the electrons.

reaction coordinate

e
n

e
rg

y

reaction coordinate

e
n

e
rg

y

mean field

trajectory

(a) (b)

Figure 1.3: (a) Excited condensed system evolves through many curve crossings,

and can be approximately described by a mean field trajectory. (b) However, the

mean field trajectory may incorrectly bisect well-separated adiabatic states.
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Mean field dynamics has seen recent interest lately in combination with time-

dependent density functional theory. In time-dependent DFT [29], we solve time-

dependent Schrodinger equation

ih̄
d

dt
ψj(r, t) =

(
− h̄2

2me
∇2 + Vs[ρ](r, t)

)
ψj(r, t) (1.9)

with a Kohn-Sham potential that is a functional of the time-varying electron den-

sity ρ =
∑N

j=1 |ψj(r, t)|2:

Vs[ρ] = Vnuc(r, t) +
∫

ρ(r′, t)
|r− r′|dr

′ + Vxc[ρ](r, t). (1.10)

An adiabatic approximation is often applied, where it is assumed that the electron

exchange-correlation does not depend on the past history of the electron density:

Vxc[ρ](r, t) = Vxc[ρ](r). (1.11)

Even the simplest functional, the adibatic local-density approximation (ALDA),

gives good excitation spectra [30], Rydberg states [31], and dispersion coeffi-

cients [32]. It has been applied to calculate the mean-field dynamics of sodium

dimer [33], lithium cyanide ion [33], and ethylene [34] in response to femtosecond

laser pulses, and the chemiadsorption of hydrogen on aluminum (111) surfaces [35].

Electron force field wave packet MD simulations are in some sense complemen-

tary to TDDFT simulations. Unlike ALDA, eFF has nonlocality in space, due to

pairwise interactions of the electron force field, both in exchange and correlation;

and nonlocality in time, due to the inertia of the electrons. eFF may serve as a use-

ful method to investigate the significance of the space/time locality assumptions

made in TDDFT methods.

Reference methods for ground and excited states

In parameterizing and validating the electron force field, it is necessary to as-

semble reference data from experiments, and theoretical methods that are appli-
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cable to ground states and excited states. Most of the theoretical methods are

well known, e.g., Hartree-Fock for computing uncorrelated energies, CCSD(T) for

high-accuracy correlated energies. In two cases, though, we have studied systems

beyond the scope of those methods: the uniform electron gas and dense hydrogen

plasma under high pressure.

For those cases, we have used reference data obtained from stochastic meth-

ods, which are very expensive computationally but very accurate and in principle

general to any system. Diffusion Monte Carlo [36] is a method for computing high-

accuracy energies for ground states. We write the time-independent Schrodinger

equation as a diffusion equation in imaginary time:

∂Ψ
∂t

=
1
2
∇2Ψ + (E − V (x))Ψ. (1.12)

Then the Green’s function for this equation can be approximated for small time

steps

Ψ(y) =
∫

G(y,x; τ)Ψ(x)dx (1.13)

G(y,x; τ) ≈ e−(y−x)2/2τ e−(Vavg(x)−E) (1.14)

(which becomes exact as τ → 0) and applied iteratively to form a probability

distribution that converges to the true distribution over time. The energy is exact

to within the position of the nodes, which must be specified in advance through a

trial wavefunction; this trial wavefunction is also used to sample the distribution

preferentially at places where the electron density is highest.

Path integral Monte Carlo [37] is a useful method to compute thermodynamic

averages of quantum operators at finite temperature. We write the position density

matrix operator as an integral over successive paths:

〈y|e−H/kT |x〉 =
∫
〈x|e−τH|R1〉 〈R1|e−τH|R2〉 · · · 〈RN−1|e−τH|y〉 dR1 · · · dRN−1

(1.15)

where τ = 1/(kTN) is the time step. Then each density matrix element can be
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evaluated in the short time limit:

〈Ri|e−τ(T +V)|Ri+1〉 ≈ 〈Ri|e−τT e−τV |Ri+1〉

∝ e−(Ri−Rj)
2/2τ · e−τV (Ri)δ(Ri−Rj). (1.16)

The path is varied in a Monte Carlo procedure to evaluate the expectation value

of the desired operator. The procedure works best for high temperatures; at lower

temperatures, the number of path links N must be increased to keep τ small.

History and current progress on the electron force field

The electron force field traces its origins to two lines of inquiry that evolved over

the past decades. The first was the development of fermion molecular dynamics

methods [17] (FMD) in the late 70s and wave packet molecular dynamics (WPMD)

methods [16] in the late 90s, which applied quasiclassical representations of ele-

mentary particles to the study of nucleon dynamics [14, 15, 18], hydrogen plas-

mas [11, 38], ion collisions [19], and so on. In these studies, electrons and nucleons

were often represented by Gaussian functions, and effective potentials between

these functions were created to reproduce desired static and dynamic properties.

The focus was less on describing the details of bonding and electronic structure,

and more on obtaining qualitatively correct dynamics; the most advanced effective

potentials due to Klakow were limited to describing the interactions of hydrogen,

helium, and lithium atoms. Most of these methods employed pairwise potentials

between particles, and scaled as N2, with N being the number of particles.

The second was the development of the floating spherical Gaussian orbital

(FSGO) method by Frost [8] in 1964, which combined a single Gaussian function

per electron basis with an ab initio energy expression which scaled as N4. This

method was able to describe bonding between atoms from hydrogen through ar-

gon, with good geometries for molecules containing at most one lone pair, and

particularly good geometries for hydrocarbons. The energetics of bonding were

described less well however.
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FSGO ab initio – N4 scaling, hydrocarbons etc.

WPMD, FMD – N2 scaling, H
2
 plasma, nucleons

eFF – N2 scaling, H
2
 plasma and hydrocarbons

eFF/s – H, Li, Be compounds
eFF/p – first row organics
eFF/metallic – uniform electron gas

Second generation,

focus on improved

accuracy

First generation,

matter at extreme

conditions

Previous work

Future work Universal eFF?

Figure 1.4: Summary of electron force field development.

The electron force field combines the scope of FSGO methods with the speed

of WMPD methods, and improves on the accuracy of both methods. We discuss in

the next chapter a first-generation eFF which contains kinetic energy, electrostatic

energy, and pairwise Pauli repulsion terms, and gives a reasonable description of

hydrogen atom reactions and hydrocarbons while scaling as N2. With this simple

force field, we study matter at extreme conditions — the dissociation and ionization

of hydrogen at intermediate densities, and the Auger dissociation of hydrocarbons.

In subsequent chapters, we improve the accuracy of eFF by (1) considering

the effects of different electron shapes and hybridizations, (2) considering the de-

localized electrons in a uniform electron gas, and (3) parameterizing exchange and

correlation as separate interactions. In our zeal to determine the optimal eFF for

certain interactions, we emerged with with different force fields for different elec-

tron types, such as core-like electrons in lithium clusters, valence-like electrons in

atom hydrides, and delocalized electrons in metals and the uniform electron gas.

This collection of electron force fields constitutes the second generation eFFs.

s-like core

electrons

p-like valence

electrons

metallic

electrons

Figure 1.5: Character of electron depends on its proximity to nuclei.
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In the future, we will attempt to reunify our many eFFs into a single third-

generation eFF that can interpolate between extremes of reactivity and bonding,

and act as a universal method for describing large-scale excited electron dynamics.

Appendix A: Wave packet MD equations of motion

The Gaussian wave packets used in our wave packet molecular dynamics contain

a radial momentum term that we have only found once in the literature [38]. We

give our motivation for this term, and a derivation of the corresponding equation

of motion, below.

Consider the wave packet Ψ = exp(ipx · x) · exp(−a(r−x)2). Heller [5] showed

that substituting this wavefunction into the time dependent Schrodinger equation

gives the Hamilton equations of motion px = m ẋ and ṗx = −∇V , consistent with

Ehrenfest’s theorem, which states that the average position of a wavefunction

follows a classical trajectory.

In the above wave packet, x and px are real variables that are conjugate to each

other. Heller derived an equation of motion for a as well, but only for complex a;

substituting Ψ = exp(−ax2) into the time-dependent Schrodinger equation with a

harmonic potential gives (taking h̄ = 1)

i
dΨ
dt

= − 1
2m

∂2Ψ
dx2

+
1
2
kx2Ψ (1.17)

−iȧx2 = − 1
2m

(4a2x2 − 2a) +
1
2
kx2 (1.18)

iȧ =
(

2
m

)
a2 − 1

2
k. (1.19)

To begin, we examine the time evolution of the wavefunction Ψ(t = 0) =

exp(−ax2) when there is no external potential:

iȧ =
2
m

a2 ⇒ a =
a0

1 + (2a0/m)it
. (1.20)
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Then define

α = Re(a) =
a0

1 + (4a2
0/m2)t2

(1.21)

pα =
m

4
α̇ = − a0m/4

(1 + (4a2
0/m2)t2)2

· 8a2
0

m2
· t = αIm(a) (1.22)

which gives us

Ψ = exp(−(Re(a) + i Im(a))x2) = exp(α + i pα/α)

= exp
(
−

(
1
s2
− 2ps

s
i

)
x2

)
(1.23)

where in the last step we have made the change of variables α = 1/s2.

We substitute a = 1/s2−2ps/s into equation 1.19 to derive equations of motion

for s and ps:

− 2
s3

ṡ i +
2ṗs

s
− 2ps

s2
ṡ =

2
m

(
1
s4
− 4ps

s3
i− 4p2

s

s2

)
− 1

2
k. (1.24)

Equating imaginary parts:

− 2
s3

ṡ i = − 2
m

4ps

s3
i ⇒ ps =

m

4
ṡ (1.25)

Equating real parts:

2ṗs

s
=

2
m
− 1

2
k ⇒ ṗs = −∂E

∂r
where E =

1
2

1
r2

+
1
8
kr2, m = 1 (1.26)

which gives us back the Hamilton relations of equation 1.7. In a three-dimensional

spherical Gaussian wave packet, there is one radial coordinate but three dimensions

affecting its variation. The end effect is that each dimension contributes a mass

factor of 1/4 to equation 1.7. From the equations of motion, it also follows that if

we define a kinetic energy T as

T =
∑

i

1
2
miv

2 +
1
2

(
3
4
mi

)
v2
s (1.27)
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that the total energy T + V (x, s) is a constant of motion. The kinetic energy of

motion T is not to be confused with the electronic kinetic energy 3/2r−2
e which

appears in V (x, s).

The wave packet equations of motion are exact for harmonic potentials, but we

do not know how well they describe the wave packets in anharmonic potentials.

To test our approximation, we propagated wave packets numerically on a 1D line

using a discretized version of the time-dependent Schrodinger equation [39], and

compared the average position and width of the wave packet to a pure Gaussian

wave packet propagated with WPMD. As expected, the expansion of a free electron

and the oscillations of a harmonic oscillator matched in both models to within the

error of the simulation (Figure 1.6).

1 2 3 4 5
-2

2

4

6

8

10

2 4 6 8 10

-3

-2

-1

1

2

3

s(t)

x(t)

free particle harmonic oscillator

s(t)

x(t)

Figure 1.6: Gaussian and exact wave packet dynamics match for free particle and

harmonic oscillator potentials.

We then tested the double well potential V = 1/20x4− 1/2x2, giving the wave

packet enough energy to traverse the center barrier. In the exact simulation, the

wave packet bounced back and forth twice, but quickly spread out and delocalized

over both wells, so that both the position and size reached a constant value. In

contrast, the Gaussian wave packet showed no signs of damping, and had more

rapid radial oscillations than in the exact case (Figure 1.7).

Over a short time interval, the two models matched well. We conclude that in

systems where electrons are well-localized, wave packet molecular dynamics should

describe well how electrons move; but it may overemphasize radial oscillations that

in a real system would be damped out by quantum interference. Our practical
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eFF

eFFQM
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s(t)

x(t)

ρ(x)

Figure 1.7: Exact and Gaussian wave packet dynamics for a double well potential.

choice of an artificially heavy electron mass may compensate somewhat for this

difference.

Appendix B: Adiabatic excited state dynamics

In the previous sections, we discussed the application of the Born-Oppenheimer

approximation to ground state dynamics. Under certain circumstances — well-

separated electronic states, low nuclear velocities, or excitation into special sym-

metry states — a similar adiabatic approximation can be made to excited state

dynamics as well. We explain below how this can be the case.

Consider the stationary states of a molecule, the solutions of the time-independent

Schrodinger equation HΨi = EiΨi. Usually we solve this equation approximately

by varying parameters of a trial function. For the lowest energy or ground state,

we have the variational principle

E0 = 〈Φ0|H|Φ0〉 ≥ E0(exact) (1.28)

so that we obtain a best estimate for Ψ0 by varying Φ0 to minimize E0.

The most common trial function is an antisymmetrized product of one elec-

tron orbitals, called a Slater determinant [40]. Slater determinants are the basis

of the Hartree-Fock method, and have well-understood limitations — they do not
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properly describe covalent bond breaking, certain atomic symmetries, and instan-

taneous correlation of electron motions due to Coulomb repulsion. We can account

for some of these effects using a density-dependent exchange-correlation functional

(DFT) or by adding more determinants corresponding to the excitation of electrons

into virtual orbitals (configuration interaction).

For excited states, we can apply a generalized variational principle to obtain

an approximate wavefunction solution:

Ei = 〈Φi|H|Φi〉 ≥ Ei(exact) if 〈Φi|Φj〉 = 0 for all j < i. (1.29)

If the excited state has a different symmetry than the ground state, we can write

the trial wavefunction as single determinant and simply apply the ground-state

optimization procedures to obtain an excited state solution. As long as the trial

function is restricted to a symmetry different from the ground state (and the lower

excited states), the orthogonality to the ground state is maintained automatically,

and the solution is valid [41].

However, if the excited state has the same symmetry as the ground state,

the orthogonality needs to be maintained some other way, which poses technical

challenges, often overcome through use of a multi-determinant wavefunction [42].

Also, some excited states, such as the open shell 2s22p2 carbon atom, require

multiple determinants to describe, which is expensive for large systems, and not

compatible with default Kohn-Sham density functional theory [43].

Time-dependent methods like TDDFT, described in the earlier sections, can be

used to extract excited state energies properties as well, and are gaining popularity

because (1) time-dependent functionals can be based on ground-state functionals,

(2) an entire excitation spectra can be obtained from one calculation, and (3)

we are not restricted to calculating excited states of different symmetry than the

ground state. All in all, though, it is not yet possible to find excited stationary

states with the same ease, accuracy, or generality as ground states.

Suppose we excite a system to a single stationary state, for instance with a long
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duration monochromatic pulse. What happens to a system in such a state? We

have prepared a stationary state of the electrons, not necessarily the nuclei, so usu-

ally the nuclei move. As this happens, the system begins to include contributions

from other stationary states, and a superposition of states evolves [28]:

Ψ(Relec, t) =
∑

j

cj(t)Ψj(Relec;Rnuc(t)) (1.30)

ih̄ċk =
∑

j

cj

(
Ekδkj − ih̄Ṙnuc · djk

)
(1.31)

where

djk = 〈Ψk|∇RnucΨj〉 =
〈Ψk|∇RnucH(Rnuc)|Ψj〉

Ej − Ek
. (1.32)

The non-adiabatic coupling vector djk couples electron and nuclear motions, and

is responsible for the mixing of stationary states as they approach each other in

energy. The final simplification to write djk in terms of the operator ∇H comes

from ∇Rnuc 〈Ψk|H|Ψj〉 = ∇REkδkj = 0.

If dkj is small, the system will evolve adibatically along a single stationary state,

and the Born-Oppenheimer approximation applies. For dkj to be large, and the

states to mix, certain conditions must hold. First, the states need to be similar in

energy. Second, they need to be the same symmetry, so that 〈Ψk|∇RnucH(Rnuc)|Ψj〉 6=
0. And third, even if the states are of similar energy and matching symmetry, when

two eigenvalues of an N dimensional Hermitian matrix become the same, the degen-

eracy spans a N-2 dimensional space called a conical intersection [44] (Figure 1.8).

At conical intersections, the Born-Oppenheimer approximation breaks down, since

electrons flow from one state to another over a small variation in nuclear position.

In the special case of a diatomic molecule, N = 1 and the conical intersection

becomes an avoided crossing where the curves cannot intersect.

For a two-state avoided crossing, a transition from one adiabatic state to an-

other is probable when the Massey parameter is greater than one [28]:

ξ =

∣∣∣∣∣
h̄Ṙnuc · djk

Ej − Ek

∣∣∣∣∣ ≥ 1. (1.33)
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Figure 1.8: In sparse systems, electrons move mostly along adiabatic paths, with

crossings limited to conical intersections with reduced dimensionality.

Hence hopping is favorable when the energy gap is small, the nuclear velocities

high, and the non-adibatic coupling vector high in magnitude. When electronic

states are well-separated and the temperature is low, it is a good approximation

to say that the system evolves adiabatically for long periods of time followed by

nonadiabatic switches at conical intersections that are restricted to small regions

in phase space.

Surface hopping stochastic dynamics [45] makes this approximate picture lit-

eral, by propagating the nuclei along single excited state potentials, and switching

them randomly to other state potentials with a rate that is a function of Ṙnuc ·djk.

Tully’s popular minimum switching algorithm [28] executes this switching in an

efficient way that preserves fluxes and minimizes the abruptness of switching from

one state to another. The excited state potentials can be parameterized from

quantum calculations or experiment; or DFT, Car-Parinello, or TDDFT methods

can be used to compute them on the fly.
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Chapter 2

Development of an electron force field. I. Low

Z atoms and hydrocarbons, and matter at

extreme conditions

Introduction

Many methods exist to compute the large scale dynamics of systems in their elec-

tronic ground state, such as conventional [1] and reactive force fields [2], and ab

initio molecular dynamics [3]. However, we often wish to compute the large scale

excited electron dynamics of systems with energies hundreds of electron volts above

the ground state, where a multitude of adiabatic states exist, and where condensed

materials can coexist with plasmas or highly excited electrons. Few existing meth-

ods are fast, accurate, and general enough to satisfy this need.

We introduce an electron force field (eFF) that with only three universal param-

eters can compute the excited electron dynamics of systems containing hydrogen,

helium, lithium, beryllium, boron, and carbon. In our model, nuclei are repre-

sented by point charges and electrons by spherical Gaussian wave packets with

variable position and extent. Geometries are reproduced well, and energies are

calculated with sufficient accuracy so that we can simulate the excited electron

dynamics of matter at extreme conditions. We use as examples the temperature

dissociation and ionization of high-pressure deuterium, and the Auger fragmenta-

tion of hydrocarbons induced by removal of core electrons.
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The use of sums of Gaussians to approximate wavefunctions needs no intro-

duction, as Gaussians are prominent in practically every modern ab initio method

today [4], due to the simplicity of computing integrals of said functions. The use

of single Gaussian wave packets to represent quantum particles may be less famil-

iar to the reader, and the promise that such a drastic approximation might yield

quantitatively accurate quantum dynamics of nuclei, nucleons, or even electrons

has motivated research on this topic for the last several decades.

In 1975, Heller [5] demonstrated that the equations of motion for “thawed”

Gaussian wave packets in locally harmonic potentials had a particularly simple

form, and used them to compute the quantum dynamics of colinear He + H2. He

later pioneered use of time-dependent methods to obtain spectroscopic data, for

example computing the photodissociation cross-section of methyl iodide [6], and

the three-dimensional photodissociation dynamics of ICN [7]. In these cases, the

quantum particles were nuclei moving in a parameterized potential where electrons

were considered only implicitly.

Computing explicit interactions of indistinguishable fermions such as nucleons

or electrons is more difficult than computing interactions between nuclei, because

the overall electronic wavefunction must satisfy an antisymmetry principle, which

specifies that interchanging any two fermions causes the sign of the wavefunction to

change. The simplest function that satisfies this requirement is the antisymmetric

sum of N! product wavefunctions; if we assume pairwise electrostatic interactions,

evaluating the energy of such a wavefunction requires N4 operations. In contrast,

computing the energy of a Hartree product wavefunction, which does not satisfy

the Pauli principle, requires at most N2 operations (N2 for electrostatics, and N

for kinetic energy).

For practical molecular dynamics, we would like energy evaluation to have

better scaling than N4, which leads to two questions:

1. Given N electrons represented by single Gaussian functions, if we take the

wavefunction to be the fully antisymmetrized combination of these functions,

with the known N4 cost for energy evaluation, do we get a reasonably correct
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description of molecules?

2. We define the antisymmetrization energy or Pauli energy as the difference

in energies of an antisymmetrized wavefunction (which satisfies the Pauli

principle) and a product wavefunction (which does not). Can we approximate

this energy with an expression that is faster to evaluate than N4?

The first question was answered by Frost [8] in 1964, with his development of

the floating spherical gaussian orbital method (FSGO). In FSGO, the wavefunction

is an antisymmetized set of floating Gaussian orbitals φi = exp(αi|r − xi|2). The

energy is simply the combined kinetic and electrostatic energy of this wavefunction;

since no adjustable parameters are used, the method is considered fully ab initio.

Despite the simplicity of the basis functions, Frost found good geometries for

molecules like lithium hydride, beryllium dihydride, first and second row hydrides,

and hydrocarbons. He concluded that single floating Gaussians have a variational

flexibility comparable to larger sums of nuclear-centered fixed-size Gaussians of

the sort used in traditional ab initio calculations.

The second question was answered in the late 70s and over the next two

decades with the development of Pauli potentials by Wilets et al. [9], Kirschbaum

and Wilets [10], Hansen and McDonald [11], Dorso et al. [12, 13], Boal and

Glosli [14, 15], and Klakow et al. [16], which approximated the antisymmetriza-

tion energy with an N2 pairwise sum between electrons. Typically these potentials

exclude some region in position-momentum phase space, so that electrons are well-

separated in position and momentum over a wide range of conditions [17]. These

potentials have been used to study nuclear collisions and reactions [18], proton

stopping by molecular targets [19], as well as hydrogen plasma dissociation and

ionization [16, 20].

However, it has been difficult to find a Pauli potential that is accurate enough

to keep molecules with larger Z atoms stable, let alone have correct energies and

geometries. The most accurate Pauli potential to date, used by Klakow [16] to de-

scribe hydrogen plasma, can compute the interaction between electrons of different
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sizes — essential for capturing changes in bonding during chemical reactions —

yet it causes lithium hydride to be unbound and the valence electrons of alkanes to

collapse onto their cores. Kirschbaum’s potential [10] has been applied to create

stable atoms with Z up to 94 [21] which have a shell structure, but the potential

does not describe the structure of valence shells with enough accuracy to form

reasonable bonds between atoms.

There is a need for a Pauli potential with improved accuracy for molecular

systems. In the current work, we have developed a Pauli potential that scales as

N2 and is applicable to a large range of molecules, including hydrocarbons, which

makes it possible to study the excited dynamics interactions of many kinds of

bonds — covalent, ionic, multicenter — in many phases of matter — solid, liquid,

gas, plasma. In addition to computing the excited state dynamics of high-energy

systems, we have validated eFF against a range of simple ground state molecules,

with an aim towards highlighting its strengths and particularly its weaknesses, so

that it may be improved further in the future.

Although the current eFF contains only one parameterized term — the Pauli

potential — we call it a force field because we expect that future improvements

will hinge on adding physically motivated terms describing more subtle interac-

tions between electrons and nuclei. Such a force field may open the door to truly

practical quantum dynamics on large scale atomic and molecular systems.

The chapter is organized as follows: first we discuss the energy expressions

of eFF, show how both hydrogen atom and hydrogen molecule are stable, and

give a motivation for our form of the Pauli potential. Then we test how well

eFF describes ground state systems, with particular attention to the conformers of

hydrocarbons, and the effects of breaking hydrocarbon bonds. We also test systems

that include lithium, beryllium, and boron; these contain ionic and/or electron-

deficient multicenter bonds, and eFF describes them reasonably well. Having

validated eFF against ground state systems, we discuss its application to matter

at extreme conditions, using as examples the dissociation and ionization of warm

dense hydrogen, and the dynamics of the Auger process in hydrocarbons.
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General theory of the eFF

Energy expression

We begin with point nuclei with coordinates R and momenta P, and electrons de-

fined by spherical Gaussian wave packets with positions x, translational momenta

px, sizes s, and radial momenta ps:

Ψ ∝
∏

j

exp
[
−

(
1
s2
− 2ps

s
i

)
(r− x)2

]
· exp[ipx · x]. (2.1)

Then the overall energy is a sum of the Hartree product kinetic energy, Hartree

product electrostatic energy, and antisymmetrization (Pauli) energy:

E = Eke + Enuc·nuc + Enuc·elec + Eelec·elec + EPauli

which can be broken down further as follows:

Eke =
1
2

∑

i

∫
|∇ψi|2 dV =

∑

i

3
2

1
s2
i

Enuc·nuc =
∑

i<j

ZiZj

Rij

Enuc·elec = −
∑

i,j

Zi

∫ |ψj |2
Rij

dV = −
∑

i,j

Zi

Rij
Erf

(√
2Rij

si
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∑
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xij
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∑
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xij
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
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

EPauli =
∑

σi=σj

E(↑↑)ij +
∑

σi 6=σj

E(↑↓)ij

where E(↑↑) and E(↑↓) are the Pauli potential functions:

E(↑↑)ij =

(
S2

ij

1− S2
ij

+ (1− ρ)
S2

ij

1 + S2
ij

)
∆Tij

E(↑↓)ij =
ρS2

ij

1 + S2
ij

∆Tij
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where ∆T is a measure of the kinetic energy change upon antisymmetrization, and

S is the overlap between two wave packets:

∆Tij =
3
2

(
1
s̄2
1

+
1
s̄2
2

)
− 2(3(s̄2

1 + s̄2
2)− 2x̄2

12)
(s̄2

1 + s̄2
2)2

Sij =
(

2
s̄i/s̄j + s̄j/s̄i

)3/2

exp(−x̄2
ij/(s̄2

i + s̄2
j ))

where ρ = −0.2, x̄ij = xij · 1.125, and s̄i = si · 0.9. We will explain the motivation

for the Pauli expression, and the consequences of the combined energy terms in

more detail below.

Bonding comes from balancing kinetic energy and electrostatics

A Gaussian wave packet automatically satisfies the Heisenbserg uncertainty prin-

ciple by virtue of its functional form — in fact, it is a minimum uncertainty wave

packet. That leaves as a free parameter the size of the wave packet, which is

propagated using the equation of motion

3m

4
s̈(t) = −∂E

∂s
= − ∂

∂s

(
3
2

1
s2

+ V (s)
)

(2.2)

The electron size is optimized when the sum of kinetic and potential energy reaches

a minimum with respect to variation in s. We see that even an electron whose

size and position is stationary has a kinetic energy that varies inversely as the

square of its width. This relation may be seen as a consequence of Heisenberg’s

principle (better localized electrons have a higher momentum spread, and hence

kinetic energy) or of the fact that the kinetic energy is
∫ |∇φ|2dV ∝ (1/s)2.

Consider the case of a hydrogen atom, where the potential energy given by the

electrostatic interaction of the electron and nucleus varies as −1/s. More precisely,

E =
3
2

1
s2
−

√
8
π

1
s
.

The electrostatic potential attempts to squeeze the electron into a point on top
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of the nucleus, while the kinetic energy term prevents this collapse. The balance

of the two radial forces creates an atom with a stationary size of s = 1.88 bohr,

and E = −4/3π = −0.424 hartree. The energy is above the variational limit

E = −0.5 hartree because the single Gaussian does not have the correct cusp at

the nucleus center, or the correct long range drop off; however, it is expected that

energy differences in bonding will be more accurately described.

The same logic can be used to explain the stability of the two electron covalent

bond. In the eFF description of ground state hydrogen molecule, two electrons

lie at the midpoint between two protons. The electrons shrink to interact more

strongly with the protons (s = 1.77 bohr versus 1.88 bohr in the atoms), and the

decreased potential energy of having each electron interact with two protons drives

the formation of the bond (Figure 2.1).
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Figure 2.1: H2 potential energy surface (kcal/mol); eFF properly dissociates H2,

but the simplicity of the basis leads to underbinding.

Pulling the protons apart causes the electrons to interact with the protons less

strongly, and the bond weakens. As the bond length is increased past 2.1 bohr,

it becomes more favorable for the electrons to become atom-centered. The energy

varies smoothly as each electron associates with one proton, and the wavefunction

goes from a closed shell to an open shell description. In Hartree-Fock theory, the

analogous transition between RHF and UHF occurs at 2.3 bohr. The eFF bond

energy is found to be 67 kcal/mol at a bond length of 0.780 bohr (versus 104

kcal/mol exact at 0.741 bohr).
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There are some features missing from the eFF picture. First, in the true H2

molecule, the electron density is a doubly peaked function that reaches a maximum

at the sites of the protons. Because the single Gaussian wavefunction cannot

become multiply peaked, the bond energy is underestimated. Second, there is a

measure of static correlation that is missing; in dissociating H2, there is a resonance

stabilization between having the spin up electron on the right and the spin down

electron on the left, and vice versa. This neglect makes the energy fall to zero too

quickly. Finally, dynamic correlation is missing; electron-electron repulsion should

be diminished when two electrons are placed in the same orbital, as they have a

tendency to avoid each other. This correlation effect stabilizes H2 molecule relative

to H atoms, and its neglect contributes to the H2 underbinding.

Issues of underbinding aside, it remains remarkable that a floating Gaussian

description of electrons can give a potential energy curve for hydrogen molecule

dissociation that has a plausible inner wall, bonding region, long range tail, and a

correct transition between closed and open shell wavefunctions.

Pauli principle causes same spin electrons to repel; a parameterization

Consider localized electrons in a solid. One way to interpret the Pauli principle’s

effect is to imagine that the electrons have finite extent and are prevented from in-

tersecting each other, like hard spheres. Compressing the solid causes the electrons

to squeeze together and shrink, increasing their kinetic energy. This increase in

kinetic energy manifests itself in a force resisting compression of the solid. This re-

pulsive force is the dominant interaction between neutral molecules at short range

— it is the basis of the steric effect in chemistry, it prevents stars from collapsing,

and prevents the reader from falling through the earth.

Electrons do not have finite extent, of course, and even same spin electrons can

interpenetrate each other. A more rigorous way to understand the origin of Pauli

repulsion, outlined by Wilson and Goddard [22], is to compare the kinetic energy

of an antisymmetrized product wavefunction with that of a Hartree product. In a

Hartree product, the kinetic energy of the wavefunction is the sum of the orbital
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kinetic energies. In an antisymmetrized product, the kinetic energy is the sum

of orthogonalized orbital kinetic energies; this mathematical simplification is the

reason theorists often work in a basis of orthogonal molecular orbitals. Hence

we can approximate the Pauli energy as the kinetic energy difference between

orthogonalized versus non-orthogonalized orbitals.

φ
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φ
α
'φ

β
φ

β
'

greater slope, 

higher kinetic energy

orthogonal

orbitals

Figure 2.2: Pauli repulsion comes from the kinetic energy increase upon making

orbitals orthogonal to each other.

As Figure 2.2 shows, when two same spin electrons intersect in space, their or-

thogonalized orbitals take on larger slopes to keep their overlap zero. The increase

in slope causes an increase in kinetic energy, which causes a large portion of the

Pauli repulsion.

In deriving our Pauli potential, we make two assumptions: (1) we can approx-

imate the Pauli energy as a sum over pairs of electrons, and (2) we can assume

that the Pauli energy between pairs of electrons is dominated by the kinetic energy

change upon forming an antisymmetric wavefunction. This neglects two effects:

first, the mutual exclusion of more than two electrons at a time, which may become

important when the electron density is high; and second, the fact that electrons,

once orthogonalized, may have different electrostatic interactions with each other

and with nuclei, which may become important for electrons near nuclei.

Kinetic energy difference-based Pauli potentials have been obtained and used

by Boal and Glosli [14], who considered the case of same size nucleons; and by

Klakow [16], who considered the more general case of Pauli repulsion between

different size electrons. The form of the potentials bear some resemblance to

earlier Pauli potentials [9, 12] that decay as e−axn
, where x is the distance between

electron centers and a and n are arbitrary parameters.
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Consider the Slater and Hartree wavefunctions for two same spin electrons:

ΨSlater =
1√

2− 2S2
(φ1(r1) φ2(r2)− φ2(r1)φ1(r2))

ΨHartree = φ1(r1)φ2(r2)

where the factor containing S =
∫

φ1φj dV ensures that the wavefunction is nor-

malized. Then we estimate the Pauli energy between wavefunctions φ1 and φ2

as

Eu = 〈ΨSlater| − 1
2
∇2|ΨSlater〉 − 〈ΨHartree| − 1

2
∇2|ΨHartree〉 (2.3)

=
S2

1− S2

(
t11 + t22 − 2t12

S

)
(2.4)

where tij = 〈ψi| − 1
2∇2|ψj〉 (detailed derivation given in Appendix A).

Klakow used E(↑↑) = Eu and E(↑↓) = 0; to get our expression, we make use

of the reference valence-bond wavefunction

ΨVB =
1√

2 + 2S2
(φ1(r1)φ2(r2) + φ2(r1)φ1(r2)). (2.5)

Then we compute

Eg = 〈ΨVB| − 1
2
∇2|ΨVB〉 − 〈ΨHartree| − 1

2
∇2|ΨHartree〉 (2.6)

=
S2

1 + S2

(
t11 + t22 − 2t12

S

)
(2.7)

which is a kind of a correlation energy. We mix Eg and Eu together, and scale

the orbital exponents and distance between orbitals by a set of fixed and universal

parameters: α = αactual/0.9, r = ractual ∗1.125. Finally we calculate the functions:

E(↑↑) = Eu − (1− ρ)Eg

E(↑↓) = −ρEg.

The universal parameter ρ and the scaling factors were adjusted to produce correct
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geometries for a range of test structures. Figure 2.3 shows that the effect of the Eg

term is to make the Pauli potential between both opposite and same spin electrons

more repulsive; this reduces the known tendency for floating orbitals to coalesce

into each other and become linearly dependent.
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Figure 2.3: Comparison of Pauli repulsion and electrostatic repulsion between two

wavefunctions with s = 1.

Validation against ground state systems

Tetrahedral carbon forms bonds to other carbons and hydrogen

Optimizing atoms and molecules with eFF, we observe that (1) opposite spin elec-

trons pair, (2) for atoms larger than helium, electrons separate into core electrons

that are nucleus centered and valence electrons that are larger than the core elec-

trons, and (3) valence electrons pack like hard spheres, with a maximum of four

electron pairs around each core (“octet rule”). It is apparent that the basic rules

of Lewis bonding and hybridization arise as a natural result of balancing kinetic

energy, electrostatic potential, and Pauli repulsion.

When carbon has a full octet of electrons, they arrange themselves into a

tetrahedral sp3 packing. Methane is stable, and its valence electrons are centered

at ∼80% of the distance from the core center to the proton, reflecting the greater

electronegativity of carbon over hydrogen (Table 2.1, Figure 2.4).
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dCC(Å) dCH(Å) angle (degrees)
eFF exact eFF exact eFF exact

CH4 1.143 1.094 109.5 109.5
CH3(CH3) 1.501 1.536 1.173 1.091 110.8 110.9
CH2(CH2)2 1.513 1.526 1.229 1.096 107.9 109.5
CH(CH3)3 1.529 1.525 1.424 1.108 101.8 109.4
C(CH3)4 1.573 1.534

Table 2.1: Geometries of primary, secondary, and tertiary-substituted carbon

H

H

HH

H

H

CH3H

H

CH3

CH3H

θdCH

dCC

H

CH3

CH3H3C

CH3

CH3

CH3H3C

Figure 2.4: eFF geometries of simple substituted hydrocarbons

Ethane is stable as well, with sigma-bond electrons centered at the bond mid-

point, as required by symmetry. The C-C bonding electrons do not overlap sig-

nificantly with the nucleus, unlike the bonding electrons in H2 This difference is

due to the Pauli repulsion between the sigma electrons and the 1s2 cores of the

carbons in ethane; protons do not have such 1s2 cores. Thus carbon-carbon bonds

are longer than either carbon-hydrogen or hydrogen-hydrogen bonds. The Pauli

function parameters were adjusted so that the carbon-hydrogen and carbon-carbon

bond lengths of methane and ethane were close to known values [23].

In eFF, carbon-carbon bonds have slightly smaller electrons than carbon-

hydrogen bonds, which causes them to repel each other more strongly than they

should. This imbalance causes distortions away from an ideal tetrahedral geom-

etry in secondary and tertiary carbons; for example, isobutane has a too-small

HCC angle (101.8o instead of 109.4o exact), and a too-long carbon-hydrogen bond

length (1.424 Å vs 1.108 Å).

Carbon-hydrogen bonds have lengths in eFF that are too variable, but we will
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see later that their dissociation energies are less variable than their distance varia-

tion would suggest. Also, the carbon-carbon bond lengths are relatively fixed with

respect to different substitution, as they should be. These observations suggest we

would do well to focus on geometries with a core carbon skeleton and outwardly

oriented hydrogens, where too-long C-H bonds would not clash.

Many organic molecules of interest, as well as bulk and surface diamond, fall

into this category. Figure 2.5 shows that eFF can describe a variety of bridged,

fused-cyclic, and strained carbon skeletons, with largely correct carbon-carbon

distances. The worst discrepancies in bond distances involve quaternary carbons

in compounds like tBu−t Bu (1.708 Å vs 1.592 Å exact) and diamond (1.681 Å vs

1.545 Å exact).
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Figure 2.5: eFF geometries of larger hydrocarbons, bond lengths in Angstroms

Carbon forms multiple bonds, with a preference for σ − π bonding

When two electron pairs are squeezed into the space between the carbon nuclei

of ethylene, they may avoid each other either by moving apart above and below
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the plane of the to form “banana bonds”; or by having one electron form a node

and become a pi bond that is orthogonal to the other electron pair, which forms

a sigma bond. In the Hartree-Fock description, which operates on a basis of

orthgonalized orbitals, the two pictures are equivalent, since they can be related

to each other by a unitary transformation. Valence bond calculations performed

without an orthogonalization constraint show similarly that the two models are

nearly identical, with a slight preference toward banana bonding in ethylene (6.5

kcal/mol difference).

It is reasonable to expect that our force field would prefer banana bonding,

since no provision has been made for electrons to attain p character. In the FSGO

method, this lack of p functions has dire consequences [24]: electrons in multiple

bonds coalesce into the same function, which in theory provides a p-like electron

in the limit of infinitesimal separation, but in practice causes linear dependency

problems, and makes the barrier to rotation of the ethylene pi bond negligible.

We find that contrary to expectation, our force field prefers a σ − π mode of

bonding, but does so in a curious way: a sigma electron pair sits in between the

carbons, then the electrons of the other electron pair split, so that an electron of

one spin goes above the plane, and an electron of the other spin goes below the

plane (Figure 2.6). This spin-polarized bond creates a diffuse effective p function;

this mode of sigma-pi bonding is stabilized over equivalent banana bonding in eFF

by 160 kcal/mol (Table 2.2).

banana bananaσ−π

(more stable)

σ−π

(more stable)

ethylene acetylene

Figure 2.6: Multiple bonds can split σ − π or form symmetric “banana” pairs.

Triple bonds display a similar preference (183 kcal/mol) for σ−πx−πy bonding
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ethylene acetylene
Banana vs. σπ energy (kcal/mol) -160.5 -183.4
(minus means banana preferred)

Hydrogenation energy (kcal/mol) eff-σπ -141.6 -406.9
exact -32.6 -41.7

CC bond length (Å) eff-σπ 1.517 1.383
eff-banana 1.442 1.334
exact 1.339 1.203

CH bond length (Å) eff-σπ 1.089 1.052
eff-banana 1.125 1.064
exact 1.086 1.063

Table 2.2: Energetics and geometries of double and triple bonds

over banana bonding where the bonding electron pairs arrange themselves into a

triangle normal to the bond.

However, we find that eFF multiple bonds are too long (1.517 Å double bond

versus 1.339 Å exact), too unstable (as shown from the hydrogenation energies),

and too diffuse in the region above and below the plane, which can cause inappro-

priate steric clashes with molecular elements lying above and below pi bonds. The

weakness of multiple bonds stands in contrast to strength of sigma bonds in eFF,

which as we will see in later sections bind overly strongly (163.5 kcal/mol versus

89.7 kcal/mol exact).

It is promising that banana bonds show some stability, as well as a more rea-

sonable length (1.442 Å double bond) within our scheme, and do not coalesce. It

may be preferrable in future versions of eFF to construct the potentials so that

banana bonds are more stable than σ − π bonds. It would be elegant if the same

Pauli repulsion that separates valence electrons and gives carbon-carbon single

bonds the correct length could also separate electrons in multiple bonds and give

them the correct length and energy. In the meantime, we limit our applications to

those involving saturated hydrocarbons.
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Conformational analysis of hydrocarbon geometries

We have demonstrated that eFF obtains correct ground state geometries for the

simple hydrocarbons of Figure 2.4 and the constrained hydrocarbons of Figure 2.5.

We ask now whether eFF can differentiate between multiple conformers of the same

hydrocarbon. This is a tricky task, since we must now (1) have the correct ener-

getics of bending valence electrons away from a tetrahedral arrangement, and (2)

accurately describe the magnitude of steric repulsions between electrons on differ-

ent atoms. In traditional force fields, these interactions are handled via separate

angle, dihedral, and noncovalent interaction terms, but in eFF they should arise

out of a proper consideration of electrostatics and the Pauli principle.

We start by looking at the cyclic hydrocarbons cyclopropane, cyclobutane,

cyclopentane, and cyclohexane (Figure 2.7). The bonding in cyclopropane is known

to involve curved bonds, a compromise between the geometrical requirements of

the molecule and the hybridization of orbitals on carbon. In eFF, we see that the

bonding electrons lie outside the perimeter of a line drawn connecting the carbons,

with an angle between bonding electrons of 98o; valence bond calculations [25] show

similarly curved bonds with an interorbital angle of 110o. Curved bonds appear

naturally in eFF as a consequence of the repulsion between the three carbon-carbon

bonding electron pairs.

Continuing on to larger rings, it is known that cyclobutane and cyclopentane

attempt to make carbon tetrahedral, but instead of forming curved bonds like

cyclopropane, they “pucker” so that the nuclei do not all lie in the same plane.

Our force field reproduces this pucker in cyclopentane (dihedral 21.5o versus 33.2o

B3LYP/6-311g**), but not in cyclobutane (dihedral 0.3o versus 18.0o B3LYP). In

cyclobutane the difference in energy between puckered and planar conformations

is known to be small (∼1.5 kcal/mol B3LYP), making the electron force field’s

error reasonable.

In cyclohexane, there are two conformers — chair and twist-boat — with a more

significant energy difference of 6.3 kcal/mol (B3LYP, Figure 3.5). We obtain with

eFF an energy difference of 4.7 kcal/mol and dihedral angles that compare well
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cyclopropane cyclobutane cyclopentane

cyclohexane (chair) cyclohexane (twist-boat)

Figure 2.7: eFF reproduces curved bonds of cyclopropane, and pucker of five and

six membered rings.

to known values (57.7o versus 56.6o B3LYP for the chair, and 34.0o versus 32.3o

B3LYP for the twist-boat). The agreement of cyclohexane energies and geometries

with B3LYP values is remarkable, considering that it involves a balance between

the barrier of twisting about each carbon-carbon bond, and the steric repulsion

between axial hydrogens. To test whether it is a fortuitous agreement, or the sum

of reliable quantities, we examine the conformational preferences of some simpler

systems (Figure 2.8).

∆E (kcal/mol)
system energy of relative to eFF exact
ethane eclipsed staggered 2.1 2.7
butane gauche trans 1.6* 0.9
cyclohexane twist-boat chair 4.7 6.3
1,3-dimethyl-cyclohexane ax-ax eq-eq 5.8 5.9

ax-eq eq-eq 2.7 2.1
decalin cis trans 12.1 3.2
2-pentene major minor 5.5 4.6

Table 2.3: Energy differences between conformers examined. ∗Gauche butane is
not a local minimum, and is constrained at 60o.

In ethane, we find the energy difference between eclipsed and staggered con-
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Figure 2.8: eFF reproduces steric repulsions within alkanes

formations — known to be a consequence of Pauli repulsion between C-H bond

electrons — to be slightly low (2.1 versus 2.7 kcal/mol B3LYP). In butane, we

find the difference between gauche and trans forms, which arises from the repul-

sion between methyl groups, to be slightly high (1.6 versus 0.9 kcal/mol B3LYP).

This difference is not surprising given our previous observation that carbon-carbon

bonds repel carbon-hydrogen bonds more than they should. The combination

of high methyl-methyl repulsions and low barriers for hydrogen eclipsing causes

gauche butane to not be a local minimum structure, but to optimize directly to

trans butane; the energy difference given is for a fixed dihedral angle of 60o.

In substituted cyclohexanes, axial substituents can become equatorial and vice

versa through a chair flip. The stability of a cyclohexane conformer is particularly

affected by repulsions between axial substituents, since they are close to each other

(2.66 Å B3LYP) and oriented in the same direction. To quantify the magnitude

of these 1,3-diaxial interactions, we consider the relative energetics of axial-axial,
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axial-equatorial, and equatorial-equatorial 1,3-dimethylcyclohexane. The axial-

equatorial dimethyl and axial-axial dimethyl geometries adopt an overly-twisted

geometry, a consequence of the overly large repulsion between axial methyl and

axial hydrogen. Nonetheless — and this should be viewed as an accident — the

energy differences between these conformers closely matches the exact values (5.8

versus 5.9 kcal/mol B3LYP, and 2.7 versus 2.1 kcal/mol B3LYP). To emphasize

this point, we examine cis versus trans decalin, two hydrocarbon conformers that

also differ in the number of interactions between axial substituents, but are more

rigid and cannot relax so readily. In this case the energy difference is larger than

the exact value (12.1 versus 3.2 kcal/mol B3LYP).

When a single bond is connected to a substituted double bond, allylic strain

can restrict the rotation about the single bond [26]; this effect is used in designing

reagents to perform highly selective diastereoselective enolations [27]. To compute

the magnitude of allylic 1,3-strain, we consider two conformers of 2-pentene, noting

that the minor form is substantially destabilized by the repulsion between methyl

groups (Figure 2.9). eFF estimates the energy difference between conformers to be

slightly higher than the exact value (5.5 versus 4.6 kcal/mol B3LYP). In this case,

the too-high repulsion between methyl groups in eFF is balanced by the too-long

double bond to give a value that agrees well with the known value.

124.7o
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108.2o

(111.0o)

126.4o

(130.1o)
118.3o

(119.3o)

major conformer  minor conformer

H3C H

CH3

H

H3C CH3

H

H

closely spaced

methyls clash

Figure 2.9: eFF reproduces allylic strain interaction

We find that the electron force field gives remarkably good estimations of the

energy differences between hydrocarbon conformers. In some cases, this is due
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to the force field parameters being balanced at a point such known biases of the

force field, such as overly repulsive methyl groups, are compensated for by other

biases in the force field, such as overly flexible carbon-hydrogen bonds. Overall, it

is encouraging that the simple eFF functions can describe subtle conformational

preferences of hydrocarbons as well as coarse properties like bond formation and

atom hydridization. This is itself noteworthy, considering the number of terms and

parameters in a conventional force field [1] devoted solely to the task of computing

preferred bond lengths, angles, and torsions within molecules.

Methyl cation, radical, and anion

Although we have focused so far on neutral closed-shell molecules, eFF should in

principle be able to optimize cationic and anionic species and radicals as well. To

calculate accurate bond dissociation energies, it is especially important to have a

well-balanced description of radicals and closed shell species.

Consider the series of molecules CH+
3 , CH3 radical, and CH−3 . Both CH+

3 and

CH3 radical are expected to be planar and have similar bond length. Our force

field reproduces bond lengths well (for CH+
3 , 1.095 Å versus 1.087 Å exact; for

·CH3, 1.091 Å versus 1.079 Å exact).

1.095 (1.087)

120.0o (120.0o)

1.091 (1.079)

119.9o (120.0o)

eFF unbound,

exact is (1.101, 109.4o)

unbound

CH
3

+ CH
3 
• CH

3

–

∆E = -63.9 

(-226.8)

∆E = 

(-1.8)

Figure 2.10: In eFF, methyl cation and radical are stable but methyl anion is

unbound

eFF makes methyl radical less stable than it should be (adiabatic ionization

potential is 64 kcal/mol versus 226.8 kcal/mol exact), as it is not capable of prop-

erly describing the radical electron, which should reside in a p orbital. As in the
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case of multiple bonds, our force field compensates for its lack of p functions by

making the radical electron very diffuse and placing it above the molecular plane.

eFF makes methyl carbanion unbound relative to methyl radical. This is not a

surprising result, since in reality methyl carbanion is only marginally more stable

than methyl radical (1.8 kcal/mol energy difference [28]); high-level theoretical

calculations [29] (1.6 kcal/mol energy difference found) with large basis sets and

correlation included are necessary to show that methyl carbanion is a stable species

relative to methyl radical.

Homolytic versus heterolytic bond cleavage

We have previously discussed the energetics of breaking hydrogen molecule into

hydrogen radicals. Since we have computed the energy of methyl radical and the

energy of ethane, we can compute the analogous energetics of breaking ethane

into two methyl radicals. We find that while the bond dissociation energy of H2

is underestimated by eFF (67.2 kcal/mol versus 104.2 kcal/mol exact), the bond

dissociation energy of the carbon-carbon bond in ethane is overestimated (163.5

kcal/mol versus 89.7 kcal/mol exact).

The error in homolytic bond dissociation energies arises from differences in how

well the eFF wavefunctions represent the true electron density in the molecule,

versus separated fragments. For hydrogen molecule, the true electron density is

a doubly peaked atom-centered function, which eFF describes as a singly peaked

bond-centered function. Hydrogen atom in contrast is represented well, because in

both eFF and in the true case, the electron density has a maximum at the nucleus.

In the ethane carbon-carbon bond, the errors in basis representation take the

opposite form. Carbon-carbon sigma bonds have an electron density that is con-

centrated in the region between the nuclei; hence the eFF bond-centered repre-

sentation is a good one. In comparison, the methyl radical is poorly represented

because, as we have seen in the last section, eFF does not have the proper p func-

tions to describe the radical electron. Hence the relative error is in the opposite

direction as in the H2 case, and we find that H2 is underbound while ethane is
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overbound.

In carbon-hydrogen bonds, the basis representation errors of the molecule ver-

sus the dissociated fragments cancel, and the bond dissociation energy is near the

correct values (methane 119.9 kcal/mol versus 104.8 kcal/mol exact).

eFF can describe heterolytic bond dissociation as well, where electron pairs

split asymmetrically, so that one species is left with two electrons while another

is left with none at all. A common example is protonation, and we find that the

species HeH+ has a bond dissociation energy near the exact value (44.1 kcal/mol

versus 47.1 kcal/mol exact). This excellent agreement comes about because the

electron pair of HeH+ is mainly centered on the helium, making the singly-peaked

eFF density a good approximation to the true electron density (Figure 2.11).

The protonation energy of ammonia is too high (446.0 kcal/mol versus 207.0

kcal/mol), an indicator that eFF does not currently compute the energetics of

molecules containing lone pairs correctly.

∆E (kcal/mol)
relative to energy of eFF exact
H−H 2H· 67.2 104.2

H3C−H H3C + H· 111.9 104.8
(CH3)3C−H (CH3)3C + H· 108.2 95.2

H3C− CH3 2H3C· 163.5 89.7
(CH3)3C− CH3 (CH3)3C ·+ · CH3 121.4 86.0

HeH+ He + H+ 44.1 47.1
NH+

4 NH3 + H+ 446.0 207.0

Table 2.4: Hydrocarbon and protonated species bond dissociation energies.

Carbocation rearrangements

Once a carbocation is formed, it can rearrange its pattern of carbon-carbon and

carbon-hydrogen bonding through a series of hydride and methyl shifts (Fig-
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Figure 2.11: Protonation of helium and ammonia

ure 2.12). These shifts proceed via stable “bridged” intermediates that are more

stable than the starting carbocation. Consider the ethyl cation C2H+
5 . The bridged

intermediate for a [1,2]-hydride shift has a hydride lying above the molecular plane,

in between the two carbons of ethyl cation; from this intermediate, a cation can

be formed on either carbon. We find that eFF overestimates the extent of the hy-

dride, making the bonds to it too long, and the complex becomes less stable rather

than more stable than the carbocation (∆E = 10.1 kcal/mol vs -8.1 kcal/mol

CCSD(T) [30]).

A similar phenomenon is observed for propyl cation, where a methyl carbanion

can transfer from one carbon to another in a [1,2] methyl shift. We find that eFF

makes the carbanion electrons large and unstable, and the complex is uphill rather

than downhill in energy (∆E = 91.0 kcal/mol vs. −14.0 kcal/mol MP4/6-311g**

[31]). In propyl cation, a [1,3] hydride shift is possible as well. The carbon-hydride

bond is overestimated by nearly the same amount as in the ethyl case (1.7 Å vs

1.4 Å exact), and the difference between estimated and exact energies are nearly

the same as well (∼18 kcal/mol in both cases).

Allowed versus forbidden reactions of hydrogen

We have validated eFF on a variety of ground state minima; now, we examine

the energetics of allowed and forbidden reactions, and the transition states that

connect different minima. As examples, we compute the potential energy surface

of H + H2 → H2 + H, an allowed reaction, and H2 + H′2 → HH′ + HH′, a forbidden

reaction (Figure 2.13).
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Figure 2.12: Carbocations can rearrange via hydride or methyl shifts.
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Figure 2.13: eFF distinguishes between allowed and forbidden hydrogen reactions.
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For H + H2, we assume that the atoms are colinear, and find a saddle point

at the symmetric geometry r1 = r2 = 1.04 Å with ∆E = 42 kcal/mol relative to

separated H + H2. In comparison, quantum Monte Carlo calculations [32] find the

transition state to be at r1 = r2 = 0.95 Å with ∆E = 9.7 kcal/mol. Although

the transition state energy is significantly too high, it is still smaller than the H2

dissociation energy; that together with the shape of the potential energy curve

indicates that the reaction is allowed.

For H2 + H′2, we assume that the atoms are aligned in a square, and we find that

there is no low energy path connecting product to reactant — both of the molecules

must break simultaneously in order for the reaction to happen. The potential

energy surface is rather flat, and there exists a saddle point at r1 = r2 = 2.21 Å

with ∆E = 132 kcal/mol relative to separated H2 + H2, which makes the reaction

forbidden. To compare, we evaluated a potential for H4 due to Boothroyd [33]

derived from MRD-CI calculations over a set of symmetric square geometries, and

found a saddle point at r1 = r2 = 1.22 Å with ∆E = 147 kcal/mol.

Ionic and multicenter bonds

eFF can describe compounds containing the elements hydrogen, helium, and car-

bon; we now consider the elements that lie in between — lithium, beryllium,

and boron. These early elements present us with an opportunity to observe ionic

bonding, since they are electronegative, as well as electron deficient multicenter

bonding, since they lack enough electrons to complete a full octet. A collection

of compounds containing lithium, beryllium, boron, and carbon are shown in Fig-

ure 2.14, and their dissociation energies are given in Table 2.5.

Lithium atom adopts a clear 1s22s1 configuration, with a valence electron much

larger (se = 7.45 bohr) than the spin-paired core electrons (se = 0.71 bohr). We

can form lithium hydride by combining lithium with a hydrogen atom of opposite

spin. The resulting ionic compound has a bond length slightly longer than the
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Figure 2.14: eFF can account for ionic and multicenter bonding.

∆E (kcal/mol)
relative to energy of eFF exact
LiH Li + H 58.1 56.6
BeH2 BeH + H 113.0 98.9
BeH Be + H 109.6 52.8
B2H6 2 BH3 27.6 41.2
CH+

5 CH+
3 + H2 20.8 45.5

Table 2.5: Dissociation energies.
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exact value (1.689 A versus 1.596 A exact), and because of the greater bond length,

a slightly higher dipole moment as well (6.51 D versus 5.88 D). The dissociation

energy is very near the exact value (58.1 kcal/mol versus 56.6 kcal/mol exact),

which is not surprising since the electrons in the species Li, H, and LiH are all well

represented by single-peaked functions.

In a similar manner, we form beryllium dihydride by adding two hydrogens to a

beryllium atom. The bond length of BeH2 is shorter than the bond length of LiH,

due to the greater nuclear charge of Be; the difference in eFF bond lengths parallels

that found in the exact values (-0.29 Å shrinkage versus -0.25 Å exact). The energy

of breaking BeH2 into BeH and H is near the exact value (113.0 kcal/mol versus

98.9 kcal/mol exact); however, the energy of breaking BeH into Be and H atoms

is too high (109.6 kcal/mol versus 52.8 kcal/mol exact). This too-high energy

is a consequence of a well-known difficulty in describing the valence electrons of

beryllium atom as a single configuration wavefunction [34]

In beryllium, the 1s22s2 configuration is nearly degenerate to the 1s22p2
x, 1s22p2

y,

1s22p2
z configurations; hence the wavefunction should be a resonance combination

of these configurations. This static correlation is not well-described by Hartree-

Fock or other single determinant methods, but the “floating” nature of the eFF

electrons can account for these other configurations to some extent by shifting

themselves to an average position between configurations. In the case of beryllium,

eFF recognizes the 2s−2p degeneracy and separates the two valence electrons along

an arbitrary axis to relieve electron-electron repulsion. However, it cannot shift

electrons along the other two axes simultaneously, hence Be atom cannot gain its

full measure of resonance stabilization. Static correlation in less symmetric cases,

such as the breaking of a linear bond, should be better handled by eFF.

Ionic compounds can include as participants not only hydrides but carbanions

as well. Tert-butyl lithium contains a very polar carbon-lithium bond, and an eFF

model shows why this is the case. Imagine the compound (CH3)3CH, but with

the terminal H+ replaced by Li+. The Li+ contains a 1s2 core of electrons, and so

unlike the proton, moves far away from the center of electron density in what was
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formerly the C-H bond. Thus the carbon-lithium bond is polar, and the species

acts as a carbanion; the tert-butyl group makes it too hindered to be nucleophilic,

but the overall species can act as an active base. eFF makes the carbon-lithium

bond too long (4.215 Å versus 2.026 Å B3LYP) because of the previously discussed

too-diffuse nature of carbanions in eFF. We can describe as well the agglomeration

of tBuLi into tetramers based upon tetraheral Li4, where the lithium-lithium bonds

optimize to the correct length (2.378 Å versus 2.43 Å Li-Li distance in the crystal

structure [35]).

The boron compound BH3 dimerizes into the borane B2H6 via a resonance

combination of covalent and donor-acceptor bonds, which can also be viewed as

two three-center two-electron bonds [36]. eFF describes nearly all aspects of the

BH3 and B2H6 geometries correctly (BH3 bond length 1.252 Å versus 1.190 Å

exact; B2H6 B-B 1.347 Å versus 1.331 Å exact; B-H covalent = 1.243 Å versus

1.207 Å exact; B-H bridging = 1.347 Å versus 1.331 Å exact). However, the

dimerization energy is too low (27.6 kcal/mol versus 41.2 kcal/mol exact).

Another example of resonance between covalent and donor-acceptor bonds is

found in CH+
5 , a fluxional molecule [37] that can be viewed as an interaction

between CH+
3 and H2 where the hydrogens are similar and rapidly interconvert.

However, no such resonance appears in the eFF description, where the hydrogens

remain clearly distinguishable — the H atoms that were originally apart of H2

remain close together (0.798 Å versus 0.869 Å exact [38]) and far away from the

carbon (1.744 Å versus 1.231 Å exact). Like borane, the association energy is also

too low (20.8 kcal/mol versus 45.5 kcal/mol exact), suggesting a future need for

explicit resonance/electron delocalization terms in eFF.

Application to matter at extreme conditions

Dissociation and ionization of warm dense hydrogen

In 1912, Langmuir [39] immersed a hot tungsten wire in a hydrogen atmosphere,

and found that above 3000 K, heat was carried away from the wire at a rate
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much higher than would be expected by convection alone. The abnormally high

conductivity appears because hydrogen molecules dissociate into atoms at that

temperature, absorbing heat which is later released when the atoms recombine.

At higher temperatures (∼10000 K), hydrogen atoms separate into protons and

electrons. Heavier atoms ionize at even higher temperatures, and Saha [40] pro-

posed in 1920 that one could infer the temperature of stars from their relative

concentration of ions.

For an equilibrium of ideal gases C ⇀↽ A + B, we can write the dissociation

fraction as a function of the gas temperature and density using the Saha equation

(Appendix B, [40]):

f2

1− f
= 1.667× 10−4 ·

(
mAmB

mC

)3/2 ZAZB

ZC
· T 3/2

r3
s

exp(−∆Ed/kT ) (2.8)

where f is the fraction of dissociated species, ∆Ed is the energy of dissociation

of C, m are the masses of the species in amu, T is the temperature in Kelvin,

and Z are the vibrational-rotational-electronic partition functions. The density is

characterized by the parameter rs, so that each atom takes up a volume 4/3πrs3.

For hydrogen gas at one atmosphere and room temperature, rs is 86.
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Applying the Saha equation to the reactions H2 → H + H and H → p+ + e−, we

find that in dilute gases, dissociation is a gradual process, not an abrupt transition

(Figure 2.15). These reactions are entropy driven — the bond dissociation energy

of H2 is ∼50,000 K and the ionization potential of H is ∼150,000 K, yet dissociation

and ionization occur at much lower temperatures, driven by the separation of one

particle into two. Two particles take up more space than one, which means that by

La Chatlier’s principle, compressing a gas shifts the equilibrium toward association.

Thus the temperature of dissociation and the temperature of ionization increase

with increasing density.

This analysis shows that in dilute gases, dissociation and ionization are two

separate events. At higher densities, however, it should become easier to ionize

hydrogen, since as atoms are squeezed together, the band gap decreases. At ex-

treme compressions (rs = 1), hydrogen becomes metallic, and the electrons move

freely as if in a uniform sea of background positive charge. This pressure ion-

ization occurs even at absolute zero [44]. There has been speculation that at

intermediate densities, the temperature needed to ionize hydrogen decreases with

temperature, and at some point matches the temperature required to dissociate

hydrogen molecules [43]. At such a plasma phase transition, hydrogen would si-

multaneously dissociate and ionize, and properties like pressure or conductivity

could change abruptly with variations in temperature or pressure (depending on

the order of the phase transition).

If a plasma phase transition existed, it could lead to the revision of astrophysi-

cal models [42] — for example, giant planets like Jupiter have dense hydrogen near

their core, and an abrupt phase change would change the way helium partitioned

itself between molecular and metallic phases of hydrogen. Recently there has been

a renewed interest in studying dense hydrogen, stemming from (1) the development

of path-integral Monte Carlo methods to calculate hydrogen equations of state ab

initio [45, 50, 46, 47, 48, 49] (2) shock hugoniot experiments with gas guns [51],

lasers [54, 55], and exploding wires [52, 53] able to access densities and tempera-

tures near the postulated PPT (∼15000 K, rs ≈ 2 bohr, according to a chemical
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model [43]. We demonstrate that the electron force field gives results consistent

with the most recent high-level theory [49] and shock Hugoniot experiments [53]

In our simulations, we placed hydrogen molecules (64 nuclei) in a cubic periodic

box, set atom velocities randomly from a Boltzmann distribution, then integrated

the dynamics equations of motion with fixed volume and energy and a time step

of 0.01 fs. We set the electron mass to be the same as the proton mass, making

our simulation a plausible model of deuterium. We calculated the instantaneous

temperature as the total kinetic energy of nuclei and electrons divided by 3/2kT ;

we computed electrostatic energies by the Ewald method; and we averaged ther-

modynamic data over 1 ps following a 200 fs equilibration period.

Holding density fixed (rs = 2 bohr) and performing simulations at a range

of temperatures, we observed a thermal transition from a molecular to an atomic

fluid (Figure 2.16). Proton-proton pair distribution functions plotted as a function

of temperature (Figure 2.17) show a gradual transition between molecular and

atomic fluid extremes, with an intermediate point at T = 15400 K, which compares

well with the phase transition temperature of 15300 K estimated from a chemical

model [43]. The pair distribution curves look similar to ones obtained using path-

integral Monte Carlo [46], where an intermediate point (roughly estimated by

looking at pair distribution curves by eye) occurs at 10000 K.

9100 K 15400 K 21100 K

Figure 2.16: Dynamics snapshots showing deuterium dissociation as temperature

is raised.
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Figure 2.17: Proton-proton pair distribution function shows gradual dissociation.

We can also calculate pressure using the virial expression

P =
2 〈Ktotal〉

V
− 1

3V

〈 ∑

all d.o.f.

xi
∂E

∂xi

〉
. (2.9)

We note that for a purely electrostatic system, we have the simple virial

∑

i<j

~F (~rij) · ~rij =
∑

i<j

−qiqj

r2
r̂ij · ~rij (2.10)

= −
∑

i<j

qiqj

rij
(2.11)

= −U. (2.12)

However, since our system includes Pauli exclusion forces as well, such a calcu-

lation gives the wrong result, whereas ours agrees with numerical differentiation

of −dE/dV . We hold rs = 2 bohr and plot the equation of state, which we find

agrees well with the chemical model at low temperatures and the QMC model

at high temperatures, exactly the range of applicability each model is expected

to have. We note that early path integral methods [50] predicted a first-order

plasma transition with a negative slope dP/dT at 1̃0000 K; however, more accu-

rate calculations with a more accurate nodal surface did not show any evidence

of this negative slope [49]. Given that our method handles both low and high
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temperatures consistently, and we do not see any evidence of a negative dP/dT ,

we conclude that a first-order PPT does not exist in the temperature and density

range considered.
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Figure 2.18: Equation of state (rs = 2 bohr) shows good agreement with best

available theory.

By looking at the distribution of electron sizes over the course of the simulation,

we can estimate how many electrons become ionized. At low temperatures, we

observe a Maxwell-Boltzmann-like distribution of electron sizes that broadens with

increasing temperatures. At higher temperatures, we find that a small fraction of

electrons escape and expand to be larger than the size of our periodic box; at

that size, they no longer interact strongly with the rest of the system. Taking

electrons with rs > 10 bohr to be ionized, we find that some ionization occurs

for rs = 2.6 bohr, Lbox = 16.8 bohr at ∼25000 K and for rs = 2.2 bohr, Lbox =

14.2 bohr at ∼30000 K but not for rs = 2 bohr, Lbox = 12.9 bohr. The ionization

we observe is consistent with thermal ionization of hydrogen atoms in a dilute

gas, where the electrons, not having a nucleus to associate with, expand to fill

free space; in this regime, it is reasonable to expect the temperature required

for ionization to increase with increasing density. However, further work needs

to be done to determine whether metallic-like electrons appear at higher density

and lower temperature. Metallic electrons in the electron force field would be
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characterized not by a large size, but by an increased mobility.
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Figure 2.19: High densities suppress ionization that occurs at high temperature.

Experimentally, liquid deuterium can be compressed to near-metallic densities

using shock waves generated by explosives, exploding wires, or lasers. In these

experiments, the deuterium is compressed with a solid pusher; by measuring the

position and acceleration of the pusher over a duration of nanoseconds, we deduce

a density-pressure relation called a Hugoniot curve that is a characteristic of the

material. From conservation of mass, energy, and momentum over the boundary

of a shock wave, we know the internal energy, volume, and pressure must satisfy

the Hugoniot relation

U − U0 +
1
2
(V − V0)(P + P0) = 0. (2.13)

The Hugoniot curve measures how compressible liquid deuterium is to shock.

In the last decade, there has been some controversy over compressibility, with

laser driven experiments (Nova [54, 55]) indicating a maximum compressibility

of six times, and gas gun experiments indicating a lower compressibility of four

times with a stiffer response. More recent experiments done with exploding wires

( [52, 53]) support the stiffer response function. We would like to see what kind

of Hugoniot our theory, which has only been parameterized to fit bond lengths of

simple alkanes, would produce.

To estimate the Hugoniot curve using eFF, we carry out a series of simulations
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at fixed volume and different fixed temperatures; measure the pressure; plot the

Hugoniot function versus pressure; and find by interpolation the pressure that

makes the Hugoniot function zero. As a starting point, we compute a box of liquid

hydrogen with rs = 3.16 (ρ = 0.171g/cm3), T = 19.6K; we find U0 = −0.477043

hartrees/atom and P = 0.

rs (bohr) ρ (g/cm3) P (gPa) T (K)
2.6 0.31 0.1 375
2.2 0.51 8.1 1768
2 0.68 34.2 6688

1.93 0.75 66.8 12464
1.86 0.84 151.0 23198
1.86 0.84 1216.5 344144

Table 2.6: eFF computed Hugoniot curve.

The eFF Hugoniot curve matches the curves obtained by the gas gun and Z ma-

chine, but not the ones obtained by the Nova laser. eFF reproduces the nearly

vertical curve upward that path integral Monte Carlo shows; the vertical curve in

eFF is the result of a Hugoniot function that was zero at two different pressures. It

is believed that the true Hugoniot bends to the left slightly at high temperatures;

if this is the case, we should be able to run the simulation at a slightly higher

temperature, and have the Hugoniot curve be zero at only one point.

While PIMC shows a maximum density of ∼0.73 g/cm3 (compressibility of

4.3 times), eFF shows a maximum density of ∼0.84 g/cm3 (compressibility of 4.9

times). In contrast, the Nova laser Hugoniot shows a maximum compressibility

of 6.0 times. eFF also shows a comparable rise in temperature to PIMC (ours is

∼1/3 less) over the course of its Hugoniot.

Another group has performed a WPMD simulation of hydrogen plasma, but

used the earlier described Klakow potential, with an additional term added to cap-

ture electrostatic energy changes upon antisymmetrization. Their results agreed

well with eFF at low temperatures, but deviated significantly at higher temper-

atures, with a higher compressibility (6.4 times) that better matches the Nova
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laser data. The same extra repulsion that prevents electrons from inappropriately

coalescing in the eFF model may be serving to give a higher compressibility and

better agreement with path-integral Monte Carlo over Pauli potentials based on

Klakow’s expression.
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Figure 2.20: Reproduction of the experimental shock Hugoniot curve obtained by

gas gun and Z machine; Nova laser remains an outlier.

To summarize, the electron force field shows that at rs = 2 bohr, dissociation

from molecular to atomic fluid is gradual, and the equation of state and proton-

proton pair distribution functions are consistent with path-integral Monte Carlo

calculations. We observed no evidence of a plasma phase transition at this density.

The good agreement with Hugoniot curves obtained from gas gun and Z machine

experiments, as well as those obtained from PIMC, further confirms that we are

describing the thermal transition from molecules to atoms correctly.

We have examined ionization as well, but only by measuring the concentration

of free (large) electrons; we find that at low densities, the temperature required to

create large electrons in free space increases with increasing density, as we would

expect from a Saha model. Pressure ionization creates metallic electrons that are

smaller yet highly mobile. It would be interesting to measure electron mobility

at higher densities to determine if eFF can model metallic phases of hydrogen
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properly, and to better characterize pressure induced transitions from molecular

to metallic hydrogen.

Dynamics of the Auger process in hydrocarbons

In Auger electron spectroscopy [56], core electrons in a sample are ionized using

x-rays or electron impact. Once the core hole is generated, it is found that within

∼10 fs, a valence electron “falls into” the hole [57], and the energy released causes

a secondary electron to be ejected (Figure 2.21). If the two-hole state contains

bonded atoms, it may relax by breaking bonds or ejecting additional electrons.

Core ionized methanol, for example, breaks its OH bond over 100 fs, while core

ionized formic acid breaks its OH bond over 50 fs [58].

2-20 fs

core hole filled,

2o electron ejected

two-hole state dynamics

< 100 fs

Figure 2.21: Core holes relax via a two stage Auger decay process.

The release of low-energy secondary electrons upon core electron ionization was

first observed by Auger in 1923 [59], who bombarded noble gases with x-rays in a

cloud chamber, and found that in addition to a long photoelectron track, a short

secondary electron track appeared. He found that the energy of the secondary

electrons was dependent on the species being ionized, but not on the incident

x-ray energy.

Today, Auger spectroscopy is widely used to characterize the elemental compo-

sition and chemical bonding of surfaces [60], since secondary Auger electrons can

only travel a few nanometers in solids, depending on their energy, without being

absorbed. Thus a signal appears only from the top layers of atoms. Furthermore,

since the secondary electron energy is independent of the means used to excite

the core electron, and since core electron energies are mostly the same in atoms,
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regardless of chemical environment, it is possible to use broad spectrum sources

for excitation while still getting a clean secondary energy spectra.

Theory has mostly focused on reproducing Auger spectra by looking at the

transition probabilities of moving from an initial ionized state to a final two-hole

state [61, 62]. Such theory has been broadly successful at reproducing the Auger

spectra of atoms, atom hydrides, and substituted hydrocarbons. In those cases,

an implicit assumption is that the nuclei are held stationary. Any movement of

the nuclei prior to the release of secondary electrons is assumed only to broaden

the spectral lines.

In the last decades, it has become apparent Auger chemistry can be used

to create and modify surfaces as well as characterize them. In 1978, Knotek

and Fiebelman [63] provided evidence that electron-stimulated desorption in ionic

solids operating proceeded via core-hole Auger decay; a year later, Knotek, Jones,

and Rehn [64] reported photon-stimulated desorption of ions from a surface via a

similar mechanism. Since then, it has been proposed that covalent solids [65] may

be etched via Auger chemistry as well. To study these processes, which may be key

to manufacturing the next generation of semiconductors with smaller and sharper

feature sizes [66] (∼20 nm, aspect ratios ∼10:1), we would like to simulate how

molecules fragment during the Auger process, taking into account excited electron

dynamics.

Theory has only recently risen to the challenge of computing extended nuclear

dynamics after the initial Auger excitation. Ab initio molecular dynamics has

been used to study the dissociation of a single water molecule following core-

hole excitation [67], as well as the dissociation of a water molecule in an (H2O)5

cluster [68]. Using the electron force field, we can easily model the Auger dynamics

of systems containing hundreds of atoms, with all electrons included; we show

below a simulation of C197H112 over 100 fs, accomplished in two days real time.

In the previous sections, we have shown that eFF gives a reasonable model

of bonding, but to ensure that eFF produces a correct distribution of secondary

electrons and molecule fragments, we would like to compare the vertical ionization
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energies of electrons to experiment. This comparison is not entirely straightfor-

ward, since vertical ionization potentials (IPs) of the sort measured using pho-

toelectron spectroscopy are from delocalized molecular orbitals rather than from

localized orbitals of the sort eFF uses. We settle on an indirect procedure, cali-

brating a Hartree-Fock method against experimental IPs [69], then comparing eFF

orbital energies to theoretical Boys localized Hartree-Fock orbital energies, with

corrections from the calibration applied (Figure 2.22, Appendix C).

For hydrocarbons methane, ethane, neopentane, and adamantane, we find that

carbon-carbon electron are bound by almost exactly the correct amount (on aver-

age, eFF 16.8 eV vs 16.7 eV corrected localized HF); but carbon-hydrogen electrons

are underbound by ∼2 eV (on average, eFF 13.9 eV vs 16.0 eV corrected localized

HF). These differences are small in comparison to the energy difference between

valence and core electrons (∼270-280 eV), and so we expect energy to be properly

distributed among electrons and molecular fragments. However, we also find that

eFF underbinds 1s core electrons by ∼18% (236.0 eV average versus 290.6 eV

experimental), due to its lack of a proper nuclear-electron cusp; this reduces the

energy available in the Auger decay process.
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Since the vertical ionization potentials of valence electrons are correct, we start

by creating single valence-hole states in ethane and observing how the molecule

fragments. In the simulations, we assume instantaneous removal of the initial

electron. Dynamics were integrated with a time step of 0.001 fs over 100 fs, and

melec = mH . Some of the core hole relaxation steps involved an abrupt motion

of electrons, and an adaptive step size algorithm was used to shorten the time

step further during those periods to ensure that energy was conserved to better

than 0.0001 hartrees. Following the creation of single hole states, we find selective

bond breaking: removal of a carbon-hydrogen bonding electron causes the carbon-

hydrogen bond to break, while removal of a carbon-carbon bonding electron causes

the carbon-carbon bond to break. In the case of CC bond dissociation, there is

an additional complication in that there is no symmetry breaking, so that the

remaining CC electron remains at the center of symmetry, effectively creating

a two-hole state. We find that this effect disappears in larger, less symmetric

molecules. The proper instability of single hole states gives us confidence that we

will be able to properly describe the fragmentation of double hole states.

remove

C–H e–

remove

C–C e–

5 fs

10 fs 20 fs 40 fs

20 fs10 fs

Figure 2.23: Removal of valence electrons from ethane results in selective bond

breaking.

We next remove 1s core electrons from the hydrocarbons methane, ethane,
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adamantane, neopentane, and the diamondoid C197H112. We track the Auger pro-

cess by plotting the potential energies of the eFF electrons over time (Figure 2.24);

the advantage of having localized electrons becomes apparent here, as it is straight-

forward to distinguish loosely bound, valence, and core electrons. We find that the

key stages of the Auger process are well reproduced: for 2-20 fs, the core-hole is

stable, then there is an abrupt transition where a valence electron jumps into the

hole and a valence hole is created; then over the next 20-100 fs, secondary electrons

are ejected and/or fragmentation occurs. We find however that in many cases the

secondary electrons are not usually released simultaneously with the filling of the

core hole, but several femtoseconds afterward, as the highly excited valence hole

state relaxes.

Core hole lifetimes are measured experimentally as the lifetime broadening of

the x-ray photoelectron peak (∆t = h̄/∆E). With eFF, we estimate the lifetime of

the core hole as the moment when what was formerly a valence electron becomes

bound by greater than 160 eV, an arbitrary threshold set to distinguish core-

like and valence-like electrons. We find a core hole lifetime for methane that is

comparable to experiment (9.2 fs versus 7.9 fs expt), and a lifetime for ethane

that is lower then experiment (2.0 fs versus 6.7 fs). Neopentane, adamantane, and

the large diamondoid particle C197H112 all have core hole lifetimes between 2 and

20 fs, in line with the ranges observed experimentally [57]. Aside from primary

carbons having a particularly short core hole lifetime (2 fs), we did not observe

any particular correlation between the degree of substitution of the carbon and

the core hole lifetime (Table 2.7).

With x-ray photoelectron spectroscopy, it is also possible to measure the energy

and geometry changes that occur during the initial creation of the core hole, e.g.,

the difference between vertical and adiabatic ionization potentials [70]. With eFF,

we assume a vertical ionization, but we can estimate the magnitude of core-hole

induced relaxation by averaging over all geometries from zero time to the core-
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Figure 2.24: Electron energies show Auger process in adamantane in detail.

Core-hole lifetime (fs)
eFF expt

methane 9.2 7.9
ethane 2.0 6.7
neopentane (C) 15.0
neopentane (CH3) 2.0
adamantane (CH) 11.7
admantane (CH2) 6.1
C197H112 (C) 4.0

Table 2.7: Core-hole lifetimes are on the correct time scale.
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hole lifetime. This is not a perfect comparison, as it assumes that the period over

which the ionization occurs is comparable to the core-hole lifetime; however, such

an assumption is made when the core-hole lifetime is estimated from the width of

the 1s photoelectron peak, and so we regard it as justified.

Comparing eFF averaged relaxations to experiment [71, 72], we found that (1)

geometry changes for methane were comparable to those observed experimentally,

but for ethane the C-H bonds stretched and bent in an opposite manner to what

was observed (Table 2.8), and (2) the core hole showed a relaxation energy nearly

eighty times greater than what was observed experimentally.

The larger-than-observed energy relaxation of the core-hole state suggests that

eFF has made an uneasy truce between adiabatic curve hopping abrupt transitions

and a mean-field description of electron dynamics. Experiments [70] suggest that

the core-hole is filled in an abrupt way: while the methane C 1s electrons is being

ionized, for instance, the CH4 molecule only lowers its energy by -0.15 eV, but we

know that within 8 fs the energy of the molecule drops by 290 eV. In eFF, core-

hole filling is abrupt, but the “plateau before the cliff” is slightly steeper, which

suggests that a portion of the valence-hole state is mixing in with the core-hole

state prior to the electron jump. This larger core-hole prerelaxation may explain

why we are able to obtain core-hole lifetimes comparable to experiment, even with

massive electrons.

Core-hole relaxation
eFF expt

methane ∆E(eV) -12.43 -0.15
∆dCH (A) -0.07 -0.05

ethane ∆E(eV) -12.03 -0.17
∆dCH (A) 0.03 -0.05
∆dCC (A) 0.00 0

∆dHCC (degrees) 0.36 -3.00

Table 2.8: In eFF, core hole shows strong relaxation even before it is filled.
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We consider now the nuclear dynamics after the core hole has been filled by a

valence electron. In the case of methane, we find the following sequence of events

(Figure 2.25):

CH+
4 → core− hole collapse (9 fs)

→ CH+
3 + H (17 fs)

→ CH+
2 + 2H (23 fs)

→ CH2+
2 + e− + 2H (25 fs)

→ CH2+ + e− + 3H (49 fs)

→ C+ + H+ + e− + 3H (79 fs).

In our simulations, the secondary electron is not ejected from the highly excited

CH+
4 until two hydrogen atoms have already dissociated from it. Experimentally,

it is possible to find out which fragments are present when the secondary electron

is released through the use of energy-resolved electron-ion coincidence (EREICO).

Kukk et al. [73] found that core-ionized deuteromethane produces along with the

secondary electron the major fragment CD+
2 , with CD+ and C+ also present, and

almost no CD+
3 . It may seem curious that CD+

3 and CD+
4 do not appear in the

spectra, especially given that ionization of the valence electrons have been shown

by the same method to produce only CD+
3 and CD+

4 .

Most likely CH+
4 (or by their finding CD2+

4 ) is created as a very hot molecule,

and it is only by detaching bound hydrogen atoms that it becomes stable enough to

detect. This is consistent with our model. It may also be possible that our unusual

observation that the secondary electron is only released after two hydrogen atoms

have dissociated is correct, and the two-hole state is created in a nonconcerted

fashion. This would also explain the lack of CD+
3 and CD+

4 in the experimental

spectra.

In the case of ethane, ionizing a core electron causes a σCC electron to fill in

the core hole. At that point, the carbon-carbon bond breaks, lengthening steadily

from 1.48 Å; 12.5 fs after the core hole fills, the carbon-carbon bond is already
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Figure 2.25: Auger dissociation of methane and ethane following creation of a core

hole.

2 Å long. During this period, the single remaining σCC electron remains at the

center of the bond to maintain the system’s overall symmetry, making it appear

as if bond breaking and secondary electron ionization happen at the same time.

In contrast to the methane dynamics, and perhaps because the secondary electron

is released early, the CH+
3 fragments are not left with enough energy to break

carbon-hydrogen bonds, and no further fragmentation is observed.

We continue to the larger hydrocarbons neopentane and adamantane (Fig-

ure 2.26). In the case of neopentane, there are two different carbons whose 1s

electrons we may ionize: the quaternary carbon at the center, or the four primary

carbons at the periphery. Ionizing the quaternary carbon causes four surround-

ing valence electrons with the same spin as the ionized electron to simultaneously

move inward to fill the vacancy; symmetry breaks, and after 15 fs only one valence

electron fills in to occupy the core. As in ethane, the loss of a σCC electron causes

the neopentane to dissociate into (CH3)3C+ + CH+
3 plus a secondary electron.

Unlike ethane, however, the (CH3)3C+ fragment is released highly excited —

recall that we had three valence electrons surrounding the central carbon that were

drawn inward but did not fall into the core. These valence electrons now transfer

their energy to the C-C bonds of (CH3)3C+, causing the C-C bond lengths to
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increase to ∼2.3 Å before collapsing back down to an equilibrium size. Ultimately

the (CH3)3C+ remains intact and does not dissociate further.

Ionizing a primary carbon in neopentane causes prompt fragmentation (2 fs)

into (CH3)3C+ + CH+
3 + e−, and, as in ethane, the two fragments have minimal

excess vibrational energy. It is interesting to note that the bond connecting the

excited carbon is selectively broken. This is relevant for understanding how photon

and electron stimulated diffusion operates; if both holes are localized on the same

bond, we can have selective bond breaking dominated by excited state kinetics

rather than an overall heating of the molecule and statistical bond breaking. Jen-

nison et al. has noted both experimental and theoretical evidence for localization

of two-hole final states in hydrocarbons, including neopentane [74]. We observe

such localization, i.e., the electron that falls into the hole stimulates nearby elec-

trons to be ionized, in both neopentane and the next molecule to be discussed,

adamantane.

Adamantane contains two different types of carbons that may be ionized: four

tertiary carbons (CH) and six secondary carbons (CH2). Removing a 1s electron

from a tertiary carbon causes the following events to occur:

C10H+
16 → C10H

2+
15 + H− (6 fs)

→ core− hole collapse (11.7 fs)

→ C10H3+
15 + e− + H− (13 fs)

→ C9H3+
15 + C + e− + H− (20 fs)

→ C9H3+
15 + C+ + 2e− + H− (48 fs).

The core-hole relaxation causes a hydride to be dissociated even before the core

hole is filled; only 1 fs after the core hole is filled, a secondary electron is ejected,

followed by a neutral carbon atom 7 fs later. The carbon that is ejected is the

carbon that was initially ionized — more evidence of two hole localization. The

system is mostly stable at this point, only stopping to release an electron from

the neutral carbon atom after another 28 fs. All these steps take ∼48 fs from the
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initial formation of the core hole, in line with the typical nuclear relaxation time

of first row Auger dissociative processes.

Removing a 1s electron from a secondary carbon of adamantane causes the

following events to occur:

C10H+
16 → core− hole collapse (6.1 fs)

→ C10H2+
14 + e− + 2H− (8 fs)

→ C9H2+
14 + C2+ + e− + 2H− (15 fs)

→ C9H2+
14 + CH+

2 + 2e− (40.5 fs)

→ C9H2+
14 + CH2+

2 + 3e− (51.5 fs)

→ C9H2+
14 + CH+ + H + 2e− (80 fs)

In this case, core-hole relaxation causes the C-H bonds attached to the ionized

carbon to stretch out but not break before the hole is filled; after the core hole

is filled, two hydrides and one secondary electron are promptly (2 fs) released.

The next steps involve release of an ionic carbon, recombination of carbon and

hydrides to form a stable CH2 ion, and the ultimate dissociation of the CH2+
2 into

CH+ + H + e−.

In these larger hydrocarbons, we observe (1) significant core-hole relaxations

in C-H bonds attached to the ionized carbon, but not attached C-C bonds, (2)

a tendency to eject the ionized carbon atom and a secondary electron very soon

after the core hole is filled, and (3) fragmentation and electron ion recombination

events over the next tens of picoseconds.

In even larger hydrocarbons, we enter a regime where secondary electrons may

be produced, but trapped inside a bulk solid and recombined. This effect is the

reason Auger spectroscopy can be used to analyze surfaces — secondary electrons

can only escape from the top monolayers of a surface. To test whether eFF can

simulate this effect, we ionize a 1s electron from the center of a roughly spherical

diamondoid C192H112 (Figure 2.27). The diamondoid was constructed by starting

with a 3x3x3 diamond lattice taken from a periodic structure, truncating primary
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carbons, then manually reconstructing (100) faces via dehydrogenation. This pro-

cess introduces some strain into the particle, and we found smaller diamond lattices

tended to relieve this strain by forming sp2 carbons and sheet-like structures. As

we are interested in the case of saturated hydrocarbons, we chose a larger particle

to ionize.

As in neopentane, removing a center core electron causes four surrounding

valence electrons to move inward. One valence electron fills the core (4 fs), causing

the other three valence electrons to make large amplitude motions and move a

short distance through the lattice. The carbon lattice expands slightly around the

excitation site, then recontracts as the excited valence electrons recombine with

the core. Plotting the trajectories of all the electrons around the excited core,

we find that after 5 fs the three valence electrons have moved; after 10 fs motion

has been transferred to adjacent electrons; and after 50 fs the motion has been

dissipated into thermal motion throughout the lattice (Figure 2.28). Plotting the

energy distribution of the electrons over time shows the same effect (Figure 2.29).

Figure 2.27: We remove a core electron from a central carbon of a diamondoid

particle.

In conclusion, we reproduce nearly all the qualitative aspects of the Auger pro-

cess — abrupt core-hole filling, followed by fragmentation and secondary electron

generation; localization of two hole states; and trapping of secondary electrons

in a bulk solid. We also remarkably reproduce some key quantitative aspects as

well, such as the core-hole lifetime and time scale for fragmentation. The theory
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Figure 2.28: Trajectories of electrons after removal of a core electron.
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Figure 2.29: Excited electrons dissipate their energy into their surroundings.
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suggests that in some cases, secondary electron emission may occur only some

time after the core hole has been filled, and we speculate that this nonconcerted

formation of the two-hole state may explain the lack of CD+
3 and CD+

4 ions fol-

lowing core-ionization of CD4. We hope that the eFF method will lead eventually

to simulations of electron and photon stimulated desorption processes on realistic

surfaces and bulk solids, and provide correct microscopic mechanisms for observed

macroscopic behavior, such as the selectivity in etch rates that make it possible to

create small sharp surface features.

Conclusion

With our electron force field, we find that we obtain correct geometries for a wide

range of hydrocarbons, particularly ones with a rigid carbon core and outwardly-

directed hydrogens. Using a formulation that contains only pairwise interactions

between the nuclei and electrons in the system, we are able to describe not only

bonds, but reasonable energy differences between different hydrocarbon conform-

ers. Multiple bonds are described as σ − π-like structures, and carbon radicals

are properly planar. We are able to describe ionic compounds like LiH and BeH2

correctly, as well as multicenter compounds like B2H6.

Further work is needed though. Lone pairs are poorly described (−OH and

HF and Ne are unstable), and multiple bonds and radicals are too diffuse, causing

carbon-carbon bonds to be too strong; this suggests we need a better way of

describing p electrons. Electron sizes tend to be too variable, particularly in C-H

bonds. eFF also underestimates the strength of covalent atom-centered bonds,

i.e., H2 is underbound while HeH+ is not. On a larger scope, we would like to add

correlation, resonance/delocalization, and proper Fermi-Dirac statistics to eFF.

In simulating warm dense deuterium dynamics, we looked at temperature dis-

sociation and ionization of D2 in a region where it might be expected to have

mixed covalent and metallic character. We obtained an equation of state and

shock Hugoniot curve that was in agreement with most experiments [51, 52, 53]

and path integral Monte Carlo calculations [46]. We found no evidence for a plasma
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phase transition in the temperature and density range considered, contrary to some

predictions [43], but consistent with recent path-integral Monte Carlo studies [49].

In simulating the Auger dynamics of small hydrocarbons, we found that af-

ter a core electron was removed, a valence electron transferred to reoccupy the

core within a few femtoseconds, followed by additional valence electrons ejecting

and the molecule fragmenting over tens of femtoseconds. The time scales were on

the same scale as those observed experimentally [57]. When core electrons were

removed from small hydrocarbons, we observed selective bond breaking and sec-

ondary electron ejection; in contrast, core ionization inside a diamondoid particle

caused secondary electrons to be released but rapidly recombined with the core,

with no bonds broken. That bond cleavage occurs only near the surface and only

near excited sites may help to explain the precision of surface etching observed in

photon and electron stimulated desorption. Finally, we offer the intriguing possi-

bility that in some systems, such as methane, formation of the two-hole state may

be nonconcerted, so that the secondary electron leaves significantly after the core

hole is filled, when bond breaking may have already occurred.

With eFF, we can compute the energy and forces in systems containing a thou-

sand electrons in less than a second. We have shown that compounds containing

atoms from hydrogen through carbon are reasonably well described, and the accu-

racy is sufficient to make possible the simulation of matter at extreme conditions.

Work is in progress to improve the accuracy and scope of eFF, and we hope that

the formulation presented here, as well as its progenitors, will enable the simulation

of a wide range of interesting excited electron chemistry on realistic systems.

Appendix A: Derivation of Pauli function terms

Wavefunction plus abbreviation, where S = 〈φ1|φ2〉

Ψ =
1√

2± 2S2
(φ1(r1)φ2(r2)± φ2(r1)φ1(r2))

=
1√

2± 2S2
(12± 21).
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Verification of normalization:

〈Ψ|Ψ〉 =
1

2± 2S2
〈12± 21|12± 21〉

=
1

2± 2S2
(〈12|12〉 ± 12|21)

=
1

2± 2S2
(〈1|1〉 〈2|2〉 ± 〈1|2〉 〈2|1〉)

= 1.

Evaluate kinetic energy of these wavefunctions, using operators t1 = −1
2∇2

1 and

t2 = −1
2∇2

2:

KE(12± 21) = 〈12± 21|t1 + t2|12± 21〉

=
1

2 + 2S2
· 2 · 〈12± 21|t1|12± 21〉

=
1

1 + S2
(〈12|t1|12〉+ 〈21|t1|12〉 ± 2 〈21|t1|21〉)

=
1

1 + S2
(〈1|t1|1〉 〈2|2〉+ 〈2|t1|2〉 〈1|1〉 ± 2 〈1|t1|2〉 〈2|1〉)

=
1

1 + S2
(t11 + t22 ± 2St12)

where

t11 = 〈1| − 1
2
∇2|1〉 =

3
2

1
s2
1

t22 = 〈2| − 1
2
∇2|2〉 =

3
2

1
s2
2

t12 = 〈1| − 1
2
∇2|2〉 = S

(
3(s2

1 + s2
2)− 2x2

12

(s2
1 + s2

2)2

)

S12 = 〈1|2〉 =
(

2
s1/s2 + s2/s1

)3/2

exp(−x2
12/(s2

1 + s2
2)).
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Then we have

Eu = KE(12− 21)−KE(1)−KE(2)

=
1

1− S2
(t11 + t22 − 2St12)− 1− S2

1− S2
(t11 + t22)

=
S2

1− S2

(
t11 + t22 − 2t12

S

)

and

Eg = KE(12 + 21)−KE(1)−KE(2)

=
1

1 + S2
(t11 + t22 − 2St12)− 1 + S2

1 + S2
(t11 + t22)

= − S2

1 + S2

(
t11 + t22 − 2t12

S

)
.

Appendix B: Derivation of the Saha equation

This derivation follows the one provided in [41], and is included here for complete-

ness. Consider an equilibrium of ideal gases C ⇀↽ A+B. We compute the number

of particles nA, nB, and nC by maximizing the total number of available states:

ZnA
A

nA!
· ZnB

B

nB!
· ZnC

C

nC !
(2.14)

where ZA, ZB, and ZC are the partition functions of A, B, and C. If we take f to

be the fraction of dissociated C, we then have

f

1− f
=

nAnB

nC
=

ZAZB

ZC

=
(V/Λ3

A)Zvre
A · (V/Λ3

B)Zvre
B

(V/Λ3
C)Zvre

C · exp(∆Ed/kT )

where we have factored out the translational partition functions explicitly to

leave Zvre, the vibrational-rotational-electronic partition functions. We compute

the partition functions from the “bottom of the well,” which incurs a factor of

exp(∆Ed/kT ), where Ed is the dissociation energy of C. Substituting the de
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Broglie wavelength Λ = (h2/2πmkT )1/2 and the volume per atom V = 4πr3
s/3 we

are left with the expression

f

1− f
=

Zvre
A Zvre

B

Zvre
c

3
4πr3

s

(
mAmB

mC

)(
2πkT

h2

)3/2

exp(−∆Ed/kT ). (2.15)

For hydrogen atom, electron, and proton, we take Zvre = 1; for hydrogen molecule

we use the expression for an ideal diatomic

Zvre =
T

2Θr
· exp(−Θv/2T )
1− exp(−Θv/T )

(2.16)

where Θr = 85.3 K and Θv = 6215 K.

Appendix C: Hartree-Fock orbital energies versus photoelectron

energies

We wish to compare vertical ionization energy of core and valence electrons deter-

mined experimentally using photoelectron spectroscopy with eFF electron energies.

However, photoelectron spectroscopy measures ionization from molecular orbitals,

which are delocalized, in contrast to the localized electrons in eFF. To validate eFF,

we use Hartree-Fock (6-311g** basis) as an intermediate reference theory. First,

we relate Hartree-Fock orbital energies to the experimental ionization potentials:

E(IP) = 0.777E(HF) + 2.386eV. (2.17)

Then, we compare eFF electron energies to localized Hartree-Fock orbital energies.
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Valence IP (eV)
eFF HF/local∗ difference

methane CH 13.98 16.02 -2.04
ethane CH 13.82 15.99 -2.17
neopentane CH 13.83 15.98 -2.15
adamantane CH 13.84 15.99 -2.15
adamantane CH 13.85 15.95 -2.10

average 13.86 15.99 -2.12

ethane CC 17.75 16.76 1.00
neopentane CC 15.77 16.77 -1.00
adamantane CC 16.75 16.68 0.07

average 16.76 16.74 0.02

Table 2.9: eFF computed valence ionization potentials are close to ones estimated
by Hartree-Fock (corrected energies, see text).

Core IP (eV)
eFF expt difference

methane 239.20 290.84 -51.65
ethane 237.07 290.71 -53.64
neopentane (C) 230.52 290.35 -59.82
neopentane (CH3) 237.30 290.53 -53.23
adamantane (CH) 233.92
adamantane (CH2) 235.98

average, first four 236.02 290.61 -54.59

Table 2.10: eFF underbinds core electrons, making less energy available for Auger
decay.
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Valence IP (eV)
HF expt

methane 25.71 22.9
14.86 15.0

ethane 27.71 23.9
22.94 20.4
16.24 15.8
13.83 13.3
13.24 12.1

neopentane 30.01 25.1
25.30 21.9
19.91 17.8
16.63 15.2
15.05 14.0
13.90 12.4
12.30 11.5

Table 2.11: Comparison of Hartree-Fock orbital energies with vertical ionization
potentials from photoelectron spectroscopy [69].
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Chapter 3

Development of an electron force field. II.

New treatment of p-like electrons, resulting

in improved accuracy for first-row atoms,

atom hydrides, and hydrocarbons

Introduction

Previously we introduced an electron force field which we used to simulate matter

at extreme conditions — the dissociation and ionization of hydrogen at interme-

diate densities, and the Auger dissociation of hydrocarbons. We would like to

simulate excited electron dynamics at lower temperatures, investigating processes

such as electrolysis, electrochemistry, combustion, unimolecular decomposition,

and organic reactions with solvated electrons. For this to be possible, we need to

improve the scope and accuracy of the electron force field.

We assumed previously that we could treat the electrons as if they were all the

same shape and could be well-represented by spherical Gaussian functions. For

hydrogen and saturated hydrocarbons with excess energy, this approximation was

a reasonable one. For molecules with lone pairs or multiple bonds, however, the

approximation breaks down and in the old eFF (1) atoms with lone pairs were

too easily ionized, (2) radical electrons in alkyl radicals were too diffuse, and (3)

multiple bond electrons were too diffuse, all indications that we were not properly
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describing p electrons.

In this chapter, we describe a way to include the effects of different electron

shapes. This results in an improved description of first-row atoms, atom hydrides,

and hydrocarbons and, to a lesser extent, hydrogen bonds and molecules containing

heteroatoms.

How can we incorporate electrons with different shapes into an electron force

field? One approach is to make the electron’s shape explicit, by writing each orbital

as a sum of higher angular momentum functions. This is the tack taken by most

ab initio methods today. With the floating spherical gaussian orbital (FSGO)

method, water has a too-small bond angle of 89o versus 104o exact [1], but making

the lone pairs variationally optimized sums of floating s and p functions makes it

possible [2] to raise the bond angle to 104o.

It is difficult however to make this approach general. Adding floating higher

angular momentum basis functions to FSGO causes the method to become as com-

plex and expensive as traditional ab initio methods, with the added complication

that there are additional parameters to optimize, and problems if basis functions

move on top of each other and become linearly dependent.

We take a different approach. First, we make electron shape an implicit scalar

variable that depends solely on the electron’s proximity to the nuclei in the sys-

tem. This approximation arises from the observation that it is the nuclei and their

associated core electrons that most greatly perturb and determine electron shape.

Second, we make energy terms such as Pauli repulsion and wavefunction kinetic

energy depend on electron shape. Using such an approach, we maintain the sim-

plicity of the spherical Gaussian description while still accounting for the diversity

of electron shapes present in excited electron systems.

The chapter is organized as follows. First we discuss the new energy expres-

sions, and give a physical motivation for the terms we have changed and added.

Then we study the energies and structures of first row atoms, atom hydrides,

carbon-carbon single and multiple bonds, heteroatom single and multiple bonds,

and van der Waals dimers. Along the way we point out both how eFF has im-
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proved, and what systems it can describe better, and then demonstrate systems

that we can newly describe that the old eFF could not describe. We also discuss

limitations that remain, and suggest what the causes of those limitations might

be.

Methods

Energy expression

As before, the system is composed of point nuclei with coordinates R and momenta

P, and of electrons defined by spherical Gaussian wave packets with positions x,

translational momenta px, sizes s, and radial momenta ps:

Ψ ∝
∏

j

exp
[
−

(
1
s2
− 2ps

s
i

)
(r− x)2

]
· exp[ipx · x]. (3.1)

The overall energy is a sum of the Hartree product kinetic energy, Hartree product

electrostatic energy, and antisymmetrization (Pauli) energy:

E = Eke + Enuc·nuc + Enuc·elec + Eelec·elec + EPauli.

The electrostatic energy expressions are the same as before:

Enuc·nuc =
∑

i<j

ZiZj

Rij

Enuc·elec = −
∑

i,j

Zi

Rij
Erf

(√
2Rij

si

)

Eelec·elec =
∑

i<j

1
xij

Erf




√
2xij√

s2
i + s2

j


 .

There are two major changes from the old eFF. First, we divide electrons into core

and valence electrons, and assume they do not switch categories over the course

of the simulation. We assume an electron is a core electron if si < 1.5 · score and
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|xi −Rnuc| < 0.5 · score, where

score =
3
√

π

2
√

2Znuc − 1

is the size of a helium-like ion optimized with eFF.

Second, we make the kinetic and Pauli energies depend on the hybridization of

an electron, which can vary during the course of the simulation, and depends on

the proximity of the electron to the nuclei present in the system. We have

Eke =
∑

i

3
2

1
s2
i

· fke

EPauli =
∑

σi=σj

1
2

Sij

1− S2
ij

∆Tij · (frepel + fswitch)

where, as before, ∆Tij is a measure of the kinetic energy change upon antisym-

metrization, and Sij is the overlap between two wave packets:

∆Tij =
3
2

(
1
s2
1

+
1
s2
2

)
− 2(3(s2

1 + s2
2)− 2x2

12)
(s2

1 + s2
2)2

Sij =
(

2
si/sj + sj/si

)3/2

exp(−x2
ij/(s2

i + s2
j ))

and the factors fKE , frepel, and fswitch are defined as follows:

fke = cs−keχke + cp−ke(1− χke)

frepel =
[
crepel + csize

(
s2

s1
+

s1

s2
− 2

)]
· Sij

1− S2
ij

fswitch = [cs−PauliχPauli + cp−Pauli(1− χPauli)] · (1− Sij)

which depend on the hybridization variables χke and χPauli, which equal one for

an electron with s character only, and zero for an electron with p character only.

Hybridization is a function of an electron’s position relative to the protons and

cores (nuclei with core electrons on top of them) in the system. We assume that

all nuclei with Z > 2 have 1s2 core electrons on top of them. The expression for
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χke is

χke =
∏

protons

ζproton

( |xi −Rproton|
si

)
·
[
1−

∏
cores

ζcore

( |xi −Rcore|
si

)]

if i, j ∈ valence electrons, 1 otherwise

while the expression for χPauli is

χPauli =
∏

protons

ζproton

( |xi −Rproton|
si

)
· ζproton

( |xj −Rproton|
sj

)

·
[
1−

∏
cores

ζcore

( |xi −Rcore|
si

)
ζcore

( |xj −Rcore|
sj

)
sin2 θi−core−j

]

if i, j ∈ valence electrons, 1 otherwise.

The parameters crepel, csize, cs−Pauli, cp−Pauli, cs−ke, cp−ke are shown in Table 3.1.

Parameter Value Purpose
crepel 0.5 Prevents electron coalescence
csize 3 Nearby electrons tend to match size
cs−Pauli 1 Pauli is repulsive for s-like electrons
cp−Pauli -1 Pauli is attractive for p-like electrons
cs−ke 1 No change in kinetic energy for s-like electrons
cp−ke 1.2 Slightly larger kinetic energy for p-like electrons

Table 3.1: Parameters in the new eFF, in addition to splines in Table 3.2.

The functions ζproton and ζcore determine how an electron’s p versus s character

varies with their distance from the protons and cores in the system. They are

defined as piecewise quintic splines specified so that the function’s value, first, and

second derivatives match at the points given:

{x1, f(x1), f ′(x1), f ′′(x1)} . . . {xN , f(xN ), f ′(xN ), f ′′(xN )}.



94

Written in terms of the boundary conditions and matching points, we have

ζproton(r) =





spline


 {0, 0.5, 0.55, 0}
{2.5, 1, 0, 0}


 if r < 2.5

1 if r ≥ 2.5

ζcore(r) =





spline




{0, 0, 0, 25/18}
{0.6, 1, 0, −25/18}
{1.5, 0, 0, 25/18}


 if r < 1.5

0 if r ≥ 1.5

.

Explicit polynomial expressions for ζproton and ζcore are given in Table 3.2.

ζproton ζcore

r < 2 r > 2 r < 0.6 0.6 < r < 1.5 r > 1.5
c0 0.500000 1.000000 0.000000 -8.487654 0.000000
c1 0.550000 0.000000 0.000000 49.897119 0.000000
c2 0.000000 0.000000 6.944444 -100.222908 0.000000
c3 -0.208000 0.000000 0.000000 97.165066 0.000000
c4 0.089600 0.000000 -19.290123 46.677336 0.000000
c5 -0.011520 0.000000 12.860082 8.890921 0.000000

Table 3.2: Polynomial coefficients for quintic splines, ζ =
∑

i cir
i.

Explanation of the energy expressions

What gives an electron p character? Consider the electron configuration of neon,

with its ten electrons. Two electrons pair up on top of the neon nucleus to form a

helium-like core, while the other eight electrons — four spin up and four spin down

— are valence electrons that surround the core. We assume that the core electrons

form a high concentration of charge around the nucleus that is unperturbed by the

presence of valence electrons. Then in order for valence and core electrons to have

zero overlap and satisfy the Pauli principle, the valence electron must change sign

over the region of the core electron.
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For lithium and beryllium, the valence electrons are centered on top of the

core electrons, and change sign over the core via a radial node contained in a 2s

function. For neon, the eight valence electrons cannot all be centered on top of the

core electrons, and they instead pack into a tetrahedral or cubic arrangement. In

this case — when the electron is shifted off-center — a planar node is preferred, and

is represented by a higher angular momentum 2p function with no radial nodes.

Imagine an electron approaching a nucleus with surrounding core electrons. Far

from the core, the electron is spherical and has the characteristics of a 1s function.

Closer to the core, the electron develops a planar node and attains p-character.

Once on top of the core, the electron develops a radial node and becomes s-like

again. In the eFF energy expressions, this p character dependence is represented

as a spline that is zero for r = 0, rises to a maximum when x/s = 0.6, then falls

back to zero when x/s = 1.5 (Figure 3.1).
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Figure 3.1: Pauli interaction between p-like versus s-like electrons.

The above explains why an electron’s shape is modified by the presence of core

electrons, which we assume to surround any nuclei with Z > 2. We discover that

bare nuclei, such as protons and helium nuclei, also affect the shape of nearby
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electrons, causing them to become more s-like.

Consider methane. The valence electrons that form the carbon-hydrogen bonds

skew toward the proton and away from the nucleus, which make them more s-like

than the valence electrons in neon. This is reflected in Pauling’s hybridization

model [3], which assigns neon valence electrons p hybridization and methane va-

lence electrons sp3 hybridization. A proton’s effect on hybridization is greatest

when the proton is near the center of the electron; in the energy expression, this

effect is represented by a spline which goes to 0.5 when x/s=0, then rises to become

1 when x/s = 2.5.

We assume that these two factors — electron proximity to cores, and electron

proximity to bare nuclei — are sufficient to determine an electron’s hybridiza-

tion/shape, which we represent with the scalar quantity χke; there is an analogous

two-body quantity χPauli we describe later as well, which includes angle effects.

We now discuss how electron shape affects the components in the eFF energy

expression.

First, p-like electrons have a higher kinetic energy than similarly sized s-like

electrons, due to the presence of the planar node. This effect appears in the eFF

energy expression as the factor fke, which scales between the two extremes cs−ke,

the multiplier for a pure s function, and cp−ke, the multiplier for a pure p function.

The hybridization variable χke varies between one for a pure s function and zero

for a pure p function, and is a multiplicative combination of contributions from all

nearby protons and cores.

The end result is that the kinetic energy of electrons is raised slightly around

cores, which is an effective two-body repulsion between cores and electrons. This

interaction has the same character — though the opposite sign — as a conventional

force field bond term.

Second, when electrons attain p character, their Pauli repulsion can turn into

Pauli attraction. At one extreme is the exchange interaction that stabilizes high-

spin configurations of atoms, e.g., Hund’s rule; at the other extreme is the repulsion

between helium atoms that causes them to repel.
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The physical origin of the Pauli attraction between valence electrons on the

same atom is as follows. Recall from the last chapter that Pauli repulsion is the

consequence of kinetic energy increase upon orbital orthogonalization. However,

in an atom like neon, the p electrons are already orthogonal to each other, due

to the relative geometry of the planar nodes. Thus the kinetic energy repulsion

vanishes, and instead a second-order attractive interaction — two-body exchange

energy — becomes dominant. The exchange term arises because the Pauli principle

causes same-spin electrons to avoid occupying the same region of space, which

causes electron-electron repulsion to decrease. Hence we expect that neon valence

electrons are stabilized not only by their attraction to the nucleus, but also by

their Pauli attraction to each other.

In the electron force field, EPauli is modified by two terms, frepel, which ensures

that electrons do not coalesce, and fswitch, which causes s-like electrons to repel

and p-like electrons to attract. They occupy separate ranges: frepel dominates at

high overlap, while fswitch dominates at lower overlap.

The term fswitch is a three-body term that modifies the Pauli interaction be-

tween two electrons and depends on the proximity of nearby cores and bare nuclei.

It is a function not only of electron-nuclear distances, but also of the electron-

core-electron angle; the attractive term reaches a maximum when the electrons

are 90o apart from each other. The combined effects of frepel and fswitch pushes

the electrons apart to an angle larger than 90o in first-row atoms (Figure 3.1).

We consider the fswitch modification to the Pauli interaction to be analogous to

a conventional force field angle term, since it depends on the electron-core-electron

angle. As with the bond term, the effect is limited in range with a strict spline

cutoff, so it is not overly expensive to compute.

The frepel term is a two-body electron-electron term, but is new in this eFF; it

addresses a problem found in the previous eFF, which is that same size electrons

could coalesce under extreme conditions. In the new formulation, we have a singu-

larity at S = 1 so that coalescence of same size electrons is no longer possible. We

have also added a term that encourages nearby electrons to have the same size.
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This helps to stabilize species such as methyl radical, where the radical electron

would otherwise be too large. Figure 3.2 shows a comparison between old and new

eFF versions of the Pauli repulsion between s-like electrons.
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Figure 3.2: Pauli repulsion between s-like electrons is modified to make electron

sizes more similar and prevent electron-electron coalescence.

We assume that electrostatics are unchanged between the old and new eFF,

and we leave the terms Enuc−nuc, Enuc−elec, and Eelec−elec the same as before. It is

possible there could be some benefit to making these terms dependent on electron

shape. However the electrostatics in our model are sensitive to small changes, and

we have found that most modifications to them cause problems with atom and

bond stabilities.

Results and discussion

Atom ionization potentials and polarizabilities

We create atoms with total spins satisfying Hund’s rule. When optimized with

eFF, hydrogen, helium, lithium, and beryllium all have nucleus-centered electrons,

consistent with their electron configurations 1s1, 1s2, 1s22s1, and 1s22s2. In boron

through neon, the valence electrons arrange themselves according to two rules:

(1) same spin electrons form close-packed symmetric shells (i.e., nucleus centered

point, line, triangle, or tetrahedron) and (2) shells of up-spin and down-spin elec-

trons rotate relative to each other to minimize electron-electron repulsion. In neon,

for example, the up and down spin electrons form two separate tetrahedral shells
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which interpenetrate each other to form a cubic lattice (Figure 3.3.

B C N O F Ne

Figure 3.3: Valence electrons of boron through neon arrange themselves into sym-

metric shells.

The new eFF properly reproduces periodic trends in the adiabatic ionization

potential E(Z)−E(Z + 1) (Figure 3.4). It is remarkable that with only one set of

parameters for the entire set of atoms, and with only spherical Gaussian functions,

we are able to properly describe the balance between electron penetration and

shielding, and the filling in of 1s, 2s, and 2p shells, while also reproducing the

special stability of half-filled p subshells.
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Figure 3.4: The new eFF reproduces the correct periodic trend of ionization poten-

tials for hydrogen through neon, while the old eFF is only suitable for describing

hydrogen through carbon.
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It is also clear why the old eFF worked well for the atoms hydrogen through

carbon, but was not suitable for describing nitrogen, oxygen, fluorine and neon

— the ionization potentials starting from boron decreased rather than increased

with increasing Z, which was acceptable for boron and carbon, but which led to

incorrect IPs for larger Z atoms, culminating in neon being unstable. The old eFF

had the incorrect Z dependence for ionization potential because it lacked stabilizing

exchange interactions between valence electrons on the same atom.

In addition to ionization potentials, we computed atomic polarizabilities with

eFF. This was done using a finite difference approach; the values plotted in Fig-

ure 3.5 are the averaged eigenvalues of the atomic polarizability tensor. Polariz-

abilities have units of volume, and can be taken as a measure of the size of the

electrons in a system.
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Figure 3.5: The new eFF computes reasonable polarizabilities for first-row atoms.

Oxygen and fluorine are exceptional cases, as the eFF gives those two atoms a

permanent dipole moment which they should not have.

The simplest cases are the helium-like ions, which contain two nucleus-centered

electrons, and a nucleus of variable charge. eFF values were compared to values

computed using first-order coupled perturbed Hartree-Fock theory [4]. We found

that eFF gave polarizabilities that agreed well with theory over six orders of mag-

nitude. This gave us confidence that eFF could properly describe polarizabilities

over a wide range of electron sizes.
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We found that first-row atomic polarizabilities were slightly too high (∼15%)

for lithium through carbon, and too low (∼30-50%) for nitrogen and neon. Oxygen

and fluorine have too-high polarizabilities because eFF gives those atoms a non-

spherical charge distribution, which results in a permanent dipole moment that

does not exist in the actual atom — the atoms rotate in the presence of an electric

field, which produces an artificially high polarizability. All in all though, we find

that the general periodic trend is correctly reproduced. eFF may prove to be a

useful way to obtain molecular polarizabilities as well, since dipole-dipole, atomic

polarizability, and Pauli effects are taken into account in a self-consistent way.

Atom hydrides

We optimize with eFF a series of atom hydrides AHn, where A = carbon, nitrogen,

oxygen, and fluorine, and n = 1 − 4 (Figure 3.6). In all cases, we have selected

the spin state corresponding to the most stable known ground state geometry.

We find very good agreement with known bond lengths and angles (Figure 3.7)

and moderately good agreement with known bond dissociation energies AHn →
AHn−1 + H (Figure 3.8). We reproduce (1) the shrinking of bond lengths with

increasing Z, (2) the larger bond angles in CH2 and CH3 versus NH2 and NH3,

and (3) the fact that bonds to nitrogen are weaker due to the special stability of

the nitrogen half-filled p shell.

It is encouraging that eFF can describe both radical species and closed-shell

species correctly, and at the same level of accuracy. This bodes well for the ap-

plication of eFF to processes where radical species are present, for example in

combustion or oxidation reactions. The closed-shell molecules CH4, NH3, OH2,

and FH are isoelectronic with each other, and we find that in these geometries,

electrons spin pair with each other. In the open-shell molecules, bond pair elec-

trons are spin paired, but lone pair electrons separate from each other as they do

in the free atoms.

Just as CH4, NH3, OH2, and FH are isoelectronic with each other, the molecules

CH3, NH2, and OH are isoelectronic as well, as are the molecules CH2 and NH.
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Figure 3.6: eFF describes both open-shell and closed-shell atom hydrides properly.
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These similarities are reflected in the correspondence of electron arrangements as

shown in Figure 3.6. We see, for example, that we can transform OH(d) to NH2(d)

by decreasing the nuclear charge by one and adding a proton, which brings two

opposite spin electrons together, and leaves three electrons as lone pair electrons.

It is evident that the nuclei in atom hydrides are in the correct positions, but

what about the bond pair and lone pair electrons? Their positions are not directly

observable quantities, but we can get some sense of where electrons should be by

finding the average position of Boys localized electrons using a density functional

theory calculation (B3LYP/6-311g**). For the molecules CH4, NH3, OH2, FH,

and Ne, we find that the distance between bond pair electrons and the central

nucleus matches those found with DFT, as do the angles between lone pair electrons

(Figures 3.9 and 3.10).

However, we find that eFF lone pair electrons are about ∼0.2 bohr further

away from the nucleus than they are in DFT. This trend is made further visible if

we plot the electron densities of the lone pairs along the electron-center/nuclear-

center axis, comparing eFF to DFT (Figure 3.11). In the density functional theory

calculation, both the bond pair and the lone pair have a planar node, and are

shifted asymmetrically in one direction, with the degree of shift greater in the

bond pair than in the lone pair.
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Figure 3.11: Electron densities along lone pairs and bond pairs; a comparison

between eFF electron densities and B3LYP localized orbital electron densities.

The eFF wavefunction in contrast has no planar node, but is centered in a

way that roughly overlaps the wavefunction on the “bonding side” of the node.

This results in good overlap between eFF and DFT wavefunctions in the case of

the bond pair, where the “bonding lobe” dominates; but worse overlap in the case

of the lone pair, where there is substantial electron density on both sides of the

planar node.

In other words, eFF may not describe properly the fact that lone pairs have

density on both sides of the nucleus. This does not affect bonding in atom hydrides,

but it does make the dipole moment of atom hydrides too high (e.g., FH dipole

moment of 2.76 D versus 1.90 D exact; OH2 dipole moment of 3.27 D versus 1.86 D

exact; Figure 3.3), which causes problems in describing intermolecular interactions,

as we shall see later. It may also account for the CH2 singlet-triplet splitting having

the wrong sign (singlet found to be 11 kcal/mol more stable than the triplet, when

it should be 9.4 kcal/mol less stable [5]).

By optimizing the ionization potentials of high-spin atoms, we have been able

to obtain accurate geometries and bond dissociation energies for atom hydrides.
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dipole (debye)
contribution eFF DFT
nuclei 4.20 4.41
dbp·nuc − dlp·nuc -0.68 -1.79
θlp·lp − 109.5o -0.76 -0.72

total 2.76 1.90

Table 3.3: Contributions to the dipole moment of hydrogen fluoride.

We have had the benefit of optimizing the proton-p-character spline to achieve this

goal, but it is surprising that optimizing one polynomial creates an agreement that

persists over such a range of molecules. By making comparisons to DFT localized

orbitals, we find that the bonding electrons are in the locations we would expect,

and that the lone pairs, though “lopsided” do make the correct angles with each

other. With the caveat that lone range electrostatics is not properly described due

to the too-high dipole moments of atom hydrides, we move on to consider other

types of bonds.

Carbon-carbon single and multiple bonds

In the new eFF, carbon-carbon single bonds have the bond-centered closed-shell

form as in the old eFF; but double and triple bonds now exist as banana bonds

instead of sigma-pi bonds (Figure 3.12). Without any particular optimization of

parameters, we find that carbon-carbon bond lengths for ethane, and ethylene, and

acetylene are within 0.01 Å of the exact values (Figure 3.13). Carbon-hydrogen

bond lengths are slightly longer than they should be by ≈ 0.05 Å.

As in the old eFF, carbon-carbon single and double bonds are too strong

(for ethane, 140 kcal/mol BDE versus 90 kcal/mol BDE exact; for ethylene, 211

kcal/mol BDE versus 170 kcal/mol BDE exact). Carbon-hydrogen bonds are too

weak (for ethane, 76 kcal/mol BDE versus 100 kcal/mol BDE exact; for ethylene,

82 kcal/mol BDE versus 113 kcal/mol BDE exact). The differences in CC and CH

bond dissociation energies between ethane, and ethylene, and acetylene however

are close to the exact values (with the exception of the CC triple bond energy),
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ethane, staggered

versus eclipsed

ethylene and

twisted form

acetylene

Figure 3.12: Electron arrangements in carbon-carbon single, double, and triple

bonds.
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suggesting that the energy differences stem from a systematic bias in the energetics

of CC versus CH versus radical electrons.

Ethane has a barrier to twisting of 1.6 kcal/mol as it passes from a staggered

to an eclipsed form (versus 3.0 kcal/mol exact [6]). As we see later, intermediate

range steric repulsions are systematically underestimated in our version of eFF.

Twisting ethylene causes the banana bond electrons to separate; at 90o, the up

spin electrons align along one axis while the down spin electrons align along a

90o axis. Twisted ethylene is higher in energy than planar ethylene by nearly 15

kcal/mol (versus 65 kcal/mol exact [7]).

Several problem cases that plagued the old eFF are now handled well with

the new eFF (Figure 3.14). Previously, it was found that carbon-hydrogen bond

lengths for secondary and tertiary carbons were unreasonably high, reaching 1.424

Å in isobutane. With the new eFF, the isobutane CH bond distance is now 1.137

Å, near the exact value of 1.108 Å.

CH3
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CH3

CH3

CH3
H3C

1.570 → 1.517 

(1.545)

1.424 → 1.137

(1.108)
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(1.525)
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(1.592)

H
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CH3H3C
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(1.545)

diamond,

periodic

1,3-dimethylcyclohexane (axial, axial) cis-fused decalin

old eFF

vs B3LYP

old eFF

vs B3LYP
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vs B3LYP

new eFF

vs B3LYP

Figure 3.14: Improved geometries for old eFF “problem hydrocarbons”.

Carbon-carbon bonds are found to be more rigid as well. Previously, tBu−t Bu

had a central carbon-carbon bond distance of 1.708 Å; with the new eFF, it is now

a more correct 1.519 Å (versus an exact value of 1.592 Å). Diamond now has a

CC bond distance of 1.510 Å versus an exact value of 1.545 Å. Geometries such

as 1,3-dimethylcyclohexane (axial-axial) and cis-fused decalin no longer display



109

inappropriate twisting or bending; they in fact superimpose nearly exactly onto

B3LYP- optimized structures. It appears as though the attractive three-body

potential between valence electrons and nuclei is enforcing more reasonable limits

on the range of valence electron motions. We quantify these observations more

precisely by measuring the bond lengths and angles of a range of simple substituted

alkanes and alkenes (Figures 3.15 and 3.16), and comparing them to exact values.
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Figure 3.15: Key geometric parameters of substituted alkanes and alkenes.

We find that carbon-hydrogen and carbon-carbon bond lengths are now closer

to the correct values. Under the old eFF, carbon-carbon double bonds were nearly

the same length as single bonds but under the new eFF are the correct 1.33 Å

length. Carbon-hydrogen bonds are no longer overly flexible. We do find some less

satisfying consequences, however: carbon-carbon single bonds are too rigid, and

carbon-carbon double bonds actually shrink with increasing substitution instead

of expanding. Bond angles also show more “scatter” from the exact values. Two

possibilities exist: either the bonds themselves are too rigid, or steric effects be-

tween adjacent alkyl groups are too small. Our later results tend to support the

latter hypothesis, although we have not ruled out the former possibility.

With more complex alkene geometries, eFF-optimized structures superimpose
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well onto B3LYP optimized geometries (Figure 3.17). This includes cyclic alkenes

with conjugated and non-conjugated double bonds, such as cycloheptene (2.36

Å RMSD), 1,3-cycloheptadiene (0.16 Å RMSD), and even the anti-aromatic cy-

clooctatetraene (3.29 Å RMSD), where the out-of-plane nature of the molecule

is captured. More rigid structures such as dimethylfulvene (1.79 Å RMSD) and

dicyclopentadiene (0.22 Å RMSD) match B3LYP structures even more closely.

H

H

CH3H3C

dimethylfulvene (1.79) dicyclopentadiene (0.22)

cycloheptene (2.36) 1,3-cycloheptadiene (0.16) cyclooctatetraene (3.29)

Figure 3.17: Optimized eFF and B3LYP alkenes superimposed, with root-mean-

squared deviations (RMSD) given in parenthesis (angstroms).

Work remains to improve the eFF description of multiple bonding. Although

bond dissociation energies are reasonable, eFF greatly overestimates the energy

gained from turning double bonds into single bonds. As a test case, we consider the

[4+2] cycloaddition between 1,3-butadiene and ethylene to produce cyclohexene,

whose driving force is the conversion of two double bonds into two single bonds.

eFF estimates the reaction energy to be -235 kcal/mol, significantly greater than

the B3LYP value of -36 kcal/mol; we see a similar result for the [2+2] addition of

two ethylenes to form cyclobutane.

Triple bonds are even more unstable relative to lower-order bonds; they are

higher in energy than diradical double bonds by 42 kcal/mol in acetylene and 54
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kcal/mol in dimethylacetylene. It appears that adjacent banana bond electrons in

eFF repel each other too much. eFF has been parameterized to correctly describe

the orthogonality of valence electrons around a single nucleus; perhaps further

modifications are needed to transfer those energy expressions to the case of orthog-

onal electrons within a multiple bond. The too-strong repulsion may also originate

from our electron anti-coalescence function, which aggressively keeps electrons of

similar size separated.

−235.0 (−35.6) −239.3 (−18.0)

and

Figure 3.18: eFF overestimates the energy gained from turning double bounds into

single bonds; prototype [2+2] and [4+2] cycloadditions are shown, eFF (B3LYP)

energy differences in kcal/mol.
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Figure 3.19: eFF alkynes are unstable relative to alkene diradicals. eFF (B3LYP)

distances in angstroms.

We have made no efforts to include conjugation or resonance effects in the eFF

model, so it is no surprise that benzene exists as 1,3,5-cyclohexatriene in our de-

scription, with distinct single and double bonds (with lengths of 1.505 Å and 1.309
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Å, respectively). In fact, diradical 1,4-cyclohexadiene — which would be a reso-

nance structure of benzene — exists in eFF as a separate local minimum geometry

that is less stable than 1,3,5-cyclohexatriene by 12 kcal/mol. Also, propene and

propane have nearly identical CH bond dissociation energies on their alkyl end

(75 and 76 kcal/mol respectively), indicating that the allyl radical has no special

stability.

Diradical is a separate

minimum, less stable

by 12 kcal/mol
1.505

(1.397)

1.309

(1.397)

benzene

H H

propene propane

Nearly identical C–H

bond dissociation energy

(75 and 76 kcal/mol)

Figure 3.20: eFF shows no resonance stabilization of conjugated double bonds.

All in all, we have made a significant advance over the previous eFF in de-

scribing hydrocarbons. Complex structures containing single and double bonds

now match closely with B3LYP optimized geometries. Double and triple bonds

are now the correct length and size; because double bonds now contain compact

banana electrons rather than overly diffuse sigma-pi electrons, structures such as

cyclooctatetraene have the correct geometry. Carbon-carbon and carbon-hydrogen

bond dissociation energies increase by the correct amount as unsaturation increases

(with triple bonds being an exception). It is apparent that the same Pauli function

that stabilizes lone pairs on neon also serves to stabilize banana bonds in double

and triple bonds; and it is remarkable that without further parameterization that

the correct lengths of multiple bonds and the geometries of complex molecules, are

reproduced well. Further work remains to obtain better isodemic reaction energies,

stabilize triple bonds, and include conjugation effects. Nonetheless, we have vali-

dated a basic point — exchange attraction is useful not only for obtaining correct
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ionization potentials for high spin atoms, but also for properly describing multiple

bonds.

Heteroatoms single and multiple bonds

We now consider molecules isoelectronic to ethane, ethylene, and acetylene con-

taining heteroatoms instead of carbons. As shown in Figure 3.21, the molecules

ethane, hydrazine, hydrogen peroxide, and fluorine are isoelectronic to each other;

as are ethylene, diimide, and singlet oxygen; and acetylene and dinitrogen.

H3C CH3 H2N NH2 HO OH F F O O

H2C CH2 HN NH O O

HC CH N N

singlet

triplet

Figure 3.21: Gallery of heteroatom single, double, and triple bonds.

We find that bonds between heteroatoms are too strong and too short (Fig-

ure 3.22). For example, while we calculate ethane to have a bond dissociation

energy of 140 kcal/mol vs 90 kcal/mol exact, and a bond length of 1.53 Å versus

1.53 Å exact, we calculate F2 to have a bond dissociation energy of 275 kcal/mol

vs 38 kcal/mol exact, and a bond length of 1.05 Å versus 1.35 Å exact. One pos-

sibility is that eFF does not have sufficient repulsion between lone pairs. In both

the single and double bonds, increasing the nuclear charge causes the bond joining

the atoms to become weaker, due in part to the greater repulsion between lone

pairs as the bond length shrinks.
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Figure 3.22: Bonds between heteroatoms are too strong and too short, possibly

due to insufficient repulsion between lone pairs.

This logic does not extend to N2, where the lone pairs are directed away from

each other — the triple bond in N2 is more than 100 kcal/mol stronger than the

triple bond in acetylene. eFF also predicts that the N2 bond should be especially

strong, but with a bond dissociation energy only 42 kcal/mol stronger than in

acetylene.

Triplet oxygen is another unusual case — it is analogous to F2, but with two

fewer lone pair electrons it is able to form two two-center three-electron bonds with

a combined strength of 163 kcal/mol, which is 125 kcal/mol stronger than the F2

bond. It is difficult to tell whether eFF can capture these effects; eFF predicts

that the O2 triplet bond is 20 kcal/mol weaker than the bond in F2, but it is not

clear how this value would change if lone pairs were made to be more repulsive.

To test our hypothesis that lone pairs do not repel strongly enough in eFF,

we compute the interaction energy of two neon atoms (Figure 3.23), and compare

it to the Hartree-Fock interaction energy, which serves as an accurate estimate of

exchange repulsion. We find that eFF significantly underestimates the neon-neon

repulsion. In F2, eFF finds that the lone pairs repel each other with an energy of

∼0.25 hartrees. If we assume that the fluorine atoms should repel each other as

the neon atoms do, we conclude that the bond length should be larger by ∼0.3

Å, which matches the discrepancy between eFF and exact bond lengths. Other

contributions, such as the change in electron size upon binding, and the effects of
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p versus s character on Pauli repulsion, were found to be minimal.
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Figure 3.23: Repulsion between neon atoms in eFF is too small.

We conclude that the Pauli repulsion between lone pairs is too small and that

it is necessary that this issue be corrected before simulations with heteroatoms can

be accurate. Once lone pair-lone pair interactions are properly described, a wide

range of organic reactions could be studied using eFF.

Van der Waals dimers and hydrogen bonds

With the electron force field, it should be possible to model interactions between

molecules as well as interaction within molecules. We examine as test cases wa-

ter dimer, hydrogen fluoride dimer, methane-water dimer, and methane-methane

dimer (Figure 3.24). The interaction between two methanes is reasonably well-

described (∆E = -0.5 kcal/mol vs -0.3 kcal/mol exact, and RCC = 3.91 Å versus

4.13 Å exact), but in water dimer and HF dimer, the hydrogen bonds are signif-

icantly too strong and too short (for water dimer, ∆E = -36 kcal/mol versus -5

kcal/mol exact, with ROO = 2.29 Å versus 2.92 Å exact; for HF dimer, ∆E = -54

kcal/mol versus -5 kcal/mol exact, with RFF = 2.13 Å versus 2.73 exact). The

methane-water interaction falls between these two extremes, and has ∆E = -3.9

kcal/mol versus -0.9 kcal/mol exact, and ROO = 3.18 Å versus 3.51 Å exact.

Remarkably, electrostatics and Pauli repulsion are balanced sufficiently in the

water and HF dimer cases that the angles they make relative to each other are
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Figure 3.24: Hydrogen bonds in eFF are too strong and too short, probably from

a combination of too-small Pauli repulsion and too-large monomer dipoles.
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nearly the exact values (water dimer θ1 = 5o versus 6o exact and θ2 = 112o versus

123o exact; HF dimer θ1 = 6o versus 7o exact and θ2 = 104o versus 112o exact).

We propose that eFF hydrogen bonds are too strong and too short because

the monomer dipoles are too large and the Pauli repulsion between monomers too

small. Taking water dimer as a test case, we attempt to quantify the change in

interaction energy and geometry we would expect if the monomer dipoles and Pauli

repulsions were correct. We make a dipole moment correction by adding point

dipoles onto both water molecules of a magnitude such that the net water dipole

goes from 3.27 D to 1.85 D, the exact value. Moving the water molecules apart from

each other with bond lengths and angles fixed, we find that the dipole correction

makes the water molecules bind by only 18 kcal/mol, with an OO distance of ∼2.45

Å. It is clear that although the too-large dipole moment does cause the hydrogen

bond to be stronger, it cannot be responsible for all of the too-high eFF hydrogen

bond strength of 36 kcal/mol.
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Figure 3.25: Interaction energy of the water dimer, with the estimated effects of

changing monomer dipole moments and Pauli repulsions to be the correct values.

We estimate the Pauli correction by taking the difference between eFF and
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Hartree-Fock interaction curves for neon dimer and parameterizing it:

log Edifference = 8.55616r − 15.1178r2 + 8.15818r3 − 1.65597r4

where r is in bohr and the energy is in hartrees. We correct for the difference in

size between a water molecule and a neon atom by scaling the distances by the

cube root of the ratio of polarizabilities (αneon = 2.67 bohr3, αwater = 9.92 bohr3;

(αwater/αneon)1/3 = 1.55). With the Pauli correction added, the water dimer has

a binding energy of ∼3 kcal/mol and an OO distance of ∼3.2 Å, closer to the ex-

pected value. It appears that a combination of correct Pauli repulsion and correct

monomer dipole moments is needed to obtain a correct description of hydrogen

bonding in eFF.

Unlike with conventional force fields, in eFF hydrogen bonds appear as an

emergent consequence of existing electrostatic and Pauli interactions. In attempt-

ing to describe inter- and intramolecular bonding with the same set of energy

expressions and parameters, we face a more difficult challenge than arises in de-

veloping conventional force fields, which usually contain explicit van der Waals

and hydrogen bond terms. Advanced water force fields often combine multiple or

delocalized charges with polarizable sites and explicit van der Waals and repul-

sive terms. Such schemes require extensive parameterization against properties of

interest and use parameters and functions that are rather system-specific. In con-

trast, eFF accounts for electrostatic and Pauli effects in a way designed to apply

generally over a broad range of molecules, and so may be useful in developing new

transferable force fields with accurate descriptions of solvents.

Too-small sterics cause other problems

We found by studying the interaction energy of neon dimer that Pauli repulsions

between valence electrons on different atoms were underestimated, which caused

bonds between heteroatoms to be too strong, and hydrogen bonds to be too strong

as well. We show in this section that this effect causes problems in other systems
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as well, including systems that were previously well-described by the old version

of eFF.

Cyclic alkanes with more than three carbons are nonplanar, and the old eFF

reproduced well the magnitude of key dihedral angles measuring the twist of cy-

cloalkanes out of planarity. The new eFF does slightly worse, making cyclobutane,

cyclopentane, and cyclohexane more planar than they should be (Table 3.4). This

is likely a consequence of the too-small barrier to ethane rotation discussed pre-

viously (1.6 kcal/mol versus 3 kcal/mol exact). We find that other intermediate

range steric interactions are underestimated as well (Table 3.5), including the

gauche versus trans butane interaction (0.4 versus 0.9 kcal/mol B3LYP), and the

1,3-diaxial interaction (3.3 kcal/mol versus 5.9 kcal/mol B3LYP).

key dihedral (degrees)
old eFF new eFF B3LYP

cyclobutane 0.3 0.0 18.0
cyclopentane -21.5 -18.9 -33.2
cyclohexane (chair) 57.7 50.6 56.6
cyclohexane (twist-boat) -34.0 -27.1 -32.3

Table 3.4: New eFF makes cyclic alkanes slightly more planar than they should
be.

∆E (kcal/mol)
system energy of relative to old eFF new eFF B3LYP
ethane eclipsed staggered 2.1 1.6 2.7
butane gauche trans 1.6* 0.4 0.9
cyclohexane twist-boat chair 4.7 4.3 6.3
1,3-dimethyl-cyclohexane ax-ax eq-eq 5.8 3.3 5.9

ax-eq eq-eq 2.7 0.7 2.1
decalin cis trans 12.1 1.1 3.2
2-pentene major minor 5.5 5.2 4.6

Table 3.5: New eFF underestimates the magnitude of intermediate range steric
repulsions.
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The old eFF was used to study the dynamics of hydrogen plasmas, but the new

eFF is no longer useful for that purpose, because it improperly stabilizes triangular

and tetrahedral clusters of hydrogen atoms (triangular H3 is 28 kcal/mol more

stable than H2 + H, and tetrahedral H4 is 28 kcal/mol more stable than H2 + H2).

This is a clear consequence of insufficient Pauli repulsion between s-like electrons.

H
2
 + H

H
2
 + H

2

∆E = 42.0 → 12.5 

(9 kcal/mol)

∆E = 131.7 → 3.6 

(147 kcal/mol)

∆E = -28.3 kcal/mol

∆E = -27.6 kcal/mol

line triangle

square tetrahedron

wrongly stable with new eFF

Figure 3.26: The new eFF creates spurious stable minima corresponding to un-

physical arrangements of hydrogen atoms.

We have been curious to study bonding in electron-rich solids, and were de-

lighted to find that the new eFF could optimize a cluster of twelve boron atoms in

an icosaheral arrangement (Figure 3.27). Such an icosahedral arrangement mirrors

the units found in α-boron solid, and it was not possible to obtain such a structure

with the old eFF. With the new eFF, the boron-boron distances are nearly iden-

tical to those found with B3LYP (1.677 Å versus 1.673 Å B3LYP), and a slight

shear distortion is also reproduced.

However, we also discover with the new eFF a boron-centered amorphous jum-

ble of atoms 600 kcal/mol more stable than the icosahedral structure; such a

structure does not have any special stability according to B3LYP. It is possible to

destabilize this structure by adjusting other parameters in the eFF, and to obtain
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Figure 3.27: Icosahedral boron cluster B12 is stable with the new eFF, and matches

a B3LYP optimized geometry well; however an amorphous boron-centered struc-

ture is found to be even more stable.
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stable structures for B12, larger boron hydrides, and carboranes; but we would

prefer to stay with a single set of parameters that treated all systems consistently.

Based on the above results, it is not possible to unequivocally recommend the

new eFF over the old eFF, even though the new eFF describes with higher accuracy

atoms, molecules with lone pairs, atom hydrides, and single and double bonds.

Conclusion

We have outlined a new eFF that accounts for changes in electron shape caused by

the influence of nearby nuclei and core electrons. Previously we had assumed that

the Pauli principle was manifested solely by electrons repelling each other. In this

chapter, we demonstrate an important exception to the rule — when electrons are

orthogonal to each other, as they are when they attain p character and are at a

90o angle to each other, the Pauli repulsion is reduced and can become attractive.

This is due to the same decrease in electron-electron repulsion between same spin

electrons which causes the ground state of atoms to be high spin (Hund’s rule).

By including electron shapes, we can with a single set of parameters obtain

correct ionization potentials and polarizabilities for atoms from hydrogen through

neon. Electrons arrange themselves into s-like and p-like shells naturally, and the

special stability of s shells, p shells, and even half-filled p shells emerges naturally

from the eFF energy expressions.

Conceptually it should be possible to extend eFF to higher-row atoms by pa-

rameterizing interactions between electrons and larger cores, such as neon, argon,

and so on.

We obtain good geometries and bond dissociation energies for atom hydrides

and hydrocarbons as well, in the process correcting many of the issues afflicting

the old eFF, such as carbon-hydrogen bonds that were too variable in length,

and double bonds that were too long. In most cases, hydrocarbon geometries

containing single and double bonds optimized with eFF match B3LYP geometries

well, even for flexible molecules such as cycloheptene and cyclooctatetraene.

The new version of eFF has clear limitations as well. It is too easy to turn dou-
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ble bonds into single bonds, and triple bonds are unstable relative to double bond

diradicals, suggesting that banana bond electrons repel each other too strongly.

We do not account for conjugation, so benzene appears as 1,3,5-cyclohexatriene.

We also find that in making it easier for valence electrons to pack together to form

atoms, we have degraded the accuracy of part of the old eFF — the Pauli repul-

sion between s-like electrons is now underestimated in a variety of systems. This

underestimation causes heteroatom bonds and hydrogen bonds to be too short

and too strong, and causes hydrogen and boron clusters to arrange themselves in

unphysical configurations.

To correct this problem, we have attempted to modify the Pauli potential to

be more repulsive while still preserving a proper description of first row atoms,

but it has not been straightforward to do. We may have overconstrained our

energy expression by assuming that exchange attraction could be approximated by

a functional form similar to that used to describe exchange repulsion. In the future,

it may be useful to investigate separate functional forms for (1) exchange repulsion

between s-like electrons, which arises from the increase of kinetic energy upon

orbital orthogonalization; and (2) exchange attraction between p-like electrons,

which arises from the decrease of electron-electron repulsion as a consequence of

the Pauli principle.

Nonetheless, our results suggest strongly that (1) it is possible to describe

systems with p-like electrons using only spherical Gaussian functions,(2) electron

shape can be specified implicitly, by considering the position of the electron relative

to the nuclei of the system, and (3) the dominant effects to consider for interactions

of p-like electrons are changes in kinetic energy and Pauli interactions.

These terms take the form of two and three body terms involving nuclei and

electrons, analogous to the bond and angle terms found in traditional force fields. It

is more than likely that future eFFs will find it advantageous to include such terms

in order to account for the diversity of electron shapes present in molecular systems

while maintaining the simplicity of propagating spherical Gaussian functions.
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Supplemental tables

new eFF energy (au) ionization potentials (kcal/mol)
E(Z) E(Z+1) new eFF old eFF HF exact

H -0.424413 0 266.3 266.3 313.6 313.6
He -2.300987 -1.697653 378.6 378.6 540.8 567.0
Li -6.114980 -5.944908 106.7 105.6 123.1 124.3
Be -12.144527 -11.878010 167.2 165.8 185.6 215.0
B -20.634538 -20.359386 172.7 228.4 183.0 191.4
C -31.949192 -31.554495 247.7 155.3 249.1 259.7
N -46.398088 -45.919451 300.0 60.9 322.6 335.2
O -64.141692 -63.732720 257.1 421.1 276.3 314.0
F -85.639717 -85.082131 350.4 190.2 363.1 401.8
Ne -111.218594 -110.546393 421.9 -12.8 457.8 497.3

Table 3.6: Ionization potentials of first row atoms; HF = Hartree-Fock/6-311g**

dipole (debye) polarizability (bohr3)
eFF eFF σ1 eFF σ2 eFF σ3 eFF avg σ exact

H 0.000 3.1 3.1 3.1 3.1 4.5
He 0.000 0.7 0.7 0.7 0.7 1.4
Li 0.000 204.4 204.4 204.4 204.4 164.0
Be 0.000 51.5 51.4 51.4 51.5 37.8
B 0.001 42.7 42.5 23.9 36.4 20.4
C 0.001 39.2 8.7 8.2 18.7 11.9
N 0.000 4.5 4.5 4.4 4.5 7.4
O 0.071 37.4 5.9 2.9 15.4 5.4
F 0.338 79.7 24.6 5.0 36.4 3.8
Ne 0.000 1.1 1.1 1.1 1.1 2.7

Table 3.7: Polarizabilities of first row atoms
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BDE bond length bond angle
(kcal/mol) (angstroms) (degrees)

spin E (hartrees) eFF exact eFF exact eFF exact
H d -0.424413
C t -31.94919
N q -46.39809
O t -64.14169
F d -85.63972

CH d -32.5385 103.5 81.4 1.124 1.120
NH t -46.97412 95.1 75.1 1.051 1.036
OH d -64.74731 113.7 102.3 0.94 0.970
FH s -86.24148 111.3 136.4 0.874 0.917

CH2 t -33.11301 94.2 101.8 1.119 1.08 118.7 135.5
CH2 s -33.130497 105.2 92.4 1.137 1.109 125.0 102.0
NH2 d -47.55188 96.2 96.6 1.033 1.024 105.5 103.2
OH2 s -65.3489 111.2 117.9 0.949 0.958 103.7 104.5

CH3 d -33.69142 96.6 109.6 1.133 1.079 112.5 120.0
NH3 s -48.13353 98.7 101 1.044 1.017 104.5 107.8

CH4 s -34.23913 77.4 104.8 1.144 1.086 109.5 109.5

Table 3.8: Atom hydride bond dissociation energies and geometries.
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dipole (debye)
spin eFF mp2 expt

H d 0.000
C t 0.001
N q 0.000
O t 0.071
F d 0.338

CH d 1.258 1.539
NH t 1.567 1.592
OH d 2.559 1.702 1.660
FH s 2.769 1.824 1.820

CH2 t 1.534 0.612
CH2 s 1.381 0.590
NH2 d 2.398 1.864
OH2 s 3.269 1.936 1.850

CH3 d 1.256 0.000 0.000
NH3 s 2.945 1.622 1.470

CH4 s 0.000 0.000 0.000

Table 3.9: Atom hydride dipole moments; MP2/cc-pvtz dipoles are from the NIST
webbook.

B3LYP/6-311g** eFF
dnuc·bp dnuc·lp θlp·lp dnuc·bp dnuc·lp θlp·lp

CH4 1.375 1.452
NH3 1.161 0.642 1.187 0.871
OH2 0.999 0.572 121.9 0.987 0.788 119.7
FH 0.861 0.508 114.5 0.830 0.696 113.4
Ne 0.456 109.5 0.613 109.5

Table 3.10: Atom hydride bond pair and lone pair geometry parameters; distances
are in bohr and angles are in degrees.
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∆E (kcal/mol)
relative to energy of eFF exact
C2H6 2 CH3 (d) 140.4 89.7
C2H4 2 CH2 (t) 211.1 172.2
C2H2 2 CH (d) 194.3 229.8

C2H6 C2H5 (d) + H (d) 75.9 100.1
C2H4 C2H3 (d) + H (d) 82.0 113.3
C2H2 C2H (d) + H (d) 105.2 131.8

C2H6 (staggered) C2H6 (eclipsed) 1.6 3.0
C2H4 (planar) C2H4 (twisted) 15.4 65.0

Table 3.11: Bond dissociation and relative conformer energies of ethane, ethylene,
and acetylene.

spin E (kcal/mol)
H d -0.424413
CH d -32.538497
CH2 t -33.113010
CH3 d -33.691424
C2H5 d -67.061321
C2H3 d -66.007466
C2H d -64.794602

C2H6 (staggered) s -67.606657
C2H6 (eclipsed) s -67.604039
C2H4 (planar) s -66.562498
C2H4 (twisted) s -66.538012
C2H2 s -65.386616

Table 3.12: Absolute energies of ethane, ethylene, acetylene, and related conform-
ers and fragments.
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dCC (Å) dCH (Å)
spin eFF B3LYP exact eFF B3LYP exact

H d
CH d 1.124 1.128 1.120
CH2 t 1.119 1.080 1.085
CH3 d 1.133 1.080 1.079
C2H5 d 1.512 1.487 1.129 1.083
C2H3 d 1.319 1.305 1.316 1.141 1.088 1.085
C2H d 1.196 1.202 1.217 1.110 1.064 1.047

C2H6 (staggered) s 1.530 1.531 1.536 1.141 1.093 1.091
C2H6 (eclipsed) s 1.533 1.544 1.140 1.092
C2H4 (planar) s 1.335 1.327 1.339 1.138 1.085 1.086
C2H4 (twisted) s 1.345 1.327 1.137 1.085
C2H2 s 1.209 1.198 1.203 1.120 1.063 1.063

Table 3.13: Bond lengths of ethane, ethylene, acetylene, and related conformers
and fragments.
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aHCH (degrees) aHCH radical end (degrees)
spin eFF B3LYP exact eFF B3LYP exact

H d
CH d
CH2 t 118.7 134.7 135.5
CH3 d 112.5 120.0 120.0
C2H5 d 108.1 108.2 110.2 117.5
C2H3 d 124.6 115.9 121.5 127.5 138.5 137.3
C2H d

C2H6 (staggered) s 107.4 107.6 108.0
C2H6 (eclipsed) s 107.0 107.1
C2H4 (planar) s 119.5 116.4 117.6
C2H4 (twisted) s 114.4 116.5
C2H2 s

Table 3.14: Bond angles of ethane, ethylene, acetylene, and related conformers
and fragments.
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BDE (kcal/mol) bond length (Å)
spin E (hartrees) eFF exact eFF exact

O s -64.102759
O t -64.141692
N d -46.315322
F d -85.620743

NH s -32.538497
OH d -64.747313
NH t -46.974123

CH2 t -33.11301
NH2 d -47.551883

CH3 d -33.691424

C2H6 s -67.606657 140.4 89.6 1.530 1.528
N2H4 s -95.41651 196.2 68.2 1.329 1.413
O2H2 s -129.873617 237.8 51.2 1.169 1.396
F2 s -171.679689 275.0 37.9 1.045 1.345
O2 t -128.650873 255.0 163.4 1.137 1.208

C2H4 s -66.562498 211.1 172.2 1.335 1.317
N2H2 s -94.382841 272.7 144.0 1.146 1.216
O2 s -128.85089 356.1 96.0 1.003 1.216

C2H2 s -65.386616 194.3 229.7 1.209 1.186
N2 s -93.007331 236.4 334.9 1.052 1.078

Table 3.15: Heteroatom single, double, and triple bonded species bond dissociation
energies and bond lengths.
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Chapter 4

Development of an electron force field. III.

Metallic electrons and the uniform electron

gas. Creation of a correlation function

Introduction

We presented in the last chapters an electron force field that could describe cova-

lent, ionic, and multicenter bonds between first-row atoms, distinguishing between

s-like and p-like electrons. In this chapter, we show that eFF can be modified to

describe delocalized or metallic electrons, and we develop a term to account for

electron correlation.

Electrons are fermions, and same-spin electrons strive to avoid each other.

However, when many electrons are forced into a region with a flat potential, the

result can be a lowering of kinetic energy as indistinguishable electrons mix and

delocalize over a wider region of space. This effect is responsible for the high

conductivity of metals, the stability of benzene and other conjugated pi systems,

and the ability of chloroplasts in plants to harvest light energy.

Is it possible for us to model the energetics of delocalized electrons using lo-

calized spherical Gaussians? Recall that previously we modeled p electrons using

spherical Gaussian functions by modifying the effective interactions between elec-

trons; we use a similar procedure here.

We would also like to develop an eFF expression for electron correlation. eFF
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uses as its wavefunction a product of three-dimensional orbitals, implicitly assum-

ing that electrons move independently of each other. We know this is not true, and

we have already added Pauli terms to the electron force field to account for same

spin electrons excluding each other. Additionally all electrons, regardless of spin,

repel each other via Coulomb repulsion, which causes electrons to instantaneously

avoid each other in space. This instantaneous correlation of electron motions tends

to lower the overall energy of the system; the energy difference is termed “electron

correlation”.

To model the delocalization of electrons in a uniform potential and electron

correlation effects, it is useful to study the uniform electron gas, which consists of

electrons moving in a uniform background charge that exactly neutralizes the elec-

tron charge. The system is characterized by a single density parameter rs, defined

such that the density ρ = (4/3πr3
s)
−1. In the limit of high density (small rs), the

kinetic energy dominates, and we can take the wavefunction to be the Slater de-

terminant of particle-in-a-box orbitals (Hartree-Fock approximation). The energy

per particle in Hartrees is then [1]

E =
6
5

(
9π

4

)2/3 1
r2
s

− 3
π

(
9π

4

)1/3 1
rs

. (4.1)

Note that the uniform electron gas at high densities behaves like an ideal gas,

which we usually consider to be a valid approximation for atomic gases at low

densities. In an atomic gas, the potential energy dominates at high densities,

while in an electron gas, the potential energy dominates at low densities. This

results in a “reversal” of phase changes [2] — as the density of a uniform electron

gas is decreased, it transitions from a gas to a Fermi liquid, where electrons move

freely past each other, but have some affinity for each other. As the density is

decreased further, the Fermi liquid becomes a Wigner crystal, where electrons

localize and arrange themselves in a crystalline array that minimizes electrostatic

potential energy.

The crossover point between electron gas and Fermi liquid occurs roughly when
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the kinetic and potential energies are the same, rs = 0.74 bohr. The Wigner crystal

was proposed by Wigner [3] in 1934, but only recently with high-accuracy quantum

Monte Carlo computations has it been possible to determine the crossover point

from a Fermi liquid; it was found by Ceperley and Adler [4] to occur at the very

low density rs = 100 bohr.

Metals have an rs that ranges from 1.87 bohr (Be) to 5.62 bohr (Cs), well

within the Fermi liquid range [2]. It has been possible to obtain “exact” energies

for the uniform electron gas within this regime using diffusion Monte Carlo, and

Ceperley and Alder [4] found that electron correlation effects are significant, with

the exact energy greater than the Hartree-Fock energy by as much as 60%. We

attempt to use eFF to reproduce both Hartree-Fock and exact uniform electron

gas energies as a function of density.

For studying delocalized electrons in metals in molecules, the uniform electron

gas serves as model for one extreme — completely delocalized electrons in a uniform

potential — that contrasts with the systems containing nuclei we have studied thus

far. It will serve as the most severe test of eFF’s ability to describe delocalized

electrons with localized orbitals, and act as an anchor point for interpolation in

developing eFF functions applicable to a wide range of potentials and electron

localizations.

In regards to developing an eFF correlation function, there has been a long

history in the density functional community of developing functionals with the

uniform electron gas (such as the local density approximation [5]) that can be

transferred with some modifications to inhomogeneous systems containing nuclei

(generalized gradient approximation [6] and hybrid functionals [7]). We hope to

replicate the success of this approach in the context of the electron force field.

There have been previous efforts to simulate the uniform electron gas using

classical particles. Early approaches used screened Coulomb potentials to model

electron-electron interactions, with added interactions to account for Pauli repul-

sion [8]. More recent efforts have focused on reproducing the proper momentum

distribution of electrons in dynamics simulations using momentum-dependent po-
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tentials [9, 10]. Our model is more ambitious in two regards. First, it allows

electrons to have different sizes depending on the local electrostatic environment,

a degree of freedom useful for describing molecules and different electron pack-

ings. Second, we estimate electron correlation, which in the Fermi liquid regime

constitutes a large portion of the total energy.

This chapter is organized as follows. We begin by discussing the partition

of energy into kinetic energy, electrostatic potential energy, and exchange and

correlation components, as in density functional theory. We propose two sets of

exchange/correlation functions, one suitable for describing the uniform electron

gas, and another suitable for describing systems containing nuclei; we leave the

work of interpolating between these two cases for a later date. With these energy

functions, we compute the energetics, pair distribution functions, heat capacity,

and oscillations of a uniform electron gas; and the energies and geometries of a

variety of atoms and molecules with s-like electrons, with correlation included.

Energy expressions

As before, the system is composed of point nuclei with coordinates R and momenta

P, and of electrons defined by spherical Gaussian wave packets with positions x,

translational momenta px, sizes s, and radial momenta ps:

Ψ ∝
∏

j

exp
[
−

(
1
s2
− 2ps

s
i

)
(r− x)2

]
· exp[ipx · x]. (4.2)

Then the overall energy is a sum of the Hartree product kinetic energy, Hartree

product electrostatic energy, and exchange and correlation energies:

E = Eke + Enuc·nuc + Enuc·elec + Eelec·elec + Eexch + Ecorr.
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The electrostatic energy and kinetic energy expressions are the same as before:

Eke =
∑

i

3
2

1
s2
i

Enuc·nuc =
∑

i<j

ZiZj

Rij

Enuc·elec = −
∑

i,j

Zi

Rij
Erf

(√
2Rij

si

)

Eelec·elec =
∑

i<j

1
xij

Erf




√
2xij√

s2
i + s2

j


 .

We define an exchange energy as a pairwise sum over same-spin electrons, and a

correlation energy as a pairwise sum over opposite-spin electrons. For the uniform

electron gas, we use exchange and correlation functions defined as:

Eexch =
∑

σi=σj

1
2

aexchS2
ij

1− S2
ij

· (t11 + t22)

Ecorr =
∑

σi 6=σj

−acorr

1 + bcorrsavg
· S1/2

ij

where the parameters are aexch = 1/2, acorr = 0.111283 hartrees, bcorr = 0.110253bohr−1;

and the kinetic energy sum t11 + t22 and average electron size savg are defined as

t11 + t22 =
3
2

(
1
s2
1

+
1
s2
2

)

savg =
√

(s2
1 + s2

2)/2.

For systems with nuclei, we use a modified exchange function:

Eexch =
∑

σi=σj

1
2

S2
ij

1− S2
ij

(
(aexch + bexchfsize + cexch) (t11 + t22)− cexch

2t12

Sij

)

where fsize = s1/s2 + s2/s1 − 2, and we set the parameters to be aexch = 0.4,

bexch = 0.15, and cexch = 1. We use as the correlation function the uniform

electron gas correlation function multiplied by three.
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On the exchange and correlation partitioning of energies

The terms “exchange” and “correlation” are like the terms “nonlinear,” “enan-

tioselective,” and “structured” in the terms nonlinear dynamics, enantioselective

catalysis, and structured programming respectively — they represent quantities

made notable by their absence in historically prominent methods.

In ab initio methods, exchange refers to the difference in energy between a

Slater determinant and a Hartree product wavefunction, while correlation refers

to the difference in energy between the exact energy and the Slater determinant

energy (Table 4.1). Physically, exchange can be viewed as the effect of adding Pauli

repulsion to an independent-electron mean-field model, while correlation can be

viewed as the effect of adding instantaneous Coulomb repulsion (as opposed to

the Coulomb repulsion that determines the shape of the orbitals) to a mean-field

model.

Since exchange and correlation are defined with respect to the levels of approx-

imation within a specific method, we must take care in attempting to compare

these quantities across different methods.

In density functional theory, we estimate correlation by integrating over a func-

tion of the electron density. Because of the way DFT is formulated, it emphasizes

corrections to an independent particle model made when electrons are close to each

other, so-called local or dynamic correlations. In contrast, configuration interac-

tion methods most easily correct for longer range static correlations made when

electrons delocalize over a longer distance, as in resonance stabilization or bond

breaking — density functional theory neglects these effects. Although for many

chemical problems it is acceptable to neglect long-range electron correlation, it is

not so acceptable to neglect long-range electron exchange. Modern hybrid density

functionals combine a local exchange which is compatible with local correlation

functionals with some fraction of longer-range nonlocal Hartree-Fock exchange

(exact exchange).
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Terms Effects described Method name
Ab initio (wavefunction based)
Hartree product ke + electrostatics + self
Slater determinant + exchange - self Hartree-Fock
Few Slaters + static correlation Gen. valence bond
Many Slaters + dynamic correlation Config. interaction

Density functional theory (Kohn-Sham)
Hartree product ke + electrostatics + self
f Slater determinant + f exact exchange - f self
(1 - f ) exch functional + (1 - f ) local exchange
corr functional + dynamic correlation LDA, GGA (f = 0);

hybrid (f 6= 0)
Electron force field
Hartree product ke + electrostatics
pairwise exchange + exchange eFF (exch only)
pairwise correlation + dynamic correlation eFF (exch + corr)

Table 4.1: Comparison of terms and physical effects included in ab initio versus
density functional versus electron force field methods.

Most work to improve ab initio methods has focused on finding more efficient

ways to add dynamic correlation in a consistent way, whether through perturbation

theory, configuration interaction, coupled cluster methods, or other schemes. Most

work to improve density functional theory has focused on developing “non-local”

correlation functionals, perhaps based on orbitals [11]; and on correcting the so-

called “self-interaction error,” caused because in orbital schemes where less than

the full quantity of exact exchange is used, some residual self-repulsion of individual

electrons against themselves remains.

In the electron force field, we approximate exchange energy as a pairwise sum

over same-spin electrons, and correlation energy as a pairwise sum over opposite-

spin electrons. Since exchange arises as a consequence of Pauli repulsion, it is

straightforward to see why it would be computed as an interaction between same-

spin electrons. However, why should we restrict correlation to be an interaction

between opposite-spin electrons? We reason that same-spin electrons are already

segregated from each other because of the Pauli principle, so that the effects of

adding electron correlation to pairs of same-spin electrons should be small com-
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pared to the electron correlation that acts between opposite-spin pairs.

With this scheme, both exchange and correlation are treated at the same level,

in a consistent way. It should be possible to account for both long- and short-

range exchange and correlation, since we are summing over electrons that may

be far away from each other. Also, because we compute electrostatic interactions

only between different electrons, there is no self-interaction error. Our method of

estimating electron correlation as a pairwise sum over orbitals is reminiscent of

the independent electron pair approximation (IEPA) methods developed back in

the 1960s [12, 13]. However, since those methods were developed in a configura-

tion interaction framework, there were some issues with size consistency, which

occurred because virtual orbitals could mix and lower the correlation energy even

when molecules were infinitely separated [14]. Our method should have no such

difficulties.

We consider the sum of kinetic energy, electrostatic potential energy, and pair-

wise exchange to be the equivalent of a Hartree-Fock calculation; and the further

addition of pairwise correlation to be the equivalent of an “exact calculation,”

comparable to a configuration interaction or B3LYP calculation. There are some

difficulties with direct comparisons: Hartree-Fock can be computed in the exact

basis limit, while we are limited to a subminimal basis of spherical Gaussians; also

there are differences in the way static versus dynamic correlations are handled in

CI versus DFT methods. With these caveats, we proceed with our comparisons,

and find, remarkably, that the agreement is often quite reasonable.

Exchange and correlation functions for the uniform electron gas

In the simplest approximation, we take the eFF exchange energy to be the pairwise

sum of kinetic energy changes upon pairwise orbital orthogonalization:

Eexch =
∑

σi=σj

S2
ij

1− S2
ij

(
t11 + t22 − 2t12

Sij

)
.
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The formula can be interpreted as quantifying the effect of moving electron density

from the region between the two electrons to the electron centers. For systems

with nuclei, we found it necessary to modify this function with scaling factors and

additional terms to prevent electron-electron coalescence, in order to obtain stable

atoms and bonds. For the uniform electron gas, we obtain good agreement with

Hartree-Fock energies versus density if we scale the function by 1/4 and neglect

the t12 term entirely:

Eexch =
∑

σi=σj

1
4

S2
ij

1− S2
ij

(t11 + t22) .

In developing the correlation function, we assumed that the function had the

form

Ecorr =
∑

σi 6=σj

f(savg) · g(Sij)

where savg =
√

(s2
i + s2

j )/2. We experimented with different functional forms for

g(S), then evaluated the energy of an fcc lattice of electrons for different electron

densities. Since all the electrons were the same size, we could factor out f(savg)

and determine what f had to be in order to fit the correlation energy. We found

that if g(S) varied too quickly, electrons tended to expand to maximize their

overlap with each other in an unphysical way. However, if g(S) varied too slowly,

an unphysically high f(savg) was needed to obtain the correct correlation energy.

Through trial and error, we found optimal forms for f(savg) and g(S):

f(savg) =
−acorr

1 + bcorrsavg

g(Sij) = S
1/2
ij

where the parameters are listed in the previous section.
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Static properties of the uniform electron gas

We model the uniform electron gas as a periodic lattice of same-size electrons,

as in a Wigner lattice, but at a density well within the Fermi liquid regime. We

consider three structures initially (Figure 4.1): a close packed face-centered cubic

structure (fcc), where electrons are spin-paired on top of each other; and two

open-shell structures (NaCl and sphalerite), which fill interstices in the fcc lattice

with electrons of opposite spin, and have octahedral and tetrahedral coordinations,

respectively.

NaCl structure 
fills fcc octahedral holes

Sphalerite structure
fills 1/2 fcc tetrahedral holes

Face-centered cubic

Closed shell Open shell electron configurations

Figure 4.1: Uniform electron gas represented as different packings of localized

electrons.

For comparison purposes, we calculate the Hartree-Fock energy per electron

using equation 4.1, and the exact energy per electron using an analytic expression

due to Perdew and Wang [15], fit to the quantum Monte Carlo calculations of

Ceperley and Alder for an unpolarized uniform electron gas [4]. Over the range

rs = 1 to 10 bohr, we find that all of the eFF (exchange only) energies agree with

the Hartree-Fock energies to within 0.01 hartrees per electron, and all of the eFF

(exchange + correlation) energies agree with the exact energies to within 0.005

hartrees per electron (Figure 4.2).

The different lattices are very close in energy to each other, with the eFF
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Figure 4.2: Uniform electron gas energy versus density. eFF with exchange

matches Hartree-Fock, while eFF with exchange and correlation matches exact

quantum Monte Carlo energies.

(exch only) energies within 0.01 hartrees per electron of each other, and the eFF

(exchange + correlation) energies within 0.005 hartrees per electron of each other.

Hence the uniform electron gas is fluxional, varying easily from one lattice type to

another.

The energies are similar because the electrons vary in size to accommodate

different packing arrangements (Figure 4.3). In general, lower densities create

larger electrons. Open-shell lattices pack the electrons together more tightly, which

reduces their size and increases their kinetic energy. Counteracting this increase in

kinetic energy is the fact that electrons of opposite spin are no longer placed on top

of each other, which reduces the electron-electron repulsion. For eFF (exch only),

the electron-electron repulsion lowering dominates, and NaCl is the most stable,

followed by sphalerite, and then fcc. The differences in energy are the greatest

at low densities (high rs), where potential energy dominates and differences in

electron-electron repulsion are made most apparent.

Adding correlation tends to equalize the energies of the different lattices. Corre-

lation acts as a stabilizing factor that favors the overlap of opposite-spin electrons,

which causes the electrons in the uniform electron gas to expand slightly. The
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Figure 4.3: Density versus electron size. Adding correlation causes the electrons

to grow larger.

closed-shell lattices are preferentially stabilized since their opposite spin electrons

have more overlap with each other. Without correlation, open-shell lattices were

slightly more stable than closed-shell lattices; adding correlation counteracts this

preference and makes open-shell and closed-shell lattices have nearly the same

energy, even at low densities.

The electrons in sphalerite have the most room to expand, and as a result,

the eFF (exchange + correlation) energy of the sphalerite lattice is slightly below

the others. Is it possible that less tightly packed lattices would see even more

correlation stabilization? We consider other lattices with a variety of packing

fractions and coordinations (Figure 4.4), and compare their energies to Hartree-

Fock and exact values (Figure 4.5).

For eFF (exchange only), nearly all the lattices have the same energy (within

0.01 hartrees per electron), with the exception of diamond with its very low pack-

ing fraction. For eFF (exchange and correlation), all of the close-packed structures

have similar energy (within 0.005 hartrees per electron), but the correlation func-

tion lowers the energy of closed-shell non-close-packed structures too much, and

raises the energy of open-shell non-close-packed structures too much as well. The

last effect is probably an artifact of the electrons expanding too much when cor-

relation is added.

It is worthwhile to investigate the origin of exchange and correlation stabiliza-
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Figure 4.4: Survey of electron packings considered, showing a variety of packing

fractions and coordinations.
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tions in eFF. In configuration interaction methods, the exchange and correlation

energies arise from the explicit form of the wavefunction. The electron-electron

repulsion is lower in a CI wavefunction than in a HF wavefunction, for example,

because the CI wavefunction increases the average distance between electrons. In

contrast, in density functional theory the exchange and correlation energies arise

mostly implicitly, from a functional that is applied to a wavefunction that does

not necessarily segregate electrons from each other to the extent they would be

separated in an exact description. The term “mostly” is used here because some

self-consistent variation of the orbitals that is dependent on the correlation energy

is allowed, and so a limited amount of explicit electron segregation may take place.

We suspect that eFF, like DFT, falls into the category of methods that compute

exchange and correlation energies implicitly. To check whether this is the case, we

compare the electron-electron pair distribution functions in eFF with Hartree-

Fock pair distribution functions [16], and exact pair distribution functions [17] fit

to quantum Monte Carlo results. Disregarding spin, we would expect electrons to

be further apart at lower density (higher rs), where the average electron size is

larger. Looking at the spin-averaged pair distribution function for eFF (exchange

+ correlation), we find some partial segregation of electrons that becomes larger

at higher rs (Figure 4.6) — the remainder of the difference must be made up

implicitly, as discussed above.

In computing pair distribution functions of electrons in Gaussian orbitals, we

have used the relation

ρ(r12) =
1
2

(
1

πs2
avg

)3/2

exp(−(r2
c + r2

12)/s2
avg) ·

sinh 2rrc/s2
avg

rrc/s2
avg

where r12 is the distance between electrons, and rc is the midpoint between two

Gaussian orbitals.

Looking at the spin-resolved pair distribution functions (Figure 4.7), we find

that eFF (exchange only) causes same-spin electrons to avoid each other, but in

a way that exaggerates the effects of different electron sizes. Adding correlation
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Figure 4.6: Spin-averaged electron-electron pair distribution function, showing

partial explicit segregation of electrons in eFF.

damps out some of the oscillations present in the pair distribution functions by

increasing the electron sizes, but the exaggerated effect of different electron sizes on

same-spin exclusion remains. In contrast, opposite-spin electrons with correlation

do not avoid each other as they should. When the spin-average is taken, it looks

as if we have the right dependence of segregation on electron size, but it is in

reality the result of an error cancellation between same- and opposite-spin pair

distributions.

We have shown that using a localized electron model, we obtain good energies

for the uniform electron gas over a range of Fermi liquid densities (rs = 1 to 10

bohr). eFF with exchange agrees well with Hartree-Fock energies, while eFF with

exchange and correlation agrees well with exact QMC-derived energies. Differ-

ent close-packed lattices have very similar eFF (exchange + correlation) energies,

supporting the view that the uniform electron gas at Fermi liquid densities has

a fluxional structure. An analysis of electron-electron pair distribution functions

reveals that there is some explicit segregation of electrons that increases with in-

creasing electron size; however, the exchange and correlation stabilizations still

come mostly from the exchange and correlation functions rather than any explicit

optimization of electron positions or sizes.
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Figure 4.7: Spin-resolved electron-electron pair distribution functions, showing

that eFF keeps same-spin electrons apart, but allows opposite-spin electrons to

mingle.

Dynamic properties of the uniform electron gas

We study electron excitations at finite temperature by giving the electron positions

and sizes initial random velocities, and propagating the resulting dynamics at

constant energy and volume. We use as a test case a NaCl lattice of 64 electrons

with rs = 2 bohr. At low temperatures, the electrons make small excursions

about their equilibrium positions, but at higher temperatures they mix more freely

(Figure 4.8).

We can measure the heat capacity of the electron liquid by plotting the total

energy as a function of temperature (T = 50 to 500 K, Figure 4.10). In a classical

solid, the heat capacity at low temperatures is given by the Dulong and Petit

expression Cv = 3kBN , since there is an equipartition of energy among all the

degrees of freedom in the solid. In metals, the heat capacity at temperatures below

the Fermi temperature (TF = 140,000 K for rs = 2 bohr) scales as Cv ∝ T/TF ; the

heat capacity is much lower than would be expected from a classical solid, because
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Figure 4.8: Electron trajectories in a uniform electron gas (rs = 2 bohr) at low

and high temperature.

only states near the Fermi level can be excited [16] (Figure 4.9).
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Figure 4.9: At low temperatures, the heat capacity of a metal goes to zero because

only electrons near the Fermi level are excited.

The eFF electron gas has a heat capacity that matches classical, not quan-

tum, statistics (Figure 4.10), suggesting that all of the available modes are being

excited uniformly, a contention further supported by the spectrum of phonon ex-

citations (Figure 4.11) derived by computing the Fourier transform of the velocity

autocorrelation function [18].

Since we are simulating electrons as classical particles interacting via effec-

tive potentials, it is not surprising that we reproduce classical and not quantum

statistics. Other researchers who have created quasiclassical models of the uniform

electron gas have reproduced the correct Fermi-Dirac distribution of momenta us-

ing momentum dependent potentials, which spread out the particles in momentum

phase space. For example, in 1987, Dorso and Randrup [9] applied a Pauli potential

of the form

V (p, q) = V0(h̄/p0q0)D exp(−p2
ij/p2

0 + q2
ij/q2

0)
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to a periodic system of point particles with positions q and momenta p, and found

that a Metropolis simulation produced a proper Fermi-Dirac distribution of mo-

menta. In their system, the repulsion is greater when two nearby particles have

different momenta; investigation by Cordero and Hernandez [19] has shown that

this kind of potential causes nearby particles to “lock momenta” and move collec-

tively. In 1997, Ortner et al. [10] used Dorso’s potential to simulate some dynamic

properties of the uniform electron gas, including plasma oscillations.

In the future we will try adding a momentum-dependent repulsion function to

eFF to reproduce Fermi-Dirac distributions of momenta. However, we will need

to proceed carefully to ensure (1) that energy remains conserved, and that there is

no energy loss via hysteresis effects and (2) that we still obtain correct dynamics

when electrons are associated with nuclei.

Exchange and correlation functions for systems with nuclei

With the uniform electron gas exchange and correlation functions established, we

now attempt to describe systems containing nuclei. Ideally, we would be able to

apply the uniform electron gas functionals to these systems without modification.

As a test case, we examined the Hartree-Fock repulsion between two helium atoms,

and between a helium and a hydrogen atom. However, we found that the uniform

electron gas exchange function by itself was not repulsive enough to reproduce the

interaction (Figure 4.12).
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Figure 4.12: We modify the exchange interaction to fit properly the interaction

energy of He2 and HeH.
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We saw this as an opportunity to develop a new exchange functional that could

draw from some of the insights gained from the uniform electron gas work, as well as

from the previous incarnations of eFF, while correcting some past deficiencies. In

the work on hydrogen plasma and uniform electron gas, we used a Pauli repulsion

function of the form

EPauli =
∑

σi=σj

(
S2

ij

1− S2
ij

+ (1− ρ)
S2

ij

1 + S2
ij

)
∆Tij

with scaling factors added. It proved to be a capable function, able to correctly

determine the relative energies of a wide range of hydrocarbon conformers. How-

ever, it was slightly too repulsive, giving an energy barrier for H2 + H → H + H2

as 42 kcal/mol rather than the exact 9 kcal/mol. It was also possible for same-spin

electrons of the same size to coalesce.

In the work on p-like electrons, we used a Pauli repulsion function of the form

EPauli =
∑

σi=σj

1
2

Sij

1− S2
ij

·
((

a + b

(
sj

si
+

si

sj
− 2

))
· Sij

1− S2
ij

+ c(1− Sij)

)
·∆Tij

which had a singularity when si = sj and S → 1, eliminating the coalescence prob-

lem. However it was not repulsive enough, which caused structures like tetrahedral

H4 to be inappropriately stable.

We notice that the uniform electron gas function has a singularity as S → 1,

since it is missing a t12 term. This led us to try puting the t12 term back into

our exchange function, but with a scaling factor different from the one in front

of the t11 + t22 term. We justify this procedure on the grounds that when nuclei

are present, the kinetic energy at the electron centers is underestimated, since we

are missing the proper nuclear-electron cusp, while the Gaussian description of

electrons at the electron midpoint is a relatively better representation. Thus in

computing the kinetic energy change upon orthogonalization, which moves electron

density from the electron midpoint to the electron centers, we should multiply the

tii terms by a larger factor than the tij terms. We write the final exchange function
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as follows:

Eexch =
∑

σi=σj

1
2

S2
ij

1− S2
ij

(
(aexch + bexchfsize + cexch) (t11 + t22)− cexch

2t12

Sij

)

where fsize = s1/s2 + s2/s1 − 2. The parameters, adjusted to reproduce the He2

repulsion and the correct bond length for LiH, are specified in the energy expression

section.

The new exchange reproduces the repulsion of He2 and HeH well, and has the

desired anticoalescence singularity. Plotted against the previous Pauli repulsion

functions, we see it is more repulsive than the p-like electron function, and slightly

less repulsive than the original Pauli function, as desired (Figure 4.13).
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Figure 4.13: Comparison of the new exchange potential to previous Pauli poten-

tials, showing that the new potential has a reasonable amount of repulsion.

In order to obtain correct geometries for LiH and BeH2, we need to include a

relative-size-dependent term fsize in the function, as we did in the p-like electron

eFF, but we find that the parameter multiplying it is smaller than it was previously

(0.15 versus 3).

In developing a correlation function for systems containing nuclei, we use H2

bond breaking as a test case, which turns out to present some complications, since

both unrestricted and restricted Hartree-Fock formalisms have problems describ-

ing the correct dissociation of hydrogen molecule. The unrestricted HF wave-

function for H2 is simply φ1(r1)φ2(r2), where φ1 and φ2 are orbitals localized on
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different nuclei. However, since electrons are indistinguishable, the wavefunction

φ2(r1)φ1(r2) should be equally valid, and it turns out that the generalized valence

bond wavefunction φ1(r1)φ2(r2) + φ2(r1)φ1(r2) has a lower energy than the UHF

wavefunction. This difference is termed “static correlation,” since it represents

the interaction of electrons occupying orbitals that are far apart from each other.

The exact energy is even lower than the GVB energy, and we assume that the

energy difference arises from “dynamic correlation,” the stabilizing interaction of

electrons that are near to each other.

We can thus take the difference between exact and GVB energies to be a mea-

sure of dynamic correlation, and the difference between exact and UHF energies to

be a measure of dynamic and static correlation. When we apply the uniform elec-

tron gas correlation functional to H2, we find that it falls off similarly to the exact

minus GVB curve, suggesting that we account for dynamic but not static correla-

tion (Figure 4.14). The exact minus UHF curve has a peculiar behavior, reaching

a maximum near the point where the wavefunction transitions from a closed- to

an open-shell form. Creating a function that reproduces this peak would be chal-

lenging, and we sidestep this issue by claiming that, like DFT, our eFF correlation

functional reproduces dynamic and not static correlation effects.

1 2 3 4 5

-10

-20

-30

-40

exact – UHF

exact – GVB

eFF uniform gas corr

eFF uniform gas

corr times three

H + H correlation 

energy (kcal/mol)

r (bohr)

Figure 4.14: We scale the correlation function to match the long range falloff of

the GVB correlation energy in H2.

To better match the falloff of the exact minus GVB curve, we multiply the
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uniform gas correlation energy by three. Future functionals would likely interpolate

between these two extremes.

To clarify what effects eFF includes and what it does not, we plot the H2 bond-

breaking potential energy surface (Figure 4.15). We see that eFF with exchange

is nearly 20 kcal/mol above the UHF curve, due to the deficiency inherent in the

eFF single Gaussian basis. The total correlation energy at that point is nearly 27

kcal/mol, but we only account for 18 kcal/mol of it. We also see that both forms of

eFF fall off like UHF, not GVB. We conclude that we are accounting for dynamic

correlation properly, but not static correlation; and that a further future correction

will be needed to account for deficiencies in the single Gaussian basis. We have not

attempted to have either the exchange or correlation functional correct for basis

set deficiencies, because we would like to keep the terms of the eFF force field as

“clean” and focused on single tasks as possible.

-100

-50

50

1 2 3 4 5

exact

GVB

UHF

eFF, exchange only

eFF, exch + correlation (× 3)

r (bohr)

Interaction energy, 

H + H (kcal/mol)

Figure 4.15: Comparison of H2 potential energy curves; we limit the correlation

function to correcting correlation, not deficiencies in the basis.

Performance of new functions on systems with nuclei

We start by testing the new exchange function on simple molecules with nuclei and

s-like electrons (Figure 4.16). This includes the hydrides LiH, BeH, BeH2 used to

fit the exchange function, as well as the hydrogen systems H3 (linear TS), H4
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(square TS), H+
3 , H2+

4 , and the lithium systems Li2, Li+2 , Li+3 , and Li2+
4 . We find

excellent agreement between eFF (exchange only) and unrestricted Hartree-Fock

(6-311g** basis) for bond lengths (Figure 4.17), except for the lithium geometries,

which are consistently too long by ≈ 0.2Å.
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Figure 4.16: Gallery of systems with nuclei and s-like electrons.

There is good agreement on dissociation energies as well (Table 4.2, Figure 4.17,

Table 4.7). For the first time, we obtain a reasonable energy for the H3 linear

transition state relative to H2 + H (20.3 kcal/mol versus 24.3 kcal/mol UHF). We

also obtain a reasonable energy for the forbidden H4 square transition state (101.5

kcal/mol versus 121.4 kcal/mol UHF). Adding a proton to dihydrogen creates the
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energy of relative to
H2 H + H
LiH Li + H
BeH Be + H
BeH2 BeH + H

H3 (linear) H2 + H
H4 (square) H2 + H2

H+
3 (triangle) 2H + H+

H2+
4 (tetrahedron) 2H + 2H+

Li2 2Li
Li+2 Li + Li+

Li+3 (triangle) 2Li + Li+

Li2+
4 (tetrahedron) 2Li + 2Li+

Table 4.2: Key to tested geometries and dissociation energies.

H
2

H
2

LiH

LiH BeHBeH BeH
2

BeH
2

H
3

H
3

H
4

H
4

H
3

+

H
3

+

H
4

2+

H
4

2+

Li
2

Li
2 Li

3

+

Li
3

+

Li
4

2+

Li
4

2+

Li
2

+

Li
2

+

-200

-100

0

100

4

3

2

1

0

∆E (kcal/mol) Bond lengths

(angstroms)

exact

exact

eFF
eFF

Figure 4.17: eFF with exchange shows good agreement with Hartree-Fock for bond

lengths and dissociation energies of s-electron systems.
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two-electron triangular ion H+
3 , with a stability of -177.5 kcal/mol versus -187.6

kcal/mol UHF relative to separated atoms; adding another proton results in a

tetrahedron that is barely stable relative to separated atoms (-8.3 kcal/mol versus

-1.7 kcal/mol UHF).

We obtain correct dissociation energies for a variety of homonuclear lithium

complexes, such as the dimer Li2 (0.9 kcal/mol versus -4.0 kcal/mol UHF), the one-

electron ion Li+2 which has a stronger bond (-31.4 kcal/mol versus -29.0 kcal/mol

UHF), as well as the triangular cation Li+3 (-46.6 kcal/mol versus -46.0 kcal/mol

UHF), and the tetrahedral cation Li2+
4 (0.4 kcal/mol versus 1.2 kcal/mol UHF).

That we are able to obtain correct dissociation energies for homonuclear lithium

clusters is remarkable in light of the long length and weakness of the bond; it

represents an extreme in bonding.

The molecules H2, LiH, and BeH are underbound by 20-40 kcal/mol. We

understand that H2 is underbound because of deficiencies in the basis, but the

weak bond in LiH and BeH is surprising, given that the ionization potentials of

Li and Be match the Hartree-Fock values exactly (Li: 123 kcal/mol eFF versus

123 kcal/mol HF, 186 kcal/mol eFF versus 186 kcal/mol eFF). Previously we had

believed that localized Gaussian functions were a good basis for representing LiH;

we may have to reevaluate this notion. At least there is some consistency now

between the dissociation energy of hydrides and the dissociation energy of H2.

We assess the new eFF correlation function by comparing eFF correlation en-

ergies to B3LYP minus UHF in the above series of s-electron containing molecules

(Figure 4.18). Adding correlation tends to decrease electron-electron repulsion

and shrink bond lengths. For the most part, we obtain the correct change in bond

length upon adding correlation, with eFF bond length differences systematically

larger than B3LYP minus HF differences by -0.03 to -0.05 Å. The bond length

changes are especially large in the lithium clusters.

Where exact energies are available, the correlation energies agree well with

exact minus UHF energies, though not as well with B3LYP minus UHF energies

(Table 4.8, H2: -16.5 kcal/mol eFF versus -20.8 kcal/mol exact, LiH: -22.8 kcal/mol
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Figure 4.18: eFF reproduces some energy and bond length changes caused by

adding correlation.

versus -22.7 kcal/mol exact, BeH2: -25.6 kcal/mol versus -23.8 kcal/mol exact, H3

(linear): -11.1 kcal/mol versus -14.6 kcal/mol exact, and Li2: -23.3 kcal/mol versus

-20.5 kcal/mol exact).

We do less well for the geometries BeH (-16.9 kcal/mol versus -2.9 kcal/mol

exact) and H+
3 (-17.8 kcal/mol versus -36.4 kcal/mol exact) — the reasons for these

discrepancies are unknown. We tend to overestimate the correlation of lithium

two-electron systems and underestimate the correlation of hydrogen two-electron

systems, which suggests that there may be some effects of having nuclei nearby

we should be including, or that core-valence correlation is not balanced as well as

correlation between core-like electrons.

We turn to a simpler problem, finding the correlation energy of core elec-

trons. Consider the effect of increasing the nuclear charge of a helium atom. As Z

increases, the electrons are drawn more tightly inward, which causes the electron-

electron repulsion to increase. We would expect that the correlation energy would

increase as well; however, at the same time, it becomes more difficult to excite the

electrons to virtual orbitals, which makes the electrons less mobile. The end result

is that the correlation energy of core electrons remains virtually unchanged as Z

increases. Density functional methods tend to overestimate the correlation energy

of highly charged ions isoelectronic to helium [20]. With the eFF correlation func-

tion, we find that the correlation energy of the core-like electrons has the correct

trend of remaining virtually unchanged as Z increases (Figure 4.19).
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Figure 4.19: Atomic correlation energies, eFF reproduces major trends.

Encouraged by this success, we examined the total atomic correlations of the

atoms helium through neon. We evaluated the correlation energy as a single point

correction to atoms optimized with the eFF for p-like electrons discussed in the

previous chapter. We reproduced the general trend and magnitude of correlation

energies correctly (Figure 4.19), but (1) helium correlation energy is too small (2)

lithium through carbon correlation energies are too small and increase too quickly;

(3) oxygen through neon correlations are too large and increase too quickly. It will

be interesting to discover what will happen once the correlation function is applied

self-consistently to atoms.

Overall, we have remarkably good agreement between eFF (exchange only) and

Hartree-Fock energies and bond lengths, suggesting that the new exchange function

is a good candidate for further development. The correlation function slightly

exaggerates the change in bond length that occurs when correlation is added, but

reproduces overall trends correctly. Where exact energies are available, we observe

reasonable agreement between eFF correlation energies and exact minus Hartree-

Fock energies. Finally, we have shown some promising results in reproducing

atomic correlation energies, but a definitive verdict will have to wait until we

develop a system for handling p-like electrons compatible with the new exchange

and correlation functions.
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Conclusion

The centerpiece of this chapter was the uniform electron gas, a system character-

ized by a single density parameter that can exist as a uniform gas, Fermi liquid,

or Wigner crystal, depending on density. We saw the uniform electron gas as

both a model for electron delocalization, and a starting point for developing new

exchange and correlation functions. In developing previous electron force fields,

we had focused on reproducing the best known “exact” energy with our Pauli

function. In this chapter, we sought to reproduce two energies: the Hartree-Fock

energy, based on a combination of eFF kinetic energy, electrostatic potential en-

ergy, and exchange energy; and the exact energy, based on the above combination

with correlation energy added.

We were successful in describing the uniform electron gas using localized elec-

trons. With the appropriate exchange and correlation functions, we found that we

could reproduce Hartree-Fock and exact energies of the uniform electron gas as a

function of density. As a further surprise, we discovered that the energies of many

different lattices were similar, hinting that the uniform electron gas at Fermi liquid

densities had a fluxional structure. As a caveat, we noted that our potentials in

their current form could only reproduce a classical and not a quantum distribution

of momenta.

After extending and modifying the exchange and correlation functions, we were

able to describe systems with nuclei and s-like electrons, with good agreement

between eFF (with exchange) and Hartree-Fock, and eFF (with exchange and

correlation) and exact energies. For example, by fitting parameters to reproduce

He2 repulsion, the bond length of lithium hydride, and the long range decay of

H2 dynamic correlation energy, we obtained exchange/correlation functions that

could reproduce the barrier to the reaction H2 + H → H + H2 (20.3 kcal/mol eFF

with exchange versus 24.3 kcal/mol unrestricted Hartree-Fock; 9.1 kcal/mol eFF

with exchange and correlation versus 9.7 kcal/mol exact).

We still have separate versions of exchange/correlation functions, one for the

uniform electron gas, and another for systems with nuclei. Future versions of eFF
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should handle both extremes using a single set of functions, interpolating smoothly

between uniform and non-uniform electrostatic potentials, just as the eFF in the

previous chapter interpolated between s-like and p-like electron shapes. We hope

the ideas provided in this chapter serve as a useful first step in that direction.

Supplemental tables

rs fcc bcc hcp diamond HF
1 0.5115 0.5219 0.4903 0.5870 0.6468
2 0.0359 0.0369 0.0320 0.0589 0.0472

2.5 -0.0086 -0.0082 -0.0107 0.0087 -0.0065
3 -0.0286 -0.0285 -0.0299 -0.0145 -0.0299

3.5 -0.0382 -0.0381 -0.0390 -0.0259 -0.0407
4 -0.0426 -0.0427 -0.0432 -0.0317 -0.0455
5 -0.0449 -0.0450 -0.0452 -0.0356 -0.0474
6 -0.0437 -0.0438 -0.0439 -0.0356 -0.0457
7 -0.0415 -0.0416 -0.0416 -0.0342 -0.0429
8 -0.0390 -0.0391 -0.0391 -0.0324 -0.0400
9 -0.0367 -0.0367 -0.0367 -0.0305 -0.0373
10 -0.0344 -0.0345 -0.0345 -0.0287 -0.0348

Table 4.3: Uniform electron gas energy versus density for closed-shell packings,
with rs in bohr and the energy per atom in hartrees. We are comparing eFF with
exchange to Hartree-Fock energies.
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rs NaCl CsCl sphalerite wurtzite HF
1 0.5109 0.5346 0.5112 0.4901 0.6468
2 0.0344 0.0390 0.0350 0.0314 0.0472

2.5 -0.0106 -0.0079 -0.0097 -0.0116 -0.0065
3 -0.0313 -0.0296 -0.0301 -0.0311 -0.0299

3.5 -0.0415 -0.0404 -0.0400 -0.0405 -0.0407
4 -0.0465 -0.0460 -0.0448 -0.0451 -0.0455
5 -0.0498 -0.0500 -0.0476 -0.0477 -0.0474
6 -0.0494 -0.0501 -0.0469 -0.0469 -0.0457
7 -0.0478 -0.0487 -0.0451 -0.0450 -0.0429
8 -0.0457 -0.0467 -0.0429 -0.0428 -0.0400
9 -0.0436 -0.0447 -0.0408 -0.0406 -0.0373
10 -0.0415 -0.0426 -0.0387 -0.0386 -0.0348

Table 4.4: Uniform electron gas energy versus density for open-shell packings,
with rs in bohr and the energy per atom in hartrees. We are comparing eFF with
exchange to Hartree-Fock energies.

rs fcc bcc hcp diamond QMC
1 0.4508 0.4454 0.4305 0.5018 0.5870
2 -0.0110 -0.0233 -0.0139 -0.0119 0.0024

2.5 -0.0507 -0.0628 -0.0517 -0.0572 -0.0468
3 -0.0668 -0.0786 -0.0670 -0.0764 -0.0669

3.5 -0.0732 -0.0846 -0.0729 -0.0844 -0.0749
4 -0.0750 -0.0860 -0.0744 -0.0873 -0.0773

4.5 -0.0746 -0.0853 -0.0738 -0.0875 -0.0772
5 -0.0731 -0.0835 -0.0722 -0.0863 -0.0757
6 -0.0688 -0.0786 -0.0678 -0.0822 -0.0711
7 -0.0641 -0.0734 -0.0631 -0.0772 -0.0661
8 -0.0596 -0.0684 -0.0587 -0.0723 -0.0614
9 -0.0556 -0.0639 -0.0547 -0.0678 -0.0571
10 -0.0520 -0.0599 -0.0511 -0.0636 -0.0533

Table 4.5: Uniform electron gas energy versus density for closed-shell packings,
with rs in bohr and the energy per atom in hartrees. We are comparing eFF with
exchange and correlation to quantum Monte Carlo energies.
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rs NaCl CsCl sphalerite wurtzite QMC
1 0.4504 0.4836 0.4446 0.4290 0.5870
2 -0.0115 -0.0003 -0.0162 -0.0152 0.0024

2.5 -0.0512 -0.0428 -0.0555 -0.0529 -0.0468
3 -0.0674 -0.0607 -0.0714 -0.0681 -0.0669

3.5 -0.0738 -0.0682 -0.0774 -0.0740 -0.0749
4 -0.0757 -0.0708 -0.0790 -0.0754 -0.0773

4.5 -0.0753 -0.0711 -0.0784 -0.0748 -0.0772
5 -0.0738 -0.0701 -0.0767 -0.0732 -0.0757
6 -0.0695 -0.0667 -0.0720 -0.0687 -0.0711
7 -0.0648 -0.0627 -0.0671 -0.0640 -0.0661
8 -0.0604 -0.0588 -0.0624 -0.0595 -0.0614
9 -0.0564 -0.0552 -0.0582 -0.0555 -0.0571
10 -0.0528 -0.0520 -0.0544 -0.0519 -0.0533

Table 4.6: Uniform electron gas energy versus density for open-shell packings,
with rs in bohr and the energy per atom in hartrees. We are comparing eFF with
exchange and correlation to quantum Monte Carlo energies.

no correlation with correlation
energy of relative to eFF HF eFF B3LYP exact
H2 H + H -67.2 -83.4 -84.7 -110.0 -104.2
LiH Li + H -13.6 -33.9 -36.4 -58.2 -56.6
BeH Be + H -12.9 -49.9 -29.8 -57.5 -52.8
BeH2 BeH + H -66.7 -75.1 -92.3 -97.6 -98.9
H3 (linear) H2 + H 20.3 24.3 9.1 6.0 9.7
H4 (square) H2 + H2 101.5 121.4 82.4 101.2 147.0
H+

3 (triangle) 2H + H+ -177.5 -187.6 -195.3 -214.6 -224.0
H2+

4 (tetrahedron) 2H + 2H+ -8.3 -1.7 -25.6 -31.0
Li2 2Li 0.9 -4.0 -22.4 -20.8 -24.5
Li+2 Li + Li+ -31.4 -29.0 -36.9 -29.3
Li+3 (triangle) 2Li + Li+ -46.6 -46.0 -80.7 -65.6
Li2+

4 (tetrahedron) 2Li + 2Li+ 0.4 1.2 -38.4 -17.6

Table 4.7: Comparison of dissociation energies (kcal/mol) of s-like geometries.
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energy of relative to eFF corr B3LYP-HF exact-HF
H2 H + H -17.5 -26.6 -20.8
LiH Li + H -22.8 -24.4 -22.7
BeH Be + H -16.9 -7.6 -2.9
BeH2 BeH + H -25.6 -22.6 -23.8
H3 (linear) H2 + H -11.1 -18.3 -14.6
H4 (square) H2 + H2 -19.1 -20.2
H+

3 (triangle) 2H + H+ -17.8 -27.0 -36.4
H2+

4 (tetrahedron) 2H + 2H+ -17.4 -29.2
Li2 2Li -23.3 -16.9 -20.5
Li+2 Li + Li+ -5.5 -0.3
Li+3 (triangle) 2Li + Li+ -34.1 -19.6
Li2+

4 (tetrahedron) 2Li + 2Li+ -38.9 -18.8

Table 4.8: Comparison of correlation energies (kcal/mol) of s-like geometries.

no correlation with correlation
eFF HF eFF B3LYP exact

H2 0.780 0.735 0.778 0.744 0.741
LiH 1.594 1.607 1.556 1.593 1.596
BeH 1.377 1.341 1.357 1.341 1.343
BeH2 1.333 1.332 1.315 1.327 1.334
H3 (linear) 0.989 0.913 0.975 0.927 0.930
H4 (square) 1.119 1.131 1.085 1.168 1.220
H+

3 (triangle) 0.875 0.870 0.873 0.882 0.889
H2+

4 (tetrahedron) 1.183 1.225 1.180 1.254
Li2 2.675 2.785 2.569 2.707 2.673
Li+2 2.971 3.141 2.869 3.092
Li+3 (triangle) 2.892 3.044 2.754 2.953
Li2+

4 (tetrahedron) 3.339 3.547 3.129 3.426

Table 4.9: Comparison of bond lengths (angstroms) of s-like geometries.
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eFF corr B3LYP-HF exact-HF
H2 -0.002 0.009 0.005
LiH -0.038 -0.014 -0.011
BeH -0.020 0.001 0.002
BeH2 -0.018 -0.005 0.002
H3 (linear) -0.014 0.014 0.017
H4 (square) -0.034 0.037
H+

3 (triangle) -0.002 0.012 0.019
H2+

4 (tetrahedron) -0.003 0.029
Li2 -0.105 -0.077 -0.112
Li+2 -0.102 -0.049
Li+3 (triangle) -0.138 -0.090
Li2+

4 (tetrahedron) -0.210 -0.121

Table 4.10: Comparison of bond length differences (angstroms) upon adding cor-
relation for s-like geometries.

correlation energy (kcal/mol)
spin eFF B3LYP-HF exact [21]

He s -0.0297 -0.0531 -0.0420
Li d -0.0390 -0.0593 -0.0454
Be s -0.0745 -0.0993 -0.0940
B d -0.1130 -0.1338 -0.1240
C t -0.1522 -0.1695 -0.1551
N q -0.1928 -0.2023 -0.1861
O t -0.3050 -0.2830 -0.2539
F d -0.4144 -0.3589 -0.3160
Ne s -0.5278 -0.4283 -0.3810

Table 4.11: Comparison of atomic correlation energies.
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The synthesis of medium-sized rings possessing functionality
poised for further manipulation is a considerable challenge in
synthetic chemistry.1 In particular, seven-membered rings are
increasingly common in many natural products of interest to the
academic and pharmaceutical communities.2 Our interest in the
synthesis of fused [n - 7] bicyclic compounds (n ) 5 or 6) was
piqued by the natural products guanacastepene (1)3 and inelega-
nolide (2),4 which have been identified as important synthetic targets
due to their biological relevance and interesting structural archi-
tecture (Scheme 1). We envisioned either compound as arising from
a core fused cycloheptadienone such as3, a motif not directly
available using existing methodologies. Diene3 was recognized
to be the product of a ketene-Cope rearrangement with concomitant
opening of a strained cyclopropane ring. In turn, ketene4 could be
produced by a Wolff rearrangement of diazo ketone5, readily
available from knownâ-keto esters such as6.5 Herein, we report
the development of a new tandem Wolff/Cope rearrangement that
allows mild, facile, and conceptually novel access to a range of [n
- 7] bicycles.6 We also describe the fortuitous observation that
cycloheptadienones such as3 can photolytically rearrange to the
corresponding [n - 5] fused bicycles via a 1,3-acyl migration.

We initiated our efforts by preparing the parent fused [5- 3]
bicyclic diazo ketone5aand subjecting it to a battery of conditions
known to promote Wolff rearrangements (Scheme 2). Since its
discovery in 1902,7,8 the Wolff rearrangement has been the subject
of intense study, which has resulted in a variety of conditions known
to promote the transformation.9 Many of these standard protocols
such as Ag2O, AgOBz, CuI, and Cu(0) produced a complex mixture
of products that included the homologated acid7.10 Although
production of7 pointed toward the generation of the desired ketene
intermediate (4a), it was clear that the strain release Cope
rearrangement was not readily occurring. With this in mind,
extensive literature searching and experimentation led to the use
of modified sonochemical conditions, originally reported by
Montero for simple Wolff rearrangements.11 To our delight,
treatment of diazo ketone5aunder our modified Montero conditions
employing AgOBz (0.1 equiv) and Et3N (1.0 equiv) at 45°C in
THF with sonication for 30 min led exclusively to the desired Wolff/
Cope product (3a) in 95% isolated yield.

Using these optimized conditions, we investigated the substrate
scope of this rearrangement for the synthesis of cycloheptadienones
fused to five- or six-membered rings. As shown in Table 1, a variety
of substitution on the diazo ketones is tolerated in the tandem
rearrangement. The mild conditions support the rearrangement of
substrates carrying a host of hydroxyl protection groups (entries
1-3) and even an enol ether (entry 4). Substitution on the olefin is
also possible at both the terminal (entries 1-4 and 7) and internal
positions (entry 5). Although olefin substitution is not a requirement
for the tandem process, high yields of the cycloheptadienone
products could be realized only under photolytic conditions in these
cases (entries 6 and 8). Additionally, a bis-quaternary substituted

cyclopropane readily participates in the rearrangement and, in the
case shown, produces a tricyclic dienone either under silver(I) or
photochemical promotion (entry 7).12 Finally, both [5-7] (entries
1-7) and [6-7] (entry 8) fused bicyclic dienones can be prepared
by this methodology.

Although certain substrates produced high yields of the Wolff/
Cope rearrangement products under both the sono- and photo-
chemical conditions, others did not. For instance, while photolysis
of 5a did produce varying amounts of cycloheptadienone3a,
prolonged exposure to light led to a new product, which was
identified as the vinyl cyclopentenone8a (Scheme 3). This
unexpected product likely arises by a Norrish Type I fragmentation
followed by a recombination with the transient allyl radical,
resulting in a net 1,3-acyl migration.13,14 This mechanism and the
intermediacy of3a were confirmed by independent photolysis of
pure3a, which leads to the production of cyclopentenone8a. Of
particular note is the complete diastereoselective nature of the
rearrangement, which produces the fused bicyclo[3.3.0]octane (8a)
as a single isomer. Interestingly, this cascade process constitutes a
formal tandem Wolff/vinyl cyclopropane rearrangement.15

The application of this novel rearrangement trio (Wolff/Cope/
1,3-acyl shift) to a variety of substrates is outlined in Table 2. Again,
numerous protection groups as well as olefin substitution patterns
are tolerated in the cascade. The diastereoselectivity of the process
is maintained even for the production of anR-quaternary substituted
enone (entry 4). Furthermore, both [5- 5] and [6 - 5] fused
cyclopentenones are available in good yields. Finally, it is interesting

Scheme 1

Scheme 2
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to note that in the cases of entries 5 and 6 (Table 2), better yields
of the [6-5] fused bicycles were obtained using silver(I)/
sonochemical activation than with photolytic initiation. Since we

have never observed the cycloheptadienone products from these
substrates under nonphotolytic conditions (entries 5 and 6), we
cannot exclude the possibility of a direct Wolff/vinyl cyclopropane
rearrangement as a mechanism in these cases.

In summary, we have developed a set of mild processes for the
conversion of vinyl cyclopropyl diazo ketones to highly function-
alized cycloheptadienones (i.e.,5f3) and vinyl cyclopentenones
(i.e., 5f8) by use of a target-inspired tandem Wolff/Cope rear-
rangement sequence. This facile methodology allows rapid access
to a variety of structurally diverse, complex polycyclic enones. The
utility of these new cascade sequences in complex synthetic
problems is currently under investigation.
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Table 1. Tandem Wolff/Cope Rearrangement

a Condition A: AgOBz (0.1 equiv), Et3N (1.0 equiv), THF, 45°C,
sonication for 30 min. Condition B:hν (310 nm), THF, 23°C, 1 h.
b Experiment performed in PhH for 2 h.

Scheme 3

Table 2. Wolff/Cope/[1,3]-Acyl Shift Rearrangement

a Condition A: AgOBz (0.1 equiv), Et3N (1.0 equiv), THF, 45°C,
sonication. Condition B:hν (254 nm), THF, 23°C. b Performed with a
450 W medium-pressure Hg lamp in THF at 40°C. c hν (310 nm).
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The Cope reaction is a degenerate transformation whose synthetic
utility lies in its versatility as astereospecific relay of functionality.1

Expanding the reaction’s functional scope while preserving its
specificity allows for more direct formation of desired products.
Recently, Stoltz et al. have discovered2 a novel tandem Wolff-
Cope reaction involving the rearrangement of vinylcyclopropyl
ketene intermediates (e.g.,2 and7) to [n - 7] bicyclic structures
(e.g.,3 and9) that serve as a motif for a number of natural product
syntheses (Scheme 1). The reaction produces products cleanly and
in high yield with a variety of substrates, but interestingly is
thwarted by substitution at certain positions (4 and 5, see Table 2).
First-principles quantum mechanics (B3LYP flavor of unrestricted
density functional theory, 6-31G** basis functions)3 indicate this
substituent limitation to be a direct consequence of a competing
low-barrier pathway that leads to an unstable and undesiredtrans-
olefin product via a boatlike transition state. The lowered barrier
of the competing pathway is a direct result of the appended ketene
functionality.Understanding how methyl substituents influence our
specificWolff-Cope transition state leads us to the design of new
4,5-substituted substrates predicted to rearrange successfully.
Understanding how ketene and related functionalities influence the
generalCope transition state leads us to insights into transition-
state mutability which may be exploited in other reaction designs.

Divinylcyclopropane analogues of4 have been observed4 to
rearrange into fused cycloheptadienes (e.g.,6) in high yield. The
relative instability of thetrans-olefin product5 drives its corre-
sponding activation energy upward to a safely inaccessible level.5

We now consider the reaction of ketene vinylcyclopropane substrate
7. Products8 and9 are conjugated to the newly formed carbonyl,
and are equally stabilized relative to5 and6, but transition state
11 is more stabilized relative to10 than13 is relative to12 (Figure
1). The energies of transition states11 and13 (Figure 2) are thus
similar, and the reaction outcome becomes highly sensitive to
substituent effects that can change the relative ordering of the two
energies.

Geometries10 and 12 are nearly intermediate between the
starting structures and products, and are termed synchronous; in
contrast, geometries11 and 13 display a higher degree of asyn-
chronicity, so that the new carbon-carbon bond is more fully
formed when the cyclopropane bond begins to break.6 The
additional radicaloid character of transition state11 is stabilized
by conjugation through the forming carbonyl.7 A comparison with
allene substrates (not shown) indicates that the relative stabilization
is due in equal parts to an allylic radical effect and to the increased
electronegativity of the oxygen center.

To explain why the ketene group stabilizes11 and13 to nearly
equal energies, we first note that Cope transition states can be
viewed as a resonance hybrid of aromatic and diradical forms.8

Comparing the relative energies of generalized valence bond (GVB)
pairs (Table 1) in model transition states14-16, we see that a
diradical form contributes significantly to16-chair but not16-boat,

a difference consistent with divergent radical-chair vs. aromatic-
boat pathways in the ketene Cope reaction. In the full system, we
find that13 is predominantly aromatic (∆Esinglet-triplet

vertical ) 51.0 kcal/
mol) while 11 has some radical character (∆Esinglet-triplet

vertical ) 31.6
kcal/mol) and is thus more susceptible to the influence of the
radical-stabilizing carbonyl.9

The addition of methyl substituents (Table 2) leaves the
geometries of the cis (boat) and trans (chair) transition states largely

Scheme 1. Tandem Wolff-Cope Rearrangement

Figure 1. (a) Cope reaction pathways available to a divinylcyclopropane
substrate lead to either the desiredcis-olefin product or a less stable
undesiredtrans-olefin product. (b) Analogous pathways for a ketene-
substituted substrate show a smaller activation energy difference (∆G in
kcal/mol, T ) 298 K). All structures are drawn from actual coordinates.

Figure 2. Transition states leading to the trans (10, 11) and cis (12, 13)
products from vinyl-substituted (10, 12) and ketene-substituted (11, 13)
substrates. Transition state11 differs from the others in its radicaloid
character and extreme degree of asynchronous bond formation (distances
in angstroms).
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unperturbed. Positions 4 and 5 are separated by only 2.13 Å in13,
so substitution at either position causes a large (6.6 and 2.5 kcal/
mol, respectively) destabilization. The substituents in11are spaced
farther apart; the largest substituent effect (1.7 kcal/mol) arises from
a near-eclipsing interaction between position 3 and the carbonyl
oxygen. The end result is consistent with experimental observa-
tion: substitution at positions 4 or 5 causes destabilization of the
desired cis transition state relative to the undesired trans transition
state and causes the reaction to fail.10

To design substrates that will successfully undergo the Wolff-
Cope rearrangement, we may either stabilize13 or destabilize11.
Cyclic substrates18 and 19 (Table 3) enforce the cis transition
state while making it impossible for the substrate to attain a trans
transition-state configuration. Such a strategy has been employed
successfully to achieve rearrangement of a bis-quaternary substrate
(e.g.,18).2

Although substrate17e with substitution at position 5 alone
does not rearrange, we expect that substrate20 with substitution at
bothpositions 5 and 2 will rearrange, due to destabilization of11
from a 1,3-diaxial interaction. Preliminary experimental efforts
suggest that this strategy may promote an alternate cis pathway
that leaves the cyclopropane ring intact. Finally, substitution at
position 4 (17d) is still problematic and, as shown with substrates
21-23, cannot be reversed by Me,tBu, or Si(CH3)3 (TMS)
substitution at position 1.

In conclusion, in the tandem Wolff-Cope reaction the ketene
group preferentially stabilizes radical over aromatic pathways,
causing two normally energy-separated transition states to become
nearly degenerate. We can use small changes in transition-state
stabilities (∆Gq ≈ 2 kcal/mol) to select between two highly disparate
products (trans vs cis cycloheptenes,∆G ≈ 29 kcal/mol) in a
controlled fashion. For pericyclic reactions in general, this reaction
highlights the need to consider high-lying transition states that may

become accessible with newly added functionality. The study also
suggests new opportunities for reaction control via the deliberate
construction of polymorphic transition states.
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Table 1. Single Point Energies (kcal/mol) of Alternate GVB
Pairings in Model Transition-State Structuresa

a The diradical pair (shaded) makes a significant resonance contribution
(lower energy) to the ketene chair structure but not the ketene boat structure,
a difference present to a lesser extent in model allene15 as well.

Table 2. Effect of Single Methyl Substituents on the Relative
Activation Energies of Cis/Trans Pathwaysa

a Shading indicates reactions predicted to fail (∆Gcis-trans> 0). Of twelve
substrates (similar to17a-e) tried experimentally, seven were predicted to
rearrange and did so, and five were predicted to fail and did so.10

Table 3. Designed Substrates and Their Calculated Activation
Energiesa

a Substrates with an enforced cis transition state (18, 19) or negative
∆Gcis-trans(20) are predicted to rearrange successfully; the others (21-23)
have positive∆Gcis-trans and are predicted to fail.
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We predict structures and energies of water clusters containing up to 19 waters with X3LYP, an extended
hybrid density functional designed to describe noncovalently bound systems as accurately as covalent systems.
Our work establishes X3LYP as the most practical ab initio method today for calculating accurate water
cluster structures and energies. We compare X3LYP/aug-cc-pVTZ energies to the most accurate theoretical
values available (n ) 2-6, 8), MP2 with basis set superposition error (BSSE) corrections extrapolated to the
complete basis set limit. Our energies match these reference energies remarkably well, with a root-mean-
square difference of 0.1 kcal/mol/water. X3LYP also hasten times less BSSEthan MP2 with similar basis
sets, allowing one to neglect BSSE at moderate basis sizes. The net result is that X3LYP is∼100 times faster
than canonical MP2 for moderately sized water clusters.

1. Introduction

We predict structures and energies of water clusters containing
up to 19 waters with X3LYP,1,2 an extended hybrid density
functional designed to describe noncovalently bound systems
well. Our work establishes X3LYP as the most practical ab initio
method today for calculating accurate water cluster structures
and energies.

We compare our X3LYP results to the most accurate theory
available3-8 for modest-sized water clusters, MP2 calculations
using triple-ú-plus basis sets with basis set superposition error
corrections extrapolated to the complete basis set limit. Our
energies match these reference energies to a root-mean-square
(rms) deviation of 0.1 kcal/mol of water.

This agreement is remarkable, especially since the noncova-
lent bonding in water clusters (polar, hydrogen bonded) differs
greatly from the bonding in the rare neutral gas dimers used to
train X3LYP. In contrast, the popular hybrid functional
B3LYP9-11 provides acceptable geometries and thermochemistry
for covalent molecules, but its poor description of London
dispersion (van der Waals attraction) leads to poor binding
energies4,12-15 (Table 1) for water clusters.

Two consequences follow:
First, the result establishes the generality of the X3LYP

functional, supporting its application to more diverse van der
Waals and hydrogen bonded complexes. This validation sets
the stage for first principles predictions of noncovalent interac-
tions of ligands to proteins and DNA, with implications for the
emerging field of genome-wide structure based drug design.

Second, X3LYP now represents the state of the art for
practical ab initio calculations on water clusters, since

(1) We can use smaller basis sets while preserVing accuracy.
Post-Hartree-Fock methods such as MP2 require higher angular
momentum basis functions to properly describe the correlation
cusp16 and suffer from slow and unsystematic convergence to
the complete basis set limit.17

We expect the basis set requirements for DFT methods to be
greatly reduced, and our results bear this out: X3LYP/aug-cc-
pVTZ agrees with MP2/aug-cc-pV5Z extrapolated to the
complete basis set limit to within 0.1 kcal/mol/water, a differ-
ence well within the uncertainty of both methods.

(2) We can neglect BSSE at moderate basis sizes.Basis set
superposition error has long plagued canonical MP2 calculations,
with a correction of∼1.1 kcal/mol for water hexamer even with
the aug-cc-pV5Z basis set.3 This is larger than the energy
difference between water hexamer isomers (<0.5 kcal/mol).
X3LYP hasten times lessbasis set superposition error than MP2
with comparable basis sets, allowing smaller basis sets to be
used. Non-BSSE and BSSE energies converge quickly to the
same value with increasing basis set size, so that for moderate
sized bases (aug-cc-pVTZ), we can neglect BSSE.

Not including BSSE in X3LYP calculations speeds up our
calculations significantly, since a BSSE calculation requiresN
single point energies with the full system basis, whereN is the
number of water monomers in the complex.

(3) Density functional methods are faster than MP2.For
larger clusters, X3LYP is at least 100 times faster than canonical
MP2 at the same basis set level, where BSSE is neglected for
both calculations. The speed advantage becomes even bigger
for larger clusters, since density functional methods scale as a
factor ofN better than canonical MP2 (formallyN4 vs N5, with
improvements possible for both).

With this superior combination of speed and accuracy, we
expect X3LYP to displace MP2-corrected Hartree-Fock (HF)
as the preferred method for performing ab initio calculations
on water clusters.

2 Computational Details

2.1. X3LYP Functional. The details of the X3LYP hybrid
density functional are described elsewhere.1,2 The X3LYP hybrid
functional was developed to describe accurately the thermo-
chemistry of molecules while reproducing the properties (equi-
librium distance, binding energy, and Pauli repulsion) of helium

* To whom correspondence should be addressed. E-mail: wag@
wag.caltech.edu.
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and neon dimers, whose binding is wholly due to dispersion.
For these rare gas dimers, the repulsive energy component of
X3LYP (total energy minus correlation) is fit to match Hartree-
Fock energies. Thus, near equilibrium distances, X3LYP is
expected to give correct contributions of dispersion to bonding.

X3LYP extends B3LYP18 by writing the nonlocal gradient
correction in terms of theFX extended exchange functional,
which is written as a linear combination of B88 and PW91
exchange functionals:

The four mixing parameters were determined through a least-
squares fit to the total energies of 10 atoms, the ionization
potentials of 16 atoms, the electron affinities of 10 atoms, and
the atomization energies for 33 diatomic and five triatomic
molecules selected to represent the important chemistry of first-
and second-row elements (including open- and closed-shell
molecules; molecules with single, double, and triple bonds; ionic
systems; and systems requiring multiple determinants for proper
descriptions). Helium and neon rare gas dimers were included
as representative van der Waals systems, but no data on water
dimer or higher clusters were included.

The accuracy of X3LYP for the thermochemistry (cohesive
energies, ionization potentials, electron affinities, proton affini-
ties) of the G2 set of 148 molecules is better than all other DFT
methods considered (seven GGA methods and seven hybrid
methods) as is the sfd excitation energies for transition-metal
atoms. An earlier test for water dimer2 led to a binding energy
(De) within 0.05 kcal/mol of the exact value and a O-O distance
(Re) within 0.004 Å of the exact value.

2.2. Quantum Mechanics Calculations.All calculations
were performed using the Jaguar 5.019 software package, with
default options unless indicated otherwise.

In the LMP2 method,20,21occupied orbitals are only allowed
to correlate with virtual orbitals localized on the atoms of the
local occupied Hartree-Fock orbital, with an initial wave
function obtained from Pipek-Mezey localization22 of the HF
reference wave function. Only valence electrons were included
in the LMP2 correlation. In all cases, SCF convergence under
the DIIS scheme was achieved to 50µhartree.

For LMP2, B3LYP, and X3LYP, the default pseudospectral
implementation of Jaguar was used to accelerate evaluation of
two-electron integrals. In previous X3LYP calculations,12,13the
pseudospectral capabilities were turned off to simplify com-
parison with previous results obtained using other methods.

All geometries were converged to a maximum gradient of
4.5× 10-4 hartree/bohr, an rms gradient of 3.0× 10-4 hartree/
bohr, a maximum nuclear displacement of 1.8× 10-3 bohr,
and an rms nuclear displacement of 1.2× 10-3 bohr.

We used the following basis sets: 6-31g**23 (25 basis
functions/water), 6-311++g** (36 basis functions/water),
aug-cc-pVDZ24 (41 basis functions/water), and aug-cc-
VTZ(-f)24 (58 basis functions/water, without f functions). BSSE
corrections were carried out where stated explicitly, using the
function counterpoise method25 and taking into account fragment
relaxation energy terms26,27

whereEfull andEfragmentindicate the energy calculated with the
full- and fragment-only basis sets, respectively.

2.3. Multibody Decomposition.A multibody decomposition
of total binding energy for water hexamers was computed by
taking into account 26 - 1 ) 63 possible present/absent
combinations of water fragments and computing their energies
using both a fragment-only basis and a full-system basis (to
estimate the magnitude of BSSE). Although the complex is
symmetric, symmetry was not used. The final multibody
contributions∆n can be written in terms of linear combinations

TABLE 1: Binding Energies of Presumed Global Minimum (H2O)n Clusters (-∆E, kcal/mol)a

6-31g** 6-311g**++ aug-cc-pVDZ aug-cc-pVTZ(-f) MP2/CBS3 MP2/TZ2P++5

n structure LMP2 B3LYP X3LYP LMP2 B3LYP X3LYP B3LYP X3LYP LMP2 B3LYP X3LYP Xantheas Lee

2 linear 6.55 7.56 7.96 5.06 5.82 6.23 4.71 5.11 4.43 4.61 5.00 4.97 4.88
3 cyclic 20.94 25.03 26.24 14.64 17.30 18.45 14.76 15.91 12.31 14.42 15.52 15.82 15.11
4 cyclic 34.94 41.73 43.57 24.48 30.73 32.49 26.79 28.55 17.12 26.03 27.73 27.63 26.72
5 cyclic 44.68 53.34 55.71 32.33 40.78 43.05 35.53 37.83 28.65 34.37 36.57 36.28 35.17
6 cage 58.34 70.73 74.27 39.86 48.83 52.06 42.91 46.14 34.75 41.70 44.78 45.79 44.04
7 prism′ 73.04 87.02 91.41 49.12 60.12 64.07 52.74 56.67 42.71 51.45 55.27 54.81
8 D2d 92.61 110.73 116.14 64.14 77.01 81.88 68.35 73.27 59.69 66.60 71.35 72.57 70.06
9 D2dDD 99.37 123.08 129.03 71.38 87.94 93.41 77.36 82.93 75.07 80.36 79.14

10 prism 117.03 139.83 146.80 82.40 99.75 106.00 87.84 93.98 85.81 91.82 90.07
11 Pr443 97.79 96.69
12 Pr444 112.14 112.59
13 Pr454 122.41
14 Pr2444 133.82
15 Pr555 142.34
16 Pr4444 153.08
17 Pr454(4) 163.20
18 Pr44244 175.65
19 globular 184.13

a The LMP2, B3LYP, and X3LYP results have not been corrected for BSSE; the MP2/CBS results have been extrapolated to a complete basis
set; and the MP2/TZ2P++ results include 50% of the BSSE correction. The binding energy is given relative to fully separated and relaxed water
monomers. Geometry labeling follows the convention of Lee et al.5-7
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of Σn; the sum of energies of all species withn fragments
included

and ∆1 ) Σ1 - 6 E(ref water). The sum of all∆n gives the
total binding energy.

3. Results and Discussion

3.1. Water Cluster Global Minima. To compare the overall
energetics of clusters up to 19 waters, we started with globally
minimized water clusters from Wales et al.28 (optimized with
the TIP4P force field) and carried out a full optimization for
each level of theory and basis set presented in Table 1. Figure
1 shows that evenwithoutusing BSSE corrections, the X3LYP/
aug-cc-pVTZ(-f) energies are in excellent agreement with the
best theoretical estimates available, deviating by an rms of 0.10
kcal/mol/water from the results of Xantheas et al.3,8 (MP2/CBS
extrapolation with a polynomial function from an aug-cc-V5Z
basis), who considered up to eight waters. Lee et al.7 carried
out a less complete MP2 than Xantheas (MP2 using the triple-ú
TZ2P2+ basis with 50% BSSE correction) but considered up to
12 waters; their cluster binding energies are systematically
higher than Xantheas’ energies (presumed to be more accurate)
by ∼0.2-0.3 kcal/mol/water, differing from our energies by
an RMS of 0.16 kcal/mol/water. Our results agree well with
Xantheas, with little evidence of systematic error (Figure 1).

Figure 1 and Table 1 compare non-BSSE-corrected energies
calculated at different levels of theory. Like X3LYP, B3LYP
converges quickly to a limiting energy with increasing basis
set size, and B3LYP-optimized geometries are similar to
X3LYP-optimized geometries (six-cageCrms ) 0.02 Å, 8-D2d

Crms ) 0.01 Å). However, B3LYP systematically underestimates
water cluster binding energies (rms of 0.51 kcal/mol/water vs
MP2/CBS).

LMP2 performs even more poorly than B3LYP, converging
more slowly to a limiting energy with increasing basis set size
and more significantly underestimating water cluster binding
energies (rms of 1.43 kcal/mol/water vs MP2/CBS). LMP2-
optimized geometries are distorted relative to X3LYP-optimized
geometries (six-cageCrms ) 0.70 Å, 8-D2d Crms ) 0.33 Å) and
are characterized by longer hydrogen bonds and larger out of
plane distortions for the “cyclic” complexes. Thus, our results
suggest LMP2 is unsuitable for describing water clusters,
contrary to the conclusion of previous studies,29 which consid-
ered single-point LMP2 energies at MP2-optimized geometries.

Canonical MP2 (non-BSSE corrected) calculations with aug-
cc-pVTZ and TZ2P++ basis sets3,7 perform better, slightly
overestimating water cluster binding energies (rms of 0.28 and
0.20 kcal/mol/water, respectively, vs MP2/CBS). Addition of
full BSSE tends to overcorrect this overbinding by a factor of
∼2sadding 50% BSSE to provide a better estimate of the true
binding30 leads to an rms of 0.04 and 0.24 kcal/mol/water,
respectively, vs MP2/CBS.

We emphasize that BSSE calculations are expensive, requir-
ing the calculation ofN single-point energies with the full system
basis, whereN is the number of water monomers in the complex.
For canonical MP2 with large basis sets, BSSE is still a large
fraction of the total binding energy (9% for aug-cc-pVTZ, 8-D2d

geometry). In contrast, with X3LYP we find that BSSE is only
0.9% of the total binding energy (aug-cc-pVTZ(-f), 8-D2d

geometry), and we observe good correspondence with MP2/
CBS energies despite neglecting BSSE.

We could not find any published MP2 calculations on (H2O)n
clusters withn ) 13-19 and, hence, cannot compare our fully
optimized X3LYP binding energies for these systems. However,
Figure 2 shows that the X3LYP binding energyper hydrogen
bondfor the “three-dimensional” (n > 5) water clusters oscillates
near the experimentally determined binding energy of ice at
0 K (∆E/2 ) -5.68 kcal/mol).24 On the other hand, the binding
energyper water is lower than the bulk value by the five to
seven “dangling” hydrogen bonds present in the three-
dimensional clusters.

In developing X3LYP, a criterion was that turning off
correlation for noble gas dimers should lead to a repulsive curve
much like in HF theory. Thus, the correlation functional in
X3LYP represents the dispersive contributions to binding. This
allows us to separate the correlation component of the binding
energy from the electrostatic and hydrogen bonding terms. We

Figure 1. Deviation of global minimum water cluster energies for
different levels of theory. Here the reference is X3LYP/aug-cc-pVTZ.
We compare MP2 energies from Xantheas3 and Lee7 with comparable
basis sets; MP2 reference energies obtained from extrapolation to a
complete basis3 (BSSE and no BSSE converge to same energies) and
from inclusion of 50% BSSE;7 and B3LYP and LMP2 energies using
the aug-cc-pVTZ(-f) basis set (no BSSE). The total root-mean-squared
errors (kcal/mol/water) are indicated in parentheses.
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Figure 2. Binding energy (kcal/mol) per hydrogen bond and per water
molecule for global minimum water clusters at the level of X3LYP/
aug-cc-pVTZ(-f). The energy per hydrogen bond converges quickly to
the experimental binding energy of ice at 0 K,∆H/2 ) -5.68 kcal/
mol, but the energy per water does not due to the five to seven
“dangling” hydrogen bonds present in the larger clusters (n ) 6-19).
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find that the correlation fraction is remarkably consistent, 45-
54% of the total binding energy for all water clusters studied
(see the Supporting Information for more details).

3.2. Water Cluster Local Minima. 3.2.1. General Discus-
sion.It is well-established that water trimers through pentamers
have cyclic structures, while water clusters larger than hexamer
have three-dimensional structures.40 Among these three-
dimensional structures there is some disagreement on the
detailed structure of the decamer but not for the octamer, which
has a cubic structure.41,42 As expected, water octamer isomers
(D2d and S4) have similar energies in both X3LYP and MP2
calculations42,43 (Table 3). Water decamers appear in both
X3LYP and MP2 calculations to prefer a pentagonal prism
structure over a less symmetric “butterfly” form derived from
the cubic octamer. This contrasts with the interpretation of
experimental studies that suggest the butterfly form to be the
more stable structure.43

However, as indicated in Table 2, the structure of water
hexamer, intermediate between the two regimes, has been a
subject of active debate. We discuss this case in more detail
below.

3.2.2. Water Hexamer.The most commonly considered
structures are shown in Figure 3, differing in the balance of
ring strain against number of hydrogen bonds. Recent theoretical
predictions have been ambiguous, with the energy ordering of
isomers highly sensitive to basis set size32 and BSSE inclusion.31

In addition, methods using a nuclear QMC scheme to calculate
zero-point effects have used different model potentials.44,45

Experiments have also been ambiguous, with cage structures
observed in water clusters formed from supersonic jets33 and

cyclic structures observed in clusters formed in liquid helium
droplets38,46 or solid para-hydrogen matrices.39

Our results using X3LYP/aug-cc-pVTZ(-f) indicate that the
book and cyclic (chair) structures are the most stable (Table 3,
Figure 4). The structures are nearly degenerate (-45.17 and
-45.04 kcal/mol, respectively), with an energy ordering that

TABLE 2: Theoretical and Experimental Results for the Structure of Water Hexamer

group year method
most stable structure (theory)

or obsd (expt)

theory Tsai and Jordan31 1993 MP2/aug-cc-pVDZ′ prism
Laasonen et al.14 1993 GGA/plane wave cyclic
Kim et al.32 1994 MP2/6-31+G(2d,p) vib freq cage
Lee et al.15 1994 BLYP/TZVP cyclic
Estrin et al.12 1996 GGA(PW/P)/“moderate” basis prism
Liu et al.33 1996 model potential/DQMC(nuclei) cage
Kim and Kim34 1998 MP2/9s6p4d2f1g/6s4p2d+ diffuse cage
Kryachko35 1999 MP2/aug-cc-pVDZ prism
Lee et al.7 2000 MP2/TZ2P++ book
Xantheas et al.3 2002 MP2/CBS extrapolation prism
Losada and Leutwyler36 2003 MP2/aug-cc-pVTZ cyclic
Present work 2004 X3LYP/aug-cc-pVTZ(-f) cyclic

expt Liu et al.33,37 1996 terahertz laser vib-rot. tunnel spec cage
Nauta and Miller38 2000 IR/liquid He droplets cyclic+ book
Fajardo and Tam39 2001 IR/para-hydrogen matrix cyclic+ cage/book

TABLE 3: Comparison of (H 2O)n Water Cluster Minima (kcal/mol) a

X3LYP/aug-cc-pVTZ(-f) ∆E (others)

n structure -∆E -∆EBSSE -∆E0 -∆G50 Xantheas (MP2)3 Lee (MP2)7 B3LYP

6 prism 44.69 44.24 30.66 7.78 45.86 43.97 41.49
cage 44.78 44.35 30.87 8.02 45.79 44.04 41.68
book 45.17 44.88 31.68 9.34 45.61 44.06 42.26
bag 44.39 44.08 31.05 8.61 43.37 41.44
cyclic 45.04 45.02 32.23 10.35 44.86 43.48 42.35
cyclic′ 44.10 43.99 31.64 10.00 41.40

8 D2d 71.05 70.43 50.32 16.94 72.57 70.06 66.31
S4 71.35 70.58 50.56 17.20 72.56 70.03 66.53

10 prism 91.17 90.26 65.35 22.08 90.07 85.01
prism′ 91.82 91.06 65.91 22.64 89.98 85.84
butterfly 84.12 83.43 59.68 16.86 87.93 78.29

a ∆E and∆EBSSE correspond to the non-BSSE and BSSE-corrected binding energies, respectively.∆E0 is the non-BSSE binding energy with
zero-point energy added;∆G50 is evaluated from∆H + T∆S, T ) 50 K, based on the non-BSSE binding energy and with zero-point energy added.
The most stable hexamer structures are indicated in boldface type.

Figure 3. Optimized water cluster minima (H2O)n; n ) 6, 8, 10
(X3LYP/aug-cc-VTZ(-f)).
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reverses when BSSE (cyclic now 0.14 kcal/mol more stable),
zero-point energy effects (cyclic now 0.55 kcal/mol more stable),
or entropic effects (cyclic now 1.01 kcal/mol more stable) are
included. We should caution that these zero-point energies and
entropic effects are derived using a harmonic normal-mode
analysis which may not account for certain “flipping” vibrations
in the water hexamer.36 We find that the cage structure is always
less stable and is generally close in energy to the prism.

Our most stable structures (book/cyclic) are different from
the most stable structure (prism) predicted with MP2/CBS but
are consistent with those observed in the most recent IR/para-
hydrogen matrix experiments (book/cyclic). In rationalizing the
difference between these experiments and the MP2/CBS results,
it has been suggested that the hexamers isolated in para-H2
matrices may represent kinetic and not thermodynamically

favored structures.39,46We do not find such an interpretation to
be necessary since X3LYP predicts that the book/cyclic
structures are the thermodynamically favored structures.

Figure 5 compares the X3LYP results with recent MP2
calculations. With aug-cc-pVTZ(-f), the BSSE error for X3LYP
is more thanten times smallerthan for MP2 methods. X3LYP
energies converge quickly to a limiting value with increasing
basis set size (Figure 5 and Table 1). For the cyclic and book
structures, the X3LYP energies also converge to the MP2
energies in the complete basis set limit; however, for the cage
and prism structures, the two methods appear to converge to
different energies.

This systematic difference may arise from the fundamental
difference in the treatment of electron correlation in MP2 vs
X3LYP. Nonetheless, we observe (1) that for the practical
triple-ú basis set the X3LYP energies are well within the
uncertainties of similar MP2 calculations and (2) the B3LYP
energies clearly disagree with the MP2 energies, although they
follow the same trend as the X3LYP energies.

In the finite basis set description of the hexamer isomers,
the X3LYP description of electron correlation isas consistently
Valid as the MP2 perturbative description of electron correlation.
Thus the X3LYP cyclic/book geometries are as much “refer-
ence” hexamer structures as the MP2 cage geometry currently
is considered to be.

3.3. Decomposition of the Total Binding Energy into
Multibody Components. It has been estimated that pairwise
interactions contribute∼70% to the total binding energy of water
clusters.47,48These pairwise interactions are expected to be the
ones most sensitive to electron correlation and basis set
effects.47-50 This suggests that one could minimize the com-
putational effort required for high accuracy by using a smaller
basis set and lower level of theory to calculate three-body and
higher terms and focusing the computation on the two-body
terms.29 To test this idea, Table 4 partitions the binding energy

Figure 4. Comparison3,7 of water cluster minima binding energies
(kcal/mol) without BSSE. Negative binding energies are plotted so that
the energies of more strongly bound clusters lie at the bottom of the
graph.

Figure 5. Negative total binding energy as a function of basis set for selected hexamer geometries, with comparison results from Lee7 and Xantheas.3

Here the largest basis set on the right and the estimate of the complete basis set (CBS) limit for MP2 is shown with dashes. Lower limits represent
non-BSSE energies; upper limits represent BSSE energies. Generally, this lies midway between the BSSE and non-BSSE limits for the finite basis
sets. The impact of BSSE for X3LYP is∼1/10th that for MP2.
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into multibody terms, allowing a comparison of the MP2 energy
components directly with X3LYP energy components (here we
average the non-BSSE and BSSE energies to estimate the CBS
limit).

The one-body “monomer relaxation” terms in B3LYP and
X3LYP deviate from MP2 by similar amounts (0.39 vs 0.31
kcal/mol, respectively) as do the three-body terms (0.71 vs 0.64
kcal/mol, respectively) and higher. However, B3LYP and
X3LYP differ significantly from each other in their two-body
terms (1.93 kcal/mol vs 0.83 kcal/mol difference) with X3LYP
much closer to MP2. This better description of two-body
interactions by X3LYP over B3LYP is expected, since X3LYP
also describes water dimer and rare gas dimers much more
accurately.

We find that LMP2 has the best description of two-body
energies (difference of 0.62 kcal/mol from MP2), but that it
fails to reproduce the higher body terms (the three body term
is only half the correct value). This probably arises from
assumptions in LMP2 about localization of electron correlation
that are most valid for pairwise interactions. Hydrogen bonds
in the LMP2-optimized cyclic water hexamer are also longer
than in the corresponding B3LYP and X3LYP-optimized
geometries (1.826 Å vs 1.749 and 1.739 Å, respectively). Thus,
LMP2 fails to properly describe water clusters.

It has been reported that B3LYP energies approach MP2/
CBS values29 by a “fortuitous cancellation of terms”. However,
we find no evidence of this trend. Indeed our results suggest
that B3LYP is deficient only in its treatment of two-body
interactions. Once this is corrected, as in X3LYP, B3LYP leads
to a proper description of larger water clusters.

3.4. Vibrational Frequencies: Theory and Experiment.
Vibrational frequencies from theory correspond to force con-
stants at the geometric minimum, while vibrational frequencies
from experiment correspond to force constants averaged over
the zero-point motions, which are quite large in water clusters.
With sufficient experimental data on the vibrational overtones,
one can correct for anharmonicity to obtain the harmonic
normal-mode vibrational frequencies. However this has been
determined only for water monomer51,52 and water dimer.53-56

To compare theory and experiment we used the corrections for
the monomer and dimer to derive the empirical relation between
anharmonic and harmonic vibrational frequencies shown in
Figure 6. With this relation, we extrapolated the experimentally
determined OH stretching vibrations of larger water clusters to
correspondingharmonic frequencies. Figure 7 shows a com-
parison of these harmonic frequencies with our theoretical
vibrational frequencies, left unscaled.

For cyclic complexes (dimer to pentamer), the waters are
arranged symmetrically leading to a clear distinction between
bonded and nonbonded O-H stretches. As the number of waters
increases, the bonded OH stretch becomes lower in frequency

while the nonbonded OH stretching frequency remains nearly
constant. X3LYP clearly reproduces this trend although the
overall frequencies are systematically underestimated.

The agreement between theory and experiment for the dimer
is good but the monomer agreement is not as close as previously
reported.13 Complexes larger than hexamers are three-dimen-
sional, leading to IR spectra that show a characteristic band
structure with a gap between bonded and nonbonded O-H
stretches. This band structure and the gap between bands are
reproduced well by X3LYP. The OH vibrations from theory
and experiment are comparable for all clusters exceptn ) 6,
consistent with the assignment of cyclic structures ton e 5
and three-dimensional structures forn g 7. Forn ) 6 it would

TABLE 4: Decomposition of Interaction Energies (kcal/mol) for the Cyclic (S6) Water Hexamer into Multibody Componentsa

LMP2 B3LYP X3LYP MP2

interaction no BSSE BSSE 50% BSSE no BSSE BSSE 50% BSSE no BSSE BSSE 50% BSSE no BSSE BSSE 50% BSSE

1-body 2.89 4.12 3.51 1.89 1.89 1.89 1.98 1.96 1.97 2.59 1.97 2.28
2-body -30.98 -31.63 -31.31 -30.01 -29.98 -29.99 -32.79 -32.74 -32.76 -34.4 -29.46 -31.93
3-body -6.98 -5.76 -6.37 -12.27 -12.08 -12.17 -12.19 -12.02 -12.11 -11.33 -11.61 -11.47
4-body -0.80 -4.18 -2.49 -1.52 -2.01 -1.76 -1.60 -2.06 -1.83 -1.62 -1.51 -1.57
5-body -0.60 1.35 0.38 -0.41 -0.13 -0.27 -0.40 -0.13 -0.27 -0.62
6-body 0.11 -0.27 -0.08 -0.01 -0.03 -0.02 -0.01 -0.03 -0.02
total -36.36 -36.36 -36.36 -42.33 -42.33 -42.33 -45.01 -45.01 -45.01 -45.38 -40.61

a All geometries were optimized at the level of theory indicated. For LMP2, B3LYP, and X3LYP, aug-cc-pVTZ(-f) single-point energies were
calculated from an aug-cc-pVTZ(-f) optimized geometry. For MP2 (results taken from Jordan et al.29), aug-cc-pVTZ(-f) energies were calculated
from a 6-31+G[2d,p]-optimized geometry. The average (boldfaced) of non-BSSE and BSSE energies is taken to estimate the CBS limit.

Figure 6. Comparison of experimental harmonic (derived) and
anharmonic (measured) O-H stretching frequencies for water monomer
and dimer (cm-1). This is used to derive an empirical correction factor
to experimental (anharmonic) frequencies for comparison with theoreti-
cal (harmonic) frequencies.

Figure 7. Comparison of O-H stretching frequencies (cm-1), theory
(unscaled), and experiment (scaled to obtain the harmonic frequencies).
Stretching frequencies for multiple configurations are shown where
available: forn ) 6, prism, cage, book, bag, cyclic, and cyclic′; for
n ) 8, D2d andS4; and forn ) 10, prism, prism′, and butterfly.
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be valuable to obtain additional vibrational frequencies to check
the assignments.

3.5. Benchmark Results and Timing.The cost of carrying
out X3LYP calculations is essentially the same as for B3LYP
and other hybrid DFT methods, making it quite practical for
systems with hundreds of atoms. Figure 8 shows the timings
for water cluster calculations for up to 19 waters indicating that
the scaling is asN2.3. For larger clusters, the scaling may slow
to N3, as initially faster matrix diagonalization and multiply steps
become slower and dominate the computation time. Even with
this conservative assumption, using 16 processors with a well
parallelized DFT code it should be possible to do comparable
calculations on clusters up to 50 waters, at an estimated cost of
30-60 h per geometry step/processor.

In contrast, MP2 calculations are∼100 times slower for the
octamer and scale conventionally as∼N.5 This severe scaling
makes canonical MP2 calculations impractical above 8-12
waters even at national computer centers. Local orbital ap-
proximations can accelerate MP2 but as mentioned in section
3.3 may be inaccurate for our application.

Table 5 shows that with the aug-cc-pVTZ(-f) basis set
geometry optimization of water octamer with X3LYP/B3LYP
is 10 times faster than with LMP2. Canonical MP2 is not
implemented in Jaguar, but previous benchmarking studies57 on
systems with a similar number of basis functions indicate that
LMP2 (using Jaguar software) is more than 10 times faster than
canonical MP2 (using Gaussian software). Thus, X3LYP is
expected to be more than 100 times faster than canonical MP2
for geometry optimizations with our given basis set for
moderately sized water clusters (n > 8).

4. Conclusions

The X3LYP hybrid density functional was designed from first
principles to accurately account for the dispersion interactions

of bound clusters while maintaining or improving the accuracy
of B3LYP for thermochemistry and other properties. Although
water dimer and other water cluster systems were not used in
determining the parameters of X3LYP, we find that X3LYP
leads to binding energies for water clusters up to 12 waters in
excellent agreement (average error in binding energy per water
of ∼0.1 kcal/mol) with the best theoretical results currently
available (MP2/CBS, MP2/TZ2P++).

The accuracy of X3LYP indicates that the DFT description
is capable of describing the binding of weakly bound complexes
for which dispersion plays an important role.

For the same basis set X3LYP is∼100 times faster than MP2,
and these costs scale much more slowly with system size. In
addition, the BSSE corrections for X3LYP are∼1/10 that of
MP2, allowing BSSE corrections to be neglected even for
modest basis sets. This leads to an additional saving in
computational cost for high accuracy studies. We tested X3LYP
for water clusters here because of the widespread interest in
their optimum structures and the availability of high accuracy
MP2 calculations for comparison. With X3LYP, we can now
extract accurate interaction energies from hydrocarbon clusters
and other weakly bound systems, and use those data to create
purely ab initio based force fields capable of describing protein-
ligand binding, DNA-ligand binding, and macromolecule self-
assembly.

The one water cluster for which there remains considerable
uncertainty is the water hexamer, which is at the crossover point
between small clusters which are cyclic and large clusters which
have a cage-like three-dimensional structure. With X3LYP we
find that the cyclic (chair) and book forms are particularly stable,
which agrees with some recent theoretical and experimental
studies, but not with others. We have predicted the vibrational
spectrum which may provide a target for experiments to test
the predicted structure.
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Among oxidizing agents, 2-iodoxybenzoic acid (IBX) stands out
for being mild, selective, and environmentally friendly, as it contains
no toxic or expensive heavy metals, and variants exist that operate
in aqueous solution.1 IBX effects oxidations of functionality beyond
simple alcohols,2,3 making it an ideal reagent for carrying out a
wide range of oxidative transformations were it possible to tame
and enhance its reactive capabilities.

We propose a modification of IBX predicted to increase its
oxidizing power while preserving its selectivity, based on a new
mechanism in which the rate-limiting step ishyperValent twisting.
Our mechanism, derived from density functional quantum mechan-
ics (QM) calculations,4 also explains the native alcohol size-
selectivity of unmodified IBX.

Hypervalent twisting is a coordinated motion of ligands driven
by the necessity of generating a stable, planar form of the byproduct
IBA 4 from an IBX-alcohol intermediate3 (Figure 1). The
proposed modification, substitution of IBX at theortho position,
lowers the barrier of this step. Since the rate-acceleratingortho
position is near the site of substrate binding, it offers a possible
route to an oxidant capable of chiral discrimination.5

We find that alcohols exchange with the hydroxyl ligand of IBX
1 via a low-barrier (∼9 kcal/mol) acid-catalyzed pathway, producing
an IBX-alcohol complex2 blocked from eliminating IBA (Figure
1). To form the oxidation products,2 must twist, moving theoxo
group into the plane and the alcohol out of the plane to form
complex3 (rate-limiting barrier of∼12 kcal/mol). Only after the
twisting barrier has passed can the complex betweenqtwist and 3
eliminate IBA4 to produce the oxidation product5 (∼5 kcal/mol
barrier). Intermediates1, 2, 4, and5 consistent with our calculations
have been observed by NMR.6

This hypervalent twist mechanism explains the propensity of IBX
to oxidize large alcohols faster than small ones. Larger alcohols
have a lower twisting barrier since the twisting is driven forward
by a repulsion between the alkoxy ligand and theortho hydrogen
that is relieved as the motion is completed (Figure 3). Figure 2
shows that lower twisting barriers correlate well with higher
measured oxidation rates over the alcohols examined.

To accelerate the overall reaction, we propose placing a bulky
substituent in theortho position to encourage IBX twisting. As a
simple test, anortho methyl substituent lowers∆Gtwist by >2.4
kcal/mol over a test set of seven alcohols, with a typical rate
acceleration of∼100 times (Figure 2). The rate acceleration is
especially pronounced for the secondary alcohols 2-propanol and
2,4-dimethyl-3-pentanol, consistent with increased steric repulsion
between theortho methyl and the alcohol.

The optimum size for theortho group is a compromise between
being large enough to favor the twisted form and being small
enough to allow a favorable equilibrium between1 and2 (Ph and
t-Bu are too large). Medium-sized nonpolar aliphatics, such as
methyl, ethyl and isopropyl, provide the best balance of good
twisting and ligand exchange thermodynamics.8

We now consider the nature of the hypervalent twist. IBX and
its alcohol derivatives can exist favorably in untwisted and twisted
conformations. In contrast, the byproduct IBA is only stable in a
planar formsthe form of IBA with hydroxyl and carboxylic acid
ligands 90° from each other is destabilized by∼48 kcal/mol relative
to planar IBA.

Figure 4 shows that this stability difference affects the barriers
to IBA elimination and product formation: the transition state is

Figure 1. Hypervalent twist (HT) mechanism showing the reaction path
and associated barriers for oxidation of alcohols by IBX (barriers relative
to reactants at each step). The coordinated motion that converts intermediate
2 to 3 is the rate-limiting step of the reaction.

Figure 2. Alcohol oxidation rates estimated from hypervalent twisting
barriers show good correlation with experimentally measured rates. We
predict thatortho-methyl IBX multiplies the twisting rate by a factor of
100, up until ligand exchange becomes the rate-limiting step of the overall
oxidation.

Figure 3. Explanation of IBX-alcohol size-selectivity: large alcohols twist
IBX more easily, which makes them oxidize more quickly. The proposed
ortho-substituted IBX enhances this effect and should be more active.
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product-like. Intermediate2 prefers to twist first (12 kcal/mol), then
eliminate IBA (5 kcal/mol), rather than eliminate IBA directly
without twisting (20 kcal/mol).

To understand why IBX twists readily while IBA prefers so
strongly to be planar, consider the bonding of iodine in IBA (Figure
5). Iodine makes a normal covalent bond to the phenyl carbon,
leaving two doubly occupied 5p orbitals perpendicular to this bond.
In IBA, one doubly occupied orbital is flanked by hydroxyl and
carboxylic acid ligands opposite each other, bound by a three-center
four-electron bond that is half-ionic and half-covalent. The two
anionic ligands must be opposite to each other to gain full stability
from resonance.

In IBX and its alcohol derivatives, the other doubly occupied
orbital is used to make a dative donor-acceptor bond to the oxo
group. Upon twisting, as with IBA, the methoxy ligand loses
resonance with the acid ligand, making it less strongly bound, but
unlike in IBA, theoxogroup picks up the resonance with that ligand
to compensate. In addition, theoxo bond becomes more covalent
in character, as the iodine transfers an electron to the oxygen to
avoid placing three electrons into one p orbital. These balanced
effects make the twisted complex a true intermediate only∼3 kcal/
mol less stable than the untwisted complex.

Our work has focused on accelerating the overall oxidation rate
by lowering the twisting barrier, but beyond a certain point, ligand
exchange becomes the rate-limiting step. For methanol oxidation,
this point is reached when the barrier to hypervalent twisting of
∼12 kcal/mol is lowered to the ligand exchange barrier of∼9 kcal/
mol, a rate acceleration of∼270 times.

Alcohol/water exchange occurs via two steps: a fast proton
transfer and a slower coordinated ligand motion (Scheme 1). The
proton transfer starts with protonated IBX complex7 and prefer-
entially goes in one direction to produce8 with an out-of-plane
oxo ligand. Lacking an anionic ligand to twist with, the dativeoxo
ligand (I+-O-) stays out of plane to maximize charge transfer.
Once the alcohol ligand has been deprotonated, IBX-alcohol 9
proceeds to twist and oxidize as described previously.

Our studies show that IBX twistingsthe coordinated motion of
an oxo group and an anionic ligandsacts as a gatekeeper to
oxidation. Hypervalent bonding concepts explain why the twisting
must occur, how it can occur, and when it occurs. By controlling
the twisting throughortho group substitution, we control the
oxidation pathway and unlock IBX’s reactive potential.
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stationary points with the correct number of positive eigenvalues; reactants
and products were optimized from transition structures perturbed along a
negative eigenvalue path.

(5) Enantioselective hypervalent iodine reagents: (a) Hirt, U. H.; Schuster,
M. F. H.; French, A. N.; Wiest, O. G.; Wirth, T.Eur. J. Org. Chem.
2001, 1569-1579. (b) Tohma, H.; Takizawa, S.; Watanabe, H.; Fukuoka,
Y.; Maegawa, T.; Kita, Y.J. Org. Chem.1999, 64, 3519-3523.

(6) Computed NMR shielding constants correlate well with experimental
chemical shifts; see Supporting Information. All comparisons to experiment
are to Frigerio, M.; Santagostino, M.; Sputore, S.; Palmisano, G.J. Org.
Chem.1995, 60, 7272-7276.

(7) ∆Gelim
q < ∆Gtwist

q for all alcohols studied; see Supporting Information.
(8) Electronic effects exist but are less significant. Electronegativeortho

groups, such as fluorine, repel theoxogroup in intermediate3, inhibiting
twisting and deactivating the reagent, while electropositive groups, such
as B(OMe)2, activate the reagent, but to a lesser extent than eveno-methyl
IBX.
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Figure 4. The alcohol-IBX intermediate2 (blue curve, solid circles) can
pass through elimination transition states (blue curve, open circles) to form
oxidation products (red curve). The black arrows show the most favorable
reaction pathway, where2 twists pastqtwist to form 3, accessqelim, and
form oxidation products4 and5.

Figure 5. Hypervalent bonding in analogues to IBA4, IBX 2, and twisted
IBX. (a) Resonance structures responsible for the half-ionic half-covalent
three-center four-electron bond in PhICl2, similar to IBA; (b) structures of
PhIOCl2, similar to those of IBX and twisted IBX.

Scheme 1. Acid-Catalyzed Water/Alcohol Exchange on IBX,
Showing Proton Transfer (6.0 kcal/mol barrier) Followed by
Coordinated Ligand Motion (9.1 kcal/mol barrier)
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