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ABSTRACT

In this study, an analytical and experimental approach has
been used to investigate the phenomenon of flow induced oscillations
in cavities. Laminar axisymmetric flows over shallow cavities at
low subsonic speeds were experimentally investigatedAusing cénstant-
temperature hot-wire anemometry., This study comprised the
following: study of the effect of the freestream and cavity configura-
tion on onset of.;:a.vity oscillations; measurements of cavity shear
layer under a wide rangé of cﬁvity and flow configurations, and the
distribution of the phasg of the 'pr‘opagating disturbances during both
first and second mode of cavity oscillation for a fixed Reynolds number
at the upstream corner. Both motion and instant pictures of cavity
shear flow, visualized by smoke inje;::tion, were ébtained. Experi-
ments were also done to investigate the effect of artificial excitation
and of mass injection on the onset of cavity oscillations.

The present study indicates that the cavity depth has little
effect on oscillations in shallow cavities, except when the depth is of
the order of the thickness of the cavity shear flow, For such cavity
configurations, measurements indicate a strong stabilizing effect of
depth on laminar cavity shear layer. Results of motion pictures. and
hot-wire surveys of the cavity shear layer show that, ciose to the
downstream cavity corner, large lateral motion of the shear layer
occurs, which results in a periodic sheddiﬁg of vortices at a frequency.
of cavify oscillations, Méan velocity measurements show growth

rates as high as % = 0. 022 where 8 is the shear layer momentum
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thickness and x'is the streamwise coordinate, These are attributed
to stron.g imposed velocity fluctuations on the flow, by the oscillating
cavity system. |

Phase measurements indicate that the disturbances propagate
at a constant phase speed through the cavity shear layer. The wave
length of the propagating disturbance bears an appro:dmai:e integral
relation to cavity width, in éach mode of cavity oscillation given by
b = \(N+3z) where b is the cavity width, A the wave length of the pro-
é;é;,fiz;évé;sturbance and N is an integer, which takes values 0, 1,
2, +++ etc. depending upon the mode of oscillation. |

Stability calculations of the measured mean velocity profile
were made by numerically integrating the governing equation of
motion. These numerical results were used to compute the phase
and the integrated amplification of the growing disturbances, through
the cavity shear layer. Finally, the mode of cavity os cillation can be
predicted for a given cavity flow by studying simultaneously the phase
and integrated aﬁpﬁﬁcation of various disturbance frequencies through

the shear layer and applying the mode relation.
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NOMENCLATURE

freestream acoustic speed

cavity widths (cavity lengths)

phase speed = w/a o

cavity depth

inner diameter of the axi-symmetric model
outer diameter of the axi-symmetric model
frequency in Hz

amplification rate of the spatially growing disturbances

of non-dimensional frequency S

distance from slit to edge in edgetone system
non-dimensional propagation speed of disturbance = Uc/Ue
integrated amplification of a disturbance of frequency

f through the cavity flow

nose length of the model

an integer

freestream Mach number
an integer
an integer depicting mode of cavity oscillation

pressure
mean pressure
. . 8
non-dimensional frequency T
e
time

velocity in direction x

mean velocity in direction x
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Nomenclature (Continued)
convective speed of the disturbances in the cavity shear
layer
freestream velocity in front of the model
velocity in direction y
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streamwise coordinate
transverse coordinate
wave number
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Nomenclature (Continued)
root mean square velocity fluctuations in direction x

mean square velocity fluctuations in direction x

corresponds to the conditions for onset of cavity

os cilla.tions_
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I, INTRODUCTION

The problem of fluid flow (gases or liquids) over cavitiés on
solid surfaces has gained renewed significance. For example, un-
covered cavities on flight vehicles are necessary to house optical
instruments, Other applications occur in the transonic wind tunnel
where slotted walls are used, in continuous laser cavities, and even
cavities of ship hulls, Flow over cavities is of interest because the
presence of cavities changes the drag and heat transfer and may
cause intense periodic oscillations, which in turn may lead to severe
buffeting of the aerodynamic structure and production of sound,

Periodic oscillations in cavities have been observed over a
large range of Mach numbers and Reynolds numbers, with both
laminar and turbulent boundary layers and over a wide range of
length to depth ratios. In general, cavities are divided into open
and closed cavities as defined by Charwat et al.(lo) Open cavities
refer to flow over cavities where the boundary layer separates at the
upstrearﬁ-corner and reattaches near the downstream corner. Cavi-
ties are closed when the separated layer reattaches at the cavity
bottom and again separates ahead of the downstream wall. At super-
sonic 5p;eeds and for a turbulent layer, the dividing line between'opeﬁ
andrclosed‘cav-iti‘es was found to be % =11 by Charwat et al. Present
exi)eriments at low subsonic speeds with laminar separation show a
demarcation line between an open and a closed cavity to be around
b

I = 7-8.

Open cavities may further be divided into shallow and deep

cavities. On the basis of previous experiments,(15’ 39) the
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oscillations in deep cavities are in fundamental acoustic depth ﬁodes.
Deep cavities act as resonators and the shear layer above the cavity
Aprovi&es a forcing mechanism._ Resonant oscillations are established
under certain flow conditions, éorresponding to natural acoustic
depth modes of the cavities,

In contrast to deep cavities, present experiments of flow over
shallow cavities at low subsonic speed show that the phenomenon éf
cavity oscillations is not one of standing longitudihal acoustic waves,
but is one of propagating disturbances which get amplified through
the shear layer. The important length scale, therefore, in shallow
cavity flows, is the width b of the cavity, On the basis of past exper-

(15, 39, 53)

iments, a very rough division between shallow and deep

cavities is % =1, For }dl > 1 the cavities may be considered shallow
and for laa_ < 1 the cavities may be considered deep.

Tani et al.(53) classify cavities into shallow and deep cavities
on the basis of smoothness of flow over cavities. They argue that
deep cavities are characterized by smooth separated flow which re-
sults in a low pressure drag. On the contrary, shallow cavities
result in less smooth flow giving a higher pressure drag coefficient.
Their pressure measurements indicate the demarcation line to be
at -g- >~ 1,4,

Previous work on cavity oscillations has been mainly experi-
mental, Because of the practical importance of oscillations in bomb
(5)

bays, experiments were performed at Boeing, (6) Douglas'™’ and at

the Royal Aircraft Establishment.(46) The first experiments covering
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a wide range of geometrical and flow parameters were performed by
Karamcheti.(zo) Further extensive work was performed by East,(IS)

Heller et al.',(lg) McGregor and White,(37) Plumblee et al, ,(39)

Ros sitér(45’ 46)

and others.

Karamcheti studied the acoustic field of two-dimensional
shallow cavities in the range of Mach numbers from 0.25 to 1.5 by
schlieren and interferometric observa.tions. Karamcheti noticed
that for a fixed freestream Mach number and depth, there exists a
minimum width below which ho sound emission i>sv noticed, For a
. fixed depth, this minimum width decreases as the Mach number in-
creases, It was further noticed that for a fixed Mach number and
depth, minimum width with laminar separation is smaller compared
to the turbulent one, i.e., bmi ) < bmin « For a fixed cavity,
_ Mamin turb
. Karamcheti further noted a minimum Mach number below which no
sound emission was noticed. Under a non-oscillating cavity config-
uration, schlieren and spark shadowgraph pictures showed that the
shear layer bridges the cavities without strong interaction with the
downstream corner., -No detailed study of the aerodynamic and geo-
metric conditions for the onset of cavity oscillations was undertaken.

The effects of Mach number on non-dimensional frequency
-ﬁfb—* have been étudied by many investigators for both laminar and

e :
turbulent boundary layers. On the basis of high speed shadowgraphs

45)

of cavity oscillations, Rossiter( speculated that periodic vortices
are shed at the upstream corner in sympathy with the pressure oscil-
lation produced by interaction of the vortices with the downstream

corner. Based on this idea Rossiter derived a formula for the
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osc'illa.tion frequency. He]ler(lg) and Covert studied shallow cavities
over a Qvide range of Mach numbers and correlated a great many ex-
perimental results with Rossiter's formula, In Rovs siter's formula-
tions of cavity oscillation frequency, the vortices shed from the up-
stream cavity corner are assumed to convect at a constant phase
velocity through the shear layer, resulting in a linear phase distri-
bution, It is further assumed that the phase velocity of these vortices
is independent of the cavity geometry and flow configuration, Rossi-
ter's formula does not shed any light on the possible mode or modes
in which the cavity is most likely to oscillate., Unfortunately, no
detailed and systematic measurements of cavity shear layer have
been made in the past to verify Rossiter's assumptions.

Another approach used by Plumblee et al.(39)v

to explain the

" mechanism of flow induced oscillations in cavities is that the phen-
omenon of sound generation in a cavity is basically that of an enclo-
sure responding to its normal acoustic modes. Plumblee calculates
the acoustic modes of a rectangular cavity with five cavity walls
having infinite impedance and an opening whose radiation impedance
has to be determined., Results obtained from this theory compared

' quite well with their experiments. This approach cannot predict
which natural acoustic modes are actually being excited. The stability
of the shear layer plays an important role in shallow cavity oscilla-
tions. This has been neglecte& in their formulations., Furthermore,
the present study indicates that the mechanism of cavity oscillations

in shallow cavities is not one of standing longitudinal acoustic waves,

as has been assumed by Plumblee et al.
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For a given flow, the prerequisite of a rmmmum width for
the onset of cavity oscillations strongly suggests fha.t the
fnechanism of cavity oscillations depends upon the stability charac-

Y(S 4,55) and Karamcheti extended

teristics of the shear lé.Yer. Woolle
their stability analysis of non-parallel jets for edge-tone generation
to explain the main features of cavity oscillations qualitatively.

(21, 50, 51) of edge-tone flow field indicated that

Their measurements
the phase and propagation speed of the disturbances in the jet, does
not agree with the linearized stability theqry of the incompressible
two-dimensional parallel jet. According to the stability theory of
non-parallel shear flows, the stability characteristic of the flow is

a function of local quantities, viz., thickness of the shear layer,
mean velocity profile, etc., which result in different amplification

. rates, as a disturbance of fixed frequency propagates downstream
through the flow. This explains their measurements of edge-tone
flow field in which, according to them, a non-linear distribution

of the phase and convective speed of the disturbances occurs. They
speculated that a similar behavior would occur in cavity flows and
extended their results accordingly. On the basis of stability of
almost paré.llel shear flow, they concluded that the frequency of
cavity oscillations is the one which received the maximum total inte-
grated amplification through the shear layer. Their theory does not
take into consideration the présence of the downstream corner which
this study indicates to be the key factor in inducing self-sustained
oscillations in the cavity shear layer, Present ‘experiments further

show that the presence of a back face, in fact, results in an integral
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relétion_between wave length of the propagating disturbances and the
cavity width, in each mode of cavity operation,

It was therefore felt that a detailed measurement of the cavity
shear layer was necessai'y for better understanding of the mechanism.,
Flow visualization and measurements of the cavity shear layer, from
“which phase distribution, phase velocity of the propagating disturbance,
etc. can be determined, would be of great help in understanding the
phenomenon of cavity oscillations, A stability analysis of the meas-
ured mean velocity profile would help further to study the amplifica-
tion rates of various frequencies through the shear layer. This in-
formation will assist in the study of integrated amplification of var-
ious frequencies through the cavity shear flow. Because of sustained
velocity fluctuations, study of the phase of the disturbances at the
downstream corner in relation to the upstream corner will shed
fufther light on the underlying mechanism of flow induced cavity

oscillations,
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II. ABASiC FEATURES OF FLOW INDUCED OSCILLATIONS
In this section the main features of cavity oscillations will be
outlined. Dimensional grouping of various pa.raméters of importance
will be undertaken. This will be followed by a brief review of the
theoretical work on prediction of the frequency of cavity oscillations,

' II.a, Main Features of Cavity Oscillations

Periodic cavity oscillations such as those shown below have
been observed by many investigators over a wide range of Mach and
| Rey'noids numbers., The main features for shallow cavities are sum-
marized below, These features of cavity oscillations prevail in

both lafninar and turbulent boundary layer separation.

Ue

S

(i) For a fixed value of edge velocity Ue’ shear layer thickness

60 at‘the upstream corner and depth d of the cavity, there exists a
minimum width b bglow which no oscillations occur (see sketch for
cavity parameters).

(ii) For fixed U, & and d, when cavity oscillations begin_
(b> bmin)’ frequency decreases linearly as b increases, This pro-

cess continues until a critical value of width b is reached, when thé
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oscillation jumps to a higher mode. At this critical value, the cavity
oscillations randomly switch from one mode to the other. At a given
time, a cavity oscillates in one mode only. As the width is further in-
creased, the oscillation may shift to a still higher mode andthe process
continues until the signal becomes irregular. Conversely, as the
width b decreases, the oscillations switch to a lower mode, until a
minimum width is reached when oscillations disappear suddenly. No
significant region of hysteresis is noticed when oscillation frequency
steps up or down, when width b increases or decreases, respectix}ely.

(iii) For a fixed value of shear layer thickness 50, width b and
vdepth d, there exists a minimum edge velocity Ue ] below which no
oscillations occur. =

(iv) For fixedv&o, b and d, for edge velocity Ue > Ue s the
frequency of oscillations increases linearly with Ue. The ff::lluency
keeps incre»asing‘up to a certain critical value Ue when the oscillation
jumps to a higher mode. At this critical velocity, two modes occur .
ran&omly. As stated before, the cavity oscillates only in one mode
at a time., The process of jumping to higher modes with increasing
Ue is terminated by appearance of an irregular signal. When the
edge velocity is decreased, the frequency decreases and theoscillations
j\imp to lower modes. bNo significant region of hysteresis is noticed
" between modes as edge velocity is changed.

(v) For a fixed value of the edge velocity Ue, depth d and
width b, there exists a maximum value of shear layer thickness

60 above which the cavity does not oscillate., As the shear layer

max
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thickness 60’is decreased (5, <53 ), the fz;equency of cavity
: max -
‘oscillations increases,

(vi) The freque:'ncy of cavity oscillations is independent of
depth d for fixed value of Ue’ 60 and b except when -aio ~ 0(1). When
depth d is of the order of shear layer thickness, frequency ‘decreases_
as d is increaéed. But for b>>'d, i.e., deep cavities, the oscillations
are in acoustic depth mode (Cf Ref. 15).

The main features of cavity 6s cillations will be stated in non-
dimensional form in the following section when a parametric study of

cavity oscillations will be undertaken.

II.b. Parametric Study

The main parameters determining the minimum width bm:m

are:
bmin = F Ue’ 60, v, 4, a, mean velocity profile at gepa.ra.-
tion,boundary layer laminar or turbulent at separa-~
tion, etc.
Grouping these variables into dimensionless quantities, we
have
b I d . .
(=) =F'"{Re, , —, M, mean velocity profile at separa-
3 . & ) _
0 min 0 0

tion, etc.

On similar grounds, the non-dimensional frequency é—b- can be
e

written as a function

U

4 ‘
= = FVY [Re — ,-53-, M, mean velocity profile at sepa.raj
e ,
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. In light of the main features of cavity oscillations, discussed

above in section II.a., we can state for low subsonic speeds that,

(1) For fixed value of Reynolds number Rey, and depth ,gé_
: 0 0
there exists a minimum width (39-) below which no cavity oscil-
0 min
lations occur.

(ii) For a fixed cavity width 61 and cavity depth Gi" there
0 0
exists a minimum Reynolds number (Re6 ) below which no cavity
0 min
oscillations occur.

(iii) For a fixed cavity width -5‘9- and Reynolds number Re6 R
: 0 0
there exists a minimum depth (-ai- ) below which cavity does not

0 .
oscillate, -

The effect of non-dimensional quantities on width ( -Sh-)
b 0 min
and frequency ( 'ﬁ_) will be studied systematically,
e . |

Il. c. Theoretical Investigation of Cavity Oscillations

Recently, cavity oscillations have been studied theoretically
by Bila.ﬁin et al,(7) McGregor et al,(37) Plumblee et al,(39) Rossiter(*>)
etc. Their work will be briefly described in this section.

(i) Plumblee's hypothesis is that the phenomenon of sound
generation in a cavity is basically that of an enclosure responding
to its natural acoustic modes. Plumblee et al, calculated the acoustic
modes of a rectangular cavity with five walls having an infinite im-
pedaxice and an opening‘whose radiation impedanée has to be deter-
mined. Their results lead to a set of discrete frequencies of cavity
oscillations depending on length to depth ratio. They' conclude that
resonant response is in the depth mode, for cavities of length to depth

ratio of one or less, and in the lengthwise mode for cavities wherein
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length is twice or thrice the depth. They further speculate that
boundary layer noise may be taken as the forcing function in excita-
tion of cavity os c.illatiéns.‘ The results obtained experimentally are
in reasonable agreement with those obtained by the above theory.
This theory does not take into account the stability characteristics
of the shear layer. The approach therefore fails to predict which
natural modes are actually excited and why the frequency jumps
occur,

(ii) Shear Layer Deflection Model

This model of cavity oscillations is based on the exchange of
mass as the mean dividing streamline deflects in and out of the cavity
with the frequency of cavity oscillations. As the mean dividing
streamline deflects in, the pressure inside the cavity increases
causing the mean streamline to deflect out, This causes a drop in
pressure inside the cavity below the freestream pressure resulting
in deflection of the mean streamline away from the external flow,

A theoretical model for mean dividing streamline motion was
cbnstructed using the Nybor g's(38) theory for edge-tone generation.
In this model, the dividing streamline is assumed to form a line of
fluid particles emanating from the upstream corner and propagating
towards the downstream corner. An integral equation is derived for
self-maintained cavity oscillations whose solution pérmits a set of
frequencies at which a cavity can oscillate. Since cavity oscillations
occur in a single mode at a given i:ime, it is argued that the instability

of the shear layer, which is not taken into account in the theory, pre-
vents activationofthe other modes which are not observed experimentally,

Nyborg's theory is now described briefly (see sketch for nomenclature).
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|y Mean Dividing Streamline

N

- Let 1(x, t) describe the mean dividing streamline position. It is
assumed that the horizontal component of velocity u of the fluid
| particls is independent of y and time, i.e., u = u(x). If € is the time
required for the fluid particle to travel from x = 0 to x, then
< :
€ = S —d-'gv
: J u(C)
0
If v defines the vertical component of the particle, then

~ vertical displacement at any point x and time t is given by
.
N, t) = S v(T)dT
t-¢

Assuming that v at the upstream corner of the cavity is zero,

i.e., v(0,t) = 0, then the vertical displacement can be written as
t .
neet) = §en§ar
t-e

The displacement at the downstream corner, i.e., x = b is
S
e, = § 6-m)(Ghar

t=e
(¢}

given by

where € is the time required for the disturbance to travel from

x = 0 to x = b, With the assumption that the vertical displacement
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(%}) depends only upon instant horizontal position [b-x(T)], and the
instant value of vertical displacement y(T) at the downstream corner,
Nyborg got the following integral equation for the vertical displace-

ment of the shear layer
' t

nt) = § @-nglb-x(m1dlne, tylar

: . t-e
‘where glb-x1éln(b, t)] = g—::

At the downstream corner, where x = b,
t

nb,1) =  €-mglb-x(m)Idln(o, t)lar (A)

t-¢
0 b

- 46
where v 'eo = So a0

Nyborg assumed some trial functions for ¢ and g which lead in
integral equation (A) to a set of discrete frequencies of cavity oscil~
lations, This theory does not take into account the stability of the
shear layer, which plays an important role in the phenomenon of flow
induced cavity oscillations. Thus the theory is inadequate to explain
in which mode the cavity is most likely to oscillate and why a jump
among various ca.vity modes occurs,

(iii) Rossiter proposed a model fo;: possible modes of oscil-
lation of shallow cavities. Shadowgraphs obtained by Rossiter show
that pressure fluctuations at the downstream corner of the cavity are
accompanied by periodic shedding of vortices from the upstream
éorner; Passage of the vortex oirgr the downstream corner produces
pressure fluctuations which in turn cause a vortex to be shed from .
the upstream corner. The basic reasoning behind Rossiter's form-

ulation is that used by Powe11(40) in describing the mechanism of
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edgetone generation. Since the flow over cavities is an edgetone
phenoménon, Powell's results are summarized below:‘
Powell argued fha.t the presence of the edge in the jet induced
a velocity perturbation at the jet slit, of a frequency which received
maximum amplification through the jet. With the hypothesis that the
undeilying mechaﬁism is one of a feedback, Powell arrived at a phase

and frequency formula given by*

ﬂsl_!l - h _ 1

s - % - (m+7)
fh _ l

and ﬁ: = (n+4)

where n is the integer describing the mode of edgetone oscillations
and h is the distance from jet slit to the edge.

Based on the vfe'edback theory of edgetones, Rossiter arrived
at his vortex wave interaction model, Bilanin and Covert(7) studied
theoretically the possible modes of oscillation of shallow cavities and
after detailed mathematical reasoning, arrived at a formula similar
to oﬁe proposed by Rossiter, Heller et al. (19) correlated a great
many experimental results which agreed with Rossiter's formulation,
Rossiter's vortex wave interaction model is described briefly (see

sketch).

(12)

* Similar formula of phase distribution was arrived at by Curle
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(A) t = 0, the sound wave

| -E-,P

| Lo
T o

3'41)(

g

leaves the downstream

corner

\

(B)t =t', the vortex

leaves the upstream

corner

It is assumed that vortices shed from the upstream cavity
corner are caused by pressure pertu'rbations which in turn are
- postulated to be caused by the interaction of vortices with the down-
stream ca-wity corner, Assuming that these vortices convect at an
average speed kUe’ then, since vortiges and pressure perturbation
are produced at the samé frequency, one has
kU a
e 8
- v a
a, is the average acoustic speed insidé the cavity, )‘a. the
wave length of sound waves in the cavity,and )‘v is the spacing of the
vortices in the shear layer, |
It is further assumed that there is ; phase lag between the
time the vortex passes over the downstream corner and when the
pressure perturbations are produced. To take into account this lag,

one assumes that at the time pressure pulse is produced at the
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downstream corner, the vortex is y ).v behind this corner.

’f‘ig. (A) gives the situation when the sound wave just leaves A
the downstream corner. The vortex which produced this sound wave _
is ‘y)\v behind the downstream corner. At a later time t=t', a
vortex is shed from the upstream corner and the flow pattern is

shown in Fig. (B). Then one has

m_ A
v

1
LEbEYA +KRU_t (2)

b

{

m, Xv +at! _ (3)

By solving (1), (2) and (3), we get

'ﬁ—e - e . 1
Mz *i)
U, o
where Me = = is the edge Mach number. It is further assumed
e .
that m_ + 'mv = m an integer, and if a_ =a, we have
i . _(m-y)
U - 1
° Mot i

For low subsonic speeds Me >0, Rossiter's formula reduces

to

%b- = k(m-y) wherem =1,2,3 -=~---
° depending upon mode of cavity oscillations,
It should be noticed that, for low speeds, Rossiter's vortex
wave interaction foz:'mula for cavity oscillation yields Powell's

formula for edgetone if ¥ = -0, 25, In other words, a vortex is
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}—fkv in front of the downstream corner when the acoustic wave

leaves the corner,
' Detailed experimental measurements of the flow field about

the cavity are needed for the verification of various models of cavity

oscillations.
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- Ol EXPERIMENTAL ARRANGEMENT

I0.a. Model and Wind Tunnel

In the present study, axisymmetric cavity flows were analyzed.
The disturbances induced by the end walls of finite span two-dimen- |
sional cavities were thus avoided. These axisymrﬁetric models
were employed with outer diameter D of 1", 2", and 6", These
models had an arrangement for variation of depth d in steps and con-
tinuously va.rying width b. The one-inch diameter model with a hemi-
- spherical nose was used mostly for preliminary experimental work.
The main quantitative work was done on the two-inch and six-inch
models. The two-inch diameter model had ojive-shape noses while
an elliptic nose was used for the six-inch model. For all these models,
the boundary layer at separation was laminar., The details of these
models are given in Fig. 1.

The two-inch model was made of aluminum with step depths
d of 0.875", 0.5", 0,25", 0,125" and 0.05", The width b could be
varj.ed confinuously from 0.'" to 2.5". The accuracy of measuring
width b was + 0.002", This model had a family of three ojive nose

shapes with % of 0.6", 1,12 and 2.12. To check the effect of any

Pressure gradient before separation on cavity oscillations, the length 2
of the ojive nose was varied by means of extensions of diameter equal
to 2'"and lengths equal to 1.5" and 3.0'", To analyze cavity flow, a
hot-wire probe was inserted from outside into the shear layer. The
probe could be moved with + 0, 001" accuracy across and along the
shear layer. This model had a provision for injecting smoke from

inside the cavity,
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?[‘his two-inch cévity model was studiea in a six-inch open jet
tunnel. Most of the experiments were done with the nose of the
cavity at approximately oné jet diameter downstream. The model
was carefully centered along the axis of the jet. The longitudinal
velocity fluctuations ’\/ a'”/ U were approximately 0, 3% at U = 50 ft/sec.
.The intensity of longitudinal velocity fluctuations increases as one goes
downstream along the jet., Mean velocity was constant throughout the
potential jet core in which all the experiments were done. The model

was moved as far as 15" downstream along the jet where u'z/Uw was
1. 3%,

The second model tested, shown in Fig., 2, was of six-inch
diameter D, It had a semi-~ellipsoidal head with a major to minor
axis ratio of 3. Thi_s model was made out of aluminum and brass,
Cavity depths d could be set at 0.5", 1", 1.5'" and 2'". The width
could be varied remotely through a gear box, as shown in the sche-
matic iayout of the model in Fig. 2. The model had provision for
insertion of a hot-wire from iﬁside the cavity, This probe could be
moved along and across the axis of the model, Another hot wire
probe was brought from the fop of the wind tunnel and could be moved
very precisely up and down and along the axis of the model, The two
hot-wire probes could be moved circumferentially relative to each
other to check the axisymmetry of the cavity flow., A microphone
could be inserted at both the upstream and the downstream cavity
corners. A Bruel and Kjaer 1 /8"- condenser microphone was em-
ployed to measure the pressure fluctuations inside the cavity. The

ellipsoidal nose of the model had two static pressure orifices
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diigonal}y opposite to each other. These pressure taps, which could
be moved circumfgrentially, were used initia]l_y to align the model
with the freestream 'velocify.

This six-inch model was tested in a 2! x 2' rectangular test
section, open circuit wind tunnel. The velocity in the test section
. could be as high as 90 ft/sec. The longitudinal velocity fluctuations
in the test section ;:ZIUoo were 0, 35% at U, =50 ft/sec. Before
inserting the model into the timnel, th'e mean velocity throughout the
test section was checked, Below U= 10 ft/sec, the mean flow in-
side the test section was not sufficiently uniform, Above Uw= 10 ft/sec,
the flow throughout the test section was within 1% of the rﬁean. Most
of the experimeﬁts, therefore, were done with U‘m more than10 ft/sec.

II1, b, Instrumentation

Constant temperature hot-wire anemometry was extensively
used in measuring both mean and fluctuating quantities, Thermo-
Systems Inc. 's constant temperature anemometer model 1050 was
qsed. Throughout this study the probe wire of 0,0002" diameter and
0. 08" length was held in the fine tips of the hot-wire probe. The
output of the hot-wire was fed to a Hewlett-Packard Model 3590A
wave analyzer, to analyze the frequency contents of the cavity flow,
The wave analyzer had variable band-widths of 10, 100, 1000 and
3100 HZ to locate closely separated signals., Electronic sweeping
was used and the output of the wave-.a.nalyzer was fed to a Thermo-
System-R. M. S. voltmeter. The mean square output from the R. M. S,
meter (available as D, C,) was fed to an x-y plotter to measure the

relative amplitude of the frequency content in the hot-wire signal.
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Hot-wire output was also displayed on the oscilloscope simultane -
ously.

For phase angle and phase velocity measurementé, the output
of the two hot wires was analyzed on an SAI Correlation and Proba-
bility Analyzer. The SAI-43A Correlation and Probability A.nélyzer
i; an all-digital high speed processing instrument which provides
real time computation for auto and cross correlations. The output
of the correlation measurement was displayed on an oscilloscope or
plotted on an x-y plotter.

To measure the pressure fluctuations inside the cavity, a
-é—" Bruel and Kjaer condenser microphone was employed. To study
the non-oscillating cavity shear layer, (b < bm.i.n) the flow in the wind
tunnel was excited artificially by me;ns of a 30-watt L, B.J. speaker .
which was installed flush with the bottom wall of the wind tunnel, far
ahead of the model. |

IIT,.c. Flow Visualization and Mass Injection |

Flow around the cavity was visualized by heating the one-inch
diameter model. Density gradient, caused by heating of the air adja-
cent to the model, was employed for taking spark shadowgraphs. To
get good details of the cavity flow, considerab'le'heating was reqﬁired
which could change the flow characteristics of the vca.vity flow. To
avoid this difﬁcﬁlty, smoke pictures were taken by injecting smoke
from inside the cavity., The latter was done at various locations,
viz., close to the upstream and downstream corner, just after the
downstream corner, etc., to study the details of flow around the

cavity., The model was lighted from above. = Both still and motion
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pict'uresﬂ, of the cavity flow were taken.

'fo study the effect of mass injection on cavity oscillations,
air was injected circum.fer}entia]ly all along the base of the cavity.
Provision was also made to inject the smoke just below the upstream
corner to visualize the flow with and without mass injection. Since

only a qualitative study was undertaken, no effort was made to meas-

ure the rate of mass injected.
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1Vv. EXPERIMENTAL RESULTS
iThisv section describes the experimental results of cavii:y-ﬂbw
measurements., All measurements were made for shear flows which
were laminar at separation,

IV.a. Minimum Width for Oscillations to Occur

It has been observed experimentally for flow over éa.vities
that, for given flow conditions, there exists a minimum width bm:l.n
below which no oscillations occur. Also, no cavity oscillations occur
beloiv a m;mmum velocity Ue'min for a given cavity geometry and
boundary layer thickness 60 at separation. |

Fig., 3 shows the energy in the various modes of cavity oécilla-
tion as a function of width -:-,-. The energy in a particular mode was
determined by passing the signal through the wave analyzer. The
figure also indicates the frequency of oscillations fas a function of
width 3 o Throughout this experiment, depth —551- =12.5 and Reynolds
number R.e5 =1,04Xx 103 were kept constant. ’%he measurement of
the ﬂuctuati:ozg periodié signal was made at a fixed point from the
downstream corner of the cavity. At width bmin approximately equal
to 0.38", a strong periodic signal appeared, resulting in a sharp
increase in the mode energy. For width b > bmin’ the cavity began
to oscillate in the second mode of oscillation with the absence of the
first mode., As b was increased, the frequency of cavity oscillations
decreased and the energy in the mode kept increasing until a critical
value of b =0, 55" was reached. The energy in the second mode fell

suddenly and the cavity switched to the third mode of oscillation. At

this width, the oscillations fandomly switched among the two modes
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and the energy in the two modes increased and decreased respectively.
At a giv-en moment, the cavity was oscillating in one of the two modes.
As the width b was increaéed further, the frequency of the third mode
fell again until the energy in the third mode was not measurable, due
to the increased turbulence in the shear layer. A similar distribution

- of energy occurred when the width 61 and the depth %i— were kept

' o o

constant and U, was changed. At Ue » a sudden jump in the mode
min

energy occurred, similar to the one at minimum width,

A thorough study of the cavity shear flow showed that the

separated laminar shear layer remained so until maximum width

- b
bmax was reached. A maximum width Tn;ix_ 2] QO was observed.
This width is nearly twice as large as the distance of transition

from separation of the laminar free shear la.yer.(47’ 48)

For cavity widths b > bmax’ an altogether different cavity
ﬂéw was observed, with transition of the separated laminar shear
layer occurring around Ex_ = 40-50. For these widths, the cavity
shear flows were ba.sicallgr irregular and turbulent in nature. No
periodic signals weie noticed for these turbulent cavity flows, i.e.,
for b>b max®

Fig. 4 shows the sequence of oscilloscope traces for a fixed
free-stre;m velocity Uoo = 50 ft/sec and depth d = 0.5", when b was
varied for b < bmin' For this cavity flow, the minimum width was
0.275', It should be nofed that for width b < bmin’ periodic velocity
fluctuations existed in the shear layer which scaledv with width b

(cf Fig. 3). As the minimum width was reached, i.e., b = 0.275",

a sudden jump in the mode energy occurred, and the cavity shear
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flow began to oscillate violently, The last two oscilloscope traces
were takenat b_. =0. 275" but at different times, They clearly
show how periodic signals appear and disappear randomly.

Flow visualization by smoke injection (which will be discussed
later) indicated that for b < bmin’ the separated flow stayed léminar
as it passed over the cutout and attached just below the downstream
corner. The flow behaved in a similar fashion as width b was in-
creased, until the minimum gap for the given flow was reached.
Atb=b min’ the shear layer close to the downstream corner began
to oscilla.te vigorously and this resulted in a large increase in the
mode energy.

On the basis of the above experiments, the minimum width
for a given flow and cavity depth is defined as the shortest gap for
which a sudden increase in the cavity's mode energy occurs
(cf Fig. 3). Minimum edge velocity is defined in a similar way,

A detailed investigation of the effect of flow and cavity
geometry on the onset of the cavity oscillations was undertaken on
the two inch diameter model. The test was done in the 6'' free-jet
tunnel. A family of three ojive nose shapes (mth% = 0.6, 1.12
and 2, 12) were employed, For a fixed nose shape and depth d, edge
velocity Ue was determined for various widths b at which the cavity
began to oscillate. For the same nose éha.pe, the above experiment
was repeated with five different depths. 'I"his gave one set of ex-
periméntal data. Two other similar sets of data were obtained for

the other two nose shapes. A total of ninety data points of known
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U e" §, b, d and f at which oscillations began were obtained. When
the data were non-dimensionalized and plotted as a non-dimensional
bgnin‘ Y a.gainét the non-dimensional depth -5d— , all the

experime:ta.l results fell on a single curve. Fig. 5 showc; the results

width

of the experiments. No cavity oscillations occur below these points.

‘It is clear from these results that the depth has little effect on the

b_. U6
non-dimensional width z;un ?) 2 when depth -65-1- > 2. There is
' b_. "9 o :
a sharp increase in __1:_;1___111 ;\,/R.e-6 when -651- ~ O(1)..

o o o
To investigate the effect of any pressure gradient before

separation, the length of the ojive nose was varied by means of two
cylindrical extensions, Relatively thick boundary layers which were
laminar at separation, wei'e obtained, The minimum width for a
particular depth was determined again by changing edge velocity Ue'
These results are also shown in Fig. 5.

To verify the above results for minimum width, the three
ojive nose shape models were tested at different edge velocities, so
that the thickness of the shear layer for all these models at separa-
tion was constant, By keeping the depth constant, the minimum width
bmin was determined. This experiment was repeated for five differ-
ent shear layer thicknesses at separation. The results indicated
that b_. J/U_ stayed constant for a fixed value of the depth 2

v o
for each of the five cases tested above. This is what one will expect

b_.

from the universal curve gmn ./Res VS. Gi . Experimental
o o o

results are tabulated in Table 1.

The effect of freestream conditions on cavity oscillations

and, in particular, on the minimum width was investigated. For
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thié experiment, a one-inch cavity model was studied in the six-inch
free jet; The model was moved along the axis of the jet within the
potential core where the rﬁean edge velocity stayed constant, The
results obtained are shown in Fig. 6. The curve indicates freestream

fluctuations in front of the cavity at different downstream stations

from the jet exit. At x = 4", 8" and 12" where g was 0, 269,

[>¢]
/0. 77% and 1.64%, respectively, minimum width b_. for U, =501f/sec

w;as determined, The results,_ as indicated on the curve, show that
' bm:i.n ié independent of the freestream fluctuation within the above
range. The influence of freestream disturbances on cavity oscilla-
ti.ons, out of the potential core, further shows that the phénomenon ‘
of cavity oscillation is .indépendent of fhe freestream turbulence.

IV.b. Non-dimensional Frequency of Cavity Oscillations

For an axi-symmetric model, the non-dimensional frequency

b for low subsonic flows can be expressed as

U
e v
U 2 . _
.é_.ﬁ = F( °\? , %, -%, %, mean velocity profile at
0 separation, etc,

Experimental results (shown later) indicate that non-dimen-
sional frequency is independent of - % and the most important param-
eters defining cavity oscillations are U, and 60 instead of Uoo, D and

. . . ib
L. Therefore, one can write non-dimensional frequency T asa
e

function
‘ U6 :
-“:Ui. = F'( E; °,.-6£, —d—, mean velocity profile at separation,)
&
e o o etc.

To study the dependence onnon-~dimensional frequency of ‘
U b
Reynolds number Re, = €2 depth 4 and width —5]3—, each

v ]
o o v o

O
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,, of them was varied éeparately, keeping others constant. To measure -
the £reqﬁency of cavity oscillations, hot-wire measuréments of the

_ longitudinal velocity fluctuations u' were analyzed.

IV.b. (i) Effect of Width

Fig. 7 shows the effect of width on cavity oscillations at

Reynolds number Re; = 2, 86X10? and depth 51 = 10 where non-

‘dimensional frequenc; -ﬁfh is plotted against rolon-dimensional width

: 61 . No cavity oscillatio;s ocgurred below 53 = 5.25 which repre-
s:nts the minimum width ('31?-) e First moge fluctuations occuired

at a non-dimensional freque:cryn:; about 0.6. There was a2 slow in-

crease in non-dimensional frequency as -52- increased. As the criti-
- o . :
cal value of -ab- = 8.15 was reached, oscillations jumped to a higher
(o] :
mode. At this width two modes occurred alternately. The two modes

never occurred simultaneously. Under certain flow conditions,
switching between the two modes was audible. The second mode of
cavity os cillations occurred at about a non-dimensional frequency of

0.95. As the width 7~ was increased slightly beyond the critical
o

value of 8,15, the first mode disappeared and the flow began to
oscillate in the second mode of cavity oscillation. As the width
was decreased, the cavity oscillations jumped back to the first mode

where the width -8]—3- was 8,15, and no significant hysterisis region
o
was noticed., Beyond —ab— > 10, the flow over the cavity became
o

irregular and the periodic velocity fluctuations ceased to exist or

were weaker than the turbulence fluctuations in the shear layer.
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Fig. 8 shows another typical operation of cavity oscillations at

a Reynolds number Re, = 0. 92)(103 and depth 351— = 12, 95 in which
o o

the cavity began to oscillate in its second mode of oscillation. The

second mode of oscillation occurred at a non-dimensional frequency

f—t?- = 0,95, The non-dimensional frequency slowly increased as the
e .
width was increased until a critical value of -6—1-)- = 12,95 was reached
' o

and the cavity oscillations jumped to a higher modeof oscillation. The

third mode of cavity oscillation occurred around a non-dimensional

frequency of about 1.4. As widths—b- increased beyond 18.10, periodic
o

velocity fluctuations of the shear layer disappeared and turbulence

was observed without the cavity flow switching to higher modes,

IV. b, (ii) Effect of Depth

Fig. 9 represents the effect of depth -6-‘-1-— on non-dimensional
o

frequency 3D 4t a fixed Reynolds number Re, = 0,96 x10° and width

b Ue bmin 60
5= 11,0, The minimum width 3 for the onset of cavity oscillations

o o
was 9,40, The cavity began to oscillate in the second rmode of oscilla-

tion with a non-dimensional fre@ency%b— of about 0.80. The results
e

in Fig, 9 show that the non-dimensional frequency was independent of

depth gd— < 6. In cavity flows with a depth -gl- less than 5, non-dimen-

o)
sional frequency dropped slowly as depth wag decreased, The four

points on the figure correspond to 4 o 20,25, 11,57, 5,78 and 2,87,

5
At gd— = 1, 34 oscillations disa.ppeargd. Therefore, somewhere between
o
1.34 < gé-l- < 2,87is the value of (-gi-) below which no cavity oscilla-
o 0 min

tions occur., Due to the limitations of the model, this minimum depth
could not be determined precisely.

IV, b, (iii) Cavity Oscillations at Different Reynolds Numbers

Fig. 10 shows the results of the effect of Reynolds number

Re6 on non-dimensional frequency %E-. During this experiment
o e
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Tb- was kept constant. Since the non-dimensional frequency is
o A _
independent of depth for 4 > 6, depth T;-i- was not constant though

6
o] o

care was taken not to decrease the depth below the above limit.,
Expgrimental results for three ojive nose shapes with % =0.6, 1,12
and 2,12 are plotted in Fig. 10, For any particular model, shear
layer thickness at separation decreases as edge velocity increases.
.Therefore, to keep the non-&imensional width Sl constant, the cavity
width b was decreased accordingly when the edg‘: velocity Ue was
changed, Width 2 was v1‘2. 76 throughout the experiment.

% U s

Within the range of Reynolds numbers i 2 tested (0.6x10

3

to 1. 5X103), cavity oscillations occurred in the second mode ofoscilla-
ation with a non-dimensional frequency in the range of 0.8-0.9. Data
points for different fineness ratios ( %) fall on a single curve. It

was stated in the beginning of this section that non-dimensional fre-
quency %— is a function of E%f—, %, %, £D etc, Since ﬁﬂ—)- is
independe::t of depth and for a fixed width —6}:-’- , is also indepeident
of % » and it appears that the most appropr?iate parameters defining

cavity oscillations are U, and 60 instead of Uoo’ D and £, This
reduces the important non-dimensional parameters of cavity oscil-

lations by one. Hence one can conclude that non-dimensional fre-

U &
quency -[“:Tb- is only a function of Reynolds number _9\)_9 , depth gd—
e ’ o
and width Tb- .
o

IV.c. Mean Velocity Profiles in Shear Layer

The transverse coordinate y (measured positive upward from

the edge of the cavity), is non-dimensionalized by the momentum
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thickness 8, defined as
- 0
= U _.ll.)
8 = S T (1 T dy
e e

-0
where Ue is the velocity at the edge of the shear layer. Edge velocity
Ue was almost constant along the cavity width. The mean velocity
profiles at various downstream locations in non-dimensional form

are plotted in Fig. 11 a.ga.instt (y-yp)/8, where y1 corresponds to
: 2

ﬁy— = 0.5. The locus of y;/8 is shown in Fig, 12. The cavity
e z . :
was oscillating in the first mode ofoscillation with >~ = 0.67.
e

The dov&nstream corner was located at —g—— = 60, The depth and
o
the Reynolds number at separation were —gd— = 100 and
o
Reg = 2.42x10%,

o
As is clear from Fig., 11, in the early stages of shear

layer growth, the velocity profile changes from a boundary layer
profile to a shear layer profile, A similarity has been estab-
lished a.t.-e-’i- = 15, No measurements of mean velocity profile
could be mzde beyond g—: 50 because of the presence of the
downstream corner., Velocity fluctuations /ET?er as high as
0.15 were noticed in the shear layer close to the downstream.
corner, Results of cavity flow visualization by smoke injection,
discussed later, show that these lérge velocity fluctuations are
attributed to large lateral motion of the cavity shear layer close
to the downstream corner. |

To study the effect of cavity oscillations on the growth of

the shear layer, mean velocity profiles were measured for various
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widths -Gb- when edge Reynolds number Ree = 2,42X1 02 and depth
-0 : : o .

-gd— = 100 were kept constant., From these results, the momentum

th:.ickness as defined above was computed at various dowﬁstrea.m
locations -g:— . rFig. 13 indicates the growth of the shear layer
G(x)leo as : function of EE' .- Results for four cavity widths -GP—
equal to 52,5, 60, 85 ar?d 105.2 were analyzed., These cor:e-
spond to cavity configurations when oscillations just appeared,
oscillations in the first mode, cavity flow switching between the
first and second modes of oscillation and finally, the cavity in its
second mode of oscillation, respectively. _

It is clear from these results that the growth of the shear
layer was almost linear with x/ 60 in all modes of cavity oscilla;.tion.
Growth rate g% increased in magnitude with increasing cavity
widths but no sudden jump in growth rate occurred when cavity flow
switched from one mode of oscillation to another. The growth rate
?—be:-, which is a2 measure of rate of fluid mass entrained by the grow-
ing shear layer from inside the cavity, can be studied é.s a function
of cavity width from results shown in Fig. 13. An entrainment rate
% as low as 0.006 was observed when the cavity began to oscillate.
This increased to a value as high as 0,022 for large cavity widths
when oscillations were in the second mode. Cavity
oscillations are responsible for these large entrainment rates in the
iaminar shear layer. It should be noted that these entrainment
rates are quite large for laminar shear layers and are comparable
to the entrainment rate of the turbulent mixing layer which is

do
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IV.,d. Phase Measurements

Phase measurements of the shear layer veiocity fluctuations
were made by cross-correlating the hot-wire signals at different
space locations, The reference hot-wire probe was brought from
inside the cavity without disturbing the flow around the caﬁty. This
probe was placed suﬁiciently downstream so that the shear layer
velocity fluctuations were approximately sinusoidal. Throughout
this e;:periment, the reference probe was kept fixed. Another probe,
which could be moved relative to the reference prbbe, was brought
from outside. | |

Before taking any phase measurement, axial symmetry of
the shear layer flow around the cavity was tested. With respect to
the reference probe, the second probe was moved circumferentially,
while keeping their relative positions from the upstream corner
constant, Phase measurements were made at different relative
circumferential positions. This experiment was repeated with
different spatial positions of the second probe from the upstream
corner. Results showed that the flow ar;'ound the cavity was axi-
st.metric. |

All the phase measurements were made relative to the phase
at the upstream corner, x = 0, y = 0, Because of very small velocity
fluctuations, no méasurements could be made close to the upétrea.m
corner. Measurements close to the upstream cavity corner showed

a linear phase distribution with downstream distance x/ 60. These
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| results were extrapolated near this region to determine the phase
of the di;stur.ba.nces at the upstream corner. |
Typical phase-angle measurements at Reynolds number
Re,. = 2. 86X103, width -} = 6»and depth Ed- = 10 are shown in

6O 60 o

Fig, 14, The flow was osciliating at a frequency f = 625 Hz, corre-
sponding to a non-dimensional frequency é—b— = 0.67. The numbers
in Fig., 14 represent the phase -ZY;, (mea.suied in terms of wave
length) at various space locations by which the propagating disfurb-
ances lagged behind the upstream cavity corner. Fig. 15 shows
constant phase lines of the propagating disturba.ncés.relative to their
phase at x = 0 and y = 0, These lines have been drawn from experi-
mental results in Fig. 14,

It is clear from Figs. 14 and 15 that the phase at a fixed

location -5’-;— varies a great deal across the cavity flow, As one
o .
moves toward the cavity from outside (TSX— = constant) the measure-
o]

'me'nts show that the phase of the disturbance decreases until one
reaches fhe region denoted by the byroken line in Fig. 14. In this
region a sharp drop in phase occurs. As one
moves further inside the cavity, the phase of the disturbance in-
creases, Far outside the cavity, the phase shows a linear decrease

with EL while far inside the measurements show a linear increase
o .

of phase.
Fig. 16 shows the oscilloscope traces of velocity fluctuations

at 6&‘. ‘= 4 at various —GL locations when the oscillations were in the
o o

first mode of oscillation, The flow and cavity configurations were the

same as in Fig. 14. One clearly sees that the velocity fluctuations
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a.re. sinusoidal outside the cavity as well as inside the cavity with an
intermeAdiate region where velocity fluctuations of a higher harmonic.
occur, This region is denﬁted by dotted lines in the phase angle
measurements of Fig. 14,
Phase-angle distribution of velocity fluctuations at -GX- =0 as

-0

a function of = is shown in Fig. 17. The solid line on the wave is

60

Powell's phase criterion, given by 1% =n+ i—- where n is the integer
representing the mode of jet edge-tone operation and h is the distance
from the slit to the edge. According to Powell's theory,(so) the phase
of the propagating disturbances varies linearly with distance x. For
the first modeofoscillation, this formula giyes a phase Zl'n- =1,25 at
the downstream corner relative to its phase at the upstream corner.
As is clear from Fig. 17, the phase of the disturbances changes
linearly with x but gives 5= = 1.5 instead of 1.25, as predicted by
Péwell's criterion,

Phase measurements of propagating disturbances through the
shear layer were obtained for various cavity widths, From these
measurements, the .wa.vevlengths of the disturbances were calculated.
For these cavity configurations, the oscillating frequency f was known,
hence the phase speed Uc= Af was computed, Present studies indicate
that the disturbance in the shear layer propagates at a constant phase
velocity if one moves along the line where -g— = constant, From the
mean velocity and phasé measurements, the ;hase velocity of the
disturbances was computed as a function of width Tb-.

Experimentta:,rl 6resuli:s indicate that for a fixe?i depth —6(-1- and

o

Reynolds number S o , as width 61' was increased, the wave
o




length X increased and the frequency of the disturbances dropped,

but the ﬁroduct f\ = U, slowly increased in magnitude. This trend

%

cillation jumpedto a higher mode. This caused a sudden drop in wave

was maintained until a critical value of b was reached when the os-

length \ of the disturbances and a sudden increase in the frequency
of the oscillations. But the phase velocity of the disturbance U, =M

increased steadily as the width gb— was further increased without
o

any discontinuity as the oscillation switched modes.

- Results of the phase velocity Uc/Ue as a function of width
-gl?- when the cavity was oscillating in its first and sgéond modes of
ogdnation are indicated in Fig., 18. Throughout the above experi-

ment, depth -6"-!— = 10 and Reynolds number R.e6 = 2.86X10° were
o o

kept constant. As is clear from the results, the phase velocity of

the disturbances increased with width until it rea‘che'd a value of

U .
approximately ﬁ_c_ = 0.5, No measurements could be made beyond
b e

3 > 10,5 because of increased turbulence in the shear layer.
o

Fig. 19 shows the ratio of A\/b as a function of cavity width
where Reynolds number Rey = 2.86x10° and depth L =10

o 60

were fixed, Results for both first and second modes are shown.

om|U

It shbuld be noted that the wave lengths of the disturbances bear a
nearly constant ratio to width b in any particular mode. This ratio
jumps to a lower value as the cavity goes to a higher mode. This
is an important experimental result indicating that the wave lengths
of the propagating disturbances have a definite integral relation to

the cavity width, for each mode of cavity oscillation.
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IV.e. Effects of Cavity Geometry on Oscillations

All measurements so far were made using a model with a
fectahgular Acavity. In order to assess the significance of the details
of the flow field inside the cavity, a thin disc was
mounted inside the cavity as shown in Fig. 20(A). The parameters
b! and D' were varied in steps. ‘The main observations were that
the frequency of oscillations remained independent of the disk loca-
tion as long as B' < bmin a.nd D' was not large enough to interact
‘significantly with the free shear layer near the top of the cavity.
From this experimént one can conclude that the details of the flow
inside the cavity are not of importance for the periodic oscillation
phenomenon,

In a second exp’erimeht, a lip was added to the downstréam
corner as shown in Fig, 20(B). It waé found that b' and not b was
the important dimension with which the frequency
is scaled. The scaling is the same as in Fig. 7. Hence the volume
of the cavity has little effect on the frequency of oscillations, This
indicates that the shallow cavity oscillation phenomenon is not a
cavity resonance phenomenon as it is for deep cavities (Cf Ref. 15).

To verify the abbve conclusion further, holes were drilled
circumferentially as shown on Fig., 20(B) to allow an exchange
of mass between the cavity and the outer flow, The effect of closing
and opening these holes on the frequency of cavity oscillations was
investigated, These results indicate that the phenomenon of cavity
oscillations based on the interaction between the shear layer deflec-

tion and internal pressure is inadequate to explain the mechanism
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of oscillations in the flows over cavities,

Iv. f. Flow Visua.lization

Fig. 2lais a typic#.l spark shadowgraph of the cavity flow.
This shadowgraph picture was taken on a one-inch diameter model
with free stream velocity U = 50 ft/sec, b = 0,425" and d = 0,25",
The flow was visualized by heating the model above room temperature,
As a result air close to the ﬁodei became hot as it flowed around it,
This resulted in a density gradient which deflected the light rays
~and créated a shadow effect., A high-intensity point spark source
was placed at the focus of an 18" concave mirror to get an intense .
parallel light beam. This parallel light beam was passed over the
heated model and sha.dowgfaphs were photographed on a high speed
film,

The spark shadowgraph picturé shown in Fig. 2la indicated
thé.t vortices were formed by the interaction of the shear layer with
the downstream edge and were shed downstream at the frequency of
cavity oscillations, As méntioned above, to get a good shadowgraph
effect, excessive héating was required. Too much heating may
change the mean boundary layer profile and hence the stability char-
acteristics of the cavity shear flow. To avoid this problem, the
shear layer was visualized by injecting smoke into it. Continuous
white smoke was injected from inside the cavity. Care was taken
not to disturb the shear layer, T_he model was lighted from above
and both instant and motion smoke pictures were taken from the
side. What one sees in such a photograph are theinstant streaklines.

Figs, 21 (b), (c), (d) and (e) are typical smoke pictures of cavity
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ﬂofv. All of these pictures were taken on the two inch diameter
model at a freestream velocity of 20 ft/sec. For all these smoke
pictures‘ flow was from left to right,

Figs. 21(b) and (c) show a non-oscillating cavity, i.e.,
vfridth b < bmin' As stated before, the above pictures showed that
for width b less than bmin’ the shear layer bridged the gap' smoothly
and attached close to the downstream corner. The flow remained
laminar and without large oscillations until bmin was reached, At
: bmin’ violent cavity oscillations appeared which persisted as width
b was further increased, This condition is shown in Fig. 21(d).
Fig. 21(e) shows cavity flow for width b > bmin’

Figs, 22(a) show the effect of depth d on the development of
~a separated shear layer. The width b in these pictures was 2. 0",
‘ which was much larger than Bma.x at which the cavity oscillations
existed. The shear flow near separation was independent of the
downstream corner, Fig, 22a(i) has a depth d = 0,425", The smoke
picture shows that transition of the laminar shear layer occurred
very close to the upétream corner, On the other hand Fig. 22a(ii),
for which depth d = 0, 05", sho:ws that the transition from a laminar
flow to a turbulent one was delayed quite far beyond the upstream
cavity corner, This indicates that shallow cavities have a stabilizing
effect on the separated shear layer and consequently require a longer
bmin for the onset of cavity oscill;tions, as compared to deep
cavities (cf Fig. 5).

Fig. 23 shows two sets of four consecutive frames of motidn

pictures taken on a one-inch diameter model. The flow is from
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right to left, The freestream velocity was 30 ft/sec with cavity
width b '= 0. 70" and depth d = 0, 425", Due to lack of a very intense
steady light source, one could only go as high as 500 frafnes/sec. :
The oscillations occurred at a frequency f = 300 Hz. Results of the
motion pictures are summarized below:

(A) Strong interaction with the downstream corner occurred
when the cavity oscillations began at b = bmin'

(B) When the cavity was oscillating, the mean streakliﬁe
did not oscillate much until it was very close to the downstream
~ corner. Strong oscillations of the shear layer occurred in the vicinity
of the downstream corner, |

(C) At the downstream corner, the mean streakline oscil-
lated in and out at cavity oscillation frequency. As the streakline
entered the cavity, the shear layer rolled up into a vertex which was
shed as it deflected out of the cavity., Fig. 23 1(i) shows the most
inward position of the shear layer with a vortex, shed a little earlier,
at the downstream corner.i In Fig, 23 1(ii), the shearyla.yer is in its
most outward position and is ready to shed a vertex. The process
continues at the frequency of Savity oscillations,

Fig. 23(2) shows a similar sequence of cavity oscillations.

IV.g. Effect of Mass Injection on Cavity Oscillations

The influence of the addition of mass on the cavity flow when
it begins to oscillate was investigated experimentally. Results indi-
cated that cavity oscillations could be delayed with the introduction
of a small quantity of air. To understand the flow, smoke was

injected at the upstream cavity corner. Results obtained are shown
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in 'Figs.v 22(b). Study of the smoke pictures indicated that the shear
layer was effectively blown out of the cavity with the continuous
addition of a finite mass, .This reduced the interaction with the
downstream corner and consequently cavity oscillations were post-
poned. Oscillations reappeared when either width or the edge
- Reynolds number Rey were increased. One can, in principle, delay
the cavity oscillations with a; furtﬁer addition of mass, but the present
experiments indicated that an excess amount of mass injection spoiled
- the cavity shear flow, This may bev attributed to excessive radial
momentum imparted to the cévity shear layer, No quantitative
measurements of mass addition were undertaken in this study.

IV.f. Some Miscellaneous Observations About Cavity Flow

(1) To measure the frequency of cavity oscillationg, the
fluctuating component of the mean velocity was analyzed. On survey-
ing the shear layer with the hot wire probe, it was found that the u'
fluctuations were almost sinusoidal in the shear layer except close
to the downstream corner.. In this region the wave form of the u'
fluctuations was quite complex. Due to rolling up of vortices in the
vicinity of the downstream corner, the non-linear effects became

<
predbm.ina.nt. Higher harmonics of the fundamental frequency of
cavity oscillations were noticed because of superimposed non-linear
velocity ﬂuctuafions. These higher harmonics should not be confused
with the higher modes of the cavity oscillations., To avoid this diffi-

culty, most of the frequency measurements were made at the outer

edge of the shear layer, slightly in front of the downstream corner.
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(2) On carefully analyzing the cavity flow before intense
oscillations-occurred, i.e., b< bmin’ it was noticed that periédic
fluctuations of ‘very s mall magnitude were pr esent and
their frequency scaled with the cavity width (Cf Figs. 3 and 4). The
energy associated with such fluctuations was very small compared to
cavity fluctuations when width b > bmin' Fig. 3 indicates experi-
mental results for both oscillating and non-oscillating cavities.

Results in Fig, 4 show hot-wire output signals of u' fluctua-
tions in cavity shear flow fo;' b < brhin' The flow of ndn-oscillating
cavities with b < bmin was studied under the influence of artificial
excitation. The present study shows that the cavity could be put into

intense oscillation when excited at a frequency which lay on the curve

min (Fig. 3). .Cavity flow did not

fvs. % when extended beyond b < b
respond to artificial excitation away from this frequency. On turning
off the external excitation, the cavity flow came back to its 6riginal
non-oscillating state, Careful study of the hot-wire signal, when
acoustic éner gy was turned on and off,' showed that theA cavity flow
took a ﬁnite time to come to its equilibrium state of oscillation,
These results suggest that 1:heJ cavity oscillation system has some
kind of inherent damping in it Whiéh has to be overcome by the si:roﬂg
interaction of the cavity shear layer with the downstream corner,
(3) The visualization of cavity flow with a one-inch diameter
fno del with a semi-hemispherical nose showed that the shear
layer blew out of the cavity and reattached behind the downstream

cavity corner, This might have been caused by the separation of the

‘boundary layer ahead of the upstream cavity corner, As the cavity
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width b was increased, this reattachment point moved closer to the
upstream corner until a critical value of width br;:ﬁn was reached
which resulted in strong cavity oscillations, Experiments showed
that cavity oscillations could be delayed for quite large widths

b, . . s s |

min > bmin‘ This seems to be a practical way of designing a
non-oscillating cutout in which an interaction of the cavity shear

layer and the downstream cavity corner is avoided.
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V. RELATION OF CAVITY-FLOW OSCILLATIONS
' TO SHEAR LAYER STABILITY

V.a. Inferences Drawn from the Results Compared with.Existing
Models _

In this section, the experimental resﬁlts will be reviewed in
relation to existing cavity oscillation models, To emphasize the
results, the key features of the present study are summarized below:

(1) The experiments show that oscillations in shallow cavities
are independent of the volume of the cavity. Oscillation frequency
remains unchanged even when an exchange of mass between the
cavity and the outer flow is allowed. " Therefore, a mechanism of
cavity oscillations based on the interaction between the shear layer
deflection and internal pressure, as emphasized in the shear layer
deflection model (cf section II, c.), séém_s inadequate to explain flow
oscillations in cavities.,

.{2) Phase measurements for a given cavity flow indicate
that the phase speed of the disturbances stays constant over the
whole length of the shear layer (i.e., the width of the éavity) in
magnitude as the width is increased. It is further noticed that
during any particular mode of oscillétion, the wave length A of the
disturbances bears nearly a constant relationship to the width b of
the cavity. The spacing of the periodic vortices which are shed
from the downstream corner at the frequency of cavity oscillations
further confirms such an integral relationship between b and A\, The
present results suggest that b = X(N+%) where N can be 0, 1, 2, 3,

hadianiod etC.



(3) Measurement of the longitudinal velocity component u in
the cavify- shear layer (except close to the upstream and the down-

stream corner) indicates .a similarity in the mean velocity profile.

The experimental results indicate that the integral relation
between the cavity width b and the wave length A of the disturbances
is not N+% or N where N canbel, 2, 3, --- etc., depending upon
the mode of oscillation, as has been predicted by Powell's phase
criteria and wave interaction model. As stated above, this stﬁdy
suggests a phase relation given by :?:- = (N+3) where N can be
0, 1, 2, 3, --- etc., During the present study, oscillations in the
cavity's fundamental mode with b = % were never noticed, as it had

(21)

been observed in edge-tones by Karamcheti and Bauer. It
should be noted that in the experim'ent_al results presented above,
the first mode of caﬁty oscillation corresponds to an integral
relation between the wave length of the disturbance and the c#vity
wid?:h b = % A (Fig. 17). It has been further observed that, under
certain ﬂow conditions, oscillations began in the second mode of
oscillation, (b = % A) with absence of oscillations in the first mode.
The reasons for the selection of a pérticula.r mode of oscillation re-
mained obscure during the earlier part of this study. It is clear froﬁx
the present experiments that definite criteria exist for the cavity to
oscillate in a certain mode. To try to obtain insight into these cri-

teria and clarify the conditions which cause a shift in the cavity mode,

a stability analysis of the self-similar experimental mean velocity
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profile was undertaken, This is described in Appendix II, Experi-

(21? 50, 51) et al. on the edge-tdne flow field

ments by Karamcheti
showed that the disturbances in the jet do not convect at a constant
phase speed. Their study further showed that the amplification of
the disturbances is not exponential, as has been predicted 'byv the
linearized stability theory of parallel shear flows. In order to ex-
plain such behavior, they conclude that the jet should be treated as
a non-parallel flow field, In light of their experiments on the edge-
tone system, Woolley(54) and Karamcheti extended their arguments
to cavity flows and suggestedA that the cavity shear layer should also
be treated as non-parallel shear flow. They speculate that the fre-
quency which receives the maximum total integrated amplification
over the length of non-parallel shear layer spanning a cavity of
" width b should be the one at which the ‘cavity is most likely to oscil-
late. A review of the existing literature does not reveal any exper-
imental evidence to justify the above arguments, - In contrast to edge-
tone flow measurements, the present experiments indicate that the
disturbances propagate at a constant phase velocity, As a ﬁfst ap-
proximation, therefore, a calculation of the integrated amplifications
of different frequencies and their pha;ses along the shear layer (whose
profiles and growth rate 8 = 8(x) are known a priori) was undertaken,
To evaluate the phase and the integrated amplification of a
disturbance of a fixed frequency, as it propagates through the growing
cavity shear layei', the results of the stability characteristics of the
mean cavity shear flow are required, If the variation of the shear

layer momentum thickness over the wave length A of the disturbances
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is small, the flow, as a first approximation, ca.n»b.e treated as a
ciuasi-pé.rallel shear flow, The results are, thereforé, more accurate
when applied to cavity flows oscillating in higher modes of cavity
oscillation,

Appendix II gives the derivation of the equations of motion
for stability analysis of the inviscid, and parallel shear flows. For
numerical computations, the undisturbed mean velocity profile
T(y) = 0.5 (1+tanh 0.52 y) was chosen. This profile agrees quite
well with the measurements, as Fig. 24 showé. Close to t‘h't.a.
inner edge of the shear layer, the measurements do not agree
well with the assumed mean velocity profile. At these points the
;relocity fluctuations are comparable with the mean velocity. There-
fore, the accuracy of hot-wire velocity measurements is very
* doubtful. Stability of both temporally and épa.tia.lly propagating
disturbances was studied. Fig. 25 shows the amplification rates
of temporally and spatially growing small disturbances, as a

function of non-dimensional frequency éi for the assumed mean

e
velocity profile. The effect of non-dimensional frequency on phase
U .
speed ﬁ_c is indicated on Fig. 26. The results of Figures 25
e

and 26 were used to calculate the integrated amplification and the
phase of various disturbances along the cavity shear layer, as

described in sections V.b. and V.c. These results were used to
predict possible cavity modes and the frequenéies the cavity shear

layer is most likely to select (cf section V.d.).
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V.b. Theoretical Basis for Computing Integrated Amplificatiox;

of a Propagating Disturbance Through the Cavity Shear Flow

Assume that for the two-dimensional, inviscid, and parallel
flow, the small propagating disturbances are given by the stream

function

¥ = diy) X t)

and %%‘ = g1 (y)ell@x-wt)

u'= Real [%}gj = Real [d'(y)ei(ax' wt)] :
Let 4'(y) = |4'(y)]|etY, then
u' = |éYy)l Real [ei(ax-wt+\1/)] (1)

Consider the spatially growing disturbances where wave

number @ is complex and frequency w is real, then
=a ia.
a r +1 a,

Define 8 =a x-wt+ '

Substituting for « in (1), one gets

l¢'(y)l;aix cosb

d~
|

u

" -Za.x ’ 21‘!’
ut® ld,'(y)lze b Lﬂ | cos?8 a0
(o]

®H N

-2a.
= Llguy)|%e &
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Let ————i2X - . _ JHF
A/%Id'mlz |
max

where a is a measure of the maximum amplitude of the u' distur-
bances, Differentiating the above expression with respect to x and

on multiplying both sides by 8, one gets

' 1 da _ - : .
e-;-_a—x-— -Qie—F(S) (2)
I
S =T
e

F(S) is the spatial amplification rate of the disturbance of non-
dimensional frequency S (cf Fig, 25)’ If the shear layer growth is
small over the wave length ) of the disturbance, stability analysis of
parallel shear flows can be used to calculate the amplification rate
of a disturbance propagating through a slowly growing She?“-' layer,

One can express a disturbance of fixed frequency propagating through

a growing shear layer as

ds dse

R (3)
U = constant

e

From expressions (2) and (3), one gets

da _ 1 F(S ' _de
a5 -9—'(;) —js—L where 9'(x)—a-;

ol L

which on integration results in
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: 'S : -
a 1 F(S . :

log (a—o) ! 5@ £ as @

. O

K(f)/8'(x) for 08'(x) = constant

where K(f) is the integrated amplification of the disturbance frequency

o _ f8 _
f from So--.(—J-; to S = ﬁ.—e— and F(S) = -aie.

Total integrated amplification K(f) of the disturbance frequency

can be computed for a given cavity flow whose growth rate g—% and

amplification rate F(S) as a function of S, are known.,

Voc Phase Computation of a Disturbance Through the Cavity Shear Flow
The phase of any disturbance which is propagating through

the cavity shear layer with a frequeney f and a phase velocity Uc at

any downstream location x is given by-

vx) = 2T .y

C

(o]

whére \l/o'is the phase of the disturbance at x = 0. In the following
analysis, the phase of the disturbance is measured relative t>o the
phase at x = 0,

(A) For temporally growing disturbances, the phase speed

is independent ofv non-dimensional frequency and is related to edge
U

velocity U, as T—J’S = 0.5. Therefore the phase of the disturbance

, ‘ e

at a station x below the downstream corner relative to the phase at

x = 0 is given by

vx) = dmx

temporal e
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(B) For spatially growing disturbé.nces, the phase speed of the
disturb;nces is a function of non-dimensional frequency f_Béﬁ (Fig. 26).
To calculate the phase of a propagating disturbance throughethe cavity

flow, one has to know the shear layer growth rate so as to compute =

the local propagation speed Uc = Uc <£%)—}-‘ )). Therefore, one can write
e

¥(x) = o _x- wt+ const
spatial T
v = L.z -0 = _
= & % _‘B- ar(S) wherg S—Ué’ ar_are
U S a (s)
= & r =1 z (s) &
i, = m ) sl e %
So o
- 48 _
where 8! = = = constant,

The phase of the spatially growing disturbances relative to the

phase at x = 0 is given by

2e 0 U
Vx) = —-‘IS o= ds
spatial g! so c
where o o2t g o oL £
g r—'Uc’ o"Ue -Ue'

V.d. Prediction of the Mode and the Frequency of Cavity Oscillations

The experimental results indicate that, out of various possible
modes of cavity oscillation, cavity flow chooses to oscillate in one par-
ticular mode. On chang'ing either the geometry or the flow, the cavity
oscillations may switch from one mode of oscillation to another., Ex-
isting cavity models fail to predict the particular mode which the
cavity flow is most likely to select. Results presented in this section

will shed some light on this matter,

All the experimental results presented in this section were
carried out at a fixed cavity depth -§§- = 100 and Reynolds number

o
Ree = 2. 42X102 at separation. The predicted results of cavity
o
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oscillations for three cavity widths g~ = 52.5, 85.0 and 105.2 are
 presented. These correspond to oscillations in the first mode, cavity

flow switching between the first and second mode of oscillations and

finally, the cavity in its second mode of oscillation respectively.

Fig. 27 shows cbmputed results of phase distribution of

spatially growing disturbances of various frequencies, as a function

of downstream location -;o. The phase of the disturbance frequencies
‘has been measured relative to their phase at the upstream cavity
corner. In order to investigate the integrated amplification asso-
ciated with these frequencies, calculated total integrated amplification
has been plotted as a function of disturbance frequency on the same
plot, “The experimental results of shear layer growth rate with x for
various cavity widths (Fig. 13) were used in these computations. For -
computation of phase and integrated amplification rate, linear shear

layer growth was assumed throughout the cavity flow.

The results in Fig. 27 show that out of various possible modes
of cavity oscillation, given by the integral relation b = A(N+%), cavity
flow chooses to oscillate in 2 mode which corresponds to N = 1.
Results indicate that the disturbance frequency, which gives a phase
3w at x = b relative to the upstream cavity corner, lies close to the
- one which receives maximum integrated amplification through the
shear layer, The frequency associated with the N = 0 cavity mode
receives quite smallamplification comparedto one which receives the
maximum total integrated amplification. Again, the frequencies cor-
responding to N=2, 3, 4 ---etc. are too large in magnitude compared

to the one which received maximum integrated amplification, and are
not amplified as they propagate along the cavity shear layer. The
simultaneous requirement of cavity oscillation frequency to have the
right phase and near mammum total integrated amplification through
the cavity flow, does not allow the cavity to respond to frequencies
associated with modes other than N = 1. The observed cavity oscil-

lation frequency of 705 Hz as indicated on Fig, 27 is in reasonable
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agreement witﬁ the predicted frequency, which gets maxlmum inte~
| grated ;mpﬁﬁcation and has an approximate phase 3w at the down-
. stream ca.vify corner, relative to the upstream corner. .

.Results for the cavity flow, which was‘oscillating alternately:
in its first and second mode of oscillation are indicated in Fig., 28.
The cavity was oscillating at frequencies of 550 and 735 Hz. As is
clear from Fig. 28, these observed frequencies are close to the pre-
dicted frequencies, corresponding to N =1 and 2 modes and lie close
to. the one which receives fhe maximum integrated amplification
through the cavify shear flow, As argued above, the cavity does not
respond to cavity oscillation modes associated with either N = 0 or
N=3, 4 5 --- etc, |

Results for cavity oscillation, in its second mode of oscillation
are studied in Fig. 29. The experimeﬁts did not show cavity oscil-
lations corresponding to the N = 1 mode, which might be possible
according to E‘ig. 29.

Figs. 30, 31 and 32 compare the experimentai results of the
three cavity configurations studied above with the theory of temporally
growing disturbances. Since the propagation speed is independent of
non-dimensional frequeﬁcy, the phase of various disturbance fre-
quencies varies linearly with the dowixstrea.m distance x, Similar
conclusions as for spatially growing disturbances can be drawn from
such a comparisop.

On the basis of the above results, it is asserted that:

(A) When cavity oscillationé appear, the frequency at which

the cavity flow chooses to oscillate is such that
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@) it satisfies the phase criteria V-¥_ = (2N+1)w
where Ncanbe 0, I, 2, 3 -~- etc.
(ii) and receives the maximum integrated amplification
through the cavity flow. |
The mode which the cavity shear flow selects for oscillations
is one in which both these conditions are satisfied simultaneously.
(B) The cavity jumps from one mode to another when fre-
quencies corresponding to these modes lie close to the
‘ one which receives the maximum integrated amplifica-

tion through the cavity flow.

V.e. Comparison of Numerical Results with Experiments

In this section, a comparison is made between the theoretical
prediction and the experimental measured quantities in the self-
similar region of the cavity flow. The effect of non-dimensional
frequency on phase speed Uc/ Ue is indica:ted on Fig. 26, along with
four sets of experimental reéults. Because of the growth of the shear
layer along the cavity width, one does not have a unique momentum
thickness 8 to scale the frequency of cavity oscillations., In facf, the

. . £8(x) . . .
non-dimensional frequency —éﬁ increases monotonically with dis-
' e

tance x, as the disturbance of frequency f propagates through the

shear layer at phase velocity Uc/ U e* On Fig. 26, the non-dimensional

frequencies fegc=0) and fe%‘ib)

, corresponding to the initial and
e - e ~

final momentum thicknesses, respectively, have been joined by a

straight line, As apparent in Fig. 26, the measurements correlate

well with calculated results when the cavity oscillates in its second

mode of oscillation.
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Measured amplitude distribution of longitudinal velocity
ﬂuctué.ti;ons u' has been compared with the numerical fesults in
Fig. 33 for the non-dimensional frequeﬁcy -é—e- = 0. 016{18. Normal-
iza.tion‘ of the mea.sured.amplitude was done weith spatially growing
disturbances such that their maxima have the same value. No
attempt was made to compare measurements with calculations for
flow far inside the cavity, because of the violation of the boundary
conditions as y = - in the present flow configurations, As one would
expect, quite iarge velocity ﬂuctuations were méasured in this region
as compared to the calculated 6nes.

Fig. 34 shows the phase distribution given by the spatial and
temporal stability theory at non-dimensional frequency [fli = 0, 01648,
and the observed results, The experimental results‘ are ein better
agreement with the theory of spatially growing disturbances than with
the temporal one, Variation of phase for spatially growing distur-
bances is a li;iear function of | }7] at distances far away from y = 0.
The slope of fhe phase 2! has an opposite sign for y = * w0 with a
phase reversal, whose liyc;ation is a function of non-dimensional fre-
quency TfI_S_, occurring somewhere within the shear layer. This kind
of behavizr of the amplified disturbances is verified by the present
experimental investigation as shown in Fig, 34. These calculated
and experimental results for the phase distribution are in disagree-
ment with Freymuth's interpretation of the phase for ;—' - (Ref, 16,
Fig., 34). For détails of the asymptotic behaviqr of the phase as

y = £ o, the reader may refer to Appendix I,
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"Fig. 35 shows results of longitudinal velocity fluctuations

( J u'2 ) / Ue in the cavity shear layer as a function of the down-

max
stream location _Gx__ , when the cavity was in the first mode of oscil-
. b _ 9 2 b _ 4
lation with ’ﬁ: = 0.67, Reeo = 2,42X107, B: = 60 andg-; = 100,

The calculated results for both temporally and spatially growing
_disturbances (cf equation 4, section V.b) a.r‘e shown on the same
Figure. The results of the computed growth rates of Fig. 25 have
been used in these computations; As is clear from Fig. 35, the
~amplification of the disturbances is not exponential as one would
expect because of changing local non-dimensional frequency %EQ
which results in different amplification rates, ©
In comparing thé ekperimental and theoretical results in
Figures 33-35, it must be kept in mind that the latter are obtained
from a local approximation of the parallel-flow theory, whereas the
actual oscillation is a result of the complete cavity interaction.
That is, the oscillation frequency which actually exists is not the

one that would be approximate to the local profile if the shear layer

was freely developing as, for example, in Freymuth's experiments,
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. VI. CONCLUSION AND DISCUSSION
In this section, a summary of the results and the inferences
drawn from the present sfudy are presented, Certain experimental
results suggest the need for further investigation of oscillations in

flow over cavities., These are discussed briefly in this section.

The experimental results for laminar flows over a cavity
indicate that the non-dimensional width __Lran__n_ Re6 is independent

. of depth gd; for - 2 2. For = >2, the value of the width

-—I;—? ,fﬁ.—e—g; belov‘: which no ca:ity oscillations occur is 0, 29X103.
This result can be used in designing non-oscillating cavities with
laminar séparation. It should be noted, that for a fixed edge velocity
U, and kinematic viscosity V, minimum width b_. ~ Ja‘; . Further-
more, for laminar boundary layers without a pressure gradient, the
edge velocity Ue and boundary layer t‘:hickness at separation (for a
fixed fOrgbody sahape), are related as 'So ~ J—t—l—_. Then the minimum
width bmin ~ Sf. It is thus concluded that ingreasing the shear
layer thickness at the upstream cavity corner tends to delay the

onset of cavity oscillations,

There is a sharp increase in the non-dimensional minimum

b_.
width rgx:n /Re 50 for Fd; < 2, below which no oscillations occur.
Smoke pictures (Fig. 22a) show that the effect of decreasing cavity

depth 3-(-1- is to stabilize the laminar shear flow of the cavity., It is
o .

concluded that one requires longer cavities for the onset of cavity

oscillations for cavities with a smaller depth 39— , comparedto
o

those with a larger depth. This effect is very pronounced in very



-58-
shallow cavities. In these a strong lateral constraint on the cavity
shear ﬁow may avert the growth of three-dimensional disturbances
which contribute to the transition from a laminar flow to a turbulent

one.(41 )

Vi.b. Oscillation Frequency '

The overall features of cavity oscillations are given by the

effect of the width 2 , the depth 4 and the Reynolds number

Yebs o o fb (15)
Re, = —5—,. on the non-dimensional frequency T East

&
.o e
studied oscillations in rectangular cavities with a turbulent boundary

layer separation. His results fall into two bands of frequencies ﬁfb-
of about 0, 3 to 0. 4 and others between 0.6 to 0.9 with a few result:
around 1,3, Similar bands of frequencies are noted in edge-tone
genera.tion.(zn Pr_e'sent results fall into three bands of frequencies
of 0.5to 0.6, 0.8to 0.95 and 1.3 to 1.5. It is concluded that one
gets a lower non-dimensional frequency for a given mode of oscil-
lation for a turbulent boundary layer separation, compared to one
with a laminar boundary layer separation. Similar results have
been reported by Karamcheti(zo) for high speed flows over rectan-
gular cutouts.

| The results for the effects of the width 312- and the Reynolds

Ué o
2 on the non-dimensional frequency are very significant.

number )

In a particular mode of cavity oscillation, the non-dimensional fre-
quency increases gradually in magnitude as the width or the Reyn-

olds number is increased. The present study shows that wave length
A of the disturbances bears an approximate integral relation with the
width b = MN + 3)in any particular mode of oscillation, Therefore,

the non-dimensional frequency can be written as
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—é—b- = ﬁS (N+). Thus, an increase inthe propagation speed of distur-
e e .

bances, with an increase of width (cf Fig. 18) for a fixed Reynolds
number, results in an increase in non-dimensional frequency ﬁf-ll s

e
in each mode of cavity oscillation.

Vi.c. Free Shear-Layer Regions

On the basis of flow visualization and hot-wire measurements
of laminar cavity shear flows, one can divide cavity shear flows into
the following main regions, viz.,

/ (a) Close to the upstréam cavity corner, flow transformation
from a boundary layer profile to a shear layer profile occurs. Present
studies indicate that this region extends as far as 10 to 15 momentum
thicknesses 60 downstream from the point of separation. For width
b<b

max’
the frequency f of cavity oscillations were noticed in this region.

velocity fluctuations of very small magnitude at

(b) The second region occupies the greater part of the cavity
flow. Here pure sinusoidal velocity fluctuations of frequency f of
cavity oscillations occur. This disturbance, at frequency £, propa-
gates ét a constant phase speed.

(c) Inthis region, which lies very close to the downstream
cavity corner, the shear layer deflects in and out of the cavity at
the frequency f of cavity oscillations. This gross lateral motion
of the shear layer causes large velocify fluctuations and results
in a periodic shedding of vortices at a fréquency f from the down-
strearﬁ corner. Hot-wire output close to the downstream corner
shows a non-linear signal superimposed on the periodic one ha.ving

a frequency f.
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Mean and ﬂuétua.ting velocity measurements further show
that the effect of the downstream cavity cormer on cavity shear
flow is to postpone the transition of ‘the separated laminar layer
to turbulence. The experiments show that the cavity shear
layer remains laminar until a maximum width bma.x is reached.

, the periodic signal could not be measured due to in-

At bma.x

creased turbulence in the shear layer. Maximum widi:h—n—a-a'—}‘EZ 100
' o

was observed over a2 range of Reynolds number at separation

Re, = 5X1(')2 to 2x103. The stabilizing effect may be attributed

6O

to these large self-sustained oscillations induced in the cavity
shear la.yei- by the presence of the downstream corner. Presence
of these oscillations seems to delay the rolling up of the laminar
shear layer into vorfices. As suggésted by Roshko, (41) these
periodic oscillations may avert the growth of the three-dimen -
sional disturbé,nces which contribute to the production of irregular
fluctuations and result in a turbulent flow.

- The experiments show that the presence of cavity oscilla-
tions in the flow induces a large increase in the shear layer
growth rate. For a given cavity flow, growth rate g—i— increases
continuously as the cavity width is increased. This process is
terminated when the maximum width bxna.x is reached. For
width b > b ___ the cavity shear flow for ‘x/Go z 50 is irregular
in nature. Growth rates as high as g}% = 0,022 have been

observed. These large growth rates may be caused by increased

'Reynolds stresses' u'v' due to the presence of large amplitude

oscillations in the cavity shear layer,



-61-

VI.d. MCriterion for the Oscillation Mode

| ‘The measurements of phase -2% (which is a ‘mea.su_re of
how much velocity fluctuations lag behind the upstream cavity
corner‘) show that phase increases almost linearly with distance
Ex_ as has been predicted by Powell's and Rossiter's models.
Tlc;e results further suggest that for shallow cavities an approxi-
mate phase relation between the wave length of the propagating
disturbance A and width b given by 2 = (N+}) exists, where N
can be 0, 1, 2 --- etc, vdepending ﬁpon the mode of the cavity
oscillations. This phase relation does not agree with Powell's
criterion for edge-tones, given by 1;— = (N+3), where h is the

distance from the edge to the slit and N =1, 2, 3 ---~ etc.

depending upon the mode of oscillation.

U
The present study shows that the phase velocity _ﬁc_:_ is a
e
function of width (—62- ) for a fixed depth 5—d- and Reynolds number
. o o
R.e6 . It increases in magnitude as width is increased. The

o
measurement further shows that the non-dimensional frequency

—fug is ‘a function of width 3]3— and Reynolds number Re{5 .
e o o

From the present experiments, it is concluded that oscil-
lations in shallow caﬁties at low sﬁbsonic speeds are due to
disturbances which grow as they propagate through the shear
layer. The frequency of the disturbance for a given cavity flow
corresponds to the one which receives the mé:dmum integrated
amplification aloﬁg the cavity shear layer, as suggested by Woolley
and Karamcheti.(54) The experiménts further show that the wave

length of these propagating disturbances bears an integral relation
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to width -;-t—“‘ (N+3) in each mode of cavity oscillation. By sﬁdy-
ing the integrated amplification and phase distribution of distur-
bance frequencies, in light of the phé.se criterion % = (N+}),
one can predict the mode in which a cavity flow will oscillate

(Cf section V.d. )o

Vi.3. Summary and Conclusions

(1) The phenofnenon of oscillations in low speed flows
"over cavities is not an acoustic resonance phenomenon in the
longitudinal direction, These oscillations result from propagating
disturbances which get amplified along the cavity shear layer.

(2) The present experiments show that fhe onset of
cavity oscillations is accompanied by a large lateral motion
of the cavity shear layer close to the downstream corner, A
defailed investigation by flow visualization and measurement of
the ﬂuétuating quantities close to the downstream corner will
further help to understand the mechanism of the onset of cavity
oscillations, |

(3) It is observed that the effect of depth for ;= = O(1)
' o

is to delay the transition of the free laminar shear layer flow
to a turbulent one. This may be due to spanwise constraint
imposed on the shear layer by the depth and may delay the
growth of three-dimens'iona.l disturbances which contribute to

turbulence.



-63- .

(4) It is further observed that the transition of the laminar
cavity éhear flow to turbulence is postponed by the presence of
large amplitude oscillations in cavity flow until a maximum width
b is reached. No rolling up of the laminar cavity shear

max

layer into vortices occurs for cavity widths as large as—é?— > 100,
The transition phenomenon which occurs for widths b > br:a.x is
quite complex and needs further experimental investigation.

(5) The results show that for shallow cavities, an
‘approximate integral relation between the wave length of the
propagating disturbance A of the cavity oscillations and width
b given by ;—:-.“' (N+-é-) ex';sts, where N canbe 0, 1, 2, 3 ---
etc. depending upon the mode of cavity oscillation.

(6) The experiments show that the frequency that receives
the maximum integrated amplification along the cavity shear
layer is approximately the frequency at which the cavity flow

oscillates, The particular rmode a cavity flow selects for

oscillation can be predicted by applying the mode criterion
b .
A

maximum integrated amplification along the cavity shear flow.

= (N+1) to the disturbance frequency, which receives the

(7) The presence of strong cavity oscillations contributes

to a large growth of the shear layer. Growth rates g% = 0.022

in laminar cavity flows are noticed. Because of rapid growth

of the cavity shear layer, the stability analysis of the self-

similar velocity profile should be undertaken by treating the
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cavity's;hea.r flow as a non-parallel flow. A stability of such a
flow, satisfying the boundary conditions imposed by the down-
stream cavity corner, should be undertaken. Such an analysis |
will shed more light on the possible frequencies and modes of

oscillation in cavity flows,
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APPENDIX 1

Phase Distribution as y - = « for Spatially

Growing Disturbances in an Inviscid Parallel Shear Flow

Let us assume periodic disturbances travelling in the stream-

wise direction with the mean velocity profile U(y) given by

u(x, v, t) = dly) e-@xPt)

where wave number a = a_ + iai is complex, For an unbounded

“velocity profile, the disturbances must vanish at infinite, i,e.,
d{y)~0 as y—~ % | (see Appendix II)

Let d(y) behave asymptotically as e"a’lyl as y = + oo,
then

alx, v, t) ~ e 17 Gilex - wt)

V.pha.bse [ul = -ai|y| +arx-wt

Thus, the asymptotic behavior of phase with y has an opposite

slope depending on whether y = * w0,
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APPENDIX II

Derivation of the Equations of Motion for Stability Analysis

of Invis cid and Parallel Shear Flows

For the two-dimensional shear layer, let x represent the
distance along the axis of the shear layer from the upstream éorner,
and y the distance from the shear layer axis. The inviscid Navier-
Stokes equations for two-dimensional incompressible flow can be

written as

y
u +uu_+vu =-1—p - (1)
t X px
v tav_+vv =—1—p
't x y Py

The mean velocity is regarded as steady and can be described
by cartesian components UandV, and their pressure P, It is further
assumed that U= U(y)and V =0, i,e., flow is parallel, The flow is

divided into.a mean part independent of time and a fluctuating part,

ice.,
u(x, y,t) = Uly) +u'(x, y,t)
V(% y,t) = vix, y,t) (2)
pP(x,y,t) = P(x,y) +p'(x, y,t)

'Substituting (2) into (1) and assuming that the mean flow itself
satisfies the Navier -Stokes equations, then, on neglecting higher

order terms, one gets
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su , avt
ox dy

! .o '
%‘: +Uaa‘; +§—;Jv'+-‘l;%€{—=o (3)
av! av! 1 op' _

U s e

The reference quantities chosen for non-dimensionalization
are the freestream conditions and physical length 6§, i.e., the shear

layer thickness., Then the various non-dimensional quantities are:
y = y/é
Tiy) = w/U, (4)
t = U et/ 6.

where & is the shear layer thickness.

Assume a solution of the form

u' = U_ Z(y)explifex - wt]
v = U_ Z,(y)explifex - wt] (5)
P' = p U2 ZyF)explile® - G

On substituting (5) into (3), the governing equations of motion

in non-dimensional form can be written as
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1;Z1+—-:2 = 0
dy
1&3(U - c)z, + iI-J—ZZ+1aZ3 0 (6)
, d
y
- dZ;

ia(T - c)z, +

On elimination of Z

-tions in Z2 and Z3. are

= - 4T
@-5) 2. 2
dy dy
—— dZ
a(U-c )ZZ+ —_—
dy
with boundary conditions
T-1
y - +00 -
-d;-g -0
dy
T-0
—0 - w —_
é.g.-oo
dy

Satisfying the boundary
and (8) reduce to
- d.zz -
(I-C) - - io Z
dy '
iaz(l-?:')z2

3

dzZ
2 223

—

dy

dy

0

1 from equations (6), the governing equa-

(7

(8)

conditions at y = + «, equations (7)

(9)
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" and 2z, =Cge

Assume further that as y ~ +w, Z, ~C, 3

On substituting this into equations (9), one gets

m:i&-

For Z, ~0and Z, =0 as y~+w, m=-a

. ceTY
_ Z, T G
Fory =+ o . - B
‘ Z3 i{l-c )Cze

where C, and C 3 are arbitrafy constants,

my

 Similarly, on satisfying boundary conditions at y - - o, one

must have 0
o ay
Z2 B2 e

Fory= - T
~ y
Z3 1cB2e

where B, is an arbitrary constant,

Thus the eigenvalue problem is

(U-c)—-—2,-ia Z,=0
dy dy 2 3
(
dZ3 - — _
—= +ia(U- )Z2=0
dy

Z3 _ _
2-2- -~ i(l-c) as y =+
Z3 = ~

= = ic as y - -

10)
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For the temporal mode:
@ is real, ?:. is complex
For the spatial mode:

a is complex, w = a c is real,

Computational Technique

The computation of the eigenvalue problem can be sim’plified

by eliminating the term -d—g- ~with the substitution
dy
z, = —2
4 = -
U-c

Then the equations (10) reduce to

4z 2

—2 = -ia(@-0)z,
dy
(11)
dz, _ Z,
—_— = ia — —
dy (U-c)

with boundary conditions:

7z .

-2—3- - i(l-az as ;r-"+oo
4 .

2 - -1 as 7= -
4

Ma.ck(30) studied the inviscid stability of the laminar com-
pressible boundary layers extensively by integrating the governing

equations of motion numerically. His method of computation has
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been adapted to evaluate the eigenfunctions and eigenvalues of the
two-dimensional, incompressible and inviscid stability equations

(11) for arbitrary shear layer profile,
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Ue
Shear Layer
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D
{
q’
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D = 1.0" 2,0"and 6,0"
b and d are variable
U,: 0-80 ft/sec
Rep: 2X1 04-105 (laminar boundary layer at separation)
Free stream turbulence at 50 ft/sec ~ 0, 3% T
. | -
D=1,0" Hemispherical nose
. . 2
I ogive with D= 0. 6
Nose shape D=2.,0" I ogivewith £=1.12 -
. <1 4
III ogive with B = 2,12
D=6,0" Ellipsoid with ratio of
major to minor axis = 3,

FIG. 1 Model of Cavity Oscillations

with Pertinent Nomenclature
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FIG. 3 Discrete Energy in Various Modes of Cavity Oscillation
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b = 0, 22"
b=0.26"
b = 0,27"

b = 0,275"
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Horizontal scale
lem=1ms

FIG. 4 Oscilloscope Traces of Cavity Oscillations
forb<b ., D=1,0", U =50 ft/sec, d =0.5" andb__. =0,275"
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" + Potential Core
D=1.0" : /
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0 ] 1 I} 1 ]
2 4 6 8 I0 12
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FIG., 6 Effect of Freestream Turbulence

on Minimum €Cavity Width
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FIG. 16 Oscilloscope Traces of Velocity Fluctuations
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8



1.5} ¢
e
* /]
Downstream
Lo Corner
v
2w
0.5
e Experimental Points
1 1 i i | | N
O_ | 2 3 X/, 4 5 6

°
FIG, 17 Phase Angles at Various Downstreéam Locations
for the First Mode of Cavity Oscillations at
= 2,86x10%, =6, 2= 10and £ = 0.67

’ 6’0 o Ue

R.e6
o



-97-

] o o
0t = 1% Pue 01x98°2= o

je SUOTIeI[I0SO £31A®D JO S9POW PUODIG pue IBITI
ay3 ur paadg uorrededoxd uo YIPIM JO 93T 81 *OII

%74

" Ol 6 8 L 9 S

9

¥ . ' I I : v L 1

uo|§o(|19s0 JO 8POW puOIeS ¥
uoyD||)980 JO OPOK i841d @

0

0
o

A
o
an/:)n peadg aADm

l{! :
o

90



-98-

OO7 p—
L. O
0.6 6 o o °
0.5}
_):_ 4
lo) o
04r o
03pF
0.2F
ol F
o) 1 1 | 1 1 L l
50 6.0 7.0 8.0 b 9.0 100 1.0
3o
FIG. 19 Effect of Cavity Width on Wave Length of Disturbance
at Re, = 2, 86x10> and g‘_i_ =10

o o



Ve, ¥

U.v

~— b~
—-b'-—l

_-Q:_-—-
- Q.

=
P

[
;

(B)

FIG, 20 Effect of Geometry on Cavity Oscillations



-100-

a) Sparli Shadowgraph
U, = 50 ft/sec, d = 0.25', b = 0,425"

b) Smoke Picture c) Smoke Picture

Width b =0.35"<b mi Width b =0,5"<b min
Uoo 20 ft/sec, d-O 5” Uo0 =20 ft/sec, d = 0,5"

d) Smoke Picture e) Smoke Picture
Width b =0,675" =b__. Width b =0.8">b_ .
min min
Uoo =20 ft/sec, d =0.5" Uoo = 20 ft/sec, d = 0.5"

Fig., 21. Visualization of Cavity Flow



=101~

a) Smoke Pictures

(i) depth d = 0.425"
U = 20 ft/sec ;

b = 2. 0m (i) depth d = 0.05"

b) Smoke Pictures

v (i) Cavity Oscillations, b = 0.5">Db_ . .
Uoo = 20 ft/sec no mass addition
d =0.5" (i)

No Cavity Oscillations, b = 0.5"> b
with mass addition

. 2

min

Fig. 22, Visualization of Cavity Flow
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Fig. 23, Motion Pictures of Cavity Oscillations at 500 frames/sec,
f=300Hz, b=20,70"and d = 0.425"
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FIG. 35 Theoretical and Measured Growth of Disturbances in the
First Mode of Cavity Oscillation at
Re, =2.42x10% g =60, g-= 100, and 2 = 0,67
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