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Abstract

This thesis is a theoretical investigation of the classicaland quantum information processing enabled by the

advent of modern ultrafast nonlinear optics.

Chapter 2 and 3 study the propagation of ultrashort optical pulses in optical fibers, and propose two meth-

ods of compensating the linear and nonlinear distortions experienced by the pulses, namely, reverse propaga-

tion and spectral phase conjugation. Chapter 4 and 5 suggestdifferent schemes that implement spectral phase

conjugation.

Chapter 6 and 7 establish the connection between classical spectral phase conjugation and quantum co-

incident frequency entanglement. Chapter 6 shows how a spectral phase conjugator can create coincident

frequency entangled photon pairs, and Chapter 7 in turn demonstrates how a coincident frequency entangle-

ment generator can perform spectral phase conjugation.

The next three chapters, 8, 9, and 10, focus on quantum spatiotemporal information processing. Chapter

8 studies the temporal properties of entangled photon pair propagation and proposes the concept of quantum

temporal imaging. Chapter 9 investigates how optical solitons can be used to perform quantum timing jitter

reduction and temporal entanglement, while Chapter 10 applies the same idea to the spatial domain for

quantum spatial information processing tasks, such as spatial beam displacement uncertainty reduction and

quantum lithography.

The final two chapters return to a couple of miscellaneous problems in classical optics. Chapter 11

shows how a pair of dielectric slabs can amplify the near fieldof an optical image. Chapter 12 explores the

similarities between nonlinear optics and fluid dynamics, and speculates on the possibility of using nonlinear

optics experiments to simulate fluid dynamics problems.
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Chapter 1

Summary

This thesis investigates various classical and quantum optics techniques for applications in optical communi-

cations, quantum information processing, imaging, and computing.

Chapter 2 presents a numerical technique for reversing femtosecond pulse propagation in an optical fiber,

such that given any output pulse it is possible to obtain the input pulse shape by numerically undoing all

dispersion and nonlinear effects. The technique is tested against experimental results, and it is shown that it

can be used for fiber output pulse optimization in both the anomalous and normal dispersion regimes [1].

Chapter 3 proposes the use of spectral phase conjugation to compensate for dispersion of all orders, self-

phase modulation, and self-steepening of an optical pulse in a fiber. Although this method cannot compensate

for loss and intrapulse Raman scattering, it is superior to the previously suggested midway temporal phase

conjugation method if high-order dispersion is a main source of distortion. The reshaping performance of

our proposed scheme and a combined temporal and spectral phase conjugation scheme in the presence of

uncompensated effects is studied numerically [2].

Chapter 4 analyzes spectral phase conjugation with short pump pulses in a third-order nonlinear material

in depth. It is shown that if signal amplification is considered, the conversion efficiency can be significantly

higher than previously considered, while the spectral phase conjugation operation remains accurate. A novel

method of compensating for cross-phase modulation, the main parasitic effect, is also proposed. The validity

of our theory and the performance of the spectral phase conjugation scheme are studied numerically [3].

Chapter 5 proposes a novel spectral phase conjugation scheme by three-wave mixing. It is shown that

a phase-conjugated and time-reversed replica of the incoming signal can be generated, if appropriate quasi-

phase matching is achieved and the three-wave mixing process is transversely pumped by a short second-

harmonic pulse [4].

Chapter 6 studies spontaneous parametric processes pumpedtransversely with short pulses under a uni-

fied framework, which proves that such processes can efficiently generate entangled photon pairs with time

anticorrelation and frequency correlation. Improvementsupon previously proposed schemes can be made by

the use of quasi-phase matching, four-wave mixing, and cross-phase modulation compensation. The use of

frequency-correlated photons in the Hung-Ou-Mandel interferometer is also studied [5].
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Chapter 7 demonstrates that the copropagating three-wave-mixing parametric process, with appropriate

type-II extended phase matching and pumped with a short second-harmonic pulse, can perform spectral phase

conjugation and parametric amplification, which shows a threshold behavior analogous to backward wave

oscillation. The process is also analyzed in the Heisenbergpicture, which predicts a spontaneous parametric

down conversion rate in agreement with experimental results reported elsewhere [6].

Chapter 8 derives the equations that govern the temporal evolution of two photons in the Schrödinger

picture, taking into account the effects of loss, group-velocity dispersion, temporal phase modulation, linear

coupling among different optical modes, and four-wave mixing. Inspired by the formalism, the concept

of quantum temporal imaging is proposed, which uses dispersive elements and temporal phase modulators

to manipulate the temporal correlation of two entangled photons. The exact solution of a two-photon vector

soliton is also presented, in order to demonstrate the ease of use and intuitiveness of the proposed formulation

[7].

Chapter 9 shows that optical pulses with a mean position accuracy beyond the standard quantum limit

can be produced by adiabatically expanding an optical vector soliton followed by classical dispersion man-

agement. The proposed scheme is also capable of entangling positions of optical pulses and can potentially

be used for general continuous-variable quantum information processing [8].

Chapter 10 studies spatial quantum enhancement effects under a unified framework. An approach of

generating arbitrary quantum lithographic patterns by theuse of multiphoton coincident momentum states is

proposed. It is shown that the multiphoton absorption rate of photons with a quantum-enhanced lithographic

resolution is reduced, not enhanced, contrary to popular belief. Finally, the use of adiabatic soliton expansion

followed by negative refraction is proposed to beat both thestandard quantum limit on the optical beam

displacement accuracy, as well as that on the minimum spot size of quantum lithography [9].

In Chapter 11, utilizing the underlying physics of evanescent wave amplification by a negative-refractive-

index slab, it is shown that evanescent waves with specific spatial frequencies can also be amplified without

any reflection simply by two dielectric planar waveguides. The simple configuration allows one to take

advantage of the high resolution limit of a high-refractive-index material without contact with the object [10].

Chapter 12 presents theoretical and numerical evidence to show that self-defocusing nonlinear optical

propagation can be used to compute Euler fluid dynamics and possibly Navier-Stokes fluid dynamics. In

particular, the formation of twin vortices and the Kármán vortex street behind an obstacle, two well-known

viscous fluid phenomena, is numerically demonstrated usingthe nonlinear Schrödinger equation [11].
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Chapter 2

Reverse propagation of femtosecond
pulses in optical fibers

2.1 Introduction

Dispersion and nonlinear effects have been the bottleneck of ultrafast pulse propagation in an optical fiber.

Various schemes, for example, optical solitons [1] and optical phase conjugation (OPC) [2, 3] have been pro-

posed to compensate for these effects, yet the high-order distortions including third-order dispersion (TOD),

self-steepening, and Raman scattering remain undefeated.Femtosecond power delivery in a normally dis-

persive fiber, which is useful for biomedical applications,is especially difficult to achieve because normal

dispersion and nonlinear effects always tend to broaden anddistort a pulse. Another scheme is to embrace

all the effects and adopt an adaptive optimization method, typically in the form of genetic algorithm, hoping

that modulating the input pulse shape can produce an output with desirable properties [4, 5, 6]. Although

an adaptive method can compensate for pulse propagation distortions and unknown experimental variables,

it does not make full use of our theoretical knowledge of optical fiber ultrafast pulse propagation and may

therefore be time consuming and suboptimal.

In this chapter we show that by reversing the nonlinear pulsepropagation equation it is possible to theo-

retically predict the exact input pulse shape that gives a desired output of a fiber. All dispersion and nonlinear

effects can be incorporated into the simulation, and hence one can produce any kind of pulse shape at the

output end by shaping the input pulse appropriately according to the calculated result. In conjunction with

currently available femtosecond pulse-shaping techniques such as 4f pulse shaping [7] this approach is espe-

cially suited to provide custom-shaped high-power ultrafast pulse delivery both in normally and anomalously

dispersive fibers.
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2.2 Theory

The nonlinear pulse propagation equation in a fiber is given by the general form [1]

∂A(z,T)

∂z
= {D̂+ N̂[A(z,T)]}A(z,T), (2.1)

whereA(z,T) is the pulse envelope,̂D is the linear operator that includes absorption and all dispersion effects,

andN̂ is the nonlinear operator that includes all nonlinear effects and is a function ofA(z,T). Mathematically,

the output is obtained by application of the propagation operator to the input:

A(L,T) = exp
{

LD̂+
∫ L

0
N̂[A(z,T)]dz

}

A(0,T), (2.2)

whereL is the length of the fiber. The input can also be expressed in terms of the output by application of the

reverse propagation operator:

A(0,T) = exp
{

−LD̂−
∫ L

0
N̂[A(z,T)]dz

}

A(L,T). (2.3)

To solve this equation and derive the input pulse shape giventhe output, we use the standard Fourier split-step

method:

A(z,T) ≈ exp(−hD̂)exp{−hN̂[A(z+h,T)]}A(z+h,T), (2.4)

in each step of which the linear and nonlinear effects on a pulse shape are evaluated separately for a small

propagation distanceh.

Figure 2.1: Comparison of OPC and reverse propagation.

As a comparison, let us consider the OPC technique in the operator notation. Figure 2.1 depicts schemat-

ically the OPC method and the reverse propagation method. Byconjugating Eq. (2.2) and comparing the

result with Eq. (2.3), one can see that OPC can reconstruct aninput pulse ifD̂ and N̂ contain operators

with the propertyM̂ = −M̂∗. This restriction precludes many important phenomena, such as loss, TOD, and
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self-steepening, that may severely hamper the accuracy of pulse reconstruction by OPC, especially in the

femtosecond regime. In a numerical simulation of reverse propagation, however, there is no such limitation,

and all effects can be included to yield the optimal input pulse shape.

To model femtosecond pulse propagation, we choose the linear operatorD̂ to be

D̂ = −α
2
− j

β2

2
∂ 2

∂T2 +
β3

6
∂ 3

∂T3 . (2.5)

The first term corresponds to loss, the second term corresponds to group-velocity dispersion (GVD), and the

third term corresponds to TOD. The higher-order dispersionterms are neglected because of the relatively

short length considered here but can be easily included if the need arises.

The nonlinear operator̂N is

N̂ = jγ
[

|A|2 +
j

ω0

1
A

∂
∂T

(|A|2A)−TR
∂ |A|2
∂T

]

. (2.6)

The first term corresponds to optical Kerr effect, the secondterm corresponds to self-steepening, and the third

term corresponds to intrapulse Raman scattering.

Figure 2.2: Reverse propagation of an experimental output pulse. The experimental output pulse shape is
plotted atz= 0 m and numerically propagates in reverse fromz= 0 m toz= −10 m.

2.3 Comparison with experiments

To test the validity of reverse propagation, in an experiment we launch a 150 fs positively chirped hyperbolic

secant pulse with a peak power of 1 kW in a 10 m long Corning SMF-28 fiber [6]. From frequency-resolved



7

optical gating measurements we obtain the amplitude and phase of both input and output pulses. The output

pulse is then reverse propagated in a computer simulation asin Fig. 2.2. The output pulse shape is plotted at

z= 0 m at the top of the graph, and propagation effects are reversed numerically as the pulse goes fromz= 0

m to z= −10 m. The simulated input from reverse propagation is compared with the experimental input in

Fig. 2.3. Both pulses are remarkably similar, with nearly identical amplitudes and positive chirp, showing

that the reverse propagation theory is consistent with experimental results.

Figure 2.3: Comparison of the input obtained from reverse propagation and the actual experimental input.

2.4 Numerical analysis

Reverse propagation can be used to calculate the proper input pulse shape that provides a narrow pulse at

the output. As a numerical example, let us consider a 100-m-long conventional dispersion-shifted fiber with

parametersβ2 = −1 ps2/km, β3 = 0.1 ps3/km, γ = 1.5 W−1km−1, andTR = 3 fs at λ0 = 1550 nm. A

fundamental soliton with a pulse widthT0 of 100 fs can propagate in this fiber with a peak power of 67

W but will experience distortions as a result of TOD, self-steepening, and soliton self-frequency shift. To

obtain better output, we reverse the propagation of a desirable pulse shape, say a chirped sech pulse with a

pulse profileA(0,T) = P1/2
0 sech(T/T0)exp[−iC(T/T0)

2/2], peak powerP0 = 67 W, and chirpC = 1. Figure

2.4 shows the reverse propagation of the desired output along the fiber. The peak intensity of the optimized

input pulse during propagation is lower than that of a fundamental soliton, thereby avoiding the high-order

nonlinear distortions. To obtain an even shorter pulse, we would need to include higher-order linear and

nonlinear terms in Eqs. (2.5) and (2.6).
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Figure 2.4: Reverse propagation of a chirped sech pulse atλ0 = 1550 nm.

It must be stressed that the reverse propagation method is not limited to near-soliton conditions but can

be applied to any fiber in both dispersion regimes. For our second numerical example consider a 1-m-long

normally dispersive single-mode fiber atλ0 = 800 nm, with parametersβ2 = 40 ps2/km, β3 = 0.03 ps2/km,

andγ = 9 W−1 km−1 [8]. A 100-fs unchirped hyperbolic secant pulse, centered at 800 nm, with peak power

P0 = 20 kW and total energyE = 4 nJ is given as our desired output. Figure 2.5 shows the optimal input

pulse amplitude and phase. Qualitatively speaking, the pulse shape is asymmetric to compensate for TOD,

self-steepening, and Raman scattering, and the negative chirp (C = −0.1 by polynomial fitting) focuses the

pulse by GVD. In an experiment the large chirp can be imposed by a grating pair before 4f pulse shaping.

We also investigate numerically the OPC technique, as depicted in Fig. (2.1), using the same criteria as

those above as a comparison. Figure 2.6 shows the resultant output pulse by OPC compared with the ideal

output pulse shape that can be produced by reverse propagation and pulse shaping. The OPC output pulse

is distorted by high-order effects, whereas reverse propagation and pulse shaping, taking all the high-order

effects into account, produce a better output.

2.5 Conclusion

In conclusion, we have shown in this chapter that reverse propagation is a feasible method of predicting the

optimal input pulse shape that will yield any desired outputin a well-characterized fiber, defeating all high-

order dispersive and nonlinear effects that may be detrimental to other output optimization schemes. The

theory is successfully tested against experimental results, and its application to femtosecond pulse delivery

through fibers in both dispersion regimes is presented numerically. The interface of reverse propagation



9

Figure 2.5: Amplitude and phase of the optimal input that produces the desired sech output pulse shape at
λ0 = 800 nm.

Figure 2.6: Compared with the ideal output pulse shape produced by reverse propagation and pulse shaping,
the OPC output is significantly distorted by high-order effects.
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code to a pulse shaper can be envisaged for short propagationlengths, so that the proper modulation is

applied to the input pulse by the programmable optical modulator of choice. For longer distances, practical

realizations become more complex as linear distortions become too large to be overcome by the available

modulators alone. In this case linear compensators can be combined with programmable modulators and

reverse propagation predictions to compensate for all distortions.
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Chapter 3

Dispersion and nonlinearity
compensation via spectral phase
conjugation

3.1 Introduction

Temporal phase conjugation (TPC) was proposed to compensate for group-velocity dispersion [1], self-phase

modulation [2], and intrapulse Raman scattering [3] of an optical pulse in a fiber. However, when the pulse

width is sufficiently short or the center wavelength is near the zero-dispersion point, third-order dispersion and

self-steepening effects become more prominent and limit the reshaping performance of TPC. To compensate

for the high-order effects, alternative methods [4, 5, 6, 7]have been suggested, but many of them are either

too complicated or are only able to compensate for a limited number of propagation effects. An interesting

scheme, which compensates for all effects by both TPC and a suitably chosen dispersion map, is also proposed

by Pinaet al. [8].

TPC
A(0,T) A(L,T) A*(L,T) A*(0,T)Fiber Fiber

SPC
A(0,T) A(L,T) A*(L,-T) A*(0,-T)Fiber Fiber

Figure 3.1: Schematics of TPC and SPC.

Instead of just conjugating the time envelope of an optical pulse midway through a fiber as in the TPC

scheme, we propose to perform midway phase conjugation as well as time reversal of the pulse envelope

(Fig. 3.1). In this way, dispersion of all orders, self-phase modulation, and self-steepening in a fiber are

automatically compensated. Conjugation and time reversalof an envelope are equivalent to just conjugation
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of the optical pulse in the frequency domain, hence the name spectral phase conjugation (SPC).

3.2 Theory

Consider a pulseE(t) = A(t)exp(− jω0t) with envelopeA(t) and center frequencyω0. If we take the conju-

gate of the Fourier transform ofE(t), it becomes

Ẽ∗(ω) =
[

∫ ∞

−∞
A(t)exp(− jω0t)exp( jωt)dt

]∗
(3.1)

=
∫ ∞

−∞
A∗(−t)exp(− jω0t)exp( jωt)dt (3.2)

where the substitutiont → −t is made. Hence, conjugation of individual spectral components of a pulse

is equivalent to phase conjugation and time reversal of the temporal envelope. TPC, on the other hand,

corresponds to conjugation and inversion in the frequency domain.

Midway SPC is unique in the sense that it can compensate for all dispersion and most nonlinearities

simultaneously. Consider the general pulse propagation equation in a fiber,

∂A(z,T)

∂z
=
[

D̂T + N̂T
(

A(z,T)
)

]

A(z,T), (3.3)

wherez is the propagation distance,T is the retarded time with respect to the group velocity 1/β1 of the pulse

(T = t −β1z), andA(z,T) is the pulse envelope.̂DT is the linear operator,

D̂T = −α
2

+
∞

∑
n=2

j
βn

n!
( j

∂
∂T

)n, (3.4)

where the first term on the right-hand side is the loss term, and the remaining terms arenth-order dispersion

terms.N̂T is the nonlinear operator, which can be expressed as the following for a femtosecond pulse,

N̂T(A) = jγ
[

|A|2 +
j

ω0

1
A

∂
∂T

(|A|2A)−TR
∂ |A|2
∂T

]

, (3.5)

where the first term on the right-hand side is the self-phase modulation term, the second term is self-

steepening, and the third term is intrapulse Raman scattering [9]. The subscriptT of D̂T and N̂T denotes

the derivatives with respect toT in the operators.

We rewrite Eq. (3.3) to express the output pulse in terms of the propagation operator applied to the input

pulse [9],

A(L,T) = exp
[

LD̂T +

∫ L

0
N̂T
(

A(z,T)
)

dz
]

A(0,T), (3.6)

whereL is the fiber length. The input can also be expressed in terms ofthe output by applying the reverse
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propagation operator [7],

A(0,T) = exp
[

−LD̂T −
∫ L

0
N̂T
(

A(z,T)
)

dz
]

A(L,T). (3.7)

Now let us take the complex conjugate of Eq. (3.7) and make thesubstitutionT →−T. Eq. (3.7) becomes

A∗(0,−T) = exp
[

−LD̂∗
−T −

∫ L

0
N̂∗
−T

(

A(z,−T)
)

dz
]

A∗(L,−T). (3.8)

The conjugated and time reversed linear operator, ignoringloss, is

D̂∗
−T =

∞

∑
n=2

− j
βn

n!
[(− j)(− ∂

∂T
)]n (3.9)

=
∞

∑
n=2

− j
βn

n!
( j

∂
∂T

)n = −D̂T . (3.10)

Similarly, the nonlinear operator, ignoring intrapulse Raman scattering, is

N̂∗
−T(A(z,−T)) = −N̂T(A∗(z,−T)). (3.11)

In general, we only keep terms that acquire a minus sign when conjugation and time reversal are both ap-

plied. All operator terms, except loss and intrapulse Ramanscattering, satisfy our criteria due to their odd

combinations ofj ’s and time derivatives. With the substitutionz→ L−z′, Eq. (3.8) becomes

A∗(0,−T) = exp
[

LD̂T +
∫ L

0
N̂T
(

A∗(L−z′,−T)
)

dz′
]

A∗(L,−T). (3.12)

Eq. (3.12) has the exact same form as Eq. (3.6), but withA∗(L− z′,−T) as the solution. In other words, if

we launchA∗(L,−T) in another identical fiber, the final outputA∗(0,−T) is a conjugated and time reversed

version of the first input. This result can only be applied to cases where loss and intrapulse Raman scattering

can be neglected. Table 3.1 summarizes the propagation effects that can be compensated by TPC and SPC,

respectively.

loss EOD OOD SPM SS IRS
TPC × √ × √ × √

SPC × √ √ √ √ ×

Table 3.1: Comparison of TPC and SPC in terms of propagation effects that can be compensated by each
scheme. EOD stands for even-order dispersion, OOD stands for odd-order dispersion, SPM stands for self-
phase modulation, SS stands for self-steepening, and IRS stands for intrapulse Raman scattering.
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To identify important propagation effects for a given optical pulse transmission system, it is useful to

define a characteristic length for each propagation effect [9],

Lloss = loss length= 1/α, (3.13)

LD = dispersion length= T2
0 /|β2|, (3.14)

L′
D = third-order dispersion length= T3

0 /|β3|, (3.15)

LNL = nonlinear length= 1/(γP0), (3.16)

LSS = self-steepening length= ω0T0/(γP0), (3.17)

LR = Raman length= T0/(TRγP0), (3.18)

whereT0 is the pulse width. The significance of a propagation effect can be roughly estimated by the ratio

of the total propagation distanceLtotal to the characteristic length. Hence a phase conjugation system should

be designed such that the characteristic lengths of uncompensated propagation effects are much longer than

Ltotal. This is demonstrated next in the numerical simulations.

3.3 Numerical analysis

As a numerical example, considerλ0 = 1550 nm, two dispersion-shifted fibers, each with lengthLtotal/2 = 1

km, parametersβ2 = −1 ps2/km, β3 = 0.1 ps3/km, γ = 1.5 W−1km−1, α = 0.2 dB/km,TR = 3 fs, a temporal

or spectral phase conjugator in the middle, an amplifier at each fiber end to compensate for loss, and a super-

Gaussian input pulse,

A(t) =
√

P0exp[−1
2
(

T
T0

)6], (3.19)

with T0 = 200 fs, and peak powerP0 = 1.7 W. The peak power is chosen to be one-tenth of that of a funda-

mental soliton, such thatLloss = 2 km,LD = 0.04 km,L′
D = 0.08 km, andLNL = 0.4 km. Other characteristic

lengths are too long to be significant. SinceLNL is comparable toLtotal while much longer than the dispersion

lengths, we expect nonlinear effects to be observable but less significant than dispersion effects. The output

pulses with and without compensation schemes are plotted inFig. 3.2. SPC reconstructs the input pulse at

the output almost perfectly, while the TPC output pulse is significantly distorted by third-order dispersion.

At this power level, SPC has the advantage over TPC for the former’s ability to compensate for all important

linear and nonlinear effects together with an amplifier.

In practice, SPC can be performed by spectral holography [4], short-pump four-wave mixing [10] or spec-

tral four-wave mixing [11]. If SPC is to be used in a communication system, one must perform time reversal

only on each time slot or a group of slots, within the time window of the SPC device. A synchronous clock,

in the form of pump pulses, will therefore be required, unfortunately. The pulses also need to be periodically

conjugated before they breach adjacent time windows. In this case solitons are preferred because their broad-
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Figure 3.2: Input and output pulses with and without compensation schemes, when a 1.7 W 200 fs super-
Gaussian pulse propagates for a total distance of 2 km.

ening is much slower than conventional pulses and the frequency of conjugation can be minimized. We note

that periodic conjugation is also required in other schemesfor different reasons, such as that suggested by

Pinaet. al., to satisfy the path-averaging assumption.

Since SPC can compensate for distortions not compensated byTPC, and vice versa, we propose that a

hybrid scheme combining SPC and TPC can offer superior performance. An example would be to sandwich

a temporal phase conjugator with two midway SPC systems, such that the Raman effect uncompensated in a

SPC system can be compensated by the TPC system, at least to first order. More rigorous analysis is required

to fully estimate the performance of a hybrid scheme.

Our second numerical example tests the compensation capabilities of SPC and the hybrid scheme for

multiple solitons. It has been suggested that TPC can compensate for soliton interactions [12]. Fig. 3.3 plots

the output pulses obtained from various compensation schemes for the same parameters as the first example,

but with a total length of 1 km and a 17 W alternativelyπ phase-shifted sech soliton train representing the

bit sequence 10110111. SPC undoes soliton interactions andpulse distortions better than TPC in this case,

while the hybrid scheme performs slightly better than SPC. This can be attributed to the fact that the hybrid

scheme has more phase conjugation stages for the same total length. The hybrid scheme, however, can also

compensate for the Raman-induced frequency shift, which cannot be compensated by SPC alone. The mean

frequency shift of the TPC output is calculated to be +0.032 THz, that of the SPC output is−0.16 THz, while

that of the hybrid scheme is only−0.027 THz.
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Figure 3.3: Input and output pulses with and without compensation schemes, when multiple 17 W 200 fs
solitons propagates for a total distance of 1 km.

3.4 Conclusion

In conclusion, we have proven that SPC can compensate for allthe considered linear and nonlinear distortions

to optical pulses if loss and intrapulse Raman scattering can be neglected. Moreover, SPC and a hybrid

scheme combining TPC and SPC are both shown numerically to offer better compensation of pulse distortions

and soliton interactions than TPC for femtosecond pulses.
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Chapter 4

Spectral phase conjugation with
cross-phase modulation compensation

4.1 Introduction

Spectral phase conjugation (SPC) [1] is the phase conjugation of individual spectral components of an optical

waveform, which is equivalent to phase conjugation and timereversal of the pulse envelope. Joubertet al.

prove that midway SPC can compensate for all chromatic dispersion [2]. In the previous chapter we prove

that midway SPC can simultaneously compensate for self-phase modulation (SPM), self-steepening and dis-

persion [3]. The physical implementation of SPC is first suggested by Miller using short-pump four-wave

mixing (FWM) [1], and later demonstrated using photon echo [4, 5], spectral hole burning [6, 7], temporal

holography [2], spectral holography [8], and spectral three-wave mixing (TWM) [9]. The FWM scheme is es-

pecially appealing to real-world applications such as communications and ultrashort pulse delivery due to its

simple setup. However, low conversion efficiency and parasitic Kerr effects make a practical implementation

difficult.

In this chapter we derive an accurate expression for the output idler when the conversion efficiency,

defined as the output idler energy divided by the input signalenergy, is high. We prove that if signal ampli-

fication is considered, the SPC process remains intact and the conversion efficiency can grow exponentially

with respect to the cross-fluence of the two pump pulses, compared with a quadratic growth predicted in

Ref. [1].

As the theoretical conversion efficiency approaches 100%, which is required for the purpose of nonlin-

earity compensation, parasitic effects begin to hamper theefficiency and accuracy of SPC. The main parasitic

effect is cross-phase modulation (XPM) due to the strong pump, a problem that similarly plagues conventional

temporal phase conjugation schemes [10]. We suggest a novelmethod to compensate for XPM by adjusting

the phases of the pump pulses appropriately. We show that in theory, this method can fully compensate for

the XPM effect.

Finally, numerical analysis is performed to confirm our predictions about the conversion efficiency and
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XPM compensation. Pump depletion is also addressed by full three-dimensional simulations.

4.2 Spectral phase conjugation by four-wave mixing

A  (t)i

A  (t)s

pA   (t)

qA   (t)

x

z

Lz = −L/2 z = L/2

dχ(3)

Figure 4.1: Setup of SPC by four-wave mixing.As(t) is the signal pulse,Ap(t) andAq(t) are the pump pulses,
andAi(t) is the backward-propagating idler pulse. (After Ref. [1])

The configuration of spectral phase conjugation by four-wave mixing introduced in Ref. [1] is drawn in

Fig. 4.1.Ap andAq are the envelopes of the pump pulses propagating downward and upward, respectively.As

is the forward-propagating signal envelope; andAi is the backward-propagating idler envelope. The coupled-

mode equations that governAp, Aq, As andAi can be derived from the wave equation and are given by

− ∂Ap

∂x
+

1
vx

∂Ap

∂ t
= jγ[2AsAiA

∗
q +(|Ap|2 +2|Aq|2 +2|As|2 +2|Ai |2)Ap], (4.1)

∂Aq

∂x
+

1
vx

∂Aq

∂ t
= jγ[2AsAiA

∗
p +(2|Ap|2 + |Aq|2 +2|As|2 +2|Ai |2)Aq], (4.2)

∂As

∂z
+

1
v

∂As

∂ t
= jγ[2ApAqA∗

i +(2|Ap|2 +2|Aq|2 + |As|2 +2|Ai |2)As], (4.3)

−∂Ai

∂z
+

1
v

∂Ai

∂ t
= jγ[2ApAqA∗

s +(2|Ap|2 +2|Aq|2 +2|As|2 + |Ai |2)Ai ], (4.4)

γ =
3ω0χ(3)

8cn0
, (4.5)

wherevx andv are group velocities in thex direction and thezdirection, respectively, andn0 is the refractive

index. Diffraction and group-velocity dispersion are neglected. The spatial dependence ofAp on z can also

be suppressed if the illumination is uniform inz and undepleted. If we further assume that the thickness of

the mediumd is much smaller than the pump pulse width, then the dependence on thex dimension can also
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be neglected.

The zeroth-order solution is the linear propagation of the incoming waves. Let the zeroth-order solution

be

A(0)
p (x, t) = Ap(t), (4.6)

A(0)
q (x, t) = Aq(t), (4.7)

A(0)
s (z, t) = F(t − z

v
), (4.8)

A(0)
i (z, t) = 0. (4.9)

The first-order solution can then be obtained by substituting the zeroth-order solution into the right-hand side

of Eqs. (4.3) and (4.4). Each of Eqs. (4.1)−(4.4) has a single wave mixing term (first term on the right-

hand side) and four phase modulation terms, which generallydistort the pulses. With the subsitutions only

Eq. (4.4) has a nonzero wave mixing term, and the output idlerAi(−L
2 , t) in the first order is shown to be the

SPC of the input signal [1],

A(1)
i (−L

2
, t) = jF ∗(−t +

L
2v

)
∫ ∞

−∞
2γvAp(t

′)Aq(t
′)dt′, (4.10)

and the conversion efficiency is

η(1) ≡
∫ ∞
−∞ |A(1)

i (−L
2 , t ′)|2dt′

∫ ∞
−∞ |A(1)

s (−L
2 , t ′)|2dt′

= [
∫ ∞

−∞
|2γvAp(t

′)Aq(t
′)|dt′]2, (4.11)

assuming that either of the pump pulsesAp andAq is much shorter than the input signalF and the medium

is long enough to contain the signal. Conceptually, the short pump pulses take a “snapshot” of the signal

spatial profile, which is reproduced as the idler. Since the idler has the same spatial profile as the signal but

propagates backwards, the time profile is reversed.

To summarize, in order to perform accurate SPC, the following conditions should be satisfied:

L
v

>> Ts >> (Tp or Tq) >>
d
vx

, (4.12)

whereTs is the signal pulse width, andTp andTq are the pulse widths of the two pumps.

4.3 High conversion efficiency with signal amplification

When the conversion efficiency is high, mixing of the pump and the generated idler can also amplify the

signal, as in the case of parametric amplification. In this section we derive accurate expressions for the output

idler and the conversion efficiency in such a case. Assuming that the pump pulses are short, unchirped,
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and undepleted, and phase modulation terms are neglected, we can derive a closed-form solution for the

conversion efficiency. Eqs. (4.3) and (4.4) then become

v
∂As(z, t)

∂z
+

∂As(z, t)
∂ t

= jg(t)A∗
i (z, t), (4.13)

−v
∂Ai(z, t)

∂z
+

∂Ai(z, t)
∂ t

= jg(t)A∗
s(z, t), (4.14)

whereg(t) = 2γvAp(t)Aq(t). (4.15)

We first take the complex conjugate of Eq. (4.14),

−v
∂A∗

i (z, t)
∂z

+
∂A∗

i (z, t)
∂ t

= − jg∗(t)As(z, t), (4.16)

and letÃs andÃi be the Fourier transforms ofAs andA∗
i with respect toz, respectively,

Ãs(κ, t) =
∫ ∞

−∞
As(z, t)exp(− jκz)dz, (4.17)

Ãi(κ, t) =
∫ ∞

−∞
A∗

i (z, t)exp(− jκz)dz. (4.18)

Note thatÃi is the Fourier transform of the complex conjugate ofAi . Eqs. (4.13) and (4.16) become

jκvÃs+
∂ Ãs

∂ t
= jg(t)Ãi , (4.19)

− jκvÃi +
∂ Ãi

∂ t
= − jg∗(t)Ãs. (4.20)

We multiply both sides of Eq. (4.19) by exp( jκvt) and both sides of Eq. (4.20) by exp(− jκvt),

exp( jκvt)( jκvÃs+
∂ Ãs

∂ t
) = jg(t)exp( jκvt)Ãi , (4.21)

exp(− jκvt)(− jκvÃi +
∂ Ãi

∂ t
) = − jg∗(t)exp(− jκvt)Ãs, (4.22)

or equivalently,

∂
∂ t

[exp( jκvt)Ãs] = jg(t)exp( jκvt)Ãi , (4.23)

∂
∂ t

[exp(− jκvt)Ãi ] = − jg∗(t)exp(− jκvt)Ãs. (4.24)

Then we make another set of substitutions,

A(κ, t) = exp( jκvt)Ãs = exp( jκvt)
∫ ∞

−∞
As(z, t)exp(− jκz)dz, (4.25)

B(κ, t) = exp(− jκvt)Ãi = exp(− jκvt)
∫ ∞

−∞
A∗

i (z, t)exp(− jκz)dz, (4.26)
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Eqs. (4.23) and (4.24) become

∂A
∂ t

= jg(t)exp(2 jκvt)B, (4.27)

∂B
∂ t

= − jg∗(t)exp(−2 jκvt)A. (4.28)

The exponential terms on the right-hand side have a frequency 2κv. To estimate the magnitude of this

frequency, it is best to first consider the linear propagation of the signal and idler envelopes, before wave

mixing occurs,

v
∂As

∂z
+

∂As

∂ t
= 0, (4.29)

−v
∂Ai

∂z
+

∂Ai

∂ t
= 0. (4.30)

Fourier transforms inzas well ast give the dispersion relation for the envelopes,

|κv| = |Ω|, (4.31)

which is consistent with the definition of group velocity,v = dω
dk . Ω is the frequency variable in taking

the temporal Fourier transform of the signal and idler envelopes, and has a maximum magnitude∼ 1/Ts.

From Eqs. (4.27) and (4.28) it can be observed that wave mixing does not alter the spatial bandwidth of the

envelopes, thereforeκ has the same order of magnitude throughout, andκv∼ 1/Ts << (1/Tp or 1/Tq). g(t)

has a duration shorter than bothTp andTq, so exp(2 jκvt) oscillates relatively slowly compared tog(t). Say

g(t) is centered att = 0, we can then make the assumption

g(t)exp(2 jκvt) ≈ g(t). (4.32)

The coupled-mode equations (4.27) and (4.28) become

∂A
∂ t

= jg(t)B, (4.33)

∂B
∂ t

= − jg∗(t)A. (4.34)

The initial condition is

As(z,−
L
2v

) = F(− L
2v

− z
v
), (4.35)

Ai(z,−
L
2v

) = 0. (4.36)
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The initial condition forA andB can then be obtained from the substitutions, Eqs. (4.25) and(4.26). Define

g(t) = |g(t)|exp jθ(t), and assume thatθ(t) is a constant. Eqs. (4.33) and (4.34) can now be solved to give

A(κ, t) = A(κ,− L
2v

)cosh[
∫ t

− L
2v

|g(t ′)|dt′], (4.37)

B(κ, t) = − jA(κ,− L
2v

)exp(− jθ)sinh[
∫ t

− L
2v

|g(t ′)|dt′]. (4.38)

The final solution forAs andAi is

As(z, t) = F(t − z
v
)cosh[

∫ t

− L
2v

|g(t ′)|dt′], (4.39)

Ai(z, t) = jF ∗(−t − z
v
)exp( jθ)sinh[

∫ t

− L
2v

|g(t ′)|dt′]. (4.40)

As the idler exits the medium atz=−L
2 andt = L

2v, the pump pulses have long gone, hence the upper integral

limit can be effectively replaced by∞. The lower limit can also be replaced by−∞, since the pump pulses

have not arrived when the signal enters the medium att = − L
2v. Hence

Ai(−
L
2
, t) = jF ∗(−t +

L
2v

)exp( jθ)sinh[
∫ ∞

−∞
|g(t ′)|dt′]. (4.41)

This solution is consistent with Eq. (4.10), the first-orderapproximation in the limit of small gain. The

conversion efficiency is

η ≡
∫ ∞
−∞ |Ai(−L

2 , t ′)|2dt′
∫ ∞
−∞ |As(−L

2 , t ′)|2dt′
= sinh2[

∫ ∞

−∞
|2γvAp(t

′)Aq(t
′)|dt′]. (4.42)

This result shows the exponential dependence of the conversion efficiency on the cross fluence of the two

pump pulses.

4.4 Cross-phase modulation compensation

With the undepleted pump approximation, the main nonlineareffect besides wave mixing is the cross-phase

modulation on the signal and the idler imposed by the strong pump. Mathematically this can be observed

from Eq. (4.3) and Eq. (4.4), where the XPM terms are the largest apart from the wave mixing terms. These

effects are previously neglected in deriving Eq. (4.42).
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With XPM terms included, the coupled-mode equations become

v
∂As(z, t)

∂z
+

∂As(z, t)
∂ t

= jg(t)A∗
i (z, t)+ jc(t)As(z, t), (4.43)

−v
∂Ai(z, t)

∂z
+

∂Ai(z, t)
∂ t

= jg(t)A∗
s(z, t)+ jc(t)Ai(z, t), (4.44)

whereg(t) = 2γvAp(t)Aq(t), (4.45)

c(t) = 2γv
[

|Ap(t)|2 + |Aq(t)|2
]

. (4.46)

XPM effects are detrimental to the SPC efficiency and accuracy if a high conversion efficiency is desired, as

it introduces a time-dependent detuning factor to the wave mixing process.

To solve Eqs. (4.43) and (4.44), we follow similar procedures as in the previous section by performing a

Fourier transform with respect tozand making the following substitutions:

A(κ, t) = exp[ jκvt− j
∫ t

−∞
c(t ′)dt′]

∫ ∞

−∞
As(z, t)exp(− jκz)dz, (4.47)

B(κ, t) = exp[− jκvt+ j
∫ t

−∞
c(t ′)dt′]

∫ ∞

−∞
A∗

i (z, t)exp(− jκz)dz. (4.48)

We obtain the following:

∂A
∂ t

= jg(t)exp[−2 j
∫ t

−∞
c(t ′)dt′]B, (4.49)

∂B
∂ t

= − jg∗(t)exp[2 j
∫ t

−∞
c(t ′)dt′]A. (4.50)

Eqs. (4.49) and (4.50) are difficult to solve analytically, but a special case exists when the phase ofg(t)

exactly cancels the XPM term,

θ(t) = θ0 +2
∫ t

−∞
c(t ′)dt′. (4.51)

Eqs. (4.49) and (4.50) are then reduced to

∂A
∂ t

= j|g(t)|exp( jθ0)B, (4.52)

∂B
∂ t

= − j|g(t)|exp(− jθ0)A. (4.53)

The general solution is

As(z, t) = F(t − z
v
)exp[ j

∫ t

−∞
c(t ′)dt′]cosh[

∫ t

−∞
|g(t ′)|dt′], (4.54)

Ai(z, t) = jF ∗(−t − z
v
)exp[ jθ0 + j

∫ t

−∞
c(t ′)dt′]sinh[

∫ t

−∞
|g(t ′)|dt′], (4.55)
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and the output idler is

Ai(−
L
2
, t) = jF ∗(−t +

L
2v

)exp[ jθ0 + j
∫ ∞

−∞
c(t ′)dt′]sinh[

∫ ∞

−∞
|g(t ′)|dt′]. (4.56)

This solution is the same as Eq. (4.41), the output idler without considering XPM, apart from a constant phase

term exp[
∫ ∞
−∞ c(t ′)dt′], which does not affect the pulse waveform. If we letAp(t) = |Ap(t)|exp[ jθp(t)] and

Aq(t) = |Aq(t)|exp[ jθq(t)], then from Eq. (4.51) the actual phase adjustments to the pump pulses are given

by

θp(t)+θq(t) = θ0 +4γv
∫ t

−∞
|Ap(t

′)|2 + |Aq(t
′)|2dt′. (4.57)

Qualitatively, by adjusting the phases of the pump pulses according to Eq. (4.57), we can utilize the wave

mixing process to introduce phase variations to the signal and the idler, so that the cross-phase modulation

can be exactly canceled. In practice, the phase variation ofthe pump pulses can be introduced by various

pulse shaping methods, for example, using a 4f pulse shaper [12]. The phase correction can be introduced to

either or both of the pump pulses as long as the condition in Eq. (4.57) is satisfied.

4.5 Numerical analysis

To verify our derivations, we obtain numerical solutions ofEqs. (4.43) and (4.44) by a multiscale approach.

In this approach successively higher-order solutions are obtained by substituting lower-order solutions into

the right-hand side of the equations, until convergence is reached. For the following simulations, the pump

and the input signal are assumed to be

Ap(t) = Aq(t) = exp
(

− t2

2T2
p

)

, (4.58)

F(τ) = As0

{

exp
[

− 1+ j
2

(
τ +2Ts

Ts
)2]+

1
2

exp
[

− 1
2
(

τ −2Ts

Ts
)2]
}

. (4.59)

To confirm that the SPC process is still accurate when the conversion efficiency is high, we first consider

the case in which XPM is neglected. Figure 4.2 shows a plot of the amplitude and the phase of the output

idler pulse envelopeAi(−L
2 , t) compared with the input signalAs(−L

2 , t), using parameters similar to Ref. [9]

and polydiacetylene, a material with the highest off-resonant third-order nonlinearity reported [11], as the

wave mixing medium. The conversion efficiency is 100% with a total pump energy of only 12.8 nJ from

the numerical analysis. From Fig. 4.2 it is clear that the output idler is an exact, time-reversed and phase-

conjugated replica of the input signal.
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Figure 4.2: (a) Amplitude and (b) phase of output idler (solid lines)Ai(−L
2 , t) compared with input signal

(dash lines)As(−L
2 , t). XPM is neglected in this example. As predicted, the output idler is time-reversed

and phase-conjugated with respect to the input signal. Parameters used aren2 = 1×10−11 cm2/W, n0 = 1.7,
λ0 = 800 nm,L = 2 mm,d = 5 µm, Ts = 1 ps,Tp = 100 fs,Ep = 12.8 nJ, pump fluence =Ep

Ld . Conversion
efficiency is 100%.
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4.5.1 Conversion efficiency

Figure 4.3 is a plot of conversion efficiencies against totalpump energy obtained from theory and simulations,

using the same parameters as for the previous numerical example. The dotted curve is a plot of Eq. (4.11), the

result from Ref. [1]. The solid curve is a plot of Eq. (4.42), the conversion efficiency obtained by including

signal amplification but neglecting XPM. The crosses are results from a numerical simulation of Eqs. (4.13)

and (4.14), validating the closed-form solution we derive.The triangles are results from a numerical simula-

tion of Eqs. (4.3) and (4.4), which also include phase modulation terms. It clearly shows that XPM becomes

detrimental to the conversion efficiency as the pump energy increases. Finally, the circles are a numerical

simulation that includes all nonlinear terms and XPM compensation according to Eq. (4.57). The numerical

results confirm the accuracy of our conversion efficiency derivation, demonstrates the detrimental XPM effect

on conversion efficiency, and proves that our compensation method can indeed undo the XPM effect.

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Conversion efficiency comparison

Pump energy (nJ)

C
on

ve
rs

io
n 

ef
fic

ie
nc

y

first−order
theoretical (sinh2)
simulated (no XPM)
simulated (with XPM)
simulated (with XPM compensation)

Figure 4.3: Conversion efficiencies from simulations compared with predictions from first-order analysis and
coupled-mode theory. Simulation results agree well with coupled-mode theory. See caption of Fig. 4.2 for
parameters used.

4.5.2 Demonstration of cross-phase modulation compensation

Figure 4.4(a) and (b) plot the output idlerAi(−L
2 , t) compared with the SPC of the input signalA∗

s(−L
2 ,−t),

with XPM included, using the same parameters as before. The efficiency is reduced from 100% to 34% and

the accuracy of the SPC operation suffers due to the XPM effect. Figure 4.4(c) and (d) plots the same data,

but with the phase of the pump pulses adjusted according to Eq. (4.57) and plotted in Fig. 4.5. The accuracy

of the SPC operation is restored by the XPM compensation, andthe efficiency is back to 100%.
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Figure 4.4: (a) and (b) plot thenormalizedamplitude and phase of the output idlerAi(−L
2 , t) compared to the

SPC of the input signalA∗
s(−L

2 ,−t), respectively, when XPM is present. The amplitude plots arenormalized
with respect to their peaks. The output idler is distorted and the conversion efficiency is only 34%, much
lower than the theoretical efficiency 100%. (c) and (d) plot the same data, but with XPM compensation. The
efficiency is back to 100% and the accuracy is restored.
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Figure 4.5: Plots of amplitude and phase of one pump pulse with ideal phase adjustment according to
Eq. (4.57) in the time and frequency domain. Top-left: temporal envelope; bottom-left: temporal phase;
top-right: envelope spectrum; bottom-right: spectral phase. The simple pulse shape should be easily pro-
duced by many pulse shaping methods.
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4.6 Beyond the basic assumptions

4.6.1 Pump depletion

All of our derivations so far assume that the pump is undepleted. If the signal becomes comparable to the

pump, then the pump can no longer sustain a fixed gain, which begins to depend on the signal field across

z. Mathematically this means that the right-hand sides of Eqs. (4.1) and (4.2) become comparable to the

left-hand sides. In this case the pump would be depleted, andwe can no longer expect the SPC operation to

be accurate. To avoid pump depletion we therefore require the right-hand sides of Eqs. (4.1) and (4.2) to be

much smaller than the left-hand sides, or roughly speaking,

|Ap| >> 2γ|As||Ai ||Aq|d, (4.60)

Es <<
n0dTs

η0γ√η
. (4.61)

whereEs is the signal energy andη0 is the free-space impedance. The signal energies should be much smaller

than the rough signal energy upper limits established by Eq.(4.61) in order to avoid pump depletion. A low

signal energy also avoids distortion due to SPM.

To investigate the effect of pump depletion, we perform three-dimensional simulations inx, z, t by nu-

merically solving Eqs. (4.1), (4.2), (4.3), and (4.4) simultaneously.

The first example assumes the same parameters as before, witha signal energy of 1 pJ, much below the

pump depletion limit, calculated to be 1 nJ from Eq. (4.61). XPM is included along with XPM compensa-

tion. The conversion efficiency from the simulation drops slightly to 92% due to a finite medium thickness.

However, the SPC process still remains accurate with the inclusion of thex dimension.

On the other hand, with a signal energy of 5 nJ, much above the pump depletion limit 1 nJ, Fig. 4.6

plots the output idler from the same simulation. As can be seen from the movie, the pump pulses are highly

depleted, and from Fig. 4.6 it can be seen that the top of the idler is flattened due to gain saturation. The

conversion efficiency is reduced to 32%.

4.6.2 Other nonideal conditions

Besides pump depletion, other nonideal conditions also affect the accuracy of the SPC process. If the pump

pulses are not short enough, then from the first-order solution in Ref. [1] it can be seen that the output pulse

becomes the convolution of the pump and the signal. The medium also needs to be long enough to contain

the whole signal pulse, otherwise the output idler will be truncated.

If the medium is thick, thex dimension can no longer be ignored.Ap(t) andAq(t) should be replaced by

Ap(t + x/vx) andAq(t − x/vx), respectively, which do not directly affect the generated idler temporal pulse

shape. However, the idler beam will acquire additional transverse patterns inx, which will distort the pulse

shape if diffraction or waveguiding is also taken into account. Another problem with a thick medium is that



31

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

time (ps)

no
rm

al
iz

ed
 in

te
ns

ity
 (

a.
u.

)

Amplitude at z = −L/2, x = 0

0 2 4 6 8 10 12
−5

−4

−3

−2

−1

0

time (ps)

ph
as

e 
(r

ad
)

Phase at z = −L/2, x = 0

output idler
SPC of input signal

Figure 4.6: Amplitude and phase of output idler and input signal for the wave mixing process, with a signal
energy of 5 nJ, much above the pump depletion limit, to demonstrate the effect of pump depletion.

SPM will chirp the pump pulses and reduce the SPC efficiency and accuracy. That said, since SPM is not

directly involved with the wave mixing process, it can be precompensated by pulse shaping if it becomes a

problem.

4.7 Conclusion

In conclusion, we have derived new solutions for the spectral phase conjugation process by four-wave mixing.

When signal amplification is significant, the SPC process has been shown to remain accurate and achieve

higher efficiency. We have also proposed a method to compensate for XPM, which severely reduces the

efficiency and accuracy of SPC, by adjusting the phases of thepump pulses accordingly. With a higher

predicted conversion efficiency and an effective method to compensate for XPM without sacrificing accuracy,

we are hopeful that SPC by four-wave mixing can finally be experimentally implemented and utilized for

real-world applications.
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Chapter 5

Spectral phase conjugation by
quasi-phase-matched three-wave mixing

5.1 Introduction

Conventional phase conjugation schemes perform the so-called phase conjugation with spectral inversion [1].

The output of such schemes has a spectrum that is phase conjugated and spectrally inverted with respect to

the input. In the time domain, this is equivalent to phase conjugation of the pulse envelope, so the scheme

is also called temporal phase conjugation (TPC) [2]. A distinct kind of phase conjugation, which performs

phase conjugationwithoutspectral inversion, is first suggested by Miller [3]. The output spectrum of such a

phase conjugation scheme is the phase conjugation of the input spectrum, and the scheme is therefore called

spectral phase conjugation (SPC). In the time domain, the output pulse envelope is the phase conjugation and

time reversal of the input pulse envelope.

While TPC can compensate for even-order dispersion [1], self-phase modulation [4], and intrapulse Ra-

man scattering [5], SPC can simultaneously compensate forall chromatic dispersion [6], self-phase modula-

tion, and self-steepening [2], thus making it attractive for ultrafast applications such as optical communica-

tions. The time reversal operation associated with SPC is also useful for signal processing [7].

The physical implementation of SPC is first suggested by Miller using short-pump four-wave mixing

(FWM) [3], and later demonstrated, for example, using photonecho [8, 9], spectral hole burning [10, 11],

temporal holography [6], spectral holography [12], and spectral three-wave mixing (TWM) [13]. The FWM

scheme is especially appealing to real-world applicationsdue to its simple setup, and its efficiency is recently

shown to be significantly higher than previously considered[14]. However, the FWM scheme requires accu-

rate synchronization of two short pump pulses, which may undermine its robustness. A setup that combines

the elegant geometry of Miller’s scheme and the robustness of TWM can therefore be advantageous. It is also

of fundamental interest to investigate if the use of second-order nonlinearity can provide a higher efficiency

than the FWM configuration.
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5.2 Configuration

A  (t)i

A  (t)s

2ω0

ω0

ω0

pA  (t)x

z

Lz = −L/2 z = L/2

Λ dχ(2)

Figure 5.1: Geometry of SPC by quasi-phase-matched three-wave mixing.As(t) is the incoming signal pulse
with a carrier frequencyω0, andAp(t) is the second-harmonic pump pulse.Ai(t) is the generated idler pulse.
Quasi-phase matching is achieved by aχ(2) grating with periodΛ alongx.

The proposed configuration is shown in Fig. 5.1. It is similarto surface-emitting second-harmonic gener-

ation [15, 16], transverse-pumping parametric amplification [17], and transverse-pumping phase conjugation

[18]. The difference in our proposed system is that the pump pulseAp(t) is much shorter than the signal pulse

As(t). Therefore, the pump pulse takes a “snapshot” of the signal pulse, and when phase matching is satisfied,

the generated idler pulseAi(t) is a backward-propagating, phase-conjugated, and time-reversed replica of the

input signal pulse. The second-harmonic pump pulse can be generated by conventional second-harmonic

generation methods.

5.3 Theory

To achieve phase matching we must have

ks+k i = kp +K , (5.1)

wherek i is the wave vector of the idler,ks is the wave vector of the signal,kp is the wave vector of the pump,

andK = 2π
Λ x̂ is theχ(2) grating vector. In our geometryks = −k i , soK = −kp, or

Λ =
λ0(2ω0)

n(2ω0)
, (5.2)

whereλ0(2ω0) is the free-space wavelength at 2ω0 and n(2ω0) is the refractive index at 2ω0. In other

words, the grating period should be equal to the second-harmonic wavelength in the medium, which is in

general submicron. Aχ(2) grating with such a small period can be fabricated, for example, in AlGaAs/GaAs

heterostructures [16, 19], asymmetric coupled quantum wells [20], poled-polymer waveguides [21], and KTP
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crystals [22].

Notice that in our scheme theχ(2) grating is only used to cancel the carrier wave vector of the pump

pulse, while the additional wave vector due to the broad bandwidth of the pump pulse is accounted for in

the coupled-mode formalism below. Provided that such quasi-phase matching is achieved, the coupled-mode

equations of pulse envelopesAp, As, andAi can be derived from the wave equation, and are given by

−∂Ap

∂x
+

1
vx

∂Ap

∂ t
= 2 jγ

n0

n(2ω0)
AsAi , (5.3)

∂Aq

∂x
+

1
vx

∂Aq

∂ t
= 2 jγ

n0

n(2ω0)
AsAi , (5.4)

∂As

∂z
+

1
v

∂As

∂ t
= jγ(Ap +Aq)A

∗
i , (5.5)

−∂Ai

∂z
+

1
v

∂Ai

∂ t
= jγ(Ap +Aq)A

∗
s, (5.6)

γ =
ω0χ(2)

2cn0
, (5.7)

whereAq is the upward-propagating second-harmonic wave, which canbe neglected in general but included

here for completeness,vx is the group velocity at 2ω0 alongx, v is the group velocity atω0 alongz, andn0 is

the refractive index atω0. Diffraction and group-velocity dispersion are neglected.

If a waveguide structure is used, thenγ should also include an overlapping factor that describes the

overlapping extent of the signal and idler waveguide modes,

γ =
ω0χ(2)

2cn0

∫

dr⊥, ψsψi (5.8)

whereψs andψi are the normalized waveguide mode profiles of the signal and the idler, respectively.

If the right-hand sides of Eqs. (5.3) and (5.4) are much smaller than the left-hand sides, then the pump

can be assumed to be undepleted. Moreover, we can neglect thex dimension if the pump pulse spatial width

vxTp is much longer than the thickness of the mediumd. The resulting coupled-mode equations ofAs andAi

are

v
∂As(z, t)

∂z
+

∂As(z, t)
∂ t

= jg(t)A∗
i (z, t), (5.9)

−v
∂Ai(z, t)

∂z
+

∂Ai(z, t)
∂ t

= jg(t)A∗
s(z, t), (5.10)

g(t) = γvAp(t). (5.11)

Equations (5.9) and (5.10) are completely identical to the equations that describe the signal and the idler in
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the FWM geometry [14]. The boundary conditions are assumed tobe

As(−
L
2
, t) = F(t +

L
2v

), (5.12)

Ai(
L
2
, t) = 0. (5.13)

Assuming thatg(t) = |g(t)|exp( jθ), θ is constant, and the pulse width ofAp is much shorter than that ofAs,

Eqs. (5.9) and (5.10) can be solved using the same method described in Ref. [14]. The solution is then given

by

As(z, t) = F(t − z
v
)cosh[

∫ t

−∞
|g(t ′)|dt′], (5.14)

Ai(z, t) = jF ∗(−t − z
v
)exp( jθ)sinh[

∫ t

−∞
|g(t ′)|dt′]. (5.15)

The idler exiting atz= −L
2 is

Ai(−
L
2
, t) = jF ∗(−t +

L
2v

)exp( jθ)sinh[
∫ ∞

−∞
|γvAp(t

′)|dt′]. (5.16)

The conversion efficiency, defined as the input signal energydivided by the output idler energy, is

η ≡
∫ ∞
−∞ |Ai(−L

2 , t ′)|2dt′
∫ ∞
−∞ |As(−L

2 , t ′)|2dt′
= sinh2[

∫ ∞

−∞
|γvAp(t

′)|dt′]. (5.17)

Similar to the FWM configuration, the following conditions should be satisfied for accurate SPC operation:

L
v

>> Ts >> Tp >>
d
vx

, (5.18)

whereTs is the pulse width of the signal.

5.4 Comparison with the FWM scheme

To compare the efficiency of the TWM scheme with that of the FWM scheme, we first compute the pump

energyEp required to achieve a certain conversion efficiencyη by assuming that the pump pulse is a Gaussian,

Ap(t) = Ap0exp(− t2

2T2
p

), (5.19)
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v = c/n0, and the cross-section area of the pump beam isLd. Ep is then given by

Ep =
n0Ld
2η0

∫

|Ap(t
′)|2dt′ (5.20)

=
n5

0Ld√
πη0ω2

0 [χ(2)]2Tp
[sinh−1(

√
η)]2, (5.21)

whereη0 is the free-space impedance. Compare this with the total pump energy required for the FWM

configuration, assuming that the two pump pulses are identical,

E′
p =

4n′30 Ld

3η0ω0χ(3)
sinh−1(

√
η) (5.22)

=
n′0Ld

ω0n2
sinh−1(

√
η), (5.23)

wheren′0 is the refractive index of theχ(3) medium. The TWM scheme is thus more efficient when

[

√
π

sinh−1(
√η)

](ω0Tp)
η0[χ(2)]2

n5
0

>
n2

n′0
. (5.24)

For example, forλ0 = 800 nm,Tp = 100 fs, a GaAs/AlGaAs heterostructure withχ(2) ≈ 50 pm/V,n0 ≈ 3,

η = 100%, the left-hand side of Eq. (5.24) is about 10−14 cm2/W, which is close to then2 of CS2, but

much lower than that of conjugated polymers (∼ 10−11 cm2/W [23]). That said,χ(2) of asymmetric coupled

GaAs/AlAs quantum wells can theoretically reach 30 nm/V in the far infrared regime [24], potentially giving

rise to a much lower pump energy requirement. The TWM scheme also eliminates the need of the second

pump pulse and avoids the difficulty in synchronizing two ultrashort pulses in a thin medium.

5.5 Numerical analysis

In order to confirm the validity of the approximations in our theoretical predictions, we perform numerical

simulations of Eqs. (5.9) and (5.10), using GaAs/AlGaAs heterostructure as the nonlinear medium, a Gaus-

sian pump pulse withTp = 100 fs, and pump energyEp = 2.1 µJ. The incoming signal is assumed to be

F(t) = As0

{

−exp
[

− 1+ j
2

(
t +2Ts

Ts
)2]+

1
2

exp
[

− 1
2
(
t −2Ts

Ts
)2]
}

, (5.25)

with Ts = 1 ps. The calculated conversion efficiency is 100%, consistent with the theoretical efficiency from

Eq. (5.17). The signal and idler pulse shapes from the numerical analysis are plotted in Fig. 5.2, which

confirms that SPC can indeed be accurately performed by TWM. The required pump energy 2.1µJ is much

higher than that theorized in Ref. [14] for the FWM scheme using polydiacetylene (∼ 10 nJ), but it is still

much lower than the pump energy used in Ref. [13] (∼ 1 mJ).

Using the same parameters, Fig. 5.3 plots the theoretical conversion efficiency calculated from Eq. (5.17)
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Figure 5.2: Plots of intensity and phase of incoming signal and output idler from numerical analysis. It is
clear from the plots that the idler is a phase-conjugated andtime-reversed replica of the signal, confirming
our theoretical derivations. Parameters used areχ(2) = 50 pm/V, n0 = 3, L = 1 mm, d = 5 µm, width in
y = d, Ep = 2.1 µJ, pump fluence= Ep

Ld . For such dimensions waveguide confinement of the signal andthe
idler is necessary.

and that obtained from numerical analysis against the pump energy. The numerical results agree quite well

with the theoretical prediction, although the former is slightly lower, due to slight deviation from the ideal

conditions stated in Eq. (5.18).

5.6 Competing third-order nonlinearity

With a high pump intensity, competing third-order nonlinearity in the form of cross-phase modulation (XPM)

can be detrimental to the SPC accuracy and efficiency in the same manner as for the FWM scheme [14]. One

way to control XPM is by the same XPM compensation method described in Ref. [14], which uses the wave

mixing process to introduce phase variations to the signal and the idler, so that the Kerr phase modulation

due to the strong pump can be exactly canceled. The theoretical proof is very similar to the FWM case [14],

and the pump phase adjustment is

θ(t) = θ0 +
∫ t

−∞

3ω0vχ(3)

2cn0
|Ap(t

′)|2dt′. (5.26)

This phase adjustment is an almost linear function of time, or equivalently a center frequency shift. Therefore,

if this compensation method is used, theχ(2) grating period should also be adjusted to account for the wave
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Figure 5.3: Theoretical conversion efficiency derived fromEq. (5.17) and that from numerical analysis plotted
against pump energy. See caption of Fig. 5.2 for parameters used.

vector change due to the center frequency shift.

5.7 Conclusion

We have proposed a novel SPC scheme by the use of quasi-phase-matched TWM. The advantages of the

TWM scheme over the FWM scheme include the elimination of the second pump pulse, higher conversion

efficiency for certain parameters, and possible independent management of second-order and third-order

nonlinearities.
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Chapter 6

Spontaneous spectral phase conjugation
for coincident frequency entanglement

6.1 Introduction

It has been proven in the two previous chapters that if the three-wave mixing (TWM) or four-wave mixing

(FWM) parametric process is transversely pumped with short pulses in a long and thin nonlinear medium,

parametric amplification can be performed, with time reversal and spectral phase conjugation (SPC) [1, 2].

The correspondence between classical parametric amplification and quantum entanglement makes one won-

der if spontaneous SPC can perform the opposite of what its continuous-wave-pumped counterpart does, and

realize time anticorrelation or frequency correlation. This distinct kind of entanglement is useful for appli-

cations such as quantum-enhanced position and clock synchronization [3] and one-way autocompensating

quantum cryptography [4]. Various implementations of suchentanglement have been suggested [5, 6], and

the scheme proposed by Waltonet al. [6] looks intriguingly similar to the TWM scheme for SPC [1]. On

the other hand, while TWM is traditionally the preferred method to generate entangled photons, recent ex-

perimental progress on entangled photon sources using third-order nonlinear processes [7, 8] makes FWM

a promising candidate for such a task. In this chapter, we prove that spontaneous SPC, either by TWM or

FWM, can indeed efficiently generate time-anticorrelated and frequency-correlated photon pairs.

Our proposed schemes have several key improvements over that in Ref. [6], and make coincident fre-

quency entanglement much more realizable. First, it is unclear in Ref. [6] how phase matching should be

achieved. We propose the incorporation of quasi-phase matching to satisfy the requirement. Second, we

suggest an alternative FWM scheme, which can be more efficientwith focused femtosecond pump beams.

Third, for good efficiency, cross-phase modulation due to the strong pump becomes a large parasitic effect

for both schemes. We introduce the use of pump phase modulation to compensate for cross-phase modula-

tion. We also perform an in-depth Heisenberg analysis of thespontaneous SPC schemes, predicting that a

high gain is possible with current technology. The high gainenables the generation of large-photon-number

frequency-correlated states, which are interesting for their use in nonlocal dispersion cancellation and noise
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reduction experiments [9].

Lastly we investigate the use of frequency-correlated photons generated by our proposed schemes in the

Hong-Ou-Mandel (HOM) interferometer [10], subject to temporal delays, dispersion, frequency shifts, and

temporal phase modulation. Quantum dispersion cancellation in the HOM interferometer with such photons

has been studied [10, 11, 12, 13], but relatively little attention is given to the distinguishability introduced by

phase modulation in the time domain, for example, via the optical Kerr effect, which can be useful in quantum

nondemolition measurements [14]. Ref. [11] studies the effect of frequency shifts on frequency-correlated

photons, but only in a highly idealized case. Using the formalism developed for our schemes, we first review

the HOM dip effect introduced by time delays and dispersion for completeness, and then study the nonlocal

temporal phase cancellation properties of the entangled photons.

6.2 Configurations

2ω0 pA  (t)

A  (t)i A  (t)s

ω0 ω0

x

z

Lz = −L/2 z = L/2

Λ dχ(2)

Figure 6.1: Spontaneous SPC by TWM.

pA   (t)

qA   (t)

A  (t)sA  (t)i

x

z

Lz = −L/2 z = L/2

dχ(3)

Figure 6.2: Spontaneous SPC by FWM.

The spontaneous SPC scheme by TWM is sketched in Fig. 6.1, and the FWM scheme in Fig. 6.2. For the
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TWM scheme, the interaction Hamiltonian is

Ĥ ∝ w
∫

dx
∫

dzχ(2) f (z)E(+)
p E(−)

s E(−)
i +H.c., (6.1)

wherew is the width of the nonlinear medium in they dimension,χ(2) is the second-order nonlinear sus-

ceptibility, f (z) is the pump beam profile,E(+) andE(−) are the positive-frequency and negative-frequency

electric field operators, respectively, and the subscriptsp, s, i denote pump, signal and idler, respectively.

If the pump is assumed to be classical, the electric field operators can be written in terms of envelopes,

E(+)
p ∝ Ap(t + x

vx
)exp(−i2ω0t− ikxx), E(−)

s ∝ Â†
s(t− z

v)exp(iω0t− ikzz) andE(−)
i ∝ Â†

i (t +
z
v)exp(iω0t + ikzz),

wherekx is the pump carrier wave vector, andv andvx are the group velocities inzandx, respectively. Unlike

the scheme in Ref. [5], spontaneous SPC places no restriction on the material dispersion properties as long as

the signal and idler are the same but counterpropagating modes. Otherwise the pump beam(s) can be slightly

tilted in thez direction to compensate fo the signal-idler phase mismatch. The interaction Hamiltonian then

becomes

Ĥ ∝ w
∫ d

2

− d
2

dx
∫

dzχ(2) f (z)Ap(t +
x
vx

)Â†
s(t −

z
v
)Â†

i (t +
z
v
)exp

[

− i(kx−
2π
Λ

)x
]

+H.c., (6.2)

whereΛ is theχ(2) grating period. Ref. [15] assumes that the transverse dimensiond is small enough so that

detuning due tokx can be ignored. However, for a realizable setup,kx is usually on the order of 1/(1µm),

while d is on the order of microns for a waveguide. Hence in most caseskx should not be ignored, and quasi-

phase matching, not mentioned in Ref. [6], is in fact needed.The submicronχ(2) grating period required can

be fabricated, for example, in a GaAs/AlGaAs heterostructure [16]. To avoid space-time coupling, the spatial

pulse width of the pump, on the order of 100µm for a femtosecond pulse, should be much larger thand ∼
10 µm, so that thex dependence ofAp can be neglected.̂H is then given by

Ĥ ∝ wd
∫

dzχ(2) f (z)Ap(t)Â
†
s(t −

z
v
)Â†

i (t +
z
v
)+H.c. (6.3)

The FWM process, on the other hand, is automatically phase-matched due to the counterpropagating

pump pulses. The interaction Hamiltonian is

Ĥ ∝ w
∫

dx
∫

dzχ(3) f (z)E(+)
p E(+)

q E(−)
s E(−)

i +H.c. (6.4)

With similar assumptions as the TWM scheme, the interaction Hamiltonian is given by

Ĥ ∝ wd
∫

dzχ(3) f (z)Ap(t)Aq(t)Â
†
s(t −

z
v
)Â†

i (t +
z
v
)+H.c., (6.5)

which is almost identical to that of the TWM scheme. Hence one can analyze both schemes in a unified
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framework, with the general Hamiltonian

Ĥ ∝
∫

dz f(z)g(t)Â†
s(t −

z
v
)Â†

i (t +
z
v
)+H.c., (6.6)

whereg(t) ∝ χ(2)Ap(t) for the TWM scheme andg(t) ∝ χ(3)Ap(t)Aq(t) for the FWM scheme. To the first

order, the wave function is given by [6]

|ψ ′〉 ∝
∫

dtĤ|0〉 (6.7)

∝
∫

dt
∫

dzg(t) f (z)Â†
s(t −

z
v
)Â†

i (t +
z
v
)|0〉 (6.8)

∝
∫

dωs

∫

dωi f̃ (
ωs−ωi

v
)g̃(ωs+ωi)â

†
s(ωs)â

†
i (ωi)|0〉, (6.9)

where f̃ , g̃, andâ†
s,i are Fourier transforms off , g, andÂ†

s,i , respectively. In the time domain, if the width of

g(t) is much more narrow than the width off (z) divided byv, g(t) can sample the integrand in Eq. (6.8), say

at t = 0. Equivalently in the frequency domaiñf can sample the integrand atωs = ωi in Eq. (6.9). The wave

function becomes

|ψ ′〉 ∝
∫

dt′g(t ′)
∫

dt f(vt)Â†
s(−t)Â†

i (t)|0〉 (6.10)

∝
∫

dω ′ f̃ (
ω ′

v
)
∫

dωg̃(2ω)â†
s(ω)â†

i (ω)|0〉. (6.11)

The generated photon pair therefore possesses quantum timeanticorrelation and frequency correlation. In

summary, for optimal entanglement, the assumption

L
v

>> width of g(t) >>
d
vx

(6.12)

should be satisfied.

6.3 Conversion efficiency

The efficiency of spontaneous SPC is best studied in the Heisenberg picture. The coupled-operator equations,

assuming classical undepleted pumps, are given by

(

v
∂
∂z

+
∂
∂ t

)

Âs = ig(t)Â†
i + ic(t)Âs, (6.13)

(

−v
∂
∂z

+
∂
∂ t

)

Â†
i = −ig∗(t)Âs− ic(t)Â†

i , (6.14)
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where

g(t) =
ω0vχ(2)

2cn0
Ap(t) (6.15)

for the TWM scheme and

g(t) =
3ω0vχ(3)

4cn0
Ap(t)Aq(t) (6.16)

for the FWM scheme.

c(t) =
3ω0vχ(3)

4cn0
(|Ap|2 + |Aq|2) (6.17)

is the cross-phase modulation term, which acts as a time-dependent detuning factor. Cross-phase modulation

is always present in the FWM scheme, while it exists in the formof competing third-order nonlinearity in the

TWM scheme. Eqs. (6.13) and (6.14) can be solved in the same manner as the classical SPC analysis [1, 2].

The temporary detuning due to cross-phase modulation can becompensated ifg(t) is also appropriately

detuned. Quantitatively, the phase ofg(t) should be modulated as [2],

θ(t) = θ0 +2
∫ t

−∞
dt′c(t ′). (6.18)

θ(t) can be approximated by a linear temporal phase, or a center frequency shift ofg(t) [2]. In other words,

for spontaneous SPC under the cross-phase modulation effect, the generation of photon pairs will actually be

most efficient at a center frequency different from the center pump frequency in the FWM scheme, or from

half the center second-harmonic pump frequency in the TWM scheme. This is analogous to the phenomenon

of sideband gain in continous-wave FWM, although now the signal and idler spectra shouldcoincidewith

each other. This feature is actually desirable for the FWM scheme, since it is easier to separate the scattered

pump from the weak signal and idler by spectral filtering.

The average number of photons in each mode is

ns = C2ns0 +S2(ni0 +1), (6.19)

ni = C2ni0 +S2(ns0 +1), (6.20)

whereC ≡ cosh[
∫

dt|g(t)|], S≡ sinh[
∫

dt|g(t)|], ns0 is the initial signal photon number, andni0 is the initial

idler photon number. The number of photon pairs spontaneously generated in each wave mixing event is

thereforeS2, and the conversion efficiency, defined as the energy of the generated photons divided by the
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energy of the pump photons, is

Γ =
2S2h̄ω0

Ep
, (6.21)

whereEp is the total pump energy. The FWM scheme is more efficient than the TWM scheme wheng(t) of

the former is larger, or, all else being equal,

χ(3)

(n(3)
0 )3

(
Ep

ε0cLwTp
)

1
2 &

χ(2)

(n(2)
0 )

5
2

, (6.22)

whereTp is the pump pulse width.

For example, polydiacetylene, a conjugate polymer, has aχ(3) ∼ 10−18 m2/V2 andn(3)
0 ∼ 2, while a

GaAs/AlGaAs heterostructure has aχ(2) ∼ 1010 m/V andn(2)
0 ∼ 4. For a focused femtosecond pump beam,

sayL ∼ 2 mm,w∼ 5 µm, Tp ∼ 100 fs, the FWM scheme is more efficient whenEp is approximately larger

than 1 nJ. Ti:Sapphire laser systems can achieve a pulse energy of 1 mJ or more, so the FWM scheme can be

orders of magnitude more efficient. The FWM scheme also has theadvantage of automatic phase matching

as well as having pump pulses near the fundamental frequency, thus eliminating the need of quasi-phase

matching and a second-harmonic source in an experiment. That said, the necessity of synchronizing two

short pump pulses in the FWM scheme may undermine its robustness, while the TWM scheme may be more

efficient for certain parameters and it is relatively easierto filter out scattered second-harmonic pump from

the signal and idler. For the parameters above, the signal and idler gainS2 can achieve 100% for a pump pulse

energy∼ 10 nJ with the FWM scheme and∼ 2 µJ with the TWM scheme. For such a relatively high gain

the wave function can have higher-order terms [17],|ψ〉 ∝ ∑∞
n=0Tn|n〉s|n〉i , whereT = S/C, and the weights

of large-photon-number statesT2n with n > 1 become appreciable whenS2 approaches unity. Amplification

of coincident frequency entanglement [17] also becomes possible.

6.4 Hong-Ou-Mandel interferometry

In the HOM interferometry, variable delays are introduced to the signal and idler photons, which then pass

through a 50-50 beam splitter and finally the coincidence rate of the two output ports is measured [10]. For

simplicity we also assume that the distances from the two detectors to the beam splitter are the same. We start

with the more general wave function in Eq. (6.8). The electric field operators of the two outputs are given by

Â1,2(t) ∝ Âs,i(±Ls,i , t)+ iÂi,s(∓Li,s, t), (6.23)
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whereLs,i are the distances travelled by the signal and the idler fromz= 0 to the detectors, respectively.Li

has a negative sign in front because the idler travels backwards. The coincidence rate is given by [12, 13]

Pc ∝
∫

dt1

∫

dt2〈ψ ′|Â†
1(t1)Â

†
2(t2)Â1(t1)Â2(t2)|ψ ′〉 (6.24)

∝
∫

dt+|g(t+ − L+

v
)|2
[

∫

dt−| f (L−−vt−)|2−Re
∫

dt− f ∗(L−−vt−) f (L− +vt−)
]

. (6.25)

wheret+ = (t1 + t2)/2, L+ = (Ls+Li)/2, t− = (t1− t2)/2 andL− = (Ls−Li)/2 is half the signal-idler path

difference. The shape of the HOM dip with respect to the path differenceLs−Li is given by the last term of

Eq. (6.25), which has a width on the order ofL, the width of the pump beam profilef (z). Ref. [11] predicts

that Pc is identically zero for allL− with perfectly frequency-correlated photons, which is simply a special

case whenL → ∞.

Steinberget al. predicted [18] and demonstrated [19] even-order dispersion cancellation in the HOM

interferometer with frequency-anticorrelated photons. With frequency-correlated photons, intuition then sug-

gests that one can obtain nonlocal cancellation of dispersion of all orders, which is proven in Ref. [12]. To see

how this effect manifests itself in our schemes, we shall start with the general wave function in the frequency

domain, Eq. (6.9), and apply spectral phase to the operatorsjust as in Ref. [18]. The coincidence rate can be

expressed in terms of frequency-domain operators as [18]

Pc ∝
∫

dω1

∫

dω2〈ψ ′|â†
1(ω1)â

†
2(ω2)â1(ω1)â2(ω2)|ψ ′〉 (6.26)

∝
∫

dω1

∫

dω2|g̃(ω1 +ω2)|2
{

| f̃ (ω1−ω2

v
)|2−

Re
[

f̃ (
ω1−ω2

v
) f̃ ∗(

ω2−ω1

v
)exp

(

i[ks(ω1)−ks(ω2)]Ls− i[ki(ω1)−ki(ω2)]Li

)]}

. (6.27)

whereks andki are the dispersive propagation constants of the signal and idler, respectively. The exponential

term in Eq. (6.27) characterizes the nonlocal dispersion cancellation. If the photons have perfect frequency

anticorrelation, ˜g is infinitely sharp,ω1 =−ω2, and we recover the even-order dispersion cancellation results

in Ref. [18]. If f̃ is infinitely sharp,ω1 = ω2, the exponential term evalulates to 1 andPc = 0 for dispersion

of all orders. If f̃ is not infinitely sharp and dispersion is only due to time delay, the result in Eq. (6.25) is

recovered.

Frequency shifts can be introduced to the signal and the idler by, for example, moving mirrors or acousto-

optic modulators via the Doppler effect. Opposite Doppler shifts can also occur to the counterpropagating

photons if the source frame is moving alongz relative to the detection frame. We can then rewriteÂ1 andÂ2,

Â1,2(t) ∝ exp(−iδωs,it)Âs,i + i exp(−iδωi,st)Âi,s, (6.28)

whereδωs is the signal frequency shift andδωi is the idler frequency shift. For intuitiveness we assume that
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the path delays for both photons are the same, orLs = Li = L+. Pc becomes

Pc ∝
∫

dt+|g(t+ − L+

v
)|2
{

∫

dt−| f (−vt−)|2−

Re
∫

dt− f ∗(−vt−) f (vt−)exp
[

2i(δωs−δωi)t−
]

}

. (6.29)

The last term of Eq. (6.29), which is the Fourier transform of| f (vt)|2 if f (vt) is even, characterizes the HOM

dip with respect to the frequency differenceδωs−δωi . The width of the dip is on the order ofv/L, for which

the infinitely sharp dip predicted by Ref. [11] is again a special case whenL → ∞.

The coincidence rate depends on the time-domain operators in Eq. (6.24) in the same way as the expres-

sion in Eq. (6.26) depends on frequency-domain operators,

Pc ∝
∫

dt1

∫

dt2〈ψ ′|Â†
1(t1)Â

†
2(t2)Â1(t1)Â2(t2)|ψ ′〉, (6.30)

∝
∫

dω1

∫

dω2〈ψ ′|â†
1(ω1)â

†
2(ω2)â1(ω1)â2(ω2)|ψ ′〉. (6.31)

Hence the coincidence rate obeys a kind of Parseval’s relation, and the frequency domain results can be

directly applied to the time domain, if we replace frequency-domain operators with time-domain operators,

frequency anticorrelation with time anticorrelation, frequency correlation with time correlation, and spectral

phase modulation (dispersion) with temporal phase modulation.

One can introduce temporal phase modulation to the photons by Doppler shift as mentioned above, or by

cross-phase modulation via a classical pulse in a Kerr medium if a more complex phase profile is desired.

Given the Parseval’s relation for coincidence, we then expect the HOM interferometry results with frequency-

anticorrelated photons subject to dispersion to be functionally the same as the results with time-anticorrelated

photons subject to temporal phase modulation. The coincidence rate is

Pc ∝
∫

dt| f (vt)|2
{

1−cos[φs(t)−φs(−t)−φi(t)+φi(−t)]
}

, (6.32)

whereφs,i are the temporal phases introduced to the signal and idler photons. The even component of temporal

phase is cancelled, as expected. For a linear temporal phase, the result in Eq. (6.29) is recovered. On the other

hand, time-correlated photons are capable of complete nonlocal temporal phase cancellation. An analogy with

classical nonlinearity compensation by different phase conjugation schemes can clearly be made; whereas

midway SPC can only compensate for the elastic component of the Kerr effect, midway temporal phase

conjugation can compensate for both the instantaneous and delayed Kerr effects [20].

The Parseval’s relation for coincidence of course holds forany kind of interferometer, so any result with

other interoferometers obtained with frequency-anticorrelated photons subject to dispersion can be applied

directly to time-anticorrelated photons subject to temporal phase modulation. For instance, the extensive

study of Mach-Zehnder interferometry with frequency anticorrelated photons in Ref. [11] can be utilized just
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as well in the time domain.

6.5 Conclusion

In conclusion, spontaneous SPC schemes by TWM and FWM are studied and compared under a general

framework. It is proven that spontaneous SPC is capable of generating entangled photon pairs with time

anticorrelation and frequency correlation. The use of quasi-phase matching and four-wave mixing is also

proposed to improve the efficiency. Just as in the classical analysis, pump phase modulation is shown to

effectively compensate for detuning due to cross-phase modulation.
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Chapter 7

Spectral phase conjugation via extended
phase matching

7.1 Introduction

In contrast with the more conventional optical phase conjugation schemes that perform phase conjugation

with spectral inversion [1], spectral phase conjugation (SPC) is the phase conjugation of an optical signal

in the frequency domain without spectral inversion. Equivalently, in the time domain, SPC is the phase

conjugation and time reversal of the signal complex pulse envelope [2]. SPC is useful for all-order dispersion

and nonlinearity compensation [3, 4], as well as optical signal processing [5]. Although SPC has been

experimentally demonstrated using photon echo [6, 7], spectral hole burning [8, 9], temporal holography [3],

spectral holography [10], and spectral three-wave mixing (TWM) [11], all the demonstrated schemes suffer

from the use of cryogenic setups, nonrealtime operation, orextremely high pump energy. Pulsed TWM [12]

and four-wave-mixing (FWM) [2, 13] processes in the transverse-pumping geometry have been theoretically

proposed to efficiently perform SPC, but have not yet been experimentally realized. All the holographic and

wave-mixing schemes also have strict requirements on the transverse beam profile of the signal, limiting their

appeal for simultaneous diffraction and dispersion compensation applications.

There is a correspondence between classical SPC and quantumcoincident frequency entanglement, as

shown in Ref. [14] for the transversely pumped TWM [15, 12] andFWM [2, 13] processes. It is then

interesting to see if other coincident frequency entanglement schemes are also capable of performing SPC,

when an input signal is present. This chapter studies one of such schemes, which makes use of extended

phase matching (EPM)[16] and has been experimentally demonstrated [17] in a periodically-poled potassium

titanyl phosphate (PPKTP) crystal [18]. It is shown in Section 7.3, for the first time to the author’s knowledge,

that this EPM scheme is indeed capable of performing SPC and optical parametric amplification (OPA), more

efficiently than previous proposals.

The analysis also yields a surprising result, namely that the parametric gain can be theoretically infinite

even for a pump pulse with finite energy, analogous to backward wave oscillation, where counterpropagating
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waves are parametrically coupled and can give rise to mirrorless optical parametric oscillation (OPO)[19,

20, 21, 22, 23, 24, 25]. The reason for the similarity is that,in the scheme presented here, even though the

signal and the idler copropagate with the pump pulse in the laboratory frame, theycounterpropagate in the

frame of the moving pump pulse, because one is faster than the pump and one is slower. Hence the moving

pump pulse provides both an effective cavity and parametricgain, leading to oscillation. In reality, however,

the interaction among the pulses should be ultimately limited by the finite device length. It is shown in

Section 7.4, with a Laplace analysis, that the parametric gain should abruptly increase above the threshold,

where infinite gain is predicted by the Fourier analysis, buta finite medium length will always limit the

gain to a finite value. Still, as previous proposals of TWM mirrorless OPO have never been experimentally

achieved due to the requirement of a continuous-wave (CW) pump and the difficulty in phase matching

counterpropagating waves, the presented analysis suggests the exciting possibility that mirrorless OPO can

be realized with an ultrashort pump pulse and a practical poling period for phase matching of copropagating

modes, if a long enough medium can be fabricated and parasitic effects can be controlled. By analyzing the

scheme in the Heisenberg picture in Section 7.5, a high spontaneous parametric down conversion rate is also

predicted, in excellent agreement with the experimental result reported in Ref. [17]. The result should be

useful for many quantum information processing applications, such as quantum-enhanced synchronization

[26] and multiphoton entanglement for quantum cryptography [27]. Finally, numerical results are presented

in Section 7.6, which confirm the theoretical predictions.

7.2 Setup

Figure 7.1: Schematic of spectral phase conjugation (SPC) via type-II extended phase matching (EPM). The
signal and idler pulses, in orthogonal polarizations, havecarrier frequencies ofωs andωi , while the pump
pulse has a carrier frequency ofωp = ωs + ωi . The EPM condition requires that the signal and the idler
counterpropagate with respect to the pump, which should be much shorter than the input signal.

Consider the copropagating TWM process (Fig. 7.1), assumingthat the basic type-II phase matching

condition (ks + ki = kp + 2π/Λ), with a quasi-phase-matching periodΛ, is satisfied. The coupled-mode
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equations are

∂Ap

∂z
+k′p

∂Ap

∂ t
= jχpAsAi , (7.1)

∂As

∂z
+k′s

∂As

∂ t
= jχsApA∗

i , (7.2)

∂A∗
i

∂z
+k′i

∂A∗
i

∂ t
= − jχiA

∗
pAs, (7.3)

whereAp is the pump pulse envelope of carrier frequencyωp, As,i are the signal and idler envelopes of

frequenciesωs andωi , respectively,k′p,s,i are the group delays of the three modes,χp,s,i ≡ ωp,s,i χ(2)/(2cnp,s,i)

are the nonlinear coupling coefficients,ωp,s,i are the center frequencies of the modes such thatωs+ωi = ωp,

andnp,s,i are the refractive indices. Group-velocity dispersion within each mode and diffraction are neglected.

Defineτ ≡ t − k′pz as the retarded time coordinate that follows the propagating pump pulse. The change of

coordinates yields

∂Ap

∂z
= jχpAsAi , (7.4)

∂As

∂z
+(k′s−k′p)

∂As

∂τ
= jχsApA∗

i , (7.5)

∂A∗
i

∂z
+(k′i −k′p)

∂A∗
i

∂τ
= − jχiA

∗
pAs. (7.6)

Throughout the theoretical analysis, the pump is assumed tobe undepleted and unchirped, so thatAp =

Ap0(t −k′pz) = Ap0(τ), hereafter regarded as real without loss of generality.

7.3 Fourier analysis

Equations (7.5) and (7.6) are space-invariant, if the nonlinear medium lengthL is much longer than the signal

or idler spatial pulse width in the frame ofzandτ, or

L >>
Ts,i

|k′s,i −k′p|
, (7.7)

whereTs,i is the signal or idler pulse width. One can then perform Fourier transform on the equations with

respect toz, as defined by the following,

Ãs(κ,τ) ≡
∫ ∞

−∞
As(z,τ)exp(− jκz)dz, (7.8)

Ã∗
i (κ,τ) ≡

∫ ∞

−∞
A∗

i (z,τ)exp(− jκz)dz. (7.9)
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Notice thatÃ∗
i is defined as the Fourier transform after the conjugation ofAi . The coupled-mode equations

become

jκÃs+(k′s−k′p)
∂ Ãs

∂τ
= jχsAp0(τ)Ã∗

i , (7.10)

jκÃ∗
i +(k′i −k′p)

∂ Ã∗
i

∂τ
= − jχiAp0(τ)Ãs. (7.11)

Let

γs ≡ k′s−k′p, γi ≡ k′i −k′p, r ≡
∣

∣

∣

γsχi

γi χs

∣

∣

∣. (7.12)

Consider the case in whichγs andγi are nonzero and have opposite signs, implying that the signal and the idler

propagate in opposite directions with respect to the pump. This can be achieved for a range of wavelengths

in KTP. Without loss of generality, assume thatγs > 0 andγi < 0, so thatk′s > k′p > k′i . Making the following

substitutions,

A =
√

rÃsexp( j
κ
γs

τ), B = Ã∗
i exp( j

κ
γi

τ), (7.13)

one obtains

∂A
∂τ

= j

√

∣

∣

∣

χsχi

γsγi

∣

∣

∣
Ap0(τ)Bexp

[

jκ(
1
γs

− 1
γi

)τ
]

, (7.14)

∂B
∂τ

= j

√

∣

∣

∣

χsχi

γsγi

∣

∣

∣Ap0(τ)Aexp
[

− jκ(
1
γs

− 1
γi

)τ
]

. (7.15)

Due to linear space invariance, the wave-mixing process cannot generate new spatial frequencies (κ) for A

andB. The magnitude ofκ then depends only on the initial bandwidths ofA andB, and is on the order of

2πγs,i/Ts,i . As a result, if the pump pulse widthTp is much shorter than the minimum period of the detuning

factor exp[± jκ(1/γs−1/γi)τ], or

Tp <<
∣

∣

∣

2π
κ(1/γs−1/γi)

∣

∣

∣
∼
∣

∣

∣

Ts,i

γs,i(1/γs−1/γi)

∣

∣

∣
, (7.16)

the pump can effectively sample the detuning factor, say, atτ = 0. Defining a normalized coupling function,

g(τ) ≡
√

∣

∣

∣

χsχi

γsγi

∣

∣

∣
Ap0(τ), (7.17)
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two simple coupled-mode equations are obtained,

∂A
∂τ

= jg(τ)B, (7.18)

∂B
∂τ

= jg(τ)A. (7.19)

Because the signal and the idler counterpropagate with respect to the pump, the signal should begin to mix

with the pump at the leading edge of the pump pulse, say atτ = −Tp/2, while the idler should begin to mix

at the trailing edge of the pump, say atτ = Tp/2. The solutions of Eqs. (7.18) and (7.19) can then be written

as

A(κ,τ) = sec(G)

{

A(κ,−Tp

2
)cos

[

∫ τ

Tp/2
g(τ ′)dτ ′

]

+ jB(κ,
Tp

2
)sin

[

∫ τ

−Tp/2
g(τ ′)dτ ′

]

}

, (7.20)

B(κ,τ) = sec(G)

{

jA(κ,−Tp

2
)sin

[

∫ τ

Tp/2
g(τ ′)dτ ′

]

+B(κ,
Tp

2
)cos

[

∫ τ

−Tp/2
g(τ ′)dτ ′

]

}

, (7.21)

where

G≡
∫ Tp/2

−Tp/2
g(τ)dτ ≈

∫ ∞

−∞
g(τ)dτ. (7.22)

The input signal pulse is required to be placed in advance of the pump (byts >> Ts), and the input idler pulse

to be placed behind the pump (delayed byti >> Ti), so that the signal and the idler only overlap the pump

pulse inside the nonlinear medium. Consequently, the output solutions are

As(L, t) = As0(t −k′sL+ ts)sec(G)+ j
1√
r
A∗

i0

(

− 1
r
(t −k′sL− ti)

)

tan(G), (7.23)

Ai(L, t) = Ai0(t −k′iL− ti)sec(G)+ j
√

rA∗
s0

(

− r(t −k′iL+ ts)
)

tan(G). (7.24)

To see how the device is able to perform SPC, assume that the center frequencies of the two modes are the

same,ωs = ωi , χs = χi , and the type-II EPM condition,

k′s+k′i = 2k′p, k′s 6= k′i , (7.25)

which depends on the material dispersion properties and typically occurs at a single set of center frequencies,

is satisfied [16]. Thenr = 1, and the output idler becomes the phase-conjugated and time-reversed replica of

the input signal, if the input idler is zero. SPC is hence performed. The SPC efficiencyη , or the idler gain,

defined as the output idler fluence divided by the input signalfluence, is

η ≡
∫ ∞
−∞ |Ai(L, t)|2dt
∫ ∞
−∞ |As(0, t)|2dt

= tan2(G). (7.26)
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This SPC efficiency can be fundamentally higher than that of the transversely pumped TWM device [12] due

to two reasons. One is the copropagation of the three pulses,which makesG higher than a similar parameter

in the latter case by a factor of(1−k′p/k′s)
−1, on the order of 40 for KTP. The second reason is that forη > 1,

due to the tangent function dependence, the SPC efficiency ofthe EPM scheme increases with respect to

G much faster than that of the latter, which only depends on a similar parameter exponentially. That said,

the transversely pumped FWM device [13] can still be more efficient in the small gain regimeη < 1 if a

highly nonlinear material, such as polydiacetylene, is used. Furthermore, the EPM device requires a longer

nonlinear medium length by a factor of(1−k′p/k′s)
−1, and depends crucially on the material dispersion, thus

severely limiting the flexibility in the choice of operatingwavelengths.

Equations (7.23) and (7.24) are obtained from the analysis of the coupled-mode equations (7.5) and (7.6),

after Fourier transform with respect toz is performed. The solutions are therefore formally valid only when

the nonlinear medium lengthL goes to infinity. In practice, in the moderate gain regimeη ∼ O(1), the

approximation given by Eq. (7.7) should be adequate, where the lengthL can be, say, ten times larger than

the signal spatial pulse width in the frame ofz andτ. Numerical analysis in Section 7.6 will validate the

accuracy of the Fourier solutions.

7.4 Laplace analysis

Intriguingly, the Fourier solutions, Eqs. (7.23) and (7.24), have the same form as those of backward wave

oscillation [19, 20, 21, 22, 23, 24, 25], suggesting that thedevice studied here, with an ultrashort pump

pulse and a practical quasi-phase-matching period (Λ = 46 µm as reported in Ref. [18]), can also perform

mirrorless OPO, as long ask′s,i > k′p > k′i,s. However, the prediction of infinite gain is based on the assumption

of infinite medium length and therefore may not be valid. In this case, Laplace transform should be used.

For the CW-pumped mirrorless OPO schemes, a Laplace analysis [28] with respect to time shows that

beyond threshold, poles appear on the right-hand plane in the Laplace domain, meaning that the temporal

impulse response increases exponentially with time, leading to self-oscillation when enough time is elapsed.

The same procedures of utilizing the two-sided Laplace transform [29] as in Ref. [28] are followed here in

order to be consistent with the relevant literature, but since the proposed scheme is the opposite limit of the

CW devices, the Laplace transform should be performed with respect toz instead,

Ās(p,τ) ≡
∫ ∞

−∞
As(z,τ)exp(−pz)dz, (7.27)

Ā∗
i (p,τ) ≡

∫ ∞

−∞
A∗

i (z,τ)exp(−pz)dz. (7.28)

For simplicity but without affecting the qualitative behavior of the solutions, it is assumed that the pump pulse

is square, there is no input idler,γ = γs = −γi , andχ = χs = χi . The output solutions in the Laplace domain
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are then given by

Ās(p,
Tp

2
) =

√
1−P2csc(G

√
1−P2)

P+
√

1−P2cot(G
√

1−P2)
Ās(p,−Tp

2
), (7.29)

Ā∗
i (p,−Tp

2
) =

− j

P+
√

1−P2cot(G
√

1−P2)
Ās(p,−Tp

2
), (7.30)

P≡ p
χAp0

, G≡ χAp0(
Tp

γ
). (7.31)

If we let p = jκ , the transfer functions in Eqs. (7.29) and (7.30) are well-known to be low-pass filters [30],

the bandwidth of which decreases asG increases. If the spatial bandwidth of the input signal, on the order

of γ/Ts, is much smaller than the bandwidth of the low-pass filters, the transfer functions can be regarded as

flat-top functions, and by pluggingP = 0 in Eqs. (7.29) and (7.30), the Fourier solutions in Eqs. (7.23) and

(7.24) are recovered. ForG << 1, the transfer functions are sinc functions with a bandwidth ∼ γ/Tp, so the

Fourier solutions are valid ifTp << Ts, which is essentially the same assumption used in the Fourier analysis,

Eq. (7.16). AsG increases and the filter bandwidth decreases, however, the Fourier solutions become less

and less accurate for a finite-bandwidth input signal.

The poles of the transfer functions,p∞, can be obtained by setting the denominator of Eqs. (7.29) and

(7.30) to zero,

p∞ +
√

(χAp0)2− p2
∞ cot

[

G
√

1− p2
∞/(χAp0)2

]

= 0. (7.32)
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Figure 7.2: Normalized polesp∞/(χAp0) plotted againstG, obtained by numerically solving Eq. (32), indi-
cating the onset of spatial instability beyond the threshold G > π/2. More poles appear asG is increased.
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Figure 7.2 plots the normalized polesp∞/(χAp0) againstG. Positive poles begin to appear whenG> π/2,

hence thespatial impulse response increases exponentially with respect toz beyond threshold.

It is interesting to compare the scheme studied here with thecase in which the pump, signal, and idler

have degenerate group delays (k′p = k′s = k′i )[31]. The coupled-mode equations of the latter case are

∂As,i(z,τ)

∂z
= jχAp0(τ)A∗

i,s(z,τ), (7.33)

where theτ derivatives vanish. The solutions are easily seen to be

As,i(z,τ) = As,i(0,τ)cosh[χAp0(τ)z]+ jA∗
i,s(0,τ)sinh[χAp0(τ)z]. (7.34)

This corresponds to theG→ ∞ limit of the former scheme, wherep∞/(χAp0)→ 1 and all the poles approach

the growth rate of the degenerate case,χAp0.

7.5 Spontaneous parametric down conversion

Given the input-output signal-idler relationship in Eqs. (7.23) and (7.24), it is straightforward to obtain a

quantum picture of the parametric process in the moderate gain regime by replacing the signal and idler

envelopes with Heisenberg operators, so that

Âs = Âs0sec(G)+ jÂ†
i0 tan(G), (7.35)

Âi = jÂ†
s0 tan(G)+ Âi0sec(G). (7.36)

If the inputs are Fock states,

ns,i ≡ 〈Â†
s,iÂs,i〉 = 〈Âs,iÂ

†
s,i〉−1, (7.37)

〈Â†
s0Âi0〉 = 〈Â†

i0Âs0〉 = 〈Âs0Â†
i0〉 = 〈Âi0Â†

s0〉 = 0. (7.38)

The average output photon number of each mode is

ns = ns0sec2(G)+(ni0 +1) tan2(G), (7.39)

ni = ni0sec2(G)+(ns0 +1) tan2(G). (7.40)

The average number of spontaneously generated photon pairsper pump pulse is therefore the same as the

idler gain, orη = tan2(G). Moreover, the unitary transform given by Eqs. (7.35) and (7.36) has the same



61

form as the CW FWM process. One then expects the photon wavefunction to be similarly given by [32]

|ψ〉 = cos(G)
∞

∑
n=0

sinn(G)|n〉s|n〉i , (7.41)

where|n〉s,i is the Fock state in the signal or idler mode. The scheme thus has a significant advantage in

efficiency and robustness for multiphoton entanglement, compared with other schemes that often require

feedback [33]. The efficient multiphoton coincident frequency entanglement should be useful for quantum-

enhanced synchronization [26] and quantum cryptography applications [27].

The preceding quantum analysis assumes that there is only one spatial mode in each signal or idler mode,

and is accurate only when the Fourier solutions are accurate. This restricts the applicability of the quantum

analysis to the moderate gain regimeη ∼ O(1), depending on how closely the assumption in Eq. (7.7) is

observed. It is beyond the scope of this thesis to investigate what happens in the quantum picture when more

than one spatial mode is involved, but qualitatively, one expects that each spatial mode should have a varying

parametric gain depending on the spatial frequency, as suggested by the Laplace solutions in Eqs. (7.29) and

(7.30), so the photon wavefunction would be given by a superposition of simultaneous eigenstates of spatial

frequency and photon number.

Using the parameters described in Refs. [17] and [18], whereλ0 = 1584 nm,χ(2) = 7.3 pm/V, n0 = 2,

γ = 1.5×10−10 s/m,Tp = 100 fs, average pump power= 350 mW, diameter= 200µm, and pump repetition

rate frep = 80 MHz, the number of spontaneously generated photon pairs per second is theoretically given by

freptan2(G)≈ frepG2 = 3.6×106/s, in excellent agreement with the experimental result reported in Ref. [17],

which is∼ 4×106/s. G is then given by∼ 0.2, so the operations of SPC, OPA, and multiphoton entanglement

(G > π/4) should be realizable by increasing the pump field amplitude.

7.6 Numerical analysis

Equations (7.5) and (7.6) are solved numerically via a Fourier split-step approach to confirm the above theo-

retical predictions. Fig. 7.3 plots the intensities and phases of the input signal, output signal, and output idler

from the numerical analysis whenG = π/4. The plots clearly show that the output idler is the time-reversed

and phase-conjugated replica of the signal.

Figure 7.4 plots the numerical signal gain and idler gain compared with Fourier theory for 0< G≤ π/3.

The numerical results are all within 3% of the theoretical values.

Figure 7.5 plots the idler gain on the logarithmic scale for awider range ofG’s and two different lengths,

obtained from the numerical analysis of the complete three-wave-mixing equations (7.4), (7.5), and (7.6),

with a single photon as the input signal, approximately emulating parametric fluorescence. For theL = 10

cm case the curve can be clearly separated into three regimes; for G < π/2 and moderate gain (η ∼ 0 dB),

the idler gain approximately follows the Fourier solution (dashed curve). ForG > π/2, the system becomes



62

−20 −15 −10 −5 0 5 10 15 20
0

0.5

1

1.5

2
Intensity

In
te

ns
ity

 (
a.

u.
)

τ (ps)

−20 −15 −10 −5 0 5 10 15 20
−4

−2

0

2

4
Phase

P
ha

se
 (

ra
di

an
)

τ (ps)

Input Signal
Output Signal
Output Idler
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63

0 0.5 1 1.5 2 2.5
−50

0

50

100

150

G

dB

10log
10

(η) (L = 10 cm)

10log
10

(η) (L = 1 cm)

10log
10

[tan2(G)]
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the medium is not long enough for oscillation to occur in the parameter range of interest.

unstable and an exponential growth (linear ramp on the logarithmic curve) is observed, until the pump is

significantly depleted, parametric oscillation occurs, and the exponential growth abruptly stops.

ForL = 1 cm, the numerical solution departs from theory for a smaller G, and the slope of the logarithmic

curve in the unstable regime, proportional toL, is too small to initiate oscillation in the parameter rangeof

interest.

A medium length of 10 cm may be pushing the limit of current technology. Even if one is able to fabricate

such a long periodically-poled nonlinear crystal, the effective medium length is always limited by parasitic

effects, such as diffraction, group-velocity dispersion,and competing third-order nonlinearities, so it might

be difficult to fabricate an ideal EPM device for the aforementioned purposes. For instance, in the experiment

by Kuzucuet al. [17], the diameter of the beam isW ∼ 200 µm, so the characteristic diffraction length is

∼W2/λ0 = 4 cm, while the characteristic group-velocity dispersion length is 20 cm according to Ref. [16],

which are all on the order of the medium length required for mirrorless OPO. That said, techniques like

diffusion bonding [34] can be used to increase the length of anonlinear crystal, diffraction can be eliminated

by waveguiding, while there exist a variety of methods to compensate for group-velocity dispersion and

third-order nonlinearities [35]. Hence with careful engineering, fabricating an EPM device for the proposed

applications is still a distinct possibility.
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7.7 Conclusion

In summary, it is proven that the copropagating three-wave-mixing process, with appropriate extended phase

matching and pumped with a short second-harmonic pulse, is capable of performing spectral phase con-

jugation, parametric amplification, and efficient multiphoton entanglement. The main technical challenges

of experimental implementation seem to be the long medium length required and the control of parasitic

effects such as diffraction, group-velocity dispersion, and competing third-order nonlinearities. However,

a shorter proof-of-concept device has already been experimentally realized for the purposes of broadband

second-harmonic generation [18] and coincident frequencyentanglement [17], so it is not unrealistic to ex-

pect that a longer device can be fabricated for the proposed applications, which should be useful for optical

communications, signal processing, and quantum information processing.

Theoretically, much remains to be explored. The study of parasitic effects, not considered in this chapter,

is vital for experimental realization. The analysis of the ultrashort-pump limit can be potentially generalized

to other TWM and FWM geometries, while the quantum analysis of this limit is by no means complete. In

conclusion, the analysis presented here should stimulate further experimental and theoretical investigations

of a new class of parametric devices.
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Chapter 8

Propagation of temporal entanglement

8.1 Introduction

In quantum optics, the Heisenberg picture, where optical fields are treated as conjugate positions and mo-

menta of quantized harmonic oscillators, is often preferred, as it is easy to substitute the optical fields in

classical electromagnetic problems with noncommutative operators and obtain the Heisenberg equations of

motion. Once the operator equations are solved, one can thenobtain various quantum properties of the op-

tical fields via noncommutative algebra. However, the Heisenberg picture is not without shortcomings. It

can be hard to solve analytically or numerically the complexor nonlinear operator equations without approx-

imations. It is also difficult to grasp any intuition about how the quantum correlations among the photons

evolve until the Heisenberg equations are solved. These difficulties have led to a growing appreciation of the

Schr̈odinger picture, where the photons are treated as an ensemble of bosons, and the evolution of the many-

photon probability amplitude is studied. This arguably more intuitive approach has led to great success in

the quantum theory of solitons [1], where instead of solvingthe formidable nonlinear operator equations, one

can obtain analytic solutions from thelinear boson equations in the Schrödinger picture. The many-boson

interpretation has been applied to the study of entangled photons as well, where the two-photon probability

amplitude is shown to obey the Wolf equations by Saleh, Teich, and Sergienko (STS) [2]. Instead of treating

the entanglement properties of the photons and the optical propagation as two separate problems, with the

STS equations, one can now use a single quantity, namely the two-photon amplitude, to keep track of the spa-

tiotemporal entanglement evolution in free space. This is analogous to the Wolf equations, which reformulate

the laws of optics in terms of coherence propagation [3].

In this chapter, we utilize the STS treatment of two photons to study various temporal effects, in the hope

that the Schr̈odinger picture will offer a more accessible interpretation of temporal entanglement propagation

for analytic or numerical studies of two-photon systems. Loss; group-velocity dispersion; temporal phase

modulation, via an electro-optic modulator for example; linear mode coupling, via a beam splitter or a fiber

coupler for example; and four-wave mixing, in a coherently prepared atomic gas [4] for example, are all

included in our proposed formalism, thus extending the STS model for use in many more topics in quan-
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tum optics, such as nonlocal dispersion cancellation [5, 6], fourth-order interferometry [7], and two-photon

nonlinear optics [4, 8]. The analysis of a two-photon vectorsoliton, consisting of two photons in orthogonal

polarizations under the cross-phase modulation effect, ispresented in the final section, in order to demonstrate

the ease of use and intuitiveness of the Schrödinger picture.

Inspired by the formalism set forth, we propose the concept of quantum temporal imaging, which uses

dispersive elements and temporal phase modulators to manipulate the temporal entanglement properties of

two photons. Most significantly, we show that it is possible to convert positive time correlation to nega-

tive time correlation, or vice versa, using a temporal imaging system. This conversion technique should be

immensely useful for applications that require negative time correlation, such as quantum-enhanced clock

synchronization [9]. Although there have been theoretical[10, 11, 12, 13] and experimental [14] proposals of

generating negative time correlation directly, they have various shortcomings compared with the conventional

tried-and-true schemes that generate positive time correlation. Our proposed technique should therefore allow

more flexibility in choosing two-photon sources for quantumoptics applications.

The chapter is structured as follows: Sec. 8.2 derives the equations that describe the evolution of the two-

photon amplitude in two separate modes, Sec. 8.3 introducesthe principles of quantum temporal imaging,

Sec. 8.4 includes linear mode coupling in the formalism, Sec. 8.5 generalizes the formalism to two photons

in more than two modes, Sec. 8.6 includes the effect of four-wave mixing, and Sec. 8.7 presents the exact

solution of a two-photon vector soliton.

8.2 Two photons in two separate modes

Let us first consider two photons in two optical modes, such astwo polarizations, two propagation directions,

or two waveguide modes. The corresponding two-photon wavefunction is

|Ψ〉 = C12|1,1〉+C11|2,0〉+C22|0,2〉, (8.1)

where the constantsC jk’s are the overall amplitudes of the quantum states,|1,1〉 is the quantum state in which

one photon is in each mode,|2,0〉 is the state in which both photons are in mode 1, and|0,2〉 is the state which

both photons are in mode 2. The positive-frequency forward-propagating component of the electric field in

each mode is given by [15, 16]

Ê(+)
j (z, t) = i

∫ ∞

0
dω
( h̄ωη j(ω)

4πε0c[n j(ω)]2S

) 1
2
â j(z,ω)exp(−iωt), (8.2)

wheren j is the complex, frequency-dependent refractive index in mode j, η j is the real part ofn j , S is an

area of quantization in thex−y plane, and ˆa j is the photon annihilation operator, related to the corresponding
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creation operator via the equal-space commutator [15, 16],

[â j(z,ω), â†
j (z,ω

′)] = δ (ω −ω ′), j = 1,2. (8.3)

In the Heisenberg picture, the creation and annihilation operators evolve according to the following equations

[15, 16],

∂ â1(z,ω)

∂ z
= i

ωn1(ω)

c
â1(z,ω)+ i

(2ωµ1(ω)

c

) 1
2

f̂1(z,ω), (8.4)

∂ â2(z′,ω ′)
∂ z′

= i
ω ′n2(ω ′)

c
â2(z

′,ω ′)+ i
(2ω ′µ2(ω ′)

c

) 1
2

f̂2(z
′,ω ′), (8.5)

whereµ j is the imaginary part ofn j , and f̂ j is the Langevin noise operator, satisfying the commutation

relation

[ f̂ j(z,ω), f̂ †
j (z

′,ω ′)] = δ (z− z′)δ (ω −ω ′). (8.6)

To proceed, we replaceωn j(ω)/c by the following phenomenological approximation [17],

ωn j(ω)

c
≈ i

α j

2
+

2

∑
n=0

βn j

n!
(ω −ω0)

n +
ω0

c
∆n j , (8.7)

whereα j = 2Im[k j(ω0)] is the loss coefficient,βn j = ∂ nRe[k j(ω)]/∂ωn|ω=ω0 is thenth-order dispersion co-

efficient, and∆n j encompasses any other refractive index perturbation. Defining the slowly varying envelope

operators as

Â j(z, t) = exp(−iβ0 jz+ iω0t)
∫ ∞

0

dω√
2π

â j(z,ω)exp(−iωt), (8.8)

whereω0 is the carrier frequency of the two modes, one can obtain two evolution equations for the envelope

operators,

∂
∂ z

Â1(z, t) = iK1

(

t, i
∂
∂ t

)

Â1(z, t)+ F̂1, (8.9)

∂
∂ z′

Â2(z
′, t ′) = iK2

(

t ′, i
∂

∂ t ′

)

Â2(z
′, t ′)+ F̂2, (8.10)

K j

(

t, i
∂
∂ t

)

=
[ iα j

2
+ iβ1 j

∂
∂ t

− β2 j

2
∂ 2

∂ t2 +
ω0

c
∆n j(t)

]

, (8.11)

whereF̂j is defined as

F̂j(z, t) = exp(−iβ0 jz+ iω0t)
∫ ∞

0

dω√
2π

i
(2ωµ j(ω)

c

) 1
2

f̂ j(z,ω)exp(−iωt), (8.12)
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andK j is the complex wavenumber for the slowly varying envelope.∆n j can explicitly depend on time, if the

perturbation is much slower than the optical-frequency oscillation so that an adiabatic approximation can be

made, such as in an electro-optic modulator.

We now define the two-photon probability amplitudes as

ψ12(z, t,z
′, t ′) = 〈0|Â1(z, t)Â2(z

′, t ′)|Ψ〉, (8.13)

ψ11(z, t,z
′, t ′) =

1√
2
〈0|Â1(z, t)Â1(z

′, t ′)|Ψ〉, (8.14)

ψ22(z, t,z
′, t ′) =

1√
2
〈0|Â2(z, t)Â2(z

′, t ′)|Ψ〉. (8.15)

The physical significance of each amplitudeψ jk is that its magnitude squared gives the probability density,

Pjk, of coincidentally measuring one photon in modej at (z, t) and another photon in modek at (z′, t ′),

Pjk(z, t,z
′, t ′) = |ψ jk(z, t,z

′, t ′)|2. (8.16)

Temporal entanglement is defined as the irreducibility of|ψ12|2 into a product of one-photon amplitudes in the

form of a(t)b(t ′). This means that the probability of detecting a photon in mode 1 at timet is correlated to the

probability of detecting a photon in mode 2 att ′. The most popular ways of generating entangled photons are

spontaneous parametric down conversion [18] and four-wavemixing [19], where the wave mixing geometry

and the spatiotemporal profile of the pump beam determine theinitial ψ12.

To obtain the evolution equations for the two-photon amplitudeψ12(z, t,z′, t ′) in the Schr̈odinger picture,

we employ the same trick as in Ref. [2]. First we multiply Eq. (8.9) withÂ2(z′, t ′) and Eq. (8.10) witĥA1(z, t)

to produce two equations,

∂
∂ z

Â1(z, t)Â2(z
′, t ′) = iK1

(

t, i
∂
∂ t

)

Â1(z, t)Â2(z
′, t ′)+ F̂1Â2, (8.17)

∂
∂ z′

Â1(z, t)Â2(z
′, t ′) = iK2

(

t ′, i
∂

∂ t ′

)

Â1(z, t)Â2(z
′, t ′)+ F̂2Â1. (8.18)

Using the definition ofψ12 in Eq. (8.13) and assuming that the thermal reservoirs are inthe vacuum state so

that the Langevin operators evaluate to zero when applied tothe wavefunction [20], a pair of equations in

terms ofψ12 are derived,

∂
∂ z

ψ12(z, t,z
′, t ′) = iK1

(

t, i
∂
∂ t

)

ψ12(z, t,z
′, t ′), (8.19)

∂
∂ z′

ψ12(z, t,z
′, t ′) = iK2

(

t ′, i
∂

∂ t ′

)

ψ12(z, t,z
′, t ′). (8.20)

Equations (8.19) and (8.20) are the temporal version of the STS equations [2], including the effects of loss,
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dispersion and phase modulation. They can also be written inthe frequency domain as

φ12(z,Ω,z′,Ω′) =
∫ ∞

−∞
dt
∫ ∞

−∞
dt ′ ψ12(z, t,z

′, t ′)×

exp(iΩt + iΩ′t ′), (8.21)

∂
∂ z

φ12(z,Ω,z′,Ω′) = iK1

(1
i

∂
∂Ω

,Ω
)

φ12(z,Ω,z′,Ω′), (8.22)

∂
∂ z′

φ12(z,Ω,z′,Ω′) = iK2

(1
i

∂
∂Ω′ ,Ω

′
)

φ12(z,Ω,z′,Ω′). (8.23)

For entangled photons, becauseψ12 or φ12 cannot be separated into a product of one-photon amplitudes,

distortions experienced in one arm can coherently add to thedistortions experienced in the other arm, leading

to various nonlocal quantum effects.

For example, considering group-velocity dispersion only,the outputφ12 is given by

φ12(z,Ω,z′,Ω′) = exp
(

iβ11Ωz+ iβ12Ω′z′ +
iβ21

2
Ω2z+

iβ22

2
Ω′2z′

)

φ12(0,Ω,0,Ω′). (8.24)

If the photons are initially entangled with negative frequency correlation,φ12(0,Ω,0,Ω′) can be approximated

by φ(Ω)δ (Ω+Ω′). Ignoring the unimportant linear spectral phase, the output is

φ12(z,Ω,z′,Ω′) = exp
[ iΩ2

2
(β21z+β22z′)

]

φ(Ω)δ (Ω+Ω′). (8.25)

Hence ifβ21z = −β22z′, the dispersion effects in both arms can nonlocally cancel each other, as originally

discovered by Franson [5].

8.3 Quantum temporal imaging

In the Schr̈odinger picture, the two-photon amplitude evolves under temporal effects. Since the entanglement

properties of the photons are contained in the two-photon amplitude, the Schr̈odinger picture allows one to

use the temporal effects to engineer the entanglement.

First, consider the evolution of the two-photon amplitude when one of the modes, say mode 1, is subject

to group-velocity dispersion,

∂ψ12

∂ z
= −β11

∂ψ12

∂ t
− iβ21

2
∂ 2ψ12

∂ t2 , (8.26)

ψ12(L, t,z′, t ′) =

∫ ∞

−∞
dτ b1(t − τ)ψ12(0,τ,z′, t ′), (8.27)

b1(t − τ) =
( i

2πβ21L

) 1
2

exp
[−i(t −β11L− τ)2

2β21L

]

. (8.28)

Group-velocity dispersion is well known to be analogous to Fresnel diffraction.
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Next, consider a quadratic temporal modulation of refractive index imposed on mode 1 by a short or

traveling-wave electro-optic modulator,

∂ψ12

∂ z
=

ik0∆n2(t − t0)2

2
ψ12, (8.29)

ψ12(l, t,z
′, t ′) = q(t)ψ12(0, t,z′, t ′), (8.30)

q(t) = exp
[ ik0∆n2l

2
(t − t0)

2
]

. (8.31)

Quadratic temporal phase modulation is analogous to a lens.∆n2 is assumed to be a constant, andt0 is the

time delay of the modulation. Kerr effect by a copropagatingclassical pulse would also suffice.

Two dispersive elements with a quadratic phase modulator inbetween form a temporal imaging system,

which has been well studied in the classical domain [21]. Suppose that the photon in mode 1 propagates

through the first dispersive element, with an effective dispersion coefficientβ21 and effective lengthL, then

passes through a time lens with refractive index modulation∆n2(t − t0)2/2, and finally propagates through

the second dispersive element, with an effective dispersion coefficientβ ′
21 and effective lengthL′. The output

two-photon amplitude can be expressed in terms of the input as

ψ12(z, t,z
′, t ′) =

∫ ∞

−∞
dτ
∫ ∞

−∞
dτ ′ b′1(t − τ ′)q(τ ′)b1(τ ′− τ)ψ12(0,τ,z′, t ′), (8.32)

b′1(t − τ ′) =
( i

2πβ ′
21L′

) 1
2

exp
[−i(t −β ′

11L′− τ ′)2

2β ′
21L′

]

. (8.33)

When the “lens law” for the time domain is satisfied,

1
β21L

+
1

β ′
21L′ = k0∆n2l, (8.34)

the impulse response of the system becomes

h(t,τ) =
∫ ∞

−∞
dτ ′ b′1(t − τ ′)q(τ ′)b1(τ ′− τ) (8.35)

=
i

2π
√

β21Lβ ′
21L′ exp

[−i(t −β ′
11L′)2

2β ′
21L′

]

×

exp
[−i(τ +β11L)2

2β21L

]

∫ ∞

−∞
dτ ′ P(

τ ′

Ta
)×

exp
[

i
( t −β ′

11L′

β ′
21L′ +

τ +β11L
β21L

− k0∆n2lt0
)

τ ′
]

, (8.36)

whereP(τ ′/Ta) is the normalized temporal aperture function of the time lens that can be used to describe

any deviation of the actual temporal phase modulation from the ideal quadratic profile, such as truncation or
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higher-order phase modulation, andTa is the aperture width. If

Ta >>
β2L
T0

, (8.37)

whereT0 is the smallest feature size ofψ12 along thet axis, the integral in Eq. (8.36) can be approximated by

a delta function. We then arrive at the input-output relation for the two-photon amplitude,

ψ12(z, t,z
′, t ′) =

1√
M

ψ12(0,
t − td

M
,z′, t ′), (8.38)

td = β ′
11L′ +Mβ11L+(1−M)t0, (8.39)

M = −β ′
21L′

β21L
, (8.40)

where an unimportant quadratic phase factor is omitted,td is the time delay of the system, andM is the

magnification, which can be positive or negative depending on the signs ofβ2 andβ ′
2.

Figure 8.1: Two-dimensional sketches of the two-photon probability amplitude before and after one of the
photons is time-reversed. Uncertainty in arrival time difference is transformed to uncertainty in mean arrival
time.

The most interesting case is whenM = −1, and one of the photons is time-reversed. If the two photons

are initially entangled with positive time correlation,ψ12 can be written as

ψ12(0, t,z′, t ′) = a(t)b(t − t ′), (8.41)

whereb is assumed to be much sharper thana. After photon 1 has passed through the temporal imaging

system withM = −1,

ψ12(z, t,z
′, t ′) = a(td − t)b(td − t − t ′). (8.42)

The photons hence become anticorrelated in time. See Fig. 8.1 for an illustration of this process. Since

most conventional two-photon sources generate positive time correlation, but negative time correlation is
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desirable for many applications, one can use the temporal imaging system to convert the former to the latter.

In particular, using the aforementioned technique for the specific application of clock synchronization, the

subclassical uncertainty of arrival time difference,(t− t ′)/2, can be converted to a subclassical uncertainty of

mean arrival time,(t +t ′)/2, leading to a quantum enhancement of clock synchronization accuracy by a factor

of
√

2 over the classical limit. In practice, the clock can be synchronized with the electro-optic modulator, so

that the mean arrival time is controlled byt0 and thus the clock. The proposed setup is drawn in Fig. 8.2.

Figure 8.2: A quantum temporal imaging system for quantum-enhanced clock synchronization.

The fidelity of time reversal is limited by parasitic effects, such as higher-order dispersion and phase

modulation, and the temporal apertureTa, which adds a factor∼ β ′
21L′/Ta to the width ofψ along thet axis

and increases the overall uncertainty of the mean arrival time. The ultimate limit, apart from instrumental

ones, is set by the failure of the slowly varying envelope approximation, which only concerns ultrashort

pulses with few optical cycles.

Besides the above application, one can also convert negative time correlation, which can be generated by

ultrashort pulses for improved efficiency [11, 13, 22], to positive time correlation. As evident from Eq. (8.38),

any desired correlation can actually be imposed on already entangled photons, by multiplying the original

correlation with a factor of 1/M.

As group-velocity dispersion and temporal phase modulation play analogous roles in the time domain to

diffraction and lenses, one can use Fourier optics [23], temporal imaging [21], and quantum imaging [24]

techniques to design more complex quantum temporal imagingsystems.
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8.4 Two photons in two linearly coupled modes

Suppose that the two modes are now coupled to each other, via,for example, a beam splitter or a fiber coupler.

Equations (8.9) and (8.10) become coupled-mode equations,

( ∂
∂ z

− iK1

)

Â1 = iκ(z)Â2 + F̂1, (8.43)

( ∂
∂ z′

− iK′
2

)

Â′
2 = iκ∗(z′)Â′

1 + F̂ ′
2, (8.44)

whereκ is the coupling coefficient, and for simplicity the couplingis assumed to be codirectional. The

primes denote the evaluations of the functions at(z′, t ′). Any phase mismatch can be incorporated intoκ as a

z-dependent phase.

Procedures similar to those in Sec. 8.2 produce four coupledequations forψ11, ψ22, andψ12,

( ∂
∂ z

− iK1

)√
2ψ11(z, t,z

′, t ′) = iκψ12(z
′, t ′,z, t), (8.45)

( ∂
∂ z′

− iK′
2

)√
2ψ22(z, t,z

′, t ′) = iκ∗′ψ12(z
′, t ′,z, t), (8.46)

( ∂
∂ z

− iK1

)

ψ12(z, t,z
′, t ′) = iκ

√
2ψ22(z, t,z

′, t ′), (8.47)

( ∂
∂ z′

− iK′
2

)

ψ12(z, t,z
′, t ′) = iκ∗′√2ψ11(z, t,z

′, t ′). (8.48)

Any pair of Eqs. (8.46) and (8.47) or Eqs. (8.45) and (8.48) can be combined to yield a single equation for

ψ12,

( ∂
∂ z

− iK1

)( ∂
∂ z′

− iK′
2

)

ψ12(z, t,z
′, t ′) = −κ(z)κ∗(z′)ψ12(z

′, t ′,z, t). (8.49)

Equation (8.49) allows one to calculate the coupled-mode propagation of two photons in terms ofψ12 only,

given the initial conditions ofψ12, ψ11, andψ22. ψ11 andψ22 can then be obtained from Eqs. (8.47) and

(8.48) afterψ12 is calculated.

To obtain some insight into Eq. (8.49), consider only constant mode coupling, so that Eq. (8.49) becomes

∂
∂ z

∂
∂ z′

ψ12(z, t,z
′, t ′) = −κ2ψ12(z

′, t ′,z, t). (8.50)

The solution is

ψ12(z, t,z
′, t ′) = cos(κz)cos(κz′)ψ12(0, t,0, t ′)−sin(κz)sin(κz′)ψ12(0, t ′,0, t)+

isin(κz)cos(κz′)
√

2ψ22(0, t,0, t ′)+ icos(κz)sin(κz′)
√

2ψ11(0, t,0, t ′). (8.51)
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At the coupler output,z = z′ = L,

ψ12(L, t,L, t ′) = T ψ12(0, t,0, t ′)−Rψ12(0, t ′,0, t)+ i
√

2T Rψ22(0, t,0, t ′)+ i
√

2T Rψ11(0, t,0, t ′). (8.52)

whereT = cos2(κL) andR = 1−T = sin2(κL). If we have one photon in each mode initially, only the initial

condition ofψ12 is nonzero, and

ψ12(L, t,L, t ′) = T ψ12(0, t,0, t ′)−Rψ12(0, t ′,0, t). (8.53)

From Eq. (8.53), one can see that the output amplitude is the destructive interference between the original

amplitude and its replica but with the two photons exchanging their positions in time. In particular, for a

50%-50% coupler,T = R = 1/2, complete destructive interference is produced if the twoinput photons are

temporally indistinguishable. See Fig. 8.3 for a graphicalillustration of the destruction interference. The

introduction of variable distinguishability to photons, in order to produce varying degrees of destructive

interference ofψ12 via a beam splitter and to measure the two-photon coherence time, is the basic principle

of the Hong-Ou-Mandel interferometer [7].

Figure 8.3: The quantum destructive interference via a coupler is determined by the overlap (dark grey area)
of the two-photon amplitudeψ12(0, t,0, t ′) with its mirror image with respect to thet + t ′ axis,ψ12(0, t ′,0, t).
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8.5 Two photons in many modes

If the two photons are optically coupled to more than two modes, such as four modes for two polarizations

in each of the two propagation directions, orN modes in an array ofN fibers coupled to each other, one in

general needsN(N +1)/2 two-photon amplitudes to describe the system. The propagation of the amplitudes

in many modes is described by the following,

( ∂
∂ z

− iK j

)
√

1+δ jkψ jk(z, t,z
′, t ′) = i ∑

l 6= j

κ jl

√

1+δlkψlk(z, t,z
′, t ′), (8.54)

where

ψ jk(z, t,z
′, t ′) = ψk j(z

′, t ′,z, t), κ jk = κ∗
k j. (8.55)

Further simplications can also be made if any of the couplingterms is zero.

For example, let there be four modes; mode 1 corresponds to arm 1 with x polarization, mode 2 corre-

sponds to arm 2 withx polarization, mode 3 corresponds to arm 1 withy polarization, and mode 4 corresponds

to arm 2 withy polarization. If only the same polarizations are coupled, the two-photon equations are

















∂
∂z −iκx 0 0

−iκx
∂
∂z 0 0

0 0 ∂
∂z −iκy

0 0 −iκy
∂
∂z

































√
2ψ11 ψ12 ψ13 ψ14

ψ21
√

2ψ22 ψ23 ψ24

ψ31 ψ32
√

2ψ33 ψ34

ψ41 ψ42 ψ43
√

2ψ44

















= 0. (8.56)

The following solution for the orthogonally polarized amplitudes can be obtained:

















ψ13(L, t,L, t ′)

ψ24(L, t,L, t ′)

ψ14(L, t,L, t ′)

ψ23(L, t,L, t ′)

















=

















√

TxTy −
√

RxRy i
√

TxRy i
√

TyRx

−
√

RxRy
√

TxTy i
√

TyRx i
√

TxRy

i
√

TxRy i
√

TyRx
√

TxTy −
√

RxRy

i
√

TyRx i
√

TxRy −
√

RxRy
√

TxTy

































ψ13(0, t,0, t ′)

ψ24(0, t,0, t ′)

ψ14(0, t,0, t ′)

ψ23(0, t,0, t ′)

















, (8.57)

whereTx,y = cos2(κx,yL) andRx,y = 1−Tx,y. In particular, if only the initial condition ofψ14 is nonzero,

ψ13(L, t,L, t ′) = i
√

TxRyψ14(0, t,0, t ′), (8.58)

ψ24(L, t,L, t ′) = i
√

TyRxψ14(0, t,0, t ′), (8.59)

ψ14(L, t,L, t ′) =
√

TxTyψ14(0, t,0, t ′), (8.60)

ψ23(L, t,L, t ′) = −
√

RxRyψ14(0, t,0, t ′). (8.61)

The singlet state for orthogonally polarized photons is produced ifTx = Ty = 1/2 [25].
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8.6 Four-wave mixing

As envisioned by Lukinet al., the third-order nonlinear effects among two photons can become significant in

a coherently prepared atomic gas [4]. The coupled-mode equations (8.43) and (8.44) then become nonlinear,

( ∂
∂ z

− iK1

)

Â1 = iκÂ2 + iγÂ†
1Â1Â1 + iηÂ†

2Â2Â1 + iχÂ2Â2Â†
1 + F̂1, (8.62)

( ∂
∂ z′

− iK′
2

)

Â′
2 = iκ∗′Â′

1 + iγÂ′†
2Â′

2Â′
2 + iηÂ′†

1Â′
1Â′

2 + iχ∗′Â′
1Â′

1Â′†
2 + F̂ ′

2, (8.63)

whereγ is the self-phase modulation coefficient,η is the cross-phase modulation coefficient, andχ is the

four-wave mixing coefficient. If we define equal-space two-photon amplitudes as the following,

ψ jk(z, t, t
′) = ψ jk(z, t,z, t

′), (8.64)

threelinear coupled-mode equations for the two-photon amplitudes can be derived,

( ∂
∂ z

− iK1− iK′
1

)√
2ψ11 = iκψ21+ iγδ (t − t ′)

√
2ψ11+ iχδ (t − t ′)

√
2ψ22, (8.65)

( ∂
∂ z

− iK2− iK′
2

)√
2ψ22 = iκ∗ψ21+ iγδ (t − t ′)

√
2ψ22+ iχ∗δ (t − t ′)

√
2ψ11, (8.66)

( ∂
∂ z

− iK1− iK′
2

)

ψ12 = iκ∗√2ψ11+ iκ
√

2ψ22+ iηδ (t − t ′)ψ12. (8.67)

The advantage of the Schrödinger picture is most evident here; whereas in the Heisenberg picture one needs to

solve nonlinear coupled-mode operator equations such as Eqs. (8.62) and (8.63), in the Schrödinger picture,

one only needs to solve linear equations such as Eqs. (8.65) to (8.67), which are similar to the configuration-

space model applied to the quantum theory of solitons [1, 26].

The delta functionδ (t − t ′) couples the two subspaces ofψ12(z, t, t ′), so entanglement can emerge from

unentangled photons [4]. To see this effect, assume that we only have four-wave mixing, so that Eq. (8.67)

becomes

∂
∂ z

ψ12(z, t, t
′) = iηδ (t − t ′)ψ12(z, t, t

′), (8.68)

which yields

ψ12(L, t, t ′) = exp[iηLδ (t − t ′)]ψ12(0, t, t ′). (8.69)

If the nonlinearity has a finite bandwidth∆ω, the delta function in time should be replaced by a finite-
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bandwidth function, for example a sinc function,

ψ12(L, t, t ′) = exp
{ iηL

π(t − t ′)
sin
[∆ω

2
(t − t ′)

]}

ψ12(0, t, t ′). (8.70)

Eq. (8.70) is the exact solution of the two-photon amplitudeunder the cross-phase modulation effect, while

Eq. (7) in Ref. [4], presumably derived in the Heisenberg picture, is only correct in the first-order. As

ψ12(L, t, t ′) cannot be written as a product of one-photon amplitudes evenif the two photons are initially

unentangled, entanglement is generated. The physical interpretation is that the two input photons act as pump

photons to the spontaneous four-wave mixing process and areannihilated to generate two new entangled

photons.

Unlike temporal imaging techniques, which can only manipulate the two-photon amplitude along the

horizontal axist or the vertical axist ′, cross-phase modulation allows some manipulation of the two-photon

amplitude along the diagonal time-difference axis,t − t ′. Unfortunately, cross-phase modulation by itself

cannot generate any temporal correlation, as it only imposes a phase on the two-photon temporal amplitude.

In order to have more control along thet− t ′ axis, one can combine the effects of cross-phase modulationand

dispersion, as shown in the following section.

8.7 Two-photon vector solitons

In this section we study a toy example, namely, a soliton formed by two photons in orthogonal polarizations

exerting cross-phase modulation on each other [17]. Although similar studies of two photons in the same

mode under the self-phase modulation effect have been performed in Refs. [8], cross-phase modulation offers

the distinct possibility of entangling two photons in different modes.

Consider the case in which two polarizations have the same group-velocity dispersion, so thatβ21 = β22 =

β2, and there is one photon in each polarization. The evolutionequation forψ12(z, t, t ′) is

( ∂
∂ z

+β11
∂
∂ t

+β12
∂

∂ t ′

)

ψ12 =
[

− iβ2

2

( ∂ 2

∂ t2 +
∂ 2

∂ t ′2

)

+ iηδ (t − t ′)
]

ψ12. (8.71)

Defining time coordinates in a moving frame,

τ = t − β̄1z, τ ′ = t ′− β̄1z, (8.72)

β̄1 =
β11+β12

2
, ∆ =

β11−β12

2
, (8.73)

we obtain the following equation forψ12(z,τ,τ ′),

( ∂
∂ z

+∆
∂

∂τ
−∆

∂
∂τ ′
)

ψ12 =
[

− iβ2

2

( ∂ 2

∂τ2 +
∂ 2

∂τ ′2
)

+ iηδ (τ − τ ′)
]

ψ12. (8.74)
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Equation (8.74) is a simple linear Schrödinger equation, describing a two-dimensional “wavefunction” ψ12(z,τ,τ ′)

in a moving frame subject to a delta potential. To solve forψ12 explicitly, we define new time coordinates,

τ+ =
τ + τ ′

2
, τ− =

τ − τ ′

2
, (8.75)

Eq. (8.74) then becomes

( ∂
∂ z

+∆
∂

∂τ−

)

ψ12 =
[

− iβ2

4

( ∂ 2

∂τ2
+

+
∂ 2

∂τ2
−

)

+
iη
2

δ (τ−)
]

ψ12. (8.76)

As evident from Eq. (8.76), the cross-phase modulation effect only offers confinement ofψ12 along the time

difference (τ−) axis, but not the mean arrival time (τ+) axis.

The only bound-state solution ofψ12 is

ψ12(z,τ+,τ−) = exp
[

− i
(β2

4
S2 +

∆2

β2

)

z
]

exp
(

−S|τ−|+ i
2∆
β2

τ−
)

×
∫ ∞

−∞

dΩ
2π

φ(Ω)exp
(

− iΩτ+ +
iβ2

4
Ω2z
)

. (8.77)

The delta potential enforcesS to take on the following value,

S = − η
β2

, (8.78)

whereη andβ2 must have opposite signs. The final solution ofψ12 in the frame ofτ andτ ′ is therefore

ψ12(z,τ,τ ′) = exp
[

− i
(η2/4+∆2

β2

)

z
]

exp
[

−
∣

∣

∣

η
2β2

∣

∣

∣|τ − τ ′|+ i
∆
β2

(τ − τ ′)
]

×
∫ ∞

−∞

dΩ
2π

φ(Ω)exp
[

− iΩ(
τ + τ ′

2
)+

iβ2

4
Ω2z
]

. (8.79)

The two-photon coherence time of a vector soliton is fixed, but the average arrival time is still subject to

dispersive spreading and becomes increasingly uncertain as the two photons propagate. See Fig. 8.4 for an

illustration. Hence, a two-photon vector soliton generates temporal entanglement with positive time corre-

lation as it propagates. Similar to the idea of soliton momentum squeezing [27], one can also adiabatically

changeη or β2 along the propagation axis to control independently the two-photon coherence time.

Notice that the center frequencies of the two photons are shifted slightly, by an amount of±∆/β2, to

compensate for their group-velocity mismatch, so that theycan copropagate at the average group velocity.

This is commonly known as soliton trapping [17].

If the nonlinearity has a finite bandwidth, then the potential becomes a finite-bandwidth function like the

one in Eq. (8.70), and multiple bound-state solutions can beobtained via conventional techniques of solving

the linear Schr̈odinger equation.
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Figure 8.4: Quantum dispersive spreading of mean arrival time of a two-photon vector soliton. The cross-
phase modulation effect only preserves the two-photon coherence time, giving rise to temporal entanglement
with positive time correlation. One can also manipulate thecoherence time independently by adiabatically
changing the nonlinear coefficient along the propagation axis.

8.8 Conclusion

We have derived the general equations that govern the temporal evolution of two-photon probability ampli-

tudes in different coupled optical modes. The formalism inspires the concept of quantum temporal imaging,

which can manipulate the temporal entanglement of photons via conventional imaging techniques. The the-

ory also offers an intuitive interpretation of two-photon entanglement evolution, as demonstrated by the exact

solution of a two-photon vector soliton. To conclude, we expect the proposed formalism to be useful for

many quantum signal processing and communication applications.
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(2005).

[15] B. Huttner and S. M. Barnett, Phys. Rev. A46, 4306 (1992).

[16] R. Matloob, R. Loudon, S. M. Barnett, and J. Jeffers, Phys. Rev. A52, 4823 (1995).

[17] G. P. Agrawal,Nonlinear Fiber Optics (Academic Press, San Diego, 2001).

[18] M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, Phys. Rev. A50, 5122 (1994).



83

[19] M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, IEEE Photon. Technol. Lett.14, 983 (2002).

[20] J. Jeffers and S. M. Barnett, Phys. Rev. A47, 3291 (1993).

[21] B. H. Kolner and M. Nazarathy, Opt. Lett.14, 630 (1989); B. H. Kolner, IEEE J. Quantum Electron.30,

1951 (1994).

[22] V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, Phys. Rev. A66, 043813 (2002).

[23] J. W. Goodman,Introduction to Fourier Optics (McGraw-Hill, Boston, 1996).

[24] A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, and M. C.Teich, J. Opt. Soc. Am. B19, 1174 (2002).

[25] Z. Y. Ou, C. K. Hong, and L. Mandel, Opt. Commun.63, 118 (1987).

[26] P. L. Hagelstein, Phys. Rev. A54, 2426 (1996).

[27] J. M. Fini and P. L. Hagelstein, Phys. Rev. A66, 033818 (2002).



84

Chapter 9

Quantum temporal correlations and
entanglement via adiabatic control of
vector solitons

9.1 Introduction

If an optical pulse consists ofN independent photons, then the uncertainty in the pulse center position is

the pulse width divided by
√

N, the so-called standard quantum limit [1]. The ultimate limit permissible

by quantum mechanics, however, is determined by the Heisenberg uncertainty principle and is smaller than

the standard quantum limit by another factor of
√

N, resulting in a quantum-enhanced accuracy useful for

positioning and clock synchronization applications [2]. To do better than the standard quantum limit, a

multiphoton state with positive frequency correlations and, equivalently, negative time correlations is needed

[2]. Consequently, significant theoretical [3, 4] and experimental [5] efforts have been made to create such

a nonclassical multiphoton state. All previous efforts were based on the phenomenon of spontaneous photon

pair generation in parametric processes, limitingN to 2 only. The resultant enhancement can only be regarded

as a proof of concept and is too small to be useful, considering that a large number of uncorrelated photons

can easily be obtained, with a standard quantum limit ordersof magnitude lower than the ultimate limit

achievable by two photons. It is hence much more desirable inpractice to be able to enhance the position

accuracy of a large number of photons. In this chapter, for the first time to the author’s knowledge, a scheme

that produces a multiphoton state with positive frequency correlations among an arbitrary number of photons

is proposed, thus enabling quantum position accuracy enhancement for macroscopic pulses as well. The

scheme set forth therefore represents a major step forward towards the use of quantum enhancement in future

positioning and clock synchronization applications.

The proposed scheme exploits the quantum properties of a vector soliton, in which photons in different

optical modes are bound together by the combined effects of group-velocity dispersion, self-phase modula-

tion, and cross-phase modulation [6]. A quantum analysis shows that the mean position of the photons in
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a vector soliton is insensitive to the optical nonlinearities and only subject to quantum dispersive spreading,

while the separations among the photons are controlled by the balance between dispersion and nonlineari-

ties. These properties are in fact very similar to those of scalar solitons [7, 8], so the idea of adiabatically

compressing scalar solitons for momentum squeezing [9] canbe similarly applied to vector solitons. The

quantum dispersive spreading of the pulse center can simplybe compensated by classical dispersion manage-

ment, while the uncertainties in the relative frequencies among the photons can be reduced by adiabatically

increasing the dispersion or decreasing the nonlinearities, resulting in a multiphoton state with a transform-

limited mean-position uncertainty and positive frequencycorrelations. Given the past success of experiments

on scalar quantum solitons [10] and vector solitons [11], the scheme set forth should be realizable with cur-

rent technology. The formalism should apply to spatial vector solitons as well, so that the position accuracy

of an optical beam can be enhanced [12]. Moreover, the proposed scheme is capable of creating Einstein-

Podolsky-Rosen (EPR) entanglement [13] among the positions of the pulses in a vector soliton, suggesting

that the vector soliton effect, together with quantum temporal imaging techniques [4], may be used for general

continuous-variable quantum information processing [14].

For simplicity, only vector solitons with two optical modes, such as optical fiber solitons with two polar-

izations, are analytically investigated in this chapter. The results for two-mode vector solitons are represen-

tative and can be naturally extended to multimode vector solitons, such as those studied in Refs. [15].

9.2 Theory

9.2.1 Formalism

Two-mode vector solitons are classically described by the following coupled nonlinear Schrödinger equations

[6],

i
∂U
∂ t

= −b
∂ 2U
∂ z2 +2c(|U |2 +B|V |2)U, (9.1)

i
∂V
∂ t

= −b
∂ 2V
∂ z2 +2c(|V |2 +B|U |2)V, (9.2)

whereU andV are complex envelopes of the two polarizations, assumed to have identical group velocities and

group-velocity dispersion,t is the propagation time,z is the longitudinal position coordinate in the moving

frame of the pulses,b is the group-velocity dispersion coefficient,c is the self-phase modulation coefficient,

andBc is the cross-phase modulation coefficient. For example,B = 2/3 for linear polarizations in a linearly

birefringent fiber [16],B = 2 for circular polarizations in an isotropic fiber [17], andB = 1 describes Manakov

solitons [18], realizable in an elliptically birefringentfiber [16]. For solitons to exist, it is required thatbc < 0.



86

Equations (9.1) and (9.2) can be quantized using the Hamiltonian below,

Ĥ = h̄
∫

dz

[

b
(∂Û†

∂ z
∂Û
∂ z

+
∂V̂ †

∂ z
∂V̂
∂ z

)

+ c
(

Û†Û†ÛÛ +V̂ †V̂ †V̂V̂ +2BÛ†V̂ †ÛV̂
)

]

, (9.3)

whereÛ andV̂ are photon annihilation operators of the two polarizationsand the daggers denote the corre-

sponding creation operators. The Heisenberg equations of motion derived from Eq. (9.3) are analyzed using

perturbative techniques by Randet al. [19], who study the specific case of Manakov solitons, and by Lantz

et al. [20] and Leeet al. [21], who numerically investigate the photon number entanglement in higher-order

vector solitons. As opposed to these previous studies, in this chapter the exact quantum vector soliton solution

is derived in the Schrödinger picture, in the spirit of the scalar soliton analyses in Refs. [7, 8].

Since the Hamiltonian conserves photon number in each mode and the mean momentum, one can con-

struct simultaneous Fock and momentum eigenstates with theBethe ansatz [7, 22],

|n,m, p〉 =
1√

n!m!

∫

dnx dmy fnmp(x1, ...,xn,y1, ...,ym)Û†(x1)...Û
†(xn)V̂

†(y1)...V̂
†(ym)|0〉, (9.4)

wheren andm are the photon numbers in the two polarizations andp is the mean momentum. Using the

Schr̈odinger equationE|Ψ〉 = Ĥ|Ψ〉, one obtains

Enmpfnmp(x1, ...,xn,y1, ...,ym)

= h̄

{

−b∑
j

∂ 2

∂x2
j

−b∑
k

∂ 2

∂y2
k

+2c
[

∑
i< j

δ (x j − xi)+ ∑
l<k

δ (yk− yl )+B∑
j,k

δ (x j − yk)
]

}

×

fnmp(x1, ...,xn,y1, ...,ym). (9.5)

The soliton solution of Eq. (9.5) is

fnmp= Cnmexp

[

ip
(

∑
j

x j +∑
k

yk

)

+
c

2b

(

∑
i< j

|x j − xi |+ ∑
l<k

|yk− yl |+B∑
j,k

|x j − yk|
)

]

, (9.6)

whereCnm is a normalization constant. The energy can be calculated bysubstituting Eq. (9.6) into Eq. (9.5)

and is given by

Enmp= h̄bN p2− h̄c2

12b

[

n(n2−1)+m(m2−1)+3B2nm(n+m)
]

, (9.7)

whereN = n + m. A physical state should contain a distribution of momentumstates, say a Gaussian, such
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that the time-dependent multiphoton probability amplitude is now given by

fnm =
∫

d p
1

(2π∆p2)
1
4

exp
(

− p2

4∆p2 − ibN p2t
)

fnmp (9.8)

= Cnm(8π)
1
4

( ∆p
1+4ibN∆p2t

) 1
2

exp

[

− ∆p2

1+4ibN∆p2t

(

∑
j

x j +∑
k

yk

)2
]

× (9.9)

exp

[

c
2b

(

∑
i< j

|x j − xi |+ ∑
l<k

|yk− yl |+B∑
j,k

|x j − yk|
)

]

, (9.10)

where∆p is determined by initial conditions and a constant energy term that does not affect the position

and momentum properties of a Fock state is omitted. Althougha more realistic soliton state should have

a superposition of Fock states resembling a coherent state [7], the Fock components of a coherent state for

N >> 1 have photon numbers very close to the mean value, so a Fock state should be able to adequately

represent the position and momentum properties of a coherent-state soliton.

9.2.2 Adiabatic soliton expansion

The multiphoton amplitudefnm consists of two components: a dispersive pulse-center component given

by Eq. (9.9) that governs the quantum dispersion of the mean photon position 1/N(∑ j x j + ∑k yk), and a

bound-state component given by Eq. (9.10) that fixes the distances among the photons via the attractive Kerr

potentials. Scalar solitons possess the same properties [7, 8], and it can be argued that all vector solitons with

any number of modes under the effects of group-velocity dispersion, self-phase modulation, and cross-phase

modulation must also be comprised of such two components. Itfollows that the momentum-space probability

amplitude, defined as theN-dimensional Fourier transform offnm, also consists of a mean momentum com-

ponent and a bound-state component that governs the relative momenta among the photons. If one increases

b or reducesc adiabatically, the multiphoton amplitude would remain in the same form, but with increased

uncertainties in the relative distances as well as reduced uncertainties in the relative momenta. More crucially,

the mean momentum uncertainty remains unaffected, leadingto a multiphoton state with positive momentum

correlations. The adiabatic approximation remains valid if the change happens over a propagation time scale

T >> h̄/|E(t = T )−E(t = 0)|, which is on the order of the initial soliton period divided by N. As optical

fiber solitons can typically propagate for a few soliton periods before loss becomes a factor, the desired adi-

abatic expansion should be realizable with current technology. In the following it is assumed for simplicity

that onlyc is adiabatically varied. Mathematically, in the limit of vanishingc, the bound-state component

becomes relatively flat, andfnm becomes solely governed by the pulse-center component,

fnm ∝ exp

[

− ∆p2

1+4ibN∆p2t

(

∑
j

x j +∑
k

yk

)2
]

. (9.11)
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In the momentum space, as the bandwidth of the relative momenta is reduced and becomes much smaller

than the bandwidth of the mean momentum, the wavefunction interms of momentum eigenstates becomes

|Ψ〉 ∝
∫

d p exp
(

− p2

4∆p2 − ibN p2t
)

|np,mp〉, (9.12)

where|np,mp〉 denotes a momentum eigenstate with momentump andn andm photons in the respective

polarizations. Except for the dispersive phase term, Eq. (9.12) is precisely the desired coincident frequency

state that can achieve the ultimate limit of mean position accuracy [2], as frequency is trivially related to

momentum via the dispersion relation. The same operation ofposition squeezing on a scalar soliton is

previously considered by Fini and Hagelstein, who nonetheless dismiss this possibility due to the detrimental

effect of quantum dispersion [9].

9.2.3 Quantum dispersion compensation

Fortunately, quantum dispersion, like classical dispersion, can be compensated with classical dispersion man-

agement. If the vector soliton propagates in another waveguide with an opposite group-velocity dispersion,

then the dispersive phase term in Eq. (9.8) can be cancelled,thus restoring the minimum uncertainty in the

mean photon position. The complete setup of generating multiphoton states with positive frequency correla-

tions is sketched in Fig. 9.1. To apply the presented scheme to a spatial vector soliton, negative refraction,

which can be achieved in a negative-refractive-index material [23], or a photonic crystal [24], is required to

compensate for the quantum diffraction instead.

Dispersion CompensatorNonlinear Waveguide

Pulses with
Coincident Frequencies

...

Adiabatically Increasing Dispersion or
Decreasing Nonlinearity

Figure 9.1: Proposed setup of generating multiphoton states with quantum-enhanced mean position accuracy
via adiabatic control of vector solitons. A pulse is coupledinto a vector soliton in a multimode nonlinear
waveguide, in which dispersion adiabatically increases orthe Kerr nonlinearity adiabatically decreases. A
second waveguide with an opposite dispersion is used for compensating the quantum dispersive spreading of
the mean position.
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9.3 Temporal correlations among photons

In order to understand how the quantum vector soliton solution corresponds to a classical soliton in typical

experiments and how much adiabatic pulse expansion is needed to reach the ultimate quantum limit, consider

the specific case of a Manakov soliton, whereB = 1. Other vector solitons should have very similar properties

given the similarity of the solutions. If the photon position variables are re-indexed in the following new

notations,

{z1, ...,zN} = {x1, ...,xn,y1, ...,ym}, (9.13)

the multiphoton amplitude in Eqs. (9.9) and (9.10) becomes

fnm = Cnm(8π)1/4
( ∆p

1+4ibN∆p2t

) 1
2

exp

[

− ∆p2

1+4ibN∆p2t

(

∑
j

z j

)2
+

c
2b ∑

i< j
|z j − zi |

]

. (9.14)

Intriguingly, this solution is exactly the same as the scalar soliton solution [7], or in other words, a Man-

akov soliton is quantum-mechanically equivalent to a scalar soliton. This equivalence explains the dis-

covery by Randet al. that the squeezing effect of a Manakov soliton has the same optimum as a scalar

soliton [19]. Moreover,Cnm can now be borrowed from the scalar soliton analysis and is given byCnm =

[(N −1)!|c/b|N−1/(2π)]1/2 [7]. The knowledge ofCnm allows one to calculate the correlations among the

photon positions using standard statistical mechanics techniques. An expression for
〈

∑i< j |z j − zi |
〉

can be

derived, and by symmetry,

〈

|z j − zi |
〉

=
1

N(N −1)

〈

∑
i< j

|z j − zi |
〉

=
∣

∣

∣

2b
Nc

∣

∣

∣
∼W0. (9.15)

As expected, the average absolute distance between any two photons is on the order of the classical soliton

pulse width,W0 ∼ |2b/(Nc)| [7]. Next, assume that the variance of the relative distanceis related to the

square of the average absolute distance by a parameterq,

〈

|z j − zi |2
〉

= q
〈

|z j − zi |
〉2

=
4qb2

N2c2 . (9.16)

While an explicit expression forq is hard to derive,q must only depend onN by dimensional analysis, must

be larger than 1 because
〈

|z j − zi |2
〉

≥
〈

|z j − zi |
〉2

, and is likely to be on the order of unity, as will be shown

later. Eq. (9.16) then gives

〈

|z j − zi |2
〉

=
〈

z2
j

〉

−2
〈

ziz j
〉

+
〈

z2
i

〉

= 2
〈

z2
j

〉

−2
〈

ziz j
〉

, (9.17)

〈

z2
j

〉

−
〈

ziz j
〉

=
2qb2

N2c2 . (9.18)
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Furthermore, the variance of∑ j z j is simply given by

〈

(

∑
j

z j

)2
〉

= N
〈

z2
j

〉

+N(N −1)
〈

ziz j
〉

= ∆z2, (9.19)

∆z2 =
1

4∆p2 +4
(

bN∆pt
)2

. (9.20)

From Eqs. (9.18) and (9.19) the covariances can be obtained explicitly,

〈

z2
j

〉

=
∆z2

N2 +
2q(N −1)b2

N3c2 ,
〈

ziz j
〉

=
∆z2

N2 − 2qb2

N3c2 . (9.21)

A quantum soliton solution best resembles a classical initial condition with independent photons when the

initial covariance is zero,

〈

ziz j
〉

t=0 =
1

4N2∆p2 − 2qb2

N3c2

∣

∣

∣

t=0
= 0, (9.22)

∆p =
∣

∣

∣

√
Nc√
8qb

∣

∣

∣

t=0
∼ 1

2
√

NW0
. (9.23)

Incidentally, the mean momentum uncertainty∆p is at the shot-noise level when the photons are initially

uncorrelated. This justifies the assumption thatq is on the order of unity. An initial condition with inde-

pendent photons would then mostly couple to a soliton state with ∆p given by Eq. (9.23), while coupling to

continuum states should be negligible. Adiabatically increasing|b/c| then makes
〈

ziz j
〉

negative and there-

fore introduces the necessary negative correlations amongthe photon positions. If the ratio between the final

and initial values of|b/c| is γ, for N >> 1 andγ <<
√

N, the pulse bandwidth is reduced by a factor ofγ

according to the classical theory. The accuracy enhancement over the standard quantum limit for the same

reduced bandwidth is hence also given byγ in the regime of moderate expansion. The multiphoton state

becomes that given by Eqs. (9.11) and (9.12) and the ultimatelimit is reached only whenγ >>
√

N.

9.4 Temporal entanglement between optical pulses

As the photons across different optical modes become correlated via the cross-phase modulation effect, en-

tanglement is expected among the pulse positions in a vectorsoliton. To estimate the magnitude of the

entanglement in terms of macroscopic position variables, consider again the case of Manakov solitons. Let

the pulse center coordinates of the respective polarizations beX andY , defined asX = 1/n∑n
j=1 z j and

Y = 1/m∑N
k=m+1 zk. If there is an equal number of photons in each polarization such thatn = m = N/2, The

following statistics forX andY can be calculated using Eqs. (9.21),

〈

(
X +Y

2
)2
〉

=
∆z2

N2 ,

〈

(
X −Y

2
)2
〉

=
2qb2

N3c2 . (9.24)
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Similar to a two-photon vector soliton [4], the mean position of the two pulses is affected by quantum dis-

persion, while the relative distance is bounded by the Kerr effect. For two initially uncorrelated pulses,

Eqs. (9.24) give the same value, but as the vector soliton propagates,∆z grows due to quantum dispersion,

leading to a positive temporal correlation between the two pulses. This correlation, however, does not re-

sult in the EPR paradox, as the joint spectrum in terms of the conjugate momenta with respect toX andY

does not change. If, on the other hand,b andc are adiabatically manipulated, then the nonlocal uncertainty

product
〈

(X −Y )2
〉〈

(PX −PY)2
〉

, wherePX andPY are the conjugate momenta, can remain constant under

the adiabatic approximation while
〈

(X −Y )2
〉

and
〈

(PX −PY)2
〉

are varied, resulting in EPR entanglement.

Combined with quantum temporal imaging techniques, which are able to temporally reverse, compress, and

expand photons in each mode [4], adiabatic vector soliton control potentially provides a powerful way of

fiber-based continuous-variable quantum information processing [14].
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Chapter 10

Beating the spatial standard quantum
limits via adiabatic soliton expansion
and negative refraction

10.1 Introduction

In many optical imaging applications, such as atomic force microscopy [1] and nanoparticle detection [2],

precise measurements of the displacement of an optical beamare required. It is hence important to know

what the fundamental limit on the accuracy of such measurements is placed by the laws of physics, and

how one can approach this limit in an experiment. It is now known that if an optical beam consists ofN

independent photons with wavelengthλ , then the minimum uncertainty in its spatial displacement is on the

order ofλ/
√

N, the so-called standard quantum limit [3]. The ultimate uncertainty permissable by quantum

mechanics, however, is smaller than the standard quantum limit by another factor of
√

N [3]. An experiment

that beats this standard quantum limit with nonclassical multimode light has already been demonstrated [4].

On the other hand, in other optical imaging applications, such as lithography, microscopy, and data storage,

detection of extremely small features of an object is desired. The feature size of an optical intensity pattern

cannot be smaller thanλ , due to the resolution limit [5]. Multiphoton absorption allows detection of smaller

feature sizes, and the minimum feature size of multiphoton absorption using a classical coherent light source

is on the order ofλ/
√

N [6], which can be regarded as the standard quantum limit on the multiphoton

absorption feature size. Nonclassical light sources allowone to do better, and the ultimate limit is smaller

than the standard one by another factor of
√

N [6, 7]. A proof-of-concept experiment of this resolution

enhancement has also been demonstrated [8]. In the time domain, very similar quantum limits on the position

accuracy of an optical pulse can be derived [9]. Given the striking similarities among the spatiotemporal

quantum limits, one expects them to be closely related to each other, yet the formalisms used to described

each of them are vastly different [3, 6, 7, 9], so a more general formalism applicable to all spatiotemporal

domains would greatly facilitate our understanding towards the spatiotemporal quantum enhancement effects.
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In this chapter, we apply the temporal formalism used by Giovannettiet al. [9] to the spatial domain, and

show that the uncertainty in the beam displacement and the spot size of multiphoton absorption are in fact

closely related. Using this newly derived result, we demonstrate how one can generate arbitrary multiphoton

interference patterns with a continuous superposition of coincident momentum states. We further present

an unfortunate result, namely that the multiphoton absorption rate is reduced if the quantum lithography

resolution is enhanced, contrary to popular belief [6]. Finally, we take advantage of the general spatiotemporal

framework to show that the idea of adiabatic soliton expansion, previously proposed to beat the temporal

standard quantum limit [10], can also be used to beat both spatial standard quantum limits and approach the

ultimate limits with an arbitrary number of photons. The useof solitons is an attractive alternative to the more

conventional use of second-order nonlinearity for quantuminformation processing, because the soliton effect

bounds the photons together and allows a much longer interaction length for significant quantum correlations

to develop among the photons.

10.2 Formalism

ConsiderN photons with the same frequencyω and polarization that propagate in thex− z plane. A general

wavefunction that describes such photons is given by [11]

|Ψ〉 =
1√
N!

∫

dk1dk2...dkN φ(k1,k2, ...,kN)|k1,k2, ...,kN〉. (10.1)

where|k1, ...,kN〉 is the momentum eigenstate,k1, ...,kN specify the transverse wave vectors of the photons

along thex axis, andφ(k1, ...,kN) is defined as the multiphoton momentum probability amplitude. The

longitudinial wave vectors are all assumed to be positive. One can also define the corresponding quantities in

real space,

|x1, ...,xN〉 =

∫

dk1√
2π

...
dkN√

2π
exp(−ik1x1− ...− ikNxN)|k1, ...,kN〉, (10.2)

ψ(x1, ...,xN) =
∫

dk1√
2π

...
dkN√

2π
φ(k1, ...,kN)exp(ik1x1 + ...+ ikNxN), (10.3)

|Ψ〉 =
1√
N!

∫

dx1...dxNψ(x1, ...,xN)|x1, ...,xN〉, (10.4)

whereψ(x1, ...,xN) is the multiphoton spatial probability amplitude.φ andψ are subject to normalization

conditions
∫

dk1...dkN|φ |2 =
∫

dx1...dxN|ψ|2 = 1, andφ and ψ must be symmetric under any exchange

of labels due to the bosonic nature of photons. The magnitudesquared ofψ gives the joint probability
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distribution of the positions of the photons,

〈: I(x1)...I(xN) :〉 ∝
1

N!
〈Ψ|Â†(x1)...Â

†(xN)Â(x1)...Â(xN)|Ψ〉 (10.5)

= |ψ(x1, ...,xN)|2, (10.6)

whereÂ(xi) andÂ†(xi) are the spatial annihilation and creation operators, respectively. The statistical inter-

pretation ofψ is valid because we only consider photons that propagate in the positivez direction. The above

definition of a multiphoton state is more general than those used by other authors, in the sense that we allow

photons with arbitrary momenta, compared with the use of only one even spatial mode and one odd mode by

Fabreet al. [3], the use of only two discrete momentum states by Botoet al. [6], and the use of many discrete

momentum states by Björk et al. [7].

The displacement of an optical beam can be represented by thefollowing operator,

X̂ =
1
N

∫

dx xÂ†(x)Â(x). (10.7)

Applying X̂ to |x1, ...,xN〉 gives

X̂ |x1, ...,xN〉 =

(

1
N

N

∑
i=1

xi

)

|x1, ...,xN〉, (10.8)

so the beam displacement can be intuitively regarded as the mean position of the photons under the statistical

interpretation. If we assume that
〈

X̂
〉

= 0 for simplicity, the displacement uncertainty is given by

〈

X̂2〉1/2
=





∫

dx1...dxN

(

1
N

N

∑
i=1

xi

)2

|ψ(x1, ...,xN)|2




1/2

. (10.9)

It is often more convenient to use a different system of coordinates as follows [12],

X =
1
N

N

∑
i=1

xi , ξi = xi −X , i = 1, ...,N −1, ξN = −
N−1

∑
i=1

ξi . (10.10)

X is therefore the “center-of-mass” coordinate that characterizes the overall displacement of the optical beam,

andξi ’s are relative coordinates. Defining a new probability amplitude in terms of these coordinates,

ψ ′(X ,ξ1, ...,ξN−1) = ψ(X +ξ1, ...,X +ξN), (10.11)
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we obtain the following expression for the displacement uncertainty,

〈

X̂2〉1/2
=

[

1
N

∫

dXdξ1...ξN−1 X2|ψ ′(X ,ξ1, ...,ξN−1)|2
]1/2

(10.12)

=
〈

X2〉1/2
, (10.13)

which is the marginal width ofψ ′ with respect toX .

On the other hand, the dosing operator ofN-photon absorption is [6]

〈

: IN(x) :
〉

∝ |ψ(x,x, ...,x)|2 = |ψ ′(x,0, ...,0)|2, (10.14)

which is, intuitively, the probability distribution of allN photons arriving at the same placex. Hence, de-

signing a specified multiphoton interference pattern in quantum lithography is equivalent to engineering the

conditional probability distribution|ψ ′(X ,0, ...,0)|2. In particular, the spot size of multiphoton absorption is

the conditional width ofψ ′ with respect toX ,

[

∫

dx x2〈: IN(x) :
〉

]1/2

∝
[

∫

dX X2|ψ ′(X ,0, ...,0)|2
]1/2

(10.15)

=
〈

X2〉1/2 |ξ1=...=ξN−1=0. (10.16)

Despite the subtle difference between the marginal width and the conditional width, ifψ ′ can be made sepa-

rable in the following way,

ψ ′(X ,ξ1, ...,ξN−1) = ψ̄(X)ψrel(ξ1, ...,ξN−1), (10.17)

then both widths are identical, and one can optimize the multiphoton state simultaneously for both applica-

tions.

The standard quantum limit on the uncertainty inX is obtained when the photons are spatially in-

dependent, such thatψ(x1, ...,xN) = f (x1)... f (xN). For example, if f (x) is a Gaussian given byf (x) ∝

exp
(

−κ2x2

2

)

, then both the marginal and conditional uncertainties inX are

〈

X2〉1/2
SQL=

〈

X2〉1/2
SQL

∣

∣

∣

ξ1=...=ξN−1=0
=

1√
2Nκ

. (10.18)

Similar to the optimization of temporal position accuracy [9], the ultimate quantum limits on spatial displace-

ment accuracy and quantum lithography feature size are achieved with the following nonclassical state,

|Ψ〉 =
∫

dkG(k)|k,k, ...,k〉. (10.19)
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The momentum probability amplitude is then

φ(k1, ...,kN) = G(k1)δ (k1− k2)δ (k1− k3)...δ (k1− kN), (10.20)

which characterizesN photons with coincident momentum. The spatial amplitude isthus given by

ψ ′(X ,ξ1, ...,ξN) =
∫

dk√
2π

G(k)exp(iNkX) ≡ g(NX), (10.21)

which is a function ofX only and can be understood as a continuous superposition ofN-photon states, each

with an effective de Broglie wavelength equal to 2π/(Nk). The multiphoton interference pattern is therefore

trivially given by |g(NX)|2, the magnitude squared of the Fourier transform ofG(k). An arbitrary interference

pattern can hence be generated, if an appropriateG(k) can be engineered. This approach of designing the

multiphoton interference pattern should be compared with the less direct approaches by the use of discrete

momentum states [6, 7]. With the resolution limit,G(k) is zero for|k|> 2π/λ , so given the Fourier transform

relation betweenG(k) andg(NX), the minimum feature size of multiphoton interference is onthe order of

λ/N.

To compare the ultimate uncertainty inX with the standard quantum limit, letG(k) be a Gaussian given

by G(k) ∝ exp
(

− k2

2κ2

)

, then the uncertainty inX becomes

〈

X2〉1/2
UQL =

1√
2Nκ

, (10.22)

which is smaller than the standard quantum limit, Eq. (10.18), by another factor of
√

N, as expected.

10.3 Multiphoton absorption rate of nonclassical states

Let us recall Botoet al.’s heuristic argument concerning the multiphoton absorption rate of entangled photons.

They claim that, because entangled photons tend to arrive atthe same place at the same time, the multiphoton

absorption rate must be enhanced [6]. If photons tend to arrive at the same place, then the uncertainty in

their relative positions must be small. However, the spatial probability amplitude that achieves the ultimate

lithographic resolution, Eq. (10.21), is a function ofX only, which means that the uncertainty in the relative

positions is actually infinite. In general, any enhancementof resolution with respect toX must result in a

corresponding reduction in the bandwidths with respect to the relative positions, in order to maintain the

same maximum bandwidth. By the Heisenberg uncertainty principle, such photons must then have increased

uncertainty in their relative positions. Hence, Botoet al.’s argument manifestly does not hold for photons

with a quantum-enhanced lithographic resolution. In fact,the opposite is true: Although these photons have

a reduced uncertainty in their average position, they must have an increased uncertainty in their relative

positions, so they do not arrive at the same place very often,and the multiphoton absorption rate must be
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reduced. To observe this fact, consider the total multiphoton absorption rate,

∫

dx
〈

: IN(x) :
〉

∝
∫

dX |ψ ′(X ,0, ...,0)|2. (10.23)

Becauseψ ′ must satisfy the normalization condition,

1
N

∫

dXdξ1...dξN|ψ ′(X ,ξ1, ...,ξN)|2 = 1, (10.24)

a larger uncertainty inξi ’s means that|ψ ′(X ,0, ...,0)|2 must be smaller, leading to a reduced multiphoton

absorption rate. Conversely, photons that tend to arrive together must have a larger uncertainty in where they

arrive, so an enhanced multiphoton absorption rate means that the quantum lithographic resolution must be

sacrificed. That said, one can still compensate for the reduction in the multiphoton absorption rate due to an

enhanced resolution in one dimension, by reducing the relative positions of the photons in the other unused

space and time dimensions.

10.4 Generating nonclassical states via the soliton effect

We now turn to the problem of producing the nonclassical multiphoton states for spatial quantum enhance-

ment. As we have established a general formalism that resembles the temporal one, schemes that produce

temporal quantum enhancement can be applied to the spatial domain as well. In particular, a scheme that

makes use of temporal solitons is recently proposed to enhance the temporal accuracy of an optical pulse

[10]. We here proceed to show how spatial solitons can be utilized to enhance the beam displacement ac-

curacy, as well as reduce the spot size of multiphoton absorption, beyond the standard quantum limits and

approaching the ultimate quantum limits.

Consider the Hamiltonian that describes the one-dimensional diffraction effect and Kerr nonlinearity,

Ĥ =
∫

dx

[

−b
∂ Â†

∂x
∂ Â
∂x

+ cÂ†Â†ÂÂ

]

, (10.25)

whereb is the Fresnel diffraction coefficient, assumed to be positive, andc is the negative Kerr coefficient,

assumed to be negative, so thatb/c < 0 and solitons can exist under the self-focusing effect. Thesoliton

solution of the spatial amplitude forN photons under this Hamiltonian is [13]

ψ = C
∫

dk√
2π

G(k)exp

[

ik∑
i

xi +
c

2b ∑
i< j

|xi − x j |− ibNk2t + i
c2

12b
N(N2−1)t

]

, (10.26)

whereC =
√

(N −1)!|c/b|N−1/(2π) andG(k) is determined by the initial conditions. If initially the photons
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are uncorrelated,G(k) can be approximated as [10]

G(k) ∝ exp
(

− k2

2κ2

)

, κ =

∣

∣

∣

∣

√

N
4q

c
b

∣

∣

∣

∣

∼ 1√
NW0

, (10.27)

whereq is a parameter on the order of unity [10], andW0 is the initial soliton beam width. The probability

amplitude can be written in terms of the center-of-mass and relative coordinate system defined in Eqs. (10.10)

as

ψ ′ = C
∫

dk√
2π

G(k)exp

[

iNkX +
c
2b ∑

i< j
|ξi −ξ j |− ibNk2t + i

c
12b

N(N2−1)t

]

, (10.28)

which is separable in the way described by Eq. (10.17), meaning that the conditional width and marginal

width with respect toX are identical. If we adiabatically reducec or increaseb, then we can reduce the

uncertainty in the relative momenta of the photons and increase the uncertainty in the relative positions [10].

Classically, we expect the soliton beam width to expand and the spatial bandwidth to be reduced, But the

most crucial difference in the quantum picture is that the center-of-mass coordinateX remains unaffected

during the adiabatic soliton expansion, apart from the quantum dispersion term−ibNk2t.

As pointed out in Ref. [10], the quantum dispersion term can be compensated if the soliton propagates in

a second medium with an opposite diffraction coefficientb′. Full compensation is realized when
∫ T

0 b(t)dt =

−∫ T ′
0 b′(t)dt, whereT is the propagation time in the first medium andT ′ is the propagation time in the second

medium. Negative refraction, realizable in a left-handed material [14] or a photonic crystal [15] for example,

is hence required in the second medium. Ideally the second medium should also have a Kerr coefficientc′

opposite to the final value ofc in the first medium, such thatc′ = −c(T ), so thatb′/c′ < 0 and the quantum

soliton maintains its shape, but in practicec′ = 0 would also suffice, because the momentum bandwidths

would remain unchanged in a linear medium while the quantum dispersion is being compensated.

In the limit of vanishingc/b in the first medium, the wavefunction would approach the ultimate multi-

photon state given by Eq. (10.21). However, the bandwidth ofG(k) is very low, on the order of 1/(
√

NW0),

whereW0 is the initial soliton beam width, so the bandwidth ofG(k) is nowhere near the resolution limit and

the uncertainty inX is the same as the input beam. In order to reduce this uncertainty, one can put the beam

in a conventional imaging system [16] to recompress it, so that the output probability amplitude becomes

ψout =
1√
MN

ψin

(x1

M
,

x2

M
, ...,

xN

M

)

, (10.29)

whereM is the magnification factor. IfM is smaller than 1, each photon is spatially compressed, thus

reducing the ultimate quantum limit on the uncertainty inX . To illustrate, Fig. 10.1 shows a flowchart of the

whole quantum enhancement process and a simple example of what the spatial and momentum probability

amplitudes should look like in each step for two photons.
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Figure 10.1: First row: schematics of the spatial quantum enhancement setup via adiabatic soliton expansion.
Second row: sketches of the spatial probability amplitude,ψ(x1,x2), for an example of two photons in each
step of the process. Third row: sketches of the momentum probability amplitude,φ(k1,k2). Consult text for
details of each step of the process.

10.5 Conclusion

In conclusion, spatial quantum enhancement effects are studied under a general framework. A method of

generating arbitrary multiphoton interference pattern bythe use of a continuous superposition of coincident

momentum states is proposed. It is further shown that the multiphoton absorption rate is reduced if the

lithographic resolution is enhanced. Finally, the use of adiabatic soliton expansion and negative refraction is

proposed to beat the spatial standard quantum limits.
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Chapter 11

Reflectionless evanescent wave
amplification via two dielectric planar
waveguides

11.1 Introduction

Conventional optical imaging systems cannot resolve features smaller than the optical wavelength, because

the high-spatial-frequency modes that describe the subwavelength features are evanescent waves, which ex-

ponentially decay away from the object and do not propagate to the far field. Observing the evanescent waves

is therefore one of the most important yet formidable challenges in the field of optics, with important ap-

plications in optical lithography, data storage, and microscopy. Near-field scanning optical microscopy can

detect the evanescent waves [1], but it requires scanning, which may not be desirable for many applications.

A groundbreaking proposal by Pendry suggests that evanescent waves can be amplified without any reflection

in a negative-refractive-index slab [2], causing significant interest as well as controversy [3] in the mechanism

of evanescent wave amplification (EWA). On the practical side, the fabrication of a negative-refractive-index

material for optical frequencies is a challenging task, as it requires both negative permittivity and negative

permeability, the latter of which does not naturally occur in materials, and methods of implementing an ef-

fective negative refractive index [4, 5, 6] often introducesignificant loss detrimental to the EWA process.

As proposed by Pendry [2] and experimentally demonstrated by Fanget al. [7], a negative permittivity in a

metal slab can also amplify evanescent waves to some extent,but the thickness of the slab is limited by the

electrostatic approximation as well as loss. A simpler EWA scheme that utilizes less lossy materials would

thus be desirable.

Along this direction, Luoet al. propose that a photonic crystal slab can be used to amplify evanescent

waves [8], since evanescent waves with specific spatial frequencies can be coupled into the bound states of

the photonic crystal slab, and the buildup of the bound states produces an enhanced evanescent tail on the

other side of the slab. Apart from the difficulty in fabricating a three-dimensional photonic crystal for two-
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dimensional imaging, the kind of EWA achieved by a photonic crystal slab is not ideal, because the buildup

of the bound states also creates enhanced reflected evanescent waves, causing multiple evanescent wave

reflections between the object and the photonic crystal. On the other hand, in order to obtain information

about the output evanescent waves on the image plane, energymust be extracted, and the only way for the

detector to “tell” the imaging system to give up energy is viaa reflected evanescent wave. In other words,

detection of an evanescent wave always creates a reflected evanescent wave, so there exist multiple reflections

between an imaging system and the detector as well. Since themagnitudes of evanescent wave transmission

and reflection coefficients can be larger than 1 or even infinite, multiple evanescent wave reflections can be

very significant and should not be ignored in the design of near-field imaging systems. An ideal near-field

imaging system should hence have 100% transmission as well as zero reflection,as if the imaging system is

not there and the object directly touches the image plane. This ideal behavior also allows multiple imaging

systems to be cascaded and a longer distance between the object and the detector.

In this chapter, the underlying physics of reflectionless evanescent wave amplification (REWA) by the

use of a negative-refractive-index slab is explained, and,using this knowledge, it is shown that evanescent

waves with specific spatial frequencies can be amplified without reflection simply by two dielectric planar

waveguides. Since loss in a dielectric can be orders of magnitude lower than metals or metamaterials, our

proposed scheme is the simplest way of experimentally demonstrating the intriguing phenomenon of REWA

and offers simple alternatives to the use of left-handed materials, surface plasmons, or photonic crystals for

near-field imaging applications.

11.2 Evanescent wave amplification

One of the most poorly understood aspects of Pendry’s proposal is that at the interface of ann = 1 material

and ann = −1 material, the transmission and reflection coefficients aretheoretically infinite [2]. Mathemati-

cally this indicates the presence of an unstable pole on the imaginary axis in the complex transverse-spatial-

frequency (s = ikx) plane, and physically the transmitted and reflected evanescent optical fields must therefore

increase linearly along a semi-infinite interface. This is hardly surprising if one recalls the well-known fact

that infinite scattering coefficients correspond to bound-state solutions, so the incoming evanescent waves are

simply resonantly coupled into the waveguide modes of the interface. The most peculiar aspect of Pendry’s

interface is that the scattering coefficients are always infinite, meaning that bound-state solutions exist for all

kx. This is not true for other waveguides, including photonic crystals [8], which have discrete bound states

with different discretekx’s. In particular, for ideal surface plasmons, only one bound state exists.

11.2.1 Evanescent wave amplification by one dielectric slab

First, consider a dielectric slab with thicknessa and refractive indexn1 in thex− y plane. Suppose that an

evanescent s-polarized wave with an electric field exponentially decaying along thez axis given byE0+ =
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[0,1,0]exp(ikzz+ ikxx− iωt) impinges on the slab, wherekx is assumed to have subwavelength resolution, so

kx > ωn0/c, kz is determined by the dispersion relation, given bykz = i
√

k2
x − k2

0, k0 = ωn0/c, andn0 is the

refractive index of the surroundings. Considering the firstinterface betweenn0 andn1 only, the reflected wave

is r[0,1,0]exp(−ikzz+ ikxx− iωt), and the transmitted wave inside the slab ist[0,1,0]exp(ik′zz+ ikxx− iωt).

kx is the same on both sides of the interface, andk′z is given by the dispersion relationk′z =
√

k2
1− k2

x, where

k1 = ωn1/c. k′z is hereafter assumed to be real for waveguide modes to exist.This restrictskx to be bounded

by the wave numbers in the two media,

k0 < kx < k1. (11.1)

The transmission and reflection coefficients across the firstinterface are given byt = 2kz/(kz + k′z) and

r = (kz− k′z)/(kz + k′z) respectively. Likewise, the scattering coefficients across the second interface are

t ′ = 2k′z/(k′z+ kz) andr′ = (k′z− kz)/(k′z+ kz). To obtain the total transmission,τ, across the slab, multiple

scattering events must be summed,

τ = t exp(ik′za)t ′ + t exp(ik′za)[r′exp(ik′za)]2t ′ + ... (11.2)

=
tt ′exp(ik′za)

1− r′2exp(2ik′za)
. (11.3)

The total reflection coefficient can be obtained similarly,

Γ = r +
tt ′r′exp(2ik′za)

1− r′2exp(2ik′za)
. (11.4)

Waveguide modes correspond to those with evanescent tails exponentially decaying away from the waveg-

uide. In other words, the total transmitted evanescent waveand the total reflected evanescent wave for the

waveguide modes can exist by themselves without any incoming waveE0+, or, mathematically speaking,τ

andΓ are infinity. This happens when

1− r′2exp(2ik′za) = 1−
(k′z− kz

k′z+ kz

)2
exp(2ik′za) = 0, (11.5)

which simply states that the accumulated phase in a round trip inside the waveguide must be multiples of 2π.

As bothkz andk′z depend onkx, Eq. (11.5) is an eigenvalue equation ofkx for the TE modes of the single

waveguide. A simple dielectric slab can hence achieve EWA due to the waveguide mode coupling resonances,

similar to a photonic crystal [8]. If only subwavelength features are concerned and all-angle negative refrac-

tion [9] is not needed, a complicated structure such as photonic crystal is not necessary. However, just like a

photonic crystal, the reflection coefficientΓ of a slab waveguide is also infinite, causing potential problems

with multiple reflections.
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11.2.2 Reflectionless evanescent wave amplification by two waveguides

In Pendry’s proposal, both interfaces of a negative-refractive-index slab need to be considered for ideal

REWA. The two interfaces can be considered as two waveguides, and the total transmission of the slab

exponentially increases with respect to the thickness of the slab, or the distance between the two waveguides,

when the single-interface scattering coefficients are infinite. This suggests that REWA may also exist for

other kinds of double-waveguide structures, when the resonant coupling condition of the single waveguide is

reached.

Figure 11.1: Reflectionless evanescent wave amplification (REWA) by two slab waveguides, wheren1 > n0.

Now let us go back to the dielectric slab waveguide example and add another identical waveguide a

distanced away from the first, as depicted in Fig. 11.1. The total transmission coefficient for this double-

waveguide structure is

T =
τ2exp(ikzd)

1−Γ2exp(2ikzd)
. (11.6)

Whenkx coincides with one of the single-waveguide bound-state eigenvalues determined by Eq. (11.5), the

total transmission becomes

lim
r ′2 exp(2ik′za)→1

T = lim
r ′2 exp(2ik′za)→1

− τ2

Γ2 exp(−ikzd)

= −exp(−ikzd), (11.7)

which increases exponentially with respect tod. The total reflection coefficient of the double-waveguide



107

structure is likewise given by

R = Γ+
τ2Γexp(2ikzd)

1−Γ2exp(2ikzd)
, (11.8)

and in the limit ofkx being a bound-state eigenvalue of a single waveguide,

lim
r ′2 exp(2ik′za)→1

R = lim
r ′2 exp(2ik′za)→1

(

1− τ2

Γ2

)

Γ = 0. (11.9)

Hence, an evanescent wave can propagate with perfect transmission and zero reflection in the setup depicted

in Fig. 11.1, thereby achieving REWA, ifu+ v = d and the resonant single-waveguide coupling condition is

reached. Identical results can also be derived for p-polarized waves and TM modes. REWA should be quite

general for any kind of symmetric and identical waveguides,as long as the bound-state limit ofτ2/Γ2 is 1, so

two photonic crystal slabs may be used to achieve all-angle negative refraction [9] and REWA simultaneously.

11.3 Discussion

For imaging applications, it is important to stress that thedouble-waveguide device only beats the resolution

limit of the cladding layer with refractive indexn0, but not the resolution limit of the core layer with refractive

indexn1. This is because the bound-state eigenvalues ofkx are bounded by wave numbers of the two media,

as shown by Eq. (11.1). That said, for a highly multimode waveguide, the maximumkx is close to the wave

number of the core medium, so the proposed device can still take advantage of the high resolution limit

offered by a high-refractive-index material without contact with the object. This can be advantageous for

many applications because many solids have higher refractive indices than fluids but it is not very practical

to fill the whole imaging system with solids as in oil immersion microscopy. Furthermore, for biomedical

imaging applications, it is not always possible to place thehigh-refractive-index material directly in touch

with the object plane, because the contact may damage the biological sample, or one may desire to put the

object plane inside a semi-transparent object, such as a cell.

Promising high-refractive-index material candidates include diamond, which can have a refractive index

as high as 2.7 [10] and transparent down to a wavelength of about 230 nm [11], and coherently prepared

atoms (confined in, say, a dielectric box) with a resonantly enhanced refractive index [12], which can theo-

retically reach the order of one hundred [13] and a proof-of-concept experiment of which has already been

demonstrated [14].

An outstanding problem of using any waveguide, except negative-refractive-index slabs, for EWA is

that ideal enhancement only occurs for single-waveguide modes, which are discrete and band-limited for

eachω. For instance, the discretekx’s of the TE modes in a symmetric slab waveguide are determined by

Eq. (11.5) and band-limited by Eq. (11.1). As a result, an object with frequency components that lie outside

the waveguiding band or do not coincide with the bound statescannot be perfectly reproduced. For this



108

reason, ideal surface plasmons are ill-suited for faithfulimage transmission, as they have only one bound

state with one eigenvaluekx. Loss can increase the bandwidth of the transmitted spatialfrequencies near

each discrete waveguide mode, but also severely limits the distance between the two waveguides at which

effective REWA occurs. For dielectrics, multimode waveguides can partially solve this problem by offering

more Fourier modes within the band. One may also use a broadband light source to increase the amount of

available spatial frequencies.

11.4 Conclusion

In conclusion, the use of two dielectric planar waveguides is proposed to amplify evanescent waves without

reflection. The simple configuration elucidates the most essential physics of REWA and presents a simple

way of experimentally demonstrating such an intriguing phenomenon. In practice, the proposed setup also

allows one to take advantage of high resolution limit of a dielectric without contact with the object.
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Chapter 12

Metaphoric optical computing of fluid
dynamics

12.1 Introduction

12.1.1 Philosophy of metaphoric computing

Nonlinear dynamical systems, such as weather, plasma, and the economy, are ubiquitous in nature and ev-

eryday life, yet such systems are typified by their highly complex and chaotic behaviors, making them no-

toriously difficult to study theoretically, experimentally, and numerically. Analytic solutions of nonlinear

systems are rare, experiments are often too inflexible or impractical, and numerical simulations must take

into account a large number of data points in multiple dimensions in order to accurately model a problem

of interest, such that even the fastest supercomputers today would take days or weeks to simulate relatively

simple nonlinear dynamics that a physical system exhibits in seconds.

On the opposite side of the same coin, we can regard the physical system as a computational device that

computes its own dynamics at a speed unimaginable by supercomputers. The key to harnessing this tremen-

dous computing power of a physical system is therefore to make it compute other interesting problems of

the same order of complexity. Of course, a conventional digital computer is itself a physical system, but

it makes use of complex semiconductor physics to compute elementary logic operations, and in doing so,

discards a large amount of information that is considered extraneous. In this perspective, a digital computer

is an extremely inefficient computing device, as it only utilizes an exceedingly small amount of the full com-

puting capability potentially offered by its physics. The advantage in this case is the flexibility in cascading

different logic operations for general-purpose computing, but as evidenced by the difficulties in the numerical

simulations of nonlinear dynamical systems, this inefficient computing method is often inadequate.

In order to make full use of the computing capability offeredby a physical system, we hereby propose the

concept of metaphoric computing, which makes use of a more experimentally accessible nonlinear dynamical

system to simulate another nonlinear dynamical system. An example of this computing method is a wind
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tunnel, in which a small-scale fluid experiment is performedto simulate large-scale fluid dynamics, by virtue

of the scaling laws inherent in fluid dynamics. Metaphoric computing, however, is not restricted to the use

of similar physical systems to simulate each other. In this paper, we show in particular that nonlinear optics

can compute fluid dynamics as well. An optical beam inherently holds three-dimensional spatiotemporal

information, and nonlinear optical propagation computes the evolution of this large amount of information

simultaneously at the speed of light, promising substantial parallelism and speed for computing. Although the

use of nonlinear optics for digital computing has not been assuccessful as the use of solid-state electronics,

forcing optical beams to compute binary logic wastes most ofthe spatiotemporal information that can be

manipulated in optical beams. Instead of fitting a square pegin a round hole, using optics to simulate other

nonlinear dynamical systems provides a natural way of making full use of the computing capacity offered by

a nonlinear optical system.

Fluid dynamics, the foundation of a wide variety of important research fields including meteorology,

aeronautics, plasma physics, superfluids, and Bose-Einstein condensates, is an ideal problem to solve by

metaphoric computing. Intractable theoretical analysis and inflexible experiments compel the use of nu-

merical simulations, the difficulty of which nonetheless gives rise to a whole new field, computational fluid

dynamics, in itself. The main difficulty is due to the inherent complexity of a fluid dynamics problem, which

is nonlinear and continuously generates finer structures asthe fluid dynamics evolves. For problems that are

of practical interest, such fine structures are often ordersof magnitude smaller than the size of the objects

under consideration, thus requiring a large number of data points in each of the three spatial dimensions to

be manipulated at each time step, which must also be correspondingly small to avoid numerical instabilities.

An alternative method of simulating complex fluid dynamics that combines the speed of a fluid experiment

and the flexibility of a numerical analysis is hence of great practical importance. In this paper, we show that,

via a suitable transformation, nonlinear optical propagation can be utilized to simulate Euler fluid dynamics,

which is known to be computationally expensive and unstableto solve numerically . We also provide strong

evidence that nonlinear optics can simulate high-Reynolds-number Navier-Stokes fluid dynamics as well,

which include a large class of important and computationally difficult problems, such as turbulence. With

the speed, parallelism, and configurability of optics, an “optical wind tunnel” may one day become a viable

alternative to experiments and numerical analysis in the study of fluid dynamics.

12.1.2 Correspondence between nonlinear optics and fluid dynamics

The analogy between nonlinear optics and fluid dynamics has been noted by many authors [1, 2, 3, 4, 5, 6, 7, 8,

9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. Wagneret al. first suggested that the nonlinear propagation equation of an

optical beam can be recast into equations that resemble the continuity equation and the Bernoulli equation in

irrotational fluid dynamics [1]. Coulletet al. first coined the term “optical vortices,” which shows the analogy

between phase singularities in optics and fluid vortices [2]. Brambillaet al. noted that laser equations can

be transformed to a hydrodynamic form [3]. Arecchiet al. first experimentally demonstrated the dynamics
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of optical vortices in nonlinear optics [4]. Akhmanovet al. called the rich nonlinear dynamics observed in a

nonlinear resonator “optical turbulence.” [5] Swartzlander and Law observed optical vortex solitons created

via the instability of dark soliton stripes analogous to theKelvin-Helmholtz instability in fluid dynamics [6].

Staliunas showed that a laser can be described by the Ginzburg-Landau equation, which can be transformed

into equations resembling the Navier-Stokes equations that describe viscous fluid dynamics [7]. Vaupelet al.

observed vortex pair nucleation by the interference of two modes in a laser and claimed that it was an analogue

of a vortex street behind an obstacle in a fluid flow [8]. Molina-Terrizaet al. also observed optical vortex

streets in walking second-harmonic generation [9]. Roux [10] and Rozaset al. [11] studied the interactions

between optical vortices and found that their interactionsresemble those of fluid vortices. Rozaset al. then

experimentally demonstrated the fluidlike motion of a pair of optical vortices [12]. Michinelet al. [13] and

Paz-Alonsoet al. [14] found that optical propagation in a cubic-quintic nonlinear medium resembles a liquid

drop, and optical vortices in such a medium also have fluidlike motions [15]. On the other hand, nonlinear

optics has been compared with superfluids and Bose-Einistein condensates, as they can all be described, to

varying degrees, by the nonlinear Schrödinger equation [19, 20], commonly known as the Gross-Pitaevskii

equation in the field of superfluids [21]. Pomeau and Rica suggested that the phenomenon of transition

to dissipation in a superflow [22] can be observed in nonlinear diffraction [16]. Boldaet al. numerically

demonstrated the same phenomenon in a nonlinear Fabry-Pérot cavity [17]. Chiao also found that photons in

such a cavity should obey the Bogoliubov dispersion relation for a superfluid [18].

The abundant amount of prior work credited above provides ample evidence that nonlinear optics resem-

bles fluid dynamics to a certain degree. In order to use nonlinear optics as a useful and practical computational

tool for fluid dynamics, however, simply drawing analogies between the two kinds of dynamics is not enough.

One must be able to show an exact correspondence or, at the very least, an approaching convergence between

a problem in nonlinear optics and a problem in fluid dynamics,in order to produce any useful prediction of

fluid dynamics via nonlinear optics. Moreover, as computersnowadays have enough capabilities to simulate

two-dimensional fluids, the mere correspondence between optics and two-dimensional fluid dynamics con-

sidered in most of the prior work would not motivate the use ofmetaphoric optical computing in preference

to conventional digital computing. A three-dimensional fluid modeling, on the other hand, requires a pro-

cessing capability orders of magnitude higher than that available in today’s supercomputers, so metaphoric

optical computing would need to compute such problems much more efficiently to compete with electronic

computers and the Moore’s law.

In the following sections, we shall attempt to establish thecorrespondence between nonlinear optics and

three-dimensional fluid dynamics. We shall show that, taking group-velocity dispersion into account, non-

linear optical dynamics approaches three-dimensional inviscid Euler fluid dynamics in the highly nonlinear

self-defocusing regime, where the optical intensity represents the fluid density, the optical phase gradient

represents the fluid velocity, the nonlinear refractive index perturbation represents pressure, the propagation

distance represents time, and the temporal dimension of theoptical pulse represents the third dimension of
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the fluid. As Euler fluid equations often exhibit high numerical instabilities, this correspondence in itself

should be useful in modeling high-Reynolds-number fluid dynamics away from objects and boundaries. In

the convergence of nonlinear Schrödinger equation towards the Euler equations, a “quantum pressure” term

arising from the nonlinear Schrödinger equation plays the role of a small parameter. As thisquantum pres-

sure term plays analogous roles to viscosity in the Navier-Stokes equations, we argue that nonlinear optics

should be able to approximate viscous Navier-Stokes fluid dynamics as well, in the regime where quantum

pressure and viscosity both play the role of small parameters in the respective equations. That said, we do

not pretend that we have established the equivalence between nonlinear optics and Navier-Stokes dynamics,

as the similarity between quantum pressure and viscosity isstill an open problem.

On the practical side, in cases where an ideal nonlinear optics setup is not available, we suggest a split-

step method that pieces together different optical devicesto approximate an ideal nonlinear optics experiment.

This method is very similar to the method proposed to simulate quantum systems using a quantum computer

[23].

It must be stressed that although we focus on simulations of classical physical systems, future quantum

computers that simulate quantum systems [23] would run intothe same problem of manipulating a large

amount of multidimensional information. In the case of quantum systems, multidimensional quantum in-

formation, such as a multiparticle multispatiotemporal-dimensional wavefunction, needs to be processed in

parallel. Quantum computers can naturally parallelize themultiparticle aspect, but there is no obvious way

of parallelizing the manipulation of multispatiotemporal-dimensional information via simple binary quan-

tum logic. Perhaps a quantum metaphoric computing would then be necessary, where a more accessible

multidimensional quantum system is used to simulate another quantum system.

12.2 Correspondence between nonlinear optics and Euler fluid dy-

namics

12.2.1 Madelung transformation

We now proceed to show mathematically how the self-defocusing nonlinear optical propagation equation,

including the effect of group-velocity dispersion, can be transformed to three-dimensional hydrodynamic

equations. First, we show how the optics equations, in the absence of optical vortices, correspond to inviscid

and irrotational fluid equations. This form of transformation is widely attributed to Madelung [24]. We model

the paraxial nonlinear propagation of an optical beam, described by the envelope functionψ(z,x,y,T ), via

the nonlinear Schrödinger equation [19, 20],

i
∂ψ
∂ z

= − 1
2k0

(

∂ 2

∂x2 +
∂ 2

∂y2

)

ψ +
β2

2
∂ 2ψ
∂T 2 − k0n2|ψ|2ψ, (12.1)
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wherez is the propagation distance,k0 = 2πn0/λ0 is the carrier wave number,β2 is the group-velocity

dispersion coefficient,T is the time coordinate in the moving frame of the pulse, andn2 is the nonlinear

Kerr coefficient. To use the time coordinate as the third spatial dimension of a fluid, anomalous group-

velocity dispersion, orβ2 < 0, is required. Dispersion can then be regarded in equal footing as diffraction if

a normalized time coordinate is defined as

τ ≡ T
√

−β2n0k0
, (12.2)

such that

i
∂ψ
∂ z

= − 1
2k0

(

∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂τ2

)

ψ − k0n2|ψ|2ψ. (12.3)

The Madelung transformation is defined as follows,

ψ = |ψ|exp( jφ), (12.4)

I = |ψ|2, (12.5)

k = ∇′φ = x̂
∂
∂x

+ ŷ
∂
∂y

+ τ̂
∂

∂τ
, (12.6)

such that the evolution equations for the intensity,I, and the phase gradient,k, are given by

∂ I
∂ z

+
1
k0

∇′ · (Ik) = 0, (12.7)

∂k
∂ z

+
1
k0

∇′
(

1
2

k ·k
)

= ∇′(k0n2I)+
1
k0

∇′
(

1

2
√

I
∇′2√I

)

. (12.8)

One can already see that Eq. (12.7) has the exact same form as the fluid continuity equation, while Eq. (12.8)

resembles the Bernoulli equation [1], if one regards the intensity as the fluid density and the phase gradient as

the fluid velocity. The nonlinear refractive index term,k0n2I, would resemble the fluid pressure ifn2 < 0, so

self-defocusing is required. The last term in Eq. (12.8) is apeculiar term that arises from optical diffraction

and dispersion, does not exist in classical fluid dynamics, and is commonly called the “quantum pressure.”

In order to compare these equations with fluid equations moreeasily, we use the following normalized

variables,

∇ = W∇′, ζ =
K

Wk0
z, (12.9)

ρ =
I
I0

, u =
k
K

=
1

KW
∇φ , (12.10)

a =
1

k0
√−n2I0

, M = Ka, R = KW, (12.11)

whereW is the characteristic size,K is the characteristic phase gradient,I0 is some characteristic optical
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intensity of the propagation, anda is the so-called healing length, which is the length scale atwhich the

quantum pressure term has the same order of magnitude as the nonlinear term on the right hand side of

Eq. (12.8),M is the Mach number, which measures the relative strength of fluid pressure compared with

convection, andR is another number that measures the relative strength of fluid convection compared with

quantum pressure. The normalized equations become

∂ρ
∂ζ

+∇ · (ρu) = 0, (12.12)

∂u
∂ζ

+∇
(

1
2

u ·u
)

= − 1
M 2ρ

∇
(

1
2

ρ2
)

− 1
R2 ∇

(

1
2
√ρ

∇2√ρ
)

. (12.13)

Equation (12.12) is exactly the same as the fluid continuity equation, and in the limit ofM /R → 0, which

is the highly self-defocusing regime, Eq. (12.13) is the same as the hydrodynamic equation of motion that

describes inviscid and irrotational fluids. Equations (12.12) and (12.13) also admit sound wave solutions,

which describe travelling perturbations to the density andthe velocity. As long as the sound waves are weak,

the dependence of pressure on the density is not crucial, andthe use of self-defocusing Kerr nonlinearity is

adequate. This restricts the correspondence to slightly compressible barotropic fluids.

In order to model slightly compressible fluids, the optical beam needs to have a relatively constant in-

tensity background. This can be achieved approximately near the center of a very large beam, in a large

multimode waveguide as a container in two spatial dimensions, or in a cubic-quintic nonlinear medium to

provide a “surface tension” to the beam [25, 13, 14, 15].

12.2.2 Vorticity

In general, the fluid velocity vector should contain an irrotational component and a rotational component,

u = −∇ϕ −∇×A, (12.14)

whereϕ is called the velocity potential, and the curl ofu is defined as the fluid vorticity,

ωωω = ∇×u = −∇× (∇×A). (12.15)

The dynamics of vorticity is arguably the cornerstone of hydrodynamics [21]. The inviscid fluid dynamics

that includes the rotational effect is governed by the Eulerequation,

∂u
∂ζ

+u ·∇u = − 1
M 2ρ

∇P, (12.16)

whereP is the pressure. For incompressible fluids,M << 1, and as long asP increases withρ , the specific

dependence ofP on the fluid properties is not important. Equation (12.16) contains the convective termu ·∇u,
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which can be written as

u ·∇u = ∇
(

1
2

u ·u
)

+(∇×u)×u (12.17)

= ∇
(

1
2

u ·u
)

+ωωω ×u. (12.18)

One can then see that the optical Bernoulli equation, Eq. (12.13), misses the rotational component of the

convective term. In other words, the Madelung transformation is only able to describe the irrotational part of

the fluid motion, but not the more important rotational part.

The inability of the Madelung transformation to describe vorticity is due to the failure of the transforma-

tion near optical vortices, where Eq. (12.13) is ill-defined. To understand this problem, consider a rectilinear

optical vortex in polar coordinates and neglect the third fluid dimension for now,

ψ = f (r)exp(imθ), (12.19)

r =
√

x2 + y2, θ = tan−1
(y

x

)

, (12.20)

wherem is an integer and is called the topological charge of an optical vortex. The phase gradient is then

given by

k = θ̂
1
r

∂
∂θ

(mθ) = θ̂
m
r

. (12.21)

The fluid vorticity is proportional to the curl ofk,

∇×k = ẑ
2πm

r
δ (r), (12.22)

which resembles the vorticity of an ideal point fluid vortex [26]. The motion of these vortices, however,

cannot be described by the Madelung transformed equations due to two problems:k diverges whenr → 0,

so the fluid velocityu at the center of a vortex is infinite, andf (r) must approachrm in the limit of r → 0 to

maintain the continuity ofψ, so the quantum pressure term, with
√ρ in the denominator, is also infinite near

the vortex center.

To overcome these difficulties, it is necessary to consider the motion of the optical vortices separate from

the irrotational optical flow.

12.2.3 Optical vortex solitons and point vortices

In a relatively constant intensity background, optical vortices exist as optical vortex solitons [27, 6, 25]. The

optical envelope functionψ of a vortex soliton is given by Eq. (12.19), wheref (r) → rm for r << a, and

f (r) approaches a constant forr >> a, wherea is the healing length and also the size of the dark spot of a
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vortex soliton. In three dimensions, a vortex soliton exists as a vortex filament. We shall hereafter consider

single-charged vortex solitons withm = ±1 only, as they have the lowest energy and are the most prevalent

ones arising from an experimental situation. It is also moreaccurate to approximate continuous vorticity with

only discrete vortices with the smallest topological charge.

Eq. (12.22) suggests that an optical vortex soliton resembles an ideal point vortex in incompressible fluids.

Indeed, the motion of optical vortices in the highly self-defocusing limit can be rigorously proven to behave

in the same way as point fluid vortices [10, 11, 28, 29, 30, 31].If one defines the position of each vortex

filament asx j , then the fluid velocity at each point due to the presence of the vortex filaments in the limit of

high self-defocusing is given by

u(x,ζ ) = −∑
j

2πm j

∫

(x−x j)×dx j

4π|x−x j |3
−∇ϕ, a → 0, (12.23)

wherex is the normalized three-dimensional position vector,m j is the topological charge of vortexj, and

−∇ϕ describes the irrotational flow according to Eq. (12.13). Inparticular, the motion of each filament is

given by

∂xi

∂ζ
= −∑

j
2πm j

∫

(xi −x j)×dx j

4π|xi −x j |3
−∇ϕ, a → 0, (12.24)

in the leading order. These equations of vortex motion are valid as long as the separations of the vortices are

much larger thana. For example, Fig. 12.1 plots the intensity, phase, and phase gradient of two rectilinear

optical vortex solitons with the same charge, which should rotate around each other, and those of two vortices

with opposite charges, which should drift in the same direction perpendicular to their separation.

With the vortex filaments, one can define the equivalent vorticity in an optical beam,

ωωω(x,ζ ) = ∑
j

2πm j

∫

dx jδ (x−x j), (12.25)

which can be used to approximate the continuous vorticity ofa fluid, if the number of vortex filaments is large

enough. In this case, to include the vorticity effect in the nonlinear optical dynamics, one can phenomeno-

logically patch up the irrotational equation of motion, Eq.(12.13),

∂u
∂ζ

+∇
(

1
2

u ·u
)

+ωωω ×u = − 1
M 2 ∇ρ. (12.26)

This modification of the equation of motion can be attributedto the phenomenon of phase slippage [21,

32], well known in the field of superfluids. The use of discretepoint vortex interactions to calculate Euler

fluid dynamics is also a well-known numerical method in computational fluid dynamics [33]. Hence, to

simulate Euler fluid dynamics, one can approximate both the rotational and irrotational components of the

initial fluid velocity profile by the optical phase and the phase singularities in an optical beam, and the
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Figure 12.1: Intensity (left column), phase (middle column), and phase gradient (right column) of two optical
vortex solitons with the same charge (top row), which shouldrotate in the same sense, and those of two vortex
solitons with opposite charges, which should drift in a direction perpendicular to their separation. The phase
gradient near the centers of the vortices is not plotted due to its divergence.

nonlinear self-defocusing propagation of the beam would converge to incompressible Euler fluid dynamics

in the strongly self-defocusing regime. One can also borrowfrom the well-established numerical techniques

[33] to determine how the distribution of optical vortices sufficiently approximates the continuous vorticity

in fluids.

12.2.4 The fluid flux representation

So far, we have shown that optical vortex solitons behave like point vortices in fluids when they are far away

from each other, and this behavior can be used to approximateEuler fluid dynamics. However, there is no

guarantee that the vortices would remain well separated in the course of the vortex dynamics. If optical

vortices behaved exactly like point vortices, then their velocities would diverge when they are close to each

other. This velocity divergence is well known to cause significant numerical instability in the use of point

vortices for computational fluid dynamics [33]. Another problem is that in three dimensions, the self-induced

velocity of a curved point vortex filament diverges logarithmically∼ ln(1/a) in the limit of a → 0 [33]. Since

the optical intensity decreases to zero near the center of anoptical vortex, the quantum pressure term, which

determines the size of the vortex dark spot, can no longer be ignored, and the optical vortex interactions

should differ markedly from point vortex interactions whentheir separation is on the order ofa.

To investigate the optical vortex dynamics when they are close to each other, the fluid velocity is no longer

an appropriate quantity to study, because it diverges near avortex center. The density, on the other hand,

approaches zero towards the center. This motivates us to define an alternative finite quantity by multiplying
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the velocity and the density,

J ≡ ρu. (12.27)

which is the fluid flux, or the momentum density. Simple calculations show that the flux is indeed finite

everywhere in an optical beam, including the center of an optical vortex. In terms of the flux, the tensor

dynamical equations now read [34]

∂ρ
∂ζ

+
∂Ji

∂xi
= 0, (12.28)

∂Ji

∂ζ
+

∂
∂x j

(

JiJ j

ρ

)

= − 1
M 2

∂
∂xi

(

1
2

ρ2
)

− 1
R2

∂
∂x j

1
2

(

∂√ρ
∂xi

∂√ρ
∂x j

−√
ρ

∂ 2√ρ
∂xi∂x j

)

, (12.29)

whereJi is the ith component ofJ, ∂/∂xi is the ith spatial derivative, and repeated indices are implicitly

summed in the manner of Einstein’s summation. These equations have the same form as the normalized

Euler equations in the tensor form,

∂ρ
∂ζ

+
∂Ji

∂xi
= 0, (12.30)

∂Ji

∂ζ
+

∂
∂x j

(

JiJ j

ρ

)

= − 1
M 2

∂P
∂xi

, (12.31)

except the quantum pressure term in Eq. (12.29). Hence, in the flux representation, we have successfully

avoided the problem of divergent quantities. Furthermore,Eq. (12.29), in contrast to Eq. (12.13), includes

the correct convective term.

The use of momentum density in the description of nonlinear optical dynamics is more natural and appro-

priate than the use of velocity in the Madelung transformation, as the dynamics ultimately evolves according

to the basic law of momentum conservation. As we shall show next, when comparing the optical flux to the

fluid flux, the dynamics of optical vortex solitons are much more similar to that of less singular fluid vortices

than point vortices, and the correspondence between nonlinear optics and Euler fluid dynamics is still justified

whena is finite.

12.2.5 Optical vortex solitons and vortex blobs

In light of the fluid flux representation, one should therefore compare the flux of an optical vortex soliton to

the flux of a fluid vortex. In an incompressible fluid, the density is constant, so the flux is proportional to the

velocity, and the flux at the center of a point vortex has the same singular behavior as the velocity. Near a

vortex soliton, however, the flux is finite. Consider the example of a single-charged vortex soliton. The flux
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near the center is given by

J ∝ θ̂r, r << a, (12.32)

which vanishes asr → 0, as opposed to the divergence ofJ ∼ 1/r at the center of a point vortex.

Instead of comparing a vortex soliton to a point vortex, one should hence compare the soliton to avortex

blob [33], which has finite vorticity over a finite area. The vorticity of a vortex blob filament is mathematically

described by

ωωω(x,ζ ) = 2πm j

∫

dx jγ(|x−x j |), (12.33)

whereγ is a vorticity distribution function for the filament. The velocity near the center of a rectilinear vortex

blob and far away from the center is

u ∝ θ̂r, r << a, (12.34)

u ∝ θ̂
1
r
, r >> a, (12.35)

so in an incompressible fluid, the fluid flux of an optical vortex soliton with sizea is the same as that of a

vortex blob with sizea. See Fig. 12.2 for a graphical illustration. The dynamics ofa vortex blob and that

Figure 12.2: Sketches of velocity and flux of a vortex blob andan optical vortex along a line across the center,
to illustrate the similarities between the two in terms of the flux.

of a vortex soliton are also extremely similar. For example,the rotation frequencyΩ of two like-charged
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vortex blobs approaches a constant∝ 1/a2 when their separation goes to zero. Numerical simulations of

the nonlinear Schrödinger equation also show that the rotation frequency of two like-charged vortex solitons

approaches a constant∝ 1/a2 and does not diverge like two point vortices [35]. On the other hand, the

self-induced velocity of a curved vortex blob filament is given by [33]

∂xi

∂ζ
=

mib
2ρc

ln
ρc

a
, (12.36)

whereb is the unit binomial vector of the filament andρc is the radius of curvature. The self-induced velocity

of an optical vortex soliton filament is proven to be exactly the same [29]. Hence, optical vortex solitons

act as vortex blobs, and a large number of solitons can simulate Euler fluid dynamics, much like the popular

discrete vortex blob method in computational fluid dynamics[33].

12.2.6 Numerical evidence of correspondence between nonlinear optics and Euler

fluid dynamics

The most telling evidence of the correspondence between nonlinear optics and Euler fluid dynamics is perhaps

the numerical fluid dynamics simulations using the nonlinear Schr̈odinger equation by Noreet al. [36, 37].

Using the nonlinear Schrödinger equation, Noreet al. numerically demonstrated the Euler fluid dynamics

of a jet made of an array of counterrotating vortices, which exhibit sinuous and varicose instabilities [36].

In another study, Noreet al. also demonstrated three-dimensional shear flows and showedthat numerically

solving nonlinear Schrödinger equation is a viable alternative to Euler and Navier-Stokes equations for the

numerical study of shear flows [37]. As nonlinear optical propagation is governed by nonlinear Schrödinger

equation, the numerical experiments by Noreet al. show that nonlinear optics should also be able to compute

Euler fluid dynamics.

12.3 Similarities between nonlinear Schr̈odinger dynamics and Navier-

Stokes fluid dynamics

In the previous sections, we have shown the correspondence between self-defocusing optical propagation

and inviscid Euler fluid dynamics via a variety of methods, including the Madelung transformation, the

incorporation of vorticity effect due to the “phase slip” phenomenon, the fluid flux representation, and the

comparison between optical vortex solitons and vortex blobs. Even though viscosity plays the role of a small

parameter in most interesting fluid dynamics problems, its effects are of paramount importance near a “no-

slip” boundary and in the dissipation of eddies, in which cases the viscous Navier-Stokes equations should

be used. In this section we shall present evidence that the nonlinear Schr̈odinger equation exhibits many of

the same behaviors of viscous Navier-Stokes fluid dynamics,and in each case, quantum pressure plays an
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analogous role to viscosity.

The normalized Navier-Stokes equations in the flux representation are given by

∂ρ
∂ζ

+
∂Ji

∂xi
= 0, (12.37)

∂Ji

∂ζ
+

∂
∂x j

(

JiJ j

ρ

)

= − 1
M 2

∂P
∂xi

+
1
R

∂
∂x j

(

∂ui

∂x j
+

∂u j

∂xi

)

, (12.38)

where the last term in Eq. (12.38) is the viscosity term andR is called the Reynolds number, which describes

the relative strength of convection compared to viscosity,

R =
UL
ν

, (12.39)

whereU is the characteristic velocity of the fluid system,L is the characteristic length, andν is the kine-

matic viscosity of the fluid. Comparing the viscosity term inEq. (12.38) with the quantum pressure term in

Eq. (12.29) via a dimensional analysis would suggest that ananalogous optical Reynolds number would be

defined as

R = KW, (12.40)

where, to recall,K is the characteristic optical phase gradient, andW is the characteristic size of the optical

experiment setup. The optical Reynolds number thus roughlymeasures the number of optical vortices. In

other words, if the optical Reynolds number indeed corresponds to its fluid counterpart, then the quantization

of the optical vortices would play an analogous role to fluid viscosity. This view seems to be echoed by other

researchers in the field of superfluids [38, 39, 40, 41], although we must stress that it is still an open problem

as to what extent the quantization effect resembles the viscous effect [41].

12.3.1 Zero-flux boundary conditions, boundary layers, and boundary layer separa-

tion

In classical fluid dynamics the “no-slip” boundary condition is most commonly used, and restricts the total

velocity and hence the total flux to be zero at the boundary. For fluid flow above a surface, the velocity shear

introduced must be balanced by a viscous stress, resulting in a boundary layer that connects the zero velocity

at the boundary to the flow velocity above the boundary in an asymptotic expansion [42]. For the nonlinear

Schr̈odinger equation, the boundary condition of an impenetrable object can be specified by a low-refractive-

index region, which restricts the optical intensity to be zero at the surface [43] due to total internal reflection.

Even though the tangential velocity can have a nonzero valueat the surface, both the normal and tangential

components of the flux must be zero there. This can hence be viewed as a zero-flux “no-slip” boundary

condition. An optical boundary layer analogous to the viscous boundary layer in classical fluid dynamics is
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also formed [43]. See Fig. 12.3 for a graphical illustrationof the similarities between a viscous boundary

layer and an optical boundary layer.

Figure 12.3: Comparison between a viscous boundary layer and an optical boundary layer.

For a viscous fluid flow past an obstacle, as the Reynolds number increases, the boundary layer begins

to separate and vorticity is convected behind the obstacle.An analogy in the dynamics of the nonlinear

Schr̈odinger equation, in the form of vortex nucleation on the boundary, is also predicted [22], and in the case

of large objects, the instability of the optical boundary layer also depends on the optical Reynolds numberR

defined in Eq. (12.40) [40], much like the viscous boundary layer separation.

12.3.2 Dissipation of eddies

Another important effect of viscosity is the dissipation ofsmall-scale structures in turbulence. An analogous

effect in nonlinear Schrödinger equation is the emission of sound waves two vorticesare close to each other

[35] and the generation of Kelvin waves in the process of vortex line reconnections [44]. The radiation

of acoustic energy in both cases must cause a damping of the high-spatial-frequency convection within the

optical beam, and the effective Reynolds number is again estimated to be equal to the optical Reynolds

number [38, 39, 41].

12.3.3 Kármán vortex street

The Kármán vortex street is a famous viscous fluid phenomenon, in which alternate fluid vortices are emitted

from the back of an obstacle to the flow of a viscous fluid, when the Reynolds number increases beyond

a certain threshold [26, 45]. Using the numerical vortex blob method, Chorin first simulated such a phe-

nomenon for a cylinder obstacle and obtained good agreementwith experimental data [46]. Since an optical

beam diffracting past a low refractive index region would also emit optical vortices and the vortices inter-

act like vortex blobs in a self-defocusing medium, we performed a numerical experiment of the nonlinear

Schr̈odinger equation to investigate if we would observe a similar phenomenon for nonlinear optics.

The numerical setup is sketched in Fig. 12.4. A big optical beam is assumed to propagate at an angle

to an ellipsoid cylinder, with a refractive index much lowerthan the surroundings to act as an impenetrable

object, in a self-defocusing medium. The length of the long axis of the ellipsoid cross section is assumed to
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Figure 12.4: Setup of numerical experiment (not to scale).

beW , and the short axis is assumed to be one-fifth ofW throughout the simulations. The two-dimensional

nonlinear Schr̈odinger equation is solved using the Fourier split-step method [20], which implies a periodic

boundary condition for the optical beam. This should not affect the qualitative behavior of the dynamics, if

the optical beam is much bigger than the object. In all of the simulations, the Mach numberM is fixed at

0.4, while the optical Reynolds numberR is varied. Figure 12.5 plots the intensity of the optical beam at a

normalized propagation distanceζ = 10 for an optical Reynolds numberR = KW = 12.8. Optical vortex

solitons are created on the top and bottom side of the low-refractive-index region, and they interact in such a

way that resembles the phenomenon of twin vortices behind anobstacle in a low-Reynolds-number viscous

fluid flow.

Figure 12.5: The intensity of the optical beam at a normalized propagation distanceζ = 10, for M = 0.4
andR = 12.8. The dark ellipse is the low-refractive-index region thatacts as an impenetrable object. Optical
vortex solitons are seen to be created on the top and bottom side of the ellipse, While the convection of the
solitons behind the object resembles the twin vortices behind an obstacle in a viscous fluid flow.

Figure 12.6 plots the fluxJ = (ψ∗∇ψ −ψ∇ψ∗)/2i and Fig. 12.7 plots the momentum vorticity∇× J.
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Both plots confirm the similarity between the numerically observed dynamics and the phenomenon of twin

vortices in a viscous fluid flow.

Figure 12.6: A vector plot of the fluxJ at ζ = 10, forM = 0.4 andR = 12.8, which confirms the similarity
between the numerically observed dynamics and the phenomenon of twin vortices.

Figure 12.7: A plot of the momentum vorticity∇× J at ζ = 10, for M = 0.4 andR = 12.8. A white dot
indicates that the vortex has a positive topological chargeand a black dot indicates that the vortex has a neg-
ative charge. The plot shows the similarity between the numerically observed dynamics and the phenomenon
of twin vortices.

Figures 12.8, 12.9, and 12.10 plot the intensity, flux, and momentum vorticity of the optical beam respec-

tively, at a longer propagation distanceζ = 20 for the same parameters. The qualitative dynamical behavior

of vortices staying behind the object is essentially unchanged.

We now raise the Reynolds number toR = 25.6 and perform the numerical experiment again. As seen

from Figs. 12.11, 12.12, and 12.13, the optical vortex solitons become smaller and more abundant, but at

ζ = 10 the phenomenon of twin vortices behind an obstacle is again observed.

At ζ = 20, however, significant instability in the twin vortices develops, such that the spatial symmetry

between the upper plane and the lower plane is broken, and alternative bunches of optical vortices begin to

be emitted from the back of the object. Figures 12.14, 12.15,and 12.16 plot the intensity, flux and vorticity
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Figure 12.8: The intensity of the optical beam at a normalized propagation distanceζ = 20, forM = 0.4 and
R = 12.8. The qualitative dynamical behavior is essentially unchanged from that shown in Fig. 12.5.

Figure 12.9: A vector plot of the fluxJ at ζ = 20, forM = 0.4 andR = 12.8.

Figure 12.10: A plot of the momentum vorticity∇×J at ζ = 20, forM = 0.4 andR = 12.8.
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Figure 12.11: The optical intensity atζ = 10, forM = 0.4 andR = 25.6. The vortex solitons are observed
to be smaller, and the phenomenon of twin vortices is again observed.

Figure 12.12: The fluxJ at ζ = 10, forM = 0.4 andR = 25.6.

Figure 12.13: The momentum vorticity∇×J at ζ = 10, forM = 0.4 andR = 25.6.
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at ζ = 20 respectively, which demonstrate a behavior strongly resembling the famous Ḱarmán vortex street

phenomenon.

Figure 12.14: Optical intensity atζ = 20, for M = 0.4 andR = 25.6. The twin vortices become unstable
and detach alternatively from the object.

Figure 12.15: Flux atζ = 20, forM = 0.4 andR = 25.6, which shows a flow pattern strongly resembling
the Kármán vortex street.

Due to computing power constraints, we are only able to simulate low-Reynolds-number flows, which

we do not expect to quantitatively reproduce viscous fluid dynamics. We have to use an ellipsoid cylinder in

the numerical experiments, instead of the more conventional circular cylinder, to artificially generate more

optical vortices, and the Mach number is a little too high forcompressional waves not to play a significant role

in the dynamics. With all that said, using the nonlinear Schrödinger equation, we are still able to qualitatively

demonstrate, for the first time to our knowledge, two well-known viscous fluid phenomena, namely, the

formation of twin vortices behind an obstacle, and the symmetry-breaking instability of the twin vortices that

leads to the Ḱarmán vortex street when the Reynolds number is increased. Compared with previous claims of

observing the Ḱarmán vortex street in nonlinear optics numerically [7] or experimentally [8, 9], our numerical

results demonstrate an unprecedented level of correspondence between nonlinear optical dynamics and the

Kármán vortex street phenomenon, thanks to the presence of a muchlarger number of optical vortices in our
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Figure 12.16: Vorticity atζ = 20, forM = 0.4 andR = 25.6, which confirms that the alternate bunches of
vortices indeed have the right charges that resemble the Kármán vortex street phenomenon.

simulations.

12.3.4 Kolmogorov turbulence

The striking similarities between nonlinear optics and viscous fluid dynamics are not limited to low-Reynolds-

number two-dimensional problems. As the Reynolds number isfurther increased to the order of a million,

the viscous fluid flow enters a turbulent regime. Since this regime is highly chaotic, only statistical signatures

can be reproduced in a turbulent fluid flow. A well-known signature of turbulence is the Kolmogorov energy

spectrum [47], derived under the assumption that a “steady state” is reached when the macroscopic-scale

fluid flow continuously generate finer spatial structures viaconvection and viscosity dissipates the smallest

structures. As viscosity plays a significant role in the Kolmogorov turbulence spectrum, it is surprising to

see that numerical simulations of the three-dimensional nonlinear Schr̈odinger equation also reproduce the

Kolmogorov spectrum at high Reynolds numbers, and the vorticity dynamics of the “superflow” described by

the nonlinear Schrödinger equation resembles that of the viscous flow, in whichvortex reconnection events

play a major role [38, 39].

The dissipation of the smallest spatial structures in a superflow is speculated to be the Kelvin waves pro-

duced by the natural motion and reconnections of vortex filaments [41, 44], and the corresponding Reynolds

number is again speculated to beR = KW [41]. Numerical and theoretical analyses of the so-called “quantum

turbulence” exhibited by the nonlinear Schrödinger equation all reveal striking similarities betweenquantum

and classical fluids, and it is argued that the study of quantum turbulence could lead to a better understanding

of turbulence in normal fluids [48].
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12.4 The split-step method

While a nonlinear optical system shows promise for computingEuler and Navier-Stokes fluid dynamics, it

also poses serious technical challenges. Ideally one wouldlike to have a configurable nonlinear material

with low loss, anomalous group-velocity dispersion, high defocusing nonlinearity, and three-dimensional

copropagating boundaries. One may only be able to find separate materials or optical devices, each of which

performs only some of the functions. Moreover, parasitic effects such as loss, two-photon absorption, and

high-order dispersion can be detrimental to the accuracy. To combine different devices and periodically

compensate for parasitic effects, we hereby propose the “split-step” method, the inspiration of which comes

from the numerical Fourier “split-step” method [20]. Consider the general nonlinear Schrödinger equation

∂ψ
∂ζ

=
N

∑
n=1

Ĥnψ, (12.41)

where propagation effects and boundary conditions are expressed in terms of operatorŝHn. The formal

solution is

ψ(ζ +∆ζ ) = exp
(

∫ ζ+∆ζ

ζ

N

∑
n=1

Ĥndζ ′
)

ψ(ζ ). (12.42)

But if ∆ζ is much smaller than 1/H whereH is the magnitude of the operators, by virtue of the Baker-

Hausdorff formula we have

ψ(ζ +∆ζ ) =
N

∏
n=1

exp
(

Ĥn∆ζ
)

ψ(ζ )+O(H2∆ζ 2). (12.43)

Each of the propagation effects can hence be applied separately to an optical pulse, with a quadratic error

term. A symmetrized version of the split-step method can further reduce the error order,

ψ(ζ +∆ζ ) =
1

∏
m=N

exp
(

Ĥm
∆ζ
2

) N

∏
n=1

exp
(

Ĥn
∆ζ
2

)

ψ(ζ )+O(H3∆ζ 3). (12.44)

The split-step method is not unlike the proof of a quantum computer being able to simulate any quantum

systems [23]. Whereas it is difficult to find a quantum device that performs the exact Hamiltonian of the

quantum system of interest, it is possible to approximate the Hamiltonian in small time slices. Similarly, in a

metaphoric optical computer, one can form a unit cell of a “meta-material” by combining a slice of defocusing

material, a slice of material with anomalous group-velocity dispersion, a slice of ultrafast phase modulator

to apply the three-dimensional boundary conditions, and a gain medium to compensate for loss. The optical

beam can loop through the unit cell multiple times in a cavity, so that the outcome will approximate the true

solution as if we had an ideal medium. See Fig. 12.17 for a graphical illustration of the method.

The split-step method has the additional advantages that each subsystem can be tunable and easily substi-
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Input Beam Output Beam

Ideal Nonlinear Medium

"Split-Step" System

Ĥtotal = Ĥ1 + Ĥ2 + ...

Ĥ1 Ĥ2

∆ζ∆ζ

Figure 12.17: Sketch of a split-step optical system that approximates the ideal nonlinear medium.

tuted with another material or device, and the pulse evolution can be monitored more easily. The magnitude

of each effect can be tuned by simply changing the propagation length in each device, In exchange for con-

figurability we have sacrificed some accuracy due to discretization errors and instability. The computation

speed may also be reduced by a large but constant fraction, asthe pulse may spend most of its time on simply

propagating from one device to the next and not performing the core computation by nonlinear propagation.

The split-step method, however, does not detract from the inherent parallelism in the computation, as the

transverse dimensions are not discretized.

12.5 Conclusion

In conclusion, we have used a variety of theoretical and numerical methods to show that self-defocusing

optical propagation has a converging correspondence with Euler fluid dynamics and a striking similarity with

Navier-Stokes fluid dynamics. We have numerically shown that the interactions of a large number of optical

vortex solitons are able to simulate two well-known viscousfluid phenomena. We have also proposed the

split-step method, a way of practically implementing the metaphoric optical computer.

There are serious technical challenges if a metaphoric computer is to become useful for computing fluid

dynamics, especially three-dimensional fluid dynamics problems, as techniques for the complete specification

and characterization of the spatiotemporal optical field are still in their infancy. The speed, configurability,

and parallelism of a metaphoric optical simulator nonetheless promise vast advantages over conventional

numerical simulations.

Since photons are quantum objects, optical propagation would also inherently compute the quantum dy-
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namics of bosons, and may therefore be used as a metaphoric simulator of quantum fluids, such as superfluids,

superconductors, and Bose-Einstein condensates. In this way the advantages of a metaphoric computer and

those of a quantum computer are combined, and only then the classical and quantum computing capabili-

ties offered by photons would truly be exhausted. This extension of metaphoric optical computing will be a

subject of future work.
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