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Abstract

This thesis is a theoretical investigation of the classacal quantum information processing enabled by the
advent of modern ultrafast nonlinear optics.

Chapter 2 and 3 study the propagation of ultrashort optigislgs in optical fibers, and propose two meth-
ods of compensating the linear and nonlinear distortiopge&nced by the pulses, namely, reverse propaga-
tion and spectral phase conjugation. Chapter 4 and 5 sudiffesent schemes that implement spectral phase
conjugation.

Chapter 6 and 7 establish the connection between clasgieairal phase conjugation and quantum co-
incident frequency entanglement. Chapter 6 shows how argb@hase conjugator can create coincident
frequency entangled photon pairs, and Chapter 7 in turn detrades how a coincident frequency entangle-
ment generator can perform spectral phase conjugation.

The next three chapters, 8, 9, and 10, focus on quantum tgraporal information processing. Chapter
8 studies the temporal properties of entangled photon pajrggation and proposes the concept of quantum
temporal imaging. Chapter 9 investigates how optical satitcan be used to perform quantum timing jitter
reduction and temporal entanglement, while Chapter 10ieppihe same idea to the spatial domain for
guantum spatial information processing tasks, such agspatam displacement uncertainty reduction and
guantum lithography.

The final two chapters return to a couple of miscellaneoublpros in classical optics. Chapter 11
shows how a pair of dielectric slabs can amplify the near fiéldn optical image. Chapter 12 explores the
similarities between nonlinear optics and fluid dynamics] speculates on the possibility of using nonlinear

optics experiments to simulate fluid dynamics problems.
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Chapter 1

Summary

This thesis investigates various classical and quanturosgichniques for applications in optical communi-
cations, quantum information processing, imaging, andprding.

Chapter 2 presents a numerical technique for reversingsfnbnd pulse propagation in an optical fiber,
such that given any output pulse it is possible to obtain tipaii pulse shape by numerically undoing all
dispersion and nonlinear effects. The technique is tegjathst experimental results, and it is shown that it
can be used for fiber output pulse optimization in both thevaalous and normal dispersion regimes [1].

Chapter 3 proposes the use of spectral phase conjugatiampensate for dispersion of all orders, self-
phase modulation, and self-steepening of an optical poladiber. Although this method cannot compensate
for loss and intrapulse Raman scattering, it is superiohéopreviously suggested midway temporal phase
conjugation method if high-order dispersion is a main sewtdistortion. The reshaping performance of
our proposed scheme and a combined temporal and spectssd pbajugation scheme in the presence of
uncompensated effects is studied numerically [2].

Chapter 4 analyzes spectral phase conjugation with shorpgulses in a third-order nonlinear material
in depth. It is shown that if signal amplification is consielgrthe conversion efficiency can be significantly
higher than previously considered, while the spectral plcagjugation operation remains accurate. A novel
method of compensating for cross-phase modulation, the pagsitic effect, is also proposed. The validity
of our theory and the performance of the spectral phase gatign scheme are studied numerically [3].

Chapter 5 proposes a novel spectral phase conjugation scheiihree-wave mixing. It is shown that
a phase-conjugated and time-reversed replica of the imgpsignal can be generated, if appropriate quasi-
phase matching is achieved and the three-wave mixing psasdsansversely pumped by a short second-
harmonic pulse [4].

Chapter 6 studies spontaneous parametric processes ptirapgdgersely with short pulses under a uni-
fied framework, which proves that such processes can effigiganerate entangled photon pairs with time
anticorrelation and frequency correlation. Improvemeipisn previously proposed schemes can be made by
the use of quasi-phase matching, four-wave mixing, andsepbsise modulation compensation. The use of

frequency-correlated photons in the Hung-Ou-Mandel fatemeter is also studied [5].



2

Chapter 7 demonstrates that the copropagating three-miatieg parametric process, with appropriate
type-ll extended phase matching and pumped with a shorhdelsarmonic pulse, can perform spectral phase
conjugation and parametric amplification, which shows aghold behavior analogous to backward wave
oscillation. The process is also analyzed in the Heisenpietgre, which predicts a spontaneous parametric
down conversion rate in agreement with experimental resefiorted elsewhere [6].

Chapter 8 derives the equations that govern the tempor&itavo of two photons in the Schdinger
picture, taking into account the effects of loss, groumuiy dispersion, temporal phase modulation, linear
coupling among different optical modes, and four-wave ngxi Inspired by the formalism, the concept
of quantum temporal imaging is proposed, which uses diseetements and temporal phase modulators
to manipulate the temporal correlation of two entangledi@m® The exact solution of a two-photon vector
soliton is also presented, in order to demonstrate the dase@nd intuitiveness of the proposed formulation
[7].

Chaptef 9 shows that optical pulses with a mean positionracglbeyond the standard quantum limit
can be produced by adiabatically expanding an optical vesdliton followed by classical dispersion man-
agement. The proposed scheme is also capable of entangkitgops of optical pulses and can potentially
be used for general continuous-variable quantum infongirocessing [8].

Chapter 10 studies spatial quantum enhancement effectsr andnified framework. An approach of
generating arbitrary quantum lithographic patterns byue of multiphoton coincident momentum states is
proposed. It is shown that the multiphoton absorption rafghotons with a quantum-enhanced lithographic
resolution is reduced, not enhanced, contrary to populafbEinally, the use of adiabatic soliton expansion
followed by negative refraction is proposed to beat bothdtamdard quantum limit on the optical beam
displacement accuracy, as well as that on the minimum spetsiquantum lithography [9].

In Chapter 11, utilizing the underlying physics of evaneseeave amplification by a negative-refractive-
index slab, it is shown that evanescent waves with specifitagrequencies can also be amplified without
any reflection simply by two dielectric planar waveguidesheTsimple configuration allows one to take
advantage of the high resolution limit of a high-refractimdex material without contact with the object [10].

Chapter 12 presents theoretical and numerical evidenckaw that self-defocusing nonlinear optical
propagation can be used to compute Euler fluid dynamics assilgg Navier-Stokes fluid dynamics. In
particular, the formation of twin vortices and théitéan vortex street behind an obstacle, two well-known

viscous fluid phenomena, is numerically demonstrated ubi@gonlinear Sclidinger equation [11].
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Chapter 2

Reverse propagation of femtosecond
pulses in optical fibers

2.1 Introduction

Dispersion and nonlinear effects have been the bottleneakrafast pulse propagation in an optical fiber.
Various schemes, for example, optical solitons [1] andaapphase conjugation (OPC) [2, 3] have been pro-
posed to compensate for these effects, yet the high-org@rtions including third-order dispersion (TOD),
self-steepening, and Raman scattering remain undefe&tmttosecond power delivery in a normally dis-
persive fiber, which is useful for biomedical applicatioissgspecially difficult to achieve because normal
dispersion and nonlinear effects always tend to broaderdetart a pulse. Another scheme is to embrace
all the effects and adopt an adaptive optimization methgaically in the form of genetic algorithm, hoping
that modulating the input pulse shape can produce an outplutdesirable properties [4, 5, 6]. Although
an adaptive method can compensate for pulse propagatitomtities and unknown experimental variables,
it does not make full use of our theoretical knowledge of agitfiber ultrafast pulse propagation and may
therefore be time consuming and suboptimal.

In this chapter we show that by reversing the nonlinear ppiepagation equation it is possible to theo-
retically predict the exact input pulse shape that givessarelé output of a fiber. All dispersion and nonlinear
effects can be incorporated into the simulation, and hemeecan produce any kind of pulse shape at the
output end by shaping the input pulse appropriately acagrth the calculated result. In conjunction with
currently available femtosecond pulse-shaping techisigueh as f pulse shaping [7] this approach is espe-
cially suited to provide custom-shaped high-power ulstfalse delivery both in normally and anomalously

dispersive fibers.



2.2 Theory

The nonlinear pulse propagation equation in a fiber is giwethe general form [1]

0A(ZT)
0z

={D+NAZT)]}AEZT), (2.1)

whereA(z T) is the pulse envelop® is the linear operator that includes absorption and alletisipn effects,
andN is the nonlinear operator that includes all nonlinear ¢ffaad is a function 0A(z T). Mathematically,

the output is obtained by application of the propagatiorratee to the input:
~ L ~
ALT) = exp{LD+/ N{AZ T))dzbA©,T), 2.2)
0

wherelL is the length of the fiber. The input can also be expressedrmstef the output by application of the

reverse propagation operator:
~ L A~
A0,T) = exp{ ~LD —/ N[A(z,T)]dz}A(L,T). (2.3)
0

To solve this equation and derive the input pulse shape gheautput, we use the standard Fourier split-step

method:
A(z,T) ~ exp(—hD) exp{—hN[A(z+h, T)]}A(z+h, T), (2.4)

in each step of which the linear and nonlinear effects on agpshape are evaluated separately for a small

propagation distande

Fiber OopC Fiber
Nl*:—Dl,Nl*:—Nl Phase /\\D2=D1,N2=N1 //\
E S onjugation| E 5
A0,T) ALT) A*(L,T) A*(2L,T) = A*(0,T)

Output Pulse Optimization by Reverse Propagation

_ .| Reverse | _| Pulse | _ __ _AnyFiber
Propagation] Shaper 75_
A

Desired Output AQ,T) LT

Femtosecond
Laser

Figure 2.1: Comparison of OPC and reverse propagation.

As a comparison, let us consider the OPC technique in theatiparotation. Figure 2.1 depicts schemat-
ically the OPC method and the reverse propagation methodcoBjugating Eq./ (2.2) and comparing the
result with Eq. [(2.3), one can see that OPC can reconstruaipan pulse ifD andN contain operators

with the propertyM = —M*. This restriction precludes many important phenomena) ssdoss, TOD, and
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self-steepening, that may severely hamper the accuracylsé peconstruction by OPC, especially in the
femtosecond regime. In a numerical simulation of reverspagation, however, there is no such limitation,
and all effects can be included to yield the optimal inpuspughape.

To model femtosecond pulse propagation, we choose the lipeaatorD to be
D=~ -t s (2.5)

The first term corresponds to loss, the second term corresporgroup-velocity dispersion (GVD), and the
third term corresponds to TOD. The higher-order dispersésms are neglected because of the relatively
short length considered here but can be easily includee ifiéed arises.

The nonlinear operatdy is
g1

0
%Ka—T(|A|2A) ~Tr (2.6)

0\AIZ]

N= jv[IAI2+ o7

The first term corresponds to optical Kerr effect, the sedent corresponds to self-steepening, and the third

term corresponds to intrapulse Raman scattering.
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Figure 2.2: Reverse propagation of an experimental outplsiep The experimental output pulse shape is
plotted atz= 0 m and numerically propagates in reverse from0 m toz= —10 m.

2.3 Comparison with experiments

To test the validity of reverse propagation, in an experimenlaunch a 150 fs positively chirped hyperbolic

secant pulse with a peak power of 1 kW in a 10 m long Corning S¥Fiber [6]. From frequency-resolved
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optical gating measurements we obtain the amplitude ansiepbidboth input and output pulses. The output
pulse is then reverse propagated in a computer simulationkig.[2.2. The output pulse shape is plotted at
z=0m at the top of the graph, and propagation effects are redensmerically as the pulse goes fram 0

m to z= —10 m. The simulated input from reverse propagation is coatpaith the experimental input in
Fig. 2.3. Both pulses are remarkably similar, with nearlgritical amplitudes and positive chirp, showing

that the reverse propagation theory is consistent withraxigatal results.

Intensity
T T T T T T I
> — theoretical input
@ 1r = = experimental input
[}
:g 0.8 1
2 06} .
N
© 0.4 i
E
o 0.2 i
c
0
-2000 -1500 -1000 -500 0 500 1000 1500 2000

o =2 N W
T

phase (rad)
b L

-3t I 1 I 1 1 | 1 -
-2000 -1500 -1000 -500 0 500 1000 1500 2000
t (fs)

Figure 2.3: Comparison of the input obtained from reverspagation and the actual experimental input.

2.4 Numerical analysis

Reverse propagation can be used to calculate the properpuofse shape that provides a narrow pulse at
the output. As a numerical example, let us consider a 100+g-tonventional dispersion-shifted fiber with
parametergd, = —1 p$/km, Bz = 0.1 ps’/km, y = 1.5 W-km~1, and Tz = 3 fs atAg = 1550 nm. A
fundamental soliton with a pulse widffy of 100 fs can propagate in this fiber with a peak power of 67
W but will experience distortions as a result of TOD, sedfefiening, and soliton self-frequency shift. To
obtain better output, we reverse the propagation of a désifaulse shape, say a chirped sech pulse with a
pulse profileA(0,T) = Pg/zseck(T/To) exp—iC(T /To)?/2], peak powePy = 67 W, and chirgC = 1. Figure
2.4 shows the reverse propagation of the desired outpug dalenfiber. The peak intensity of the optimized
input pulse during propagation is lower than that of a fundatal soliton, thereby avoiding the high-order
nonlinear distortions. To obtain an even shorter pulse, waldvneed to include higher-order linear and
nonlinear terms in Egs. (2.5) and (2.6).



Figure 2.4: Reverse propagation of a chirped sech pulsdg-at1550 nm.

It must be stressed that the reverse propagation method Ismited to near-soliton conditions but can
be applied to any fiber in both dispersion regimes. For ouorsgcumerical example consider a 1-m-long
normally dispersive single-mode fiber/ag= 800 nm, with parametei@ = 40 p$/km, Bz = 0.03 p$/km,
andy =9 W-1 km~1[8]. A 100-fs unchirped hyperbolic secant pulse, centetedD@ nm, with peak power
Py = 20 kW and total energf = 4 nJ is given as our desired output. Figure 2.5 shows the aptimput
pulse amplitude and phase. Qualitatively speaking, theepsthape is asymmetric to compensate for TOD,
self-steepening, and Raman scattering, and the negaie(€h= —0.1 by polynomial fitting) focuses the
pulse by GVD. In an experiment the large chirp can be impogeadrating pair before #pulse shaping.

We also investigate numerically the OPC technique, as tkpio Fig. [(2.1), using the same criteria as
those above as a comparison. Figure 2.6 shows the resultgnttgulse by OPC compared with the ideal
output pulse shape that can be produced by reverse propagatid pulse shaping. The OPC output pulse
is distorted by high-order effects, whereas reverse prajpagand pulse shaping, taking all the high-order

effects into account, produce a better output.

2.5 Conclusion

In conclusion, we have shown in this chapter that reverspagation is a feasible method of predicting the
optimal input pulse shape that will yield any desired oufpu well-characterized fiber, defeating all high-

order dispersive and nonlinear effects that may be dettimhém other output optimization schemes. The
theory is successfully tested against experimental iesaittd its application to femtosecond pulse delivery

through fibers in both dispersion regimes is presented rigalgr The interface of reverse propagation
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Figure 2.6: Compared with the ideal output pulse shape pexlby reverse propagation and pulse shaping,
the OPC output is significantly distorted by high-order effe
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code to a pulse shaper can be envisaged for short propadetigths, so that the proper modulation is
applied to the input pulse by the programmable optical mmdulof choice. For longer distances, practical
realizations become more complex as linear distortionginectoo large to be overcome by the available
modulators alone. In this case linear compensators canméiced with programmable modulators and

reverse propagation predictions to compensate for atdishs.
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Chapter 3

Dispersion and nonlinearity
compensation via spectral phase
conjugation

3.1 Introduction

Temporal phase conjugation (TPC) was proposed to compeftsagroup-velocity dispersion [1], self-phase
modulation [2], and intrapulse Raman scattering [3] of aticap pulse in a fiber. However, when the pulse
width is sufficiently short or the center wavelength is nbarzero-dispersion point, third-order dispersion and
self-steepening effects become more prominent and liraiteshaping performance of TPC. To compensate
for the high-order effects, alternative methads [4, 5, 8haje been suggested, but many of them are either
too complicated or are only able to compensate for a limitgulmer of propagation effects. An interesting
scheme, which compensates for all effects by both TPC anitedouchosen dispersion map, is also proposed
by Pinaet al.[8].

/ \ O TPC _ O / \
A@,T) Fiber /A(:\ 40.\1)'\ Fiber A%(0,T)
SN e | A ]/
AQT) Fiber ALT) ALT) Fiber AX(0,-T)

Figure 3.1: Schematics of TPC and SPC.

Instead of just conjugating the time envelope of an opticéég midway through a fiber as in the TPC
scheme, we propose to perform midway phase conjugation bhsasvéme reversal of the pulse envelope
(Fig. 3.1). In this way, dispersion of all orders, self-phasodulation, and self-steepening in a fiber are

automatically compensated. Conjugation and time reveisah envelope are equivalent to just conjugation
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of the optical pulse in the frequency domain, hence the naeetial phase conjugation (SPC).

3.2 Theory

Consider a puls&(t) = A(t) exp(— jaxot) with envelopeA(t) and center frequenayy. If we take the conju-

gate of the Fourier transform &f(t), it becomes

E*(w) = [/_ZA(t)exp(-jabt)exp(jm)dtr 3.1)

_ /;O;A*(—t)exp(—jabt)exp(jan)dt (3:2)

where the substitutioh— —t is made. Hence, conjugation of individual spectral comptmef a pulse
is equivalent to phase conjugation and time reversal of ¢éngpbral envelope. TPC, on the other hand,
corresponds to conjugation and inversion in the frequeoyain.

Midway SPC is unique in the sense that it can compensate [falisgersion and most nonlinearities
simultaneously. Consider the general pulse propagatioatem in a fiber,

dA(ZT)
0z

- [[“)T +M(A(Z,T))}A(Z,T), (3.3)

wherezis the propagation distancg,is the retarded time with respect to the group velocjtg:lof the pulse

(T =t— P12, andA(z T) is the pulse envelopd®r is the linear operator,
Ao & B0,
Dr=—g+ 2 IqUg7)" (3.4)

where the first term on the right-hand side is the loss term tlag remaining terms argh-order dispersion

terms.Ny is the nonlinear operator, which can be expressed as ttwviaty for a femtosecond pulse,

R . i 10 a|Al?
() = Jy[IAR + o 3 S (APA) ~Ta A

oT I’

AT (3.5)

where the first term on the right-hand side is the self-phasdufation term, the second term is self-
steepening, and the third term is intrapulse Raman sazgté®]. The subscripT of Dt and Ny denotes
the derivatives with respect I in the operators.
We rewrite Eq.[(3.3) to express the output pulse in terms@ptlopagation operator applied to the input
pulse [9],
A(LT) = exp[LDr + /OL Rir (A T))ez]AQ.T), (3.6)

wherelL is the fiber length. The input can also be expressed in terrttseabutput by applying the reverse
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propagation operator [7],
~ .L ~
A(0,T) = exp[— LDt — / Rir (A(z,T))dz} AL T). (3.7)
Jo
Now let us take the complex conjugate of Eq. (3.7) and maksubstitutionT — —T. Eq. (3.7) becomes

A*0,-T) = exp[—Lf)*_T—/OLNiT(A(z,—T))dz}

A*(L,-T). (3.8)

The conjugated and time reversed linear operator, igndosg) is

. © B9

o= i) 39)
2 B0
- n;—jﬁ(]ﬁ) = —Dr. (3.10)

Similarly, the nonlinear operator, ignoring intrapulsenfien scattering, is
Nt (Az-T)) = —Kg(A(z-T)). (3.11)

In general, we only keep terms that acquire a minus sign wbejugation and time reversal are both ap-
plied. All operator terms, except loss and intrapulse Rastattering, satisfy our criteria due to their odd

combinations ofi’s and time derivatives. With the substitutian- L — Z, Eq. (3.8) becomes

. L.
A*(0,-T) — exp[LDT+/O R (A" (L~ 7,-T)) o7
Af(L,—T). (3.12)

Eg. (3.12) has the exact same form as Eq./(3.6), but With — Z, —T) as the solution. In other words, if
we launchA*(L, —T) in another identical fiber, the final outpét(0,—T) is a conjugated and time reversed
version of the first input. This result can only be applieddseas where loss and intrapulse Raman scattering

can be neglected. Table 3.1 summarizes the propagatiarteffat can be compensated by TPC and SPC,

respectively.
loss| EOD | OOD | SPM | SS| IRS
TPC| x Vv X v X |+
SPC| x v Vv N RV

Table 3.1: Comparison of TPC and SPC in terms of propagaffecte that can be compensated by each
scheme. EOD stands for even-order dispersion, OOD stanasltborder dispersion, SPM stands for self-
phase modulation, SS stands for self-steepening, and ER8sfor intrapulse Raman scattering.
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To identify important propagation effects for a given optipulse transmission system, it is useful to

define a characteristic length for each propagation effct [

Lioss = losslength=1/a, (3.13)
Lp = dispersion lengtk= TZ/|Bz|, (3.14)
Ly = third-order dispersion length T3/|Bs|, (3.15)

Lne = nonlinear length= 1/(yP), (3.16)
Lss = self-steepening lengtk apTo/(YPo), (3.17)
Lk = Raman length= To/(TryP), (3.18)

whereTy is the pulse width. The significance of a propagation effact loe roughly estimated by the ratio
of the total propagation distantg, to the characteristic length. Hence a phase conjugatidersyshould
be designed such that the characteristic lengths of uncosaped propagation effects are much longer than

Ltotal- This is demonstrated next in the numerical simulations.

3.3 Numerical analysis

As a numerical example, considly = 1550 nm, two dispersion-shifted fibers, each with lerigthy /2 =1
km, parameterg, = —1 p/km, Bz = 0.1 ps/km, y = 1.5 W-1km~1, a = 0.2 dB/km, Tg = 3 fs, a temporal
or spectral phase conjugator in the middle, an amplifier ¢t éher end to compensate for loss, and a super-

Gaussian input pulse,

A = VRoexr-5(1 )7 (319

with To = 200 fs, and peak powép = 1.7 W. The peak power is chosen to be one-tenth of that of a funda-
mental soliton, such thai,ss= 2 km,Lp = 0.04 km,L, = 0.08 km, and_y, = 0.4 km. Other characteristic
lengths are too long to be significant. Singg is comparable thyq5 While much longer than the dispersion
lengths, we expect nonlinear effects to be observable batdignificant than dispersion effects. The output
pulses with and without compensation schemes are plott&ifjif8.2. SPC reconstructs the input pulse at
the output almost perfectly, while the TPC output pulse gniicantly distorted by third-order dispersion.
At this power level, SPC has the advantage over TPC for thedds ability to compensate for all important
linear and nonlinear effects together with an amplifier.

In practice, SPC can be performed by spectral holographwgdjrt-pump four-wave mixing [10] or spec-
tral four-wave mixing [11]. If SPC is to be used in a commutima system, one must perform time reversal
only on each time slot or a group of slots, within the time vawdbf the SPC device. A synchronous clock,
in the form of pump pulses, will therefore be required, utfoately. The pulses also need to be periodically

conjugated before they breach adjacent time windows. scise solitons are preferred because their broad-
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Figure 3.2: Input and output pulses with and without compdos schemes, when a 1.7 W 200 fs super-
Gaussian pulse propagates for a total distance of 2 km.

ening is much slower than conventional pulses and the fregyuef conjugation can be minimized. We note
that periodic conjugation is also required in other schefoeslifferent reasons, such as that suggested by
Pinaet. al, to satisfy the path-averaging assumption.

Since SPC can compensate for distortions not compensaté&®®y and vice versa, we propose that a
hybrid scheme combining SPC and TPC can offer superior pedioce. An example would be to sandwich
a temporal phase conjugator with two midway SPC systems, that the Raman effect uncompensated in a
SPC system can be compensated by the TPC system, at least ¢odiar. More rigorous analysis is required
to fully estimate the performance of a hybrid scheme.

Our second numerical example tests the compensation digipatnf SPC and the hybrid scheme for
multiple solitons. It has been suggested that TPC can cosapeffor soliton interactions [12]. Fig. 3.3 plots
the output pulses obtained from various compensation setiéon the same parameters as the first example,
but with a total length of 1 km and a 17 W alternativetyphase-shifted sech soliton train representing the
bit sequence 10110111. SPC undoes soliton interactionpusd distortions better than TPC in this case,
while the hybrid scheme performs slightly better than SPi@s €an be attributed to the fact that the hybrid
scheme has more phase conjugation stages for the sameetagti.| The hybrid scheme, however, can also
compensate for the Raman-induced frequency shift, whiohatsbe compensated by SPC alone. The mean
frequency shift of the TPC output is calculated to be +0.082,that of the SPC output is0.16 THz, while
that of the hybrid scheme is only0.027 THz.
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Figure 3.3: Input and output pulses with and without comp&os schemes, when multiple 17 W 200 fs
solitons propagates for a total distance of 1 km.

3.4 Conclusion

In conclusion, we have proven that SPC can compensate theatbnsidered linear and nonlinear distortions
to optical pulses if loss and intrapulse Raman scatterimgbeaneglected. Moreover, SPC and a hybrid
scheme combining TPC and SPC are both shown numericalljaoldtter compensation of pulse distortions

and soliton interactions than TPC for femtosecond pulses.
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Chapter 4

Spectral phase conjugation with
cross-phase modulation compensation

4.1 Introduction

Spectral phase conjugation (SPC) [1] is the phase conpmafiindividual spectral components of an optical
waveform, which is equivalent to phase conjugation and tieversal of the pulse envelope. Joubsdral.
prove that midway SPC can compensate for all chromatic digpe[2]. In the previous chapter we prove
that midway SPC can simultaneously compensate for seephredulation (SPM), self-steepening and dis-
persion [3]. The physical implementation of SPC is first gtgd by Miller using short-pump four-wave
mixing (FWM) [1], and later demonstrated using photon echd]4spectral hole burning [6, 7], temporal
holography [2], spectral holography [8], and spectraléhneave mixing (TWM) [9]. The FWM scheme is es-
pecially appealing to real-world applications such as camications and ultrashort pulse delivery due to its
simple setup. However, low conversion efficiency and ptcaserr effects make a practical implementation
difficult.

In this chapter we derive an accurate expression for theubudieer when the conversion efficiency,
defined as the output idler energy divided by the input signalrgy, is high. We prove that if signal ampli-
fication is considered, the SPC process remains intact andotfiversion efficiency can grow exponentially
with respect to the cross-fluence of the two pump pulses, aoaapwith a quadratic growth predicted in
Ref. [1].

As the theoretical conversion efficiency approaches 100Bicwis required for the purpose of nonlin-
earity compensation, parasitic effects begin to hampeeffictency and accuracy of SPC. The main parasitic
effectis cross-phase modulation (XPM) due to the strongmaproblem that similarly plagues conventional
temporal phase conjugation schemes [10]. We suggest a mathbd to compensate for XPM by adjusting
the phases of the pump pulses appropriately. We show thheory, this method can fully compensate for
the XPM effect.

Finally, numerical analysis is performed to confirm our pcddns about the conversion efficiency and
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XPM compensation. Pump depletion is also addressed byhfgétdimensional simulations.

4.2 Spectral phase conjugation by four-wave mixing

X
A, (1)
Z
As (1)
—
NE) Id
~—
A (1)
— —
z=-L/2 L 7= L2
Aq (1)

Figure 4.1: Setup of SPC by four-wave mixir(t) is the signal pulséi,(t) andAq(t) are the pump pulses,
andA (1) is the backward-propagating idler pulse. (After Ref. [1])

The configuration of spectral phase conjugation by fouremvamixing introduced in Ref| [1] is drawn in
Fig. 4.1.A, andAq are the envelopes of the pump pulses propagating downwardpaward, respectivelyls
is the forward-propagating signal envelope; @ik the backward-propagating idler envelope. The coupled-

mode equations that govefy, Aq, As andA; can be derived from the wave equation and are given by

_ Ay 1A

X vt JVI2AAAG + (| Ap[? +2Ag? + 2 Asf? + 2| A[?)Ap, (4.1)
%*%% = JVI2AAA, + (21Ap? + |Ag? + 21As” + 21 P)Ag), 4.2)
%* %07/? = JVI2A0AqAT + (21Ap [ +2|Aql? +|As + 2| A A, (4.3)
—%ﬂ},% = JVI2ApAGAS + (2|Ap[? + 2 Ag|* + 2|As]” + [AP) A, (4.4)

o= 3%2123)7 (4.5)

wherevy andv are group velocities in thedirection and the direction, respectively, ang} is the refractive
index. Diffraction and group-velocity dispersion are megéd. The spatial dependencefgfon z can also
be suppressed if the illumination is uniformarand undepleted. If we further assume that the thickness of

the mediund is much smaller than the pump pulse width, then the depeedamthex dimension can also
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be neglected.
The zeroth-order solution is the linear propagation of tieiming waves. Let the zeroth-order solution

be

AT () = Aglt), (4.6)
AP (1) = Aglb), (4.7)
AQzt) = F(t—s), (4.8)
A%zt) = o (4.9)

The first-order solution can then be obtained by substijtie zeroth-order solution into the right-hand side
of Egs. [(4.3) and (4.4). Each of Egs. (4-1%.4) has a single wave mixing term (first term on the right-
hand side) and four phase modulation terms, which genedatprt the pulses. With the subsitutions only
Eg. (4.4) has a nonzero wave mixing term, and the outputN(er%,t) in the first order is shown to be the
SPC of the input signal [1],

L. L e
Ai(l)(—é,t) = jF (—t+zl)/_m2yvAp(t’)Aq(t’)dt’, (4.10)
and the conversion efficiency is
o AL L 4ry244
© AT (=5 t)|2dt o
0 f - :M 5 t’;:Zdt’ =1 J2yvhplt)Aq(t) I, (4.11)
0 \S -2

assuming that either of the pump pulggsandAq is much shorter than the input sigrfaland the medium

is long enough to contain the signal. Conceptually, thetshamp pulses take a “snapshot” of the signal
spatial profile, which is reproduced as the idler. Since dherihas the same spatial profile as the signal but
propagates backwards, the time profile is reversed.

To summarize, in order to perform accurate SPC, the follgwionditions should be satisfied:

L d
—=>>Ts>> (TporTg) >> —, (4.12)
Y Vy

whereTs is the signal pulse width, arij, and Ty are the pulse widths of the two pumps.

4.3 High conversion efficiency with signal amplification

When the conversion efficiency is high, mixing of the pump amel generated idler can also amplify the
signal, as in the case of parametric amplification. In thitise we derive accurate expressions for the output

idler and the conversion efficiency in such a case. Assunfiagthe pump pulses are short, unchirped,
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and undepleted, and phase modulation terms are negleceedanvderive a closed-form solution for the
conversion efficiency. Egs. (4.3) and (4.4) then become

VdAS(z,t) n 0As(z,1)

0z ot = JOOA(z1), (4.13)
SOAZD L OMED sz, @14)
whereg(t) = 2yvAp(t)Aq(t). (4.15)
We first take the complex conjugate of Eq. (4.14),
OAZD IRZY g g, (4.16)

0z ot

and letAs andA; be the Fourier transforms & andA’ with respect ta, respectively,

As(k,t) = /mAS(z,t)exp(ijz)dz, (4.17)

A(k,t) = /_O:OAi*(z,t)exp(—sz)dz (4.18)

Note thatA, is the Fourier transform of the complex conjugatéofEqs. (4.13) and (4.16) become

. dAs .
jKVAs+ == = J9OA, (4.19)
. A . -
kAN = A (4.20)

We multiply both sides of Eq. (4.19) by ekjxvt) and both sides of Eq. (4.20) by €xpjkvt),

. .~ OA _ .
eXp(JKVt)(JKVAs-FT'?S) = jo(t)exp(jkVH)A;, (4.21)
. . A _ .
expl—jKv) (- jivA + TF) = g (1) exp(— jKkvDAs (4.22)
or equivalently,
d . ~ ) ) -
SlexpikvOA] = jg(t) expl(jkv)A, (4.23)
d . ~ . ] -
57 EXP—IKVDA] = —]g"(t) exp(— jkVt)As. (4.24)
Then we make another set of substitutions,
Alk,t) = exp(jkvt)As=exp(jKkwt) /w As(z,t)exp(—jkz)dz, (4.25)

B(k,t) = exp(—jkvt)A :exp(ijvt)/oc A (zt)exp(— jkz)dz, (4.26)
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Egs.|(4.23) and (4.24) become

Z—? = jg(t)exp(2jkvt)B, (4.27)
JB . .
5= —jg*(t)exp(—2jkvt)A. (4.28)

The exponential terms on the right-hand side have a frequ2ke. To estimate the magnitude of this
frequency, it is best to first consider the linear propagatibthe signal and idler envelopes, before wave

mixing occurs,

oA OAs
oA OA
WIALN (4.30)

Fourier transforms iz as well ad give the dispersion relation for the envelopes,
|kv| = |Q], (4.31)

which is consistent with the definition of group velocity= %’. Q is the frequency variable in taking
the temporal Fourier transform of the signal and idler espes, and has a maximum magnitudel/Ts.
From Egs.[(4.27) and (4.28) it can be observed that wave miaes not alter the spatial bandwidth of the
envelopes, therefore has the same order of magnitude throughout, ne 1/Ts << (1/Tp or 1/Tq). o(t)
has a duration shorter than bdthand Ty, so exg2jkvt) oscillates relatively slowly compared gt). Say

g(t) is centered at= 0, we can then make the assumption
g(t)exp(2jkvt) = g(t). (4.32)

The coupled-mode equations (4.27) and (4.28) become

JA .
= iaws, (4.33)
0B -
i —jg (HA. (4.34)
The initial condition is
L L z
As(z, E/) = F(_?V_V)’ (4.35)
L
Ai(z, —z—v) = 0. (4.36)
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The initial condition forA andB can then be obtained from the substitutions, Eqgs. (4.25)426). Define
g(t) = |g(t)|expjB(t), and assume th&k(t) is a constant. Eqs. (4.33) and (4.34) can now be solved to give

AK,t) = AK,—— cosﬂ/ t')|dt'], (4.37)

B(k,t) = —jA(K, ——)exp(—JG sml’{/

)|dt']. (4.38)
The final solution forAs andA is
As(zt) = F(t—- cosl{/ t')|dt'], (4.39)

A(zt) = JF*(— t—f)exp(je smf’{/ t')|dt']. (4.40)

As the idler exits the medium at= f% andt = sz the pump pulses have long gone, hence the upper integral
limit can be effectively replaced by. The lower limit can also be replaced byo, since the pump pulses

have not arrived when the signal enters the mediunmPZLv. Hence
. L N °°
A(=5.0 = IF"(-t+ ) exp(6)sinfi [ [g(t)dt) (4.41)

This solution is consistent with Eq. (4.10), the first-orég@proximation in the limit of small gain. The

conversion efficiency is

© (A (_L
LolA( it)‘ dv =sinf?( [ i2wA(t)Aq(t)ldt (4.42)
2

")|2dt!
This result shows the exponential dependence of the caoweefficiency on the cross fluence of the two

pump pulses.

4.4 Cross-phase modulation compensation

With the undepleted pump approximation, the main nonlird@ct besides wave mixing is the cross-phase
modulation on the signal and the idler imposed by the strangp Mathematically this can be observed
from Eg. (4.3) and Eq[ (4.4), where the XPM terms are the Kragpart from the wave mixing terms. These

effects are previously neglected in deriving Eq. (4.42).
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With XPM terms included, the coupled-mode equations become

0As(z t) n 0As(z,t)

20 ORZU - jgmm et + ez, (@.43)
SOAZD L OMED sz + oAz, (@.49)
whereg(t) = 2Ay(t)Aq(0), (4.45)

ct) = 2w[lAp(t)*+[Aq()?]. (4.46)

XPM effects are detrimental to the SPC efficiency and acgufachigh conversion efficiency is desired, as
it introduces a time-dependent detuning factor to the waixéig process.

To solve Eqgs/(4.43) and (4.44), we follow similar proceduae in the previous section by performing a
Fourier transform with respect wand making the following substitutions:

AKk,t) = exp[ijt—J/ Ndt’ /mAs(z,t)exp(—sz)dz, (4.47)

B(k,t) = exp[ijthrj/ c(t’)dt’]/mAi*(z,t)exp(ijz)dz (4.48)

We obtain the following:

0 ) . t

7’:‘ = ]g(t)exp[—Zj/_mc(t’)dt’]B, (4.49)
t

% = —jg*(t)exp2] [ wc(t/)dt/]A. (4.50)

Egs. [(4.49) and (4.50) are difficult to solve analyticallyt a special case exists when the phaseg(of

exactly cancels the XPM term,
't
o) = B+2 / o(t')dt. (4.51)

Egs.|(4.49) and (4.50) are then reduced to

AA . .
5t = lo)exn(jéo)B, (4.52)
9B . .
ot = —llot)[exp(—j6o)A (4.53)
The general solution is
Azt) — F(t—E)exp[j / t')dt'] cosH / ¢)[dt], (4.54)

A = JF(-t—2)explifo+ | / "\dt smh{/ g(t)]dt], (4.55)
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and the output idler is
L ek L ; N RPN ® INPTY
A(=50) = IF*(~t+ o Jexdio+ | [ ct)d]sini [ g(t)/at] (4.56)

This solution is the same as Eg. (4.41), the output idleravititonsidering XPM, apart from a constant phase
term exfd/”,, c(t’)dt’], which does not affect the pulse waveform. If weAgft) = |Ap(t)|expjBp(t)] and
Aq(t) = [Aq(t)|expdjBy(1)], then from Eq.[(4.51) the actual phase adjustments to thepguurises are given

by
Bp(t) + 64(t) = (9o+4yv[oo A ()] + |Aq(t) [%dt. (4.57)

Quialitatively, by adjusting the phases of the pump pulsesraling to Eq.|(4.5[7), we can utilize the wave

mixing process to introduce phase variations to the signdlthe idler, so that the cross-phase modulation
can be exactly canceled. In practice, the phase variatidgheopump pulses can be introduced by various
pulse shaping methods, for example, using a 4f pulse shapgriThe phase correction can be introduced to

either or both of the pump pulses as long as the condition if£E§7) is satisfied.

4.5 Numerical analysis

To verify our derivations, we obtain numerical solutionszafs. [(4.43) and (4.44) by a multiscale approach.
In this approach successively higher-order solutions htaimed by substituting lower-order solutions into
the right-hand side of the equations, until convergenceashed. For the following simulations, the pump
and the input signal are assumed to be
t2
a72)
p
1+

F(r) = Ao{exp[- =

>
©
—
—
=
I
£
—
=
Il

exp(— (4.58)

)2]+%exp[

T+ 2Ts
Ts

1
2

T—2Tg
- 7] } (4.59)

To confirm that the SPC process is still accurate when theassion efficiency is high, we first consider
the case in which XPM is neglected. Figure 4.2 shows a ploh@famplitude and the phase of the output
idler pulse envelopeq(—%,t) compared with the input signag(—%,t), using parameters similar to Ref. [9]
and polydiacetylene, a material with the highest off-resarthird-order nonlinearity reported [11], as the
wave mixing medium. The conversion efficiency is 100% wittotalt pump energy of only 12.8 nJ from
the numerical analysis. From Fig. 4.2 it is clear that thepotitdler is an exact, time-reversed and phase-

conjugated replica of the input signal.
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Figure 4.2: (a) Amplitude and (b) phase of output idler @;dilhes)Ai(—%,t) compared with input signal
(dash Iines)As(—%,t). XPM is neglected in this example. As predicted, the outglgriis time-reversed
and phase-conjugated with respect to the input signalniReteas used ang = 1 x 10~ 11 cm?/W, np = 1.7,
Ao =800 nm,L=2mm,d=5um, Ts = 1 ps, T, = 100 fs,E, = 12.8 nJ, pump fluence %—3 Conversion
efficiency is 100%.
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4.5.1 Conversion efficiency

Figure 4.3 is a plot of conversion efficiencies against fotamhp energy obtained from theory and simulations,
using the same parameters as for the previous numericalpdsaihe dotted curve is a plot of Eq. (4111), the
result from Ref. [1]. The solid curve is a plot of Eq. (4.4etconversion efficiency obtained by including
signal amplification but neglecting XPM. The crosses aralte$rom a numerical simulation of Egs. (4.13)
and|[(4.14), validating the closed-form solution we derilke triangles are results from a numerical simula-
tion of Egs.[(4.3) and (4.4), which also include phase mdihnaerms. It clearly shows that XPM becomes
detrimental to the conversion efficiency as the pump energseases. Finally, the circles are a numerical
simulation that includes all nonlinear terms and XPM congagion according to Ed. (4.57). The numerical
results confirm the accuracy of our conversion efficiencyvdéon, demonstrates the detrimental XPM effect

on conversion efficiency, and proves that our compensatithaa can indeed undo the XPM effect.

Conversion efficiency comparison
1.6 T T

14

= = first-order

= theoretical (sinhz) ¢’

X simulated (no XPM) ’
simulated (with XPM) 4

[iN
T

O simulated (with XPM compensation) ’

Conversion efficiency
o
[oe]

o
=)

0.4

0.2

Pump energy (nJ)

Figure 4.3: Conversion efficiencies from simulations coregawvith predictions from first-order analysis and
coupled-mode theory. Simulation results agree well withpted-mode theory. See caption of Fig. 4.2 for
parameters used.

4.5.2 Demonstration of cross-phase modulation compensati

Figure 4.4(a) and (b) plot the output idIA{(f%,t) compared with the SPC of the input sign@@l(f%, —-t),
with XPM included, using the same parameters as before. fliceeacy is reduced from 100% to 34% and
the accuracy of the SPC operation suffers due to the XPMteffégure 4.4(c) and (d) plots the same data,
but with the phase of the pump pulses adjusted according.t¢4E5¥) and plotted in Fig. 4.5. The accuracy
of the SPC operation is restored by the XPM compensationttendfficiency is back to 100%.
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Figure 4.4: (a) and (b) plot theormalizedamplitude and phase of the output idm(—%,t) compared to the
SPC of the input signaﬂg(—%, —t), respectively, when XPM is present. The amplitude plotnarenalized
with respect to their peaks. The output idler is distorted #re conversion efficiency is only 34%, much
lower than the theoretical efficiency 100%. (c) and (d) phet $ame data, but with XPM compensation. The
efficiency is back to 100% and the accuracy is restored.
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Figure 4.5: Plots of amplitude and phase of one pump pulsk id#al phase adjustment according to
Eq. (4.57) in the time and frequency domain. Top-left: terapenvelope; bottom-left: temporal phase;
top-right: envelope spectrum; bottom-right: spectralgghaThe simple pulse shape should be easily pro-
duced by many pulse shaping methods.
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4.6 Beyond the basic assumptions

4.6.1 Pump depletion

All of our derivations so far assume that the pump is undepletf the signal becomes comparable to the
pump, then the pump can no longer sustain a fixed gain, whigingé¢o depend on the signal field across
z. Mathematically this means that the right-hand sides of E44) and[(4.2) become comparable to the
left-hand sides. In this case the pump would be depletedywanchn no longer expect the SPC operation to
be accurate. To avoid pump depletion we therefore requieigint-hand sides of Egs. (4.1) and (4.2) to be

much smaller than the left-hand sides, or roughly speaking,

Aol >> 2vIAGIAlAgld, (4.60)
nOdTS

E o 4.61

® Noy+/T (4.61)

wherekE; is the signal energy ang is the free-space impedance. The signal energies shouldtesmaller
than the rough signal energy upper limits established by(4§1) in order to avoid pump depletion. A low
signal energy also avoids distortion due to SPM.

To investigate the effect of pump depletion, we perform e¢hlénensional simulations ix z t by nu-
merically solving Eqs/ (4.1), (4.2), (4.3), and (4.4) sitankeously.

The first example assumes the same parameters as before, sigthal energy of 1 pJ, much below the
pump depletion limit, calculated to be 1 nJ from Eg. (4.61PNKis included along with XPM compensa-
tion. The conversion efficiency from the simulation dropgtgly to 92% due to a finite medium thickness.
However, the SPC process still remains accurate with tHasion of thex dimension.

On the other hand, with a signal energy of 5 nJ, much above thgppepletion limit 1 nJ, Fig. 4.6
plots the output idler from the same simulation. As can ba $e®n the movie, the pump pulses are highly
depleted, and from Fig. 4.6 it can be seen that the top of tlee isl flattened due to gain saturation. The

conversion efficiency is reduced to 32%.

4.6.2 Other nonideal conditions

Besides pump depletion, other nonideal conditions alsxtthe accuracy of the SPC process. If the pump
pulses are not short enough, then from the first-order swluti Ref. [1] it can be seen that the output pulse
becomes the convolution of the pump and the signal. The medlso needs to be long enough to contain
the whole signal pulse, otherwise the output idler will hentrated.

If the medium is thick, thex dimension can no longer be ignorel,(t) andAq(t) should be replaced by
Ap(t+x/vx) andAq(t — x/Vy), respectively, which do not directly affect the generatlidritemporal pulse
shape. However, the idler beam will acquire additionaldvanse patterns i, which will distort the pulse

shape if diffraction or waveguiding is also taken into aagowAnother problem with a thick medium is that
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Figure 4.6: Amplitude and phase of output idler and inpunaidor the wave mixing process, with a signal
energy of 5 nJ, much above the pump depletion limit, to dertnatesthe effect of pump depletion.

SPM will chirp the pump pulses and reduce the SPC efficiendyamguracy. That said, since SPM is not
directly involved with the wave mixing process, it can bequ@pensated by pulse shaping if it becomes a

problem.

4.7 Conclusion

In conclusion, we have derived new solutions for the spkglrase conjugation process by four-wave mixing.
When signal amplification is significant, the SPC process le&s Ishown to remain accurate and achieve
higher efficiency. We have also proposed a method to compef@aXPM, which severely reduces the
efficiency and accuracy of SPC, by adjusting the phases optinep pulses accordingly. With a higher
predicted conversion efficiency and an effective methodtopensate for XPM without sacrificing accuracy,
we are hopeful that SPC by four-wave mixing can finally be expentally implemented and utilized for

real-world applications.
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Chapter 5

Spectral phase conjugation by
guasi-phase-matched three-wave mixing

5.1 Introduction

Conventional phase conjugation schemes perform the sedqatiase conjugation with spectral inversion [1].
The output of such schemes has a spectrum that is phase ateguand spectrally inverted with respect to
the input. In the time domain, this is equivalent to phasgugmation of the pulse envelope, so the scheme
is also called temporal phase conjugation (TPC) [2]. A dittkind of phase conjugation, which performs
phase conjugatiowithoutspectral inversion, is first suggested by Miller [3]. Thepuitspectrum of such a
phase conjugation scheme is the phase conjugation of thesppctrum, and the scheme is therefore called
spectral phase conjugation (SPC). In the time domain, theubpulse envelope is the phase conjugation and
time reversal of the input pulse envelope.

While TPC can compensate for even-order dispersion [1};@ebe modulation [4], and intrapulse Ra-
man scattering [5], SPC can simultaneously compensatdlfohromatic dispersion [6], self-phase modula-
tion, and self-steepening [2], thus making it attractivedtirafast applications such as optical communica-
tions. The time reversal operation associated with SPGasweful for signal processing [7].

The physical implementation of SPC is first suggested byeavlilising short-pump four-wave mixing
(FWM) [3], and later demonstrated, for example, using phaoho [8, 9], spectral hole burning [10, 11],
temporal holography [6], spectral holography [12], andcsaé three-wave mixing (TWM) [13]. The FWM
scheme is especially appealing to real-world applicatihresto its simple setup, and its efficiency is recently
shown to be significantly higher than previously considdied. However, the FWM scheme requires accu-
rate synchronization of two short pump pulses, which mayeaméhe its robustness. A setup that combines
the elegant geometry of Miller’s scheme and the robustnieB¥/ can therefore be advantageous. It is also
of fundamental interest to investigate if the use of secoratr nonlinearity can provide a higher efficiency

than the FWM configuration.
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5.2 Configuration
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Figure 5.1: Geometry of SPC by quasi-phase-matched thame-mixing.As(t) is the incoming signal pulse
with a carrier frequency, andAp(t) is the second-harmonic pump pulgg(t) is the generated idler pulse.
Quasi-phase matching is achieved by(@ grating with periodA alongx.

The proposed configuration is shown in Fig. 5.1. It is simtitesurface-emitting second-harmonic gener-
ation [15, 16], transverse-pumping parametric amplifaafil 7], and transverse-pumping phase conjugation
[18]. The difference in our proposed system is that the puuipgs\,(t) is much shorter than the signal pulse
As(t). Therefore, the pump pulse takes a “snapshot” of the sigriaépand when phase matching is satisfied,
the generated idler pulgg(t) is a backward-propagating, phase-conjugated, and tirerged replica of the
input signal pulse. The second-harmonic pump pulse can bergted by conventional second-harmonic

generation methods.

5.3 Theory

To achieve phase matching we must have
wherek; is the wave vector of the idleks is the wave vector of the sign#;, is the wave vector of the pump,
andK = 2% is the x(?) grating vector. In our geometigs = —kj, SOK = —kp, or

A = Mol2w0) (5.2)

~ n(2ap) ’

where Ao(2ap) is the free-space wavelength adx?2and n(2ap) is the refractive index at@. In other
words, the grating period should be equal to the seconddrmwavelength in the medium, which is in
general submicron. & grating with such a small period can be fabricated, for exanip AlGaAs/GaAs

heterostructures [16, 19], asymmetric coupled quanturts\jizgf], poled-polymer waveguides [21], and KTP
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crystals [22].

Notice that in our scheme the(? grating is only used to cancel the carrier wave vector of tikap
pulse, while the additional wave vector due to the broad Wédtth of the pump pulse is accounted for in
the coupled-mode formalism below. Provided that such gplaase matching is achieved, the coupled-mode

equations of pulse envelopég, As, andA; can be derived from the wave equation, and are given by

oA, 1 0A, n

ety 5 :2jyn(sz)AsAi, (5.3)
%+V1X07Atq =21Vﬁ%’% (5.4)
%*%% = V(A +AQA, (6.5)
e T (5.6)
y— %7 (5.7)

whereA is the upward-propagating second-harmonic wave, whictbeameglected in general but included
here for completeness, is the group velocity at@, alongx, v is the group velocity atwy alongz, andng is
the refractive index ady. Diffraction and group-velocity dispersion are neglected

If a waveguide structure is used, thgrshould also include an overlapping factor that describes th

overlapping extent of the signal and idler waveguide modes,

wox ?
2cny

y= S5 [drs, gy (5.8

wheres andyj; are the normalized waveguide mode profiles of the signal laaétter, respectively.

If the right-hand sides of Egs. (5.3) and (5.4) are much smdfian the left-hand sides, then the pump
can be assumed to be undepleted. Moreover, we can neglectlifmension if the pump pulse spatial width
W Tp is much longer than the thickness of the medidinT he resulting coupled-mode equationshglandA;

are

VaAS(Zat) 0AS(th)

0z + ot = ]g(t)Ai*(Z’t)v (5.9
*VaA}(zz’t) N dA.'a(tz,t) _ gAY, 610
9(t) = Who(t), (5.11)

Equations[(5.9) and (5.10) are completely identical to theations that describe the signal and the idler in
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the FWM geometry [14]. The boundary conditions are assumée to

(5.12)

1) =0. (5.13)

Assuming thag(t) = |g(t)|exp(j8), 6 is constant, and the pulse widthAf is much shorter than that @,
Egs. (5.9) and (5.10) can be solved using the same methodlmkbin Ref.[14]. The solution is then given
by

As(zt) = t—f )cosh / t)[dt'], (5.14)

A(zt) = jF*(-t— Q)exp(je)sinh[/_w lg(t")|dt']. (5.15)

The idler exiting az = —5 is
- 1= L i0)sint [ " dt! 5.16
A(=5:0) = IF (~t+ o Jexplj@) sini [ [wAy)]dY]. (5.16)

The conversion efficiency, defined as the input signal endrggled by the output idler energy, is

L t)2dt
n S IA(— i )|
2

%% 1 As(— \Zdt/:Si”hz[./ [WA(t')|dt]. (5.17)

Similar to the FWM configuration, the following conditionsosiid be satisfied for accurate SPC operation:

L d
=>>Ts>>Tp>> —, (5.18)
\% Vy

whereTs is the pulse width of the signal.

5.4 Comparison with the FWM scheme

To compare the efficiency of the TWM scheme with that of the FWlklesee, we first compute the pump

energyE, required to achieve a certain conversion efficiendyy assuming that the pump pulse is a Gaussian,

2
Ap(t) —Apoexp(—thpz)v (5.19)
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V= ¢/ng, and the cross-section area of the pump bealal i€, is then given by

Ld r p p
Ep= o [ IAn(t) at (5.20)
ngLd L

whereng is the free-space impedance. Compare this with the totalppeinergy required for the FWM

configuration, assuming that the two pump pulses are idantic

, o Anfld
nld . 4
= ——sinh , 5.23
o, S H/T) (5.23)

whereny, is the refractive index of thg(®) medium. The TWM scheme is thus more efficient when

v J(woTp) ”O[Xéz)]z . (5.24)

Sinn 1) T

For example, foig = 800 nm, T, = 100 fs, a GaAs/AlGaAs heterostructure wit? ~ 50 pm/V,ng ~ 3,

n = 100%, the left-hand side of Eq. (5.24) is about ¥bcm?/W, which is close to thew, of CS, but
much lower than that of conjugated polymers 011 cn2/W [23]). That said x (2 of asymmetric coupled
GaAs/AlAs quantum wells can theoretically reach 30 nm/\hia far infrared regime [24], potentially giving
rise to a much lower pump energy requirement. The TWM schesweaiminates the need of the second

pump pulse and avoids the difficulty in synchronizing twaaghort pulses in a thin medium.

5.5 Numerical analysis

In order to confirm the validity of the approximations in ohebretical predictions, we perform numerical

simulations of Egs/ (5.9) and (5.10), using GaAs/AlGaAshattructure as the nonlinear medium, a Gaus-
sian pump pulse witfT, = 100 fs, and pump enerdy, = 2.1 uJ. The incoming signal is assumed to be
1

)2]+Eexp[

F(t) = Ao —exp[ - ¢

t+2Ts
Ts

1
2

=27}, (529

with Ts = 1 ps. The calculated conversion efficiency is 100%, consistéh the theoretical efficiency from
Eq. (5.17). The signal and idler pulse shapes from the nwaleainalysis are plotted in Fig. 5.2, which
confirms that SPC can indeed be accurately performed by TWM réfuired pump energy 2(4J is much
higher than that theorized in Ref. [14] for the FWM scheme gigiolydiacetylene~ 10 nJ), but it is still
much lower than the pump energy used in Ref. [13JI(mJ).

Using the same parameters, Fig. 5.3 plots the theoretioakesion efficiency calculated from Ef. (5.17)
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Figure 5.2: Plots of intensity and phase of incoming sigmal autput idler from numerical analysis. It is
clear from the plots that the idler is a phase-conjugatedtiamelreversed replica of the signal, confirming
our theoretical derivations. Parameters usedyafe= 50 pm/V,ng = 3, L = 1 mm,d = 5 ym, width in
y=d, E; =21 uJ, pump fluence= % For such dimensions waveguide confinement of the signattend
idler is necessary.

and that obtained from numerical analysis against the pumepgg. The numerical results agree quite well
with the theoretical prediction, although the former igbtly lower, due to slight deviation from the ideal

conditions stated in Eq. (5.18).

5.6 Competing third-order nonlinearity

With a high pump intensity, competing third-order nonlirigein the form of cross-phase modulation (XPM)
can be detrimental to the SPC accuracy and efficiency in the saanner as for the FWM scheme [14]. One
way to control XPM is by the same XPM compensation methodrilesd in Ref. [14], which uses the wave
mixing process to introduce phase variations to the signdlthe idler, so that the Kerr phase modulation
due to the strong pump can be exactly canceled. The thearptimof is very similar to the FWM case [14],

and the pump phase adjustment is
t 3oy
B(t) = 6o+ [ %Mp(t’ﬂzdt’. (5.26)

This phase adjustment is an almost linear function of timegaivalently a center frequency shift. Therefore,

if this compensation method is used, th& grating period should also be adjusted to account for theewav
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Conversion efficiency comparison

18 T T T

- theoretical (sinh)
= = simulated

Conversion efficiency

0 I I I I
0.5 1 15 2 25 3

Pump energy (1 J)

Figure 5.3: Theoretical conversion efficiency derived fi&m (5.17) and that from numerical analysis plotted
against pump energy. See caption of Fig. 5.2 for parameses. u

vector change due to the center frequency shift.

5.7 Conclusion

We have proposed a novel SPC scheme by the use of quasi+piadsieed TWM. The advantages of the
TWM scheme over the FWM scheme include the elimination of tlversé pump pulse, higher conversion
efficiency for certain parameters, and possible indepanchemagement of second-order and third-order

nonlinearities.
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Chapter 6

Spontaneous spectral phase conjugation
for coincident frequency entanglement

6.1 Introduction

It has been proven in the two previous chapters that if theetlwvave mixing (TWM) or four-wave mixing
(FWM) parametric process is transversely pumped with shages in a long and thin nonlinear medium,
parametric amplification can be performed, with time rezkand spectral phase conjugation (SPC) [1, 2].
The correspondence between classical parametric ampéficand quantum entanglement makes one won-
der if spontaneous SPC can perform the opposite of whatitsremus-wave-pumped counterpart does, and
realize time anticorrelation or frequency correlation.isTdistinct kind of entanglement is useful for appli-
cations such as quantum-enhanced position and clock symizhtion [3] and one-way autocompensating
guantum cryptography [4]. Various implementations of santanglement have been suggested [5, 6], and
the scheme proposed by Waltetal. [6] looks intriguingly similar to the TWM scheme for SPC [1].nO
the other hand, while TWM is traditionally the preferred noetho generate entangled photons, recent ex-
perimental progress on entangled photon sources usirdydhder nonlinear processes [7, 8] makes FWM
a promising candidate for such a task. In this chapter, weeptioat spontaneous SPC, either by TWM or
FWM, can indeed efficiently generate time-anticorrelatedi famquency-correlated photon pairs.

Our proposed schemes have several key improvements ovdntRaf. [6], and make coincident fre-
guency entanglement much more realizable. First, it isaardh Ref. [6] how phase matching should be
achieved. We propose the incorporation of quasi-phasehingtd¢o satisfy the requirement. Second, we
suggest an alternative FWM scheme, which can be more effigigintfocused femtosecond pump beams.
Third, for good efficiency, cross-phase modulation due &dtiong pump becomes a large parasitic effect
for both schemes. We introduce the use of pump phase mautukaticompensate for cross-phase modula-
tion. We also perform an in-depth Heisenberg analysis ospmtaneous SPC schemes, predicting that a
high gain is possible with current technology. The high gaiables the generation of large-photon-number

frequency-correlated states, which are interesting feir thse in nonlocal dispersion cancellation and noise



43

reduction experiments [9].

Lastly we investigate the use of frequency-correlated giwgenerated by our proposed schemes in the
Hong-Ou-Mandel (HOM) interferometer [10], subject to tesrgd delays, dispersion, frequency shifts, and
temporal phase modulation. Quantum dispersion canagllatithe HOM interferometer with such photons
has been studied [10, 11, 12, 13], but relatively little @titan is given to the distinguishability introduced by
phase modulation in the time domain, for example, via thecapKerr effect, which can be useful in quantum
nondemolition measurements [14]. Ref. [11] studies thectfdf frequency shifts on frequency-correlated
photons, but only in a highly idealized case. Using the fdisnadeveloped for our schemes, we first review
the HOM dip effect introduced by time delays and dispers@mrcbmpleteness, and then study the nonlocal

temporal phase cancellation properties of the entangletbpk.

6.2 Configurations

X 2w, Ap (t)
4

A (1) As (1)
W, W,
- =
z=-L12 L z=L12

Figure 6.1: Spontaneous SPC by TWM.

A () As ()
e | X(3) Id e

z=1L/2

Aq (1)

Figure 6.2: Spontaneous SPC by FWM.

The spontaneous SPC scheme by TWM is sketched in Fig. 6.1hafl¥M scheme in Fig. 6.2. For the
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TWM scheme, the interaction Hamiltonian is
H O W/dx/.dzx(z)f(z)E,(,*)Eé*)Ei(*) +H.c., (6.1)

wherew is the width of the nonlinear medium in tlyedimension,x (2 is the second-order nonlinear sus-
ceptibility, f(z) is the pump beam profil&(*) andE(~) are the positive-frequency and negative-frequency
electric field operators, respectively, and the subscippts i denote pump, signal and idler, respectively.
If the pump is assumed to be classical, the electric fieldaipes can be written in terms of envelopes,
Eéf) O Ap(t+ ) exp(—i2awot —ikyx), B DA;r( o) exp(iant —ikz2) andEiH DAT(t—i—%)exp(iabt—s-ikzz),
wherek, is the pump carrier wave vector, amdndvy are the group velocities inandx, respectively. Unlike
the scheme in Ref. [5], spontaneous SPC places no restrmtithe material dispersion properties as long as
the signal and idler are the same but counterpropagatingsn@therwise the pump beam(s) can be slightly
tilted in thez direction to compensate fo the signal-idler phase mismakble interaction Hamiltonian then

becomes
H DW/no'x/o'ZX )Al( Z)AT( +;Z,)exp —i(kx—%")x] +He,  (6.2)

whereA is the x(@ grating period. Ref. [15] assumes that the transverse diiord is small enough so that
detuning due tdy can be ignored. However, for a realizable sekyps usually on the order of 1/(jum),
while d is on the order of microns for a waveguide. Hence in most dgs&sould not be ignored, and quasi-
phase matching, not mentioned in Ref. [6], is in fact needée. submicrory @ grating period required can
be fabricated, for example, in a GaAs/AlGaAs heterostmectli6]. To avoid space-time coupling, the spatial
pulse width of the pump, on the order of 10@n for a femtosecond pulse, should be much larger than

10 um, so that thex dependence ok, can be neglected is then given by

A O wd/dzx(2> F(2)AnAL(t — s)AT(t + \5/) YHec 6.3)

The FWM process, on the other hand, is automatically phasehm@ due to the counterpropagating

pump pulses. The interaction Hamiltonian is
H Dw/dx/dzx 2ESVESVECVES) 1 HC (6.4)
With similar assumptions as the TWM scheme, the interactiamittonian is given by

H O wd/dzx<3> £(2)Ap(t) Aq(t)A (t - \%W(t + 5) +H.c, (6.5)

which is almost identical to that of the TWM scheme. Hence ame analyze both schemes in a unified
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framework, with the general Hamiltonian

A Dl/dzf(z)g(t)@(t—s)A,T(t+§)+H.c., (6.6)

whereg(t) O x@Ay(t) for the TWM scheme and(t) O x®Ay(t)Aq(t) for the FWM scheme. To the first

order, the wave function is given by [6]

w0 [dnijo) 6.7)
0 /dt/dzgt)f(z)ﬁx;(t - é)A,T(t v \5/)|o> 6.8)
0 [ dex [ daa (5 )g(en+ a)al(@)a(@)0) (6.9)

wheref, g, andai’i are Fourier transforms df, g, and,&;i, respectively. In the time domain, if the width of
g(t) is much more narrow than the width 6fz) divided byv, g(t) can sample the integrand in Eq. (6.8), say
att = 0. Equivalently in the frequency domafncan sample the integrand@t = ¢ in Eq. (6.9). The wave

function becomes
w0 [arg) [atiwal-oATno (6.10)
D/dw’f(%)/dwg(zw)a;(w)aT(w)\o>. (6.11)

The generated photon pair therefore possesses quantunaniicerrelation and frequency correlation. In

summary, for optimal entanglement, the assumption

% >> width of g(t) >> VE (6.12)

X

should be satisfied.

6.3 Conversion efficiency

The efficiency of spontaneous SPC is best studied in the hleésg picture. The coupled-operator equations,

assuming classical undepleted pumps, are given by

(Vaiz + %)As —ig)A +ic(t)As, (6.13)
0 ONar o n o
(f v+ E) = —ig*(t)As — ic(t)A, (6.14)
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where

1
20ng (6.15)
for the TWM scheme and
3%\/)((3)
=—= A A
9(0) = = or— Ao(OAID (6.16)
for the FWM scheme.
3oy ® 2 2
=——(|A A7
o) = = (Aol + A1) (6.17)

is the cross-phase modulation term, which acts as a timerdigmt detuning factor. Cross-phase modulation
is always present in the FWM scheme, while it exists in the fofmompeting third-order nonlinearity in the
TWM scheme. Egsl (6.13) arld (6.14) can be solved in the sameanan the classical SPC analysis [1, 2].
The temporary detuning due to cross-phase modulation cacofmpensated i§(t) is also appropriately
detuned. Quantitatively, the phasegof) should be modulated as [2],

t
B(t) = 6o+ 2 /_ dt'c(t)). (6.18)

6(t) can be approximated by a linear temporal phase, or a ceptpiency shift ofy(t) [2]. In other words,

for spontaneous SPC under the cross-phase modulation, éffegeneration of photon pairs will actually be
most efficient at a center frequency different from the ceptanp frequency in the FWM scheme, or from
half the center second-harmonic pump frequency in the TWMseh This is analogous to the phenomenon
of sideband gain in continous-wave FWM, although now thealignd idler spectra shoulbincidewith
each other. This feature is actually desirable for the FWMes®h since it is easier to separate the scattered
pump from the weak signal and idler by spectral filtering.

The average number of photons in each mode is

ns = C?ng + S (nio+ 1), (6.19)

n =C2nio+ S (no+1), (6.20)

whereC = cosH [dt|g(t)|], S= sinh [ dt|g(t)|], ne is the initial signal photon number, amg is the initial
idler photon number. The number of photon pairs spontatg@enerated in each wave mixing event is

thereforeS?, and the conversion efficiency, defined as the energy of thergeed photons divided by the
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energy of the pump photons, is

~ 2Shwp

r
6p

(6.21)

whered), is the total pump energy. The FWM scheme is more efficient tharTWM scheme wheg(t) of

the former is larger, or, all else being equal,

X(3) éap S X(Z)

(né3) )3 ( gCcLwTy (néZ))g

~—
NI

7 (6.22)

whereTp is the pump pulse width.

For example, polydiacetylene, a conjugate polymer, hg&a~ 10 m?/v2 and né3) ~ 2, while a
GaAs/AlGaAs heterostructure hag(&) ~ 10° m/V and n(()z) ~ 4. For a focused femtosecond pump beam,
sayL ~ 2 mm,w~ 5pum, T, ~ 100 fs, the FWM scheme is more efficient whéis approximately larger
than 1 nJ. Ti:Sapphire laser systems can achieve a pulsgyesfet mJ or more, so the FWM scheme can be
orders of magnitude more efficient. The FWM scheme also haadix@ntage of automatic phase matching
as well as having pump pulses near the fundamental frequémey eliminating the need of quasi-phase
matching and a second-harmonic source in an experimentt sBid, the necessity of synchronizing two
short pump pulses in the FWM scheme may undermine its robestndnile the TWM scheme may be more
efficient for certain parameters and it is relatively eaiefilter out scattered second-harmonic pump from
the signal and idler. For the parameters above, the sigdatiéer gainS’ can achieve 100% for a pump pulse
energy~ 10 nJ with the FWM scheme and 2 uJ with the TWM scheme. For such a relatively high gain
the wave function can have higher-order terms [1},0 5o T"|n)s|n);, whereT = S/C, and the weights
of large-photon-number stat@$" with n > 1 become appreciable whé&h approaches unity. Amplification

of coincident frequency entanglement [17] also becomesibles

6.4 Hong-Ou-Mandel interferometry

In the HOM interferometry, variable delays are introducedhie signal and idler photons, which then pass
through a 50-50 beam splitter and finally the coincidence oéthe two output ports is measured [10]. For
simplicity we also assume that the distances from the tweatlets to the beam splitter are the same. We start

with the more general wave function in Eq. (6.8). The eledtdld operators of the two outputs are given by

Aqa(t) O Asj(+Ls,t) +iA s(FLis b), (6.23)
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whereLs; are the distances travelled by the signal and the idler zea® to the detectors, respectively,

has a negative sign in front because the idler travels badenvdhe coincidence rate is given by [12, 13]

P00 [ d [ dto(y/ AL (ALt Au(t) Aelto) 0) (6.24)
0 /dt+|g(t+ _ L7+)|2[/dL|f(L, —vL)\z—Re/de*(L, —VO)F(L+v)]. (6.25)

wheret, = (t1+12)/2, Ly = (Ls+Li)/2,t_ = (t1 —t2)/2 andL_ = (Ls—L;)/2 is half the signal-idler path
difference. The shape of the HOM dip with respect to the pdfardncels — L; is given by the last term of
Eg. (6.25), which has a width on the orderlgfthe width of the pump beam profilgz). Ref. [11] predicts

thatP; is identically zero for alL_ with perfectly frequency-correlated photons, which isyra special

case wher. — oo,

Steinberget al. predicted [18] and demonstrated [19] even-order dispersancellation in the HOM
interferometer with frequency-anticorrelated photonghWequency-correlated photons, intuition then sug-
gests that one can obtain nonlocal cancellation of dispexsfiall orders, which is proven in Ref. [12]. To see
how this effect manifests itself in our schemes, we shait stéih the general wave function in the frequency
domain, Eq./(6.9), and apply spectral phase to the operaisiras in Ref. [18]. The coincidence rate can be

expressed in terms of frequency-domain operators as [18]

Po 00 [ daor [ deoa 8] (n) 8} ()8 (o)) ) (6.26)
0 [ daor [ daoplg(en + o) P{ T2 %) 2
Re[ (22 (22 exp( k() — ke( )]s — ik (wr) — k(@)L )|} 6:27)

whereks andk; are the dispersive propagation constants of the signaldied respectively. The exponential
term in Eq. (6.27) characterizes the nonlocal dispersimeaiation. If the photons have perfect frequency
anticorrelationg1s infinitely sharpw; = —ay, and we recover the even-order dispersion cancellatiaritgses
in Ref. [18]. If f is infinitely sharp,w, = w;, the exponential term evalulates to 1 @fd= 0 for dispersion
of all orders. Iff is not infinitely sharp and dispersion is only due to time efhe result in Eq. (6.25) is
recovered.

Frequency shifts can be introduced to the signal and thebgldor example, moving mirrors or acousto-
optic modulators via the Doppler effect. Opposite Dopplefts can also occur to the counterpropagating

photons if the source frame is moving alangelative to the detection frame. We can then rewhit@ndA,,
Aq2(t) Oexp(—idasit)Agi +iexp(—idw st)As, (6.28)

wheredws is the signal frequency shift arlity is the idler frequency shift. For intuitiveness we assunag th
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the path delays for both photons are the samégef L = L. P, becomes

o0 [t fatt, — =5)2{ [ dt (v
Re/dt_f*(—vt_)f(vt_)exp[Zi(éws—5m)t_]}. (6.29)

The last term of Eq. (6.29), which is the Fourier transformfgtit)|2 if f(vt) is even, characterizes the HOM
dip with respect to the frequency differen@exs — dw . The width of the dip is on the order sfL, for which
the infinitely sharp dip predicted by Ref. [11] is again a spletase wheh — oo,

The coincidence rate depends on the time-domain operat&s.i(6.24) in the same way as the expres-

sion in Eq. (6.26) depends on frequency-domain operators,

P, 0 / dty / dta (' |AT (t1)AS (t2)Ag (t1) Ao (t2) |00, (6.30)

0 [ den [ deo '] ()8} (2) )z ) ) (6.3)

Hence the coincidence rate obeys a kind of Parseval's salatind the frequency domain results can be
directly applied to the time domain, if we replace frequedoynain operators with time-domain operators,
frequency anticorrelation with time anticorrelation,cfriency correlation with time correlation, and spectral
phase modulation (dispersion) with temporal phase modulat

One can introduce temporal phase modulation to the photpB®ppler shift as mentioned above, or by
cross-phase modulation via a classical pulse in a Kerr mediia more complex phase profile is desired.
Given the Parseval's relation for coincidence, we then etxitve HOM interferometry results with frequency-
anticorrelated photons subject to dispersion to be funatlp the same as the results with time-anticorrelated

photons subject to temporal phase modulation. The coincileate is

P00 [ dtf () P{1- cosr(®) - @(~t) ~ @O+ a(-0)] . (6.32)

whereg; are the temporal phases introduced to the signal and idioph. The even component of temporal
phase is cancelled, as expected. For a linear temporal ghasesultin Eq/ (6.29) is recovered. On the other
hand, time-correlated photons are capable of complet@naltemporal phase cancellation. An analogy with
classical nonlinearity compensation by different phasgugmation schemes can clearly be made; whereas
midway SPC can only compensate for the elastic componertteoKerr effect, midway temporal phase
conjugation can compensate for both the instantaneouselagedi Kerr effects [20].

The Parseval’s relation for coincidence of course holdsfgrkind of interferometer, so any result with
other interoferometers obtained with frequency-antelated photons subject to dispersion can be applied
directly to time-anticorrelated photons subject to terap@hase modulation. For instance, the extensive

study of Mach-Zehnder interferometry with frequency amtielated photons in Ref. [11] can be utilized just



50

as well in the time domain.

6.5 Conclusion

In conclusion, spontaneous SPC schemes by TWM and FWM aresdtadid compared under a general
framework. It is proven that spontaneous SPC is capable rérgéing entangled photon pairs with time
anticorrelation and frequency correlation. The use of gphase matching and four-wave mixing is also
proposed to improve the efficiency. Just as in the classitalyais, pump phase modulation is shown to

effectively compensate for detuning due to cross-phaseutatidn.
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Chapter 7

Spectral phase conjugation via extended
phase matching

7.1 Introduction

In contrast with the more conventional optical phase caajog schemes that perform phase conjugation
with spectral inversion [1], spectral phase conjugatioRGPis the phase conjugation of an optical signal
in the frequency domain without spectral inversion. Eqiandy, in the time domain, SPC is the phase
conjugation and time reversal of the signal complex pulselepe [2]. SPC is useful for all-order dispersion
and nonlinearity compensation [3, 4], as well as opticahaigorocessing [5]. Although SPC has been
experimentally demonstrated using photon echo [6, 7],tspidwle burning [8, 9], temporal holography [3],
spectral holography [10], and spectral three-wave mixifgy/¥) [11], all the demonstrated schemes suffer
from the use of cryogenic setups, nonrealtime operatioaxtsemely high pump energy. Pulsed TWM [12]
and four-wave-mixing (FWM) [2, 13] processes in the transgguumping geometry have been theoretically
proposed to efficiently perform SPC, but have not yet beeerxgntally realized. All the holographic and
wave-mixing schemes also have strict requirements ondlneverse beam profile of the signal, limiting their
appeal for simultaneous diffraction and dispersion corspian applications.

There is a correspondence between classical SPC and quaninoident frequency entanglement, as
shown in Ref. [14] for the transversely pumped TWM [15; 12] &\WM [2, 13] processes. It is then
interesting to see if other coincident frequency entangl@nschemes are also capable of performing SPC,
when an input signal is present. This chapter studies onedf schemes, which makes use of extended
phase matching (EPM)[16] and has been experimentally detradad [17] in a periodically-poled potassium
titanyl phosphate (PPKTP) crystal [18]. Itis shown in Sewfr.3, for the first time to the author's knowledge,
that this EPM scheme is indeed capable of performing SPC jpinchbparametric amplification (OPA), more
efficiently than previous proposals.

The analysis also yields a surprising result, namely thaptirametric gain can be theoretically infinite

even for a pump pulse with finite energy, analogous to badkwawve oscillation, where counterpropagating
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waves are parametrically coupled and can give rise to nhéigsroptical parametric oscillation (OPO)[19,
20, 21, 22, 23, 24, 25]. The reason for the similarity is tiathe scheme presented here, even though the
signal and the idler copropagate with the pump pulse in therktory frame, thegounterpropagate in the
frame of the moving pump puldeecause one is faster than the pump and one is slower. Hemeadving
pump pulse provides both an effective cavity and parame#ii, leading to oscillation. In reality, however,
the interaction among the pulses should be ultimately &ichiby the finite device length. It is shown in
Section 7.4, with a Laplace analysis, that the parametiit gfzould abruptly increase above the threshold,
where infinite gain is predicted by the Fourier analysis, ddinite medium length will always limit the
gain to a finite value. Still, as previous proposals of TWM wmiless OPO have never been experimentally
achieved due to the requirement of a continuous-wave (CW)ppand the difficulty in phase matching
counterpropagating waves, the presented analysis ssgheséxciting possibility that mirrorless OPO can
be realized with an ultrashort pump pulse and a practicéhggleriod for phase matching of copropagating
modes, if a long enough medium can be fabricated and paraffigicts can be controlled. By analyzing the
scheme in the Heisenberg picture in Section 7.5, a high apentis parametric down conversion rate is also
predicted, in excellent agreement with the experimentallteeported in Refl [17]. The result should be
useful for many quantum information processing applicetjcsuch as quantum-enhanced synchronization
[26] and multiphoton entanglement for quantum cryptogya@7]. Finally, numerical results are presented

in Section 7.6, which confirm the theoretical predictions.

7.2 Setup
x Sianal X Signal
igna
' k! k!
‘ K, 5 %,
— t PPKTP S
N NN\ E
y s Y Idler s
Pump L Pump

Figure 7.1: Schematic of spectral phase conjugation (SRQype-Il extended phase matching (EPM). The
signal and idler pulses, in orthogonal polarizations, heateier frequencies afy and «y, while the pump
pulse has a carrier frequency af = ws+ w. The EPM condition requires that the signal and the idler
counterpropagate with respect to the pump, which shouldmshrehorter than the input signal.

Consider the copropagating TWM process (Fig] 7.1), assuthiagthe basic type-ll phase matching
condition ks + ki = kp + 271//\), with a quasi-phase-matching peridd is satisfied. The coupled-mode
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equations are

oA, |, OA

P _ !

aA _ .
= +k.g = [ XsApAY, (7.2)

a o -
’* = XiMAS (7.3)

where A is the pump pulse envelope of carrier frequengy, Asj are the signal and idler envelopes of
frequenciesus andaw, respectlvelykp si are the group delays of the three modgss; = wp73_,ix(2>/(20np_;i)

are the nonlinear coupling coefficients, sj are the center frequencies of the modes suchahatw = wp,
andng s are the refractive indices. Group-velocity dispersiorhiieach mode and diffraction are neglected.
Definetr =t — k’pz as the retarded time coordinate that follows the propagatinmp pulse. The change of

coordinates yields

0Ap
7] 0As
dAZS+(l<é ko) 5 = IXPRA, (7.5)
oA (9 .
aA12 (ki — kp) 0AI =1 XiApAs. (7.6)

Throughout the theoretical analysis, the pump is assumdxk tondepleted and unchirped, so tAgt=

Apo(t —kpz) = Apo(T), hereafter regarded as real without loss of generality.

7.3 Fourier analysis

Equations/(7.5) and (7.6) are space-invariant, if the meali medium length is much longer than the signal

or idler spatial pulse width in the frame pfindt, or

whereTs; is the signal or idler pulse width. One can then perform Feauriansform on the equations with

respect te, as defined by the following,

As(K,T) = ./;O;As(z, T)exp(—jkz)dz, (7.8)

Ao (k. T)

/ " N (2 1)exp—jk2)dz (7.9)



56

Notice thatA?;‘ is defined as the Fourier transform after the conjugatiof; ofThe coupled-mode equations

become
jKAs+ (kg —Kp) AS = jXAp(DA, (7.10)
KAt + (K~ K) f; — —ixiAw(T)As (7.12)
Let
Vs Xi

s =Ks—kp, =k —kp, r = (7.12)

YiXsl

Consider the case in whigh andy; are nonzero and have opposite signs, implying that the lsagpakthe idler
propagate in opposite directions with respect to the puniyis dan be achieved for a range of wavelengths
in KTP. Without loss of generality, assume thyat> 0 andy < 0, so thakg > kj, > ki. Making the following

substitutions,

A:\ﬁ,&sexp(jgr), B:A;*exp(jgr), (7.13)
S 1
one obtains
OA . [ XsXi o101
— = Apo(T)Bexp|jk(———)1|, 7.14
o1 Jm po(T) p[J (ys y.)} (7.14)

JB XsXi 1 1
—-— Anp(T)Aexp| — jK(= — =)T|. 7.15
FE Jq/VSI‘pO p[ J(VS y.)} (7.15)

Due to linear space invariance, the wave-mixing procesaatagenerate new spatial frequencie3 for A

andB. The magnitude ok then depends only on the initial bandwidthsfo&ndB, and is on the order of
2mysi/Tsi. As aresult, if the pump pulse widify is much shorter than the minimum period of the detuning

factor exg+jk(1/ys—1/y)1], or

21T

‘ Tsi
K(1/ys—1/v)

Vsi(1/ys—1/yi) (7.16)

Tp<<)

the pump can effectively sample the detuning factor, say=a0. Defining a normalized coupling function,

XsXi
Ys¥i

9(1) =

)Apo(r), (7.17)
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two simple coupled-mode equations are obtained,

9%~ jo(e. (7.18)
% = jg(7)A. (7.19)

Because the signal and the idler counterpropagate witlecesp the pump, the signal should begin to mix
with the pump at the leading edge of the pump pulse, say-at-T,/2, while the idler should begin to mix
at the trailing edge of the pump, sayrat T,/2. The solutions of Eqgs. (7.18) and (7.19) can then be written

as
AK,T) = Sec(G){A(&—E)COS[/T:/ZQ(T/)dT} + jB(k -; )sm[/‘TTp/zg(r’)dr’} }, (7.20)
B(k,T) = seq‘G){jA(K, —%)sin [ /T :/Zg(r’)dr’] +B(k, %) cos[ [ TTp/Zg(T’)dr’} } (7.21)
where
_:/222 drmtzig(ﬂdr. (7.22)

The input signal pulse is required to be placed in advandesoptimp (byts >> Ts), and the input idler pulse
to be placed behind the pump (delayedtby > T;), so that the signal and the idler only overlap the pump

pulse inside the nonlinear medium. Consequently, the ¢stgutions are

AJLJy:Awag—%L+¢Qse¢G)+JvﬁAo(ffO——@Lgh)ﬁadGL (7.23)
A(Lt) = Aot — kL —t)sedG) + jv/TAg( —r(t —KL+ts)) tan(G). (7.24)

To see how the device is able to perform SPC, assume that iber deequencies of the two modes are the

samews = W, Xs = Xi, and the type-1l EPM condition,

ks +K = 2kp, ks # K, (7.25)

which depends on the material dispersion properties andaijypoccurs at a single set of center frequencies,
is satisfied [16]. Then = 1, and the output idler becomes the phase-conjugated aperéinersed replica of
the input signal, if the input idler is zero. SPC is hence ganied. The SPC efficienay, or the idler gain,

defined as the output idler fluence divided by the input sifjoehce, is

I IA(L D)2t

1= aora 2O (7.26)
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This SPC efficiency can be fundamentally higher than that@fttansversely pumped TWM device [12] due
to two reasons. One is the copropagation of the three puidesh makesG higher than a similar parameter
in the latter case by a factor ¢ — k’p/kg)‘l, on the order of 40 for KTP. The second reason is thafjfor1,
due to the tangent function dependence, the SPC efficientdyedEPM scheme increases with respect to
G much faster than that of the latter, which only depends omélasi parameter exponentially. That said,
the transversely pumped FWM device [13] can still be moreiefiicin the small gain regimg < 1 if a
highly nonlinear material, such as polydiacetylene, islusairthermore, the EPM device requires a longer
nonlinear medium length by a factor (f — k’p/k’s)*l, and depends crucially on the material dispersion, thus
severely limiting the flexibility in the choice of operatimgavelengths.

Equations/(7.23) and (7.24) are obtained from the analysieaoupled-mode equations (7.5) and (7.6),
after Fourier transform with respect tas performed. The solutions are therefore formally valitiomhen
the nonlinear medium length goes to infinity. In practice, in the moderate gain regime- O(1), the
approximation given by Eq. (7.7) should be adequate, whezrdeingthL can be, say, ten times larger than
the signal spatial pulse width in the frameoénd 1. Numerical analysis in Section 7.6 will validate the

accuracy of the Fourier solutions.

7.4 Laplace analysis

Intriguingly, the Fourier solutions, Egs. (7.23) ahd (3,24ave the same form as those of backward wave
oscillation [19, 20, 21, 22, 23, 24, 25], suggesting thatdkeice studied here, with an ultrashort pump
pulse and a practical quasi-phase-matching perfod @6 um as reported in Ref. [18]), can also perform
mirrorless OPO, as long ekgz, > k’p > ki ;. However, the prediction of infinite gain is based on the agstion
of infinite medium length and therefore may not be valid. lis tase, Laplace transform should be used.
For the CW-pumped mirrorless OPO schemes, a Laplace and@B8]i with respect to time shows that
beyond threshold, poles appear on the right-hand planecihdéiplace domain, meaning that the temporal
impulse response increases exponentially with time, teptdi self-oscillation when enough time is elapsed.
The same procedures of utilizing the two-sided Laplacesfram [29] as in Ref. [28] are followed here in
order to be consistent with the relevant literature, butesithe proposed scheme is the opposite limit of the

CW devices, the Laplace transform should be performed wibect t@ instead,

AT = [~ AT exp-p2dz (7.27)
A?(p,r) E/_ZAi*(Z,T)eXp(pr)dz (7.28)

For simplicity but without affecting the qualitative belawof the solutions, it is assumed that the pump pulse

is square, there is no input idler= ys = —y;, andx = Xs = X;. The output solutions in the Laplace domain
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- Tp, V1-PPcsdGV1-P?) - T
As(P, 5 —P+\/1_P200t(G\/1_P2)As(p, > )
N (p— 1Py — — (p._ 1
AP P+\/1_chot(e\/l_P2)As(p, > )

_p _ Tp

P: 7’ G: A .

oo XApo( y)

(7.29)
(7.30)

(7.31)

If we let p= jk, the transfer functions in Eqs. (7.29) and (7.30) are wetivin to be low-pass filters [30],

the bandwidth of which decreases@sncreases. If the spatial bandwidth of the input signal,fendrder

of y/Ts, is much smaller than the bandwidth of the low-pass filtdws ttansfer functions can be regarded as
flat-top functions, and by plugging = 0 in Egs. (7.29) and (7.30), the Fourier solutions in Eq3yand

(7.24) are recovered. F@& << 1, the transfer functions are sinc functions with a bandwidty,/ Ty, so the

Fourier solutions are valid if, << Ts, which is essentially the same assumption used in the Famaysis,

Eq. (7.16). AsG increases and the filter bandwidth decreases, however atlngeF solutions become less

and less accurate for a finite-bandwidth input signal.

The poles of the transfer functiong,, can be obtained by setting the denominator of Egs. (7.28) an

(7.30) to zero,

Peo + 1/ (XAp0)? — pgocot[G 1- pozo/(XApo)Z} -0

Positive Poles of Transfer Functions

0.8

0.7r

0.4r

0.21

0.1r

(7.32)

Figure 7.2: Normalized poles.,/ (xApo) plotted againsG, obtained by numerically solving Eq. (32), indi-
cating the onset of spatial instability beyond the thredii®t> 11/2. More poles appear &is increased.
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Figure 7.2 plots the normalized polps/(xApo) againsG. Positive poles begin to appear when- 11/2,
hence thespatialimpulse response increases exponentially with respexdbéyond threshold.
It is interesting to compare the scheme studied here witltéise in which the pump, signal, and idler

have degenerate group delakg £ ki = K)[31]. The coupled-mode equations of the latter case are

ALY (12 1), (7.33)

where ther derivatives vanish. The solutions are easily seen to be
Asi(z,T) = Asi(0,T) coshxApo(T)Z] + in’iS(O, T)sinh XA (T)Z. (7.34)

This corresponds to the — oo limit of the former scheme, whemg, /(xApo) — 1 and all the poles approach

the growth rate of the degenerate cgs&yo.

7.5 Spontaneous parametric down conversion

Given the input-output signal-idler relationship in Eqg.2@) and[(7.24), it is straightforward to obtain a
guantum picture of the parametric process in the moderaterggime by replacing the signal and idler

envelopes with Heisenberg operators, so that

As= ApsedG) + jAl tan(G), (7.35)
A = jAltan(G) + ApsedG). (7.36)
If the inputs are Fock states,
nsi = (ALiAsi) = (AsiAL) - 1, (7.37)
(AlAi0) = (AlbAs) = (AoATy) = (AoAL) = 0. (7.38)

The average output photon number of each mode is

Ns = N seé(G) + (o + 1) tar?(G), (7.39)

ni = Nioseé(G) + (ng + 1) tarf(G). (7.40)

The average number of spontaneously generated photongeaiump pulse is therefore the same as the

idler gain, orn = tar?(G). Moreover, the unitary transform given by Egs. (7.35) an@gy has the same
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form as the CW FWM process. One then expects the photon wastédario be similarly given by [32]

00

) = cogG) gsin”(G)lms\n)i, (7.41)
He
where|n)s; is the Fock state in the signal or idler mode. The scheme thassatsignificant advantage in
efficiency and robustness for multiphoton entanglementypared with other schemes that often require
feedback [33]. The efficient multiphoton coincident freqog entanglement should be useful for quantum-
enhanced synchronization [26] and quantum cryptograppiicaions [27].

The preceding quantum analysis assumes that there is oalypatial mode in each signal or idler mode,
and is accurate only when the Fourier solutions are accufdiis restricts the applicability of the quantum
analysis to the moderate gain regime~ O(1), depending on how closely the assumption in Eq. (7.7) is
observed. It is beyond the scope of this thesis to invegtigatat happens in the quantum picture when more
than one spatial mode is involved, but qualitatively, ongeets that each spatial mode should have a varying
parametric gain depending on the spatial frequency, asestgg by the Laplace solutions in Egs. (7.29) and
(7.30), so the photon wavefunction would be given by a sugsitipn of simultaneous eigenstates of spatial
frequency and photon number.

Using the parameters described in Refs. [17] and [18], whgre 1584 nm,x@ = 7.3 pm/V, ng = 2,
y=15x10"10 s/m,T, = 100 fs, average pump power350 mW, diametee 200 um, and pump repetition
rate frep = 80 MHz, the number of spontaneously generated photon pairsgzond is theoretically given by
freptar?(G) ~ frepG? = 3.6 x 1(P/s, in excellent agreement with the experimental resutintepl in Ref.[[17],
which is~ 4 x 10°/s. G is then given by~ 0.2, so the operations of SPC, OPA, and multiphoton entangieme
(G > m/4) should be realizable by increasing the pump field ampitud

7.6 Numerical analysis

Equations|(7.5) and (7.6) are solved numerically via a Femplit-step approach to confirm the above theo-
retical predictions. Fig. 7.3 plots the intensities andsgsaof the input signal, output signal, and output idler
from the numerical analysis wh&= 71/4. The plots clearly show that the output idler is the timeersed
and phase-conjugated replica of the signal.

Figure 7.4 plots the numerical signal gain and idler gain garad with Fourier theory for & G < /3.
The numerical results are all within 3% of the theoreticaliga.

Figure 7.5 plots the idler gain on the logarithmic scale farider range ofc's and two different lengths,
obtained from the numerical analysis of the complete thvaee-mixing equations (7.4), (7.5), and (7.6),
with a single photon as the input signal, approximately exting parametric fluorescence. For the- 10
cm case the curve can be clearly separated into three regionés < 77/2 and moderate gaim(~ 0 dB),

the idler gain approximately follows the Fourier soluti@aghed curve). Fdd > 11/2, the system becomes
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Figure 7.3: Plots of intensity and phase of input signalpatisignal, and output idler, from numerical
analysis of Egs. (5) and (6). Parameters usedkgre 1/(1.5x 10°ms™1), ki = 1.025¢, k = 0.975,
Tp = 100 fs,Ts = 2 ps,L = 10 cm,ts = 4T, beam diameter = 200m, Ag = 0.5exg—(t — 2Ts)?/(2T2)] —
exp—(1+0.5))(t+2Ts)?/(2T2)], Apo = exp—t?/(2T2)], andG = 11/4. The plots clearly show that the idler
is the time-reversed and phase-conjugated replica, P&, 8f the signal.
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Figure 7.4: Signal gain + 1 and idler gaim versusG from numerical analysis compared with theory. See
caption of Fig. 3 for parameters used.
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Figure 7.5: Plot of numerical idler gaim in dB againsiG for L = 10 cm (solid) and- = 1 cm (dash-dot),
compared with the Fourier theory (dash),3®) in dB. Three distinct regimes can be observed folthe10

cm case; the moderate gain regime where the Fourier theagcisrate, the unstable regime where the gain
increases exponentially, and the oscillation regime wbaeificant pump depletion occurs. Hoe=1 cm,

the medium is not long enough for oscillation to occur in thegmeter range of interest.

unstable and an exponential growth (linear ramp on the iibgnic curve) is observed, until the pump is
significantly depleted, parametric oscillation occurg] #re exponential growth abruptly stops.

ForL =1 cm, the numerical solution departs from theory for a sm&@leand the slope of the logarithmic
curve in the unstable regime, proportionallfois too small to initiate oscillation in the parameter ramde
interest.

A medium length of 10 cm may be pushing the limit of currenhtezlogy. Even if one is able to fabricate
such a long periodically-poled nonlinear crystal, the @ffe medium length is always limited by parasitic
effects, such as diffraction, group-velocity dispersiang competing third-order nonlinearities, so it might
be difficult to fabricate an ideal EPM device for the aforetimred purposes. For instance, in the experiment
by Kuzucuet al. [17], the diameter of the beam W ~ 200 um, so the characteristic diffraction length is
~W?/)o = 4 cm, while the characteristic group-velocity dispersiendth is 20 cm according to Ref. [16],
which are all on the order of the medium length required foroniess OPO. That said, techniques like
diffusion bonding [34] can be used to increase the lengthrafrdinear crystal, diffraction can be eliminated
by waveguiding, while there exist a variety of methods to pensate for group-velocity dispersion and
third-order nonlinearities [35]. Hence with careful erggning, fabricating an EPM device for the proposed

applications is still a distinct possibility.
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7.7 Conclusion

In summary, it is proven that the copropagating three-waidng process, with appropriate extended phase
matching and pumped with a short second-harmonic pulsegdabte of performing spectral phase con-
jugation, parametric amplification, and efficient multipt entanglement. The main technical challenges
of experimental implementation seem to be the long mediurgtlerequired and the control of parasitic
effects such as diffraction, group-velocity dispersiongd @ompeting third-order nonlinearities. However,
a shorter proof-of-concept device has already been expatatly realized for the purposes of broadband
second-harmonic generation [18] and coincident frequemtginglement [17], so it is not unrealistic to ex-
pect that a longer device can be fabricated for the propogplications, which should be useful for optical
communications, signal processing, and quantum infoomadrocessing.

Theoretically, much remains to be explored. The study ddgitic effects, not considered in this chapter,
is vital for experimental realization. The analysis of thashort-pump limit can be potentially generalized
to other TWM and FWM geometries, while the quantum analysidisflimit is by no means complete. In
conclusion, the analysis presented here should stimulatieefr experimental and theoretical investigations

of a new class of parametric devices.
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Chapter 8

Propagation of temporal entanglement

8.1 Introduction

In quantum optics, the Heisenberg picture, where opticlldiare treated as conjugate positions and mo-
menta of quantized harmonic oscillators, is often preteres it is easy to substitute the optical fields in
classical electromagnetic problems with noncommutatperators and obtain the Heisenberg equations of
motion. Once the operator equations are solved, one carotitain various quantum properties of the op-
tical fields via noncommutative algebra. However, the Heigeg picture is not without shortcomings. It
can be hard to solve analytically or numerically the compleronlinear operator equations without approx-
imations. It is also difficult to grasp any intuition aboutwhthe quantum correlations among the photons
evolve until the Heisenberg equations are solved. Thefeulifes have led to a growing appreciation of the
Schibdinger picture, where the photons are treated as an ernsefbbsons, and the evolution of the many-
photon probability amplitude is studied. This arguably enottuitive approach has led to great success in
the quantum theory of solitons/[1], where instead of soltimgformidable nonlinear operator equations, one
can obtain analytic solutions from thimear boson equations in the Sduinger picture. The many-boson
interpretation has been applied to the study of entangletbpk as well, where the two-photon probability
amplitude is shown to obey the Wolf equations by Saleh, Teiod Sergienko (STS) [2]. Instead of treating
the entanglement properties of the photons and the optioplbgation as two separate problems, with the
STS equations, one can now use a single quantity, namelwtiphoton amplitude, to keep track of the spa-
tiotemporal entanglement evolution in free space. This@agous to the Wolf equations, which reformulate
the laws of optics in terms of coherence propagation [3].

In this chapter, we utilize the STS treatment of two photansttidy various temporal effects, in the hope
that the Schisdinger picture will offer a more accessible interpretatd temporal entanglement propagation
for analytic or numerical studies of two-photon systemssd;gyroup-velocity dispersion; temporal phase
modulation, via an electro-optic modulator for exampleeir mode coupling, via a beam splitter or a fiber
coupler for example; and four-wave mixing, in a coherentlggared atomic gas [4] for example, are all

included in our proposed formalism, thus extending the ST8ehfor use in many more topics in quan-
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tum optics, such as nonlocal dispersion cancellation [5{dgirth-order interferometry [7], and two-photon
nonlinear optics [4, 8]. The analysis of a two-photon veswliton, consisting of two photons in orthogonal
polarizations under the cross-phase modulation effeptgisented in the final section, in order to demonstrate
the ease of use and intuitiveness of the 8dinrger picture.

Inspired by the formalism set forth, we propose the concépuantum temporal imaging, which uses
dispersive elements and temporal phase modulators to mlatépghe temporal entanglement properties of
two photons. Most significantly, we show that it is possileconvert positive time correlation to nega-
tive time correlation, or vice versa, using a temporal imggystem. This conversion technique should be
immensely useful for applications that require negatiweticorrelation, such as quantum-enhanced clock
synchronization [9]. Although there have been theorefit@al 11, 12, 13] and experimental [14] proposals of
generating negative time correlation directly, they haagous shortcomings compared with the conventional
tried-and-true schemes that generate positive time ediwal Our proposed technique should therefore allow
more flexibility in choosing two-photon sources for quantoptics applications.

The chapter is structured as follows: Sec. 8.2 derives that@ms that describe the evolution of the two-
photon amplitude in two separate modes, Sec. 8.3 introdiheeprinciples of quantum temporal imaging,
Sec. 8.4 includes linear mode coupling in the formalism, 8eg generalizes the formalism to two photons
in more than two modes, Sec. 8.6 includes the effect of faawreamixing, and Sec. 8.7 presents the exact

solution of a two-photon vector soliton.

8.2 Two photons in two separate modes

Let us first consider two photons in two optical modes, sudiwagolarizations, two propagation directions,

or two waveguide modes. The corresponding two-photon waetion is
|LIJ> :C12|17 1> +Cll|2>0> +C22|Oa 2>a (81)

where the constan@’s are the overall amplitudes of the quantum stated,) is the quantum state in which
one photon is in each modg@, 0) is the state in which both photons are in mode 1, |@8) is the state which
both photons are in mode 2. The positive-frequency forwampagating component of the electric field in
each mode is given by [15, 16]

wheren; is the complex, frequency-dependent refractive index ideno n; is the real part oh;, Sis an

area of quantization in the—y plane, and"is the photon annihilation operator, related to the cowadpg
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creation operator via the equal-space commutator [15, 16],
[Qj(zw),4(zw)]=d(w-«), j=12 (8.3)

In the Heisenberg picture, the creation and annihilaticerators evolve according to the following equations
[15, 16],

o"élézz, w) :iwm(w) 8u(z w)+i<2wu73(w))é (zw). (8.4)
ﬁazgz;w) :iwni(w)éz(z',w’)ﬂ(izw “CZ(“”)?Q( o), (8.5)

where ; is the imaginary part ohj, and ﬂ is the Langevin noise operator, satisfying the commutation

relation
[fi(z ), f(Z,0)] = 6(z—2)5(w— ). (8.6)

To proceed, we replaaen;(w)/c by the following phenomenological approximation [17],

onj(@) 8L s Pri n Qa0

o~ +n=0 o (w— )"+ CAnJ, (8.7)
whered; = 2lmkj(wo)] is the loss coefficieni3nj = 0"Re[kj(w)] /0 w"| 0=, iS thenth-order dispersion co-
efficient, andAn; encompasses any other refractive index perturbation. iDgfthe slowly varying envelope

operators as

Aj(zt) = exp(—iﬁo,-z+iabt)/o°° j;’in 8 (2, @) exp(—ict), 8.8)
whereawy is the carrier frequency of the two modes, one can obtain twtugon equations for the envelope
operators,

(%Al(z,t) - iKl(t,i%)Al(z,t) TR, (8.9)
%Aﬂﬂ) - iK2<t’7i%)A2(z’,t’) R, (8.10)
K; (t,i%) - [%+iﬁlj%—%§—;+%Anj(t)], 8.11)

whereF; is defined as

Fi(z,t) = exp(—iBojz-+ iwt) Ow j;’in i (2“’“7(;(‘“)) 2{,(z, w) exp(—it), 8.12)
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andK; is the complex wavenumber for the slowly varying enveldls. can explicitly depend on time, if the
perturbation is much slower than the optical-frequencyllasion so that an adiabatic approximation can be
made, such as in an electro-optic modulator.

We now define the two-photon probability amplitudes as

Pra(zt,Z,t') = (0|AL(z 1) Ap(Z, 1) |W), (8.13)
Yu(zt,Z,t') = %<0|A1(Z,I)A1(Z'»t/)|q’>7 (8.14)
Wo(zt,Z,t') = \%<O|A2(Z,I)A2(Z'»t/)|q’>~ (8.15)

The physical significance of each amplitugig is that its magnitude squared gives the probability density

Py, of coincidentally measuring one photon in modet (zt) and another photon in modieat (Z,t'),
Pi(zt.Z,t) = (2t 2t (8.16)

Temporal entanglement is defined as the irreducibility/ag|? into a product of one-photon amplitudes in the
form ofa(t)b(t’). This means that the probability of detecting a photon in enbdt timet is correlated to the
probability of detecting a photon in mode 2tatThe most popular ways of generating entangled photons are
spontaneous parametric down conversion [18] and four-waxeng [19], where the wave mixing geometry
and the spatiotemporal profile of the pump beam determininitie (5.

To obtain the evolution equations for the two-photon argity;»(z t,Z,t’) in the Schédinger picture,
we employ the same trick as in Ref. [2]. First we multiply E8}9) with Ax(Z,t') and Eq./(8.10) wittA; (z,t)

to produce two equations,

o~ I
—AiztA(Zt) =Ky (t,lE)Al(z,t)Az(z’,t )+ Py, (8.17)
0 & ONa

ShEOR(Z 1) = |K2(t 7|W)A1(z7t)A2(z’7t )+ FoAy. (8.18)

Using the definition ofp; in Eq. [8.13) and assuming that the thermal reservoirs dteeivacuum state so
that the Langevin operators evaluate to zero when appli¢detovavefunction [20], a pair of equations in

terms of,» are derived,

P Y ,
?Zwlz(zatvzat ) - IKJ— (t7la) w12(27tazlvt )7 (819)

9 o ,
Szt Z.t) =ik, (t "W) Yoz t,2,1). (8.20)

Equations|(8.19) and (8.20) are the temporal version of ¥ &uations [2], including the effects of loss,
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dispersion and phase modulation. They can also be writtdreifrequency domain as

cplz(z,Q,z’,Q’):/ dt / dt’ Yia(z t,Z,t) x

exp(iQt +iQ't"), (8.21)
9 oo(20,2,9) =ik (}i Q)(pl(zQz’Q’) (8.22)
az 2 2] b b 1 i aQ? 2 2] ) b) b -
P Y Y ,
d—zq;lz(z,gz,z,Q)7|K2(Tﬁ,9)(plz(z,9,i,9). (8.23)

For entangled photons, becauge or @2 cannot be separated into a product of one-photon amplitudes
distortions experienced in one arm can coherently add tdigtertions experienced in the other arm, leading
to various nonlocal quantum effects.

For example, considering group-velocity dispersion othlg, outpute, » is given by

02(2Q,7,Q') = exp(i B11Qz+iBQ'7 + IB%QZZ—F '%Q’Zz) 012(0,Q,0,Q). (8.24)

If the photons are initially entangled with negative freqogcorrelationg2(0,Q,0,Q’) can be approximated
by ¢(Q)d(Q+ Q’). Ignoring the unimportant linear spectral phase, the dtigu
! IQZ !
©2(2,Q,Z,Q') =exp 7(321Z+ B22Z) | 9(Q)3(Q+ Q). (8.25)

Hence if 3212 = —B»,Z, the dispersion effects in both arms can nonlocally canaehether, as originally

discovered by Franson [5].

8.3 Quantum temporal imaging

In the Schodinger picture, the two-photon amplitude evolves undapiaral effects. Since the entanglement
properties of the photons are contained in the two-photoplitude, the Schidinger picture allows one to
use the temporal effects to engineer the entanglement.

First, consider the evolution of the two-photon amplitudeew one of the modes, say mode 1, is subject

to group-velocity dispersion,

oY1 dynz  iBo10%yn2
5, = Pugr %5 e (8.26)
o [ % —i(t—ﬁllL—T)z

Group-velocity dispersion is well known to be analogousreskel diffraction.
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Next, consider a quadratic temporal modulation of refrgcthdex imposed on mode 1 by a short or

traveling-wave electro-optic modulator,

o ikoDnp(t —to)?

9z > Y12, (8.29)
'-L’12(|7t72’»t/) = q(t)wlZ(ovtazlvt/)a (830)
q(t) = exp['kognzl (t—t0)?]. (8.31)

Quadratic temporal phase modulation is analogous to a lemsis assumed to be a constant, dgik the
time delay of the modulation. Kerr effect by a copropagatitagsical pulse would also suffice.

Two dispersive elements with a quadratic phase modulab@tiveen form a temporal imaging system,
which has been well studied in the classical domain [21]. p8sp that the photon in mode 1 propagates
through the first dispersive element, with an effective €isppn coefficien3,1 and effective lengtit, then
passes through a time lens with refractive index modulatios(t — tg)?/2, and finally propagates through
the second dispersive element, with an effective dispersiefficient;; and effective length’. The output

two-photon amplitude can be expressed in terms of the irput a

Win(z,t,2,t) = / dr/ At byt — T)q(T)ba(T — T)Yha(0,T, Z,t"), (8.32)
/ A (t_Bl L/_T)
bl(tfr)f<2nﬂélu> exp| S, | (8.33)

When the “lens law” for the time domain is satisfied,

1 1
= koAnyl 8.34
B21|- B = koAnyl, (8.34)
the impulse response of the system becomes
h(t,r):/ dt’ byt — T)q()ba(T = T) (8.35)
i

_ exp[—i(t—ﬂiﬂ-/)z} %
21,/ B21LB5, L’ ZBélL’

—i T+I311L
exp{ / dr’ P Ta

201l
t—Bl T+ Bl /
exp [I ( BLL + Bl — koAnzlt()) T } , (8.36)

whereP(7'/T,) is the normalized temporal aperture function of the timeslgrat can be used to describe

any deviation of the actual temporal phase modulation fieerideal quadratic profile, such as truncation or
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higher-order phase modulation, afglis the aperture width. If

L
Ta>> Bz—, (8.37)
To

whereTy is the smallest feature size gf, along thet axis, the integral in Eq. (8.36) can be approximated by

a delta function. We then arrive at the input-output retafir the two-photon amplitude,

1 t—t
w12(27t72’7t/) = leZ(Oa Tdazlvt/)v (838)
g = Bj/.ll-/ + M1l + (1 — M)to, (8.39)
Bl
M=- 8.40

where an unimportant quadratic phase factor is omittgds the time delay of the system, ail is the

magnification, which can be positive or negative dependmthe signs of3, andf3;.

!
V(0,121 g ¢ W (z,t,2, 1)

———
A.”ival Time Mean Arrival t
Difference Time Uncertainty
Uncertainty

(Coherence Time)

Figure 8.1: Two-dimensional sketches of the two-photorbahbility amplitude before and after one of the
photons is time-reversed. Uncertainty in arrival timeelifnce is transformed to uncertainty in mean arrival
time.

The most interesting case is whigh= —1, and one of the photons is time-reversed. If the two photons

are initially entangled with positive time correlatiof» can be written as
w12(07t7 Zlat/) = a(t)b(t _t/)’ (841)

whereb is assumed to be much sharper tleanAfter photon 1 has passed through the temporal imaging

system withM = —1,
Y1a(zt,Z.1') = altg —t)b(tg —t — t'). (8.42)

The photons hence become anticorrelated in time. See HigoBan illustration of this process. Since

most conventional two-photon sources generate positiwe tiorrelation, but negative time correlation is
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desirable for many applications, one can use the tempogadimg system to convert the former to the latter.
In particular, using the aforementioned technique for {ecgic application of clock synchronization, the
subclassical uncertainty of arrival time differen@e;-t') /2, can be converted to a subclassical uncertainty of
mean arrival time(t +t') /2, leading to a quantum enhancement of clock synchronizatiouracy by a factor

of v/2 over the classical limit. In practice, the clock can be $yanized with the electro-optic modulator, so
that the mean arrival time is controlled yand thus the clock. The proposed setup is drawn in Fig. 8.2.

Positive-Time-Correlated L Electro-Optic [/
Two-Photon Source ¢ ~~ 5 Modulator o o Detectors

B [c4

Pump

CLK

\ 4

Figure 8.2: A quantum temporal imaging system for quantmmaeced clock synchronization.

The fidelity of time reversal is limited by parasitic effecsich as higher-order dispersion and phase
modulation, and the temporal apertdig which adds a factor 35,L' /T, to the width ofy along thet axis
and increases the overall uncertainty of the mean arrina.tiThe ultimate limit, apart from instrumental
ones, is set by the failure of the slowly varying enveloperapimation, which only concerns ultrashort
pulses with few optical cycles.

Besides the above application, one can also convert negatie correlation, which can be generated by
ultrashort pulses for improved efficiency [11, 13} 22], taitiwe time correlation. As evident from Eg. (8.38),
any desired correlation can actually be imposed on alreathngled photons, by multiplying the original
correlation with a factor of AM.

As group-velocity dispersion and temporal phase moduigilay analogous roles in the time domain to
diffraction and lenses, one can use Fourier optics [23]ptaal imaging|[21], and quantum imaging [24]

techniques to design more complex quantum temporal imagjisgms.
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8.4 Two photons in two linearly coupled modes

Suppose that the two modes are now coupled to each otheioméxample, a beam splitter or a fiber coupler.

Equations (8.9) and (8.10) become coupled-mode equations,

o . ~ . ~ ~

((72 — |K1)A1 = ik(2)As +Fu, (8.43)
J ! \ AL [ N 2

(E — |K2) 2 = 1K (Z’)Al + Fz, (844)

wherek is the coupling coefficient, and for simplicity the couplirggassumed to be codirectional. The
primes denote the evaluations of the function&zat’). Any phase mismatch can be incorporated itas a
z-dependent phase.

Procedures similar to those in Sec.|8.2 produce four cowgredtions foipy 1, Yoo, andy o,

(aiz - iKl) V2uni(zt,Z,t) =ikyna(Z,t', zt), (8.45)
((% - iKg) V2Una(zt,Z,t') = ik* Yna(Z,t, 2, ), (8.46)
(aiz - iKl) P2(zt,Z,t) = ikvV2Pa(z,t,Z,t), (8.47)
(% — iKé) Pa(zt, 2, ) =ik*'V2yni(zt,Z,t). (8.48)

Any pair of Egs.[(8.46) and (8.47) or Eqs. (8.45) and (8.48) loa combined to yield a single equation for
Y2,

(i — iKl) (% — iKg) Pra(zt,Z,t) = —K (DK (2)Pra(Z. 1, 20). (8.49)

Equation|(8.49) allows one to calculate the coupled-modpamation of two photons in terms g only,
given the initial conditions ofp12, Y11, and o, Yi1 and ygho can then be obtained from Egs. (8.47) and
(8.48) aftenyy, is calculated.

To obtain some insight into Eq. (8.49), consider only camstaode coupling, so that E. (8.49) becomes

d 0
d—za—zwlz(z,t,z’,t’) = —K%Pna(Z,t,21). (8.50)
The solution is

Y12(z,t,Z,t') = cogkz) cog KZ ) P12(0,t,0,t") — sin(kz) sin(kZ ) Y12(0,t",0,t) +
i Sin(kz) cogKZ)V2y2(0,t,0,t) +icogk2) sin(kZ ) v2¢n1(0,t,0,t"). (8.51)
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At the coupler outpuiz=Z7 =L,
l[le(L,t, L,t/) = TLIJ12(0,I, O,II) — Rlﬂlz(o,t/,o,t) +iv 2TRL[122(0,t,0,t/) +iv ZTRlllll(O,t,O,t/). (8.52)

whereT = cog(kL) andR=1—T =sir?(kL). If we have one photon in each mode initially, only the initia

condition ofys 2 is nonzero, and
WYro(L,t,L,t") = Tyr2(0,1,0,t") — Ryi2(0,,0,t). (8.53)

From Eq.[(8.53), one can see that the output amplitude iseb#uttive interference between the original
amplitude and its replica but with the two photons exchaggdfreir positions in time. In particular, for a
50%-50% couplerT = R=1/2, complete destructive interference is produced if theitwaot photons are
temporally indistinguishable. See Fig. 8.3 for a graphittastration of the destruction interference. The
introduction of variable distinguishability to photons, order to produce varying degrees of destructive
interference ofip12 via a beam splitter and to measure the two-photon coher@neeis the basic principle

of the Hong-Ou-Mandel interferometer [7].

¥,(0,2,0,1")

Figure 8.3: The quantum destructive interference via a levigpdetermined by the overlap (dark grey area)
of the two-photon amplitudey »(0,t,0,t") with its mirror image with respect to the-t’ axis, 12(0,t',0,t).
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8.5 Two photons in many modes

If the two photons are optically coupled to more than two nspdeich as four modes for two polarizations
in each of the two propagation directions,Mmodes in an array dfl fibers coupled to each other, one in
general needs(N + 1) /2 two-photon amplitudes to describe the system. The prajeemaf the amplitudes

in many modes is described by the following,

- o .
(5,-1Ki) L0t 2) =15 Ky VAT Bzt 2,0), (854)
I#]

where
L[ij(Z,t,Zl,t/)ZLIJk]'(Zl,t/,Z,t), Kjk:Kltj' (855)

Further simplications can also be made if any of the coughnans is zero.
For example, let there be four modes; mode 1 correspondsrtd avith x polarization, mode 2 corre-
sponds to arm 2 witR polarization, mode 3 corresponds to arm 1 wigholarization, and mode 4 corresponds

to arm 2 withy polarization. If only the same polarizations are couplbd,ttvo-photon equations are

2 —ikx 0 0 V2 g2 Y3 Y14
; J
—IiK = 0 0 2
X oz ) | U1 V2o U3 Yoa _o. (8.56)
0 0 5 —iky Y31 Ws2 V23 s
0 0 —iky 2 Ya1 Yaz Was  V2Uua
The following solution for the orthogonally polarized aritypdies can be obtained
L,U]_3(L7t’ L,t,) A/ TxTy - Rny iq / Tny i\ / TyRX 4]13(0 t O t )
Lp24(|_,t, L,t/) — Rny A/ TxTy | TyRX | A/ Tny l,U24(0,t, O t/) (8 57)
Lpl4(|_7t7 L,t/) | Tny i\ / TyRX A/ TxTy A/ Rny w14<07t, O t/)
wZS(L7t’ L,t/) iq / TyRX | Tny - Rny TxTy w23(07t, O t )

whereTyy = CO§(KX7yL) andRyy = 1— Tyy. In particular, if only the initial condition ofj14 is nonzero,

Yra(L,t,Lt") =iy/TxRyYr14(0,t,0,t"), (8.58)
Yoa(L,t,L,t") =iy /TyR14(0,t,0,t"), (8.59)
Pra(L,t,Lt") = /T TyYna(0,1,0,t") (8.60)
Yos(L,t,Lt') = mlpm(o,t,o,t’). (8.61)

The singlet state for orthogonally polarized photons iglpoed if Ty = Ty = 1/2 [25].
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8.6 Four-wave mixing

As envisioned by Lukiret al., the third-order nonlinear effects among two photons caoine significant in

a coherently prepared atomic gas [4]. The coupled-modetieqsg8.43) and (8.44) then become nonlinear,

7 N

(Fz — |K1)A1 = ikAg +iyATA AL +inASAA +ixAAAT 1 B, (8.62)
d EZAYN N AR NN NN Tl =/

(E—le) L= ik R+ iyA AR, +in AL AL + i RLALA B, (8.63)

wherey is the self-phase modulation coefficient,is the cross-phase modulation coefficient, anis the

four-wave mixing coefficient. If we define equal-space twm{on amplitudes as the following,

Yik(zt,t) = gi(zt,zt), (8.64)

threelinear coupled-mode equations for the two-photon amplitudes esshelbived,

(a% — Ky — iKi) V24n1 = ikgp1 +iyd(t —t')V2yn1 +ixS(t —t') V2o, (8.65)
(a% —iKa— iKé) V2420 = IK* Y1 +iyd(t —t') V24 +ix S (t —t')V2y1, (8.66)
((% — iK1 — iKé) W12 = iK*V24n1 +iKV2P +ind(t —t') Yr2. (8.67)

The advantage of the Sddinger picture is most evident here; whereas in the Heegniicture one needs to
solve nonlinear coupled-mode operator equations such a&62) and (8.63), in the Sdldinger picture,
one only needs to solve linear equations such as Egs. (8.§8)&7), which are similar to the configuration-
space model applied to the quantum theory of solitons [1, 26]

The delta functiord(t —t’) couples the two subspacesif,(zt,t"), so entanglement can emerge from
unentangled photons [4]. To see this effect, assume thatiyehave four-wave mixing, so that E¢. (8.67)

becomes
a !/ H ! !
5742zt t) =ind(t—t)yra(z t,t), (8.68)
which yields
Pra(L,t,t") = explinLo(t —t')]¢n(0,t,t'). (8.69)

If the nonlinearity has a finite bandwidthew, the delta function in time should be replaced by a finite-
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bandwidth function, for example a sinc function,

inL
mt—t’)

Pro(L,t,t') = exp{ sin {Az (t—t )} }Lplz(o,t,t’). (8.70)

Eqg. (8.70) is the exact solution of the two-photon amplitudder the cross-phase modulation effect, while
Eq. (7) in Ref. [4], presumably derived in the Heisenbergypie, is only correct in the first-order. As
Yno(L,t,t') cannot be written as a product of one-photon amplitudes #viie two photons are initially
unentangled, entanglement is generated. The physicgbistation is that the two input photons act as pump
photons to the spontaneous four-wave mixing process andraridilated to generate two new entangled
photons.

Unlike temporal imaging techniques, which can only marapilthe two-photon amplitude along the
horizontal axig or the vertical axi¢’, cross-phase modulation allows some manipulation of tleegiaoton
amplitude along the diagonal time-difference axis,t’. Unfortunately, cross-phase modulation by itself
cannot generate any temporal correlation, as it only impagghase on the two-photon temporal amplitude.
In order to have more control along the t’ axis, one can combine the effects of cross-phase modulation

dispersion, as shown in the following section.

8.7 Two-photon vector solitons

In this section we study a toy example, nhamely, a soliton &miny two photons in orthogonal polarizations
exerting cross-phase modulation on each other [17]. Aljhagimilar studies of two photons in the same
mode under the self-phase modulation effect have beenrpegtbin Refs. [8], cross-phase modulation offers
the distinct possibility of entangling two photons in diffat modes.

Consider the case in which two polarizations have the samepgvelocity dispersion, so tht; = Bor =
B2, and there is one photon in each polarization. The evolgpration foryn»(z t,t) is

(d +[311 +Blzdt,>w12: [* P2 (dtZ + dti) +ind(t—t') | Yro. (8.71)

Defining time coordinates in a moving frame,

T=t—piz, U=t - Bz, (8.72)
B — BllJZFﬁ127 A /311;["12’ (8.73)

we obtain the following equation fap12(z 7, '),

o 0 B, 2 o2
(E*AE aw)"’”*{*?(arz ar/Z)“”‘S(T*T)'I’”' (8.74)
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Equation|(8.74) is a simple linear Séldiinger equation, describing a two-dimensional “wavefiome y1»(z,7,1’)

in a moving frame subject to a delta potential. To solveyigy explicitly, we define new time coordinates,

T+1 c T—1

L=— - > (8.75)
Eq. (8.74) then becomes
(£+Ai> —[—@(0—2+‘?—2)+iﬂa(r ) (8.76)
9z "0 )= 4 \gt?2  ot? p )| '

As evident from Eq. (8.76), the cross-phase modulatiorceéialy offers confinement ap» along the time
difference ¢_) axis, but not the mean arrival time,() axis.
The only bound-state solution gf;2 is

Yoz, 14, 7-) = eXp[—i([ijZJri)z} exp(—S|T_| +i%r_) X

© dQ : iB2 >
/_an o(@)exp( —ir, +20%). (8.77)
The delta potential enforcésto take on the following value,

n

S: T h
Bz

(8.78)

wheren andfB; must have opposite signs. The final solution/g$ in the frame ofr andt’ is therefore

Y12(z, 1, 7)) exp[i(nz/ngzﬁ} exp{— ‘;&’rr’ﬂé(rr’)] X
;czi—(:[ o(Q) exp[—iQ(Tzr/H—%sz]. (8.79)

The two-photon coherence time of a vector soliton is fixed,tha average arrival time is still subject to
dispersive spreading and becomes increasingly unceraimeatwo photons propagate. See Fig! 8.4 for an
illustration. Hence, a two-photon vector soliton genesa@mporal entanglement with positive time corre-
lation as it propagates. Similar to the idea of soliton motmensqueezing [27], one can also adiabatically
changen or 3, along the propagation axis to control independently thepvoton coherence time.

Notice that the center frequencies of the two photons arféeshslightly, by an amount ofA/f3;, to
compensate for their group-velocity mismatch, so that ey copropagate at the average group velocity.
This is commonly known as soliton trapping [17].

If the nonlinearity has a finite bandwidth, then the potdiitéecomes a finite-bandwidth function like the
one in Eq.[(8.70), and multiple bound-state solutions caoldtained via conventional technigues of solving

the linear Schivdinger equation.
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wlz(oatat,)

Figure 8.4: Quantum dispersive spreading of mean arrieé of a two-photon vector soliton. The cross-
phase modulation effect only preserves the two-photonresice time, giving rise to temporal entanglement
with positive time correlation. One can also manipulatedbleerence time independently by adiabatically
changing the nonlinear coefficient along the propagatias. ax

8.8 Conclusion

We have derived the general equations that govern the tein@aslution of two-photon probability ampli-
tudes in different coupled optical modes. The formalisnpires the concept of quantum temporal imaging,
which can manipulate the temporal entanglement of phot@sonventional imaging techniques. The the-
ory also offers an intuitive interpretation of two-photamtanglement evolution, as demonstrated by the exact
solution of a two-photon vector soliton. To conclude, weentpthe proposed formalism to be useful for

many quantum signal processing and communication apjalicat
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Chapter 9

Quantum temporal correlations and
entanglement via adiabatic control of
vector solitons

9.1 Introduction

If an optical pulse consists @i independent photons, then the uncertainty in the pulsesc@asition is
the pulse width divided by/N, the so-called standard quantum limit [1]. The ultimateitipermissible
by quantum mechanics, however, is determined by the Hegsgnimcertainty principle and is smaller than
the standard quantum limit by another factor\di, resulting in a quantum-enhanced accuracy useful for
positioning and clock synchronization applications [2]o do better than the standard quantum limit, a
multiphoton state with positive frequency correlationd aquivalently, negative time correlations is needed
[2]. Consequently, significant theoretical [3, 4] and expental [5] efforts have been made to create such
a nonclassical multiphoton state. All previous effortsekased on the phenomenon of spontaneous photon
pair generation in parametric processes, limitihgp 2 only. The resultant enhancement can only be regarded
as a proof of concept and is too small to be useful, consigehat a large number of uncorrelated photons
can easily be obtained, with a standard quantum limit ordémmagnitude lower than the ultimate limit
achievable by two photons. It is hence much more desirabpedotice to be able to enhance the position
accuracy of a large number of photons. In this chapter, ®fitst time to the author’s knowledge, a scheme
that produces a multiphoton state with positive frequermyatations among an arbitrary number of photons
is proposed, thus enabling quantum position accuracy eenaent for macroscopic pulses as well. The
scheme set forth therefore represents a major step foraamtds the use of quantum enhancement in future
positioning and clock synchronization applications.

The proposed scheme exploits the quantum properties oftangaiton, in which photons in different
optical modes are bound together by the combined effectsonfpgvelocity dispersion, self-phase modula-

tion, and cross-phase modulation [6]. A quantum analysisvshtthat the mean position of the photons in
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a vector soliton is insensitive to the optical nonlineastand only subject to quantum dispersive spreading,
while the separations among the photons are controlled dpatance between dispersion and nonlineari-
ties. These properties are in fact very similar to those afascsolitons [7,, 8], so the idea of adiabatically
compressing scalar solitons for momentum squeezing [9beasimilarly applied to vector solitons. The
guantum dispersive spreading of the pulse center can sipeptpmpensated by classical dispersion manage-
ment, while the uncertainties in the relative frequenciesmrg the photons can be reduced by adiabatically
increasing the dispersion or decreasing the nonlinesyitesulting in a multiphoton state with a transform-
limited mean-position uncertainty and positive frequeoasrelations. Given the past success of experiments
on scalar quantum solitons [10] and vector solitons [114,9bheme set forth should be realizable with cur-
rent technology. The formalism should apply to spatial @esblitons as well, so that the position accuracy
of an optical beam can be enhanced [12]. Moreover, the pempssheme is capable of creating Einstein-
Podolsky-Rosen (EPR) entanglement [13] among the positibthe pulses in a vector soliton, suggesting
that the vector soliton effect, together with quantum terapicnaging techniques [4], may be used for general
continuous-variable quantum information processing.[14]

For simplicity, only vector solitons with two optical modessich as optical fiber solitons with two polar-
izations, are analytically investigated in this chaptdre Tesults for two-mode vector solitons are represen-

tative and can be naturally extended to multimode vectadtos, such as those studied in Refs. [15].

9.2 Theory

9.2.1 Formalism

Two-mode vector solitons are classically described bydhewing coupled nonlinear Scbdinger equations

6],

U 9°U 2 2
B +2¢c(JU?+BV|?)U, (9.1)
oV oV 2 2
|—at = —b—o.,22 +2c(|V|* +BJU|7)V, (9.2)

whereU andV are complex envelopes of the two polarizations, assumeaM®identical group velocities and
group-velocity dispersiort, is the propagation timez is the longitudinal position coordinate in the moving
frame of the pulsed is the group-velocity dispersion coefficientis the self-phase modulation coefficient,
andBc is the cross-phase modulation coefficient. For exantple,2/3 for linear polarizations in a linearly
birefringent fiber [16]B = 2 for circular polarizations in an isotropic fiber [17], aBé= 1 describes Manakov

solitons [18], realizable in an elliptically birefringefitber [16]. For solitons to exist, itis required tHat < O.



86

Equations|(9.1) and (9.2) can be quantized using the Hamalibdbelow,

T T
Hﬁ/d[ aUut U 0VOV

B O 0T (01000 +\7Tw\7\7+23m\7*o\7)}, 9.3)

whereU andV are photon annihilation operators of the two polarizatiand the daggers denote the corre-
sponding creation operators. The Heisenberg equation®tdmderived from Eq/ (9.3) are analyzed using
perturbative techniques by Ramtal. [19], who study the specific case of Manakov solitons, and &yt
et al. [20] and Leeet al. [21], who numerically investigate the photon number enlamgnt in higher-order
vector solitons. As opposed to these previous studiesidgthiapter the exact quantum vector soliton solution
is derived in the Sclidinger picture, in the spirit of the scalar soliton anasyseRefs. [7, 8].

Since the Hamiltonian conserves photon number in each modi¢h® mean momentum, one can con-

struct simultaneous Fock and momentum eigenstates witRdtiee ansatz [7, 22],

1 ~ N n
In,m,p) = T / d" d™Y frmp(X1, - Xn, Y1, - Ym)U T (%0)..0 T (VT (1) ..V T (ym) 0), (9.4)

wheren andm are the photon numbers in the two polarizations grid the mean momentum. Using the

Schidinger equatiolE|W) = H|W), one obtains

Er'"'*npfr‘]mp(xl7 ...,Xn,y]_, ...,ym)

= ﬁ{ —b; ;ijz —bZ ;;:% +Zc{z d(x; —xi)+|;<6(yk—y|)+|3§5(xj —yk)] }X

i<

fnmp(X17~--7Xn7Yl7---aym)~ (95)

The soliton solution of Eql (9.5) is

fnmp=Cnmexp{ip(§xj+Zyk) (lej _XI‘+2k‘Yk—yl|+BZ‘Xj _Yk|)} (9.6)
B

i<j

whereCnn is a normalization constant. The energy can be calculateslibgtituting Eq. (9.6) into Ed. (9.5)

and is given by

R 2
Enmp= ﬁprA%3 n(n? — 1)+ m(n? — 1)+ 382nm(n+m)|, 9.7)

whereN = n+m. A physical state should contain a distribution of momensiates, say a Gaussian, such
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that the time-dependent multiphoton probability amplétusinow given by

f :/dp#exp(— P ~ibNp?t) f 9.8)
)T emap?) 4np? e

- 1 Ap 3 Ap?

_C”m(sn)4(1+4ibNAp2t) eXp{ 1+4|bNAp2t( '+Zy")}x (9.9)

exp| o Z|xJ X+ k=—Wl+BY X —wl) | (9.10)
SNEY

i<]

whereAp is determined by initial conditions and a constant energy téhat does not affect the position

and momentum properties of a Fock state is omitted. Althcughore realistic soliton state should have
a superposition of Fock states resembling a coherent sthtthg Fock components of a coherent state for
N >> 1 have photon numbers very close to the mean value, so a Faieksttould be able to adequately

represent the position and momentum properties of a cohstate soliton.

9.2.2 Adiabatic soliton expansion

The multiphoton amplitude,, consists of two components: a dispersive pulse-center coemi given

by Eq. (9.9) that governs the quantum dispersion of the méaop position IN(¥;x; + SxYk), and a
bound-state component given by Eq. (9.10) that fixes thamtists among the photons via the attractive Kerr
potentials. Scalar solitons possess the same propertigg fhd it can be argued that all vector solitons with
any number of modes under the effects of group-velocityatisipn, self-phase modulation, and cross-phase
modulation must also be comprised of such two componerftsldivs that the momentum-space probability
amplitude, defined as thé-dimensional Fourier transform df, also consists of a mean momentum com-
ponent and a bound-state component that governs the estatimenta among the photons. If one increases
b or reduceg adiabatically, the multiphoton amplitude would remaintie same form, but with increased
uncertainties in the relative distances as well as reduceertainties in the relative momenta. More crucially,
the mean momentum uncertainty remains unaffected, leadiagnultiphoton state with positive momentum
correlations. The adiabatic approximation remains vélidé change happens over a propagation time scale
T >>h/|E(t =T) — E(t = 0)], which is on the order of the initial soliton period divideg N. As optical
fiber solitons can typically propagate for a few soliton pds before loss becomes a factor, the desired adi-
abatic expansion should be realizable with current teagyolin the following it is assumed for simplicity
that onlyc is adiabatically varied. Mathematically, in the limit ofnighingc, the bound-state component

becomes relatively flat, anf, becomes solely governed by the pulse-center component,

Ap? 2
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In the momentum space, as the bandwidth of the relative m@mesmeduced and becomes much smaller

than the bandwidth of the mean momentum, the wavefunctiterins of momentum eigenstates becomes

2
) D/dp exp(—AX—pz—iprzt)mp,mp), (9.12)

where|np,m,) denotes a momentum eigenstate with momenjuandn andm photons in the respective
polarizations. Except for the dispersive phase term,[E42§ds precisely the desired coincident frequency
state that can achieve the ultimate limit of mean positiacueacy [2], as frequency is trivially related to
momentum via the dispersion relation. The same operatigoosition squeezing on a scalar soliton is
previously considered by Fini and Hagelstein, who noneggetlismiss this possibility due to the detrimental

effect of quantum dispersion [9].

9.2.3 Quantum dispersion compensation

Fortunately, quantum dispersion, like classical disper,stan be compensated with classical dispersion man-
agement. If the vector soliton propagates in another wadeguith an opposite group-velocity dispersion,
then the dispersive phase term in Eq. (9.8) can be cancdfies restoring the minimum uncertainty in the
mean photon position. The complete setup of generatingpholion states with positive frequency correla-
tions is sketched in Fig. 9.1. To apply the presented scheraespatial vector soliton, negative refraction,
which can be achieved in a negative-refractive-index nedtgt3], or a photonic crystal [24], is required to

compensate for the quantum diffraction instead.

Pulses with
Coincident Frequencies

Adiabatically Increasing Dispersion or
Decreasing Nonlinearity

—_—
—>| Nonlinear Waveguide |—>| Dispersion Compensator

Figure 9.1: Proposed setup of generating multiphotonstaitth quantum-enhanced mean position accuracy
via adiabatic control of vector solitons. A pulse is coupiletb a vector soliton in a multimode nonlinear
waveguide, in which dispersion adiabatically increasetherKerr nonlinearity adiabatically decreases. A
second waveguide with an opposite dispersion is used fopeasating the quantum dispersive spreading of
the mean position.
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9.3 Temporal correlations among photons

In order to understand how the quantum vector soliton smiutbrresponds to a classical soliton in typical
experiments and how much adiabatic pulse expansion is deedeach the ultimate quantum limit, consider
the specific case of a Manakov soliton, whBre 1. Other vector solitons should have very similar propsrtie
given the similarity of the solutions. If the photon positigariables are re-indexed in the following new

notations,
{Zlv--wZN}:{Xla--meYL---;Ym}v (913)

the multiphoton amplitude in Eqgs. (9.9) and (9.10) becomes

Ap 3
_ 1/4
frim = Cam(870 (1+4ibNAp2t) eXp{ 1+4|bNAp2t (;Z‘) 2 a3l (0.14)

i<

Intriguingly, this solution is exactly the same as the scatditon solution [7], or in other words, a Man-
akov soliton is quantum-mechanically equivalent to a gcatditon. This equivalence explains the dis-
covery by Ranckt al. that the squeezing effect of a Manakov soliton has the sarimom as a scalar
soliton [19]. MoreoverCym can now be borrowed from the scalar soliton analysis andvisngby Cny =
[(N—1)!|c/bN=1/(2m)]¥? [7]. The knowledge oy, allows one to calculate the correlations among the
photon positions using standard statistical mechanidmigqoes. An expression fc(tzi<j |Zj fzi|> can be

derived, and by symmetry,

<Zj—2|>=,\,(,\|1_1)<zzj z|>— NC‘N\NO (9.15)

i<

As expected, the average absolute distance between anyhivtons is on the order of the classical soliton
pulse width Wp ~ |2b/(Nc)| [7]. Next, assume that the variance of the relative distasaelated to the

square of the average absolute distance by a parameter

4gb?
(lzi-3a%) =a(lz —z])* = N2 (9.16)
While an explicit expression fag is hard to deriveg must only depend oN by dimensional analysis, must
be larger than 1 becaugtz; —z[2) > (|zj —z|)°, and is likely to be on the order of unity, as will be shown

later. Eq.|(9.16) then gives

(I —3%) = (Z) - 2(zz))+(Z) = 2(%) - 2(z7)), (9.17)

20b?
(B)-(a2) = o 9.18)
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Furthermore, the variance gf; z; is simply given by

<(ZZI)> (Z) +N(N-1)(zz) = AZ, (9.19)

AR = pz +4(bNApt) (9.20)

From Eqgs.[(9.18) and (9.19) the covariances can be obtakpdididy,

A7  29(N—1)b? L\ AZ 2907

A T A Y v 2 621

A guantum soliton solution best resembles a classicabimtindition with independent photons when the

initial covariance is zero,

2
1 2 ‘ —0, (9.22)

(22)_o= 4N2Ap2 TN liso
Ap= ’ L
\ﬁb =0 2V/NWp’

(9.23)

Incidentally, the mean momentum uncertaifty is at the shot-noise level when the photons are initially
uncorrelated. This justifies the assumption thas on the order of unity. An initial condition with inde-
pendent photons would then mostly couple to a soliton stiteAyp given by Eq.[(9.23), while coupling to
continuum states should be negligible. Adiabatically éasing|b/c| then makegzz;) negative and there-
fore introduces the necessary negative correlations ari@nghoton positions. If the ratio between the final
and initial values ofb/c| is y, for N >> 1 andy << /N, the pulse bandwidth is reduced by a factoryof
according to the classical theory. The accuracy enhandeoven the standard quantum limit for the same
reduced bandwidth is hence also givenibin the regime of moderate expansion. The multiphoton state
becomes that given by Egs. (9.11) and (9.12) and the ultitimaiieis reached only whey >> +/N.

9.4 Temporal entanglement between optical pulses

As the photons across different optical modes become ebeklia the cross-phase modulation effect, en-
tanglement is expected among the pulse positions in a veoldon. To estimate the magnitude of the
entanglement in terms of macroscopic position variablessicler again the case of Manakov solitons. Let
the pulse center coordinates of the respective polarizatie X andY, defined asX = l/nz?zlz,- and

Y =1/m3R .1 %. If there is an equal number of photons in each polarizatimh shatn = m= N/2, The

following statistics forX andY can be calculated using Egs. (9.21),

(52) = = (5597) - 2 (9.24)
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Similar to a two-photon vector soliton [4], the mean pogitaf the two pulses is affected by quantum dis-
persion, while the relative distance is bounded by the K#ece For two initially uncorrelated pulses,
Eqgs. [(9.24) give the same value, but as the vector solitopggatesAz grows due to quantum dispersion,
leading to a positive temporal correlation between the twisgs. This correlation, however, does not re-
sult in the EPR paradox, as the joint spectrum in terms of tmugate momenta with respect XoandY

does not change. If, on the other habdindc are adiabatically manipulated, then the nonlocal unagstai
product((X —Y)?) { (R« — R/)?), wherePx andR, are the conjugate momenta, can remain constant under
the adiabatic approximation whilgX —Y)?) and((Px — R/)?) are varied, resulting in EPR entanglement.
Combined with quantum temporal imaging techniques, whiehadle to temporally reverse, compress, and
expand photons in each mode [4], adiabatic vector solitarirobpotentially provides a powerful way of

fiber-based continuous-variable quantum information @seing [14].
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Chapter 10

Beating the spatial standard quantum
limits via adiabatic soliton expansion
and negative refraction

10.1 Introduction

In many optical imaging applications, such as atomic foréerescopy [1] and nanoparticle detection [2],
precise measurements of the displacement of an optical beamequired. It is hence important to know
what the fundamental limit on the accuracy of such measum&sris placed by the laws of physics, and
how one can approach this limit in an experiment. It is nowvkmahat if an optical beam consists if
independent photons with wavelengththen the minimum uncertainty in its spatial displacemserari the
order ofA /v/N, the so-called standard quantum limit [3]. The ultimateartainty permissable by quantum
mechanics, however, is smaller than the standard quantuitnbly another factor of/N [3]. An experiment
that beats this standard quantum limit with nonclassicdtimade light has already been demonstrated [4].
On the other hand, in other optical imaging applicationshsas lithography, microscopy, and data storage,
detection of extremely small features of an object is ddsifihe feature size of an optical intensity pattern
cannot be smaller thah, due to the resolution limit [5]. Multiphoton absorptionals detection of smaller
feature sizes, and the minimum feature size of multiphobmoeption using a classical coherent light source
is on the order ofA /+/N [6], which can be regarded as the standard quantum limit ennthltiphoton
absorption feature size. Nonclassical light sources atioe to do better, and the ultimate limit is smaller
than the standard one by another factorya¥l [6,7]. A proof-of-concept experiment of this resolution
enhancement has also been demonstrated [8]. In the timeloragy similar guantum limits on the position
accuracy of an optical pulse can be derived [9]. Given thi&isty similarities among the spatiotemporal
guantum limits, one expects them to be closely related tb e#tter, yet the formalisms used to described
each of them are vastly different [3,/6, 7, 9], so a more gdriermalism applicable to all spatiotemporal

domains would greatly facilitate our understanding towsdhe spatiotemporal quantum enhancement effects.



95

In this chapter, we apply the temporal formalism used by Gimettiet al. [9] to the spatial domain, and
show that the uncertainty in the beam displacement and thtesgre of multiphoton absorption are in fact
closely related. Using this newly derived result, we dentrats how one can generate arbitrary multiphoton
interference patterns with a continuous superpositionogfaident momentum states. We further present
an unfortunate result, namely that the multiphoton absmmptate is reduced if the quantum lithography
resolution is enhanced, contrary to popular belief [6].afin we take advantage of the general spatiotemporal
framework to show that the idea of adiabatic soliton expamspreviously proposed to beat the temporal
standard quantum limit [10], can also be used to beat bottiesgtandard quantum limits and approach the
ultimate limits with an arbitrary number of photons. The ag$eolitons is an attractive alternative to the more
conventional use of second-order nonlinearity for quannfarmation processing, because the soliton effect
bounds the photons together and allows a much longer itik@ndength for significant quantum correlations

to develop among the photons.

10.2 Formalism

ConsidemN photons with the same frequenayand polarization that propagate in the z plane. A general

wavefunction that describes such photons is given by [11]

1
W) = W/dkldkz...dk,\l O(Ke, Ko, ... kn ) [Ke, Ko, ... k). (10.1)

where|ks, ..., kn) is the momentum eigenstate,, ..., ky specify the transverse wave vectors of the photons
along thex axis, andg(k,...,ky) is defined as the multiphoton momentum probability ampétudhe

longitudinial wave vectors are all assumed to be positivee €an also define the corresponding quantities in

real space,
dk; d . :
X1, ..., XN) = \/%T...\/I%[exp(—lklxl—...—|kNxN)|k1,...,kN>, (10.2)
dk; d . .
Wxe, ..., Xn) = \/%T...\/%(p(kl,...,k,\,)exp(lklx1+...+|kNxN), (10.3)
1
|W¥) = W/Xm...dXNL[J(Xl,...,XN)|X1,...,XN>, (10.4)

wherey(xs,...,xn) is the multiphoton spatial probability amplitude. and ¢ are subject to normalization
conditions [ dky...dky|@[2 = [dxq...dxn|@|? = 1, and@ and ¢y must be symmetric under any exchange

of labels due to the bosonic nature of photons. The magnisgdared ofy gives the joint probability
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distribution of the positions of the photons,

()0 () 2 O %M/&T (x1)-.AT(xn) A1) A(xn) | W) (10.5)

= WX, ... xn)[%, (10.6)

whereA(x) andA'(x) are the spatial annihilation and creation operators, wtisiedy. The statistical inter-
pretation ofy is valid because we only consider photons that propagakeipdsitivez direction. The above
definition of a multiphoton state is more general than thassl by other authors, in the sense that we allow
photons with arbitrary momenta, compared with the use of onk even spatial mode and one odd mode by
Fabreet al. [3], the use of only two discrete momentum states by Eb#d. [6], and the use of many discrete
momentum states by Bjk et al. [7].

The displacement of an optical beam can be represented lbgllineing operator,
.1 At
= / dx XAT(OAX). (10.7)
Applying X to [xq, ...,x\) gives
N 1 N
X|X1a"'7XN>: ngm |X1a"'7XN>7 (108)

so the beam displacement can be intuitively regarded as¢laa position of the photons under the statistical

interpretation. If we assume th@f(> = 0 for simplicity, the displacement uncertainty is given by

N 2 1/2
<)22>1/2 = {/dxl...de (;Zx) |L/J(x1,...,xN)|2] . (10.9)

It is often more convenient to use a different system of cioaités as follows [12],

1 N N-1
X==Sx, &=x-X,i=1...N-1, &=-1Y5 &. (10.10)
N2, 2,

X is therefore the “center-of-mass” coordinate that charaggs the overall displacement of the optical beam,

and¢;’s are relative coordinates. Defining a new probability atage in terms of these coordinates,

w/(xagla“wa—l) = QU(X'FEL’X"‘EN)a (1011)
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we obtain the following expression for the displacementeutainty,

5o\ 1/2 1 1/2
(X2 = {N/ddel...le X2 (X, &1, .., En_1) 2 (10.12)
= (x3)2, (10.13)
which is the marginal width oy’ with respect toX.
On the other hand, the dosing operatoNephoton absorption is [6]
NGO O XX, X) 2 = @/ (%,0,...,0) 2, (10.14)

which is, intuitively, the probability distribution of aM photons arriving at the same plaxe Hence, de-
signing a specified multiphoton interference pattern innuia lithography is equivalent to engineering the
conditional probability distributiony’(X,0,...,0)|2. In particular, the spot size of multiphoton absorption is
the conditional width ofy’ with respect toX,

1/2

[/dxx2<: IN() :>] = de X2|y/(X,0,...,0)[2 (10.15)

1/2
= (X" |es gy 10 (10.16)

Despite the subtle difference between the marginal widththe conditional width, ify’ can be made sepa-

rable in the following way,

L,J/(X7 617 cey ENfl) - ’ﬁ(x)Lﬂrel(El; ceey ENfl)a (1017)

then both widths are identical, and one can optimize theiphdton state simultaneously for both applica-
tions.

The standard quantum limit on the uncertaintyXnis obtained when the photons are spatially in-
dependent, such thafi(xa,...,.xn) = f(x1)...f(xn). For example, iff (x) is a Gaussian given by (x) O

exp(f%"z> , then both the marginal and conditional uncertaintiex ire

1
XDsa=Xsaul- g 1m0~ V2N

sor= s (10.18)

Similar to the optimization of temporal position accuragy; fhe ultimate quantum limits on spatial displace-

ment accuracy and quantum lithography feature size arexatiwith the following nonclassical state,

W) :/de(k)\k,k,...,k>. (10.19)
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The momentum probability amplitude is then
@(Ka,....kn) = G(k1)O (ks — k2)d(ky — k3)...0 (kg —kn), (10.20)
which characterizeN photons with coincident momentum. The spatial amplitudats given by

Y (X, &1,...,EN) G(k) exp(iNkX) = g(NX), (10.21)

_ [ 9k

J Ven
which is a function ofX only and can be understood as a continuous superpositiNrpbioton states, each
with an effective de Broglie wavelength equal t@/ZNk). The multiphoton interference pattern is therefore
trivially given by|g(NX)|?, the magnitude squared of the Fourier transfori@@). An arbitrary interference
pattern can hence be generated, if an approp@gke can be engineered. This approach of designing the
multiphoton interference pattern should be compared wighléss direct approaches by the use of discrete
momentum states [6, 7]. With the resolution lin@k) is zero for|k| > 2m/A, so given the Fourier transform
relation betweers(k) andg(NX), the minimum feature size of multiphoton interference istlom order of
A/N.

To compare the ultimate uncertainty Xhwith the standard quantum limit, I&(k) be a Gaussian given

by G(k) O exp(—zk—:z), then the uncertainty iX becomes

1
NG , 10.22
( >UQL V2Nk ( )

which is smaller than the standard quantum limit, Eq. (10).ti$ another factor of/N, as expected.

10.3 Multiphoton absorption rate of nonclassical states

Let us recall Botat al.’s heuristic argument concerning the multiphoton absorptate of entangled photons.
They claim that, because entangled photons tend to arrthe game place at the same time, the multiphoton
absorption rate must be enhanced [6]. If photons tend tueaat the same place, then the uncertainty in
their relative positions must be small. However, the spatiabability amplitude that achieves the ultimate
lithographic resolution, Eq. (10.21), is a functionXfonly, which means that the uncertainty in the relative
positions is actually infinite. In general, any enhancenmémesolution with respect t& must result in a
corresponding reduction in the bandwidths with respechéortlative positions, in order to maintain the
same maximum bandwidth. By the Heisenberg uncertaintycimii®, such photons must then have increased
uncertainty in their relative positions. Hence, Betaal.'s argument manifestly does not hold for photons
with a quantum-enhanced lithographic resolution. In fdet,opposite is true: Although these photons have
a reduced uncertainty in their average position, they mase lan increased uncertainty in their relative

positions, so they do not arrive at the same place very ofted,the multiphoton absorption rate must be
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reduced. To observe this fact, consider the total multiphatsorption rate,
/dx(: INX) 2 O /de(x,o,...,O)\Z. (10.23)
Becausel’ must satisfy the normalization condition,

S [ dXdEL Ay (X, & )P =1 (10.24)

a larger uncertainty i§;'s means thaty/(X,0,...,0)|> must be smaller, leading to a reduced multiphoton
absorption rate. Conversely, photons that tend to arrigetteer must have a larger uncertainty in where they
arrive, so an enhanced multiphoton absorption rate meanshtt quantum lithographic resolution must be
sacrificed. That said, one can still compensate for the temuim the multiphoton absorption rate due to an
enhanced resolution in one dimension, by reducing theivelpbsitions of the photons in the other unused

space and time dimensions.

10.4 Generating nonclassical states via the soliton effect

We now turn to the problem of producing the nonclassical ipldtton states for spatial quantum enhance-
ment. As we have established a general formalism that rdsertite temporal one, schemes that produce
temporal quantum enhancement can be applied to the spatiaid as well. In particular, a scheme that

makes use of temporal solitons is recently proposed to eehtre temporal accuracy of an optical pulse

[10]. We here proceed to show how spatial solitons can bizedilto enhance the beam displacement ac-
curacy, as well as reduce the spot size of multiphoton abisareyond the standard quantum limits and

approaching the ultimate quantum limits.

Consider the Hamiltonian that describes the one-dimeasiiffraction effect and Kerr nonlinearity,
A OATOA  ~ioian
H = / dx {—bx + CATATAA| (10.25)

whereb is the Fresnel diffraction coefficient, assumed to be pasitandc is the negative Kerr coefficient,
assumed to be negative, so tiit < 0 and solitons can exist under the self-focusing effect. Jdigon

solution of the spatial amplitude f&f photons under this Hamiltonian is [13]

B dk o C o o a2 G
w_c'/mG(k)exp[lka.Jr2b%|x.—x,|—|kat+|mN(N —1t], (10.26)

whereC = /(N —1)!|c/bN-1/(2m) andG(K) is determined by the initial conditions. If initially the ptons
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are uncorrelated3(k) can be approximated as [10]

k? INc

whereq is a parameter on the order of unity [10], &M is the initial soliton beam width. The probability

(10.27)

1
~ N

amplitude can be written in terms of the center-of-mass aladive coordinate system defined in Efs. (10.10)

as

W :c/;%e(k) exp[iNkX—&— ;bi; & — ] —ika%—H%N(NZ—l)t , (10.28)
which is separable in the way described by Eq. (10.17), nngathiat the conditional width and marginal
width with respect toX are identical. If we adiabatically reduceor increaseb, then we can reduce the
uncertainty in the relative momenta of the photons and asae¢he uncertainty in the relative positions/[10].
Classically, we expect the soliton beam width to expand &edspatial bandwidth to be reduced, But the
most crucial difference in the quantum picture is that theteeof-mass coordinat¥ remains unaffected
during the adiabatic soliton expansion, apart from the turardispersion term-ibNk2t.

As pointed out in Ref! [10], the quantum dispersion term cardmpensated if the soliton propagates in
a second medium with an opposite diffraction coefficignfull compensation is realized wh%ﬁ b(t)dt =
— ij/ b (t)dt, whereT is the propagation time in the first medium ards the propagation time in the second
medium. Negative refraction, realizable in a left-handederial [14] or a photonic crystal [15] for example,
is hence required in the second medium. Ideally the secomtiumeshould also have a Kerr coefficierit
opposite to the final value afin the first medium, such that = —c(T), so thatt’ /¢’ < 0 and the quantum
soliton maintains its shape, but in practice= 0 would also suffice, because the momentum bandwidths
would remain unchanged in a linear medium while the quantigmedsion is being compensated.

In the limit of vanishingc/b in the first medium, the wavefunction would approach themdte multi-
photon state given by Eq. (10.21). However, the bandwidiB(&j is very low, on the order of A(v/NW),
whereW is the initial soliton beam width, so the bandwidth@(k) is nowhere near the resolution limit and
the uncertainty irX is the same as the input beam. In order to reduce this unagrtane can put the beam

in a conventional imaging system [16] to recompress it, abttie output probability amplitude becomes

X1 X2 XN)
IV A

1
Wou = s i (M’M""’ - (10.29)

whereM is the magnification factor. IM is smaller than 1, each photon is spatially compressed, thus
reducing the ultimate quantum limit on the uncertaintXinTo illustrate, Fig. 10./1 shows a flowchart of the
whole quantum enhancement process and a simple exampleatftiehspatial and momentum probability

amplitudes should look like in each step for two photons.
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Figure 10.1: First row: schematics of the spatial quantuhaanement setup via adiabatic soliton expansion.
Second row: sketches of the spatial probability amplitugleg, x2), for an example of two photons in each
step of the process. Third row: sketches of the momentumgbitity amplitude,@(ks, ko). Consult text for
details of each step of the process.

10.5 Conclusion

In conclusion, spatial quantum enhancement effects adbestwnder a general framework. A method of
generating arbitrary multiphoton interference patterrti®yuse of a continuous superposition of coincident
momentum states is proposed. It is further shown that theiphokon absorption rate is reduced if the
lithographic resolution is enhanced. Finally, the use ddlaaltic soliton expansion and negative refraction is

proposed to beat the spatial standard quantum limits.
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Chapter 11

Reflectionless evanescent wave
amplification via two dielectric planar
waveguides

11.1 Introduction

Conventional optical imaging systems cannot resolve featamaller than the optical wavelength, because
the high-spatial-frequency modes that describe the sullemagth features are evanescent waves, which ex-
ponentially decay away from the object and do not propagdteetfar field. Observing the evanescent waves
is therefore one of the most important yet formidable cimgjéss in the field of optics, with important ap-
plications in optical lithography, data storage, and nscapy. Near-field scanning optical microscopy can
detect the evanescent waves [1], but it requires scannihighwnay not be desirable for many applications.
A groundbreaking proposal by Pendry suggests that evameseges can be amplified without any reflection
in a negative-refractive-index slab [2], causing signifitdaterest as well as controversy [3] in the mechanism
of evanescent wave amplification (EWA). On the practicat sitle fabrication of a negative-refractive-index
material for optical frequencies is a challenging tasktasquires both negative permittivity and negative
permeability, the latter of which does not naturally ocoumiaterials, and methods of implementing an ef-
fective negative refractive index [4, 5, 6] often introdwsignificant loss detrimental to the EWA process.
As proposed by Pendry [2] and experimentally demonstrayeldamget al. [7], a negative permittivity in a
metal slab can also amplify evanescent waves to some ekigritie thickness of the slab is limited by the
electrostatic approximation as well as loss. A simpler EWBAesne that utilizes less lossy materials would
thus be desirable.

Along this direction, Lucet al. propose that a photonic crystal slab can be used to amplégescent
waves [8], since evanescent waves with specific spatialinecjes can be coupled into the bound states of
the photonic crystal slab, and the buildup of the bound stateduces an enhanced evanescent tail on the

other side of the slab. Apart from the difficulty in fabricadia three-dimensional photonic crystal for two-
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dimensional imaging, the kind of EWA achieved by a photomicstal slab is not ideal, because the buildup
of the bound states also creates enhanced reflected evanesses, causing multiple evanescent wave
reflections between the object and the photonic crystal. Herother hand, in order to obtain information
about the output evanescent waves on the image plane, emeigfybe extracted, and the only way for the
detector to “tell” the imaging system to give up energy is @ieeflected evanescent wave. In other words,
detection of an evanescent wave always creates a reflecrdsment wave, so there exist multiple reflections
between an imaging system and the detector as well. Singadbeitudes of evanescent wave transmission
and reflection coefficients can be larger than 1 or even isfinitultiple evanescent wave reflections can be
very significant and should not be ignored in the design of-fiell imaging systems. An ideal near-field
imaging system should hence have 100% transmission as svedira reflectionas if the imaging systemis

not there and the object directly touches the image plane. This ideal behavior also allows multiple imaging
systems to be cascaded and a longer distance between thearigjehe detector.

In this chapter, the underlying physics of reflectionlessn@scent wave amplification (REWA) by the
use of a negative-refractive-index slab is explained, asdg this knowledge, it is shown that evanescent
waves with specific spatial frequencies can be amplifiedawitiieflection simply by two dielectric planar
waveguides. Since loss in a dielectric can be orders of madmiower than metals or metamaterials, our
proposed scheme is the simplest way of experimentally detrating the intriguing phenomenon of REWA
and offers simple alternatives to the use of left-handecrias, surface plasmons, or photonic crystals for

near-field imaging applications.

11.2 Evanescent wave amplification

One of the most poorly understood aspects of Pendry’s pebjpthat at the interface of an= 1 material

and am = —1 material, the transmission and reflection coefficientstazeretically infinite [2]. Mathemati-
cally this indicates the presence of an unstable pole omtlaginary axis in the complex transverse-spatial-
frequency $ = iky) plane, and physically the transmitted and reflected eeamé®ptical fields must therefore
increase linearly along a semi-infinite interface. Thisasdty surprising if one recalls the well-known fact
that infinite scattering coefficients correspond to boutadiessolutions, so the incoming evanescent waves are
simply resonantly coupled into the waveguide modes of therfimce. The most peculiar aspect of Pendry’s
interface is that the scattering coefficients are alwaynibefi meaning that bound-state solutions exist for all
ke. This is not true for other waveguides, including photormigstals [8], which have discrete bound states

with different discretek,’s. In particular, for ideal surface plasmons, only one hlibstate exists.

11.2.1 Evanescent wave amplification by one dielectric slab

First, consider a dielectric slab with thicknesand refractive index; in thex —y plane. Suppose that an

evanescent s-polarized wave with an electric field expéalgntiecaying along the axis given byEg, =
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[0,1,0] exp(ikzz+ ikex — ict) impinges on the slab, whekg is assumed to have subwavelength resolution, so
k« > wnp/c, k; is determined by the dispersion relation, givenkpy= i4/k2 — kg ko = wnp/c, andng is the
refractive index of the surroundings. Considering the fint&rface betweeny andn; only, the reflected wave
isr[0,1,0]exp(—ikzz+ ik —iwt), and the transmitted wave inside the slatj@s1, 0] exp(ik,z+ ikex —icot).

ky is the same on both sides of the interface, Enig given by the dispersion relatidd = |/k? — k2, where

kiy = wny /c. K, is hereafter assumed to be real for waveguide modes to &kiist restricts to be bounded

by the wave numbers in the two media,
Ko < kx < k1. (11.1)

The transmission and reflection coefficients across theifitstface are given by = 2k;/(k, + k}) and
r = (k. — k;)/(k; + k) respectively. Likewise, the scattering coefficients asrthe second interface are
t' = 2K,/ (K, + kz) andr’ = (k; — k;)/(k, + kz). To obtain the total transmissiom, across the slab, multiple

scattering events must be summed,

T =texp(ika)t’ +texp(ikia)[r’ expika)]?t’ + ... (11.2)
tt’ exp(ik,a)

T1- r2exp(2ik,a) (113)

The total reflection coefficient can be obtained similarly,

tt'r’ exp(2ikla)

I— = R — B .
i r'2exp(2ik,a)

(11.4)

Waveguide modes correspond to those with evanescent xgitmentially decaying away from the waveg-
uide. In other words, the total transmitted evanescent waankthe total reflected evanescent wave for the
waveguide modes can exist by themselves without any inapmiaveE,, , or, mathematically speaking,

andrl™ are infinity. This happens when

/!

k, — kz\ 2
2 i a) —1_ (-2 Z P —
1-r"“exp2ika) = 1 (k’z+kz) exp(2ik,a) = 0, (11.5)

which simply states that the accumulated phase in a roun@hgide the waveguide must be multiples of. 2

As bothk; andk, depend ork, Eq. (11.5) is an eigenvalue equationkgffor the TE modes of the single
waveguide. A simple dielectric slab can hence achieve EW#tdithe waveguide mode coupling resonances,
similar to a photonic crystal [8]. If only subwavelengthtig@s are concerned and all-angle negative refrac-
tion [9] is not needed, a complicated structure such as plhotoystal is not necessary. However, just like a
photonic crystal, the reflection coefficientof a slab waveguide is also infinite, causing potential protsd

with multiple reflections.
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11.2.2 Reflectionless evanescent wave amplification by twaveguides

In Pendry’s proposal, both interfaces of a negative-réifradndex slab need to be considered for ideal
REWA. The two interfaces can be considered as two waveguates the total transmission of the slab
exponentially increases with respect to the thicknesse$lib, or the distance between the two waveguides,
when the single-interface scattering coefficients are itefinThis suggests that REWA may also exist for

other kinds of double-waveguide structures, when the @soroupling condition of the single waveguide is

reached.
object image
plane plane
no | 1 R ny| Ny

I > e———— > c><—>
u a d a v

Figure 11.1: Reflectionless evanescent wave amplificaB&\A) by two slab waveguides, wheng > ng.

Now let us go back to the dielectric slab waveguide exampt add another identical waveguide a
distanced away from the first, as depicted in Fig. 11.1. The total trassion coefficient for this double-
waveguide structure is

T2 exp(ik.d)

T 1-TZexp(2ikd)’ (11.6)

Whenky coincides with one of the single-waveguide bound-statersiglues determined by Eq. (11.5), the

total transmission becomes

2

T
lim T= lim —— exp(—ik.d
M2exp(2ikia) -1 r2exp2ikia) -1 T2 A=Tked)
= —exp(—ikd), (11.7)

which increases exponentially with respectdto The total reflection coefficient of the double-waveguide
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structure is likewise given by

2T exp(2ikd)

R=T+—¢©w———— 11.
T I Fexp2ikd)’ (11.8)
and in the limit ofk, being a bound-state eigenvalue of a single waveguide,
TZ
lim R= lim 1-—|F=0. 11.9
12 exp(2ikLa) 1 r/zexp(Zik’za)—d( FZ) (11.9)

Hence, an evanescent wave can propagate with perfect fissismand zero reflection in the setup depicted
in Fig./11.1, thereby achieving REWA, if+ v = d and the resonant single-waveguide coupling condition is
reached. Identical results can also be derived for p-pradrivaves and TM modes. REWA should be quite
general for any kind of symmetric and identical waveguidsdpng as the bound-state limitot/I? is 1, so

two photonic crystal slabs may be used to achieve all-aregative refraction [9] and REWA simultaneously.

11.3 Discussion

For imaging applications, it is important to stress thatdbable-waveguide device only beats the resolution
limit of the cladding layer with refractive indeny, but not the resolution limit of the core layer with refraeti
indexn;. This is because the bound-state eigenvaluég afe bounded by wave numbers of the two media,
as shown by Eq| (11.1). That said, for a highly multimode wange, the maximunk is close to the wave
number of the core medium, so the proposed device can dtél aalvantage of the high resolution limit
offered by a high-refractive-index material without caritavith the object. This can be advantageous for
many applications because many solids have higher refeaictilices than fluids but it is not very practical
to fill the whole imaging system with solids as in oil immersimicroscopy. Furthermore, for biomedical
imaging applications, it is not always possible to placehtyh-refractive-index material directly in touch
with the object plane, because the contact may damage ttogizial sample, or one may desire to put the
object plane inside a semi-transparent object, such as.a cel

Promising high-refractive-index material candidatesude diamond, which can have a refractive index
as high as 2.7 [10] and transparent down to a wavelength aftal®) nm [11], and coherently prepared
atoms (confined in, say, a dielectric box) with a resonamnilyamced refractive index [12], which can theo-
retically reach the order of one hundred [13] and a prootarieept experiment of which has already been
demonstrated [14].

An outstanding problem of using any waveguide, except negatfractive-index slabs, for EWA is
that ideal enhancement only occurs for single-waveguiddasowhich are discrete and band-limited for
eachw. For instance, the discrekg’s of the TE modes in a symmetric slab waveguide are detertiye
Eg. (11.5) and band-limited by Eq. (11.1). As a result, arcbjvith frequency components that lie outside

the waveguiding band or do not coincide with the bound stesemot be perfectly reproduced. For this
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reason, ideal surface plasmons are ill-suited for faitihdge transmission, as they have only one bound
state with one eigenvalug. Loss can increase the bandwidth of the transmitted satiglencies near
each discrete waveguide mode, but also severely limits idtarcte between the two waveguides at which
effective REWA occurs. For dielectrics, multimode wavelgs can partially solve this problem by offering
more Fourier modes within the band. One may also use a broddiggat source to increase the amount of

available spatial frequencies.

11.4 Conclusion

In conclusion, the use of two dielectric planar waveguidgsroposed to amplify evanescent waves without
reflection. The simple configuration elucidates the mostrsa physics of REWA and presents a simple
way of experimentally demonstrating such an intriguingrameenon. In practice, the proposed setup also

allows one to take advantage of high resolution limit of detiric without contact with the object.
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Chapter 12

Metaphoric optical computing of fluid
dynamics

12.1 Introduction

12.1.1 Philosophy of metaphoric computing

Nonlinear dynamical systems, such as weather, plasmahanecbnomy, are ubiquitous in nature and ev-
eryday life, yet such systems are typified by their highly ptar and chaotic behaviors, making them no-
toriously difficult to study theoretically, experimentalland numerically. Analytic solutions of nonlinear
systems are rare, experiments are often too inflexible ordntjgal, and numerical simulations must take
into account a large number of data points in multiple dinmrsin order to accurately model a problem
of interest, such that even the fastest supercomputery tediald take days or weeks to simulate relatively
simple nonlinear dynamics that a physical system exhibiseconds.

On the opposite side of the same coin, we can regard the pthggistem as a computational device that
computes its own dynamics at a speed unimaginable by supgprders. The key to harnessing this tremen-
dous computing power of a physical system is therefore toenitakompute other interesting problems of
the same order of complexity. Of course, a conventionaltaigiomputer is itself a physical system, but
it makes use of complex semiconductor physics to computeezitary logic operations, and in doing so,
discards a large amount of information that is consideréxhegous. In this perspective, a digital computer
is an extremely inefficient computing device, as it onlyimés an exceedingly small amount of the full com-
puting capability potentially offered by its physics. Thdvantage in this case is the flexibility in cascading
different logic operations for general-purpose compuyting as evidenced by the difficulties in the numerical
simulations of nonlinear dynamical systems, this ineffitomputing method is often inadequate.

In order to make full use of the computing capability offetsca physical system, we hereby propose the
concept of metaphoric computing, which makes use of a mgrergrentally accessible nonlinear dynamical

system to simulate another nonlinear dynamical system. ¥amele of this computing method is a wind
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tunnel, in which a small-scale fluid experiment is perforrt@dimulate large-scale fluid dynamics, by virtue
of the scaling laws inherent in fluid dynamics. Metaphorimpoting, however, is not restricted to the use
of similar physical systems to simulate each other. In thisgs, we show in particular that nonlinear optics
can compute fluid dynamics as well. An optical beam inheyemtiids three-dimensional spatiotemporal
information, and nonlinear optical propagation compukesdvolution of this large amount of information
simultaneously at the speed of light, promising substbhpéieallelism and speed for computing. Although the
use of nonlinear optics for digital computing has not beesursessful as the use of solid-state electronics,
forcing optical beams to compute binary logic wastes moghefspatiotemporal information that can be
manipulated in optical beams. Instead of fitting a squareipeground hole, using optics to simulate other
nonlinear dynamical systems provides a natural way of ngpkith use of the computing capacity offered by
a nonlinear optical system.

Fluid dynamics, the foundation of a wide variety of impottagsearch fields including meteorology,
aeronautics, plasma physics, superfluids, and Bose-Einstedensates, is an ideal problem to solve by
metaphoric computing. Intractable theoretical analysid mflexible experiments compel the use of nu-
merical simulations, the difficulty of which nonethelesgeas rise to a whole new field, computational fluid
dynamics, in itself. The main difficulty is due to the inhereamplexity of a fluid dynamics problem, which
is nonlinear and continuously generates finer structuréiseaffuid dynamics evolves. For problems that are
of practical interest, such fine structures are often ordéreagnitude smaller than the size of the objects
under consideration, thus requiring a large number of daiistgin each of the three spatial dimensions to
be manipulated at each time step, which must also be comdsply small to avoid numerical instabilities.
An alternative method of simulating complex fluid dynamieattcombines the speed of a fluid experiment
and the flexibility of a numerical analysis is hence of greatfical importance. In this paper, we show that,
via a suitable transformation, nonlinear optical propagatan be utilized to simulate Euler fluid dynamics,
which is known to be computationally expensive and unstibfolve numerically . We also provide strong
evidence that nonlinear optics can simulate high-Reynoldaber Navier-Stokes fluid dynamics as well,
which include a large class of important and computatigngilificult problems, such as turbulence. With
the speed, parallelism, and configurability of optics, aptial wind tunnel” may one day become a viable

alternative to experiments and numerical analysis in theysbf fluid dynamics.

12.1.2 Correspondence between nonlinear optics and fluid dgamics

The analogy between nonlinear optics and fluid dynamics éas boted by many authors|[1, 2, 3,4,5, 6,7, 8,
9,10,11,12,13, 14, 15, 16, 17, 18]. Wagetdl. first suggested that the nonlinear propagation equation of a
optical beam can be recast into equations that resembl®ttimuity equation and the Bernoulli equation in
irrotational fluid dynamics [1]. Coullet al. first coined the term “optical vortices,” which shows the lagg
between phase singularities in optics and fluid vortices Blmbillaet al. noted that laser equations can

be transformed to a hydrodynamic form [3]. Arecehil. first experimentally demonstrated the dynamics
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of optical vortices in nonlinear optics [4]. Akhmanewal. called the rich nonlinear dynamics observed in a
nonlinear resonator “optical turbulence.” [5] Swartzlandnd Law observed optical vortex solitons created
via the instability of dark soliton stripes analogous to iedvin-Helmholtz instability in fluid dynamics [6].
Staliunas showed that a laser can be described by the Ggitlamdau equation, which can be transformed
into equations resembling the Navier-Stokes equatiorisiigrribe viscous fluid dynamics [7]. Vauthl.
observed vortex pair nucleation by the interference of twades in a laser and claimed that it was an analogue
of a vortex street behind an obstacle in a fluid flow [8]. Moliferrizaet al. also observed optical vortex
streets in walking second-harmonic generation [9]. Ro@ §hd Rozat al. [11] studied the interactions
between optical vortices and found that their interacti@semble those of fluid vortices. Rozasal. then
experimentally demonstrated the fluidlike motion of a pdiotical vortices [12]. Michinekt al. [13] and
Paz-Alonscet al. [14] found that optical propagation in a cubic-quintic naekar medium resembles a liquid
drop, and optical vortices in such a medium also have fluédtitotions [15]. On the other hand, nonlinear
optics has been compared with superfluids and Bose-Eimistgidensates, as they can all be described, to
varying degrees, by the nonlinear Satlinger equation [19, 20], commonly known as the GrosseRdiii
equation in the field of superfluids [21]. Pomeau and Rica ssiggl that the phenomenon of transition
to dissipation in a superflow [22] can be observed in nonfiriffraction [16]. Boldaet al. numerically
demonstrated the same phenomenon in a nonlinear Faog-€avity [17]. Chiao also found that photons in
such a cavity should obey the Bogoliubov dispersion retafiio a superfluid [18].

The abundant amount of prior work credited above providesl@evidence that nonlinear optics resem-
bles fluid dynamics to a certain degree. In order to use neatiaptics as a useful and practical computational
tool for fluid dynamics, however, simply drawing analogiesizeen the two kinds of dynamics is not enough.
One must be able to show an exact correspondence or, at thieset, an approaching convergence between
a problem in nonlinear optics and a problem in fluid dynamiic®rder to produce any useful prediction of
fluid dynamics via nonlinear optics. Moreover, as computessadays have enough capabilities to simulate
two-dimensional fluids, the mere correspondence betwegesaggnd two-dimensional fluid dynamics con-
sidered in most of the prior work would not motivate the usenetaphoric optical computing in preference
to conventional digital computing. A three-dimensionaldlmodeling, on the other hand, requires a pro-
cessing capability orders of magnitude higher than thatabla in today’s supercomputers, so metaphoric
optical computing would need to compute such problems muate refficiently to compete with electronic
computers and the Moore’s law.

In the following sections, we shall attempt to establishdbeespondence between nonlinear optics and
three-dimensional fluid dynamics. We shall show that, tglgroup-velocity dispersion into account, non-
linear optical dynamics approaches three-dimensionadéity Euler fluid dynamics in the highly nonlinear
self-defocusing regime, where the optical intensity repres the fluid density, the optical phase gradient
represents the fluid velocity, the nonlinear refractiveeigerturbation represents pressure, the propagation

distance represents time, and the temporal dimension ajgtieal pulse represents the third dimension of
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the fluid. As Euler fluid equations often exhibit high numatimstabilities, this correspondence in itself
should be useful in modeling high-Reynolds-number fluidadyits away from objects and boundaries. In
the convergence of nonlinear Sédimger equation towards the Euler equations, a “quantwsspire” term
arising from the nonlinear Sabdinger equation plays the role of a small parameter. Asgh@&tum pres-
sure term plays analogous roles to viscosity in the Naviek&s equations, we argue that nonlinear optics
should be able to approximate viscous Navier-Stokes fluidhthics as well, in the regime where quantum
pressure and viscosity both play the role of small parareétethe respective equations. That said, we do
not pretend that we have established the equivalence betwa@®inear optics and Navier-Stokes dynamics,
as the similarity between quantum pressure and viscos#llisn open problem.

On the practical side, in cases where an ideal nonlineacopétup is not available, we suggest a split-
step method that pieces together different optical dew@approximate an ideal nonlinear optics experiment.
This method is very similar to the method proposed to sineudaiantum systems using a quantum computer
[23].

It must be stressed that although we focus on simulationtaséical physical systems, future quantum
computers that simulate quantum systems [23] would run tildosame problem of manipulating a large
amount of multidimensional information. In the case of quam systems, multidimensional quantum in-
formation, such as a multiparticle multispatiotemporahehsional wavefunction, needs to be processed in
parallel. Quantum computers can naturally parallelizentidtiparticle aspect, but there is no obvious way
of parallelizing the manipulation of multispatiotempedinensional information via simple binary quan-
tum logic. Perhaps a quantum metaphoric computing would treenecessary, where a more accessible

multidimensional quantum system is used to simulate anagfi@ntum system.

12.2 Correspondence between nonlinear optics and Euler fluid dy-

namics

12.2.1 Madelung transformation

We now proceed to show mathematically how the self-defegusbnlinear optical propagation equation,
including the effect of group-velocity dispersion, can bensformed to three-dimensional hydrodynamic
equations. First, we show how the optics equations, in tkerate of optical vortices, correspond to inviscid
and irrotational fluid equations. This form of transformatis widely attributed to Madelung [24]. We model

the paraxial nonlinear propagation of an optical beam, riteest by the envelope functiogr(z,x,y,T), via

the nonlinear Sclidinger equation [19, 20],

2
S =g (3@t 50z ) W+ 5 372 —konaluPy. (12.)

oy 1 (9% 92 B2 0%y
X2 9y? v 2 0T?
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wherez is the propagation distancky = 2rmy/A is the carrier wave numbefi, is the group-velocity
dispersion coefficient] is the time coordinate in the moving frame of the pulse, axnds the nonlinear
Kerr coefficient. To use the time coordinate as the thirdiapdimension of a fluid, anomalous group-
velocity dispersion, of3; < 0, is required. Dispersion can then be regarded in equahfpas diffraction if

a normalized time coordinate is defined as

T= T (12.2)

/= Banoko’

such that

oW _ 1(02 92 92

2

The Madelung transformation is defined as follows,

Y =[ylexn(jo), (12.4)
| = |y, (12.5)
k:D’q):f(% +3‘/%+f%, (12.6)
such that the evolution equations for the intenditgnd the phase gradiett, are given by
T 1k =0 (12.7)
%+%D’ (;k-k) D’(konzl)JrklOD’<2\1ﬁD’2\fl>. (12.8)

One can already see that Eq. (12.7) has the exact same fohm fasitl continuity equation, while Eq. (12.8)
resembles the Bernoulli equation [1], if one regards thenisity as the fluid density and the phase gradient as
the fluid velocity. The nonlinear refractive index terkgn,!, would resemble the fluid pressurenif < 0, so
self-defocusing is required. The last term in Eq. (12.8) feauliar term that arises from optical diffraction
and dispersion, does not exist in classical fluid dynamied,is commonly called the “quantum pressure.”

In order to compare these equations with fluid equations reasdy, we use the following normalized

variables,
O=wr', ¢= Lz, (12.9)
Wko
p:ll—o, u:%:ﬁﬂq), (12.10)
a= kox/%niﬂo M =Ka, X=KW, (12.11)

whereW is the characteristic siz& is the characteristic phase gradielgtis some characteristic optical
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intensity of the propagation, aralis the so-called healing length, which is the length scaletdth the

guantum pressure term has the same order of magnitude asilirear term on the right hand side of
Eq. (12.8),.# is the Mach number, which measures the relative strengthuiof firessure compared with
convection, andZ is another number that measures the relative strength dfdhrivection compared with

guantum pressure. The normalized equations become

ap B
du 1 1 1,\ 1 1,

Equation|(12.12) is exactly the same as the fluid continugya¢ion, and in the limit of# /% — 0, which
is the highly self-defocusing regime, EQ. (12.13) is the sas the hydrodynamic equation of motion that

describes inviscid and irrotational fluids. Equatidns {22.and[(12.183) also admit sound wave solutions,
which describe travelling perturbations to the density #redvelocity. As long as the sound waves are weak,
the dependence of pressure on the density is not cruciathendse of self-defocusing Kerr nonlinearity is
adequate. This restricts the correspondence to slighthpeessible barotropic fluids.

In order to model slightly compressible fluids, the opticaan needs to have a relatively constant in-
tensity background. This can be achieved approximately tieacenter of a very large beam, in a large
multimode waveguide as a container in two spatial dimerssionin a cubic-quintic nonlinear medium to

provide a “surface tension” to the beam [25, 13, 14, 15].

12.2.2 \orticity

In general, the fluid velocity vector should contain an &tanal component and a rotational component,
u=-0¢—0OxA, (12.14)

whereg is called the velocity potential, and the curlwfs defined as the fluid vorticity,
w=0xu=-0x(OxA). (12.15)

The dynamics of vorticity is arguably the cornerstone ofroglgnamics|[21]. The inviscid fluid dynamics

that includes the rotational effect is governed by the Eedgration,

Jdu 1
— +u-Ou=-—

37 %DR (12.16)

whereP is the pressure. For incompressible fluidg, << 1, and as long aB increases witlp, the specific

dependence ¢ on the fluid properties is not important. Equation (12.16jtams the convective term u,
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which can be written as
u~Du:D(u~u>+(Dxu)xu (12.17)

:D(2u~u>+wx u. (12.18)

One can then see that the optical Bernoulli equation, Eq18)2misses the rotational component of the
convective term. In other words, the Madelung transforameis only able to describe the irrotational part of
the fluid motion, but not the more important rotational part.

The inability of the Madelung transformation to describetiity is due to the failure of the transforma-
tion near optical vortices, where Eq. (12.13) is ill-defing&d understand this problem, consider a rectilinear

optical vortex in polar coordinates and neglect the thirdiftlimension for now,

Y = f(r)exp(imd), (12.19)

r=vx2+y?2, O=tan? (%) , (12.20)

wherem s an integer and is called the topological charge of an aptiortex. The phase gradient is then

given by

k:é%a M

55(M0) =0 (12.21)

The fluid vorticity is proportional to the curl df,

kazizTnmé(r), (12.22)
which resembles the vorticity of an ideal point fluid vort&6]. The motion of these vortices, however,
cannot be described by the Madelung transformed equatioms$odtwo problemsk diverges whem — 0,
so the fluid velocityu at the center of a vortex is infinite, arfdr) must approach™ in the limit ofr — 0 to
maintain the continuity ofy, so the quantum pressure term, wifp in the denominator, is also infinite near
the vortex center.

To overcome these difficulties, it is necessary to consitkentotion of the optical vortices separate from

the irrotational optical flow.

12.2.3 Optical vortex solitons and point vortices

In a relatively constant intensity background, opticaltie@s exist as optical vortex solitons [27, 6, 25]. The
optical envelope functio of a vortex soliton is given by Eq. (12.19), whefér) — r™ for r << a, and

f(r) approaches a constant for-> a, wherea is the healing length and also the size of the dark spot of a



117

vortex soliton. In three dimensions, a vortex soliton exist a vortex filament. We shall hereafter consider
single-charged vortex solitons with= +1 only, as they have the lowest energy and are the most pntvale
ones arising from an experimental situation. It is also nam@irate to approximate continuous vorticity with
only discrete vortices with the smallest topological clearg

Eq. (12.22) suggests that an optical vortex soliton resesdnh ideal point vortex in incompressible fluids.
Indeed, the motion of optical vortices in the highly selfatrising limit can be rigorously proven to behave
in the same way as point fluid vortices [10, 11, 28,/29, 30, 3flhne defines the position of each vortex
filament asxj, then the fluid velocity at each point due to the presenceefititex filaments in the limit of
high self-defocusing is given by

B Cf(x=xj) xdxj .
u(x,z)_—zznm,/4711)(_)(]|3 0, a—0, (12.23)

wherex is the normalized three-dimensional position vectoy,is the topological charge of vortejx and
—0O¢ describes the irrotational flow according to Eq. (12.13)péamticular, the motion of each filament is
given by

0Xi . ) (Xi—Xj) ><de
= Zermj/ w8 a0 (12.24)

in the leading order. These equations of vortex motion alid @& long as the separations of the vortices are
much larger tham. For example, Fig. 12.1 plots the intensity, phase, andepbedient of two rectilinear
optical vortex solitons with the same charge, which shootdte around each other, and those of two vortices
with opposite charges, which should drift in the same dioegberpendicular to their separation.

With the vortex filaments, one can define the equivalent eitytin an optical beam,
w(x,{)= ZZHmj/dxj(S(x—xj), (12.25)
]

which can be used to approximate the continuous vorticigyfafid, if the number of vortex filaments is large
enough. In this case, to include the vorticity effect in tlomlinear optical dynamics, one can phenomeno-

logically patch up the irrotational equation of motion, EtR2.13),

Jdu 1 1

This modification of the equation of motion can be attributedhe phenomenon of phase slippage [21,
32], well known in the field of superfluids. The use of discrptént vortex interactions to calculate Euler
fluid dynamics is also a well-known numerical method in cotafianal fluid dynamics [33]. Hence, to

simulate Euler fluid dynamics, one can approximate both ¢tetional and irrotational components of the

initial fluid velocity profile by the optical phase and the phasingularities in an optical beam, and the
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Figure 12.1: Intensity (left column), phase (middle colynmamd phase gradient (right column) of two optical
vortex solitons with the same charge (top row), which shootdte in the same sense, and those of two vortex
solitons with opposite charges, which should drift in a dliien perpendicular to their separation. The phase
gradient near the centers of the vortices is not plotted diits tlivergence.

nonlinear self-defocusing propagation of the beam woulireme to incompressible Euler fluid dynamics
in the strongly self-defocusing regime. One can also bofrom the well-established numerical techniques
[33] to determine how the distribution of optical vorticasf&iently approximates the continuous vorticity

in fluids.

12.2.4 The fluid flux representation

So far, we have shown that optical vortex solitons behawepikint vortices in fluids when they are far away
from each other, and this behavior can be used to approxiEwder fluid dynamics. However, there is no
guarantee that the vortices would remain well separatetiéncourse of the vortex dynamics. If optical
vortices behaved exactly like point vortices, then thelogities would diverge when they are close to each
other. This velocity divergence is well known to cause digant numerical instability in the use of point
vortices for computational fluid dynamics [33]. Another Ipiem is that in three dimensions, the self-induced
velocity of a curved point vortex filament diverges logamiibally ~ In(1/a) in the limit ofa— 0 [33]. Since
the optical intensity decreases to zero near the center optiral vortex, the quantum pressure term, which
determines the size of the vortex dark spot, can no longegheréd, and the optical vortex interactions
should differ markedly from point vortex interactions wheeir separation is on the order af

To investigate the optical vortex dynamics when they arsecto each other, the fluid velocity is no longer
an appropriate quantity to study, because it diverges neartax center. The density, on the other hand,

approaches zero towards the center. This motivates us toedsii alternative finite quantity by multiplying
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the velocity and the density,

J=pu. (12.27)

which is the fluid flux, or the momentum density. Simple catiohs show that the flux is indeed finite
everywhere in an optical beam, including the center of aficapvortex. In terms of the flux, the tensor

dynamical equations now read [34]

ap dJi_

=0 (12.28)
9% o0 (X)) 1 9 (1, 1 01/9,pd\p 9%,/p
(9Z+dxj<p>_ //ﬂa)q(z Bax2\ox ox  VPaxox ) (12.29)

whereJ; is theith component ofl, d/dx; is theith spatial derivative, and repeated indices are implicitly
summed in the manner of Einstein’s summation. These eaqsatiave the same form as the normalized

Euler equations in the tensor form,

op 9 .

3 o =0 (12.30)
2J; J (JJ 1 0P
) - - 12.31
az*axj(p) VT (12.31)

except the quantum pressure term in Eq. (12.29). Hence geifflul representation, we have successfully
avoided the problem of divergent quantities. FurthermBg,(12.29), in contrast to Eq. (12]13), includes
the correct convective term.

The use of momentum density in the description of nonlingéical dynamics is more natural and appro-
priate than the use of velocity in the Madelung transfororgtas the dynamics ultimately evolves according
to the basic law of momentum conservation. As we shall show, mhen comparing the optical flux to the
fluid flux, the dynamics of optical vortex solitons are muchrensimilar to that of less singular fluid vortices
than point vortices, and the correspondence between mamloptics and Euler fluid dynamics is still justified

whena is finite.

12.2.5 Optical vortex solitons and vortex blobs

In light of the fluid flux representation, one should therefoompare the flux of an optical vortex soliton to
the flux of a fluid vortex. In an incompressible fluid, the dén& constant, so the flux is proportional to the
velocity, and the flux at the center of a point vortex has theesaingular behavior as the velocity. Near a

vortex soliton, however, the flux is finite. Consider the epéarof a single-charged vortex soliton. The flux
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near the center is given by

JOer, r<<a, (12.32)

which vanishes as— 0, as opposed to the divergencelof 1/r at the center of a point vortex.
Instead of comparing a vortex soliton to a point vortex, dmeusd hence compare the soliton teartex
blob [33], which has finite vorticity over a finite area. The voitijof a vortex blob filament is mathematically

described by
w(x,{) = 2rmy /dxjv(\x—le), (12.33)

wherey is a vorticity distribution function for the filament. Theloeity near the center of a rectilinear vortex

blob and far away from the center is

uldor, r<<a, (12.34)

uld 6?’ r>>a, (12.35)

so in an incompressible fluid, the fluid flux of an optical varssliton with sizea is the same as that of a

vortex blob with sizea. See Fig. 12.2 for a graphical illustration. The dynamica abrtex blob and that

Fluid Vortex Blob Optical Vortex Soliton

j\)\Velomty

Figure 12.2: Sketches of velocity and flux of a vortex blob an@ptical vortex along a line across the center,
to illustrate the similarities between the two in terms @ flux.

of a vortex soliton are also extremely similar. For examfie, rotation frequenc® of two like-charged
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vortex blobs approaches a constaht/a? when their separation goes to zero. Numerical simulatidns o
the nonlinear Sclirdinger equation also show that the rotation frequency oflike-charged vortex solitons
approaches a constafit1/a’> and does not diverge like two point vortices [35]. On the othend, the
self-induced velocity of a curved vortex blob filament isagivby [33]

oxi mb pc
— =—1In= 12.36
37 20" a’ ( )
whereb is the unit binomial vector of the filament apdis the radius of curvature. The self-induced velocity
of an optical vortex soliton filament is proven to be exacllg same [29]. Hence, optical vortex solitons
act as vortex blobs, and a large number of solitons can steBlaler fluid dynamics, much like the popular

discrete vortex blob method in computational fluid dynanfi3&.

12.2.6 Numerical evidence of correspondence between nardar optics and Euler

fluid dynamics

The most telling evidence of the correspondence betwedimeanoptics and Euler fluid dynamics is perhaps
the numerical fluid dynamics simulations using the nonlirgehidinger equation by Noret al. [36, 37].
Using the nonlinear Schdinger equation, Noret al. numerically demonstrated the Euler fluid dynamics
of a jet made of an array of counterrotating vortices, whighilgit sinuous and varicose instabilities [36].
In another study, Noret al. also demonstrated three-dimensional shear flows and shinaedumerically
solving nonlinear Scliidinger equation is a viable alternative to Euler and NaSiekes equations for the
numerical study of shear flows [37]. As nonlinear opticalgagation is governed by nonlinear Satinger
equation, the numerical experiments by Netral. show that nonlinear optics should also be able to compute

Euler fluid dynamics.

12.3 Similarities between nonlinear Schddinger dynamics and Navier-

Stokes fluid dynamics

In the previous sections, we have shown the correspondesteeeén self-defocusing optical propagation
and inviscid Euler fluid dynamics via a variety of methods;liding the Madelung transformation, the

incorporation of vorticity effect due to the “phase slip”gfomenon, the fluid flux representation, and the
comparison between optical vortex solitons and vortexdl&wven though viscosity plays the role of a small
parameter in most interesting fluid dynamics problems,ffects are of paramount importance near a “no-
slip” boundary and in the dissipation of eddies, in whichesathe viscous Navier-Stokes equations should
be used. In this section we shall present evidence that thinear Schddinger equation exhibits many of

the same behaviors of viscous Navier-Stokes fluid dynaraied,in each case, quantum pressure plays an
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analogous role to viscosity.

The normalized Navier-Stokes equations in the flux reprtasien are given by

(?p aJ; .

ot Tox =Y (12.37)
0% 0 (33\ 1P 19 (du dy
5t o) = o o (ot on): (12.38)

where the last term in Eq. (12.38) is the viscosity term @hid called the Reynolds number, which describes

the relative strength of convection compared to viscosity,

B="r, (12.39)

whereU is the characteristic velocity of the fluid systemijs the characteristic length, andis the kine-
matic viscosity of the fluid. Comparing the viscosity termEq. (12.38) with the quantum pressure term in
Eq. (12.29) via a dimensional analysis would suggest thanatogous optical Reynolds number would be

defined as
X = KW, (12.40)

where, to recallK is the characteristic optical phase gradient, Whis the characteristic size of the optical

experiment setup. The optical Reynolds number thus rougiggisures the number of optical vortices. In
other words, if the optical Reynolds number indeed corredpdo its fluid counterpart, then the quantization
of the optical vortices would play an analogous role to flugtwesity. This view seems to be echoed by other
researchers in the field of superfluids [38,39, 40, 41], altfirove must stress that it is still an open problem

as to what extent the quantization effect resembles thewsseffect/[41].

12.3.1 Zero-flux boundary conditions, boundary layers, and bundary layer separa-
tion

In classical fluid dynamics the “no-slip” boundary conditis most commonly used, and restricts the total
velocity and hence the total flux to be zero at the boundanyfl&ial flow above a surface, the velocity shear
introduced must be balanced by a viscous stress, resuttiapoundary layer that connects the zero velocity
at the boundary to the flow velocity above the boundary in gmasotic expansion [42]. For the nonlinear
Schibdinger equation, the boundary condition of an impenetrabject can be specified by a low-refractive-
index region, which restricts the optical intensity to beozat the surface [43] due to total internal reflection.
Even though the tangential velocity can have a nonzero \&ltiee surface, both the normal and tangential
components of the flux must be zero there. This can hence bedias a zero-flux “no-slip” boundary

condition. An optical boundary layer analogous to the viscboundary layer in classical fluid dynamics is
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also formed|[43]. See Fig. 12.3 for a graphical illustratadrthe similarities between a viscous boundary

layer and an optical boundary layer.

Viscous Flow Optical Flow
Flux
~ Ve]ocit;’: Flux
Flow ,'." Optical flow [ ,'."
"No-Slip" Zero-Flux
Boundary Boundary
B ——— —_——
_— >

Figure 12.3: Comparison between a viscous boundary laykaamptical boundary layer.

For a viscous fluid flow past an obstacle, as the Reynolds numbeases, the boundary layer begins
to separate and vorticity is convected behind the obstaéke.analogy in the dynamics of the nonlinear
Schibdinger equation, in the form of vortex nucleation on thermtary, is also predicted [22], and in the case
of large objects, the instability of the optical boundarydaalso depends on the optical Reynolds nurdBer

defined in Eq. (12.40) [40], much like the viscous boundaygtaseparation.

12.3.2 Dissipation of eddies

Another important effect of viscosity is the dissipatiorsafall-scale structures in turbulence. An analogous
effect in nonlinear Sclidinger equation is the emission of sound waves two voraceslose to each other
[35] and the generation of Kelvin waves in the process ofesofine reconnections [44]. The radiation
of acoustic energy in both cases must cause a damping of ghespatial-frequency convection within the
optical beam, and the effective Reynolds number is agaimattd to be equal to the optical Reynolds

number [38, 39, 41].

12.3.3 Karman vortex street

The Karman vortex street is a famous viscous fluid phenomenon, intwdiiernate fluid vortices are emitted
from the back of an obstacle to the flow of a viscous fluid, when Reynolds number increases beyond
a certain threshold [26, 45]. Using the numerical vortexbbieethod, Chorin first simulated such a phe-
nomenon for a cylinder obstacle and obtained good agreemignéxperimental data [46]. Since an optical
beam diffracting past a low refractive index region wouldoaémit optical vortices and the vortices inter-
act like vortex blobs in a self-defocusing medium, we perfed a numerical experiment of the nonlinear
Schibdinger equation to investigate if we would observe a singilienomenon for nonlinear optics.

The numerical setup is sketched in Fig. 12.4. A big opticalinbés assumed to propagate at an angle
to an ellipsoid cylinder, with a refractive index much lovikan the surroundings to act as an impenetrable

object, in a self-defocusing medium. The length of the loxig af the ellipsoid cross section is assumed to
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Self-defocusing Medium
Optical Beam

w
<>

Low Refractive Index Region

Optical beam
propagation direction

Figure 12.4: Setup of numerical experiment (not to scale).

beW, and the short axis is assumed to be one-fiftivothroughout the simulations. The two-dimensional
nonlinear Schidinger equation is solved using the Fourier split-stepho{20], which implies a periodic
boundary condition for the optical beam. This should natetfthe qualitative behavior of the dynamics, if
the optical beam is much bigger than the object. In all of iheutations, the Mach numbev7 is fixed at
0.4, while the optical Reynolds numbét# is varied. Figuré 12.5 plots the intensity of the opticalrnest a
normalized propagation distange= 10 for an optical Reynolds numbef = KW = 12.8. Optical vortex
solitons are created on the top and bottom side of the lorect¥e-index region, and they interact in such a

way that resembles the phenomenon of twin vortices behirmbatacle in a low-Reynolds-number viscous

fluid flow.

- - »
.' " 1..‘0. . .
-
vt L » .
4 . &8«
B e.

Figure 12.5: The intensity of the optical beam at a normdligepagation distancé = 10, for.#Z = 0.4
andZ = 12.8. The dark ellipse is the low-refractive-index region taetis as an impenetrable object. Optical
vortex solitons are seen to be created on the top and bottieroéithe ellipse, While the convection of the
solitons behind the object resembles the twin vorticesrzbln obstacle in a viscous fluid flow.

Figurel 12.6 plots the flud = (¢*0Oy — wOy*)/2i and Fig! 12.7 plots the momentum vorticityx J.
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Both plots confirm the similarity between the numericallysetved dynamics and the phenomenon of twin

vortices in a viscous fluid flow.
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Figure 12.6: A vector plot of the flu at { = 10, for.# = 0.4 andZ = 12.8, which confirms the similarity
between the numerically observed dynamics and the phermm@riwin vortices.

Figure 12.7: A plot of the momentum vorticity x J at { = 10, for.# = 0.4 and#Z = 12.8. A white dot
indicates that the vortex has a positive topological chargka black dot indicates that the vortex has a neg-
ative charge. The plot shows the similarity between the migakky observed dynamics and the phenomenon
of twin vortices.

Figures 12.8, 12.9, and 12.10 plot the intensity, flux, anderatum vorticity of the optical beam respec-
tively, at a longer propagation distanée= 20 for the same parameters. The qualitative dynamical ehav
of vortices staying behind the object is essentially unglean

We now raise the Reynolds numberdd= 25.6 and perform the numerical experiment again. As seen
from Figs/ 12.11], 12.12, and 12.13, the optical vortex snfitbecome smaller and more abundant, but at
{ = 10 the phenomenon of twin vortices behind an obstacle is\agzEerved.

At = 20, however, significant instability in the twin vorticesvabops, such that the spatial symmetry
between the upper plane and the lower plane is broken, amchative bunches of optical vortices begin to
be emitted from the back of the object. Figures 12.14, 12ah8,12.16 plot the intensity, flux and vorticity
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Figure 12.8: The intensity of the optical beam at a normdljm®pagation distancg= 20, for.# = 0.4 and
% = 12.8. The qualitative dynamical behavior is essentially umgigal from that shown in Fig. 12.5.
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Figure 12.9: A vector plot of the flud at { = 20, for.# = 0.4 and% = 12.8.

Figure 12.10: A plot of the momentum vorticity x J at{ = 20, for.# = 0.4 and% = 12.8.
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Figure 12.11: The optical intensity &t= 10, for.# = 0.4 andZ = 25.6. The vortex solitons are observed
to be smaller, and the phenomenon of twin vortices is agasenied.
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Figure 12.12: The flud at{ = 10, for.# = 0.4 andZ = 25.6.

Figure 12.13: The momentum vorticity x J at{ = 10, for.# = 0.4 andZ = 25.6.
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at { = 20 respectively, which demonstrate a behavior stronglgmdning the famous Erman vortex street

phenomenon.

Figure 12.14: Optical intensity &t = 20, for.# = 0.4 and% = 25.6. The twin vortices become unstable
and detach alternatively from the object.
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Figure 12.15: Flux af = 20, for.# = 0.4 and# = 25.6, which shows a flow pattern strongly resembling
the Karman vortex street.

Due to computing power constraints, we are only able to sieubw-Reynolds-number flows, which
we do not expect to quantitatively reproduce viscous fluidasgics. We have to use an ellipsoid cylinder in
the numerical experiments, instead of the more converitigraular cylinder, to artificially generate more
optical vortices, and the Mach number is a little too highdompressional waves not to play a significant role
in the dynamics. With all that said, using the nonlinear 8dinrger equation, we are still able to qualitatively
demonstrate, for the first time to our knowledge, two welbkm viscous fluid phenomena, namely, the
formation of twin vortices behind an obstacle, and the sytryrlereaking instability of the twin vortices that
leads to the rman vortex street when the Reynolds number is increased. @mumvith previous claims of
observing the l&rman vortex street in nonlinear optics numerically [7] or expentally [8, 9], our numerical
results demonstrate an unprecedented level of correspoadeetween nonlinear optical dynamics and the

Karman vortex street phenomenon, thanks to the presence of alargen number of optical vortices in our



129

Figure 12.16: Vorticity af = 20, for.# = 0.4 andZ = 25.6, which confirms that the alternate bunches of
vortices indeed have the right charges that resemble &neé6 vortex street phenomenon.

simulations.

12.3.4 Kolmogorov turbulence

The striking similarities between nonlinear optics anawiss fluid dynamics are not limited to low-Reynolds-
number two-dimensional problems. As the Reynolds numbfuriker increased to the order of a million,
the viscous fluid flow enters a turbulent regime. Since thggme is highly chaotic, only statistical signatures
can be reproduced in a turbulent fluid flow. A well-known sigma of turbulence is the Kolmogorov energy
spectrum|[47], derived under the assumption that a “stetate”sis reached when the macroscopic-scale
fluid flow continuously generate finer spatial structurescaavection and viscosity dissipates the smallest
structures. As viscosity plays a significant role in the Kogarov turbulence spectrum, it is surprising to
see that numerical simulations of the three-dimensionalimear Schddinger equation also reproduce the
Kolmogorov spectrum at high Reynolds numbers, and theoityrtilynamics of the “superflow” described by
the nonlinear Sclidinger equation resembles that of the viscous flow, in whi@tex reconnection events
play a major role [38, 39].

The dissipation of the smallest spatial structures in adlgpeis speculated to be the Kelvin waves pro-
duced by the natural motion and reconnections of vortex élasi[41, 44], and the corresponding Reynolds
number is again speculated tode= KW [41]. Numerical and theoretical analyses of the so-caltpchhtum
turbulence” exhibited by the nonlinear Sédinger equation all reveal striking similarities betwegrantum
and classical fluids, and it is argued that the study of quanitubulence could lead to a better understanding

of turbulence in normal fluids [48].
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12.4 The split-step method

While a nonlinear optical system shows promise for compuinger and Navier-Stokes fluid dynamics, it
also poses serious technical challenges. Ideally one wikddo have a configurable nonlinear material
with low loss, anomalous group-velocity dispersion, higffodusing nonlinearity, and three-dimensional
copropagating boundaries. One may only be able to find sepasaterials or optical devices, each of which
performs only some of the functions. Moreover, parasitfea$ such as loss, two-photon absorption, and
high-order dispersion can be detrimental to the accuraey.combine different devices and periodically
compensate for parasitic effects, we hereby propose thie-5¢@p” method, the inspiration of which comes

from the numerical Fourier “split-step” method [20]. Cathesi the general nonlinear Séldinger equation
N ~
= Z Hat, (12.41)

where propagation effects and boundary conditions areesgpd in terms of operatok,. The formal

solution is

{+A7 N

werag)=e( [ 3 Fndd’)w(0) (12.42)

But if A is much smaller than /H whereH is the magnitude of the operators, by virtue of the Baker-

Hausdorff formula we have
W +A) = rlexp< nAZ) (Z) +O(H2AZ?). (12.43)

Each of the propagation effects can hence be applied sepatatan optical pulse, with a quadratic error

term. A symmetrized version of the split-step method cath&rrreduce the error order,

1

Yl +07) = rr|;Lexp( 7() |'| exp( Z) (Z)+O(H3AZ3). (12.44)

The split-step method is not unlike the proof of a quantum mat@r being able to simulate any quantum
systems| [23]. Whereas it is difficult to find a quantum devica therforms the exact Hamiltonian of the
guantum system of interest, it is possible to approximatethmiltonian in small time slices. Similarly, in a
metaphoric optical computer, one can form a unit cell of atanmaterial” by combining a slice of defocusing
material, a slice of material with anomalous group-velodispersion, a slice of ultrafast phase modulator
to apply the three-dimensional boundary conditions, andia ignedium to compensate for loss. The optical
beam can loop through the unit cell multiple times in a cawtythat the outcome will approximate the true
solution as if we had an ideal medium. See Fig. 12.17 for ahicapillustration of the method.

The split-step method has the additional advantages tbhtsedosystem can be tunable and easily substi-
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Figure 12.17: Sketch of a split-step optical system that@pmates the ideal nonlinear medium.

tuted with another material or device, and the pulse evmhutan be monitored more easily. The magnitude
of each effect can be tuned by simply changing the propag#tiogth in each device, In exchange for con-
figurability we have sacrificed some accuracy due to diszagtin errors and instability. The computation

speed may also be reduced by a large but constant fractitime asllse may spend most of its time on simply
propagating from one device to the next and not performiegctire computation by nonlinear propagation.
The split-step method, however, does not detract from therent parallelism in the computation, as the

transverse dimensions are not discretized.

12.5 Conclusion

In conclusion, we have used a variety of theoretical and mizalemethods to show that self-defocusing
optical propagation has a converging correspondence wiler Huid dynamics and a striking similarity with
Navier-Stokes fluid dynamics. We have numerically shown tthevinteractions of a large number of optical
vortex solitons are able to simulate two well-known viscflugl phenomena. We have also proposed the
split-step method, a way of practically implementing theapéoric optical computer.

There are serious technical challenges if a metaphoric atanps to become useful for computing fluid
dynamics, especially three-dimensional fluid dynamickl@ms, as techniques for the complete specification
and characterization of the spatiotemporal optical fielsdill in their infancy. The speed, configurability,
and parallelism of a metaphoric optical simulator nonetselpromise vast advantages over conventional
numerical simulations.

Since photons are quantum objects, optical propagationdnadsio inherently compute the quantum dy-



132

namics of bosons, and may therefore be used as a metapmaiasir of quantum fluids, such as superfluids,
superconductors, and Bose-Einstein condensates. In #yighe advantages of a metaphoric computer and
those of a quantum computer are combined, and only then #issichl and quantum computing capabili-
ties offered by photons would truly be exhausted. This esitenof metaphoric optical computing will be a

subject of future work.
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