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Overview 

 The theme of this thesis is studying the outgoing thermal IR spectra of Earth and 

Mars. It is divided into two parts: the first part (Chapters 1-4) is focused on the variability 

seen in the outgoing thermal IR spectra and its application in validating model simulation, 

and the second part (Chapters 5-6) concentrates on the detection of cirrus (cirrus/dust 

aerosol) from terrestrial (Martian) outgoing thermal IR spectra.  

 In Chapter 1, an example of climate change seen from two spectrometers 

seperated by 26 years is used to illustrate the singular importance of the outgoing thermal 

IR spectra in climate observations. The importance of testing the variability of models 

and the feasibility of using the outgoing thermal IR spectra in such tests are discussed.  

 In Chapter 2, a study of the temporal variability at the tropical and midlatitude 

Pacific Oceans seen from IRIS (Infrared Interferometer Spectrometer) spectra and 

corresponding synthetic spectra based on simulations from two GCMs (UCLA GCM and 

NCAR CAM2) is presented. The discrepancies between modeled and observed temporal 

variability are substantial. The differences between two GCMs are also significant. 

Further examination shows that these discrepancies are insensitive to the 

parameterization of cloud optical properties and most likely due to deficiencies in 

simulating the seasonal and intraseasonal variations of the Walker Circulation in the 

tropical Pacific and the seasonal variations of boundary-layer temperature, low cloud, and 

stratospheric temperature in the midlatitude Pacific.  

 In Chapter 3, a survey of the spatial variability seen from AIRS (Atmospheric 

Infrared Sounder) spectra and corresponding synthetic spectra based on NCAR CAM2 
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simulation is presented. To a large extent, the simulated spatial variability agrees well 

with the observed counterpart. The major discrepancies between model and observation 

can be attributed to the incorrect location of ITCZ in the western Pacific, the 

underrepresented dust aerosol at the Arabian Sea and off the Atlantic Coast of North 

Africa, and the overestimated spatial variation of stratospheric temperature in the model.  

 Chapter 4 presents a comparative study of the temporal and spatial variability 

seen in the Martian outgoing thermal IR spectra collected by MGS-TES (Thermal 

Emission Spectrometer). Surface temperature variation is the dominant contributor to the 

temporal and spatial variability seen here. The variations of CO2 column abundance, dust 

aerosol and water ice cloud associated with topography, as well as the imprint of dust 

storms, can be also seen from such analysis. The negative correlation between dust and 

water ice spectral features seen from this analysis suggests that, to some extent, dust and 

water ice cloud are mutually exclusive of each other in the Martian atmosphere.  

 Chapter 5 presents a sensitivity study of identifying optically thin cirrus from 

high-resolution (each individual absorption line is almost resolved) thermal IR spectra 

based on the line shapes of the residual spectra. This cirrus-detection approach is 

different from all previous cirrus-detection algorithms in the sense of making use of 

information content contained in the high-resolution measurements.  

Chapter 6 presents a tri-spectral algorithm to detect water ice cloud, dust, and 

surface anisothermality from low-resolution Martian outgoing thermal IR spectra, such as 

MGS-TES spectra. This algorithm is complementary to any more sophisticated retrieval 

scheme and can be used to screen large amounts of data to get a quick overview. 



Part I: Variability of the outgoing thermal 

infrared spectra 
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Chapter 1: An introduction to the observations 

of the outgoing thermal IR spectra and their 

application in climate studies 
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1.1 A brief history of the measurement of the outgoing thermal IR spectra 

In our solar system, all terrestrial planets emit radiation mainly in the thermal infrared 

portion of the electromagnetic spectrum (200 cm-1 to 2500 cm-1). The photons emitted 

from the surface are absorbed then reemitted or scattered by various constituents in the 

planetary atmosphere, except on Mercury which has a vacuum-like atmosphere. The 

absorption and reemission are affected by the concentration of absorber as well as by the 

ambient temperature. The scattering process is affected by the concentrations, size 

distributions, and geometric shapes of the substances that scatter photons, mostly clouds 

and aerosols. All these processes are frequency-dependent. As a result, the outgoing 

thermal IR spectra recorded at the top of atmosphere (TOA) have plenty of information 

about surface and atmosphere. The higher the spectral resolution, the more information 

about the vertical profiles of the thermodynamic variables and trace gases concentrations 

the spectrum contains. Therefore, spectrally resolved and well-calibrated thermal IR 

radiance measured at TOA is a uniquely important quantity and particularly relevant to 

climate research [Goody et al., 1998].  

The first attempt to measure thermal IR spectra from a satellite was made in 1962 

using an interferometer spectrometer with a resolution of 40 cm-1 and a spectral coverage 

from 660 cm-1 to 5550 cm-1 [Block and Zachor, 1964]. The errors in these measurements 

could be as much as 50% due to the flight control and calibrations [Block and Zachor, 

1964]. Only a few spectra from this attempt and several following attempts have been 

published [Mertz, 1963; Block and Zachor, 1964; Lovett et al., 1967], because of  the 

difficulty of such measurement at that time. The first set of outgoing thermal IR spectra 

with good quality was obtained in 1969 by a Michelson interferometer on Nimbus 3, 
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IRIS-B (Infrared Interferometer Spectrometer) [Hanel et al., 1970]. An improved version 

of IRIS-B, IRIS-D, aboard Nimbus 4 launched in 1970 [Hanel et al., 1971] was a great 

success and collected around 700,000 good-quality spectra during its 10-month operation.  

In the late 1970s and 1980s, only three Fourier transform infrared (FTIR) 

spectrometers aboard Soviet Meteor-2 series satellites with a resolution of 5 cm-1 

occasionally measured thermal infrared spectra [Spankuch and Dohler, 1985]. In the 

meantime, the outgoing thermal IR spectra from Mars were taped by Mariner 9 in 1971, 

those from Venus were observed by Venera 15 in 1983, and those from the outer solar 

planets were observed by Voyager 1 and 2 in 1979 and 1980s. In 1996, the outgoing 

thermal IR spectra from Earth were measured globally again by IMG (Interferometric 

Monitor for Greenhouse gases), a FTIR spectrometer aboard a Japanese satellite ADEOS 

with a resolution of 0.1 cm-1 and a spectral coverage from 600 cm-1 to 3300 cm-1. Thirty-

two years after Hanel’s great success with IRIS-D, the United States returned to this 

business with the launch of AIRS (Atmospheric Infrared Sounder) on EOS AQUA 

satellite. AIRS is a grating spectrometer with a resolving power of 1200 and a non-

continuous spectral coverage from 650 cm-1 to 2700 cm-1.  

1.2 Climate change detected from the space-borne observations of the outgoing 

thermal IR spectra 

This section presents a study of the difference in the spectrally resolved thermal 

radiances over the tropical ocean obtained by IRIS-D (for brevity, hereafter IRIS) and 

IMG seperated by 26 years, focusing on the imprints of the secular changes of 

greenhouse gases (GHGs) reflected in the difference. A similar study has been done by 

Harries et al. [2001] using clear-sky IRIS and IMG data over the central Pacific. 
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1.2.1 Data Analysis 

Table 1 lists the major instrument and orbit characteristics of IRIS and IMG based on 

Hanel et al. [1971; 1972] and Kobayashi et al. [1999]. We limit our study to the spectra 

over the tropical ocean, defined as the ocean between 20ºS and 20ºN, during the 

wintertime (December and January). The choice is necessitated by the relatively uniform 

radiative properties of oceanic surface and the limited data overlap by matching months 

between IMG and IRIS. Only the spectral range 650-1400 cm-1 is studied, because both 

IRIS and IMG have good enough signal-to-noise ratio (SNR) in this range. We do not 

categorize data as clear-sky and cloudy data, as others did with a brightness temperature 

threshold [Harries et al., 2001; Haskins et al., 1997; Iacono and Clough, 1996]. We 

doubt the reliability of using a brightness temperature threshold to select cloud-free 

spectra, especially in this case when the fields of view of IRIS and IMG are different by 

two orders of magnitude. On the other hand, cloud itself plays an important role in 

climate and cloud variation is at least as important as the changes of the greenhouse gases. 

Therefore, we do not classify data here as clear-sky and cloudy spectra. Instead, we study 

them all together. For IRIS, the number of spectra qualified for this study is 9268; for 

IMG, it is 2346. 
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 IRIS IMG 

Instrument Type Michelson FTIR 
spectrometer 

Michelson FTIR spectrometer 

Spectral coverage 400-1600 cm-1 600-3030 cm-1 

(three detectors) 
Apodized spectral resolution 2.8 cm-1 0.1 – 0.25 cm-1 
Signal-to-Noise Ration (SNR) 20i-100ii 200i-2000ii 
Field of View 95 by 120 km 10 by 10 km 
Operational Period April 1970 – January 1971 November 1996 – June 1997 
Orbit type Sun-synchronous orbit of 

1100-km altitude 
Sun-synchronous orbit of 800-
km altitude 

i At the endpoints of the spectrum 
ii At the mid-point of the spectrum 

Table 1.1 Major characteristics of IRIS and IMG 

 We obtain the IRIS mean spectrum over the tropical ocean during wintertime by 

equally weighting the spectra collected during the ascending node (around local mid-

night) and the spectra collected during the descending node (around local noon) to 

minimize any potential diurnal aliasing. The IMG mean spectrum is obtained in the same 

way. Then the IMG mean spectrum is degraded to the same resolution as the IRIS mean 

spectrum and the effect of the different instrument fields of view between IRIS and IMG 

spectra is accounted for by convolving the IMG spectrum with a varying rectangular 

window [Bell, 1972; Iacono and Clough, 1996]. 



 7

 
 
Figure 1.1 The IMG-IRIS difference spectrum for the tropical ocean between 20ºS and 20ºN over 

the wintertime (December and January). 

 

The difference between the IMG and IRIS mean spectra (IMG-IRIS) is plotted in 

Figure 1.1. A number of features are apparent. The carbon dioxide 15 µm band (650-700 

cm-1) shows that the stratosphere of IMG wintertime is cooler than that of IRIS 

wintertime by several degrees. This result was anticipated by Kiehl [1983] and Charlock 

[1984]: the increase of carbon dioxide in the atmosphere results in a warming of the 

surface via the greenhouse effect and a greater rate of radiative cooling in the stratosphere. 

There is a -7 K change in the methane band (1306 cm-1) between IMG and IRIS 

observations, partially due to the steady rise of atmospheric methane concentration from 

1.35 to 1.75 ppmv between 1970 and 1996. According to the NCEP reanalysis [Kalnay et 

al., 1996], the averaged SST difference between the IMG and IRIS wintertime is 0.42 K. 

Therefore the slope in the window regions (800-1000 cm-1, 1100-1200 cm-1) is due to 

either the differences of clouds between these two periods or the calibration errors, or 

some combination of these factors. 

1.2.2 Modeling the IMG-IRIS difference  
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 In order to further understand the IMG-IRIS difference, a simulation was carried 

out using the best available data for these two observing periods (see appendix for 

details). The surface measurements might be as accurate as needed to reproduce the IMG-

IRIS difference while the vertical profiles are less reliable. The cloud data are no more 

than suggestive. Coincidentally, the cloud differences between these two periods are little; 

significant radiance differences due to the variability of clouds are more likely. 

 To first order, the simulated different shown in Figure 1.2a is the sum of three 

factors, (1) the forcings due to the increase of the concentrations of greenhouse gases 

except water vapor; (2) the responses of climate system to these forcings: the climate 

system responds to forcing by adjusting the dependent variables such as temperature, 

humidity, and clouds, then those adjustments leave imprints in the outgoing thermal IR 

spectra; (3) the internal variability of these dependent variables in the climate system: the 

natural variability (for this case, the interannual variability) of these climate variables are 

comparable to or even larger than their responses to the given forcings. 

Given that we have only two snapshots here, separating (2) and (3) is a difficult 

task beyond the scope of this study. The difference due to (2) and (3) together is shown in 

Figure 1.2b and the difference due to (1) is plotted in Figure 1.2c. The three factors are 

approximately additive (Figure 1.2, a≈b+c) with the root-mean-square (rms) of the 

residual being 7% of the rms of the difference in Figure 1.2a. The results in Figure 1.2 

show that the differences derived from the outgoing thermal IR spectra contain not only 

the spectrum of the forcings, but also the spectrum of the responses. Therefore, if the 

greenhouse gas concentrations are known accurately enough, the “forcing spectrum” 
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could be calculated and, to the first order, subtracted from the observed difference 

spectrum to give the spectrum of the responses plus internal variability.  

 

Figure 1.2 Simulated IMG-IRIS difference spectra over the same geographical zone 

and the months as those used in Figure 1.1. (a) Simulated difference from calculation 

including changes in both greenhouse gases and the dependent variables such as 

water vapor, temperature, and clouds, displaced by 6 K. (b) Same as (a) except that 

the greenhouse gases are held constant at 1970 values, displace by 3 K. (c) Same as 

(a) except that the water vapor, temperature and clouds are held constant at 1970 

values. 

 

Although the calibration information about IRIS and IMG is not complete, 

calibration errors are unlikely to have an effect on the shapes of those gas-absorption 

band profiles. Sampling errors are most likely too small to be important given the number 
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of spectra used and the relatively uniform spatial distributions of CO2 and CH4. Therefore, 

it is instructive to compare the shapes of spectral features in Figure 1.1 and Figure 1.2a. 

The most striking differences between these two curves are the spectral shapes in two 

CO2 bands (667 cm-1 and 720 cm-1). The 667 cm-1 CO2 band is sensitive to stratospheric 

temperature: the weighting function at the band center peaks around 8 mb.  The 720 cm-1 

CO2 band is basically sensitive to the lower stratospheric and upper tropospheric 

temperature. Given the relatively uniform distribution of CO2 in both horizontal and 

vertical directions, this striking difference indicates that the temperature profiles used 

here (from NCEP reanalysis data) contain errors in stratospheric and upper tropospheric 

temperature: either the stratospheric and upper tropospheric temperature is too cold 

during IRIS wintertime, or it is too warm during IMG wintertime. The methane band in 

Figure 1.1 peaks about 6K below its wings, while the best available data give only ~2 K 

in Figure 1.2a. Even taking the possible errors in the early measurements of methane and 

the NCEP reanalysis temperature in the upper troposphere into account explains no more 

than 4 K difference between the methane peak and the wings. We speculate there might 

be systematic calibration error in this spectral region.  

Limited by the lack of calibration information and the paucity of IMG 

observations [Brindley and Harries, 2003], the IMG-IRIS difference presented here 

cannot yield very useful quantitative results. However, together with simulations, it 

clearly demonstrates the utility of such observations and the approaches to handle such 

data with cloudy situations included. This supports the view that, with careful 

consideration of the sampling problems, well-calibrated observations of the outgoing 
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spectrally resolved radiance over a long term can be used as a benchmark for climate 

monitoring [Goody et al., 1998; Keith and Anderson, 2001]. 

1.3 Using the outgoing thermal infrared observation to test model variability 

1.3.1 The importance of testing model second-moment statistics 

Confidence in statements about the influence of anthropogenic activities on 

climate change and about climate change on decadal timescales depends upon the 

reliability of general circulation models (GCMs). GCMs should be tested against 

observations for their performance in various aspects before they can make credible 

prediction about future climate change. As a matter of fact, the climate sensitivity 

(defined as the increase of surface temperature caused by a doubling of CO2) predicted by 

different GCMs is spread over a wide range (~1.5 K to 4.5 K) and this range has not been 

narrowed down in the last ten years [Houghton, 1990; Houghton, 1996; Houghton, 2001]. 

This fact shows the importance and necessity of testing GCMs.  

The second-moment statistics predicted by a GCM should be particularly tested 

because of its relation to the prediction of climate change due to external forcings (in this 

context, the anthropogenic emission of GHGs). In a seminal paper, Leith [1975] applied 

the fluctuation-dissipation theorem (FDT) to show that there is a direct connection 

between the second-moment statistics of the climate system and the sensitivity of that 

climate system to external forcings.  Recently, Boffetta et al. [2003] presented a 

generalization of FDT which holds for a finite amplitude perturbation. Even though FDT 

is rigorously valid only for a Liouville system, numerical works by Bell [1980] and North 

et al. [1993] demonstrated that, to a large degree, this theorem remains applicable to a 

truncated barotropic system and a GCM with all-land surface and no topography. 
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Therefore, testing the second-moment statistics from GCMs against their counterpart 

from the observations has special importance. 

Here is an example showing that two GCMs can have good agreement on 

simulating the 10-month mean but that the considerable discrepancies can still exist in the 

second-moment statistics between the two GCMs and IRIS observations. UCLA GCM 

and NCAR CAM2 (Community Atmospheric Model Version 2) are forced by the 

realistic monthly-averaged SST over the IRIS period, April 1970 to January 1971. The 

twice-per-day outputs from the two GCMs are fed into a radiative transfer model, 

MODTRAN [Bernstein et al., 1996], to generate synthetic IRIS-like spectra. Figure 1.3a 

shows the 10-month averaged mean spectrum over the western Pacific (90º-150ºE, 10ºS-

10ºN) from UCLA GCM, CAM2, and IRIS observations, respectively. The mean spectra 

from the two GCMs both agree well with IRIS mean spectra except at the CO2 667cm-1 

bandi. For the whole spectral range, the root-mean-square (rms) difference between the 

UCLA GCM and IRIS mean spectra is 3.5K. For CAM2 and IRIS, it is 2.7K. The rms 

difference between UCLA GCM and CAM2 is 2.4K. But when the standard deviation of 

monthly-averaged spectra is studied, GCMs and observation show a substantial 

difference. At any point within this spectral range, the standard deviation derived from 

CAM2 simulation is at least twice as large as that derived from UCLA GCM. Meanwhile, 

the standard deviation of IRIS spectra is even larger than that of CAM2. Here, 

observation shows a greater variability than either GCM. Understanding causes of these 

discrepancies between observed and simulated variability would lead us to a better 
                                                 
i  It turns out that tropical stratosphere in this UCLA GCM simulation does not have a realistic variability, 
partially due to the crude vertical resolution in the stratosphere. Therefore, temperature and humidity above 
the lower stratosphere are fixed in the radiative transfer calculation. The difference between UCLA and 
IRIS at CO2 667cm-1 band just reflects the difference between fixed stratosphere temperature and real 
stratosphere temperature over IRIS period. 
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understanding of the deficiencies in the GCMs and even providing clues to improve the 

modeling work.  

1.3.2 Using the outgoing thermal infrared spectra to test model variability 

The comparison between models and observations is not restricted to standard 

model output parameters. Any quantity that can be calculated uniquely and accurately 

from the model can be used for the purpose of model testing. As mentioned in Section 1.1, 

the outgoing thermal IR spectrum contains plenty of information about the vertical 

profiles of the atmospheric thermodynamic variables and the trace gas concentrations. So 

it is physically meaningful to use such quantities to validate models. On the other hand, 

thermal infrared spectra also contain information about trace gases, which are usually 

prescribed in GCM simulation. But given the relatively uniform horizontal distributions 

and slow temporal variations of these trace gases, to the first order, the effects of those 

trace gases in observations can be removed by differencing an individual spectrum and 

the mean spectrum averaged over a certain area and a certain period. This is a practical 

reason for using thermal infrared spectra to test model variability rather than to test the 

model long-term mean. 
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Figure1.3 (a) The 10-month mean spectrum of the western Pacific over the IRIS period. 
The dotted line is from IRIS observation, the dash line is a synthetic spectrum based on 
NCAR CAM2 simulation, and the solid line is based on UCLA GCM simulation. (b) 
The standard deviations of the monthly average of IRIS spectra (the dotted line), 
synthetic spectra based on NCAR CAM2 simulation (the dash line), and synthetic 
spectra based on UCLA GCM (the solid line). 
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The comparison can be done in two ways. One is to invert vertical profiles from 

each individual spectrum, then compare them with modeled profiles. The other is to 

calculate synthetic spectra based on model outputs, then compare them with observed 

spectra. The equation describing the thermal infrared radiative transfer from surface to 

space is essentially a Fredholm equation of the first kind [Liou, 2002]. As long as the 

measurement is done at a finite number of spectral points, retrieving the temperature (gas 

concentration) profile from such an equation is an ill-posed problem even though the 

measurement is perfectly free of error and the gas concentration (temperature) profile is 

known a priori. Taking measurement uncertainty and the complexity of the scene (clear-

sky, overcast, or partially cloudy) into account, the retrieval problem is even more 

difficult and sometimes the solution is not unique [Rodgers, 2000]. On the other hand, 

with the advance of radiative transfer knowledge and computer technology, forward 

simulation of spectra is fast and reliable. With today’s computational power, generating 

millions of synthetic thermal infrared spectra with a resolution up to 1cm-1 can be done 

within one day using an ordinary workstation. Moreover, the radiative transfer algorithm 

can gain the maximum possible efficiency when it is parallelized. Putting all these factors 

together, calculation of synthetic spectra is a better choice than inversion of observed 

spectra. 

The approach of generating synthetic radiance from GCM output and then 

comparing with observations has been used in pioneering work of Morecette [1991], 

Schmetz and Vandeberg [1994], and Soden and Bretherton [1994]. For example, Soden 

and Bretherton [1994] computed narrow-band averaged radiance over the water vapor 

6.3 µm band using clear-sky outputs from two GCMs, ECMWF and NCAR CCM, and 
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compared with GOES cloud-clearing observation. They showed that the discrepancies 

between ECMWF and the observations can be attributed to the underestimated strength 

of the large-scale circulation in the GCM while the discrepancies between NCAR CCM 

and observation are not simply correlated with features of the large-scale circulation. 

Haskins et al. [1997] compared various statistical properties of IRIS spectra and synthetic 

spectra based on a surrogate GCM simulation and demonstrated the discrepancies in the 

second- and higher-moment statistics between the model and IRIS. Due to the lack of 

access to the cloud data of the model, this work was also focused on clear-sky situations 

only. Given the prominent role played by cloud in the climate system, the big uncertainty 

of cloud forcing in GCMs [Cess et al., 1995],  and the potential of introducing sampling 

bias by any cloud clearance algorithm [Soden and Bretherton, 1994], we include both 

clear-sky and cloudy data in our studies presented in the following Chapter 2 and Chapter 

3. 

1.3.3 Using observations with a dense sampling pattern 

For observations with a dense spatial sampling pattern like AIRS (2025 spectra per 

minute, covering an area of 1650km by 290km), there are two ways in which 

comparisons between model and observation can be done, focusing on testing different 

aspects of the model. One is to generate synthetic spectra based on the outputs from a 

GCM. This will test all aspects of the GCM, not only the subgrid parameterizations. The 

advantage of this approach is that parameterization schemes are tested as they are 

intended to be used. If the observation is not from a geostationary satellite, the under-

sampling issue of the satellite has to be considered in order to make meaningful 

comparisons. One solution is to average over a certain area and a certain period from both 
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the GCM outputs and satellite data. An alternative approach is to implement the 

satellite’s sampling pattern inside the GCM. 

The second way to do such a comparison is to generate synthetic spectra based on 

the single-column model (SCM, the column-physics component of GCM) outputs while 

the large-scale advection terms are provided by numerical weather prediction or 

reanalysis data. SCM usually contains all physical subgrid parameterization schemes so 

that more emphasis can be put on testing parameterizations. The advantage of this 

approach is that SCM is computationally cheap. Compared with the popular way to test 

SCM against limited field observations like ARM [Ghan et al., 2000], this approach can 

test over a variety of areas. So at least those parameters used in the parameterization 

schemes can be better “tuned” with respect to the different climate zones.  

1.4 Summary 

The singular importance of the outgoing thermal infrared spectra in the climate 

observations is due to the large amount of information about atmospheric thermodynamic 

variables and greenhouse gases contained in such measurements. As illustrated in Section 

1.2, such measurements can be used to detect climate change caused by the increase of 

greenhouse gases as well as infer the “climate response spectrum.” It can be used also in 

testing the climate model, especially the model variability. Such tests would examine the 

variability of temperature, humidity, and cloud together. Given the information about the 

vertical profiles contained in the high spectral resolution measurements, it is unlikely that 

the model can have wrong variability at certain levels but yield a satisfactory agreement 

with observed spectra at all the spectral channels. In this sense, testing model variability 
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using the outgoing thermal infrared spectra is stricter than the traditional tests which use 

selected quantities from the standard model outputs. 

The major disadvantage of using thermal infrared spectra in testing models is that the 

spectra contain information about the atmosphere in a complicated way, which makes 

interpreting test results not straightforward. But with the help of the spectral shape, the 

spatial maps or the time series associated with the spectra, as well as the retrieval, this 

difficulty can be at least partially overcome. 
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1.6 Appendix: Details of simulating IMG-IRIS difference 

Figure 1.2 is based upon the following: 

Radiation algorithm: These three panels have been calculated using MODTRAN 4.1 

[Bernstein et al., 1996]. An 8-stream discrete ordinate calculation was used for cloudy 

situation, and correlated-k for band absorption. 

Data: Temperature profiles up to 10 mb and water vapor profiles up to 300 mb were 

obtained from the NCEP reanalysis data [Kalnay et al., 1996]. Above 10 mb (300 mb), a 

typical tropical temperature (water vapor) profile [McClatchey et al., 1972] is used. 

Concentrations of CO2 are from Mauna Loa monthly meansi, and the vertical profile is 

                                                 
i http://www.cmdl.noaa.gov/ccgg/ 
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assumed to be uniform. Surface concentrations of CFC-11 and CFC-12 are from the same 

sourcei as CO2 with a linear extrapolation to the IRIS period. The vertical distributions of 

CFCs are from Minschwaner et al. [1993]. Surface concentration of CH4 for the IMG 

winter is also from the Mauna Loa datai. For the IRIS winter, result from ice core 

measurements [Etheridge et al., 1992] is used. The stratospheric ozone change is from 

Randel et al. [1999]; the tropospheric ozone change is from Kim and Newchurch [1996]. 

Changes of nitrous oxide surface concentration follow Houghton et al. [1996]. The 

vertical distributions of methane, nitrous oxide, and ozone are based on McClatchey et al 

[1972]. Changes of cloud amount are derived from the Extended Edited Cloud Report 

Archive (EECRA) [Hahn and Warren, 1999]. Using the procedure recommended by 

Hahn and Warren [1999], the frequency of occurrence for each type of cloud and the 

cloud amount when presents (AWP) are calculated. Although the EECRA is a 

sophisticated compilation of surface observations of clouds, large uncertainty might still 

exist. So the cloud information used here is only suggestive.  
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Chapter 2: Temporal Variability of the Thermal 

IR Spectra Seen from IRIS Data and GCM 

Simulations 
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2.1 Abstract 

 In order to evaluate how well current GCMs can simulate the temporal 

variability seen from the IRIS observations, we apply spectral empirical orthogonal 

function (EOF) analysis to IRIS data and synthetic spectra based on the simulations from 

two GCMs (UCLA GCM and NCAR CAM2). We show that proper averaging over a 

correct timescale is necessary. We focus on two tropical Pacific regions (the central 

Pacific and the western Pacific) and two midlatitude Pacific regions (the northern Pacific 

and the southern Pacific). For all regions examined here, the first principal component 

(PC1) is the dominant contributor to the total variance and the PC1s from two GCMs 

show substantial discrepancies from the PC1s from IRIS. The PC1s from two GCMs do 

not agree with each other either. At two tropics regions, cloud can explain most variance 

seen in the PC1s. The discrepancies seen from the PC1s at these two regions are 

insensitive to the parameterizations of cloud optical properties and cloud fraction. The 

discrepancies at the western (central) Pacific are most likely caused by the deficiency in 

simulating the intraseasonal (seasonal) variation of the Walker Circulation.   

At two midlatitude regions, both the stratospheric and the tropospheric variations 

can be seen from the PC1s but two GCMs significantly underestimate the variations in 

the stratosphere. Using a retrieval scheme, we show that the differences between the 

modeled PC1s and the IRIS PC1s is closely related to how well models can simulate the 

variations of low clouds, boundary layer temperatures, and stratospheric temperatures.  
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2.2 Data and methodology 

 IRIS data used in this study have already been introduced in Section 1.2. Two 

GCMs, the radiative transfer model, and the spectral EOF analysis used in this study are 

to be introduced here. The sampling issue is also addressed in this section.  

2.2.1 GCMs 

 The two GCMs used here are UCLA GCM 7.0 and NCAR CAM2. The major 

characteristics and the parameterization schemes of the two GCMs, which are related to 

this study, are summarized in Table 2.1. It can be seen that the two models are different 

in many aspects. Particularly, several differences that need noticing are 

(1) CAM2 has many more layers near the tropopause than UCLA GCM.  

(2) The instantaneous cloud fraction over a grid box in CAM2 is diagnostically 

calculated based on relative humidity, vertical velocity and other variables. It 

can be any number between 0 and 1. In UCLA GCM it is either 0 or 1, 

depending on a threshold value of cloud water mixing ratio. 

(3)  The ice cloud effective radius in CAM2 is parameterized as a function of 

ambient pressure. In UCLA GCM, the ice cloud effective radius is uniformly 

set as 75 µm. The maritime liquid cloud effective radius is set as constant (10 

µm) in both GCMs. CAM2 parameterizes the continental liquid cloud 

effective radius as a function of ambient temperature and UCLA GCM still 

uses 10 µm as the liquid cloud effective radius over continents.  
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 UCLA GCM CAM 2.0 
Numerical approach Finite difference Spectral method 
Horizontal resolution 4°×5° 2.8°×2.8° (T42) 

Vertical resolution 15 layers ( modified σ 
coordinate) 

26 layers (hybrid coordinate) 

Radiation scheme Harshvardhan et al. [1989] Collins et al. [2002], 
 Collins [2001] 

Cloud scheme Harshvardhan et al. [1989] 
Kohler [1999] 

Rasch and Kristjansson [1998] 
Zhang et al. [2003] 

Cumulus convection 
scheme 

Arakawa and Schubert [1974] 
Cheng and Arakawa [1997] 

Zhang and MacFarlane [1995] 

Table 2.1 The major features of two GCMs used in this study and the parameterization 

schemes of two GCMs pertinent to this study.  

2.2.2 MODTRAN 

 The radiative transfer model used in this study to generate IRIS-like spectra is 

Moderate Transmittance Code (MODTRAN) v4.1 developed by Air Force Geophysical 

Lab [Bernstein et al., 1996; Wang et al., 1996]. It adopted a very-narrow band model 

approach to generate a spectrum at a fixed sampling interval of 1.0 cm-1. It was designed 

to be efficient, user friendly, downward compatible, flexible in handling various scene 

geometries and various cloud/aerosol configurations. It has a fast two-stream algorithm 

and a more accurate DISORT algorithm to handle the multiple scattering. Given the fact 

that tens of millions of spectra have to be calculated and DISORT is a very time-

consuming approach, we have to adopt a two-stream algorithm in the presence of cloud. 

In detail, twice-per-day outputs of temperature, humidity, and cloud profiles were 

generated from each GCM’s simulation forced by the realistic monthly mean of sea 

surface temperature (SST) over the IRIS period. Then these outputs were fed into 

MODTRAN to generate IRIS-like spectra. More discussion about the feasibility of using 

MODTRAN in such a study can be found at Haskins et al. [1997]. 
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2.2.3 The spectral EOF analysis 

 The statistical technique used here is principal component analysis [Hotelling, 

1933] in the spectral domain, so-called spectral EOF analysis. Let Iν(x) be a set of 

radiances, where ν is frequency and x is either time or space. The EOFs, )(i
νφ , are unit 

eigenvectors of the covariance matrix defined by  

            ))()()(( 221121 νννννν IxIIxIC −−=                                                                  (2.1) 

where the overbars represent averaging over all samples in the given set. Let λi be the 

eigenvalue corresponding to the ith eigenvector )(i
νφ  and 1+≥ ii λλ ; then the principal 

component (PC) is defined as1 

            )()( i
i

iPC νν φλ=           (2.2) 

The fraction of variance explained by the ith eigenvector is ∑ ii λλ . With this definition, 

PCs have the dimensions of radiance and therefore can be more easily interpreted than 

EOFs [Haskins et al., 1999]. The normalized expansion coefficient (EC) of the ith PC is 

∑ −=
v

i
i

vvvi xIxIxEC λφ )(])()([)(                                                                  (2.3) 

With this definition, the standard deviation of the EC is 1 and the mean is 0. If x is space 

(time), then ECs can be interpreted as the spatial (temporal) patterns associated with the 

corresponding PCs. One thing to note is that each principal component is forced to be 

orthogonal to its all predecessors. As a result, the higher-order principal components 

might not be amenable to simple physical interpretations because linear independence is 
                                                 
1 There is no consistent terminology for EOF analysis. The terms used by different communities could even 
contradict each other [Preisendorfer, 1988]. Here, we adopt these definitions to be consistent with previous 
works on spectral EOF studies [Haskins et al., 1999].   
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equivalent to statistical independence only when the probability distribution of the 

variable is Gaussian.  

 The application of principal component analysis in satellite radiance sounding 

was pioneered by Smith and Woolf [1976]. Besides using it to study the variability of the 

infrared spectra [Haskins et al., 1999], recent applications include compression and 

retrieval of hyper-spectral sounding data [Goldberg et al., 2003; Huang and Antonelli, 

2001], detection of cloud in high-resolution infrared spectra [Smith and Taylor, 2004], as 

well as analysis of solar irradiance spectra [Rabbette and Pilewskie, 2001].  

2.2.4 Sampling issue: temporal and spatial average and diurnal variability 

Before we can carry out our spectral EOF analysis, we need to average the spectra 

over certain regions and timescales. This is necessary because the spatial and temporal 

sampling patterns of observations are not the same as those in the model. In this study, 

we focus on four regions: two in the tropics, the central Pacific (180°W to 130°W, 10°S 

to 10°N) and the western Pacific (90°E to 150°E, 10°S to 10°N); two in the midlatitudes, 

the northern Pacific (180°W to 130°W, 45°N to 60°N) and the southern Pacific (180°W 

to 130°W, 60°S to 45°S). The appropriate timescale for the averaging is discussed in the 

next paragraph. For IRIS data, the number of spectra collected during the ascending node 

is usually different from those collected during the descending node due to the quality 

control. Before we average the data, we weight data from the ascending branch and from 

the descending branch such that day-night contrasts are eliminated.  

  We are forced to choose a temporal averaging window suitably long to reduce 

complications arising from under-sampling by IRIS, a problem typical of any sounder 

sensitive to clouds [Salby, 1989]. The asynoptic nature of a sun-synchronous satellite is 
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especially important for clouds because the space and time scales of cloud variability are 

easily less than that of the sampling. Salby [1989] pointed out that clouds change 

typically in hours, which is much shorter than the time for the globe to be covered by the 

satellite and that a sufficiently long period averaging can remove the aliasing from 

unresolved random variability. We estimate the timescale to do the average with 

synthetic spectra based on GCM output. We use two different methods to get the daily 

average over a given region. One is to do the average with all grid points inside this 

region (hereafter, “average-all” method), the other is to find the grid points nearest to the 

satellite tracks and average spectra only at those grid points (hereafter, “track-orbit” 

method). Obviously, the latter method is more directly suitable for comparison to IRIS 

spectra. With these two methods, we obtain the averages over periods longer than one 

day. When the averaging is done over a long enough timescale, the difference of two sets 

of averaged spectra should be very small, demonstrating that the “track-orbit” method is 

already a good approximation to the “average-all” method at this timescale. Figure 2.1 

shows a comparison of the standard deviation of these two sets of spectra over the central 

Pacific. It can be seen that for 5-day averaging the standard deviation from the “average-

all” method is only half of that from the “track-orbit” method; when the averaging period 

is 25 days, they are almost the same. Therefore, for the central Pacific, we adopt 25-day 

averages. We apply the same analysis to the western Pacific and it shows that 25 days is 

again long enough for discrepancies in the standard deviation to cancel. 
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Figure 2.1 (a) The standard deviation of spectrally resolved radiance derived from the 

UCLA GCM. The dotted line was computed from data averaged over 5 days for the 

Central Pacific using the ‘track-orbit’ method (as defined in the text). The solid line is the 

same as the dashed line, except that the averaging was performed using the ‘average-all’ 

method (as defined in the text). (b) Same as (a), except that the time interval for 

averaging is 20 days. (c) Same as (a), except that the averaging time is 25 days. 
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Other than random fluctuations which can be smoothed out by averaging over a 

long period, there is another kind of temporal variability which we must take into account: 

diurnal variability. IRIS always sampled around local noon and midnight, but the GCMs 

gave output at 1200 and 0000 GMT. So we need to investigate to what extent the two 

different time-sampling patterns affect the spectral EOF analysis. To tackle this issue, we 

do a simple test. We assume the cloud diurnal variations are sinusoidal, 

]24/)(2sin[0)( mTtaCCtC −+= π , where C0 is a constant term, and 0 ≤ t ≤ 24 hour.  The 

phase information for different kinds of cloud is obtained from the study about diurnal 

variations of cloud cover by Bergman and Salby [1996]: for low cloud, Tm ≈ -2; for high 

cloud, Tm ≈ 11. Based on this sinusoidal curve, we can interpolate GCM cloud output to 

local noon and midnight. With these new cloud data, we can calculate spectra and do 

spectral EOF analysis. It turns out that the first principal component (PC1) obtained from 

this analysis is only slightly different from the original PC1. Other studies [Bergman and 

Salby, 1996; Bergman and Salby, 1997] also showed that diurnal variations of cloud over 

tropical ocean regions are weaker than those over landmasses, and the cloud diurnal 

contributions to the time-mean thermal flux are usually less than 1 W m-2. Therefore, we 

conclude that the different phases of diurnal variation sampled by IRIS and the GCMs 

could not have important impact on the substantial differences found between the 

observed PCs and the simulated PC1. 

2.3 The tropical cases 

This section presents the results over the central Pacific and the western Pacific. 

The focus is the first principal component (PC1) and its interpretation because the PC1s 

can explain more than 92% of the total variance for all the cases. One thing to note is that 
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UCLA GCM does not have a realistic variability in the tropical stratosphere, partially 

because (1) the difficulty of avoiding spurious reflection of upward-propagating waves in 

a model with a rigid upper boundary at 50km [Callaghan et al., 1999] (2) the 6-layer 

representation of the stratosphere in the model might not be enough for a satisfactory 

simulation of the stratospheric variability. Given the fact that the PC1s are due to the 

variations in the troposphere (details in the following Section 2.3.1), for UCLA GCM 

output we replace the temperature and humidity profiles above 50mb with the typical 

tropical profiles provided by MODTRAN. By doing this, we eliminate the variability 

above 50mb in UCLA GCM outputs and focus on the tropospheric variations.  

2.3.1 Results from spectral EOF analysis and simple interpretation 

Figure 2.2(a) shows the mean spectra over the central Pacific from April to 

December of 1970 obtained from IRIS data and synthetic spectra based on UCLA GCM 

and CAM2 simulations, respectively. The good agreements between IRIS and CAM2 

mean spectra at the CO2 667 cm-1 band indicate that CAM2 can simulate the 9-month 

mean temperature profiles in the stratosphere quite well. The large discrepancies between 

IRIS and two GCMs at the window regions reveal that neither GCMs can simulate the 

cloud mean state satisfactorily. For the western Pacific case shown in Figure 2.2(b), the 

agreement between IRIS and GCMs is better than for the central Pacific case although 

there are still discrepancies at the window regions. 
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Figure 2.2 (a) The mean spectra over the central Pacific from April to December of 1970 

observed by IRIS (the solid line), simulated by CAM2 (the dash line) and UCLA GCM 

(the dash-dotted line). (b) Same as (a) except over the western Pacific. 
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Figure 2.3 (a) The first principal component (PC1) over the central Pacific derived from 

25-day averaged spectra of IRIS (the solid line), from CAM2 (the dash line) and UCLA 

GCM (the dash-dotted line) simulations. (b) Same as (a), but over the western Pacific.  
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 The central Pacific The western Pacific 

 IRIS UCLA CAM2 IRIS UCLA CAM2 

Variance explained by 
the PC1 

98.0% 98.0% 99.5% 99.1% 92.7% 97.5% 

Corresponding ∆BT in 
the window regions (K) 

2.4 1.1 4.2 4.8 0.6 2.0 

Integration (W m-2 sr-1) 2.1 0.9 3.1 3.4 0.5 1.7 

Variance explained by 
cloud (%) 

75 94 93 98 96 98 

Corresponding cloud 
fraction change (%) 

2.95 

(±0.13) 

1.62 

(±0.03) 

4.82 

(±0.10) 

8.39 

(±0.09) 

1.60 

(±0.03) 

3.67 

(±0.06) 

Corresponding cloud 
height 

16km 10km 16km 8km 10km 6km 

Table 2.2 Properties of the PC1s of IRIS and the two GCMs.  ∆BT is the 
change of brightness temperature. Variance explained by cloud, 
corresponding cloud fraction change, and corresponding cloud height are 
based on a stepwise regression algorithm [Haskin et al., 1999]. The error bars 
in parentheses correspond to 95% significance.  

 

  The PC1s derived from IRIS and the two GCMs over the central Pacific and the 

western Pacific are presented in Figure 2.3. Properties of the PC1s are summarized in 

Table 2.2. The most obvious difference between PC1s from IRIS and PC1s from models 

is the amplitude. Compared with IRIS, UCLA GCM substantially underestimates the 

amplitudes of the PC1s over both the central Pacific (by a factor of ~2) and the western 

Pacific (by a factor of ~6). CAM2, however, overestimates the amplitude over the central 

Pacific (by a factor of ~1.5) and underestimates that over the western Pacific (by a factor 

of ~2).  

 We apply a simple inversion scheme to explore the contribution of clouds to the 

PC1s. The detailed description of this scheme can be found in Haskins et al. [1999]. 

Simply put, stepwise regression is applied to each PC1 to determine the cloud 

contributions. There are seven types of clouds in this scheme, the tops of which are 



 38

located at 2, 4, 6, 8, 10, 12 and 16 km, respectively. For each PC1, the amount of 

variance that can be explained by clouds is listed in Table 2.2. Except for the IRIS PC1 

over the Central Pacific, clouds can explain more than 92% of variance of the PC1 in all 

the other cases. The corresponding cloud height and cloud fraction change derived from 

this inversion scheme are also listed in Table 2.2. The results suggest that contributors to 

PC1s are most likely the high clouds rather than the low clouds. For UCLA GCM, its 

cloud fraction changes are smaller than the counterparts of IRIS over both the central 

Pacific and the western Pacific. For CAM2, it has larger cloud fraction change and higher 

cloud height than IRIS over the central Pacific and the situation is the opposite over the 

western Pacific. The result from this simple inversion scheme is qualitative, but clearly 

shows that the major contribution to PC1 is cloud and that both models have deficiencies 

in getting the cloud variability correct. 
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Figure 2.4 (a) The PC1 time series over the central Pacific derived from IRIS (the solid 

line with stars), CAM2 output (the dash line with diamonds), and UCLA GCM output 

(the dash-dotted line with circles). (b) Same as (a) except over the western Pacific. 
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 The central Pacific The western Pacific 

CAM2 0.80 (99%) 0.68 (97%) 

UCLA GCM 0.59 (93%) 0.17 (35%) 

Table 2.3 The correlation coefficients between the PC1 time series from 
each GCM and those from IRIS. The numbers in parentheses are the 

significance derived from zero-hypothesis test. 
 

  The time series of these PC1s are shown in Figure 2.4. The correlation 

coefficients between the PC1 time series from each model and those from IRIS are listed 

in Table 2.3. For the central Pacific (Figure 2.4a), the PC1s basically show the seasonal 

variability. Given the dominant contribution of cloud to these PC1s, it can be concluded 

that the PC1s over the central Pacific essentially capture the cloud seasonal variability. 

Both GCMs can capture the temporal variation reasonably well.  

 For the western Pacific (Figure 2.4b), the IRIS time series oscillates at the 

timescale of around 50 days, the same timescale as intraseasonal oscillation (also known 

as MJO). A typical cycle of MJO begins with low surface pressure and convergence in 

the Indian Ocean building convection. Then the low surface pressure and convection will 

move and spread eastward and, after 7~15 days, arrive at its time-average position, the 

western Pacific. At this step, the Walker Circulation reaches a relative maximum. Then 

the convection system will keep moving eastward to 180ºW and weaken and disappear 

over the cold equatorial sea surface [Madden and Julian, 1971; Madden and Julian, 

1994].  Therefore, it is conceivable that MJO has a large effect on the variability of the 

outgoing infrared spectra over the western Pacific. The IRIS PC1 time series is well 

correlated with the CAM2 PC1 time series but the correlation is not very significant 

(Table 2.3). The correlation between IRIS and UCLA GCM is poor and not significant at 
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all. Moreover, from Figure 2.4b it can be seen that the IRIS PC1 time series oscillates 

with a much larger amplitude than those of the two models (all time series are normalized 

to have unitary standard deviation). This is consistent with the fact that currently no 

GCMs can do a realistic simulation of MJO, which is at least partially due to the 

insufficient representation of mesoscale convection system in the GCMs. One thing to 

note is that Randall et al. [2003] recently demonstrates the robust simulation of MJO with 

superparameterizations, coupling a cloud resolving model with a GCM.   

2.3.2 Insensitivity of the spectral EOF results to the parameterizations of the cloud 

effective radius and cloudiness 

 In the previous subsection, we identify cloud variability as the major contribution 

to the PC1s. In both GCMs, cloud optical depth is parameterized as a function of cloud 

water path (CWP) and the effective radius of cloud particles (re). In CAM2, other cloud 

optical properties, such as single scattering albedo and asymmetric factor, are also 

parameterized as functions of re. In UCLA GCM, these optical properties are constant for 

liquid water cloud and ice cloud, respectively. Nevertheless, as pointed out in Section 2.2, 

re of continental liquid water cloud in CAM2 is parameterized as a function of 

temperature and re of maritime liquid water cloud is 10 µm everywhere; re of ice cloud in 

CAM2 is parameterized as a function of pressure.  In UCLA GCM, re is 75 µm for ice 

cloud and 10 µm for liquid water cloud everywhere. On the other hand, UCLA GCM 

does not parameterize instantaneous cloud fraction (“binary cloud”, either overcast or 

clear-sky) but CAM2 does parameterize it. Intuitively, it seems that both fixed re and 

binary cloud can contribute to the unrealistic small variability seen from the PC1s of 

UCLA GCM. But to what extent they contribute to the discrepancies between the UCLA 
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GCM and CAM2 PC1s is not self-evident. This subsection will address the effects of 

these different parameterizations used by the two GCMs on thePC1s.  

 We rerun CAM2 with the cloud effective radii fixed in the same ways as they are 

in UCLA GCM. By doing this, other cloud optical properties except the cloud optical 

depth are fixed too. The PC1 from this experiment is plotted in Figure 2.5 (the dash-

dotted line). It can be seen that the difference between this PC1 and the original CAM2 

PC1 is rather small: the maximal difference in the window region is about 2%.  This 

demonstrates that the different ways to parameterize re could not explain the big 

difference between the PC1s from two models. It alone could not account for the 

discrepancies between the modeled and observed PC1s either. Recent studies showed that 

the parameterization of re does have a significant impact on the temporal variability  of 

radiative fluxes over a single grid box [Iacobellis et al., 2003; McFarquhar et al., 2003]. 

Here, our results show that, after the heavy average over space and time, the variability of 

these mean spectra is not sensitive to the way that re is parameterized.  

 Due to the complexity of GCM, fully replacing the cloud fraction 

parameterization in CAM2 with the one used in UCLA GCM is beyond the scope of this 

study. However, to a large extent, the impact of binary cloud on the PC1 can be estimated 

in this way: (1) set a clear-sky criterion (CLRCRI), (2) at any given time, if the 

instantaneous clear-sky fraction over a grid box is larger than CLRCRI, the grid box is 

classified as a clear-sky box and the spectrum over this grid box  is calculated with clear 

sky configuration only; if the instantaneous clear-sky fraction is smaller than this 

criterion, the grid box is treated as overcast and the spectrum is calculated with cloud 

configuration only. We try two values for CLRCRI, 0.7 and 0.9, respectively. The PC1s 
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calculated from these two estimations are presented in Figure 2.5. As expected, the PC1s 

from binary cloud configurations have smaller amplitude than the original one. But the 

difference is little: the maximal difference is about 5% for CLRCRI = 0.7 and 8% for 

CLRCRI = 0.9. This indicates that the different ways of parameterizing cloud fraction 

between UCLA GCM and CAM2 should not be a major reason for the discrepancies 

shown in the PC1s. In fact, whether instantaneous cloud fraction should be parameterized 

or not is still under debates [Kohler, 1999]. The reason why UCLA, as well as some other 

GCMs, simply uses binary cloud parameterization is that the monthly-averaged cloud 

fraction simulated from such GCMs still has reasonably good agreements with 

observations. 

2.3.3 Further interpretation 

 Subsection 2.3.2 excludes cloud effective radius and cloud fraction as the major 

contributors to the discrepancies shown in the modeled and observed PC1s. Given the 

fact that the PC1s are mostly due to the variation of cloud, the other candidates would be: 

(1) Cloud water path (CWP). In both models, a prognostic cloud bulk 

microphysical scheme is used to predict CWP. Both the water vapor in the 

large-scale field and the water provided by the convection are closely related 

to the CWP. The schemes used in two models are similar, both rooted from 

cloud resolving models. It is highly unlikely that the two schemes would 

yield very different results if the input large-scale variables and the tendency 

of water from convection scheme are the same.  

(2) Cloud top height and cloud top temperature. For the optically thick clouds, if 

the variations of the cloud top height (temperature) are different between 
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models and observations, they can easily make discrepancies in the PC1s. 

The cloud top height and the cloud top temperature are closely related to the 

large-scale variables (for stratified clouds) and the convection (for convective 

clouds).  
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Figure 2.5 The PC1s at the central Pacific based on the output of the original CAM2 run 

(the solid line), the CAM2 run with fixed re (the dash-dotted line), the calculation using 

CLRCRI=0.7 (the dotted line) and CLRCRI=0.9 (the dash line).  
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 With these considerations, the big discrepancies seen in Figure 2.3 are more likely 

due to the difference between the observed variability of large-scale circulation and the 

simulated counterpart and how well convection has been represented in the models. The 

circulation pattern dominant over the western Pacific and the central Pacific is the Walker 

Circulation driven by atmospheric heating processes [Bjerknes, 1969; Webster, 1983]. 

The major ascending branch of the Walker Circulation is over the western Pacific and 

maritime continent. The seasonal variation can shift the center of the ascending branch 

from around 100ºE (January) to 150ºE (July). The descending usually happens in the 

broad region of the eastern Pacific (150-90ºW in January and 120-90ºW in July) [Lau and 

Yang, 2003]. The seasonal variation of the Walker Circulation is modulated by MJO and 

the ENSO. El Nino events usually weaken the Walker Circulation with rising motion 

over the central and eastern Pacific while La Nina events usually enhance the Walker 

Circulation with well-defined ascending and descending branches. 

 Given that 1970-1971 is a moderate La Nina year, most part of the central Pacific 

(10ºS-10ºN, 180-130ºW) should be within the descending branches. Occasionally the 

west side of it can be at the margin of the large-scale convective region (e.g., in a MJO 

cycle, convection system can move east to around 180ºW).  The major types of clouds in 

this region should be anvil clouds detached from convective cells and low clouds formed 

in the descending branches. The cloud variations in this region should be closely related 

to the variations of the strength of the Walker Circulation. The western Pacific (10ºS-

10ºN, 90-150ºE) is within the ascending branches almost all the time. So the convective 

clouds are the major types of cloud in the western Pacific. Therefore, both the convection 

and the Walker Circulation strength can have impact on the cloud variability in the 
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western Pacific. Given the nature of the Walker Circulation, how well convection can be 

simulated is closely related to the realistic simulation of the Walker Circulation. 

Therefore, a realistic simulation of convection variability is essential here to reduce the 

discrepancies between the modeled and the simulated PC1s. 

 Substantially underestimated variance in the tropics by GCM has been noted in 

previous studies. For example, Ricciardulli and Garcia [Ricciardulli and Garcia, 2000] 

used 3-hourly brightness temperature measurements at 11 µm as a proxy for deep 

convection activity and compared this proxy with simulated deep convection in NCAR 

CCM3, the predecessor of CAM2. They demonstrated that although the mean state 

simulated by CCM3 is similar to the observed one, the simulated variance is much less 

than the observed one. Part of the reason for such discrepancies is rooted in the way that 

convection is parameterized in GCMs: when the convection is parameterized in term of 

grid-level variables, the model implicitly assumes that the unresolved convection can be 

expressed in a sense of ensemble mean. Variability associated with convection activities 

cannot be represented by the ensemble mean but it effectively acts as a stochastic noise 

so it might have effects on grid-level variables as well. Recently several studies [Lin and 

Neelin, 2002; Lin and Neelin, 2003; Naveau and Moncrieff, 2003] showed that including 

the subgrid-scale convection variability in models by stochastic parameterization can 

significantly affect the variability at the intraseasonal or even longer time scale.  

 Yet the convection parameterization scheme cannot explain the unrealistic large 

amplitude of the CAM2 PC1 over the central Pacific. It would be instructive to compare 

the simulated (observed) cloud properties over the IRIS period with those derived from 
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the control run1 (climatology) to see how well CAM2 can simulate the response of the 

cloud seasonal cycle to the interannual variation of SST. But unfortunately IRIS was 

early in the satellite era that no sophisticated observations about cloud during the IRIS 

period are available. Instead, we choose April 1988 to January 1989 as a surrogate period 

because this period had the similar phases of both seasonal cycle and ENSO as the IRIS 

period [Haskins et al., 1997]. The ISCCP D2 data product over this surrogate period and 

the ISCCP D2 climatology are used as observational datasets2. The comparisons are 

summarized in Table 2.4. Over the central Pacific, the variations of monthly-average 

cloud amount during the ISCCP surrogate period are larger than those from ISCCP 

climatology. CAM2 also has larger cloud variations during the IRIS period than its 

control run (fixed SST climatology). But the cloud variations in CAM2 are systematically 

larger than those of ISCCP. This indicates that CAM2 overestimates the mean seasonal 

variation of cloud over the central Pacific, which contributes partially to the discrepancies 

in the PC1s shown in Figure 2.3a. Over the western Pacific, the cloud variations derived 

from the CAM2 control run are also larger than those from ISCCP climatology. But the 

observed cloud variations during the surrogate period are larger than the climatological 

cloud variations while CAM2 produces smaller cloud variations during the IRIS period 

than the control run. So for the western Pacific not only is the mean seasonal variation  

not realisticly simulated in CAM2, but also the simulated changes of the seasonal cycle 

with respect to the interannual SST variation are opposite to the observed changes 

derived from ISCCP.  

                                                 
1  Control run refers to the run forced with climatological SST. 
2 ISCCP (International Satellite Cloud Climatology Project) is a project to retrieve cloud product from 
various satellite radiance measurements [Rossow, W.B., and R.A. Schiffer, 1999], spanning from July 1983 
to December 1999. 
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  CAM 
control run 

CAM2 
04/1970-
01/1971 

ISCCP 
Climatology 

ISCCP 
04/1988 -
01/1989 

High cloud fraction 6.9% 9.6% 3.6% 3.9% The 
central 
Pacific 

Total cloud fraction 7.9% 10.0% 3.5% 5.9% 

High cloud fraction 5.6% 3.4% 4.0% 7.8% The 
western 
Pacific 

Total cloud fraction 5.9% 3.4% 3.4% 6.0% 

Table 2.4 The standard deviations of monthly-averaged total cloud amount and high cloud 
amount derived from ISCCP products and CAM2 simulations. 
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Figure 2.6 (a) The mean spectrum over the northern Pacific from April 1970 to 
December 1970 derived from IRIS observation (the solid line), computed based on 
CAM2 simulation (the dash line) and UCLA GCM simulation (the dash-dotted line). (b) 
Same as (a) except over the southern Pacific. 



 48

2.4 The midlatitude cases 
 This section describes the spectral EOF results over two midlatitude oceanic 

regions, the northern Pacific and the southern Pacific. Unlike the tropical cases in which 

the stratospheric variation is not important to the PC1s, the stratospheric temperature 

variations have clear imprints on the PC1s of the midlatitude cases. Given this fact, the 

stratospheric profiles simulated by UCLA GCM are used in computing individual spectra.  

 Figure 2.6 shows the mean spectra over the northern Pacific and the southern 

Pacific from IRIS observation and the two models. The CO2 667cm-1 band shows that, for 

both regions, UCLA GCM has a colder stratosphere than IRIS while the stratosphere in 

CAM2 is slightly warmer than that of IRIS. At the window region, the UCLA GCM 

mean spectrum over the northern Pacific is higher than the IRIS counterpart by about 5K, 

indicating that on the onverage UCLA GCM has less cloud or lower cloud top than the 

IRIS observation. The CAM2 mean spectrum over the northern Pacific is slightly lower 

than the IRIS counterpart by about 1.5K at the window region. The mean spectra over the 

southern Pacific from the two GCMs agree very well with the IRIS counterpart at the 

window region.  

2.4.1 Results from the spectral EOF analysis 

 Figure 2.7 plots the PC1s over the two regions derived from IRIS and two models. 

The fractions of variance explained by each PC1 and PC2 are listed in Table 2.5. Both 

UCLA GCM and CAM2 overestimate the fractions of variance explained by the PC1 at 

these two regions. For the PC1s over the northern Pacific shown in Figure 2.7a, the most 

striking difference is the mismatch of the spectral shapes at the CO2 667 cm-1 band 

between IRIS and UCLA GCM. IRIS PC1 shows a sharp spike at the center of this CO2 
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band center while UCLA GCM only has a small bump there. In the midlatitudes, the 

typical CO2 spatial variation in the stratosphere is ~ 1.5ppmv [Olsen and Randerson, 

2004], which can only produce a change less than 0.1 mW m-2 sr-1/ cm-1 at the CO2 

667cm-1 band. Therefore, as Haskins et al. [1999] correctly pointed out the sharp spike of 

IRIS PC1 is clearly due to the variation of the stratospheric temperature.  The CAM2 PC1 

is similar to IRIS PC1 in terms of the spectral shape but with a smaller spike at the CO2 

667 cm-1 band. For the PC1 over the southern Pacific shown in Figure 2.7b, the sharp 

spectral features at the CO2 667 cm-1 band and two neighboring hot bands indicate the 

temperature variations in the stratosphere and the upper troposphere. The PC1s from both 

models underestimate the peaks at the CO2 667 cm-1 band.  

But at the window region, the UCLA PC1s have larger amplitude than IRIS PC1s 

by a factor 1.5~2 over both the northern Pacific and the southern Pacific. This is opposite 

to the tropical cases where the UCLA PC1s have much smaller amplitudes at the window 

region than the IRIS PC1s. The CAM2 PC1 has larger (smaller) amplitude than the IRIS 

PC1 over the northern (southern) Pacific. For the PC1s over the southern Pacific, the 

small amplitude at the water vapor band indicates little contribution from the tropospheric 

water vapor.  

The time series of each PC1 is shown in Figure 2.8, and the correlation 

coefficients are summarized in Table 2.6. Apparently for both the models and IRIS, the 

PC1 time series basically shows the seasonal cycle. As indicated by Figure 2.8 and the 

correlation coefficients shown in Table 2.6, both models can capture the phase changes of 

the seasonal cycle reasonably well.  



 50

The IRIS PC1 over the northern Pacific shows a different spectral shape from the 

IRIS PC1 over the southern Pacific. This difference can be understood in terms of the 

seasonal variations of cloud and temperature. The standard deviations of 25-day averaged 

temperatures at different pressure levels from NCEP reanalysis [Kalnay et al., 1996] are 

shown in Figure 2.9. The near-surface temperature variations over the northern Pacific 

are larger than those over the southern Pacific, primarily due to the large land-ocean 

contrast in the northern midlatitudes. Marine stratus is the dominant cloud observed in 

these two areas [Klein and Hartmann, 1993]. Such cloud usually tops around 1km, which 

makes the thermal contrast between surface and cloud top small. Based on the new 

ISCCP D2 data, the standard deviation of monthly-averaged stratus amount is ~4% over 

the northern Pacific and 1.3% over the southern Pacific. Therefore, both the near-surface 

temperature variations and the stratus variations favor a bigger variability over the 

northern Pacific rather than over the southern Pacific. This explains the difference seen at 

the window region of the PC1s of the two areas. Figure 2.9 also shows that the 

stratospheric temperature variation over the southern Pacific is more pronounced than 

that over the northern Pacific. This explains why the IRIS PC1 over the southern Pacific 

has a larger spike at the CO2 667 cm-1 band center than the IRIS PC1 over the northern 

Pacific.  

In summary, over both areas, PC1s from IRIS and CAM2 capture the seasonal 

cycle of the stratospheric and near-surface temperature (low cloud top temperature). The 

PC1 over the northern Pacific from UCLA GCM captures little contribution from the 

stratosphere. The surface temperature and low cloud amount over the northern Pacific 

have larger variation than the counterparts over the southern Pacific, which is captured at 
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the window regions of the IRIS PC1s. For both areas, UCLA GCM overestimates the 

variability at the window regions. CAM2 overestimates (underestimates) the variability at 

the window regions over the northern (southern) Pacific. 

 The northern Pacific The southern Pacific 
 PC1 PC2 PC1 PC2 

IRIS 87% 12% 65% 33% 
CAM2 93% 6% 79% 18% 
UCLA 97% 2.7% 97% 2.5% 

Table 2.5 The percentage of the total variance explained by the PC1s 

and the PC2s over the northern Pacific and the southern Pacific. 

 

 The northern Pacific The southern Pacific 

CAM2 0.77 (99%) 0.89 (99%) 

UCLA GCM 0.90 (99%) 0.67 (97%) 

Table 2.6 The correlation coefficients between the PC1 time series from 

each GCM and those from IRIS. The number in parenthesis is the 

significance derived from zero-hypothesis test. 
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Figure 2.7. (a) The PC1 over the northern Pacific derived from 25-day averaged 

IRIS spectra (the solid line), from CAM2 (the dash line) and UCLA GCM (the 

dash-dotted line) simulations. (b) Same as (a) except over the western Pacific. 
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Figure 2.8 (a) The PC1 time series over the northern Pacific derived from IRIS (the solid 

line with star), CAM2 output (the dash line with diamond), UCLA GCM output (the 

dash-dotted line with circle). (b) Same as (a) except over the southern Pacific. 
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Figure 2.9 The standard deviations of 25-day averaged temperatures profiles over the 

northern Pacific (the solid line) and the southern Pacific (the dash line). The data are from 

NCEP reanalysis daily product. 
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2.4.2 Retrieval of PC1s 

To quantitatively understand the causes of the PC1s shown in Figure 2.7, we use a 

retrieval algorithm to retrieve the temperature, humidity and cloud profiles from the PC1s. 

The retrieval algorithm is described in the appendix. The retrieved profiles are presented 

in Figure 2.10 (for the northern Pacific) and Figure 2.11 (for the southern Pacific).  

Over the northern Pacific, the change of skin temperature retrieved from the PC1 

of UCLA GCM is larger than that retrieved from the IRIS PC1 by 2.3K (out of 1σ 

uncertainty). The changes of skin temperature retrieved from the IRIS PC1 and the CAM 

PC1 are close to each other. In the free troposphere, the temperature changes retrieved 

from three PC1s are similar to each other. Retrieval from CAM2 PC1 shows a negative 

temperature change (~4K) in the lower stratosphere while the UCLA PC1 and the IRIS 

PC1 show little temperature change there. Temperature changes above 50mb retrieved 

from the UCLA PC1 are significantly smaller than those from the IRIS PC1 and the 

CAM2 PC1. At 20mb, the retrieved temperature change from the UCLA PC1 is only 1K 

while it is around 8K from IRIS PC1 and CAM PC1. This explains the absence of a spike 

at the CO2 667 cm-1 band in the PC1 of UCLA GCM. Above 10mb the temperature 

changes retrieved from the CAM PC1 are only half of those from the IRIS PC1, which 

explains why the CAM PC1 has a smaller spike at the CO2 667 cm-1 band than the IRIS 

PC1. The low cloud change retrieved from the CAM (UCLA) PC1 is larger (smaller) 

than that from the IRIS PC1. There are discrepancies in retrieved tropospheric water 

vapor profiles too, but the uncertainty associated with IRIS retrieval is so large 

(especially in the low troposphere where cloud is present) that the retrieved water vapor 

profiles from the simulated PC1s are both within the uncertainty range.
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Figure 2.10 Retrieved profiles from the PC1s over the northern Pacific. The lines 

with filled circles are from the IRIS PC1, the lines with open diamonds from the CAM 

PC1, and the lines with stars from the UCLA PC1. Horizontal solid lines show the 1σ 

uncertainty of retrieved IRIS profiles. 
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Figure 2.11 Same as Figure 2.10 except over the southern Pacific. 
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Over the southern Pacific, the changes of skin temperature retrieved from the 

UCLA PC1 and the IRIS PC1 are similar to each other and a little bit larger than that 

from the CAM PC1. The lower tropospheric temperature changes retrieved from the 

UCLA PC1 are systematically larger than those from the IRIS PC1, although the 

differences are still within 1σ retrieval uncertainty. Retrieved middle stratospheric 

temperature changes from the IRIS PC1 are larger than those from the UCLA PC1 and 

the CAM2 PC1, consistent with the sharper peak of the IRIS PC1 at the CO2 667 cm-1 

band compared to the modeled PC1s. Similar to the case of the northern Pacific, there is a 

significant difference in the retrieved low cloud optical depth between IRIS and two 

models. The retrieved humidity changes from the IRIS PC1 still associate with large 

uncertainty, but one thing to note is the good agreements between the humidity profiles 

retrieved from the CAM and IRIS PC1s.  

Figure 2.12 shows the retrieved upper tropospheric water vapor changes from 

PC1s over two areas. Over the northern Pacific, the retrieved changes between 300mb 

and 100mb from the UCLA PC1 are systematically smaller than those from the IRIS PC1. 

The discrepancies are significant (out of 1σ uncertainty range) at all levels except 265mb 

where the difference between UCLA GCM and IRIS is a little bit smaller than the 

uncertainty. The changes of the upper tropospheric water vapor retrieved from the CAM2 

PC1 over both areas are similar to those from the IRIS PC1. 

The results presented here show that the discernible difference between the 

models and IRIS can be found from the retrieval of the PC1s. Although the two GCMs 

both overestimate the variations in the window region over the northern Pacific, retrieval 

shows that they might have different causes. The overestimation in UCLA GCM is more 
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likely due to the change of near-surface temperature and the overestimation in CAM2 is 

more likely due to the change of the low-cloud optical depth.  
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Figure 2.12 Left panel: the upper tropospheric water vapor mixing ratio 

retrieved from the IRIS PC1 (the line with filled circles), the CAM2 PC1 (the 

line with open diamonds), and the UCLA PC1 (the line with stars) over the 

northern Pacific. Right panel: same as left panel except over the southern 

Pacific. 
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2.5 Conclusion 
 

Here we present a study of the temporal variability of the outgoing thermal IR 

spectra over two tropical ocean regions and two midlatitude ocean regions using IRIS 

data and the simulations from UCLA GCM and NCAR CAM2. Spectral EOF analysis is 

used to characterize the variability seen from the observed spectra and the synthetic 

spectra computed based on the GCM outputs. For the two tropical regions, cloud 

variability is the dominant contributor to the PC1 that accounts for more than 90% of the 

total variance. Compared to IRIS, UCLA GCM (CAM2) substantially underestimates 

(overestimates) the amplitude of the PC1 over the central Pacific and both GCMs 

significantly underestimate the amplitude of PC1 over the western Pacific. Further 

examinations show that the discrepancies between IRIS and the two models are 

insensitive to the parameterization schemes of cloud optical properties and cloud fraction 

used in the two models. The discrepancies over the western (central) Pacific are most 

likely caused by the deficiency in simulating the intraseasonal (seasonal) variation of the 

Walker circulation and the deep convection activities at the western Pacific.   

For the two midlatitude regions, the PC1 is still the dominant contributor to the 

total variance and it captures seasonal variations from both the troposphere and the 

stratosphere. The PC1 over the northern Pacific has a different spectral shape from that 

over the southern Pacific. Compared to the IRIS observations over the northern Pacific, 

both UCLA GCM and CAM2 underestimate the variations at the CO2 667cm-1 band and 

overestimate the variations at the window region. Using a retrieval scheme, we show that 

the discrepancies at the CO2 band are due to a ~7K (4K) underestimation of the middle 

stratospheric temperature change by UCLA GCM (CAM2), and the discrepancies at 
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window regions are mainly due to an overestimation of the change of the skin 

temperature (the low cloud) by UCLA GCM (CAM2). Over the southern Pacific, the 

stratospheric temperature changes shown in the PC1s of two models are still smaller than 

those from IRIS PC1. Due to the difference in simulating the change of low cloud and the 

lower tropospheric temperature, the UCLA PC1 overestimates the variation at the 

window region and the CAM2 PC1 underestimates this variation. 

The study presented here clearly demonstrates that the outgoing infrared spectra 

can be used to see the discrepancies between modeled and observed variability. The 

discrepancies can be understood with the help of various tools: sensitivity study of model 

parameterizations, analysis of model outputs, as well as retrieval. Compared to IRIS, the 

model can significantly overestimate the PC1 in one region but substantially 

underestimate it in another region. PC1s simulated by two models can be similar to each 

other in one region but very different in another region. Even when modeled PC1s are 

similar to each other, their error might be due to different changes in the vertical profiles 

(e.g. the northern Pacific case). All these show the promising potential of the outgoing 

thermal infrared spectra in validating GCMs. 
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2.7 Appendix 

 The retrieval algorithm used in Section 2.4 is described in the following 

paragraphs.  

 The radiative transfer equation can by symbolically written as 

 (X)R R=        (2.4) 

where R is a vector of radiance, each element representing each frequency 

channel v. X is a vector of state variables (temperature, humidity, cloud) at different 

levels. R(X) is the radiative transfer equation. Here, R(X) is always MODTRAN 4.1, the 

same code used to generate synthetic spectra. 

 Linearizing equation (2.4), we have 

 XKR ∆=∆ ,                                                                      (2.5) 

where K=
i

v
x
R

∂
∂   is usually called the Jacobian matrix. ∆R is equivalent to the PC1 

derived in this chapter and ∆X is what we want to obtain. The difficulty of a direct 

inversion of (2.5) to obtain xi lies in the fact that K usually has a very large condition 

number so that the inversion of KTK is ill-posed. In order to achieve a reliable inversion, 

assumptions, statistical information, or both of them have to be used to “regularize” the 

Jacobian matrix, explicitly or implicitly.   

The approach used here to regularize K is similar to a commonly used approach, 

truncated singular value decomposition (SVD) of K [Haskins et al., 1999; Rodgers, 

2000a].  It is based on an observation of the relation between the PC1 derived from the 

radiance space and the principal components of the vertical profiles of the state variables 

[Huang et al., 2002] when only optically thin cloud is present. In detail,  
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(1) The area-averaged temperature profile, water vapor file, and cloud profile1 are 

put together to make a vector of state variables X. 

(2) PCA is applied to an ensemble of vectors of state variables [Xt1, Xt2, …] after 

normalizing them to unitary variance, so-called aggregated PCA [Bretherton, 2003]. 

(3) Take the first n leading principal components (PCs) which can explain the 

bulk of the total variance (at least >90%) and reversely scaled each element in PCs with 

the corresponding normalization factors used in (2) to make each element has same 

physical unit as it has in the original vector X. Denote these scaled principal components 

as pi, where i=1, 2, …, n. Usually 7 or 8 leading PCs are enough to explain the bulk of the 

total variance. 

(4) Evaluate radiance changes with respect to every scaled principal components 

obtained in (3) 

niRii ,...,2,1          ),()( =−+= XpXRdR      (2.6) 

where X is an vector containing ensemble-averaged state variables. Let  

dR = 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

n

1

dR

dR
...         (2.7) 

Matrix dR is usually well-conditioned because the limited number of principal 

components used in step (4). So dRTdR can be directly inverted. Let  

RdRdRdRc TT ∆= −1)(       (2.8) 

 Then the solution would be 

                                                 
1 For the profile of cloud optical depth(τ) , whenever the spatial average is needed, the average is done by 

⎟
⎠
⎞

⎜
⎝
⎛

∑ −−=
=

N

iN 1
)exp(1ln ττ  to take the strong nonlinearity between transmissivity and τ into account.  
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 ∑=∆
=

N

i
iic

1
pX          (2.9) 

The residue is RXXX ∆−−∆+ )]()([ RR  and the error bar associated with the 

IRIS PC1 retrieval is estimated using information theory for the linear inverse problem,  

assuming that all probability distribution functions are Gaussian[Rodgers, 2000b]. The 

instrument noise of IRIS was estimated from Hanel et al. [1972]. Given the complexity 

involved in retrieving ozone profiles, the ozone band is not used in the retrieval.  

 The residual spectra for all the cases retrieved are shown in Figure 2.13. The 

statistics of these retrievals are summarized in Table 2.7. It can be seen that, for all cases, 

the fits are satisfactory.  

 The northern Pacific The southern Pacific 

 CAM2 IRIS UCLA CAM2 IRIS UCLA 

SSE 7.2 14.3 1.4 1.2 6.4 0.8 

SST 814.9 577.4 1366.9 648.1 1158.9 618.2 

R2 0.991 0.975 0.999 0.998 0.994 0.999 

Table 2.7 The goodness-of-fit statistics for each retrieval case. SSE is the Sum of Square 

due to Error, a measurement of total deviation of the fitted spectrum from the real one. 

SST is the total Sum of Square. R2 measures how successful the fit is in explaining the 

variance of the spectrum.  
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Figure 2.13 The PC1s (in thin solid lines) and the residual spectra after retrieval (in thick solid 

lines). Left panels are for the northern Pacific and right panels are for the southern Pacific. The 

upper ones are the CAM2 PC1s and their residuals. The middle ones are the IRIS PC1s and their 

residuals. The bottom ones are the UCLA PC1s and their residuals.  
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Chapter 3: Spatial variability of the outgoing 

thermal IR spectra seen from AIRS data and 

CAM2 simulations 
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3.1 Abstract 

 AIRS (Atmospheric Infrared Sounder) provides measurements of the outgoing 

thermal IR spectra with unprecedented data quality and dense coverage. Here we present 

a survey of the spatial variability in different climate zones seen from AIRS data using 

the spectral EOF analysis. Over the tropical and subtropical oceans, the first principal 

component (PC1) is mostly due to the thermal contrast between surface and optically-

thick cold cloud top. The second principal component (PC2) is mainly due to the spatial 

variation of the lower tropospheric humidity (LTH) and the low clouds. Both the PC1 and 

the PC2 capture the variations in the upper tropospheric water vapor due to the forced 

orthogonality of EOF analysis. The third principal component (PC3) is mainly due to the 

spatial variation of the lower stratospheric temperature. Over the midlatitude oceans, the 

PC1 is still due to the thermal contrast of emission temperature. During wintertime, the 

PC2 is mainly due to the stratospheric temperature variations. In the summer, the PC2 

over the northern-hemisphere midlatitude oceans is mainly due to the variations of the 

LTH and the low clouds; the PC2 over the southern-hemisphere midlatitude oceans is 

mainly due to the stratospheric temperature variations.  

A parallel study using synthetic spectra based on a NCAR CAM2 simulation 

shows that the CAM2 simulation has a fairly good agreement with AIRS at both the 

tropical/subtropical and the midlatitude oceans. The major discrepancies between the 

simulation and AIRS are due to the incorrect locations of ITCZ over the western Pacific 

and the central Pacific, the underrepresented dust aerosol at the Arabian Sea and off the 

Atlantic Coast of North Africa, and the overestimated spatial variations of the lower 

stratospheric temperature over the midlatitude oceans in the CAM2 simulation. 
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3.2 AIRS and data manipulation  

Atmospheric Infrared Sounder (AIRS) is an infrared grating array spectrometer 

aboard AQUA, a sun-synchronous satellite [Aumann et al., 2003]. It acquires 2.9 million 

spectra everyday with 2378 channels across three bands1 (3.74-4.61µm, 6.20-8.22µm, 

8.8-15.4 µm). The resolving power (λ/∆λ) of AIRS is 1200. The instrument field of view 

is 1.1 degree, corresponding to a footprint of 13.5km on the surface. The scan angles vary 

from -49º to 49º. The global data coverage can be obtained in the course of 2 days. The 

in-flight calibrations show that the radiometric accuracy is < 0.3K for a 250K brightness 

temperature target [Pagano et al., 2003], and the spectral accuracy is < 0.01∆v (∆v is the 

full width of half maximum) [Gaiser et al., 2003]. AIRS provides us an unprecedented 

data source of the outgoing thermal IR spectra with excellent calibration and good global 

coverage. 

In this study, we mainly use 16 days of AIRS level-1B calibrated radiance from 

July 01 to July 16, 2003. The data from January 01 to January 16, 2003, will be used to 

illustrate the winter/summer contrast. Sixteen days is an orbital repeat cycle for AIRS so 

that a uniform spatial sampling pattern can be expected within this period. We limit our 

study to the spectra with scan angles (θ) between ±5º (1≤ 1/cosθ ≤ 1.0039) so that all 

spectra can be treated as nadir-view spectra and no geometry correction is necessary. 

Among 2378 AIRS frequency channels, some of them constantly suffer from the 

fluctuation of electronic noise (so-called “popcorn noise”) and some have bad spectral 

response functions. To avoid these channels, only channels recommended by the AIRS 

                                                 
1 AIRS has 17 linear arrays arranged onto 12 modules on the focal plan. For some arrays, the end frequency 
has no overlap with the starting frequency of the next array. As a result, several gaps exist inside each band. 
This fact and the popcorn noise problem make degrading AIRS spectra very challenging. 
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team for level-2 retrieval purpose are used. Furthermore, spectra in 3.74-4.61µm band are 

excluded due to a consideration of signal-to-noise ratio (SNR)1. Besides these, we screen 

data with a fairly strict quality control procedure to exclude any possible bad spectra. It 

turns out that, on the average, only 2.4 out of per thousand spectra have to be thrown out 

after the quality control.  

  We divide the global surface into 3240 grid boxes, each being 4º in latitude and 5 

º in longitude. Inside each grid box, AIRS spectra collected at the ascending nodes and at 

the descending nodes within the 16-day period are equally weighted and averaged to 

obtain a mean spectrum for each grid box. Then we apply the spectral EOF analysis to 

these averaged spectra within a given climate zone to obtain the principal components 

and associated spatial patterns. The climate zones that we study are the tropical and the 

subtropical oceans (32ºS - 32ºN), the northern-hemisphere midlatitude oceans (hereafter, 

NHMO) (32ºN-60ºN) and the southern-hemisphere midlatitude oceans (hereafter, SHMO) 

(60ºS-32ºS).  

 Figure 3.1 shows, after quality control, the number of qualified spectra inside 

each grid box of the tropics and the subtropics from July 1 to July 16, 2003. It can be 

seen that the sampling is fairly uniform for both daytime and nighttime. For daytime and 

nighttime together, the averaged number of spectra in each grid box is 1604 and the 

standard deviation is 37. Several grid boxes in Africa and the southern ocean west of 

Australia have ~250 spectra less than the mean because of the two data outage periods on 

July 9 due to AIRS and MODIS internal calibrations. Several grid boxes in the tropical 

                                                 
1 The SNR at 3.74-4.61µm band is smaller than other bands, mostly due to the small signals in this band. 
Moreover, whether 3.74-4.61µm band is included or not, the results of the spectral EOF analysis at the 
other two bands are almost identical to each other. This is mostly due to the fact that radiances at 3.74-
4.61µm band are smaller than those at the other two bands by one or two orders of magnitude.  
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Pacific also have ~100 spectra less than the mean because, from time to time, very cold 

cloud tops existed in these boxes and AIRS failed in generating correctly calibrated 

radiance for such scenes. If these grid boxes are excluded, the standard deviation is only 

14. The uniform sampling pattern gives us more confidence in analyzing the spatial 

variability from these qualified spectra.  

 

Figure 3.1 Upper panel: number of qualified daytime and nighttime spectra used for averaging in 

each grid box. Lower panel: number of qualified daytime spectra used for averaging.  

 

Figure 3.2 The mean AIRS spectrum over oceans within 32ºS-32ºN from July 1-16, 2003. The 

major absorption features are labeled. 
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3.3 The tropical/subtropical oceans 

3.3.1 Basic results and interpretations 

 The mean spectrum over the tropical and the subtropical oceans from July 1 to 16 

of 2003 is presented in Figure 3.2. Compared to IRIS mean spectra shown in the last 

chapter, the spikes at the band centers of the CO2 667 cm-1 band, the CO2 720 cm-1 band, 

and the CH4 1306 cm-1 band are more prominent due to the much higher spectral 

resolution of AIRS data. 

 Table 3.1 lists the fraction of variance explained by the three leading principal 

components when the spectral EOF analysis is applied to different subsets of AIRS data 

over the tropical/subtropical oceans. It turns out that, as far as the explainable fraction of 

variance is concerned, there is only a slight difference between the results from different 

subsets. The PC1 is absolutely dominant in all cases. For all subsets listed in Table 3.1, 

99.5% of the variance can be explained by the first three PCs.  

 Daytime + Nighttime spectra Daytime spectra only Nighttime spectra 
only 

PC1 97.0% (97.3%) 97.5% (97.5%) 96.8% (96.8%) 
PC2 2.2% (1.8%) 1.8% (1.75%) 2.3% (2.4%) 
PC3 0.5% (0.5%) 0.4% (0.4%) 0.5% (0.4%) 
Table 3.1 The percentage of the variance explained by the leading three PCs for different subsets of AIRS 

tropics/subtropics data. The numbers in parentheses are the results from the spectral EOF analysis to both 

the continental and the maritime data. Other numbers are from the analysis to the maritime data only. 

 The three leading PCs and their spatial maps 1  derived from the 

tropical/subtropical maritime data are presented in Figure 3.3 and Figure 3.4, respectively. 

The PC1 (Figure 3.3a) is flat at the CO2 667cm-1 band, indicating little contribution from 

the middle stratosphere to the PC1. The remaining part of the PC1 resembles the shape of 

the mean spectrum to a large extent. The minima in the PC1 spatial map (the upper panel 
                                                 
1 As mentioned in Chapter 2, all spatial maps are normalized with zero mean and unitary standard deviation. 
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of Figure 3.4) overlap with summer ITCZ (Inter Tropical Convergence Zone). Over the 

Atlantic and the eastern Pacific oceans, ITCZ is usually narrow in latitude and lies just 

north of the equator. Over the Indian and the western Pacific oceans, ITCZ is broad in 

latitude. All these features of summer ITCZ [Waliser and Gautier, 1993] can be 

identified from the PC1 spatial map.  Based on the spectral shape of the PC1 and its 

spatial map, it can be concluded that the PC1 is due to the contrast of emission 

temperatures between the cold cloud top in the presence of optically thick cloud and the 

warm surface where cloud is absent. When cloud is formed due to the deep convection, 

the cloud is so thick that essentially no radiation emitted from surface can penetrate the 

cloud. As a result, only emission from the cloud top or above can be seen from space. 

The PC1 here just sees the temperature difference between cold cloud top and warm 

surface. This interpretation can be confirmed by examining the correlation coefficient 

(rcorr) between the PC1 spatial map and the radiance map of each frequency channel.  For 

some frequency channels in the window region, rcorr can be as high as 0.999. The good 

agreement between the PC1 spatial map and high cloud climatology of July (Figure 3.5a) 

derived from ISCCP D2 data [Rossow and Schiffer, 1999] also supports this 

interpretation. 

 The PC2 shown in Figure 3.3b is more complicated than the PC1. It exhibits 

several spectral features. The CO2 667cm-1 band is not flat, indicating the contributions 

from the stratosphere. The CO2 720cm-1 band peaks downward. The weak water vapor 

absorption lines in the window region peak upward. The center of the Q-branch of CH4 

fundamental band is close to zero. The water vapor v2 band (1595 cm-1) is significantly 

nonzero, indicating the contributions from upper tropospheric water vapor. The 
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correlation coefficient between the PC2 spatial map and the radiance map of any 

frequency channel is within ±0.6. The PC2 spatial map (the middle panel of Figure 3.4) 

has local maxima off the coasts of California, Peru, and Namibia as well as over the 

Canary Islands and the southern ocean west of Australia. These are also regions well 

known for the high occurrence of low clouds, mostly marine stratus [Klein and Hartmann, 

1993]. The PC2 spatial map matches the map of July low cloud climatology (Figure 3.5b) 

from ISCCP D2 data very well except over the Arabian Sea. When marine stratus is 

formed, the entrainment at the cloud top tends to dry the layer just above the cloud top 

[Houze, 1993]. Therefore, the maxima in low cloudiness usually correspond to the 

minima in the relative humidity of the layer above the low clouds. As a result, the minima 

in the map of 850mb relative humidity (Figure 3.5c) derived from NCEP daily reanalysis 

data [Kalnay et al., 1996] consistently correspond to the maxima in the PC2 spatial map 

except over the Arabian Sea. These spatial features suggest that PC2 could be mostly due 

to the low cloud and the lower tropospheric humidity (LTH) variations. The PC2 also 

captures other variations because of the forced orthogonality to PC1. Further 

interpretation about the PC2 will be given in the next subsection.  

 The third principal component, PC3, accounts only for ~0.4% of the total 

variance. But its spectral shape and spatial map are still meaningful. Based on North’s 

criterion [North et al., 1982], sampling uncertainties do not have significant effects on 

PC3. The spectral features at the CO2 667 cm-1 and 720 cm-1 bands and the O3 1042cm-1 

band are significantly nonzero. For the other parts, it is close to zero. These mean that the 

PC3 is mainly due to the temperature variations in the stratosphere and the upper 

troposphere, to which the aforementioned three bands are sensitive. The PC3 spatial map 
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(the lower panel of Figure 3.4) is zonally uniform. The negative (positive) values in the 

PC3 spatial map mean colder (warm) brightness temperature at CO2 667cm-1 band than 

the mean spectrum. This is consistent with the fact that the tropical lower stratosphere is 

colder than the subtropical counterpart. The maximum correlation coefficient between the 

PC3 spatial map and the radiance map of a given AIRS frequency channel is 0.9. The 

corresponding frequency channel is 651.3cm-1, a frequency with the contribution function 

peaking at 117mb, further confirming the lower stratosphere and the upper troposphere as 

the major contributors to the PC3. The map of the NCEP upper tropospheric and lower 

stratospheric temperature averaged over the same period (Figure 3.5d) agrees with the 

PC3 spatial map to a large extent. This also supports the interpretation of the PC3. 

 If the continental data are included in the analysis, the spectral shapes of the PC1 

and the PC2 are basically the same. But the amplitude of the PC1 is larger because of 

high surface temperature over continental deserts that makes the surface/cloud top 

thermal contrast even larger. The slopes at the window regions of the PC2 and the PC3 

are different. The possible causes for this difference in slope are (1) the spectrally 

dependent surface emissivity in the window region can vary significantly for different 

types of land surface [Wilber et al., 1999]; (2) the subtropical continental warm clouds 

usually have smaller effective radii than the subtropical maritime warm clouds due to the 

maritime-continental contrast of the number of CCN (cloud condensation nuclei) [Han et 

al., 1994], and the different cloud effective radii can affect the slope at the window region 

even when the cloud optical depths are the same [King et al., 1992; Prabhakara et al., 

1988]. The spatial maps of the three leading PCs derived from all data over the 

tropics/subtropics are consistent with the maps shown in Figure 3.4. 
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Figure 3.3 (a) The PC1 over the tropical/subtropical oceans between 32ºS and 32ºN 

derived from AIRS spectra collected during July 01-16, 2003. (b) The PC2. (c) The PC3. 
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Figure 3.4 Upper panel: the spatial map of the PC1 shown in Figure 3.3a. Middle panel: 

the spatial map of the PC2 shown in Figure 3.3b. Lower panel: the spatial map of the PC3 

shown in Figure 3.3c. 
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Figure 3.5 (a) The climatological high cloud amount in July from ISCCP D2 dataset. (b) The 
climatological low cloud amount in July from ISCCP D2 dataset. (c) The 850mb relative 

humidity averaged over July 01 - July 16, 2003 from NCEP daily reanalysis product. (d) The 
temperature in the layer of 150mb-70mb averaged over July 01-July 16, 2003, also from NCEP.  

(d) 

(c) 

(b) 

(a) 
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 Examining AIRS data over the tropical and the subtropical oceans from January 

01 to January 16 of 2003 with the spatial-spectral EOF technique yields similar results. 

The PC1 spatial map shows minima overlapped with the wintertime ITCZ, the PC2 

spatial map is consistent with the January low cloud climatology, and the PC3 spatial 

map shows patterns resembling the upper tropospheric and the lower stratospheric 

temperature variations. 

3.3.2 Further interpretation of the PC2 

 The PC2 spatial map shows features consistent with the map of low cloud amount, 

but its spectra shape shows contributions from the stratosphere (the nonzero CO2 667 cm-

1 band) and the upper tropospheric water vapor (the nonzero water vapor 1596 cm-1 band) 

as well. This can be understood in terms of the forced orthogonality between each 

principal component and its predecessors. Figure 3.6 is a schematic plot showing a 

system with several factors contributing to the variability of the system. These factors 

might be neither independent (“orthogonal”) nor totally dependent (“parallel”) on each 

other. For example, at the ascending branches of the Hadley Circulation or the Walker 

Circulation, high cloud would form and upper troposphere humidity (UTH) would be 

enriched due to the convection; at the descending branches, the upper troposphere would 

be dehydrated and a temperature inversion layer would form in the lower troposphere that 

helps the formation of marine stratus [Houze, 1993]. Therefore, the variation in UTH is 

correlated with the changes of both high cloud and low cloud. Meanwhile, if one of these 

factors contributes to the variance much more than any other factors do, the PC1 from the 

EOF analysis would be similar to the imprint of this dominant factor. But the PC1 would 

not be identical to the imprint of this dominant factor because, as long as these factors are 
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not “orthogonal” to each other, the PC1 always tries to capture projections from other 

factors so that it can maximize the explainable fraction of variance. Therefore, the PC1 

would be slightly different from the imprint of the dominant factor. Given the fact that 

the PC2 is forced to be orthogonal to the PC1, these factors would have projections onto 

the PC2 too. The one having the largest projection onto the PC2 (the factor “nearest” to 

the PC2) would be seen from the PC2 spatial map more easily than any other factors. In 

this case, LTH and the low cloud, two factors which are closely related to each other, 

should be the factors “nearest” to the PC2, as sketched in Figure 3.6. Therefore, the PC2 

spatial map has good agreement with the spatial map of LTH and the low cloud. 

Meanwhile, the PC2 also has projections from the upper tropospheric humidity and the 

stratosphere, which are shown in its spectral shape. 
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Figure 3.6 A schematic plot to conceptually demonstrate the results of EOF analysis to a system 

with correlated factors. LCLD refers to the low cloud. LTH and UTH refer to the lower and upper 

tropospheric humidity, respectively. 

To further understand the effect of cloud on the PC2, we carry out two simple 

simulations with NCEP daily reanalysis data from July 01 to July 16, 2003 and ISCCP 

July climatology of cloud distribution and cloud optical depth. The first simulation 

(hereafter, clear-sky case) computes the spectra based on NCEP 16-day average of 

temperature and humidity profiles over each 4º by 5º grid box with no cloud information 

included. The second simulation (hereafter, cloudy case) computes the spectra based on 
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both NCEP data and ISCCP July climatology of cloud amount, cloud height, as well as 

cloud optical depth over each grid box. Both simulations are done using MODTRAN1. 

We apply spectral EOF analysis to these two sets of synthetic spectra in the same way as 

we apply it to AIRS data. For the clear-sky case, the PC1 and the PC2 can explain 88% 

and 10% of the total variance, respectively. This is because the PC1 of the clear-sky case 

is mainly due to the emission surface temperature contrast between different regions and 

this contrast is significantly smaller than the contrast between surface and cold cloud top. 

The PC2 spatial map of the clear-sky case has a correlation coefficient of 0.996 with the 

radiance map at 1244 cm-1, a channel which is sensitive to water vapor and has a 

weighting function peaking at ~550mb. In the thermal IR region, the nadir-view 

weighting function usually has a broad width [Goody and Yung, 1989]. Therefore, this 

good correlation means that the PC2 is essentially due to the variation of the column 

water vapor density. This explanation is supported by examining the PC2 spatial map of 

the clear-sky case shown in Figure 3.7a. The minima in this map correspond to regions 

rich in water vapor: ITCZ and margins of midlatitude cyclone systems where water vapor 

is supplied through the lower-level convergence. The maxima in this map correspond to 

regions poor in water vapor: primarily the descending branches of the Hadley circulation 

in the subtropics where the atmosphere has been dried out. Therefore, the first two PCs 

for the clear-sky case are mainly due to the variation of surface temperature and the 

variation of column water abundance, respectively.  

                                                 
1 The highest spectral resolution (FWHM) that MODTRAN can correctly generate is 2cm-1. For AIRS, its 
resolution varies with frequencies and is about 0.5~1.0cm-1 in the spectral range that we look at. This 
difference in spectral resolution should have little impact on the EOF results. More detailed discussion is 
given in section 3.5.  
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For the cloudy case, the PC2 spatial map is not highly correlated with the radiance 

map of any channel: all correlation coefficients are within ± 0.77, similar to the situation 

of the AIRS PC2. Moreover, the spatial map as shown in Figure 3.7b has a very good 

agreement with the low cloud amount map used in this simulation (Figure 3.5b). 

Therefore, when cloud is included, the variation of cloud top (mostly high cloud top) is 

“aliased” to the PC1 and the variation of low cloud is “aliased” to the PC2.  

Traditionally visible reflectance is used to observe low cloud because of its high 

albedo in the visible range. The relatively small thermal contrast between surface and low 

cloud top makes direct observation of low cloud from IR window channels of 

meteorological satellites difficult. Here we show that, using spatial-spectral EOF as a way 

to decompose thermal IR spectra, the variation of low cloud and associated LTH in the 

tropical and subtropical oceans can be clearly seen in the PC2 and its spatial map.  
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Figure 3.7 (a) The PC2 spatial map of the simulated clear-sky case (b) The PC2 spatial 

map of the simulated cloudy case. Refer to the context for the definitions of the clear-sky 

case and the cloudy case. 

3.4. The midlatitude oceans 

 Table 3.2 summarizes the fraction of variance explained by three leading PCs 

over the northern hemisphere midlatitude oceans (32ºN-60ºN) and the southern 

hemisphere midlatitude oceans (32ºS-60ºS) (for brevity, hereafter NHMO and SHMO, 

respectively). Similar to the case of the tropical/subtropical oceans, the PC1 is absolutely 

dominant here and three leading PCs together can explain more than 99.5% of the 

variance.  

 PC1 PC2 PC3 
32ºN-60ºN 97.7% 1.7% 0.5% 
32ºS-60ºS 97.3% 1.8% 0.6% 

Table 3.2 The percentage of variance explained by three leading PCs over 

NHMO and SHMO. 
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The spectral shapes of the PC1s over the NHMO and the SHMO (shown in Figure 

3.8a and 3.8c) are similar to that of the PC1 over the tropical/subtropical oceans except 

that both midlatitude PC1s capture a small contribution from the stratosphere shown in 

the CO2 667cm-1 band. PC1s here are still mainly due to the contrast of emission 

temperatures, including the poleward variation in surface temperature and the 

temperature contrast between surface and cloud top.  

The PC2 over the NHMO (Figure 3.8b) shows spectral features at the CO2 667cm-

1 band as well as weak water vapor absorption lines at the window regions. Near the 

center of the water vapor 1596cm-1 band, it is fairly flat and close to zero. The spatial 

map of PC2 over the NHMO (Figure 3.9a) has maxima over the North Pacific, the North 

Atlantic and near the west coast of North America, consistent with ISCCP July low cloud 

climatology (Figure 3.9b). The interpretation of this PC2 is similar to the PC2 over the 

tropical/subtropical oceans: it is mainly due to the variation of LTH and low cloud but 

captures the variation from the stratospheric temperature as well due to the forced 

orthogonality by EOF analysis.  

The PC2 over the SHMO (Figure 3.8d) has two sharp spikes at the centers of the 

CO2 667cm-1 and 720cm-1 bands. Besides these two CO2 bands and the O3 band, the PC2 

is rather flat and close to zero. This clearly indicates that the PC2 is due to the 

temperature changes in the stratosphere and the upper troposphere. The spatial map of 

PC2 shown in Figure 3.9c has maxima (corresponding to a cold stratosphere) at the 

margin of the polar vortex and minima (corresponding to a warm stratosphere) over the 

midlatitude southern ocean, consistent with the 100mb temperature map (Figure 3.9d) 

derived from NCEP daily reanalysis product over the same period.  
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Applying spectral EOF analysis to the synthetic spectra over the NHMO and the 

SHMO based on NCEP reanalysis daily product over the same period and ISCCP 

climatology in July (hereafter, NCEP+ISCCP case), we can obtain similar results. Figure 

3.10 shows the PC2s and their spatial maps from such analysis. It can be seen that, for 

both the spectral features and the spatial maps, the PC2s from this NCEP+ISCCP case 

agree with the AIRS PC2s reasonably well except for the CO2 667 cm-1 band of the PC2 

over the NHMO. The spatial map of the PC2 over the NHMO (Figure 3.10c) shows 

maxima at those areas frequently covered by low clouds, consistent with the low cloud 

climatology used in this simulation (Figure 3.9b). The spatial map of the PC2 over the 

SHMO (Figure 3.10d) is consistent with the spatial distribution of NCEP upper 

tropospheric and lower stratospheric temperature variations (Figure 3.9d).  
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Figure 3.8 The PC1s and PC2s over the NHMO and the SHMO. (a) the PC1 over the 

NHMO. (b) the PC2 over the NHMO. (c) Same as (a) except at the SHMO. (d) Same as 

(b) except over the SHMO.  



 91

 

Figure 3.9 (a) The PC2 spatial map over the NHMO. (b) The ISCCP climatological low 

cloud amount of July over the same regions as (a). (c) The PC2 spatial map over SHMO. 

(d) The NCEP 16-day (July 01-16, 2003) average of 100mb temperature over the same 

regions as (c). 
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Figure 3.10 (a) The PC2 over the NHMO derived from the NCEP+ISCCP case. (b) The 

PC2 over the SHMO derived from the NCEP+ISCCP case. (c) The spatial map 

associated with the PC2 in (a). (d) The spatial map associated with the PC2 in (b). 
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From the above paragraph, the PC2 over the SHMO has a different spectral shape 

and a different explanation from that over the NHMO. This is partially due to the 

summer-winter contrast between the NHMO and the SHMO. To further understand these 

differences, it would be instructive to examine the PC2s from January AIRS data. The 

PC2s over the NHMO and the SHMO derived from AIRS data for January 01-16, 2003 

are shown in Figure 3.11. The PC2 over the NHMO in January (Figure 3.11a) resembles 

the PC2 over the SHMO in July, both having two sharp spikes at the centers of two CO2 

bands and relatively flat window region and water vapor band. However, the PC2 over 

the SHMO in January (Figure 3.11b) is not similar to the PC2 over the NHMO in July: it 

mainly shows the stratospheric contributions although it captures the variations in the 

weak water vapor absorption lines in the window region. 

The similarity between the wintertime PC2s over the NHMO and the SHMO is 

due to the strong disturbance of the stratosphere in winter by the vertical propagation of 

the planetary waves originated in the troposphere [Holton, 1983]. As a result, the spatial 

variation of the stratospheric temperature is so large that its contribution to the variance 

of spectra is second only to the emission temperature contrast. In the summertime, the 

stratosphere is relatively undisturbed due to the existence of the critical surface (zero 

zonal wind) in the lower stratosphere [Charney and Drazin, 1961; Holton, 1983]. 

Meanwhile, owing to the more prominent land-sea contrast in the northern hemisphere 

than in the southern hemisphere, the lower tropospheric humidity and the low cloud at the 

summertime NHMO exhibit larger spatial variations than those at the summertime 

SHMO. As a result, the PC2 over the summertime NHMO is “biased” to the variations of 
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the LTH and the low cloud and the PC2 over the summertime SHMO is still mostly due 

to the variation of the stratospheric temperature. 
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Figure 3.11 The PC2s from the spatial-spectral EOF analysis of AIRS data over 

January 01-16, 2003. (a) The PC2 over the NHMO. (b) The PC2 over the SHMO.  

3.5 Results from CAM2 simulation 

 To see how well GCM can simulate these features shown in the spatial-spectral 

EOF analysis presented in the previous two sections, an eight-year CAM2 run with 

realistic SST forcing from 1996 to 2003 is carried out. The twice-per-day output from 

July 01-16 of 2003 is fed into MODTRAN to generate synthetic spectra and these spectra 

are resampled to AIRS spectral sampling points, then spatial-spectral EOF analysis is 

applied to these synthetic spectra. 

 One issue to note is that the spectral resolution of AIRS data is varying with the 

frequency (~ 0.5-1.3 cm-1 for the spectral range of interest) but MODTRAN band model 

generates spectra at a 1cm-1 interval. We conduct a sensitivity study to investigate the 

effect of the different spectral resolution on the spectral EOF analysis results. First, we 

use spectra generated by MODTRAN at a 1cm-1 interval to do the EOF analysis 
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(hereafter, case 1). Second, we degrade the spectra to 2 cm-1
 resolution and apply the 

EOF analysis to these coarse-resolution spectra (hereafter, case 2). There is little 

difference between the EOF results from the two cases. If we degrade the PC1 from the 

case 1 to the same resolution as the spectra used in the case 2 and plot it with the PC1 

from the case 2 (Figure 3.12a), they are not distinguishable. The difference between the 

two PC2s is also tiny (Figure 3.12b). The differences in the spatial maps of the PCs and 

the fractions of variance explained by the PCs between the two cases are also small. 

Therefore, we conclude that the different spectral resolutions between the synthetic 

spectra and the AIRS spectra should have little impact on the EOF analysis results.  
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Figure 3.12 (a) The solid line is the PC1 (degraded to 2cm-1 resolution) from EOF analysis to the 

original MODTRAN spectra, the case 1. The dash line is the PC1 from the EOF analysis to the 

degraded MODTRAN spectra with 2cm-1 resolution, the case 2. The dash-dotted line is the 

difference between theses two PC1s. (b) Same as (a) except for the PC2s. 
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Figure 3.13 (a) The PC1 at the tropical/subtropical oceans based on the CAM2 simulation. (b) 

The PC2. (c) The PC3. (d) The PC1 spatial map. (e) The PC2 spatial map. (f) The PC3 spatial 

map.  

 PC1 PC2 PC3 
Tropical/subtropical oceans 98.9% 0.5% 0.3% 

NHMO 98.4% 1.0% 0.3% 
SHMO 96.1% 3.6% 0.2% 

Table 3.3 The fraction of variance explained by three leading CAM2 PCs over climate zones 

examined.  
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3.5.1 The tropical/subtropical oceans 

The three leading PCs (hereafter, CAM2 PCs) at this climate zone and their 

spatial maps are shown in Figure 3.13. The fraction of variance explained by each PC is 

listed in Table 3.3. The spectral features of these PCs agree well with those of AIRS PCs 

shown in Figure 3.3 except that the spectral features at the O3 band are missing in the 

CAM2 PC3. The spatial maps also agree reasonably well with those derived from AIRS 

spectra (Figure 3.4). The major discrepancies are  

(1) Between 135ºE to 180ºE, the CAM2 PC1 spatial map indicates little high 

cloud cover around the equator and substantial high cloud cover over the northern-

hemisphere subtropics. In the AIRS PC1 spatial map, the situation is just the opposite. 

The OLR and the precipitation from NCEP reanalysis are consistent with the AIRS PC1 

spatial map. 

(2) The CAM2 PC1 spatial map shows a more prominent “double ITCZ” in the 

central Pacific than the AIRS PC1 spatial map. 

(3) In the CAM2 PC2 spatial map, there are local maxima over the Arabian Sea 

and off the Atlantic Coast of the North Africa, comparable to the maxima at other regions 

known for high occurrence of low cloud. In the AIRS PC2 spatial map, there is a local 

minimum over the Arabian Sea and the local maximum off the Atlantic Coast of North 

Africa is much smaller than those maxima at other regions frequently covered by low 

cloud.  

Apparently (1) and (2) show the deficiency of CAM2 in simulating the location of 

ITCZ. The latitudinal preference of ITCZ could be regulated by many physical 

mechanisms. The spatial distributions of SST and low-level convergences are thought to 
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play major roles in regulating the location of ITCZ [Bjerknes et al., 1969; Holton et al., 

1971] and these ideas are supported by many numerical studies [Goswami et al., 1984; 

Manabe et al., 1974; Waliser and Somerville, 1994]. Recently it has been suggested that 

the cross-equatorial pressure gradients [Tomas and Webster, 1997] and radiative-

convective instability [Raymond, 2000] could also strongly affect the location of tropical 

convection. In term of the simulation of ITCZ by GCMs, several studies show the high 

sensitivity of the latitudinal preference of ITCZ to the convection parameterization 

scheme used in GCMs [Chao, 2000; Chao and Chen, 2001; Hess et al., 1993].  

Comparing to the NCEP long-term mean of OLR (precipitation) in July, the OLR 

(precipitation) in July 2003 has negative (positive) anomaly over the tropical Pacific 

between 135ºE-180ºE and positive (negative) anomaly over the northern-hemisphere 

subtropical Pacific between 135ºE-180ºE (Figure 3.14a. and 3.14b). This is consistent 

with the AIRS PC1 spatial map: very cold emission temperature at the tropical Pacific 

between 135ºE-180ºE and warm emission temperature at the northern-hemisphere 

subtropical Pacific between 135ºE-180ºE. If we compare the OLR of July 2003 simulated 

by CAM2 to the long-term mean OLR of July simulated by CAM2 control run, it shows 

slightly positive anomaly at both regions (Figure 3.14c). This suggests that the 

discrepancies (1) and (2) might result from the incorrect simulation of the response of 

convective activities to SST anomaly, consistent with the conclusion in Section 2.3 in the 

previous chapter.   

As for (3), the local maxima over the Arabian Sea and off the Atlantic coast of 

North Africa in the CAM2 PC2 spatial map overlap with the local maxima of ISCCP 

climatological low cloud amount in July at these two areas (Figure 3.5b). In July, dust 
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aerosols are usually heavily loaded in the atmosphere of these two regions with the 

visible optical depth around 0.4-0.8, a phenomenon seen by several satellite instruments 

such as AVHRR [Husar et al., 1997], MODIS [King et al., 2003], and TOMS [Herman et 

al., 1997; Prospero et al., 2002], as well as surface observations [Ackerman and Cox, 

1989; Middleton, 1986]. Dust (both carbonate and mineral) has absorption bands in the 

thermal IR. In CAM2, only a uniform (both space and time) boundary layer aerosol is 

included. Therefore, discrepancy (3) is most likely due to the underrepresented dust 

aerosol in that area. Moreover, when the spectra EOF analysis is applied to AIRS data 

collected during January 01-16, 2003, a period with little dust aerosol over the Arabian 

Sea, the PC2 spatial map shows a local maximum over the Arabian Sea. This is 

consistent with the low cloud climatology in January. This further supports the 

explanation of the discrepancy (3).  

 

Figure 3.14 (a) The NCEP OLR anomaly of July 2003 compared to NCEP 1968-1996 

climatology. (b) The NCEP precipitation rate anomaly of July 2003. (c) The CAM2 OLR 

anomaly of July 2003 compared to the CAM2 climatology derived from a 10-year control run. 

The unit of OLR is W m-2 and the unit of precipitation rate is kg m-2 s-1.  

 

Previous observational study [Ackerman, 1997] shows that, for the thermal IR 

radiances collected in the presence of a dust storm over the Arabian Sea, the brightness 



 100

temperature difference between 8 µm and 11 µm (hereafter, ∆BT8-11) tends to be negative 

because most common elemental components of dust have maximal absorptions around 8 

µm and minimal absorptions around 11 µm. In contrast, existence of low cloud (liquid 

water cloud) tends to make ∆BT8-11 positive because water has a larger absorption 

coefficient at 11 µm than at 8 µm [Ackerman et al., 1990]. In other words, the dust 

aerosol and the low cloud have opposite effects on the slope of the window region. 

Meanwhile, several studies [Li and Ramanathan, 2002; Prospero et al., 2002; Tindale 

and Pease, 1999] suggest that dust is transported in the middle troposphere (above 

700mb) from the Arabian Peninsula to the Arabian Sea. Therefore dust aerosol is most 

likely above the low cloud and can be first seen from a satellite IR sounder. These facts 

physically explain why the heavy load of dust at the Arabian Sea in July can “smear out” 

the imprint of low cloud in the PC2 and even reverse it from a local maximum to a local 

minimum.   

3.5.2 The midlatitude oceans 

The fractions of variances explained by the three leading CAM2 PCs at NHMO 

and SHMO over the period of July 01-16 of 2003 are listed in Table 3.3. The fraction of 

variance explained by the CAM2 PC2 at SHMO is larger than that by the AIRS PC2 at 

same region by a factor of 2, indicating an unrealistic large spatial variation of the 

stratospheric temperature simulated by CAM2 at that region.  

The CAM2 PC1s and their spatial maps over the two regions (which are not 

shown here) have good agreement with the AIRS counterparts. The CAM2 PC2s and 

their spatial maps are shown in Figure 3.15. The spatial maps have very good agreement 

with the AIRS counterparts (Figure 3.9a and Figure 3.9c). To a large extent, the CAM2 
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PC2s also have good agreement with the AIRS PC2s (Figure 3.8b and 3.8d). The major 

discrepancies are (1) over the NHMO, the CAM2 PC2 (Figure 3.15a) shows a larger 

radiance change at the CO2 667 cm-1 band and smaller radiance changes at those weak 

water vapor absorption lines than AIRS PC2 (Figure 3.8b); (2) over the SHMO, the 

CAM2 PC2 (Figure 3.15c) shows a larger radiance change at the CO2 667 cm-1 band 

than the AIRS PC2 (Figure 3.8d) by a factor of ~2. Both discrepancies disclose that the 

model has larger spatial variation of the midlatitude stratospheric temperature in both 

hemispheres than the reality.  

 CAM2, as well as other GCMs, is designed to simulate the general circulation in 

the troposphere. The stratosphere in these GCMs is usually not as well resolved as the 

troposphere. The top boundary of these GCMs is usually around the stratopause (~50km). 

Therefore, it is understandable that the stratosphere is not well simulated in such GCMs. 

But to what extent the unrealistic simulation of the stratosphere can be tolerated is still 

under debate. The stratosphere can affect the troposphere radiatively by changing the 

amount of solar flux that can reach the troposphere and the amount of downwelling 

longwave radiation emitted from the stratosphere [Forster et al., 1997; Hansen et al., 

1997]. It can also affect the troposphere dynamically by downward propagation of zonal-

mean anomalies, so-called “downward control” [Haynes et al., 1991].  Recently 

observational [Ambaum and Hoskins, 2002; Baldwin and Dunkerton, 2001; Baldwin et al., 

2003; Thompson et al., 2002] and modeling studies [Scott and Polvani, 2004; Shindell et 

al., 2001; Taguchi and Yoden, 2002] increasingly demonstrate that the stratosphere is an 

active player in the tropospheric climate and weather.  Given these facts, the deficiency 

of CAM2 in simulating the spatial variations of the stratospheric temperature revealed in 
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the comparison between the CAM2 PC2s and the AIRS PC2s might be worthy of further 

investigation. 

Figure 3.15 (a) The PC2 over the NHMO based on CAM2 simulation during July 01-16, 

2003. (b) The spatial map of the PC2 in (a). (c) Same as (a) except over the SHMO. (d) 

Same as (b) except over the SHMO. 
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3.6 Conclusion and discussion 

In this chapter, we present a survey of the spatial variability seen from AIRS data 

at the tropical/subtropical oceans and the midlatitude oceans and compare the results with 

the counterparts derived from a CAM2 simulation, with a focus on boreal summer. 

Although the forced orthogonality by EOF analysis makes the interpretation of the higher 

order PCs difficult, the three leading PCs over the tropical/subtropical oceans and the two 

leading PCs over the midlatitude oceans still have relatively simple interpretations by 

examining their spectral features and the associated spatial patterns. For all three climate 

zones examined, the PC1 is due to the contrast between surface temperatures and the 

contrast between surface temperatures and cold cloud top temperatures. The PC2s over 

the tropical/subtropical oceans and the summertime NHMO are mainly due to the spatial 

variation of the LTH and the low clouds and capture the variations in the stratosphere and 

the upper troposphere as well. The PC2s over the SHMO (both the wintertime and 

summertime) and the wintertime NHMO and the PC3 over the tropical/subtropical 

oceans are mainly due to the temperature variations in the upper troposphere and the 

lower stratosphere. The north-south contrast shown in the PC2s over the NHMO and the 

SHMO is mainly due to a relatively “quieter” summer troposphere in the southern 

hemisphere midlatitudes than in the northern hemisphere midlatitudes.  

The spectral EOF results based on CAM2 simulation over the same period show 

generally good agreement with AIRS results. The major discrepancies are the position of 

ITCZ over the western Pacific and the central Pacific, the underrepresented dust aerosol 

over the Arabian Sea and off the Atlantic Coast of North Africa, and the overestimated 

spatial variations of the lower stratospheric temperature at midlatitudes. The close 



 104

connection of ITCZ with mesoscale tropical convective activities limits the capability of 

GCMs in realistically simulating the latitudinal preference of ITCZ. The heavy load of 

dust aerosol in certain regions seen from the PC2 demands a more realistic treatment of 

dust aerosol in the GCMs. The consistent overestimation of the stratosphere temperature 

changes at the midlatitudes might also need further investigation given the potential 

influence of the stratosphere on the tropospheric climate and weather.  

 The study presented in this chapter, together with the study in the previous 

chapter, demonstrate that various meaningful results can be obtained by looking at a 

single dataset, the outgoing thermal IR spectra. It is conceivable that, combined with 

other datasets, it would have more potential in climate studies and climate model 

development. This year, CLOUDSAT and AURA will join AQUA (the carrier of AIRS) 

as well as several other satellites to form the gorgeous A-train to observe clouds and 

other atmospheric variables [Stephens et al., 2002]. This new epoch of satellite 

observations will open a new era in climate studies and the validation of climate models. 
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4.1 Abstract 

As a comparative study to the previous two chapters, here we present a study of 

the variability in the Martian outgoing thermal IR spectra using MGS-TES data. The case 

study with TES 20°S -20°N data shows that, for both the spatial-spectral and the 

temporal-spectral EOF analysis, the first principal component (PC1) dominates the total 

variance and is associated with surface or near-surface brightness temperature variations. 

The PC2 of the spatial-spectral EOF analysis is associated with atmospheric variability 

mainly caused by the topography, and a negative correlation between dust and ice 

absorptions can be clearly seen over many regions. The annual cycle is a major 

component of the PC1 temporal patterns. The negative correlation between dust and ice 

absorption can also been seen in the PC2 of the temporal-spectral EOF analysis. The 

fingerprint of the dust storm can be clearly seen in the PC2 temporal patterns in most 

areas except the highlands. 
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4.2 Introduction and data manipulation 

 Unlike the Earth’s atmosphere in which the major gases (N2, O2, Ar) are all lack 

of infrared vibration or rotation spectra, the major gas of the Martian atmosphere, CO2, 

has two fundamental bands and several overtone bands at thermal IR. But on the other 

hand, the Martian atmosphere is more transparent than our atmosphere. Except for 

several CO2 bands, weak water vapor lines, spectral features related to occasional water 

ice clouds and dust storms, the emission from the Martian surface can be observed over 

wide spectral ranges. For our Earth, the surface emission can only be seen in the three 

window regions (~800-1000 cm-1, 1080-1240 cm-1, and 2500-2800 cm-1) because of the 

wide range of water vapor absorption and the absorptions from other greenhouse gases. 

Another important difference is the larger topography contrast on the Mars than the Earth 

which makes the variations of CO2 column abundance from the lowlands to the highland 

not negligible. 

 The Thermal Emission Spectrometer (TES) aboard the Mars Global Surveyor 

(MGS) spacecraft was designed to study the Martian surface and atmosphere using 

thermal infrared emission spectroscopy [Christensen et al., 2001]. It has a Michelson 

interferometer to obtain spectra from 200 to 1650 cm-1 with 5 or 10 cm-1 resolution. For a 

typical spectrum sampled around local 2PM, the signal to noise ratio (SNR) is about 350 

at the mid-point of the spectrum and degrades to less than 100 at the endpoints. The 

interferometer has six detectors arranged in a 3 by 2 array, each with an instantaneous 

field of view (FOV) of 8 mrad, corresponding to 3 km from the 380 km orbit of MGS. 

Two versions of the processed TES data are available online. Version 1 covers March 
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1999 to March 2001 (no data during solar conjunction). Version 2 covers April 2001 to 

January 2002.  

The TES data provide an unprecedented resource for studying the thermal 

emission from Mars [Bandfield et al., 2000; Pearl et al., 2001; Smith et al., 2002; Smith 

et al., 2001]. Sophisticated retrieval algorithms have been developed by the TES team to 

retrieve surface as well as atmospheric properties [Conrath et al., 2000; Smith et al., 

2000a; Smith et al., 2000b]. Meanwhile, factor analysis has also been applied to TES data 

to recover the atmospheric dust and water-ice cloud spectra shapes (Bandfield et al., 

2000b).   

Here, we analyze TES data using the same technique used in the Chapter 2 and 

Chapter 3 to disclose the variability seen from the Martian outgoing thermal IR spectra. 

We will focus on the tropical region (20ºS-20ºN) and the period from solar longitude 

(hereafter, Ls) 104º of the first MGS mapping year to Ls 99º of the second MGS mapping 

year (TES data volume mgst0100 to mgst0214). We use 10 cm-1 data sampled around 

2PM by all 6 detectors with emission angle less than 10°. Since the SNR gradually 

decreases toward both ends of the spectra, we use only the radiances from 265 to 1538 

cm-1 in 117 spectral bins.  This range contains the major Martian emission and absorption 

features. Because of the asynoptic sampling patterns of the sun-synchronous satellite, it is 

more meaningful to apply spectral EOF to the ensemble-averaged spectra over certain 

periods and regions than to apply directly it to all observed spectra. We do the temporal 

average over every 10° solar longitudes beginning at Ls=100° and the spatial average 

over every 10° latitude by 20° longitude box.  As a result, we have averaged spectra over 

72 spatial bins and 36 temporal bins. For a given time interval (a temporal bin over 10° 
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Ls), we can apply spatial-spectral EOF analysis to these spectra averaged over different 

spatial bins. Similarly, for a given area (a spatial bin over 10° latitude by 20° longitude 

box), we can apply temporal-spectral EOF analysis to the 36 spectra, one for each of the 

temporal bins. To ensure the statistical significance of the ensemble average, we discard 

any temporal bins in which the total number of spectra is less than 1000. Thus, for 

example, in all spatial bins, the temporal bin 10°-20°Ls in the second MGS mapping year 

is discarded because of solar conjunction.  

4.3 The spatial-spectral variability seen from TES tropical data 

 We study the spectral EOFs and their associated spatial patterns in three different 

periods: 110-120°Ls, 230-240°Ls and 350-360°Ls of the first MGS mapping year. They 

correspond to northern hemisphere summer, southern hemisphere summer (also a dust 

storm period), and northern hemisphere spring, respectively. The first two principal 

components (hereafter, PC1 and PC2) over each period are presented in Figure 4.1. The 

associated spatial patterns (the normalized ECs) are presented in Figure 4.2. The fractions 

of total variance explained by the PC1s and the PC2s are summarized in Table 4.1. It can 

be seen from Table 4.1 that for all three periods the bulk of the variance (over 90%) is 

explained by PC1. Compared with the mean spectrum, the PC1 over 110-120°Ls (Figure 

4.1a) corresponds to around 6.5K brightness temperature change over all frequencies 

except at the CO2 strong absorption band. The corresponding brightness temperature 

change is very close to zero at the CO2 strong absorption band center (667cm-1) and 

monotonically increases to 6.5K in each wing of this band. Such a spectral shape shows 

that this PC1 is strongly related to surface brightness temperature change. The associated 

spatial pattern (Figure 4.2a) shows higher temperatures in the northern tropics and lower 
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temperatures in the southern tropics. Such a pattern is typical for northern hemisphere 

summer. For 230-240°Ls, the shape of PC1 shows that it is closely related to the surface 

brightness temperature change. The corresponding surface brightness temperature change 

is around 10 K. The associated spatial pattern (Figure 4.2c) also clearly shows the 

temperature contrast between northern and southern tropics. For 350-360°Ls, the 

brightness temperature change corresponding to the PC1 is 4 K over all frequencies 

except the CO2 strong absorption band. Inside the CO2 strong absorption band, the 

corresponding brightness temperature change is zero at the line center, reaches the 

maximum value (6 K) near 610 and 700 cm-1, and then gradually decreases to 4 K in the 

far wing regions. Based on the contribution functions of TES in nadir-view [Conrath et 

al., 2000], the radiances at 610 and 700cm-1 are most sensitive to the temperature changes 

in the planetary boundary layer (PBL) and the lower atmosphere layer just above the PBL. 

Therefore, this PC1 is related more to variations in the PBL and the lower atmosphere 

layer just above the PBL than to the surface temperature changes. Since this period is 

close to the vernal equinox, the temperature contrast between north and south is not 

obvious in the associated spatial patterns. Instead, we see some wave-like pattern (Figure 

4. 2e).  
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Figure 4.1 (a) The PC1 derived from spectra averaged over10° latitude by 20° longitude 
bins during 110-120°Ls of the first MGS mapping year. The spatial coverage is from 
20°S to 20°N. (b) Same as (a) except that it is PC2. (c) Same as (a) except that the period 
is 230-240°Ls of the first MGS mapping year. (d) Same as (c) except that it is. (e) Same 
as (a) except that the period is 350-360°Ls of the first MGS mapping. (f) Same as (e) 
except that it is PC2. 
 

 PC1 PC2 
110-120ºLs 93.3% 3.5% 
230-240ºLs 98.5% 1.2% 
350-360ºLs 91.3% 6.3% 

 

Table 4.1 Summary of the fraction of total variance explained by PC1s and PC2s 

obtained from the spectral EOF analysis over 20ºS-20ºN band for three different periods 

in the first MGS mapping year 
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Figure 4.2 (a) - (f) are the spatial patterns associated with the principal components 

shown in Figure 4.1(a) - (f), respectively. 
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Figure 4.3 Topography of Mars smoothed over 10° latitude by 20° longitude spatial bin 

from 20°S to 20°N. The elevation unit is meters. 
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 The PC2 is flat and close to zero during 110-120°Ls (Figure 4.1b), except in the 

CO2 absorption band. Inside the CO2 band, it has two minima at 625 and 710 cm-1. Based 

on the contribution functions of TES in nadir-view [Conrath et al., 2000], the maxima of 

the contribution functions at these two frequencies occur around 5mb (2km above the 

datum). The spatial pattern of this PC2 (Figure 4.2b) is well correlated with topography 

(see Figure 4.3), negative in the highlands and positive in the lowlands. This can be 

understood in terms of the variation of the CO2 path length due to topography. The total 

path length of CO2 in the lowlands is longer than that in the highlands. This has little 

effect on CO2 band center where the CO2 opacity is already very large. This has also little 

effect outside CO2 band because no CO2 absorption occurs there. In the wing regions of 

the band, this has a big effect because the CO2 opacity there is small and the radiances in 

these regions are sensitive to the path length changes in the lower atmosphere. Therefore, 

we see two minima at 625 and 710 cm-1 and the spatial pattern resembles topography: 

positive values in the lowlands (Figure 4.2b) represent more CO2 absorption than the 

average and negative values in the highlands represent less CO2 absorption than the 

average. For the PC2 during 230-240°Ls (Figure 4.1d), two troughs in the CO2 band are 

still present, while the most striking differences from the previous PC2 are the local 

minimum at the dust absorption band (~1100 cm-1) and local maximum at the ice 

absorption band (~800 cm-1). The spatial pattern of this PC2 is also well correlated with 

topography (Figure 4.3): negative values in the highlands and positive values in the 

lowlands. Given the spectral characteristics of the PC2, the negative values over certain 

spatial bins indicate that there are more ice absorptions and less CO2 and dust absorption 

in these bins than in the average over all areas. The positive values over certain spatial 
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bins mean CO2 and dust absorptions in these bins are stronger than the average over all 

areas and ice absorptions in these bins are weaker than the average over all areas. The 

argument about the variation of the CO2 path length still holds for this PC2 and 

associated spatial pattern. Moreover, the correlation between the spatial pattern of the 

PC2 and Martian topography is also consistent with previous knowledge that tropical 

water-ice clouds are usually observed in the highlands [Zurek et al., 1992] and dust 

opacity is highly correlated with topography (large dust opacity in the lowlands and small 

dust opacity in the highlands). The dust and ice features can still be seen in PC2 over 

350-360°Ls with a smaller amplitude than over 230-240° Ls, because the former is a 

period after a dust storm. The spatial pattern (Figure 4.2f) is well correlated with 

topography as described above.  

4.4 The temporal-spectral variability seen from TES tropical data 

 Next, as we described in the Section 4.1, we choose certain spatial bins and apply 

spectral EOF to time averaged spectra to study the temporal behavior of the outgoing 

spectra. The first spatial bin is from 10°S to 0° S and 100°-120° west. This is a highland 

region (the Tharsis region including the flanks of Arsia Mons and Pavonis Mons) with 

surface elevation varying from 6km to 10km. The results are summarized in Figure 4.4 

and Figure 4.5. The fractions of total variance explained by the two leading principal 

components are summarized in Table 2. The PC1 (Figure 4.4a) is dominant and accounts 

for over 99% of the total variance. The spectral shape of the PC1 shows that it is related 

to surface brightness temperature variations. It corresponds to 12K brightness 

temperature change. The PC1 time series (Figure 4.4b) shows an annual cycle with 

amplitude of 2.5 (corresponding to 30K) with maximum occurring at 305°Ls. These are 
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consistent with the time series of the averaged target temperature shown in Figure 4.4c. 

The target temperature is a quantity provided by the TES team, roughly equivalent to the 

surface temperature in nadir-view mode.  The PC2 (Figure 4.5a) is still related to 

atmospheric temperature and aerosol variations. Again, the ice and dust absorption 

features are negatively correlated. The PC2 time series (Figure 4.5b) shows that the 

largest negative value (corresponding to strong dust absorption) occurs around 235°Ls. 

This is consistent with the knowledge that the two largest dust storms in the first MGS 

mapping year occurred between 225°Ls and 245°Ls [Pearl et al., 2001]. There is another 

trough around 345°Ls, which is consistent with previous observations that a moderate 

regional dust storm near the equator began at 321°Ls and lasted for over a month [Pearl 

et al., 2001].  

The second spatial bin that we choose is 0-10°N and 180-200° west. This is a 

lowland region with surface elevation varying from -3.5km to -2.5km. As in the previous 

case, the PC1 (Figure 4.4d) is dominant. The time series of PC1 (Figure 4.4e) clearly 

contains an annual cycle component. But two local minima can be seen around the dust 

storm peak periods. The time series agrees very well with the time series of the averaged 

target temperature (Figure 4.4f). The PC2 shows negative correlation between ice and 

dust absorptions (Figure 4.5c), and local minima related to dust storms are also clearly 

seen in its time series (Figure 4.5d). For both spatial bins, PC3 (not shown here) accounts 

for no more than 1% of the total variance and still contains dust and ice absorption 

features. Just as in PC2s, the dust and ice absorption features show negative correlation in 

PC3s. 
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Figure 4.4 (a) The PC1 derived from spectra averaged over the area of 10°- 0° S and100-

120° west longitude and 10°Ls bins from 104°Ls of the first MGS mapping year to 99°Ls 

of the second MGS mapping year. (b) The time series associated with the PC1 in (a). (c) 

The time series of the average target-temperature (a quantity provided in TES product) 

over the same area as (a). (d) Same as (a), except that it is over 0-10°N and 180-200° 

west longitude. (e) The time series associated with the PC1 in (d). (f) The time series of 

the average target-temperature over the same area as (d).  

 
 PC1 PC2 

10-0ºS, 100-120ºwest longitude 99.2% 0.4% 
0-10ºN, 180-200ºwest longitude 94.5% 4.2% 

 
Table 4.2 Summary of the fraction of total variance explained by PC1s and PC2s obtained from 

the spectral EOF analysis for two different regions. The temporal coverage is from 104º Ls of the 

first MGS mapping year to 99º Ls of the second MGS mapping year. 
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Figure 4.5 (a) Same as Figure 4.4a except that it is PC2. (b) The time series associated 

with the PC2 in (a). (c) Same as Figure 4.4d except that it is PC2. (d) The time series 

associated with the PC2 in (c). 

 

 For the above spectral EOF analysis, given the dominance of PC1s in explaining 

the total variance, the significance of PC2s may be questioned. But the spectral shapes of 

PC2s show certain realistic physical features. The time series and the spatial patterns of 

PC2s are consistent with our previous knowledge. Moreover, similar spectral shapes for 

PC2 and similar time series are seen in most spatial bins that we have looked at. 

Therefore, we conclude that the temporal and spatial patterns of PC2s are physically 

meaningful. 

4.5 Summary 

In this paper, we try to show the potential of spectral EOF in analyzing data like 

those from TES and comparing them with GCM simulations in the future. Using a case 

study of TES data from 10°S to 10°N for almost one Martian year, we show that the PC1 

is related to the surface or near-surface brightness temperature variations while the PC2 is 

related more to the changes of CO2 and dust opacities, which are correlated with 
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topography. The negative correlations between ice and dust absorption features in PC2s 

seen in EOF studies over many different regions and periods suggest that, to some extent, 

ice and dust are mutually exclusive in the atmosphere. When spectral EOF analysis is 

performed over different regions, the PC1 spatial pattern shows the temperature contrast 

between summer and winter hemispheres while the PC2 spatial pattern is correlated with 

topography. When spectral EOF analysis is performed over different periods, the annual 

cycle is clearly seen in the PC1 time series. The PC2 time series shows its minimum 

around the dust storm peak period. These spectral EOF results can be compared with 

their counterparts from Martian GCM simulations to test the variability of the model. 

Such comparisons would be valuable because the information contained in the spectra 

might help to identify the reason for any discrepancy between observations and modeling.  

 An interesting spectral EOF result is the negative correlation between dust and ice 

absorption. Physically it is possible. For example, when water-ice clouds are present in 

the atmosphere first and dusts appear later, the strong solar absorption effect of dust 

could heat the atmosphere [Gierasch and Goody, 1972; Zurek et al., 1992], leading to the 

sublimation of water ice. When dusts are present in the atmosphere first and water vapor 

in the air reaches the saturation level, heterogeneous nucleation over dust is a more 

efficient way to form water-ice cloud than homogeneous nucleation over ice itself. As a 

result, dust would be coated by ice or scavenged by aggregation and precipitation. A 

recent modeling study by Rodin et al. [Rodin et al., 1999] showed that when the 

interaction between radiation transfer, microphysics of the Martian atmosphere aerosols, 

and eddy transport are included in the model, the feedback due to water ice cloud 

formation may affect the dust and temperature vertical profiles within several days.  How 
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dust and ice may be mutually exclusive in the Martian atmosphere is an interesting 

question and worth further exploration. 
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5.1 Abstract 

 We explore how high spectral resolution measurements could aid the retrieval of 

atmospheric temperature and gas concentration profiles from outgoing IR spectra when 

optically thin cirrus is present. Simulated outgoing spectra, containing cirrus, are fitted 

with spectra not containing cirrus and the residuals are examined. For those lines with 

weighting functions peaking around the same altitude as the thin cirrus, unique features 

are observed in the residuals. These unique features are very sensitive to the resolution of 

the instrumental line shape (ILS). For thin cirrus these residual features are narrow (≤ 0.1 

cm-1) so high spectral resolution is required for unambiguous observation. The 

magnitudes of these unique features are larger than the noise of modern instruments. The 

sensitivities of these features to cloud height and cloud optical depth are also discussed. 

Our sensitivity studies show that when the errors in the estimation of temperature profiles 

are not very large, the dominant contribution to the residuals is the misinterpretation of 

cirrus. An analysis from the point of view of the information content is also presented. 

An understanding of the magnitude of the effect and the dependence on spectral 

resolution as well as spectral region is important for retrieving spacecraft data and 

designing future infrared instruments for weather forecasting and greenhouse gases 

monitoring.  
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5.2 Introduction 

In the last two decades, atmospheric measurements from NOAA polar orbiting 

satellite systems, such as measurements by MSU (the Microwave Sounding Unit) and 

HIRS (the High-resolution Infrared Sounder) on TOVS (the Television and Infrared 

Observation Satellite (TIROS)-N Operational Vertical Sounder) [Smith et al., 1979] have 

been extensively assimilated into operational Numerical Weather Prediction (NWP) 

models. In 1987, after evaluating the impact of the first ten years of such measurements 

on NWP accuracy, the World Meteorological Organization (WMO) concluded that 

significantly improving NWP would require global temperature and moisture soundings 

with radiosonde accuracy [WMO, 1987]. That is equivalent to temperature profiles with 

1K accuracy in 1 km thick layers and humidity profiles with 10% accuracy in the 

troposphere. To achieve these requirements, a high spectral resolution infrared sounder 

with high signal to noise ratio (SNR) is needed. Meanwhile, the precise monitoring of the 

greenhouse gases and their interaction with other gases in the troposphere requires an 

even higher spectral resolution infrared sounder to resolve absorption lines. As a result, in 

this decade, several high spectral resolution infrared sounders will be in operation, such 

as AIRS (the Atmospheric Infrared Sounder) [Aumann and Pagano, 1994], TES (the 

Tropospheric Emission Spectrometer) [Beer et al., 2001] and IASI (the Infrared 

Atmospheric Sounding Interferometer) [Diebel et al., 1997].  

In order to achieve the goals mentioned above, at least two subtasks must be 

successfully performed. The first one is to design and build such high spectral resolution 

infrared sounder with the required SNR and spectral coverage. The second is to develop 

an effective retrieval algorithm to invert the observed spectra. In reality, cloud is one of 
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the most difficult problems standing in the way of the second subtask. The atmosphere 

below an optically thick cloud is invisible to a nadir viewing sounder. Optically thin 

clouds or patchy clouds also interfere with the retrieval effort. Therefore, we must 

identify cloud signatures from spectra and retrieve relevant quantities from cloudy 

spectra. 

One brute force approach to the retrieval of cloudy spectra is to simultaneously 

retrieve temperature and humidity profiles, as well as cloud properties, such as cloud top 

and cloud optical depth using a radiative transfer model including scattering. However, 

this approach would require tremendous computational power because multiple scattering 

has to be taken into account. Moreover, retrieving geophysical parameters even from 

clear-sky spectra is often an ill-posed problem. To include cloud parameters in the 

retrieval list will make the retrieval problem more complicated and, most likely, increase 

the non-linearity of the problem. Therefore, if we could identify cloudy spectra and 

obtain some a priori information about the clouds from the spectra, it would facilitate the 

retrieval effort of cloudy spectra and simplify the computations in those instances when 

scattering is not effectively present.  

A widely used method to detect and retrieve cirrus from infrared spectra is the tri-

spectral technique [Ackerman et al., 1990; Takano et al., 1992]. The basic idea behind 

this technique is that both ice and liquid water absorb strongly in the infrared window 

region (8-12 µm) but they peak at different frequencies. Meanwhile, a weak absorption 

water-vapor band is also presented in the window region. As a result, it is possible to 

discriminate cirrus, liquid water cloud and clear sky by the brightness temperature 

differences (∆BT) between different bands (e.g., ∆BT8µm-11µm versus ∆BT11µm-12µm are 
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widely used) in a scatter-plot. Also, Hutchison et al. [ 1999; 1996; 1995] conducted a 

series of studies to show how to use NOAA’s AVHRR (Advanced Very High Resolution 

Radiometer) and other coincident measurements to detect optically thin cirrus. They used 

the brightness temperature differences between AVHRR channel 3 (3.7 µm) and channel 

5 (12 µm) with information of total integrated water vapor to detect optically thin cirrus 

clouds in nighttime AVHRR measurements [Hutchison et al., 1995]. With the help of 

coincident 1.38µm imagery from AVIRIS (Airborne Visible/Infrared Imaging 

Spectrometer), they demonstrated how to detect thin cirrus from daytime AVHRR image 

over land surfaces [Hutchison and Choe, 1996]. With imagery from the recent launched 

AVHRR/3 and information from HIRS, they also developed an algorithm to detect thin 

cirrus and specific cloud-top phase [Hutchison, 1999]. All above techniques are 

narrowband approaches, where high spectral resolution is not necessary. Moreover, to 

apply these techniques, measurements at certain specified spectral ranges must be taken. 

When the resolution is high enough to resolve the individual absorption lines, the 

information content is much greater than that of narrowband measurements. As a result, it 

might be possible to detect cirrus even when measurements are not taken at above 

specified spectral ranges. Several researchers are exploring how to extract useful 

information about cloud from high spectral resolution measurements. Turner and 

Ackerman [2002] explored the possibility to determine cloud phase by using 

downwelling brightness temperature at 9, 12 and 18 µm measured by ground-based AERI 

(the Atmospheric Emitted Radiance Interferometer). Ackerman et al. [2002] also studied 

cloud retrieval using upwelling radiance observed by HIS (the High-spectral resolution 

Infrared Sounder). Bantges et al. [1999] used statistical approaches to explore the 
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possible best combinations of spectral ranges for the retrieval of cirrus cloud optical 

properties from the next generation spaceborne high-resolution spectrometer such as IASI. 

A statistical approach is also used by Schlussel and Goldberg [2002] to study the retrieval 

of temperature and humidity profiles from future IASI measurements in partly cloudy 

situations. 

 In this paper, we concentrate on optically thin cirrus clouds (optical depth of cloud 

~ 0.1 or even less, hereafter, thin cirrus) clouds. From the retrieval point of view, we 

explore the possibility of using the information in the high-resolution spectra to extract 

some information about cirrus clouds. Cirrus clouds regularly cover about 13% of the 

globe [Rossow and Schiffer, 1999]. Therefore, the probability of obtaining a spectrum 

contaminated by cirrus is not low. Meanwhile, thin cirrus clouds usually affect the 

brightness temperature in the window region only up to several degrees. As a result, 

sometimes the effect of thin cirrus is misinterpreted as the effect of surface emission and 

this misinterpretation further misleads the retrieval process. So it is meaningful to explore 

the issue of thin cirrus.  

In Section 5.3, we use a simplified three-layer model to demonstrate that a cloud 

can have different “spectral signatures” in different absorption lines and elucidate the 

physics of the process. In Section 5.4, by applying a line-by-line radiative transfer model 

with multiple scattering to standard model atmospheric profiles, we show that the 

expected “spectral signatures” for cirrus can also be seen. Sensitivity studies are also 

presented Section 5.4. Additional concerns about the “spectral signatures” for realistic 

retrievals will be discussed in Section 5.5. A summary is given in Section 5.6.  
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Figure 5.1 Schematic of three-layer atmosphere model. The surface temperature is Ts. The 

temperatures of three layers (from top to bottom) are TT, Tm, Ts respectively. The optical depth at 

the interface between top layer and middle layer is τ2. The optical depth at the interface between 

middle layer and bottom layer is τ1. The optical depth at the surface is τ0. 

5.3 A simplified analytic model  

 Here we use a simplified model to show what “spectral signatures” thin cirrus 

would leave in the residual spectra if thin cirrus spectra were misinterpreted as clear-sky 

spectra. 

 Consider a three-layer atmosphere with the planet’s surface and the bottom layer 

at the same temperature Ts; the temperature for the middle layer is Tm and that for the top 

layer is TT. The corresponding blackbody emissions for these three layers are Bs, Bm, and 

BT respectively. We denote the optical depth at the surface by τ0, at the interface between 

bottom and middle layer by τ1 and at the interface between middle and top layer by τ2. 

Figure 5.1 is a schematic plot of this three-layer atmosphere. The radiative transfer 

equation in a plane parallel atmosphere in the absence of scattering is given by 
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where µ=cosθ and θ is the zenith angle, B(v) is the blackbody emission at frequency v. 

Solving (1) with our three-layer atmosphere configuration for the radiance at the top of 

atmosphere at zero zenith angle, we obtain  
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Also assuming that the mixing ratio of the absorbing gas is uniform in all layers and the 

same Lorentz line shape is applied to all layers for analytical simplicity, we have
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where v0  is the frequency at the center of the absorption line, ρ is the density of the 

absorption gas, HT is the vertical thickness of top layer, ST is the line strength for the top 

layer, and αL is the half-width of the Lorentz line shape for the top layer. Define 

Lvvx α/)( 0−=   and rewrite (3) as 
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where the constant C2 =ρHTS(αLπ)-1. If we assume the change of αL from layer to layer is 

negligible, then τ1 can be expressed as  
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where Hm is the thickness of the middle layer and Sm is the line strength for the middle 

layer. Clearly, we always have C1 > C2. Similarly, we have τ0(x)=C0/(x2+1) where C0>C1. 

Now we assume there is a thin cirrus cloud in the middle layer and only cloud 

absorption is considered. For any single absorption line, the cloud optical depth varies 

little from the center of line to the wing of the line. Therefore, we can assume the cloud 

optical depth τc is independent of x. Given that the Planck function also varies very 

slowly from the wing to the center of the line, we can also assume Bs, Bm, BT are not 

dependent on x. The radiance at the top of atmosphere at zero zenith angle is now given 

by 
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Let us designate the regions that are located at the far wings of any absorption 

lines and transparent to the surface emission as “micro window regions”. In these regions, 

when cloud is present, we have scTOA BI )exp( τ−≈ .  

Now let us examine the case of a thin cirrus cloud for which τc<<1 holds. If in the 

retrieval we misinterpret the radiances in micro window regions as if they are measured 

under the clear-sky situation, then we obtain an incorrect surface emission '
sB   

)(- τBB cs
'
s exp=                                (5.7) 

 Substituting (5.7) back into (5.1), we get 
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 So the difference between the “retrieved” radiance (5.8) and the real radiance (5.6) 

is 
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Figure 5.2. Plots of )
1

exp()
1

exp()( 2
1

2
2

+
−−

+
−=

x
C

x
CxL with three different combinations of 

C2 and C1. Here x=0 is the line center; 1=x  corresponds to the half width of the Lorentz line 

shape. The dotted line corresponds to a case of weak absorption. The solid and dash-dotted lines 

correspond to cases of medium and very strong absorptions, respectively.  
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Figure 5.2 shows how the shape of L(x) changes with respect to different 

combinations of C1 and C2. For a case of weak absorption (Figure 5.2 dotted line), L(x) 

has one upward pointing peak centered at the line center. For a case of medium 

absorption (Figure 5.2 solid line), L(x) has two peaks symmetrical to the line center and 

one narrow valley. For a case of very strong absorption (Figure 5.2 dash-dotted line), L(x) 

has a broad valley centered at the line center. These results can be understood in terms of 

the weighting functions [Goody and Yung, 1989]. We know the peak of the weighting 

function for nadir viewing is approximately located at the altitude where τ≈1. So, for the 

weak absorption case, the peak of the weighting functions of the line center is in the 

bottom layer and close to the surface. As a result, when the change of surface temperature 

makes the same contribution to the micro window as the cirrus in the middle layer, the 

contribution of surface temperature change to absorption at line center is larger than the 

contribution of the cirrus in the middle layer. So the difference at the line center is 

positive and the difference decreases from center to wing. For the very strong absorption 

case, the weighting function of the line center peaks somewhere much higher than the 

cirrus and the surface. Therefore, the absorption at the line center is insensitive to both 

cloud in the middle layer and the surface temperature change, so the difference around 

the center is almost zero. For the medium absorption case, the weighting function of the 

line center peaks at the altitude close to the cloud height. Therefore the difference shows 

a “transition” shape from the shape of weak absorption to that of very strong absorption. 

From above discussion, we schematically show that if we misinterpret thin cirrus 

as clear sky, then for different absorption lines the shapes of the residuals are 

significantly different. When the weighting function is peaked at an altitude similar to the 
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cloud height, the residual will show a narrow feature (referred as unique feature in the 

abstract). This leads us to investigate the possibility of using the residual spectra to detect 

and obtain some information about thin cirrus and feed such information back to the 

retrieval process.  

  Although the above schematic model is illustrative of the method, it is too 

simple for realistic retrieval. In next section, we use a much more realistic radiative 

transfer model and temperature/trace gas profiles to study this problem.  

5.4 Line-by-line model and sensitivity studies 

 We use our own Line-By-Line Code for Atmospheric Radiative Transfer with 

Scattering (LBLCARTS) to study the spectral signatures of cirrus clouds in the high-

resolution spectra. It is a line-by-line radiative transfer model coupled with the DISORT 

[Stamnes et al., 1988] code (version 1.3)1 for multiple scattering. 16 streams are used in 

DISORT. A Voigt line profile is used in LBLCARTS and the molecular spectroscopy 

properties are taken from HITRAN 2K [Rothman et al., 1998]. Our LBLCARTS has been 

calibrated against FASCODE 3P [Wang et al., 1996] for the clear-sky calculation. The 

differences between these two models are less than 1%. As for the cloud, we assume the 

modified gamma distribution for the cirrus particle size distribution. Then, based on the 

spectral-dependent reflection index of ice compiled by Warren [1984], we calculate the 

optical properties of cirrus using a Mie scattering code [Hansen and Travis, 1974]. The 

temperature profile used in LBLCARTS is taken from US 1976 standard atmosphere 

                                                 
1 DISORT version 1.3 was released in March 2000 and can be obtained from 
ftp://climate.gsfc.nasa.gov/pub/wiscombe/Multiple_Scatt/ 
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profile up to 60 km [Anderson et al., 1986] in 57 layers. For all the calculations, we 

assume a surface albedo of 0.02 and a constant CO2 mass mixing ratio of 5.0×10-4. 
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Figure 5.3 (a) Simulated outgoing spectrum from 930 to 938 cm-1 based on following 

configuration: temperature profile of US 1976 standard atmosphere, the constant mass mixing 

ratio of CO2 rco2=5.0×10-4; cirrus cloud with optical depth 0.1 topping at 250mb. The spectrum is 

calculated from LBLCARTS. (b) The difference of adjusted-surface-temperature spectrum and 

cirrus spectrum (hereafter, the residual spectrum) shown in (a). Refer to the text for the meaning 

of the adjusted-surface-temperature spectrum. 

 

 Our approach is first to specify a small amount of cirrus cloud at certain levels 

and calculate the spectra at the top of atmosphere with zero zenith angle. Then we adjust 

the surface temperature, keep temperatures at other levels unchanged, and repeat the 

calculation for clear sky. The criterion for adjusting the surface temperature is to let the 

radiances in the micro window around 11µm be the same as those derived from the cirrus 

calculation. Then we take the difference of these two spectra to obtain the residual 

spectra. Figure 5.3a is the spectrum at 930-938 cm-1 when thin cirrus with optical depth 

0.1 is present at 250mb. There are several weak CO2 absorption lines in this region. 

Figure 5.3b is difference between thin cirrus spectrum and clear sky spectrum with 
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adjusted surface temperature (hereafter, the residual spectrum) at 930-938 cm-1. It can be 

seen that after the adjustment the baseline of thin cirrus spectrum and clear-sky spectrum 

are the same and the shape of the residual for weak absorption line is consistent with 

what we obtain in Figure 5.2 (dotted line). The solid line in Figure 5.4b shows the 

residual spectrum at 744-748 cm-1.  There are several CO2 medium absorption lines in 

this region. It can be seen that narrow feature of the residual for medium absorption line 

is also consistent with what we obtain in Figure 5.2 (solid line).  
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Figure 5.4 (a) Same as Figure 3(a) except the region is from 744 to 748 cm-1. For the solid line, 

ice particles are assumed to be spherical and the optical properties are computed using Mie 

scattering theory. For the curve denoted by circles, the ice particles are assumed to be hexagonal 

and optical properties compiled by Baran et al.24 are used. (b) Same as Figure 3(b), except the 

region is from 744 to 748 cm-1. The solid line and the line denoted by circles have same meanings 

as they are in (a). (c) The simulated outgoing spectrum from 1260 to1270 cm-1 based on 

following configuration: temperature profile of US 1976 standard atmosphere, the CH4 profile of 

US 1976 standard atmosphere; cirrus cloud with optical depth 0.1 topping around 250mb. (d) The 

difference of adjusted-surface-temperature spectrum and cirrus spectrum shown in (c).  
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As we demonstrated in Section 5.3, the narrow feature is due to the 

misinterpretation of cirrus and it is associated with gas medium absorption lines. 

Therefore, it can be expected that under the influence of gas medium absorption, the 

specific angular scattering distribution of thin cirrus should have little contribution to the 

narrow feature. To test this idea, we conduct another calculation assuming the shape of 

ice particle is hexagonal instead of spherical. The single-scattering properties of 

hexagonal ice columns compiled by Baran et al. [2002] are used. The results are given by 

the line with circles in Figures 5.4a and 5.4b. It can be seen from the residual spectra in 

Figure 5.4b that the difference between two shape assumptions is significant only for the 

region between the two absorption lines. The reason is that the gas absorption is weak 

there, and the thin cirrus has more contribution to the radiance in this region. But in the 

line-core region, the difference between hexagonal and spherical particles is small and 

the amplitudes of the narrow features are almost same. Given this fact, although realistic 

assumptions about particle shapes should be made in the operational retrieval, for 

simplicity we will still use the spherical particle assumption in our following sensitivity 

study. 

To see how these concepts work for non-uniformly mixed gases, we carry out 

modeling with absorption by methane, which is not uniformly distributed. The results are 

presented in Figures 5.4c and 5.4d. We use the methane profile from US 1976 standard 

atmosphere [Anderson et al., 1986]. Cirrus is still present at 250mb with optical depth 0.1. 

It can be seen that for methane lines whose weighting functions have maximum values 

near the tropopause, similar narrow features can be seen in the residual spectra. We can 

see that, even for the very thin cirrus cloud with an optical depth of 0.1, the amplitudes of 
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the narrow features in the residual spectra (Figures 5.4b and 5.4d) are about 2% of the 

unperturbed radiances (Figure 5.4a and 5.4c). Given the potential SNR of modern high-

resolution infrared sounders, residuals with such amplitudes are expected to be much 

larger than instrument noise. Therefore, this narrow feature in residual spectra can be 

seen at appropriate absorption lines of different trace gases and its amplitude is detectable 

with modern instrument.  

 In real measurements, we can obtain only spectra with limited resolution. It can 

be imagined that when resolution is low enough, the narrow feature in the residual 

spectra will be smoothed out. We investigate this by taking the difference after 

convolving the LBL spectra with different hypothetical ILS’s that have different FWHM 

(full width of half maximum). We use a triangle function as ILS and apply three different 

FWHM, 0.04cm-1, 0.1cm-1, and 0.5cm-1. The results for CO2 lines from742 cm-1 to752 

cm-1 are shown in Figure 5.5. It can be seen that the narrow features in the residual are 

clear for the cases of FWHM = 0.04 cm-1 and FWHM = 0.1 cm-1. As the FWHM 

degrades to 0.5 cm-1, the narrow features are barely identified.  When we convolve 

methane spectra shown in Figure 5.4 with above ILS’s, we obtain a similar conclusion. 

Therefore, the narrow features in the residual are very sensitive to the instrumental 

resolution.  
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Figure 5.5 (a) Same as the solid line in Figure 4(b), except the region is from 742 to 752 cm-1. (b) 

The convolution of spectrum in (a) and a triangular function with full width of half maximum 

FWHM = 0.04 cm-1. (c) Same as (b), except FWHM = 0.1 cm-1. (d) Same as (b), except FWHM = 

0.5 cm-1. 
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Figure 5.6 (a) The solid line is the residual spectrum from 742-745 cm-1 when the top of cirrus is 

at 250mb. The dash line is the residual spectrum from 742-745 cm-1 when the top of cirrus is at 

450mb. For both cases, the cloud optical depth is 0.1. The spectra shown here are convolved with 

a triangular function with FWHM = 0.1 cm-1. (b) The sold line is the residual spectrum from 742-

745 cm-1 with cloud optical depth τcloud= 0.2. The dash line is the residual spectrum from 742-745 

cm-1 with cloud optical depth τcloud= 0.1. For both cases, the cloud top is at 250mb. The spectra 

shown here are convolved with a triangular function with FWHM = 0.1 cm-1. 
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 For the above discussions, the cirrus top is assumed to be at 250mb and the 

optical depth is 0.1. Now we investigate the sensitivity of the residual spectra to the cloud 

top height and the cloud optical depth. First, we change the cloud top height to 450mb, 

keeping the optical depth the same. Second, we double the optical depth but keep the 

cloud top height the same. For both cases, we calculate the residual spectra according to 

the method described above (the spectra are all convolved with a triangle function with 

0.1cm-1 resolution before taking the difference).  As shown in Figure 5.6a, the magnitude 

of the residual is decreased approximately by half when the cloud top height is changed 

from 250mb to 450mb.  The narrow features in the residual spectra still can be seen, but 

these features are wider than their counterparts with cloud top at 250mb. This is 

consistent with the discussion in Section 5.3. As the cloud top is lowered, the features 

would become wider and eventually take the shape of the dash-dotted line in Figure 5.2. 

From Figure 5.6b, when the cloud optical depth is changed from 0.1 to 0.2, the magnitude 

of the residual is approximately doubled. But the features are as wide as the counterparts 

of optical depth 0.1. This is because the cloud top is not changed.  These results show that 

the residual spectra can reveal not only the existence of thin cirrus by their narrow 

features, but also information about cloud top height and optical depth by the magnitude 

of the residual and the shapes of those narrow features. All these sensitivity studies 

assume nadir viewing. If the satellites measure radiance from a nonzero zenith angle, the 

cirrus optical thickness becomes larger because of the slant path. Therefore, as shown in 

the simulation, for the same cirrus, the amplitude of the narrow features in the residuals 

of retrieving non-nadir viewing spectra would be larger than those in the residuals of 

retrieving nadir viewing spectra. 
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       We have shown that, in realistic simulations for an appropriate absorption line with 

weighting function at line center peaked around the tropopause, the narrow feature which 

indicates the presence of thin cirrus in the residual spectra can still be seen. The narrow 

feature is sensitive to the resolution of ILS and its magnitude is higher than noise levels 

of modern high-resolution infrared sounders. The shape and magnitude of the narrow 

feature are related to cloud top height and cloud optical depth.  

5.5 More considerations about realistic retrieval 

5.5.1 Sensitivity studies 

 In Sections 5.3 and 5.4 we assume that, when we misinterpret the thin cirrus case 

as the clear-sky case, it will introduce error only in the estimation of surface temperature. 

In reality when we make such misinterpretation, we will most often introduce errors in 

almost all the retrieved quantities. This makes the retrieval problem much more 

complicated. In this section, we will explore whether we can see the narrow features in 

the residual spectra in the presence of errors in other retrieved quantities. 

 First, we still use our three-layer atmosphere model to explore this problem. But 

this time, we assume the temperature of the bottom layer is Tb and different from the 

surface temperature Ts. The corresponding blackbody emission is Bb. All other 

configurations are same as those in Section 5.3. When the cirrus with optical depth τc is 

present in the middle layer, the radiance at the top of atmosphere with zero zenith angle is  
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Now we assume that in the retrieval, we have misinterpreted the thin cirrus as the clear-

sky. To simplify the problem, we assume the gas concentration is uniform everywhere 

and the error in gas concentration estimation is much smaller than the error in 

temperature estimation, so that we can neglect the former. The retrieved surface emission 

from micro window region is )exp( csB τ− . The retrieved emissions for three layers are 

Bb+∆Bb, Bm+∆Bm and BT+∆BT, respectively. Define the fractional errors: 

TTmmmbbb BB∆B, δB∆B δδ =∆== TB and  , . Then the calculated radiance is 
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Given when τc <<1, )exp( cτ− ≈1-τc. So the residual is approximated by 
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The last term on the right-hand side of (13) is the contribution from the layer above the 

cirrus. The presence of cirrus has more effect on the retrieval of the temperature profile 

below the cirrus than above the cirrus. There is also a shortcut approach known as onion 

peeling [Russell and Drayson, 1972], which can make this term much smaller than the 

other two terms on the right-hand side. For simplicity, we ignore the last term in our 

discussion. Obviously, if |δb| (or |δm|)>>|τc|, the signature of cloud will be smeared out. 

If |δb| (or |δm|) <<|τc|, the signature of cloud will be dominant. Therefore, it is useful for 
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us to estimate the threshold value of the error in temperature estimation leading to |δb| (or 

|δm |)~|τc|. Let us assume the error of retrieved temperature is ∆T, when ∆T<<T, we have 
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So when |δm |~|τc|, we have 

 ))exp(1(
2

kT
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hv
kTT c −−=∆ τ                                                                             (5.16) 

If τc=0.1, for the CO2 lines that we studied in Section 5.4, ν ~750cm-1, T~210-290K, then 

∆T~ 4.3-8.0K. This means that, when we perform the retrieval with misinterpretation of 

thin cirrus, if the error of retrieved temperature profile is smaller than this threshold of ∆T, 

then the “cloud signature” will be the dominant contributor to the residual spectra.  

 To further illustrate this point, we use LBLCARTS to carry out a sensitivity 

analysis. In real satellite remote sensing, the residual is calculated by differencing the 

measured spectrum and the synthetic spectrum based on retrieved quantities. Here, we 

mimic this in the following way. Using the 1976 US standard atmosphere, we divide the 

troposphere into four layers, the first is from 200mb to 350mb, the second from 350mb to 

500mb, the third from 500mb to 750mb and the last from 750mb to surface. We do two 

sensitivity studies. (1) The case of clear sky. We perturb the temperatures at different 

layers in this way: for any two neighboring layers, the magnitude of ∆T is same but the 
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sign of ∆T is opposite. We assume this new temperature profile as our “retrieved” profile. 

We calculate the two spectra based on the original profile and this “retrieved” profile 

respectively. Then we take the difference to obtain the “residual” spectrum. We try two 

different values of ∆T, 1K and 4K. (2) The case of thin cirrus. We change the 

temperatures in the same way as (1). In addition, the “retrieved” profile is assumed to be 

without cirrus and the surface temperature is adjusted according to the description in 

Section 5.4.  Then we can obtain the “residual” spectrum. The results are shown in Figure 

5.7. It can be seen that for ∆T=1K, the residuals due to the errors of temperature 

estimation alone are very small (Figure 5.7a), compared with the error caused by the 

misinterpretation of cirrus cloud as clear sky (Figure 5.7b solid line). For ∆T=4K, the 

contribution of errors in temperature estimation to the residual (Figure 5.7c) is roughly 

half of that due to the misinterpretation of cirrus cloud (Figure 5.7d solid line). For both 

cases, the residual of case (2) is significantly larger than the residual of case (1). 

Therefore, if a relation between the retrieved error in temperature and the magnitude of 

the residual spectrum could be set up, then in a realistic retrieval, it might be possible to 

determine from the residual spectrum whether thin cirrus is present.  
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Figure 5.7 (a) The dash line is the difference of “retrieved” spectrum and original clear-sky 

spectrum. The original clear sky spectrum is calculated based on 1976 US standard atmosphere 

temperature profile and constant CO2 mass mixing ratio of 5.0×10-4. The “retrieved” spectrum is 

obtained by changing the temperatures in four layers (200mb- 350mb, 350mb-500mb, 500mb-

750mb and 750mb-surface) by 1K and -1K alternatively. The dotted line is the difference with the 

“retrieved” spectrum obtained by changing the temperatures in four layers by -1K and 1K 

alternatively. The spectra shown here are convolved with a triangular function with FWHM = 0.1 

cm-1. (b) The solid line is the difference of adjusted-surface-temperature spectrum and cirrus 

spectrum. The dash line is the difference of “retrieved” spectrum and cirrus spectrum. The 

“retrieved” spectrum is obtained by adjusting the surface temperature as well as changing the 

temperatures in four layers by 1K and -1K alternatively. The dotted line is similar to the dash line 

except the “retrieved” spectrum is obtained by changing the temperatures in four layers by -1K 

and 1K alternatively. (c) Same as (a), except that the magnitude of temperature change is 4K. (d) 

Same as (b), except that the magnitude of temperature change is 4K. 
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Recently a sensitivity study has been carried out to assess the impact of thin 

clouds in atmospheric temperature retrievals [Eldering, 2002]. Synthetic spectra are 

created for a series of cloud optical depths using a plane parallel scattering model. Then a 

formal retrieval program with no scattering and an assumption of no cloud is used to 

retrieve atmospheric temperature profiles. When no cloud is present in the synthetic 

spectra, the temperature errors are about 0.5% throughout the atmosphere. When clouds 

are included in the generation of the synthetic spectra but not in the retrieval, temperature 

errors increase to about 2% at the surface level for cloud optical depths up to 0.05. At 

larger cloud optical depths (0.15), errors near 2% are evident at layers between the 

surface and the cloud height [Eldering, 2002]. In a realistic retrieval, if the errors of 

estimated temperature profiles are similar to those in this sensitivity study, then based on 

our simulation shown in this section, the “spectral signature” left by cirrus would still be 

clearly seen in the residual spectra.  

5.5.2 From the point of view of information content 

 To further investigate how instrumental noise and resolution can affect the 

realistic retrieval in the presence of thin cirrus, we carry out the following study. Using 

LBLCARTS, we numerically calculate the weighting function matrix K defined by 

Kij=∂Ii(X)/∂xj where Ii(X) is the radiance at frequency vi and xj is the j-th state variable. 

The state variables are temperatures at 58 levels, concentration of CO2 (for simplicity, 

still assuming uniform distribution for CO2), surface albedo, cloud optical depth and 

cloud height (for the case of clear sky, the last two quantities are not included). The 

frequency coverage is from 720 to 760 cm-1 and 910 to 950 cm-1, one is a strong CO2
 

absorption band and the other is a weak CO2 absorption band. Also, we create an a priori 
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covariance matrix (Sa) in a way similar to that of Rodgers [2000]. We also create an error 

covariance matrix (Sε) assuming that noise equivalent spectral radiance (NESR) is 

constant over the selected frequency range and the noise at other different frequencies is 

independent of each other. Then we calculate the degree of freedom for signal (df) based 

on the formula in Rodger’s book [Rodgers, 2000]: df = Σiλi
2/(1+ λi

2) where λi
 is the 

singular value of the matrix 2121 //~
aKSSK −= ε . Here df describes the number of useful 

independent quantities which can be obtained in the measurements with a given error 

covariance matrix and an a priori covariance matrix. We repeat such calculation several 

times with varying NESR and instrumental resolution for both clear sky (dfsky) and thin 

cirrus (dfcir) cases and look for the differences between clear sky and thin cirrus cases, 

denoted by ∆df = dfcir - dfsky. It can be expected that ∆df would be smaller as the 

instrumental resolution goes coarser, which means that less information about cloud can 

be retrieved. The results are summarized in Table 5.1. With instrumental resolution of 

0.03 cm-1 and NESR smaller than 1 mW m-2 cm sr-1, ∆df is 1.5. This means that for this 

resolution and NESR, the thin cirrus case has 1.5 more degrees of freedom than the clear 

sky case. Given two cases are identical except for the presence of thin cirrus, these 1.5 

degrees of freedom are solely due to thin cirrus. 1.5 degrees of freedom mean that at least 

one and probably two parameters related to thin cirrus can be retrieved. When the 

resolution is 1.0 cm-1, ∆df is no more than 1.1 for the three given NESRs. Therefore, for 

this resolution, we can retrieve at most one quantity (maybe the combination of two 

parameters) about cirrus.  
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FWHM NESR 
(mW m-2 cm 

sr-1 ) 

Degree of freedom 
(thin cirrus) dfcir 

Degree of 
freedom  

(clear sky) dfsky 

∆df=dfcir-dfsky

0.1 20.4 18.9 1.5 
1 14.0 12.5 1.5 

0.03 cm-1 

5 9.8 8.6 1.2 
0.1 16.9 15.4 1.5 
1 11.3 9.9 1.4 

0.1 cm-1 

5 7.6 6.6 1.0 
0.1 9.9 8.8 1.1 
1 5.8 5.0 0.8 

1.0 cm-1 

5 3.1 2.8 0.3 

Table 5.1 The degrees of freedom for signal in the cases of clear sky retrieval and thin cirrus 
retrieval with different instrumental resolution (FWHM) and different NESR. The differences 
between thin cirrus cases and corresponding clear sky cases are presented in the last column. 

 

Table 5.1 also presents the impact of NESR on the ability to detect cirrus. When 

NESR increases from 0.1 to 1mW m-2 cm sr-1, the difference between thin cirrus and 

clear sky cases (∆df) changes little, although the degree of freedom decreases. But when 

NESR is greater than 1 mW m-2 cm sr-1, the difference drops quickly. This can be 

understood in term of the cirrus “spectral signature” discussed in previous section. As 

long as NESR is considerably smaller than the magnitude of cirrus signature, it would not 

smear out the thin cirrus information in spectra. Therefore, although the degree of 

freedom (dfcir and dfsky) decreases as NESR becomes larger, the difference between thin 

cirrus and clear sky cases (∆df) is essentially unchanged. But when NESR is larger than 

the magnitude of cirrus signature, it would smear out the thin cirrus information. As a 

result, the difference (∆df), as well as the degree of freedom (dfcir and dfsky), is decreased 

when NESR increases.  
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The above analysis shows how the degrees of freedom for cirrus are decreased 

when instrumental resolution is degraded.  The degrees of freedom related to thin cirrus 

remain the same as long as NESR is smaller than the magnitude of cirrus “spectral 

signature”. This is consistent with our sensitivity analysis. 

5.6 Summary 

 In this chapter, we explore how to use the information from high spectral 

resolution measurements to help retrieval in the presence of thin cirrus. With the simple 

analytic model and LBLCARTS, we demonstrate that when thin cirrus is misinterpreted 

as surface emission under clear sky situation in the retrieval, the shapes of the residuals 

are different for absorption lines with different absorptivities. Those lines with weighting 

functions peaking around the tropopause show narrow features in the residual spectrum. 

The residual is much higher than the potential instrumental noise levels of modern high 

resolution infrared sounders. This holds for both uniformly distributed gas such as carbon 

dioxide and non-uniformly distributed gas such as methane. These narrow features are 

sensitive to the resolution of the ILS. For thin cirrus with optical depth 0.1, these features 

can be clearly seen with a resolution of the ILS of 0.1 cm-1. When the resolution of the 

ILS is 0.5cm-1, these features cannot be seen at all. These features are also sensitive to 

cloud height and cloud optical depth. In reality, the issue is more complicated because the 

errors of other retrieved quantities also contribute to the residual spectrum. Our 

sensitivity simulations show that when the errors in temperature estimation are not very 

large, the contribution due to the misinterpretation of cirrus is still dominant in the 

residual. The analysis from the information point of view is also consistent with our 

sensitivity analysis. 
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 To retrieve standard geophysical parameters in the presence of thin cirrus is a 

very complicated problem. Here, we look at this problem from the point of view of high 

spectral resolution measurement. We conduct some sensitivity analyses to explore how 

the information of high resolution can provide us additional clues for the retrieval. 

Realistic retrievals would follow this procedure: first apply the clear-sky retrieval routine 

to a spectrum, then evaluate the magnitude and the shape of residual spectrum to decide 

whether thin cirrus is present. If cirrus is present, try to make an estimate of cloud optical 

depth and cloud top height based on the residual, feed these estimates as initial guesses to 

the cirrus retrieval routine to retrieve the spectrum. Our future work will incorporate the 

ideas presented here into an operational retrieval algorithm. 
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6.1 Abstract 

Here we propose a tri-spectral algorithm based on the differences between three 

bands (dust, ice and a weak CO2 absorption band) to distinguish spectra sampled in 

different situations: water ice cloud, dust, and surface anisothermality. We use a line-by-

line radiative transfer model coupled with multiple scattering to investigate the sensitivity 

of this algorithm to dust and ice optical depth as well as surface emissivity. The 

comparisons between results of this algorithm and the TES team’s retrieved dust and ice 

opacity are consistent over all studied periods except during the peak of the dust storm. 

Our algorithm is complementary to the more sophisticated TES retrieval and can be used 

to screen large amounts of data to get an overview.  

 



 

 

164

6.2 Description of tri-spectral algorithm 

The tri-spectral method has been widely used in remote sensing of the terrestrial 

atmosphere to distinguish spectra obtained under different conditions: clear sky, liquid 

water cloud, and cirrus cloud (ice water cloud) [Ackerman et al., 1990; Takano et al., 

1992]. The idea behind this method is that both ice and liquid water absorb strongly in 

the infrared window region (8-12 µm) but their peak absorptions occur at different 

frequencies. Furthermore, a weak water-vapor absorption band is also present in the 

window region. As a result, it is possible to discriminate cirrus, liquid water cloud and 

clear sky by the brightness temperature differences (∆BT) between different bands in a 

scatter-plot. For example, ∆BT8µm-11µm is often plotted against ∆BT11µm-12µm. Similarly, 

we design a tri-spectral scheme for Martian outgoing thermal infrared spectra. A line-by-

line radiative transfer model with multiple scattering is used to study the sensitivity of 

this tri-spectral algorithm in the presence of varying dust and ice optical depths and 

surface emissivity. The tri-spectral algorithm can be used for fast screening of very large 

amounts of data to get first order information. This is complementary to the more 

sophisticated complete retrieval of dust and ice opacities [Smith et al., 2000b].  

Our proposed tri-spectral method is based on the following facts about Martian 

emission spectra [Bandfield et al., 2000; Smith et al., 2000a]:  

(1) The maximum absorption of water-ice is around 800cm-1 (12.5µm);  

(2) The maximum absorption of dust is around 1100cm-1 (9µm);  

(3) There is a weak CO2 absorption band around 1366cm-1 (7.3µm).  

As a result, if the surface is a blackbody, then the brightness temperature 

difference between 12.5 and 9µm is negative for icy spectra and positive for dusty spectra. 



 

 

165

At the same time, the brightness temperature difference between 9 and 7.3µm is negative 

for dusty spectra and positive for icy or clear-sky spectra because of the CO2 weak 

absorption band. Compared with a simple method looking at only the brightness 

temperature difference between ice and dust band, this tri-spectral method uses the 7.3 

µm band and thus effectively reduces the ambiguity between dusty and icy spectra.   

In reality, the Martian surface is not a blackbody, and the surface emissivity must 

be taken into account. So we define the effective brightness temperature 

)),(/)((1 vvvRBBT se ε−= , where R(v) is the measured radiance at frequency v, εs(v) is the 

surface emissivity at frequency v, and B-1(R, v) is the inverse Planck function. If the 

atmosphere is transparent at v, the effective brightness temperature is exactly the same as 

the surface temperature. When the atmosphere is opaque, complicated absorption and 

scattering processes make the effective brightness temperature lower than the surface 

temperature if the atmospheric temperature is lower than surface temperature (e.g., 

daytime and non-polar region) and higher than the surface temperature if the situation is 

the opposite (e.g., nighttime or polar region), and the physical meaning of the effective 

brightness temperature is not very clear. Given these facts, we use the effective 

brightness temperature difference only between the 9 and 7.3 µm bands and limit our 

analysis to 50°N to 50°S daytime spectra only. For 12.4 and 9 µm, we use just the 

difference of brightness temperatures. As for the values of εs(v) , we use 0.94 for 9 µm 

and 1.00 for 7.3 µm. These values are consistent with the emissivity of surface type 1 and 

surface type 2 derived by Bandfield et al. (2000). The global mean emissivity derived 

from one Viking IRTM channel centered at 9 µm with a band width of 1.5 µm 

[Christensen, 1998] is 0.941 with a standard deviation of 0.046, which is similar to the 
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value we choose for 9µm. The values we use here might be unrealistic for the polar 

region, so we limit our study to the region from 50°S to 50°N. Ultimately, if the surface 

emissivity derived from TES can be tabulated as a function of latitude or even longitude, 

then more realistic values of εs(v) can be used. 

 

 

 

 

Table 6.1 Summary of the tri-spectral algorithm to distinguish icy and dusty spectra. 

∆BT12.5-9 refers to the brightness temperature difference between 12.4 µm (12.33-

12.48µm) and 9µm (9.03-9.11µm), ∆BTe9-7.3 refers to the effective brightness 

temperature difference between 9µm (9.03-9.11µm) and 7.3µm (7.28-7.33µm). The 

effective brightness temperature is defined as BTe =B-1(R(v)/εs(v), v) (see text for 

details of this definition). For 9µm, we use εs(v) = 0.94; for 7.3µm, we use εs(v) = 1.0. 

 

Our proposed tri-spectral algorithm for the Martian atmosphere is summarized in 

Table 6.1. As we shall see later, quite a few of the TES1 spectra show negative signs for 

both ∆BTe12.5-9 and ∆BTe9-7.3. There are three possible ways for ∆BT12.5-9 and ∆BTe9-7.3 to 

be both negative (BT12.4<BT9<BT7.3):  

(1) There could be enough dust in the atmosphere to make ∆BTe9-7.3 negative and, 

simultaneously, enough ice to make BT12.5 even smaller than BT9.  

(2) Surface anisothermality: when we observe the superposition of emission from 

two blackbodies with different temperatures, the observed brightness temperature at the 

larger wavenumber is much closer to the higher blackbody temperature than it is at the 

                                                 
1 The instrumental characteristics of TES can be found in the section 4.2 of the Chapter 4. 

 ∆BT12.5-9 ∆BTe9-7.3 
Icy - + 

Dusty + - 
Clear sky + + 

Anisothermality or ice-dust mixture - - 
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smaller wavenumber. Therefore, if there is a horizontal surface temperature gradient, we 

might observe a spectrum with BT12.4<BT9<BT7.3. Surface anisothermality was used 

before to explain the dependence of thermal emission on phase angle observed by Viking 

IRTM (Kieffer et al., 1977). The same thing can happen when part of the field of view 

has a thick dust or ice cloud and the rest does not.  

(3) If the noise equivalent spectral radiance (NESR) is roughly constant over these 

bands, but the signal is decreasing from 12.4µm to 7.3µm because of the characteristics 

of blackbody emission at Martian surface temperature, the SNR would be decreasing too. 

As a result, BT12.4<BT9<BT7.3 might be seen even when the sky is clear and the surface 

and atmosphere properties are horizontally homogenous.  

6.3 Sensitivity studies with a line-by-line radiative transfer model 

 To understand how sensitive this method is to the amount of dust or ice in the 

atmosphere, we conduct a sensitivity analysis using our Line-by-Line Code for 

Atmospheric Radiative Transfer with Scattering (LBLCARTS) (Huang et al., 2003). 

LBLCARTS is a line-by-line radiative transfer model coupled with the DISORT code 

[Stamnes et al., 1988] (version 1.3)1 for multiple scattering. Sixteen streams are used in 

DISORT. A Voigt line profile is used in LBLCARTS and the molecular spectroscopic 

parameters are taken from HITRAN 2K [Rothman et al., 1998].  We use a zonal-

averaged temperature profile taken at the equator for northern hemisphere fall equinox, 

retrieved by the TES team (Smith et al., 2001, plate 6).  A uniform CO2 mass mixing 

ratio of 0.966 is assumed. We adopt the modified gamma distribution for the dust and ice 

size distribution. For dust, the effective radius is 1.6µm and the effective variance is 

                                                 
1 The code was obtained from ftp://climate.gsfc.nasa.gov/pub/wiscombe/Multiple_Scatt/DISORT1.3/ 
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0.6µm. For ice, the effective radius is 2.5µm and the effective variance is 0.5µm.  Then, 

based on the spectral-dependent refraction index of ice [Warren, 1984] and dust [Toon et 

al., 1977], we calculate the optical properties of cirrus using a Mie scattering code 

[Hansen and Travis, 1974]. The vertical profiles of dust and ice are assumed to be 

constant from the surface to 20km, which is same assumption used in the TES team 

retrieval [Pearl et al., 2001]. When the water vapor mass mixing ratio is assumed to be 

1.35×10-4 from the surface to 1mb, it turns out at the three bands considered, the optical 

thicknesses of water vapor are two orders of magnitude smaller than the corresponding 

carbon dioxide optical depths. Therefore, we exclude water vapor in our calculation.  

 We calculate the spectra in these three bands with varying dust and ice optical 

depths (hereafter, τdust refers to dust optical depth at 9µm and τice refers to ice optical 

depth at 12.4µm) as well as 9µm surface emissivity (hereafter, ε9), then degrade the 

spectra to 10 cm-1 resolution and apply our tri-spectral algorithm to characterize them. 

Based on the spectral surface emissivity derived by Bandfield et al. (2000), we assume 

the surface emissivity at 12.4 µm (hereafter ε12.4) is 0.985. We vary τdust and τice from 0.1 

to 0.8, and ε9 from 0.90 to 0.98. The results are summarized in Figure 6.1  
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Figure 6.1 (a) The simulated ∆BT12.4-9 vs. ∆BTe9-7.3for τdust = 0.1 (circle), 0.2 (square), 0.4 

(triangle), 0.8 (diamond). Red, green and blue correspond to ε9=0.9, ε9=0.94 and ε9=0.98 

respectively. For all simulations, ε12.4=0.985. (b) The simulated ∆BT12.4-9 vs. ∆BTe9-7.3 for τice = 

0.1 (circle), 0.2 (square), 0.4 (triangle), 0.8 (diamond). The color coding is same as in (a). (c) The 

simulated ∆BT12.4-9 vs. ∆BTe9-7.3 for different combinations of dust and ice optical depths, 

τdust=0.2 and τice=0.2 (square), τdust=0.4 and τice=0.4 (circle), τdust=0.8 and τice=0.8 (diamond), 

τdust=0.2 and τice=0.4 (triangle), τdust=0.2 and τice=0.8 (plus), τdust=0.4 and τice=0.8 (star). For all 

simulations, ε9=0.94, ε12.4=0.985. 

 

For dust (Figure 6.1a), when ε9 = 0.98, the detectable threshold is τ dust= 0.2. This 

is because we use  ε9 = 0.94 in our algorithm, so the effective brightness temperature at 9 

µm is overestimated. For ε9 = 0.94 and ε9 = 0.90, the detectable threshold is τ = 0.1 or less. 

For ice, it can be seen from Figure 6.1b that when ε9=0.9, spectra with τice up to 0.2 are 

still misclassified. This is because ε12.4 is much higher than ε9. As a result, a large optical 

depth is needed to bring the brightness temperature at 12.4 µm down below the 

brightness temperature at 9 µm. For ε9 = 0.94, ice optical depth larger than 0.1 is 
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detectable by this tri-spectral algorithm. For ε9 = 0.98, optical depth as small as 0.1 is 

detectable because the difference of surface emissivity for the two bands is small.  

We also carry out case studies for the coexistence of dust and ice in the 

atmosphere. We do this study only for ε9=0.94 and vary τdust and τice from 0.2 to 0.8. The 

results are presented in Figure 6.1c. It shows that when τdust is larger than the detectable 

threshold and τice is no more than τdust, the tri-spectral algorithm will classify it as a dusty 

spectrum. When τice is larger than τdust by a factor of 2, the spectrum falls into the third 

quadrant, the heterogeneous quadrant. Therefore, if we use only the tri-spectral algorithm, 

this case would be indistinguishable from the surface anisothermality case. When τice is 

larger than τdust by a factor of 4, the spectrum will be classified as an icy spectrum.  

The sensitivity studies here are admittedly crude given that we use only one 

temperature profile in our sensitivity studies and assume a constant mixing ratio of water-

ice cloud from the surface to 20km. The lower the lapse rate is, the lower the sensitivities 

are. This can be shown in an extreme case where the lapse rate is zero. In this case, the 

atmosphere and the surface have the same temperature. According to Kirchhoff’s Law, 

the outgoing spectrum is the blackbody spectrum if the surface emissivity is unity. Then 

the brightness temperature differences for any two frequencies are zero and nothing can 

be detected. Also, uncertainty exists in the optical properties and size distribution of dust 

and water-ice clouds. However, through these studies we can understand the limitation of 

tri-spectral algorithm and how the surface emissivity could have an effect on its results.  

6.4 Case studies and comparison with TES retrievals 
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Figure 6.2 Squares are ∆BT12.4-9 vs. ∆BTe9-7.3 of 300 TES daytime spectra randomly selected from 

volume mgst1229 over 50°S-50°N. Circles, triangles and pluses are the same as squares except 

that they are from volume mgst1232, 1238 and 1245, respectively.  

To apply our tri-spectral method to the TES data, we select four volumes of TES 

data of the second MGS mapping year: mgst1229 (Solar longitude Ls = 139º to 142º), 

mgst1232 (Ls = 149º to 153º), mgst1238 (Ls = 179º to 183º) and mgst1245 (Ls = 206º to 

210º). Mgst1229 corresponds to an ice-rich period while mgst1245 corresponds to a dust-

rich period. Mgst1232 is a period between the ice-rich and dust-rich period, and 

mgst1238 is the very beginning of the global dust storm. We limit our selection of spectra 

to 50°N-50°S, around 2PM (for the reason stated in Section 6.2), and double scan mode 

(5cm-1 resolution), one detector (detector 3) only to reduce the amount of data to be 

processed.  

First, from each volume, we randomly choose 300 spectra for analysis by the tri-

spectral algorithm. The results are summarized in Figure 6.2. It can be seen that most 
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spectra chosen from mgst1229 fall into the “ice quadrant” and most spectra from 

mgst1238 and mgst1245 fall into the “dust quadrant”. There are quite a few spectra in the 

third quadrant with both ∆BT12.5-9 and ∆BTe9-7.3 being negative. As we discussed in 

Section 6.2, there are three possible explanations. From the sensitivity studies in Section 

6.3, it can be seen that if coexistence of dust and ice makes ∆BT12.5-9 and ∆BTe9-7.3 both 

negative, then the optical depth of ice should be larger than that of dust. From previous 

studies (Smith et al. 2001, plate 1) we can see that except for a few locations and times, 

this is unlikely. Therefore, surface anisothermality might be responsible for most spectra 

falling into the third quadrant. 

To further show the effect of surface anisothermality on the spectrum, we pick a 

sample spectrum from TES data (Figure 6.3a solid line). The corresponding topography 

map is shown in Figure 6.3b. Using our tri-spectral method, it falls into the third quadrant. 

Also, the TES team retrieved dust and ice opacities for this spectrum are both smaller 

than 0.05. If we assume the surface in the field of view is composed of two areas with 

different surface temperature (e.g. shadow area and flat area both inside the field of view), 

we can model the radiance in the transparent region (400-600 cm-1, 1200-1400 cm-1) as  

),()1(),()( 21 TvBTvBvR αα −+=     (4) 

where α is the fraction of area with surface temperature T1. Then we can get the best 

estimates of T1, T2 and α simply by the grid search method. The dashed line presented in 

Figure 6.3a is the result of the grid search method. It is a superposition of two areas with 

about 60K surface brightness temperature difference: one occupies 33% of total area with 

brightness temperature of 257.6 K and the other occupied 67% of total area with 
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brightness temperature of 199.6 K. Our model here is an over-simplified model for 

surface anisothermality. The result is only qualitatively reliable. But it shows that large 

surface anisothermality is needed to interpret this spectrum. Several factors can 

contribute to this surface anisothermality: (1) given that this spectrum was taken during 

Southern winter (Ls=139.2°) at 41°south, if some parts of the footprint are covered by 

patchy surface ice, it would make the temperature over surface ice much lower than that 

over surface directly exposed to sunlight; (2) the emissivity may be different from one 

part to the other part inside the footprint; (3) surface roughness inside the footprint, 

detailed modeling studies (Colwell and Jakosky, 2002) show that surface roughness can 

strongly alter the slope of  an outgoing thermal infrared spectrum. Colwell and Jakosky 

(2002) also show that the larger the solar incidence angle, the stronger is the change of 

slope. This is mainly due to more areas in the shadow at large incident angle. For this 

case, the solar incidence angle is 68.6°. Therefore, surface roughness can also contribute 

to the surface anisothermality.  
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Figure 6.3 (a) The sold line is a TES spectrum collected at 41.12°S, 324.14°W, Ls=139.2°, local 

time=14.685 by detector 3 at spacecraft clock time 670599978. The solar incidence angle is 

68.61° and the phase angle is 68.36°. The dashed line is a fit to radiance in the transparent 

spectral range (400-600 cm-1, 1200-1400cm-1) with the superposition of two areas with different 

surface temperatures (see text). (b) The 20km-by-10km topography map centered at 41.12°S, 

324.14°W. The topography data is from MOLA MEGDR global topographic maps at resolution 

of 128 pixels per degree available from http://wufs.wustl.edu/missions/mgs/mola/megdr.html. 

The TES footprint is about the rectangle in white dashed line. The elevation unit is meters. 

 

To further study the relation between the spectra falling into the third quadrant 

and surface anisothermality, we apply the tri-spectral algorithm to all spectra chosen with 

the criteria stated in the first paragraph of this section. Figure 6.4a and Figure 6.4b are the 

geographic distributions of all spectra with BT12.4<BT9<BT7.3 in volume mgst1229 and 

mgst1232, respectively. It can be seen that, to some extent, geographic distributions of 

these spectra are correlated with surface roughness because surface roughness can 
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produce surface anisothermality at a scale comparable to the footprint of TES. Few such 

spectra come from Utopia planitia, Acadia planitia, Amazonis planitia and Tharsis 

montes, four regions where the surface roughness is low [Aharonson et al., 2001]. 

Moreover, the majority of these spectra come from the part of southern hemisphere where 

the surface roughness is known to be large. For the volumes mgst1238 and mgst1245, 

which are not shown here, we also see few observations of such spectra in the low 

surface roughness regions, but the number of spectra in the high surface roughness 

regions is also small. We speculate that the dust storm makes the atmosphere more 

opaque so that the effect of surface heterogeneity is masked. We conclude that this tri-

spectral algorithm might be useful in detecting the surface anisothermality.  

We can compare our results with results retrieved by the TES team. The TES 

team provides retrieved ice and dust optical depth as well as other retrieved quantities in 

TES data version 2. For this comparison, besides those criteria stated in the first 

paragraph of this section, additional constraints are the brightness temperature over the 

continuum region larger than 220K and retrieved CO2 optical depth in the hot and isotope 

bands between -0.01 and 0.05. These constraints are recommended by the TES team for 

opacity users1. For those qualified spectra we use the tri-spectral algorithm to classify 

them, and then display them in a scatter-plot with respect to the TES team’s retrieved 

dust and water-ice opacities. The results are summarized in Figure 6.5. It clearly shows 

the dominance of icy spectra in the ice-rich period and the dominance of dusty spectra in 

the dust-rich period and the transitions from ice-rich to dust-rich period. When dust and 

                                                 
1 A sample of such document can be found at http://wufs.wustl.edu/geodata/mgs-m-tes-3-tsdr-

v2/mgst_1262/data/mars/atm.fmt 
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ice opacity is small, there is quite a lot of overlap between the scatter-plots of icy spectra 

and dusty spectra. It shows again that the tri-spectral algorithm is not sensitive to small 

opacities. As the dust and ice opacities become larger, the scatter-plots of dusty and icy 

spectra classified by the tri-spectral algorithm are well separated. Moreover, if we draw a 

straight line to separate dusty and icy spectra in our scatter plots, the slope of this line is 

almost same for volumes mgst1229, mgst1232 and mgst1238. The relations between the 

tri-spectral algorithm and TES team retrieved opacities are consistent over these three 

volumes.  
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Figure 6.4 (a) Geographical distribution of all TES daytime spectra in volume mgst1229 over 

50°S-50°N with ∆BT12.4-9 <0 and ∆BTe9-7.3 <0. Each dark point represents one spectrum. (b) Same 

as (a) except the volume is mgst1232. 
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For volume mgst1245, a period around the peak of the global dust storm, the 

scatter plot of dusty and icy spectra (Figure 6.5d) is not similar to the plots of the other 

volumes. As Smith et al. (2001) mentioned, the non-scattering assumptions used in the 

TES team retrieval is only qualitatively useful for the dust storm peak period during 

which the dust optical depth reaches unity or even higher. On the other hand, the number 

of icy spectra classified by the tri-spectral algorithm is only 1.1% of the number of dusty 

spectra. When we map the distribution of these 108 icy spectra in Figure 6.6, we can see 

that they are largely confined to regions that are known to have icy features during this 

period. Many icy spectra come from Hellas planitia and Argyre planitia. Ice clouds could 

be there because of the slope effect due to the deep low terrain. We also see some icy 

spectra in the zonal band 45°S -50°S. Given that mgst1245 is coincident with the period 

of polar cap retreat, these icy spectra might be due to the residue of the polar ice cap. Icy 

spectra in the zonal band 40°N-50°N are caused by water ice clouds in the northern 

subpolar region during northern winter [Zurek et al., 1992].  

In summary, we apply the tri-spectral algorithm to analyze the TES data and show 

that this algorithm can detect surface anisothermality as well as dust and ice in the 

atmosphere. The comparisons with TES retrieved dust and ice opacities show good 

consistency over different periods except during the peak of the global dust storm. The 

geographic distribution of icy spectra during the global dust storm peak period is 

reasonable. This shows the tri-spectral algorithm is at least partially valid during a global 

dust-rich period. 
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Figure 6.5 (a) The scatter-plot of the TES team’s retrieved dust opacity vs. its retrieved ice 

opacity for qualified TES daytime spectra in volume mgst1229 (refer to text for details of the 

qualification). The pluses denote icy spectra classified by the tri-spectral algorithm (offset by 0.1 

in retrieved ice opacity for clarity) and the dots are dusty spectra classified by the tri-spectral 

algorithm. There are 11420 spectra classified by the tri-spectral algorithm as icy spectra and 3112 

spectra as dusty spectra. (b) Same as (a) except that data are from mgst1232. The total numbers of 

icy and dusty spectra are 7099 and 7882, respectively. (c) Same as (a) except that data are from 

mgst1238. The total numbers of icy and dusty spectra are 2676 and 17377, respectively. (d) Same 

as (a) except that data are from mgst1245 and there is no offset for icy spectra classified by the 

tri-spectral algorithm. The total numbers of icy and dusty spectra are 108 and 8753, respectively. 
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Figure 6.6 The white circular dots are the locations of those daytime spectra classified as icy 

spectra in volume mgst1245 (dust-rich period). The background is the Mars topography map. The 

unit for topography is meters. 

6.5 Summary 

Including the CO2 weak absorption band in the tri-spectral algorithm decreases 

the ambiguity between cloud and ice and surface heterogeneity. The tri-spectral algorithm 

is capable of processing a very large amount of data quickly, which makes it 

supplementary to more sophisticated retrieval such as that used by the TES team. The 

sensitivity studies show that the applicability of the tri-spectral algorithm depends on how 

well we know the surface emissivity. With the expected success of mapping by the TES 

team, reliable surface spectral emissivity data will become available. These data, with the 

tri-spectral algorithm, can be useful for analyzing infrared spectral observations of the 

Martian atmosphere. 
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