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“The subtlety of nature is greater many times over than
the subtlety of the senses and understanding; so that all those
specious meditations, speculations, and glosses in which men
indulge are quite from the purpose, only there is no one by to

observe it.”

— Francis Bacon, Novum Organum, 1620

“I swear, by my life and my love of it, that I will never live
for the sake of another man, nor ask another man to live for

mine.”

— Ayn Rand, Atlas Shrugged, 1957

“In theory, theory and practice are the same.

In practice, they’re not.”

— Lawrence Peter Berra



Acknowledgments

The work presented herein would not have been possible without the assistance, known or unknown,
of many persons.

The first few years of this work were conducted at the Jet Propulsion Laboratory and I received
much help, physical and intellectual, from Greg Peters, Nathan Bridges, Jackie Green, and Steve
Fuersteneau during my time at the Extraterrestrial Materials Simulation Laboratory. Much fruitful
collaboration came from the involvement of Barney Farmer, whose visits and conversations were
always welcome. Also well met during that time was Mike Hecht, who has been, and continues to
be, a supporter of my work, a champion of my post-graduate career, a strong source of encouragement
for the completion of this thesis, and a role-model for my future as a scientist.

My advisor, Oded Aharonson, deserves a tremendous amount of credit for this work and for my
professional development. He has frequently acknowledged my skills as an experimentalist and has
helped develop my abilities as a theorist and modeler. I believe that our complimentary strengths
enabled us to produce worthwhile scientific discoveries that would not have been possible individually.
I have appreciated his simultaneously cheerful and serious attitude, and am glad to have developed
a rapport with him that I hope will continue.

My only regret regarding Norbert Schorghofer is that a more involved working relationship with
him did not develop before the end of his tenure as a post-doc at Caltech. Nevertheless, we have
had much fruitful collaboration and, as with Oded, it has proved most educational. I thank him for
his assistance, remote or in person, and am inexpressibly grateful for his helpful responses to my
frequent inquiries. I can only hope I have been able to help him as much as he has helped me.

More than any other professor from whom I have taken classes in my years of education, am I
grateful that I was able to both learn and to teach under the guidance of George Rossman. My
greatest unfulfilled wish for my time at Caltech is that I was not able to collaborate with him more
thoroughly. I hope the future will provide that opportunity. I hope, too, that the friendship which
I feel has developed between us can be maintained and built upon.

I also must thank: Alex Hayes, my office mate, confidant, and gym partner. May our dreams
of bridging the scientist—engineer schism be fulfilled. Matt Siegler, a font of tireless enthusiasm and

assistance. Best of luck with your experimental endeavors in the Ice Lab. Bruce Murray, my first



vi
contact at Caltech. Though without verification of this belief, I feel that his impressions of my
potential were a contributing factor to my acceptance to the GPS graduate program. I hope my
progress, efforts, and future work will please him. And Hermann Engelhardt, a master of all things
ice. I have enjoyed working alongside him in the Ice Lab and am thankful that we were able to
revitalize that facility together.

Technical and scientific support, as well as much friendly advice, has come my way from Mike
Black, Scott Dungan, Ma Chi, and Mike Garcia. A special and heartfelt thank you. Hello! Thank
you. to Chris Baumgartner: a brilliant source of help in all things electrical, and an occasional very
welcome relief from the stress of the day. Thank you, hello! My profound thanks to the fine ladies
who staff the Planetary Science and the GPS Division offices. Irma Black, Nora Oshima, Leticia
Calderon, Sarah DeFusco, Jean Grinols, Marcia Hudson, and the ever-cheerful Tess Puig. Also,
my thanks to and fond memories of Mrs. Donna Sackett. I also wish to thank the individuals of
the various stockrooms about campus, whose advice and assistance in obtaining much-needed and
last-minute items for the laboratory helped prevent frustration and delays.

Beyond the Caltech community, I thank my mother, my father, and my stepfather for everything
they have done to make me the man I am. For instilling and encouraging my love of learning. For
supporting many years of education. For teaching me how to think. And for understanding and
loving me for who I am.

Most important to my personal growth, sanity, and enjoyment of these wonderful years of my
life has been the love, support, and unflagging encouragement of my friends and soul mates in Los
Angeles, throughout the US, and across the world. To list all of you here would take many, many
pages. But if you’ve given me one word of encouragement, one fun evening, one laugh, or one

moment of relief from my own delusions of adequacy, you are on that list. Thank you.



vii

Abstract

Innovative experiments and models are used to explore the behavior of subsurface ice on Mars.
Through communication with the atmosphere, the porous regolith of Mars hosts significant quantities
of ice which grow, evolve, and are lost in response to climate changes. As a controlling property
of rate of ice response to a changing equilibrium state, the diffusive properties of several regolith
simulants are measured in Mars-like environments. Ice loss through a variety of particle sizes,
particle size distributions, packing densities, and salt contents are examined and reveal that many
unconsolidated media exhibit diffusion coefficients in the range of 2-6 cm? s~!, indicating a response
time on the order of several thousand years for ice within the upper meter of the regolith. Only high
salt contents or mechanically packed micron-sized dust are observed to exhibit substantially lower
coeflicients, suggesting that strong diffusive barriers may not form as readily as previously invoked.

The growth of ice directly from vapor under diffusive control is reproduced for Mars-like envi-
ronmental conditions in the absence of the liquid phase. As predicted, ice deposits preferentially
at grain contact points and the ice table interface is sharp and strongly controlled by near-surface
temperature perturbations. The quantity of ice deposited as a function of depth and time accords
well with new numerical models of vapor diffusion and ice deposition, though constriction of the
pore space reduces the diffusion coefficient faster than originally expected.

A numerical model incorporating a fast solution to subsurface ice growth predicts near-surface
ice contents for the last 300,000 years of Mars’ history at high latitude locations, including specifi-
cally the Phoenix landing site. Several parameterizations of constriction developed from laboratory
observations of ice growth are employed and compared. The thickness of the ice-free layer above the
ice table has the strongest effect on the quantity of ice accumulated, though subsurface massive ice
sheets and ice-free porosities also affect the ice profile. If predicted ice loss events have emptied the
upper 0.5-1.0 m of regolith prior to 300,000 years ago, pore ice formed through diffusive processes
will have been unable to fill the most rapidly accumulating depths with ice in this time unless ice-
saturated regolith exists within ~0.5 m of the surface. Predictions of these experiments and models

will be tested by the imminent arrival of the Phoenix Mars Lander and future Mars missions.
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