Growth, Diffusion, and Loss of Subsurface Ice on Mars: Experiments and Models

Thesis by
Troy Lee Hudson

In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

California Institute of Technology
Pasadena, California

2008
(Defended April 29, 2008)
For Thomas.

I love you, Boo.
“The subtlety of nature is greater many times over than the subtlety of the senses and understanding; so that all those specious meditations, speculations, and glosses in which men indulge are quite from the purpose, only there is no one by to observe it.”

– Francis Bacon, *Novum Organum*, 1620

“I swear, by my life and my love of it, that I will never live for the sake of another man, nor ask another man to live for mine.”

“In theory, theory and practice are the same.

In practice, they’re not.”

– Lawrence Peter Berra
Acknowledgments

The work presented herein would not have been possible without the assistance, known or unknown, of many persons.

The first few years of this work were conducted at the Jet Propulsion Laboratory and I received much help, physical and intellectual, from Greg Peters, Nathan Bridges, Jackie Green, and Steve Fuesteneau during my time at the Extraterrestrial Materials Simulation Laboratory. Much fruitful collaboration came from the involvement of Barney Farmer, whose visits and conversations were always welcome. Also well met during that time was Mike Hecht, who has been, and continues to be, a supporter of my work, a champion of my post-graduate career, a strong source of encouragement for the completion of this thesis, and a role-model for my future as a scientist.

My advisor, Oded Aharonson, deserves a tremendous amount of credit for this work and for my professional development. He has frequently acknowledged my skills as an experimentalist and has helped develop my abilities as a theorist and modeler. I believe that our complimentary strengths enabled us to produce worthwhile scientific discoveries that would not have been possible individually. I have appreciated his simultaneously cheerful and serious attitude, and am glad to have developed a rapport with him that I hope will continue.

My only regret regarding Norbert Schorghofer is that a more involved working relationship with him did not develop before the end of his tenure as a post-doc at Caltech. Nevertheless, we have had much fruitful collaboration and, as with Oded, it has proved most educational. I thank him for his assistance, remote or in person, and am inexpressibly grateful for his helpful responses to my frequent inquiries. I can only hope I have been able to help him as much as he has helped me.

More than any other professor from whom I have taken classes in my years of education, am I grateful that I was able to both learn and to teach under the guidance of George Rossman. My greatest unfulfilled wish for my time at Caltech is that I was not able to collaborate with him more thoroughly. I hope the future will provide that opportunity. I hope, too, that the friendship which I feel has developed between us can be maintained and built upon.

I also must thank: Alex Hayes, my office mate, confidant, and gym partner. May our dreams of bridging the scientist–engineer schism be fulfilled. Matt Siegler, a font of tireless enthusiasm and assistance. Best of luck with your experimental endeavors in the Ice Lab. Bruce Murray, my first
contact at Caltech. Though without verification of this belief, I feel that his impressions of my potential were a contributing factor to my acceptance to the GPS graduate program. I hope my progress, efforts, and future work will please him. And Hermann Engelhardt, a master of all things ice. I have enjoyed working alongside him in the Ice Lab and am thankful that we were able to revitalize that facility together.

Technical and scientific support, as well as much friendly advice, has come my way from Mike Black, Scott Dungan, Ma Chi, and Mike Garcia. A special and heartfelt thank you. Hello! Thank you. to Chris Baumgartner: a brilliant source of help in all things electrical, and an occasional very welcome relief from the stress of the day. Thank you, hello! My profound thanks to the fine ladies who staff the Planetary Science and the GPS Division offices. Irma Black, Nora Oshima, Leticia Calderon, Sarah DeFusco, Jean Grinols, Marcia Hudson, and the ever-cheerful Tess Puig. Also, my thanks to and fond memories of Mrs. Donna Sackett. I also wish to thank the individuals of the various stockrooms about campus, whose advice and assistance in obtaining much-needed and last-minute items for the laboratory helped prevent frustration and delays.

Beyond the Caltech community, I thank my mother, my father, and my stepfather for everything they have done to make me the man I am. For instilling and encouraging my love of learning. For supporting many years of education. For teaching me how to think. And for understanding and loving me for who I am.

Most important to my personal growth, sanity, and enjoyment of these wonderful years of my life has been the love, support, and unflagging encouragement of my friends and soul mates in Los Angeles, throughout the US, and across the world. To list all of you here would take many, many pages. But if you’ve given me one word of encouragement, one fun evening, one laugh, or one moment of relief from my own delusions of adequacy, you are on that list. Thank you.
Abstract

Innovative experiments and models are used to explore the behavior of subsurface ice on Mars. Through communication with the atmosphere, the porous regolith of Mars hosts significant quantities of ice which grow, evolve, and are lost in response to climate changes. As a controlling property of rate of ice response to a changing equilibrium state, the diffusive properties of several regolith simulants are measured in Mars-like environments. Ice loss through a variety of particle sizes, particle size distributions, packing densities, and salt contents are examined and reveal that many unconsolidated media exhibit diffusion coefficients in the range of $2-6 \text{ cm}^2 \text{s}^{-1}$, indicating a response time on the order of several thousand years for ice within the upper meter of the regolith. Only high salt contents or mechanically packed micron-sized dust are observed to exhibit substantially lower coefficients, suggesting that strong diffusive barriers may not form as readily as previously invoked.

The growth of ice directly from vapor under diffusive control is reproduced for Mars-like environmental conditions in the absence of the liquid phase. As predicted, ice deposits preferentially at grain contact points and the ice table interface is sharp and strongly controlled by near-surface temperature perturbations. The quantity of ice deposited as a function of depth and time accords well with new numerical models of vapor diffusion and ice deposition, though constriction of the pore space reduces the diffusion coefficient faster than originally expected.

A numerical model incorporating a fast solution to subsurface ice growth predicts near-surface ice contents for the last 300,000 years of Mars’ history at high latitude locations, including specifically the Phoenix landing site. Several parameterizations of constriction developed from laboratory observations of ice growth are employed and compared. The thickness of the ice-free layer above the ice table has the strongest effect on the quantity of ice accumulated, though subsurface massive ice sheets and ice-free porosities also affect the ice profile. If predicted ice loss events have emptied the upper 0.5–1.0 m of regolith prior to 300,000 years ago, pore ice formed through diffusive processes will have been unable to fill the most rapidly accumulating depths with ice in this time unless ice-saturated regolith exists within ~0.5 m of the surface. Predictions of these experiments and models will be tested by the imminent arrival of the Phoenix Mars Lander and future Mars missions.
3 Ice Loss Experiments

3.1 Chapter Summary ... 29
3.2 Experimental .. 29
 3.2.1 Chamber setup ... 30
 3.2.2 Experimental method 32
 3.2.3 Measured quantities 33
3.3 Materials ... 35
 3.3.1 Glass beads .. 37
 3.3.2 Crushed JSC Mars-1 dust 38
 3.3.3 1–3 micron dust ... 38
3.4 Analysis .. 39
 3.4.1 Determining the diffusion coefficient 39
 3.4.2 Correcting the diffusion coefficient 40
 3.4.3 Diffusion regime .. 41
3.5 Results .. 41
 3.5.1 50–80 µm glass beads at 260 K 41
 3.5.1.1 Errors and scatter 42
 3.5.1.2 Variable pressure experiments 44
 3.5.1.3 Porosity and tortuosity 44
 3.5.1.4 Water contents ... 47
 3.5.1.5 Other effects .. 47
 3.5.2 50–80 µm glass beads at 253 K 48
 3.5.3 Glass frits .. 48
 3.5.4 JSC Mars-1 .. 49
 3.5.5 1–3 micron dust ... 50
 3.5.6 Summary .. 51
3.6 Discussion ... 54
 3.6.1 Adsorption .. 55
 3.6.2 Temperature oscillations 56
 3.6.3 Ice table evolution ... 57
 3.6.4 Diffusion in Mars surface processes 61
 3.6.5 Mars regolith properties 62
 3.6.6 Obtaining low diffusivity on Mars 63
 3.6.7 Conclusions .. 65
Diffusion Barriers

4.1 Chapter Summary ... 68
4.2 Materials ... 69
 4.2.1 Mixtures .. 69
 4.2.2 Salt crusts ... 70
4.3 Analysis ... 73
 4.3.1 Corrected diffusion coefficients 73
 4.3.2 Pore structure ... 74
4.4 Results ... 76
 4.4.1 50–80 µm glass beads at 250 K 76
 4.4.2 Epsomite salt crusts .. 77
 4.4.3 Mixtures .. 78
 4.4.4 Dusts ... 80
 4.4.5 Sample tortuosity ... 81
 4.4.6 Summary .. 83
4.5 Discussion .. 84
 4.5.1 Experimental errors .. 84
 4.5.2 Advection .. 85
 4.5.3 Salts and salt crusts on Mars 85
 4.5.4 Diffusion in Mars dusts .. 88
 4.5.5 Sand and dust mixtures 89
 4.5.6 Implications .. 91

Ice Filling Experiments

5.1 Chapter Summary ... 94
5.2 Parameter Choices ... 94
5.3 Experimental .. 96
 5.3.1 Environmental control 96
 5.3.2 Sensors ... 98
 5.3.3 Sample preparation and method 99
 5.3.4 Data analysis .. 100
5.4 Results ... 101
 5.4.1 Diffusive ice morphology 101
 5.4.2 Ice table morphology ... 102
 5.4.3 Ice table depth .. 106
 5.4.4 Ice profile ... 106
5.4.5 Constriction ... 107
5.5 Numerical Model and Experiments 110
 5.5.1 Description of ice-filling model 110
 5.5.2 Comparison to models and uncertainties 110
 5.5.3 Time-varying diffusion coefficients 114
 5.5.4 Long-duration behavior 116
5.6 Discussion .. 116
 5.6.1 Theoretical uncertainties in vapor transport 116
 5.6.2 Constriction physics .. 118
 5.6.3 Initial ice deposition 120
 5.6.4 Ice growth physics and phenomenology 120
 5.6.5 Voluminous pore ice on Mars 122
 5.6.6 Phoenix Mars lander .. 123
5.7 Summary .. 124

6 Modeling of Subsurface Ice Growth 126
 6.1 Chapter Summary .. 126
6.2 Influences on Cryosphere Ice Evolution 127
 6.2.1 Atmospheric independence 127
 6.2.2 Icy soil thermal conductivity 127
 6.2.3 Evolving pore geometries 129
 6.2.3.1 Constriction .. 129
 6.2.3.2 Choking .. 130
 6.2.4 Combined effects .. 131
6.3 Numerical Model .. 132
 6.3.1 Model assumptions .. 135
 6.3.2 Model parameters: Phoenix landing site 136
6.4 Results .. 138
 6.4.1 Constriction effect on ice growth 139
 6.4.2 Porosity ... 142
 6.4.3 Ice-free layer ... 143
 6.4.4 Deep ice .. 143
6.5 Discussion .. 146

Notation ... 153
A Diffusion Experiment Data 156

50–80 μm Glass Beads @ 260 K 157
50–80 μm Glass Beads @ 250 K 160
Epsomite Salt Crusts @ 250 K 161
Mixtures of Glass Beads with JSC Mars-1 @ 250 K 162
Mixtures of Glass Beads and 1–3 μm dust @ 250 K 163
Pure Dusts: JSC Mars-1 and 1–3 μm Dust @ 250 K 164

Bibliography 165