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Chapter 2

Diffusion Theory

2.1 Chapter Summary

The evolution of ice in diffusive contact with a planet’s atmosphere through a barrier of porous

material is affected by the thermal and geometric properties of the regolith. The former controls

the propagation of diurnal, annual, and long-term thermal waves into the subsurface and thereby

modulates the temperatures experienced at depth. The latter set of properties, including porosity,

pore size and shape, and tortuosity, influence the rate at which gas molecules migrate in response

to chemical potential gradients. Temperature, through its effect on the saturation vapor density of

air and the vapor pressure of ice, determines the concentration of water molecules in the subsurface.

Changing temperatures may create a positive, negative, or identically zero concentration gradient

with respect to the vapor density in the atmosphere. If a gradient of concentration exists, there

will be a net flux of water molecules down the gradient, resulting in a net growth or depletion of

the subsurface ice with time, even under isobaric conditions. The magnitude of this flux depends

both on the magnitude of the concentration gradient and on the diffusive properties of the soil, as

represented by the diffusion coefficient, D.

Here expressions are developed for vapor transport in a sublimation environment where temper-

ature and pressure can change with time and space. Gas-kinetic models for determining diffusion co-

efficients are presented, as well as some summarized empirical observations. The distinction between

two primary types of diffusion, Fickian and Knudsen, are described, as are methods for handling

the transition between the two regimes. Tortuosity is discussed and several methods for extracting

this dimensionless geometric property of a porous medium are presented. Effects other than con-

centration diffusion that may operate in experimental apparatus as well as in natural environments

are examined. Finally, the governing equation for ice deposition via diffusion is given.

Throughout this work, subscript 1 refers to H2O and subscript 2 to the carrier gas, usually CO2.

For example, p1 is the partial pressure of H2O and ρ1 the density of water vapor. The total pressure

is denoted by p0 = p1 + p2 and the total mass density by ρ0 = ρ1 + ρ2. A script D refers to free-gas
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diffusion coefficients while roman italic D refers to diffusion in a porous medium.

2.2 Vapor Transport

Diffusion of mass is due to differences in concentration, temperature, and pressure (Reid et al., 1987).

The general expression for diffusive flux of one dilute gas (species 1) in another (species 2) at low

velocities is (Landau and Lifshitz , 1987, §57, §58)

JDiff = −ρ0

[
D12

∂

∂z

ρ1

ρ0
+
DT
T

∂T

∂z
+
Dp
p0

∂p0

∂z

]
, (2.1)

where JDiff is the diffusive mass flux of gas 1, D12 the mutual diffusion coefficient, DT the coefficient

for “thermodiffusion”, T the temperature, and Dp the coefficient of “barodiffusion”. Thermodiffusion

and barodiffusion are usually small compared with concentration diffusion (see sections 2.6.2 and

2.6.3).

Equation (2.1) holds in a reference frame where the center of mass velocity of the gas mixture

is zero. In an environment where temperature and total pressure change little, and the vapor

concentration is low, the concentration diffusion JDiff would be simply described by

JDiff = −D12
∂ρ1

∂z
. (2.2)

For a detailed discussion of reference frames and non-isothermal diffusion laws, see Cunningham and

Williams (1980).

The porosity, φ, of a porous medium restricts the cross-sectional area available for transport. A

second factor called tortuosity, τ , accounts for the increase in path length which the molecules must

follow. The diffusion coefficient in a porous medium in the Fickian diffusion regime, DF, can be

written as (Mason and Malinauskas, 1983)

DF =
φ

τ
D12. (2.3)

The ratio φ/τ is also called the “obstruction factor”. In principle, this reduction in diffusivity can be

obtained theoretically from the void space geometry. In practice, the void space geometry is seldom

known, even for soils in a laboratory environment.

In a porous medium, equation (2.2) is replaced by

JDiff = −D∂ρ1

∂z
, (2.4)

where JDiff is the flux due to concentration diffusion. The effective diffusion coefficient, D, subsumes

all effects of gas molecule collisions with pore walls and other gas molecules, and the geometry of
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the pore spaces through which gas travels.

2.3 Diffusion Coefficient

The coefficient of diffusion is the product of mean velocity and mean free path, with a prefactor

that can be temperature dependent. The mean velocity depends only on temperature; the mean

free path is inversely proportional to the density of the gas. Thus, a thinner atmosphere has a

higher diffusivity. The diffusivity of an unconfined gas at rest, in which molecules diffuse through

an interstitial gas, forms the basis for understanding the diffusivity of a porous regolith.

Theoretical expressions can be obtained for the diffusion coefficient, D12, in a dilute gas at rest

consisting of vapor species 1 and 2. The coefficient of self-diffusion, D11, is not measured in these

experiments.

The coefficient of diffusion in a binary mixture of rigid elastic spherical molecules is, to first order

in the density of the diffusing species, (Chapman and Cowling , 1970)

D12 =
3

8n0σ2
12

√
kBT

2π

(
1
m1

+
1
m2

)
. (2.5)

The number density n0 is obtained from the ideal gas law, n0 = p0/kBT , πσ2
12 is the scattering cross

section, kB is the Boltzmann constant, and m1 and m2 are the molecular masses.

The parameter σ12 is computed by averaging the molecular radii of each species, σ12 = (σ1 +

σ2)/2. The cross section for individual molecules can be determined from viscosity measurements

of pure gases. Chapman and Cowling (1970) report molecular radii for CO2 and N2. Schwertz and

Brow (1951) calculate a molecular radius for H2O from the molecular volume of the liquid. The

values are listed in Table 2.1.

For intermolecular forces other than a model of rigid elastic spheres, a temperature-dependent

prefactor is introduced via the collision integral Ω12(T ) (Mason and Malinauskas, 1983; Reid et al.,

Parameter Value Reference
σhes (CO2, N2) 4.63, 3.76 Å Chapman and Cowling (1970)
σhes (H2O) 2.7 Å Schwertz and Brow (1951)
σLJ (H2O, CO2, N2) 2.641, 3.941, 3.798 Å Reid et al. (1987)
ε/k (H2O, CO2, N2) 809.1, 195.2, 71.4 K Reid et al. (1987)

Table 2.1: Model parameters for the mutual diffusion coefficient. σhes = molecular radius of hard
elastic spheres, σLJ and ε/k are parameters of the Lennard-Jones potential. The collision integral for
the Lennard-Jones potential can be expressed as Ω12 = A(T ∗)−B + Ce−DT

∗
+ Ee−FT

∗
+Ge−HT

∗
.

Values for the constants A,B,C,D,E, F,G,H are given in Neufeld et al. (1972) and Reid et al.
(1987). The dimensionless temperature T ∗ is given by T ∗ = kBT/ε12 and the molecule specific
parameter ε is computed for a gas pair by ε12 =

√
ε1ε2.
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1987),

D12 =
3

8n0σ2
12

√
kBT

2π

(
1
m1

+
1
m2

)
1

Ω12(T )
. (2.6)

The length parameter σ12 now depends on the intermolecular force law and its value is not the same

as for the rigid elastic spherical molecules. For a Lennard-Jones potential, the function Ω12(T ) and

parameters for H2O, CO2, and N2 are given in Table 2.1.

For an ideal gas of hard elastic spheres, the diffusion coefficient depends on temperature as T 3/2,

as can be seen from equation (2.5). For other intermolecular potentials, the temperature dependence

is described by equation (2.6), and can be shown to have an exponent between 0 and 2. The free-gas

diffusion coefficient is inversely proportional to pressure for any intermolecular potential.

Equation (2.6) is a first-order expansion derived from Chapman-Enskog theory. To lowest order,

the diffusion coefficient does not depend on the relative concentration of the two gases, n1/n2, but

only on the total number density, n0 = n1 + n2, and on the temperature. Hence the diffusion

coefficient is symmetric, D12 = D21.

The second-order approximation of the diffusion coefficient introduces a dependence on n1/n2

(Chapman and Cowling , 1970). For a hard sphere model and low concentrations of species 1 (n1 �
n2), the diffusion coefficient is increased by a factor of

1
1−m2

1/(13m2
1 + 30m2

2 + 16m1m2)
.

For low H2O concentration in a CO2 or N2 atmosphere, this correction is <1%. The maximum

correction for any mixing ratio for H2O–CO2 is 4%, and for H2O–N2 it is 2%, both occurring as

n2 → 0. Hence the dependence of the diffusion coefficient on the proportions of the mixture can be

neglected in comparison to other uncertainties.

Holman (1997) gives a semiempirical equation by Gilliland et al. (1974)

D12 = 435.7cm2s−1 T 3/2

p0(V 1/3
1 + V

1/3
2 )2

√
1
M1

+
1
M2

,

where T is in Kelvin, p is in pascals, V1 and V2 are molecular volumes of gases 1 and 2, and M1 and

M2 are their molar weights. Holman cautions that this expression is useful for various mixtures, but

should not be used in place of experimental values of D12 when available.

The coefficient of mutual diffusion D12 has been directly measured from evaporation rates of wa-

ter into pure gases. Measurements for H2O–CO2 are reported or compiled by Guglielmo (1882),

Winkelmann (1884a,b, 1889), Trautz and Müller (1935a,b), Schwertz and Brow (1951), Rossie

(1953), and Crider (1956) in the temperature range 291–373 K at atmospheric pressure. Na-

gata and Hasegawa (1970) use gas chromatography to determine the diffusivity at 394 K and

higher temperatures. The International Critical Tables (Washburn et al., 2003) list DH2O·CO2 =



20

(0.1387 cm2s−1)(T/T0)2(pref/p), citing experiments by Guglielmo and Winkelmann. A comprehen-

sive review of gaseous diffusion coefficients by Marrero and Mason (1972) recommends DH2O·CO2 =

(9.24×10−5 cm2s−1)T 3/2 exp(−307.9/T )(pref/p) for T in the range 296–1640 K. A diffusivity scaling

often cited in the context of Mars studies is from Wallace and Sagan (1979), who use a prefactor

determined from Schwertz and Brow (1951) to write DH2O·CO2 = (0.1654cm2s−1)(T/T0)3/2(pref/p0).

In all cases, pref = 1013 mbar and T0 = 273.15 K.

Measurements for H2O–N2 are available from Hippenmeyer (1949), Schwertz and Brow (1951),

Bose and Chakraborty (1955–56), Crider (1956), Nelson (1956), and O’Connell et al. (1969) in

the range 273–373 K. Marrero and Mason (1972) recommend DH2O·N2 = (1.87 × 10−6 cm2s−1) ×
T 2.072(pref/p0) in the temperature range 282–373 K.

Figure 2.1 shows theoretical and experimental values of the mutual diffusion coefficient as a

function of temperature. The empirical fits from Marrero and Mason (1972) and the International

Critical Tables are based on measurements at high temperature and may not provide accurate

results when extrapolated below 273 K. The empirical fits, the theoretical formula for a Lennard-

Jones potential, and the theoretical formula for hard elastic spherical molecules predict slightly

different temperature dependences. Measurement errors and uncertainties in cross sections introduce

additional deviations that limit the accuracy to which diffusion coefficients can be computed for a

free gas.

The Martian atmosphere consists of 95% CO2, the next most abundant gases being nitrogen

and argon. The fraction of gases other than CO2 is small enough to be ignored and we consider

a pure CO2 atmosphere. According to the elastic hard sphere model, equation (2.5), the diffusion

coefficient in CO2 is smaller than in N2 at the same pressure and temperature by a factor of

DH2O·CO2

DH2O·N2

=
σ2

H2O·N2

σ2
H2O·CO2

√
1/18 + 1/44√
1/18 + 1/28

≈ 0.72. (2.7)

Assuming a Lennard-Jones potential, this ratio would be 0.68–0.69 in the temperature range 150–

293 K.

2.4 Mean Free Path and Knudsen Diffusion

The mean free path for species 1, diffusing in a gas composed of species 1 and 2, is (Chapman and

Cowling , 1970)

λ1 =
1

n1πσ2
11

√
2 + n2πσ2

12

√
1 +m1/m2

. (2.8)

When only one gas is present, the familiar formula λ1 = 1/(
√

2nπσ2) is recovered. When n1 � n2,

the first term in the denominator, resulting from like-molecule collisions, is negligible. With this

expression, the mean free path of H2O in a dry CO2 atmosphere at 600 Pa and 200 K is λ1 ≈ 9 µm.
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Figure 2.1: Theoretical and measured diffusion coefficients for H2O in a) CO2 and b) N2 as a function
of temperature at 1013 mbar. Grey lines are theoretical formulae with model parameters, black lines
indicate fits to measured values, and individual markers indicate specific measured values.

The mean free path of H2O in a dry N2 atmosphere is longer than in a dry CO2 atmosphere at the

same pressure and temperature by a factor of 1.2.

In a porous solid with interconnected pathways, a gas molecule may collide with another molecule

or with the pore walls. When the gas pressure is high, molecule-molecule collisions dominate and

the system is said to be in the normal or Fickian regime.

At low pressure, collisions are dominantly between molecules and the walls, and the free path is

restricted by the geometry of the void space. In this regime, termed Knudsen diffusion, the presence

of other gases no longer affects the transport, and the flux depends only on the density gradient of

the species of interest (water in this study) and can be written as (Mason and Malinauskas, 1983)

J1 = −DK
∂ρ1

∂z
. (2.9)

As for Fickian diffusion, the Knudsen diffusion coefficient DK is proportional to the mean velocity.

For example, in a long, straight, circular capillary of radius r � λ1, the diffusion coefficient at low
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pressure is

DK = (2/3)ν̄1r, (2.10)

where the mean velocity is ν̄1 =
√

8kBT/πm1 (Mason and Malinauskas, 1983; Clifford and Hillel ,

1986).

Evans et al. (1961) give an expression for DK in materials with interconnected, convoluted pore

spaces

DK =
4
3
ν̄1K0, (2.11)

where K0 is a structural parameter (with dimensions of length) accounting for both pore geometry

and the scattering of the diffusing molecules off the pore walls. They give an expression for K0

1
K0

=
128
9
nd
τ

φ
r2

(
1 +

1
8
πa1

)
, (2.12)

where nd is the number density of “dust” particles (meaning the porous medium). Here, r is the

particle size in the dusty gas model (which may be an average of a particle size distribution), and

a1 is the fraction of molecules that are both scattered diffusely and have their speeds thermalized

to a Maxwellian distribution. Evans et al. (1961) suggest that a1 is 1 for most gases. In the case of

spherical particles with an average radius r̄, nd can be estimated as (3/4)(1− φ)/πr̄3, giving

DK =
π

8 + π

φ

1− φ
ν̄1r̄

τ
. (2.13)

These expressions show that DK is independent of pressure and changes as T 1/2 with temperature.

Experiments by Sizemore and Mellon (2007) have shown that the pore size distributions in

disaggregated particles of small size, even pure dust of micron-scale dimensions, tend toward rather

large pores, up to 100 microns in diameter or more. Work by Clifford and Hillel has shown that the

overwhelming majority of flux in such bimodal or skewed distributions is carried through the largest

pores (Clifford and Hillel , 1983). Thus, even though a porous regolith may contain particles on the

order of 1 micron, the larger size of pores may put diffusion at p0 = 6 mbar largely in the Fickian

diffusion regime, with only a minor Knudsen contribution.

At intermediate pressures, collisions with pore walls and with other molecules occur with signif-

icant frequency. This “transition region” is defined by the ratio of pore size to mean free path r/λ1.

In the Knudsen regime r/λ1 is much smaller than 1 and in the Fickian regime r/λ1 is much greater

than 1. Equations (2.2) and (2.9) can be combined by summing their contributions to ∂ρ1/∂z.

Neglecting advection in (2.2) we obtain

∂ρ1

∂z
= −J1

(
1
D12

+
1
DK

)
. (2.14)
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Thus the combined or effective diffusion coefficient may be written

D−1 = D−1
12 +D−1

K . (2.15)

This is known as the Bosanquet relation and was discussed by Pollard and Present (1948) and more

recently described in Mason and Malinauskas (1983) in the context of gas diffusion through porous

media.

2.5 Tortuosity

Porosity quantifies the reduction in cross-sectional area available for gaseous transport, while tor-

tuosity, τ , is a quantity which characterizes the convoluted nature of the porous pathways followed

by diffusing species. The theoretical determination of tortuosity is model dependent and extremely

cumbersome for all but the most simple geometries. It is most often the case that the other param-

eters in equation (2.3), DF, φ, and D12, are determined from experiment and τ is calculated from

these.

In Chapter 3, experiments are performed at a range of pressures to extract independent Knudsen

and Fickian diffusion coefficients. Having thus obtained the purely Fickian diffusion coefficient,

equation (2.3) is used with the Fickian diffusion coefficient to determine τ . For the experiments

in Chapter 4, variable pressure measurements are not performed. Instead, the method of Zalc

et al. (2004) is employed, wherein a strictly geometric tortuosity factor, independent of diffusion

regime, is derived. Knowledge of the pore space geometries obtained from mercury porosimetry

measurements are used to calculate a Knudsen diffusion coefficient. Employing the Bosanquet

relation (equation 2.15), DK and D12 are used with measured values for the effective diffusion

coefficient, D, to compute the obstruction factor, and from this determine τ as per equation (2.3).

The free gas diffusivity for either the method employing variable pressures or that using pore

geometries may be calculated using one of the formulas in Section 2.3. The experimental procedures

described below do not measure D12, and no such measurement of water in CO2 at Mars surface

conditions yet exists in the literature. Care must be taken when using extrapolated values of free-gas

diffusivity since there is considerable variation among the expressions available, limiting the accuracy

of any calculation involving D12. In the analyses of Chapter 3 and Chapter 4, the extrapolation

method of Wallace and Sagan (1979) is used to maintain consistency with previous investigators of

diffusion on Mars. With different methods, the value of D12 at 250 K and 600 Pa varies between

17.5 and 32.0 cm2s−1.

Computation of the Knudsen diffusion coefficient, required for the method described in Zalc et al.
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(2004), is still more cumbersome. In that work, DK is written as

DK =
1
3
〈lp〉〈ν〉

[
〈l2p〉

2〈lp〉2
− β

]
, (2.16)

where ν is the mean molecular velocity (ν =
√

8kBT/πm1), 〈lp〉 is the first moment of the chord

length distribution (Levitz , 1993), and β is a series sum of cosine angles between sequential trajectory

segments separated by wall collisions. The term outside brackets is the same, within a factor of two,

of the simple kinetic expression for the Knudsen diffusion coefficient in straight capillaries defined

in equation (2.10). The term in brackets takes into account deviations from exponential path length

distributions and Knudsen cosine-law scattering from pore walls, as opposed to random scattering

which occurs among gas molecules. Note that in both equations, DK is independent of pressure.

Chords are defined as successive ballistic molecular paths with both ends terminated by a pore

wall; they may therefore be smaller or larger than any individual pore. In Zalc et al. (2004), the

model pore structures used result in nearly exponential chord distributions such that the first term

in brackets is near unity. But many real soils may have different distributions and this quantity

can vary significantly. Gille et al. (2002, 2001) describe a method for determining 〈lp〉 from pore

diameter distributions determined from mercury porosimetry. The β term, however, depends only on

the model selected to describe molecular collisions with pore walls (Levitz , 1993). For the frequently

used Knudsen cosine law, this gives β = 4/13 = 0.3077, for porosities up 42% (Zalc et al., 2004)

and greater (E. Iglesia, personal communication, 2008), a porosity range which covers all simulants

considered in this study except the salt crusts.

The bulk porosity for porous media in these laboratory analyses is determined through a gravi-

metric method detailed in Section 3.3, and the porosities for various simulants are summarized in

Table 3.1. Quantitative measurements of the pore size distribution were made for selected simulant

materials at a commercial analytical facility; the analysis results are given in Section 4.3.2.

2.6 Effects Other than Concentration Diffusion

2.6.1 Advection

Mass transfer of a gas results not only from diffusion, which describes the relative motion of gases,

but also from advection, where a difference in pressure causes bulk motion of the gas.

The vertical velocity of gas w is given by Darcy’s law,

w = −κ
µ

∂p0

∂z
, (2.17)

where κ is the intrinsic permeability of the porous medium and µ the dynamic viscosity of the gas.
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The total mass flux is the sum of diffusive and advective transport,

J1 = JDiff + JAdv = JDiff + wρ1, (2.18)

where JAdv = wρ1.

Most of our experiments take place at a total chamber pressure of ∼600 Pa. At the ice surface,

there is a pressure contribution both from the CO2 in the chamber and the saturation pressure of

H2O. Assuming the pressure difference across the sample equals the saturation vapor pressure, we

can set a lower bound on permeability. From equations (2.17), (2.18), and (2.22),

J1∆z = −ρ0
κ

µ
∆p0. (2.19)

The viscosity of CO2 and N2 at 200 K and 1 bar pressure are 1.00 × 10−5 Pa s and 1.29 × 10−5

Pa s, respectively (Lide, 2003). Using measured values of J1 ≈ 10−5 kg m−2 s−1, ∆z = 0.05 m, and

ρ0 ≈ 0.01 kg m−3 from one of our experiments on 50–80 µm glass beads, the minimum permeability

is κ = 3 × 10−12 m2 or 3 darcy. This is similar to permeability values measured for grains tens of

microns in size, where κ ∼ 10−12 m2 (Freeze and Cheng , 1979; deWiest , 1969).

For sublimation from an impermeable ice layer, the lower boundary condition is J2 = 0. The

total mass flux, however, is not zero because the ice is a source of vapor, J1 6= 0. Mass conservation

for species 1 and 2 requires (Landau and Lifshitz , 1987)

J1 = −D12ρ0
∂

∂z

ρ1

ρ0
+ wρ1 (2.20)

J2 = −D12ρ0
∂

∂z

ρ2

ρ0
+ wρ2 = 0. (2.21)

The ratio of advective to diffusive flux can be obtained by dividing the second term of the first

equation by the first term. Solving the second equation for w and substituting, we obtain

JAdv

JDiff
=

c(z)
1− c(z) . (2.22)

The mass concentration of H2O is denoted by c = ρ1/ρ0. The total flux is given by

J1 = −D12ρ0
1

1− c
∂c

∂z
. (2.23)

When the CO2 column is at rest and H2O vapor moves outward, the gas mixture as a whole

effectively moves outward, and there must always be a pressure difference ∆p0 across the sample

that drives this advective flow. On the other hand, the pressure difference can never exceed the

saturation vapor pressure over ice. The factor of 1/(1 − c) is an approximate estimate of the error
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due to advective flux being counted as diffusive.

The saturated vapor pressure over ice at 260 K is 195.8 Pa. In 600 Pa of CO2, this gives a large

advective correction factor, 1/(1 − c), of 1.32. However, at the upper sample surface the partial

pressure of water is significantly lower and the correction factor here is found to be 1.01–1.07 in

our experiments. The error thus introduced by the average value of c is on the order of 10%. It

will be shown that this error is of the same order as the systematic scatter in our experimental

determinations of D.

For small c, the advective contribution disappears, J1 = JDiff , and the pressure difference also

becomes negligible. The concentration of water vapor is limited when saturation vapor pressures are

low. A practical compromise is reached for experiments between low temperature conditions with

small advection contributions and higher temperature conditions which allow faster experimental

runs.

On Mars, pressure differences, and therefore advection, can result from winds or thermal expan-

sion. A temperature increase by 30% leads to a thermal expansion by 30% over a thermal skin depth,

which is on the order of 1 m for the annual cycle and 3 cm for the diurnal cycle. The expansion

thus corresponds to an airflow of 30 cm per year for the annual cycle and 1 cm per sol diurnally.

The velocity of water vapor due to concentration differences is estimated as the diffusion coefficient

divided by depth such that for D = 10 cm2 s−1 and a burial depth of 100 cm, the diffusive flux is

0.01 cm s−1 or 9 m per sol, many orders of magnitude faster than thermal expansion.

2.6.2 Thermodiffusion

In a system without concentration gradients, vapor still diffuses due to differences in temperature

(Grew and Ibbs, 1952). This is known as “thermal diffusion” or “thermodiffusion”. The inverse effect,

where the diffusion of one gas in another results in the establishment of a transient temperature

gradient is known as the “diffusion thermoeffect”. The liquid analog to gaseous thermodiffusion

is known as the “Soret effect” (Grew and Ibbs, 1952). Chapman and Cowling (1970) provide a

first-order expression for the thermodiffusion ratio kT = DT/D12:

kT =
DT
D12

= 5(C − 1)
s1

n1
n1+n2

− s2
n2

n1+n2

Q1
n1
n2

+Q2
n2
n1

+Q12
, (2.24)

where

s1 = m2
1E1 − 3m2(m2 −m1) + 4m1m2A

Q1 =
m1

m1 +m2
E1

[
6m2

2 + (5− 4B)m2
1 + 8m1m2A

]
Q12 = 3(m2

1 −m2
2) + 4m1m2A(11− 4B) + 2m1m2E1E2.
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Analogous expressions hold for s2 and Q2, with interchanged indices. The thermodiffusion coefficient

can be positive or negative and vanishes for low concentrations. The parameters A, B, C, E1, and

E2 depend on the intermolecular forces. For a model of rigid elastic spherical molecules, A = 2/5,

B = 3/5, C = 6/5, and E1 = (2/5m1)
√

2/m2(m1 + m2)3/2σ2
11/σ

2
12. In the elastic hard sphere

model, kT is independent of temperature and pressure, but it does depend on the proportions of the

mixture n1/n2 (Chapman and Cowling , 1970).

It is conventional to introduce the thermal diffusion factor αT = kTn
2
0/(n1n2), which no longer

vanishes for low concentrations. Using the formulae above, this factor is at most αT ≈ 0.8 for

H2O–CO2. For H2O–N2, the maximum αT is less than 0.4. The theoretical value of the ther-

modiffusion ratio is thought to be larger for elastic spheres than for other models of intermolecular

forces (Chapman and Cowling , 1970). From equation (2.1), we see that thermodiffusion is re-

duced relative to concentration diffusion by a factor kT (∆T/T )/∆(ρ1/ρ0). Assuming n1 � n2 and

∆n2/n2 � ∆n1/n1, this factor is approximately αT (m2/m1)(∆T/T )p1/∆p1.

For a typical experiment involving ice loss (Chapters 3 and 4) ∆T/T . 0.01 and ∆p1/p1 ≈ 0.5,

and thermodiffusion is smaller than concentration diffusion by a factor of 0.4× 0.01× 0.5× 44/18 =

0.005 or less and is therefore negligible. On Mars, a diurnal temperature amplitude of 30 K around

a mean temperature of 210 K has ∆T/T ∼ 0.14. It is conceivable that thermodiffusion contributes

noticeably to vapor transport on Mars, but concentration diffusion still dominates.

2.6.3 Barodiffusion

“Pressure diffusion” or “barodiffusion” is the relative diffusion of molecular species due to gradients

in total pressure. Landau and Lifshitz (1987) and Cunningham and Williams (1980) provide an

expression for the barodiffusion coefficient in a mixture of two ideal gases:

kp =
Dp
D12

= (m2 −m1)c(1− c)
(

1− c
m2

+
c

m1

)
. (2.25)

In a single fluid there is no barodiffusion phenomenon and the coefficient vanishes. For a mixture,

the coefficient can be positive or negative, though heavier molecules tend to go to regions of higher

pressure. According to equation (2.1), barodiffusion is smaller than concentration diffusion by a

factor of kp(∆p0/p0)/∆c. If we assume that ∆c ≈ c � 1 and use equation (2.25), this factor

is about 0.4∆p0/p0 in an N2 atmosphere and 0.6∆p0/p0 in a CO2 atmosphere. Barodiffusion is

negligible when ∆p0/p0 � 1.

Sublimative ice loss experiments in Chapters 3 and 4 take place at a total chamber pressure of

∼600 Pa. At the ice surface, there is a pressure contribution both from the CO2 in the chamber and

the saturation pressure of H2O, which is at most ∼200 Pa at 260 K. Assuming the pressure difference

across the sample equals the saturation vapor pressure, p0 = 800 Pa. This overly pessimistic pressure
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difference leads to a barodiffusion contribution of less than 15% of the size of the concentration

diffusion.

None of the coefficients D12, DT , or Dp depend on gravity, nor does the advective contribution.

The potential energy m1g∆z required to move molecules through the diffusive barrier, or through

meters of regolith, is negligible compared with their kinetic energy (3/2)kBT .

Adsorption can significantly effect the transport of water in a non-steady-state environment by

attenuating local vapor density gradients and acting as either a source or a sink for water vapor.

Adsorption effects will be further discussed in Section 3.6.1 where it will be shown that they are not

important on the time scales considered.

2.7 Diffusive Ice Growth

Conservation of mass leads to an expression for the accumulation of ice in pore spaces as a function

of time:
∂σ

∂t
= −∂J1

∂z
=

∂

∂z

(
D
∂ρ1

∂z

)
, (2.26)

where σ is the density of ice relative to total volume. Hence, ice accumulates in a permeable medium

as a humidity gradient supplies water molecules. The presence of ice changes the thermal properties

of the regolith by increasing the thermal conductivity of an unconsolidated porous medium. But the

formation of subsurface ice is also expected to reduce the diffusivity, and hence the rate of infilling,

due to constriction of the pore space. As the pore space is reduced, a regolith with an initially large

pore diameter will transition from Fickian diffusion, where molecule-molecule collisions dominate,

to Knudsen diffusion wherein most collisions are between molecules and the pore walls. It has been

suggested (Mellon and Jakosky , 1995) that ice deposited from the vapor phase may completely

choke off vapor transport paths. Since subsurface ice has been shown to grow most rapidly near its

equilibrium depth (Mellon and Jakosky , 1995; Schorghofer and Aharonson, 2005), choking would

occur first at this level and inhibit diffusion to greater depths. Further discussion of the constriction

phenomenon is found in Chapter 5.


