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Abstract

¿is thesis consists of an introduction and four independent chapters.

In Chapter 2, we study homeomorphism groups of metrizable compacti�cations of the natural

numbers. ¿ose groups can be represented as almost zero-dimensional Polishable subgroups of the

group S∞. We show that all Polish groups are continuous homomorphic images of almost zero-

dimensional Polishable subgroups of S∞. We also �nd a su�cient condition for these groups to be

one dimensional.

In Chapter 3, we study the connections between properties of the action of a countable group Γon

a countable set X and the ergodic theoretic properties of the corresponding shi action of Γ↷ MX,

where M is a measure space. In particular, we show that the action Γ ↷ X is amenable i� the shi 

Γ↷ MX has almost invariant sets. ¿is is joint work with Alexander Kechris.

In Chapter 4, we prove that if the Koopman representation associated to a measure-preserving

action of a countable group on a standard non-atomic probability space is non-amenable, then there

does not exist a countable-to-one Borel homomorphism from its orbit equivalence relation to the

orbit equivalence relation of any modular action (i.e., an action on the boundary of a countably split-

ting tree), generalizing previous results of Hjorth and Kechris. As an application, for certain groups,

we connect antimodularity to mixing conditions. ¿is is joint work with Inessa Epstein.

In Chapter 5, we study full groups of countable, measure-preserving equivalence relations. Our

main results include that they are all homeomorphic to the separable Hilbert space and that every

homomorphism from an ergodic full group to a separable group is continuous. We also �nd bounds

for the minimal number of generators of a dense subgroup of full groups allowing us to distinguish

full groups of equivalence relations generated by free, ergodic actions of the free groups Fn and Fm if

m and n are su�ciently far apart. We also show that an ergodic equivalence relation is generated by

an action of a �nitely generated group i� its full group has a �nitely generated dense subgroup. ¿is

is joint work with John Kittrell.
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Chapter 1

Introduction

1.1 De�nable equivalence relations

¿e study of de�nable equivalence relations on standard Borel spaces in connection with di�erent

mathematical classi�cation problems has been extensively pursued during the last two decades. ¿e

main notion that allows us to classify equivalence relations is the partial (quasi-)ordering of Borel

reducibility which is de�ned as follows. If E and F are two equivalence relations on standard Borel

spaces X and Y, respectively, we say that E is Borel reducible to F and write E ≤B F if there exists a

Borel map f∶X → Y such that x E y ⇐⇒ f(x)F f(y). If the equivalence relations E and F are

associated with classi�cation problems (for example, isomorphism of certain type of mathematical

structures), the notion of Borel reducibility can be interpreted in the sense that the problem de�ned

by E is not harder than the one de�ned by F, or, equivalently, we can assign in a Borel way F-classes

as complete invariants for E-classes. If E ≤B F and F ≤B E we say that E and F are Borel bireducible

and regard them as being of equal complexity. For example, the spectral theorem (a typical instance

of a classi�cation theorem in mathematics) implies that unitary equivalence of normal operators on

a separable Hilbert space is Borel bireducible with measure equivalence of Borel measures on an

uncountable Polish space (that is, we can classify normal operators using measures as invariants and

vice versa). See Kechris [39] for further motivation and discussion.

An important class of equivalence relations is the one given by Borel actions of Polish (completely

metrizable, separable) groups on standard Borel spaces. ¿is motivates the general study of Polish

groups and their actions. For example, it is a well-known and very useful fact that there exist universal

Polish groups (i.e., ones that embed every Polish group as a closed subgroup) (Uspenskĭı [73, 74]).

However, the dual problem is open: it is not known whether there exists a Polish group such that

every Polish group is a continuous homomorphic image of it. Even the seemingly simpler question
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of whether every Polish group is a homomorphic image of a zero-dimensional Polish group is also

open. A step towards better understanding this problem is the following theorem.

¿eorem 1.1.1. Every Polish group is the continuous homomorphic image of a Polish, almost zero-

dimensional (hence, at most one-dimensional) group which can be embedded as a Π0
3 subgroup of S∞,

the group of permutations of the natural numbers. In particular, all Polish groups are quotients of Pol-

ishable subgroups of S∞.

Results similar to ¿eorem 1.1.1 were later independently obtained by Ding and Gao [11] who

used a completely di�erent method.

1.2 Countable Borel equivalence relations and orbit equivalence

A special class of equivalence relations generated by group actions is the one consisting of the count-

able ones, i.e., the Borel equivalence relations whose equivalence classes are countable. By a classical

result of Feldman andMoore [18], every countable Borel equivalence relation is generated by a Borel

action of a countable group. It turns out that in the sameway that topological dynamics is relevant for

the study of general Polish group actions, ergodic theory provides a useful framework for studying

the actions of countable groups. If the space on which the equivalence relation lives is endowed with

an invariant (or, more generally, quasi-invariant) probabilitymeasure, the setting becomes analogous

to the one studied in ergodic theory and functional analysis for many years. A serious limitation of

this approach, however, is that then results only hold “up to measure 0,” while o enmany interesting

features of Borel equivalence relations are concentrated on null sets.

Nonetheless, orbit equivalence, the theory of countable equivalence relations in the presence of a

measure (usually with an emphasis on the group actions generating them), has become a common fo-

cus for researchers in ergodic theory, operator algebras, and descriptive set theory, and the exchange

of ideas between the �elds has led to many exciting developments. An important research objective

is, given a free, measure-preserving action of a countable group Γ on a standard probability space

(X, µ), to understand how much information the orbit equivalence relation “remembers” about the

group and the action. On the one extreme, if Γ is amenable (e.g., solvable), the orbit equivalence

relation remembers nothing but the fact that the group is amenable; more precisely, a combination

of classical results of Dye and Ornstein–Weiss shows that all ergodic actions of amenable groups are

orbit equivalent. On the other, Zimmer [77] proved that in certain situations, the orbit equivalence re-

lation remembers a signi�cant amount of information about the group and the action. More recently,
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a variety of even more striking rigidity phenomena have been discovered: for example, Furman [20]

showed that the orbit equivalence relation of the usual action SL(n,Z) ↷ Tn for n ≥ 3 (essentially)

remembers both the group and the action, and Popa [58] proved that the same holds for Bernoulli

actions Γ↷ 2Γ of all groups Γ with property (T).¿ose superrigidity theorems can be used to obtain

results in the purely Borel setting as well, particularly about the richness of the ordering ≤B, and, in

many cases, those are the only known methods (see Adams–Kechris [1] and¿omas [70]).

¿e connection of orbit equivalence with operator algebras comes from the group measure space

construction of Murray and von Neumann. With every measure-preserving action Γ↷ (X, µ), one

can associate a type II1 von Neumann factor L∞(X)⋊ Γ together with its Cartan subalgebra L∞(X).

Feldman and Moore [18] proved that two measure-preserving actions Γ ↷ (X, µ) and ∆ ↷ (Y,ν)

are orbit equivalent i� there is an isomorphism between the associated II1 factors sending L∞(X) to

L∞(Y). ¿is motivates a lot of the current research in the area.

An object intimately connected with a measure-preserving action Γ ↷ (X, µ) is the associated

Koopman representation κ of Γ on L2(X, µ). Many properties of the action (usually referred to as

spectral properties: e.g., ergodicity, weakmixing, mixing, etc.) can be conveniently expressed in terms

of this representation. Since the constant functions are invariant under κ, one usually considers the

restriction κ0 of κ to the orthogonal complement of the constants. Studying spectral properties of

Z-actions comprises a large portion of classical ergodic theory.

Invariants for orbit equivalence are scarce and usually di�cult to compute. Perhaps the old-

est one is E0-ergodicity (sometimes referred to as strong ergodicity) which was �rst considered by

Schmidt [63] and is de�ned as follows: First recall that E0 is the equivalence relation of eventual

equality on 2N. A measure-preserving equivalence relation E on (X, µ) (or the action generating

it) is said to be E0-ergodic if every measurable homomorphism from E to E0 (a map f∶X → 2N

satisfying x1 E x2 Ô⇒ f(x1)E0 f(x2)) is constant on a co-null set. Connes and Weiss [9] con-

structed non-E0-ergodic Gaussian actions for every non-property (T) group, but it was interesting to

�nd simpler examples. Natural actions to look at are the so-called generalized Bernoulli shi s: every

time a group Γ acts on a countable set A, it also acts on 2A (by shi ) where 2 = {0, 1} is equipped

with (say) the (1/2, 1/2) measure and 2A is given the product measure. ¿e action Γ ↷ A is called

amenable if ℓ∞(A) admits a Γ-invariant mean. Interestingly, there are non-amenable groups which

admit amenable actions with in�nite orbits; those include free groups, various other free products

(Glasner–Monod [28]), and inner amenable groups. For those groups, the following theorem, proved

together with Alexander Kechris, produces non-E0-ergodic shi s:
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¿eorem 1.2.1. Let an in�nite, countable group Γ act on a countable set A. ¿en the following are

equivalent:

(i) the action of Γ on A is amenable;

(ii) the action of Γ on 2A is not E0-ergodic;

(iii) the Koopman representation κ0 has almost invariant vectors.

A form of incompatibility between equivalence relations stronger than being non-isomorphic is

the non-existence of countable-to-one homomorphisms from one of them to the other. Since Borel

reductions between countable equivalence relations are, in particular, countable-to-one homomor-

phisms, this is also relevant for the Borel theory. Hjorth [31] showed that there are no countable-to-

one homomorphisms from (restrictions to co-null sets of) the equivalence relation of the shi of the

free group F2 ↷ 2F2 to the orbit equivalence relation of a modular action of any group. (A modular

action is an action on the space of ends of a countable rooted tree induced by an action by automor-

phisms on the tree; a special case of those (when the tree is �nitely splitting) are the pro�nite actions.)

¿us he proved that there are intermediate treeable equivalence relations, solving an important open

problem. Later, Kechris [40], adapting his method, proved that there is a representation-theoretic

obstruction (again, for groups containing F2) for the existence of such homomorphisms. ¿e follow-

ing theorem, which is joint work with Inessa Epstein, provides a spectral property of the action that

serves as an obstruction for the existence of such homomorphisms and is not connected with the free

group but only with amenability.

¿eorem 1.2.2. Let a countable group Γ act by measure-preserving transformations on the standard

probability space (X, µ). ¿en, if the Koopman representation κ0 associated with the action is not

amenable, there does not exist a countable-to-one homomorphism from (a restriction to a co-null set

of) its orbit equivalence relation to the orbit equivalence relation of any modular action.

¿eorem 1.2.2 has various interesting corollaries: it implies the previous results of [31] and [40];

it also shows that such homomorphisms do not exist for non-amenable shi s, weakly mixing actions

of property (T) groups, or mixing actions of groups with the Haagerup approximation property, thus

resolving questions raised in [40].
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1.3 Full groups

Orbit equivalence and topological groups come together in the study of full groups of equivalence

relations. If E is a measure-preserving equivalence relation on a standard probability space (X, µ),

its full group, denoted by [E], is the group of all automorphisms T of (X, µ) such that for a.e. x ∈ X,

Tx E x. Full groups were �rst considered by Dye [15], and their importance stems from the fact that

they are complete invariants for the equivalence relations up to isomorphism. More precisely, two

ergodic equivalence relations are isomorphic i� their full groups are (algebraically) isomorphic and

furthermore, every isomorphism between full groups comes from a conjugacy [15]. A natural Polish

topology on the full groups, which allows one to use methods and ideas from the descriptive set

theory of Polish groups to study them, is induced by the uniformmetric d(T,S) = µ({x ∶ Tx ≠ Sx}).

Dye’s theorem suggests that the algebraic structure of full groups is rich enough to “remember”

the topology since every algebraic automorphism of an ergodic full group is automatically a home-

omorphism. Con�rming this intuition, John Kittrell and I proved the following (all results in this

section are from our joint work [46]):

¿eorem 1.3.1. Let E be an ergodic, measure-preserving, countable equivalence relation. ¿en every

homomorphism f∶ [E] → G, where G is a separable topological group, is automatically continuous. In

particular, the uniform topology is the �nest separable group topology on [E] and hence, the unique

Polish topology.

Hence, the structure of [E] as an abstract group alone is su�cient to recover the topology, and

any statement about [E] as a topological group can, at least in principle, be translated into a state-

ment referring only to its algebraic structure. Automatic continuity for group homomorphisms is a

phenomenonwhich appeared recently in the work of Kechris–Rosendal [43], Rosendal–Solecki [60],

and Rosendal [59]. One way to think about it is that if the source group is su�ciently complicated,

the axiom of choice is unable to produce pathological homomorphisms to separable groups. See the

papers [43, 59, 60] for discussion and examples.

In order to prove that two equivalence relations are non-isomorphic, it su�ces to �nd a (topolog-

ical group) property of their full groups which di�erentiates them. One could perhaps even hope to

distinguish the full groups as topological spaces alone (forgetting the group structure). ¿is, however,

turns out to be impossible as they are all homeomorphic.

¿eorem 1.3.2. Let E be a countable, measure-preserving equivalence relation on the standard prob-

ability space (X, µ) which is not equality a.e. ¿en the full group [E] with the uniform topology is
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homeomorphic to the Hilbert space ℓ2.

It was previously known that full groups are contractible (using the argument of Keane [36]).

Another possible invariant one could look at is the number of topological generators of [E], i.e.,

the minimal number of generators of a dense subgroup of [E], which we denote by t([E]). Since

the group [E] is separable, we always have t([E]) ≤ ℵ0. Gaboriau’s theory of cost [21] allows one to

conclude that if E is generated by a free action of Fn, then t([E]) ≥ n (in fact, B. Miller observed

that in this case, one actually has t([E]) ≥ n + 1). ¿is shows that if t([E]) is �nite for some E, then

it is a non-trivial invariant. ¿e question of whether t([E]) can be �nite was raised by Kechris [37].

Combining an example of Matui [52] from Cantor dynamics with an inductive procedure, we were

able to prove the following.

¿eorem 1.3.3. Let E be an ergodic equivalence relation on (X, µ). ¿en the following are equivalent:

(i) E can be generated by an action of a �nitely generated group;

(ii) [E] is topologically �nitely generated.

For an equivalence relation E generated by a free action of Fn, we have the following explicit

bounds: n + 1 ≤ t([E]) ≤ 3n + 3. In particular, if m and n are far apart, this gives the �rst concrete

distinction between full groups of equivalence relations generated by free actions of Fm and Fn.

1.4 Organization of the thesis

¿is thesis consists of four separate papers. Chapter 2, which appeared in [72], discusses Polishable

subgroups of the in�nite symmetric group. ¿eorem 1.1.1 is proved there. Chapter 3, which is joint

workwithAlexander Kechris, appeared in [44] and concerns the relationships between group actions

on countable sets and the corresponding measure-preserving shi s. Its main result is ¿eorem 1.2.1.

Chapter 4, which will appear in [16], is joint work with Inessa Epstein; ¿eorem 1.2.2 and various

generalizations and applications of it are proved there. Finally, Chapter 5 is joint work with John

Kittrell; it discusses properties of full groups of equivalence relations, and ¿eorems 1.3.1, 1.3.2, and

1.3.3 are proved there. Parts of it are also included in Kittrell’s dissertation [45].

Each chapter has its own introduction motivating the work and discussing relevant background.
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Chapter 2

Compacti�cations of N and Polishable
Subgroups of S∞

2.1 Introduction

It is well known that every compact metrizable topological space X can be realized in a unique way as

the remainder X̃∖N of a metrizable compacti�cation X̃ of the countable discrete space of the natural

numbersN (see Propositions 2.2.1 and 2.2.3). ¿is allows us to associatewith each compactmetrizable

X the homeomorphism group Homeo(X̃) and a certain subgroup of it, called the structure group

of X (see De�nition 2.2.5 below). ¿ese groups were �rst studied by Lorch [49], who proved the

following interesting result:

¿eorem 2.1.1 (Lorch). Two compact metrizable spaces are homeomorphic if and only if their structure

groups are isomorphic.

Both the group Homeo(X̃) and the structure group of X can be viewed as Polishable subgroups

of S∞, the group of all permutations ofN (see Proposition 2.2.4 below). We study the topological di-

mension of the Polish topologies of those groups as well as their descriptive complexity. In particular,

we prove the following (see ¿eorem 2.3.1, Corollary 2.4.7, and¿eorem 2.4.8 below):

¿eorem2.1.2. ¿e groupHomeo(X̃) is almost zero-dimensional (and thus atmost one-dimensional).

It is one-dimensional if the group Homeo(X) contains a path of �nite length (in the natural complete

metric of the group). Both Homeo(X̃) and the structure group of X are Π0
3 subgroups of S∞ and they

are Π0
3-complete i� X is in�nite.

As an interesting corollary of the construction, we show the following (see Corollary 2.4.11):
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¿eorem 2.1.3. Every Polish group is a continuous homomorphic image of an almost zero-dimensional

Polishable subgroup of S∞.

¿is is related to the open problemofwhether every Polish group is a factor of a zero-dimensional

Polish group.

In the last section of the paperwe studyPolishable ideals onN and certain almost zero-dimensional

Polishable subgroups of S∞ associated with them.

Recall that a topological space is called Polish if it is separable and completely metrizable; a topo-

logical group is Polish if its topology is Polish. A Borel subgroup H of a Polish group G is called

Polishable if there exists a Polish group topology onH which has the same Borel structure as the one

inherited from G. By [38, 9.10], the Polish topology of a Polishable H is always �ner than the inher-

ited topology. Two examples of Polish groups are the homeomorphism groups of compactmetrizable

spaces with the compact-open topology, which coincides with the uniform convergence topology,

and the group of permutations of the natural numbers S∞ with the pointwise convergence topology.

A complete metric on S∞ is given by

d(f, g) = 2−min{f≠g} + 2−min{f
−1≠g−1}. (2.1.1)

¿e support of a permutation f ∈ S∞, denoted by supp f, is the set of points moved by f. For a

detailed treatment of Polish spaces, and Polish and Polishable groups, the reader is referred to [38].

In any metric space we will denote by Br(x) the open ball with center x and radius r. Since we

will o en work with di�erent topologies on the same space, to avoid confusion, we will sometimes

explicitly mention the topology: e.g., (X, τ) is the space X with the topology τ. ¿roughout this

paper, I denotes the unit interval [0, 1] and Q = IN is the Hilbert cube.

2.2 Compact spaces as remainders of compacti�cations of N

¿e following fact is well known; we include a simple proof, due to H. Toruńczyk, and note the

e�ectiveness of the construction.

Proposition 2.2.1. For every compact metrizable space X, there exists a metrizable compacti�cation X̃

of N (taken with the discrete topology) such that the remainder X̃ ∖N is homeomorphic to X.

Proof. Fix a countable dense setD = {ak} inX. Set X̃ = X×{0}∪A, whereA= ⋃{a1, . . . ,an}×{1/n}.

¿en A is countable, discrete, and dense in X̃. X̃ is compact as a closed subspace of X × [0, 1].
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We will think of the space X̃ as the union X∪N and we will also �x a compatible metric d on X̃.

Consider the homeomorphism group Homeo(X̃). With the topology induced by the metric

∂′(f, g) = sup
x∈X̃

d(f(x), g(x)),

it is a Polish group. ¿emetric ∂′ is not complete but it is equivalent to the complete metric ∂ de�ned

by

∂(f, g) = ∂′(f, g) + ∂′(f−1, g−1).

Lemma 2.2.2. Let f∶X → X be a homeomorphism and f̃ a homeomorphism of X̃ such that f and f̃

agree on X. If g∶X → X is another homeomorphism and ∂(f, g) < r, then there exists a homeomor-

phism g̃ of X̃ such that g̃ extends g and ∂( f̃, g̃) < r.

Proof. Set є = (r − ∂(f, g))/6. Since f̃, g, f̃−1, g−1 are all uniformly continuous, we can �nd a δ < є

so small that

∀x, y ∈ X̃ d(x, y) < δ Ô⇒ d( f̃(x), f̃(y)) < є and d( f̃−1(x), f̃−1(y)) < є,

∀x, y ∈ X d(x, y) < δ Ô⇒ d(g(x), g(y)) < є and d(g−1(x), g−1(y)) < є.

Using a standard back-and-forth argument, we will de�ne a permutation h∶N → N and then

will set g̃ = g ∪ h. First �nd a number N so big that ∀n > N d(n,X) < δ. Find points xn ∈ X,

such that d(n,xn) = d(n,X) for each n and note that the set {xn ∶ n ∈ N} is dense in X. Set

h0 = f̃∣[0,N]∪ f̃−1([0,N]). Now suppose we are at a forward step of the construction, say number 2k− 1,

and let n = min{N ∖ dom h2k−2}. Find an m, such that d(g(xn),xm) < 2−kδ and m ∉ ran h2k−2.

De�ne h2k−1 to agree with h2k−2 on dom h2k−2 and set h2k−1(n) = m. Now prove that this extension

does not move us too far from f̃. We have the following estimates:

d(h2k−1(n), f̃(n)) ≤ d(m,xm) + d(xm, g(xn))

+ d(g(xn), f(xn)) + d(f(xn), f̃(n))

≤ d(g(xn), f(xn)) + 3є;

d(h−12k−1(m), f̃−1(m)) ≤ d( f̃−1(m), f−1(xm)) + d(f−1(xm), g−1(xm))

+ d(g−1(xm),xn) + d(xn,n)

≤ d(f−1(xm), g−1(xm)) + 3є.

(2.2.1)
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At a backward step 2k proceed similarly, letm = min{N∖ran h2k−1}. Find n such that d(g(xn),xm) <

2−kδ and n ∉ dom h2k−1. De�ne h2k to agree with h2k−1 on dom h2k−1 and set h2k(n) = m. (2.2.1) will

again hold with h2k replacing h2k−1.

Set h = ⋃∞k=0 hk and g̃ = g∪ h. We will �rst prove that g̃, so de�ned, is a homeomorphism of X̃.

It is enough to show that for any sequence {nk} nk → z ⇐⇒ h(nk) → g(z) for z ∈ X. ¿is is easily

seen, in fact

nk → z ⇐⇒ xnk → z ⇐⇒ g(xnk) → g(z)

⇐⇒ xh(nk) → g(z) ⇐⇒ h(nk) → g(z).

Now, using (2.2.1), we also check that ∂( f̃, g̃) < r:

∂( f̃, g̃) = sup
x∈X̃

d( f̃(x), g̃(x)) + sup
x∈X̃

d( f̃−1(x), g̃−1(x))

≤ ∂′(f, g) + 3є+ ∂′(f−1, g−1) + 3є = ∂(f, g) + 6є < r.

¿enext proposition is essentially contained in [49]. It also follows from the proof of Lemma 2.2.2

above.

Proposition 2.2.3. If X, Y are compact metrizable, f∶X → Y a homeomorphism, X̃ and Ỹ are com-

pacti�cations of N as above and X↪ X̃ and Y ↪ Ỹ given embeddings onto the remainders, then there

exists a homeomorphism f̃∶ X̃→ Ỹ, such that the diagram

X̃
f̃

ÐÐÐ→ Ỹ
Õ
×
×
×

Õ
×
×
×

X ÐÐÐ→
f

Y

commutes.

In particular, Propositions 2.2.1 and 2.2.3 show that with every compact metrizable space we can

associate a unique metrizable compacti�cation X̃ of N, such that X ≅ X̃ ∖N.

Proposition 2.2.4. ¿e Polish groupHomeo(X̃) can be identi�ed with a Polishable subgroup of S∞.

Proof. Since N is the set of all isolated points in X̃, for every homeomorphism f ∈ Homeo(X̃) we

must have f(N) = N and f(X) = X. ¿erefore the restriction map R∶Homeo(X̃) → S∞, R(f) =
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f∣N is a well de�ned group homomorphism. It is injective because N is dense in X̃ and hence a

homeomorphism is entirely determined by its action on N. R is also continuous as the composition

of the identity map from Homeo(X̃) to the same space, equipped with the pointwise convergence

topology, and the restriction from the latter to S∞ (which also carries the pointwise convergence

topology). ¿erefore we can identify Homeo(X̃) with a Borel subgroup of S∞ which is Polishable

because Homeo(X̃) itself is Polish.

Now, following Lorch, we consider the pointwise stabilizer of X in Homeo(X̃).

De�nition 2.2.5 (Lorch). ¿e closed subgroup H(X) = {f ∈ Homeo(X̃) ∶ ∀x ∈ Xf(x) = x} of

Homeo(X̃) is called the structure group of X.

We will write H instead of H(X) if there is no danger of confusion. ¿e restriction map

q∶Homeo(X̃) → Homeo(X), q(f) = f∣X

is a continuous group homomorphism, has kernel H, and, by Proposition 2.2.3, is onto Homeo(X).

¿erefore H is a closed normal subgroup of Homeo(X̃) and Homeo(X) ≅ Homeo(X̃)/H as topo-

logical groups.

¿e restriction of the metric d to N is totally bounded and induces the discrete topology on

N. Let UHomeo(N,d) denote the group of all uniform homeomorphisms of N with respect to the

metric d (i.e., all uniformly continuous permutations N → N with uniformly continuous inverses).

UHomeo(N,d) becomes a topological group with the uniform convergence topology. It is clear that

any f ∈ UHomeo(N,d) extends to a homeomorphism f̃ of X̃ and conversely, any homeomorphism

of X̃ restricts to a uniform homeomorphism of N. It is easy to check that this correspondence is a

topological group isomorphism between Homeo(X̃) and UHomeo(N,d), so from now on we can

identify these two groups.

As was pointed out by A.S. Kechris, this viewpoint may also be relevant to the problem of char-

acterizing the complexity of homeomorphism of compact metrizable spaces. More precisely, in view

of the universality of the Hilbert cube Q (cf. [38, 4.14]), we can think of the hyperspace K(Q) of all

compact subsets of Q (equipped with the Vietoris topology) as the space of all compact metrizable

spaces and de�ne the equivalence relation Eh on K(Q) by

KEh L ⇐⇒ K is homeomorphic to L.
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Similarly, we can consider the Borel set D ⊆ IN×N consisting of all totally bounded, discrete metrics

on N of diameter not greater than 1 and de�ne the equivalence relation Eu on D by

d1 Eu d2 ⇐⇒ (N,d1) and (N,d2) are uniformly homeomorphic.

For two equivalence relations E and F de�ned on the standard Borel spaces X and Y, respectively,

we write E ≤B F if there exists a Borel map f∶X→ Y satisfying

x E y ⇐⇒ f(x)F f(y).

If E ≤B F and F ≤B E, we say that E and F are Borel bireducible. See [39] and the references therein

for general background on the theory of equivalence relations and [24, Chapter 10] for more details

on di�erent (open) classi�cation problems.

We have the following corollary from Propositions 2.2.1 and 2.2.3:

Corollary 2.2.6. Eh and Eu are Borel bireducible.

Proof. First construct a map K(Q) → D which reduces Eh to Eu. Given K ∈ K(Q), by [38, 12.13], we

can �nd in a Borel way a dense countable subset ofK and then use the construction from the proof of

Proposition 2.2.1 to de�ne ametric onN. Proposition 2.2.3 shows that this map is indeed a reduction.

Conversely, to reduce Eu to Eh, consider �rst the inclusion map i∶D→ QN = IN×N. By the proof

of [38, 4.14] and using the total boundedness of the elements of D, if we consider i(d), d ∈ D as a

countable subset of Q, then the closure of i(d) in Q is homeomorphic to the completion of (N,d).

¿e closure map c∶QN → K(Q) de�ned by c((an)) = {an ∶ n ∈ N} is Borel and the composition c○ i

is the desired reduction.

2.3 Descriptive complexity ofHomeo(X̃) and H(X)
Both Homeo(X̃) and H(X) are Borel subgroups of S∞, so we can ask where they �t in the Borel

hierarchy.

¿eorem 2.3.1. If X is a one point space, then Homeo(X̃) = H(X) = S∞. If X has more than one

but �nitely many points, both Homeo(X̃) and H(X) are Σ02-complete. Finally, if X is in�nite, both

Homeo(X̃) and H(X) are Π0
3-complete.
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Proof. Put G = Homeo(X̃) and H = H(X). ¿e �rst statement of the theorem is obvious. Let now

X = {xi}ki=0 be �nite and, without loss of generality, assume that d(xi,xj) = 1 for i ≠ j. ¿en Σ02
descriptions of G and H are given by:

f ∈ G ⇐⇒ ∃σ ∈ Sk+1 ∃δ∀m ∈ N d(m,xi) < δ Ô⇒ d(f(m),xσ(i)) < 1/2,

f ∈ H ⇐⇒ ∀i ≤ k∃δ∀m ∈ N d(m,xi) < δ Ô⇒ d(f(m),xi) < 1/2.

Both G and H cannot be Gδ because they contain the permutations with �nite support, which are

dense in S∞ (see Exercise 9.11 in [38]).

Let �nally X be in�nite and {ak}∞k=0 be a countable dense set. First of all, the following are Π
0
3

descriptions of G and H:

f ∈ G ⇐⇒ ∀є∃δ∀m,n ∈ N d(m,n) < δ Ô⇒ d(f(m), f(n)) < є,

f ∈ H ⇐⇒ f ∈ G and (∀є∃δ∀k∀m ∈ N d(m,ak) < δ Ô⇒ d(f(m),ak) < є).

Now consider the Π0
3-complete set C ⊆ 2N×N de�ned by

A ∈ C ⇐⇒ ∀n {k ∶ (n, k) ∈ A} is �nite.

(We look at the elements of 2N×N as subsets ofN×N. For more information onΠ0
3-complete sets see

[38, 23.A].) We will construct a continuous map Φ∶ 2N×N → S∞, such that

(A ∈ C Ô⇒ Φ(A) ∈ H) and (A ∉ C Ô⇒ Φ(A) ∉ G), (2.3.1)

thus Φ is a reduction ofC to bothG andH. Fix a convergent sequence {xk}∞k=0 of distinct elements of

X, xk → y, and let {bk,j} be a 2-indexed sequence of distinct elements of N, satisfying the following

conditions:

(i) ∀k, jd(bk,j,xk) < 2−(k+j),

(ii) N ∖ {bk,j ∶ k, j∈ N} is dense in X.

Note that a sequence {bkn,jn}
∞
n=0 converges to a point of X i� either kn →∞ (in which case bkn,jn →
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y), or kn is eventually constant and jn →∞ (then bkn,jn → xlim kn). Now de�ne

Φ(A) = ∏
(k,j)∈A

(b2k,j b2k+1,j),

where (m n) denotes the transposition in S∞ which switches m and n. If A ∈ C, then the only limit

point of suppΦ(A) is y and it is easy to see that Φ(A) ∪ idX is a homeomorphism of X̃. If, on the

other hand, A ∉ C, then any continuous extension of Φ(A) to Xmust switch x2k and x2k+1 for some

k, which is impossible because of (ii). Hence Φ(A) ∉ G and (2.3.1) is veri�ed.

2.4 Topological properties of the groupsHomeo(X̃) and H(X)
On the groups Homeo(X̃) and H(X) we have two natural topologies, the Polish topology τ and the

topology σ inherited from S∞, i.e., the topology of pointwise convergence on N. Clearly σ ⊆ τ. We

have the following easy fact.

Proposition 2.4.1. (H, τ) is zero-dimensional.

Proof. Note �rst that if f, g ∈ H then there exists a ∈ N, such that ∂′(f, g) = d(f(a), g(a)). We

will now show that every open ball Br(1H) in H is also closed. Indeed, let {gn} be a sequence in

Br(1), such that gn → g ∈ H. ¿ere exists a ∈ N for which ∂′(1H, g) = d(a, g(a)) but for some n,

gn(a) = g(a) (because convergence in the topology ofH implies convergence in the coarser topology

of S∞). ¿erefore, for this n,

∂′(1H, g) = d(a, gn(a)) ≤ ∂′(1H, gn) < r.

Hence g ∈ Br(1H) and the proof is complete.

To continue our analysis, we need the notion of almost zero-dimensionality, �rst introduced in

Oversteegen–Tymchatyn [56]. Recall that a basis for a topological space X is a collection B of (not

necessarily open) subsets of X such that for every open U ⊆ X and every x ∈ U there exists B ∈ B

with B ⊆ U and x contained in the interior of B. Similarly, we say that B is a neighborhood basis at

the point x if for every open U containing x, there exists B ∈ B with B ⊆ U and x contained in the

interior of B. An open basis is a basis consisting of open sets.

De�nition 2.4.2 ([10, 56]). A separable metrizable space is almost zero-dimensional if there exists a

basis for its topology consisting of intersections of clopen sets.



15

Note that almost zero-dimensionality is a hereditary property. An important fact about almost

zero-dimensional spaces is the following:

¿eorem 2.4.3 (Oversteegen–Tymchatyn [56], cf. Levin–Pol [48]). Every almost zero-dimensional

space is at most one-dimensional.

¿e original de�nition of almost zero-dimensionality Oversteegen and Tymchatyn used to prove

their theorem is somewhat di�erent from De�nition 2.4.2 (which we borrowed from Dijkstra–van

Mill–Steprāns [10]) but the equivalence of the two de�nitions is proved in [10]. Almost zero-dimen-

sional topologies are intimately related to certain coarser zero-dimensional topologies on the same

space. ¿is was noticed by van Mill and Dijkstra who suggested the following:

De�nition 2.4.4. Let (X,T ) be a separable metrizable space. We say that a separable metrizable

zero-dimensional topologyW on Xwitnesses the almost zero-dimensionality of (X,T ) ifW ⊆ T and

(X,T ) has a basis consisting of closed sets ofW .

As S. Solecki pointed out, using a result of his, we can exactly determine when the topology of

a zero-dimensional Polish group witnesses the almost zero-dimensionality of a Polishable subgroup.

To do this, we shall need some of the machinery developed in Solecki [68].

Let (H, τ) be a Polishable subgroup of a Polish group (G,σ) and {Vn ∶ n ∈ N} be an open

neighborhood basis at 1 for (H, τ), satisfying the conditions

Vn = V−1
n and V3

n+1 ⊆ Vn. (2.4.1)

Let Fn = Vn
σ and for x, y ∈ G, de�ne

δl(x, y) = inf{2−k ∶ x−1y ∈ Fk},

δr(x, y) = inf{2−k ∶ xy−1 ∈ Fk},

and

dl(x, y) = inf{
n−1
∑
i=0
δl(xi,xi+1) ∶ x0 = x,xn = y,xi ∈ G}

and similarly dr. ¿en

H̃ = {g ∈ G ∶ ∀V(( 1 ∈ V and V is τ-open) (2.4.2)

Ô⇒ ∃h1,h2 ∈ H g ∈ h1V
σ
∩Vh2

σ
)}
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is aΠ0
3 Polishable subgroup ofG with a Polish topology τ̃ de�ned by the metric ρ = dl +dr restricted

to H̃. Furthermore, the inequalities

δl ≥ dl ≥
1
2
δl and δr ≥ dr ≥

1
2
δr (2.4.3)

hold. H is a dense subgroup of (H̃, τ̃) and for any Π0
3 set A ⊆ G with H ⊆ A, A∩ H̃ is comeager in

(H̃, τ̃). For all of the above, see [68].

Lemma 2.4.5. Let {Bn} be an arbitrary basis at 1 for (H, τ). ¿en B̃n = Bn
σ
∩ H̃ de�nes a basis at 1

for H̃.

Proof. Let for each k ∈ N, Ũk ⊆ H̃ be the open ball (in the metric ρ) with center 1 and radius 2−k. Fix

k and �nd n such that Bn ⊆ Vk+2. ¿en B̃n ⊆ Fk+2 and for any x ∈ B̃n,

dl(1,x) ≤ δl(1,x) ≤ 2−(k+2) < 2−(k+1)

and similarly dr(1,x) < 2−(k+1). Hence ρ(1,x) < 2−k and B̃n ⊆ Ũk.

Conversely, for a �xed n, �nd k such that Vk ⊆ Bn. ¿en for any x ∈ Ũk+1,

δl(1,x) ≤ 2dl(1,x) ≤ 2ρ(1,x) < 2−k.

Hence x ∈ Fk ∩ H̃ ⊆ B̃n, Ũk+1 ⊆ B̃n and we are done.

Proposition 2.4.6. Let (G,σ) be a zero-dimensional Polish group and (H, τ) a Polishable subgroup.

¿en the following are equivalent:

(i) H is Π0
3 in G;

(ii) σ∣H witnesses the almost zero-dimensionality of (H, τ);

(iii) every open set in (H, τ) is Σ02 in (H,σ∣H).

Proof. (i)⇒ (ii). Let (H̃, τ̃) be de�ned as in (2.4.2). Since H is Π0
3 , by [68], H is comeager in H̃, so

we must have H̃ = H (see [38, Exercise 9.11]). ¿en the basis {B̃n} of closed sets of σ∣H, de�ned in

Lemma 2.4.5 (starting with an arbitrary basis {Bn} of H), shows that (ii) is true.

(ii)⇒ (iii). Let B be a basis for τ consisting of closed sets in σ∣H. Since τ is Lindelöf, every open

set is a countable union of elements of B and thus Σ02(σ∣H).
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(iii)⇒ (i). ¿is follows easily from a result in Farah–Solecki [17]. For A⊆ G and a τ-openV ⊆ H,

we de�ne the Vaught transform A△V as

A△V = {g ∈ G ∶ {h ∈ H ∶ hg ∈ A} is non-meager in (V , τ)}.

We will use a claim from the proof of [17, ¿eorem 3.1].

Claim. For A⊆ G, A ∈ Σ02(σ) and any τ-open U ⊆ H, A△U ∩ H̃ is τ̃-open.

Let V be any open τ-neighborhood of 1 in H. Since V ∈ Σ02(σ∣H), there exists A⊆ G, A ∈ Σ02(σ),

A∩H = V. ¿en 1 ∈ A△V and by the Claim, A△V ∩ H̃ is τ̃-open. ¿erefore A△V ∩H is τ̃∣H-open and

it is not hard to check that A△V ∩ H ⊆ V−1V. For any τ-open neighborhood U of 1, we can �nd V

as above with V−1V ⊆ U. Furthermore, (H, τ) is a Polishable subgroup of (H̃, τ̃) and by [38, 9.10],

τ̃∣H ⊆ τ. ¿us the set {A△V ∩H ∶ V is a τ-neighborhood of 1} (where Adepends on V) is a basis at

1 for τ consisting of τ̃∣H-open sets and hence τ̃∣H = τ. ¿erefore (H, τ̃∣H) is a Polish subgroup of H̃.

Since H is dense in H̃, we must have H = H̃ (see [38, Exercise 9.11]).

Now, going back to the group Homeo(X̃), by ¿eorem 2.3.1, it is Π0
3 in S∞, hence Proposi-

tion 2.4.6 applies and we have the following corollary.

Corollary 2.4.7. (Homeo(X̃), τ) is almost zero-dimensional.

Homeo(X̃) can be zero-dimensional, e.g., ifX is a one point space, thenHomeo(X̃) ≅ S∞. Below

we give a su�cient condition for (Homeo(X̃), τ) not to be zero-dimensional. Recall that the length

of a path f∶ [a,b] → Y in a metric space (Y,d) is de�ned as

len(f) = sup{
n−1
∑
i=0
d(f(xi), f(xi+1)) ∶ a = x0 < x1 < ⋯ < xn = b}.

If x, y ∈ [a,b] write len(x, y) for the length of the path f∣[x,y].

¿eorem 2.4.8. If the group Homeo(X) has the property that there exists a homeomorphism g ≠ idX

which can be connected to idX via a path of �nite length (in the complete metric ∂), thenHomeo(X̃) is

not zero-dimensional.

Proof. Put G = Homeo(X̃), K = Homeo(X) and let f be a path of �nite length de�ned on the

unit interval [0, 1] with f(0) = 1K and f(1) = g ≠ 1K. Set r = ∂(1K , g). ¿e quotient map q∶G →

K is Lipschitz and by Lemma 2.2.2 it sends open balls to open balls of the same radius. Suppose
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that G is zero-dimensional; then there exists a clopen set U ⊆ Br(1G). Towards a contradiction,

de�ne inductively trans�nite sequences {tα}, {hα} and {h̃α}, α < ω1 of elements of [0, 1], K and G,

respectively, satisfying the following conditions:

• f(tα) = hα = q(h̃α); h̃α ∈ U;

• α < βÔ⇒ tα < tβ;

• ∂(h̃α, h̃β) ≤ 2 len(tα, tβ).

Set t0 = 0, h0 = 1K, h̃0 = 1G. Suppose that the sequences have been de�ned for α < β. If β = γ + 1 is

a successor �nd an є, 0 < є < ∂(hγ, g) such that Bє(h̃γ) ⊆ U. Set tβ = sup{t ∈ [tγ, 1] ∶ ∂(hγ, f(t)) =

є/2}, hβ = f(tβ). Using Lemma 2.2.2, �nd an h̃β ∈ G, satisfying q(h̃β) = hβ, ∂(h̃γ, h̃β) < 3є/4 and

hence, h̃β ∈ U. Finally, to verify the third condition, notice that for any α < β

∂(h̃α, h̃β) ≤ ∂(h̃α, h̃γ) + ∂(h̃γ, h̃β) ≤ 2 len(tα, tγ) + 3є/4

< 2 len(tα, tγ) + 2∂(hγ,hβ) ≤ 2 len(tα, tβ).

Now consider the case when β < ω1 is a limit ordinal. Since β is countable, there exists an increasing

sequence {γn} with limγn = β. By compactness of [0, 1], tγn converges. By the inductive hypothesis,

∑n ∂(h̃γn , h̃γn+1) ≤ 2∑n len(tγn , tγn+1) < ∞, so {h̃γn} is Cauchy and therefore converges. Set h̃β =

lim h̃γn , hβ = q(h̃β), tβ = lim tγn . By continuity, f(tβ) = hβ and h̃β ∈ U because U is closed. Now �x

α < β and verify the last condition:

∂(h̃α, h̃β) = lim
n→∞

∂(h̃α, h̃γn) ≤ sup
n
2 len(tα, tγn) ≤ 2 len(tα, tβ).

As a result of the construction, we obtain an order preserving embeddingω1 → [0, 1], which is clearly

impossible.

Proposition 2.4.9. ¿ere exists a path f∶ [ 12 ,
3
4] → Homeo(I) with idI = f( 12) ≠ f( 34) and of �nite

length (in the complete metric ∂).

Proof. For each t ∈ [ 12 ,
3
4] consider the homeomorphism f(t)∶ I → I which maps linearly [0, 12] onto

[0, t] and [ 12 , 1] onto [t, 1]. It is easy to see that ∂(f(t), f(s)) ≤ 3∣t − s∣, so we have our path.
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Endow the Hilbert cube Q = IN with its standard metric

d((x0,x1, . . .),(y0, y1, . . .)) =
∞
∑
n=0

2−n∣xn − yn∣.

¿en we have the following

Corollary 2.4.10. ¿ere is a path of �nite length f∶ [ 12 ,
3
4] → Homeo(Q) with idQ = f( 12) ≠ f( 34),

and henceHomeo(Q̃) is one-dimensional.

Proof. ¿e map i∶Homeo(I) → Homeo(Q), de�ned by i(h)(x0,x1, . . .) = (h(x0),x1, . . .), is an

isometric embedding.

It is an open problemwhether every Polish group is a homomorphic image of a zero-dimensional

Polish group. However, we have the following interesting corollary, again pointed out by Kechris:

Corollary 2.4.11. Every Polish group is a factor of an almost zero-dimensional Polishable subgroup of

S∞.

Proof. Let K be a Polish group. It is well known that Homeo(Q) is a universal Polish group (see

Uspenskĭı [73]), hence there exists an embedding i∶K → Homeo(Q) onto a closed subgroup of

Homeo(Q). Let q∶Homeo(Q̃) → Homeo(Q) be the quotient map. ¿en q−1(i(K)) is a closed

subgroup of Homeo(Q̃) and q−1(i(K))/H ≅ K.

Remark. Corollary 2.4.11 is false if we restrict ourselves to closed subgroups of S∞. In fact, using the

characterization that the closed subgroups of S∞ are exactly the Polish groups which admit a basis

at the identity consisting of open subgroups (see Becker–Kechris [2, ¿eorem 1.5.1]), it is not hard to

show that any factor of a closed subgroup of S∞ is isomorphic to a closed subgroup of S∞.

2.5 Polishable ideals on N

Recall that an ideal onN is a collection of subsets ofN closed under �nite unions and taking subsets.

To avoid trivialities, we will also assume that every ideal contains the ideal of �nite sets Fin. An ideal

is called Polishable if it is a Polishable subgroup of the Cantor group 2N (with symmetric di�erence

as the group operation). A lower semi-continuous (or lsc) submeasure on N is a function ϕ∶ P(N) →

[0,∞], satisfying

• ϕ(∅) = 0;



20

• a ⊆ b Ô⇒ ϕ(a) ≤ ϕ(b) for any a,b ⊆ N;

• ϕ(a ∪ b) ≤ ϕ(a) + ϕ(b); ϕ({n}) < ∞ for n ∈ N;

• ϕ(⋃k ak) = limk ϕ(ak), whenever a0 ⊆ a1 ⊆ ⋯.

With every lsc submeasure we associate the following two ideals:

Exh(ϕ) = {a ⊆ N ∶ lim
n
ϕ(a ∖ n) = 0} and Fin(ϕ) = {a ⊆ N ∶ ϕ(a) < ∞}.

(As is customary, we identify the natural number n with the set of its predecessors.) It is easy to see

that Exh(ϕ) ⊆ Fin(ϕ) and Fin(ϕ) is Σ02, while Exh(ϕ) is Π0
3 in 2N. Since the ideals Exh(ϕ) and

Fin(ϕ) do not change if we replace ϕ with the submeasure ϕ′, ϕ′(a) = ϕ(a) + ∑n∈a 2−n, we can

restrict our considerations to submeasures ϕ satisfying ϕ({n}) > 0 for all n. An ideal I is called a

P-ideal if for every sequence {an} of elements of I there exists a ∈ I, such that an ∖ a is �nite for all

n. ¿e following is a summary of the results of Solecki [66, 67] which we shall need.

¿eorem 2.5.1 (Solecki). An ideal I is an analytic P-ideal i� it is Polishable i� there exists a �nite, lsc

submeasure ϕ with I = Exh(ϕ). I is Σ02 Polishable i� there exists a lsc ϕ with I = Exh(ϕ) = Fin(ϕ).

If I = Exh(ϕ), then the Polish topology on I is induced by the metric d(a,b) = ϕ(a △ b), where

△ denotes the operation of symmetric di�erence.

We say that two ideals I and J are isomorphic if there exists a permutation f∶N → N, such that

a ∈ I ⇐⇒ f(a) ∈ J. We denote the trivial ideal P(N) simply by N. If I and J are ideals on N then

I⊕ J is the ideal on N × 2 de�ned by

I⊕ J = {a × {0} ∪ b × {1} ∶ a ∈ I and b ∈ J}.

An ideal is a trivial modi�cation of Fin if it is of the form {a ∶ a∩b is �nite} for some b ⊆ N. If an ideal

I is Polishable, we will denote the topological space I with its Polish topology by Iτ. Since every Pol-

ishable ideal is Π0
3 , Proposition 2.4.6 implies that Iτ is almost zero-dimensional, as witnessed by the

topology inherited from the compact group 2N. It is also easy to check that (I⊕ J)τ is homeomorphic

to Iτ × Jτ.

We associate with each Polishable ideal I the subgroup SI ≤ S∞ de�ned by

SI = {f ∈ S∞ ∶ supp f ∈ I}.
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Below we will make use of a lemma which can be proved in the same way as the fact that all

automorphisms of S∞ are inner. A very detailed exposition can be found in Lorch [50].

Lemma 2.5.2. If G1 and G2 are isomorphic subgroups of S∞, both containing all permutations with

�nite support, then they are conjugate, i.e., there exists f ∈ S∞, such that G2 = f−1G1 f.

¿eorem2.5.3. With the above de�nition, SI is a Polishable subgroup of S∞, which in its Polish topology

is almost zero-dimensional. It is zero-dimensional i� Iτ is zero-dimensional. ¿e Borel complexity of SI

in S∞ and I in 2N is the same. Furthermore, the groups SI and SJ are isomorphic (algebraically) i� I

and J are isomorphic ideals.

Proof. Let ϕ be a lsc submeasure, such that I = Exh(ϕ). SI acts on I in a natural way: g ⋅ a = {g(n) ∶

n ∈ a}. ¿e �rst thing we will check is that this action is continuous in the second variable, i.e.,

∀g ∈ SI ∀є∃δ∀a ∈ I ϕ(a) < δ Ô⇒ ϕ(g ⋅ a) < є. (2.5.1)

(Continuity at∅ is su�cient because g⋅(a△ b) = (g⋅a) △ (g⋅b).) Fix g ∈ SI and є > 0. FindN ∈ N,

such that ϕ(supp g ∩ [N,∞)) < є/2 and δ < є/2 so small that ϕ(a) < δ Ô⇒ a ∩ g−1 ⋅ [0,N) = ∅.

Now for any a ∈ I with ϕ(a) < δ, we have

ϕ(g ⋅ a) ≤ ϕ(a ∪ (supp g∩ [N,∞))) ≤ ϕ(a) + ϕ(supp g∩ [N,∞)) < є.

De�ne the le invariant metric ∂′ on SI by ∂′(f, g) = ϕ({f ≠ g}). It is clear that every open ball

in this metric is Borel in S∞. We next check that multiplication is continuous. Fix f0, g0 ∈ SI and

є > 0. Using (2.5.1), �nd δ < є/2 so small that ϕ(a) < δ Ô⇒ ϕ(g−10 ⋅ a) < є/2. Now for any f, g ∈ SI

with max(∂′(g, g0),∂′(f, f0)) < δ, we have

∂′(fg, f0g0) = ϕ({fg ≠ f0g0}) ≤ ϕ({g ≠ g0}) + ϕ({fg0 ≠ f0g0})

= ∂′(g, g0) + ϕ(g−10 ⋅ {f ≠ f0}) ≤ є/2 + є/2 = є.

¿e map f↦ f−1 is continuous because the metric is le invariant and multiplication is continuous.

¿e next thing we show is that the metric ∂(f, g) = ∂′(f, g) + ∂′(f−1, g−1) is complete. Let {fn} be

a Cauchy sequence in this metric. Without loss of generality, we can assume that ϕ({n}) ≥ 2−n, so

∂ dominates the standard complete metric on S∞ (2.1.1). ¿erefore the pointwise limit g = limn fn

exists. We check that g ∈ SI. Fix є > 0 and N ∈ N, such that ∀m,n > N ϕ({fm ≠ fn}) < є/4. Fix
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m > N. Let M ∈ N be so big that ϕ(supp fm ∖ M) < є/4. Suppose, towards a contradiction, that

ϕ(supp g ∖ M) > є. ¿en there is M1 > M, such that ϕ(supp g ∩ [M,M1]) > є/2. Find k > N,

such that fk agrees with g on [0,M1]. ¿en ϕ(supp fk ∖M) > є/2, which contradicts the choice of

N and M. ¿erefore supp g ∈ Exh(ϕ) = I. Now it remains to check that ϕ({fn ≠ g}) → 0. Again

�x an є and �nd N, such that ∀m,n > N ϕ({fm ≠ fn}) < є/2. Fix m > N. Let M be such that

ϕ({fm ≠ g} ∖M) < є/2. Find n > m, such that fn and g agree onM. ¿en

ϕ({fm ≠ g}) ≤ є/2 + ϕ({fm ≠ g} ∩M) = є/2 + ϕ({fm ≠ fn} ∩M) < є.

Finally, the topology de�ned by ∂ is separable because the group of permutations with �nite support

is dense in SI (since ∀f ∈ SI ϕ(supp f∖ n) → 0 and thus permutations in SI can be approximated in

the metric ∂′ by permutations of �nite support). ¿is completes the proof that SI is Polishable.

If I = Fin or I = N, the remaining statements are clear. Suppose now that this is not the case and

let b ∉ I be an in�nite set, such thatN∖b is in�nite and in I. Fix a bijection h between b andN∖b. Let

I′ = I∣b = {a∩ b ∶ a ∈ I} = Exh(ϕ∣b). ¿en I′ is Polishable and I ≅ I′ ⊕N. Let p∶ 2N = 2b × 2N∖b → 2b

be the projection and consider the continuous maps Φ∶ S∞ → 2N and Ψ∶ 2b → S∞ de�ned by

Φ(f) = supp f and Ψ(a) = ∏
n∈a

(n h(n)).

By the de�nition of SI, f ∈ SI ⇐⇒ Φ(f) ∈ I. Furthermore, for a ∈ 2b, suppΨ(a) = a ∪ h(a) and

hence

a ∈ I ⇐⇒ p(a) ∈ I′ ⇐⇒ Ψ(p(a)) ∈ SI.

¿ose reductions prove the statement about the Borel complexity of I and SI. ¿e fact that SI is Π0
3 ,

together with Proposition 2.4.6, imply that the Polish topology of SI is almost zero-dimensional.

Let now Iτ be zero-dimensional and {Uk} be a clopen basis at ∅. ¿en {Φ−1(Uk)} is a clopen

basis for SI at 1. Conversely, if SI is zero-dimensional, notice that Ψ(I′) = Ψ(2b) ∩ SI is a closed

subgroup of SI and hence the group homomorphism Ψ∣I′ ∶ I′ → SI is a homeomorphic embedding

I′τ ↪ SI. ¿erefore I′τ is zero-dimensional and since Iτ ≅ I′τ × 2N, Iτ is also zero-dimensional.

¿e last statement is a direct consequence of Lemma 2.5.2.

Finally, we use our methods from the proof of¿eorem 2.4.8 to sketch an alternative proof of the

following fact, due to Solecki:
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Proposition 2.5.4 (Solecki [69]). For a Σ02 Polishable ideal I, the following are equivalent:

(i) Iτ is zero-dimensional;

(ii) I is a trivial modi�cation of Fin.

Proof. (ii)⇒ (i). Let I = {a ∶ a∩ b is �nite} for some b ⊆ N. If b is �nite, then I = N. If b is co-�nite,

then I = Fin. Finally, if b is in�nite and co-in�nite, I = N ⊕ Fin and Iτ ≅ Finτ ×Nτ ≅ N × 2N is

zero-dimensional.

(i)⇒ (ii). Use¿eorem 2.5.1 to �nd a lsc submeasure ϕ, such that I = Exh(ϕ) = Fin(ϕ). Suppose,

towards a contradiction, that Iτ is zero-dimensional but (ii) is not satis�ed. ¿en it is not hard to see

that

∀є > 0 {n ∶ ϕ({n}) < є} ∉ I. (2.5.2)

Indeed, if not, �nd є > 0 with {n ∶ ϕ({n}) < є} ∈ I and set b = {n ∶ ϕ({n}) ≥ є}. ¿en I = {a ∶

a ∩ b is �nite}, a contradiction. Let U ⊆ {a ∶ ϕ(a) < 1} be clopen. We will construct inductively a

trans�nite sequence {aα}α<ω1 of elements of U, satisfying α < β Ô⇒ aα ⊊ aβ, thus obtaining the

desired contradiction. Start with a0 = ∅. At successor steps, given aβ, use the openness of U and

(2.5.2) to �nd n ∉ aβ, such that aβ ∪ {n} ∈ U and set aβ+1 = aβ ∪ {n}. At a limit α set aα = ⋃β<α aβ

and limn aγn = aα in the Polish topology of I for any sequence {γn} co�nal in α (use I = Exh(ϕ)

here). Hence aα ∈ U.
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Chapter 3

Amenable Actions and Almost Invariant
Sets

3.1 Introduction

Let X be a countable set and Γ a countable, in�nite group acting on X. Let M be a standard Borel

space and ν an arbitrary Borel probability measure on M which does not concentrate on a single

point. Consider the measure space (MX,νX) where νX stands for the product measure (which we

will also denote by µ). ¿e action of Γ on X gives rise to an action on MX (called a generalized

Bernoulli shi ) by measure-preserving transformations:

(γ ⋅ c)(x) = c(γ−1 ⋅ x), for c ∈ MX.

¿e classical Bernoulli shi s are obtained by letting Z act on itself by translation.

¿ere are natural connections between many properties of the action of Γ on X and ergodic

theoretic properties of the corresponding Bernoulli shi . We summarize some of those in Section 3.2.

In studying generalized Bernoulli shi s, it is o en useful to consider the unitary representations of

Γ arising from the actions, namely the representation λX on ℓ2(X) given by

(λX(γ) ⋅ f)(x) = f(γ−1 ⋅ x), for f ∈ ℓ2(X),

and the Koopman representation κ on L2(MX, µ) given by

(κ(γ) ⋅ f)(c) = f(γ−1 ⋅ c), for f ∈ L2(MX, µ).
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Since the representation κ trivially �xes the constants, we will o en also consider its restriction κ0

to L20(MX, µ) = {f ∈ L2 ∶ ∫ f = 0}. We recall some basic de�nitions about unitary representations.

Let π,σ be representations of a countable group Γ. If σ is isomorphic to a subrepresentation of π, we

write σ ≤ π. In particular, if σ = 1Γ, the trivial (one-dimensional) representation of Γ, and σ ≤ π,

we say that π has invariant vectors. If Q ⊆ Γ is �nite, and є > 0, we say that a unit vector v ∈ H is

(Q,є,π)-invariant if

∀γ ∈ Q ∥π(γ) ⋅ v − v∥ < є.

If for all pairs (Q,є), there exists a (Q,є,π)-invariant vector, we say that π has almost invariant

vectors and write 1Γ ≺ π.

Recall that the action of Γ on X is called amenable if there exists a Γ-invariant mean on ℓ∞(X).

¿e action is said to satisfy the Følner condition if for all �nite Q ⊆ Γ and all є > 0, there exists a �nite

F ⊆ X such that

∀γ ∈ Q ∣F △ γ ⋅ F∣ < є∣F∣. (3.1.1)

¿e following equivalences are well known and can be proved in exactly the same way as the corre-

sponding ones for amenability of groups (see, for example, Bekka–de la Harpe–Valette [4]).

¿eorem 3.1.1. ¿e following are equivalent for an action of Γ on X:

(i) the action is amenable;

(ii) the action satis�es the Følner condition;

(iii) 1Γ ≺ λX.

Clearly, all actions of amenable groups are amenable and if an action has a �nite orbit, it is au-

tomatically amenable. ¿ere are also non-amenable groups which admit amenable actions with in-

�nite orbits. Important examples are the non-amenable, inner amenable groups with in�nite con-

jugacy classes (consider the action of Γ on Γ ∖ {1} by conjugation; see Bédos–de la Harpe [3] for

de�nitions and examples). Interestingly, free groups also admit transitive, faithful, amenable actions

(van Douwen [75]). Y. Glasner and N. Monod in a recent paper [28] study the class of groups which

admit transitive, faithful, amenable actions and give some history, references, and further examples.

Grigorchuk–Nekrashevych [29] describe yet another example of faithful, transitive, amenable actions

of free groups. On the other hand, every amenable action of a group with Kazhdan’s property (T) has

a �nite orbit.
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An action of a countable group Γ on a measure space (Y, µ) by measure preserving transforma-

tions has almost invariant sets if there is a sequence {An} of measurable sets with measures bounded

away from 0 and 1 such that for all γ ∈ Γ,

µ(γ ⋅ An △ An) → 0 as n→∞.

It is easy to see that the existence of almost invariant sets implies the existence of almost invariant

vectors for the Koopman representation κ0 (look at the characteristic functions) but the converse

may fail, as was �rst proved by Schmidt [63] (for another example, see Hjorth–Kechris [32, ¿eorem

A3.2]). In fact, the existence of almost invariant sets depends only on the orbit equivalence relation

which, in the ergodic case, is equivalent to non E0-ergodicity (Jones–Schmidt [35]), while the exis-

tence of almost invariant vectors depends on the group action (see [32] again). Recall that E0 is the

equivalence relation on 2N de�ned by

(xn)E0 (yn) ⇐⇒ ∃m∀n > m xn = yn.

An equivalence relation E on a measure space (Y, µ) is E0-ergodic if for every Borel map f∶Y → 2N

which satis�es

x E y Ô⇒ f(x)E0 f(y),

there is a single E0 equivalence class whose preimage is µ-conull. For a discussion on E0-ergodicity

and the related concepts of almost invariant vectors and sets, see [32, Appendix A].

Now we can state the main theorem of this paper which connects the amenability of the action

of Γ on X and the existence of almost invariant sets for the corresponding Bernoulli shi and almost

invariant vectors for the Koopman representation:

¿eorem3.1.2. Let an in�nite, countable group Γ act on a countable set X. ¿e following are equivalent:

(i) the action of Γ on X is amenable;

(ii) the action of Γ on MX has almost invariant sets;

(iii) the Koopman representation κ0 has almost invariant vectors.

¿is result has an implication concerning orbit equivalence. Schmidt [63] showed that every

non-amenable group Γ that does not have property (T) has at least two non-orbit equivalent, ergodic
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actions (this was extended later by Hjorth [31] to all non-amenable groups). ¿e preceding result

shows that if Γ is non-amenable but admits an action on X which is amenable and has in�nite orbits

(this class of groups is a subclass of non-property (T) groups), then one in fact has two ergodic, free

a.e. generalized shi s which are not orbit equivalent: the generalized shi on 2X and the usual shi 

on 2Γ (ergodicity follows from Proposition 3.2.1 below and freeness can easily be achieved by adding

an additional orbit to X, see Proposition 3.2.4). For example, for non-amenable, inner amenable

groups Γ, the usual shi on 2Γ and the conjugacy shi on 2Γ∖{1} are not orbit equivalent. Also any

non-abelian free group admits two non-orbit equivalent free, ergodic generalized shi s.

Since in most cases the existence of almost invariant vectors is easier to check than the existence

of almost invariant sets, it will be interesting to know whether there are other cases in which the two

concepts coincide. A relatively broad class of examples ofmeasure-preserving actions, studied by sev-

eral authors (see the monograph Schmidt [64] for discussion and references and also Kechris [40]),

consists of the actions by automorphisms on compact Polish groups (equipped with the Haar mea-

sure). ¿e generalized Bernoulli shi s with a homogeneous base spaceM also fall into that class.

Question 3.1.3. Let Γ act on a compact Polish groupG by automorphisms (which necessarily preserve

the Haar measure). Is it true that the action has almost invariant sets i� the corresponding Koopman

representation κ0 has almost invariant vectors?

¿e rest of the paper is organized as follows: in Section 3.2, we recall some necessary and su�-

cient conditions for a Bernoulli shi to be ergodic, mixing, etc.; in Section 3.3, we carry out a detailed

spectral analysis of the Koopman representation of generalized Bernoulli shi s and prove a few pre-

liminary lemmas; and �nally, in Section 3.4, we give a proof of ¿eorem 3.1.2.

Below Γ and G will always be countable, in�nite groups and Q will denote a �nite subset of the

group.

3.2 Group actions and generalized shi s

In this section, we record several known facts which characterize when a generalized Bernoulli shi 

is ergodic, weakly mixing, mixing, or free a.e.

Proposition 3.2.1. ¿e following are equivalent:

(i) the action of Γ on MX is ergodic;

(ii) the action of Γ on MX is weakly mixing;
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(iii) the action of Γ on X has in�nite orbits;

(iv) 1Γ ≰ λX.

Proof. We shall need the following standard lemma from group theory (for a proof, see, e.g., [40,

Lemma 4.4]):

Lemma 3.2.2 (Neumann). Let Γ be a group acting on a set X. ¿en the following are equivalent:

(a) all orbits are in�nite;

(b) for all �nite F1,F2 ⊆ X, there exists γ ∈ Γ such that γ ⋅ F1 ∩ F2 = ∅.

(i) ⇒ (iii) Suppose that there is a �nite orbit F ⊆ X. Let A ⊆ M, 0 < ν(A) < 1. ¿en the set

{c ∈ MX ∶ c(F) ⊆ A} is non-trivial and invariant under the action.

(iii) ⇒ (ii) It su�ces to show that the diagonal action of Γ on MX ×MX is ergodic. ¿is action

is the same as the Bernoulli shi corresponding to the disjoint sum of the action of Γ on X with

itself. ¿e latter action has in�nite orbits by (iii). Suppose A ⊆ MX⊔X is invariant and 0 < µ(A) < 1.

¿en we can �nd A′ ⊆ MX⊔X depending only on a �nite set of coordinates F ⊆ X ⊔ X such that

µ(A′ △ A) < є/3 and µ(A′) − µ(A′)2 > є for some є > 0. By Lemma 3.2.2, there is γ ∈ Γ such that

γ ⋅ F ∩ F = ∅. By independence, µ(A′ ∩ γ ⋅ A′) = µ(A′)2. On the other hand,

µ(A′ ∩ γ ⋅ A′) ≥ µ(A′) − 3µ(A △ A′) > µ(A′) − є,

a contradiction.

(ii)⇒ (i) and (iii)⇔ (iv) are obvious.

Recall that π is called a c0-representation if for all v ∈ Hπ, limγ→∞ ⟨π(γ) ⋅ v,v⟩ = 0.

Proposition 3.2.3. ¿e following are equivalent:

(i) the action of Γ on MX is mixing;

(ii) κ0 is a c0-representation;

(iii) λX is a c0-representation;

(iv) the stabilizers Γx = {γ ∈ Γ ∶ γ ⋅ x = x} for x ∈ X are �nite.
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Proof. (ii) ⇒ (iv) Let A ⊆ M, 0 < ν(A) < 1. Suppose Γx is in�nite for some x and consider the set

B = {c ∈ MX ∶ c(x) ∈ A}. ¿en 0 < µ(B) < 1 and γ ⋅ B = B for in�nitely many γ so the shi is not

mixing.

(iv)⇒ (ii) It su�ces to show that the mixing condition is satis�ed for sets A,B ⊆ MX depending

only on �nitely many coordinates. Let F1,F2 ⊆ X be �nite, Adepend on F1, and B depend on F2. By

(iv), there are only �nitely γ ∈ Γ for which γ ⋅ F1 ∩ F2 ≠ ∅, hence

lim
γ→∞

µ(γ ⋅ A∩ B) = µ(A)µ(B)

and we are done.

Finally, the equivalences (i)⇔ (ii) and (iii)⇔ (iv) are easy to prove.

Proposition 3.2.4. If the measure ν has atoms, the following are equivalent:

(i) the action of Γ on MX is free a.e.;

(ii) for each γ ∈ Γ∖ {1}, the set {x ∈ X ∶ γ ⋅ x ≠ x} is in�nite.

If ν is non-atomic, (i) is equivalent to

(iii) the action of Γ on X is faithful.

Proof. Suppose �rst that ν has an atom a ∈ M. If for some γ ≠ 1 the set Hγ = {x ∶ γ ⋅ x ≠ x} is �nite,

then

µ(γ ⋅ c = c) ≥ µ(∀x ∈ Hγ c(x) = a) = ν({a})∣Hγ∣ > 0,

so the action of Γ onMX is not free a.e.

Conversely, if Hγ is in�nite for all γ ≠ 1, �nd in�nite sets Yγ ⊆ X such that γ ⋅ Yγ ∩ Yγ = ∅. ¿en

µ(γ ⋅ c = c) ≤ µ(∀x ∈ Yγ c(x) = c(γ−1 ⋅ x))

= ∏
x∈Yγ

µ(c(x) = c(γ−1 ⋅ x)) = 0.

If the action of Γ on X is not faithful, then the action onMX is not faithful either, so in particular

it is not free. Conversely, if ν is non-atomic and γ ⋅ x ≠ x for some x ∈ X,

µ(γ ⋅ c = c) ≤ µ(c(x) = c(γ−1 ⋅ x)) = 0.
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3.3 Spectral analysis of the Koopman representation

For each subgroup ∆ ≤ Γ, we have the quasi-regular representation λΓ/∆ on ℓ2(Γ/∆) given by

(λΓ/∆(γ) ⋅ f)(δ∆) = f(γ−1δ∆).

Notice that if S is a transversal for the action of Γ on X (i.e., S ⊆ X and S intersects each orbit in

exactly one point), then

λX ≅ ⊕x∈S λΓ/Γx , (3.3.1)

where Γx denotes the stabilizer of the point x. ¿e �rst aim of this section is to verify that κ is also

equivalent to a sum of quasi-regular representations. ¿is is well-known but the authors were unable

to �nd a speci�c reference.

Let {fi ∶ i ∈ I} be a (�nite or countably in�nite) orthonormal basis for L2(M,ν) such that fi0 ≡ 1

for some i0 ∈ I. Set I0 = I∖{i0} and notice that since ν does not concentrate on a single point, I0 ≠ ∅.

For a function q∶X→ I, write

supp q = q−1(I0)

and letA = {q ∶ ∣ supp q∣ < ∞}. For q ∈ A, de�ne hq ∈ L2(MX, µ) by

hq(c) = ∏
x∈X

fq(x)(c(x)).

Lemma 3.3.1. ¿e collection {hq ∶ q ∈ A} forms an orthonormal basis for L2(MX).

Proof. First we check that ∥hq∥ = 1. Indeed,

∥hq∥
2
= ⟨hq,hq⟩ = ∫ ∣hq∣2 dµ

= ∏
x∈X
∫ ∣fq(x)(z)∣2 dν(z)

= ∏
x∈X

∥fq(x)∥
2

= 1.
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Now suppose q1 ≠ q2. ¿en

⟨hq1 ,hq2⟩ = ∫ hq1hq2 dµ

= ∏
x∈X
∫ fq1(x)(z)fq2(x)(z)dν(z)

= 0

because ∫ fq1(x0)(z)fq2(x0)(z)dν(z) = ⟨fq1(x0), fq2(x0)⟩ = 0 for some x0 for which q1(x0) ≠ q2(x0).

Finally, we verify that the hqs are total in L2(MX). Let F be the measure algebra of MX. Fix

an exhausting sequence F1 ⊆ F2 ⊆ ⋯ of �nite subsets of X and denote by Fn the σ-subalgebra of

F generated by the projections {px ∶ x ∈ Fn}. Notice that L2(MX,Fn) is canonically isomorphic

to L2(MFn) which, in turn, is canonically isomorphic to⊗x∈Fn L
2(M). Under this isomorphism, a

function hq with supp q ⊆ Fn corresponds to the tensor ⊗x∈Fn fq(x). Hence {hq ∶ supp q ⊆ Fn} is

total in L2(MX,Fn). But ⋃nFn generates F , so ⋃n L2(MX,Fn) is dense in L2(MX) and we are

done.

Notice that Γ acts onA in a natural way:

(γ ⋅ q)(x) = q(γ−1 ⋅ x).

¿is action induces a representation on L2(MX) (by permuting the basis {hq ∶ q ∈ A}) and clearly

this representation is equal to κ. Let now T be a transversal for the action of Γ onA (i.e., T ⊆ A and

T intersects each orbit in exactly one point). Let for each q ∈ A, Γq denote the stabilizer of q. ¿e

preceding discussion implies that

κ ≅ ⊕q∈T λΓ/Γq .

Notice that the constant function q0 ≡ i0 is an orbit of the action of Γ onA consisting of a single

element, so q0 ∈ T. Let T0 = T ∖ {q0}. We have just proved

Proposition 3.3.2.

κ0 ≅ ⊕q∈T0 λΓ/Γq . (3.3.2)

We also record a few facts about quasi-regular representations which will be used later.

Lemma 3.3.3. Let G be a countable group and K ≤ H ≤ G with [H ∶ K] < ∞. ¿en λG/H ≤ λG/K.
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Proof. Letn = [H ∶ K] and let p∶G/K → G/H be the natural projection. De�ne themapΦ∶ ℓ2(G/H) →

ℓ2(G/K) by

Φ(f) =
1

√
n
f ○ p.

It is easy to check that Φ is an isometric embedding which intertwines λG/H and λG/K.

Lemma 3.3.4. Let G be a countable group and K ≤ H ≤ G. Let Q ⊆ G, є > 0 and assume there is a

(Q,є, λG/K)-invariant vector. ¿en there exists a (Q,є, λG/H)-invariant vector.

Proof. Let v ∈ ℓ2(G/K) be (Q,є, λG/K)-invariant. By considering ∣v∣ instead of v, we can assume

that v ≥ 0 (∣v∣ is (Q,є, λG/K)-invariant by the triangle inequality). De�ne w ∈ ℓ2(G/H) by

w(D) =
√

∑
C⊆D

v2(C), D ∈ G/H

where C runs over elements of G/K. We have

∥w∥2 = ∑
D∈G/H

∑
C⊆D

v2(C) = ∑
C∈G/K

v2(C) = ∥v∥2 = 1.

Furthermore, for each γ ∈ Q,

⟨γ ⋅w,w⟩ = ∑
D∈G/H

w(γ−1D)w(D)

= ∑
D∈G/H

√
∑

C⊆γ−1D
v2(C)

√

∑
C⊆D

v2(C)

≥ ∑
D∈G/H

∑
C⊆D

v(C)v(γ−1C), by Cauchy-Schwartz,

= ∑
C∈G/K

v(C)v(γ−1C)

= ⟨γ ⋅ v,v⟩ .

Hence,

∥γ ⋅w −w∥2 = 2 ∥w∥2 − 2 ⟨γ ⋅w,w⟩

≤ 2 ∥v∥2 − 2 ⟨γ ⋅ v,v⟩ = ∥γ ⋅ v − v∥2 < є2

and w is (Q,є, λG/H)-invariant.
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Lemma 3.3.5. Let πi, i = 1, 2, . . . be unitary representations of a countable group G on the Hilbert

spaces Hi. Suppose that 1G ≺ ⊕∞
i=1 πi. ¿en for each Q ⊆ G and є > 0, there exists n and vn ∈ Hn which

is (Q,є,πn)-invariant.

Proof. FixQ and є. LetH = ⊕iHi. ¿ere exists v ∈ H, v = ⊕i vi, such that ∥π(γ) ⋅ v − v∥ < є/
√
m∥v∥

wherem = ∣Q∣. We have

∥π(γ) ⋅ ⊕i vi −⊕i vi∥
2 < є2/m∥⊕i vi∥

2 for all γ ∈ Q,

∑
γ∈Q
∑
i
∥πi(γ) ⋅ vi − vi∥2 < є2∑

i
∥vi∥2

∑
i
∑
γ∈Q

∥πi(γ) ⋅ vi − vi∥2 < ∑
i
є2 ∥vi∥2 .

Hence, for some i,

∑
γ∈Q

∥πi(γ) ⋅ vi − vi∥2 < є2 ∥vi∥2 ,

and in particular, for each γ ∈ Q,

∥πi(γ) ⋅ vi − vi∥2 < є2 ∥vi∥2 .

3.4 Proof of¿eorem 3.1.2

We start with the implication (i)⇒ (ii). We shall need to use the Central Limit¿eorem for random

variables several times and we �nd it convenient to employ probabilistic notation. For all necessary

background in probability theory, a good reference is Durrett [13]. In this section, we will use P

instead of µ to denote the measure onMX. Recall that a sequence ξk of random variables converges

in distribution to ξ (written as ξk ⇒ ξ) if the distribution measures of ξk converge to the distribution

measure of ξ in the weak∗ topology. For this, it is necessary and su�cient that P(ξk ∈ A) → P(ξ ∈

A) for every Borel set A for which P(ξ ∈ ∂A) = 0 (∂A denotes the topological boundary of A).

¿e Central Limit ¿eorem states that if {ξk} is a sequence of independent, identically distributed

random variables with �nite meanm and variance σ2, then

∑k
i=1 ξi − km
σ
√
k



34

converges in distribution to a standard normal random variable (see [13, ¿eorem 2.4.1]). Recall also

that a distribution is continuous if the measure associated to it is non-atomic. Finally, a sequence ξk

converges in probability to ξ if for all є > 0, P(∣ξk − ξ∣ > є) → 0 as k→∞. We need the following two

lemmas.

Lemma 3.4.1. Let ξk,ηk, ζk, k = 1, 2, . . . be random variables such that ξk ⇒ ξ, where ξ is a random

variable with continuous distribution, and ηk, ζk converge in probability to 0. ¿en P(ηk ≤ ξk ≤ ζk) →

0 as k→∞.

Proof. Fix є > 0 and �nd δ such that P(∣ξ∣ ≤ δ) < є. FindN so big that for k > N, ∣P(∣ξk∣ ≤ δ)−P(∣ξ∣ ≤

δ)∣ < є, P(ηk < −δ) < є, and P(ζk > δ) < є. ¿en, for all k > N,

P(ηk < ξk ≤ ζk) ≤ P(∣ξk∣ ≤ δ) + P(ηk < −δ) + P(ζk > δ) ≤ 4є.

Lemma 3.4.2. Let ξk ⇒ ξ, αk ∈ R, αk ≥ 0, αk → 0. ¿en αkξk → 0 in probability.

Proof. It su�ces to show that for all δ > 0, P(αk∣ξk∣ > δ) → 0. Fix є > 0. Find a such that P(∣ξ∣ >

a) < є/2 and P(∣ξ∣ = a) = 0. For all large enough k, we will have ∣P(∣ξk∣ > a) − P(∣ξ∣ > a)∣ < є/2 and

δ/αk > a. For all those k (assuming also αk > 0),

P(∣ξk∣ > δ/αk) ≤ P(∣ξk∣ > a) < P(∣ξ∣ > a) + є/2 < є.

Suppose now that the action of ΓonX is amenable. Without loss of generality, takeM = I = [−1, 1]

and assume that the measure ν is centered at 0 (i.e., ∫I x dν(x) = 0). We will �nd a sequence {Ak} of

subsets of IX with measures bounded away from 0 and 1, satisfying for all γ ∈ Γ,

P(γ ⋅ Ak △ Ak) → 0 as k→∞. (3.4.1)

Enumerate Γ = {γn}. By (3.1.1), there exists a sequence {Fk} of �nite subsets of X satisfying

∀i ≤ k
∣Fk △ γi ⋅ Fk∣

∣Fk∣
< 1/k. (3.4.2)
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For each x ∈ X, let px∶ IX → I be the corresponding projection function. We view the pxs as in-

dependent, identically distributed, real random variables with distribution given by the measure ν.

Note that all of their moments are �nite because they are bounded. By our assumptions, the mean

E px = 0. Set σ2 = Var px = E p2x > 0. Let rk = ∣Fk∣ and set

Ak = {∑
x∈Fk

px > 0}.

First suppose that the sequence {rk} is bounded by a number K. Notice that P(Ak) only depends

on the number rk and not on the actual set Fk. ¿erefore, in this case, we have only �nitely many

possibilities for P(Ak), so P(Ak) are bounded away from 0 and 1. Also, by (3.4.2), for k > K and

i ≤ k, γi ⋅ Fk = Fk, hence γi ⋅ Ak = Ak and the sequence {Ak} is almost invariant.

Now consider the case when {rk} is unbounded. By taking a subsequence, we can assume that

rk → ∞. We �rst show that the measures of Ak are bounded away from 0 and 1. Indeed, by the

Central Limit ¿eorem,

P(Ak) = P(
∑x∈Fk px√rkσ

> 0) → P(χ > 0) = 1/2,

where χ denotes a standard normal variable. Next we prove that (a subsequence of) Ak is almost

invariant. By taking subsequences, we can assume that for each γ ∈ Γ, either {∣γ ⋅ Fk △ Fk∣}k is

bounded, or ∣γ ⋅Fk △ Fk∣ → ∞. Fix γ ∈ Γ and set nk = ∣γ ⋅Fk ∖Fk∣ = ∣Fk ∖γ ⋅Fk∣, Nk = ∣γ ⋅Fk ∩Fk∣. Let

ξk = ∑
x∈Fk∩γ⋅Fk

px,

ηk = ∑
x∈Fk∖γ⋅Fk

px,

ζk = ∑
x∈γ⋅Fk∖Fk

px.

ξk,ηk, ζk are independent,

E ξk = E ηk = E ζk = 0, Var ξk = Nkσ2, Var ηk = Var ζk = nkσ2,

and

Ak = {ξk + ηk > 0}, γ ⋅ Ak = {ξk + ζk > 0}.
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Suppose �rst that {nk} is bounded and let K be an upper bound for nk. Notice that ∣ηk∣, ∣ζk∣ ≤ K. We

have

P(Ak ∖ γ ⋅ Ak) = P(ξk + ηk > 0 and ξk + ζk ≤ 0)

≤ P(−K < ξk ≤ K)

= P(−K/(σ
√
Nk) < ξk/(σ

√
Nk) ≤ K/(σ

√
Nk)). (3.4.3)

By the Central Limit ¿eorem, ξk/(σ
√
Nk) ⇒ χ and clearly K/(σ

√
Nk) → 0. By Lemma 3.4.1, the

expression (3.4.3) converges to 0.

Now suppose nk →∞. Let ξ′k = ξk/(σ
√
Nk), η′k = ηk/(σ

√nk), ζ′k = ζk/(σ
√nk). By the Central

Limit ¿eorem, ξ′k ⇒ χ, η′k ⇒ χ, ζ′k ⇒ χ. We have

P(Ak ∖ γ ⋅ Ak) = P(ξk + ηk > 0 and ξk + ζk ≤ 0)

= P(ζk ≤ −ξk < ηk)

= P(
√
nkζ′k ≤ −

√
Nkξ′k <

√
nkη′k)

= P(

√
nk
Nk

ζ′k ≤ −ξ
′
k <

√
nk
Nk

η′k) . (3.4.4)

By (3.4.2),
√
nk/Nk → 0. By Lemma 3.4.2,

√
nk/Nkζ′k,

√
nk/Nkη′k → 0 in probability. Finally, by

Lemma 3.4.1, (3.4.4) converges to 0.

¿e implication (ii)⇒ (iii) is clear so we proceed to show (iii)⇒ (i). By¿eorem 3.1.1, it su�ces

to show that 1Γ ≺ λX. Fix Q ⊆ Γ and є > 0. We will �nd a (Q,є, λX) invariant vector in ℓ2(X). By

(iii), (3.3.2), and Lemma 3.3.5, there exists q ∈ A and v1 ∈ ℓ2(Γ/Γq) which is (Q,є, λΓ/Γq) invariant.

Let F = supp q and notice that since q ≠ q0, F ≠ ∅. Denote by ΓF and Γ(F) the setwise and pointwise

stabilizers of F, respectively. Since Γq ≤ ΓF ≤ Γ, by Lemma 3.3.4, there exists v2 ∈ ℓ2(Γ/ΓF) which

is (Q,є, λΓ/ΓF) invariant. Since Γ(F) ≤ ΓF ≤ Γ and [ΓF ∶ Γ(F)] < ∞, by Lemma 3.3.3, there exists

v3 ∈ ℓ2(Γ/Γ(F)) which is (Q,є, λΓ/Γ(F)) invariant. Fix x ∈ F. Since Γ(F) ≤ Γx ≤ Γ, by Lemma 3.3.4,

there exists v4 ∈ ℓ2(Γ/Γx) which is (Q,є, λΓ/Γx) invariant. Since by (3.3.1), λΓ/Γx ≤ λX, we are done.
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Chapter 4

Modular Actions and Amenable
Representations

4.1 Introduction

Let Γ be a countable, in�nite group which acts in a Borel way on a standard Borel space X. ¿e action

gives rise to a Borel orbit equivalence relation EXΓ with countable classes. Conversely, every count-

able Borel equivalence relation is given by a group action (Feldman–Moore [18]). It is of interest to

compare equivalence relations arising from di�erent groups and di�erent actions of the same group.

Let E, F be equivalence relations on the spaces X, Y, respectively. A homomorphism from E to F

is a map f∶X→ Y such that

x E y Ô⇒ f(x)F f(y)

for all x, y ∈ X. A map is countable-to-one if the preimage of every point is countable. Countable-

to-one homomorphisms occur in di�erent contexts: examples arise from orbit equivalences and

stable orbit equivalences as well as Borel reductions between countable equivalence relations. A

countable-to-one homomorphism is, in fact, a combination of an inclusion and a Borel reduction

(see ¿omas [70, Section 4]). In the Borel setting, one is interested in Borel homomorphisms, while

in the presence of a measure, one usually considers measurable homomorphisms which are de�ned

only almost everywhere.

Following Hjorth [31], call a Borel group action on a standard Borel space X modular if there

exists a sequence of countable Borel partitions A1 ≻ A2 ≻ ⋯ of X, each one re�ning the previous,

which separate points in X and are invariant under the action. Note that if there is a Γ-invariant,

ergodic measure on X, then, possibly excluding a null set, all partitions are �nite and the action on

each partition is transitive. It is shown in [41] that, on an invariant set of full measure, everymeasure-
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preserving, ergodic, modular action is isomorphic to an action on the boundary of a rooted, locally

�nite tree induced by an action by automorphisms on the tree or, which is the same, an inverse limit

of actions on �nite sets. Also, it is not hard to see that a group admits a free, ergodic, modular action

i� it is residually �nite (i.e., the intersection of all of its normal subgroups of �nite index is trivial);

see [41] again.

Say that a countable Borel equivalence relation is of modular type if it is induced by a modular

action. Hjorth considered equivalence relations of modular type in order to show that there exist

more than two treeable equivalence relations (up to Borel bireducibility), which was an important

problem in the theory of Borel equivalence relations. (An equivalence relation is treeable if to each

equivalence class can be assigned in a Borel way the structure of a tree.) More precisely, he proved

the following result:

¿eorem 4.1.1 (Hjorth [31]). Let Γ ↷ X be a modular action and E be the orbit equivalence relation.

Let M ⊆ 2F2 be a set of full measure (where F2 is the free groupwith 2 generators and 2F2 is equippedwith

the standard Bernoulli measure and the shi action of F2). ¿en there does not exist a countable-to-one

Borel homomorphism from E2
F2

F2 ∣M to E.

¿e above theorem implies that any free, measure-preserving, modular action of F2 gives rise to

an intermediate treeable equivalence relation. (Formore on the theory of countable Borel equivalence

relations, and in particular the treeable ones, see Jackson–Kechris–Louveau [34].) It is interesting

to try to generalize ¿eorem 4.1.1 to include actions other than F2 ↷ 2F2 . Kechris [41] de�ned the

notion of an antimodular action (onewhose orbit equivalence relation does not admit a countable-to-

one homomorphism to an equivalence relation of modular type) and, in the presence of an invariant

measure, isolated a representation-theoretic property which implies antimodularity. Since inmost of

our considerations below, we will have a measure present, we �nd it convenient to introduce a notion

of a.e. antimodularity: we say that a measure-preserving action Γ ↷ (X, µ) is µ-antimodular if its

restriction to any invariant conull subset ofX is antimodular (or, equivalently, for any (not necessarily

invariant) conull A ⊆ X, the restricted equivalence relation EXΓ ∣A does not admit a countable-to-one

homomorphism to an equivalence relation of modular type).

Recall that if Γ acts onXpreserving ameasure µ, theKoopman representation κ of Γon theHilbert

space L2(X, µ) is the unitary representation given by

(κ(γ)f)(x) = f(γ−1 ⋅ x).
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We will usually consider the restriction κ0 of κ to the orthogonal complement of the constant func-

tions L20(X) = {f ∈ L2(X) ∣ ∫ f = 0} and, by abuse of terminology, call it also the Koopman

representation. If σ and π are unitary representations of the same group, we write σ ≤ π if σ is con-

tained in π (i.e., is isomorphic to a subrepresentation of π) and σ ≺ π if σ is weakly contained in

π. For all necessary background on unitary representations, an excellent reference is Bekka–de la

Harpe–Valette [4]. ¿e action of Γ on X is called tempered if κ0 ≺ λΓ, where λΓ is the le -regular

representation of Γ. Kechris [41] adapted Hjorth’s method from [31] to show that if F2 ≤ Γ, then

every tempered action of Γ is antimodular. He also asked whether the hypotheses of this theorem

can be weakened, for example, whether “F2 ≤ Γ” can be replaced by “Γ is non-amenable” and “the

action is tempered” by “κ0 does not weakly contain a �nite-dimensional representation of Γ.” (If Γ is

amenable, then by well-known results of Dye and Ornstein–Weiss (see [42]), the orbit equivalence

relation is hyper�nite, and therefore induced by a modular action of Z, on a set of measure 1.) In the

present paper, we answer those two questions, the �rst one in the a�rmative and the second in the

negative (cf. Corollary 4.1.4 and Proposition 4.5.2).

It turns out that another representation-theoretic property of measure-preserving actions is rel-

evant in this situation, namely the property of κ0 being amenable in the sense of Bekka [5]. We recall

the de�nition and a few basic facts from [5]. A unitary representation π of Γ on a Hilbert spaceH is

amenable if there exists a Γ-invariant state on the C∗-algebra B(H) of bounded linear operators on

H, i.e., a bounded linear functionalM on B(H) satisfyingM ≥ 0,M(I) = 1, and

M(π(γ)Sπ(γ−1)) = M(S)

for all γ ∈ Γ and S ∈ B(H). ¿e notion of an amenable representation capturesmany known instances

of amenability in a single framework. For example, a group is amenable i� all of its representations

are amenable, an action of a countable group on a countable set I is amenable i� the corresponding

representation on ℓ2(I) is amenable (cf. Lemma 4.3.1 and the remark a er it), etc. A useful charac-

terization of amenability is the following:

π is amenable ⇐⇒ 1Γ ≺ π⊗ π (4.1.1)

[6, ¿eorem 5.1]. ¿e latter condition is sometimes referred to as the absence of stable spectral gap.

Formore examples and further discussion, see [5]. (In [5], the theory is developed for locally compact
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groups but we only need the discrete case here.)

Let (X, µ) be a standard Lebesgue space (i.e., a standard Borel space equippedwith a non-atomic,

Borel, probabilitymeasure µ) and Γ a countable group acting bymeasure-preserving transformations

on it. Now consider another (arbitrary) probability space (Y,ν) and ameasurable cocycle α∶X×Γ→

Aut(Y), where Aut(Y) denotes the group of measure-preserving automorphisms of Y. α gives rise

to a measure-preserving action Γ↷α X × Y as follows:

γ ⋅ (x, y) = (γ ⋅ x,α(x,γ) ⋅ y).

Conversely, by a well-known theorem of Rokhlin, every ergodic extension of the action Γ↷ X arises

in this fashion (see [27, 3.3]).

Now we can state the main theorem of this paper.

¿eorem4.1.2. Let Γact bymeasure-preserving transformations on the standard Lebesgue space (X, µ).

Let (Y,ν) be an arbitrary probability space and α∶X× Γ→ Aut(Y) a measurable cocycle whose image

is contained in a countable subgroup of Aut(Y). ¿en, if the Koopman representation κ0 associated

with the action Γ↷ X is not amenable, the action Γ↷α X × Y is µ × ν-antimodular.

Remark. We do not know whether the condition that the image of α is countable is necessary.

Note the following immediate corollary which is obtained in the case when Y consists of a single

point.

Corollary 4.1.3. Suppose that Γ ↷ (X, µ) is measure-preserving. ¿en if κ0 is non-amenable, the

equivalence relation EXΓ is µ-antimodular.

We can apply that to a variety of situations where we know that the Koopman representation is

non-amenable and produce examples of antimodular actions. For example, if Γ is non-amenable,

then its le -regular representation is not amenable [5, ¿eorem 2.2] and

ρ is non-amenable and π ≺ ρ Ô⇒ π is non-amenable (4.1.2)

[5, Corollary 5.3], so we have:

Corollary 4.1.4. Every tempered action of a non-amenable group is antimodular.
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Recall that an action Γ↷ (X, µ) is called weakly mixing if the Koopman representation κ0 does

not contain �nite-dimensional subrepresentations andmixing if κ0 is a c0-representation, i.e.,

⟨κ0(γ)f, f⟩ → 0 as γ→∞

for all f ∈ L20(X). It is clear that a weakly mixing action cannot be modular and Kechris [41] asked

whether weak mixing (or even mixing) always implies antimodularity. One has to exclude amenable

groups from consideration, however, since any ergodic action of an amenable group is orbit equiv-

alent to a modular action of Z. We will see in Section 4.5 that in general weak mixing (and even

the stronger condition that κ0 does not weakly contain a �nite-dimensional representation) does not

imply antimodularity. However, such an implication does exist for certain groups and for special

actions of arbitrary non-amenable groups as we see below.

If a group has property (T), then all of its amenable representations contain a �nite-dimensional

subrepresentation (the converse is also true; cf. Bekka–Valette [6]) and hence:

Corollary 4.1.5. Let Γ have property (T). ¿en every weakly mixing Γ↷ (X, µ) is µ-antimodular.

Recall that a group Γ has theHaagerup approximation property (HAP) if it has a c0-representation

π such that 1Γ ≺ π. (For more on groups with HAP, see Cherix et al. [8].) Since for any representation

π, if π is a c0-representation, then π⊗ π is also a c0-representation, using (4.1.1), we obtain:

Corollary 4.1.6. If Γ does not have HAP, every mixing action Γ↷ (X, µ) is µ-antimodular.

A class of actions for which mixing implies antimodularity for arbitrary non-amenable groups

is given by the generalized Bernoulli shi s (cf. Corollary 4.3.4). We do not know an example of a

mixing action of a non-amenable group which is not antimodular.

Our �nal application is to the theory of orbit equivalence and Borel reducibility. We use ¿e-

orem 4.1.2 to show that every residually �nite, non-amenable group admits at least three non-orbit

equivalent actions as well as two non-Borel bireducible ones. For general non-amenable groups,

it is only known that they admit at least two non-orbit equivalent actions (Schmidt [62], Connes–

Weiss [9], Hjorth [31]). For de�nitions and further discussion, see Section 4.4.

¿e organization of the paper is as follows. In Section 4.2, we prove¿eorem 4.1.2; in Section 4.3,

generalized Bernoulli shi s and actions on compact Polish groups by automorphisms are considered;

in Section 4.4, we discuss the applications to orbit equivalence and Borel reducibility; and �nally,

in Section 4.5, we give an example which shows that the hypothesis in Corollary 4.1.3 cannot be
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replaced by the weaker “κ0 does not weakly contain a �nite-dimensional representation,” answering

the previously mentioned question of Kechris.

Below Γ will always be a countable, in�nite group and Q ⊆ Γ a �nite set. All vector spaces will be

complex and all representations unitary.

Acknowledgements.Wewould like to thank our respective advisors G. Hjorth and A. S. Kechris

for encouragement, support, and valuable discussions on the topic of this paper. We are also grateful

to the anonymous referee for suggesting a simpli�ed proof of Lemma 4.5.1.

4.2 Proof of¿eorem 4.1.2

We argue towards a contradiction. Suppose that the action Γ ↷ X × Y is not µ × ν-antimodular.

Suppose also that the image of α is contained in the countable subgroup Λof Aut(Y). LetMALG(X)

denote the measure algebra of (X, µ). Let Z = N × Y and let σ be the measure on Z which is the

product of the counting measure on N and ν.

¿e following technical proposition extracts from the combinatorial information given by the ex-

istence of a homomorphism to an equivalence relation of modular type the data we need to construct

a κ0-invariant state on B(L20(X)).

Proposition 4.2.1. For every �nite Q ⊆ Γ and є > 0, there exists a Borel map Φ∶Z →MALG(X) such

that the following are satis�ed:

(i) for almost all x ∈ X,

∫
Z
χ{x∈Φ(z)}(z)dσ(z) = 1;

(ii)

∫
{µ(Φ(z))>є}

µ(Φ(z))dσ(z) < є;

(iii) for all τ ∈ Q, there exists T ∈ Aut(Z,σ) such that

∫
Z
µ(Φ(Tz) △ τ ⋅Φ(z))dσ(z) < є.

To visualize what the proposition claims, it helps to consider the case when Y is a single point.

¿en condition (i) says that Φ de�nes a partition of X into countably many pieces, condition (ii)

says that all pieces have measure smaller than є, and, �nally, condition (iii) says that the partition is

“almost invariant” with respect to the pair (Q,є).
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Proof. Let ∆ be a countable group which acts modularly on a standard Borel spaceW. We suppose

that there is a conull C ⊆ X×Y and a countable-to-one Borel homomorphism θ∶C →W from ECΓ to

EW∆ . By [41, 1.2], we can assume that θ is injective. Fix a symmetricQ ⊆ Γ containing 1 and 1/2 > є > 0.

Denote by B the Borel σ-algebra ofW and let

B0 ⊆ B1 ⊆ ⋯ ⊆ Bk ⊆ Bk+1 ⊆ ⋯ ⊆ B

be atomic (�nite or countable) Boolean algebras which witness that the action ∆ ↷ W is modular,

i.e., each Bk is invariant under ∆ and ⋃kBk generates B. If B ∈ B and A⊆ X × Y, denote

B̂ = θ−1(B) and Ay = {x ∈ X ∣ (x, y) ∈ A}.

Since θ is a Borel homomorphism, there exists a Borel map g∶C × Γ→ ∆ such that

g((x, y), τ) ⋅ θ(x, y) = θ(τ ⋅ (x, y)).

Lemma 4.2.2. For any η > 0, there is a Borel set M ⊆ C and k ∈ N such that the following hold:

(1) µ × ν(M) > 1 − η;

(2) for any τ ∈ Q, the functions (x, y) ↦ g((x, y), τ) and (x, y) ↦ α(x, τ) are constant on B̂ ∩M

for each atom B ∈ Bk;

(3) if (x, y) ∈ B̂∩M for some atom B ∈ Bk, then µ(B̂y) < η;

(4) the set {B ∈ Bk ∶ M ∩ B̂ ≠ ∅} is �nite.

¿e lemma and proof are similar to [31, Claim I]. However, we additionally require that the cocy-

cle α be constant on the atoms andM only intersect atoms with vertical sections of su�ciently small

measure.

Proof. It su�ces to �nd the required pair (M, k) for a single element τ ∈ Q. Indeed, sinceQ is �nite,

in the end, we can take the intersection of theMs and the maximum of the ks.

Let ∆0 ⊆ ∆, Λ0 ⊆ Λ be �nite sets such that o� a set of µ × ν-measure less than η/2, we have

g((x, y), τ) ∈ ∆0 and α(x, τ) ∈ Λ0. Partition X into A1, . . . ,Am ⊆ X such that µ(Aj) < η/2. ¿en
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for δ ∈ ∆0, λ ∈ Λ0, and j≤ m, let

M(δ, λ, j) = {(x, y) ∈ C ∣ g((x, y), τ) = δ and α(x, τ) = λ and x ∈ Aj}.

We have

⋃
δ∈∆0,λ∈Λ0,

j≤m

M(δ, λ, j) ≥ 1 − η/2. (4.2.1)

By the assumption that θ is injective, the set of θ-preimages of⋃kBk is dense in the measure algebra

of X × Y. ¿us, for any δ ∈ ∆0, λ ∈ Λ0, and j≤ m, there are k(δ, λ, j) ∈ N and B(δ, λ, j) ∈ Bk(δ,λ,j)

such that

µ × ν(B̂(δ, λ, j) △ M(δ, λ, j)) <
η

6m∣∆0∣∣Λ0∣
. (4.2.2)

Also, sinceM(δ, λ, j) ⊆ Aj and µ(Aj) ≤ η/2,

∫
{y∈Y∣µ(B̂(δ,λ,j)y)>η}

µ(B̂(δ, λ, j)y)dν(y) ≤ 2∫
Y
µ(B̂(δ, λ, j)y △ M(δ, λ, j)y)dν(y)

= 2µ × ν(B̂(δ, λ, j) △ M(δ, λ, j))

<
η

3m∣∆0∣∣Λ0∣

and hence,

µ( ⋃
δ∈∆0,λ∈Λ0,

j≤m

{(x, y) ∈ B̂(δ, λ, j) ∣ µ(B̂(δ, λ, j)y) > η}) < η/3. (4.2.3)

Finally, let k = max {k(δ, λ, j)} and

M = ⋃
δ∈∆0,λ∈Λ0,

j≤m

B̂(δ, λ, j) ∩M(δ, λ, j)

∖ ⋃
δ∈∆0,λ∈Λ0,

j≤m

{(x, y) ∈ B̂(δ, λ, j) ∣ µ(B̂(δ, λ, j)y) > η}.

¿en (2), (3), and (4) are satis�ed by de�nition, and by (4.2.1), (4.2.2), and (4.2.3),

µ × ν(M) > 1 − (η/2 + η/6 + η/3) = 1 − η,

which veri�es (1).
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Apply Lemma 4.2.2 with η = є2/4 to obtain M and k and �x them from now on. Let {Bi ∣

i ∈ N} enumerate the atoms of Bk (if Bk contains only �nitely many atoms, add empty sets to the

enumeration). ¿e functions (x, y) ↦ g((x, y), τ) and (x, y) ↦ α(x, τ) are constant on each B̂i∩M

and, abusing notation, wewill write g(i, τ) and α(i, τ) (for those i for which B̂i∩M ≠ ∅). Nowde�ne

the map Φ∶Z → MALG(X) by Φ(i, y) = B̂yi . Note that {B̂i} is a partition of X × Y and hence, for

almost every y ∈ Y, {Φ(i, y) ∣ i ∈ N} is a partition of X.

¿at condition (i) is satis�ed follows from the fact that for each x, the collection {{y ∣ x ∈

Φ(i, y)} ∣ i ∈ N} forms a partition of Y. We proceed to check (ii). Using Lemma 4.2.2 (1) and

(3), we have:

∫
{µ(Φ(z))>є}

µ(Φ(z))dσ(z) = ∫
X×Y×N

χ{(x,y)∈B̂i and µ(B̂yi )>є} d(x, y, i)

≤ ∫
((X×Y)∖M)×N

χ{(x,y)∈B̂i} d(x, y, i)

= µ((X × Y) ∖M) < η < є.

We are le with verifying (iii). Fix τ ∈ Q. We will construct T ∈ Aut(Z) such that

∫
Z
µ(Φ(Tz) △ τ ⋅Φ(z))dσ(z) ≤ 7є.

Set

G = {(i, y) ∈ Z ∣
µ(Φ(i, y) ∖My)

µ(Φ(i, y))
< є}.

We have

∫
Z∖G

µ(Φ(i, y))dσ(i, y) ≤
1
є ∫Z∖G

µ(Φ(i, y) ∖My)dσ(i, y) (4.2.4)

≤
1
є
µ × ν(X × Y ∖M) ≤ є/4.

De�ne

N0 = {(x, y) ∈ M ∣ ∃i (i, y) ∈ G and x ∈ Φ(i, y)},

N = N0 ∩ τ−1 ⋅ N0.

By (4.2.4),

µ × ν(N0) ≥ 1 − µ × ν(C ∖M) − є/4 ≥ 1 − є/2
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and hence,

µ × ν(X × Y ∖ N) ≤ 2(є/2) = є.

Let Z0 = {(i, y) ∈ Z ∣ Φ(i, y) ∩ Ny ≠ ∅}. Notice that

∫
Z∖Z0

µ(Φ(z))dσ(z) = ∫
Y

∑
{i∣Φ(i,y)∩Ny=∅}

µ(Φ(i, y))dν(y) (4.2.5)

≤ ∫
Y
µ(X ∖ Ny)dν(y)

≤ µ × ν(X × Y ∖ N) ≤ є.

De�ne the partial automorphism T0∶Z0 → Z by

T0(i, y) = (j,α(i, τ) ⋅ y) ⇐⇒ g(i, τ) ⋅ Bi = Bj.

Lemma 4.2.3. Given (i, y) = z ∈ Z0, the following hold:

(1) τ ⋅ (Φ(i, y) ∩My) ⊆ Φ(T0(i, y));

(2) τ−1 ⋅ (Φ(T0(i, y)) ∩Mα(i,τ)⋅y) ⊆ Φ(i, y);

(3) µ(Φ(z))
µ(Φ(T0z)) ∈ [1 − є, 1

1−є] ⊆ (1 − 2є, 1 + 2є);

(4) µ(τ ⋅Φ(z) △ Φ(T0z)) ≤ 3є ⋅ µ(Φ(T0z));

(5) T0 is injective and measure-preserving.

Proof. (1). Take x ∈ Φ(i, y) ∩My. ¿en

θ(τ ⋅ (x, y)) = g(i, τ) ⋅ θ(x, y) ∈ g(i, τ) ⋅ Bi = Bj

for some j. So τ ⋅ (x, y) ∈ B̂j. Also, τ ⋅ (x, y) = (τ ⋅ x,α(i, τ) ⋅ y). By our de�nition of T0, τ ⋅ (x, y) ∈

Φ(T0(i, y)).

(2). Let x ∈ Φ(T0(i, y)) ∩ Mα(i,τ)⋅y and let j be such that T0(i, y) = (j,α(i, τ) ⋅ y). ¿en

(x,α(i, τ) ⋅ y) ∈ B̂j. Let x1 ∈ Φ(i, y) ∩ Ny. From (1),

τ ⋅ x1 ∈ Φ(T0(i, y)) ∩Mα(i,τ)⋅y.
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Note that

τ−1 ⋅ (τ ⋅ (x1, y)) = (x1, y) ∈ B̂i.

¿is implies that g(j, τ−1) ⋅ Bj = Bi. So then

(τ−1 ⋅ x,α(x, τ−1)α(i, τ) ⋅ y) = τ−1 ⋅ (x,α(i, τ) ⋅ y) ∈ B̂i. (4.2.6)

Also, α(i, τ) = α(x1, τ) and α(j, τ−1) = α(τ ⋅ x1, τ−1). By the cocycle identity,

α(x, τ−1)α(i, τ) = α(j, τ−1)α(i, τ) = α(τ ⋅ x1, τ−1)α(x1, τ) = 1,

and hence, combining with (4.2.6), τ−1 ⋅ x ∈ Φ(i, y).

(3). From (1), we have that µ(My∩Φ(i, y)) ≤ µ(Φ(T0(i, y))). SinceΦ(i, y)∩Ny ≠ ∅, (i, y) ∈ G

and we obtain

µ(Φ(T0(i, y))) ≥ µ(My ∩Φ(i, y)) ≥ (1 − є)µ(Φ(i, y))

which then allows us to conclude that

µ(Φ(i, y))
µ(Φ(T0(i, y)))

≤
1

1 − є
.

Similarly, by (2) and the fact that T0(i, y) ∈ G,

µ(Φ(i, y)) ≥ µ(Φ(T0(i, y)) ∩Mα(i,τ)⋅y) ≥ (1 − є)µ(Φ(T0(i, y)))

which then leads to
µ(Φ(i, y))

µ(Φ(T0(i, y)))
≥ 1 − є.

(4). Using the fact that the action of Γ on X is measure-preserving and (1) and (3), we have:

µ(τ ⋅Φ(i, y) ∖Φ(T0(i, y))) = µ(Φ(i, y) ∖ τ−1 ⋅Φ(T0(i, y)))

≤ µ(Φ(i, y) ∖My)

< є ⋅ µ(Φ(i, y))

< є(1 + 2є)µ(Φ(T0(i, y)))

< 2є ⋅ µ(Φ(T0(i, y))).
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Similarly, using (2), µ(τ−1 ⋅Φ(T0(i, y)) ∖Φ(i, y)) < є ⋅ µ(Φ(T0(i, y))).

(5). Suppose that T0(i1, y1) = T0(i2, y2) for some (i1, y1),(i2, y2) ∈ Z0. Take x1 ∈ Φ(i1, y1) ∩

Ny1 ,x2 ∈ Φ(i2, y2) ∩ Ny2 . Let

Bj = g(i1, τ) ⋅ Bi1 = g(i2, τ) ⋅ Bi2 .

τ ⋅ (x1, y1), τ ⋅ (x2, y2) ∈ B̂j∩M, so

Bi1 = g(j, τ
−1) ⋅ Bj = Bi2 .

Hence i1 = i2 and

y1 = α(i1, τ)−1(α(i1, τ) ⋅ y1) = α(i2, τ)−1(α(i2, τ) ⋅ y2) = y2.

Let now A⊆ Z0. We claim that σ(T0(A)) = σ(A). Indeed, we have

T0(A) =
∞
⋃
i=1

{(j,α(i, τ) ⋅ y) ∣ (i, y) ∈ A and g(i, τ) ⋅ Bi = Bj}.

Since the map Bi ↦ g(i, τ) ⋅ Bi is injective and α(i, τ) is measure-preserving for all i, we have:

σ(T0(A)) =
∞
∑
i=1
ν({α(i, τ) ⋅ y ∣ (i, y) ∈ A})

=
∞
∑
i=1
ν({y ∣ (i, y) ∈ A})

= σ(A).

Note that by Lemma4.2.2 (4), Z0 ⊆ {0, 1, . . . ,n}×Y for some n ∈ N and, in particular, σ(Z0) < ∞.

¿is also implies that T0 can be extended to a full measure-preserving automorphism T of Z. Use

Lemma 4.2.3 (4) to obtain

∫
Z0
µ(Φ(Tz) △ τ ⋅Φ(z))dσ(z) ≤ ∫

Z0
3є ⋅ µ(Φ(Tz))dσ(z) (4.2.7)

≤ 3є∫
Z
µ(Φ(z))dσ(z) ≤ 3є.
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Also, by Lemma 4.2.3 (3) and (4.2.5),

∫
Z∖Z0

µ(Φ(Tz) △ τ ⋅Φ(z))dσ(z) (4.2.8)

≤ ∫
Z∖Z0

µ(Φ(Tz))dσ(z) + ∫
Z∖Z0

µ(τ ⋅Φ(z))dσ(z)

= ∫
Z
µ(Φ(Tz))dσ(z) − ∫

Z0
µ(Φ(T0z))dσ(z) + ∫

Z∖Z0
µ(Φ(z))dσ(z)

≤ 1 − (1 − 2є)∫
Z0
µ(Φ(z))dσ(z) + є

≤ 1 − (1 − 2є)(1 − є) + є ≤ 4є.

Finally, combine (4.2.7) and (4.2.8) to obtain

∫
Z
µ(Φ(Tz) △ τ ⋅Φ(z))dσ(z)

= ∫
Z0
µ(Φ(Tz) △ τ ⋅Φ(z))dσ(z) + ∫

Z∖Z0
µ(Φ(Tz) △ τ ⋅Φ(z))dσ(z)

≤ 7є.

Now we proceed to construct an invariant state on B(L20(X)). For A ∈MALG(X), let

ηA = χA− µ(A),

where χA denotes the characteristic function of the set A. ¿en ηA ∈ L20(X) and ∥ηA∥2 = µ(A) −

µ(A)2. Also, for any S ∈ B(L20(X)),

∣⟨SηA,ηA⟩ − ⟨SηB,ηB⟩∣ ≤ ∥S∥ (∥ηA∥ + ∥ηB∥) ∥ηA− ηB∥

≤ ∥S∥ (
√
µ(A) +

√
µ(B))

√
µ(A △ B), (4.2.9)

as is veri�ed by direct computation.

Enumerate Γ = {γn} and set Qn = {γ1,γ2, . . . ,γn}. Let for each n, Φn∶Z → MALG(X) be a

(Qn, 1/n)-invariant map as given by Proposition 4.2.1. Let Mn ∈ B(L20(X))∗ be the positive linear

functional de�ned by

Mn(S) = ∫
Z
⟨SηΦn(z),ηΦn(z)⟩ dσ(z).
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Note that by (i) and an application of Fubini,

∫
Z
µ(Φn(z))dσ(z) = 1.

Hence,

∣Mn(S)∣ ≤ ∫
Z
∣ ⟨SηΦn(z),ηΦn(z)⟩ ∣dσ(z)

≤ ∫
Z
∥S∥ ∥ηΦn(z)∥

2 dσ(z)

≤ ∥S∥∫
Z
µ(Φn(z))dσ(z) = ∥S∥ .

¿erefore ∥Mn∥ ≤ 1. Let nowM be any weak∗ limit point of the set {Mn}. We will show thatM is a

κ0-invariant state on B(L20(X)) which will complete the proof of the theorem. M is clearly positive.

Let I denote the identity operator on L20(X). We have

Mn(I) = ∫
Z
⟨ηΦn(z),ηΦn(z)⟩ dσ(z)

= ∫
Z
µ(Φn(z)) − µ(Φn(z))2 dσ(z)

= 1 − ∫
Z
µ(Φn(z))2 dσ(z) → 1 as n→∞.

Indeed, by (ii),

∫
Z
µ(Φn(z))2 dσ(z) = ∫

{µ(Φn(z))>1/n}
µ(Φn(z))2 dσ(z)

+ ∫
{µ(Φn(z))≤1/n}

µ(Φn(z))2 dσ(z)

≤
1
n
+
1
n ∫Z

µ(Φn(z))dσ(z) =
2
n
.

Hence,M(I) = 1.

To show thatM is invariant, it su�ces to check that for all τ ∈ Γ and S ∈ B(L20(X)),

Mn(κ0(τ−1)Sκ0(τ)) −Mn(S) → 0.

Indeed, sinceM is a weak∗ limit point of theMns, for every є > 0, there exist in�nitely many n such

that

∣M(S) −Mn(S)∣ < є and ∣M(κ0(τ−1)Sκ0(τ)) −Mn(κ0(τ−1)Sκ0(τ))∣ < є.
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¿en

∣M(S) −M(κ0(τ−1)Sκ0(τ))∣ ≤ ∣M(S) −Mn(S)∣ + ∣Mn(S) −Mn(κ0(τ−1)Sκ0(τ))∣

+ ∣Mn(κ0(τ−1)Sκ0(τ)) −M(κ0(τ−1)Sκ0(τ))∣

≤ ∣Mn(S) −Mn(κ0(τ−1)Sκ0(τ))∣ + 2є

which shows thatM(S) = M(κ0(τ−1)Sκ0(τ)).

Fix τ ∈ Γ and S ∈ B(L20(X)). For all n big enough that τ ∈ Qn, apply Proposition 4.2.1 to obtain

Tn ∈ Aut(Z) satisfying (iii). Using (4.2.9) and Cauchy–Schwartz, we have:

∣Mn(κ0(τ−1)Sκ0(τ)) −Mn(S)∣ =

= ∣∫
Z
⟨κ0(τ−1)Sκ0(τ)ηΦn(z),ηΦn(z)⟩ dσ(z) − ∫Z

⟨SηΦn(z),ηΦn(z)⟩ dσ(z)∣

= ∣∫
Z
⟨Sητ⋅Φn(z),ητ⋅Φn(z)⟩ dσ(z) − ∫Z

⟨SηΦn(Tnz),ηΦn(Tnz)⟩ dσ(z)∣

≤ ∫
Z
∣⟨Sητ⋅Φn(z),ητ⋅Φn(z)⟩ − ⟨SηΦn(Tnz),ηΦn(Tnz)⟩∣ dσ(z)

≤ 2 ∥S∥∫
Z
(µ(Φn(z))

1
2 + µ(Φn(Tnz))

1
2 )µ(τ ⋅Φn(z) △ Φn(Tnz))

1
2 dσ(z)

≤ 2 ∥S∥ ((∫
Z
µ(Φn(z))dσ(z))

1
2
+ (∫

Z
µ(Φn(Tnz))dσ(z))

1
2
)⋅

⋅ (∫
Z
µ(τ ⋅Φn(z) △ Φn(Tnz))dσ(z))

1
2

≤ 2 ∥S∥
2

√
n
→ 0 as n→∞.

¿is completes the proof of the theorem.

4.3 Amenable Koopman representations and almost invariant vectors

In this section, we describe two situations in which the amenability of the Koopman representation

is equivalent to the existence of almost invariant vectors (1Γ ≺ κ0). Note that by (4.1.2), 1Γ ≺ π implies

that π is amenable for any representation π but the converse is not true in general, even for Koopman

representations (consider, for example, a modular, ergodic action of a property (T) group). A special

situation when it is true is given by the lemma below.

Let I be a countable set and let Γ act on I. Recall that the action is called amenable if there is a

Γ-invariant mean on ℓ∞(I).
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Lemma 4.3.1. Let Γ be a countable group, π be a unitary representation of Γ on a separable Hilbert

spaceH and let {ξi}i∈N be an orthonormal basis forH invariant under π. ¿en

π is amenable Ô⇒ 1Γ ≺ π.

Proof. Set I = {ξi ∶ i ∈ N}. We can identifyH with ℓ2(I) and the representation πwith the represen-

tation of Γ on ℓ2(I) induced by the action of Γ on I. Let B(H) denote the space of bounded operators

onH. π amenable implies that there is a stateM on B(H) invariant under π, i.e.,

M(π(γ)Sπ(γ)−1) = M(S), for all γ ∈ Γ,S ∈ B(H).

For each ϕ ∈ ℓ∞(I) consider the multiplication operator Tϕ ∈ B(H) de�ned by

Tϕ f = ϕf

and notice that

π(γ)Tϕπ(γ)−1 = Tγ⋅ϕ,

where (γ ⋅ ϕ)(ξ) = ϕ(π(γ−1) ⋅ ξ). Hence ϕ ↦ M(Tϕ) de�nes a Γ-invariant mean on ℓ∞(I) and the

action of Γ on I is amenable. But this implies that 1Γ ≺ π.

Remark. ¿e proof of Lemma 4.3.1 also shows that if Γ acts on a countable set I, the corresponding

representation is amenable i� the action is amenable.

Let now (X0, µ0) be a probability space. If I is countable and Γ↷ I, we have ameasure-preserving

action Γ↷ XI0 by permuting the coordinates, which is called a generalized Bernoulli shi .

Proposition 4.3.2. Let Γ↷ XI0 be a generalized Bernoulli shi . Let κ0 be the corresponding Koopman

representation of Γ. ¿en the following are equivalent:

(i) the action Γ↷ I is amenable;

(ii) κ0 is amenable;

(iii) 1Γ ≺ κ0.

Proof. ¿e equivalence of (i) and (iii) follows from [44,¿eorem 1.2]. From the analysis of the Koop-

man representation of generalized Bernoulli shi s carried out in [44, Section 3], it follows that there
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is a basis of L20(XI0) invariant under κ0. Hence Lemma 4.3.1 applies and we have (ii) ⇒ (iii). Lastly,

the implication (iii)⇒ (ii) follows from (4.1.2).

Corollary 4.3.3. Let Γ ↷ (X0, µ0)I be a generalized Bernoulli shi . If the action Γ ↷ I is non-

amenable, then the action Γ↷ XI0 is µI0-antimodular.

Corollary 4.3.4. Let Γ↷ (X0, µ0)I be a mixing generalized Bernoulli shi . ¿en if Γ is non-amenable,

the action Γ↷ XI0 is µI0-antimodular.

Proof. Γ ↷ XI0 mixing implies that for each i ∈ I, the stabilizer Γi is �nite (see, e.g., [44, Proposi-

tion 2.3]). Let λI be the representation of Γ on ℓ2(I), λΓ denote the le -regular representation of Γ,

and for H ≤ Γ, let λΓ/H be the quasi-regular representation on ℓ2(Γ/H). Let A ⊆ I be a transversal

for the action Γ↷ I. ¿en

λI =⊕
i∈A

λΓ/Γi .

It is not hard to see that λΓ/Γi ≤ λΓ (cf. [44, Lemma 3.3]) and hence, λI ≺ λΓ. By ¿eorem 4.1.2 and

Proposition 4.3.2, if the action Γ ↷ XI0 is not antimodular, λI is amenable, hence by (4.1.2), λΓ is

amenable, contradicting the non-amenability of Γ.

Hjorth’s ¿eorem 4.1.1 can now be obtained as a special case of either Corollary 4.3.3 or Corol-

lary 4.3.4 if we put Γ = I = F2, X0 = 2, and let Γ act on I by le translation.

Now consider the case of an action on a compact Polish group (equipped with its normalized

Haar measure) by (topological group) automorphisms.

Proposition 4.3.5. Let Γ act on the compact Polish group G by automorphisms and let κ0 be the corre-

sponding Koopman representation of Γ on L20(G). ¿en

κ0 is amenable Ô⇒ 1Γ ≺ κ0.

Proof. Fix an invariant state M on B(L20(G)). We adopt the notation from Folland [19, Chapter 5]

(see also Kechris [41]). Let Ĝ0 denote the set of (equivalence classes of) nontrivial irreducible repre-

sentations of G. Recall that

{πi j ∶ i, j≤ dπ;π ∈ Ĝ0}

is an orthogonal basis for L20(G), where dπ = dimπ and the πi js are the matrix coe�cients of π. For
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ϕ ∈ ℓ∞(Ĝ0), de�ne the operator Tϕ ∈ B(L20(G)) by

Tϕπi j = ϕ(π)πi j.

Notice that

Tγ⋅ϕ = κ0(γ)Tϕκ0(γ)−1

and hence ϕ↦ M(Tϕ) de�nes a Γ-invariant mean on ℓ∞(Ĝ0).

Let I = {χπ ∶ π ∈ Ĝ0} (where χπ denotes the character corresponding to π) and notice that I is

invariant under κ0. We can also identify ℓ∞(I) and ℓ∞(Ĝ0) and conclude that the action of Γ on I

is amenable. Denote ZL20(G) = span{χπ ∶ π ∈ Ĝ0} and σ = κ0∣ZL20(G). We can identify ZL20(G) with

ℓ2(I) and by the amenability of the action of Γ on I, 1Γ ≺ σ. But σ ≤ κ0 and we are done.

Remark. Note that generalized Bernoulli shi s with a homogeneous base space (i.e., X0 non-atomic

or purely atomic with atoms of the same measure) are a special case of actions on abelian compact

groups by automorphisms. However, for arbitrary X0, this is not the case. It is shown in Kechris–

Tsankov [44] that for generalized Bernoulli shi s, 1Γ ≺ κ0 implies the existence of almost invariant

sets, while it is openwhether the same holds for actions on compact Polish groups by automorphisms.

4.4 Applications to orbit equivalence and Borel reducibility

Recall that twomeasure-preserving actions Γ↷ X and ∆↷ Y are called orbit equivalent if there exist

conull, invariant sets A⊆ X and B ⊆ Y and a measurable bijection f∶A→ B such that

∀x, y ∈ X x EXΓ y ⇐⇒ f(x)EY∆ f(y).

In this section, we use modular actions and¿eorem 4.1.2 to show that residually �nite groups have

at least three non-orbit equivalent, free, ergodic actions.

Dye started the theory of orbit equivalence by showing that all ergodic actions of Z are orbit

equivalent. Later, Ornstein andWeiss showed that, in fact, all ergodic actions of amenable groups are

orbit equivalent. For all of this, see [42]. In the other direction, Schmidt [62] and Connes–Weiss [9]

showed that non-property (T), non-amenable groups have at least two non-orbit equivalent, free,

ergodic actions. ¿e invariant they used was E0-ergodicity (called strong ergodicity by them) which
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we proceed to de�ne. E0 is the equivalence relation on 2N given by

(xn)E0 (yn) ⇐⇒ ∃n∀m > n xm = ym.

A measure-preserving group action Γ ↷ X (or the orbit equivalence relation it de�nes) is said to

be E0-ergodic if for every homomorphism from EXΓ to E0, there exists a single E0 equivalence class

whose preimage is conull. For a measure-preserving, ergodic action Γ↷ X, not being E0-ergodic is

equivalent to possessing almost invariant sets, i.e., a sequence of measurable sets {An}withmeasures

bounded away from 0 and 1 satisfying for each γ ∈ Γ,

µ(γ ⋅ An △ An) → 0 as n→∞

(Jones–Schmidt [35]). ¿e de�nition shows that E0-ergodicity is an invariant of orbit equivalence,

while the existence of almost invariant sets is usually easier to verify in particular cases. For more

information on the topic, see Hjorth–Kechris [32, Appendix A].

Many non-amenable groups are now known to have a continuumof non-orbit equivalent actions:

for example, property (T) groups (Hjorth [31]) and non-abelian free groups (Gaboriau–Popa [23]).

¿e latter result was recently extended by Ioana [33] to include all countable groups containing a copy

of F2. It is not known whether all non-amenable groups admit a continuum of non-orbit equivalent

actions. For more information on orbit equivalence and related topics, see the surveys Gaboriau [22]

and Shalom [65], as well as the book Kechris–Miller [42].

First we note the following simple corollary of ¿eorem 4.1.2.

Corollary 4.4.1. Let Γ↷ (X, µ) and Γ↷ (Y,ν) be twomeasure-preserving actions where themeasure

µ is non-atomic. ¿en if the Koopman representation κ0 corresponding to the action Γ ↷ X is non-

amenable, the product action Γ↷ X × Y is µ × ν-antimodular.

Proof. ¿e action Γ ↷ Y de�nes a homomorphism ϕ∶ Γ → Aut(Y) and we can take α(x,γ) = ϕ(γ)

in ¿eorem 4.1.2.

¿eorem 4.4.2. Suppose that Γ is a countable, non-amenable, residually �nite group. ¿en Γ has at

least three non-orbit equivalent, free, measure-preserving, ergodic actions.

Proof. It is already known that countable groups with property (T) admit continuum many such

actions (Hjorth [31]). We thus assume that Γ does not have property (T). First we construct two an-
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timodular actions of Γ that are not orbit equivalent to each other. Since Γ does not have property

(T), there is a measure-preserving, ergodic action Γ ↷ (Y,ν) that is not E0-ergodic (see Connes–

Weiss [9]). Consider the shi action Γ↷ 2Γ. It is ergodic, free a.e., andE0-ergodic (Jones–Schmidt [35];

cf. Proposition 4.3.2). By Corollary 4.3.3, it is also antimodular. Now consider the diagonal action

Γ↷ 2Γ×Y. It is free a.e. and ergodic. Corollary 4.4.1 implies that it is also antimodular. Since Γ↷ Y

is not E0-ergodic, Γ↷ 2Γ ×Y is not E0-ergodic either (almost invariant sets in Y li to the product).

Finally, since Γ is residually �nite, there exists a free, modular, ergodic action Γ↷ Z.

Now our three actions are: Γ↷ 2Γ, Γ↷ 2Γ × Y, and Γ↷ Z. E0-ergodicity distinguishes the �rst

two, and by antimodularity, they are not orbit equivalent to the third.

An equivalence relation E on a standard Borel spaceX isBorel reducible to an equivalence relation

F on Y (written as E ≤B F) if there exists a Borel homomorphism π from E to F such that

x E y ⇐⇒ π(x)F π(y) ∀x, y ∈ X.

E ≤B F expresses that, in some sense, the equivalence relation F is more complicated than E. We say

thatE and F areBorel bireducible ifE ≤B F and F ≤B E. Formore on the subject of Borel reducibility of

countable Borel equivalence relations, we refer the reader to Jackson–Kechris–Louveau [34], Hjorth–

Kechris [32], and, for motivation and more general background, to Kechris [39].

We have the following application of ¿eorem 4.1.2.

¿eorem 4.4.3. Suppose that Γ is a countable, non-amenable, residually �nite group. ¿en Γ has two

free, measure-preserving actions whose orbit equivalence relations are not Borel bireducible.

Proof. In the terminology of the proof of ¿eorem 4.4.2, we just consider the equivalence relations

E2
Γ

Γ and EZΓ .

4.5 A counterexample

In this section, we construct an example of a group action orbit equivalent to a modular action (of

another group) such that its Koopman representation does not weakly contain any �nite-dimensional

representation (and, in particular, is weakly mixing).

Let Γ be a residually �nite group, {Hi}i∈I a countable family of normal subgroups of Γ of �nite

index such that ⋂i∈IHi = {1} and X = lim
←Ð

Γ/Hi be the pro�nite completion of Γ with respect to this
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family. Let µ be the (normalized) Haar measure on X. Γ embeds as a dense subgroup of X and the

le translation action of Γ on X is free, ergodic, and modular (see [41, 5G]). Denote by λ the le -

regular representation of X on L2(X) and notice that by the density of Γ in X, a subspace of L2(X)

is invariant under λ i� it is invariant under λ∣Γ. Hence, by the Peter–Weyl theorem, any irreducible

subrepresentation of λ∣Γ is �nite-dimensional and has �nite multiplicity in λ∣Γ.

We need the following preliminary lemma.

Lemma 4.5.1. Let π be a �nite-dimensional, irreducible representation of a countable group Γ with

property (T). ¿en for every normalized positive de�nite function ϕ on Γ associated to π, the following

holds: whenever 0 ≤ ak ≤ 1, ψk and θk are normalized positive de�nite functions on Γ, the cyclic

representations corresponding to the θks do not contain π, and (1 − ak)ψk + akθk → ϕ pointwise, it is

always the case that ak → 0.

¿e following proof, simpler than our original one, was suggested by the referee.

Proof. LetP1 be the set of normalized positive de�nite functions on Γconsidered as a subset of ℓ∞(Γ)

equipped with the weak∗ topology which coincides on P1 with the pointwise convergence topology.

Since Γ is discrete, P1 is compact. For a positive de�nite function β on Γ, denote by ρβ the cyclic

representation associated to β. We have π = ρϕ.

Suppose that ak does not converge to 0. ¿en, by the compactness of P1, we can �nd ψ, θ ∈ P1

and a > 0 such that ψkn → ψ, θkn → θ pointwise, and akn → a for some subsequence {kn} ⊆ N. ¿is

implies that (1 − a)ψ + aθ = ϕ. Since ρϕ is irreducible and a > 0, we conclude that ρθ = ρϕ = π (see

[4, C.5.1]). Now, since θkn → θ pointwise, it follows that ρθkn → ρθ = π in the Fell topology; hence

π ≺ ⊕n ρθkn and by property (T) and the irreducibility of π, we conclude that π ≤ ρθkn for some n, a

contradiction.

Proposition 4.5.2. Let Γ and X be as in the beginning of the section. If moreover Γ has property (T),

there exists a group ∆ and an action ∆ ↷ X by measure-preserving transformations generating EXΓ
such that the Koopman representation of ∆ on L20(X) does not weakly contain any �nite-dimensional

representation of ∆ (and, in particular, is weakly mixing).

Proof. Recall that for a measure-preserving equivalence relation E, the full group of E (denoted by

[E]) is the group of all measure-preserving transformations T preserving E, i.e., satisfying T(x)E x

for almost all x ∈ X. If T is a measure-preserving transformation, [T] denotes the full group of the

equivalence relation generated by T.
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Let E be the equivalence relation induced by the action of Γ. Since E is ergodic, there is an ergodic

T ∈ [E] (see [37, 3.5]). Hence, [T] ≤ [E]. Let Λ be a non-trivial, countable, amenable group which

does not have non-trivial �nite-dimensional representations (for example, SL(2;F2) where F2 is the

algebraic closure of the �eld with two elements; cf. Dye [14]). By Dye’s theorem and Ornstein–Weiss

(see [42, ¿eorem 10.7]), we can embed Λ in [T] (and therefore in [E]) so that the resulting action

Λ↷ X is ergodic. Let ∆ be the subgroup of [E] generated by Γ and Λ. ∆ inherits a natural action on

X from [E]. Denote by κ0 the Koopman representation of ∆ on L20(X).

Suppose, towards a contradiction, that π ≺ κ0 for some �nite-dimensional representation π of

∆ on a Hilbert space Hπ. Without loss of generality, we can assume that π is irreducible. By the

properties of Λ, π∣Λ is trivial and hence π∣Γ is irreducible. We have π∣Γ ≺ κ0∣Γ and since Γhas property

(T), π∣Γ ≤ κ0∣Γ. Let Kπ be the sum of all subspaces of L20(X) invariant under κ0∣Γ on which κ0∣Γ is

equivalent to π∣Γ. ¿en, by the above observations, dimKπ < ∞.

Fix a unit vector ξ ∈ Hπ. ¿ere exists a sequence {ηk} of unit vectors in L20(X) such that

⟨κ0(δ) ⋅ ηk,ηk⟩ → ⟨π(δ) ⋅ ξ, ξ⟩ for all δ ∈ ∆.

Set ϕ(g) = ⟨π(g) ⋅ ξ, ξ⟩ for g ∈ Γ. Write ηk = η1k + η
2
k where η

1
k ∈ Kπ and η

2
k ∈ K

⊥
π, ∥η1k∥

2
+ ∥η2k∥

2
= 1.

Now we have, for all g ∈ Γ,

∥η1k∥
2
⟨κ0(g) ⋅

η1k
∥η1k∥

,
η1k

∥η1k∥
⟩ + ∥η2k∥

2
⟨κ0(g) ⋅

η2k
∥η2k∥

,
η2k

∥η2k∥
⟩ → ϕ(g)

and Lemma 4.5.1 allows us to conclude that η2k → 0.

On the other hand, κ0∣Λ does not have invariant vectors and hence

∀0 ≠ η ∈ Kπ ∃g ∈ Λ ∣ ⟨κ0(g) ⋅ η,η⟩ ∣ < ∥η∥2

(∣ ⟨κ0(g) ⋅ η,η⟩ ∣ = ∥η∥2 for all g implies that κ0∣Λ restricted toCη is a one-dimensional representation

of Λ, hence trivial, hence η is an invariant vector). By compactness (of the unit sphere in Kπ), there

exists a �nite Q ⊆ Λ and є > 0 such that

∀0 ≠ η ∈ Kπ ∃g ∈ Q ∣ ⟨κ0(g) ⋅ η,η⟩ ∣ < (1 − є) ∥η∥2 . (4.5.1)
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Let k be so big that ∥η2k∥ < є/4. ¿en we calculate, for any g ∈ Λ,

∣ ⟨κ0(g) ⋅ ηk,ηk⟩ ∣ = ∣ ⟨κ0(g) ⋅ (η1k + η
2
k),η

1
k + η

2
k⟩ ∣

≤ ∣ ⟨κ0(g) ⋅ η1k,η
1
k⟩ ∣ + ∣ ⟨κ0(g) ⋅ η2k,η

2
k⟩ ∣ + 2 ∥η

1
k∥ ∥η

2
k∥

≤ ∣ ⟨κ0(g) ⋅ η1k,η
1
k⟩ ∣ + ∥η2k∥

2
+ 2 ∥η1k∥ ∥η

2
k∥

≤ ∣ ⟨κ0(g) ⋅ η1k,η
1
k⟩ ∣ + 3є/4.

But by (4.5.1), for each η1k, there exists g ∈ Q such that ∣ ⟨κ0(g) ⋅ η1k,η
1
k⟩ ∣ < 1−є. ¿erefore there exists

g0 ∈ Q such that for in�nitely many ks,

∣ ⟨κ0(g0) ⋅ ηk,ηk⟩ ∣ < 1 − є/4

and in particular,

⟨κ0(g0) ⋅ ηk,ηk⟩ ↛ 1 = ⟨π(g0) ⋅ ξ, ξ⟩ ,

a contradiction.
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Chapter 5

Topological Properties of Full Groups

5.1 Introduction

¿e study of measure-preserving actions of countable groups on standard probability spaces up to

orbit equivalence was initiated by Dye in the 1950s and since then the subject has become an impor-

tant meeting point of ergodic theory, operator algebras, and Borel equivalence relations. ¿is paper

concentrates on the study of one invariant of orbit equivalence, namely, the full group of the orbit

equivalence relation.

Let X be a standard Borel space and µ a non-atomic, Borel, probability measure on it. Denote

by Aut(X, µ) the group of all measure-preserving automorphisms of (X, µ) (modulo null sets). An

equivalence relation E on X is called countable if all of its equivalence classes are countable, �nite if all

of its equivalence classes are �nite, and aperiodic if all of its equivalence classes are in�nite. Say that E

ismeasure-preserving if every Borel automorphism T of Xwhich preserves E is measure-preserving,

i.e.,

(∀x ∈ X Tx E x) Ô⇒ T preserves µ.

All equivalence relations below are assumed countable, Borel, andmeasure-preserving. ¿e full group

of E, denoted by [E], is de�ned by:

[E] = {T ∈ Aut(X, µ) ∶ Tx E x for a.e. x ∈ X}.

By a classical result of Feldman–Moore [18], every equivalence relation E is the orbit equivalence

relation of some measure-preserving group action Γ ↷ X, where Γ is a countable group. If Φ ⊆

Aut(X, µ) is a countable set of automorphisms, write EXΦ for the equivalence relation generated by Φ

and [Φ] for the full group [EXΦ]. If Φ = {T} is a singleton, write EXT instead of E
X
{T} and [T] instead



61

of [{T}].

E is called ergodic if every measurable E-invariant set is either null or co-null. Two equivalence

relations E and F (on measure spaces (X, µ) and (Y,ν), respectively) are isomorphic if there exists a

measure-preserving isomorphism f∶X→ Y such that

x1 E x2 ⇐⇒ f(x1)F f(x2) for a.e. x1,x2 ∈ X.

Two measure-preserving countable group actions Γ ↷ X and ∆ ↷ Y are orbit equivalent if their

orbit equivalence relations are isomorphic. An equivalence relation is called hyper�nite if can be

written as an increasing union of �nite equivalence relations or, equivalently, is generated by a sin-

gle automorphism. Dye proved that all ergodic, hyper�nite equivalence relations are isomorphic

and Ornstein–Weiss showed that all equivalence relations generated by amenable groups are hyper-

�nite; in particular, all ergodic actions of amenable groups are orbit equivalent (see [42] for proofs

of these facts). For non-amenable groups, however, there are many examples of non-orbit equivalent

actions (both actions of di�erent groups and di�erent actions of the same group). Finding invariants

for orbit equivalence has proved to be di�cult and there are many results which indicate that sat-

isfactory complete invariants in fact do not exist. (It follows from the work of Gaboriau–Popa [23],

Törnquist [71], and Kechris [37] that actions of the free group F2, up to orbit equivalence, are not

classi�able by countable structures. Recently this was extended to groups containing F2 by Ioana [33]

and Kechris [37].)

¿e presence of a measure allows one to de�ne a topology on the full groups which greatly fa-

cilitates their study. ¿ere are two group topologies on Aut(X, µ), introduced by Halmos, which are

relevant for us. Recall that the measure algebra of (X, µ), denoted by MALGµ, is the collection of

all measurable subsets of X modulo null sets. It becomes an abelian group under the operation of

symmetric di�erence and the metric de�ned by

ρ(A,B) = µ(A △ B)

is invariant under the group operation. ¿e group Aut(X, µ) acts faithfully by topological group

automorphisms onMALGµ. Both of the topologies onAut(X, µ)we consider are given by this action:

the weak topology is the topology of pointwise convergence on MALGµ and the uniform topology

is the topology of uniform convergence. Both topologies are completely metrizable; the �rst one
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is separable and the second one is not. A metric compatible with the uniform topology, which is

moreover invariant under group multiplication from both sides, is given by

d(T,S) = µ({T ≠ S}). (5.1.1)

¿e full groups are closed subgroups in Aut(X, µ) in the uniform topology and they turn out to

be separable, hence Polish. Unless otherwise mentioned, we assume them to be equipped with this

Polish topology. For all of this, see [37].

Full groups were �rst considered by Dye and our main motivation to study them comes from the

following theorem (see [37] for a recent exposition of the proof).

¿eorem 5.1.1 (Dye [15]). Let E and F be two countable, measure-preserving, ergodic equivalence re-

lations on the standard probability space (X, µ). ¿en the following are equivalent:

(i) E and F are isomorphic;

(ii) [E] and [F] are isomorphic (algebraically);

(iii) there exists f ∈ Aut(X, µ) such that f[E]f−1 = [F].

Moreover, every algebraic isomorphism between [E] and [F] is realized by a conjugacy.

¿eorem 5.1.1 suggests that the algebraic structure of full groups is rich enough to “remember” the

topology since, by the “moreover” assertion, every algebraic automorphism of an ergodic full group

is automatically a homeomorphism. We pursue this point further in Section 5.3 where we prove one

of our main results (cf. ¿eorem 5.3.1).

¿eorem 5.1.2. Let E be an ergodic, measure-preserving, countable equivalence relation. ¿en every

homomorphism f∶ [E] → G, where G is a separable topological group, is automatically continuous. In

particular, the uniform topology is the �nest separable group topology on [E] and hence, the unique

Polish topology.

Hence, the structure of [E] as an abstract group alone is su�cient to recover the topology and

any statement about [E] as a topological group can, at least in principle, be translated into a state-

ment referring only to its algebraic structure. Automatic continuity is a phenomenonwhich appeared

recently in the work of Kechris–Rosendal [43], Rosendal–Solecki [60], and Rosendal [59] (see Sec-

tion 5.3 for more examples and further discussion). Automatic continuity has also implications for
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group actions on various spaces; for example, any action of a group with this property by homeo-

morphisms on a compact metrizable space or by linear isometries on a separable Banach space is

automatically continuous.

Dye’s theorem shows that full groups are complete invariants for orbit equivalence; in order to

prove that two equivalence relations are non-isomorphic, it su�ces to �nd a (topological group)

property of their full groups which di�erentiates them. ¿e only known (to the authors) result of

that �avor to date is the following.

¿eorem 5.1.3 (Giordano–Pestov [25]). Let E be a countable, measure-preserving, ergodic equivalence

relation. ¿en [E] is hyper�nite i� [E] is extremely amenable.

Recall that a topological group is called extremely amenable if every time it acts continuously on

a compact space, the action has a �xed point. ¿e property of extreme amenability is enjoying a

growing popularity; see Pestov [57] for discussion and references.

Combining¿eorems 5.1.2 and 5.1.3 yields the following.

Corollary 5.1.4. Let E be ergodic, hyper�nite. ¿en any action of [E] by homeomorphisms on a com-

pact, metrizable space has a �xed point.

One should contrast that with the fact that any discrete group admits a free action on a compact

space (see [57]).

Going back to orbit equivalence, one could perhaps hope to distinguish the full groups as topo-

logical spaces alone (forgetting the group structure). ¿is, however, turns out to be impossible as

they are all homeomorphic (cf. Corollary 5.2.5).

¿eorem 5.1.5. Let E be a countable, measure-preserving equivalence relation on the standard prob-

ability space (X, µ) which is not equality a.e. ¿en the full group [E] with the uniform topology is

homeomorphic to the Hilbert space ℓ2.

It was previously known that full groups are contractible (this follows from the argument of

Keane [36]).

Another possible invariant (suggested byKechris [37]) one could look at is the number of topolog-

ical generators of [E], denoted by t([E]) (i.e., the minimal number of generators of a dense subgroup

of [E]). Since the group [E] is separable, we always have t([E]) ≤ ℵ0. It is also easily seen that

t([E]) ≥ 2 if E is not trivial. Indeed, if E has a positive set of classes of size greater than 2, then [E]

is non-abelian and if E is generated by a non-trivial involution, [E] is isomorphic to (MALGµ, △)
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which is also not monothetic. ¿e next simple observation is that if Γ ≤ [E] is countable and dense,

then Γmust generate E (since [Γ] is closed and by density, [Γ] = [E]). Now Gaboriau’s theory of cost

[21] (see also Kechris–Miller [42]) allows one to conclude that if E is generated by a free action of Fn,

then t([E]) ≥ n. (In this case, it is not hard to show the slightly better bound t([E]) ≥ n+ 1 (Miller);

cf. Corollary 5.4.12.) So, to show that t([E]) is a non-trivial invariant, it su�ces to �nd equivalence

relations E for which t([E]) is �nite. Our �rst result in this direction is an upper bound for t([E])

for ergodic, hyper�nite E (cf. ¿eorem 5.4.2).

¿eorem 5.1.6. Let E be ergodic, hyper�nite. ¿en t([E]) ≤ 3.

Using this and an inductive procedure, we further show the following (cf. Corollary 5.4.11).

¿eorem 5.1.7. Let E be an ergodic equivalence relation on (X, µ). ¿en the following are equivalent:

(i) E can be generated by an action of a �nitely generated group;

(ii) E has �nite cost;

(iii) [E] is topologically �nitely generated.

Speci�c calculations for t([E]), for example, for E generated by free, ergodic actions of free

groups, would allow to distinguish those equivalence relations. It is known that free actions of free

groups with di�erent number of generators are orbit inequivalent but the only known way to show

that is using cost (see Gaboriau [21]). Here we provide estimates for t([E]) which distinguish free,

ergodic actions of Fm and Fn when m and n are su�ciently far apart. ¿e proof of the lower bound,

however, still depends on Gaboriau’s results on cost (cf. Corollary 5.4.12).

¿eorem 5.1.8. Let the equivalence relation E be generated by a free, ergodic action of the free group

Fn, n ≥ 1. ¿en

n + 1 ≤ t([E]) ≤ 3n + 3.

It will be interesting to sharpen those estimates and try to �nd a proof for the lower bound inde-

pendent of cost.

¿e organization of this paper is as follows. In Section 5.2, we prove¿eorem 5.1.5; in Section 5.3,

we prove the automatic continuity results, and, �nally, in Section 5.4, we discuss topological genera-

tors.

Below, (X, µ) is a standard probability space and all equivalence relations which we consider are

countable and measure-preserving. We habitually ignore null sets if there is no danger of confusion.
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If A ⊆ X, A∁ denotes the complement of A. If T ∈ Aut(X, µ), suppT denotes the support of T, i.e.,

the set {x ∈ X ∶ Tx ≠ x}.

Acknowledgements.Wewould like to thank our respective advisors G. Hjorth and A. S. Kechris

for encouragement, support and guidance as well as B.Miller for the proof of Lemma 5.4.8 and useful

discussions.

5.2 Full groups are homeomorphic to ℓ2

Identifying the topological type of big symmetry groups has been an ongoing enterprise for the last

few decades. During that time, in�nite-dimensional topology has developed many tools which al-

low that. Recall that a topological space Y is called an absolute (neighborhood) retract (abbreviated

A(N)R) if every time it embeds as a closed subspace of a normal space Z, the image of the embed-

ding is a (neighborhood) retract of Z. ¿e prototypical examples of absolute retracts are the convex

subsets of normed linear spaces. A basic fact is that anANR is anAR i� it is contractible (see [76,¿e-

orem 5.2.15]). We recommend the book van Mill [76] as a basic reference for in�nite-dimensional

topology.

Many groups of interest were proved to be ANRs (see, for example, Luke–Mason [51]). Dobro-

wolski–Toruńczyk [12] achieved a major breakthrough by showing that every non-locally compact

Polish group whose underlying topological space is an ANR is homeomorphic to an ℓ2-manifold.

Moreover, every contractible ℓ2-manifold is in fact homeomorphic to ℓ2 (see [7, Chapter IX,¿eorem

7.3]). As a result, nowmany big Polish groups are known to be homeomorphic to ℓ2. Examples include

Aut(X, µ)with theweak topology (Nhu [55]), the group of orientation-preserving homeomorphisms

of the unit interval (Anderson), the isometry group of the Urysohn space (Melleray [53]), and many

others.

Regarding full groups, we have the following.

¿eorem 5.2.1. Let E be a countable, measure-preserving equivalence relation on (X, µ). ¿en [E] is

an absolute retract.

Proof. Keane [36] showed that Aut(X, µ) is contractible in both the weak and the uniform topologies

using induced transformations and the same argument shows that [E] is contractible. (We discuss

induced transformations below and outline his method.) In order to verify that [E] is an ANR, it
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su�ces to produce a basis B for its topology with the following property:

every nonempty �nite intersection of elements of B is homotopically trivial (∗)

(see [76, ¿eorem 5.2.12]). We will prove that the basis consisting of the open balls of the uniform

metric d de�ned by (5.1.1) has this property.

Let

PER = {T ∈ Aut(X, µ) ∶ ∃n Tn = 1}.

¿e Rokhlin lemma implies that PER ∩ [E] is uniformly dense in [E]. If ξ is a �nite partition of X,

denote by ξ̂ the �nite Boolean algebra generated by ξ. We say that a set B ∈ MALGµ is independent

of ξ if

∀A ∈ ξ µ(A∩ B) = µ(A)µ(B).

Below, I = [0, 1] will be the closed unit interval and Sn will denote the n-dimensional sphere. We

split the proof into a sequence of lemmas.

Lemma 5.2.2. For all T ∈ PER and �nite partitions ξ of X, there exists a continuous map B∶ I →

MALGµ satisfying the conditions:

(i) µ(B(λ)) = λ;

(ii) λ ≤ λ′ Ô⇒ B(λ) ⊆ B(λ′);

(iii) for all λ ∈ I, the set B(λ) is T-invariant;

(iv) for all λ ∈ I, B(λ) is independent of ξ.

Proof. Let Tn = 1. By splitting X into pieces (and re�ning ξ appropriately), we can assume that all

x ∈ X have T-orbits of length exactly n. Let

ξ′ = ξ ∨ Tξ ∨⋯ ∨ Tn−1ξ

= {A0 ∩ T(A1) ∩⋯ ∩ Tn−1(An−1) ∶ A0,A1, . . . ,An−1 ∈ ξ}.

¿e partition ξ′ is clearly T-invariant, so we have an action of T on it. Let {C1,C2, . . . ,Ck} ⊆ ξ′ be a

transversal for the T-orbits in ξ′ and Y = C1 ∪C2 ∪⋯∪Ck. By re�ning ξ if necessary, we can assume

that all orbits have length n. ¿ere exists a map h∶ I →MALGµ(Y) such that
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• µ(h(λ)) = λ ⋅ µ(Y);

• λ ≤ λ′ Ô⇒ h(λ) ⊆ h(λ′);

• µ(h(λ) ∩ Ci) = µ(h(λ))µ(Ci), i = 1, . . . , k.

Finally, let

B(λ) =
n−1
⋃
j=0
T j(h(λ)).

It is clear that this B satis�es the requirements. Continuity follows from (i) and (ii).

Let ρ be any compatible metric on Sn.

Lemma 5.2.3. For all δ > 0, there exists m ∈ N, points z1, . . . , zm ∈ Sn, and a continuous map g∶ Sn →

Rm such that for all z ∈ Sn, the following conditions are satis�ed:

(i) for all i, gi(z) ≥ 0 andmaxi≤m gi(z) = 1;

(ii) at most n + 1 of the numbers g1(z), g2(z), . . . , gm(z) are non-zero;

(iii) ∀i ≤ m gi(z) > 0 Ô⇒ ρ(z, zi) < δ,

where gi denotes the i-th coordinate of g.

Proof. Consider Sn as a simplicial complex such that all of its simplices have ρ-diameter smaller

than δ. Let {z1, . . . , zm} be the 0-skeleton of the complex. ¿en for each z ∈ Sn there is a minimal set

β(z) ⊆ {1, . . . ,m} with ∣β(z)∣ ≤ n + 1 such that z belongs to the simplex {zi ∶ i ∈ β(z)}. Each z can

be written uniquely as a convex combination∑i∈β(z) aizi. Set

gi(z) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ai
maxi ai

if i ∈ β(z),

0 if i ∉ β(z).

It is easy to verify that g satis�es the requirements.

Since the basis of open balls is translation invariant, the following lemma su�ces to verify (∗).

Lemma 5.2.4. Let Br1(Q1), . . . , Brk(Qk) be open balls in [E] (Brj(Qj) denotes the ball with center Qj

and radius rj). Let U = ⋂k
j=1 Brj(Qj) and suppose that 1 ∈ U. ¿en any continuous map f∶ (Sn, s0) →

(U, 1), where s0 ∈ Sn, is nullhomotopic in U.
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Proof. We will build a continuous map F∶ Sn × I → U satisfying F(z, 0) = f(z), F(z, 1) = 1, and

F(s0, λ) = 1 for all z ∈ Sn, λ ∈ I.

By the compactness of Sn, there exists є > 0 such that

f(Sn) ⊆ ⋂
i

Bri−6є(Qi).

Let δ < є/(n + 1) be such that 1/δ is an integer. Since f is uniformly continuous, there exists δ′ > 0

such that

∀z,w ∈ Sn ρ(z,w) < δ′ Ô⇒ d(f(z), f(w)) < δ. (5.2.1)

Apply Lemma 5.2.3 with δ = δ′ to obtain points z1, . . . , zm ∈ Sn and a map g∶ Sn → Rm with the

properties described in the lemma. Note that by properties (i) and (iii),

∀z ∈ Sn∃i ≤ m d(f(z), f(zi)) < δ < є.

Let T1,T2, . . . ,Tm ∈ PER ∩ [E] be such that d(f(zi),Ti) < δ for all i. Let ξ0 be the partition of X

generated by the collection

{{f(zi) = Qj},{Qj = 1} ∶ i = 1, . . . ,m; j= 1, . . . , k}.

Apply Lemma 5.2.2 to T1 and ξ0 to obtain a map B1∶ I →MALGµ. Inductively, assuming that Bi and

ξi−1 have been built, let ξi be generated by ξi−1 and the collection

{Bi(δ),Bi(2δ), . . . ,Bi(1)}

and apply Lemma 5.2.2 to Ti+1 and ξi to obtain Bi+1. Our construction and Lemma 5.2.2 (iv) ensures

that Bi(λ) is independent of Bj(qδ) for all integers q ≤ 1/δ and j< i and all of them are independent

of ξ0. Hence, for any A ∈ ξ̂0 and any tuple (q1,q2, . . . ,qm) of integers with qi ≤ 1/δ,

µ(A∩
m
⋂
i=1
Bi(qiδ)) = µ(A∩

m−1
⋂
i=1
Bi(qiδ))µ(Bm(qmδ))

= ⋯

= µ(A)∏
i
µ(Bi(qiδ)).

(5.2.2)
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Now de�ne a map h∶ Sn × I →MALGµ by

h(z, λ) =
m
⋂
i=1
Bi(1 − λgi(z)).

¿e idea is that h(z, λ) is “almost invariant” under f(z) and “almost independent” of the partition ξ0.

¿is will allow us to show that the induced transformation f(z)h(z,λ) is inU and F(z, λ) = f(z)h(z,λ)

will furnish the desired homotopy. ¿e following claim summarizes the properties of h we need.

Claim. ¿e following statements hold for h:

(i) h is continuous;

(ii) h(z, 0) = X, h(z, 1) = ∅;

(iii) µ(f(z)(h(z, λ)) △ h(z, λ)) < 2є;

(iv) for all A ∈ ξ̂0, ∣µ(h(z, λ) ∩ A) − µ(h(z, λ))µ(A)∣ < 2є.

Proof. (i) and (ii) are clear from the de�nition and the properties of g. We proceed to verify (iii) and

(iv). Fix z and λ and set T = f(z). Let α = {i ∶ gi(z) > 0}. By Lemma 5.2.3 (ii), ∣α∣ ≤ n + 1. Set

Di = Bi(1 − λgi(z)) and let

C = h(z, λ) = ⋂
i∈α
Di.

By (5.2.1) and Lemma 5.2.3 (iii),

∀i ∈ α d(T,Ti) < 2δ,

so, in particular, µ(T(A) △ Ti(A)) < 2δ for any A ∈ MALGµ, i ∈ α. Using Lemma 5.2.2 (iii), we

have:

µ(T(C) △ C) = µ(T(⋂
i∈α
Di) △ ⋂

i∈α
Di)

≤ ∑
i∈α
µ(T(Di) △ Di)

≤ ∑
i∈α
µ(T(Di) △ Ti(Di)) +∑

i∈α
µ(Ti(Di) △ Di)

≤ 2∣α∣δ + 0 < 2є

which veri�es (iii).
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Now �x A ∈ ξ̂0. Let for each i ∈ α, qi ≤ 1/δ be such that

∣µ(Di △ Bi(qiδ))∣ ≤ δ.

¿en

µ(C △ ⋂
i∈α
Bi(qiδ)) = µ(⋂

i∈α
Di △ ⋂

i∈α
Bi(qiδ))

≤ µ(⋃
i∈α
Di △ Bi(qiδ))

≤ ∣α∣δ < є.

(5.2.3)

By (5.2.2),

µ(⋂
i∈α
Bi(qiδ)) =∏

i∈α
µ(Bi(qiδ))

and

µ(A∩⋂
i∈α
Bi(qiδ)) = µ(A)∏

i∈α
µ(Bi(qiδ)),

which together with (5.2.3), allow us to calculate:

∣µ(A∩ C) − µ(A)µ(C)∣ < ∣µ(A∩⋂
i∈α
Bi(qiδ)) − µ(A)µ(⋂

i∈α
Bi(qiδ))∣ + 2є

= 2є,

verifying (iv).

For T ∈ [E] and A ∈MALGµ, let TA ∈ [E] denote the induced transformation, i.e.,

TA(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x, if x ∉ A,

Ts(x)(x), if x ∈ A,

where s(x) is the least s > 0 forwhichTs(x) ∈ A. TA is well de�ned (almost everywhere) by Poincaré’s

recurrence lemma and as follows from Keane [36], the map (A,T) ↦ TA is continuous MALGµ ×

[E] → [E]. (From here it is not hard to see that [E] is contractible. Indeed, identifying (X, µ) with

(I, Lebesgue measure) and de�ning C∶ I → MALGµ by C(λ) = [0, λ], it is immediate that the map

I × [E] → [E] given by (λ,T) ↦ TC(λ) is a contraction.)
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Now set

F(z, λ) = f(z)h(z,λ).

We only need to verify that F(Sn, I) ⊆ U. Fix z ∈ Sn, λ ∈ I, and j ∈ {1, . . . , k}. Set T = f(z),

C = h(z, λ). Find zi such that d(T, f(zi)) < є. Note also that by (iii) of the Claim,

µ(C ∩ {T ≠ TC}) = µ(C ∖ T−1(C)) = µ(T(C) ∖ C) < 2є. (5.2.4)

Using (iv) of the Claim, (5.2.4), and the choice of є, for all j= 1, . . . , k, we have:

d(Qj,TC) = µ({Qj ≠ TC})

= µ(C ∩ {Qj ≠ TC}) + µ(C∁ ∩ {Qj ≠ TC})

≤ µ(C ∩ {Qj ≠ f(zi)}) + µ(C ∩ {f(zi) ≠ T})

+ µ(C ∩ {T ≠ TC}) + µ(C∁ ∩ {Qj ≠ 1})

≤ (µ(C)µ({Qj ≠ f(zi)}) + 2є) + d(T, f(zi))

+ 2є+ (µ(C∁)µ({Qj ≠ 1}) + є)

≤ µ(C)d(Qj, f(zi)) + µ(C∁)d(Qj, 1) + 6є

< (rj− 6є) + 6є = rj.

Hence, TC ∈ Brj(Qj) for all jand we are done.

¿is completes the proof of the theorem.

Corollary 5.2.5. Let E be a countable, measure-preserving equivalence relation on (X, µ) which is not

equality a.e. ¿en [E] is homeomorphic to ℓ2.

Proof. By the theorem of Dobrowolski–Toruńczyk cited above it su�ces to check that [E] is not

locally compact. ¿is follows from the simple observation that every non-trivial full group con-

tains an involution and the full group of any involution is isomorphic (as a topological group) to

(MALGµ, △) which is easily veri�ed to not be locally compact.

Remark. In fact, Bessaga–Pełczyński [7] have shown that MALGµ is homeomorphic to ℓ2. Corol-

lary 5.2.5 can be considered a generalization of this result since if T is a non-trivial involution, the

full group [T] is isomorphic to (MALGµ, △).
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5.3 Automatic continuity

¿e phenomenon of automatic continuity of group homomorphisms has recently enjoyed a lot of

attention. Classical results state that Baire measurable homomorphisms between Polish groups (Pet-

tis) and measurable homomorphisms between locally compact groups (Kleppner [47]) are necessar-

ily continuous but recently such results have been obtained (for particular source groups) without

any restrictions on the homomorphisms except that their target be separable. One way of think-

ing of this strong automatic continuity property is that the algebraic structure of the groups pos-

sessing it is so rigid that the axiom of choice is unable to produce pathological (non-continuous in

the natural topology) homomorphisms. Kechris–Rosendal [43] showed that every homomorphism

from a group with ample generics (including the group of permutations of the integers, the group of

measure-preserving homeomorphisms of the Cantor space and the Lipschitz homeomorphisms of

the Baire space) to a separable group is continuous; Rosendal–Solecki [60] proved the same result for

the homeomorphism group of the Cantor space, the group of order-preserving automorphisms ofQ,

and the orientation-preserving homeomorphisms of the real line and the circle; and Rosendal [59]

proved automatic continuity for the homeomorphism groups of compact 2-manifolds. For details

and further discussion, see those three papers.

Rosendal–Solecki [60] introduced a property implying automatic continuity which we proceed

to describe. Let G be any topological group. A setW ⊆ G is called countably syndetic if countably

many le translates ofW coverG. We say thatG is Steinhaus if there exists a number n such that for

any symmetric, countably syndetic setW,Wn contains an open neighborhood of the identity. It is

proved in [60] that if G is Steinhaus, then any homomorphism f∶G → H, where H is an arbitrary

separable topological group, is continuous.

¿eorem5.3.1. Let E be an ergodic, measure-preserving, countable equivalence relation on the standard

probability space (X, µ). ¿en the full group [E] is Steinhaus. In particular, every homomorphism from

[E] to a separable group is continuous.

Proof. We borrow ideas and methods from [60]. FixW ⊆ [E] a symmetric, countably syndetic set,

i.e., let there exist k1, k2, . . . ∈ [E] such that

⋃
n
knW = [E]. (5.3.1)

For B ∈MALGµ, denote byHB the subgroup of [E] consisting of the transformations whose support
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is contained in B. Say that a set U ⊆ [E] is full for B if

∀T ∈ HB∃S ∈ U T∣B = S∣B.

We will use repeatedly and without mentioning the simple fact that because of the ergodicity of E, for

all pairs of setsA,B ∈MALGµ of the samemeasure, there exists an involution T ∈ [E]with T(A) = B

and suppT ⊆ A∪B (see [42, Lemma 7.10]). ¿e following lemma and its proof are similar to Claim 1

in the proof of [60, ¿eorem 12].

Lemma 5.3.2. Let {B1,B2, . . .} be a collection of pairwise disjoint subsets of X. ¿en there exists n ∈ N

such that W2 is full for Bn.

Proof. It su�ces to show that knW is full for Bn for some n since then

W2 = (knW)−1(knW)

is also full for Bn. Suppose this is not the case. ¿en for each n, there exists Tn ∈ HBn such that for

all S ∈ knW, S∣Bn ≠ Tn∣Bn . De�ne T ∈ [E] by

Tx =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Tnx if x ∈ Bn,

x if x ∉ ⋃n Bn.

¿en T ∉ knW for all n, contradicting (5.3.1).

Lemma 5.3.3. ¿ere exists a non-empty B ∈MALGµ such that HB ⊆W36.

Proof. Let {B1,B2, . . .}be any collection of pairwise disjoint non-empty subsets ofX. By Lemma 5.3.2,

there is n0 such thatW2 is full for Bn0 . Set B′ = Bn0 . We will show thatW2 contains a non-trivial

involution whose support is contained in B′. Indeed, let T ∈ [E] be any involution with suppT = B′.

¿e group [T] < [E] is uncountable and separable, hence there exists n and S1,S2 ∈ [T] such that

0 < d(S1,S2) < µ(B′)/2 and S1,S2 ∈ knW. Set S = S1S2. ¿en

S = S1S2 = S−11 S2 ∈ (knW)−1(knW) =W2

and

µ(supp S) = d(1,S) = d(S1,S2) < µ(B′)/2.
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Note that every involution U ∈ HB′ with µ(suppU) = µ(supp S) is conjugate to S in HB′ . Indeed,

let C ⊆ supp S and D ⊆ suppU be such that C ∪ S(C) = supp S, C ∩ S(C) = ∅, D ∪ S(D) = suppU,

D ∩U(D) = ∅. Find V1 ∈ HB′ such that V1(C) = D. De�ne V2 ∈ HB′ by

V2x =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

V1x if x ∈ C,

UV1Sx if x ∈ S(C)

on supp S and extend it arbitrarily to an element of HB′ . ¿en it is easy to check that V2SV−1
2 = U.

By the fullness ofW2 for B′, there exists V3 ∈W2 such that V3∣B′ = V2. ¿en U = V3SV−1
3 and thus,

U ∈W6.

Let now B ⊆ B′ be such that supp S ⊆ B and µ(B) = 2µ(supp S) and note that every involu-

tion in HB can be written as a product U1U2 where U1,U2 ∈ HB′ are involutions with µ(suppU1) =

µ(suppU2) = µ(supp S). ¿erefore all involutions in HB are contained inW12. Finally, by the argu-

ment in Ryzhikov [61], every element of HB is the product of three involutions, so HB ⊆W36.

Now we are ready to complete the proof of the theorem. Fix B as given by Lemma 5.3.3. Let

T1,T2, . . . be a sequence of elements of [E] with limn→∞ Tn = 1. We will show that some Tm is in

W38, thus proving thatW38 contains an open neighborhood of 1. Set Cn = suppTn. By passing to a

subsequence, we can assume that∑n µ(Cn) < µ(B). Let

D = ⋃
n
kn(Cn).

Fix A ⊆ B with µ(A) = µ(D). ¿ere exists S′ ∈ [E] such that S′(A) = D. By (5.3.1), there is m such

that S′ ∈ kmW. If we set S = k−1m S′, we have S ∈W and

S(A) = k−1m (D) ⊇ Cm.

Hence, S−1TmS ∈ HB ⊆W36 and

Tm = S(S−1TmS)S−1 ∈WW36W =W38,

proving that [E] is Steinhaus with exponent 38.

Remark. Note that the condition of ergodicity cannot be omitted. If T is a non-trivial involution, the
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group [T] is isomorphic to (MALGµ, △) and the latter admits many di�erent topologies. Indeed,

MALGµ is a vector space over Z/2Z, hence has a Hamel basis, hence is isomorphic to any abelian

group of exponent 2 and cardinality continuum (for example, (Z/2Z)N).

5.4 Topological generators

5.4.1 ¿e hyper�nite case

In order to distinguish equivalence relations by the number of topological generators of their full

groups, the �rst thing one has to show is that this number is not always in�nite. We start with the

simplest case, the equivalence relation generated by a single ergodic automorphism. In this sub-

section, E will always be ergodic and hyper�nite. By Dye’s theorem, up to isomorphism, there exists

only one hyper�nite, ergodic equivalence relation, so we have the �exibility to consider anymeasure-

preserving, ergodic automorphism as the generator of E. In order to produce a �nitely generated

dense subgroup of [E], we will use a speci�c minimal homeomorphism of the Cantor space as a

topological model and the theory of topological full groups of minimal homeomorphisms, as devel-

oped by Giordano–Putnam–Skau [26]. In fact, our dense subgroup comes directly from an example

of Matui [52].

We recall some concepts and de�nitions from [26]. Let ϕ be an aperiodic (with all of its orbits

in�nite) homeomorphism of the Cantor space X. For every homeomorphism γ of X preserving the

orbits of ϕ, de�ne its associated cocycle nγ∶X→ Z, whereZ denotes the discrete group of the integers,

by

nγ(x) = n ⇐⇒ γ(x) = ϕn(x).

De�ne the topological full group of ϕ by

[[ϕ]] = {γ ∈ Homeo(X) ∶ ∀x ∃n ∈ Z γ(x) = ϕn(x) and nγ is continuous}. (5.4.1)

Since there are only countably many continuous functions X → Z, the group [[ϕ]] is always count-

able. It is a remarkable fact, discovered by Matui, that those groups are sometimes �nitely generated.

Below we prove that topological full groups of minimal homeomorphisms are dense in the measure-

theoretic full group and thus provide a rich supply of �nitely-generated dense subgroups of [E].

Let ϕ be a minimal homeomorphism of the Cantor space X and µ be any ϕ-invariant, Borel,
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probability measure on X. De�ne the index map I∶ [[ϕ]] → R by:

I(γ) = ∫ nγ dµ.

It turns out to be a homomorphism [[ϕ]] → Z which does not depend on the choice of µ. Its kernel

is denoted by [[ϕ]]0. For all of this, see [26].

Proposition 5.4.1. Let ϕ be a minimal homeomorphism of the Cantor space X and µ be an invariant

measure. Let E be the equivalence relation induced by ϕ. ¿en the countable group [[ϕ]]0 is dense in

[E].

Proof. By [37, Proposition 3.7], it is su�cient to show that given pairwise disjoint clopen subsets

A1, . . . ,Ak ⊆ X, integers n1, . . . ,nk such that the sets ϕn1(A1), . . . ,ϕnk(Ak) are pairwise disjoint,

and є > 0, we can produce ψ ∈ [[ϕ]]0 with the property

µ({ψ ≠ ϕni} ∩ Ai) < є for all i = 1, . . . , k.

Let N0 be an integer so big that ∣ni∣/N0 < є for all i. Let D ⊆ X be clopen with

D,ϕ(D), . . . ,ϕN0−1(D) disjoint. (5.4.2)

Build a Kakutani–Rokhlin stack with base D compatible with the sets Ai,ϕni(Ai), i = 1, . . . , k, i.e.,

�nd numbers m ∈ N (the number of towers in the stack) and J(1), . . . , J(m) ∈ N (the heights of the

towers), and a clopen partition

{Z(l, j) ∶ l = 1, . . . ,m; j= 0, . . . , J(l) − 1}

of X satisfying the conditions:

• ϕ(Z(l, j)) = Z(l, j+ 1), j= 0, . . . , J(l) − 2;

• ϕ(⋃ml=1 Z(l, J(l) − 1)) = ⋃
m
l=1 Z(l, 0);

• ⋃ml=1 Z(l, 0) = D;

• each one of the setsAi,ϕni(Ai) (i = 0, . . . , k−1) is the union of some elements of the partition.
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For details on how to achieve this, see Herman–Putnam–Skau [30, Lemma 4.1]. Because of (5.4.2),

the height of each tower in the stack is at least N0. Let σ′l be the partial function J(l) → J(l) (as

customary, we identify J(l) with the set {0, 1, . . . , J(l) − 1}) de�ned by

σ′l(a) = b ⇐⇒ ∃i Z(l,a) ⊆ Ai and b = a + ni.

Since the collections {Ai}i<k and {ϕni(Ai)}i<k are each pairwise disjoint, σ′l is injective, so it extends

to a permutation σl ∈ SJ(l). Finally, de�ne

ψ(x) = ϕn(x) ⇐⇒ x ∈ Z(l, j) and n = σl(j) − j.

For the value of the index homomorphism, we have the following simple computation (using that µ

is invariant under ϕ and hence, µ(Z(l, j1)) = µ(Z(l, j2)) for j1, j2 < J(l)):

I(ψ) = ∫ nψ dµ =
m
∑
l=1
µ(Z(l, 0))

J(l)−1
∑
j=0

(σl(j) − j) = 0.

On each of the Ais, ψ agrees with ϕni everywhere except possibly on the set

Ui = ⋃
l
⋃
j∈Cl,i

Z(l, j)

where Cl,i = {0, . . . , 1 − ni} if ni < 0 and Cl,i = {J(l) − ni, . . . , J(l) − 1} if ni ≥ 0. But

µ(Ui) =
m
∑
l=1

∣ni∣
J(l)

µ( ⋃
j<J(l)

Z(l, j)) ≤
∣ni∣
N0

< є,

so we are done.

Matui [52] has recently characterized theminimal homeomorphisms ϕ for which the group [[ϕ]]

(or, equivalently, the group [[ϕ0]]) is �nitely generated. He proved that [[ϕ]] is �nitely generated i� ϕ

is conjugate to a minimal subshi and satis�es an additional technical condition. He also calculated

in a few examples speci�c generators for those groups. Currently, there are examples of minimal

homeomorphisms whose topological full groups have 3 generators [52, Examples 6.1 and 6.2]. It is

not known whether such topological full groups with 2 generators exist.

¿us, by Proposition 5.4.1, we have the following theorem which answers a question of Kechris.
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¿eorem 5.4.2. Let E be an ergodic, hyper�nite equivalence relation. ¿en t([E]) ≤ 3.

Since [E] is not abelian, wemust have t([E]) ≥ 2. However, we do not knowwhat the exact value

of t([E]) is.

Question 5.4.3. Let E be ergodic, hyper�nite. Is t([E]) equal to 2 or 3?

Remark. ¿e samemethod for producing dense subgroups of [E] (using a Cantor topologicalmodel)

works for non-hyper�nite equivalence relations as well. Miller [54] has shown that if X is a Cantor

space, Γ is a countable group acting on X by homeomorphisms, and µ is a Γ-invariant probability

measure, then the topological full group [[Γ]] (de�ned by a formula analogous to (5.4.1)) is dense in

[EXΓ ]. Unfortunately, little is known about topological full groups which arise from actions of groups

other than Z (especially in the non-amenable case).

It is also interesting to try to �nd an elementary construction of a dense subgroup of [E] (for a

hyper�nite E) with few generators for some concrete realization of E. (¿e examples of Matui are

concrete enough but his computations of the generators rely heavily on the C∗-algebraic machinery

of Giordano–Putnam–Skau.) In this direction, Kittrell [45], using E0 (the equivalence relation on

(Z/2Z)N generated by the action of the subgroup (Z/2Z)<N by translation) as a model and purely

combinatorial techniques, has found 18 generators for a dense subgroup of [E].

5.4.2 ¿e general case

¿eorem 5.4.2 provides an example of a situation where [E] is topologically �nitely generated. Below,

we develop techniques to characterize exactly when this happens. ¿e following proposition is the

main tool we shall use.

If G is a group and A⊆ G a subset, denote by ⟨A⟩ the subgroup of G generated by A.

Proposition 5.4.4. Let (X, µ) be a standard probability space and T0,T1, . . . ∈ Aut(X, µ) be involu-

tions. Let E be the equivalence relation generated by them. ¿en ⟨⋃j∈N[Tj]⟩ is dense in [E].

Proof. Since [E] is generated by involutions, it su�ces to approximate involutions. Fix I ∈ [E], I2 = 1.

For T ∈ Aut(X, µ) and A⊆ X such that A∩ T(A) = ∅, de�ne TA ∈ [T] by

TAx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tx if x ∈ A,

T−1x if x ∈ T(A),

x otherwise.
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A3TA2
3

A2

TA1
2 SA0

3 = SA0
2 TA2

3 SA0
2 ∈ 〈Φ〉

A1 SA0
2 = TA0

1 TA1
2 TA0

1 ∈ 〈Φ〉 An−1

TA0
1 TAn−1

n

SA0
n−1 ∈ 〈Φ〉

A0 An

SA0
n = SA0

n−1T
An−1
n SA0

n−1 ∈ 〈Φ〉

Figure 5.1: Building SA0
n out of TA0

1 ,TA1
2 , . . . ,TAn−1n

¿e proof proceeds by �rst showing that we can approximate IA for certain well chosen sets A and

then gluing those together using Lemma 5.4.6 in order to approximate I.

Lemma 5.4.5. Let T1, . . . ,Tn ∈ Aut(X, µ) and set Sk = TkTk−1⋯T1 for k = 1, . . . ,n. Let A0 ⊆ X be

Borel and de�ne Ak = Sk(A0) for k = 1, . . . ,n. Suppose that A0,A1, . . . ,An are pairwise disjoint. ¿en

SA0
n ∈ ⟨TA0

1 ,TA1
2 , . . . ,TAn−1n ⟩.

Proof. We have SA0
1 = IA0

1 by de�nition. It will then be enough to show that

SA0
k+1 = S

A0
k TAkk+1S

A0
k for k = 1, . . . ,n − 1.

¿is can best be seen from the diagram on Figure 5.1.

Lemma 5.4.6. Let T ∈ Aut(X, µ) be an involution and {Xn}n∈N be a Borel partition of X. Let

Φ = {TA ∶ A∩ T(A) = ∅ and A⊆ Xn for some n}.

¿en T ∈ ⟨Φ⟩.

Proof. By re�ning the partition if necessary, we can assume that it is T-invariant. Let for each n, An

be a Borel transversal for T∣Xn , i.e., An ⊆ Xn, An ∩ T(An) = ∅, An ∪ T(An) = Xn. ¿en

T = ∏
n∈N

TAn (5.4.3)
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and since for each N, ∏n<N TAn ∈ ⟨Φ⟩, we are done (all of the terms in the product (5.4.3) have

disjoint supports, hence commute, and the product converges).

Now return to the proof of Proposition 5.4.4. Let G = ⋃j∈N graphTj. G is a Borel graph on X

whose connected components are the E-equivalence classes. Label the edge (x, y) of G with j if

Tjx = y (some edges may have more than one label). For s ∈ N<N, denote by ∣s∣ the length of s. For

each x ∈ X, let sx ∈ N<N be the sequence of labels of the lexicographically least among the shortest

G-paths from x to I(x) so that

Tsx(∣sx∣−1)Tsx(∣sx∣−2)⋯Tsx(0)(x) = I(x).

For x ∈ X and k ≤ ∣sx∣, set

Jk(x) = Tsx(k−1)Tsx(k−2)⋯Tsx(0)(x).

(¿us id = J0, J1, J2, . . . are partial automorphisms of E.) By the choice of sx, the points

x, J1(x), . . . , J∣sx∣(x) are distinct. (5.4.4)

¿e mapping x ↦ sx is clearly Borel. For each s ∈ N<N, let

Xs = {x ∈ X ∶ sx = s}.

By Lemma 5.4.6, in order to approximate I, it su�ces to approximate IA for setsAforwhichA∩I(A) =

∅ and A ⊆ Xs for some s. Fix such A and s. Let B be a countable dense subalgebra of MALGµ. By

(5.4.4), for each x ∈ A, there exist pairwise disjointU0, . . . ,U∣s∣ ∈ B such that Ji(x) ∈ Ui for all i ≤ ∣s∣.

Let A be the countable set of all sequences α = (U0,U1, . . . ,U∣s∣) of pairwise disjoint elements of B

of length ∣s∣ + 1. For α ∈ A, let

Aα = {x ∈ A ∶ ∀i ≤ ∣s∣ Ji(x) ∈ α(i)}.

¿us ⋃α∈A Aα = A. Let {αn}n∈N be an enumeration ofA and inductively de�ne

Bn = Aαn ∖ ⋃
j<n
Bj.

¿en {B0,B1, . . .} is a partition of A and for each n, the sets Bn, J1(Bn), . . . , J∣s∣(Bn) are pairwise
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disjoint (since Ji(Aα) ⊆ α(i) by the de�nition of Aα). By Lemma 5.4.5, IBn ∈ ⟨⋃j∈N[Tj]⟩ for all n and

applying Lemma 5.4.6 again shows that IA ∈ ⟨⋃j∈N[Tj]⟩.

Recall that if {E1,E2, . . .} is a countable collection of equivalence relations, their join, denoted by

E1 ∨ E2 ∨⋯, is the smallest equivalence relation which contains all of them. Since every equivalence

relation is generated by involutions, Proposition 5.4.4 generalizes to the following.

¿eorem 5.4.7. Let E1,E2, . . . be countable, measure-preserving equivalence relations on (X, µ) and E

be their join. ¿en ⟨⋃n∈N[En]⟩ is dense in [E].

In order to continue our analysis, we will need the notion of cost of an equivalence relation in-

troduced by Levitt and further developed by Gaboriau. We brie�y recall the de�nition and refer the

reader to [42] for more details. If E is an equivalence relation, we denote by [[E]] the set of all partial

automorphisms of E, i.e., all partial Borel bijections of X whose graphs are contained in E. Since E

is measure-preserving, for all ψ ∈ [[E]], µ(domψ) = µ(rngψ). An L-graphing of an equivalence

relation E is a countable subset Ψ ⊆ [[E]] such that E is the smallest equivalence relation containing

the graphs of all elements of Ψ. ¿e cost of Ψ is de�ned as

costΨ = ∑
ψ∈Ψ

µ(domψ)

and the cost of E is given by

costE = inf{costΨ ∶ Ψ is an L-graphing of E}.

¿e cost can be �nite or in�nite and if E is ergodic, costE ≥ 1. One of the main results of Gaboriau’s

theory [21] is that if E is generated by a free, ergodic action of Fn, costE = n, i.e., the L-graphing

given by the group generators is optimal in this case.

¿e following lemma was proved by Ben Miller.

Lemma 5.4.8. Let E be an ergodic equivalence relation of cost less than n. ¿en there exist �nite equiv-

alence relations F1, . . . ,Fn such that F1 ∨⋯ ∨ Fn = E.

Proof. Since E is ergodic, costE ≥ 1 and hence, n ≥ 2. By [42, Lemma 27.7] and its proof, there

exist ϕ1, . . . ,ϕn−1 ∈ [E] and ψ ∈ [[E]] with µ(domψ) < 1 such that ϕ1, . . . ,ϕn−1,ψ generate E and,

moreover, ϕ1 is ergodic. Let E1, . . . ,En−1 denote the orbit equivalence relations of ϕ1, . . . ,ϕn−1, re-
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spectively. We will build F1, . . . ,Fn−1 as �nite approximations of E1, . . . ,En−1 and use Fn to glue the

pieces together.

Without loss of generality, we can assume that ϕ2, . . . ,ϕn−1 are aperiodic. (If, say, ϕ2 is periodic

on the positive set D, we can set F2 to be equal to EDϕ2 on D and proceed with the aperiodic part

exactly as below.) Set B = domψ and let є < (1 − µ(B))/2n. Let A1, . . . ,An−1 be complete sections

for E1, . . .En−1 such that µ(Ai) < є and Ai ∩ ϕi(Ai) = ∅ for i = 1, . . . ,n − 1. Since ϕ1, . . . ,ϕn−1 are

aperiodic, Ai is ϕi-birecurrent. For each i = 1, . . . ,n − 1, de�ne the �nite equivalence relation Fi by:

x Fi y ⇐⇒ ∃n ∈ Z ϕni (x) = y and ∀k ∈ (0,n] ∪ (n, 0] ϕki (x) ∉ Ai, (5.4.5)

i.e., Fi is given by splitting the orbits of ϕi into �nite pieces using the complete section Ai. De�ne

ξi ∈ [[E]] to be the involution ϕi∣Ai ∪ ϕ−1i ∣ϕi(Ai). Note that the equivalence relation generated by Fi

and ξi is Ei. Set B1 = dom ξ1 and let B2,B3, . . . ,Bn−1 be disjoint subsets of X ∖ (B ∪ B1) such that

µ(Bi) = µ(dom ξi) = 2µ(Ai). Let θ′ ∈ [E1] be such that θ′(rngψ) = B and let θi ∈ [E1] be such that

θi(dom ξi) = Bi for i = 2, . . . ,n − 1. De�ne ψ′ = θ′ψ and ηi = θiξiθ−1i for i = 2, . . . ,n − 1. Note that

ψ′ is an automorphism of B. Again, without loss of generality, we can assume that ψ′ is aperiodic.

Let C be a complete section for EBψ′ such that µ(C) < є and C∩ψ
′(C) = ∅. Let the �nite equivalence

relation F′n on B be the splitting of the orbits of ψ′ into �nite pieces using the complete section C

(de�ned by a formula similar to (5.4.5)). De�ne ξ0 ∈ [[E]] to be the involution ψ′∣C ∪ψ′−1∣ψ′(C). Let

B0 be a set of measure µ(dom ξ0) disjoint from B ∪ B1 ∪ B2 ∪ ⋯ ∪ Bn−1. Let θ0 ∈ [E1] be such that

θ0(dom ξ0) = B0 and de�ne η0 = θ0ξ0θ−10 . Finally, de�ne Fn by

Fn = F′n ∪ E
B0
η0 ∪ E

B1
η1 ∪⋯ ∪ EBn−1ηn−1 ∪ id ∣X∖(B∪B0∪B1∪⋯∪Bn−1).

Now it is easy to see that Ei ⊆ E1 ∨ Fi ⊆ F1 ∨ Fn ∨ Fi for i = 1, . . . ,n − 1 and EXψ ⊆ E1 ∨ Fn ⊆ F1 ∨ Fn,

showing that F1 ∨⋯ ∨ Fn = E.

Lemma 5.4.9. Let F ⊆ E be equivalence relations on (X, µ) where F is �nite and E is ergodic. ¿en

there exists an ergodic, hyper�nite equivalence relation E′ such that F ⊆ E′ ⊆ E.

Proof. Since F is �nite, the space Y = X/F is standard Borel. Let π∶X → Y be the canonical projec-

tion. Set ν = π∗µ and de�ne the equivalence relation E/F on Y by

y1 E/F y2 ⇐⇒ ∃x1,x2 ∈ X x1 E x2 and π(x1) = y1 and π(x2) = y2.
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Since µ is non-atomic, ν is non-atomic and since E is µ-ergodic, E/F is ν-ergodic. Pick any ergodic

T ∈ [E/F] (such a T exists by [37,¿eorem 3.5]) and let F′ be the equivalence relation onY generated

by T. Finally, let E′ = π−1(F′). We will check that this E′ works.

¿e inclusions F ⊆ E′ ⊆ E are obvious. Next, the ergodicity of E′ follows from the ergodicity of

F′. Finally, write F′ = ⋃n F′n as the increasing union of �nite equivalence relations on Y. Let for each

n, E′n = π−1(F′n). Since F is �nite, all the E′ns are �nite. Also, E′ = ⋃n E′n and the union is clearly

increasing, so E′ is hyper�nite.

¿eorem 5.4.10. Let E be an ergodic equivalence relation with costE < n for some n ∈ N. ¿en

t([E]) ≤ 3n.

Proof. By Lemma 5.4.8, there exist �nite equivalence relations F1, . . . ,Fn such that ⋁ni=1 Fi = E. Use

Lemma 5.4.9 to �nd, for each i ≤ n, an ergodic, hyper�nite equivalence relation Ei such that Fi ⊆

Ei ⊆ E. ¿en, E = ⋁i Ei and applying¿eorem 5.4.2 and¿eorem 5.4.7, we obtain the desired upper

bound.

Corollary 5.4.11. Let E be an ergodic equivalence relation on (X, µ). ¿en the following are equivalent:

(i) E can be generated by an action of a �nitely generated group;

(ii) E has �nite cost;

(iii) [E] is topologically �nitely generated.

Proof. (i) ⇒ (ii) is obvious and (ii) ⇒ (i) was proved by Hjorth–Kechris (see [42, 27.7]). (iii) ⇒ (i)

is also clear (as every group dense in [E] generates E) and �nally, (ii) ⇒ (iii) follows from ¿eo-

rem 5.4.10.

For free actions of free groups, the theory of cost allows us to obtain a lower bound for t([E]) as

well.

Corollary 5.4.12. Let E be generated by a free, ergodic action of Fn. ¿en

n + 1 ≤ t([E]) ≤ 3(n + 1).

Proof. To prove the lower bound, suppose, towards a contradiction, that there is a set of automor-

phisms Φ ⊆ [E], ∣Φ∣ = n with ⟨Φ⟩ dense in [E]. Since E = EXΦ has cost n, Φ must act freely. Indeed,
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Φ, considered as an L-graphing, realizes the cost of E, hence, by [42, 19.1], it is a treeing, hence the

action is free. ¿erefore

⟨Φ⟩ ⊆ {T ∈ [E] ∶ d(1,T) = 1} ∪ {1}

which is a closed, nowhere dense set in [E], a contradiction.

¿e upper bound follows from¿eorem 5.4.10.

¿is corollary provides the �rst topological group distinction between [EXFm] and [EXFn], at least

whenm and n are su�ciently far apart.

It will be interesting to try to improve those bounds. For example, if an action Fn ↷ X is mixing

and Fn = ⟨γ1, . . . ,γn⟩, then every EXγi is hyper�nite and ergodic, so applying¿eorems 5.4.2 and 5.4.7

yields the upper bound t([EXFn]) ≤ 3n.

Question 5.4.13. Let E be generated by a free, ergodic action of Fn. Is the number t([E]) independent

of the action? If yes, what is it?

On another note, Proposition 5.4.4 allows us to associate with each uniformly closed, separable

group G ≤ Aut(X, µ) a largest equivalence relation FG such that [FG] ≤ G.

Proposition 5.4.14. Suppose G ≤ Aut(X, µ) is uniformly closed and separable. ¿en there is a largest

countable equivalence relation FG such that its full group is contained in G. Moreover, [FG] is normal

in G.

Proof. LetF be a maximal family of involutions whose full groups are contained inG and which are

almost everywhere di�erent on their supports, i.e.,

∀T,S ∈ F µ({x ∶ Tx = Sx ≠ x}) > 0 Ô⇒ T = S.

and F ⊆ G is maximal with this property. Since G is separable, F must be countable. Indeed, if F is

uncountable, there exist an uncountableA ⊆ F and є > 0 such that for allT ∈ A, µ(suppT) > є. ¿en

for all T,S ∈ A, d(T,S) > 2є, contradicting the separability ofG. Now let FG = EXF . Proposition 5.4.4

and the fact that G is closed imply that [FG] ≤ G.

Suppose now that [E] ≤ G for some equivalence relation E but [E] ≰ [FG]. ¿en there exists an

involution T ∈ [E] such that T ∉ [FG]. ¿us there is a non-null T-invariant set A⊆ suppT such that

∀x ∈ A∀S ∈ F Tx ≠ Sx.
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Now set T′ = T∣A∪ id ∣A∁ . It is clear that [T′] ≤ [E] ≤ G and T′ is everywhere di�erent on its support

from the elements of F , contradicting the maximality of F .

Finally, normality is clear since the property of being a full group is preserved under conjugation.
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