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ABSTRACT

The high-energy nucleon Compton scattering process is
studied to second order in the electromagnetic coupling
congtant from the viewpoint of complex angular momenta.
Assuming the validity of the Regge hypothesis about the
asymptotic behavior of scattering amplitudes, formulae
for total and differential cross sections in the forward
and backward directions are derived. Residues of Regge
poles in their physical regions are estimated on the basis
of existing experimental data. The implications of possible

Hegge cuts are discussed,
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I. INTRODUCTION

The concept of Reggé poles has provided a connection
bétween the low- and the high-energy regimes of elementary
particle physics. Let ué briefly review the basic ideas
involved. Regge (1, 2) has shown that by cocnsidering solu=-
tions of the Schr#dinger equation for a certain class of
potentials for all (even complex) values of the angular
momentum €, the partial wave amplitude fe(E) is an analytic
function of ¢ (and of energy E, of course) with a finite
number of energy-dependent simple poles in the right~half
¢-plane, £> - %. Physically, these (Regge) poles correspond
to bound states or resonances of the physical system described
by the Schr8dinger equation. Near one such pole, the scatter-

ing amplitude takes the form
§,(8) % pE)/ [0 - x(®)],

The equation ¢ ='oc(E) defines a singular surface of fe(E)

in the complex product space {Z})({E}. The intersection of
this Regge surface with the plane {e¢}x{E: E real} defines
what is called a Regge trajectory. If, for some real E,

o (E) happens to be eqpal to a positive integer £, then we
have a bound state of that angular momentum and of energy E.
If, however, o (E) has in addition an imaginary part, then we

have a rescnance whose width is proportional to Im o (E).



As E varies co'nt‘inuously from - oo ‘to + oo, x(E) moves along
the‘.ry'eal axis and giveé a‘sequence of bound states wiienever it
passes a positive integef for E < 0. As soon as & becomes
pdsitive, &« acquires an imaginary part; increasing E further
yields a set of resonances. Eventually, the trajectory turns
around in the complex « —pléne and heads toward negative
values of Reoxe A typical Regge trajectory is shown in Fig. 1.
One should note that no resonances are generated when Re
passes pesitive integers on the return journey. This is
because the phase shift is now decreasing instead of increasing,
as required for resonances. We see then that a set of bound
states and resonances are correlated by the fact that they lie
on the same Regge trajectory. There is, in general, more than
one Iéegge trajectory in a given problem.

Another aspect of Regge's analysis was the demonstration
that the behavior of the total scattering amplitude f(E, cos©)
for lai‘ge values of cos© is governed by Regge poles in the

right-half £-plane. Roughly speaking, for fixed E,

f$(e,wsB) —> e(e)

: (- <0s©),
030 » o5 ST x(E)

< (E)
This result is only of marginal interest in non-relativistic
potential scattering but extremely significant, if applicable,
in the relativistic case because here large cos© in one
channel corresponds to large center-~of-mass energies in crossed

channels. In other words, the high-energy behavior of ampli-
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Figure 1. A typical Regge trajectory in the case

of potential séattering.



tudes in one channel is determined by their low-energy behavior
in ¢rossed channels.

The Regge hypothesis} advanced by Chew, Frautschi,
Gell-Mann, Mandelstam, Zachariasen, and others (3, &), is the
assumption that results cf Regge's work apply, in an appro-
priately modified form, to relativistic scattering problems.
It is very plausible and has led to several experimentally
verified predictions. The major difficuliy in applications
of this hypothesis is the fact that very little is known about
the behavior of Regge trajectories and their residues as
functions of energy. No dynamical calculations have yet been
performed for their determination in the relativistic case
although a tentative scheme for dispersion-theoretic calcula-
tioné has been given by Cheng and Sharp (5). The experience
gained from the examination of the SchrBdinger equation has
been the main guide in the relativistic case.

Iﬁ this thesis we investigate nucleon Compton scattering
at high energies by applying the Regge hypothesis. Our work
'is based on the formalism developed by Hearn and Leader (6)
for low-energy nucleon Compton scattering. By employing a set
of gaﬁge-invariant amplitudes throughout our work, we automat-
icallj insure gauge-invariant results. Infrared divergence
difficultieé, inherent in processes involving photons, are
avoided by working to second order in the electromagnetic

coupling constant. Cur approach is purely phenomenological.



We attempt to calculate neither Regge trajectories nor their
residues. Rather, we construct the Regge formalismnfor,Comptcn
scattering and relate, where possible, Regge pole residues to
experimentally known quantities. The formulae we obtain for
various cross sections should prove useful if and when high-
energy nucleon Compton scattering experiments are performed.
At present, the experimental data is very scarce for photon
energies much above 400 MeV (7). Experimental difficulties
in making proton Compton scattering experiments are mainly
small cross sections (dc’/d(l'~0.1,¢b/sr for c.m. angles
from 60° to 120° and energies ~ 300 MeV) and background

from w° decays. Neutron Compton scattering experiments have
to be made using deuterium with additional complications due
to s?ectator protons.

In Part II, we discuss kinematics and introduce Mandelstam
and helicity amplitudes for processes in the three channels
associated with Compton scattering.

Part III contains a brief discussion of Regge trajectory
contributions to different channels and also computations of
Born amplitudes for N, m°, and ul intermediate states.

The asymptotic forms of amplitudes and cross sections
in thé backward scattering direction of channel I are derived
in Part IV{ those for the forward direction are deduced in
Part V.

Conclusions and applications of our work to electron
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Compton scatteriﬁg are contained in Part VI.

The three appendices present calculations of ceftain
d-fuﬁctions and of their asymptotic behavior, derivations of
cross section formulae, and a discussion of analyticity prop-

erties of various amplitudes.



‘In this‘part'we shall discuss kinematics and introduce
amplitudes for the nucleon Compton scattering process. Ve
shall follow the notation of Hearn and Leader (6) with minor
modifications.

The processes of nucleon Compton séattering and nucleon-
antinucleon annihilatioﬁ into two photons are represented by
the diagram of Fig. 2. Nucleon and photon four-momenta are
denoted by p and k and their respective helicities by A and

Jo The three channels corresponding to Fig. 2 are

I: N, + Y. > Ny + Y29 8 (p, + k‘)z > 03

(p, + kz)z > 03

ol
]

- II: ; N, +XZ-’NL+ XIQ

III: N, + ﬁ1 - Xl + Y2 t (pl + p?.)z > Q.

The invariants s, 5, and t represent the total center-of-mass
(cem.) energy squared in their respective channels. We use the
convention a+b = aijbz aobo - a+b., For future reference, we

record kinematic variables for channels I and III in their c.m.

systems:
I: p, = (B, p),
k, = (py - p),
~ (2-1)
p1 = (--E! - E')l
k, = (- py p')s



P2 Ay

Figure 2. The three channels associated with the
nucleon Compton scattering process. The nucleon and
photon momenta are p and k, respectively. Nucleon heli-

cities are A ; those of the photons are Jee
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s=2W2=(E+p)

td
i

(p* + m®)" = (s + m2)/2u,

m = nucleon mass,

p=|pl=1p = (s - m?)/2W, (2-1)
t = - 2p%(1 - x),
x = pep'/p% = [(s - m»)* + 2st]/(s - m»)?,
§ = - 2p*(1 + x) + m*/s;
III: p, = (w, g),

k. = (- ‘J-,’ - k),
kl = (-w, k)’
‘ (2-2)
w= (g* + n»)"
q = ‘gl = (t/z'l' - m")'h,
5§ = - w - a” + 2UGX 4y
§ = -~ w' =g - 2wgx

x, = q-k/qe = (s - 5)[t(t - 4u»)] 7"

The variables of channel II are defined by analogy with those
of channel I. We denote the c.m. momentum in channel II by p,
the scattering angle by X, etc. A set of relations similar to

Egs. 2-1 is obtained for this channel by simply barring appro-
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priate variables. Thus t = - 2p%(1 - %), B = (p2+ m?) />
= (8 + m%)/2%, etc.
‘The 8- and T-matrix elements for channel I are related

by the formula

<= Peha- Kyl 81 po N ko

it

(21\')65(21 +2Jok, + k) SMX.SMH

4 -t
i(2m) §(p, + p, + k|, + k,)(16p,, Dok, K,,) 7>

R WTHE JENTTIPS (2-3)
The T-matrix element can be written in the form

<>\7_ V"\T‘ )\;H;> = ]3.(— P7_>‘2) erj:(- k-,.r*z) T,Avév(k|r&\)u<P|k&)y

[

- L)
L=t

The’AL are invariant (Mandelstam) amplitudes and the Cﬁi are
Lorentz covariants constructed from Dirac gamma matrices and
available four-vectors. The reguirements of gauge, parity, and
charge conjugation invariances are satisfied by the following

set of covariants (6, 8):

Cuv = PLPY/P'?,
C/(:)v :I“:’/J.,Ny /NZ’
2, = s(Np P = Wy, PL)/2(PND
| 2l
CL‘*) _ KP' P /mp'Z ( )
pv T AT !
0;2 = KN, Ny /mN*,
), = ysK(N . Py + N, PL)/2m(Pr*N™)",
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where
P,'w = Ph - KF,(P-K/K )
P/U» = %(pl = PZ)/“-'
K/w = %(k\ - kz)/u-’ (2"5)

N/w = 6/“'\/("0‘ P.VKFQG"

&3
3
0

(l{-l + kz)/Jw'

and A = Yea. The fact that there exist only six independent
amplitudes follows most easily by counting helicity amplitudes
and observing restrictions imposed on them by parity conserva-
tion and time reversal invariance (9). Each invariant amplitude

4, may be decomposed into isoscalar and isovector parts:

A = A% + AV T, (2-6)

L

The proton and the neutron scattering amplitudes are then
expressed in terms of the invariant amplitudes A: and A?,

where

At = A$~ +AV“ Y

L

(2-7)

h

An

5
Ai-A\{‘c
Amplitudes for processes in channels II and III are obtained

by sandwiching T,*v between appropriate Dirac spinors and polar-

ization vectors:
IT: <)\1/‘*—(!T()\|/~A1>

= G- pohaden(= ko)) Tl pdulp X)), (2-8)
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III: < pp TN, >
= ;(szz)élt(" klf'll)é:(- k'f*') T#VU(P|)\|)' » (2-9)

The iwo photons are indistinguishable in the annihilation of the

KN-pair in channel III; this means that the amplitude e?LéZTf*v

is invariant under the interchange of the two photons:
+ +
er*(— k,_,.:.,_)év(" k\/v‘n) Tpv(Pu P2y &Ky kz.)
+ 4,
= eul= k pdey(= kopd Tpvl(p, s Doy kay k()

Thus

wa(P«, Pas kyy k) = Tvﬂ(P\’ Pay Koy k|)-
Since under k, <> k,, s <> 5 and

) (L) '
Cvr(kz$ kl) = eLCMv(k;! kz)’

+1, i =1, 2, 3, 6,
€, = (2-10)

- 1s i 1‘*‘1'5;

t

it follows that the A satisfy the crossing relation
A.L(E, s, t) = ¢, 4.(s, 8, t). (2-11)

In order to discuss high-~energy behavior of Compten
scattering amplitudes, we shall be interested in examining
the consequences of the Regge hypothesis for this process.
To do this, we must introduce partial wave expansions of various
amplitudes: Rather than working with the guite cumbersome
multipole expansions, we shall use a decomposition into partial

wave helicity'amplitudes,
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The helicity amplitudes are defined in terms of the T-

matrix elements for channel I by the formula
< )\7_/u'2l qS(W, x) MED> = - (8wi)”™ <A pal TN, F'> (2-12)

and correspondingly for channels II and III. Differential cross

sections are given by

(dor/aq), = 1< $>]|", (2-13)

where X denotes the channel number. Following Jacob and Wick
(9), we write the following partial wave expansions in the three

channels:
I: <)\—,_Ik.lzlfi)(w, X)‘)\lf*(>
= L@+ 1) &0, al, (e, (2-14)

II: <M,*,l$(’§‘, VN >

-

=572 (20 + 1IF, 5 (D a5 (B, - (2-15)
J
II1: </leL\W(W{, x A ND>
BN CTORCD N EE SRS DR SN TR SANCIOR (2-16)
J

where 6 = cos 'x, etc., the diF are the usual reduced matrix

elements of finite rotations defined by
.3 ]
dmp(e) = <Jx|exp(~- iJ,0) | Ip>
and

Yy = >\\,1_ — Pz

i}

Lz Az T opra,n s



- 14 -

o = A, + A,

)
% = - g

We have used the abbreviations

é:lv‘ = < )\1.f/~1.‘¢:i Xuf""‘B;

h)

B35 = <rapi TN >, (2-17)
‘9:{“'1_0“: <I‘L|H1‘\PJ‘ A|X1>‘

The conservation of parity and the time reversal invariance of
the theory yield the following relations between partial wave

helicity amplitudes (9):

Ohapal @700 p >

L}

N < rmpal Tl A, >

CApl PTAA > = <A 171 pa>)

where v contains the product of intrinsic parities of the
particles involved. ‘The first relation reduces the number of
independent amplitudes from sixteen to eight, and the second
one eliminates two more amplitudes, leaving six, as asserted

previously. We choose, in agreement with Hearn and Leader (6),

the fellowing set of independent helicity amplitudes:

S
!

< L1l k1>,

o
i

, = <-%-L1gi%1>,

_ (2-18)
=<%t-11¢l%1>,

P
i '

=<-%1]glr1>,



#s

',¢e

- 15 =

i

<=2 L11g1] =% 1>,

H

<=1V -%1>.

The choice of amplitudes for

channel
¥,
V2
Vs
.
Vs
Ve

In

I1I, we take

1]

<1 =1Vt % %>,

<=1 -11¥ | % %>,

i}

<1 =11 ¥} % -% >,

il

<=1 11V % %>,

]

i}

<11yl % -%>.

(2-18)

channel II is the same. For

(2-19)

order to relate the helicity amplitudes to the invariant

amplitudes A;, we nmust compute matrix elements of covariants

¢ . . . .
C;,v « We choose a representation in which

éu

For the Dirac spinors, we have
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N,

2>\.N-)X(>")’

ulp,, A .= (

(=~ Pas >\,_k)b = ( * \) exp(~- 104,8/2) X(};),

2 AN
Ny = (B + m)7,
' % o+ k)
7('(>\) = (Vé -\ 4
au = 2m.

The polarization vectors are chosen purely spacelike:

e = 0,

S popd) = 27 (e - de ),
E.(— -R"’f;.z) - 2"/1(}*;00892; - lgy - }.«zsineg_z).

The notation &(- p, /.A.) means that the photon is traveling in the
- p-direction along which the helicity M is defined. The
form of polarization vectors is obtained as follows. ie start

with the basic pdla’rization vectors
€(pap) = - 2_'/1(}A§_x + iey)

for a photon traveling in the + z - direction. The polarization

vector for a photon in the - 2z - direction is then (9)

c- ) = (- D' Fexp(- imdy) e (pop) = € (ps-p)

by either using rotation matrix for © =w or by simply observing

that ¢, > - exy &8,—> &,, and ¢, — - ¢, under reflection about
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the y-axis. The polarization vector in the - p'~direction is
now obtained from e(- 'E,y-b) by application of exp(- i‘J,e’).
Writing
<)\7.H1.\ C(“‘K\IA|>
- + H
= u(_ p‘l.}\Z) 6#(- k-)_.r)‘l) C;;.\: éu(l:\)}ﬂ)u(p\ 11)

and using above representations, we find

<)\1'J~1.\ C(U‘ )\w.k.) = ~f""‘f’“" < )\1}Az‘ Ca)t )\IH\>,

<Aapal C“’l/\f*.) = —M\-c-)\,_\mcos-g + (A.-Az)Esing,
hapal €A > = = % (o= pdA = A,lpsing,

(2-20)
<}\7./J-1,(CW)\ >\,(u,> = - ]..\‘/11<>17_f/.-,'\c(s)| 7\‘“‘> s
<}\zfum\0m\h,lu\ = ={UA, + Al Wcos% = (A, - kz)msing]ﬁ,

<7\zrx~,\c<s>§>\|w> =P (P.+Pz)(h,+ A) (pW/m) cos-g- .

With the help of these expressions, we obtain

8xW & = - [m(A, - 4,) + (pW/m)(4y - Ag + 4))] cos-g,
Bl B, = = [E(A, + 4,) + pl= Ay + A, + As)]sin%,
8nW B, = (m(A, + 4,) + (pi/m)(A, + AJ)) cos%,
o (2-21)
8wl &, = [E(4, - 4,) + p(ay =~ 4)])sin3,
W B = - (m(a, - 4,) + (pW/m)(A - Ag - 4] cos3,
§nW B = (B(A, + A) + p(A, + Ay + 4] sin3.

Inverting these equations, we obtain the desired expressions
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for the A, in terms of the helicity amplitudes:

a = EE - 25 + 95) - s2675(B - 2. - 40,
aom - 2B o g s e 2h - 9],
A =L g« £,
by = - T ors B - 28 + Be) - s, - 2y - ;55625]2?)
A = Z“m[mw\ v 285+ B) 4 Srmers(#e + 26 - B0,

by

m

L=~ s W(?S‘ - @b
Similar formulae hold between the helicity and the invariant
amplitudes in channel II provided we bar all relevant variables,

The antiparticle spinors are given by
v(psN) = = iysu(p,-A);
using them, we find

<popa LN AL

)Jl)J1<I~\|/U1‘CLZ)i>\¢ kz >,

- (k\+ ‘)\Z)q‘

H

</"”/“7‘.\ C(z,'\ AN

1]

<H|{‘*1\C(p‘)\‘>\1> LN +>‘1l(}kb*}iz)w/2’

(2-23)

<P.§v\1lcm\?\')\1> f-lu/uz<)-*'/"‘7-|cts)\)h>\z>’

i}

z
Cppad CTUANT = (N + A)weos®, + VA, = M| 2 sine,,

K EPIAL> = (A = A (= p)EE siney,
aﬁd

S“Wt‘*(’: = =~ q(A, - A) + wcos 6 (4, - 45), (2-24)
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C 8nW v,

= q(a, + ‘Az) - whA, -wcos6, (A, + 4.),
niW, ¥3 = q(A, + 4,) +wA; ~wcos6, (4, + Ag),
'8nwt by = ‘(w"/rr‘l) siget(Al, - Ag = g4 /w), (2-24)
8, ¥s = (w?/m) sin® (4, - A5 + g4, /w),
B, V¢ = - (w¥m)sine (4, + Ag).

The solution of these equations for the A; reads
A, = (bn/gsin6,)[mcos 0, (Y, + Y5 - 2¢) - wsind,
2y, = Yo - ""3)],
A, = (bn/qsiney)[~- mcos 8, (Y, + Y5 + 2¢) + wsind,

’(2‘\7: + \'P?. + \(/3)]5

k= n BG4 - 4o, (2-25)
Ay = (brm/wsin®,) (Y, + Vs - 2¢),
Ay = = (bnm/wsin B ) (Y, + Ys + 2¢),
Ay = (8mm/qsin©,) (¥s - o)
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III. BORN AMPLITUDES

 In this part we calculate single-particle contributions
to amplitudes in the three channels associated with Compton
scattering. The results will be needed in Parts IV and V.

Let us first consider channel I (the following considera-
tions are equally valid for channel II). The incoming nucleon
(isospin I = %) and the incoming photon (I = mixture of O and 1)
can go into an intermediate state of baryon number 1 and isospin
1/2 or 3/2. The possible intermediate one-particle states are
then those of the nucleon and its isobars; they are summarized

in Pable 1 (10).

Table 1
Regge trajectory Width J I P g Average slope
(mass in MeV) in MeV Aa/As in GeV ™%
N, (9%0) = N 0 /2 1/2  + +
§,(1688) 100 5/2 1/2  + +
1.005
N (2200) ? 9/2 /2 + +
Ag(1238) = N% 100 3/2 3/2 & -
0.93
Ag(1920) 200 7/2 3/2 4 -
1.09
N §(2350) 2 11/2 3/2 o+ -
NJ(1512) = N* 150 3/2 1/2 - -

Here J denotes the total angular momentum, P the parity, and



- 21 -

¢’ the signature (4) of the state. The average slope is

computed using the fofmulé
: ' ' z 2
Ax/Ns = (3, - 3 )/ (my - m),

where m, , are the masses of physical states indicated in
pérentheses. The nucleon ahd its isobar Regge trajectories
are piotted in Fig. 3.

The Born terms corresponding to an intermediate nucleon

state are given by the amplitudes for the diagrams of Fig. 4:

TB

13

- 8nW¢B

a(- p,_)\z)é’;(-— k‘lr}“l){[Fl XP‘ - F,_id‘lwk-,_y](s - m?-)'l
‘(ZS\ + Kl + m){FlXF + Flio‘pﬂ'km‘]

+ [Fl\‘€ + F'Lia}skir](g - mz)-l (ls\ + K7_+ m)

[P ypu- invwkw]}e{,(k‘,*.), (3-1)
where
F; = %'e (1 + ©3),
F, = %fﬁ[“p + Ko+ (K, = ®,) Tyl
(3-2)
Kp = 179,
Kn= - 1.91.
We use the convention
Tos = 3 (Ypyu= Yl (3-3)

Performing indicated operations in Eq. 3-1, specializing 955
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Re
/
51 A (2350 x
| 5 (2350) Y,
yad
s 7
4 7
- L x" 114 (2200)
Yl
y
v
31 Ag(1920) =<,
s
Y /
///
2 1 %" §,(1688)
v
Ag(1238) //// /
- N# 7 / / ~
3 X *  Ny(1512) = N*
s 7
v . v
/ L = N 2
i N, (940) = N s (GeV?)
71 2 3 b 5 6

Figure 3., Regge trajectories of the nucleon and its

isobars. Note that x = J - %.
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szz' ' ¥ k, f2 P s k, -2 y/

/
/
| - \\ /
N T A p, + k, A \/
I AN
/ \
7/ \ / "\
\ \
N \ ¥ I ¥ \
P, A, % ki P\, k, 4, *

Figure 4. Born diagrams with a nucleon intermediate

state in channels I and II.
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to'¢?,..., #f; and substituting ¢:'s into Egs. 2-22, we obtain

1 1
® EmF‘l(s ~ + = > ]

S
f

m? 8. - n*

s
Ny
|

= WP, (F, + mF,),

]

A% = 2uF, (F, + 2sz)(8 .lmz + 3 }ml) - bup

B Z 1 1
-MFI s_mz_é_m‘l.’

(3=4)

s
&
;

1 1
At: _m(F,+2mFZ)Z(S_mz"§_mz>’

1

- m*

- 2mF, (F, + 2mF,) (s

)
H

1 z
+-s-_m,_)+Ll-mF1_.

Our Born amplitudes agree with those given by Hearn and Leader
(6) except‘for the constant terms which they apparently have
discarded.,

We shall not need Born amplitudes involving intermediate
N% and N} states since we shall compare isobar Regge amplitudes
with Breit-Wigner formulae whose parameters will be obtained
directly ffom experimental data.

Turning next to channel III, we note that it has baryon
number zero and charge conjugation eigenvalue plus one. As
will be shown in Part V, the possible Regge trajectories
with these quantum numbers are P, 0 , w°, M s and D, the
hypothetical pseudovector meson trajectory. The properties
of these states are summarized in Table 2 (10). The existence

of o© as a physical particle is very much in doubt (11, 12).
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Iable 2
Name of - Mass (MeV) of P o Spin of phys-
state ~  physical state ical state

P (Pome- 1000 ? + + 2 ?
ranchon)
o (ABC) 280 2 + + 02
™ 135 - + 0

548 - + 0
D ? + - 1

It may be that its Regge trajectory turns down without quite
reaching J = 0. We may mention that Hamilton et al. (13)
find a strong enhancement of the I = 0, J =0 wave at low
c.m., energies in M~ W scattering although it fails to be a
resonance. Ko evidence at all for the Dennery D-particle
(1%, 15) has been found so far. We may also note that there
is a possibility'for the existence of a second vacuum (Pome-
ranchuk) trajectory (16). If it should exist, our eguations
in Part V would have to be trivially modified by the inclusion
of an extra term whenever the first Pomeranchuk Regge term
appears.

In view of these uncertainties, we shall restrict our-
- selves to the computation of Born amplitudes for w° and n
only. The relevant diagrams are shown in Fig. 5. Using

the unitarity condition with a n°- intermediate state, we have



- 26 -

P‘L)\l }é k’LH?

p‘./\l x k(f'('|

Figure 5. Born diagrams with w° and M intermediate

states in channel I1II1I1.
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' .<¥‘¥ |2 58> = ‘(t - mf‘)-\<v°\T| yy>*f <nelTl NN >. (3-5)
The vertex functions are evaluated with w° on itS'm;SS’ShellZ
they are conétants; We find

Crol U KR > = £, 7,7(pa02)yeu(mih )
= fuunTa L= dm In, + Aal ], (3-6)
<welTIyy > = f“ne,,v(,,q;;(- k./).‘)kwe;(— k, p)Kqo
= fyyn(~ imLCp s po) /4], (3-7)
The v diagram gives a similar result with f,, T, replaced by
—(l//?)fNMnf The factor - (1//3) is chosen in accordance with

the D-coupling scheme of Gell-Mann's "eightfold way! (17) so

that in the limit of exact unitary symmetry fNN = ¥ . We
) A NN‘VL
obtain
BnW, ¢, = - Bn%‘tx{/s

2 .=1 1 - 1
= fygn funn(t = m)7 5 n? T, - fxxanNn(t - )

The width for theée decay w©° -» 2y is given by

"

™, =1/v, = 32«m)' S [<yylTine>\?
Mafrz

= |£yynl®m3/6kn, (3-8)

where T, is the w°- lifetime. Hence

£ ~.§_ ™I e
¥y * m_“z Tn

with a positive sign choice. A similar expression holds for

fqu. According to our normalization conventions of the
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amplitudes, f = g, the usual pion-nucleon coupling constant

with
g%/lha e 14,5,
It follows from Egs. 2-25 that

8 Ymy 843 |tm
A't. = SL3 (" r - m: <. gt3 + T - m;“_ ‘C.::- fNN'q - (3-9)

In the limit of unitary symmetry, we should have g = funn' If

the symmetry is not too badly broken by interactions, then we

might expect that g and f should at least have the same sign.
NN'rl : ©
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IV. HIGH-ENERGY BACKWARD

COMPTON SCATTERING

In this part we shall make use of the Regge hypothesis to
determine the high-energy behavior of nucleon Compton scatter-
ing in the backward direction; we shall also discuss experi-
mental implications of our results. To be more specific, our
program is the follcwiné. Starting with partial wave helicity
amplitudes in channel II, we shall construct parity eigen-
amplitudes and continue them to complex values of the angular
momentum J, obtaining a set of amplitudes exhibiting Regge
éole singularities. Using the complex-J unitarity condition,
we shall relate nucleon isobar Regge residues for Compton
scatfering to those for the pion photoproduction process;
the latter résidues will be taken from experiment. We shall
use. perturbation theory results of Part III to evaluate the
nucleon Regge residues., Making certain assumptions, we shall
estimate differential cross sections and discuss the possibi-
lity of their oscillatory behavior.

According to the Regge hypothesis, the high-energy
behavior of a scattering process in a given channel is con-
trolled by Regge poles in crossed channels. In our case, the
high-energy‘behavior of the Compton scattering amplitude in
the backward direction in channel I is controlled by Regge

poles in channel II. This can easily be seen as follows.
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For fixed total c.m. energy squared s in chapnel II, the cosine
of the scattering angle in that channel, x = cos 9, ‘is<propor-
tioﬁal to.the total c.m. energy squared s in channel I by the
barred counterpart of the last of equations 2-1 (with the sub-
stitution p = (5 - m?)/28"%): |

L

5% - m¥)E(1 4+ ;é) + mtf/g, (4-1)

ot

(

s = -
or, in the limit of large s,
X = -2s8/(s - m?)%, (4-2)

(Note that s cannot equal m* for finite X since then we would
have s = m* from Bg. 4-1 which is certainly not "large.")
Amplitudes in channel II will have the Regge fornm

A~ p(B) P (D) ~ p () 5P, 5 = oo,

and, by crossing, S0 will the amplitudes in channel I. From

§=--2-1-§ (s - m®)*(1 + x) + m*/s
1
s —> o0

we see that in order that s remain fixed, we must let x — = 1
as 8 =>» 00, i.€., we must restrict our attention to backward
scattering angles in channel 1.

‘We proceed then to "reggeize" amplitudes in channel II.
The ways of doing this have been discussed by several authors.
Frautschi, Gell-Mann, and Zachariasen (4) have conjectured a

set of rules for reactions involving four particles of arbi-
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trary spins. A more explicit formulation of the "reggeizing"
procedure has been given by Gell-Mann (18). Rather‘than fol-
lowing the rules, we shall present a somewhat detailed exposi=-
tion of our reggeizing procedure. This, we believe, will be
more illuminating because of the considerable algebraic com-
plexity of the nucleon Compton scattering problem. Since
channels I and II are in all respects identical, we shall
reggeize channel I and thereby save ourselves writing a multi-
tude of barred letters. The results will then immediately be
applicable to channel II by simply barring all relevant vari-
ables. We start with a partial wave expansion of the helicity

amplitudes for channel I, Eq. 2-1k&:

4 Qk(W, X)

i

p T (23 + 1) S, (W) AL (x), (4-3)
J

where

( ) ¢k (w, X)/Cos'e' y k 1, 3, 5, Choly)
W, X) = -
t.?k A &, (W, x)/sing, k=2, 4, 6,

and

Al (x) = al, _, (8)/cos?,

Ny(x) = al,_,. (8)/sin

9

A3 = al,, . (8)/cos3,
(4=-5)
A{‘(X) = di/.,_'-3/.‘_ (6)/Sin

9

é&i(x) = dzyrﬁyl(e)/COS

L

e vle vie vie Io

-

Z&i(x)_:vdeinz(ej/sin
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The i, k=100, 6.are to be identified with the <§iz%
according to the definitions of Eqs. 2-17 and 2-18. The d-
andylﬁ-functions are tabulated in Appendix A together with
btheir,asymptotic behévior. At this point we note that the
A's defined above contain no half-angle trigonometric func-
tions and are just linear combinations of Legendre polynomials
P,(x) (and their derivatives) with % integral for J half-

integral. The connection between the Mandelstam amplitudes 4,

and the helicity amplitudes ¢, is given by
. :
AL(S! By, t) = X A;k(w)@k(wv X), (4-6)
k=t

where the coefficients A ; (W) can be read off from Egs. 2-22.
Since the A, are even and p, E, and W are odd under the substi-
tution W —» - W, it follows by direct examination of the \R;k

that they and the @ have the following symmetries:
A=W = (- A (0, (4-7)
g = W, x) = (= 1) ¢ W, x). (4-8)
As a consequence of the last equation, we see that
-w = (- 17w, (4-9)
The identity (9)
- @) = (- 1T a] ()

allews us to conclude that

A (= x) = (- )7 AT (%), (4-10)
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A= x) = (- DTN (),

1]

AL(- x) = (- 1T AT(x).

(4-10)

We shall be interested in certain linear combinations of A's

which will be needed for an analytic continuation in the angular

momentum J. These are the positive and negative signature A's

defined by

NP = 3007, ¢ AT (- 0],
N2 = 2 (A7) + A= 07,
NP = 3[0%6 T AL - o).

The inverse relations are
T -
Ax) = ATPE) + ATT ), k=1, ..., 6.

The functions Aﬁft’ obey the following relations:

AJ(*)( ) {Ai(x)’ Jd = 1/2! 5/21 «ve
X)) =

k Oy J = 3/2, 7/2, ..

AJ(‘)( ) { o’ J = 1/2! 5/23 se 0
X) =

k AL)y 3 =3/2, 7/2, ...

A=) = 2 AP ),

13

+ 1

]

NG x) = 3 D ().

(4-11)

(4-12)

(4-13)

(4-14)

(4-15)

The last two equations state the line reversal transformation

properties (18) of the A -functions. Let us briefly recall

the significance of this transformation. Consider a nucleon,
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e.g., Regge pole in channel II, Fig. 6. This Regge pole will
control the high-~energy backward Compton scattering‘in>channel
I, és already explained in the beginning of this part; it will
also control the high-energy process in channel III which is
the nucleon-antinucleon annihilation into two photons. By
reversing the nucleon and photon lines N, and Y, in Fig. 6a,
we effectively switch channels I and III. This is equivalent

to the change X =» - X as one can easily see from Eqs. 2-1:
52 = 2p*(1l + X) ———> - 2p*(1 - X) = ¢
x> =X

for large s. The asymptotic amplitudes for the Compton scatter=-
ing process will be proportional toszki) and those for the
Ni-annihilation to A*(- X), related by Eqs. 4-15 to AP (R,
This establishes a connection between asymptotic amplitudes of
two differeant processes.

Let us now write the Watson-Sommerfeld representation

(1, 2) for the partial wave expansion given by Eq. 4-3:

1 n(2J + 1)
PulWy %) = 55 Ld sinw (J - %)

1 T,y =T, y(-
2@ AT @) - &7 877 (0] (4-16)
The contour C encloses the positive real J-axis in a counter-
clockwise direction. The continued partial wave amplitudes

éi““ are equal to the physical partial wave amplitudes for

every other half-integer J, depending on the signature:

$7 é{, J = 1/2, 5/2, .uuy

N =
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K‘L \\ Nz_
\
A N Y > N7_
—_—
\ R > ~%
\
\
N' \ ¥
Compton scattering t
(a)

Figure 6. Diagrams for line-reversed processes (y, <> N,).

1‘1\\ /’ X
\ /
\ N /
Nl N,
NN-annihilation
(b)
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| @Z"’ = &)y J=3/2, /2y «us

The necessity of introducing positive and negative signature
analjtic COnfiﬁuaticns df physical partial wave amplitudes is
Qell known (4) and is associated with the fact that exchange
pbtentials are always bresent in relativistic scattering prob-
lems due fo the existence of crossed channels.

Before prdceeding with the deformation of the contour C,
we wish to construct amplitudes of definite parity. If
|J M 5 X,\,> denotes the state of two particles of spins s,,
s, and helicities Ay Ao in their c.m. system with total angular
momentum J and its projection M along the direction of the

momentum of particle 1, then Jacob and Wick (9) have shown that
PlJdM;a\,>s= (- 1):'9"5"Y|.'V)1\J M3 =x =-2.> (4-17)

where P is the parity operator and " and M. are the intrinsic
parities of the particles. We can construct states of definite

parity for the nucleon-photon system by taking

-
-

H

1T M3 3/24+> =2I M3 %-1> + 1T M; k1),

-

g M3 1/2 4> =2"(1a M 1> + 1 N; <% =17).

wse

Indices 3/2 and 1/2 denote the value of the total helicity

[A - pl and + distinguish states of opposite parity. These
states are not eigenstates of total spin but can be expressed
in terms of the latter by means of Clebsch-Gordan coefficients.

We can now define'eigenamplitudes of total angular momentum
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and parity:
=<2l #TI V21> - & s &
,f:,i - <3/2 i\' g7V 1/2 > = §7 4 ag-.z’
£8 = <3/2 41 871 3/2+5 = 87+ &7,

(4-18)

Wote that amplitudes of the type <:t‘ +> vanish because of

assumed conservation of parity. The inverse relations of

Egs. 4-18 are

T 1 e T
@x,z =32 (fu + 107,
a 1 I+ J+
§3A 2 (fs( X fs\)’
b3 1 Ts T
§5‘é = "é' (f33 i f53)0

4s shown in Appendix B, the elastic unitarity condition

J

helicity amplitudes Vv,

reads

LraT  (w o s :
as BT, =5 (85, (W +ie) - &3, (W - ie)]
- I * g ¥
= Z\,‘évvz " W 2 .

Substitution of Egs. 4-19 into Egq. 4=-20 reveals that

Abs £t = fTf *x £72

with
SR S
£It = ,
b 4 o d
£ £
Tk L
f|3>: f3‘ I3

Thus we can make the following identification:

(4-19)

for the

(4-20)

(4-21)

(4=-22)
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STt = 8y +2if0%, i, =1, 3 (4-23)

where

i

ELk.Sf;* S:& dije

Let us consider the contributions of various single-particle
intermediate states to the reaction N + y — N + y. Since
Ny =~ 1 and since we can arbitrarily choose q,,: + 1, we find

that

J-t/v

P‘JM;IK-,U\Q:>=1(—1) \Ji"i;\h-lu-\i->.

Using the fact that the intermediate nucleon in the preocess
N +y - N -~ N +y has positive parity and J = %, we conclude
that it can contribute only to amplitudes fﬂ*; this will remain
true’after the intermediate nucleon has been reggeized, in which
case it will contribute to amplitudes f;* of positive signature.
Similarly, the N% Regge trajectory will contribute to negative
signature f;* amplitudes, while negative signature f%’ will
receivé contributions from the NY trajectory.

From Egs. 4-18 and from the reflection properties of the

@{, Ege. 4-9, we find that
ffj*(w) = f'{j‘(- W (4-24)

This relation, as pointed out by Gribov (19), implies that asso=-
ciated with each fermion Regge trajectory there is a dual tra-
jectory with the same quantum numbers except for opposite parity,

both trajectories coinciding at W = O,
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Bearing the foregoing in mind, we deform the contour C in
Bq. 4-16 by expanding it to infinity in the right-half J-plane,
ther’eby picking up = 2# i times the residues of the singulari-
ties of the partial wave amplitudes in the complex J-plane

(Regge singularities), with the result

“FR(W’ X) = - L Sc'dJ M_.‘*.‘.}_). 1 [@JG) (W) A:rc-r)( )

2wi cos ™d

- &I MATT =] + 9w, x). (4-25)

Here C' denotes the contour shown in Fig. 7 and cpt(V#, x) contains
contributions of Regge poles and cuts, if any. For our case,

the Regge term reads, assuming that there are no cuts,

(W) + 1 o WD+ Y5 ()
Pty %) = p{slnﬂ'o( aw B (W)A (x)

vk otNE (W) + 1 NF g & (W) *iy (=)
-1 sinﬂocN.(W) RS (WA, (x)

“N3(W) + 1 _np uNa(W)+‘/7_<-‘)
sin o (W) RAWA (x )}
3

-2 (- D' {W - - W) (4-26)

The terms (= 1)‘“{%‘\1 —» - W} are the contributions of dual Regge
poles mentioned above, the factor (- l)‘ﬂ arising from the
parity + signs in Egs. 4-.19; the origin of this factor in the
N* contribution is the same. The quantities R, are the residues

of the f-amplitudes defined by

R}, (W) = RA (W) = Res T:NA(WH_‘/LfiP(W),

Ry (W) = RY (W) = Res (., 050 (W), ‘ (4=27)
A ‘ - A » TP

R (W) = B“(W) = ReS o (wy, T3 (W)
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Im J

c! Complex

J=-plane

He J
ReJ:-%

Figure 7. The contour C' of fq. 4=-25. The radius R

- of the semicircle tends to infinity.
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The particle type-inde# A is correlated with parity P (and with
signature ¢’) according to Table l,-p. 20.

"Before further discussing reggeized amplitudes, let us
investigate the implications of unitarity on the residues R
The strictly elastic (Ny- intermediate state) unitarity rela-
tion, Egq. 4-20, gives a contribution of order e? higher than
would one involving an Nw- intermediate state. Since we are
working to order e*® throughout, we neglect the former state.

To treat the latter, we introduce pion photoproduction helicity

amplitudes:
<Alglipw> == (8w <NnlITINy>

= (pr)""* % (20 + 1) zj\,x‘_,’gw) d;‘j‘_ﬂl e, (4-28)

where ©' is the scattering angle between final and initial
nucleon momenta, and r is the c.m. momentum of the Nw= system.

The four independent helicity amplitudes can be taken as

<HIE1IBL>,

ur
]

<=kl | %1>,

vy
~
li

(4~29)
<'}é‘§l '% 1>,

vy
w
i

o= <%lEl =1>,

i

Again, we can form parity and total angular momentum Ny

eigenstates:
loMs; +>=2"(C1aNM; > 3 |am; % >),

PIdM; 2% =+ (-7 am; +>.

1)
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Thé partial wave parity eigenamplitudes can be defined in the

same way as before:

BT s <+ 187V /2 +> =27 F 2,
. S . T T - T (4-30)
hy® =2 <+ 18§71V3/2 +5 = - (25 + ),
where
T T . J
Z\ = Z ‘/1-;"/7. - - Z"/z,'/z’
T J e - J
ZZ = “‘/1..-'/7. - z ‘/L.‘/z_’
., . (4-31)
23 = Z"/L.-B/t - - Z‘/'L,;/Z ¥
F . o3I - - 7T
by = z‘/t,—ih_ - 1‘-'/1.,3/7.'

As shown in Appendix B, the unitarity condition in channel I

takes the form

J J 7 ¥
Abs Vav: = Z,kz,w:‘ Z;\v‘,

with v; = A;~- p;. Using Egs. L-18, 4-30, and 4-31 in the

above unitarity relation, we find
abs £7°(W) = hi**(W) nit(w), i, j =1, 3, (4-32)

for W 2 m + m_;. For the time being we neglect complications
caused by the isospin in our amplitudes. The unitarity rela-
tion, Eq. 4~32, is exact (to order e?) in the region m + 2m, >
W =2 m+ m,e Our goal is to estimate the residues of the N}
and Ng Regge poles in Compton scattering amplitudes in terms of
experimentally known residues at these poles in pion photo-

production amplitudes. For this purpose we shall use the
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unitarity relation derived above (or, rather, its reggeized
version) whidh should not be too béd for the N; resdnance
since it occurs near the two~pion production threshold. The
approximation may be much worse for the H* resonance occurring
above the 4n-production threshold.

It is well known that the partial wave amplitudes for
complex angular momentum satisfy a unitarity relation which,

for our amplitudes, reads
£357(a, W) = £V5(g%, W)
= 2ih (g%, WP, W, i, §j =1, 3, (4-33)

for W > m + m,;., The index k denotes collectively the fixed

guantum numbers of the channel:
(k) = (Py vy 1)

or, equivalently, the type of Regge trajectory according to
Teble 1, p. 20, 1 standing for N*, 2 for N, and 3 for N%*.

The amplitudes can be written as

)

o) ) . R (W)
NG ‘ (4-34)
(g, W) = 83, w) « 9. (W)

J =% = o (W)

for all values of J and W by explicitly displaying the Regge
pole terms. We assume that R and § are the total residues of
f and h, réspectively, so that both F and H are nonsingular
at J =% + «,(W). Only one Regge pole contributes in a given

amplitude of index k since the quantum numbers of the nucleon
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and the Nw - resonances are all different and no other reso-
nances, not lying on the N and N{% trajectories, aré known at
present., |

Substituting Egs. 4-34% into Eq. 4-33, multiplying by
J - % - ot (W), and taking J = % + « (W), we obtain

2idmo (W) 7'
Jd - % - OCQ(W)

Qi (W)t (W) 2iFma (W) 17"
K~ ) [2+ T ) (4-35)

RY W - RY*0 |1 +

= 21
Since, according to the general ideas on the behavior of Regge

trajectories, the imaginary part of =« is positive above

threshold, we see that in the limit J —» % + o« (W) we have
R(M = P *(NQY(W/Bmu (W), W > m + m (4-36)

We can express the R (m,) in terms of the residues Q¥ (m)
and the quantity ime“ﬁmk) related to the width of the kth

s )
resonance. We caunnot evaluate the R

(m,) directly because we
have no information on Compton scattering amplitudes for polar-
ized ﬁartidles.

We now wish to express photoproduction helicity amplitudes

in terms of multipole amplitudes used in analyses of experimental

data. The connection is

CMSIA e > = = 1 K= IF R (), (4=37)
where, according to Chéw,»Goldberger, Low, and Nambu (20),

F =iged, + (pr)gr cpre &,

e &, (4-38)

. -1 ; -
+ 1 (pr) TR C'@.?s + 1 zc_r’.[ - % )
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t
[ Le]
H

momentum of pion,

momentum of photon,

TR
€ = €(p, /“’) = polarization of photon.
The minus signs of A's in Pauli spinors arise because of our
convention, contrary to that of CGLN, taking the initial

nucleon to be traveling in the positive z-direction. Using

the representations of Part II, we find
¢ =VZ(F + F, + B(1 + cos8) (T, + F,)]sind

2 $
§a

vY2[- F, + F, + %(1 - cose) (F, - ?ﬁ)]cosg

4

2 ]
_ R (4-39)
g-s = =21 4 cos80) (F, + F,) sin=,
- &)
£, = 2741 - cos®) (F5 - F,) cos 3 .
Mulﬁipole expansions of the F., given by CGLN, read
L + - -
Fo= Zeo 1l + P+ ((e+ Dy + BIPY,_
0 -
7. = Zo,., L&+ 17 + eMylp),
_ | : (4=40)
T o= T @ - Ry (B MR,
Fo = Z,., (M- Ef - M - E)P,

where J = £ + ¥%, corresponding to the + superscipts on multi-
pole amplitudes. Expanding the §'s of Egs. 4-39 in partial
waves, comparing with the multipole expansions of the F's,

and using Egs. 4-30, we find
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‘nl" =vYpr/2 o] + (€ + Z)EZ];

T- v - -
h” =vpr/2((£ + 2)M,  -4<E,, T,

L

w] = VE/ZVEE 5 2) (5] - M),

J’-
hy

- Vpr/2 VI(€ + 2) (Mg, + EL,),

where now J = € + %. We shall be interested in Nt3
with J = 3/2 for which

¥ = /pr/2 (Mt +, 3E7),

w¥ = vpr/2 (3M; - E;),

R3*" = v3pr/2 (8% - w}),

b3 = -+/3pr/2 (17, + E).

(4-41)

resonances

(4-42)

To take into account the isospin or charge degrees of free-

dom, we define four amplitudes corresponding to four possible

pion photoproduction processes (dropping irrelevant

™ = <nw*|h|py>,
h' = <pn?’\h\pxl>,
b = <pm-lhiny>,
b = <nwel h{nyd>.

subscripts):

(4-43)

It can be shown (21) that there are only three independent

charge amplitudes; thus we may express the last one, e.g.,

in terms of the other three:

1

(o) (o) -
h = h ,+ =

(h(+) - h(_)) .‘

(bt
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The unitarity relation, Eq. 4%-32, now reads

Abs £ = Abs (f£° -v;-vf"'z:s) - (4=45)
with

Abs £° = 32: [B9#h¢s 4 B *R¢ 4 B *he 4 how*hom],
(4-46)

Abs fv = %[h(-r) *h(-*) +-h(w *hCO) - h(-)*h(-) - h(n)*h(v-)].

Experimental data can be fitted by assuming Breit-Wigner formulae

for the multipole amplitudes:

+lx)
* (o) ~ e,
BN 2 o i /2 !
+()
o (X)) ~s .
WP = oI s
() e;(“) (1‘"-""'7)
EZ (W) - w - ml + ir‘/é 1
. - (al)
Ml W) = 82

We=-m, + iT /2 ?
M3 = mN:; ]

for energies W near resonances m, or m,; the index «< runs over
+y 0, -, and n in accordance with Egs. 4-43. By expanding o

near W = m ,
(| = 1+ (W-mde + 11,

=4

i

L = Rewf(m), (4=438)

i
i

= 3w m ), k=1, 3,

we can write

OS]
(%) _ o =87 (me)/Ek
hiy™ (g, W) wem, W-m_+ il /e, ° (4=k9)
I =3[z
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Comparing Egs. 4-42, 4-47, and 4-49, we obtain

Q(?,&) (ms)

- ,P3r3 72 63(33|+(°U + m""(ﬁ())’
- 1/5P3I‘3/2 63(8;1-(9() - mr(«))’

]

e »
QP (my)

(4-50)
Qi (m,) =vp, 7, /2 e (e - 3m3™),
Q\‘z“) (m,) =vV3p,r, /2 ¢ (e + m;_(“’);
I, =¢€.0./2,
where

p, = (m: - mz)/amu

y (4-51)
r, = {[m: - (m + mw)z][m: - (m = m“)z]} 1/2mk'

Salin and Gourdin (22, 23, 24) have recently analyzed positive
and neutral pion photoproduction déta; using their resulis, we

find the following values for the residues of Xgs. LELYE
eF™ - L 1,61x107 ' Ty/m,

m*® = 3,60 %1071y /m,
(4=-52)
m¥® = - 7,20%x107*T,/m,
e; ™= e} = - 2.57%x 107"\ /m,
my;® = w7 = 5,96 %1077, /m.
From Eq. 4-50 we obtain
Qt"ﬂ (m\) = Q(:'o) (m«) == 0’0163]:‘ ’
, (4-53)
= Q(I'O) (ml) ™ - 0.03111| 3y

3

QY™ (m) s
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og‘,‘ 2 (my) = - 0.0150 I3,
@R (my) = 0.02991I,,
A3, I | (4=53)
Q3™ (m,) = 0.02641,,
Q¥ (my) = - 0,05281,.

The unitarity relation, Eg. 4-36, for the case of proton Compton

scattering gives

R'P = 0,534 %107%1,,

\

R{/” = 1.01x107%1,,
R = 1.93%x 10731,

(4-5k)
R{» = 1.12% 10" *1,,

RGP = - 1.97x107%1,,
(3,p) _ ~3
Ras = 3,48 x10 1.
As a check, we compute the proton Compton scattering cross

section at the position of the N} resonance at © = 900 in the

c.m. system. Keeping only the J = 3/2 partial wave, we find

G (W= myy 0 =w/2) = § T 1<A, pal #lmyy O A, po> 1

=t T &N () aY (n/aw
Py v,
= 0.118 Fb/sr. , (4-55)

This compares with the experimental value of 0.143 + 0,009 Fb/sr
given by DeWire et al. (7). Presumably, the inclusion of

neglected partial waves would increase the value of the com-
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puted cross section. ‘Note that the result in Eq. 4-55 is quite
sensitive to the magnitude of the photoproduction aﬁplitudes
hq‘;. Since the cross seéction is proportional to the fourth
power’of production amplitude residues, a change of, e.g., 5%

* would produce a change of more than 20% in the cross

in h
section.

We have not evaluated neutron residues because there is
very little experimental data on W - and n°-photoproduction
frém neutrons. Note that, because of Eq. 4-44, we would need
only one additional set of data on either h'® or h® amplitudes.

The results of Sands et al. (25) have shown that

o (f +n —» W~ 4+ p)
o(f{+p=>n*+n)

~ 1.5

for incident photon energies in the range ~ 200 - 360 HMeV.

Thus a rough guess for the amplitudes would be
R~ /1,5 0",

Neutron residues could now be computed using this estimate. We
shall not stop to do this.

Returning to reggeized amplitudes, Egs. 4-26, let us
consider the nucleon Regge terms in more detail. Using the
factorability theorem of residues (5, 26), or which Eq. 4-36
is a'particular case, and taking the asymptotic form of the
Axffunctiohs given by Eqs. A-26, we find

- oTCot
Pra~ - la;izm T NE/E)Y + (W= - W), (4-56)
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-l ~
Fe” - S WA/ (0 -,

-imet o ‘ (4-56)
\‘Pf,éw + 2sinno Ww’q S/S ) + (W - - W), :

K
1

.:3.!

where
3\? = _._2_%: i g:‘% (- Pz)_NR”P(oL +3/2)/ 7 (x + 1),
9,'3'7], = =V« /(+2) (Ry,/R )N (4-57)

= [«/(«+ 2)](R43/R, )’Yln

and 5, is a fixed quantity of dimensions mass squared (18).
As shown in Appendix C, the residues "ﬁ.,g have no disconti-
nuities below the threshold W = mj; this is exactly the region
of interest to us in deriving asymptotic properties of ampli-
tudes. The square root factors in Egs. 4-57 come from d-func-

tions corresponding to different helicity states. In general, we

shall have factors Y'u/(w+ 2) for In-ul= 3/2, Vo(x-1)/(x+2)(x +3)
for l)\—,Al = 5/2, etc., as can easily be verified from Eq. A-23.
The factor W™° in Egs. 4-56 has been written out explicitly
because of'the éxpected behavier ¢ ~ 1/W" or M.#4; ~ const.
at W = O, This is demonstrated in Appendix C.

Substituting Egqs. 4-56 into Egs. 2-22, we obtain

/. brm/Wyrl 4 e tT™

¥

A

(8/8.)" + (W = - W),

he W+ m 2sinwot
Ay ~ T mz"’] - m (B/8. - (W = - w),
| - L-58)
bim?/W_y2 1 4 e i o
5,; Y IUW « g)z ¥ Z;inmx (8/5,)% + (W - - W),

2 ~ o~ - Mot
A‘Z ~ .8.‘3.1?._4.4/‘ _}__"‘_e___._.(g/go)‘x_,_(w_.,_w)‘

W2~ m* 2sint o
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where

~

- '7‘;': = &i‘ i E | : : (4-59)
It abpearé thaﬁ the‘Mandelstam amplitudes have a number of kine-
matical poles ét W=+ min addition to the poles coming from
(éinﬁ1x)'f. Thus A, would have a pole of order three at W = m.
It woﬁld be guite embarrassing if this were really the case.
Obviously, the cancellations must come from the factors ﬁ,. and
ﬁ_. In fact, if we assume that ﬁ_ ~ constant and ﬁ; ~ W eemnm
at W = m, then we see that all amplitudes except A, have simple
poles at W = mj; this is consistent with the zero residue of A,

found in Part III. To get rid of these fictitious poles formally,

let us redefine 41'5:

O (4-60)

M) = 7

Phen we have

A%, ~ SR (s mind %gi—;;‘:“ (5/5,0% + (W = - W)
T YR Y

AS ~ t % 'k -1-—2—;—1—;’;-;‘—:; (8/8)% + (W = - W), e
AR~ %1‘ M+ - 1221222“ (B8/8,)" + (W —» - W),

where now Na~ constant at W = m« It is readily seen that our
assumptions about the behavior of ﬁt's and the factoring prop-

erty of the residues imply, for proton residues at least, that

Ry ~ CTPQ
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at W = ﬁ fortsomebconstants ¢, and c;» If we require that the
reggeized MHandelstam amplitudes Af should agree at the pole

5 = ﬁz (to order e®* in which we are working) with the nucleon
Born ampiitudes A? calculated in Part III, then it follows by

straightforward comparison that
7i(m) = 3 mot(m)(F, + 20F,)",
Nelm) M- (m) = = 3 moc'()F,(F, + 20F,) , (4-62)
fvlf(m) = %— m o '(m)F,”.

e note that by comparing AE and Ai at W = m we would be tempted

to conclude that
ﬂi(m) = 2m X' (m)F,(F, + mF,),

in contradiction to the first of Egs. 4-62. There is no diffi-~
culty, however, since AS and Ai have no poles at W = m, and
hence their comparison is not valid because of possible contri-~
butions from neglected parts of the amplitude 4, = A% + see

From Egs. 4-62 we find

N (m) = Vma'(m)/2 (F, + uF,),
' ‘ (4-63)
m-(m) = -V« (m)/2 F,

with a positive choice of phase for Mo Substituting numbers

from Egs. 3-2, we obtain
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me(m) = (0,266 + 0.096¢t)m ! (m),
M+ (m) mo(m) = —VO.065(1 + Ty)m o' (m), | ‘ (4-64)
| n(m) = 5.0232(1 + T)mett(m).
If we use the estimated value
2t(m) > {2Wdo/awl,,  ~ 1.88 x107* Kev™'
from Table 1, p. 20, then we get
Mi(m) = 0.47 + 0.17 T,
M+(m) M-(m) = - 0.115(1 + <;), (4-65)
12(m) = 0.04L(L + T3).

The N* and N; Regge trajectory contributions to the Mandel-
stam amplitudes can be computed in the same manner as those of
the nucleon. Omitting details, we find the following asymptotic

form of the Mandelstam amplitudes containing the three Regge

poles:
Ail . é%[(ﬁ-+m)€ ﬂ“n UV+-m)€ ﬂ‘“l
- e w) PP . W W, (4-66)
Y~ BT R MY - p@@ D s p PN G - W)
AL~ T (+(’ e A F A B C A ]
AL~ ED ey g L g PO L (> - W),

where in our condensed nctation

o -1 o
0 _ 1 + Oue N [ g \%x _
T 2sinma, 3./ . (4-67)
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W 2m ~ ()
T T Wimam lt

(4-67)

;;lu; - ,’;’[(\k) + ,Vlc_:),_ k=1, 2, 3,
and 6; an& ™, areirespectively the signaturé and the parity of
the kth Regge trajectory. The 3«&; are defined by Egs. 4-57
’f§r all three values of k.

from Eg. B~7, we get the following expression for the
asymptotic differential scattering cross section in the back-

ward direction of channel I:

ao .1 2 e . )
d0 |exn & =»os 12811"-{ PAT + A51° + 14T + AT
3 liagre, Stgmgee®d el (4-68)

It is important to note that the A% in this formula represent
At(s, S, t) = €A, (5, s, t), where AS(S, s, t) are given by
Eq. 4-66 with W — W and 5, s, — s, s,, and €; by Eq. 2-10.
This is the point where we use crossing relations to express
scattering amplitudes in channel I in terms of those in channel
II. Substitutiﬁg Egs. 4-66 into Eq. 4-68, we could obtain a
formula for the differential cross section involving all three
Regge poles and their duals. The formula is quite long and
not very enlightnening. Let us consider possible simplifica-
tions. From Eig. 3, p. 22, we see that N% is the highest-
lying trajectory for § = m® If this continues to be true in
the region s < O, as it is possible to expect, then the N%

trajectory will be the dominant one, and we may discard the
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contributions of the N and N* trajectories in Eq. 4-68, provided
that we consider only'zggz high eﬁergies. Since thé nucleon
and’its isobar Regge tfajectories lie relatively closely to-
gether, one should not expect this approximation to be very

good at lower energies. Keeping only the N; terms, we find

3~ T LR 1 Ul s el e Iy )
v 2Qelp p'(nd e}, (4-69)
where
- 1 - e—\'n’o(a(W) s “3(“/)
= rCB)(i{g 8) = m"ﬂ—‘—asinﬂxacw) <-S—:') .
; - . 1 - e+LnD<;(W) s o, (&)
p = (,m(w, 8*%) = Soinw (W) ?5':) . (4-70)

'Yh._ = ’qt (ﬁ)o
As discussed in Appendix C, o« and K are in general complex
for W purely imaginary corresponding to 8 < O; hence we need
the‘absolute value and the reai part signs in BEq. 4-69. 1In
order to investigate the validity of this quation, we must
first discuss certainAkinematical features of Compton scatter-
ing,

As remarked in the beginning of this part, the c.m. energy
squared s and the scattering angle © in channel I are related
to the c.m. energy squared 5 in channel II by the formula

s=w*

== (s - m*)*(1 + cos8)/2s + nY/s. (4=71)

Since © is physical, we must have lcos®| < 1 and hence
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2-8< 8 < 1/s, (5=72)

with s and & henceforth in units of the nucleon mass squared.

From Eq. 4-1, we have
X=-1-2(ss -1)/(5 - 1) (4=-73)
Substituting Eq. 4-71 into Eg. 4-73, we find
X==-14+25%c08%0/2[1 + (s - 1) cos?e/2] ", (4=74)

The Regge formalism is valid provided X is reasonably large.
An inspection of Eq. 4-74 shows that this is the case whenever
s is large and cos ©/2 is small or & £ W. It is not sufficient

to have only large s since

lim x = - 1 + 2/cos*8/2

g - oD
can range from 1 to + oo, depending on ©. The lab system angle
is given by

(s + 1) cos"98/2 = 1
cos 8 = =T cosTo/5 1L ° (4-75)

#e note the formula
§=-1+%[(1+cose,_)l +SinzeLS] (4-76)

obtained from Egs. 4-74 and 4-75. Maximizing x in this formula

with respect to cos6_  for fixed s, we find that
cos @ =(s-1)"", s 2 2, (4=77)

yields the maximum

max X = %{s-l+(s-l)—‘l —_—
, $ > o0

. (4-78)

rolo
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Thus for a given c.m. energy W 2:155, the Regge formalism

“wérks best® at lab ahgles given by

=N = cos ' (s - 1)‘L — %.; » (4-79)

this is very fortunate from an experimental point of view. The
c.m. angle © and s corresponding to this Moptimum™ lab angle are

respectively

2cos (8 = 1) ——e T
2> o0

o

il

and (4-80)

nt
]

_-l+2/S~;:—::—l.

The results of this discussion are summarized graphically in
Fig. 8.

. The cross section formula takes a very simple form if
W= 0. Since «x and 7w, are real for W real below W, = 1 + mg,
we expect that their imaginary parts will be small for =~ 0.
Ifiwe'set 'qt(ﬁ) = 'qt(o) and neglect the imaginary part of

« (W), then Eq. 4-69 simplifies to

T R 2 - ’ 2 (W)
S~ By s T () 4+ nZ@(E) L (8D

We cannot have W equal to zero exactly since then X = 1 and the
Regge formulae do not apply. To investigate under which circum-~
stances HEq. 4~81 might be valid, let us assume that W is nonzero
but small, say |&| = 0.1. If we take X = iO, then Bg. 4-73

gives W =~ 21.,4. 1In the lab system, the photon energy is

By = (W? - 1)/2 = 230
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FPigure 8. Graphical summary of kinematics for Compton
scattering. The physical region for channel I lies between
the curves 5 = 2 - s and 8§ >= 1/s. The line of "maximum
validity™ of Regge formalism (X greatest for fixed s) is

S:_l-l-l/s.
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or approximately 216 GeV. This energy is much too high to be
practical at present.v 1f we take a larger value of‘lWl,
theﬁvwe can reduce W cénsiderably. For example, |W] = 0.8

and X = 10 yield Ey=> 9.7 GeV which is a quite reasonable
energy for present-day machines; however, the approximations
leading to Eg. 4-81 are of‘very doubtful validity for as large
a value of |W| as 0.8.

Let us investigate the conditions under which it is
legitimate to neglect the N and N Regge terms in Egs. 4-69
and 4~81. For these formulae to be valid to 10%, say, we must
héve

(S/so)zcﬁ(—s(a) - O(-;_(W)l

v

10,

neglecting factors depending on ¥ only. If we assume, for a

rough estimate, that
oa(W) = o, (W) > xy(m) - oy(m) = 0.47,

then
W 2 3.4 Vs,.

A typical value for s, might be m*; in this case
W Z 3.2 GeV,

corresponding to photon lab energies Ey 2 4.9 Gev.
The fbregoing estimates should give one an idea of the
applicability of Egs. 4-69 and 4-81 under present-day experimen-

tal ccnditions. Let us now try to estimate the cross sections
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given by Eq. 4-8l. ¥For the lack of dynamical calculations of
Regge pole trajectoriés and their residues, we must resort to
reasonable guesses about their behavior as functions of .

Our assumptions are the following:

(1) Re (W) for = 1 < § < O is approximated by a para-

bolic fit in & based on the three experimental points &« = 1,

3, and 5:
Reoel W) % = 0,196 + 0.6355 + 0.031hs?. (4-82)

(2) P x (W) for = 1 £ 5 ¢ O is approximated by a term

linear in W:

(3) The values of M+ and ﬁ_ for - 1 £ 5 < 0 are

roughly the same as those at W = m,.

Three comments should be made regarding these approximations.
First, no terms involving odd powers in W can be present in
Eq. 4-82. This can be seen as follows. Assuming that o is

‘regular at W = O, we have the expansion

o(-(@) = OC(O) + ﬁ o('(o) + %VVZOC"(O) + s (#-84)
Since &« is a real analytic function of W, o (W) = o*(W*),

as shown in Appendix C, and since W* = - W for & pure imagi-

nary, we find

Rex (W) = 1 [o(W) + o*(W)]
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% Loe(W) + oe(- W)

fl

0c(0) + %W ' '(0) + O(W™.

Kote'that‘all ﬁhebderivatives o« ™(0), n = é, 1, 2, «s+s, are
real (the reality of odd derivatives follows by examining the
Séries for Fdma). Secondly, Eq. 4-83 follows from Eq. 4-84
| 't?y neélecting terms of order |W!3 and higher. We remark that

o '(0) is a parameter of the theory to be determined by experi-

ment. Thirdly, we assume that ?U and "\7“-, rather than 7.
and M-y are approximately constant. This is because :'1,,_.
behave like constants both at W = 1 and W = O whereas "+
have kinematical singularities at d = + 1 as one notices
from Eq. 4-67.

. Considering the proton Compton scattering process and

making the approximation (3), we find
Ne (W) = 200 3 )7V » (my),

M (mg) = 0.2s,, (4=85)

114

W2 (my) 9.8%107° 9 £(0);

we can safely neglect in comparison to > within this
M+

approximation. From Eq. 4-69, we obtain

doo 1 s)m‘e“ 2 1 Rew . L2 TImee -1
) 35 (So [cos 5 + sinh S ]

. \ﬁdd“ {cosh(n‘fmo() + cos {2 (Imux-Log _és:

+ arg sec 5‘—55- + arg 'Y):')] } . (4-86)
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The cosine term represents oscillations in the differential
cross section. These oscillationé will be discussea below;
for’the time being, let us set the cosine term equal to one
in order to get an approximate upper bound on the cross section.

Using Bgs. 4-82 and 4-85, we find

: - ' 2R
& 5 LW - 1\‘“s;-(§%) "1 + cosh(nIma)
.[cosz'"%;“ + sinh® Ejgﬁi]_‘Pb/sr. (4-87)

A point to bear in mind is that all our formulae for the differ-
ential cross sections are vélid provided that Re < (#) > - %

for the values of W considered. If we accept Eg. 4-82, then
these formulae become invalid for W Z 0.7 corresponding to
Rew(0.7i) = = %. If, however, the N% Regge trajectory should
be flatter than as indicated by Eg. 4-82, then the region of
validity of our cross section formulae would be extended.

A possible way to‘investigate the shape of this trajectory

(if it dominates!) would be to do experiments keeping W fixed

and varying s. One would then try to see whether the formula

(52).. /(&5),, - (=)™ (4-38)

-holds. Should this be the case, one would obtain a point on the
trajectory for this fixed value of W. The trajectory could then
be mapped qut by repeating the procedure at several different
valuesrof ﬁ.

To avoid the above-mentioned difficulty of having Rex < = %,

let us consider the caseé with ¥ = 0.5i. If we take X = 10, then
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the photon lab energy and angle are 13%.8 GeV and 1220, respec-
tively. We have Rewx(0.5i) - 0.35. If we again take s, = 1
and neglect Jwmw y then from Eq. 4-87 we obtain

do
dn

< 0.18 )u.b/sr.
Cérresponding to By ~ 25 GeV, we find do/dQl ~ 0.12 #b/sr;
this fepresents a rather modest decrease from the previous
value. The insensitivity of the cross section to changes in
energy is just the reflection of the smallness of Rex. The
rather high values of differential cross sectioms obtained
(to be compared.with do/dl ~ 0.15 Fb/sr for the cross section
at the N} resonance given on p. 49) suggest that the approxi-
mation (3) méy be rather poor or that the replacement of the
cosine term by unity is not appropriate.

It has been pointed out by Gribov (19) that the presence
of complex-conjugate (dual) Regge poles should lead to an oscil~
latory behavior of cross sections in the backward direction
as functioﬁs of'the c.m. scattering angle 6. However, according
to Kinoshita (27), there are no such oscillations in spin-aver-
aged Hn =~ scattering cross sections although they appear in
prolarization formulae. It is interesting to examine this
question in our case. As we have seen, Eq. 4-86 does exhibit
oscillations in the differeﬁtial cross section. However, they
are small since the oscillating cosine terms are dominated by
the hyperbolic cosines as soon as Jm o« becomes appreciable (where

the Regge formalism is '"most valid")., Sizable oscillations
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occur only for small 'd"mu corresjponding; to small \Wl, hence to
c.m. angles very close to 1800 if ‘W is large. In of-derf to deter-
miné-whether it is expér'imentally possible to detect the oscil-
lations, let us estimate their amplitude and angular spread.

For fixed s, let us definre the ratio
R = (da/d.ﬂ_)min/(dc'/dﬂ.)max (4-89)

between adjacent cross section extrema; note that O < R €1
and that this definition is useful only if the extrema are
relatively closely spaced. From Eq. 4-86 we find

cosh{(nImx) - 1

R = cosh(wima) + 1

. v (4-90)

This eguation is valid provided d’mozf;é Q. If dm« = O, then we

have to retain terms in '\17_‘; from Eq. 4-69 we get
R=2ln-/%+1"  (Imo = 0). (4-91)

Assuming that fmo is small but nonzerc and using the approxima-

tion fmo = Wl = '(0), we find

R = R(s, 0) = [% Pl o(’(O)]l

2 1 + cos@,

IE; (o' (03] 1l - coso,

A (4-92)
From the experimental point of view, it is desirable to have R

as szﬁall as possible in order to obtain large maximum to minimum
diffefential cross section ratios. However, small R presupposes
small values of |#W| which, as we have seen, invalidate the Regge

formalism unless one goes to excessively high energies. Hope-

fully, o'(0) is sufficiently small to allow one to use reason-
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able values of |W|. We see that one can use Eg. 4-92 to deter-
mine «'(0) from expefimental measﬁrements of R. Of course, the
oscillations will be difficult to detect experimentally unless
there are reasonably large (but not too large!) angular separa-
tions between adjacent cross section extrema., Let us derive a
formula for the magnitude of these separations. From Eq. 4-86,

we have the expression

2w = | A (2Fux Log = ) (4-93)
for the angle between two adjacent maxima. HNow

lATmal © (AT | (0)]

= e (0| (48\F) ™ (s - 1)"sine Ae

from’Eq. 4-71, Converting the result to lab angles, we find
that TEg. %-93 yields

Ao, = uw{|x'(0)lLlog f: (s - 1)*[s +1-(s~-1)cose "

(s -3+ (s - IL)cose\_-}"”':s.:i.n@\_7g—l

_ 2w sin%*6./2
s o0 1o¢'(0)|20g(s/5,)

(4-94)

We see that the angular separation depends inversely‘on the
energy but only mildly so. One would expect that by a proper
choice of ©_  and s it should be possible to obtain experimentally
acceptable valﬁes of A6, . Of course, this possibility depends
on the valﬁe of |x'(0)] about which we have no information
whatsoever. To obtain an idea of the numbers involvéd, let us

arbitrarily demand. that x 2 10 for the Regge formalism to be
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applicable. Because of the errors in measuring cross sections,
one may want 1/R ~ &4 (or larger).b Given these valués of X and
R (ﬁith Se = 1) and-using Bgs. 4-76, 4-92, and 4-94, we have
calculated the photon lab energy Eys angle © , and the angular
separation A®  for several values of |«'(0)|. The results

are presented in Table 3.

,Table 3

lect (0)] Ey e, YN

(GeV) (degrees) (degrees)
0.01 26.4 35 800
0.1 9.4 90 : 588
1 30.3 145 78
1.5 62.0 156 47
2 106 162 32
10 5160 176 3.9

We seé from this table that with the presently available
energies (~ 25 GeV) it might be just barely possible to detect
the oscillations provided that o'(0) is of the order of unity.
To see this in more detail, let us take E{ = 25 GeV and a
smaller value of X, say X = 5. Then we find 1/R = 6.52 and
A6, = 85° for {x'(0)| = 1, and 1/R = 1.63 and A6, = 42°

for \a'(O)l = 2. Of course, the experimental situation would
be greatly improved if one had higher energies available. Thus

with By = 100 GeV and X'= 5, e.g., one finds
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R = 0.0405 |°<'(o)|2,
Al = 67.5%°/ 1 x'(0)].

Clearly, a much larger range of values of [«'(0)| exists for

which both R and A®, are reasonsbly small.
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V. HIGH-ENERGY FCRWARD

COMPTON SCATTERING

In this part we shall obtain the high-energy limits of
nucleon Compton scattering amplitudes in the forward direction.

Regge poles in channel I1I control the asymptotic behavior
of scattering amplitudes in channel I. Demonstration of this
- fact is analogous to the one given in Part IV for the backward
scattering direction. One notes from t = - 2p*(1 - x) that for
fixed t and p «« 5 —-» o0, the cosine of the scatfering angle, x,
must approach unity.

The reggeizing of channel III is somewhat simpler than
that of channel II since boson trajectories are involved having
no dual poles.

We start again with a partial wave expansion, Eq. 2-16:

.Gy x) = (quoy™ Z (2 . DV TWIIT (xy) (5-1)
with | |

y X k=1, 2, 3,

P, = { _ | (5-2)
W/sino,, k=4, 5,6,

37 (x,) = dal,(8,),

'35,3(&) ] al (e,

Jodx,) = al (e /sine , (5-3)

Ji(xy) = dfob(et)/’sinet.
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The correlation between the notations ¢k and q“nm is given by

Egs. 2-17 and 2~19; e.g.,
Yy 2 <AL LI RED = Vol o

Again, we introduce the positive and negative signature -

fﬁnctions:
ST Px) = (I x) + I-x0), k=1, 2, 3,
JaPx) = )= FI0- =0, (5-4)
TIWxy) = k(93 (xy T 9T (- 2] |

They satisfy

T () '3: (X‘t)’ J=O, 2, o0y
'3“ (Xt) =
O’ J - l’ 3’ .60y
(5-5)
01 J = O, 2, L Y
T
’Sk (Xt) = { 3
'S'k (Xt), J = l’ 3, LX)
The line reversal properties of these functions are
I, ' Ty
3%3(- X)) =+ 3“1,3(&‘), _
(5-6)

[}

3
{ihie(_ x,)

FUI N (x).

54,6
Note that the photon exchange k, & k,, P <> 4y implies that
8in O «» - sin®, as well as cosO, «> - cos 8, .

Now we turn to the construction of partial wave parity
eigenampliﬁudes. Let us first define NN-states of definite

parity:

g M35 14> = 27(\g M %%y + VT M h<%D>), (5-7)
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10 08> =213 M3 %h%>+1dM; %% >). (5-7)

The first three states we call the relativistic triplet states
and the last one the relativistic singlet state; following the

notation of Chilton (28), we write

t™M =T M1+ >, P=ax+(-1)7,
tM =T M3 0+ >, P=(-17, (5-8)
sTM 2 \g M3 0=, P=-(-1).

(Our tI™ differs from that of Chilton by a minus sign.) The
parities of the states are determined by Egq. 4-17 remembering
that the intrinsic parity of an Ni-system is - 1. It should
be noted that the relativistic singlet-triplet states are not
the‘usual nonrelativistic singlet-triplet states of definite

angular momentum L. In fact, using the relation (9)

T« _ .21,4.1)'/1 .
gy Ls> = (22 ZO(L 5350, A= n)
'C(%VBS H >\|’ "1-1.) {Jd M kl)\z.>, ) (5"'9)
we find
q . — _—.—:I—— ’M_ -—g—_t—_lf- IMm
bk 0+ 1, 1> =557t ~Vags1 teo
lg s J, 1> =t (5-10)

. CAfd 1l L m —d LM
loMs5 0 -1, 12 =357 7 "« Va1t

for the nonrelativistic triplet states (8 = 1) and
loM; J, 0> =s"™ (5-10)

for the singlet (S = 0) state.
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Using the result (29) that the charge conjugation eigenval-
ues are C = (-~ 1)**S  for a pp- or nn-system, we find that our

states have the following C-eigenvalues:
CtIM = & (- 17 ],

(- LT t7M, (5-11)

1}

M
c I
CSIM = (- l):SjMo

Next, we define two-photon states of definite parity:

TM; 22> =2™{gM; =11>+\dM; 1 -1>),

" (5-12)
lgM3 02> =271 H; 11> +1JM; -1 -1>).
Their parity is given by

Plal; p 2> =2 (D7 10M; p x>, o =0, 2,

and ¢ = 1 as for any even-number photon state.
Transition amplitudes of definite parity for the reaction

NN — 2Y can now be defined:

g.J':"_ <O>i_\,\va‘\oi>.

it
i

$7 o+ $3,
I

g7t <2 £1YT 0 +> <=1 17Tl %>+ Y,

i}
i

(5-13)

0q
|
it

I <O+ ¥T 12> = <=1 -1IN7\% %> &+ &7,

m
e
1

Ix <2 414711 +7 = D7 + 97,

The boson nature of photons and the assumed charge conjugation

invariance impose certain restrictions on amplitudes. Since

Yo = <LLIVIEE> = <LLINIER> o L Lo
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and
doa(m+ 8,) = (- 1)7as.(8,),
we find that

$3 = (- 173

i}

or

33 = 0 for odd J. (5-1k)

The same conclusion holds for "Qg and “Q{. Under the exchange

of the two photons, we have

<1 -1ldt B %> = <-1 11V1% %>|

B, > T+ O, °
in terms of partial waves, we find

<1 -1V % %> a,(8,) = <-1 LI¥ 1% %> dy_(w + 6,)
or

<1 LIy %> = (- )77 (5-15)

The amplitudes ‘pms g0 into each other under the photon exchange.

Thus
@:dr (e‘t) = gdlzl_?_(ﬂ + et)

2

or
B = (-7 | (5-16)
From Egs. 5—7 and 5-8 we find

1015 T +%> = 27eTM, £, (5-17)
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Using the first of Egs. 5~11, we get

CIJM;;%‘_?_%V->‘=(-1)3|JM;1%:VZ>; © (5-18)
<l -LI9T k- %> = <117V - %> (F)

= (- 17 <111 % - %> (c)

= (- 7YY, (5-19)

Using Egs. 5-11, 5-14%, 5-15, 5-16, and 5-19, we find the following

nonvanishing amplitudes from Egs. 5-13:

H

g:: ¥ + J;‘;, J even,

g =27, J even,

20

(5-20)
| ggf = 2%, J even,
5 J even,
T+ J T - 3
g7f = 374 T =297 =3 29]
J odd.
The inverse relations read
V7 =%gll, J even,
~§§& =% (gl + 83.), J even,
J even,
k]
Jd odd, (5=21)
» J even,
Yi=xrell
J odd,

T PR 2
Y, =% g, »J even.

We can rewrite Eq. 5-1 in the form
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D, Gy x) = (qu)™ Z (20 + DILEIIT) + V7]

= (qw )™ Z (29 + DV ()T Mx,)

T even

" lawr™ Z (20 + DI@IFxY. (5-22)

Substituting the g-amplitudes from Egs. 5-21, we find

Jo gy x) = Blge)™ Z(20 + 1) g7 (W )T (x Y,

J even
Baaliiys %) = Rlaw)™ Z (20 + D6 2 67201950,
VuslWys x,) = Blaw)™ 2 (25 + 1) g700,) 97 7(x) (5-23)
x */a(qw)"/; de(aJ + 1e)ugh§;(w,c)&if;’(xt),
J, Wy x,) = ﬁ/z(qw)"’ljéeizgr + 1) g ) Ax ).

We see that $w and :Lg are the only amplitudes containing the
negative signature J-functions. Since ?° and w trajectories
both have negative signature, they may be expected to contribute
to amplitudes gir. However, this amplitude is nonzero only for
odd values of J and represents a transition from an Nl-state of
positive parity to a two-photon final state. Since the parities
of p° and w are negative, they cannot contribute to this ampli-
tude. We are left with P, o, m° and " - They contribute to

the following amplitudes:

T+ T+ T+ T+
-
Py, @ g o9 goti g_)_ov gz!s

° : I~
T T8
The amplitude gi}_would receive contributions from a positive

parity nggatiﬁe signature Regge trajectory, should one exist.
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We shall keep this possibility in mind by retaining g:'.' in
our work.
Wiriting the Watson-Sommerfeld representation for the

amplitudes of Eqs. 5-23%, we obtain
b Gy x) = I Gy, x) o+ W‘:(Wt, x,). (5-24)

The I, are the integral contributions obtained from Egs. 5-23

by the replacement

2, -->+—2'-—5dJ hil

1 G;EV\ - Zﬂi c Sin ™ J !
odd

where C' is shown in Fig. 7, p. 40, and

N - (e (E) + % P . & p It
\‘ja (Wta X't) = -T\'(qw) {Sin“dp(t) R’_o(%‘?_t)s' (X't)

+ (P = v‘)},

1 - ar{t ¥, oL lE) )
Foslitgs 10 = - nlqu)™ (L2l v ygue

sinwap(t)

+ (? > o) + (P —=>mw) + (P .q.,l)}, (5-25)
Puslliar x0) = - mlquo)™ E;f:%ﬁlf BT, (1) 950 e )
B3 %ﬂ—ﬁ? SACRLHARMER]S
Yoy, x) = - gy {EREE 22 ()37 e

4 (P iy 0‘)}.
The residues of Regge poles are defined, just as in Part IV, by

A - T4 (e — .
Ry (W) = Res:=“a(ﬂ 8% (Wy)y 1i=0,2, j=0,1. (5-26)

Using the factorability theorem of the residues (5, 27) and the

asymptotic form of the +y-functions given by Egs. A-27, we find



~ ’ "\‘I‘T“P ~ -
-q}fl ~ - l'm W"’; ’VI:\N (S/SD) - (P ->0“),

:PR N e Lﬂ'k - S NN P (s/s )*® - (P‘a.,a')
SR BSinme 1’— ’Y) °

¥ (P‘-‘-> ) ¥ (P - "), | (5~-27)
-(nolp

~R 1 + e -t YP o NNP P 4
"y‘hs ~ 2sin Moy e N (8/s,)

- l - e- \'.“O(b

x} - (P =~o)

n’b mxm s 3
28in oy, ’VI (s/s,) t !

TR 1l + e-ﬂ\' — N-{“P P
Yo~ - Ssim WATTAN (/e )y - (2 o),

~ YA S NN e T (A + 3/2) ™
,,l*n' ,qMNA YWy (qeuw) ROV R, (= 8./quw) A,

~SYYA ~ NNA A N N L L. Y
EHAE Ve T (RE/RaDATIAINA,

0 s - 1 _
-\/ = ~ (R, /RA.) ﬂ/]”p"qf“,

oy + 1 xUa+
NXYA & NNA _ _\/ oA 1\/011-\ - 1 (R'\ /R 1XA4/1NK1A
) ’v\" ’V)' oca + 1 xpa + 2 B ’V] ° ¢

The asymptotic form of Mandelstam amplitudes is

(5-28)

R by 1 4 e "T%P  LqP = eyyP ~ i v NRP xe
M ™ % e T RYTHI@ANRT - WAt (s/s,)

+ (P ~» o),

- LT oY -
I ik L BN CZRNRCE
-0 : (5=-29)
R ., S8mmg 1 + e TP L yxP = syyP P
Auss ws 2sinwy, "1;‘ * y] )'VlNM (s/8,)%"

+ (P = 7)),

& 16nm 1 - e "> ~yyd ~yuip o
Ao ™ s 2sinwoly S (/8,070

We observe that each Mandelstam amplitude receives contributions

from Regge trajectories of fixed parity and signature.
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Let us consider the amplitude A? which involves w° and v
Regge trajectories only. Comparing Az at t = m: and at t = 1y
with the corresponding pole terms calculated in Part III, we

find

it

" ~ NN 1 '
AU @AY (@) = - 5 geany(/Ta)7,

S (a2 AU - ke (st T) (5-30)
" m"] ’Vl" Byl = 273 MN'vlé‘qm'q M/
where
€, = Re u;(m:’).
Using the values
E;‘L/q’“ ~ 14,5,
€r > 1/30my (30),
(5-31)
m, > 135 MeV,
T, = 22107'° sec,
we estimate that
NI (m2) { NN (m2) & - 6.23%107"., (5-32)

“

An idea of the physical magnitude of this number may be obtained
by computing the mw°-contribution to the differential scattering

cross section in the forward direction. From Eg. B-7, we have

dc‘) 4 -» O~ t R 12
(d.fl e $S = oo - 1281118 ‘As\

- _1_ 2 TAR(0) (i)lun(a) ~ gy A e 2
= 3 osct TR (E)TA 0T (0) H1(0)|

2
7

L \-0.67
: s m
0.014 (SQ) iy /pb/sr,

R
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with the approximations Vi;(O) =z M. (my) and o (t) = (t - m}) €q.

If s, =~ m; and if we take s = 2 (Gev)*, say, then

'(%%%)ﬂo"’6 /vub/sr.

We see that the =w° Regge term will not contribute significantly
té the asymptotic cross sections even at such low asymptotic
energies as W~ 2 GeV or Ey 2 0.6 GeV. The contribution of 7
and its interference with w° should be roughly of the same order;
we hesitate to make a more accurate estimate since we have no
information on the width of the 2y-decay of the M-

From Egqs. B~1l2 and B-7, we have the following expressions
for the asymptotic total and differential forward cross sections

in channel I:

—— & R R 8 R R
GT S —» o0 ‘s- Abs [Az - Al + zml (AS' - A‘i)]t=°, i (5-33)
de t—o- m* e s R 2 Q <] R 2
a0 o . 32“15{(1&. + 5 Ayl o+ lA"+2m’- A

t 2 1, s Q"L
- o 1A%+ 3153 At (5-34)
Since the Pomerahchuk Regge terms are absent in A§ and Ai, we

may as well omit these amplitudes. Equations 5-33 and 5-3#

can be rewritten in a more compact form:

or ~ 2 abs (A, + 80|y (5-35)
do }+ﬂ' dO" 1 2 2 -
3T 7 5 aa " FeeT (la t*+ 1a_l )’; (5-36)

where

8ns, 1 4+ e 'Tr

A, = - NI (8P 4 NPT (s/5,)%7, (5-37)

m* 2sinTep
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W7 = (w¥/2gs ) (A X7 2 HYIPY,
(PRI LN o
. v\,‘“-\-,p i} -' (w/m‘)q‘uﬁ?.

Since, as shown in Appendix C, % 's and «o's are real for t < O,

and since

abs (1 + ¢ ™"/ 2sinnwel = - %,

(1 + e'L“MP)/ESinﬂo&Pitto = P,
we find
o’b 4«_( ) (5-38
T““"I'n"‘;‘,_" "’1++n— V'Vlog 5-3)
S5~ T T F (s/,) ™ (5-39)
F=(qi+12)/ (e + M1-0" =1+ (a/¥2)" (5-40)

We have dropped the superscripts yyP and NNP and the subscript P.
The term 41f5v has been neglected since it behaves like tﬂqgﬁP

at t = O according to our estimates in Appendix C. One might
expect tha£ the factor F be equal to unity, as is the case, e.g.,
in Hn-scattering. The reason for the presence of the extra

term in ¥ is that the differential cross section has a photon
helicity-flip amplitude $, = <% =11 $ 1% 1> which does not
vanish in the forward direction as one can see from Egs. 2-21.
This term does not appear in the formula for the total cross

section since the latter involves only non-flip amplitudes &,

and Ses A& similar term, namely ¢q, is present in the backward
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scattering along with the "maximum helicity-flip" amplitudes
¢, and %, .

- Setting
<(t) = 1 + et,
€ = D('(O),

for swall t in Eq. 5-39, we get a formula exhibiting the
shrinking diffraction peak characteristic of Regge differen-

tial cross sections:
do/dt ~ (o+/16n) F exp(- 2eltli €og (s/5.)]. (5-41)

We must emphasize that Egs. 5-38 and 5-39 are valid for
energies high enough so that contributions from other Regge
trajectories, namely the second Pomeranchuk (P'), if it exists,
and the ABC (¢) trajectories, are not important. Since, without
doubt, &4,(0) » «4,(0), we must make sure that (s/sh)upaw"up'“)
is much greater than one., Unfortunately, this criterion involves
an unknown'parameter S, about which we have at present very
little to say, save that it should be so chosen that the t-depen-
dent factor in front of (s/s,)™® should be as nearly constant
as possible. This is not saying much since we have no idea
about the behavior of this factorrfor any given choice of s_.

One way of‘obtéining information about S, would be to do very
high energ& experiments and fit the data by Eq. 5-41 on the
assumption that the first Pomeranchuk trajectory dominates the

cross section for any reascnable value of s_. We note that we
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should have written st instead of s, since, presumably, dif-
ferent unknown constahts‘should bé associated with éach Hegge
trajectory. |

The second point to note is our implicit assumption that
no Regge cuts exist near the leading vacuum trajectory. Let us
now drop this assumption and investigate the role of these cuts.
We may remark that some work on Regge cuts has already appeared
in the literature; e.g., Gatland and Moffat (31) examined the
p-p and p-§ scattering data by taking into account a Regge cut
with the guantum numbers of the vacuum in addition to the usual
Regge poles. Qur treatment of the vacuum cut will be similar
to that presented by these authors.

Consider a cut having the quantum numbers of the vacuum.

A generalization of Egs. 5-37 leads to

o4 (%) .
¢ _ _ Bwse j 1 + e T xxC
A: = ) o) do einme W]t (ty, =)
~[’V\':'Km(t, <) + ’Y\‘Nuc(t, <)} (s/s8,)%, (5-42)

where o 4+(0) = 1 and Rew (t) > Rewx_(t)e Ve take =, (0) =1
in order to insure that the total cross section does not
increase beyond bound as s -»voo. The case « +(0) < 1 is not

as interesting since then the Fomeranchuk Regge pole dominates
the cross sections for sufficiently high energies, and hence £he
cut may be neglected. TFor lower energies the cut may be impor-
taﬁt, especially if the difference o, - «, is small. We note

the asymptotic expansion
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oy (%)

ju..(t) . : .
. (s/s.)** 2 £(ty e (£))/3ea(t)
s—~oo  Log(s/s,) [f(t’ “4(t)) - Rog(s/s.)

+.000:2
O(...('t)
~ %{—;&2};—7 f(t, scs(t)), ' (5-43)

doe (8/5,)" £(t, =)

assuming that o, (t) > «_(t). Using this result, we can write
Eq. 5-42 as

Bns, 1 + e ‘T

~ - M ¥¥(e)

C
* m* 2sinmoc (%)

c( ) 4 MR ()] (s/8,)

y:\

oL, (%)

/Cog(s/s,.), (5=i4)

where we have abbreviated

N

’q‘i‘lc(t, da-(‘b))ry(jﬁc(t’ o, () = ’V(Z“(c(t) ’v‘?r,c(t).

We see that the Regge cut terms are characterized by the

presence of logarithmic factors; we are justified in neglecting
higher order logarithmic terms in Eq. 5-43 only if Log(s/s,) >> 1
(assuming [£'l ~ |fl, etc.). Keeping the vacuum pole and cut

terms only, we find to first order in 1/Log(s/s.)

do/dt ~ (dv/dt)Ptl + C(s, t)],

o, (8 — o)

- /fog(s/s,), (5-45)
1,Hx‘“' ,11;7-{*{: + ,Y)-er,V)_gxc‘ .Yluuﬁc
(,m_\(“‘")’- + (,y]_‘ﬂl’)’- ,-vlan:iP ?

C(s, t) =C,_ (s/s,)

C :‘.’20

©

where (do/dt), is the vacuum pole cross section given by

Eg. 5-39, For small t,

‘oc;(t) - oo(t) = tle,'(0) - = (0)]) = et
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so that
do (47 . expl- e’ 1t120g(s/s4)] ‘
at (dt )p { 1 * Cv eog(s/s ) hd ) (5"46)

Ve sée that thé cﬁt‘contribution decreases iogarithmically with
energy only inbthe extreme forward direcfion. At larger angles,
the cut may or may not dominate the éole depending whether e < O
or é/:> 0, respectively.

From Eq. 5-35, we obtain

T~ (ondy 2R (I IS t0g(s/s,).  (5-47)

Thus the Ky total cross section approaches the constant value
(67 )p logarithmically. Strictly speaking, (o), is also a
function of s if we include Regge poles other than P, However,
it differs from the constant asymptotic value by terms propor-
tional to negative powers of (s/s,) so that its s-dependence
may be neglected in comparison to the logarithmic term in
Eq. 5-47.

4s we have seen, the total Ny cross section does not contain
the w°, M and D Regge pole contributions. They occur in the
differential cross section formulae but are dominated by the
vacuum. Regge terms. To study the behavior of the w5 '1, and
D Regge trajectories, one might consider polarigzation experiments.
Since such experiments are rather difficult to perform, we shall
not present asymptotic polarization formulae for the nucleon
Compton scattering process. They could be rather easily

obtained by substituting Egs. 5-29 into polarization formulae
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given by Frolov (32) ;érovided one takes into account differ-
ences between his and our definitions of Handelstam amplitudes.
It éppears that procesées other than nucleon Compton scattering
should be considered if one is interested in studying the T°,

" » and D Regge trajectories.



VI. CONCLUSIONS

- The high~energy limits of nucleon Compton scattering
amplitudes and cross sections in the forward and backward
directions have been examined on the basis of the Regge
hypothesis.

We have presented a detailed reggeization procedure of
the partial wave expansion in channel II; the backward
asymptotic scattering in channel I was shown to be controlled
by the nucleon and its isobar Regge poles in channel II under
the assumption that there are no cuts in the complex angular
momentum plane. Residues of the nucleon Regge pole were
evaluated by requiring that they agree with those obtained by
the renormalized perturbation theory to second order in the
electromagnétic coupling constant. Both the charge and the
magnetic moment couplings were included. Residues of the
isobar Regge poles were evaluated by employing the unitarity
condition and using the experimental data on pion photoproduc-
tion amplitudes in the vicinity of the Ng and N* resonances.
We have shown that the Regge formalism has a region of 'maxi-
mum validity" at laboratory angles approaching 900 for large
incident photon energies. Under certain reasonable.assump-
tions abouf the behavior of Regge trajectories and residues,
we have discussed the validity of our formulae for the dif-

ferential cross section in the backward direction and have
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obtained a rough estimate of its magnitude assuming that the
N§ Regge trajectory dbmiﬁates in ihe energy region ﬁnder con-
sidération. It was found that the presence of complex-conju-
gate (dual) fermion Regge poles leads to oscillations of cross
sections. Approximate formulae for finding the amplitude and
the "wavelength! of these oscillations have been derived.

The possibility of experimentally detecting cross section
oscillations depends critically on the value of the unknown
parameter m [d«(W)/dW)g-0; it appears that detection might
barely be possible with available photon energies provided
that the value of this parameter lies between 1 and 2.

The asymptotic forward scattering was treated by regge-
izing channel III. It was shown that the vacuum (P), ABC (¢),
ﬂn‘n’ and pseudovector D Regge trajectories could contribute
to our amplitudes (the P" and « trajectories were excluded by
parity arguments). Cf these, howéver, only P and ¢ contributed
significantly to the total and forward differential cross
sections at high energies. The w° and | Regge pole residues
were evaluated by matching them with perturbation theory
results., The w’-contribution to the forward scattering cross
section was estimated to be ~ 6 rT&b/sr at a photon lab energy
of 0.6 GeV. The contributions of a possible vacuum Regge cut
were computed under the assumption that the cut extends as far
as the Pomeranchuk Regge pole at t = 0. The cross sections

were found to be modified by terms proportional to powers of
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1/2og(s/s,).

It is essentially trivial to.apply our results‘to,electron
Compton scattering. Tﬁe considerations of Part V for the for-
ward scattering remain unmodified except for formal substitu-
tions q‘"ﬁP<—> 13?*i etc. Let us briefly consider the necessary
changes for the backward scattering. In electron Compton
scattering there is only the electron Regge pole in channel ITI

to take into account. Its contributions are given by Egs. 4-56,

4-57, etc. The differential cross section is given by Eg. 4-69

with
14 e-:.no(LVv) 5 \ol W)
P = "osinwa(W) (E:) !
. 1 g et W gy el@
P = S (&)

It is quite feasible to test the "elementarity" of the electron
by comparing Eq. 4-69 with experimental results; the correspond-

ing test of the nucleon is obscured by the fact that N* dominates

3

nucleon Regge terms or is at least comparable to them. The

analog of Eq. 4-81 for the electron is

4 2 o -
%—%;—- - -]%E Yo{'(me)]z sec _t.é(_(_ﬂ exp[z a(w‘)eog (S/Sc)]'

with the approximation 173(0) ~ w7t(me) and for small |#l.

Writing § = me o«<'(m,), we find

do 2 Tty s(1 + cos@)}
) ~ 0.625 §* sec I exp{- [l + Ty,

« % Log -5:} mb/sr,

where we have set
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(W) = 0 + (F* - m3) 8/2m;.

It - would be very interesting to have an experimental test of

this formila.
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APPENDIX A

- In this appendix we shall compute the d-, A-, and
J -functions used in the text and shall obtain their asymp-
totic behavior.

#e shall need expressions for the dir\(e) with A, 2
= + %y, +% and (A, /u) = (0, 0), (1, 0), (0, 2), (1, 2), and
(1, -2). Ve dispose of the last five d-functions first.

From Appendix B of Jacob and Wick (9), we have

al (9) = {4r/(20 + 1" 1, (0, 0), (a-1)
al.(8) = P;(cos®8), (4-2)
% (8) = - (J(J + 1)) ™ sin6 Pi(cose), (4-3)

al.(8) = [(d - 1)d(d + 1)(J + 2)]7%

- {2p; (cos®) - J(J - 1) P (cos0)], (A-4)
an (8) = (J(3 + DI~ n((1 + cose)/sin6) a7, (8)

- (G S @ e m e DI SRR C) (4-5)

where P!(cos 8) = dP (cos0)/d(cos®) and Y, (6, ¢) are spheri~

cal harmonics as defined by Egs. III.20 and III.21 of Rose (33):

2 + 1 (J = m)11" im .

« d™P (cos 8)/d(cos )T (4-6)
Fe shall need the relations (9)

aj.(8) = al, (o), | (a-7)
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i}

43,8 = (- »"*aly(e), | (4-8)

i

43,0 = (- Dmdi.-p(“‘ 8). o (4-9)
By Eé. A-S we‘have
al, ) = al,(e).
Using Eq. A-5 with m = - 2, we find
al, (®) = [J9(J + 1)]""{2 l—gi—f—l%s—@ a’, (o)
- [+ 2@ - )" &7 (@},
From Egs. 4-3, A-4, A-7, and the relation (33)
a3 (8) = a5, (- ), (4-10)
we obtain
al () = (33 + D]” [0 - 1) + 2)7 " (sine)™"
.{(Ju- 1)(2d + (20> + 55 + 2) cos 8] P, (cos ©) (4-11)
- 4(1 + cos8) P!_(cose) - (3F=- 1)(J + 2) P__M(cose)}.
From this it follows by Bg. A=9 that
a7,(8) = = (37 + VI {(J - 1)(J + 2)} *(sine)™
A - (e - (a0 +V5J + 2) cos 8] P_(cos 8) (4-12)

- 4(1 - cos8) P! (cos8) + (%= 1)(J + 2) B, (cos0)}.

Turning now to d-functions of half-integral J, we find from
Table II, Appendix B, of Jacob and Wick (9) and from our Egs.

A~7 and A-8 the following set of functions:
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df,h_,,t(e)' = (J + %) cos®/2 (_P:n%fcos e) - p;_ (cos@)],
| | ‘ (4-13)

a%,.,(8) = (J + B sine/2 (P}  (cos®) + P! (cos8)],
| (A-14)

dih';h(e) = - (J + %) 'cos®/2

al, L8 = - (J + %) sine/2
J = B\ J + 36\
[(J " 1/1) ﬁ/ (cos8) =+ (3—};—%) Vz(cos e)} (A-16)

To compute the remaining functions, we use Eq. A3 of Jacob and

Wick with \ = - % and = Va

A% (@) = ( z‘) a7, *(8) cos ©/2 + al"*(e) sin6/2. (4-17)

Making the required substitutions, we find
07,348 = [(T + B +%)] 7 (1 - cose)”
16N
-{((l - c050) (J - ®)(2Jcos® -~ J - ) = 4] P, (cos®)
+ U4 = (3 - (1L - coso)] Pj_z/l(cose)}sine/E . (4-18)
2
Using Bq. A-9 and the relatlon P, (- x) = (-1)FP o(x), we obtain

(8) =-[(d + ®B(J + %)) (1 + cose)™™

3/1 -3

.{[(1 + c058) (J - %)(2Tcos 0 + J + %) + 4] Py (cos )
+# b = (3 - W Q + cos®)I P, (cose)}coso/2.  (4-19)

This completes the listing of the d-functions.
liow we turn to the asymptotic behavior of the d-functions.
It is clear that we can read it off from the explicit expres-

sions obtained above. However, it may be of interest to exhibit
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formulae for the asymptotic behavior of an arbitrary d-function.
We"start with a repreésentation of the d-functions given by

Eq. 4.14% of Rose (33),

f i3 -1 2T+ me-m’
Gen® = [FTEHEEER] (0 - 07 ooy

(- sine/2)" " F(m' - Jy, —m = J; m' - m + 13
- tan® 6/2), (4-20)
valid for m' 2> m. Tor large cos®©

_ 2 __ L1 -cos8
tan*6/2 = T et 1.

Using an integral representation for the hypergeometric

function (34) and setting its argument equal to unity, we have

F(a, b; ¢j 1) = te) BRI C IS LRSI
o T(b)T'(c - b) Jo

]

P(e)T(c -a=-1b)/T(c=-aT(c-b)
Letting a =m' -« J, b= -m~J, and ¢c = m' - m + 1, we obtain
A (8) —mz—= T(2J + V(T +m' + DT - m' +1)
T(J + ﬁ + L)T(J - m + l)]"“(cose/2)7'r+m'm’
(- sine/2)"" ™"
Since (34)
T(@J +1) = n2YT(J + BT + 1)
and

| . 27T it
P, ,,(cos 9}) e T B (cos @) ™7, (4=21)
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we find
T (8) ~ 20 THT + B(T(J + m' + 1) (g -m"+ 1)
T (g +‘.m +1)T(I = m + 1)]7"(- tan/2)" "cos 82
P, (cos®) (4-22)

for m'" » m. For m' < m, we use the symmetry relations, Egs. 4-7
and A-8. Equation A-22 is useful for half-integral values of J.
For integral J values, we obtain
T(®) ~ TNI + DT +m' + 1)T(J = m' + 1)
(4-23)
T(F+m+ LTI -m + 1)) "(- tane)m/_mPJ(cos ).
Using HEgs. 4-22 and A~23, we find the following asymptotic

forms of our d-functions:

df,h‘_‘/l(é) ~ 3-?%—,}-@ PJ__VL(cos 8) cos8/2,

d“_',/w/z(e) ~ sz,é (cos ©) sine/2 ,

(@ ~ - (%—i—;’%)"‘ a8

d:h.-%(e) -7 (H)h df’h.'/x(e)’

05,00 ~ $=Ea (o), (4-24)
-3/1 3/(9> ~o- i :_:///2 Sy (e),

al (e) = P_(cos @),

L (e) ~ - V J T tan ® P_(cos®),

al.(e) ~ ‘\/(J E-Jl.)-(}j)i 53 P_(cos©),
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T ey G-I 4r
d (&) (J + 1)(J + 2) die (8),
) o (A-24)
4] _,(0) ~ al(e).
From BEg. 4-2 we have
X ~ - 8/2p*y 8 — oo.
Koting the formula (34)
P(-x + ie) = - é sinma @ (x) + et”“dP“(x), (4-25)

giving s a small positive imaginary part according to the defi-
nition of the physical sheet, and remembering that p*> < 0 for

s > 0, we obtain

Po((- X) —_— -c.ﬂol

* -3 0O

P (x) + o(x ™)

e () (B - o

Using this and setting J = « + %, we get from HEgs. 4-11

AT~ d e (£)7 [ DiesB (2]

8o Y T(x + 2)
ot/ () o &+ (%)
AP ~ - [ AT, (4-26)
A«;'/z(’t)(x) ~ - Ao:-f»‘/z ('!:)(x) ~ Dj_g AT*‘/z(t)(x).

The cosine of the scattering angle in channel III becomes,

for large s,
x, = (s - s){t(t - bpz)] ™ —— s/2wq
. s o

with s =» 5 + ie, € >0, We take the branch cut in the complex

t-plane to run from O to 4m™ so that

» ‘ > hp
wq = (t(t/4 - 5] 2 0 for ¢
‘ : . <0



and

Jm waqg 2 O for t =t, +1ie, O < t, < 4m?.
Thus
Fmx, <0 for t <O

and hence

oy -in —ot =t
ru(xt) -::-_:: e P“(- xt) + O(x Y.

Egs. 5-3, 5-4, and A-24 now yield

o (o = 1) o (£}
TP =) - N/(u.+ )(x + 2) Vo (2,

a7 0 - b e (£ [ R (2297,

(a-27)
oLlt) [ex = 1 « (1)
"9:{,5- (x,) ~ ®+ 2 o+ 1 D"‘- (x0) /x4

49':“””)()(*) ~ - w/ﬁiﬁ;‘“” (x)/x,.




- 97 =

APPENDIX B

- In this appendix we shall derive unitarity relations and

formulae for scattering cross sections.
The elastic unitarity relation for channel I is not needed

in our calculations since it gives contributions of order e*
to the absorptive parts of various amplitudes. However, the
result of the optical theorem is based on the elastic unitarity
relation, and hence we may as well derive the latter in order
to fix multiplicative factors. The Nw-intermediate state
contributions to absorptive parts can then be immediately

written down by inspection of elastic absorptive parts.

According to our normalization convention,

il

Abs <>».L,M\T\L.,A.> 37 <Aapa VT = T* A2

lj(an)s (2 )s (2" §(p, +k, - p - k)

?r<kzﬁtlf*\ky> (HEP) A p I TUA o>, (B-1)

Substituting the partial wave expansions of @ - (8ww)"'T,

]

O lglhp> = p7 220 + VD', 01, - ¢ BT, (B-2)
1B N> = p—‘ﬁ(aJ + Lih(e!, 81, - @)
¢ 1\,2@;\,(‘91 e, - ‘-?)a (B~3)

where (&', ¢') are the angles of p with respect to p,, and
(6, ¢) those of P, with respect to p,, into the unitarity

relation, we find
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Abs <hplBlA > = p % é(zJ 120 &,

CDII(cy 04 - ). N €=

We have used the orthogonality relation

™ In
:dnt? LSine dS@iv(% 8, - @)2J (¢ &, - ¢)
= 4n(23 +1)'S_,. 5. (B-5)

T's © Ky,
Substituting the analog of Eg. B-2 into Eq. B-4 and making use
of BEq. B-5 to project out partial waves from 4ibs < ¢ >, we

obtain

YV

J — X » I -
Abs B, = %, $ W, - (B-6)
‘The unitarity relation with an Nn-intermediate state,

Abs ‘§$;V| = Z.': ZT* z]‘

AV AV, )
follows from Eq. B-6 and the observation that the normalizations
of &% and 27 are equivalent.
The differential cross section for polarized scattering in

channel I is given by

(9»0:-) - a’p kidk. \</\1Hzls—\|/\\M«>‘7’
dQ /pet. (2n)® (2n)° (2n)"s™0)(L + p/E)

= |<7\1/~4L(¢‘7\|/An>lz.

The unpolarized differential cross section is

dor 1 *
(?ﬁ)’unpo(. “F %IKXU‘*‘S[" Aypr>1

Using relations such as

<PLIBlE1> = <% =L1b|-E-1>= &,
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etc., and substituting from Egs. 2-21, we find

(87 )y = @m0 {EEmt e 220 - cos)] (A 4 (aalD)

+‘ %: (1 - cos@)|aslt + -2—]%:;@-][% - p(1 - cos8)]

’ AT
SO+ 161 + B2 (1 + cos@)lal®
+ 2pl2i - p(1 - cos®)]Ke (A, A% + AzA’g)}.
The total elastic cross section is given by

o (e (g) =5 I [an lnmlgiam > 1

t
=5 2 (27 + 1)(23' + 1) L f.d(cose)
2p* 33 viva %,
§:r* 3 .F as
Va¥s TVt vV Y vy,

Using formulae (9)

. dipd:"’ﬁ': %’C(J Jt 2; )\’ - K')C(J Jt e; /\L., - ’u_.)

(- 1)V P gk
(- 1) dx—*tp—p"
ds,(8) = P,(cose),
and (33)
C(g J' 05 vy =v) = (- )77V (2T + )5,
we find
o—ff”(s) =wpt (27 + N \éimiz
T \I,V-L
= wp~ L Abs <aplg (W, DIrp> - oliv(s),

since, schematically,

sbs < ilTIi> ~ 2 \<LijTin>I?

(B=7)

(B=8)

(B-9)

(B-10)

(B-11)
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= 1<)l + = IilTin>!®
_ nel
V) in
~ G:e + ol '
Summing over \ and P in Egq. B~-11, we find

G'T(S) = %"Abs (¢| + ¢g)g=o

: m 1
= Abs [Ep‘ﬁ’ (A, = 4)) + 5= (4 - A“)}tm‘ (B-12)
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APPENDIX C

'-In this appendix Qe‘shall investigate the analytic
propefties of various amplitudes occurring in the text.
We base our investigation on the Mandelstam repreéen—
tation of nucleon Compton scattering amplitudes as given,
€.8., by Hearn and Leader (6):

_ 00 oo _ % , =/
A;(S’ 8y, t) = P, + %j ds f ds (s’ =~ é?(é/f ;)

L T
(m+rm )7 (wmrm)?

co 13 s , . (c=1)
+2_f ds’f dt’ P‘(S't)(s,l L),
(

2 7 - - / - B
n (mrm ) 7 (amg)? & t 5 s 5
where
1 €; ) r:
R . + -
P, R; ( s - m: T 5 - m? t - m:’ (c-2)

the €; are given by Egq. 2-10, R; by Eq. 3-%, and r, by Eg. 3-9.
Ko pole term is given for the vy -particle since its mass is
above the 2n threshold. The double spectral functidns
satisfy the crossing relation

'%;(s; 5) = e, X (s, 8). (C-3)
The given representation holds to second order in the electro-
magnetic coupling constant. We have omitted possible subtrac-
tions.

The explicit appearance of fixed nucleon and pion pole
terms is misleading from the Regge point of view. We can
remedy the situation by the following artifice. Considering

the pion pole for simplicity, we write
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i't — ﬁi(ta Xc) - .
t - m! T sinmu(t) Y‘(t’fxt)’
where
v i ._ pi(t, Xt) _ r:
X“(#’ Xt)_' sinwu,(t) t - m}?

@;(mi, X¢) =‘v<x;(m;) for all x,.

The x;-dependence of (i is given by an appropriate linear
combination of Legendre polynomials obtained by reggeization.
The term Y.(t, s) is nonsingular at t = m. and hence belongs
to the double-integral terms in Eq. C-l. Thus the A, are
expressed in.terms of a Regge pole and an integral contribu-
tion. The foregoing procedure can be applied to the nucleon
pole terms bearing in mind slight complications caused by the
fact that we have dual poles. Thus, formally at least, we
obtain a Mandelstam representation containing no fixed poles.
We shall need single-variable dispersion relations for the
A3 they can be obtained from Hg. C-i in a well-known way.

For fixed s, we have

w .
A;_(S, g, t) - %j’ av Av,z(s, V, t)
¢

mem )" v -2

1 = dv Aya(s, 2m* = 5 - v, V)
™ (amy)* v-t

. (C-L")
The fixed-t dispersion relations read

L . 2 . -
bilsy B, 8) = [ gy [dielvaZmiov ot ¥)

w (M-fm“)z

 AL4(2m‘ -v - t, v, t)]
v - B *

(c-5)

Here 4, k = 1, 2, 3, are the absorptive parts of the A, in
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the three channels given by

4, (s, 8, t) = eid; (B, s, t)

_ l‘L” gy Hi (s, 1‘[ Pels, v)

k]
W\*WI“)-L (1M )7. V = t

av pilv, t)( L +'e'“-). (C-6)

Vv - 8 Vv - 8

.ﬁ‘-_’a(s, §, t) = ﬂf

(m+m gt

We have ignored pole terms in Egs. C-4 and C-5. Integrals in
these equations exist only if A, ~ v a< 0, a8 V ~» oo.
If a > 0, then we must perform a number of subtractions. We

assume that, for i = 1, «4sy 6, k = 1, 2, 3,
A, (s, ) € Cve® as v = oo, (¢c~7)
vk
where a(s) is real and

max a(s) < oo, (c-8)
—R <5< 00

This assumption is necessary if the theory is to admit only a
finite number of subtractions. Whether or not a finite number
ofgubtracticns suffice in a complete theory is another matter.
Let us consider the analyticity properties of amplitudes
in channel I. The asymptotic behavior of a typical Mandelstam

amplitude in the backward scattering direction is given by

A(s, 5),;1::? A%(s, 8) = a(s, @) + a(s, - W), (c-9)
a(s, @) = l[P - s/Z;p") + o P (s/2p%)] RO _ (C-10)

sinm«(@) ?
where we keep only the dominant Regge pole. From the Mandelstam
representation, A(s, s) has a cut in s from (m + m)* to oo

and from - oo to 2m? - Hm: - S. AS 8 ~» oo, the left-hand cut
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recedes to - oo, so that AR(s, 8) has only the right-hand cut
in s. 1In terms of W, A®(s, 8) has two cuts: (- o, - i)
and (ﬁ°,qo),'where ﬁ°=vm + My This means that a(s, W) also
has these two cuts. However, it is possible to choose a(s, W)
so that it contains only one, say the right-hand, cut., Then
a(s, - W) would have a left-hand cut in W, and the sum of the
two functions would have the required two cuts. That this is
indeed possible we canvshown by an actual construction. Write

a dispersion relation for AR:

R - l S ?
A (s, 8) = j p( il
- 8
We assume that no subtractions are necessary — an inessential .

simplification. Then we have

- i (7 P(s, §) 1= P(s, 5)
AR(S’ 8) = 2w W:.dg m * 2n W:dgm '
(c=11)

Define the first integral to be a(s, W). It is fairly easy to
conviﬁce oneself that this decomposition is unique in the sense
that any other function a'(s, W) having only the right-hand cut
is equal to a(s, W). Obviously, infinitely many decompositions
of A® are possible in which a(s, %) has both cuts. For simpli-
city, we shall assume that a(s, W) is defined by the first
integral in EQ- C-11. This seems the most natural definition.
From Eg. C-lO it now follows that «(W) and R(W) also have only
the right-hand cut. Since w?; are essentially the same as R

(except for factors which are analytic functions in o), we see
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that they have no discontinuity below ¥,.
From its definition, Eq. C-11, it is obvious that a(s, W)

is a.real eanalytic function:
a(s, W) = a*(s*, W*). (c-12)

Since P, (x) is also a real analytic function of « and x, it

follows from Egs. C=10 and C-1l2 that
[Bf- 8/2p%) + o B  (s/2p™)]R(F)/sinwa(W) (¢-13)
= [Pg,(w,)(- 8/2D%) + 0 Pyagge(5/202) JR* (%) /sinnax (F*).

Taking s = s' + i€, s' real, € > 0, we have asymptotically

ACES R

i’ %
Pulx 8/2p*) = T («+ 1) Is,

« (4 s./D™%6(x D2) + e TN(T 5, /BV%0(5F 3], (C-14)
‘ s, > 0O,
v = sgn Jms = Sms/l3msl,
e(x) =1if x >0, = 0 if x < O.
We have us;d Eq. A-25. Eguations C-13 and C-1l4 give, as s -» oo,

ls/s,l x(W) - A *(W*) = K#(s@*)/&(ﬁ)’ (¢c-15)

T (W) + %) R(W)
T {«(W) + 1] 2sinnr«(W)

+[(5/8.0%0(5%) + o (= 5,/5%)*Ve(- 53] (C-16)

R(W) =

Since the right-hand side of Egq. C~15 is independent of s, we

must have

< (W) = u*‘(ﬁ*), , (c-17)
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ie€ey, ®x is a real analytic function. But then so is R and
hence R and, ultimately,‘n4. and %.. We can write‘the

asymptotic form of Eg. C-10 as
- =it o (®) = x (W)
als, %) ~ (o + e TR (@) 1s/8,1% (Cc-18)

the discontinuity in s of a(s, W) comes entirely from the term
e "™ and is given by

(ats, M]; = 3 (als + ie, M - als - ie, M)
~ = sinna(T) R (D) Is/s01 ™. (¢-19)
As shown before, R and « are real for W < W,; this means that
{al, is also real as long as # remains real and less than Wy
In general, it acquires an imaginary part if & becomes complex.
However, the discontinuity in s of the total asymptotic Mandelstam

amplitude, [AR]S, has no imaginary part for a purely imaginary

3&L[AR(S, )1, = Im{la(s, M1, + (als, - ﬁ)L}

= ’5m {2318 [a(s, ]};))S}

=0
since
[a(s, - M; = =5 (a(s + ie, - W) - als - ie, - D]
1 : = : ; YT *
=37 (als - i€, W) - als + i¢, M]

(als, W1 =,

This is to be expected since the absorptive part in s of

AR(S, s) should be real in the physical region of channel I.
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We now wish to investigate the behavior of Regge ampli-
tudes at the critical'points W=mand W = 0. Usiné Egs. 2-1h

and B-5, we find
T 1 ' T
SoW) =35 p L axdy,(8) F L (W x). (C-20)

With the help of Egs B-9Y, we obtain

d_’,'h._l/z(e) cos 6/2 = % [PI_‘h(x) + %*‘/Sx)],
s 1 (c-21)
4, n(8) sine/2 = 5 [PJ_‘/’_(X) - PT*'A(.X)]'

From Egs. 4-18, C-20, 4-=4, and C-21, it follows that
£750) = 2 p{efn) + o8 £ (92w - eE ]}, (c-22)
where J = £ + '/2 and

@ (W)

1( ax B, (x) ¢, (H, ) (c-23)
2 - e IPL [ - b
Using Egs 2-21 and C-%, we find
£ = - (p/16mi){m(a%" - A%T) + (pi/m)(A%T - A%T
+ Ai‘v) + (€ =~ e+ 1) + [EA% + 4%7) + p(- Aes""
A ) N AT (C-2k)

where O = + denotes the signature and

X 1 1
] — c——— — i3 z .
A% = S {“’((zmgg ,%e(l + v/2p )Am(s, v)

cr”™ v - m“/s) .

Using the formula (35)

Qu(x) ———> w27V

T(v+ 1)V /7(v +%), (¢c-26)
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we' can easily see that amplitudes f£**7P¥

have the expected
threshold behavior

f o p?.oc+l'

at p = O. Thié is the behavior of the N* and N} Regge ampli-
tﬁdes obtained by taking into account parts of landelstam
amplifudes receiving contributions from the spectral functions.
The nucleon Regge terms have been treated separately in Part 1IV.
We have implicitly been assuming, and we will continue to
do so for the sake of simplicity, that no subtractions are
necessary in Eq. C~4. A finite number of subrractions would
not alter our arguments about the threshold behavior of the
amplitudes. One consequence of our assumption is that integrals
in Eq. C-25 exist for £ 2 0.
In order to examine the behavior of our amplitudes at
W 2 0, let us for a moment consider the first integral in

Eg. C-25:

Ile(S) = jm

(Y Qell + v/2p*) 4, (s, V). (c-27)

k.

We are interested in the approach Wl -» O with W purely
imaginary. This is the situation encountered in computing

cross sections. Since
p = (W' - m™)/20 ——> - n*/2u,
we have p* = m“/4u™ < 0 and

1f,(8) == 4n’ f"‘au 2, (1 - ux) a (w), (C-28)



where we have set

o
4

v/4mk,

x = - 8mos/m* > 0,

[H}

Let us split the range of integration in Eq. C-28:
oo
5. du q,(1 - ux) a;(u)
Vx o0
= f g, (1 - w0 a(w) + j/ du § (1 - ux) a (u) (C-29)
Yx

for fixed x > O. Consider the first integral. The argument
of the Legendre function §, varies between O and 1 - x < 1.
Qp is a continuous function of its argument, and it is not
hard to show that it is of bounded variation on the interval

o, 1 - x]. 1Its total variation is given by
() = [ atlgre)! 1
Ve"?'—’fo ‘S.V%Q%)v"l(s
and is an increasing function of M. Thus we can write
Qo) = Vo) = Woly)
as a difference of two increasing functions with

W(v) = Sn a

[>]

. - A .
12181 - aply)
How ai(u) is an analytic function of u and hence continuous

on [1, 1/x). Thus we can apply the mean value theorem for

integrals (36) with the result

. |/x
du Qz(l - ux) a;(u)
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i}

Y | Va
f du V(1 - ux) a;(u) - f du W,(1 - ux) a ()

x /% ‘
ai(u,)J| du V,(1 - ux) - aa(uz)Jl du W,(1 - ux),
Wheré | |

u,, u, € (1, 1/x].
KNow

/x
J" du Q,(1 - ux) P, (1 - ux)

123
_( du Q,(1 - ux)
'

~-x (e + 1YV 1@ - x/2)" &+ /7 sin Eg_'f_é"_'_.:,’-_l

cT(L +2/2)/T (% + 2/2)]
= O(X—‘),

as x — 0", by Eqs. 3.12(3) and 3.4(21) of Erdélyi et al. (35).

Also, by integration by parts,

i/ V=%

flaw v, - w0 = = atla - 0 -gTepo)l.

Fix 9 > O such that x <% and Q;(§)>Ofor§>l—8. It is
always possible to find such number for small enough x since
Qo(%) and QE(E) ~» + 00 as § — 1 . e have

x
0 < f‘ du V,(1 - ux)

-

$ - X
x7 ) afl( - x) - e 4 x“f,_sd&(l - %)

£110:(8))

tt

0Gx™') + x f(x -8)q,(1 -5) + [e(e + 1)]”
(e - x0M Q1 - x) - (23 - $HM Q1 - 3)]]

= C(x™")
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since the first integral has a limit as x — o*. Thus
1/ x )
. f du Qe(l - ux) a,(u)
), |
= {ai(u\) - ai(uz)]O(X")
and
x
| {Tan 0,1 - w0 a (] € Uai@dl + jadudotx).
As x —» OF, u,, n, € [1, 1/x] = (1,+ ) so that
(-3

la;(u,)l € ¢x7%

. according to Eq. C-7. But a is Just the highest-lying Regge o

in channel I evaluated at ¥ = O:
a =°§<O)a
Thus
X (o)
‘j‘ duQe(l - ux) a,(u)} € C'x™'7%Y,

The second integral in Egq. C- 29 is easily estimated.

We have

-]

jl:du (1l - ux) a (u) = x at Q,(5) a;(l ;%) .

Choose x » O small enough so that (1 - §€)/x is large enough

for the asymptotic estimate

- - ot(s)
|« (28] <o (259
to apply. Then

©

f:du 2p(1 = ux) a (w) ~ c;x“'““’f as (1 -g)““’%ge(é),

= Co

where the integral exists for Ref » x(0), and the expression



- 112 -

is defined for Ref <« (0) by an analytic continuation of the
result valid for Re 2> x(0). Combining our estimates, we find

that
4 -\ — (o)
1f,(s) ~ (- 8)

as s = O . The second integral in Hq. C-25 has the same

behavior. Thus
and

~ o
N ~ constant,

from Eqs. C=-24, 4-34, and 4-57.

Finally, let us make a quick estimate of the behavior of
the partial wave amplitudes in channel III at t = O and J = 1
(corresponding to the Pomeranchuk trajectory). From Egs. 2-16

and B-5, we find

YT (W) = = ( w)"ifldx a’ (6) ¥ (w,, x,)
w\We/ =3 4 L Coooed Tt T ey Xyl

Using Egs. 2-24 to express ¥, in terms of the Mandelstam ampli-
tudes and then using the fixed-t representation, Eg. C-5, we
find
: \
_ -f . 1
V7= (g™ (32n'w) f|dx al, jds’{q(Az" R

1 ( 1 1 )}
* e - é) + wx(A‘h' - A%‘) s’- s  s’= 8

and similar expressions for the other {:'which we shall not




- 113 -

write down. We note from Appendix A4 that the d-functions are
just linear combinatibons of Legendre polynomials F and their
first derivatives times possibly powers of cos© and sin®; at

J = 1 they roughly behave as follows:

Q2
-
¢

P

oo J?

aj, ~ sine P!,

4, ~ P /YT -T,

a7, ~ (1 - cos®) PJ'__\/sinGVJ_-_.

Interchanging the orders of integration in Egq. C-30 and perform-
ing the x-integrations, we obtain Froissart's definition (37)

of the partial wave amplitude 4}2.’ which can be continued to

complex J3
T~ o (88" (4, - A0 (20w 55 ,(5),
§= (' + w4+ g* - i€)/2qw.
We have neglected terms of higher order in w. How

G,(8) = Q. (%) + _15_5 sgn (quw) Pr(§'),

where §' is § without the - i€/2qw term. Here @, and T,
are the Legendre functions on the cut {- 1, 1] discussed by

Erdélyi et al. (35) on p. 143, Using formulae of this refer-

ence, we find

Qg i(§") g const.,

» (c-31)
P8, P, (&') -;7:-: consto.,
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—n-i ' -
2.(8) T £ | (¢-31)
The contributions of the Born terms correspond to §' = 0:
W > o

'E'(s; = m%) = (ml + w4+ q?)/2wq = w/é i (),

The terms in which §'—» oo come from the double spectral

functions:
‘g'(st > ml) = [(S' - m?—) " 2«)1]/200{1 — OO
w —» O

From Fgs. C-31l we see that Born terms are dominant at w = 0.

Thus we find
,\_]—(T ~ (g - l)-'/v. ~ w5
since
J = op(t) = 1 + tod(0) = 1 + 4uw'x2(0).
Usiﬁg Egs. 5-20 and 5-26, we obtain
8.0 = 2¥7 ~ Ryo/wr ~ w2
or, from Eg. 5-38,
AV RN onet.
Similarly, we find
ﬁ‘g”ﬁ:‘m ~ const.,

~¥XP o~ NP

so that
= Xy? ~ yyP
YLZ ~ 'VLO )
> NNP NP
Mo~ e
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