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ABSTRACT

A relativistic equation to represent the symmetric quark model of
hadrons with harmonic interaction is comstructed. This gives straight
and parallel Regge trajectories and a hadromn spectrum which easily can
accommodate all known resonances. From the equation we derive vector
and axial vector currents for baryons and mesons. The vector current
matrix elements of baryons are compared to known magnetic moments,
photoproduction amplitudes and inelastic electron proton cross sectioms.
Good agreement is obtained when the theoretical results are modified
by an empirical form factor. Besides this form factor, the results
depend on no free parameters. Using the same form factor, we calcu-
late radiative decay rates of vector mesons and parameters of K£3 decay,
which agree fairly well with experiment. Assuming that the amplitude
for emission of a pseudoscalar meson from a hadron is proportional to
the divergence of the axial vector current, we calculate most of the
known strong decay'fates. These results depend on one new coupling
constant and a smooth, empirical form factor. More than half of the
calculated baryon rates agree wgll with experiment. The reasons for
the many disagréements are discussed. All except one of the meson rétes
come out close to their ‘experimental values. The angular distributions

-of the decay B(1235) -» @w  and A1(1070) - p n are well described in

this model.
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1. INTRODUCTION

An important part of éxperimental high energy physics is the deter-
mination of the intrinsic properties of the basic constituents of matter,
going under the name elementary particles and listed in the Particle
Tables‘(l). The main problem of theoretical high energy physics is to
understand why these particles exist with certain masses, spins and
parities along with their characteristic internal quantum numbers like
charge, hypercharge and isospin.

More than ten years of intense studies in this field of physics

have revealed two very important features of the strongly interacting
particles or hadrons:
(a) Only particles with certain values of all possible combinations
of quantum numbers seem to occur. For instance, no doubly
charged meson has been found or a meson with J¥C = 077,
“(b) When particles with the same internal quantum numbers are
| gréuped‘together, they can be separated into subgroups where
there exist an approximate linear relationship between their
spin and mass squared.’
The first feature has been successfully explained by the quark model of
Gell-Mann and Zweig (2) in which one pictures‘the baryons as composed of
three quarks andkthe meson as a quark-antiquark system. Evidently, one
would like very much to understand also the second experimental feature

in the framework of this quark model. So far no one has succeeded in

doing this.



Since we believe that a complete understanding of the hadron
spectrum will only Be possible in a truly relativistic quantum mech=-
anical field theory with all its built-in complexities, the problem
seems to be far éway from a solution. However, a great step forward
would be to obtain a comsistent scheme to help organize the wealth of
present'and future particle data. Such a scheme would not be the
ultimate correct description and therefore should be kept as simple
as possible as long as it satisfies basic requirements like Lorentz
invariance and quantum mechanical principles.

A step in this direction has been taken by Greenberg (3) and
Faiman and Hendry (4). They consider the quarks inside the hadrons
as non-relativistically bound together by harmonic forces. This has
two immediate desirable consequences. It admits an analytical solu-
tion of the three-quark problem in the baryons and can explain the
simple relation between mass and spin in (b). Besides giving a hadron
spectrum which seems to accommodate all observed particle states, this
model also ailows one to célculate transition rates between different
states which in most cases seem to agree reasonably well with experi-
ment as shown in reference (4) and by Copley, Karl and Obryk (5) and
Walker (6). |

In this work I will expose some consequences of a relativistic
~ quark model developed by R. P. Feynman, M. Kislinger and F.Ravndal (7)
based on the idea that there 1s something in the internal structure of
hadrons which in many respects behéve as if there were harmonic forces
between the quérks. "This ﬁay to many sound crazy and probably it is,

but still I think such a model can be useful to deveibp a set of rules
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ablérto relate as many as possible different phenomena observed among
thevhadrons. Thesekrules we derive are what we hope will have physical
relevance and not the undeflying picture.

| This situation is similar to the first developments of the quantum
mechanics of atoms where one considered the electrons to move around
the nucleus in classical Kepler orbits and without radiating in conflict
with electrodynamics. In spite of all the incomsistencies of this
atomic model the results for the hydrogen atom were in striking agree-
ment with experiment. The derived quantization rules were only later
understood with the discovery of the wave-particle duality and modern
quantum mechanics.

With this‘justification we will now investigate a corresponding
simple set of rules for the hadrons, even if these are not based on
sound, physical ideas. Hopefully, in the near future when we have a
complete dynamical theory for the strong interactions, we will under-

stand why this naive model in most cases seems to give such a coherent

description of so many apparently unrelated hadronic processes.
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II. HADRON STATES

In the- quark model (2,8) the internal quantum numbers of the hadrons
are carried by three fundamental entities called quarks. There is one
quark with zero isospin, strangeness -1 and charge Q = -1/3 named "s" and
two quarks with zero strangeness forming an isodoublet, the '"u" quark
with isospin up and Q = +2/3 and the "d" quark with isospin down and
charge Q = -1/3. Together, these three quarks fill the fundamental
triplet representation 3 of SU(3). The antiquarks s, u and d belong
to the SU(3) representation.ég

The quark model in this form can easily be enlarged by assigning
spin § = 1/2 to each quark. By doing this the quarks will now belong
to the fundamental SU(6) representation 6 and the antiquarks to é:

Since the quarks have been given half-integer spin, one would
expect them to obey Fermi-statistics. But the theorem relating spin and
statistics can‘only be proved for free particles which can be isolated
9. It does not have to be valid for the quarks which make up the
hadrons. On the contréry, to understand the observed baryon spectrum
it seems necessary to let them obey symmetric Bose-statistics. This
has the additionallvery interesting consequence that the AL = 1/2 rule
for ndn-leptonic, weak hyperon decays has a very simple explanation
(7,10}. To give.the baryons ahti—symmetric Fermi-statistics it is then
necessary to‘endow them with a spinless S = 0 fermiom with vacuum quan-
tum numbers in addition to the three Bose éuarks (11). An equivalent
result is obtained by letting the quarks obey para-statistics as pro-

posed by Greenberg (3). In the following we will let the quarks satisfy"



symmetric Bose~statistics so that only those hadron states which are

completely symmetric in all their quark labels can be expected to exist.
Meson Spectrum
The mesons are thought to consist of a quark and a antiquark. In

SU(3) this will correspond to nine different states which can be grouped

into an octet § and a singlet l:
= e

1@ 2 =8+ 2.1)
Going to SU(6) space, this equation takes the form:
@& = 3+ L 2.2)

The two SU(6) representations 35 and 1 can be decomposed into SU(3)

multiplets with definite spin

3= C@ W+ (2.3)
1= 1@’ (2.4)

where upper index 3 stands for spin triplet S = 1 and 1 for spin
vsinglet S = 0.

As in positronium, one would expect that the parity of the meson
system would be P = (-1)L+l where L is the orbital angular momentum of
the quark-antiquark system and having charge conjugation C = (-1)L+'S
when § is the total quark spin of the system.

In other wérds; for the lowest meson states with L = 0, the quark

model predicts the existence of 36 states with negative parity, 9 with-®



S =0and C = +i, 9 with S = 1 and C = ~1. All these particles have
been found as seen in Table 1 in the first entry with L = 0.

Let us now try to exténd this simple quark model in order to
include states with L > 0. To each meson state we ascribe a wave func-
tion © = @(uy,up) where uy and up, are four-vector position variables for

the quark and antiquark. This wave function develops in space and time

according to the wave equation

Ko(ug,up) =0 (2.5)

where the dynamical operator K is taken to be

2 2
K = 2(ps2 + pp2) + %(ua -up) 4+ C (2.6)

Here p,, pp are four-momenta conjugate to u,, up; () is some fixed con-
stant while the counstant C can be adjusted for the meson under considera-

tion.

Instead of the quark momenta p, and py we can use the total meson

momentum P = p_ + pb together with an internal momentum [ by the rela-

tions:
lP 1 c
Pa = & = —™=
2 a2 (2.7)
o = loa L.
b yT

In terms of the variables R and z conjugate to P and (,

.2 '
R = ~-i g; gua + ub)/2
: (2.8)

(up = ug)/2V2

z = =1

EN
o¢
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the quark coordinates: are:

u, = R - V2 2z (2.9)
up = ‘R + \,/_2. A
The operator K can now be written
K = P2 -%? (2.10)
2 12 ff 2
where - = Eg + . z" + C (2.11)

An even simpler expression is obtained by introducing the creation and

annihilation operators

. 1
¢t = M——— c + H/Eyz (2.12)
20 2
1 [~
c = v/—--— c - 1J9 z
20 2
which in equation (2.11) gives
(2.13)

—h% z= ‘Q(c+'c) + C

The operators c* and ¢ are four-vectors and satisfy the fundamental

commutation relatign
(2.14)

+ == -
[cu’ cv} = T8y
where Zuv equals -1 for space and +1 for time components.
From‘equations (2.5) and (2.10) we see that the propagator K1 for

free mesons have poles at the eigenvalues M;® of the operatothz.

Hence the meson spectrum we get is the one of a four-dimensional harmonic

~oscillator.



' The time excited states are not physically meaningful since they
can have negative norm as seen from equation (2.14). To get rid of
these unwanted states, we make the extra assumption that in the rest

system of the meson only spacelike states exist:
(Prc) 9(z) =0 . (2.15)

Having done this, we are left with a meson spectrum as shown in
Figure 1. Here and in Table 1 we use the abbreviation ;g for the direct
SU(6) sum 35 + L in the same way as we use the sum 2, called a SU(3)
nonet, for 8 + l. From equations (2.2) and (2.3) we see that each 36

L T oty
multiplet contains two nomets, one with quark spin S = 0 and one with
S = 1. Since the total angular momentum g_of an excited meson with
orbital angular momentum & and quark SPiniE is given by the ordinary

addition formula
F=%) nda v

we find that each excited 36 level can be decomposed into three nonets
with angular momentum J = L+l, L, L-1, and parity and charge conjugation
C=P= (-l)L+1 plus one nonet with J = L and C = -P = (-1)L. .This
decomposition is prgsented in Table 1 for the first and second excited
levels where each SU(3) multiplet gets a lower index equal to its total
angular momentum. For example, 3(§)1 means an octet of states with
quark spin S‘= 1l and J = 1.

At ‘the first»excited level N = 1 we see that most of the predicted

states can be identified with already observed meson resonances. Going

to the mext excited level, we find the first radially excited multiplet, -
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T
ng,o j, N = 2. A possible resonance candidate belonging to this
multiplet is the E(1422).

From the sequence p(765), A,(1300 and g(1670) we can determine the

excitation constant () for which we get

2 2
= MZAZ - sz = M g - M2A2 = 1.10 GeV (2-17)

According to this simple scheme the three spin triplet states
8(966), A1(1070) and A5(1300) should all have the same mass. This not be-
ing the case, we conclude there must be an additional spin-orbit coupl-
ing term in the meson mass operator, equation (2.13). We will not

consider refinements of that kind in our model.
Baryon Spectrum

Since the baryons are composed of three quarks, they will occur

only in the following SU(3) representations:
an =)

3®3I®3 = 0+8+8+L - (2.18)

Including the quark spin, we find the possible SU(6) representations

for the baryons:
LOL®E = et (2.19)

Each of these multiplets can be decomposed into SUB)®SU(2) representa-

tions as follows:

56 = 4(10) + %(8)
19 = 2Q0 + %) + %@ + AW (2.20)
20 = %)+
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The requirement of‘totally symmetric baryon states makes the gg
the only possible multiplet for the lbwest baryons since the ;g has
mixed.symmetry and the %Q is totally anti-symmetric. Hence the ground
state baryons should be found in a quark spin S = 1/2 octet and a S =
3/2 decimet. All the particles belonging ﬁo these SU(3) multiplets have
been seen &s shown in the first entry of Table 2.

In this theory the baryon wave function v = ¥(u,,uy,u,) where u,,
up and u, are position four-vectors of the three quarks, will satisfy

the dynamical equation
K¥(ug, up, u.) = 0 (2.21)

The operator K will be analogous to the one for mesons, equation (2.6),

2
K = 3(pa +pp +pe2) +-g% Bua-ub)2+<ub-uc)2+(uc-ua)2]+c
(2.22)

where the quark four-momenta p,, p; and p. are conjugate to the coor-

up and u,. Introducing the total baryon momentum

dinate vectors Uy,

P = patpptp. and two internal momenta g and T as new momentum variables

by ) .
Pa < :P—'g
3 3
1; 1 1
= lpaglg. L 2.23
O

with their conjugate position operators

Ug =R - 2x

uy =R +x - 3y (2.24)
U R+ x + Jg y

]
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theboperator K in (2.22) can be written
K = p2 w2 (2.25)

where ' 2 5 9
+ (%% 4+ yP) +C (2.26)

In terms of the creation operators

1
at = = g + 1J§-x
{20 2

- —

. 1Q
P + -
20 0 lJZ 7

(2.27)

and their Hermitian conjugate a and b, the baryon mass Operator7n2 in
(2.26) takes the form:

ot = q(ata + b)) + | (2.28)

The non-physical time excited states we again take out by the extra

requirements
(Pra)y = (P*b)y = 0 (2.29)

From equations (2.26) and (2.28) we see that the mass spectrum of
the baryons will be the one of two independent, three-dimensional
harmonic oscillatofs. At the first excited level we will find states
with orbital angular momeﬁtum L=1, while the next level will have states
with L=2,1 éﬁd 0 by adding together the two excitations, each with L=1.

The SU(6) content of every excited level is given by the overall
symmetry requireéént»for the total baryon wave function. ZEach orbital

excited state with a certain permutation symmetry in the three quark
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labels must be combined with one of the SU(6) multiplets 36, 70, or 20
with the same symmetry. For example, at the second excifed»level we
find’one state with angular momentum and parity 1? = 1% which will
tfansform like g;x lb riting this product out in terms of quark momen-
ta- using equation (2.23), we get:

Ex 7 = ZJE_[Pa X Pp * Py X P F Pe X Pa] (2.30)
e, Fre i = L) L) Sy

D

This orbital state is completely anti-symmetric in the three quarks and
must be combined with the anti-symmetric SU(6) multiplet 38 to give the
full state £g3,1+1. In the Appendix this procedure is outlined in more
detail.

At the first and second excited level this leads to the baryon

multiplets

N=1: [Zg, 1‘}

(2.31)

=2 70, 2], [s6 7], |20 1*), [20.0], [56.07]

-

In Figure 2 ’we sHow these states together with the ones having N=3 and
4.

Now using the decompositionvof SU(6) in (2.20), we present in
Table 2 all the SU(3) multiplets of the thrée lowest levels of the
baryon spectrum where we again have combined the quark spin S of each
multiplet with the orbital angular momentum L to give the total angular
momentum J of the SU(3) multiplet. Where possible we have identified
the multiplet states with well established baryon resonances.

All the muitiplets of’the {Zg,l’} except one have been seen in

experiment. Only the 422)3/2 with a D13 nucleon resonance is mnot yet -
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pOSlLLVely 1dentlzlcd but exists in the footmnotes of the Particle
Tables (1) with a mass near 1700 MeV. In the 22‘2+j we find the
nucleon recGrrence Fl5(l688) and three of the four A-resonances in the
spin quartet decimets.

Along with the F15(1688> there should also be a 5/2F recurrence
of the-2(1192). A possible candidate for this would have been the
¥(1910) if only its mass had been somewhat lower, closer to 1850 MeV.
On fhe other hand, its mass 1ls apparently too low to fit into the 4(&9)‘
of the [29,2+] together with the F35(1890). So it'is not very clear
where this y-resonance belongs.

From the mass difference between the doublet or quartet states of
the [2&,2+] and the ground state {22,0+], we get for the excitation

parameter

O = 1.05 Gev? (2.32)

This is almost the same value as we found for the meson spectrum, and
will frbm now on be the value we shall use both for mesons and baryons.
If we look at the nucleon resonances in the SU({3) multiplets
obtained by combining L and S, weé make the important observation that
their masses are approximately the same. This is true for the z(g);

(lO) and 4(8) of the L7O 1 j and for the three states of the 4(&3) in

M,-.J

the 56 2

-

;70 1 J‘ In spite of that, we conclude that the spin-orbit coupling in

I It is not so good for the two A-singlets 2(iﬁ) of the

baryons is small, in contrast to the large LS-splitting we found for

the L=1 mesons. -
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- With this guiding principle we predict the mass of the missing P33

resonance in the Egg,2+} to be around 1920 MeV. The doﬁblet partner
of the F;5(1688) is then most likely not the P13(1860), but rather a
Pi3 state with mass closer to 1700 MeV. No such nucleon resonance has
yet been established. However, a N*(1700) has been observed in diffrac=~
tion production (12) and since it has a strong coupling to AK, it cannot
be one of the 4(&) states of Elg,l-} which do not couple to AK because
of their F/D-ratio as shown in the Appendix.

The remaining, positive parity nucleon resonances in the same maés
range must go into multiplets like the {56:0+J:[7Q)0+J:[2892+}: and

td Y

iig,lﬁﬁ. Since the masses of these resonances vary from the P11(1470)
to the Fl7(i990), the degenerate, second excited level N=2 must in some
way be split by a non-harmonic term in the baryon operator K, equation
(2.22). |

We have no idea what this term should be, but let us make a simple

guess in order to see what would happen to the degenerate levels:

3

4

8K = - [(Ua‘ub)4+(ub“uc)4+(uc'ua) | (2.33)

® 108
Since our baryon system is completely symmetric in the three quarks,

the corresponding mass breaking operator can be written

’ 4
amz = 43¢ 193&3- (up=ug) (2.34)

Using (2.24) we express the coordinate difference up-u, in terms of

the intermal position variable y:

o 3
sl = +3e = (2 By4y? (2.35)



Only the spatial components of y contribute because of (2.29). We

write y as a linear combination of b and p+'defined in (2.27) and get:

A

3.2 2, .2
6#5 = <4eQ) éiNO + Nyg© o+ NO7 o+ 2NgN
+ 2NgN +4N*J—ZN 2.36
TLO"‘ "'}“"‘20 (‘ )
157
+ 4N+ + 4N_ + Z—j -+ non-diagonal terms

Here we have introduced the number operators

+
N, = bg by

. |
N, = b, b, (2.37)
N = b_'b,

where bg, by, b. and their Hermitian conjugate are defined in the
Appendix. Is is now a simple matter to calculate the diagomal matrix
elements of the mass breaking operator (2.36) for the baryon - orbital

states also given in the Appendix. We get:

r )
M2L£2,1+j = <+ 4e() + const.
- ]
G 70,2%] = + 2¢0 + const.
Lt .
20 +!
M L;@,z i = 0 4+ const. (2.38)
~ 3
Mz 7Q,O+j = -g() + const.
27 N '
MT156,0 | = ~6¢() + const.
e

These results aré graphically shown in Figure 3 where we have adjusted

the const. term so that the {56,2+j remains unperturbed.
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\ [56,0"]

Figure 3. Splitting of second excited level of the baryon
spectrum by non-harmonic term in the mass operator.



Qualitatively, the results of this perturbation calculation are
. c ' . r .
. } . . .
that the symmetric [56,0": is pulled down, the anti-symmetric 120,14]
) . L : . Py

-

. - A
is kicked up, the |70,27 should be found above the |56 2*} and the
P > >

. [Lpwiew 4 il 4

n

. We believe this breaking pattern is more or

170,071 near the {55, 2
oot ] wd g
less independent of the exact form of the non-harmonic term in the mass

operator.

Of the remaining nucleon resonances, the low-mass Roper resonance
P11(1470) finds a natural place in the[§230+ﬂ. A possible A-candidate
for the same multiplet is the P33(169O) which exists in the data listings
of the Particle Tables (1).

The Fl7(l990) fits mnicely into the 4(§)7/2 of the [Zg,2+} which is
the only available octet with J = 7/2 at the N=2Z level. Another possi-
bility could have been the 2(§)7/2 of [gg,4+} at the N=4 level. But
then it would be the doublet partner of the nucleon second recurrence
Hig which is expected at 2200 MeV. This would mean a very big spin-
orbit coapl;ng which we so far have not observed among the baryons.

Recently a A-resonance, Fp7(2100), has been established (36). This is
an obvious octet partner to the Fy5(1990). In our opinion, these two
resonances offer the strongest evidence for a harmonic oscillator baryon
spectrum with its [Zg,Zﬁﬁ at the second excited level.

Possible multiplets for the P,,(1860) are the 4(8) of the
13 w 3/2 75

1 r i
yzo,o*j or the 2(8)3/2 of the |70, 2T,

H
Lo s "

We choose the second possibility

since this will give the same SU(6)-splitting between the 4(8) and 2(§?
170,27
Lo gl

sl

of the

.
-

: 7
as in the 170,1
Lo dubour

-

The last wellvéstablished, low-1lying nucleon resonance is the

P11(1780). From its clear evidence in 1) photoproduction one can



' bl
conclude that it most likely belongs in the 2(8)1/2 of the {Zg,of} (13).
With these assignménts we can try to check quantitatively the mass
splitting predictions in (2.38). The only relation which can be

unambiguously compared to experiment, is the following:

Id e - l r
* oo e oF 2 o] +] . +]
2627 - 136,07 = 2|]719,77] - [700 (2:39)
. 2 .
By taking the "(8) states of each multiplet, we get:

2

LHS = 0.69 GeV
(2.40)

RHS = 0.58 Gev?

This reasonable agreement may be an accident, but I think it indicates
that the non-harmonic term we have chosen gives a good description of
the multiplet splittings in the real baryon 3pectrum.
Apparently, no resonances belonging to the 20 at the second excited
Quiar
level have been seen. From (2.38) we expect these states to have masses
above 2000 MeV. Since the totally anti~symmetric zg do not couple to
the product of the symmetric 56 and the mesonic 35, the 20 can only be
R f L

r -
observed as resonances in the i70,1 E ~35 mass distributions. TFor

G — L
instance, a y-resonance with a large width into A(1405)w and a negli-
gible coupling to A(lll5)x would be a strong indication for the presence

+
of [20,1 ] and thereby for the harmonic oscillator hadron spectrum.
e -
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IT1I. VECTOR CURRENT MATRIX ELEMENTS

- The dynamical operators K for mesons (2.6) and for baryons (2.22)
do not involve the spin of the quarks. However; this can be done with-
out changing the structure of the operators by interpreting the square

of the four-momentum of quark a, paz, as the Dirac operator

, 2 2
Pa® = (PauYp)(Pay¥p) = PapPap = Pa (3.1)

This enables us to define the perturbational effect caused by a vector

field Ap by the minimal coupling

}[)a — ﬁa - eaa‘i (3.2)

Hence the first order perturbation from quark a in the operator K will
be:

sK, = e (b h + &8,) (3.3)

- To find the matrix elements of this operator, we sandwich it
between the initial and final wave functions. These must then contain
Dirac spinors to déscribe the quarks of the particles.’ In the particle
rest system we want these spinors to represent three quarks in the case
of baryons and one quark and omne antiquark for mesons. This we achieve
by adding the folléwing "Dirac equation' restrictions on the particle
wave function V describing for instance a baryon with four-momentum P

and mass M:

pr‘s/ap\y = My
Ppvpp¥ = My (3.4)

PuYep? = M¥
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Each quark spinor of this baryon will then have the form

where E and P are the time and space components of the baryon four=-
momentum. P and X is an ordinary two-component Pauli spinor for the spin

1/2 uark. These quark spinors have the normalization l.lll-l.
Baryon Vector Current

Following the above outlined prescription we find from the baryon

equation (2.22), the full perturbatiomal effect of a vector field Ay

C o
6 = 3T e (B + Aoty ] (3.6)
O=a

In the case when Ay is the electromagnetic field, the charges e. are

(01
+2/3 for the u quarks and -1/3 for the d and s quarks.
Let the vector field have polarization vector ey and carry the four-

momentum gy . Then we can write for equation (3.6),

I

5 [ihel® 0 5 ) oy

=a

6K’

il

v
Iy %

- Hence, the vector current for baryons will be:

Yo T 3c4=za “a [’éayue e Yo (3.8)
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Because the particle states are symmetrical in the three quarks a,
b, and ¢, each term in the sum over ¢« in (3.7) will give the same result.
So sKY will be 3 times the contribution from quark a alone. Moving the

operator e 3" to the left by

iq-u iq-u i iq-.u
’-Eéaeq a___.eq apa+[¢a,eq a}

(3.9)
= elq.ua(ﬁa-ﬁ)
we can write equation (3.7) as:
\ iq-
Jy ey = 9e e ta [2(pa'e) - szié] (3.10)

To reduce this further, we use the standard Dirac matrices

v. =B = (l O) v =/ 0 +g)
t 0 -1 ’ P \_g 0
t
o = py = [0 2| (3.11)
lg o) |
L | 0 1
Yg 5 M VxYy¥z = (1 o)

We can now write out the matrix product ¢¢, putting q = (v,Q):
¢ = ve~(g-Q)(gre) +a'(erQ-ve) (3.12)

Substituting this into equation (3.10) with p, = (ez,p,), we find
[~
Jvé = Qe eiq'ua EP(2~ -~ ) - o, (e<Q-ve)
" B a {L €q Vet e etg Vi‘
(3.13)

3
- -.(2108-3) e+ 1ca'(<;x§§)j

E

We will now calculate matrix elements of thisfoPerator between



an initial baryon with four-momentum Py and mass M and a final baryon
: 1

with Py and m so that

up = J—— gD
1‘ “% m i.«‘ v'»'il Xl
\E+ j
1 (3.15)
_ {Eo+m + g 52
EIR e O

So far what we have done is frame independent. To simplify the
following matrix element calculations, we will from now on work in the

special frame where the initial baryon is at rest:

Pr =0
(3.16)
E2 = "R
The energy carried away by the final baryon will then be
E, = (M2 + m? - qz)/?.M (3.17)
and v o= (Mz - w? + qz)/ZM (3.18)

In this,spécial frame the spinors'in (3.15) take the form

I

\
1 %\Q ,} X1

i3
i

(3.19)

[
(3%
]
0Q
=
196
—~
}.—l
~
+
¥
kS
I
Do
S~
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: L2 2
L 2 . Eo+m (M+m) T-gq
where. g = o= (3.20)

Zm , 4¥m
The contribution to the matrix element from quark b will be
- ’ -+
UzpU1p = 8{xgpXip) (3-21)

or simply a factor g times the unit operator between the Pauli spinors.
Quark c gives the same, while for the quark a we find from equation

(3.13) using the spinors in (3.19) (including g2 from b and c¢)

2
\Y 3 iqou -+ Q
J = 9 a Do wyy-
pell g e XZa €4 {( €~V zmgz)et

. (3.22)
v
- Zpa .2. + [9:3 -+ iga‘(gxg)] (1 + 2—-——2)} X1a

A mg

In the exponent of e¢*9'Ya we substitute for u. from (2.24), set R=0

a

and express the internal coordinate x in terms of the operators a and

at in (2.27):

ig- R
exp(iqruy) = e exp (-2ig-x) -
‘ S 7 4 (3.23)
cexp |- 2 (ehayeg)
¢ S

To separate this into factors involving a and a+ only, we use the

Hausdorff formula

~1/27a =
AB L AB L/2i§,nj , (3.24)
- 2 w0 T
and get exp(iq-ug) = A exp§-i: g-a® ! exp] +j- q-ag (3.25)
_ 1S ] E io B

~ The matrix element (3.22) involves the quark four-momentum P, This
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can be expressed in terms of the bacyon four-momentum P; and the inter-

nal momentum £ by (2.23):

Py 7

(3.26)
1

1 1. 1.
= (GM-35,,738)

rx]

+
Again, relating £ to the sum of a and a and using the fundamental

commutation relation

+3
[ap, a,, J = -guy 3.27)
we find . q%/q 5 +
exp(iqruy)g = e exp |- 5 gra- .
C =m0 (3.28)
[E(a'i- +a) - q] exp%_—‘:—\!é q'a_}! ,

It is now straightforward to write the baryon vector current (3.22)

in its £final form:

' : 2 2+
V.o _ .39 -J%‘q-a 2 1
Jpep = 9g7e e e, 3M 3V
fﬂ 210 +

- - = ={a f—a ) e, = =~ = a +a)‘e 3.29

ngZ t tJ t 32 (W -n) s ( )
1 W +J?a-a
4+ Qre(= xe) (1+ —=)e 0
LG ) * e @R 04 )

This is the expression we will use in the following to calculate
baryon magnetic moments, photoproduction amplitudes and cross sections

for electroproduction of nucleon resonances.



Magnetic Moments of Baryons

The coupling of a photon to spin 1/2 baryons can be written in the

usual way

=M - 7 }
T = ] F ¢
d‘p. e}l U.2 L'\{px‘l + o'}lqusz ulep (3 30)
where = }(\ YV Yy )
: AT ARSLIVIR N tY, ~

and q = P1 - Py (3.31)

F{ and F, are form factors. 1In the rest system of the initial baryon,

equation (3.30) can be reduced to the following two~component form:

~1 2 . 2
e, = Mg X2+ [etGE(q ) + 1g'(8§g)GM(q )]xl (3.32)

where the electric form factor is

2
GE(q2> = F1<q2) + %ﬁ Fz(qz) (3.33)

and the magnétic form facior is
2 : 1
oy(a®) = Fpa®) + = Filad (3.34)

The factor g is essentially the same as in (3.20) with M=m

2 2 ’
g5 = 1 - Zﬁi | (3.35)

and arises here from the Lorentz-transformation of the electromagnetic

coupling from the Breit-frame where q has only space-like components,

to the rest system of the initial baryon.
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" From equation (3.32) we find for the magnetic moment of the baryon
po= eGy(0) | ’ ©(3.36)

Experimentally, the magnetic form factor of the proton is well described

by the dipole form:

& ooa?y = (1 - 2
<o = (- = (3.37)

We will now calculate the baryon magnetic moments p from the
general matrix element (3.29). Since we only consider the ground state,

spin 1/2 baryons, all terms containing a and aT do not contribute.

From
the photon transversality condition gq'e = 0, we get
Qe = v et » (3.38)
which in equation (3.29) gives: B
r
2 j 2 2 |
EM 397/, iz, 1o _Q vo,ovod
Jp " 9g~e ea<~3m 3v 2Mg2 e -+ 3 + ZMgZ}et
| IR
+ iog°(Qxe) 1 + ———i§ (3.39)
L5 q2/Q2M { [ 392 ‘t+ PR EREY i’g
= g e e e, L + ig,*(Qxe)] —
RS 4M2g2] w3 W oy AMZgZ}J'

In Table C in the Appendix we find the matrix elements of ey and geg,,
Lad

(e.3> = (1,0)

(3.40)

ULE N L1

. 2
(gea)= 3 (H5,1)

where the numbers in the parentheses are (F,D) values. Substituting
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these into (3.39), we get
' f 2
EM 3q 1
JF e, = ZM‘\et(l +42 2)( ,0)

Comparing this with

1
2D g0
4

-+

(3.41)

(3.32) we find for the electric and magnetic form

factors:
2 2
2 3q 3
6gla®) = g(l +—55)(1,0)g7%% /0
4M B
a2 2
1
= a1+ S5 ,0%0 /0 (3.42)
& 2
2, _ 3 2 3.9 /Q
eu(a) = 8+ 2?><— Lg’e
13 2 . 34%/0
= = —(~,l)g"e ‘ 3.43)
. 2M<3’ ) (
From this last equation we mow get the magnetic moments of most
interest, using the definition (3.36):
= P4 =43 =+ 3.00
T 37/ 7 M, VB
o = 25-(-Zpy =-2 = =-2.00n
N e 3 20 B
. o (3.44)
= 2 (pdp =+ 3 — =+ 2.37
Bgp T o THD TSy "B
z z
ph = 2(-Ip =-1~—— =~ 0.8
A ;Mh< 3> 2, e
Zere we have used the baryon-photon SU{3) couplings given in terms of
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F and D as defined in the Appendixy pg is the Bohr magneton e/2My.
 From the Particle Tables (1) we find the experimental values for

these magnetic moments:

F
.{.
]

+2.79 up Bor = (F2.570.52)py

(3.45)

il

™

=4
O
Il

- 1.91 By By (—O.73i0.l6)pB

Besides giving the famous ratio -3/2 between the proton and neutron
magnetic moments, this relativistic coupling scheme also gives unique,
absolute values. SU(6) alone gives relations like Byt = Wyt = -gpNo =
-3p, without being able to take into account the different masses of
the baryons. Our relatioms, with their explicit mass dependence, seem
to be in better agreement with experiment.

From equation (3.43) we get for the proton magnetic form factor:

, 2 2
e 2y o _q q“/Q
;;I Gy(q®) = (1 4M2) e (3.46)

Comparing this to the experimental form (3.37) we see that this result
is completely wrong, even at very small —q2. This means that our har-
monic oscillator dynamics of three quarks is much too simple to ade-
quately describe the physical stfucture of baryons. There must be more
to it than just that. But still we think that the coupling to external
agents like an electromagnetic field can be reasonably well represented
© by the interaction with three harmonically bound quarks when q2 = 0.
The analogy between these quarks and valence electrons in atoms is
tempting.

So the lack of knowledge of a better theory will not make us
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abandon this scheme. Instead, we will compensate for it by introducing
empirical form factors to try to fit experiment. That i; not a non-
trividal task. If we are sdccessful, we think this model has proved its
uéefulness.

Consequently, from now on we will make the substitution
3.9%/0 2
g e o= 6M,97) (3.47)

In order to reproduce the proton dipole form factor (3.37), the empiri-
cal form factor G must in the case of diagonal matrix elements for

ground state baryons have the form

2
6 (a2 = (1 - y31 - LH1/2 (3.48)

The ratio between the electric and magnetic form factors is inde-
pendent of this choice. From equations (3.42) and (3.43) we find this

to be:
GEiqz) e " q?
— = -

Gy {a®) o® | M

-}.
J

(3.49)

Experimentally, a decrease in this ratio with increasing -q2 has been
observed (1l4), but the variation is apparently not so rapid as we find.
The old "scaling' hypotheses that this ratio is independent of q2

>

seems to be incorrect.
Photoproduction Amplitudes
In this chapter we will calculate the amplitudes for excitation

of the lowest nucleon resonances by photons. To keep the derivation

most general, we will first consider the case of virtual photons with



g~ # 0. 8o the process we shall investigate is

v + N -§% ' (3.50)

Wevwill,assume’the nucleon N to be at rest in the LAB system where the
photon momentum is q = (v, g). The transition amplitudes will be
evaluated in the rest frame of the Nk where q = (v*,g?). In this sys-
tem.g% will be taken along the z-axis and the nucleon N will have

J, = +1/2. We add an asterisk to the photon variables in this system
to distinguish them from the same variables in the LAB system.

The photon polarization vector e  has four components:

ot
transverse: e, = = Jg.(ex + iey)
e. = + Jg’(ex - iey) ; (3.51)
scalar: ‘ e, = e,
longitudinal: e, = eg 5

e, corresponds to photons with positive helicity and e. negative
helicity.

We define dimensionless current matrix elements Fu by

. M, ‘
By = (NI, [N') = eF, (3.52)

Here e i1s the unit electrical charge,

e2 1 _ B

3.53
Ly 137 ( )

Current conservation

ap NI N =0 (3.54)



gives a relation between the scalar and longitudinal parts of the
current:

QF, = v Fg ) (3.55)
Now using the general expression equation (3.29) we can at once write

down the three independent current matriz elements

2 %, 1
Fo(q®) ’

= G [egse M Dy
£ = 90(N(H) ea(Ta+Rode E N () (3.56)
F-(qz) = 9G(N(+%)Iea(ma +Rga+)e_valN*(-%)>

corresponding to the three helicity states ey, ey and e. defined in

(3.51). Here we have introduced the quantity

2 % )
= =~ 3.57
A= QQ ( )
where [Q*(éz)]z = vuz_ q2
= ((M%m) qz}g(M-m)z-q:Z}MMz (3.58)

ta

since vh is the same as y in (3.18). The expressions for S, R and T

can be found directly from (3.29):

; 2y 52 1 % Q* 7
= g M - - -
S S(q%) §_3M v ngzj/zm
~ - ™
= %M - 5" - (Eomm)|/2M (3.59)
R _3
- =
= | 3Mm + g% - m? | JemP



N . "
R = R(q?) = 2Q% (1 + —2—y/2
' 2mg?
— Mz-m:+02 .
= 2Q" (1 -~h)/m (3.60)
: (M+m) “~q
M - m

(3.61)

To check the current conservation condition equation (3.55), we

write S(qz) in a slightly different form:

W) K
s = EMJ“-%V*Z - ]/21\1\)*
2mg2
fl 1 E3 —!
= 1s%m?) - QU2(; + == /2 (3.62)
L3 3 2mg2 )

ote
If there are N excitations in the N, its wave function will contain

a factor
. N
Ny~ (a,") [0y (3.63)

From the expression for F, in (3.36) we then get

tj
]

es(oje 2 oy

(-2)N N o+ N
- (a,) (a,) |0) (3.64)

[

cS(Oi

cS(-K)N

where ¢ 1s some numerical factor. In the same way we find for F,:



1
F, = =-c —(- + 9)<‘K)N
203 2mg*<
c o -na, T, -
- 1 ! z
g Ol T FRela) [0)
B B (3.65)
o g |
= e L 2oy f
M 3 ng2
N -
_ §_§Q N. (_}\)N 1
3MY2 (N-1)"
c T el o]
N Lov=g 2o+ =)
M fa |3 2mg< |
Q* M *
N
“F, =+ — (0N SaN-Q s+ 2)] (3.66)
v My" Lﬁ mg
%
= 7, - c(-MVP-n®-N) /6My
In this simple theory the mass of the N is given by
M2 = Ng o+ m? (3.67)

where m is the mass of the ground state. The last term in (3.66) will
then be zero and ﬁe have current conservation.

To be consistent at this point we should also use the theoretical
particle masses in the numerical calculation of the photoproduction.
amplitudes. This QouhL however, bring us into trouble with the kine-
matical factors entering the formulas where we must use the physical
masses of thé particles involved; Consequently, we will in the follow-
ing use the real particle masses in all expressions. In the cases we
shall consider, ghis makes. little difference in the numerical results.

We can now calculate the amplitudes in (3.56) using the SU(6) and
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orbital matrix elements given in the Appendix. The results are presen-
ted in Table 3. Only the low-lying nucleon resonances with mass M<1750

MeV have been considered. We have included the not yet firmly established

-

D1 3(1700) belonging to the 4(8) of the 70,171, the P4;(1690) of the

- .
+
H
4

1

second excited |56,07; and the predicted Pj3(1700) of the {gg, 2‘@. The
total width I" of each resonanée is also given, for the Py3(1700) we
assume T = 200 MeV. We use the mnotaticn DT3(1520) if the resonance is
produced off protons and D§3(1520) for neutron target.

Many of the amplitudes in Table 3 have been experimentally deter-
mined in photoproduction of pions by Walker (6). 1In this case we have

real photons with q2=0 and only F,(0) and F_(0) will contribute. The

photon momentum Q* in equation (3.58) and R in (3.60) can then be

written:
K = Q¥ = @-md)/m (3.68)
R(O) = {2 (M-m)/2 ' (3.69)

Walker uses a different wave function normalization, so to get his

amplitudes Ay and A_ from our F, and F., we must use the conversion

formula:
M 1/2
A = e( %) / F
2E 2K +
3 {(3.70)
= o aus )1/2 .
M em +

The absolute signs of the amplitudes can be found by calculating
the amplitude for the process N“Nn of the other vertex. This we have

done in Section IV where these amplitudes can be found in Table 6 .
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In this way we arrive at the numerical photoelectric amplitudes
presented in Table 4 for the well established nucleon resonances. Here

we have used the form factor

K2 2
GM,0) = exp (- — 5
O M2

(3.71)

which is hlmosﬁ the same as the one in the non-relativistic calculations
(5,6). 1In the mass region we have considered, it makes no substantial
contribution. It ranges from 0.96 for the P33(1236) to 0.78 for the
F15(1688).

The numerical values of our amplitudes in Table 4 are not very
different from the non-relativistic calculations by Copley, Karl and
Obryk (5) and Walker (6). Comparing the results with the existing
experimental data from Walker also shown in Table 4, we find general
good agreement. Even the absolufe signs of the amplitudes come out
right. That mus t be considered a triumph of this simple model. It
should benstressedvthat our results depend on no free parameters besides
the smooth form factor and the fixed constant (), only the physical masses
of the particles enter the amplitudes.

Some of these good results are independent of the harmonic oscilla-
tor dynamics and follow from SU(6) alonme. To these belong the predic-
tion of zero amplitudes for photoproduction off protons of the 4€§)
resonances in the [Zg,l-}, like the D{5(1670). This was first observed
by Moorhouse (15). The reason is that the coupling being proportional
to F + %D, vanishes for these states since they all have F/D = -1/3.
Another SU(6) result is that A, for F25(1688) equals zero which also

agrees well with experiment.
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Typical model dependent results are the small A. amplitudes for
DTQ(ISZO) and FI5(1688). .In these cases the amplitudes consist of two
=)
terms which almost cancel each other. To our knowledge this is the

only model capable of explaining this experimental fact.

-}

15

ment, being a factor 2 too small. This amplitude involves only one

Only the amplitude Ay for F (1688) is in disagreement with experi-
term. Since»this resonance is the recurrence of the nucleon, we would
expect the amplitudeé for this particular state to be in the best agree-
ment with experiment.

However, Walker's‘values are not without errors. We do not know
these, but we can make an independent check of our results in electro-
production of.the same nucleon resonances. Should the cross section
calculated for the Fy5(1688) then be too small by a factor of 4, then
Walker is right and our model will be in trouble.

Before doing that, we will calculate one more photoelectric pro-
cess

A(1520) = A+ vy (3.72)

The amplitudes are evaluated in the Appendix, step by step, as a model

example. We find:

F, = 2F e = 0.2
A
(3.73)
52T }
F. = =[5 iT - {2 R = 0.03
- a3 L 2w

The rate for this tramsition is then given by the standard relativistic
rate equation, in terms of the invariant matrix elements B+ and 5_

in (3.52),
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1 Q% 2
R v el R LA
8nt M% 2341
(3.74)

2

. e 4 2 2, %

= = < (|F,|" + |F
i 2 P [F-17Q

J is the spin of the resonance and we have multiplied by a factor 2
because the final A can have spin up or down. Again using the form

factor (3.71) we get for the width of this decay mode:

= (.17 MeV (3.75)
calc

The experimental value from the Particle Tables (1) is:

Texp = (0.13 + 0.04) MeV (3.76)

Having obtained this good result, we can now predict the rate for

the following, very similar transition

ACLLO5) = A+ y (3.77)

\
Since these two A-resonances both belong to 2(1) of the [ZQ,I'J, the
amplitude for this latter process can be obtained almost at once from

(3.73) by onme Clebsch-Gordan step, as shown in the Appendix:

0T ]
32 [{2’1‘-2— RA| G = 0.29 (3.78)

:
= =

- 443
This gives the predicted rate

I = 0.32 MeV (3.79)

It should be mentioned in connection with the A(1520) that the

radiative decay of this resonance takes place almost entirely from the



J, = 3/2 state as can be seen from (3.73). An experimental verifica-

tion of this prediction would be very encouraging.
Electroproduction of Nucleon Resonances

We will assume that the inelastic electron nucleon scattering

process’

e + N -e' + X (3.80)

proceeds through one photon exchange as in Figure 4. The initial and
final electron with four-momenta k = (E,k) and k' = (E',k'), we take to

ey war -
be of zero mass. Then the invariant four-momentum transfer to the

nucleon will be

q2 = (k‘k')z = =4EE' siﬁ2

NI1TD

(3.81)

where 6 is the electron scattering angle. In the LAB system, the

energy of the wvirtual photon with momentum q = (v;g), will be
v = E-E' = (q-p)/m (3.82)

assuming the target nucleon to be at rest with mass m,

As shown by Bjorken and Walécka (16) the differential cross section

for this process can be written

azs o2 , 26 . v
= 7% [Wz(v,q ycos E%-ZWl(v,q ) sin 5] (3.83)

dCdE? 4LE"sin 5

for unpolarized initial and final nucleon states. The two invariant
structure functions Wi and Wy are defined in terms of electromagnetic

current matrix elements,
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e

Figure 4. One~photon exchange diagram for
resonance electroproduction.



r p-q peg. Wy
= o5 - e N - — &
Wio Zm (P4 . )(pyma, 2 ) =
quly E
2. - i
‘ (qz Buw) M1 | (3.84)

= ¢ (2078 (p~q p )(DlJ in><n13 *lp>
n

where the sum extends over all final states [n) with four-momentum p'.

With only one nucleon resonance with mass M in the final state,

W takes the form:
nv

Wy = <PlJ [p' ¥p"|J 3M|p>6(W2-M2> (3.85)

Hére w2 = (p+q)2 is the invariant mass of the produced N*.

Again taking the space part of the photon four-momentum q=(v*,£f)
in thé N* rest system along the z-axis and using the current conserva-
tion conditioﬁ equation (3.55), we can express W; and Wy in terms of F,

F, and F_ as defined in (3.52) and (3.56):

W, = -([F+| +IF |2 Ma(w—\i)

(3.86)

l 2 im
W2 = 3 56 (H=10)

Lol

Zirol” - Syt fmal M |

Defining partial cross sections due to the transverse and longitudinal

parts of the photon by

2
du o 1 (2 2
o (W) 5 P ™+ F |6 (W-M)
2 (3.87)
_ 4o g 2.
o, (0 = = (G [Fol el

we can now write the differential cross section (3.83) as



‘ 9
dzo o c052§ -q 1
= ——,; 9 = ) (ﬂ)_ (O‘t‘Go‘z) (3'88)
d¢dE’ L= 4E sin*é Q e
. 2 00 i
- where g-l = 1 4 2(1 - 3§)tané- (3.89)
q 2 '

The polarization parameter g varies between 0 and 1.
Instead of the cross sections g, and G g experimental data are
usually given by the slightly different quantities op and og intro-

duced by Hand (17):

N : = -9
o = +2o = -2 (3.90)

T K
Here K is the LAB energy required to produce the N© with real photons:
2 2
K = M™=n")/2m (3.91)

Inserting op and gg into (3.88), we get the well-known expression

2
d o
= TTO.T + FSGS
1
dOdE (3.92)
FT<GT -+ €GS)
, . - ‘Ei
with r = -—%(-—%}‘- 2 (3.93)
T 4t g“ E l=g¢g
From (3.87) we find for O and og*
QﬁZj 1 2 2 F/Zﬂ
op(W) = = = (|F |+[F.]7) ——F—
K* 2 (W-M)“+74/4
(3.94)
.{ ; Qﬂ%x(-qz)l 2 T/ 2%
oclW) = ——(—)|F —_—
5 K* gr2 ol (W-M) 2472 /4
where we have madé the substitution
| 1 /2 '
B(W-M) - = —————— (3.95)

o (W-M) 2402 /4



- 51 -

valid for an unstable resonance with a total width T. K* is the quan-
tity K evaluated in the N* rest frame, equation (3.68).

Beiore we can calculate the cross sections, we have to decide upon
the form factor G which enters all amplitudes. We have one serious
restriction on this choice. It should in the simple case of elastic
electron séattering give the form (3.48). With this in mind, we will

in the following use one of the simplest possible forms

) 2 1oy
caLe) = -3+ =70 - i) (3.96)
0.71 4

where N is the number of excitations in the N*. This arbitrary choice
seems to give a reasonable description of the present experimental data‘
in the limited resonance region we are concernéd with here.

If we in addition also want the form factor to approach the non-

relativistic form (3.71) for q2=0, we could instead of (3.96) use:

2 2 N ro2 420 207
Gu(,q%) = (1 - =) (1 - =) 2 exp| ~— —— —=— |
(3.97)

This is ounly different from the choice G(M,qz)in (3.96) when ~q2 << Az.
Consequently, by letting AZ << 0.5 GeVz, these two form factors will
give the same resu;ts in the region —q2 > 0.5 GeV2 where moét of the
electroproduction data exist. Only future, more precise experiments
for very small ;qz will decide’which form factor is the best choice.
We are‘now in the position to calculate the cross sections op
and og for each sFate in Table 3 where also the amplitudes F o, Fy and
F_ are given. The results of this numerical work are presented in

 Figures 5, 6, and 7 where we plot each cross section for proton targets
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Figure. 5. Resonance cross section at W =

target.

Data from reference 19.

1236 MeV with proton
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at the resonanceé peak W=M as a function of _q2_

~The resonances in Table 3 are grouped into three maés regions,
ignoring the Roper resonance P11(147O} which has a small cross section
as seen from Figure 7. We would expect a dominant peak in..the inelastic
cross section at the place of the P543(1236) resonmance. The next bump
should be found at W = 1525 MeV corresponding to the S11(1535) and Dyjy
(1520). The remaining resonances, 833(1650), Dy5(1670), D33(1670),
F15(1688), P33(1690), 811(1700), D13(1700), and P13(1700), are all
grouped around W = 1680 MeV where also a peak in the cross section
should be present. This agrees well with the experimental situation
as seen from Figure 8, taken from Reference (18).

To make a quantitative comparison with experiment, we have in
Figure 5 for the P43(1236) plotted the experimental values of.z = gp +
eog aé evaluated by Clegg (19). The scalar cross section og 1s zero
for this resonance since it has quark spin S=3/2. For -q2 < 0.5 GeV2
we see that thé theoretical values are almost 30% too small. This is
in accordance with:the same discrepancy we found for the photoproduction
amplitudes in Table 4.. For larger -q2 the agreement with the experi-
mental cross section is very good.

In Figure 9 we compare the values of ¥ to the sum of the cross:
sections from §11(1535) and D;3(1520). The agreement is good. At
small -qz the 1a£gest contribution is coming from the 811(1535), con-
trary to whét is usually assumed in the literature (19,20).

As already explained, the three resonances S17(1700), Dq4(1700)

- -
3

and D;:(1670) of the»4(8) in the ;70,1“%, will not contribute at the
1.) . A alad

wd

third peak for proton targets. Adding together the remaining resonances”
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in this mass range as done in Figure 10, we note that the good agree=
ment.is obtained only when including the predicted resonasce»Pl3(l7OO).
Without its contribution we would get a cross section approximately 30%
toé small, compared to the experimental data of Clegg (19).

it is generally believed that this third bump in the cross section
is mainly FiS(l688> (19,20). According to the present model, that is
not the case, the D33(1670) being just as important. Had we tried to
use the F15(1688) alone, we would be off by a factor of nearly 4 in the

ross section. This may explain the apparent disagreement for this
resonance we found for its photoproduction amplitude which experimen-~
tally is found by fits not including all the important resonances in
the same mass range like the D35(1670) (21).

In other words, had the F15(1688) alone been able to explain the
third peak, then this model would be in serious trouﬁie. The same would
obviously have been the case if we had obtained good agreement not taking
into account‘tﬁe not-yet-observed Py3(1700).

Andther interesting result of this model is the small scalar
cross section og we find. The maximum of the ratio gs/gT at -qst.S
~GeV2 is 30% at the second peak and near 50% at the third peak. It is
substantially smallgr fér all other values of -qz. This agrees nicely
with recent experimental results from DESY (22) where the same ratio
is found to be afound 20% in thevresonance region.

The reaéon for this small scalar cross section is easily found by
looking at'(3.94):and (3.59). In addition to the required zero of og

2

=0, we see that S=0 for

-q% = n(3M-w) (3.98)

at q
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So og will have a zero in the resonance region considered in the range
-q2 = 3-4 GeVz. This result is obviously independent of(the arbitrary
form factor we have used.

It should be noted that a similér non-relativistic calculation has
been done by Thornber (23) who gets a large scalar cross section. But
there is no reason to believe that a non-relativistic treatment of this

highly relativistic process should be successful.
Meson Vector Current

The calculation of the vector current for mesons is domne in the
same way as for baryons. It is defined by the first order perturbational

effect of a vector field:

b r iq. 7
5KV = 2% ey Lﬁaéelq o de d Wxéxj (3.99)

In the sum 6ver a,‘the contribution from the a quark is the same as
from the b anti-qﬁérk since we use symmetrical states and an anti-quark
behaves like a quark with negative charges. Hence we only calculate

the contribution from a and multiply this by 2 to get the full perturba-
tion:

5

a iz(Pa'e) - dé) (3.100)

\Y . iq-u
Juep = 4eae

In this way we arrive at the meson vector current, analogous to the

baryon vector current in (3.29):



) ) %
A 2 2 g-.C T
J e = \4g eq /20 e | e, {IM - lv - _9__
B» OB a ' 2 2mg2 ‘
S
a4 3 = n
-ﬁf (CZ toege fZ‘(gﬁ +A9)'§ (3.101)
Y N
l \J \J ! +]1‘ q.c
Qe G+ =) + g, (Qe)(1 + 2)§ e g

+
Here ¢ and ¢ are the harmonic oscillator operators for the meson sys-

tem, defined in (2.12).
Radiative Vector Meson Decays

We can test the vector current equation (101l) in electromagnetic
decays of vector mesons:
V - P+vy (3.102)

As in the same process for baryons we can calculate transition matrix

elements due to the transverse parts of the photon:

EM
B, = e(R[I, |V) = e, (3.103)

Only the last part of equation (3.101) will contribute to F, and F_ .

which can be written:

Fy = 4GR(B(0)[eqo,. [V(HL)) (3.104)

i
I

_ 4@R<P(0)1eaca+§V(-1)>

where R = (2 (M-m)/2M : (3.105)
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‘We have here again introduced an empirical form factor G
2_q*/20 | 2
o G(M,q7) (3.106)
for baryons, equation (3.71).

the Appendix, the matrix elements

and will choose this to be the same as

Using the meson wave functions in
in (3.104) are easily calculated and the most impoxrtant are listed in
| = JF |

Enl

F.| since |Fi

We have only tabulated |
To find the corresponding transition rates we use the rate formula

Table 5.
in (3.74), except for the extra factor of 2:
L g 1 2 2
r= — - — (|B + |B_
roltveiberelly Lo I I
(3.107)
e? &
= — - |F
=3 T+l Q
In

the vector mesons.
has been experimentally determined.

Here we have set 2J+1 = 3 for
(3.108)

Only the rate for @ - my
given as

the Particle Tables (1) it is

rexp(a»'ﬂy) = (1.1 £ 0.1) MeV
From equation (3..07) with F, from Table 5 we get the theoretical value
(3.109)

(W= 1y) = 1.9 MeV
The width for

1_‘calc
This value is somewhat too large. compared to (3.108) but still within
2 which we consider acceptable in this theory.

a factor hi
o — 7y should be equal to 1/9 of (3.109) as seen from Table 5.
We should mention that the original non-relativistic calculations

of the same process by Becchi and Morpurgo (24) gave a much better
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Table 5. Matrix elements for radiative decays of vector mesons.

V - Py O Q (MeV) \F,.|/CR
B - Ty 380 ‘;?
® -y , 200 1/91{6
p - Y 370 1/32
p - MY 184 1/36

LTy 308 /3%

K™ . KOy 308 2/3Z

© - MY 362 4793
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agreement with experiment. However, that was obtained by assuming a
specific value of the quark magnetic moment in the mesons plus a dubious

"relativistic!" correction factor in their rate formula,

K%B Decay

The vector current for mesons we have constructed can also be

tested in the weak decay

K - w74+ 3+vy - (3.110)

where g is one of the leptons, e or u.

According to Cabibbo's theory (25), the matrix element for this

process can be written

G v -
= — ginf (1L - 3.111
B 65151n <ﬂ|Ju[K> EPA ys)uv ( )

G i1s here the weak coupling constant and @ the Cabibbo angle. Only the
vector current of the meson vertex will contribute since the # and K
are both pseudoscalar particles. It will be a linear combination of

the momentum k of the K and pion momentum P

kK = p+g (3.112)

where q is the momentum of the gy-pair. The vector current can then be

written in the form

<“§JX1K> = f+(q2>(ku+pp) + (D& ) (3.113)

u Pn
We will now fiad the form factors £, and f_ from the general

- expression (3.101). Again taking the space-part of q along the z-axis

a
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in the rest system of the K meson and considering the t- and z-components

of the current, we get the two equations:

(£, + £ + (£, - £)E (3.114)
- 2
= 4G(xt|e, |K) | Mg - %v .8 }
Zmﬂg
1 v
(£ = £2) = 46(xt|e, [K) ¢ + —) (3.115)
2 2m.g

The matrix element (s|e, |K) is easily found by the methods outlined in

the Appendix:

(ﬂ[ea]K} = —%; (3.116)
242
Then we rearrange the terms in equation (3.114),
i 1 Q2
ZMKf+ - \)(f+ -f£) = 42 G{MK -5V T . 0-2-'5, (3.117)
e

substitute for £, - f£_ from equation (3.115) and solve for f+:

’ 2 2
, 1 Q 1
g, = 26 er - sy - -t syt 2 } (3.118)
L 2 Zmﬂgi zmﬂgz
or: 2 1 (gbm ) 2+q2 9
£.(q) = +j5 ——— 6@7) (3.119)
‘ V2 2_ 2
(MK-i-mﬂ -q
The other form factor f_ is then easily found:
2 el MKZ-m'ﬂiz 2
£ (q) = -42 ———— G(q) (3.120)

L N2 2
Mytm ) “-q

From equations (3.119) and (3.120) follows our first results, indepen-

~dent of the form factor G:



- Polarization experiment (26) gives

= - 1.12 (3.121)

for the same ratio -0.94 4 0.20

which is in accordance with our prediction.

. 2 ca
For small g” we can write the

.20
ri(q ) =

2mﬂ

where A + &

. 2
(MK+mﬁ)

il

0.094 + 3

’ mn
and A L

]

—emmr  od 5
2 )

]

0.047 + &

Here § is

6,: m._ -z
. T dq2 q2=0

£ (0) (1 +n,

form factors in the form

(3.122)

(3.123)

(3.124)

the gontribution to A from the form factor G:

(3.125)

If we for G use equ&iion (3.71), we find

§ = 0.01L3

I
X

and £,(0) = 0.96

(3.126)

(3.127)

This last number agrees well with the experimental value (27)

foe)

(2 £.(0) =

0.94 £ 0.05

(3.128)



The value we find for A, is apparently too large compared to
experiment which seeﬁs to give (26) Aj == 0.04. However, a larger
" value is not ruled out (28);
Using our results, we can predict the ratio between the Kp3 and

Kej decay rates from the following formula in the Particle Tables (1),

r(Ky3)

= 0.6457 + 0.1269 ReE + 0.0193 ||

I'(Ke3)
(3.129)
-+ 1.390>\+ + 0.470N_ReE
which gives
T(Iﬁg?));?
i .= 0.650 (3.130)
N caic
I'(Kq3)
The same Particle Tables cites the experimental value
(K40 .
D50 | = 0.65 % 0.02 (3.131)

rd i
I(K,q) | %P

This very gooa result finishes our investigation of K£3 decay.
Our approach is very different from the standard treatment of this
process (26). It gives results which are in good agreement with experi-
ment and involves no free parameters except for the form factor G which

has little influence on the results in this case.
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IVv. AXIAL VECTOR CURRENT MATRIX ELEMENTS

The axial vector current is obtained in the same way as the vector
current.

We define the perturbatiomal effect from the presence of an

axial vector field By by the minimal coupling

B, - Pa - e;¥sh

(4.1)
where the "axial charge' e

of quark a really is the Gell-Mann matrix
operator Az appropriate for the particular member of the axial meson
nonet.

This is explained in more detail in the Appendix.

Using equation {(4.1) we find the first order perturbation in the
dynamical operator K from quark a:

A
6K,

ea(PavsB + vsB3,)

(4.2)

To find the axial vector current matrix elements for baryons and

mesons we proceed along the same lines as in Section III.

Baryon Axial Vector Current
In the case of baryons we get for

the full first order perturbation
by the axial field.

5KA = 3 % e

iq. iq- 7
= o EaYsée s Ysée o éCéJ

(4.3)
where e is the polarization vector cf the field. This defines the
axial vector current:

TS v 197, iqruy
== HIRY -, e +
. aga- e | Fo¥s¥p® T V5¥p® o |

(4.4)



Again we onl

this by 3 to find

Substituting the

X’S#aé

Y54

It

v calculate the contribution from quark a and multiply
the total periurbation:

9e, gﬁaXSéeiq “a 4y g E (4.5)
.9), this can be written

9eaeiq~ua Eys(ééa - Ba8) + yséé}

9eaeiq-ua [2Y5(pa.e> - 2Y5¢3é + YsééJ (4.6)

two-component reduction of the Dirac matrix products

(e e = o5 Yo . . -
‘;’5 L:.aet (Sa ;;‘D’a)\ga i) -+ ga (et“p.a 632)

.7)
[
Y5 ve

-

G DE] + (e e

and sandwiching equation (4.6) between the initial and £final spinor

in eguation (3.19

Jﬁ?u

Combining similar

), we get:

3 4iqge ga QT
9g elq uaea{nf___. Lz(etea

- e'py)
2mg? -

2(eye, = (20 P (02 Q) + vep = (2,°00(0,e) | (4.8)
2(e (2,7Ba) = 3(0,")) + €(0, Q) - V(ga-uew)}

terms, this can be rewritten:
3

4
¥

Q)
ea{<ga-59<1 + - S

Sl

v (o,

3 iq.
elq ug

9g

e

1230, (g xe) = (Q-e) - 19, (Qxe)| + (2e,-V) (g, e)
) 3
- 2o ,2a>et> (4.9)



- 70 -

Reducing the prdduct

(@) - i &Qxe) = -1Q" (Qxe)¥g- (Qxgxe)

= Q(S e)- eQ
v ~2
= (o-QXQe)-(oe)Q (4.10)
.%
and (o- S)Lc (paxe) | = p,-(exQ)+ig-(Qxpgxe)

= Pa’(exQ+1(c-pa)(Q-e)

i(g-g)(g-ga) (4.11)

equation (4.9) can be simplified to:

I

A — 3.1q uy J . - v
Jueu = 9g-e e, Esga‘3>(l } 2mg2)et
L 1. 1
+ s 2py- (ex0)-2(g, pXQre)+2(ga-¢) (@ pa) |
zmg K A e A e R iy ol [T T
QZ
+ (Zea-\)- a._{a)—Z(ca.pa)etB B (4.12)

Here we insert equations (3.25), (3.26) and (3.28) and get the final

expression for the axial vector current:

Fe = 9 3eq2/Q e"LfZ/Q q-aTe (6a-Q) Tl . _vet
pn g 20 15T 2
2 Q.e - 21 14 2@ +
2 Qe et t e
2mg” - * (g e>L3u 373 2mg? 3¥2 (Getee )
2ot 2 T e ]
3 omg? | 4 iz MR ST L
. . 3
2y +  Oxe U +Z/Q q.a
151 (afaTy. 2mheT .
5 Gl 2f (4.13
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The divergence oi this current will be needed to calculate the rates
of pseudoscalar meson emission from baryons. It is found by the substi-
tution

ey = (o) = a = (WO (4.14)

Doing this in equation (4.13), we get

2 — o / r 2 2
_’A 3 q /Q -\jZ,/Q q‘a« §l AV 2 Q
= 9 e S € g,-0 PV + T3
1y & a (g “)L3 2mg2 3 2mg?
2 1 1 Q%27 2 ;’?T Q-(ata®)
T e R ARG e
3 3 2mg 342 2nmg
N 2 hY
2 ; .
L2 ch o+ at ey + L\ g+ g (4.15)
or:
A 3 ¢7/a -i2/Q q-a
J}lq]-l = 6Mg a$(g2-Q) -
2 ) T
q Q Q.(a+a")
L+ 3 e AR
( prvay ‘[;(Ea D g
1
0 M-m +/2/ .
- — o, (a+ a+)> e 2 q-a (4.16)
V2oM oo

We have here ignored the operators a, and at+ since they do not contri-

bute because of the restriction (2.29).
Pseudoscalar Meson Emission from Baryouns

We will now try to calculate the transition rates for processes

like

BY o B4+ 0P , (4.17)
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N

where B~ is some baryon resonance and P a pseudoscalar meson like 7, K
or T. 5 is a ground state baryon with no excitations. fhe-relativistic
amplitude A for this decay is assumed to be proportional to the diver-
gence of the axial current (4.16) with comstant of proportionality equal

f/mﬁ, where m  is the pion mass and £ some unknown coupling constant:
A = — (B|Iuau|B") (4.18)
e

If the emitted meson has mass squared equal q2 = pz and moves along

the z-axis in the B” rest system, we get for the amplitude:

.
i

£2MF (4.19)

where: ¥

]

3(B(+1/2) [Hy |B*(+1/2)) (4.20)

The operator Hy 1s essentially the divergence (4.16) Which in this

special frame can be written:

">\-az

. - R 3
Hy = Ggey <>\.Do‘azi‘1 - }\.Xazj + Bga ';’i}} e (4.21)
J

Here we have introduced the quantities

A

v o= o
e = 9% =505

L mﬂ

(h—(—m) 2—2—2].12

b - oY | (4.22)

s
it

(M~m) /M

Q
() 222

N
it



and again substituted an empirical form factor equal to the one pre-

viously used:

2/ : Q2 VZ

O it

c>3 <0 e = exn (-~ — — 2) (4.23)
0 M%m

0g'8 = 0gp8z = V4 O ap + Y20 a (4.24)

The minus in front of a, stems from the phase convention we use as
explained in the Appendix.
The decay rates for the process (4.17) is now given by the

ordinary, relativistic formula (3.74):

1 ¢ 2R 2
ol Brrial
8n Me 2J+1
~ EE LR ]w]ZQ : (4.25)
G 2J+1

Here the extra factor 2 in 2R comes from summing over the two final
states with jz = +1/2 and -1/2. R is the inverse of the squared
Clebsch-Gordan coefficient connecting the initial isospin state with
the isospin of the final state. Tor example, if we calculate the
amplitude for the decay of an excited proton into g proton and 7O,
then R = (Jg)z = 3. J is the total angular momentum of the B*.

We can determine the constant £ by calculating the coupling of =°

to a ground state protom in our theory. Using our expression for the

amplitude A and Table C in the Appendix, we find:



- ' 5
AQTNTRO) = £2M S 90

= Lo 2q (4.26)
m. 3
NNz _ £

= — G,voduy = 2MQ
in

7t 7t

The number 5/3 comes from F+D which is the SU(ﬁ) Clebsch-Gordan coef~-
ficient for the coupling of =0 to proton. In (4.26) the value of

fywn Ls known so we can find the coupling constant f:

3
Eo= gy (4.27)
2 2
£ 9 £ 9
or — = 2 ZMNt . 2. 0.8 = 0.029 (4.28)
bt 25 4x 25

This is the value we will use in the numerical calculations of all the
decay rates.

All the necessary details concerning the evaluation of the transi-
tion amplitudes are given in the Appendix. In Table 6 we list one
representativé amplitude fér each baryon multiplet, the Nt o NTRO
in octets, A+~ NTr© in decimets and A= zﬁﬁ- in singlets. Then using
the SU(3) coefficients in Table A and B in the Appendix, all the other
transition amplitudes in each ﬁultiplet can be found. We have also
calculated all the important decay rates which are listed in Table 6
. together with their exberimental values.

In some cases in the table when the theoretical result is zero

because the numerical coefficient in front of the amplitude is zero

for some special value of (F,D), we give the answer «s O(X) where X
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is the value one would get for the rate if the coefficient were unity.
Working backward one can then see how small the data indicate that
the coefficient in fact is.

When we now compare the calculated rates with their experimental
values, we should keep in mind that the amplitudes have numerical coef-
ficients which are given by exact SU(3) symmetry within each multiplet.
As can be seen from the decay =(1530) - =« in the ground state
decimet, SU(3) symmetry is broken in this case and probably in many
other decays where we find deviation from experiment of this order of
magnitude, 20-30%.

Inspection of the results in Table 6 reveals that the best agree-
ment between theory and experiment is found among the high-J states of
the SU(6) &® 0(3) multiplets. In these cases the B-term does not contri-
bute‘and the amplitude contains only one term. -Among these decays there

are 32 rates which agree with experiment within a factor 2.5 and 3 rates

which are off By a larger factor. These three are /A{1690) - NX of the

0,17}, and 5(2030)-

-

pmmsein

2 : . - .
2(8) 375, N(1670) = N1 of the 4&&)5/2, both in the

£

. [ "2
st of the 4(10)7/2 in the 56,27 1. Since all three resonances belong to
multiplets where their partners have rates in good agreement, we expect
that these three discrepancies are caused by SU(3) breaking or more.
probably, that the experimental values are wrong.
Amplitudes for decays of low-spin resconances contain the additional
B-term which only depends on the masses of the initial and final baryon,

and not on Q2

as the ordinary term. Hence, in reactions with low Q
like A(1405) - ox or N(1535) — N7, the B-term makes it possible to get

the large, observed decay rates. That is very welcome. But in other
rge, . ¥

.
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cases it has disastrous éonsequences. For instance, in A(1670) - NK
the B-term is so large relative to the ordinary term that it gives a
widthvof 415 MeV. compared to the measured width of 5 MeV. On the other
hénd, in the decay N{1780) — Nx, the two terms almost exactly cancel
each other to give a much too small rate.

This may be understood if we consider the accuracy of each term
separately. In the 32 cases where we had no B-term and good agreement,
the ordinary term was within a factor 1.6 of the experimental value.

We then expect the B-term to be good within the same factor of 1.6. Im
this way the small experimental width for A(1670) — NK could be obtained
if the ordinary term was increased by a factor 1.6 and the B-term simi-
larly reduced to give near cancellation between the two terms. The same
procedure would remove the theoretical cancellation between the two terms
in the amplitude for N(1780) — Nx and thereby give a larg;-rate as
observed.

The ${1910) is not included in Table 6 because it does not seem to

fit into any known multiplet, as discussed in Section II. If we tried

‘ . -
to assign it to the 2(8 in the (56,271, we find two of its three
& s 5/2 E_w’ ?

4

decay rates to be in serious disagreement with experiment. This is an

additional reason not to have this state as the recurrence of the

. Iy b
3 4= - 2 e B Lo - 1 i +§
ground state ¥(1192). Putting it fnuo the 4(i9>5/2 of the 22?,2 i
along with the A{1890), we get better decay rates, but its mass is

apparently too low to make this assignment plausible. Probably it
n ot fon o
i70,07 ! or 170,27
g H L it

]

belongs in the - somewhere.

| S

The decay rates for the N{1860) and N(1990) which we in Section II

’ 7
. . , +i P
concluded were good candidates for the g70,2‘§, come out in accordance
. t
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with experiment. This strengthens our belief that these assignments

are correct.
Pseudoscalar Meson Emission from Mesons

To calculate the decay rates for processes like

M - PP (4.29)
or MY L VR (4.30)

Lo

where M" is some meson resonance, V a vector meson and P a pseudoscalar
meson, we represent one of the pseudoscalar mesons in (4.29) and P in
(4.30) by the divergence of the axial vector current for mesons. This
one is found in the same way as the divergence of the axial vector
current for baryons was found. The result, analogous to equation (4.16),

is:

A 2 q°/2q0 -{1/q q-c* i
Jpqu = 4M g'e e eg (Salg) .
2 = P
e Q. {ctc )
I'd i 2y aws
(L + 2 ) [= (0g°Q) =—"5— (4.31)
4iimg 2 Vb WE ZMmgz
ﬁi Mmoo L0 +V1/Q qre
iz T og(ete’)
§ M Ln W WRS J

Again taking the momentum Q of the pseudoscalar meson under consi-
e

e

deration along the z-axis in the M rest system, we can define an
interaction operator H, which is the divergence (4.31) except for some

factors in front,

A

+ bga"cP e PCz (4.32) -

w



where g o= i=Q
' NQ

o= = = 7.45
1 () 2 (4.33)
d = —r—

() 2-p2
b = (M-m)/24

Q

X = ——

Here w is the mass of the emitted pseudoscalar meson, my the pion mass

and G the empirical form factor

2 - 2
2 97/20 M
g €

Q 1
G = exp |- —_ J (4.34)
Q

2

The relativistic amplitude for the process (4.29) will then be

Ay = £2MF, (4.35)
where Fy is twice the matrix element of Hp:
F, = 2(P(0)|Hy M (0)) (4.36)

The rate of the decay (4.29) is then

(4~ PP)

]

9 | (4.37)

"
l
Ty
o
o
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ate
J . 1s the spin of the meson resonance M” and R has the same meaning

here as in the baryon case.

For the other process (4.30) there are two independent amplitudes:

A, = I2MF,

(4.38)

e
O

The matrix elements F, and F correspond to decays of the M* with

J, = 0 and Jz = +1:

Fo = 2(V(0) |H, M*(0))
(4.39)
Fo o= 2(V(+L) [Hy M (+1))
There is also an amplitude F_ for decay from J, = -1, but since )F+]=
iF_i,,the rate formula can be written:
% 1 ¢ R 2 2
™M - VP = - 1A + 2 AL
re ) Sn 2 zom (%ol 4+
€2 op 5 2 (4.40)
- LB (r)? e 2D
4 2J+1

We are now in the position to calculate the rates for all meson
decays of the type (4.29) or {(4.30). TFor the coupling constant f we
will use the same value as for baryons, equation (4.28). 1In Table 7
we list the results for the L=0 and L=1 mesons where we have calculated
one representative amplitude for each multiplet. The amplitudes for
other decays inside the same multiplet are then given by Gell-Mann's
SU(3) coefficiegts fijk Or,dijk (29) because all these couplings are
pure F or D depending on the charge conjugation of the initial and

final meson state.
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place only one of the two pseudo-
scalar mesons by the divergence of the axial vector current, the other
pseu&gscalaz meson being a quark-antiquark system. When the two mesons
have different masses as in K '— K1, the result depends on which meson
is replaced by the divergence. This would not happen if we used some
mean mass for the pseudoscalar octet. In Table 7 we have therefore
listed both cases where a mode like Ky means that the n is replaced by
the axial divergence, always the last particle.

All the calculated rates except one are in reasonable agreement
with their experimental values (30) when in decays of the type (4.29)
we only consider the case where the meson of smallest mass is replaced
by the divergence. =K modes have much larger widths than the corres-
ponding Ky modes. The only bad case is © — KK which is off by a factor
3. Hopefully, when this theory is made symmefrical, the 7K modes will
be reduced td agree with experiment and thereby also the rate for @ -
KK.

The presence of the b-term in the interaction operator (4.32)
is crucial for the angular distribution of the decays A1{(1070) - pm
and B{1235)- wx. To show that, let us first consider the Jz=0 state
of the Aj. Since this meson is a L=l p-meson, its wave function can be

written

i

h
{

|41;0) = 1)y|L,= -1y - \%;p(-l)HLz: H1Y  (b.41)

[N
o
~~

+

Without the b~term we see that the amplitude for decay into pn from
this state would be zero since the p in the final state has L=0. The

Aq would therefore only decay from the state J, = xl.
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Similarly, we see that the B meson which is a L=1 % would not

decay from J, = zl if the b-term was absent,
13;&1} = §ﬁ<0>>iLz= =1) (4.42)

since the final w has L=0. So the B could only decay from J,=0.
With the b-term from our model we find for the ratios between the

oL
two helicity amplitudes in Table 7 for the two 1’ mesons:

S, = 1-p2a()/2> = 0.76 (4.43)
F, A1

FO B 2 . _

+

The experimental situation concerning these two ratios is somewhat
uncertain. For the Aj(1070) values between 0.5 and 0.9 are found (31)
while for the B(1235) experiment seem to give ratios from 0.2 to 0.7 (31).
However, in reference (31l) a careful analysis of all available experi-

mental data for these decays has been performed with the result:

Fa ‘

=, (C-R) % 0.8 (4.45)
Fo o1

FO

—l]g (C-R) < 0.2 (4.46)
F, ‘

-

These values agree very well with those we find from our model and
demonstrates the necessity of a b-like term in the interaction operator

for pseudoscalar meson emission.



V. CONCLUDING REMARKS h

We have developed a relativistic quark model with harmoﬁic dyna-
mics in order to explain the straight, parallel meson and baryon Regge
trajectories. That the slopes of the meson trajectories also approx-
imately equal the baryon slopes 1is not understood in the framework of
this model but has been taken as an experimental input.

In that way both the meson and baryon spectrum is uniquely given
by the excitation constant (. Only a few of the predicted meson multi-
plets have been established so more resonances are needed to verify
the harmonic oscillator character of the meson spectrum. On the other
hand, for the baryons we have shown that.there is strong evidence at
. R
the present time for the typical harmonic oscillator multiplets LZQ,O J
and ng,2+} at the second excited level.

To determine the transition rates between different states in this
scheme we constructed vector and axial vector current operators. The
vector current matrix elements could be compared with photon induced
reactions like photoproduction and electroproduction. The results weré
found to be good when we introduced an empirical form factor instead of
the one following from the model. For the transition W - 7y we were
off by a factor 1.8 in the decay rate. This discrepancy could be due
to the large breaking of gauge invariance in this particular case.

An independent check of the vector current operator was done in
calculating the meson vertex im K£3 decay. The result was surprisingly
good. However, this was not really a test of the harmonic dynamics
since“it only;involﬁes ground state mesons,‘but rather of the prescrip-

tion used to construct the current.
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" The magnitudes of the axial vector current matrix elements do not

seeﬁ,to be in the same gbod agreement with experiment as(we found for
the vector current. This can be seen at once by calculating the axial
veétor constant for neutron beta decay for which we get 5/3 instead of
the experimental value 1.23. 8o this matrix element is off by nearly
40%.

Deviations of the same order of magnitude were found when we
calculated the rates for pseudoscalar meson emission from baryons and
mesons by using a coupling proportional to the divergence of the axial
vector current and modulating the matrix elements by an ad hoc smooth
form factor. In many cases the transition amplitudes for this process
involved two terms, ome ordinary term and one B-term as we called it.
Since these two terms always come in with opﬁosite signs, the full
amplitude is extremely sensitive to the magnitudes of each term. When
these are only accurate to within a factor 1.6, we can understand why
many of these émplitudes come out completely wrong. However, the pre-
sence of the B-term was necessary to explain many of the low-Q transi-
tions among the baryons and also for the angular distributions of the
decays Aj(1070 - pn and B(1235) — wx which are very well described in
this model.

Our relativistic model explains all the successes of the somewhat
controversial noh—relativistic quark model as reviewed in reference (8).
One assumption made in those calculations, that the quark mass equals
1/3 the nucleon mass, can be understood in our model. TFrom (3.44), we

found for the proton magnetic moment

g+ = 3up (5.1



DN+ = pQ {(5.2)
where is the guark magnetic moment
HQ i g

By = gz—e— (5.3
™Q
Assuming the quark g-factor to equal one as for a point particle and
comparing (5.1) and (5.2), we find that the quark mass mQ must be
1/3 of the proton mass M.

With this value for the quark mass the non-relativistic calcula-
tions of the photoproduction amplitudes in references (5) and (6) are
very similar ﬁo our results. The reason is that the relativistic effects
do not show up in this limited resonance mass region. However, the
electroproduction of the same nucleon resonmances is highly relativistic
and our results are different and better than the non-relativistic
results in reference (23).

Many of the Baryon décay rates have also been calculated in the
non~-relativistic quark model. Faiman and Hendry (4) calculated pion

emission from nucleon resonances using the non-relativistic form of the

quark-meson interaction

NR
Iu2Y:U1 = f(g‘ ) ‘ (5-4)

where index 1 and 2 refer to the quark before and after the meson
emission and Q = py-pa. This interaction has also recently been used
Ka wh Ta

by Faiman (32) to calculate the decay rates for strange baryons. Since

the interaction (5.4} is just the ordinary term of our relativistic



emission operator (4.21), the results of references (4) and (32) differ
little from ours where we do not have the B-term. |

Tt should be mentioned here that im the non-relativistic harmonic
oséillator quark model omne auctomatically gets a similar form factor as
the one we were forced to introduce, equation (3.71), in order to get
meaningful results. |

Non=-relativistically the B-term 1s obtained from the divergence

of the quark axial wvector current

£ ) NR f N N
— ugvsdu; = — (1 + —)(c"Q - —(o-py) (5.5)
m, my ZmQ e mo 4 =

where q = (y,Q) and P is the quark momentum in the initial state.

Comparing this to the interaction operator (4.21) for baryons, we see

that in this non~-relativistic limit

v = M-m (5.6)
1
and . mQ(baryon) = éM (5.7)

Similarly, from (4.32) we get for the quark mass in mesons

mQ(meson) = M (5.8)

Nt

So using the non-relativistic interaction (5.5) with the quark mass
from {(5.7), we can understand why that will give results similar to
those of our re1ativistic model, at least in the limited resomnance
region where M « 2 GeV. That has been done by Mitra {33). But since
in his model theré is no harmonic oscillator dynamics, he is not able
to relate the all over coupling comstants for multiplets at different

excitation levels.
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Our model suffers from some serious shortcomings like lack of
unitarity, the non-symmetrical three-meson vertex and the necessity

of an empirical form factor. In spite of that, we think that this

Hh

work has successfully demonstrated the very many physical consequences
of‘this simple quark model which is able to relate phenomena ranging
from stfaight Regge trajectories, through photoproduction amplitudes
and angular distributions in A; and B decays to K£3 form factors. We
hope it will turn out to be a useful scheme for organizing hadron data
and predicting results of future experiments.

However, the most important outcome of this investigation is the
realization that this naive model seems to give a realistic description
of nature at the most fundamental level and to try to understand what
there is in the dynamics of hadrons which in so many respects can be

represented by a simple quark model with harmonic interaction.



We will lirst discuss the operators which are useful fof constructing
states with defipite angular momentum in a 3-dimensional harmonic oscilla-
tor. Then we shall write down the SU(6) wave functions for the mesons
and ca;culate soma typical transition rates according to our model.

Next we will describe a useful way to treat the symmetriés of the
three-quark baryon systems. This will enable us to calculate all SU(6)
and orbital matrix elements of interest. Séme examples are then given

in detail.
Harmonic Oscillator Operators

Let us consider the mass squared operator of our model in the

particle rest system where we can ignore all time-variables

¥ +c (A.1)

]

where 2; ,(PX,By,PZ) and X; = (x, ¥, z). We can introduce the

creation operators

+ i~
al = i— p, 4+ 1%
2

K. A2
1 \zzQ 1 ( )

L

and their Hermitian conjugate annihilation operators

L

i e p. -
J <
a V20 1t

!

R

f
i
:
1
|
¥

Xi (A.3)

3

hese satisfy the fundamental commutation relation

a5, a5 = by (h.4)



The operators (A.2) create excitations along the x;-axis. Instead of
these, it is more convenient to define operators wiaich creates states

with definite angular momentum:

i 11 + ey
-~ = _g‘_‘ ~ + K ht
a+ ‘\;2 (dx .x_ay;
* T+ +
a_ = +J£ (ax - iay (A.5)
+ -+
a5 = az

+
It is easily seen that a acting on the ground state gives a state with
+
angular momentum L=l and L, = +l. a_ will then give the L, = -1 state
ol

and a, the state with L,=0. The corresponding annihilation operators

are then from (A.5):

- Fe -
ap = -z (ay - ia

$2 y
1
a_ = +/= (a, + ia,) (A.6)
‘ 9 X Yy
a,. = a,

1
+ ]
[34-) ay ] =1
. ..;.7
ta_, a_j = 1 (A.7)
r 4+
la a 1 = 1
Le7 ol

which can be checked using {(A.4).

In many cases i1t is convenient to have tle angular momentum

raising and lowering operators



r»{
4
I

which now can be written

— +

L+ = 2 (aoa+

L

-+ aga_)

g‘ =
Ly L] = 21,
where L, = a:§+ - a_a_

Mesons

(4.8)

(A.9)

(A.10)

(A.11)

The meson SU(3) and SU(6) wave functions are easily found and

given in reference (8).

st = ud x°
K+ = us RO
no= (Z (uu + dd - 2gs)
6
—
1 (L T a3 =
no= ég {uu <+ dd + ss)

I

T
i1z
V2

ds

For the pseudoscalar mesons they are:

: (uu - dd)

(A.12)

To find the full SU(6) wave fuaction for these, we just multiply

the states (A.12) by the spin $=0 state of two spin 1/2 objects

-

10,0y = |

Y

Pl

(e =y - |-+ 9

(A.13)
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The vector mesons can be in three different spin states:

|L+1y = | ++)
11,0) = §2<i o)A
}1,-1}-: = -3

For the w and © mesons we will use the un-mixed quark states with SU(3)

content:

g
it
-
o =
1]
c
fop |
+
o
[al ]
p—

® = ss (A.14)

Let us now calculate the very simple decay

.

C el

K'' o KP+x° ' - (A.15)

We must first write the initial and final meson state in a symmetric

ala

form. Only the J,=0 state of the initial K" can decay:

e : 1 - S - ] e =
K (0) = -[u+s + u's' 4+ s uk + s+u
2L
(A.16)
19 - -— _—— e -
K+(O) = 3 Lu+s - u"st +5Tut - 5N ]

The charge e, in the emission operator (4.32) will then be the isospin
operator r,, corresponding to the 71°. This operator has the obvious

properties:

Tzu = T u "['zu. = =-u
rd = -u 7,4 = +d (A.17)
s = 0 s = 0
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We then act with’Ha in {4.32) on the initial state and get:
SR, 1 +m - -= : |
Hy [KT°(0)) = Ggpdé u’s -us') (A.18)

Projecting this onto the final state, we find for the transition

amplitude (4.306):

Fo

2(K7(0) |Ea |K (0D

ti

2Ggpd2(l+l) = Grpd | (A.19)

This is the amplitude found in Table 7. A slightly more difficult cal-

culation is necessary for the decay
e
a7 »oF + a® (A.20)

The A7 is an excited p with L=1. Its J, = +1 state can then be

written

76y = E | ot ()Y |L,0) - \j% l07(0) ) |1,41)
where  |1,0) = o]0y (4.21)
and |1,+1) = Q:IO>

We first calculate the SU(H) matrix elements which are easily

found by the same method as in the first examplé:

Il

(D+(+l)ieacazlp+(+l)>

(A.22)

L ——
pot

o, +.
{ 07(0) |es0,_ |0 (HL)Y

1l
+



The orbita

'—4
=]
]
r
[
=
')
(@]
H
(]
=
w
-
“
w
)
L
[0}
0
P,.J
wn
(@)
)]
}—1
=
]
}—.l
o

= +1
(Ole.e 911,41y = (0] e P%cTi0y
= +l
-pc -pCqo +.,
(Ole "7°|1,0) = (0le " ©cy0)
= -p (A.23)

Using (A.21) with (A.22) and (A.23) we find for the matrix element of

the b-term in (4.32):

(T ey (o0, = 17 0, e [ATGH))

1>(+§1) =+ 2 (A.24)
2772 - |

w —= i—,. 2 o 3:‘:_'.'}-3

o = 2GC i=pTd {(I+x) | b32J

T sl V2
- 5 arTo2d1as o1 \
== % uglp d(i+4x) - ZDj (A.ZS)

The Ay can in our model also decay from the state J,=0:

—_—

r Fand
i

- L+ S I R .
A1C0)) = |5 [0 G+ 1)) [1,-1) -€§|p-(-1)>;i,+1>

§
i
¥

" In this case only the b-term will contribute. We already have all the

matrix elements necessary to calculate this contribution:

<’D+(O>, leaé @;E_Ga_ - = {2 o, e [A?L‘(O»

= i1 f
= (E2)(+ ) ()
(=23¢ ¥2)( \



This is the same result as (A.24) as it should be when we take the
matrix element of a scalar operator. The corresponding transition

- amplitude Fg will then be from (4£.39):
F_o= 4212 Geo - (A.26)

This is the way all amplitudes in Table 7 have been found.

Symmetries of the Three-GQuark System

If an object can be in one of a number of conditions x, y, z, ...
we can, when we have three such objects, form states of four kinds of
symmetry which we call S, o, B, A; symmetric, mixed symmetric &, and

antisymmetric A.
|S) = ‘xyz)s

1
= T (|xyz) + |xzy)y + |yxz) + |yzx) + [;xy> + |zyx))

I

lory ]Xyz>cX
= ;%%.({XYZ> -~ \xzy> -+ \yxz) + lyzx)- 2[zxy>- 2[zyx))

|8y = ixyz>3
= % (|xyz)y = |xzy) + |yxz) - |yzx))
8) = Jxyey,

b

1 ‘
\ﬁ§ {-ixyz) + |xzy)- |yzx)+|yxz)- |2xy )+ |zyx))y (A.27)

%

where'}zxy} means the. first object 1s in state z, the second in x and
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the third in y. If x and y are the same state, y = X, we must replace
ixyz)+ lyxz) by [E[xyz). If all threc are the same, oniy the S state
survives as ]xxk)s = |xxx). The state & has been chosen(to be symmetric
in the last two objects, state B is antisymmetric.

I1f we combine two states of these kinds, say \1) and |2), we can .

recompose states of varying symmetry by the following rules:

|1>812>S = +l>s ll>S‘2>Oj

-+
D12 = +1 ]2y =+,
1134120 = +Da a120, = g
D12, = =D 1,02 = +Dg

(A.28)

Lemglog + gl = D
B lay, ¢ bl = D
iz TMal? Bl%7 o
Eamnln, + [0 = b,
E(-mamg + Dg12) = Dy

SU(6) Baryon States and Matrix Elements

When we have three quarks with spin 1/2, the combined system will
have spin 3/2 or 1/2. To find the appropriate states we can use

ordinary Clebsch-Gordan coefficients or (A.27) with x, y and z equal



1%’ "%>s = [#g
2B < b
‘g’ '§>s = |+
2, By = [

Total spin 1/2 can be obtained in two ways,first adding two

together to give spin 0 so that
or first adding two quark spins

this to the third quark spin to

correspond to states with o and B symmetry:

34 =
R
35 =
Y R o ®

the third quark gives total

together to give spin 1 and

down:

(A.29)

quark spins
spin 1/2,

then add

give a total spin 1/2. These two ways

(A.30)

The state I >A cannot be comstructed from only the two spin states, up

or down.

T

When we consider the quark SU(3) states u, d and s, then the com-

bined symmetric state ] Yo' will be a decimet [}Q)S, & and B will be
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A e e Q0 . s 3 A - / s = |1 .
octet states {§>@ and ]§>p and i >A w;Ll be a SU{3) singlet !i>A with
the /f~quantum numbers. For instance, an (& octet proton will have the

It - . T+ DR . ”;./ k] s R . . -+ -
SU(3) state |N o= ludd}g = C%\IUGH>T 1uud>- 21duu>) while a p° of a
decimet will be |pT)g = Juud)g = ﬁé(!udu>+ Juud )+ |duu)).

Combining SU{3) and spin according to the multiplication rules

(A.28), we get the baryon SU(6) wave functions. The symmetric states

-

[ >S will now constitute a symmetric 50:

|26)s: "1 = é>s[§9>s
_ (A.31)
2@ =15 et 15080
Similarly we find two 70 with mixed symmetry:
1209, ; b8, = 12418
29 = 51Dl * 19,10
20100 = 1305 110%
Wy = 1310, .32)
1704 “®p = ‘§>s[-§>5
©®, = §<+1”§>a\§>5+112'>513>a>
0y = 13,110 (.33)
"Wy =+l \

The last 20 antisymmetric .states are:



, 3
20%: L, = gl
2 I T o1 ’
@, = (C15%l8s + 1305180 (8.34)

To calculate SU{6) matrix elements we have to know the vector charges

e, in (3.56) or the axial change in (4.21) or (4.32). 1In the simplest

case with photons acting through the electromagnetic current, e, will

just be the diagonal quark electrical charge operator

(A.35)

When we have mesons acting through the divergence of the axial vector
current, e, will similarly be the 3x3 Gell-Mann matrix operator (29)
Ny for the i-th number of the pseudoscalar octet, acting on quark a.
For instance, when we have the emission of 7°, then ey will be the

diagonal operator
’ ‘ i1 |
e (°) = A3 = -1 | (4.36)

\ 0/

Emission of Tf will then correspond to the charges
on e+ \
eg(m’) = Ag = |

. 5 (A.37)
| a -7

W s manrer

W i
+
’..—l

e (K'Y = =(N,~inc) = v (A.38)
9 ¥ & TS



with the properties

volu) =)
voldy = 0 (A.39)
v;]s> = 0

Matrix elements of diagonal charges are easily found using our

S8U(3) wave functions for N' and d+:

o
a<§leal£2>g = 3? @U_ed)
; 1,
af8leal8)y = 3 (eyt2eq)
B<§]eaii>5 = &
8le_ 10 = 0

B<“I a[“)s

af8lealllg (A.40)

i
(@]

1
Similarly we £find for spin matrix elements between states with S,= +-:

1 3
a1ty = 0

1 3. 2=

- - =+ =2
a<2l ZIZ>S 3V

Liq01

SEEANP) = 41
G2t 2 (A.41)
. l 1 _ _ l
a<2‘5213 a 3

: T Yl 1}
g<§llié>g = +1

1 1
B<§|Gzli>g = +1
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f'i
}_1

ix elements of . and g_ can then be found using the Wigner-Eckart

theorem.

Let us now calculate as an example the matrix element of e o

between a N© and aA+ in the 22. From (A.31) we first get:
OFleacuals = (3 EloalRy oleali)y
b oBloldy pele 00
Using (A.40) and (A.41) we themn find:

(NTle

adazlA‘>

Il
PN
POt l

'—//*\ i
CIEDND
~
ey
T
Wi
N}

~
[0]
[
]
1]
[a 9
~
\\/__J

When e, correspon 1ds to an electromagnetic interaction, we get from

(A.35):
2 — 1 —
e (W) |57 = +ov2 <- 5y =+ s 2
9 3’
For n° we get from (A.36):
(KFle () (a7 = L2 LD =2 (A.42)

When we have matrix elements of octet operators between two octets,
we can express the result as a linear combination of the two SU(3)
reduced matrix elements F and D. These we take from Gasiorowicz (34)
and Feynman (35) -and 1ist’them in Table A. As scon as we know the

F and D values, we can then calculate all the matrix elements of interest.



- 107 -

SU{3) matrix elements for octet-octet transitions.
Transition SU{3) Matrix Element
NT LT O F + D

N o NP 3 (F - 1/3 D)
NF - 40 Xt V3 (7 + 1/3 D)
RO 7 (5 - 0

1O _, /O T]O 2/3 \f_D

A = T 2/3 3D

Ao L Nt K V3 (F +1/3 D)
Z+ - 7T x° 2 7

I ST 2/3 {3 D

I L {2 (F + D)
s Z+ ,ﬂo 2/3 {3 D

= - = 7° F-D

= - ° K~ V2 (7 + D)
= - A K V3 (F - 1/3 D)
= - 1 J3 (F + 1/3 D)
NT o N7y F+1/3D
5T j_ v +1/3 D

NO - N° vy - 2/3D

= =2 v -2/3D

5T sy - F+1/3D
= - = ¥ -F+1/3D
AC o Oy -1/3D

0 -0y +1/3 D




b}
O
[
Y
]
O
[
[
o]
ot
o]
o]
[t
I
™
ot
O
H
o

etween a decimet and an octet, there is only
one reduced matrix element. We can then relate all other matrix ele-

. s e . . . . ) A e
ments to this single one using Table B where we have set the A'N 7°

-3

matrix element equal to 1. To find the absolute values, we have to per-
form a calculation similar to the one which led to (A.42).

These results are listed in Table C where the final baryon state
is an octet proton in the 56 with spin up. For an initial decimet state

+ 0

we take a A and the matrix element given is A’ N'w . 8o the value in
(A.42) is found in this table.

For an initial singlet A, the matrix element given is for decay
. + - . e xas . .
into N'K . With an initial octet we have in Table C listed the corres-
ponding (F,D) values. These we have found by calculating two diagonal

s . + O d o L .

matrix elements like N'N'sC and N'N 7 in the way already described,

and then expressing these in terms of F and D as found in Table A.

Baryon Orbital States and Matrix Elements

The ground state [0Y% has no orbital excitations and is therefore
completely symmetric. Combining this with the symmetric SU(6) state
156)8, we get the complete baryon ground state:

e

3
5,07

Fo
N

— z 1

= ]§3§810> (A.43)
At the first excited level, there are two orbital excited states, one
with G-symmetry,

1y = &0y (4.44)

et
x

e
~
I

= b"|0) (A.45)

T
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Table B. SU{3) matrix elements for decimet-octet.transitions.

Transition SU(3) Matrix Element
I N x© 1

A+ . ZP K+ 1
Ny 12

s+ o, it 5O 1/2
A 1/2 {3
st N 1/2 {3
© L Nt KT /2
L= k" 1/2

= - = =° 1/2

= o= P i/2 {3
= - A2 K /2 3
= - K 1/2
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The superscript 1 in the orbital state means that there is N=1
excitation in it. Combining these orbital states with the SU(6) states
s

with the same symmetry, (A.32) and (A.33) according to the rule (A.28)

we get the complete first excited baryon state:
(1705 11y, + 170)5 1) ) (4.46)

When N=2, we have two excitations of the type (A.44) and (A.45). These

can be combined to give total angular momentum L=2,0,1 according to

(4.28):

2 m 11 11

12} |0 = iwé(wi-ll>all>a + ]1>B11>B)
2 2 1 1,1 11 .

1292 100 = &!j;i gl D + ]1>3l1>g) (A.47)
2 \2 L, i1 11

‘2>3; |O)B =05 K+ll>@]1>§ + ‘1>B!l>oc)

7 JRN S RN SO ARG S |

1, = ‘52( EOMES |1>511>a)

Combining these orbital states with the apnropriate SU(6) states, we

r 45 [ r 2 .
can form the five multiplets, ;5 'j lgg O EZQ,Zfé,[Lg, 0"
andih T%. For instance
SR B b1 2
70,2F) = 1570, 125 + 1709, 125
o 2 (a.48)
and 20,171 = (2004110

The angular momentum of each excitation in (A.47) is combined using

ordinary Clebsch-Gordan coefficients. For example, using

'12,o> = ,§§<;+1>]-1> + =Ly [+1)+ 2]0)]0Y) (A.49)
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[
N

1

we get

e N R
1210> = -f—) (a_,b~ —a b, w éazbz )]O>
: — (A4.50)
5 2 i1, T T + -+, -+ T
and gb,O)S = [z (ega_ *oagag bb_ + byb,)[0)
Similarly we find:
2 1+t 4 4t
‘O,O)S = iii (2a,a_ - aza, + 2bib. - b,b,)|0) (A.51)

We can now easily calculate the orbital matrix elements. Let us do a

few examples:

-\ 2 n -Na, 4
(01e7%212,095 = = (0fe " Faza,]0)

—_— 2 ‘
<N - el L
B Jé ( ?I <Olazazaz z 0) = + 1§6 Kz
2% 6
. ~Aa 2 T{ -xa. +
(Olage 212’0>S = fé (O]aze “a,a,|0)
T . -
= |z (-\)(0|a,a,aa,|0) = -éé A (A.52)

All the relevant orbital matrix elements are found in this way and

are listed in Table D.
ixamples

To show how to use the machinery outlined in this Appendix, we
will now calculate two typical transition amplitudes. First, let us
consider the process

A(1520) = AN(1115) + v (4.53)
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0 0 0 0 V=1 z=N
5] 2 C0=1 Z=N

0 ,mﬁ 0 g =1 =
<m+ 4 50= =

0 : 0 SENG - 0=1 =

Z) € ( 9 o
z(m_+ <.mﬁ+ g N9 D=1 =N

Z A\ € [4 9 g

P s e =l - | 7, == =
KL & X 3 e s A
0 0 0 N~ Po=1  1=N

0 0 0 T So=1 0=N
(1-‘d] zp2 2|0 (0%a] 2,272l 0D (v+a] 5, otelo) (0°dlz . 2l0) & 321d1ITH

*gjusuwale XTalew [elTqIQ

‘a@ 2192l
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-

' : . . ; - ,
The initial /u belongs to the 2{;)3/2 of the ?ZQ’l t. It can decay from

the states with J, = +3/2 and J, = -1/2. These we find by adding L=1
together with the quark spin S = 1/2 of the singlet AO:
_,_3\ = 2« 'l i '1\1 A.54
AB/Z('E) = I ,/\l(*2)>l-1-J'*' /CC (A.54)
f—‘ =
1 B

1 1
12, G [L,-1)

|12 1
LB e Lo |

Then we need the SU(H6) matrix elements

1 2 1
</\8<+—2;) le, | /\1<+5>> = —
(A.55)

1 2 1 5
(hgGpdfeqoa | A (300 = 13

The orbital matrix elements we find in Table D. In this way we get

for the two amplitudes F, and F_ in (3.56):

rs 11 5
F, = 9G|—Tii- = = {2 TG
+ 118 13 Lot
2 s 211
Fo= 9g| jt(T Z=R)(-2) ||
- { 3 18 ) \53<18 Y )
= 4((1’ - 2R\ ¢ (A.56)

These are the two amplitudes given in (3.73). The extra factor JI7§.in
(A.56) comes frbm (A.46), only the (-symmetric term contributes when
the initial‘state is ZQ.

The doublet_partner of A(1520) is the A{1405) with total spin
J = 1/2. This one can also decay by emitting a photon:

A(L405) = A(ILLS) + vy (A.57)
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In this case there will only be one amplitude, for decay from J, = -1/2:

Lo ;r_l— 2, 1\ 1 :_2— 2 '1 ‘ 1
/\\1/2<-2) = \3 ‘./\.1('§/>\1J0>a "3 lAl(T§)>\l,-l>a (A.58)

The result is similar to (A.56) except for these different CG-coefficients:
2
; (2R ¢ (4.59)

Our last example will be the decay

NT(1700) - N + «° (4.60)

-

|

The initial nucleon belongs to the 4(@)1/2 of the [ZQ,I-J. It decays
from the J, = +1/2 state which we again comnstruct using ordinary CG-

coefficients:

_v..:i. e !'-—E 4:7 ,§\ { - L - @4 1f L
1 4 1 1
+ 5 N ()Y 1L, A+ A.61
|z [y L, (A.61)

In the meson emission operator (4.21) we can now calculate all the
matrix elements using Tables C and D. First of all we get for the

SU{3) matrix element

so that the transitionm amplitude will be:

Db enas

{
: 2
F = 3Gg ; \’i?\D(-

iy



=

[

(€)Y
1

We have again multiplied by J1/2 because the initial state belongs to
& 70. . Adding terms together, we get the final answer for the transi-
s

tion amplitude which can be found in Table 6:

. ~

!
6 Ged N2D(14K) - 3B ' (A.62)
4 ,:

All the amplitudes are calculated in this way.
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