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Abstract

The spatial and temporal coverage of geodetic data sets such as Interferometric Syn-
thetic Aperture Radar (InSAR) and Global Positioning System (GPS) is increasing
to the point where we can constrain many aspects of the deformation associated with
earthquakes and volcanic eruptions. As our understanding of the kinematics of defor-
mation improves, we can begin to explore the dynamic processes that drive seismic
and volcanic deformation in tectonically active regions around the world.

In this thesis, I use InNSAR data in inversions for earthquake source parameters for
both small (4.0 < M,, < 5.5) and large (M,, > 7) earthquakes. For small earthquakes,
I focus on constraining the hypocenter location and seismic moment. I examine data
for small earthquakes in the Basin and Range province of the Western United States,
and in the Zagros mountains of Southern Iran. For large earthquakes, 1 place con-
straints on the coseismic slip distribution for a pre-determined fault plane geometry
and explore how sensitive the inversion is to inadequacies in the fault plane parame-
terization. I perform inversions for both the 1999 M,, 7.1 Hector Mine earthquake in
Southern California and the 1995 M,, 8.1 Antofagasta earthquake in Chile.

I also describe some advances in the technical details of using InSAR observa-
tions in inversions for deformation source parameters. I use the full noise covariance
matrix in my inversions and compare inferred noise covariances for several interfer-
ograms covering the Mojave desert, Southern California, with GPS observations of
tropospheric structure functions. I provide an algorithm for resampling (or averaging)
InSAR data to minimize the computational burden by reducing the number of data
points used as input to inversions. I also explore techniques for regularizing poorly

determined inversions of geodetic data for coseismic fault slip.
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Overview

0.1 Introduction

Over the last few decades, space agencies around the world acquired a catalog of
Interferometric Synthetic Aperture Radar (InSAR) data covering much of the Earth’s
surface with a varying number of observations in time. Networks of continuous Global
Positioning System (GPS) receivers in tectonically active regions provide temporal
coverage of the full seismic cycle, while InSAR and pixel tracking using various types of
remote sensing imagery (e.g., Landsat, Aster, SAR, air photos) can provide spatially
dense observations of deformation over regions several 100 km? in extent.

This unprecedented set of geodetic data allows both direct observation of processes
such as secular deformation, aseismic fault slip transients or volcanic deformation rate
changes, and the inference of deformation source properties such as distributions of
coseismic fault slip and earthquake or magma chamber locations. As the quantity and
quality of kinematic models grow, we can begin to examine the dynamics of deforming
systems, including placing constraints on fault zone friction laws and earthquake trig-
gering processes, and understanding the relationship between the spatial distribution
of short term processes such as coseismic fault slip in subduction zone earthquakes and
longer time-scale characteristics of the system such as gravitational or topographic
anomalies (e.g., Song and Simons, 2003; Wells et al., 2003).

I examine ways of best using the rich geodetic datasets to understand localized
deformation sources, with specific application to deformation associated with earth-
quakes. I begin with methods for describing and accounting for the structure of

atmospheric noise in interferograms, and with a data resampling technique that re-
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duces the number of data points used as input to our inversions without significantly
degrading the information content.

The main body of my thesis is concerned with earthquakes at opposite ends of
the earthquake magnitude scale. Small earthquakes (M,, 4.5-6) can delineate active
structures in remote areas where we have little other information about the processes
accommodating plate tectonic motions. The distribution of small earthquakes also
helps us understand the style of deformation and the depth range within which defor-
mation is accommodated seismically. In addition, the eventual creation of a catalog
of precise, geodetically-determined hypocenters will aid in resolving the tradeoff be-
tween location and velocity structure that frequently plagues seismic tomography. I
locate several small earthquakes in the western U.S. and in the Zagros Mountains of
Southern Iran and comment on the implications of their distribution on the regional
tectonics.

Large earthquakes (M, > 7) create a step function of stress in time along the
fault, which the crust then responds to by a variety of postseismic processes. In order
to interpret the observed postseismic deformation, we must have a full understand-
ing of the coseismic slip distribution, including how the uncertainties in fault plane
location, rheology of the crust, and observational errors map into uncertainties on
the inferred slip distribution. There have been many inversions of geodetic data for
coseismic fault slip over the past few decades (e.g., Segall and Harris, 1987; Ward
and Valensie, 1989; Barrientos and Ward, 1990; Freymueller et al., 1994; Pritchard
et al., 2002; Simons et al., 2002), employing a wide range of regularization techniques.
I present a semi-automatic technique for regularizing inversions for subsurface fault
slip from observations of surface deformation. I use several synthetic scenarios to
illustrate the sensitivity of fault slip inversions to data noise, errors in fault geome-
try, and data distribution. I present results for the Southern California 1999 Hector
Mine earthquake, illustrating how my regularization technique runs into difficulties
when the fault plane geometry is poorly determined. This problem is magnified for
strike-slip earthquakes where data points can be very close to the fault plane and

errors in geometry become more significant. I also apply my technique to the M,
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8.1 Antofagasta subduction zone earthquake that occurred in Chile in 1995. In the
subduction zone setting the fault plane is much further from the data observations,
so that the inversion is less sensitive to fault plane geometry errors than in the Hector

Mine earthquake inversion.

0.2 Thesis outline

This thesis is divided between InSAR data analysis techniques and applications of
these techniques to inversions for earthquake source parameters. In Chapter 1, I
address two aspects of the treatment of InSAR data in inversions for earthquake
parameters. I develop methods for describing the spatial covariance of InSAR noise
and incorporating this covariance into inversions. InSAR provides spatially dense
measurements over length scales of 100s of km, potentially resulting in tens of millions
of data points. I demonstrate a method for greatly improving computational efficiency
by reducing the number of data points used as input to inversions without losing
significant information.

In Chapters 2-3, I examine nonlinear inversions of geodetic observations for earth-
quake locations and mechanisms. Chapter 2 describes my inversion technique, applies
this technique to the Little Skull Mountain earthquake, and compares inversions of
InSAR data alone with joint inversions of seismic, GPS and InSAR data. I comment
on the implications of the inferred earthquake location on the stability of the region
around Yucca Mountain, a proposed hazardous waste repository site.

In Chapter 3, I show the results of a survey of surface deformation associated
with mid-sized earthquakes in Southern Iran. The Zagros mountains of southern
Iran are the result of the ongoing collision between Arabia and Eurasia. Due to the
poor seismic station coverage in this region, earthquake locations for smaller events
(M, < 5.5) often have errors of up to 50 km in map view and depth. I performed
a search through the existing InSAR catalog and examined all earthquakes with
magnitudes M,, > 4.5 spanned by interferometric pairs with spatial baselines (B )

less than 150 m and time periods less than 3-4 years. 5 events have detectable ground
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deformation significantly above the level of the noise, and/or that is visible in more
than one independent interferogram. I describe each deformation source and comment
on the significance of their locations in the regional tectonic framework of the Zagros
mountains.

Chapters 4-5 deal with inversions for the best-fitting coseismic slip distributions
due to large (M, > 7) earthquakes. The focus here on larger events stems merely
from the fact that the earthquakes in question produce surface deformation with a rich
structure that requires we move beyond fitting the data with a single fault patch or
point source. A small, but very shallow, earthquake may require the same treatment,
whereas a large, but very deep earthquake may be sufficiently fit by a point source. In
Chapter 4, I describe the ;R; method and variable smoothing, two improvements on
earlier techniques for regularizing this style of inverse problem. In Chapter 5, I apply
the ;R; method and other techniques discussed above to the 1995 M,, 8.1 Antofagasta
subduction zone earthquake in Chile and to the 1999 M,, 7.2 Hector Mine earthquake
in Southern California. I discuss the inversion results for each event and comment on
how the different types of model-data geometry affect the inversion. I end this thesis

with a discription of the future directions of this work.



Chapter 1

Some thoughts on the treatment of
InSAR data



Abstract

Repeat-pass Interferometric Synthetic Aperture Radar (InSAR) provides spatially
dense maps of surface deformation with potentially millions of data points. Typi-
cally, any covariance of the noise between individual InSAR data points is neglected
and each data point is assumed to be independent. Here, we examine this assumption
by estimating the actual covariance structure of noise in InSAR data. We compare
the results for several independent interferograms with a large ensemble of GPS ob-
servations of tropospheric delay and discuss how the processing of InSAR data affects
the inferred covariance structure. Motivated by computational concerns associated
with numerical modeling of deformation sources, we then combine the data-covariance
information with the inherent resolution of an assumed source model to develop an
efficient algorithm for spatially variable data resampling (or averaging). We illustrate
these technical developments with two earthquake scenarios at different ends of the
earthquake magnitude spectrum. For the larger events, our goal is to invert for the
coseismic fault slip distribution. For smaller events, we infer the hypocenter loca-
tion and moment, with the mechanism constrained by seismic data. We compare the
results of inversions using several different resampling algorithms, and we assess the
importance of using the full noise covariance matrix, including the magnitude of errors
introduced when data containing correlated noise is inverted under the assumption

of uncorrelated noise.



1.1 Introduction

The continually improving spatial and temporal coverage of geodetic data sets such
as those provided by Interferometric Synthetic Aperture Radar (InSAR) motivates
us to better quantify the sources of error in these datasets in order to rigorously
characterize how well we can resolve the evolution of deformation sources in space
and time. Typical deformation sources include magma chambers, dike intrusions,
and slipping faults. The large volume of available observations presents us with a
number of challenges, including the characterization and treatment of data noise and
practical considerations of how to minimize the computational cost of examining such
large datasets. In this paper we explore these two aspects of the treatment of InSAR
data with applications to inversions for subsurface fault slip and earthquake location.

First, we present a technique for estimating the covariance structure of noise in
InSAR data. To properly combine InSAR and Global Positioning System (GPS)
data, and to assess the uncertainties on inferred model parameters, we require an
understanding of the character of INSAR data noise. We compare results derived from
an ensemble of interferograms with the noise covariance structure derived from GPS
data from Southern California (Emardson et al., 2003). Second, driven by a desire to
minimize the computational burden involved in our studies, we demonstrate how we
reduce the number of data points used as input to our inversions. Whereas researchers
working with earlier, sparser datasets needed to use all the available observations
in order to extract as much information as possible about the system of interest
(e.g., Harris and Segall, 1987; Segall and Harris, 1987), we now have the luxury of
acquiring nearly spatially continuous measurements of ground deformation. Practical
considerations, such as the frequent need to perform Monte Carlo tests requiring the
calculation of a large number of forward models, lead us to develop methods of spatial
sampling and averaging of interferograms in a manner that reduces the number of
data points while retaining as much information as possible (e.g., Jonsson et al., 2002;
Simons et al., 2002).

We end with demonstrations of the application of these techniques on two earth-



8

quakes where the goals of our inversions are quite different. For large earthquakes
(>M,, 7) we typically perform linear inversions for the distribution of coseismic fault
slip on a plane fixed by the mapped surface trace and aftershock distributions. We
use the correct covariance matrices for the noise estimated directly from the data, and
illustrate how our resampling algorithm performs compared with previous resampling
techniques. For smaller events (<M, 6), our goal is often simply to constrain the lo-
cation of the fault plane, earthquake mechanism and moment. We perform nonlinear
inversions for the best-fitting fault plane geometry, using the Neighborhood Algorithm
(Sambridge, 1998a; Lohman et al., 2002, Chapter 2, this thesis). We demonstrate how
neglecting the off-diagonal components of the noise covariance matrix affects the error

bounds that we place on our hypocenter estimate.

1.2 Effect of correlated noise

InSAR and GPS data both contain spatially correlated noise (e.g., InNSAR data in Fig-
ure 1.1). This correlation is primarily due to atmospheric and ionospheric structures
that are commonly correlated over length scales of 10s to 100s of km. Variations in
atmospheric water vapor with elevation can also introduce errors in the measurement
of satellite line-of-sight (LOS) that are correlated with topography (e.g., Goldstein,
1995; Zebker et al., 1997; Williams et al., 1998; Hanssen, 2001; Jonsson, 2002; Emard-
son et al., 2003). In order to assess the significance of features of an inferred source
model, we must estimate confidence intervals and model parameter covariances. The
degree to which the data noise is correlated affects both these quantities (e.g., Menke,
1989).

To estimate the noise covariance matrix, C,,, for individual interferometric pairs,
we assume that the noise is spatially stationary and isotropic, or that the covariance

between any two points depends only on the distance between them. We define the
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Figure 1.1: Sample interferogram from the Mojave desert in Southern California,
illustrating the spatial covariance of atmospheric noise. Interferogram covers Track
127, Frame 2925, spanning 1995/10/10 to 1995/12/19, with perpendicular baseline
(B1) = 37 m. Arrow indicates the horizontal projection of the LOS vector.

covariance between two points separated by a scalar distance, r, as:

C(r) = Cov(x,x+r) (1.1)
= Elf(x)f(x+r)]

where 7 = |r|, f(x) is the atmospheric noise at position x within the interferogram
and where we assume that the average value of the noise is zero. We also consider the
structure function, which is typically defined (e.g., Williams et al., 1998; Hanssen,
2001; Jdnsson, 2002) as the variance of the difference between two points separated

by a distance 7:

S(r) = E[(f(x) — f(x + 1))’ (1.2)

so that
C(r)=0%-S(r)/2 (1.3)

where o2 is the variance of noise within the image. Our assumption of stationary,
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isotropic noise implies that both C' and S are functions only of the scalar distance r.
We examine two methods of calculating C' and S for a given interferogram. First,
we explicitly compare all pairs of points within the interferogram, ®, by calculating

the full autocorrelation matrix, A. The average of A vs. distance is equivalent to C(r).

1 nr ny
Ad:c,dy = n— Z Z CI)i,j(I)ifdw—}—l,jfdy—H, der=1: nw, dy =1: ny (14)
i=dx j=dy

where nx and ny are the number of columns and rows in the interferogram and ng is
the number of valid values within the overlapping region at each shift (dz,dy). We

keep track of the difference between each pair of points to form S:

nr ny

Z Z (®ij — Pi—dot1,j—dy+1)’ (1.5)

i=dz j=dy

1
Sdz,dy = e
In Figure 1.2 we show the radial averages of A and S (C(r)and S(r), red curves).
Neither average is sensitive to anisotropy in the atmospheric noise.

Our second technique for computing C' and S is a sample variogram, where we
choose a large number of random pixel pairs within the interferogram, binned by
distance (blue curve in Figure 1.2). For the example shown in Figures 1.1 and 1.2
we use an interferogram that has been subsampled down to less than a hundredth of
its original size (i.e., in radar processing parlance, the interferogram has been looked
down 10 times in range and 50 times in azimuth). For larger images, computation of
the autocorrelation and structure function using all possible pairs of points within the
image becomes computationally prohibitive. Figure 1.2 indicates that it is sufficient
to use a sample variogram instead, as long as the number of random pairs of points
is sufficiently large.

Both theoretical work on atmospheric turbulence (e.g., Tatarski, 1961), GPS ob-
servations of tropospheric delay (e.g., Emardson et al., 2003) and previous studies of
InSAR data (e.g., Goldstein, 1995; Zebker et al., 1997; Hanssen, 2001; Jonsson, 2002)
indicate that the spatial structure of the atmosphere exhibits power-law behavior that

is correlated over length scales of several 100s of km. However, we wish to note some
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Figure 1.2: Covariance and structure function vs. distance for the interferogram in
Figure 1.1. a) Covariance, C(r), determined from autocorrelation matrix (black) and
by variogram (gray). b) Structure function, S(r), determined using all pairs of points
(black) and from variogram (gray). Note that for most distances the variogram agrees
with the result from the full dataset.
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differences between the character of noise observed in InSAR data and that observed
in GPS time series. First, interferograms are sensitive to the difference between at-
mospheric delays at two discrete times, so that we observe the covariance in space
rather than in time. Second, the limited spatial scale of the interferogram, the fact
that we observe phase delays relative to some arbitrary constant, and the fact that
orbital errors introduce an uncertainty approximately corresponding to a quadratic
ramp across the image, all mean that the covariance we observe within the interfer-
ogram is different than the actual covariance between points across that particular
time interval. Many of the interferograms examined in this thesis have empirical Cy
that have a logarithmic decay over some scale length L, (i.e., Figure 1.2).

The covariance we infer for any particular set of noise depends in part on the
spatial extent of the dataset. We explore the difference between inferred and actual
covariances with several synthetic tests. We create synthetic correlated noise, n.,

from a pre-determined covariance matrix, Cy, using the following relation:
ne = vd*?n,, (1.6)

where n,, is uncorrelated noise and v and d are the matrices of eigenvectors and
eigenvalues of Cy, respectively. Not surprisingly, we find that the variance we estimate
for subsets of pixels within synthetically generated correlated noise only approaches
the input variance when the window size is several times larger than the correlation
length scale of the noise (Figure 1.3). Furthermore, the covariance we infer from data
with power-law correlated noise changes when we begin by removing the mean or a
quadratic ramp from the data (Figure 1.4). When we remove a quadratic ramp over
an image approximately 100 km in extent, the remaining signal is only correlated on
length scales of around 50 km. The removal of the mean of the signal corresponds
to the case where we believe we have good information on the orbital baselines and
are confident that our interferogram characterizes the noise to within an arbitrary
constant. Note that the blue and black lines overlay each other in Figure 1.4e, because

the structure function is insensitive to the mean value of the noise. In Figure 1.4f, we
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show the inferred covariance for the real interferogram from Figure 1.1, both with and
without the removal of the best-fitting ramp, analogous to the red and blue curves in
Figures 1.4d and 1.4e.

We compare inferred noise covariances for several individual interferograms in the
region surrounding the 1999 M,, Hector Mine (CA) earthquake with previous work
based on simulating expected InSAR covariances by using a large ensemble of GPS
observations of tropospheric delay in Southern California (Emardson et al., 2003).
In Figure 1.5a, we show the inferred spatial structure function for interferograms
spanning different time intervals over the same location. Interferograms spanning the
time of the Hector Mine earthquake are shown in black, and those using interseismic
interferograms are shown in gray. When the interferogram spans the earthquake, we
remove a model of the coseismic deformation before we examine the noise structure.
The similarity in the spatial scale of the noise between coseismic and interseismic
interferograms (~ 10 km) indicates that our estimate of the noise structure is insen-
sitive to our method for removing the coseismic signal. In our inversions, we fit a
spline to the function of covariance vs. distance (Figure 1.5b, Section 1.4).

The disagreement in functional form between our observations and the GPS data
at distances greater than 10? km results from the fact that we perform a series of
filtering operations on the InSAR data during the formation of the interferogram, in-
cluding the absorption of a quadratic ramp by an interferometric baseline reestimation
procedure. The dashed curves indicate the structure function we would infer if we did
not remove a ramp from the final interferogram. One benefit of empirical covariance
and structure functions compared with theoretical calculations of noise structure is
that we include the effect of the filtering, averaging, variations of atmospheric HyO,

and DEM errors that are part of the interferogram processing.

1.3 Resolution-based resampling

Inversion of interferograms at full resolution can require evaluating the forward prob-

lem at over 107 points, which is computationally expensive. This expense is magnified
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from Emardson et al., 2003). The thick grey line indicates the functional form used in
Emardson et al. (2003). b) Covariance vs. distance for the coseismic and interseismic
interferograms from (a).

for nonlinear problems where we adopt Monte Carlo optimization techniques. We can
reduce the number of data points without losing significant information by taking ap-
propriate spatial averages. These averages take advantage of the fact that individual
neighboring pixels far from the deformation source contribute approximately the same
information to the inversion. We define a set of n orthogonal boxcar functions, a;,

such that:

Zai(ac)aj(a:) =0 (1.7)
D; =) ai(z)d(z) (1.8)

where z is a spatial coordinate covering the interferogram, d are the original, full
resolution data, and D are the resulting resampled data points. We retain our earlier
assumption of spatially stationary and isotropic noise, or we would need to include a
covariance term in Equation 1.8. For linear problems, we infer a slip model, m, from

a given D using the relation:

Gm =D (1.9)
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where G is the design matrix of Green’s functions. The goal of any resampling algo-
rithm is to reduce the size of G and D, which control the number of computationally
expensive forward models that we have to compute, without reducing the information
about m contained in the inversion. The character of G' controls the shape of the
optimal distribution of D.

Previous techniques for resampling InSAR data include uniform sampling, in
which the a; form a regular grid across the image (e.g., Pritchard et al., 2002), and
resampling techniques based on the spatial complexity of d. Examples of the latter
approach include the Variable-Resolution (Simons et al., 2002) and Quadtree (e.g.,
Jonsson et al., 2002) algorithms which both sample the data according to its spatial
variance. Both methods begin by dividing the data into quadrants and subdivid-
ing each quadrant until the variance within each smaller quadrant is below a preset
threshold. The two techniques differ in the function removed from each sub-quadrant
before estimating the variance. The Quadtree algorithm removes the local mean,
and the Variable-Resolution algorithm removes the best-fitting local bilinear ramp.
Variable-Resolution is sensitive only to the curvature of the signal, whereas the sam-
pling density of the Quadtree algorithm also depends on the local slope, and therefore
the absolute amplitude, of the deformation field.

Uniform sampling is not ideal for deformation sources which approach or break
the surface because to achieve dense sampling near the source where the data has the
most detailed structure, you may be required to include an unnecessarily large number
of data points in the inversion. For subduction zone events or other deep sources of
deformation (e.g., Pritchard et al., 2002), uniform sampling is a reasonable approach,
although the issue of data covariance must not be neglected when the sampling rate
is smaller than L., the correlation length of the noise. In the presence of small-scale
perturbations to the data from noise, decorrelation or phase-unwrapping errors, both
the Variable-Resolution and Quadtree algorithms may produce high densities of data
far from the deformation source.

We introduce an algorithm that uses the design of the inverse problem to determine

the optimal data sampling density. We examine the data resolution matrix for a
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given set of a;, beginning with a coarse uniform sampling. If any particular a; is
resolved above a prescribed threshold, we partition it into four smaller regions and
re-examine the new data resolution. Our data resolution-based (R-based) specific

sampling algorithm is as follows:

1. Define the source parameterization (e.g., fault plane geometry)
2. Begin with a coarse grid of a; and form D,

3. Compute Green’s functions

4. Form generalized inverse, G™9 = (GG')"'G’ (e.g., Menke, 1989)
5. Calculate data resolution matrix, N = GG™Y

6. Find all D; where the diagonal of NV is above preset threshold
7. Subdivide points from (6) into 4 parts, forming new q;

8. Repeat (3-7) until all D; are just below threshold

where G is the matrix of Green’s functions augmented by a weighted finite difference
approximation of the Laplacian smoothing matrix (e.g., Menke, 1989). Our two
tuning parameters are the resolution threshold (between 0 and 1) and the weighting
of smoothing included in GG. For a reasonably small size of fault patch, we must apply
some smoothing to avoid numerical difficulties in the inversion. If the resolution
threshold is close to zero or if the smoothing is small then the final number of D;, n,
will be higher. Currently, the choice of tuning parameters is somewhat arbitrary and is
driven simply by the desire to have a low number of points (so that the computational
cost is reasonable) that are concentrated near the fault. In our implementation,
we also remove samples corresponding to regions that cross the fault. The number
of data points in each box does not simply scale with box size, since some boxes
contain decorrelated regions. We illustrate how the sampling evolves over several
steps using data for the Hector Mine interferogram that we will examine in Section 1.4

(Figure 1.6).



19

200
3 N \ i e
2 - S i, Simm |
% 100 1 i ulli HH i
= &
LOg | | |
0 a | b | ¢ | d
0 100 0 100 0 100 0 100
Easting (km) Easting (km) Easting (km) Easting (km)
| 1 B |
-50 0 50

LOS Deformation (cm)

Figure 1.6: a) Input unwrapped interferogram for Hector Mine earthquake: Track
127, Frame 2907, spanning 1999/01/13 to 1999/10/20. Color indicates the line-of-
sight (LOS) change towards or away from the satellite in the direction indicated by
the grey arrow. Black lines indicate the fault plane. (b-d) Iterations 1, 3 and 6 of
the R-based resampling algorithm. Color indicates the average LOS value for all
non-NAN points contained within each box.

Our inversion would not be complete without a data covariance matrix associated
with our resampled D;. Recognizing that each D; is a sum over a subset of d’s, we

express the covariance between any D; and D; as:

Cov(D;, D;) = C'ov(nli ) d(x),nij Y da) (1.10)
Cov(D;, D;) = nlnj > ¥ Covld(w)d(x,) (1.11)

The covariance between any two D; is the sum of the covariance between all points
included in their averages, as determined in Section 1.2. Likewise, the variance of any
individual D; accounts for all the data points averaged by a;.

When we perform an inversion of geodetic data (InSAR or GPS), we transform
our system of equations by premultiplying with P = Q~!, where @ is the Cholesky

factorization of Cy such that QQT = C;. If we use the correct Cj, this transform
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results in reweighted data with unit variance (e.g., Harris and Segall, 1987; Segall
and Harris, 1987).

1.4 Example 1: A large shallow strike-slip earth-
quake

We demonstrate the behavior of our resampling algorithm on inversions for subsurface
fault slip using synthetic data similar to the InSAR data spanning the 1999 Hector
Mine Earthquake (M, 7.1). We consider only synthetic scenarios because we can
separate out the effects of noise and data distribution from model errors in fault
plane geometry and elastic models of the crust. We use the fault plane geometry
described in Simons et al. (2002), and determine the noise structure as described in
Section 1.2.

To make our synthetic examples similar to a real-world scenario, we generate
synthetic data using an input slip model loosely based on one inferred from the
real InSAR data (Figure 1.6a). The slip model inferred from real data is already a
smoothed representation of the actual slip distribution, so we add Gaussian peaks in
slip at several locations on the fault plane to restore a more realistic complexity to
the input slip distribution.

To compare our algorithm with the other styles of resampling, we tune each re-
sampling technique so that it produces approximately the same number of data points
(Figure 1.7). Because this example is for demonstration purposes, we add a slightly
higher level of random noise to several regions around the outside of the interfero-
gram shown in Figure 1.6a to simulate DEM and unwrapping errors. We apply each
resampling algorithm to the real data set (3 x 10° data points). We then compute
Green’s functions for the resulting resampled data geometry and generate synthetic
data using the synthetic slip model shown in Figure 1.8. We add noise using the
covariance matrix estimated from the interferogram as described in Section 1.2. We

then compare the inferred slip model for each set of D. To pick the optimal value of
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smoothing in each case, we use the “Jury” technique (Described in Chapter 4).

The uniform algorithm is clearly non-ideal in this example, as is shown by the lower
resolution of the slip model in Figure 1.8. The Variable-Resolution and Quadtree
algorithms have high concentrations of data near the fault, but there are also clusters
of data points associated with the noisy regions on the edges of the interferogram.
Even though they use a few more data points, the Variable-Resolution and Quadtree
slip models retain fewer of the features in the original slip model than does the R-
based slip model.

We note that the R-based algorithm will concentrate sampling around the fault
plane even if there is not a large variation in the actual data values associated with
a given part of the fault trace. Therefore, we can resolve regions of the fault plane
that did not slip during the earthquake, a feature that can be as important as finding
the peaks in the slip distribution. The large data gap at the north end of the fault in
Figure 1.7b results from the fact that the data-based Variable-Resolution algorithm
did not sample the ends of the fault well, so that when we removed all boxes crossing

the fault plane, we removed a box that sampled a large area.

1.5 Example 2: A small shallow earthquake

We show how InSAR data can constrain the location of shallow earthquakes to within
a few km even when the event is fairly small by teleseismic standards. Precise earth-
quake locations can be used as input to seismic structural studies, analysis of styles
of continental deformation, and can help calibrate earthquake location techniques
otherwise based only on seismology. Our ability to locate small, shallow seismicity is
an important part of the Comprehensive Nuclear Test Ban Treaty (CTBT) program.
Equally important to all of these applications is our ability to place confidence limits
on our inferred location for a given event.

We examine a M,, 5.1 reverse-faulting event that occurred in the Zagros mountains
of Southern Iran on 1999/04/30 (Figure 1.9). We infer the best-fitting hypocenter,
fault plane area and fault slip using the Neighborhood algorithm (Sambridge, 1998a).
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The satellite line-of-sight (LOS) of about 23° from vertical results in measurements
that are about twice as sensitive to vertical deformation than to horizontal defor-
mation. Since the existing dataset is limited to observations from only one LOS
direction, we fix the strike, dip and rake to the values inferred from the International
Seismological Center (ISC) and Harvard Centroid Moment Tensor (HCMT) catalogs,
which agree with the surrounding structural trends. Our best-fitting location is more
than 50 km from the HCMT location, and our hypocenter depth is about 5 km, vastly
different from the 45 and 35 km depths in the HCMT and ISC catalogs, respectively.
We resampled the full InNSAR data set (Figure 1.9a) using an initial guess for the fault
plane parameters, then redid the resampling once we performed the NA optimization
(Figure 1.9Db).

In order to assess what error bounds we should associate with our location, we
perform a Monte Carlo sensitivity analysis. We create a large number of independent
sets of synthetic noise drawn from the covariance matrix of the noise as estimated
from the original interferogram, and add the best-fitting synthetic model from our
nonlinear inversion. For each realization of the noise, we invert for the new best-fitting
earthquake parameters using the NA algorithm. In Figure 1.10, we show the result of
the inversion of each synthetic data set as a small red dot, with 1o confidence ellipse
(red) over the entire distribution of synthetic models. If we only use the diagonal
of the covariance matrix, neglecting any spatial correlation of the noise, we get the
smaller error bounds indicated in blue. In this case, use of the incorrect covariance
matrix would result in overly optimistic error bounds on our best-fitting location.
This effect results from the fact that the characteristic length scale of the noise is
approximately the same spatial scale (about 10 km) as the deformation signal due to

the earthquake.

1.6 Conclusions

By making the assumption that the noise is spatially stationary and isotropic, we

ignore the fact that interferograms often contain azimuthally dependent noise due to
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Figure 1.9: a) Interferogram spanning the Apr 30, 1999 M,, 5.1 thrust fault earth-
quake in the Zagros Mountains of Southern Iran, with HCMT (red mechanism) and
ISC (red dot) locations. Inset map shows the location of the InSAR frame. Color
indicates LOS deformation in c¢m, draped over shaded relief topography, with LOS
from satellite to ground indicated by white arrow. Black outline indicates location of
(b). Note that features of the interferometric noise have a preferred orientation par-
allel to the structural trend of the Zagros mountains. This azimuthal dependence is
not accounted for in our modeling of the noise. b) Resampled data used in inversion.
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Figure 1.10: Comparison of confidence intervals for correct and incorrect noise co-
variance matrices, C,,. a) Each dot indicates the inferred map view location for one
independent realization of the noise, drawn from either the correct (red) or incor-
rect (blue) covariance matrix. Solid lines correspond to the 1o confidence intervals.
b) Histogram of inferred depths for each of the 500 Monte Carlo tests. Note how
the confidence intervals for each quanitity are much smaller if we use the incorrect
covariance matrix.

the correlation between topographic structures and atmospheric water vapor (Fig-
ure 1.9a). However, the treatment of noise covariance presented in this paper is an
improvement over the neglect of spatial correlation of noise between individual data
points. We find that the covariance structure inferred directly from the InSAR data
will be different than the actual covariance between data points at a given distance,
because of the limited spatial aperture of an InSAR scene and the tradeoff between
spatial covariance and satellite orbital errors. We note that a combination of error
bounds on the satellite orbits and dense GPS observations at the time of the InSAR
data acquisitions may potentially be used to reduce this tradeoff.

We conclude that the R-based resampling is a robust technique that circumvents
some of the problems that other resampling techniques have with noisy data, but that
still provides dense sampling in regions where the data has the most relevant structure
for the deformation source of interest. In this paper we only considered InSAR data,
but our resampling algorithm could be easily applied to other forms of spatially dense
geodetic imagery such as pixel tracking using optical or radar images (e.g., Michel

and Avouac, 2002; Simons et al., 2002). We also demonstrate the need to include the
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spatial correlation of InSAR noise in inversions for earthquake parameters, especially
when the signal of interest has approximately the same spatial scale as the noise.

Combining these two techniques optimizes the amount of information we can extract

from InSAR data.
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Chapter 2

Little Skull Mountain earthquake

Published by American Geophysical Union in Journal of Geophysical Research by R. B.

Lohman, M. Simons and B. Savage.
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Abstract

We use Interferometric Synthetic Aperture Radar (InSAR) and broadband seismic
waveform data to estimate source parameters of the June 29, 1992, M, 5.4 Little
Skull Mountain (LSM) earthquake. This event occurred within a geodetic network
designed to measure the strain rate across the region around Yucca Mountain. The
LSM earthquake complicates interpretation of the existing GPS and trilateration
data, as the earthquake magnitude is sufficiently small that seismic data does not
tightly constrain the epicenter, but large enough to potentially affect the geodetic
observations. We model the InSAR data using a finite dislocation in a layered elas-
tic space. We also invert regional seismic waveforms both alone and jointly with
the InSAR data. Due to limitations in the existing data set, InSAR data alone can
not determine the area of the fault plane independent of magnitude of slip, nor the
location of the fault plane independent of the earthquake mechanism. Our seismic
waveform data tightly constrains the mechanism of the earthquake, but not the lo-
cation. Together, the two complementary data types can be used to determine the
mechanism and location, but cannot distinguish between the two potential conjugate
fault planes. Our preferred model has a moment of about 3.2x10'" Nm (M,, 5.6) and
predicts a line length change between the Wahomie and Mile geodetic benchmarks of

about 5 mm.
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2.1 Introduction

Yucca Mountain, a proposed long-term (103-10° yrs) disposal site for high-level ra-
dioactive waste, is located within the Nevada Test Site in the southwestern Basin and
Range province (Figure 2.1). The Basin and Range is an extensional province char-
acterized by Cenozoic faulting and volcanism. Estimates of the current earthquake
and volcanic hazard of the proposed site are complicated by the very low strain rates
and short period of time within which they have been measured geodetically (i.e., less
than 20 years). As a result, strain rates derived from the long-term geologic record
may not be representative of current conditions since the space-time-dependence of
strain is not well understood (e.g., Wallace, 1984).

Yucca Mountain lies within the southwestern Nevada volcanic field, a series of
middle Miocene (15-7.5 Ma) silicic ashflow tuffs that have been tilted slightly east-
wards since their formation (Frizzell and Shulters, 1990; Sawyer et al., 1994). Several
small basaltic eruptions occurred during the Quaternary within 10-20 km of Yucca
Mountain, with estimates of the most recent age at 81-77 kyr b.p. (Zreda et al., 1993;
Heizler et al., 1999). Crater Flat and Jackass Flat to the west and east of the site
(Figure 2.1) both contain active faults (Ferrill et al., 1996; Fridrich, 1999; Fridrich
et al., 1999).

A network of geodetic benchmarks was established in 1983 to characterize the
deformation across this region (Savage et al., 1994). This network has been sub-
sequently resurveyed in campaigns using both trilateration and Global Positioning
System (GPS) surveys. A trilateration survey using measurements from 1983, 1984
and 1993 (Savage et al., 1994) indicates 8420 nstrain yr~! of strain accumulation in
a N65degW direction. A re-estimate of the strain rate using campaign GPS obser-
vations spanning 1991-1997 suggests strain accumulation of 50£9 nstrain yr—! in the
N65degW direction (Wernicke et al., 1998).

Differences between these two studies depend, in part, on the treatment of the
M; 5.4 Little Skull Mountain (LSM) earthquake that occurred on June 29, 1992,
approximately 30 km to the southeast of Yucca Mountain (Figure 2.1). The LSM
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Figure 2.1: Shaded relief map showing the Mile and Wahomie geodetic benchmarks as
triangles, the LSM focal mechanism from the Southern Great Basin Seismic Network
(SGBSN), and the boundary of the Nevada Test Site. The box shows the location of
Figure 2.2. The inset in the upper right of the figure indicates the locations of seismic
stations used in this study. Mercator projection.
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Figure 2.2: Averaged interferometric LOS displacement field used in the inversions.
The arrow indicates the surface projection of the LOS vector from the ground to the
satellite. Small-scale fluctuations in the displacement field are due to tropospheric
and ionospheric variations between scene acquisition dates. Geodetic benchmark Wa-
homie is shown as a filled triangle. Solid circles indicate the LSM epicenter locations
from the Southern Great Basin Seismic Network (SGBSN), Zhao and Helmberger
(1994) (ZG), Romanowicz et al. (1993) (R) and from our joint inversion using the
Mojave layered model (LSS). Rectangles show the map view projections of the fault
planes used by (a) Savage et al. (1999), and the (b) SE-dipping and (c) NW-dipping
planes in Wernicke et al. (1998). The dashed line indicates the bottom of the plane
in all cases. Mercator projection.
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earthquake was small enough that we expect it to affect only the southeastern-most
stations in either network, most notably the horizontal changes in line length, AL,,,,
between the Wahomie and Mile benchmarks. While the mechanism of the earthquake
is constrained from seismic studies (Table 2.1), determining the fault area and which
nodal plane ruptured is difficult due to the small size of the earthquake. In addition,
the seismically located epicenters vary over a spatial range of about 11 km (Table 2.1).
Studies of aftershock hypocenters show that they cluster near the SE-dipping plane
(Harmsen, 1994; Meremonte et al., 1995; Smith et al., 2000). Based on the orientation
of surface faults in the area, Wernicke et al. (1998) prefer the NW-dipping plane.
A model with a finite dislocation on the SE-dipping plane in an elastic half-space
(Okada, 1985) predicts horizontal elongation of AL,,, by about 7 mm, while slip on
the NW-dipping plane predicts ALy, changes of less than 1 mm (Wernicke et al.,
1998).

The interpretations of Savage et al. (1999) and Wernicke et al. (1998) differ in
that they use seismic locations for the earthquake that are several kilometers apart
(Figure 2.2). Both studies assume a fault area of 5x5 km, but Wernicke et al. (1998)
assume that the two planes that they model share a common base, not their center.
This assumption results in the top of the NW-dipping plane being around 6 km to
the southeast of their candidate SE-dipping plane, such that models using the NW-
dipping plane affect the geodetic benchmark Wahomie much less than those using the
SE-dipping plane.

We investigate the mechanism and location of the LSM earthquake using Interfero-
metric Synthetic Aperture Radar (InSAR) data from the ERS 1 satellite and regional
broadband seismic waveform data. In the process of determining the best-fitting
earthquake parameters, we demonstrate the complementary nature of the InSAR and

seismic data for use in studies requiring precise earthquake locations.
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Reference/Model Lat Lon Depth Strike Dip Rake Moment
(deg)  (deg) (km) (deg) (deg) (deg) (Nm)

Romanowicz et al. (1993)? 36.66 116.23 8 43 66 -73 3.5x10%
Romanowicz et al. (1993)° 36.66 116.23 8 34 44 -70  2.6x10%7
Walter (1993)¢ 36.718 116.289 10 35 o4 -87  4.1x10'7
Harmsen (1994)¢ 36.72  116.295 10 95 26 =72 -
Zhao and Helmberger (1994)¢  36.7 116.25 11 45 55  -60 3.0x10'7
Meremonte et al. (1995)% 36.72  116.295 10-11 55 56 -T2

Wernicke et al. (1998), SE 36.707 116.263 8.0 35 54 -90 4.5x10'7
Wernicke et al. (1998), NW 36.726 116.299 75 215 36 -90 4.5%x10Y

Savage et al. (1999) 36.741 116.312 8.3 55 56 -90 4.0x10'7
Smith et al. (2000)? 36.719 116.296 9.0 60 70  -70 4.5x107
This study-InSAR only
Half space 36.743 116.242 10.6 47 38  -55  4.4x10'7
Standard Southern California' 36.742 116.247  11.1 39 37  -61 5.8x10'7
Mojave? 36.745 116.243  11.2 52 40  -51 5.0x10%7

This study-seismic only
Standard Southern California! 36.613 116.441 10.9 35 48 -80 3.32x10'7
Mojave2 36.597 116.439 11.8 35 43 81 2.47x10'

This study-joint seismic and InSAR
Standard Southern California! 36.747 116.283 9.5 38 o8 276 4.1x10'7
Mojave? 36.745 116.285 9.4 36 58 =78 3.2x10'7

Table 2.1: Little Skull Mountain Earthquake Parameter Estimates: Latitude, longitude, and depth for finite fault planes refer
to the center of the fault plane. Moment is calculated using uy=35 GPa for the Mojave model, 42 GPa for the Standard Southern
California model, and 33 GPa for all others. Superscripts refer to method used in each inversion: (a) Regional surface waves
(b) Regional body waves (c) Single very broadband station (d) Aftershock hypocenters (e) Broadband waveforms, and layered
elastic spaces from (1) Hadley and Kanamori (1977) and (2) Jones and Helmberger (1998)
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Table 2.2: ERS 1 data used in this study: B, refers to the perpendicular component
of the baseline between satellite locations and H, is the ambiguity height for a given
pair of SAR images, all with respect to the first image on 1992/04/24 (e.g., Massonnet
and Feigl, 1998; Rosen et al., 2000).

Date Track Frame Orbit B (m) H, (m)
1992/04/24 399 2871 4051 - -
1993/05/14 399 2871 9562 62 128
1993/06/18 399 2871 10063 40 198
1995/09/24 399 2871 21930 131 60

2.2 InSAR and seismic waveform data

We use ROI_PAC, the Caltech/JPL InSAR processing suite, to produce unwrapped
geocoded interferograms. We combine the one existing SAR image acquired before the
earthquake with three post-earthquake images to create three interferograms spanning
different time periods (Table 2.2). We neglect any potential time-dependent post-
seismic deformation and average the three interferograms to reduce ionospheric and
tropospheric noise. As there is only one pre-seismic scene, any noise within it is carried
through to our final averaged interferogram. We remove the effects of topography in
the interferograms using a 90 m digital elevation model [http://earthexplorer.usgs.gov),
leaving a measurement of surface deformation in the satellite line-of-sight (LOS) di-
rection (Figure 2.2).

The relative LOS displacement reaches a maximum of 2.4 cm across an elliptical
region in the center of the interferogram (Figure 2.2). Because the LOS vector is
approximately 23° from vertical, we infer that this deformation is mostly due to
subsidence. We interpret the smaller amorphous features, with magnitudes of around
1 cm and dimensions of 1-5 km that are visible across the image, as radar phase
delays introduced by tropospheric and ionospheric perturbations. These delays are
approximately 20% of the main earthquake signal and therefore introduce a large
error term that is difficult to quantify. Only data from descending orbits is available,
therefore only one component of the displacement field is observable. Since we can
only measure deformation in the LOS direction, we must rely on models of coseismic

deformation in order to make predictions of AL,,,. In addition, the atmospheric
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Table 2.3: Layered elastic models used in this chapter. Superscripts refer to (1) Jones
and Helmberger (1998) and (2) Hadley and Kanamori (1977)

Mojave! Standard SoCal?
Depth Density Vp Depth Density Vp
(km) (g/cm?®) (km/s) (km) (g/cm®) (km/s)
2.5 2.40 5.00 5.5 2.40 5.50
5.5 2.40 5.50 16.0 2.67 6.30
28.0 2.67 6.30 35.0 2.80 6.70
half space 3.42 7.85 | half space 3.00 7.80

errors are large enough that comparisons of individual points of the interferogram
are unreliable, such that comparisons of models which fit the entire interferogram are
more robust than direct measurements of LOS displacement.

We model the InSAR data for the earthquake using a finite dislocation model. We
consider both an elastic half space (Okada, 1985) and the Standard Southern Califor-
nia (Hadley and Kanamori, 1977) and Mojave (Jones and Helmberger, 1998) layered
elastic models (Table 2.3). We sample the interferogram on a non-uniform grid with
a spacing proportional to the curvature of the LOS component of the displacement
field (Simons et al., manuscript in preparation, 2001). This sampling reduces the
number of Green’s functions that must be evaluated for each iteration and therefore
greatly improves the speed of our inversions.

We use regional seismic waveform data for the LSM earthquake recorded at dis-
tances of 150 to over 1000 km, at four stations (CMB, GSC, PAS and PFO) in the
TERRAscope and Berkeley Digital Seismic Networks (Figure 2.1). Seismic data at
these ranges is dominated by refracted compressional energy (Pnl), reflected shear
waves, and large amplitude surface waves. Refracted energy arrives much earlier
than the shear and surface waves, but the waveforms are dominated in amplitude
and duration by the later arriving surface waves. Since Pnl arrivals are sensitive to
the depth of the earthquake and fault plane orientation, we enhance the Pnl section
of the seismic signal relative to the surface waves using the method of Zhao and
Helmberger (1994).

Attempts to fit Pnl and surface waves are difficult in absolute time, since approxi-



37
mations of the elastic structure of the lithosphere introduce errors into the synthetics.
Therefore, we shift and filter the data and synthetics so that they only reflect the gen-
eral properties of the crust and lithosphere. Aligning the synthetics with the data in
time acknowledges that our seismic data lacks the power to well-resolve the epicenter
location. Pnl waveforms are filtered to include higher frequencies (0.01 - 0.2 Hz) than
the full waveforms (0.01 - 0.05 Hz) to better identify the depth phases that constitute
Pnl. We compute synthetics using an F-K double integration ( Wang and Herrmann,
1980) in both the Standard Southern California and Mojave layered elastic models
(Table 2.3) and compare these synthetics to the data on a point by point basis in a

least squares sense.

2.3 Source parameter inversions

The root mean squared (RMS) misfit between the data and our model depends on the
value of nine parameters defining the location and orientation of the fault plane and
the amount and direction of slip that occurred during the earthquake. Traditional
gradient searches may fail to find the true minimum in such a nonlinear problem.
Rather than using a grid search to explore the parameter space associated with this
event, which involves evaluating the forward model many times in regions with poten-
tially high misfit, we use the Neighborhood algorithm (NA) developed by Sambridge
(1998a,b).

The NA method has advantages over techniques such as genetic algorithms and
simulated annealing in that it produces a more complete image of the misfit func-
tion over the entire parameter space, while concentrating sampling in the regions
with lowest misfit. This approach is important for studies such as ours with multi-
dimensional, nonlinear parameter spaces, where inferring the global minimum is only
part of the full characterization of the misfit behavior. The ensemble of models and
misfits produced by the NA algorithm illustrates the broadness and uniqueness of the

minima, and shows the tradeoffs that may exist between sets of parameters.
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2.4 Results and implications

For the InSAR~only inversion, we allow the inversion to search through the entire
possible range for each parameter, letting strike, dip and rake vary as well as area,
location and amount of slip, all assuming a square fault plane. We find a large tradeoff
between slip and area (Figure 2.3a), whereas the seismic moment is well-constrained
to be about 4.4x10'" Nm (M,, 5.7, Figure 2.3b). Since the area is not well-constrained
by our data, we adopt a value of 25 km? as estimated from aftershock distributions
(Harmsen, 1994; Meremonte et al., 1995; Smith et al., 2000) and that is used in
previous studies (Wernicke et al., 1998; Savage et al., 1999). This assumption does not
affect our conclusions regarding the line length changes between geodetic benchmarks
Wahomie and Mile. The inversion slightly prefers models with SE-dipping planes,
but this is only for planes that are larger than about 100 km? (Figure 2.3c). As
the fault planes get smaller, they approach a point source and are, by definition,
indistinguishable from each other. Even for the larger fault planes, the difference in
misfit is small and our InSAR data cannot unambiguously distinguish between the
two potential rupture planes.

When we invert using only the InSAR data, and assume a fixed fault area of
25 km?, a search through the entire range of potential mechanisms suggests a best
fitting mechanism with a rake of —55°. This estimate of the rake is much shallower
(i.e., with a greater component of strike-slip faulting) than predictions from previous
seismic studies (Table 2.1). Figure 2.3d shows the map view locations of best-fitting
fault planes of area 25 km? from inversions where we fixed the rake at values between
—20° and —100°. All of these models have similar misfits to the InSAR data, illus-
trating the tradeoff between earthquake mechanism and fault plane location inherent
with this set of InSAR data. If additional InSAR data existed with a different LOS
direction, we would be better able to determine the mechanism.

To explore the dependence of these inversions on the availability of different LOS
components, we produced synthetic data similar to the LSM earthquake for both

ascending and descending tracks. We added several different sets of noise taken from
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Figure 2.3: (a) Contours of RMS model misfit versus fault plane area and amount of
slip. Misfit continues to increase to the upper right of the panel. (b) Contours of RMS
model misfit versus moment and slip/area. Moment is calculated using ;=33 GPa.
(c) Area versus RMS model misfit for SE-dipping fault planes (black) and NW-dipping
fault planes (gray). The 25 km? area used by previous workers is indicated by a heavy
dashed line. (d) Map view location of best-fitting planes with area 25 km? and rake
fixed at values between —20deg and —100 deg. Solid circles indicate LSM epicenter
locations as in Figure 2.2. All panels show results from inversions using only InSAR
data and assuming an elastic half space. The inversion behavior is similar for the
layered spaces and our joint inversions. This and all subsequent maps use a UTM

(zone 11) projection.
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Figure 2.4: RMS model misfit versus strike, dip, rake and the absolute distance from
the true solution, indicated by the black dashed line. These inversions use synthetic
data with noise taken from the real, observed interferogram. The light gray and dark
gray dots correspond to models from inversions using just data from ascending or
descending satellite tracks. The black dots are models that use both sets of synthetic
data.

sections of our observed interferogram to this synthetic data. We ran inversions on
each data set separately and then compared them to the inversion using both data
sets simultaneously. Figure 2.4 shows the RMS value versus strike, dip, rake and the
absolute distance from the true solution for models produced during these inversions.
As expected, for each parameter the inversion using both LOS directions (black dots)
comes closest to the real value used to compute the synthetic data. For this example,
we find that we can estimate the hypocenter location to within half a kilometer.
Despite the tradeoff between fault area and slip, as well as between location and

mechanism, some earthquake parameters are well-determined by the InSAR data.
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The InSAR-only inversion using an elastic half space model tightly constrains AL,
to be around 6 mm. InSAR-only inversions using both the Standard Southern Cal-
ifornia and Mojave layered elastic models predict results similar to that of the half
space inversion, except that the inferred hypocenter depths are around 400-500 m
deeper and the moment is slightly larger for the layered models (Table 2.1). Inver-
sions in layered elastic models involve a tradeoff between the layered structure and
the distribution of slip. Both of the layered models that we use have less-rigid layers
above the earthquake than below, which results in a greater predicted depth than
from inversions in a half space. In our inversion, the increase in depth suggested by
the inversion using less rigid layers above the earthquake than below requires that
more slip be placed on the fault plane to match the surface deformation. We prefer
the Mojave layered elastic model because it includes more realistic structure in the
upper 10 km than does the Standard Southern California model.

Our seismic data tightly constrains the mechanism of the LSM earthquake, but
contains relatively little information on the location. The Mojave model predicts a
slightly deeper event (11.8 km) than the Standard Southern California model (10.9
km), but most other parameters are similar. Both layered elastic models predict
mechanisms that are well within the range of predictions from previous seismic stud-
ies. Both of these mechanisms fit our seismic data very well, but do not fit the InSAR
data well because of the poorly constrained location. Table 2.4 shows the misfit to
InSAR and seismic data for our different sets of models and for some of the seismic
locations and mechanisms.

Our initial attempt at a simultaneous joint inversion calculates misfits to both
our seismic and InSAR data. The correct relative weighting of the two data types is
difficult to determine, as errors in InSAR data are poorly understood. We weighted
the data based on the RMS value of each data type. This inversion approach results
in models that average the parameters from the InSAR-only and seismic-only inver-
sions and fit neither data set well. Using the InSAR data to relocate the best-fitting
mechanism inferred from only our seismic data produces a better result. We iterate

between seismic-only and InSAR-only inversions multiple times. This process is much
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Table 2.4: Misfit values in this study. Superscripts as in Table 2.1.

Reference/Model RMS misfit (mm) RMS misfit
(InSAR) (seismic)
Romanowicz et al. (1993)* 7.504 1.285
Romanowicz et al. (1993)° 5.316 1.260
Walter (1993)¢ 3.441 1.391
Zhao and Helmberger (1994)¢ 4.172 1.287
Wernicke et al. (1998), SE 4.710 1.593
Wernicke et al. (1998), NW 5.137 1.618
Savage et al. (1999) 4.607 2.254
Smith et al. (2000)% 4.726 1.287
This study-InSAR only
Half space 2.616 1.444
Standard Southern California' 2.455 1.426
Mojave? 2.557 1.436
This study-seismic only
Standard Southern California’ 5.960 1.067
Mojave? 5.743 1.086

This study-joint seismic and InSAR
Standard Southern California! 2.853 1.185
Mojave? 2.923 1.179
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more cost-effective than the computationally expensive simultaneous inversion. Ta-
ble 2.1 summarizes the results of this inversion and Figure 2.5 shows the mechanism
for the Mojave elastic model and the associated misfits. This result fits both our
seismic and the InSAR data well (Table 2.4. Synthetic waveforms calculated from
the best-fitting mechanism from the inversion using only InSAR data do not fit our
seismic data nearly as well as does the one from the joint inversion (Figure 2.5). The
joint InSAR /seismic inversion in the Mojave layered produces a mechanism that is
1 km shallower than the InSAR-only inversion in a half space and predicts a mo-
ment of 3.2x10'" Nm (M,, 5.6). Our joint inversion constrains AL,,, to be around
5 mm. Figure 2.8 shows AL, versus the RMS misfit to our InSAR data for models
calculated during our joint inversion in the Mojave layered elastic model.

Since the InSAR data provides additional constraint on the location of any given
mechanism, it is useful to examine previous solutions for the LSM earthquake and
their effects on the estimates of AL,,,. We first compare predictions from the fault
plane solutions used previously by Wernicke et al. (1998) and Savage et al. (1999)
with the InSAR data (Figure 2.6). All three models have significant residuals when
subtracted from the InSAR data (Figure 2.6). We relocate these three mechanisms,
allowing the location and amount of slip to vary, but keeping the strike, dip, rake,
and fault area fixed. All three mechanisms relocate to within 500 m of each other
(Figure 2.7) and predict similar residuals (Figure 2.6). These relocated fault planes fit
the InSAR data almost as well as our best-fitting solutions, and predict Wahomie-Mile
line length changes of 4-5 mm. These relocations show that, although the InSAR, and
seismic data cannot unambiguously distinguish between the two potential rupture
planes, they require that both fault planes centers are at approximately the same
location. The two planes therefore affect the AL, similarly, since they are effectively
point sources. We also relocate the mechanism of Smith et al. (2000), resulting in a
hypocenter that is within 2 km of our best model. This model fits the InSAR and

seismic data worse than either our best model or the other relocated mechanisms.
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Figure 2.5: Mechanisms, observed waveforms, and synthetic waveforms from the
joint and InSAR-only inversions using the Mojave layered model. Pnl waveforms are
filtered from 0.01-0.2 Hz, while full waveforms are filtered from 0.01-0.05 Hz. Data
are shown as black lines and synthetics as gray lines. The time scale is shown at the
base of each group of plots, with the 20 second bar referring to the Pnl waveforms
and the 60 second bar referring to the full waveforms.



LOS deformation, cm

Figure 2.6: RMS residuals between various models and the interferogram. The color
scale is the same for each panel. The surface projection of the fault plane used in
each case is shown as the black rectangle, with the bottom of the plane as a thin line.
The location of benchmark Wahomie is shown as a triangle. (a) Residual between
the interferogram and the best model from our inversion in the Mojave layered space
using just InSAR data, area fixed at 25 km?. (b) The original interferogram. (c)
Residual between the interferogram and the best model from our joint InSAR-seismic
inversion in the Mojave layered model. (d,e,f) Residuals for the models used in Savage
et al. (1999) and the SE-dipping and NW-dipping planes of Wernicke et al. (1998),
respectively. (g,h,i) Residuals for the same three models after relocation. We fix
the strike, dip, rake, and area of each of the three models, and allow the (x,y,z)-
position and amount of slip to vary. Solid circles indicate LSM epicenter locations as
in Figure 2.2.
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Figure 2.7: Rectangles indicate original positions of (a) the SE-dipping plane used by
Savage et al. (1999) and the (b) SE and (¢) NW-dipping planes in Wernicke et al.
(1998). The bottom of each plane is dashed, and the center of the original plane is
shown as a circle. Our relocated centers are plotted as triangles, demonstrating that
all three cluster within a few hundred meters of each other. Solid circles indicate
LSM epicenter locations as in Figure 2.2.
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2.5 Conclusions

InSAR data can effectively locate shallow earthquakes that are too small or too distant
to accurately locate using traditional seismic methods. In this study, the InSAR data
is sensitive to the seismic moment of the earthquake, but suffers from a tradeoff
between mechanism and location. Our seismic data is sensitive to the mechanism,
but not very sensitive to the location. For the LSM earthquake, both data types are
unable to separate area from magnitude of slip, or to distinguish which of the two
potential conjugate planes ruptured. The main observational limitations of this study
are the availability of only one SAR image before the earthquake and the existence
of only one component of deformation.

Despite the lack of many independent interferograms, the different sets of models
that we consider all have less than 3 mm of RMS misfit with the InSAR data, with
peak misfits of about 1.5 cm. All earthquake mechanisms that fit both the InSAR
and seismic data have similar effects on AlL,,,, with a predicted elongation of 4 to
8 mm (Figure 2.8). This estimate of AL, is consistent with predictions from the
SE-dipping planes of both Wernicke et al. (1998) and Savage et al. (1999). Regional
strain rates predicted using these corrections agree within 20 error but not at the 1o
level (Wernicke et al., 1998; Savage et al., 1999).

We find that it is important to consider the effect of layered elastic models in
inversions of this type. In this case, inversions in layered models produced deeper
events than those in a half space, with up to 25% differences in estimated moment
release. Hopefully, future studies of small earthquakes will have more independent
interferograms and therefore will permit greater averaging to reduce noise. We must
also be able to measure multiple components of the deformation in order to improve
the ability of InSAR data to determine earthquake mechanisms.

Beyond the discussion of the LSM earthquake, this study supports the feasibility of
the formation of a catalog of earthquakes located using both InSAR and seismic data.
This catalog could support tomographic studies which can benefit from improved

bounds on source locations. In many regions of the world, local seismic networks do
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Figure 2.8: RMS model misfit with the InSAR data versus AL, for each model
tested during our joint inversion using the Mojave layered elastic model.

not exist, and teleseismic and remote sensing data are the only sources of information
about earthquake parameters. In these areas, teleseismic earthquake locations often
have errors greater than 50 km. For many of these events, this uncertainty in location
can be reduced by two orders of magnitude using joint inversions of InNSAR and seismic
data. Routine analysis of this sort requires the availability of a sufficiently large set of
SAR data, such that there exist interferometrically useful images before and after all
earthquakes of interest. Ideally, this SAR data library would include multiple sets of
interferograms with ascending and descending pairs bracketing most earthquakes. A
substantially more accurate earthquake catalog will provide critical input to tectonic

studies in regions with shallow seismicity and poor seismic station coverage.
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Chapter 3

Small earthquakes in the Zagros



90

Abstract

The Zagros mountains of Southern Iran accommodate a significant portion of the
3 cm/yr convergence between Arabia and Eurasia. The Zagros are marked by a zone
of high seismicity (M, < 6) that broadens from a narrow band along the collisional
front in the NW to a wider belt (>150 km) in the south near the Straits of Hormuz.
Due to the lack of dense local seismic or geodetic networks, much of our understanding
of how the continental crust currently accommodates this strain is based on catalogs
of teleseismically determined earthquake locations. It is not clear which folds are
associated with seismicity, or whether earthquakes occur in the basement or in the
overlying 10-15 km of sediments, as earthquake hypocenters in the Zagros are poorly
determined.

I surveyed all M,, > 4.5 earthquakes in the Harvard CMT (HCMT) and Inter-
national Seismological Centre (ISC) catalogs that were spanned by interferometric
pairs with spatial baselines (B ) less than 150 m and temporal baselines of less than
3-4 years. 1 present locations for 4 earthquakes and one deformation event that oc-
curred in the Zagros mountains during the period 1992-2002 by examining ground
deformation constrained by Interferometric Synthetic Aperture Radar (InSAR). I in-
vert the observed deformation for the best-fitting fault plane for each earthquake,
using the Neighborhood algorithm. I show that we can locate events with precisions
of a few km in both map view and depth with InSAR data, allowing us to tie specific
events to active structures. I also provide error bounds on the best-fit earthquake
parameters, using Monte Carlo sensitivity tests. All of the earthquakes presented in
this paper lie within the 10-15 km thick sedimentary section overlying Precambrian

basement.
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3.1 Introduction

Much of our understanding of how continental crust accommodates strain comes
from studies of the spatial distribution of seismicity in actively deforming mountain
belts. In places such as the Zagros mountains of Southern Iran (Figure 3.1), which
accommodate a significant portion of the 3 cm/yr convergence between Arabia and
Eurasia, there are no dense local seismic networks and we must rely on catalogs of
teleseismically determined earthquake locations. These catalogs have been used both
to describe and interpret the spatial distribution of seismically released strain (e.g.,
Hessami et al., 2001), and to place bounds on the percentage of convergence which is
accommodated seismically (e.g., Jackson and McKenzie, 1988). Both of these applica-
tions require high-quality earthquake locations and magnitude estimates. Cataloged
teleseismic earthquake locations in this region commonly have errors of up to 50 km
in map view (e.g., Maggi et al., 2000; Ambraseys, 2001; Talebian and Jackson, 2004)
and earthquake depths in the Zagros are poorly determined to the extent that it is
unclear even whether earthquakes occur in the basement or in the overlying 10-15 km
of sediments (e.g., Jackson and Fitch, 1981). The initial collision between Eurasia
and Arabia occurred at ~20 Ma, and up to 70 km of convergence (e.g., Talebian and
Jackson, 2002; McQuarrie, 2004) has subsequently occurred. Whether this is accom-
modated by continued subduction of the basement and decoupled, in-place shortening
of the cover along detachments within the numerous salt and evaporite layers within
the sedimentary section, or if the basement is shortening along thrust faults that cut
through the salt layers and feed slip up into the surface folds is unknown. Part of our
inability to describe the dynamics of shortening in the Zagros is due to our incomplete
understanding of the spatial distribution of seismicity.

InSAR and seismology are complementary in that InSAR observations are very
sensitive to the 3-D location and magnitude of smaller events, whereas seismology
constrains the mechanism. We augment existing seismic catalogs with a set of pre-
cise earthquake locations inferred from Interferometric Synthetic Aperture (InSAR)

observations. For thrust and normal-faulting events, the near-vertical component of
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Figure 3.1: Reference map showing shaded relief and Zagros mountains of Southern
Iran. Dark gray lines are active faults from Berberian (1981). Arrow in lower left
shows velocity of Arabian plate with respect to Eurasia, from the Nuvel-1A model
(DeMets et al., 1994).
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deformation measured by InSAR provides little constraint on the earthquake mecha-
nism (e.g., Chapter 2). In this chapter, I infer locations with mechanisms constrained
either by seismology or by inference from the local tectonic framework and surround-

ing structural trends.

3.2 Catalog search

The existing catalog of InSAR data from the ERS 1 and 2 satellites provides sparse
temporal and spatial coverage over the Zagros mountains, with the highest data
density in the south near the Straits of Hormuz. Since the number earthquakes
with M,, > 4.5 in the Zagros that occurred between 1992 and 2002 is very large
(greater than 500), I implemented an automated search procedure that extracts only
earthquakes spanned by interferometric pairs with reasonable spatial and temporal
baselines (less than 150 m and less than 3 years). From this much smaller family
of earthquakes, I hand-checked against known problems with agricultural regions,
sand dunes and steep topography. My final list included 96 potentially detectable

earthquakes, spanned by ~110 interferometric pairs (Figure 3.2).

3.3 Results

I located four earthquakes that I can potentially associate with specific cataloged
events (Table 3.1, Figure 3.3). One region of observed deformation is not associ-
ated with any event in the seismic catalogs, or any topography that could induce an
elevation-dependent atmospheric effect. T observe this deformation feature with the
same magnitude in two independent interferograms that span different time frames,
so I can potentially rule out that the deformation is due to changes in groundwater.
In cases where I did not observe earthquake deformation, the most common cause
is widespread decorrelation across the interferogram. If the InSAR data catalog was
more complete and there were multiple interferometric pairs with short temporal

baselines that spanned these earthquakes, it is likely that more of them would have
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Figure 3.2: Reference map: Small dots indicate seismicity from ISC catalog between
1992-2002. Gray boxes indicate SAR frames that we examined in this study (some
with multiple interferometric pairs), heavy outlines correspond to frames with ob-
served deformation.

observable deformation signals. There are at least 13 cases of non-detection where
we had a high-quality interferogram. In these cases, I infer that either the cataloged
earthquake location is in error by more than ~ 10 — 20 km, so that the earthquake
actually occurred outside of the InSAR frame, or that the depth is great enough that
the earthquake deformation is undetectable within the observed level of noise. For
earthquakes of M,, 4.5-5.0 and the use of only a single interferogram, this critical
depth varies from approximately 5-15 km.

I infer earthquake properties from the observed deformation using the Neighbor-
hood algorithm (Sambridge, 1998a,b; Lohman et al., 2002), a nonlinear inversion
technique that employs an intelligently driven global search that focuses on regions
with the lowest data misfit. Some of the factors that may contribute systematic
errors to our result include atmospheric noise correlated with topography and the
inhomogeneous elastic structure of the real Earth. In the case of the 1999/04/30

event (Figure 3.4), there is an obvious negative correlation between the change in
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InSAR  HCMT ISC
Event T/F M,/Z  My,/Z/Err my/Z/Err N
1997/05/05 478/3069 5.4/5.6 5.1/15/46 4.8/46/2 1
1997/09/18% 478/3069 4.9/3.5 - 47/55/4 1
1998/10/18  13/567 4.5/1.1 - 4.2/98/11 2
1999/04/30  20/3051° 5.3/3.3 5.2/45/67 4.9/35/7 3
Unknown 392/3051 4.7/2.3 N/A N/A 2

Table 3.1: Track and frame (T/F), Insar, HCMT and ISC magnitudes, depths (Z,
in km) and the location error in km of both the ISC and HCMT locations for each
event considered in this chapter. /V indicates the number of interferograms that show
deformation for this event. @ Earthquake occurred very near to larger event. ® Signal
also observed in overlapping track, T249
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Figure 3.3: Subsets of interferograms for each track and frame with observed defor-
mation. Colorscales vary, so range in cm is indicated in parentheses
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LOS and topography along ridges to the north and south of the epicenter, with the
effect that the earthquake deformation appears narrower and elongate along N 120°E.
We expect that this effect will result in our inferring a shallower depth, and bias us
toward a strike parallel with the valley. The T478 interferogram in Figure 3.5 spans
two subevents, so I allowed the Neighborhood algorithm to simultaneously search for
two separate fault planes.

I inverted for the best-fitting point sources and for the best-fitting finite fault
patches for each event, with the results summarized in Tables 3.1-3.2 and Figures 3.4-
3.7. For each event, I performed error analyses on the hypocenter locations using the
full noise covariance matrix as described in Chapter 1. I created 500 synthetic data
sets using the best-fitting slip models for each event and correlated noise using the
noise covariance estimated directly from the data. I then inverted each synthetic data
set without fixing the fault plane geometry or mechanism. When inverting for a point
source, I fixed the size of the fault plane to 1 mx1 m. In most cases the error bounds
on location were to within a few 100 m, even with the correlated noise. Map view
confidence ellipses are indicated in Figures 3.4-3.7, and 1o error bounds on depth are
tabulated in Table 3.2.

In Figure 3.4, the HCMT location, which is from a catalog often used in global
tectonic interpretations, is off by more than 50 kilometers. The InSAR data allows us
to precisely locate events that are too small to be well-located by either the HCMT or
ISC catalog. With the InSAR data, we have little information about the mechanism
of the earthquake, but can determine the location with a precision of 1-2 km in map
view and depth. In this region of Iran, where there are very few seismic stations,
InSAR is clearly vital for locating small earthquakes.

For each event, the InSAR~derived magnitude is larger than the magnitude from
either seismic catalog (Table 3.1). This is due in part to the fact that I am not
using a realistic layered rheology, which affects the inferred seismic moment. Also,
each earthquake listed in Tables 3.1-3.2 has many associated aftershocks which are
included in the time frame of the interferogram. Therefore, each location should be

viewed as a centroid for the seismicity that occurred during that time period.
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Figure 3.4: Interferogram and inversion results for T20/F3051 (1999/05/26-
1999/04/21): Top figure shows an interferogram in the central Zagros mountain
of ITran, overlain on topography, with LOS direction (satellite to ground, white ar-
row). Teleseismically-determined locations are indicated by the black focal mecha-
nism (HCMT) and the red circles (ISC). Synthetics (b,d) and data residuals (c,e)
for best finite fault patch and point source, with the best-fitting fault plane (black)
and confidence interval on the fault plane center (white). Characteristics of noise:
0?=0.18 ¢cm, L,=9.8 km
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Figure 3.5: Interferogram and inversion results for T478/F3069 (1999/04/18-
1996,/04/28). Characteristics of noise: ¢2=0.16 cm, L.=7 km
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Figure 3.6: Interferogram and inversion results for T13/F567 (1999/09/07-
1997/10/06). Red dot indicates ISC location for earthquake on 1998/10/18 (m, 4.2).
Note different LOS direction, since this is an ascending interferogram. Characteristics
of noise: 02=0.28 cm, L,=15 km
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Figure 3.7: Interferogram and inversion results for T392/F3051 (1998/09/14-
1996/05/26). Characteristics of noise: 02=0.22 ¢cm, L,=16 km
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Point source

Event M, Z(km) Lon (deg) Lat (deg)

1997/05/05 | 5.4 5.6 £0.4 53.880 +0.4 km 27.138 +0.3 km
1997/09/18% | 4.9 3.4 £0.2 53.943 +£0.2 km 27.097 +0.2 km
1998/10/01 | 4.5 1.3 £0.1 54.243 0.1 km 28.678 0.1 km
1999/04/30 | 5.3 4.0 £0.4 53.627 0.3 km 27.871 +0.4 km
unknown 4.7 2.4 +£0.2 57998 £0.2 km 27.603 £0.2 km

Finite fault

Event M, Z(km) Lon (deg) Lat (deg)

1997/05/05 | 5.4 5.6 £0.4 53.880 +£0.4 km 27.137 +0.3 km
1997/09/18% | 4.9 3.5 £0.2 53.943 +£0.2 km 27.097 +0.2 km
1998/10/01 | 4.5 1.1 £0.1 54.243 +0.1 km 28.678 +0.1 km
1999/04/30 | 5.3 3.3 £0.4 53.625 0.3 km 27.870 +0.4 km
Unknown 4.7 2.3 £0.2 57998 £0.2 km 27.603 £0.2 km

Table 3.2: Inversion results: Source parameters for best-fit point sources and finite
fault patches for each event in Figures 3.4-3.7. Error bounds on map view locations
are also indicated in Figures 3.4-3.7. Superscripts as in Figure 3.1. Location is to
center of fault plane.

3.4 Conclusions

The work presented in this chapter is a first step toward the creation of a geodetically-
derived earthquake catalog that complements the existing seismic studies of the Za-
gros mountains. Precise earthquake locations such as these can be inputs into tomog-
raphy models or tectonic studies that have previously been limited by our knowledge
of the distribution of seismicity. Southern Iran provides an ideal candidate for an
InSAR-derived catalog, as it has a high level of seismicity and a relatively sparse
seismic station coverage. However, the work presented here was seriously limited by
the SAR data coverage in Southern Iran. In most cases, the interferogram time pe-
riods were so long that it was not possible to associate observed deformation with
a specific earthquake, or to distinguish earthquakes that occurred in clusters (e.g.,
Figure 3.5). A dedicated satellite system providing increased data coverage would
greatly facilitate this type of study.

The locations and confidence intervals presented here do not account for varia-

tions in local elastic structure that may bias the inferred location. From the results
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in Chapter 2, I expect that the main effect of rheological differences is to move the
apparent depth up or down by ~ 10%. Another consideration is that the interfer-
ograms may include some non-coseismic deformation, such as postseismic slip that
propagates updip from the epicenter. Also, in most of the cases shown here, the data
was not fit completely by a point source or single fault patch. Because these events
are so shallow, they may warrant inversions allowing for distributed slip in order to
more completely characterize the earthquake. Nevertheless, the earthquake locations
presented here are evidence that some of the shortening within the 10-15 km thick
sedimentary section in the Zagros mountains is accommodated seismically by shallow
earthquakes of magnitudes M,, > 4.5. A more complete catalog of accurate seismic
locations would help us determine how strain is being accommodated within this zone
of continental convergence.

InSAR provides a fast and straightforward method for augmenting the existing
earthquake catalogs. We are currently unable to create a complete catalog, due to the
limited spatial and temporal coverage of current SAR data, and we will not be able
to detect small or deep earthquakes due to the noise level in typical interferograms.
Given the noise levels we observe in interferograms for Southern Iran, we can expect
to detect M,, 4 and 5 earthquakes that are shallower than around 5 km and 15
km, respectively, whenever the interferograms are otherwise of good quality (i.e.,
good correlation and limited topographic artifacts). When multiple interferograms
are available that span the same event, we can stack the data to reduce the signal
to noise ratio. The InSAR locations that we do find can be used to help calibrate
seismic models for the region, which will help seismologists determine if earthquakes

that are too small and deep to resolve with InSAR truly occur in the basement.
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Chapter 4

Distributed slip Inversions,
jR; method
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Abstract

We explore two variations on traditional least-squares inversions for the spatial distri-
bution of subsurface fault slip from geodetic observations of surface deformation. This
discrete inverse problem is ill-posed with poorly defined numerical rank. First, we
introduce a flexible definition of model complexity where we weight the smoothness
of the slip model over the fault plane according to an a priori measure of model res-
olution. Our “variable-smoothing” method allows us access to potential slip models
that are inaccessible to inversions using traditional roughness penalties. Second, we
introduce a parameter-choice technique we call the ;R;-criterion. The ;R;-criterion is
similar to cross-validation and bootstrap methods. We examine the theoretical basis
of such techniques and present analytical approximations that can be applied to real

problems.
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4.1 Overview

We invert geodetic data for coseismic slip on a fault plane to understand how earth-
quakes interact with each other, how seismic moment release is distributed with depth,
how spatial irregularities in fault geometry affect coseismic slip, where and over what
time scales postseismic deformation occurs, and what the observed postseismic defor-
mation implies about the rheological structure of the earth. Robust answers to any
of these questions require both an estimate of the best-fitting coseismic slip distribu-
tion and accurate measures of the error and model covariances associated with that
estimate. With the advent of GPS and Interferometric Synthetic Aperture Radar
(InSAR), we can obtain a nearly complete description of the displacement of the
Earth’s surface in response to a given earthquake (e.g., Fialko et al., 2001). These
developments encourage us to invert for coseismic slip on fault planes with progres-
sively higher degrees of freedom, and to expand the range of questions that we address
about the seismic cycle.

The regularization and interpretation of inversions for fault slip from geodetic
data have been examined in detail over the last several decades (e.g., Segall and
Harris, 1987, Ward and Valensie, 1989; Barrientos and Ward, 1990; Freymueller
et al., 1994; Pritchard et al., 2002; Simons et al., 2002). We review the traditional
assumptions made in these inversion and introduce a spatially-variable regularization
technique involving two refinements on previous methods: 1) We introduce the idea
that the roughness of a slip model does not necessarily have to be defined simply as
the average roughness over the fault plane. We explore a method where we weight
the degree of smoothing imposed on the solution by a “smoothing shape” function
that varies across the fault plane. The inversion can choose from a larger suite of
slip models than if we restrict ourselves to the standard model roughness approach.
Given the infinite set of possible smoothing shape functions, we explore the behavior
of a particular family of functions derived from a prior: measures of model resolution.
These smoothing shapes impose more damping in regions of the fault plane that are

poorly resolved by the data and less damping in regions that are well-resolved. 2) Out
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of this family of smoothing shapes, we select an optimal shape and a weighting value
for the regularization using a parameter choice technique we call the ;R;-criterion
(pronounced “jury”).

We present our technique within a simplified system of an elastic half-space, a
known fault plane geometry, and a single deformation event. We illustrate the behav-
ior of the inversion approach using this synthetic system, where we define the input
slip distribution and impose noise of a known character. We also explore scenarios
where we have imperfect knowledge of the fault plane geometry, or where we impose
positivity constraints on the fault slip. We conclude with an illustration of the use of
our method in a subduction-zone setting where we have incorrect a priori knowledge

about the noise covariance matrix.

4.2 Introduction

The relationship between fault slip and surface displacements can generally be de-

scribed by a Fredholm integral equation of the first kind:
/Q G(Q, B)m(Q) dQ = d(d) (4.1)

where () corresponds to the (z,y, z) coordinates of the fault plane, G is the elastic
response of the earth, m is coseismic slip, d are displacements that we measure at
the Earth’s surface at observation points ®(z,y), and (z, y, z) are spatial coordinates.
When we use k data points and discretize the fault plane in terms of [ fault patches,

Equation 4.1 becomes (in matrix form):
Gm=d (4.2)

where G is a k x | matrix of Green’s functions. We normalize the data using Cj, the
data covariance matrix, as described in Appendix A.1 (e.g., Harris and Segall, 1987).
This normalization allows us to combine data with different noise characteristics, such

as GPS and InSAR observations. The integration with G in Equation 4.1 damps out
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high-frequency components of m(f2) in the forward problem, and tends to amplify
whatever noise exists in the data in the reverse procedure, that of computing m(2)
from d(®) (e.g., Menke, 1989; Hansen, 1998). As our fault parameterizations become
finer and allow for more model complexity, inversions for slip become increasingly
poorly determined, with noise in the data mapping into wildly varying, unrealistic
oscillations that increase with depth. Therefore, we must penalize models that have
unrealistic characteristics by regularizing our inversions.

The inherent instability in these inversions does not merely stem from having
fewer data points than unknowns, although this situation will certainly exacerbate
the problem. With the advent of InNSAR data, we will generally have many more data
points than unknowns. In the absence of noise and round-off errors, and where we
know the exact model geometry, we could invert perfectly for a continuous model of
fault slip on a fault plane that extended to arbitrarily great depth. Unregularized
inversions of real data often result in models with alternating patches of positive and
negative slip that nearly cancel out at the surface, an effect known as “checkerboard-
ing.” The checkerboarding effect stems from the magnification of noise, i.e., from
the inability of the inversion to distinguish between slip on two adjacent patches to
within the level of noise, or to within the available numerical precision. In general,
this effect will increase with distance of the fault patches from the data points, and
with decreasing size of the fault patches.

Because of the inherent non-uniqueness of geodetic inversions, we never aim to
fit the data exactly, or to model the entire continuous slip distribution on a given
fault plane. The manner in which inversion methods attempt to deal with this non-
uniqueness generally fall into two main categories that affect the inversion in similar
ways. The first approach involves defining the output model as a sum of intelligently
chosen basis functions that are well-resolved by the available data set. Parameteriz-
ing the inferred slip distribution as a single fault patch that is an average over the
continuous slip distribution is the simplest case, but will not generally produce a good
fit to the data, nor will we learn much about the earthquake. Another approach is to

divide the fault plane into variably-sized fault patches, with the size of the fault patch
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varying according to the resolution over the fault plane (Sagiya and Thatcher, 1999;
Pritchard et al., 2002; Simons et al., 2002). Alternately, one can choose non-boxcar
basis functions like splines or wavelets to describe the slip distribution (e.g., Yabuki
and Matsu’ura, 1992).

The second category of inversion methods also involves a choice of basis functions,
in a less explicit manner. These methods involve considering some penalty function
that quantifies whether or not a model is physically realistic, and minimizing some

combination of this model penalty and its ability to fit the data:

[ = [[Gm —d| + X[|f(2,m)]] (4.3)

or
T = E,+ \E, (4.4)
where I' is the objective function that we minimize, E; = ||Gm — d|| is the norm of

the data residual, f(€2,m) is the penalty function, E, = ||f(2,m)|| is the penalty
function, and A is a relative weighting constant, also known as a “penalty parame-
ter”. These inversions fall into two main families, nonlinear and linear inversions. In
nonlinear inversions, a range of possible models is sampled and characterized in terms
of data misfit, £; and penalty error, E,. Given this broad knowledge of the model
space (model hyperparameters), one can compute the covariance between model hy-
perparameters, best fit slip distribution and errors on quantities like total moment
or the profile of slip vs. depth. Nonlinear inversions allow the implementation of any
conceivable penalty function or a priori information, such as bounds on slip, spatial
compactness or roughness, or positivity constraints (e.g., Barrientos and Ward, 1990;
Du et al., 1992). However, nonlinear methods are generally expensive and interpreta-
tion of the covariances from the total ensemble of attempted models can be difficult,
especially as the number of fault patches becomes large. As the computational bur-
den becomes tractable and methods for assessing the sampled ensemble of models
continue to improve (e.g., Sambridge, 1998b), nonlinear methods may become the

preferred techniques for slip inversions. If we were to use a Bayesian viewpoint (e.g.,
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Tarantola and Valette, 1982a,b), our a priori probability distribution on the model
would describe the imposed penalty function, and the solution to the inverse problem
would be the posterior probability distribution on the set of inferred parameters.

Linear least-squares methods require a linear penalty function such that f(£2, m) =
f(2). Linear inversions have the convenient property of producing model and data
covariance and resolution matrices that we can use to assess the significance of the
output slip model. Common linear techniques for slip inversions include damped
least-squares (e.g., Ward and Valensie, 1989; Du et al., 1992; Matthews and Segall,
1993), truncation of the SVD eigenvectors (e.g., Segall and Harris, 1987; Harris and
Segall, 1987; Menke, 1989; Larsen et al., 1992), and constraints based on various
measures of solution length or roughness, such as a Laplacian approximation of the
2nd order derivative (e.g., Du et al., 1992; Arnadéttir and Segall, 1994; Freymueller
et al., 1994; Simons et al., 2002). All least-squares linear inversions define a set of
solution modes, or model basis functions. The complexity of the basis functions that
the inversion allows depends on the choice of .

The effect of A can be seen if we map every possible slip model onto a plot of E,
vs. B4 that illustrates the tradeoff between E, and E, (Fig. 4.1). The entire ensemble
of possible models defines a space that is bounded on the lower left by a subset of
models that form a curve commonly referred to as the “L-curve”. Each point on
the L-curve corresponds to a model extracted by the linear least-squares inversion
for this definition of f(€2) and a particular choice of \. When f(2) is a measure of
model roughness, then the L-curve corresponds to a trade-off curve between data fit
and model complexity. The “best” model is often defined as one that balances model
complexity and data fit (e.g., Menke, 1989), and is generally chosen at the “corner”
of the L-curve (Fig. 4.1). Different definitions of f(£2) will result in a different set of
models that are accessible to the linear inversion, and potentially a different shape
and corner-value of the L-curve (Fig. 4.1). The a priori choice of a regularization
technique such as minimizing solution roughness or the SVD method fixes f(€2) and
leaves the choice of A (or the SVD truncation value, p) as the only degree of freedom

in the inversion. Popular techniques for choosing A include choosing the corner of the
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Figure 4.1: Schematic diagram illustrating how all possible models fall somewhere on a
graph of their fit to the data vs. potential penalty functions. We show two theoretical
penalty functions, with their respective L-curves indicated by the black (f1(€2)) and
gray (f2(£2)) heavy lines. In each case, no possible combinations of fault slip exist that
would fall to the lower left of the L-curves. The value of A fixes the location along
the L-curve. Circles and diamonds indicate two different slip distributions that have
the same fit to the data, Ey. Black symbols indicate the penalty value of these slip
distributions as assessed by fi(€2), and the gray symbols correspond to the penalty
associated with f5(€2). When we use f1(2), the circle model is accessible to a linear
inversion but the diamond is not. For f»(£2), the reverse is true.

L-curve (e.g., Segall and Harris, 1987), cross-validation (e.g., Arnadéttir and Segall,
1994; Freymueller et al., 1994; Cervelli et al., 2001; Hreinsdottir et al., 2003), and the
Akaike Bayesian Information Criterion (e.g., Akaike, 1980; Jackson and Matsi ura,
1985; Ide et al., 1996). In this paper, we examine a range of f(€2) and present a
parameter-choice technique that simultaneously chooses from among a suite of f({2)
and M.

We introduce “variable-smoothing” as an alternative to regularizations that fix
f(£2) to be the average roughness of the inferred model. In variable-smoothing, we
explore the behavior of a particular family of penalty functions that are spatially
weighted versions of a roughness penalty. We weight the contribution of the spatial
roughness of each fault patch to the total penalty, E,, by an a prior: measure of

resolution at that particular patch. We use the SVD method to derive our measure
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of a priori resolution with various values of the truncation parameter, p. We could
easily use other functions to weight our roughness penalty, such as a linear ramp, step
functions, etc., but we find that these smoothing shapes do not extract models that
improve on our SVD-based smoothing shape.

We introduce ;R;, a parameter-choice technique based on the idea that models
derived from independent datasets should fit that part of the data that all datasets
have in common (i.e., the underlying geodetic signal) without introducing model char-
acteristics that are merely fitting the noise. We penalize rough slip models because
they do not fit this underlying signal, not because of an explicit consideration of
their spatial complexity as one would do with the L-curve method. We describe the
theoretical basis for this technique in the special case where we know both the input
signal and the character of the noise, and we explore two approximation techniques

that can be applied to real scenarios.

4.3 Implementation

To acquaint the reader with the terminology we use, we briefly describe the geometry
of the idealized synthetic problems we consider in this paper (Section 4.3.1). Next,
we define the family of f(€2) that we explore using variable smoothing and comment
on how the variation of f(2) can affect properties of the inferred slip distribution
(Section 4.3.2). In Section 4.3.3 we describe ;R;, our technique for choosing the best
values for f(2), A, or other inversion tuning parameters in these synthetic systems.
We end Section 4.3 with a description of how we adapt this technique to realistic

inversion situations.

4.3.1 Configuration of synthetic problem

We consider vertical fault planes with purely left-lateral strike-slip motion in a homo-
geneous elastic half-space (Okada, 1985). For illustration, we examine both 1-D and
2-D systems. The 1-D system involves observations of along-strike deformation along

a data profile perpendicular to an infinite fault with a slip distribution varying only
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with depth (Fig. 4.2). We use an input slip distribution that varies at several spatial
scales and contains peaks in slip at 7 and 13 km. It is simpler to illustrate changes in
model error and data fit due to our choice of regularization parameters with this 1-D
system than for the 2-D system. However, given that there is only one component of
the deformation field, the achievable model resolution is much lower than it would be
in a real scenario. For a more realistic 2-D system, we consider a fault plane with an
input slip distribution that varies both along-strike and down-dip (Fig. 4.3a). We use
observations covering only the northern half of the deformation field (Fig. 4.3b), in
order to simulate a realistic scenario where we have incomplete data coverage. The
data noise is normally distributed with variance o2 and zero mean. For the 2-D sys-
tem, we examine inversions using observations of one, two or three components of the

3-D deformation field.

4.3.2 Variable smoothing and f({2)

In variable-smoothing, we seek to apply more smoothing where the model is poorly
resolved and little to no smoothing where the model is well-resolved. To this end,
we search a family of f(£2) that are all weighted model roughness penalties. For the
“constant smoothing” case, f(2) = D, where D is the finite difference approxima-
tion to the 2nd order Laplacian smoothing matrix. For “variable smoothing”, we
define a diagonal smoothing shape matrix, S, that weights each row of D, such that
E, = ||SDm|| (Fig. 4.4). We find the model that satisfies Equation 4.3 using a gener-
alized inverse, G ¢ = (GTG,)'GT and m.s; = G 9d,, where the augmented Green’s
function, G, = [G ASD]T and d, = [d 0]7, and m. is the output model inferred
by the inversion. We construct S from the resolution matrix, R°, derived from SVD
truncation with truncation value, p (Appendix A.2). The value of Sj; for the i fault
patch is \/1—71%?, Thus, when a fault patch is perfectly resolved, RY = 1, and Sj;
will be 0. When a fault patch is poorly resolved, RY%: will be a small number and S
will be close to 1. We define p=0 as the “constant smoothing” case, where D=I, the

identity matrix.
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Figure 4.2: The fault plane we use in the 1-D system (heavy line) extends infinitely
along strike and to 15 km depth. We subdivide the fault plane into equally sized
patches, and impose a purely left-lateral input slip distribution (shaded region). We
calculate synthetic data along a line of points running perpendicular to the fault,
adding Gaussian noise with zero mean and variance o? (thin line). In this example,
0=0.5 cm and downdip patch width=0.1 km. Since the fault has infinite length,
fault-perpendicular and vertical components of deformation are zero.



74

Depth (km)

-10 -5 0 5 10
Distance (km)

EET = 2 s
0 100 200
Input Slip Distribution (cm)

Northing (km)

-20 -10 0 10 20
Easting (km)

-5 0 5
Vertical Surface Deformation (cm)

Figure 4.3: Our vertical 2-D fault plane extends to 15 km depth and 25 km along
strike. a: Input left-lateral slip distribution has multiple peaks with magnitudes
around 200 cm, varying at several length scales. b: Map view with fault trace (heavy
line), vertical deformation field (color) and horizontal deformation field (arrows) due
to the slip distribution in panel (a). Maximum horizontal deformation is 20 cm. We
examine the effects of having a data distribution that only covers half of the region
(small dots)
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p=0 corresponds to the constant-smoothing case and that S does not always go to
zero at the surface. 2-D system: S calculated for small (b) and large (c) values of p,
with solution constrained to purely strike-slip. The left half of the slip distribution,
where there is no data, is smoothed more than the right half. If we used a uniform
data distribution, S would be approximately constant along strike. For p=0, S=I
over the entire fault plane. When we allow dip-slip motion, S will be different for the
strike-slip and dip-slip components.
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When we vary f(2), we allow our models to have different distributions of com-
plexity and resolution over the fault plane than are accessible with constant smoothing
(p=0) inversions. In the constant smoothing case, the fit to the data trades off with
the spatial roughness averaged over the entire fault plane. In order to fit the data
near the fault, the inversion must choose a slip distribution that is somewhat similar
to the input slip distribution, mg, near the surface, where the slip distribution has
the largest effect on the synthetic data. However, the choice of A that allows this fit
may result in large oscillations in the model at depth, increasing the average spatial
roughness and forcing the inversion toward larger values of A\. An optimal choice of
f(£2) may be slightly undamped at shallow depths and allow the model to fit data
close to the fault without introducing large model error at depth.

Any choice of inversion parameters defines the resolution and model covariance of
our inferred model. Whenever we apply non-zero smoothing to a linear least-squares
inversion, our model estimate becomes a spatial average over the true continuous
slip distribution, with the spatial averaging scale increasing as A becomes large. The
extent to which the inferred slip at any given patch is an average over the surrounding
patches can be assessed by inspecting the rows of the final model resolution matrix,
R (e.g., Menke, 1989). For practical purposes, we construct a measure of spatial
averaging scale, W, which we define as the width of the row of R associated with each
fault patch. Details of how we compute the width of each row are in Appendix A.2.
For a 2-D fault plane, we define W as the root mean square (RMS) of the smoothing
scales in the along-strike and down-dip directions. W is an a posterior: quantity that
we use to compactly illustrate the effects of data noise, system geometries, etc. on our
synthetic inversions. Model resolution generally does not take the form of a compact
peak centered on each fault patch, but tends to include contributions from regions
all over the fault plane (Fig. 4.5). Therefore, our W is only an approximate measure
of the averaging scale for each fault patch in the inversion. Any rigorous assessment
of the significance of features in the final model should always involve examining R

directly.
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Figure 4.5: Rows of R associated with two fault patches with different degrees of
resolution. Upper panels correspond to the mapping of strike-slip offset across the
entire fault plane onto strike-slip offset on the patch indicated by the open circle. Low
panels correspond to dip-slip offset. There are corresponding maps between strike-
slip and dip-slip offsets, but these tend to be lower amplitude and are not considered
here. Bars indicate the variance in the horizontal and vertical directions (W}, W),
with a circle of width W, where W is the RMS of W), and W,. All fault parameters
are the same as in Figure 4.11.
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4.3.3 Choice of (p,\)

In our synthetic cases, we investigate the interaction between the inversion procedure,
input slip model, mg, and the observed data. We define a “good” regularization as
one that fits the underlying signal (dy) as well as possible without introducing model
characteristics that are merely fitting the noise. Increasing A decreases our ability to
fit the underlying signal, as the inferred model is forced to be increasingly smooth.
We call the error due to over-smoothing the regularization error, since it is a function
of our regularization method and the input slip distribution, not of the noise (e.g.,
Hansen, 1998). As we decrease A, the inferred model fits more and more of the noise,
resulting in an increase in what we will we call the perturbation error. The total
error for a given A is the sum of the perturbation and regularization errors. Note
that these quantities are not the same as the E; and E, from Equation 4.4. We are
not penalizing a model for its roughness directly (E,), but for the roughness of the
synthetic data it predicts.

To quantify and separate the regularization and perturbation errors, we rely on

the fact that we can treat our observed data, d;, as a sum of two parts:
di(®) = do(®) + ni(2P) (4.5)

where dy is the elastic response of the earth to an input slip distribution (mg) in
the absence of noise, and the n; are multiple realizations of independent, identically
distributed Gaussian noise with variance o2 and zero mean. We drop the explicit use
of the spatial coordinate ® for the remainder of this paper. In this section we find
the optimal regularization assuming that we know d;. In Section 4.3.4 we describe
ways to separate dy from d;. Since the forward and inverse problems are linear, we
can separate each inversion into the parts controlled by the exact data and by the

noise.
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4.3.3.1 Exact data

We quantify the regularization error by the amount that the predicted synthetics are
smoothed by a particular inversion. Given dy = Gmy, we infer slip distributions from
do:

my = G¥dy (4.6)

& = Gm, (4.7)

where G9* is the generalized inverse for a regularized inversion with a given (p, A), mj
is the smoothed version of my that we would infer with a particular regularization,
and djj is the smoothed surface deformation predicted by mg. In general we use
the asterisk to signify inversion quantities where we have applied smoothing. If our
forward model is exact (e.g. correct fault geometry, elastic parameters, no round-off
errors, etc.), then when A\ = 0, m§ = mo and d§ = dy. We define the regularization
error as the difference between our noise-free data (dy) and the deformation predicted
by the smoothed model (df):

oo = do — d, (4.8)

where o7 is the regularization error. We can also write Equations 4.6-4.8 as:

my = Rmyg (4.9)
d5 = Ndy (4.10)
oo = [I — N] do (411)

where R = G9*G and N = GGY* are the model and data resolution matrices, respec-
tively (e.g., Menke, 1989).
4.3.3.2 Noise

The perturbation error is the degree to which a given realization of the noise in the

data, n;, is mapped by the inversion into the inferred slip, m.,; = m;, and back into
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our predicted synthetic data, d;.

m: = G*d (4.12)

d: = Gm;

2 2

(4.13)

We separate the operation of G9* on the noisy data into a sum of its parts:

m; = G"dy + G"n; (4.14)
d; =dy+n; (4.15)

where
n; = Nn; (4.16)

is the noise filtered by our regularization. We define:

=N, —n; (4.17)

;71 represents the smoothing of the noise by the inversion which decreases with de-
creasing A. We can also compare a smoothed set of noise with a completely indepen-
dent realization of the noise:

T (3

This quantity, which we define as the perturbation error, increases as A decreases.
The total error when we compute a residual between one data set and a smoothed,
independent data set is

Combining Equations 4.8 and 4.19, we get

jri = oTo +j7”? (420)
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indicating that the total error is equivalent to the sum of the perturbation and regu-

larization errors (Fig. 4.6a). We define measures of the size of these residuals as
1 2
ORO = EZOTO((D) (421)
®

iRi

%Z{; T2 (@) (4.22)

where k is the number of observation points used in the inversion. As A approaches
0, the perturbation error approaches 20 and the regularization error approaches 0.
We use a script R to avoid confusion with R, the resolution matrix. As A becomes
large and smoothing increases, the perturbation error decreases and the regularization
error increases. Note that the total error quantifies the regularization error and
perturbation error as they express themselves at the surface observation points, and
that the spatial discretization of the fault plane will introduce an additional error in

a real scenario.

4.3.3.3 Parameter choice

If our goal is to maximize the fit to the underlying signal, we must choose the values
of A and p that minimize the total error. The ideal regularization would predict a
model di from each dataset d; that had the lowest residual when compared to all
other datasets d;. This is equivalent to minimizing ;R;, and is the point where we
stop introducing model features that are merely fitting the noise. Note that our
minimization of ;R; is different from the minimization of the objective function, I', in
Equations 4.3 and 4.4. Our choice of (p, ) fixes the form of the I that we minimize
in the inversion for m;.

One way to calculate the theoretically best value of A for a synthetic system
would be to create a large number of synthetic datasets with different realizations
of the noise, and to calculate ;R; numerically by computing all the permutations of
d; — di. However, we can be more efficient in these synthetic cases and capitalize on

the fact that we know the input model, mq, and the covariance structure of the noise.
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Figure 4.6: a: Regularization and perturbation errors, and their relation to ;R; as
a function of A\. Shaded region indicates 1o numerical bounds on ;R;. b: Sample
L-curve showing the value of A chosen by the ;R;-criterion (open circle) and the value
chosen by visual inspection of the L-curve (shaded circle), on a plot of model roughness
vs. data fit. c¢: Input slip distribution, mg, and upper and lower 1o confidence intervals
for the two slip distributions from (a,b). In this case there was a misleading corner
on the L-curve that would lead to an oversmoothed inferred model with small error
bounds but a large averaging scale.
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We can use these two quantities to find the value of ;R; analytically for any (p, \).
Earlier, we noted that we can express Equation 4.8 as ¢rg = [[ —N]dy. If we

define a matrix M as [I —N], then we can express the residual quantities as:

oro = M[dy do]* (4.23)
i = Mld; d;]" (4.24)
j’f’? = M[’I’Lj ni]T (425)

if Cy is the data covariance matrix, then by the law of covariance propagation:
C, = MC;M* (4.26)
where C, is the covariance matrix of ;. We can derive (Appendix A.3):
1 .
jRi = ()R() + E Z dmg(CT) (427)

This quantity depends only on the input model and on the noise covariance, and
quantifies the total error. We can perform a grid search through values of (p, A) and
choose the optimal parameter combination for any synthetic system that interests us.
This optimal regularization will be the closest that d; can get to dy for a given noise
level.

The superiority of the ;R;-criterion over the L-curve method is illustrated in
Figs 4.6b and c. L-curves often have multiple “corners”, and the value of A that
we choose for the p=0 case using our method often differs than the A that we would
choose by visual inspection of the L-curve. The ;R;-criterion bears some similar-
ity to the cross-validation technique used by Arnaddttir and Segall (1994) (see next
section), who also find that the corner of the L-curve does not always indicate the
optimal value of A\. The approach described here has the additional advantage, via
the choice of p, that it can explore a family of f().

We note that our “optimal” (p, A), which satisfies the ;R,; criteria, is not necessarily
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the best choice for every problem. Each choice of (p, A) corresponds to a different
model covariance matrix and averaging scale for the solution. Scenarios may exist
where we require an increased level of confidence relative to that we would choose
with ;R;. In these cases, one must be able to tolerate a higher degree of spatial

averaging.

4.3.4 Real Data

jRi as defined in Equation 4.27 is our “theoretical” derivation, or ;R!. In a real
application, we have one set of data and usually only limited information about the
real slip distribution or the character of the noise. In other words, we will be unable
to compute ¢Ro or Cy exactly, and cannot directly choose the best (p, A) pair. In this
case, we have two ways of approximating ;R;. The first method involves assuming
Cy and forming an approximation of (R using the existing dataset, d (Derivation in
Appendix A.4). We refer to this “approximate” value as ;R{.

The second technique relies on Equations 4.19 and 4.22, from which we can ap-
proximate ;R; without knowledge of mg or Cy if we have multiple datasets. We at-
tempt to simulate the existence of multiple datasets by resampling our single dataset.
Data resampling techniques are all based on the premise that if an inversion is stable
with respect to the noise, a model predicted from a subset of the data should fit
the remaining data reasonably well (Fig. 4.7). Implementations of data resampling
include cross-validation, jackknifing, and the bootstrap (e.g., Efron and Gong, 1983).
Resampling techniques all share the problem that it is not obvious how to choose
the size of the resampled subsets, and require an assumption of uncorrelated noise.
Cross-validation has already been used to choose smoothing parameters for slip in-
versions (e.g., Arnadéttir and Segall, 1994; Freymueller et al., 1994; Cervelli et al.,
2001; Hreinsdottir et al., 2003). In this study, we create a resampled data set by
randomly choosing 50% of the original set. We infer a model from the resampled
dataset, then use this model to predict the deformation at points that were not used

in the inversion. We refer to the resampled approximation as ;R;. We use ;R; in
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Figure 4.7: Schematic illustration of resampling methods (e.g., bootstrap, cross-
validation): Circles indicate data observations of some general process, with open
circles indicating data points that were used in a single resample of the total data set.
Solid circles indicate data points that were not included in the inversion, but that
were used in calculating data error. The three curves correspond to models inverted
using the resampled data points for different values of A. For a very small A (dashed
curve), the inversion matches each resampled data point closely, at the expense of
producing a high variance slip model with unrealistic oscillations. The high variance
model will have a large misfit with the unused data points (closed circles). This cor-
responds to the case where regularization error, ¢Ry, is very small and perturbation
error, ;/R?, is high. For a large value of A (dotted curve), the inferred model is so
smooth that it does not fit any of the data points. The ideal value of A (solid curve)
balances the regularization and perturbation errors and provides the best fit to the
underlying signal, d,.

cases where we have nonlinear constraints and cannot calculate ;R{. Where possible,
we compare the two approximation techniques as a check on the robustness of our
parameter choice.

We examine the behavior of both approximation techniques in a 2-D system by
producing a large number of datasets with independent n; and calculating ;R{ and
;R for each data set (Fig. 4.8a). We fix p=0 here for simplicity, but Fig. 4.8 applies
for variable p as well. We find that both methods are sensitive to the specific character
of each n; (i.e., whether it has particularly large values of noise near the fault) and do
not always select \;, the value we would choose if we knew ;Rf. The values of A that

the approximation methods select cluster near );, although there is a non-zero chance



86

of choosing a very large or small A for a given dataset (Fig. 4.8). The ;R¢ technique
relies on an assumption of C,;, but that assumption can be checked at the end of
the inversion. The ;R; technique is independent from assumptions about the noise
or input slip distribution, but it is not obvious how to choose subsets of the data.
Different percentages of data points in the resamples result in different inferred A. In
addition, we find that the ;R] method requires inversions of hundreds of resamples
to converge, and therefore takes hundreds of times as long as the ;R{ method. The
;jR{ method only works for linear penalty functions, so we must use ;R when we
have bounds on fault slip or other nonlinear constraints.

We conclude that for a real application when we have one dataset, we will generally
choose a (p, \) similar to the one we would choose if we knew ;Rf. Our method will
occasionally result in small values of A (Figure 4.8), but these cases will be obvious
due to the extremely high model covariances. We expand on our technique for dealing

with real datasets in Section 4.5.

4.4 Behavior of Synthetic Systems

In this section, we use the ;R technique to examine the behavior of synthetic systems

as we vary quantities including noise and fault patch size.

4.4.1 1-D

Although the 1-D system is somewhat unrealistic, we use it to demonstrate the behav-
ior of our inversion recipe. To begin, we create a 1-D fault plane and data geometry
as in Figure 4.2, and search through a range of p and A to find the combination
that minimizes ;R; (Figure 4.9a). We also examine the model we would choose for
constant smoothing (p=0, S=I). For each of the two cases, we find the resolution
matrix R, the averaging scale W, and the 1o bounds on best-fitting slip models. The
oscillations in W and the model error bounds (Figs 4.9d and e) are consequences of
applying smoothing on a finite fault plane and thereby restricting the modes that

the solution can take. SVD truncation produces the same effect. We note that W
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Small dots indicate the values of A chosen by the two algorithms for 100 independent
d;. The large open circle indicates );, the value chosen by ;R!. b: Comparison
of A’s chosen by both algorithms for each of the 100 d;. The ;R{ method chooses
slightly larger smoothing on average, with a rare occurrence of very low values. Our
resampling algorithm used 200 resamples of each d;, each with 50% of the total number
of points.
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is larger for the p=8 case over all but the shallowest portion of the fault, but that
the model error is significantly lower for p=8 over most of the fault plane. In this
case, a better fit to the data is found with a smoother model at depth and slightly
more complicated model near the surface. We emphasize here the dramatic decrease
in model error (Figure 4.9¢) for a moderate increase in W (Figure 4.9d).

As described above and in Appendix A.2, our derivation of W is based on the
width of the resolution matrix R around each fault patch. However, as is evident
in Figure 4.9¢, the rows of R are often non-Gaussian and may have peaks off of the
main diagonal. Therefore, we should be cautious about use of W for all but the most
qualitative judgments about the model. In Figure 4.9f, we show the result of running
a Gaussian curve of width W; for each fault patch i over the input model mq (dashed
line), and compare this averaged model with the inferred model. The misfit at around
8 km depth results from a second peak in R at shallow depths (Figure 4.9¢) that is
not accounted for by our definition of W. Essentially, the slip at great depths covaries
with slip at shallow depths, so that the estimate of slip at a given depth can include
“leakage” from remote areas of the fault plane. We assess the degree of leakage by
direct inspection of R.

We explore the sensitivity of the 1-D system to variations in fault patch size, data
noise and the size of a data gap near the fault (Figure 4.10). We choose the best value
of (p, A) theoretically, with ;R;. In each case, the inferred slip in the left column is mg,
the smoothed version of my. The inferred model for a specific realization of the noise,
m;, should fall near mf, within the models 1o error bounds (right column). For the
patch size test, we created input data using 0.1 km fault patches, and inverted this
data using progressively larger fault patches. Note that our inferred models, W, and
the model error are independent of fault patch size until the fault patches get much
larger than the inherent resolution of the problem (Figure 4.10b). If we ensure that our
fault patches are smaller than the averaging scale, we avoid the implicit regularization
that occurs when we use an excessively coarse parameterization. As expected, the
inversion responds to noisy data by inferring models that are progressively smoother

as noise increases (Figs 4.10d-f). The main effect of introducing a data gap near the
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Figure 4.9: Effect of f(£2) on properties of inferred slip distribution. All panels refer
to the 1-D geometry with 0.2 km fault patches and o=1 mm noise. a: ;R; surface
vs. A and p. The white circle indicates the value of (p, A\) that minimizes ;R;, and
the white triangle indicates the optimal value of A for p=0 (constant smoothing). b:
Traditional “L-curve” representation of model misfit vs. data residual, illustrating
how our ;R;-criterion extracts values of A that are near the corner of the L-curve. c:
Resolution matrix, R, for the optimal (p, A). Black lines indicate the width of the
best-fitting Gaussian for each row, which we define as W (Appendix A.2). d: W for
the p=8 and p=0 cases. e: 1o error bounds on the inferred slip models. f: Input slip
distribution (heavy line) and 1o confidence limits on both inferred slip distributions
(shaded). Note the difference in 1o error bounds between the two models. Dashed
line demonstrates the result of running a Gaussian window of width W (for optimal
p, A) over the input slip model (Appendix A.2).
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Table 4.1: Model parameters from Figure 4.10
Patchsize (km) Gap (km) o (cm) p  logioA

0.5 0.5 1 0 -0.80
1 0.5 1 0 -1.26
2 0.5 1 0 -1.76
0.2 0.2 0.1 3  -0.63
0.2 0.2 1 12 -0.20
0.2 0.2 3 0 -0.02
0.2 2 1 0 -0.16
0.2 3 1 8 0.01

fault is that the averaging scale becomes larger at shallow depths (Figure 4.10h).

4.4.2 2-D

For the 2-D case, we again begin by demonstrating the importance of allowing for
variable f(€). We use the geometry described in Figure 4.3, beginning with ob-
servations of only the along-strike, or Y-component, of deformation over half of the
coseismic deformation field. We invert for the best (p, A) pair, and examine the dif-
ference with p=0 (Figure 4.11). The inferred model in Figure 4.11a corresponds to
mg, and only represents smoothing of the input model by the corresponding model
resolution matrix, R. A model, m;, that would be inferred from any given noisy
dataset is likely to fall within the bounds indicated by the model 1o error in Fig-
ure 4.11b. For the remainder of this paper, when we refer to “inferred model”, we
mean mg. We find that the inferred model with p=7 (Figure 4.11a) differs from that
for p=0 by only 5-10% in this case (Figure 4.11d). However, we find that the model
error bounds (Figure 4.11b) varies a great deal from the p=0 case (Figure 4.11e).
In Panels 4.11d-f, the dashed curve indicates zero change, so that negative regions
indicate decreases in model error. As we saw in the 1-D case (Figure 4.9e), we can
improve model error over most of the fault plane, at the expense of a slightly larger
error at shallow depths. Inversions with p=0 attempt to model the surface region too
well, at the expense of model error at depth.

Next, we vary data noise, fault patch size and observation geometry (Figs 4.12



91

—_— T Patch Size (km)
— 05
— 1
—_ 2
5
£
=
<
=1
()
a
10
15 a c
Noise (cm)
— 01
— 1
— 3
5
g
S
e
a
[
a
10
15 d f
Data Gap (km)
— 0.2
—_ 2
— 5
5
g
S
=
a
[
a
10
15 4 !
0 100 200 3 6 9 10 20 30

Slip (cm)

Figure 4.10: Sensitivities of inferred slip model, averaging scale and 1o error bounds
in the 1-D case. The left column contains the input slip model (my) and inferred slip
models for each case. The center and right columns shows the averaging scale, W,
and the 1o error bounds on the inferred slip, respectively. Rows correspond to tests
where we varied the fault patch size (a-c), noise level (d-f) and size of a data gap
near the fault (g-i). Each inversion for the fault patch size test (a-c) used the same
data set created with a 0.1 km fault patch size, although the fault patches used in
the inversion ranged from 0.1-2 km in width. (p, A) for each model are in Table 4.1.
Oscillations in W and model error are a consequence of smoothing on a finite fault

plane.
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Figure 4.11: Effect of p in the 2-D case: (a,b,c) Inferred slip, model 1o error bounds,
and W, for optimal (p, A). (d,e,f) Difference between optimal model and model chosen
under constant smoothing (p=0) condition. Dashed line in (d-f) is a zero contour.
Negative values in (e) and (f) correspond to improvements in model error and W
for the p=7 model. This inversion used only the Y-component of deformation, with
o=1 c¢m noise, and constrained the rake to purely strike-slip motion.



93
and 4.13). As in the 1-D case, we find that our inversions are relatively invariant with
respect to fault patch size (Figs 4.12a and b), as long as our fault patches are smaller
than the theoretical resolution of the fault plane. We examine the dependence on
observation geometry by adding the vertical and the second horizontal components
of displacement to our inversions, while keeping the total number of data points fixed
(Figure 4.13). The 1o error bounds and averaging scale on the inferred model improve
significantly when we add the vertical component, even though we use the same
number of data points (Figs 4.13e and f). Adding the second horizontal component
has minimal effect. Tradeoffs between strike-slip and dip-slip displacements decrease
as we add components, as evidenced by the fact that the rake in panels (b) and (c)

is nearly purely strike-slip.

4.5 Recipe and example

In a real application where we cannot compute ;Rf, we would perform the following

operations:
1. Begin with data set, fault geometry, and initial guess at noise covariance matrix.
2. Calculate ;R¢ (See Appendix A.4).
3. Re-estimate noise variance from data residual (See Appendix A.1).
4. Repeat steps (ii) and (iii) if noise variance differs significantly from initial guess.
5. Run resampling algorithm for error bounds on model (See Appendix A.1).

6. Assess output model, error bounds and averaging scale. If smaller error bounds
are needed and a larger averaging scale is acceptable, rerun inversion with larger
value of A\. If averaging scale is not around 2-3 times the size of the fault
patches, consider re-parameterizing problem with variably-sized patches (Sagiya

and Thatcher, 1999; Pritchard et al., 2002; Simons et al., 2002).
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Figure 4.12: Behavior of the inversion for a 2-D system using different patch sizes and
levels of noise: Patch=2 km, 0=1 mm (left column), patch=1 km, c0=1 mm (middle
column), and patch=1 km, o=1 cm (right column). We use the Y-component of
deformation with a 1 km data gap near the fault. a,b,c: Inferred slip. Arrows
indicate the rake of the slip vector at each fault patch. d,e,f: Model 1o error bounds.
Note the difference in scale between (d,e) and (f). g,h,i: W for each case.
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We explore this method with a synthetic example involving a subduction zone
earthquake with pure dip-slip motion (Figure 4.14a). Our fault plane dips 20° to the
east and has 10 km fault patches. We simulate a realistic scenario where we have
sets of data observations that combine different components of the deformation and
different noise levels. We use a broad grid of observations of the vertical component
of deformation (Uy) over the “on-shore” region (¢=1 cm), and three more precise
measurements (0=1 mm) of both the horizontal components (Uy). Initially, we
examine this data-fault geometry with ;Rf. The choice of p is driven by the Uy
points, since they have much smaller model error and are located in regions where
the deformation signal is large. The signal in the southwest corner of the fault plane
is allowed to be more rough than if we had forced p=0. When we examine the inferred
slip, model error and W (Figure 4.14), we see that the inversion is able to resolve
most of the major peaks in the input model with an averaging scale that increases
downdip. We note that over the entire fault plane, W is larger than 10 km, indicating
that we would get no further information about fault slip if we decreased our fault
patch size. In fact, we could double or triple the size of the patches half-way down
the fault plane if we needed to decrease the computational burden of this inversion.

Next, we follow a dataset through our inversion process as if we had no knowledge
of my and an incorrect first guess at the Uy noise, 0=3 cm. We assume that we
correctly know the variance of the Uy noise. The main effect of this incorrect guess
is that we will over-weight the Uy data points in the inversion and infer a much
higher model covariance for our inferred slip model. For each dataset, we run steps
(ii)-(iii) three times. After the first iteration, we find that the Uy data residual has
o~1 cm (Figure 4.15). Further iterations do not improve greatly on this result, and
the inferred values of (p, ) remain approximately the same.

We note that this iteration on the estimation of C; does not violate any laws about
a priori assumptions, because we are merely using it to choose (p,A). Any choice
of (p,\) is “correct” if we accompany our inferred slip model (Figure 4.16a) with
appropriate measure of model error and resolution. We could calculate the error on

our model estimate analytically using our new estimate of Cy, but it is safer to infer
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Figure 4.14: Subduction zone setup, a: Input slip distribution on fault plane dip-
ping 20° to the east, with pure dip-slip motion. Arrows indicate slip direction on
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the error on our model using resampling (Appendix A.1), since we would violate laws
about a priori assumptions by using an a posterior: estimate of Cy. In Figs 4.16¢ and
d we show both estimates of error, which are very similar, indicating that we have
ended with a reasonable approximation of C;. We calculate the residual between
m; and m{ (Figure 4.16e) and find that over most of the fault plane we match the

smoothed input model to within our inferred 1o error bounds (Figure 4.16f).

4.6 Other f(Q)

The ;R;-criterion can also be used to distinguish between various fault plane geome-
tries or other nonlinear measures of misfit such as positivity or spatial compactness.
To demonstrate this flexibility, we created a synthetic dataset from a fault plane
dipping 75°, and inverted using fault planes that dipped between 70° and 80° (Fig-
ure 4.17). The fault plane dip is effectively a third dimension in our (p, \) parameter
space. In Figure 4.17a, we show the minimum ;R! for each dip, demonstrating that

there is a distinct minimum near the correct dip value.
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Figure 4.16: Subduction zone inversion results (p=2, A=0.083) a: Inferred slip model,
m;, with slip vectors (white arrows). b: Averaging scale, W, for this inversion. c:
1o error on inferred model, calculated using final Cy. d: 1o error bounds on inferred
model, calculated from 200 resamples of the dataset (Appendix A.1), with same
colorscale as (c). e: Residual between m; and mj for this regularization, or the
contribution of noise to the inferred model. f: Difference between absolute value of
residual in (e) and the inferred error level from (d). We have set the colorscale to
only show positive regions, corresponding to areas where we have not fit the smoothed
input model to within 1o error.
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When we include nonlinear penalty functions, such as positivity constraints, we
cannot form a generalized inverse (G79), and our only tool is the ;R] method. As
a test example, we performed an inversion for fault slip using a fault plane with 25
2 x 2 km fault patches, with an input slip function of 2 m on one of the shallower
patches (Figure 4.18a). The data in this example form a relatively coarse grid, and
includes noise with =1 cm. An inversion without positivity constraints extracts
only a very smoothed version of the input slip distribution (Figure 4.18b), whereas
an inversion with positivity constraints on the strike-slip component allows us to
infer a very close approximation of the slip with minimal contribution from the noise
(Figure 4.18c). Both inferred slip distributions are m}, not mg, so they include one
realization of the noise. Positivity constraints keep the inversion from fitting the data
by inferring wildly oscillation slip variations at depth. Therefore, inversions with
positivity constraints require a smaller degree of smoothing (e.g., Du et al., 1992;
Pritchard et al., 2002).

We note that if we wish to simultaneously use positivity and variable smoothing,
we run into the problem that it is difficult to compute the SVD with positivity
constraints. However, we can still view the f(Q2) that we derive from the normal SVD
as a family of potential smoothing shapes, and use the ;R; method to choose from

among them.

4.7 Conclusions

We have demonstrated that the ;R;-criterion extracts the slip distribution that best
balances model error introduced by noise and the error associated with smoothing.
The ;R;-criterion can be applied somewhat automatically to a wide range of data-
model scenarios, and produces straightforward error bounds and averaging scales for
the model. Explicit presentation of error bounds and spatial averaging scales allows
one to focus in on features of the model that are constrained by the data.

In most of the scenarios examined here, we did not find more than a ~10% change

in the inferred models when we allowed SVD-based variable-smoothing. We expect
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A=0.001). Both inferred models correspond to m;}, not mg, so they only include the
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that scenarios exist where variable-smoothing will have a much greater effect, es-
pecially in regions with very heterogeneous data coverage or where there is a large
difference in magnitude between basis functions. Other families of f(€2) may exist

that provide further optimization of ;R,.

A.1 Errors

We propagate known data covariance structure C, into errors on our model estimates
by premultiplying G and d by C;' (e.g., Harris and Segall, 1987; Segall and Harris,
1987). This rescales Equation 4.2 so that we can include observations with different
signal to noise ratios (SNR) in our inversions. If C,; is non-diagonal, as is generally
the case with InSAR observations (Emardson et al., 2003), we transform our system
of equations by premultiplying with P = Q~!, where () is the Cholesky factorization
of Cy such that QQT = C,;. This operations results in reweighted data with unit

variance. The covariance matrix of the model, C,,, is (e.g., Menke, 1989):
Cpo =G9G™T (4.28)

In the case where we do not have a good approximation of Cy, we can also compute
model errors using resampling techniques (e.g., Arnadéttir and Segall, 1994; Frey-
mueller et al., 1994). We form a large number of resamples of the data set (~200-500
are necessary for most of the problems in this paper), and infer slip models from each
resample. For each fault patch, we then take the upper and lower 1o bounds on the
family of inferred values. We define the standard deviation of our model as half of
the difference between the upper and lower bounds on each fault patch.

We re-estimate the variance of our noise from the data residual, d; — d;. The

estimated variance is [d; — df][d; — d}]".
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A.2 Calculation of R and W

We compute the resolution matrix, R, in two ways (e.g., Menke, 1989):
R=V,V' (4.29)

where p is the SVD truncation value and V), are the first p columns of the SVD matrix

of eigenvectors.

R=GG (4.30)

where G is the matrix of Green’s functions and G79 is the generalized inverse.

In the 1-D case, we derive W from R by finding the width of the best-fitting
Gaussian curve to each row of R. This width is a good approximation of the “local”
averaging scale, and does not include effects from secondary peaks in R (Figure 4.9).
We find that this definition of W gives us an intuitive feel for the spatial scale of
averaging in the 1-D case. It is not a perfect measure, however, since filtering mg by
a Gaussian window of width W on each patch does not give us the same result as the
product Rmy, or m§ (Figure 4.9f).

In the 2-D case, we define measures of W as the standard deviation of R in either
the along-strike (W},) or down-dip (W,) directions (Figure 4.5). When we allow both
strike-slip and dip-slip motion, R has four quadrants that relate strike-slip and dip-
slip motion to each other. In general, the strike-slip and dip-slip components of R
behave differently, so we compute W}, and W, for dip-slip and strike-slip deformation,
for a total of 8 separate measures of W. In the body of this paper, we refer to W as
the RMS of the 4 components relating to the purely strike-slip and dip-slip quadrants
of R (Figure 4.5). Note that for the poorly resolved fault patch (right column), the
inferred slip for either the dip-slip or strike-slip components is dominated by slip on
the fault plane in regions far from the fault patch. This poor resolution is a result of

the lack of data points on the left side of the fault plane (Figure 4.3).
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A.3 Derivation of ;/R!

We seek an efficient way to calculate ;R;. We expand Equation 4.22 using Equa-
tion 4.20:

iRi = 1/k Y [(0r0)? + 2(or0) (577) + (5r7)] (4.31)

Since ;rj* is a random variable with mean 0, the middle term disappears and we are

left with:

jRZ’ = 1/]€ Z(OT())Z + 1/l€ Z(]‘Tg)z (432)

The first term is equivalent to the definition of yRy. Since the mean of ;r is 0, the
expectation of the second term in Equation 4.32 is a sum over the variances of ;rj at

each data point (Equation 4.26).

A.4 Derivation of ;/R{

In order to form an approximation of ;R; in the case where we only have one dataset,
we use the relations:

iTi = oTo + Ty (4.33)
iTi = oTo + jT? (434)

We can compute one realization of ;7; = d; —d; using our existing dataset, and we can
calculate ;77" and ;77 if we assume C,; (Equation 4.24). Therefore, our approximation
of jR; is:

iR =2 2 liri — i} + jrf] (4.35)

T
where k£ is the number of data observations and the sum is over all data. We show
how the use of only one realization of ;r; introduces a scatter in our approximation

of jR; in Figure 4.8.
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Chapter 5

Applications of ;R; method
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Abstract

I use the ;R; method from Chapter 4 to invert geodetic data for the distribution of
coseismic slip for two large earthquakes, the 1998 M,, 7.1 Hector Mine, California,
earthquake and the 1995 M,, 8.1 Antofagasta, Chile, earthquake. In cases where the
deformation source is very near the data points, the sensitivity to model geometry
is high and the data may be dominated by anelastic processes are not accounted
for in the forward model used in the inversion. I present the results of an attempt
to use the ;R; method on a large strike-slip earthquake, where imprecise knowledge
of the model geometry causes the ;R; technique to break down while choosing the
appropriate magnitude of regularization. I use synthetic examples to illustrate how
model geometry errors propagate through the inversion, and I use the data covari-
ance constructed as in Chapter 1 to place confidence intervals on the depth-averaged
coseismic slip distribution. I show that, for an example where the deformation source
far from the observations, the ;R; method can semi-automatically choose inversion

regularization parameters and fault plane geometry.
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5.1 Introduction

The ;R; (or “Jury”) method outlined in Chapter 4 promises to be a semi-automatic
technique for choosing the most appropriate regularization and/or model parameter-
izations. To demonstrate the utility of the ;R; method, I present two examples of
inversions of geodetic data for distributed coseismic slip. I begin with the 1999 M,,
7.1 Hector Mine, California earthquake. The Hector Mine event was a large strike-slip
earthquake that caused several meters of mapped surface slip. There are voluminous
InSAR and GPS observations associated with the Hector Mine earthquake and several
publications review the available data and present slip inversion results of seismic and
geodetic data (e.g., Jonsson et al., 2002; Chen et al., 2002a,b; Simons et al., 2002).

My second example is the July 30, 1995, M,, 8.1 Antofagasta, Chile, subduction
zone earthquake. For the sake of brevity and because the purpose of this chapter
is merely to demonstrate the use of the ;R; method, I invert data from only one
of the interferograms spanning the deformation zone for this earthquake (Track 96,
1992/05/08-1995/10/09, B, =50 m). Reviews of the tectonic setting for this event
and slip inversions using the full set of INSAR and GPS data can be found elsewhere
(e.g., Monfret et al., 1995; Ruegq et al., 1996; Delouis et al., 1997; Ihmlé and Ruegy,
1997; Rewgber et al., 1997; Carlo et al., 1999; Klotz et al., 1999; Pritchard et al., 2002;
Chlieh, 2003).

5.2 Example: Hector Mine earthquake

The Hector Mine earthquake has a complicated, Y-shaped surface trace (Figure 5.1),
with InSAR and GPS data (Agnew et al., 2002) that come very close to the fault.
I used both the ;R;* and;R;” approximation techniques (Table 5.1), with a fault
plane geometry derived from Simons et al. (2002) and the noise covariance derived
as in Chapter 1. For this particular parameterization, neither ;R; approximation
method produced satisfactory results (Figure 5.2). The ;R;* method breaks down

whenever the remaining data residual due to inadequacies in fault geometry is larger
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Figure 5.1: InSAR data (color) and GPS points (red arrows, from Agnew et al. (2002))
used in inversion for distributed slip on fault plane geometry indicated by heavy black
line. Heavy black arrow corresponds to the LOS direction.
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o
s &5 8
Q $
Type S G E R Utility
jR:i* (Theoretical)  / +/ Fast Problem design, Monte Carlo tests
;Ri* (Approximate) ARV Fast Comparison with ;R,"
;Ri" (Resampled) v/ Slow All applications

Table 5.1: ;/R; review: Comparison of ;R; methods, including whether or not they re-
quire knowledge of the input model and/or noise covariance matrix (Cy), and whether
they can be applied to linear and/or nonlinear problems.

than the predicted residual due to noise, and picks an unrealistically small value of A
(Figure 5.2c). ;R;* can still be useful in cases where the character of the noise and
the magnitude of model errors is well understood, and the difference between ;R;*
and ;R;" provides a qualitative measure of the magnitude of model errors. ;R;* also
does not suffer from the ambiguity as to how one should choose the type of resampled
subset for the ;R,” approximation (i.e., cross-validation, jack-knifing, or bootstrap
(e.g., Efron and Gong, 1983)).

The ;R;" method accounts for model geometry errors by choosing a much smoother
slip distribution (Figure 5.2d), with peak slip ~ 4 m. The ;R;" slip distribution for
this fault geometry is inconsistent with mapped surface offsets (e.g., Treiman et al.,
2002) and previous seismic and coseismic slip inversions that predict peak slips of
6-7 m. Examination of the L-curve for this inversion (Figure 5.2b) suggests that a
value of A = 1072 (green dot) is closest to the “corner” of the L-curve and may best
balance the fit to the data vs. the slip model complexity. For the rest of this section
I will be considering only the p = 0 case (Chapter 4, “constant smoothing”). Once I
tune the fault plane geometry appropriately and can use ;R;" to choose regularization
parameters, I will be able to search the full range of (p, \).

To examine the sensitivity of this inversion to our knowledge of the fault plane
geometry, I create synthetic data using the same fault plane parameterization as in
Figure 5.1, same noise covariance as the Hector Mine data, and with an input slip

model using the L-curve corner value of A\ = 1072 (Figure 5.2b). I then calculate
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are correct, only ~ 32% of the inferred slip should fall outside the error bounds.

the resampled value of ;R;, ;R;", for inversions using various incorrect fault plane
geometries, where I either shift the fault plane in an E-W direction by +1 km, or vary
the dip of the fault plane between 60 and 120 degrees (Figure 5.3). ;R;" is minimized
at the correct geometry in both of these cases. Note that as the geometry error
increases, ;R;" chooses progressively larger values of A (Figure 5.3b,d). I also show the
percentage of inferred fault slip that falls within the theoretical error bounds in each
case (Figure 5.4). If the geometry is incorrect, the theoretical 1o confidence intervals
will be too small, even if the slip distribution has a large amount of smoothing. This
disparity between the actual and theoretical error bounds in this synthetic scenario
motivates the use of bootstrapped confidence intervals that presumably account for
some of the model parameterization errors.

The fact that the ;R;" criterion is sensitive to model errors implies that ;R;” may
be useful for choosing a fault plane geometry. I tested nonlinear inversions for fault
plane geometry, using the ;R;" value to choose the optimal fault parameterization.
In synthetic tests, where I began with a perturbed geometry and used simulated
annealing, the nonlinear inversion found the correct minimum only for very small
perturbations of fault plane dip and locations. Future work will include optimizing
the nonlinear inversion methods and determining whether the inclusion of data close

to the fault (i.e., to within distances on the scale of the fault patch size) biases the
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Figure 5.5: Slip distribution, bootstrapped 1o error bounds and averaging scale, W,
for the value of A = 1072 chosen in Figure 5.2. Arrows indicate slip direction of
eastern side of fault (i.e., mainly right-lateral. Gray patches on W panel indicate
patches that can not be fit by a Gaussian curve of resolution vs. distance.

search technique. Currently, I have not tuned these inversion to be efficient enough
that I can use the ;R; method, so I will proceed with an inversion using the value
A = 1072 that I chose off the L-curve.

Figure 5.5 shows the inferred slip distribution, 1o error bounds on the model and
an approximate averaging scale for this choice of fault plane and A The features in
this slip model are broadly consistent with the results of Jonsson et al. (2002) and
Simons et al. (2002), who used similar data sets and fault plane geometries. Note
that the largest bootstrapped model errors occur near the Y-junction in the middle
of the fault plane, which may indicate either that the solution is very sensitive to the
exact choice of fault plane geometry at that point, or that anelastic processes such as
block rotation or crushing occurred and are being mapped into slip errors during the
inversion.

I end my treatment of the Hector Mine earthquake with a profile of potency
(slipxarea) summed along strike vs. depth (Figure 5.6), with confidence intervals
derived from the bootstrapped error bounds in Figure 5.5. The inferred potency at
depths greater than 15 km is in part an artifact of the fact that slip on deeper fault
patches is averaged over length scales ~ 10 km (Figure 5.5), so that the estimate at

those depths includes contributions from shallower regions with higher slip. However,
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Figure 5.6: Slipxfault patch area (potency) from Figure 5.5a, summed along strike,
with bootstrapped 1o confidence bounds. Note that the potency at 4-5 km depth is
greater than that near the surface at the 1o confidence level.

the much shorter averaging scales at depths less than 5 km and the small error bounds
indicate that the difference in slip between the surface and at depths of 4-5 km is
significant. This result, and others like it, can be used to interpret later inversions
of postseismic data, and as input to fault zone friction law studies (Dieterich, 1979,

1992; Rice, 1983; Ruina, 1993; T'se and Rice, 1986).
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Figure 5.7: Resampled InSAR data (color) used in inversion for distributed slip on
fault plane geometry indicated by black rectangles. Coastline and LOS direction are
also indicated (thin line and black arrow, respectively).

5.3 Example: Antofagasta earthquake

The shortest distance between the geodetic observations and the presumed location
of the subduction interface for the Antofagasta earthquake is greater than 30 km for
all fault patches, leading to much less sensitivity to fault plane geometry than exists
for earthquakes with data proximal to the surface trace of the fault. Therefore, it is
much more likely that errors due to inadequacies in the geometry will be negligible,
even for a fairly simple fault plane parameterization. I parameterize a fault plane with
large (52 kmx39 km) patches offshore and smaller (26 kmx20 km) patches onshore,
along a plane that is constrained by the location of the trench and the aftershock
distribution from Husen et al. (1999) (Figure 5.7). All fault patches are smaller than
those Pritchard et al. (2002) determined to be at the resolution threshold for the

available data set.
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The bullseye of coseismic subsidence in Figure 5.7 can be fit either by thrust-
faulting near the trench and just onshore, or by physically unrealistic normal-faulting
on land and downdip of the subsidence feature. I impose slip constraints requiring
thrust faulting and allowing for some right-lateral slip, consistent with the observed
direction of relative plate convergence. The use of model constraints turns the inver-
sion into a nonlinear problem and rules out use of the ;R;* approximation, so I use
the ;R;” method here to determine the appropriate values of p and A (Figure 5.8a). I
also provide an “L-curve”-like representation of the data residual vs. model roughness
for all of the different values of p (Figure 5.8b), with the minima from (Figure 5.8a)
marked as open circles. Here, the model roughness is ||S” Dm/||, where S and D are
the smoothing shape and Laplacian smoothing matrices (Section 4.3.2), and m is the
slip model. It is not obvious how one would compare the curves corresponding to dif-
ferent values of p if the L-curve was the only tool at hand, or even how to define the
best point on each individual curve. In the p = 0 case, the value of A that minimizes
;R is slightly lower (higher model roughness) than the value closest to the corner.
The ;R; method allows me to compare all of the different regularization styles in a
consistent manner, leading to the choice of p = 215, A = 5 (Figure 5.9).

The slip distributions inferred for p = 0 and p = 215 (Figure 5.10) differ mainly
in the amount of offshore slip and the magnitude of peak slip near the coast. Both
are broadly consistent with the inferred slip distribution from Pritchard et al. (2002)
(Figure 5.11), which includes all of the available geodetic data and uses a different
fault plane parameterization. I form an empirical resolution matrix, R., by creating
synthetic data using unit slip on each fault patch and invert for the rows of R.. This
value has less significance than the resolution matrix in a linear problem, as R, is no
longer an operator that acts on the input slip model. R, still has some significance,
as we can form a measure of averaging scale, W, that provides a qualitative measure
of the size of feature resolved by this data set (e.g., Figure 4.5). I show W here
merely to demonstrate that the offshore fault patches are smoothed over large areas
(several 100 km?2), whereas the onshore fault patches are only smoothed across 1-2

neighboring fault patches.
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Figure 5.8: a) ;R;" for the Antofagasta earthquake. b) Data residual vs. model
roughness (L-curve) for each of value of p (gray curves). Here, model roughness is
||ST Dml|| (see text). Colored circles indicate the minima from (a) for p = 0 (green)

and the global minimum at p=215 (red).
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Figure 5.9: Smoothing shape for p = 215.

The data residual for p = 215 is smaller than for p = 0, but the characteristics
of the two residuals are very similar (Figure 5.12a, b). I also show the data residual
predicted for the full resolution interferogram (Figure 5.12b,d), using the slip models
from Figure 5.10. As in the other inversions in this thesis, I simultaneously invert
for a quadratic ramp across the image in order to account for imprecise satellite
orbital estimates. Since the signal in Figure 5.7 is dominated by long wavelengths,
the inferred fault slip trades off with the potential baseline error. The use of multiple
interferograms will ameliorate this problem.

I end with a brief example of the use of ;R; to distinguish between potential
model parameterizations. In this case, I note that I generated the fault plane used
for the Antofagasta earthquake study based on the best fit in a least squares sense
to the trench and to the aftershock distribution (red curve in Figure 5.13). However,
the aftershocks form a fairly diffuse cloud and, therefore, do not tightly constrain
the location of the subduction zone interface. I test the sensitivity of the inferred

fault slip in Figure 5.10 by scaling the depth of the fault plane by factors of 0.5 to 1.5
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Figure 5.10: Constrained-slip inversion results for p = 215 (a-c) and p = 0 (d-f). Slip
distributions (left) with arrows indicating coseismic motion of the subducting plate.
1o error bounds (middle) constructed from bootstrap resampling of the dataset in
Figure 5.7. Averaging scale, W (right), derived from best-fit Gaussian to each row of
the empirical resolution matrix, R, (See text). Empty patches indicate regions where
the rows of R could not be fit by a Gaussian and does not represent a simple average
of the area surrounding each patch.
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(colored curves in Figure 5.13) and computing ;R;", the data residual and the inferred
slip in each case. In this case I find that ;R;" is actually minimized at slightly greater
depths (Figure 5.13), although this may be explained by the fact that we could be
using the correct fault plane location but are definitely not using the correct elastic
structure for the subduction zone. The sensitivity of this inversion problem to 3-D
variations in rheology needs to be explored further. I also note that the data residual
decreases monotonically as the fault plane nears the surface, while the ;R;" increases.
This implies that the shallower fault plane is able to better fit the noise in the data,
but not the underlying signal. Also note that for the range of “low” ;R,;, the inferred

slip models are very similar (Figure 5.13e, f).

5.4 Conclusions

As the spatial and temporal coverage of geodetic datasets available continue to ex-
pand, the following developments are required if we are to rapidly and efficiently

characterize a given earthquake soon after it occurs.

1. Methods for appropriately combining different types of geodetic data (i.e., In-
SAR, GPS, leveling)

2. A robust algorithm for choosing the appropriate fault plane parameterization

and inversion regularization

3. Techniques for assessing the contribution of modeling errors such as uncertain-

ties in rheology

This combination of tools will facilitate the development of joint seismic-geodetic
inversions and the enable us to assess characteristics of the inferred coseismic slip
distributions such as the spatial complexity or depth-distribution of slip. Potential
techniques for addressing modelling errors include simulating realistically complex
rheologies with finite element methods in order to characterize the magnitude of

errors introduced by inadequate knowledge of the crustal rheology. In this chapter I
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as in Figure 5.10a.
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demonstrated that for some cases (i.e., subduction zone earthquakes) the ;R; method
can aid in the process of developing the correct inversion scheme, including the choice
of fault plane geometry. In other cases (i.e., the Hector Mine earthquake), further
work on optimizing fault plane choice is required. The fact that the ;R; method
can find the “correct” fault plane in synthetic scenarios for small perturbations of
the fault plane geometry is encouraging. In realistic settings, where we may have
significant uncertainty on the fault plane parameters, we must continue to quantify

the robustness of inversions for coseismic slip.
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Chapter 6

Concluding thoughts

During the course of my thesis work, I have attempted to optimize our use of geodetic
data types (e.g., InNSAR, GPS, pixel tracking) in applications ranging from earthquake
location to the characterization of coseismic slip distributions. One of the unifying
themes within this thesis is the quantification of the full range of model parameters
(e.g., slip distributions, deformation source locations) that are consistent with a par-
ticular set of data and the associated errors. One facet of this theme is the need to
present inversion results in a manner that illuminates an often very multi-dimensional
solution space. The presentation of error bounds and averaging or smoothing scale
associated with a given coseismic slip model within this thesis is one attempt to put
inversion results in a format that the reader can independently assess without being
fully acquainted with every aspect of the inverse problem.

I also address how inadequacies in the parameterization of inversions for earth-
quake parameters can bias the inferred results or produce unrealistically small error
bounds on the solution. I explore the effects of errors such as wrong fault plane ge-
ometries, spatially coarse fault plane parameterizations and incorrect knowledge of
the noise covariance matrix. Other important potential sources of error that need
to be assessed in the future include variations in 3-D elastic structure and the inclu-
sion of extraneous deformation sources such as ground water extraction, poroelastic
deformation and viscoelastic relaxation in response to an earthquake.

I explore how the inversion tools themselves restrict the range of model parameters

that we explore, and how significant these restrictions are to the final conclusions
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about the inferred model. In Chapter 4, I explore definitions of model smoothness
beyond the traditional definition of a roughness criterion, making a new family of
slip models available to the inversion. As we push the limits of what the data can
resolve and seek to progressively refine our conclusions, we must examine how the
mechanics of inversion regularization affect what we can infer from the data. Song
and Simons (2003) and Wells et al. (2003) observe that most of the slip in large
subduction earthquakes is correlated with negative trench-parallel gravity anomalies
and with topographic basins. It also appears that most subduction zones exhibit
some degree of aseismic slip (i.e., slow or silent earthquakes) downdip of the zone
that ruptures coseismically (e.g., Beroza and Jordan, 1990; Kanamori and Kikuchi,
1993; Hirose et al., 1999; Freymueller et al., 2001; Lowry et al., 2001; McGuire and
Segall, 2003). Inversion constraints that do not rely on the smoothness of the model
may be better able to resolve the spatial extent of slip (coseismic or aseismic) in deep
subduction zone environments. Future work will consist of examining different types
of end member models such as the most spatially compact slip model that fits the
data. Comparisons between the smoothest and most spatially compact slip models
will provide a more complete sense of the full family of solutions that are consistent

with the observations.
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Appendix: Introduction to radar
interferometry

In this thesis I use a combination of datatypes including interferometric synthetic
aperture radar (InSAR), Global Positioning System (GPS) observations and seismic
data. InSAR provides spatially dense (pixel sizes of order 10! — 10? meters) obser-
vations with accuracies of less than 1 cm over swaths greater than 100 km in width
(“across track”) and over arbitrarily large distances in the direction of satellite travel
(“along track”). InSAR observations are sensitive to a combination of atmospheric
characteristics, topography, changes in reflective properties of the surface and ground
deformation. Full treatments of the techniques, sensitivities and sources of error in-
volved in InSAR are plentiful (e.g., Griffiths, 1995; Gens and van Genderen, 1996;
Massonnet and Feigl, 1998; Rosen et al., 2000; Hanssen, 2001).

To form a synthetic aperture radar (SAR) image, radar signals are transmitted
from a moving platform (satellite, aircraft or space shuttle) and the phase and ampli-
tude of the return is recorded (Figure A.1). The processing of SAR imagery is treated
at length by various authors (e.g., Curlander and McDonough, 1991; Price, 1999).
The phase in an individual SAR image appears to be white noise (Figure A.2), because
the phase return from an individual pixel (length scale of order 10 m) is the result of
the combination of the interaction of all scatterers within a pixel at the scale of the
radar wavelengths (typically a few cm). However, as long as the scatterers within each
pixel remain coherent in time, the phase difference between two separate SAR images
will vary from pixel to pixel in a coherent manner (Figure A.2c). Interferograms with
non-zero baseline distance between the two images (B, Figure A.1) are sensitive to

topography and can be used to generate digital elevation models (DEM). Some care
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must be taken in interpreting these DEM'’s, since any variations in atmospheric water
content or ionospheric character can introduce elevation artifacts. The best results
are achieved when several independent interferograms are averaged together to reduce
the effects of atmospheric noise, or when the two images are acquired simultaneously
(i.e., Shuttle Radar Topography Mission (SRTM) or Topographic Synthetic Aperture
Radar (TOPSAR)) . When our goal is to measure surface deformation, we must ei-
ther use interferograms with very short baselines, or remove the effect of topography
using a pre-existing DEM (Figure A.2d, e) or by using an interferogram that spans
no deformation (the 4- or N-pass method).

In cases where the reflective properties of the surface change dramatically between
acquisitions of the two SAR images, the interferogram may become decorrelated (blue
and purple regions in Figure A.2f). For most practical applications, decorrelation
occur wherever the change in phase between neighboring pixels becomes greater than
~1/2 wavelength (e.g., Zebker and Villasenor, 1992; Rosen et al., 2000; Hanssen,
2001). Very high rates of deformation, even if varying smoothly across the image,
can induce decorrelation, as can steep topography, landslides, sand dunes, agriculture,
snow, or vegetation changes.

Because InSAR measures changes in range between the satellite and the ground,
interferograms are only sensitive to the component of surface deformation that is
in the line-of-sight (LOS) direction of the satellite. For some deformation sources,
having data for only one component of the full 3-D deformation field (as is the case
for most studies using geodetic data) can lead to ambiguities in the source location,
fault plane orientation, or slip distribution (Chapter 2). Knowledge of additional
components of the deformation field can help resolve these ambiguities. With InSAR
data, we can obtain multiple components if we use observations from different satellite
orbital geometries (e.g., overlapping satellite tracks or ascending vs. descending satel-
lite passes) and by combining interferograms with pixel tracking of SAR images (e.g.,
Fialko et al., 2001; Michel and Avouac, 2002; Simons et al., 2002). Pixel tracking,
or azimuth offsets, provides a horizontal component of deformation perpendicular to

the LOS direction, albeit with precisions on the order of a fraction of a pixel (10’s
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Figure A.1: Repeat-pass InSAR geometry: One or more radar satellites observe
the Earth’s surface at two discrete times at locations (red and blue radar signals)
separated in space by a baseline B. The range, p, between the satellite and the
ground is a function of topography, satellite look angle «, satellite height H and
any atmospheric delays that may introduce additional phase cycles along the radar
path. Precise knowledge of the orientation and length of B is necessary to convert dp
into elevation changes across the image. Since the interferogram only measures dp to
within £27 (“wrapped phase”), we must unwrap all of the different 0-27 segments
across the image to form a continuous map of line-of-sight (LOS) displacement(Shown
schematically in inset).
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Figure A.2: Interferogram formation: Amplitude and phase for two SAR images of
the Zagros mountains of southern Iran, separated in time by a month. Note the
elliptical signal in the upper-right of the topography-free interferogram (see Chap-
ter 3). Other features correspond to variations in atmospheric water vapor and other
noise. Decorrelated regions in lower left of correlation map (yellow=high correlation,
purple=low) correspond to the Persian Gulf.
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of cm) rather than a fraction of a radar wavelength. In the future, InSAR data from
both left- and right-looking geometries may become available, providing additional
observation directions.

Any errors in knowledge of the length and orientation of the baseline between
the two satellite acquisition locations (B, Figure A.1) result in errors in the inferred
range change. In a typical interferogram, the baseline between the satellites changes
smoothly across the image so that the result of baseline errors has a functional form
similar to a quadratic function across the image. The uncertainty in baseline requires
that we simultaneously account for this ramp in our interpretation of the inteferogram.

All interferograms discussed in this thesis were derived using the InSAR pro-
cessing suite ROI_PAC (Repeat Orbit Interferometry Package), developed at the Jet
Propulsion Laboratory (JPL) and Caltech (Rosen et al., 2004).
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