Table 1. Notation used in Chapter 1

- C(r) Covariance as a function of scalar distance, r
- $f(\mathbf{x})$ Atmospheric noise
- x Map view position
- S(r) Structure function
- σ^2 Variance of atmospheric noise
- A Autocorrelation of noise
- S Empirical structure function matrix
- C_d Empirical noise covariance matrix
- L_c Logarithmic decay scale of noise
- n_n Uncorrelated noise
- n_c Correlated noise
- v,d Eigenvectors and eigenvalues of C_d
- a_i Boxcar functions describing resampled data
- n_i Number of points averaged by a_i
- D_i Resampled data
- G Design matrix of Green's functions
- m Fault slip model
- G^{-g} Generalized inverse
- N Data resolution matrix, GG^{-g}
- Q Cholesky factorization of C_d
- P Inverse of Q

Table 2. Notation used in Chapter 2

 $\Delta \mathcal{L}_{wm}$ Change in line length between GPS stations Wahomie and Mile

 B_{\perp} Perpendicular baseline between two SAR images

 H_a Ambiguity height for a given B_{\perp}

 V_p P-wave velocity

Table 3. Notation used in Chapter 4

	Table 3. Notation used in Chap
G	Design matrix
$\Omega(x,y,z)$	Fault plane coordinates
$\Phi(x,y)$	Observation coordinates
m	Slip distribution
d	Data observations
C_d	Data covariance matrix
Γ	Objective function in minimization
λ	Weighting value
$f(\Omega,m)$	Penalty function
E_p	Error from penalty function
E_d	Error from data residual
p	SVD truncation for smoothing shape
σ^2	Variance of noise
D	Finite difference approx. of Laplacian smoothing matrix
S	Diagonal smoothing matrix
G^{-g}	Generalized inverse
W	Averaging width over fault plane
R	Model resolution matrix, $G^{-g}G$
N	Data resolution matrix, GG^{-g}
m_0	True slip distribution
d_0	Noise-free data
n_i	Data noise
d_i	Noisy data, $d_0 + n_i$
$_0r_0$	Regularization error
$_ir_j^n$	Perturbation error
$_i r_j$	$Total\ error = {}_{0}r_{0} +_{i} r_{j}^{n}$
$_j\mathcal{R}_i$	Size of total error, "Jury" criterion
$_{j}\mathcal{R}_{i}^{t}$	Theoretical $_j\mathcal{R}_i$
$_j\mathcal{R}_i^a$	Approximate $_j\mathcal{R}_i$
$_j\mathcal{R}_i^r$	Resampled $_j\mathcal{R}_i$
U_V	Observations of vertical deformation
U_H	Observations of horizontal deformation

Table 4. Notation used in Chapter 5 Perpendicular baseline between two SAR images

$oldsymbol{D}_{oldsymbol{\perp}}$	rerpendicular baseline between two SAR images
$_j\mathcal{R}_i^t$	Theoretical $_j\mathcal{R}_i$
$_j\mathcal{R}_i^a$	Approximate $_j\mathcal{R}_i$
$_j\mathcal{R}_i^{\it r}$	Resampled $_j\mathcal{R}_i$
λ	Weighting value
p	SVD truncation for smoothing shape
D	Finite difference approx. of Laplacian smoothing matrix
S	Diagonal smoothing matrix
m	Slip distribution