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Time for you and time for me,
And time yet for a hundred indecisions,
And for a hundred visions and revisions,
Before the taking of a toast and tea.
The Love Song of J.Alfred Prufrock
T.S. Eliot
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Abstract

This thesis consists of two independent chapters.

The first chapter concerns the Smith Normal Form (SNF) over the integers Z
of integral matrices. We consider the SNF of a matrix 4 to be the ratio of two
Z-modules—a finitely generated abelian group; this is called the Smith group of A.
The Smith group provides a unified setting to present both new and old results. The
new resulls coucern the relationship belween the eigenvalues of an integral matrix
and its SNF, In particular, the multiplicities of integer eigenvalues are shown to
relate to the multiplicities in the type of the Smith group. Bounds are also given
for the exponent of the Smith group. In some cases, these are best possible. The old
results discussed are the interlacing of the SNF in the case of augmented matrices
and the symmetries of the SNF for certain combinatorial matrices. The latter results
are extended to rectangular matrices. Numerous examples arc given throughout,
along with many conjectures based on computation.

The second chapter generalizes the work of Pless, et al. on duadic codes and
Q-codes. We take abelian group codes to be ideals in the group ring F|G|, where
G is a finite abelian group of odd order n and F is a finite field with characteristic
relatively prime to n. We define generalized Q-codes from a pair of idempotents of
F|[G] and an automorphism of G which together obey two simple equations. These
codes are (n, 1‘—;—1—) and (n, ”—'2“1) linear codes. We show that all of the properties
of duadic and Q-codes generalize. In particular, we extend the results on the re-
lationship of these codes to projective planes with regular automorphism group G.
When F has characteristic 2, we give simple numerical conditions on G and F

which determine when generalized Q-codes exist. We also give some techniques for

constructing these codes.
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Chapter 1

The Smith Normal Form as a

Finitely Generated Abelian Group

1. Introduction

One of the standard results in matrix theory is the construction of the Smith
Normal Form for matrices over a principal ideal domain (p.i.d.); see, for example,
[Nel]. By changing the p.i.d., one can derive quickly the classification of finitely
generated abelian groups or even the Jordan Canonical Form. Besides these appli-
cations, an occasional paper appears, such as [De}, [MdS], and [Th|, which indicates
that there are some basic results still to be obtained about the Smith Normal Form.
Our goal is to put some of these recent results and some new ones about the Smith
Normal Form into a unified setting. In the process we hope that the techniques
given may lead to even more new results.

The major drawback to the results in this chapter, however, is that we are
restricted to the case when the principal ideal domain is the integers, Z. Most of
the results in the literature do not require this limitation. The advantage gained is
that we can consider the Smith Normal Form of an integral matrix to be a finitely
generated abelian group. This interplay between matrix theory and the theory of
ZZ-modules will more than justify the generalization lost.

Besides the natural beauty inherent in the Smith Normal Form itself, there

is another important reason for pursuing the results herein. We contend that the
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Smith Normal Form over the integers for an integral matrix has a combinatorial
significance analagous to but separate from such more common concepts as the
spectrum of the matrix, the matrix formed by row intersections, and so forth. It is

to be hoped that the numerous examples which we give will support this remark.

After giving our definitions and preliminary results, we proceed to the relation-
ship of the spectrum of a matrix to its Smith Normal Form. We follow this with
examples and conjectures from the theory of strongly regular graphs. These results
are all new. In the last sections we put known results into our context. Much of

the time the proofs will be seen to be simpler.

2. Definitions and Preliminaries

In the usual discussion of the Sinith Nurmal Forw (SNF) of a malrix whose
entries are in some principal ideal domain R, one begins with an equivalence re-
lation on matrices and then proceeds to derive a canonical representation which
uniquely determines an equivalence class. A square matrix is called unimodular if
its determinant is a unit in ® (and so is invertible). The equivalence relation is then
defined as follows: two matrices A and B are equivalent, written here as A ~ B, if

there exist unimodular matrices £ and F such that EAF = B. One then goes on
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to show that every matrix A is equivalent to a diagonal matrix

dy

where r is the rank over R of A and the d; € ® with d;_; | d;, forv=2,...,r. This
can be done in several ways, ranging from the classical method of elementary row
operations, to computing ged’s of k£ X k minors, to the nowadays standard approach
of decomposing modules over . The resulting diagonal matrix D in (2a) is unique
up to the constraints given for the d; and multiplication of the d; by units in R.
We will call the main diagonal of D the SNF of A. We assume that the reader has
seen these topics in some manner before. As references, we offer [H&H], [Nel], and
[Bo]. We restrict to the case R = Z; all modules, submodules and factor modules

are then finitely generated abelian groups.

Let A be an integral m x n matrix. We set the row space of A4 over 7 to be R(A)
and the row space over the rationals to be V(A). Furthermore, let L(A) = V(A) N
ZZ". Then R(A) and L{A) are clearly finitely generated Z-modules contained in the
ZZ-module of all integral vectors of length n, written ZZ". From this observation we

make the following definition which provides the unifying concept for this chapter.

This definition is not new; see, for example, the techniques in [Wi] and [La].



Definition: The factor module

is the Smith group of A. The submodule

I(4) = L(4) / p(a)

is the finite part of T'(A).

The justification for the last statement of the definition is in the next two
lemmas. First observe that for v € Z", the order of v + R(A) € T'(A) is the
smallest positive integer [ such that lv € R(A); if there is no such [, then the order

is infinite.
Lemma 2.1. T(A) is a finite abelian group.

Proof: Let v € L(A). Then wA = v for some rational vector w. Let m € Z be
such that mw is integral. Then my € R(A), so that v has finite order. The result

then follows as T(A) is generated by a finite number of elements each of finite order.

&

Lemma 2.2. F(A)/f(A) has no nonidentity element of finite order.

Proof:  From module theory, we have the isomorphism

T4 /ra) = 2"/ R(A)/ L(4) [ ra) = 27/ 1)
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Pick v € Z",v ¢ L(A). Then no integer multiple of v can be in V' (A4), so that the
order of v in En/L(A) is infinite.

&

For emphasis, we record the following.

Lemma 2.3. These are equivalent:

1. I'(A4) = 1_’(A)
. L(A) =Z"
1. The rank of A is n.

Proof:  This is clear after the observation that the rank of A is n iff Z™ < V(A4).

&5
From the classification of finitely generated abelian groups (say in [Ca] or
[H&H)), we know that ['(A4) = T(4) @ F(A)/f(A), where the second direct sum-

mand is a free Z-module of rank n — r, r the rank of A. This observation and the

following serves to justify the term “Sinith group.”
Theorem 2.4. Let A and B be two integral m x n matrices. Then
A=B implies T'(A) = T(B).

Proof: Let A == B. So there exist unimodular matrices E and F such that

. EAF = B. Define the map
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This map is well-defined, since if v=wA & L(A), then
vF=wE 'EAF = (wE™")B € L(B).

A similar calculation shows that o is onto. It is also clearly a homomorphism of
Z-modules. Finally, if ¢(v) = 0, the identity in I'(B), then vF € R(B). But
vF € R(B) iff v =zBF~! = zEA for some z € Z". In other words, the kernel of
© is R(A). This proves that ¢ is an isomorphism from I'(A4) to T(B). To finish the
proof, A and B have the same same rank, and as the finite parts are isomorphic, it
must then follow that I'(4) = T'(B).

Ca

Theorem 2.4 allows us to state in terms of the SNF the structure of T'(A4). To

whit, if the SNF is given as in (2a), then

T(A) = Z"" @ é}zd, (2b)

1=1

Here 7Z,,, denotes the integers modulo m, where m can be either positive or negative
and the resulting group is trivial iff m = +1. The converse of Theorem 2.4 is also

true.

Theorem 2.5. 4 and B as in Theorem 2.4. Then
Ir(A)=T1(B) impliess A~ B.

Proof:  Both I'(A) and T'(B) can be assumed to be in the form of (26} using the

respective SNFs. From the classification of finitely generated abelian groups and
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the constraints on the SNFs, the resulting forms are identical. That is, 4 and B

have the same SNF, or 4 ~ B.

)

Theorems 2.4 and 2.5 together show that the SNF and the Smith group for
a matrix give the same information about the matrix. It is the interplay between
these two concepts, and between linear algebra and Z-module theory, that we will
exploit.

In order to make our techniques go more smoothly, we will assume the ac-
quaintance of most standard results in module and group theory. In the former,
we will use the concept of a Z-basis: if M is a finitely generated Z-module, then
a ZZ-basis for M is a set of elements which span M over 7 and are independent
over Z. Any Z-basis can be computed from another by multiplication by some
unimodular matrix. This is the so-called Hermite Normal Form (see [Nel), chap.
2). In group theory, we need most of the basic facts about finite abelian groups.

Any unusual result will be offered as a lemma.

We also use standard notation as much as possible. Along with those items
already mentioned, we need the matrices I,,, the m x m identity matrix; J,,, the
m X m matrix of all ones; and 1, a row of all ones (the length should be clear from

context).

As for the actual computing of the SNF, we take this as a given. That is, we

usually just state what the SNF is of the specific matrix being discussed. The SNF
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can be computed in a number of ways, but for the smaller examples which we use,
calculating ged’s of minor determinants is as good a method as any other.
We end this section with results which illustrate the information inherent in
the Smith group. If U is a subspace of the space of all rational vectors of length n,
we set L(U) = UNZL™. Then it is natural to use the notation I'(U) for the subgroup

of T'(A) defined by

Notice that L{A) = L(V(4)) and T'(4) = I'(V(A4)). Recall that U is invariant

under Aif UA <U.

Lemma 2.6. Let A be an n x n integral invertible matrix and U a subspace

invariant under A. Then

Proof:  Define the map

Observe that ¢ is clearly well-defined, onto and a homomorphism. We claim that
the kernel of ¢ 1s L(U) A. Clearly L{U) A < R(A). Suppose that u+ R(A) = R(A)
for some u € L(U). Then there is an integral vector w with u = wA. By the
invariance of U and the invertibility of A, w € L(U). That is, u € L(U) A.

&
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Lemma 2.7. Let A as in Lemma 2.6, U and W (wo subspaces invariant under A.

If
L(UeW)=L(U)e& L(W),

then

I'(UeW)=T({U)eTIW).

Proof: Let L{U® W) = L(U) @ L(W). Then by the invertibility of A and the
invariance of U and W, L(U @ W )A = L(U)A ® L(W)A. By the standard module

isomorphism theorems,

L(U@W)/L(U@W)AzL(U)EBL(W)/L(U)A@L(W)A
(2¢)

= (L) /L) a) @ (EW) [ Lw)a)-

The result then follows from Lemma 2.6.

&

Example: Suppose that A is the direct sum of two matrices, that is

_ (A
a=(" 4,

where blanks denote zeros. Here take A1 and A. integral invertible matrices. Notice
that the row spaces of A; and A; have only the zero vector in common. Hence

Lemma 2.7 applies and we can conclude that

[(4) = T(4;) @ I(42).
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This conclusion holds even if A; and A, are arbitrary (possibly nonsquare)
integral matrices. Indeed, just put A; and A, into SNF. Lemma 2.6 (and so 2.7)

will provide a good heuristic for the results in the next section.

&

Ex. 2-1: We conclude with a numerical example. Let

A= (‘; i) .
One quickly sees that I'(A) = Z15. A has two invariant subspaces, namely the
cigenspaces associated to the cigenvalues 3 and 5. These are respectively the spans
of the vectors [1,—1] and [1,1]. Call the former U and the latter W. We then see
that ['(U) = Z3z and T'(W) = Z;. Therefore, I'(A) = I'(U) ® T'(W). Observe that
L(U ®W) = L(A) = Z*. Then, in particular, [1,0] € L{U & W), but it is not an
integral linear combination of vectors in L(U) and L(W). This example then serves

as a counterexample to the converse of Lemma 2.7. It also foreshadows the results

of the next section.

3. Eigenvalues and the SNNF

We begin in this section to show the usefulness of the Smith group of an integral
_matrix by giving some results relating the spectrum of the matrix to its SNF. There
does not appear to be much in the literature relating these two concepts. The closest

discussion concerns the results on similarity by integral matrices (see [Nel], chap.
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3). Those results are very strong since two integral matrices integrally similar
possess the same SNF and the same spectrum. We are concerned with the weaker
hypothesis of assuming that a spectrum for a matrix is known and determining
limits on its SNF via its Smith group.

In order to show that we cannot expect to learn too much from the spectrum,

consider the following example. Let A; and A; be two nonzero and nonequal integers.

YRR
Al_(o ,\2)

Set,

and

Then both A; and A, have the same spectrum, namely the eigenvalues A; and Aq

each with multiplicity one. We see, however, that
F(Al) = EM &b ZAz

while
F(Ag) = E}\u\z .

These two groups are isomorphic precisely when the two eigenvalues are relatively
prime. This example is indicative in some sense to the restrictions that the spectrum
puts on the SNF.

In the sequel, fix an n X n integral nonsingular matrix A with SNF dy,...,d,.
Furthermore, let the eigenvahies of A be Ay,..., )\, with respective multiplicities

mi,...,mg. Our first result is the most general and also the simplest to prove:
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Theorem 3.1. Let \; € Z. Then A; | dy.

First Proof: There exist unimodular matrices F and F with FAF = D, where
D = diag(dy,.. .., dy). Then A=! = FD7'E and so d,A™! is integral. This latter
matrix has %{% as an eigenvalue, and since the only rational eigenvalues of an integral
matrix are integers, we see that A; l d,. In spite of the simple proof just given,

we give a second proof, the techniques of which will apply more generally.

Second Proof:  Let e = (e1,...,es) be an integral eigenvector for A; such that
the gcd of its components is 1. From eA = A;e we have that /\%gA = e. Hence,
e € V(A)NZ™. As A is nonsingular, the order of the element e + R(A) in I'(4) is
the smallest positive integer ! such that RITQ is an integral vector. By our choice of
e, this is |A;|. Since d, is the exponent of I'(4) it is divisible by the order of any

element in the group, in particular, A, l dn.

)

Ex. 3-1: As an illustration of the above result, we consider the case when A is
a circulant matrix formed from a first row of k consecutive 1’s followed by n — k

consecutive 0’s, where ged(k,n) = 1:

Newman shows in {Ne2| that in this case det{A) = k (the proof is a straightforward

calculation involving the eigenvalues of A). Therefore |['(A)| = k. There is one
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immediate eigenvalue, namely k, since A = kj, and so Theorem 3.1 says that &
divides the exponent of I'(4). That is, I'(4) = Z,

L 2%

If all of the A; are integers, then by Theorem 3.1 each must divide d,,. This

gives a lower bound on d,, which we record as the following.
Corollary 3.2. Let each A; € Z. Then Icm(Ay,..., ) | dn.
O

Can we eliminate the assumption of the invertibility of A? If A is singular, then
the last term of its SNF is 0, and easily each A; divides it. One would hope that
if we let d be the exponent of the finite part of I'(A), then A, f d. Unfortunately,

this is not generally true. Let
_(3I3 J;
a= (% 5n)

Calculation gives

T(A) =T & T ® Zs & s,

A has the eigenvalue 6 (with j as an eigenvector), but 6 j/ 9. In later sections
techniques will be given which will help circumvent the singularity of A.

How can we then extend Theorem 3.17 For each ¢ we know only that
AT ‘ det(A) and hence the product of the d;. We could therefore have that

1

A j’ d; for 7 < n. The following theorem gives sufficient conditions for this not to



- 14 —
happen. Here we say that a matrix diagonalizes with respect to an eigenvalue X if
the geometric multiplicity of A equals its algebraic multiplicity. Equivalently, the

linear term z — A is a simple factor of the minimum polynomial of the matrix.

Theorem 3.3. Suppose that A diagonalizes with respect to A\; € Z. Then the

group (Z,,)™ is isomorphic to a subgroup of I'(A).

Remark:  The conclusion of the theorem can be put directly in terms of the SNF.
If (Zx,)™ is imbeddable in I'(A), then at least m; of the d; must be divisible by
X;. In particular, the last m; terms of the SNF are divisible by A;. A justification

of this remark will appear in section 5.

Proof of theorem:  Let V; be the eigenspace (over the rationals) associated with
A;, and appealing to section 2, set L; = L(V;) and I'; = T';(V;}. Our claim is that
T; = (Zy,)™, which completes the result. This is easily visualized from lemma 2.6
since A acts as A; times the identity on L;.

L; is a finitely generated Z-module, so we can choose a Z-basis for L;, say
{ey,---.&,,,}- That the number of vectors in this Z-basis is m, follows from
dim(V;) = m;, which in turn comes from the hypothesis of the diagonalizablity
of A with respect to A;. Furthermore, for each j the components of e; must be
relatively prime. This follows from the uniqueness of representation of the ZZ-basis,
i.e., divide ¢; by the gecd of the components to get a vector which must be an integral
multiple of ¢;. From the second proof of Theorem 3.1 it then follows that the order

of e; + R(4) in T; is |y},
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To finish the claim it suffices to show that the e, + R(A) are independent in

the sense that if

> (aje; + R(4)) = R(4), ¢ €, (3a)
j=1
then A; I a; for each j. Suppose then that (3a) holds and let

my
v= E a’]é] .

j=1

By (3a), ¥ € R(A4), and so as 4 is nonsingular, the unique preimage of v, Tl_-g,
must be integral. Therefore %y € L; and is expressed uniquely as an integral linear

combination of the ;. But the coefficients of this linear combination are the %1-

Therefore A; l a; for each j.

Os

Corollary 3.4. Let A be diagonalizable with all integral eigenvalues and suppose
that ged(Ai, Aj) = 1 for i # 5. Then
I(A) = é(zh)’”‘.
i=1
Proof: Fori=1,...,s,letT; = (E,\,.)m". From Theorem 3.3 each T'; is imbed-
dable in T'(A). Since the order of the I';’s are pairwise relatively prime, their direct

. sum can be imbedded in T'(A4). Since this direct sum and I'(A) have the same order,

we can conclude that they are isomorphic.

Cb
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Ex. 3-2: We illustrate the above results with an easy but nontrivial exaiuple.

Pick nonzero integers a and b such that gcd(a,b) = 1. Define the n X n matrix,

n> 2,
a+b b b
A=al,+bd,=| b ot? '
I; . a+b

A has two eigenvalues, namely a + bn and a. The eigenspace of the first is the span
of j; its multiplicity is one. The eigenspace of the second is the span of all of the
v; —;, where ¢ # j and v, is the vector of all zeros except for a one in the ¢th spot.
Notice that the dimension of this eigenspace is n — 1.

We assert that

r(4) = (Ea)n_z S Za(atbn)-

If the two eigenvalues are relatively prime, then this follows from Corollary 3.4.
This occurs,however, iff we also have ged(a,n) = 1. For a general argument, notice
that in conjunction with Theorem 3.3, it would suffice to show that there is an
element of I'(A) with order a(a + bn). This is because we could then conclude that
I'(A) has one factor divisible by a(a + bn) and, by Theorem 3.3, at least another
n — 2 factors divisible by a. But since the size of I'(A4) is known, the result follows.

We construct an element of the desired order. Let
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Then ny; = v+ j. Now we let

S S
L= ant n(a—i—bn)l‘

Then wA = v;. The order of v, + R(A) in I'(A) is then the smallest positive integer
! such that [w is an integral vector. The second coordinate of {w is Haijfga. Since
ged(a,b) = 1, we must have a(a + bn) | {, which was the desired result.

Notice that the restriction gcd(a,b) = 1 isn’t that limiting, since in general, if
A has SNF (dy,...,dy,), then the SNF of dA is (dd,...,dd,).

L 2%

Corollary 3.4 gives us sufficient conditions for the spectrum of a matrix to
uniquely determine its SNF. In evidence of the example at the beginning of this
section, a generalization of this result is not readily apparent. If a more extreme

example is wanted, let

2 1
4 1
A = .,
on-1l 1
on
and
2
4
A2 = .'- 3
2n——1
gn

where blanks denote zeros. Then the respective Smith groups are
n{n+1)

I‘(AI)EZN, N=2"72
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and

n
T(A) = D Zy.
1=1

This example and Ex. 3-2 show that knowledge of the eigenspaces is also
necessary to determine the SNF. The knowledge needed turns out to concern the
interaction of these spaces as Z-modules, and in general is hard. We can state a

simple result using the results in section 2.

Corallary 3.5. Suppose that A;,A; € Z with respective eigenspaces V;, V;, and
T;,T'; are as in the proof of Corollary 3.4. If L(V; ® V;) = L(Vi) & L(V;), then
T; ®I'; is imbeddable in T'(A).

Remark:  The example at the end of section 2 shows that the converse is not
generally true.

Proof of corollary: By Lemma 2.7 and the fact that V; and V; are invariant spaces,
I(VieV;) =T(Vi) @ T(V;) <T(4).
But by Theorem 3.3, I'(V;) = T'; and I'(V;) = T';, which gives the result.
Ca

The last step in trying to put limits on the SNF via the spectrum is to give an

upper bound for the exponent, dy, of I'(A). This is done in the following.

Theorem 3.6. Let A be diagonalizable with all eigenvalues integers. Then

dn | Aido-e- A
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Remark:  That this result is best possible is demonstrated by the examples in this

section.

Proof of theorem:  Our procedure will be to show that the order of every element
in I'(A) divides the product A;Az -+ A,. This then would imply the result.

Let v € L(A). Then we can write

8
v = Z.e.i ’ (3b)
i=1

where each ¢; is a (perhaps nonintegral) rational eigenvector for A;. Let

8

E:Zyﬁi'

1

1=1

Then w is the unique preimage of v, i.e. wA = v. The order of v + R(A) is
then the smallest positive integer ! such that [w is integral. Hence we show that
l j PYP.VREED Y

We proceed by induction on the number of nonzero vectors e; in the sum (3b).
If there is only one, then v = ¢, for some 7, and since it is integral, the second
proof of Theorem 3.1 shows that { | Ag | A1A2 -+ As. Now suppose that we know
that all vectors composed of at most & — 1 nonzero eigenvectors have oré!er dividing

AtAg -+ Ay, WLOG, set

k
v = E _e.;',
1=1



2

!
7~
| =

th

I

[

o

and

Then

y = z—xy = > (A~ Mg

1=1

is integral. By the induction hypothesis applied to y,

- A
zZ = AtAz s Apoy (Z( 1)‘. k)ﬁi)
i=1 :

is integral. Finally then
AlAz - Ag_1v — 2 = A1Az - Agw
is integral. Hence we have !l | AjAg--- Ag ‘ A1Az o Ag.
V2 )

There are two annoying assumptions in the above results: the diagonalizabilty
of A and integrality of the eigenvalues of A. There were many attempts to eliminate
the former assumption, but the following example shows how difficult it will be to

" eliminate it completely. Let

Ay

Il
oo
o N
O
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2 2 0
A,=10 2 1],
0 0 2
and
2 1 0
Az3=10 2 1
0O 0 2

Then calculation gives

I(A) =Ly DUy & Loy,
T(Asg) & Zoy & Za,
and

T(As) 2 Zs.

Not surprisingly, one has to use knowledge of the location and values of the off
diagonal terms; this is generally hard. As an aside, [Nel], in chapter 3, gives results
which imply that in the all integer eigenvalue case, A is integrally similar to an
upper triangular matrix with the eigenvalues along the diagonal. Hence we could
assume at least that the spectrum is known and that A is upper triangular.

We shouldn’t be too disheartened by these examples, since for most of the
matrices of general interest in discrete mathematics, and indeed those which were
the impetus of this work, the diagonalizability is apparent. The second assumption
of all integer eigenvalues cannot be so easily waved away; take as an ¢xample the
prevalence of integral circulant matrices. We conjecture that some generalization

of the above holds, and as evidence offer the following.
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Ex. 3-3: Let p be a prime, p=3 (mod 4), and $ the set of nonzero quadratic

residues mod p. As is customary, set n = B—}t—l and k = E—:—l Form the row

a = |ag,a1,...,ap—1] where

a,»:{l for 1 € By

0 otherwise.

Let A be the circulant matrix with a as its first row. It is well-known that the
eigenvalues of A are given by §(£) where £ runs through the pth roots of unity and

5(¢) is given by

6(z) = in.

IS

Fix & # 1, a pth root of unity. For { € X, 6(¢) = 6(¢*). There then are only three
eigenvalues:

k multiplicity 1
6(¢)  multiplicity &

8(€) multiplicity k.

Here we use the fact that —1 is a nonsquare mod p. We wish to explicitly calculate

these eigenvalues. From [I&R),

5(6) — 6(¢) = v (3d)

From the theory of difference sets [Lal,

8(¢)-6(8) = n. (3e)
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Combining equations {3d) and (3e), we can conclude that

In particular, these are not integers. The SNF of these matrices is also known (see

[La] and the results later on in this chapter) and can be given as
_ k
r(4) = (an) ® Zs,.

The k factors of Z, seem to coincide with k repetitions of equation (3¢}, perhaps
suggesting an analog for Theorem 3.3.

NG

s

In closing, it seems that heuristically the more structure, symmetry, and regu-
larity that an integral matrix has, the more that its Smith group has high rank and
low exponent. There is evidence that if a matrix possesses these types of properties,
then the multiplicities of most of its eigenvalues are large (see, for example, [Te]).
The discussion in this section serves to relate these two phenomena. We further
illustrate these ideas and the techniques of this section next in our discussion of the

adjacency matrices of strongly regular graphs.

4. An Example: Strongly Regular Graphs
In order to illustrate the results of the last section, we need some nonsingular
integral matrices with all integer eigenvalues. Fortunately, the theory of strongly

regular graphs provides a plethora of such matrices.
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A strongly regular graph (srg) G is a regular graph on v vertices of valency &
such that any two adjacent vertices are mutually adjacent to A vertices, and any two
nonadjacent vertices are mutually adjacent to u vertices. There are many existence
theorems and constructions known for these; see for example, [B&vL]. We need
only the following results. We always let A be the adjacency matrix of the srg in

question.

Fact: As A is real symmetric, 4 is diagonalizable with real cigenvalues. In fact,

A has exactly three eigenvalues, k,r,and s, where r and s are roots of

2 — (A~p)z — (k—p)=0. (4a)

We will always take r to be the greater of the roots of (4a). Let m, and m, be the
respective multiplicities of » and s. Their values can be calculated from the two
equations

k+rm,+sm, =0
(4b)

14+m, +m, =v.

Let G’ denote the complement of G; the corresponding adjacency matrix is

A" = J, — I, — A. The parameters are determined by

v =,
E=v—-Fk—-1,
N=v—-2k+p—2, (4¢)

and
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w=v—2k+ A

The eigenvalues are a little more behaved: ' = —(s + 1) and s/ = —(r 4+ 1). The
respective multiplicities are m, = m, and m!, = m,.

We observe that if m, # m,, then r and s must be integers (and also, of course,
r’ and s’). In this case, at least Theorem 3.3 and possibly Corollary 3.4 will apply.

Furthermore, if d = d, denotes the exponent of I'(4), then using Corollary 3.2 and
Theorem 3.6 we have

lem(k,r,s) | d | k-r-s. (4d)
A similar equation holds for d’, the exponent of I'(A’).

Ex. 4-1: The Petersen Graph
We have v = 10, k = 3, A =0, and u = 1. An easy computation gives r = 1
and s = —2, and so m, = 5 and m, = 4. Corollary 3.4 applies and so (ignoring the

trivial terms),

T(4) = (z2)4 ® Zs

R

ol @y & Us.

Notice that the Smith group is then uniquely determined by the spectrum. The

actual SNF is

(1,1,1,1,1,1,2,2,2,6).

Since the SNF can always be computed easily from the Smith group by filling in
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the right number of 1’s, we will omit it in the future examples.

L 1%

Ex. 4-2: The Hoffman-Singleton Graph
We have v =50, k =7, A =0, and 4 = 1. We then compute r = 2 and s = —3

and also m, = 28 and m, = 21. Again Corollary 3.4 applies to give
28 21
) = (Z,) o (2s) @2
7 20
= <E2> ® <26> © 2y

&5

Ex. 4-3: The Line Graph of the Complete Graph K,..

The vertices of G are the edges of K, sov = (’2‘) To avoid degeneracy, we take
n > 5. Two edges are adjacent iff they share a common vertex of K,. Evidently
k=2(n—-2), A\ =n—2,and u = 4. We then compute r = n — 4 and s = —2 with
m, =n—1and mg = l(—’lz"i) The eigenvalues are not pairwise relatively prime,

so Corollary 3.4 doesn’t apply. We consider two cases.

n is odd: From equation (4d) and the fact that n is odd, we see
2(n—2)(n—4) | d | 4(n—2)(n - 4).

This severely limits I'(A). From Theorem 3.3, either
My m,
D(4) = (Za) & (Zoa) L),

or
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m,—1 m,
D) = (Z2) @ (Zos) &Zagnsy.
Numerical evidence suggests, and so we conjecture, that the former equation holds

in general.

n is even: Equation (4d) now yields
(n—2)(n—4) | d| 4(n—2)(n—4).

There are many more possibilities for ['(A) than in the previous case. This is because

there is now a distinction between Zs(,_4) and Z; & Z,, 4. We conjecture, again

based on numerical evidence, that

® (Ez(n—z;)) e & Z(n_2)(n—4)

)m,. —m,+2

T(4) = (m

&

Ex. 4-4: The Complement of Ex. 4-3

Again we have v/ = (g) Appealing to (4c) we have k' = (";2), M= (";4) , and

= (";3). The remaining eigenvalues are given by r' = 1 with m/ = (;L) —n and

—(n — 3) with m’, = n — 1. Rather than go through the analogous discussion
8

as in the previous case, we just state the general answer:

F(A) = (Z(n_g))n_l EBkZ(n;z).

This does not follow from our results, although we can provide some limitations to

the Smith group. It follows, rather, from the results of Wilson |Wi| on the SNF
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of the incidence matrix of t-subsets versus k-subsets of a fixed n-set. In our case,
A is the incidence matrix of 2-subsets, i.e., edges of K,,, and (n — 2)-subsets, since
two edges are disjoint iff one is contained in the set complement of the other. As
already noted, Wilson’s techniques also involve looking at the Smith group; they
relate somewhat to the results in section 6. Notice that if n = 5 we get the Petersen
Graph, and the above formula agrees with the result in Ex. 4-1. Also observe that

the general answer agrees with Corollary 3.4.

Ao

Ex. 4-5: The Line Graph of The Complete Bipartite Graph K,, ,,

The vertices of G are the edges of K, »,s0 v = n?. Again, to avoid degeneracy
we take n > 3. Here two edges are adjacent iff they share a common vertex of Ky, .
We easily compute k = 2(n — 1), A = n — 2, and u = 2. These then yield r = n — 2
and s = —2 with m, = 2(n — 1) and ms; = (n — 1)*. The eigenvalues are again not
pairwise relatively prime, so we cannot derive I'(A) uniquely. We do note that the

exponent satisfies
(n—1)(n—2) 1 d | 4n—-1)(n-2), if nis even,

and
2n—-1)(n—2) | d | 4(n—-1)(n—2), if nisodd.

As before, there are only a few possibilities left for I'(A). Rather than list these,

we give what we conjecture to be the answer:

I'(4) = (zz)m.«—mr 7 (Zz(n~z)>mr_l ® Zz(n-1)(n-2)-
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Note the similarity to Ex. 4-3.

&5

Ex. 4-6: The Complement of Ex. 4-5

For completeness, we discuss the analog of Ex. 4. Again v/ = n? with n > 3.
Here two edges are adjacent iff they share a disjoint in K, ,. We compute &' =
(n=1)2, X =(n—2)% and p' = (n—1)(n—2). These yield 7' = 1and s’ = —(n~1)
with m! = (n — 1)2 and m/, = 2(n — 1). The limits on d’ are not that useful in
general, namely

n—17% | d | (n—1)>%

The Smith group, however, seems to be given as

2(n—1)
T(4) = (:zz(n_l)) ® Lin_ )

Note the similarity to Ex. 4-4, and that this is the same answer as in Corollary 3.4.

L 2%

Ex. 4-7: Latin Square Graphs

Up to now, we have given no indication as to whether or not the parameters of
an srg uniquely determine the SNF. Notice that since two isomorphic graphs give
equivalent adjacency matrices, two srg’s with nonisomorphic Smith groups must
themselves be nonisomorphic. In this example, we give two srg’s with the same

parameters and nonisomorphic Smith groups.
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Let X be a set of n? points, where n is fixed. A parallel class of X is a collection
of n disjoint n-subsets of X. We define an (n, p)-net to be a set of p parallel classes
of X. We note that the existence of an (n,p)-net is equivalent to the existence of
(p — 2} pairwise orthogonal Latin squares of order n.

To construct an srg G from an (n, p)-net, we let the vertices of G be the points
of X, so v = n?. Two vertices are adjacent iff the corresponding points lie on the
same line in some parallel class. One can then show that

k = p(n—1),
A= (-1-2+(n-2),

and

p = plp-1).
A straightforward calculation then gives

r=n-—p with multiplicity m, = p(n — 1)

s§=—p with multiplicity ms=n?—pn—-p—1.

Rather than repeat the by now standard techiques of determining restrictions on

the Smith group of A, we prefer just to mention two special cases.

Ifn =2p, then A = pu = p(p — 1). A then becomes the incidence matrix of
_a (v,k,A)—symmetric design (v, k, and A as above). The information from the
techniques used in this section is the same as that garnered from the results of

section 5.
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Now let n be arbitrary and p = 3. Then G always exists, since we always have
a Latin square of order n. The three eigenvalues of A4 are now 3(n — 1), n — 3, and
—3 with respective multiplicities 1, 3(n — 1), and n% — 3n + 2. We further let n = 6,
then we get 15, 3, and —3 with multiplicities 1, 15, and 20. Because 3 divides all of
the eigenvalues, the results of the last section are not that useful. These parameters
provide the example of nonisomorphic graphs:

1). The Latin square

(1 2 3 4 5 67
6 1 2 3 4 5
5 6 1 2 3 4
4 5 6 1 2 3
3 4 5 6 1 2

(2 3 4 5 6 1.

has as the Smith group of its srg
12 11
r(4) = (z3) 6 (Zs) ®Zas.

2). The srg from the Latin square

SO s WD
O 1 O N
B N O s O W
[NCRIUIC IS S BTN
O B o Lo Ot
TV = Wb R D

has for its Smith group
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The first of these is essentially the group multiplication table for Zg; the second is

the group multiplication table for the symmetric group Ss.

L 3%

Ex. 4-8: Paley Graph

Our last example relates to the Ex. 3-3; it is an instance when the eigenvalues
of A are not all integers. Let v be a prime, v =1 (mod 4). The vertices of G will
be the elements of the field Z,. Two vertices r and y are adjacent iff their difference
T — y is a nonzero square in G. In particular, this relationship is symmetric since
—1 is a square mod v. Let n be defined from v = 4n 4 1. Then one can show, in a
m.anner similar to that in Ex. 3-3, that G is an srg with the additional parameters
k =2n, A =n — 1, and g = n. We then compute r = "1; Y and s = -_I%Q

Their multiplicities must be equal since they are not integers, i.e., m, = my; = 2n.

We then conjecture, based on numerous examples, and the results of section 6, that
2n
D(4) 2 (Zn)  © Lan.

Observe that rs = —n; perhaps this explains why there are 2n factors of Z,,.

L 3%

We note that the above merely scratches the surface of the more general prob-
lem of the Smith groups of the adjacency matrices of association schemes; in this

case the spectrum of the matrices is usually determined.
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5. The SNF and Augmented Matrices

In this section we give additional computational techniques using the Smith
group. These techniques will apply to matrices augmented by additional rows.

We require some additional results from the theory of finite abelian groups.
Recall that the type of a finite abelian group G is the vector of positive integers

(915 -59n) such that g;_{ ‘ g, fori=2,...,n, and

n
G =@Pzn,.
i—=1

We further suppose that g; = 1 implies that n = 1 and so G is trivial. Of course
if G is the Smith group of a matrix A, as given in equation (2b), then the type of

T(A) is just the vector of nonunitary d; (or (1), if T(A) is trivial).

Lemma 5.1. Let G be a finite abelian group of type (g1,...,9x), and let H be

a subgroup of G of type (h1,...,hAm). Then fori = 1,...,m, h; | Gn—m+i-

Furthermore, if G/H has type (ky,...,ks), then for i = 1,...,8, ki ll In—sti-

Remark:  This is problem 8 in section 4 of Bourbaki[Bo|. It is also listed as
a problem in [H&H]|. This lemma justifies the remark to Theorem 3.3 by taking
G =T(A) and H < G with type (A;,...,A;} of length m,.

Proof of lemma:  We prove the conclusion for the type of H; the second result
is similar. It is not hard to see that m < n. By considering the generators of H,

we must have for each i, h; i g;, for some j; = 1,...,n. By induction and the
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propertics of the type of H, 4y divides the smallest of the g;,, A2 divides the next
smallest, and so forth. Now using the properties of the type of G, it follows that
we can take this now ordered set of the g;; to be the last m terms of the type of G;
this is the result.
L 2%
The focal point of the results in this section is the following, essentially trivial,

lemma.

Lemma 5.2. Let A be an m X n integral matrix and v an integral row vector of

length n. Let B be the matrix formed by augmenting A by v,

B- ( 4 ) .
v
Then T'(B) is a homomorphic image of T'(A), with the kernel of the homomorphism
being R(B)/R(A).
Proof:  Observe that R(A) < R(B) < Z". Then we have the Z-module isomor-
phism

I(B) = En/R(B)

IR
N
\\
=
=
\
=
)
T~
=
=
o
8

&0
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Lemma 5.3. Assume the same notation as Lemma 5.2.

i). If v € L(A), then the conclusion of Lemma 5.2 is true if we replace the Smith

groups by their finite parts.

ii). Ifv & L(A), then T(A) is imbeddable in T(B).

Proof: Observe that B(B) / p(4) is a Z-module with one generator, namely
(4)

v+ R(A). If v € L(A), then this element has finite order, i.e., R(B)/R(A) is
tinite. ‘I'he conclusion then follows from (5a). Let v ¢ L{A). By definition, I'(B) =

L(B)/R(B) and T(4) = L(A)/R(A). Define the natural map from I'(A) to T(B)

by

This is seen to be a well-defined injective homomorphism, which is the result.

&5

Ex. 5-1: We illustrate all of the possibilities of augmentation. Let A be the

1 X 2 matrix (4,4), so that I'(A) = Z @ Z,. In the following table, B is the matrix
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formed by augmenting 4 by the row veclor v.

v I'(B)
2,2] Z® %y
3, 3] ZZ

[0,1] s

[0, 2] Zo ® Ly
[1,3] Zsg

&

We can explain these examples somewhat by appealing to the results on inter-
lacing. These are known results, see [Th] and [MdS]. For an application of these
results, see [De]. We state these results in the context of abelian groups. Unfortu-

nately, we have not as yet found simpler proofs for this special case.
Theorem 5.4. (Interlacing) Let G be a finite abelian group of type (g1,...,gn) and
let H = () be a cyclic subgroup of G. Suppose that G/H has type (h1,...,hm).
Then for1=1,...,m,
Gn—i ‘ hm—it1.
Proof:
Let A be the n x n diagonal matrix with (g1,...,9») as its main diagonal. In

particular, A has rank n over the rationals. We consider the elements of G to be

n-tuples of integers, where the jth coordinate is taken modulo the jth component of
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(g15--+»9n). Under this identification, it follows that G = T'(4). We claim that the
Smith group of A augmented by a row is the same as a factoring G by some cyclic
subgroup. One half of this correspondence is just Lemma 5.2. Conversely, factoring
by a cyclic subgroup of G is the same as putting one more linear relationship on
the coordinates, which in turn is the same as augmenting A by a row.

The interlacing result then follows by Theorem 2 of [Th].

Vb

We draw the following heuristic for the results of Theorem 5.4. Here the arrows

indicate divisibility, i.e., “a — §” means “a | b.” Notice that hy =1ifm=n- 1.

gr — g2 — o > Gn-1 7 gn
TN T N NN T (5d)
hy — hy — ++ = hyy — hn

Using this picture we state the converse to Theorem 5.4.

Theorem 5.5. Suppose that G is as in Theorem 5.4 and (hy,...,hy) is a vector

of positive integers obeying the divisibility requirements of (5d). Then there is a

cyclic subgroup H of G such that the type of G/H is (h1,...,hn).

Proof:  Recall the notation of the proof of Theorem 5.4 and the correspondence
used there between factoring G by a cyclic subgroup and augmenting a certain
matrix A by a row. The other half of Theorem 2 in [Th| and the divisibility
hypotheses imply that we can augment A by a row such that the SNF of the

augmented matrix is given by the vector (kh1,...,h,). Our correspondence then
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says that we can find a cyclic subgroup in G such that the factor group has as its
type (hy,...,h,) (except for possible leading 1’s).
O
We apply these results to the above example. If v is a rational multiple of [2, 2],

then we can apply Theorem 5.4 with G = I'(A) and H = (v+ R{A)) to conclude that
T'(B) is trivial or isomorphic to Zz or Z4. Hence I'(B) is isomorphic to the direct
sum of 7Z with one of these three possibilities. If, on the other hand, v is not in R(A4),
then the situation reverses and we apply Theorem 5.4 with G =T'(B) = I'(B). We
then see that I'(B) = Z, & Z, with a l 4 ‘ b. By Theorem 5.5, all of these
possibilities are realizable at least as groups, and by the results in [Thj, we can find

a v such that augmenting by v produces each of the possibilities. We will give more

applications of interlacing after the following lemma.

Lemma 5.6. Let A and B be integral m X n matrices.
i). If R(A) = R(B), then T'(A) = T(B).
ii). If R(A+ B) < R(A) N R(B), then ['(4) = I'(B).
Proof:  Part i) is trivial. The second follows from the first since B = (4 + B) — A,
and so R(B) < R(A), and conversely.

&5

- Application: There is one common occurance of the hypotheses of the last

lemma. Let A and B be integral n X n matrices with
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Suppose that A, and hence B, have constant column sums, say k and n — k. Create
the matrices A’ and B’ by augmenting A and B by J. We can now apply Lemma

5.4 to conclude that

Notice that we have not had to assume the invertibility of A or B.

If A is nonsingular, then the relationship of I'(A4) to I'(A') is given by
ra’y = F(A)/H, where H = Xy

The interlacing results then give all of the possibilities for I'(A4). As one instance
of this situation, suppose A is the incidence matrix of a symmetric (v, &k, A)-design
and B is the incidence matrix of the complementary design. Then all of the above
reasoning applies. In particular, I'(4) and I'(B) are identical after factoring by the
appropriate cyclic subgroup (respectively isomorphic to Zy and Z, ).

We give two further examples.
1): Let A= J, —nl,, for n > 3. A is singular with eigenvalues n (multiplicity

n — 1) and 0 (multiplicity 1, eigenvector j). Let B = nl,. Then the situation of

the above paragraphs holds, and in particular, an easy calculation gives

We can now apply interlacing to the type of I'(A) with respect to I'(B’). In partic-

ular, for some a; ! n ‘ aq,

112

T(A) & Zy, & (L)~ ©Zy,,.
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The SNF of A has n — 1 nonzero terms. The first must be 1 since it is the gcd of
the entries of A, and so a; = 1. It easy to see that the exponent of T(A) is n, so

that a; = n. These remarks show that

(5)
A

2): Let A,,, be the following mn x mn blocked matrix,

nl, Jn - Jn
J, nl, :

J, e nl,

If Brin = Join — Amn, then B, is the direct sum of m copies the matrix A from

example 1) above. Therefore we have from (5f)

[(Bmn) = Z™ @ (2,)™" 7Y,

Notice that j (of length mn) is not in R(Bmys). This implies that I'(Bpma) is

+ imbeddable in T(B;nn). Applying interlacing, for some a4 l n ‘ ay we have

F(A:*nn) = -f(B;nn) = Etll © (En
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For the same reason as in example 1), the exponent of I'(B!,,,) is n, so that a; = n.
Next notice that j € R(Amn), so that F(A’mn) is an image of T(4,,,). Inter-

lacing then says that for by ‘ aq ‘ bo ‘ n, and n ' bs

m{n--2)—

T(Amn) = Zp, © &y, & (Zn) Y/

Numerical evidence indicates that for d = gcd(m — 1,n), by = d, by = n, and

bz = . That is, we conjecture

—~2)

T(Amn) = Z" ' @ Za® (L) """ 0%, . (59)

L 2%

We remark in closing that augmenting by more than one row yields resulls
similar to Lemmas 5.2 and 5.3, except for an increased number of possibilities for
the image of the Smith group. We have omitted these generalizations; by far the

most common instance in practice is augmenting by a single row.

6. The SNF and Products of Matrices

We finish in this last section with results on the SNF for a product of matrices.
As in the previous sections, the techniques which will be developed will be used to
prove known results in our general setting, and some new ones besides. All of our

results follow essentially from the following simple theorem.
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Theorem 6.1. Let A be an integral t X n matrix and B an integral m x t matrix

of rank t. Let C = BA. Then I'(A) is a homomorphic image of I'(C) where the

kernel of the homomorphism is R(A)/R(C). If, in addition, the rank of A is t,

then T'(RB) = R(A)/R(C’) _ In particular,

T'(4) ~ F(C)/r(B) (6a)
and

T(4) = T(C) /1(m). (66)

Remark: The general picture looks like

S O

Proof of theorem: From C = BA we can in general conclude that B(C) < R(A),
and also V(C) < V(A). Since the rank of B is ¢, A and C have the same rank, so

that V(C) = V(A). By the usual isomorphism theorem,

T4 = L(A)/R(A) = L(C)/R(A)

R
=
Qa
T~
=
Q
=
=
~
=
Q
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Suppose further that 4 has rank t. We construct an isomorphism from I'(B) to

/R . Define the map ¢ from L(B /R

It is clear that p is well-defined and a homomorphism. It is onto since L(B) = Z*.
We assert that the kernel of ¢ is R(B), which would then finish the result. Clearly
R(B) is in the kernel of ¢. Conversely, if vA + R(C) = R(C) for integral ¢-vector

v, then there exists an integral m-vector w such that

vA = wC = wBA.

Since A has rank ¢, we can conclude that v = wB. So v € R(B). Finally, equations
(6a) and (6b) hold subject to this identification of I'(B) = T'(B).
b
Recall that a square integral matrix A4 is equivalent to its transpose AT. From
this it follows that I'(4) = T(AT). If A is not square, it still is true that the

nonzero terms of the SNF’s of A and A7 are the same. That is, we always have

T(A) = T(A7T). This observation leads to the following.

Corollary 6.2. Let A, B, and C be as in Theorem 6.1, all of rank t. Then
T(B) = T(C) /f( 4)-

Proof:  Apply Theorem 6.1 to CT = ATBT,

b



— 44 —
We are now in the position to prove two results which are, in part, in [Nel].
For an integral matrix A, we let d;(A) denote the ith term of its SNF. We caution

that this is what Newman calls s;(A); he uses d;(A) for the gcd of ¢+ x ¢ minors.

Theorem 6.3. Let A, B, and C be as in Corollary 6.2. Then fori=1,...,t,
di(4) | di(C) and  di(B) | 4(C). (6¢)

Remark: When A and B are square, this is Theorem 11.14 in [Nel].

Proof of theorem: ~ From Theorem 6.1 and Lemma 5.1, the types of I'(A) and T'(B)
each divide term by term the appropriate last terms of the type of I'(C). Since the
rank of each matrix is ¢, the vector of nonzero elements of the SNF of each matrix is
just the type of the Smith group’s finite part proceeded by an appropriate number

1’s (to make a vector of length t). The equations in (6¢) quickly follow.

Ca
Theorem 6.4. Let A, B, and C be as in Corollary 6.2 such that the orders of T(A)
and T'(B) are relatively prime. Then fori=1,...,t,

di(A)di(B) = d;(C). (6d)

Remark:  When A and B are square, this is Theorem IL.15 in [Nel].

Proof of theorem:  As in Theorem 6.3, let d, and dg be the vectors of length ¢

formed by adding leading 1’s to the type of A and B, respectively. Let d4 * dp

denote the term by term product of d, and dg. Since the orders of I'(A) and T'(B)
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are relatively prime, T'(C') =~ T'(A) @ T(B). Hence, the terms of d 4 + dg correspond
to direct summands of I'(C), and therefore the nonunitary terms of d, * dg must
be the type of T(C). Equation (6d) easily follows.

Oh

Example: This example comes from [Nel|. Let

1 1 1 O
Az(o /\) and B_(—-l /\).

Then ['(A) = Z)y and I'(B) = Z,. Since

0 - 1 1
AB_(A Az) and BA_(—l /\2—1)’
we have I'(AB) 2 7ZL) & 7Ly and I'(BA) = 7Z,>. This shows that the conclusion of

Theorem 6.4 is not true in general if the orders of I'(A) and T'(B) are not relatively

prime. Furthermore, it shows that I'(AB) need not be isomorphic to I'( BA).

L 3%

In order to further exploit Theorem 6.1, we need to digress to more results in
the theory of abelian groups. Let G be a finite abelian group, and fix a prime p.
Following Lander [Lal, for ¢ > 0 let m; denote the number of factors of the type of
G which are exactly divisible by p*. If H < G and the type of G has length m, then
we set

mo(H) = m —{m(H) +m(H) + -}

We define mo( H) similarly if H is a factor group of G.
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Theorem 6.5. Let G = (Z,.)", where p is prime and s > 1. Let H < G and

K=G/H. Then for 1 =0,1,...,s,
7!'1;(.H) = ﬂ's__i(K).

Proof:  Let H be generated by the independent elements «;;, where the order of
i is ptfor j =1,...,m(H),and ¢ = 1,...,s. For each a;; there exists a g;; € G
such that g3;; has order p® and p®~' Bi; = a;;. This is easily seen by taking elements

of G to be m-tuples of integers mod p®. Define
H/: <;31']' 4 j:l,...,ﬂ'i(H), 1= 1’..',3>.

We assert that

H, m—7r0(H) )

IR

(Zp-)
It suffices to show that the g;;’s are independent. But since H < H’, H' has at

least m — mo(H) independent terms, and two different f;;’s cannot lie in the same

one.

Since H' < G, we can find 7o(H) elements of order p®, say v1,...,Vr, (&) » Such

that

G=HS(M)® & {Vr(h)) - (6d)

Notice that the order of 8;; + H in K is p°* and that the order of v; + H is p°.
This and equation (6d) are enough to show the result.

Oa



47 -
Application: Theorem 6.5 leads to the symmetry results of the SNF found in
[La] and [De].

1): We first do the case AAT = nl,, where A is an integral m x m matrix and

n # 0. From Theorem 6.1 we have
I'(A) = (En)m/r(AT) ,

From the remarks before Corollary 6.2, T(A4) = T'(AT). Theorem 6.5 then says that
if p° exactly divides mi, p prime, then
m:(T(4)) = 7e—i(T(4)) fori=0,1,...,s. (6€)

Equation (6e) is what is meant by the symmetry of the SNF, since the number of
terms of the SNF of A exactly divisible by p* is the same as the number exactly
divisible by p*~*. Notice that (6€) holds if we generalize to the case AEAT = nF
where E and F are m X m unimodular matrices. Lander in [La] shows this result
in almost our generality; he further requires that £ be symmetric. Of course, the
same argument works if A2 = nl,, or AEA =nF.

As a special case, suppose that A is a Hadamard matrix of order 4n. Then
(6€) holds. Since the first term of the SNF is 1, the last term of the SNF is 4n.
Since the only possible 2 x 2 determinants are O or 2, we see that the second term
of the SNF is 2. That is, the second to last term of the SNF is 2n. An interesting
question is what combinatorial significance, if any, the multiplicities of the diagonal
terms of the SNF have.

&
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2): The first matrices studied with regard to this type of symmetry were the

incidence matrices of (v, k, A)-symmetric designs. Let 4 be such an incidence matrix,

sothatif n =&k — A,

AAT = nl, +)J,. (6f)
Define
1
B = A :
1
A Ak

Let A be the (v + 1) x (v + 1) matrix diag(1,...,1,—A). Computation shows that
BABT = nA. Hence we get the equations in (6e) for prime p dividing n if p also
does not divide A, since the Smith group of A can then be ignored.

We can also proceed a little more directly from (6f). From the example in

section 3, we know the Smith group of the right side of (6f). That is,
W) = (B)" 8 e frar)

where we use the fact that k2 = n + v\. If prime p divides n and does not divide
A, then p does not divide k. We can then derive equations similar to (6e); the
symmetry would apply only to the last v — 1 terms. The advantage to this method
is that the result applies to A and not the padded matrix B. This is essentially

what [De] does except that the actual techniques there involve interlacing.

&
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3):  Our last example concerns affine resolvable designs. We take an affine re-
solvable design to be a (v,b,r,k, A)-design such that the blocks can be partitioned
into parallel classes of size s with blocks in the same class disjoint and blocks in
different classes meeting in p points (see, for example, [Wa] or [La]). Let A be the

v X b incidence matrix of points versus blocks of such a nondegenerate design. Then
AAT = (r = NI, + My,

and by nondegeneracy, AAT is nonsingular. Therefore, the rank of 4 is v. (This is
just the proof of Fisher’s inequality: b > v.) Notice that we cannot apply Theorem
6.1, since in general & > v. Instead, order the columns of A by parallel classes.

Then we have the b x b matrix of s x s blocks (r blocks in each row)

kI, uds - upds
ATA = “.Js kI, . . (69)
pudy oo kI,

Since all of the parameters are nonnegative, a straightforward calculation shows
that AT A is nonsingular unless k = us. When k # us, the Smith group of AT A
docsn’t scem to be that well-behaved, although the techniques of sections 3 and 5
may help in specific cases. Suppose that k¥ = us. Then factoring the right side of
(6g) by u leaves the matrix A,, from example 2) at the end of section 5. Therefore

our conjecture, (5g), says that in this case,

"D g, (6h)

T(ATA) = Zgy @ (Zsy) 2
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where d = ged(r — 1,5). As one example of this, consider the affine plane of order
n. Thenv=n%b=n(n+1),r=n+1,k=n,A=1,s=n,and u = 1. Then
d = n and (6h) becomes

T(ATA) = (Z,)"" 7.

Hence given our conjecture, there is the same sort of symmetry from Theorem 6.5
as in the symmetric design case. This symmetry applies to the middle n(n — 1)
terms of the SNF, since the first n terms are 1’s and the last n terms are 0’s. In
particular, if prime p exactly divides n, then the rank of A mod p is less than or

equal to

&

There is one more application of Theorem 6.1 worth mentioning. Following
Wilson [Wi], we call an integral matrix A primitive if I'(A) is trivial. Let 4, B, and
C be as in Corollary 6.2. If A is primitive, then T(C) = T(B), and similarly if B
is primitive. Notice that if the matrices are square, than a primitive matrix of the
given rank must be unimodular, and so this observation is trivial. In some problems,
however, such as in [Wi}, it seems easier to find nonsquare primitive matrices which

give simple computations using Theorem 6.1
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Chapter 1I

Generalized Q-codes

1. Introduction
In this chapter we generalize the work of V. Pless, et al. (specifically
[T.,M,&P1},[PLM,&1],[P1], and [P12]) by describing new families of abelian group
codes. That is, for an abelian group G of odd order n and a finite field F of
characteristic relatively prime to n, we construct, by means of their idempotents,
n+1

(n, 21) and (n, 231) linear codes with G in their automorphism groups. These

ITX7 1

will be called generalized Q-codes. We show how all of the properties of the duadic
codes([L,M,&PI],[P1,M,&L]|,and [Pl1]) and Q-codes ([P12]) extend and we derive
these codes as special instances of ours. In particular, we state when the minimum
weight vectors of the codes support a projective plane with regular automorphism
group G.

When the characteristic of F is 2, we give easy conditions on G and F for the
existence of these generalized Q-codes. We will furnish constructions in all cases
when we know that Q-codes exist; in every such case we describe an idempotent
with binary coefficients or coefficients in GF(4). Our methods of construction also
yield interesting codes over larger fields of characteristic 2, some of which are MDS.
We give numerous examples throughout.

The results in this chapter are proven using algebraic techniques. In particular,

we take abelian group codes to be ideals in the group ring F|G|. As such, we assume
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familarity with the theory of abelian groups and semi-simple algebras. Major results
needed in these areas are stated without proof. For references, we suggest [B&M]|

and [La].

2. Preliminaries
In this chapter, G always denotes a finite abelian group of order n and F will
be the finite field GF(gq) of characteristic p where p }/ n. From these we form the

group ring F|G| whose elements are the formal sums

a(z) = Z og 27, (2a)

gEG

where the coefficients oy are in F . The symbols “z9” are indeterminants. We define

the arithmetic on F[G| as follows. For « € F ,

E g = E g
o Oy X - Qg T .

geG geG

Addition of elements in F[G] is defined by

Zagmg + Z'ngg = Z(ag’*'ﬁg)xga

geG geG geG

and multiplication by

Zagmg . Zﬂgxg :Z(Zakﬂg-k)xg,

geG geG geEG k&G
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where the operation “g — £” in the last summation is in G. In general, we use the
same symbols to denote operations in G, F , and F[G]|. We use the symbol “C” to
denote set containment and the symbol “<” to denote a set containment preserving

underlying structure, i.e., subgroup, subfield, ideal and so forth.

It is straightforward to see that these definitions make F|G] into a commutative
algebra over F . In particular, we denote the zero of F|G] by 0 and the identity of
F[G| by 1. Notice that 1 = z°, where 0 is the identity element in G. In general, we
call a monomial term z9 for g € G a shift; multiplying an element by a shift just
permutes its coefficients. For a subset S C G we write S(z) for the sum of shifts z9
for g € S. The support of an element a(z) € F[G] is the set of g € G such that the
coefficient of 27 in a(z) is nonzero. For S C G, we also speak of a shift of S, i.e.,

the support of a shift of S(z). For historical reasons, we write h for G(z).

We call the ideals of F[G| codes or, more specifically, G-codes. When G is a
cyclic group, these are the nsnal cyclic codes of length n. Other G-codes have also
been studied, in particular in [MW| and [B&M]. In order to emphasize the more
usual coding theoretic interpretation of these ideals, we also write @ for an element
a(z) given as in (2a), where g is the n-vector (a,,,ay,,...) for some fixed order of
the elements of G. A G-code is then a collection of vectors of length n, coefficients

in F , which is invariant under the coordinate permutations induced by the shifts.

We use the common terminology from coding theory: weight, minimum dis-

tance, dimension, and so forth. Two codes are permutation equivalent if there is a
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coordinate permutation sending one code into the other. We denote this equiva-
lence by “~." The crtension of a code is the collection of vectors of length n + 1
constructed by adding a leading “parity check” coordinate so that the sum of all
of the coordinates is now zero. For a code C, we write C*~ for its extension. The
quantity éc will denote the minimum weight of the code C; we suppress “C” if it is
clear from context. If the dimension of a given code C is k, we have the Singleton

bound:

b+k<ni1.

If equality holds, C' is called mazimum distance separable (MDS). See [MW &S] for
the importance of such codes. Finally, the weight distribution of a code C is the
vector (wo,w1,...,W,), where w; is the number of codewords of weight ¢ in C.
Besides F|G] and the zero ideal, 0 , there are two codes easily described for
general F[G]. The first is just the span of h—we call this code H. For the second,
as suggested by the notation in (2a), let a(1) denote the sum of all the coeﬂi;:ients
of a(z),i.e., ah = a(1)h. As in [PI2], we say that an element a(z) is even-like if
a(1) = 0 and odd-like otherwise, and we call a code even-like if all of its codewords
are even-like. The collection of all even-like words is an ideal in F[G] which we
denote by E. We note that £ and H are duals with respect to the usual inner
product, and so their respective dimensions are n — 1 and 1. We will talk in more

depth about inner products and duality of G-codes in section 4.

Because p Y n, F[G] is semi-simple. As a reference for the structure of F{G]|,
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see [B&M]. Recall that an idempotent of F|G| is an element ¢ such that ce = e.
Then F|G] is the direct sum of ideals generated by idempotents f 13fgsee0s £, such

that

=
I
I~
+
~
0
+
-}
|~

where

f.f.=0 i i47.

=1 7 -

The f s are the primitive idempotents of F[G7]. Every ideal in F[G] is generated by
an idempotent which is uniquely expressible as the sum of primitive idempotents.
In particular, F|G] has exactly 27 ideals.

Let C; and C3 be two codes with respective generating idempotents e, and e,.
It is well-known ([vL]) that the idempotent for the code C; N C; is e e, and that
the idempotent for the code Cy + C; is ¢; + €, — e,€5. If ¢ is an idempotent then
so is 1 —e. From ee = ¢ we see that e(1) = 0 or 1. Therefore, one of the codes (e)
or (1 — ¢e) is even-like. The next simple lemma describes the relationship between

these two codes.

Lemma 2.1. Let ¢ be an idempotent of F|G|. Then
F[G] = (@@ (1-¢).

In particular, if dim((e)) = k, then dim({1 —¢€)) =n — k.

Remark:  As an example of this lemma, notice that the idempotent for H is %_h:

and that the idempotent for E is 1 — Zh.
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Proof of lemma:  The idempotent of {e) N (1 — ¢} is e(1 — ¢}, which is 0. The
idempotent for (e) + (1 — ¢e) is e + (1 — ¢}, which is 1. The result easily follows.

L 2%

We generalize the constructions in [L,M,&P1},[P1,M,&L|, and [P12] for obtaining
G-codes from idempotents using the automorphism group of G. We denote this
automorphism group by Aut(G) and write automorphisms acting from the right.
Let p € Aut(G). Then y induces an automorphism of F[G| given by

W Zag:z:g — E ag .

gEG gEG

We use the same symbol for both automorphisms. If u leaves a code C of F|G]|
set-wise fixed, then we say that u is a multiplier of C. Notice that C ~ Cu.

Let £ € ZZ with ged(¢,n) = 1. Define a function p,; on G by

B g — {g,

where, by additive notation on G, “fg” means g added to itself £ times. Since £ is
relatively prime to the order of G, u, € Aut(G). Such an automorphism is called

numerical. One then speaks of numerical multipliers for G-codes.

Lemma 2.2. Let a(z) € F[G] and ¢ = [F |. Then a(z}? = a(z)uq. In particular,

Kq is a numerical multiplier for every ideal.

Proof:  This is known, for example in [La|. Let a(z) be given as in (2a). Since the
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characteristic of F is p and ¢ is a power of p, we have

q

Y o] = ¥ lawr = X e,

geG geG gEG

The first statement of the lemma then follows from the fact that a? = « for all

a € F . The second statement is a direct result of this result, since a(z) in an ideal

implies that a(x)? is also in the ideal.

&<

The automorphisin p4 partitions G into orbits. We denote the orbit containing
nonzero ¢ € G by Cff”. If ¢ is clear from context, we may suppress it and just
write C,. These orbits are called cycliotomic cosets (see {L,M,&P11] and [P12]). The

importance of these cyclotomic cosets is given by the next well-known lemma (given

in the binary case in [MW&SI}).

Lemma 2.3. Let ¢ be an idempotent of F|G] and ¥ a complete set of representa-
tives from the nonzero cyclotomic cosets. Then e is constant on Cy for each g € 3.
That is, for some 0,08, € F ,

€ = ,801_ + Z ,Bg Cg(x) . (Zb)

geS

2

Proof: Since ¢ is an idempotent, ¢4 = e¢e = ¢, so that ¢? = ¢. Then from

Lemma 2.2, e = euq. The result is immediate.

L1
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Let E be an extension field of F which contains an nth root of unity. A
character x of G into E is a homomorphism from G to the mulliplicative group of
E . Characters are useful in the study of G-codes (see [MW] and [La]). They are
the natural generalization of the concept of roots of a cyclic code (see [MW&S]I)).
The characters form a group under multiplication which is isomorphic to G. We
index the characters of G' by elements in G and write x,. A cyclotomic coset of

characters for g € G is the set
Xg‘I) - {xy g€ Céq)} .

Here g is the size of F ; we suppress it if it is clear from context. It can be shown
(see the above references) that there is a one-to-one correspondence between the
cyclotomic cosets Xy and the primitive idempotents of F[G]. The characters in the
cyclotomic coset corresponding to a primitive idempotent are called the non-roots
of the idempotent. In particular, xo is the only non-root of %Q. In general, the
set of non-roots of an ideal is the union of the non-roots of the minimal ideals
contained in the ideal. The following lemma will be used in section 4 and illustrates

the usefulness of the above concepts.

Y

Lemma 2.4. Let f be a primitive idempotent for F[G| such that f # —71:@. Let

g = |F | and suppose that ¢ has odd order mod every prime r which divides n.

Theni;éi)u_l.

Proof:  Let the non-roots of f be the characters of X,. Since f# —:;Q, g #0. The

set of non-roots of fu_; is X_;. It suffices then to show that X, # X_,.
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Let r be a prime dividing n. Since ¢ has odd order mod r, it has odd order mod
any power of . The size of a cyclotomic coset must divide the least common multiple
of all orders of ¢ mod each prime power which is the order of a cyclic subgroup of
G. In particular, the length of each cyclotomic coset is odd. If X; = X_, then the

length of X, would be even. The result is then shown.

&

Ex. 2-1: We illustrate the above concepts when G is the cyclic group %3; and

F is the binary field GF(2). These are the nonzero cyclotomic cosets:

C; = {1,2,4,8,16)

Cs = {3,6,12,24,17}
Ce = {9,18,5,10,20}
Cor = {27,24,15,30,29}
Cig = {19,7, 14,28,25}

Cpe = {26,21,11,22,13}.

Each of these cyclotomic cosets supports an idempotent. By Lemma 2.3, any idem-
potent of F|G] is a sum of some of these 6 idempotents and 1. There are then 128
ideals of F[G|]. This shows that there must be 7 primitive idempotents. There is one
' minimal ideal of dimension 1, namely H, and 6 of dimension 5. The latter follows

from looking at the automorphism ps. That is, any nontrivial sum of idempotents

from cyclotomic cosets has six images from action by powers of ug; in particular, all
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minimal ideals must have the same dimension and the sum of these dimensions is

30. Calculation shows that one of these minimal ideals is generated by the primitive

idempotent

1+ Cy(z) + Co(z) + Car(x) .

All minimal ideals are then found by images of this one under us.

L 2%

3. Definition of Generalized Q-Codes

Definition: Let ¢, and e, be two idempotents of F[G| and x € Aut(G) such that

the following two equations are satisfied:

€, =

[y
=

(3a)

§1+§2*‘_1_ =

S|
i~

(36)

Then the four codes,

C1 = (&), 1 = (1—e),

Cy = (€3), and C3 = (L—e¢y),
are the generalized Q-codes defined by ¢,, ¢,, and pu.

When F is the binary field, these are the duadic codes of [L,M,&Pl] and

[PLM,&L]. When F is GF(4), these are the Q-codes of [P12]. For simplicity we

speak of Q-codes and drop the qualifier “generalized.” We stay as consistent as
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possible with the notation of these references. A set of four Q-codes is called a
quartet. The automorphism y is called a splitter and we say that u gives the split-
ting. The facts stated in section 2 give the following fundamental theorem about

Q-codes; the results and proofs are analogous to those given in [Pl12].

Theorem 3.1. Let e; and e, be two odd-like idempotents of F[G| and p € Aut(G)
which together generate Q-codes. Then, fort =1, 2,

a). Cy ~Cy; and C}~Cj

b). CiNCy=H and C;+Cs=F[G]

b'). Ci{NCy{=0 and C{+Ci=E

¢). dim(C;) = %l and dim(C!) = 25t

d). C! is the even-like subcode of C; and C;=H @ C]

e). Ci ~C; and dim(C}) =2

f). If 6, is the minimum odd-like weight of Cy, then 62 > n.

Pr;oof: From Cy = C) u and remarks in section 2, a) is clear . Multiply (3b) by
ey to conclude that g, ¢, = %&. We then have that ¢, + e, — g, e, — 1. These

calculations show b). A similar calculation shows b’). Let k be the dimension of

C; and so also of C3. From elementary linear algebra and b},
dim(F[G]) = dim(Cy) + dim(Cz) — dim(Cy N Ca)
or n=k+k-1.

This shows the first half of ¢). The second half is similar working from b’) or

from Lemma 2.1. Notice that C} is even-like (i — 1,2), and by the respective
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dimensions, C; must be the even-like sub-code of C;. Computing the idempotent
for H + C] and the fact that k is odd-like shows the rest of d). From d) we see
that Cf = H* @ C!". This shows that the dimension of C} is 21+l The equivalence
follows from the fact that since C] is even-like, the codewords of C! * are just the
codewords of C/ preceded by a zero. Hence the permutation which leaves the first
coordinate fixed and is induced by the action of u on the last n coordinates is seen
to be a permutation which shows that C; ~ C;. Finally, let a(z) be an odd-like
codeword of C; of weight 6,. Then b(z) = a(z)p € C; and also has weight 6,.
Since a(z)b(z) € C1 N Cy = H, we see that a(z)b(z) = ah for some o € F . Since
a(1)b(1) # 0, a # 0. In particular, the n nonzero coordinates of ah must come from
the 62 nonzero cross products in a(z)b(z). This shows that §2 > n. The proof is

then completed.

Ob

In the next section we give some more interesting results on the structure of
these codes. We first finish with some examples to illustrate the definitions. All of
these examples were previously known; new ones appear in later sections.

Ex. 3-1: Thisis in [PI2]. Let G = Zy = {0,1,2}. Let F = GF(4), defined
as {0,1,w,w?}, where w? + w + 1 = 0. We wish to determine all possible Q-codes
by finding all possible odd-like idempotents and automorphisms satisfying (3a) and

(3b). By brute force,

€ = O!o_];‘f‘alxl +a2x2 and €y = ﬂOl_i'ﬂlxl +ﬂ2x2a
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where all of the coefficients are in F' . Since e? = €y,
ap=0or1 and ay = o .
From (3b) we see that
ag = Po, a1 =1+ f1, and az = 1+ (3.

The only nontrivial automorphism of G is us = pu_;. Therefore, we may assume

that .., gives the splitting. This implies that

ay = and oz =f;.

We conclude that

2 2

e, = wz' +wiz and e, = wir! 4 wa?.

~ Notice that C; is a two dimensional code which must then have minimum
weight at least 2. Hence the minimum weight is 2, and so this code is MDS. We

will see that many Q-codes of small length are MDS.

&

Ex. 3-2: We continue with Ex. 2-1. Again we construct all possible binary
Q-codes of length 31 (the duadic codes of [L,M,&PL]|). That is, we search for auto-
morphisms g of Z3; and idempotents ¢, and e, which satisfy (3a) and (3b). Since
the coeflicients are 0’s and 1’s, and since the weight of e, must be the same as e,, we

see that e; and e, must each have weight 15. From Lemma 2.3 and the calculations
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in Ex. 1-1, the support of e; is then the union of three cyclotomic cosets, each of
which has size 5. Let C; be one of these cyclotomic cosets for e;. Aut(Zga;) is
cyclic of order 30 generated by p3. When considered as acting on the 6 nonzero

cyclotomic cosets, ug becomes a permutation of order 6 with cycle structure
(C1,C3,Co,Ca7,C10,C2e6) -

By testing the 10 (:(g)) possibilities for ¢;, we arrive at the following four sets

which support idempotents of Q-codes:
CiUCyuCg, C;LCoUCeg, CiUC3UCs, and C,UC5UCg.

In every case the splitting is given by u3 = us7 = u—_;. Considering the idempotent
e, associated by (3a) with each of these ¢,’s, we get the 8 duadic codes of length
31 mentioned in [L,M,&P1I|. The third one listed is the quadratic residue code; the
other three are Reed-Muller codes. By Theorem 3.1, the dimension of each of these
is 16.

&5

Ex. 3-3: Generalized Quadratic Residue Codes
We show that the generalized quadratic residue codes of [vL&MW] are Q-codes.
Let r be a prime power and G the additive group of GF(r). As always, F is the
finite field GF(q) with ¢ and r relatively prime. We further assume that r and ¢ are

both odd. The former restriction is to avoid degeneracy, while the latter restriction



- 87 —
will be handled as a special case later on in this chapter. Let § be the set of nonzero

squares in G and N be the set of nonzero squares. Then, in particular,

h = 1+ 5(z) + N(z).

The generalized quadratic residue codes in [vL&MW] are the four codes whose
non-roots are the characters indexed by the sets §,N,{0} U S, and {0} UN. When

r is a prime and F has prime order, these are the quadratic residue codes (see

[MW&S]]), which are cyclic.

We define G-codes which are fixed by uy where £ € S. Here we mean by ug
the automorphism which sends ¢ € G to {g, where the multiplication takes place
in GF(r). This is the same as the u, of section 2 if r is a prime. Using the same
reasoning as Lemma 2.3, any idempotent of such a code must be a linear sum of
1, S(z), and N(z). Therefore we construct Q-codes whose idempotents are such
linear sums. The splitting for any such code will be given by us where £ is now
any nonzero nonsquare of G. Comparing the idempotents constructed with the
idempotents for the codes in [vL&MW|, we sce that gencralized quadratic residuc

codes are Q-codes.

We need to break the problem into two similar cases.
Case I: r=3 (mod 4)

Let v = % and A = v — 1. We record the following computations, proofs of
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which can be found, for example, in the problems in [Lal:

N(z)N{x) = vS(z)+ AN (z).

(The middle computation shows that the squares in G form an (r, r-2-1 , A) difference

set.) Suppose then that e; is given by
€ = al+ﬂ5(z) + '7N(m) )

so that
eg — al+48(z) +AN(z).

From (3b) it is immediate that

1 1
20— 1= - and B+v=—.
r r

r+1
2r

Therefore o =

sequence of equations:

ol + BS(z) + 7N(z) = (al+ 4S(z) + ¥N(2))®

= a’1+ A*(AS(z) + vN(z)) + v (AN(z) + vS(z))

+2a885(z) + 20yN(z) + 2&7(1/_1_ + Ah)

= (o +2(2v — 1)B7)1 |

+ (208 + v(8 +2)? - A2y + £) ()

+ (207 +v(8 ~7)* — (28 + 7)) N(2).

(3¢)

(3d)

(3¢)

. From the fact that e; is an idempotent we have the following
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Comparing the first coordinates and using the first half of (3¢), we have

r+1

Ag'kf - 47'2 . (3f)
Now (3f) and the second half of (3e) imply that
14 1=
{ﬁs’Y} - { 2% H % } . (39)

Hence we need that —r is a square in F . Conversely, if —r is a square in F , then

all of the above calculations are valid and the resulting quantities «, 3, and ~ make
e, and e, idempotents for Q-codes. Notice that the resulting quartet is unique.

Furthermore, a simple calculation shows that the idempotents are odd-like.

Case 22 r=1 (mod 4)

Let v = Tzl and A = v — 1. We record the following analogous computations,

which again can be derived from [La]:

S(z)S(z) = 2v1+ AS(z) + vN(z)
N(z)S(z) = S(z)N(z) = vS(z) +vN(z)

N(z)N(z) = 2vl+vS(z) + AN(z).

Define ¢, and e, by (3¢) and (3d). Rather than repeat the same details, we just

state the results:

r+1
2r

i = (L (31)

2r 2r
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Hence the Q-codes exist iff r is a square in F .
As an illustration, let r = 5 and F be of characteristic 3. Sincer =1 (mod 4),

we need that 5 = 2 is a square in F . Hence we cannot take F to be GF(3); the

smallest F of characteristic 3 which will work is GF(9). Let § and ~ satisfy
y?4+y—1 = 0.

Then 3 and ~ are seen to be given by (3g). Also, a = 0 for this case, so that we

can take

e, = Pz +vz? +yz® + Bzt

The weight distribution for the resulting code was computed and is
(1,0,0,80,240,408) .

Notice that the resulting code is MDS.

&

4. Q-Codes,Duality, and Projective Planes
We digress from the discussion on Q-codes to give some general definitions and
results about G-codes. Let a,b € F|[G| with respective coefficients oy and 3,, for

g €G.

Definition: The ordinary inner product or dot product of a and b is

(a,0) = Z agfy -

geG
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Let g = r2 for some prime power r. Then the unitary inner product of a and b is

(a,b)v = Z agﬁg.

JEG

It is straightforward to check that these satisfy all of the usual conditions for
inner products. The dual of a code C with respect to some given inner product
is the set of all codewords whose inner product is zero with every codeword of C.
We denote the dual of C' with respect to the dot product as CL; with respect to
the unitary inner product we use C'Y for the dual of C. We say that C is L self-
orthogonal (1s.0.) if C < C' and that it is L self-dual (__s.d.) if C = C~. We
have the analogous concepts of U self-orthogonal (Us.o.) and U self-dual (Us.d.).
Notice that the former is called strictly self-orthogonal, etc., in [P1] and the latter is
sitnply called self-orthogonal, etc. We begin by describing the idempotents of these

dual codes.

Lemma 4.1. Let a,b € F[G] be as above. Then

ab = > ((azf), (bu-1))=°.

geG

Proof:  This follows from the definition of multiplication of two elements in F|G].

&5

Lemma 4.2. Let ¢ be an idempotent of F|G' and C = (e}.

a). The idempotent for Clisl—eu_q.
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b). The idempotent for C" is 1 —ep_,, where F is GF(r?),

Remmuark:  Part a) can be found in vL]; part b) is siwilar to the GF(4) case in
Pl2].
Proof of lemma:  Since ¢(1—¢) = 0, we apply Lemma 4.1 to e and 1 —e to conclude
that (1—e)u_; = 1—ep_; is orthogonal to all shifts of e. Therefore 1 —eu_; € C+
If £ is the dimension of C, then by Lemma 2.1, n — k is the dimension of {1 —e).
Hence the dimension of (1 - eu_1) is n — k, which shows that C! = (1 — eu_1).
This shows a).

For b), assume that F is GF(r?). Notice that

aec? i g, =) ojecCt.
gEG

Since C* is an ideal and raising elements of F|G/| to the rth power is an automor-

phism of F[G], we have
a, € Ct iff alecCt.

But a” = au,. In particular, the idempotent 1 —eu_, € CY. Comparing dimensions

finishes the proof.

&

As an application, we have the following three theorems and corollary. Their
statements and proofs are analogous to those in [PLM,&L| and [P12]. For the

remainder of the section, e, and e, are odd-like idempotents generating Q-codes.
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Theorem 4.3.
a). These are equivalent.
1). u_, gives the splitting.
2). C;=C\* fori=1,2.
3). Cris Ls.d.

b). u_y is a multiplier for C; iff C; = C;~.

Proof:  Observe that from Lemma 4.2, p_, gives the splitting iff e, = e;pu—; iff
1+e, =1+ep_ iff C{ = Ci. This shows that 1) and 2} are equivalent. Fix
? = 1,2 From Theorem 3.1, C; = H + C! and C! is even-like. If C; is ls.d.,
then these facts show that C! < CiL. Comparing dimensions shows that C = C-.
Conversely, if C! = C’f", then the same reasoning shows shows that C is Ls.o., and
comparing dimensions shows that it is Ls.d. Therefore 2) is equivalent 3), which
completes a).

For b), Cip—1 =C1 iff 1+ ¢ =1+ e u— iff C4 = C{-. Working again from
the facts that C; = H 4+ C] and C/ is even-like, we see that C} = Cy iff C} = C;L.

Oh

Theorem 4.4. Let F be GF(r?).
a). These are equivalent.
1). pu_, gives the splitting.
2). ¢; =Y fori=1,2.

3). C? is Us.d.
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b). p_, is a multiplier for C, iff C] = C; v,

Proof:  The proof is completely analogous to Theorem 3.4 using the other half of
Lemma 4.2.

Ch

It is clear that the existence of self-dual codes with respect to any inner product
requires that the dimension of F|G' be even, which is contrary to our assumption
about the order of G. Notice that it is the extended codes which are sometime self-
dual. Instead, we introduce a concept of a code which is as “self-dual” as possible.
We say that a code C' is L almost self-orthogonal (Las.0.) if C < H — cl. If
equality holds, C' is said to be L almost self-dual (La.s.d.). The similar concepts
for the unitary product can, of course, be defined, but we will have no special use

for them.

Corollary 4.5. C; and C; are la.s.d. iff u_y gives the splitting.

Proof:  For ¢ = 1,2, Theorem 4.3 says that u_; gives the splitting iff C; = C’;J’ iff
C’f‘ = C{. But Theorem 3.1 says that C; = H + C!, and the result quickly follows.

O
The converse of Corollary 4.5 is also true, which records as the following.

Theorem 4.6. Let C' be an La.s.d. of F{G]. Then C is a Q-code with the splitting

given by u_;.
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Proof:  Let e be the idempotent for C. By hypothesis,

C = H+ct.

From the facts of section 2 and Lemma 4.2,

few

h(l—epn—1). (4a)

S|+

1
= —h+{1-eu_1)—
n

Now ;I;Q (1 —ep_1) = %Q or 0. If the former, then e is even-like, which means

that C is even-like. Therefore, h € C+. But this implies that C = CL, which is a

contradiction. Therefore ¢ is odd-like, and so from (4a),

1
eteu_1—1 = —h.
n

Hence C' is a Q-code.

O

From these two results we see that 1 almost self-dual codes are precisely Q-
codes where u_; gives the splitting, and so their extensions are self-dual. In section
6, we will develop techniques to construct such codes when F has characteristic
2. The next result is a non-constructive existence theorem for these codes. It is

analogous to the GF(4) case of [P12].

Theorem 4.7. There exists a G-code which is 1 a.s.d. iff for every prime r which
divides n, the order of ¢ mod r is odd. If this occurs, then if D is an la.s.o. code

of ¥|G], there is an —a.s.d. code C of F[G] such that D < C.
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Proof: = Let C be a La.s.d. code in F[G|. By Theorem 4.6, C is a Q-code
with splitter p_;. Let e¢; and e, be the idempotents generating the quartet of Q-
codes. Suppose that there exists a prime r dividing n such that the order of ¢ mod
r is even. We derive a contradiction, which shows the result.

Let R be a subgroup of G of order 7, and let p be the canonical homomorphism
from G to R. We claim that there are Q-codes in F|R] with splitting given by p_,
and idempotents e, p and e,p. Since e p = e2p = (g_lp)z, we see that e;p and e, p are
idempotents. Since (—g)p = —(gp) for ¢ € G, we see that (e;p)u_1 = (e;u—1)p =

e,p. Finally, applying p to eqaution (3b), we see
1
eptep-1 =~ =R =

Hence ¢,p and e,p generate Q-codes in F[R] with splitter ;. By Lemma 2.2, thq
is a multiplier of these codes. By assumption, the order of ¢ mod r is even. In
particular, some power of ¢ is congruent to —1 mod r. But this says that u_; is a

multiplier for these Q-codes, which is a contradiction.

= By Lemma 2.4, we can find an indexing set & such that the set of

primitive idempotents of F[G] is
1 1
(~h} o AL firbies
, Define the idempotents

1
e = ;h_—!— /. and

S
>
_|_
|~
i
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Clearly e, = e;#t—1. Furthermore,

1 1
e, +e,—1= (Z(ii+f_iu“l)+;—}l> -1+ ;L‘ZL_ =

[Y=tsd

h.

S| =

Therefore we have constructed Q-codes in F|G: with splitting given by p_1. By

Corollary 4.5, these codes are lLa.s.d.

Let D be an la.s.o. code in F[G] and assume the hypotheses of the above
result. Using the notation of the above proof, suppose that L. # %Q is in D.

Suppose that ii'““l is in D. Then
[, = i? = Z(Lxg’_f.i“"l) =0,
gea

since D is la.s.o. This contradiction shows that for any ¢ € &, at most one of
the pair { S o f i”‘l} is in D. Out of each unrepresented pair, pick one primitive
idempotent and add it to the idempotent of D. In this manncr one, onc splits the
primitive idempotents into two halves, and each half generates a Q-code as in the

above proof. One of these Q-codes contains D. This completes the proof.

O

The above results seem to indicate the importance of u_, as a splitter for Q-
codes. The rest of this section is devoted to a special subset of such codes, namely
those where the supports of the minimum weight vectors form a projective plane

with regular automorphism group G. We first give sufficient conditions for this
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to happen, and follow with a converse of sorts. As in Theorem 3.1, let 6, denote
the minimum weight of odd-like codewords in C';. This next result and proof are
analogous to those given in [L,M,&Pl] when F is binary and in [Pl2] when F is

GF(4).

Theorem 4.8. Suppose that u_, gives the splitting. Then
82 _6,+1>n.

If n = 6% — 6, + 1, then the supports of the odd-like codewords of weight é, are
the blocks of a projective plane of order é, — 1. These codewords are precisely the
elements of F multiplied by the characteristic functions of these blocks. Finally,

bc, = bo.

1

Remark:  Notice that the inequality is slightly stronger than the one in Theo-
rerﬁ 3.1, part f).
Proof of theorem:  Let b(z) be an odd-like codeword in Cy of weight §,. Let B C G
be the set of the nonzero coordinates of b(z) and let these coordinates be §, for
g € B. Set i,(,,) = b(z)p 1. From the proof of Theorem 3.1, there is some o # 0
with
ah = b(z)b(z)
(4b)

= | 2o 8 |1+ D BoBea®.
geB

g kED
g#k
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Therefore

1+ 60(6o — 1) > 1, (4c)

which is the result.

Now assume that we have equality. From the equation
(b —1)2+(6,—1)—1 = n,

we see that the projective plane would have order 6, — 1. We first show that the
n shifts of b(z) support the blocks of such a plane. It suffices to show that for
g # k € G, there is exactly one shift of b(z) with a nonzero coefficient for z9
and z*. But this is clear from (46) and the fact that we have equality in (4c).

Furthermore, for g,k,! € B, we have from (4b) that

BBk = BB = BB

This says that b(z) is a scalar multiple of B(z).

Let a(z) be another odd-like codeword of C; with weight 8, and supporti.ng set
~ A. By Theorem 4.3, C7 is ls.d., so that the extended codewords for a(z) and b(z)
are orthogonal. This means that A N B has size at least one. In fact, the same is
true for every shift of b(x). In other words, A is a set in G of size §, which intersects
every block of a projective plane in at least one point. Tt is well-known (see [T.a])
that this implies that A must be one of these blocks. The above reasoning then
shows that a(z) is a multiple of a shift of b(z). In this way, we have completely

characterized the minimum weight codewords of C;.
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Finally, let ¢(z) be any nonzero even-like codeword of C;. We show that the
weight of ¢(z) is greater than or equal to 6,. This would complete the theorem.
Again C; is Ls.d., so that ¢(z) is orthogonal to every shift of b(z). Let ¢(z) be
nonzero in the kg spot, and let By,...,Bs  be the &, blocks of the projective plane
which contain kg. By the _ self-duality, the support of ¢(z) must have at least two
coordinates in common with each of these B;, where one of these is k5. None of
these other coordinates can be shared in commmon between the B;’s since they are
blocks of a projective plane. Therefore the support of ¢(z) has size at least 1 + 6,

which is what was to be shown.

Od

Theorem 4.9. Let p be a prime and G be an abelian group of order n = p?®+p®+1.
Suppose that there exists a projective plane P with regular automorphism group
G. Let s = 2"s' where s is odd and set ¢ = p* . Let F = GF(q). Then the points
of P can be considered to be elements of G and the blocks of P to be the minimum

weight codewords of a Q-code in F[G] with u_; giving the splitting.

Proof: Let v = p°. Then the parameters of P are (v* +v +1,v+1,1). From the
theory of difference sets ([La]), we can take the points of P to be the elements of G

and the blocks of P to be all shifts of one block B C G.

We define the code D to be the ideal generated by all shifts of A — B(z) in

2

F[G]. The support of one of these shifts has size v and two such shifts have v — v

nonzero coordinates in common. In particular, D is L self-orthogonal. Trivially
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then it must be _La.s.o.
Let m be any prime dividing n and set ¢t to be the order of p mod 7. Let
d = ged(t,27). Then the order of ¢ mod 7 is 5. We show that this is odd. Multiply
the congruence
p*+p°+1 =0 (modm)

by p — 1 to conclude that

p33:—:1

(mod 7).
Hence, ¢ 1 3s and we must then have that 5 is odd.

We are now in the position to apply Theorem 4.7 to conclude that there is
an la.s.d. C which contains D. By Theorem 4.6, C is a Q-code with p_; giving
the splitting. From the fact that h € C, we see that all of the shifts of B(z) are

in C. By Theorem 4.8, we see that these shifts and their scalar multiples are the

minimum weight codewords of C.

CVé

Theorem 1.8 shows how to recognize when the minimum weight codewords of
certain Q-codes form a projective plane, while Theorem 4.9 says that every known
projective plane which comes from an abelian difference set must lie in such a Q-
code. Suppose that the characteristic of F is 2 and that G is cyclic. If s is odd,
_ then r = 0 and by Theorem 4.9 we can take F to be the binary field (¢ = 2). This
is in [PI1]. If s is exactly divisible by 2, then ¢ = 22 = 4, and so we can take F to

be GF(4). This is in [P12]. In general, we may get by with a smaller value of ¢ than
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the one of the theorem. However, Ex. 4-3 will give an example when ¢ so defined
is necessary.
Ex. 4-1: The smallest example is the cyclic plane of order 2. G is the group Z7;
and by Theorem 4.9, F is the binary field GF(2). There are two nonzero cyclotomic

cosets, namely

C, ={1,2,4} and Csz ={8,6,5}.

Inspection shows that the the quartet of Q-codes has e; = C;(z) and e, = Cs(z).
The splitting is given by p_; = pg. This is the (7,3) Hamming code.

L 3%

Ex. 4-2: This next example concerns the projective plane of order 3. Here we

have G = Z,5 and F the ternary field GF(3). The nonzero elements of G split up

into 4 cyclotomic cosets:
{1,3,9}, {2,6,5}, {4,12,10}, and {8,11,7}.

By looking at the multiplication table of the elements supported by these cosets,
it is straightforward, but nontrivial, to find combinations which give idempotents.
Using the fact that u_; must give the splitting, one can show that up to equivalence,

there is only one choice for ¢;:

e; = 14 Cy(z) +2C;(z) + 2Cq(=) .

The weight distribution was calculated and is

(1,0,0,0,26,0,156,624,0,494, 780, 78, 28) .
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The supports of the 26 minimum weight codewords must be the blocks of the plane.
There is another way ta find the above idempotent. From the theory of differ-

ence sets ([Lal), the projective plane of order 3 has as its blocks the supports of the
shifts of 1 + C;(z), and the square of this element must be the idempotent of the

code which it spans. Computing,

(1+Cy(2))* = 1+42C,(2) + Ca(z) + 2Ca(z).

The image of this idempotent under ug is the ¢; of above.
It turns out that, up to equivalence, there is only one other Q-code of length 13.
This is the quadratic residue code (see Ex. 3.3) and the idempotent is calculated

to be

e, = 1+ Cq(z) + Cyfz).

The weight distribution was calculated to be
(1,0,0,0,0, 78,182,286, 390, 520, 442, 234, 26, 28) .

&

Ex. 4-3: Our last example is to show that there are projective planes with order
a power of 2 which require F to be larger than GF(2) or GF(4); this shows that
our results extend the results stated above from [Pl1] and [PI2]. Let v = 16. Then
n = 162 + 16 + 1 = 273. Factoring gives n = 3-7-13. We need F to be a field

of order 2" such that the order of 2" is odd for each of these primes. Considering
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the prime 13 shows us that we need r = 4, Theorem 4.9 says that this would work,
and so the cyclic plane of order 16 must lie in a Q-code where G = Z,;5 and F is
GF(16). In section 6 we show how this Q-code perhaps is constructed; because of

the sizes involved we have not done so.

L 2%

5. Existence for Characteristic 2

From the examples considered so far in this chapter, it is apparent that the
construction of Q-codes when the characteristic of F is 2 is much easier than for
odd characteristics. This is because it is simple to construct all idempotents from
cyclotomic cosets. When F has characteristic 2, one can completely determine from
elemnentary nuinerical conditions for which G Q-codes can exist. This is our goal.

Observe that equation (3b) becomes
l_+_§1+§2 :!L- (50;)

For the remainder of the chapter, let F be the finite field GF(y), where ¢ = 2™.
For every divisor | of m, we consider GF(2}) to be a subfield of F . Our only
restriction on G now is that n is odd. We will always let p be an odd prime. The
order of 2 mod p is denoted by i, or ¢, if p is clear from context.

The first lemma is a natural generalization of Lemma 2.3. We extend the

notation of cyclotomic cosets by denoting the orbits of a given automorphism ug,

te 7 by C for g € G.
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Lemma 5.1. Let ¢ be an idempotent of F|G| and £ € ZZ such that u, is a multiplier
of (¢). Let & be a complete set of orbit representatives for G \ {0}. Then for some

ﬂOaﬂgEFygE&’

e = Bol+ ) BC (). (55)

ge

Proof:  This is immediate from the fact that, for ¢ € G, 29 and z% have the same

coefficient in e. Notice that we did not need the characteristic of F to be 2.

&

The next lemma is a simple observation about cyclic codes of prime length.

Lemma 5.2. Let G = Z, and d = gcd(m, t), where t is the order of 2 mod p and
F is GF(2™). Then the coefficients of any idempotent in F[G]| are in GF(2¢). In

particular, uqs is a multiplier of any code of F[G].

Proof:  Let e be an idempotent of F[G| with coefficients 8, for ¢ € G. By the

calculation

Y Bya? = | D Bex?| = ) Bz,

geG geG geG

we see that for all nonzero g € G,
ﬂgg = ﬂg . (56)
Fix nonzero g € G. Repeating {5¢) m times gives

Bamg = BE" = By, (5)
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The last equality is just the fact that 8, € F ; this is Lemmas 2.2 and 2.3. Repeating
(5¢) t times gives

BE = Pag = By. (5€)
The last equality holds since the order of 2 mod p is ¢t. From (5¢) it follows that 3, €
GF(2!). Therefore f, is in the intersection of F and GF(2*), which is GF(2¢). This
shows the first conclusion. It is then immediate from this that p,s is a multiplier
of {e).

&

Now fix p, G = Zy, and set d = gcd(m,t), where, as always, ¢ is the order of 2
mod p and F is GF(2"). The following is the existence theorem for cyclic Q-codes

of prime length.
Theorem 5.3. There exist Q-codes in F|G| iff Ed is even.

Proof: =— Suppose that there are Q-codes in F[G|. Then there exists idem-
potents e, and e, and u € Aut(@) which satisfy (3a) and (3b). Notice that these
equations also imply that e; = e;u?. In particular, the order of u must be even,
since otherwise we would have e, = e,.

Motivated by Lemma 5.2, let & be a complete set of orbit representatives of

ige on G\ {0}. Observe that the size of  is £7-d. Pick g € & and look at the

d
_cycle of Céz ) under u. We assert that the length of this cycle is even; this would
complete the result. Now some power of u is an involution, since u has even order.

If the length of the cycle is odd, then at least one of its orbits must be fixed by
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this involution. Since the characteristic is 2, the coefficients in e, and e, associated
with this fixed orbit would cancel in equation (5a). This is a contradiction, and so

the result is shown.

<= There are two cases.
Case 1:  Let P—’t-'~1- be even. Let U be the nonzero elements in G, S the set of
squares in G (when G is considered as a field), and T the subgroup of U generated

by 2. From the equation

it follows that ¢ ! P;—I Since U is cyclic, it then follows that 7' < S. That is, 2 is
a square mod p. In particular, S(z) is an idempotent. Let £ be any nonsquare, and
set e, = S(z) and e, = e p¢. These produce Q-codes with splitting given by wu,.
Case 2. Let d be even. Then GF(4) is a subfield of GF(2%). Let this subfield be
generated by w with w? +w +1=0.

Let s = B—:—l— and pick elements gy,...,9s € G such that the set

{27g; : i=1,....,s j=0,...,d—1}

is a complete set of orbit repesentatives for the orbits of ugs. Form the elements
i1

s . .
o= S (e ),

i=1 j=0

and

d

2

8
; ; d
e = 330 (Wi 4 wa? e o) (g).

1=1 j=0

™
(3]
i
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It is straightforward to see that e, and e, are idempotents which satisfy (5a) and

that e, = e,u2. This completes the proof.

Vs

Corollary 5.4. If %ld is even, then we can always construct Q-codes in F[G]|

with idempotents whose coefficients are either binary or quaternary.

Proof:  This is immediate from the proof of Theorem 5.3.

Ot

Corollary 5.5.
a). If m is odd, then Q-codes exist in F|G| iff 2 is a square mod p iff p = +1
(mod 8).

b). If m is even, then Q-codes always exist in F|G].

Proof: If m is odd, then by Theorem 5.3, Q-codes exist iff P—;l is even. But from
the proof of Theorem 5.3, B—;—l is even iff 2 is a square mod p. The last statement
is well-known from number theory.

Let m be even. If t is even, then d is even. If t is odd, then p=1 i even. In

t

. —1 . .
either case, ﬂ—d is even, so Q-codes exist.

Ce

Suppose that G has prime order. Then Corollary 5.5 imnplies Theorem 2 of
[L,M,&Pl| when m = 1 and it implies Corollary 1 of [PI2] when m = 2. Indeed,

we used precisely their constructions in our proof. In the next section, however, we
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will see different constructions for larger m, especially m = 3 and 4.
In order to classify all groups G for which Q-codes can exist, we need to know

how existence for G relates to existence for subgroups of G. The next two results

concern half of this, namely how one can piece together Q-codes from smaller groups.

Theorem 5.6. Let K and L be two finite abelian groups of odd order such that

Q-codes exist in F[K| and F[L|. Let G = K & L. Then there are Q-codes in F[G]|.

Proof: By the hypothesis, let u; and u, be idempotents in F{K]| which generate
Q-codes and let the splitting be given by ux. Similarly, let idempotents v; and v,

generate Q-codes in F[L] with splitter ;. We thus have the equations

1+ u, +u, = K(zx) and  u, = U pk,

l1+y;+vy,=L{z) and vy,=uvpL.

Consider the natural imbedding of K and L into G. In particular, all of the
above equations can be taken to be in F[G]. For ¢ € G, ¢ can be uniquely written

as gx + g1, where gg € K and gz € L. Then we define u for g € G by

(S g +— GKMK TILHL-

It is easy to see that u € Aut(G). We define the elements
€ = Uy ¥ ¥ U0,
and

€y = Up T Uy T Uplsy T Uply .
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Then e; and e, are idempotents with e, = e;x. Furthermore,
l+e +e = (L+u Tu)l+y; +uy) = K(z)L(z) = G(z).
Hence e, and e, generate Q-codes in F[G] with splitter p.

O

Theorem 5.7. Suppose that there is a Q-code in F|Z,| with splitter u,, £ € Z.

Then for any s > 1 and G = Zy,., there is a Q-code in F[G| with splitter ue.

Proof: We proceed by induction on s; the hypothesis is the case s = 1. Let

G = Xy for s > 1. Let P = (p°~!) and K = (p) be the subgroups of G with

1

respective orders p and p°~'. By the induction hypotheses, there are Q-codes in

both F[P| and F[K| with splitting given by u,. Let

r—1
< 8—1
u =) ez
1=0

be an idempotent for a Q-code in F[P] and

be an idempotent for a Q-code in F|K], where both splittings are given by us. Let

Pa—l_l P—l
e=1| > Bd®|+ (Z o ziK(z)> :
1=0 1=1
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Pick g =7+ jp€ G where 0 <7< p—1and 0< 5 <p° ! —1. Let 7, be the
coefficient of z9. If : = 0, then v, = 3;; if + # 0, then v, = ;. From this it follows
that v24 = 'yg and, if ¢ # 0, 75 + ¢ = 1. It is immediate that e is an idempotent
of F|G] and that 1 4+ e + ey = h. Therefore e generates the desired Q-code.

O

Our next result shows how the existence of Q-codes in F|[G] can sometimes
imply the existence of Q-codes in the group ring F[K|, where K is a subgroup of

G.

Theorem 5.8. Let e generate a Q-code in ¥|G| with splitting u. Suppose that K
is a subgroup of G which is invariant under y. Then there are Q-codes in F[K| and
F|G/K].
Proof:  Define the element u € F[K]| by having the coefficient of z* for k € K
to be the same as in e. It is easy to see that u is an idempotent, and if px is the
restriction of u to K, then 1+ u + uuxg = K(z). This constructs the Q-code in
F(K]|.

Let L = G/K and set p to be the canonical map from G to L with kernel
K. Our reasoning is analogous to the proof of Theorem 4.7. Observe that ep is an
idempotent of F[L] since

eo = (¥)p = (ep)?.

Furthermore, from 1 + ¢ + ex = h it follows that

1+ep+ (en)p = |K| - L(z) = L(z).
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As K is invariant under u, ¢ induces an automorphism of L given by g + K being

mapped to gu + K. Call this automorphism p. Then

In particular, ep generates a Q-code in F[L]| with the splitting given by p.

Ca

Recall that a subgroup K of G is called characteristic if K is invariant under
every automorphism of G. Hence Theorem 5.8 says that the existence of Q-codes

in F[G] implies the existence of Q-codes in the group ring of any characteristic

subgroup of G.

Corollary 5.9. A Q-code exists in F|G| iff a Q-code exists in F[K] for every p-

Sylow subgroup K of G.

Proof:  If there is a Q-code in F|[G], then there is one in F[K] for any p-Sylow
subgroup K of G since p-Sylow subgroups are characteristic subgroups of G. The

converse follows from repeated application of Theorem 5.6.

s

Corollary 5.10. Let G be cyclic. Then there is a Q-code in F[G| iff for every

prime p dividing n, p—}ld is even.

Proof.  For any prime p dividing n, there is a unique (and so characteristic) cyclic

subgroup of order p. One direction of this result is then immediate from Theorems
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5.8 and 5.3. The other direction follows from Theorem 5.3, and repeated application

of Theorems 5.6 and 5.7.
Ce
When m = 1, Corollary 5.10 and Corollary 5.4 imply Theorem 2 of [L,M,&P]).
When m = 2, they imply Theorem 12 of [P12].
In order to finish the existence question, we need to handle the case for those
primes such that E21d is odd. We introduce some notation from the theory of

finite abelian groups (see [Ca] for these concepts). Let G be an abelian p-group.

Then

The 7;’s are uniquely determined. Define

Gy = {g € G : order of ¢ I pi}
and
G = {pig : g € G}.

These turn out to be characteristic subgroups of G. We assume the notation of the

above in the following.

Theorem 5.11. Let G be a p-group with E-I—ld odd. If there is a Q-code in F|G},

then 7; is even fori1 =1,...,s.

Proof:  We first deal with a special case. Suppose that G = (Z,)™. Then by the

reasoning of Theorem 5.3, we need the number of nonzero orbits of uq4 (“cyclotomic
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cosets”) to be even. One computes that in this special case, this number is

Since p is odd and by the hypothesis, we must have 7 even.

We prove the general result by induction on ¢, starting with ¢ = s. By Theo-

rem 5.8, there is a Q-code for the group G/G(s——l)' But

IR

G/G(s—n (Z,)" .

Therefore, by the above special case, 7, is even.
Suppose that m;;,...,7, are known to be even. Again by Theorem 5.8 there

is a Q-code for

IR

K = G/G(i-l) (Ep)m S (zps—wl),ra .

There then is a Q-code for

In particular, m; + +++ 4+ 7 is even, which implies that ; is even. This completes

the induction and the proof.

Od

Theorem 5.12. Suppose that G is as in Theorem 5.11. If 7; is even fort1=1,...,s,

then there is a Q-code in F|G].
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Proof:  From repeated application of Theorem 5.6, it would suffice to prove the
result when G = Z,. @ Z,.. We construct a Q-code with binary coefficients in such
aG.

For g = (1,7) € G, define the map

pooog o — (t+751-7).

It is easy to see that 4 € Aut(G). Observe that gu? = 2¢ for all ¢ € G. We claim
that the cycle (g, gu,gu?,...) has even length for every nonzero g. But if it had odd
length, then u? = uz would produce the same cycle. In particular, 2 would have
odd order mod some power of p. But this contradicts the fact that 1—’;;—1— is odd.

Since every such cycle has even length, we can take every other element in
each cycle and give it a coefficient of 1 and give a zero coefficient to the other half

of the nonzero elements of G. The resulting element of G is an idempotent which

generates a Q-code with splitter u.

Vb

Ex. 5-1:  We illustrate the construction in Theorem 5.12. Let G = (E3)2 and

F be binary. The hypotheses of the theorem apply, so we let u € Aut(G) be the

- (33)

There are two cycles on the nonzero elements of G from the action of u:

matrix

((0,1),.(1,~1),(0,2),(2,—2)) and ((1,0),(1,1),(2,0),(2,2)).
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Therefore we can take for an odd-like idempotent for a Q-code
e = ]__ + m(O,l) + z(O,?) + x(lvo) + 27(2’0) .

In general, if G is an elementary p-group of rank r, then all automorphisms of
G are nonsingular 7 x r matrices with entries in the field Z,. If E—}l-d is odd, then
a matrix giving the splitting cannot have any eigenvalues in Z,, since the span of
an eigenvector is an invariant subgroup of G isomorphic to Z, which contradicts

Theorems 5.3 and 5.8. Notice that this is true in the above example.

L 3%

The next theorem and Corollary 5.9 complete the existence theorem for Q-

codes in F[G|.

Theorem 5.13. Let G be a p-group.
a). If E5d is even, then a Q-code always exists in F[G].
b). If P;—ld is odd, then a Q-code exists in F|G] iff the m;’s defined above are all

even.

Proof:  Part a) follows from Theorem 5.3 and repeated applications of Theorems
5.6 and 5.7. Part b) is just Theorems 5.11 and 5.12 combined.

O8

. Ex. 5-2: We extend Ex. 3-3 to the case of characteristic 2. Let G be the additive

group of GF(p") for r > 1, S be the nonzero squares in G, and N be the nonzero

nonsquares.
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If 2 is a square mod p, then S(z) and N(z) are idempotents which generate
Q-codes; the splitting is given by @, where £ € N. In particular, for any F , Q-codes
exist which are invariant under u; where £ € S.
If 2 is a nonsquare and if d is odd, then no Q-codes can exist by Theorem 5.13.
If d is eV.'en, then GF(4) is in F ; let it be defined as in the proof of Theorem 5.3.

Then the idempotents
wS(z) + w?N(z) and  w?S(z)+ wN(z)

generate Q-codes with splitting uo. When G has prime order, these were constructed
in [P12].

L 3%

We should stress that no attempt was made in the above to give a complete
description of all Q-codes which exist for a given G and F . Such questions depend
on the values of the parameters involved, and so general statements are difficult.
We have always picked the easiest idempotents to use in our constructions; these
are usually binary or quaternary. In the next section we give some construction

techniques which we hope will indicate how one may go about in a specific case to

classify all Q-codes in F[G|.

6. Construction Techniques for Characteristic 2
All of the constructions for the characteristic 2 case have involved binary or qua-

ternary idempotents. Many of these codes are interesting, as {L,M,&Pl], [PLLM,&L],
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. and [P12] woula indicate. We wish to finally offer construction techniques which
will apply to larger fields and which, we hope, yield additional interesting codes.
This section concerns numerical sﬁlitters and multipliers.

Fix an odd prime p and define ¢ as in section 5. Set G = Z, and recall that
all of the automorphisms of G are numerical. Let F be GF(2%) where d | t.
Notice that from Lemma 5.2 no generality is lost by this restriction. We record
the following lemma without proof; all of the results have been stated explicitly or

implicitly in the above discussion.

Lemma 6.1. Let e an idempotent generating a Q-code in F|G| with splitter u,
and multiplier u,. Let the coefficients of e be §; for 0 < ¢ < p— 1. Then

a). For i # 0, Bi+Bei=1.

b). For all 1, Bi =By .

c). pi = pe is a multiplier of (g).

d). The number of orbits of u, on the nonzero elements of G is even.

&

The construction of Q-codes, in particular finding the splitter u,, is dependent
on the specific prime p. There are, however, three cases when we can state general
results on when p; can be a splitting. These are when £ is a power of 2, —1, or the

negative of a power of 2. We handle these separately.

Theorem 6.2. Let £ = 2° and r = gcd(2s,d). Then these are equivalent:

a). There exists a Q-code in F[G| given by splitting .
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b). The polynomial y*+y+1 has a root in GF(27).

Proof: a) =>b) Let e be an idempotent for a Q-code in F[G] with coefficients
3; for 0 < ¢ < p—1. From Lemma 6.1 and the fact that ¢ is an idempotent we have

for all ¢
B = By = Bazer = (B2

Hence 3; € GF(2") since r = gecd(2s,d). Furthermore, for any ¢ # 0,
Be+0B: =1 so that Bi+B8:+1=0.

This shows that the required polynomial has a root in GF(27).

b) => a) Let 8 be a root of y* +y + 1. Let U be the nonzero elements of G
considered as a group under multiplication. Let T be the subgroup of U generated
by 2 and & be a set of coset representaives of T' in U. Define the two elements

t-1
oo T3
IE€EQ j=0
and
t—1 _
2+ Fd
b XX
$EY j=0
We assert that these generate Q-codes with splitting u,.
First we show e, = e;u¢. Pick i € S and j =0,...,t — 1. Let g = 2 e U.

9i+2s

Then the coefficient of 9 in ¢, is 3% while the coefficient of z% in e, is 8 . We
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need to show that these are equal. But since r ] 2s,

gY — (ﬂQ.f)zg“ _ grt

A similar calculation shows that e, and e, are idempotents, since we just need to
show that the coeficient of z2¢ is the square of the coefficient of 9. It remains to
show that 1+ e, — e, = h. For a given g as above we add the coefficient of z¢ in

both e; and ¢,:

27t

EAAY L (ﬂ2"4—ﬂ)2j = 1.

This completes the construction.

Notice that in either case of this theorem, the coeflicients for nonzero g € G

are roots of the polynomial in the statement of the theorem.

L)

Corollary 6.3. If 2s } d, then there exists a Q-code in F|G| for which u,- gives

the splitting.
Proof:  From Theorem 6.2, it suffices to show that the polynomial
p(z) = v* +y+1

has a root in GF(2°). Now let 3 be a root of p(z) in some field of characteristic 2.

From 8% = 3+ 1 we have

g = (ﬂ'”)y =87 +1=48.
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In particular, 7 is in GF(2%).
Ca
Ex. 6-1: We illustrate the above results.

s = 1: . From Corollary 6.3, we need that y2+y+1 has a root in F . This occurs iff
2 | d iff GF(4) is a sub-field of of F . This is precisely the quaternary construction

of [P12]. As an example, let F be GF(4) generated by w with w? + w + 1 = 0. Let

p = 5. The construction of the theorem gives the idempotent
e = 14+wr' +w?z? +wiz® +wzt.
We give properties of this code in section 7; notice that x—1 is a multiplier of this

code.

s =2: Weneed y*+y+1tohave aroot in F . Since this polynomial is irrreducible,
we need GF(16) to be asubfield of F ,i.e. 4 ‘ d. As an example of this construction,

let « be a root of this polynomial and again p = 5. One idempotent would then be

e = 1+az' +a?z? + a®2® + otzt.

Notice that since 4 = —1 (mod 5), p—y gives the splitting.

s =3: From Theorem 6.2, let r = gcd(6,d). Since we have the factorization
CHy+l = (P +y+1) @+t iyt ).

Therefore there are two possibilities for r: 2 or 6. If r = 2, then we just need that

d is even. Then since we can construct an idempotent with splitting pq, the same
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Q-codes are given with splitting (ug)® = ug. If 6 } d, then we can also find Q-codes
with splitting given by ug and not by us by taking a root of the 6th degree factor.

The smallest such example would be length 13.

In general, in order to describe such splittings completely we need the factor-

ization of y* 4+ y+ 1.
&

We next consider when p_; gives the splitting. We will need the following

technical lemma.

Lemma 6.4. Let ¥ be odd and t be even. Then for all o € F ,

al

Proof:  As % is odd and t is even, t = d(2r + 1) for some r. Then for every

a€eF

[

t & d
5 (2r+1) 5 ord
azz — a25 — 0(22 2 — 02

The last equality is just the fact that ﬂzd =pfforall € F .

&5

Theorem 6.5. There exists a Q-code in F |G| with splitting given by u_y iff % is

odd.

Proof:  Since ?-ti is the order of 2¢ mod p, this is just Theorem 4.7. We wish to give
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two general constructions rather than just stating this existence result. Therefore
let £ be odd.
t 1s odd: Pick any a and §in F with o+ 8 =1. Astisodd, 2° # -1 (mod p)
for all s > 1. Let U be the group of nonzero elements of G and T be the subgroup
of U generated by 2. Then u_; fixes no coset of T in U. This means we can find a
set & in U such that the set {#, —1};cq is a complcte sct of coset representatives of

T in U. Define the two elements

t—1
e, = Z Z (az’ 2% 4 g% ﬂL,—izv)

1€ =0

and

3]
%]
I

<ﬁ2-f 27 L% T-in’)

It is straightforward to see that e; and e, are idempotents generating Q-codes with

-EL

HMI

splitting given by u_; the calculation is similar to that in Theorem 6.2.
t 15 even: Since % is odd, d is even. From Corollary 6.3, there is a Q-code

given by splitting Mo We claim that p_; also gives the splitting. Let e be the

idempotent for this Q-code with coefficients 3; for 0 < 7 < p — 1. It then would

suffice to show for all nonzero 1,

T2z

Notice that 25 = —1 (mod p). Then

[ -]
(g
-
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From Lemima 6.4 and the [ac( thal e is an idempotent, we have

which is what was to be shown.

O

Ex. 8-2: If d is odd, then Theorem 6.5 says that there is a Q-code with splitter
p_1 iff t is odd. This is the duadic case of [L,M,&Pl]. If d = 2, we need that 2
exactly divides ¢. This is the quaternary case of [P12]. In general, if 2° exactly
divides t, we need that 2° exactly divides d.

We offer the following family of examples which generalize the length 5 code

with coefficients in GF(16) in Ex. 6-1. Let d =t = p — 1 and let w be a root of

y%? 4+ y+1in F . Then the above constructions offer the Q-codes with splitter p_;

generated by the idempotent

The small examples [rom this family that have been examined (see the last section)

suggest that these codes have many interesting properties.

&0

The last splitters which we investigate are those pu_s.. Unfortunately, the

results are a little more detailed.
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Theorem 6.6. Let £ = —2° and r = gcd(2s,d). Then these are equivalent.
a). There is a Q-code in F|G] with splitting given by u,
b). There is a Q-code in F|[G] with the coefficients of the idempotent in GF(2").

The splitting is given by p,, where

1). If 'fi' is even, 3 — 2°,
2). If g is odd and t is odd, 3 = —1.
3). If £ isodd andt is even, j = 23 and —2i—+ﬁ is odd.

Proof: a) => b) As usual, let e be the idempotent for a Q-code with splitter
ug. Let the coefficients of e be §; for 0 < ¢ < p— 1. From Lemma 6.1, s is a

multiplier of the Q-code, so in particular, for any ¢,

Bi = Baae; = (8%

This shows that the 4,’s are in GF(27).

If % is even, then some power of 2¢ is congruent to —1 mod p. Hence p_; is
a multiplier and so the splitting is given by pq..

Let 5 be odd. If ¢ is odd, theﬂ d is odd, so that r is odd. This implies that
r , s, and so ug. must be a muitiplier. This means that the splitting is given by
T

So let t be even, so that d is even and hence r is even. As 22 = —1 (mod p),

we see that
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That is, Moot gives the splitting. Notice that

If gfriﬁ is odd, then p, ¢ gives the splitting. If Z—Srﬂ is even, we get a contradiction
since the splitter would then be a power of the multiplier psr.

b) = a) All of the above reasoning reverses. That is, for each of 1), 2), and
3), a Q-code with the given splitting would also be given by the splitter s¢.

&

Ex. 6-3: In order to apply Theorem 6.6, we need to appeal to both Corollary 6.3
and Theorem 6.5. We illustrate by discussing when u_4 gives the splitting (so

s =2). If is even, then we need u4 to give the splitting, i.e., 1 | d. Let 5 be

&l

odd. If t is odd, r is 1 and so we need a binary idempotent with splitting given by
p_1. If t is even, then we need 31'—* to be odd, so that 8 { t. Hence 8 ' d and
since r = gcd(4,d), r = 4. Thus ug4 gives the splitting. We observe that the case
s = 1 was investigated in [P12].

L 3%

Hidden in the above results is the following theorem about multipliers. We

omit the proof.

Theorem 8.7. Let e be an idempotent of F[G] which generates a Q-code.
a). The coefficients of ¢ are in GF(2°) iff uq« is a multiplier.

b). If £ Is even, then u_y is a multiplier.
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c). Suppose that % is odd and t is even. Let r = gcd(2s,d). If the coefficients of
e are in GF(27) and —zf,it is even, then p_,. is a multiplier.

]

7. More Examples
In this final section we wish to present some new and old Q-codes. Relations
to the above results and constructions will be given when applicable. We do not
intend for these examples to be exhaustive, merely illustrative.
All of the examples will be for characteristic 2, and so we define the following
fields:
1). F2 ={0,1} is the ordinary binary field.
2). F4 = {0,1,w,w?} is the quaternary field, defined by w? +w = 1.
3). Fs = {0,1,5,6%,...,8°%} is the field of size 8 defined by 8%+ % =1. |
4). Fi6 = {0,1,,0%,...,a!} is the field of size 16 defined by o* + & = 1.
Observe that {0,1,a®, a°} is the subfield of Fy¢ of size 4.
Throughout we use the notation of sections 3 and 6. In particular, 2¢ is the size
of the given field F, and for a given prime p, ¢ is the order of 2 mod p. We take the
natural notation for the given abelian group G. All idempotents will be odd-like.

The next result will be useful in the establishment of inequivalence in some cases.

Theorem 7.1. Let G = Z,. Then two G-codes are equivalent iff they are equiva-

lent by the permutation induced by some u,.
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Proof:  This is Theorem 1 of [L,M,&Pl|.

Vb

Ex. 7-1: n=p=3
Since t = 2, E—;—'ld = d . Therefore from section 5, we need d to be even in

order for Q-codes to exist.

A): LetF =F, and set

e, = wr' +w?z?.

This is Ex. 4-1, and as mentioned, they are in [P12]. Observe that this is an example
from the family mentioned at the end of Ex. 6-2. Since the splitting is given by

wo = p_y1, C} is self-dual. The weight distribution for C} is

(1,0,9,6)
and for C7 is
(1,0,0,12,3).
Both codes are MDS.
B): Let F =F;; and set
€, = obx! + al®z?,

This is just example A) considered over F g, so all of the above comments apply.

The weight distributions are

(1,0, 45,210)
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for C; and

(1,0,0,60,195)

for C{. They are both MDS.

&<

Ex. 7-2: n=p=25
Again, since t = 4, E-1d =d, and so we must have that d is even.

A): Let F =T, and set

e = 1+ wz' +wlz? + w?e® +wrt.

The splitting is given by ps and u_; is a multiplier. Hence C7 is the dual of C3.

The weight distribution for C is

(1,0,0,30, 15, 18)
and for Cy is

(1,0,0,0,45,0,18) .

Both codes are MDS. These are found in [P12]; the extended code is known as the

hexacode.

B): Consider example A) over Fig, so that

e, = 1+a%z! +a'%22% + a'%% + o2t
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The resulting codes have the same properties as in A). Both codes are MDS, since

the weight distributions are
(1,0,0, 150,975, 2970)
for Cy and
(1,0,0,0, 225, 1080, 2790)
for C7.
C): Let ¥ =F¢ again and define
e; = 1+az! +a’z? + o®2® + o'zt
This was given in Ex. 6-1. Observe that this code is another example from the
family discussed at the end of Ex. 6-2. The splitting is given by ﬂ.4 = M—_1.
Therefore the extended codes are self-dual. C; and C] are MDS with the same
weight distributions as in example B).

From Theorem 7.1, the codes in B) and C) are inequivalent.

&

Here ¢ = 3, and so E3%d = 2d . Hence Q-codes exist for all fields. Notice
though that from Lemma 6.1, we may assume that d [ t. Hence, the coefficients

of the any idempotent must lie in F, or Fg.

A): Consider the binary idempotent:

€, = x1+z2+x4.
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The splitting is given by u_; and so the extensions are self-dual. The minimum
weight vectors are always multiples of the blocks of the projective plane of order 2.

The weight distributions for the codes are as follows:

F C1 Ci

F, (1,0,0,7,7,0,0,1) (1,0,0,0,14,0,0,0,1)

F (1,0,0,21,21,126,42,45) (1,0,0,0,42,0,168,0,45)

Fs (1,0,0,49,49,882,1470,1645) (1,0,0,0,98,0,1176,1344,1477)

F,, (1,0,0,105,105,4410,10110,41805)  (1,0,0,0,210,0,5880,20160,39285)

B): Set F = Fg. Suppose that we wished to construct an idempotent
for a Q-code such that the coefficient of x! is 8. Then checking the idempotent

conditions, we see that for some y € F |,
e, = (,6231 +,32$2 +ﬂ4.’£4) 4+ (’)".'133“"')‘4135 +72x6) .

There are three possible antomorphisms which could be splitters: pa, us, and p_1.
By using the equation 1 + e; + e, = h, one finds that the only time one can solve

for v is when the splitter is #_,. The resulting idempotent is then
e = ﬁ.'l:l +ﬂ2$2+ﬂ6$3+ﬂ4$4+ﬂ3$5+ﬂ5$6; (7(1)

the calculations use that 32 = 8% + 1. The extended code is self-dual, since the

splitter is ;. The weight distributions are

(1,0,0,0,245,588, 1666, 1596)
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for Cy and
(1,0,0,0,0,392, 588, 1736, 1379)
for C{. In particular, these codes are MDS. There are already known MDS codes

of length 7 over GF(8), namely the Reed-Solomon codes (see [MW&SI]). We take

as a given that the idempotent for such codes is given by

(6]
e=> 7, (76)
1=0

for some nonzero v € F . Therefore, by Theorem 7.1, the above Q-code is equivalent
to the Reed-Solomon code iff there is some v € F and u; € Aut(G) such that the
image under u¢ of the idempotent in (7a) is the idempotent in (7). But a simple
calculation shows that this is impossible. Hence the above MDS Q-code is not a

Reed-Solomon code.
&0
Ex. 7-4: G=U;DlUs

A): Set F = F;,. There are 4 nonzero cyclotomic cosets:

{(0,1), (0,2)} ; {(1,0), (2,00}; {(1,1),(2,2)} 5 {(1,2), (2,1)}.

Any combination of these supports an idempotent. In fact, any pair gives an idem-
potent which can be sent into the idempotent for the other pair by an automorphism

of G. In general, this splitting is given by at least one of the following matrices:

1 1 2 1
wo (1)) . (21).
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This gives (3) /2 = 3 sets of idempotents; representatives for each set are

14+ Cpo,y(z) + Cuoy(z), 1+ Cplz)+ Ca,n(z),

and 1+ Co,1){x) + C(1,2)(2) .

The ﬁrsf was given in Ex. 5-1. All of the resulting codes are equivalent. In fact,
we can find an automorphism of G sending each idempotent to another. This is
because it is well-known that the set of nonsingular 2 x 2 matrices acts 2-transitively
on the lines of affine 2-space, and observe that each cyclotomic coset is the set of

nonzero vectors in a line. The weight distribution for each Cj is
(1,0,0,6,9,9,6,0,0,1) .
The weight distribution for each Cj is

(1,0,0,4,7,8,7,4,0,0,1) .

B): Set F =F4. Thensince 4 =1 (mod 3), we get 8 singelton nonzero
cyclotomic cosets. Pick any representative from each of the cyclotomic cosets from
example A), say {g¢1,92,93,94}. Then it is clear that any idempotent must be
given by

4

e = Yol+ ) (v +~7z%9), (7e)

=1

where the coefficients are in F4. Clearly o is 0 or 1; suppose that the other

coefficients are not 0 or 1 so that for ¢ # 0, ; € {w,w?}. Let y; = w for €;. There
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are eight possible choices for ¢,. All of these work for Q-codes by looking at the

splitter uz = u_;. The resulting codes have the same weight distributions, namely
(1,0,0,9,81,54, 198,405,216, 60)

for Cy and

(1,0,0,9,0,81,162, 171,351,219, 30)

for C{. Notice that all of these can be constructed from Ex. 7-1 A) above using

the “product” construction of Theorem 5-6.

C):  We have dealt with all binary coefficients in A) and with “strictly”
quaternary coefficients in B). What about mixtures of these two? For a 2 x 2
matrix M € Aut(G), we let ups be the automorphism it induces on FIG]. Notice
that if puas gives a splitting for a Q-code with idempotent e, then pp-14p 'gives a
splitting for the idempotent eup; this follows from the fact that pap = papup. In
this way, we only need examine a matrix from each similarity class.

Suppose that ups gives a splitting, and that the idempotent e is in the form of
(7¢). Clearly M cannot have 1 as an eigenvalue, since the coefficient of the resulting
eigenvector ¢ would cancel in the left side of the equation 1 + e+ eupr = h. If 2 is

an eigenvalue, then we must have that 2 is also the other eigenvalue. Hence either

B = p2, i.e., case A}, or M is the matrix
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A simple calculation then shows that the latter case does work, but that the resulting
Q-codes are those in B).

So suppose that the eigenvalues are not in Z3. The minimum polynomial of
M must then be a second degree polynomial irreducible over Z3. There are three
such poiynomials, and so there are three M’s to check. In each case, a Q-code exists
with uar as a splitter. These are, however, the codes of part A).

In this way, we have classified all of the Q-codes for this G.

&5

Ex. 7-5: G=%450 s

Set F = F,. The cyclotomic cosets are again the nonzero vectors of the lines
in affine space. There are 6 such cosets, and so we need to take 3 of them in order
to possibly construct an idempotent for a Q-code. Since we may assume that the
coset fér (0,1) is used, there are (g) — 10 idempotents to check. Indeed, all of these
are Q-codes.

In order to show this, we construct a splitter for each pair of idempotents. Our

method is to find a matrix

__ a b 2 _ 2 0
M = (c d) where M = <0 2).

Since 2 is not a square mod 5, one sees that all such M are given by

M = (a b) where a’+bec=2.
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It is a straightforward calculation to show that each of the 10 splittings is given by
at least one such M.
In every case the minimum weight is 5 for both C; and C}. Every such C,
has the same weight distribution, but there were two different weight distributions
among the extended codes. In particular, not all of the resulting codes are equiva-

lent.

&

It is not difficult to go on and, for a given G and F , to list essentially Q-
codes. We strongly believe that some of the resulting codes would'be interesting.
As evidence, we note the two inequivalent MDS codes discovered above. As another
example, the constructions for binary G-codes when G = Z7® Z were seen to yield
codes with larger minimum weight than the generalized quadratic residue codes. Of
course, in order to handle the larger groups, one needs methods to calculate the
minimum weight which are different than the purely computational methods used

here.
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