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The Importance of Combinatorial Optimization in the 

Improvement of Models for Computational Protein Design 
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Optimization in computational protein design 

 Initial progress in the field of computational protein design (CPD) was 

accelerated by the development of mathematically rigorous optimization methods based 

on the dead-end elimination (DEE) theorem.  The availability of these methods helped to 

instill confidence that provably optimal solutions could be found for astronomically 

combinatorial protein design problems based on the inverse-folding model.  Although the 

utility of such methods was demonstrated by several successful designs, and many clever 

improvements were made to extend their applicability, their poor performance scaling 

soon began to limit the progress of CPD.  Reliance on DEE-based optimization was 

especially problematic when applied in the context of more accurate sampling of side-

chain conformational flexibility, the design of many positions simultaneously, or the 

modeling of substrates and enzymatic transition states.   

 In response to the limitations of DEE, stochastic optimization routines were 

developed based on Monte Carlo with simulated annealing (MC), FASTER, and genetic 

algorithms (GA).  Although these methods do not guarantee the generation of optimal 

solutions, they can be run as long as desired to improve the quality of the solutions, and 

they always return a solution, regardless of the difficulty of the problem.  In practice, we 

have found that, in contrast to the other stochastic methods, the improved FASTER 

procedure detailed in Chapter 2 is always able to find the DEE-derived solution when 

DEE can converge, and is able to converge to a single low-energy solution even for 

significantly more difficult problems.   
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Our experiences with the various types of exact and stochastic optimization 

techniques used in CPD strongly suggest that sampling of configuration space is not the 

limiting component in the application of single-state, inverse-folding models to real-

world protein design problems.  Even for the largest inverse-folding problems for which 

all possible pairwise energies between rotamers can be precomputed and stored in 

memory, the improved FASTER algorithm can converge to low-energy solutions that are 

believed (though not proven) to be optimal.    

In contrast, the recent development of multi-state design (MSD) procedures has 

provided more fertile ground for the improvement and testing of optimization routines. 

MSD procedures must perform individual rotamer-optimization calculations to assess the 

fitness of each sequence analyzed, and therefore orders of magnitude fewer distinct 

sequences can be evaluated per unit time.  Because scoring a sequence in MSD is so 

costly, efficient optimization algorithms for MSD must choose sequences to test much 

more carefully than would be required in single-state design (SSD) problems of 

equivalent combinatorial size.  In Chapter 3, we saw that our implementation of MSD-

FASTER significantly outperforms MSD-MC in all cases tested, often finding solutions 

better than the best ever found by MSD-MC. These results highlight the idea that, unlike 

SSD problems with precomputed pairwise energies, MSD problems can easily exceed the 

capabilities of existing sampling algorithms.  Thus, more efficient optimization routines 

are expected to help generate more useful protein variants and accelerate the 

improvement of CPD models based on MSD. 

Design protocols that compute energies on the fly have been investigated to a far 

lesser extent than those that rely on precomputed energy matrices.  So far, the greater 
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computational expense of on-the-fly methods has precluded their use, despite the CPD 

model improvements their use enables.  For example, on-the-fly methods are amenable to 

energy functions that cannot be expressed as sums of pairwise energies between 

positions, such as solvation functions that rely on exact descriptions of complete 

molecular surfaces.    Furthermore, unlike precomputed energy methods, on-the-fly 

methods need not be limited to rigid main-chain structures.  In on-the-fly design 

methodology, structure refinement and minimization moves can be applied concurrently 

with rotamer and amino acid changes, potentially facilitating the discovery during the 

design process of more appropriate scaffold conformations for evaluating the sequences 

of interest.   

This strategy might be most useful in the context of MSD.  A database of main-

chain structures could be used to score individual sequences, and these structures could 

be refined during sequence optimization to better represent the sequences found over the 

course of the design.  The database might include both target states and competing states 

for explicit negative design.  Although such methods are expected to improve the 

predictive ability of CPD calculations, they will also be dramatically more time-

consuming than the inverse-folding design calculations to which the field of CPD has 

become accustomed.  These methods will only be rendered tractable by significant 

advances in computational hardware, as well as the development of conformational 

sampling algorithms that can handle the combinatorial explosion caused by the treatment 

of main-chain flexibility.   

In Chapter 4, we found that CPD methods can help to predict combinatorial 

libraries of stable sequences, even when they cannot accurately correlate the experimental 
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and simulated stabilities of these sequences.  Given this result, it seems worthwhile to 

question the utility of rigorous sampling in CPD calculations.  Specifically, if the 

correlation between simulated and experimental fitness is low, then why bother spending 

additional time in an attempt to find solutions of better energy? 

 

Characteristics of CPD as a tool for protein engineering 

The high-throughput stability assessment of our designed libraries may provide 

insight into the level of simulation accuracy that might be required for CPD to be usefully 

applied in protein engineering.  It is often postulated that, in order for CPD to display 

predictive power, it must adequately reproduce stability changes (ΔΔGs) of mutation 

from experimental data sets.  However, no correlation was observed between the 

simulation energies of the individual sequences we assayed and their experimental 

stabilities.  Given this result, we were pleasantly surprised by the ability of our 

computational library design procedure to produce many well-folded and stabilized 

sequences based on each type of input structural data.  Although it might be assumed that 

the sequence space of our designs contained an unusually large number of viable 

sequences, our own data and the reports of others soundly contradict this; we cannot 

reasonably conclude that the design problem we chose was serendipitously trivial.   

So how can a protein design method successfully produce libraries of well-folded, 

stabilized variants without accurately predicting the relative stabilities of any given pair 

of mutants?  This remarkable property of CPD may arise due to the same fundamental 

characteristics of proteins that make natural and directed evolution possible.   
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Although the ability of a protein sequence to fold to a stable and active structure 

is governed by a precarious balance of energetic contributions with large magnitudes and 

opposite signs, naturally occurring proteins are nevertheless sufficiently tolerant of 

substitution to enable the evolution of molecular function through mutagenesis and 

screening or selection.  Starting with an existing functional protein, an area of sequence 

space enriched with active variants can be explored by iterative cycles of mutation or 

recombination. This process works because many substitutions can be accommodated by 

structural adjustments that maintain the general fold, and because the structural accuracy 

required for activity is not prohibitively high.  

Now, we consider CPD methods in light of the biophysical properties of proteins 

that enable evolution.  Inverse-folding design models (including those of the multi-state 

variety) ultimately score amino acid sequences in the context of one or more fixed 

scaffold conformations using molecular mechanics and heuristic energy functions.  In 

order to rigorously assess the relative stabilities of any two sequences, a CPD procedure 

would need to find a representative ensemble of native and nonnative conformations for 

each sequence, and compute the free energy of each ensemble using a scoring function 

that accurately treats polar and nonpolar interactions and solvation effects.  However, 

computational tractability requires that only a small subset of the possible conformational 

space be evaluated, and that approximate scoring functions which neglect explicit water 

and complex electrostatic effects be used. The finite set of representative structures used 

for a particular design will always be more appropriate for some sequences than for 

others.  This leads to false positives, in which a sequence appears to stabilize the target 

ensemble but actually stabilizes alternative conformations more, and false negatives, in 
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which a sequence appears to destabilize the ensemble although slight adjustments to the 

ensemble would render it satisfactory.  The unpredictability of these cases leads to the 

observed lack of correlation between simulation energies and experimental measures of 

fitness.   

So, despite insufficient sampling and approximate energy functions, the forgiving 

nature of protein self-assembly enables CPD to find areas of sequence space likely to be 

compatible with a given structure and function.  As described above, evolution can 

effectively explore sequence space because stable protein sequences are able to relax 

structurally and accommodate perturbing mutations.  Likewise, CPD procedures are able 

to locate viable areas of sequence space because a sequence compatible with the 

simulated ensemble can also usually tolerate the minor relaxations that lead to the 

physically relevant conformational states that are not modeled.  Since the exact nature of 

these relaxations, and the structures they lead to, cannot be predicted during the 

simulation, the energy of a sequence threaded on the ensemble does not correlate well 

with experimental reality.  Explicit negative design provides an even greater challenge 

than positive design, since it demands sequences that destabilize an ensemble of 

competing conformations.  Unmodelled structural relaxations are more problematic in 

competing states than in target states because they can transform an apparently 

destabilizing interaction into a stabilizing one, rendering a simulation-based fitness 

assessment qualitatively incorrect.  Despite these issues, experimental validation of CPD 

calculations has shown that ensembles sufficiently representative of active states (and 

competing states, if available) can be used to identify regions of sequence space enriched 

with folded and functional members.   



 

 

139 

Although the structural adaptability of a protein native state renders untenable the 

accurate comparison of arbitrary sequences without prohibitive conformational sampling, 

it also enables the effective design of proteins under the same set of computational 

restrictions.  Ultimately, we reach the surprising conclusion that accurate scoring of 

particular arbitrary sequences is neither necessary nor sufficient to find areas of sequence 

space enriched with functional variants.    

In Chapter 4, we discussed how this view of current protein design methods leads 

to unorthodox proposals for the improvement of CPD.  If the utility of CPD is derived 

primarily from its ability to choose variants that satisfy the native state, as it seems to, 

then two main avenues of inquiry arise.  In the first, structural refinement, larger rotamer 

libraries, and better energy functions are used to improve the degree to which variants 

can be ranked based on their compatibility with the native state.  However, the general 

difficulty of finding perfect structures for the evaluation of arbitrary sequences and the 

extreme sensitivity of molecular mechanics energy functions suggests that additional 

returns from this effort would diminish quickly; native state modeling is continually 

pushed to improve its predictive power.  On the other hand, simulations of competing 

states have received scant attention in the context of protein design, and might represent 

lower-hanging fruit.  Of course, the generation of appropriate structural templates for the 

simulation of competing states will be far from trivial.   

The vastness of available conformational space will require redoubled efforts 

towards efficient sampling and optimization as the major simplifying approximations of 

CPD begin to be discarded.  It seems clear that the development of more accurate design 

procedures must be driven by the availability of improved optimization methods and 
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move sets that enable protein sequences to be simulated more realistically. My intent with 

the projects described here was to push the boundaries of what can be attempted in CPD, 

to maximize the possibility of transformative breakthroughs derived from this 

technology.  I consider it an honor to have had the opportunity to place my own small 

piece into this mighty puzzle.   

 

 


