
 1 

Chapter 1 

 

 

Optimization Strategies for the Design of Protein Sequences and 

Combinatorial Mutation Libraries  

 

 

 

 

 

 
 

 

 

 

 

 

Some language in this chapter was adapted from manuscripts coauthored with 
Christina L. Vizcarra, Oscar Alvizo, and Stephen L. Mayo. 
 

Alvizo, O.; Allen, B. D.; Mayo, S. L., Computational protein design promises to 
revolutionize protein engineering. Biotechniques 2007, 42 (1), 31–39. 
 
Vizcarra, C. L.; Allen, B. D.; Mayo, S. L., Progress and challenges in computational 
protein design.  Submitted 2008.   
 



 2 

High-throughput protein engineering 

 Proteins are linear heteropolymers, built from 20 standard amino acid monomers.  

Synthesized inside cells, they perform a vast majority of the structural, catalytic, sensory, 

and regulatory functions that characterize living systems as we understand them today.  

These myriad roles are made possible by the ability of proteins to self-assemble into well-

defined structures specified by their amino acid sequences.  Although only a small 

fraction of all possible protein sequences can assume a folded, functional form,1, 2 the 

modular nature of the protein platform allows existing functions to be altered and 

enhanced for new or fluctuating requirements by selection for fitness from a 

heterogeneous population.  The requisite diversity develops though copying errors and 

recombination of nucleic acid sequences that encode the proteins expressed by members 

of the population.   This process is slow and relies on serendipity to discover beneficial 

variants.  Nevertheless, it represents the only plausible description of how the complexity 

of life we see today could have ultimately arisen from simpler chemical systems.   

 Before sufficiently powerful tools for genetic manipulation were even available, it 

was postulated that existing biological systems for protein fabrication could be harnessed 

to produce nano-scale molecular machines with designed functions.3  Major successes 

along these lines have been achieved via directed evolution, in which screening or in vivo 

selection is applied to isolate active variants from populations of 100 to 1015 members.  

Molecular diversity for directed evolution can be produced, in vitro or in vivo, using 

methods including error-prone DNA polymerization, recombination, gene shuffling, 

combinatorial libraries made using synthetic oligonucleotides, host organism mutator 

strains, and the humoral immune system.4, 5 Active variants can then be isolated from 
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these pools with techniques such as screening with various levels of automation, selection 

for survival in auxotrophic strains, and affinity-based or cytometric separation of 

individual proteins linked to or compartmentalized with the nucleic acids that encode 

them.4, 5   Notable protein engineering feats facilitated by directed evolution include 

enhancement of the substrate specificity, thermostability, selectivity, and solvent 

tolerance of enzymes,6–9 as well as the engineering of metabolic pathsteelyways.10 

 Despite the potential of laboratory evolution to cull through vast numbers of 

sequences, experimental concerns, such a lack of appropriate high-throughput assays, 

selection systems, or instrumentation, can dramatically limit the diversity that may 

practically be addressed.  Furthermore, the largest libraries that could conceivably be 

approached by experimental methods are miniscule compared to the total possible 

diversity of even modestly sized proteins.  The inherent limitations of experimental 

protein engineering methods, and the hope that sequence design might eventually be 

completely automated, have motivated the development of computational tools for the 

virtual screening of astronomical pools of diversity.  In some cases, the use of 

computational protein design (CPD) methods has allowed stable, well-folded, and 

functional proteins variants with many mutations away from their wild-type counterparts 

to be designed directly in silico and experimentally validated.  In most situations, 

however, the successful design of proteins using CPD alone has been inconsistent.   

 This thesis describes the conception, implementation, and testing of optimization 

methods meant to improve the frequency with which useful and interesting sequences can 

be predicted by computational techniques.  The initial goal was to facilitate the discovery 

of sequences of minimum energy given a standard model of computational protein 



 4 

design.  Such sequences are desirable to the extent that the design model is accurate, and 

are expected to help suggest possible improvements when it is not.  However, the 

enhanced optimization methods also proved to be directly applicable to more 

sophisticated design models that treat multiple conformational states simultaneously.   In 

order to better assess the utility of these more realistic methods, a method was developed 

to allow the design of combinatorial mutation libraries to be driven by the results of 

computational protein design calculations in a model-independent manner.  The 

synergistic application of the methods described here enabled the first experimental test 

of computational design based on large structural ensembles.   

 

Computational protein design by inverse folding 

 CPD was first conceived as the inverse of the protein-folding problem, since its 

most basic goal is to generate amino acid sequences that preferentially adopt a specific 

three-dimensional structure.11  At its core, the inverse-folding design model consists of a 

search for optimal amino acid side chains at one or more positions in a fixed structural 

model of the protein main chain.  Various amino acid types are modeled at each designed 

position, and potential mutations are evaluated based on their pairwise interaction 

energies. The continuous flexibility available to each amino acid side chain is 

approximated using a discrete set of low-energy conformations called rotamers.12, 13  The 

goal is thus to find an optimal choice of rotamer, of any allowed amino acid type, at each 

designed position.  A configuration of the virtual protein system described by the inverse 

folding model corresponds to a set of atomic coordinates for some particular amino acid 

sequence.   To the extent that the approximations inherent in the scoring functions and 
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design model are appropriate, amino acid sequences specified by low-energy 

configurations of the system are expected to stabilize the required fold and thereby 

facilitate the desired activity.   

 Enthusiasm for computational protein design by inverse folding was piqued when 

an algorithm for the generation of provably optimal solutions was reported.  This method, 

based on the dead-end elimination (DEE) theorem, specifies criteria by which rotamers at 

particular positions can be definitively excluded from the global minimum energy 

configuration (GMEC) of the system.14  The availability of a rigorous framework for 

combinatorial optimization in the inverse folding model promoted confidence that protein 

design was computationally tractable.   Accordingly, many of the initial successes in 

CPD were achieved via DEE-based optimization methods.15–19   A comparison of DEE 

with stochastic optimization routines such as genetic algorithms (GA) and Monte Carlo 

with simulated annealing (MC) indicated that the inexact routines often failed to find 

GMEC solutions when applied with equivalent computational effort.20  During this time, 

DEE-based methods were improved with a number of additional elimination strategies 

and heuristics that rendered them amenable to CPD problems with more variable 

positions and more rotamers per position.21 

 Despite these advances, the poor performance scaling of DEE has caused the field 

to shift toward stochastic optimization methods such as MC22–24 and FASTER25 so that 

larger and more complex designs, such as those involving enzyme substrates and 

transition state models, could be attempted.23, 26–30  Rather than eliminate particular 

rotamers from consideration until only a single sequence remains, these stochastic 

methods sample sequence space by choosing perturbations to make to a fully instantiated 
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configuration of the system, and accepting or rejecting the perturbations based on their 

energetic consequences.  Although these methods do not produce solutions that are 

provably optimal in a global sense, they can be relied upon to find local minima quickly, 

and their running times can be extended for as long as desired in an attempt to improve 

existing solutions.   

 In Chapter 2, I describe enhancements to the FASTER optimization procedure 

that dramatically improve its ability to converge to a single lowest-energy solution.   In 

every case tested, this FASTER-based solution was either identical to the solution 

produced by DEE, or was the lowest-energy solution ever found (by any method) if DEE 

was not able to converge.  In some cases, these FASTER-derived optimal solutions could 

not be found with extremely long runs of MC, suggesting that the improved FASTER 

procedure is preferable to currently available alternatives.  Our experiences with 

FASTER strongly indicate that the combinatorial optimization problem for design by 

inverse folding is essentially solved: FASTER is able to quickly converge to low-energy 

solutions for any problem that could be meaningfully addressed with pure inverse folding 

simulations.   

 

Beyond single-state inverse folding: multi-state design 

 The inverse-folding design model has made practical the in silico screening of 

more than 10200 amino acid sequences in a single design.  However, it also presents 

significant challenges to the development of atomic scoring functions that accurately 

predict the fitness of particular sequences.  Although initial explorations of CPD 

evaluated interactions between rotamers with energy functions such as Leonard-Jones 
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and bonded-term potentials used in molecular dynamics simulations,31, 32 researchers soon 

introduced significant complications to the scoring model in an effort to make it 

applicable to a broader range of design goals.  Some of these supplementary energy 

terms, such as orientation-dependent hydrogen bonding functions and implicit solvation 

models, have clear physical justifications and are generally accepted in the wider protein 

simulation community.23, 33–36    Others, such as penalties for the exposure of nonpolar 

groups and unfolded state energies based on amino acid composition,23, 37 are seldom used 

outside the realm of CPD.  These heuristic negative design terms have been adopted 

primarily to solve problems peculiar to the comparison of different sequences by their 

molecular mechanics energies, and to overcome the rigidity of the inverse-folding design 

model.   

 Ultimately, the viability of any particular sequence depends on the degree to 

which it populates an entire ensemble of conformational states, including active/native 

states, misfolded and unfolded states, and aggregated states.  While native states can be 

understood through high-resolution structures derived from experiment, general and 

tractable atomic-resolution models of alternate conformational states have not yet been 

developed.  Implicit negative design terms like those mentioned above help the design 

procedure to assess how potential amino acid substitutions might affect the tendency of a 

sequence to assume poorly defined nonnative states.  Nevertheless, these terms are often 

insufficient to allow selection of reasonable sequences in the context of large designs.  

For example, RosettaDesign, a CPD procedure based on a highly parameterized 

forcefield with many heuristic and implicit negative design terms, cannot effectively 

produce reasonable amino acid compositions when applied to the surfaces of β-sheets.23  
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For this reason, hydrophobic amino acids had to be excluded from β-sheet surface 

positions during the design of top7, a sequence successfully designed to assume a novel 

fold.23 

 The inverse-folding paradigm can be extended to allow issues in negative design 

to be explored in a more systematic manner and offer an alternative to the heuristic terms 

discussed above.  Most notably, Harbury and coworkers have applied explicit negative 

design algorithms to directly engineer specificity into coiled-coil systems and recapitulate 

sequences that bind small-molecule ligands with high affinity.38, 39  In each case, the 

explicit modeling of alternate states, such as undesired associated and unbound states in 

the coiled-coil case, and unbound and unfolded states in the ligand-binding case, was 

crucial for the computational design of variants exhibiting the desired functional 

properties.  Computational multi-state design (MSD) procedures can also be used in a 

purely positive-design sense to find sequences able to assume several distinct 

conformations.  For example, Ambroggio and Kuhlman used MSD to design a protein 

switch that assumes completely different folds and association states in the presence 

versus the absence of zinc.40 

 Given that specificity is crucial to the proper folding, stability, solubility, and 

activity of proteins, it would seem natural for explicit multi-state modeling to be applied 

frequently to structure-based computational protein design.  Surprisingly, experience with 

MSD in the CPD community consists essentially of only those investigations just 

mentioned.  Several complications have thus far limited the general utility of MSD in 

computational protein design.   
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 The first major impediment to the application of MSD in CPD relates to how the 

various relevant states are specified.  In cases with well-characterized target and 

competing states, one can use high-resolution experimental structures to model each of 

the desired states.  For example, competition between homodimer and heterodimer coiled 

coils has been modeled by threading the relevant sequences onto identical main chain 

models from a crystal structure.39  Similarly, the unbound state in a ligand-binding system 

was modeled by removing the ligand from a crystal structure of the bound complex.38  

Two different crystal structures were used to model the two target states in the molecular 

switch design.40  In general, the astronomical range of conformations available to a 

sequence must be approximated with a much smaller, computationally tractable set 

devised to represent the entire ensemble.  Unfortunately, methods for the construction of 

general and accurate models for some important alternative states are not yet available.  

Although aggregated and unfolded states have been treated in MSD using native 

conformations in low-dielectric media and random chain ensembles, respectively,38, 39 the 

degree to which these simplified models can realistically capture the relevant properties 

of these states is unclear.  Because unfolded and aggregated ensembles are likely quite 

varied and diverse, explicit treatment of them in MSD will require accurate and efficient 

methods to generate structural models that adequately represent them, as well as powerful 

MSD optimization methods that can efficiently sample sequence space given a large 

number of states.   

 The second major problem in the general application of MSD relates to how 

sequences should be evaluated given an ensemble of structural states.  Because a single 

amino acid sequence can assume completely different conformations in each relevant 
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state, MSD methods require a two-level optimization procedure in which an outer routine 

samples amino acid sequences and an inner routine evaluates the energy of a sequence in 

the context of each state separately by rotamer optimization.  The energies that result 

from these individual rotamer optimization calculations must be combined to yield a 

single fitness score that can be used to evaluate the sequence.  No consensus has yet been 

reached on what energy combination function should be used for this purpose; in fact, 

different functions may be appropriate for different design goals.  One attractive 

approach is to assess fitness according to the probability, P, that one of the desired target 

conformations would be fulfilled.   P can be computed using basic statistical mechanics, 

given a finite set of desired target states, undesired competing states, and their energies: 

 

€ 

P = e−Ei /RT
i∈ST

∑ e−Ei /RT
i∈(ST ∪SC )
∑  (1) 

where ST is the set of target states, SC is the set of competing states, and Ei is the energy of 

state i.38, 39 

 This strategy cannot be used when competing states are not explicitly modeled, 

because the probability computed with equation 1 would always be unity in this case.  

When competing states are not considered, one possibility would be to simply average or 

sum the energies of a sequence on each state.40 This is appropriate when the design goals 

require that all specified states be satisfied, as in the design of a protein switch; however, 

biases can arise if the magnitudes of the energies in different states are significantly 

different.  One could also evaluate the fitness of a sequence by computing the free 

energy, A, of the system based on all modeled states and their energies: 

 

€ 

A = −kT log( e−Ei / kT
i
∑ )  (2) 
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This strategy is applicable when the target state ensemble consists of similar structures 

intended to approximate realistic conformational flexibility, and the incompatibility of a 

sequence with a small fraction of the available states is relatively inconsequential.  MSD 

scoring schemes like those based on equations 1 and 2 are expected to provide better 

accuracy as the number of modeled states increases.  Because each individual state relies 

on energy calculations in the context of a rigid main chain, atomic clashes in a few states 

can unrealistically effect sequence selection when the total number of modeled states is 

small.   

 The final major issue in the wider adoption of multi-state design is simply that it 

presents a more taxing optimization problem than standard single-state design (SSD). The 

greater difficulty arises because a single amino acid sequence might assume completely 

different conformations in each relevant MSD state.  This prohibits the amino-acid-

ignorant rotamer optimization strategies that accelerate convergence in single state 

design, and requires the two-level optimization procedure described above.  Because 

MSD must perform what essentially amounts to multiple small, independent design 

calculations in order to assess the fitness of a single amino acid sequence, the diversity of 

sequences that may be effectively sampled in MSD is dramatically limited relative to 

SSD.   Furthermore, whereas SSD sampling in the inverse folding model is made 

significantly more efficient by precomputing all possible pairwise energies between 

rotamers at different positions and using this energy matrix as a lookup table during 

rotamer optimization, current limitations on physical memory render simple adaptations 

of this strategy untenable for MSD problems with more than a few states.  Unfortunately, 

as discussed above, issues with the specification of representative conformational states 
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and the aggregation of state energies into a single fitness score should be better 

ameliorated when the total number of modeled states increases.  Thus, both technical and 

scientific concerns necessitate more sophisticated and powerful optimization 

methodologies for acceptable sampling performance in MSD to be achieved.  Although 

DEE-based methods have begun to be adapted to MSD problems,41 our experiences with 

SSD suggest that such methods will not provide a “silver bullet” for MSD.   

 In Chapter 3, I present an optimization framework for multi-state CPD that can 

easily handle hundreds of states, and whose running time scales linearly with the number 

of states that are treated.   Furthermore, I describe the development of an MSD-capable 

version of the FASTER optimization algorithm within this framework.  The test 

calculations I report indicate that MSD-FASTER offers significant performance 

enhancements compared to an MSD-enabled implementation of Monte Carlo with 

simulated annealing (MSD-MC), that MSD-FASTER finds low-energy sequences more 

quickly, and that, in some cases, the lowest-energy sequences found by MSD-FASTER 

cannot necessarily be found at all by MSD-MC during a sampling run of reasonable 

length.   The simulation tools developed in Chapter 3 provide a robust framework on 

which to base future investigations of ensemble design, explicit negative design, and new 

atomic-resolution models of unfolded, misfolded, and aggregated states in CPD.   

 MSD might be used to help overcome the inaccuracies inherent to the application 

of inverse folding to a single, fixed, main-chain structure.  By designing sequences to 

satisfy an ensemble of related main-chain conformations, a MSD procedure can account, 

at least partially, for both the tendency of real proteins to relax in order to accommodate 

mutations, and the contribution of conformational entropy to protein stability.    The most 
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obvious sources of input structural data for this purpose are nuclear magnetic resonance 

(NMR) experiments, for which results are widely available in the protein data bank 

(PDB), and molecular dynamics (MD) simulations starting from crystallographic 

conformations, which can be performed using a variety of accessible commercial and 

open-source software packages.   

 In Chapter 4, I describe the computational design and experimental stability 

assessment of several combinatorial libraries based on different sources of input 

structural information for the same protein. The input models include a crystal structure, 

an NMR ensemble, a constrained, minimized average NMR structure, and constrained 

and unconstrained MD ensembles.   Experimental analysis of these libraries indicates that 

the use of an MD ensemble may help to mitigate design failures that occur due to energy 

function inaccuracies and the approximations of conformational discretization, but also 

that care must be taken in constructing an ensemble to use for this purpose.   

 

Beyond pure computational protein design: library design 

 Approximations in the molecular mechanics and heuristic energy functions used 

in CPD, a lack of accurate structural models for all the relevant conformational states, 

incomplete sequence and conformational sampling, and failures to model dynamics and 

chemical transformations all contribute to render extremely challenging the direct in 

silico design of functional proteins.  Towards this goal, progress in algorithms, physical 

chemical models, and computing hardware must be coupled with the frequent and 

rigorous comparison of computational predictions with experimental reality.  

Furthermore, continuing development of CPD will not be sustained without evidence that 
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current methods can facilitate or expedite real-world protein engineering efforts.  For 

these reasons, recent investigations in the field have begun to focus on the synergistic 

coupling of CPD calculations with experimental screening and selection methods 

developed for use in directed evolution.   

The results of protein design simulations have been used to help determine 

particular residues that might be especially amenable to site-saturation mutagenesis or 

site-directed recombination,42–44 and have facilitated the creation of combinatorial 

mutation libraries.45–47  Given appropriate laboratory automation hardware, lists of CPD-

derived sequences can also be individually encoded, expressed, and assayed in high-

throughput fashion.48  Laboratory evolution procedures have also been applied to improve 

the lower levels of activity found in de novo computationally designed enzymes.28 

For the purposes of validating and improving CPD, library design methods that 

maintain a closer relationship between the sequences actually tested and the sequences 

produced by the calculations are preferred.  Thus, it might seem that simply constructing 

the top n sequences produced by a design calculation would be ideal in this case.  

However, practical considerations often prohibit this strategy.  Few academic researchers 

have the resources necessary to construct and test more than tens of individual sequences 

for a given design problem.  Furthermore, the availability of an efficient high-throughput 

screen or selection vastly increases the diversity that can be assayed far beyond what 

would be possible through gene assembly of individual sequences at any cost.  In these 

cases, a designed combinatorial gene library can provide a more appropriate match, 

because libraries with arbitrary numbers of members can be synthesized economically 

and easily, even without laboratory automation.   



 15 

Although several reported methods allow the results of CPD calculations to drive 

the design of combinatorial mutation libraries,45, 47, 49 each suffers from several drawbacks 

that limit its generality or reduce the clarity with which the libraries it produces reflect on 

the predictions of the original design calculations.  In Chapter 4, I describe the 

development and implementation of a new algorithm for the computational design of 

combinatorial mutation libraries based on arbitrary lists of scored amino acid sequences, 

such as those generated by CPD.  In contrast to any competing method suggested so far, 

this method fulfills all of the following desired qualities:  (1) it considers CPD energies 

explicitly; (2) it allows the user to directly specify the range of viable library sizes; (3) it 

allows complete control over which sets of amino acids can be considered; (4) it does not 

rely on heuristics to reduce the computational complexity of the problem by eliminating 

potentially viable libraries.   This combinatorial library design algorithm was used to 

generate the sets of sequences that we tested for each of the designs based on different 

sources of structural information as described in Chapter 4.   

 Our results indicate that this method allows CPD to extend directly to the design 

of combinatorial libraries that exhibit a high proportion of stable, well-folded members. 

In addition to validating the new library design method, our results provide a stronger 

basis on which to recommend library design than was allowed by previous reports, which 

focused on larger libraries and displayed less obvious connections between the 

contributions of the computational design and the experimental results.   
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Conclusions 

 The work described here illustrates how the development of enhanced sampling 

and optimization procedures can crucially aid the progress of method refinement and 

improvement in CPD.   The discovery of more efficient optimization procedures, 

originally intended for single-state design, prompted their application to multi-state 

design methods that allow many conformational states to be modeled simultaneously.  

The availability of these MSD methods and a general procedure for the automated design 

of combinatorial mutation libraries together allowed an investigation of the dependence 

of design results on the type and quality of input structural data.  The results of these 

experiments provide important clues about how CPD methodology improvements should 

proceed.  As CPD simulations become more realistic, we expect the development of more 

efficient sampling methods to become more central to the success of CPD, and energy 

function development to become less so.  As more aspects of protein structure and 

stability begin to be modeled explicitly, the implicit and heuristic negative design terms 

intended to account for them can be discarded.  With additional advances in 

computational power, conformational sampling methods, multi-state design sequence 

optimization algorithms, and general representations of alternate states, the set of 

theoretically defensible energy functions used in other types of protein simulation may 

one day be sufficient for the accurate computational design of protein sequences.   
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