TABLE OF CONTENTS

ABSTRACT	iv
TABLE OF CONTENTS	vi
LIST OF FIGURES	xi
LIST OF TABLES	xii

Chapter 1. Optimization Strategies for the Design of Protein

Sequences and Combinatorial Mutation Libraries

High-throughput protein engineering	2
Computational protein design by inverse folding	4
Beyond single-state inverse folding: multi-state design	6
Beyond pure computational protein design: library design	13
Conclusions	15
References	17

Chapter 2. Dramatic Performance Enhancements for the FASTER

Optimization Algorithm

Abstract	22
Introduction	
Improvements to FASTER	
Original FASTER	24
Improvement to starting configurations	25

26
27
29
35
36

Chapter 3. An Efficient Algorithm for Multi-State Protein

Design Based on FASTER			
Abstract			
Introduction	40		
Results and discussion	42		
Scoring functions	42		
Multi-state Monte Carlo	45		
Multi-state FASTER	48		
Multi-state iBR	48		
Multi-state sPR	49		
Rotamer optimization (RO) algorithms	54		
Test cases for multi-state design	56		
Single-state design problems	56		
SSD test cases: MSD-FASTER	57		
SSD test cases: MSD-MC	61		
Multi-state design of protein G	64		
Negative design of calmodulin	68		
Conclusions			

Materials and methods	
Design parameters: single-state design test cases	73
Design parameters: 1GB1	74
Design parameters: CaM	75
References	

Chapter 4.	Development and Validation of Methods for Multi-Stat	е
	Design and Combinatorial Library Design	
	Abstract	81
	Introduction	83
	Results and discussion	89
	Designed libraries	89
	Experimental characterization of designed libraries	94
	Origin of destabilizing mutations	101
	Influence of the designed library selection method	103
	The nature of approximation in computational	
	protein design	105
	Conclusions	109
	Materials and methods	112
	Input structural data	112
	Sequence design specifications and energy functions	112
	Sequence optimization	113
	Combinatorial library design	114
	Library construction, expression, and purification	115

Microtiter plate-based stability determination	116
Supplementary information	117
Combinatorial library design	117
Microtiter plate-based stability assay controls	123
References	127

Chapter 5.The Importance of Combinatorial Optimization in the
Improvement of Models for Computational Protein DesignOptimization in computational protein design133Characteristics of CPD as a tool for protein engineering136

Appendix I.Combinatorial Methods for Small Molecule Placement in
Computational Enzyme Design

Abstract	142
Introduction	
Results and discussion	
General calculation procedure	146
Rotation-translation search	149
Targeted ligand placement	155
Sequence design	159
Conclusions	
Methods	
Structures and charges	161
Side-chain rotamer libraries	162

	Calculation parameters	165
	Energy functions and optimization	166
References		167

LIST OF FIGURES

CHAPTER 3.

1	Graphical depictions of the three MSD sequence	47
	selection routines described in the text	
2	Subroutines used by the MSD sequence selection algorithms	53

CHAPTER 4.

1	The core residues of G β 1 designed in this study	91
2	The general scheme used to design combinatorial mutation	92
	libraries based on computational protein design calculations	
3	Fraction-unfolded curves derived from the stability determination	96
	of library xtal-1	
4	Fraction-unfolded curves derived from the stability determination	97
	of library NMR-1	
5	Fraction-unfolded curves derived from the stability determination	98
	of library NMR-60	
6	Fraction-unfolded curves derived from the stability determination	99
	of library cMD-128	
7	Each library partitioned into three stability groups	100
8	Correlation between simulation energy and experimental stability	108
	for the cMD-128 library	
9	Detail of the library design method	122

10	Denaturation gradient and elution buffer fluorescence profiles	124
11	Fraction-unfolded profiles between different modes of detection	125
12	Fraction-unfolded profiles between different protein preparations	126

APPENDIX I.

1	Contact geometries specified in small molecule pruning step	147
2	Sample results from test calculations presented in Table 1	150
3	Effect of rotational and translational step sizes	152
4	Targeted placement procedure	155
5	The three clustering moves	163

LIST OF TABLES

CHAPTER 2.

1	Test calculations illustrating performance enhancements for FASTER	30
2	Comparison of the improved FASTER to Monte Carlo	34

CHAPTER 3.

1	Performance of MSD-FASTER when applied to four difficult single-state	60
	design problems	

- 2 The performance of MSD-MC when applied to four difficult single-state 63 design problems
- 3 Multi-state design of 1GB1, a 60-member NMR ensemble of protein G 67
- 4 Explicit negative design to increase the binding specificity of calmodulin 71

CHAPTER 4.

1 Combinatorial libraries designed from different sources of structural 93 information

APPENDIX I.

- 1RMSD and number of wild-type contacts as a function of rotational151step size and rotamer library
- 2 RMSD and number of wild-type contacts as a function of rotational and 154 translational step sizes
- 3 Results from targeted placement procedure as a function of 158 rotamer library