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Abstract 

 To facilitate the design of protein sequences with desired properties, simulation 

techniques have been developed to allow large portions of amino acid sequence space to 

be evaluated by computer. These computational protein design methods apply 

optimization algorithms to sort through the enormity of sequence space and find desirable 

variants.  

  Simple modifications to the stochastic optimization algorithm FASTER enhanced 

its performance by two orders of magnitude without loss of accuracy, and rendered it 

more efficient than its major competitor by a factor of 10.  These improvements allowed 

higher-quality amino acid solutions to be found more quickly, and accelerated the pace at 

which users could perform cycles of design and model adjustment.   

This success prompted research into techniques for a protein design formulation 

that allows simulation in the context of multiple states simultaneously.  This multi-state 

design can be used to wield explicit control over structural, binding, or catalytic 

specificity, and changes the scope of design goals that can be addressed by computation. 

Evaluation of multi-state FASTER indicated that it performed radically better than its 

major competitor in a variety of design contexts, and that in most cases it found solutions 

better than those that could ever be found using a lesser method.   

Multi-state optimization using FASTER was applied to test the influence of 

various types of input structural data on the design of a small protein.  To facilitate this 

evaluation, methods for the design and high-throughput stability screening of 

combinatorial libraries were developed.  Screening of libraries based on single structures 

and structural ensembles indicated the success of multi-state modeling.  Our results also 
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suggested that the exhaustive screening of designed libraries can help to elucidate the 

origins of design model failures.  Finally, they showed that success of a design procedure 

does not hinge on its ability to correlate experimental and simulated measures of fitness, 

and prompted greater consideration of design methods that target explicitly 

conformational specificity.   
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High-throughput protein engineering 

 Proteins are linear heteropolymers, built from 20 standard amino acid monomers.  

Synthesized inside cells, they perform a vast majority of the structural, catalytic, sensory, 

and regulatory functions that characterize living systems as we understand them today.  

These myriad roles are made possible by the ability of proteins to self-assemble into well-

defined structures specified by their amino acid sequences.  Although only a small 

fraction of all possible protein sequences can assume a folded, functional form,1, 2 the 

modular nature of the protein platform allows existing functions to be altered and 

enhanced for new or fluctuating requirements by selection for fitness from a 

heterogeneous population.  The requisite diversity develops though copying errors and 

recombination of nucleic acid sequences that encode the proteins expressed by members 

of the population.   This process is slow and relies on serendipity to discover beneficial 

variants.  Nevertheless, it represents the only plausible description of how the complexity 

of life we see today could have ultimately arisen from simpler chemical systems.   

 Before sufficiently powerful tools for genetic manipulation were even available, it 

was postulated that existing biological systems for protein fabrication could be harnessed 

to produce nano-scale molecular machines with designed functions.3  Major successes 

along these lines have been achieved via directed evolution, in which screening or in vivo 

selection is applied to isolate active variants from populations of 100 to 1015 members.  

Molecular diversity for directed evolution can be produced, in vitro or in vivo, using 

methods including error-prone DNA polymerization, recombination, gene shuffling, 

combinatorial libraries made using synthetic oligonucleotides, host organism mutator 

strains, and the humoral immune system.4, 5 Active variants can then be isolated from 
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these pools with techniques such as screening with various levels of automation, selection 

for survival in auxotrophic strains, and affinity-based or cytometric separation of 

individual proteins linked to or compartmentalized with the nucleic acids that encode 

them.4, 5   Notable protein engineering feats facilitated by directed evolution include 

enhancement of the substrate specificity, thermostability, selectivity, and solvent 

tolerance of enzymes,6–9 as well as the engineering of metabolic pathsteelyways.10 

 Despite the potential of laboratory evolution to cull through vast numbers of 

sequences, experimental concerns, such a lack of appropriate high-throughput assays, 

selection systems, or instrumentation, can dramatically limit the diversity that may 

practically be addressed.  Furthermore, the largest libraries that could conceivably be 

approached by experimental methods are miniscule compared to the total possible 

diversity of even modestly sized proteins.  The inherent limitations of experimental 

protein engineering methods, and the hope that sequence design might eventually be 

completely automated, have motivated the development of computational tools for the 

virtual screening of astronomical pools of diversity.  In some cases, the use of 

computational protein design (CPD) methods has allowed stable, well-folded, and 

functional proteins variants with many mutations away from their wild-type counterparts 

to be designed directly in silico and experimentally validated.  In most situations, 

however, the successful design of proteins using CPD alone has been inconsistent.   

 This thesis describes the conception, implementation, and testing of optimization 

methods meant to improve the frequency with which useful and interesting sequences can 

be predicted by computational techniques.  The initial goal was to facilitate the discovery 

of sequences of minimum energy given a standard model of computational protein 
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design.  Such sequences are desirable to the extent that the design model is accurate, and 

are expected to help suggest possible improvements when it is not.  However, the 

enhanced optimization methods also proved to be directly applicable to more 

sophisticated design models that treat multiple conformational states simultaneously.   In 

order to better assess the utility of these more realistic methods, a method was developed 

to allow the design of combinatorial mutation libraries to be driven by the results of 

computational protein design calculations in a model-independent manner.  The 

synergistic application of the methods described here enabled the first experimental test 

of computational design based on large structural ensembles.   

 

Computational protein design by inverse folding 

 CPD was first conceived as the inverse of the protein-folding problem, since its 

most basic goal is to generate amino acid sequences that preferentially adopt a specific 

three-dimensional structure.11  At its core, the inverse-folding design model consists of a 

search for optimal amino acid side chains at one or more positions in a fixed structural 

model of the protein main chain.  Various amino acid types are modeled at each designed 

position, and potential mutations are evaluated based on their pairwise interaction 

energies. The continuous flexibility available to each amino acid side chain is 

approximated using a discrete set of low-energy conformations called rotamers.12, 13  The 

goal is thus to find an optimal choice of rotamer, of any allowed amino acid type, at each 

designed position.  A configuration of the virtual protein system described by the inverse 

folding model corresponds to a set of atomic coordinates for some particular amino acid 

sequence.   To the extent that the approximations inherent in the scoring functions and 
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design model are appropriate, amino acid sequences specified by low-energy 

configurations of the system are expected to stabilize the required fold and thereby 

facilitate the desired activity.   

 Enthusiasm for computational protein design by inverse folding was piqued when 

an algorithm for the generation of provably optimal solutions was reported.  This method, 

based on the dead-end elimination (DEE) theorem, specifies criteria by which rotamers at 

particular positions can be definitively excluded from the global minimum energy 

configuration (GMEC) of the system.14  The availability of a rigorous framework for 

combinatorial optimization in the inverse folding model promoted confidence that protein 

design was computationally tractable.   Accordingly, many of the initial successes in 

CPD were achieved via DEE-based optimization methods.15–19   A comparison of DEE 

with stochastic optimization routines such as genetic algorithms (GA) and Monte Carlo 

with simulated annealing (MC) indicated that the inexact routines often failed to find 

GMEC solutions when applied with equivalent computational effort.20  During this time, 

DEE-based methods were improved with a number of additional elimination strategies 

and heuristics that rendered them amenable to CPD problems with more variable 

positions and more rotamers per position.21 

 Despite these advances, the poor performance scaling of DEE has caused the field 

to shift toward stochastic optimization methods such as MC22–24 and FASTER25 so that 

larger and more complex designs, such as those involving enzyme substrates and 

transition state models, could be attempted.23, 26–30  Rather than eliminate particular 

rotamers from consideration until only a single sequence remains, these stochastic 

methods sample sequence space by choosing perturbations to make to a fully instantiated 
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configuration of the system, and accepting or rejecting the perturbations based on their 

energetic consequences.  Although these methods do not produce solutions that are 

provably optimal in a global sense, they can be relied upon to find local minima quickly, 

and their running times can be extended for as long as desired in an attempt to improve 

existing solutions.   

 In Chapter 2, I describe enhancements to the FASTER optimization procedure 

that dramatically improve its ability to converge to a single lowest-energy solution.   In 

every case tested, this FASTER-based solution was either identical to the solution 

produced by DEE, or was the lowest-energy solution ever found (by any method) if DEE 

was not able to converge.  In some cases, these FASTER-derived optimal solutions could 

not be found with extremely long runs of MC, suggesting that the improved FASTER 

procedure is preferable to currently available alternatives.  Our experiences with 

FASTER strongly indicate that the combinatorial optimization problem for design by 

inverse folding is essentially solved: FASTER is able to quickly converge to low-energy 

solutions for any problem that could be meaningfully addressed with pure inverse folding 

simulations.   

 

Beyond single-state inverse folding: multi-state design 

 The inverse-folding design model has made practical the in silico screening of 

more than 10200 amino acid sequences in a single design.  However, it also presents 

significant challenges to the development of atomic scoring functions that accurately 

predict the fitness of particular sequences.  Although initial explorations of CPD 

evaluated interactions between rotamers with energy functions such as Leonard-Jones 
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and bonded-term potentials used in molecular dynamics simulations,31, 32 researchers soon 

introduced significant complications to the scoring model in an effort to make it 

applicable to a broader range of design goals.  Some of these supplementary energy 

terms, such as orientation-dependent hydrogen bonding functions and implicit solvation 

models, have clear physical justifications and are generally accepted in the wider protein 

simulation community.23, 33–36    Others, such as penalties for the exposure of nonpolar 

groups and unfolded state energies based on amino acid composition,23, 37 are seldom used 

outside the realm of CPD.  These heuristic negative design terms have been adopted 

primarily to solve problems peculiar to the comparison of different sequences by their 

molecular mechanics energies, and to overcome the rigidity of the inverse-folding design 

model.   

 Ultimately, the viability of any particular sequence depends on the degree to 

which it populates an entire ensemble of conformational states, including active/native 

states, misfolded and unfolded states, and aggregated states.  While native states can be 

understood through high-resolution structures derived from experiment, general and 

tractable atomic-resolution models of alternate conformational states have not yet been 

developed.  Implicit negative design terms like those mentioned above help the design 

procedure to assess how potential amino acid substitutions might affect the tendency of a 

sequence to assume poorly defined nonnative states.  Nevertheless, these terms are often 

insufficient to allow selection of reasonable sequences in the context of large designs.  

For example, RosettaDesign, a CPD procedure based on a highly parameterized 

forcefield with many heuristic and implicit negative design terms, cannot effectively 

produce reasonable amino acid compositions when applied to the surfaces of β-sheets.23  
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For this reason, hydrophobic amino acids had to be excluded from β-sheet surface 

positions during the design of top7, a sequence successfully designed to assume a novel 

fold.23 

 The inverse-folding paradigm can be extended to allow issues in negative design 

to be explored in a more systematic manner and offer an alternative to the heuristic terms 

discussed above.  Most notably, Harbury and coworkers have applied explicit negative 

design algorithms to directly engineer specificity into coiled-coil systems and recapitulate 

sequences that bind small-molecule ligands with high affinity.38, 39  In each case, the 

explicit modeling of alternate states, such as undesired associated and unbound states in 

the coiled-coil case, and unbound and unfolded states in the ligand-binding case, was 

crucial for the computational design of variants exhibiting the desired functional 

properties.  Computational multi-state design (MSD) procedures can also be used in a 

purely positive-design sense to find sequences able to assume several distinct 

conformations.  For example, Ambroggio and Kuhlman used MSD to design a protein 

switch that assumes completely different folds and association states in the presence 

versus the absence of zinc.40 

 Given that specificity is crucial to the proper folding, stability, solubility, and 

activity of proteins, it would seem natural for explicit multi-state modeling to be applied 

frequently to structure-based computational protein design.  Surprisingly, experience with 

MSD in the CPD community consists essentially of only those investigations just 

mentioned.  Several complications have thus far limited the general utility of MSD in 

computational protein design.   
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 The first major impediment to the application of MSD in CPD relates to how the 

various relevant states are specified.  In cases with well-characterized target and 

competing states, one can use high-resolution experimental structures to model each of 

the desired states.  For example, competition between homodimer and heterodimer coiled 

coils has been modeled by threading the relevant sequences onto identical main chain 

models from a crystal structure.39  Similarly, the unbound state in a ligand-binding system 

was modeled by removing the ligand from a crystal structure of the bound complex.38  

Two different crystal structures were used to model the two target states in the molecular 

switch design.40  In general, the astronomical range of conformations available to a 

sequence must be approximated with a much smaller, computationally tractable set 

devised to represent the entire ensemble.  Unfortunately, methods for the construction of 

general and accurate models for some important alternative states are not yet available.  

Although aggregated and unfolded states have been treated in MSD using native 

conformations in low-dielectric media and random chain ensembles, respectively,38, 39 the 

degree to which these simplified models can realistically capture the relevant properties 

of these states is unclear.  Because unfolded and aggregated ensembles are likely quite 

varied and diverse, explicit treatment of them in MSD will require accurate and efficient 

methods to generate structural models that adequately represent them, as well as powerful 

MSD optimization methods that can efficiently sample sequence space given a large 

number of states.   

 The second major problem in the general application of MSD relates to how 

sequences should be evaluated given an ensemble of structural states.  Because a single 

amino acid sequence can assume completely different conformations in each relevant 
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state, MSD methods require a two-level optimization procedure in which an outer routine 

samples amino acid sequences and an inner routine evaluates the energy of a sequence in 

the context of each state separately by rotamer optimization.  The energies that result 

from these individual rotamer optimization calculations must be combined to yield a 

single fitness score that can be used to evaluate the sequence.  No consensus has yet been 

reached on what energy combination function should be used for this purpose; in fact, 

different functions may be appropriate for different design goals.  One attractive 

approach is to assess fitness according to the probability, P, that one of the desired target 

conformations would be fulfilled.   P can be computed using basic statistical mechanics, 

given a finite set of desired target states, undesired competing states, and their energies: 

 

€ 

P = e−Ei /RT
i∈ST

∑ e−Ei /RT
i∈(ST ∪SC )
∑  (1) 

where ST is the set of target states, SC is the set of competing states, and Ei is the energy of 

state i.38, 39 

 This strategy cannot be used when competing states are not explicitly modeled, 

because the probability computed with equation 1 would always be unity in this case.  

When competing states are not considered, one possibility would be to simply average or 

sum the energies of a sequence on each state.40 This is appropriate when the design goals 

require that all specified states be satisfied, as in the design of a protein switch; however, 

biases can arise if the magnitudes of the energies in different states are significantly 

different.  One could also evaluate the fitness of a sequence by computing the free 

energy, A, of the system based on all modeled states and their energies: 

 

€ 

A = −kT log( e−Ei / kT
i
∑ )  (2) 
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This strategy is applicable when the target state ensemble consists of similar structures 

intended to approximate realistic conformational flexibility, and the incompatibility of a 

sequence with a small fraction of the available states is relatively inconsequential.  MSD 

scoring schemes like those based on equations 1 and 2 are expected to provide better 

accuracy as the number of modeled states increases.  Because each individual state relies 

on energy calculations in the context of a rigid main chain, atomic clashes in a few states 

can unrealistically effect sequence selection when the total number of modeled states is 

small.   

 The final major issue in the wider adoption of multi-state design is simply that it 

presents a more taxing optimization problem than standard single-state design (SSD). The 

greater difficulty arises because a single amino acid sequence might assume completely 

different conformations in each relevant MSD state.  This prohibits the amino-acid-

ignorant rotamer optimization strategies that accelerate convergence in single state 

design, and requires the two-level optimization procedure described above.  Because 

MSD must perform what essentially amounts to multiple small, independent design 

calculations in order to assess the fitness of a single amino acid sequence, the diversity of 

sequences that may be effectively sampled in MSD is dramatically limited relative to 

SSD.   Furthermore, whereas SSD sampling in the inverse folding model is made 

significantly more efficient by precomputing all possible pairwise energies between 

rotamers at different positions and using this energy matrix as a lookup table during 

rotamer optimization, current limitations on physical memory render simple adaptations 

of this strategy untenable for MSD problems with more than a few states.  Unfortunately, 

as discussed above, issues with the specification of representative conformational states 
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and the aggregation of state energies into a single fitness score should be better 

ameliorated when the total number of modeled states increases.  Thus, both technical and 

scientific concerns necessitate more sophisticated and powerful optimization 

methodologies for acceptable sampling performance in MSD to be achieved.  Although 

DEE-based methods have begun to be adapted to MSD problems,41 our experiences with 

SSD suggest that such methods will not provide a “silver bullet” for MSD.   

 In Chapter 3, I present an optimization framework for multi-state CPD that can 

easily handle hundreds of states, and whose running time scales linearly with the number 

of states that are treated.   Furthermore, I describe the development of an MSD-capable 

version of the FASTER optimization algorithm within this framework.  The test 

calculations I report indicate that MSD-FASTER offers significant performance 

enhancements compared to an MSD-enabled implementation of Monte Carlo with 

simulated annealing (MSD-MC), that MSD-FASTER finds low-energy sequences more 

quickly, and that, in some cases, the lowest-energy sequences found by MSD-FASTER 

cannot necessarily be found at all by MSD-MC during a sampling run of reasonable 

length.   The simulation tools developed in Chapter 3 provide a robust framework on 

which to base future investigations of ensemble design, explicit negative design, and new 

atomic-resolution models of unfolded, misfolded, and aggregated states in CPD.   

 MSD might be used to help overcome the inaccuracies inherent to the application 

of inverse folding to a single, fixed, main-chain structure.  By designing sequences to 

satisfy an ensemble of related main-chain conformations, a MSD procedure can account, 

at least partially, for both the tendency of real proteins to relax in order to accommodate 

mutations, and the contribution of conformational entropy to protein stability.    The most 
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obvious sources of input structural data for this purpose are nuclear magnetic resonance 

(NMR) experiments, for which results are widely available in the protein data bank 

(PDB), and molecular dynamics (MD) simulations starting from crystallographic 

conformations, which can be performed using a variety of accessible commercial and 

open-source software packages.   

 In Chapter 4, I describe the computational design and experimental stability 

assessment of several combinatorial libraries based on different sources of input 

structural information for the same protein. The input models include a crystal structure, 

an NMR ensemble, a constrained, minimized average NMR structure, and constrained 

and unconstrained MD ensembles.   Experimental analysis of these libraries indicates that 

the use of an MD ensemble may help to mitigate design failures that occur due to energy 

function inaccuracies and the approximations of conformational discretization, but also 

that care must be taken in constructing an ensemble to use for this purpose.   

 

Beyond pure computational protein design: library design 

 Approximations in the molecular mechanics and heuristic energy functions used 

in CPD, a lack of accurate structural models for all the relevant conformational states, 

incomplete sequence and conformational sampling, and failures to model dynamics and 

chemical transformations all contribute to render extremely challenging the direct in 

silico design of functional proteins.  Towards this goal, progress in algorithms, physical 

chemical models, and computing hardware must be coupled with the frequent and 

rigorous comparison of computational predictions with experimental reality.  

Furthermore, continuing development of CPD will not be sustained without evidence that 
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current methods can facilitate or expedite real-world protein engineering efforts.  For 

these reasons, recent investigations in the field have begun to focus on the synergistic 

coupling of CPD calculations with experimental screening and selection methods 

developed for use in directed evolution.   

The results of protein design simulations have been used to help determine 

particular residues that might be especially amenable to site-saturation mutagenesis or 

site-directed recombination,42–44 and have facilitated the creation of combinatorial 

mutation libraries.45–47  Given appropriate laboratory automation hardware, lists of CPD-

derived sequences can also be individually encoded, expressed, and assayed in high-

throughput fashion.48  Laboratory evolution procedures have also been applied to improve 

the lower levels of activity found in de novo computationally designed enzymes.28 

For the purposes of validating and improving CPD, library design methods that 

maintain a closer relationship between the sequences actually tested and the sequences 

produced by the calculations are preferred.  Thus, it might seem that simply constructing 

the top n sequences produced by a design calculation would be ideal in this case.  

However, practical considerations often prohibit this strategy.  Few academic researchers 

have the resources necessary to construct and test more than tens of individual sequences 

for a given design problem.  Furthermore, the availability of an efficient high-throughput 

screen or selection vastly increases the diversity that can be assayed far beyond what 

would be possible through gene assembly of individual sequences at any cost.  In these 

cases, a designed combinatorial gene library can provide a more appropriate match, 

because libraries with arbitrary numbers of members can be synthesized economically 

and easily, even without laboratory automation.   
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Although several reported methods allow the results of CPD calculations to drive 

the design of combinatorial mutation libraries,45, 47, 49 each suffers from several drawbacks 

that limit its generality or reduce the clarity with which the libraries it produces reflect on 

the predictions of the original design calculations.  In Chapter 4, I describe the 

development and implementation of a new algorithm for the computational design of 

combinatorial mutation libraries based on arbitrary lists of scored amino acid sequences, 

such as those generated by CPD.  In contrast to any competing method suggested so far, 

this method fulfills all of the following desired qualities:  (1) it considers CPD energies 

explicitly; (2) it allows the user to directly specify the range of viable library sizes; (3) it 

allows complete control over which sets of amino acids can be considered; (4) it does not 

rely on heuristics to reduce the computational complexity of the problem by eliminating 

potentially viable libraries.   This combinatorial library design algorithm was used to 

generate the sets of sequences that we tested for each of the designs based on different 

sources of structural information as described in Chapter 4.   

 Our results indicate that this method allows CPD to extend directly to the design 

of combinatorial libraries that exhibit a high proportion of stable, well-folded members. 

In addition to validating the new library design method, our results provide a stronger 

basis on which to recommend library design than was allowed by previous reports, which 

focused on larger libraries and displayed less obvious connections between the 

contributions of the computational design and the experimental results.   
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Conclusions 

 The work described here illustrates how the development of enhanced sampling 

and optimization procedures can crucially aid the progress of method refinement and 

improvement in CPD.   The discovery of more efficient optimization procedures, 

originally intended for single-state design, prompted their application to multi-state 

design methods that allow many conformational states to be modeled simultaneously.  

The availability of these MSD methods and a general procedure for the automated design 

of combinatorial mutation libraries together allowed an investigation of the dependence 

of design results on the type and quality of input structural data.  The results of these 

experiments provide important clues about how CPD methodology improvements should 

proceed.  As CPD simulations become more realistic, we expect the development of more 

efficient sampling methods to become more central to the success of CPD, and energy 

function development to become less so.  As more aspects of protein structure and 

stability begin to be modeled explicitly, the implicit and heuristic negative design terms 

intended to account for them can be discarded.  With additional advances in 

computational power, conformational sampling methods, multi-state design sequence 

optimization algorithms, and general representations of alternate states, the set of 

theoretically defensible energy functions used in other types of protein simulation may 

one day be sufficient for the accurate computational design of protein sequences.   
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Abstract 

 FASTER is a combinatorial optimization algorithm useful for finding low-energy 

side-chain configurations in side-chain placement and protein design calculations.  We 

present two simple enhancements to FASTER that together improve the computational 

efficiency of these calculations by as much as two orders of magnitude with no loss of 

accuracy.  Our results highlight the importance of choosing appropriate initial 

configurations, and show that efficiency can be improved by stringently limiting the 

number of positions that are allowed to relax in response to a perturbation. The changes 

we describe improve the quality of solutions found for large-scale designs and allow 

them to be found in hours rather than days.  The improved FASTER algorithm finds low-

energy solutions more efficiently than common optimization schemes based on the dead-

end elimination theorem and Monte Carlo.  These advances have prompted investigations 

into new methods for force field parameterization and multiple state design. 
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Introduction 

Computer programs for protein design and structure prediction typically include a 

module used to optimize side-chain coordinates in the context of fixed backbone 

coordinates.   To perform this type of calculation, side-chain conformations (rotamers) of 

one or more amino acid types are oriented onto each residue position, and all possible 

pairwise rotamer-backbone and rotamer-rotamer interaction energies are calculated using 

a molecular mechanics force field.  This system of interactions is then optimized to find a 

rotamer configuration of low molecular mechanics energy.   The difficulty of finding the 

lowest-energy configuration increases dramatically with the number of positions 

designed and the number of rotamers allowed at each position.1  Useful optimization 

strategies include Monte Carlo with simulated annealing (MC),1–4 methods based on dead-

end elimination (DEE),5, 6 methods based on self-consistent mean field theory,1, 7 genetic 

algorithms,1, 8, 9 and the FASTER method.10  The DEE-based methods have proven 

especially useful because they ensure that the global minimum energy configuration 

(GMEC) is identified when they converge.5 This feature allows researchers to conclude 

with certainty that any deviations between simulation and experiment are due to problems 

with the energy functions or simulation model, and are not the result of incomplete 

optimization.   However, current DEE-based algorithms often fail to converge to a single 

solution when challenged with difficult optimization problems.6  For this reason, we have 

begun to favor the FASTER algorithm described by Desmet, Spriet, and Lasters10 for 

difficult designs.  

Like Monte Carlo, FASTER is a stochastic optimization algorithm that makes 

perturbations to intermediate solutions and keeps the improvements that it finds.  
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However, FASTER discovers low-energy solutions far more efficiently, and frequently 

finds the GMEC as determined by DEE-based algorithms.   In cases for which DEE does 

not converge, it cannot be determined whether or not the solution produced by FASTER 

is optimal.  We typically treat these cases by running many FASTER trajectories in 

parallel with different random number seeds until the lowest-energy solution has been 

found multiple times.  At this point the solution is considered satisfactory; we refer to 

such a solution as a FASTER-determined minimum energy configuration (FMEC).  This 

procedure can be time-consuming for problems with many positions and many rotamers 

at each position.  In this paper we present two simple modifications to the published 

FASTER algorithm that improve the efficiency with which it finds FMEC solutions by as 

much as two orders of magnitude.   In our laboratory, this improvement has reduced the 

turnaround time for very large designs from days to hours, and has allowed us to begin 

developing new methods for force field parameterization and multiple state design.    

 

Improvements to FASTER 

Original FASTER 

As originally described,10 a FASTER optimization trajectory is computed by 

executing the following five steps in order: backbone-derived minimum energy 

configuration (BMEC), iterative batch relaxation (iBR), conditional iBR (ciBR), single 

perturbation and relaxation (sPR), and double perturbation and relaxation (dPR).  The 

output rotamer configuration of each step is used as input for the next, as follows.  

BMEC: Generate a starting rotamer configuration by choosing the rotamer at each 

position with the most favorable interactions with the backbone; rotamer-rotamer 
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interactions are ignored.  iBR: At each position, find the best rotamer in the context of the 

input configuration at all other positions.  Simultaneously update the rotamers at every 

position after all positions have been considered.  Repeat until convergence or cyclic 

behavior is detected.  ciBR:   Proceed as in iBR, but randomly accept the new rotamer 

found at each position with 0.8 probability. sPR:  One position at a time, perturb the 

structure by fixing a rotamer at that position, and allow all other positions to relax as in 

one round of iBR.  The resulting configuration is accepted only if it has the lowest energy 

found so far.  Pick positions for perturbation in random order.  Repeat until convergence.  

dPR: Proceed as in sPR, but perturb pairs of rotamers at different positions together.   

 

Improvement to starting configurations 

 Regarding the choice of initial rotamer configuration to use as input to FASTER, 

Desmet et al. noted that the positions of many side-chains can be accurately placed on the 

protein backbone without considering interactions with other side-chains.10   Although 

they showed that this BMEC can serve as an adequate input to FASTER for side-chain 

placement calculations, our results indicate that the BMEC is suboptimal when FASTER 

is applied to more difficult protein design problems.  Because rotamer-rotamer 

interactions are ignored, the BMEC is usually a poor solution in terms of amino acid 

sequence and energy compared to the optimized solutions found by FASTER and other 

algorithms.   Furthermore, the optimization scheme we employ involves computing many 

separate FASTER trajectories with different random number seeds; because neither the 

BMEC nor iBR are stochastic, all trajectories are identical until the ciBR step.  We 

hypothesized that FASTER would be able to find the FMEC more effectively if a pool of 
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partially optimized solutions were generated and initial configurations drawn from that 

pool. Therefore, we replace the BMEC step at the beginning of each trajectory with a 

short Monte Carlo run starting from a random configuration.  This procedure gives 

diverse starting solutions with energies significantly better than the BMEC at negligible 

computational cost.   

 

Improvement to sPR via selective relaxation 

As described above, a step of sPR or dPR involves perturbation of the rotamer 

configuration at one or two positions, followed by relaxation of all the remaining 

positions in response to the perturbation.  In general, however, only a subset of the other 

positions actually interact significantly with a perturbed position.    Thus, the time spent 

selecting a new rotamer at each of the potentially numerous uncoupled or weakly coupled 

positions is essentially wasted.  This problem can be addressed by limiting the set of 

positions that are relaxed after every perturbation to those that interact most strongly with 

the perturbed position.  The interaction between a perturbed position and a potential 

relaxing position may be assessed according to the absolute value of the pairwise 

interaction energy between the positions before the perturbation.  Before a position is 

perturbed, all the other positions are sorted into a list based on their interactions with the 

position to be perturbed. The positions to be relaxed are then chosen either by using a 

number cutoff (the n most strongly interacting positions), or an energy cutoff.  The 

optimal value for an energy cutoff depends on the magnitudes of the energies produced 

by the force field, whereas a number cutoff does not.  Therefore, we report calculations 
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performed with number cutoffs, so that our results might be more useful to researchers 

using different energy functions.   

 

Methods 

The performance of FASTER was tested on four full sequence designs using each 

method for generating initial configurations (BMEC and MC), and with the number of 

relaxing positions limited to various values of n.  We calculated designs for a 28-residue 

DNA-binding domain of mouse zinc finger Zif268 (PDB code 1AAY, residues 133–

160),11  the 34-residue WW domain from human rotamase Pin1 (1PIN, residues 6–39),12 

the 56-residue B1 domain of streptococcal protein  G (1PGA),13 and the 66-residue cold-

shock protein Bc-Csp from Bacillus caldolyticus (1C9O, chain A).14  These small, stable, 

monomeric domains have been the targets of several protein design and stability 

studies.15–18 

For each of the four designs, all nonprotein atoms and residues outside the ranges 

given above were removed; hydrogens were added using REDUCE.19  All positions were 

designated core, boundary, or surface as described previously.15  The amino acids Ala, 

Val, Leu, Ile, Met, Phe, Tyr, and Trp were allowed at core positions; Ala, Ser, Thr, Asp, 

Asn, His, Glu, Gln, Lys, and Arg were allowed at surface positions; amino acids from the 

combination of both sets were allowed at boundary positions. All positions were designed 

except those with proline or glycine in the wild-type sequence.   We used the Dunbrack 

backbone-dependent rotamer library20 with expansions of +/- one standard deviation 

around χ1 and χ2  for aromatic amino acids and around χ1 for hydrophobic amino acids.  

The average number of rotamers per position over all four designs was 212.  Pairwise 
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energies were computed using energy functions as previously described,6, 21except the 

polar hydrogen burial term was omitted.   The design choices reported here reflect the 

procedures typically used in our laboratory for full-sequence designs.    

Optimizations with FASTER were performed as follows.  First, rotamers with 

rotamer-backbone interaction energies greater than 20 kcal/mol or pairs with pairwise 

interaction energies greater than 50 kcal/mol were eliminated from consideration.6, 22  

Then, simple Goldstein DEE singles elimination was applied until no further rotamers 

could be eliminated.6, 23  The input configuration for each trajectory was either the BMEC 

or the result of a short MC run.  The MC was performed by starting with a random 

configuration and optimizing for 1 cycle of 1x106 steps using a linear temperature 

gradient from 4500 K to 150 K, followed by quenching1 of the best-energy sequence that 

was found.  iBR was applied to the input configuration until convergence, followed by 20 

cycles of ciBR.  Finally, sPR was run with a user-defined value of n until convergence.  

dPR was deemed too computationally expensive to use on all trajectories, and was only 

applied to the 10 best solutions from each calculation in order to assess whether the 

FMEC was optimal.   

For comparison with FASTER, we also optimized the designs using Monte Carlo.  

The Monte Carlo optimization was performed according to the procedure described 

above for FASTER, except that the iBR, ciBR, and sPR passes were skipped, the number 

of Monte Carlo steps was increased to 2x107, and the low temperature decreased to 0 K.  

For each design, we computed the same number of trajectories using this Monte Carlo 

procedure as we had when using FASTER.  We also attempted to optimize the designs 
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using our DEE-based hybrid exact rotamer optimization algorithm (HERO), according to 

the published procedure.6  

 

Results and discussion 

The four designs described above were each optimized using 10 different combinations 

of parameters. We tested values of n (the number of positions to relax) from the set (5, 

10, 15, 20, N), where N is the total number of positions in the protein.  For each n tested, 

we tried FASTER starting from the BMEC solution, and also starting from solutions 

generated by MC.  Starting from the BMEC and setting n = N corresponds to FASTER as 

originally reported by Desmet et al.10  For each of the four designs, and for each of the 10 

parameter combinations tested, we computed 2000 separate FASTER trajectories (8000 

for 1AAY).  The results of these calculations are presented in Table 1.  

Whereas a typical FASTER run might comprise 100 trajectories, here we 

examined at least 2000 in each case to more accurately assess how easily the FMEC 

could be found.  In particular, we note that when using the original FASTER procedure 

(BMEC and n = N) for 1AAY, as few as 0.01% of the trajectories actually found the 

FMEC.  In this case, the probability of finding the FMEC during a standard run of 100 

trajectories approaches zero.   
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Table 1:  Test calculations illustrating performance enhancements for FASTER    

Design  n a  # FMECb  % FMECc  t (minutes)d  

(((min(minute

s) 

 Se  x f  

  BMEC MC BMEC MC BMEC MC BMEC MC BMEC MC 

1AAY 5 4 29 0.05 0.36 0.24 0.25 485 69 14 98 

 10 5 42 0.06 0.53 0.38 0.41 604 79 11 86 

 15 5 41 0.06 0.51 0.53 0.59 848 114 8 59 

 20 4 23 0.05 0.29 0.69 0.74 1370 257 5 26 

 N=28 1 25 0.01 0.31 0.85 0.85 6780 273 1 25 

1PIN 5 112 53 5.60 2.65 0.26 0.22 5 8 15 9 

 10 113 71 5.65 3.55 0.37 0.36 7 10 11 7 

 15 105 77 5.25 3.85 0.50 0.47 10 12 7 6 

 20 98 87 4.90 4.35 0.60 0.56 12 13 6 6 

 N=34 23 65 1.15 3.25 0.82 0.74 71 23 1 3 

1PGA 5 0 9 0.00 0.45 1.9 1.7  378  16 

 10 10 73 0.50 3.65 3.1 2.8 620 77 10 78 

 15 10 110 0.50 5.50 4.6 4.0 920 73 7 83 

 20 21 110 1.05 5.50 6.2 5.2 590 95 10 63 

 N =56 4 116 0.20 5.80 12.0 14.0 6000 241 1 25 

1C9O 5 0 12 0.00 0.60 1.3 1.4  233  99 

 10 1 26 0.05 1.30 2.0 1.8 4000 138 6 166 

 15 2 35 0.10 1.75 3.0 2.6 3000 149 8 155 

 20 1 36 0.05 1.80 3.9 3.2 7800 178 3 129 

 N=66 1 54 0.05 2.70 11.5 8.8 23000 326 1 71 
a The number of positions relaxed after every perturbation during sPR 
b The number of trajectories that found the FMEC 
c The percent of trajectories that found the FMEC.  The total number of trajectories 
attempted was 8000 for 1AAY and 2000 for all others. 
d The time in processor-minutes required to compute a single trajectory, averaged over all 
trajectories in the run 
e The score S, representing the number of processor-minutes required, on average, to find 
the FMEC once.  Calculated as S = t / f, where f is the fraction of trajectories that found 
the FMEC.  Smaller values are better.  “—” indicates that S is undefined because f = 0.   
f The multiplicative factor of improvement compared to the original FASTER protocol 
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Each combination of parameters may be compared via the score S = t / f, where t 

is the average number of processor-minutes required to compute a single trajectory, and f 

is the probability that a trajectory would find the FMEC, estimated using the data in 

Table 1.  Thus, S represents the number of processor-minutes it would take, on average, 

to find the FMEC once; smaller values are better.   Using this score as our metric, an 

improvement in efficiency may occur due to an increase in the fraction of trajectories that 

find the FMEC, or a decrease in the average convergence time per trajectory, or both.   

Table 1 clearly illustrates the utility of starting with an MC solution rather than 

with the BMEC; when n = N, the improvements in efficiency x observed on switching to 

MC range from a factor of 3 (1PIN) to a factor of 71 (1C9O).  Improvements in this 

range are also observed for most other values of n we tested; notable exceptions are the 

1PIN designs with smaller values of n, for which the BMEC was more effective.  In each 

case, the observed improvements in efficiency when using MC were predominantly due 

to the greater fraction of trajectories that found the FMEC.  For each trajectory, the 

running time was dominated by the sPR step, and the additional cost of MC was 

negligible.   

With the choice of BMEC/MC held constant, observed changes in f due to the 

reduction of n from N to (20,15,10) have different magnitudes and signs in the four 

designs.  However, the average time t required to complete a single trajectory was always 

reduced, typically by a factor of 3–5 when n = N is compared with n = 10.  Thus, 

significant improvements in the computational efficiency S were always observed when 

reducing n to the range of 10–20.  For 1PGA and 1C9O when n = 5, the FMEC was never 

found when the BMEC was used as an input structure; we therefore avoid the use of n 
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smaller than 10.   Although we have not systematically evaluated parameter combinations 

for designs larger than 66 positions, we do not anticipate problems using values of n in 

the range of 10–20 for larger designs.   

The overall performance of FASTER is dramatically improved when both 

enhancements are used together.  When using MC instead of the BMEC and with n = 10, 

the computational efficiency S of the 1AAY calculation was improved compared to the 

original FASTER by a factor of 86.  Optimizations for the other designs 1PIN, 1PGA, 

and 1C9O were improved by factors of 7, 78, and 166, respectively.   We note that this 

improvement in efficiency is not only a convenience.  Because users have limited time 

and computer resources, they will rarely be able to compute as many trajectories for a 

given design as we describe in this paper.  Thus, the improvements allow protein 

designers to find solutions that are better than those they would have found with the 

original FASTER protocol, and not merely to find the same solutions more rapidly.   

In an attempt to show that the FMEC solutions found by FASTER were optimal, 

we performed DEE-based optimizations using HERO.  HERO converged for the 1PIN 

design, yielding a sequence and energy identical to the FMEC found by the FASTER 

trajectories; the other three HERO calculations failed to converge, and so the optimality 

of the FMEC solutions for the 1AAY, 1PGA, and 1C9O designs is not known.  We also 

tested the optimality of the FMEC solutions by applying dPR until convergence to the top 

ten solutions found in every FASTER calculation.  In no case did this dPR optimization 

yield a better solution than the FMEC, giving us further confidence that the FMECs used 

to generate the values in Table 1 are the best solutions that FASTER can provide.   
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To determine whether the improved FASTER procedure we describe performs 

better than when Monte Carlo is used alone, we repeated the optimizations with a more 

extensive MC section and with the FASTER-specific passes omitted, as described above.  

Table 2 shows that the improved FASTER algorithm is able to find the FMEC solution 

for each design much more frequently than MC alone, even though the MC trajectories 

used somewhat more processor time than the FASTER trajectories.  Notably, the pure 

Monte Carlo procedure was never able to find the FMEC for the 1PGA design.  For the 

1AAY, 1PIN, and 1C9O designs, the improved FASTER algorithm was more efficient 

than Monte Carlo alone by factors of 10, 7, and 8, respectively.  Interestingly, the 

improvement factors reported in Table 2 also indicate that Monte Carlo is actually more 

powerful for these three designs than the original FASTER algorithm.  Nevertheless, the 

improved FASTER procedure we report is clearly preferable for all four designs.   
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Table 2:  Comparison of the improved FASTER to Monte Carlo  

Design  Opta  # FMECb  % FMECc  t (minutes)d  

(((min(minutes

) 

 Se  x f  

  w/ g w/o g w/  w/o  w/  w/o  w/  w/o  w/ w/o 

1AAY Monte 12 10 0.15 0.1

3 

1.13 1.25 753 1000 9 7 

 Faster 42 25 0.53 0.3

1 

0.41 0.90 78 288 86 24 

1PIN Monte 53 26 2.65 1.3

0 

1.28 1.43 48 110 1 1 

 Faster 71 66 3.55 3.3

0 

0.36 0.80 10 24 7 

 

3 

1PGA Monte 0 0 0.00 0.0

0 

3.63 3.73     

 Faster 73 80 3.65 4.0

0 

2.80 5.05 77 126 78 48 

1C9O Monte 11 6 0.55 0.3

0 

5.68 5.70 1033 1900 22 12 

 Faster 26 17 1.30 0.8

5 

1.80 3.92 138 461 166 50 

a The optimization strategy that was used.  Monte:  pure MC trajectories as described in 
Methods.  Faster: FASTER trajectories as described in Methods; the number of 
interacting residues in sPR was limited to 10, and the BMEC step was replaced with MC. 
The total number of trajectories attempted for both Monte and Faster was 8000 for 1AAY 
and 2000 for all other designs.   
b–e See Table 1.    
f The multiplicative factor of improvement compared to data for the original FASTER 
protocol reported in Table 1 
g  Indicates whether or not Goldstein singles elimination was performed before the other 
optimization steps.   

 

The improved FASTER algorithm and Monte Carlo were also assessed without 

the pre-elimination of singles by Goldstein DEE.  Table 2 shows that the DEE step 

significantly improved the convergence times of FASTER trajectories, and slightly 

improved the convergence times for the MC trajectories.  Furthermore, the use of DEE 

typically increased the fraction of trajectories that found the FMEC for both FASTER 

and MC, improving overall efficiency by a factor of 2–4 for FASTER and by close to 2 in 
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one case for MC.  We conclude that the pre-elimination of singles by Goldstein DEE is a 

worthwhile enhancement to these optimization strategies.   

 

Conclusions 

 FASTER is a stochastic optimization algorithm that can efficiently find low-

energy solutions to difficult protein design problems.  We report two simple 

enhancements to FASTER that together result in up to two orders of magnitude better 

computational performance with no loss of accuracy.  The first improvement replaces the 

backbone-derived initial configuration with a short Monte Carlo run.  The second 

improvement limits the number of relaxing positions in the perturbation and relaxation 

steps to a fixed value.   The dramatic performance enhancements provided by these 

changes make FASTER significantly more powerful than alternative methods, and allow 

better solutions to be found more quickly for larger, more complex designs.  We expect 

the improved algorithm to facilitate the development of next-generation protein design 

tools that treat multiple states and explicit backbone flexibility.    
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An Efficient Algorithm for Multi-State Protein Design Based on 

FASTER 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The text of this chapter was adapted from a manuscript coauthored with  
Stephen L. Mayo. 
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Abstract 

Most of the methods that have been developed for computational protein design involve 

the selection of side-chain conformations in the context of a single, fixed main-chain 

structure.  In contrast, multi-state design (MSD) methods allow sequence selection to be 

driven by the energetic contributions of multiple structural or chemical states 

simultaneously.  This methodology is expected to be useful when the design target is an 

ensemble of related states rather than a single structure, or when a protein sequence must 

assume several distinct conformations to function.  MSD can also be used with explicit 

negative design to suggest sequences with altered structural, binding, or catalytic 

specificity.  We report implementation details of an efficient multi-state design 

optimization algorithm based on FASTER (MSD-FASTER).  We subjected the algorithm 

to a battery of computational tests and found it to be generally applicable to various 

multi-state design problems; designs with a large number of states and many designed 

positions are completely feasible.  A direct comparison of MSD-FASTER and multi-

state-design Monte Carlo indicated that MSD-FASTER discovers low-energy sequences 

much more consistently.  MSD-FASTER likely performs better because amino acid 

substitutions are chosen on an energetic basis rather than randomly, and because multiple 

substitutions are applied together.  Through its greater efficiency, MSD-FASTER should 

allow protein designers to test experimentally better-scoring sequences, and thus 

accelerate progress in the development of improved scoring functions and models for 

computational protein design.   
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Introduction 

 The field of computational protein design provides software tools that facilitate 

the identification of amino acid sequences with specific desired properties.  Most protein 

design protocols choose amino acid types and side-chain conformations in the context of 

a single, fixed, main-chain conformation.  Given this simplifying approximation, one can 

precompute all pairwise interaction energies between possible side-chain conformations 

at different positions and then optimize this system of interactions to find sequences 

expected to stabilize the fold.1, 2 The most common optimization algorithms employed for 

this purpose are based on Monte Carlo with simulated annealing (MC),3–5 the dead-end 

elimination theorem (DEE),5–7 genetic algorithms,5, 8 and Fast and Accurate Side-Chain 

Topology and Energy Refinement (FASTER).9, 10 These single-state design methods have 

produced several notable successes, when used on their own or in conjunction with main-

chain optimization techniques.1, 3, 11–14 However, single-state design is not necessarily 

sufficient when design objectives require the explicit consideration of multiple states at 

once.15 

For example, we might desire a sequence that is able to assume two distinct folds 

under different conditions; the single-state design methodology described above does not 

provide a mechanism for selecting sequences that are simultaneously compatible with 

both folds.  Similarly, single- state design methods do not provide a way to explicitly 

alter binding specificity, since only one binding partner may be modeled during sequence 

selection.  Likewise, enzyme design methods might be enhanced through the explicit 

modeling of the substrate, transition state, and product, rather than only one of these at a 

time.  Finally, we note that NMR-derived solution structures have been neglected as 
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targets for protein design because typical structure determination methods give an 

ensemble rather than a single set of coordinates.16 To the extent that the structural 

diversity of an NMR ensemble reflects realistic conformational flexibility, it will be 

interesting to investigate the effects of using such an ensemble as the basis for design.   

Each of the design goals given above requires sequence selection to be informed 

by multiple structural or chemical states simultaneously, in what we call multi-state 

design (MSD).  The optimization strategy we apply to MSD problems comprises an outer 

routine that suggests possible amino acid sequences, and an inner routine that assesses the 

fitness of a sequence by performing rotamer optimization on each state and combining 

the individual state energies to yield an overall score.  This basic approach has been used 

by others to design specificity into a self-associating coiled-coil system, to generate a 

molecular switch, and to recover sequences that bind their cognate ligands with high 

affinity.15, 17, 18 Here, we describe a generalization of these strategies that is applicable to 

any number of states and compatible with any type of scoring function that might be used 

to combine the energies of sequences threaded on the target states.   

For a design problem with n states to consider, we use n processors of a computer 

cluster to calculate one optimization trajectory.  Each processor holds in memory the 

pairwise energy matrix for one state, and is responsible for evaluating the energies of 

candidate sequences in the context of that state only.  In general, a candidate sequence is 

evaluated by performing rotamer optimization using a side-chain placement algorithm 

based on MC, DEE, or FASTER.  One of the processors (the boss) is additionally 

responsible for identifying amino acid sequences to be scored, communicating this 

information to the others, collecting the results, and combining the energies to yield an 
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overall fitness score.  Here, we provide implementation details for MSD optimization 

algorithms with amino acid selection schemes based on MC and FASTER, and give 

quantitative comparisons of their performance for a variety of multi-state design 

problems. 

 

Results and discussion 

Scoring functions 

To solve the multi-state design problem, we employ an extension of the 

methodology that has been developed for single-state design.  In single-state design, the 

cost function to be optimized is the energy E of the rotamer configuration R.  The energy 

is computed by summing the rotamer/template energies Ei
 for each of the N residue 

positions and the interaction energies Eij between all pairs of rotamers at residue positions 

i and j.  Typically, the rotamer configuration is optimized without regard to the amino 

acid types of the rotamers available at each position.  

 

€ 

E(R) = Ei

i=1

N

∑ + Eij

j= i+1

N

∑
i=1

N

∑  (1) 

In multi-state design, the score σ to be optimized is a function of the amino acid sequence 

A.  In general, an amino acid sequence will not assume the same side-chain 

conformations in the various states being modeled.  If there are n states, then the score is 

computed using a function of the following form: 

 

€ 

σ(A) =σ (E1(A),E 2(A),...,En(A)) (2) 

Each Es(A) corresponds to the energy of the sequence A threaded on state s, and is 

computed by single-state rotamer optimization using equation 1.  Different energy 

combination functions σ may be appropriate for different types of design problems.   For 
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example, in a case where the designed sequence is meant to satisfy n distinct states 

equally well, the simplest scoring function simply computes the average energy across all 

states:  

 

€ 

σ(A) =
1
n

Es(A)
s=1

n

∑  (3) 

When the design target is an ensemble of similar states, such as an NMR solution 

structure, the requirement that a sequence satisfy all states may be too stringent; it cannot 

be assumed that every member of the ensemble would be significantly populated or 

relevant for the designed sequence.  In this case, a scoring function that applies 

Boltzmann-weighted averaging may be more useful: 

 

€ 

σ(A) = −kT log e−Es(A ) / kT
s=1

n

∑
 

 
 

 

 
  (4) 

Use of equation 4 prevents sequences that fail to satisfy a few states from being severely 

penalized.  If the design goal is to alter conformational, binding, or catalytic specificity, a 

scoring function for explicit negative design is warranted.  Given one positive design 

state ρ and one negative design state η, one might apply the following scoring function: 

 

€ 

σ(A) = ΔEρ (A) −WΔEη (A)  (5) 

Here, W is a weighting factor used to control the balance of ρ-state stabilization and η-

state destabilization.  Each ΔEs(A) in equation 5 is the excess energy of sequence A when 

threaded on state s compared to the optimal sequence A0 for that state as determined by 

single-state design:  

 

€ 

ΔEs(A) = Es(A) − Es(A0) (6) 

Because Es(A0) is the minimum energy of any sequence threaded on state s, ΔEs(A) ≥ 0.  

The ΔEs(A) terms are intended to normalize the energies of the sequences being selected 
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and to allow a single value of W to be used with various energy functions and design 

targets.  

 Over the course of a negative design calculation, sequences may be found that 

cannot be threaded on the negative design target structure without causing severe van der 

Waals clashes; use of equation 5 in a multi-state design calculation will cause such 

sequences to be preferred.  Any predicted clash must surely be alleviated by a shift in the 

distribution of conformational states assumed by a real protein.  However, we 

hypothesize that variants with native states perturbed in this manner will tend to be 

destabilized, especially when multiple clashes are predicted together.  Because the 

energies assigned to these clashes by a standard Leonard-Jones potential depend strongly 

on several approximations (such as discrete side-chain rotamers and a fixed main chain), 

we threshold all rotamer-template and rotamer-rotamer energies on the negative design 

target state to a positive constant.  This effectively causes sequences with a greater 

number of clashes to be preferred over sequences with a smaller number of larger-

magnitude clashes, as desired.19  

A more rigorous approach to explicit negative design would be to maximize the 

probability with which the target state is assumed over all explicitly modeled competing 

states, as computed according to basic statistical mechanics.  This approach has been 

applied to the design of specificity in self-associating and ligand-binding systems.15, 18 

The success of this method relies on the availability of atomic models that accurately 

represent all target and competing states; unfortunately, general methods for the 

construction of these models have not yet been developed and validated. For the 

computational tests reported here, we have sidestepped issues of model construction by 
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applying equation 5 to a system with one crystal structure as the positive design target, 

and another as the competing state for negative design.   

 

Multi-state Monte Carlo 

 Monte Carlo with simulated annealing (MC) is an efficient stochastic 

optimization technique that is heavily used in computational protein design.3–5 When 

used for rotamer optimization, MC can produce high-quality approximate solutions 

quickly and find low-energy variants in the vicinity of an existing solution.5  MC is easily 

applied as the outer routine in multi-state design by making perturbations at the level of 

amino acid sequence only.  In each step of multi-state design MC (MSD-MC, Figure 1), a 

residue position is picked at random, and a random amino acid substitution is made at 

that position.  The new sequence is scored on each state by rotamer optimization.  The 

decision to accept or reject the perturbation is made based on the change in the score σ 

and the simulated annealing temperature, which is cycled up and down over the course of 

the optimization to allow traversal of local maxima and exploration around local minima.  

 We have applied two enhancements to MSD-MC in an attempt to improve its 

performance.   In the first, random perturbations are chosen uniformly from a list of all 

allowed amino acid substitutions, without respect the positions at which they occur.  This 

prevents positions that have fewer allowed amino acids than others from being the focus 

of a disproportionate number of substitution attempts.  In the second enhancement, 

rotamer optimization after a substitution is limited to those positions within a specified 

Cα- Cα distance cutoff from the perturbed position, reducing the amount of time required 
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for rotamer optimization and allowing more steps of MSD-MC to be completed per unit 

time.  
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Figure 1: Graphical depictions of the three MSD sequence selection routines 
described in the text. Legend (upper right panel): explains the symbols used to depict a 
parallel algorithm.   Each box represents a single processor that performs energy 
calculations on a single state.  Fields within the box identify the processor by number, 
show the current action, and explain the relevant data that the processor holds in memory.  
The boss processor is shaded in grey.  The subroutines S and P are depicted in Figure 2 
and described in the text.   Depicted here are: one step of MSD-MC (upper-left panel), 
one round of MSD-iBR (lower-left panel), and one perturbation in MSD-sPR (lower-right 
panel). 
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Multi-state FASTER 

 Like Monte Carlo, FASTER is a stochastic optimization algorithm that makes 

perturbations to existing solutions and accepts or rejects them based on their energetic 

consequences.10 The two algorithms differ chiefly in the methods by which perturbations 

are chosen.  FASTER has two main components that we have modified for MSD: 

iterative batch relaxation (iBR), and single perturbation and relaxation (sPR).   In each 

component, amino acid substitutions at several positions are chosen independently and 

applied together to yield a new solution.  Each component is applied iteratively until 

convergence is detected.  In MSD-iBR, convergence is signaled when the user-defined 

limit for the number of nonproductive rounds (i.e., rounds that fail to improve the energy) 

is reached.  In MSD-sPR, convergence can occur either when the user-defined limit for 

total rounds is reached or when an entire round has elapsed without an improved solution 

being found. One trajectory of MSD-FASTER is performed by generating a random 

initial sequence, applying MSD-iBR until convergence, and then applying MSD-sPR 

until convergence.   

  

Multi-state iBR 

 During a round of single-state iBR, the best rotamer at each position of the protein 

is determined independently in the context of the current rotameric configuration at all 

other positions.  Then, the new rotamers at each position are all updated simultaneously, 

and the resulting updated configuration of the system is retained regardless of the change 

in energy. iBR is applied iteratively until a user-defined limit for nonproductive rounds 



 49 

has been reached.  After the detection of convergence, the lowest-energy configuration 

ever found during the rounds of iBR is selected to move on to sPR.   

 During a round of MSD-iBR, the best amino acid at each position must be chosen 

considering all states simultaneously (Figure 1).  For each possible amino acid 

substitution at each position, each processor determines for its own state the best possible 

total energy of the system when that substitution is made with the current rotamer 

configuration fixed at all other positions, and sends this information to the boss. If there 

are p positions and a amino acid types allowed at each position, then each processor 

needs to communicate pa floating-point values.  For each position, the boss computes the 

overall score of each possible substitution across all states using these values and a 

scoring function σ.   The amino acid identity at each position is then updated with the 

best-scoring substitution found by the boss in the previous step.  Each processor rescores 

the resulting sequence for its state by rotamer optimization and these energies are again 

combined to produce an overall score.  This process is repeated until convergence, as in 

single-state iBR.   

 

Multi-state sPR 

 In a step of single-state sPR, one position is forced to assume a particular rotamer 

(is “perturbed”), the other positions are allowed to relax independently in the context of 

the current rotamer configuration, and the rotamers at all relaxing positions are updated at 

once.  The resulting relaxed rotamer configuration is accepted only if its energy is better 

than any previously observed.  In a step of single-state sPR, amino acid substitutions can 

occur at the perturbed position and also at the relaxing positions, since rotamers are 
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sampled without regard to their amino acid types.  In one round of single-state sPR, each 

rotamer at each position will be fixed exactly once; positions to fix are picked in random 

order.  Rounds of sPR are performed until an entire round fails to produce a better 

solution, or until a user-defined limit is reached. 

 Several significant complications arise when adapting sPR for multi-state design.  

We would like to fix a particular amino acid at some position and choose the resulting 

best amino acid substitution at each independently relaxing position (Figure 1).   

Typically, there will be multiple available rotamers of the fixed amino acid type at the 

perturbed position in each state.  Each of these rotamers will lead to a distinct set of 

energies for the possible amino acid substitutions at the relaxing positions.  Thus, an 

explicit choice of fixed rotamer at the perturbed position must be made for each state in 

order to determine the best-scoring amino acid types at the relaxing positions when all 

states are considered simultaneously.  Unfortunately, each processor cannot simply 

determine the best fixed rotamer in its own state and send the corresponding substitution 

energies to the boss to be scored.  To improve the overall score across all states, a given 

state may be forced to accept a substitution that is suboptimal when that state is 

considered by itself.  To score that suboptimal substitution correctly, the state may be 

forced to employ a rotamer at the perturbed position that is different from the one that 

leads to the best substitutions for that state in isolation.  Thus, each processor must 

communicate substitution energies corresponding to all of the available rotamers of the 

fixed amino acid type at the perturbed position, and not just of the ones that seem optimal 

in the context of its own state.      
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 For each rotamer of the fixed amino acid type at the perturbed position, each 

processor must send the total energy of each possible amino acid substitution at each of 

the relaxing positions.  If there are r rotamers of the fixed amino acid type at the 

perturbed position, p relaxing positions, and a amino acid types available at each of the 

relaxing positions, then each processor must send rpa floating-point values to the boss.   

A given assignment of fixed rotamers to states allows a preferred amino acid 

substitution at each relaxing position and its MSD score to be computed using a σ 

function, as described in the MSD-iBR section above.  Thus, if there are n relaxing 

positions allowed, there will be n separate MSD score values σr.  In order to determine 

the best relaxed sequence given an amino acid perturbation, we optimize the sum of these 

σr (subroutine P in Figure 2). The optimization comprises a quick Monte Carlo run of 

10,000 steps along a linear temperature gradient from 4000 K to 1 K with a 

nonproductive steps limit of 100.  In each step of MC, a random state is chosen, a random 

fixed rotamer for that state is selected, and the corresponding sum of MSD substitution 

scores at the relaxing positions is determined; the new fixed rotamer configuration is 

accepted or rejected based on the Boltzmann criterion.  This protocol generates a 

favorable choice of fixed rotamer for each state and incurs negligible computational 

expense.  After the amino acids at the relaxing positions are chosen, each processor 

evaluates the energy of the new sequence threaded on its state by rotamer optimization.  

The energies are then combined into an overall score using a σ function as described 

above.    

Although the technique just described is expected to perform well for most MSD 

problems, there is some reason to believe that it may be inadequate when used in the 
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context of explicit negative design.  Because subroutine P attempts to choose rotamers of 

the fixed amino acid type that result in designed sequences that minimize σ,  it 

preferentially selects sequences that clash with the chosen fixed rotamers in competing 

states, even though these clashes might be relaxed away during the subsequent rotamer 

optimization step.  This single-minded focus on sequences that clash most strongly prior 

to rotamer optimization could inhibit the ability of the algorithm to find those sequences 

with the most favorable scores after rotamer optimization.  To address these concerns, we 

have implemented and tested two modifications that allow the fixed rotamer 

configuration (and resulting relaxed amino acid sequence) to be chosen completely 

randomly, or randomly from one of the top r configurations found during subroutine P.   

Comparison with these simple modifications should allow the overall utility of the 

original procedure to be assessed.   

We recently reported that the efficiency of single-state FASTER can be improved 

by allowing only the positions that interact most strongly with the perturbed position to 

be relaxed.9 When applied to MSD-sPR, this improvement also limits the amount of data 

that must be communicated between processors and improves the efficiency with which 

the optimal fixed rotamers for each state can be determined.  In MSD-sPR, the potential 

relaxing positions are ranked according to the absolute values of the σr scores calculated 

from their interactions with the perturbed position.  The initial rotamer configurations in 

each state prior to the perturbation are used to assess these interactions.   
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Figure 2: Subroutines used by the MSD sequence selection algorithms.  S: the 
subroutine used to assign an overall score to a given amino acid sequence based on input 
from all of the states.  P: the subroutine used to determine an optimized choice of fixed 
rotamer at the perturbed position in each state during MSD-sPR.  The boss processor runs 
this routine using data accumulated from all processors. 
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Rotamer optimization (RO) algorithms  

 The MSD sequence selection algorithms described above require that the energy 

of specific sequences be evaluated in the context of each target state (subroutine S in 

Figure 2).  Any of the rotamer optimization (RO) algorithms that have been developed 

for single-state protein design and side-chain placement, such as MC, DEE, and 

FASTER, can be used to evaluate these energies.  When used for rotamer optimization in 

this work, one cycle of MC comprised a simulated annealing schedule that varied linearly 

from high temperature to low.  When FASTER was used, rounds of iBR and then of sPR 

were applied in series; each pass was terminated when convergence was detected or the 

user-defined rounds limit was reached.  In a step of sPR, the set of positions allowed to 

relax in response to the perturbation was limited to the ten that interact most strongly 

with the perturbed position.9 DEE-based rotamer optimizations were performed as 

previously described,7 except that the split-DEE and bounding steps were omitted.  For 

some amino acids sequences, DEE failed to converge to a single solution; in these cases, 

FASTER was automatically invoked to find an approximate solution instead. 

When performing rotamer optimization using MC or FASTER, an initial rotamer 

configuration is required.   During multi-state design, RO is applied in subsequent rounds 

to amino acid sequences that differ at only a few positions; our implementation of MSD 

exploits this situation to provide better initial rotamer configurations for optimization.  In 

MSD-MC, the amino acid identity at exactly one position will have changed since the 

most recent rotamer optimization.  The rotamer at this position is initialized randomly, 

while the initial rotamer configuration at each of the unchanged positions is taken directly 
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from the previous solution.  In MSD-sPR, rotamer optimization occurs after each 

processor has determined the best energies for each amino acid type at several relaxing 

positions, given a fixed amino acid at a perturbed position.  The rotamers at positions that 

are neither fixed nor relaxed are taken from the previous solution.  The rotamer at the 

fixed position in each state is chosen as described in the section on MSD-sPR above.  

Reasonable rotamers for each amino acid type at the relaxing positions are also already 

known; the energies of these rotamers were used to select the sequence being scored.  

The rotamer solution taken from these three sources can be used to determine directly the 

energy of the sequence, or additional RO may be performed using it as an initial solution.  

We refer to the routine that directly determines the energies on each state without further 

optimization as the Null rotamer optimizer.  However, our results below indicate that the 

Null routine is insufficient for effective MSD sequence optimization.     

In each MSD calculation, we employ two different RO modules that we refer to 

as “weak” and “strong”.  During rounds of MSD-MC and MSD-sPR, an initial rotamer 

configuration for each state is available for input to the rotamer optimization routines as 

described above.  Thus, we start from these initial solutions and perform a limited 

number of rounds of rotamer optimization to save time (weak RO).  On the other hand, 

good initial solutions are not available at the beginning of a round of any MSD algorithm, 

or at any time during MSD-iBR due to the large number of substitutions that can be made 

during each round.  In these cases, we start from random rotamer configurations and 

apply more rounds of rotamer optimization to increase our confidence in the resulting 

energies (strong RO).  When DEE is used, it is employed with the same parameters for 
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both the strong and weak rotamer optimization, because initial solutions cannot be 

exploited in our implementation of DEE. 

 

Test cases for multi-state design 

 We tested the performance of the algorithms described here with several different 

multi-state design problems.  The MSD-MC and MSD-FASTER amino acid selection 

schemes are stochastic and provide no guarantee that the global minimum energy solution 

will ever be found. We therefore perform many optimization trajectories with different 

random number seeds, and assess the algorithms based on the distribution of solutions 

given by these trajectories.  When a significant fraction of the trajectories report the same 

best solution ever found, we take that solution to be optimal.  Given the fraction of 

trajectories f that find the optimal solution, and the average processor-time in minutes t 

required to compute a trajectory, we compare algorithms using according to the value S = 

t / f.  This score represents the total number of processor-minutes required on average to 

find the optimal solution; smaller values are better.  We previously used this metric to 

analyze the performance of single-state design optimization algorithms.9 

 

Single-state design problems 

 When a MSD algorithm is applied to a design problem with only one target state, 

its accuracy and efficiency may be compared to well-characterized single-state design 

algorithms, such as single-state design FASTER (SSD-FASTER).   We optimized four 

full sequence designs that were previously used as test cases for the single-state versions 

of Monte Carlo and FASTER: 1AAY, 1PIN, 1PGA, and 1C9O.  These designs have from 
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28 to 66 designed positions, and the average number of rotamers per position is 212; a 

more complete description of these designs is available elsewhere.9  Because each of 

these designs had only one target state, the MSD scoring function was simply σ(A) = 

E(A), which is consistent with equations 3 and 4 when n = 1.   

For each design, we computed 1000 trajectories of MSD-FASTER and MSD-MC 

with a variety of different weak RO algorithms: Null, MC, iBR, FASTER, and DEE.  We 

refer to a particular pairing of MSD and RO algorithms in a/b format: MSD-FASTER 

used with FASTER for weak rotamer optimization is called MSD-FASTER/FASTER.  

For the parameters used in each optimization algorithm formulation, see the materials and 

methods.  

 

SSD test cases: MSD-FASTER 

The results of the MSD-FASTER calculations (Table 1) indicate that the MSD 

algorithm easily finds the optimal solution (as determined by SSD-FASTER) for each 

design when paired with weak RO routines based on FASTER, iBR, or MC.  For the two 

smaller designs, 1AAY and 1PIN, MSD-FASTER was actually able to find the lowest-

energy solution 20–80% more efficiently than SSD-FASTER, because a greater fraction 

of its trajectories were able to find the optimal solution without requiring significantly 

more compute time.  When applied to the larger and more difficult designs, 1PGA and 

1C9O, the performance of MSD-FASTER deteriorated to between 8–18% of the 

efficiency of SSD-FASTER.  This deterioration stemmed both from an increase in the 

time required to perform simulation trajectories, and a decrease in the fraction of 

trajectories that were able to find the optimal solution.  Ultimately, we were pleased to 
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discover that, despite the limitations imposed on the algorithm by the requirements of 

multi-state design, MSD-FASTER can effectively find optimal amino acid sequences 

among sets of at least 1056 alternatives (1C9O).   Although MSD-FASTER does not seem 

to scale to larger problem sizes as well as SSD-FASTER, its performance should allow 

for the rigorous investigation of new ideas in multi-state computational protein design.   

When the results for all four designs are considered simultaneously, the most 

favorable comparison with SSD-FASTER is offered by MSD-FASTER/FASTER, which 

allows significant relaxation after each round of MSD-iBR and each step of MSD-sPR. 

MSD-FASTER also yielded satisfactory performance when MC was used as the weak 

RO routine, although the number of correct trajectories found per unit time was always 

fewer than when FASTER was used.  As a quicker but less accurate alternative, iBR 

allowed fewer correct trajectories to be found, but reduced significantly the time required 

to compute each trajectory, leading to similar overall performance when compared to 

FASTER and MC.  For the 1AAY and 1PIN designs, the most correct trajectories were 

found when using DEE for rotamer optimization.  However, this greater accuracy came at 

the cost of significantly more processor time required.  Furthermore, MSD-FASTER was 

unable to complete trajectories for the 1PGA design in a reasonable time when RO was 

performed by DEE (> 100 minutes each), and so the run was aborted. Although DEE-

based rotamer optimization may be too slow for sequence selection in nontrivial design 

problems, it can still be useful to rescore a list of sequences produced using a quicker but 

more approximate RO method. When no weak RO was performed at all (MSD-

FASTER/Null), the optimal solution was found for the 1AAY and 1PIN designs, but not 

the two larger ones.  We note that the average time per trajectory for these designs was 
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only slightly lower than when iBR was used, indicating that most of the time in MSD-

FASTER/iBR is spent choosing sequences to score rather than scoring them by rotamer 

optimization.  Rotamer optimization of some kind seems to be required for the efficient 

convergence of nontrivial multi-state design problems using MSD-FASTER.  
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Table 1: Performance of MSD-FASTER when applied to four difficult single-state 
design problems 
 
 

a. The number of variable positions in the design 
b. The optimization strategy that was used, as described in the text.  The term after the slash indicates 

the weak rotamer optimization routine that was used.   
c. The percentage of trajectories that found the best known solution (f × 100), as determined by SSD-

FASTER.  1000 total trajectories were computed in each MSD or SSD calculation.  
d. The average time, in minutes, required to perform each trajectory on one processor 
e. The score S = t / f, as described in the text.  Smaller values are better, indicating that the optimal 

solution can be found more quickly. “—” indicates that S is undefined because f = 0.   
f. The multiplicative factor p measures the deterioration in performance compared to SSD-FASTER.  

For example, p = 0.17 indicates that the MSD algorithm was 17% as efficient as the SSD 
algorithm.   

g. When optimizing the 1PGA design using MSD-FASTER/DEE, the runs were aborted when it was 
determined that trajectories would take longer than 100 minutes each to complete.   

Design Sizea Optb 
% correctc 

(f × 100) td Se pf 
28 SSD-FASTER 1.0 0.5 46 1.00 
 MSD-FASTER/Null 0.2 0.3 153 0.30 
 MSD-FASTER/MC 1.8 0.6 35 1.31 
 MSD-FASTER/iBR 1.3 0.4 32 1.44 
 MSD-FASTER/FASTER 2.5 0.6 25 1.84 

1AAY 

 MSD-FASTER/DEE 3.8 3.6 94 0.49 
34 SSD-FASTER 2.1 0.6 28 1.00 
 MSD-FASTER/Null 1.5 0.4 26 1.08 
 MSD-FASTER/MC 3.0 0.7 23 1.22 
 MSD-FASTER/iBR 2.5 0.5 20 1.40 
 MSD-FASTER/FASTER 3.2 0.7 23 1.22 

1PIN 

 MSD-FASTER/DEE 3.6 4.3 118 0.24 
56 SSD-FASTER 4.2 1.9 46 1.00 
 MSD-FASTER/Null 0 3.1 — — 
 MSD-FASTER/MC 1.1 6.2 562 0.08 
 MSD-FASTER/iBR 1.5 4.9 327 0.14 
 MSD-FASTER/FASTER 3.3 8.5 258 0.18 

1PGA 

 MSD-FASTER/DEE —g —g — — 
66 SSD-FASTER 2.0 1.4 71 1.00 
 MSD-FASTER/Null 0.0 2.5 — — 
 MSD-FASTER/MC 0.9 5.7 629 0.11 
 MSD-FASTER/iBR 0.7 4.3 610 0.12 
 MSD-FASTER/FASTER 1.5 7.6 507 0.14 

1C9O 

 MSD-FASTER/DEE 1.1 16.4 1486 0.05 
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SSD test cases: MSD-MC 

 To compare the performance of MSD-MC to MSD-FASTER, we repeated the 

single-state test designs using Null, iBR, MC, and FASTER for rotamer optimization.  In 

the course of these test calculations, it was determined that MSD-MC performed the best 

when applied with uniform sampling of amino acid substitutions and with the positions to 

be optimized after a substitution limited to those within 15 Å Cα-Cα of the substituted 

position, as described above.  For brevity, we report only the results of this best MSD-

MC formulation here.  To make the comparison between MSD-MC and MSD-FASTER 

as fair as possible, we adjusted the number of Monte Carlo steps in MSD-MC so that the 

average time per trajectory would be similar to when MSD-FASTER was used (see 

materials and methods); many more amino acid substitutions can be attempted per unit 

time if the total time for rotamer optimization per substitution is reduced.   

 Even using this best formulation, the ability of MSD-MC to find correct solutions 

to these SSD problems was dramatically worse than that of MSD-FASTER (Table 2).  

When paired with the Null rotamer optimizer or with iBR, MSD-MC was able to find the 

optimal solutions to the two smaller design problems, albeit with much lower frequency 

than MSD-FASTER despite longer sampling times.  The relative success of MSD-MC 

with less rigorous rotamer optimization routines reflects the fact that MSD-MC is 

strongly limited by the number of amino acid substitutions it is able to test; 

implementations with less expensive rotamer optimization can afford to test more 

sequences per unit time, and therefore perform better.   

The optimal solutions to the two larger design problems were never found using 

any implementation of MSD-MC.  Because the S and p scores that were used to compare 
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the efficiencies of the MSD-FASTER algorithms are undefined when the fraction of 

correct trajectories is zero, we report two different metrics for MSD-MC.  ΔE is the 

difference in simulation energy between the best sequence found by the MSD-MC 

algorithm and the optimal sequence found by SSD-FASTER; Nm is the number of 

positions that differ between the two sequences.  Although the 1PGA and 1C9O 

calculations were not able to find the optimal solution, they can be evaluated based on 

how close they came (i.e., how close ΔE and Nm are to zero).  In terms of ΔE and Nm, 

these two larger designs showed significant deviations, with differences in simulation 

energy of 2–4 kcal/mol and 4–7 mutations away from the best-scoring sequence found 

using SSD-FASTER and MSD-FASTER.  Even these suboptimal sequences were found 

only a few times in the aggregate simulation run, rather than the numerous times the 

optimal sequence was found by the MSD-FASTER protocols.  In addition to various 

combinations of uniform sampling and restricted sets of positions for rotamer 

optimization, we attempted various simulated annealing schedules and temperature 

ranges in MSD-MC, as well as applying fewer trajectories of longer length, all to no avail  

(data not shown).  Compared to MSD-FASTER, the optimization ability of MSD-MC is 

clearly unacceptable for designs of this difficulty.   
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Table 2:  The performance of MSD-MC when applied to four difficult single-state 
design problems 
 

Design Sizea Optb 
% correctc 

(f × 100) ΔEd Nm
e tf 

28 SSD-FASTER 1.0 0.0 0 0.5 
 MSD-MC/Null 0.2 0.0 0 2.5 
 MSD-MC/MC 0.2 0.0 0 8.4 
 MSD-MC/iBR 0.8 0.0 0 3.2 

1AAY 

 MSD-MC/FASTER 0.0 0.7 2 2.6 
34 SSD-FASTER 2.1 0.0 0 0.6 
 MSD-MC/Null 0.3 0.0 0 3.0 
 MSD-MC/MC 0.0 0.5 5 9.7 
 MSD-MC/iBR 0.1 0.0 0 3.8 

1PIN 

 MSD-MC/FASTER 0.0 1.2 9 3.3 
56 SSD-FASTER 4.2 0.0 0 1.9 
 MSD-MC/Null 0.0 3.9 7 5.5 
 MSD-MC/MC 0.0 7.8 16 18.1 
 MSD-MC/iBR 0.0 1.5 5 16.7 

1PGA 

 MSD-MC/FASTER 0.0 11.2 12 9.9 
66 SSD-FASTER 2.0 0.0 0 1.4 
 MSD-MC/Null 0.0 1.6 4 6.7 
 MSD-MC/MC 0.0 5.6 14 24.3 
 MSD-MC/iBR 0.0 2.0 5 22.7 

1C9O 

 MSD-MC/FASTER 0.0 12.4 20 11.0 
  

a. The number of variable positions in the design 
b. The optimization strategy that was used, as described in the text. The term after the slash indicates 

the weak rotamer optimization routine that was used.  The number of steps of MSD-MC was 
adjusted for each algorithm combination so that the average times per trajectory would be similar 
to those for MSD-FASTER (Table 1).  

c. The percentage of trajectories that found the optimal solution (f × 100), as determined by SSD-
FASTER.  1000 total trajectories were computed in each MSD or SSD calculation.   

d. The difference in simulation energy (kcal/mol) between the best sequence found by MSD-MC and 
the optimal sequence found by SSD-FASTER 

e. The number of residue positions that differ between the best sequence found by MSD-MC and the 
optimal sequence found by SSD-FASTER 

f. The average time, in minutes, required to perform each trajectory on one processor 
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Multi-state design of protein G 

 To compare MSD-FASTER and MSD-MC in the context of positive design, we 

designed two separate areas of 1GB1, a 60-member NMR ensemble of the β1 domain of 

streptococcal protein G.20 Single-state designs based on the crystal structure of this 

protein have found several stabilized variants,13, 21 but to our knowledge no designs based 

on an NMR ensemble of this molecule have yet been characterized experimentally.  In 

the first design, we varied all 25 non-Gly positions classified as core or boundary, and in 

the second we varied all 27 non-Gly positions classified as surface.   

For the MSD-FASTER calculations, we dispensed with the evaluation of the 

several possible rotamer optimization routines, and relied on FASTER only for this 

purpose.  However, given our concerns about potential problems with fixed rotamer 

selection schemes during MSD-sPR, we tested three implementations in MSD-FASTER.  

In two cases, (r = 1 and r = 5 in Table 3), the choice of fixed rotamer in each state was 

determined as described above; the relaxed amino acid sequence to be scored by rotamer 

optimization was either produced from the best fixed rotamer configuration found, or was 

produced from a randomly chosen member of the top five configurations found, 

respectively.  In the final case (r = rand), the fixed rotamer optimization was skipped 

entirely, and the relaxed amino acid sequence to be rescored was determined with fixed 

rotamers of the perturbed amino acid type chosen randomly for each state.  Calculation 

parameters for MSD-FASTER and the strong and weak rotamer optimization routines 

were identical to those described for the single-state design test cases above. 

We tested a variety of formulations of MSD-MC in an attempt to find one that 

would compare favorably to MSD-FASTER when applied to many target states 
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simultaneously.  Implementation details that were varied included the type of rotamer 

optimization performed, the application of uniform sampling of amino acid substitutions, 

and the use of the distance-based cutoff to limit the expense of rotamer optimization; 

several of these combinations are shown in Table 3.  

 In contrast to the SSD test cases described above, the optimal solutions to these 

two MSD problems are not known except through the calculations we report here.  In the 

absence of additional information, we sampled as rigorously as possible with each MSD 

algorithm and assumed the best-scoring sequence ever found to be optimal.  We typically 

use this strategy when optimizing single-state designs with stochastic algorithms as well.9 

 For the core+boundary design, all the formulations of MSD-FASTER and MSD-

MC we tested found the same lowest-energy solution (Table 3).  All three 

implementations of MSD-FASTER achieved essentially identical performance, indicating 

that method used to choose fixed rotamers in MSD-sPR was not a significant determinant 

of optimization power in this design problem.  Among the MSD-MC formulations we 

tested, MSD-MC/iBR performed slightly better than any of the MSD-FASTER 

implementations, whereas all other performed significantly worse.   The preference for a 

rotamer optimization routine of intermediate expense is consistent with the results of our 

SSD test calculations (Table 2).  It illustrates that, for efficient sampling in MSD-MC to 

be achieved, a delicate balance must be struck between the accuracy of sequence-

rescoring and the number of individual sequences that are evaluated.   

 Analysis of the surface design calculations shows a stark contrast between the 

performance of MSD-FASTER and MSD-MC.  Whereas all three MSD-FASTER 

implementations each found the same top sequence in a significant fraction of the 
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attempted trajectories, this sequence was never found by any of the MSD-MC 

formulations we tried, despite their greater computational expense.  This more difficult 

design problem also allowed differentiation between the three MSD-FASTER 

implementations; randomly chosen fixed rotamers (r = rand) resulted in a 5-fold drop in 

optimization efficiency compared to the use of fixed-rotamer optimization in MSD-sPR 

(r = 1).    

When the states in a MSD calculation are very similar, one might ask whether the 

MSD-optimal solution could have been found by performing single-state design on each 

state and rescoring the resulting SSD-derived sequences using MSD.  In the case of the 

core+boundary design described here, the MSD-optimal sequence was never found 

during single-state design of the individual states; the MSD-optimal sequence for the 

surface design was also the SSD-optimal sequence for only one of the 60 states.  Use of 

the MSD strategy thus seems warranted for design problems with multi-state 

requirements; the SSD-based strategy cannot be generally relied upon to produce the 

same sequences as a true MSD procedure.   

 The results of the 1GB1 designs show that both MSD-MC and MSD-FASTER 

can efficiently find low-energy sequences based on a large NMR structural ensemble.  

Although one formulation of MSD-MC performed slightly better than MSD-FASTER in 

the core+boundary design, the failure of all MSD-MC formulations when applied to the 

surface design prompts greater confidence in the consistency and general utility of MSD-

FASTER.    When applying MSD-FASTER to a large conformational ensemble, the 

optimization of fixed rotamer choice in MSD-sPR may help to improve the efficiency of 

sampling in some design problems, and can be recommended on this basis.   
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Table 3:  Multi-state design of 1GB1, a 60-member NMR ensemble of protein G   
 

Design Sizea Optb 
 

rc 
% correcte 

(f × 100) tf Sg 
25 MSD-FASTER 1 5.4 3.0 55 
 MSD-FASTER 5 4.8 2.9 60 
 MSD-FASTER rand 4.1 2.3 56 
      
  US/CPLd    
 MSD-MC/FASTER no 0.7 4.2 593 

Core 
+ 

Boundary 

 MSD-MC/FASTER yes 2.9 4.3 147 
  MSD-MC/Null yes 0.2 3.4 1712 
  MSD-MC/iBR yes 9.1 4.2 46 
       
   rc    

27 MSD-FASTER 1 5.6 2.8 50 
 MSD-FASTER 5 3.8 2.8 75 
 MSD-FASTER rand 1.0 2.6 261 
      
  US/CPLd    
 MSD-MC/FASTER no 0.0 4.2 — 

Surface 

 MSD-MC/FASTER yes 0.0 4.4 — 
  MSD-MC/Null yes 0.0 3.4 — 
  MSD-MC/iBR yes 0.0 4.3 — 

 

a. The number of variable positions in the design 
b. The optimization strategy that was used, as described in the text 
c. After optimizing the choice of fixed rotamer in all states during a step of sPR, the amino acid 

sequence to score by rotamer optimization is chosen randomly from the top r fixed rotamer 
configurations.  “rand” indicates that the fixed rotamer optimization step is skipped, and the amino 
acid sequence to score results from randomly chosen fixed rotamers in each state.   

d. Indicates whether or not uniform substitution sampling is applied in MSD-MC and a close 
position limit of 15 Å is applied during each rotamer optimization. 

e. The percentage of trajectories that found the optimal MSD solution, as defined in the text.  1000 
trajectories were computed for each design.  

f. The average time, in minutes, required to perform each trajectory using 60 processors 
g. The score S = t / f, as described in the text.  Smaller values are better, indicating that the optimal 

solution can be found more quickly. “—” indicates that S is undefined because f = 0.   
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Negative design of calmodulin 

 Calmodulin (CaM) is a second messenger protein that, in the presence of Ca2+, 

binds to different recognition sequences on various proteins with high affinity and low 

specificity.22 CaM variants with increased specificity have been engineered by 

performing single-state design on a crystal structure of CaM bound to a target peptide 

from smooth muscle myosin light chain kinase (smMLCK).23, 24 Experimentally, the 

variants bound the smMLCK peptide with similar affinity to wild type, and bound most 

other target peptides with weaker affinity than wild type.  Although those experiments 

showed that single-state design was sufficient to alter binding specificity in this system, 

we anticipate that more delicate control over such properties may be allowed through the 

use of explicit negative design.  To assess the utility of MSD-FASTER and MSD-MC for 

negative design, we attempted to design CaM sequences that would bind smMLCK and 

fail to bind another natural CaM target, CaM kinase I (CaMKI).  This sequence selection 

was performed via a two-state design with a smMLCK-CaM crystal structure as the 

positive design target state (1CDL),25 and a CaMKI-CaM crystal structure as the negative 

design target state (1MXE).26   

 Table 4 compares the application of SSD-FASTER, MSD-FASTER, and MSD-

MC to this simple negative formulation of negative design.  First, we evaluated the 

previously published technique for implicit computational negative design.  In this case, 

we applied SSD-FASTER to the positive design target state only, rescored the resulting 

best sequence against the negative design target state by rotamer optimization, and 

combined these two energies into an overall score using equation 5.  These calculations 
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indicate a partial clash when the SSD-optimal sequence is threaded on the negative 

design target state, and a predicted increase in binding specificity.  

 As with the protein G NMR ensemble calculations, we dispensed with the 

evaluation of each rotamer optimization routine in the context of MSD-FASTER, and 

relied on FASTER only.  Furthermore, we again tested the fixed rotamer selection 

schemes during MSD-sPR corresponding to r = 1, r = 5, and r = rand.   

Interestingly, all three techniques found the same best-scoring sequence in 15–

20% of their trajectories, and all three incurred roughly the same amount of 

computational expense.   According to the simulations, this sequence is destabilized by 

only 0.4 kcal/mol in the context of the positive design target state compared to the 

optimal sequence for that state, and is predicted to clash more significantly when 

threaded on the negative design target than the sequence found using SSD-FASTER 

alone.  The similarity between the results and performance of the three implementations 

of MSD-FASTER/FASTER tested here inspires confidence that the utility of MSD-

FASTER does not hinge on the particulars of the scheme used to choose rotamers of the 

fixed amino acid type during MSD-sPR.   

 We also tested the same set of formulations for MSD-MC as we did for the 1GB1 

designs described above, in an attempt to find one that would compare favorably to 

MSD-FASTER for explicit negative design (Table 4). Despite our best efforts, and even 

with substantially more computational time devoted to the problem, no version of MSD-

MC was able to find the solution produced by MSD-FASTER even once.  Furthermore, 

no MSD-MC calculation converged on any particular consensus solution, indicating that 

either much longer simulation times or a much better algorithm formulation would be 
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required for a user to have confidence in the results produced by MSD-MC for this 

design problem.  The best solutions that were found using MSD-MC all exhibited 

destabilization in the context of the positive design target state in addition to several 

clashes in the negative design target state; however, only extensive experimental 

validation will conclusively show whether these differences in simulation energy are 

meaningful in the context of the potential functions and rigid structural models we have 

used here.  To the extent that predicted clashes correlate with destabilization of the 

negative design target state, both MSD algorithms are expected to be more useful than 

single-state design for the explicit manipulation of specificity.  Based on our results, 

MSD-FASTER should be preferred over MSD-MC due to the higher efficiency with 

which it is able to discover favorable sequences and the greater confidence inspired by its 

ability to repeatedly discover the optimal solution. 
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Table 4: Explicit negative design to increase the binding specificity of calmodulin 

 

Opta 
 
 

% correctd 

(f × 100) te ΔEP
f ΔEN

g σh 
 

Ni 
SSD-FASTER  0.0 0.9 0.0 37.6 -1.5 2 

        
 rb       

MSD-FASTER/FASTER 1 18.5 13.9 0.4 54.4 -1.8 0 
MSD-FASTER/FASTER 5 19.5 13.4 0.4 54.4 -1.8 0 
MSD-FASTER/FASTER rand 15.1 13.7 0.4 54.4 -1.8 0 

        
 US/CPLc       

MSD-MC/FASTER no 0.0 24.1 4.2 92.0 0.5 6 
MSD-MC/FASTER yes 0.0 27.3 4.0 110.6 -0.4 2 

MSD-MC/Null yes 0.0 14.1 6.0 100.2 2.0 6 
MSD-MC/iBR yes 0.0 15.2 5.7 139.8 0.1 6 

 

a. The optimization strategy that was used, as described in the text.  In SSD-FASTER, sequences 
were optimized in the context of the positive design target only, and then rescored against both 
targets.  

b. After optimizing the choice of fixed rotamer in all states during a step of sPR, the amino acid 
sequence to score by rotamer optimization is chosen randomly from the top r fixed rotamer 
configurations.  “rand” indicates that the fixed rotamer optimization step is skipped, and the amino 
acid sequence to score results from randomly chosen rotamers of the fixed amino acid type in each 
state.   

c. Indicates whether or not uniform substitution sampling is applied for MSD-MC and a close 
position limit of 15 Å is applied during each rotamer optimization.   

d. The percentage of trajectories that found the optimal MSD solution, as defined in the text. 1000 
trajectories were performed for each MSD calculation, and 6400 were performed for the SSD-
FASTER calculation. 

e. The average time, in minutes, required to perform each trajectory using 2 processors (MSD), or 1 
processor (SSD) 

f. The excess energy of the best sequence threaded on the positive design target (equation 6) 
g. The excess energy of the best sequence threaded on the negative design target (equation 6).  The 

pairwise energies that are summed to yield this value are each capped at 50 kcal/mol.   
h. The overall score of the best sequence found (equation 5) 
i. The number of amino acid differences between this sequence and the best designed sequence 

determined using MSD-FASTER 
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Conclusions 

 We have presented implementation details of a new optimization algorithm for 

multi-state protein design based on FASTER, determined acceptable parameters for its 

use, and compared its performance to a multi-state implementation of Monte Carlo.  

Accurate scoring of sequences suggested by the MSD algorithms is required for efficient 

multi-state optimization; rotamer optimization routines for side-chain placement based on 

MC, FASTER, and iBR can all provide acceptable performance.  Our results indicate that 

both MSD algorithms can find favorable sequences in realistic test cases for positive and 

negative design.  Both algorithms can accommodate design problems with many states; 

even a 60-member NMR ensemble was designed without difficulty.  In our hands, MSD-

MC scales poorly compared to MSD-FASTER as the complexity of the design problem 

increases; the observed difference is much more pronounced than what has been reported 

for the single-state versions of these algorithms.9  Due to this effect, the efficiency and 

consistency of MSD-FASTER was better than MSD-MC in every class of design 

problem we tested.  In most cases, MSD-MC could not ever find the low-energy 

consensus solutions produced by MSD-FASTER.  Given that the evaluation of each 

sequence is relatively time-consuming in MSD, MSD-FASTER likely performs better 

because it tends to make multiple substitutions simultaneously, and because substitutions 

are selected for scoring based on energetic considerations rather than randomly.   

Although the general approach to multi-state design used by these MSD 

algorithms has met with several experimental successes already,15, 17, 18 rigorous 

evaluation of energy functions and multi-state scoring functions will be required to prove 
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and improve the usefulness of this methodology.  Realistic design procedures based on 

the explicit modeling of many native and non-native conformational states cannot be 

implemented without efficient optimization techniques to drive them.  We hope that the 

greater optimization power of MSD-FASTER will help to accelerate progress in this area 

via its improved speed and accuracy compared to alternative methods.   

 

Materials and methods 

Design parameters: single-state design test cases 

The energy functions and designed positions used for the single-state design 

problems were as previously described.9  

For rotamer optmization, four of the weak RO algorithms (Null, MC, iBR, and 

FASTER) were paired with a strong rotamer optimizer utilizing two trajectories of 

FASTER with a maximum of 5 rounds of iBR and 3 rounds of sPR.  When DEE was 

used as the weak rotamer optimizer, it was also used as the strong rotamer optimizer, as 

explained above.  For the weak RO algorithms iBR and FASTER, the maximum number 

of nonproductive iBR rounds was 5.  For FASTER, the iBR pass was followed by exactly 

one round of sPR. For those sequences for which DEE failed to converge, the strong 

FASTER rotamer optimization routine described above was automatically employed to 

find a reasonable approximate solution.  The simulated annealing regimen for MC when 

used for weak RO comprised 1 cycle of 2.0×104 steps with a high temperature of 400 K 

and a low temperature of 1 K.    

In MSD-FASTER, the FASTER parameters for sequence selection were: 

maximum nonproductive rounds in iBR, 5, maximum rounds in sPR, 5, and number of 
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relaxing positions in each step of sPR, 10.9  In every MSD-MC calculation, the high and 

low temperatures for sequence selection were also set to 400 K and 1 K, respectively.  

The number of cycles and steps of MSD-MC was set in each calculation so that total time 

used by MSD-FASTER and MSD-MC would be comparable. The following simulated 

annealing schedules were used for sequence selection in each algorithm combination: 

MSD-MC/Null, 10 cycles of 1.0 × 106 steps; MSD-MC/MC, 1 cycle of 2.5 × 104 steps; 

MSD-MC/iBR, 1 cycle of 1.0 × 105 steps; MSD-MC/FASTER, 1 cycle of 1.5 × 104 steps. 

 

Design parameters: 1GB1 

 The 1GB1 ensemble of protein G20 was prepared and designed as follows.  

Hydrogens were removed from each ensemble member and added back in optimized 

positions using REDUCE.27 Each structure was then standardized via 50 steps of 

conjugate-gradient minimization with the DREIDING force field.28 All positions were 

classified as core, boundary, or surface as described previously1 based on the coordinates 

of the crystal structure (1PGA).29  The core+boundary design comprised positions 1, 3, 5, 

7, 11, 12, 16, 18, 20, 23, 25, 26, 27, 29, 30, 33, 34, 37, 39, 43, 45, 50, 52, 54, and 56; the 

surface design comprised positions 2, 4, 6, 8, 10, 13, 15, 17, 19, 21, 22, 24, 28, 31, 32, 

35, 36, 40, 42, 44, 46, 47, 48, 49, 51, 53, and 55.  In the core+boundary design, the amino 

acid types Ala, Val, Leu, Ile, Phe, Tyr, and Trp were allowed at each designed core 

position; Ala, Val, Leu, Ile, Phe, Tyr, Trp, Ser, Thr, Asn, Gln, Asp, Glu, His, Lys, and 

Arg were allowed.  In the surface design, Ala, Ser, Thr, Asn, Gln, Asp, Glu, His, Lys, and 

Arg were allowed.  For each design, we used rotamers from the Dunbrack backbone-

dependent rotamer library.30  There were an average of 3634 total rotamers per state with 
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rotamer/template energies better than 20 kcal/mol for the core+boundary design, and 

5617 for the surface design.  Pairwise energies were computed using energy functions as 

previously described,7 except the polar hydrogen burial term was omitted. 

For the core+boundary design, the following parameters were used for each 

MSD-MC algorithm combination: MSD-MC/FASTER (no US/CPL), 1 cycle of 2.0 × 104 

steps; MSD-MC/FASTER, 1 cycle of 3.5 × 104 steps; MSD-MC/Null, 1 cycle of 5.0 × 

105 steps; MSD-MC/iBR, 1 cycle of 1.0 × 105 steps. 

 For the surface design, the following parameters were used: MSD-MC/FASTER 

(no US/CPL), 1 cycle of 6.0 × 103 steps; MSD-MC/FASTER, 1 cycle of 1.3 × 104 steps; 

MSD-MC/Null, 1 cycle of 5.0 × 105 steps; MSD-MC/iBR, 1 cycle of 6.5 × 104 steps.  

The number of MSD-MC steps in each case was chosen to make the average time 

per trajectory similar to MSD-FASTER.  Equation 4 was used with kT = 300 kcal/mol to 

combine the energies from all 60 ensemble members into overall scores. 

 

Design parameters: CaM 

 The two CaM structures were prepared and minimized as described above for the 

1GB1 structures.  Chains B and F were used from the 1CDL structure and chains A and E 

were used from the 1MXE structure.  The amino acid types Ala, Val, Leu, Ile, Phe, Tyr, 

Trp, Met, and Glu were allowed at each of the following designed positions on the CaM 

chain: 7, 8, 11, 14, 15, 28, 32, 35, 47, 51, 64, 67, 68, 80, 84, 87, 88, 101, 104, 105, 108, 

120, 124, 140, and 141.  The 19 positions of the smMLCK peptide in the positive design 

state and the 25 positions of the CaMKI peptide in the negative design state were allowed 

to vary side-chain conformation but not amino acid identity.  Side-chain conformations at 
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the variable positions were from the Dunbrack backbone-dependent rotamer library with 

expansions of ±1 standard deviation about χ1 and χ2.  The same energy functions were 

used to compute pairwise energies as for the 1GB1 designs described above.   For the 

multi-state design calculations, all rotamer-backbone and rotamer-rotamer energies on the 

negative design target state were capped at 50 kcal/mol.  To compute σ during the 

optimizations, equation 5 was used with W = 0.04.   The single-state design optimizations 

were performed as described,9 without the initial elimination of rotamers using DEE.  

 The following parameters were used for each MSD-MC algorithm combination: 

MSD-MC/FASTER (no US/CPL), 1 cycle of 2.0 × 103 steps; MSD-MC/FASTER, 1 

cycle of 6.0 × 103 steps; MSD-MC/Null, 25 cycles of 1.0 × 106 steps; MSD-MC/iBR, 1 

cycle of 3.0 × 104 steps. 
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Abstract 

 The stability, activity, and solubility of a protein sequence are determined by a 

delicate balance of molecular interactions in a wide variety of conformational states, 

including competing states and native conformational states.  Even so, most 

computational protein design methods model sequences in the context of a single 

conformation representing the native state.  Despite the potential for improved simulation 

accuracy when the native state is represented by an ensemble of related structures, such 

calculations have not been attempted due to the lack of sufficiently powerful optimization 

algorithms for multi-state design.  Here, we have applied our multi-state design algorithm 

to study the potential utility of various forms of input structural data for design.   

To facilitate this analysis, we developed new methods for the design and high-

throughput stability determination of combinatorial mutation libraries based on protein 

design calculations.  The application of these methods to the core design of a small model 

system produced many variants with improved thermodynamic stability, and showed that 

multi-state design methods can be applied to large structural ensembles without requiring 

the use of different rotamer libraries, energy functions, or design strategies.  Stabilized 

variants were found in libraries based on each type of structural data we tested.  Our 

library design method produced degenerate codon libraries that represented the 

underlying design calculations, and exhaustive screening of these libraries helped to 

clarify several sources of error in our designs that would have otherwise been difficult to 

ascertain.   

The complete lack of correlation between our experimental and simulated stability 

values shows clearly that a design procedure need not reproduce experimental data 



 82 

directly to generate many successful variants.  This surprising result suggests a potential 

new direction for the improvement of protein design technology.   
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Introduction 

 During the past two decades, protein-engineering efforts based on directed 

evolution have met with considerable success.1–3  In tandem, structure-based 

computational protein design (CPD) methods have been developed to allow screening for 

desirable sequences to be performed in silico.4–6 Despite a number of high-profile results 

that demonstrate the potential of CPD,7–14 the routine computational design of functional 

proteins remains elusive.  Thus, many current efforts focus on the improvement of CPD 

methodology or on the synergistic application of CPD with experimental high-throughput 

screening or selection.15  These lines of inquiry need not be orthogonal; the 

computational design and experimental screening of mutant libraries can facilitate a more 

thorough evaluation of CPD than studies that focus on the comparison of individual 

designed sequences.   

Here, we have applied this type of hybrid approach to investigate the degree to 

which X-ray crystallographic structures, NMR solution structures, and ensembles derived 

from molecular dynamics simulations can serve as useful sources of structural 

information for CPD.  This study was made possible by the development of new methods 

for the computational design and high-throughput experimental stability determination of 

combinatorial protein libraries.  The results we report here provide simultaneous 

experimental validation for (1) the application of multi-state protein design methods to 

large conformational ensembles, (2) the transformation of arbitrary CPD results into 

combinatorial mutation libraries, and (3) the experimental stability determination of these 
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libraries by high-throughput gene assembly, protein expression, purification, and 

screening.      

Our work here was motivated by a desire to address one of the major 

approximations of CPD: the reliance on a single, rigid main-chain conformation.  

Although the stability, solubility, and activity of a protein depend on the relative 

energetic contributions of many conformational states, including ensembles of native, 

unfolded, and aggregated structures,16 most CPD methods evaluate sequences based on 

their energies in the context of one fixed backbone structure.  This simplification has 

made design results undesirably sensitive to slight changes in main-chain and side-chain 

conformation, and has made difficult the selection of sequences with amino acid 

composition similar to naturally occurring protein.  These issues have been approached 

via the use of high-resolution structural templates, expanded rotamer libraries,17, 18 energy 

functions with softened repulsive terms,11, 19, 20 iteration between structural refinement 

and sequence design,11, 21 and composition-based reference energies.11, 22  Although these 

strategies can help to mitigate the impact of the fixed-backbone approximation, they do 

not address the fundamental reality that protein fitness depends on a diverse range of 

conformational states.   

In a handful of cases, multi-state design (MSD) procedures have been used to find 

sequences that simultaneously stabilize or destabilize a combination of a few different 

conformational states.23–25  However, MSD techniques have not yet been applied to 

ensembles with many conformational states that might better reflect the flexibility of real 

proteins.  The degree to which various energy functions, rotamer libraries, and structural 

templates of single-state design (SSD) might be appropriate for this type of MSD 
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calculation is heretofore unknown.  We recently developed a framework for MSD that 

allows for efficient sequence optimization given hundreds of conformational states.  

Here, we have applied this framework to test the applicability of current CPD methods to 

large structural ensembles, and to investigate whether the use of such ensembles might 

result in the selection of more desirable sequences by CPD.   

With limited exceptions,26 a unique native state with at least marginal stability is 

required for protein function as we understand it today.  Accordingly, the most basic goal 

of CPD has been to optimize interactions between amino acids side chains to promote 

thermodynamic stability of the native state. Unfortunately, the experimental validation of 

a new design procedure on this basis is often beset with uncertainty. Standard methods 

for the measurement of protein stability are too laborious to allow the testing of more 

than a few designed variants, and the top-scoring sequence produced by a new design 

procedure does not (yet) sufficiently reflect its general utility.   To facilitate the 

experimental evaluation of larger numbers of designed sequences, higher throughput is 

required in the assembly of genes, the expression and purification of proteins, and the 

measurement of stabilities.   Fortunately, recent progress in these areas has allowed us to 

construct an efficient pipeline for the basic evaluation of new procedures in CPD.  Gene 

libraries assembled from degenerate oligonucleotides, a frameshift selection scheme that 

reduces contamination by erroneous genes,27 and economical sequence verification make 

tenable the production of numerous specific designed genes.  Commercial microtiter 

plates for the growth of expression cultures and the purification of hexahistidine-tagged 

proteins allow sufficiently pure protein to be produced easily from these genes.  Finally, 

liquid-handling robotics28 expedites the preparation of a chemical denaturation series for 
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each protein in 96-well format, and the fraction of protein unfolded in each well is 

assayed in a plate reader measuring tryptophan fluorescence.29  The integration of these 

technologies has allowed us to assess the stability of hundreds of designed protein 

variants with minimal experimenter intervention and limited incremental expense.  

Given several design procedures to evaluate and a high-throughput experimental 

assay, we needed a general and rigorous method to choose a limited number of 

representative sequences to test from each design. Fortunately, structure-based 

computational protein design methods have been enlisted previously to focus high-

throughput screening and selection on desirable subsets of sequence space.  For example, 

CPD can be used to help identify positions amenable to site-saturation mutagenesis30 and 

site-directed recombination.31, 32  When a protein engineering effort is intended to help 

evaluate CPD procedures, as in this case, designed combinatorial mutation libraries are 

more appropriate because they reflect more strongly the sequence preferences of CPD.  

Although several useful computational protein library design methods have been 

developed, none reported so far takes directly into account CPD energies, allows control 

over library size and possible sets of amino acids, and eschews heuristics that can 

introduce bias into the libraries it produces.33–36  So that our experimental results might 

better reflect the results of the underlying CPD calculations, we developed a new library 

design procedure, called Combinatorial Libraries Emphasizing And Reflecting Scored 

Sequences (CLEARSS), which satisfies all of these criteria.  

 We used standard single-state design (SSD) and MSD to redesign the core of the 

small, stable domain Gβ1 based on several sources of structural information, including a 

crystal structure, an NMR structure, and MD simulations.  Our efforts were motivated by 
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a curiosity about the relative merits of different sources of structural data for design, and 

the hypothesis that use of a structural ensemble might help to correct for design failures 

observed in SSD.  Because the imperfect nature of CPD limits the conclusions that can be 

drawn from a comparison of single sequences, we developed the CLEARSS algorithm to 

make combinatorial libraries based on the lists of scored sequences produced by CPD.  

We applied this algorithm to the results of our design calculations, and assayed the 

designed libraries using a new protocol for the expression, purification, and stability 

assessment of protein libraries with high throughput.  

 We found that all three sources of structural data resulted in designed libraries 

with multiple stabilized variants.  The designed libraries based on an NMR ensemble 

were extremely similar, whether a single representative structure or all 60 ensemble 

members were used for modeling.  The most promising results by far were achieved 

using a constrained 128-member MD-ensemble, which produced a designed library with 

no significantly destabilized and many stabilized variants.  Despite the apparent success 

of this design, there was no correlation observed between the simulation energies and the 

experimental stabilities of any of these variants.  

Our results suggest that the basic principles of CPD extend beyond the design of 

single sequences to the design of combinatorial libraries, and that the rigorous screening 

of such libraries can help to pinpoint sources of error in a design procedure.  They show 

that MSD methods are applicable to large structural ensembles when used with standard 

rotamer libraries and energy functions, inspiring optimism about more ambitious future 

applications for MSD.  They also hint that the use of structural ensembles could help to 

alleviate problems that occur when targeting a single, fixed input structure. Furthermore, 
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they illustrate clearly that the success of CPD does not hinge on its ability to directly 

correlate simulation energies with experimental measures of fitness.  This surprising 

property of CPD may suggest a new possible direction of inquiry for the improvement of 

CPD.     
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Results and discussion 

Designed libraries  

To simplify the validation of our multi-state design and combinatorial library 

design methods, we applied them to a previously studied set of core positions (Figure 1) 

in the small model system Gβ1, and relied on a set of energy functions that previously 

found stabilized variants based on this design.19 Given the requirements for purified 

protein of our stability assay, we chose to design and screen a 24-member library based 

on each of the following sources of structural information: a crystal structure (xtal-1), an 

NMR-constrained minimized average (NMR-1), an NMR ensemble (NMR-60), a 

constrained MD ensemble (cMD-128), and an unconstrained MD ensemble (uMD-128).   

The sequence of steps used to design the combinatorial libraries we tested 

experimentally is depicted in Figure 2.  First, the standard design procedure was applied 

to each structural input, and optimization was performed with SSD-FASTER or MSD-

FASTER to give a list of amino acid sequences and their CPD energies for each design.  

The CLEARSS library design algorithm was then applied to each list of sequences to 

give a rank-ordered list of combinatorial mutation libraries.  All amino acid sequences in 

each of the top 20 CLEARSS libraries were instantiated and evaluated by rotamer 

optimization. The CLEARSS library to test experimentally for each structural input was 

chosen by objective criteria based on the energies of the rescored sequences, as described 

in the methods section.  
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All five designed libraries comprise relatively conservative sets of mutations 

away from the wild-type sequence (Table 1).  All libraries other than uMD-128 share 

many characteristics in common.  Each of these libraries chose only the wild-type amino 

acid at positions A20, A26, F30, and A34. Every member of each of these four libraries 

contained the single-mutant Y3F, which previous experiments have shown to be well 

tolerated by the structure.  These four libraries all allowed the wild-type amino acid at 

every other position, and all contain the most stable Gβ1 core variant previously 

characterized (Y3F+L7I+V39I). 

 The two NMR libraries were extremely similar to each other: both chose the 

amino acids FILV at position 52, and directed the remaining diversity to positions 7 and  

39.  In contrast, xtal-1 and cMD-128 allowed only the wild-type Phe at position 52, and 

instead allocated diversity towards positions 7, 39, and 54.  xtal-1 differs from cMD-128 

in that it gave up L7F and V39L to allow L5I. The unconstrained MD ensemble library 

uMD-128 was the least conservative, specifying a size reversal of two nearby residues via 

mutations L5A and A34F, and diversity at residue 30, a position untouched in the other 

libraries.   
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Figure 1:  The core residues of Gβ1 designed in this study.   Each of these positions 
was allowed to assume various rotamers of the hydrophobic amino acids Ala, Val, Ile, 
Leu, Phe, Tyr, and Trp.  Position Trp43 (not shown) was additionally allowed to change 
rotamer but not amino acid type.  All other side chains and the main chain were fixed in 
the input conformation for the state being modeled in each case.   
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Figure 2: The general scheme used to design combinatorial mutation libraries based 
on computational protein design calculations.  A line of boxes indicates a protein 
sequence; each box represents a position in the protein chain.  Different colored boxes 
represent different amino acids.  The set of sequences on the far right represent the 
expansion of a particular combinatorial library into the set of sequences it represents.  
The energies of the sequences in the expansions are used to decide which combinatorial 
library to test experimentally, as described in the Methods section. 
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Table 1: Combinatorial libraries designed from different sources of structural 
information.   xtal-1: the designed library based on single-state design of the crystal 
structure.  NMR-1: the library based on single-state design of the constrained minimized 
average NMR solution structure.  NMR-60:  the library based on multi-state design of the 
60-member NMR structural ensemble.  cMD-128: the library based on multi-state design 
of the constrained molecular dynamics ensemble.  uMD-128: the library based on multi-
state design of the unconstrained molecular dynamics simulation.   

Residue WT xtal-1 NMR-1 NMR-60  cMD-128 uMD-128 

3 Y F F F F F 
5 L IL L L L A 
7 L ILV ILV IL FILV FL 
20 A A A A A A 
26 A A A A A A 
30 F F F F F FIL 
34 A A A A A F 
39 V IV IV ILV ILV IL 
52 F F FILV FILV F F 
54 V IV V V IV AV 
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Experimental characterization of designed libraries 

Each library was constructed using a modification of the traditional gene 

assembly protocol37 that minimizes oligonucleotide overlap.  These changes were 

intended to limit oligonucleotide costs and allow degenerate nucleotides to be placed in 

non-overlapping regions, limiting library composition biases produced by differential 

annealing effects.  Expensive and time-consuming oligonucleotide purification was 

omitted; instead, a frameshift selection plasmid pInSALect was applied to correct for 

errors introduced during oligonucleotide synthesis and PCR assembly.27  Over-

sequencing (4x) of a 24-member library typically gave 85% correctly inserted, non-

mutated sequences (see supplemental materials), out of which ~ 80% of each desired 

library could be recovered. Missing library members were generated by standard quick-

change mutagensis.   

The libraries were then expressed, purified, and denatured as described in the 

methods.  Control experiments verifying the accuracy and precision of the microtiter 

plate-based stability assay showed excellent agreement with denaturation experiments 

monitored by circular dichroism (see supplemental materials).  Future improvements in 

the throughput of stability determination can come from the usage of robotics platforms 

for variant construction, colony picking, and protein purification.  Shifting the focus from 

sequencing towards stability screening could quickly produce information about the best 

mutants, as is common in directed evolution protocols.  However, since a comprehensive 

screening of each designed library was desired, a lower level of throughput was tolerated. 
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Experimental screening of the xtal-1 library (Figure 3) showed two distinct sets of 

variants.  The 12 library members with wild-type Leu at position 5 all exhibited stabilities 

similar to or better than the wild-type sequence, while the 12 with Ile at position 5 were 

all significantly destabilized.  Screening of the NMR-based libraries (Figures 4 and 5) 

showed a similar dichotomy.  In each case, the 6 library members with the wild-type Phe 

at position 52 exhibited wild-type-like stability or better. The remaining 18 variants from 

each NMR-based library were highly destabilized, and many lacked enough of a 

pretransition to be fit to the two-state unfolding model.   

Evaluation of the MD libraries indicated that all 24 variants from the constrained 

library, cMD-128, had stability similar to the wild type or better (Figure 6).  In contrast, 

all 24 variants from the uMD-128 library failed to produce any significant change in 

fluorescence signal across the denaturation series, and thus may be unfolded or 

structurally perturbed, as discussed below. A comparison of all five experimentally 

characterized libraries (Figure 7) indicates clearly that the cMD-128 design successfully 

produced a variety of stabilized mutants, whereas every other designed library specified 

at least one problematic substitution that rendered many of its sequences destabilized or 

otherwise unlike the wild type.    
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Figure 3: Fraction-unfolded curves derived from the stability determination of 
library xtal-1.    The dashed black curve denotes variant Y3F, which is the closest library 
member to the wild type in terms of sequence, and which is known to have a stability 
very similar to the wild type.  Red curves denote variants with Cm > 2.0 M, and 
correspond to all variants with Leu at position 5.  Blue curves denote variants with Cm < 
2.0 M, and correspond to variants with Ile at position 5.  Not pictured:  variant 
Y3F+L5I+L7I, which did not give a signal that could be fit to a two-state unfolding 
model.   
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Figure 4: Fraction-unfolded curves derived from the stability determination of 
library NMR-1.    The dashed black curve denotes variant Y3F, which is the closest 
library member to the wild type in terms of sequence, and which is known to have a 
stability very similar to the wild type.  Red curves denote variants with Cm > 2.0 M, and 
correspond to all variants with Phe at position 52.  Blue curves all represent variants with 
Cm < 2.0 M, which lack Phe at position 52, and have Val at position 39.  Not pictured:  13 
variants that lack Phe at position 52.   
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Figure 5: Fraction-unfolded curves derived from the stability determination of 
library NMR-60.    The dashed black curve denotes variant Y3F, which is the closest 
library member to the wild type in terms of sequence, and which is known to have a 
stability very similar to the wild type.  Red curves denote variants with Cm > 2.0 M, and 
correspond to all variants with Phe at position 52.  Blue curves all represent variants with 
Cm < 2.0 M, which lack Phe at position 52, and have Val at position 39.  Not pictured:  14 
variants that lack Phe at position 52. 
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Figure 6:  Fraction-unfolded curves derived from the stability determination of 
library cMD-128.    The dashed black curve denotes variant Y3F, which is the closest 
library member to the wild type in terms of sequence, and which is known to have a 
stability very similar to the wild type.  Red curves denote variants with Cm > 2.0 M, and 
correspond to all 24 variants in the library.   
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Figure 7:  Each library partitioned into three stability groups.   The colors match 
those in Figures 3–6: red (stable, Cm > 2.0), blue (destabilized, Cm < 2.0 M), grey (did not 
give a signal that could be fit to a 2-state model; not pictured in Figures 3–6).  
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Origin of destabilizing mutations 

 With experimental screening results in hand, we can return to the calculations that 

inspired them and ask why mutations such as L5I, F52ILV, and A34F were chosen by the 

design procedure. These mutations were all present in high-scoring sequences from the 

original design calculations, and thus are not artifacts introduced by the library design 

process.   

 The selection of the amino acids FILV at position Phe52 in the two NMR-based 

libraries resulted in three quarters of each library being significantly destabilized.  In the 

context of the NMR structures, no Phe rotamer in the library was able to fit perfectly at 

position 52, encouraging the selection of smaller amino acids.  If the set of rotamers at 

this position is supplemented with the observed rotamer in each structure, the design 

chooses to allocate diversity to positions 7 and 39, resulting in libraries similar to xtal-1.  

This result highlights how dramatically the rotameric approximation can influence the 

results of a design.  It suggests that, at the very least, rotamers optimized for the wild-

type sequence should be included when the goal is to find particular desirable sequences.  

In this case, we omitted the structurally observed rotamer at each position in order to 

limit the significant bias towards the wild-type sequence that these rotamers tend to 

cause.  In the context of a real protein engineering project, this choice would have 

considerably reduced our chances of success.   

The L5I mutation, which caused half of the xtal-1 library members to be 

destabilized relative to the wild-type sequence, may have been selected due to a failure of 

the softened repulsive contact potential that is used to counteract unrealistic rigidity 

introduced by the CPD model.    The γ methyl group of Ile5 bumps into a Thr residue on 



 102 

an adjacent β strand and is scored as a serious clash using unscaled van der Waals radii, 

but appears innocuous with the atomic radius scaling factor of α = 0.9 that we used for 

the designs evaluated here. Repeating the design calculations with radii scaled by 

intermediate values such as 0.925 and 0.95 prevents Ile from being chosen at position 5, 

but also increases the frequency with which smaller residues are chosen at position 

Phe52.   Interestingly, the recommendation of α = 0.9 is derived from previous 

experiments based on the same set of Gβ1 core positions that were designed here.  The 

earlier work drew conclusions based only on the best-scoring sequences produced by the 

design calculations, and found no difference between scaling atomic radii by 0.9 or 

0.95.19   Our results here indicate that the quality of sequences produced by the design 

procedure varies significantly with values of α between 0.9 and 0.95 when more 

sequences are taken into account.  Given this, a more rigorous investigation of the most 

appropriate α value for design seems both tenable and warranted.  

To analyze the uMD-128 data, it is important to note that our stability assay 

reports on the environment of the single Trp residue of Gβ1. Changes in packing caused 

by substitutions at other positions could alter the native-state environment of Trp43 

enough to flip its side chain out into solution or change its fluorescence properties, 

crippling our ability to monitor unfolding by fluorescence.  This interpretation seems 

unlikely for the destabilized members of the crystal structure and NMR libraries, for 

which a partial unfolding transition is clearly indicated by the raw data.  However, the 

members of the uMD-128 library fail to show even a hint of such a transition, rendering 

the validity of our assay more suspect in this case.   
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Interestingly, others have investigated a 5-fold core variant of Gβ1 that bears 

substitutions similar to those in our uMD-128 library, including the A34F mutation.  

Structural characterization of this variant by NMR and X-ray crystallography indicated a 

domain-swapped tetrameric structure; the fluorescence emission maximum of this 

sequence was blue-shifted by almost 20 nm.38  Related variants with the A34F 

substitution, including the A34F single mutant of the wild-type sequence, have also been 

shown to assume domain-swapped or side-by-side dimeric conformations in solution.39, 40  

Given these reports, the variants in our uMD-128 library, which all bear the A34F 

mutation, might also plausibly assume one of these oligomeric conformations.  In this 

case, the library sequences could easily exhibit fluorescence emission spectra 

incompatible with our assay parameters, which were developed based on the 

characteristics of the wild-type sequence.    Ultimately, the structural features of the 

uMD-128 library are unknown without additional experimental characterization.  

However, the published investigations of Gβ1 variants with the A34F substitution 

suggest that our uMD-128 library sequences are likely to assume conformations other 

than those modeled in our design calculations.   

 

Influence of the designed library selection method 

 At this point, it is important to address the degree to which serendipity in 

designed library selection might affect the conclusions we may draw from our 

experiments.  The CLEARSS library design procedure was developed with an 

understanding that many different combinatorial libraries may similarly represent a given 

list of scored sequences.  Thus, its default mode of operation is to produce a list of the 
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top-scoring designed combinatorial libraries that satisfy all constraints, and to let the user 

choose between them.  In general, this choice might be influenced by chemical intuition 

or prior mutational data, and thus partially account for properties of the system that are 

not modeled during the design procedure.  To make our evaluation of input structural 

data sources as fair as possible, we chose to ignore such influences and apply an objective 

strategy based on the energies of the sequences in the libraries.  Nevertheless, we must 

ask how other reasonable libraries generated by CLEARSS would have fared in our 

experimental assay.   

Each of the top 20 designed libraries based on the NMR ensemble, as well as each 

based on the single average NMR structure, assigned smaller residues than the wild-type 

Phe to position 52.  The remaining diversity of each library was occupied by various 

combinations of the other mutations present in the xtal-1, NMR-1, and NMR-60 libraries 

we screened in this work.  It seems very likely, then, that the screening of any of the top 

NMR-based libraries from our designs would have resulted in stability data quite similar 

to that shown in Figures 4 and 5.  Similarly, all of the top 20 designed libraries based on 

the unconstrained MD ensemble contained mutations L5A and A34F, and would be 

expected to exhibit similar fluorescence characteristics to the library uMD-128 we tested 

here.   

A more interesting case is provided by the designs based on the crystal structure 

and constrained MD ensemble.  Our analysis of the libraries xtal-1 and cMD-128 

produced by these designs seems to indicate that cMD-128 was more successful, since a 

much greater fraction of its members were shown to be highly stable.   However, when 

the top 20 libraries from each design were inspected in aggregate, it became clear that 
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both designs had produced a variety of libraries with various expected properties.  The 

xtal-1 library and the cMD-128 library were each found in the top 20 libraries produced 

by both designs.  Furthermore, each design produced several libraries with diversity at 

position 52, like NMR-1 and NMR-60.  It seems clear that small changes to the 

constrained MD ensemble or to our energy functions might have reversed any potential 

conclusions about the usefulness of structural ensembles compared to single structures 

for the purposes of CPD.   

 

The nature of approximation in computational protein design 

 In addition to helping validate the use of multi-state and combinatorial library 

design methods for computational protein design, our experimental results also allowed 

some unexpected insight into protein design itself.  Plots of experimental stability versus 

simulation energy for the cMD-128 library (Figure 8) failed to yield any correlation, 

despite the apparent success of this design calculation.  Likewise, the design calculations 

for xtal-1 and the NMR libraries failed to predict the pronounced destabilizing effects of 

mutations L5I or F52L, even though these designs also found a variety of stabilized 

variants.  The design problem we chose is not simply too trivial for our purposes: the 

uMD-128 library and many previous reports attest to the myriad ways in which this 

system can be broken.19, 38–42  

With a multiplicity of approximate methods available for computing the relative 

stabilities of protein sequences, the difficulty of solving this problem generally and 

accurately is sometimes overlooked.  The stability of a sequence depends on the 

equilibrium between a relatively well-defined ensemble of native state conformations and 
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a vaguely defined ensemble of competing states.  Our ability to find the relevant low-

energy states is constrained by the vastness of protein conformational space and the 

extremely rugged energy landscape produced by our energy functions.   Amino acid 

substitutions alter this energy landscape unpredictably, limiting the utility for design of 

structural information gathered for individual sequences.  Current approaches tend to 

model native states at high resolution using whatever structures happen to be available, 

and account for competing states implicitly using statistical and heuristic terms.   

Such methods have been surprisingly effective, given the approximations they 

rely upon.   One perspective is that a CPD method is successful only to the extent that it 

can accurately predict or rank the stabilities of the variants it simulates, and that 

improvements in designed sequences will follow from improvements in ranking ability.43  

Accordingly, several groups have taken on large-scale forcefield parameterization efforts 

based on thermodynamic databases.44, 45 In our research group, a forcefield tuned to offer 

significantly improved correlation between simulated and experimental stability 

differences did not exhibit improved performance for combinatorial design methods that 

allow large jumps in sequence space.45  We can infer the same about the tuned forcefield 

of another group, given several reports of successful designs based on iterative one-by-

one design and none based on combinatorial design methods.46–50 The ability to 

reproduce experimental stability rankings is apparently not sufficient for accurate 

combinatorial protein design, at least in the range of ranking accuracy that has been 

achieved so far.  The results of our work here furthermore suggest that this property is not 

even necessary for effective design. 
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This perspective prompts a modified view of the factors that make structure-based 

protein design possible in the first place.    As discussed above, protein structures relax to 

accommodate mutations, and the computational difficulty of simulating these relaxations 

accurately has so far rendered intractable the stability ranking of sequence variants with 

many mutations.  Fortunately, this malleability also means that sequences chosen to fit 

into a rigid protein model, even using approximate energy functions, will likely be 

tolerated by whatever relaxed structure results from the mutations they contain.  In this 

way, the soft material properties of proteins impede the development of the quantitative 

protein design method we seek, but also make possible the more qualitative methods we 

can apply today.   
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Figure 8:  Correlation between simulation energy and experimental stability for the 
cMD-128 library.   No correlation was observed between the experimentally measured 
fitness of the sequences and simulation energies that were used to select them for 
experimental screening.   
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Conclusions 

  Here, we have reported the development of new methods for the design and 

stability screening of combinatorial libraries based on lists of scored sequences.  These 

methods were enlisted to test the application of multi-state design procedures to several 

structural ensembles, and to compare the resulting designs to those based on single 

structures.  Designed libraries gave multiple stabilized variants when based on a crystal 

structure, an MD trajectory from that crystal structure, an NMR ensemble, and a single 

structure derived from the NMR ensemble.  Our single-state and multi-state designs 

based on NMR data produced similar sets of libraries; likewise did those based on 

crystallographic data.  Although an MD-based library gave superlative results, we cannot 

definitively conclude that the use of a structural ensemble provides any particular 

advantage over a single high-resolution structure for the purposes of design.  

Nevertheless, this initial success seems intriguing and warrants additional study.  It seems 

clear that the energy functions and rotamer libraries developed for single-state modeling 

are equally applicable to the multi-state design of large structural ensembles.  This result 

has important ramifications for future methods in CPD: even if structural ensembles fail 

to prove useful in the modeling of native states, they are expected to be crucial in the 

accurate modeling of competing states, which are undoubtedly more diverse.  

 In addition to validating the idea of design based on large structural ensembles, 

our work has provided further support in favor of rigorously screening an area of 

sequence space discovered by simulation, and has helped in vetting our new, general 

method for library design.  For some designs that specified undesired destabilizing 

mutations, library screening suggested underlying causes for design failure that would not 
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have been apparent via the ad-hoc testing of individual sequences.  Because our library 

design procedure is specifically intended to faithfully represent its input scored sequence 

list, and is indifferent to the origin of the list, it should be more useful for the evaluation 

of new design procedures than its predecessors.    

 Finally, the observed lack of correlation between experimental and simulated 

stabilities in our relatively successful sets of designed sequences may suggest a modified 

approach to protein design.  Current design procedures seem to find stable sequences by 

selecting mutations that are likely to be accommodated by a relaxed version of the 

template structure, and not by accurately ranking the mutations relative to each other.  In 

this view of design, finding sequences that satisfy the native state is relatively easy, while 

deciding which sequences satisfy it best is considerably more difficult.   Given that 

stability is a function of nonnative states as much as native ones, the implication is that 

additional effort should be directed more toward eliminating sequences that can favorably 

assume competing states and less toward attempting to accurately predict which will best 

satisfy the native state.   Since the relevant competing states under nondenaturing 

conditions likely exhibit significant residual structure, their treatment will probably 

require more sophisticated techniques than the composition-based heuristic terms used 

today.  An interesting initial approach might be to perform multi-state design with an 

ensemble of native states as the positive design target and an ensemble of perturbed or 

expanded native states as the negative design target.  The hypothesis is that selecting 

sequences to satisfy the compact native state and to not satisfy an expanded native state 

would tend to promote the desired specificity of a well-folded protein.  Whether or not 

this type of strategy proves successful depends on the degree to which nonnative states 



 111 

influence free energies of folding in a sequence-dependent (rather than composition-

dependent) manner, and on the accuracy with which negative design can be performed 

against a computationally tractable set of competing states.  Ultimately, techniques for 

native-state structural refinement will be crucial in the improvement of variant ranking; 

such methods may profitably be applied to produce appropriate nonnative ensembles as 

well.  The next steps along the road to more accurate protein design thus include the 

development of methods for the construction and validation of useful nonnative 

ensembles, and the integration of structure refinement techniques with multi-state design 

methods.  The validation provided here for our multi-state design, library design, and 

high-throughput stability screening methods represents a significant step towards the 

development of future methods that live up to the initial promise of computational protein 

design.   
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Materials and methods 

Input structural data 

Input atomic coordinates for the β1 domain of Streptococcal protein G (Gβ1) 

were taken from the 2.2 Å crystal structure 1pga,51 the 60-member NMR structural 

ensemble 1gb1, and a constrained, minimized average structure generated from the 

ensemble 2gb1.52  Hydrogens (if any) were stripped from each structure, and new 

hydrogen positions were optimized along with side-chain amide and imidazolium group 

flips using REDUCE.53 Each structure was then standardized with 50 steps of conjugate 

gradient minimization using the DREIDING force field.54  An unconstrained 128-

member molecular dynamics (MD) ensemble was generated from the minimized crystal 

structure by running a 12.8 ps MD trajectory at 300 K using the DREIDING force field 

and saving the coordinates every 0.1 ps.  The constrained MD trajectory was generated 

by the same procedure, using an additional harmonic point restraint with a force constant 

of 100 kcal/mol/Å2 applied to keep Cα atoms near their initial positions.  Each MD 

snapshot was standardized as described above.  After standardization, the NMR, 

constrained MD, and unconstrained MD ensembles exhibited average pairwise main-

chain RMSDs of 0.25, 0.12, and 0.84 Å, respectively.   

 

Sequence Design Specifications and Energy Calculations 

In the sequence designs, ten core positions of Gβ1 (3, 5, 7, 20, 26, 30, 34, 39, 52, 

and 54), were allowed to assume any of the hydrophobic amino acids A, V, L, I, F, Y, 
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and W.  Tryptophan 43 was allowed to change conformation but not amino acid type, so 

that our fluorescence-based stability assay would not be compromised.   Allowed side-

chain conformations at the variable positions were taken from the Dunbrack backbone-

dependent rotamer library with expansions of ±1 standard deviation around χ1 and χ2.17 

To avoid bias toward the wild-type sequence, this set was not supplemented with the 

side-chain coordinates from the input structure, except at position 43.  All other side 

chains and the main chain were fixed in the input conformation.  Pairwise energies were 

computed for each structure or ensemble member using energy functions described 

previously,55, 56 with the polar hydrogen burial term omitted.  

 

Sequence optimization 

FASTER was used to find optimized sequences in the single-state design of the 

crystal structure and the NMR constrained minimized average.57  Multi-state sequence 

optimization of the NMR, unconstrained MD, and constrained MD ensembles was 

performed using a method similar to several that have been described.23, 25 These methods 

implement a combinatorial search through amino acid sequence space in which 

sequences are scored by performing rotamer optimization in the context of each state and 

these energies are combined to yield a single ensemble score.  Our implementation uses 

FASTER for both the search through amino acid sequence space and for the rotamer 

optimization on each state (Chapter 3). Here, the energies of a sequence in the context of 

several states were combined into a single score by computing the free energy of the 

ensemble system at 300 K: 

 



 114 

€ 

A = −kT log( e−E j / kT

j
∑ )  

where each Ej is the energy of the sequence when threaded on member j of the ensemble.  

 

Combinatorial library design 

To choose combinatorial sequence libraries for experimental screening, we used a 

new algorithm reported here (see supplementary material).  Given a list of scored 

sequences, a list of allowed sets of amino acids, and a range of desired library sizes, the 

method evaluates all possible combinations of sets of amino acids at different positions 

that lead to a library with a size in the desired range. Each position in each library is 

scored by summing the Boltzmann weights of the sequences in the list that contain a 

library-specified amino acid at that position.  The position scores are then summed to 

give an overall library score. Our algorithm is able to consider all possible libraries 

because it treats positions independently, and because it ignores amino acid sets that are 

unnecessarily large in the context of a given position. In this work, a temperature of 300 

K was used in the Boltzmann weighting, and the target library size was 24. We allowed 

only those sets of amino acids that can be specified by degenerate codons that do not 

include codons observed with low frequency in E. coli. 

 After applying this algorithm to the lists of sequences produced by the 

computational designs, we instantiated the 20 best-scoring libraries from each design and 

rescored all of the amino acid sequences in each library by rotamer optimization.   Each 

library we inspected contained the best-scoring sequence from the design it was based on, 

although this is not required by our method.  From each design, we chose for 
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experimental testing the library in the top 20 with the smallest energy spread between its 

best-scoring and worst-scoring sequence. 

 

Library construction, expression, and purification 

Oligonucleotides (desalted, Integrated DNA Technologies) ranging from 45 to 60 

bp containing ~ 18 bp overlapping segments were assembled via a modified Stemmer 

method37 using KOD Hot Start Polymerase (Novagen) to generate full-length 

streptococcal Gβ1 with an N terminal His6 tag.  Secondary structure content and 

annealing temperatures were verified by NUPACK.58, 59  The following procedure was 

repeated for each library constructed.  Oligonucleotides containing the desired single 

mutation or degenerate codon were swapped into the assembly mixture to generate the 

diversity of each library.  If a degenerate codon could not account for the desired residue 

diversity, equimolar ratios of applicable single mutation oligonucleotides were added to 

the assembly mixture.  Standard subcloning techniques were performed to insert the 

library into a frameshift selection plasmid (pInSALect),27 and after miniprepping the 

selected harvested colonies, the library was inserted into an expression plasmid 

(pET11a).  The library was transformed into BL21 Gold DE3 cells (Stratagene) by heat 

shock and colonies were picked into 96-well plates for plasmid miniprepping and 

sequencing (Agencourt Biosciences). Missing library members were generated by 

standard quick-change protocols.  Sequence-verified library members were pulled from 

replicated glycerol stocks and inoculated into 5 mL of Instant TB media (Novagen) in 24-

well plates. After overnight incubation at 37oC, cells were pelleted by centrifugation at 

5,000 x g for 20 min.  Pellets were freeze/thawed once and resuspended in lysis buffer 
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(50 mM NaPO4, 300 mM NaCl, 1x CelLytic B (Sigma-Aldrich), 2.5 mM imidazole, pH 

8) before another identical centrifugation step.  Cell lysates were loaded onto an 

equilibrated HIS-Select filter plate (Sigma-Aldrich), washed twice and eluted with buffer 

containing 250 mM imidazole, pH 8. 

 

Microtiter plate-based stability determination 

Appropriate amounts of 8 M GdmCl (Sigma-Aldrich), Milli-Q water, eluted 

protein, and 50 mM NaPO4 buffer, pH 6.5, were added to maintain a fixed volume in 

each well of 96-well Costar UV transparent flat bottom plates by a Freedom EVO liquid 

handling robot (Tecan).  Mutant proteins were subjected to a 12-point GdmCl gradient 

across the columns of the plate where each row contained a separate denaturation 

experiment.  Only twenty-seven 96-well plates were needed for all libraries, including 

duplicates.  The plates were equilibrated for at least one hour and shaken at 900 rpm on a 

microtiter plate shaker (Heidolph). 

Tryptophan fluorescence measurements were taken on a fluorescence plate reader 

(Tecan) with a plate stacker attachment.  Ideal parameters were empirically determined 

for wild-type Gβ1 and later used for every library assayed.  Excitation was performed at 

295 nm and emission measured at 341 nm with 10 nm bandwidths.  Data were fit as a 

two-state unfolding transition using the linear extrapolation method60 in Pylab.  The 

GdmCl concentration at the midpoint of denaturation, Cm, was estimated numerically 

based on the fraction-unfolded curve fit.  
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Supplementary information 

Combinatorial library design 

 Structure-based computational protein design (CPD) methods can be harnessed to 

expedite the engineering of proteins by directed evolution.  Several methods have been 

developed to allow the design of combinatorial mutation libraries to be informed by the 

results of CPD calculations (Figure 2). These approaches allow many specific variants 

chosen by CPD to be tested experimentally, and can facilitate assessment and 

improvement of the design procedure.  Hayes et al. described a method in which a list of 

low-energy sequences found by CPD is used to generate a table of frequencies for each 

amino acid type at each position, and then a frequency cutoff is applied to limit the 

library to only those amino acids found more frequently than the cutoff value at each 

position.33  Mena and Daugherty developed a similar procedure that produces libraries 

that include as many of the sequences in the CPD list as possible, while using only those 

sets of amino acids that can be encoded using degenerate codons.35 This feature helps to 

ensure that the resulting combinatorial gene libraries can be synthesized quickly and 

inexpensively.  Treynor et al. developed a computational library design method 

analogous to CPD in which interactions between sets of amino acids at various positions 

are scored, and this system of interactions is sampled using standard CPD optimization 

algorithms to find the most favorable degenerate codon sequence.36 

 

 In our view, a procedure that couples CPD to the design of combinatorial protein 

libraries should provide at least the following: 
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1. Explicit consideration of CPD energies.  Methods that ignore CPD energies lead 

to a weaker correspondence between the final libraries and the original design 

calculations, limiting the predictive capability of the library design procedure and 

making improvement of CPD through library screening and analysis more 

difficult. 

2. Direct specification of the range of library sizes that should be produced. In 

general, the desired library size will be a direct function of experimental screening 

capacity.  A method that does not allow the user to specify the library size will 

either require repeated manual rerunning in an attempt to generate the desired 

library size, or will waste potentially prohibitive amounts of compute time 

analyzing libraries with irrelevant sizes. 

3. Control over which sets of amino acids are allowed. Users with limited 

resources will usually prefer sets of amino acids that can be encoded using 

degenerate codons, because the resulting gene libraries can be synthesized in a 

single reaction with a relatively small number of inexpensive oligonucleotides.  

Those who can afford larger numbers of oligonucleotides and liquid-handling 

robots will be able to test libraries made with arbitrary sets of amino acids, which 

in general should more accurately reflect the sequence preferences of CPD 

calculations.   A robust library design method must therefore handle whatever sets 

of amino acids the user deems appropriate.   

4. Consideration of all user-allowed sets of amino acids at each position.   Some 

methods use heuristics to remove from consideration particular sets of amino 

acids at each position.  Although this process can reduce the computational cost of 
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the library design procedure, it can also result in the elimination of desirable 

libraries.   

 

 Because no previously reported algorithm that we know of satisfies all these 

criteria, we developed one that does.  The new algorithm takes several inputs: (1) a list of 

scored sequences; (2) a list of allowed sets of amino acids (e.g., those that can be encoded 

using degenerate codons); (3) a range of preferred library sizes; (4) a simulation 

temperature that controls the degree of preference for sequences with better scores; and, 

optionally, (5) sets of amino acids that are to be required or prohibited at particular 

positions.  Based on these inputs, the algorithm produces a list of combinatorial libraries 

that are ranked according to the degree to which they satisfy the input list of scored 

sequences. 

 The process used by the algorithm to produce a list of combinatorial libraries 

from a list of scored sequences can be conceptually separated into three steps (Figure 9).   

 Step A. Scan through the input list of scored sequences, and generate a “total 

diversity” library that includes, at each position, every amino acid seen in the list at that 

position.  This library represents the list optimally but ignores the user’s preferred library 

size and allowed sets of amino acids.  If later steps indicate that the size of the problem 

with this total diversity is insurmountably large, the user can request that the total 

diversity library be constructed from a subset of the input sequence list.  For example, 

given a list of length 10,000, the user might decide to consider only the best 1,000 

sequences in the list during this step.   
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 Step B. Enumerate all possible amino acid size configurations that lead to 

combinatorial libraries within the range of sizes specified by the user.  A size 

configuration is simply a specific number of amino acids at each position in the protein 

(e.g., 3 amino acids at position 1, 4 amino acids at position 2, etc.).  An amino acid set 

size need not be considered at a particular position if it is larger than the smallest set that 

includes all amino acids found at that position in the total diversity library.  This greatly 

reduces the total number of size configurations that need to be generated in this step and 

scored in the next step.    

 Step C.  For each size configuration, determine the best set of amino acids of the 

required size at each position.  This is done for each position independently by computing 

a partition function for each amino acid set with the given size.  Amino acid sets that lack 

user-required amino acids or contain user-prohibited amino acids can be skipped here.  

Given a position and an allowed set of amino acids, iterate through the list of scored 

sequences, and for each sequence add to a cumulative partition function the Boltzmann-

weight, exp(-E/kT), where E is the score of the sequence, k is the Boltzmann constant, 

and T is the simulation temperature.  If the amino acid at that position in the current 

sequence is not found in the amino acid set of interest, nothing is added to the partition 

function.  If the simulation temperature is low, the best-scored sequences will contribute 

most strongly to the partition function; if the temperature is high, all sequences in the list 

will contribute similarly.  At each position, the set of amino acids with the most favorable 

partition function (position library score) is chosen.  This procedure produces an optimal 

combinatorial library for each size configuration. The optimal libraries of each possible 
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size configuration can then be ranked based on the sums of their position library scores 

across all positions.  
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Figure 9: Detail of the library design method.  (A) The list of scored sequences defines 
an initial “total diversity” library that is typically much larger (103 – 1015, or even more) 
than the desired library size (102–106).  (B) This total diversity library and the allowed 
sets of amino acids are used to construct a set of size configurations that lead to libraries 
in the desired range of sizes.  The boxes in the list of size configurations are unfilled, 
indicating that the particular amino acids at each position have not yet been determined at 
this step.   (C) For each size configuration generated in the previous step, the original list 
of scored sequences is used to find the optimal set of amino acids of the required size at 
each position.   
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Microtiter plate-based stability assay controls 

The fluorescence profiles of the GdmCl gradient and the elution buffer show no 

effect on the shape of the unfolding transition of wild-type Gβ1 (Figure 10).  Sample 

signal below the elution buffer was interpreted as expression failure; any data that could 

not be fit yet whose signal was above the elution buffer was deemed expressed but 

unstable/unfolded (but see discussion above).  In order to test the accuracy of the 

microtiter plate-based denaturation assay, Gβ1 unfolding was monitored by circular 

dichroism (Aviv Biomedical) and tryptophan fluorescence in a fluorimeter (Photon 

Technology International).  The denaturation profiles from these low-throughput 

experiments were compared to results from the fluorescence plate reader (Figure 11).  

The overlapping data points support the use of a two-state unfolding fit during our 

stability calculations and verify the accuracy of the assay.  Next, the unfolding curves 

from several protein preparations from different concentrations confirmed the assay’s 

precision (Figure 12).  These results support some assumptions that the stability 

determination method described here makes in order to maintain a high level of 

throughput.  First, we never assay for protein concentration before setting up the GdmCl 

gradient, relying on the fraction-unfolded plot to remove any concentration bias/effects.  

Second, the high concentration (250 mM) of imidazole in elution buffer is never dialyzed 

out of the eluted protein solution.  Figures 11 and 12 show that these discrepancies in 

protein preparation have no significant effect on fraction unfolded plots for the wild-type 

protein.   
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Figure 10:  Denaturation gradient and elution buffer fluorescence profiles.  Gβ1 
(black) was expressed in a 5 mL culture, purified, and eluted with 500 µL of elution 
buffer (50 µM NaPO4, 300 mM NaCl, 250 mM imidazole, pH 8).  Since each point of the 
Gβ1 denaturation profile contains 35 µL of eluted protein, the elution buffer profile (red) 
substitutes protein with 35 µL of elution buffer.  Similarly, the water profile (blue) adds 
35 µL of water to make up the final volume.  Each denaturation profile contains an 
increasing gradient of GdmCl, 50 µM NaPO4 buffer at pH 6.5, and water. 
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Figure 11:  Fraction-unfolded profiles between different modes of detection.  CD 
data (red) measured 5 µM Gβ1 titrated with a 5 µM Gβ1/8 M GdmCl solution in 0.2 M 
steps at 218 nm.  Fluorimeter data (blue) measured 5µM Gβ1 titrated as in the CD 
experiment with excitation performed at 295 nm and emission recorded at 341 nm with 4 
nm bandwidths.  Plate-based data (black) measured 12 separate solutions of 10 µM Gβ1 
in response to increasing amounts of 8 M GdmCl with fluorescence parameters identical 
to the fluorimeter data except for 10 nm bandwidths.  All samples were measured at 25°C 
in 50 µM NaPO4 buffer at pH 6.5.   
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Figure 12:  Fraction-unfolded profiles between different protein preparations.  Gβ1 
was expressed in 100 mL cultures, purified and diluted to 1, 5, 10, and 500 µM in 50 µM 
NaPO4 buffer at pH 6.5.  Another expression culture was dialyzed overnight (Pierce 
Biotechnology) after purification and diluted to 10 µM in the same buffer.  All 
measurements were taken on a fluorescence plate reader as described in the text. 
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Chapter 5 

 

 

The Importance of Combinatorial Optimization in the 

Improvement of Models for Computational Protein Design 
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Optimization in computational protein design 

 Initial progress in the field of computational protein design (CPD) was 

accelerated by the development of mathematically rigorous optimization methods based 

on the dead-end elimination (DEE) theorem.  The availability of these methods helped to 

instill confidence that provably optimal solutions could be found for astronomically 

combinatorial protein design problems based on the inverse-folding model.  Although the 

utility of such methods was demonstrated by several successful designs, and many clever 

improvements were made to extend their applicability, their poor performance scaling 

soon began to limit the progress of CPD.  Reliance on DEE-based optimization was 

especially problematic when applied in the context of more accurate sampling of side-

chain conformational flexibility, the design of many positions simultaneously, or the 

modeling of substrates and enzymatic transition states.   

 In response to the limitations of DEE, stochastic optimization routines were 

developed based on Monte Carlo with simulated annealing (MC), FASTER, and genetic 

algorithms (GA).  Although these methods do not guarantee the generation of optimal 

solutions, they can be run as long as desired to improve the quality of the solutions, and 

they always return a solution, regardless of the difficulty of the problem.  In practice, we 

have found that, in contrast to the other stochastic methods, the improved FASTER 

procedure detailed in Chapter 2 is always able to find the DEE-derived solution when 

DEE can converge, and is able to converge to a single low-energy solution even for 

significantly more difficult problems.   
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Our experiences with the various types of exact and stochastic optimization 

techniques used in CPD strongly suggest that sampling of configuration space is not the 

limiting component in the application of single-state, inverse-folding models to real-

world protein design problems.  Even for the largest inverse-folding problems for which 

all possible pairwise energies between rotamers can be precomputed and stored in 

memory, the improved FASTER algorithm can converge to low-energy solutions that are 

believed (though not proven) to be optimal.    

In contrast, the recent development of multi-state design (MSD) procedures has 

provided more fertile ground for the improvement and testing of optimization routines. 

MSD procedures must perform individual rotamer-optimization calculations to assess the 

fitness of each sequence analyzed, and therefore orders of magnitude fewer distinct 

sequences can be evaluated per unit time.  Because scoring a sequence in MSD is so 

costly, efficient optimization algorithms for MSD must choose sequences to test much 

more carefully than would be required in single-state design (SSD) problems of 

equivalent combinatorial size.  In Chapter 3, we saw that our implementation of MSD-

FASTER significantly outperforms MSD-MC in all cases tested, often finding solutions 

better than the best ever found by MSD-MC. These results highlight the idea that, unlike 

SSD problems with precomputed pairwise energies, MSD problems can easily exceed the 

capabilities of existing sampling algorithms.  Thus, more efficient optimization routines 

are expected to help generate more useful protein variants and accelerate the 

improvement of CPD models based on MSD. 

Design protocols that compute energies on the fly have been investigated to a far 

lesser extent than those that rely on precomputed energy matrices.  So far, the greater 
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computational expense of on-the-fly methods has precluded their use, despite the CPD 

model improvements their use enables.  For example, on-the-fly methods are amenable to 

energy functions that cannot be expressed as sums of pairwise energies between 

positions, such as solvation functions that rely on exact descriptions of complete 

molecular surfaces.    Furthermore, unlike precomputed energy methods, on-the-fly 

methods need not be limited to rigid main-chain structures.  In on-the-fly design 

methodology, structure refinement and minimization moves can be applied concurrently 

with rotamer and amino acid changes, potentially facilitating the discovery during the 

design process of more appropriate scaffold conformations for evaluating the sequences 

of interest.   

This strategy might be most useful in the context of MSD.  A database of main-

chain structures could be used to score individual sequences, and these structures could 

be refined during sequence optimization to better represent the sequences found over the 

course of the design.  The database might include both target states and competing states 

for explicit negative design.  Although such methods are expected to improve the 

predictive ability of CPD calculations, they will also be dramatically more time-

consuming than the inverse-folding design calculations to which the field of CPD has 

become accustomed.  These methods will only be rendered tractable by significant 

advances in computational hardware, as well as the development of conformational 

sampling algorithms that can handle the combinatorial explosion caused by the treatment 

of main-chain flexibility.   

In Chapter 4, we found that CPD methods can help to predict combinatorial 

libraries of stable sequences, even when they cannot accurately correlate the experimental 
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and simulated stabilities of these sequences.  Given this result, it seems worthwhile to 

question the utility of rigorous sampling in CPD calculations.  Specifically, if the 

correlation between simulated and experimental fitness is low, then why bother spending 

additional time in an attempt to find solutions of better energy? 

 

Characteristics of CPD as a tool for protein engineering 

The high-throughput stability assessment of our designed libraries may provide 

insight into the level of simulation accuracy that might be required for CPD to be usefully 

applied in protein engineering.  It is often postulated that, in order for CPD to display 

predictive power, it must adequately reproduce stability changes (ΔΔGs) of mutation 

from experimental data sets.  However, no correlation was observed between the 

simulation energies of the individual sequences we assayed and their experimental 

stabilities.  Given this result, we were pleasantly surprised by the ability of our 

computational library design procedure to produce many well-folded and stabilized 

sequences based on each type of input structural data.  Although it might be assumed that 

the sequence space of our designs contained an unusually large number of viable 

sequences, our own data and the reports of others soundly contradict this; we cannot 

reasonably conclude that the design problem we chose was serendipitously trivial.   

So how can a protein design method successfully produce libraries of well-folded, 

stabilized variants without accurately predicting the relative stabilities of any given pair 

of mutants?  This remarkable property of CPD may arise due to the same fundamental 

characteristics of proteins that make natural and directed evolution possible.   
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Although the ability of a protein sequence to fold to a stable and active structure 

is governed by a precarious balance of energetic contributions with large magnitudes and 

opposite signs, naturally occurring proteins are nevertheless sufficiently tolerant of 

substitution to enable the evolution of molecular function through mutagenesis and 

screening or selection.  Starting with an existing functional protein, an area of sequence 

space enriched with active variants can be explored by iterative cycles of mutation or 

recombination. This process works because many substitutions can be accommodated by 

structural adjustments that maintain the general fold, and because the structural accuracy 

required for activity is not prohibitively high.  

Now, we consider CPD methods in light of the biophysical properties of proteins 

that enable evolution.  Inverse-folding design models (including those of the multi-state 

variety) ultimately score amino acid sequences in the context of one or more fixed 

scaffold conformations using molecular mechanics and heuristic energy functions.  In 

order to rigorously assess the relative stabilities of any two sequences, a CPD procedure 

would need to find a representative ensemble of native and nonnative conformations for 

each sequence, and compute the free energy of each ensemble using a scoring function 

that accurately treats polar and nonpolar interactions and solvation effects.  However, 

computational tractability requires that only a small subset of the possible conformational 

space be evaluated, and that approximate scoring functions which neglect explicit water 

and complex electrostatic effects be used. The finite set of representative structures used 

for a particular design will always be more appropriate for some sequences than for 

others.  This leads to false positives, in which a sequence appears to stabilize the target 

ensemble but actually stabilizes alternative conformations more, and false negatives, in 
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which a sequence appears to destabilize the ensemble although slight adjustments to the 

ensemble would render it satisfactory.  The unpredictability of these cases leads to the 

observed lack of correlation between simulation energies and experimental measures of 

fitness.   

So, despite insufficient sampling and approximate energy functions, the forgiving 

nature of protein self-assembly enables CPD to find areas of sequence space likely to be 

compatible with a given structure and function.  As described above, evolution can 

effectively explore sequence space because stable protein sequences are able to relax 

structurally and accommodate perturbing mutations.  Likewise, CPD procedures are able 

to locate viable areas of sequence space because a sequence compatible with the 

simulated ensemble can also usually tolerate the minor relaxations that lead to the 

physically relevant conformational states that are not modeled.  Since the exact nature of 

these relaxations, and the structures they lead to, cannot be predicted during the 

simulation, the energy of a sequence threaded on the ensemble does not correlate well 

with experimental reality.  Explicit negative design provides an even greater challenge 

than positive design, since it demands sequences that destabilize an ensemble of 

competing conformations.  Unmodelled structural relaxations are more problematic in 

competing states than in target states because they can transform an apparently 

destabilizing interaction into a stabilizing one, rendering a simulation-based fitness 

assessment qualitatively incorrect.  Despite these issues, experimental validation of CPD 

calculations has shown that ensembles sufficiently representative of active states (and 

competing states, if available) can be used to identify regions of sequence space enriched 

with folded and functional members.   
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Although the structural adaptability of a protein native state renders untenable the 

accurate comparison of arbitrary sequences without prohibitive conformational sampling, 

it also enables the effective design of proteins under the same set of computational 

restrictions.  Ultimately, we reach the surprising conclusion that accurate scoring of 

particular arbitrary sequences is neither necessary nor sufficient to find areas of sequence 

space enriched with functional variants.    

In Chapter 4, we discussed how this view of current protein design methods leads 

to unorthodox proposals for the improvement of CPD.  If the utility of CPD is derived 

primarily from its ability to choose variants that satisfy the native state, as it seems to, 

then two main avenues of inquiry arise.  In the first, structural refinement, larger rotamer 

libraries, and better energy functions are used to improve the degree to which variants 

can be ranked based on their compatibility with the native state.  However, the general 

difficulty of finding perfect structures for the evaluation of arbitrary sequences and the 

extreme sensitivity of molecular mechanics energy functions suggests that additional 

returns from this effort would diminish quickly; native state modeling is continually 

pushed to improve its predictive power.  On the other hand, simulations of competing 

states have received scant attention in the context of protein design, and might represent 

lower-hanging fruit.  Of course, the generation of appropriate structural templates for the 

simulation of competing states will be far from trivial.   

The vastness of available conformational space will require redoubled efforts 

towards efficient sampling and optimization as the major simplifying approximations of 

CPD begin to be discarded.  It seems clear that the development of more accurate design 

procedures must be driven by the availability of improved optimization methods and 
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move sets that enable protein sequences to be simulated more realistically. My intent with 

the projects described here was to push the boundaries of what can be attempted in CPD, 

to maximize the possibility of transformative breakthroughs derived from this 

technology.  I consider it an honor to have had the opportunity to place my own small 

piece into this mighty puzzle.   
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Appendix I 

 

 

Combinatorial Methods for Small Molecule Placement in 

Computational Enzyme Design 

 

 

 

 

 

 

 

 

 

 

 

 

 

The text of this appendix was adapted from a manuscript coauthored with J. Kyle Lassila, 
Heidi K. Privett, and Stephen L. Mayo. 
 

Lassila, J. K.; Privett, H. K.; Allen, B. D.; Mayo, S. L., Combinatorial methods for small-
molecule placement in computational enzyme design. Proceedings of the National 
Academy of Sciences of the United States of America 2006, 103 (45), 16710–16715. 
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Abstract 

 The incorporation of small molecule transition state structures into protein design 

calculations poses special challenges because of the need to represent the added 

translational, rotational, and conformational freedoms within an already difficult 

optimization problem.  Successful approaches to computational enzyme design have 

focused on catalytic side-chain contacts to guide placement of small molecules in active 

sites.  We describe a process for modeling small molecules in enzyme design calculations 

that extends previously described methods, allowing favorable small molecule positions 

and conformations to be explored simultaneously with sequence optimization.  Because 

all current computational enzyme design methods rely heavily on sampling of possible 

active site geometries from discrete conformational states, we tested the effects of 

discretization parameters on calculation results.  Rotational and translational step sizes as 

well as side-chain library types were varied in a series of computational tests designed to 

identify native-like binding contacts in three natural systems.  We find that 

conformational parameters, especially the type of rotamer library used, significantly 

affect the ability of design calculations to recover native binding site geometries.  We 

describe the construction and use of a crystallographic conformer library, and find that it 

more reliably captures active-site geometries than traditional rotamer libraries in the 

systems tested. 
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Introduction   

 As catalysts, enzymes offer advantageous properties including dramatic rate 

enhancements, complete control over absolute stereochemistry, and nontoxic 

biodegradation.  Yet a fundamental limiting factor in the use of enzymes for chemical 

synthesis, bioremediation, therapeutics, and other applications is the availability of 

enzymes with the required activities, specificities, and tolerances to reaction conditions.  

It is therefore a major goal of computational protein design to be able to reliably create 

completely new protein catalysts with specific properties on demand.   

 A catalyst by definition must reduce the energy barrier for formation of the 

transition state.  To design transition-state-stabilizing interactions, computational protein 

design groups have incorporated transition-state or high-energy intermediate state 

structures into design calculations.  These efforts have yielded experimentally verified 

new catalytic proteins.1–3  However, substantial challenges still prevent routine or reliable 

design of enzymes.  One major challenge is in finding energy functions that are fast 

enough for large calculations but that still provide informative approximations of 

electrostatic and desolvation effects in the protein environment.4, 5   This paper focuses on 

another fundamental challenge, the need to represent the large translational, rotational, 

and conformational freedoms of a small molecule within already astronomically large 

sequence design calculations. 

 Here we define protein design as the selection of amino acid sequences such that 

the resulting protein occupies a given three-dimensional fold and has desired functional 

properties.  Earlier experiments sought to redesign full protein sequences or confer 
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increased thermostability,6, 7 but newer work has successfully introduced other properties 

including catalytic activity, conformational specificity, ligand affinity, and even novel 

protein folds.1–3, 8–10   In these examples, side-chain placement algorithms were used to 

select from a set of discrete, probable side-chain rotamers using energy functions tuned to 

produce thermostable proteins.  These calculations represent difficult optimization 

problems11 and they can also be large—a sample calculation performed on a typical 

enzyme active site yields more than 1065 possible sequence combinations, even when 

excluding movements of the small molecule. 

 The computational demands of sequence selection prevent ligand positioning 

using standard docking procedures, which often approximate or neglect side-chain 

flexibility.12 Approaches developed specifically for the purpose of enzyme and binding 

site design have introduced other schemes to limit the calculation size.  Looger et al. used 

stationary, inflexible ligand poses in a large number of individual protein design 

calculations and demonstrated experimentally that several of the resulting proteins had 

high ligand affinity.9  Lilien et al. reported and experimentally validated an ensemble-

based method that allows ligand translation and rotation simultaneously with side-chain 

optimization but only permits mutation of two or three amino acid positions at a time.13  

Chakrabarti et al. described a method for sequence design that neglects conformational 

and positional ligand flexibility and has not been experimentally tested.14, 15    

 To design new enzyme active sites, a ligand placement method must be able to 

select side chains in many positions and must consider rotational, translational, and 

conformational freedom of the small molecule.  Previously, methods for the design of 

catalytic proteins treated high-energy-state structures of the reacting molecules as 
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extensions of contacting amino acid side-chain rotamers.  A two-step procedure was 

utilized, where ligands, anchoring side chains, and other catalytic side chains were placed 

through a geometric screening procedure and surrounding side chains were designed in a 

second step.1, 16–18  We have developed a process for ligand placement in computational 

protein design calculations that expands upon previous work and that allows ligand 

rotation, translation, and conformational freedom to be explored combinatorially within 

the sequence design calculation itself.  The implementation of ligand placement 

procedures within the context of the pairwise-decomposable protein design framework 

makes it possible to use a single energy function that can be parameterized as needed to 

reproduce experimental data.    

 We tested both a simple rotational and translational process for ligand placement 

as well as the previously used targeted ligand placement approach.  A contact-based 

screening method is described that allows selection of ligand positions and confomations 

compatible with catalytic contacts.  Test calculations in three systems, E. coli chorismate 

mutase, S. cerevisiae triosephosphate isomerase, and S. avidinii streptavidin, suggest that 

the success of ligand placement procedures can be quite sensitive to conformational 

sampling parameters, including rotational and translational step sizes and the types of 

rotamer libraries used.  We evaluated the efficacy of two standard rotamer libraries and 

two crystallographic conformer libraries.  Traditional rotamers are constructed from 

canonical χ angles determined by statistical analysis of the PDB,19–21 whereas conformers 

have Cartesian coordinates taken directly from high-resolution structures.22, 23  Conformer 

libraries may allow more accurate modeling because they are not limited to ideal 

geometries and their sizes can be tuned more easily and naturally.22, 23  In our tests, a 
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backbone-independent conformer library recovered wild-type-like active site geometries 

more successfully than the other libraries, despite smaller size.  

 

Results and discussion 

 We have implemented and tested a process for incorporation of small molecules 

into computational protein design calculations.  The procedure is general and may be 

used to place ground-state ligands or transition-state structures.  It is also amenable to 

multi-state design methods that seek to explicitly reflect the energy difference between 

reactant and transition states or between alternative ligands. 

 

General calculation procedure 

 Each ligand placement calculation comprised five steps.  In the first step, a large 

number of discrete variations of ligand coordinates was created. Initial sets of 

orientations were created by one of two methods, either simple rotation and translation or 

a targeted placement approach, both of which are discussed in more detail in subsequent 

sections.   In the tests described here, each set of ligand variations contained 106–109 

members, reflecting rotational and translational movement as well as internal 

conformational flexibility. 

 Next, the large number of substrate orientations was reduced to a manageable 

number (< ~ 20,000) using both a simple hard-sphere steric potential to check for 

backbone clashes and a set of user-defined geometric criteria for side-chain/ligand 

contacts.  In this work, geometric criteria were defined to reflect the distances, angles, 

and torsions characteristic of important catalytic contacts observed in the crystal 
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structures (Figure 1).   In designing an enzyme with no naturally existing precedent, ideal 

contact geometries would be based on chemical intuition and/or quantum mechanical 

calculations.  The geometric criteria were applied as follows.  For every ligand variation, 

each of the geometric criteria was tested for satisfaction by contacts from any possible 

amino acid side-chain conformation in all designed protein positions.  If a ligand 

variation was not able to make at least one of each type of user-specified contact, that 

ligand variation was discarded from the set.   After geometric and steric pruning, the 

ligand variations remaining were only those theoretically capable of making each of the 

user-specified contacts.  

 

 

Figure 1:  Contact geometries specified in small-molecule pruning step.  Ranges of 
distances, angles, and torsions were allowed that included the crystallographic 
geometries. (A) Chorismate mutase. (B) Biotin in streptavidin. (C) Triosephosphate 
isomerase Michaelis complex.  Asterisks indicate pseudoatoms used in geometry 
definitions. 
 

 In the third step, pairwise energies for all side-chain/side-chain, side-

chain/backbone, backbone/ligand, and side-chain/ligand interactions were calculated 

using the full force field.  In our work, this normally includes a scaled van der Waals1 

term,24 hydrogen-bonding and electrostatic terms,25 and a solvation potential.26, 27 
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 The fourth step is an optional energy biasing that favors side-chain/ligand 

contacts deemed necessary for catalysis or binding.  This energy biasing step helps to 

overcome the shortcomings of molecular mechanics energy functions as well as the 

inherent limitation of treating a multi-state design problem—differential stabilization of 

transition state relative to substrate in protein versus solution—using single-state design 

algorithms.  As methods for modeling electrostatics and solvation and for designing over 

multiple states improve, the need for this biasing step should be reduced.  Previous work 

utilized selective application of solvation energy or an additional search algorithm step9 

for the same purpose.  We favor the use of adjustable bias energies that can be tailored 

for specific purposes and investigated as a design variable.   

 To implement the bias, user-specified energies were added or subtracted from 

pairwise side-chain/ligand interaction energies.  We use the energy bias under two 

regimes, one for normal design calculations and another for rapid assessment of catalytic 

residue arrangements within a protein scaffold.  In normal design calculations, a small 

energy benefit is simply applied to favor specified types of side-chain/ligand contacts.  

Alternatively, to quickly identify potential catalytic residues, exaggerated energetic 

benefits and penalties are applied together.  A very large energy benefit is given for 

desired types of pairwise interactions (100 kcal/mol was used in the test cases reported 

here).  An even larger energy penalty (10,000 kcal/mol here) is applied to all other 

pairwise side-chain/ligand interactions, except when the side chain is alanine or glycine.  

In other words, the energy penalty forces all designed side chains to alanine or glycine 

unless they participate in user-specified catalytic contacts with the ligand.  Although this 

process clearly does not yield physically relevant energetics, it offers a useful tool to 
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investigate the catalytic conformational space within a binding pocket.  The tests 

performed here to study the effect of sampling parameters on calculation results took 

advantage of this second approach.  Calculations performed to demonstrate sequence 

selection utilized the normal design approach of applying a simple energy benefit to 

catalytic contacts. 

 Finally, in the fifth step, optimal sequences were identified using the FASTER28, 29 

or HERO30 search methods.  In the test cases described here, the result reported is the 

lowest-energy sequence with the maximal number of specified contacts.   

   

Rotation-translation search  

 Simple rotation and translation can be used to fill the active site with an initial set 

of ligand variations in the first step of the process described.  Because discrete steps must 

be used to rotate and translate the ligand, we evaluated the sensitivity of the calculation 

results to rotational and translational step sizes.  A series of calculations was performed 

using an alanine-containing active-site background, as discussed in step 4 above.  We 

first tested different rotational step sizes using the crystallographic translational starting 

position with three initial random rotations. Backbone-dependent and backbone-

independent rotamer and conformer libraries were tested.   Each side-chain library was 

tested with and without inclusion of the specific crystallographic side-chain rotamers 

from the structure under examination.   

 As seen in Table 1, the results of these calculations (in terms of both RMSD 

relative to crystallographic position and number of wild-type contacts) were strongly 

dependent on the both the rotational step size and the rotamer library used.   In the case of 
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chorismate mutase, only the backbone-independent conformer library was able to find 

native-like geometry and contacts.  Figure 2 shows results from this library with the 5° 

step size.  When the crystallographic rotamers were included in the calculation, however, 

all four libraries returned native-like results.  It should be noted that none of the three test 

case structures were included in the set of structures used to create the conformer 

libraries.  The backbone-independent conformer library appeared the most consistently 

successful with the other two test cases as well, although it showed strong dependence on 

rotational step size in streptavidin. 

 

 

 

Figure 2: Sample results from test calculations presented in Table 1.  
Crystallographic side chains and ligands are shown in gray.  Results from three trials 
using different initial random rotational positions are shown in red, teal, and orange.  In 
cases where three colors are not visible, the selected rotamers from two or more 
calculations were identical.  Results are shown from calculations with 5° rotation and the 
backbone-independent conformer library. (A) Chorismate mutase.  An alternate backbone 
position was chosen for a glutamate-hydroxyl contact in one trial (red side chain, lower 
left). (B) Biotin in streptavidin.  Note that the biotin pentanoic acid moiety samples 
different conformations in the calculation and the surrounding side chains were not 
designed. (C) Triosephosphate isomerase. 
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Table 1:  RMSD and number of wild-type contacts as a function of rotational step 
size and rotamer librarya,b 

 
Chorismate mutase     
    Rotational step size   
Rotamer Libraryc 30° 20° 15° 10° 5° 
Conformer: bb-ind - - 0.61 ± 0.03 (4.0) 0.55 ± 0.05 (4.0) 0.47 ± 0.04 (4.7) 
   with xtal rotamers - - 0.61 ± 0.03 (4.0) 0.55 ± 0.05 (4.0) 0.47 ± 0.04 (4.7) 
Rotamer: bb-ind - - 3.88 ± 0.37 (0.0) 2.88 ± 1.44 (0.0) 3.01 ± 1.61 (0.0) 
   with xtal rotamers - - 1.57 ± 1.70 (2.7) 0.51 ± 0.00 (4.0) 0.52 ± 0.01 (4.0) 
Conformer: bb-dep - - 3.66 ± 0.11 (1.0) 3.59 ± 0.08 (1.0) 3.60 ± 0.09 (1.0) 
   with xtal rotamers - 1.67 ± 1.78 (3.3) 1.57 ± 1.83 (3.7) 0.60 ± 0.08 (4.3) 0.54 ± 0.06 (5.0) 
Rotamer: bb-dep - - - - - 
   with xtal rotamers - - - 0.49 ± 0.04 (4.3) 0.52 ± 0.01 (4.0) 
      
Streptavidin-Biotin      
    Rotational step size   
Rotamer Libraryc 30° 20° 15° 10° 5° 
Conformer: bb-ind - - - - 0.27 ± 0.09 (5.0) 
   with xtal rotamers - 0.24 ± 0.09 (5.0) 0.24 ± 0.07 (5.0) 0.26 ± 0.06 (5.0) 0.20 ± 0.13 (5.0) 
Rotamer: bb-ind - - 0.77 ± 0.42 (2.3) 0.60 ± 0.14 (3.0) 0.60 ± 0.05 (2.7) 
   with xtal rotamers 0.37 ± 0.17 (5.0) 0.24 ± 0.09 (5.0) 0.24 ± 0.07 (5.0) 0.26 ± 0.06 (5.0) 0.30 ± 0.17 (5.0) 
Conformer: bb-dep - - - 0.25 ± 0.12 (5.0) 0.20 ± 0.07 (5.0) 
   with xtal rotamers - 0.24 ± 0.09 (5.0) 0.24 ± 0.07 (5.0) 0.22 ± 0.03 (5.0) 0.29 ± 0.09 (4.0) 
Rotamer: bb-dep - - - 0.82 ± 0.28 (2.3) 0.66 ± 0.02 (3.0) 
   with xtal rotamers - 0.24 ± 0.09 (5.0) 0.24 ± 0.07 (5.0) 0.26 ± 0.06 (5.0) 0.16 ± 0.06 (5.0) 
      
Triosephosphate isomerase     
    Rotational step size   
Rotamer Libraryc 30° 20° 15° 10° 5° 
Conformer: bb-ind - 1.87 ± 1.07 (0.7) 3.59 ± 2.28 (1.0) 0.28 ± 0.07 (3.0) 0.24 ± 0.05 (3.0) 
   with xtal rotamers - 1.31 ± 0.29 (1.0) 1.95 ± 2.28 (1.3) 0.27 ± 0.06 (3.0) 0.15 ± 0.02 (3.0) 
Rotamer: bb-ind 5.09 ± 0.05 (0.3) 0.60 ± 0.12 (1.7) 0.55 ± 0.25 (2.3) 0.34 ± 0.04 (2.3) 0.25 ± 0.08 (3.0) 
   with xtal rotamers 5.06 ± 0.05 (0.3) 0.60 ± 0.12 (2.0) 0.37 ± 0.04 (3.0) 0.25 ± 0.04 (3.0) 0.15 ± 0.02 (3.0) 
Conformer: bb-dep - - - - - 
   with xtal rotamers - - - - 0.15 ± 0.02 (3.0) 
Rotamer: bb-dep 3.28 ± 0.73 (1.7) 0.60 ± 0.12 (1.7) 0.37 ± 0.05 (2.3) 0.31 ± 0.04 (2.3) 0.25 ± 0.08 (3.0) 
   with xtal rotamers 3.28 ± 0.73 (2.3) 0.60 ± 0.12 (2.3) 0.37 ± 0.05 (3.0) 0.29 ± 0.03 (3.0) 0.15 ± 0.02 (3.0) 

 
a  Dashes indicate that required contacts were not satisfied in at least one of three trials. 
b  Values are non-hydrogen-atom RMSD in Ångstroms relative to crystallographic ligands or bicyclic ring 
atom RMSD relative to crystallographic ligand for biotin (i.e., the pentanoic acid moiety was not 
considered in biotin RMSDs).  Averages and standard deviations from three random initial positions are 
reported.  Numbers in parentheses are the number of contacts where the amino acid position was the same 
as in the wild-type structure, averaged over the three trials.  Maximum possible number of wild-type 
contacts:  chorismate mutase, 5; streptavidin, 5; triosephosphate isomerase, 3 
c  bb-ind: backbone-independent, bb-dep: backbone-dependent 
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 Next, we tested various combinations of rotational and translational step sizes 

starting from random initial ligand positions and using only the backbone-independent 

conformer library (Figure 3, Table 2).   The crystallographic rotamers from the structures 

under investigation were not included in these calculations.  The results show that, 

subject to the constraints imposed by the geometries defined in the pruning step and the 

biasing step, more than one combination of rotational and translational step size is viable 

for each test case and the sensitivity of the result to step size varies among the test cases.  

 

 

Figure 3:  Effect of rotational and translational step sizes.  Each spot represents the 
average of three trials with initial random starting positions.  Missing points indicate that 
one or more trials could not identify wild-type-like contacts or else that the calculation 
was prohibitively large; no calculations were performed using a 25° rotational step size.  
Colors indicate non-hydrogen atom RMSD as described in the tables.  (A) Chorismate 
mutase (min., 0.53 Å; max., 2.61 Å)  (B) Streptavidin-biotin (min., 0.57 Å; max., 2.05 Å) 
(C) triosephosphate isomerase (min., 0.44 Å; max., 5.64 Å) 
 

 The rotation/translation tests were performed using three initial random starting 

positions for each system.  The starting positions were created by randomly rotating and 

translating the ligand within a 1 Å3 box around the ligand centroid (or the centroid of the 

bicyclic ring system in biotin).  Using the same atom comparisons as described in the 

tables, the nine initial positions had RMSDs relative to crystallographic positions of 
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between 2.1 Å and 4.5 Å, with an average of 3.2 Å.  These tests do not provide full, 

unbiased searches of the active sites.   Full active site searches could be conducted using 

this method by performing separate calculations for grid points distributed evenly 

through the active site.  Given the time required to perform these smaller calculations 

(Table 2), searching an entire active site using rotational and translational perturbations 

would be computationally expensive.   For example, examining a 3.6 x 3.6 x 3.6 Å grid 

using the 10° and 0.3 Å step sizes would require an estimated 324 hours on a 16-

processor cluster for placement of ligands and catalytic side chains in the chorismate 

mutase active site.  Thus, for initial positioning of a ligand within an active site, rotational 

and translational placement is inefficient.  However, the ability to adjust small molecule 

position and conformation simultaneously with side-chain optimization should be 

extremely valuable for refining an initial position identified from a coarser search 

method. 
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Table 2:  RMSD and number of wild-type contacts as a function of rotational and 
translational step sizesa,b 
 

Chorismate mutase      
 Rotational step size  Translational 

step size (Å) 30° 20° 15° 10° 5° 

Time 
(10°, 

hours)c 

0.6 1.69 ± 1.54 (2.3) 2.61 ± 1.67 (1.3) 0.77 ± 0.10 (4.3) 0.73 ± 0.02 (4.0) 0.61 ± 0.06 (4.7) 3 
0.5 0.91 ± 0.20 (3.7) 0.72 ± 0.07 (4.0) 0.83 ± 0.06 (3.3) 0.74 ± 0.05 (4.0) 0.60 ± 0.13 (4.3) 10 
0.4 2.02 ± 1.99 (2.3) 0.60 ± 0.04 (4.7) 0.59 ± 0.13 (4.0) 0.57 ± 0.12 (4.3) 0.53 ± 0.13 (4.3) 11 
0.3 1.73 ± 1.51 (2.3) 0.61 ± 0.07 (4.3) 0.62 ± 0.15 (4.3) 0.58 ± 0.07 (4.0) 0.65 ± 0.04 (4.0) 12 
0.2 1.71 ± 1.53 (2.3) 0.62 ± 0.10 (4.0) 0.60 ± 0.09 (4.0) 0.54 ± 0.07 (4.0) 0.56 ± 0.05 (4.0) 33 
       

Streptavidin-biotin      
 Rotational step size  Translational 

step size (Å) 30° 20° 15° 10° 5° 

Time 
(10°, 

hours)c 

0.6 - 1.16 ± 0.60 (3.7) 1.67 ± 1.02 (3.7) 0.88 ± 0.44 (4.3) 0.84 ± 0.48 (4.3) 5 
0.5 2.05 ± 0.59 (1.7) 0.91 ± 0.44 (5.0) 0.84 ± 0.61 (5.0) 0.99 ± 0.91 (3.7) - 18 
0.4 1.32 ± 1.39 (3.7) 0.80 ± 0.09 (5.0) 0.67 ± 0.28 (5.0) 0.96 ± 0.72 (3.7) - 19 
0.3 0.63 ± 0.16 (5.0) 1.08 ± 0.49 (5.0) 0.57 ± 0.21 (5.0) 1.03 ± 0.48 (4.3) - 18 
0.2 0.60 ± 0.32 (5.0) 0.70 ± 0.34 (5.0) 0.80 ± 0.24 (5.0) - - - 
       

Triosephosphate isomerase      
 Rotational step size  Translational 

step size (Å) 30° 20° 15° 10° 5° 

Time 
(10°, 

hours)c 

0.6 3.80 ± 2.14 (0.3) 5.22 ± 0.32 (0.0) 1.29 ± 0.91 (1.3) 2.39 ± 2.54 (1.7) 2.40 ± 2.58 (2.0) 0.4 
0.5 3.92 ± 1.94 (0.0) 5.64 ± 0.45 (0.3) 4.47 ± 1.45 (0.0) 1.33 ± 1.01 (1.7) - 2 
0.4 3.13 ± 1.77 (0.3) 1.96 ± 1.05 (2.0) 0.47 ± 0.24 (1.7) 0.78 ± 0.66 (3.0) - 2 
0.3 3.44 ± 1.96 (0.3) 0.59 ± 0.18 (2.0) 0.60 ± 0.29 (2.3) 0.46 ± 0.11 (3.0) - 2 
0.2 2.33 ± 1.80 (0.7) 0.68 ± 0.10 (2.3) 0.49 ± 0.12 (3.0) 0.44 ± 0.11 (3.0) - 5 

 

a  Dashes indicate that required contacts were not satisfied in at least one of three trials or that the 
calculation was too large to complete. 
b  Values are non-hydrogen atom RMSD in Ångstroms relative to crystallographic ligands or bicyclic atom 
RMSD relative to crystallographic ligand for biotin (i.e., the pentanoic acid moiety was not considered in 
biotin RMSDs).  Averages and standard deviations from three random initial positions are reported.  
Numbers in parentheses are the number of contacts where the amino acid position was the same as in the 
wild-type structure, averaged over the three trials.  Maximum possible number of wild-type contacts:  
chorismate mutase, 5; streptavidin, 5; triosephosphate isomerase, 3 
c Wall clock time; calculations performed on a 16-processor cluster 
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Targeted ligand placement 

 A second approach places the small molecule with reference to a contacting side 

chain (Figure 4).   In this approach, one or more small molecule variations are placed for 

every rotamer of the selected contacting side chain in every putative active-site position.  

This process has the advantage that ligand poses are targeted more efficiently to 

orientations that are able to make productive side-chain contacts.  Previous computational 

enzyme design work utilized similar approaches.1, 16, 17  In contrast to previous methods, 

however, our procedure does not maintain any association between the targeting rotamer 

and the small molecule—once the set of ligand conformations and orientations is 

constructed in step one, the ligand variations are all subjected to pruning, pairwise energy 

calculations, and optimization as independent entities in the calculation.  An implication 

of this procedure is that a ligand may engage in a catalytic contact with a rotamer, amino 

acid, or protein position that differs from those of the side-chain rotamer that was 

originally used to place that ligand. 

 

 

Figure 4: Targeted placement procedure.  For a given side-chain rotamer, small 
molecule ligands are placed such that they are able to meet specified geometric criteria.  
This is repeated for every possible conformation of the amino acid at every designed 
position.  Shown is a subset of orientations of a chorismate mutase transition-state 
structure in contact with one conformation of arginine.   
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 We tested the effect of four types of side-chain libraries on the ability of a 

targeted placement process to find wild-type-like ligand positions and contacts.  For the 

three test cases, the following side-chain contacts were used to anchor the ligand:  

chorismate mutase, C11 carboxylate to arginine; streptavidin, N1 to aspartate; 

triosephosphate isomerase, O2 and O3 to histidine.   For each contact type, variations 

were allowed in the geometry of the contact, including the contacting atoms (NH1-NH2 

vs. NE-NH1 for arginine) and variations in defined distances, angles, and dihedrals of the 

contact.   

  As with the rotational and translational search, success in achieving native active-

site conformations was highly dependent on the side-chain library used (Table 3).  Only 

the backbone-independent conformer library yielded results for all three test cases that 

were comparable to those with crystallographic rotamers included.   Using that library, all 

three systems returned all wild-type contacts with low ligand RMSD relative to the 

crystallographic position.  As with the rotation/translation search, the chorismate mutase 

case showed the strongest sensitivity to rotamer library.   Inspection of the structures 

revealed that an arginine side chain (Arg 28) occupies a conformation in the inhibitor-

bound, active enzyme structure that was not well approximated in the other rotamer 

libraries.   

 The targeted placement approach allowed a thorough and directed search of 

active-site conformational space, including between 106 and 109 small-molecule 

orientations and conformations spread throughout the active site.  In contrast to the 

rotation/translation method, a full active-site search took between one and eighteen hours 

to complete using the backbone-independent conformer library and no initial starting 
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position was required.   This method offers an efficient first step for defining active-site 

geometry in a new protein scaffold.   One shortcoming is that it may be difficult to 

sample the many geometrical variations of a flexible hydrogen-bonding interaction.  For 

example, the 972 variations in guanidino-carboxylate contact geometry sampled in the 

chorismate mutase case are probably adequate to reflect flexibility in this relatively rigid 

dual hydrogen-bonding interaction.  A less restrained interaction, however, such as a 

serine hydrogen bonding with a sterically unrestricted ligand carbonyl oxygen, results in 

a compromise between maintaining a manageable calculation size and modeling contact 

flexibility.  One solution is to use a targeted method to find an initial ligand position 

within the binding site and then, in a second calculation, optimize both active-site 

packing and fine rotational and translational placement of the ligand.  
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Table 3:  Results from targeted placement procedure as a function of rotamer 
library 

 
Chorismate mutase    

Rotamer librarya 
log(initial ligand 

variations) 
RMSD (Å)b 

(WT contacts) 
Time 

(hours)c 

Conformer: bb-ind 7.88 0.60 (5) 16 
   with xtal rotamers 7.88 0.68 (3) 18 
Rotamer: bb-ind 8.18 3.61 (0) 51 
   with xtal rotamers 8.18 0.66 (4) 62 
Conformer: bb-dep 7.64 3.62 (1) 8 
   with xtal rotamers 7.64 0.68 (4) 9 
Rotamer: bb-dep 7.76 2.31 (1) 14 
   with xtal rotamers 7.76 0.66 (4) 16 
    
Streptavidin-biotin    

Rotamer librarya 
log(initial ligand 

variations) 
RMSD (Å)b 

(WT contacts) 
Time 

(hours)c 
Conformer: bb-ind 7.07 0.64 (5) 1.4 
   with xtal rotamers 7.07 0.64 (5) 1.4 
Rotamer: bb-ind 7.20 0.54 (4) 3.5 
   with xtal rotamers 7.20 0.34 (4) 3.4 
Conformer: bb-dep 6.35 0.37 (5) 0.2 
   with xtal rotamers 6.35 0.54 (4) 0.2 
Rotamer: bb-dep 7.17 3.50 (0) 2.6 
   with xtal rotamers 7.17 0.19 (5) 2.8 
    
Triosephosphate isomerase   

Rotamer librarya 
log(initial ligand 

variations) 
RMSD (Å)b 

(WT contacts) 
Time 

(hours)c 
Conformer: bb-ind 7.31 0.49 (3) 1.3 
   with xtal rotamers 7.31 0.49 (3) 1.3 
Rotamer: bb-ind 7.78 0.46 (3) 8.7d 
   with xtal rotamers 7.78 0.46 (3) 87d 
Conformer: bb-dep 6.82 7.51 (0) 0.3 
   with xtal rotamers 6.82 0.78 (3) 0.3 
Rotamer: bb-dep 7.58 0.51 (3) 4.3d 
   with xtal rotamers 7.58 0.51 (3) 4.9d 

a  bb-ind, backbone-independent; bb-dep, backbone-dependent 
b  RMSDs calculated as described in Table 1.  Maximum possible number of wild-type contacts:  
chorismate mutase, 5; streptavidin, 5; triosephosphate isomerase, 3 
c  Wall clock time; calculations performed on a 16-processor cluster 
d  Calculation was performed as a series of smaller calculations. 



 

 

159 

 

Sequence design 

 The computational tests described in the previous sections were designed to 

evaluate the effects of calculation parameters on recovery of native enzyme geometries, 

and the design of active-site residues was limited to catalytic side chains.  However, the 

general procedure described here is equally amenable to full active-site design 

calculations.   

 In previously published work, 18 active site residues of E. coli chorismate mutase 

were redesigned simultaneously with rotational and translational relaxation of the 

transition-state structure from the starting crystallographic position.31  The six predicted 

mutations were experimentally investigated and some were found to confer increased 

catalytic efficiency or thermostability.31 A detrimental mutation predicted in the study 

underscored the importance of continued work on energy functions.  In the calculation 

that motivated this experimental work, the initial starting position of the small molecule 

was taken from the crystal structure and a limited degree of rotational and translational 

optimization was employed.   

 We performed a test calculation to demonstrate that small molecules can be 

placed simultaneously with full active-site side-chain optimization, without reference to 

any known starting position.  In a sample calculation using E. coli chorismate mutase, the 

targeted placement method was used to identify 107 small-molecule variations.  In this 

example, after the geometric pruning step and elimination of variants with backbone 

steric clashes, 155 small-molecule variations remained.  These variants were evaluated 

combinatorially with ten different side-chain identities in twelve active-site positions.   
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Using FASTER for optimization, the calculation took approximately 9 hours to complete 

on a 16-processor cluster with about 70% of the total calculation time consumed in 

calculating a surface-area-based solvation term.    

 

Conclusions 

 The described procedures allow the incorporation of small-molecule placement 

directly into sequence design calculations.  The test calculations performed suggest that 

the results of computational enzyme design processes can be quite sensitive to calculation 

parameters, including the rotamer library used and the coarseness of ligand positioning.  

These results emphasize that the conformational space of a calculation must be explored 

before meaningful conclusions can be reached about energy functions.      

 Given that we still have much to learn about the complex relationship between 

protein structure and catalytic activity,32, 33 luck and choice of system may continue to 

play a role in the success of de novo computational enzyme design efforts for some time.  

However, the power of computational enzyme design to stringently evaluate our 

understanding of the energetics of catalysis should not be overlooked.  Experimental 

feedback gained from both successful and unsuccessful designs will make it possible to 

critically examine energy functions for modeling active sites.  Employing quality 

transition-state structures derived from ab initio calculations and experimental evidence 

will help computational design experiments to provide more meaningful information 

about the effectiveness of energy functions.  The use of large side-chain structural 

libraries and fine movements of transition-state structures will help to reduce errors from 

conformational sampling.  Backbone relaxation and multi-state design will offer other 
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important tools to improve the value of design calculations.  Finally, the construction of 

gene libraries or large numbers of computationally designed variants has great potential 

for overcoming the shortcomings of enzyme design models,34 but results from these 

experiments will be most useful for furthering our understanding of catalysis and design 

if both active and inactive variants are reported.  By critically evaluating current methods 

for computational enzyme design, we will move closer to a deeper and more practically 

useful understanding of the sequence determinants of enzyme activity in the future. 

 

Methods 

Structures and charges 

 PDB files were used without minimization (E. coli chorismate mutase, 1ecm;35 S. 

avidinii streptavidin, 1mk5;36 S. cerevisiae triosephosphate isomerase, 1ney).37  

Hydrogens were added with Reduce.38 

 A library of ligand internal conformations was created for each system as follows.  

Chorismate mutase:  An HF/6-31G* ab initio transition-state structure39 was used with 

only one variation—the O4 hydroxyl proton was allowed to occupy three positions, 60°, 

180°, and -35°, defined by the H-C-O-H dihedral angle.  The minima in a torsional 

profile at the HF/6-31G* level were at approximately 180° and -35°, and 60° was 

included as an option because hydrogen-bonding patterns in chorismate mutases from 

other species suggested population of that region of torsional space.  Streptavidin:  Four 

rotatable bonds in biotin were allowed to occupy three positions each (60°, -60°, 180° for 

sp3-sp3 bonds and 30°, 90°, 150° for the symmetric carboxylate group).  Thirty-four 

conformations were excluded because of high internal energy calculated using the van 
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der Waals component of the DREIDING force field.40  Triosephosphate isomerase:  The 

pdb structure used was the Michaelis complex with the substrate dihydroxyacetone 

phosphate.  In ground-state dihydroxyacetone phosphate, two rotatable bonds (defined by 

the P-O-C-C and C-C-O-H dihedral angle) were allowed to occupy three positions each 

(60°, -60°, 180°).  Three conformations were excluded because of high internal 

DREIDING van der Waals energy.  

 Ligand atomic charges were obtained by fitting charges to electrostatic potential 

from HF/6-31G* single-point energy calculations using19 the transition-state structure 

(chorismate mutase) or crystallographic ground-state structure (biotin, dihydroxyacetone 

phosphate).   Ab initio calculations and charge determinations were performed using 

Spartan (Wavefunction, Inc.) or Jaguar (Schrödinger, Inc.). 

 

Side-chain rotamer libraries 

 Standard backbone-dependent and backbone-independent rotamer libraries were 

used with expansion by one standard deviation about χ1 and χ2. 

 Crystallographic conformer libraries were prepared using coordinates from 

149,813 side chains selected from 1011 unique structures.  A clustering algorithm was 

developed based on ideas described by Shetty et al.22  and is described briefly here. Every 

side-chain conformation from the raw data set is assigned to exactly one cluster.  Each 

cluster is represented by the centroid, which is the member with coordinates closest to the 

average coordinates of all cluster members.  A conformer library consists of a list of all 

of the cluster representatives and their coordinates. In our clustering algorithm, clusters 

are assigned through discrete clustering moves:  Switch allows a single raw conformer to 
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leave one cluster and join another; Merge combines two clusters into one; Split allows a 

raw conformer to start a new cluster on its own.  These moves are depicted in Figure 5.   

 

 

Figure 5:  The three clustering moves are illustrated by showing the state of a 
sample system before and after the move is performed. Each dot represents a single 
side-chain conformation taken from the PDB. Distances represent side-chain RMSDs 
between pairs of conformers. Dots sequestered together by a dashed line and colored the 
same are members of the same cluster. Darker-colored dots denote cluster 
representatives.   
 

 RMSDs between pairs of conformers are compared to determine whether or not to 

apply a particular move. Switch is applied so that each raw conformer is a member of the 

cluster whose centroid is closest to it.  Merge and Split are applied based on the value of 

the clustering parameter p: two clusters are merged if their centroids are within p of each 

other, whereas a conformer splits off and starts a new cluster if the closest centroid of any 

existing cluster is farther than p from it. The clustering moves are applied as follows until 

the number of clusters converges: 
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1. Start with a small number of clusters (1 was used in this work), and randomly 

assign a single raw conformer to each as the sole member and cluster 

representative.  

2. Assign each raw conformer in the data set to the cluster whose centroid is closest. 

3. While the number of clusters is not converged: 

a. Iteratively attempt to Merge pairs of clusters until no cluster can be further 

merged.   

b. For each conformer C: 

i. Measure the distance d between C and the centroid of every 

existing cluster. 

ii. If the distance d to the closest cluster centroid is greater than p, 

Split C off as its own cluster. 

iii. Else, Switch C to the closest cluster. 

iv. Recompute the centroid for every cluster that has changed 

membership. 

 

 The algorithm allows the construction of both backbone-dependent and backbone-

independent libraries to custom sizes by using clustering factor p to define the desired 

degree of similarity between independent conformers.  In this work, clustering factors of 

0.3 Å and 1.0 Å were used for backbone-dependent and backbone-independent rotamer 

libraries, respectively.   
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 For all calculation types, conformer libraries were smaller than the standard 

rotamer libraries.  As an example, the number of side-chain conformations for the 

chorismate mutase calculations described in Table 3 were as follows:  backbone-

independent rotamer, 14229; backbone-independent conformer, 5955; backbone-

dependent rotamer, 7945; and backbone-dependent conformer, 5539.  

 

Calculation parameters 

 All non-Gly, non-Pro residues reasonably within the natural active sites were 

included in calculations.  Residues with any atom within a 5 Å radius from any atom in 

the crystallographic ligands were included, less those residues separated from the natural 

ligand by backbone elements and plus a few adjacent residues not within the 5 Å cutoff.  

The positions designed were (all in chain A unless otherwise designated): chorismate 

mutase, 28, 32, 35, 39, 46, 47, 48, 51, 52, 55, 81, 84, 85, 88, 7B, 11B, 14B, 18B; 

streptavidin, 23, 24, 25, 27, 43, 45, 46, 47, 49, 50, 79, 86, 88, 90, 92, 108, 110, 112, 128, 

130; and triosephosphate isomerase, 10, 12, 95, 97, 165, 170, 211, 230. 

 In ligand placement test cases, designed residues were restricted to ligand-

contacting residues or alanine as follows: Arg, Lys, Gln, Glu, or Ala in chorismate 

mutase; Ser, Asn, Tyr, Asp, or Ala in streptavidin; and Glu, His, Lys, or Ala in 

triosephosphate isomerase.  Four calculations on triosephosphate isomerase were run as 

smaller component calculations, as indicated in Table 2, because of prohibitive size as a 

single calculation.    
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Energy functions and optimization 

 Energy functions included scaled van der Waals,24 hydrogen-bonding, and 

electrostatic terms.25 A surface-area-based solvation potential27 was used in sequence 

design calculations but not for ligand placement, where solvation energy would have 

been heavily outweighed by geometric considerations.  Sequences were optimized with 

respect to the energy function using FASTER28, 29 or HERO.30  On occasion, a top-ranked 

sequence contained more than one instance of a given specified geometric contact, owing 

to the energy benefit applied for these contacts.  In these cases, Monte Carlo41, 42 was used 

to sample around the global minimum energy sequence, and the top-ranked sequence 

with a single instance of each geometric contact was reported.   
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