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ABSTRACT
A Rlesz space L 1s sald to be Egoroff if, whenever u, un’k& L and

(Vn)(0 < L 1&: u), there is a sequence u in L such that O €u ?m n
and, for each n,m, there exists an index k(n,m) such that Y2 € % 1(a,n)*
This notion was introduced, in rather a different form, by Nakano.
Banach function spaces are Egoroff, and Loreniz showed that, for any
funétion seminorm j) » the maximal seminorm Pl among those which are
dominated by j) and which are O ~Fatou (a inonotone seminorm ))2 is

o -Fatou if [0 < u nT u = }52(\1 n) T Pz(u) 1) is precisely the "lorentz
seminorn” f. , where J. (u) = inf { im P(un) 1 0< untu } + In this
thesis the extent to which j)l =P, nlwldaa in general Riesz spaces
is determined. In fact, j’l = ))L for every monotone seminorm § ona
Riesz space L if, and only if, L is “almoat-Egoroff". The almost-Egoroff
property is closely related to the IEgoroff property and, indeed, coincides
with it in the case of Archimedean spaces. Analogous theorems for Boolean
algebras are discussed. The almost-Egorc;ff property is shown to yield a
pumber of results which ensure that, under certain conditions, a monotone
seminorm i O -Fatou when resiricted to an appropriate super order dense
ideal. Riesz spaces L possessing an integral Riesz norm p (i.e., a Riess
norm such that [w, o= ,O(un)l, 0] ) are considered also, since in
many cases these are known to be Egoroff. In particular if f iz normal
on L (i.esy [ w, o directed system, “'t:‘L 0 z)jb (ut.)io ] ), then
L is Egoroff. In this connection, a patholo@.cal space, possessing an
integral Riesz norm which is nowhere normal, is constructed.




Introduction

The basic purpose of this thesis is to study the significance
of the Egoroff property, and certain other properties derived from it,
in various aspects of the theory of Riesz spaces. Upon occasion, we
consider similar problems in the theory of Boolean algebras. The thesis
is divided into nine sections. Section 1 introduces the Egoroff property
along with related properties which prove to be important. Chief among
these is the "almoat-Egoroff" property, a property which coincides
with the Egoroff property in the case of Archimedean spaces. In section 2
we discuss the rOle of the Egoroff property in the classical Riessz
spaces derived from spaces of measurable functions, and in the associated
measure algebras. The relationship of the Egoroff property to the
well=known theorem of Egoroff is also pointed out in this section.
Examples of Riesz spaces in which the Egoroff properties fail in various
ways are presented in section 3. In section 4 we discuss, for the theory
of Boolean algebras, analoguea of results which take their most
significant form in section 5. The latter section deals with the
relationship between Egoroff properties of Riesz spaces and the behavior
of the monotone seminorms which may be defined on them. In particular
we show that the property which we have called the almost-Egoroff
property represents a precise answer to the guestion: in which spacesa
can the maximal ¢ -Fatou seminorm dominated by a given (monotone)
seminorm p be obtained in the form of the Lorentsz seminoram fI. ?

Sections 6 and 7 contain comments on some questions which stem naturally
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from the work of section 5. The almost-Egoroff property is applied im
gection 8 to prove a mumber of results of "Koshi type", i.e., results
which ensure fcha.t certain monotone seminorms become ¢ ~Fatou when
reatricted to the appropriate super order dense ideal. Section 9 deals
with Riesz spaces on which there is defined an integral Riesz norm.
These spaces are closely related to the Egoroff spaces. For example,
it is known that if the Riesz space possesses a norm which is not only
integral but also normal, then the space is Egoroff. Detailed study of
a particular example reveals some hitherto unobserved pathology in this
respact, namely, an integral Riesz norm which is nowhere normal.



1: Egoroff Conditions

In this thesis we shall be concerned, for the moat part, with
absiract Riesz spaces. For the general properties of these spaces we
refer the reader to Bourbaki [1], chapter II, to Nakano [2], or to
luxemburg and Zaanea [3), Note VI and following. Unless stated explicitly,
no assuupiions are made concerning the order-completeness or Archimedean

character of the spaces under consideration.

The basic Egoroff condition is an abstract formulation, in the
Riesg space setting, of the property which lies behind Egoroff's
classical result (see [5] ) concerning spaces of measurable functions.
Presently, in section 2, we shall discharge our historical obligation by
demonstrating the relationship between Egoroff's theorem and the Egoroff

condition we are about to enunciate.

It is convenient to introduce first a special notational device.
If A is any system with e partial ordering "< " , and {an k} is a
: ’
double sequence of elements in 4, we write a<<{a .} , where a £4,
, :
to mean that
Vnlk(n) such that a ¢ &, k(n) °

Consider first a Boolean algebra 3 « An element b £ 8 is said to
have the Egoroff property if
Lva v\ 4, 2)=>[3v such that 5 4} v e Vap « o, (33 -

The Boolean algebra _ (O itself is ssid to be Egoroff if every ome of its
elements has the Egoroff property.
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In the case of a Riesz space L, we say that an element ue L* has
the Egoroff property if [ogw n,k Tk u, for each n] =—=»
[ 39,20 suchthat u f v and Vm w « {33 -
More generaliy. we say that £ € L has the Egoroff property if |f| has
that property, and we say that the space L is Egoroff if every one of its
elements has the Egoroff property.

A related property which has been introduced is the weak Egoroff

property. If B is a Boolean algebra, bt B is said to have the wesk
Egoroff property if

Vo v v]=>{b=0 or 3a£ 0 such that a<< {bn’ Y1 .
Following the pattern above, we say that a Boolean algebra B is weak
Egoroff if each of its elements has the weak Egoroff property. In a Riesz
space L, we say that an element u & LY has the weak Egoroff property if
fog bk T s for each n]==[u=0 or3v ; 0 such that v«{un’k'}].
More generally, we say f £ L has the weak Egoroff property if |f| has

that property, and we say that the space ;4_ is weak Egoroff if every one
of its elements has the weak Egoroff property. A

It appears that Nakano was the first to isolate the Egoroff property
for Riesz spaces, although he did se in rather a different form from that
which we have given above. With certain reservations, our Egoroff property
corresponds to his notion of "total continuity" (see [2], §14). Iuxemburg
introduced the notions of Egoroff and weak Eigoroff Boolean algebras in
6], using the present terminology. The properties also ocour in the

present form in Iaxemburg end Zaanen [3] (see, for example, Definition 20.5).



-5 -

We wish to introduce here a third Egoroff-type property, which will
play an important rOle in the sequel. We say an element u & L¥, where L
is a Riesz space, has the almest-Bgoroff property if

| o ¢ Yk Tk u, for sll n] =2

(Ve >0 Juf >0 ouch et wlf (1-e)n ana Vm ui« (CA P
An arbitrary e%ement £& L ie said to have the almost-Egoroff property
if |f{ has th;t property, and the space L is called almost-Egoroff if
every one of its elements has the almost-Egoroff property. There is no
useful analogue of the almost-Egoroff property for the case of Boolean
algebras,

Let us first make the simple observation that the Egoroff property
is an "ideal property".

m 1.1t (a) If £ is an element in the Riesz space L which has the
Egoroff property, then every element g in the ideal generated by f, 1.6.,
in {g: 3M such that {g|< M|f\)Y, has also the Egoroff property.

(b) If an element b of the Boolean algebra B has the Egoroff property,
then overy element a such that & < b has also the Egoroff property.
Proofs (a) Clearly we need only prove that if u has the Egoroff property
and O0Sv<u, then v has that property. But if 0< v 1, v» then
('n,k + (1 -v)) fk u, and there exist u ~ such that

0Su Tm u ad w <K {(vn,k +(w=v)3 ; tut then
0w, - w-v)<ly, J ot (g -@-v)" - (@ev)) v
(b) 1 o, , }, & then

8 xV (vAat) Tk avi{bAa') =b.

Tus Jv, { b such that
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b, <« {a,viaa)d,
80 that (b‘/\ a) Tma and

(bn/\ a) << '{(an’kv (bAa'))A ala {an,k'k .

Similar theorems do not hold for the almost-Egoroff and weak Egoroff
properties. In the case of the almost-Egoroff property, this will be made
elear during the discussion of Example 3.3. It is much easier to see
that we may have 0L v < u in a Riesz space L where u has the weak
Egoroff property while v does not have that property. Consider, for
example, the direct sum C[0, 1} @R, where R denotes the reals and
c{o, 1] the real continuous functions on the interval [0, 1] ; it will
be shown in Example 3.1 that no non-gero element of C{0, 1] has the
weak Egoroff property, so that if f ¢ C[o, 1], f ;o, then
va=(£,0) & C{0, 1J®R has not the weak Egoroff property; on the
other hand w = (f, 1) has that property, and, in fact, it ie clear
that 0 éun,k Tk w  implies that (0, o )<< {un’k} for every & ; 1.

There are certain simple techniques which are useful in dealing
with Egoroff conditions and which will occur a number of times in the
proofs of theorems in subsequent sections. To demonstrate these techniques
in the most elementary setting let us derive an equivalent form of the
Egoroff property for elements in a Boolean algebra.
Theorem 1,23 An element b in a Boolean algebra & has the Egoroff
property if, and only if, whenever b . 1, b (for each n), there exists
a sequence b, such that b 1 b and, for each m, there existe k(m)

such that b L4 'b" xm) -
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Proof: (== ) This is immediate.
(&= ) Suppose we have, for each n, LI h: b. Consider
, _

an'k = bl’k/\ hz’k N see N bn,k

Again we have, for each n, a X Tk b (vecause of the strong
?

[ 3

distributivity properties which hold in Boolean algebras). In view of

our hypothosis, then, there exist b , k(n) such that b_ 1" b and

LIRS 2 x(n) * We need only show that, for each n,m, we have k(n,m) with
b, < bn,k(n.m) « But for n2 m we have

LM Bn,k(n) € bn,k(n) ’
snd for ng{ m we have

% < % x(m) € Pnk(@) °
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2¢ Classical Examples; Egoroff's Theorem

We wish to discuss here the significance of what we have called the
Egoroff property for the well-known case of Riesz spaces of real measurable
functions. We shall alsc show how the Egoroff property is involved in the
classical theorem of Egoroff, although it is not the intention of this

thesis to formilate generalizations of that theorem (cf. [2], Theorem 14.2).

Given a set X, a @ -complete Boolean algebra D of subsets of X
which is a subalgebra of the power set p(x), and a countably additive
measure M on % , valued in (0,09 , let L denote the space of real-valued
functions on X measurable with respect to (X, %, M ), with identification
of almost everywhere (a.e.) equal functions. With the introduction of
the usual linear operations and partial oxdering, L becomes a Riesz space.
Let [ denote the measure algebra associated with (X, F, m ), 1.;.,

B 1is the Boolean algebra composed of equivalence classes of elements
from ) , where A, B £ & are identified whenever the symmetric difference

A A B has measure Zero.

We shall say the Egoroff theorem holds for (X, F, g ) whenever

[ F, measursble functions, and F, —> F a.0.] =

{ 3 measurable subsets an such that F, —> F uniforuly on each

k
(%)
Xomd px- Ux )=o J.
This represents a convenient reformulation of the well-known result of
Egoroff (of. [5] ) for the case of a fin{te real interval and Lebesgue

neasure.



-0 -

The proofs which we shall give for the first three theorems
presented in this section are somewhat abbreviated. We make without
comment a number of steps which in fact require a small aréument for
their justification. These steps sre all of & similar nature end arise
in paseing between statements ooncerning ¥3 oxr L and astatements
concerning the measurable sets and functions of the measure space
(X, Fp pa ) from which > and L were constructed. Naturally, the
arguments depend upon properties of the mull sets in (X, F, ) and,
in particular, upon the fact that a countable union of null sets is again
a2 mll set. In order to give a clear idea of what is involved in these
steps, without obscuring the proofs of Theorems 2.1, 2.2 and 2.3 with
details, we propose simply to justify here a representative example of
such a step. Suppose we have elements Y U & L such that LN Tn Qe
We wish to be able to assert that, if we choose measurable :mnction;

F, P onXsuch that F g u and F ¢ u, then FO,F aee To
see that this must be the case, let

G = sup(inf(P,, F), «ev s inf(F, F)) (a=1, 2, ... ).
Now we have Gne. L) and GnTn §¢ F everywhere; hence, if G is the
measurable function which is the limit of the sequence Gn’ we have
Gn'f’n G ¢ F. If v is the element of L such that G & v, then uns V<,
for all ne It follows that v = u, s0 that G = F a.e. Clearly, then, we
have T T o * &od, in fact, F Tn G except possibly on the set

a= {m (A)( 2 () A G,(x))Y .

For each n, however, the set {x: Pn(x) # Gn(x)} is a null set, 80

that A, the union of a countsble collection of mull sets, is itself a mull
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set. Ts F,{, a.e. and F 4 0 a.e. ; finally, r an a.e.,

since, as we have remarked, F = G &.0.

Theorem 2.1: If L and B are the Riess space and Boolean algebra
associated with a measure space (X, F, P ), using the notation
developed above, then [ ¥ ias Egoroff) €= (L is Egoroffl .
Proof: (—=) Suppose we have 0 ¢ Y, ka u (for each mn) in L.

First of all, we may assume that u, for each n, k%,

n+1l, k n.k
since otherwise we replace LR by
: ]

un’k = ul’kAu ’k A ees AU n’k H
we still have 1 k Tk u (for each n), and

(v« k'g]::—_)[v«{ Y I

Now choose measurable functions Fn,k s ¥ on X such that F n,k & un k
and P € u. If we set 5
B = = B () 2R -3

and let b betheelementof B such that X x € by
we certainly have b a,k Tk 1 for each n. Assuming the Egoroff property
in B , we have & sequence b T 1 such that
Va b <« (LI I
Ifwencwchoosex 83 such that X&bm and let

G, = (F=z)*. Xx

we have 0 £ G T F a.e. Moroover, for overy m, there exists k(m) such

that b 5 b , and hence, for a.e. x,

n n,k(m)

TEX, = xEX () » Leeo, F(x) -é < Fm'k(n)(x) .
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If we recall that Fn,k(m) 2 0 s.0., we see that

¢ = (P~ é )+o xxn < ru'k(n) 880

Clearly, then, if we let w be the element of L such that Gn £ L

we have Osuthu and Yn “u £ “n,k(n) o

v, & {un,kk » 8ince for n ) m we have L S %, k(n) and for

Thus each

ns{m we have “n$ um,k(n) < un,k(m) .

(&= ) Hecalling Theorem 1.1(b), we need only consider the situation
where bn.ka 1 (for each n) in JB . If we now choose X x € T

such that X . &€ b and let u_ , be the element in L such that
n,k n,k

n,k
Xxn.ka Ukt Ve have 0 < Yy x Tk u (for each n), where u is the

element of L containing the unit function on X. Assuming the Egoroff
<

property in L, we have 0% “me w such that Vnm w K {un,kk .

Choosing measurable functions Fm & LR st have F‘. 1‘ l a.e.

80 that, if we let Xn - {zz Fn(x);

element of [ which contains X, we certainly have b T 1. Moreover,

0% » and let b be that

if we fix @ for a moment, for each n there exists k{(n) such that

u < Y k(n) hence T < Xxn,k(n) a.e. 80 that, for a.e. X,

x¢& X‘ :2 exn,k(n) .
It follows that Db < B, ,(,) o a0d hence that Vu b << {b, ,}

~

Theorem 2.2t If (X, F, ») is a measure space, then
[ ® 1s Egororf (equivalently, L is Egoroff)] ==

[ the Egoroff theorem holds for (X, ¥, M )3 .



Proof: Given measurable functions Fk on X, such that Fk—-) F  a.e., set

xn'k = {x1 Vk' 2k \Fk,(x) - F(x)| € 1-]; Y .
0Q
Clearly, for each n, X Tk and )«(x - kg lxn,k ) = 0.

Thus, if ‘on » We have
?

k "'y
1, for each n. Under the assumption that B is Egoroff, we have

is the element of & such that X . € b
n,k n

L
b tal with b << {b, .} , for each m. Choose k(m,n) such that

k(m,n) Tn for cach fixed nand b £ « If we choose

®a,k(n,n)

R
[
Y'ebn,wemsthave /J.(x- kljl‘n)-o and, for each m, for a.e. X,
o0

x & Ym = x SnO 1 xn’k(n’n) .

Thus if we let
oo
L= nQ N X k(mm)

oo
we have an » because of the choice of k(m,n), and )a.(x - U x )=o0.
1

Finally, F, —> F uniformly on each X, aince k k(m,n)

end x&X imply that |F(x)-Fx)| < I .

Theorem 2.3t If the measure space (X, ‘3“,)») is ¢ -finite, i.e.,

if there exist X & JF such that xn'( X and Vm }A(Xn)< 00 ,

then B 1is Egoroff (equivalently, L is Egoroff).

Proof: In the obvious way, }.a. induces on the ¢ -complete Boolean

algebra & a measure, which wo again denote by }-L « Thie measure is
valued in [0, o0] and ia strictly positive; ch c In D= )&(c n) T }\(c)
and cn$0 inﬁ:ﬂ)&(en)lo whenever /L(cl)< 0 .
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Furthermore there exists a sequence amTl such that )A(am) < 0 for
each m (for example, we may take &, such that X ¢ a )e Now consider
a double sequence bn,ka 1 (for each n). Clearly, for each m, m,
(%A h:'x,k ) ‘k 0 end, as
CPlagang )& ma) < oo,
we can choose k(m,n) such that

. -
Py AT () ) < 2
Moreover, we may suppose that  k(m + 1,n) > X(m,n) for all m,n. Now let

(m +n)

o0
b, = N (ah’\bn.k(m,n) ) -

n=1l
Clearly b g a and b} , due to the choice of k(m,n). The construction

of b, ensures that V= b << ibn,k.g . Moreover,

[ -]
W% = V(8 A% ) )
so that pu(a A bL) & sa+1) we2) o m
Now, for all p,

}L(ah/\bl',) sjA(apAbl;) & 27°

00
so that /A(an/\bl')) —» 0 as p—> o0, Hence \{bp > 8

for each m, and since amT 1, we must have bn‘T l. We have shown that
1€ B has the Egoroff property, emd this completes the proof of the

theorem, in view of Theorem 1.1(b).

Theorems 2.3 and 2.1 above serve to show that there is a good
supply of Egoroff Boolean algebras and Riesz spaces. Theorems 2.2 and
2.3 constitute a proof of the classical Egoroff theorem which makes
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evident the rdle played in that theorem by the "Egoroff property"

intrcduced in section 1.

We should perhaps mention a general result which could be made the
basis of a rather different proof of Theorem 2.3. We say a set A in a
Boolean algebra B is super order dense in B if, forany b E.B ’
there exists a sequence 8, in A such that anTn bs: the same terminolegy
is used for subsets of Riesz spaces. We shall show presently that if
A is super order dense in a Riesgz space (Boolean algebra), and if each
element of A has the Egoroff property, then the Riesz space (Boolean
algebra) is Egoroff. Now in the proof of Theorem 2.3 one might first show
that each of the elements a has the Egoroff property; since, for each m,
}A(an)< 00, the argument could be patterned more directly after Egoroff's
original proof, vhich dealt with an interval of finite measure. It would
then follow, in view of Theorem l.l(b), that every element im the ideal
I={b:(3m) (bg am)} has the Egoroff property. Since I is clearly
super order demse in B , Theorem 2.3 would then be a consequence of

the general result noted above, which we now prosent as a theorem.

Theorem 2.4: Let A be a subset of a Riesz space L (Boolean algebra B )
and suppose that A is super order dense in L (in ® ). If each element
of A has the Egoroff property, then L ( & ) is Egoroff,

Proofs We shall give the proof in the case of a Riesz espace L; the case
of a Boolean .algebra (3 may be treated in just the same way.

Suppose u, un.k are elements of L such that 0 £ “n,k tk u, for each n.
Sinece A is super order dense in L, there is a sequence apa A such that



a, Tp u, We have {ap\ = vp tp u, and each vp hae the Egoroff property,
since every element of A has that property. Since, for each n,

(v, A vy ) Tk (VA =v
there exists a sequence \{ » for each p, such that

O$\(£T‘vp and '{<< i'p’\“n,k} .

1 2 n
Iet N = nnvumv... Vu‘ « Now “‘T‘é“’ since v

n L& n

-~

for each p; on the other hand, for each p, w ?,1{ whenever =m> De
‘Hence %1‘\1, since 'p tu. Fixing = and n for the moment, note that,

for each p, there exists k(p) such that nﬁ e o A (p) * Thus

€ Nk(1) YOtV Takm) T h, mexk(p) °

so that w << {un’k"; ¢ Clearly, then, w has the Egoroff property.
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It is clear that if u is an element of a Riesz space L, then
(1) w has the Egoroff property implies that u has the almost-Egoroff
property, and {ii) u has the almost-Egoroff property implies that u has
the weak Egoroff property; similarly, if an element b of a Boolean
algebra (B has the Egoroff property, them it certainly has also the
weak Egoroff property. The examples below show that nome of the reverse
implications holds.

Example 3,1: Let C[O, 1] denmote the set of continucus, real-valued
functions on the interval [0, 1] . C[0, 1] bvecomes a Riess space L
when we define the linear operations in the usual way and introduce the
ordinary pointwise partial ordering (i.e., £>g if f£(x) 2 g(x)

for all x € [0, 1] )o It ie easy to show that no element different from

Q in this space has the weak Egoroff property. To see this, consider a
function u 2 0. let {r ] be an enumeration of the rationmals in {0, 1],

and let, for each n, w . be a sequence of functions in CfO, 1] such
, :

k
that O&un'kasn, and for all X ¢ {rlg rz, soe o rn}

nn'k(x) Tk u(x) , while for =x § {rl. Tye een s rn} 'k(z) = 0.

n
n
Clearly uhkau in L= C[0, 1] . On the other hand, if

»
0<% 3<<{un.k}’ then g(rn)ao for all n, so that, since {rn} is

dense and g is contimmous, g= O.

Example 3.2¢ Consider the set n(nn) of all real functions over the
set X (' 1s the set of all functions from K= {1, 2, 3, eee }

into N). With the introduction of the natural linear operations and the
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)

the following subsets of X = M 3
xn.k - {.x: ¢ and x(n) €k y

pointwise partial ordering, L = becomes a Riesz space. Consider

identifying subsets of X with their characteristic functions, we clearly
have, for esch m, X . Tk X (in L), Nevertheless, this double

» .
sequence has the rather surprising property that for no choice of k(n)

do we have s:p xn'k(n) = X3 in faot we can construct x & X such

that Vn x$X o) sioply by setting x(n) = k(n) +1 for all
n & K. It is now easy to show that X, the unit fumction in L, has mot

 the Fgoroff property, nor even the almost-Egoroff property. For suppose
we have a sequence Oén.«-f_xn’k} ;3 thea in particular we can choose

kx(m), for each m, such that w < x"k(_) o Hence

sup LIRS sup Xaklm) * %

in view of the comments above, so that X cannot have the Egoroff property.
More precisely, there existe x & X such that VYa X n,k(-)(‘) =0

so that [sup w J(x) =0 end since X(x) = 1, it is clear that X
camnot have the almost-Egoroff property.

Nevertheless, the whole space L = E(]x) is weak Egoroff, for if
we LY, wf0, then there is some x in X euch that n(x)go. and if

%,k ?k ¥, then ‘n,k(x) Tk u(x)  (for each n) =0 that
0%t X< lu, ¥

It 10 also quite evident from the adbove discussion that the power
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set p(N') furnishes an example of a Boolean algebra which is wesk
Egoroff but not Egoroff.

Example 3.3t - For this example it is convenient to have available a
non~Archimedean extenaion *R of the real numbers R, i.s., we assume *R
to be a totally ordered field containing R as a subfield and comtaining
elements h, called imfinitesimals, such that

re¢R and r;O =) -r<h<r .
A general construction for such *R is discussed in [7) ; however, much
less sophiaticated constructions would be sufficient for our present
purposes. All we really need is a totally ordered non-Archimedean linear

apace over H.

Let L consist of the functions f on the set X = N (see the
previous example), with values in *R, and having the following forms
£(x) = T, + ht(x), where r,& R and, for each x ¢ X, hf(x) is
infinitesimal. Upon the introduction of the pointwise linear operationsa
and the partial ordering induced by the pointwise order imn *R, L becomes
a Riess space. Note that if r,§ z , then £ g (and, in fact, r;;)
regardless of the values of the functions hf and hg « Now consider the
element u in L which has r =1 and, for each xinX, h.(x)=o0.
We can easily show that u has the almost-Egoroff property. To see this,

suppose that 0< w | ‘kn (for each n); certainly r"h,k?kl (= ru),
for each n, so that, given a; 0, we have some k(n), for each n, with

i@ FOO° T Ta-en
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thus we have (1 -& Ju ¢ Up,k(n) ¢ Henoe, for each a;o,
A-¢hm« foad *

Consider now the element h . X in L, where h ic a fixzed
infinitesimal greater than sero. Using the motation of Example 3.2 we
have h .xn'kah e X (for each n), and, arguing just as we did in
the discussion of Exemple 3.2, we see that h . X has not the
almost-EBgoroff property. A8 O £ h « X £ u, we have shown that
the almost-Egoroff property is not an ideal property, as we promised to
do at the end of section 1. Note also that u has not the Egoroff property,
for in that case h would have that property as well, in view of Theorem
1.1(a). Thus we have exhibited an element which has the almost-Egoroff

Rroperty but not the Egoroff property.

Example 3.4: We can demonstrate the existence of a Boolean algebra
not having the weak Egoroff property, at least if we assume the contiruum
hypothesis. This was pointed out by Professor lLuxemburg. Consider the |
algebra of all subsets p(X) of a set X having cardinality ¢ = 250 .
It was proved by Banach and Kuratowaki, as the basic tool im their
discussion of the non-measurability of the cardinal ¢ (see (12] ), that,
if the continuum hypothesis holds, there exist subsets xn’k of X
such that (1) for all n, xn’kth, and

o0

(i1) for any choice of k(n), n(] L xn.k(n) is countable.

This result is discussed (as Proposition cn ) in Sierpinski‘'s
well-lmown boaok [12] . If we now form the quotient algebra p(l)/ ,
| C
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where C 1s the ideal in p(X) consisting of those §ubaets which are
at most countable, we have our example (O . To see this, let h be the
canonical map of p(X) into p(I)/C = B o Now, for e§0h n,

h(xn k) Tk 1 &€ B, while, for any choice of k(n), we have
» o0 ‘

/\1 h(xnok(n)) = 0

A=
Clearly, then, 1 has not the wesk Egoroff property. Farthermore, if b is
any element of B and we let bn,k -bA h(xn'k) » we have

',bn,k tk (bA 1) = b, for all n, and, for any k(n),
0o
n/=>1 Yrm) = (A0 = 0 3

thus no non-gero element of B has the weak Egoroff property.

Thus we cannot hope to show that every Boolean algebra is weak
Egoroff, since Godel has shown (see [13] ) that the contimuum hypothesis
is consistent with the other axioms of set theory (if those axioms are

consistent).

We have now completed our list of ox@leo designed to aeparaﬁ the
various Egoroff conditions in Riesz spaces and Boolean algebras. It is
important to note that the non-Archimedean character of the example
(Examp1§ 3.3) of an element of & Riess space having the almost-Egoroff
property without the Egoroff property is essential, as the following
result shows.

Theorem 3.5: If w e L' is such that in!'%u = 0 (in particular,
n

if the Riess space is Archimedean), them
[« has the Egoroff property] <= [ has the almost-Egoroff property] .
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Proof: We have already noted that the implication (==)) always
holds. For the other case, suppose that u has the almost-Egoroff property,

and that Osnn'kikn (for each n). Choose a sequence of real umbers

& P and elements ua such that

gl o¢ll en b ma Dc{n 1 (feraum )
Row let nh'!&l\/ooovu: .

Clearly OsnnT and n.su. Moreover, if v is such that u‘gv,

for all m, then nzsv, for all m, 80 that ¥ > € u; as this holds

for each p, v 2> sup epu. But Gptl and we have assumed that
P

infx—]"uso, 80 that mxpapu-u. Hence “n“‘ Also,

n )
w, << {w, .} eince each g X(p) » for some k(p)
(depending also on m and n), so that

%S P k() T Y (mex xp))  °
= pE<m

It follows that u has the Egoroff property.
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4: A Characterization of those Boolean Algebras which are Egoroff

A function @ on a Boolean algebra (5 is called a finitely
additive measure if ¢ is valued in [0, ©0) and, for any a, b & B
such that aAb=0, @(avd)= @(a)+ @(b) . It follows that ¢
is monotone, f.e., if a < b, then &P(a) < @) .

Finitely additive measures on Boolean algebras have received
coneiderable study, and, in particular, Yoesida and Hewitt proved the
following decomposition theorem (se0 [8] ) :+ every finitely additive
measure O on a Boolean algebra & can be expressed uniquely as the
R QY= @ + @, of two finitely additive measurea where P, is
¢ -additive and (¢, is purely finitely additive. A finitely additive
measure \V is called ¢ -additive if

[+
LacaeB, {8} dlsjoint, a= n\-/13,,] = [Y(a) = Zl\}f(a )1,

and Y is called purely finitely additive if the only ¢ ~additive
measure dominated by \{J is 0, 1.e., if

[y 2> ¥, (pointwise on ) and VY, 6 -satitive] =3[}, = o]

For every finitely additive measure @ on a Boolean algebras B
we can defive a yelated fumction ¢, e [ in the following ways
for each d £ B ,

@ ) = m{nnu em): v iv) .

Otviously, ©p & ¢ and, if @ > 8 , then ‘?L?"VL o Marthermore,

it {8 easy © shovthattfn is alvays finitely sdditive.
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A result which appears to go back to Woodbtury (9] and Bauer (10]
states that, for all finitely additive measures ¢ on a Boolean algebra
8 » @ =Py »vhere @, is the O -additive part of ¢ in the
decomposition of Yosida and Hewitt.

It is clear that, if ¢ 1is a finitely additive measure, then
(o 1o @ -additive] &= [, = ] o

Hence, if ¢ is a given finitely additive measure on a Boolean algebra
B and Y is a ¢ -additive measure dominated by @ (i.e., @ 2 V),
we have QL2 \VI; - \t) » 80 that @, = ?L is simply the statement
that © 1 ie O -additive. The fundamental result concerning finitely
additive measures, then, may be expressed succinetly by saying that. for
all finitely additive measures on a Boolean algebra ©, @ = ¢ .

It is natural to ask in which cases the simple operation of passing
from @ to @, remains idempotent when applied to a larger class of
monotone functions on the Boolesn algebra (B . Given a fmction

P28 — [0, ] which is monotone (ive., ag b=3p(a) < P() ),
we define PL by
i) = at {1mp(v) s iy .

We shall show that if the Boolean algebra O 1s Egoroff, them, for all
monotone /0 v /OLI. = /OL 3 what is more surprieing is thgt it

/OI.L = £, holds, even for the well-known class of outer measures on
B , then B muet be Bgorotfs We say sz-—»[o,oo]' is an outer
neasure on the Boolean algebra B 1f p 1s monotans,  P(0) = 0, and
f is countably sudbadditive, i.e.,



o0 A ay
Vo = p@< 2 pla)

We should point out that the atatement /OI.I. = /OL.‘ is
equivalent to | [Ve, ,2¢8: ‘n"‘ = fLyls) ‘fn“)] R

1.e., to the statement that f, is, to a certain extent, contimous
with respect to order convergence in (B3 . This poin of view plays the
dominant rdle when we consider the analogous situation for Riess spaces
(where /) is a monotone seminorm), as we shall do in section 5. In the
case of a general outer measure /o » the property we have been discussing
is strictly wesker than the property [Vana B anJ, 0 = ﬁL(anNyO] .
This is in contrast to the case of a finitely additive measure ¢ ,
where we clearly have [\Va, & £ B s an“ a = ¢(a) th(a) ]

& (Ve eB: al0=¢l)|o] .

The following theorem represents, then, a characterization of
those Boolean algebras which are Egoroff; it is also an introduction to
the anslogous, but considerably more complicated theorem concerning
norms and seminorms on Riesz spaces, to be treated in section 5.
Theorem 4.1: A Boolean algebra B is Egoroff if, and only if, for every
outermeasxu-ef) on B , we have PLL = PL‘ In fact
(a) if B 1o Bgoroff, them P = P, for every momotone

function ps B —> [0, 0] ; amd
(v) 1ir Pu = fI. for every finite-valued ocuter measure P (we

nay assume  P(1) = 1) on H , then B 1s Egorors.
Eroofs (a) Of course, P € P1 < On the other hand, suppose
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fm(b) < A3 in this case there must exist b, ‘kn b and, for each n,
L fe b, such that, for all m, k, P ) < A et
8 = PV (bAB)
for each n,

°n,ktk (bnv (b'\b:'x ) = b

Assuming the Egoroff property for b, we have %1 b such that,
for all m, a8, <« {"n,k} « Now o, A bn\ b, and, for each m, there
exists k(m) such that

APy S Ay )N P - (bn,k(n) NALES LM )) A b = Pux(m)®

s plagan,) g )o(bm’k(‘) )< A, so that Li®) < A . Since
this holds for any A > /OLL(b) , we have fl.(b) £ fu(b) v

(v) Suppose, for each n, bn.ka 1. let

Bn.x = bl’kl\ bz’k/\ soe Abn,k 4

again we have, for each n, 'Sn X Tk 1l . Note that unless there is some
]

I such that b= . # 1 for every k, it is immediate that we can find

L L 1 such that b << {bn,k} 3 in fact, if there is no such i we

have 1<<{bn’k'§ « Now let ah-ba’n,andlet L

-anABn’k.
veﬁm)oonlﬁby ))(x)- 0 ifx=0
+ if 3n,k such that x<a L
1 otherwise«

It is evident that P is an outer measure on B o Moreover, as

8,k Tk a, and ‘nL 1, we have j’n‘(l) = %o By our assampticn,
then, f,(1) = &, and clearly this means that there exists a sequence
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c, end, for each m, there exist n(m) and k(m) such that c‘Tl
and o & &y(n)y(n) ° FO¥ n(m) —> ® a8 m—» ® . To see this
observe that if, for eome n, n{m) = n for an infinite number of =,
then for each o, there exiats &' m such that n(m') = n; tut then,

for each m,

% € %' S %at)k@') € ') = % A1,
so that cn't.l, a contradiotion. We can now show that each ¢ <« {bn,k} ’
since, given fixed m and n, we can find m'> a auch that n(-»')z ng

but in that case
0 € %' € %)) € Patw),x(@') & P, k(')

Hence we have shown that 1 € B has the Egoroff property, and, in view

of Theorem 1.1(b), this completes the proof of (b).

To every outer measure ( on a Boolean elgebra B there
corresponde the subalgebra Hj, of elements which are measurable with
zespect to p in the well-known sense of Carathéodory (f.e., be Ko

= (Vae 3 : pla) = P(a/sb)+}:(a/\b') 1 )e It is alvays
true that Ko 1s a subalgebra of B and that p is countably additive

)
on!(j) 3 indoed, if b iandiajointuquoneeinl? and b= \]./bn

oxista,thenbellf Mf(b)-g:f(bn) « In general it may

happen that )l}, - {0, 1}.'&0mtorumref is called regular

if p de "gemerated" by (}a . u}, )s 1.8., foreach a ¢ B

) 00
}?(a) = :I.nf{Zlf(hn) : a-n\-/l(ahba) ad b & l‘\.} N
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If the Boolean algebra B is ¢ ~complete, as is the case when B

is the measure algebra associated with a measure space (X, T, p+)

(cf. section 2), them X p is itself a ¢ -complete Boolean algebra.

In this situstion it is not hard to show that every regular outer

moasure p on B hes the property PL -P ,andﬁy,afortioﬁ.,
PI.L = fr + Thus we may state the following theorem o5 a consequence

of Theorem 4.1.

Theorem 4.2t If ® is the measure algebra associated with a measure

space (X, O, o), then § 1s Bgoroff if, and emly 1f, P = f

for every outer measure f on B which is not regular.



53 _The R8le of the Almost-Egoroff Property in Riess Spaces

The Riesz spaces which ocour naturally in classical analysis
usually come equipped with norms, and almost invariably such a norm is
compatible with the order structure of the space to the extent that the
norm is monotone. Inevitably, then, a theory of monotone norms and
seminovms has developed in the atudy of Banach function spaces and in

the study of the more general Riess spaces.

A We shall call a function p on a Riesz space L a monotone semimorm
it (1) p1 L — [0, ] (note that + oo is admitted as a value),
(1z) P is a seminorm in the usual sense, i.e.,
P is positive howogenecus (A2 0 = p(Af) = Ap(f) )
and sublinear ( p(r+g) < p(f) + plg) ) , am
(111) p 1s monotonme, i.e., (g| & It =2 ple) < p1)
(note that this implies that p(f) = PALL) 4 or, as it
18 sometimes put, [ is "absolute” de
Such a p will be called a monotone porm if, in addition, P(f) =0 =
£ = O, Following Iuxemburg and Zaanen [3] , section 22, we reserve the
term Rienz (semi)norm for the case where these objects satisfy the
additional requirement that they assume only finite values in L.

A special but important class of monotone seminorms is the class of
those seminorms which are ¢ -Fatou. We say that 2 monotone seminorm
on a Riesz space L s o -Fatoy if, vhenever wu ,u ¢ ¥ and %Tu,
ve have  p(w) T )D(u) ( of. [3], section 5 )o For example, the
norms in the classical I’ spaces (1< p<o0) are o ~Fatou; moreocver,
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the name " o-Fatou" is inherited from these examples { I norms are

o -Fatou as a consequence of the famous "Fatou lemma” ).

We first wish to mote that, although a given monotone seminora f
may not itself be ¢ ~Fatou, there is always a largest element among
thoee monotone ifaeminom dominated by P which do have that property.
We formulate thia comment as a theorem.
Theorem 5.1t If P is a monotone seminorm on a Riess space L, then there
exists a monotone seminorm P 1< P much that Pl is C-Fatou and,
for any monotone seminorm p, < p such that PZ ia C=Faton,

Lo € F1 ( Pl is clearly unique).
Proof:t Let A be the set of monotone seminorms on L which are dominated
by p and which are O -Fatou; the seminorm which is O throughout L is
an elemant of A, We set, for £in L, L (f) = eup{pfy(f) s P, € A}.
Clearly we need only show that fl s Which ie obviously a monotone
seminorm, is indeed O ~Fatou; but if OsunTu and 7\<j31(u) , then
there is some P, & A such that A< P,(u) , and we have

lim fl(un) > lim j’z(\\n) - Pz(u) > A
n n

o that P (a)tp ) .

It wvae lorents (see [3] , section 7 ) who showed that, in the case
where L is a (real) Banach function space, the seminom Pl of Theorem
5.1 can be caloulated simply as PI. » the "lorentz seminorm corresponding

to P",vhnro, for each ué:I."',

Prla) = mf{l:nf(%) s ogwtul .
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The real Banach function spaces are, however, rather special, and the
gquestion remained to be answered: +{o what extent does the simple relation
" )51 = PL " occur in the realm of general Riesz spaces, i.e., in
which cases do we have an elementary conatruction for j)l ? It tumms
out that a precise solution can be given to this problem in terme of the
almost-Egoroff property introduced in section 1; in fact, Pl = _)° L
for every monotone seminorm on the Riess space L just in case L is
almost-Egoroff, Presently we shall prove this theorem (as a consequence
of some sharper intermediate results), but first a few comments should
be made.

It is easy to ahow that, for any monotone seminom f . f L ia
again a monotone seminorm; PL < P and, it P, isa monotone
seminorm such that P, < P, them P, & P ; furthermore, a
monotone seminorm P is O -Fatou if and only if JOI. =P . Clearly,
then, P, 2 P = P, and the statement L. = P can, in view
of the characteristic property of P 1 » be given a convenient

equivalent formas L., = £ .

In the case where j)-«.‘: +» & NON=nagative ear funetio! on
L, as one would expect from our discussion im section 4 of the analogous
situation for finitely additive measures on Boolean algebras, we have
alvays @, = ¢, (onL'), regardless of the nature of the space L.
This is eimply saying that ¢ [ Tepresents the projection of the
non=negative linear functional ¢ omto the normal subspace of integrals
in LV, the order dual of L (see Iuxemburg and Zasnen [3], section 20 ).
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Iet us first prove the theorem which generalizes the result of

Lorentz concerning Banach function spaces.
Theorem 5,2t Let L be a Riesz space. If £ is an element of L' and £
has the almoét-Egoroft property, then for every monotone seminorm P
we have fu'(f) = fL(f) .
Broofs It is clear that P, (f) < P,(f) . On the other hand, suppose
A >}’m(f) ; 4in this case there must exist O < fn Tn £ and, for each
n, 0<%, b 8, ouch that Plegg ) < X for all m, k. How &2
velet g =Tkt (f - fn) » We have g . Tk f , for each n. Since
f has ths almost-Egoroff property there exists, for each £ >0, a

g £ £
sequence suchlthat 0< £ L 1« &) and t AP {gn’k‘; .
for all m. Now if we set hE= (£€4 1 - £)* , e have

hifn(l-s)f (ve can assume £ < 1).

£

Moreover, for each m there is some k(m) such that f. < & () and

e |

h < Cuxm) * -t = tn,k(m) .

£

We thennave p(m) € plf, ,)) < A , e0 mat fr{Q-8)0)S A,
i.e., ﬁh(f) < (1= &) A\ . Since this is true for every £7>0,
we have Pi(f)< A 5 hemee fr(f) & L (8) .

Corollary (Lorentz) :+ If L is a Banach function am with function
seminorm O, then /OLI..' PL .

Broof: The hypotheses say, essentially, that P is a monotone seminorm
on the space L of measurable functions (with identification of functicms
equal a.e. ) over a measure space (X, %, m) which is ~finite

(of. Luxemburg and Zaanen [3) , sections 2 and 3 ). Hence Theorem 2.3
(along with Theorem 2.1 ) tells us that L is Egoroff. A fortiori, P is



a monotone seminorm on an almost-Egoroff space, so that, by the theorem
just proved, S = S .

We now prove a strong converse to Theorem 5.2; the full strength of
this result will be useful in ocur subsequent discussion.
Theorem 5.3t Let £ be an element of I-"', where L is a Riess space; if
j’m‘(f) - f’L(f) for every monotone seminorm P on L such that
P(£) < 00, then f has the almost~Egoroff property.
Proof: Suppose that O stn,k‘\‘k £, for esch n. Lat

?n,k - fl,k Fay f2,k A eses AT H

nk

then ?n’ktkf,foreachn.and ngm => ?n,k) ?I‘,k . Ve

shall show that, given £ >0, there exists a sequence f: such that
0<2ft G-€)r am 252 .7
N m i n ned ¢

for each m; since, for all u, k, ?'n,k & 1, Ve also have
o< {f, b - |
(a) Tirst we show that, given any €1> 0, there exists a sequence g
euch that 0< g £ and
(O w<g) = K<E .
For each n, let
Lo = o {18 Q) pre )Y .
Clearly, for all m, ﬂn 2 0 ; ou the other hand, if A 2 1 for
all n, then we can construct £ immediately by setting r:'- (1-¢&)e,
since (1 &)<B = 3xln) 1 A-e) & 0h
.60, wo have € w - ele«<{l .3 .
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We can assume, then, that there exists & such that O s,ﬁa 1<= 1.
Consider, for /3 _.;é /55 » the sequence

fzx - AL

(1-8)

clearly hk Tk‘;f and the terms of the sequence are non~negative after
a finite mmbex;, since /3 é ﬁi « Denote the non-neggtiu tail of the
sequence {hk} W & » & s e o If there exists k such that
Htsgk, then there is a corresponding k* such that

A

s l.0s, ((1-/3)!!+p)f < ?a’k. ’

(1-p) - -
sothat (1-BM+f<SA: ,or Kg Az -~
(1-.)

Thus for any €1>0 we can, by taking A sufficiently close to
/35, ensure that [Jn: Mg g] = K< € .
(b) Next, for any €,> 0, set

& ™ (In’k/\gn)vazf .
Itﬁconvonienttoassumethat ezcl;then,roreachn,

gn’ka (f/\gn)vezt - gnvezf s and

(gnv Ezf) Tn (¢ v&zr) - £ .
Now for 0 < x €& L set
Plx) = m{'(%:““ )t o 30 a.'adzn: % () > % ToF sone

choice of k(n) } 3 the sums involved are understood to
be finite, i.e., all but a finite nmumber of the o(n are seros

\+00 4if there is no such finite sum covering x.
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It 48 not hard to see that  1is a manotone seminorm on Lt that p 1s
monotone and positive homogeneous is clear; P is also subadditive, for
ir A > px) + P(y) , then there exist Ay o k(n) , « » k'(n) sach

that%>z o, +Z: 4 and
n n
g XoBa,k(n) 2 X 3 Z- “x;&n,k'(n) 2%

80 that we have
; G+ o)l pax(i(n), wr@)) > X+

o ple+y) [ (A +al) <AL
n
Moreover, P(f)< o0 ; in fact, 8,1 > &f » %o that Pl < (52)'}

Now P(gn,k) & 1 8o that, since &,k tk (gn v €2f) » We have
Pole, vERST, torallin. But (g v 6,8) ] £, oo that
Pm.‘(f)s 1. Hence, by our assumption, jf L(f) % l. This means that,

for any € > 0, there exists a sequence f_ such that 0 < f, (I
and, for each m, p(fn) < 1+ 83 R

(¢) If we now set f: = (f - €2)* , we have Oéf:T. (£- )t
= (1~ £)f (we may assume that & < 1). The remainder of the proof
consiste in showing that, by appropriate choices of €&,, &, € 3 (> 0),

&
we can ensure that £~ <& {?n,k} .

Let us find, then, conditions on &, ‘62. 63 which will

ensure that, for a particular m,n , there exists sume k such that

f:ls ?nl.l: . We shall find conditions which are independent of m, m,,

therety establishing our result.



Now p(£,)< 14 €, 8o that there exist ofp 20, k'(n) such
that

Z\o(“<1+ € and Z“:‘n,k‘(n) 2 2,

Suppose that ¥ is such that, for every R, Z:O( >Ye
n<n,

How ngn:‘n & P(n) € lg'n:‘ n &,1%(n)
go that, for all m2m , Ve certainly have

-1 Es=-%)r & (1+ 83)(%1\1 g,2) ¢ (1+ 63)(%133 E,1) o
But £ = sup {_f.z m2mY o that we have
£-(1+ E5=¥)r <1 83)(3'54- E,1) » e,

- Bz)fsgnl .

Hence, bty the comstruction of part (a), (¥ - 83)(1 + 83)"1 - a2 < &

1+ &3

feee, ¥< (14 8)(&) + €)) + €5 + Clearly, then, if we let
€ = (14 63)(814- 62)"'283 » there must exist m > m, such that

n
o( < € .
n<n1n 4
Now, for such an n;nl,wehave

fn €4f + an a gn' I(n)

€f+ ngn:( (? n,K (n) + 621' ) .

If e let k-m{k‘(n):o(n £0Y and recall that, for n2m, o,
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?n,kis ? ¢ ¥e see that
o &
f+(n2>| )(g ) +££)

Now B2 80 that we have

fll <f ¢ Er+ (14 e,)!nl'k + (14 85) £t

$(84+ 63+(1+ 63)82)r-o—?n:,”k
<
\6f+?n1’k

provided we choose €,, &,, &4 ( > 0) such that
((1+ 83)(El+28 )+3a ) € €, which we clearly can 2o, In this

case, fe = (f 8f)*

" T "‘1k

This completes the proof of the theorem.

» &8 required.

The following result, mentioned earlier, is a direct consequence of
Theorems 5.2 and 5.3.
Theorem S.4: Let L be a Riesz space; then f'u'- Py, » for every monotene
seminora p on L, if, and only if, L is almost-Egoroff. |
Corollarys Let L be an Archimedean Riesz epace; then fm_ = P s for
every wonotone seminorm }) on L, if, and only if, L is Egoroff.
Proof: Simply apply Theorem 3.5 to Theorem S.4.



Riesz Seminorms

In Theorem 5.4 we showed that the almost-Egoroff property holda
throughout a Riesz space L if, and only if, L has the following
property:

P = [for every monotone seminorm ponl, Pry= £ ] .

It ie natural to ask whethexr the corresponding property fox the more
well~behaved Riess seminorms (monotone seminorms which assume omly
finite values) has any such eignificance. We therefore comsider, for a
ﬁiogz space L, the following property:

P‘E[formzwxieszseminormponn, Pu= PL] .

The property P*' is clearly weaker than property P and holds,
therefore, in any Riesz space L which is almost-Egoroff. It is important
to determine whether, in fact, P' may hold for every Riesz space. The
following result, which depends upon the full strength of Theorem 5.3,
shows that this is not the case.

Theorem 6.1: There exists a Riesz space Lo in which property P' fails

to hold; such an Lo may even be weak Egoroff.

Proof:t Let L be a Riess space containing an element f which has not

the almost-Egoroff property; to be more specific, we might choose L to

be the space of Example 3.1 or that of Example 3.2. In view of Theoren
5.3, there must exist a monotone seminorm p on L such that fm(f) ;ﬁl‘(f)
and p(£)< oo . Now lot L = {gt g& L and p(g)< %}, I isan
ideal in L, so that Lo is iteelf a Riesz space and, if { denotes the

restriction of P to L, , Ve have fL' Py FIL" P @iy
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Thus j‘S » Which is, of course, a Riesz seminorm on I-o » Yiolates
property P', since f & L, « If L is weak Egoroff (in particular, if L
is the space of Example 3.2), then L, is again weak Egoroff.

The theorem above makes it clear that property P' is not a
consequence of the weak Egoroff property. Om the other hand, we shall
demonstrate that property P' is girictly weaker than the almost-Egoroff
property. Consider the space L = R(nx) of Example 3.2. It is not
difficult to show (of. [3], Example 20.8) that, whenever L has the form
Rl, for some set X, every order bounded linear functional ¢ onlis
an integral, i.e., [u |0 =D @(w ) —> 0 ] . To put it briefly, we
are dealing with a space L such that L = L, (ef. [3], section 20).
let p be a Riesz seminorm on such a space L. For each element u in L"',
there exists, in view of the Hahn-Banach theorem, a linear functional

®, omLeuch that ¢ (u) = plu) and, for all £1in 1, ¢ (£)< p(e).
Since p is monotone, P is an order bounded linear functional, and
hence ¢ is an integral. Now if 0< un‘Tu we have @ (u ) —> qﬂu(u)

- })(u) , and, since ‘fu(nn) < p(un) » 1t is clear that P(u#ﬂ JICIN
We conclude that, for every Riesz seminomm P s fL = jb s+ a fortiori,

L has property P'. We have exhibited, then, a epace L { = a(“x) ) which

has property P' but which is not almost-Egoroff. It should be remarked

that, by means of a more pertinent application of the Hahn-Banach

theorem (in the form of Magur's theorem), it can be shown (ef. [3] ,

Note VII, Lemma 22.6) that in a space L such that L% = 17 every

Riesz seminorm P is actually an "integral® seminorm, i.e.,
[uilo=pMilo] ;



it is an immediate consequence of this fact that jJL =p .

Note that each of the Egoroff properties is "permanent" in a Riesas
space, 1.0., if a Riesz space L is Egoroff (almost-Egoroff, wesk Egoroff)
then every ideal of L is Egoroff (almost-Egoroff, wesk Egoroff) when
considered as a Riess space in its own right. In this Tespect property P'
proves itself quite different from any of the Egoroff conditions, for

it is clearly not permsnent. In fact, we have seen that the space

1 - g
l;,(ln_ )

has property P', while the proof of Theorem 6.1 shows that

contains sn ideal whioch doea not have this property.



1s Lorentz Seminorms

In an almost-Egoroff space the lorentzs seminorms, i.e., those
seminorms p. such that p = FI. , for some monotone seminorm F » can
be identified precisely as those monotone seminorms which are o -Fatou.
In any Riesz epace, in fact, a mqnotone seminorm P which is8 ¢ ~Fatou
is cartainly a lorentz seminorm, aince ;P'fL » On the other hand, if
the Riesz space in question is alwmost-Egoroff, Theorem 5.2 ensures that
every lorentz seminorm f, is ¢ -Fatou. Horeover, Theorem 5.3 makes it
clear that only in almost~Egoroff spaces is this simple characterization
posaible. The prodblem of characterizing the Lorentz seminoxms in gemeral
Riesz spaces apparently remains unsolved. We wish to point out, however,
that, regardless of the structure of the Riesg space om which they are
defined, Lorentz seminorms are always "G ~Fatou mll" . We say P is a
LO_~Fatom null monotone seminorm if

[o¢u tu anda (Vo) plu)=0)] ={p)=o0] .
This property is important in other connections and was introduced by
Iuxemburg and Zaanen (cf. [3], sectiom 5). '
gorem T.1: If b is a monotone seminorm on a Riess space L, them
P, is @-Patow mll.
Proof: Suppose O % untu. and, for each n, PL(un) = 0. Given & >0,
we can choose, for eachn, 0<w, o Tk w ~such that P (“n.k) < &2™,
Now let v, =W .V eee VW o Clearly 0 svn‘{‘u. Moreover,
Plv) g P(nl,n) + eoe b f’(“n,n) g &2lsed?s... =¢.
Tms Pi(u)€ € , and since € may be any positive mumber, we have
f I.(\\) = 0,
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83 Descendants of a Theorem of S, Koshi

In his paper [14] of 1958 S. Koshi proved that, under certain
conditions on a Boolean algebra B s overy ﬁ.nife]y additive measure
on B is countably additive on a suitable super order dense ideal.
Subsequently Iuxemburg showed that the Egoroff property affords a
natural approach to this problem, by proving that in an Egoroff Boolean
algebra every finitely additive measure is countably additive on a
super order dense ideal (cf. (6] , Theorem 5.1 ); Koshi's theorem
follows from this result. The corresponding result for non-negative
linear functionals on a Riess space appears in Iuxemburg and Zasnen (3]
(Note VI, Corollary 20.7 )e The following theorem includes an extension
of the last result to almost~-Egoroff spaces, where a rather different
technique of proof seems to be necessary. We shall state this extensiom
explicitly as a corollary.

Theorem 8,13 If p is a Riesz seminorm on a Riesz space L which is
almost-Egoroff, and [ P~ PL] is also a monotone seminorm on L, them
(a) P, ie "attained" throughout L, i.e.', for each u in LY, there exists

a sequence u_ such that 0 < un?u and }’L(u) = 1lim P(un) ; and
n

(b) I = AL P(f) - Pn(f) Y 4is a super order dense ideal in L.

Proofs Comeider wu g Al § for each n, there exists a sequence un,k
1

euch that 0w, fiu and Lo Pl ) < P+ 3 .

Since u has the almost-Egoroff property, we certainly have a sequence

v, such that Osul‘tiu,and,foroachn, n.(({wh'k} .
Now, for each 3, W, Y, u o+ %0 that, vy Theorem 5.2,
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Pl ,k) Tk Pi(w) 3 hence there exiets k(n) such that

S lu n,k) > Pylu) - % , whenever k 3 k(n) . Fixing m for the
moment, and recalling that w, << {“n,k} » there exists k'(n) , for
each n, such that u < Yx'(n) ° Now for any k > max( k(n), k'(n) )

we have LE 3 un,k and
e = prllu,) € (P + 2)-(pi-2) a2,

nence, as ([~ P;1 is monotons, [P= prI(w) & ﬁ for all n,

so that[p = P71 (u ) = O. Pinally, 0< 22 Yu , and certainly

CP- pPrl(2a) =0, a0 that I= {22 p(f)= P (£)} is super
order dense in L. Since [P ~ P, ] is a monotone seminorm, I is
certainly an ideal in L, so0 that we have proved part (b) of the theorea.

Part {a) also follows immediately, since 2n.’(u and
Py = prlag) < o) .

Corollary: If ¢ is a non-negative linear funotional on an almost-Egoroff
Riess space L, then I = {f: @(ifl) = @, (1£1) ¥ is a super order
dense ideal in L.

Proofs If we set p(£) = @ (|fl) » f is certainly a Riesz seminorn on

L. Furthermore [P~ PL](f) = @_(1£]) where @, 1is the (non-negative)
singular linear functional associated with ¢ (cf. (3], section 20),

8o that [ p = P1] is certainly a monotone seminorm. Thus we can apply
the previous theorem t0 get our result.

Note that if we modify the hypotheses of Theorem 8.1 by replacing
"almost-Bgoroff" with "weak Egoxoff", we can prove (using the same
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technique) that I = {f: p(f) = P, (£) Y 1s & dense ideal in L

in the sense that [0§u€.h=}3751 such that 0 < v<u ).

F
It should be pointed cut that Riesz seminorms P utiaf,ring the
condition of Theorem 8.1 (f.e.,(f = p;] is & monotone seminors )
are frequently encountered, quite apart from the case where P is
generated by a non-negative linear functional (as in the Corollary
above). In fact, the question was raised by Iuxemburg and Zaanen
(cf. [3], Note IV, p. 262) whether ip- PL] is glways a monotone
seminors, at least in the case where p is a function seminorm on a
Banach function space. That this is not the case, even for function
seminorms, is the eignificance of the following example.

Exauple 8.2t let L be the space of all bounded real functions over the
integeras K and, for f in L, set
£(0) = eup( 121, Lim eup ()l ) .

n—»

Now P is certainly a Riesz seminorm on L; indeed, J ie a function
seminom on the function space L. However, we shall show that [ p "PL]
is not a monotone seminorm on L. In fact,[p - PI.] is not monotone.
To see this consider the elements w, v £ L , where u(n) = 1 for all n,
and v(1) = 0, v(n) = L for n> 1 . We have O< v< u , and elearly
Pla) = p(v) = 1. Horeover, P (u) =1 since

[_Osuntnu = %(I)Tu(l)sll :
on the other hand, PL(v)-O since we bave Oévntv where v  is
the characteristic function of the subset {2, 3, «ce o 2} of N eo
that }(vn)-o,foreaehn.m: (p- jlx'](u)-o, {p- fL](v)-lo
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while 0 £ v £ u . We should point out that our example L is an Egoroff
space. One way to see this is to obmerve that L is an ideal in the
Rieas space associated with the measure space (N, p(X), 1) , where M
is the discrete measure, and t0 apply Theorem 2.3, Moreover P has the
"Koshi property" , since f = }JL on the super order dense ideal

consisting of all functions in L having finite support.

In Theorem 8.1(a) we noted that under the oconditions of that theorea,

f’L is "attained" throughout L. In general this may not be the case.
4If we asgume, however, that P is generated by a non-negative linear
functional (as in the corollary to Theorem 8.1), we can show at least
that the elements where PL is attained form an ideal. In the absence
of an Egoroff condition we cannot ensure that this ideal in any way
exhausts the space.
Iheorem 8,33 If (¢ 1is a non-negative linear functional on a Riess
space L, then I = {f: ‘PL(lf!) is attained, i.e., B%T\ﬂ

such that  9(u) T (17]) }

is an ideal in L.
Proof: Since it is clear that [fE& I & \f\¢ I ] and

(f6 I, « real = o«f &I ], we need only show that

(1) [u.vel."', U, €I = u+vel ], and

(11) (0Svouel = vel].

It is a simple matter to prove (i) since, if we have 0 < unT u,
0¢ vnTv such that \e(un)T ¢+ @lv) Tcp,.(v) , then
0<% (un + tn)T(u +v) and Q(un + vn) - (Q(un) + tp(vn)) ; tat
this sequence increases to ?L(u) + ‘PL(v)) - ?L(u +v) .
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To prove (ii), suppose that O <v < w , and OSun’u sach that
&p(un)T‘?L(u) o Now O&(unf\ v)‘nv and
os(v.n-(\tn/\wr))-((unvv)-v)tn(\\-ﬂ.

Tmms lim (p(un/\ v) > ‘?L(v) and lim tp(un - (unl\ v)) 2 Ql(n -v) .
n n
On the other habd, lm @{u AY) + Um @ (w, = (v A v)
n n
= lim ¢ (nn) - 9 I‘(u) = ?L(v) + ¢ Il(u -v) .
n
It follows that lm Q(u A V) = P (v) (and 2im Q((a V¥~ v)
n n
= @ u-v) ), sothat ve&I,

There are other situations in which we can prove theorems of the
"Koshi. type" , i.e., theorems which ensure that certain monotone
seminorms are 0 ~Fatou when restricted to s super order dense ideal.

It is a consequence of a theorem of luxemvurg (see {4] , Note XIV,
Theoren 4}.2 ) that if L is a Riesz space possessing a Riess morm p
with respect to which L is se ble , and if L is Egoroff, then

P - P L ©°n & super order dense 1deai. The theorem of luxemburg

nay itself be extended to almost~Egoroff spaces, but we restrict
ourselves below to proving in the more general setting that part of his
result which is of interest to us here.

Theorem 8.4: If p ise Riesz seminorm on an almost-Egoroff Riess

space L, and L is separsble in the pseudometric induced by P then

p = PL on a super order dense ideal I..
Erxoof: Iet f be a countable dense set in L. In virtue of the Hahn-Banach
theoren there exist linear functionals .  such that ¢ _(If ) = p(f )
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and, for all f in L, |@,(£)] & p(f) . Since p 1s monotome, each ¢
- 18 an order bounded linear functional and we may comnsider the
non-negative linear fumctionals (p: + In fact, we again have
W;(f)\ € p(£) , for all £ in L. Moreover, for each m,

Pl 2@ (iel) > @) = p(r), 1, @l 1) = p(2) .

Now, for every u in L', we have )J(u) = sup {C?:(u)} . To see this,
n

note firat that, for all n, @;(u) & P(u) . On the other hend,
glven & > 0, there exists f, such that p (u - fn) < 4€, since the
£ are dense in L. Thus 1pw) - P(fn)| < $€, i,
|p(u) = ‘-P;(lfnl)i < %€ . Moreover, fu- |f |l < |u~1£| .
since u0, sothat Plu- |f)<$e , and |Pilu-12))i< 4 o
Hemoe |P(uw) - @r(w)l< € so that
Pl -t < Bﬂp '[C?n(u)} Pl .

Since & may be arbitrarily small, we have our result, namely,
P mmmp{gg@} .

Now let I be a super order dense ideal in L such that
+ +
Lrex, = ¢ it = @7 () ] .
The existence of such an ideal I for each n is guaranteed by the

corollary to Theorem 8.1, since L is almost-Egoroff, Let I = ﬂ I °
n=1

I is automatically an ideal and we shall show that, for f im I,
P(L) = PL(f) .. There exists, for any £ > O, some n such that

Q:(lﬂ) >P(f) - & o+ DNow JOI.(f) ‘Pﬂ“ﬂ)' ‘f (‘f‘) »
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since Ifl € ICI , s0 that, forall € >0, P (f)> p(f)-¢€ .
Clearly, then, f,(f)= p(f) .

It remains to prove that the ideal I is super order dense. Consider
u in I:". Since, for each n, In is super order dense, there exists a
Sequence nn,k & In such that 0 < un,k 1ku e Since L is
aluost~Bgoroff, there exists a seguence w, =such that Og w 1“ du
and w << {nh.,k} « The last property ensures that w_ is in each of
the ideals I » 80 that the sequence w_ 1s in the ideal I. Fimally,

the sequence 2u, ie alsoin I, and Osa.T.u.

Further results of "Koshi type" continue to appear (see, for
example, Imxemburg [4] , Note XVI, Theorem 64.9), and it is not clear
for which classes of monotone seminorms and Riess spaces such theorems
may be proved. Using the results of section 5, however, we can show that
the almost-Egoroff Riess spaces comnstitute perhaps the natural domain
for such theorems. .

Theorem 8,53 If L is a Riesz space such that for every monotone
seminorm p on L there exists a super order dense ideal I’ in L
such that [ f & I, =f(f) = p(0) ],

then L is alwmost-Egoroff.

Proofs Our result follows from Theorem 5.4 as scon as we have proved
that, for every monotone seminorm p on L, - fI.L = }‘L .

To see that this is the case, comsider w , w & L' such that

Oéun?nu . Theroexiutsaaeqmnoovn such that Osvntnn
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and each v, is an element of the ideal I} corresponding to J Now,

it Vo ® U AT we hsave O(.vnfnn with v, & Iﬁ .

Bow um p(w ) 2 Pr(u) so that
: n
lia Prlw) > 1a Pilv) = Lia pPle) 2 Prl)

Hence, for any sequence u, such that O §\\Afu__. we have
P P s g, P po .
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3 S 8 Possess Inte Riesz N

Consaider a Riesg space L with a Riesz nom f 3 f’ ia sald to be
integral if [ }0 = p(u )| 0 ] (this is the property callea
(A, 1) by Luxemburg end Zasnen, in' [3], eection 33). Many (but not
all) Egoroff Riesz spaces possess integral Riesg norms; on the other
hand, it is an open question whether or not every 1ntogrally normed
Riesz space is Egoroff. Several natural conditions, when added to the
condition that a space L possess an integral Riessz noml,_ _have been found
to imply that L is Egoxoff, and we shall mention these ﬂ;jesently. First,
however, we shall prove some simple results with the solé assumption
that an integral norm exists, to give an indication of tho connection
between this assumption and the Egoroff property.

Theorem 9,13 If L is a Riess space with an integral Riegs norms j) ’
then (a) L is weak Egoroff, and
(v) ir Yppr & 8Te elements of L and, for each n,
0w, \ {ic @ » then there exist indices k(n) euch that

Bup un’k(n) = N .
n
Proof: Consider O snnk’tkn ., 88 in (b). Ve can asmme u f 0, so that
1

Plu) % O. Since p is integral, p (a - “n,k) &k 0 , for each n.
let k(n)_, for each n, be such that p (u - nn,k(n)) <%p (n).2™® .

Row let = “1,1:(1) A “2,1:(2) A see A“n,k(n) A A is a
decreasing sequence. Now

n
n
Wev = i\-{l (v - ni’ k(i)) < igl (v - ni,k(i)) >

so that j)(u - 'n) $tp (u)(2'1+ 2 ... )= % )o(u) .
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Bence ))(vn) > -} pl) ;o) , for each n; it follows that 'n$°'
since f is integral. Thus there exists v such that O ; v < Vs
for all n, 80 that 04 v« {%, 3 » and part (a) of the theorem is

established. Part (b) also follows, for we have sup Ykn) = %
n e

To see this observe that, since f is a norm, we need only show that

1:1' )o(u - %.k(n)) = O , which holds in view of the constructiom
of k.

Theorem 9.1(a) is a result of Luxemburg (sece (4], Note XVI,
Theorem 65.3). Theorem 9.1(b) gives rather different information, for
there are spaces which are weak Egoroff but which do not have the

property (b) of the theorem (see Bxample 3.2).

Although we do not know whether or not every integrally normed
Riess space is Egoroff, the reesults of section § make possible an
interesting reformulation of this “conjecture”.

Theorem 9.2: The statement
A = [every integrally normed Riesz space is Egoroff ]
is logically equivalent to the statement
B = [if a Riesz space L possesses an integral Riess norm £+ them,
for every Rlesz norm P om L, PI.L = Py ] .
Proof: That A implies B is an immediate consequence of Theorem 5.2.
On the other hand, suppose A does not hold, i.e., we have a Riess space
L, with an integral Riesz nomm }3‘2 s which is not Egoroff. The existence
of the Riess norm f, implies at once that L is Archimedean, so that
L is not almost-Egoroff, in view of Theorem 3.5. Now, using Theorem 5.3
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Just as we did in the proof of Theorem 6.1, we can show that there ia
& Riesz space I.O,vhichiaanidealinl..andag_e_s_z_nﬁ.nom p om
L, such that P, # P; o Nowlet P, be the restriction of p,
to Ly « Clearly P, is an integral Riess norm on L . Horeover

( py+ P ) 1s a Riesz norm cn L, such that

(Pyv Pp= Pr+ Py # Pr+Pu= (P14 f )y
(fn." Py » wince P, is integral )e This contradicts B.

Inxemburg has showm that if L possesses an integral Riess nom'f
and L is locally P =complete, i.2., order bounded } ~Cauchy sequences
converge, then L is Egoroff (see [4] ., Note XVI, Theorem 65.2). Note
that if the space in queation is order complete, or even ¢ ~Dedekind
complete, then it is automatically locally f -complete (this may be seen
a8 & consequence of a more general result in [4] , Note XVI, Theorem 61.7).

If we assume that L possesses a Riesgs norm which is not only integral
but also normal, we obtain a different sort of condition under which it
may be proved that L is Egoroff. This is a theorem of Luxemburg and
Zeanen (see [3] , Note XI, Theorem 35.1). A Riesz norm p on a Riess
space L is said to be mormal if, for every directed system u, such
that u, L,o » We have f("'t') l,O (tnis is the property called (A, i1)
by Iuxemburg end Zaemen in [3] , section 33). The case where L is order
complete is included in this theorem as well, since an integral Riess
norm on a G =Dedekind complete space is always normal; this result
goes back, essentially, to Nakano (ef. {15] , pp. 321~322 ).
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In the light of the results just mentioned, it is important to
investigate to what extent an integral Riess norm "tends to be normal".
Riesg spaces L were constructed fairly simply which possessed integral
Riess norms not normal on the whole space (of. (3], the last space
discussed in Example 29.11) , but these norws were always normal whem

restricted to an appropriate dense ideal I in L (i.e., an ideal I with

the property that, for each non-gero u in L+, there exists v in I such
that Oévsu ). We present below sn example of a epace L with an
integral Riesz norm P which faila to Pe normal even to this extent;

in fact the only ideal on which P is normal is the trivial ideal {0}
It should be remarked that, while the space of our example is not
norm-complete, Luxemburg has shown (see [4] , Note XVI, Theorem 65.5)
that the existence of such an example implies the existence of a
norm-complete example having the same pathological properties (and,

in fact, we need only consider the ordinary norm-completion of the given
space). We shall also show that our example is an Egoroff space; this
indicates that the results known at preseht do not encompass all
situations in which the existence of an integral nomm om a Riess space
implies that the space is Egoroff, even if, indeed, this implicatica

does not hold in general.

Consider then the following space, t0 be known as L# throughout
the remainder of thie section. An element f in L# is a sequence of
functions: £ = (fo..tl, fz, eee ) , where £5 R — R,
n=0, 1, 2, .... « R denotes the reals and we make the convention that
B = {$} .« Ve further require that each olement of I¥ be bounded, in
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the sense that, for a given f in I, there is a constant M such that

sup {\fn(v)\ i1 vER'Y & M, for each n.
The remaining condition on the elements of I-# is the essential one,
and to describe it we need to introduce the operation c:
¢ is defined on any vector v & K* (n 2 1), where v = ( Vo see s vn),
by c(v) = (v, 2, TP A
Tus o(E?) = B~ * ; note that, because of our convention, for any
teR, c{t)= ¢ . Now for each ¢ 1 ve define the "axceptional®
sets En(f) (n > 1) corresponding to £ by

E(f)= {veR's £i(v)4 £7 He(w))y

The essential requirement is that, for each £ ¢ yhd ’ En(f) should be

m' for n.1,2'3. sen o

For the linear operations in L# we make the obvious definitions:
(£+g=t+g" 3 (A" = A" . It is easy to see that
L# is closed under these operations and becomes a linear space.

A partial ordering is introduced in I‘# by the definition
(r<es & <&, n-O,.l, 2, een ) .
Clearly L# is a Riesz space with this ordering and
(tvel= 'vgd , (A= A& .

We define the monotone seminorm p on L# Yy
PO =ep {0+ DN o {IP@ :vePT 5

n20
p is clearlyanom,andp 1aam_gnombocauuoachfinl.#
is bounded.
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We denote the r-th iterate of the operation ¢ by ¢ y T=0, 1, 2, eee
( «° 1is sinply the identity mapping ). For a given element f in I, &
vector v in K is called f-regular if, for each r =0, 1, 2, «es ,
[ver®* ™ | F)av = £B+7() . Aly) ] . o
Lomms 9.3: If f is an element of IF, then the set of points (in 2o ¥
which are pot f-regular is at most countable.
Proof: If v in R” is not f-regular, there exists some integer r snd
win 2B+ T i et (W) = v and gl + J")(u) £2(%) « Lot
_be the smallest integer with this property; then
£+ 7 = D(560) = £v) 4 22+ Tiy)
so that w& E( | r)(f) « Thue the set of points which are not
f-regular is exactly the set {c"(w) tr 3l and we Em(f), for scae mJ,

which is clearly countable, at most, since each E.(f) is finite.

lemma 9.4: Suppose Lo ,ln 0 in L#; then, for each fixed Y £ B

(for some n > 0), r:(vo) ‘l'n 0.
Proofs Otherwise we have some & > 0 such that, for all m, f:(vo) ZE.

Conaider the uncountable set A(v,) = {ve gln +1) 3

c(v) = A\ ¥
By Lemma 9.3 the set of points which are not fn-x'egular for some m» is

o0
at most countable; moreover U E(n - 1)(fm) is countable at
K = 1

most, since each E( 1)(fm) is finite. Hence there exists some
o € A(vo) such that w, is f -regular for each m, end, for each =,
w°¢ E(y 4 1)(fp)s %0 that

2+ Vi) = Plelu)) = Blv) > € .

Tims 4f ve define an element f, in 1 by setting ££=0 fork <,



fé“ +1) _ e X {u,y® 0 stipulating that every point of (n + 1)
0

be f,-regular, we have Oifo » and fo.s £, » forallm.

It follows that f_ $n 0, a contradiction.

lemms 9.5¢ Suppose fnlno inl#; then, for each 9;0, t:LO

uniformly over Rn .

Proof: Since n° containg just the single point ¢ » Wwe have the

result for n = 0 immediately by Lemma 9.4. We now proceed by induction
on n, Assuming we have the result for n, and given € > 0, let us find
n ouch that 202 * D ¢ ¢ (turougnout E®* 1) ). We do have p
such that r; £ ¢t so that fl()n*'l) < € except on the set

Blp 4 1)(fp) « By lemma 9.4, since B(, 1)(fp) is finite, there

exista m > p such that, for v ¢ Eé (fp) s We have

n+1;

rﬁ“’l)(v)s.e . But for ve R +Y _ B(n+1)(fp) )

we have f£n+1)(v)$f1(’n+1)(v) £ €.

Theorem 9.6: P is an integral norm on-I.# » .0,
#
210 w1 = p(erlo .
Proofs Suppose € > 0. Ve shall find & such that p(fz)< €

Let X be a bound for f

L » ieees for each x;f‘l‘ (;r:)

Clearly, for sume p,

2>p = (n+21)"} sup {1 ¢ ve D <tms Dln<e
(for all m). On the other hand, in view of Lemma 9.5, we have some =
ouch that fZ < & forall n§p. Clearly, then,

plt=) = ;;po {@+ 1) wmp {{2)| 1veR'})} < €,
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Theoren P ies nowhere normal on L#, i.e., given ¢ ;0, there is
a directed system f, such that f3f,].0, mt p(f.) }.0.

Proof: The:eoxistaoman,andvian,mchthat Px) = £ > 0.
(n+1)

Now let A(v) = {vgR t oflw) =av ¥ . For each finite subset

T of A(v) , define g,c.e I-# by setting glftzo, for k< na,

gnt- = COX{.'} ’ 3(;"'1) - etX(A(')_ v ) '

n+1)

and stipulating that every point of B.( be g,c-xesular .

Clearly {_g,c} is directed downwards, and, im fact,
G'C'A Cz.l - S(rcuzn) )
Moreover i%f €y = Q.. To see this, suppose 0 £ g < 8, » for all
T andss#. For '&a(n-tr-o-l)

T e {FOYNAW 5 &2*P(T(w) =0 and every point of

'Y consider

g
("
g+l 4, 8y ~Tegular ; hence s(; rre 1)(7) = 0 8o that
g(n + T+ 1)(‘,) = 0. Thus gm‘=‘ O forany m >n « Furthermore, it is

clear that, for any h in L# s AT h" = X where & is a constant,

then h(”'l)E"(. Hence g = O.

It follows that, if we set f,r = £A 8 » WO have £ 2 £, ,l,z.O .
However, for any w in A(v) = (T U Ep o 1)(f)) (which is
certainly not empty, &ince both ¥ and E(n + 1)(1) are finite), we
(B+2p g )= &, sotnat ple,) 3 e+ 2t > o

It follows that P(f,)} 0 «

have (f

Theorem 9.8: L# is Egoroff.
Proof: Since every element of L# is bounded, I.# is the ideal generated
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by the element e determined by e" = 1, for all n. Thus, in view of
Theorem 1.1(a), we need only show that the element e has the Egoroff

property. Suppose we have fn,k in L# such that, for each m, 0 £ fn,k ‘k e.

For each natural mumber p, we shall show that k(1), x(2), .c. can
be chosen so that fp s defined by

f=1- DAG HAG A = @=01,2 . ),

is actually an olement of I¥ , end f;E(l- %) for m4&p -

To see thia observe that for each m r‘ X Tk ¢ 8¢ that, in view of
. 1]
1
Lemma 9.5, we cen find k(m) such that r:’k(n) » = 32) foran
n¢p+m. That £ =(1- %‘) for n< p is now clear. To show

P

that fpe #  we must verify that, for each n3 1, En(fp) is finite.

2
£ 1
However, since for my n=p we have f ;(1-3) ,

,k(ﬂ)

Pa(le HALL
P (1 p)'\ L,k(1) A ... "f?n-p),k(n-p)

fn=1) %)A t(""’)‘)r\ .ee Af?"l

» and

P 1,k(1 n- p;.k(n -p) °
It follows that

1 .
En(fp) = En( (1= ;)0 A fl,k(l) A see A f(n - p),k(n _ p) *)‘
-E n(g) s where g¢& i ; hence En(fp) is finite.

Now it is clear that sup fp = e , since f‘; = (1w %) for
n < p. Moreover we can always choose the k(m) corresponding to (p + 1)
80 that it is larger tham that comapondiné to p. In this case fp is
an increasing sequence, 0 & fp Tp e, and clearly, by construction, each

rp << {f. k} o We have proved, then, that e has the Bgoroff property.
| 4
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