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ABSTRACT

A theoretical investigation of the effect of general imperfec-
tions on the buckling of a cylindrical shell under axial compression
was carried out. A limit point analysis was performed to determine
the buckling loads using a simplified imperfection and displacement
model consisting of one axisymmetric and two asymmetric components
with.the same circumferential wave number.

The wave number dependence of imperfections for a class of
shells obtained by the same manufacturing processes was character-
ized by using an imperfection model to fit the experimental
imperfection coefficients available. Buckling load calculations were
performed using both experimental and fitted data as imperfection
coefficients.

For the experimental data available the three-mode solution
was found to have only a small additional effect with respect to the
two-mode solution. In addition, by extrapolating imperfection
coefficients for high wave numbers by means of the imperfection
model, it was found that a strong interaction effect would exist
between a low wave number axisymmetric mode and two classical

asymmetric modes.
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I. GENERAL INTRODUCTION

It is well known (Refs. 1 and 2) that it is impossible to predict
buckling loads of isotropic cylindrical shells in axial compression by
using linearized small deflection theories. In fact all experimental
values of buckling loads are much lower than the so-called classical
value and furthermore present a large scatter band. The main
reasén for this discrepancy between theory and experimental data
advanced by most of the previous investigators is the effect of initial
geometrical imperfections.

Donnell and Wan (Ref. 3) were among the first to investigate
the effect of initial imperfections using the nonlinear Donnell's
equations. In order to simplify calculations, they assumed proportion-
ality of the imperfection and deformed shape. It should be underlined
that they tried to characterize the dependence of imperfection coeffi-
cients on wave numbers of mode shapes by assuming a semi-empirical
relationship.

In the past few years, investigations have been made by study-
ing the effects of nonlinear coupling between several modes. Koiter
(Refs. 4 and 5), investigated the interaction between the classical
axisymmetric mode and two classical asymmetric modes with the
same circumferential wave number. Assuming a very special initial
imperfection in the form of the classical axisymmetric mode, he
obtained an upper bound for the buckling load corresponding to such

an imperfection.
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Hutchinson (Ref. 6) derived a solution for pressurized cylin-
ders using two modes, the classical axisymmetric one and one
classical asymmetric mode with the same wave length in the axial and
circumferential directions. He also included two parameters in the
imperfection shape corresponding to these modes.

Arbocz and Babcock (Ref. 7) investigated the effect of general
imperfections. They obtained a solution of Donnell's equations by
using for initial imperfections and radial displacements three terms
of the general double Fourier series: one cosine term for the axi-
symmetric mode and both sine and cosine terms for the asymmetric
mode. Only two of these three modes acting at once were considered
in this analysis. In addition, it should be noticed that these Fourier
coefficients were experimentally obtained from measurements on
shells.

On the other hand, Thurston and Freeland (Ref. 8) used a
quasi-linearization method to obtain a numerical solution of Donnell's
equations. In this method as many modes as necessary for conver-
gence can be used which is an important advantage for the accuracy
of numerical results.

The two-mode solution is important, since it shows analyti-
cally the influence of imperfections of some critically coupled modes
but it may lead to some inaccuracy in the numerical results. On the
other hand, some measurements of individual modal components
made by Arbocz and Babcock (Ref. 7) show that more than two modal
components may show a significant prebuckling growth. Therefore,

it is logical to investigate the effects of nonlinear coupling between
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several modes in order to test the accuracy of the two-mode solution.
In addition, other critical coupling may be found that did not occur in
the two-mode case.

In the present analysis, an approximate solution of Donnell's
equations for isotropic imperfect cylindrical shells under axial
compression is carried out by using one general axisymmetric mode
and two general asymmetric modes for both sine and cosine axial
representation. Moreover the dependence of imperfection coefficients
on wave numbers is studied from experimental data obtained from
surface measurements (Ref. 9) of several copper shells. Some
attempt is made to determine the most probable dependence for a class
of shells, by fitting experimental data by a power law, more general
than the Donnell and Wan relationship (Ref. 3). Finally, critical loads
are determined f;‘om a limit point analysis using both experimental

and fitted data as imperfection coefficients.
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II. THEORETICAL ANALYSIS

In order to investigate the nonlinear interaction between one
general axisymmetric mode and two general associated asymmetric
modes the following method was used.

1. An exact particular solution of the compatibility equation
is found in terms of the assumed radial displacement w and initial
imperfection w.

2. The equilibrium equation is solved approximately by a
Galerkin procedure.

The same method was used by Hutchinson (Ref. 6) and Arbocz
and Babcock (Ref. 7) in their two-mode analysis. It should be noticed
that no attempt is made to satisfy the shell boundary conditions.
Hence the important effect of interaction between imperfections and
prebuckling deformations caused by edge restraints is neglected in this

analysis.

1. Mode Selection

In order to compare the mode selection used in this analysis
to those of previous investigators it seemed worthwhile to recall some
fundamental results of the linearized theory.

If f* and w* represent the perturbation quantities added to
the membrane prebuckling solution to describe any equilibrium state of
a perfect axially loaded shell, then f* and w* satisfy the following

linearized quations:

1
—E—Ev4f - = WX =0 (2. 1)
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Et 4 % 1 % 3
——74(: v w + R f *x + O‘tW, xx = © (2.2)

where

¢ = \30-,9

and x,y are the axial and circumferential coordinates respectively.
This is a well-known linear eigenvalue problem. A nontrivial solution

in the form of an asymmetric mode

*® . 2rx . Jy
w = a sink - s1n;£R (2. 3)
* . 2rx . y
f = b sink I s1n[/R (2.4)

»

can be found if and only if

2 2 2.2
"= cRo_ 1 a + la#B) (2. 5)

t ko2 2 2.2 2

(a 487) a

where;:
2 2 Rt 2q.2

a” = k 76(-1-) (2.6)
2 = £2 X (1)? (2.7)

The classical value of the buckling parameter is obtained by
minimizing the eigenvalue N with respectto « and B. The mini-

mum:

Tc
A = ¢ —_
E

R
c t

= 1
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is reached for the set of so-called classical buckling modes which

satisfy the condition:

a® +p%_a=o (2.8)

This condition is represented in «,p coordinates by the so-called

Koiter circle. Among these classical modes is one axisymmetric

mode:
* .. 2mx
wo = asini/ 5 (2.9)
where
2 c L2
1o = ————2 _R_.—f (2. 10)
2w

By using the Koiter circle representation, the modes selection
of the present analysis is compared with those of Hutchinson, Koiter,
Arbocz and Babcock in figure 1. Hutchinson uses the classical axi-
symmetric mode (otA = 1) and the classical asymmetric mode with
k = i/2 (a=f =1/2) which is a particular case of Koiter's selection
of modes: Koiter uses the classical axisymmetric mode and two
classical asymmetric modes with the same circumferential wave
number. The analysis of Arbocz and Babcock is a generalization of
Hutchinson's work. They use one general axisymmetric mode
(aA #1) and one general asymmetric mode (@ # B # 1/2) with k = i/2.
Similarly, one general axisymmetric mode (aA # 1) and two general
asymmetric modes with the same circumferential wave number are
used in this analysis, which constitutes a generalization of Koiter's

selection of modes. It was found that Koiter's choice is a particular
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case of one coupling (k1 + k2 - i = 0) in the present analysis but that

other couplings can generate other combinations of modes.

2. Donnell's Shell Equations

Assuming that the radial displacement W is positive outward,
the nonlinear Donnell equations for an imperfect cylindrical shell can

be written:

1 _4 1 1 STy -
FVF-RFW +3L(WW+2W) =0 (2.11)
Et> 4 1 =
*————7—V W+-R F -L(F,W+W)=o (2.12)
, XX
12(1- v%)

where L is a nonlinear operator defined by

L(S,T) =8 T - 2S T +S T (2.13)
1 XX, ¥y » Xy L XY sy YY XX

Equation (2.11) is the compatibility equation. Equation (2.12) is the

third equilibrium equation, the first two being identically satisfied by

using the Airy stress function:

N = F

y XX s YY
Nyy = Flxx (2.14)
N = F

s XY » XYy

It is convenient in the analysis to solve with respect to w and
f which represent an additional state to a uniform membrane state so

that:



e

§"¢R+w (2.15)

F -—é—vtyzi-f

(2.16)

After using (2.15) and (2. 16) the Donnell equations can be written:

—iv4f-~1—w + w w +w ‘V-V tw W —-w2 - 2w W =)
Et R "xx y XX VY XX VY VY XX Xy » XYy XY
(2.17)
Et3v4w+i f o (wHW)  42f _ (wtW) - f _ (wtW)
4C2 R7,xx "xx s VY » XY XY LYY , XX
+ Ut(w+W)’XX =0 (2.18)

Derivation of Nonlinear Buckling Equations for Cosine Axial

Representation

Initial imperfections are represented by:

w o = - - = -
T -§A <:os1x+§1 cosklx cos£y+§2 coskzx cos Zy (2.19)
where X =27 % and y = % are nondimensional coordinates.
Moreover w is approximated as:
T = ¢ cos i +£, cosk i‘cosl"+§ cos k,% cos L¥ (2.20)
t A 1 1 yrs 2 y :

Using (2.19) and (2.20) an exact particular solution of the

compatibility equation (2.17) is found to be



f = K, cos ii+K2 cosk icosi?’ + K coskzicos£?+K4cos(k1+i)i cos IS"

1 3

1

+ Kgcos(k,-i)% cos £y + K cos(k,+i)% cos {5+ K, cos(k,-i)% cosL¥

+ Kgcos 2k B+ Kgcos 2k,% + K jcos 2[5+ K,

3 1 9 cos(k1+ kz)x

10 1

+ KlZCOS (k -kz)i + K, cos (k1+k )X cos 2 ,e?

2

1 13

+ K cos (k, - k,)% cos 205 (2.21)

Coefficients K.1 are listed in Appendix A.

The equilibrium equation (2. 18) is then solved approximately
by using a Galerkin procedure. After substituting W,w,f of (2.19)
(2.20),(2.21) in (2. 18) the following error function is obtained where

third order terms as éif_f,jz, giz {E,J. and §i3 are neglected:

2
(X, V) :Z—E—E— E _cosix + E,cosk icosl?+E cos k,X cos [?
RZ 1 2 1 3 2

+ E cos 2k1x+E5cos Zkzx + E6 cos(kl+k2)x+ E

4 cos (kl-kz)i

=

+ Escos(k1 +1)x cos,Zy%- E_cos(k,-1)X cos£y+ Elocos(kzh)x coszy

9 1

+ E;jcos(k,-i)x cosz?+E12cos Z,Z';r + E13c052k13'< cos Z,Z?
+ E14cos Zkz'}'{ cos Z,Z? + E15C°S(k1 + kz))'i cos 2[?

+ E | cos (k;- k,)% cos 245 + o) (2.22)

16
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Coefficients Ei of the error function are listed in Appendix A. The
three nonlinear buckling equations are obtained by the following

orthogonality conditions:

2w
_/]; €(x,y) cos iR dR d§j =o (2.23)
2w
ff € (x,y) cos kli cosli‘r d¥ d§ =o (2.24)
[0}
2
ff € (x,y) cos k,% cos b5 dz d§ = o (2.25)
(o]

The coupling relationships between modes are obtained by
prescribing that all the quadratic terms do not vanish identically.
Without that restriction the equations will describe an imperfection
insensitive structure with stable postbuckled states. The relation-
ships that guarantee second order terms in the buckling equations are

found to be any combination of the following:

Zkl:1

2k2=1

k1+k2-i:o (2.26)
kl-kz-izo

=
]
=
+
e
1
o

It should be mentioned that the condition k1 = k2

additional first order terms in the second and third buckling equations.

leads to

After having examined all combinations of coupling relationships, it
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appears that the four following basic cases are to be considered where

each of these corresponds to a particular set of buckling equations:

Case A k, =k, -i=zo (qusz;#i/z

Case B )k, -k, -1=o0
} (k) #k, #1i/2)
2) k., -k, +i=o0

1 2
(2.27)
Case C 1) k1 = 3k2 k2 =1i/2
2) kZ = 3k1 k1 =i/2
Case D k1 = k‘2 =1i/2

Some other degenerate cases can be found which are neglected

in the present analysis. It is sufficient to interchange k1 and kz to

see that cases B1 and B2 (and similarly C., and CZ) are

1
equivalent.

The following nondimensional wave parameters can be intro-

duced.
2 .2 Rt 2mw2

ay = i Z_C(__I:_) (2.28)
a? - kf%(f—’l)z (2.29)
o2 kg%(%’l)z (2.30)
2 = 2 B 1% (2.31)
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)\A’ )‘1, )‘2 are respectively the eigenvalues associated with the axi-

symmetric and the first and second asymmetric modes:

N = %(ai + _i_?:) (2.32)
A
A L L “? (0‘? + BZ)ZJ .3
= —= + ¢
17 2 (a?+ 52)2 ai‘
1 “g (‘"g + %)
Nl 2 (2.34)
(a5 +B) N

For cases A, B and C(kl +# kz) the buckling equations can be

written in the following general form:

2 2 (2.35)
2 _ 8
PO HEE)) HCE 6178+ Clg +£5E))

610y - N+ Cg [ € +E0) + £,F, [+ €48 4 €, 8,6, +E)

(2.36)

+ c“[éz(éA +'€A)+€A§Z]+ Coba €460+ NS NE,
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(A=) + 014[§1<§A+EA)+ §A€1]+ CrebalE +E)) + C (£, (E, +E))

+ c17[§2(§A+€A)+ §A€2]+ clsi;A(§2+’g'2) + clggz(gAng) =>\gz

(2.37)
Coefficients Ci are listed in Appendix A for cases A, B,

and C. Case D leads to the two-mode solution. Letting

k1 =k, =k
r _f _E
&, =& =3 (2.38)
- _ £
gl - §2 2
the following can be written:
W _ = . - -
T~ §A cos i%¥ + £ cos kX cos [§ (2.39)
{Y = §A cos iX + £ cos k¥ cos [}'r (2.40)
Then the buckling equations can be written as follows
e, £ - AF
EpAlAp-N) + D (35 + ) + DyEE +8) = N, (2.41)

E( )\1-:\) + D, [g(gA+ EA) + €A§]+ AN +E) + DgE(E,+ EA) = AE

(2.42)

Coefficients Di are listed in Appendix A.
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4. Derivation of Nonlinear Buckling Equations for Sine Axial

Representation

Initial imperfections are represented by

| =l

= EA sin iX +§1 sin klx sin ly + §2 sin kzx sin ly (2.43)

Moreover w is approximated as:
T =t, sini% +£ sink % sin [§ +¢, sin k,% sin Ly (2. 44)
As previously, using (2.43) and (2.44), a particular solution of the

compatibility equation (2.17) is found which can be written:
f= Klsin ix + K2 sin kIS‘{ sin[? + K3 sin kzi sin[?

- K, cos(k; + U)% sin £7 + Ky cos(k, - i)X sin £7 - K cos(k,+1)% sinfy

+ K7 cos(k2 - )X smjg? - K8cos Zklx - K9 cos 2k2x- KIOCOS ij

- Ky cos(k; +k,)% + K ,cos(k; - k)% + K ;cos(k; +k,)% cos 2 /7

- K ,cos(k; - k,)% cos 2Ly (2.45)
Coefficients Ki are the same as those listed in Appendix A for cosine
axial representation.

After substituting W,w,f of (2.43), (2.44), and (2.45) in
the equilibrium equation (2. 18) the following error function is obtained

where third order terms are neglécted as previously:



15

2
%7 = 2EL ! E sinix + E, sin k, % sindy + E, sin k% sin £y
"y 1 2 1 3 2

- E4cos Zklx - Escos Zkzx - }7_.‘6<:os(k1 + kz)x +E7cos(k1-k2)x

E_cos(k, + i)X sinl? + E, cos(k,-i)xX sinZ? -E. cos(k,+1)X sinl?
8 1 9 1 10 2
+ Ellcos(kz-i)i': sin,Z§+ EIZCOS 2[,? + E13cos Zkli cos 2[?

+ E cos2k,Xcos 2L + E )% cos 245

14 2 5cos(k1+ k

1 2

+ E| cos(k,-k,)% cos 245 + 0(¢?) } (2. 46)

Coefficients Ei are found to be the same as those listed in
Appendix A for cosine axial representation.
The buckling equations are then obtained by the three following

orthogonality conditions:

2w
/] e(X,¥) sin iX dX dy = o (2.47)
o
2 s e g am
ff m (X, ¥) sin kli s1n£y dx dy = o (2.48)
o)
A - . ﬂ_ - 1=
ff e(X,V) sin kZX sinky dX dy = o (2.49)
o

For convenience the following half wave numbers which must

be integers are introduced.
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j = 2i
m, = Zk1 (2.50)
m, = Zkz

Then the condition that quadratic terms do not vanish identically
in the buckling equations is found to be satisfied by any combination of
the following conditions:

Zml +j odd
Zm1 -j odd

2m, +j odd

2
Zmz -j odd
J odd (2.51)
m,; + m, +j odd
m, +m, - j odd
m,; +m, + ] odd
m; -m, -] odd

As previously, the condition k1 = k2 leads to additional first
order terms in the second and third buckling equations. After having
examined all combinations of the coupling conditions (2.51), it

appears that four basic cases are to be considered. Each of these

corresponds to a particular set of buckling equations:
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Case A j even, (m1 + mz) odd
Case B j odd , (m1 + mz) odd k1 £ k‘Z
(2.52)
Case C j odd , (m1 + m, even
Case D j odd , k1 = kz

For cases A, B and C (k1 # kZ) the buckling equations can be
written in the same general form as for the cosine axial representation
(2.35), (2.36), and (2.37). Coefficients Ci for cases A, B and C
for the sine axial representation are listed in Appendix B.

As previously, case D leads to the two-mode solution. Letting

k1 = k2 = —k
£, -, =% (2.53)
1 2 2 *
- _ £
g1 - gz T2
the following can be written:
EV! =E, sin i% +§ sin k% sinky (2.54)
w - s = ﬂ-
T =§A sin iX + £ sin kX sin k¥ (2.55)

Then the buckling equations can be written in the same form
(2.41) and (2.42) as for the cosine axial representation. Coefficients
Di of the buckling equations for the sine axial representation are

listed in Appendix B.
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III. BUCKLING BEHAVIOR OF A PERFECT SHELL

In order to compare the strength of the various couplings found
in the present analysis it is important to compare the buckling behavior
of perfect shells for those couplings. In this discussion it will always
be assumed that A > A and Ap> Ao This is justified by some
previous work. Arbocz and Babcock (Ref. 7) showed that axisymmetric
imperfection coefficients with low wave numbers, corresponding to
high eigenvalues had the largest magnitudes in practice and hence give
the lowest buckling loads. Moreover the case where )\1 < )\2 < )‘A
only needs to be studied since the order of the two asymmetric modes

has no importance and they can be interchanged if )\2 < >‘1 < AA.

1. Two-mode Case (Case D for Both Sine and Cosine Axial

Representations)

The buckling of perfect shells is discussed in some previous
two-mode analyses (Refs. 6, 7 and 9) where both cosine and sine
terms in the axial direction are used for the asymmetric mode. The
two-mode solution of the present analysis is a special case of this one.

The governing equations in this two-mode solution are for the

perfect shell (E = E = o) the following:
A

gA(AA 'A)+nlgz =0 (3-1)

g{()\l _A) +”2€A} = o (3.2)
where Dl

=z tDh
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If the load is monotonically increased the trivial solution
& = N o) can only exist for )\<A1. When A reaches the value

A

1’ then the bracket in (3.2) vanishes identically and a nontrivial
solution is possible which satisfies both (3.1) and (3.2). This solu-

tion, defined as:

2

&5 = (A-AD(A- N Am, (3.4)

is represented in Fig. 2. It should be noted that the trace of the
solution in the ()\,E,A) plane is a straight line.

In addition, recall for this simple case, the buckling behavior
of a shell with an axisymmetric imperfection (EA # o, E = o). For

this case the governing equations can be written:

Ea(Ay - A) #n,e% = AF, (3.5)
g{(Al - )\)+ﬂ2§A+ﬂ3€A} =0 (3.6)

where Ny = D3 + D5.
Since the imperfection is purely axisymmetric, the prebuckling
solution is also purely axisymmetric. Equations (3.5) and (3.6) are

identically satisfied by the following solution:

§A = gA —XI_\—:X (3.7)
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This solution is no longer valid when there is a bifurcation in

the axisymmetric mode. This occurs when the bracket in (3. 4)

vanishes identically, which condition is represented by the straight

line A in ()\,§A) coordinates.

Then the following solution in § is found:

e = (A= A {A- (Mgt A, (3.9)

It should be noted that the buckling equations describe an

imperfection sensitive structure only if the signs of EA and n, are

different.

where

Three-mode Case

a. Cases A and B for the cosine axial representation and

Case A for the sine axial representation

The governing equations for a perfect shell are in these cases:

()\1 - A)€1+T\2§A§2=0 (3.11)
n, = C +GC,+C,

My = €1 +C12%Cy5

M3 = G+ Ci5+Cyy
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If the load is monotonically increased, the trivial solution can
only exist for A < )\1. When A reaches the value Al’ there is a
bifurcation of the solution in §1. Equations (3.10), (3.11) and (3.12)

are identically satisfied by:

until there is a bifurcation in gA and §2.

Writing (3.10) and (3. 12) as follows

Ay A mggy N

M36; A-M o LE;

a nontrivial solution in &A, gz can be found if:

Then, after bifurcation in §A and gz there exists a nontrivial
solution in §A, E,l, gz and hence the same arguments as previously
can be used for (&1,52) and (§A, §1) respectively to obtain the

following solution:

2 = (A - N, - M)A, (3.14)
62 = (A -MA -MNap, (3. 15)

This solution is represented in Fig. 3 where the branches in

dotted lines are of no interest for the present discussion.
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In the case where /\1 = AZ’ the trace of the solution in the

(/\,ﬁA) plane then becomes two straight lines:

Ea = 1 (AL -N)/ vi, (3.16)

This behavior is shown in Fig. 4.

For this special case, the buckling behavior of a perfect shell
is found to be the same as for the two-mode cases. In addition it
should be noted that, if all three-modes are located on the circle
corresponding to the same eigenvalue, then the traces in the planes
()\lgA), (A,E.l) and ()\,ﬁz) are straight lines which characterize the

most imperfection sensitive behavior.

b. Case B for the sine axial representation

In this case the governing equation for a perfect shell can be

written as:

(Ap —M&A +n1§§ +n2§§ = o | (3.17)
g { A N tngg, } =0 (3.18)
€, {()\2 -N +n4§A}= ) (3.19)
where:

C
o=t G

C
o=t G
ny = Cg+GCy+Cpy

3
N

i
9]
-+
O
o
Q



23
If the load is monotonically increased, the trivial solution can
only exist for A< I\l. Then when A= Al’ there is a bifurcation of
the solution in the §l mode. Equations (3.17), (3.18) and (3.19) are

identically satisfied by the following:

2 _
8] = A-ADA- Apap, (3.20)
5, =o
Afterwards a bifurcation may occur in the §2 mode. This is
M A
only possible if n—§- < Tl . Then the following solution satisfies the
4 2
governing equations:
gl = o (3.21)
2
£ = (A-AN(A-A) o,

The buckling behavior for a perfect shell in this case is

represented in Fig. 5a. If A=A bifurcation occurs either in él
yl iE!

Mg 4
5b in the case of a bifurcation in 51.

if <1, or in §2 if > 1. The solution is represented in Fig.

c. Case C for both sine and cosine representations

This is the most general case. For the sine axial representa-

tion, governing equations can be written as follows:

En(Ag-N) +n g 6y +myt2 4mstd 4n el <o (3.22)
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E AN g by bty | (3.23)

(3.24)

I
*]

where
ng = C, +C, +C,
Ny = %4‘*”05
N3 = '(':z'é)+c7
nyg = Cg+Cy+Cpy
Mg = €y +Cpp +Cy3
Mg = €14+ Ci5+Cyq

For the cosine axial representation the governing equations are
the same with M, =My =0 for subcase C1 and M3 =My, = o0 for

subcase CZ'

If the load is monotonically increased, the trivial solution can
only exist for A < Al' When A= Al there is a bifurcation into the
§A, §1, §2 modes. There is a nontrivial solution in §, §2 for every

£,., if the following condition is satisfied
A

(3.25)

i
(o]

Mg gA (/\2../\) +n7§A
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which leads to the following quadratic equation
2
N - Nghg) +§A[n4(>\2 -\) +n (N - x)] + (- M“‘z"‘) - o

The solution of interest (i.e., for which §A =0 for A= >\1) is the

following:

2
- [ngrgwe n7(x1->\ﬂ+\/l£1 Pa N0 N - 2nnsmn ) AR, -N

A=
2(114117 -"15"'16)
(3.26)
From (3.22) and (3. 23) the solution in gl and gz can be
obtained:
_ M oM gy
62 = & £ (3.27)
N5°A
A=A .
2 A
£7 =¢ (3.28)
1 A ot XI-)\+n4§A . (Rl-)\+n4§A 2
T
271 b, 3 M55A

The buckling behavior of a perfect shell in this case is repre-
sented in Fig. 6. It should be noted that, if )\1 = )\2, the trace of the

of the solution in the (i;'A,R) plane is a straight line given by the

following equation:

ta = (M- AN 2
gy Vg tng) - 4y - ngne)
n =

2t g - mgng)

where

(3.29)
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IV. GEOMETRICAL IMPERFECTIONS

In most theoretical studies on the stability of cylindrical shells,
the dependence of geometrical imperfections on wave numbers is not
considered. As an exception, Donnell and Wan (Ref. 3) tried to
characterize the imperfection distribution by a semi empirical law.

In order to use reasonable data as imperfection coefficients in the
present analysis, an attempt is made to characterize this dependence
for several shells obtained by the same manufacturing processes by
fitting the experimental data obtained by Arbocz and Babcock (Refs. 7
and 9).

1. Experimental Imperfection Coefficients

Arbocz and Babcock used a noncontacting probe to make
surface measurements on electroformed copper shells. The
geometrical properties of the shells considered in this thesis are
listed in Table I. A complete surkface map of these shells was
recorded by a scanning device travelling in both the axial and circum-
ferential directions. The data recording process was fully automated
and the data reduction was done on a digital computer. All details on
the experimental device and data reduction programs can be found in
reference 9.

To obtain the shell imperfections, first a perfect reference
cylinder was found by fitting the surface measurements. The meas-
ured displacements were then recomputed with respect to this ""best
fit" cylinder. Then a double harmonic analysis was performed. Three
sets of Fourier coefficients were obtained by using the different

Fourier representations.
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For the full wave representation in the axial direction, imper-
fections can be written as:

- M M M M
-{:‘y:z Akicos ZkL cos%i- > Bkzc s Lxsin ZQRX
k=0 f=0 k=1 f-=o ,
M

2
=

(4.1)
M
. 2kwx ly_
1Ckls1n T cos R+ ;L:.

. 2kwx . ly
lez sm-—-—-—I:—-—-sm 3

For the half wave cosine representation in the axial direction,
imperfections can be written as:

M M M
w kmrx ﬂz
't-' = kE:O ’?:O Ak,g coOs —L-" cOos R + Z

kwx . E
B, pcos —= sm-—X
= P kl L R

(4.2)

For the half wave sine representation in the axial direction,
imperfections can be written as:

—-= C sin
t k=o f=1 kL

: M
kTIer cos%-& E g Dkﬁsin-lf%% sinz-X
k=1 [=1

R

(4. 3)

In this analysis only the half wave representation in the axial
direction is used.

In addition Fourier modulus coefficients can be computed
which are defined as follows:
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2 2 . . .
Pl = Akl + Bk[ for the cosine axial representation

/ 2 2 . . .
Prf = Cki + Dk[ for the sine axial representation

The modulus coefficients are represented in Figs. 7 and 11 for shell
A8. They are also represented in Figs. 8 and 12 using log-log
coordinates. The averages of these coefficients for seven electro-
formed copper shells tested are represented in Figs. 9 and 13. They
are also represented using log-log coordinates in Figs. 10 and 14.

2. Dependence on Wave Numbers

Donnell and Wan (Ref. 3) assume that the imperfection
coefficients are related to the wave lengths by the following relation-

ship:
E= 55 A, A (4. 4)

where U is the so-called unevenness factor.

Ay and )\Y are respectively the wave lengths in the axial and

circumferential directions.

L

A s 5%
(4.5)

A - IR

y £

Nondimensional wave parameters are used as variables
instead of wave lengths in the mathematical model to fit experimental

data.
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The Donnell and Wan representation rewritten in terms of «

and B is the following:

- _2_1_(gt5> a-1.5 5-0.5 +.6)

C

In addition it can be observed in Figs. 9 and 13 that a power law is a
good model for the asymmetric imperfections for £>2. 1t can also
be noticed for all of the seven shells tested that the asymmetric
imperfections for L=1 present a very small value for any axial
wave number. Moreover it appeared very difficult with the data
available to find a correlation between axisymmetric and asymmetric
imperfections. It then seemed reasonable to fit separately the axi-

symmetric and the asymmetric imperfections by the following model:

A
_ -q
b = Xp ©
(4.7)
A -r ,-S
E = X a B or £22

Modulus coefficients were used to fit the asymmetric imper-
fections. For both sine and cosine axial representations the
parameters XA and q for axisymmetric imperfections and X, r,s
for asymmetric imperfections were determined by using a least

squares method, i.e., for the data available, by minimizing:

P = E for asymmetric
7 shells k=1 imperfections
! 2
d = E > (&k - §A) for axisymmetric

7 shells k=1 imperfections
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The total numbers of observations were:
N = 49 for axisymmetric imperfections
N = 980 for asymmetric imperfections
The minimization was performed using an iterative process
which is explained in reference 11. Finally, the following results
were found:

Sine axial representation

- axisymmetric imperfections

X 0.0168

A

q 0.383 ,
\/.1% = 0.10 (average error)

- asymmetric imperfections

i

X = 0.000275

r = 1.007

s = 1.329
JE

N = 0.051

Cosine axial representation

- axisymmetric imperfections

X, = 0.00238
q = 1.174
£ - 0.09
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- asymmetric imperfections

X = 0.00475 1073
r = 1,974
s = 1.457
¢ _
\/N = 0.026

It should be noted that the model used for asymmetric imper-
fections is better than that for axisymmetric imperfections. Using
these values, the model (4.7) is represented in Figs. 15 and 16.

For the imperfections corresponding to £- 1, which are very small
and of no importance for buckling load determination, the average of

modulus coefficients pkl(pkl = 0.12) was used in these figures.
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V. NUMERICAL RESULTS

1. Numerical Procedure

In the three-mode case the second and third buckling equations
(2.36) and (2.37) can be solved with respect to §1 and E,Z for a given

§A to obtain:

2

A+ SELON + Ty

) (5.1)

-6, A% 4 S, N + T,(E,)

N+ SEN + TE,)

gz (5.2)
Coefficients S, T, Sl’ Tl’ SZ’ 'I‘2 are listed in Appendix C.
Then, after substituting §1 and §2 in the first buckling equa-

tion (2. 35) the following fifth order polynomial equation in A is

obtained, which can be solved numerically:

5 4 3 2
PiEa) X+ Pylg) Nt PylEy) N+ PyE ) A" + Py A+ Pyl = o
(5.3)

Coefficients Pi are expressed in function of §A in Appendix

Similarly, in the two-mode case, the second buckling equation

(2.42) can be written as:

gz -g A-Xl = (53+ 55)(§A +§A) '54gA ( ) )
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Then after substituting § from (5.4) in (2.41), the following

third order polynomial equation in A is obtained:

3 2
P Ey) X+ Py6y) X+ Polby) N+ PyE,) =0 (5.5)

Coefficients Pi are expressed in function of §A in Appendix

Then the following procedure is used to compute the limit loads:

— A combination of modes (i,kl,k2 ,l) is selected.

— For a given §A, coefficients Pi are evaluated and equation
(5.3) (or equation (5.5) in the two-mode case) is solved.

— A "good" root of (5.3) or (5.5) is selected by continuity from
the initial value = o for ?_E,A = o.

— §A is incremented until the first local maximum in A is
reached which is defined as the buckling load ( 7\B) corresponding to
the given mode combination. |

— The same calculations are performed for different £ to

determine the minimum buckling load AB with respect to the circum-

ferential wave numbers.

2. Calculations for the Two-mode Case

Buckling loads were determined for shell A8 using the experi-
mental modulus coefficients available as imperfections coefficients.
Numerical results are listed in Table II for both the cosine and sine
axial representation. The same calculations were also performed
using the imperfection model (4.7). The corresponding results are

listed in Tables III and IV.
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3. Calculations for the Three-mode Case

Buckling loads were determined for shell A8 using the follow-

ing procedure. The critical mode combinations were found by using

successively as imperfection coefficients A and B Fourier coefficients
for the cosine axial representation and C and D Fourier coefficients

for the sine axial representation. Results are listed in Tables V, VI,

VIII and IX; The critical combinations are found to be:

3, k, = 1, lz 13) for the cosine axial

i=2, k1 = 2
representation
and
(i=1, %k =0.5 k, =1, £=10)
(i=1.5 k =0.5 k, =1, £=10) for the sine axial
(i=1.5, k1 = 0.5, k2 = 2.5, lz 10) representation

Then a phase shifting (i.e., a change of reference of the y

co-ordinate) was performed to determine the lowest buckling load for

these critical combinations.
For the cosine axial representation pkll, pkzl "pkil’(pkzl are

respectively the modulus Fourier coefficients and the phase angles

of the asymmetric modes,

P b - (Akli)2+(Bkll)2
Pk =y )t

0 (5. 6)
o d = 8By gy )

1}

1,0 (tg) ™! (B, L /Ay f)
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Then the imperfection coefficients corresponding to the
shifting angle ¢ can be defined as

3 (¢) = »p cos (¢ -9)
klﬂ ‘ klﬂ kll
(5.7)

tl

g (¢) os (
sz szl ¢ ‘pkzl )

®)

For the sine axial representation, the A and B Fourier
coefficients are to be replaced by the C and D coefficients in (5. 6).

For the critical mode combinations, the buckling load is
represented as a function of the phase angle ¢ in Figs. 21 and 22.

Finally the following buckling loads were found for shell AS8:

A

B 0.737 for the cosine axial representation

As

0.768 for the sine axjal representation

The same calculations were also performed using the imper-
fection model (4.7) in the same range of wave numbers values as for
experimental Fourier coefficients. These results are listed in
Tables VII and X.

Finally, the buckling loads were also determined in the case
of two classical asymmetric modes using fitted data as imperfection
coefficients since no experimentaldata were available for these high

wave number modes. These results are listed in Tables XI and XII.
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VI. DISCUSSION AND CONCLUSIONS

1. Properties of the Two-mode and Three-mode Solution

It was found, as previously in reference 7 that, for a given
combination of axial wave numbers, minimum buckling loads occur
when one of the asymmetric modes is nearly classical.

In addition the two-mode solution for the sine axial represen-
tation presents an interesting property. In this case, the coupling
condition (2i odd) implies that the number of possible mode combina-
tions is greater than for the cosine axial representation (i = 2k).
However, it can be seen in Fig. 20 that, for the smooth distribution
of the fitted imperfection coefficients, the minimum buckling loads -
occur when approximately k=~ i/2., As for the three modes solution,
it can be seen in Tables V, VI and VII that the critical loads corres-
ponding to the various coupling cases are the following for the

cosine axial representation.

Case A AB = 0.851 (experimental Fourier coefficients A)
/\B = 0.850 (experimental Fourier coefficients B)
AB = 0.981 (fitted coefficients)

Case B1 /\B = 0.936 (experimental Fourier coefficients A)
/\B = 0.966 (experimental Fourier coefficients B)
AB = 0.976 (fitted coefficients)

Case C1 AB = 0.750 {(experimental Fourier coefficients A)
/\B = 0,770 (experimental Fourier coefficients B)
Ag = 0.813 (fitted coefficients)

Then it can be concluded that the cases A and B which have
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the same behavior in the buckling of a perfect shell, correspond to a
weak coupling and that the case C corresponds to a strong coupling.
This result could have been predicted in Part III.
Similarly, for the sine axial representation, it can be seen in
Tables VIII, IX and X that the minimum buckling loads are the follow-

ing for the various coupling cases:

Case A )\B = 0.851 (experimental Fourier coefficients C)
/\B = 0.776 (experimental Fourier coefficients D)
)\B = 0.894 (fitted coefficients)

Case B ,\B = 0.862 (experimental Fourier coefficients C)
XB = 0.777 (experimental Fourier coefficients D)
XB = 0.780 (fitted coefficients)

Case C 7\B = 0.852 (experimental Fourier coefficients C)
’\B = 0.771 (experimental Fourier coefficients D)
Ag = 0.780 (fitted coefficients)

It can also be concluded that the case A corresponds to a weak
coupling and the cases B and C correspond to a strong coupling. The
most important results to justify this statement are those obtained by
the smooth imperfection distribution of the fitted data. In fact the low
buckling loads obtained for experimental Fourier coefficients in the
case A correspond to i = 1 and hence are caused by a very high axi-
symmetric imperfection (see Fig. 11). A comparison of the three-
mode solution for various coupling strengths is shown in Fig. 23.

Moreover, another property of the three-mode solution should

also be noted. For the cosine axial representation there exists one
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k2 for a given i and k1 and for a given coupling case. For the sine
axial representation there is no unique value of k2 corresponding to

a given i and k1 and a coupling case, but, as can be seen in Table

X, the solution is poorly sensitive to kZ’

2. Comparison between the Results for the Two-and Three-mode

Solutions

As far as the experimental imperfection data are concerned for

shell A8 (i.e., for k<3.5 and ﬂg 24) the lowest buckling loads are

A

the following:

- for the cosine axial representation

AB = 0.748 in the two- mode case
for i=2 k=1 £=13 (see Table II)
AB = 0.739 in the three-mode case

for i=2 k,=1 k1=3l=13 (see

Tables V and VI
and Fig. 21)

- for the sine axial representation
AB = 0.775 in the two-mode case
for i=1.5 k=0.5 l: 10 (see

Table II)
A = 0.768 1in the three-mode case

for i=1, k =0.5 k2=1,l=1o

and i=1.5 k; =0.5, k, =2.5 L=10

1
(see Tables VIII,

IX and Fig. 22)
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Then it can be concluded that, adding one nonclassical asym-
metric mode to the two-mode solution produces only a small effect.
The results for the two- and three-mode solutions for shell A8 are
approximately ten per cent above the experimental buckling load
(see Table I). Moreover for the minimum buckling load found in the
three-mode case the axisymmetric and first asymmetric modes are
found to be the same as the critical modes in the two-mode solution.

No experimental data were available for the high wave number
modes involved in the Hutchinson and Koiter theories. However the
results obtained by using the fitted data lead to interesting possibilities
since the critical combinations of modes could be determined without
any restriction on wave numbers in that case. In the two-mode solu-
tion, it can be seen in Table 1II that the critical modes correspond to
the lowest axial wave numbers:

- for the cosine axial representation

Ag=0.819 i=1 k=0.5

- for the sine axial representation

A, =0.780 i=0.5 k=0.5

B

The buckling loads corresponding to the closest mode
combination from the Hutchinson's case were found to be (see Table
INAR

- for the cosine axial representation

Ap = 0.923 (i=15 k=7.5)

- for the sine axial representation

)\B = 0.827 (i=14.5 k=17)
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These combinations are less critical than the previous low wave
number combinations. This can be explained as follows: despite the
fact that the Hutchinson combination of modes presents the strongest
imperfection sensitivity (see Figs. 20 to 30), the critical combina-
tions of modes occur for low axial wave numbers which correspond to
the most severe imperfections.

Similarly, by using fitted data as imperfection coefficients in
the three-mode solution for the cosine axial representation it is found
(see Tables VII and XI) that the crit;cal combination of modes corres-

ponds to the lowest axial wave numbers:

)\B = 0.813 for i=1 k, =1.5 k, =0.5

For high axial wave numbers, the most critical combination

was found to correspond to Koiter's theory:

)\B =0.901 for i=15 k; =0.5 k, = 14.5

For the sine axial representation, the most critical low wave

number combination was found to be:

=1 (Ay = 0.780)

B
But a high wave number combination with two classical asym-

metric modes was found to be more critical (see Tables X and XII).

i =1.5 k, =0.5 k, =14.5 (A, = 0.613)

2 B
It is interesting to note that this critical case does not occur

for the classical axisymmetric mode but for a low wave number

axisymmetric mode. Then a strong effect can exist if one imperfection,
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even if small, corresponding to another classical asymmetric mode
is added to the two imperfections corresponding to a low axial wave
number combination in the two-mode case. For example, the buckling

load AB = 0.835 which was found in the two-mode case for:

0.5 £=10

-
"
[
(8,
=
i

1

0.077

i
(i

£y = 0.040 &,

is decreased to the value 0. 613 if the following classical asymmetric

mode with the same circumferential wave number is added:

k, = 14.5 £=10 ¢, =0.003 (see Fig. 24)

This strong effect was not observed for the cosine axial
representation. This was due to the fact that the high wave number
imperfections extrapolated by using the model (4.7) are much smaller

for the cosine axial representation than for the other representation.

3. Comparison between the Cosine and Sine Axial Representations

As far as the experimental imperfection coefficients are
concerned, the lower buckling loads are obtained for the cosine axial
representation. However, for the fitted imperfection coefficients,
the lower buckling loads are obtained for the sine axijal representation.
The following explanation of these results can be given: the sine axial
representation solution is less imperfection sensitive than the cosine
axial representaf:ion solution (see Figs. 25 to 30), but, on the other

hand, the fitted imperfection distribution is much more concentrated
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in low wave numbers for the cosine than for the sine axial represen-

tation (see Figs. 17 and 18).

4. Conclusions

The limitations of this analysis are the same as those of
references 6 and 7.

The boundary conditions of the finite shell are not considered.
However the displacements assumed in the case of the sine axial
representation are more satisfactory, since they satisfy the simple
support boundary conditions.

The analysis is only valid for small imperfections and deflec-
tions (of the order of some fraction of the wall thickness), since third
order terms were neglected in the buckling equations.

In addition the results obtained by using high wave numbers
fitted imperfection coefficients are only qualitative since the imper-
fection model (4.7) was obtained by fitting only experimental low wave
number data (k<3.5 and £<24 for shell A8).

Having these limitations in mind, the following conclusions
of the present analysis can be dré.wn.

i. As far as experimental data are concerned, the three-
mode solution has only a small additional effect (less than five per
cent) with respect to the two-mode solution.

ii. A possible important effect of interaction between a low
wave number axisymmetric mode with two classical asymmetric
modes can be predicted from the present analysis. However this

last conclusion is only qualitative since no experimental data were
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available for the high wave number modes involved in this coupling.
iii. Using fitted experimental data, the high wave number
axisymmetric imperfections were not found to be important for either
the two-mode or three-mode analysis.
iv. For the class of electroformed shells studied, the
exponents of the power law used as an imperfection model were found

to differ very much from those assumed by Donnell and Wan.
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APPENDIX A

Coefficients for the Cosine Axial Representation

In the following, the non-dimensional parameters listed below

will be used:

02 - ZRT
A =
2 kZRT(ZTr)Z
o =X 2t
2
2 kZRT(ZTr)
% = %2 2 'L
2
2 2RT,1
" = 1 -2—6—('51)
2 ZRT om 2
a, = (k1+k ) (L )
2 Kk, -k, )2 RT (211)2
ay = T
2 2 RT , 2w 2
G.S = (k1+1) —Z—E—(_I__,-)
2
2 2 RT 2n
aZ’(kJr)ZRT(ZTr)Z
7T 2c¢c 'L
2 2 RT ,2m 2
ag = (kp-i)" 5 (F7)
2
2 % :
Y- =—ﬁ (_]'—:1,2,...,8)
J (a”+8“)
j
A-1. Stress Function Coefficients in (2.21)
K. = £t €a
1 -~ "~ 72¢c 2
%p
3

B2
Ky = -3 V1§
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A-2. Error Function Coefficients in (2. 22)

=
"

1 “AZ{XA‘;A‘“gA*gA)}

E, = “12“1*31‘“&1@1”
E, = o, (At,-AE,+E,)}

c 2 2 - 2.2 2 _—
E, = —g (42§, € )+ ca, By, £, (E,+E))

2
c

2 22 2 _
Eg = —%‘ (6, +28,8,) + ca, By, &, (£,4E,)

-C—‘fugg%mggmz 2¢ (6 4E, walyle (€ 4E))
6 4 162751521618, )Ha5 Y 6, (6,48, oy, 6, (6 +E

&
0

EE—2—{( FE 6 46 E, vty e (6,4 a2y 2e (£ 4E )
7 2 VB E,FE %8 B oy v (Eo+E, Jta Y, 6, (48

=
"

2
g = e, 6 +E raly B €, 4E ra y Fig L 4 E VL)

=
0

=
]

cﬁz - 2 2 = 2 2 _
2
Eyo = Eg‘"{’gA(g.2‘0*3-2)J“"‘AZ_Y2252(’§‘A‘C‘§A)‘L"‘ﬁf\‘'72(“3¢Lx§z‘L§,4xgz‘L ab2)]

2

A-3. Coefficients of the Buckling Equations (2.35), (2.36), (2.37)

Cases A and B k1 + kz-i =0 (kl # k2 #1i/2)

2
c, = ——TCB
1y
%A
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2
_ cP 2
Cy3 = 1Y,
Cy = Cg=Cy=Cy=Cg=Cy=Cpy=0
5 o 2
C _ cB %A 2
11 - 27 Y
oy
2
c,, = <P
12 )
o
2
2 o
_cB A 2
Ciz = 5= =3V,
Q
1
2
c . Bt 2
14 - T2 Tz VY2
)
2
c.. = <B
15 Z_Z
%
2
2 a
C _cB A 2
16 - 2 "zYh
)
Cj7 = C1jg = Cg =0
Case C. Xy =3k, k, = i/2

In this case, the coefficients Ci are the same as in Cases A

and B, except the following:

2
c, = <P
OA
o2
2%
Cq = b Ay
A
2
c _CﬁZaA 2
17 52—z Y,

L)



50

2
Cig = Cﬁz
1
Zaz
2
c _ c{32 a 2
19 2”2 Y2
%2

A-4. Coefficients of the Buckling Equations (2.41), (2.42)

(Two-mode case: k1 = kz)
2
p, = <P
1
16(11
2
_ cB 2
Do ==Y,
2
D3 = 2cP Y)
2
D, = ——Zcﬂ
4
2a
1
2
D5 = 2c¢P Yi



51

APPENDIX B

Coefficients for the Sine Axial Representation

B-1. Coefficients of the Buckling Equations (2.35), (2.36), (2.37)

First introduce the following wave numbers:

ky = Kk + k

k4 = k1 -k2
k5 = k1+ i
k6 = k1 -1
k7 = k2+i
k8 = k2 -1

Case C (j odd, (ml-_l-r_nz) even, k1 f__kz)

c, - ”22“;11‘22 § cszz
(k3 1 )(k4 -1) TQ,
C, = Z-Z;klkzz Z an le
(k3 -i )(k4 -i)
Cy = z-zziklkg ) CSZVZZ
(ks - )(k4 -i’)
c = - i cﬁz
4 i -4k 2 2T
1 ‘A ,
i -4k1 c.A
Co = -2 i z Cﬁzz
i -4k2 ZnaA
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15

16

17

18

19
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-4ik k

172

2
5 -
-41i

(k

k. k

12 cB

2 2
k2 )(k6 -kz ) T,

4

(kg

22
-k, Nk, -k

2 )
2
Yq Vg

( it2k

2 T i-2k
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Case A (j even, (m +_r__n2) odd, k1 # kz)

1

The coefficients of the buckling equations for Case A are

identical to those of Case C except the following:
cC,=C.=¢C, =C, =0

7
g = C9g=Cp=0
Cl

Q
n

C = = =0

g = Ci9

Case B (j odd, (m

lj_g_nz) odd, k1 # kz)

The coefficients of the buckling equations for Case B are iden-

tical to those of Case C except the following:

Q
I
Q
!
|
o

11 ~ 12“013“

14 ~ Ci5 7 C16

B-2. Coefficients of the Buckling Equations (2.41), (2.42)

(Two-mode case, k1 _=__k2 =k)
D = - i cﬁz
1 i°_4K” Z'n'c,Az
b - K 2cp° J 2
2 ytla®) vl
2 2
D, = szi—( AT
3 r k' it2k T i-2k
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APPENDIX C

Coefficients of (5.1) and (5.2) (three-mode solution)

S = -()\1 +)\2)

2 =L(C [ ¥C ) EfHE p HC 58 L TC, ;+C NE A +E , HC (£, ]

S, = A E e L C117C 128+ (CgtCoJE  1-E,[(C [ +C 3)E 4 +E , HC 8 , ]
T) = Ay 400G, 1#C By +(CgHCy E, T

67 HC 4 +C )8 +H(C +C gJE, TT(C 1#C 3 )E \+E L )+C 58, ]
s. = A"

2 = M EprE,[(C 4 #+C B +(C ,#+C B, T-E [(C,+C ME 4 +E , HC (]

2 = -A gAr(C 4tC 158 +(C o+C gJE, ]

+E A L(C 1 +C JE,H(Cg+CQJE TG, 4+ Gy  HE A +E \ G (£, ]
where:

)\1 = )\1+(C8+C10)§A §A)+C9§A

)\Z = )\2+(C +C19) §A+§A)+C18§A

Coefficients of the Fifth Order Polynomial in A (5.3) (three-mode

solution)

]?1 = -(§A+§A)
-2 =2
_ _ = 1 2
Pz - XAgA 2S(gpfqg'_,cx)'c1751&’?. C4 2 Ce 2

2 - - = .
Py = 2808, -(STH2T)(E , +E 5 )-2C E E,5-(E 545 )(C,E,+CE )

— - -2 —
-(€;5¢5,)(C,8 +C.E,)-C E 5-C s
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2 —
P, = (S +2T)xAgA-ZST(gA+'§A)+cl[slsz_z‘glngrfg'lszsfgzsls]

+(E S+5, NC,5,+C,S) W(E,S+5,)(C,S, +C.S, )

-(€) T+T | NC,E,+CE | )-(E, T+T,)(C,E,+CE )

2 2
s, B s, _ _
+C,E,(S,S-E, THC, —— +C E,(S,5-E,T)

tCy =5

P_ = 2ST\

_ 2 _— —
5 AgA_(gA+gA)T +C1[SITZ+SZT1]+(SlT+ST1)(C1§2+C4§1)

+(S,T+ST, )(c1€1+c:6'g'2 )+(€ls+sl)(c3'r2+c5'r1 )

+(§ZS+SZ)(C2T1+C7T2 H(E 1 T+T1 )(C3SZ+CSSI)

+(EZT+T2)(CZS +C_8,#C,S T +C S, T

1 47171 6272

2 — — —
Py = MpEATTHC, (T T,+E, T THE| T, TH(E, T+T, (C, T,+C, T, )

T T
1 2
+(g2T+T2)(CZT1+C7T2)+C4T1( - +'£1T)+C6T2(-2- +€2T)

Coefficients of the Third Order Polynomial in A (5. 5) (Two-mode

solution)

b — D]_ 2

Py = EpMp*2h (EptEp)- 5 &
* %2 =2, % 2 *
P, = -2hE N, - +E, N 4D ETNT-DET(Q-L)

2 — 3k — sk
4 = EA 02D B2 0 D, E%R(0 )

Q = gA(D3+D4)

A = x1+(D3+D5)(§A+EA)+D4gA
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TABLE I

CHARACTERISTICS OF SHELLS TESTED

3 ' Exper'imental
Shell t.107 inches L inches Buckling Loads
AT 4. 494 7. 00 0. 597
A8 4. 640 7. 00 0. 658
A9 4, 540 7. 00 0.736
AlO 4, 740 6.75 0. 568
Al2 4, 740 7.25 0.673
Al3 4. 440 6. 75 0. 627
Al4 4.370 6; 75 0.711

Nominal Radius For All Shells: R = 4 inches
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TABLE 1I
BUCKLING LOADS

Two-Mode Solution. 'Experimental Modulus Fourier Coefficients for
Shell A8

Cosine Axial Representation (k = 21- )
i 1 2 3
I/ 9 13 16
Ag 0.818 0. 748 0. 878
Sine Axial Representation (2 io0dd)
K i 0.5 1.5 2.5

f = 10 L = 10 L = 10
0.5
>\B=o.801 >\B=o.775 Ag = 0. 544
L = 13 L - 13 L = 13
: Ag = 0.968 Ag = 0.854 AB=0.941
L = 16 L - 16 I = 16
1.5
Ag = 0.981 >\B=0.943 >\B=0.947
{ = 18 - 18 £ - 18
: Ag = 0.991 Ay =0.968 7\B=O.984
I - 20 J = 20 I - 20
2.5
Ag =0.993 \g = 0.976 Ag = 0.989
I = 21 L = 21 L - 21
’ Ag = 0.999 Ay =0.987 )\B=0.998
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TABLE III
BUCKLING LOADS FOR LLOW WAVE NUMBER MODES

Two-Mode Solution. Fitted Imperfection Coefficients

Cosine Axial Representation (k = -12— )
i 1 2 3
/ 16 13 16
A 0.819 0. 936 0. 956
Sine Axial Representation (j =21 odd)
i 0.5 1.5 2.5
k z
0.5 10 0. 780 0. 835 0. 935
1 13 0. 947 0. 899 0. 903
1.5 16 0.971 0. 963 0. 921
2 18 0. 983 0. 978 0. 971
2.5 20 0. 988 0. 986 0. 982

3 21 0. 993 0. 991 0. 989
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TABLE IV
BUCKLING LOADS FOR HIGH WAVE NUMBER MODES

Two-Mode Solution. Fitted Imperfection Coefficients

Cosine Axial Representation (k= % )
i 5 8 11 15
L 20 24 26 27
)‘B 0. 969 0. 969 0. 949 0.923
Sine Axial Representation (j =21 odd)
i 14.5 i 11.5
k 2 k £
0.5 10 0. 965 1.5 16 0. 978
2.5 20 0.959 5.5 26 0. 851
4 24 0. 949 7 27 0. 955
7 27 0. 827

11.5 23 0.870
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TABLE XI
BUCKLING LOADS
Three-Mode Solution. Fitted Imperfection Coefficients

Case of Two Classical Asymmetric Modes

a. Cosine Axial Representation

i “ Kz / ‘g
15 0.5 14. 5 10 0. 901
15 1.5 13. 5 16 0.918
15 2.5 12. 5 20 0. 920
15 5.5 9.5 26 0.923

Kk K

1 1 2 y/ Ag
14 14. 5 0.5 10 0. 904
12 13.5 1.5 16 0. 948
10 12.5 2.5 20 0. 976

4 9.5 5.5 26 0. 995

i K k, /) Ag

7 10. 5 3.5 23 0. 984



Three-Mode Solution,

70
TABLE XII

BUCKLING LOADS

Case of Two Classical Asymmetric Modes

b. Sine Axial Representation

Fitted Imperfection Coefficients

i R “ £ ‘s
1.5 0.5 14. 10 613
1.5 1.5 13. 16 . 829
3.5 1.5 13. 16 . 768
3.5 3.5 11. 24 . 936
7.5 3.5 11. 24 . 829
11.5 5.5 9. 26 . 807
14,5 0.5 14, 10 . 734
15 3 1] 22 . 825
15 5.5 9 26 .827
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0.5L A=l
0.5 | a 0.5 | a
(a) Hutchinson(®) (b) Koiter 141:(5]
2 Classical Modes 3 Classical Modes
B B
A=l
0.5 ¢
dIRE
I\
| 4 -
0.5 la 0.5 | a

(c) Arbocz and Bc:\bc:ock[-’:I (d) Present Analysis
2 General Modes 3 General Modes

FIG.1 COMPARISON OF MODE SELECTION IN
PREVIOUS INVESTIGATIONS AND IN THE

PRESENT ANALYSIS
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A/ 6

(a) Perfect Shell (?A =?= 0)

A

N

(b) Shell With An Axisymmetric
3 Imperfection ({4, # 0, £ =0)

FIG. 2 BUCKLING OF A PERFECT SHELL AND OF
A SHELL WITH AN AXISYMMETRIC

IMPERFECTION FOR THE TWO-MODE SOLUTION
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\ Y \ /7
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ST 12 A2

A / \

//ﬂ\l\ AM /YX\'\
:, ¢, e,

FIG.3 BUCKLING OF A PERFECT SHELL FOR THE
THREE-MODE SOLUTION

CASES A AND B |
(COSINE AXIAL REPRESENTATION)

CASE A
(SINE AXIAL REPRESENTATION)
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A A A
\ '
\\\ \ //
“~ ;/
...-XA/ \--f’A + AA
\ ’
V4
\\ / Al Al
¥
f\\ f/ | ”
R 3 £,

FIG. 4 BUCKLING OF A PERFECT SHELL FOR THE
THREE - MODE SOLUTION IF A; =X,

CASES A AND B

(COSINE AXIAL REPRESENTATION)
CASE A

(SINE AXIAL REPRESENTATION)
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FIG.5 BUCKLING OF A PERFECT SHELL FOR THE
THREE- MODE SOLUTION
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FIG.6 BUCKLING OF A PERFECT SHELL FOR
THE THREE-MODE SOLUTION (CASE C)
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FIG.12 EXPERIMENTAL FOURIER COEFFICIENTS-SINE AXIAL REPRESENTATION
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(a) Cosine Axial Representation =25,k =1,k,"1.5, ¢=(|5)
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(b) Cosine Axial Representation i=2,k=3, k=1, £=13(B)
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(c) Sine Axial Representation i=1.5,k;=0.5,k,=2.5, £=10(C)

FIG.23 COMPARISON OF SOME MODE COMBINATIONS FOR
THE THREE-MODE SOLUTION (EXPERIMENTAL
IMPERFECTION COEFFICIENTS)
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FIG.24 COMPARISON BETWEEN THE TWO-MODE AND
THE THREE-MODE SOLUTION WITH ALL

CLASSICAL ASYMMETRIC MODES (FITTED
IMPERFECTION COEFFICIENTS )
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