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ABSTRACT

It is generally believed that stellar chromospheres
are stable against convection since the Schwarzschild
criterion indicates stability when temperature increases
with height. It is shown, however, that the Schwarzschild
criterion does not apply to chromospheres because it
ignores the possibility of thermal instability. In the
absence of a magnetic field, thermally unstable regions
of a chromosphere will be overstable if the temperature
inversion is sufficiently steep. This overstability may
explain the origin of a certain class of oscillations in
the solar chromosphere. Thermally unstable regions
containing magnetic fields are monoctonically unstable for
all values of the temperature gradient. It is suggested
that this monotonic instability of magnetic regions is
responsible for spicule formation in the solar chromosphere.
Elementary considerations of thermal balance predict that
the temperature gradient should diverge at levels of
marginal stability. The chromospheric region of spicule
formation should therefore be bounded below by an abrupt
temperature Jjump. |

The above results are derived by analyzing the

stability of a simple model chromosphere in which all
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.neutral hydrogen atoms are assumed to be in the.ground
state. Although the model chromosphere emits only free-
bound radiation, its thermal instability is caused by

the same ionization effects which lead to instability in
Plasmas emitting line radiation. Thermally unstable
regions of a stellar chromosphere, although not represented
in detail by the model, shouid behave in a similar

fashion.,
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BACKGROUND AND SUMMARY

The concept of thermal instability is very simple.
Consider a gas which is losing energy to its environment:
by one or more processes and which, at the same time, is
Zaining energy by another set of processes. Suppose that
this gas is initially in a steady state with the rate of.
energy output equal to the rate of energy input. Now
imagine that the temperature of the gas is increased by a
small amount. TIf, as a result of this temperéture rise,
the rate of energy output exceeds the rate of energy input,
the gas will lose energy and cool down to its original
temperature. The gas is them said to be thermally stable.
If, on the other hand, the temperature rise causes the rate
of energy output to fall below the input rate, heat wiil
accumulate in the gas and its temperature will continue
to increase. This type of behavior is called thermal
instability. Of course, one can imagine that the steady
state of the gas is perturbed by decreasing rather than
increasing the temperature. In this éase, the gas is
thermally unstable if the temperature change raises the
cooling (energy output) rate above the heating (energy input)
rate.

These ideas can be expressed more concisely as follows,
We define the generalized heat loss function, 43 , as the

rate of energy output: per unit mass (ergs/gram/second)



minus the rate of energy input per unit mass. In a steady
state, the energy output equals the energy input so that
J: = O, The gas cools if 42 > Q and heats up if i: < Q.
Theréfore, a gas is thermally unstable if

?.:'.C..<O>

2T (1)

where T is the temperature. This instability criterion
was derived by Parker (1953).

As a specific example, consider a partially ionized
hydrogen gas. An energetic electron in this gas will
occasionally collide with a neutral atom and lose some of
its kinetic energy by exciting the atom from the ground
state to some higher level. In general, the excited atom
will return spontaneously in one or more steps to the
ground state by emitting photons, the total energy of which
equals the kinetic energy lost by the incident electron.
The photons escape provided the gas is transparent. Thus
the gas cools by converting thermal (kinetic) energy to
excitation energy and then to radiant energy, which leaves
the system. 1In a steady state, this energy output must
be balanced by some form of energy input. For simplicity,
we shall not discuss the details of any particular mechanism
of energy input. Instead, we simply assume that the input
balances the output initially and that the input rate is

unaffected by any perturbation of the gas. In this



hypothetical situation, the gas is evidently unstable if
an increase in temperature reduces the rate of energy
output.

Now an increase in temperature of the hydrogen gas
will affect the energy output in two ways. First, the
number of electrons with sufficient energy to excite
hydrogen atoms will increase. This effect will tend to
increase the cooling rate. However, the number of eiectrons
with enough energy to ionize hydrogen will also increase.
Therefore the number of neutral atoms will decrease., The
second effect of an increase in temperature is therefore a
reduction in the number of target atoms for inelastic
collisions; this effect, tends to reduce the cooling rate.
When the hydrogen gas is largely neutral, the first effect
is more important; an increase in temperature is accompanied
by an increase in cooling rate, and the gas is stable. On
the other hand, when the gas is already mostly ionized,

'the increased ionization which follows a rise in temperature
causes the cooling rate to fall below the input rate. We
therefore expect thermal instability when the gas is
sufficiently ionized.

Several authors have pointed out that the instability
criterion (1) is not quite correct because it overlooks
the following simple fact: the rise in pressure which
accompanies an increase in temperature causes a gas to

expand. Owing to this decrease in density, the rate of



inelastic collisions is reduced. Thus an increase in
temperature will, by this mechanism, always tend to

reduce the cooling rate, as required for thermal instability.
The instability criterion which takes account of density

variations is (Field 1965)

L p 2L
515 <O

 m——

T T

where f) is the density. Since the rate of binary collisions

(2)

per unit volume is proportional to Pg, the energy output
per unit mass is proportional to P . Thus 33/910)0-, in
general, so that criterion (2) indicates that: density
variations have a destabilizing effect, as expected.

Stellar photospheres, which are in or near local
thermodynamic equilibrium, are thermally stable (this is
proved in Section IVb of Part I)., However, sufficiently
ionized regions of stellar chromospheres are probably
unstable, and coronas may be as well. In this thesis I
try to answer the following question: If some region of
a stellar atmosphere is thermally unstable, how will this
instability be manifested?

Athay and Thomas (1956) suggested that thermal instability
governs the temperature structure of an atmosphere. They
argued that, as one ascends in a chromosphere, the tempera-
ture increases slowly in stable regions but that in unstable
regions the temperature rises swiftly to the next region

of stability. In this way Athay and Thomas hoped to account



for the temperature plateaus and abrupt temperature jumps
which are thought to exist in the solar atmosphere. I
will now show very simply that this behavior is not. a
result of thermal instability.

In a steady state, the energy output equals the energy
input, i.e., oC = Q. Since L = Q for all heights z, it
is also true that doC/dz = 0, or

dp _
oC 1= +£PE . O) (3)

where sub‘scrlpts have been used to denote the partial
derivatives. If P is the pressure and R is the gas constant,

the equation of state is
RpT, )

logarithmic differentiation of which yields

1dP _ 4 Ldl
P dz — PdZ Tdz -

The equation of hydrostatic balance is

dP _ _
dz P3, )

where g is the gravity. From eguations (3), (5), and

(5)

(6) we find that the temperature gradient. of an atmosphere

in thermal and hydrostatic balance is

?-U: gt PQQOCP . (7)
dz  pL_-£L,) |

We have already noticed that £ >0 in general, and,

by the instability criterion (2), we see that oC L > O



in a thermally stable gas. According to equation ),
therefore, dT/dz > Q in thermally stable regions of an
atmosphere. As one ascends through such a region, the
temperature and therefore the degree of ionization of
the gas increase, and one approaches a region of thermal
instability. At the level of marginal stability, the
denominator of equation (7) vanishes and the temperature
gradient diverges. At this point, conduction (which has
been neglected) is obviously important, and equation (7)
does not really apply. However, it is clear that the abrupt
Temperature jumps in the solar atmosphere are easily
explained in terms of the requirement of thermal balance
without invoking the con¢ept of thermal inStability.

Equation (7) has been derived in this introduction
because, in addition to explaining an important feature of
the solar atmosphere, it underlies both the weakest point
and one of the strong points of the theory to be described
below, The discussion of this equation will therefore be
resumed later.

I suggest that thermal instability in a stellar
atmosphere leads to convective motions. As an element of
fluid heats up and‘expands, it experiences a buoyancy force
and rises. Similarly, a cooling element of fluid condenses
and falls. In Part I the standard treatment of thermal
instability (Field 1965) is used to analyze the convective

stability of a stellar atmosphere. It is shown that a



thermally unstable atmosphere is always convectively
unstable, regardless of the atmospheric temperature gradient.
In a sufficiently steep temperature inversion, this "thermal-
convective instability" takes the form of exponentially
amplifying oscillations (overstability). In the presence

of a magnetic field, however, monotonic instability (by
which I mean the ordinary type of instability in which a
disturbance grows with time in a monotonic rather than
oscillatory fashion) is possible for any value of the
temperature gradient..

After making the calculations presented in Part I, I
wanted to determine thebnature of thermal instability in -
the solar chromosphere., The two possibilitieé were:

(a) The primary radiation losses from the chromosphere
could result from radiative captures of electrons by
protons. Since the emission rate per gram for this process
is proportional to P’Pfl/gﬁ previous authors have decided
on the basis of criterion (1) or (2) that a plasma radiabting
mainly by free-bound transitions is thermally unstable.

(b) Energy could be radiated from the chromosphere
mainly in spectral lines (of hydrogen); thermal instability
would then result from the ionization effect described
earlier.

Although the radiation by free-bound transitions is

propertional to , 1t should be noted that this

radiation does not always represent a loss of thermal



energy. The energy of a recombination photon equals the
kinetic energy of the recombining electron plus the energy
required to ionize the neutral atom. For this and other
reasons I decided to investigate in detail the thermal
stability of an idealized hydrogen plasma consisting of
protons, electrons, and hydrogen atoms in the ground state.
Since excited bound levels are excluded, this model plasma
emits only free-bound radiation (the free-free emission is
neglected). The stability analysis, which is given in
Part II, shows that the model plasma is thermally unstable

(oCx P\)(ﬂ Pﬂ\) (T T )( o+x5)<o (8)

where x is the fraction of hydrogen which is ionized and

T+X

éj is the number of ionizations minus the number of
recombinations per gram per second. When ionization is
caused by atom-~electron collisions and recombination is
radiative, inequality (8) is satisfied only if T > 17500 K.
Thus, even though the plasma emits only free-bound radiation,
it is stable for T < 17500°K.

The instability (for ™ > 17500°K) of the model plasma
results from the same ionization effect described earlier.
The primary cooling mechanism is the inelastic collision
process of collisional ionization. An increase in tempera-
ture increases the ionization rate, but the cooling rate

soon falls owing to the reduction in the concentration of



neutral atoms. Thus, although the model plasma emits no

line radiation, the instability mechanism is essentially

the same as in a plasma radiating via bound-bound transitions.
In other words, there is no special type of thermal instability
associated with free-bound radiation. The answer to the
question regarding the cause of instability in the chromo-
sphere is simply that instability results from ionization
effects, regardless of whether most of the radiation is

emitted in lines or free-bound continua.

The thermal-convective instability of the mode;
hydrogen plasma is analyzed in Part III. This analysis
confirms most of the conclusions of Part I. For example,
the model plasma is monotonically unstable when subjected
to both gravitational and magnetic fields for all values
of the temperature gradient provided the plasma is thermally
unstable in the absence of the fields. In a gravitational
field alone, the thermally unstable plasma is overstable
in a sufficiently steep temperature inversion. However,
even when inequality (8) is satisfied, the model plasma is
stable in a gravitational field (with no magnetic field)
for sufficiently small values of the density and the
temperature gradient, contrary to the results of the
simplified analysis of Part I.

The model hydrogen plasma is obviously not an accurate
representation qf a stellar chromosphere. However, the

model probably does contain the essential physics as far
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as thermal and thermal-convective instability are concerned
(see Section 4 of Part III). I therefore submit Part III
as an analysis in the first approximation of the convective
stability of stellar chromospheres.

In the past, astronomers have assumed that the
convective stability of stellar chromospheres is governed
by the Schwarzschild criterion, according to which there
is instability only if the temperature decreases with
increasing height more rapidly than the so-called adiabatic
lapse rate. In chromospheres, of course, the temperature
increases with height, and the Schwarzschild criterion
predicts extreme stability. For this reason the observation
of gas Jjets, called spicules, in the solar chromosphere has
been very perplexing. I suggest that spicules are produced
by monotonic thermal-convective instability. Theory and
observation are compared in Section 6 of Part III. The
main points to note are:

(a) The theory predicts the existence of gas Jets
only in regions containing appreciable magnetic field.
Spicules are observed only at the cell boundaries of the
chromospheric network, which is where the magnetic field
is concentrated.

(b) Instability requires that the temperature exceed

some critical value. The value of T for the simple

crit
model plasma is 17500¢K, but more detailed considerations

indicate that Térit is about 1EOOO°K in the solar chromo-
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sphere. Probably the best. estimates of spicule tempera-
tures are the values 14000 to 17000°K found by Beckers
(1968).

(c) The theory predicts that the unstable region of
spicule formation should be bounded below by an abrupt.
temperature jump (see equation [ﬁ] or Section 5 of Part III).
In fact, some astronomers have concluded that spicules
begin to appear just at the height at which there is a
steep temperature rise. Other astronomers, however, feél
that the evidence for lack of spicules below this height
is weak. Nevertheless, I mention this point because this
prediction of the theory was the only one made before the
author was aware of the corresponding observation.

The main shortcoming of the thermal-convective
theory of spicule formation is that the temperature
structure of the unstable region is completely unknown.

No particular value of the temperature gradient is required
by the theory, but if the gradient is too large, the
potentially unstable region will be so thin that disturbances
‘Will be smoothed away by conduction. A theory for the
structure of the unstable region must obviously include
conduction (see equation [il) and may also require a
reliable calculation of the eneréy input (see Section 5 of
Part III), Thus, it is unlikeiy that this difficulty will

be resolved in the near future.

Field~free regions of the solar chromosphere are
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almost certainly not monotonically unstable, but overstability
is possible and may explain the origin of a certain class

of chromospheric oscillations. This application of the

theory is particularly tentative, and the reader is referred
to Section 6 of Part III for further discussion.

The chromosphere of the sun is the only chromosphere
discussed in this thesis simply because it is the only one
for which detailed dynamical observations are available.

It must be emphasized that the physical processes involved
in the thermal-convective theory are quite general, and if
the theory applies to the solar chromosphere, it nmust

also apply to the chromospheres of mény other stars.

The only source of information concerning chromospheric
dynamics for stars besides the sun is the phenomenon of
eclipses of relatively small earlyftype stars by the
extended atmospheres of late-type giants in systems such
as ]r Aurigae and 31 Cygni (see the review by Wilson.@964b.
Whether the observed differential motions can be interpreted
in terms of the thermal-convective theory depends on whether
hydrogen ionization in the chromosphere of the giant is
collisional or whether it is due mainly to the ionizing
radiation from the early-type companion. Apparently this
point is subject to some debate,

Fach of the following three parts has been written as
a self-contained papcr. The reader interested in the

theory of thermal instability may wish to read only Part II,
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while solar physicists may be interested only in Part III.
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PART I

THERMAL-CONVECTIVE INSTABILITY
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ABSTRACT

The Schwarzschild criterion for convection is generalized to
include departures from adiabatic motion., It is demonstrated that a
thermally unstable atmosphere is also convectively unstable, regard-
less of the atmospheric temperature gradient., If the latter is sufficiently
subadiabatic (e.g., if the temperature increases rapidly with height),
convection sets in as exponentially growing oscillations. In the presence
of a magnetic field, a thermally unstable atmosphere is monotonically
unstable, although overstability is also possible if the temperature
gradient is subadiabatic. The effects of conduction, viscosity, opacity,
and rotation are evaluated. In this paper the assumption is made that
the radiative cooling (or the source function) depends only on the local "

values of density and temperature.
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I. INTRODUCTION

The term "thermal instability™ is sometimes used to denote the
instability of a fluid layer heated from below. In the present paper the
type of instability in which motions are driven by buoyancy forces will
be called convective instability, The term "thermal instability" will
be reserved for the instability first discussed by Parker (1953) and
extensively explored by Field (1965).

Parker considered a heat equation of the form

T - -
“Tv T ‘Q) )

where c, is the specific heat at constant volume, T is the temperature,
and t is the time., The quantity £ is the energy lost minus the energy
gained per gram per second, In equilibrium, of course, this so-called
heat loss function vanishes. By convention, £ does not include energy
transfer by conduction. The effect of conduction was investigated by
Parker but will be omitted from the present discussion (see §IV), If the
equilibrium temperature of a uniform medium is perturbed by an amount

0, equation (1) states that, to first order,

50 L : ‘
Cv 3t ~ °C'T-9) (2)

where LT is the derivative of I\/ with respect to T evaluated in
the eqqilibrium state., It is evident from equation (2) that the temperature

perturbation will grow exponentially if

< 0, (3)
OCT

Weymann (1960) pointed out that the condition (3) for thermal
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instability applies only to isochoric perturbations. But density pertur-
bations are to be expected owing to the strong tendency of a fluid to
remain in pressure equilibrium. A work term must therefore be added
to equation (1), and the density (p) dependence of the heat loss function
must be taken into account. For an ideal gas, the resulting condition
for thermal instability is (Field 1965)

Y

| °C’r' = £ < 0, (4
where the subscripts denote partial derivatives,

The occurrence in thermal instability of density perturbations
in pressure equilibrium with their surroundihgs clearly has a bearing
on thermal convection. The main purpose of this paper is to show that
a stellar atmosphere, for example, Which is thermally unstable is also,
in fact, convectively unstable, regardless of the atmospheric temperafure
gradient, The convective instability of a thermally unstable atmosphere
will be called thermal-convective instability.

Most of the previous work on thermal instability has concerned
the behavior of perturbations of an initially uniform medium in the
absence of a gravitational field, One exception is Field's (1965) analysis
of the effect of density stratification in a gravitational field. However,
Field considered only modes with no horizontal motions, and he omitted
the acceleration term in the equation of vertical motion. Both restrictions
preclude convective-type motions, Instead, thermal instability manifests
itself in Field's model by either an overall expansion or an overall con-
traction of the atmosphere.

In the opinion of the present author, thermal instability of a

stellar atmosphere is more probably manifested as thermal-convective
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instability than as an overall expansion or contraction. In §II the parcel
method is used to demonstrate the existence and properties of thermal-
convective instability, In this idealized calculation all sources of
dissipation, such as viscosity and conduction, are neglected. The
effects of molecular transport processes, opacity, rotation, and mag-
netic fields are considered in §IV, It will be necessary to be able to
distinguish ordinary instability, in which a perturbation increases
monotonically with time, from overstability. The former type of
instability will be called monotonic instability since the term "dynamical
instability" which is sometimes used may be confusing in the present
context, Also, following conventional usage, I will characterize a
temperature gradient as subadiabatic if the temperature either increases

with height or decreases less rapidly than the adiabatic lapse rate.

II. PARCEL METHOD

) o

Consider a parcel of gas of density p , temperature T , and
pressure P". The ambient values of the gas variables will be denoted
by the corresponding symbols without asterisks. Since the parcel will

quickly reach pressure equilibrium with its surroundings, we have
P* = P 5
) (5)

which for an ideal gas means that
¢ *
5 P + T T T — 0 , )
where we have assumed that the parcel differs only slightly from its

environment,
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The heat equation for the parcel can be written in the form

i-_gk -——";k%{ik +(3"1)P*£(P*,T*)= 0,

where d/dt is the; convective derivative following the motion of the
parcel and vy is the ratio of specific heats (assumed constant), We
have assumed that the heat loss function of the parcel depends only on
its density and temperature. Since the atmosphere is initially in

equilibrium, we have £(P, T) = 0 so that

LT =L, (#-F)+£,(7-T)
= 'jf':"("c'r" L),

where use has been made of equation (6). In view of equations (5) and

(8), equation (7) may be written

%_E. _ -%’-5‘-? - (x-1)T‘(,CT- %39)(P*" P)=0<9>

to first order in deviations from the equilibrium state.

Now let w be the upward (z) velocity of the parcel so that

dP _ \, dP dp _ ,df |
‘&—t"’“ WI'-Z_ and dt ~ W dZ (10)

With the aid of equations (10) and a little algebra, we may rewrite

equation (9) in the following form:

LR+ (0 - £L NP~ D-(P-Padpw = 0, wo
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where Cp is the specific heat at constant pressure, B is the atmospheric

lapse rate,

dT _ 1 dP 1 d°f
f=uz = T(P dz p dz/, (12)

and

s-1) T dP
P = XY/ P 4z o
is the adiabatic temperature gradient.

The equation of motion of the parcel is
p*-‘é"—‘tﬁ’- = -(F*- P8, | (14)

where g is the acceleration due to gravity, Solving equation (14) for

e

p - p and substituting into equation (11), we get (to first order)

A
g (5- -
T+ C - H DR (R0

Equation (15) is satisfied by w~ ent, where the growth rate is

142
2
n = -i‘tp(f,,r'— "%“Cp)i LT%;'A’_(‘Q[‘—%(:P) —%—(P—Pad) .

(16)

)

Equation (16) contains several well known results, Setting g = 0,

we obtain the growth rate for perturbations of a uniform medium:
L (L - £L
n(g€=0 =-+ = %p/. (17)
G T

Comparison with Field's (1965) analysis shows that equation (17) is a good
approximation to the growth rate of the condensation (or rarefaction) mode
I

provided the growth rate divided by the perturbation wavenumber is much
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less than the speed of sound. In other words, the analysis presented
here is valid when the size of the parcel is much less than the sound

- speed multiplied by the time scale, which is the condition for pressure
equilibrium. In addition, the parcel size must be much less than a
scale height for the ambient gas variables to be uniquely defined.

If, on the other hand, we assume adiabatic motion, equation (16)

1/2
n(L=0= t[‘ %(P‘Paa)J ) (18)

which means that there will be a value of n which is real and positive

yvields

if and only if B < Bad (Schwarzschild criterion for convective instability),
¥ pg> ﬁad’ equation (18) gives the Brunt-V&isild frequency of gravity
oscillations.,

In addition to these well known results, equation (16) shows

that a thermally unstable atmosphere, which satisfies inequality (4), is

also unstable against convection, This result, in the form just stated,

is completely independent of the atmospheric temperature gradient.
However, if the latter is strongly subadiébatic, convection will set in
as exponentially amplifying oscillations (overstability). If inequality (4)
is not satisfied, conveétive stability is determined by the Schwarzschild

criterion,

III, DESCRIPTION OF THE INSTABILITY

The close connection between thermal and convective instability
demonstrated in §II results from an intimate relation between the thermal
i
and dynamic behavior of a parcel which we now analyze in detail. For

the sake of clarity, we transpose terms in equation (11) to get
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i{(P*"P) = 1 (nC T‘CP)(#'(_P)"'(P_PN)%W‘ (19)

T

Let us first suppose that the rate of change of density excess or deficit
is determined primarily by the effects of heating or cooling of the parcel.
Then the first term on the right side of equation (19) dominates the
second term. If inequality (4) is satisfied, a density perturbation will
grow monotonically and exponentially, As we see from equation (14), the
parcel will either fall or rise, depending on whether it is more or less
dense than its surroundings. According to equation (16), this case of

monotonic instability obtains if, in addition to inequality (4), we have

QCP (°C - '— P) gp" (P—Fad>- (20)‘

When inequality (4) is satisfied but inequality (20) is not, equation
(16) indicates overstability. In order to understand the overstability,
consider first adiabatic motion in an atmosphere which is stable
according to the Schwarzschild criterion. Then the first term on the
right side of equation (19) vanishes, and the second term has the same
sign as the upward velocity w, If a parcel of gas is given a slight push
upwards, w > 0 and the parcel becomes more dense than its surroundings.
Its upward velocity therefore diminishes (equation [14]). When the
parcel has reached its highest level (w = 0), its density excess is a
maxnnum As the parcel descends V(W < 0), its density excess decreases
and eventually changes sign. For this case of J:: 0, the parcel performs
simple harmonic oscillations,

Now let us follow the parcel motion taking into account the first

term on the right ?ide of equation (19). When the parcel is given an
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upward push, its density rises above the ambient density as before.
Then the first term on the right side of equation (19) reinforces the
second term (provided inequality [ 4] is satisfied). The parcel experi-
ences an increasing density excess while its upward velocity diminishes.
When the parcel has attained its maximum elevation (w = 0), its density
excess continues to increase owing to the cooling term in equation (19).
Thus, as the parcel falls back, its velocity of descent is greater than
in the adiabatic case, Instead of executing simple harmonic motion,
the parcel shoots below its original position with increased speed,

and an oscillation with exponentially increasing amplitude has begun,

IV. BOUSSINESQ THEORY

So far we have studied thermal-convective instability by following -
the motion of a fluid parcel. The parcel calculation of §II was idealized
in that all sources of dissipation were ignored. In this section we
examine the dissipative effects of viscosity and conduction as well as
the effects of opacity, rotation, and magnetic fields. Since gradients of
physical variables are important in these considerations, it is convenient
to switch from the Lagrangian parcel approach to an Eulerian description.
Apart from terms in the heat loss function, £ , the equations used in
this section are those of standard convection theory (Chandrasekhar 1961).
We employ the Boussinesq approximation (Boussinesq 1903) modified so
as to apply to thin layers of compressible fluids (Spiegel and Veronis 1960).

Of the various boundary conditions used in ordinary convection
theory, we shall adopt those corresponding to free boundaries since these

are the simplest and also the most appropriate for stellar atmospheres
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(Spiegel 1965). Thus at both the upper and lower boundaries of the
infinite horizontal layer of fluid we require
6 =0
w =0
W =0
22° )

where 0 is the temperature perturbation and w is the vertical (z)

(21)

component of the fluid velocity.

a) Effects of Viscosity and Conduction

The first law of thermodynamics may be written in the form

vdt—-£+ VT+I:zd—P (22)

where K is the thermal conductivity (assumed constant). Viscous
dissipation has been omitted from equation (22) as it is a quantity of
second order. We expand vC as in equation (8) and substitute the density
perturbation from the Boussinesq equation of state:

P _ _«ab.
P

(23)

Equation (23) is equivalent to equation (6), and we see that the coefficient
of thermal expansion is o = 1/T. Next we evaluate the vertical gradient
of the unperturbed density with the aid of equation (12) and the equation
of hydrostatic equilibrium, After these substitutions, equation (22)

becomes

%%_ +-61:;(oC,P“P°‘°CP)9 - XV0+(pt "g;')w =0,



as

where Y = K/cpp is the coefficient of thermometric conductivity,
In the Boussinesq approximation, the continuity equation and
the linearized equation of motion yield (Chandrasekhar 1961, p. 21)

2 vy = B« (39+aya)+VVw

B't axz (25)

where v is the kinematic viscosity and x and y are the horizontal
coordinates.
Equations (24) and (25), as well as the boundary conditions (21),

are satisfied if both 6 and w vary as

n’c :(kxx S n kzZ 6

where kZ is an integral multiple of 7 divided by the thickness of the”. :
fluid layer, When expression (26) is substituted into equations (Zfl) and
(25), these equations become a pair of homogeneous, simultaneou‘s,
algebraic equations. Setting the determinant of the coefficients equal

to zero, we obtain a quadratic characteristic equation, the solutions
of which are
e M
2
. _ 2 — g-
G OO - (8T

(27)

where
= ki -l»ky2 +k: (28)

[ = 8« kf +k; .
- ‘ }\2 (29)

and
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Apart from the terms in oC, equation (27) is just the result of Rayleigh's
(1916) original investigation modified by effects of compressibility
(Spiegel and Veronis 1960), If we set X =v = 0 in equation (27), we
recover equation (16) with an additional factor of (ki + k}zl_)/k2 in the

" temperature gradient term.

Equation (27) indicates that there will be some form of instability

for any value of B if

%; (£~ pelp) + (1+PXK* < 0, (0)

where p = v/y is the Prandtl number. Thus conduction and viscosity
stabilize high wavenumber perturbations, However, there is always
thermal-convective instability if inequality (4) is satisfied and the
dimensions of the perturbation are sufficiently large. For the astro-
physically interesting case of small Prandtl number, the perturbation
wavelengths must be large enough so that the time scale for conductive
smoothing of temperature fluctuations, of order (xkz)-i, is greater
than the growth time in the absence of conduction. Finally, we note
from equation (27) that the instability takes the form of overstability

if the temperature gradient is sufficiently subadiabatic, as we saw

in §II

b) Radiative Transfer Effects

The use of a heat loss function, oQ(p, T), which depends only
on the local values of density and temperature requires that the gas
is optically thin. We now examine the effects of radiative transfer

which arise when self-absorption is not negligible,



We shall treat radiative transfer with the aid of the Eddington
approximation. The usefulness of this approximation in gas dynamics
has been pointed out by Vincenti and Kruger (1965) and by Unno and
Spieg?l (1966) (when Spiegel [ 1964] criticized the use of the Eddington
approximation in convection studies, he was actually referring to the
Rosseland diffusion approximation). These authors emphasize that the
Eddington approximation is accurate in both the optically thick and
optically thin limits., Using this approximation, one may derive the
following heat equation for a grey gas:.

1 de) ]}
oc, 4T d'l" _I_’_%?__v. 5 [MD(F'L‘,,A,t at +4T.S D e
where k is the mass absorption coefficient and S is the source
function. Equation (31) is an elementary generalization of a formula
given by Unno and Spiegel (1966).
In the same way we derived equation (24) from equation (22),

we find from equation (31)

3k 2 — ”"(S F«,S‘)v B -2V %0
F(prOBKFwW - VW) =0, 7

where we have assumed that S and « are independent of height in
the equilibrium state. Although we have assumed in equation (32)
that the source function depends only on density and temperature, the
analysis is easily generalized to include a dependence of S on the
radiation field.

Substitution of expression (26) into equations (25) and (32)

results in a pair of simultaneous algebraic equations. The roots of
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the corresponding secular equation are

1 [ 4K (S Pe5) 2
n=-71 CP(1+;K“P“/R°‘) + Vh)

1 ’47TK(ST" P"‘,S;) ]/kﬂa— ({5+-g—)r (33)

41 Cp(1+3K%7/K?) B

If we set v = 0 and consider the special case of local thermodynamic
equilibrium (S = % T4), equation (33) becomes equivalent to equation
(58) of Spiegel (1964) provided we make allowance for the known
relationship between results based on the Eddington approximation and
those based on the exact integral formulation (Unno and Spiegel 1966),
From equation (33) we see that the real part of n will be

positive if
ke (S, — pxSp) +vk* <0 (34)
Cp (1+3K2%¢7/12)

regardless of the atmospheric temperature gradient. The source

functions which lead to thermal-convective instability are therefore

Sp TS <0, >

which is a generalization of inequality (4).

those for which

_c_) Effect of Rotation

For a fluid rotating with angular velocity 2 about a vertical
axis, the continuity equation and the equation of motion yield the
following linearized Boussinesq equations (Ch andrasekharv 1961,

pp. 88 and 89):
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2
%—%— = VvV°Te + 2&% (36)
and
2 2
26 4+ 2 8 4

in which { is the vertical component of the vorticity, The variable
£ can be eliminated by differentiating equation (37) with respect to
time and suBstituting equation (36). Substitution of equation (37)

into the resulting equation yields
2 2 M 6
(V" +40' 2~ 204V +V“\7 )
(38)
- ga( VV)( 3)(2 O

We now assume that w and @ vary as in expression (26), Equation

(38) and the heat equation (24) then imply the following secular equation:

+ [A .- P“£P)+(X+2V)k“] n*
+’_I}9. KA +(pre/cpl +z._._.( 5:1‘ quP)+(2X+V)Vk'*]

+ (WA + V[ ( L.—paly) +XK?)
+sz(p +8/c) =0,

We shall limit our detailed discussion to inviscid fluids. In

(39)

this case equation (39) reduces to

N+ [L(Lp- el + XK’
{2 + (o /e + 100 ARG N =o.

If

“(15_9 (-CT'P“@CP) + sz <0, e
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the constant term in equation (40) is negative, which means that this
equation has a positive real root. Therefore inequality (41) is a
sufficient condition for monotonic instability of a rotating inviscid
fluid for all values of .

To first order in the quantity on the left side of inequality (41),

the roots of equation (40) are

- 40302 /KL P LVl +XK] (42)
" 931‘22 /K2 + (Pt g/Co)I"

(B /00T [(£~ oLV + XK

n = Z[Lh(sz /R +(p+ g/cP)r'] (43)

+i[(pre/cr + #K2 /k“] ‘

According to equation (43), overstability is p0531b1e if inequality (41)

n

holds and £ > Bog = - g/cp. In ordinary convection theory (.C = 0),
of course, we expect overstability only if B < Bad'

The root corresponding to monotonic thermal-convective
instability is given by equation (42). If we compare this equation with
the equation which results when expression (26) is substituted into
equation (24), we find that w = 0 when n = 0. This result is
necessary to avoid a conflict with the Taylor-Proudman theorem
(cf. Chandrasekhar 1961). However, when inequality (41) is satisfied,
it is easily shown from equations (24), (26), and (42) that w no longer

vanishes,
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d) Effect of a Magnetic Field

We now suppose that the fluid layer is permeated by a vertical
magnetic field of strength B. In this case the continuity equation and
the equation of motion may be used, in the linear Boussinesq approxi-
mation, to derive the following equation (Chandrasekhar 1961, p, 162):I

2 P 4
%va —m SE-VQb + B« (ax* ya)-i-'l/v W, (44)

where bz is the vertical component of the field perturbation and is

governed by the induction equation

b, _ npaw 2 (45)
3?7’ - BBZ + t%i'v"z)

in which m is the electrical resistivity., Proceeding as in the case

of rotation, we combine equations (44) and (45) into the single equation

[&-% -0 +vam Gt + L4 9,
- g(3¢ - wV"Xl-Q =0, “

where v , = B/(4-n'P)1/2 is the Alfvér} speed.

The heat equation should now be modified owing to the anisotropy
of the thermal conductivity of an ionized gas in a magnetic field. For
simplicity, however, we shall retain equation (24)., The correct results
can be obtained from the equations which follow by replacing xkz by
X l(k}?‘; + k}zr) + xki‘ s, wWhere ¥ 1 is the thermometric conductivity perpen-
dicular to the field and is often negligible,

A:fteir substitution of expression (26), equations (24) and (46)

yield the characteristic equation
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| nd + [%; (.,CT- palL)+ Xk +(v + r\/w)k’“] n*
N {\Azkz. +(p+8/el+ G+AmICEL (S - ) K
YU N+ (3 + YLK L, - ) X
+Li2(p+ e/ ) = 0.

In many cases of astrophysical interest the effects of viscosity and

resistivity are negligible. Setting v =m = 0 in equation (47), we get

@+ [ (Cpm P+ XKR] n?

+[Y:~k: +(P+g/cf)r']n ""ﬁaki %,(L.P’P“"Cp)"’XKQ] - 0. (48)

This equation becomes identical to equation (40) if we replace Va by
2Q/k, Inequality (41) is a sufficient condition for monotonic instability
in the presence of a magnetic field. To first order in the quantity on

the left side of this inequality, the roots of equation (48) are

Ao

N = gy [T Pl +XK]
1/ - (50)
[F*g/CP)P + 2k2] 2
where

(b ey 1)

is the square of the ratio of an Alfvén frequency to the Brunt-Vais3la

frequency. Comparing equations (49) and (50), we see that, when
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inequality (41) is fulfilled, the overstable mode should dominate for
f << 1 (assuming, of course, that [[3 + g/cp]l" + vzki > 0) while the
monotonically unstable mode dominates for f >> 1,

The existence of monotonic instability when m = 0 would
appear to conflict with the magnetic analogue of the Taylor-Proudman
theorem (cf. Chandrasekhar 1961). The resolution of this apparent
conflict is the same aé in the case of rotation.

The value of the thermal expansion coefficient, e, is determined
by considerations of pressure equilibrium. One might therefore expect
“that a should be influenced by the magnetic contribution to the pressure.
In fact, Field (1965) found that when the wave vector of the perturbation
is perpendicular to the field, @ is reduced by the factor (i + vi/vz)-i,
where Ve is the isothermal sound speed, However, Field also found

that @ is unaffected by the field when the angle between the wave
vector and the field is not precisely w/2. The origin of this result
lies, paradoxically, in the importance of the field. Motions are
constrained to be primarily along the field, and, since these motions
do not change the field, there are no magnetic pressures to be over-
come. Similarly, thermal-convective motions will be primarily
parallel to the field so that we may assume « = 1/T even in the
presence of a rr;agnetic field. For our case of a vertical initial field,
this assumption would appear to break down at the boundaries, where
we_have required w = 0, In a real atmosphere, however, convective

motions will penetrate stable layers so that the fluid velocity is never

required to be strictly perpendicular to the field.
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V. CONCLUSION

The convective stability of a star has customarily been decided
on the basis of the Schwarzschild criterion. One of the fundamental
assumptions used in deriving this criterion is that the motion is
adiabatic. In the interior of a star, where the photon mean free path
is small, this assumption is justified and the Schwarzschild criterion
is applicable. However, in the outer layers of a stellar atmosphere,
effective heat transfer is no longer prevented by opacity, and departures
from adiabatic motion can be significant.

In this paper we have seen that if an atmosphere is thermally
stable, its convective stability is determined by Schwarzschild's
criterion, but if it is thermally unstable, it must also be unstable
against convection, regardless of the temperature gradient, Thus
the Schwarzschild criterion gives a sufficient éondi’cion for convective
instability but not a necessary condition,

We found that a thermally unstable atmosphere with a sufficiently
steep temperature inversion is overstable, This conclusion must be
regarded as tentative owing to the local nature of the analysis. Whereas
the fluid layer in the theory was isolated from its surroundings by
artificial boundary conditions, oscillations of an overstable layer
will, in reality, feed energy into waves in adjacent layers and will
thereby be damped to some extent., Whether oscillations actually
develop in spite of this damping can be decided only by a nonlocal
analysis of the medium in question. However, when rotatien or a
magnetic field is present, the local arnalysis predicted monotonic
instability, and this is less likely to be affected by adjacent stable

layers,
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| It is probable that stellar chromospheres and coronas, and
possibly the interstellar medium, exhibit thermal~convective instability,
The chromosphere and corona of the sun will be discussed in detail
elsewhere. However, before these applications are considered, the
atomic physics of thermal instability must be examined in detail. In
a forthcoming paper I show that the assumption that the heat loss
function depends only on the density and temperature is very restrictive
(even for optically thin media) and, in fact, is valid only when the
heat loss is free~free emission from a fully ionized gas. Although
the present theory strictly applies only to this case, it will be shown
in the paper on the solar atmosphere that many of the conclusions of

the present paper are of general validity.

I am indebted to Dxr, W, L. W, Sargent for introducing me to
the concept of thermal instability, I would like to thank Drs. P. Goldreich
and E. Spiegel for reading the manuscript and offering some helpful

suggestions,
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THERMAL INSTABILITY: OF A MODEL HYDROGEN PLASMA
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ABSTRACT

The thermal stability of a hydrogen plasma is analyzed with the
aid of a simple model atom which possesses a continuum of unbound
states but only one bound level (the ground state). If ionization is col-
lisional and recombination is radiative, the model plasma is thermally
unstable if and orﬁy if its kinetic temperature exceeds 17500 °K.
Although this plasma emits only free-bound radiation (the free-free
emission is neglected), the instability is caused by the same ionization
effects which lead to instability in plasmas emitting line radiation. The
instability criterion and the growth rate (if it is not too large) are not
affected by the presence of a uniform magnetic field unless the motions
are constrained to be perpendicular to the field.

The applicability of steady-state ionization equations to calcu-

lations of thermal instability is examined.
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I. INTRODUCTION

The first treatment of thermal instability was by Parker (1953).
If we define the heat loss function, £ » as the energy lost (by radiation)
minus the energy gained per gram of matter per second, Parker's
criterion for thermal instability is simply

), < o,

(1)
where T is the temperature and p is the density. Parker applied
criterion (1) to an optically thin hydrogen plasma, which emits free-free,
free-bound, and bound-bound radiation. Owing to the incompleteness of
criterion (1), however, his analysis of the various emission mechanisms
was incorrect.

The first complete discussion of the thermal stability of free-free
emission was given by Field (1965). Field showed that when density
variations are taken into account, the criterion for thermal instability
of an ideal gas becomes

(%% - (’g'%, - %@%‘r< %, (@)

where P is the pressure, For later reference, we note that if the
instability develops sufficiently slowly (so that pressure equilibrium is

maintained), the growth rate predicted by Field's analysis is

" __1 (L |
- (3)
CP BTP) 3



4Q

where cp is the specific heat at constant pressure. Since the rate of
free-free emission per unit mass in a fully ionized gas is proportional

to pTl/Z, the isobaric criterion (2) shows that a plasma radiating mainly
by free-free transitions is thermally unstable whereas the isochoric
criterion (1) incorrectly predicts stability,

Although the case of free-free emission from a fully ionized gas
is now well understood, no completely satisfactory treatment of thermal
ins;tability associated with free-bound or bound-bound emission has yet
been given. The shortcomings of the analyses which have appeared are
explained in §§IV and V.

In §81I and III the stability of a plasma emitting free-bound radi-
ation is studied with the aid of a simple model hydrogen atom. The
model atom, which has been used in other contexts by Curtis (1963) and
by Dietz and House (1965), has a continuum of unbound states, but the
only bound level is the gr\ound state. The model hydrogen plasma there-
fo‘re consists of protons, electrons, and hydrogen atoms in the ground
state. This plasma can emit both free-free and free-bound radiation,
but we suppress the brems strahlung in order to focus attention on the
recombination radiation.

In §IV the thermal instability of the model plasma is shown to be
of a more general nature than the simple atomic model would seem to
permit. In fact, the instability is the same in its essential physics as the
instability of a plasma emitting line radiation. A separate treatment of
thermal instability associated with bound-bound emission is therefore
unnecessary, although additional calculations are clearly required for

accurate results in any particular case of practical interest.
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The standard method of treating systems emitting line radiation
is discussed in §V. In §VI we investigate the influence of a magnetic field

on the instability of the model plasma,

II, STABILITY ANALYSIS

Let the number of hydrogen atoms, neutral or ionized, per gram
be N (Avogadro's number). Let x denote the fraction of atoms which
which are ionized, so that in one gram there are Nx protons, Nx
electrons, and N(1-x) ﬁeutral hydrogen atoms. If T is the kinetic tem-
perature (assumed identical for all species) and X is the ionization

potential of hydrogen, the internal energy per gram of the model plasma is

U = N(1+x)%—kT‘ + NxX) @

where k is Boltzmann's constant. The rate of change of internal energy
is therefore

dT d
& = Na+03k & +N(%kT+X)g;‘-_, .

5)

In this paper thermal conduction is regarded as a complicating
factor of minor theoretical significance in spite of the fact that it is some-
times of major importance in practice, The effect of conduction is simply
to smooth temperature fluctuations and to stabilize perturbations of the

shortest wavelengths. Since the influence of conduction is well known
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(Parker 1953; Field 1965), it is neglected in the present analysis although
it could easily have been included. The first law of thermodynamics may

then be written in the form

U —_p 4 L&

dt ) (6

n.|°-
>

where the pressure is given by

P = N(1+x)ekT. (7)

The heat loss function, ¢C » equals the rate of free-bound emission per
gram minus the rate of energy input. The mechanism of heat input is
unspecified but is assumed to proceed at a constant rate such that £ = 0
in the unperturbed state., We assume that the plasma is optically thin to
the free-bound radiation so that all recombination photons leave the system.
The heat loss function then depends only on the local values of x, p, and

T. For small departures from the equilibrium state, we have
= u T 8

where the subscripts x, p, and T denote partial derivatives and Xy
for example, is the departure of the ionization level from its value in the
unperturbed state,

The degree of ionization is governed by

g ) (9)

N

fo Y« W
d—‘x
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where S (the ionization function) is the number of ionizations minus
the number of recombinations per gram per second and is a function of

X, P, and T. Initially, g 0, but after the plasma has been perturbed

we write

g - gx"l +gp'°1 i gﬂ? y

where subscripts have the same meaning as in equation (8),

The density variations are calculated from the continuity equation,

g—g + V(PN%) = 0 (11)

while the fluid velocity u is governed by the equation of motion

dw
N = 0 (12)
P + VP ) |

where we have neglected viscosity and gravitation. Magnetic fields are
assumed to be absent but will be included in §VI.

We now consider one-dimensional perturbations in which all
quantities depend on the coordinate z and the time t. From equations (5),
(6), and (8), we obtain the linearized heat equation

NGKT +X) 24 + L x - £ 24

+ Lp + N(1+X)§—k%-'§ + LT = 0.

The differential form of the equation of state (7) is

(13)



B___ xl _ ﬁ_ :r_l__ O (14)
P 14X P T ‘

From equations (9) and (10) we get the linearized ionization equation

NS - i%"gpﬁ“ﬂfﬁ =0. "

The linearized forms of equations (11) and (1 2) are

R W — o

3 + P ‘j—i (16)
and
b oW _

where w is the z-component of U,

We now expand each of the perturbation variables in plane waves
of the form exp (nt + ikz), Then equations (13) - (17) become a set of five
simultaneous, homogeneous, algebraic equations. The requirement for the
existence of a nontrivial solution, that the determinant of the coefficients

vanish, leads to the characteristic equation
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Nt + {2 XTI+ W[, (1+x)g]}k i
+[N(ll+x)k (szgr'oCTgx)Jf NG +x)-§-kT K ] n
+ {TJ}T— oL+ X(TI - AL SKTrT -0, ]} N
+ Tk2a = 0,

where

L F A £ DL 2 LN

The quartic equation (18) has a positive real root when the last

term is negative. Therefore, a sufficient condition for instability is

A < O, @0

When the growth rate of the instability is small, it may be easily
computed as follows. First, we note that when £ and g vanish, the
solutions of equation (18) are two imaginary roots, corresponding to isentropic
sound waves, and n = 0, We are interested in the roots which vanish as £
and gtend to zero. When £ and g (and therefore n) are small, these

roots are evidently the solutions of the quadratic equation

N2(1+x)5—]( n* -
+{£ £0 X5 ) gk[Ti—('+x)‘g)<]}N”
+ N = O (21)
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We note that pressure equilibrium is maintained if the growth rate is not
too large, In fact, if we set P1 = 0 in equation (14) and assume an ent
behavior for the remaining variables, equations (13)-(15) lead to the

characteristic equation (21),

III. THE HEAT 1L.OSS AND IONIZATION FUNCTIONS

In the preceding analysis we treated B and g as arbitrary
functions of x, p, and T. We now consider the forms of these functions
which are of most interest in practice,

For a hydrogen plasma emitting free-bound radiation, the heat

loss function is

- -1/2
£ = 320610 6Nzxz/o}(T' - CO"Sf) (22)

where "const" refers to the unspecified energy input and is such that

5 °K, aterm in xszi/z

oc = 0 in the unperturbed state. For T ?., 10
should be added to equation (22) to account for free-free emission.
However, this emission is neglected in the present analysis,

We assume that all ionization is produced by collisions. The

number of ionizations per gram per second is then
T = 1.23 -IO'SNzxn—x)p.%% TV2 e'X/ kT_ (23)

The case of photoionization by an external radiation field is treated in
the Appendix. Next, we suppose that the density is sufficiently low that

three-body recombination is negligible compared to radiative recombination,



for which the rate is

R - 3.26.lo"N2x2PT’3/Ze‘X/kTE](,X/kT))(24)

where E1 represents the first exponential integral., The ionization

function used in the stability analysis is
= I- (25)
y R,

which vanishes in the unperturbed state.
Using equations (22)-(25), we find that the instability condition (20)

may be written as follows:

“X/XT ‘
Z(R.-X:'r- + 1>" "E"‘(,X'/'};‘) - 3{(;:):()1})( < O) (26)
1

where x is to be determined from the equilibrium ionization equation

(3= 0):

1-x _ X 2XAT
X = 0265 E, (XKT),

(27)

When x /kT >> 1, the instability condition (26) becomes

3(1+x\ 1 X
2(2+x)1—x >k'T + 1 .

and the ionization equation (27) becomes

1-X _ 0265 e7(/k'r'(1_ lEI)

X T X

(29)
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From relations (28) and (29) it follows that a hydrogen plasma satisfying
the assumptions of this analysis is thermally unstable for T > 17500 °K
(which corresponds to x> 0,90),

From a mathematical point of view, condition (20) is sufficient
but not necessary for equation (18) to have a root in the right half of the
complex n plane. However, it can be shown from the Hurwitz-Routh
criterion (cf. Kaplan 1962) and the expressions for L ang ﬂ adopted
in this section that inequality (20) is, in fact, also a necessary condition

for instability. Thus the model plasma is stable for T < 17500 °K,

IV, PHYSICAL BASIS OF THE INSTABILITY

In order to analyze the physics of the instability treated in §§II
and III, we consider the following form of the energy equation:

du,, 4 P de
= - + = 37
e J:'ﬂa 0% dt ) (30)

where Uth is the thermal energy per gram and °Cth is the loss minus
the gain of thermal energy per gram per second. The loss component of
‘C'th for the model plasma consists of two parts. First, each radiative
recombination is associated with a loss of thermal energy equal to the
kinetic energy of the recombining electron. Second, each collisional
ionization reduces the energy in the thermal field by x . The rates at
which thermal energy is lost by these processes are xfb - Rx (where
£’fb represents the first term on the right side of equation | 22]) and

Ix , respectively, We therefore have
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£1’h =(£“RX)+I'X=£+5X. (31)

Substituting equation (31) into equation (30), we recover equation (6) by
virtue of equations (5) and (9).

An error made in previous treatments of thermal instability

associated with free-bound emission is the implicit assumption that

S:“th = J:.. This assumption is valid in the steady state in which there
is an ionizing collision for each radiative recombination so that the total
energy of a recombination photon actually represents a loss of thermal
energy. When this steady state is disturbed, however, 5 # 0 and
therefore £th¢ oC.

In addition to assuming £th = OC » most treatments of free-bound
emission consider the degree of ionization, x, to be a constant.
Criterion (1) or (2) and equation (22) for £ then predict that a plasma
emitting mainly free-bound radiation is always thermally unstable. On
the other hand, if we use Lh instead of oc but continue to treat x
as a constant, criteria (1) and (2) predict stability. In fact, for x /kT >> 1,

equations (22)-(25) and (31) yield

L =RREE +)E

E-4po. e

The stability which appears to be indicated by equation (32) and
criterion (2) is easily understood. A temperature rise increases the
rate (Ix) at which electrons lose kinetic energy by inelastic ionizing
collisions with hydrogen atoms. Furthermore, although an increase in

temperature reduces the recombination rate (R ~ T—i/z for kT << ),
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the mean thermal energy lost per recombination (kT) increases, with

the net result that the rate of loss of thermal energy via radiative
recombination also increases, Thus the Ix and ‘be - RY components
of th both vary with temperature in a way which promotes thermal
stability. Although the density dependence of J:'th favors instability,

it is not strong enough to counteract the stabilizing temperature dependence
of Ixo.

If we ignore variations in the degree of ionization, therefore, we
are forced to conclude that a plasma emitting mainly free-bound radiation
is thermally stable. It follows that the instability of the model hydrogen
plasma for T >17500 °K must result from changes in x. To see how
the ionization level affects stability, we note that the instability condition

(20) can be rewritten in the form

(%'x‘Crf 1:—x 2P -H-.)( ,0)
'(%"l'“"c -%%L*hxj 1+X‘7)<O "

th

From equations (23)-(25) we see that gx < 0 while gp =0, In view
of equation (32), the seéond term in condition (33) promotes stability.

Since 9T > 0, any negative terms in the first factor of condition
(33) contribute to instability. It ié evident from equation (23) that the
derivative of the Ix component of £th with respect to x is negative
for x> 0.5, The mechanism of this destabilizing influence is that the
increase in the degree of ionization which follows a rise in temperature
(since g’I‘ > 0) means that there are fewer targets for inelastic ionizing

collisions so that the rate of cooling via this process must decline (Ix <0).
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The second term in the first factor of inequality (33) also promotes
instability since —6?5 “h > 0. In this case the physical mechanism is that
an increased level of ionization is associated with a decrease in density
owing to the tendency toward pressure equilibrium. The density decrease
reduces the rate of inelastic collisions (both ionizations and recombinations)
and therefore the cooling rate.

The ionization effects just described for the model hydrogen plasma
are also operative in a plasma radiating mainly in spectral lines, In such
a plasma, cooling is effected primarily by the process of collisional
excitation, and thermal instability results from variations in the excitation
rate caused by changes in the degree of ionization of the target atoms.

This type of instability does not differ in principle from the instability of
the model plasma, in which collisional ionization not only affects the degree
of ionization but also happens to be the inelastic collision process which

contributes most of the cooling.

V. THE STEADY-STATE IONIZATION EQUATION

In considerations of thermal instability associated with line
radiation, it is customary to calculate "cooling curves" which give the
radiation rate as a function of temperature. To compute the emission
for a particular value of T, one first solves the steady-state 1omzat1on
equation (g = 0) to find the concentration of the emitting ion. The heat
loss function can then be considered to be a functionof p and T only
since the level of ionization is a known function of T (and possibly p).

The use of the steady-state ionization equation requires that the
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time required to reach ionization equilibrium be much less than the time
scale of the gas motions. However, the macroscopic time scale (i, e.,
the growth time for the instability) is obviously controlled by the time
scale of the "microscopic" processes. Moreover, we have seen in §IV
that departures from g= 0 can be critical. It is therefore necessary
to examine the use of the steady-state ionization equation in more detail.

We now evaluate the usefulness of growth rates which have been
computed with the aid of steady-state ionization equations. Although
these growth rates usually have referred to systems emitting line radiation,
we shall restrict our considerations to the model hydrogen plasma since,
as we saw in §IV, this model contains the essential physics. We now
calculate the growth rate for the model plasma assuming both pressure
equilibrium and ionization equilibrium., We have already given the growth
rate under the assumption of pressure equilibrium alone (equation [ 21]).
Ccomparison of the two expressions for the growth rate will reveal the
consequences of using the steady-state ionization equation.

If we set P1 = 0 in equation (14), the resulting equation can be

written in the form

Py - L _ L~ (X

L
aT‘P - T 1+ X BT-P' (34)

If g is to vanish identically, we require that

o (ax

gTdT + idp + SX dx = O. (35)

Equations (34) and (35) yield
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3P __ P, g,r" Pﬂp/’r
(5_'!:) T +F (H.x)ﬂx-ng (36)

and

S\ 5T-pﬂp/’T |
“a‘-FP - g - p,jo/(1+x) (37)

Substituting equations (36) and (37) into

L) = 28 4 [ [2X
S;FP - OCT+°CP(3TP 0C)( BTP ) (38)

we find from equation (3) that the growth rate is

n = Aﬂ / T . (39)
ol P La+%)

Since gx <0 and gp = 0, this growth rate is positive if and only if the
instability condition (20) is satisfied, Furthermore, numerical computation
shows that equation (39) reproduces the appropriate root of equation (21)
with satisfactory accuracy. We conclude, therefore, that the use of the
steady-state ionization equation does not lead to significant errors in
calculations of thermal instability, However, this result does not apply
when the gas is in a gravitational field (Defouw 1970b).

The discussion of this section has referred primarily to the
method ordinarily used to treat thermal instability of a plasma emitting
line radiation. As mentioned in §IV, most previous treatments of free-

bound emission have assumed that the ionization level remains constant.
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Athay and Thomas (1956; see also Thomas and Athay 1961), however,
have included the effects of variable ionization by a method equivalent to
the one used in this section, Although this part of their work has
apparently been overlooked, they also found that a plasma emitting mainly
free-bound radiation is thermally unstable only if the kinetic temperature

exceeds some critical value.

V. EFFECT OF A MAGNETIC FIELD

Since most astrophysical plasmas are subject to magnetic and /or
gravitational fields, the effect of these fields on thermal instability is
of great interest. For the simple case in which ionization effects are
negligible, the effects of magnetic and gravitational fields have been
investigated by Field (1965) and Defouw (1970a), respectively, However,
the effect of these fields on ionization-induced thermal instability remains
to be demonstrated. The thermal instability of the model hydrogen plasma
in a gravitational field will be analyzed in another paper (Defouw 1970b),
In this section we study the stability of the model plasma in an initially
uniform magnetic field.

The equation of motion is

2
P}"% + V(P+% _‘I-I—TT(B.V)Q = O) (40)

AAAN

where the magnetic field Eq satisfies

dB L
2 yBVu -(B-V)u =0
7 tevu-(f )

(41)



55

when the resistivity is negligible. We now linearize equations (40) and
(41) and expand the perturbation variables in plane waves of the form
exp (nt + ix - nﬁ)" If NI.}“ now represents the uniform initial field and ~}3~A

is the perturbation of the field, we have
ont + 4P + - K(B+b) - g K Beos b=0 w

and

nb + i@,(’f u)"lKBCOSB U =0,

A N

where 6 is the angle between K and MBN. We now take the scalar product

of equation (42) with X to get

»

s La T SN

i 2P +ph(/( u‘)+izf{—( ) )= O) (44)

where we have used K- b =0 (since V o M = 0). Taking the scalar

product of both equations (42) and (43) with ,E’N’ we find
iKBeoso P + en(B:u) =0

B (ru) - iKBeos 0 (B W +n(B-b)= 0.,

The continuity equation (11) takes the form
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hPl + I,O(/(u)z 0. 47)

Equations (13)-(15) and (44)-(47) form a simultaneous set of seven
homogeneous algebraic equations (after the ent time behavior is substituted

in equations [ 13] and [ 15]) in the seven unknowns X5 Pys Ty, P,, K° u,

17 717 A e

B u, and B . b, Setting the determinant of the coefficients equal to zero,
laaa B AL AN AAN

we obtain the characteristic equation

N2 +02kn® + [+ QT+ 0. 2k INnS
[,C 1.—,C 9 +N2(1+x)%k/(2(\f+ as")] nt
HW Lo RT3~ kA+9.5,]
b @bl 2,0 Ao D)+ BT K0
G L g W e nskadaeos'd e a2A) K *n?
L 2L U 290+ 5K d- a+x>ﬂ]}Na a oo

+a /{coseA=0)

(48)

where VAT B/(4n p)l/2 is the Alfvén speed, 01"= (P/p)i/2 is the isothermal
speed of sound, and a, = (5P/3p)1/2 is the isentropic sound speed.

Equation (48) has a positive real root if the last term is negative.,
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Hence inequality (20) is a sufficient condition for instability in a magnetic
field provided cos 6 # 0,

If oC and g vanish identically, equation (48) becomes
2f,. 4 2 2y,,2.2 2,.,2, 4. 245 —
[h +(VA + qs)/( h 4 aS VA /‘( cos 9] - O' (49)

The zeros of the quartic correspond to magnetohydrodynamic waves.
However, we are interested in the roots which vanish for £ and 5
equal to zero., These roots are of first order in J:. and g , and it
is easily verified from equation (48) that they satisfy equation (21) when

£ and 5 are small and cos 0 # 0, We conclude, therefore, that the
instability condition and also the growth rate of the instability (if it is not
too large) are unaffected by the presence of a magnetic ‘field provided
the motions are not constrained to be exactly perpendicﬁlar to the field.
Field (1965) also obtained this result and offered an explanation which
applies equally well to the present calculation.

We now consider the special case 0 = 1r/2. When cos 0 =0,

equation (48) becomes a quartic, the constant term of which is negative

when

[ x  1+X (1+ l/al) LP)‘: - "%(1-"%2/0;)-117'0] (50)
—ET- _’%(1 *vAlla:')‘Lp][ﬂx 1+X ex (14 %727) ij( 0.

Apart from the factor (1+ vi/(.l,?i.)_1 , the instability condition (50) is
identical to inequality (20). It can be shown (Field 1965) that this factor

simply takes account of the magnetic contribution to the pressure. For
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the model plasma, Lp >0, ch >0, qu <0, and gp = 0, With these
relations, we see from inequality (50) that the magnetic field has a stabilizing

influence on perturbations with 6 = 7 /2,

VII. CONCLUSION

There are two basic types of thermal instability due to variations
in cooling rate. First, as shown by Field (1965), a fully ionized gas
emitting bremsstrahlung is thermally unstable because a temperature
increase (say) is accompanied by a density decrease and, therefore, by
a reduction in the rate of free-free transitions. Second, a partially
ionized plasma, whether it radiates primarily in spectral lines or free-
bound continua, can be thermally unstable if the ionization of the atoms
which act as targets for inelastic collisions is primarily collisional and
therefore a rapidly increasing function of temperature, In this paper
we have given a detailed analysis of the simplest possible case of this
ionization-induced type of thermal instability.

We found that the model hydrogen plasma is unstable for T'> 17500 °K.
The precision with which this value has been quoted does not imply that it
is an accurate determination of the critical temperature for a real hydrogen
plasma. Athay (Thomas and Athay 1961, p. 163) concluded that the solar
chromosphere becomes thermally unstable at a temperature somewhere
in the range 12000 to 14000 °K, These values are certainly more realistic
than the one found for the simple model plasma because they take account,
in a crude fashion, of the effects of excited bound states, The treatment

of this paper could, of course, be extended to include excited atomic levels,
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However, the difficulty of simultaneously considering the time-dependent

diffusion of the line photons makes such an extension a rather ambitious

project,

I am indebted to Peter Goldreich for a number of discussions on

this subject. I wish to thank both Dr., Goldreich and Dr. E. A. Spiegel

for reading a draft of this paper.
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APPENDIX

IONIZATION BY AN EXTERNAL RADIATION FIELD

In- a dilute plasma subjected to an intense ultraviolet radiation
field, photoionization dominates collisional ionization and the ionization

rate is

I = N(l—X)C) (A1)

where C is a constant determined by the given radiation field and the
atomic absorption coefficient. If 8 represents the mean energy of photons

‘absorbed by the plasma, equation (22) must be replaced by

£ =3210 "Nzx“ka'V 2 Na-xCE - const'y (a2)

where "const" refers to nonradiative heat input.
Using equations (A1), (A2), (19), (24), and (25), we find that the

instability condition (20) takes the form

8"’ _x < kT (A3)

for x /kT >> 1. Thus the plasma is thermally unstable only if the mean
energy of a photoelectron is less than the mean kinetic energy of a

recombining electron.
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PART III

THE ORIGIN OF SOLAR SPICULES AND SOME RELATED FPHENOMENA
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Abstract, The convective stability of a simple model chromosphere
is investigated. The model chromosphere consists of protons, elec-
trons, and hydrogen atoms in the ground state; ionization is collisional
and recombination is radiative. The analysis indicates stability when
the kinetic temperature (T) is less than 17500 K (assuming T in-
creases with height). However, for T > 17500 K, the model chromo-
sphere is overstable in the absence of magnetic fields provided the
temperature inversion is sufficiently steep. For smaller values of
the temperature gradient, field-free regions are stable if the density
is small and monotonically unstable if it is large. In the presence of
a magnetic field,the model chromosphere is monotonically unstable
for T > 17500 K, regardless of the temperature gradient.

The convective instability of the model chromosphere results
from the fact that the plasma is thermally unstable for T > 17500 K.
Thermally unstable regions of the solar atmosphere, although not
represented in detail by the model, should behave in a similar fashion.

Field-free regions of the solar chromosphere are probably
not monotonically unstable, but overstability is possible and may
explain the origin of chromospheric oscillations with periods less
than 200 sec. It is suggested that spicules result from the monotonic
instability of magnetic regions. A similar instability in the corona
may be responsible for the large  Doppler spreading of radar echoes.

Elementary considerations of | thermal balance predict that
the temperature gradient should diverge at levels of marginal stability,
The chromospheric region of spicule formation and the corona should

therefore both be bounded below by abrupt temperature jumps.
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{, Introduction

According to the Schwarzschild criterion, the solar chromosphere is
extremely stable against convection. For this reason, a number of
authors have suggested that chromospheric spicules are caused by
photospheric disturbances. Howewver, it will be shown in this paper
that the Schwarzschild criterion does not apply to the outer solar
atmosphere and that spicules may, in fact, result from convective
instability of the chromosphere,

Standard convection theory treats the atoms of a gas as mass
points with no internal structure. But the internal structure of atoms
is fundamental to the energy budget of the chromosphere (since cooling
is effected by inelastic atomic collisions) and therefore should be
incluced in calculations of thermal convection.

In this paper the convective stability of a partially ionized
hydrogen atmosphere is analyzed. The effects of atomic structure
are explored with the aid of a simple model hydrogen atom in which
the ground state is the only bound level. Ionization is caused by
atom-electron collisions, and recombination is radiative. Further-
more, the chromospheric regions of interest are assumed to be
‘optically thin in fhe Lyrﬁan continuum so that all recombination
photons escape. I do not claim that all these assumptions are strictly
applicable to the solar chromosphere. However, the physical pro-
cesses are believed to be sufficiently representative that meaningful
results can be obtained (see Section 4).

The stability analysis is performed in Sections 2 and 3.
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Section 5 is devoted to elementary considerations of thermal balance,
The predictions of the theory are compared with observations of the
chromosphere in Section 6, and a brief discussion of the corona is
given in Section 7. Throughout this paper the ordinary type of insta-
bility, in which a perturbation increases monotonically with time, is

called monotonic instability in order to distinguish it from overstability.

2, Stability Analysis

Let the number of hydrogen atoms (neutral or ionized) per gram be
N and let x denote the fraction of atoms which are ionized. In one
gram of plasma there are then Nx protons, Nx electrons, and
N(1 -x) neutral hydrogen atoms, If T is the plasma kinetic tem-
perature (assumed identical for all species) and X 1is the ionization

potential of hydrogen, the internal energy per gram is

U = NGa+x)ZKT + NxX, (1)

where k is Boltzmann's constant.

Now let ,C denote the heat loss function, the energy lost
minus the energy gained per gram per second. In the present
analysis, £ equals the rate of free-bound emission per gram
minus the rate of energy input due to dissipation of mechanical
radiation from the photosphere. Since the theory of chromospheric
heating is not very trustworthy at the present time, it will be as-

sumed that the energy input (per gram) proceeds at a constant
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rate at any given point. The heat loss function is therefore

L = 32010 N2 kT - consT) (2)

where p is the density. The "const" in Equation (2), representing
the input, is such that £v = 0 in the unperturbed state. The pertur-
bation in £ results only from variations in the recombination

radiation and is given to first order by
L= .B X + L o Py + ch (3)

where the subscripts x, p, and T denote partial derivatives and Xy,
for example, is the departure of the ionization level at a fixed point
from its value in equilibrium.

The time variation of the internal energy is related to the heat

loss function by the first law of thermodynamics

3%:-96 +]:d_€) (4)

where the pressure is given by
N(+x)pkT . (5)

Note that thermal conduction has been neglected in Equation (4}, Con-
duction could easily have been included, of course, but its effects

have already been evaluated for a related problem in paper [ (Defouw,
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1970a).

From Equations (1), (3), and (4) we obtain the linearized

heat equation

NGRT+X05 + Lx -8B+ L p

+ N(1+X)3ik?-£ + ,,C ’T (6)

[N(1+X)3 2hp+ NGKT+X) - 5 j; w =0,
where w is the vertical (z) component of the fluid velocity,
B =dT/dz is the temperature gradient, and a = dx/dz is the
ionization gradient of the undisturbed chromosphere. Note that
the physical variables are assumed to be independent of the hori-

zontal coordinates in the unperturbed chromosphere.

The ionization equation may be written in the general form

Ng{:"—'ﬂ) (7)

“where 5 (the ionization function) is the number of ionizations
minus the number of recombinations per gram per second. For

collisional ionization and radiative recombination we have

I = 12310 °N*xa- x)P-’i—T e VKT
-3.26410 °N* pT'B/zeX/kTEl('X/kT))
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where E1 represents the first exponential integral. In the unper-
‘turbed state, g= 0. For small perturbations we expand 5 in a

Taylor series so that, to first order,

g"’ﬂx’% +ﬂppi+ﬂT 7

T1)

where the conventions are the same as in Equation (3). From

Equations (7) and (9) we obtain the linearized ionization equation

NZ s New = T+ g + G "
ot Gt dh AT

If the perturbation evolves sufficiently slowly, pressure
equilibrium will be maintained and the pressure perturbation P1
can be neglected (see Defouw, 1970b, hereafter called paper II).

The differential form of Equation (5) then yields the modified

Boussinesq equation of state:

S A S
I SR

From the exact differential form of Equation (5) applied to the
undisturbed atmosphere and the equation of hydrostatic equilibrium,

we get

__P3
P

o
1+x 12)

[o WY « T
Nio

1 £ -
P T

where 9 is the gravity. The requirement that the ionization function
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vanish at all heights in the undisturbed state yields the relation

e L+ gp=0 @

Substituting Equation (12) into Equation (13), we find

(1+X)P29¢gpﬂ_ - T'ﬂr”ng a+x) P :

(14)

a—

- P[(1+x)5x-P5p] O chp T

while substitution of this equation into Equation (12) yields

- g
_:_)_ dp - 1 {[(Hx)ﬂx—'ri]:,: + Eﬁ&(l+X)ﬂx}' (15)

a+y 9P

With the aid of Equations (11), (14), and (15), we may rewrite

the energy equation (6) in the form

N(SkT X)a"; + (‘E’x-. mLP)XI
P NaIER SR + (L LT,
: 2

+ {3 [ +NGKT+ ) £9,]
- NP[X(&,:‘% P>+-g—kTi—-f:k(1+x)i(]}(1+%:’ﬂ:2;"% =0,

After substitution of Equations (11) and (14), the ionization

(16)

equation (10) becomes
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1+ X

2
P9 -L NA+X)w  _
| 52 G- P ) 0.

a+0JPT, -

In Equations (16) and (17) the vertical ionization gradient «

N2 (- 2 )X, - (ﬂT- —%i)'rl

(17)

has been expressed in terms of the temperature gradient B by
means of Equation (14). In principle, B could also be eliminated
with the aid of the condition, analogous to Equation (13), that the
heat loss function vanish at each height in the equilibrium state.
However, we will see in Section 5 that factors not included in the
stability analysis, such as conduction and the height variation of
the heat input, can be critical in determining the value of . Hence
it is preferable to treat  as a free parameter.

We now derive a Boussinesq equation of motion appropriate
to the present problem. In the absence of a magnetic field, the

inviscid equation of motion is

dy _

P'J’.'E’""vP*'Pi) (18)

where u is the fluid velocity and 9 = (0,0, -3). We replace p
Faa sl A

by some representative value of the density, Py except in the

gravity term, where we let p = Po + Py- Then, after linearization

and substitution of Equation (11), Equation (18) becomes

Y, P T X
3 - -o(fe g o).
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We now apply the curl operator to Equation (19) twice in succession,

making use of the identity
A) = V(v-A)-T?
Vx(VxA)= V(©-A)-V A (20)
AAAA rMAA ANAA
and th;a Boussinesq continuity equation

J-u = 0. 21)
A

The vertical component of the resulting equation is

2 o2, = Syt 4+ L ? (22)
SVw =TT XV X )
where
2 2
2 _ P L
vh =5 7 ay? (23)

is the horizontal Laplacian operator (Equations [23], [25], and [ 28]
are the only equations in this paper where x represents one of the
horizontal coordinates rather than the level of ionization).

Equations (16), (17), and (22) are to be solved in conjunction
with the conditions that

= 0

(24)

o

X4
T
w

1
O
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at both the upper and lower boundaries of the infinite horizontal
layer of plasma under consideration.
Equations (16), (17), and (22) and the boundary conditions (24)

are satisfied if Xy T1, and w each vary as

| + . 25
ent el(KxX Ky)’) sinkz (25)

where K, is an integral multiple of w divided by the vertical extent
of the chromospheric layer. In fact, when expression (25) is used

in Equations (16), (17), and (22), these equations become a set of
three homogeneous, simultaneous, algebraic equations. The require-
ment for the existence of a nontrivial solution, that the determinant

of the coefficients vanish, leads to the characteristic equation
2 _PaY, 1] J 2
N (1+X)§kn3+{£1,- :’%L,ﬂ(ﬂ.,. 7 +-zk[Tj,. (”x)ﬂ;c}Nn

NIaX(TI+ 3pT,)
XTI, )+3kTrI-0+09 ]
2 TI .- 149,
- g—kN r(l-l-X)(P-Fad)l';Hx);; — Pﬂp ] } N (26)

ry (T9+2ela+0Ly-TL, ]
14X XTI~ ) +3KT[TT — (1430, ]

NF(P—pa ) - _ —p_
* (1+X) Ty - p dgp [[[(1+X)£X T"CT] (‘71' T gp)

[r -G £ Hrg- g ]| = 0,

+{ A
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where
A= ( X 1+x P)(g gp)—éc-"le"i:p)@-%jpz“”
9 K +K
r=7 K2+K +K°‘ ) o
and

-9 kT(1+x)5 + (X*‘ sz)P 5
foa ™ Nek  \ETfe0d,- TG =X -pg )

is the adiabatic lapse rate of the partially ionized atmosphere.

Let @ be the coefficient of n) in Equation (26). This
equation will have a positive real root if ao < 0. When £ =0,
O.O has the same sign as 8 ~ Bad since JT >0, 5x <0, and
<gp = 0 (see Equation [8]). Hence for the case of adiabatic motion
we have instability when @< B.g’ which is the Schwarzschild
criterion for convection applied to an ionization zone.

We restrict oui‘ further considerationjs to the chromosbheric
- case, in which | g > 0 so that B - ﬁad:> Oand Q >0 (even for
£ # 0). According fo the Hurwitz -Routh ci-iterion (cf. Kaplan,

1962), Equation (26) then has a root in the right half of the complex

n plane if and only if

a.Q,~ a,0., <0 50y

and/or



a < O, (31}

Substituting the coefficients from Equation (26) and using Equations

(2) and (8), we find that inequalities (30) and (31) are equivalent to
c.p”+ C,(P-py > 1
1 P 2 \I° " Fad (32)

and

C3P2 - C4(P‘Pad)> 1 ) (33)

. 2 2 2
: +
respectlvely. The Cj are functions of 9, T, and (K‘ K )/K‘

only. The signs of Cys Cp and c, are all opposite that of the
quantity A defined by Equation (27); cy >0 always. It can be
shown that 4 and cy are very nearly equal so that condition (32)
is satisfied whenever condition (33) is. Therefore, inequality (32)
is a necessary and sufficient condition for instability of the model
chromosphere in the absence of magnetic fields,

In view of the signs of c;, and c,, a necessary condition

for instability is

A <O, (34)

From Equations (2) and (8) it can be shown that inequality (34) is
satisfied if and only if T > 17500 K (paper II). We conclude that

regions of the model chromosphere with T < 17500 K are stable
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while regions with T > 17500 K are unstable if the temperature
gradient or the density is large enough to satisfy inequality (32),
Having shown that Equation (26) has a root with positive real
part when inequality (32) holds, we now investigate the imaginary
part of this root. According to Weiss (1964), the unstable root
indicated by inequality (30‘) has a nonzero imaginary part if |
Qqu >0 and 01 > 0. The first of these coﬁditions is satisfied

when B - Bog 0, and the second is fulfilled if and only if

C3P2 - Cq.(P—Pad) < ] . (35)

In a sufficiently steep temperature inversion, inequalities (32) and
(35) are both satisfied (we are assuming A < 0), and the unstable
root indicated by the former is complex, corresponding to over-
stability., However, if the temperafure gradient is not too large
and the density is high enough, inequality (33) holds and monotonic

instability, rather than overstability, results.

3. The Effect of a Magnetic Field

In chromospheric regions permeated by a magnetic field A]EA’

the equation of motion is

2
pi—%— =‘V(P+%)+%(§'V)Q+P§M. (36)

As in the nonmagnetic case, we replace p in this equation by a
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constant, p_, except in the gravity term, where we let p = Po + Py-
Furthermore, we shall use Equation (11) for Py since it can be
shown that the magnetic field does not affect the pressure balance
provided the growth rate is small and the motion is not exactly
perpendicular to the field (see papers I and II). The linearized form

of Equation (36) is then

%9': '—"V( )+4Trp (B: V)b+9(1 'L"1+x) (37)

where ~Bi« represents the uniform field of the undisturbed state and
113“ is the perturbation of this field. We now apply the curl operator
to Equation (37) twice in succession and use Equations (20) and (21)
as well as V . hl:\)“: 0. For the case of a vertical initial field, the
z-component of the resulting equation is

B J

Vw-mjiVb TVT+thx1, (38)

The time development of the field, for negligible resistivity,

is governed by the equation

ii + EV%\ - (RV)%V = 0, (39)

In view of Equation (21), the linearized z-component of Equation (39)

is

=~ ° (40)
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Now we differentiate Equation (38) with respect to time and then
substitute Equation (40) to get
2 2 3 2 9 2 g 2
e - 2]V w = = + =555V
(at" A >Z \V 'T'B‘t' hﬂq X )(41)
_ 1/2 . P
where v, = B/(41rpo) is the Alfvén speed,
The heat equation (16) and the ionization equation (17) are not

affected by the magnetic field. However, we must add to the boundary

conditions (24) the free-surface condition that

w

22X =0 (42)
222 )

at both the upper and lower boundaries.

Equations (16), (17),and (41) and the boundary conditions (24)
and (42) are satisfied if the perturbation variables behave as in
expression (25)., Substitution of this expression reduces the three
partial differential equations to a set of homogeneous algebraic
equations. The secular equation is

4 3 2,2 2
aht + an + (o, + VK, agn

2,2 2,25 —
+ (0 + v, Kzaz)n + VKA =0, @3

where the Qj’ as defined above, are the coefficients of n) in

Equation (26).
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Equation (43) has a positive real root if the last term is negative.
Therefore, inequality (34) is a sufficient condition for monotonic in-
stability in the presence of a magnetic field. For sufficiently large
magnetic fields, the growth rate of the instability is given by the

appropriate solution of

a3n2+ a,n + A = O, (44)

Since GZ and 03 are both positive, it follows from Equation (44)
that in a strong magnetic field condition (34) is sufficient and
necessary for monotonic instability whereas overstability is not

possible,

4, Discussion

The physical basis of the instability treated in the preceding sections
may be conveniently divided into two parts. First, one can show that
a uniform partially ionized gas composed of the simple model hydrogen
atoms is therrn:ally unstable when inequalit;r (34) is satisfied (paper II),
In fact, the growth fate of the thermal instability is given by Equétion
(44) if it is not so large that pressure equilibrium is destroyed.
Second, one can then introduce a gravitational field and examine the
effect of thermal instability on buoyancy forces. In paper II used

the standard description of thermal instability (Field, 1965) to
demonstrate that a thermally unstable gas in a gravitational field

will be overstable if there is a sufficiently steep temperature
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inversion, I also showed that monotonic instability results if the
thermally unstable plasma is subject to both gravitational and mag-
netic fields (regardless of the temperature gradient). We have seen
that these results also apply to the model chromosphere,

Evidently the conclusions of Sections 2 and 3 may be under-
stood in terms of the findings of papers I and II. However, it would
be a mistake to assume that all the results of the simplified treatment
of paper I apply to the model chromosphere. In particular, whereas
it was shown in paper I that a thermally unstable gas is always unstable
in a gravitational field, we see from inequality (32) that field-free
regions of the model chromosphere are stable for sufficiently low
values of p and l3-(3ad.

In paper I the instability of a thermally unstable gas in a
gravitational field (with or without a magnetic field) was called
thermal-convective instability. This term therefore applies to the
instability treated above, although I have used the term convective
instability since the anal';rsis of this paper can be viewed formally
as an extension of Rayleigh's original analysis of convection (Rayleigh,
1916) to include the effects of atomic structure which are important
at astrophysical temperatures.

Let us now consider the applicability of the results for the
model chromosphere to the chromosphere of the sun. In paper II it
was shown that the thermal instability of the model hydrogen plasma
results from ionization effects. Owing mainly to the temperature
dependence of collisional ionization, an increase in temperature is

accompanied by a reduction in the concentration of neutral atoms.
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There are then fewer targets for inelastic collisions and the cooling
rate declines. In addition, an increased level of ionization tends
to be associated with a decrease in density (because of the tendency
toward pressure equilibrium), which also leads to a reduction in the
cooling rate. These ionization effects obviously can also cause thermal
instability when atoms other than hydrogen are responsible for the
cooling (see Section 7). However, the critical temperature for thermal
instability is then an order of magnitude larger than the hydrogenic
value. Evidently, the physical ingredients required for thermal-
convective instability in the solar chromosphere are that (1) cooling
is effected by neutrél hydrogen atoms and (2) the level of hydrogen
ionization is a rapidly increasing function of temperature.

According to Athay (1966b), hydrogen is responsible for most
of the cnergy loss from the solar chromosphere above a height of
500 km. Above 1000 km, the region of most interest in this paper
(see Section 6), the principal radiation loss is in the Lyman a line.
Although the optical thickness in this line is often considerable, it
can be shown that the chromospheric regions of interest are effectively
thin in that Lyman o photons generally escape (after many scatterings)
without being reconverted to thermal energy.

Pottasch (1965) showed that radiative cooling in an optically
thin atmosphere is due mainly to elements other than hydrogen for
T 2 25000 K. Athay's conclusion that hydrogen is the principal
coolant in the solar chromosphere even for T > 25000 K is based on
the importance of opacity effects in the metallic lines. However, in

the chromospheric model proposed by Zirin and Dietz (1963), inter-



81

spicule regions with T > 7000 K have coronal densities, at which the
opacity effects cited by Athay are negligible. It is possible, therefore,
that in interspicule regions the stability analysis of this paper applies
only for T < 25000 K. Hence subsequent numerical evaluations of

the stability conditions will be restricted to T = 20000 K, at which
hydrogen dominates even in an optically thin atmosphere,

The second requirement for thermal-convective instability,
that hydrogen ionization increase rapidly with temperature, is probably
fulfilled in the solar chromosphere, For example, an important ioniza-
tion process may consist of collisional excitation followed by photo-
ionization by the photospheric radiation field. Such a process would
retain most of the temperature sensitivity of collisional ionization
since the energy of the first excited state of hydrogen is comparable
to the ionization potential. Now suppose that the dominant ionization
mechanism is photo-excitation by absorption of a Lyman line photon
followed by photoionization by the photospheric continuum. In this
case the ionization level rises when Lyman line photons become more
numerous as a result of increased collisional excitation, i.e., increased
temperature. On the other hand, when the optical depth in the Lyman
continuum is sufficiently large, absorption of Lyman continuum photons
is an important ionization process which does not have the temperature
dependence required for thermal instability. However, this process
is not important in the higher, largely ionized chromospheric levels
with which we are concerned (Thomas and Athay, 1961, p. 162). I
therefore submit that the model chromosphere includes the essential

physics (at least for T < 25000 K) even if the actual atomic processes
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of most importance are not those included in this study.

In assessing the applicability of the model chromosphere,
we must recall the assumption that the heat input per unit mass is
unaffected by the perturbation. The results of the stability analysis
obviously cannot be applied to the sun if the chromospheric heating
mechanism happens to vary in such a manner as to produce stability.
However, there is no reason to believe that this is the case. In
fact, it has been suggested that the heating mechanism favors
instability in the corona (Whitaker, 1963).

In addition to the assumptions made concerning the thermal
properties of the chromosphere, the stability analysis employed
several approximations to the dynamics. The use of the Boussinesq
approximation limits the rigorous applicability of the results to an
atmospheric layer with a vertical extent much less than a scale height
(Spiegel and Veronis, 1960). Of possibly greater importance is the
fact that the atmospheric layer analyzed in Sections 2 and 3 is isolated
from its surroundings by artificial boundary conditions. Damping of
oscillations by wave generation is thereby excluded. Without a non-
local analysis, theoretical predictions. of ovérstability must therefqre
be regarded as tevntative. Finally, it should be noted that the finite-
amplitude stability properties of a fluid can differ significantly from
the predictions of linear stability theory (Veronis, 1965; but see also
Veronis, 1968). However, thermal-convective instability is not
likely to exhibit the kind of behavior found by Veronis for thermohaline

convection.
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5. Temperature Structure

Before interpreting observations of the solar atmosphere in terms of

the thermal-convective theory, we investigate the equilibrium tempera-
ture structure which follows from the requirement that the energy

input be balanced by the energy output. For simplicity we assume

that the temperature structure is not affected by the dynamics. Further-
more, the effects of conduction are neglected. These assumptions are
not actually valid, as will be evident, but the simple formula which
results is very instructive.

As before, we consider an optically thin atmosphere in which
the heat loss function depends on the density, temperature, and degree
of ionization (x). For added generality (and with the poorly understood
heat input in mind), we include a dependence on the vertical coordinate
(z). In a steady state and in the absence of conduction, the heat loss

function has the same value, namely zero, at all heights so that
df _ de '
== = + ad + + = (45

Substituting Equations (14) and (15) into ‘Equation (45), we find that the

temperature gradient is
2 P
B = _i_ %ﬂ(ﬁxﬂp-,cpﬂxﬁﬁz(gx" X p) 6)

When £ and ﬂ are given by Equations (2) and (8), respectively,

the numerator of this expression for B is positive. In a thermally
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stable region of the model chromosphere (T < 17500 K), we also have
A >0 sothat B> 0. As we ascend in the chromosphere toward the
unstable region, T increases and A tends to zero with the result
that P diverges at the level of marginal stability. At this point
conduction is obviously important, and Equation (46) is no longer
valid. In addition, the rate of heat input may change owing to the
reflection of shock waves at the temperature jump. Such changes in
the heat input are symbolized in Equation (46) by £z , although it is
unlikely that such a simple representation is really adequate. We
shall assume that the combined effects of conduction, oCz, and con-
vection cause the temperature to increase monotonically with height
even in the unstable region with A < 0. In any case, it seems
reasonable to expect an unstable layer to be bounded below by a steep
temperature rise,

Abrupt temperature jumps have been observed in the solar
atmosphere (see Sections 6 and 7)., Athay and Thomas (1956) attempted
to explain these jumps in terms of thermal instability. They argued
that temperatures at which the gas is unstable are, in a sense, for-
bidden inasmuch as any perturbation of the temperature causes it to
approach a value for which there is stability. In the simple chromo-
spheric model used in this paper, this statement does not hold for an
increase in temperature, but this is simply because sources of radi-
ative cooling other than hydrogen have been neglected. According to
Athay and Thomas, the temperature structure of the chromosphere
consists of thermally stable plateaus of nearly uniform temperature

separated by narrow unstable layers with large temperature gradient.
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We have just seen that the observed regions of large temperature gradient
can be explained simply in terms of the steady-state requirement of
thermal balance without invoking the concept of thermal instability.,
In this picture the large gradients occur in the neighborhood of levels
of marginal stability rather than throughout unstable regions., Weymann
(1960) has arrived at similar conclusions on the basis of a model for
chromospheric heating by shock wéves.

Two minor points must now be made. First, in the analysis
of Equation (26) it was implicitly assumed that B and A are independent.
Equation (46) shows that this is not the case. However, in view of the
uncertainty regarding the temperature gradient in the unstable region,
it seems desirable to consider P arbitrary, as mentioned in Section 2.
Second, the degree of ionization is a known function of temperature in
a steady state. In this section, therefore, we could have chosen £

to be a function of p and T only. The denominator of the expression

for B would then have been LT - -1,:); £P; the usual condition for

thermal instability (Field, 1965) is that this quantity be negative,

6. The Solar Chromosphere

The most conspicuous dynamical features of the "quiet" solar chromo-
sphere are spicules, the observations of which have been reviewed
recently by Beckers (1968). I suggest that spicules result from
monotonic thermal-convective instability .

We have seen that, in the absence of magnetic fields, the

chromosphere can be stable, overstable, or monotonically unstable
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(Section 2). Later in this section it will be shown that monotonic in-
stability is very unlikely in field-free regions of the solar chromosphere.
According to Section 3, however, magnetic regions with T > 17500 K

are monotonically unstable. The fact that spicules are observed only

in the magnetic regions above the boundaries of supergranules is
therefore explained.

The thermal-convective theory predicts that spicule temperatures
must exceed some value, which the simple model atom approach indicates
to be approximately 17500 K. In fact, spicule temperatures are usually
estimated to be in or near the range 20000 to 50000 K. According to
a more complete analysis of the atomic physics and radiative transfer
(Thomas and Athay, 1961, p. 163), the critical temperature above
which the solar chromosphere is thermally unstable is approximately
12000 K., Thus, spicule temperatures of 14000 to 17000 K, as estimated
by Beckers (1968), are also consistent with the present theory.

The unstable region where spicules originate must be bounded
below by an abrupt temperature jump (Section 5), In fact, there is a
very rapid rise from T = 8000 K to T 2 20000 K at a height of about
- 1200 km in the chromospheric model of Thomas and Athay (1961). On
the basis of his investigation of Call line formation as well as inde-
pendent studies by others, Linsky (1968) concluded that such a tempera-
ture rise is a real feature of the solar chromosphere. Since this rise
presumably occurs around the level of marginal stability at T = 17500 K
(say), its existence is itself evidence in favor of the thermal-convective

theory.
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Unfortunately, the height at which spicules are formed cannot
be determined by direct observation. It is impossible to estimate
reliably the altitudes of features seen on the disk, and limb observations
of individual spicules are restricted to rather high levels (above 5000 km
at the center of Ha) because of overlapping effects at lower heights.
However, analysis of flash spectra has led to the conclusion that de-
partures from spherical symmetry, presumably corresponding to
spicules, commence at the level of the steep temperature rise (Thomas
and Athay, 1961), just as predicted by the thermal-convective theory,
Beckers (1968) emphasizes that the evidence for lack of spicule structure
below the temperature rise is weak but concedes that, if spicules do
exist at lower heights, their physical conditions must differ significantly
from those of spicules seen above the limb,

We expect both upward and downward moving jets to be formed
in an unstable chromospheric zone, At the limb, of course, only rising
spicules (and, in many cases, their subsequent descent) are observed.
However, limb observations refer to elevations considerably higher
than the 1200 km level (say) at which spicules originate according to
the thermal-convective theory. Consequently, one observes at the
limb only those spicules which have been ejected upwards from the
unstable region.

The overlapping effects which preclude detailed limb obser-
vations of spicules at low heights do not interfere, at least to the
same degree, with observations made on the disk. The chromospheric
velocity field as seen on the disk in Ha has been described by Leighton

et al, (1962). At AN = 0.3 A from the line center, they see "a rather
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uniform, fine-grained pattern of both upward and downward velocities, "
while at AN = 0.8 A "most of the disk is quiescent and the only sizable
velocities present are confined to a network of narrow 'tunnels . ! through
which material streams predominantly downward." The observations,
of course, reveal only the most prominent chromospheric veloc ity
fields, and one expects both upward and downward motions at all heights
for reasons of mass conservation. In fact, Simon and Leighton (1964)
have suggested that the network of downward flow represents the slow
return of spicular material to the chromosphere. However, if, with
Leighton et al. , we make the usual assumption that we see deeper into
the atmosphere at greater distances from the line center, we obtain a
simple picture in which downward motions predominate at the lowest
elevations (AA=~ 0.8 j&) ,» both upward and downward motions are
common at higher elevations (A\X= 0.3 A), and upward velocities pre-
dominate at the greatest heights (limb observations). This picture would,
of course, be expected if the observed motions result from an instability
at the intermediate elevations, although it is not clear why a network
pattern does not appear at AN ~0,3 A, It may be objected (Zirin,
1966, p. 227) that the relationship between AM and height is compli-
cated by the mass motions and may not conform to the assumption made
here. Therefore, we now describe supporting evidence which is
independent of the AA-height relation.

Both upward and downward motions were studied in Ha Doppler
movies at AX= 0.7 A by Title (1966). He showed that upward motion
occurs mainly in the outer sections of rosettes, while downward flow

tends to occur near rosctte centers, For this reason, absorbing
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regions seen on the violet side of the Ha line center surround the
absorbing regions seen in the red wing, as observed also by Bhavilai
(1965). This observation can be interpreted as follows. As indicated
above, we expect upward motions to predominate above a certain level
and downward motions to predominate below this level. We may
therefore surmise that the upward moving features observed by Title
are higher, on the average, than the downward moving features, It is
generally believed that the magnetic field in a rosette diverges with
increasing height., We would therefore expect the upward moving
features, which of course follow the lines of force, to be farther, on
the average, from the rosette axis than the downward moving features,
and this is what is observed,

Evidently the observations made by Title (1966) extend down to the
level of spicule formation, This fact points to fhe possibility that the
growth of spicules may be depicted in the Doppler movies. In fact,
the velocity history of a typical upflow event observed by Title was
"a rise to peak velocity in less than thirty seconds and then a decay
in velocity for the next ninety seconds. " While it is not clear that the
growth time of S 30 sec for the finite -amplitude disturbances observed
by Title should be reproducible by a linear analysis (especially since
the same growth time was not reported for downflow events), it seems
reasonable to compare Title's result with the growth time predicted by
the thermal-convective theory,

Title showed that the velocity activity he observed took place in
the elements of the chromospheric network and therefore in regions of

appreciable magnetic ficld. Let us assume that the field is sufficiently
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large that the growth rate of the thermal-convective instability is given
by Equation (44) and is therefore independent of the field strength.
For temperatures in the range 20000 to 30000 K, the appropriate root
of Equation (44) is given very nearly by n = 1011 p, which corresponds
to an e-folding time of 6 X 1012/Ne. A reasonable value for the electron
density at the level of spicule formation is Ne =3X 10“ crn'3 (Thomas
and Athay, 1961, p. 386), which yields a growth time of 20 sec, in
excellent agreement with Title's result. From the complete secular
equation (Equation [43]), we can now determine the magnetic field
required for the spicule growth rate to be given by Equation (44). For
11 -3

N =3X10 cm

e and T = 20000 K, it can be shown that, unless the

temperature gradient is unexpectedly large, Equation (44) yields a good

7L, where L is the vertical dimension

approximation if B >> 2,5%X 10"
(in em) of the initial perturbation which produces a spicule.

It has already been mentioned that the Boussinesq approximation
used in the stability analysis is not strictly valid owing to the large
vertical extent of the chromospheric layer under consideration (Section
4). We must now point oﬁt that the short time scale just derived also
invalidates the Boussinesq approximation since pressure equilibrium
can be assumed only when the length scale is much less than the time
scale multiplied by the sound speed (see paper I), i.e., much less than
500 km, and this is not the case.

Since the growth time computed from Equation (44) is independent -

of the disturbance scale, this parameter cannot be predicted by the

linear theory. Thermal conduction introduces a wavenumber dependence
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but is important only when the time required for the conductive smoothing
of temperature fluctuations is less than or comparable to the growth

time for the instability in the absence of conduction (paper I). For fhe
numerical example just considered, this condition is fulfilled only if

the scale of the disturbance parallel to the magnetic field is less than

5 km, which is several orders of magnitude smaller than the lengths

of spicules,

A theory for the temperature structure of the thermally unstable
region of the chromosphere does not exist at the present time and, as
we saw in Section 5, may require a reliable calculation of the energy
input. If such a theory predicts that the unstable region is very thin
(say = 5 km) in the absence of motions, this region will actually be
stable (for vertical magnetic fields) owing to conduction. The theory
of spicule formation presented here would then be untenable.

Before concluding the discussion of spicules, we note that Thomas
and Athay (1961) and Kopp (1963) have also suggested that spicules may
result from thermal instability. In fact, "the apparently simultaneous
onset of inhomogeneity and abrupt rise in Te" coupled with their concept
of temperature plateaus (see Section 5) led Thomas and Athay (p. 383)
to ask whether "spicules somehow originate in the region of abrupt rise
in T, reflecting the radiative instability of this region. " They supposed
that spicules might be produced by a collapse to higher density (followed
by an outward acceleration of unknown origin) since spicules observed
at the limb are more dense than their surroundings and also because

considerations of thermal instability tend to emphasize condensation
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to the exclusion of rarefaction, In the thermal-convective interpretation,

of course, spicules which are eventually observed at the limb are initially

less dense than their surroundings. After accelerating upwards because

of buoyancy, they lose the driving instability and simply coast into view.
We now consider chromospheric regions without magnetic fields.

It was shown in Section 2 that inequality (32) is a necessary and sufficient

condition for instabilit.y in field-free regions. If this condition is

satisfied, the resulting instability takes the form of exponentially

amplifying oscillations provided inequality (35) is also fulfilled. When

T = 20000 K, inequality (32) is satisfied if N_ >4 X 10’ cm™> or

B>4.3X 10_4 K cm-i, and inequality (35) is satisfied if

(3 > 0.92x10 4(Ne/1010)2 K cm_l ) (47)

For Ne =3X 1011 cm-3, the value assumed above for the region
of spicule formation, we would expect monotonic instability since inequality
(32) is definitely satisfied while inequality (47) probably is not. However, |
chromospheric structure in field-free regions, i.e., within the cells of
tile chromospheric network, differs considerably from the structure of
the cell borders where spicules are located. Spectroheliograms made
in the HeI \10830 line show absorption in quiet regions only at the
borders of the network cells (Zirin and Howard, 1966)., Since this line
is produced by regions with T = 20000 K, it is inferred that these regions
either are much less dense or have much smaller vertical extent (i.e.,

much larger p) inside the network cells than at the cell borders. In
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either case, it seems likely that inequality (47) is satisfied in the cell
interiors.

A quantitative demonstration that inequality (47) holds in inter-
spicule regions can be derived from radio observations, which place
strict upper limits on the amount of hot material in the chromosphere
(Zirin and Dietz, 1963). For example, the fact that the brightness
temperature of the quiet sunat X\ =2 cm is 9100 + 600 K (Buhl and
Tlamicha, 1968) implies that the optical thickness (1) at this wavelength
of chromospheric regions with T = 20000 K is less than unity. If we
set the linear thickness of regions with T = 20000 K equal to T/f and
compute the free-free absorption coefficient at 2 cm for T = 20000 K,

we find that the condition T < 1 takes the form
‘ -4 10,2 -1
(3 > 2.7*10 (Ne/lD ) K cm o, (48)

This inequality applies to interspicule regions inasmuch as these regions
occupy most of the chromospheric volume. Although some ambiguity has
been introduced by the fact that inequality (48) refers to a mean value of
Ny 2/[3 over a range of v'I‘, it seems almost certain from this inequality
that inequality (47) is satisfied at T = 20000 K, We therefore conclude
that field-free regions are probably not monotonically unstable.

In view of the data given just before inequality (47), it seems
probable (but not definite) that inequality (32) is fulfilled and therefore
that field-free regions are overstable, Oscillations may therefore be

expected within the cells of the chromospheric network, Several
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types of oscillations are known to take place in the solar atmosphere.
The most famous of these are the 300 sec oscillations (Leighton_cicil. s
1962), which form the so-called resonance peak of temporal power
spectra of the solar velocity field. As one observes increasingly strong
lines, these power spectra develop a high-frequency tail corresponding
to oscillation periods of about 180 sec (Evans et al., 1963). On the
basis of the periods alone, it is not possible to decide whether the

300 sec or 180 sec oscillations (if either) should be ascribed to thermal-
convective overstability since both periods can be obtained from
Equation (26) for reasonable values of the chromospheric parameters.
However, the 300 sec oscillations have been observed deep in the
photosphere (Edmonds et al., 1965) and may very well be generated
there by the motions of granules (Evans and Michard, 1962). The

180 sec oscillations, on the other hand, are a distinctly chromospheﬁc
phenomenon, Furthermore, while several features of the 300 sec
oscillations can be explained in terms of an elementary wave theory
(Noyes and Leighton, 1963), the 180 sec oscillations do not appear to
be amenable to such an interpretation (Evans et al., 1963). I there-
fore suggest that the high-frequency oscillations observed in the
éhromosphere result from thermal-convective overstability,

If this suggestion is correct, the 180 sec oscillations should
be observed primarily inside the network cells rather than at the cell
borders. Evidence that this is, in fact, the case comes from Orrall's
(1966) investigation of the properties of oscillations observed in the

, core (KB) of the K line as a function of the brightness of the violet K,
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emission peak, Orrall found that the high-frequency tail dominates

2is

faint, i.e,, only inside the network cells, It should be noted, however,

the power spectrum of K3 velocities only for regions in which K

that oscillations with periods less than 200 sec were also observed in
bright K2 regions., Additional evidence is provided by Ha cinemato-
grams. According to Zirin (1966, p. 287), these show that regions
inside the network cells oscillate, whereas the cell borders do not.
However, the meaning of this observation is not completely clear since
Zirin quotes a period of 250 sec.

Although the observations appear to be consistent with a
thermal-convective interpretation of short-period chromospheric
oscillations, the theoretical uncertainties are considerable., There
is at least one model of interspicule regions (Beckers, 1968) in which
neither N, nor f is large enough:at T = 20000 K to satisfy inequality
(32), On the other hand, B may be so large that the overstable region
is too thin to be observed. Of course, the overstable layer may
generate observable oscillations in neighboring regions, but we recall
from Section 4 that this possibility introduces a damping mechanism
not included in the calculations of this paper. Finally, conduction will
stabilize the layer if it is sufficiently thin.

Somewhat related to the thermal~-convective interpretation is
the idea that chromospheric oscillations are V&isild oscillations ofa
convectively stable atmosphere (Jensen and Orrall, 1963; Ulmschneider,
1968). The main difficulty with this idea is that one still must explain

how the oscillations are excited and maintained,
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7. The Corona

It has been suggested that thermal instability in the corona is responsible
for the formation of solar prominences (Kiepenheuer, 1953). According
to calculations of radiative cooling (Pottasch, 1965; Raju, 1968; Cox

and Tucker, 1969), the solar atmosphere should be thermally unstable
for TR 105K. The radiation time scale predicted by these calculations
for T = 106 K is about 6 X 1012/Ne° This time scale is less than the
time scale for conductive smoothing of temperature fluctuations only

if the length scale of the fluctuations exceeds 1019/Ne. For this reason,
field-free regions of the corona are probably stable., However, mag- |
netic regions are unstable to disturbances (such as streamers) with
sufficiently large length scales parallel to the field.

Although the main radiation losses at coronal temperatures
are due to elements other than hydrogen, thermal instability in the
corona results from the same ionization effects treated in paper II.

The analysis of Section 3 is therefore applicable (although conduction
invalidates the Boussinesq .approximation since the dimension parallel
to the field required for instability is cc;mparable to or greater than a
scale height), and we may expect monotonic thermal-convective insta-
bility in magnetic regions of the corona.

The large Doppler spreading of solar radar echoes has
demonstrated the existence in the corona of both upward and downward
velocities of the order of 100 km/sec (James, 1966). I suggest that
these velocities be attributed to coronal spicules, that is, to jets

formed by monotonic thermal-convective instability in coronal magnetic
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fields. Some indication that magnetic fields do play a role is provided
by the observed long-term correlation between the radar cross-section
of the sun and the sunspot number. The time delay vs. frequency plots
of radar echo energy display a characteristic pattern such that the
fraction of energy Doppler shifted to higher frequencies decreases
wifh increasing time delay (James, 1968). This observation may
simply reflect the tendency of upward moving jets to be higher, on the
averags, than the downward moving jets. In addition to the radar
evidence, one should recall the suggestive appearance of coronal rain.

While observations of coronal ve]oéity fields are consistent
with a thermal-convective interpretation, they provide no unambiguous
confirmation of the theory. However, the theory also predicts an abrupt
temperature jump at the level of marginal stability around T = 105 K.
In fact, as is well known, the transition from the chromosphere to the
corona is very rapid. The structure of this transition has been deter-
mined by Athay (1966a) and, including dielectronic recombination, by
Dupree and Goldberg (1967) on the basis of ultraviolet emission line
intensities. Besides verifying the extreme abrup’cnéss of the chromo-
sphere-corona transition, these authors showed that the temperature
gradient reaches a maximum near T = 105 K, as expected from the
considerations of Section 5. This result indirectly provides the most
convincing support available for the thermal-convective interpretation
of the radar observations.

Kuperus and Athay (1967) have pointed out what at first sight

appears to be an interesting dilemma associated with the chromosphere-
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corona transition. Following the ideas of Athay and Thomas (1956)
discussed in Section 5, they assert that the temperature rise begins
when hydrogen and helium are no longer able to radiate away the
mechanical energy input. The temperature jump required for efficient
radiation from impurities causes a downward conduction of heat which
must be absorbed by the lower part of the transition. Since the
transition was presumably caused by the inability of the gas to radiate
away the mechanical energy input, it is argued that the upper chromo-
sphere is unable to dispose of the additional energy conducted down
from the corona. Kuperus and Athay suggest that a Rayleigh-Taylor
instability results and is responsible for the formation of spicules. On
this basis, they derive a theoretical spicule growth time of 25 sec,
which seems to be in accord with observation (Section 6).

While there may be some question regarding the existence of
an equilibrium state, the situation described by Kuperus and Athay is
actually stable in the Rayleigh-Taylor sense, These authors have
overlooked the fact that a graviéy field in one direction is equivalent
to an acceleration field in the opposite direction; thus their value of
25 sec is, apart from a factor of 27, an oscillation period and not a
growth time. In additio‘n, we have seen in Section 5 that, if the heat
loss function oC is considered to be a function of p and T only,
the steep temperature rise begins when the positive quantity °CT "‘1@ le
becomes small. Since J:p > 0, it follows that £T > 0 so that the
radiation rate in the lower part of the transition is still an increasing

function of temperature. Indeed, the reason for the initial temperature
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rise is simply that an increase in T is required to compensate for
the outward decrease in p if the radiation power is to be maintained.
Therefore, the lower part of the transition may, in fact, be able to
radiate away the conductive flux by an appropriate increase in T,
This view is supported by the near constancy of the conductive flux for

T> 102

K found by Athay (1966a) and by Dupree and Goldberg (1967).
Evidently, the conductive flux is absorbed primarily by the regions
with T <10° K and dCp > 0.

It is interesting to note that Rayleigh-Taylor instability is
actually possible if conduction is ignored. If we assume oC = va(p,T),
it can be shown by elementary considerations analogous to those of
Section 5 that an atmosphere which is isochorically stable ( £’T > 0) _‘ ‘ i
but isobarically unstable ( £‘1“ - BT °Cp < 0) is subject to a Rayleigh~
Taylor instability since dp/dz > 0 (Field, private communicationv).‘ In
terms of the analysis of this paper, substitution of Equation (46) into
Equation (15) shows that dp/dz > 0 if A is negative and sufficiently
small in absolute value, However, it is clear from Equation (46) that
conduction cannot be 1gnored when IA | is small. In any case, the

solar atmosphere Wl].l not exhibit this Raylelgh Taylor 1nstab111ty smce

‘dp/dz < 0 in hydrostatic equilibrium as long as B>0.

8. Summary

The following picture of the dynamical and thermal structure of the |

outer solar atmosphere has been developed in this paper:



hifelo)

(1) There are two zones of thermal-convective instability in
the outer solar atmosphere, one in the chromosphere and one in the
corona,

(2) Spicules originate in regions of the unstable chromospheric
zone which contain magnetic fields.

(3) Oscillations with periods of about 180 sec result from
overstability of field-free regions of the chromospheric zone. This
conclusion is particularly tentative.

(4) Elongated convective jets, which may be called coronal
spicules, are formed in magnetic regions of the corona.

(5) Field-free regions of the corona are stabilized by thermal
conduction.

(6) The lower boundaries of both zones are marked by abrupt
temperature jumps.

Although a number of refinements in the theory are desirable,
the most pressing need is for a theory of the temperature structure of
the unstable regions in the absence of motions, If the unstable chromo-
spheric region, for example, is found fo be exceedingly thin, this region

will be stabilized by conduction.

Acknowledgements

I thank Drs., P. Goldreich, E. Spiegel, and H. Zirin for their comments
and suggestions, I also had a helpful discussion with Dr. G. Field, and
Dr. A, Maxwell introduced me to the radar observations, Financial

support from the California Institute of Technology is gratefully acknowledged



101

References

Athay, R. G.: 1966a, Astrophys. J. 145, 784.

Athay, R. G.: 1966b, Astrophys, J. 146, 223,

Athay, R. G. and Thomas, R. N,: 1956, Astrophys. J. 123, 299,

Beckers, J. M.: 1968, Solar Phys. 3, 367.

Bhavilai, R.: 1965, Monthly Notices Roy., Astron. Soc. 130, 411,

Buhl, D. and Tlamicha, A.: 1968, Astrophys. J., (Letters) 153, L.189,

Cox, D. P, and Tucker, W, H,: 1969, Astrophys, J. 157, 1157,

Defouw, R. J.: 1970a, Astrophys. J. (in press).

Defouw, R. J.: 1970b, Astrophys. J. (in press).

Dupree, A. K. and Goldberg, L.: 1967, Solar Phys. 1, 229,

Edmonds, Fe N,, Jr., Michard, R., and Servajean, R.: 1965,

Ann, Astrophys. 28, 534,

Evans, J. W, and Michard, R.,: 1962, Astrophys. J. 136, 493.

Evans, J. W., Michard, R., and Servajean, R.: 1963, Ann. Astrophys.

26, 368,

Field, G, B.: 1965, Astrophys. J. 142, 531,

James, J. Co.: 1966, Astrophys. J. 146, 356,

James, J. C,: 1968, in Radar Astronomy (ed. by J. V., Evans and

T. Hagfors), McGraw-Hill, p. 369,

Jensen, E. and Orrall, F. Q.: 1963, Astrophys. J. 138, 252,

Kaplan, W.: 1962, Operational Methods for Linear Systems, Addison-

Wesley.
Kiepenheuer, K. O.: 1953, in The Sun (ed. by G. P. Kuiper), University

of Chicago Press, p. 430,



102

Kopp, R. A.: 1963, unpublished.
Kuperus, M. and Athay, R. Ge.: 1967, Solar Phys. 1, 361.

Leighton, R. B., Noyes, R. W., and Simon, G. W.: 1962, Astrophys. J,

135, 474,
Linsky, J. L.: 1968, Thesis, Harvard.

Noyes, R. W. and Leighton, R, B,: 1963, Astrophys. J. 138, 631,

Orrall, F, Q.: 1966, Astrophys., J. 143, 917,

Pottasch, S, R.: 1965, Bull, Astron. Inst, Neth, 18, 7.

Raju, P. K.: 1968, Monthly Notices Roy., Astron. Soc, 139, 479.

Rayleigh, Lord: 1916, Philosophical Magazine (Series 6) 32, 529.

Simon, G, W. and Leighton, R. B.: 1964, Astrophys. J. 140, 1120,

Spiegel, E. A, and Veronis, G.: 1960, Astrophys. J. 131, 442,

Thomas, R. N, and Athay, R. G.: 1961, Physics of the Solar

Chromosphere, Interscience Publ,, New York.

Title, Ase M,: 1966, Thesis, Cal, Inst. of Technology.

Ulmschneider, P, H.: 1968, Astrophys, J. 152, 349,

Veronis, G.: 1965, J, Marine Res, 23, 1.

Veronis, G.: 1968, J. Fluid Mech, 34, 315,

Weiss, N. O.: 1964, Philosophical Trans., Roy. Soc. A 256, 99,

Weymann, R.: 1960, Astrophys, J. 132, 452.

Whitaker, W, A,: 1963, Astrophys, J. 137, 914,

Zirin, Ho.: 1966, The Solar Atmosphere, Blaisdell Publ.

Zirin, H., and Dietz, R, D.: 1963, Astrophys. J. 138, 664.

Zirin, H. and Howard, R.: 1966, Astrophys. J. 146, 367,




