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ABSTRACT 

Our daily lives are shaped by a series of decision processes, ranging from very unimportant 

choices to life-changing judgments. The complexity of the decision processes increases 

tremendously when the decision-making takes place in a social context, i.e., when other 

human beings are directly involved in the decision. In such conditions the decision-maker 

not only tries to maximize his own utility, but also needs to take into account the 

interdependent nature of the situation. Information about others’ preferences, 

characteristics, and actions play an important role, and need to be thoroughly evaluated and 

predicted before making a decision. In this thesis we explore the neural correlates of two 

different types of social decision-making. 

In the first experiment I investigate economic decision-making in the context of a two-

player social exchange game. In order to maximize their overall and personal earnings, 

players need to cooperate and build up a trust relationship with their partner. Synchronized 

neural data is recorded from the two interacting brains using functional magnetic resonance 

imaging. In this thesis I present four main findings: (i) the neural correlates of strategic 

uncertainty and how it can be used to predict a player’s future strategic choice; (ii) the 

dynamic interaction of the brains of two interacting players; (iii) the neural correlates of 

trust and its development over the course of the game; and (iv) how the brain distinguishes 

between one’s own actions and those of another person. 

The second experiment investigates the neural basis of moral decision-making and other- 

regarding preferences. Subjects have to make a morally difficult decision between helping 

two groups of children while trading off between efficiency and equity. By parametrically 

varying these variables, I show how two brain structures, the insula and the caudate, are 

actively involved in the decision-making process. 

Taken together the results presented in this thesis shed some light on how our brain 

evaluates social situations, and how it uses social measures such as trust, agency, strategic 

interaction, and fairness to make decisions.  
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C h a p t e r  1  

INTRODUCTION 

 

All living organisms face situations that require evaluating various alternatives and making 

decisions that are often critical to their survival. For example, a hunting tiger in the 

grasslands needs to decide whether it is sufficiently close to its prey to attack, or whether it 

should try to sneak closer at the risk of being seen. Such choices are typically associated 

with factors such as risk, uncertainty, reward, or punishment, which need to be estimated in 

order to make the best possible decision. As most organisms learn through experience, their 

decision-making processes are continuously updated and optimized, and eventually lead 

(after enough exposure or training) to a set of rules and actions that define the organism’s 

behavior. 

Humans also make such decisions, may they be relatively trivial such as picking between 

two different drinks in a bar, or more meaningful such as deciding whether or not to accept 

a job offer. What distinguishes us from most other organisms though is that some of our 

decisions are made with respect to outcomes that satisfy more than just the basic “animal” 

needs (e.g., hunger, thirst, sleep, reproduction). More specifically, many of our decisions 

have some economic value (e.g., money, time, power) or moral value (e.g., love, trust, 

respect) attached to them. Yet independent of the nature of that value, the common point 

underlying all decision-making processes is the need to design a strategy that allows us to 

make the best possible choice. This thesis discusses some aspects of the neural basis of 

economic and moral decision-making in the human brain.   
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I.1. Neuroeconomics 

 

Human decision-making and choice theory have been thoroughly investigated in a variety 

of fields. Cognitive psychologists attempt to describe and understand behavior and mental 

processes by recording behavioral variables and psychometric measurements in controlled 

laboratory experiments. Behavioral economists aim to understand how human and social 

cognitive and emotional biases affect economic decisions, and they do this by designing a 

whole set of experiments and creating models to predict human choice. Cognitive 

neuroscientists are concerned with the neural substrates of mental processes and their 

behavioral manifestations. Traditionally, collaborations between these closely related fields 

have been relatively limited, but the recent break-through in neuroscientific technologies 

has given rise to a new interdisciplinary science that synthesizes the fields: 

neuroeconomics.  

Neuroeconomics seeks to identify and understand the neural processes that underlie human 

decision-making by studying how the brain interacts with its environment to produce 

economic behavior. As such neuroeconomics is a crossroads between economics, 

psychology, and neuroscience that aims to better understand choice theory by unifying the 

separate approaches. In neuroeconomics theories and models are constrained by facts and 

by biological processes that determine how the brain functions. If a certain economic 

theory seems to describe choice behavior very accurately, but there is no evidence that the 

brain uses that model (for example due to limited computational power), then that theory 

can be discarded as a model of human behavior. Hence neuroeconomics tries more than 

just to describe choice behavior—it seeks to understand how decision-making works on 

the neural and cognitive levels.  

The study of decision-making in neuroeconomics is vast, and it incorporates various 

subjects such as theory of choice under uncertainty, temporal discounting, framing effects, 

strategic choice, decision-making with respect to others, theory of mind, etc. (Glimcher 

2003; McCabe 2003; Glimcher and Rustichini 2004; Sanfey, Loewenstein et al. 2006).  
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The insights that neuroeconomics can provide are best illustrated by an example: the 

Ellsberg paradox (Keynes 1921; Ellsberg 1961). Imagine 2 urns containing 100 balls each. 

Urn A (risky urn) contains exactly 50 black and 50 red balls, and Urn B (ambiguous urn) 

contains 100 black or red balls, the exact composition of which is unknown (Fig. 1). The 

balls are well mixed so that each ball is equally likely to be drawn. A bet on any color gives 

a payoff of $20 if a ball of the chosen color is drawn, and $0 otherwise.  

 

Fig. 1: Available choices in the Ellsberg paradox 

In a situation like this most people prefer drawing a ball from Urn A rather that Urn B 

independently of the color, preferring known probabilities over unknown probabilities. If 

preferences are strictly based on probabilities, this pattern is a paradox leading to a 

violation of standard decision theory. Indeed, preferring a bet on a red ball from Urn A over 

Urn B implies that )()( redpredp amrisk > . Similarly, preferring a bet on a blue ball from 

Urn A over Urn B implies that )()( bluepbluep ambrisk > . By adding together those two 

inequalities and taking into account the fact that the probabilities of red and blue must add 

up to 1, this leads to a contradiction: 

4444 34444 214444 34444 21
11

)()()()(
==

+>+ bluepredpbluepredp ambambriskrisk

.
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This paradox can be resolved if one allows for subjective probabilities 

where 1)()( <+ bluepredp ambamb , e.g. 45.0)()( == bluepredp ambamb , the remaining 0.1 

representing the amount of uncertainty that is associated with the ambiguous gamble. 

Although this trick solves the paradox mathematically, it does not explain how the brain 

makes a decision. Recently neuroeconomists investigated this paradox (Hsu, Bhatt et al. 

2005; Huettel, Stowe et al. 2006), and found that different brain mechanisms are recruited 

to process risk and ambiguity. More specifically, they found that the amygdala and the 

lateral orbitofrontal cortex are more activated when facing ambiguous choices whereas the 

dorsal striatum is more activated in risky decision-making. They proposed a neural 

circuitry that responds to various degrees of uncertainty, in contrast to classical decision 

theory that makes no distinction between ambiguity and risk.  

By investigating classical concepts and theories from behavioral economics (such as the 

Ellsberg paradox) and through the use of neuroscientific tools in combination with 

neuroscientific expertise, neuroeconomists try to create a mathematically and biologically 

plausible model of human behavior. Despite being a relatively new science, 

neuroeconomics has already significantly contributed to knowledge in a variety of areas.  

But it has also drawn some criticism, most notably from Gul and Pesendorfer who argue  

that neuroscience addresses different questions, and can therefore not provide any insight 

into economic theories (Gul and Pesendorfer 2005). 

“Neuroscience evidence cannot refute economic models because the latter make no assumptions 

and draw no conclusions about the physiology of the brain. Conversely, brain science cannot 

revolutionize economics because the latter has no vehicle for addressing the concerns of 

economics.” 

But one of the central assumptions of neuroeconomics is that more realistic models of 

human decision-making will lead to more accurate prediction of economic choice. 

Moreover, Gul and Pesendorfer argue that neuroeconomics addresses irrelevant questions, 
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as it focuses on what provides the most hedonic utility to subjects rather than the 

economic data itself: 

“What makes individuals happy (‘true utility’) differs from what they choose. Economic 

welfare analysis should use true utility rather than the utilities governing choice (‘choice 

utility’).” 

A lot of the criticism is also targeted towards neuromarketing, a closely related field that 

studies consumers’ brain responses to marketing stimuli (e.g., brand names, price, design) 

in order to provide better products and more efficient marketing campaigns. Most of that 

criticism comes from the popular press as well as from consumer protection agencies that 

are afraid that neuroeconomics and neuromarketing could be used to manipulate 

consumers’ choices. This is however far from the current standing of things as 

neuroeconomists are currently just trying to understand consumers’ choices. 

Yet many behavioral economists, psychologists, and neuroscientists view neuroeconomics 

as a means to better understand how neural activity gives rise to a cognitive capacity for 

economic decision-making. Vernon Smith, 2002 Nobel Laureate in Economics, best 

expresses this optimistic attitude in his Nobel lecture "Constructivist and Ecological 

Rationality in Economics." 

"New brain imaging technologies have motivated neuroeconomic studies of the internal order 

of the mind and its links with the spectrum of human decisions ... its promise suggests a 

fundamental change in how we think, observe, and model decision in all its contexts."   
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I.2. Experiments in Neuroeconomics 

 

Neuroeconomics draws from related fields by using their tools and concepts in order to 

understand choice behavior. While behavioral economics and cognitive psychology 

provide the conceptual and mathematical frameworks as well as the experimental designs, 

neuroscience provides the scientific tools to study the neural correlates of choice behavior.  

Neuroeconomics extends the approach used in behavioral economics by recording neural 

data (and also often psychophysiologic data such as heart beat or skin conductance) in 

addition to behavioral data. In a typical behavioral economic experiment subjects are asked 

to choose between different options: for example, different gambles. By varying the 

experiment’s parameters over a whole range of values (e.g., gambles with different stakes), 

economists create a model that predicts subjects’ choices. Neuroeconomists check the 

biological validity of that model and try to improve its accuracy by making use of the 

neural data. 

Experiments can range from very simple choice tasks to more sophisticated paradigms 

where subjects have to figure out non-trivial problems. Neuroeconomists are also interested 

in how people make choices with respect to others, and thus they conduct multi-subject 

experiments with the neural responses of one or more subjects being recorded 

simultaneously. The incentive for a subject is always to maximize the amount of money he 

can earn. Most experiments in neuroeconomics have been thoroughly studied by behavioral 

psychologists and/or economists (e.g., in game theory), which allows them to test the 

validity of existing models on neural data. 

There are a variety of methods used in neuroscience to study neural activity, and each one 

has its own advantages and drawbacks, the most important feature being the spatiotemporal 

resolution (Fig. 2). Four of those methods are most often used in neuroeconomics: 1. 

imaging techniques (fMRI/PET), 2. electrophysiologic recordings, 3. lesions, and 4. drug 

manipulations. 
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Functional magnetic resonance imaging (fMRI) is the most commonly used method in 

neuroeconomics as it provides a great tradeoff between temporal and spatial resolution 

(down to 1–2 mm2 and 0.5 sec). Furthermore it is non-invasive and does not require any 

tagging of the blood with radioisotopes (as does PET, for example). One of its drawbacks is 

that fMRI is only an indirect measure of brain activity (see Chapter 2 for more details). 

Better spatial and temporal resolutions are provided by electrophysiological measures such 

as single unit recordings or patch clamp techniques which record brain activity directly 

from neurons. However, because of its invasive nature, it is only used on animals. 

 

Fig. 2: Spatiotemporal resolution of brain recording techniques 
(from Jezzard et al., 2001). MEG = Magneto-EncephaloGraphy, 
ERP = Evoked Response Potentials, fMRI = functional Magnetic 
Resonance Imaging, PET = Positron Emission Tomography 

The power of imaging methods is greatly improved when they are combined with other 

methods, and, in particular, lesion studies. If fMRI results have determined a specific area 

of the brain to be activated under a certain condition, then the same experiment can be 

administered to patients with localized lesions in that area. Such tests can assess whether 

that brain area is crucial to the correct execution of the task, or whether it can possibly be 
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compensated for by other brain structures in the complex neural circuitry. The number of 

lesions studies is however limited by the number of lesions patients, although brain lesions 

can be artificially created in animals. Finally, psychopharmacologic drugs can also be used 

to stimulate the brain and produce behavioral changes. For example, in a recent study it 

was shown that increasing the level of oxytocin in the body increases the level of 

trustworthiness of subjects (Kosfeld, Heinrichs et al. 2005). The drawback of such methods 

is that sometimes it is difficult to bypass the tough ethics standards imposed on researchers 

in administering drugs to subjects, and it is usually also difficult to assess how exactly the 

drug alters the normal functioning of the nervous system. 
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C h a p t e r  2  

BASICS OF FMRI 

 

The results presented in this thesis have been obtained using functional magnetic resonance 

imaging (fMRI). In this chapter I will discuss how fMRI works and how fMRI data 

analysis is done. This chapter intends in no way to be complete, but only serves as an 

outline to describe the basic principles of fMRI required to understand the neuronal data 

analysis from neuroeconomic experiments. For a detailed review of fMRI methods see 

Jezzard or Huettel (Jezzard 2001; Huettel, Song et al. 2004).  

 

II.1. MRI Physics 

 

Magnetic Resonance Imaging (MRI) exploits the relaxation properties of the spin of atomic 

nuclei, and in particular the hydrogen nuclei. The spin is the angular momentum intrinsic to 

nuclei. In free space the spin of hydrogen nuclei are oriented randomly, but when a 

constant magnetic field 0B
r

 is applied, the spins will align either with or against the 

magnetic field (Fig. 3). There is a very small tendency for the spins to align parallel to the 

magnetic field (the difference is about one in a million), but due to the large quantity of 

nuclei in a small element of volume, this produces a detectable magnetic field M. 
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Fig. 3: Hydrogen nuclei in a magnetic field 

When one applies a brief magnetic field orthogonal to 0B
r

 (called a 90 degree excitatory 

radio frequency or RF pulse), the aligned spins tip over to the transverse field. When the 

orthogonal magnetic field is removed, the spins do not immediately realign back with 0B
r

, 

but they precess around 0B
r

at a frequency directly proportional to it (Fig. 4) according to: 

00 Bγω =  

where 0ω  is the precessing frequency (also called Larmor frequency) and γ  is the 

gyromagnetic ratio. This precession gives rise to a longitudinal magnetization lM and a 

transverse magnetization tM . As the spins gradually align back with 0B
r

, the longitudinal 

magnetization grows back to 0M , whereas the transverse magnetization decreases to 0. 

The times that it takes for these events to occur are known as the relaxation times 

1T (longitudinal) and 2T  (transverse), and they are an important aspect of MR imaging (Fig. 

4). Surprisingly, 1T  and 2T  are not the same, and they are responsible for obtaining 

contrasts in magnetic resonance images. 
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Fig. 4: Effect of a RF pulse on the net magnetization. 1. Net 
magnetization M0 under the influence of a magnetic field B0. 2. A 90 
degree RF pulse is applied, and tips the net magnetization over to 
the transverse field. 3. When the RF pulse is removed, the spins 
precess around B0, creating a net magnetization vector M that rotates 
around z, and gradually regains its original intensity M0. M can be 
decomposed into a longitudinal magnetization Ml and a transverse 
magnetization Mt. 
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The time course where M grows back to 0M  in the longitudinal direction is 

mathematically described by an exponential curve: 

)1( 1/
0

Tt
l eMM −−=  

where t  is time and 1T  depends on the nature of the tissue. The time it takes for the 

transverse magnetization to completely disappear is much shorter than 1T . This is caused by 

small fluctuations in the precessing speed of the spins that cause them to gradually fall out 

of phase. 2T  is thus solely caused by spin-spin interactions and is independent of the nature 

of the tissue. This time course of such a relaxation is also described by an exponential 

curve: 

2/
0

Tt
t eMM −=  

In reality this decay is actually much faster, because in addition to the spins interacting with 

each other, they are also affected by small inconsistencies in the applied magnetic field 0B . 

When objects are placed in a magnetic field, they become magnetized themselves and 

changes in local magnetic susceptibility create distortions in the magnetic field. This results 

in a much faster decay of the transverse magnetization with a time constant *
2T , which is 

dependent on the nature of the tissue. 

1T -weighted MR images are obtained by measuring the decay times in different tissues of 

the brain. The connections of white matter have a long 1T  and appear white, whereas the 

congregations of neurons of gray matter have a short 1T  and appear gray. 1T -weighted MR 

imaging is often used to obtain high-resolution anatomical images of the brain (Fig. 5). 
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Fig. 5: T1-weighted high-resolution anatomical MR image. 
From left to right: coronal view, sagittal view, axial view 

 

II.2. Measuring the BOLD Signal 

 

1T -weighted images allow us to discern between different tissues in the brain, but cannot 

provide any information about whether or not a brain structure is active during a certain 

task. This is achieved by using the fact that an increase/decrease in blood flow and blood 

oxygenation (known as hemodynamics) is a result of increased/decreased neuronal activity: 

firing neurons consume more of the oxygen that is being carried by hemoglobin in red 

blood cells than non-firing neurons consume. Oxygenated hemoglobin is diamagnetic and 

has the same magnetic properties as the rest of the tissue, whereas deoxygenated 

hemoglobin is paramagnetic. Deoxygenated hemoglobin causes a change in the magnetic 

susceptibility of the local blood supply, thereby causing an inhomogeneity in the local 

magnetic field, which in turn decreases the time constant *
2T . This effect was first 

discovered by Ogawa (Ogawa, Lee et al. 1990), who showed that when mice breathed 

different concentrations of oxygen, the low concentration oxygen caused a significant 

signal drop in blood vessels in the brain. By measuring the time constant *
2T , one can thus 

obtain Blood Oxygenation Level Dependent (BOLD) images which are the type of images 

that are acquired by fMRI imaging (Fig. 6). In *
2T -weighted images white matter appears 
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grey and grey matter appears white, but the more interesting fact is that intensity changes 

as a function of brain activity. 

 

 Fig. 6: *
2T -weighted functional MR image. From left to right: 

coronal view, sagittal view, axial view 

Although the connection between changes in blood flow and changes in neural activity has 

been known for a long time (Roy and Sherrington 1890), the exact cause of this 

relationship is still unclear. It has been argued that the increased blood flow fills the 

demand of oxygen and glucose needed for the restoration of energy supply during neuronal 

activity. This is consistent with the fact that the BOLD signal correlates most strongly with 

measures of presynaptic activity as shown by Logothetis (Logothetis, Pauls et al. 2001). 

Heeger has also shown that fMRI responses in the monkey medial temporal lobe correlate 

with single neuron firing rates (Heeger, Huk et al. 2000), and recently Logothetis’s group 

has shown that negative fMRI responses correlate with decreases in neuronal activity in the 

monkey visual area V1 (Shmuel, Augath et al. 2006). Although these studies and other 

ones do not explain the reason for the relation between blood flow and neuronal firing, they 

do provide good evidence to use fMRI as a measure of neuronal activity. 

One of the drawbacks of using the BOLD signal to measure neuronal activity is the slow 

hemodynamic response (~ 20 seconds, compared to the neuronal spiking which is on the 

order of milliseconds). The BOLD response has a characteristic shape (called 

hemodynamic response function or HRF): after an initial dip it peaks about 5–6 seconds 

after the onset, and then decays back to baseline after a small undershoot (Fig. 7). This 
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temporal limitation, in combination with the low spatial resolution, makes it impossible 

to record from individual neurons, but measures the activity of rather large sets of neurons. 

 

Fig. 7: Shape of the hemodynamic response function. Initial dip 
not shown here 

 

II.3. fMRI Data Acquisition 

 

In order to create 3-dimensional images of the brain, it is necessary to selectively measure 

the MR signal from individual volume elements in the brain, called voxels. This is 

achieved by applying three mutually orthogonal magnetic gradients in addition to the 

uniform magnetic field 0B
r

. In the z-dimension this is achieved through a method called 

slice selection. Individual slices are selected by turning on a gradient during the excitatory 

RF pulse that tips the spins into the transverse plane. Since the spins are only tipped over at 

the Larmor frequency, the addition of the gradient assures that only one slice is being 

stimulated at a time. This process is repeated consecutively for all slices. Spatial encoding 

in each of the 2-D slices is done through frequency and phase encoding. Frequency 

encoding is achieved by turning on a magnetic gradient that changes the precessing 

frequency of the spins depending on their location along the x-axis. In the y dimension 
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another gradient is applied that causes the spins to be out of phase with respect to each 

other in a predictable manner along the y-axis. Both the frequency and phase encoding are 

then recovered through Fourier transform to recover the signal from a single voxel.  

 

Fig. 8: Full-body human 3-T MRI scanner at Caltech 

In a typical fMRI experiment subjects lie on their back in a MRI scanner (Fig. 8) with their 

head constrained by pads to avoid motion artifacts. They wear goggles that allow them to 

view a projected computer screen, and they hold response boxes in their hands to make 

choices during the experiment. Experiments last anywhere form 20 minutes to 2 hours, 

during which 3 sets of images are acquired: 1. a low resolution localizer that shows where 

the subject’s head is positioned, 2. a high-resolution 3-D anatomical image that gives a 

detailed view of the structure of the brain (also called anatomical 1T  image), and 3. an 

fMRI image set that is composed of a series of 3-D pictures taken every 1–2 seconds (also 

called fMRI time-series). 

Once the images have been acquired, the next step is to analyze them in order to determine 

which parts of the brain have been activated and what the nature of this activation is. 

Although this might seem to be a relatively simple problem, the task is made substantially 

more difficult by the fact that MR imaging introduces a lot of noise into the data. The most 
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important noise sources are thermal noise from the scanner, scanner drift, subject head 

motion, inhomogeneities in the magnetic field resulting from different magnetic 

susceptibility (e.g., the nasal cavity), physiological artifacts (e.g., respiratory cycle) and 

anatomical differences between subjects. Some of these sources of noise can be 

compensated for through optimizing scanning parameters and by image preprocessing, but 

the most powerful method is to repeat all stimuli over many trials and many subjects to 

allow for a statistical analysis. In the next two parts I will describe how the functional time-

series and the anatomical image will be combined into a statistical activation map of the 

brain. 

 

II.4. fMRI Data Preprocessing 

 

The purpose of the preprocessing is twofold: it removes some of the introduced noise, and 

it prepares the fMRI images for a statistical analysis. There are five steps that need to be 

performed in the order listed below. All fMRI data preprocessing in this thesis was done 

using the statistical package SPM2 (Wellcome Department of Cognitive Neurology, 

London, UK, http://www.fil.ion.ucl.ac.uk/spm/software/spm2). 

Slice Time Correction 

When acquiring a fMRI time-series, a complete snapshot of the brain is taken every TR=2 

sec (TR = repetition time). However, these snapshots are not taken instantaneously, but 

consecutively for every slice in the brain. Hence, between the first and the last acquired 

slice of the brain, the time difference is close to 2 seconds. In addition to that the slices are 

not acquired in order, but in an interleaved way to minimize noise introduced from adjacent 

slices. To compensate for these effects, one takes advantage of the fact that each slice is 

repeatedly acquired every TR, and uses a sinc filter to interpolate all slices to a reference 

slice (e.g,. the middle slice). 
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Realignment 

One of major sources of noise in fMRI data is subject head movement. Although head 

restraints in the MRI scanner limit head motion to a minimum (typically less than 3 mm, 

i.e., the size of a voxel), the remaining motion artifacts need to be corrected for by using a 

realignment process. Since it can be safely assumed that the dimensions of the brain are not 

changing over the course of the experiment (no scaling or shearing), this can be done using 

a rigid body transformation with 3 rotation and 3 translation parameters (Friston, Williams 

et al. 1996), described by the sequence of 4 matrices below. All images are realigned 

sequentially with respect to the previous image so that at the end all images are realigned 

with respect to the first image. 
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Coregistration 

As functional MR images measure brain activity and are acquired every TR resulting in 

poor spatial resolution, they are a poor indicator of the underlying brain structure. Since it 

is not only important to determine how the brain is activated but also where it is activated, 

the high-resolution 1T  image is used to map brain activations to brain areas. Similarly as 

for the realignment the 1T  image and functional images are coregistered using a 12-

parameter affine transformation (see equation below). This can be done in several different 

ways by finding the optimal parameters that minimize/maximize a cost function (e.g., mean 

squared difference, normalized cross-correlation, or normalized mutual information 

between the two images). 
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where ),,( 000 zyx  and ),,( 111 zyx  are the coordinates before and after the coregistration, 

respectively (Frackowiak, Ashburner et al. 2002). 

Normalization 

If one wants to generalize results about brain function, the variability in brain structure 

across subjects needs to be taken into account. There are two ways this can be done. One 

can limit the analysis to a predetermined region of interest, and then compare brain 

activations only in that region. This can however only be done for studies with a priori 

hypothesis about involved the brain structures. Another problem is that the structure in 

question needs be easily identifiable. A much more common solution is to normalize each 

subject’s anatomical MR image to a canonical average brain (Fig. 9). The most commonly 

used one is the MNI-template from the Montreal Neurological Institute (Evans, Collins et 

al. 1993), which is an average of 305 anatomical MR images. Normalization is done using 

a combination of linear and non-linear warping functions (Ashburner and Friston 1999). 

 

Fig. 9: Normalization procedure. Leftmost panels: Original 
anatomical brain. Center panels: Template or average brain. 
Righmost panels: same anatomical brain after normalization 
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Smoothing 

The signal to noise ratio in fMRI data is typically very low, at the order of 1%. To improve 

the quality of the data, both temporal and spatial smoothing is performed. Temporal 

smoothing is achieved by filtering each voxel’s time-course with a low pass-filter. Spatial 

smoothing is achieved by filtering each image with a three-dimensional Gaussian 

smoothing kernel with FWHM=8 mm (Full Width at Half Maximum), i.e., 2–3 times the 

size of a voxel (Fig. 10). 

Even before the spatial smoothing is performed, neighboring voxels are correlated because 

of the way fMRI data is acquired. It is very difficult to estimate these correlations, but by 

filtering the images spatially with the Gaussian kernel, stronger and known correlations are 

imposed onto the data. This turns out to be very useful for some parts of the subsequent 

statistical analysis. 

 

Fig. 10: Spatial smoothing procedure. Functional imaging data 
before (left panels) and after (right panels) spatial smoothing with an 
8 mm FWHM Gaussian kernel 
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II.5. fMRI Data Analysis 

 

After the preprocessing the fMRI data is ready for further analysis, but it still has a low 

signal-to-noise ratio (Fig. 11). Hence it is impossible to detect individual events, and one 

needs to perform a statistical analysis. In the following I will describe the most commonly 

used method to analyze fMRI data, namely the general linear model (GLM). All of the 

GLM analysis in this thesis has been done using the statistical package SPM2. 

 

Fig. 11: Sample time-series of a voxel within the brain 

The main idea of the GLM is to obtain statistics about how well a series of observations 

(the fMRI data) can be described by a linear combination of explanatory variables (the 

stimuli and/or subject responses). This requires the experimenter to have an a priori 

hypothesis about the time and shape of the brain response, but not about the location, as the 

analysis is done on a voxel-by-voxel basis over the whole brain. In the following, the GLM 

method is described with respect to an individual voxel, but the same method is applied to 

all voxels.  

Suppose that during an fMRI experiment we acquire N images. Now for a given voxel we 

can create a time-series ),,,( 21 Nyyyy K= where iy represents the intensity of that voxel at 

time-step i . This is considered to be the independent variable. Now let’s assume that we 
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also have 2 explanatory variables ),,,( 112111 Nxxxx K= and ),,,( 222212 Nxxxx K=  that 

could be used to describe the data, and we are interested in determining the linear fit 

between the data and the explanatory variables. We can then write the independent variable 

y as a linear combination of 1x and 2x (also called regressors) plus a constant term and an 

error term: 
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where 1β and 2β are the unknown parameters describing the relation between y and 1x and 

2x , and where 0β  is a constant term. The errors iε  are independent and identically 

distributed normal variables with zero mean and variance 2σ , i.e., ),0(~ 2σε Ni . This 

relation can be written in matrix form: 
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or equivalently: 

εβ += Xy    (1). 

Note that under this form there can be an unspecified number of explanatory variables 

in X . But before solving this equation, one needs to take into account the fact that the 

BOLD response in the brain to a punctuate stimulus is not punctuate. Indeed, as described 

in Section II.2. and Fig.7, the BOLD response of the brain is a hemodynamic response 

function (hrf). The shape of this hrf has been determined experimentally (Blamire, Ogawa 

et al. 1992; Buckner, Bandettini et al. 1996), and it has been shown to vary slightly across 
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brain regions (Buckner, Bandettini et al. 1996; Ollinger, Shulman et al. 2001). Friston et 

al. have shown that the hrf can be approximated by the sum of two gamma functions, one 

modeling the peak and one modeling the undershoot (Friston, Fletcher et al. 1998; 

Frackowiak, Ashburner et al. 2002): 

)!1()!1(
)(

22

/)(1

2

2

11

/)(1

1

1
22

2
11

1

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

−−−−−−

pd
e

d
o

pd
e

d
ohrf

dopdop ττ τττ  

where io is the onset delay, id is the time-scaling and ip is an integer phase-delay )2,1( =i . 

Before solving (1), each column of the matrix X (other than the first column) is thus 

convolved with )(τhrf to give a new matrix X~ , also called the design matrix: 

( ))()()(1)(~
21 ττττ hrfxhrfxhrfxhrfXX N ⊗⊗⊗=⊗= K  

where 1 and ix  are the column vectors of X . The effects of this convolution are illustrated 

in Fig. 12. 

 

Fig. 12: Effect of the convolution with an hrf. The spikes (left 
panel) represent punctuate stimuli that are convolved with an hrf 
(middle panel) to model the BOLD response (right panel). 

Now (1) can be written as: 

εβ += Xy ~  

which can be solved using ordinary least squares to give the parameter estimates: 
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yXXX TT ~)~~(ˆ 1−=β . 

If X~ is of full rank (i.e., if the columns of X~ are linearly independent), it can be shown that 

the parameter estimates are uniformly distributed: ))~~(,(~ˆ 12 −XXN Tσββ . This result can 

now be used to determine if there is significant activation for a voxel with respect to one or 

more of the regressors. This is achieved through the use of t-tests between β  values, a 

manipulation called contrast-estimates. The used t-statistic is: 

pNTT

TT

t
cXXc

cc
−

−

− ~
)~~(ˆ

ˆ
12σ

ββ  

where pNt −  is a Student’s t-distribution with pN − degrees of freedom, and c  is a contrast 

vector. 

There are two main types of t-tests that can be performed: the first type tests for effects 

among regressors and the null hypothesis is 0:0 =βTcH . For example, in a design with 4 

conditions, if one wants to assess whether a particular voxel was activated differently under 

condition 2 (regressor 2) than under condition 3 (regressor 3), the contrast vector c is: 

( )01100 −=c , corresponding to 32320 00: βββββ =⇔=−⇔=TcH . The 

second type tests for effects between a regressor and baseline (the constant term in X~ with 

the corresponding parameter estimate 0β ). For example, in the same design if one wants to 

test whether a particular voxel was activated under condition 2, the contrast vector c 

is: Tc )00100(= , corresponding to 0: 20 =βH . 
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Fig. 13: fMRI activations in glass-brain and on SPM map. Two 
typical ways of displaying fMRI results: in a transparent glass brain 
in the left-hand panels, and the same activation on a color-coded 
SPM map in the right-hand panels. The legend on the right indicates 
the t-value. 

These t-tests are performed on all voxels of the brain to give a statistical parametric map 

(SPM), which is color-coded and overlaid on the high-resolution anatomical scan to give 

the characteristic fMRI activation map (Fig. 13). This statistical analysis is often called a 

fixed effects analysis because it assumes that the subject’s brain response to each single 

instance of a particular event is identical. But in most fMRI experiments one is interested in 

drawing conclusions that hold with respect to all subjects in the dataset. To do this, a 

random effect analysis is performed in which every subject is treated as an independent 

observation. This 2nd level is achieved by simply doing a t-test on the contrast values for all 

subjects (on a voxel-by-voxel basis). 

It should be noted that there are many adjustments that have not been mentioned in this 

chapter, and which significantly improve the GML method, in particular with respect to 

spatial correlations, estimation of noise terms, false positives, filtering etc. Although the 

GLM is the most commonly used method to analyze fMRI data, it has some drawbacks, the 

most important one being the assumption of linearity. When performing a GLM analysis, 

one assumes that the BOLD response is linear, i.e. that the responses to several subsequent 

stimuli sum up linearly. There is however evidence that this is not the case, and that the 



 

 

26
non-linearity increases as the stimuli are closer in time. Another major weakness of the 

GLM is that it is a model-driven analysis, i.e., the experimenter needs to have an a priori 

hypothesis about the variables that produce the neural activity (their shape through the hrf 

and their timing). Those issues can be addressed by other types of analyses (described in 

Chapter 3), most notably a region-of-interest (ROI) analysis that focuses on a particular 

brain area, as well as a newly developed correlational analysis (Section III.5).  
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C h a p t e r  3  

NEURAL CORRELATES OF ECONOMIC DECISION-MAKING 

 

This chapter analyzes various neural aspects of economic decision-making in the Trust 

Game, which is a 2-person social exchange game used in the field of behavioral game 

theory. The results are grouped into 5 sections: 

— Behavioral Results (Section III.3) 

— Strategic Uncertainty and Prediction Analysis (Section III.4) 

— Dynamic Cross-Brain Analysis (Section III.5) 

— Trust & Cooperation (Section III.6) 

— Agency Attribution (Section III.7) 

The chapter starts off by presenting some background information about behavioral game 

theory and about existing studies on social exchange in neuroeconomics.  

 

III.1. Background 

 

III.1.1. Behavioral Game Theory 

Behavioral game theory is a branch of economics that studies situations (or games) in 

which players interact with each other through a series of decisions made to maximize their 

own returns (Camerer 2003). Each game consists of a set of players, a set of options (called 
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strategies) available to the players and a set of outcomes for each combination of 

strategies (known to the players). Hence the games are well-defined mathematically and 

can be studied in terms of optimal strategies, equilibriums, etc. In a typical game the 

players are assumed to always act rationally in order to maximize their earnings (according 

to the homo economicus model), which leads to a game theoretic solution. However, when 

people actually play these games, their behavior is often irrational from a game theory 

perspective, e.g., sometimes they make decisions to maximize the group’s earnings (instead 

of their own). Although only a very small fraction of people play according to the 

predictions from game theory, the theory still provides a reasonably valid description of 

human behavior, and can be used as a model to predict how people ought to behave.  

The ultimatum game (UG) is a game used in behavioral game theory to test how much 

people deviate from rational behavior (Fig. 14). In this game one player (the proposer) is 

asked to split a certain amount of money between himself and another anonymous player 

(the responder). If the responder rejects the offer, nobody gets anything; if he accepts the 

offer, the money is split according to the division the proposer proposed.  

 

Fig. 14: The ultimatum game 

From a game-theoretic perspective the responder should accept any non-zero offer (since 

rejecting will not give him any money). Hence the proposer should offer the smallest 

amount possible since he knows that the responder will accept any non-zero offer. 

However humans significantly diverge from this strategy: the median and mean offers are 

usually 40–50% and 30–40%. 40–50% offers are almost always accepted and offers below 

20% are rejected half the time. There are two main explanations for this behavior: 
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responders are either fair-minded (or altruistic) or/and they are afraid that low offers will 

be rejected. The contribution of each one of those two factors can be captured by 

measuring the proposer’s level of altruism in another game, the dictator game (DG). This 

game is the same as the UG, except for the fact that the second player has to accept any 

offer. Thus any non-zero offer in the DG by the proposer is purely altruistic, and can be 

used to explain that the proposer’s offer in the UG is not just purely strategic. 

Another famous game from behavioral game theory is the prisoner’s dilemma (PD). Figure 

15 shows the pay-off matrix in a typical PD experiment as well as its more general form. 

Mutual cooperation pays off C=2 for each player, which is better than mutual defection 

which only pays D=1 for each player. If one player defects and the other one cooperates, 

the defector earns T=4 which is better than the payoff from cooperation, whereas the 

cooperator earns S=0, which is less than the payoff from defection. Since T=4>C=2 and 

D=1>S=0, both players prefer to defect independently of whether the other player 

cooperates or defects. Hence the Nash equilibrium is mutual defection although it pays off 

less than mutual cooperation.  

 

Fig. 15: The prisoner’s dilemma. A. Example of payoff structure: 
first amount listed denotes row player’s payoff, and second amount 
denotes column player’s payoff. B. Generalized form of the 
Prisoner’s Dilemma with the assumption: T>C>D>S 

Another game that studies cooperation and defection is the public goods game (PG). In the 

PG game (Fig. 16), N players can invest a certain portion ip  of their initial endowment 

M into a common pot (the public good). The public good earns a return (it is multiplied by 
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a factor 1>f ), which is then split evenly among all players such that player i  receives a 

total of ∑
=

+−
N

j
ji p

N
fpM

1
. The optimal solution is to invest nothing, and to pick up other 

people’s investments. If everyone cooperated however, the players would maximize their 

total collective earnings.  

 

Fig. 16: The public goods game 

For the purpose of this thesis another type of game was used: the trust game. It combines 

the notions of cooperation and defection of the PD and the principle of investing into a 

common good of the PG games with the sequential nature of the UG and DG. Also, the 

existence of a mathematical framework makes all of these games (and the trust game in 

particular) very appealing for study with neuroscientific tools. 
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III.1.2. The Trust Game 

The trust game (Camerer and Weigelt 1988; Berg, Dickhaut et al. 1995) is a modified 

version of the dictator game (see Fig. 17): one player, the Investor, is endowed with M 

dollars and can invest any portion of it. The invested amount x is then multiplied by f, and 

the second player (the Trustee) decides how much of the resulting investment to keep and 

how much to pay back. The investor’s payoff is the amount originally held back, M-x, plus 

the returned money y. The Trustee’s payoff is fx-y. The collective gain is (M-x+y)+(fx-

y)=M+(f-1)x which is maximized for x=M (when the Investor invests everything). Thus 

there is a significantly larger gain from cooperation. 

 

Fig. 17: The trust game 

According to game theory the best strategy in this game is for the Investor to invest 

nothing. Indeed, since the Trustee is trying to maximize his own earnings, he will not return 

any money, and thus there is no incentive for the Investor to invest. 

The trust game becomes significantly more interesting and complex when it is repeated 

with the same players over several rounds. It can be seen as a simplified model of social 
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interaction, where the multiplication of x represents productivity, the invested money 

amount x is a measure of trust, and the returned money amount y is a measure of 

trustworthiness. The repetitive nature of the trust game allows for multiple interactions 

between players, and thus more diverse and complex strategies. As players pass money 

between each other, they create (or break up) a mutual trust relationship based on 

reputation and previous history. The strength of that relationship can be measured in terms 

of reciprocity (this method will be explained in subsequent sections). 

Although the repeated trust game is substantially more complex than its single-shot 

counterpart, the game-theoretic solution remains unchanged: the Investor should never 

invest money, and the Trustee should keep all the money that he receives. Indeed, the 

situation in the last round of the repeated trust game is exactly the same as it is in the 

single-round trust game, and neither player should invest/repay anything. Considering that 

nothing happens in the last round, the second-to-last round can now be considered to be the 

“last” round of the game, and the same reasoning applies. By reiterating this process 

backwards over all rounds, it follows that every round should be treated as a single-shot 

game, and that the Investor should never invest any money. For an initial endowment of 

20=M , a multiplication factor 3=f , and 10 rounds, the overall earnings will be 

2002010 =x (all earned by the Investor), which is considerably less than the maximum 

overall earnings from a cooperative strategy ( 60032010 =xx ). 

The invest-zero strategy is only played by a very small fraction of people, and most subject 

pairs cooperate up to some degree to maximize their earnings. The trust game has been 

studied by economists in many countries, for different monetary pay-offs and under various 

experimental conditions. The basic finding is that the social exchange in the first few 

rounds is based on reciprocity, i.e. both players invest and return increasingly more money. 

In later rounds Trustees return less money which leads the Investors to invest less money. 

An important variable in the trust game is the notion of fairness. Although not all subjects 

share the same opinion about what is a fair or unfair split-up of the money, they all trend to 

heavily base their decisions on that metric. This is illustrated through one notion of fairness 
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(for 20=M , 3=f ): a round is defined to be fair if the Investor and the Trustee both 

earn the same amount of money. 

 

Fig. 18: Fairness in the trust game 

If the Investor invests at least 5, the Trustee can always return enough money to make the 

round fair. In some cases the Investor can end up with less money than his initial 

endowment, even though the Trustee divided the money in a fair way. In other cases he 

ends up with more than his initial endowment although the round was unfair. Figure 18 

illustrates this from the point of view of the Investor. All possible money split-ups 

),( TI MM  fall within the triangle ABC (where IM  is the money earned by the Investor 

and TM  is the money earned by the Trustee). Any money split-ups that fall on the segment 

],[ ED  are considered to be fair. Zone 1 (ABGE) is a hyper-fair zone where the Investor 

gets more money than the Trustee and more than his initial endowment of 20. The split-up 
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in Zone 2 (BDG), is also hyper-fair, but the Investor receives less than his initial 

endowment. Zones 3 (EFG) and 4 (CDGF) are both unfair, although in Zone 3 the Investor 

earns more money than his initial endowment (and thus still profits from the investment). 

 

III.1.3. Previous Studies 

All of the games mentioned in the previous sections have been studied extensively in 

behavioral economics (Camerer 2003), and with the recent availability of neuroscientific 

tools they become increasingly more popular in neuroeconomics. 

McCabe et al. (McCabe, Houser et al. 2001) performed one of the earliest experiments in 

neuroeconomics by implementing a simplified version of the trust game. They found that 

subjects who played cooperative strategies have increased activity in the inferior frontal 

gyrus when playing against another person compared to when playing against a computer. 

In another implementation of the trust game, Delgado et al. (Delgado, Frank et al. 2005) 

modulated the investor’s a priori perception of the trustee’s moral character. They found 

that the caudate was differentially activated with respect to positive and negative feedback, 

but only when subjects were playing with the neutral partner. Kosfeld et al. (Kosfeld, 

Heinrichs et al. 2005) have also been able to artificially increase the level of trust in 

investors by intranasal administration of oxytocin, a neuropeptide that plays a key role in 

social attachment and affiliation. 

The neural correlates of cooperative social behavior have been investigated in an iterated 

version of the Prisoner’s dilemma (Rilling, Gutman et al. 2002), where it was shown that 

mutual cooperation was associated with activity in reward processing structures such as the 

nucleus accumbens, the caudate nucleus, the ventromedial frontal/orbitofrontal cortex and 

the anterior cingulate cortex. The prisoner’s dilemma was also recently used to study the 

behavioral and emotional responses to conflict and cooperation in a special population 

group (McClure, Parrish et al. 2007). One of the main findings was adolescents with 

anxiety/depressive disorders responded more cooperatively to cooperative overtures from 
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their co-players, suggesting a first step towards understanding the mechanisms 

underlying social impairment. In another type of game Decety et al. (Decety, Jackson et al. 

2004) studied the neural correlates of cooperation vs. competition, and found the 

orbitofrontal cortex to be more activated in the cooperation condition, and the inferior 

parietal and medial prefrontal cortices to be more activated in the competition condition. 

Sanfey et al. studied the neural correlates of unfairness in a ultimatum game (Sanfey, 

Rilling et al. 2003), and found that receiving unfair offers activated brain areas related to 

both emotion (anterior insula) and cognition (dorsolateral prefrontal cortex). Moreover, the 

activity in the insula was correlated with subject’s decision to reject the offer. In a more 

complicated design, subjects who received unfair offers were able to punish their partner by 

using some of their own money (de Quervain, Fischbacher et al. 2004). Punishments 

elicited activations in the dorsal striatum (a reward processing structure), and the level of 

activation was correlated with their willingness to incur greater loss in order to punish.  

Although a couple of  neuroimaging studies have investigated a simplified version of the 

trust game, the work presented in this thesis is the first to analyze the neural correlates of 

the repeated trust game in interacting subjects. 

 

III.2. Experimental Design and Methods 

III.2.1. Task 

Subjects played an anonymous 10-round trust game. At the beginning of each round, the 

Investor received 20 monetary units (mu), and was able to invest any portion of it (in 1mu 

increments) with the other player (Trustee). The invested amount, denoted x, was then 

tripled and the Trustee decided how much of the resulting investment to pay back. At the 

beginning of each round the Investor received 20 new mu. Roles were fixed throughout the 

experiment. Earned mus were accumulated over rounds, and at the end of the experiment 

subjects were paid a monotonic step function of their actual experimental earnings: 0–

67mu: $20; 68–133mu: $25; 134–200mu: $30; 201–300mu: $35; >300mu: $40. Subjects 
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had no knowledge of the actual pay scale, but were informed that they could earn $20–40 

based on their performance.  

III.2.2. Subjects 

To assure anonymity, subjects were recruited from separate subject pools at the California 

Institute of Technology (CIT), Pasadena, CA and Baylor College of Medicine (BCM), 

Houston, TX. Informed consent was obtained by using a consent form approved by the 

Internal Review Boards of both CIT and BCM. Investor/Trustee roles were assigned 

pseudo-randomly, and subjects were matched for gender, location and player role to control 

for confounding effects. Specifically, there were 12 subject pairs of each combination MM, 

MF, FM, FF where M=Male player and F=Female player, the first subject listed denoting 

the Investor and the second one the Trustee. There were a total of 48 subject pairs. 

III.2.3. Experimental Setup 

The behavioral and functional data in the trust game was acquired using the NEMO 

hyperscanning software (Montague, Berns et al. 2002), which simultaneously recorded 

BOLD responses in interacting subjects (Fig. 19). Subjects were instructed identically, but 

separately at each location (instructors read a script describing the task while showing 

screenshots of the game). 

 

Fig. 19: Hardware setup of the trust game 

Stimuli were presented through MRI compatible goggles (Resonance Technology) at CIT 

and a back-projected screen at BCM. Subjects used MRI-compatible button boxes to make 

their decisions by toggling a slider bar up and down. 
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The timeline of a single round of the trust game is depicted in Fig. 20. Each round starts 

with a blank screen that lasts 4 seconds, followed by a free response period where the 

Investor decides how much money to invest. During that period the Trustee sees a blank 

screen. 8 seconds after the Investor submits his decision, the results of the investment phase 

are revealed to both subjects simultaneously. Then the repayment phase starts where the 

Trustee decides how much to send back to the Investor and how much to keep. During that 

time the Investor sees a blank screen. 8 seconds after the Trustee’s decision the results of 

the repayment phase are revealed simultaneously to both players. After another 8 second 

blank screen a summary with the overall totals for the round is revealed to both subjects. 

Each round is separated from the next one by a blank screen of random duration (12–42 

seconds). Note that except for the periods of free response both players view the same 

visual stimulus. 

III.2.4. fMRI Data Acquisition and Preprocessing 

Brain image acquisition was done on a Siemens Trio (CIT) and a Siemens 3T Allegra 

(BCM). High resolution T1-weighted scans (0.48 mm x 0.48 mm x 1 mm) were acquired 

using a MPRage sequence. Functional images were acquired using echo-planar T2* images 

with BOLD contrast. Parameters were as follows: repetition time (TR) = 2000 ms; echo 

time (TE) = 40 ms; slice thickness = 4 mm yielding in a 64x64x26 matrix (3.4 mm x 3.4 

mm x 4 mm); flip angle = 90 degrees; FOV read = 220 mm; FOV phase = 100 mm, series 

order: interleaved. 

Imaging data was preprocessed using SPM2, and included slice time correction, motion 

correction, coregistration, normalization to the MNI template and smoothing of the 

functional data with an 8 mm kernel (see Section II.4 for details). During the preprocessing 

steps, all voxels within an image were resized to 3 mm x 3 mm x 3 mm.  
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Fig. 20: Timeline of 1 round of the trust game 
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III.3. Behavioral Results 

 

Since subjects were free to invest/return as much money as they wanted in each round, 

there was a lot of inter-pair variability, resulting in a rich behavioral space. A few examples 

of typical money exchanges are presented below. 

 

Fig. 21: Example #1 of monetary exchange 

Figure 21 shows the interaction between two cooperating subjects. The Investor invests his 

whole endowment in every round, and the Trustee repays his trust by splitting the money 

equally between the two. In round 9 however the Investor invests nothing, as he is probably 

worried that the Trustee might not pay anything back this close to the end of the game. The 

Investor seems to have done two steps of iterated reasoning with respect to the game-

theoretic solution. 

Figure 22 shows an initial build-up of trust based on reciprocity: in rounds 1 to 3 both 

players invest and return increasingly more monetary units. The trust relationship lasts until 

round 9 when the Trustee suddenly takes 59 out of the 60 available monetary units. This 
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time it was the Trustee who did the 2 steps of iterated game-theoretic reasoning. In 

response to the betrayal the Investor invests nothing in Round 10. 

 

Fig. 22: Example #2 of monetary exchange 

 

Fig. 23: Example #3 of monetary exchange 

In the exchange shown in Figure 23, the players establish a trust relationship quickly, but in 

round 6 the Trustee defects and takes everything. He is immediately punished as the 
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Investor invests nothing in Round 7. The Investor seems to be forgiving as he starts 

investing again in round. Typically players give their opponent a second chance if they split 

the money in an unfair way. Also note that in this example neither player takes all the 

money in the last round(s) unlike in the two previous examples. 

The average behavior of all 48 subject pairs is shown in Figure 24. Cooperation between 

players was the strongest during middle rounds: trusting behavior (identified by large 

investment ratios), peaked during round 6 when Investors invested an average of 81% of 

the available money, and trustworthiness (identified by large repayment ratios) peaked in 

round 4 when Trustees returned an average of 47% of the invested money.  

 

Fig. 24: Average investment and repayment ratios. Mean and 
90% confidence intervals of the investment ratio (Money sent to 
Trustee/20) and the repayment ratio (Money sent to Investor / 
3*Money sent to Trustee) over the 10 rounds of the trust game. The 
dotted black line shows the minimum repayment ratio for which the 
investor is guaranteed to get at least his investment back. The green 
line indicates how much the repayment ratio needs to be such that 
the Investor and Trustee both earn the same amount of money. A 
repayment ratio below the green line indicates that the Trustee 
earned on average more than the Investor in that round. 
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After these peaks, both investment and repayment ratios declined over rounds, reflecting 

a decrease in cooperation. They reached their lowest value in the last round, which was also 

the only round where investments did not earn a profit on average (the repayment ratio is 

lower than 1/3). No Investor played the perfectly selfish Nash equilibrium in which the 

Investor invests nothing in each round. On average Investors earned $256.54 +/- 56.08 and 

Trustees earned $237.58 +/- 63.42, both resulting in an actual payoff of $35.  

 

III.4. Strategic Uncertainty and Prediction Analysis 

 

III.4.1. Background 

Human social life depends on the ability to predict the likely behavior of others, a capacity 

that underlies cooperation and social institutions (Henrich, Boyd et al. 2005). Unlike 

individual decision-making under uncertainty, the hallmark of decision-making in social 

interactions is strategic interdependence. That is, one’s best strategy depends on the 

strategy others adopt, often in response to one’s own behavior. This strategic 

interdependence introduces a novel form of uncertainty, referred to as strategic uncertainty, 

which is the uncertainty associated with inferring the beliefs and possible actions of others. 

In most social interactions, we lack perfect information about what others believe, and so 

lack perfect foresight about how others will respond to our own behavior, creating 

uncertainty about our predictions. Because of this, strategic uncertainty is a pervasive 

feature of human strategic interaction—including negotiation, international relations, and 

trading in such institutions as asset markets—and remains even when all other sources of 

uncertainty (structural uncertainty) surrounding a decision context are removed 

(Brandenburger 1996).  

To date, little is known regarding the neural basis of strategic uncertainty. The neural basis 

of social interaction has been explored primarily through investigations of theory of mind 

(ToM), the capacity to attribute mental states, including beliefs, desires, and intentions to 
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others. Such work has identified the anterior paracingulate, superior temporal sulci, and 

temporal poles as regions implicated in ToM (Fletcher, Happe et al. 1995; Goel, Grafman 

et al. 1995; Baron-Cohen, Ring et al. 1999; Gallagher, Happe et al. 2000). While ToM is 

thought to have evolved as a capacity to predict the behavior of others through the 

attribution of mental states that play a role in generating behavior (Premack and Woodruff 

1978), ToM can be invoked in situations that do not involve strategic interaction and 

predictions of future behavior. For example, understanding some forms of humor and 

retrospectively explaining behavior may require mentalizing abilities but does not involve 

strategic interaction in the sense that the required mentalizing does not involve predicting a 

future response to one’s own behavior (Gallagher, Happe et al. 2000). For this reason, 

many ToM studies utilize tasks that require subjects to retrospectively judge a social 

scenario in which they are not directly involved, thus evoking social, but not strategic, 

interaction. Thus, while ToM is the capacity to attribute mental states generally, strategic 

uncertainty is more specifically a form of prediction risk, namely the uncertainty associated 

with the future response to one’s own behavior. Investigation of strategic uncertainty thus 

requires tasks in which subjects strategically interact with one another, rather than make 

social judgments retrospectively.  

Another potential difference between ToM and strategic uncertainty is that ToM is often 

regarded as a form of cognitive judgment (a folk theory) with cortical substrates (Fletcher, 

Happe et al. 1995; Goel, Grafman et al. 1995; Baron-Cohen, Ring et al. 1999; Gallagher, 

Happe et al. 2000). In contrast, it is possible that strategic uncertainty may be more related 

to other forms of uncertainty processing, many of which have subcortical substrates 

(Preuschoff, Bossaerts et al. 2006). This possibility suggests that strategic uncertainty may 

invoke neural structures that are distinct from those invoked in ToM tasks and may overlap 

with those involved in uncertainty processing.  In recent years, a convergence between 

reinforcement learning models (Sutton and Barto 1998), primate physiology (Fiorillo, 

Tobler et al. 2003), and fMRI (Preuschoff, Bossaerts et al. 2006) has made significant 

progress in understanding how midbrain dopamine structures encode the uncertainty that 

arises when stimulus-reward association are probabilistic and changing over time. Thus, 
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whereas reported activations related to ToM have been cortical, this thesis examines 

whether strategic uncertainty in a high-level social exchange may evoke similar subcortical 

structures.  

A further salient difference between ToM and strategic uncertainty is that strategic 

uncertainty is quantifiable, whereas ToM typically is not.  Since strategic uncertainty is the 

predictability of a decision-maker’s response to one’s decision, this predictability can be 

quantified by the entropy of one’s strategic choice, as different strategies often differ in the 

predictability of the response they will evoke. For example, when a car dealership 

advertises the purchase price of a car, both very high and very low prices involve relatively 

little strategic uncertainty, since very high prices have a low probability of acceptance and 

very low prices have a very high probability of acceptance. If the car dealership is 

motivated to sell the car for the highest possible price, the task becomes that of predicting 

the highest price that will be accepted, which will involve relatively high levels of strategic 

uncertainty. Thus, a goal of this study was to examine whether the entropy of different 

strategies related in a parametric manner to the magnitude of neural activations, which 

would provide strong evidence that such activations encoded strategic uncertainty.  

Since entropy relates strategic uncertainty to different strategies, it was also interesting to 

see whether future strategic choices could be accurately predicted simply from the 

magnitude of neural signals relating to strategic uncertainty. Some studies have 

investigated whether neural signals were predictive of certain perceptual events (Kamitani 

and Tong 2005), but to our knowledge no studies to date have examined whether simply 

knowing the magnitude of neural signals is sufficient to predict future behavioral decisions.  

A hallmark of strategic uncertainty is that it is typically maximal when decision-makers 

have no information about other decision-makers. Hence, successful strategic interaction 

depends on reducing strategic uncertainty through learning how to predict the behavior of 

others, and particularly learning how to predict their likely responses to one’s own 

strategies. Such learning has been intensively investigated in theories of learning in game 

theory (Fudenberg and Levine 1998), which provides a framework to investigate how 
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players modify their strategic behavior by calibrating strategic uncertainty as they learn 

from responses of others across repeated plays.  

Based on the above considerations, we investigated strategic uncertainty in the trust game. 

Specifically, we examined whether there are brain signals that both reflect strategic 

uncertainty as a function of strategic learning in previous rounds and predict future 

strategic choice. 

 

III.4.2. GLM Analysis: New vs. Known Information 

The structure of the finitely repeated trust game requires subjects to modify their strategic 

behavior as the game evolves and information in the form of opponent responses becomes 

available.  In particular, two critical moments of a round influence strategic choice: the 

revelation of the results from the investment and repayment phases.  

Cluster Voxel Area 
pcor kE punc pFWE pFDR T (Z) X Y Z L/R Area 

0.042 163 0.023 0.001 0.003 5.99 5.14 3 9 48 R Sup. Fr. Gyrus, BA6/8 

0.099 109 0.057 0.004 0.003 5.63 4.90 9 3 0  Caudate 

   0.026 0.004 4.97 4.43 21 9 -6   

0.288 49 0.186 0.004 0.003 5.60 4.87 -42 21 -15 L Orbitofr. Cortex, BA47 

   0.012 0.003 5.26 4.64 -33 18 -15   

0.238 59 0.149 0.008 0.003 5.39 4.73 -9 6 0 L Caudate 

0.387 34 0.267 0.024 0.004 5.00 4.46 -27 -99 0 L Visual Cortex 

   0.189 0.012 4.21 3.85 -33 -93 -6   

   0.687 0.045 3.49 3.27 -15 -99 0   

0.149 85 0.088 0.027 0.004 4.96 4.42 0 36 -12  Med. Fr. Gyrus, BA11/32 

   0.517 0.030 3.69 3.44 12 30 -12 R  

   0.676 0.044 3.50 3.28 0 54 -6   

0.494 22 0.373 0.091 0.008 4.50 4.09 36 15 -15 R Orbitofr. Cortex, BA47 

0.599 13 0.499 0.117 0.009 4.40 4.01 45 -84 -3 R Visual Cortex 

0.317 44 0.209 0.194 0.013 4.19 3.85 6 -93 -6 R Visual cortex 

   0.362 0.020 3.90 3.61 24 -99 -6   

0.464 25 0.341 0.203 0.013 4.17 3.83 -3 -27 -3 L Midbrain 

Table 1: Investment > repayment regions for the Trustee. Local 
maxima of clusters in the Trustee brain that show increased activity 
for the revelation of the investment results relative to the repayment 
screen (df=47, p<0.001 uncorrected, cluster size k≥8). Pcor= 
corrected (family-wise) cluster-level p-value; KE = cluster size 
(voxels); Punc= uncorrected cluster-level p-value; pFWE = corrected 
(family-wise) voxel-level p-value; pFDR = corrected (false-discovery 
rate) voxel-level p-value; T=T-statistic of voxel; (Z)=Z-score of 
voxel; X, Y, Z = MNI coordinates of voxel location (mm); L/R = 
laterality (L=Left, R=Right) 
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Although the revelation screens are visually identical, the displayed information is 

asymmetric in that for the Trustee the investment screens contains new information (the 

amount invested by the Investor) whereas the repayment screen displays known 

information (note that this is exactly the opposite for the Investor). As this new information 

is the basis for subsequent strategic behavior, we defined two regressors of interest, βinv and 

βrep, corresponding to the revelation of the investment and repayment screens respectively. 

A general linear model (GLM) analysis was used to identify brain areas in the Trustee brain 

whose blood oxygenation level-dependent (BOLD) response was greater for the 

information bearing screen than for the known screen (see Section III.4.8 for methods). 

 

Fig. 25: Activations in the Trustee Brain. (A) Left panel: coronal 
view (y=0) of the Trustee brain showing significant differential 
activation in the bilateral caudate for the contrast βinv - βrep. A 
statistical map is shown alongside a pseudo-color legend with t-
scores (p≤0.001, minimum cluster size: 8). Right panel: Average 
time-courses at the moment of the revelation (t=0) of the 
investment and repayment screens in caudate. (B) Similar as in (A), 
the left panel shows an axial (z=0) view of the Trustee with 
activation in the medial midbrain, and the right panel shows the 
corresponding average time-courses. 
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Five regions, all previously implicated in reward-processing and decision-making 

(Schultz, Dayan et al. 1997; Cohen, Botvinick et al. 2000; Elliott, Friston et al. 2000; 

Paulus, Hozack et al. 2002; Delgado, Miller et al. 2005), showed significant activation and 

were used as regions of interest (ROI) for subsequent analysis: bilateral caudate; medial 

midbrain; superior frontal gyrus (BA6/8), bilateral orbitofrontal cortex (BA47) and medial 

frontal gyrus (BA11/32) (Table 1 and Figure 25). 

 

III.4.3. ROI Analysis: Correlation between Later Decisions and Hrf 

We next investigated whether activation in these ROIs was correlated with subsequent 

Trustee responses to Investor behavior (see Section III.4.8. for methods on ROI analysis). 

Consequently, we examined future changes in repayment ratio iRΔ as a function of current 

changes in investment ratio iIΔ  (Fig. 26). 

When the investment is revealed at round i to Trustee, the current change in investment 

ratio is defined as 20/20/ 1−−=Δ iii III , where iI  and iR are the investment and 

repayment amounts respectively at round i. Similarly, the future change in repayment ratio 

is defined as )3/()3/( 11 −−−=Δ iiiii IRIRR . This representation segregated the behavioral 

space into four quadrants, each reflecting a strategic response the Trustee may make as a 

function of Investor behavior (Fig. 26). From a game-theoretic perspective, reciprocal 

events (green quadrants) reflect tit-for-tat strategies, which are a robust way to create 

human cooperation in repeated games (Axelrod and Hamilton 1981). Non-reciprocal events 

(red quadrants) are the result of altruistic (benevolent) and greedy (malevolent) strategies. 

Neutral events (blue circle) occur when both players have reached some stable pattern of 

exchange. 
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Fig. 26: Split-up of the behavioral space. Green quadrants contain 
reciprocal events and red quadrants contain anti-reciprocal events. 
Neutral events are located at (0,0) in the blue disk. Subpanels show 
the average Investment (blue) and Repayment (red) ratios in each 
quadrant for rounds i-1 and i. The blue and red arrows show the 
direction of the corresponding changes in Investment and 
Repayment ratios respectively (e.g., in the top-left quadrant the 
Investor increases his investment ratio, and the Trustee subsequently 
decreases his repayment ratio).  

We next segregated hemodynamic responses in ROIs according to these 3 categories. As 

we were interested in how brain responses might change as a function of strategic learning 

during gameplay, we examined these signals across middle (3–6) and late (7–10) rounds. 

The rationale for this division was based on the hypothesis that by middle rounds players 

had acquired sufficient information regarding other players’ likely responses as a basis for 

strategic choice and was also supported by evidence from work presented in Section III.6. 

This analysis revealed that among previously identified ROIs reciprocal, non-reciprocal, 

and neutral strategies could be distinguished by time-courses in bilateral caudate and 

midbrain in both middle and late rounds (left and middle panels in Fig. 27). Although the 

scanning protocol was not optimized for midbrain (Guimaraes, Melcher et al. 1998), the 
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similarity between caudate and midbrain time-courses led me to conclude that the 

midbrain activation was reliable. 

 

Fig. 27: Time-courses predict strategic choice and correlate 
with strategic uncertainty. (A) Left & middle panels: time-courses 
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in bilateral caudate and midbrain during middle (3–6) rounds. We 
segregated signals in response to the revelation of the investment 
screen (t=0) with respect to reciprocal (green), non-reciprocal (red), 
and neutral (blue) strategies (significance levels: p<0.05: *, p<0.005: 
**, R vs. N: green stars, N-R vs. N: red stars, N-R vs. R: black stars). 
Since the actual repayment phase only starts 22 seconds later, the 
time-courses are predictive of the trustee’s strategy. Right panel: 
entropy of the Investor’s next move as a function of strategy 
(Hreciprocal, Hnon-reciprocal, Hneutral). High entropy values denote high 
uncertainty levels. These data show that during middle rounds 
Hreciprocal > Hnon-reciprocal > Hneutral, which is exactly the same order as 
signal magnitudes in the left and middle panels. (B) Similar as in (A), 
we segregated signals in the caudate (left panel) and midbrain 
(middle panel) according to strategy in late (7–10) rounds. During 
late rounds it is no longer possible to distinguish between reciprocal 
and non-reciprocal strategies. This trend is also repeated in the 
uncertainty of the Investor’s next move, where Hnon-reciprocal has 
increased to the level of Hreciprocal. This change in both signal 
magnitude and entropy from middle to late rounds suggests that 
signal magnitude in the caudate and midbrain encodes for 
uncertainty about the Investor’s future moves. 

During middle rounds time-courses for all three strategies had different peaks: reciprocal 

events had the largest magnitudes and neutral events had the lowest. By late rounds the 

amplitude of non-reciprocal events had risen to the level of reciprocal events. This 

difference between signals across late and middle rounds confirmed the hypothesis 

regarding strategic learning and the opportunity for players to learn about their opponents 

in contexts that encouraged reciprocity (Fehr and Gachter 1998) (repeated play of the 

middle rounds), or discouraged reciprocity (the shadow of the game’s end, a phenomenon 

known as endgame effects, which are well-established empirically in behavioral game 

theory (Camerer and Weigelt 1988; Dal Bo 2005). 

 

III.4.4. Signal Magnitude Encodes Strategic Uncertainty 

We next investigated the relation between the signal magnitudes in bilateral caudate and 

midbrain and strategic choice by examining why the magnitude of reciprocal strategies was 

the largest, and why the magnitude of non-reciprocal events increased from middle to late 

rounds. Our first hypothesis was that signal magnitude may encode expected future reward. 

However, we found no statistically significant correlation between signal magnitude in the 

Trustee brain at round i and money received by the Trustee at round i or i+1. We thus 



 

 

51
tested the alternative hypothesis that signal magnitude encodes the uncertainty of future 

reward, or strategic uncertainty, i.e., the predictability of the next investment after the 

Trustee’s repayment decision, which can be measured by entropy (Shannon 1948) (see 

Section III.4.8. for methods). We found a correspondence between the relative magnitudes 

of brain signals in midbrain and caudate and the entropy of different strategies in middle 

rounds (rightmost panels in Fig. 27). Both signal magnitude and entropy are the highest for 

reciprocal events, and the lowest for neutral events. During late rounds the entropy of non-

reciprocal events increased to the level of reciprocal events, as did the signal magnitude in 

midbrain and bilateral caudate (left and middle panels in Fig. 27). This relationship 

provided further support that the late rounds induce different strategic interactions due to 

increasing strategic uncertainty as the end of the game draws near. Although players did 

not fully follow backward induction as predicted by analytical game theory (Camerer 

2003), by late rounds they anticipated the final round, reducing the incentive for 

reciprocity. The correspondence between entropy and signal magnitudes across events in 

the middle periods, and the increase in both entropy and signal for non-reciprocal events 

from middle to late periods, strongly suggest that these brain areas encode Trustee strategic 

uncertainty as measured by entropy. 

 

III.4.5. Signal Magnitude Predicts Future Strategic Choice 

Given the correlation between signal magnitude in caudate and midbrain and future 

strategic choice that occurs substantially later, it suggested the possibility that these signal 

magnitudes were predictive of strategic choice. We thus examined how accurately future 

strategic decisions could be predicted on a trial-by-trial basis based on brain activation 

alone. At time-points when reciprocal and non-reciprocal signals were statistically 

different, their signal magnitudes followed two distinct normal distributions (Fig. 28A), 

which led us to hypothesize that these two types of events could be effectively separated. 

We thus calculated how the probability of non-reciprocal events changed as a function of 

upperbound signal magnitude, and found that it increased from 34% to 70% as the 

upperbound signal magnitude decreased from 2 to 0 in the left caudate (Fig. 28B). Since 
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the behavioral data revealed that the percentage of non-reciprocal events is 34% 

(independent of signal magnitude), this confirmed our hypothesis that low signal 

magnitudes are much more indicative of non-reciprocal events. 

 

Fig. 28: Analysis of Signal magnitudes. (A) Distribution of Signal 
Magnitude. Cumulative distribution function (CDF) of the signal 
magnitudes in the left caudate for reciprocal and non-reciprocal 
events 6 seconds after investments were revealed. In addition to 
following normal distributions (the Lilliefors test for goodness-of-fit 
to a normal distribution with unknown mean and unknown variance 
could not be rejected at the 5% level), the distributions of the peaks 
are also statistically different. (Kolomogorov-Smirnov test: left 
caudate p=0.000024; right caudate p=0.006; midbrain p=0.0004, all 
for t=6 sec). (B) Probability of a Non-reciprocal Event in the Left 
Caudate. We calculated the probability of a non-reciprocal event as a 
function of upperbound signal magnitude t: Pt = Prob (x is an non-
reciprocal event and sx≤t) which can be estimated by: 

)(#)(#
)(#

tRtNR
tNRPt ≤+≤

≤
≈  where sx is the signal magnitude 

of event x, and #(NR≤t) and #(R≤t) represent the number of non-
reciprocal respectively reciprocal events whose signal magnitude is 
less than t. Error bars were obtained through bootstrap, by sampling 
the data with replacement (N=1000). As the signal upperbound 
magnitude decreases, this probability increases and is significantly 
above the average probability of a non-reciprocal event (black 
dotted line). Results in the right caudate and in the midbrain look 
very similar, and are therefore not displayed here. 
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III.4.6. Discriminant Analysis of Predictive Accuracy 

We were also interested in designing a method to robustly predict reciprocal and non-

reciprocal events based on signal magnitudes alone. From the many possible data 

classification techniques that exist (e.g., support vector machines, principal component 

analysis), we implemented Fisher Linear Discriminant Analysis (F-LDA) (Fisher 1936; 

Mika, Rätsch et al. 1999; Seber 2004) as it provides feature extraction for classifying data 

rather than feature extraction for describing data (as does principal component analysis). F-

LDA finds the feature that best discriminates between 2 classes (here: reciprocal and non-

reciprocal events) by maximizing the between class variance while minimizing the within 

class variance (see methods). 

To increase the prediction accuracy despite the high BOLD variance, we included signal 

magnitudes from up to 9 different time-points in midbrain and bilateral caudate, and used 

all reciprocal and non-reciprocal events from middle rounds. We used the jack-knife 

method (Quenouille 1956) to cross-validate the results by successively applying F-LDA to 

all but one event. To verify whether the left-out event was correctly classified, we 

calculated a classification score based on the Mahalanobis distance in the new feature space 

obtained from the F-LDA (see Section III.4.8. for methods). 

As more time-points were included in the analysis, the prediction performance improved 

from 72.64% for 2 time-points (Fig. 29A) up to 78.30% for 6 time-points (Fig. 29B) from 

both caudate and midbrain. This percentage is significantly above the chance level of 50%, 

when no priors are taken into account (i.e. no assumption about the ratio of reciprocal to 

non-reciprocal events is being made). If priors are taken into account, the chance level 

increases to 66% (the proportion of reciprocal events), which is still considerably below the 

prediction performance of 78.3%. 
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Fig. 29: Performance of the Prediction Analysis. (A) Two-
dimensional decision space based on a Fisher linear discriminant 
analysis (F-LDA). F-LDA was used to transform signal magnitudes 
in the right caudate and midbrain into a new feature space that 
discriminates maximally between reciprocal and non-reciprocal 
events. The new space was split up into reciprocal and non-
reciprocal partitions using the Mahalanobis distance (see Section 
III.4.8 for methods) and transformed back into the signal magnitude 
space (plotted here). The resulting decision boundary splits the 
signal magnitude space into a reciprocal partition (reddish colors) 
and a non-reciprocal partition (yellowish colours). Actual reciprocal 
and non-reciprocal events are encoded by asterisks and circles 
respectively. (B) Performance of the discriminant classification 
algorithm as dimensionality increases. The prediction performance is 
considerably above the chance level of 66% (red dotted line) which 
takes into account the prior distributions of reciprocal and non-
reciprocal events.  

 

III.4.7. Discussion and Conclusion 

We used an anonymous social exchange task and event-related fMRI of interacting subjects 

to investigate the neural correlates of strategic interaction. The results demonstrate that 

brain signals in the caudate and midbrain encode strategic uncertainty that reflects both 

strategic learning and game context and predicts future strategic choice in a repeated game. 

In relating the signal magnitude in caudate and midbrain to strategic uncertainty, it may 

seem counterintuitive that non-reciprocal strategies (benevolence and malevolence) lead to 
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less uncertainty about the investor’s next move than tit-for-tat strategies. However, 

despite combining events of opposite valence, non-reciprocal strategies send a very strong 

signal to the Investor: benevolent strategies lead the Investor to increase investments, and 

malevolent strategies lead Investors to decrease investments, both leading to reduced 

uncertainty about the Investor’s next move. 

A highly salient event in the repeated trust game for the Trustee is the revelation of the 

investment screen, as this screen reveals critical information about the Investor, the 

Investor’s response to the Trustee’s previous repayments, and provides a basis for 

subsequent strategic choice. The GLM analysis revealed a complex response to this screen 

in the Trustee brain, including cortical activations in BA6/8 and orbitofrontal cortex 

(BA47). Despite being regarded as a traditional “motor” area, previous studies have 

reported BA6/8 activation during non-motor cognitive tasks (Paulus, Hozack et al. 2002; 

Tanaka, Honda et al. 2005), and elicits increased activation for predictions under 

uncertainty (Volz, Schubotz et al. 2003). The orbitofrontal cortex (BA47) has been reported 

to mediate emotional influences on decision-making (Damasio 1994) and to adapt 

responses to different behavioral contingencies (Rolls 1996). It has also been activated in 

risk-taking processes under different psychological contexts (Cohen, Botvinick et al. 2000). 

BA11/32 has been linked to social decision-making (Elliott, Friston et al. 2000; Rilling, 

Gutman et al. 2002), in particular during cooperative behavior (McCabe, Houser et al. 

2001).  

Therefore, the cortical activations we report in the Trustee brain to this salient event are in 

broad agreement with previous reports linking these cortical areas to uncertainty and social 

interaction. However, it is intriguing to note that these cortical activations were not 

correlated with future Trustee responses. Only signal magnitudes in caudate and midbrain, 

structures previously implicated in reward-processing in individual decision-making, 

predicted what type of strategy (reciprocal, non-reciprocal, or neutral) the Trustee would 

pursue later in the round. It is remarkable that strategic choice in a high-level social 

exchange can be predicted from a signal in subcortical structures, whereas reversal learning 
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and other forms of cognitive control have been attributed to prefrontal structures 

(Remijnse, Nielen et al. 2005). In Section III.6 the involvement of the caudate in trust is 

reported (King-Casas, Tomlin et al. 2005), which is also traditionally regarded to be a high-

level process. The involvement of subcortical structures in strategic choice, however, may 

be due to the involvement of these structures in prediction learning. The midbrain 

dopaminergic system plays an important role in the brain reward system (Schultz, Dayan et 

al. 1997) and has been shown to make predictions about likely rewards. Recent findings 

have identified reward prediction error signals from reinforcement learning in the human 

caudate and putamen (McClure, Berns et al. 2003; O'Doherty, Dayan et al. 2003; Seymour, 

O'Doherty et al. 2004; Knutson and Cooper 2005; Haruno and Kawato 2006) that are 

thought to involve outputs of the midbrain dopaminergic systems. It may, therefore, be 

another striking feature of these subcortical structures, which are highly conserved across 

species (Montague, Dayan et al. 1995), that they have been recruited to subserve novel 

forms of prediction learning in human social exchange. It may also be the case that these 

structures primarily mediate learning during strategic interaction, and that once a predictive 

model of a strategic partner is built, other structures are recruited (Delgado, Frank et al. 

2005). This learning phase might be crucial for strategic interaction, and crucial for 

updating models of strategic partners when predictions fail, consistent with the notion of 

prediction error-driven learning (Sutton and Barto 1998). Evidence from 

electrophysiological and fMRI data support our hypothesis that the midbrain encodes 

uncertainty. Recordings from dopaminergic neurons in the monkey midbrain have been 

shown to correlate with reward uncertainty (Fiorillo, Tobler et al. 2003; Volz, Schubotz et 

al. 2003), and activation in the midbrain has been correlated with the entropy of the 

outcomes during a classification learning task (Aron, Shohamy et al. 2004). However, in 

those cases the uncertainty was always associated with an action or stimulus that had 

already been chosen or presented before—here we present the novel element that midbrain 

activity is correlated with uncertainty about a future action. Support for the predictive 

nature of the midbrain activity comes from a recent electrophysiology study that showed 

that the activity of midbrain dopamine neurons reflects future choice as early as 122 ms 

after the presentation of a conditioning stimulus (Morris, Nevet et al. 2006). However, they 
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do not correlate the predictive activation with uncertainty, but favor the hypothesis that 

the dopamine neurons receive information about the decision from another structure. 

Although we cannot rule out that possibility, none of the cortical structures that was 

activated during the reveal screens showed the same predictive activation pattern as the 

midbrain or caudate. 

As subjects build up their reputation during middle rounds, deciding between following a 

reciprocal or non-reciprocal strategy is a crucial decision. It is therefore striking that 

strategic choice can be accurately predicted by an encoding of strategic uncertainty in the 

signal magnitude of caudate and midbrain. More specifically, this signal peaked 

approximately 16 seconds before the Trustee’s actual repayment decision began and 

approximately 31 seconds before the Trustee’s decisions were lodged, the behavioral 

manifestation determining whether the event is reciprocal or not. During this period, 

Trustees may be deliberating about their possible response; however, from the point of 

view of this predictive signal, their subsequent strategic choice has already been 

determined with high accuracy almost immediately following the revelation of the 

Investment screen. Previous studies have investigated how fMRI signals in the early visual 

areas can reliably predict attended orientation (Kamitani and Tong 2005), or how activation 

in different brain areas precedes risk-seeking and risk-averse behavior (Kuhnen and 

Knutson 2005); here we have shown how time-courses in reward-related areas strongly 

predict strategic behavior during a social exchange task, a ubiquitous and critical capacity 

for strategic interaction in everyday life. 

While the neuronal basis of social cognition has previously focused on cortical structures, 

we have designed an interactive task in which subjects’ performance (in the form of real 

monetary rewards) depends on predicting how others will respond to their own behavior, 

and have shown that a crucial element of social cognition, strategic uncertainty, is mediated 

by subcortical structures, midbrain, and caudate. Previously identified with reward learning 

under uncertainty, the finding that these structures are involved in a high-level social 

decision-making process and that activity in those structures evolves during game-play, 
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suggests that the brain may utilize common structures for both non-social and social 

forms of uncertainty learning. Further evidence for this possibility stems from our finding 

that the fMRI signal magnitudes in these structures corresponds to strategic uncertainty as 

measured by entropy and, by using discriminant analysis, accurately predicts a player’s 

future strategic choice. Altogether, these results suggest that the human brain’s remarkable 

social cognition capacities may depend in part on extending computational processes 

originally used for non-social uncertainty learning to the social domain. 

 

III.4.8. Methods 

General Linear Model (GLM) Analysis. GLM analysis (Friston, Holmes et al. 1995) was 

done in SPM2 by specifying a separate general linear model for each subject (fixed effects 

analysis). First all images were high-pass filtered in the temporal domain (filter width 128 

s) and autocorrelation of the hemodynamic responses was modelled as an AR(1) process. 

In the GLM model all visual stimuli and motor responses were modeled as separate 

regressors that were constructed by convolving a hemodynamic response function (hrf) 

with a comb of Dirac functions at the onset of each visual stimulus or motor response. 

Following the GLM analysis, a voxel-by-voxel contrast analysis was performed to identify 

voxels for which βinv > βrep, i.e., areas in the Trustee brain that were significantly more 

activated for the revelation of the investment screen than for the revelation of the 

repayment screen. Next, a random effects analysis was done on the contrast images βinv > 

βrep of all 48 trustees by implementing a one-sample t-test. A similar analysis (βrep > βinv) 

revealed that activations in the Investor brain are similar to those found in the Trustee brain 

(Fig. 30 and Table 2), but a detailed analysis of fMRI time-courses during the repayment 

screen did not allow us to distinguish between strategic choice, i.e., reciprocal, non-

reciprocal, and neutral strategies. We hypothesize that this is due to the long waiting time 

(~ 1 minute) between the repayment screen and the start of the next investment phase for 

the Investor. 
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Fig. 30: Activations in the Investor brain. Regions in the Investor 
brain that showed higher activation for the repayment screen than 
for the investment screen (x=0, y=0, z=0; neurological convention; 
statistical map shown alongside pseudo-color legend with t-scores, 
p≤0.001, df=46) 

Cluster Voxel Area 
pcor kE punc pFWE pFDR T (Z) X Y Z L/R Area 

0.012 330 0.010 0.000 0.000 7.41 5.98 -9 6 0 L Caudate 

   0.000 0.000 6.68 5.56 9 3 3 R  

0.010 356 0.008 0.000 0.000 7.19 5.86 -9 -96 0 L Visual Cortex 

   0.020 0.001 4.92 4.39 -6 -84 6   

   0.060 0.003 4.51 4.08 0 -75 3   

0.164 88 0.149 0.002 0.000 5.66 4.90 0 33 -9  Med. Fr. Gyrus, BA32 

0.258 55 0.248 0.006 0.001 5.36 4.70 -3 -24 -3 L Midbrain 

0.055 179 0.047 0.011 0.001 5.13 4.54 0 36 39  Sup. Fr. Gyrus, BA6/8/9 

   0.053 0.003 4.56 4.12 0 12 51  Sup. Fr. Gyrus, BA6/8 

   0.142 0.007 4.17 3.82 0 24 42   

0.488 15 0.557 0.020 0.001 4.93 4.40 -48 18 -9 L Inf. Fr. Gyrus 

0.548 9 0.659 0.342 0.014 3.76 3.49 -15 -60 6 L Posterior Cingulate 

0.526 11 0.621 0.564 0.026 3.45 3.24 -3 -75 33 L Parietal Lobe, BA7 

   0.593 0.028 3.42 3.21 -6 -78 42   

Table 2: Repayment > investment regions for the Investor. 
Local maxima of clusters in the Investor brain that show increased 
activity for the revelation of the repayment results relative to the 
investment screen (df=461, p<0.001 uncorrected, cluster size k≥8). 
Pcor= corrected (family-wise) cluster-level p-value; KE = cluster size 
(voxels); Punc= uncorrected cluster-level p-value; pFWE = corrected 

                                                 
1 One subject was excluded because the functional data could not be correctly coregistered to the anatomical scan. 
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(family-wise) voxel-level p-value; pFDR = corrected (false-
discovery rate) voxel-level p-value; T=T-statistic of voxel; (Z)=Z-
score of voxel; X, Y, Z = MNI coordinates of voxel location (mm); 
L/R = laterality (L=Left, R=Right) 

Region of Interest (ROI) Analysis. ROI analysis was performed in the midbrain and in 

the bilateral caudate on the 25 most activated voxels identified in the random effects 

analysis (except for the midbrain where only 21 voxels passed the desired voxel threshold). 

For each ROI the time-series of each voxel were extracted from the preprocessed images 

and the effects of no interest (i.e., all motion responses and visual stimuli other than the 

display of the investment and repayment screens) were removed using the parameter 

estimates from the GLM. After synchronizing the time-series to the behavioral times for 

each round, the percent signal increase was calculated. Next the time-series were averaged 

spatially (over all voxels in the ROI), temporally (over all rounds within a subject), and 

finally over all subjects. Hence error-bars on the time-courses were based on a single 

observation per subject. 

Entropy. For each strategic choice (reciprocal, non-reciprocal, and neutral) at round i we 

determined the probability of an investment increase pincrease (when 11 >−+ ii II ), decrease 

pdecrease ( 11 −<−+ ii II ), or no change pneutral ( 1|| 1 ≤−+ ii II ) in the next round. Using that 

probability distribution, the normalized entropy of the investor’s next move was calculated 

as ∑−=
x

xx ppH )(log3  for each strategy and for middle and late rounds.  

Fisher Linear Discriminant Analysis (F-LDA) and Classification. F-LDA is used to 

transform the data into a discriminant space where reciprocal and non-reciprocal events can 

be more easily separated. Let Rj
R
jR xE K1}{ ==  and Nj

N
jN xE K1}{ ==  be the sets of reciprocal 

and non-reciprocal events respectively, where R
jx  and N

jx  are L-dimensional vectors 

composed of the magnitudes from up to 9 different time-points in bilateral caudate and 

midbrain (at times t = 4, 6, and 8 seconds after the display of the Investment screen). 

Fisher’s linear discriminant is given by the vector ν  which maximizes:  
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which corresponds to the Langrangian: 
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t

B
t λ . 

After solving the Langrangian and some matrix manipulations, the problem reduces to a 

regular eigenvalue problem. The objective )(vJ is maximized when the eigenvector 
~
v  

corresponding to the largest eigenvalue is chosen. 

In order to estimate the performance of the F-LDA, the leave-one-out jack-knife method 

was used to classify test events in the new discriminant space.  As the time-points are 

correlated, the Mahalanobis distance was used to measure the distance between the test 

event and the reciprocal/non-reciprocal group centroids in the new discriminant space. The 



 

 

62
test event was classified as belonging to the group to which it is closest, that is, where the 

Mahalanobis distance is smallest. The Mahalanobis distance between a group of events 

with centroid ),,,( 21 Lcccc K= and covariance matrix ∑ and a vector ),,,( 21 Lxxxx K=  is 

given by: 

)()( 1 cxcxd t
M −∑−= − . 

The F-LDA and subsequent Mahalanobis-based classification algorithm was applied to 

signal magnitudes in bilateral and midbrain at the time of the peak of the hrf (at times t = 4, 

6, and 8). 

 

 III.5. Dynamic Cross-Brain Analysis 

 

III.5.1. Background 

The most commonly used technique to analyze functional magnetic resonance imaging 

(fMRI) data is the general linear model (GLM), developed by Friston et al. (Friston, 

Holmes et al. 1995). The GLM analysis is a linear regression method that first minimizes 

the squared distance between a model specified by the experimenter and an fMRI time-

series from a 3D volume element (voxel) in the brain, and then assesses the validity of the 

model using different statistical tests. Although the GLM has proven to be very successful 

for detecting activations in the brain, its relatively simplistic nature restricts it from 

exploring the complexity and richness of fMRI data. Another drawback of the GLM is that 

it cannot be used in its present form to study the brains of interacting subjects. As 

neuroscientists are becoming more knowledgeable about how an individual brain functions, 

an important challenge is to understand the neural correlates of (social) interaction: how do 

the brains of two or more people function when they interact, cooperate, or deceive each 

other? In this section we propose a new data analysis method that can be used in addition to 
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the GLM model to extract further information from the fMRI time-series of two 

interacting subjects.  

Our method makes use of dependency measures to tie strategic behavior exhibited by the 

players to temporal interactions between fMRI time-series. The continuous exchange of 

money between the two players in the trust game creates a rich and dynamic strategic 

behavior. More specifically, we were interested in relating strategic choice to temporal 

interactions in specific brain areas both within and in-between players. In the following we 

label this combination of neural and behavioral interactions as game dynamics.  

To perform the dependency analysis we used two common tools for assessing linear and 

non-linear correlations: the correlation coefficient and the mutual information. The idea of 

using mutual information as a tool for fMRI data analysis is not new. It has been 

successfully applied as an alternative to the GLM model by making fewer assumptions 

about the relationship between the model and the fMRI time-series (Tsai, J.W. et al. 1999). 

It has also been used in functional connectivity studies (Friston 2003; David, Cosmelli et al. 

2004) to assess correlations between different structures in the brain. Here I use it in 

addition to the correlation coefficient to detect non-linear temporal dependencies within a 

brain area. 

In order to explore game dynamics, we first isolated areas of interest using the GLM 

model, and then applied the dependency analysis to the fMRI time-courses to detect 

strategic interactions. In the following we start off by describing the theory behind the 

dependency analysis, then we present the methods and results, and we conclude with a 

discussion of the main findings. 

 

III.5.2. Dependency Measures 

The goal is to quantify the relationship between 2 discrete fMRI time-series 

),,,( 21 NxxxX K=  and ),,,( 21 NyyyY K=  acquired simultaneously over N time steps. In 
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order to detect dependencies between X and Y, I utilize two widely used techniques to 

assess correlation: 

1. The Pearson product-moment correlation or correlation coefficient (CC) 

2. The Mutual Information (MI). 

The correlation coefficient is a normalized measure of the linear correlation between 2 

fMRI time-series, whereas the mutual information is an information-theoretic tool used to 

measure both linear and non-linear dependencies. Explaining the concepts and theory that 

underlies mutual information would go beyond the scope of this thesis (Cover and Thomas 

1991), but it suffices to say that MI measures by how much knowledge of one of the time-

series reduces uncertainty about the other time-series. Despite being able to detect virtually 

any kind of dependency, the power of MI is limited by the fact that the number of samples 

necessary to obtain a robust estimate increases with the complexity of the dependency 

between the 2 time-series. The combination of CC and MI methods is an appropriate trade-

off between assessing non-linear relationships and obtaining robust estimates of those 

relationships. 

Estimation of the Correlation Coefficient: 

For the 2 time-series defined beforehand, the correlation coefficient is given by: 

])[][])([][(
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where x and y  denote the means of X and Y respectively. It can be shown that 

1~1 , ≤≤− YXρ . Time-series for which 0~
, ≈YXρ  are uncorrelated, whereas time-series for 

which 1~
, ≈YXρ  have a strong dependency.  

Estimation of the Mutual information: 

The mutual information between 2 random variables X and Y is expressed in bits of 

information and is given by: 

),()()();( YXHYHXHYXI −+= ,                                          (3) 

where H(X) and H(Y) are the entropies of X resp. Y, and H(X,Y) is the joint entropy of X 

and Y (entropy denoting the amount of uncertainty that is contained in a variable). It can be 

shown that ))(),(max();(0 YHXHYXI ≤≤ . If 0);( ≈YXI , the 2 variables are said to be 

independent; the higher the value of I(X;Y), the stronger the correlation between the 2 

variables. 

Calculating I(X;Y) requires computing the unknown joint probability distribution of X and 

Y, but it can be estimated using a frequentist inference (Moddemeijer 1989). For our 

purposes we consider the 2 time-courses to be discrete realizations of the random variables 

X and Y. If we partition X into m bins X
m

X MM K1 , we can assign a probability X
ip  to each 

possible outcome X
iM : 

N
kp

X
iX

i =  for mi K1= , where X
ik  is the number of times that X 

falls into bin X
iM , and N is the length of the time-series. Now the entropy of X can be 

written as: 
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If we also partition Y into m bins Y
m

Y MM K1  with respective probabilities 
N
k

p
Y
jY

j = , we 

can estimate the joint entropy of X and Y: 
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where 
N

k
p

XY
ijXY

ij =  is the joint probability of X
iMX ⊂  and Y

jMY ⊂ , and XY
ijk  is the 

number of occurrences of the pair ( )Y
j

X
i MM , . Combining (3), (4), and (5) yields the 

following estimate for the mutual information between X and Y: 
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However, this estimate is biased due to the finite length of the time-series, the errors 

introduced by partitioning the time-series into bins, as well as by the fact that the mutual 

information is bounded by 0. The corrected mutual information ∞I  can be decomposed into 

an estimate term and a bias term (Roulston 1999): 

);();();( YXIYXIYXI biasest +=∞ ,                                            (7) 

with 
N

BMMYXI MXYYX
bias 2

1);(
*** −−+

= , where *
XM  is the number of bins for which 

0≠X
ip , *

YM  is the number of bins for which 0≠Y
ip , and *

XYM  is the number of bins for 

which 0≠XY
ijp  (Roulston 1999). Note that this bias correction term is always less than or 

equal to 0. From (6) and (7) the bias corrected estimate of the mutual information between 

X and Y is thus given by: 
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One can notice that in addition to depending on the joint probability distribution of X and 

Y, this estimate of the mutual information also depends on the binning variable m and the 

sample size N. 

For the purpose of this paper we will consider a constant value for m, but we would like to 

compare MIs estimated from time-series of different lengths N, and hence we need to 

normalize the MI estimates. It can be shown that for large values of N (Goebel, Dawy et al. 

2005), the distribution of estI  follows a Gamma distribution with shape and scale 

parameters α  and β : 

( )βα ,~ ΓestI  where ( )21
2
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=β ,                                (9) 

with mean 
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bias correction term biasI  to estI , some estimates for ∞I will be negative. ∞I can be shifted 

back into the positive range by compensating for the largest possible shift (this is achieved 

when ( )jip XY
ij ,,0 ∀≠ , resulting in

N
m

N
mmmIbias 2

)1(
2

1 22 −−
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= ). It can be shown 

empirically through simulation that a shifted ∞I  still follows a Gamma distribution: 
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where c is some constant, and α′ is independent of N. 
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Fig. 31: Distribution of the Mutual Information. The mutual 
information (MI) between 2 random time-courses X and Y of length 
N (composed of scrambled fMRI signal magnitudes) was calculated 
using different estimator functions for MI. This procedure was 
repeated 100,000 times to obtain the distribution of the mutual 
information. Panel A shows the histogram of the biased distribution 

estI  for N=50 (left column) and N=100 (right column), as well as 
the best-fitting Gamma distribution. When applying the bias 
correction, the new distribution ∞I  shifts to the left (Panel B), but 
the shape remains the same. After normalizing the distributions 

( normI∞ ), the MIs for N=50 and N=100 follow the same Gamma 
distribution (Panel C), and can thus be directly compared. 

Now, by using the following property of the Gamma distribution: 

if ),(~ baX Γ  then  0),,(~),( >∀ΓΓ ttbabat ,                                 (11) 

and the mean value of  ∞I , it can be shown that: 
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⎟
⎠
⎞

⎜
⎝
⎛

′
′Γ=

∞

∞
∞ α

α 1,~
I
II norm ,                                                 (12) 

which is independent of N. Thus all normI∞  are comparable for any value of N, i.e., MI 

estimates for time-series of different lengths can be directly compared after normalizing the 

different estimates according to (12).The normalization procedure is illustrated in Figure 31 

for two values of N:  50=N (left column) and 100=N (right column). Panel A shows the 

distribution of estI , panel B shows the shifted distribution of ∞I , and panel C shows the 

normalized distribution normI∞ . 

 

III.5.3. Methods 

fMRI Statistical Analysis 

A general linear model (GLM) analysis was performed in SPM2 to identify brain regions 

whose BOLD response reflected information revealed by the Investment and Repayment 

screens. First a separate general linear model for each subject was specified (fixed effects 

analysis). All images were high-pass filtered in the temporal domain (filter width 128 s) 

and autocorrelation of the hemodynamic responses was modeled as an AR(1) process. In 

the GLM model all visual stimuli and motor responses were entered as separate regressors 

that were constructed by convolving a hemodynamic response function (hrf) with a comb 

of Dirac functions at the onset of each visual stimulus or motor response. The two 

regressors of interest were βinv and βrep, corresponding to the revelation of the investment 

and repayment screens respectively. Specifically, a one-sample t-test on βinv and βrep 

(random effects analysis) was performed to detect voxels where βinv > 0 and βrep > 0, i.e., a 

test that looked for regions of interest (ROIs) that were significantly more activated during 

the revelation of the investment and repayment screens in both the Investor and Trustee 

brains. 
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fMRI Time-Series Analysis 

We extracted and averaged the time-courses of the 27 voxels surrounding the peak of 

activation of each ROI, and removed the low-frequency components with a running-

average filter of length 21. In order to compare time-courses acquired from different 

subjects and on different MRI scanners, we demeaned and normalized the time-courses, 

and synchronized them to the events of interest. We verified that the distribution of the 

magnitudes followed a standard normal distribution with mean 0 and variance 1=σ . 

We next calculated the correlation between selected time points from the normalized time-

courses using the two aforementioned dependency measures—the correlation coefficient 

CC and the mutual information MI. The CC was calculated using the formula in (2). For 

MI each time-series was quantized into m=6 bins, where the binning limits were 

[ ]+∞++−−∞− ;2;;0;;2; σσσσ  with 1=σ . The mutual information was calculated according 

to (8) and normalized according to (12), in order to obtain a percentage change of MI. 

 

III.5.4. Results 

fMRI Results 

The structure of the finitely repeated trust game requires subjects to modify their behavior 

as the game evolves and as information about their opponents’ strategies becomes 

available. Although players decide how much money to invest or repay during the decision 

phase, we did not focus on that part of the game, as it is difficult to determine when exactly 

players make their decision. There are however two critical moments in each round that are 

at the core of strategic choice: the revelation of the results from the investment and 

repayment phases. As this new information is a basis for subsequent behavior and the 

resulting game dynamics, we performed a whole-brain analysis to detect areas that showed 

a high BOLD response during both the investment and repayment phases. We used a 
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general linear model, where the 2 regressors of interest were βinv and βrep, corresponding 

to the revelation of the investment and repayment screens respectively.  

 

Fig. 32: Activations in the Investor Brain. Activations in the 
Investor brain at the moment where the results of the investment 
phase (left panel) and repayment phase (right panel) are revealed 
(p≤0.001, minimum cluster size: 5, x=-30, y=6, z=0). Areas that are 
activated under both conditions are highlighted: occipital gyrus 
(green circles), inferior frontal gyrus (blue circles), and midbrain 
(yellow circles).  

 

Fig. 33: Activations in the Trustee Brain. Activations in the 
Investor brain at the moment where the results of the investment 
phase (left panel) and repayment phase (right panel) are revealed 
(p≤0.001, minimum cluster size: 5, x=-30, y=6, z=-3). Areas are 
highlighted in the same way as in the previous figure.  
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Three regions that were active during both revelation screens in Investors and Trustees 

were identified: middle/superior occipital gyrus (BA19), inferior frontal gyrus (bilateral 

BA9), and medial and lateral midbrain (Fig. 32 & 33, Table 3). These three regions were 

used as ROIs for the subsequent analysis. Note that some other areas were also activated 

during one of the revelation screens: bilateral caudate; superior frontal gyrus (BA6/8), 

bilateral orbitofrontal cortex (BA47) and medial frontal gyrus (BA11/32), but as none were 

activated for both screens, they were excluded from the analysis. Several other areas in the 

occipital lobe were also ignored as they were just activations in response to the visual 

stimuli. 

Coordinates 
Region (BA) 

X y z 

Investor 
Inv. screen 

Investor 
Rep. screen

Trustee 
Inv. screen 

Trustee 
Rep. screen

-30 -81 24 14.06 10.02 7.37 9.64 
 
Occipital Gyrus 
(BA19) 

30 -81 24 13.24 10.66 7.68 11.87 

-45 6 30 8.60 8.24 7.82 9.71 
 
Inf. Fr. Gyr. 
(BA9) 

45 6 30 5.61 5.38 4.88 4.11 

-21 -30 -3 8.10 6.60 4.14 6.40 

21 -30 -3 6.37 5.76 3.76 5.08 

 
Midbrain 

0 -27 -3 4.72 13.47 7.16 4.86 

Table 3: Summary of activations at the revelation screens. This 
table shows the t-values of areas that are activated in both Investors 
(46 subjects) and Trustees (47 subjects) at the moment of the 
revelation of the Investment and Repayment screens. 

Game Dynamics 

To detect temporal (i.e., dynamic) dependencies within areas, we needed to quantify 

strategic behavior in the trust game. As both Investor and Trustee made decisions in every 

round, they continuously had to adapt their strategy in response to what the other player 

did, resulting in a rich behavioral interaction. Consequently, we examined how changes in 

repayment ratios ΔRi were being made as a result to changes in investment ratios ΔIi. The 

change in investment ratio in round i is defined as 20/20/ 1−−=Δ iii III , where Ii and Ri 

are the investment and repayment amounts respectively for that round. Similarly, the 
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change in repayment ratio is defined as )3/()3/( 11 −−−=Δ iiiii IRIRR . This representation 

segregated the behavioral space into four quadrants, each reflecting strategies that the 

Investor and Trustee could follow (see Fig. 26). From a game-theoretic perspective, 

reciprocal events (green quadrants) reflect tit-for-tat strategies, which are a robust way to 

create human cooperation in repeated games (Axelrod and Hamilton 1981). Non-reciprocal 

events (red quadrants) are the result of altruistic (benevolent) and greedy (malevolent) 

strategies. Neutral events (blue circle) occur when both players have reached some stable 

pattern of exchange. 

 

Fig. 34: Game Dynamics. Schematic of the different possible 
interactions between brain areas in the trust game: cross-round 
interactions, cross-brain interactions, and cross-brain-and-round 
interactions. Ii and Ri represent the invested and returned money 
amounts, respectively, in round i. 

Next, we related these three types of behavioral strategies (reciprocal, non-reciprocal, and 

neutral) to the following game dynamics (Fig. 2B): 

1. Cross-round interactions: dependencies between time-courses at round i-1 and round i 

for the Investor ( I
iCR ) and the Trustee ( T

iCR ), 

2. Cross-brain interactions: dependencies between Investor and Trustee time-courses in 

round i ( iCB ), 
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3. Cross-brain-and-round interactions: dependencies between Investor time-courses in 

round i-1 and Trustee time-courses in round i ( IT
iCBR ) and dependencies between Trustee 

time-courses in round i-1 and Investor time-courses in round i ( TI
iCBR ). 

Note that for the cross-brain interactions we calculated the mutual information (MI) and the 

correlation coefficient (CC) between the time-series from the entire round, whereas for the 

other types of interactions we calculated MI and CC from the concatenated time-courses of 

the investment and repayment screens. 

 

Figure 35: Cross-Round Dynamics in BA9. Panel A shows how 
the mutual information between time-courses from successive 
rounds segregates among between 3 different strategic types of 
behavior (neutral, reciprocal, and non-reciprocal) in the left BA9. 
Reciprocal events include ‘pos-pos’ events (increase in the 
investment ratio followed by an increase in the repayment ratio) and 
‘neg-neg’ events (decrease in investment ratio followed by a decrease 
in the repayment ratio). Non-reciprocal events include ‘pos-neg’ 
(increase in the investment ratio followed by a decrease in the 
repayment ratio) and ‘neg-pos’ (decrease in investment ratio 
followed by an increase in the repayment ratio). Neutral events 
occur when neither the investment nor the repayment ratio changes. 
The mutual information (MI) associated with non-reciprocal events 
is significantly larger than the MI associated with reciprocal events, 
which in turn is significantly larger than the MI associated with 
neutral events. Panel B shows how the correlation coefficient 
segregates strategies in the same way in the right BA9. All p values 
are obtained from 1-sided t tests. 



 

 

75
We found that the dependencies could be segregated into the 3 behavioral categories 

defined above, e.g., Investor cross-round interactions in the left BA9 (as calculated by 

mutual information) are the largest for non-reciprocal events, and the lowest for neutral 

events (Fig. 35A). A similar pattern is found in the right BA9 when using the correlation 

coefficient instead of the mutual information (Fig. 35B). This trend can be observed for all 

3 types of interactions in different ROI’s, and is summarized in Table 4. In some cases only 

the MI would discriminate between categories, and for other cases only the CC would do 

so, showing that a combination of both methods is necessary to detect differences. 

 

Game Dynamics Area DM N R NR N<R N<NR R<NR 

BA9 L MI .063 .256 .471 0.0337 0.0006 0.0257 

BA9 R CC .141 .208 .280 0.0526 0.0014 0.0496 

BA19 L CC .319 .393 .488 0.0271 <0.0001 0.0059 

 
Investor 
Cross-round 

BA19 R CC .259 .361 .402 0.0038 0.0009 / 

BA9 L CC .210 .255 .333 / 0.0032 0.0399 
 
Trustee 
Cross-round 

BA9 R CC .137 .202 .245 0.0499 0.0032 / 

Cross-brain Midbr. R MI .065 .242 .365 0.0168 0.0013 0.1113 

BA19 L CC .079 .182 .207 0.0022 0.0010 / 
 
Cross-brain-and-
round CBR 
Investor-Trustee BA19 R CC .042 .195 .246 <0.0001 <0.0001 / 

BA9 L CC -0.03 .036 .136 0.0280 <0.0001 0.0053 

BA9 R MI -0.14 0 .241 0.0526 0.0002 0.0068 

BA19 L CC .088 .124 .253 / <0.0001 0.0018 

 
Cross-brain-and-
round CBR 
Trustee- 
Investor 

BA19 R CC .091 .142 .246 .0828 0.0002 0.0106 

Table 4: Summary of game dynamics. DM denotes what 
dependency measure was used: mutual information (MI) or 
correlation coefficient (CC). The magnitudes of the MI or CC 
associated with neutral (N), reciprocal (R), and non-reciprocal (NR) 
are listed in columns 4–6. Columns 7–9 show the statistical 
significance of the relationship N<R<NR using 1-sided t-tests. 
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III.5.5. Discussion and Conclusion 

In this study we have shown how mutual information and correlation coefficients can be 

used to detect temporal dependencies in fMRI brain responses and relate them to 

behavioral interactions. Those interactions, labeled as game dynamics, occur across rounds 

and across the brains of interacting players. 

More specifically, cross-round interactions in Investors ( ICR ) and Trustees ( TCR ), as well 

as cross-brain-and-round interactions between Trustees and Investors ( TICBR ) segregated 

between neutral, reciprocal, and non-reciprocal strategies in bilateral BA9. A similar 

division between strategies was observed in bilateral BA19 for cross-round interactions in 

Investors ( ICR ) as well as for cross-brain-and-round interactions (both ITCBR and TICBR ). 

Cross-brain (CB) interactions between Investors and Trustees also segregated between the 

3 types of strategies in the midbrain. In all types of interactions the nature of the 

segregation was the same, with non-reciprocal events having the largest level of 

dependency, and neutral events having the lowest level of dependency. In Section III.4. we 

reported a similar split-up between time-courses in the Trustee caudate and midbrain which 

actually predicted the strategy chosen by the Trustee. Although the magnitude ranking for 

the three types of strategies is slightly different in this study, this confirms the hypothesis 

that the brain treats them differently. 

We next investigated why the magnitude of the MI/CC is different for the three types of 

strategy and how it relates to the behavior. Since activation was found in BA9, the first 

hypothesis was that it is directly related to the visual display of the revelation screens. 

Intuitively, if 2 screens are visually very similar, then the time-courses associated with 

those screens should also be very similar, resulting in a high MI/CC. Conversely, if the 2 

screens are visually very different, then the time-courses should also be very different, 

resulting in a low MI/CC. Now, when players have converged to some kind of equilibrium 

in the trust game, i.e., when there is no change in investment or repayment ratio, then the 

MI/CC between successive screens should be very high, as the screens will look exactly the 

same. This is however exactly to opposite of what our data suggests with neutral strategies 
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displaying the lowest MI/CC. We performed an additional control by extracting the time-

courses from an area in the primary visual cortex (BA17), which was also activated during 

the reveal screens. When segregating the MI/CC into the 3 categories, no difference could 

be observed (Fig. 36). As this suggests that differences in MI/CC cannot be related to 

visual stimuli, we investigated other possible hypotheses and focused first on the cross-

round (CR) and cross-brain-and-round interactions (CBR). 

 

Fig. 36: Cross-round dynamics in primary visual cortex. (BA17, 
x=-12, y=90, z=0). This control analysis shows that neither the 
mutual information (left panel) nor the correlation coefficient (right 
panel) between time-courses from successive rounds segregates 
among strategic behaviors. All differences between neutral, 
reciprocal, and non-reciprocal categories are non significant (t-test). 

CR and CBR interactions occur in two areas, namely the middle/superior occipital gyrus 

(BA19) and the inferior frontal gyrus (BA9). BA9 is part of the dorsolateral prefrontal 

cortex (DLPFC), and the actual activation in BA19 is at the border between the cuneus and 

the precuneus. All three structures are involved in memory processing. More specifically, 

both the cuneus (Andreasen, O'Leary et al. 1995; Cabeza, Grady et al. 1997; Otten and 

Rugg 2001) and the precuneus (for a review, see Cavanna (Cavanna and Trimble 2006)) 

have been shown to play a role in memory retrieval, and the DLPFC is involved in working 

memory processes (Petrides 1994; Goldman-Rakic 1996) and in memory encoding and 

retrieval (Sandrini, Cappa et al. 2003). Moreover, the precuneus and prefrontal cortex have 
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been shown to be strongly interconnected and these projections tend to concentrate at the 

level of BA 8, 9, and 46 (Cavanna and Trimble 2006). We thus hypothesize that the 

differential level of MI/CC during CR and CBR interactions is due to the level of intensity 

of memory processing and retrieval in those areas. More specifically, the neutral strategy 

does not require much memory processing since the investment and repayment ratios have 

not changed from one round to another. For the reciprocal strategy, the brain needs to 

retrieve the information from the previous round and process it in order to evaluate the 

change in increase in investment and repayment ratios, resulting in a higher dependency 

between rounds. Finally, if the subjects are playing a non-reciprocal strategy, the memory 

load is even higher as the brain needs to assess not only the magnitude of the change, but 

also the direction of the change. This claim is supported by two recent studies: in an 

economic decision-making study (Deppe, Schwindt et al. 2005) it has been shown that 

making an easy decision (picking a favorite brand vs. picking another brand) reduces 

activity in the cuneus/precuneus as well as BA9. In another study (van Leijenhorst, Crone 

et al. 2006) both of those areas showed increased activity for high vs. low risk trials. 

Although both of those studies were decision-making studies, and were not specifically 

designed to look at memory load, one can argue that a hard or risky decision requires more 

memory load as opposed to an easy one, which is in line with our findings. 

The segregation between behavioral strategies was also found in the midbrain for cross-

brain (CB) interactions. Although the midbrain is not implicated in any memory retrieval 

tasks, a similar explanation about the correlation magnitudes can be advanced. Whereas the 

CC/MI interactions were obtained for the revelation screens, the cross-brain interactions 

were calculated over the course of the whole round, resulting in stronger MI for non-

reciprocal events and weaker MI for neutral events. The midbrain dopaminergic system 

plays an important role in the brain reward system (Schultz, Dayan et al. 1997) and has 

been shown to make predictions about likely rewards. We hypothesize that the reward 

computation between brains of two interacting players is more intensive and thus more 

synchronized for the non-reciprocal strategy than for the reciprocal or neutral strategies, 

resulting in higher mutual information. 
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We would like to emphasize the fact that in addition to finding temporal interactions 

within a brain area, we also detected interactions between the brains of interacting players 

in BA9, BA19, and midbrain. In Section III.6. it is shown how a common trust signal shifts 

backward in time in the caudate as the two players learn about each other, but the present 

findings are the first published results that show how the brains of two interacting players 

work together when exposed to various strategies. With respect to this, the usage of the 

mutual information as an alternate tool to the correlation coefficient turned out to be 

extremely useful, as it was able to pick up additional interactions. In Section III.5.2. we 

developed and standardized a method to use mutual information as a tool to capture non-

linear brain responses. Although mutual information is able to detect virtually every kind of 

correlation, the drawback is that the amount of data points needed to detect a dependency 

increases with the complexity of the correlation. This justifies the combined use of the 

mutual information and the correlation coefficient to detect dependencies in the brain, 

which has been shown to be a source of non-linearity. We would also like to call attention 

to the fact that we are not making any claim about the nature of the interaction of the brain, 

but merely detecting that there is a differential interaction based on the used strategy. As 

the actual interaction might vary from subject to subject, it would be incorrect to average 

over all subjects, and the limited number of events per trust game does not allow me to 

identify individual differences. This is however something that can be quite easily 

investigated if one disposes of enough trials by looking at the joint probability distribution 

of the signal magnitudes of two fMRI time-series. 

Lastly, it should also be noted that we did not look for possible interactions between 

different areas, but limited ourselves to temporal dependencies between identical brain 

structures and between players. When investigating the interactions between structures, 

special attention has to be devoted to the time component, as different structures might be 

activated at different times. This problem seems to be more easily approached by using 

methods from functional connectivity studies (Friston 2003; David, Cosmelli et al. 2004). 
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III.6. Trust and Reciprocity 

 

Note: The work in this section was mostly done by Brooks King-Casas, and is included 

here for completeness as it uses the same data. It was published as "Getting to know you: 

Reputation and trust in a two-person economic exchange." by King-Casas, B., Tomlin, D., 

Anen, C., Camerer, C., Quartz, S. and Montague, P.R. in Science 308(5718):78-83 (2005). 

 

III.6.1. Background 

The expression and repayment of trust is an important social signaling mechanism that 

influences competitive and cooperative behavior (Trivers 1971; Axelrod and Hamilton 

1981; Coleman 1990; Rachlin 2002; Adolphs 2003; Fehr and Fischbacher 2003). The idea 

of trust typically conjures images of complex human relationships, so it would seem to be a 

difficult part of social cognition to probe rigorously in a scientific experiment. 

Nevertheless, instances of trust can be stripped of complicating contextual features and 

encoded into economic exchange games that preserve its essential features (Camerer and 

Weigelt 1988; Fehr, Kirchsteiger et al. 1993; Berg, Dickhaut et al. 1995). For example, in a 

game in which two players send money back and forth with risk, trust is operationalized as 

the amount of money a sender gives to a receiver without external enforcement (Berg, 

Dickhaut et al. 1995). Such trust games now enjoy widespread use both in experimental 

economics (Camerer 2003) and neuroscience experiments (McCabe, Houser et al. 2001; 

Rilling, Gutman et al. 2002; Eisenberger, Lieberman et al. 2003; Sanfey, Rilling et al. 

2003; de Quervain, Fischbacher et al. 2004; Decety, Jackson et al. 2004; Glimcher and 

Rustichini 2004). By using a multi-round version of the trust game, (i) trust becomes 

bidirectional, in that both the investor and trustee assume the risk that money sent might not 

be reciprocated by their partner; and (ii) reputation building can be probed, as players 

develop models of one another through iterated exchange. 
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III.6.2. Reciprocity Predicts Trust 

Linear regression analyses of the behavior of 48 pairs of subjects identified reciprocity to 

be the strongest predictor of subsequent increases or decreases in trust (see Section III.6.6. 

for methods). Reciprocity is defined as a fractional change in money sent across rounds by 

one player in response to a fractional change in money sent by their partner. This definition 

is simply an operationalized version of tit-for-tat, that is, a repayment in kind. Deviations 

from neutral reciprocity (perfect tit-for-tat) act as a strong social signal in the context of this 

game. 

In particular, strong deviation in investor reciprocity was the best predictor of changes in 

partner trust and became the primary focus of our analysis. Investor reciprocity on round j 

was quantified as 1−Δ−Δ jj RI , where jIΔ is the fractional change in investment from round 

j-1 to j and 1−Δ jR is the last fractional change repayment ( 21 −− − jj RR ).  

We divided the exchanges of the 48 subject pairs into three approximately equal-sized 

groups: (i) benevolent reciprocity, (ii) neutral reciprocity, and (iii) malevolent reciprocity. 

These behavioral exchange data are summarized in Fig. 37A. For benevolent reciprocity, 

investors are actually being generous (sending more) in response to a defection by the 

trustee (decrease in repayment) (left panel). Conversely, for malevolent reciprocity, the 

investor repays the trustee’s generosity with a breach of trust (right panel). 

Using a general linear model analysis, we first sought trustee brain regions whose blood 

oxygenation level–dependent (BOLD) response was greater for benevolent or malevolent 

investor reciprocity than for neutral investor reciprocity. This analysis identified four 

significant regions: inferior frontal sulcus, superior frontal sulcus, thalamus, and 

inferior/superior colliculli. These findings are consistent with a surprise signal—an 

unsigned response to deviations in the expected behavior of one’s partner. A second 

analysis, comparing BOLD response for benevolent reciprocity to BOLD response for 

malevolent reciprocity, identified significant differences only in the head of the caudate 

nucleus (Fig. 37B and C): (i) BOLD response was greater for instances of benevolent 



 

 

82
reciprocity relative to malevolent and neutral reciprocity; and (ii) responses to 

malevolent reciprocity did not differ from those to neutral reciprocity. These voxels were 

subsequently subjected to a region-of-interest (ROI) analysis. 

 

Fig. 37: Correlates of reciprocity in a multi-round economic 
exchange. (A) Behavioral summary. Mean ±SE of investor (ΔI, red) 
and trustee (ΔR, black) behavior of rounds contributing to 
benevolent (n=125), neutral (n=134), and malevolent (n=125) 
investor reciprocity categories. In each round j, investor reciprocity 
was defined as rj=ΔIj-ΔRj-1; that is, the difference between the 
current change in payment ΔIj by the investor in response to the 
previous change in repayment ΔRj-1 by the trustee. In the case of 

benevolent reciprocity, investors are being generous (sending more) 
in response to a defection by the trustee (decrease in repayment). 
Likewise, in the case of malevolent reciprocity, the investor repays 
the trustee’s generosity (increase in previous repayment) with a 
breach of trust. (B) Response of trustee brain to investor reciprocity. 
A general linear model analysis identified four regions in the trustee 
brain that showed responses that were greater for the revelation of 
malevolent and benevolent investor reciprocity than for neutral 
reciprocity. Only one region, the head of the caudate nucleus, 
showed a response that was greater for benevolent relative to 
malevolent reciprocity (statistical parametric map shown alongside 
pseudo-color legend). No region showed greater responses to 
malevolent relative to benevolent investor reciprocity. (C) Region-
of-interest analysis of head of caudate in trustee brain. Average 
activity 6 to 10 s after the investor’s decision is revealed to trustee 
shows that the brain response to benevolent reciprocity was 
significantly greater from neutral (two-tailed t test, p<0.05) and 
malevolent reciprocity (two-tailed t test, p<0.005).  
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III.6.3. “Intention to Trust” Signals 

We expected to find a hemodynamic response in this ROI that correlated with the trustee’s 

next choice to repay, and we expected that such signals might show strong cross-brain 

correlations. The reason for this expectation derived from the fact that reciprocity 

expressed by the investor ( 1−Δ−Δ jj RI ) strongly predicted (r=0.56) future changes in trust 

repayment, jRΔ ) by the trustee. For example, benevolent reciprocity by the investor is 

expected to generate the intention to increase repayment (trust) in the brain of the trustee. A 

similar intention to decrease trust (repayment) would be expected in the trustee brain 

following malevolent reciprocity by the investor. Some part of the investor’s brain should 

anticipate the neural consequences of changes in their own reciprocity on the trustee’s 

brain; therefore, we also expected that such ‘‘intention to trust’’ signals would show strong 

cross-brain correlations. Indeed, they did. 

III.6.4. Model Building of Partner: Cross-Brain Analysis 

To carry out this analysis, we separated the hemodynamic responses in the caudate of the 

trustee brain into three groups according to whether their next repayment was larger, 

smaller, or the same as their last repayment. We were particularly interested in the net 

neural response to the intention to increase trust (repayment), because this act embodies 

risk on the part of the trustee and signals to the investor a degree of willingness to 

cooperate. We computed the net intent-to-trust signal in the ROI of the trustee caudate as: 

H(increased repayment next round) – H(decreased repayment next round) 

where H represents the hemodynamic response. Using this difference signal in the trustee 

brain, we computed cross-brain correlations with the investor brain and sought regions with 

the largest correlations. We were particularly interested in how the cross-brain correlations 

might change as the task developed and the subjects built better models of one another. 

Consequently, changes in this signal were examined across early (3 and 4), middle (5 and 

6), and late (7 and 8) rounds using crossbrain and within-brain correlational analysis. 

Figure 38 illustrates the cross-correlograms of this signal with activity in two regions: the 
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middle cingulate cortex (MCC) of investors and the anterior cingulate cortex (ACC) of 

trustees. The blue traces indicate that MCC activity in the investor brain and ACC activity 

in the trustee brain were most strongly correlated (r>0.59) when the MCC signal was 

shifted forward in time by 14 s. The important point here is that he strongest cross-brain 

correlation did not shift significantly in time from early to late rounds; that is, neural 

responses in both brains to fiducial markers of the task did not change relative to each 

other. However, the peak of the cross-correlogram between investor MCC activity and the 

trustee ‘‘intention to trust’’ signal in the caudate showed a pronounced 14 s shift from early 

to late rounds (green traces). A similar finding resulted for the within-brain analysis of the 

trustee, using ACC activity and he same ‘‘intention to trust’’ signal in the caudate (red 

traces). These analyses show that a dramatic change in the relative timing of the measured 

BOLD signals was taking place either in the ‘‘intention to trust’’ signal of the trustee 

caudate or in both the trustee ACC and investor MCC. As shown in Fig. 39, the source of 

the shift is in the ‘‘intention to trust’’ signal of the trustee caudate. 

 

Figure 38: Correlograms of the ‘‘intention to trust’’ with activity 
in investor MCC and trustee ACC. (A) Regions of correlation. 
The ‘‘intention to trust’’ signal in the trustee caudate was correlated 
within and between-brains with regions that responded strongly to 
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basic behavioral events within each round: The middle cingulate 
cortex (MCC) of the investor was strongly active when the investor 
lodged a decision, and the anterior cingulate cortex (ACC) of the 
trustee was strongly activated when an investor’s decision was 
revealed. (B) Correlograms of caudate, ACC, and MCC. The caudate 
signal between rounds of increased and decreased repayment 
isolated an ‘‘intention to trust’’ signal in trustees. Average ‘‘intention 
to trust’’ signal was correlated with average ACC signal of trustee 
and average MCC signal of investors during the investment phase of 
each round and is plotted with different time shifts. Correlograms 
are shown for early (rounds 3 and 4) and late (rounds 7 and 8) 
periods of the game. Blue traces indicate that the strongest cross-
brain correlation for responses to basic behavioral events of the 
game did not shift significantly in time from early rounds to late 
rounds. The peak of the crosscorrelogram between investor MCC 
activity and the trustee ‘‘intention to trust’’ signal in the caudate 
shows a pronounced 14 s shift from early to late rounds (green 
traces). A similar result is evident in the within-brain analysis of the 
trustee, using ACC activity and the same signal in the caudate (red 
traces). 

Figure 39 shows the time traces of the hemodynamic responses in the head of the trustee 

caudate segregated according to future changes in trust (increases are shown in black, 

decreases in red). The amplitude and time effects associated with the 14 s time shift are 

shown in Fig. 39A and summarized in the bar graphs in Fig. 39B. In early rounds of the 

task (rounds 3 and 4), the peak of the response for intended increases in trust (i.e., an 

increase in next repayment) occurs after the investor’s decision is revealed. In middle 

rounds (rounds 5 and 6), this response begins to drop back toward baseline and begins to 

grow at a time just before the revelation of the investor’s decision. By late rounds (rounds 7 

and 8), this peak is anticipatory and occurs before the revelation of the investor’s decision. 

These data are consistent with a signal for intended increases in trust changing from being 

reactive to anticipatory and suggest that the trustee is building a model of the investor’s 

likely next move. To test this model-building idea directly, we performed a separate 

version of the trust game and queried the trustees on each round about their expectation of 

the next investment. 
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Fig. 39: Neural correlates of reputation building in the trustee 
brain. (A) ROI time series. An ROI analysis was performed on voxels 
identified by the contrast illustrated in Fig. 37B. We segregated 
hemodynamic responses in response to the revelation of the investment 
(time=0s) according to the next decision made by the trustee (trustee’s 
decision period begins at t= 22s). Hemodynamic amplitudes for future 
increases in trust (ΔR>5%; black trace) were greater (p<0.05) than 
future decreases in trust (ΔR<-5%; red trace) in early rounds (top). As 
the game progressed (middle and bottom), the peak of this differentiated 
response underwent a temporal transfer from a time after the revelation 
of the investor’s decision (t=10 s; a reactive signal) to a time before this 
same revelation (t=-4 s; an anticipatory signal). Traces represent 
subsamples of 144 rounds in which repayment increased or decreased 
≥5% (mean=20; SD=4.4). (B) ROI bar plot. The difference between the 
intention to increase trust (black trace of (A)) and the intention to 
decrease trust (red trace of (A)) is plotted for t=-4 s and t=10 s. The 14 s 
temporal transfer from reactive to anticipatory is consistent with the 
development of a reputation for the investor within the trustee brain. 

Figure 40 illustrates the results of this additional experiment (n=21 pairs, behavior only). 

On each round, both the investor and trustee were simultaneously prompted. The investor 

was cued to make their investment and the trustee was cued to guess the investor’s decision 

(Fig. 40A). Timings were otherwise kept the same. The results of these experiments are 

summarized as the fraction of highly accurate guesses (to within 1$± ) by the trustee as a 
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function of round. Notice that the increase in the trustee’s accuracy across rounds 

parallels the time during which the temporal transfer of the neural signal correlated with 

future increases in trust. 

 

Fig. 40: Model building in the trustee brain. In a separate 
anonymous trust game (n=21 pairs), trustees were queried to ‘‘guess the 
amount invested’’ just before the revelation of the investor’s payment 
decision to both brains; otherwise, the task was identical to that of the 
original game (n=48 pairs) from which scanning data were derived. (A) 
Timeline for queries to each player (investor and trustee). During the 
investment phase of the exchange, the trustees were prompted to guess 
the investor’s decision. The trustee response to this query was not 
revealed to the investor. (B) Model building—highly accurate guesses by 
trustee of investor’s next payment. A highly accurate guess was defined 
as ±1 monetary unit from the actual investment (±5%). These data show 
that a model of the investor’s next move is available to the trustee by the 
middle to late rounds of the exchange and is not available in the early 
rounds. 

III.6.5. Discussion and Conclusion 

We used an anonymous trust game in conjunction with event-related fMRI to probe neural 

correlates of the expression and repayment of trust between interacting human subjects. 

Important social relationships are rarely a single expression of trust between two strangers; 

thus, we made the game multi-round instead of one-shot. Specifically, we sought to 
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examine trust in a context in which (i) trust was expressed by both partners in the 

relationship, and (ii) trust could change over time and with experience (Dayan and Abbott 

2001). 

Using a multi-round trust game and a large sample of subjects (n=48 pairs), we identified a 

social signal (reciprocity) expressed by the investor that strongly predicted changes in trust 

by the trustee. This social signal elicited two notable effects in the trustee brain: (i) brain 

regions whose activity correlated with large changes in reciprocity in a manner consistent 

with a surprise response; and (ii) a specific brain region, the head of the caudate nucleus, 

where the BOLD response was greater for benevolent reciprocity than for malevolent 

reciprocity. The strong relation between investor reciprocity and subsequent changes in 

trustee repayment led us to probe the ‘‘intention to trust’’ in the caudate nucleus. Rounds 

were segregated on the basis of whether trustees subsequently increased or decreased their 

repayment, representing a signal of the ‘‘intention to trust.’’ Cross- and within-brain 

correlations of this intended-trust signal with neural responses to fiducial markers of the 

task (investment submitted and investment revealed) identified a remarkable temporal 

transfer of the ‘‘intention to trust’’ signal from a time just after the revelation of the 

investor’s decision (a reactive signal) to a time just before this same revelation (an 

anticipatory signal). This shift suggested that the signal would correlate with the 

development of a model of the investor in the trustee’s brain. To examine this latter 

possibility, we ran a separate behavioral experiment (n=21 pairs) to test the trustee’s ability 

to accurately guess (to within ±$1) the decision by the investor. The error rate of these 

accurate guesses dropped over the same time period during which the temporal transfer of 

the future trust signal shifted from reactive to anticipatory. This observation is consistent 

with the interpretation that the observed signals in the trustee caudate reflect the 

development of a reputation for their partner. 

Lastly, we address an important detail about the amplitude differences between the caudate 

response to impending increases (black traces, Fig. 39) and impending decreases in trust 

(red traces, Fig. 39). One explanation, supported by the behavioral data, is that increases in 
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trust ( RΔ ) may have a greater effect on their partner’s subsequent behavior ( IΔ ) than 

decreases in trust. If this were the case, an efficient computational system would devote 

more computational steps, and hence more energy, to deciding the magnitude of an 

increase in trust relative to a decrease. In this particular version of the trust game, increases 

in trust by the trustee were correlated positively with changes in investment on the 

subsequent round by the investor (r=0.27). This was not true for decreases in trust, where 

there was no such correlation (r=0.00). The absence of predictive information associated 

with a decrease in trust suggests that no analogous energetic investment should be made.  

Taken together, these results suggest that the head of the caudate nucleus receives or 

computes information about (i) the fairness of a social partner’s decision and (ii) the 

intention to repay that decision with trust. In early rounds of the game, the ‘‘intention to 

trust’’ is evident only after an investment is revealed. With experience, this signal shifts to 

a time preceding the revelation of the investment. This finding is reminiscent of analogous 

shifts of reward prediction error signals from reinforcement learning (Berridge 2000; 

Dayan and Abbott 2001; Dickinson and Balleine 2002) that have recently been identified 

by fMRI in human caudate and putamen (Pagnoni, Zink et al. 2002; McClure, Berns et al. 

2003; O'Doherty, Dayan et al. 2003; O'Doherty, Dayan et al. 2004; Seymour, O'Doherty et 

al. 2004) and are thought to involve outputs of midbrain dopaminergic systems. These 

prediction error signals were identified using simple conditioning experiments in which 

lights predict the future delivery of rewards (e.g., squirt of juice or delivery of monetary 

return) (Schultz, Dayan et al. 1997; Montague, Hyman et al. 2004). The scheme is simple: 

An initially neutral light is flashed; it causes no change in dopaminergic activity, but the 

later (surprising) arrival of juice causes a burst of activity in the dopamine neurons. 

Repeated pairing of light followed at a consistent time later by juice causes two dramatic 

changes: (i) The response to juice delivery drops back to baseline and (ii) a burst response 

occurs just after the light is flashed. This temporal transfer of the burst response to the light 

is thought to represent the future value predicted by the light. The simplicity of these 

experiments is somewhat beguiling. 



 

 

90
The temporal transfer in the conditioning experiments is directly analogous to the 

temporal shift that we observe in the trustee brain as they build a model of the investor’s 

response, but framed in the context of a social exchange. In the trustee brain, the analog to 

the light is the cue for the social partner to invest, and the ‘‘social juice’’ is change in 

investment. We know that positive changes in investment correlate with subsequent 

positive changes in repayment; a correlation that grows over the rounds of the task. Early in 

the exchange, the trustee’s intention to increase trust occurs after revelation of the 

investor’s decision to increase investment (Fig. 39A); that is, the increased investment is 

surprising. The intention to increase repayment therefore follows this revelation. As the 

game proceeds, this ‘‘intention to trust’’ response transfers to a time before the revelation 

of the investor decision to increase investment. The only open issue for this speculation is 

why the signal transferred to this particular time. There are several consistent predictors of 

the revelation of the investor’s decision, but the signal backed up in time to occur just 

before this. This social prediction error interpretation is provocative and consistent but 

leaves this important question unanswered. The more general hypothesis is that the 

dopaminergic system can be used to establish more complex goal states (‘‘rewards’’) and 

make more complex predictions through connections from prefrontal cortex onto midbrain 

and other subcortical structures (O'Reilly, Braver et al. 1999). 

It is possible that similar economic exchange tasks could be used to explore social 

processing deficits in a variety of neuropsychiatric disorders. These include populations 

that have faulty or missing capacities for building correct models of others (e.g., 

schizophrenia or autism spectrum disorders) (Hill and Frith 2003; Lee, Farrow et al. 2004), 

as well as individuals who misattribute motivations and intentions to others (e.g., 

borderline personality disorder) (Johnson, Hurley et al. 2003). 

III.6.6. Methods 

Reciprocity. Investments (I) and repayments (R) were scaled by the amount available to be 

sent ($20 for I; three times the amount invested for R). Linear regressions identified 

significant predictors of change in trust for investors ( jIΔ ) and trustees ( jRΔ ). Three 
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predictors of jIΔ were examined: (i) previous repayment ( 02.0:1 =− rR j ), (ii) change in 

repayment ( 10.0:1 =Δ − rR j ), and (iii) previous trustee reciprocity 

( 31.0:11 =Δ−Δ −− rIR jj ). Three predictors of jRΔ were examined: (i) previous investment 

( 10.0: =rI j ), (ii) change in investment ( 26.0: =Δ rI j ), and (iii) previous investor 

reciprocity ( 56.0:1 =Δ−Δ − rRI jj ). Thus, reciprocity was a stronger predictor than either 

amount previously sent ( jI or 1−jR ) or change in amount previously sent ( jIΔ or 1−Δ jR ). 

However, it is noteworthy that reciprocity expressed by the investor ( 56.0=r ) was more 

strongly related to change in trust than reciprocity expressed by the trustee ( 26.0=r ). This 

difference is likely accounted for by an asymmetry in the structure of the exchange: In each 

round, the investor can accumulate money ($20 endowment) without the cooperation of the 

trustee, whereas the trustee is wholly dependent on the investor’s cooperation. This 

dependency of the trustee on the investor likely results in greater responsivity by the trustee 

to changes in investor reciprocity. 

 

 

III.7. Agency Attribution 

 

Note: The work in this section was mostly done by Damon Tomlin and Amin Kayali, and 

is included here for completeness as it uses the same data. It was published as "Agent-

specific responses in the cingulate cortex during economic exchanges" by Tomlin, D., 

Kayali, A., King-Casas, B., Anen, C., Camerer, C., Quartz, S. and Montague, P.R. in 

Science 312(5776):1047-1050 (2006). 

III.7.1. Background 

Social exchange occurs in species ranging from insects to humans (Hamilton 1964; 

Hamilton 1964; Trivers 1971). In primates, reciprocal interactions with nonkin occur 
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repeatedly, thus necessitating the capacity to assign social credit or blame for shared 

outcomes and to act appropriately according to these assignments (Maynard Smith and 

Price 1973; Axelrod and Hamilton 1981; Nowak and Sigmund 1992). In humans, 

reciprocity is a central feature of the collection of psychological mechanisms necessary to 

support social exchange (Trivers 1971); yet, the underlying neural representations of these 

mechanisms remain murky. In almost all social exchanges, one must detect and accurately 

track which social agent (who) gets credit for an outcome. Should credit for an outcome be 

assigned to one’s own actions or those of one’s partner? Perhaps such assignments are 

more a matter of degree—assigning the degree-of-credit to some shared outcome. 

Understanding such agent-specific mechanisms is important, because the assignment of 

social agency (Frith and Frith 2001; Vogeley, Bussfeld et al. 2001; Kelley, Macrae et al. 

2002; Vogeley and Fink 2003; Ochsner, Knierim et al. 2004; Seger, Stone et al. 2004; 

Lieberman and Pfeifer 2005) appears to break down in a range of mental illnesses (Frith 

and Frith 1999; Baron-Cohen and Belmonte 2005; Brune 2005). 

Social agency computations are also a prerequisite for generating models of others’ mental 

states. This latter capacity, called theory-of-mind, is highly developed in humans and has 

been shown to activate a consistent set of brain regions in neuroimaging experiments 

(Brunet, Sarfati et al. 2000; Gallagher, Happe et al. 2000; Wicker, Perrett et al. 2003; 

Decety, Jackson et al. 2004). Recent work has complemented these theory-of-mind 

experiments by using interactive economic games as ecologically realistic models for 

human exchange (Greene, Sommerville et al. 2001; McCabe, Houser et al. 2001; Rilling, 

Gutman et al. 2002; Eisenberger, Lieberman et al. 2003; Sanfey, Rilling et al. 2003; de 

Quervain, Fischbacher et al. 2004; Rilling, Sanfey et al. 2004; Bhatt and Camerer 2005; 

Delgado, Frank et al. 2005; King-Casas, Tomlin et al. 2005; Singer, Seymour et al. 2006). 

These experiments have elicited not only brain responses in previously described theory-of-

mind networks (Rilling, Gutman et al. 2002; Sanfey, Rilling et al. 2003; Rilling, Sanfey et 

al. 2004), but also have elicited formerly unreported activations along the cingulate cortex 

that correlate with the revelation of a social partner’s decision (Sanfey, Rilling et al. 2003). 

Although evoked during an economic exchange with another human, these cingulate 
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activations did not modulate as a function of the fairness of the exchange, nor did they 

occur in exchanges with computer partners (Rilling, Sanfey et al. 2004). 

This lack of sensitivity to measures of outcome suggests that these responses do not encode 

some metrical aspect of the trade; instead, they are consistent with the social agency 

computation described above. We tested this possibility directly on the multi-round trust 

game. 

III.7.2. Cross-Cingulate PCA Analysis 

Given the previously reported activations in the anterior and posterior portions of the 

medial cingulate during a social exchange (Rilling, Sanfey et al. 2004), a detailed analysis 

of the cingulate cortex in each pair of subjects was performed. 

 

Fig. 41: Cingulate segmentation. (A) The population of voxels 
comprising the cingulate gyrus in both hemispheres was separated 
into 11 non-overlapping sub-domains based upon their location 
relative to a predetermined origin.  Each group of voxels was 
designated with a letter, beginning with the most posterior portion 
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of the gyrus, and rotating through the anterior toward the most 
ventral part of the cingulate.  The boundaries for these zones are 
shown.  The cingulate’s width and distance from the origin were not 
identical for each zone, leading to small variations in the number of 
voxels comprising each region. The segment boundaries were 
selected so as to minimize these variations. (B) Total number of 
functional voxels for each of the 11 cingulate domains examined. 

We segmented the medial cingulate and the surrounding paracingulate cortex into separate 

spatial domains (Fig. 41), computed cross-cingulate and cross-paracingulate correlation 

matrices for different lags in each phase of the task (investment phase and repayment 

phase), and carried out temporal principal component analysis (PCA) on the resulting 

three-dimensional correlation matrix (Fig. 42) (Hyvarinen, Karhunen et al. 2001; Cichocki 

and Amari 2003). Analysis yielded complementary spatial patterns for cingulate cortices 

(Fig. 42); that is, patterns of activation in one phase were transposed across role when 

analysis was performed for the other phase. 

 

Fig. 42: Cross-cingulate correlations. Cross-cingulate principal 
component analysis (PCA) revealed distinct, but complementary 
patterns when applied to the cross-correlations between cingulate 
cortices of investor and trustee. 

III.7.3. Differential “Own” and “Other” Responses 

The cross-cingulate analysis led us to examine the hemodynamic time series in each 

cingulate segment. This region-of-interest analysis revealed three distinct response types 

(Fig. 2A). The first followed the submission of a subject’s own decision (unimodal “own”- 
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dominated response); the second followed the visual presentation of a partner’s decision 

(unimodal “other”-dominated response). This is a remarkable finding, because visual 

presentation of the subject’s own decision elicited little response in the cingulate cortex. 

The third response type was bimodal, yielding approximately equal responses after 

submission of one’s own decision and revelation of the partner’s decision. However, the 

peak amplitude of these distinct response types was not uniform across the anterior-

posterior axis of the cingulate. Instead, they displayed a systematic spatial variation that 

was complementary across the basic response types (“own” and “other”). Specifically, the 

submission of one’s own decision elicited maximal activation in middle cingulate regions 

(Fig. 43A, segment G), whereas viewing the revelation of a partner’s decision yielded 

maximal activation in anterior and posterior cingulate (an example of an anterior response 

is shown in Fig. 43A, segment K). This result was in stark contrast to the results of the 

paracingulate analysis, which indicated that, although the dorsal anterior cingulate cortex 

was highly activated during the experiment, there was no spatial selectivity for either 

stimulus. In fact, the dorsal anterior cingulate cortex responded strongly to the submission 

of decisions and the revelation of partner choices, and it was the only paracingulate region 

significantly activated by either. 
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Fig. 43: Agent-specific responses and their pattern disappear 
outside of economic exchange. (A) Calculation of response 
pattern diagrams. Traces are the average magnetic resonance (MR) 
signal during subject decision phases (magenta lines) and during 
partner decision phases (black lines); error bars represent the 
standard error of the mean (n=200 subjects). To compute the 
magnitude of responses to submitting a decision, MR values were 
selected from the time of peak response and the peak’s two flanking 
points (teal boxes). These values, when averaged, represent the 
responsiveness of a segment to the submission of the decision. This 
measure was performed for all segments, and a pseudo color image 
was produced, as depicted in Figs. 43 and 44. For responses to 
partner reveal screens, MR values corresponding to the peak activity 
after screen onset and the peak’s two flanking points (red boxes) 
were averaged and compiled into a similar pseudo color map. (B) 
The average response to submitting a decision is shown for subjects 
playing the linked trust game (n=200), and a predominance of the 
middle cingulate is apparent. (C) Average response profile to 
submitting decisions in the unlinked motor control experiment 
(n=15). No significant differentiation was observed across the 



 

 

97
cingulate of subjects in this task, but response levels in the middle 
cingulate were significantly different than those in the linked trust 
game (p=0.00001). (D) Subjects from the linked trust experiment 
(n=200) demonstrate the average response to viewing a social 
partner’s decision. The predominance of responses in the anterior 
and posterior poles of the cingulate is apparent in this group. (E) 
Average response to viewing screens in the unlinked visual control 
experiment (n=17). No significant differentiation was observed 
across cingulate domains, but responses in both anterior and 
posterior regions were significantly different than those in the linked 
trust game (p<0.01). Maximum activation in (B) and (C) is 0.21% 
change in MR signal; maximum activation in (D) and (E) is 0.12%; 
minimum activation for each is 0.00%. 

III.7.4. Agent-Specific Responses Disappear in Control Experiments 

The distinct response types and the systematic spatial variation of peak amplitudes across 

the anterior-posterior axis disappeared completely in motor control (n=15; Fig. 43C) and 

sensory control experiments (n=17; Fig. 43E) not involving exchange with another agent. 

In the motor control, subjects reiterated the motor responses of randomly selected investors. 

We applied the same region-of-interest analysis to the control data (Fig. 43). Statistical 

comparison of responses in each of the cingulate domains showed that responses differed 

significantly between the normal trust task and the control tasks. In particular, no 

significant response was present in the middle cingulate (Fig. 43C), ruling out the 

possibility that middle cingulate activation in the trust game was the result of motor activity 

produced by button tapping. In the sensory control, partner reveal screens from the trust 

game were viewed passively by a separate cohort of subjects (n=17). Because partner 

reveal screens in the trust game had novel content and had been generated by an external 

agent, we could not use the original data set to separate responses to social or novel stimuli. 

Thus, subjects in the sensory control task were informed that their compensation depended 

on money shown under the “gave” label on the screen, but were not told about the social 

task from which this screen was derived. This manipulation was performed so that a 

screen’s content still held novel and valuable information, but was devoid of social 

interaction. In each of the 11 cingulate domains, BOLD responses after each of 10 outcome 

screens did not resemble those obtained during the analogous presentation in the linked 

experiment (Fig. 43E). There was no systematic spatial variation in response amplitudes 

across the cingulate gyrus. 
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III.7.5. Cingulate Pattern Remains Constant for Several Variables 

The results provide strong support for three new findings: (i) agent-specific response types 

localized on the medial bank of cingulate cortex, (ii) a systematic spatial variation of each 

response type across the anterior-posterior axis of cingulate cortex, and (iii) a dependence 

of both signals on the presence of a responding agent. Despite the relative simplicity of this 

economic exchange game, other variable(s) related to this task may have been the 

underlying cause of the different response types, the spatial variation across the cingulate, 

and the difference in response to visual revelation of one’s own decision and one’s 

partner’s decision. However, the different response types and their systematic but 

complementary spatial variation across the cingulate did not change as a function of a range 

of dimensions (Fig. 44). 

The most dramatic dimensions tested in Fig. 44 are reciprocity and social context (personal 

versus impersonal). As shown in Section II.6, reciprocity, expressed as degree of tit-for-tat 

behavior across rounds, acted as a powerful behavioral signal to one’s partner and elicited 

strong, measurable neural correlates. Yet, as illustrated in Fig. 44 (bottom three rows), 

differences in reciprocity had no effect on the response types or on their spatial variation 

along the cingulate. The same result held for the difference in social context (personal, 

n=104; impersonal, n=96), where prior exposure to one’s partner, the sight of their picture 

in each round, and the knowledge of an imminent encounter afterward had no effect. 

Likewise, no differences were observed when comparing subject role (investor or trustee), 

sex of subject, or amount of money sent or received. 
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Fig. 44: Cingulate pattern of ‘‘me’’ and ‘‘not me’’ remains 
constant across a range of variables. All responses to decision 
submission are shown in the left column, whereas those responses 
to partner reveal screens are shown in the right column. With the 
exception of the reciprocity and amount diagrams, all responses 
were averaged across rounds before compilation. Rows labeled 
‘‘Personal’’ and ‘‘Impersonal’’ separate activity across social context: 
the personal (n=104 individuals) and impersonal (n=96 individuals) 
tasks. Rows labeled ‘‘Investors’’ and ‘‘Trustees’’ demonstrate the 
consistency of the responses across the two different roles (n=100 
for each). Rows labeled ‘‘Males’’ and ‘‘Females’’ demonstrate that 
these responses do not differ across gender (n=100 for each). Rows 
labeled ‘‘Small amount’’ and ‘‘Large amount’’ show that these 
patterns do not depend upon the amount of resource sent or 
received by the player (upper 25% versus lower 25% of payments; 
n454 and 161, respectively). Finally, the rows labeled ‘‘Positive,’’ 
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‘‘Neutral,’’ and ‘‘Negative’’ reciprocity depict responses across 
different valences of a behavioral variable of already known interest. 
These diagrams correspond to average BOLD responses to positive 
(values>0.1; n=377 choices), neutral (-0.1≤values≤0.1; n=865 
choices), and negative (values<-0.1; n=458 choices) values of the 
reciprocity index. Left column maximum is 0.25% change in MR 
signal; right column maximum is 0.16%; minimum activation for 
both is 0.00%. 

III.7.6. Discussion and Conclusion 

Using an iterated economic exchange task, we found two distinct response types along the 

cingulate cortex consistent with agent-specific responses that signal “me” and “not me”. 

Rather than residing in strictly demarcated functional zones, these complementary 

responses types exhibited smooth transitions across the entire medial bank of the cingulate 

gyrus. It is difficult to probe the extent to which a subject is considering outcomes for 

oneself or a social partner; individuals in a social exchange must necessarily model the 

actions of both agents as decisions are made and revealed. Despite this obstacle, the pattern 

of activation observed in these data was clearly sensitive to which participant was 

responsible for a given action. The response types and their variation through the tissue 

space disappeared in control experiments where money sent, actions taken, and money 

received were matched to those experienced during the normal multi-round exchange (Fig. 

43). These controls provide strong evidence that the response types were due to neither 

motor/premotor responses nor to sensory responses to outcome screens. 

One question deserves separate consideration: Did the reveal screens generate simple 

surprise or novelty responses along cingulate that were not related to the social element of 

the exchange? Although this reasonable interpretation is possible, the control experiments 

suggest otherwise. The response pattern along the cingulate disappeared in the control 

experiments where subjects received stimuli that were visually identical to those in the trust 

game 

 and were composed of novel, reward-related information. This manipulation used novel 

stimuli with economically meaningful content to probe the reveal response and showed 

neither an “other” response anywhere along the cingulate nor the spatial variation so 
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prominent in the linked trust task. We take these data as strong support that the 

responses observed in the linked trust game were not the mere result of surprising content. 

The response types and their spatial variation along the cingulate were remarkably stable to 

a range of manipulations. They survived the personal and impersonal treatments, did not 

change as a function of the reciprocity (see Section III.6.), and were not changed as a 

function of sex, role, amount sent, or amount received. 

The observed lack of change as a function of reciprocity is extremely important because it 

reduces the likelihood of two alternate interpretations of these data. The average behavior 

in this game is initial cooperation followed by tit-for-tat moves, a strategy conjectured to be 

optimal in a reciprocal interaction (Trivers 1971; Nowak and Sigmund 1992). To play such 

a tit-for-tat strategy, a player’s brain must compute the expected next move of their partner 

and compare this to the actual outcome. Consequently, large deviations in reciprocity 

would also carry large prediction error signals, a signal type known to show up near or 

around dorsal anterior cingulate cortex (dACC)  (Holroyd and Coles 2002; Holroyd, 

Nieuwenhuis et al. 2003). Two possibilities arise. The error signals could activate dACC 

because they reflect directly an error response. Alternately, large deviations in reciprocity 

represent a signal with a large amount of uncertainty and might engage an output conflict 

response typical for this brain region (Carter, Braver et al. 1998; Botvinick, Nystrom et al. 

1999; Carter, Macdonald et al. 2000; Gehring and Knight 2000; Holroyd and Coles 2002; 

Critchley, Mathias et al. 2003; Holroyd, Nieuwenhuis et al. 2003; Milham, Banich et al. 

2003; Weissman, Giesbrecht et al. 2003). However, neither of these interpretations would 

anticipate an important feature of the data actually observed. There was no difference in 

response types or their spatial variation as a function of positive, negative, or neutral 

reciprocity. One would at least expect both alternate explanations to show responses that 

differentiated neutral reciprocity from the other two categories (positive and negative). One 

possibility is that our current analysis missed the error signals altogether for some 

unidentified reason. However, by using this same behavioral task, we have previously 

identified such error-related signals elsewhere in the brain and have shown these regions to 

be sensitive to reciprocity. Consequently, our capacity to detect these error signals 
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elsewhere makes it less likely that we simply missed error signals in cingulate related to 

strong deviations in reciprocity. However, it remains a possibility that some unprobed 

behavioral dimension generated an error signal along cingulate cortex during this task. 

In a two-person social exchange, it is crucial for each agent to know how to credit an 

outcome. Failure to assign this credit accurately will compromise an agent’s capacity to 

decide on an appropriate level of cooperation with the partner—a mistake that could prove 

extremely costly when averaged over multiple encounters. Consequently, we suspect that 

these data derive from a neural mechanism dedicated to distinguishing “me” outcomes 

from “not me” outcomes. The systematic spatial progression of responses suggests to us 

that this social agency variable may be arrayed as a map; however, the current experiment 

cannot adequately test this provocative possibility. It is important, therefore, to note that the 

assignment of credit (or agency) within a social interaction necessarily implicates a variety 

of cognitive and emotional mechanisms. Thus, although agency parsimoniously 

characterizes the activations seen with these data, it may not necessarily be congruent to the 

underlying functions represented along the cingulate. 

Extant data support a multifunctional role for the cingulate cortex, particularly in light of 

the extreme diversity of information that impinges on this region. Cingulate and 

paracingulate cortices have long been hypothesized as sites of integration of information 

sources that include cognitive, emotional, and interoceptive signals. Consequently, a range 

of functions has been ascribed to cingulate cortex (Rainville, Duncan et al. 1997; Carter, 

Braver et al. 1998; Botvinick, Nystrom et al. 1999; Dougherty, Shin et al. 1999; Bush, Luu 

et al. 2000; Carter, Macdonald et al. 2000; Damasio, Grabowski et al. 2000; Gehring and 

Knight 2000; Ochsner, Kosslyn et al. 2001; Critchley, Mathias et al. 2003; Milham, Banich 

et al. 2003; Phan, Liberzon et al. 2003; Weissman, Giesbrecht et al. 2003; Nielsen, Balslev 

et al. 2005), and there are disagreements over the exact variables processed and represented 

in these regions. However, it is reasonably clear that cingulate and paracingulate cortices 

contribute to normal social cognition and adaptive decision-making (Brunet, Sarfati et al. 

2000; Gallagher, Happe et al. 2000; Wicker, Perrett et al. 2003). The results of this paper 
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add the important possibility that many other variables in the social domain may be 

arranged in such a systematic fashion through the spatial domain, a phenotype that could be 

disturbed in afflictions where the capacity to distinguish “me” from “not me” is impaired 

(Georgieff and Jeannerod 1998; Gallagher, Happe et al. 2000; Johns, Rossell et al. 2001; 

Lieberman, Jarcho et al. 2004; Ochsner, Knierim et al. 2004; Seger, Stone et al. 2004; 

Allman, Watson et al. 2005; Baron-Cohen and Belmonte 2005; Brune 2005). 

 

III.8. Conclusions 

The feature of having an iterated exchange of money between 2 players makes the multi-

round trust game an ideal experiment to study complex interactions and strategies. In this 

chapter four different aspects have been investigated. 

First it was shown that the caudate and the midbrain encode strategic uncertainty, i.e., the 

ability to predict responses to one’s own behavior. Moreover, the time-courses predicted 

what strategic choice the Trustee would make later in the round, and the performance of 

that prediction was assessed on a trial-to-trial basis. Secondly, a novel method was 

developed to study cross-round and cross-brain interactions, and significant interactions 

were found in memory-related brain areas (BA9/BA19). Thirdly, the neural correlates of an 

“intention-to-trust” were found in the caudate, and the peak of those responses shifted 

forward in time as player reputations developed. Lastly, it was shown that agent-specific 

responses (“me” vs. “not me”) are arranged in a systematic pattern along the cingulate 

cortex. 

Although these results investigate different aspects of economic decision-making, they 

answer several important questions (who, how, what?) that allow us to understand the 

decision-making process as a whole. In order to come up with a justifiable model of human 

decision-making, it is crucial to investigate and confirm its neuronal and biological validity. 

This is exactly what these results as well as others in the exciting new field of 

neuroeconomics try to achieve. 
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C h a p t e r  4  

NEURAL CORRELATES OF MORAL DECISION-MAKING 

 

This chapter analyzes various neural aspects of trade-off between efficiency and equity in 

moral decision-making. It starts off by giving some background about moral decision-

making and reviewing the cognitive neuroscience literature on moral judgment. Next the 

experimental paradigm and setup are described, and the behavioral and neural results are 

presented. The chapter concludes with a discussion of the main findings. 

 

IV.1. Background 

Imagine that you are a doctor who is on duty in a remote rural area. You get a phone call 

about a patient in location A who is in distress. You promise to help him and drive over to 

location A. On your way there, you get another phone call about three other people in 

location B who need help as well. If you continue on your way to location A, you will save 

the one person, but the other three people will die. Alternatively, if you go to location B, 

you will save the three people, but the one person will die. Which location would you go 

to? 

This is a typical example of a moral dilemma, where the decision-maker is uncomfortable 

making either decision. Should I stick to my promise and save the one person, or should I 

break it and save as many people as possible? Although the definition of morality may vary 

across cultures, the main definition of moral decision-making includes judgments of 

rightness or wrongness of actions that cause harm to other people. Two main characteristics 

typically differentiate a moral dilemma from a non-moral dilemma: (1) the decision-maker 

is facing a very grave situation (e.g., a life-or-death scenario), and (2) he has to make a 
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decision between two or more seemingly equal and cruel outcomes. Moreover there is 

no right or wrong thing to do, there are no unequivocal guidelines, formula or algorithms to 

follow, and under most circumstances there is no law that tells the decision-maker to favor 

one outcome over the other. Hence moral decision-making is not a process that is based on 

a determinate set of rules, but rather on intuition and experience as well as one’s own 

personal moral values.  

Most issues in morality and moral decision-making have been around for a long time, and 

are part of the big questions of the big thinkers, e.g., Plato or Socrates (who incidentally is 

often regarded as the father of ethics and moral philosophy in Western societies). Although 

these questions have been deeply investigated and much work has been published over the 

centuries, the field has not really advanced and many of the same issues are still alive. 

Moral decision-making has traditionally been investigated by moral philosophers and 

cognitive psychologists, who distinguish between several key concepts (e.g., is/ought, 

act/omit, personal/impersonal), and include emotions and context in order to explain why 

one action seems morally better than another. 

Morality is also a topic of interest in economics, mostly with respect to the distribution of 

resources (Atkinson 1970; Varian 1975; Wittman 1984; Yaari and Bar-Hillel 1984; 

Schokkaert and Overlaet 1989; Deiniger and Squire 1998; Konow 2003). Social welfare 

provision and welfare economics deal with the construction of social welfare functions and 

are mainly concerned with two issues: economic efficiency (“the size of the pie”) and 

income distribution (“the division of the pie”). Since these issues deal with other-regarding 

preferences, they can easily be identified as moral dilemmas where a tradeoff between 

efficiency and distribution needs to be made. These issues are very similar in development 

economics which deals with aspects of economic growth in developing countries. Again, 

the tradeoff here is between economic growth of the country and growth of inequality (for 

example between internal regions of the country). Lastly, moral values also play an 

important role in public finance, in particular in taxation fairness and efficiency. 
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More recently, cognitive neuroscientists have investigated moral decision-making and 

are attempting to solve a long-standing debate in moral philosophy: are moral judgments 

primarily the result of non-rational and emotional processes or of rational and deliberate 

reasoning? Recent findings in cognitive neuroscience seem to suggest that both emotion 

and reason are involved, but that automatic emotional processes (moral intuitions) tend to 

be stronger. 

One of the most famous moral dilemmas that probes moral intuition is the trolley problem 

(Fig. 45A): A trolley is out of control and is running down a track. On its path there are five 

people who are working on the track. The only way to save them is to flip a switch that will 

lead the trolley down a different track on which one person is working. Should you flip the 

switch and save the lives of five people at the expense of one? Most people agree that it is 

acceptable to flip the switch. A simple utilitarian calculation justifies this choice, but even 

non-utilitarians agree that it is acceptable to flip the switch and advance arguments about 

moral responsibility vs. negligence. 

 

Fig. 45: Classical dilemmas in moral decision-making. A. The 
trolley dilemma. B. The fat man dilemma (from Big Picture on 
Thinking, Wellcome Trust, Issue 4, September 2006) 



 

 

107
Now consider a very similar scenario, called the fat man dilemma (Fig. 45B): again, a 

trolley is rolling down a track towards five people. The only way to stop it from crushing 

the five people is to drop a heavy weight in front of it. As it happens, there is an overweight 

man standing next to you. If you push him on the tracks he will die, but his body will stop 

the trolley from crushing the five other people. Should you save five people by sacrificing 

the life of the fat man? In this scenario, most people say no. This inconsistency creates a 

puzzle for moral philosophers: how is it morally justifiable to sacrifice one person for five 

in one scenario but not in the other one? From a utilitarian perspective both scenarios are 

equal in terms of number of lives that can be sacrificed and saved, but nevertheless people 

have different moral intuitions. There are several arguments that can be advanced for this 

inconsistency: in the trolley dilemma there is no direct intention to harm anyone, whereas 

harming the fat man is part of the plan to save the five people. Another argument is that in 

the second scenario the fat man is considered to be an innocent bystander, and as such has 

the right not to be pushed onto the tracks. From a psychological point of view the most 

convincing argument is that the fat man dilemma engages people’s emotions to a greater 

degree than the trolley dilemma, because it is emotionally more salient to push someone to 

his death than to flip a switch to produce a similar result. 

In one of the first fMRI studies about moral decision-making Greene et al. investigated this 

hypothesis, and discerned between two different kinds of moral dilemmas (Greene, 

Sommerville et al. 2001): impersonal moral dilemmas (such as the trolley dilemma, or 

keeping money found in one’s wallet) and personal moral dilemmas (e.g., the fat man 

dilemma, or stealing a person’s organs to help five other people). They found personal 

dilemmas increased activation in brain areas associated with emotion and social cognition 

(medial frontal gyrus, posterior cingulate gyrus, and bilateral angular gyrus), and decreased 

activation in areas associated with working memory (middle frontal gyrus and bilateral 

parietal lobe) (see Fig. 46). Impersonal dilemmas increased activation in brain areas 

associated with abstract reasoning and problem solving. When these personal moral 

dilemmas are further split up into difficult and easy personal moral dilemmas, Greene at al. 

showed that brain regions associated with abstract reasoning and cognitive control 
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(dorsolateral prefrontal cortex and anterior/posterior cingulate) are recruited to address 

the difficult dilemmas (Greene, Nystrom et al. 2004). Moreover several areas in the frontal 

and parietal cortex were more activated when subjects made utilitarian judgments.  

 

Fig. 46: Activations in personal moral dilemmas. Chart shows 
brain areas with increased and decreased activation (Greene, 
Sommerville et al. 2001).  

In a 1999 study (Anderson, Bechara et al. 1999) it was shown that patients with early 

prefrontal cortex lesions demonstrated severely impaired social behavior despite exhibiting 

basic cognitive abilities.  Compared to controls they performed poorly on moral judgment 

tasks, and largely approached moral dilemmas from the egocentric perspective of avoiding 

punishment. The importance of the prefrontal cortex is emphasized in another lesion study 

that shows that patients with lesions in the ventromedial prefrontal cortex produce a 

utilitarian pattern of judgments on personal moral dilemmas (Koenigs, Young et al. 2007). 

Several studies have also investigated the neural correlates of moral vs. nonmoral social 

judgments (Moll, de Oliveira-Souza et al. 2002; Moll, de Oliveira-Souza et al. 2002; Borg, 

Hynes et al. 2006), and have found that several regions of the prefrontal cortex, as well as 
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the superior temporal sulcus, are more heavily recruited when considering moral 

scenarios, providing evidence for the fact that the brain distinguishes between purely 

emotional and moral situations. 

When reviewing the literature in moral decision-making (Greene and Haidt 2002; Greene 

2003; Moll, Zahn et al. 2005), it is striking to notice that all judgments were based on 

hypothetical situations. In each scenario the subject was asked to put himself in an 

imaginary situation and to decide between two or more imaginary choices. Due to the fact 

that it is very difficult or even impossible to recreate the gravity of a moral dilemma 

situation in a laboratory setting, subjects know that their decisions will not have any 

implications which might compromise their moral judgments as well as their brain activity. 

After all, there seems to be a difference between what a person thinks he would do in a life-

or-death situation and what he would actually do. 

The three following criteria help to better understand moral decision-making: 

(i) Real outcomes: Subjects’ choices should have a real outcome, i.e., their actions should 

do some harm (or some good). 

(ii) Parameterization of the decision space: What if I could save 10, 100, 100,000 people by 

pushing the overweight man onto the tracks? 

(iii) Partition the decision process: Temporally separate the presentation of the dilemma, 

the subject’s decision time, the subject’s answer, and the feedback. 

We designed a task inspired from the trolley dilemma that satisfies the criteria listed above, 

and allows the study of various aspects of moral decision-making. The goal of the 

experiment is to study other-regarding preferences when people have to make trade-offs 

between different distributional criteria (efficiency and equity).  
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IV.2. Experimental Design and Methods 

 

IV.2.1. Task 

Subjects are asked to make a decision about allocating meals to children from an orphanage 

in Uganda. There are two types of trials: Give and Take. In Give trials subjects need to 

decide whether to give 1k  meals to one kid (denoted kid1) or ak2 and bk2  meals to 2 kids 

(denoted kid2a and kid2b). In order to obtain diverse behavior across different types of 

subjects, the difference between meals is either 0, 1, or 3 meals. In Take trials all children 

have been endowed with 24 meals, and subjects must decide whether to take away 1k  

meals from kid1 or ak2 and bk2  meals from kid2a and kid2b. Again, the difference between 

meals is 0, 1 or 3 meals. In order to vary the level of inequity, the meals are not always split 

evenly between kid2a and kid2b. Hence the subject must make a decision between the two 

following choices (also called allocations):  

]00[ 1k  or ]0[ 22 ba kk  with }3,1,0{)( 221 =+− ba kkk . 

There are a total of 36 trials (18 Give & 18 Take) presented randomly during the 

experiment. For each group there are 6 trials each with a difference of 0, 1, and 3 meals 

(see Table 5).  
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Table 5: Allocation of meals. The first column denotes the number 
of meals allocated to the one kid, and columns 2 and 3 denote the 
number of meals allocated to the 2 kids. Each line represents a 
different moral dilemma. 

IV.2.2. Subjects 

24 healthy volunteers (16 female, 8 male) were recruited through Craigslist 

(www.craigslist.org). Subjects were required to have college education and to be 28–55 

years old. Demographics of the subjects are as follows: mean age: 39.2 +/- 5.7 years; 

marital status: 13 single, 9 married, 2 divorced (4 subjects had kids of their own); 

education: 16 college, 7 MS, 1 Ph.D. 2 other subjects participated in the experiment, but 

their data was not used because of motion artifacts in the fMRI data. 

IV.2.3. Experimental Setup 

The success of this experiment critically depends on the fact that subjects believe that their 

decisions have a real outcome. To emphasize this, subjects are asked to read through a 

brochure with a description of the orphanage and a short biography of the children (Fig. 

47). 
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Fig. 47: Example of a child’s biography (actual picture and name 
available upon request) 

Next, they are given instructions about the experiment and on how to make their decisions. 

To give them a sense of their contribution, they are informed that 24 meals correspond to 

$5, and that they will be donating around $60 on average to the orphanage. Throughout the 

instructions it is stressed that their choices have a real outcome and that meals will be 

donated according to their decisions. 

At the beginning of each trial, subjects are presented with a screen showing whether the 

trial is a Give or Take trial.  They advance to the next screen by pressing a button. Next, 

they see an animation in which a projectile was moving across the screen toward the kids. 

The number of meals that each child could potentially receive is denoted next to the picture 

of the kid. The group that will receive the meals is indicated by the direction of the lever in 

the middle of the screen. The group of children that get hits by the projectile will receive 

the number of meals denoted next to the pictures.  

When the projectile passes the dotted line, the subject may switch the lever to redirect the 

projectile towards the other group of kids. He has 3.5 seconds to do so, but can only switch 

the lever once. After the projectile passes the lever, it continues towards the chosen group 

of kids. When it hits the box surrounding the kids, the box changes colors and is present for 

another 3.5 seconds. After a blank screen of random duration (uniformly distributed on 1–3 

seconds), a feedback screen of 2 seconds duration informs the subject how many meals 

each kid received. Trials are separated by a blank screen of random duration (uniformly 

distributed on 5–7 seconds). Take trials are similar, except that the amounts of meals are 

negative, and the ball and highlighting is in red instead of green. 
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Fig. 48: Timeline of the Moral Decision-Making Task 
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IV.2.4. fMRI Data Acquisition and Analysis 

Brain image acquisition was done on a Siemens Trio. High-resolution T1-weighted scans 

(1 mm x 1 mm x 1 mm) were acquired using a MPRage sequence. Functional images were 

acquired using echo-planar T2* images with BOLD (blood oxygenation-level-dependent) 

contrast, and angled 30 degrees with respect to the AC-PC line. Parameters were as 

follows: repetition time (TR) = 2000 ms; echo time (TE) = 40 ms; slice thickness = 3 mm 

yielding in a 64x64x32 matrix (3 mm x 3 mm x 3 mm); flip angle = 90 degs; FOV read = 

220 mm; FOV phase = 100 mm, series order: interleaved. 

Imaging data was preprocessed using SPM2, and included slice time correction, motion 

correction, coregistration, normalization to the MNI template, and smoothing of the 

functional data with an 8 mm kernel (see Section II.4 for details). 

GLM analysis was done in SPM2 by specifying a separate general linear model for each 

subject (fixed effects analysis). First all images were high-pass filtered in the temporal 

domain (filter width 128 s) and autocorrelation of the hemodynamic responses was 

modelled as an AR(1) process. In the GLM model all visual stimuli and motor responses 

were entered as separate regressors that were constructed by convolving a hemodynamic 

response function (hrf) with a comb of Dirac functions at the onset of each visual stimulus 

or motor response. The different regressors were at the following moments: when the 

instruction screen was presented (give or take trial), when the scenario was first displayed, 

when the subject switched the lever (or for some models when the projectile touched the 

lever), when the projectile hit the kids and when the feedback screen was displayed. 

Parametric modulations corresponding to different measures of social welfare (see Section 

IV.3.2.) were added to the regressors. 
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IV.3. Behavioral Measures and Behavioral Results 

IV.3.1.The Gini Coefficient 

The gini coefficient is used to measure the inequality of a distribution (Gini 1912; Gini 

1921). Mathematically it is defined as the area between the Lorenz curve of the distribution 

and the uniform distribution, where the Lorenz curve is the proportion of the distribution 

assumed by the bottom %x of the values. For example, for a dataset that includes the 

income of all households, every point on the Lorenz curve can be described as “the 

bottom %x of all households have %y of all income”. The inequality of income across 

households is determined by calculating the surface of the area between the uniform 

distribution and the Lorenz curve (Fig. 49), which is the gini coefficient.  

 

Fig. 49: Graphical representation of the gini coefficient 

The gini coefficient varies between 0 and 1, where 0 is perfect equality (uniform 

distribution), and 1 is perfect inequality (one household has all the income). The gini 

coefficient is typically used to measure the distribution of wealth in a country (Fig. 50). 
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Fig. 50: Wealth distribution in the World. Data adapted from 
wikipedia (http://en.wikipedia.org/wiki/List_of_countries_by_inc 
ome_equality) 

For discrete and unordered data the gini coefficient is calculated as the normalized mean 

difference between every possible pair of outcomes in the distribution: 
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where n is the number of realizations. Compared to other measures of inequality (e.g., the 

variance), the gini coefficient has the advantage that it is scale independent, e.g., gini([2 5 

6])=gini([4 10 12])=0.20, whereas var([2 5 6])=4.44 and var([4 10 12])=17.33. 
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IV.3.2.Measures of Efficiency, Equity, and Utility 

The nature of the moral dilemma in the task results from the fact that there are several 

criteria (number of kids, number of meals and distribution of meals) that cannot all be 

satisfied simultaneously. The main assumption is that subjects perceive any kind of 

irregularity in the distribution of meals as unfair, and are thus forced to make a tradeoff 

between various welfare criteria. In this analysis we distinguish between three different 

measures of welfare: 

1. Efficiency based on the number of meals: subjects try to give the largest number of 

meals or take away the smallest number of meals. For example, in a scenario where the 

allocations are [19 0 0] vs. [0 8 8], the subject would give 19 meals the first allocation, 

whereas he would only give 16 meals in the second allocation. cM  denotes the number of 

meals in the chosen allocation, and uM denotes the number of meals in the unchosen 

allocation. 

2. Equity based on the distribution of meals: subjects try to distribute the meals as equally 

as possible. For example, in the same scenario as above, in the first allocation the first kid 

receives all 19 meals, whereas the other 2 kids do not receive any. The second allocation is 

fairer because two kids receive 8 meals each. The distribution of meals is also important 

within an allocation: for example, the subject’s decision might be different depending on 

whether the second allocation is [0 8 8] or [0 3 13], although both allocations are equal in 

terms of total number of meals. The distribution of meals within an allocation is measured 

by the gini coefficient (see previous section for details), and is denoted cG  for the chosen 

allocation, and uG  for the unchosen allocation. 

3. Utility based on a combined measure of the number and distribution of meals: subjects 

try to find a trade-off between giving the largest number of meals (or taking away the 

smallest number of meals) and distributing the meals as equally as possible. The utility is 

calculated as GMU α−=  using an inequity aversion model, where α  is determined 

through maximum likelihood estimation from the behavioral data (see Section IV.6. for 
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methods). Note that the sign on the gini is negative because a large gini coefficient 

diminishes utility. The utility of the chosen allocation is denoted cU  and the utility of the 

unchosen allocation uU . 

These three measures can be used to generate three difference measures for both Give and 

Take trials: 

 1. Delta efficiency: uc MMM −=Δ , denoting the difference of meals between the chosen 

allocation and the unchosen allocation. 

2. Delta equity: uc GGG −=Δ , denoting the difference in fairness between the chosen 

allocation and the unchosen allocation. 

 3. Delta utility: GMGMGMU
uc U

uu

U

cc Δ−Δ=−−−=Δ ααα
4342143421

)()( , denoting the difference in 

utility between the chosen allocation and the unchosen allocation.   

Note that all three measures are choice-based, i.e., they compare the levels of welfare of the 

chosen and unchosen allocations (as opposed to a measure that would for example just 

measure the difference between the 1 kid and the group of 2 kids, independent of what the 

subject actually chose). 

 

IV.3.3. Behavioral Data 

A summary of the behavioral data from all subjects is shown in Fig. 51. Subjects’ choices 

are partinioned by the absolute difference in meals between allocations (i.e., MΔ ) and by 

the nature of the dilemma (Give or Take). The y-axis represents the percentage of subjects 

who chose to give to or take from kid1. 
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Fig. 51: Subject behavior in the moral task 

When the number of meals between two allocations is equal ( 0=ΔM ), only a few 

subjects choose to give to kid1 (13% in Give trials) or take meals away from kid1 (27% in 

Take trials). They try to help as many kids as possible (helping 2 kids is better than helping 

1 kid), and try to avoid hurting 1 kid substantially (hurting 2 kids by a small amount is 

better than hurting 1 kid by a large amount). Hence they spread the goodness (in Give 

trials), and dilute the misery (in Take trials). 

As the absolute difference in meals increases however, subjects deviate from that rule, and 

tend to give meals to kid1 (41% for 1=ΔM and 51% for 3=ΔM ), and take meals away 

from kid1 (53% for 1=ΔM and 65% for 3=ΔM ). The larger difference in the number of 

meals between the two allocations leads them to become more utilitarian, i.e. to maximize 

the total number of given meals, and to minimize the total number of taken meals. It is 

straightforward to hypothesize that at a sufficiently high value of MΔ  all subjects will 

behave in a utilitarian way, and always choose kid1 over kid2a and kid2b. 
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There is also a noticeable difference between Take and Give trials as subjects tend to 

behave in a more utilitarian way in Take trials. The indifference point (~ 50%) lies around 

3=ΔM meals for Give trials, and 1=ΔM meal for take trials. It should be noted that 

these results only hold when 15, 19, or 23 meals are given to or taken from kid1, and that 

those indifference points change as a function of the overall number of meals. 

 

IV.3.4. Act/Omit Differences 

A well known cognitive bias in psychology is the omission bias: actions are judged to be 

less morally justifiable than equally harmful omissions (or inactions) (Spranca, Minsk et al. 

1991; Baron 1992; Ritov and Baron 1992; Baron 2000). For example withholding the truth 

seems less immoral than lying, and letting someone die (in cases of euthanasia) seems to be 

morally more justifiable than killing. There are several good reasons for this, the most 

compelling one being that an action contains an intention to cause harm, whereas an 

omission could just be the result of ignorance. Moreover, when omissions are seen as 

socially acceptable, self-preservation often dominates. For example, under certain 

circumstances it is acceptable to not jump into water to save a drowning person (whereas it 

is always immoral to push someone into the river). 

This concept of act/omit is important in moral decision-making because the framing of the 

moral dilemma can cause subjects to switch their decision. For example in the trolley 

dilemma, some people might argue that they will not switch the lever, because they do not 

wish to be involved in this difficult decision (they would rather let fate decide). We tested 

for this possibility of act/omit differences in the moral decision-making task by 

counterbalancing the location of the kids on the screen as well as the initial direction of the 

lever to remove any confounding elements. 
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Fig. 52: Act/omit differences in the moral task 

As shown in Fig. 52, there are no major differences between action and omission for either 

Give or Take trials. Subjects acted for about 50% of the trials, and this remains also true 

when the data is split up according to the absolute difference in meals between 

allocations MΔ . A possible reason for this is that most act/omission differences usually 

appear when subject behavior is compared across different scenarios. In this task however 

there is only one scenario type, and the initial direction of the lever might thus not be 

convincing enough to the subjects to prevent them from acting. 

 

IV.3.5. Inequity Aversion Models 

We first estimated the α coefficient from the inequity aversion model by pooling the data 

over all subjects. This estimate determines the “average” inequity aversion that was found 

in our subject pool. It was estimated separately for the Give and Take trials: 27.15=Giveα  

and 96.6=Takeα . These relatively large values of α demonstrate that our subjects were 
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quite averse to inequity. Furthermore, they were significantly more inequity averse in 

the Give trials than in the Take trials. 

It is clear upon inspection that there is substantial variation within our subjects. Therefore 

we also estimated the results using choices from individual subjects.  The drawback to this 

method is that, because of the limited number of trials for each subject, there are some 

subjects whose inequity aversion we were not quite able to robustly estimate. These are 

subjects who almost always chose to give to one child or take from two children.  

Therefore we can only place bounds on the level of inequity aversion of those subjects.  

Nevertheless, it is clear from the estimates that our group results were not driven by a few 

outliers. Fig. 53 shows the repartition of the individualα coefficients. 

 

Fig. 53: α coefficient in the inequity aversion model. This data 
includes 2 subjects that were excluded from the fMRI analysis. 
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As expected from the pooled analysis, most of the individual data points fall below the 

diagonal, which confirms that people are more inequity averse in Give dilemmas. This also 

validates the finding from Fig. 51 that subjects care more about efficiency in Take trials. It 

can also be seen that female subjects are more equitable in Take trials 

(higher Takeα coefficients) than the male subjects (p<0.061, one-sided). Furthermore, Fig. 54 

shows that there is a correlation between the subject’s age and Takeα  (p<0.048), suggesting 

that older people are more fair-minded in Take trials. 

 

Fig. 54: Repartition of Takeα across age. This data includes 2 
subjects that were excluded from the fMRI analysis. 
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IV.4. fMRI Results 

In this section we present the main neural activations from the Moral Dilemma task.  

IV.4.1. Difference between Allocations 

We looked for brain areas that were correlated with the absolute difference in meals 

between the two allocations ( MΔ ). Unlike the difference measures in Section IV.3.2., this 

measure is independent of the subject’s choice. MΔ  was added as a parametric regressor 

with 3 values (0, 1, and 3) at the display of the scenario. We found a negative correlation in 

bilateral insula for both Take and Give scenarios (Fig. 55 and Table 6). The activation in 

the right hemisphere for the Give trials has only a very small overlap with the insula. 

 

 

Fig. 55: Difference between allocations. Negative parametric 
activation in bilateral insula for both Take and Give trials with 

respect to MΔ  when the scenario is displayed to subjects. A 

statistical map is shown alongside a pseudo-color legend with t-
scores (p≤0.005, minimum cluster size: 5).  
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Scenario Area X Y Z T #Voxels 
Left Insula -42 0 3 3.41 33 Take 
Right Insula 42 -3 6 3.26 15 
Left Insula -39 6 6 4.40 42 Give 
Right Insula 48 6 3 3.65 38 

Table 6: Activations in the insula for |ΔM|. X, Y, X = MNI 
location coordinates of peak voxel (mm); T = T-statistic of peak 
voxel; #Voxels = number of activated voxels in the cluster 
(p≤0.005, minimum cluster size: 5) 

Since MΔ  is negatively correlated with the brain activity in the insula, this implies that 

the larger the difference in meals, the smaller the activation in the insula. To verify this, we 

extracted the time-courses from the activated voxels in the insula, and segregated them 

according to the difference in meals between allocations. At about 6 seconds after the onset 

of the display screen the time-courses separate, indicating the insula is differentially 

activated with respect to MΔ . Fig. 56 shows this for Take trials (the time-courses are 

similar for Give trials, although more noisy). 

 

Fig. 56: Time-courses in bilateral insula in Take trials 
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IV.4.2. Correlates of Efficiency, Equity and Utility in Take Trials 

We next investigated whether there are any neural correlates of the welfare measures 

described in Section IV.3.2 in the Take scenarios. We were not able to use those measures 

directly as there is a correlation between the chosen and unchosen allocation. Instead, we 

used the difference measures (i.e., ΔM, ΔG, and ΔU), which measure the actual spread in 

efficiency, equity, and utility between the chosen and unchosen allocations. We 

hypothesize that various brain structures might track these measures. 

 

Fig. 57: Delta equity in Take trials. Negative parametric activation 
in bilateral insula with respect to ΔG when subjects switch the lever 
and when the feedback screen is displayed. A statistical map is 
shown alongside a pseudo-color legend with t-scores (p≤0.005 for 
switch lever, and p≤0.002 for feedback, minimum cluster size: 5).  

Screen Area X Y Z T #Voxels 
Left Insula -36 -3 12 4.16 27 Switch Lever 
Right Insula 39 3 9 3.72 64 
Left Insula -45 -6 12 4.89 18 Feedback 
Right Insula 45 -9 12 4.74 26 

Table 7: Activations in the insula for ΔG during Take trials. X, 
Y, X = MNI location coordinates of peak voxel (mm); T = T-
statistic of peak voxel; #Voxels = number of activated voxels 
(p≤0.005 for switch lever, and p≤0.002 for feedback, minimum 
cluster size: 5). Note that only the voxels that actually are in the 
insula were considered in #Voxels. 



 

 

127
We used the difference measures to construct parametric regressors at various moments 

in the experiment, and looked for brain areas whose activation was correlated with those 

regressors. We found that the bilateral insula was negatively correlated with delta equity 

( GΔ ) when subjects switched the lever, as well as when the feedback screen was presented 

(Fig. 57 & Table 7). There was also a weak correlation in the right insula when the 

projectile hit the lever. We also found that delta utility ( UΔ ) was positively correlated with 

brain activity in the caudate at the moment where the projectile hits the kids (Fig. 58).  

 

 

Fig. 58: Delta utility in Take trials. Positive parametric activation 
in the caudate with respect to ΔU when the projectile hits the kids. 
The left figure panel shows a statistical map alongside a pseudo-
color legend with t-scores (p≤0.005, minimum cluster size: 5). The 
right panel is a glass brain of the same activation, showing that the 
only activated brain structure is the caudate (84 voxels). 

IV.4.3. Correlates of Efficiency, Equity and Utility in Give Trials 

We also looked for similar activations with respect to the difference measures in Give 

trials, and found a positive correlation between delta equity ( GΔ ) and brain activity in the 

bilateral caudate. This correlation was present at several instances during scenarios: when 

the scenario was first displayed, when the subject switched the lever, when the projectile hit 
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the lever, and when the projectile hit the kids (see Table 8 for a summary). Although the 

peaks of activation were slightly different for each instance, there was quite a lot of overlap 

between voxels. Activation in the caudate when the projectile hits the kids is shown in Fig. 

59.  

 

Fig. 59: Delta equity in Give trials. Positive parametric activation 
in the caudate with respect to ΔG when the projectile hits the kids. 
Statistical map shown alongside a pseudo-color legend with t-scores 
(p≤0.005, minimum cluster size: 5) 

Screen Area X Y Z T #Voxels
Display scenario Right caudate 18 18 12 3.74 37 

Left caudate -6 12 9 3.25 9 Switch lever 
Right caudate 9 15 6 4.67 19 
Left caudate -3 6 6 4.14 48 Hit lever  
Right caudate 6 6 6 4.48 35 
Left caudate -12 6 12 4.27 39 Hit kids 
Right caudate 12 9 15 5.41 85 

Table 8: Activations in the caudate for ΔG during Give trials. X, 
Y, X = MNI location coordinates of peak voxel (mm); T = T-
statistic of peak voxel; #Voxels = number of activated voxels 
(p≤0.005, minimum cluster size: 5). Note that only the voxels that 
actually are in the caudate were considered in #Voxels. 
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Parametric correlations with respect to delta efficiency ( MΔ ) were found in the left 

thalamus (MNI coordinates of the peak: [-9 -9 9], 40 voxels, p<0.001) when the feedback 

screen was presented to subjects (Fig. 60), a region implicated in the evaluation of reward.  

 

Fig. 60: Delta efficiency in Give trials. Positive parametric 
activation in the caudate with respect to ΔM during the feedback 
screen. Statistical map shown alongside a pseudo-color legend with 
t-scores (p≤0.001, minimum cluster size: 5) 

IV.5. Discussion and Conclusion 

In this study we standardized and parameterized various criteria of welfare (efficiency, 

equity, and utility) in the context of a moral decision-making task, and correlated the 

behavioral welfare measures with neural activity. There were three brain areas in particular 

that showed significant correlations: 

(i) Insula: absolute delta efficiency ( || MΔ ), delta equity ( GΔ ) in Take trials 

(ii) Caudate: delta utility ( UΔ ) in Take trials, delta equity ( GΔ ) in Give trials 

(iii) Thalamus: delta efficiency ( MΔ ) in Give trials 
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Several of those areas were activated at different moments during the game, but for the 

purpose of this study we do not intend to make any claims about the temporal evolution of 

the decision-making process. 

IV.5.1. Insula Activations 

The insula is part of the limbic system, which includes the brain structures that are involved 

in emotion, motivation and emotion-related memories. It receives input from various 

cortical areas and the thalamus, and it delivers information to sensory areas, the 

orbitofrontal and cingulate cortices, as well as to limbic structures such as the amygdala, 

the ventral striatum or the hypothalamus. As such the insula is involved in linking 

emotional and sensory information, and has been hypothesized to represent internal bodily 

states (Damasio, Grabowski et al. 2000). More specifically, fMRI experiments have shown 

that the insula is activated under several negative emotional states such as pain, fear, 

disgust, anger or sadness.  

We first showed that insula activation was negatively correlated with the absolute delta 

efficiency ( MΔ ) (Fig. 55) at the moment when the moral dilemmas are first revealed to 

the subjects for both Give and Take trials. This measure is choice independent, suggesting 

that the insula is merely evaluating the spread in meals between dilemmas, and 

differentiating between fair offers (offers that give the same number of meals to kid1 and 

kid2a and kid2b) and unfair offers (offers that give an equal number of meals to kid1 and 

kid2). A similar activation was found in the Ultimatum game (Sanfey, Rilling et al. 2003), 

where unfair offers elicited increased activity in the insula. Although the task did not have 

any moral components, the concepts of fairness are very similar in both cases. 

We also found that the insula was parametrically correlated with delta equity ( GΔ ) in Take 

trials at various instances throughout the experiment (when the subject switches the lever, 

when the ball hits the kids, and during the feedback screen) (Fig. 57). The gini coefficient 

is a measure of inequality, and delta equity thus measures the spread in inequality between 

the chosen and unchosen allocations. A positive delta equity coefficient means that the 

chosen allocation is more unequal than the unchosen one, and a negative delta equity 



 

 

131
means that the chosen allocation is more equal than the unchosen one. Activity in the 

insula is negatively correlated with the delta equity coefficient, meaning that the insula is 

more activated when the subject picks the more equal allocation ( 0<ΔG ), and less 

activated when he picks the more unequal activation ( 0>ΔG ). 

 

Fig. 61: Interpretation of delta equity. Note that the GC and GU 
are always above the perfect equity line, i.e., a distribution cannot be 
more equal than perfect equity. 

Generally speaking, this activation can be interpreted as a deviation from a norm—in this 

case the norm is equality, i.e., sharing the resources equally between all recipients (Fig. 61). 

In the forced choice scenario from the experiment this is not an option though, since the 

subject cannot choose to distribute the resources equally. He has to decide between two 

allocations that do not have an equal level of equity. Hence the insula measures the spread 

in fairness between the two allocations according to the subject’s choice. 

At first glance it might seem paradoxical that activation in the insula is negatively 

correlated with delta equity, because the insula is generally activated under negative 

conditions. It should thus be more activated when the subject picks the more unequal 

allocation which is the opposite of what we observe. But our finding makes sense if we 

consider that the insula is not just passively coding for differences in the inequality, but is 
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actively participating in the decision.  That is, high insula activity could “cause” the 

subject to choose the low inequality allocation.  Alternatively, low insula activity allows 

the subject to choose the high inequality allocation. Support for this explanation comes 

from the same study about the Ultimatum game (Sanfey, Rilling et al. 2003) where insula 

activation was found to be positively correlated with the rejection rate of unfair offers. This 

was interpreted as the “insula causing rejection”. In the Ultimatum game, the responder can 

either reject or accept an unfair offer, resulting in allocations of )0,0(  and ),( 21 xx  

respectively (where 21 xx ≠ ). If we look at this in terms of equity we get 

),()0,0( 21 xxGiniGini < , or, equivalently, )()( acceptGinirejectGini < , resulting in a 

negative delta gini if the responder rejects the offer, and in a positive delta equity if he 

accepts the offer. Since rejection is associated with increased activity in the insula, this is 

precisely the same as what our results demonstrate.  

IV.5.2. Caudate Activations 

We found a positive parametric correlation between activity in the bilateral caudate and 

delta utility ( UΔ ) when the projectile hits the kids during Take trials (Fig. 58). Although 

the caudate is thought to be mainly involved with the control of voluntary movement, it has 

also been shown to play an important role in the brain’s learning system. More specifically, 

reward prediction errors from reinforcement learning have been identified in the human 

caudate and are thought to involve outputs of the midbrain dopaminergic systems 

(McClure, Berns et al. 2003; O'Doherty, Dayan et al. 2003; Seymour, O'Doherty et al. 

2004; Knutson and Cooper 2005; Haruno and Kawato 2006). Hence the activation based 

on delta utility can be interpreted as an evaluation of the differential reward associated with 

the two allocations. Although subjects make their decision earlier in the scenario, the actual 

outcome is revealed at the moment when the projectile hits the kids. There is no uncertainty 

associated with this outcome, so there is no reward or utility updating per se, but the 

caudate would still be evaluating the difference in utility between the actual outcome and 

the hypothetical outcome if the choice had been reversed. 
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We also found a very consistent positive parametric activation with respect to delta 

equity ( GΔ ) in the bilateral caudate during Give trials (Fig. 59). Since a positive value of 

delta equity means that the subject chose the more unequal allocation, this activation cannot 

interpreted in terms of reward. However if we look at it in terms of punishment, the sign of 

the activation makes more sense. Several studies have found the caudate to be activated 

under punishment conditions (Seymour, O'Doherty et al. 2004; Seymour, O'Doherty et al. 

2005). The caudate has also been shown to have a larger response in a punishment 

condition than in a reward condition early at the onset (Delgado, Nystrom et al. 2000; 

Delgado, Locke et al. 2003). Although looking at punishments rather than rewards might 

seem arbitrary, it is justified by the nature of the moral dilemma, which makes either choice 

feel like a punishment.  

IV.5.3. Conclusions 

In this study we have found neural correlates for various measurements of welfare (delta 

equity, delta efficiency, and delta utility) in a moral decision-making task. The power of 

this study comes from two design characteristics: (i) subjects’ decisions have real outcomes 

as opposed to the hypothetical scenarios usually used in moral decision-making studies; 

and (ii) the variables associated with equity and efficiency have been parameterized to 

allow for a parametric analysis of the neural data. We found evidence for the direct 

involvement of these essential measures of welfare in the decision-making process. In 

particular, activity in the caudate was directly correlated with a differential measure 

comparing the two allocations.  Moreover, insula activation was shown to lead subjects to 

choose the more equitable of two allocations. This analysis suggests that although moral 

decision-making seems to be more difficult than other types of decision-making, the brain 

might treat it in a very similar way. 
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IV.6. Methods 

Inequity Aversion Model 

A simple inequity aversion model was used to assess the tradeoff between equity and 

efficiency.  Subjects’ utility functions were assumed to be )gini(•)( xx α−= ∑
∈Ii

ixu , where 

x  is a vector of allocations for the kids.  Therefore, efficiency is represented by the total 

number of meals of the allocation, and inequality by the gini function. 

The utility function makes several strong assumptions about the tradeoff between equity 

and efficiency.  First, it assumes that people value efficiency linearly, whereas typically 

some diminishing marginal utility is observed.  Because the range of meals used is rather 

small (see Table 5), diminishing marginal utility is not a parsimonious explanation.  

Second, we assumed that people value the sum rather than some measure of centrality, such 

as the mean. In our choices subjects always chose allocations over 3 people, and hence it 

makes no difference whether choosing the mean or the sum.   

The probability that the subject chooses allocation 1x  is given by (according to the logit or 

softmax formula): 

( )( ){ } 1
2121 );();(exp1),;,( −−−+= ααλλα xxxx uuP  

The parameter λ is the sensitivity of choice probability to the utility difference (the degree 

of inflection), or the amount of “randomness” in the subject’s choices ( 0=λ  means 

choices are random; as λ increases the function is more steeply inflected at zero).  

Denote the choice of the subject in trial i by yi, where yi =1 if subject chooses allocation 1x , 

and 0 otherwise.  We fit the data using maximum likelihood, with the log likelihood 

function: 

( ) ( )∑
=

−−+
N

i
ii PyPy

1
2121 .),;,(1log)1(),;,(log λαλα xxxx  
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A Nelder-Mead simplex algorithm (Nelder and Mead 1965), implemented in 

Mathematica v5.2, was used to find the maximum.  Ten random starting positions were 

used and the iteration with the highest likelihood value was chosen.    
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C h a p t e r  5  

CONCLUSION 

 

One of the major goals of neuroeconomics is to test the biological validity of existing 

economic frameworks and to use the neural data to create more accurate models of human 

behavior. As such neuroeconomics and neuroscience are closely interconnected and can be 

mutually beneficial. The brain can be seen as a black box that computes a set of outputs for 

a set of inputs. However, the brain is not deterministic, i.e., it is possible that the brain 

computes a different set of outputs for the same set of relevant inputs. This means that there 

is some randomness associated with our decisions. Moreover, brains from different people 

also function differently. Behavioral economics has been trying to figure out how the black 

box works by choosing well-determined sets of inputs and studying the corresponding 

outputs. The technological advances in neuroscientific tools allow us to probe very specific 

parts of the black box, and to understand how those outputs are formed. But human 

behavior is often complex, unpredictable, and inconsistent, and it is thus necessary to study 

it under a multitude of well-defined rules and outcomes. 

This thesis investigated two such paradigms, namely the neural correlates of cooperation in 

a two-person dynamic game, and the neural correlates of moral decision-making. In 

Chapter 2 we showed that economic concepts such as reciprocity and strategic uncertainty 

have neural correlates, and how social variables such as trust and agency develop in the 

brains of two interacting players. In Chapter 3 we showed how various brain structures 

encode measures of efficiency, equity and utility in a moral dilemma situation. In order to 

understand a structure as complex as the human brain it is also necessary to use a variety of 

methods. In Chapter 2 we developed alternative methods to analyze fMRI data, and more 

specifically to analyze synchronized fMRI data from two interacting brains. 
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Although the results presented in this thesis have only been verified in the context of the 

two specific experimental set-ups, similar studies have already or will confirm the results 

under different experimental conditions. It is the combination of results from multiple 

studies that will eventually allow us to understand how people build trust, design strategies 

or evaluate different options in order to make a decision. Although the current key 

objective of neuroeconomics is to understand how the brain works, the neuroeconomic 

findings will inevitably also have other uses, and in particular clinical applications. For 

example if we understand the neural correlates of trust, it might be possible to help people 

who have trouble maintaining interpersonal relationships (e.g., sociopaths). Although it is 

doubtful that we will ever fully understand how the brain works (is a system capable of 

understanding itself?), constantly pushing our knowledge to its limits should remain the 

ultimate goal. 
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