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ABSTRACT

Numerical calculations of the dynamics of a spherically sym-
metric collapsing protostar have been made for various assumed
initial conditions. In all cases the collapse is found to be extremely
nonhomologous, the density distribution becoming more and more
sharply peaked at the center as the collapse proceeds. As a result,
a very small part of the cloud's mass at the center reaches stellar
densities and temperatures and stops collapsing before most of the
cloud has had time to collapse very far, The central stellar core
thus formed subsequently grows in mass as the surrounding material
falls into it, finally becoming an ordinary star when all of the original
protostellar material has been accreted. During most of this time
the forming star is completely obscured by the dust in the infalling
cloud, the absorbed radiation reappearing in the infrared as thermal
emission from the dust grains. For M = Mg the resulting star is
almost a conventional Hayashi pre-main sequence model, but it appears
quite low on the Hayashi track, at about R ~ 2R@ . For masses
greater than about 2 or 3M¢, the convective Hayashi phase does not
exist at all, The emitted spectrum of a protostar has been calculated
from a simple approximation for the radiative transfer problem in the
infalling cloud, and the results have been compared with some obser-
vations which may be relevant, It appears that some observations of
infrared objects and some properties of T Tauri stars may be

explainable from our results,



Chapter

-iv-

TABLE OF CONTENTS

PART 1. ASSUMPTIONS AND INPUT DATA
Introduction: The Initiation of Star Formation
Physical Properties of the Protostellar Material

2.1 Composition and Equation of State
2.2 Opacity

Thermal Balance and Temperature During the
Early Stages of the Collapse

Boundary Conditions
Initial Conditions

Summary of Assumptions

PART II. DYNAMICS OF THE COLLAPSE

Equations and Approximations for the Early Stages
of the Collapse

6.1 The Lagrangian Equations
6.2 The Eulerian Equations
6.3 The Treatment of Radiation Transfer

Results for the Early Stages of the Collapse

7.1 Explanation of the Calculations

7.2 Isothermal Stages of the Collapse

7.3 Formation of the Opaque Core

7.4 Growth and Central Collapse of the Core
7.5 Formation of the Final Stellar Core

7.6 Results in Case 5 (No Molecular Hydrogen)

Fquations and Approximations for the Later Stages
of the Collapse

8.1 The Shock Front
8,2 Convection
8.3 Radiation Transfer in the Infalling Cloud

14
21
25

31

32

32
34
36

38

38
43
49
53
56
64

67
67

80
83



Chapter

10

11

Results for the Later Stages of the Collapse

.
DN b=

.
W

O O O O Rel NejiNe}
°

.
~N O\ U

Explanation of the Calculations

The Initial Adiabatic Phase of the

Accretion Process

Early Non-Adiabatic Phases of the Evolution
of the Core

Later Stages of the Evolution of the Core
Final Stages of the Collapse

Contraction Toward the Main Sequence

Final Stages in Case 7 (M = 5Mg)

PART III. OBSERVATIONAL APPEARANCE OF A

COLLAPSING PROTOSTAR

The Emitted Spectrum of a Collapsing Protostar

10.1
10,2
10,3
10.4
10.5
10,6

General Considerations

Calculation of the Emitted Spectrum

The Absorption Coefficient of the Dust Grains
The Temperature Distribution

Results for the Emitted Spectrum

The Emitted Spectrum for a Non-Optically
Thick Cloud

Comparison With Observations

11.1

Introduction

11,2 Infrared Observations in Orion

11.3 Gross Spectral and Luminosity Characteristics
of T Tauri Stars

11.4 Other Properties of T Tauri Stars

APPENDICES

Numerical Methods for the Early Stages of the

Collapse

A.1 General Features of the Methods

A,2 The Lagrangian Difference Equations

A.3 Space and Time Steps for the Lagrangian
Method

A,4 The Eulerian Difference Equations

A.,5 Space and Time Steps for the Eulerian Method

A.6 Comparison of the Lagrangian and Eulerian
Methods

A.7 Accuracy of the Results

87

94
102
112
119
122

142

142
143
147
148
156

175
186

186
186

191
196

199

199
204

208
212
217

219
222



Chapter

-vi-

Numerical Methods for the Later Stages of the
Collapse

B.1 General Considerations

B,2 The Stellar Core and Shock Front
B.3 The Infalling Cloud

B.4 The Time Step Procedure

The Equations of State

Asymptotic Similarity Solutions for the Isothermal
Collapse

Proof of Equation (8.4)

Calculation of the Functions Gn('r)\)

References

224
224
227
231
235

238

246
251

255

259



-1-
PART I: ASSUMPTIONS AND INPUT DATA
1. INTRODUCTION: THE INITIATION OF STAR FORMATION

The process of star formation and the conditions under which
star formation begins have been the subject of much speculation, but
so far little if any hard factual knowledge on the subject can be
claimed. It is generally thought that stars form as the result of the
gravitational instability and collapse of condensations or dense regions
in the interstellar medium. A condensation with a given temperature
can become unstable and collapse gravitationally if it has either a
sufficiently large mass or a sufficiently high density, as required by
the criterion for gravitational instability first established by Jeans
(1928). It is well known that, with the densities and temperatures of
‘typical HI clouds, a mass of at least several hundred solar masses is
required for a cloud to collapse gravitationally. On the other hand,
the gravitational collapse of only one solar mass requires a minimum
density several orders of magnitude higher than typical interstellar
cloud densities. It is therefore thought that star formation begins
with the collapse of a massive cloud of perhaps several hundred or a
thousand solar masses--i.e., a "protocluster." As the density of
such a cloud increases, it becomes possible for smaller sub-conden-
sations within the cloud to form and collapse under their own self-
gravitation; presumably in this way condensations of one solar mass
or less can form and collapse gravitationally into stars.

The conditions under which these subcondensations form and
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begin to collapse are unknown, except that from the Jeans criterion
we can get an idea of the minimum density required. It seems likely
that turbulence, quite possibly supersonic, will be of major impor-
tance for the formation and early evolution of the sub-condensations
in a coliapsing protocluster. Since nothing is known about the turbu-
lent flow in such a situation, it is impossible to specify in any detail
the proper initial conditions for the collapse of a protostar. In any
case the conditions are undoubtedly quite complicated and variable
from case to case in details. Thus probably all that one can hope to
calculate with any confidence at present is the general features of
the collapse, assuming that these general features are not strongly
sensitive to the details of the starting conditions (as is confirmed by
the results of the present project)., In view of this situation, it has
for the most part not seemed worthwhile in the present project to
consider other than the simplest possible agssumptions and idealiza-
tions,

Most of the previous investigations of the early stages of star
formation, including the recent work of Hayashi (1966) which may be
consulted for further references, have assumed complete spherical
symmetry for the collapsing protostar and have neglected any effects
of rotation, magnetic fields, or internal turbulent motions. In order
to make the present project practicable, and because it was thought
advisable to tackle first the simplest possible case, these assump-
tions have been retained in the present calculations. Possibly large
deviations from these assumptions, such as rapid rotation, can be

rejected from consideration since such effects might prevent the
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material from collapsing at all or cause it to collapse into several
stellar objects. Nevertheless it is difficult to justify the complete
neglect of rotation, magnetic fields, deviations from spherical sym-
metry, etc. on any other basis than simplicity; in fact, rotation at
least seems certain to be an important effect in general. Thus in
neglecting all these phenomena we are clearly restricting ourselves
to a highly idealized case which may at best be realistic for only a
very few real stars.

It has usually been imagined that some sort of spherical
hydrostatic equilibrium configuration might be a suitable approxima-
tion for the initial state of a protostar; most authors have assumed
the initial state to be either an isothermal sphere or a polytropic
sphere. It seems doubtful however whether hydrostatic equilibrium
can be of much relevance for the early stages of a protostar, since
this presupposes quiescent conditions and changes which are slow
compared to the free fall time. Such conditions seem unlikely to
éxist in our collapsing protocluster, in which overall collapse and
internal furbulent motions are expected to occur on roughly the free
fall time scale. Thus hydrostatic equilibrium may never exist, and
a protostellar condensation when formed may already be collapsing
at an appreciable rate. We note that if there is no hydrostatic
equilibrium, there is no physical basis for the assumption of spheri-
cal symmetry.

Thus there seems to be no firm basis for the type of assump-
tions which have usually been made concerning the initial conditions

for a protostar, or indeed for any other simple assumptions.
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Fortunately it turns out from the results of this project that, at least
within the range of assumptions considered, the details of the assumed
starting conditions are not of critical importance, and it appears that
rather arbitrary simple choices of these conditions may be made
without altering the general features of the results. The various
initial conditions and boundary conditions which have been used in

this project and the ones we consider least unrealistic will be dis-
cussed in detail in sections 4 and 5, First, however, we shall discuss
in some detail in sections 2 and 3 the assumed physical properties of

the protostellar material.



2. PHYSICAL PROPERTIES OF THE PROTOSTELLAR MATERIAL

2.1 Composition and Equation of State

In this and the following sections we shall discuss the physical
properties (composition and equation of state, opacity, and tempera-
ture) expected for the material of a protostar of mass near one solar
mass. These properties have already been discussed by Gaustad
(1963), Hayashi and Nakano (1965), and Hayashi (1966), and to a con-
siderable extent the results of these authors form the basis for the
present work,

We shall assume, as do the above authors, that we are dealing
with star formation in an HI region with typical population I compo-
sition. We adopt Gaustad's composition, for which the mass fractions
of hydrogen, helium, and heavier elements are X = .65, Y = .32, and
Z = .03 respectively. It is assumed that at the rather high densities
( 2 10—19gm/cm3) required for the gravitational collapse of one solar
mass the hydrogen will be essentially all in molecular form. (In
order to find the effect of this assumption, one collapse calculation
was made in which no molecular hydrogen was assumed to exist at
any time.) Dust grains are assumed to exist with the properties
adopted by Gaustad, namely a grain radius of 2 X 10"5 cm and an
abundance of 3 X 10—13 grains per atomic mass unit or 1,8 X 1011
grains per gram of material, With Van de Hulst's (1949) assumed
grain density of 1.1 gm/cm3, this implies that the grains constitute

0.7% of the total mass of the material.

The equation of state of the protostellar material (essentially
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hydrogen with a small admixture of helium) is well known over most
of the range of temperatures and densities encountered in this work,
and need not be discussed in detail here; detailed discussion of the
equation of state is given in Appendix C. Throughout the early stages
of the collapse the material satisfies the perfect gas law P = pRT
where- the gas constant R , for future reference, is equal to 3,36 X 1O7
(cgs). At higher temperatures molecular dissociation and ionization
are of great importance, and they must of course be taken into

account in the appropriate temperature and density ranges. The
complete equation of state adopted in the calculations, which contains

some approximations, is described in Appendix C.

2.2 Opacity

The opacity of the material in the early stages of star forma-
tion has been studied by Gaustad (1963), and for the most part the
opacities used in the present work have been based on the work of
Gaustad. Gaustad found that as long as dust grains exist at all, they
are the dominant source of opacity. He attempted to derive theoreti-
cally the probable composition and the infréred absorption coefficient
of the dust grains., At the lowest temperatures (up to about 120 - 150
OK, depending on density), solid HZO can exist, and it was assumed
by Gaustad to be the main constituent of the grains and the primary
contributor to the absorption. Gaustad gives the absorption coeffi-
cient for grains of pure solid HZO as a function of wavelength, and

Rosseland mean absorption coefficients based on these data are given

as a function of temperature by Hayashi and Nakano (1965). Unfor-
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tunately there seems to be observational evidence that HZO is not a
primary constituent of the interstellar grains (Danielson, Woolf,

and Gaustad 1965). The absorption data assuming HZO grains must
therefore be considered as very uncertain. Nevertheless, there do
not appear to be any better data available for the absorption coeffici-
ent of the dust grains at the far infrared wavelengths relevant for the
present situation.

At temperatures above about 150 OK, HZO evaporates and the
main constituent of the grains, according to Gaustad, is MgSiO4.
Experimental data for the infrared absorption coefficient of MgSiO4
are available only in a small wavelength range centered near 10 u.
Gaustad has attempted extrapolation of these data and calculated
Rosseland mean absorption coefficients at 500 °K and 1500 °K. How-
ever, a look at the actual data shows that reliable extrapolation is
impossible, and the resulting Rosseland means must be exceedingly
uncertain, perhaps by orders of magnitude. Again, however, there
seem to be no other data available for the "mineral grains" envisioned
by Gaustad. MgSiO4 and the other possible mineral grain constituents
evaporate at temperatures of 1200-1500 OK, depending again on den-
sity., Gaustad concluded that solid carbon would not form and that
therefore there would be no solid grains at all above about 1500 °K.

Clearly the infrared dust absorption properties are highly
uncertain. It is doubtful even whether the types of grains envisioned
by Gaustad actually exist., Alternative theories of the grains have
been proposed, and one of them in particular, the graphite core-ice

mantle model, seems to have gained some observational support
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(Krishna Swamy and O'Dell 1967). If this model is correct, then at
the higher temperaturces the grains would probably consist mainly of
graphite, which evaporates at 2100-2500 °K. Fortunately the dynam-
ics of the later stages of the collapse and the properties of the
resulting star turn out to be insensitive to the dust opacity over the
whole temperature range above about 100 °K (at least within the
approximations we have used for the radiation transfer; see section
8.3). It is therefore believed that no serious errors arise from the
use of Gaustad's opacity data, even though they may be wrong.

Knowledge of the dust absorption properties is of course
important in treating the radiation transfer in the collapsing cloud
and in calculating the spectrum of the radiation emitted from it.

This problem can fortunately be separated from the calculation of the
dynamics, at least during the later stages of the collapse, and we
shall consider it separately in Part III, where discussion of the grain
absorption coefficient will again be taken up.

When the dust grains evaporate the opacity depends on a
variety of atomic and molecular processesl Gaustad concluded that
the main contributions to the opacity in the}temperature range 1500-
3000 °K would come from H and H, absorption and Rayleigh
scattering of HZ’ and that molecular absorption bands would be
unimportant. More detailed work by Yamashita (1962) and Tsuji (1966)
has shown that Gaustad underestimated the molecular absorption
coefficient, which in the molecular absorption bands may be many
orders of magnitude greater than the absorption without molecules.

However, because radiation can still come through between the
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molecular absorption bands, the effect of molecules on the Rosseland
mean opacity, while uncertain, is considerably reduced and may not
exceed one order of magnitude. At any rate, the various available
calculations of the Rosseland mean opacity above 1500 OK, with and
without molecules (Gaustad 1963, Yamashita 1962, Tsuji 1966, and
Cox 1966) are in fair agreement (within about one order of magnitude),
and the opacity in the temperature range 1500-3000 °K can therefore
probably be considered as known to an accuracy adequate for the
present work, where it is not of great importance. At temperatures
above 3000 °K the opacity is relatively well known; in the present work
the calculations of Cox (1966) have been used.

Gaustad's data for the opacity due to dust grains are plotted
as a function of temperature in Fig. 1 (p. 10). The curve for
T = 150 °K is the Rosseland mean opacity for HZO grains as tabulated
by Hayashi and Nakano (1965), multiplied by 3 to make it consistent
with Gaustad's grain abundance. The two open circles at 500 °K and
1500 °K are Gaustad's calculations for MgSiO, grains. Because of
the large uncertainty in Gaustad's data, and because it was soon found
that the general features of the collapse of a protostar were not
strongly sensitive to the grain opacity, it was not thought worthwhile
to accurately represent Gaustad's data, and a simple constant value

for the grain opacity was adopted: K., =0.15 sz/gm. This is

R
shown by the horizontal straight line in Fig. 1. The grains were
assumed to evaporate at 1400 °K. (To find the effect of uncertainties

in the grain opacity or in the grain abundance, one collapse calcula-

tion was made with the dust opacity reduced two orders of magnitude
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Fig. 1 (p. 10): The assumed Rosseland mean opacity of the proto-

stellar material as a function of temperature. The unit for «
is cmz/gm and the unit for T is °K. The curved line on the
left side of the diagram shows the Rosseland mean opacity

for HZO grains as calculated by Hayashi and Nakano (1965)
using the data of Gaustad (1963). The two open circles are
Gaustad's calculations for MgSiO4 grains. The approximation

adopted for use in the calculations is illustrated by the straight

lines in the figure; see text for explanation.
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to 0.0015 cmz/gm.)
At temperatures between about 2000 °K and 8000 °K the
available data, if averaged and smoothed somewhat, are roughly

represented by the following simple power law:

1
—Z4p2T7

K. =4.3%X10 cm®/gm (2.1)

R

This formula was adopted for T = 2000 °K and is shown for p = 10—7

and 10_10 grn/crn3 by the two parallel straight lines on the right side
of Fig, 1. This rough formula represents the opacity within approxi-
mately a factor of 2 at the most important temperatures and densities,
although it may be in error by an order of magnitude or more at other
temperatures and densities, Again, because of uncertainties in the
data and because accurate opacities are not of critical importance for
the present purposes, it was not thought worthwhile in most of the
calculations to use a more accurate representation of the opacity.
Equation (2.1) gives opacities which are much too large for
T R 104 °K. For a star of one solar mass this makes no difference
until the star gets close to the main sequence because it turns out
that radiation transfer in material with T 2 10% °K is of negligible
importance anyway during the whole course of the collapse, For
stars of larger mass and for a star of one solar mass near the main
sequence it is necessary to use the correct high temperature
opacities; in these cases a complete tabular representation of the
opacity based on the calculations of Cox (1966) has been used for
T = 2000 °K.

Finally, in place of a discontinuous drop in opacity at the
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assumed grain evaporation temperature of 1400 °K, a logarithmically
linear interpolation between the grain opacity at 1400 °K and the power
law formula at 2000 OK has arbitrarily been made, as shown in Fig. 1,
This was done mainly because of numerical difficultics sometimes
encountered with the discontinuous drop, but in view of the great
uncertainties involved and the fact that the time required for evapora-
tion of the grains is not always negligible, perhaps the gradual drop

in opacity is no more unrealistic than the discontinuous drop.
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3. THERMAL BALANCE AND TEMPERATURE DURING THE
EARLY STAGES OF THE COLLAPSE

It is generally believed, mainly on the basis of 21 c¢cm obser-
vations, that the gas in typical interstellar HI regions has a tempera-
ture of the order of 100 °K. This value however is not necessarily
relevant for the early stages of a protostar of one solar mass,
because such a protostar must start with a density much higher than
that of typical interstellar HI clouds, and at these higher densities
different processes are of importance in determining the temperature.
The heating and cooling processes and the expected temperature have
been discussed by Hayashi (1966); we discuss the situation again below,
but the results will not be very different from Hayashi's.,

We consider first the heating mechanisms. In normal HI
clouds the gas is thought to be heated by photoionization caused by
absorption of starlight. However if we take Gaustad's grain param-
eters and the grain absorption coefficient given by Van de Hulst (1949)
for his theoretical curve #15, we find that, even at the minimum
density of about 10"19 g]rn/cn'l3 required for the collapse of one solar
mass, the protostar has a center-to-surface optical depth at 5000 A
of about 4. If we consider the whole protocluster, its optical depth
will be several times larger. Therefore the heating effects of
absorption of starlight will be greatly reduced for both the gas and
the dust grains, and we shall neglect this source of heating.

A second heating process which may still be important is
ionization by cosmic ray particles. The cosmic ray heating rate

adopted by Hayashi is T’ = 10_5 ergs/gm/sec; this value is a
Y v CR gs/8



-15-

lower limit based only on the observed flux of cosmic rays at energies
above a few Bev. Hayakawa et al. (1961) showed that unobserved
cosmic rays of lower energy can be quite important; on the basis of a
rather arbitrary extrapolation ol the cosmic ray spectrum to lower
energies, they obtained a cosmic ray heating rate three orders of"
magnitude higher, i.e. Tp® 1072 ergs/gm/sec. This value may be
too high, even assuming the hypothesized cosmic ray spectrum, since
it appears on the basis of data given by Hayakawa et al. that the lower
energy cosmic rays mainly important in this case may be subject to
significant absorption. We shall therefore consider Hayakawa's value
as an upper limit, and in estimating the temperature we shall consider
the following two limiting cases: (a) FCR = 10.5 ergs/gm/sec, and
(b) FCR - 1072 ergs/gm/sec.

A third heating mechanism which is of essential importance in
the present circumstances is compressional heating of the material as
it collapses gravitationally. The collapse is expected to be almost a
free fall; the free fall compressional heating rate for material with

the adopted composition is

4

1
g =7.5%10 p°T ergs/gm/sec . (3.1)

We now consider the cooling processes. An important process
in normal HI clouds is electron collisional excitation of fine structure
transitions in ions such as C+, followed by radiative de-excitation
(Seaton 1955), In the present circumstances this process is reduced
in importance because the electron and ion densities are reduced due

to the absence of ionizing stellar radiation, and because at these high
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densities the optical depth for the emitted line radiation becomes
large. The effectiveness of this process is thus uncertain, but it is
probably not of major importance and will be neglected here. If this
or similar processes should contribute significantly, the temperature
could be reduced somewhat at the lowest densities considered, but
this would not affect our major conclusions, except perhaps to
strengthen them.

A second radiative cooling process which may still contribute
significantly and which we shall take into account is cooling by H,
molecules. For our adopted composition and in the relevant density

range the H2 cooling rate is

-512/T

AH =1.67e

2

ergs/gm/sec . (3.2)

The cooling process which turns out to be most important at
the high densities relevant here is the collisional transfer of energy
from the gas molecules to the cooler dust grains. Assuming that the
colliding molecules leave the grains with a kinetic eﬁergy correspond-

ing to the grain temperature, the energy transfer rate is

14

1
Ag =1,1 X410 "pT?(T - Tg) ergs /gm/sec (3.3)

where Tg is the grain temperature. The grain temperature is deter-
mined by the balance between heating of the grains by the above pro-

cess and cooling of the grains by thermal emission at the rate

j = z.3><1o’4KpTg4 ergs/gm/sec (3.4)
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where Kp is the Planck mean opacity for the dust grains. Values of
Kp for the present calculations have been taken from the tabulation of
Hayashi and Nakano (1965), somewhat extrapolated where necessary
and multiplied by 3 to make it consistent with Gaustad's grain abun-
dance. In the early stages of the collapse the cloud is optically thin
at the far infrared wavelengths where radiation from the grains is
emitted, so radiation transfer effects need not be considered.

The temperatures of the gas and of the dust grains in thermal

equilibrium are then determined by the following two equations:

r +T,.=4A + A (3.5)

if H g

CR >

Agzj . (3. 6)

Actually, in the situation envisioned, with the material collapsing in
free fall and changing in temperature, we do not have thermal equili-
brium, and the equations should really include a term in dT/dt. In
the present case this term makes no essential difference to the results
and will be neglected.

The temperatures calculated from equations (3.5) and (3. 6)
are shown in Table 1 (p. 18) as a function of density over the rele-
vant density range. In case (a) it turns out that cosmic ray heating
and HZ cooling are of negligible importance at all the densities
considered, and the temperature is determined just by the balance
between compressional heating and cooling by dust grains. For
-19

p =210 grn/crn3 the collisional transfer of energy from gas mole-

cules to dust grains becomes very effective and brings the gas
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TABLE 1!

TEMPERATURES OF GAS AND DUST DURING EARLY STAGES
OF COLLAPSE OF A PROTOSTAR

(a) (b)

Tep = 107 Tep = 1072
R T 5
~20 48.3 4.8 99.5 5.6
-19 12.7 4.7 85.3 7.4
-18 7.0 5.1 28.6 7.9
17 6.5 5.9 11.4 7.9
16 7.2 7.0 8.8 8.3
15 8.5 8.5 9.1 9.0
14 10.2 10. 2 10.4 10.4
-13 12.3 12.3 12.4 12.4

-12 14.9 14.9 14.9 14.9
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temperature down close to the dust temperature, which is always of

the order of 10 °K and is only weakly sensitive to the heating rate.
In case (b), H, cooling is important for the first two entries in Table 1

16

and cosmic ray heating is important up to about 10~ gm/cm3. Even
with the high cosmic ray heating rate, however, cooling by dust grains
again dominates and brings the gas temperature down to near 10 °K

-17 gm/cm3.

for densities <10
Rather similar results are obtained under various assumptions
by Hayashi and Nakano (1965) and Hayashi (1966); Hayashi for example
considers both transparent and opaque cases, and in both cases he
gets temperatures of the order of 15 °K at the relevant densities. In
fact a similar result will always be obtained as long as dust grains
are assumed to exist and as long as the density is high enough, i.e.

19 -18 3

greater than about 10 =7 or 10

gm/cm”, because of the great
effectiveness of molecule-grain collisions in equalizing the gas and

dust temperatures.

As will be shown in section 5, if we assume a temperature of
10 °K the minimum initial density required for the gravitational
collapse of a protostar of one solar mass is about 10_19 gm/cm3.
Hence we see from Table 1 that in case (a) the temperature will re-
main near 10 °K throughout the early stages of the collapse, i.e.
until the central part of the cloud becomes optically thick in the far

-14 -13
o]

infrared, which happens at a central density of about 10 r 10

gm/cm3. In the collapse calculations it has been assumed that
throughout the early optically thin stages of the collapse the cloud

remains isothermal at a fixed temperature, taken in most cases to be
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10 °K. In reality the cloud will not be strictly isothermal because the
density and the collapse rate vary throughout the cloud, but Table 1
shows that the temperature is not very sensitive to the heating rate,
so that the isothermal assumption should be a reasonably good
approximation,

If the cosmic ray heating rate is much higher, as in case (b),
the initial temperature will be higher than 10 °K and the initial density

19

gm/cm3. A consistent set of

18

must therefore also be higher than 10~
starting values for case (b) would be a density slightly over 10
gm/crn3 and a temperature of about 25 °K. It is clear from Table 1,
however, that as soon as the collapse starts the temperature will
start to drop, and it will soon reach approximately 10 °K as before.
Thus it may still not be a bad approximation to assume a temperature
of 10 °K throughout the early stages of the collapse. The main effect
of the higher cosmic ray heating rate will be that a somewhat higher
initial density is required to start the collapse,

In order to explore the effect of uncertainty in the temperature
during the early stages of the collapse, and to allow for the possibility
of some large error in our estimation of this quantity, one collapse
calculation was made with an initial temperature of 100 °K instead of
10 OK, with a corresponding initial density of 10‘16 grn/cm3 instead

19 3

of 107~ 7 gm/cm”.



-21-

4, BOUNDARY CONDITIONS

In calculating the dynamics of a collapsing protostar we have
a combination initia]. and boundary value problem: the state of the
material must be specified completely at the initial instant, and con-
ditions at the boundary must be specified at all times during the
collapse. In reality, in the turbulent field of motion in which proto-
stars begin to condense there is no well-defined "initial instant" at
which a particular region begins to condense as a single protostar,
and likewise there is no well-defined surface constituting its

"boundary."

In fact, "initial instant" and "boundary" are rather
artificial concepts which arise when we attempt to separate out
from the complicated flow field a particular region, to be called a
"protostar,'" which for simplicity we wish to study as a separate
entity and represent by a simple mathematical model. Thus the
initial and boundary conditions are subject to some arbitrariness of
choice, depending on just how one chooses to define the initial
instant and the boundary.

We discuss first the treatment of the boundary. We shall
arbitrarily take our boundary to be a spherical surface enclosing a
given fixed mass, eg. one solar mass, and moving with the material
as it expands or contracts. This choice has been made because it
seemed most natural and because the Lagrangian computational
scheme initially used in the collapse calculations requires conditions
to be specified at points which move with the material. It should be

noted, however, that when the boundary is chosen in this way it is
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not necessarily true that the boundary will contract as the collapse
proceeds or even that all of the material inside the boundary will
collapse into a star; under some conditions the outer part of the cloud
may expand as the inner part contracts, e;nd the resulting star may
end up with considerably less than one solar mass.

The important boundary condition is the pressure exerted on
the boundary of the collapsing protostar by the surrounding material,
if any; this is of dominant importance in determining the motion of
the boundary and the material in the outer parts of the cloud. Three
types of boundary conditions have been considered in this project:

(a) The protostar is assumed to be surrounded by a vacuum,
i.e. there is assumed to be zero pressure on the boundary. Since the
boundary temperature is finite, even though the density may go to
zero, there can be no hydrostatic balance with zero boundary pres-
sure, as has sometimes been imagined; the pressure gradient always
wins over the gravitational force and the boundary material is im-
mediately blown off at roughly the speed of sound. Such a situation
seems hardly likely to arise in the first place, but even if sornething
like this does happen, it would seem more appropriate to choose as
the boundary of the protostar some mass level farther inside the cloud
where the material does not immediately start to expand. Therefore
calculations with this boundary condition were pursued only far enough
to show that the interior part of the cloud which does still collapse
does s0 in much the same way as in the other cases tried.

(b) It would seem more realistic to suppose that our collapsing

protostar is surrounded by material which exerts a finite pressure on
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its boundary. The one solar mass of interstellar material destined to
become a collapsing protostar can achieve the required initial density

of 10717

gzn/cnn3 only through being compressed by surrounding
raterial, and presumably this surrounding material would be still
present and still exerting pressure on the boundary when the protostar
starts to collapse gravitationally. One simple assumption which may
be considered is that there is a finite boundary pressure which is equal
to the initial pressure just inside the boundary and remains constant
in time as the protostar collapses. This assumption was used in most
of the early calculations in this project because of its simplicity in
Lagrangian form. In this case the boundary is continuously acceler-
ated inward by the pressure of the external material. However this
assumption may again be unrealistic since it would seem that the
pressure of the surrounding material should decrease as most of it
condenses into stars. Thus perhaps case (a), in which the boundary
expands, and case (b), in which it contracts, may be regarded as
limiting cases, with something intermediate probably more realistic.
(c) A possible intermediate case is one in which there is a
finite outside pressure sufficient to keep the boundary from expanding
but not large enough to make it contract; i.e., the boundary remains
fixed in space. This corresponds to allotting a constant volume to
each collapsing protostar in a protocluster, which seems reasonable,
assuming that the protocluster stops contracting as a whole when it
fragments into stars. Actually the fixed boundary assumption was
first introduced when it was found necessary in calculating the later

stages of the collapse to switch to an Eulerian computational scheme,
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which requires that conditions be specified at points fixed in space.
Because it seemed more realistic than the other assumptions con-
sidered and because it was the easiest one to use in the Eulerian com-
putational method, the fixed boundary assumption was eventually

adopted for use throughout the collapse calculations.
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5. INITIAL CONDITIONS

As the initial conditions for the collapse of a protostar it is
necessary to specify initial values for the temperature, density, and
velocity at all points within the protostar. The temperature has
already been discussed in section 4; we have assumed the temperature
to be initially uniform and equal in most cases to 10 °K. As for the
initial velocity, we have assumed for simplicity that the protostar
starts from rest, i.e. with zero initial velocity. This assumption is
not necessarily very realistic since, as was pointed out in section 1,
the protostar may already be collapsing at a significant rate when
it forms. However the initial velocity distribution is not expected
to have any important effect on the general features of the collapse,
once the collapse is well under way; some calculations made with the
cloud initially contracting or expanding showed no essential difference
from other cases in the nature of the collapse, once the collapse was
well under way.

We now consider the initial density distribution. It was pointed
out in section 1 that the polytropic or isothermal sphere density dis-
tributions which have usually been assumed are probably not particu-
larly relevant. Instead it appears more likely that during the initial
stages of a protostar the density distribution changes more or less
rapidly without ever coming into hydrostatic equilibrium. The one
solar mass of material destined to collapse into a star may at a very
early stage appear as a density perturbation or a compressed region

in a turbulent flow, with probably little or no central condensation.
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If its density is high enough, its self-gravitation will start it col-
lapsing and begin to produce a centrally peaked density distribution.
This density perturbation will of course be subject to disturbing in-
fluences, and an enduring existence as a gravitationally coherent
object may not be ensured until it has already built up some kind of
central density peak; in this event there is some problem in just what
stage should be considered as the initial state of a collapsing proto-
star. For simplicity and definiteness we have imagined the initial
state to be a very early stage when the density perturbation has just
appeared but its self-gravitation has not yet had time to produce a
significant central condensation, and we have accordingly assumed a
uniform initial density éistribution in all of the calculations. Again
this assumption is not expected to be of critical importance, and
there are reasons from the results for believing that the initial den-
sity distribution doesn't make much difference once the collapse is
well under way.

Some support for the above assertions about the non-critical
nature of the initial dens ity and velocity distributions is provided by
the work of Penston (1966). He computed the early stages of the
collapse of an isothermal gas sphere with several choices of initial
conditions different from those considered here. While there are of
course some quantitative differences, the qualitative features of the
collapse as computed by Penston are quite similar in the various cases
and similar also to the results obtained in the present project.

We have now only to specify the value of the uniform initial

density with which the calculations are to be started. For a cloud of
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given mass and temperature, such as we are considering, a certain
minimum density is required in order for gravitational forces to
overcome pressure forces and make the cloud collapse gravitationally.
This minimum density can be estimated either by the Jeans gravita-
tional instability criterion or by application of the virial theorem.

We consider first the Jeans criterion., Derivation of the Jeans
gravitational instability criterion for spherical density perturbations
has been given by Bonnor (1957) for a particular assumed radial de-
pendence of the perturbation amplitude., The resulting minimum
density for instability of a spherical density perturbation with mass

M, temperature T, and gas constant R is

2 3

_.f’_(lf_ﬂ) 19
P=Z4a\3 G

-17 =2,7X10° gm/cm3 (5.1)

M
where we have substituted M = Mg, T =10 °K, and R=3.36 X 10"
(cgs).

The other way to estimate the initial density is to imagine a
cloud in which gravitation just balances pressure forces, so that
there is no net tendency toward expansion or contraction, and apply
the virial theorem to find the corresponding density. (Hydrostatic
equilibrium is not implied by this "balance"; it need only be that a
tendency to contract in one part of the cloud is balanced by a ten-~
dency to expand in another part.) Considering first an isolated cloud
with no external pressure, the virial theorem is 2K +{ = 0, where
K is the total thermal kinetic energy and is the gravitational

potential energy. (We have neglected any effects of rotation,
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magnetic fields, or internal mass motions.) Assuming a uniform

density, this gives an initial density of

5T 3

p:%n(—_G——) ——I\%Zg.SXiO‘

19 gm/em?® | (5. 2)

using the same values as above for the parameters.

We have seen however that it would be more realistic to as-
sume a finite external pressure on the cloud., In this case an extra
term must be inserted in the virial theorem, as was shown by McCrea
(1957); it now becomes 2K+ = 3PV, where P is the boundary
pressure and V is the volume of the cloud, Clearly the existence
of a finite external pressure allows gravitational collapse to start
from a lower initial density. In fact, if we assume a uniform initial
density and set the initial boundary pressure equal to the (uniform)
internal pressure, as required by the boundary conditions (b) or (c)
discussed in section 4, the virial theorem predicts that collapse can
start from an arbitrarily low initial density. While it is true that the
cloud will always start to collapse, what happens subsequently if the
denstiy is too low is that pressure gradients soon build up sufficiently
to stop the collapse, and the cloud then rebounds and oscillates about
a hydrostatic equilibrium configuration without ever collapsing to a
star. Thus the virial theorem alone does not in this case establish a
minimum density sufficient to ensure collapse all the way to a star.

A sufficient condition for collapse to a star has been estab-
lished by the work of Ebert (1955), Bonnor (1956), and McCrea (1957).

Their result may for our purposes be re~expressed as follows:
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Consider an isothermal gas cloud of mass M and temperature T
confined by an external pressure to a spherical volume of radius R.
Then for large enough R (small enough mean density), the material
can always arrange itself in a hydrostatic equilibrium configuration
which is stable against gravitational collapse. However there is a
critical radius RC such that if the cloud is compressed to a radius
smaller than RC, stable hydrostatic equilibrium is no longer possible
and the cloud must collapse, no matter what the initial density and

velocity distributions. The critical radius is given by

GM 17

Rc:0’41 T =1.63 X10° " cm, (5.3)
and the corresponding mean density is
3 (_RT _\> 14 -19 3
pc:—ZLTr(OlHG) 5 =1,10 X 10 gm/cm”, (5.4)
* M

again with the same values of the parameters as above.

Thus with our fixed boundary assumption a sufficient condition
for collapse to a star is an initial density greater than Pee This is
however not a necessary condition; with our assumed initial conditions,
for example, the cloud starts off far out of hydrostatic equilibrium,
and by the time pressure gradients have built up sufficiently to sup-
port an equilibrium there is already a substantial collapse velocity,
which enables the material to continue collapsing even from an
initial density somewhat lower than Pee In order to find the minimum

initial density (or maximum radius) from which collapse can take
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place assuming a fixed boundary and starting with a uniform density

and zero velocity, a number of trial collapse calculations were made.
Different values for the radius R were tried until a value Rmax
was established such that for R < Rmax the cloud collapses all the

way to a star whereas for R > R o ax it rebounds and oscillates with-

out ever collapsing to a star. The resulting empirical value of Rmax

was found to be

_ GM _ 17
R . =0.46 2% =1.83X 10" " cm; (5.5)

the corresponding minimum initial density is 7.9 X 10720 gm/cm3.
If we assume a protostar to begin its collapse as soon as the
density becomes high enough, then the radius and density given just
above could be considered the appropriate starting values. Actually,
it was found that when the calculations were started with a value of
R close to anax’ small inaccuracies due to the necessarily coarse
space and time steps could shift the sensitive balance and make the
cloud rebound instead of collapse., In order to avoid this difficulty,
and because Rmax is not very different from RC anyway, the cloud

radius was for most of the calculations set equal to Rc as given by

egn. (5.3).
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SUMMARY OF ASSUMPTIONS

Before proceeding to describe the calculations, we shall

summarize here the major assumptions which have been made for

most of the calculations, as discussed in detail in the past few

sections.

(1)

(2)

(3)

(4)

Spherical symmetry has been assumed throughout, and no non-
spherically symmetric motions or forces have been considered,
In particular, we have neglected (a) rotation, (b) magnetic fields,

and (c) internal turbulence.

The material is assumed to remain isothermal throughout the
early optically thin stages of the collapse. A temperature of
10 °K has been assumed in most cases, but a temperature of

100 OK has also been tried.

The boundary is in most cases assumed to remain fixed in space
at a constant radius R. A constant boundary pressure has also

been tried as a boundary condition.

The density is assumed to be initially uniform, and the collapse
is assumed to start from rest. The initial density is assumed in

most cases to be given by eqn. (5.4).
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PART II: DYNAMICS OF THE COLLAPSE

6. EQUATIONS AND APPROXIMATIONS FOR THE EARLY
STAGES OF THE COLLAPSE

6.1 The Lagrangian Equations

In this project we have used the equations of fluid dynamics in
both the Lagrangian and Eulerian forms; accordingly we shall give
both forms of the equations, starting with the Lagrangian equations.
In the Liagrangian formulation the physical variables describing the
flow are referred to a coordinate system embedded in the fluid and
moving with it, so that a particular "fluid particle" is always labeled
with the same Lagrangian coordinates. In our spherically symmetric
problem, the Lagrangian coordinate for a particular spherical surface
is most conveniently taken as the mass m contained inside that
surface. The differential equations then give the rate of change of
the physical variables and of the radius r on a surface of constant m
as it expands or contracts with the flow, The Lagrangian differential
equations are given below in the form most closely related to the
difference equations used in the calculations., In writing these equa-
tions we allow for heat transport by radiation or other means but not

for nuclear or other non-mechanical energy sources.

or _

5 = U (6. 1)
du Gm 2 0P

Bt 2 4T gm0 6. 2)



ot P at gm 0 (6.3)
where
3
= 1 _ 4m Or
V= p 3 Om ° (6.4)

In these equations the pressure P and the internal energy per gram
E are assumed to be given as functions of the temperature T and the

specific volume V by the equations of state:

P

1]

P(T,V)

E=E(T,V) .

These relations are discussed in Appendix C. In equation (6.3) L is
the total heat flux transported outward across a surface of given m.

It turns out that in the early stages of the collapse under consideration
here, the only important heat transfer process is radiation; convection
does not occur. The calculation of 1. is therefore a problem in
radiative transfer, in general quite complicated. If the material is
quite optically thick, the calculation of the radiation transfer simpli-
fies greatly and we can use the radiation diffusion equation used in

the theory of stellar interiors. This equation may be written as

follows:

256 n°0 4 T BT

b= K om (6.5)

where ¢ is the Stefan-Boltzmann constant and K = (T ,V) is the

Rosseland mean opacity, already discussed in section 2.2, We
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postpone to section 6.3 a discussion of the radiation transfer problem
in cases where the material is not completely optically thick,

We now have 5 differential equations, and if P, E, and Kk are
specified as functions of T and V we have 5 basic unknowns, which
we may for example take to be r, u, V, T, and L. (Note that these
are just the 4 variables of stellar structure plus the velocity u.)
Correspondingly we require 5 boundary conditions. There are 3
obvious boundary conditions at the center: at m = 0, we have r = u =
L. = 0, Two boundary conditions, one mechanical and one thermal,
must be specified at the outer boundary m = M. The mechanical
boundary condition may for example take the form of a specification
of either P or u at the boundary, as has already been discussed in
section 4, The thermal boundary condition might for example be a
specification of T or of a relation between L and T at the boundary;
we shall postpone discussion of this, along with further discussion of
the radiation transfer problem, until after we have given the Eulerian

equations, since the same problem occurs in the Kulerian case.

6.2 The Eulerian Equations

In the Eulerian formulation of the differential equations the
flow variables are referred to a coordinate system which is fixed in
space and through which the fluid moves. In our spherically sym-
metric problem the Eulerian space coordinate is r, sothat r in
this case becomes one of the independent variables along with t. The
Eulerian differential equations then give the rate of change of the

flow variables and of the mass m on a surface of constant r. Again
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we write the differential equations in the form most closely related

to the difference equations used, and we write the diffusion equation

for radiation transfer when the material is optically thick:

2
dm _ _ 4wr u
ot v (6.6)
ou 9u , Gm P _
—a-%— +u~é—£+:—2—+v—é—;—0 (607)
0E av oE av 3 oL _
5 PP tuley tPa) taY 500 (6.8)
1 3 9m _
v~ .3__0 (6.9)
or
L. _ b4mg 2VT> BT (6. 10)
- 3 K or *

In this case the 5 basic dependent variables may be taken as m, u,

V, T, and L. Again we require 5 corresponding boundary conditions,
of which there are 3 obvious ones at the center: at r=0, m=u=0L =
0. In the Eulerian case the only simple way to handle the outer bound-
ary conditions is to take the outer boundary to be a fixed surface

r = R, and specify conditions on this surface. Since by assumption

our boundary encloses a fixed mass of material, we must in this case
allow no mass flow across the surface r = R; i.e. the mechanical
outer boundary condition must be takenas u=0 at r = R, As has
been discussed in section 4, this type of boundary condition was con-

sidered to be as reasonable as any other; therefore other possible
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ways of treating the Eulerian boundary conditions have not been in-

vestigated.

6.3 The Treatment of Radiation Transfer

We still have to discuss in more detail the radiation transfer
problem, The equations (6.5) or (6.10) are valid only when the
material is optically thick at the relevant wavelengths near the peak
of the blackbody curve, but this is certainly not always the case. With
our adopted opacity data and initial conditions, the optical depth of
the whole protostar is initially << 1 at the relevant far infrared wave-
lengths, and it does not approach unity until the central density has
risen several orders of magnitude above its initial value., Even then
only a very small central region of high density becomes optically
thick, while most of the cloud remains optically thin,

The thermal conditions in the optically thin material during
the early stages of the collapse come under the discussion in section
3, where it was shown that a reasonably good approximation would be
obtained by assuming the optically thin material to remain isothermal
at 10 °K. It happens that when the diffusion equation (6.5) or (6.10) is
applied in an optically thin region, where it is physically completely
invalid, it has the effect of artificially making the whole optically thin
region very nearly isothermal at whatever temperature is specified
as the boundary temperature. Thus if we apply the diffusion equation
throughout, even when the material is optically thin, and specifiy
T = 10 °K as the thermal boundary condition, the temperature during

the optically thin stages of the collapse is artificially kept very nearly
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isothermal at 10 OK, as desired. In the opaque core which eventually
forms at the center, on the other hand, the diffusion equation correctly
describes the radiation transfer, and the temperature is correctly
calculated.

Thus it happens rather fortunately that we can use equations
(6.1) - (6.5) or (6.6) — (6.10) as they stand throughout the calculations
and obtain results which are correct in the limit of large optical depths
and a reasonably good approximation for small optical depths. This
is the procedure which has been used in all of the present calculations.
This procedure is not so clearly justified in the intermediate case
where neither the optically thick nor the optically thin limits apply,
but one can show by approximate arguments that the diffusion equation
still gives approximately the correct temperature even in this transi-
tion case. The adopted procedure is therefore believed to provide a
satisfactory approximation for the present purposes, particularly in
view of the fact that the dust opacity is quite uncertain anyway.

This fortunate situation holds only during the early stages of
the collapse. Later on the luminosity generated by the collapse in
the central part of the cloud becomes an important source of heating
for the outer optically thin regions; this is not properly accounted for
by the diffusion equation, which gives a temperature which is too low
under these circumstances. In the early stages of the collapse under
consideration here, this error begins to appear but does not yet
become serious, so we need not worry about it here. Further dis-
cussion of this problem will be given in section 8.3 in connection

with the later stages of the collapse.
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7. RESULTS FOR THE EARLY STAGES OF THE COLLAPSE

7.1 Explanation of the Calculations

The numerical methods which have been used for computing the
early stages of the collapse are described in detail in Appendix A.
Both Lagrangian and Eulerian computational schemes have been
developed, and each was used where most advantageous, as explained
in Appendix A. In both cases shock fronts have been treated by the
von Neumann-Richtmyer pseudoviscosity method which artificially
spreads a shock transition out over several mass zones, thus allowing
shock fronts to be handled automatically wherever they arise in the
flow without the need for a special treatment,

Since the present project has represented an exploratory ven-
ture whose outcome would not necessarily bear any relation to anything
in the real world, let alone anything observable or measurable, it
was mainly the qualitative features of the results which were of
interest, and not somuch the quantitative details. In any case, we
have seen in the preceding sections that there are so many uncertain-
ties in the various assumptions and input data that probably only the
general qualitative features of the collapse can be calculated with any
confidence anyway. Therefore high numerical accuracy has not been
sought in this project, and the numerical calculations have been made
with space and time grids which are quite coarse compared with what
might usually be considered adequate. A general level of accuracy
of the order of 20% or so appeared for the most part to be a reasonable

goal, being quite adequate for the present purposes but still usually
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attainable without requiring large amounts of computing time. The
accuracy actually achieved in the results is discussed in section A.7;
various checks described there verify that accuracies of the order of
20% or so in the important quantities were in fact usually attained.

In this project numerical collapse calculations have been made
using a variety of different assumptions and choices of parameters
in an effort to find out how the results would be affected by uncer-
tainties or variations in these assumed conditions. Of the various
sets of assumptions considered, seven cases covering a fairly wide
range in parameters were selected for reasonably complete and
systematic calculations extending all the way through to a star
approaching the main sequence. These seven cases will be described
in detail below., Other calculations were made for the initial stages
of the collapse using different assumptions, but in general these other
calculations were not systematic or complete enough, nor were the
results different enough to merit a separate description in detail.
Usually the outcome of these other calculations was that some parti-
cular change in assumptions was found to make no basic qualitative
difference in the results; since it was mainly the qualitative features
of the results which were of interest, it was not considered worth-
while to pursue these calculations further, Their results, as far as
they go, will be (or have been) summarized in some general asser-
tions about the effect of varying certain assumptions; for example,
it was mentioned in section 5 that different initial velocity distribu-
tions do not appear to affect the nature of the collapse very much,

once the collapse is well under way,
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The 7 cases to be described are listed in Table 2 (p. 41 ),
which shows the conditions assumed in each case. In all cases the
calculations were started with a uniform initial density and zero
initial velocity, as discussed in section 5, In all cases except no. 6
the boundary has been assumed to be fixed in space, as was discussed

in section 4., In each case the temperature listed under "T.1 " is the

nit.
value which has been specified as the boundary temperature in the pro-
cedure described in section 6.3, and it represents not only the initial

temperature but the temperature during the whole isothermal phase

of the collapse. We explain the individual cases in more detail below,

Case 1 is the "standard case" for one solar mass, calculated with

what are thought to be the best values of all parameters, according to

the discussion in Part I.

Case 2 has an initial temperature chosen to be one order of magnitude
higher than in Case 1 to allow for the possibility of a serious error
in the estimated initial temperature. The initial density must then be

3 orders of magnitude higher than in Case 1 to ensure gravitational

collapse.

Case 3 has the same initial temperature as Case 1 but an initial den-
sity 3 orders of magnitude higher, as in Case 2. This choice was
made because it was desired to find the effect of increasing the
density alone, without changing the temperature. (The initial density
derived in section 5 and used in Case 1 is after all only a minimum,

and the actual initial density could conceivably be considerably higher,)
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Case 4 has an assumed dust opacity reduced by two orders of magni-
tude from Case 1 in order to find the effect of a large error in the
dust opacity, which is very uncertain as was seen in section 2,2, It
was hoped also to get an idea of how star formation might differ in a
region with greatly reduced dust content, as might be appropriate for

example for the formation of Population II stars.

Case 5 was calculated assuming no HZ molecules to exist at any time
during the collapse. This case may have no relation to reality, even
if molecules are not present initially, because as long as molecules
form before the material becomes optically thick at about 10_13
gm/cm3, the collapse will proceed essentially as in Case 1; still,
this case provides another test of the sensitivity of the final result

to large changes in the conditions during the early stages of the

collapse.

Case 6, with M = ZM®, was actually the first one calculated, and

was done before the more systematic procedure used in the other cases
had been adopted. Thus it was calculated with the Lagrangian method
and the constant boundary pressure assumption, rather than the
Fulerian method and the fixed boundary assumption as in the other
cases. Also, the initial density was determined using the virial
theorem with no external pressure, and is about a factor 10 higher
than is required to ensure collapse. Nevertheless, it was thought

that this early calculation was still of sufficient interest to merit

inclusion,
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_Ci‘_if_(_j_’_ with M = 5M®, was calculated in order to find the offect of
an increase in mass, and it was desired to be able to compare the
results with one of the cases already calculated for one solar mass.

If a temmperature of 10 °K had been chosen and the initial density cal-

-21 3

culated as in Case 1, this density would have been 4,4 X 10 gm/cm’;
at this low density ,however, the temperature would in reality be much
higher than 10 OK, necessitating in turn a much higher starting den-
sity. In order that there might be some comparison with one of the
casces already calculated, a temperature of 100 °K was chosen, as in

Case 2, and the corresponding minimum initial density was taken. 1t

is not argued that this choice of parameters is necessarily realistic,

The results for the early stages of the collapse in each of these
cases will be described in detail in the following subsections., As it
turns out, the qualitative features of the collapse are much the same
in nearly all of the cases tried, including those not listed in Table Z2;
even the quantitative numerical results are not very different, con-
sidering the large differences in assumed parameters. Thus it will
be possible to a large extent, at least for qualitative purposes, to
include all of the cases under common descriptions. We begin by

describing the initial optically thin isothermal stages of the collapse.

7.2 Isothermal Stages of the Collapse

At the initial instant, the temperature and density and therefore
also the pressure are by assumption uniform throughout the cloud.
Consequently there are no pressure gradients, and the whole cloud

begins to collapse in free fall., The density and pressure in the
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interior of the cloud then rise, whereas the pressure at the surface
may decrease or remain constant, depending on the assumed boundary
conditions, but it at least does not increase. A pressure gradient
therefore arises near the surface of the cloud, causing the collapse
near the surface to be significantly retarded from a free fall, As

the collapse proceeds, this pressure gradient and the consequent
retardation of the collapse propagate inward in the cloud; what we
have, in fact, is just an expansion wave which starts at the surface
of the cloud as soon as it begins to collapse and then travels inward
at the speed of sound relative to the infalling material, Since the
central part of the cloud continues to collapse rapidly whereas the
collapse of the outer parts is progressively retarded, the density
rises faster at the center than in the outer parts of the cloud, and the
density distribution soon becomes strongly peaked at the center.

If the initial density is near the minimum value required for
gravitational collapse, the expansion wave reaches the center before
the collapse has gotten very far, and the collapse at the center is
strongly decelerated. If the initial density is too low, in fact, the
material at the center stops collapsing and rebounds. With a higher
initial density the expansion wave does not reach the center until a
later stage in the collapse, and the deceleration is insufficient to halt
the collapse completely. In this case gravitational forces eventually
regain dominance over pressure forces, and the collapse is again
accelerated. Thereafter the collapse continues approximately as a
free fall. Since the free fall collapse time depends inverscely on the

density, the collapse proceeds most rapidly at the center where the
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density is highest; consequently the density distribution becomes
more and more sharply peaked at the center. A situation is soon
reached in which the density at the center is orders of magnitude
higher than the density in the outer parts of the cloud, and the time
scale for collapse at the center is correspondingly orders of magni-
tude shorter than the time scale for collapse of the outer parts of the
cloud.

The development of the central density peak is illustrated for
Case 1 in Fig. 2 (p. 46); the results in all other cases are quite
similar. The diagram shows log p plotted vs. log r at several times
during the isothermal phase of the collapse. At the latest time shown
the central density is 7 orders of magnitude higher than the density at
the surface, and the central density peak has a width only about 10_3
times the total radius; the mass in this central dense region is also
only about 10_3 times the total mass. It is clear in Fig. 2 that as the
collapse proceeds, large increases in density occur on a short time
scale at the center while practically nothing happens in the outer parts
of the cloud where most of the mass still resides.

This extremely non-homologous character of the collapse, with
the consequent great disparity in time scales between the central and
outer parts of the cloud, was found in all of the cases tried. Further-
more, the same kind of result was obtained by Penston (1966), who
used different initial conditions. Thus it appears that this is a uni-
versal property of isothermal spherical collapse problems of this
type. The extent of the deviation from homologous collapse and its

full importance for star formation have apparently not been previously
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Fig. 2 (p. 46): The evolution of the density distribution in the collaps-
ing cloud for Case 1, The unit for r is c¢cm and the unit for
p is grn/crn3° The curves are labeled with the times in units
of 1013 seconds since the beginning of the collapse. The time
scale in the Eulerian calculations is somewhat inaccurate,
as explained in Appendix A, so the time scale indicated by
these numbers is different from the corrected time scale

given in Table 5 (p. 63).
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realized; consequently, as will be seen, some of the results of

" Gaustad (1963), Hayashi and Nakano (1965), and Hayashi (1966),
which were obtained assuming homologous collapse or polytropic
density distributions, are invalidated.

An important aspect of the collapse is that although gravitation
is dominant over pressure forces, making the collapse proceed ap-
proximately as a free fall, the pressure forces are never completely
negligible (except initially), and they play an essential role in deter-
mining the density distribution. In Case 1, for example, the outward
pressure gradient force is typically somewhat more than half of the
inward gravitational force, and this ratio remains nearly constant as
the collapse proceeds. Thus the collapse, while qualitatively like a
free fall, is significantly retarded from the free fall collapse rate.

It may be noted that at the later tlmes shown in Fig. 2, the
curves of log p vs. log r in the inner part of the cloud are at different
times very nearly identical except for scale shifts. This fact, to-
gether with the fact that the ratio of pressure to gravity forces at
corresponding points remains nearly constant as the collapse proceeds,
suggests that the flow variables in the inner part of the cloud may at
different times be represented by functions of r having the same
form, differing only by scale factors which vary as a function of time.
In the calculations this is found to be nearly the case, becoming a
better and better approximation the longer the collapse proceeds (as
long as the material remains isothermal). It can be shown mathe-
matically that such invariant functional forms are in fact a possible

solution of the equations in the limit where the outer boundary can be
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considered as infinitely far away; some of the mathematical analysis
is given in Appendix D. The actual solution always approaches this
limiting "similarity solution” near the center if the collapse proceeds
far enough.

One of the results derived in Appendix D is that the density
distribution in the rapidly collapsing region should approach the form

-2
r

p < . We see in Fig. 2 that in Case 1 the density distribution does

indeed closely approach an r—2 law; the same kind of result is found

in all the other cases tried.

7.3 Formation of the Opaque Core

When the central density reaches a value in the neighborhood

of 10713

grn/cm3 (plus or minus about one order of magnitude), the
infrared optical depth of the dense central region becomes greater
than unity; the thermal energy generated by the collapse is then no
longer freely radiated away, and the central temperature begins to
rise above its initial value. (Optical depths have been calculated using
the dust opacity of 0.15 sz/gm adopted in section 2.2; this value is
of course highly uncertain,) As the collapse proceeds, the optical
depth of the central region increases, while the collapse time scale
decreases; as a result of these two effects, the energy transported
by radiation during the collapse time scale soon becomes negligible
in comparison with the internal energy of the material, and the col-
lapse at the center becomes very nearly adiabatic. The central
temperature then rises rapidly, and the pressure soon becomes

sufficient to decelerate and eventually even stop the collapse at the
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center. In Case 1, for example, the collapse at the center begins

12

to decelerate at a central density of about 10~ gm/cm3, and it has

practically stopped by the time the central density reaches about

10—10 gm/cm3 and the central temperature a value somewhat over

100 °K.

All of the above statements apply only to a very small region
at the center of the collapsing cloud, having a mass of the order of
only 10_2 solar masses and a radius of only a few astronomical units,
or about 10—3 times the total radius; the material outside this region,
i.e. nearly all of the mass of the cloud, remains optically thin and
nearly isothermal, and it continues to collapse inward almost in free
fall. Between the central region of decelerating collapse and the
surrounding region of continuing near free fall collapse, there conse-
quently arises a steep velocity gradient, which rapidly steepens into
a shock front. By the time the collapse has stopped at the center this
shock front is well developed, the velocity of infall being reduced
almost to zero inside the shock front. The situation which then exists
is that we have a central "core" in which the material has practically
stopped collapsing and is approaching hydrostatic equilibrium; bound-
ing this core is a shock front, in which the rapidly infalling material
outside the core is suddenly stopped. As the collapse proceeds, this
core grows steadily in mass as more ma terial falls into it.

When the coi]apse at the center is first brought to a halt, the
pressure forces are more than sufficient to balance gravity, with the
result that the material at the center rebounds and starts expanding

again. This sets up radial oscillatory motions in the core, which
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continue for a considerable time, superimposcd on a slow contraction
as the core accumulates more material. The rebound and the ensuing
radial oscillations were found in the calculations to have amplitudes
of the order of 10 to 20% in radius, although these motions were not
accurately calculated. The basic phenomenon is just adiabatic pulsa-
tions about a hydrostatic equilibrium configuration, but the motion is
in fact quite complicated, since many modes are excited, Calculating
these pulsations in any detail would require finer space and time grids
and hence more computing time than would otherwise be desirable,
and since these pulsations are not particularly of interest anyway for
the present purposes, we have favored numerical methods which tend
to suppress such motions, as explained in Appendix A. In fact with
the Eulerian method used in most of these calculations the rebound
and radial pulsations are suppressed almost completely out of
existence.

Some properties of the core at a time soon after its formation
are listed in Table 3 (p. 52); this table gives the initial mass, radius,
central density, and central temperature of the core for each of the
seven cases., The quantities in this table are intended to refer approxi-
mately to the time of the first rebound at the center. In most cases,
however, since the rebound is suppressed by the numerical method,
this instant is difficult to define and has necessarily been chosen
somewhat arbitrarily. Because of this arbitrariness and because of
other uncertainties, the numbérs in the table have not much more

than an order of magnitude significance,
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TABLE 3

INITIAL PROPERTIES OF THE FIRST CORE

Case M

No. (gm)

1 1.0 x 1031
2 5 x10°1
3 1.3 x 1031
4 2 x 1030
5 4 x 103!
6 1.6 % 101
7 5 X 10°1

R
(cm)

6 x 1013

4 x10!3

6 x10'3
1.3x 103
1.5x 1014

6 x10!3

4 x10t3

pC
(gm/cm?®)

2x 1019

3% 1077

3x 10710

4x1077

4x10

2x 10710

3% 107

T
c

(°K)

1.7 % 102

1.4 % 103

2.3 % 102
1.7 X 102
1.8 X 102
2.8 % 102

1.4 %103
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In Table 3 note first of all that the quantities listed for the
various cases do not vary greatly, at least in order of magnitude,
despite large differences in the assumptions; in no case do they differ
by more than about one order of magnitude from our "standard" Case 1.
Thus it appears that the results so far are not too strongly sensitive
to the considerable uncertainties in the assumed conditions. Note that
the results are closely similar in Cases 1 and 3, which were calculated
with the same temperature and opacity but with initial densities differ-
ing by 3 orders of magnitude. The results are even more nearly
identical in Cases 2 and 7, which differ in mass as well as in initial
density. The reason for this similarity is that after the collapse has
proceeded through a few orders of magnitude in density, the solutions
in both cases approach the same "similarity solution" near the center,
as discussed in the previous subsection and in Appendix D. Since the
opacity is the same in the two cases, the solutions remain nearly the

same during the formation and growth of the opaque core.

7.4 Growth and Central Collapse of the Core

As the infall continues and the core grows in mass, the
material near the center of the core is compressed adiabatically
(since radiation transfer is negligible), and the central temperature
and density rise together following the isentropic relation T « py—i.
The radius of the core actually decreases somewhat as it grows in
mass; thus the shock front moves inward in radius, although it moves

outward in mass. Part of the reason for the contraction of the core

is that although radiation transfer is negligible in the dense central



-54-
part of the core, the density near the surface is low enough for radi-
ation transfer and radiative cooling to be important in the outer part
of the core. In fact, most of the thermal encrgy generated in the
shock front from the conversion of kinetic energy to thermal energy
is imrnediately radiated away again just inside the shock front.

After the mass of the core has increased by a moderate
factor (typically about 2 or 3) and the radius has decreased by a
similar factor, the central temperature has risen substantially to a
value of about 2000 °K, at which point hydrogen molecules at the center
of the core begin to dissociate. Dissociation of HZ molecules reduces
the ratio of specific heats y below the critical value 4/3; the central
pressure then no longer rises sufficiently rapidly with increasing den-
sity to maintain hydrostatic equilibrium, and the material at the
center becomes unstable and begins to collapse gravitationally. As
the material collapses, most of the internal energy generated by the
compression goes into molecular dissociation and not into the thermal
motion of the particles; consequently, even though the collapse is adi-
abatic, the central temperature rises only slowly with increasing
density. Therefore the material at the center of the core approaches
a state of near free fall, which is quite similar in many respects to
the carlier isothermal collapse of the whole cloud, as described
previously in section 7. 2.

In this second dynamical collapse phase, as in the first, the
density distribution in the collapsing region becomes more and more
sharply peaked at the center, and the time scalc for collapse at

the center becomes shorter and shorter with increasing central
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density. In this case the collapse is not isothermal, so the similarity
considerations of Appendix D do not apply; neverthcless, the density
distribution in the collapsing region approaches a form quite similar
to that in the isothermal case. In this case the density distribution
approaches approximately the form p « r '4, compared with p « r_2
in the isothermal case.

When the material at the center of the core collapses, its pres-
sure is no longer sufficient to support the outer parts of the core in
hydrostatic equilibrium, and these outer parts also begin to collapse,
However since the density at the center of the core at the time the
collapse begins is typically at least 2 or 3 orders of magnitude higher
than the density near the surface of the core, the time scale for
collapse is much shorter at the center of the core than near the sur-
face. Consequently the conditions in the outer part of the core and
the properties of the shock front change very little over the whole time
scale of the collapse at the center. Farther out in the protostellar
cloud, of course, the time scale is even longer, and the changes
are completely negligible during the whole phase of central collapse
of the core,

The descriptions of the results in this section obviously do
not apply to Case 5, in which hydrogen molecules were assumed
never to exist. In order to preserve continuity, we shall postpone

the description of the results in Case 5 to section 7.6.
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7.5 Formation of the Final Stellar Core

The central collapse of the core continues through several
orders of magnitude in density, following the isentropic temperature-
density relation, until the hydrogen molecules are nearly all dissoci-
ated at the center and vy is again greater than 4/3. The central
pressure then rises sufficiently to decelerate the collapse, and the
collapse at the center finally stops at a central density of the order
of 10~2 gm/crn3 and a central temperature of about 2 X 104 °K. At
this point the hydrogen is nearly all in atomic form; only a few
per cent remains in molecular form. Despite the temperature, the
degree of ionization is still small, amounting to only a few per cent;
this is because of the high density of about 10~2 gm/crn3, which is
much higher than is normally encountered in association with a tem-

perature of 2 X 104

°K in stars. Also because of the high density,
the degree of ionization increases only slowly with increasing tem-
perature, the rate of increase being insufficient to reduce Yy below
4/3. Thus the material is stable against further gravitational
collapse.

When the collapse at the center is stopped for the second
time, the resulting dynamical phenomena are very similar to those
which occurred the first time the collapse was halted at the center
after the initial isothermal collapse phase. A shock front arises, in
which the infalling material is suddenly stopped and its kinetic energy
is converted into thermal energy. Inside the shock front a second

core develops, in which the material has stopped collapsing and is

approaching hydrostatic equilibrium. After it has stopped collapsing,
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the material at the center of this second core rebounds, and the core
is set into a series of complicated adiabatic pulsations which continue
for a considerable time after the formation of the core. Again it has
been found desirable to use numerical techniques which tend to damp
out these motions, and in the Eulerian method usually used the re-
bound and the ensuing oscillations are strongly damped.

When the second core and shock front form, the outer parts of
the first core and its bounding shock front have hardly changed. Thus
at this stage we have two concentric shock fronts. The density and
velocity distributions at a time soon after the formation of the second
core are illustrated for Case 1 in Fig. 3 (p. 58 ). The corresponding
diagrams for all the other cases (except Case 5) are qualitatively
quite similar in appearance. The artificial viscosity method which
has been used for calculating shock fronts spreads each shock front
out over 2 or 3 adjacent grid points (see Appendix A), so that shock
fronts appear not as discontinuities but as regions of smooth but rapid
variation of the velocity and density with r. The shock transitions
have been plotted just as calculated, withogt attempting to reconstruct
the discontinuity to which the smooth transjition is an approximation.
Thus for example in Fig. 3 the shock fronts appear most conspicu-
ously as regions of steep positive slope in the velocity curve, where
the vélocity decreases rapidly moving inward.

The initial properties of the inner core are listed for the
various cases in Table 4 (p. 60 ), which also gives the mass and
radius for the outer shock front at this time. Again the tabulated

numbers are intended to refer approximately to the time of the first
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Fig. 3 (p. 58): The density and velocity distributions in Case 1 at
a time shortly after the formation of the second core, All
quantities are in CGS units. The shock fronts are repre-
sented by the regions of steep positive slope in the velocity

curve,
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rebound at the center, but this instant is not very well defined in the
calculations because the rebound is partially suppressed. Thus the
numbers are again subject to some uncertainty, although the uncer-
tainty may be less in this case than it was with the first core.

We notice in Table 4 that (excluding Case 5) the initial pro-
perties of the second core vary remarkably little from case to case--
even less than the initial properties of the first core. The initial
mass and radius, for example, in no case differ from the "standard"
Case 1| by more than a factor of 2. The initial mass of the second
core is about one tenth the mass of the first core, or roughly 10_3
solar masses in order of magnitude, The radius is typically about
one half of one per cent of the radius of the first core, or roughly
one solar radius in order of magnitude. Again the near identity of
the results in Cases 1 and 3 and in Cases 2 and 7 is evident,

It is interesting to note that the surface properties of this sec-
ond core are much like those of an ordinary star, ‘Thus in addition to
a radius of slightly over one solar radius, the core has an initial sur-
face temperature (inside the shock front) of about 104 °K. If the core
were plotted on an HR diagram on the basis of its radius and surface
temperature, it would fall near the main sequence position of a star of
surface temperature 104 °K. It also of course emits the same lumi-
nosity as such a star, but this radiation is immediately reabsorbed in
the very optically thick infalling material just outside the shock front
and thus never escapes from the immediate vicinity of the shock front.

The luminosity leaving the protostellar cloud at this stage is consider-

ably smaller, being only of the order of one solar luminosity or less,
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and it is not of much interest from an observational point of view
because of the very short associated time scale (less than 100 years).
The total time elapsed during the early stages of the collapse,
i.e, from the beginning of the collapse to the formation of the second
core, is listed for each case in Table 5 (p. 63 ). This table also
shows for comparison the free fall time of the cloud, calculated from

the formula
1
_ 3 2
Y= \32 Gp. . ) (7.1)
init,

We see from Table 5 that in Cases 3 and 6 the actual collapse time is
essentially equal to the free fall time, and in the other cases it is
about 13 times larger than the free fall time. The extra time in
these other cases is taken up near the beginning of the collapse, when
the collapse is significantly retarded from a free fall,

As the collapse proceeds, material falls away from inside
the outer shock front, and it gradually dies out., We are then left
with a single central core of approximately stellar dimensions,
which continues to grow in mass as the rest of the protostellar cloud
falls into it. The core undergoes no further dynamical collapse, and
the accretion continues until all of the protostellar materiai has
fallen into the core; at this point the core becomes a more or less
ordinary pre-main sequence star., The later stages of this accretion
process involve different physical processes and require different
‘numerical methods from those used for the early stages of the col-

lapse, and we shall therefore postpone further description of the
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TABLE 5

TIME REQUIRED FOR THE EARLY
STAGES OF THE COLLAPSE

Case tff tactual

No. (yrs) (yrs)
1 2.0 X 10° 3 x10°
2 6.3 X 10° 9 x 103
3 6.3 X 10° 6 x10°
4 2.0 X 10° 3 x10°
5 8.3 x 10% 1.2 % 10°
6 1.3 X 10° 1.3 X 10°

7 3.2 x 102 5 x 104
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results for the later stages of the collapse until section 9, after we
have discussed in section 8 the relevant physics and the special

assumptions and approximations which we have used.

7.6 Results in Case 5 (No Molecular Hydrogen)

In Case 5 the initial isothermal collapse phase and the for-
mation of the first core proceed much as in the other cases. The
main difference is that since y and the gas constant R are larger
for atomic than for molecular hydrogen, the pressure rises more
rapidly with increasing density once the core starts to become
opaque, and the collapse is halted at a lower density (see Table 3,

p. 52). After its formation, the core grows in mass and decreases
in radius as in the other cases. Because of the lower density, how-
ever, radiative cooling is more important than in the other cases.

In this case there is of course no molecular dissociation and
no corresponding dynamical collapse at the center. However another
phenomenon becomes important in about the same temperature range.
According to our assumptions in section 2,2, the dust grains evapo-
rate at a temperature of 1400 °K and the opacity then decreases
rapidly with increasing temperature., In Case 5 the core density is
low enough that when the central temperature rises above 1400 °K
and the opacity accordingly drops, radiative cooling of the central
part of the core becomes important on a time scale comparable to
or less than the time scale for accretion of material by the core,
Thus the central part of the core radiates strongly, cools, and con-

tracts. (It may be noted that despite the large decrease in opacity,



-65-

the material remains optically thick at all times, so that the radiation
diffusion equation remains applicable.) At the same time, radiation
emitted from the central part of the core is absorbed in the outer
part of the core where the opacity is still large; consequently the
outer part of the core heats up and expands. As a result the shock
front is in this case driven outward in radius. These motions occur
on a time scale somewhat shorter than the time scale for accretion

of material by the core, so that the core mass changes little while
they are taking place.

Eventually, as the inner part of the core contracts and the
outer part expands, the density near the boundary of the inner con-
tracting region becomes so low that the velocity required to maintain
the mass inflow begins to approach the free fall velocity. A shock
front then develops between the slowly contracting central region
and the more rapidly collapsing surrounding region, Thus there
again appears a central core in hydrostatic equilibrium, bounded by
a shock front outside which the material is falling inward almost in
free fall. This second core is fairly well established by the time the
central density reaches about 1()_6 gm/cm3 and the central tempera-
ture about 104 °K. By this time radiative ;ooling at the center has
again become negligible, so that the further evolution of the second

core is adiabatic.

When the central temperature reaches a value somewhat over
104 OK, hydrogen ionization reduces y below 4/3 at the center,
thereby causing a dynamical collapse at the center of the core,

similar to what happened in the other cases due to H2 dissociation.
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In this case however the instability is shorter lived and the central
collapse is stopped after an increase of only about 3 orders of mag-
nitude in density. Once again when the collapse stops a central
core and bounding shock front form. Since this is the third shock
front to form and the other two are still in existence, there are at
this ‘point three shock fronts existing simultaneously. The initial
properties of the final (third) core are listed in Table 4. At this

time the second shock front is at a mass of about 7 X 1031 gm and

a radius of about 4 X 101‘2 cm,
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8. EQUATIQNS AND APPROXIMATIONS FOR THE LATER STAGES
OF THE COLLAPSE

As is explained in Appendix B, the time step limitation for
the Lagrangian method becomes so severe during the later stages of
the collapse that the use of the Lagrangian method becomes totally
impracticable. It is therefore essential to use the Eulerian method
or some modified form thereof. The Eulerian differential equations
have already been given and discussed in section 6 (equations 6.6 -
6.10). These equations are of course applicable also during the
later stages of the collapse, except for equation (6.10) which we shall
discuss separately in section 8.3. The main modifications required
in calculating the later stages of the collapse are a special treatment
of the shock front and the inclusion of convective energy transport in
the stellar core. We shall discuss these modifications in some detail

in the following subsections.

8.1 The Shock Front

During the later stages of the collapse the pseudoviscosity
method bekcomes no longer satisfactory for treating the strong shock
front bounding the stellar core. For one thing, the pseudoviscosity
method eventually encounters serious numerical difficulties, as is
discussed in Appendix B. Also, we would like to obtain a reasonably
accurate representation of the structure of the outer layers of the
stellar core, and for this purpose the pseudoviscosity technique
seems unacceptably crude, This is particularly true toward the end

of the collapse, when the stellar core becomes essentially an
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ordinary pre-main sequence star and the shock front bounding it
becomes essentially an ordinary stellar atmosphere. In a pre-main
sequence star the properties of the atmosphere are of considerable
importance, and some improvement on the pseudoviscosity treatment
is clearly necessary in order to adequately represent its structure.

For these reasons it was decided to switch to a "shock fitting"
technique for handling the shock front, treating the shock front as an
actual discontinuity or step function in the flow variables. In this
method limiting values of all quantities are defined on both sides of
the discontinuity, and a set of equations known as the shock jump
relations are derived relating the values of the variables on both
sides of the shock front. In the present case radiative energy trans-
port is of essential importance in the shock front (which is actually a
combination shock front and stellar atmosphere), and the usual adi-
abatic shock jump relations cannot be used. The treatment of the
shock front therefore requires some special discussion.

Let us consider first the various physical processes going on
in the vicinity of the shock front. First of all we have the mechanical
shock jump itself, at which kinetic energy is suddenly converted into
thermal energy and there is a discontinuous jump in the temperature
and density. Following the shock jump there is a region of relaxation
of the internal degrees of freedom; for our purposes this region is
of negligible thickness, and it may be considered as part of the shock
jump. The hot material inside the shock jump radiates strongly and

cools as it moves inward; thus the temperature has a peak value just
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at the shock jump and falls off rapidly moving inward. The tempera-
ture decrease extends inward to an optical depth of order unity, a
distance which is always small compared with the radius of the core;
beyond this point radiative cooling is no longer important and the
temperature and other variables level off and approach constant
values.

The radiation emitted from inside the shock jump is partially
absorbed in the infalling material just outside the shock front,
Consequently the infalling material is heated up, and some of the
energy lost by radiation is carried back into the shock front in the
form of the thermal energy. Initially, in fact, the radiation emitted
from the shock front is totally absorbed within a very short distance
outside the shock front, so that the shock front is effectively adiabatic,
The form of the temperature distribution in the vicinity of the shock
front is sketched in Fig. 4 (p. 70), which shows schematically the
effects which we have described.

In general there will also be radiative energy inflow to the
shock front, both from the interior of the core and from the infalling
material outside the shock front. As it turns out, radiation emitted
from the infalling material and travelling inward across the shock
front is never of major importance. Radiative energy outflow from
the core is initially also unimportant, but toward the end of the
collapse when the accretion rate becomes negligible, energy outflow
from the interior of the core (which may be partially carried by

convection) becomes the dominant energy input to the surface layers
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- flow

Fig. 4: A schematic illustration of the temperature distribution in

the immediate vicinity of the shock jump, which occurs at
r = R,
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of the core. This energy is radiated away into space from the region
just inside the shock jump, which thus becomes essentially a stellar
atmosphere, Thus it is necessary in treating the shock front to
include some of the physics of a stellar atmosphere, at least in some
crude approximation.

For the present purposes the fine structure of the temperature
distribution and the details of the radiation field in the immediate
vicinity of the shock front are not particularly of interest. All that
we require for the collapse calculations is a set of relations analo-
gous to the ordinary shock jump equations, relating the values of
the variables at some suitable point inside the shock jump to their
values at another point outside the shock front, These two points
should preferably lie outside the region in which the variables change
most rapidly; this relieves the numerical method of the necessity of
handling these rapid variations, which usually take place on a scale
small compared with any reasonable grid spacing. Thus for example
the point inside the shock jump should be at a sufficient optical depth
that radiative energy losses are no longer important and the tempera-
ture and other variables have nearly reached their l‘imiting values
inside the shock jump., Two such suitable points are illustrated in
Fig. 4, where values of the variables at the point inside the shock
jump are denoted by a subscript 1 and values at the point outside the
shock jump are denoted with a subscript 2.

We wish to derive a set of equations analogous to the 3 ordinary

shock jump relations expressing the conservation of mass, energy,
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and momentum across the shock front. We assume that the thickness
T, Ty of the shock region is much less than the radius R of the
shock jump; we can then neglect the curvature of the shock front and
treat it as plane. The shock jump relations are usually derived in a
frame of reference which moves with the shock front, so that steady
flow may be assumed., In the present case the motion of the shock
front is so slow relative to the infall velocity that we can to good
accuracy forget about the distinction between a fixed frame and one
moving with the shock front and simply derive the equations in a fixed
frame of reference., The mass conservation relation may then be
written down immediately, being the same as in the usual shock jump

relations:
Py = Pou, . (8.1)

We next consider the energy conservation relation. We treat
the region between r, and r, asa "black box" in which energy is
conserved but the detailed physical processes are not of interest,
and we consider the rates of energy inflow and outflow across the
two surfaces of this region., First of all we have the mechanical
energy transport terms, which are the same as in the usual adiabatic
shock jump relations. The mechanical energy flux into the shock

region at r, is equal to p.2 ‘uzl(HZ + %uzz), and the mechanical

2
)
(ergs/cmz/sec). In these expressions H = E + PV is the specific

energy flux out of the shock region at Ty is Py Iui I(H1 +3u

enthalpy (enthalpy per unit mass), which includes the transport of
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internal energy plus the mechanical work done on the material inside
a particular surface by the material outside that surface. In addition,
we have the term %uz representing the flux of kinetic energy. (See
for example Liepmann and Roshko 1957, ch. 2.)

In addition to the mechanical energy transport we also have to
consider radiative energy flow into and out of the shock region. Let
Fint denote the net radiative flux at ry (ergs/cmz/sec) travelling
outward from the interior of the core. This quantity can be con-
sidered as known, given the interior structure of the core, and it
counts as an energy input to the shock region. Let FS denote the
net outward flux of radiation right at the shock jump; this will con-
sist mainly of radiation emitted outward from the hot material inside
the shock jump, with a small negative contribution from radiation
travelling inward from the material outside the shock front. The net
radiative flux leaving the shock region at r, will in general be less
than Fs because part of the flux is absorbed between the shock jump
and Tse It has been arbitrarily assumed in the calculations that the
flux is reduced by a factor of e”7 between the shock jump and Ty,
where 7T is the optical depth between R and Ty the net outward
flux at r, is then equal to e—TFS. If we now collect the energy
inflow and outflow rates for the shock region and equate the gains

to the losses, we have

2 2 -T
p2|u2|(H2 +%u2 )+Fint: p1|u.1|(H1 +%u1 ) te Fs . (8.2)

Actually the factor e”" in the above equation is not correct,
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except qualitatively, since it fails to take into account of all the
physics of the situation. It was not thought that the use of the factor
e”” would cause any serious error in the results, since the choice
of the point r, is rather arbitrary anyway, being mainly a matter
of numerical convenience (see section B,3). Examination of the
results shows that in Case 1 the above procedure should introduce

no signifiéant error in the results; this has been verified by trial
calculations using different choices of 7. In some of the other cases
the situation is more complicated (see section 9.3), and it is more
difficult to be sure that no serious error has been made; however it
again appears from calculations made using different procedures that
the error is probably not serious. In any case, the error can affect
only the early stages of the evolution of the core; the latter stages
and the properties of the resulting star are virtually unaffected, as is
again verified by trial calculations.

We have still to evaluate the net radiative flux FS at the shock
jump. First of all, it turns out that for our purposes the inward
radiative flux from material outside the shéck front can be neglected
without making any significant difference to the results. Fs may
then be taken as just the outward radiative flux from the hot material
inside the shock jump. It is convenient to define an effective tempera-

ture 'I‘e for the shock front or stellar core by setting FS = (rTe4

The problem is then to relate Te to the values of the flow variables
inside the shock front, In particular, we would like to relate Te to

T1 » the limiting temperature reached inside the shock front after
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radiative cooling has become negligible,

To do this in general would be a very complicated problem in
radiative transfer, requiring a complete solution for the radiation
field and the temperature distribution as a function of optical depth
inside the shock front, This problem seems not to have been solved
before, but to tackle it in detail would be out of the question for the
present project. Therefore we are forced to rely on some simple
approximation. We note first of all that Te must be intermediate
between the peak temperature at the shock jump and the limiting
temperature T1 inside the shock jump. Thus for the early stages
of the core accretion process, when the peak temperature is not
much different from T1 , we could as an adequate approximation
just set Te = Tl' The more important situation, however, occurs
during the later stages of the collapse, when the peak temperature
becomes orders of magnitude higher than either T, or Tl' In
these circumstances Te is essentially fixed by the mechanical
energy inflow to the shock front, and the piroblern becomes to deter-
mine how far below Te the temperature i#xside the shock front drops

\
before leveling off at a constant value T1 . We know that a radiative
energy flux of O'Te4 is emitted outward from the hot material just
inside the shock jump; a similar amount of energy must also be
radiated inward, and one would therefore expect the radiation inten-
sity inside the shock front to be comparable with or at least not
much less than that for a blackbody of temperature Te. Thus it

would seem unlikely that the temperature inside the shock front



~-76-~

could drop much below Te before leveling off at a constant value.
Accordingly we have adopted in the calculations the following simple

appro:kimation:
T =T, . (8.3)

This approximation clearly gives an underestimate for Te’ or since

in practice it is usually Te which is fixed, it gives an overestimate

for T1 and for the interior temperature in the core generally,
An upper limit on the error in equation (8.3) can be set by a

simple and general argument based on the radiative equation of

transfer; the derivation is given in Appendix E. The result is that

we must always have

i.e. T1>O.78 Te . (8.4)

Thus the error in eqn. (8.3) can at most be a factor of 0,78 in Tl'
Considering that the actual error will probably be somewhat less
than this limit and that the general level of accuracy sought in the
calculations is only about 20% anyway, it appears that eqn. (8.3) is
an adequate approximation for the present purposes.

Of course when the accretion rate falls off and the shock front
becomes a stellar atmosphere the above considerations are no longer
relevant. The choice of a suitable point ry ingide the shock jump
then becomes a matter of choosing a suitable photospheric boundary

point for a stellar interior model. The usual practice is to take the
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boundary point to be that point in the stellar atmosphere at which the
actual temperature is equal to the effective temperature. In the
present case this choice of boundary point is very conveniently
achieved by simply retaining equation (8. 3) throughout the calcu-
lations.

We can now finally write the energy conservation relation (8.2)
in the form actually used in the calculations. We make use of the
mass conservation relation PyUy = PyU5, and we substitute

4 4

F =¢T =¢gT, . We then have
s e i

2 1. 2
pZIuZI(HZ-%%_"u -H, ~ 3u,”)

5 i +F, ,=e oT . (8.5)

We now have two relations between the values of the variables
at 1, and T, i.e. equations (8.1) and (8.5). A third relation is
required, corresponding to the momentum equation in the ordinary
shock jump relations, In the present situation we require a more
general relation, which we shall derive from the Eulerian differential
equation (6.7). We multiply eqn. (6.7) by p, obtaining

p%—%—l‘Fpu% +—g—1;-+gp:0, (8. 6)
where g = Grn/r2 can be taken as constant throughout the shock
region. We then integrate eqn. (8.6) with respect to r between r,
and L taking account of the constancy of pu and neglecting the

time derivative term because we have very nearly a steady flow; the

result is
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T2
2 cyp - P, + -
2 TP 2~ Py tg) pdr=0.

Ty

Pou
Here the contribution to the integral term from material outside the
shock jump is always negligible, so the upper limit on the integral

may be replaced by the shock jump radius R; this equation can then

be written

2 2 R
P1+p1u1 =P2+p2u2 +g§ p dr . (8.7)
r
1
Initially the integral term in eqn. (8.7) is negligible, and the
equation becomes just the ordinary momentum relation for a shock
front, Toward the end of the collapse, however, when the infall rate
falls off and the shock front becomes a stellar atmosphere, PZ’ Py
and uy all become negligibly small, and it is the integral term in
eqn. (8,7) which determines the photospheric pressure Pi’ In fact
equation (8.7) then becomes just the integrated form of the hydro-

static equilibrium equation for a stellar atmosphere, i.e.
dP=-gpdr=%dT . (8.8)

By definition, the photospheric pressure P1 is the pressure at that
point in the stellar atmosphere where the actual temperature T1 is
equal to the effective temperature Te. According to the Eddington
approximation, which will suffice for the present purposes, this
occurs at an optical depth of 2/3. Accordingly, since both P and T

at the shock jump eventually become negligibly small, we obtain P1
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in this limit just by integrating equation (8.8) between T = 0 and

T = 2/3. If we assume a relation of the form « ocPa/, the result is

P, = %(1 +a)—§; . (8.9)
If we assume the material to be isothermal for 7 4 2/3 and use
formula (2.1) for the opacity, we have a = }; the right hand side in
eqn. (8.9) then becomes just g/Ki. This is of course only an
approximation, but it should be quite adequate for our purposes., We
can now substitute this expression in place of the integral term in

eqn. (8.7) to obtain the required generalization of the shock momen-

tum relation:

2 2
P, +pu =P, tp,u + £, (8.10)

Throughout much of the collapse the last term in eqn. (8.10) is
only of minor importance, so this equation cannot be significantly
in error. Equation (8.10) also gives a satisfactory approximation in
the stellar atmosphere limit, as has been discussed above. 1t is
less readily justified during those stages of the collapse, particularly
toward the end, when the last term becomes important even though
infall effects are still of major importance. However, although the
situation becomes quite complicated, the effect of the last term in
eqn. (8.10) will always be approximately to make P1 equal to the
pressure at an optical depth of the order of unity inside the shock

jump. This seems reasonable, since T1 is supposed to represent
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the temperature at an optical depth of the order of unity. In any
case, egn. (8.10) does not appear to have been responsible for any
major errors in the results, and considering the other uncertainties
and the accuracy of the calculations, it appears to be adequate for
the present purposes. We now have all the equations required to
treat the shock front, namely equations (8.1), (8.5), and (8.10).
The way in which these equations have been incorporated in the

numerical method is described in Appendix B,

8.2 Convection

We have used a simplified form of the conventional mixing
length treatment of convection, as given for example by Vitense
(1953). First, we shall re-derive the usual expression for the con-
vective heat flux in a simpler and for our purposes more convenient
form. It is known from elementary gas dynamics that the energy
(thermal plus mechanical) transported per unit mass by a flowing
fluid is given by the specific enthalpy H= E + PV, We suppose that
the convective elements passing a particular point move with an
average velocity v and have an average enthalpy exess (or defi-
ciency) relative to the surroundings of 6H. We assume pressure
equality between the element and its surroundings, in which case
OH = T6S + VoP = T6S, where S is the specific entropy. Since the

average mass flux is pv, the convective energy flux is then
F_ = pvToS. (8.11)

We assume the convective elements to move isentropically, and we
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suppose that they move a total distance £ (the "mixing length")
before merging with the surroundings. The average entropy excess

will then be approximately

dS

r

6S = -

’

ol =

and the expression for the convective flux then becomes

TdS

1
Fo= -2 pvi i (8.12)

For a perfect gas this expression becomes identical with the one
usually given for the convective flux, apart from our neglect of
radiat-ive cooling or heating of the convective elements. KEquation
(8.12) is of course applicable only if dS/dr < 0, i.e. if the material
is unstable against convection; if dS/dr > 0 the material is stable
against convection and there is no convective heat flux.

We have assumed the mixing length £ to be equal to some
constant o times the density scale height, i.e.

- dr _ dr
L= %dmV -

The convective flux can then be written

p ..y Tds [av
c 2 dr dr °’

or

avTdS = av dE + P dV
c " Z av "~ 72 ~ av (8.13)
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where the differentials here represent differences taken between
neighboring points in the convection zone. In the numerical calcu-
lations these differentials are of course replaced by differences
between adjacent grid points. We have not considered it worthwhile
to follow the usual mixing length calculations for v (which give some
unphysical results), but have simply considered @v as an undeter-
mined parameter for which some arbitrary but reasonable value might
be inserted. A plot of v vs. r for pre-main sequence stars given
by Ezer and Cameron (1963) suggests that 1 km/sec may be a
reasonable order of magnitude value for v; accordingly av has in
most cases been set equal to 1 km/sec. The only exception is Case 6,
in which we have used 2 km/sec.

Clearly the whole procedure outlined above for calculating the
convective flux is only a very crude order-of-magnitude approxima-
tion. The mixing length theory is itself only a rather uncertain
approxirnation to reality, and our procedure is only an approximation
to the mixing length theory. By way of justification of this rough
approach, we mention here that the results of the calculations do not
seem for our purposes to be very sensitive to the parameter av;
also, comparison of the end result with previous pre-main sequenvce
calculations shows rather satisfactory agreement, considering the

accuracy of our calculations.
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8.3 Radiation Transfer in the Infalling Cloud

During the initial stages of the formation of the stvellar core,
the infalling material outside the shock front is still optically thick
out to about the position of the first shock front, and the radiation
diffusion equation (6.10) correctly describes the radiation transfer
in this region. The outer part of the infalling cloud of course remains
optically thin, and the diffusion equation is inapplicable in this region;
however, as was mentioned in section 6, its use does not at this
stage lead to serious errors in the temperature of the infalling cloud.

As the collapse proceeds, the density and optical depths in the
infalling cloud decrease. Before long the density just outside the
stellar core drops to the point where the luminosity emitted from
the shock frontA is no longer completely absorbed in the material just
outside the shock front, but is transported outward through the whole
infalling cloud. This radiation then heats up the infalling material,
and in fact becomes the dominant heating effect determining the tem-
perature throughout the infalling cloud. The temperature at any point
depends on a detailed solution of the radiation transfer problem, but
it must be at least as high as the local effective temperature defined
by the luminosity and radius at that point. This is not properly taken
into account by the diffusion equation, which produces temperatures
which are much too low under these circumstances.

It turns out rather fortunately that this error has little effect on
the dynamics of the collapse, at least as far as the inner part of the

collapsing cloud and the stellar core are concerned. The material
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in the inner part of the cloud soon comes very nearly into free fall
anyway, even if the temperature is correctly calculated, so that the
error in temperature caused by the use of the diffusion equation can
have little effect on the dynamics of the infall in this region. Also,
during the later stages of the collapse the thermal energy and pres-
sure of the material falling into the shock front become negligible
compared with the kinetic energy and pressure; consequently the
temperature of the infalling material is of negligible importance for
the properties of the shock front and stellar core, and the error in
the temperature makes no significant difference to the results. For
these reasons we have continued to use the diffusion equation (6.10)
throughout the calculations, even though its application eventually
becomes rather meaningless.

It was thought when the calculations were made that the error
in the dynamics caused by not properly calculating the temperature
would be negligible throughout the whole collapsing cloud. On re-
examining the results it appears that this is not true in the outermost
part of the cloud, where at the time of peak core luminosity the out-
ward pressure gradient force in reality becomes comparable with or
possibly greater than the inward gravitational force if the tempera-
ture is correctly calculated. Whether the effect would be sufficient
to stop or reverse the collapse in the outermost part of the cloud is
not clear, but the collapse in this region would at least be signifi-
cantly retarded. This would have the effect of reducing the mass

inflow rate during the later stages of the collapse and hence of
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reducing the surface temperature, luminosity, and radius of the
stellar core, as explained in section 9.4. The main results can
hardly be seriously invalidated, at least qualitatively, and the error
may perhaps be no greater than the effects of some of the other un-
certainties in the problem. Nevertheless, this appears to be one
respect in which an improved treatment would probably have been
desirable.

Of course the procedure which we have used does not allow us to
say anything about the actual temperature distribution or the spectrum
of the radiation emitted from the infalling cloud. This however may
be treated as a separate problem (at least within the approximation
which we have employed, in which the radiation transfer problem is
ignored in calculating the dynamics), and we shall consider it sepa-
rately in Part III.

Radiation pressure has been neglected throughout the calcula-
tions, mainly because it was expected that it would be unimportant,
at least for cne solar mass. In any case, the radiation pressure
would have been difficult to calculate with any accuracy since this
would have required a solution of the radiation transfer problem and
a good knowledge of the optical properties of the dust grains. Exami-
nation of the results indicates that radiation pressure is negligible at
all times in Cases 1, 4, and 5 but possibly of some importance in the

other cases, particularly Case 7.
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9. RESULTS FOR THE LATER STAGES OF THE COLLAPSE

9.1 Explanation of the Calculations

The calculations to be described in this section are continua-
tions of the calculations for the seven cases already described in
section 7, The defining characteristics of these cases are listed in
Table 2 (p. 41). In Case 6 we have made one change in assumptions
from those listed in Table 2: the later stages of the collapse have
been calculated with the boundary condition u = 0, as in all the other
cases, rather than the boundary condition P = const. which was used
for the early stages of the collapse. Thus in Case 6 the outer bound-
ary of the cloud contracts during the early stages of the collapse by
about a factor of 2 in radius, but is held fixed during the later stages
of the collapse at a radius of 8,6 X 1016 cm.,

The numerical method used for calculating the later stages of
the collapse is described in detail in Appendix B. In each case the
changeover in numerical method from that used for the early stages
of the collapse was made at a time short1§ after the formation of the
stellar core; thus the "later stages of the collapse' to be described
in this section include virtually the whole evolution of the stellar core,
The change in numerical method introduced some perturbations in the
structure of the stellar core during the first few time steps, but these
perturbations soon died out and caused no significant errors in the
further evolution of the core, It is believed that the hoped for level of
accuracy of about 20% or so was maintained throughout the calculations

for the later stages of the collapse,
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9.2 The Initial Adiabatic Phase of the Accretion Process

When the stellar core first forms, the density and opacity in the
stellar core and in the surrounding material are so high that radi-
ative energy transfer is completely negligible on the relevant time
scale, and the flow is therefore adiabatic. The shock front bounding
the stellar core is initially also adiabatic, since the radiative energy
transport across the shock jump is initially negligible compared with
the mechanical energy flux. In some cases the shock front remains
effectively adiabatic even after the radiative energy flux across the
shock front does become significant, because the radiation is immedi-
ately totally reabsorbed in the infalling material just outside the shock
front and the energy is carried back into the shock front in the form
of thermal energy.

The initial values of the flow variables just inside the shock
front are given approximately by ug = 3X 105 cm/sec, Py = 10_4
gm/cm3, and T1 o= 104 °K, whereas the values of these variables
just outside the shock front are approximately u, 2 X 106 gm/sec,
p,=107° gm/cm®, and T, =~ 4x 10> °K. Under these conditions
the kinetic energy per unit mass éuiz just inside the shock front is

negligible compared with the specific enthalpy H1 , so that the shock

energy equation (8.5) becomes, for an adiabatic shock front,

H, = H +%u2 . (9.1)

The specific enthalpy H, outside the shock front is initially about

half as large as the kinetic energy per unit mass i uZZ, but it de-



-88-

creases in importance as the collapse proceeds, eventually becoming
negligible in comparison with the kinetic energy of the infalling
material.

As the collapse proceeds and the material in the inner part of
the collapsing cloud falls into the stellar core, the density Py of
the infalling material just outside the shock front drops rapidly,
decfeasing by about 2 or 3 orders of magnitude during the adiabatic
phase of the accretion process. As a consequence mainly of the
shock momentum equation (8.10), the density p, inside the shock
front also drops rapidly, remaining about one order of magnitude
higher than Pye At the same time the temperature and enthalpy of
the incoming material also decrease, whereas it turns out in most
cases that the infall velocity u, just outside the shock front remains
approximately constant (see below). Consequently the specific
enthalpy and temperature inside the shock front also decrease in

accordance with equation (9.1), but only by a relatively moderate

2
2

remains nearly constant; thus the temperature T1 inside the shock

amount since only H2 decreases while the dominant term 3u

front decreases by only a factor of 2 or 3 during the adiabatic phase
of the collapse, compared with a decrease of 2 or 3 orders of magni-
tude in Pye As a result of the large decrease in density in the outer
part of the stellar core coupled with a relatively small change in
temperature, the core radius increases substantially during the

adiabatic phase of the collapse.

For purposes of discussing and understanding the structure and
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evolution of the stellar core, particularly the way in which the radius
varies with time, it is convenient to make use of the specific entropy
(entropy per unit mass) of the core material. It is a simple conse-
quence of the equations of stellar structure, although one not usually
mentioned, that the radius of a stellar hydrostatic equilibrium con-
figuration of given mass is uniquely determined by the specific
entropy of the material; the radius increases with increasing specific
entropy, being particularly sensitive to the entropy in the outer layers
of the object., If the entropy per unit mass is fixed, the radius of the
object depends inversely on the mass. In the case of our stellar
core, the specific entropy of each mass element added to the core is
determined when the mass element passes through the shock front;
thereafter the entropy remains constant, because all heat transfer
processes are initially negligible in the interior of the core. Thus
the radius of the core is determined essentially by the specific
entropy of the material entering the core just inside the shock front;
the higher the specific entropy just inside the shock front, the larger
the radius of the core, We can thus understand the rapid increase in
the core radius during the adiabatic phase of the collapse as being due
to the rapid increase in specific entropy inside the shock front,

caused by the large decrease in Py coupled with a relatively small
change in Ti'
The reason why the infall velocity u, just outside the shock

front remains approximately constant at about 2 X 106 cm/sec during

the adiabatic phase of the collapse may be understood as follows., The
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increase in specific enthalpy of the material as it passes through the
shock front is accounted for mainly by the dissociation of hydrogen
molecules, with only a relatively small contribution from the increase
in the thermal energy of the particles. Consequently, once all the
hydrogen molecules are dissociated, the specific enthalpy H1 inside
the shock front increases relatively slowly with increasing tempera-
ture, remaining almost constant at about 2 X 1012 ergs/gm for
temperatures‘in the range 4 X 103 S T1 5 104 °K. Suppose now for
example that the infall velocity u, should increase slightly; the
specific enthalpy H1 would then also increase slightly in accordance
with eqn. (9.1), and therefore, according to the above discussion,
there would be a relatively large increase in the témpera’cure Ti'
The resulting increase in the specific entropy just inside the shock
front would then cause an increase in the core radius R. However,
since the infalling material just outside the shock front is nearly in

free fall, we have

zu,” = (9.2)

where M 1is the core mass; thus an increase in the core radius R
would tend to reduce u, again and bring it back to its former value.
Consequently u, and also the ratic M/R tend to remain approxi-
mately constant as the collapse proceeds and the core grows in mass,
The values of u, and M/R during the adiabatic phase of the collapse

are determined approximately by
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2

GM ~ 3y %21, = 2x10'% ergs/gm. (9.3)

R

[N

This gives u, = 2 X 106 cm/sec, in agreement with the results of the
calculations. This argument is valid only if T1 is in the range
4 X 103 < T, < 104 °K, but this is in fact usually the case.

As was seen just above, the ratio M/R tends to remain ap-
proximately constant during the adiabatic phase of the collapse, so that
the radius of the core increases roughly proportionally with its mass.
During the adiabatic phase of the accretion process, the core mass
increases by about one order of magnitude from an initial value of
about 10-3 Mg (see Table 4, p. 60) to a value of the order of 1072 Mg,
and the core radius likewise increases by about one order of magnitude
from an initial value of the order of 1 R® to a maximum value of the
order of 10 Rg. At this point, which occurs about one year after the
time of formation of the stellar core, radiative energy losses from the
shock front start to become important, the entropy of the material
inside the shock front begins to decrease, and the core stops ex-
panding and begins to contract, Some properties of the core at the
time of maximum radius are listed in Table 6 (p. 92); this table gives
the time elapsed since the formation of the stellar core, as well as
the mass, radius, and surface temperature of the core at this time.
The density Py just inside the shock front is in all cases of the
order of 1077 gm/crn3 at this time, and the density p, outside
the shock front is of the order of 1075 gm/cm3. Some of the data in

Table 6 are rather uncertain for various reasons (see the following
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TABLE 6

PROPERTIES OF THE CORE AT THE TIME OF
MAXIMUM RADIUS

Case t Tl

No. (yrs) M/Mg R/Rg (°K)
1 0.9 .010 12 3300
2 1.9 .026 19 7700
3 1.3 .013 14 3700
4 0.5 . 003 6 2600
5 ~0.1 . 034 ~20 ~2500
6 1.1 .016 17 4700

7 2.2 .027 21 7400
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section), and they are presented here mainly for illustrative pur-
poses.

At the énd of the adiabatic phase of the collapse, i.e. at the
time of maximum core radius, most of the mass which originally
constituted the first core (section 7.3) has fallen into the second
(stellar) core, and the density in the region originally occupied by
the first core has dropped by a large factor. The first shock front,
i.e. the oné bounding the first core, is still in existence and has not
changed much in position or other properties since the formation of
the stellar core, but the density just inside the first shock front is
beginning to drop significantly as material falls away from it. The
time elapsed is still too short for any appreciable changes to have
taken place outside the first shock front.

In Case 5 the situation during the adiabatic phase of the col-
lapse is again somewhat different from the other cases. In Case 5
the second shock front {(of three) disappears during the adiabatic
phase, leaving only 2 shock fronts as in all the other cases. The
adiabatic phase of the collapse is in this case relatively short lived,
and the core mass increases only slightly while the radius increases
by roughly a factor of 3. At the end of this time, however, as we
see in Table 6, the properties of the stellar core in Case 5 are not
very different from those in the other cases. From this point onward
the evolution of the stellar core in Case 5 is qualitatively similar to
the other cases,

The evolution of the stellar core in an HR diagram is plotted
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for each of the seven cases in Figs. 5-11 (pp. 126 - 138). The
adiabatic phase of the evolution is represented in each case by the
initial dashed section of the curve. During the adiabatic phase this
curve has significance only as a plot of the radius vs. the surface
temperature of the core as it evolves; the luminosity indicated by
the curve has no observational significance, since the radiation
emitted from the surface of the core is totally reabsorbed in the
infalling material just outside the shock front and therefore never

escapes from the protostellar cloud.

9.3 Early Non-Adiabatic Phases of the Evolution of the Core

When the density Py outside the shock front gets down to
about 10“8 gm/cm3, a significant amount of energy begins to be lost
from the shock front in the form of radiation. In Case 1 the situation
for the transition from an adiabatic to a non-adiabatic shock front is
relatively simple. For values of Py greater than about 10_8 gm/cm3
the rate of mechanical energy inflow to the shock front is greater than
the maximum possible outward radiative energy flux 0'T14, so that
radiation must be of negligible importance regardless of any con-
siderations of radiation transfer in the vicinity of the shock front.

For values of Py less than about 10—8 gm/cm3, however, 0'T14

becomes comparable with the mechanical energy inflow and at the
same time the opacity outside the shock front becomes low enough
that the radiative energy flux 0‘T14 can be transported away from

the shock front and eventually escape entirely from the protostellar

cloud, even though the cloud remains optically thick.
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In some of the other cases, particularly Cases 2 and 7, the
situation is less simple. In these cases (rT14 becomes comparable
with the mechanical energy flux at an earlier stage in the collapse
when Py is of the order of 10-7 gm/cm3 or higher and the opacity
outside the shock front is still quite high. In this case the incoming
material immediateh‘r outside the shock front is heated up to almost
the same temperature as the material inside the shock front, so that
the net radiative flux across the shock front is considerably reduced
from rrT14. Even this reduced energy flux however is completely
absorbed in the incoming material just outside the shock front, and
no significant radiative energy flux escapes entirely from the vicinity
of the shock jump. Thus the shock front remains effectively adiabatic
until the density Py drops to some critical value such that it is no
longer possible for the radiation flux to be completely absorbed just
outside the shock front. The situation is complicated by the fact that
the opacity of the incoming material increases very rapidly with in-
creasing temperature. The computational method which we have
used (sections 8.1 and B.2) does not take all of these effects properly
into account, and it is difficult to tell just what kind of error may
have been made, although hopefully it is not too serious.

In any case, after the density p, gets much below 10—8
gm/cm3 the shock front can no longer remain adiabatic, and a radi-
ative energy flux essentially equal to o-Ti4 (see section 8.1) is

radiated away from the shock front and transported outward through

the protostellar cloud, eventually escaping from the cloud altogether.
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As a result, when the shock front becomes non-adiabatic the lumi-
nosity leaving the protostellar cloud rapidly increases by a large
factor, becoming essentially equal to the luminosity emitted from
the shock front. In the HR diagrams for the evolution of the stellar
core plotted in Figs. 5-11 (pp. 126 - 138) this is indicated by the
transition from a dashed curve to a solid curve; in each case the
beginning of the solid curve represents the point where approximately
90% of the luminosity emitted from the shock front escapes entirely
from the protostellar cloud. Because of the very large optical depth
still produced by the dust grains in the infalling cloud, this luminosity
eventually leaves the cloud in the far infrared as thermal emission
from the dust grains. We shall consider in Part 1II the radiation
transfer problem in the infalling cloud and the spectrum’ of the
emitted radiation.

Another consequence of the radiative energy loss from the
shock front, as mentioned earlier, is that the specific entropy of the
- material just inside the shock front stops increasing and begins to
decrease, with the result that the core radius also stops increasing
and begins to decrease., At the same time, because of the decreasing
entropy of the material entering the core, the entropy gradient in the
outer part of the core becomes negative; this means that the material
in this region becomes unstable against convection, and convection
begins. At this stage the existence of a convection zone in the outer
part of the core makes no essential difference to the evolution of the

of the core; its main effect is to transfer heat energy from the inner
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to the outer part of the core, thus preventing the entropy in the outer
part of the core and hence the core radius from decreasing as fast
as would otherwise be the case.

After the shock front becomes non-adiabatic and the core
radius begins to decrease, the details of the evolution are somewhat
different in the various cases. As an example we shall describe
Case | in some detail, since it combines all of the features found in
the other cases., In Case 1| the density outside the shock front con-~
tinues to drop rapidly, while the mass and radius of the core and the
velocity of infall change relatively slowly, Consequently the tempera-
ture and density just inside the shock front continue to decrease,
Because of the decreasing opacity of the surface layers of the core,
due mainly to the decreasing temperature, radiative transfer starts
to become important near the surface of the core, and a significant
amount of energy is lost by radiation from the surface layers. This
energy loss is replenished by convective heat transport from the
interior of the core, so that we have a net energy outflow from the
interior of the core which eventually is radiated away at the surface.
Meanwhile the rate of kinetic energy inflow to the shock front de-
creases rapidly due to the decreasing density of the infalling material,
and a point is soon reached where the energy input to the shock region
comes mainly from the interior of the core and not from the kinetic
energy inflow. The shock region then becomes essentially a stellar
atmosphere, as was discussed in section 8,1, The mass and radius

of the core at this point are approximately .011 Mg and 9 Ry



-98-

respectively (Case 1), and the surface temperature T, reaches a

1

minimum value of about 2600 °K. The core luminosity is about 3L,
about 80% of which comes from the interior of the core and 20% from
the kinetic energy inflow. The convective zone at this time occupies
approximately the outer 30% of the mass and the outer 75% of the
radius. The time elapsed since the formation of the stellar core is
approximately 7 years.,

Subsequently, as the core loses energy by radiation it con-
tracts and decreases iﬁ luminosity, while the surface temperature
increases slightly. This phase of the evolution of the core is quite
analogous to the pre-main sequence contraction of a star along the
convective "Hayashi track," as studied for example by Hayashi et al.
(1962). In the HR diagram plotted in Fig. 5 (p. 126), this phase of
the evolution is represented by the section of the curve between
approximately 10 and 100 years after the formation of the core.
During this phase the core mass increases only slightly to about
.013 Mg, while the radius decreases by about a factor of 2 to about
5 R Because of the increasing mass and decreasing radius of the
core, the infall velocity u, finally begins to rise significantly above
its initial value of about 2 X 106 cm/sec, with the result that the
rate of kinetic energy inflow to the shock front stops decreasing and
begins to increase. Since the energy outflow from the interior of the
core is at the same time decreasing as the core contracts, the kinetic
energy inflow becomes more and more important and soon becomes

once again the dominant energy input to the shock front. For this
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reason the surface temperature during this contracting phase of the
evolution rises somewhat faster than would otherwise be the case.

Eventually, because of the increasing temperature and opacity
and the decreasing importance of radiative energy losses inside the
shock front, the specific entropy of the material entering the core
stops decreasing and begins to increase again. One consequence of
this is that the core stops contracting; also, the entropy gradient in
the outer part of the core becomes positive and convection ceases.

At this point, which occurs about 130 years after the formation of

the core, the surface temperature of the core is about 3000 °K and
the luminosity reaches a minimum value of about 1.5 L@. During the
subsequent evolution of the core it turns out that the core radius
remainvs nearly constant while the mass, surface temperature, and
luminosity of the core all increase greatly. We shall continue in
section 9.4 the description of these later stages of the evolution of
the core.

In Cases 3, 4, and 6 the early evolution of the core after the
shock front becomes non-adiabatic is similar to Case 1, except that
in none of these cases does the energy loss from the interior of the
core ever become as important as in Case 1. Consequently the
decrease in core radius arising from this energy loss is less in
these cases than in Case 1, amounting to only about 20 - 30% instead
of a factor of 2, In the HR diagrams in Figs. 7, 8, and 10 (pp. 130 -
136) this brief contracting phase is represented in each case by the
section of the curve nearest the point of minimum core surface tem-

perature.
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In Case 5 the stellar core is already essentially in the con-
vective contracting phase of evolution when the shock front becomes
non-adiabatic; thereafter the evolution is qualitatively similar to
Case 1, although the numerical details are of course different, In
Cases 2 and 7 the situation is qualitatively different from the other
cases: because of the higher density of the protostellar cloud and
the shorter collapse time, the mechanical energy inflow to the shock
front is always dominant and energy losses from the interior of the
core never become important at all. The surface temperature
reaches a minimum value of about 4000 °K and then begins to rise
again because of the increasing kinetic energy inflow rate. However,
in these cases the specific entropy of the material entering the core
continues to decrease slightly, so the core radius contihues to
decrease slowly as the surface temperature rises (see Figs. 6 and 11,
pp. 128 and 138).

In all cases, by the end of the contracting phase of evolution
described above, all traces of the first core and of the shock front
bounding it have disappeared, Essentially‘ all of the mass in the
inner part of the collapsing cloud has by this time fallen into the
stellar core, so that practically all of the protostellar mass is now
either in the stellar core or some distance out in the collapsing cloud
where the material has not yet had time to fall inward significantly
since the formation of the stellar core, Under these circumstances
the form of the density distribution in the inner part of the collapsing

cloud may be derived from the following simple argument: We start
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with the Eulerian continuity equation (6.6), which we write in the

form

om 2

—5? = - 47wr Pu . (9.4)
Since there is negligible mass in the innermost part of the collapsing
cloud, the mass variable m 1is essentially constant (independent of

r) in this region, and 8m/8t must therefore also be independent of

r in this region; consequently, from eqn. (9.4) we have rzpu = const,

Since the material in this region is essentially in free fall, we have

1 2 G
zu = (9.5)
1
and consequently, since m is constant, we have u = r 2, Substi-

tuting this in rzpu = const. we obtain r3/2p = const,., i.e,

P ocr_3/2 . (9.6)

This form for the density distribution in the innermost part of the
collapsing cloud is well verified in all cases by the results of the
calculations.

The above considerations are of course valid only for the
innermost part of the protostellar cloud where the mass has been
substantially depleted. In the outer part of the cloud the time elapsed
is still too short for any significant changes to have taken place since
the formation of the stellar core, and the density distribution is still

approximately of the form p « r-Z. In Case 1 at the end of the con-
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contracting phase of the evolution of the core described above, i.e.
slightly over 100 years after the formation of the stellar core, the
change from the density law p « r3/2 to the law p ocr'Z occurs at
a radius of approximately 1015 cm.

Since there is negligible mass in the innermost part of the
collapsing cloud, the time scale for growth in mass of the core is
no longer the time scale for collapse of the innermost part of the
cloud but the time scale for collapse of that part of the cloud farther
out from the core where most of the mass is coming from. As the
collapse proceeds, the mass becomes substantially depleted farther
and farther out in the cloud, and the region in which m = const. and

0 « o~ 3/2

expands outward, Consequently the region from which
most of the mass falling into the core originates moves farther and

farther out in the cloud, and the time scale for growth and evolution

of the stellar core correspondingly becomes longer and longer.

9.4 Later Stages of the Evolution of the Core

As we have seen, whatever the details of the earlier evolution
of the core, a point is always reached, still early in the history of
the core, when energy losses from the interior of the core become
unimportant and the conditions in the shock front and in the outer
layers of the core become determined entirely by the properties of
the infalling material., The important properties of the incoming
material are the densi’\ty P, and the velocity u, just outside the
shock front; the temperature T2 is unimportant since the thermal

energy and pressure of the incoming material are by this time
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negligible compared with the kinetic energy and pressure. Since the
material entering the shock front has been in free fall from an
effectively infinite distance, its velocity u, is determined only by

the mass and radius of the core through the relation

%uz = '—"R— . (9.7)

Thus it is really only through the density P, and its variation with
time that the evolution of the core depends on the structure and evolu-
tion of the infalling cloud.

The surface temperature and luminosity of the core are deter-
mined by the shock energy equation (8.5), in which the dominant terms
are the kinetic energy inflow rate Py ]uzl(%uzz) and the radiative
energy loss term 0'T14 (the factor e | in eqn. (8.5) is by this time
essentially equal to 1); these two terms increase greatly during the
later stages of the evolution, and all the other terms in eqgn. (8.5)
soon become negligible by comparison., Thus for the later stages of

the evolution of the core, egn. (8.5) becomes

0"T14=%p2[u213 . (9.8)

What this equation means physically is simply that the radiative energy
flux emitted from the shock front is equal to the rate of inflow of
kinetic energy to the shock front., Thus the core surface temperature
T1 and the core luminosity L = 41rR20'T14 are determined entirely

by the rate of inflow of kinetic energy, essentially all of which be-

comes converted into radiation in the shock front.
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During the later stages of the evolution of the core, the core
mass increases by a large factor, and consequently the infall velocity
u, also increases by a large factor in accordance with eqn. (9.7).
Meanwhile the density P> of the incoming material decreases as the
material of the infalling cloud is depleted. Initially, however, the
increase in |uzl3 in eqn. (9.8) overbalances the decrease in Pos
with the result that the kinetic energy inflow rate and the core surface
temperature T1 increase substantially, in accordance with eqn.
(9.8). It turns out that the density Py just inside the shock front
remains approximately constant as T1 increases, and therefore
the specific entropy of the material entering the core just inside
the shock front continually increases during this phase of the evolu-
tion. As a result of the opposing effects of increasing specific
entropy and increasing core mass, the radius of the core does not
change much during this phase, decreasing by only a small or
moderate factor while the core mass increases by a large factor,
Consequently the core luminosity L = 4TI'RZO'T14 increases by a
large amount as the surface temperature T1 rises. This phase of
the evolution is represented in the HR diagrams in Figs. 5-11
(pp. 126 - 138) by the section of the curve where the surface tempera-
ture and luminosity increase substantially with relatively little change
in radius; in Case 1 (Fig. 5), for example, this is the section of the
curve between approximately 102 and 105 years after the formation of

the core,

It should be noted that the HR diagrams in Figs. 5-11 do not
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represent what would be observed for the evolution of a protostar,
since throughout the collapse the stellar core remains heavily
obscured by the dust in the infalling cloud. The luminosity leaving
the protostellar cloud is the same as the luminosity emitted from the
surface of the stellar core, but the radiation comes out in the infra-
red as thermal emission from the dust grains (see Part III),

During these later stages of the accretion process the core
radius is dependent mainly on the specific entropy of the material in
the outer part of the core which has only recently been accreted with
a relatively high specific entropy, and not so much on the material
near the center of the core which was accreted at an earlier stage
of the collapse with relatively low specific entropy. The original
core material, for example, eventually becomes only a very small
fraction of the core mass at the center, and the fact that its 'specific
entropy is very low compared to that of the material in the outer
part of the core has little effect on the radius or the structure of the
outer part of the core. Thus the radius of the core is determined
mainly by the recent history of the accretion process, and the in-
fluence of the earlier stages of the collapse is progressively damped
out as the collapse proceeds. This is a fortunate situation, since it
means that uncertainties or errors arising in the calculation of the
earlier stages of the evolution of the core become unimportant for
the later stages.

An illustration of the above discussion is provided by a com-

parison of the results in Cases 1 and 4, which differ in the assumed
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dust opacity but are the same in other respects. The initial properties
and the early evolution of the core are significantly different in the
two cases, and throughout the collapse the central specific entropy
remains lower in Case 4 than in Case 1; nevertheless, during the
later stages of the collapse the evolution of the core becomes
practically identical in the two cases as far as the radius and the
structure of the outer part of the core are concerned. This is evident
in comparing Figs. 5 and 8, in which the curves become very nearly
identical for the later stages of the evolution. A somewhat similar
situation is seen in comparing the results in Cases 2 and 3 (Figs. 6
and 7), which differ in the assumed initial temperature of the proto-
stellar cloud. Again there are substantial differences in the early
evolution of the core, but during the later stages the two cases con-
verge to very similar paths in the HR diagram. The remaining
small differences between Cases 2 and 3 are attributable to differences
in the density distribution in the outer part of the collapsing cloud.
In fact, as will be explained in more detail below, all of the differ-
ences between Cases 1 - 5 in the later stages of the evolution are
attributable almost entirely to differences in the density distribution
of the infalling cloud and in its variation with time. This is an illus-
tration of the fact mentioned earlier that it is really only the density
of the infalling material that determines the properties of the shock
front and hence the whole course of evolution of the stellar core,

We note in Figs, 5~ 11 that in cases where the surface tem-

4 . .
perature never gets up to 10 °K the core radius continues to decrease
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slowly as the point of maximum surface temperature is passed,
whereas in cases where the surface temperature rises above 104 °K
the radius stops decreasing and increases slightly before the point
of maximum surface temperature is reached. The reason for this
is that at temperatures of about 104 °K or higher the specific
entropy inside the shock front rises particularly rapidly with in-
creasing temperature because of the ionization of hydrogen at these
temperatures. This effect is sufficient to enable the effect of in-
creasing specific entropy to overcome the effect of increasing core
mass and cause the core to expand somewhat.

The surface temperature and luminosity of the core continue
to increase until approximately half of the total protostellar mass
has fallen into the core. At this time the rate of increase of the
infall velocity u, becomes insufficient to keep the kinetic energy
inflow rate %p2|u2|3 increasing despite the steadily decreasing
infall density Py the decrease in P, then begins to predominate
over the increase in luzl3 , and the kinetic energy inflow rate begins
to decrease. Consequently the surface temperature and luminosity
of the core also begin to decrease. Some of the important properties
of the stellar core and of the infalling material at the time of maxi-
mum surface temperature and luminosity are listed for each case in
Table 7 (p. 108). The times given in this table are the times elapsed
since the formation of the stellar core.

In examining the data in Table 7, the near identity of the

results in Cases 1 and 4 and the similarity of the results in Cases 2
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and 3 are evident. Comparing the various data listed for Cases 1 -5
(total mass = 1 MQ), it is apparent that the core radius R is closcly
correlated with the surface temperature T1 , which in turn is cor-
related with the infall density Pye Comparison with the initial
conditions listed in Table 2 (p. 41) shows, as might be expected,
that the infall density Py is closely related to the initial density,
or equivalently to the radius of the protostellar cloud. Thus it
appears that the radius and surface temperature of the core at the
time of maximum surface temperature and luminosity are deter-
mined primarily by the initial density or radius of the protostellar
cloud and that other effects such as differences in the initial tem-
perature, composition, or opacity are relatively unimportant,

This situation may be understood as follows: first of all, by
the time that approximately half of the total protostellar mass has
fallen into the stellar core, the form of the density distribution in
the infalling cloud has become almost the same in all cases, namely
p = r—3/2 throughout almost the whole infalling cloud. Since the
mass remaining in the infalling cloud at this time is approximately
the same in all cases (Cases 1 -5), the density at any point in the
cloud will be inversely rclated to the radius of the cloud. Other
things being equal, the rate of kinetic energy inflow to the shock
front is proportional to the density of the infalling material, and
therefore we expect the surface temperature of the core to increase
with increasing density of the protostellar cloud. A higher surface

temperature means a higher specific entropy for the material entering
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the core and consequently a larger core radius, particularly when,

4 OK; the

as is the case here, the surface temperature is near 10
specific entropy inside the shock front is then particularly sensitive
to the temperature because of the ionization of hydrogen. The
increase in radius resulting from a higher surface temperature
however has the effect of reducing the infall velocity u, and also
the infall density Py (since p « r—3/2), and this tends to moderate
the increase in surface temperature resulting from an increase in
the density of the infalling cloud. In fact, as we see in Table 7,
the surface temperature T, is confined by this effect to a relatively
small range of variation near 104 °K.

Thus we see that the radius, surface temperature, and
luminosity of the core as listed in Table 7 can be understood as
being determined primarily by the density of the infalling protostellar
cloud; all of these quantitites generally increase with increasing
density of the cloud. The most important result at this stage is the
core radius, since it turns out that the radius of the star finally
resulting at the end of the collapse is not very different from the
radius of the stellar core at the time of maximum surface temperature
and luminosity as listed in Table 7. Consequently it is of some
interest to see if a simple argument can be found to predict approxi-
mately the core radius, given the initial density or equivalently the

radius of the protostellar cloud.

If we assume that the core radius R always adjusts itself so

4

as to maintain the surface temperature T1 at exactly 10 OK, we
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can roughly reproduce the values of R/R@ in Table 7 from the
following simple calculation. We assume that at this late stage in
the collapse the density distribution throughout the whole infalling

cloud has approximately the form

o=ar /2, (9.9)

The constant a can be related to the mass M_ and the radius R
of the protostellar cloud by integrating eqn. (9.9) over the volume

of the cloud to get the mass; the resulting expression for a is

3M

a = —JT . (9- 10)
81R 3/2
P
If we now put Py = aR_?’/2 and combine this with equations (9.7) and

(9.8), we can derive the following expression for the core radius R:

3M(2 any3/2 ) 1/3

R = ) . (9.11)

167mR 3/20"'1‘
P 1

4

If we assume Mp =M =0.5Mg and T1 = 10" °K, this gives

9

R 5.5x 10" Rp’i/2 (R, R incm) .  (9.12)

Substituting the values of Rp tabulated in Table 2, we obtain the

following comparison with the results in Table 7:
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Case Rp R/RG) R/R(-)
No. (cm) (eqn. 9.12) (Table 7)
1 1.63x 107 2.0 2.6
2 1.63 % 10%° 6.2 6.2
3 1.63%x10'° 6.2 6.7
4 1.63x 107 2.0 2.7
5 9.06 x 101 2.6 3.4

9.5 Final Stages of the Collapse

After the stage of evolution represented by Table 7, the evo-
lution of the core in Case 7 (M = 5Mg) begins to differ substantially
from the other cases. We shall therefore describe first Cases 1 - 6,
in which the final stages of the evolution are qualitatively essentially
the same, and we shall leave the description of Case 7 to section 9.7.

As the point of maximum surface temperature is passed, the
specific entropy of the material entering the core just inside the
shock front stops increasing and begins to decrease. Consequently,
in those cases where the core radius was increasing prior to the point
of maximum surface temperature, the radius stops increasing and
begins to decrease; in the other cases, including Case 1, the radius
simply continues to decrease slowly. At the same time, because of
the decreasing entropy of the incoming material, the entropy gradient
in the outer part of the core becomes negative, and a convective zone
arises near the surface and grows inward as the evolution proceeds.
As was the case at an earlier stage of the collapse, the convection

zone transports energy from the inner to the outer part of the core
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and thus prevents the core radius from decreasing as rapidly as
would otherwise be the case. In fact it turns out that the radius
decreases only slightly during the final phase of the collapse; this is
evident in the HR diagrams in Figs. 5-10 (pp. 126 - 136), where

in each case after the point of maximum surface temperature and
luminosity is passed the surface temperature and luminosity of the
core decrease substantially while the radius remains nearly constant.
In Case |, for example (Fig. 5), this phase is represented by the
section of the curve between about 105 and 106 years after the for-
mation of the core.

As the core surface temperature decreases, due to the de-
creasing kinetic energy inflow rate, the opacity in the surface layers
of the core also decreases and radiative energy transfer becomes
more and more important. Consequently there develops outside the
convection zone a thin radiative surface region, in which the tempera-
ture is nearly isothermal. (In a few cases, including Case 1, a thin
nearly isothermal surface layer has in fact been in existence since a
much earlier stage in the evolution.) The radiative flux in this thin
radiative surface layer is still small compared with the total lumi-
nosity emitted from the shock front, which still is supplied mainly
from the kinetic energy inflow, but it is larger than the mechanical
energy flux just inside the shock front, so this region is essentially
in radiative equilibrium.

As the collapse proceeds, the kinetic energy inflow to the

shock front continues to decrease because of the decreasing density
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of the infalling material, while at the same time the convective plus
radiative energy outflow from the interior of the core increases
because of the decreasing opacity in the surface layers of the core,
Eventually, after practically all of the protostellar mass has fallen
into the core, a point is reached where the rate of energy outflow
from the interior of the core becomes greater than the rate of kinetic
energy inflow to the shock front; thereafter the luminosity radiated
from the surface of the core comes mainly from the interior of the
core and no longer primarily from the kinetic energy inflow. Finally,
when all of the protostellar mass has fallen into the stellar core, all
effects of the infall of material become negligible, the stellar core
becomes essentially an ordinary star, and the surface layer of the
core becomes essentially an ordinary stellar atmosphere. The shock
front remains in existence, but the mass flow through it becomes
negligible and it no longer has any important cffect on any of the
properties of the star or its atmosphere.

At this time the convection zone occupies in all cases approxi-
mately the outer half of the mass and the outer half of the radius of
the core., As was mentioned earlier, the structure of the outer con-
vective part of the core and the core radius are not greatly affected
by the central region of lower specific entropy which remains non-
convective; thus at least as far as the outer part of the core is con-~
cerned, the structure is not very different from that of a completely
convective star., Thus the star finally resulting at the end of the

collapse is essentially not very different from a conventional com-
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pletely convective Hayashi pre-main sequence model, and its position
in the HR diagram falls quite close to the conventional "Hayashi
track" for the convective phase of pre-main sequence contraction
(Hayashi et al., 1962). In the HR diagrams plotted in Figs. 5- 10
the Hayashi phase is represented by the section of the evolutionary
path where the curve turns downward and becomes almost vertical
near log Te = 3,64; in Case 1 (Fig. 5), for example, this is the

final section of the curve between 106 and 3 X 106 years. In most
cases the calculations were stopped soon after the star came onto the
Hayashi track because of numerical difficulties encountered at this
point and also because this phase of the pre-main sequence evolution
has already been studied in more detail oy previous authors (see for
example Ezer and Cameron 1963, 1965; Tben 1965; Bodenheimer 1965,
1966a, 1966b). It is gratifying to note that despite our relatively
very crude numerical treatment, our results for the Hayashi track
are in good agreement with the results of these previous authors, the
differences being no greater than the effects of possible uncertainties
in the conventional mixing length theory of convection.

Some of the important properties of the resulting star at the
time when infall effects become negligible and the star first appears
on the Hayashi track are listed for the various cases in Table 8
(p. 116); at the time represented by this table the kinetic energy inflow
accounts for only about 1 or 2% of the total luminosity radiated from
the surface of the star. We note in Table 8 that the time required

after the formation of the stellar core for all of the protostellar
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material to fall into the core and for infall effects to become negligible
is approximately 5 times the initial free fall time of the cloud as
listed in Table 5 (p. 63). The final surface temperature as listed in
Table 8 for Cases 1 -5 is about 4400 “K, in good agreement with
previous determinations of the Hayashi track for one solar mass. The
final radius is almost the same as the radius of the core at the time

of maximum surface temperature and luminosity as listed in Table 7
(p. 108), being typically only about 20% smaller; thus the radius of

the resulting star when it first comes onto the Hayashi track is deter-
mined by essentially the same considerations which determine the
radius of the stellar core at the time of maximum surface tempera-
ture and luminosity, as discussed in section 9.4. We conclude that,
at least within the various assumptions and approximations which we
have employed, the radius and luminosity of the resulting star when

it first appears on the Hayashi track are determined primarily by

the assumed initial density or equivalently by the radius of the proto-
stellar cloud; other factors, such as the initial temperature, opacity,
or composition of the cloud are relatively unimportant (except insofar
as they may affect the initial density of the cloud).

It is of some interest to note in Table 8 that a star of one solar
mass first appears rather low on the Hayashi track, with a radius and
luminosity which are much smaller than has previously been thought to
be the case for the early stages of pre-main sequence contraction.

For example, the calculations of Ezer and Cameron (1965) indicate

a maximum possible radius for a contracting star of one solar mass of
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about 60 Rg» and a corresponding maximum luminosity of about

600 L in contrast, our results for the "standard" Case | show that
a star of one solar mass first appears on the Hayashi track with a
radius of only 2 R and a luminosity of only 1.3 L®., The radius and
luminosity are larger in Cases 2 and 3, but not very much so, being
still only about 5 R, and 8 L respectively; in any case, Cases 2
and 3 are thought to be less realistic than Case 1, so these latter
values may perhaps be considered as upper limits. We conclude that
a star of one solar mass first appears on the Hayashi track with a
radius of only a few solar radii and a luminosity of only a few solar
luminosities, This result is not very much affected even by rather
large changes in the assumed conditions for the collapse of a proto-
star.

Of course, it must be kept in mind that all of our conclusions
are subject to the rather restrictive set of assumptions discussed in
Part I and summarized on page 31, The most important of these
assumptions is the assumption of strict spherical symmetry through-
out the collapse, since this excludes the probably important effects of
rotation, What the effect of rotation would be in detail one cannot
say without actually doing the calculations. However, it would seem
likely that rotation would tend to reduce the infall velocity u,, at
least in a direction perpendicular to the axis of rotation; the resulting
reduction in the mass inflow rate would tend to reduce the surface
temperature, luminosity, and radius of the stellar core, so that the

resulting star would appear even lower on the Hayashi track than was
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found in our calculations. Because the infall velocity along the axis
of rotation is not reduced, and because as we have found the radius of
the resulting star is not very sensitive to large changes in the con-
ditions of the collapse, there is a possibility that our results might
not be drastically altered by the existence of rotation; however this
is merely speculation and further calculations would be required to

decide the matter.

9,6 Contraction Toward the Main Sequence

Although the star resulting at the end of the collapse is out-
wardly and for most practical purposes Véry much like a conventional
convective pre-main sequence model, the conditions in a small
region near the center are actually quite different. In all cases
except No. 5 the specific entropy is very low right at the center and
increases rapidly moving outward from the center, this situation
having been preserved from the early stages of the formation of the
stellar core because of the unimportance of heat transfer processes
in this region. The very low central entropy means that the density
right at the center is much higher and the temperature much lower
than would be the case with a more normal entropy distribution; as
a result, there is a small region near the center in which the density
decreases quite rapidly and the temperature actually increases
moving outward from the center. This is illustrated for Case 1 in
Fig. 12 (p. 140), which shows the variation of log T with log p in the
star at the time when it first comes onto the Hayashi track. The peak

temperature in this model occurs at about 5% of the mass and 15% of
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the radius outward from the center.

Because of the very low central entropy and the large positive
entropy gradient near the center, in no case does the outer convection
zone ever extend all the way to the center of the star as the star con-
tracts toward the main sequence, In some cases, including Case 1,
the star in any case comes onto the Hayashi track with such a small
radius and such high interior temperatures that radiative energy
transfer is already becoming important in the region of high tempera-
ture near the center, producing a region in radiative equilibrium
which grows outward as the evolution proceeds. Thus in Case 1 for
example the outer convective region reaches its maximum extent of
about the outer 57% of the mass and the outer 56% of the radius just
when the star comes onto the Hayashi track, and it subsequently
retreats again toward the surface. In Cases 2 and 3 radiative energy
transfer is not yet important when the star first appears on the
Hayashi track, and the convection zone continues to expand inward
as the star evolves down the Hayashi track, reaching a maximum
extent of approximately the outer 97 - 98% of the mass and 85 - 90% of
the radius before radiative transfer becomes important. In these
cases the convection zone never reaches all the way to the center
because of the very low specific entropy at the center. The persisting
small low entropy region at the center however has negligible effect
on the structure of the outer part of the star or on the position of the
Hayashi track, as is verified by comparison of the results in different

cases in which this central low entropy region is of different extent.
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The small central region of low specific entropy and inverted
temperature gradient finally disappears when the temperature becomes
high enough for inward radiative energy transfer to heat up the
material right at the center and eradicate the temperature minimum
at the center, thus establishing radiative equilibrium throughout the
central part of the star. This is expected to happen in all cases
before the star gets near the main sequence and nuclear energy
generation starts to become important. In Cases 1 -5 the calculations
were not followed through this phase because of numerical difficulties
encountered in connection with our method of treating convection;
however, in Case 6 (M = 2 M®) these difficulties were less severe
and it was possible to follow the evolution through almost to the main
sequence (se= Fig., 10, p. 136). We briefly describe below the
results of these calculations.

In Case 6 the star comes in almost at the bottom of the Hayashi
track, and at its maximum extent the outer convection zone covers
only about 32% of the mass and 45% of the radius; thereafter the con-
vection zone retreats toward the surface again. Shortly after the star
comes onto the Hayashi track a minimum luminosity of about 9 L® is
reached; the luminosity then begins to increase again and the convection
zone shrinks and becomes unimportant for the overall structure of the
star. At the same time radiative energy transfer begins to heat up the
low entropy material at the center, and the central region of low
entropy and inverted temperature gradient shrinks. By the time the

surface temperature has reached about 6000 OK, which is well before
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the main sequence is reached, the temperature minimum at the center
has disappeared entirely and radiative equilibrium has been estab-
lished throughout almost the whole star. The outer convection zone

is by this time insignificant in extent, occupying only about 1% of the
radius near the surface. The subsequent evolution of the star con-
sists of slow radiative cooling and contraction with increasing lumi-
nosity, as has been well studied previously.

The shape of the evolutionary path in Fig., 10 differs somewhat
from a calculation for the same mass by Bodenheimer (1966b), but
this should probably not be taken seriously because of our relatively
very crude treatment of convection. Also, our luminosity is higher
than Bodenheimer's, but this is probably attributable to the higher
helium content used in our calculations. In all, there appears to be
no reason to suppose that the existence of the small central region of
low entropy and inverted temperature gradient has made any signifi-
cant difference to the evolution of the star after its arrival on the

Hayashi track.

9.7 Final Stages in Case 7 (M =5 MG)

In Case 7 the core mass is higher than in the other cases, and

consequently the interior temperatures in the core are also higher;
as a result, radiative energy transport in the interior of the core
becomes important at a much earlier stage in the collapse than in

the other cases. In fact, radiative energy transfer is already becom-
ing important near the center of the core at the time of maximum

surface temperature and luminosity as listed in Table 7. After this
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point is passed, the core radius does not decrease as in the other
cases but continues to increase because of the outward transport of
energy by radiation in the core, which increases the entropy of the
outer part of the core at the expense of the inner part., As in the
other cases, a convective zone appears near the surface of the core,
but it never becomes as extensive as in the other cases, reaching a
maximum extent of only about 5% of the mass and 25% of the radius
at a surface temperature slightly below 104 °K. Subs equently the
convective region retreats again toward the surface as the inner
radiative region grows and the outer layers of the core heat up and
begin to come into radiative equilibrium.,

Because of the small mass in the outer layers of the core,
the time scale for radiative relaxation becomes shorter and shorter
as layérs closer and closer to the surface come into radiative equili-
brium. Thus the surface layers come into radiative equilibrium
almost instantaneously at about 2,3 X 104 years after the formation
of the core, at which time the surface temperature reaches a mini-
mum value of about 6900 °K (see Fig. 11, p. 138). At this point the
mass of the core is 3,7 M@ and the radius is 17.4 Rge The outer
convection zone is no longer important, and occupies only about 1%
of the radius near the surface,

The radius of the core reaches a maximum value of 21 R®
when the mass is 4.0 Mge At this time the fraction of the total core
luminosity contributed by the kinetic energy inflow drops to less than

50%, and the properties of the outer layers of the core become
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determined primarily by the radiative energy outflow from the
interior and no longer by the kinetic energy inflow. Thus the infall
of material no longer has any important effect on the structure or
evolution of the core, even though only 4/5 of the total mass has as
yet fallen into the core. The subsequent evolution of the core con-
sists of a slow radiative cooling and contraction which is essentially
the same as the radiative phase of pre-main sequence contraction,
as has previously been well studied. The effects of the infalling
material finally become completely negligible when all of the mass
has fallen into the core; the properties of the core at this time are as
listed in Table 8. At this time the central region of low entropy and
inverted temperature gradient has not yet disappeared completely,
but it has shrunk to a negligible extent of about 0.2% of the mass and
2% of the radius.

It is noteworthy that in Case 7 there is no convective "Hayashi"
phase of pre-main sequence evolution at all; by the time that the
effects of the infall of material have become unimportant, the star is
already closer to the main sequence than the bottom of the Hayashi
track, We note that in Case 6 (M = ZM@) the star came in almost at
the bottom of the Hayashi track; in fact, if this case had been calcu-
lated with the same assumptions as Case 1 the radius of the resulting
star would have been smaller due to the lower density of the proto-
stellar cloud, and the Hayashi phase would have been even shorter
and might not even have existed at all. Thus it appears that the con-

vective Hayashi phase of pre-main sequence evolution does not exist
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at all for masses much greater than about 2 M. For higher masses,
the radius of the stellar core never becomes large enough for a
convective phase to be important, and the core comes into radiative
equilibrium and begins to follow the radiative pre-main sequence
contraction track before the infall of material has completely

stopped.
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Fig. 5 (p. 126): The evolution of the stellar core in an HR diagram
for the "standard" Case 1. The times in years after the for-
mation of the stellar core are marked along the evolutionary
path. The dashed section of the curve represents the initial
adiabatic phase (section 9.2) when the luminosity emitted
from the surface of the core is totally reabsorbed in the
infalling material and never escapes from the protostellar
cloud. The initial point of this dashed curve is somewhat
uncertain, The beginning of the solid curve represents the
point where about 90% of the luminosity emitted from the
core is transmitted outward through the whole protostellar

cloud. See text, sections 9.3 - 9.5, for explanation of the

solid curve.
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Fig. 6 (p. 128): The evolution of the stellar core in an HR diagram

for Case 2. Explanation is the same as for Fig. 5 (see p. 127).
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Fig. 7 (p. 130): The evolution of the stellar core in an HR diagram

for Case 3. Explanation is the same as for Fig. 5 (see p. 127).
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Fig. 8 (p. 132): The evolution of the stellar core in an HR diagram
for Case 4. Explanation is the same as for Fig. 5 (see p. 127).
The strange phenomenon near Mbol

the result of a brief dynamical collapse at the center of the

= +5, log T, = 3.45 is

stellar core which occurred in the calculations when pressure
ionization reduced y below 4/3 at the center. The resulting
complicated dynamical motions in the core were not of very
large amplitude and were artificially suppressed in order to
be able to continue the calculations on the accretion time
scale, which is many orders of magnitude longer than the
dynamical time scale., This phenomenon was not mentioned
~in the text because (a) it does not appear to be of any impor-
tance for the subsequent evolution of the core and (b) our
equation of state is incorrect at high densitites, as mentioned
in Appendix C, and it is uncertain whether pressure ionization

would in reality produce such an effect.
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Fig. 9 (p. 134): The evolution of the stellar core in an HR diagram
for Case 5 (no HZ). In this case the initial adiabatic phase
has not been plotted because it is quite short and because
the method of calculation used for this phase (sections A.4

and A.5) does not allow accurate positioning of the core in

an HR diagram.
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Fig. 10 (p. 136): The evolution of the stellar core in an HR diagram
for Case 6 (M = ZM(D)' Explanation is the same as for
Fig. 5 (see p. 127). See section 9.6 for the explanation

of the final section of the evolutionary parth from about 106

years onward.
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Fig. 11 (p. 138): The evolution of the stellar core in an HR diagram
for Case 7 (M = 7M@). Explanation of the curve up to about
103 years is the same as for Fig. 5 (see p. 127). Note that
this section of the curve is very similar to Case 2 (Fig. 6,
p. 128), for essentially the reason explained at the end of
section 7.3 (p. 53). See section 9.7 for explanation of the

later phases of the evolution.
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Fig. 12 (p. 140): The variation of log T vs. log p f{or the interior
of the resulting star in Case 1 at the time represented by
Table 8 (p. 116), i.e. at the time when it first appears on
the Hayashi track. The ticks along the curve divide the star
into ten zones of equal mass. The dashed curves are lines
of constant degree of ionization x and are explained in
Appendix C. See section 9.6 for further explanation of this

diagram.,
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PART III. OBSERVATIONAL APPEARANCE OF A COLLAPSING
PROTOSTAR

10. THE EMITTED SPECTRUM OF A COLLAPSING PROTOSTAR

10,1 General Considerations

It was mentioned in section 9 that until practically all of the
protostellar mass has fallen into the stellar core, the core remains
heavily obscured by the dust in the infalling cloud. The radiation
emitted from the core is completely absorbed by the dust grains, and
the energy is re-emitted thermally at the infrared wavelengths cor-
responding to the temperature of the grains, The luminosity emitted
from the core is transported outward through the protostellar cloud
with negligible diminution, since the energy lost in heating the infalling
material is negligible compared with the total radiative energy flux;
thus the total bolometric luminosity emitted from the cloud is the same
as the luminosity of the core, and can be considered as known from
the results for the evolution of the core described in section 9. The
wavelength distribution of the radiation hOVJeVCI' becomes shifted to
longer and longer wavelengths as the radiation is transported outward
through the cloud, since the temperature of the dust grains decreases
with increasing distance from the core., Thus the calculation of the
emitted spectrum involves a consideration of the radiation transfer
problem and the temperature distribution in the infalling cloud,

Before describing the simple approximations which we have

used for the radiation transfer problem, we point out that it is easy to

see qualitatively what kind of results may be expected., The emitted
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spectrum may be expected to be qualitatively something like a black-
body spectrum corresponding approximately to the temperature of

the dust grains at the point in the cloud where the optical depth at the
relevant infrared wavelengths is equal to unity. Initially the density
of the infalling material is so high that optical depth unity occurs far
out in the cloud where the temperature is quite low (less than 100 0K);
thus most of the radiation is emitted at far infrared wavelengths. As
the collapse proceeds, the density of the infalling material decreases,
and the point of optical depth unity moves inward to smaller radii and
higher temperatures; consequently the emitted spectrum is shifted to
shorter and shorter wavelengths. This continues until the density of
the infalling material becomes so low that the cloud is no longer com-
pletely optically thick, and the spectrum of the central stellar object

begins to show through,

10,2 Calculation of the Emitted Spectrum

During most of the collapse, the total optical depth of the
infalling protostellar cloud is so large that for purposes of calculating
the emitted spectrum the cloud can be considered as extending inward
to zero radius and infinite optical depth. Also, the cloud extends out-
ward to such large radii and small optical depths that it can for the
present purposes be considered as extending to infinite radius and
zero optical depth, We assume for the moment that the temperature
distribution in the cloud is known, and we assume that the dust grains
radiate isotropically in accordance with Kirchhoff's law. (This of

course neglects the possibility of scattering, which is a good approxi-
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mation at far infrared wavelengths but may not be so good at visual
or near infrared wavelengths,) We then have the problem of calcu-
lating the total emergent radiation at each wavelength by integrating
up the contributions from all parts of the cloud, with an attenuation
factor of the form e | for each volume element and each line of
sight,

In the case of a normal plane-parallel stellar atmosphere this

calculation is a simple one and the result can be written

2,2(%
L)\ = 8" R S;J EZ(T)\)B)\(T)\) d'r)\ (10.1)

where L)\ is the total luminosity emitted per unit wavelength interval,
R is the radius of the star, T\ is the radial optical depth at wave-
length X\, EZ(T)\_) is the second exponential integral, and B)\(T)\) is
the blackbody function (see for example Aller 1963, p. 202). In our
case the plane-parallel assumption cannot be used since our "atmos-
phere' extends over a very large factor in radius, and it is essential
to take the spherical geometry into account. The derivation of an
expression for L)\ in the spherical case is more involved than in the
plane-parallel case, but it is essentially straightforward, and we

shall not reproduce it here. After some manipulation of integrals the

result can be written in the following form, analogous to equation

(10,1):

2(® 2
L)\ =16 go r (TK)G(TK)BK(TK) dT)\ (10.2)

where
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Q0
v gr kyp dr (10.3)

and the function G('T)\) is defined by

G('r =

___g __sds_ oxc gool{ r dr _ g _rdr dr
2 P NS )\P
S r -s

oo
r dr
+eXp{-‘§ Ky\P -————————~2 2} . (10.4)

r r -s

Clearly the function G(T)\) depends on the variation of Ky P with r,
so that G('r}\) is not a "universal function" like EZ(T)\)'

What little work has been done on radiation transfer in an
infinite spherical atmosphere (see for example Chapman 1966) has

usually assumed the dependence of Kyp On r to be given by an

inverse power law of the form

- -n

K)\p(r) = K)\r . (10.5)
It happens that a law of this form is applicable amost exactly in our
problem. As was explained in section 9.3, the density distribution

in the innermost part of the collapsing cloud has the form

“n

p(r) = (10.6)

where n = 3/2. It turns out that this law holds with good accuracy
over almost the whole region important for the radiation transfer

problem. Since the mass absorption coefficient Ky for dust grains
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is independent of p, equation (10.5) is applicable to our problem with
n=3/2 and Kk: K\Poe

We have defined a new class of functions Gn('r)\) as the
functions obtained when equation (10.5) is substituted into equation
(10.4). These functions have been calculated numerically and tabu-
lated for n =3/2 and n = 2 (see Appendix F), and they can for the
present purposes be considered as known exactly in numerical form,

If equation (10.5) is assumed, the relation between 'T)\ and r is

readily obtained from equation (10, 3); the result is

T =TT T . (10.7)

The most interesting case for the present purposes is of course
n = 3/2, but we shall in the following give the formulas for general n.

If we make use of equation (10,7), the luminosity L, at wavelength

A
N\ as given by equation (10,2) can now be written
2
— 2
2 K)\ (n-l) 0 —(n-i)
L, = 167 (ﬁ> S‘ T, G_(7,)B,(r,) dT,  (10.8)

o]

where the function Gn('r)\) is known. In using equation (10,8) to calcu-
late L)\ by numerical quadrature we have evaluated Gn('r)\) either by

interpolation or by using the approximate formulas given in Appendix

F.
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10.3 The Absorption Coefficient of the Dust Grains

In deriving the temperature distribution and in calculating the
emitted spectrum of the protostellar cloud, it is necessary to know

the wavelength dependence of the absorption coefficient «, of the

A
material. Unfortunately the infrared absorption properties of the

dust grains are known very poorly if at all, as was mentioned in
section 2.2. In the present circumstances the temperatures of
interest are mostly above 150 OK, so that according to Gaustad (1963)
the grains would consist mainly of MgSiO,. FEven if such "mineral
grains" of the kind imagined by Gaustad actually exist, however,
which is by no means certain, their infrared absorption properties
are unknown except for some data of dubious applicability for pure
MgSiO4 at wavelengths near 10 p.

If we assume instead the graphite core-ice mantle model of the
dust grains (see Krishna Swamy and O'Dell 1967), then at the higher
temperatures the ices would evaporate and the grains would pre-
sumably consist mainly of graphite. For graphite the situation is
somewhat better, since it is known (Hoyle and Wickramasinghe 1962)
that for wavelengths greater than about 1 p the absorption coeffi-
cient of graphite grains varies with wavelength approximately accord-
ing to Ky = )\.-2.

Observationally, there are some data available for the wave-
length dependence of the interstellar extinction at near infrared
wavelengths (see for example Johnson and Borgmann 1963, Johnson
1965a). For the less pathological cases the variation of absorption

coefficient with wavelength implied by these data, while somewhat
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uncertain and variable from case to case, is roughly approximated
by the law Ky o 7\-3/2. However, the observational data are not
necessarily of any relevance in the present situation, particularly at
the higher temperatures, since the main constituents of the inter-
stellar grains may have evaporated at these higher temperatures.
In any case, there is no observational information on the interstellar
extinction at the longer infrared wavelengths.

In view of this situation we have not attempted any accurate
representation of the absorption coefficient Ky, asa function of wave-

length, but have simply adopted a power law of the form
- P
Ky = K\ (10.9)

where Ko and p are for the moment regarded as arbitrary param-
eters for which various values may be inserted, By trying different
values of K, and p we can at least obtain an idea of how the emitted
spectrum depends on the absorption coefficient Ky and its variation

with wavelength.

10.4 The Temperature Distribution

| Before we can use equation (10.8) to calculate the emitted
spectrum, we must specify the function B)\('T)\), or cquivalently the
temperature distribution T('r)\). Calculating this function accurately
would be an involved problem of radiative transfer with spherical
symmetry, and would require a detailed solution for the radiation

field at each point in the cloud., This problem does not appear to
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have been solved previously except in very special cases, and we
have not attempted to solve it here. Instead we have derived the
limiting forms of the temperature distribution T('T)\) at small and
large optical depths, and we have used these to construct a simple
but arbitrary formula for T('T)\) which has the correct asymptotic
forms in these two limits and provides a smooth transition in between.
We consider first the form of the temperature distribution at
very small optical depths, i.e. at very large radii in the collapsing
cloud. We suppose for the moment that the radiation field at radius r
far out in the cloud can be represented as diluted blackbody radiation
of temperature T* emitted from a surface of radius r* in the cloud
(r* << r). Of course this assumption is not really correct, but it will
give the correct form for the dependence of T on Ty ©OF T. The
undetermined constant in this relation may then be adjusted arbitrarily
(as will be explained later) to properly normalize the resulting spec-
trum. Assuming the dust grains to absorb and re-emit radiation in
accordance with Kirchhoff's law, the temperature T at radius r is

then determined by the energy balance relation
o o] ® oo
WS. K)\B)\(T ) dX =S. K)\B)\(T) d\ (10,10)
o o
where W is the dilution factor, given by

W = —3 (10.11)

Substituting 4, =\"F into equation (10.10), we obtain
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™ =w*' P (10.12)

which, together with equation (10.11), gives the temperature in the
outer part of the cloud.

We consider now the inner part of the collapsing cloud where
the optical depths are large and the material is quite opaque. In
these circumstances the radiative transfer problem simplifies greatly,
and we can use the radiation diffusion equation as used in the theory of

stellar interiors. This equation can be written

_ 641r<rr2T3 dT

(10.13)
3KRp dr

where KR is the Rosseland mean opacity. In the present situation
the luminosity L is known and is constant throughout the whole cloud.,
Thus if the dependence of Kpp on T and r is specified, equation
(10.13) becomes a simple differential equation for T as a function of
r, which can be solved with the boundary condition T =0 at r = o to
give the temperature distribution in the optically thick Vpart of the
cloud.

Assuming Ky = KOX_P and using the definition of Rosseland

mean oOpacity it is possible to derive, after some manipulation of

integrals,

__241(4) T
KR = T(5-p)C(4- p)( ) (10.14)

where [ is the Riemann zeta function and c, = hc/k. Since Kp = TP
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and p « r 7, it is convenient to set
KR = KTPr ™" (10.15)
where, from equations (10.14) and (10.6),

24 L(4)

K =

5 oPo * (10.16)
If we substitute equation (10,15) into equation (10.13), we can now
solve the differential equation (10,.13) analytically to obtain the tem-
perature distribution in the optically thick part of the cloud., The

result can conveniently be written in the form

T4=3(n+P@‘“7 T4

TR rTs (10.17)
where
Tf45 —L= (10.18)
16 wor
and
o
T = gr KpP dr (10.19)

a5
r

aK[ 3(4-E)KL] 2/a (10. 20)

= 7 | tamen t1)

where a is defined in equation (10,25) (p. 153).
We now have the form of the temperature distribution in the

limits of small and large optical depths, as given by equations (10,12)
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and (10.17) respectively. We wish to use these results to construct a
simple approximate formula for the tempe rature distribution at all
optical depths, which has the correct limiting forms at small and
large optical depths and provides a smooth transition in between, The
simplest way to construct such a formula is just to add together the

expressions for T4 given in equations (10.12) and (10.17); the result

is

4 _ _FFp_ ¥  3(n+p/2-1) 4
TS = W PT +2R B TR (10.21)

It is easily verified that at small optical depths the first term on the
right-hand side of this equation becomes much larger than the second
term, whereas at large optical depths the second term dominates,
Thus equation (10, 21) has the correct limiting forms, as required.

In using this equation in the calculations it is convenient to express T
as a function of TR* TR being here defined by equation (10, 20)
throughout the whole cloud. After some algebra, the result can be

written in the form

T = T f(7p) (10.22)
where
o«
() ()T wea
and
£(r_) ﬁ[ATR—(Zg—P)Q " TR] 7 (10. 24)
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where

_ 4 - _3(n+p/2-1)
“camrpoz o PETRET— (10.25)

In equation (10.24) A is an undetermined constant related to T and

b3 . .
r. Tp o is related to Ty by

v/
TR = [C()\.To)p'r)\:l (10.26)
where
c :-gﬁp/4[ 245 (4) } (10.27)
Y L(5-p)¢(4-p)c,P
and
2
y=5 . (10.28)

In our formulas for the temperature distribution we still have
one undetermined parameter A, We have arbitrarily chosen this
parameter such as to satisfy the condition that the resulting spectrum
calculated from equation (10.8) must be pr(;perly normalized, i.e.
when integrated over all wavelengths must give the correct total

luminosity L. Some values of A determined in this way are listed

below:
n P A
3/2 1 0.831
3/2 3/2 0.645
3/2 2 0.354

2 3/2 0.965
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These numbers have been determined simply by integrating the
spectrum numerically over all wavelengths and adjusting A until
the result is properly normalized.

In the grey case (p =0, T =TR = T), the formulas simplify
considerably. When the above procedure for constructing a simple
approximation to the temperature distribution is applied in the grey

case, the result is
4 3(n-1) 4 .
T = [1 +—--——(n+1) 7]Tf (10.29)

with in this case no undetermined parameter A. This form for the
temperature distribution in the grey case is supported by the work
of Chapman (1966) who studied the special case n =3, For n=3

our approximation becomes
4 _ 3 4
T = (1 4+ > T) Tf

whereas Chapman's approximation, based on some detailed calcula-

tions of the radiation field, is equivalent to

4 _ L2 3 4
T" = (1.154 + S 1) T .

Our approximation may perhaps even be better than Chapman's,
since (a) it is correct at very small optical depths, whereas
Chapman's is not, and (b) the normalization error in the emitted
spectrum as calculated from equation (10. 8) is smaller for ocur
approximation than for Chapman's.

In the grey case we have eliminated the normalization error
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by means of the following slight modification of equation (10, 29),
which still retains the correct limiting forms at small and large

optical depths:
& 11/6
4 3(n-1) 4
T* = [1 + ( 2 7) } T, (10.30)

For n = 3/2 the appropriate value of & is about 1.14, and for n = 2
it is about 1.11,

In the non-grey case our approximation for the temperature
distribution is probably not as good as in the grey case. It was
attempted to derive an improved approximation to the temperature
distribution in the non-grey case by calculating a "first order cor-
rection" to the radiation field at small optical depths. . This introduces
a correction factor of the form (1 + a}\'T)\) into the value of T4' at
small optical depths, where ay has not been precisely determined
but is approximately unity at the peak wavelength of the emitted
spectrum, If a correction factor of this form is inserted into the
first term in square brackets in equation (10.24) and the emitted
spectrum is re-normalized, the resulting differences in the tempera-
ture distribution are of the order of 10-15%. The effect on the
resulting spectrum, while not entirely negligible, is smaller than
the effect of variations in the parameter p; consequently our original
approximation appears to be adequate for the present purposes, and
we have not given further attention to possible improved approxima-

tions.
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10.5 Results for the Emitted Spectrum

Assuming the temperature distribution given by equations
(10.22) - (10.24) (or equation (10.30) for the grey case), we can now
use equation (10.8) to calculate the emitted spectrum of the proto-
stellar cloud. We write the blackbody function in the form
1 1
)\5 c, /AT

ez‘ -1

“1
where cy = 21rhc2 and c, = hc/k. If we substitute this into equation
(10,8), vsubstitute K)\ = K)\po = Kopok—p, and make use of equations
(10.16) and (10,23), the resulting expression for L)\ can be written

in the form

c T L o 1. YG (7,) dT
1 o S‘ A Tn'A 1 (10.32)

Ly=CY¥ = 5T c.INT T(72)
(T ) P Yo 2/t oVTR!

1

where C and y are defined by equations (10.27) and (10.28), and
LAY is given as a function of T\ by equation.(10.26). From equations
(10,32) and (10.26) it is evident that L)\ depends on A only in com-
bination with TO in the factor ()\To); therefore it is convenient to

consider )\TO as the independent variable and calculate 1., as a

A

function of )\.TO. Also, it is convenient to calculate not LX itself
but L)\/TOL; this quantity is normalized to unity when integrated

over the independent variable KTO. Clearly the shape of the resulting
spectrum is independent of the parameters L and To’ which only

determine the absolute luminosity and wavelength scales respectively.

We have integrated equation (10.32) numerically to obtain the
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emitted spectrum for several choices of n and p. The results are
plotted in Figs. 13 -15 (pp. 158 - 163). Fig. 13 shows the spectrum
for n=3/2 and p =0 (grey case), with a blackbody spectrum also
plotted for comparison. It is rather remarkable that the spectrum
in the grey case is very much broader than a blackbody spectrum
(note that the scales are logarithmic). This result is not entirely
unexpected, however, since the grey spectrum contains contributions
from a wide range of temperatures,

Fig. 14 (p. 160) shows the results of some further calculations
for n=3/2, with p=1, p=3/2, and p = 2. It is evident from the
diagram that these spectra are much narrower and closer to a black-
body spectrum than the grey spectrum, and that the resulting spec-
trum becomes narrower and narrower with increasing p. The reason
for this is that the radiation at shorter wavelengths, which comes
mainly from the hotter inner parts of the cloud, is selectively absorbed
to a greater and greater extent with increasing p because of the in-
crease in Ky at shorter wavelengths, At the same time, there is
less long wavelength radiation from the cooler outer parts of the
cloud because of the reduced opacity and hence the reduced emission
at the longer wavelengths, Consequently the emitted spectrum in the
non-grey case with p > 0 contains less radiation at both short and
long wavelengths than the spectrum in the grey case. It is evident
from Figs. 13 and 14 that the effect is quite large, so it appears that

the grey case is inadequate even as a rough approximation for the

present problem.
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FIG. 13 (p. 158): The calculated emitted spectrum of an infinite
spherical cloud with n = 3/2 and p =0 (grey case). A
blackbody spectrum of temperature To is also plotted for
comparison., Both curves are normalized to unity when
integrated over the independent variable AT . All units

are CGS units,
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FIG. 14 (p. 160): The emitted spectrum of an infinite spherical cloud
with n = 3/2 for the 3 cases p=1, p=3/2, and p = 2.
Again the curves are normalized when integrated with respect
to )\TO. The blackbody spectrum (dashed curve) has been
arbitrarily positioned on the diagram for purposes of com-

parison,
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FIG. 15 (p. 162): The emitted spectrum of an infinite spherical
cloud with n = 2 for the 2 cases p=0 and p = 3/2. The

curves are normalized as in Figs, 13 and 14,
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In Fig. 15 (p. 162) we have plotted for comparison the results
of two calculations for n = 2, with p=0 and p = 3/2. Again we
notice that the spectrum becomes much narrower as p 1is increased
from O to 3/2, although the effect is not quite as large as for
n = 3/2, Comparison with Figs. 13 and 14 shows that for both p =0
and p = 3/2 the spectrum is narrower for n = 2 than for n = 3/2,
This is easily understood, since for larger n the optical depth varies
more rapidly with r, and therefore a smaller range of r and a
smaller range of temperatures is important.

We are now in a position to predict the spectrum of a spherical
protostar and its variation with time, assuming that the opacity of the
dust grains can be represented by a formula of the form Ky = Ko)\_p
and that reasonable values for K, and p can be estimated. Unfor-
tunately, as we have noted, the infrared absorption properties of the
dust grains are highly uncertain, particularly at the higher tempera-
tures relevant here, and therefore we can hope only to obtain results
which are qualitatively valid at best. For qualitative purposes we
have adopted p = 3/2, and we have determined K, by fitting to
Van de Hulst's (1949) theoretical curve #15 in the near infrared,

using Gaustad's (1963) grain parameters. The resulting opacity law is

Ky = 7 X 10_5)\ (cm)—?’/z cmz/gm . (10.33)

This choice of K, corresponds to a grain absorption efficiency Q)\
of 0.3 at N = 1p. It should be noted that the data on which the

opacity law (10,33) is based are valid for ice grains at low temperature
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but may not be relevant at all at the higher temperatures encountered
here, since the major constituents of the grains may have evaporated
at these higher temperatures,

As we have noted, the shape of the emitted spectrum depends
just on the parameters n and p, and therefore remains constant as
the protostar evolves, Consequently the variation in spectral
appearance of the protostellar object is due only to the variation of
the two parameters L and To, which determine the absolute
luminosity and wavelength scales respectively. The total luminosity
L, is known from the results described in section 9 for the evolution
of the stellar core, and the parameter T, may be obtained at any
time from equations (10.23) and (10.16), given K, as above and Po
which we obtain from the results of the dynamical calcﬁlations
described in section 9, The parameter TO here plays the same role
as the temperature T for a blackbody spectrum; as To increases,
the wavelength )\max at which L, has. its peak‘value decreases,

A
the product )\maxTo remaining constant. Thus we can conveniently
present the results for the variation in spectral appearance of the
protostar in a diagram analogous to the HR diagram, in which we
plot L. vs, )‘max for the protostar as it evolves. This has been
done for several of our cases in Figs, 15 -18 (pp. 167-172). In these
diagrams we have added a scale giving the "apparent blackbody tem-
perature" Tb defined by )\mabe = 0.29 cm °K. (It happens fortui-
tously that for n=3/2 and p = 3/2 the emitted spectrum is not very

different from a blackbody spectrum, except that it falls off less
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rapidly at long wavelengths.)

The results for our "standard" Gase 1 are shown in Fig. 16
(p. 167), which corresponds to Fig. 5 (p. 126) for the evolution of the
stellar core. We note that )\max continually decreases and Tb
increases during the evolution, while the luminosity first increases
and then decreases again, The reason for the decrease in )\max is
that as the collapse proceeds the density of the infalling material
decreases, and the point of optical depth unity in the collapsing cloud
moves inward to smaller radii and higher temperatures, It is seen
in Fig. 16 that during the course of the evolution )\max decreases
from more than 50 p to roughly 1.5 p, the maximum luminosity
being achieved when )\max ~ 10 p. Actually )\max is not well
determined, since it is sensitive to the poorly known opacity of the
infalling material. Since it is quite possible that the opacity may be
considerably less than we have assumed, due to evaporation of some
of the grain constituents, we have also shown in Fig. 16 the result of
reducing K by a factor of 10; this shifts the whole curve to the left
(smaller )\max) by 0.4 in log Xmax' This occurs because when the
opacity of the material is reduced, optical depth unity in the infalling
cloud is shifted to a smaller radius and a higher temperature.

In the innermost part of the cloud the temperature becomes
higher than the temperature at which the dust grains evaporate com-
pletely; consequently, supposing the dust grains to evaporate instan-

taneously (which may not be a good assumption), the opacity drops

essentially to zero in this central region where the grains have
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FIG. 16 (p. 167): The evolution in spectral appearance of the proto-
stellar cloud in the “"standard" Case 1 (heavy curve), corre-
sponding to Fig. 5 (p. 126) for the evolution of the stellar
core, The times are marked along the curve in years after
the formation of the stellar core, as in Fig. 5. The lighter
curve and the arrow marked "k — 0.1 K" show the effect of
reducing the dust opacity by a factor of 10. See section 10.5

for further explanation of the diagram.
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FI1G. 17 (p. 169): The evolution in spectral appearance of the proto-
stellar cloud in Case 2, corresponding to Fig. 6 (p. 128) for
the evolution of the stellar core. The explanation is the same

as for Case 1 (see p. 168).
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FIG. 18 (p. 171): The evolution in spectral appearance of the proto-
stellar cloud in Cases 6 (M = 2 Mg)and 7 (M =5Mg),
corresponding to Figs. 10 (p. 136) and 11 (p. 138) respectively

for the evolution of the stellar core., See section 10,5 for

explanation of the curves.
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evaporated. Thus when the optical depth at the point where the grains
evaporate gets down to a value of the order of unity or less, it is no
longer valid to consider the cloud as completely optically thick, and
the emitted spectrum no longer has the shape which we have calculated,
If we suppose the grains to evaporate at 2000 OK, for example, this
happens when A__ ~ 1.5 and T, ~ 2000 °K. This point is indi-
cated in Fig. 16 by the transition from a solid to a dashed line. After
this point the observed spectrum will consist of two distinct com-~-
ponents: (1) radiation from the central stellar object, still attenuated
by the surrounding dust, and (2) infrared emission from the dust cloud
at a maximum temperature of the order of 2000 °K. This phase is
indicated in Fig. 16 (p. 167) by the dashed line, which is not an
evolutionary path in the diagram but merely connects the end of the
solid curve with the position of the star finally resulting at the end of
the collapse, represented in the diagram by the filled circle, The
spectrum during this phase of the evolution will be discussed in more
detail in section 10,6,

Fig. 17 (p. 169) shows the results for the evolution in spectral
appearance of the protostar in Case 2, We note that the shape of the
curve in this case is much the same as in Case 1, Quantitatively it
differs in being shifted to higher luminosities (because of the higher
core luminosity) and larger values of )\max' The reason for the shift
to longer wavelengths is that the density of the protostellar cloud is
higher at corresponding stages in Case 2 than in Case 1, and therefore
optical depth unity occurs farther out in the cloud where the tempera—

" ture 1s lower,
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Cases 3, 4, and 5 have not been plotted because Case 3 is
quite similar to Case 2, and Cases 4 and 5 are quite similar to Case 1,
The results for Cases 6 (M = 2 M®) and Case 7 (M = 5 M@) are shown
in Fig. 18 (p. 171), Case 6 and the early stages of Case 7 are again
qualitatively similar to Cases 1 and 2, whereas the later stages of
Case 7 are qualitatively different due to the differences in the evolution
of the stellar core., The sharp dip in luminosity in Case 7 arises
because of the rapid increase in radius and the consequent decrease
in luminosity of the core when the outer layers of the core come into
radiative equilibrium. The luminosity does not decrease again as in
the other cases but remains approximately constant because it comes
mainly from the radiative cooling of the stellar core and no longer
primarily from the kinetic energy inflow,

For the more massive protostars, such as in Case 7, the
luminosity during the later stages of the collapse is probably better
determined than in the lower mass cases, because the luminosity is
essentially that of a star in the. radiative phase of pre-main sequence
contraction and is not strongly dependent on the dynamics of the
collapse, as for the lower masses. If we extrapolate to still higher
masses, it appears that the central stellar object may even reach the
main sequence before all of the surrounding material has been either
accreted or dissipated; observationally, we would then have an infra-
red dust cloud such as we have described, whose luminosity is supplied

by what is essentially an ordinary main sequence star at the center,
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10,6 The Emitted Spectrum for a Non-Optically Thick Cloud

We now consider the case where the infalling cloud is no longer
completely 6ptica11y thick and the spectrum contains a component due
to the central stellar object. Again, because of the uncertainties in
the properties of the dust grains and because of the highly idealized
nature of our model for the dust cloud, we can hope only to obtain
results which are qualitatively valid at best, Therefore we have not
attempted any accurate solution of the problem, but have only con-
sidered some simple approximations in order to see what might be
expected qualitatively., In any case, the present situation presents an
even more difficult problem in radiative transfer theory than the
optically thick case, and deriving an accurate solution would be im-
practicable in the present project.

First, we consider the spectrum emitted from the dust cloud
alone, In the present situation the function Gn(T)\) in the integral
expression for the emitted luminosity L)\ (equation 10,32) is no
longer strictly applicable, since the function Gn('T)\) includes the
effects of absorption in the central part of the cloud where in the
present situation there is no dust and therefore no absorption, Thus
the corresponding function valid in the present situation would actually
be somewhat larger than Gn('r)\). The difference is however expected
to be unimportant, and we have neglected it.

Another difference from the optically thick case is that the
radiation field in the dust cloud is altered by the absence of dust in

the central part of the cloud, and consequently the temperature
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distribution is also different from the optically thick case. Again

this effect is not expected to be very important for qualitative pur-
poses, and we have neglected it and continued to use equations (10.22) -
(10, 24) for the temperature distribution in the non-optically thick

case,

In using equation (10,32) to calculate the emitted spectrum in
the non-optically thick case, the upper limit on the integral must be
taken not as oo but as the value of T at the point where the dust
grains evaporate, As the density of the infalling material decreases,
so does the optical depth at the point where the dust grains evaporate;
correspondingly, the spectrum emitted from the dust cloud varies
through a one-parameter sequence of curves. Itturns out (somewhat
fortuitously) that for n = 3/2 and p = 3/2 the shape of the emitted
spectrum changes very little as the optical depth of the cloud decreases,
the spectrum becoming slightly broader and less like a blackbody
spectrum with decreasing optical depth. For p = 2 the variation is
somewhat greater, but in the optically thin limit the shape of the
spectrum for p = 2 becomes almost identical with that for p = 3/2.
The various differences seem unimportant for the present purposes,
so we have not plotted these curves separately.

Since there is a maximum temperature for the dust grains,
namely the dust evaporation temperature Td, the wavelength )\max
of maximum emission from the dust cloud approaches a minimum
value when the optical depths become very small., From the calcu-

lated spectra we find that for both p = 3/2 and p = 2 the value of
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N in the optically thin limit is related to T

by N\___T,~ 0.30,
max

d max d

which compares closely with the relation Kmade = 0,29 which would
hold for a blackbody spectrum of temperature Td' Thus the spectrum
of the dust cloud in the optically thin limit is qualitatively like a black-
body spectrum of temperature equal to the dust evaporation tempera-
ture, the main difference being that the dust cloud spectrum falls off
less rapidly at long wavelengths than a blackbody spectrum,

We now consider the total spectrum resulting from the super-
position of the dust cloud spectrum on the dimmed and reddened
spectrum of the central star. For qualitative purposes we have repre-
sented the stellar spectrum by a blackbody spectrum, and instead of
using the proper interstellar extinction law at visual wavelengths
(which in any case is not necessarily applicable here), we have simply
assumed the opacity law Ky = Ko)\_p to hold at all wavelengths., The
resultant spectrum has been calculated in approximately normalized
form from the equation

L)\ Ty B)\(TS) L)\(T)\)

B(Ts) + i s (10,34)

where TS = 'T)\(Td) is the optical depth at the point where the dust
grains evaporate, and Ts is the temperature of the (blackbody) stellar
spectrum. In equation (10.34) the first term on the right-hand side
represents the contribution from the central stellar object, and the
second term represents the contribution from the surrounding dust
cloud. The dust spectrum LX(T)\)/L has been calculated numerically

from equation (10,.32) in the same way as in the optically thick case,
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the only difference being that the integral has been cut off at the finite
optical depth T)\(Td)'

As the cloud density and the optical depth 'Tk(Td) decrease,
the stellar contribution to the resultant spectrum becomes larger and
larger, while the dust cloud contribution becomes smaller, Thus the
resultant spectrum varies through a whole one-parameter family of
curves with varying relative strengths of the stellar and dust com-
ponents. To illustrate the possibilities, we have made calculations
for p = 3/2, assuming TS = 5000 °K and three different values for
T,, namely 1500, 1000, and 500 °K. The resulting 3 familes of
curves are illustrated in Figs. 19, 20, and 21 respectively (pp. 180 -
185). We note that the corresponding curves for higher values of Ts
or Td are the same as the ones we have plotted if all temperatures
are scaled up and all wavelengths are scaled down by the same factor,

The curves in Figs., 19 - 21 have been labeled with the value of
the optical depth T)\(Td) at a wavelength of 1 p. In all cases the
emergence of the stellar component and the decrease of the dust cloud
component with decreasing optical depth is evident. The time scale for
variation of the spectrum is of course related to the time scale for the
change in density of the infalling material, In Case 1, for example,
the time scale is such that the time interval between adjacent curves
in Fig. 19 is about 3 X 104 years, while for Figs. 20 and 21 it is
about 4 X 104 years.,

It should be remembered that the curves plotted in Figs. 19 - 21

are based on a very simple model of the dust cloud, which will probably
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not be applicable in a real situation; thus for example the infalling
cloud is assumed to be spherically symmetric, whereas in reality
there is no reason to expect the infalling cloud to be spherically sym-
metric. If the cloud has inhomogeneities or deviations from spherical
symmetry, these could produce more or less absorption of the stellar
radiation along a particular line of sight than a spherically symmetric
cloud, and this would alter both the shape of the spectrum and the
apparent total luminosity of the object. For example, if there are
"holes" in the infalling cloud it is possible that the central stellar
object may become visible at an earlier stage of the collapse than
indicated by our results. Thus the results presented in this section
should be taken as only indicative in qualitative fashion of the possi-

bilities, and not as a prediction of what a protostellar object or young

star would actually look like,
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FIG. 19 (p. 180): The spectrum of the protostellar object when the
infalling cloud is no longer optically thick. These curves
have been calculated for p = 3/2, TS = 5000 oK, and
T, = 1500 °K, and are approximately normalized when inte-
grated over AN if the unit of X\ is taken as 1 . The curves

are labeled with the optical depth of the cloud at a wavelength

of 1 p.
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FIG. 20 (p. 182): Same as Fig. 19 (p. 180), but with T, = 1000 °K.
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FIG. 21 (p. 184): Same as Fig. 19 (p. 180), but with T, = 500 °K.
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11. COMPARISON WITH OBSERVATIONS

11,1 Introduction

When the present project was begun, it was not realized that
there would be any observations with which our results might bear
any comparison, and therefore our calculations have for the most
part not been made with comparison with observations in mind. As it
has turned out, however, the past few years have seen a remarkable
development in various kinds of new observational results which are
currently thought to relate to star formation and young stars. In
this final section we shall briefly describe some of the observations
which may be relevant, and indicate how they could possibly be
explained by our theoretical results, We shall not attempt a com-
plete review of all of the observations which may be relevant for star
formation or newly formed stars. Since the various observational
data are still rather sparse and preliminary, and the interpretations
are still uncertain, many of the statements in this section must be

taken as only quite provisional,

11.2 Infrared Observations in Orion

Becklin and Neugebauer (1967) have reported observations of
an infrared point source in the Orion nebula which they think may be
a protostar. The infrared flux measurements for this object are
plotted in Fig. 22 (p. 187). It is not known to what extent the obser-
vations may be affected by interstellar extinction, but qualitatively

the appearance of this object is much the same as would be predicted
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FIG. 22 (p. 187): Infrared flux measurements of the Becklin-
Neugebauer object in Orion. The filled circles with error
bars are the observations reported by Becklin and
Neugebauer (1967), and the triangles are observations by
Kleinmann and Low (1967). See text, section 11.2, for
explanation of the curves fitted to the observations. The

. . 2
unit of F)\ is watts/cm /i
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from our calculations for a protostar during the phase when the
infalling cloud is still optically thick., The bolometric magnitude
(~ -2) and the apparent blackbody temperature (~ 700 °K) inferred
for this object are within the range of our calculations for evolving
protostars (see for example Fig. 18, p. 171). If the Becklin-
Neugebauer object is interpreted as a protostar, it appears that the
mass of the object must be more than 1 M® , perhaps more like 5 M@.
As was mentioned earlier, however, our calculation for 5 M@ is
not necessarily realistic, so any comparison with the calculated
results in this case is subject to uncertainty on both observational
and theoretical accounts,

In Fig. 22 the {filled circles with error bars are the observa-
tions reported by Becklin and Neugebauer (1967), and they have been
fitted as well as possible with a blackbody spectrum (dashed curve)
and with the best fitting curve from among our calculations for the
spectrum of a protostar (solid curve; see section 10,5), The best
fitting curve is the one for p = 2, as would be appropriate for example
for graphite dust grains. The triangles in Fig. 22 are observations
reported by Kleinmann and Low (1967), for which however no errors
are quoted, It is evident that when the 5p observation of Kleinmann
and Low is included, the points no longer fit any of our simply calcu-
lated curves. However, because of the unknown dust absorption
properties and the idealized nature of our model, it may be premature

to attach much significance to a comparison of this kind,

Kleinmann and Low (1967) have reported observation of an
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extended infrared nebula near the B ecklin-Neugebauer point source
in Orion. This extended nebula apparently radiates most of its energy
at much longer wavelengths than the Becklin-Neugebauer object, and
is inferred with considerable uncertainty to have a linear diameter of
~2x10t7 cm, a luminosity of ® 10° Lg. and an "effective tempera-
ture"” of ® 70 °K. Hartmann (1967) has interpreted this object as an
opaque dust cloud whose luminosity is supplied by a group of massive
newly formed stars imbedded in it. A similar idea has also been
proposed by Davidson and Harwit (1967). This is qualitatively the
same kind of situation as is predicted by our calculations for star
formation, Our calculations are probably not directly applicable to
this object, however, since it appears that the formation of a multiple
system or at least a single very massive star may be involved.

It is interesting that the source of OH radio emission in the
Orion nebula has recently been found to coincide very closely in
position with the Becklin-Neugebauer object (Raimond and Eliasson
1967). Thus there is a possibility that the OH sources are in fact
protostars. We shall not speculate on the possible origin of the OH
emission, but we note that in the inner part of a collapsing protostellar
cloud there is a possibility of achieving highly excited conditions in a
very small volume of space. If the OH sources are in fact proto-
stars, the radio observations may provide a means of observing the
inner part of a collapsing protostellar cloud which is heavily obscured

by the dust in the surrounding material.
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11,3 Gross Spectral and Luminosity Characteristics of T Tauri Stars

It is generally believed that the T Tauri stars are newly formed
stars which are still contracting toward the main sequence, Therefore
it is of interest to see if our results for the final stages of star for--
mation bear any relation to the observed properties of T Tauri stars.
The properties of T Tauri stars have been reviewed with reference to
their evolutionary significance by Kuhi (1966) and Herbig (1962, 1967).

First, as regards position in the HR diagram, the T Tauri
stars are somewhat scattered, but they tend to lie a few magnitudes
above the main sequence, and they are mostly in the temperature
range 3500 - 6000 °K. The corresponding radii are mostly in the
range of a few solar radii, This is the same region of the HR diagram
where the lower part of the Hayashi track for stars of moderate or
low mass is located. This situation is consistent with what our calcu-
lations would predict for newly formed stars, since we have found
that a newly formed star of mass near one solar mass first appears
toward the lower end of the Hayashi track. It is interesting to note
in an HR diagram given by Herbig (1967) that there appears to be a
concentration of T Tauri stars with surface temperatures between
4000 and 5000 °K and radii near 2 Rg; this coincides with the position
in the HR diagram where a star of 1 M@ first appears on the Hayashi
track, according to our calculations for the "standard" Case 1. This
coincidence is almost certainly fortuitous, but it at least is not incon-
sistent with our results, and may perhaps even be taken as in some

degree confirming our predictions.
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Mendoza (1966) has made wide-band photometric measure-
ments of some T Tauri stars in the UBVRIJKL system, covering a
wavelength range from 0,36 u to 5 p. Using the absolute flux calibra-
tion for this magnitude system (Johnson 1965b), one can derive rough
spectral energy distributions for these stars. We have done this, and
the resulting spectra as plotted on an arbitrary flux scale are shown
in Fig. 23 (p. 193). As is pointed out by Mendoza, all of these objects
show infrared excesses relative to a normal stellar spectrum. It is
evident in Fig. 23 that in some cases the infrared excess is very
large; in the case of R Mon, in fact, the infrared emission is com-
pletely dominant over the visual radiation, i.e. nearly all of the
energy is emitted in the infrared.

Qualitatively, these observations are just what our calculations
would predict for the final stages of star formation, when a stellar
object has appeared but it is still surrounded by some of the original
protostellar material which has not yet been accreted or dissipated.
The dust grains in this surrounding material absorb some of the
stellar radiation and re-radiate it in the infrared, as was discussed
in section 10, Figs. 19- 21 (pp. 180-184) show some possible spec-
tral energy curves for the final stages of a protostar, as calculated
from our simple model (section 10,6). These curves may be com-
pared with the observed spectra of T Tauri stars as shown in Fig. 23,
Qualitatively, the calculated and observed curves look quite similar
in many cases, although it does not seem possible to achieve a good

quantitative fit, This should probably not be expected, however,
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FIG. 23 (p. 193): The spectra of some T Tauri stars as observed by
Mendoza (1966) and plotted with arbitrarily normalized flux

scales,
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since our model is probably too simple to provide a good representa-
tion, as was mentioned in section 10.6.

If we identify the observed spectra with our calculated results,
it is possible to draw some inferences about the temperature of the
grains responsible for the infrared emission, For example, we notice
in some of the observed spectra a hump approximately at the position
of the J band. If we try to match these observed spectra with calcu-
lated spectra similar to those shown in Figs. 19 - 21, we find that this
hump could be produced by emission from dust grains whose evapora-
tion temperature is in the range 2100 - 2500 °K. It is interesting to
note that at the relevant densities the evaporation temperature of
graphite is in this same temperature range, Most of the observed
spectra however show more radiation at the 1onger’ wavelengths than
would be predicted by our simple model, assuming a dust evaporation
temperature of the order of 2000 °K. This could be interpreted either
by supposing that the infalling cloud is not spherically symmetric but
contains "blobs" at different temperatures, or by supposing that some
of the grains or grain constituents evaporate at lower temperatures
than 2000 °K.

It is interesting also to note that the infrared peak in the
spectrum of R Mon is similar in many respects to the Becklin-
Neugebauer object in Orion. R Mon however shows a stellar spectrum,
whereas the Orion object does not, Thus if R Mon and the Orion object
are both to be interpreted as protostars, R Mon may be an example of
a protostar in which the dust cloud has a hole through which the spec-

trum of the central stellar object is seen.
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11,4 Other Properties of T Tauri Stars

In the spectra of some of the fainter T Tauri or T Tauri-like
stars Walker (1961, 1963, 1964) has observed absorption lines shifted
redward by 150 to 300 km/sec, Positive radial velocities of this
magnitude can only be attributed to gravitational infall of material
into the star. In our calculations for a star of 1 Mg, the infalling
material is essentially in free fall and has a maximum velocity at the
stellar surface ranging from 260 km/sec (Case 3) to 440 km/sec (Case
1) at the time when the star first comes onto the Hayashi track, The
masses and radii of Walker's stars are unknown, but the velocities
observed by Walker are at least in order-of-magnitude agreement
with the expected free fall velocity at the stellar surface, Thus it
appears that the infall of material found in our calculations is actually
observed in at least some newly formed stars. The fact that only
relatively few T Tauri stars seem to show the effect could conceivably
be interpreted in several ways; one possible interpretation is that the
time during which infall is observable is relatively short, and that
most of the T Tauri characteristics persist after the effects of infall
have become negligible,

In at least one instance Walker observed rapid variations in the
appearance of the red-shifted absorption lines. This suggests that the
infall of material is not smooth and spherically symmetric as in our
calculations, but may in fact involve inhomogeneities and turbulent
or non-radial motions. In fact there is no reason why in reality the

flow should be smooth and spherically symmetric as we have assumed.
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Another effect observed in some of the fainter T Tauri-like
stars is strong continuous emission in the ultraviolet region of the
spectrum, which appears to increase strongly toward shorter wave-
lengths, In fact, all of the stars in which Walker observed the red-
shifted absorption lines also show this ultraviolet emission, and
according to Walker the two effects seem to be closely related,
Walker suggests that the ultraviolet emission may in fact be caused
by the effects of the infall of material to the stellar surface. In our
theoretical model, the infalling material strikes a shock front in

which it becomes heated to extremely high temperatures (up to 107 °

K),
and it then cools again by the emission of radiation., We have not
studied the physics of this radiation process, but it seems that the
radiation may be mostly continuous free-free emission, for which j)\
increases as A2 toward shorter wavelengths, Of course our spheri-
cally symmetric shock front is too idealized to accurately represent
the real situation, but it may be that something of this sort is being
observed,

The fact that both the red-shifted absorption lines and the
strong ultraviolet emission tend to occur in the fainter T Tauri stars
suggests that the stars showing these effects may be at an earlier
stage of evolution than most T Tauri stars, still strongly obscured by
surrounding material and still experiencing the effects of infall of
material.

More conspicuous in most T Tauri stars than the effects men-

tioned above are spectral features which seem to be related to highly
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active conditions on the surface of these stars. All T Tauri stars (by
definition) show strong chromospheric-type emission lines, and many
at tirﬁes show continuous emission across the spectrum which tends
to veil the stellar absorption lines., Some of these effects could be
due to the infall of material and the associated shock front, as men-
tioned above, but it seems more likely that they have their origin in
violent chromospheric-type activity associated with the outer con-
vection zone of these stars. In addition, many T Tauri stars show
violet-shifted emission lines indicating ejection of material from the
star; this again is probably related to activity in the convection zone,
coupled with the effects of magnetic fields. It is possible that the
erratic fluctuations in brightness of the T Tauri stars are also related
to the violent convective activity which seems to be indicated, being

caused perhaps by the irregular transport of energy to the surface by

the convective motions,
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APPENDIX A

NUMERICAL METHODS FOR THE EARLY STAGES
OF THE COLLAPSE

A.1 General Features of the Methods

Since the present project represents a venture into a rather
novel and complicated problem to which numerical techniques have
(as far as I have been aware) not previously been applied, or have at
least nét been carried very far, a major part of the effort has gone
into the development and computer programming of numerical methods
for carrying out the calculations. The most useful reference has been
the book by Richtmyer (1957), which describes the methods which have

become fairly standard for fluid dynamical problems with spherical

symmetry. The application of these methods to an astrophysical prob-

lem similar in some respects to the present one has been described by
Christy (1964, 1967). The methods used in the present project are
similar in fundamental respects to those described by Richtmyer and
Christy, but it has been found necessary, particularly for the later
stages of the collapse, to modify the standard techniques and even to
develop some new ones. As Christy remarks, the development of
numerical methods for such problems is still something of an art,
and it was sometimes only after some experience that a satisfactory
approach was found. In the following we shall describe only the
methods which were finally adopted as consistent and reasonably
satisfactory.

The basic feature of the numerical methods is that the whole

protostar is imagined to be divided into a set of concentric shells,
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the shell boundaries being defined by a specified set of values of the
independent space variable. In the Lagrangian formulation the shell
boundaries are surfaces of constant m and they move with the flow,
so that ea;ch shell always contains the same material. In the Eulerian
case the shell boundaries are surfaces of constant r and remain
fixed in space as material flows across them. In both cases, the
variables r, m, u, and L are assigned values on the shell bound-
aries; values of these variables will be denoted by ro, My, U, and
Li’ where i=1 ... N, i=1 representing the center and i = N the
outer boundary, The remaining variables, namely the density and
temperature and functions thereof, are specified at a second set of
points mid-way between the shell boundaries; values of these variables
are denoted Vi—é’ Ti—}g’ Pi—é s Ei~;§;’ etc., where i=2 ... N,

The advantage of this scheme is that it corresponds to a simple
physical model in which the continuous flow field is approximated by
a series of discrete shells, each of which is assigned a particular
mass, density, temperature, etc. This allows the difference equations
to be written in a simple and physically significant way; for example,
the. specific volume Vi-—%_— assigned to a particular shell is expressed
simply as the ratio of the volume of the shell to its mass. Experience
suggests that for an exploratory project like the present one, it is
safest to use a numerical method which adheres fairly closely to a
simple physical interpretation; then one is less likely to encounter
unphysical numerical difficulties of purely mathematical origin.

We suppose all quantities to be known at a particular instant

t"; the basic problem in the calculations is then to calculate new values
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+
for all variables at a later time tn i =t + At. The differential

equations as given in section 6 relate the time derivatives of certain
variables to expressions containing spatial derivatives., The first
necessity is therefore to construct difference approximations to these
spatial derivatives. The method of doing this is somewhat different
in the Lagrangian and Eulerian cases, and we shall describe the two
cases separately in the following sections. Suitable difference
equations must then be constructed relating the changes in the vari-
ables between times t and thr1 to the approximate expressions
for the time derivatives at these two times,

To illustrate the possible time differencing procedures, con-
sider as a simple example the differential equation 8r/0t = u. The
left-hand side of this equation is straightforwardly approximated by

+1

the difference expression (rn - rn)/At, where the superscript n

denotes the value at time t". If we equate this expression to un,
rn+1 may be calculated directly from the known quantities r* and
u™, and the difference equation is said to be explicit. If however the
unknown quantity unJrl or a combination of u" and un+1 is used,

- the difference equation is implicit, and new values of the variables
can be solved for only by some iterative technique.

The methods commonly used for fluid dynamical problems, as
described for example by Richtmyer and Christy, have used difference
equations which are effectively explicit. In order to ensure staBility
of these explicit difference equations, it is necessary to restrict the

time step to a value less than the time required for sound to travel

between two adjacent shell boundaries. In the present project it was
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desired to avoid this limitation on the time step, which would have
been intolerably restrictive in some phases of the collapse. There-
fore we have used only stable implicit differencing schemes.
In the Lagrangian method used in the early stages of this

project, the time differencing scheme used was of the form

+
rnJr1 - (1 +6)un Ly (1 - 6)un (A.1)
At - 2 *

where 0 =§6=1 .,

This type of difference equation is theoretically stable for any time
step. If &= 0, the right-hand side is just the average of u” and
un+1 , and the equation is accurate to second order in the time step.
The use of a finite &, although it detracts slightly from the accuracy,
was found to be desirable in order to damp out small errors and per-
turbations which inevitably arise in the calculations; with 6 = 0
these perturbations are not necessarily damped, and they may cause
some "rough sailing" in the calculations. When a finite 6 is used
the coefficient of u” in eqn. (A.1) is reduced, so that the effect of
any error in u" is less strongly felt at time tnﬂ. In most of the
calculations a & of about 0.2 or 0.3 was used, although it was later
found that a value as large as 1 could be used to advantage without
causing any large error in the results.

The more strongly implicit equations obtained with a finite &
also have the effect of damping out perturbations of physical origin,

such as the very complicated radial pulsations which arise in the

central core after it stops collapsing. Damping of these pulsations is
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desirable because computing them in detail would be time consuming
and not particularly worthwhile for the present purposes.
In the Eulerian case, partly for simplicity and partly because
of experience with the Lagrangian method, a purely implicit form
of the difference equations was used, corresponding to & =1 in
eqn. (A.1). Thus for example the difference equation corresponding

to the differential equation (6. 6) has the form

n+1 n 2 nti
m - m _(4nr u)

AT 5 (A.2)

(Since most of the quantities occurring in the equations will be evalu-
ated at time tn+1 we shall henceforth omit the superscript nti.,) In
general, experience suggests that in a project such as the present
one, where unforeseen numerical problems are numerous and high
accuracy is not an important consideration, the completely implicit
form of the difference equations as exemplified by eqn. (A.2) is the
best one to use,
Shock fronts have been treated in the calculations by the

von Neumann-Richtmyer artificial viscosity method as described by

Richtmyer (1957). This method involves adding to the thermal pres-
| sure P an artificial pseudo-viscous pressure (Q, which provides a
macroscopic analog of the molecular level processes determining
the actual shock structure, The effect of this term is to change the
shock front from a discontinuity into a smooth transition extending
over several adjacent mass zones, which can then be calculated with

adequate accuracy using the normal difference equations, This allows
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shock fronts to be handled automatically wherever they may arise,

without the need for any special treatment.

A,2 The Lagrangian Difference Equations

The Lagrangian method was the first one used in the calcula-
tions, because it is the standard method and because it has some
definite advantages over the Eulerian method, as has been discussed
by Richtmyer (1957). We give below the complete difference equations
finally adopted corresponding to the Lagrangian differential equations

(6.1) - (6.5). In the following equations P' denotes the total pres-

. . 1 .
sure P + Q, and mi+% is defined as ?_(mi + mi+1).
n
i 1 1 n
——A—T—_: 3(1 + 5)111 + ’3‘(1 - 6)\11 (A.3)

Gmi n, 2, n 11n Pﬁl - In P{I-ll

+5(1 - 8) 2 + 4m(r,) (Pi_%_Pi%)z ——= 2] =0 (A.4)
r. 1
1

Eil—EIill - lan.l_;_-an]:l
—g -é + ] 1 2 ~2 -2
At (Pi1ViaPiaVig) At
Ly iy L?' L?—l
+ (1 +8) —— 3l - 8) ———— =0 (A.5)
e T | i i-1



T,
T ———————— (A.6)
i i

where

i-1 i-2 i-3?
(u; ¢ - “i)z .
C Vi_-- if u.l_1 - ui >0
Q. 1 = 2 (A.8)
1-2
0 otherwise .

In equation (A,8) C is an arbitrary constant of order unity which
determines how many mass zones a shock front is spread out over,
Satisfactory results were obtained with a value for C of about 3;
shock fronts were then spread out over about 2 or 3 mass zones.

In the difference approximation for the pressure gradient em-
ployed in equation (A,4) we have replaced 8P/dm by P 8 1n P/dm
and applied the differencing to In P instead of to P itself. This was
done because circumstances are encountered in the calculations
where P varies by an order of magnitude or more between adjacent

shells; in such cases a straight difference of the form Pi 1 - P

+5 i

[ I

no longer represents even approximately the pressure gradient at the
shell boundary i, whereas the logarithmic difference still retains
some validity as an approximation to the pressure gradient. The

logarithmic difference formula is accurate if In P varies nearly
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linearly with m; while this is not always a good approximation, it
seems that the logarithmic difference formula is probably the best
simple formula for general use in a wide range of circumstances,
particularly where large variations between adjacent shells may
occur.

The same type of logarithmic difference formula has been
used to represent 0V /9t in eqn. (A.5). For rather similar reasons,
differencing has been applied to T rather than to T4 in eqn. (A.7);
T4 may vary by more than an order of magnitude between adjacent
shells, whereas T varies more slowly and in general more nearly
linearly with m. Also, wherever a mean of quantities in adjé.cent
shells or at successive time points is required, the geometric mean
rather than the arithmetic mean has been used, since the geometric
mean is in general more accurate than the arithmetic mean when
quantities vary by a large factor between adjacent shells.

The difference equations must be modified slightly at the outer
boundary, depending on the form of the boupdary conditions. 1If the
boundary conditions consist of a specificatiém of the boundary pressure
PN and the boundary temperature TN’ eq\iations (A.4) and (A.7) are
modified for i = N by replacing the subscript N + 2 by N. If the
bcnmdéry conditions include a specification of T OF Uy equations
(A.3) and (A.4) simply drop out for i = N

We consider now the procedure for solving the difference
equations. We note that only 3 of the equations contain time differ-
ences; correspondingly we need solve explicitly for new values of

only 3 of the unknowns, for example r, u, and T. If values of
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these variables are given at all points, values of the remaining un-
knbwns V and L may be calculated from the remaining equations
(A.6) and (A.7), regarded as auxiliary relations. Since r, is simply
related to u, by eqn. (A.3), we can further reduce the number of
basic unknowns to 2, which we take as u and T. We then have two
basic difference equations (A.4) and (A.5), and the remaining 3
difference equations take the status of auxiliary relations.

Considering the difference equatibns for all shells, we then
have a system of 2N - 2 equations in the 2N - 2 unknowns Uy oo Uy

and T T

g1 oee Tyole (If uy s given, we have 2N - 3 equations in
2N - 3 unknowns.) We have solved these equations by the standard
technique for such problems, namely Newton's iterative method for
calculating successive corrections to an initial approximation to the
solution. This is the same technique used in Henyey's method for

stellar interiors, and the principles are described for example by

Larson and Demarque (1964). The procedure involves solving a set
of linear eqﬁations whose coefficients are peixrtial derivatives of the

|
difference expressions with respect to the unknowns. Calculation of

the partial derivatives is straightforward, bzut the expressions for
them are rather lengthy and will not be reproduced here. In solving
the 1ihear equations a special routine must be written to take account
of the special structure of the matrix of coefficients, in which ele-
ments occur only near the diagonal, but the procedure is again quite
straightforward and need not be described in detail here,

In providing first approximations to the new values of u and

. +1
T at time t" =, the procedure generally used has been to extrapolate
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u one time step ahead using the difference approximation to 8u/dt
at time t; thus the first approximation to unJr1 is taken to be
u o+ (8u/8t)nAt. The temperature is not extrapolated, so that the
first approximation to Tr1+1 is just T®. Other procedures involving
varying degrees of extrapolation of u and T have been tried, but
they have in general been found to provide no advantage over the above
procedure.

‘Because of the low level of accuracy sought in these calcula-
tions, it was not necessary to require a high degree of convergence
for the iterations. It was found that if the iterations were continued
until the last corrections were of the order of 5% or less, the differ-
ence equations were nearly always solved to an accuracy of better
than 1%. This was a negligible source of error in the results, as
was verified by some calculations made with a higher degree of con-
vergence. Typically about 2 or 3 iterations per time step were re-

quired to produce this degree of convergence.

A.3 Space and Time Steps for the Lagrangian Method

As has been discussed in section 7.1, it was not thought worth-
while in this project to seek results of high numerical accuracy. Also,
it was desired to be able to carry through the calculations without using
large amounts of computer time, so that a variety of different cases
could be tried. Therefore the calculations have been m.ade with rather
coarse space and time steps, usually as large as seemed reasonable
without leading to serious inaccuracies. An accuracy of the order of

10 - 20% in most quantities was aimed at, and as is discussed later in
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section A.7, it is believed that accuracies of this order were in fact
generally attained.

We consider first the Lagrangian mass division, It seemed
most reasonable to set the shell masses initially at equal intervals
in the radius r, i.e., since the density is initially uniform, at equal
intervals in m1/3. The shell masses are then much smaller near
the center than in the outer parts of the cloud; this turns out to be
desirable because a situation soon arises in which the physical vari-
ables near the center change by large amounts over a small range in
mass. In most of the calculations an initial division into 20 shells
was used. With this mass division, it turns out somewhat fortunately
to be possible to calculate the collapse with fairly good accuracy with-
out altering tne mass division until the central density has risen
several orders of magnitude above its initial value,

When the calculations are carried further, one finds that not
only the physical variables such as density and pressure but also the
shell radii r, change by a large factor between adjacent shells,
Under such conditions the error in the difference equations becomes
large unless a finer mass division is introduced. It appeared that the
best criterion for the insertion of new shell boundaries would be the
change of T, by more than some specified factor between adjacent
shell boundaries, Usually a new shell boundary was interpolated
between two adjacent shell boundaries whenever they differed in radius
by more than a factor of 2. The value of m at the new shell boundary
was taken such as to divide the old shell into equal intervals in m1/3,

and the new radius value was set equal to the geometric mean of the
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neighboring radius values. New values of the velocity and temperature
were interpolated using linear and parabolic interpolation respectively.
The interpolation procedure of course requires slight modification
when new points are inserted right at the center.

After the formation of a central core bounded by a shock front,
the shell boundaries become very closely crowded together inside the
shock front and it becomes necessary to delete many of them to avoid
an exc<essive number of mass shells., Accordingly in the calculations
shell boundaries were deleted whenever the distance Ar between
them became smaller than a rather arbitrary value considered ade-
quate to ensure reasonable accuracy. In practice the insertion and
deletion of mass points was found to be one of the more troublesome
aspects of the Lagrangian calculations, since it can cause non-negli-
gible perturbations to the dynamics if not carefully done. After some
experience a procedure was arrived at which was more or less
satisfactory in all of the circumstances encountered, but it was not
possible to eliminate completely the perturbations to the dynamics.

At the final stage reached with the Lagrangian calculations,
i.e. soon after the formation of the final stellar core, the number of
meass shells was about 50. These 50 shells cover about 7 orders of
magnitude in radius and 18 orders of magnitude in density.

We discuss now the choice of time step. During the phases of
rapid collapse at the center the numerical calculations work well with
quite large time steps, and it is desirable to impose some time step
limitation for the sake of accuracy. It was thought reasonable to limit

the time step so that the central density does not increase by more
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than a factor of 3 in one time step. While this might seem a large
factor, experience has shown that adequate accuracy was neverthe-
less maintained. The time step was controlled simply by monitoring
the extrapolated value of rn+i near the center and reducing the time
step until the extrapolated change in r was small enough (as deter-
minéd empirically) to produce the desired change in density.

When there is a nearly stationary central core bounded by a
shock front, the most rapid changes occur in those mass shells just
passing through the shock front. A practical upper limit on the time
step then arises from the fact that the Lagrangian method always
requires at least 2 or 3 time steps to compu e the passage of each
mass shell through the shock front., If it is attempted to use a larger
time step, the changes occurring in one time step beéome so large
that the iterative method used for solving the difference equations fails
to converge. Since it appeared that adequate accuracy was attained
using the maximum time step possible in these circumstances, the
time step was usually made approximately the maximum consistent
with good convergence. One obvious condition on the time step which
must be satisfied to ensure convergence is that the extrapolated posi-
tions of the shell boundaries must not be allowed to cross over or
come unreasonably close together. It was found that if the time step
was limited so that the extrapolated distance between neighboring shell
boundaries was never> allowed to decrease by more than a factor of 5
in one time step, this was usually sufficient to ensure good conver-
gence without making the time step unnecessarily small. If at any

time the iterations still failed to converge, the time step was auto-
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matically reduced until convergence was achieved, A simple and
reasonably efficient procedure was found to be to allow a maximum of
4 iterations; if adequate convergence was still not achieved after 4
iterations, the time step was reduced by a factor of about 0.8 and
the iterations were repeated. If on the other hand convergence was
achieved after only 2 iterations, the time step was subsequently
increased by about 20%, if this was allowed by the other time step
limits,

The number of time steps required to cover the early stages of
the collapse, i.e. up to the formation of the final stellar core, varied
from about 50 to 200, depending on the circumstances. In the latter
case most of the time steps went into calculating the passage of mass
shells through the first (outer) shock front, The execution time re-

quired on the IBM 7094 averaged close to one second per time step.

A.4 The Eulerian Difference Equations

The use of an Eulerian method for calculating the early stages
of the collapse was not originally contemplated; it was 6n1y after an
Eulerian method had been developed for the later stages of the collapse
that it was decided to try applying it to the early stages for compari-
son with results already calculated with the Lagrangian method. As
it turned out, the Eulerian method proved to have some important
advantages of its own; also, the use of an Eulerian method for the
early stages as well as the later stages of the collapse provides a
consistent method of calculation throughout. Therefore most of the

results presented in section 7 have in fact been calculated with the



-213-
Eulerian method.

We give below the difference equations finally adopted to
approximate the Eulerian differential equations (6.6) - (6.10). As
was discussed in section A.1, in the Eulerian case the completely
implicit form of the difference equations has been used. In the

following equations P' again denotes P + Q, and r.41 is defined
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In the Eulerian case satisfactory results were obtained with C =1 in
most cases; again this gave shock fronts which were spread out over
about 2 or 3 mass shells,

In these equations logarithmic differences and geometric means
have been used in the same way and for the same reasons as in the
Lagrangian case. Apart from equation (A.9), which we shall discuss
below, the principal difference from the Lagrangian equations is that
additional terms occur in equations (A.10) and (A.11), representing the
transport of momentum and energy respectively across the fixed shell
boundaries. The form adopted for these terms is the one recommended
by Richtmyer (1957) for u, < 0, i.e. for an inward flow of material,

For u, > 0 a different form must be used to ensure stability; fortu-
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nately, however, positive velocities are found not to occur in the
Eulerian calculations, so we need not be concerned with this problem
here. These difference expressions for the transport term are
accurate only to first order in the space step Ar, unlike the other
spatial difference terms which are accurate to second order in Ar.
As Richtmyer shows, however, other more accurate forms which
one might think of using are unstable and therefore cannot be used;
thus a certain loss in accuracy seems to be an unavoidable disadvan-
. tage of the Eulerian method.

The use of equation (A.9) requires some discussion, since this
equation was found in practice to produce unstable behavior in the
freely infalling material just outside the shock front bounding a
stationary core. The density of this material is determined mainly
through the continuity equation (A.9), and since this equation contains
only the product of the densities in adjacent shells, it allows errors of
opposite sign to arise in neighboring density values, For this reason
the following stable but less accurate difference equation was tried in

place of eqn. (A.9):
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This equation was found however to lead to serious inaccuracies in the
shock front bounding the final stellar core, where quantities vary by
large factors between adjacent shells. Since eqn. (A.9) is in general

more accurate, and since the instability problems were fortunately
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found not to become very serious during the early stages of the col-
lapse, it was decided to use eqn. (A.9) for these early stages of the
collapse,

As in the Lagrangian case, the difference equations must be
modified slightly at the outer boundary. In this case, our mechanical
boundary condition is uy = 0, so equations (A,9) and (A.10) drop out
for i =N. In equation (A.13), TN-% has been replaced by TN and

v has been replaced by VN 1.
T2

N+
The Eulerian difference equations have been solved by a

method quite similar to that used in the Lagrangian case. In the

Eulerian case it would be quite complicated to reduce the 3 basic

unknown variables to 2, so we have retained 3 unknowns, taken to be

u, V, and T. The corresponding basic difference eqtiations are (A.10),

(A.11), and (A.12), the remaining two equations being regarded as

auxiliary relations. Considering the difference equations for all

shells, we then have 3N -4 equations in the 3N -4 unknowns

v Va1, and T T\_1. These equations

uz..a uN'i’ 1%-.- Nz 1%... 1\-'-‘2

have been solved by the same iterative technique as was used for the
Lagrangian equations. In the Eulerian case initial approximations

to the new values of the variables at the advanced time tn+1 have
been taken simply as the values of these variables at time t°, without
any extrapolation. This was done partly for simplicity and partly

because it appeared that little advantage would be gained by the

extrapolation,
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A.5 Space and Time Steps for the Eulerian Method

It appeared from experience with the Lagrangian calculations
that an important consideration in setting up the division into shells
was that the ratio of radii of neighboring shell boundaries should not
become too large. On the other hand, this ratio should not be too
small either or the number of shells required becomes excessive.

In the Eulerian case the shell boundaries are fixed in space, and they
can be set up from the start at reasonable intervals in radius, without
the need for any insertion or deletion of new shells. For the present
purposes the simplest and best procedure appears to be to choose a
constant ratio between the radii of neighboring shell boundaries, i.e.
to distribute the shell boundaries at equal intervals in 1ln r. In the
Lagrangian case the maximum ratio allowed between vneighboring
radius values was 2; in the Eulerian case, since the difference
equations are less accurate, it is desirable for equivalent accuracy
to use a somewhat smaller ratio. A ratio of V2 was thought reason-
able, and this value has been used in all of the calculations. The
number of shells required to cover the necessary 7 orders of magni-
tude in radius is then about 50,

In all of the calculations, the space grid was set up at the start
over the whole required range of r and was used without modification
throughout the early stages of the collapse. (This was possible because
the required range in r was already known from the Lagrangian calcu-
lations.) This means that the initial phases of the collapse are calcu-
lated with far more points than necessary at small radii; however the

extra computing time thereby required is not a large fraction of the
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total computing time, and it was not thought worthwhile to modify the

program to avoid this situation.

The procedure used for time step control was much the same
as in the Lagrangian case. Again during the near free fall phases of
the collapse the time step was limited so as not to allow the central
density to increase by more than a factor of 3 in one time step.

(Since this is the same limitation as was used in the Lagrangian case,
while the Eulerian time differencing scheme is less accurate than

the Lagrangian one, the Eulerian results for these phases of the
collapse are somewhat less accurate., In fact, however the error
appears to be mainly one of overall time scale, and is not too serious
for our purposes; further discussion of the accuracy will be given in
section A.7,) It appeared that after the formation of a nearly station-
ary core adequate accuracy was attained using the maximum time
step consistent with good convergence of the iterative method; accord-
ingly the time step was again determined mainly by the criterion of
good convergence, just as in the Lagrangian case.

' In the Eulerian calculations one does not encounter the rather
severe time step limitation which arose in the Lagrangian case in
connection with the passage of the Lagrangian mass shells through a
shock front; therefore fewer time steps were usually required in the
Eulerian case. Typically 50 to 70 time steps were required for the
early stages of the collapse; the average computing time per time

step was about 1.5 - 2,0 seconds.,
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A.6 Comparison of the Lagrangian and Eulerian Methods

In this section we shall summarize the advantages of the
Lagrangian and Eulerian methods and discuss the reasons for pre-
ferring one method or the other in various applications. We give

first the advantages of the Lagrangian method:

(1) The Lagrangian method is more versatile for exploratory work.
Different kinds of boundary conditions are more easily incorporated;
also, nothing need be known in advance about the mass division re-

quired, since mass shells are automatically inserted and deleted as

required.

(2) The Lagrangian difference equations are more accurate than the
Eulerian ones, The Lagrangian spatial differences are accurate to
second order in the space step, compared with only first order in the
Eulerian case, Also in our case the Lagrangian time differences are

more accurate, although this is not an intrinsic feature of the method.

(3) The Lagrangian difference equations are simpler, and the method
of solution is also somewhat simpler, involving only 2 unknowns
instead of 3. Hence, other things being equal, the Lagrangian calcu-
lations require less computing time per time step than the Eulerian

ones, although the difference is not large.
In contrast, the Eulerian method has the following advantages:

(1) In the Eulerian case a suitable space division can be set up from

the start and used throughout the calculations without modification.
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This eliminates the necessity for insertion and deletion of points,
which was sometimes troublesome in the Lagrangian case and un-
avoidably caused some perturbations and inaccuracies in the calcu-

lations,

(2) Disturbances, whether of numerical or physical origin, are more
effectively damped out in the Eulerian case. For example, the re-
bound and complicated radial pulsations of the core as found in the
Lagrangian calculations do not occur at all in the Eulerian calcula-
tions and hence do not cause trouble or require a long computing time
to follow them out. In general, the Eulerian calculations were found

to run more smoothly and reliably than the Lagrangian ones,

(3) The Lagrangian method encounters a serious and vinescapable time
step limitation once a central core has formed: becé.use of the neces-
sity of following in detail the motion of each mass shell as it falls

into the core and passes through the shock front, the Lagrangian time
step is limited to a value of the order of or somewhat less than the
time scale for infall of the material just outside the core. The
Eulerian time step, on the other hand, is related to the time scale for
change of the overall flow pattern, which after the formation of the
core becomes much longer than the time scale for infall of material
in the immediate vicinity of the core. In these circumstances, in
fact, the Eulerian method is more physically reasonable than the
Lagrangian one because it is really the overall flow pattern which is

of interest and not the motion of individual particles.
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(4) Finally, the Eulerian method appears to have given more accurate
results for the strong shock front bounding the final stellar core; in
particular, the Eulerian method seems to give a more accurate con-
version of kinetic energy to thermal energy in the shock front, The
reason for this is not completely clear, and it may be that some
modification to the Lagrangian method would give improved results.
However it does appear that the Eulerian method has an intrinsic
advantage in this respect, since the decrease of kinetic energy and the
increase of thermal energy produced by the pseudo-viscosity term

are calculated by spatial difference expressions of the same form,
whereas in the Lagrangian method the deceleration is produced by a
spatial difference expression (the pressure gradient) but the increase
of thermal energy involves a time difference. Since space differences
are in general much greater than time differences, this may allow
uncompensated errors to arise in the Lagrangian case, especially if

the shock front covers only very few mass shells,

For the reasons we have outlined, the Lagrangian method
appears to be more versatile and more suitable for exploratory work
where nothing is known in advance about the nature of the results. It is
also probably preferable for the near free fall phases of the collapse,
where it can be expected to give better accuracy than the Eulerian
method. On the other hand, the Eulerian calculations run more
smoothly and reliably than the L.agrangian ones, and in some respects
more accurately, without running into unreasonable time step restric-

tions; thus the Eulerian method seems generally preferable. For
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these reasons most of the early exploratory calculations, made with
difference choices of boundary conditions and other parameters,
were done with the Lagrangian method, whereas‘ most of the more
final and systematic results described in section 7 have been com-

puted with the Eulerian method.

A.7 Accuracy of the Results

It was hoped in this project to be able to attain numerical
accuracies of the order of 20% or so without using large amounts of
computing time, and this turned out for the most part to be a reason-
able goal. In the course of developing and testing the numerical
methods, it was usually possible to get an idea of their accuracy by
trying different space and time steps or by comparing results calcu-
lated with different forms of the difference equations; if the accuracy
was not of the desired order, modifications were made or the step
sizes were reduced to improve the accuracy. It appears that the
hoped for order of accuracy was usually achieved, and that even in
the worst case errors do not exceed about 50%. In fact, even in some
of the early attempts where serious errors might have been expected,
for example because of very large space or time steps, the errors
seem in general to have been moderate, not usually exceeding a factor
of 2. Thus there can at least be no doubt about the qualitative or
order of magnitude correctness of the results.

The best check on the accuracy of the results is believed to be
provided by a comparison of the results obtained with the Lagrangian

and Eulerian methods, which are two entirely different and independent
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APPENDIX B

NUMERICAL METHODS FOR THE LATER STAGES
OF THE COLLAPSE

B.1 General Considerations

It was expiained in Appendix A that the time step for the
Lagrangian method is limited to a value somewhat less than the free
fall time for the material just outside the shock front, In the later
stages of the collapse this time becomes as short as a few hours or
less, whereas the time required for infall of all the material into the
core is of the order of 10° years., Thus if the Lagrangian method
were to be used, it would require more than 109 time steps, or about
100 years of computing time on the 7094, Clearly another method
must be found, and it was for this reason that the Eulerian method
was first tried, The superiority.of the Eulerian method in this
respect has already been described in Appendix A.

During the later stages of the collapse it becomes necessary
to improve on the pseudoviscosity method for treating the shock
front bounding the stellar core. As the collapse proceeds, this
shock front becomes stronger and stronger, and if the pseudoviscosity
method is used the variation of quantities between adjacent shells in
the shock front becomes so extreme that it becomes difficult to
believe in the validity of the results, Also, after the shock front is
no longer effectively adiabatic one encounters a purely numerical
difficulty connected with the rapid increase in opacity with increasing

temperature in the shock front. As the shock front moves outward
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over a particular Eulerian shell and the temperature in this shell rises,
the radiative cooling rate drops rapidly because of the increasing
opacity. The close balance between the mechanical heating and radi-
ative cooling rates is then upset and the shell heats up essentially in
the radiative relaxation time, which is orders of magnitude shorter
than the accretion time scale. Thus the time step must be decreased
by several orders of magnitude each time a shell passes through the
shock front; this is clearly quite inconvenient and time consuming. For
these reasons, as well as for the reasons mentioned in section 8,1, we
have adopted a shock fitting technique for calculating the shock front.

The physical assumptions and the equations adopted for the
shock fitting procedure have been discussed in section 8.1. We have
3 shock jump equations, namely eqns. (8.1), (8.5), and (8.10),
relating the values of the flow variables on the two sides of the shock
front. The incorporation of these equations into the numerical calcu-
lations is in principle straightforward. A special grid point is defined
at the position of the shock front, associat_ed with which there are two
29 Py T2 in
the notation of section 8.1, Adding the 3 shock jump relations to the

sets of unknown variables, namely u, s pil, T1 and u

usual Kulerian difference equations on both sides of the shock front
we have enough equations to determine values for all of the unknowns
| in the problem. The complete set of equations can be solved by the
same iterative technique as was outlined in Appendix A for solving
the Lagrangian difference équations.

In setting up the details of the computational techniques, it is

important to give some consideration to the actual physical situation
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to be represented. The shock front divides our "collapsing proto-
star" into two regions of quite different properties. The stellar core
inside the shock front is an object in hydrostatic equilibrium, re-
sembling in many respects an ordinary star; at the end of the collapse,
in fact, it becomes essentially a conventional pre-main sequence
stellar model. The numerical method must be capable of adequately
representing the structure of the core at all times, and it must include
the relevant physics, such as convective energy transport. To satisfy
these requirements, some modifications of technique are required in
treating the stellar core. On the other hand, outside the shock front
we still have a relatively tenuous gas cloud collapsing nearly in free
fall, and the methods used for the early stages of the collapse are

still adequate here. Thus the calculation of the later stages of the
collapse separates naturally into two problems, namely the structure
of the stellar core and the dynamics of the infalling gas cloud, which
are to be solved simultaneously but with somewhat different numerical
techniques,

For convenience in developing and using the numerical methods,
we have treated these two problems sepaliately as far as possible,
without worrying at first about the details of the interaction between
them, Thus for example in the calculations for the shock front and
the stellar core it is assumed that the values of the flow variables
just outside the shock front are known from the solution of the infall
problem., We shall describe first the methods used for the stellar
core and for the infalling cloud, and then we shall describe how they

have been coupled together.
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B.2 The Stellar Core and Shock Front

The most important consideration in treating the stellar core is
to set up some form of shell division capable of adequately representing
its structure at all times. The problem is similar in many ways to that
of computing a stellar interior model, particularly toward the end of
the collapse when the stellar core becomes essentially an ordinary pre-
main sequence star. It is necessary for example to use a very fine
shell division near the surface of the core; this is because it is essen-
tial to represent with reasonable accuracy the structure of the surface
layers of the core, where the temperature and density may vary by
orders of magnitude over a very small range in radius. The Lagrangi-
an shell division usually used in stellar interiors calculations cannot
be used here, so some form of Eulerian scheme must be used,

A reasonable grid structure must be maintained in the stellar
core as it expands or contracts by a factor of 10 or more in radius;
in particular, the fine spacing required in the surface layers must
follow the surface as it expands or contracts in radius. This would
be rather impracticable with an ordinary Eulerian scheme, in which
the shell boundaries remain fixed in space. Therefore we have
adopted a modified Eulerian scheme: the core is divided into a fixed
number of shells, such that neighboring shell boundaries always
maintain the same ratio of radii but the whole grid structure expands
or contracts by a constant scale factor as the core radius R wvaries.
Thus if the radii of the shell boundaries are denoted by o i=1...N,

we have set
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r.=Rsi, i=1...N (B.1)

where R is the core radius and 85 is a fixed set of numbers
suitably distributed between 0 and 1 (s1 =0, SN T 1). The relation
(B.1) is substituted wherever r, occurs in the difference equations,
and R is treated as one of the unknowns to be solved for, The

extra equation required to determine this additional unknown is
provided by a specification of the mass of the core, which we assume
to be known firom the solution of the infall problem outside the shock
front,

A reasonably satisfactory point distribution for all the circum-
stances encountered was achieved with a smoothly varying spacing of
the s; values, having a maximum spacing in S5 of 0.1 near s = 3
and smaller spacings near the surface and also near the center of the
core, Near the surface the points were spaced at intervals of a factor
of 2 in (1 - s), the smallest value of (1 -s) being about .0005. Near
the center the points were spaced by factors of V2 in s, the smallest
value of s being about ,005, The close spacing at the center is
required to represent the very small region of low entropy which
develops at the center of the core. The total number of shells in the
core was usually about 26 or 27.

The difference equations which we have used in the stellar core
are exactly the same as the Eulerian difference equations which were
given in section A,4, i.e, eqns. (A.9)-(A.14). The unstable behavior
described in section A.4 in connection with eqn. (A.9) does not occur

in the core, so this equation is quite satisfactory for use in the core.
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In this case the variables in the difference equations are interpreted
slightly differently, since they refer to points in our expandable grid
rather than to points strictly fixed in space. Thus u for example
denotes the velocity relative to the moving grid points and not the
true velocity of the material. As long as the core remains in hydro-
static equilibrium, however, all dynamical effects are negligible
anyway, so the difference equations (A.9) - (A.14) remain valid.

Although they are of course negligible when the core is in
hydrostatic equilibrium, the acceleration terms in eqn. (A.10) were
retained in case a third dynamical collapse phase should occur
associated with the pressure ionization of hydrogen. As it turned out,
this happened only in Case 4. In this case it was necessary to take
account of the difference between u, and the true velocity at grid
point r.. This was done by replacing u, in the first term of
eqn. (A.10) by u; + sidR/dt and representing dR/dt by a backward
time difference of the form (R - Rn)/At.

It was mentioned in section A.4 that the form of the Eulerian
difference equations which we have used is recommended only for
ui< 0; if u, > 0 these equations become unstable and another form
must be used to maintain stability. It turns out that positive values
of u, do in fact occur in the central part of the core during some
phases of the collapse. These positive values of u, are however
small, and apparently not large enough to cause any serious insta-
bility problems. At any rate, no evidence of serious errors or
instabilities was found in the results of the calculations, and there

appeared to be no reason to alter the difference equations, even



-230-
though they are in theory unstable.

In the stellar core one addition to the difference equations is
necessary in order to account for convective energy transfer. In
writing a difference equation corresponding to the differential equation
(8.12) for the convective flux, it is important that T dS = dE + Pd4dV
be represented by the same type of difference expression as was used

to represent 9E/dr + P9V/8r in the differential equation (6.8), i.e.

dE+PdV — E. 1 - E. 1 +(P, ).
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The convective luminosity term to be added to eqn. (A.13) can then be

written
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This term is to be included only if the expression in square brackets
is negative, corresponding to a negative entropy gradient; if the
entropy gradient is positive, the material is stable against convection.
In order to avoid certain numerical difficulties, the decision on
whether or not to include the convective term at a particular grid
point has been based on whether or not the entropy gradient at that
grid point was negative in the preceding core model. This intro-
duces negligible error in the results, at least for our purposes.

The equations (A.9) - (A.14) with the addition of equation (B.2) then
provide the complete set of difference equations required for the

interior of the stellar core.
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At the boundary of the core where i = N, the difference equa-
tions have been slightly modified by replacing the subscripts N + 3
and N +1 by N. The values of the variables right at the boundary,
i.e. Uy PN TN, etc., , have been identified with the values of
these variables just inside the shock front, as denoted in section 8.1
with a subscript 1. To allow determination of all of the unknowns
in the problem, the Eulerian difference equations for the core are
supplemented with the 3 shock jump relations, i.e. eqns. (8.1),
(8.5), and (8.10). In these equations the values of the variables u,
p> and T just outside the shock front are assumed to be specified
as functions of the shock radius R from a knowledge of the inflow
outside the shock front; the details of this will be described later
in section B.3. In addition, the difference equation (A.9) must be
replaced for i = N by a specification of the total mass My of the
core, again assumed known from a solution of the inflow problem.
We then have a sufficient number of equations to determine values

for all of the unknowns in the problem, including R.

B.3 The Infalling Cloud

Outside the shock front, the Eulerian shell structure used
for the early stages of the collapse is still satisfactory and has been
retained in calculating the later stages of the collapse. In this
scheme the shell boundaries are fixed in space and are spaced by
factors of V2 in radius. If this shell structure is continued to small
enough radii, the shock radius R will in general fall within one of

the shells; clearly it is unnecessary to retain any complete shells
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inside this point. The practice followed in the calculations has
been to add or delete shell boundaries at small radii (always main-
taining a spacing of a factor of V2 in r) so that the shock front
position always falls within the first shell, i.e. between the first
and second shell boundaries,

The treatment of the infall problem is simplified by the fact
that the inflow just outside the shock front is always supersonic, so
that dynamical effects cannot propagate outward in the flow. Also,
the heating effect of the radiation emitted from the shock front is
unimportant for the dynamics just outside the shock front, since the
material in this region is very nearly in free fall anyway. Thus the
dynamical properties of the inflow at a point outside the shock front
are nearly independent of whatever happens inside that point; in
particular, they are nearly independent of the radius and luminosity
of the core. This allows us to solve the inflow problem without an
exact knowledge of the core radius and luminosity; for example, we
can use the radius and luminosity for the previous time step, without
bothering to update them. Thus it is possible at least approximately
to separate the calculations for the infalling cloud from those for the
stellar core,

To obtain the values of the flow variables at the shock radius
R as required for the core calculations, our procedure has been to
calculate the values of the flow variables in the innermost shell as if
the shock front were not there and then interpolate (or extrapolate)
the required values at the position of the shock front. The depen-

dence of the flow variables on radius near the shock front is well
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represented by simple power law formulas of the form

u=ur , (B.3)

with similar expressions for p, T, and m. Interpolation formulas
of this form have been fitted to the values of the variables at the
first two grid points and the constants ug s v, etc., have been used
as inputs for the core calculations. The values used in the core
calculations for the inflow variables just outside the shock front are
then always the correctly interpolated values at whatever value of
the shock radius R comes out of the calculations.

The treatment of the temperature and luminosity just outside
the shock front requires a special discussion. The temperature
may vary rather rapidly with radius just outside the shock front due
to heating of the infalling material by radiation from the shock, and
this may make accurate interpolation of the temperature difficult.
Since the temperature just outside the shock front is not very impor-
tant anyway we have just set it equal to the temperature at the mid-
point of the first shell. This choice is correct on the average, since
the shock front falls on the average at the mid-point of the first shell,

The luminosity emitted from the shock front must be incor-
porated in some way as a boundary condition in the infall problem,

As was discussed in section 8.1, we have assumed this luminosity

to be given by

L = e'74nR2oTe4 (B.4)

where the factor e ' is intended to roughly take account of the
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reduction in radiative flux due to absorption in a layer of optical
depth 7. It is numerically inconvenient to associate this luminosity
with a special grid point at the shock radius R, since this causes
difficulties when R gets close to one of the regular shell boundaries.
Instead, for purposes of calculating the temperature and radiation
transfer in the infalling material we have assumed the stellar surface
to be located at the innermost shell boundary (which is actually inside
the shock radius R) and we have assumed the luminosity to be speci-
fied at that point. For T we have taken the optical depth correspond-
ing to half of the thickness of the first shell, which is the distance
between the assumed position of the stellar surface and the point where
the temperature outside the shock front is defined. This procedure
introduces some small errors during the initial stages of the core
accretion process, but the errors become negligible during the later
stages.

The difference equations which have been used in the infalling
cloud are the same as the Eulerian difference equations used for the
early stages of the collapse, i.e. eqns. (A.9) -(A.14), with one
exception. As was mentioned in Appendix A, equation (A.9) shows
unstable behavior in the infalling cloud but it was retained for the
early stages of the collapse because the stable alternative, eqn.
(A.15), was not considered sufficiently accurate when applied with
the pseudoviscosity method in a strong shock front, In the present
case the difference equations are no longer required to represent a
strong shock front, and to avoid all possibility of instability prob-

lems we have used eqn. (A.15) in place of eqn. (A.9). The difference
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equations and the method of solution of course require some slight
modifications at the inner boundary of the collapsing cloud, but

these are fairly straightforward and will not be described here.

B.4 The Time Step Procedure

Ideally the stellar core and the infalling cloud should be
solved together, the unknowns all being advanced simultaneously
in each time step. In the present method the core and gas cloud
calculations have been separated, but one could still effectively
advance the core and gas cloud simultaneously in each time step by
alternating the corrections in the iterative procedure, i.e. by apply-
ing the corrections alternately to the core and to the gas cloud until
adequate convergence is obtained for both. This procedure was
tried, but it was found to have certain unsatisfactory features,
including sometimes poor convergence of the iterations. Therefore
it was decided to separate completely the time step calculations for
the core and for the infalling cloud and to advance the core and the
cloud alternately by one complete time step. The error caused by
this procedure is small enough to be negligible for our purposes.

It has been mentioned that the inflow problem is not very
sensitive to the exact properties of the core, and that a new solution
for the infalling cloud can be calculated to adequate accuracy using
the previous values for the core radius and luminosity. Therefore
our procedure has been to first advance all quantities in the infalling
cloud by one time step, neglecting any changes in the core and shock

front during this time. Using the values of the inflow variables at
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the advanced time, a new solution for the core and shock front at this
advanced time is calculated. The main error in this procedure is
that the luminosity used in the infall calculations is always one time
step behind. Since the luminosity is unimportant for the dynamics
anyway, at least within our assumptions, this error has a negligible
effect as far as the properties of the core are concerned.

Again the time step for the calculations has been determined
mainly by the criterion of good convergence of the iterations. If at
any time the iterations for either the core or the gas cloud failed to
converge after a reasonable number of iterations (usually 4 or 5),
the time step was reduced until convergence was achieved. If on the
other hand convergence to good accuracy was achieved after only 2
iterations for both the core and the cloud, the time step was increased.
It was found reasonable to change the time step by a factor of about
1.5 in each case. With this procedure the time steps were typically
such that the core mass increased by about 10% per time step,
unless other effects required a shorter time step. The total number
of time steps required for the later stages of the collapse varied
from about 130 to 300, depending on the number of physical compli-
cations and numerical problems encountered. When all was running
well, the computing (execution) time averaged about 25 seconds per
time step.

It may perhaps be mentioned that often all did not run well,
and that unexpected numerical difficulties were frequently encountered
in the calculations, We shall not describe the gruesome details here.

Some of these problems were avoided by using various tricks or
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small modifications in the computer program, sometimes at a slight
expense of accuracy. In some other cases it appeared that sub-
stantial modifications to the method would be required to properly
eliminate a particular numerical problem. Since this has been only
an exploratory project, it was not always considered worthwhile to
invest substantial amounts of time in developing new techniques; the
calculations were then just pushed through by "brute force" tech-
niques, sometimes involving for example a larger number of time

steps than would otherwise be reasonable,
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APPENDIX C

THE EQUATIONS OF STATIE

As was mentioned in section 2.1, we adopt Gaustad's (1963)
composition for the protostellar material. At low temperatures
(below about 2000 °K, depending on density) the hydrogen is by
assumption essentially all in molecular form. At the low densities
relevant at these temperatures the material behaves as a perfect
gas, at least as far as the pressure is concerned, and it satisfies

the perfect gas law
P=pRT (C.1)

where f= 3,36 X 107 ergs/gm/deg K for our assumed mixture of
molecular hydrogen plus helium and heavier elements.

The calculation of the internal energy of molecular hydrogen
is complicated by the fact that at temperatures below about 200 °K
the rotational degrees of freedom of the H2 molecules begin to
"freeze out" because of the finite spacing of the rotational energy
levels. It is necessary to distinguish between parahydrogen (even
rotational quantum numbers) and orthohydrogen (odd rotational
gquantum numbers), since transitions between these two forms are
relatively rare and their relative abundances may not be in accord-
ance with thermodynamic equilibrium. In fact, it is believed that
H2 molecules form as parahydrogenin. the ground rotational level
(Osterbrock 1962), and it is known that purely radiative transitions

betwecen para and ortho forms are highly improbable (Raich and
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Good 1964); thus it may be that the protostellar hydrogen remains
entirely in the para form, unless collisional processes become
sufficiently important to produce a significant amount of ortho-
hydrogen,

The specific internal energy E of para- and orthohydrogen
and the equilibrium para-ortho ratio have been tabulated by Woolley
et al. (1948). Examination of these data shows that for tempera-
tures of about 300 °K or higher parahydrogen and cquilibrium hydro-
gen have essentially the same internal energy, the dependence of
internal energy on temperature being given by a straight line of
slope 5/2 R , as expected for a gas with 5 degrees of freedom. For
temperatures of about 200 °K or less the curves of Evs. T for
parahydrogen and equilibrium hydrogen deviate significantly in
opposite directions from this straight line relation, but at a tempera-
ture of about 30 °K the two curves converge again to a common curve
very close to this same straight line. Since the composition of the
protostellar hydrogen is unknown but presumably somewhere between
pure para H2 and equilibrium HZ’ we have as a rough approxima-
tion represented the dependence of E on T throughout by a st:t;aight
line of slope 5/2 & , which for the most part is intermediate between
the curves for para H2 and equilibrium HZ' The possible error in
this procedure, while not negligible, is not expected to make any
major difference to the results.

At temperatures above about 1000 °K the vibrational degrees
of freedom of the H2 molecules start to become excited, and the

internal energy rises above the straight line relation mentioned
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above, We have represented the data of Woolley et al. with a simple
quadratic formula for T = 600 °K. The complete adopted depen-
dence of specific internal energy on temperature for pure molecular

hydrogen is then as follows (CGS units):

0<T = 600:
) 8
E(H,) = 1.031 X 10° T
= .
T = 600: (C.2)
- 9 7
E(H,) = 2,99 X 107 +9.32 X 10" T
+8.30 X 103 T? .

The dissociation of hydrogen molecules, assuming thermo-

dynamic equilibrium, is governed by the equilibrium equation
= K(T) . (C.3)
If we define a degree of dissociation y by

(E)
Y7 p(E,) T e(H)

t

(C.4)

and assume that the degree of ionization remains negligible while
the dissociation is taking place, so that we can write p(HZ) + p(H) =
0.651 p, equation (C.3) can be written

2 K(T)

Yy - -9 K(T)
= 9.31 X 10 T - (C.5)
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The data for K(T) given by Tsuji (1964) may be represented to

good accuracy by the following approximation:

5(%3—) - 3.49 x 108¢752490/T (C. 6)
If we substitute this into eqn, (C.5) we get
ve -52490 /T
1_Y 23.259“16 . (C'7)

This is a simple quadratic equatiori in y, from which the value of y
is readily obtained as a function of p and T.

The ionization of hydrogen is governed by the Saha equation
(see for example Aller 1963, p. 118), which for our purposes may

be written

N(e)? _ @umkT)3/2 X /KT

N{E - 3 e . (C.8)

We neglect the ionization of all elements other than hydrogen, since
this will for our purposes make only a minor difference to thermo-
dynamic properties of the material; we then have N(e) = N(H+). We
also assume, as will be justified below, that dissociation of H2
molecules is complete by the time ionization becomes important.
Then, defining the degree of ionization x by

v = —Ne) - p(H")
NI+ ote +ptr ™)

(C.9)

and putting p(H) + p(H+) = 0,651 p, the Saha equation (C.8) becomes
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<2 -9 - - T
x _ = 6.20 X 10 9p 1T3/2e 157770/1“.

— (C.10)

Again this is a simple quadratic equation from which the value of x
is readily obtained.

Once the degree of dissociation y and the degree of ioniza-
tion x have been calculated it is straightforward to express the
pressure P and the specific internal energy E in terms of y and
x by simply adding up the contributions of the various constituents,
including of course the energies of dissociation and ionization. The

resulting expressions as used in this project are as follows:
P =2.686X10 (1,251 +y + 2x)pT (C.11)

E = .651(1 - y)E(H,) + 8.06 X 10" (y +x)T

7

£1.011 x10'T +1.395 x 10'%y +8.48 x 1012 (C.12)

where E(HZ) is the specific internal energy for molecular hydrogen
as given by eqn. (C.2). Equations (C.11) and (C. 12) together with
equations (C,7) and (C.10) then provide equations of state which are
satisfactory under most of the conditions encountered.

At the center of the stellar core, however, we encounter
conditions of high density and relatively low temperature, under
which the effects of close crowding together of hydrogen atoms become
important and the above equations are no longer adequate. One such

effectis pressure ionization; it is clear for example that if the mean
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spacing between atoms becomes of the order of one Bohr radius or
less, the electrons can no longer remain bound and the hydrogen
becomes ionized. A simple heuristic procedure for taking pressure
ionization into account has been suggested by Rouse (1964), who
suggests multiplying the right-hand side of the Saha equation by a

Po . .
where the constant P, s approximately

factor of the form ep
the density at which pressure ionization becomes important. The
value of Po corresponding to a density of one H atom per sphere

of radius a, (the Bohr radius) is 2.7 gm/cm3; however, it is

likely that pressure ionization becomes important at even larger
atomic spacings; and Rouse has considered values up to 3a0, cor-
responding to p_ = 0.1 gm/cm3.

A similar situation has been considered by Unsold (1948) and
by Elste and Jugaku (1957); these authors considered the destruction
of atomic energy levels by the perturbing effects of nearby ions.,
According to Unsold (1948), the ground state of an H atom will be
destroyed and the electron will no longer remain bound if a perturbing
H+ ion comes within 6 a, of the nucleus. The density corresponding
to one H+ ion per sphere of radius 6ao, assuming for example a
half ionized mixture, is .025 grn/crn3, and the corresponding proba-
bility of an atom remaining neutral is given by e'P/PO with
Py = 025 grn/c:rn3 (see Elste and Jugaku, 1957). This is similar
to the modification of the Saha equation proposed by Rouse, except
that a smaller value of Po is suggested. We have arbitrarily

-1 3 : P/Po
adopted Po = 10 * gm/cm” and inserted a factor e into the

Saha equation, as suggested by Rouse; equation (C.10) then becomes
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2
X

o = 6.20 X 10—9p—1T3/ze10 p-157770/T.

(C.13)

The curves of constant x in a log T - log p diagram are illustrated
by the dashed lines in Fig. 12 (p. 140); it is evident in this diagram
that the degree of ionization increases rapidly with increasing density
at densities above about 10~ gm/cm3.

In addition to pressure ionization, there must also be a pres-
sure dissociation effect for HZ molecules, and presumably it
becomes important at a lower density than the pressure ionization
discussed above. We have taken this pressure dissociation effect
into account in the same rough way as pressure ionization by
. , p/Po . L
inserting a factor e into equation (C.7); we have arbitrarily
set Py = 5 X 10-‘Z gm/cm3 in this case., The degree of dissociation
then increases rapidly with increasing density for densities above

-2 3
about 5 X 10 “ gm/cm”.

We can now justify our assumption that molecular dissociation
and ionization are not simultaneously important. With the modifica-
tions to the equations of state described above, the maximum overlap
of molecular dissociation and ionization occurs at a density of about

-2 3 4 o0 .
5X 10 “ gm/cm” and a temperature of about 2.5 X 10~ "K; at this
point the hydrogen is approximately 4% in molecular form and 4%
ionized, the rest being in atomic form. The error in the equation of
state caused by neglecting this overlap is only of the order of 1% or

less and is negligible for our purposes.

In addition to pressure dissociation and ionization, there are
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other effects of high density which we have not taken into account even
approximately, for example the reduction of the ionization potential
due to the lowering of the ionization continuum. Also, degeneracy
starts to become important at high densities, but this has not been
taken into account. For these reasons our equation of state is still
not really correct at high densitites; for example, because of the
reduction of the ionization potential, the decrease in y caused by
pressure ionization will in reality be less than in our calculations.,
Thus the brief dynamical collapse at the center of the stellar core
which occurs in Case 4 (see p. 133) when pressure ionization
reduces y below 4/3 may in reality never occur. Fortunately,
as is discussed in section 9, the properties of the low entropy
material at the center of the core are of little consequence anyway;
even the brief dynamical collapse phase found in Case 4 appears to
make very little difference to the subsequent evolution of the core,
Thus the uncertainties and errors in the equation of state at high

densities are unimportant for the present project.
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APPENDIX D.

ASYMPTOTIC SIMILARITY SOLUTIONS FOR THE
ISOTHERMAL COLLAPSE

First we show that from one isothermal collapse solution
another "homologous" solution may be obtained simply by changing
all the variables by appropriate scale factors. The relevant differ-
ential equations are either (6.1), (6.2), and (6.4) or (6.6), (6.7), and
(6.9), where T 1is taken to be a constant. We consider two sets of
variables related by constant scale factors as follows:

- ' _ 1 _ ' _ ' _ 1
t—Ctt, r—-Crr, u~Cuu, p—Cpp, m-—Cmm.

Then it can easily be shown by substituting these relations into the
differential equations that if the unprimed variables satisfy the equa-

tions, so also do the primed variables provided that

. (D.1)

Thus at corresponding points in homologous solutions we would have
for example m <r and p < r—Z.

Suppose now that we consider a collapse solution in which the
velocity, density, and mass distributions have the same functional
forms at all times, differing only by scale factors which vary as a
function of time., It can again be shown by substitution in the equations

that a solution of this form is possible if the scale factors, which in

this case are functions of time, are related in the same way as the



-247-
the constant scale factors in the homology relations (D.1). The
constant scale factors in (D.1) can all be expressed in terms of a
single constant, for example Cr; correspondingly our variable scale
factors can all be expressed in terms of a single function of time,
which we shall take as the {variable) radius scale factor., Hereafter
we shall use the notation z = z(t) for the variable radius scale factor
corresponding to Cr in the homology relations. Let u'(r'), p'(r"),
and m'(r') represent the invariant functional forms of the velocity,
density, and mass distributions; these functions may be thought of as
being the actual distributions at some standard instant in time when
z(t) =1 and r = r'. Using the homology relations, the distributions
u(r), p(r), and m(r) at an arbitrary time may then be expressed in

terms of these invariant functional forms as follows:

r = z{t)r'
u(r) = u'(r")
(D.2)
p(r) = 2(t) %p'(x")
m(r) = z(tym'(zx")

The initial and boundary conditions of course do not change with time
according to these relations, so it is clear that a solution of this form
is valid only as a limiting approximation when we are far enough from
the initial instant and from the boundary that the initial and boundary
conditions no longer have much influence in the region of interest.

We now substitute the relations (D.2) into the Eulerian differ-

ential equations (6,6), (6.7), and (6.9). After some rearrangement
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and some straightforward substitutions to eliminate m' in favor of

u' and p', thus reducing the number of equations from 3 to 2, we

obtain
r' du' dlnp'
4yt + "r' +u! =
(’r u)a? 47Gp'(r u'T)+RT—d~1-;.R— 0
(D.3)
du' (r' . (dln 'o2)_
St (Fru)(Sgh+ F)=0
dz -1
where T = - Et') is a fixed (positive) constant independent of both
r and t,

We thus have two first order differential equations for the two
functions u'(r') and p'(r'), with one undetermined parameter 7, For
further analysis it is convenient to reduce these equations to non-

dimensional form by means of the following transformations:

u' 2
— = —— , = 47Gp'r™ . D.4
RT ' T VaT n = S (D.4)
With these substitutions, equations (D.3) become

(e g) S04 ANy 4 g)n

i
o

(D.5)

If
()

Loixrg D0y +g) 2

from which we obtain, solving for df/dx and dlnn/dx,
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df _ (x *+E) 2-mx(x+tE)
a—}z - X XAX (D.())

* (x +£)%- 1

dilnm _ (x+&) nx - 2(x +§)
> ORI R

(D.7)

For these two first order differential equations we need two
boundary conditions, which may for example be taken as the values of
€ and m at x = 0. One of these boundary conditions is obvious, i.e.
£ =0 at x = 0; the value of M at x = 0 is however unknown, so that
we still have one undetermined parameter in the problem. Thus it
would appear that we have a whole one-parameter family of solutions
satisfying our assumption of invariant functional forms for the velocity
and density distributions, We notice however that the expressions for
d€/dx and dInn/dx become singular when (x +£§) =1 unless nx = 2
at this point. Since this singularity is physically inadmissible, this
singles out only one solution and one value of the undetermined param-
eter as an admissible solution to the problem. Thus the invariant
functional forms of the velocity and density distributions, represented
by the functions §(x) and mn(x), are uniquely determined.

Even without integrating equations (D, 6) and (D.7) numerically,
we can easily find the limiting properties of the velocity and density
distributions. The limit of interest here is x >> 1, since this is the
limit approached at a particular value of r as the collapse progresses
and the radius scale factor z decreases. If we put x>>1 in equation

(D.6) we get
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dg _ 2 A
o = m n 0 for x>>1, (D.8)

since m decreases strongly with increasing x. Thus £ approaches
a constant value at large x. This means that as the collapse proceeds
the collapse velocity u should approach a constant value independent
of r; this is in fact approximately verified in the results of our calcu-

lations. Similarly from eqn. (D.7) we obtain for large values of x

e AN R

Thus we have m « x—z for large x, implying that the density distri-
bution in the collapsing cloud should approach the form p < r_Z;
again this is approximately verified in the results of our collapse

calculations, as was mentioned in section 7.2 (see Fig. 2, p. 46 ).
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APPENDIX E

PROOF OF EQUATION (8.4)

The following derivation is based on the cquation of radiative
transfer in the greybody approximation. This equation may be

written

COS@%ZI—S (E. 1)

where 1= I{8) is the specific radiation intensity integrated over all
frequencies, and S is the source function, assumed isotropic,. We

define the following moments of the radiation field:

1 1 2
H:E§1c0s0dw, K=71—“S\IC°59dw (E.2)

(see for example Aller 1963, p. 215). Multiplying equation (E.1) by

cos O and integrating over w, we get

=H . (E. 3)

We apply this relation in the region of radiative cooling just inside
the shock front. Since the net radiative flux is always outward, we

have H > 0 and consequently

dK
= >0 (E.4)

1
is the value of K at ry (see Fig. 4, p. 70) and K, is the value

throughout this region. Hence we must have K, > Ks’ where K1
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of K right at the shock jump. We assume ry to be at a sufficiently
large optical depth that the radiation intensity is isotropic and equal to
the blackbody intensity B(T,). We then have K, = —;— B(Ti) , and

since K1 > KS we therefore have
1
3 BT > K. (E.5)

We now establish a lower limit for Ks in terms of Hs’ the
value of H at the shock jump. From equations (E.2) it is clear that
the smallest ratio of K to H is obtained when the radiation intensity
I(8) is largest in a direction nearly perpendicular to the outward nor-
mal. In the present situation it is in fact the case that the radiation
intensity at the shock jump is largest for 6 near lzr, since most of
the radiation comes from a thin layer of high temperature and small
optical depth just inside the shock jump. The limiting case is obtained
with a thin layer of zero optical depth, in which case I(6) = (cos 9)_1.
If we substitute this in equations (E, 2), neglecting any contribution for
9>—%r » we get K_ = %Hs. This is a lower limit for K_, and in reality

we will have

K >3 H . (E.6)

Finally, making use of the definition of Te we have

Fs o*Te 1
H = =

s :1:? 4" = Z B(Te) . (E- 7)

Combining equations (E.5), (E.6), and (E.7) we obtain

1 1
3 B(Ti) > 3 B(Te)

or



y ge.e.do (L. 8)

This derivation has assumed the grey approximation, i.e.
the absorption coefficient K, is assumed to be independent of fre-
quency. Unfortunately it does not seem possible to give a corre-
spondingly simple and rigorous derivation in the non-grey case,
although it appears unlikely that the result would be changed. The
crucial relation on which the proof is based is eqn. (E.4). In the
frequency dependent case we can derive a relation analogous to

eqn. (E.3), i.e.

from which we obtain, integrating over all frequencies,

dK = gde dv = - pdrgKvHv dv . (E.9)

The crucial question is thus whether gKvHV dv is always positive,
We know that S‘Hv dv is positive, but this does not guarantee Hv >0
for all v. In the present situation it seems likely in fact that H,
will be negative at very high frequencies, since there will be more
high frequency radiation travelling inward from the very hot material
just inside the shock front than there will be travelling outward from
the cooler material farther inside the shock front, Thus if K,

should be large at these higher frequencies and small at lower fre-

quencies it is conceivable that dK/dT could be negative. This seems
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unlikely to happen, however, considering that the general trend is

for Kk, to decrease with increasing frequency.
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APPENDIX F

CALCULATION OF THE FUNCTIONS Gn(T)\)

As was mentioned in section 10,2, the functions Gn(TK) are

defined by substituting equation (10.5) into equation (10.4); this gives

00
n )\ Zr )\ s n-1 > 2
V T T

-8

T ar 00 q
_K)\S‘ + exp ~K)\S L (F.1)
s n-1 2 SZ n-1 2 2

r r -8

where LAY is related to r by

K
_ X -nti
'T)\~—-—-——n_1r . (F. 2)

We consider first the evaluation of the function Gn('r for

N
n =3/2. It is necessary first of all to evaluate the integrals occurring
in the exponents in equation (F.1). These may be expressed in terms

of elliptic integrals by means of the substitution r = s secz(b; we then

obtain for example

gs {———r(r_s J—g r——_—i__sm ) \/—‘ <f2 (F.3)

where F(k,$) is the Elliptic Integral of the First Kind. If we apply

the same substitution of variables to the other integrals in equation
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(F.1) and make use of the fact that F(k,$) is an odd function of ¢,

we can write equation (F.1) for n = 3/2 in the form

T
2 3 T
d¢ A | 1
oy -§ 2 20 ol ey ()
3/2° '\ i 2 ’
-3 Ji +cosz¢ \/Ecosd) V2 V2
' (F.4)
where we have made use of the relation 7, = 2K 1‘“1/2 valid for

A A
n=3/2.

We have used equation (F.4) to calculate the function G3/2('r)
numerically, using a subroutine available at the Caltech computing
center to evaluate the elliptic integrals. The results are tabulated in
Table 9 (p.258). We have attempted to find a simple analytic formula
to approximate the function G3/2('r) with adequate accuracy. For
values of 7 less than about 2.3 the following approximation is valid to

1
an accuracy of 3% or better:

70,947
G3 /2" T 7565927 - (F.5)

This simple approximation has been used in place of G3/2('r) in most
of the calculations. In one case where it was thought that the error in
this approximation at large values of T might have a significant effect
on the emitted spectrum, G3/2(’r) was evaluated essentially exactly
by interpolation in a table of log G3/2(’T) vs. log 7. However this was
found to make negligible difference to the emitted spectrum.

For comparison we have also calculated the function GZ('r).

If we substitute n = 2 in equation (F.1) and employ transformations
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similar to those used for n = 3/2, we readily obtain

™
GZ('r): -;:50 sin¢ exp {—E%}dd)' (F.6)

This integral has been evaluated numerically in the same way as
G3/Z('T), and the results are also given in Table 9. The function
GZ('r) is less well represented by a simple approximation of the form
(F.5) than G3/2(T), but since the case n = 2 is less important we

have considered the following adequate:

-0.917
e

G T oA - (F.7)

This approximation is accurate to about 2% or better for 7< 2,5.

It may be noted that the functions G3/2('T) and GZ('T) are both
intermediate between e_T and the second exponential integral Ez('r). In
fact, G3/2('T) is roughly the geometric mean of e and EZ(’r), and GZ(’r)
is roughly the geometric mean of G3/2(’r) and EZ('r). It can be shown
that in the limit of large n the function Gn(’r) approaches %EZ(T).
This is easily understood physically, since for large n the density
and optical depth increase very rapidly with decreasing radius, so
that only a small range of radii is important and we approach the
plane atmosphere limit., With G(7) = ;EZ(T), equation (10, 2) then
becomes identical with equation (10,1), as expected. On the other
hand, as n approaches 1 we approach the limit of an infinite

spherical "atmosphere," and G _(T) approaches e 7T,
P () ap
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TABLE 9

T G3L2(T) GZ('r)

BTB 1.000 1.000

0.1 8.573-1 8.072-1
0.2 7.385-1 6.688-1
0.3 6.385-1 5.614-1
0.4 5.538-1 4.754-1
0.5 4,815-1 4,051-1
0.6 4.195-1 3.469-1
0.7 3.662-1 2.983-1
0.8 3.202-1 2.574-1
0.9 2.804-1 2.227-1
1,0 2.459-1 1.932-1
1.2 1.897-1 1.463-1
1.4 1.470-1 1.116-1
1.6 1,143-1 8.555-2
1.8 8.911-2 6.591-2
2.0 6.967-2 5.,099-2
2.2 5.460-2 3.959-2
2.6 3.374-2 2.407-2
3.0 2.099-2 1.478-2
3.4 1.313-2 9.141-3
3.8 8.257-3 5.692-3
4,2 5.213-3 3.563-3
4,6 3.303-3 2.241-3
5.0 2.100-3 1.415-3
5.8 8.555-4 5.703-4
6.6 3.517-4 2.323-4
7.4 1.457-4 9.552-5
8.2 6.074-5 3.956-5
9.0 2.546-5 1.649-5
9.8 1.072-5 6.911-6

10.6 4.533-6 2.910-6
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