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Generalized Ray Models

of Strong Ground Motion
Thomas H. Heaton

Abstract: A method for synthesizing local ground displacement
from a model consisting of a finite fault Tocated within a layered
half-space is demonstrated. The response of a three-dimensional fault
is evaluated by integrating the responses of point shear dislocations
over the fault plane (Green's function technique). The response of each
point shear‘dis]ocation is evaluated by using generalized ray theory in
conjunction with the Cagniard-de Hoop technique. A basic review of these
methods is given. 1In general, the complete solution to a three-dimensional
fault in a Tlayered half-space is complex and computationally unwieldy.
Various simplifying approximations, whose validity depends upon the source
to receiver geometry and seismic frequency, are discussed. The records
from three Southern California earthquakes of different magnitudes and
source to receiver geometries are modeled and appropriate approximations
are demonstrated.

The smallest earthquake that is modeled is the Targest earthquake
(M 4.9) in the November, 1976 Brawley swarm. Long-period strong-motion
instruments were located at distances of 33 km (IVC) and 36 km (ELC).

The IVC record consists almost entirely of transversely polarized motion,
whereas the ELC record contains an approximately equal proportion of trans-
versely and radially polarized motion. A simplified shear wave velocity

model was determined from the compressional wave refraction studies of
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Biehler, Kovach and Allen (1964). The epicentral location and focal
mechanism (right-lateral strike-slip) computed from P wave first arrival
studies were used to locate and orient a double-couple point source
within the layered half-space. Essentially, the far-field time function
and source depth were the only parameters without good independent
constraints. A far-field time function with a durétion of 1.5 seconds
along with a source depth of 7 km was sufficient to model the first
25‘seconds of transverse ground motion. Although it seems clear that
faulting had finite dimensions, the source to receiver geometrizs and
small source dimension make it possible to model this earthquake with a
single point dislocation having the appropriate far-field time function.
It appears that the effects of velocity structure on the propagation of
Tong period SH waves are predictable in the Imperial Valley. A study
of the synthetic Fourier amplitude spectra indicates that wave propagation
effects should be included in studies of source spectra and seismic
wave attenuation.

Several synthetic models are constructed to fit the first 40 seconds
of transversely polarized displacement, as recorded at E1 Centro (ELC),
of the April 9, 1968 Borrego Mountain earthquake (M 6.5). Unfortunately,
there are complications involving the non-planar seismic velocity structures
which 1ie between source and receiver. A simplified structure of a layer
over a half-space is used to roughly approximate the effect of the thick
sequence of sediments in the Imperial Valley. The beginning 10 seconds
of the observed record is used to model the spatial and temporal distri-

bution of faulting, whereas the remaining portion is used to determine
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the upper crustal structure based on surface-wave periodicity. A natural
depth criterion is provided by comparing the amplitude of the direct
arrival with the surface-wave excitations. Considerable non-uniqueness
is present in the modeling process. If strong midcrustal seismic
discontinuities are present, then it is possible to model the ground
motion with a single point dislocation. Within the framework of a single
layer over a half-space model, faulting of finite vertical extent is
reduired, whereas the horizontal dimensions of faulting are not resolvable.
A model which is also consistent with the teleseismic results of Burdick
and Mellman (1976) indicates massive faulting near a depth of 9 km with
a fast rise time producing a 10 cm displacement pulse of 1 second duration
at E1 Centro. The faulting appears to slow down as it approaches the
free surface. The moment is calculated to be approximately 7 X 1025 dyne-cm
which is somewhat smaller than that found from teleseismic body waves
by Burdick and Mellman (1976).

Because of the special source to receiver geometries present for
the Brawley and Borrego Mountain earthquakes, it is necessary only to
model SH waves. Furthermore, near-field source terms can be neglected
and problems associated with fault finiteness are relatively easy to
deal with. This is not true in the case_of modeling the strong-motion
recordings of the February 9, 1971 San Fernando earthquake (M 6.5).
Three-dimensional models of a finite fault located in a half-space are
constructed to study the ground motions observed at JPL, Palmdale, Lake
Hughes and Pacoima Dam. Since the duration of faulting is comparable to

the travel times for various wave types, very complex interference of
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these arrivals makes a detailed interpretation of these waveforms
difficult. By investigating the motion due to small sections of the
fault, it is possiblie to understand how various wave types interfere to
produce the motion due to the total fault. Rayleigh waves as well as
S to P head waves are shown to be important effects of the free éurface.
Near-field source effects are also quite dramatic. Strong directivity
is required to explain the difference in amplitudes seen between stations
to the north and stations to the south. Faulting appears to have begun
north of Pacoima at a depth of 13 km. The rupture velocity, which is
near 2.8 km/sec in the hypocentral region, appears to slow to 1.8 km/sec
at a depth of 5 km. Displacements on the deeper sections of the fault
are about 2.5 meters. Fault offsets become very small at depths near
4 km and then grow again to 5 meters near the surface rupture. The
large velocity pulse seen at Pacoima is a far-field shear wave which is
enhanced by directivity. Peak accelerations at Pacoima are probably
associated with the large shallow faulting. The total moment is

1.4 x 10%% ergs.
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Introduction

This thesis investigates the nature of ground motion in the near
source region of earthquakes. Given a recording of strong ground motion,
we would Tike to know what wave types are present and how they were
formed. We would Tike to understand the relative effects of the
characteristics of a particular earthquake source versus the effects of
how waves from that source propagate to a receiver. A straightforwérd
approach is taken to gain such insight. Records are synthesized for
models consisting of a finite fault embedded in a layered half-space.
These models are constructed to roughly approximate fault geometries
and seismic velocity structures which occur in the earth. Anyone familiar
with the complexities usually encountered in both the surface runture
of earthquakes and the fast variations in rock types between source and
receiver, could easily despair at interpreting real data with such
simplistic models. Because the real earth is not even included in our
set of acceptable models, one should be very cautious about making
detailed conclusions simply on the basis that the synthetics fit the data
better. Yet there is virtue in these naive mcdels. Even if, in some
vision, the exact faulting process and geologic structure were revealed
to us, it seems likely that we would not be able to fully appreciate the
physics of how waves propagate through such structures. Although simple
models do not allow us to make detailed conclusions about specific
earthquakes, they do allow us to qualitatively evaluate the importance
of such features as source orientation, source finiteness, the free

surface, and sedimentary layering.
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There are several techniques currently employed to compute the
response of a layered medium to a point shear dislocation. Except for
finite element and finite difference schemes, these methods involve
solving the boundary value problem in a space where the time variable
is transformed to frequency and the space variable is transformed to
horizontal wavelengths. The major diffefences in techniques are the ways
in which the solution is transformed back into the time and space domain.
In most techniques the solution is obtained as a function of frequency
and then transformed, via a finite Fourier transform, back into the time
domain. Boundary conditions are normally matched by using a propagator
matrix technique. These techniques have the advantage that Qe11-dispersed
wavetrains which have travelled through complex layering are relatively
easy to synthesize. However, these  techniques are not
well-suited for synthesizing sharp pulse-like arrivals which have a very
broad-band frequency content. The physical interpretation of synthetic
arrivals is difficult using these techniques, since there is no explicit
relationship between time and seismic arrivals.

In this study, we use generalized ray theory in conjunction with
the Cagniard-de Hoop technique. The solution is decomposed into a series
of terms which are roughly characterized by the travel path of different
pulses. A change of variables allows the solution to be explicitly
written as a function of time. This method has the advantage that pulse-
like arrivals can be interpreted in terms of the mode of propagation for
that arrival. In general, the modeling of well-dispersed wavetrains in

a complexly layered stack requires so many generalized rays that the
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method becomes impractical. Because we are trying to understand the
physics of wave propagation for motions near a fault by using simple
velocity structure models, we find generalized ray theory to be a
desirable technique.

Chapter T has two parts. The first part is a brief review of the
generalized ray technique for a point dislocation in a layered half-space.
The solution for a whole-space is demonstrated first. This introduces
fundamental concepts necessary to the solution of more complex problems.
Generalized ray solutions which are valid for higher frequencies are
then discussed for the layered medium problem. Particular attention is
given to the problem of SH wave propagation in a layered medium. The
exact near-field solution for a point dislocation in a half-space is
then demonstrated. In Appendices A, B, C and D, some simple fluid
problems are solved in detail. These problems help motivate generalized
ray theory and demonstrate the Cagniard-de Hoop technique.

The second part of Chapter 1 describes a way to find the response
of a layered medium to a finite fault. The technique merely consists
of summing a large number of point sources which are evenly distributed
over the fault plane. Approximations to the exact solution (which is
amazingly complex)are diﬁcussed.

In Chapter 2 we model recordinags of the 4 November 1976 Brawley
earthquake (M 4.9). This earthquake occurred in a region of relatively
flat-lying sediments whose velocity structure has been well studied.
Furthermore, the epicentral solution and focal mechanism are also known.

This provides an opportunity to test the validity of our modeling
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techniques by predicting the observed SH motions. The results are very
encouraging. The source appears to be simple and a single point dislocation,
convolved with the appropriate time history, adequately reproduces the
records. Because the faulting is of small dimensions, the source is
trivially approximated by a point source. The separation of source and
propagation effects seems easy for this earthquake since the duration of
faulting appears short when compared to the overall length of record to

bé modeled. Some interesting frequency dependent wave propagation
phenomena are also discussed in this chapter. Our modeling shows that
caution is hecessary when interpreting observed spectra in terms of source
effects and anelastic wave propagation effects.

Synthetic records of the E1 Centro recording of the 1968 Borrego
Mountain earthquake (M 6.5) are discussed in Chapter 3. Although this
earthquake occurred in the same geologic province as the 4 November 1976
Brawley earthquake, it presents new complications to the modeling process.
Source finiteness must now be considered since the dimensions of the
faulting are larger. Structural effects are also more difficult to under-
stand because there is considerable variation in the upper crustal
structure between source and receiver. Qur inability to effectively
model this varying structure seriously undermines efforts to uniquely
interpret the strong motions recorded at E1 Centro. Despite this problem,
the Imperial Valley sediments are modeled with a simple layer over a
half-space. The relative effects of source finiteness and wave propagation
are studied within the framework of plane-layered velocity models. Only

SH waves are modeled since E1 Centro lies on a P and SV radiation node.
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Two approaches to source modeling are explored. Several models,
consisting of merely one or two point sources, are shown to be adequate
to explain the observed motion. These models are mathematically easy
to deal with and are useful for exploring questions of uniqueness. One
of these models is also shown to be consistent with teleseismic models
proposed by Burdick and Mellman (1976). Three-dimensional finite fault
models are also demonstrated which adequately reproduce the observed
motion. Although these models are intuitively pleasing, they are also
numerically cumbersome. Because of the special source to receiver
geometry for this observation, many approximations and simplifications
of the general exact three-dimensional solution are shown to be appropriate.
Finally, the relationship between simple point source models and finite
faults is discussed.

In Chapter 4, we study the ground motion associated with the
1971 San Fernando earthquake. Observations from four close stations are
modeled. The dimension of faulting is comparable to the epicentral
range of these stations and the effects of source finiteness are both
complicated and important. Although the geologic structure is known to
be complicated by mountain ranges and local basins, the earth is approxi-
mated by a simple half-space. This approximation may seem appalling,
but is justifiable in the sense that synthetic motions are found to
compare favorably with observations. Also, it is easy to recognize the
free surface as the single most important seismic discontinuity. Even
with such a simple velocity model, we will show the interaction between

source and wave propagational effects to be quite complex. Understanding
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the physics of the half-space models seems a prerequisite for understanding
models containing more complex velocity structures. Because the stations
were located so close to the earthquake, we find it necessary to include
the near-field terms (e.g., static offsets). The Rayleigh wave and the

S to Phead wave are shown to be important phases in the records.

The effects of source finiteness are relatively dramatic for our
models and these effects appear to be present in the data as well. At
these ranges, source finiteness has two major effects. The first is
caused by the relative timing of arrivals from different parts of the
fault (e.g., directivity). Secondly, arrivals from different parts of
the fault approach the receiver'with different azimuths and take-off
angles and thus have different radiation patterns and directions of
po]arizatioh. Valid approximations to the exact solution are painfully
few. Construction of numerical solutions for these models is tedious
and patient study is required to fully grasp the physical significance
of individual arrivals in the synthetic records. |

San Fernando models are constructed in two stages. First we
build a finite fault model based upon physical intuition and the results
of other studies. The teleseismic models constructed by Langston (1978)
are used as a starting place. After carefully studying our a priori
models, we make detailed changes to our model which improve the compari-
son between synthetic and observed records. Once such a model is con-
structed, we must ask ourselves if our detailed source model is unique.
Moreover, given the constraints of our simplistic assumptions about the

earth, do our model details represent details present in the San Fernando
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earthquake? Unfortunately, these questions are not adequately answered
in this thesis. Although a sincere effort is made to understand specific
earthquakes, the major goal of this thesis is to provide physical insight

into phenomena which must be present in the earth.



Chapter 1

A Procedure for Modeling Strong Ground Motion

with Generalized Rays

Introduction

This Chapter provides a basic review of the theory used to
calculate the response of a layered elastic half-space to a three-
dimensional fault. The response of a'point disTocation is covered first
and then a~procedure for integrating this response over a finite fault
is demonstrated. Finding the response of a layered half-space to a
dislocation is a central problem in earthquake seismology and many
workers have contributed to various aspects of the problem. In this.
thesis, we will not attempt to describe the historical development of
the solutions we will present, but instead we will give a reasonably
complete development of the techniques used in our later modeling studies.
Most of what is covered in this Chapter are things which were taught to
me by Don Helmberger and Dave Harkrider; either through class notes or
publications.

For readers not fami11arvwith generalized ray theory, perhaps
the best place to begin this Chapter is in the Appendices. The Appendices
are intended to be tutorial and several simple fluid problems are solved
using the Cagniard-de Hoop technique. These problems help to motivate
the methods used in this Chapter.

The first problem in this Chapter is that of a point dislocation
in a homogeneous whole-space. We will demonstrate a simple solution in

spherical coordinates and discuss the nature of this solution. This
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solution is then transformed to cylindrical coordinates which is a
coordinate system better suited to plane-layered problems. The Cagniard-
de Hoop technique is used to derive the transient response. Various
approximations to the exact solution are discussed. Generalized ray
theory is employed to construct the solution to the layered problem.
Particular attention is given to approximate solutions for SH waves in
a layered medium. These solutions are important in our modeling of
stfong motions which are observed in the Imperial Valley sedimentary
basin. The exact solution of a dislocation in a half-space is then
demonstrated. The development of this solution is a necessary step in
the construction of models for the San Fernando earthquake in which
Rayleigh waves and near-field terms are important.

Finally, we show how these point source responses may be summed
to approximate the response of a finite fault. To do this, we break the
fault into a rectangular gridwork and approximate the response of small
areas bn the fault with point sources. The technique is extremely |
flexible in that it allows us to specify the dislocation history in
practically any manner we Tike. Although the principle is simﬁ]e, the
actual numerical calculation of the exact solution is tedious. Approxi-
mations whose validity depends upon fault size and receiver distance

are discussed.

Point Shear Dislocation in a Homogeneous Whole-Space

First, we will consider a shear dislocation in a whole-space

expressed in spherical coordinates. Haskell (1964) introduced a model,
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consisting of a discontinuity in displacement across a plane, which
produced a double-couple radiation pattern. Following de Hoop's (1958)
form of the elastodynamic representation, Harkrider (1976) has derived
convenient expressions for displacements and displacement potentials

for several different coordinate systems. His results for displacements
produced by a point shear dislocation expressed in spherical coordinates
are particularly simple and allow an easy interpretation in terms of
ré]ative near- and far-field effects. His time domain results for an
arbitrarily oriented dislocation with the coordinate system of Figure 1.1

and a dislocation time history D(t) are

P-wave:
(P) . w1 Bt -R/a) , A iy %’ piy
UR - /Jmp 3 RR(ﬁa)\) R + PZ D(t R/O[) * [{3 -(t R/OZ)
o \ V
3
+ S G(t“R/oz)}
g
R
_ 2nfs
4P) - ?%EJ‘?‘ R, (5:0) {D(tR—ZR/oz) ' 3015(’;3- Rfe) y 3 (’(;4 R/a)} (1.1)
o
i 2
(P) _ 1. D(t-R/a) . E(t-R/x) . 3°G(t-R/x)
D A R¢(5’“< 2 o 23 ¥ o }
07 \
S-wave:
20rs
UF({S) _ %TL;_]_Z Relo ) {D(tR—ZR/B) N 3BE(’CR—3R/B) + 3 G(F:4 R/B)>
B
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X2

Figure 1.1. Spherical coordinate system showing orientation of point

dislocation.
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(s) _ 1 Blt-R/g) . 3 65 2E(t - R
s =gy Rolen) (PR Boteoryg) o B EEL )

3
65 G(t - R
+ 68 (4 /B)}(]_z)

R
d 2
WS) o w1 (g (DE=Ri8) |, 3 gy gy 4 BTE(L-R/B)
) 4rp 3 ¢ R 2 3
8 R R
3
+ 68 G(t-R/8) },
4
R
where
t t '
D(t) = %%', E(t) =~/~ D(r)dr , G(t) =~/’ E(r)dr
0 0
and
o = compressional wave velocity
g = shear wave velocity ‘
u = shear modulus
and
RR(@,K) = cos ) {sin & sinze sin 2¢ - cos & sin 26 cos ¢}
. . 2 . 2 . 2 . .
+ sin 3 {sin 25(cos"8 -sin“e sin“¢) + cos 25 sin 26 sino}
R, (s,0) = cos » {sin g §lg_§9.51n 26 - COS § COS 26 €OS ¢}

sin ) {sin 23 §l%~2§-(1 + sin2¢) - €CO0S 25 C0S 26 sin ¢}
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R¢(6,x) = cos ) {sin § sin 6 cos 2¢ + cos § cOS 6 sin ¢}

+ sin ) {cos 2s cos & cos ¢ - §l%fg§-sin 0 sin 247

Notice in equations (1.1) and (1.2) that compressional waves
produce both radial and transverse motions and shear waves also produce
radial as well as transverse motions. Notice also that components which
have terms containing D/R in them are only the radial for compressional
waves and only the transverse for shear waves. Terms containing ﬁ/R are
called far—fie1d terms and are usually the dominant terms in body-wave
seismology. These far-field terms behave as the time derivative of the
dislocation history and D(t) is usually called the far-field time function.
A1l other terms in equations (1.1) and (1.2) are defined to be near-field
terms. These near-field terms all behave 1ike the dislocation time history

-3 or R—4.

or integrals thereof and decay with distance as R—z, R
Equations (1.7) and (1.2) are not quite as simple as they first
appear, however, anda closer inspection of them will help toilluminate
difficulties which we will encounter later. First notice that all time
behaviors are written through the variables t-«/R or t-8/R. Thus the
solutions are really D'Alembert-type solutions and represent travelling
waves. This representation is particularly useful for describing the far-
field terms which are indeed travelling waves. However, at the other end
of the spectrum, we know that static displacements persistinclose to the

dislocation. How does one represent these in terms of travelling waves?

To answer this question, let us inspect the total displacements, Uss
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closely. Suppose that the disTocation occurs in one step, then

D(t) = H(t) = Heaviside step function

and
t
E(t - R/V) =f H{t - R/V)dt
R/V
= H(t - R/V)(t-R/V)
and
t
G(t - R/V) =/ E(t-R/V)dt
R/V
= L H(t-R 2
= 5 H{t - R/V)(t - R/V) (1.3)

It is clear that the P and S waves grow in time without limit. This
should not be surprising since the static field consists of the stationary
balance of compressional and shear stresses. Unusual waves must be
present if our travelling wave solution is to create this balance. If

we complete the calculation to find u;, we find that indeed the P and S
waves do cancel (or balance) and the solution can be written (after some

algebra) for D(t) = H(t):
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(0 : t< R/y

Ralss ) 3,2
) [ﬁ(t"‘%)- e +9“t] S Rl < t< R/

Aoy 2R 2R

+ R
\ S (}\+2}_L) RZ
(1.4)

(0 ; t< Ry

L R ' 2 2

R a2 Y0 O I O I ¥ i
L e — + g ; R/lo < t< R/g
Aoy R R
R
1w £{s,2) ] .
B G2 g2 i t>R/g

where £ denotes either 6 or ¢ .
Thus although the P and S waves grow without bound, the total
displacement becomes constant after the S wave arrival time. When we
solve the layered probiem, the solution is written in terms of P and S
waves and again the near-field terms will grow without bound. 1In that
case, we have no analytic solution and we are forced to calculate the
P and S waves numerically. It is easy to anticipate numerical instabilities
associated with trying to balance terms which become large with time.
Unfortunately, the generalization to a layered model 1is not
possible in spherical coordinates and we switch to cylindrical coordinates

where the boundary value problem can be solved. The coordinate system
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is shown in Figure 1.2. Harkrider (1964,1976) has shown that the dis-
placements in cylindrical coordinates can be expressed in terms of a P
potential (¢), a SV potential (¢), and a SH potential (x). In the

frequency domain, i.e., time Fourier transformed to w, he defines

Q = grad ¢ + curl cur] (0,0,0) + curl (0,0,%) (1.5)

" L 3 1 9
Hir,z,0,uw) = = - — = (r =) + —5 —
5z r ar 57 r2 362
Vir,z,0,0) = 12ag, 1 32@ _ X (1.6)
245V H0 r 88 v 9z36 _ ar .

- 2__ -
0 = iql __._.a I‘P__. + l é_X.
Qlr.z,0,0) ar T Sraz T ¥ 96

and where

(o]

U/Q u(t) exp(-iwt)dt .

w00

Hi

u{w)

The Fourier time-transformed vector equation of motion for an isotropic

elastic solid is

(B + Zu)grad div g-u curl curl g = —wzp g . (1.7)

Taking the divergence of (1.5),

V2$ + div curl{ cur? (9,0,3) + (0,0,%)]

1

div O
Y

v . (1.8)

i
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m—Xl

Figure 1.2. Cylindrical coordinate system showing orientation of

point dislocation.



18

Thus we can rewrite (1.7) as

k 2 grad v -k 2 curl curl ©
= grad ¢ + curl curl (0,0,%) + curl (0,0,x) , (1.9)

where

k =% and k =%,
o o B B8

Taking the divergence of (1.9), we find

div grad v%% = k % div grad 3
(0%

or

Ve =k T ¢ . (1.10)

Now we can also show that the wave equation (1.7) is satisfied if ¢y and

x are solutions of

vy o= -k T

(1.17)

Vzi 2~

il
i
>
>

Now if we recall that

2 19 (. 8y, 1 3%
v = rar Py 252



19

then we can use equations {1.10) and (1.11) to rewrite (1.6) as

W(r,z,6,0) = 2%+ i-‘g—+ Kk %

V(r,z,0,0) 9 ¥ _ X (1.12)

Q2
>< 1

|

é(rnzaesw) - %CP“-F & l,b

st
@
=
Q2
N
il
QL
@

The task now is to find expressions for ¢, ¥, and x such that they
describe a boint dislocation of arbitrary orientation. In his 1976 paper,
Harkrider derives these expressions and we will summarize his derivation.
He begins by noting that the Cartesian displacements due to a horizontal

double-couple can be written as

- .3
257(A_~-A)
- D(w) &) o 2 3 d .
U, (w,x,y,z) = - & etk (giq m t g —~)&,(LH)
i 4ﬂpw2 axi ax1 ax2 8 il axz i2 Bx] &

where (x1,x2,x3) = Cartesian coordinates at which ai is to be evaluated,

exp (-1 kVR)

AV= R 2

v = seismic velocity, either o or g ,



20

and

D(t) = displacement time history of dislocation.

The next step is to perform coordinate rotations on (1.13) such
that we are now viewing the fault from an arbitrary orientation. The
rotation angles are 8, 3, and § and are shown in Figure 1.2. This
rotated expression is then transformed to cylindrical coordinates. 1In
addition, we use the fact that cylindrical and spherical waves can be

related by the Sommerfeld integral, or

>
[t

exp {-ik,R) f’ kd, (kr) exp (-v lz -h]) dk

Y R vv ?
0

Once expressions for the cylindrical displacements are obtained, the
corresponding potentials can be found by inspection. A1l of this may
sound straightforward, but you should realize that the algebra is indeed

horrible. Harkrider's final result is
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KCF 0, (kr)dk - A (8,1.5)
I 1

2keF v J,(kr)dk - Ay(850,8)

ool

(2k 2 - 3¢%)

o

ﬁyJo(kr)dk . A3(9,k,6)

ev F J
B

B z(kr)dk - A](e:).:fi)

2

(k_“-2k)

k F J.(kr)dk - Az(e,x,s)

g1

3eF v, o (kr)dk - Ag(6,3,5)

2

2
k
B :
5 gFBvBJ](kr)dk Ac(o,n,8)

(1.14)
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where
o = compressional wave velocity
g8 = shear wave velocity
kv=w/v
_ 1,2 2
v, = (k= - kv )
-v_|z - h|
F o= ke v
v v
v
h = depth to source
p = shear modulus at the source
p = density at the source
+1 Z>h
E =
~1 Z < h
A](e,x,g) = sin 28 cos » sin § + %—cos 26 sin ) sin 2
Az(e,x,5) = COS 6 COS ) COS § - sin 6 sin ) cos 2g
A(8,0,8) = l-sin % sin 2s
v 2
A4(0,k,6) = c0S 20 €o0S ) Sin § - %—sin 20 sin L sin 2g

Ag(0,2s8)

il

-sin 8 C0S ) €OS § - €COS O sin ) coS 2§

(1.15)
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6 = strike from the end of the fault plane

L = rake angle

§ = dip angle

MO = seismic moment
K = M _Jhrou”

and we have assumed a step dislocation with unit magnitude.

Notice that if » = 0 and § = n/2 (i.e., vertical strike-slip
dislocation), then AZ’ A3 and A5 are all zero. Thus the first term of
the P and S potentials (1.14) corresponds to the response of a vertical
strike-slip dislocation. Similar reasoning shows that the second term
is the response of a vertical dip-slip dislocation. These two terms are
all that is necessary to represent the SH potential, but the P and SV
potentials require a third term. Since A] and A2 are zero when 6 = /4
and § = w/4, we conclude that this corresponds to the solution for a 45°-
dipping fault observed at an angle 45° from the fault strike. The order
of these terms will be kept throughout this thesis.

The task now is to find a way to evaluate the integrals in (1.14)
and to then take the inverse Fourier transform. This could be done by
numerically performing the double integral. Instead of this approach, -
we will transform these potentials such that the Cagniard-de Hoop technique
can be used. The transformation is the same one that is discussed in

Appendix A. It will allow us to transform this double integration over
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spatial and time variables, k and w, to a double integration over the
variables p and t. A later change of variables will allow us to reduce
the double integration to a single integration which, for high frequencies,

can be performed by inspection. As an example, consider the function
En(r,z,w) = - “/” FVJn(kr)dk . (1.16)
Now perform the transformation,
w=1s and k = -isp (1.17)

where s is now a Laplace-transformed time variable. (1.16) becomes

foo

- 2 p 4ng-M
Cn(YsZ,S) =5 Im J[ ﬂ;~Kn(Spr)e dp (1.18)
where
n = -st
c(S)=fc(t)e dt ,
0

1 2\%
= (-7

v

and Kn is a modified Bessel function. From what we have given here, it
is not obvious how (1.18) appears from this transformation. In

Appendix D, a similar transformation is demonstrated in greater detail.
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Unfortunately the functions, K. and KZ’ have simple poles at p = 0,

1
and there is a residue contribution to the integral. If ¢ is a vanishing

small real number, then (1.18) can be written,

. 5 p ~s7,z - hi .
Cn(v,z,s) = =g Tn?~/~ ﬁ;-Kn(spr)e v dp + Rn(r,z,s), (1.19)

~

where the remainder term,Rn(r,z,s),represents the residue contribution

of the integral. As it turns out, once the potentials are differentiated
and summed to form displacements,all of these residue contributions
vanish. Furthermore, the residue contributions make the potentials
noncausal. These difficulties have been discussed by Harkrider (1976).
Because the residue contributions separate explicitly in the P and S
domain, they can be eliminated. This is discussed by Harkrider and

Helmberger (1977). From this point on, we will implicitly assume that

If we perform the transformation (1.17) on the potentials (1.14) we

obtain
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P-wave:
M e
3 =4 .02 b -
B ¢, (p) N exp(-sn_[z-h])K;(spr)dp-A, (8,2, )
0 o
M Fie
0 2 D
Al ey Tmf Co(p) o expl-sn [z-h])K; (spr)dp-A, (0,1, 6)
) o ‘
+joo
M D
L R sz C3(p) = exp(-sn_|z-h[)K (spr)dp-As(e,n,5).
T W ~
0
SV-waves:
M Hie '
3 = —0——_2_ I L - - 1 .
Q=+ e mblﬂ SV](p) N exp( snBlz hl)Kz(spr)dp A](e,x,g)
0 B
Y Hi
0 27 P ; g :
* TO mf SVZ(p) M exp( SﬂBIZ h])K](Sp‘(‘)dp A2(95K36> (1.20)
A ;
M Hie
_o0 2 P i i} .
s Intlﬂ SV4(p) ﬂ exp snB!z hI)KO(spr)dp A3(6,x,5) .
o B8
SH-waves:
M e
40 2 i } i} i .
X = g Im SH](p) T exp( snB]z h!)KZ(spr)dp Ay (9,2,8)
0 B
M Hie
_0 2 P - . ) .
t Gy Imj~ SHZ(p) N exp( snB]z h[)K](Spr)dp Ag (o.ns8)

0 B
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where we changed the definition of the SV potential Q = -spj .
The vertical radiation patterns, as will become apparent shortly,

are defined by

C] = -p SV

f
1
m
5=
=3
w
w
o
wmaad
I
S

1

[ep]
1

M
- = . £ B
2 ZEpna sV, (nB p SH, 70 (1.21)

(]
H

2 2
3 (p” - Zna ) SV3 = 3€pnB

The corresponding displacements become

W= 5§>+ Spe

\A/_—_l& _L ,_5_?.@,_{5_21 (] 22)
r 86  spr 9z38  or :

A3 1 528 9%

1
3r  Sp ardz 1 30

The nature of the variable changes and SV potential transformation
is described in Helmberger (1974). There are several noteworthy aspects
of the form of the solution given above. Note that the Ai terms correspond
to an azimuthal radiation. These Ai's can be brought outside of any
integrals used to calculate the potentials. Although we are dealing
with a three-dimensional problem, the third dimen;ion, azimuth, can be
introduced in a simple manner after the solution of the integrals. This

effectively reduces a three-dimensional problem to a two-dimensional
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problem. This allows us to evaluate the integrals by complex variable

techniques. Notice that dA]/de = A4, dAZ/de = A5, and dA3/de = 0. Also

dA4/de = A] and dAS/de = A,. This means that we could write (1.22) as
W= wSSA1 + stAz + W450A3
V= VSSA4 + VDSA5 (1.23)
¥ 7 Bssh T Oosfe T fasehs

where the subscripts SS, DS and 45° corresponds to displacements due to
vertical strike-slip, vertical dip-slip and 45°-dipping faults respectively.
Thus we see that the separation of the azimuthal radiation pattern is com-
plete. This separation of the azimuthal deﬁendence also allows us toeasily
identify near-field terms which correspond to azimuthal changes in
amplitude along the wavefront of a given wave typne. Any terms in (1.22)
which involve a derivative with respect to & are near-field terms.
There are, however, other near-field terms included in (1.22) which
are hidden within the integral. Thus, unlike the solution in spherical
coordinates (1.1) and (1.2), it is not easy to distinguish all near-
field versus far-field phenomena.

As stated before, the purpose of the transformation to the p
and s domain is to allow us to apply the Cagniard-de Hoop technique.
Consider again the field function given in (1.18). A deformation of

the contour from p = 0 to p = i= to the contour, T, yields,



. -sn.lz-h|
z (r,z,s) = g-s Im N/” Py (spr)e v dp (1.24)
T

where T is the Cagniard contour, defined to be such that +(p) is real

where,

r(p) = pr +q,z-h] . (1.25)

The geometry and contour, I, are shown in Figure 1.3. Motivation
for the contour deformation is given in the Appendices. The integral

in (1.24) can be written in terms of the real and increasing parameter

r(p).

(o]

' -s7,(r)|z-h
.?A;n(Y‘,Z,S) = E—IS Im/( | TJ]’)V_((":F_)Y Kn(SD(T)Y‘)e STy IZ I(_jj} de . (1.26)
0

T

The inverse Laplace transform of (1.26) can be evaluated directly by

using the formula (Erdelyi, 1954)

ap
LPp {e Kn(ap)}
= (t2+~2atYJ§cosh[a cosh—] (1 +§)]

where Jarg a| < m. By also using the shift rule and by recognizing
multiplication by s to be equivalent to differentiation with respect

to t, we can rewrite (1.26) as
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r
> A
h (O) Im(p)
3 Source
>R
| 1
Receiver
Zy

Figure 1.3. Source-receiver geometry and complex (p) plane with
branch cut starting at (1/v) and running out along
the real (p) axis.
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~ 2 9 Cn(taT) dn.
o (rsz,t) = == Im[ > > (df)p—('r) dr , (1.27)
o (t—T) (t—'r“’ZDY‘) ﬂV
where
¢, (t.r(p)) = cosh <n cosh™! (%{—LR’:))
Solving (1.25) for p(+), we obtain
5\
p(T)z-rZ_T+'i(T2—B—2—> 12 - hl (1.28)
R v
and
%
2
v lz-hit . [ 2 RT r
n(q—)—l—»—!—w(w -——) % 1.29
R2 V2 R2 ( )
and
dp(t) i nV(‘T)
dr (2R 2 ’ (1.30)
where
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Note that the integrand is rea1‘unt11

P T T Ry
which is the ray parameter corresponding to Snell's Tlaw. Because the
whole-space problem has already been solved exactly, we can demonstrate
the solution to the integral in (1.27). By comparing with Harkrider's

(1976) solution in the (w,k) domain, it can be shown that

£, (r.z,t) ;T{[”;s + & (e - R/V)J H(r - R/v)},

r

_ slr - R/V) + 2 H{x - R/v)(r - R/V) . (1.31)

R 2
r

Note that the firﬁt and second terms of (1.31) correspond to far-field
and near-field terms, respectively.

In the general layered problem, integrals similar to (1.26),
but with more complicated integrands, must be so}ved. Later we will
discuss approximations which allow us to evaluate the integral by
inspection. In order to find the exact solution, though, these integrals
must be evaluated numerically. Notice that in the inteagral (1.27) there
are singularities associated with the terms, (t-—T)J/2 at t=7 and
dpo/dr at ¢ = R/v. These singularities create problems with any numerical
integration scheme and can be removed by a change of variables as proposed
by Helmberger (1968). In (1.27) the integrand is real until p = Po

(i.e., t = R/V), and thus by substituting (1.3) into (1.27), we obtain
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t

( 0 o 5 FQ‘/- Cn(t:T) p(r) dr ( )

g F,z, = — = Re 1 1 T . ].32
" mer t=R/V (t-7)(t-r+2pr)™ (TZ-RZ/ Vz)12

I we define a change at variables

o = sin” (E50) (1.33)

then (1.32) becomes

/2
cn(r,z,t) = %;—t Ref F(e) ds , (1.34)
0
where
plr(e)) C (t(e), r(8))

F(e) = : o (1.35)
(+(0) +R/v)™ (t(6) -r(e) +2p(r(0))r)* .

te

The integral in (1.34) can now be treated numerically. Although the
integral, (1.34), applies only to the whole-space problem, we will
later see that similar methods can be used to compute the exact solution
to the Tayered problem.

We will now demonstrate several approximate methods for determining
integrals of the type given by (1.27). We will ekpand the integrand

-1
in terms of (t-+) °. Some rather messy algebra shows that
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5 2n
c,(t,7,p) = —;-[(“(y 2‘” i n”} , (1.36)
(y+ (y"-1)7%)
where
- t-gtpr
y T

and

Cn(ts’l':p> "~ ']

T — (1.37)
(t-¢+2pr)? V2pr
to first order. Thus, we can approximate (1.27) by
t .
E (VsZQt) = g‘%lm/ ]_ ] ]/”g"%id'[‘
n T . Y2or (t-)F O Ty
=-8—[H(T)*1m( Z_lﬁg%):! (1.38)
ot r ’ ’
|/t Ty

when treating a high~frequency source with duration, T, such that
T« 2pr (i.e., t-1 << 2pr). The solution can be further approximated
for times close to the geometric ray arrival time. If t-R/v is small,

then
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and also p % P, = r/RV and (1.38) reduces to

_s(t-R/v)
Cn(Y‘:Z :t) - '—‘R‘“—_

This is called the first-motion approximation and is appropriate for
problems in which the ratio of travel time to source duration is of the
order of 100 or greater. It corresponds to geometric ray theory and is
useful for modeling teleseismic body-waves (Langston and Helmberger, 1975).
Another high-frequency approximation is called the asymptotic

approximation. We return to equation (1.26) which states,

- ‘hl
> 2 p{r) ST ()2 dp ., (1.39)
¢ (r.z,s) = =5 Imf W K, (splr)r)e ar I -
v 7(0)
Now for spr large,
K (spr) = (—L)I/Z TSP 4 4n° - 1 + 1 (1.40)
ntSPr) = ogpe! E 8spr T :

and recall that

T =pr+lz-hl,
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so (1.39) can be approximately written

[ee)

) = (2 zf e DD G o o,
5 14l
I )2(4n -1) I"t/- H(r -7 (0)) oST gE—dT
(wrs ar A ﬂV(T) oleT dr
+ ... . (1.41)

Now recall the definition of Laplace transform,

g (V",Z,S) :f z (Y‘,Z,t) e_St dt

n

5 (42
*Im<g/%(4"'”n1 d_%>+ : (1.42)

Notice that the first term of (1.42) corresponds to the approximate
solution (1.38). This asymptotic scheme is appealing because no

numerical integration is performed and because additional terms can
be computed easily. Realize however, that in moré_genera] problems,

the inversion of ¢(p) tc find p(+) must be done numerically. Also the
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asymptotic approximation is not uniformly convergent in spr. That is,
for small spr, the series does not converge to the modified Bessel
function. Thus for small spr, the asymptotic series cannot be expected
to be correct, regardless of the number of terms included in the expansion.
This means that the estimation of the integral is poor when computing
waves whose period is larger than the travel time,or when computing at
small ranges. In practice, the asymptotic approximation seems to work
surprisingly well, even as spr becomes moderately small (see Helmberger
and Harkrider, 1978). Although the individual asymptotic solutions
for P and S‘potentia1s may not approach the exact solutions, it appears
that when these asymptotic- solutions are differenced to form displacements,
the asymptotic and exact solutions for displacement compare well. In
general, though, if static offsets are an important part of a synthetic

record, then it seems best to use the exact solution.

High-Frequency Solution for a Point Source in a Layered Space

The whole-space sclution can be generalized to a Tayered space
by applying the method of generalized reflection and transmission
coefficients (Spencer, 1960). This method is demonstrated in Appendix
C. The solution is represented as the infinite sum of all possible
generalized rays between source and receiver. Each generalized ray is
characterized by the interfaces with which it interacts and the response
of each ray is evaluated using the Cagniard-de Hoop technique. Consider

the layered stack in Figure 1.4. The source and receiver are on the
h

1

bottom of the mt and @t” interfaces. The solution can be written,
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the as :32 P2

thy .y By Ly
. %\—Receiver

fhm Cim ,Bm ,Om

. *~—Source

Figure 1.4. Layered medium with source at the bottom of the mth layer
and receiver at the bottom of the &th layer. Unless
source and receiver coefficients are specifically included,
the source and receiver must Tie on boundaries across

which elastic parameters do not vary.
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M w joo
. 2 .G C
b= 53 Adenns) D In PE (p) exp(-sg, (p))
o 1 ki k
moi= k=1 0 !
. K3_1 (spr) dp (1.43)
3 w oo
M Sy SV
5. 0 2 . = (p) exp(-sg, (p))
Q= 4Tl'p . Z A.i(ea)\.ab) Z Imf P"'k.; k .
mo =] k=1 0 ,
"Ky_y (spr) dp (1.43)
7 I~ oo
“=M°g ) (exs)zlm PTSH()eY(-sSH())
X 4ﬂpnlﬂ — iH3YT A ~k P/ €Xp Iy \P
i=1 k=1 o !

where k denotes the summation over all possible generalized rays (there

are countably many). Suppose the path of the kth generalized ray is

C
characterized by Pé“’SV’SH) where P is of the form

= (mgy)s (1,50, s (4,0

meaning that the ray has traversed the layers whose numbers are given
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in the mode given. PC and PSV may have either compressional or shear modes

along any leg, but the last leg must be a compressional wave for PC

and a shear wave for PSV. PSH has all of its Tegs consisting of shear

waves. Now if the kth ray has n legs and the qth

P(C,SV,SH)
kq

leg is described by
then

9 (p) = 20 Thy My tpro . (1.44)

This g contains travel time information about the kth ray. = contains
information about the nature of reflections and transmissions through

these Tlayers. It also contains the source vertical radiation pattern.

= - n] Ci(p) }uc (o)
ki PC p)
ky

Rl I ALLN ITRRNCY (1.45)
ki ﬂpsv sV.(p)[ Tk
: i
K1
S
ML) ),
ki ﬂem k
where]iéP’SV’SH) is the product of all reflection and transmission

coefficients involved with the propagation of the kth ray. These

reflection coefficients are those defined by Helmberger (1968) and are
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only compatible with the @ definition of the SV potential. This is why
the transformation Q& = -spy was made earlier in the whole-space solution.
The transmission and reflection coefficients for a compressional or SV
wave travelling in the 1th medium and reflecting off of or travelling into

the jth medium are given by

RP]PJ = (“Q]+Q2+Q3'Q4"Q5+Q6)/D
_ 2 2y 2
o5, = Wil =P =p%) -5 5 (g -T)1/0
T = 2k o[ (ks - p%) - L (ks - p2)1/0
P3P ilyitNg %y NgitK;
_ 2
Tpisj = 2kypn,ilng i, - (ke - pT)1/0 (1.46)
— 2 2y 2
Rsipj = [r2eng (kg =pT)(kr-p®) - gmos (kg -p7)1/0
T = -zk [ . (k, -p) - (k; - p°) /D
5;5; M7 it M35
Tgp. = 2kgpn;Llk-p) =y ng 1/
S.P Wi vl '8 ’



where
OBZ
k1=2]2 <pglip
B i il
N B B i
kJ ) 25.2 \p.B.Z - PR
J J7J 1
kr = k1T + kj ,
and where
_ 2 2.2
Qq = p(k.-p7)
Q, = p2
2 7 Toi Ths Mai Moy
_ 2.2
O3 = Tei Mg (kj" P")
_ 2.2
0.4 - naj ‘HBJ (k]-'D )
0 = M, TIBJ' K-jkj
O = M,5 Tgi Kiky

42
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and

D= Qy+0,*+03+0Q,-05-04

The corresponding reflection and transmission coefficients for SH waves

are considerably simpler and are given by

_ Pl "My
Mig i "o 30y

(1.47)

Ton. . = — 1%

13 uiﬂBi'FujﬂBj

where i 1s the shear modulus of the 1th

lTayer. If the receiver lies on
a boundary (e.g., the free surface), then the integrand must also contain
a receiver coefficient Which will be described shortly.

The general solution just given involves such messy and vague
notation, that it is difficult to visualize how it is actually used to
compute synthetic seismograms. We will now present some simple examples
of how high-frequency approximations to the general solution can be used.
In Chapters 2 and 3 we model SH waves recorded at moderate ranges in a
sedimentary basin. If we retain only the far-field term and use the first-
order asymptotic approximation (see equation (1.42)), then the approxi-
mate high-frequency solution as observed at the surface is given by

V(r,0,6,t) o d ra)x § A, (0,058) Vo(0)] (1.48)
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where
n /5
- 2 1H(E) & /P dp
Vj(t) - Im T SHj(p)wi(p) P& (1.49)
I L i
D(t) = far-field time function
V] = tangential displacement for vertical strike-slip fault
V2 = tangential displacement for vertical dip-slip fault

ﬂi(p) = product of reflection and transmission coefficients and the
summation is over contributing rays. Only a finite number of rays is
necessary to closely approximate the solution. The number of rays
necessary is a function of source to receiver geometry and is found by
trial and error. A factor of 2 has been introduced in the solution
(1.49) by the SH free surface receiver coefficient. The far-field step
function response for a pure strike-slip event, V1(t), is given in

Figure 1.5, where the model is included as an inset for various values
of source depth. The corresponding half-space response is the simple
step displayed on each trace. When the source is embedded within the
upper layer, one obtains the well-known Love wave dispersion with the
first few seconds of motion produced by the classical head wave contri-
bution. Each ray in the solution must be evaluated along its own contour
which is determined by inverting polynomial equations of the form (1.44).

For instance, for sources beneath the layer, the contour appropriate

for the direct generalized ray is found by inverting
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t = pr+ﬂ2(d—h) +n](h) (1.50)

for p as a function of t,where t is positive real and increasing. The
contours used to compute the direct rays for Figure 1.5 are shown in
Figure 1.6. Now Im (dp/dt) is an extremely important variable in the
solution (1.49). The parameter time 1is also plotted along these
contours and it is easy to see that abrupt increases in Im (dp/dt) occur
where the contour abruptly increases its slope. From equation (1.30)

we see that when the contour leaves the real p axis, there is actually

a singularity in Im (dp/dt). This corresponds to the geometric ray arrival.
For large source depths, the contour is near vertical and the synthetic
waveform closely resembles the geometric ray response. As the depth
decreases the initial values of Im (dp/dt) become smaller and a later
change in Im (dp/dt) develops near p = 1/31. This Tater arrival is a
diffracted phase and does not have a well-defined arrival time. The
interpretation of this diffracted phase is as follows. As the source
moves close to the boundary, the curvature of the incident wave-front

upon the boundary greatly increases. For a long-period wave, this tightly
curved wave—fronf appears as if it were a source located on the boundary.
Waves from this imaginary long-period source then travel in the upper
layer with velocity P and with a ray parameter appropriate for a source
located on the boundary. Were it not for this diffraction, there could

be no Love waves generated by a source exterior to the waveguide. The
physical interpretation of this phenomenon is discussed further in

Chapters 2 and 3.
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20—

LOF—

dm (p), xI07¢

05

Figure 1.6.

Contours of Im(p) versus Re(p) for the direct rays shown
in Figure 1.5. The branch cuts run along the Re(p)
coordinate, starting at 1/82 and 1/81, respectively. The
parameter time is marked along each contour.
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When the source is located within the layer, there is a strong
arrival corresponding to the first reflection which occurs when the con-
tour leaves the real p axis near 1/@1. This, however, is not the first
arrival for this generalized ray. When the contour reaches the branch

point at 1/52, the reflection coefficient, given by

(p) = LN " vzt
12 BTy F el

R
becomes comp]ex. This corresponds to the head wave arrival. A more
detailed discussion of head waves and critical reflections is given in
Appendix B.

The high-frequency solutions for the vertical and radial com-
ponents of motion are considerably more complex than the corresponding
transverse component solution. The solution is constructed in the same
manner as (1.49), but now P to S and S to P conversions must be considered.
The notation for the multilayered problem is unwieldy and we will only
explicitly show the half-space solution. This will allow us to discuss
the receiver coefficient and demonstrate the existence of Rayleigh waves.
First consider a pure strike-slip source, at denth z, which emits
only P waves. The solution will consist of the sum of the three
generalized rays shown in Figure 1.7. The solution for the P potential
can be written as the sum of the direct and reflected P waves and is

given by

- Mo 2 2 p .
o(r,z,0,8) = - — —Im f - p" N ﬁ-K2(spr) sin 26 dp , (1.51)
- o
0 o
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Receiver

| - direct P
2 - reflected P
3 -reflected SV

Figure 1.7. Three contributing generalized rays for a compressional
source located in a half-space.
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where

N = exp(- -hl) +R - +
= exp(-sn_[z-h]) + R exp(-sn (z+h))
where h is the source depth.

The expression for the reflected SV potential 1is

joo
o= - _Jl.w—lnw‘/ﬂ pl NB ﬁl-Kz(spr) sin 26 dp (1.52)
TB
0

where

NB = RPS exp[—s(n@h-PnBz)]

The reflection coefficients at the free surface can be found by using
expression (1.46) and by letting one of the solids become a vacuum.

The free surface reflection coefficients are,

4 2 , 2 2.2
Rop = 8P Tl ~ {1-2870 )
D(p)
2 2 2.2
" 43", p(1-237p%)
PS D(p)

~ 482ﬂ5 p(]’ZBZPZ)
Rep =~ 5 (p) (1.53)
Ree = R .

SS PP
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where

(1.54)

As z goes to zero (i.e., placing the receiver on the free surface), the
travel paths for these three rays coincide. The displacement due to an
incoming P wave can be found by substituting (1.51) and (1.52) into
(1.22) and taking the 1imit as z goes to zero. The solution for the

vertical displacement becomes

M ter
Y - _.02
w¢(r,o,e,s) " e Im[
0
2y p_ vl o .
(p7) 7 Kz(spr) exp( sn@h) RPZ dp sin 26, (1.55)
where
2 2
_ Zna(ng -D ) \
Rpy = 5 (1.56)
3"R(p)
and
2 2.2 2
= - + . 1.57
R(p) (nB pT)" + dp 0, (1.57)

R(p) is called the Rayleigh denominator. Ry, is called the receiver
function and describes the interaction of P and SV waves at the free

surface.
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The radial displacement produced by the ¢ potential becomes

foo

M
0 - _.02 2y .
Q¢(r,o,e,s) = - g S Inxjf‘ (p=) ﬂy exp(—snah) RPR dp sin 26 ,
° (1.58)
wnere
4n m_P
RPR = - 26{ 8 (].59)
8 R(p)
and
M = jl—[K (spr) + 2_y (spr)] (1.60)
Voo Ty (R spr 2 ’ '

The extra complication in Mv is introduced by taking the radial derivative

3 2
57 Kylspr) = -sp[K;{spr) + gﬁ;-Kz(spr)] : (1.61)

In general, there is also a near-field transverse motidn generated by
the P and SV waves, but we will save discussion of this until we
demonstrate the exact solution in the next section.

The solution for an SV wave from a vertical strike-slip source
as observed at the surface can be generated in a similar manner and is

given by

M 1e

Y .02 P 20
wﬂ(r,o,e,s) = T s Ln~}r (png)RSZ T, exp(—sngh) Kz(spr) dp sin 20
0 ¥

(1.62)
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where

(1.63)

and

.M "
0, = Fg 5 S Inrﬂ/~ (pﬂB) Rep MB sin 26 exp(—SﬂBn) dp , (1.64)
0]

where

R
a2R(p)

SR (1.65)

If we keep only far-field terms and apply the first-order
asymptotic expansion to the solutions just given, then we can write the

high frequency half-space solution as

d .
W(r,0,0,t) = —2 — [D(t) * A.(0,%,8) W.
(r,0,0,t) 5 [D(t) J( Ao 8) WJ]

4o
=1
(1.66)
M 3
. -0 d |
Qfrs0,0,t) = 2 < IO(E) * D Aens) ;1
=1

where the index j = 1, 2, 3 corresponds to strike-slip, dip-slip, and

45° solutions, respectively. The far-field step function responses are
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and (1.67)

[=

Q;(t) = ﬁfgj j%i* {Tm(;%i C;(p) Rpplp) g%) + Im (%E:svj(p) Rep(p) ~%>}.

In the half-space problem, inversion of +(p) to find p(r) is trivial and

the contours along which the P and SV parts of (1.67) are to be evaluated

are
r R2 2 g h
p(t) = St - (- &
R o R
and (1.68)
2 Y
p(t) = St - Bo B
R 8 R

2 L
h R 2\ v
'n :___‘t-{-(,____t)_
S 2 22
and (1.69)
2 i
h R L2 tor
n,Toptrlm-t)
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Let us now examine the SV solution in more detail. The contours
for SV waves at several ranges are shown in Figure 1.8 and corresponding
vertical strike-slip fault synthetics which include both the P and SV
waves are shown in Figure 1.9. First notice that there is a branch cut
at 1/o and that the contour becomes imaginary at p = rg/R. Thus m, can
become imaginary before p(t) does. Because n@ is involved in all of
the receiver functions, the SV response can begin before the arrival
of the direct S wave. It is this complex reflection coefficient which
gives rise to the S to P head wave. Since this wave is a diffracted
P wave which travels at a shallow angle with respect to the surface, it
appears much Targer on the radial component of motion.

The receiver function causes another important arrival in the
synthetics. Notice that the Rayleigh denominator R(p) can have a zero
when

2 2

- 484‘32%»% , (1.70)
It can be shown that (1.70) is satisfied when p equals the reciprocal

of the Rayleigh wave velocity. Thus all of the receiver functions have
simple poles at p = 1/(Rayleigh velocity). This pole is not included
within the contour and hence there is no residue contribution to the
integral. Nevertheless, when the ratio of range to depth becomes large,
the contour passes close to this pole. When this happens, the receiver
function becomes large and changes quickly as a function of p (also

time) and the result is a Rayleigh wave.
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Figure 1.8. Contours for SV waves of half-space synthetics which are
shown in Figure 1.9 The parameter time 1s marked

along each contour.
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Source depth = 8 km
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Figure 1.9 . Vertical component step function response for a vertical
strike-s1ip point dislocation in a half-space (exact
solution). The phases corresponding to the P wave, the
S to P head wave, the S wave, and the Rayleigh wave are
all identified.
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Exact Half-Space Solution

When the ratio of source duration to travel time becomes large,
asymptotic approximations become very poor. Equation (1.32) demonstrated
the type of solution which can be used for the exact whole-space solution.
Using our discussion in the preceding section, we will now generalize
the exact whole-space answer to the exact half-space solution. By
following the technique for solving layered problems which we have just
described, it is possible to generalize thé exact solution to any layered
problem. Since the general solution is so clumsy to work with, we will
restrict ourselves to the half-space problem. The solution is very
similar to our high-frequency solution for this problem. However, now
the near-field terms must be included and the inverse transform integral
must be solved numerically. Let us first consider the vertical displace-

ment which is given by

3
M .
W(r,z,0,t) = 70 4 [0(8) * D AN (1.71)
0 . )
j=1

where N], W2 and w3 correspond to pure strike-slip, dip-slip, and 45°-
dip-s1ip dislocations, respectively. By using the same logic we used to

derive the high—frequency solution (1.67), we can also deduce that

t

Im[ ay(3-13) Cj RPZ dr
0

E RN

W.{r,z,t) =
J( )

t
2 .
+ < Imf 98(3—3) SV Rgy dr (1.72)
0



59

where
g (n) = € (tor,p) 2 (2 (t - r+ 2pr) 75 (t - 1) 72 (1.73)

and where Cn was given in equation (1.36). Remember that this integral
occurs along the Cagniard contour, thus specifying p as a function of t.
Cj and SVj are vertical radiation patterns given by equation (1.21).
We just defined RPZ and RSZ in the last section, and for a receiver on
the free surface, they are given by equations (1.56) and (1.63),
respective1y. For a receiver in a whole space, RPZ = na and RSZ = p.
Notice that equation (1.72) contains no explicit near-field terms. A1l
near-field phenomena which are on the vertical component are calculated
within the integral and are thus more difficult to recognize.

The expression for the tangential displacement is more complicated
since many of the near-field terms are explicitly separated.

M

d .
Vrz,0,) = 32 g [0 * 2 A ¥yl (1.72)
51

where
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N
L

_2 .
Vi(r,z,t) = — Im jr gB(Z-J) SHj RT dr
0
]-fa 5
+ ~[]‘ (3-3) SHJ RT( =) dr dt
1-*5 2
R ﬂ (3-5) ¢ 8 (B dr at
1+5
PRI F 1 ﬂ (3-5) s, Ry D dr dt ,  (1.75)
where
0 g7
§.: =
Y 1=

and when the receiver is on the free surface, then

RT = 2p
4n m

Rop = (1.76)
8 R(p)
-2n, (nBZ - p%)

R -

ST b BzR(p)

When the receiver is in a whole-space, then

Rp =P Rop = 1 Rep = -0, /p
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The last three terms of (1.75) are near-field terms and involve
an extra time integral. Notice that the last two terms contain R(p),
the Rayleigh denominator, aﬁd thus we see that it is possible for the
tangential component to have near-field Rayleigh waves.

Finally, the radial component is given by

M S
R T A E A0l (1.77)

where

(1+5..)
1) . 2_\
+ M‘*T;'——"“- [j ga(B“J) CJ RP&(D / dT dt
]+5 2
(T+5..) '
ij s 2 !
- f gB(?) i) SHJ.(P) dr dt (1.78)
0

for j =1, 2 and for j = 3,
t t
2 L2 ; o
Qg(rszgt) - T-T_f g&’(]) C3 RPR d'i' F - f qB(‘) SV’) RSR d > \1-79)

0 0
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where RSR is given by equation (1.65) and RPR is given by equation (1.59)
if the receijver is Tocated/on the free surface. For a receiver in a
whole-space, RPR = -p and’RSR = nB.

You might recall that earlier we had problems with integrals of
the form which we have just written. An example of how to treat similar
integrals was given in equations (1.32) through (1.35). There was a
singularity beginning at the time which corresponds to the direct arrival
of P and S waves. For the layered problem, we face even greater difficulties.
Because of the possibility of head waves and critical reflections, the
response of a generalized ray may begin before the direct arrival time.
The integral must be broken into that part which occurs before the direct
arrival and that part which occurs after.

By analogy to equation (1.32), we will now have to integrate

equations of the form

t
_2 2
Qn(razat) - T 5t Im[

0

R(p) C_ (t,r)
n i (QP") "B“ dT 5
L Mdt Ny

1//
(t-4)7(t-q+2pr)”

(1.80)

where now R(p) is some complex reflection, transmission or receiver
coefficient which is a function of p(t). Just as in the head wave

problem, R(p) can become imaginary before dp/dt does. Refer back to

Figure 1.9. If Py < 1/x, then R(p) is a real function and the integral

may be solved in the manner demonstrated by equations (1.32) through (1.35).
If Po > 1/ and if R(p) becomes complex, then a head wave will result.

In this case the integral in (1.80) can be broken into two parts
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where

o~
=
—~
-3
-
N
“
.
g
|
= o
Q2
(_}‘}0;
g
=
-

(1.81)

(1.83)

cn3 is solved in the same manner as the exact whole-space solution; see

2
equations (1.32) through (1.35). Cn] and Cn—

integrated by employing the following change of variables:

1
)/2

o = sin | (¢/t

Equations (1.81) and (1.82) become

can be numerically

(1.84)

(1.85)
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where
Flo) = Tn [R(p) 29 —Fx (1.86)
Ty (t-r+2pr)”
and where
t
a1 hyls
6. = sin (7?)2 (1.87)
th = t(pzl/oz)
and
/2
) ,
¢, (r.z,t) = %j F(e) do (1.88)
g
C
0
where
o = sin! n )? (1.89)
c, = 57 5(5;7 . ; .

In order to obtain the exact solution for a point dislocation in
a half-space, 26 numerical integrations must be performed for each time
point in the solution. Recall also, that as the epicentral range, r,
becomes small, very large numbers must be differenced to find the static
solution. This means that as r becomes small, these 26 integrations per
time point must be computed with special care. Numerous examples of
this half-space solution are given in Chapter 4 Qhen we construct models

of the San Fernando earthquake.
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Three-Dimensional Finite Fault

We have now demonstrated techniques which allow us to calculate
the response of a layered half-space to a point shear dislocation. How-
ever, it is clear that the earthquakes we wish to model occurred on planes
of finite area. Consider the rectangular plane which includes the plane
which breaks during any one particular earthquake. Let the coordinates
x and y be along the fault strike and down the fault dip, respectively.
Consider a receiver which records three components of ground motion, H=
in the frame north, east, and up. MNow by using the results of the previous
sections, we can compute the displacement due to any point on the fault.
In order to find the solution for a finite fault, we need merely integrate
these responses over the fault surface. Consider the motion due to one

point (x,y) on the fault. The motion, U, is given by

U](x,y,t) = O(r,z,0,t) cos v - V(r,z,8,t) sin v
Uz(x,y,t) = Q(r,z,0,t) sin v + V(r,z,8,t) cos v
Us(x,y,t) = Wlr,z,0,t) (1.90)

where v(x,y) is the backazimuth of the point source as measured clockwise
from north. r, z, and 6 are functions of x and y and are shown back 1in
Figure 1.2. The task now is to simply integrate (1.90) over x and y.

£ course, this task is not so simple. In general, we have no analytic

expressions for Q, V and W. 1In fact, as we have just seen, these solutions



66
can be very complex. We will begin by writing a general expression for
this integration, and then we will see in what instances we can make

simplifying assumptions.

Yy

*
U, :j[ ‘I~ Ui(x,y,t) dy dx . (1.91)

X1

We can solve (1.91) as accurately as we please if we are willing
to endure the massive numerical calculations involved. We merely sub-
divide the fault into a fine gridwork. We sum the responses of each
point on the fault. The response of each point can be computed using the
full Cagniard solution. Of course, the source to receiver geometry is
different for each point on the fault. In general, each point source
will have a different time history. In fact, the general answer has so
many variables, it would be pointless to try and write expressions which
show all the variables. In Chapter 4, we will show some examples of how
to construct such solutions.

Because our integration contains a numerical function Ui’ there
is no hope to find an exact analytic expression of the integral (1.91).
Every approximation which we will make depends upon the ability to bring
the numerically computed part of Ui outside of the integral. Of course,
the way to do this is torequire that these numerical parts be slowly
varying functions of x and y relative to the limits of integration. If
there are Targe changes of the numerical responses within the limits,
then simply subdivide the fault into smaller areas until the numerical

responses change little within the dimensions of the subfault. In the
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next three chapters we will demonstrate how these approximations are
made and we will investigate records taken at small, medium and large
|

ratios of source dimension to receiver distance.
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Chapter 2

Modeling the M 4.9 November 4, 1976 Brawley Earthquake:

Predictability of Strong Ground Motion in the Imperial Valley

Introduction

Both Chapters 2 and 3 are taken, with slight modification, from
two papers by Heaton and Helmberger (1977, 1978). In truth, Chapter 3
was written before Chapter 2 and thus there is some loss in logical
continuity. However, I believe that it is appropriate to discuss the
Brawley study first since it represents the case of a simple source
located in a structure which can be understood. UWe will save studying
more complex sources for later.

The Imperial Valley of Southern California is unusual in that it
has the rare combination of flat-lying sediments and earthquakes.
Furthermore, the upper crustal velocity structure has been studied
extensively by Biehler (1964). The Imperial Valley is thus particu1ar1y
well-suited for waveform modeling studies of strong ground motion from
local earthquakes. In this Chapter, we will examine the tangentially
polarized ground motion from a ML 4.9 earthquake which occurred on
November 4, 1976. Our approach will be to use a velocity structure model
which is based on Biehler's work, along with the calculated hypocentral
location and fault plane solution, to predict the tangentially polarized
ground motion observed for this earthquake. Previous modeling of Tlocal
SH waveforms (Helmberger and Malone, 1975; Heaton and Helmberger, 1977,

i.e., Chapter 3) has been somewhat unsatisfying because velocity structure
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as well as source model parameters have been constrained primarily by the
condition that synthetic and observed waveforms match each other.
Obviously, any successful model must satisfy this censtraint, but due
to questions of uniqueness and the applicability of plane-layered structure
models to complexly faulted regions, one cannot help but feel that the
choice of model parameters seemed somewhat ad hoc. In view of this
objection, we pose the following question: Is it possible to predict the
motion from an earthquake using a model whose velocity structure parameters
are determined independently of the waveform modeling? We will show that
the answer in this particular case is yes! Thus we will demonstrate a
model which is consistent with both the observed waveforms and the
independent constraints on velocity structure and epicentral location.

We will also investigate the effect of changes in the model
parameters on the synthetic waveforms. Since we used generalized ray
theory to generate the synthetics, it is possible to associate arrivals
on the record with specific travel paths. Although we prefer to view
our models in the time domain, we will also present Fourier amplitude
spectra of our synthetics. We will show that synthetic amplitude
spectra for a layered half-spaceare significantly different than spectra
calculated for a homogeneous half-space. The effects of structure must
be included when making estimates of source parameters or seismic wave

attenuation.

The November 4 Brawley Earthquake

During the period from November 3 through November 8, 1976, a

swarm of more than 400 earthquakes was recorded by the U.S. Geological
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Survey Imperial Valley short period seismic array. This swarm occurred
approximately 15 km northwest of a well-studied swarm which occurred
along the Brawley fault in February of 1975 (Johnson and Hadley, 1976).
Unlike the February 1975 swarm, which produced significant surface
deformation (Sharp, 1976), no surface deformation has yet been associated
with the November 1976 swarm. The largest event in the November 1976
swarm occurred at 10:41 GMT on November 4 and was assigned a magnitude
of 4.9. By using P wave arrival times from the Imperial Valley seismic
array, the epicentral Tocation (shown in Figure 2.1) was determined by
the U.S. GedTogica] Survey to be 33°05' North latitude and 115°36' West
Tongitude (Madeline Schnapp and Gary Fuis, personal communication). The
USGS hypocentral depth was 4-1/2 km with Tow P residuals. However, we
prefer a depth of 7 km based on our modeling of strong-motion waveforms.
Since the hypocenter is only Toosely constrained by P for these solutions,
this difference does not appear significant. Assuming a hypocentral
depth of 7 km, we computed a focal mechanism using P wave first motion
data from 68 stations in the joint Caltech-USGS Southern California
seismic array. The focal mechanism, which is shown in Figure 2.2, indicates
predominantly right-lateral faulting along a steeply dipping fault which
trends N-NW. Because the motion is mostly strike-stip along a vertical
plane, this solution is relatively insensitive to changes in the assumed
hypocentral depth.

Two long-period strong-motion seismic stations were triggered
during the swarm sequence. A three-component 4X torsion seismometer with

a free period of 10 seconds was Tocated at Imperial Valley College (IVC)
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Figure 2.1. Index map of Salton Trough showing locations of seismic
refraction profiles and cross-section Tines A-B (Fig. 2.5a) and
C-D (Fig. 2.5b). Also shown are the long-period strong-motion
stations, IVC and ELC, and the epicenter of the M 4.9, November 4,
1976 earthquake. Stippling indicates generalized outline of pre-
Tertiary crystalline rocks bordering the Salton Trough. This
figure has been modified from Biehler, Kovach and Allen (1964).
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Figure 2.2.

Focal mechanism for the M 4.9, November 4 earthquake
determined from P wave first motions observed at 68
stations in the joint Caltech-USGS Southern California
seismic array. The azimuths of the stations, IVC and

FLC, are also shown.
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at a distance of 33 km from the epicenter (see Figure 2.1). This instru-
ment records on photographic paper on a revolving drum for a full 24 hours
after being triggered. The instrument triggered 6 hours before the
M 4.9 quake being studied in this paper and thus the entire wave-train
of the earthquake was well recorded. Shown in Figure 2.3 are the records
from IVC. The instrument response has been deconvolved and the resulting
ground motion has been heavily filtered at periods longer than 20 seconds
with an Ormsby filter (Hudson et al., 1971). Unfortunately, the vertical
torsion recording shows a long-period drift near the onset of motion
which seems to have a positive net area. This indicates some nonlinearity
in the instrument response which made deconvolution impossible. Despite
this, it seems clear from the original records that horizontal ground
motion was much larger than vertical ground motion. Also shown in Figure
2.3 are the displacements rotated into radial and tangential directions.
An inspection of these rotated motions clearly shows that the ground
motion at IVC was dominated by transversely polarized shear waves, as
wod]d be expected, since IVC lies near a P-SV node (Figure 2.2).

A second recording of ground motion was made by the horizontal
Carder displacement meters located in E1 Centro at a distance of 36 km.
No Tong-period vertical instrument is present at this.station. The
horizontal instruments have a static magnification of 1.0 with free
periods near 6 seconds. These instruments appear to have triggered near
the start of the S wave and thus the beginning of the record is lost.
The records from ELC are shown in Figure 2.4. Also shown is the ground

motion obtained by deconvolution of the instrument response and Ormsby
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Figure 2.3. Summary of ground motion observed at IVC. (a) NW
component of ground motion with and without the instru-
ment response. (b) NE component of ground motion with
and without instrument response. (c) Vertical component
of ground motion with the instrument response. The
instrument response could not be deconvolved because
of the long period arrival which appears to have a
net positive area. (d) Ground motion rotated into
radial and tangential components.
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Figure 2.4. Summary of ground motion observed at ELC. Since this

instrument was probably triggered by the direct S wave,

the beginning of the record is lost.

(a) North component

of ground motion with and without instrument response.

(b) West component of ground motion with and without

instrument response. (c¢) Ground motion rotated into

radial and tangential components.

No long-period vertical

strong-motion instrument is present at this station.
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filtering of periods beyond 15 seconds. Since the beginning of the
record was lost, the deconvolution of the first pulse on the record is
questionable. Rotation of the displacements indicates that there were
much larger radial displacements at ELC than there were at IVC. The
fact that the radial and tangential waveforms are quite dissimilar
suggests that this change in amplitude ratios is not due to a poor
votation of predominately transverse motions. The difference in the
magnitude of radial displacements between ELC and IVC is consistent with
the fact that the azimuth of ELC is further from the P and SV node shown
in Figure 2.2. MNotice that there is a remarkable degree of coherence
between the tangential waveforms recorded at IVC and ELC. This is as
it should be since the differences in range and azimuth between ELC and

IVC are only 3 km and 13°, respectively.

Crustal Structure in the Salton Trouagh

The Salton Trough is a structural depression which is the north-
ward continuation of the Gulf of California. This depression is underlain
and bounded by Mesozoic and older crystalline rocks. As much as 6 km
of upper Tertiary and Quaternary marine and nonmarine sediments fill this
depression. Also present in the Salton Trough are several major active
right-lateral fault zones, recent volcanism, and potential geothermal
reserves. The November 1976 Brawley swarm as well as the stations, IVC
and ELC, Tie near the axis of this depression. The work of Biehler,
Kovach and Allen (1964) on P wave refraction profiles indicates that

there is very little variation in upper crustal velocity structure along
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the axis of the Salton Trough. This is illustrated by the cross section
A-B which is shown in Figure 2.5a. Although the total thickness of
sediments varies considerably as one travels perpenﬁicu]ar to the axis

of the trough, the depths of individual Tlayers withfn the sediments are
amazingly consistent as one crosses the Salton Trough. This can be seen

in the cross section C-D shown in Figure 2.5b. Thus the overall impression
of sedimentary structures down the axis of the trough is one of relatively
plane layers.

Unfortunately, there are several reasons why the velocity models
calculated by Biehler et al. (1964) cannot be used directly in our modeling.
Most importantly, we need to know shear wave velocities and the refraction
studies were for only compressional waves. Also, a model which consists
of five layers over a half-space requires the computation of too many
generalized rays to be practical. Shawn Biehler (personal communication)
has indicated that the interfaces above and below the layer with a
compressional wave velocity of 2.6 km/sec were the sharpest and most
consistently observed interfaces found in the region. He also believes
that the sediment to basement velocity contrast is very sharp. We thus
condensed the five-layered model into one with three layers by combining
layers one and two and also layers four and five. This is shown in
Table I1.7. In order to convert these compressional wave velocities to
shear wave velocities, we chose a Poisson ratio of 0.25 for everything
except the uppermost layer. A Poisson ratio of 0.35 was assumed for the
uppermost kilometer of very soft sediments as suggested by Ronald Scott
(personal communication). The S wave model given in Table II.1 is the

one which was used throughout this study.
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(a) Seismic cross-section along line A-B of Figure 2.1.

Numbers indicate velocities in km/sec.
section along line C-D of Figure 2.1.

(b) Seismic cross-
Note that the ratio

of horizontal to vertical scales is different on part (a)
than on part (b).

relatively flat along the paths from the epicenter to the

stations, IVC and ELC.

by Biehler, et al. (1964).

Also notice that the structure is

These figures have been modified
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Description of the Modeling Technique

Qur basic modeling tool will be the Green's function, V.(t),
which represents the transverse response of a layered elastic half-space

to a point shear dislocation. The response is calculated by using the
generalized ray method. The solution is represented by the sum of the
responses of individual generalized rays, each of which traverses a
different path which is characterized by the interfaces it contacts. The
response of each generalized ray was computed by using the Cagniard-de Hoop
technique. In Chapter 1, we reviewed our techniaue for computing these
point source responses. The complete solution containing both near-field
and far-field terms for dislocation sources embedded in a layered half-
space has been discussed by Helmberger (1974) and Vered and Ben-Menahem
(1974). For the periods and station ranges of interest in this study,

it is sufficient to model only the far-field term so that the asymptotic
solution can be used (see Helmberger and Malone, 1975). These approxi-
mations become progressively better for shorter periods. We have found

it convenient to view our responses in terms of the displacement, Vj(t),
due to a dislocation time history which consists of a ramp function
(far-field step function response). The surface tangential component

of motion produced by an arbitrarily oriented point dislccation as

described by Langston and Helmberger (1975) is given by

2
V(r.6,0,t) = 72 F(t) * 5 2 A3 () (2.1)
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where MO is fault moment, °0 is density at the source, F(t) is the far-
field time history, (dS(t)/dt), and S(t) is the dislocation time history.

Also,

A4(6,x,5) = €OS 26 coS ) sin §-1/2 sin 26 sin ) sin 2 (2.2)
and

AS(e,x,g) = -sin 6 cos ) coS § - COS O sin ) cos 25 (2.3)

where 6 is the angle between receiver azimuth and fault strike, 3 is the
rake angle, and g 1is the dip angle. V] and V2 are the far-field step
function responses for a vertical strike-slip source and a vertical
dip-sTip source, respectively. Expressions for V] and V2 are given by
Helmberger and Malone (1975) and by equation (1.49) of this thesis.
Because the far-field delta function response, Vj(t), is dominated by
high frequency reflections, we choose to display the far-field step
function response, Vj(t) in our figures.

When one or more layers are present, an infinite number of
generalized rays are necessary to give an exact representation of the
solution at all times. The number of rays which are necessary to give
a close approximation is a function of both source to receiver geometry
and the length of record to be modeled. In order to model the first 25
seconds of ground motion for three layers over a half-space and a range

of 33 km, we found it necessary to include over 100 generalized rays.
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This number grows rapidly for an increased number of Tayers. Shown in
Figure 2.6 is the strike-slip far-field step function response, V](t),
given as a function of a number of rays used in the synthetic. The
number of non-degenerate rays necessary to describe responses which
include rays having up to 1, 2, 3, 4 and 5 internal reflections are

4, 13, 31, 65 and 104, respectively. Here, an internal reflection is
any reflection which does not occur at the free surface. It can be seen
that as extra rays are added, the beginning of the response changes very
Tittle, but the latter portion of the response changes as more complex
rays are added. The final summation of rays seems adequate to approxi-
mate the first 25 seconds of record. Not all of these rays are of equal
importance. Also shown in Figure 2.6 are the first arrival times and a
schematic description of the 18 most prominent phases.

Throughout this study we will stress the importance of diffraction
in these models. According to Sommerfeld (1949), "Any deviation of Tlight
rays from rectilinear paths which cannot be interpreted as reflection or
refraction is called diffraction.” Thus head waves and the excitation
of Love waves by a source exterior to the waveguide are examples of
diffraction phenomena. The diffraction of spherical wavefronts can be
seen in Figure 2.6. If geometric ray theory had been used to calculate
these responses, then they would consist of a series of steps. However,
our computed responses do not consist of such sharp steps because of the
inherent frequency dependence of wave propagation due to diffraction.
This can be seen in the direct wave (arrival 1) which is depleted in

short periods relative to long periods. This observation is important
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Figure 2.6.

Strike-slip far-field step function response as a function
of the number of rays used. An internal reflection is any
reflection which does not occur at the free surface.

First arrival times and schematic description of the most
prominent rays are also shown. Source depth is 6.9 km

and the range is 33 km.
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in the understanding of the spectra which we present later in this
Chapter.

In this study, we know very 1ittle about the time history of
dislocations which occurred on the fault plane of this earthquake.
Because of this, we choose to consider models consisting of a single
point dislocation which have time functions which give a reasonable
comparison between synthetic and observed ground motion. Clearly, an
earthquake is not a point dislocation. However, the differences in
ground motion between finite source models and point source models are
for practical purposes unresolvable for this type of source to receiver
geometry. The reasons for this poor resolution can be understood by
examining the step function responses, V] and VZ’ as a function of source
depth and epicentral range. Figure 2.7 demonstrates that at a constant
source depth of 6.9 km, the response is a slowly varying function of
range. Figure 2.8 shows that although the response changes more rapidly
as a function of source depth, it is still a slowly changing function for
depth variations of several kilometers. This generalization is partic-
ularly valid for sources occurring below the sediment layers. For
sources in the sediment layers, there is a complex interference of multiple
reflected rays which propagate upward and downward from the source. Thus,
short-period arrivals change fairly rapidly with depth when the source
occurs in the sediment Tayers.

A curious effect can be seen in the dip-slip responses, Vz(t),
displayed in Figure 2.8. Notice that the first motion for every response

except No. 5 is negative. Now there is a radiation node for SH waves
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Figure 2.7. Far-field step function response as a function of range.
Amplitudes are scaled in relation to the top trace.
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Figure 2.8.

Far-field step function response as a function of source
depth.
trace.

Amplitudes are scaled in relation to the top
Notice that the long-period nature of the signal
changes slowly with depth, whereas short-period arrivals
for sources in the sediments change rapidly.
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travelling horizontally from a vertical dip-stip fault. Rays which travel
upward should be positive and rays which travel downward should be negative.
The first arrivals from sources in the sediment, Nos. 1 and 2, are head
waves and should be negative. The first arrivals from sources in the
half-space, Nos. 3, 4 and 5, are direct waves and shouid be positive.

Yet, first arrivals for sources 3 and 4 appear to be negative, and the
waveform for source 5 quickly becomes negative. Somehow energy which has
travelled downward into the half-space affects the direct wave observed
above the half-space. What is happening is that down-going energy is
diffracted into the sediment layers much as down-going waves are diffracted
back upward inthe head wave problem. If we examine the first arrival

for source 3 in more detail, we find that it does actually break upwards,
but the size and duration of this first arrival are exceedinagly small.

The direct wave is dominated by down-going energy which diffracted upward.
Thus, where geometric ray theory would have predicted a small positive
first arrival, we would actually see a fairly clear negative arrival.

This example dramatically demonstrates the shortcomings of geometric ray
theory for this type of problem.

Although the short-period arrivals can change rapidly with depth
as mentioned earlier, the Tong-period character of the response is fairly
stable with depth, even when the source occurs in the sediment layers.
Thus, except for a travel time correction, the response does not vary
greatly along the fault plane if the dimensions of the fault are small.
This observation allows us to make a formal statement which justifies

modeling this earthquake with a single point source. That is, consider
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a fault plane with dimensions o0« x< 1, 0< ¥ < h, where x runs along
the fault strike and y is down the fault dip. The tangential displacement
at a receiver, V(t), due to a planar fault of arbitrary time history

can be written as
2 2 4 h
o . .
V() = 2 D Asg DLkt - v (x3)] % Vi, dy dx ,(2.4)
1 070

where Vj(x,y,t) is the far-field delta function response of the medium,
Bo is the shear velocity in the source region, D[x,y,t - t(x,y)] is the
time derivative (far-field response) of the dislocation history on the
fault, and +(x,y) is the time lag between the origin time of the earth-
quake and the initiation of rupture at the point (x,y). Equation (2.4)
is valid as long as the source to receiver distance is much larger than
the fault dimensions, thus insuring that the azimuth angle from each
point on the fault to the receiver is approximately constant.

Now from our previous discussion of the behavior of the point
source response, Vj, for small variations in x and y, we make the

following approximation:

) e )
Vj(x,y,t) N Vj[xo,yo,t T(x,y) 1, (2.5)

where

0< X <L,o<yo<h.
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T(x,y) is the difference in travel times between Vj(x,y,t) and Vj(xo,yo,t).

It can easily be shown that

D[Xsyat'T(st)] * Vi[xos‘yoat" T(X>Y)]

= \'/J.(xo,yo,t) * DXLy t-r(x.y) - TOGy)] . (2.6)

Thus, from expressions (2.4), (2.5) and (2.6), we conclude that

2
= E ing LFOE) * V5(xygst)T

._9

F(t) E——'/[ DLX,yst -7 (xoy) - T(xoy)] dy dx . (2.7)
£hD

D is the average dislocation on the fault surface. Since V(t) and
Vj(xo,yo,t) are known, we can obtain some estimate for F(t) through our
modeling studies. Unfortunately, there is no way to deduce ¢, h or
D(x,y,t) from a knowledge of F(t). Even though a knowledge of F(t) does

put constraints on these parameters, any models which specify ¢, n and

D(x,y,t) require ad hoc parameterizations of these variables.

Modeling the November 4 Brawley earthquake

We will model the November 4 earthquake with a point source

located in the velocity model given in Table II.1. Because of the focal
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mechanism given in Figure 2.2 and because ground motion at IVC was almost
entirely tangentially polarized, we will assume that the earthquake was
a pure strike-slip event occurring on a vertical plane directed towards
the station, IVC. We also know that the stations IVC and ELC lie at
distances of 33 km and 36 km, respectively, from the eipcenter. We do
not have good independent constraints on either the hypocentral depth
or the far-field time function, F(t). We will first constrain the depth
to be 6.9 km and then try to estimate F(t). Even though depth and source
time function do not produce strictly independent effects in our synthetics,
it is sufficient for our purposes to first estimate F(t) and then to try
and resolve the depth. Shown in Figure 2.9 are comparisons of the
observed IVC tangential ground motion and synthetics with a variety of
source time functions. For simplicity, we assumed that the time function
was an 1isosceles triangle where duration was the independent parameter.
Considering the simplistic nature of the assumptions we have made about
velocity structure and source finiteness, it seems counter productive to
attempt more detailed modeling of the source time function. In Figure 2.9
it can be seen that a duration of 1.5 seconds gives the best overall fit
to the observed record. Durations of 0.6 seconds and 3.0 seconds are
definitely too short and too long, respectively. A moment of 3.2 x 1023
ergs is inferred if the time function is a 1.5 second triangle. These
quantities are consistent with the observations of Helmberger and
Johnson (1977) concerning the empirical relationship between moment and
time function duration.

In Figure 2.10 we show several comparisons of the tangential

ground motions at IVC and ELC with our synthesized records. Since the
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Comparison of IVC tangential ground motion with synthetics
which have different duration triangular far-field time
functions. The far-field time functions are displayed
directly under the first pulse in the corresponding
synthetic. A strike-siip point source with a depth of

6.9 km and a range of 33 km was used in all of these

synthetics.
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Figure 2.10  Comparisons of IVC and ELC tangential ground motions

with synthetics. IVC and ELC are assumed to be at
ranges of 33 and 36 km, respectively. A triangular
far-field time function with a duration of 1.5 sec is
used throughout. (a) Pure strike-slip with source depth
of 6.9 km. (b) Pure strike-slip with source depth of
3.9 km. (c) Source depth of 3.9 km and source striking
N39°W, dipping 60°SW, and with a rake of 120°.
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beginning of the motion at ELC was not recorded, we have dotted in our
guess of its shape. A far-field time function consisting of an equilateral
triangle with a duration of 1.5 seconds was used in the three models

shown. The source depth is 6.9 km in synthetic (a) and 3.9 km in

synthetic (b).

Model (a) seems to provide a good fit to both the timing and
amplitudes of the major arrivals seen on the actual records. In model
(a) we assumed that the source was pure strike-slip on a vertical plane
directed towards IVC. Because the U.S. Geological Survey's computed
hypocentral depth indicated that the source may have been somewhat
shallower, in model (b) we have shown the same source that was used in
model (a), but with a depth of 3.9 km. Clearly, model (b) does not fit
the observed as well as model (a). The first arrival, a head wave, is
too small in amplitude. Furthermore, later arrivals come in too soon
with respect to the first arrival. It is possible to improve the shallow
source depth synthetic waveforms by changing the fault orientation. A
fault plane striking at N39°W, dipping 60° to the SW, with a rake angle
of 120°, and a depth of 3.9 km was assumed in model (c). This improves
the fit, but the timing of arrivals is still inferior when compared to
model (a). Furthermore, model (a) is consistent with the change in
amplitude ratios of tangential to radial ground motion seen between IVC
and ELC. Model (c) is consistent with neither of these ratios nor with
the focal mechanism given in Figure (2.2). For this reason, we prefer
model (a) with a focal depth of 6.9 k.

At this point, let's step away from all these modeling details

and try to evaluate where we have been. We have approximated the shear
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wave velocities of a 6 km thick stack of sediments with three planar
layers over a half-space. Our simplified shear wave model is based on
compressional wave refraction studies. We argued that, in this case,

a M 4.9 earthquake could be approximated by a point source with the
appropriate time function. The distances between source and receiver
are well-constrained by the U.S. Geological Survey's epicentral solution.
Our focal mechanism constrains our dislocation model to be predominately
strike-sTip on a vertical plane. The source time function and depth

are variables which we were able to constrain only through our modeling
studies. Although a fairly large suite of models could be constructed
by varying the depth and time function, it seems clear that the match
between model (a) and the observed ground motion was not a mere coincidence.
Apparently, the assumptions which led to model (a) were sufficiently
valid to predict the tangential ground motions seen at ELC and IVC. We
could even argue that, given the moment, the time function would have
been predicted accurately by the moment versus duration plot given by
Helmberger and Johnson (1977). Considering this success, we feel that
it should be possible to make predictions of the tangential ground
motions seen in the Imperial Valley. Because one must a priori know
such variables as hypocentral location, fault mechanism, and source time
function, there is some question about the practical applications of
such predictions. Our simplistic modeling of source and structure
necessarily limits such predictions to longer period motions. In order
to model large earthquakes, source finiteness would also have to be

considered. As we have already seen, the ability to predict the effects
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of structure provides valuable insight into the problem of determining
source depth and time function.

Now that you are thoroughly tired of hearing our inflated claims
of success, we will discuss our failures. We say that we have constructed
a model to explain the first 25 seconds of observed motion. What about
motions occurring 60 seconds into the record? Here we fail, for our
model would predict practically no motion after 35 seconds. Long duration
codas are routinely observed on nearly all local earthquake records.

Their causes are not well understood. Long period P waveforms recorded
at several Canadian stations show a relatively simple pulse for the P
wave of this earthquake. Thus, there seems to be no justification for
producing this coda by assuming that this earthquake was a complicated
multiple event. Perhaps the coda is due to surface waves which are
reflected by lateral variations in structure. In Figure 2.3, it can be
seen that at IVC, even the coda is tangentially polarized with respect to
the epicentral Tocation. This observation is hard to understand if the
coda is due to waves which are reflected off the boundaries of the Salton
Trough since we would presumably see a Rayleigh wave contribution along

with the Love waves.

Synthetic Fourier Spectra

We will now discuss the effects of plane-layered velocity
structure upon the Fourier amplitude spectra of ground displacement. In
a homogeneous half-space, the far-field SH response to a point step

dislocation is simply a delta function whose Fourier amplitude spectrum
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is some constant value at all frequencies. If the earth were this simple,
then the amplitude spectra of SH ground motion would accurately reflect
the amplitude spectra of only the source. As we have already seen,

the introduction of layering produces profound changes in the far-field
delta function response. It has been commonly assumed that the effects
of structure do not change the overall shape of amplitude spectra (for
examples, see Johnson and McEvilly, 1974, or Tucker and Brune, 1973).
The justification given is that all of the arrivals on a seismogram are
caused by the same source and thus each arrival contains the spectral
characteristics of the source. Interference between various arrivals
should introduce irregularities into the spectra (spectral scalloping),
but this interference phenomena should not change the overall shape of
the spectra. In order to test the validity of this assumption, we have
computed the Fourier amplitude spectra of the SH far-field delta function
responses of point sources located in the layered half-space which is
described in Table II.1. If the above assumption is correct, then the
synthetic spectra should be basically flat. In Figure 2.11, we show
synthetic spectra for a point source located at a range of 33 km and at
depth 3.9, 6.9 and 10 km. Here we have plotted the function,

|IF.T. (Vj)!l, where Vj(t) is the far-field delta function response used
in equation (2.1). Spectra of both strike-slip and dip-slip terms are
shown. The corresponding spectra for a homogeneous half-space are given
by the straight dotted lines. When the source is in the sedimentary
layers, the spectra appear to be relatively flat with complicated

scalloping. In the strike-slip case, the layered space produces a long
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Figure 2.11. Synthetic far-field delta function responses as a
function of source depth, where the range is 33 km.
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period Tevel which is 2 or 3 times the level computed for a homogeneous
half-space. The sedimentary layers have trapped energy of all frequencies.
In the dip-slip case, the layered space produces a long-period level which
is an order of magnitude higher than is produced by the homogeneous
half-space. This discrepancy is primarily caused by the fact that, in
the homogeneous case, the direct SH ray is very near a radiation node.
Waves which are reflected within the sediments traverse paths which are
much farther from this node. When the source is moved to a depth of 6.9 km
(1 km beneath the sediments), the spectra no Tonger Took flat. In fact,
it appears that we could pick corner frequencies in these spectra. This
is remarkable when one realizes that these are delta function responses!
There appears to be an w_] and w~2 falloff in the high frequencies for
the strike-slip and dip-slip cases, respectively. The reason for this
behavior is hard to understand from the viewpoint of geometric ray theory.
What we see here is actually a diffraction effect. Long-period energy
is diffracted into and trapped within the sediment layers, while shorter
period energy is reflected off the bottom of the sediments. When the
source is moved to a depth of 10 km, we see another dramatic change in
the shape of the spectra. Diffraction effects are responsible for the
slope seen for longer periods. For this depth, geometric ray theory is
probably adequate to explain very short-period waveforms. This is
consistent with the fact that the spectra become relatively flat for
short periods. OQur interpretations ave further complicated by the
effects of radiation pattern.

We have seen that, at a constant epicentral range, the effects

of depth are dramatic. In Figure 2.12, we show spectra for sources at
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a constant depth of 6.9 km and at ranges of 25 km to 40 km. Apparently
range also has a large effect upon the overall spectral shape. Clearly
this nas implications for seismic wave attenuation studies as well as
seismic source studies. Remember, there is no anelasticity built into
our synthetic models.

In the case of SH waves, we have seen that the introduction of
layering can do far more than simply add scalloping to a spectrum. The
exact effect is a complicated function of the source location and focal
mechanism. Although we have only demonstrated this to be true for whole-
record spectra, the spectra of individual arrivals should also be
affected by diffraction phenomena. Even if the direct S wave could be
isolated, there is no gquarantee that the waveform has not been altered
by diffraction effects. This can be seen by noticing that the step
function responses of the direct S waves do not consist of a simple step.
Furthermore, if one desires to understand the high-frequency characteristics
of the source, then one must understand the high-frequency effects of
wave propagation. This means that one must know the details of the
velocity structure along with a good estimate of source location. Because
the effects of wave propagation are so complicated, we prefer to do our
modeling in the time domain. Although ambiguities are still present
when trying to sort out the relative effects of source and structure,
there is some hope of understanding the effects of wave propagation when
modeling in the time domain. We anticipate that the phenomena which we
have observed for SH waves should also be seen for P and SV waves.

Because of the existence of mode conversions and Rayleigh waves, the
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effects of wave propagation will be even more complicated for radial and

vertical motions.
Conclusions

The sedimentary structure which lies between the M 4.9 November 4,
1976 earthquake and the stations, IVC and ELC, is relatively flat. A
simplified model of shear wave velocities was derived from the compressional
wave refraction studies of Biehler et al. (1964). The enicentral
solution and focal mechanism were determined by P wave first arrival
studies. Using these constraints, we determined a hypocentral depth of
about 7 km by modeling the tangentially polarized ground motions observed
at IVC and ELC. An infinitesimal dislocation source with a triangular
time function was sufficient to model the first 25 seconds of observed
aground motion. We determined the moment to be approximately 3 x 1023 ergs
and the far-field time function had a duration of about 1.5 seconds.

Because of our success in modeling these records, we feel that propagational
effects on longer period tangential ground motions are predictable in the
Imperial Valley. We also found that our layered half-space model was

unable to explain the long duration codas seen at IVC and ELC.

By studying the Fourier amplitude spectra of the far-field delta
function responses computed for our Tayered half-space model, we
demenstrated that wave propagation effects should be included in studies
of source spectra. Diffraction phenomena can produce corners which have
nothing to do with source spectral characteristics. The effects of

structure must also be included when making estimates of the moment from
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the Tong-period level of amplitude spectra. Finally, the effects of

diffraction should be considered in studies of seismic wave attenuation.
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Chapter 3

A Study of the Strong Ground Motion

of the Borrego Mountain, California, Earthquake of April 9, 1968
Introduction

The Borrego Mountain strong-motion records provide an opportunity
to study a larger earthquake which occurred in a similar setting as the
Brawley earthquake which was discussed in the last chapter. Furthermore,
Burdick and Mellman (1976) studied the teleseismic body waveforms for
this earthquake. Thus we are able to study the compatibility of tele-
seismic and local modeling results.

In many situations the seismic waves recorded in the Tocal field
travel more nearly horizontal paths than waves which are recorded at
teleseismic distances. This allows us to sample waves from earthquakes
which leave the source area in directions which are inaccessible to
researchers studying the waveforms of teleseismic records. Unfortunately,
the fact that energy in the local field travels nearly horizontal paths
implies that reflections from horizbnta] crustal layers are both large
and complicated. In the local field, a clear distinction between body
waves and surface waves is not possible. Thus, in many respects, inter-
preting the relative effects of source and earth structure is a more
tractable problem for teleseismic modeling than for local field modeling.
Yet, as we will show,it is possible to model lTocal observations of
moderate size earthquakes with realistic source and crustal structure

models. Obviously, it is important to construct earthquake source models
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which are compatible with both local and teleseismic waveforms. This
test of compatibility 1s‘especia11y important with respect to the assumed
Q structure of the earth‘which must be used when correcting teleseismic
observations. Thus, the inclusion of local observations into the data
set in earthquake studies is becoming increasingly important.

In most previous waveform modeling of strong ground motion,

researchers have circumvented the complications of horizontal layering
by considering only records which are taken very close to the causative
fault. Most studies of this nature approximate the earth response by
the response of a homogeneous whole-space with an amplitude correction
of two in order to approximate the free surface. Since only direct waves
can be generated by such a model, simple source models will result in
relatively simple pulse-like waveforms. Unfortunately, strong ground
motion records displaying simple pulse-like waveforms are relatively
rare. Some of the better examples are: 1) the Pacoima Dam recording of
the 1971 San Fernando earthquake which has been modeled by Trifunac
(1974) and which we model in Chapter 4; 2) the Cholame No. 2 recording
of the 1966 Parkfield earthquake modeled by Aki (1968), Trifunac and
Udwadia (1974), Kawasaki (1975), and Anderson (1974). Anderson and
Richards (1975) have reviewed several of the different source models
which have been used in modeling such records and they give some insight
into the ambiguities which are present in modeling ground motion very
close to an earthquake. They demonstrate that a variety of source models
with quite different rupture motions, rupture geometries, rupture velocities,

and rise times can produce very similar near-field motions in a
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homogeneous whole-space. Things change considerably when horizontal
Tayering is introduced into the problem. If the structure is not known,
even greater ambiguity in source modeling exists due to the introduction
of more variables. Things may not be as hopeless as they first appear
though, since if the structure is known its effects can be used to
advantage. That is, the response of a layered medium is unlike that of

a homogeneous medium in that the response of the layered medium is a
sensitive function of the position of the source within the layers. Thus
if the structure is known, the complications due to that structure can
help clear up ambiguities concerning the source. Consider the dilemma
presented by any single displacement record taken in a homogeneous whole-
space. It is practically impossible to distinguish a source composed

of several point disltocations from another source which consists of only
one point dislocation. This ambiquity is not as severe in a layered
space since each of the several point sources will interact with the
structure in a predictable fashion. A case will be made that the EI
Centro record of the Borrego Mountain earthquake cannot be adequately
modeled with just one point dislocation. This distinction could not be

made for homogeneous whole-space models.

The Borrego Mountain Earthquake

The Borrego Mountain earthquake occurred at 2:29 GMT on April 9,
1968 and has been assigned a magnitude of 6.4 (Allen and Nordquist, 1972).
A surface rupture which extended nearly 31 km was recognized along three

well-defined zones of fracture (north, central and south segments) which
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comprise the Coyote Creek fault which is itself a segment of the San
‘Jacinto fault zone of southern California. A maximum right-lateral offset
of 38 cm was measured along the north segment and right-lateral offsets

of 25-30 cm and 8-14 cm were measured on the central and south segments,
respectively (Clark, 1972). The central and south segments are distin-
guished from the north segment in that approximately half the displacements
measured were recognized to be due to post-earthquake creep (Burford,
1972). Surface ruptures of 1 to 2-1/2 cm were also reported by Allen

et al. (1972) for segments of the Superstition Hills, Imperial and San
Andreas faults. These displacements are presumed to be due to fault

creep which was triggered by the Borrego Mountain earthquake. Figure 3.1
shows the spatial relationship of these various faults. Rupture appears
to have initiated on the north segment. Aftershocks define a diffuse

zone which is about 50 km in length (Allen and Nordquist, 1972). No
conspicuous increase in seismicity could be found for the Superstition
Hills, Imperial and San Andreas faults.

Faulting on the north segment of the Coyote Creek fault displays
several features which clearly distinguish it from other fault segments
which had rupture associated with the earthquake. Both the initiation
of rupturing and the largest offsets cccurred on the north segment. As
compared with the central and south segments, the north segment had fewer
aftershocks and very 1ittle post-seismic creep. Burdick and Mellman
(1976) argue persuasively that these variations in the behavior of the
fault segments reflect different behaviors deep in the earth. Their

modeling of teleseismic waveforms seems to require a short duration
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Oblique map of the Salton Trough. Lines within shaded
areas indicate segments of faults that moved in associ-
ation with the 1968 Borrego Mountain earthquake. The
distance between meridians shown is 93.5 km along the
33°N parallel (fiqure modified from U.S. Geol. Survey
Prof. Paper 787).
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source time function and hence a small source dimension. They suggest a
circular fault of radius 8 km. If dindeed such a small source area is

required, then clearly the north segment is the likely candidate.

The E1 Centro Strong Ground Motion Record

The Borrego Mountain earthquake triggered 114 strong-motion
seismographs in southern California and southeastern Nevada (U.S. Coast
and Geodetic Survey et al., 1968). Most of the instruments were located
in the Los Angeles area which is approximately 200 km from the epicentral
region. The closest strong-motion stations were Tocated in E1 Centro,
San Diego and Perris Dam which are at epicentral distances of 60 km,

100 km and 120 km, respectively. We chose to model only the E1 Centro
recording because it was the closest station and was the only station
located in the same geologic province (the Salton Trough) as the earth-
quake. Moreover, Carder displacement meters were located at E1 Centro,
providing reliable information at periods beyond 8 seconds.

Figure 3.2 shows both displacement records as well as accelerograph
records from E1 Centro. The accelerograph records have been integrated

to obtain both ground velocity and displacement (Hudson et al., 1971).

Figure 3.3 shows that the ground motion obtained by double integration
compares favorably with the ground motion obtained by deconvolution of

the instrument's response from the Carder displacement meter records. The
Carder instruments have free periods of 6.4 seconds on the E-W component
and 6.8 seconds on the N-S component. The deconvolved Carder records have

been heavily filtered at periods beyond 14 seconds with an Ormsby-type
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Figure 3.2. ET1 Centro accelerograph and Carder displacement meter

record from the Borrego Mountain earthquake (U.S. Coast
and Geodetic Survey, et al., 1968).
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filter to avoid the inherent instability present in the deconvolution
process. We believe that the deconvolved Carder record gives a very
reliable representation of the ground motion at E1 Centro.  The agree-
ment between the integrated accelerogram and the‘deconvo1ved Carder
record is remarkable when one realizes that the free periods of the
accelerographs are about 0.067 seconds. However, there does appear to
be significant disagreement in the absolute amplitude scales. This
discrepancy raises questions about the reliability of the gains reported
for these instruments.

E1 Centro is only 8° from being directly along the strike of the
earthauake fault plane. Since the earthquake was strike-slip along a
vertical fault, we expect to be very close to an SH radiation maximum and
SV and P radiation nodes. The tangentially-polarized, radially-polarized
and vertical components of ground motion are also shown in Figure 3.3.

Tﬁe vertical component is a doubly-integrated accelerogram (Hudson et al.,
1971). The horizontal components were rotated such that the azimuth of

the tangential and radial axes were S 37° W and S 53° E, respectively.

The first 40 seconds of displacement are dominated by transversely-polarized
motion as indicated in Figure 3.3c. Considerable radially-polarized

motion is present in the next 40 seconds of ground motion. One possibility
is that this departure from transverse polarization is due to lateral

reflections of surface waves in the Salton Trough.

Crustal Structure in the Salton Trough

The Borrego Mountain earthquake occurred along the western side

of the Salton Trough whereas E1 Centro lies close to the axis of the
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depression. The work of Biehler (1964) and Hamilton (1970) indicates
‘that considerable variation in upper-crustal velocity structure exists
along the path from Borrego to E1 Centro. A summary of the crustal
structure found by Hamilton (1970) for the Borrego vicinity is given

in Table III.7. Also in Table III.T1 is the upper-most crustal structure
reported by Biehler (1964) for his closest refraction line to E1 Centro.
Clearly, the thick Tayer of sediments underlying E1 Centro is not present
in the epicentral region. In fact, basement rocks are exposed in the
Superstition Hills which Tie 20 km from E1 Centro and along the line
between the epicenter and ET1 Centro. Fortunately, the basin structure
near E1 Centro consists of relatively flat, laterally homogeneous sediments.
Experience has shown us that the major effect of sediments is to allow
post critical angle multiple reflections to occur in the section.
Furthermore, for a source beneath the sediments, reflection noints for
these multiple reflections occur near the receiver. Since our modeling
technique is Timited to plane layers, it is important that our structure
model give a fair representation of the receiver sediment structure rather
than the sediment structure at the source. For our purposes, we found
that it was sufficient to model the sedimentary stack with only one Tow-
velocity surface layer. Although modeling the complicated upper-crustal
structure from Borrego to ET Centro with a simple plane layer over a
half-space does not seem entirely satisfying, it should be realized that
this model retains the essential characteristic in that it traps SH waves
in the upper layer. We believe that the Imperial Valley sediments also

trap SH waves and that their response is approximated by that of a layer
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Table III.1

Crustal Structure in the Epicentral Region

as Reported by Hamilton (1970)

Compressional

Wave
Layer Velocity (km/sec) Depth to Top (km)
1 2.5 0.0
2 5.1 0.4
3 6.0 2.9
4 7.1 14.0
5 7.97? 25.07

Upper Crustal Structure as Reported by Biehler (1964)

for the Wilson et al. Well. Shown in Figure 1

Compressional

Wave
Layer Velocity (km/sec) Depth to Top (km)
1 1.9 0.0
2 2.1 0.4
3 2.6 1.0
4 3.7 2.0
5 4.7 3.4

6 6.4 6.0
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over a half-space. This approximation probably becomes progressively
worse for shorter-period waves. Finally, it should be pointed out that
we chose the layer velocity and thickness such that they fit the observed
Love waves. Even though this layer thickness and velocity was not
determined directly from the refraction profiles such as Biehler's (1964),
we feel that our model is compatible with the inferred depth of sediments
in the Imperial Valley.

Qur study of the Brawley earthquake further justifies our single-
layer sediment model. Although the intermediate layers were important
for short-period details, the most important interface was the sediment
to basement contrast. Furthermore, Swanger and Boore (1978) subsequently
repeated much of this study using surface wave mode techniques and a more
complex sedimentary structure which was based upon Biehler's (1964) models.
They concluded that the single-layered model adequately represented the
response of the more complex structure at the periods which dominate the
displacement records.

Because of the possibility of head waves and the reflection of
downgoing rays, intermediate and deep crustal structure can have a
significant effect on the beginning portion of the strong ground motion
record. Hamilton (1970) has suggested that campressional wave velocities
as high as 7.1 km/sec exist as shallow as 14 km and that the Moho may be
only 25 km deep in this region. As will be seen later, it is not necessary
to include intermediate and lower crustal structure in order to model the
E1 Centro strong-motion record. Thus we will mainly concern ouselves

with a structure model which consists of a simple layer over a half-space.
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However, due to the possibility of relatively shallow high velocity layers,

a structural model which includes these layers will also be considered.

The Modeling Technique

Qur modeling technique is virtually identical to that which we
used in the last chapter. Generalized ray theory, in conjuction with the
Cagniard-de Hoop technique, is used to compute the response of a point
shear dislocation. Once again, only the far-field SH waves are included
and the first order asymptotic approximation of the Bessel function is
used. Because of the simplicity of the structure, fewer than 20 gener-
alized rays are necessary to approximate the response of a 3 km layer
over a half-space at a range of 60 km.

Since the Borrego Mountain earthquake has much larger source
dimensions than the Brawley event did, there are serious questions about
the adequacy of a single point source model. In this chapter, we will
approach the problem of the source from two directions. We will begin by
attempting to find simple models which contain only one or two point
sources. We will attempt to find the far-field time functions which will
explain the observed motion. This is equivalent to finding the function,
F(t), which was given in equation (2.7). The actual faulting history
need not be specified when modeling in this manner. The second approach
is to specify fault displacements explicitly. By integrating point
source responses over the entire fault plane, we directly calculate the
finite fault response. Essentially we calculate F(t) in a forward manner,

instead of exploring what form F(t) may have in order to fit the records.
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Modeling with a Single Point Source

The first models which we will consider will be those consisting
of a single point source. These models allow us to investigate the
effect of structure in a fairly direct way. Figure 3.4 illustrates the
step function response of a point source located at various depths within
a layer over a half-space model. The upper layer's thickness and velocity
have been defined such that they fit the long-period Love waves as
recorded at E1 Centro. Theoretical ground motions are obtained by
convolving the derivative of the step-function response with the far-field
time function of the source. The particle motion of the point dislocation
is the integral of the far-field time function. For shallower source
depths, the direct wave is diffracted by the shallow layer and becomes
less distinct and at the same time, Love waves are strongly developed.
When the source is placed in the upper layer, the first arrivals are
head waves with later arrivals being high-frequency critical reflections
which are trapped in the upper layer. We see no evidence of these high-
frequency critical reflections in the E1 Centro record and thus our
sources will always be located beneath the surface layer. This conclusion
is supported by the fact that the sediments directly above the earthquake
are thin and also by the hypocentral depth of 8 km computed by Burdick
and Mellman (1976).

Model B42, shown in Figure 3.5, is the ground motion which one
expects for a pdint source with a simple trianguTar far-field time
function which is Tocated at a depth of 6 km in the layer over a half-

space model. It does a fair job of fitting the Love waves, but does
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Figure 3.4. SH step function response at the surface assuming a point
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poorly for the first large SH pulse which is present on the record. We
next investigated the possibility that the first SH pulse was actually
due to a diving ray. By adding high-velocity Tower-crustal layers it
is possible to obtain near-critical angle reflections which introduce
sharp pulses to the beginning of the synthetic and which have virtually
no effect on the Love wave portion of the synthetic record. Model B67,
which is shown in Figure 3.5, is the result of an attempt to model the
first SH pulse with a diving ray. It matches the first pulse well, but
does poorly on the broad second pulse. High shear wave velocities seem
to be required at depths Tess than 20 km by such models. Even though
Hamilton's work (1970) suggests a Moho at 25 km, the velocity model for
B67 seems somewhat extreme. Although we are not entirely comfortabie
with the high velocities of model B67 and even though other models will
be presented which fit the record better, we believe that a diving ray
could well be an important contributor to the sharp pulse at the record's
beginning. The advantage of model B67 is that a very simple point source
time function is all that is necessary to produce both sharp body waves
and a well-developed Love wave. A1l other models which will be presented
in this study will consist of a simple layer over a half-space model,
but will require more complex sources -to fit both body waves and Love
waves.

Model BD115, which is shown in Figure 3.5, is an example of a
layer over a half-space with a point source which has a complicated time
function. Since the source is relatively deep at 9 km, the direct shear

wave is sharp and thus it was possible to model the first 10 seconds well.
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Because of the depth, though, the Love wave is too small. This motivated

us to investigate models with both a deep source and a shallow source.

Modeling with Two Point Sources

In the previous section we discussed the notion of fitting the
Love waves with a fairly shallow source and then we invoked reflections
from deeper Tayers to explain the sharp first arrivals. An alternative
approach is to have a shallow source which produces mainly Love waves
and a deep source which produces sharp body waves. We chose to model
the record with a source at 9 km and another source at 4 km. Furthermore,
we allowed these sources to have different time histories. Because of
the large number of variables which are introduced into this model, it
is not surprising that the record could be fit quite well. Figure 3.6
illustrates four of the models which gave good fits. These models vary
in detail, but a common feature is a sharp time function for the deep
source and a slower time function for the shallow source. The total
moments for all these models seems to be approximately 7 x 1025 dyne-cm.

It seems fairly important to ask whether or not the models shown
in Figure 3.6 are consistent with the teleseismic observations of the
Borrego Mountain earthquake. Burdick and Mellman's (1976) inversion of
teleseismic body waves for source parameters yielded a moment of

1.12 x 10%0

dyne-cm which is somewhat larger than that of our two-source
models. Our computed moment would be on the order of 1026 dyne-cm if
the intergrated accelerograms were used in place of the Carder records.

This is due to the previously mentioned discrepancy in amplitude found
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between integrated accelerogram and displacement meter records. It should
also be noted that Hanks, Hileman and Thatcher (1975) reported a moment

of 6 x 1025 dyne-cm for the Borrego Mountain earthquake based on a
combination of body wave spectra isoseismal maps, and extent of surface
faulting.

Burdick and Mellman were also able to isolate the phase sP and
then simultaneously deconvolve short- and long-period recordings of sP.
From this procedure they obtained a detailed source time function
appropriate for the phase sP. Figure 3.7 shows the sP time functions
that would be predicted by our two-source models. Model BD116 agrees
very well with the observed teleseismic sP time function. Model BD116
is thus very appealing in that it fits the E1 Centro strong SH ground
motion and it is also consistent with the teleseismic observations.
Unfortunately, it is rather obvious that the Borrego Mountain earthquake
was not two point dislocations. How are we to relate model BD116 to
the s1ip which occurred along the Coyote Creek fault? We will delay
a closer examination of this question until the discussion section of

this chapter.

Modeling with Finite Sources

In the previous section we have shown that it is possible to
construct a relatively simple model which is consistent with the tele-
seismic recording and also the E1 Centro strong ground motion. Our main
concern was to fit the seismic data and we gave relatively little con-

sideration to our intuition that these seismic waves were due to an
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offset along a two-dimensional surface which we call the Coyote Creek
fault. Let us try a different approach in which we build several simple
models of what we, a priori, think the earthquake should look like.
We chose to model the earthquake as a radially-propagating, uniform
dislocation which is confined to a vertical rectangular surface. Because
of the success we had with the point-source models, we retained the layer
over a half-space structure which was used in those models. Since we
have no analytical expression for the point-source response of this
structure model, it was not possible to analytically integrate the
infinitesimal point-source response over the fault plane. Instead, each
square kilometer of fault surface was approximated by a point dislocation
source. Figure 3.8 shows that the step-function response is a slowly~-
varying function of range. Generalized ray theory was therefore used
to compute only the response functions of sources which were spaced at
intervals of 5 km horizontally and 2 km vertically. The remaining
response functions were computed by simply interpolating between the
response functions found by generalized rays. Response functions were
then added with an appropriate time delay which was a function of only
the rupture velocity and fault geometry. This sum of response functions
was then convolved with a source time function which is the time derivative
of the particle motion on the fault plane. Particle motion was assumed to
be uniform everywhere on the fault plane. Displacements in a homogeneous
whole-space have been analytically determined by Savage (1966) for
similar types of fault models.

In Figure 3.9, synthetics are shown for an 11 km by 5 km rectangular

fault with different hypocentral locations and rupture velocities. BNORI
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is a model in which the rupture begins at the center of the rectangle
and propagates radially with a rupture velocity of 2.5 km/sec. A tri-
angular source time function was used and convolutions of BNORT with
triangles of durations of 3.0 seconds, 1.5 seconds and 0.75 seconds are
shown in Figure 3.9. The 1.5 second triangle clearly gave a superior
fit and we have convolved this 1.5 second triangle with our other finite
fault models. BNOR3 and BNOR4 which are also seen in Figure 3.9 are
jdentical to BNORT except that the rupture velocities were 2.0 km/sec
and 3.5 km/sec, respectively. The synthetics do not appear to be very
sensitive to the rupture velocity for this size fault. Finally, Figure
3.9 shows BNOR5 and BNOR6E which are identical to BNORT except that rupture
initiates on the far and near ends of the fault, respectively.

Model BNOR1 does a very respectable job of fitting the E1 Centro
ground motion; particularly the character of the Love wave. This success
is encouraging and we believe that it should be possible to construct
a relatively simple finite source model which would fit the data just as
well as our two-point source model. Model BNOR1 yielded a moment of
7 X 1025 dyne-cm. This would indicate an offset of about 500 cm and a
stress drop which is near 500 bars. These estimates seem very large
indeed. Figure 3.10 illustrates our attempts to decrease the fault offset
by increasing the fault area. BNOR7 has a fault which is 26 km long by
9 km deep. Even with this much larger fault, the calculated offset
would be about 110 cm, whereas the largest observed surface offset was
only 38 cm. Moreover, BNOR7 has the problem that its body waves are too

large compared to the Love waves. This can be alleviated by making the
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fault shaliower. A fault which is 26 km long by 5 km deep was used in
BNOR18 and BNOR19 which had rupture velocities of 2.5 km/sec and
3.0 km/sec, respectively. These models fit the actual record adequately,
but the fault offsets must grow to about 200 cm. Part of this dilemma
which we have encountered is due to the fact that we have not allowed
the rupture to extend into the soft sediment layer because of the high-
frequency reflections which our model will produce. In reality though,
the sediments above the quake are probably very thin and discontinuous
with the sedimentary stack at E1 Centro. Furthermore, we know that the
earthquake ruptured clear to the surface. Yet our plane layer model
does not allow us to model the contributions of the very shallow section
of the fault plane. If we were able to model the upper 3 km of rupture,
then we could also allow the fault to extend to depths below 10 km
without disturbing the ratio of body wave amplitudes to Love wave
amplitudes.

We have not drawn many conclusions regarding the earthquake from
our attempts to model the E1 Centro record with a finite source. There
does not appear to be enough information to resolve important parameters
such as fault dimensions, rupture ve10éity and time history. What we
have demonstrated is that it is possible to adequately fit the E1 Centro
strong ground motion with simple finite source models embedded in a

layer over a half-space structure model.

Discussion

It appears that the E1 Centro record can be successfully modeled

by both finite source models and also by models wnich consist of only
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two point sources. Is it possible to reconcile these different types
of sources? If we were dealing with a homogeneous space, then it is
obvious that it would be impossible to resolve the difference between a
finite source and a point source with just one record. UWe could simply
modify the time function for the point source such that it fit a single
recording of any finite source. In general, this would not be true if
we had to fit several recordings of the same event. The introduction of
velocity structure is analogous to having several recordings of the
earthquake in that the study of the interaction of seismic waves with
the layers allows us to determine where those waves originated with
respect to the Tayers. Figure 3.4 illustrates that it would be possible
to resolve the difference between a vertical line source and a single
point source for the case of a layer over a half-space. This is because
the response changes with depth. Figure 3.8 shows that the response changes
very 1Tittle with the horizontal distance of the source (for our geometry).
Thus it is very difficult for us to resolve the epicentral distance of
a point source. In fact, it is virtually impossible for us to tell the
difference between a point source and a finite horizontal Tine source.
Thus the response of a finite vertical rectangular fault plane can be
approximated by a vertical line source with an appropriate time function.
In our case the response of the vertical Tine source is approximated by

two point sources of different depth.

Conclusions

The strong ground motion recorded at E1 Centro for the 1968

Borrego Mountain earthquake is dominated by SH-type motion. Displacements
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of up to 13 cm are indicated by the rotated deconvoived Carder displace-
ment meter records. The thick sedimentary layer present in the vicinity
of E1 Centro is modeled by a single 2.9 km thick Tayer. This layer traps
SH waves allowing the formation of Love waves. In reality, there is
considerable heterogeneity in the sediment structure along the path from
the earthquake to E1 Centro, but the Love waves are formed in the flat-
lying sediments relatively near E1 Centro.

It is possible to model the E1 Centro record with a single point
source if relatively shallow high-velocity Tower-crustal layers are
introduced. If a simple layer over a half-space model is used, at Teast
two point sources are necessary to provide an adequate fit to the
record. Within the framework of this structure model, it appears to be
possible to show that the majority of faulting extended from the free
surface to a depth of not more than 12 km. A sharp time function with
a 1 sec duration is indicated for the deeper segment at the fault, and
a slower time function with a duration of greater than 4 sec is implied
for the shallower parts of the fault. The horizontal dimension of
the faulting does not appear to be resolvable. Considerable nonuniqueness
1s present in the models constructed and parameters such as fault geometry,
hypocenter, rupture velocity and rise time do not appear to be resolvable.
A model which is consistent with the teleseismic study done by Burdick
and Mellman was demonstrated. The earthquake moment was found to be

approximately 7 x 1025 dyne-cm.
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Chapter 4

Synthesis of Strong Motion Recordings

of the 1971 San Fernando Earthquake
Introduction

In the previous two chapters, we have examined ground motions
which were profoundly affected by seismic velocity structure. Although
source characteristics were important, relatively simple source models
were all that were necessary to produce adequate synthetic records.
However, since the San Fernando earthquake was well recorded by many
close stations, a more detailed inspection of source processes is required.
Several new comp11cationsyare also introduced by the small source to
receiver distances. Near-field terms can no longer be neglected. Fault
finiteness requires that waves from differing parts of the fault must
approach the receiver from differing directions. This means that the
observed ground motion can no longer be rotated into radial and transverse
directions. Thus we can no longer isolate SH waveforms and we are forced
to consider P waves, SV waves and Rayleigh waves. For many reasons, life
becomes more complicated as we move closer to the earthquake source.
Fortunately, as the source to receiver distance becomes small, the effects
of plane-layered structure become less dramaficg In an attempt to under-
stand the most basic features of the interplay between source and
structural effects, we choose to first model the San Fernando earthquake

as a three-dimensional fault located in an elastic half-space.
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The purpose of this chapter is two-fold. We would first Tike to
understand the types of phenomena which should be expected from a three-
dimensional fault which is Tlocated in a half-space. The second goal
is to achieve a better understanding of the particular source processes
of the San Fernando earthquake. The second goal is the more important
and difficult to achieve. The San Fernando earthquake created a wealth
of teleseismic body wave and surface wave data and also Tocal static
offset data. It thus provides a unique cross-check of several different
techniques of studying the slip on the fault plane. Ultimately, we
would Tike to find a single model which explains all of these observations.
However, in this study we will not attempt to model these different
data sets simu1taneous1y. We will comment on the compatibility of our’
strong-motion models with models which have been derived by other authors.

A Targe number of papers have been written about the San Fernando
earthquake and we will not attempt to summarize the results of all
previous studies. However, there are several papers which we found very
useful in constructing our models. The study of feleseismic body waves
by Langston (1978), Alewine's (1974) inversion of static offset data
and teleseismic surface wave data, Hanks' study of observed strong
ground motion (1975), and the inversion of strong-motion data by Trifunac
(1974) all proved very useful in our construction of San Fernando models.
Although Trifunac's models were for a finite fault in a whole-space,
we learned from his synthetic Pacoima Dam ground motion. Thus there
are several similarities between our preferred fault model and Trifunac's

final fault model.
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The numerical calculations involved in our synthetics consist
of several relatively Taborious and expensive steps. Once a particular
fault to station geometry is chosen, it is time and money consuming to
change that geometry. We have chosen to model four stations and no
attempt was made to find alternate stations or source to station geometries
which might produce better synthetics. In retrospect, we would have
ignored the station at Palmdale since a half-space seems to be a very
poor approximation of earth structure near this station. Also it appears
that a different fault dip versus depth relationship might have improved
the comparison between synthetic and real data. However, it is not
our purpose to discover £he best half-space model. We would Tike to
discover the gross features of the model which are required by the data.
Because of the large number of parameters involved, a thorough search
of the model space can result in an endless groping process. Until we
learned the significance of different parameters, we were victims of
this grope. The merits of this process are that much can be learned
about what will not work.

We are now faced with the problem of showing the reader what
we have learned from this process and why we have chosen the model
presented in this thesis. It would be impractical and tedious to present
all of our unsuccessful models. Thus our plan is to present several
simple models and to then try and understand why they do not work and

how they could be improved.
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The Data

The 1971 San Fernando earthquake produced by far the largest
single strong-motion data set yet available. Shown in Figure 4.1 are
the Tocations of most of the accelerometers which recorded this event.
We were faced with the choice of which records from this immense set we
would model. Because we are using a half-space model, it is important
that the stations be near the fault. In order to wminimize redundant
information, stations from different azimuths were chosen. The stations
for which records were synthesized are Pacoima Dam (PAC), Jet Propulsion
Laboratory (JPL), Lake Hughes Array Station No. 4 (LKH) and Palmdale
Fire station (PLM). These stations are indicated in Figure 4.1 by the
codes CO41, G110, J142 and G114, respectively. These codes refer to
the cataloguing system used in the series of strong-motion data reports
published by the Earthquake Engineering Research Laboratory of the
California Institute of Technology. It is from these reports that our
observed ground displacement curves have been taken. In Fiqures 4.2
through 4.5 we show the corrected accelerograms, integrated ground velocity
and displacement curves for these stations (Trifunac et al., 1973b).

The processing of these accelerograms involves baseline corrections and
Ormsby filtering. The basis for this processing can be found in papers
by Trifunac (1971), Trifunac et al. (1973a) and Trifunac et al. (1973b).

It is impossible for an accelerometer to recover static or even
very long-period ground displacement information and thus these integrated
displacement curves are really displacements in which periods longer

than 10 seconds have been heavily fiitered. In fact, the baseline
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correction can effectively filter periods of less than 10 seconds. For

instance, the Pacoima station probably experienced a large static offset
which cannot be easily seen when simply viewing the displacement curves.
Hanks (1975) has presented a relatively comprehensive discussion of the

sources of Tong-pericd errors for this data set.

In his 1975 paper, Hanks also investigates the coherence of
displacements between stations which are located near each other. In
general, he finds this coherence to be very good. In particular, the
records from stations in the Pasadena (i.e., JPL) area are very similar
to each other. Also the records from stations in the Lake Hughes area
Took similar. This increases our confidence that waveform modeling of
these records will yield physically meaningful results. Unfortunately,
there are only two stations to the northeast and we chose Palmdale
since it was closest. An inspection of the records for PLM shows a
distinct "ringing” in the records with a period near 1 second. We
feel that this is caused by local structure and that the Pearblossom
records (F103) would have been more useful.

Hanks (1975) points out that both the intensity of shaking and
amplitude of displacements were generally larger for regions south of
the hypocenter. In particular, this is true of the stations which we
have chosen to model. We will use this observation to try and pin

down the slip on the fault plane.
The Model

Our model consists of a three-dimensional finite fault located

in a half-space. A circular rupture front is assumed to propagate at
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a given rupture velocity from the hypocenter. The slip angle and dis-
Tocation time history are assumed to be uniform throughout the fault
plane. The Cagniard-de Hoop technique, together with a Tinear inter-
polation scheme, is used to compute the ground motions from point
dislocations which are evenly distributed (0.5 km spacing) on the fault
plane. These responses are summed with time lags which are determined
by the assumed hypocentral solution and rupture velocity. Nonuniform
fault displacement is modeled by varying the weights of individual point
sources. We are thus using a numerical Green's function technique to
integrate over the fault plane. This is very similar to the finite fault
models which were constructed for the Borrego Mountain earthquake in
Chapter 3. However, in this case, there are many added complexities due
to the inclusion of P and SV waves, near-field terms and a more general
fault to station geometry which dictates that waves arrive from different
azimuths. This last complication has two effects, both of which are
included, without approximation, in our models. The first effect
originates from the fact that sources having different locations on the
fault plane have different radiation patterns with respect to a fixed
station. The second effect is to make the definition of radial and
transverse directions a function of the position of the point on the
fault being considered at any one time. As is discussed in Chapter 1,
the importance of these effects is a function of the source's dimensions
and the receiver's distance. These effects are particularly important
in our Pacoima models.

Qur total solution can be formally written
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n m )
TOEED DY ma Yo (8) % D(8) (4.1)
Jj=1 k=1

where U(t) is the displacement at a station, j denotes the jth source
n,

along the fault strike, k denotes the kth

source down the fault dip,
mjk is the moment of the j,kth source, Xjk(t) is the response of the
j,kth source, and D(t) is the time derivation of the time history for
any point on the fault. If we choose the coordinate frame (ST’ 32, 23)

to be north, east and down, then

IJ (t) = (ij COS vy - ij sin ij)$1

+ (ij sin Vi + ij cos vjk)SZ + wjk 33 (4.2)
where we have used the notation

QJk = Q(rjkahjkaejkﬁ\ﬂ')
ij = V(rjkahjkaejkeka’r) (43)

W]k = w(rjkahjks @jka)u"l')

and whevre rjk is the distance of the j,kth source, h., is its depth, ¢ is

jk
its azimuth angle as defined from the fault strike, and ) is the rake. Q,
V and W are the radial, transverse and vertical components of motion, respec-

tively. They are givenin equations (1.71), (1.74) and (1.77). Vik is the

backazimuth angle of the j,kth point source as measured clockwise from north.
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Our method for determining individual point source responses is
to start with a coarse gridwork on the fault. Responses for points
located on the corners of this gridwork are computed by using the exact
Cagniard solutions discussed in Chapter 1. These solutions are extremely
broad band; that is, they are correct for the static as well as the very
high-frequency parts of the solution. Just as in Chapter 3, we notice
that responses from adjacent sources look very similar. It is thus
possible to calculate other responses on a finer gridwork by interpolation.
Qur scheme is as follows. Responses from adjacent points are shifted
in time such that their direct shear wave arrival times coincide. Then
a simp]e_1inear interpolation is used to calculate the shape of the
approximate solution for intermediate Tocations. The approximate solution
is again shifted in time such that the shear wave arrival time for the
approximate solution is exactly correct. Hartzell et al. (1978) have
also devised a similar method for approximating intermediate point source
responses.

The accuracy of the interpolated solutions is a function of
frequency and the distance between coarse grid points. The solutions
are very good at the longer periods which dominate the displacement
records. Because the interpolation is based on shear wave arrival times,
the approximation for the direct shear is quite good for all frequencies.
However, the high-frequency parts of the solution for phases with different
phase velocities than the direct shear wave are poorly approximated by
this scheme. For instance, the direct compressional wave will appear

as two sharp arrivals instead of just one. This is not a great worry
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to us, however, since the largest high-frequency arrival is the direct
shear wave and also because our synthetic displacements are rather
insensitive to the details of the high frequencies anyway.

For stations except Pacoima, exact responses were computed every
4 km along the strike and every 2 km down the dip. Since Pacoima is
so close to the fault, this spacing was halved for Pacoima. Interpolated
responses were calculated at a 0.5 km spacing.

It is interesting to note that our interpolation technique could
be replaced with a convolution technique such as the one employed by
Wiggins and Frazier (1977). That is, instead of summing interpolated
sources, we could sum only the coarse grid where each source would be
convolved with a separate time function which would approximate the
finiteness of that section of the fault. We can demonstrate this
equivalence by considering one element of the gridwork on the fault.
Consider the fault element shown in Figure 4.6, for which exact responses
have been computed at the corners. For simplicity, consider this to be

a scalar problem with the scalar displacement, u. u is given by:
n m '
D IR AR (4.4)
j=1 k=1

Now our linear interpolation technique says that the j,kth response can

be approximated by
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Ylm(?) Ynm(T)

Figure 4.6. Schematic of one subdivision of a finite fault. Exact
responses are computed at the corners and responses
within the subdivision are then computed by linear
interpolation.
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N 11 _nl ni Tm Tm
Vig = a5 Yyqlt-mys) g Yo (t-rgg) +ag Vo (t-ral)
nm nm
+ aJk Ynm(t—'r_ij) H (45)

where the agﬁ are interpolated constants, and the T??'s are time shifts

which are used to insure that shear wave arrival times are aligned during
interpolation. These time lags may also contain information about the

rupture process. Noting that

1y

Y (t"Tij

11

we can write (4.4) as

(t) (4.6)

where
n m
P i it
AL (6) = D D alh alt-rh)
j=1 k=1

Thus we see that our interpolation scheme is a way of finding
the appropriate far-field time functions for point sources located on
our coarse gridwork. In our actual models, the interpolation technique

includes the second order effects due to the variation in azimuth angle
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between individual point sources and the receiver. These variations
cannot be included in a convolution technique, but as long as the spacing
of the coarse gridwork does not become too large, these azimuthal effects
are very small. Finally, it is important to realize that both the inter-
polation and convolution techniques may poorly approximate the high-
frequency behavior of phases other than the direct shear wave. As we

have said before, this is not a severe problem for the half-space solution.
However, some care should be taken when applying these techniques to a
layered half-space problem, since there may be several other important
high-frequency phases present,

In Figure 4.7 we show the fault and station geometry that was
used in this study. Unfortunately, picking a fault geometry is largely
guesswork. Allen et al. (1973) have argued that the fault dip increases
with depth. They based this result on the discrepancy between the after-
shock pattern and the teleseismic focal mechanism. Langston (1978) has
concluded that the waveforms of teleseismic body waves require a depth-
dependent dip. He found that he could adequately synthesize the tele-
seismic waveforms with a hinged fault in which the strike, dip and rake
of the upper and Tower planes are (e] = N80°U, 57 = 29°, % = 90°) and
(82 = N70°W, S = 53°, Ao = 76°), respectively. These two faults
intersect at a depth of 5 km. We have incorporated these two planes 1in
our solution. However, for the sake of simplicity, we have assumed that
= N75°W. Thus the fault geometry used in this study was chosen

9 = 9

independently of the strong motion modeling results.
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Model consists of a three-dimensional fault in a half-
space. A circular rupture front propagates from an
assumed hypocenter and displacement magnitudes are
prescribed on the fault surface. Notice that the fault
changes dip at a depth of 5 km.
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Modeling the Records

Our basic objective is to search through a model space in which
the hypocentral solution, rupture velocity and distribution of faulting
are allowed to vary. We would Tike to discover which models adequately
explain the records we have chosen to model. Our model space is large
and it is unreasonable for us to randomly search through it. It is
important that we learn from the small number of models which we have
the time to study. Langston (1978) and Hanks (1974) have both argued
that the timing of the teleseismic pP phase indicates a hypocentral
depth of 13 km. Hanks suggests that the hypocenter is located 13 km
due north of Pacoima. A recent relocation by Hadley and Kanamori (1978)
indicates that the hypocenter is several kilometers south of Hank's
solution at a depth of 11.5 km. Langston found that a bilateral rupture
on a uniform fault with a width of 10 km and upward and downward rupture
velocities of 1.8 km/sec and 3.0 km/sec yielded a good fit to the
teleseismic body waves. He also concluded that the moments of the upper
and lower fault segments were 0.41 x 1026 ergs and 0.45 x 1026 ergs,
respectively. In Figure 4.8 we show our attempt to approximate Langston's
model. For the moment, we will not worry about the downgoing high
rupture velocity feature of Langston's model. The contours in Figure 4.8
signify lines of equal fault slip in meters. The hypocenter is located
in the region of maximum s1ip and the rupture velocity is 1.8 km/sec.

The time derivative of the time history of slip for each point on the
fault is an isosceles triangle with a duration of 0.8 seconds. The fault

moment, 1.5 X 1026 ergs, is significantly larger than Langston's moment.
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Comparisons of synthetic and observed records for the model we
designated Norma 140 are shown in Figures 4.9 through 4.12. Two synthetic
records are shown for each component. The top trace is the computed
ground motion and the middle trace is this synthetic motion with a base-
1ine correction and a high-pass Ormsby filter applied. We used the
baseline correction described by Nigam and Jennings (1968) and an
8 second Ormsby filter. This filter is described by Hanks (1975).

The first thing that we notice about Norma 140 is that, although
relative amplitudes are approximately correct, the synthetic waveforms
are quite dissimilar from the observed. First inspect the synthetics
for Pacoima. Notice that the static part of the solution can be very
important and also notice that the filtering process can severely alter
the shape of the records. The cbserved record begins with a sharp pulse
which is not seen on the synthetics. The polarity and timing of this
pulse are that which ié expected for a far-field SV wave originating
fhom the hypocentral region. Hanks (1974) has argued that this pulse
requires very large localized faulting in the hypocentral region. Norma
160 does not refute this argument since the fault model is smooth and
the pulse is absent. The Tater parts of these synthetics also fit poorly
and, for the moment, we will leave this unexplained.

Next study the JPL records. Notice that the observed east record
begins with a large pulse which cannot be found in the synthetic record.
The comparison of the later parts of the records is more favorable even
though the amplitudes of the synthetics are too large. The synthetic

records for Lake Hughes compare well with the observed records. Several
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short-period arrivals which are present in the observed records are
absent from the synthetics. Also, the later parts of the observed records
contain Targer-and shorter-period waves than do the synthetics. Finally,
notice that the resemblance between observed and synthetic Palmdale
records. The observed records are dominated by a "ringing" at 1 Hz
which cannot be found in the synthetics.

In general, Norma 140 is, at best, a marginally successful attempt
to explain the observed records. How might we improve this model?
Perhaps massive faulting in the hypocentral region will help to make the
large first pulses seen at Pacoima and JPL. 1In Figure 4.13 we show the
sTip contour map for the model, Norma 170. This model is very similar
to Norma 140, except that displacements of up to 12 meters are present
in the hypocentral region. Once again the total moment is 1.5 x 1026 ergs
with the upper and lower faults contributing equally to this total. The
rupture velocity is still 1.8 km/sec.

The comparisons between synthetic and observed records for model
Norma 170 are shown in Figures 4.14 through 4.17. A quick glimpse at
these figures shows that the hoped for miracle has not yet occurred. The
first pulse on the Pacoima and JPL records has grown significantly.
Unfortunately, it is still less than half the amplitude of the observed.
How might we increase the amplitude of this pulse? We could either
further fincrease the displacements, or we could increase the rupture
velocity. Either of these alternativeslooks promising until we study
the Lake Hughes synthetics. When we increased the first pulse for PAC

and JPL, we also increased it for LKH. The trouble is that this synthetic
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pulse is now too large at LKH. We are in a dilemma. How can we make the
first pulse large at JPL and PAC, and yet still keep it small at LKH and
PLM? You have probably already guessed (or read it in the abstract)
that directivity 1is our way out.

Before we get to the details of the Tower fault, it is instructive
to study the model Norma 170 with greater care. Remember that we have
also got to find some way to improve the later part of the synthetics;
particularly for the Pacoima records. Figures 4.18 through 4.29 show
how the synthetics for Norma 170 were constructed. These figures may
seem complicated and tedious, but a careful study of them is very
rewarding. Each picture corresponds to one synthetic record. On the
left, the fault is subdivided into the five strips designated A through
E. The responses of each of these strips are shown and their sums, the
synthetics for Norma 170, are shown at the bottom. This allows us to
associate arrivals in the synthetics with particular parts of the fault.
The middle and right hand columns contain the responses of point dis-
locations which are convolved with the far-field time functions shown.
The durations of these time functions are 0.8 seconds and 3.0 seconds.
The locations of these sources are shown to be in the middle of the various
strips. The peak amplitudes of these point sources are shown next to
each trace. This amplitude, given in cm, corresponds to a point source
whose moment 1s 7 X 1026 ergs.

Notice that there is usually an excellent correspondence between
the responses of the fault strips and the point responses which have been
convolved with the 3.0 second time functions. Furthermore, it is fairly

easy to identify individual arrivals on the short-period point responses,
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which in turn allows us to identify arrivals on the Tong-period responses
and on the responses of the fault strips.

Let us begin by studying the response of the Tower fault. We have
already pointed out that a major problem is the relative amplitudes of
the first pulses seen at PAC and LKH. We can see that the first pulse
at PAC consists of a near-field P wave which is followed immediately by
the far-field shear wave. At LKH, this pulse is formed by the positive
interference of the S to P head wave and the near-field P wave. They
are directly followed by a post-critical angle shear wave (for a better
discussion of the nature of these arrivals, see Chapter 1). Now look
at the vertical responses for the deepest point source for the stations
PAC and LKH. The ratio of the amplitudes of the vertical components
of the PAC and LKH point responses is on the order of 2:1. Now notice
that the ratio of the amplitudes of the first vertical pulse that was
observed at PAC and LKH was on the order of 20:1! C(Clearly, there will
be trouble explaining this pulse with a deep point source. This obser-
vation is crucial to the construction of our later models in which we
optimize directivity effects for PAC and LKH.

An interesting consequence of our preceding discussion is that
we have discovered a way to easily add high-frequency pulses to northern
station records without seriously affecting the synthetics for the
southern stations. We can incorporate several short duration events
into our model. If these extra events had a moment of only 1025 ergs,
they could cause visible short duration pulses on the northern stations.
Actually the motions observed at LKH are so small and long period, that

we suspect that the rupture is fairly coherent.



173

We will now examine the upper section of the fault in more detail.
Since PAC Ties only 2.5 km above the fault plane, it is very sensitive
to the time history of this uppef plane. It is easy to see that the
near-field terms, or more specifically, the static parts of the solution,
are beginning to dominate over the far-field terms. Particularly large
static displacements occur on the vertical component. If we look back
to Figure 4.4, then we see that this large vertical offset cannot be
seen in the observed records. We can also see that it would be nice if
we could produce a similar pulse on the north component of motion. By
carefully studying many point responses as well as static solutions for
finite faults in a homogeneous half-space (Mansinha and Smylie, 1971),
we were able to deduce that as the rupture proceeds towards and just‘
beneath PAC, large static vertical displacements will inevitably occur.
Obviously, the way to alleviate the problem of large vertical displacements
at PAC is to require that the fault offsets are small for those parts
of the fault which are beneath PAC. If the faulting is small beneath
PAC, then where does the moment of the upper fault come from? By
studying the static solutions, we discover that large displacements to
the south would be observed at PAC if there was significant faulting
~on the very shallowest parts of the fault. Conveniently, a large offset
to the south will help explain the north component of motion observed
at PAC.

We have studied the inadequacies of Norma 170 and have decided
that the following features should have been included: 1) greater

directivity on the lower fault to explain the beginning pulses seen
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at LKH and PAC; 2) small fault offsets beneath PAC to explain the vertical
record at PAC; 3) large fault offsets south of PAC to explain the north
component of PAC.

In Figure 4.30 we show a model, Norma 163, which incorporates
the features which we have just mentioned. The source parameters for
this model are summarized in Table IV.1. The comparisons of observed
and synthetic records are shown inFigures 4.31 through 4.34. Clearly
Norma 163 fits the records much better than our previous models. This
is no accident, since in reality, we tested many other models before
arriving at Norma 163. This is not to say that Norma 163 is the best
half-space model possible, but it is the best we found before tiring of
the game.

There are many details included in Norma 163 and some of these
are rather arbitrarily chosen. We will, however, try to justify certain
features of this model. Let us begin by examining the lower fault for
Norma 163. MWe have increased the rupture velocity to 2.8 km/sec. There
are several reasons for doing this. It substantially increases the
amplitude of the shear wave at PAC without increasing the amplitude at
LKH; that is, it enhances directivity. It also allows the timing of
~arrivals from the upper fault at PAC to be compatible with a hypocentral
depth of 13 km. Notice that the hypocenter is almost due north of
Pacoima and that the faulting seems to be skewed with respect to a line
directly down the dip. This has two effects. The first is to produce
the beginning pulse seen on the S75°E record of PAC. This pulse

disappears when the faulting is aligned directly down the dip. The
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Table IV.1

Lower Segment

Upper Segment

Depth of hinge (km)
Strike

Dip

Rake

Rupture velocity (km/sec)
Rise time (sec)

Moment (x 1026

ergs)
Hypocentral 1ongitude
Hypocentral latitude

Hypocentral depth (km)

-75°
53°
76°
2.8
0.8
0.8

118.41°E
34.44°N
13.

5.0

-75°
29°
90°
1.8
0.8
0.6

118.33°E
34.42°N
13.
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polarity of this pulse is reversed if the faulting is skewed to the east
of the down-dip direction. A second effect is that directivity decreases
the amplitude of the first pulse seen at LKH.

The faulting in Norma 163 is predominantly unilateral upwards
and this, again,is to optimize directivity effects. We will delay a
closer look at this particular problem until a 1ittle later. Notice
that the 2 meter contour in Figure 4.30 is elongated towards PAC. Again,
this increases directivity effects. If the fault width is increased
significantly, then the ratio of LKH to PAC amplitudes quickly decays.

We are pleasantly surprised to discover that this ratio can help constrain
the horizontal dimensions of faulting.

Details used on the upper fault plane are based mostly on an
analysis of the PAC records. The hypocenter for the upper fault is
equidistant from the hypocenter on the lower fault, but it has been
shifted eastward. Thus the direction of rupture propagation changes
from a southerly to a south-southwesterly direction at the hinge line.
This is a detail which improves the comparison of the synthetic and
observed S75°E records. Although it makes the records look better,
evidence for this change is hardly definitive. The rupture velocity on
the upper fault is reduced to 1.8 km/sec so that the rupture can be
continuous across the hinge line and still arrive at the surface with the
correct timing. This feature is also not unique. Perhaps the rupture
velocity is high and the large event at the top is actually a slightly
delayed second shock.

At stations other than PAC, the Targest arrival from the upper

fault is a Rayleigh wave. Our Rayleigh velocity is the half-space
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Rayleigh velocity which is probably significantly higher than the Rayleigh
velocity for the real earth which has lower velocities near the surface.
We have included a 2 second delay for all arrivals from the upper fault
for the three stations, JPL, LKH and PLM. Although this is a rather
unsatisfactory way to model sTower surficial seismic velocities, it does
improve the relative timing of the synthetic JPL records.

Notice that Norma 163 significantly improves the comparison
between observed and synthetic records for later por‘tions of the LKH
records. This is due to added character of the upper fault. The PLM
records do not look much better than they did before, but again, we feel
that they are seriously affected by local structure.

Although we used a 0.8 second rise time throughout the fault,
there is some justification for a rise time nearer to 2 seconds on the
uppermost part of the fault. It appears that the southward displacement
at PAC occurs too quickly. This could be alleviated by a longer rise
time or perhaps a siower or less coherent rupture process.

InFigures 4.35 through 4.46 we show detailed interpretations of
each of the synthetic records for the model, Norma 163. These figures
are very similar to the previous set of Figures 4.18 through 4.29,

Since the very top of the fault has become so important, we have included
| a sixth strip which shows the response of the shallowest section of the
fault. As before, the middle row of responsesshows point source responses
which are convolved with a 3 second triangular far-field time function.
Peak amplitudes (in cm) are shown for a moment of w x 1026 ergs. The

right-hand column of responsescontains far-field step function responses.
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detailed explanation.
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These are very useful since they allow a positive identification of the
various phases present. For the most part, these figures are self-
explanatory. There are some features worth noting, though. If one looks
back to Figure 4.2, then one can see that the large velocity pulse seen
at PAC is the far-field shear wave from the bottom of the fault. This
arrival has been greatly enhanced by directivity. Peak accelerations at
PAC occurred at about the time that energy is arriving from our strong
near-surface faulting. The Targe displacement pulse seen on the east
component of JPL is comprised mainly of the direct S wave. Near-field

P waves, S to P headwaves, and Rayleigh waves are particularly important

at the northern stations LKH and PLM.
Discussion

Now that we have constructed a model which seems to be compatible
with the strong-motion data, we must attempt to evaluate its validity
in light of other evidence. Specifically, Alewine's (1974) inversion of
static vertical offset data provides us with an excellent test of the
upper part of our model. He was able to fit the observed elevation
changes with a high degree of accuracy. His model consisted of a three-
- dimensional fault in a half-space. Fault slip was allowed to vary with
depth. Because of the nature of the static inverse problem, Alewine
had excellent resolution on the top part of the fault, but the solution
for the deeper parts was poorly constrained. Figure 4.47 shows plots
of magnitude of fault slip versus distance along the profile A to A’

whichvis shown in Figure 4.30. These plots are for Alewine's inverse
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solution and for our solution, Norma 163. We believe that the most
significant feature of this comparison is the 5 meter fault offset which
is included in both models for the shallowest part of the fault. Both
models also decrease the amount of offset rapidly when proceeding down-
dip. Since Alewine's resolution for the deeper part of the fault is
poor, it may be fortuitous that our two models produce similar displace-
ments in the hypocentral region. Jungels and Frazier (1973) also studied
the static vertical displacement data. They too concluded that large
fault offsets were required on the very shallowest part of the fault.
Because of the combined strong-motion and static displacement studies,
we believe that the evidence for large shallow faulting is very strong.

Very intense shaking was observed in the area just north of the
surface ruptures (Nason, 1973; Scott, 1973; Johnsen et al., 1973). This
intense shaking occurred just above the section of the fault on which
we believe the large offsets occurred. It seems likely that this is Tess
than coincidental. Because of the particular geometry of this upper
faulting, it is possible that areas within 1 km north of the surface
breaks experienced motions which were significantly different from those
recorded at PAC.

The similarities between our model Morma 163 and Langston's (1978)
models of teleseismic body waves are difficult to evaluate. We used the
same fault geometry and focal mechanism. The relative timing of deep and
shallow faulting seems to be roughly comparable. His calculated moment
is 0.86 x 1026 ergs and ours is 1.4 x 1026 ergs. Perhaps the largest

discrepancy between the models arises when considering divectivity effects.
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Langston found that the teleseismic short-period direcf P arrival was
stronger than the pP arrival, even though these waves have roughly similar
amplitudes at long periods. His interpretation is that the upward
propagating rupture had a velocity of 1.8 km/sec. This Tow rupture
velocity has the effect of dep]etingvthe upgoing phase, pP, of short-
period energy. Langston also postulates that there is significant
downward fault rupture which produces the short-period energy seen in the
direct P phase. His modeling indicates that if one-fifth of the moment
on the bottom fault were due to downward rupture at a velocity of
3.5 km/sec, then the correct ratio of short-period pP to P amplitudes
would result. Here is the problem. We need strong upward directivity
to explain PAC. If there is strong upward directivity, then how can we
explain the depletion of short-periods in pP? Furthermore, Norma 163
is predominantly unilateral upwards. Can our models accommodate signifi-
cant downward rupture?

In the model, Norma 171, which is shown in Figure 4.48, we have
put roughly one-fifth of our moment for the bottom fault beneath the
hypocenter. A1l parameters are the same as for Norma 163 except that
the moment on the bottom fault has grown to 1026 ergs. A Targer moment
was necessary to explain the amplitude of the first pulse seen at PAC.
Comparisons between observed and synthetic records are shown for the
stations, PAC and LKH, in Figures 4.49 and 4.50. The additional down-
going faulting has virtually no effect on the PAC synthetics. This
downgoing faulting has, however, greatly increased the amplitude of the

shear wave seen at LKH. The effect of downward faulting is to increase
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amplitudes for northern stations. This is an undesirable characteristic.
Although we believe that our modeling is not sufficiently accurate to
allow us to exclude the possibility of downward faulting, we can conclude
that there seems to be no evidence for this downward rupture in the
strong motion data. For the present, the explanation of the short-period
teleseismic P waveforms remains hidden.

In many respects, our model is very close to Trifunac's (1974)
San Fernando model which was obtained by a linear inverse technique. Using
a homogeneous whole-space model, Trifunac synthesized displacement records
for PAC, JPL, LKH and PLM. Only his PAC synthetics, though, are similar
to ours. This should come as no surprise since we have already seen
the importance of the free surface for the recordings at JPL, LKH and
PLM. Even for PAC, we were uncertain about whether a whole-space model
could adequately approximate a half-space model. It is commonly assumed
that the whole-space solution need only be doubled in order to approximate
the response of a near vertically incident wave on a free surface. As
we often do, we allowed our physical intuition to play some tricks on us.
We could easily imagine that a wave which dynamically reflects at a
free surface could cause twice the motion as that same wave jn a whole-
space. But what about the static part? Should it also be doubled? Should
half-space static displacements be twice as large as whole-space displace-
ments given the same fault offset? Our initial reaction was that the
whole-space and half-space answers should not differ by a factor of 2.
PAC is so close to the fault that it might as well be on the fault. If

we specify a certain dislocation, who cares whether we are on a half-space
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or in a whole-space? As you have probably already suspected, you are being
baited. In certain instances, the half-space static solution is indeed
almost twice the whole-space solution. In the case of the half-space,
the upthrown block on which PAC rests experiences almost all of the
static offset, whereas the downthrown block is hardly downthrown at all.
In the whole-space solution, the upthrown and downthrown blocks move
equally. Thus a factor of about 2 is present for this half-space to
whole-space comparison for a station directly above a shallow angle thrust.
A more complete description of this approximation is given by Boore and
Zoback (1974).

The above discussion makes it easier to understand why Trifunac's
(1974) and our models are similar. Although the free surface may be
important for short-period arrivals from the very shallowest parts of
the fault, displacements at PAC are most affected by the quasi-static
offset of the upper fault. Trifunac's whole-space model seems to approxi-
mate the half-space reasonably well. However, we would urge that each
case be examined carefully before deciding the appropriateness of this

approximation.
Conclusions

So, where are we? We are probably somewhere in between. We
feel that certain gross features of the faulting process can be resolved,
but by no means have we fit the records perfectly. Feigning innocence,
we have ignored the effects of topography and geologic structure. Further-

more, we probably have not even found the best half-space model. However,
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we feel that we can draw some rather important conclusions from our
naive study.

Directivity seems to play a major role in the observed motions.
Predominantly unilateral faulting originated north of PAC at a depth of
13 km. The rupturing progressed smoothly over a fault with a width of
about 6 km and displacements in the hypocentral region were about 2 meters.
The rupture velocity was near 2.8 km/sec for the deeper faulting and
1.8 km/sec for the shallow faulting. Fault offsets beneath PAC are very
small. Massive faulting with fault offsets of 5 meters occurred within
several kilometers of the surface rupture. The large velocity pulse
at PAC is a far-field shear wave which is enhanced by directivity. Peak
accelerations at PAC are probably associated with the large shallow

faulting.



APPENDICES



Introduction to the Appendices

These Appendices are intended to be entirely tutorial. Hopefully
they will provide insight into the Cagniard-de Hoop technigue as we
presently use it. These Appendices are essentially revisions of class
notes given by Don Helmberger. Since I am not very familiar with the
complete history of the development of these solutions, I can only
apologize for inadequately referencing the various parts of these
solutions. My only intention is to provide a single source which develops
generalized ray theory from reasonably basic concepts.

We will solve only fluid problems since they are scalar problems
and therefore they are relatively simple. Since our solid problems can
be reduced to scalar potentials, these fluid problems provide the ground-
work for solid problems. We will first solve three line source problems.
Since the third spatial dimension is quickly dropped in these problems,
it is possible to solve them in Cartesian ccordinates. These line source
problems allow us to demonstrate the basic phitosophy of the Cagniard-
de Hoop technique without the additional complexity which is introduced
by the point source problem. They also allow us to introduce generalized
ray theory in a very simple way. Our final problem is that of a point
source in a fluid whole-space. This introduces the types of solutions
which represent spherical waves in cylindrical coordinates.

Let us give a quick preview of the method. Basically we would
like to solve an inhomogeneous scalar wave equation with boundary
conditions. The approach is to Laplace transform with respect to time

and to then Fourier transform with respect to space. The wave equation
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will be reduced to an algebraic equation. In order to find the final
solution, we will inverse the transformation procedure. One space
transform variable will be inverted by contour integration and the other
space variable and the time variable will be inverted simultaneously by

using a properly chosen change of variables.
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Appendix A

Line Source in an Infinite Fluid

&y
~Z
(x,y)
Observer
point
X
Infinite length
line source . -
Figure Al

along z axis

Let x, y and z form the Cartesian coordinate system shown in
Figure Al. Suppose there is a disturbance, f(t), along the line x = y = 0.
We can then eliminate the z dependence of the solution. Now there exists

a scalar potential, ;(x,y,t),such that

ve(x,y,t) = U(x,y,t) = displacement vector . (A.1)

V]

Furthermore, ¢ satisfies the scalar wave equation,
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2Ll LEE L s(x) sly) F(E) (.2)

X ay ¢ ot

where §(x) is the Dirac-delta function. We will begin by Laplace trans-
forming equation (A.2) with respect to time. Time is transformed to the

variable 4. Recall the definition of Laplace transform

e

F(s) =_CP(f(t))=[ £(t) et gt (A.3)

o}
and the inverse transform is

yrie
1

f(t) = 5= F(s) €7 ds . (A.4)

v

Remember that this is valid only if f(t < 0) = 0. Now the Laplace

transform has the property that

rp {’f{ f(t)} = ALP {f(t)} - flo) . (A.5)

If our disturbance, f(t), begins at t = 0, then we can transform equation

(A.2) to
2- 2- 2
BE 254 0= () sly) Fs) | (A.6)

z(x,y.8) = LP{z(x,y,t)]
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We will now Fourier transform (A.6) with respect to x. Define

lays) = FTLE(xy.8)) = f e (k. y.8) dx (A.7)

and the inverse transformation is

ooty

z(X,y,4) = L N é(a,y,é) dy . (A.8)
V2r

...eo-l-].\)

~

In general, both o and ¢ are complex. Recall that the Fourier transform

has the property that

FT{f'} = -ig FT{f} (A.9)

where the prime denotes differentiation. The Fourier transform of

equation (A.6) with respect to x becomes

_a2 z(a,y,é) + —5 - é = - QLZLQELQL ) (A.10)

where we have used the fact that

FT(s(x)) = —

Finally, we will take the Fourier transform of (A.10) with respect to y,

where

~
A

Z(wsB>8) = FT{z(x,Y,3)}

!
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Equation (A.10) becomes

2 2
(68 re? 12 Slans) < L

or

Conpys) = B (A.11)
ZW(BZ +a2+/5—2)
C

Now if we can take the inverse transforms of (A.11), then the

problem will be solved. Using the inverse transformation of 2 given

by equation (A.8), we know that

=ty .
2 \ _ 1 _in 2
C(a,y:é) - e Z(aaBaé) dB
V2n e
~ooty
co-l-"i'Y .
-1yB
_ F(s) e — d3 . (A.12)
ZWJ§E> —m+iy (BZ'+&2'Fé?)
c
' 2, 2 42
Since the quantity (™ +y -+~§) is analytic along Res, let vy = 0. The
c

integral above can be solved by contour integration. There are simple

poles when

2
2,8 3y5 (A.13)
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Now suppose that

"

2 8°\%

Re[(«"+=5)*]1> 0 (A.14)

o
., 2 42 oo . .

then g = -1 (e -+—§)2 lies in the lower half plane. Consider the contour

c
C] + C2 in Figure A2.
AImpB
C
S X T LYY B e S LT = Re 3

Fiqure A2

Now by the Residue theorem,

n
[ G dg = f G ds + f G dg = 2wi Z Resj > (A.15)

C4*Cy Cy C, =1

where
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_F(s) TP
fo 2
2nv 2w (52"'0!2""%)
C
n

and where :g Resj is the sum of the residues of the poles inside

‘1
C] + CZ‘ 3" Notice that the Residue theorem is for integration
about the pole in a counter-clockwise sense. The pole is of order 1 and

its residue is

-1y8,
Res =1im(g—50) g —
BB, BB, (p-8,)(atp,)
where
2
. 2,5 \k
B, = -i{e +35)
0 CZ
Thus
2.y
(et +45)?
/ Gds = -1 o : (A.16)
2. 5°\% _
C,+C,y (o +;§)

Now consider the integral vlaG dg .
¢

If y> 0, then

_1yB - eiyRe(B) e.yIm(B) < 1 for Im(B) <0
e
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Thus if y = 0 and Im(s) < 0, then

[ -iyB
e dg
ds < J[
2 9 42 2 2 42

5 5
C, (87 +a" +%%) C, (8" +o" +%%
c c
Now on the contour C,, g = re'® . Thus
-1y8 0 .
e d ir e'? do
? 3 < 0 »
C, (8% 40" +25) (10 4 )
c c

The triangle inequality allows us to conclude that

. 2 , 2

er e216+0l2+/5_2i S Y‘Z _ !O{2+ é__é_ !
c c
Thus
-1y8 0 -
e ir e18 ds B ru
2 2 42 # o= 2 2,45 2. 2. 42
A 5

C, (8" o ‘*E§? - (rT 4y ‘*;g) rto ‘*ig

which goes to zero as r —» « .  Thus -]f G dg = 0 in equation (A.15).

From equations (A.15) and (A.16) we CZ conclude that
21
~1yB —y(a? + ~5)*
e . me C
[ 2
—o (g 4P 42y (oF +25)*

(A.17)
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for y > 0 and condition (A.14). Now if y < 0 and condition (A.14) holds,

then we simply integrate over the contour C] + C2 which is shown in

Figure (A3).

Figure A3

As before, evaluate the residue, but instead at 8o

? 1
‘y(Olh +62) 2
. e C
271 Res = 5
BB 2,8y
0 (a + 2)

Thus

(A.18)
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where y < 0 and condition (A.14) holds. Thus from equations (A.12), (A.17)

and (A.18) we conclude that

2,
: o MR
E(C[a‘yab) = (A € 2 t(A.]9)
2V2n 2,85\
( 'F“§J
c
We will next invert the Fourier transform with respect to x. Using
equations (A.8) and (A.19) we know that
2
o ciox -lyle”+2y)
- c
C(X:.V5b) = “‘E‘(“él"'f € e 7 do
2vV2mV/2n 2, 8%\%
- (o '*—5)
c
L
@ exp[-ixx - |y|(o” +5)7]
_ F(s) ¢ do . (A.20)
4w 5 52 L )
- (o +=5)"
c?

Up to this point, we have assumed that ¢z is a function of the
independent variables time and space. Actually, we know that solutions
. to the wave equation have the characteristic that a pulse travels with
the wave velocity. In the time domain, this fact manifests itself
through d'Alembert solutions to the wave equation. We are about to
make several important transformations which are analogous to transforming
to some characteristic coordinate system. We would Tike to make some

change of variables which will allow us to solve equation (A.20) by
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inspection. Suppose that we could devise some transformations which will
~make equation (A.20) look like a Laplace transform. Consider the change

of variables,

L= -isp . (A.21)

Then dv = -isdp and p(o = «+iv) = jo + v and then equation (A.20) becomes

1
o expl-s[px+ |y| (45~ p%) 13dp
, . -1 F(s) ¢
c(x,y,8) = — =

: (A.22)
-ie (- p?)*

Now Laplace transforms involve integration from zero to infinity and
equation (A.22) runs from minus infinity to infinity. The Schwartz
reflection principle can help us here. If g(z) is analytic, then the

Schwartz reflection principle allows us to assert that if g(z) is real

for real z, then g(z) = g(z) ; or g(z) = g{z) = g(z), where the bar

denotes complex conjugation. Thus

fo exp{-s [px+|y] (5 - p?)#13dp
. T 7L
~feo (= - p7)°
C2 p
—joo 2%
/ expl-s[px + |y ( ”C‘g p~)21tdp
i 7L
0 (— - p°)*
C2 P
/ exp{-s[px + Iyl(—— - p?) dp
= : : (A.23)
5 2)”2

C2 P



214

Thus we can rewrite equation (A.22)

J oo
_ _ iF(s) 1 2% (1 2\7F
t(x,y,8) = 7 (/ﬁ exp{-slxp + [y[(—5 - p%) ]}(~§-p ) dp
0

3o
L \
—N/- exp{-s[xp + !YI(é%" PZ)E]}(;%w-pZ) dp) . (A.28)
c
0

it

Now if z c] + 1 To s then

z-z=c]+1c?-(c]+1¢2)=21‘c2

Thus equation (A.24) becomes

. 1 2\%
jo exp{-4[xp + IY,(—Q’- p")*13dp

c(x,y,8) = Féfr) Im d 2)12 : (A.25)

Now how are we to obtain z(x,y,t)? We know that

oo

z(X,y,5) =/ c(x,y,t)e"At dt . (A.26)
0

After studying equations (A.25) and (A.26), the value of the next

transformation becomes obvious. Let

vty (- 097 (A.27)
Cc
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We can invert equation (A.27) by using the quadratic formula

2
p=%j1’~—¥2~#t2—8—2* , ~ (A.28)
R R c
2 _ 2 2
where R™ =z x" + y~ . We can also calculate dp/dt.
dp = —L—dt (A.29)
Vo
o2
where we have defined
1 2\%
= (= -p7)”°
il 2
J Y, a4 ROy X
= 2 T 1(t "‘_'2'1 —~2.' . ’ (A'3O)
R o R

Now recall the condition (A.14),

2,
Re[(o? + %)% > 0
C

Applying the transformation (A.21) to this condition yields,

Re[é(p2 + ;%)%] >0 . (A.31)
c

If 5 is a positive real, then conditicn (A.14) becomes

Rem > 0.
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If condition (A.31) is to hold, then the lower and upper signs in equations

(A.28) and (A.30) must be used together. We can now write equation (A.25)

in terms of + .

r(p=i®)
_ -AT
2(X,y.4) = Féj) ImJ{ € , m dr
) R
7 (p=0) VT _ B?
C
T (p=e) -
- Féf;) Im/ ie™ 4 . (A.32)
t{p=0) 2 BE
2
c

Now equation (A.32) is beginning to Took very similar to the definition
of the Laplace transform. If v were real and increasing, then T would

correspond to time. Now the path in the p plane which makes T real 1is

shown in Figure A4.

2
tX |, . 2 R
P=7+1ngt "2

=
pre
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Now it can be shown that the integral along C3 goes to zero as r becomes
infinite. Since our integrand in equation (A.32) is analytic, Cauchy's
theorem assures us that the contour C] can be replaced by the contour

C Now to = t(p=0) = l%l-, and thus equation (A.32) becomes

9

. =AT
i(xayaé) = Féi) Imf ~1LE dr . (A.33)
t V.2 R
T 2
C

Now the integrand of equation (A.33) becomes complex when

+ > R/c. Thus the solution can be written



00 R -A
_ Hir - =) ™7
Zoy.8) = R f C
t, 2 R
T 2
C
—AT
- (r - ~) e
= r ./. dr
RZ
O p—
- 2
C

where H(t) is the heaviside step function.

that (A.34) can be rewritten as

R
- H(t - =)
Z(X,y,8) = Féé) P € b,
i 2
t2 R
-7
»C
and thus
R
H(t - 2
z(x,y,t) = féfr) * ¢
;2
2 &
7
C

> (A.34)

Now we immediately recognize

(A.36)

~ which is the final solution. Our transformations allowed us to solve

two integral equations by inspection. For this problem, though, the

victory is somewhat hollow since there are simpler methods for finding

the solution. The real value of our method becomes clear in the next

section when we include more complicated boundary conditions.
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Appendix B
Fluid-Fluid Interface Problem for a Line Source

This problem is closely related to the 1ine source problem which
we just solved. The addition of an interface allows us to investigate
head waves and critical refiections. Consider the coordinate system
shown in Figure B1. The coordinates are such that the x and z axes lie

on the interface with y increasing upward.

y 4 /
/
/
/
/
/
/
/
. /
Line source /
along y—g //}h p,» ¢ for y>0
X= /
*\\\&/

/ .
, -
/ | X

/ |

/
/ l
i | Pz, €, for y<O

7/ |

/ |

/ |

. ! Fiaure BI

. Again, let z(x,y,t) be a displacement potential as in Appendix A. The

wave equations for ¢ in the upper and Tower media are:

2 2 2 |
3z AN 3z ,

ot - b b= =s(x) sy - h) (t) (8.1)
X oy C] ot

fory> 0 s and
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BZC 32C SZC
2 N 2 1 2
2 2 "o, 2 0
X oy 2 ot
for y< 0

Now the general solution to equation (B.1) is the sum of the

(B.2)

particular solution to equation (B.1) and the homogeneous solution to

equation (B.1). The general solution to equation (B.2) is simply the

homogeneous solution to equation (B.2). Now in Appendix A, we showed

that the particular solution of equation (B.1) can be written in the

x and t transformed domain as (see equation (A.19)):

2

-y - bl (of + 27
~ e C
P(:](OlaYsA) = F(i.),, 2 ] )
227 2.4 %
(v +—'2’)
1

where again,

C{any,s) = FTLZ(x,y,8)} = FT {LP[z(x,y,t)]}

We would now 1ike to find the homogeneous solution for equation

(2.1) in the w,y,4 space. If you examine Appendix A, you will find that

" the doubly transformed equation for Z(a,y,é) is given by equation (A.10).

Without the forcing term it becomes

2 =
hi;.i(CZaY:A) 2 /32 ~

(o

3
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The general solution of equation (B.4) is

2 62
é(ozyé)=r<e C + Kk, € +:7)
h‘l 8.7 'I '] 2 ']

1
]

where Ky and k, are arbitrary functions of o and 4 only. Now condition
(A.14) must hold if our particular solution is to be valid. Thus we
have that

2

+ﬁ—2—) >0 . (B.6)
=

Re (012

This condition allows us to conclude that

Since we have no sources at y = «, we will assume that Ko = 0. For the

sake of convenience, let

K]EAF(b) 1 5
2vem 2. 5 %
(o ’***f)
C

where A is an arbitrary function of o and 4 only. The general solution
(excluding waves arriving from «) for 51 is the sum of equations (B.3)

and (B.5).
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2 2
. . ly-hlf A5yl A ”
Glasyss) - —FL [e 2 ?
)/2

2
277 (of + 2

2
i (B.7)

An argument similar to the one just given allows us to write the

solution which converges as y —» -« in medium 2.

(B.8)

where B is an arbitrary function of o and 4 only. We would now like to
find A and B. We do this by examining the conditions on the boundary,
y = 0. For a fluid-fluid interface, we require that the displacement
normal to the boundary is continuous. Also, the pressure must be
continuous across the boundary. Normal displacements are continuous

across the boundary if

~ ~

351 ¥a

-2
'gy_‘ (015095) = dy (O{,O,é) . (B-g)

We will now derive the continuity of pressure condition. The

pressure in a fluid can be written

K7+ (ve(x,y,t)) = P=Kvie(x,y,t) .,
[aV]
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where P = pressure, K = incohpressibi1ity, and

2 82c+32__
2

aX 3y

<]
!
N

Now recall that the wave equation is

2. 1 BZC
VtEo 2
¢ at
2 K .
where ¢ = o and p = density.  Thus
2
at

Thus the continuity of pressure condition can be written

2
32;](x,0,t) 37T,
p et et e et et :p e —
1 Btz 2 8t2

(x,0,t) . (B.10)
Taking the Laplace and Fourier transforms of equation (B.10) yields
2 = - 2 =
2 c1(a,0,é) =0,y 4 cz(a,O,A),
or
Py rﬁ;](a,o,zs) = 0y 2](01,0,/5) . ‘ (B.11)

Now substituting the general solutions, (B.7) and (B.8), into

the boundary conditions, (B.9) and (B.11), yields the two equations



and

Now if we define

(ozz 1y
n = (5 + — ,
1 p2 CTZ
o T \%
np =t
p C2
and
P2
5 T — s
°1

then the simultaneous solution of the above equations yields

8Ny = 7 -1 h4
i 2 1
A=A B.12
(5“1 ™ nz) e (B.12)

and

(B.13)
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By substituting equation (B.12) into (B.7) we find that

N -ly-hins My =M, -My{y*+h)s
g.i(a/,y,/s) = —-—F—(A)—— e L + (——l-g~ e 1 (B.14)
2v/2w 874 6“1-+n2

This is the exact solution for 2 in the upper medium:. The rest of our
efforts will be directed towards finding the inverse Fourier and Laplace
transforms. We recognize that the first term of equation (B.14) 1is the
solution to the problem of a 1ine source in a whole-space. Essentially,
it corresponds to the direct wave. Note that this direct wave part of
the solution behaves as if therewere no boundary at all. Even ify

is small, the direct wave is unaffected by the presence of the boundary.
This is true regardless of whether <5 is greater or less than Co-

Let us examine the second term in equation (B.14). Define

~ 8N - Mo My +hls
lnys) = LBl (Ll o (5.15)
2/27 smy ST T2
The inverse Fourier transform of equation (B.15) is
¥ ddax -y +h)s eng -
. _ F(s) Tox =My * 17 T2, &
ca(x.y58) = 5= f e 5T, o, (B.16)

-CO

Just as in Appendix A, we will solve equation (B.16) by a change

of variables. Let

o - _-iAp ; er = _'iédp . (B.]7)
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Applying equations (B.17) to equation (B.16) we obtain

oo ’
F(é) f e—A[PX+Tl]\.Y+h)] ﬁn]“nz) _d_B

L (X,y,5) = . —_—— . .
c (x,y,8) = 7= | ) T, (B.18)
_]oo
where
2
2 1 o 1 4
[P ST S N . B.19

As in Appendix A, we will apply the Schwartz reflection principle

to equation (B.18) and we obtain

17 sIpx+myly+h)] eny -
F(s) Im[ R Ch -T2y do (B.20)
0

z (x,y,4) =
Y‘( ¥>8) 2m 6n1+'n2 o

Just as in Appendix A, we will make a change in variables which will
make equation (B.20) look like a Laplace transform equation. We would

like to find a path, the Cagniard contour, in the p plane such that if

T = px +,(y+h) = px+ (y+h) ;%-P , (B.21)
1

“ then 7 is both real and positive. If it is permissible to deform the

path, p runs from 0o to i», to the Cagniard path, then the transformation

(B.21) will make equation (B.20) look like a Laplace transform equation.

We will first calculate a path, p(t), such that v is real and positive.

By inverting equation (B.21) we find that



L T - (B.22)
where

R = [x° + (y+h)?2]?

Thus R is the distance that the reflected ray has travelled. We can

also solve for ﬂ](T)-

2

1
n,{7) = ~———-—T(y§h> T (e - ~R~—2—)/2 5. (B.23)
R c] R
We can also show that
d i
_&E_: 12 , (B.24)
, 2 R™ \%
(T - “—2‘)
<
Finally,
2 1 2
My =Tz~ Pp and M=o
1 &)
S0
1
Mp(T) = [mz('r) - —17+ —]—2—]/2 (B.25)
C

The substitution of equations (B.24) and (B.21) into equation (B.20)
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yields
i -7, 1 H(T-t)
- F(4) f st O T T 0
X,y ,A) = T d B.26
Cp(Xy.8) = == Tm [ e (5T\1+ﬂ2) e (B.26)
0 )
1

where t = t(p=0) = |y-+hl/c] .

Now equation (B.22) tells us that p(T) becomes complex at

tr = R/c] . Notice that
trx X
p(t) = 5 = X
r R2 Rc]

We recognize p(tr) to be the classical ray parameter for the geometric
reflection. |

In order to study the integration in more detail, we will need
to consider several different cases. First, suppose that C1 > Cy. This
is the simplest case since there are nc head waves generated. Now
p(t,) <1/¢, always. Also n; and 7, are real for t < t_and thus the
integrand of equation (B.26) is real for t < t. The Cagniard path
_is shown in Figure B2.

The solution when Cy < € is then

(o]

- H(t -7,)

- _ F(s) j s 8017 T R
z (X,y,4) = Re e ( ) dr . (B.27)
" . e (Pt
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from 7,
We can immediately recognize the solution to be
H(t - t,)
- f(t) R
r (x,y,t) = * Ry, (t) (B.28)
where
87, (t) - 1, (t)

The expression for R]Z(t) is quite complex. In fact the algebra is so
involved that we simply use a computer to numerically calculate this
function. R]2 is a generalized reflection coefficient. Notice that the
solution (B.28) is similar to the direct ray solution except for this

new complex time dependence which is introduced by R]Z(t)‘ We can find
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an analytic approximation to our solution which will be valid for times
near the reflection time. We will call this a first motion approximation.

Now recall from equation (B.26) that our solution looks like

H{t -t )
g (x.y,4) = ng) Im[ edT R, A0 4 (B.30)

First notice that for t near tr’ dp/dt becomes very large since
it has a square root singularity. Now also notice that equations (B.23)
and (B.25) tell us that Ty and 1, are well behaved near t.. Thus Ryp is
relatively well behaved near tr' Since R12(t) changes slowly relative
to dp/dt, we will consider that R]Z(f) is constant and equal to R]Z(tr)'

We can immediately write the approximate solution for t near tr by

inspecting equation (B.28).

(x.y,t) ¥ T )Rt (8.31)
XYt Ty 2% 12'tr '
for t near tr = R/C] .

Except for the constant, Ry,(t ), solution (B.31) has the same
form as a direct ray which has travelled the reflected distance. We
can show that R]Z(tr) is the plane wave reflection coefficient for the

geometric ray. Now
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y+h cos ©

1(t) = g = = . (B.32)
1 1
2 %
, +h 1 1
ﬂz‘tr):[Ly % -7t 2]
Rc] C1 Cy
(c 2 RZ - x% ¢ 2) (c 2_¢2 sin? 6)1/2
172 172

where 8 is the incidence angle for the reflected ray. gp and"q2 are
sometimes called the vertical wave slowness. Just as p could be

interpreted as the reciprocal of the horizontal phase velocity, 7 can
be interpreted as the reciprocal of the vertical phase velocity. We

can now calculate R12(tr)'

| em ) - mplt)
Rralty) = [6ﬂ1(tr)+ﬂz(tr)

5c, cos 6 - {c 2--c 2 sin2 8)
= 2 12 (B.34)
- 2 2 .2 \5 : :
5C, COS 6 + (c] - ¢y sin g)

1
%

Finally, we can write the approximate solution for C1> Co and t near

a
. tr S



_ H(t-t,)
e Ooyat) o TEL { 5 Ryt )}
r (t "tr ) r
= f(t) * H(t—tr) R (t )}
2n { (t+t )5(t-t)2 12"
H(t-t.)
v féTtr) *{ v Rip(t,) } . (B.35)
2tr(t—tr12 .

We will now consider the case where c] < Co. Remember that

2

. TX . {y+h) 2 R
p(r) = 5 + i —%/T -5
R2 R2 c 2

1

Once again, p becomes complex for T > tr = R/c]. In this case, however,

p(tr) = x/Rc] can occur after the branch cut 1/c2- We will first examine

what happens when p(tr) = x/Rc] < ]/cz. The Cagniard contour for this

case would appear as shown in Figure 53.
A
I
Al
Imp I Figure B3
|
r\\\\\\\\\\
|
I Deformed
i \ t real
I X
"l/C| | '/C[
SNONN - — LLLLLLLL Ll
TITITTITTTTTT TR Rep
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This case turns out to be exactly the same as the case which we
just completed. Thus, solution (B.29) applies. Also, the same first
motion approximation can be used. Thus the approximation (B.35) applies
as long as x/Rc] < 1/(:2 .

Now what if x > Rc]/c2 ? We recognize that this is the distance
for which a geometric ray would be critically reflected. Recall the

definition of 7, and 7, .

Mo becomes imaginary when p becomes larger than 1/c2. Thus if

X > RC]/C2 , our contour looks like the one shown in Figure B4.

Imp T} ' Figure B4
r\\\\\\\\
|
| Deformed
: to 4
| p(t);
| t real
| X
| PR
Ci
_I/b' { l/bl
DT TR Ll Rep
“1/ce ﬁf ly+h| Ve,
Ci Branch cut

from 7,
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The integral we are to solve is given by equation (B.26)

o iH(T-L——J-y+h)dT

- _ F(») ~sr 8T "M o
cr(x,y,A) = 5 Inl/ﬂ e (6ﬂ1'*ﬂ2) (T2-t 2) . (B.36)
Y

0

Since nZ(T) becomes imaginary for p > 1/cy, we expect a contribution to
the integral before p itself becomes complex. This contribution is
called the head wave. Notice that the time at which T, becomes complex

is when p(tc) = 1/c, , or from equation (B.21),

_ X 1 1
tC :’C“"*” (y+h) 6‘-2‘-5—2— . (8.37)
2 12

This time can be shown to be the travel time for a head wave which 1is
computed using classic geometric ray approaches.

Now define the head wave solution to be (x,y,tC < t< tr)'
Let
:?}H;) [H(t - ) - (e - £,)1)
r (B.38)

_ (1) 1 '
Chead(x’y’t) = T Im 2 7o |

. Remember, ™ and n, are functions of time. 7, is a real mess. Thus it

is difficult to fully discuss the nature of Chead * We can examine the
behavior of Chead Near t. by expanding p(t) near t.. This will be a

first motion approximation again. In our last first motion approximation,
dp/dt had a singularity and we therefore considered T and Mo to be

constant. If you examine equation (B.24) you see that dp/dt is nicely
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behaved near tC. Thus we must make a different kind of first motion

approximation. Now

Ty = -1n,’
where
My’ = \/pz(t) - 3-2— . (B.39)
2
Thus
My =Ty 28Ty
In (o—rs®) = : (B.40)
; 2 2. 2,

We can rewrite equation (B.38) as

™ (t2_t2)

(B.41)

4 (x,y,t) = )
head (62ﬂ12'*ﬂ22')

We will now approximate nz‘(t) for t near tc. Taking the first term in

.the Taylor expansion for p(t) near t.,we obtain
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So

dp(t ) dp(t.) 2

t) 3 pAt) + 2p(t) —gr o (t-t) + [ (t-t )2

2( .

P

(t- tc)2 is negligible for t near tc and will be dropped. Now

%
21
C
2

M, = (p

and

1
p(tc) - C2

Combining expressions (B.42), (B.43) and (B.44) we conclude that

dp(t.) (t-t.) %
' (8) % L2 g e

2

From equation (B.24) we know that

i) o)
dt 2 ?
(tr —tc )
. . 2 2
Now if € 1s near tc’ then nz << n1 , SO

. (B.42)

(B.43)

(B.44)

(B.4

)



237

25Tl]ﬂ2' " Zﬁﬂ]ﬂz'
Y 22
My T 8 M
1 dp(t )\
mb'q,ﬂt'tdz‘ﬁﬂ< d€ )

sMp /@‘é‘ 571

2(t-t )% /2 (1,(t.))*
e L : (B.46)
(t,"-t.)* /T, om;

Now as t - tC R ﬂT(t) - n1(tc) in a well behaved manner. For our
purposes, we can replace n](t) by n](tc). Substituting expression (B.46)

into equation (B.41) we obtain

L F(e) P1 ) - E) V2 R
Cpand (XY ot) & et — (.47)
head T P 3 2 ;
2 [ 2 /¢ %
c 2 c c 2
1
for t near tC . Notice that the head wave solution starts off like the

time integral of the direct wave solution.

Now let us examine the solution when €y > C4 and t is near
.= R/ey > /¢, o If t, < 1/C,, we get a noncritical reflection and we
have already discussed this case. From equation (B.29) we expect the

solution for the reflected wave to look like

H{t-t)) M7 = M
_ f(t) r 12
Cref(xayst) - 20 * {(tz_ ¢ 2)1/2 Re[&n‘] +,n2]} . (8.48)
r
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My and M, are both complex for t > R/¢,. Once again, we cannot find
nz(t) easily; so, we will make another first motion approximation.
We will first calculate what the reflection coefficient locks 1ike for
t = tr = R/c]. Now again let

Einz

Then

sM(t.) = m,(t))
Re ﬂ] r ﬂzr r = Re
an](tr) +T]2\tr)

6“"(tr) -1 ﬂ2| (tY')
Sﬂ](tr)ﬁ nz'(t‘)

- Re 8 Th (tr) "’n2| (tY') - 2i 6n'|(tr) nzl(tr)
520, () + 1, A (e )
T CREE A
52n]2(tr)+n2’2(tr) (B.49)
Now
ﬂ](tr) C::)S 8
1
and
(c22 sin” e-—c]2)7/2
ﬂ2‘(tr) - c, C

where & is the incident angle of the critically reflected geometric ray.
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- Thus, equation (B.49) becomes

2
> (B.50)

5n](tr)-ﬂ2(tr) sz(s2 cos? 6 -sin® g) + C
sm7 () -mo(t ) sz(az

Re ]

c052 e—fsinz 8) - C]

Equation (B.50) seems somewhat disturbing. The amplitude of this
reflection coefficient is less than 1 for our post-critical reflection.
We expect critically reflected waves to be totally reflected. What is
wrong? To find the answer, we must return to the head wave portion of

our solution. The exact solution was, from equation (B.41),

f(t) * [H(t‘ tC) - H(t‘tr)] (6ﬂ]ﬂ2|)

(t,2- 5% (55,7 +n,2)

Chead(XsYs>t) = (B.51)
Notice that Zhead also has a singularity as t - tr = R/C]. Thus to under-
stand a critical reflection, we must also consider the behavior of ¢ before
the time tr . We can write down a first motion approximation for the
critical reflection by considering contributions from both head wave and

reflection terms, with the ni's computed at t,. .



+ H(t—tr) Re (ﬁﬁ'ﬁ?]}

o F() & 1 it - 1) 1 813 (t) -y ()
2m {ltr_t!’/z(Ztr) [ r ) I (sﬂ](tr)quitr;)

+ H(t—tr) Re (

6n1(tl") "ﬂz(tr) } : (5.52)

TRGRES MERER

where t is near t . Equation (B.52) consists of the two parts which can

be seen in Figure B5. Once again, let

8Ty - Ty
127 smy*m,

1
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Now Re(R]Z(tr)) is given by equation (B.50) and Im(R]z(tr)) is given by

it (- ML) () 2 6 con 6 (67 on 5oy
m = =
2 2 12 2, 2 2 . 2 2
5 “]Z(tr)'Fﬂl (tr) <, (§° cos” 6+sin“ 8) - <
(B.53)

We can also show that I[R]Z(tr)]} = 1 for a critical reflection

ﬁ'ﬂ] - ﬁlzg
R =

8Ty ™ Mo

2 2 e
8Ny~ Mp - 21MyMp'8
2

77
8 My *M2
[ 4 4, 4,2 2 2 22
8Ty My -2 My My ANy My
|2)2

2 x

22
(67my" + 1y

-2 2. ,2.27%

(6™ * 1, )2 |

p=ad :‘l
2 0 2.2 :

| (7 #mp)

Our complete first motion approximation for a critical reflection is

f - s
eyt ¥ T {je Ce) T2t Tt - 1) Tn Ry, + H(E- 1) Re Rp,D)

(B.54)

Sclution (B.54) is analogous to the phase shift present for critically
reflected plane waves. This phase shift is discussed by Ewing, Jardetsky,
and Press (1957). Brekhovskikh (1960) also gives a very illuminating

discussion of critically reflected beams.
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Summary of Waves in the Upper Medium

We can now summarize our solutions for waves in the upper medium.

We begin with definitions.

vl = (y—h)z_ + X
R? = (y+h)% + x?
to = r/C] 5 tr = R/c]
, t(y+h) . 2 2\% X
Mq(t) = 25— i (t°-t )¢ =
1" RZ r R2
1
Mp(t) = (n,(t) - —Lp+ L)%
“v %
8N ~ o
Ryp(t) = "_l+ -
Sﬂ] ﬂz
) =52“
fq
Now
c(x.y,t) = “direct * Ep 3
where
H(t-2—)
_ () & 1

“direct = 7n (2 - t02)7/2
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(t) e

_f(t 2

Sdirect = 2w vl i (B.55)
"o

The reflected solution has two cases. Case 1: No critical reflection,

X < Rc]/c2

H(t-t.)

r
2 2\%
(-t

_ f(t)
CF(X=Yst) - Zﬂ *

Re R12(t)
Case 2: Critical reflection, x> Rc]/c2

;r(x,y,t) - Ehead * 2;Y‘ef

b

where
H(t-t ) -H(t-t. )]
(1) ¢ c .
Chead(x’y’t) 2% * (t 2-—t2)% Im R]Z(t), s (B.56)
r
and where
1
_ X I
tC - sy t(y+h) c?2 c¢?
1 2
H(t-1t.)
— f(t) * r
“ref T 2n | (2.1 2y Re Ry,(t) § . (B.57)
r

The first motion approximation for the head wave gave
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.~ f(t) 1 H(t—tc) V2 Jt-t

z

3.

22y 2 gy
r c c 2

1

(t

The first motion approximation for any reflected wave yields

1 1
~% ~%

. w ft) . Itr—ti (Ztr) [H(tr-t) Im R]Z(t

)

r

+ H(t-—tr) Re R]Z(t )]} , for t near t,

r

Where if x <« Rc]/c then

2 s

c22(52cos2 94«sin2 8) + C]2

Re R,,{(t.) =
128 sz(azcos2 e+~sin2 8) - C]2
and
Im R]Z(tr) =0 .
If x> Rc]/c2 , then
1
§C, COS e-—(clz--cz2 sin2 K
Re Ry,(t.) = A R R >
12%7r §c, cos 0+ (c, " -c,” sin® 8)*
2 1 2
and
1
25c2 cos o (c22 sin? e-—clz)é
Im R, (t ) = )
124 "y 2 2

022(5 c052 0+sin“0)- o

, for t near tC .

(B.58)

(B.59)



where

=X : =Y
cos 6 R and sin 8§ R

Solution for the Transmitted Wave

Let us now look briefly at the nature of the wave which is

transmitted into the lower medium.

(B.8).

cz(a,y,é) =

where

B = (—
G, ©

and where

2
_ o 1

m= Gt

“

X

.

On

and y <« 0 .

If we take the inverse Fourier transform of equation (B.60)

with respect to o, we find that

246

(

+h

The solution was given in equation

b-[Q
NN

1
+ ——7)
)

1
%

(B.60)
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[ea]

-i -n.hs 2
- _ F(s) X E yAM, -y M\ &
Co(Xy:8) = 5 fe 6ﬂ1+ﬂ2’ o (B.61)
We now perform a familiar transformation,
o = -isp R do =--isdp .
Equation (B.61) becomes
ey < Fa) [ ARy oy (e.62)
TolX,y,8) = —/+ e ———) B.62
p\XsY I [1_ M1 F My My
where
27
n; = (- %)

If the Schwarz reflection principle is épp1ied to equation (B.62),

then we obtain

oo
F(5) SOptymy-bng) oy g

Zz(xs.VVS) = 20 Im[ e (m) ﬁ;’ * (8.63)
0

We must now find the contour such that t is real and positive, where

“+
m

.DX+Yﬂ2"hﬂ1

pX + y _1_2 “h =5 -p . (B.64)
CZ C-I
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Applying the transformation (B.64) to equation (B.63) we obtain

- -5t = dt
_ dt
cz(x,y,é) = Imjf e (6ﬂ 1 ) . (B.65)

Now if we can find and deform to the contour given by equation (B.65),

then our solution is

_f(t) n;(t) a1
CZ(X,y,t) = 20 Im 6ﬂ1(t)+ﬂ2(t) a%m . (8.66)

Unfortunately, we are not quite finished. We must find the contour,
p(t), and we must then calculate ni(t) and dp/dt. This is done by
inverting equation (B.64). It does not take long to see that we need
to invert a fourth order polynomial. This is hard to do analytically.
Normally, we solve for p(t) by using a numerical iteration scheme on the
computer.

In general, the Cagniard-De Hoop technique will always force us

to invert some nth

order polyhomia]. Usually, this must be done numerically.
~ Actually, we should not be too surprised to see this, since the inversion

of nth order polynomials is inherent when computing the travel time of

rays which travel an unknown path in a layered space between a source and

a receiver. If you doubt this, you might try finding an analytic expression

for the following simple problem. What is the travel time for a geometric

ray, as a function of x, y, h, € and Cos for the geometry given in Figure B67
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Source

Ga X ?
Receiver

Figure B6



250

Appendix C

Sandwiched Fluid Layer Problem for a Line Source

In this Appendix, we introduce the notion of a generalized ray

expansion as a solution to the layered space problem. Consider the

geometry shown in Figure C1.

Figure Cl

Line source
7
\/

> th

e
/
/
e
Ve
Ci
= X
P2 Co
P3 Csa

This problem is very similar to the one we just solved. The wave equations

are
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3251 32‘:1 1 a251
+ - = -s(x) s(y-h) f(t) »
? 2 77
X Yy c] ot
82€2 32@2 1 %%
te - =0,
3X oy Cy ot
2
32;3 32C3 1 923
7 T -5 =0 . (c.1)
3% 3y cy” ot

Now just as in section 2, we will write down the general solution for
the above equations in the space (o,y,5). We will eliminate solutions
which are large at large values of |y| . By inspecting equations (B.7)

and (B.8) we guess that our general solutions are

2 ,
2 F(5) "l)"h“asz“A—‘z—)/z '.Y(OKZJF*“Z“)/Q
C](Ola\ysé) = 7 ) e C-l + Ae C-l 7
2/27 (o + 2"
C1 (C.2)
1 2 1
2 F() o L (G ,
cz(a,y,é) 7 Be c, + Ce c,
2V2n (012+‘é—2‘)/2
y (c.3)
and
V4
2.5 %
yle® + =
53(a,y,b) = F(s) 5 De 932 . (C.4)
2/7n (o° + 45"

C3
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We now apply the boundary conditions at the two interfaces. This has
been discussed in Appendix B. We will first require continuity of pressure

across the boundaries.
py o1(®;0.8) = py Col,0,8)
02 EZ(Q/: _th:l)) = 93 ES(C(a_thaé) . (C-S)

We now require the continuity of displacements across the boundaries.

071(@,0,8)  a7,(w,0,8)
3y - 3y g
3,y -th,s)  at,(e,-th,s)
3y - 5y . (C.6)

If we apply the boundary conditions to the general solutions in equations

(C.2) through (C.4), then we obtain

-han,
p](e +A) = (B+ C) pz s (C-7)
-thay than -ths
ople  Pace )= pgDe O, (c.8)
—h4n1
5 mqle ~A) = nZ(B-C) , (c.9)
—théﬂz than, —thsnz
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where

We need to simultaneously solve the linear equations, (C.7) through (C.10),

for A, B, C and D. After some painful algebra, one can show that

-2thén2
R,, + Ry, e -7, h
- 12 23 1
A = —Zthbnz e . . (C.11)
1 + R]2 R23 e
where
PsTq = 04T
Ri2 = L ]+p] e, (C.12)
PoMy ™ P
and
paMN, - P
R = 312 "213 ' (C.13)

23 gl tesNy
Notice that if th - 0 , then

PaT = 04N =870
3 1 3) e 1

AL (=1
("3“1 ML

which is the simple interface result. Also if th - « , then

—Aﬂ]h

AR e

12

which is the result from Appendix B.
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Now as it turns out, the form of equation (C.11) will not allow
us to apply our Cagniard-de Hoop technique. We would like exponentials
involving s to be in the numerator. This can be accomplished by expanding

the coefficient, A, in terms of a binomial series. Recall the binomial

series

]l-x = ZS (-1)" " where x < 1 .

n=0
-2than
If we Tet x = R]2 R23 e , then equation (C.11) can be written
-47.h

A=R(p,s)e | (C.14)

where
-2thsn, O ~2thsn
R(p,s) = (Ry,+Rys e %) Z (-1D" Ry, Ry e 2, (c.15)

n=0

or
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o

R(po8) = D (1" R, R, e
n=0

—Zthénzn

o

n n n+l
2 DR, Ry e
n=0

—Zthénz(n+])

-2thsn,n

e . (c.1e)

By substituting the coefficient, A, back into our solution in the upper

* medium, equation (C.2), we find that E](a,y,é) can be written

A~

gy = (c.17)

-©-1>

direct * ¢o (R12) * ;é% ¢n 3

where
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_ F(A) e"lY'hm]é

é" - LY (C.]S)
direct ZV?E_n]A
. ~(y+h)nqs

2/2m 7,5

and
. - h) -2ths
2 CF(s) My n+1 . n . n-1 2 My
MCAVY) . (<177 Ryg Ryy  (1-Ryp e
(C.20)

From Appendices A and B we immediately recognize ¢ and 20 to be

direct
the solution for the whole-space problem and the reflected solution for
the interface problem, respectively. We already know how to find the
inverse transforms for these parts of the solution. Our chore is to

now take the inverse transforms of gn(a,y,é). As usual, we will first

take the inverse Fourier transform with respect to o .

_ -I —'iXOl -
¢n(x,y,4) = ;2:/ e ¢n(oz,y,é) dr . (C.21)
2T

'Now we make the familiar variable change
o = isp ; dv = -isdp

Equation (C.21) becomes
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joo

. O TSPX L do
¢n(x,y,4) = f e ¢n(-mp,y,é) b dp (C.22)
-'IOO
where
) -39 _(p)
o, (-1sp,y,s) = _FB) f.(p) e n , (C.23)
ZVEF-An]
and where
N n n-1 2 n+1
9,(p) = my{y+h) + 2thn1y, (C.24)
np) = (L - p)F
C.
i
and
PN =0T
R,, = 41 __1J

1] pjn'i-l-p'ln\]

We now apply the Schwartz reflection principle to equation (C.22) and

obtain

-[px+g, (p)]
5 (xy.8) = 8 Tm/ e B %? ' (c.25)
. |

Applying the Cagniard-de Hoop method, one finds that the path in the

p p]ane}where
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T = px + gn(p) (C.26)

and T is real and positive. A deformation of the contour, such as the

one shown in Figure CZ2 is then made.

A
I
Figure C2 ImpAI\
| Deformed
to \ T
ly+h

I
I
|
|
I -
I Tc,
I
|
I p:~l_
_I/bz { I?C{—¥ I/&z

% y
-1/, ~l1/c3 /c3

Equation (C.25) becomes

o«

: - +g (p(r)}]
; CF(s) ly+h| _ slp(r)x+g, dp dr
b, (%:y58) = == IMJ H( c, ) flp(r)le & T
0
(C.27)
. The solution can then be written
_ flt) »q, dp(t) 1
\I‘n(X,yat) - Im fn[p(t)] dt T]-‘(—Ey H (C28)
'

where p(t) is defined by T In general, we cannot analytically invert

equation (C.26) to find p(t). Thus T is found numerically.
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Each ¢n can be given a simple physical interpretation. As

an example, Tet n = 1. Then

t=px+m(y+h) +2n, th ,

and

- 2
First notice that Ro3 contains 1 which becomes imaginary at p = 1/c3.

This may occur before the point p = x/Rc] , and thus there is the possibility

of a head wave due to R23. Next notice that

: 2
2\ _ P2y~ PTlp
(R ) =1 Uy
21 4PN
= () ()
M+ Mp" M7 Mo

= Tyo(p) Tyq(p)

Thus

f1(p) = Ty5(p) Rys(p) Tyq(p)

If you look back to equation (B.13), you will recognize that TZ](p) is
the transmission coefficient for a wave travelling from region 1 into

region 2, and T21 is the transmission coefficient for a wave travelling
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from region 2 into region 1. Thus the geometrical ray interpretation of

97 is shown in Figure C3.

12

-———5;-——*>ji:i::ﬁ%
=
oy
Y
ra——<<
©o

P

Figure C3 C3

Now consider n = 2. Then

t = px + (y+h) ny + 4th 1,

and
_ 2 2
fy = Ryg” Ryp (1-Rypn)(-1)
=Ty Roz Ryp Rog Ty
where we used the identity, RZ] = 'R12' One can immediately see that

¢o corresponds to the ray interpretation shown in Figure C4.

@7@
!
RN
~Z
_O

\ 12

" —
=~
Py
N
(&
By
e
(&Y

Figure C4
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Similar ray interpretations can be made of each ¢n .

The objective of this Appendix is to provide motivation for a
method for determining the response of a source embedded in a layered
space. The method is called the method of generalized reflection and
transmission coefficients. Simply consider any solution to be the sum
over all possible generalized ray paths which connect the source and
receiver. As a further example, we can easily construct the solution
for waves transmitted through the sandwiched layer. MWe could go back
and solve equations (C.8) through (C.10), but this is an algebraic
headache. For more complex structures, it becomes a nightmare. We can

easily guess the answer, however.
C3 - 2 3¢n s
n=1

where

x dp(t) 1 |
n f(t) * Im 3fn(P(t)) gt 'ﬂ](p(t77 P )
n

w
-
i}

where

31 7 Ty2 Tos

and T, is the contour which makes
t= —’]'].Ih 1, Th + n3(y+Th) + px

positive and real. The ray interpretation is given in Fiqure C5.
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lyl-th

Figure C5

If n =2, then we would choose the ray shown in Figure C6.

T \X Ro,
th
Ro3
l \ T23
RN
lyl~th
Figure C6
Now
¢f2 7 Ta1 Rz Ryy Tap

and the contour 305 is the contour that keeps
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t = 'ﬂ]h + 3n,Th + ﬂ3(y+h) + px

positive and real. As n becomes larger, the rays simply have more

bounces.
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Appendix D

Point Source in an Infinite Medium

In the previous Appendices, we have worked the inherently two-

dimensional problem of a line source. Because we eliminated motions

parallel to the line source, Cartesian coordinates formed a convenient

two-dimensional coordinate system. Unfortunately, line source problems

are rather rare in nature. The solutions to point source problems turn

out to be more useful to us. We did not present the Tine source problems

without reason, however. Most of what we learned from Tine sources is

easily transferred to the point source problem.

Unfortunately, the point

source problem does not reduce to two-dimensions in Cartesian coordinates.

Assume that our solution is given in terms of some scalar potential, ¢,

which has the properties that

vg = y = displacement vector
u

and that ¢z satisfies the wave equation,

2
Ve - ;12—%5 = 5(x) 5(y) 8(2) #(t)

In Cartesian coordinates,

2 2 2
VZC 3t 3¢t .23

9% 3y 9z

and the problem explicitly contains three spatial dimensions.

(D.1)

(D.2)

We would
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like to simplify this problem by changing coordinate systems. For a point
source in an infinite medium, it would be easiest to solve this problem
in spherical coordinates. We would be faced with a trivial one-dimensional
wave equation. However, spherical coordinates are inappropriate for
problems which involve boundary conditions on plane layers. . Since it is
our ultimate goal to solve layered space problems, we instead choose to
solve this problem in cylindrical coordinates. We wi]T‘write r as some
function of r, 8 and z. Our boundary ccenditions will then be specified
along some planes of constant z. Consider the coordinate system in

Figure D1.

Figure D1 -7

|
|
|
|
Now in cylindrical coordinates,

2 2
20+ 25 . (D.3)

2 T 2 1
v = L2 (B (2
roar r2 362 57

ar

If we consider the solution to be symmetric with respect to 6, then the

wave equation can be written

2
3 + 1 8¢ + [

oy 28 %L %5 = s(r) s(z) F(t) (D.4)
arz roor 822 c2 at2
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and now in cylindrical coordinates

3z 1 3z oL
= = —= 4 — 2z 4 = .
Xc(r,e,z) Er ar © Ko v 90 Sz 3z (D.5)

u

4Y

We will find the solution to equation (D.4) by first finding the
homogeneous solution to equation (D.4) and then we will construct the

particular solution from the homogeneous solution. The homogeneous form

of the wave equation (D.4) is

3% 1 oar . 2% 1 8% | |
R TR Iy (D.6)
ar Y4 c st

We now take the Laplace transform of equation (D.6) with respect to time

and find that

2

87z 1 8g 87z 47 -
5 o A ) C(Y‘,Z,A) 1] (D‘7)
3r2 r ar 822 C2
where
_ . -5t
z(r,z,s) =/ z(r,z,t)e dt , (D.8)
0

and

2

2
.EP{S—C—} = 82rpicy
ot

We will solve equation (D.7) by a separation of variables, Assume that
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z(r,z,5) = R(r) Z(z) F(s)

Substituting equation (D.9) into (D.7) we obtain

2 . 2 .2
o <R§F) +J_£__ (RZF) + %*(-RZF) = ZS——RZF >
ar’ rer 9z ¢
or
2
R 1R, Z" 87 _
Ry RTT 270
Then
2
R" 'IRI_ 2_;;1 é_
RYr RSN T2

and equation (D.10) reduces to the two differential equations

R" 1R _ 2
Trryr -k
and
Y.
T:%+k =V )
C

(D.9)

(D.10)

(D.11)

(D.12)

where k is some arbitrary constant. We immediately recognize the solutions

of equations (D.11) and (D.12) to be R(r) = Jo(kr) and Z(z) =

respectively. Thus a solution of equation (D.7) is of the form
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t(r,z,8) = ™% 3 (kr) F(s) . | (0.13)

Because equation (D.13) is a solution to the wave equation, and because
the wave equation is Tinear, we can immediately construct a more general

solution.

o0

frze) = P [0 k) TR + B0 0 (0.14)
0
We will keep only those solutions which converge as |z| — «. Thus we
will pick those solutions which can be written

[oo]

Z(r.z.8) = F(A)j a)e™1Zl g () ac (0.15)
0
We now need to find A(k), such that equation (D.15) meets the condition
that z(r,z,t) - s(r) s(z) f(t) as r- 0 and z - 0 . 1In order to find
A(k), we will cheat. We will take the known solution to our problem in
spherical coordinates and we will then transform this solution to
cylindrical coordinates. We know that 1in spherical coordinates our

solution can be written

(D.16)

If we take the Laplace transform of equation (D.16), then we find that

Z(R,8) = %f et F(t-8) at
0
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or

] RERAYSE:
z(R,5) = R e F(5) » (D.17)

where we have used the shift rule. The question now is: Can we find a
way to match solution (D.17) to our general solution (D.15)? To answer
this, we will employ a transformation which was originated by Lamb (1904).
This transformation makes it possible to express any spherical symmetric
source function in terms of cylindrical coordinates. We will give this
transformation, which is often called the Sommerfeld integral, in terms

of a lemma.

lemma: Sommerfeld Integral

- R >
&£ (s/¢) =[ Jo(kr)e_v|zl K

R dk (D.18)
0 v
2 2. .2 2 2 4P .
where R® = r® +z° and v° = (k= + *§J . We can derive equation (D.18)
c

in the following manner. We have already shown that equations (D.15)
and (D.16) are solutions to the wave equation. Furthermore, equation
(D.15) is a particular solution to the class of solutions defined by

" equation (D.16). We would like to find A(k) such that

oo

~(8/¢)R
?_.(%f)_= f Alk)e™ 12l 3 (kr) dk | (D.19)

0

Now A is a function of k only, and thus we can determine k by fixing

either z or r and then solving equation (D.19). For example, when
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z =0, R=r and equation (D.19) becomes

oo

=j A(k) 9 (kr) dk . (D.20)

0

e—(é/c)r
r

Now suppose A(k) = k g(k) , then by Whittaker and Watson (1950, p. 385)

o

o-(8/c)r
————~=/ k g(k) 3 (kr) dk (D.21)

r
0

where

~ -(s/c)
g(k) f i‘——‘i—;ii 3, (kx) dx = f e-(8/c)x Jylkx) dx . (D.22)
0 (4]

«©

By Dwight (1947, formula 875.1),we know that

[
1
../2

2
[ /Xy () = (A B) (0.23)

Cc
0

Thus, from equations (D.22) and (D.23) we conclude that
2
_ b 1
g(k) = (35 + k ” (D.24)

and thus

A(k)

il

< |~
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and

-(s/c)R
fl-f%fi- = ﬁ/ﬂ Jo(kr)e“’lzI %~dk . (D.25)

Equation (D.25) is the formula we were trying to derive. We could also

have derived equation (D.25) by choosing r = 0, and then by showing that

o

etz J[ Ak)e™ 12l g - ~/ﬁ %—e‘“lzl dk

z
0 0

Although we have now derived the Sommerfeld integral, equation (D.18),
we have not provided much physical motivation for it. This integral is
of fundamental importance to the solution of spherical wave problems.
I suggest that the reader carefully study its meaning. Unfortunately,
I know of no intuitive arguments which would have allowed us to guess
the form of this important transformation.

We now have constructed a solution to the point source problem
in cylindrical coordinates. That solution is simply

-v|z|
€ k dk . (D.26)

t(r,z,5) = F(A)[ J,(kr)
0

We would like to develop techniques for evaluating integrals of the form
which is present in equation (D.26). Just as in the line source problem,

we would eventually like to transform equation (D.26) to one which allows
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us to do the inverse Laplace transform by inspection. We will begin by

making the transformation

k = -isp : dk = -isdp . (D.27)

Then
2 4%y 1 2%
v = (k% + *§) = (Z-p7)" =51 (D.28)
o c .
and
o) = 3 (-3 -1 A
Jo(kr) JO( ispr) = KO(Apr) - KO( spr) (D.29)

where K0 is a modified Bessel function. Actually the derivation of
equation (D.29) is not trivial. A short digression will allow us to
derive this relationship. We begin with several formulae from Abramowitz

and Stegun (1972).

Hu(])(z) =3 (2) + 1Y () (D.30)

« and

(24

) I,(2) - i ()

where Hu(]) and'Hu(Z) are Hankel functions of the first and second kind

of order u. Yu is a Bessel function of the second kind of order yu.
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Combining equations (D.30) we obtain

1 Mz + HU(Z)(Z)
J (2) = 5 : (D.31)

From Abramowitz and Stegun (1972) we also know that

1 s med ()
Ku(z) = 5 mie Hu (iz)
and
_ l . —721.1’!T'i (2) .
Kp(z) = - 5 wie Hu (-iz)
Thus
_ l . —12Uﬂ"i (2) .
Ku(-z) = - 5 wie Hu (iz)

For our present purposes, u = 0 , and thus

Ho(])(iz) = - %}

t
-~
—

N
St

and
w22y () (D.32)
0 m 0 |

If we combine equations (D.31) and (D.32),we find that



K (z) + = K (-z) . (D.33)
We also know that

JO(—iz) = Jo(iz)

and thus equation (D.33) becomes

3,(-i2) = ;— K, (2) - 1 K, (-2) (D.34)

which is the desired relationship.

Now from equations (D.26) through (D.29) we conclude that

oo

Z(r,z,8) = if%’—)i/ K, (spr) e4nlz| %dp
0

"ioo
¥ 1F7(Té) A/ KO(Apr) e—}mIZI %dp
0
foo
o -iF(s) -snlz| p
= - /A/. KO(ADY‘) e 7 dp . (D.35)
_'IOO

" We can now use the Schwartz reflection principle to rewrite equation

(D.35) as
]'oo
z(r,z,s) = gig-(—él Imf % Ko(/.spr) e_)yﬂlzl dp . (D.36)

0

Now if K0 were not a function of 5, then we could perform our transformation
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to the variable, t, and we could then identify (D.36) as a Laplace
transform equation. Since K0 is a function of 5, the exact solution of
this integral is difficult to find. Before we discuss the exact solution,
we will find an approximate solution which requires no special integration

techniques. For spr Targe, we can use the asymptotic approximation,

/ Apr 1 .
Ko(Apr) & ZAPT [T - 8spr * ] : (D.37)

Combining equations (D.36) and (D.37) we find that

Joo

F(r,z,e) v AF(8) /?Im/ 7 s(pren|z])
il

vrrb

g4 (priq|z]) dp + ---] . (D.38)
édﬂfz /_
We now make our usual transformation
r=pr+alz] (D.39)
where
, 2\ 5
7 = \—15 - p“)*
C

If we invert (D.39), then we find that
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F 02, A |
p=tr et Ryslzl (D.40)
R o R
and f T > R/c
lz] . ip2 RO v
M=-"5%71-i(T"-5)" = (D.41)
R o R
J
and 3
r R 2\ |z
p=Lor o (Roon?yelzl (D.42)
R c R
and } T < R/cC
lz] B2 2 r
n= T + (——?._'r ¢ . (D.43)
R c R )

L o A e & . (D.44)

Notice that by choosing the positive root in equation (D.40) we have
managed to keep Re 11 > 0. This keeps the Cagniard contour in the upper
" half of the p plane. We would like the variable, T, to be positive and
real along our integration. Thus we would 1like to deform our path of
integration from p = 0 to p = i~, to a new path T, along wnich 7 is

positive and real. Such a path is shown in Figufe D2.
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Figure D2 ?
Impﬁ
I
| p(t);
| t real
|
|
Branch cut |
from 7 I Branch cut
| plto) from n
-1/c l/ |/c
SONNERNONNNY, l ////////////////&
////////7///// ST Z R ep
Branch cut p=§[-, t=R/c
from./p ¢

If we keep only the first term of the asymptotic expansion, then the

change of variables will allow us to rewrite equation (D.30) as

Frz.s) & 24 F(s) 1[ oo A g
TYrs i 2 R 7/2
t (t° - =)
0 2
C
R/c
- Y24 HA)IT[ e A7 Zﬁ‘ dr
YTrs R 2.5
t (=5-77)
0 2
[
+ Im[ e A7 ——1—(9-2—— dr ) (D.45)
R/c (TZ—B-Z—)
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The integrand of the first term is real and thus its imaginary part is

zero. Thus

oo

z(r,z,5) v /2 8 F(s) Re~/ﬂ H(T-—%- —~—lﬁ£7?—— e ar . (D.46)
wYra (1_2 R )7/2
7
c

We immediately recognize that

R
[ H(t-2) Re vp
c(r,z,t) % f;; rp”] {]—}* I {bF(A)}* (t-3) Re /p

3

5 . (0.47)

Notice that this solution is very similar to the line source solution.
A convolution with the vt is the only difference. We can simplify

equation (D.47) even further by making a first motion approximation for

times near R/c . If t ' R/c, then
(2B - (5-R)% (e By (5B (2R
'CZ c ¢’ v c c
Equation (D.47) becomes
21 H(t) Mt—B)Re/E
E(Y‘,Z,t) % \/;F * f[(t) * (D-48)
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Now recall that

2
b=t Ry lzl
R? 2 2
c R
and thus for t ¥ R/c ,
I r
p(t) ¥ gz and /b AN
Thus
R
t(r.z,t) YL e £1(t) , H(t) , H(t-2)
s& s v ]"2 CR . R/g
i (t-0)
R
_ (), H) , Mg
RTF }/"E (t__g_)/z
Now
f(t'%) * H(t) = H(t—%) * £(t)
and thus
R
fr{t-— '
z(r,z,t) % ( ¢’ H(t) 4 H(t)
Ry /i Vs
£1(t-2)
) R * wh(t)
fle- 8

(D.49)
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Despite all of the approximations, we recognize this to be the exact
solution. A1l this means, though, is that this is a simple problem.

Now if you were especially observant, then our contour deformation
in Figure D2 might have made you nervous. K0 has a square root singularity
as 4pr - 0 . Fortunately there is no residue associated with this
singularity and our contour deformation was valid. In the point dis-
location problem, there is some trouble caused by the existence of simple
poles at the origin. This 1is discussed briefly in Chapter 1. Also, be
aware that the asymptotic approximation is not strictly convergent.

Even if we took many terms in the approximation, we could not adequately
represent the Bessel function when spr - 0 . By the way, 4 - 0 as the
wavelength of interest becomes large, p —» 0 for vertically incident waves
and r - 0 as the epicentral distance becomes small, It is easy to see

that there will be times when we need to compute the exact solution.

Exact Solution

Let us return to the exact solution which is given by equation
(D.36),

foo

z(r,z,4) = 2 Fls) Im[ Pk (Apr)e—"smzl dp . (D.50)
T 'T] 0
(o}

Taking the inverse Laplace transform of equation (D.50) and assuming that
we can exchange the order of integration (that is, bring the inverse

transform operation inside of the integral), we obtain
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oo

c(r.z,t) = P! {%é-p(é)} * _[P"]=pﬁ/ﬂ %.Ko(épr)e‘5ﬂ|ZI dp}
0
Joo
= %— frt) * Im[ % rp! {KO(Apr)e-éﬂlZl } i . (D.51)

(¢}

Now from page 278 of Erdelyi (1954) we know that

1
-5

cp! ‘ez’“‘ KO(ZA)} = (t2 + 22t) (D.52)
for |arg z| < 7. We also know that

rp7! {e_éa g(/_,)} - g(t-a) H(t-a) (D.53)
provided that a is real. Now then,

rp7! {KO(Apr)e_én‘Zi} = rp! {ebpr KO(Apr)e_é(ﬂlzl+pﬁ)

= rp! {ebpr KO(Apr)e—AT} . (D.54)

where

r = pr + 7|z| . (D.55)

If we deform the contour of the integral in equation (D.51) to another
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contour which assures that 7 is real, then we can find the inverse

Laplace transform by applying equations (D.52) and (D.53). We immediately
recognize that this new contour is the same one which we showed in

Figure D2. Once this deformation is complete, we can then solve the

inverse Laplace transform.

77 o) M) <0 {7 gupre

- H(t-7) : (D.56)
(t-7)% (t-7+2pr)?
Our solution then becomes
qwﬂx>=§ﬁu>*m[9 H(t-t)dp | (0.57)
LT (t-7)% (t-7+2pr)?
where T is defined by
r 2 R%% 2]
p(t) = 5t + i(t"-=)" : (D.58)
2 2 2
R c R
Recall that
dp = 1 7 dr
(2 - Koy
YA
C

Thus our solution can be written
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©0

c(rz,t) = 2 £ (t) *Imj APt 6 . (D.59)
t, (2-5% (£ (t-Ta2p(r)r)®

0
C

After some close scrutiny, we realize that this reduces to

t
z(r,z,t) = %— Fr{t) * Re/ - p(T) dr

R/c (2B (1om)® (t-w e 2p(r)r)
C

1
%

(D.60)
This is a very messy integral, and frankly I do not know how to analytically
show its solution. We already know what the answer is, so we can easily
write the value of the integral. However, finding an analytic method
for determining this particular integral is not important to us. We
already know the solution to this problem. Later, though, we will have
to solve similar, but more complicated, integrals. Notice that the
integrand has square root singularities at T = R/c and 7 = t. Although
they are mathematically integrable, these singu1érities nresent certain
problems for numerical integration schemes. We can make this integral
easier to numerically calculate, simply by changing variables. If we

define a change of variables

) =sﬂf1(t_;f , (D.61)
c

f'(t) * Re jr F(e) do , (D.62)

o
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where

F(e) = p(7(6)) : (D.63)
(t(e) -7(6) +2p(v(6))r)?

Equation (D.62) can now be numerically integrated.
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