
Rigorous Analog Verification of Asynchronous Circuits

Thesis by

Karl Papadantonakis

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

January 13, 2006

(Defended December 1, 2005)

ii

c© January 13, 2006

Karl Papadantonakis

All Rights Reserved

iii

Acknowledgments

After nearly six years of my most focused work ever, I have reached what I believe to be

an important milestone in the theory of asynchronous VLSI. In my first few months at

Caltech it became clear to me that this milestone – a method for rigorous verification of

asynchronous circuits, sufficient for arbitrary computation – was still a dream, but clearly

a possibility. I shared this dream with many great thinkers at Caltech who have known the

dream long before me and made significant contributions. I merely assembled the pieces

into one possible complete picture.

While I claim credit for an original formulation, analysis, and solution to the problem,

the vision and a large part of the intuition came from my advisor, professor Alain J. Martin,

and his Caltech Asynchronous VLSI Group. A key element of the group’s research is the

synergy of two previously disjoint fields of study. Alain is unique in his advanced knowledge

of both fields and in his vision to combine the two. Those two fields are hardware imple-

mentation in VLSI and hardware specification as distributed systems. Alain has dedicated

the last two decades to combining specification and implementation concepts, yielding the

best possible VLSI design methods. Every result has been carefully considered from both

the specification and implementation point of view. My work concerns the implementation

of the underlying operational model and could never have succeeded without Alain’s orig-

inal vision that the model would withstand the critical dual test of both specification and

implementation.

Beyond Alain’s vision and leadership, it is the years of work by his many past and present

graduate students that really put the model to the test. On my first day at Caltech, Mika

Nyström – then still a graduate student – was a mentor and friend, as is still the case today.

I learned that there was more to circuit design than just writing netlists; there were circuit

templates and software tools and formal methods. Mika had developed all of this knowledge

from his work on the Caltech MiniMIPS processor.

The MiniMIPS processor and its high-performance circuits are largely a creation of

Andew Lines and Uri Cummings. From Andrew’s master’s thesis and design documents,

iv

I learned (with Mika’s helpful discussions) how to build asynchronous logic and design a

processor. I also learned from simulation languages developed by Marcel van der Goot,

Rajit Manohar, Eitan Grinspoon, and Mika Nyström. This combination of design and

tools knowledge is what allowed me to produce a new simulation tool and top-level design

for the Lutonium, the group’s next major processor design after the MiniMIPS.

Mika’s efforts in the verification of the MiniMIPS led to his invention of alint, a pro-

gram that checks several correctness properties of analog implementations of asynchronous

circuits. Mika and the async group successfully employed alint to ensure that the Min-

iMIPS worked. The idea of constraining slewtimes is one of the most important parts of

my theory, on that came from Mika and alint.

I believe that the main contribution of this thesis is the expression of analog imple-

mentation in terms of elementary mathematical concepts: functions, differential equations,

sequences, and the properties that go with them. Professor John Hamal Hubbard, my un-

dergraduate advisor at Cornell, taught me how to think effectively about such mathematical

constructs. In his calculus and analysis classes, I was exposed to a unified study of both

linear and non-linear systems viewed as both differential equations and iterative systems.

The analog verification problem seemed like a perfect match for this type of analysis: the

analog model is differential equations, and the digital model is an iterated system, and they

had to be unified.

In my undergraduate research with Hamal on the parameter space of Hénon mappings, I

gained experience thinking about the trajectory and parameter spaces of multi-dimensional

systems. I must admit that I found the analog verification problem to be much harder than

any mathematical problem I had ever tackled before in my undergraduate mathematical

training. However, I believe that exposure to similar classes of problems contributed to my

capability to solve the analog verification problem.

I would like to thank specific people for feedback and ideas that contributed directly to

my progress. I would like to thank my committee, Alain J. Martin, André DeHon, K. Mani

Chandy, Erik Winfree, and Jason Hickey, for providing constructive feedback. Alain J.

Martin provided several group meetings for the discussion of my thesis work, as well as the

opportunity to participate in group projects and papers. Piyush Prakash suggested several

improvements to the first draft. As I mentioned earlier, Mika and Alain contributed many

ideas fundamental to the topic. Alain’s tough questions helped me stay focused on the core

problem and its motiviation. Professor André DeHon helped me to learn to decide which

ideas to persue first, and which ones to present first. André provided direct mentorship,

v

the opportunity to develop my presentation skills by presenting architecture research at a

conference, and feedback on technical reports which contributed to my thesis. I would also

like to thank Jeri Chittum, Maria Lopez, and Mani Chandy for administrative support.

Finally, I would like to thank my parents, friends, and fiancé, Kimberly Marshall, for

personal support. My mother, Gretchen Willging, and her colleague, Edward Zeidman,

both math teachers, sparked my math and computer interests early on. My father, Kostis

Papadantonakis, encouraged me to develop broad knowledge.

vi

Abstract

This thesis shows that rigorous verification of some analog implementation of any Quasi–

Delay-Insensitive (QDI) asynchronous circuit is possible. That is, we show that in an

accurate analog model, any behavior will adhere to the digital computation specifications

under any possible noise and environment timing. Unlike a traditional simulation, we can

analyze all of the infinitely many possible analog behaviors, in a time linear in the circuit size.

A problem that arises in asynchronous circuit design is that the analog implementations of

digital computations do not in general exhibit all properties demanded by the digital model

assumed in circuit construction. For example, the digital model is atomic, in a sense we

define. By contrast, analog models are non-atomic, and, as a result, we can give examples

of real circuits with operational failures. There exist other attributes of analog models

which can cause failures, and no complete classification exists. Ultimately there is only

one way to solve this problem: we must show that all possible analog behaviors obey the

atomic model. We focus on CMOS implementations, and the associated accepted bulk-scale

model. Given any canonically-generated implementation of a general computation, we can

rigorously verify it. The only exception to this rule is that restoring delay elements must be

inserted into some implementations (fortunately, this change has no semantic effect on QDI

circuits, by definition). Our theorem guarantees that when any possible analog behavior is

properly observed, we obtain a valid, atomic digital execution. Several rigorous verifications

have been produced, including one for an asynchronous pipeline circuit with dual-rail data.

vii

Contents

Acknowledgments iii

Abstract vi

Contents vii

List of Definitions . xiv

List of Theorems . xv

List of Equations . xvi

List of Figures . xix

1 Introduction 1

1.1 The Importance of a Rigorous Approach . 1

1.2 The Analog Model . 3

1.3 The Digital, Atomic, Global-Time Abstraction 3

1.4 The Observation Theorem . 4

1.5 Signal Containment . 5

1.6 Fences . 6

1.7 Spatial Induction . 6

1.8 FenceCalcTM . 7

1.9 Results for Real Circuits . 8

1.10 Related Work . 9

1.10.1 Speed-Independent (SI) Digital Models 9

1.10.2 Digital Verification of SI Circuits . 10

1.10.3 SPICE Simulation . 10

1.10.4 Non-Atomic and Multithreshold Modeling 11

1.10.5 Dynamical-Space Modeling . 11

1.10.6 Timing Closure Methods . 12

viii

1.10.7 Symbolic Learning Algorithms . 12

1.10.8 Multi-Ring Systems . 12

1.10.9 Fault Testing and Correction . 13

2 Background 14

2.1 Quasi–Delay-Insensitivity (QDI) and Correctness by Construction 14

2.2 Production Rule Sets (PRS) . 16

2.2.1 Abstract Semantics of PRS . 17

2.2.2 Stability and Non-Interference (SNI) 18

2.3 Martin Synthesis Example: ∗[L;R] Buffer 18

2.4 The Importance of Atomicity . 20

2.4.1 Feedback Example . 21

2.4.2 Spurious Ring Oscillator . 22

2.4.3 Atomic Semantics of PRS . 22

2.4.4 Atomic Timestamp Semantics . 23

2.5 CMOS . 24

2.5.1 NMOS Element-Equation . 25

2.5.2 PMOS Element-Equation . 25

2.5.3 SMO . 26

2.5.4 Combinational Logic Gates in CMOS 26

2.5.5 Dynamic Logic Gates in CMOS . 27

2.5.6 Canonical CMOS Implementation of PRS 28

2.6 Rigorous Verification: Synchronous versus Asynchronous 28

2.6.1 Steady-State Methods for Combinational Logic 29

2.6.2 Induction . 30

2.6.3 Timing Closure: Clocked Static vs. QDI 31

2.6.4 Inertial Delay: Clocked Static vs. QDI 31

2.6.5 Limitations of Steady-State Arguments for Async. Verification . . . 32

2.6.6 Summary of Synchronous/Asynchronous Verification Differences . . 33

3 The Statement of the Observation Theorem 34

3.1 User’s Guide . 35

3.2 The Analog Model . 37

3.2.1 Lumped Unit-Capacitance Model . 37

3.2.2 Output Equations: 2-input NAND gate 38

ix

3.2.3 Output Equations: Canonical Form 39

3.2.4 Generalization to Other Circuit Families 40

3.3 The Noise Model . 41

3.4 Initial Analog Conditions . 43

3.4.1 Circuits with Initially-Enabled Internal PRs 44

3.5 The Four-Threshold Automaton . 44

3.6 Partial Fences . 47

3.6.1 Conditions on DC Fences . 49

3.6.2 Conditions on Transient Fences . 50

3.6.3 Slewtime Constraints . 50

3.7 The Staticizer Model . 51

3.8 The Environment Model . 52

3.9 Summary: The Complete Observation Theorem 52

4 A Proof of the Observation Theorem 54

4.1 Roadmap . 54

4.2 The Extended Observation Theorem . 55

4.2.1 The Loose Observation Rule φ . 55

4.2.2 Preparation Events ylP . 56

4.2.3 The PIC Sequence . 57

4.2.4 Kompletion events ylK . 57

4.2.5 The 3-Phase Decomposition . 58

4.2.6 Signal Containment Bounds uy, ly 59

4.2.7 Boundedness . 60

4.2.8 α-Safety (Inertial-Delay Safety) . 61

4.3 The Progress Argument . 61

4.4 The Spatial Induction Principle (SIP) . 61

4.4.1 Input Hypotheses . 61

4.4.2 Output Hypotheses . 62

4.4.3 The Statement of the SIP . 62

4.4.4 Extended Stability . 63

4.4.5 A Proof of the SIP . 63

4.4.6 The Application of the SIP . 64

x

5 Extended Stability 68

5.1 Minimum-Delay Annotations . 69

5.2 Propagation Paths . 69

5.3 Minimal Perturbation . 70

5.4 The Propagation Property . 71

5.5 The Extended Stability Theorem . 72

5.5.1 Path-Delay Constraints . 72

5.5.2 The Theorem Statement . 73

5.5.3 A Proof of Part I . 73

5.5.4 A Proof of Part II . 74

5.6 Conclusion . 74

6 FenceCalcTM 75

6.1 The Input/Output Specification . 76

6.2 User’s Guide . 77

6.3 Circuit Representation . 78

6.3.1 The Transition Representation, FcTransition.T 78

6.3.2 The System Representation, FcSystem.T 78

6.4 The Transition Hypotheses, FcHypothesis.T 79

6.4.1 Data Representation . 79

6.4.2 Abstract Operation of the update Method 80

6.4.3 Transient Fence Data Representation 80

6.5 The FcScenario.T and Input-Cube for Multi-Input Gates 81

6.6 The Algorithm For the Transient update Method 82

6.6.1 Synchronized Calculation of Leading and Trailing Bounds 83

6.7 The System Hypotheses, FcSysHypo.T . 85

6.7.1 Data Representation . 85

6.7.2 The Nondeterministic Update Algorithm 86

6.7.3 The Synchronizing BFS Algorithm 87

6.7.4 Eliminating the Transition Capture Step 88

6.8 Conclusion . 88

7 Rigorous Verification Results 90

7.1 The Choice of Observation Thresholds . 90

7.2 A Synchronized Pair of Loops . 91

xi

7.3 A Chain of Dual-Rail WCHB Buffers . 92

7.3.1 Example: WCHB Verification, with Delay Insertion 93

7.3.2 Example: WCHB Verification, with Careful Threshold Selection . . 93

7.3.3 Noise-Sensitivity Calculation . 94

7.4 Fence Resolution Requirements . 95

7.5 Parameter-Space Searches . 95

7.6 Generality of the Method . 96

7.7 Limitations of Single-Bound Hypotheses . 98

8 Conclusions 101

8.1 Summary . 101

8.2 Improvement over SPICE Simulation: The Noise Budget 102

8.3 Lessons Learned . 103

8.4 Future Work . 104

8.4.1 Simplifications . 104

8.4.2 Increased Noise Tolerance . 104

8.4.3 Generalization . 104

8.4.4 Calculation Speedups . 105

A Appendix: Failure-Causing Attributes of Analog Circuits 106

A.1 Concurrent Composition Can Be Non-Atomic 107

A.1.1 Spurious Ring Oscillators . 107

A.1.2 Forms of Non-Atomic Concurrent Composition 110

A.2 Nonoscillation . 111

A.3 Leakage Drift . 111

A.4 Unexpected Slewtime . 111

A.5 Coupled Failures . 112

B Appendix: Restoration Properties of CMOS 113

B.1 Voltage Restoration . 114

B.2 Slewtime Restoration . 115

B.3 Rough Monotonicity . 117

C Appendix: Fences 119

C.1 Motivation . 119

C.2 Trivial Example . 119

xii

C.3 Example: DE with no solution formula . 120

C.4 Graphical Circuit-Waveform Example . 120

C.4.1 Leading Fence Example: VTC . 121

C.4.2 Trailing Fence Example: Exponential Decay 122

C.5 Piecewise Linear Fences (FenceCalcTM) . 122

C.6 Higher-Dimensional Fences: The Generalized SIP 122

D Appendix: Current-Bounding Calculations 124

D.1 Generalized Ohm’s Law . 124

D.2 Current-Function for Two-Input Gates . 127

D.3 Input-Cube to Output Bound . 129

D.4 Calculation of DC bounds . 129

D.5 Euler Error . 130

E Appendix: The KAVL Interactive Command Language 132

E.1 Universal Verification Script . 133

E.2 List of Existing Commands . 134

E.2.1 The epsilon Command . 134

E.2.2 The epsiset Command . 135

E.2.3 The eta Command . 135

E.2.4 The eta-eff Command . 135

E.2.5 The vtc Command . 136

E.2.6 The dc Command . 136

E.2.7 The tran Command . 136

E.2.8 The bfs Command . 137

E.2.9 The gnuplot Command . 138

F Appendix: Rigorous Verification Calculations 139

F.1 Synchronized Pair of Loops . 139

F.1.1 KAST input . 139

F.1.2 KAVL input . 140

F.1.3 Selected Output . 141

F.2 Chain of Dual-Rail WCHB Buffers . 147

F.2.1 KAST input . 147

F.2.2 KAVL input . 148

xiii

F.2.3 Selected Output . 150

Bibliography 152

Index 156

xiv

List of Definitions

1 Lower Fence . 6

2 Calendar . 23

3 System State . 23

4 Liveness . 24

5 Safety . 24

6 Execution . 24

7 Slewtime Constraints . 51

8 Gate Specification . 62

9 Minimum-Delay Annotation . 69

10 Rule Dependence . 70

11 Propagation Path Length . 70

12 ∆-Perturbation . 70

13 Minimal Perturbation . 70

14 Safety Constraint . 72

15 Isodynamic Fence . 80

16 Nondeterministic Verification Algorithm . 86

17 Synchronizing BFS Algorithm . 87

xv

List of Theorems

1 Lower Fence . 6

2 Observation of an Analog Implementation of a PRS 52

3 Weak Observation . 56

4 SIP . 63

5 Extended Stability Application . 63

6 Propagation Property . 71

7 Generalized SIP . 123

xvi

List of Equations

Equation 1.1 (Section 1.5) . 5

Equation 1.2 (Section 1.5) . 5

Equation 2.1 (Section 2.2) . 16

Equation 2.2 (Section 2.3) . 19

Equation 2.3 (Section 2.5) . 25

Equation 2.4 (Section 2.5) . 25

Equation 2.5 (Section 2.5) . 25

Equation 2.6 (Section 2.5) . 26

Equation 2.7 (Section 2.5) . 26

Equation 2.8 (Section 2.6) . 29

Equation 2.9 (Section 2.6) . 30

Equation 2.10 (Section 2.6) . 30

Equation 3.1 (Section 3.2) . 40

Equation 3.2 (Section 3.2) . 41

Equation 3.3 (Section 3.3) . 42

Equation 3.4 (Section 3.5) . 45

Equation 3.5 (Section 3.6) . 49

Equation 3.7 (Section 3.6) . 49

Equation 3.8 (Section 3.6) . 50

Equation 3.9 (Section 3.6) . 51

Equation 3.10 (Section 3.7) . 51

Equation 3.11 (Section 3.9) . 53

Equation 4.1 (Section 4.2) . 55

Equation 4.2 (Section 4.2) . 55

Equation 4.3 (Section 4.2) . 56

Equation 4.4 (Section 4.2) . 57

Equation 4.5 (Section 4.2) . 57

Equation 4.6 (Section 4.2) . 57

Equation 4.7 (Section 4.2) . 57

Equation 4.8 (Section 4.2) . 57

Equation 4.9 (Section 4.2) . 58

Equation 4.10 (Section 4.2) . 58

xvii

Equation 4.11 (Section 4.2) . 58

Equation 4.12 (Section 4.2) . 60

Equation 4.13 (Section 4.2) . 60

Equation 4.14 (Section 4.2) . 60

Equation 4.15 (Section 4.2) . 61

Equation 4.16 (Section 4.3) . 61

Equation 4.17 (Section 4.4) . 61

Equation 4.18 (Section 4.4) . 63

Equation 4.19 (Section 4.4) . 63

Equation 4.20 (Section 4.4) . 64

Equation 4.21 (Section 4.4) . 64

Equation 4.22 (Section 4.4) . 64

Equation 4.23 (Section 4.4) . 64

Equation 4.24 (Section 4.4) . 65

Equation 4.25 (Section 4.4) . 65

Equation 4.26 (Section 4.4) . 65

Equation 5.1 (Section 5.5) . 72

Equation 7.1 (Section 7.1) . 90

Equation B.1 (Section B.0) . 113

Equation B.2 (Section B.1) . 114

Equation B.3 (Section B.1) . 114

Equation B.4 (Section B.2) . 115

Equation B.5 (Section B.2) . 116

Equation C.1 (Section C.2) . 119

Equation C.2 (Section C.4) . 121

Equation C.3 (Section C.4) . 122

Equation C.4 (Section C.4) . 122

Equation C.5 (Section C.4) . 122

Equation D.1 (Section D.0) . 124

Equation D.2 (Section D.1) . 125

Equation D.3 (Section D.1) . 125

Equation D.4 (Section D.1) . 126

Equation D.5 (Section D.2) . 127

Equation D.6 (Section D.2) . 127

xviii

Equation D.7 (Section D.2) . 128

Equation D.8 (Section D.2) . 128

Equation D.9 (Section D.2) . 128

Equation D.10 (Section D.2) . 128

Equation D.11 (Section D.2) . 129

Equation D.12 (Section D.5) . 130

Equation D.13 (Section D.5) . 130

Equation D.14 (Section D.5) . 130

xix

List of Figures

1.1 Synchronized pair of inverter rings. 8

1.2 Chain of WCHB buffers. 8

2.1 Martin Synthesis: no timing assumptions. 15

2.2 PRS for NAND and C-element gates. y↓ is shorthand for y:=false, and y↑
is shorthand for y:=true. 16

2.3 Expressions used in CHP and HSE. 18

2.4 Using Martin Synthesis to obtain implementable HSE for the ∗[L;R] buffer. 19

2.5 Martin-Synthesized PRS for the ∗[L;R] buffer derived in Figure 2.4. 20

2.6 Circuit vulnerable to slow transitions on L. 21

2.7 When x has an intermediate analog value it enables N and P transistors

simultaneously. This leads to ring-oscillator behavior not possible in a digital,

atomic model. 22

2.8 CMOS transistors. 24

2.9 CMOS inverter. 26

2.10 CMOS 2-input NAND gate. 27

2.11 CMOS 2-input C-element. 27

2.12 The CMOS-gate implementation of a general pair of PRs. 28

2.13 Valid steady-state regions for the analog voltage-signal y(t). The forbidden

zone is shown as cross-hatched. 29

2.14 A combinational logic circuit. 30

2.15 Triggering of forbidden-zone onsets in clocked static CMOS and in QDI. . . 31

2.16 Measurement of inertial delay in clocked static CMOS and in QDI. 32

2.17 Differences between synchronous and asynchronous verification. 33

3.1 Observation rule φ applied to analog signal y gives atomic, digital transitions. 35

3.2 How to verify a circuit using the observation theorem. 36

3.3 Lumped capacitance model of a simple circuit. 37

3.4 Analysis of the 2-input NAND gate. 38

3.5 Complete circuit equations for the circuit of Figure 3.4. 39

3.6 Analysis of the implementation of a general 2-input PRS gate. 39

3.7 Terms of the general output current iy. 40

3.8 Valid initial conditions for the signal y(t). 43

xx

3.9 Completion thresholds for y. 45

3.10 Initiation thresholds for y. 45

3.11 Sample operation of the four-threshold automaton. 46

3.12 Inductive definition of Φ(y). 46

3.13 Partial fences for y↑. 47

3.14 Indefinite DC bounds on y (holding for all time). 48

3.15 Slewtimes of transitions on y. 48

3.16 Transient (finite) partial-fences for transitions on y. 48

3.17 Inertial (minimum) delays (α) of transition initiation on y. 50

3.18 Postulated voltage-level parameters for y. 53

3.19 Postulated timing parameters for y. 53

3.20 Postulated partial-fence parameters for y. 53

4.1 Containment phases. 58

4.2 3-phase decomposition, and definitions of uy and ly. 59

4.3 Containment bounds. 60

5.1 Two opposing transitions arriving at different gate inputs in rapid succession. 68

6.1 FenceCalcTM I/O quantities associated with each node y. 76

6.2 The FcNode.T data structure. 78

6.3 The FcTransition.T data structure. 78

6.4 The FcHypothesis.T type hierarchy. 79

6.5 Replacing the ignored leading bound La by a DC bound. 81

6.6 Shifting Ta to time t, without loss of generality. 82

6.7 The FcSysHypo.T type hierarchy. 85

7.1 Synchronized pair of inverter rings. 91

7.2 Chain of dual-rail WCHB buffers. 92

7.3 Delay Insertion for WCHB Verification. 93

7.4 Careful Threshold Selection for WCHB Verification. 93

7.5 Noise Tolerance of Individual Internal Nodes of the WCHB Chain. 94

7.6 Adding delay elements to a circuit to make it pass verification. 97

7.7 Diverging hypotheses: If the leading and trailing fences are too far apart,

then they continue to drift away from each other. 98

xxi

7.8 Function within input-hypothesis bounds that is used to calculate the trailing

output-hypothesis bound. 99

A.1 Slightly Spurious Response to 4ns Input Rise Time. 108

A.2 More Spurious Response to 8ns Input Rise Time. 108

A.3 Even More Spurious Response to 16ns Input Rise Time. 108

A.4 Ways to describe the multiple events making up the execution of statement S.110

B.1 Symbol, circuit, and Voltage Transfer Characteristic (VTC) for an inverter. 114

B.2 Slewtime transfer function with asymptotes and fixed point. 116

B.3 A roughly monotonic input transition signal. 118

C.1 A Fence Need Only Satisfy a Local Condition 119

C.2 Slope Field for Inverter Output Waveform. 120

C.3 Upper and Lower Fences for Inverter Output Waveform. 121

D.1 Analysis of a linear circuit using generalized Ohm’s law. 125

D.2 Analysis of a common-gate network of NFETs using generalized Ohm’s law. 126

D.3 Analysis of two NFETs in series. 127

F.1 Complete hypothesis for o↑ in the synchronizing loop circuit. The end of the

leading bound was padded with a conservative DC value to match the length

of the trailing bound. 141

F.2 Complete hypothesis for o↓ in the synchronizing loop circuit. 141

F.3 Partial hypothesis for one of the two o↓ scenarios in the synchronizing loop

circuit. This includes the calculation of α and αM , computed in one pass as

discussed in Section 6.6.1. This is why there is a kink at V↓I 142

F.4 Complete hypothesis for m1↑ in the synchronizing loop circuit. 142

F.5 Complete hypothesis for m4↓ in the synchronizing loop circuit. 143

F.6 Complete hypothesis for le↑ in the WCHB buffer chain. 150

F.7 Complete hypothesis for le↓ in the WCHB buffer chain. 150

F.8 Complete hypothesis for le↑ in the WCHB buffer chain. 151

1

Chapter 1

Introduction

This thesis shows how to rigorously verify analog implementations of digital asynchronous

cicuit specifications. A circuit is rigorously verified (“correct”) only if there exists a proof

that all possible behaviors of the circuit, in the lowest-level model, adhere to the specifica-

tion. As we argue in the first section, that model should be an analog differential-equations

model. To date, all practical physical circuit implementations, including Complementary

Metal-Oxide-Semiconductor (CMOS), are analog, though circuit designers usually use a

digital abstraction.

I am specifically concerned with digital asynchronous circuit specifications in Production-

Rule Set (PRS) form[1]. PRS is the form of circuits produced by Martin Synthesis, a

method which has yielded several high-performance implementations[2][3][4][5] of main-

stream CPU architectures. By construction, such circuits are correct in a particular digital

circuit evaluation model[1], which I call the atomic model.

PRS circuits have a canonical analog implementation in CMOS. The primary result

of my thesis is a proof that these canonical implementations are rigorously correct, under

conditions which are quickly checkable, and which can be guaranteed by inserting restoring

delay elements into the circuit, if necessary. I apply the theorem to specific non-trivial

circuits, including a dual-rail pipeline.

1.1 The Importance of a Rigorous Approach

Rigor means “precisely accurate”[6], which, in the context of mathamematical proofs,

means that the result is sound (i.e., admits no counterexamples) in a precise and accurate

model. All behaviors under consideration must be of a consistent, precise mathematical

form, which is accurate to the object under study. Naturally this yields the question of

whether the atomic model discussed above is accurate.

2

Unfortunately, not all physical circuit implementations provide the atomic transitions

needed to satisfy the atomic circuit model. In fact, most non-trivial circuits generated by

Martin Synthesis will fail if the operational model is non-atomic. Nontheless, circuits with

non-atomic transitions can faithfully implement the atomic circuit model when combined

with a few simple slewtime constraints[7] (a result reinforced in this thesis).

In Section 1.3 we will view atomicity as an attribute (i.e., property) of operational mod-

els. Atomicity is an important attribute of the digital model because the non-atomicity

of (i.e., absence of atomicity from) the analog model can lead to failures that were not

considered by the digital circuit designer. This finding naturally leads to the question of

what other attributes there might be which might lead to failures that were not digitally

predictable. For example, if circuits had no gain, then all nodes would reach a fixed point,

leading to nonoscillation. If the signals were not bounded and/or had no contractive

regions, there could be overoscillation. Other possibilities (discussed in Appendix A)

include leakage drift and unexpected slewtime.

While one could look at each of these examples and try to “fix” each one individually,

such an approach would never lead to a satisfying answer. We can never be sure of the

absence of undiscovered problems until the circuit construction involves a mathematically

rigorous proof that all possible physical behaviors implement the digital specification.

Rigor should not be confused with formality. Any proof (rigorous and/or formal)

only applies logically sound deduction steps to a set of pre-existing theorems and axioms.

As noted above, rigor implies (additionally) that all pre-existing theorems and axioms refer

to a specific, accurate operational model. By contrast, formality is only a requirement on

the steps of the argument: they must be purely syntactic. While this requirement makes

formal proofs mechanically checkable, formal proofs can be difficult to apply. It is difficult

to decide whether a formal proof applies to a particular machine, because a formal proof

does not necessarily include an operational model that we can compare to the machine’s

operational model. Rather, the formal proof includes a set of axioms that must be checked

against the machine’s operational model. While these axioms are often easy to check by

induction, this is not the case when applying the axioms to an analog model, as we argue

above (and in Section 2.6 and Appendix A).

Therefore, rigor – specifically, having complete correctness proofs that refer directly to a

specific, accurate underlying model – is as relevant to the soundness of analog verification as

formality is. While formality can be beneficial when mechanical proof-checking is required

(to detect human error), it is a central thesis of mathematics that any proof can be translated

3

into an equivalent formal one. Therefore the primary goal should be rigor.

1.2 The Analog Model

To consider all physical behaviors, we must use (as our substrate model) the differential

equations describing the circuit. Of all existing models, only differential-equation models are

accurate enough to capture all the effects mentioned in the previous section (and any others

that have not been specifically identified). Also, owing to inaccuracies in any such model,

and external interference, we must consider not just behaviors satisfying the equations

exactly, but also any behaviors that are within a noise bound η of satisfying the equation.

We refer to such behaviors as analog evolutions1.

Finally, we must allow the external environment arbitrary response times. Owing to

environment timing and noise, there is not a unique behavior for a given circuit. In fact,

there is an infinite number of possible behaviors, so we indeed must talk about all possible

behaviors. The details of the analog model are presented in Section 2.5, and the details of

the noise bound are presented in Section 3.3.

1.3 The Digital, Atomic, Global-Time Abstraction

Circuits constructed using Martin Synthesis are correct in the weakly-fair sequential selec-

tion model[1][9]. I call this model atomic (meaning “indivisible”) because actions executed

in this model are single events. By construction, the circuits are also correct in more

abstract models involving various notions of concurrent composition[1]. In that case,

correctness depends on the particular type of concurrent composition used. If the model is

equivalent to (i.e., implements) the sequential atomic model, then I call the model atomic.

Otherwise I call the model non-atomic. In general, the circuits are not correct in non-

atomic models[7] (reintroduced in Appendix A.1). Therefore, we will strive to satisfy an

abstraction consisting of an atomic model.

A model may or may not use global time. That distinction is orthogonal to the

atomic/non-atomic distinction: under basic assumptions that rule out time-travel para-

doxes, any atomic or non-atomic model can be stated in equivalent form with or without

global time[7]. The system designer may well be better off avoiding arguments involving

global time[1][10]. However, given that our task is to verify behaviors stated in terms

1Evolution is a standard term used in mathematical analysis to denote solutions (approximate or exact)
to differential equations[8].

4

of ordinary differential equations that have a global time, our work will be simplified by

introducing global time into the abstraction – with no loss of generality – from the start.

Therefore we will specifically use the atomic timestamp model. In this model, exe-

cutions are defined to be all live, safe calendars of production rules. We define a calendar

as any set of timestamped assignments, as this structure is simplest to map to physical im-

plementations. (This structure yields an atomic model because assignments are the only

possible action, with exactly one action per assignment.) Liveness is the property of

progress, while safety says that the execution never does anything bad. The atomic times-

tamp model is the most general atomic model in which synthesized circuits are correct[7].

We discuss this model further in Section 2.4.4.

1.4 The Observation Theorem

The weakest possible useful notion of correctness for a circuit implementation is that the

outputs of a correct computation can be viewed on an oscilloscope connected to the output

pins (output wires) of the circuit every time the circuit is started properly. In other words,

the analog signals on the output nodes can be observed, and the observed sequence of

values matches the sequence of values predicted in the atomic model. In the canonical

implementation of PRS (Section 2.5.6,[1]) there is no difference between the output nodes

and all other nodes, so we can assume that all nodes can be observed.

An analog signal is not exactly a sequence of digital values or assignments, so to observe

an analog signal we need a mapping from analog signals to digital assignment sequences,

which I call an observation rule φ. The observation rule φ extracts events from waveforms.

Once we have decided on an observation rule φ, it is easy to define analog correctness: a

circuit is correct if and only if for all analog evolutions L, the digital calendar φ(L) is an

execution in the atomic model. An observation theorem is a theorem that proves that

φ(L) is always an execution[7].

The observation rule should be as simple as possible. This gives the simplest possible

definition of correctness. The observation rule should not hide any computation. For

example, if the chip is broken and produces no output values, the observation rule should

not magically claim that all the correct values were produced. To achieve this property, our

observation rules will separate into one spatially local rule for each circuit node. Thus, if

the rule claims an output event on node y, it can only be because the output waveform for

y actually did something; it cannot directly inspect the inputs that led to this activity.

5

In my previous investigation of non-atomic digital implementations of PRS, the obser-

vation rule was a simple projection[7]. Unfortunately, a simple projection does not work for

analog implementations because the signals are not necessarily monotonic, owing to noise.

Our observation rule will consist of a four-threshold automaton. In Section 3.5 we define

the automaton, and show that four thresholds are necessary and sufficient.

The proof of the observation theorem is the subject of Chapter 4. The remainder of

Chapter 1 is devoted to the explanation of concepts used in that proof and in Chapter 3,

which derives a complete formulation of the theorem from these concepts.

1.5 Signal Containment

To prove that the observation of any analog behavior is an execution, we must bound all

analog signals. For example, suppose that the digital assignment x:=0 has just completed.

To prove that a subsequent x:=1 has not begun and cannot propagate, we must prove –

over the time interval between the assignments – that the signal remains in a logical “0”

region. This is clearly true for any observation rule in which the rule for initiation of an

assignment can be expressed in terms of a signal leaving a region (see Section 3.5).

Analog circuit verification requires the definition of logical “0” and “1” regions[11]. The

difficulty with self-timed asynchronous circuits is that in the absence of a regular clock, the

intervals over which these regions apply depend on signal timing. Furthermore, to rule out

certain failures (Appendix A) we must bound signals at all times: we care what a signal

does while it is transitioning, not just where it is between transitions. The simplest way to

express such a for-all-time bound is as a pair of functions l(t) and u(t).

To prove the observation theorem, we prove that for each node x we can construct

bounds lx(t) and ux(t) from φ(L), such that the voltage signal x(t) satisfies the signal

containment conditions

lx(t) < x(t) < ux(t) for all time, and (1.1)

assignments to x in φ(L) are safe. (1.2)

6

Recall that to prove the theorem we must show that φ(L) is both live and safe. If

Equation 1.2 holds for all nodes, then we have the safety portion of the result. If Equation 1.1

holds for all nodes, then the progress portion easily follows from our logic-gate specification

(Section 4.4.3).

1.6 Fences

The x(t) are given by differential equations, which we will formally introduce in Section 2.5.

Therefore we are confronted with the problem of bounding solutions to a differential equa-

tion. For 1-D Ordinary Differential Equations (ODEs)2 , this can be accomplished using

fences, defined[8] as follows:

Definition 1 (Lower Fence) For the differential equation x′ = f(t, x), we call a differ-

entiable function l(t) a (strong) lower fence if l ′(t) < f(t, l(t)) for all t.

Lower fences are useful because of the following theorem[8]:

Theorem 1 (Lower Fence) For a differential equation x′ = f(t, x) with solution x(t) and

lower fence l(t) such that l(t0) < x(t0), we have l(t) < x(t) for all t ≥ t0.

Similarly, an upper fence satisfies l′(t) > f(t, l(t)) and there is a corresponding theorem

that an upper fence is an upper bound. See Appendix C for elementary examples.

1.7 Spatial Induction

In an acyclic circuit the output signal of any gate is determined by a 1-D differential equation

in terms of the inputs to that gate. Therefore, by induction on the circuit tree, we can

assume that each node x satisfies the node hypothesis consisting of fences lx and ux

which satisfy equations (1.1)-(1.2). This type of induction on a circuit is used routinely in

the verification of standard combinational logic[11], as we discuss in Section 2.6.2.

Unfortunately, circuits that do more than a constant amount of work must have cycles,

and therefore ordinary induction cannot be applied to the multi-dimensional differential

equations describing them. To solve this problem I present a new form of induction called

spatial induction, which allows the verifier to assume that the inputs to a gate satisfy

their respective node hypotheses. See Section 4.4.

2An ODE is a DE in which all derivatives are taken with respect to one variable, t (time).

7

1.8 FenceCalcTM

A circuit is verified by spatial induction when every node in the circuit is assigned a node

hypothesis and these hypotheses are consistent. Consistency means that for each gate,

Equations (1.1)-(1.2) are satisfied for its output signals, assuming they are satisfied for its

input signals.

I have developed the Modula-3 program FenceCalcTM, which finds consistent hypotheses

if they exist and checks their consistency. FenceCalcTM uses piecewise linear fences that can

approximate arbitrary continuous functions as accurately as desired.

A circuit is typically used infinitely often, so a fence is infinite. However, FenceCalcTM(being

an ordinary computer program) clearly must express the fence as a finite description. This

is possible because a properly executing signal alternates between two types of phases: an

active transition (or transient) phase of bounded length and an idle (or DC) phase of

potentially unbounded length. This allows us to express our fences as a collage of two types

of partial fences, one for each phase:

1. DC fences, bounding the DC phases.

2. Transient fences, bounding the transient phases.

As we will see in Section 4.4.6, the node hypothesis discussed above can be expressed as a

containment condition that is local to these partial fences.

The transient fences produced by FenceCalcTMmust be sufficient approximations to con-

tinuous fences, and it appears (both experimentally and theoretically) to be important that

the element-equations for the transistors be available as continuous functions. This is in

contrast to prior techniques for combinational logic where the circuit elements are character-

ized as the union of a handful of rectangles in the I-V plane[12]. We discuss the arithmetic

aspects of this in Appendix D.3.

FenceCalcTM computes exactly one of each type of partial fence for each assignment type:

It computes two transient partial-fences, for x:=0 and x:= 1, and two DC partial-fences,

for x=0 and x=1.

FenceCalcTM is accessed using the interactive command language KAVL.3 KAVL provides

commands for specifying the thresholds defining φ, computing the DC and transient fences,

and for checking the consistency of the results. KAVL is further discussed in Section 6.2

3
KAVL (Karl’s Asynchronous Verification Language) is pronounced “cavil”.

8

Conceptually, the results of FenceCalcTMare plugged into the proof of the Observation

Theorem that I present in Section 4. In practice we presently are not using an elementary

proof-checking system, so the user is done when FenceCalcTM terminates successfully.

1.9 Results for Real Circuits

I have successfully verified two circuits using FenceCalcTM . The first circuit, shown below,

consists of two ring-oscillators whose oscillations are synchronized by a Muller C-element:

C

Figure 1.1: Synchronized pair of inverter rings.

The second circuit, shown below, implements a queue of bits implemented using D.E.

Muller’s Weak Condition Half Buffer (WCHB) Buffers[13]:

_ack

C

C

WCHB Buffer

C

C

WCHB Buffer(data to circuit)
Environment Environment

(data from circuit)
L0

L1

S0

S1

Le Se

data

Figure 1.2: Chain of WCHB buffers.

For some of the environment handshakes, FenceCalcTM demands a minimum delay through

the environment in order to verify this circuit.

For both circuits it is assumed that the transconductance of NMOS transistors is twice

that of PMOS transistors, that staticizers have 5% of the strength of other gates, and

that the relative sizing of different gates is in proportion to their load capacitance (see

Section 2.5). I have rigorously verified these circuits assuming that a current-noise of any

form whose peaks are as large as 0.1% of the maximum drive current of any gate can appear

9

on that gate’s output at any time. This is after taking error in the calculation itself into

account.

The results are general. Any canonically-implemented (Section 2.5.6) PRS with a maxi-

mum fanin of two4 can be verified using FenceCalcTM provided feedback loops are sufficiently

long. In Section 7.6 we show that we can verify an arbitrary circuit if we add restoring de-

lays to some loops. When delays are added, some of the existing calculations can be reused

using incremental timing analysis[14].

In some cases, a rigorous verification exists (without adding the restoring delay elements)

and yet it is difficult to find a verification, as we show in Section 7.3.2. This should not be

surprising, as the mathematical set of parameters for which a circuit works is likely to have

a complicated fractal boundary[8].

Finally, I have listed (in Section 3.2.4) all assumptions that I make about the element-

equations of CMOS transistors so that my method can be applied to any other technology

satisfying these assumptions.

1.10 Related Work

1.10.1 Speed-Independent (SI) Digital Models

A Speed-Insensitive (SI) circuit evaluation model has unbounded gate delays[15]. Such

models can be used at all levels of digital logic design[1], from abstract high-level

design[16][17][10][18] down to circuit netlists[15][1]. When the designer uses such mod-

els, analog verification is much easier than with bounded-delay models because the digital

design’s correctness is not affected by analog delay parameters.

Unfortunately, speed-insensitive circuits are not the most general possible class of cir-

cuits, as they do not include wire delays. Delay-Insensitive (DI) circuits include un-

bounded wire delays. DI circuits are the most general, but provably perform only trivial

computations[19]. This problem can be solved by allowing only bounded wire delay[20].

As with bounded gate delay, bounded wire delay has the serious disadvantage that the

digital circuit designer must deal with timing parameters. Therefore, we should ideally use

the Quasi–Delay-Insensitive (QDI) model, which is everywhere delay-insensitive except

at a (relatively) small number of nodes called isochronic forks, which have no delay. QDI

circuits are Turing-complete[21], and Martin Synthesis produces efficient QDI circuits for

an arbitrary computation[1][22].

4This is a limitation of the present implementation of FenceCalcTM, not a limitation of the theory.

10

A DI or QDI circuit can be viewed as an SI circuit in which the non-isochronic forks have

explicit delay elements. In this thesis all netlists and circuit diagrams are explicitly expanded

so that we can analyze them using an SI model. This thesis shows that isochronic forks

do not require special treatment for complete, rigorous verification. However, isochronic

forks bring out the most difficult verification challenges, and previous efforts have focused

on them[23].

1.10.2 Digital Verification of SI Circuits

A circuit is itself considered SI if it is correct under any timing permitted in a digital SI

model. Speed-independence of a circuit is achieved directly by the correctness of automatic

compilation[1][24][25][26], by automatic verification[27][28][29], by hierarchical verification

[30], or by analytic verification[31] such as determinism properties[32][33].

1.10.3 SPICE Simulation

The most accurate complete behavioral descriptions of VLSI circuits are analog differential

equations[34]. To obtain a complete simulation, therefore, these differential equations can

be solved numerically. The SPICE simulator[35] does this quickly.

SPICE comes with standard models for all circuit elements. These models have many

levels, providing incremental accuracy (and complexity). Level 0 has simple element-

equations with no internal state variables except in explicit capacitors and inductors. Level

50 includes several internal state variables per element. Recent work indicates that for a

small loss of accuracy, these state variables can sometimes be replaced by fewer variables

by partitioning using voronoi diagrams[36].

Unfortunately, a SPICE simulation checks only a single analog behavior, and has all of

the following limitations:

1. Environment timing and all noise sources must be exactly known, or infinitely many

simulations are required.

2. Device parameters must be exactly known, or infinitely many simulations are required.

3. SPICE has no way to account for its own numerical error.

This last limitation makes it difficult to attach a mathematical meaning to a SPICE sim-

ulation. A simulation is not reproducible unless identical arithmetic and rounding methods

11

are used. One cannot even conclude from a working simulation that any solution to a partic-

ular differential equation obeys the specification. In contrast to other types of calculations,

it is not possible to bound the error in a SPICE simulation by simple interval analysis, as

SPICE is given no specification other than the analog circuit itself, and therefore the error

grows exponentially over time[8].

My solution to all of these problems is to view the noise bound (introduced in section

1.2) as a noise budget, which can be distributed over the above three categories, to handle

all types of noise in a finite computation. A comprehensive noise budget that solves all three

of the above problems is defined in Section 8.2.

1.10.4 Non-Atomic and Multithreshold Modeling

As we discuss further in Section 2.4, circuit evaluation models can be non-atomic, meaning

that several events are required to properly model a single assignment action. This is possi-

ble if we begin with an abstract semantics for PRS based on a broad notion of concurrent

composition, which can be either atomic or non-atomic[1][37]. We discuss these abstract

semantics further in Section 2.2.1.

Non-atomic semantics provide an abstraction useful for analog verification when they

define a transition time, which represents the nonzero time that it takes an analog signal

to cross multiple thresholds[38][23][39]. In such models, the circuit is provably correct when

the transition times are less than feedback delays[7].

The alint program[39], developed for the verification of the MiniMIPS processor[2],

uses an advanced SPICE to check several correctness properties of analog implementations

of QDI circuits. Such properties include slewtime constraints derived from multi-threshold

modelling, an important idea used throughout this thesis. alint was successfully employed

to ensure that the MiniMIPS worked without post-fabrication modification.

1.10.5 Dynamical-Space Modeling

To verify the analog safety of a circuit, we must show that all signals are bounded[40]. As

discussed in Section 1.6, there is a general mathematical theory[8] which accomplishes this

for non-linear differential equations (such as those describing circuits). However the theory

does not directly scale to higher dimensions (as we need for circuits).

Synchronous circuits have been verified using simple piecewise-rectangular subspaces of

the full multi-dimensional dynamical space[12]. Simple asynchronous circuits (oscillators)

have been verified using low-dimensional polygonal projections[41]. However, unlike prior

12

work, my algorithms run in time linear in the circuit size and work on circuits that have

data rails.

Asynchronous pulse circuits can, in theory, be verified by maintaining fixed pulse en-

velopes that are translated in time to contain the actual pulses. The envelopes are main-

tained using voltage-amplification and delay properties of the circuit gates[42]. My approach

to verification of QDI circuits combines these ideas with new forms of induction and stability,

yielding a complete rigorous method that succeeds on several example circuits.

1.10.6 Timing Closure Methods

Prior work in analog verification uses both upper and lower bounds on gate delays. Analog

correctness-only verification of QDI circuits in alint[39] requires only lower bounds, though

upper bounds are useful for performance characterization (which is optional for QDI). Meet-

ing these bounds is called timing closure. The delays themselves are a function of the

relative strength of a transistor to the load it drives, known as logical effort[43]; we use a

simplified version of this quantity that we call relative transconductance.

The effects of individual gate delays on the overall behavior of a QDI system have been

analyzed in various digital models, based on computation graphs[44][45].

1.10.7 Symbolic Learning Algorithms

Our verification methods are based on the formulation of hypotheses that ultimately sat-

isfy a set of necessary and sufficient conditions. As we compute these hypotheses, we

symbolically represent our current knowledge about the hypotheses at every step of the

computation. Such an approach, used in the context of analog verification of synchronous

circuits, has been viewed as an application of learning algorithms[46].

1.10.8 Multi-Ring Systems

An asynchronous system can be viewed as a multi-ring system[47][48]. Several types of

analog failures are revealed on a single ring[41]. For example, if a circuit fails by stop-

ping all activity, that failure will be detected as a ring which fails to oscillate. Similarly,

spurious activity can sometimes be viewed as a ring which oscillates too much. However,

in Section A.5 we show that not all analog failures reveal themselves on rings. Therefore

multi-ring abstractions are of limited use when carried into the analog domain.

13

1.10.9 Fault Testing and Correction

There exist methods that produce circuit designs that find and correct bit-flip errors that

occur as a result of hard errors[49] (from manufacturing flaws) and soft errors[50] (from

acute noise). I presently do not incorporate these methods into my theory because they are

not in widespread use. However, there does not appear to be a fundamental reason why

they cannot be included in a future version of the theory.

14

Chapter 2

Background

As noted in the introduction, we are assuming that our circuits have been generated through

Martin Synthesis. This guarantees delay-insensitivity properties that we discuss in Sec-

tion 2.1. It also means that our circuits are given in PRS form, which we discuss in

Section 2.2. In Section 2.3 we walk through a specific example of Martin Synthesis which

yields a PRS circuit for a buffer (i.e., a pipeline stage). In Section 2.4 we illustrate the

importance of the atomicity of the operational model for PRS by giving a circuit that fails

in a non-atomic model.

In Section 2.5 we discuss CMOS, the predominant implementation technology. We dis-

cuss how CMOS is accurately modeled using differential equations and how PRS is canon-

ically compiled into CMOS. Finally, in Section 2.6 we discuss traditional verification of

synchronous CMOS circuits and compare it to our asynchronous verification.

2.1 Quasi–Delay-Insensitivity (QDI) and Correctness by Con-

struction

Martin Synthesis is correct by construction. This means that the construction method gen-

erates a proof that all possible dynamic behaviors of the final design adhere to the high-level

specification that the engineer started with. The design is initially specified as a sequential

program and transformed through a sequence of description levels (CHP, HSE, and PRS

– see below). Each description in the sequence provably implements its specification, the

previous description. The final design – a VLSI chip – therefore implements the original

specification.[1]

Delay Insensitivity (DI) means delay can be added to any operator or wire without

affecting correctness. This allows more transformations to be applied than what would

15

otherwise be possible. Unfortunately, strict DI can only implement trivial specifications.[19]

Quasi Delay-Insensitivity (QDI) allows non-trivial specifications to be implemented

by allowing delay on operators but not on wires. This property holds for all behavior models

of all description levels used in Martin Synthesis (CHP, HSE, and PRS). The properties

hold because these models only assume that commands execute eventually when they are

enabled. In particular, there are no timing assumptions, i.e., the models do not allow

assumptions of the form “command A completes before command B because command A

is faster than command B.” Commands can wait for other commands to complete, but they

cannot rely on the speed of other commands.

N
o

tim
in

g
as

su
m

pt
io

ns Decompose

Compile

Compile

Sequential CHP

Concurrent CHP

HSE

PRS

CMOS

Reshuffle/
Bubble/

State−var Compilable HSE

Model: message passing

Model: shared variables
(sharing for channel
implementation only)

Model: guarded commands
(boolean variables only)

Model: analog diffeqs
Transistor connection netlist

Production Rule Sets

HandShaking Expansion

Communicating Hardware
Processes

Compile

Figure 2.1: Martin Synthesis: no timing assumptions.

Unfortunately, timing assumptions must be added in the final step of compiling PRS

into CMOS circuits[7] (Section 2.4). Nonetheless, we will use the standard atomic model

for PRS (Section 2.4.4) so as not to require timing assumptions to be added to any of the

higher-level compilation steps.

16

2.2 Production Rule Sets (PRS)

A PRS is a set of nodes with initial binary values1 and a set of logic gates connecting to

those nodes. We will use the simplest version of PRS in which each node y is the output of

exactly one gate, which is expressed as exactly two production rules (PRs):

g → y := false and (2.1)

q → y := true,

where g and q are boolean functions called guards, of other nodes in the circuit. The

guards describe when the assignments to y occur. For a general PR of the form g → y := v,

we sometimes refer to the boolean v as the target value and the output node y as the

target node.

As shown in Figure 2.2, PRS describes both combinational gates such as NAND gates

and state-holding gates such as C-elements. If the guards are complementary (as in the

NAND gate), then for any input exactly one of the two guards is satisfied, and so the

output is always (eventually) a function of the current input. I.e., the gate is combinational.

Otherwise there is an input combination for which neither guard is satisfied, and it is

assumed that in this case the gate holds state:

y

a
b

a
b y

a b

a b

CMOS:

PRS:

NAND gate C−element

Cy

y

y

a b

a b

y

Figure 2.2: PRS for NAND and C-element gates. y↓ is shorthand for y:=false, and y↑ is
shorthand for y:=true.

1We assume that at any moment, the value of a node is either false (0) or true (1).

17

2.2.1 Abstract Semantics of PRS

There are a number of possible semantics for PRS. Alain Martin suggests two types of

operational models[1]. One of these is the very specific model in which the executions are

sequences obtained through weakly-fair selection; this is the model which I call atomic.

The other is a more abstract class of models in which the executions are concurrent

compositions of local sequences. This latter model class defines a (valid) execution as any

set satisfying a number of properties[1], which I state as follows:

1. An execution is a set of events. Each (nonvacuous) event is the (nonvacuous) firing

of a PR (production rule). The firings of a single PR form a sequence. An execution

is some sort of concurrent composition of PR-firing–sequences.

2. The system state is an assignment of a value to each node.2 The effect of an event

is to change the value of the target node of the PR to the target value of the PR;

these are the only changes to values allowed, i.e., after a PR firing, the system state

is the same as it was before the event executed, except for the effect of that PR.

3. An execution must satisfy liveness and safety. A PR is (nonvacuously) enabled

whenever its guard is true and its target does not yet have its target value. Liveness

(a.k.a., progress) is the requirement that any enabled PR eventually fire (or become

disabled). Safety is the requirement that an event can only occur when its PR is

enabled3.

To make these semantics rigorous, we must specify the type of concurrent composition

that we are using. In Section 2.4 we demonstrate why this choice matters, and in Sec-

tion 2.4.4 we complete our semantics by choosing a concurrent composition that yields an

atomic model.

2In the original formulation[1], the system state is not necessarily globally defined before every PR firing.
However, the state must be defined at enough nodes that the PR’s guard can be evaluated to true before
the PR nonvacuously fires. Fortunately, there is no loss of generality in assuming that there is always a
global state, as we simply ignore the part of the state that is not evaluated.

3The original formulation[1] allowed additional, vacuous events of the “vacuous” and “guard not enabled”
varieties, but then ignored them in analysis. Ignoring the vacuous events is equivalent to removing them
from the model entirely. Therefore, to simplify analysis, we have removed vacuous events from the model.

18

2.2.2 Stability and Non-Interference (SNI)

Any semantics must admit the following notions of stability and noninterference[1]:

1. An execution is stable if a PR is never disabled, except through the firing of that

PR4.

2. An execution is noninterfering if for each gate with guard g and opposing guard q

(i.e., the other guard of that gate, which pulls in the other direction) the invariant

¬(g ∧ q) holds always.

We assume that stability and noninterference are part of the specification of every PRS,

since our main result depends on these properties and they are guaranteed by Martin

Synthesis, i.e., we assume the PRS is Stable and Non-Interfering (SNI).

2.3 Martin Synthesis Example: ∗[L; R] Buffer

After decomposition, a design is expressed as a set of CHP processes typically of the buffer

form, written in CHP as ∗[L;R]. Such a process repeatedly receives data on input channel

L and sends a function of that data (such as an arithmetic operation) on output channel

R.

For now, ignore the fact that data is sent. We will consider a circuit with the proper

communication sequence, and data can easily be added later. We are using the following

CHP notation[1]:

Expression Meaning

L communication on channel L

L (example) wires implementing channel L
Le (example) (unless otherwise noted, initial wire value is 0).

[p] Wait for condition p to hold.

[Re ∧ L] (example) Wait for condition [Re ∧ L] to hold.

∗[Body] Repeat Body forever.

S1;S2 Perform S1 and then S2, sequentially.

Le↑ Assign value of 1 to wire Le.

R↓ Assign value of 0 to wire R.

Figure 2.3: Expressions used in CHP and HSE.

4The original definition of PR stability is that whenever the guard g holds and the rule is (nonvacuously)
enabled, then g continues to hold until the rule executes[1]. I prefer the shorter version given above.

19

Each CHP process is compiled into a HandShaking Expansion (HSE), as follows.

First, each communication on a channel is compiled into (i.e., replaced by) a sequence

of handshake phases on the wires implementing that channel. Assuming four-phase

handshakes, L is compiled into Le↑; [L];Le↓; [¬L], and R is compiled using a complementary

handshake:

CHP Process ∗[L ; R]

↓ compile (communications → DI handshakes)

HSE Process ∗[Le↑; [L];Le↓; [¬L] ; [Re];R↑; [¬Re];R↓]

↓ reshuffle

HSE Process {Le↑}; ∗[[Re ∧ L];R↑;Le↓; [¬Re ∧ ¬L];R↓;Le↑]

↓ add bubble and state variables

Implementable
. . .; ∗ [[Re ∧ L]; R↓;Le↓; [¬Re ∧ ¬L]; R↑;Le↑]HSE Process

Figure 2.4: Using Martin Synthesis to obtain implementable HSE for the ∗[L;R] buffer.

In reshuffling, the phases are then re-ordered to form a new interleaving of the L and R

handshakes which is easier to implement. Additional variables are then added to facilitate

implementation. In the above example just one variable was added: R (of which R becomes

a negated copy). The HSE is now ready to be implemented in PRS.

The last step is to find a PRS that implements the following HSE:

∗[[Re ∧ L]; R↓;Le↓; [¬Re ∧ ¬L]; R↑;Le↑]. (2.2)

Such a PRS can be found using the following procedure[1]:

1. Assume the hypothesis that the HSE holds. Then Compute the values of all output

variables at each semicolon using this assumption.

2. Ensure that when a PR’s assignment appears in the HSE, the PR is enabled.

3. Ensure that no PR having the form · · · → y := v is ever enabled when y 6= v in the

HSE.

20

The simplest PRS obtainable in this manner for our HSE specification is as follows5:

L
C Le

Re

Re ∧ L → Le↓
¬Re ∧ ¬L → Le↑

R_R
R = Le
R → R↓

¬ R → R↑

Re

C

Le

L
R

Figure 2.5: Martin-Synthesized PRS for the ∗[L;R] buffer derived in Figure 2.4.

The HSE shown in (2.2) is known as the Weak Condition Half Buffer (WCHB) reshuf-

fling. The circuit shown in Figure 2.5 is a well-known example of a WCHB buffer[13][22],

also known as a Muller buffer. It is the same circuit as shown in Figure 1.2, except that

the data is unary instead of binary, for simplicity.

2.4 The Importance of Atomicity

Recall (Section 1.3) that a PRS semantic model is atomic if it is equivalent to the weakly-

fair sequential selection model. In that model, each PR execution is represented as a single

event: each element of the execution sequence is an entire PR firing.

However, recall also (Section 2.2.1) that there are models in which the executions are

concurrent compositions, and we have asserted (Section 1.3) that such models may or

may not be atomic. In this section we use a real circuit example to illustrate this claim,

though we save the discussion of concurrent composition for Appendix A.1, as it is not

directly relevant to the main result.

5In Figure 2.5, the connection notation Re = Le means that Re is defined to be the same wire as Le.

21

2.4.1 Feedback Example

The PRS buffer implementation shown in Figure 2.5 makes assumptions about its envi-

ronment. For example, it assumes that each transition on R will be followed by a single

transition in the opposite direction on Re. This R/Re environment can be modeled by an

inverter. By bringing this inverter into the circuit, we can remove all actions on R and Re

from the HSE, obtaining the following HSE and circuit:

∗[[L];Le↓; [¬L];Le↑]

C
L

Le

Re
environment
model of R/Re

Figure 2.6: Circuit vulnerable to slow transitions on L.

To be correct, the circuit must behave according to the HSE. In this case, the HSE

predicts one output transition on Le per input transition on L (assuming the environment

waits for each L transition before producing an Le transition). We now proceed to show

that the HSE is violated for slow transitions on L.

22

2.4.2 Spurious Ring Oscillator

The analog CMOS implementation (see Sections 2.5-2.5.6) of the circuit shown in Figure 2.6

is shown at left in the following figure (we have renamed the nodes without changing the

circuit):

a

y

x

x

a

a

DpV(x) < V

y

a

a

C

TnV(x) > V

y

a

y
x

Figure 2.7: When x has an intermediate analog value it enables N and P transistors simul-
taneously. This leads to ring-oscillator behavior not possible in a digital, atomic model.

We define a transition on x as the period of time that its analog value is simultaneously

one n-threshold (i.e., one VTn) above ground and one p-threshold (i.e., one VTp) below the

supply voltage VDD. If the C-element is implemented as shown above, then it behaves as

an inverter during the transition on x.

If x rises very slowly, then the slewtime (i.e., the duration of the transition) is very long.

During this long period of time, the virtual inverter is in a loop with the other two inverters,

forming a free-running ring oscillator (see waveforms in Section A.1.1). This results in

failure: for each input transition, there are an arbitrary number of output transitions, while

an atomic model of the PRS for Figure 2.6 predicts just one. This example illustrates that

slewtimes must be restricted to achieve specified behavior[38][7][39].

2.4.3 Atomic Semantics of PRS

As noted in Section 2.1, a PRS constructed through Martin Synthesis does not come with

timing assumptions. But we have just seen that slewtime restrictions must be made in

order for such a PRS to behave correctly. The weakest possible static, data-independent

restriction is that each slewtime at the input of a gate must be less than all delays between

different inputs of that gate[7]. However, this restriction alone does not lead to the simplest

possible model.

23

For the simplest model in which synthesized PRS is correct, we assume an atomic

model in which all slewtimes are zero, i.e., we assume that each PR firing is a single action

in the execution. The simplest such model is the sequential model – a model (of the form

discussed in Section 2.2.1) in which the executions are all sequences of PRs satisfying safety

and progress[1].

2.4.4 Atomic Timestamp Semantics

While the sequential model is the simplest one to state, it has the problematic restriction

that events cannot occur simultaneously even though they theoretically do so in a physical

implementation. This discrepancy would complicate our analysis by preventing a direct

correspondence between time in the specification and in the physical implementation.

To solve this problem, we can extend our atomic model of PRS (without loss of semantic

generality[7]) by adding physical timestamps:

Definition 2 (Calendar) For any PRS, with PRs R, any set of (PR, timestamp) pairs,

i.e., any subset of R × R≥0, is said to be a calendar when the following two properties

hold:

1. The set of timestamps can be sorted into a sequence (I.e., this set has no limits other

than – possibly – infinity).

2. If two different elements (r, t) and (r ′, t) have the same timestamp, then r and r ′

have different target nodes.

The elements of a calendar are called events, or PR firings. The first condition in

Definition 2 ensures that the firings of each PR form a sequence (a requirement mentioned in

Section 2.2.1) and is needed to rule out non-physical executions such as Zeno’s paradox[7]6.

Both conditions are needed in order to complete our definition of the system state that

we introduced in Section 2.2.1:

Definition 3 (System State) The state of a node y at time t is the target value of the

latest event targeting y before time t or – if there is no such event – the initial value of y.

6In Zeno’s paradox, an infinite number of assignments can occur before an assignment S. This would make
it impossible to evaluate the system state at the time of S. In other incarnations, spurious failures occur:
S0 occured because S1 occured because S2 occured . . . (we never get to the bottom of the explanation).

24

Using Definitions 2-3, liveness and safety (first defined in Section 2.2.1) now have natural,

rigorous definitions in the atomic timestamp model:

Definition 4 (Liveness) A calendar is live if and only if no rule is indefinitely enabled,

i.e., there is no rule r and time t after which the system state always enables r7.

Definition 5 (Safety) A calendar is safe if and only if each event, with timestamp t, is

enabled at time t. A rule is enabled if and only if the system state satisfies its guard but has

not yet assigned the target node to the target value.

Definition 6 (Execution) An execution is any live, safe calendar.

We refer to the above definitions collectively as the atomic timestamp model. As

noted above, this is the only atomic model we need, so henceforth we will refer to it as

simply the atomic model.

2.5 CMOS

CMOS technology provides two complementary devices consisting of both polarities of the

MOSFET transistor. The NMOS type of transistor conducts when its gate terminal G8 is

at a higher voltage than its other terminals, while the PMOS conducts when its G is lower

than its other terminals. Having both types of devices allows circuits to be built that have

zero idle power dissipation, in contrast to earlier circuit technologies[34]. The following

symbols are used in CMOS circuit diagrams:

SDiDS G

S

D

PMOS

G

D

S

NMOS

i

Figure 2.8: CMOS transistors.

7Recall that executing a rule always disables the rule, by our definition of (nonvacuous) enabledness.
8It is unfortunate that the term gate is used to describe both the transistor’s gate terminal and the logic

gate. It should always be clear which is meant (from either context or direct qualification).

25

In both types of MOSFETs, current flows between the source terminal S and drain

terminal D when the device is conducting. In contrast to other technologies, MOSFETs

have no gate current, so all current can be expressed as the single quantity

iDS = −iSD. (2.3)

As suggested in Figure 2.8, current usually flows from D to S in an NMOS transistor

and from S to D in a PMOS transistor. However, this is only a guideline, and as we will

see shortly, the current actually flows from the higher-voltage terminal to the lower-voltage

terminal regardless of which of those terminals is S and which of them is D.

2.5.1 NMOS Element-Equation

The element-equation for an NMOS transistor is as follows:

iDS = kn ·
[

max(vGS − vTn, 0)2 − max(vGD − vTn, 0)2
]

. (2.4)

This is the standard model used in SPICE level 0, also known as the Sau model[34]910. The

transistor threshold parameter vTn determines when the transistor begins conducting,

and the transconductance parameter kn determines the rate of conductance increase as

the gate voltage increases.

2.5.2 PMOS Element-Equation

A PMOS transistor behaves exactly as an NMOS transistor would behave if all circuit

voltages and currents were negated:11

iSD = kp ·
[

max(vSG − vTp, 0)
2 − max(vDG − vTp, 0)

2
]

. (2.5)

9In many texts (including the above reference) this equation is presented as four separate cases: cut-off,
forward saturation, reverse saturation, and active. I prefer the above form because it is shorter and does not
hide the fact that MOSFETs are symmetrical: their behavior is not affected when D and S are swapped.
The disadvantage of the above form is that the linear-gain region is hidden; it occurs when both quadratic
terms are enabled, leaving a linear residue.

10Many texts use a kn whose value is twice the value used here.
11In some texts the parameters kp and VTp are also negated, but that convention leads to the use of

confusing absolute-value signs whenever a property applies to both types of transistors.

26

2.5.3 SMO

The element-equations for MOSFETs contain multiple instances of the expression

SM0(x)
def
= max(x, 0)2, (2.6)

which we now add to our vocabulary of primitive operators. We henceforth view the gate

current as a simple combination of SM0ed terms as follows:

iDSn/kn = SM0(vGS − vTn) − SM0(vGD − vTn) and (2.7)

iSDp/kp = SM0(vSG − vTp) − SM0(vDG − vTp).

2.5.4 Combinational Logic Gates in CMOS

A standard combinational CMOS gate has an output which is always either pulled (by some

conductive path) to the logic 0 supply voltage GND (
def
= 0 volts) or to the logic 1 supply

voltage VDD. The simplest combinational gate is the inverter, whose output y is low (logic

0) whenever the input a is high (logic 1) and high whenever the input is low:

Logic Gate

a

VDD

yay

GND

CMOS Implementation

Figure 2.9: CMOS inverter.

27

Additional characteristics of the CMOS inverter are discussed in Appendix B. The more

versatile 2-input NAND gate has the following circuit:

Logic Gate

a
b

a

b

y
ba
y

CMOS Implementation

Figure 2.10: CMOS 2-input NAND gate.

The PMOS transistors are wired in parallel, so if either input is low then the output is

pulled high; otherwise both inputs must be high, and the output is pulled low through the

NMOS series chain. Notice that there is never a direct path from VDD to GND; some

transistor is always off, except possibly during input transitions.

2.5.5 Dynamic Logic Gates in CMOS

In combinational gates, for every possible combination of inputs the output is directly driven

to either VDD or GND. Such a gate cannot, on its own, remember the values of previous

inputs. In contrast, a dynamic gate (a.k.a. a state-holding gate or sequential gate)

remembers its latest value for some input combinations12. The circuits in this thesis involve

only one such gate, the 2-input C-element[13]:

w

a

b
C

a
b y

a

b

y

CMOS ImplementationLogic Gate

staticizer

Figure 2.11: CMOS 2-input C-element.

12In some texts, a gate is only called “dynamic” if it obeys the above definition and has no staticizer.
Thus, those texts would not consider an SRAM cell to be dynamic, because it has a staticizer. In this thesis
our dynamic gates can have staticizers: in fact, they must, as we do not deal with circuits that require
periodic refreshing.

28

The output holds its value when it is not driven because of charge stored in its lumped

capacitance (see Section 3.2.1). To prevent this charge from slowly leaking, we always add

a circuit with a weak driver called a staticizer, shown above.[1]

While many of our example circuits use staticizers, they are in fact not necessary for the

implementation of arbitrary computation, as any dynamic gate can be implemented as a

network of combinational gates.[1] Therefore the main theoretical result of this thesis does

not rely on the existence of staticizers. Nonetheless we consider staticizers, because of their

popularity in practice.

2.5.6 Canonical CMOS Implementation of PRS

There is a general canonical method to construct a circuit for an arbitrary PRS[1]. Recall

(Section 2.2) that a general gate in PRS consists of two PRs, g → y↓ and q → y↑.
The pulldown guard g is implemented as a PullDown Network (PDN), designed to

conduct whenever g holds, and a PullUp Network (PUN), designed to conduct whenever

q holds:

(NFETs)

) ym1 2, wq(w , ... , w

g(x , ... , x, x21) yn

PUN

PDN

Inputs

2
1

m

w
w
w

x
2x

x

1

n

y
Output

PRS

(PFETs)

Figure 2.12: The CMOS-gate implementation of a general pair of PRs.

Such networks can be found for any desired guard function[51]. For reasons explained in

Appendix B.1, PUNs are implemented only in p-transistors and PDNs are implemented

only in n-transistors[1].

2.6 Rigorous Verification: Synchronous versus Asynchronous

Several standard concepts in rigorous synchronous analog verification have direct analogs

in asynchronous verification. To see this, we will discuss verification of synchronous circuits

in this section.

29

Rigorous verification of synchronous circuits has a simpler theory than that of asyn-

chronous circuits because the signal bounds are derived directly from the clock and typi-

cally have a simple form. For example, for static clocked CMOS we do not have to give any

characterization of circuit values before the values have reached steady-state.

In fact, for static clocked circuits we cannot give a complete dynamic characterization

because such circuits function perfectly well with glitchy signals (i.e., signals that are tem-

porarily allowed to oscillate uncontrollably). High-performance dynamic clocked circuits

involve additional keepout regions that prevent glitches, but these are simple asymmetric-

pulldown extensions of the combinational theory. Therefore we discuss the basic method

used for combinational logic.

2.6.1 Steady-State Methods for Combinational Logic

The verification of standard combinational logic begins with the designation of valid(0) and

valid(1) regions within the space of possible signal voltages. As shown below, the remaining

space is known as the forbidden zone[11]:

�������������������
�������������������
�����������������
�����������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�������������������
�������������������
�����������������
�����������������

(signal voltage)

forbidden zone

valid(1) zone

valid(0) zone

y(t)

Figure 2.13: Valid steady-state regions for the analog voltage-signal y(t). The forbidden
zone is shown as cross-hatched.

Each voltage-signal y(t) converges to a valid representation of a digital value H(y). More

precisely, we have the following property:

converges
(

y,H(y)
)

def
= ∃t : ∀s≥t : y(t)∈valid

(

H(y)
)

(2.8)

30

2.6.2 Induction

Analog verification of combinational logic is achieved when converges(y,H(y)) holds for all

y in the circuit. For an acyclic circuit this is proved by induction on the circuit graph. We

assume the base case (input specification) that converges(a,H(a)) holds for all inputs a

and must show the inductive step (analog gate-specification) that converges(y,H(y))

holds for each logic-gate output y, assuming converges(x,H(x)) holds for each input x to

that gate.

For example, consider a circuit with three inputs a, b, and c, shown below:

xa
b

c
y

Figure 2.14: A combinational logic circuit.

The static digital specification for this circuit is

H(x) = NAND
(

H(a),H(b)
)

and (2.9)

H(y) = NOR
(

H(x),H(c)
)

.

By induction, therefore, we can obtain a rigorous analog verification by demonstrating

the following two (analog) gate specifications:

∀A,B : converges(a,A) ∧ converges(b,B) ⇒ converges(x,NAND(A,B)) (2.10)

∀X,C : converges(x,X) ∧ converges(c, C) ⇒ converges(y,NOR(X,C))

Standard induction (i.e., the form used above) works on acyclic graphs (such as the one

above).

Unfortunately, asynchronous circuits are not naturally broken into acyclic components.

Even generalized induction cannot be directly applied to general cyclic circuits. Gener-

alized induction works on any set with a traversal operator; the property then holds over

the closure of the base set under that operator[52]. Unfortunately, the traversal operators

appropriate to analog verification depend on all gate inputs, not just on those for which

we trivially have a base case. This yields a trivial closure for cyclic circuits. We solve this

problem in Section 4.4 by introducing a novel form of induction.

31

2.6.3 Timing Closure: Clocked Static vs. QDI

Our convergence definition introduced in Section 2.6.1 requires only that a signal eventu-

ally reach the proper valid region. However, to know how fast to run the clock we need

to know how long this will take. Thus, in clocked circuits these regions are triggered by

the clock. By contrast, for QDI circuits the signals are self-timed, so the regions are some-

how derived from the data signals themselves. For example, the relationships between sets

of signals and their forbidden zones are compared below for both clocked static and QDI

signals:

Clocked Static CMOS

���
���
���
���

���
���
���
���

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�������
�������
�������
�������

�������
�������
�������
�������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

forbidden zone:

1 margin:

0 margin:

dynamic forbidden zonesstatic forbidden zone
combinational steady−state triggered by clock signal triggered by data signal

dynamic forbidden zones

QDI

clock signal

data signals

data signal

Figure 2.15: Triggering of forbidden-zone onsets in clocked static CMOS and in QDI.

The spacing and extent of the regions in time are determined by some estimate of the

circuit’s speed, such as logical effort[43]. In clocked circuits these speed estimates go into

setting the clock frequency. In QDI circuits the speed estimates are the conditions of my

observation theorem, (Chapter 3) and the values are hidden from the digital designer.

2.6.4 Inertial Delay: Clocked Static vs. QDI

With few exceptions,13 circuit design styles require the circuit designer to prevent race

conditions in which signals propagate too quickly.

All asynchronous circuits are subject to race conditions because they can begin arbitrar-

ily complex computation without external triggering. If all transitions in that computation

were to happen at the same time, then all nodes would become undefined14. Synchronous

13Two-phase nonoverlapping clocks is one exception (perhaps the only one).
14Of course, in a partial order model everything cannot occur “at the same time” assuming there is no

Zeno’s paradox. However, digital models do not (in the absense of the assumptions we are developing) in
general describe the behavior of analog circuits, and there are analog implementations of any digital QDI
circuit that are so fast that all nodes become intermediate-valued shortly after startup. Hopefully the specific

32

circuits with edge-triggered clocks are also subject to race conditions[11].

Race conditions are avoided by ensuring that signals do not propagate too fast. The

lower bound on propagation delay is referred to as an inertial delay, or contamination

delay. As with other timing closure properties, the inertial delay is measured from the

clock in clocked circuits and from the signals themselves in self-timed circuits, as shown

below:

gate output:

Clocked Static CMOS

triggered by clock

QDI

triggered by gate input
inertial delay inertial delay

gate input:

���

��� ����������������������������

����������������������������

���

���

clock signal:

data signal:

Figure 2.16: Measurement of inertial delay in clocked static CMOS and in QDI.

2.6.5 Limitations of Steady-State Arguments for Async. Verification

Perhaps the most fundamental difference between synchronous and asynchronous analog

verification is in the types of properties that are propagated in the inductive proofs. The

synchronous proofs for combinational logic rely entirely on steady-state values.

Clearly such arguments are highly inadequate for asynchronous circuits. In fact, any

argument which does not specifically bound every transition individually would fail to di-

agnose catastrophic drifts in the transition shape, as we discuss in Section A.4.

example discussed in Section 2.4.2 is enough to convince the reader that all digital QDI circuits are subject
to race conditions.

33

2.6.6 Summary of Synchronous/Asynchronous Verification Differences

In this section we have drawn several analogies between concepts in synchronous and asyn-

chronous analog verification and identified the following differences:

Concept Static Clocked CMOS QDI

digital specification clocked combinational SNI PRS

property propagated by induction steady-state values bounded transitions

timing source for signal x clock signal signal x itself

forbidden-zone onset trigger for x clock edge edge on x

inertial delay measured from clock signal gate input

inertial delay measured to data signal gate output

inductive assumption good input value good input transition

inductive step good output value good output transition

Figure 2.17: Differences between synchronous and asynchronous verification.

34

Chapter 3

The Statement of the Observation
Theorem

As discussed in Section 1.4, a PRS implementation can only be considered correct if there is

some observation rule that yields a correct computation for any physical evolution of the

system. The observation theorem states that for a particular observation rule (defined

in Section 3.5), this is the case. By construction of the PRS, a behavior is assumed to be a

correct computation if it is any execution in the atomic model discussed in Section 2.4.4.

Can we mathematically define a physical evolution? All known practical physical

PRS implementations are most accurately described by analog models. As discussed in Sec-

tion 1.1, these models reveal failures not revealed in digital models. The SPICE community

believes that analog models are a solid abstraction of physical laws and will continue to be

the most accurate available models, so we hop onto the analog bandwagon.

35

An analog evolution of a PRS implementation consists of a time-dependent signal

(i.e., voltage signal) for each circuit node. We give a complete definition of the analog model

in Section 3.2. Like a digital signal, an analog signal generally alternates between 0 and 1.

However, the analog signal is continuous, and so it cannot instantaneously change from 0 to

1. As discussed in Section 2.4.1, these changes occur as alternating transitions, the time

intervals over which the signal alternately rises and falls. For each signal y, our observation

rule φ must map each analog transition to a digital transition, as shown below:

()

:

observed atomic behavior:

implemented behavior:

observation rule

(digital)
φ y ()

y ()

t

t
(analog)

φ

Figure 3.1: Observation rule φ applied to analog signal y gives atomic, digital transitions.

The digital transitions φ(y) will be represented as events in the atomic timestamp model.

By construction, these event sequences will not have Zeno’s-paradox limits. Therefore, if

L is the complete analog evolution (i.e., a signal for every node), then φ(L) is a calendar

(Section 2.4.4). As noted above, the observation theorem simply states that any analog

evolution φ(L) is an execution.

Unfortunately, φ(L) is not always an execution (as discussed in Section 1.1), so it cannot

be proved in general that φ(L) is an execution; certain conditions are necessary. We state

these conditions mathematically in Sections 3.6.1-3.6.3. However, we begin by explaining

how these conditions are obtained for a general circuit.

3.1 User’s Guide

We now describe how to attempt verification of any canonical implementation (Section 2.5.6)

of any SNI PRS (Section 2.2.2). In Section 3.2.1 we present a standard DE (Differential

Equation) form which describes any completely sized and extracted PRS implementation

to first order. No such equation can be completely accurate, so in Section 3.3 we introduce

a noise-bound ηwhich allows us to make our description accurate.

After complete sizing of the circuit, the user then selects a handful of thresholds for each

node. The circuit and these thresholds are fed into FenceCalcTM(see Section 6). If there

36

exist partial fences satisfying the necessary conditions, then FenceCalcTM will find them and

report success. Recall (Section 1.8) that there are two types of partial fences, transient and

DC. The observation theorem makes assumptions about both the transient and DC fences,

which we state in Sections 3.6.1 and 3.6.2, respectively. If the conditions are not met, we

meet them by adding delay to the circuit as discussed in Section 7.6.

If these conditions are satisfied, then one can conclude that the observation of any

analog evolution L having the appropriate initial conditions (see Section 3.4) and within

noise bound η of satisfying the DE is an atomic execution, as illustrated below:

Result of Verification

Atomically
SNI PRS
R topology

circuit
CMOS

circuit

Complete
lumped−cap

Differential
Equation
DE

FenceCalc TM

Transient Fences Conditions on Fences DC Fences

Threshold
Selection

For any L that is within
noise η of solving DE ,
φ (L) is an atomic
execution of R .

Sizing
Transistor

Estimation &
Parameter Output Equation

Form
Canonical
Implementation

Asynchronous circuit to be verified

Observation Theorem

Success

φ

Figure 3.2: How to verify a circuit using the observation theorem.

The circuit is then rigorously verified.

37

3.2 The Analog Model

3.2.1 Lumped Unit-Capacitance Model

Any circuit that is capable of independent computation (or any repeated activity that

does not rely on changing input signals) must include some circuit element whose equa-

tion involves time variation. Clearly the MOSFET equations introduced in Section 2.5 do

not posess this property. In CMOS, the time-varying elements are capacitors. The time-

evolution of a circuit can be accurately modeled by adding a capacitor to the output of each

gate as follows:

Circuit Lumped Capacitance Model

Figure 3.3: Lumped capacitance model of a simple circuit.

The value of a capacitor at a given node is a lump sum of the drain capacitance of all

connected transistor inputs, plus the gate capacitance of all connected transistor outputs,

plus the capacitance of all connected wiring. While there are other effects such as capaci-

tance between internal nodes in logic gates and wiring resistance and inductance, these are

all second-order effects that we will view as noise in Section 3.3.

In the lumped capacitance model, each circuit element is driving exactly one capacitor.

Therefore, the behavior of our circuit is equivalent to a modified one in which for each

capacitor of capacitance C driven by a transistor of transconductance k we now have a

capacitor of capacitance 1 driven by a transistor of relative transconductance k/C.

This unit-capacitance convention eliminates unnecessary parameters and units from

our circuit equations.

We view the lumped capacitances as being attached to the outputs, but this does not

imply that the outputs are the primary physical contributors of lumped capacitance: in

many circuits the transistor inputs present most of the capacitance. Rather, we view the

capacitance as being attached to the output because this simplifies the form of the circuit

equations, as I show in the next section.

As an added justification for using relative transconductance, it has been shown that

38

for a large class of performance metrics, a circuit is optimally sized when k is always pro-

portional to C[53], which occurs when the relative transconductance is constant throughout

the circuit.

3.2.2 Output Equations: 2-input NAND gate

Consider all currents and voltages in the lumped capacitance circuit for a 2-input NAND

gate:

x

ibia b

1

(internal)

y
in

iy

a

a

b

Figure 3.4: Analysis of the 2-input NAND gate.

The only connections to the output y that are not shown in the above figure are the

connections to the inputs of the next stage (i.e., the inputs to the circuit that uses the result

of our NAND gate). In our model, any capacitance on those inputs is already included in

our output capacitor. Therefore the only omitted connections to y are gate terminals, which

do not sink any current. The operation of the output thus depends only on the input signals

and the internal state of the circuit shown above.

39

Any electronic circuit is described by a complete system of algebraic and differential

equations consisting of the element-equations for all circuit elements, and Kirchoff’s laws.[34]

We now list all such equations for the circuit shown in Figure 3.4:

Law / Constituent Equation

KVL All voltage drops can be determined by the voltages a, b, x, y.
I.e., VDS,Na = x, VDS,Nb = y − x, etc.

KCL iDS = in for both NMOS transistors and
iy = ia + ib − in

Capacitor y′ = iy (i.e., dy
dt

= iy)

NMOS in/kn = SM0(b − x − VTn) − SM0(b − y − VTn)
= SM0(a − VTn) − SM0(a − x − VTn)

PMOS ia/kp = SM0(VDD − a − VTp) − SM0(y − a − VTp)
ib/kp = SM0(VDD − b − VTp) − SM0(y − b − VTp)

Figure 3.5: Complete circuit equations for the circuit of Figure 3.4.

Notice that there are two NMOS equations for the in term. These equations actually

relate two unknowns: in and x. Therefore one would expect x to be implicitly determined

unless the system is coincidentally underconstrained. In Appendix D.2 we will see that this

is the case (when the system is underconstrained it does not affect the output current). y ′

is therefore a function of the input and output voltages. We now argue that this is the case

for any other CMOS gate of the type introduced in Section 2.5.6.

3.2.3 Output Equations: Canonical Form

Now consider the currents and voltages in the implementation of an arbitrary 2-input PRS

gate:

w

a
b

a
b

1ni

ip iy

PDN

PUN

staticizer (only if dynamic)

y
istat

s (internal)

Figure 3.6: Analysis of the implementation of a general 2-input PRS gate.

40

The current into the capacitor at y is the sum of three terms, defined as follows:

Term Meaning

ip(a, b, y) PUN source current

in(a, b, y) PDN sink current

istat(s, y) staticizer current

Figure 3.7: Terms of the general output current iy.

As with the NAND gate example, I show that the PUN and PDN current depends only on

a, b, and y, for a general 2-input gate. Actually, for a dynamic gate the staticizer has an

internal node s, which the output additionally depends on. The general form of y ′ therefore

depends on a, b, s, and y:

y′ = iy(a, b, s, y) = ip(a, b, y) − in(a, b, y) + istat(s, y) (3.1)

Further analysis is required to characterize s at any given moment, though we can

always bound istat based on the weak relative transconductance of the staticizer’s output

transistors. If there is no staticizer present, we let istat = 0.

3.2.4 Generalization to Other Circuit Families

In Chapter 4 I prove the observation theorem assuming we are dealing with CMOS cir-

cuits, described by the equations presented in Section 3.2.3. Therefore the theorem can be

understood as a theorem about CMOS circuits. However, the theorem depends only on

specific assumptions about the circuit equations, listed below. Therefore the theorem can

be applied to any circuit family satisfying the following conditions:

1. Restricted composition. All capacitances can be modeled as either lumped output

capacitance or noise. The only circuit elements are transistors and lumped capaci-

tances.

2. No internal hysteresis. The values of (i.e., voltages on) all intermediate nodes in a

gate (i.e., nodes that are neither input nor output) are implicitly determined by input

and output voltages.

3. Steady-state correctness. If a gate implements a PR pair, and the input voltages

remain in a region associated with the completion of assignment to state s, and the

PR pair implies that the output becomes b if the inputs remain s, then the output is

bounded by an exponential which decays to the completion threshold VbC .

41

4. Monotonicity of the output current. Any deviation (from monotonicity) must be

modelable as noise. This also ensures that our fences are monotonic so we can translate

them freely in Section 6.6. For CMOS we make a necessary exception when the output

is outside the supply rails.

5. Lipschitz condition for the output current. This is needed in Euler error analysis

(Section D.5), and we use it to justify our noise bound in Section 3.3. An output

current function f is Lipschitz if there exists a Lipschitz constant K such that for

all pairs of output voltages x1 and x2, we have

|f(t, x1) − f(t, x2)| ≤ K|x1 − x2|. (3.2)

This condition is automatically satisfied if δf/δx is continuous[8], as in CMOS. It

neither implies nor is implied by monotonicity.

6. Slewtime Restoration. This property guarantees that given a long enough chain

of delay elements, a fence pair of any slewtime is mapped to a fence pair of a fast

slewtime. We will make this condition precise when we discuss the addition of chains

of delay elements in Section 7.6.

These conditions on a circuit family guarantee that we can prove the correctness of the

implementation of any PRS with sufficiently long feedback cycles. The latter condition

must be checked after threshold parameters are chosen, as we discuss in Section 3.6.

3.3 The Noise Model

The physical trajectories of parts of real machines never precisely satisfy equations, because

there are always noise sources that cannot be controlled. In the case of CMOS circuits,

there are many other reasons why the system does not satisfy Equation 3.1 precisely. The

parameters of CMOS circuits are never known precisely, owing to manufacturing tolerances

worse than 10%, statistical doping, etc.

More importantly, we are using a model that is known to be merely a first-order model

where specific second-order corrections have been identified. As noted, the lumped capaci-

tance model is already an approximation to a model in which there are other capacitances.

It is also known that there are leakage currents: small charges continuously leak into the

substrate regardless of the states of the transistors, and a small subthreshold current

42

flows through each transistor in the cut off state. Finally, there are other second-order

effects due to the spatial nonuniformity of the device and the effect of substrate bias[54].

We define noise as any effect which causes the actual behavior to differ from Equa-

tion 3.1. Each such effect (including any of the ones we just discussed) can be classified

into the four categories listed below.

1. Current noise on an output. The total current iy into a lumped capacitor differs

from Equation 3.1 in absolute value by some η. For example, there is leakage.

2. Voltage noise on an output. The output differs from
∫

iy(t)dt by some vnoise(t).

For example, there could be an IR drop across an unwanted resistor.

3. Current noise on an input. An input consumes nonzero current (other than the

lumped capacitance which is already modeled), e.g., because of gate leakage.

4. Voltage noise on an input. The voltages a(t) and b(t) (inputs to Equation 3.1) are

to be substituted with noisy versions of these voltages.

All non-external inputs are connected to outputs. By KCL, therefore, we can view input

current noise (3) as a component of the output current noise (1) for the output connected to

it. Current noise on external inputs can be ignored because we will define the environment

specification in terms of input voltages. Similarly, voltage noise on an output (2) can be

considered as a component of (4), voltage noise on all connected inputs (but not the other

way around).

This leaves us with (1) and (4). We prefer form (1) because it is clearly the most general

form: A voltage noise on the input can be viewed as a current noise on the output, with

the Lipschitz constant as a bound on the ratio between them. On the other hand, a current

noise cannot be effectively modeled as a voltage noise. For example, consider a (flawed)

circuit with dynamic gates whose staticizers are missing. The output voltages can drift by

a (practically) arbitrary amount, leading to a very large vnoise(t) even if the actual leakage

rate is very low.

The output current noise η is easily incorporated into Equation 3.1 by turning that

equation into an inequality:

|y′ − iy(a, b, s, y)| ≤ η (3.3)

Finally, as we show in Section D.5, this is also the form of the standard bound on Euler

43

error, so we can view η as a sum of individual ηs for computational, physical, and modelling

error.

Henceforth we refer to any solution to Inequality 3.3 as an analog evolution, provided

it satisfies the proper initial analog conditions.

3.4 Initial Analog Conditions

Any circuit capable of independent computation has an internal state which must be reset

properly. In our model the internal state is completely represented by the voltage signals

of all nodes. During reset these signals are analyzed as in a standard combinational circuit,

and it is shown that they all reach stable values.1An analog signal is considered stable if it

remains in the valid 0 or 1 zone[11] for that signal.

We will analyze two types of circuits:

1. Independently-operating circuits which have a special reset procedure and

2. Circuits which wait for data from their environment before doing anything after reset.

For both types of circuits we define t = 0 as the time when the circuit has been reset

and is ready to compute. For reasons to become clear in Sections 3.5-3.6, we define the

valid regions for the second type of circuit using the constants DCyl and VylC , as follows:

�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������

y CV

DC y

DC y

forbidden zone

y CV

y (0) (initial signal value)

valid 0 zone

valid 1 zone

Figure 3.8: Valid initial conditions for the signal y(t).

1Reaching the known reset state may require several environment transitions and (for some circuits)
additional reset circuitry.[1] Properly designed reset circuitry is active only during reset, and after reset it
can be modeled as additional capacitance.

44

3.4.1 Circuits with Initially-Enabled Internal PRs

Our basic observation theorem assumes that the only initially-enabled PRs are the PRs

describing the environment. However, in our synchronized–ring-pair circuit example the

circuit operates independently of the environment (in fact, there is no environment), so

there are initially-enabled internal PRs.

There are two choices for how our result can be applied to such a circuit:

1. Use the initial conditions developed above. The guard of an initially enabled rule y↓
has some enabled disjunct, all of whose terms are in the Valid 1 region. Since the

solution to a DE does not depend on single points, we can assume that the inputs

jumped from Valid 0 to Valid 1 just after t = 0. The fences for these terms must be

expanded to include this initial “transition”. Then the basic version of the observation

theorem can be applied.

2. Force the terms of the initially-enabled guard into a transition allowed by its fence

hypotheses. We use this approach in our example because it has the advantage of

removing troublesome singularities from the fences (which are unrelated to the funda-

mental question of whether the circuit operates). The disadvantage is that a special

reset circuit must be designed to force the initially-enabled target node into a con-

trolled release just after reset.

Technically, to use the second choice we would need to modify our circuit model to include

the forcing term in order to achieve the desired startup behavior. Fortunately, however, our

main example (the WCHB buffer chain) does not have initially-enabled PRs except in the

environment, so we make no modifications to the theorem for now.

3.5 The Four-Threshold Automaton

In this section we show that four thresholds are necessary and sufficient to define an ob-

servation rule. We define a particular four-threshold automaton which suffices to prove the

theorem, and we explain why the theorem cannot be proved with fewer thresholds.

The simplest way to digitally observe an analog signal is to define some constant thresh-

old voltage V and to say that y = 1 digitally whenenver y > V . There are several problems

with such an observation rule. First, if the signal is close to V , a small noise on that sig-

nal can be erroneously interpreted as several transitions. Second, to prove an observation

45

theorem it helps[7] to be able to derive useful information about a signal based on its ob-

servation. With the preceding rule we might know a signal’s digital value but we can never

use this information to conclude that the signal is very far from V .

As a first improvement on our single-threshold rule we can use two constant threshold

voltage parameters, much as a Schmitt trigger does[34][54]. We refer to these thresholds as

completion thresholds and denote them as follows:

Symbol Name of Parameter

Vy↑C y↑ completion threshold

Vy↓C y↓ completion threshold

Figure 3.9: Completion thresholds for y.

A signal y (initially 0) is considered 0 until it reaches Vy↑C ; then it is considered 1 until it

subsequently reaches Vy↓C .

While the two-threshold rule is a vast improvement over the single-threshold rule, we

unfortunately cannot directly use it as an observation rule. The problem is that these thresh-

olds do not report an event until the signal has completed most of its transition (hence

the name “completion thresholds”). Unfortunately, the transition can begin propagating

long before this happens. Thus any two-threshold rule has the flaw that the consequence

of propagation can be reported before the cause (for a large important class of verifiable

circuits).

Owing to this problem, we must additionally define initiation, the time when a tran-

sition can begin propagating to the next logic stage, which clearly is before completion.

Only an observation rule based upon initiation events yields valid atomic exections[38][7].

Therefore we introduce initiation thresholds, denoted as follows:

Symbol Name of Parameter

Vy↑I y↑ initiation threshold

Vy↓I y↓ initiation threshold

Figure 3.10: Initiation thresholds for y.

We refer to an automaton based on the thresholds VylI and VylC as a four-threshold

automaton. Specifically, the output of the automaton Φ given a signal y is a (usually

infinite) sequence of timestamps

Φ(y) =
{

(ty↑I)1, (ty↑C)1, (ty↓I)2, (ty↓C)2, (ty↑I)3, (ty↑C)3, . . .
}

, (3.4)

46

which indicate when the corresponding thresholds were crossed, as shown below:

3
t y I y I

y I

y C
Iy

y I

��

������

y C

Iyt y Cty Ct

Iy

y C

Iy

y C

����

��

	

()

t

ty

()())
1

()()
1

t(

V

V

V

V

2 2

Figure 3.11: Sample operation of the four-threshold automaton.

For an initial digital value of 1, the sequence is similar but the l are flipped. Events

with even indices assign the reset value; events with odd indices assign the opposite value.

Mathematically, the automaton is defined by induction. Each output in the sequence is

based on the previous output and the time at which some threshold is crossed after that:

,

Start here if y0 = 0

Iy()t Vy

Output t

,

.Iy

Cy

Cy

At next time whenAt next time when

Start here if y0 = 1At next time when

At next time when
()t Vy

Output t .y

y

C

C

()t Vy

Output t

y

y

I

I

()t Vy

Output t

,

.

.

,

Figure 3.12: Inductive definition of Φ(y).

Notice that (like a Schmitt trigger) this construction is designed to ignore small noise,

even if that noise results in the signal crossing a threshold multiple times. For example, a

y↑I event can only be immediately followed by a y↑C event, regardless of how many times

the signal may cross Vy↑I .

We let φ(y) – lowercase φ – denote the projection of Φ(y) that selects only the I (initi-

47

ation) events. The sequences Φ(y) and φ(y) do not converge (no Zeno’s paradox) because

dy(t)/dt is bounded. φ is therefore a proper observation rule (i.e., its image is calendars).

3.6 Partial Fences

Recall that in our approach to the observation theorem we begin by proving that each signal

y(t) is bounded by lower and upper fences ly(t) and uy(t), respectively (Section 1.5). Safety

and liveness of the observation are easy to show once this property has been established.

Also recall that the bounds are explicitly representable as piecewise functions2 that

alternate between transient (i.e., finite) and DC (i.e., constant) portions (Section 1.8)

which we call partial fences3. For example, the fences between the first two transitions of

a signal y are as follows, assuming y↑ begins at time t = 0:

V

DC y

y CV

IyV

Iy

y P

ytrail

VDD

()tylead

()t

t
τ

v

y

Transient Fences DC Fences

0

Figure 3.13: Partial fences for y↑.

2Recall that fences can be accurate without precisely solving the DE. See Appendix C for simple examples.
3We use the term partial fence to denote a fence segment of a fixed mathematical form that holds over

a specific time interval. As we will see, each partial fence is only part of the overall upper or lower bound
on a signal.

48

As suggested in Figure 3.13, we assume that the signal potentially takes on its most

extreme value after the transition has completed and the signal is settling into a valid

(completed) 0 or 1. Therefore our upper bound on a completed 1 and lower bound on a

completed 0 are global bounds that hold for all time, defined as follows:

Symbol Name of Parameter

DCy↑ DC upper bound on y

DCy↓ DC lower bound on y

Figure 3.14: Indefinite DC bounds on y (holding for all time).

The lower bound on a completed y↑ is the completion threshold Vy↑C . At some point just

before the next transition (if any) this bound no longer holds as the signal approaches Vy↓I .

In Section 3.6.1 we will see that this preparation event y↓P occurs when the observed

guard to the opposing rule becomes (atomically) enabled. We discuss the timing of y↓P in

Sections 3.6.3 and Sections 4.2.2.

The transient fences for each transition consist of a pair of fixed shapes which are

translated so that they begin at the transition-initiation event. We let the slewtime τyl

denote the lengths of these transient fences:

Symbol Name of Parameter

τy↑ y↑ slewtime

τy↓ y↓ slewtime

Figure 3.15: Slewtimes of transitions on y.

For each production rule there are two transient fences. The leading fence leads the

signal and prevents it from transitioning too fast. The trailing fence trails the signal,

guaranteeing that it transitions within time τyl. This leading/trailing convention, like our

circuit equations, makes our arguments for both types of assignments symmetrical with

respect to flipping all voltages and currents:

Function Name Domain Meaning

leady↑(t) y↑ leading fence t ∈ [0, τy↑] y(t + ty↑I) < leady↑(t)

traily↑(t) y↑ trailing fence t ∈ [0, τy↑] y(t + ty↑I) > traily↑(t)

leady↓(t) y↓ leading fence t ∈ [0, τy↓] y(t + ty↓I) > leady↓(t)

traily↓(t) y↓ trailing fence t ∈ [0, τy↓] y(t + ty↓I) < traily↓(t)

Figure 3.16: Transient (finite) partial-fences for transitions on y.

49

3.6.1 Conditions on DC Fences

1. Threshold Ordering. We require that the thresholds have the following ordering:

Vy↓I < Vy↑C < VDD < DCy↑ and (3.5)

Vy↑I > Vy↓C > 0 > DCy↓. (3.6)

In Equation 3.5, the Vy↓I < Vy↑C is necessary so that a signal can remain a logic 1

for an unbounded amount of time. The rest of Equation 3.5 states that VDD is a

valid logic 1. Equation 3.6 is the same as Equation 3.5, except that all transitions are

negated and all voltages are reflected over VDD/2.

Additionally, for the observation automaton φ to be well-defined, we require that

Vy↓C < Vy↑C . (3.7)

2. Drive strength. Suppose that the inputs4 to a rule y↑ are within the completion

regions of logical values that digitally enable y↑ (with no assumptions on staticizer

state); then any V ≤ Vy↑C must be a lower fence for iy − η. In other words, under

worst-case noise the gate can pull the output above the completion threshold when

it is completely enabled. There is a similar condition for y↓. These conditions are

clearly necessary in order for finite transitions to exist.

3. Hold strength. For this constraint view the guard for a production rule y↓ in DNF5.

Suppose that for each disjunct there is some node whose voltage remains below the

initiation threshold for that node. Also assume that the intermediate node of the

staticizer (if any) is a valid 0. Then Vy↑C must be a lower fence for iy − η. In other

words, under worst-case noise the gate can keep the output above the completion

threshold assuming no pulldown disjunct has all of its inputs initiated to 1. There is

a similar condition for y↑.

4. Indefinite DC bounds. It must be proven that the indefinite DC bounds introduced

in Table 3.14 hold for all time.

4I.e., terms used in the guard.
5Disjunctive Normal Form (DNF), e.g., (a ∧ b) ∨ (a ∧ c)

50

3.6.2 Conditions on Transient Fences

Consider each production rule y↓. We currently assume the rule’s guard has at most two

input terms, a and (possibly) b. For this condition we let the inputs be any signals (i.e., any

integrable functions of time) in which a and b are initially below their respective initiation

thresholds and remain so until arbitrary (but positive) respective times ta and tb, when they

are bounded by their respective transient fences. Also a and b remain completed after times

ta + τa↑ and tb + τ↑, respectively, i.e., the preparation for the next transition is assumed not

to occur.

Now consider any output signal y(t) satisfying the circuit model (Inequality 3.3) such

that y(0) > Vy↓I . Let ty denote the earliest time such that ty ≤ Vy↓I ; then leady↓(t+ ty)+η

is an upper fence for iy and traily↓(t + ty) − η is a lower fence for iy.

Similar (but inverted) conditions must also hold for each rule y↑.

3.6.3 Slewtime Constraints

Let us again consider the signals a and b used in the preceding section. Without loss of

generality (rewriting the guard if necessary), we can also assume that ta ≤ tb. We define

the preparation time ty↓P as the as the time at which the guard is atomically enabled:

ty↓P
def
=

{

ta if the guard is a ∨ b

tb if the guard is a ∧ b.
(3.8)

We define the inertial delay as the delay from preparation to initiation:

Symbol Parameter Name Meaning

αy↑ y↑ inertial delay Minimum delay from ty↑P to subsequent ty↑I
αy↓ y↓ inertial delay Minimum delay from ty↓P to subsequent ty↓I

Figure 3.17: Inertial (minimum) delays (α) of transition initiation on y.

51

We first require that the table shown in Figure 3.17 be valid for all possible signals of

the form we are considering. Finally, we require the inertial delays and slewtimes of the

circuit to satisfy the following condition:

Definition 7 (Slewtime Constraints) A circuit satisifes the slewtime constraints if

the following holds for any rules a↑ and b↓ such that the atomic execution of a↑ can (starting

in some state) atomically enable some rule y↓ while b↓ can atomically disable y↓. Let

α(a ⇀ b) denote the sum of inertial delays along any path through the circuit from a to b.

Then the following must hold for any such a, b, and path:

α(a) + α(a ⇀ b) > τ(a) + αM (a), (3.9)

where αM (a) is defined either as the minimum P−I delay (i.e., αM (a)
def
= α(a)) if the

path begins with y↓, or as the maximum P−I delay if the path does not begin with y↓.
This condition is necessary for any non-atomic implementation of the atomic PRS model[7].

3.7 The Staticizer Model

As suggested in Figure 3.6, the istat(s, y) current is the output current of an inverter con-

nected from s to y. To complete the model we must constrain s(t) somehow. We require

only that s be a 0 or VDD if y has been completed for long enough:

s(t) =















0 if y([t − τy↑, t]) ≥ Vy↑C

VDD if y([t − τy↓, t]) ≤ Vy↓C

arbitrary otherwise.

(3.10)

Of course, s does not equal 0 or VDD exactly, but noise on s can be translated into current

noise using the Lipschitz constant as discussed in Section 3.3.

52

3.8 The Environment Model

Each node y driven by the environment must satisfy the following conditions:

1. For each initiation event observed at time t ∈ tylI , the signal must be contained in

the postulated transient fences (Figure 3.16, Section 3.6). The signal is bounded by

the subsequent initiation threshold after each transition.

2. The actual sequence produced by the environment should be coded into additional

stable PRs (and possibly nodes6) and added to the PRS. The observed events for the

new PRs driving y must be (atomically) safe and must obey the minimum delay αy.

If necessary, the environment may assume that its inputs from the circuit satisfy an

infinitesimally weaker (i.e., ≤≥ instead of <>) form of condition 1.

Notice that the environment specification is entirely stated in terms of the voltage at y.

Therefore the environment must be strong enough to drive the load capacitance at y in a

way that meets condition 1.

Because the environment specification directly involves the transient fences at y, these

fences should be postulated to have the form given in the circuit’s interface specification

(simple leading and trailing ramps).

3.9 Summary: The Complete Observation Theorem

Theorem 2 (Observation of an Analog Implementation of a PRS) Consider any sta-

ble, non-interfering PRS together with the unit-capacitance circuit equations of a canonical

implementation that has been sized (i.e., all transistor transconductances have been chosen

relative to their loads). Suppose furthermore that all disjunctions are mutually-exclusive7.

Suppose furthermore that we have found the voltage-level parameters listed below in

Figure 3.18, satisfying the DC fence conditions of Section 3.6.1.

Suppose furthermore that we have found the timing and partial-fence parameters listed

below in Figures 3.19 and 3.20, satisfying the slewtime and transient fence conditions of

Sections 3.6.3 and 3.6.2.
6Additional nodes (possibly infinitely many) may be needed to represent the state of the environment.

These nodes have atomic transitions. This is a trick so that we can use the extended stability results without
modification. The PRs driving these extra nodes exist conceptually but do not have to be supplied in an
actual circuit verification.

7This is an assumption, also made by others[44], that we make temporarily for simplicity.

53

Symbol Name of Parameter

η noise bound

Vy↑I y↑ initiation threshold

Vy↓I y↓ initiation threshold

Vy↑C y↑ completion threshold

Vy↓C y↓ completion threshold

DCy↑ DC upper bound on y

DCy↓ DC lower bound on y

Figure 3.18: Postulated voltage-level parameters for y.

Symbol Name of Parameter

τy↑ y↑ slewtime

τy↓ y↓ slewtime

αy↑ y↑ inertial delay

αy↓ y↓ inertial delay

αMy↑ y↑ maximum delay

αMy↓ y↓ maximum delay

Figure 3.19: Postulated timing parameters for y.

Function Name Domain Meaning

leady↑(t) y↑ leading fence t ∈ [0, τy↑] y(t + ty↑I) < leady↑(t)

traily↑(t) y↑ trailing fence t ∈ [0, τy↑] y(t + ty↑I) > traily↑(t)

leady↓(t) y↓ leading fence t ∈ [0, τy↓] y(t + ty↓I) > leady↓(t)

traily↓(t) y↓ trailing fence t ∈ [0, τy↓] y(t + ty↓I) < traily↓(t)

Figure 3.20: Postulated partial-fence parameters for y.

Consider any analog evolution L, i.e., any collection of signals (one per node PRS and

one per staticizer intermediate-node) such that

|y′ − iy(a, b, s, y)| ≤ η (3.11)

holds for internal nodes, all s(t) satisfy the staticizer model (Section 3.7), and all external

inputs satisfy the environment model (Section 3.8). Suppose that all nodes satisfy the initial

conditions (Section 3.4).

Consider the atomic calendar H
def
= φ(L) consisting of all observed initiation events. H

is an execution, i.e., H satisfies (atomic) safety and progress.

54

Chapter 4

A Proof of the Observation
Theorem

We now prove the observation theorem. We assume that we have a SNI PRS and some

behavior L satisfying the circuit model and initial conditions. We must prove that φ(L) is

an execution.

4.1 Roadmap

We must show that the events in φ(L) form a proper execution, i.e., they satisfy safety and

progress. Recall that these events are generated by the observation automaton Φ, which

acts whenever a signal moves out of its previous threshold-bounded region. Each signal

must therefore be shown to be correct by bounding it somehow. Recall (Section 1.6) that

we can bound a signal by containing it between locally-conditioned functions called fences.

The problem is that we have many signals all depending on one another; the circuit is

cyclic. It is therefore not exactly true that there is a multi-dimensional fence that will con-

tain the entire multi-dimensional trajectory L. While it is relatively easy to show that each

signal is contained in its fence assuming all other signals are contained in their respective

fences, the assumption does not hold for a general circuit.

In an acyclic circuit one could use ordinary induction, but our circuits derive much

functionality from being cyclic. Therefore, in Section 4.4 I introduce the Spatial Induction

Principle (SIP) which solves this problem. I prove the principle in Section 4.4.5.

The specific problem with multi-dimensional fences in a cyclic circuit is that two or

more signals might decide to jump over their fences at exactly the same time, with each one

“blaming the other for the trouble”. To solve this problem, we must hold each logic gate to

a slightly higher standard than its input is held: the inputs are bounded by ≤ and ≥, while

55

the outputs are bounded by < and >. Similarly, the inputs will be observed by a weakened

observation rule φ, while the outputs are observed using the φ we have already defined.

The SIP allows us to consider each signal independently. We must use the circuit model

to bound each logic-gate’s output. Clearly, to get useful bounds we must have bounds on the

logic-gate’s inputs (just as in static analysis[12]). It is easy to see that the raw bounds that

we get from the observation automaton will not be sufficient for this purpose. Therefore,

in Section 4.2.5, by extending the observation theorem, we will prove a stronger theorem

which implies detailed bounds on all signals in addition to the observation theorem itself.

Finally, to apply the SIP, just as with any induction principle, we must prove the

inductive step itself. Here, the inductive step is called a gate specification. We prove it

in Section 4.4.6.

4.2 The Extended Observation Theorem

To make the observation theorem easier to prove, we make three changes:

1. We infinitesimally loosen the observation rule φ, obtaining a new observation rule φ

so as to make our gate specifications compatible with the spatial induction principle.

2. We strengthen the result, constructing for each signal y upper and lower bounds uy

and ly, and proving the weak boundedness property:

bounded(y)
def
= ly(t) ≤ y(t) ≤ uy(t) for all t. (4.1)

3. We further strengthen the result, proving that each occurence of each rule r in φ(L)

satisfies inertial delay αr.

4.2.1 The Loose Observation Rule φ

Recall from Section 3.5 that φ is a projection of the automaton output Φ. As shown

in Figure 3.12 (also of Section 3.5), we defined Φ by induction. This definition can be

formalized as follows:

Φ(y)2i+j
def
= minimal t > Φ(y)2i+j−1 satisfying

[

(−1)iy(t) ≥ V2i+j

]

, (4.2)

where j ∈ {0, 1} indicates the event type {I, C} and V is the repeating sequence of thresh-

olds {V↑I , V↑C ,−V↓I ,−V↓C , . . .} (of course, omit the first two terms if the initial value of the

56

node is 1).

To prove the spatial induction principle, we will need to allow signals to equal the

threhold exactly without triggering the corresponding events. Therefore we change the “≥”

to a “>”:

Φ(y)2i+j
def
= infimum t > Φ(y)2i+j−1 satisfying

[

(−1)iy(t) > V2i+j

]

. (4.3)

We use the infemum (greatest lower bound) on all t for which the signal has passed the

threshold since there will be no earliest such time.

We define lowercase φ(L) as the projection of Φ(L), which selects initiation events. To

prove the observation theorem, it suffices to prove that φ(L) is an execution. This is due

to the following:

Theorem 3 (Weak Observation) Suppose it is proved that φ(L) is an execution for any

L satisfying noise bound vector η. In other words, ‖y ′(t) − iy(t)‖ < ηy for all t, y. Then

φ(L) is an execution for any L satisfying noise bound vector η, provided that ηy > ηy for

each signal.

Proof: consider any L satisfying the tighter noise bound. We construct a new execution

L′ which has the following repeated modification: for each earliest time at which Φ(L)i >

Φ(L)i, we add a small bump to L′ so that Φ(L′)i = Φ(L′)i. This can clearly be achieved

with an arbitrarily short duration, arbitrarily short height bump. Clearly we require the

bump to be of sufficiently short duration so it does not affect the next observed event.

Furthermore we require the bump to have small enough height so that the loose bound

η is still satisfied and the output current change is also within η. The latter is possible

because we have a Lipschitz constant for each gate. L′ satisfies the loose noise bound, and

φ(L) = φ(L′) = φ(L′), so we conclude that φ(L) is an execution.

To apply the result, we use the loose observation theorem, then decrease our noise

bounds slightly. We incorporate this reduction into our rounding error bound (and the

effect is dwarfed by the true rounding error, of course).

4.2.2 Preparation Events ylP

Recall that the hold strength condition (Section 3.6.1, condition 3) guarantees that an out-

put remains completed when the opposing guard is not yet enabled. In order to calculate

the inertial delay, we will rely on the fact that after the assignment y↓ (for example) com-

pletes, we have y < V↓C , and therefore it takes some time (inertial delay) before y can reach

57

V↑I . Therefore we will use V↓C as a fence after the transition has completed. But at some

point, this fence stops holding. We can conservatively assume that it stops holding when

the guard g of the next transition (i.e., for the rule g → y ↑) is atomically enabled. We refer

to this time as the preparation event tlP :

infemum
(

t ≥ (ty↓C)i−1

)

satisfying g
(

φ(L)(t)
)

. (4.4)

4.2.3 The PIC Sequence

By the hold strength condition, y↑ cannot initiate until some disjunct in the guard has all

its terms below their initiation thresholds. If we assume that these terms did not in the

recent past (within τ) have preceding transitions, then we can assume that y↑I would not

occur until y↑P has first occured:

(ty↑P)
i
≤ (ty↑I)i

. (4.5)

Technically, we cannot make the assumption about non-existence of old transitions at

this point in the theorem (it would be a circular argument), though in due course we prove

that. For now we simply build Inequality 4.5 into our construction by strengthening the

infemum domain in Equation 4.4 in the obvious way:

(ty↑P)
i

def
= infemum t,

(

(ty↓C)i−1 ≤ t ≤ (ty↑I)i
)

satisfying g
(

φ(L)(t)
)

. (4.6)

Clearly this satisfies inequality 4.5. Therefore when we insert preparation events into

our existing sequence Φ(L), we obtain a sequence of events with the following time ordering:

y↑P, y↑I, y↑C, y↓P, y↓I, y↓C, . . . (4.7)

(flip the target-values for a reset value of 1).

4.2.4 Kompletion events ylK

A consequence of the extended observation theorem will be that

(ty↑C)i < (ty↑I)i + τy↑. (4.8)

58

We will show this by showing that the transient fences (Section 3.6) are bounds on the

rising signal over the interval

[(ty↑I)i, (ty↑I)i + τy↑] , (4.9)

and therefore the signal reaches the completion threshold by the end of this interval.

However, as with the ylP events, we cannot at this point assume that the right endpoint

of this interval occurs before the next event, so we enforce it by using the following right

endpoint:

(ty↑K)i
def
= min

(

(ty↑I)i + τy↑ , (ty↑P)i+1

)

. (4.10)

The corresponding event is called a kompletion event.

Finally, we would also like to use ty↑K as an initial left endpoint, so we define:

(ty↑K)0
def
= 0. (4.11)

4.2.5 The 3-Phase Decomposition

We refer to the following intervals as containment phases:

Phase definition

Prepare(y↑)i ((ty↑P)i, (ty↑I)i]

Transition(y↑)i ((ty↑I)i, (ty↑K)i]

Hold(y)i ((ty↑K)i, (ty↓P)i+1]

Prepare(y↓)i ((ty↓P)i, (ty↓I)i]

Transition(y↓)i ((ty↓I)i, (ty↓K)i]

Hold(¬y)i ((ty↓K)i, (ty↑P)i+1]

Figure 4.1: Containment phases.

Notice that this is a partition of time (i.e., of the nonnegative real numbers). In other

words, any nonnegative real number is contained in exactly one phase.

59

4.2.6 Signal Containment Bounds uy, ly

We use the 3-phase decomposition described in the preceding subsection to define piecewise

containment bounds uy and ly:

IyV

DC y

IyV

y CV

()tl

()tuu

lu

Iyt Iyt + τ y

Hold0 Hold0Hold1Prepare Transition Prepare Transitioni i ii − 1

()t y P()
i

t y P ()
i

+

l

t

()
i+1 i+1

()
i+1

i+1 i+1 i+1

t y I()
i

t y I τ y

()tu

()tl

()tl

()tu

()tu

()tl

y CV

IyV

IyV

y CV

DC y

y CV

y

y

y

y

y

y

of

y

Construction

yy

y

and

Phases:

Events:

Bounds

V

Construction
of y

y

trail
lead y (t +

lead y (t + t y I)

y (t + t y I)trail

t y I)
y (t + t y I)

Figure 4.2: 3-phase decomposition, and definitions of uy and ly.

60

Formally, the piecewise functions are defined by the following table:

Phase uy(t) ly(t)

Prepare(y↑)i Vy↑I DCy↓

Transition(y↑)i leadt↑(t + ty↑Ii) trailt↑(t + ty↑Ii)

Hold(y)i Vy↑C DCy↑

Prepare(y↓)i Vy↓I DCy↑

Transition(y↓)i trailt↓(t + ty↓Ii) leadt↓(t + ty↓Ii)

Hold(¬y)i Vy↓C DCy↓

Figure 4.3: Containment bounds.

4.2.7 Boundedness

We begin by proving that the containment bounds are nonstrict (i.e., ≤) bounds on all

signals, but we will require the gates to satisfy a slightly stronger specification involving

strict bounds. We use the following notation for “bounded up to time t”:

boundedt(y)
def
=

(

s<t ∧ s/∈Prepare(yl)
)

⇒
(

ly(s) < y(s) < uy(s)
)

, (4.12)

with which we can express “bounded for all time t” as follows:

bounded(y)
def
=

(

t/∈Prepare(yl)
)

⇒
(

ly(t) < y(t) < uy(t)
)

(4.13)

= boundedt(y) for all t.

We cannot require strong boundedness during the Prepare phases, since equality holds

at the right endpoint (and potentially other points, since we are using φ), but weak bound-

edness holds by construction during these phases.

Finally, we can speak of the entire execution L being bounded:

bounded(L)
def
= bounded(y) for all signals y (4.14)

bounded(L)
def
= bounded(y) for all signals y.

61

4.2.8 α-Safety (Inertial-Delay Safety)

In the extended observation theorem we will prove that every signal y satisfies an inertial

delay αy on all its transitions. Formally, we define:

α−safet(y)
def
=

(

s<t ∧ s ∈ [tylI − αy, tylI]
)

⇒ g(φ(L(s))) (4.15)

α−safet(y)
def
=

(

s<t ∧ s ∈ [tylI − αy, tylI]
)

⇒ g(φ(L(s))).

Similarly, we define the non-subscripted α−safe(y), α−safe(L), and α−safe(. . .) as we

did for bounded(. . .) and boundedt(. . .).

4.3 The Progress Argument

Suppose we have proven all of the extended observation theorem, except for the progress

portion, i.e., suppose we have shown that

bounded(L) ∧ α−safe(L). (4.16)

We claim that progress must be satisfied.

In the following proof we assume the PRS contains no unstable disjuncts. While this

condition is not necessary, it simplifies the proof.

Suppose progress is not satisfied. Consider some rule y↓ which is enabled indefinitely in

φ(L). We can assume that some disjunct is enabled indefinitely. By the form of ly, we know

that each term a in this disjunct must eventually remain above Va↑C . By the drive strength

condition (Section 3.6.1, condition 2) the output must decrease under these conditions until

it has passed all the way down to Vy↓C . On the way there it must cross Vy↓I and generate

an event. This contradicts the assumption that y↓ was indefinitely enabled.

4.4 The Spatial Induction Principle (SIP)

4.4.1 Input Hypotheses

For any PR of the form

g(x1, . . . , xk) → y↑ (4.17)

62

we refer to the following conditions as the input hypotheses:

i. bounded(x1, . . . , xk), i.e., bounded(xi) for all i.

ii. In φ(x1, . . . , xk), the atomic guard for y↑ does not have two transitions within τy↑ +

αMy↑ of one another (refer to Section 3.6.3 for the definition of αMy↑).

iii. In φ(x1, . . . , xk), the atomic guard for y↑ does not have two transitions within ε of

one another even when some xi are delayed by up to max(τy↑, τxi↑).

iv. In φ(x1, . . . , xk), atomic noninterference (¬g ∨ ¬q) always holds, even when some xi

are delayed by up to max(τy↑, τxi↑).

As usual, similar conditions for y↓ are made by mirroring all target values.

4.4.2 Output Hypotheses

For any node y we refer to the following conditions as output hypotheses:

I. bounded(y)

II. α−safe(y)

4.4.3 The Statement of the SIP

For every node y, recall that the (logic) gate is the pair of PRs whose target node is y.

We therefore refer to the conjunction of the input hypotheses for y↑ and y↓ as the input

hypotheses for y. The gate is correctly implemented if these hypotheses imply that the

output hypotheses hold:

Definition 8 (Gate Specification) Suppose we have arbitrary signals (i.e., arbitrary con-

tinuous functions of time) x1, . . . , xk not necessarily satisfying any circuit model, but sat-

isfying the input hypotheses. Suppose furthermore we have a signal y satisfying the initial

conditions and circuit model for the gate y. The gate specification for gate y is the

predicate that if the preceding assumptions hold, then the output hypotheses hold for y.

63

The Spatial Induction Principle (SIP) simply states that if all gate specifications

hold, then all output hypotheses hold:

Theorem 4 (SIP) Suppose all gate specifications hold for a PRS implementation. Con-

sider any behavior L satisfying the initial conditions and circuit model. Then all output

hypotheses hold for L.

I prove the safety portion of the observation theorem in two steps. In Section 4.4.5, I

prove the spatial induction principle itself. In Section 4.4.6, I apply the spatial induction

principle, by proving that all gate specifications hold.

4.4.4 Extended Stability

Theorem 5 (Extended Stability Application) If α−safe(L) holds, then input hypothe-

ses ii-iv hold for all nodes.

This is purely a statement about atomic executions of PRS, which I have previously

shown[7], and which is the subject of Chapter 5.

4.4.5 A Proof of the SIP

Clearly if all output hypotheses were satisfied then all input hypotheses would be satisfied,

for bounded(L) ⇒ bounded(L) by definition, and extended stability gives us the

atomic input hypotheses. The difficulty is that a priori we do not have all input hypotheses

satisfied; we only have each individual hypothesis satisfied under the assumption that all

others hold. The trick is to show that if some input hypothesis is not satisfied, then there

is a particular gate we can blame. This is in analogy to the standard proof of ordinary

induction (if the hypothesis did not hold for some integer, then we blame the hypothesis of

the earliest integer for which it did not hold).

As we have just seen, it suffices to prove

bounded(L) ∧ α−safe(L). (4.18)

Consider any particular L satisfying the initial conditions and circuit model. For a contra-

diction, assume the negation of Equation 4.18. Let tErr be the latest time such that

t < tErr ⇒ boundedt(L) ∧ α−safet(L). (4.19)

64

There must be some “bad” signal y for which tErr is indeed a least upper bound: the

above consequence is false at y for any t > tErr. In other words:

¬boundedtErr
(y) ∨ ¬α−safetErr

(y). (4.20)

We now construct a modified “evolution” L1 in which y1(t) satisfies the circuit model,

but other signals do not necessarily behave physically. We will reach a contradiction by

demonstrating that x1
1, . . . , x

1
k satisfy the input hypotheses, while y1 does not satisfy the

output hypotheses.

Let φ<tErr
(L) denote the prefix of φ(L) consisting of all events occuring before time

tErr. For each xi, let u1
xi

and l1xi
denote the signal containment bounds constructed in

the standard way from φ<tErr
(L). Choose some continuous function x1

i (t) satisfying the

following:

{

x1
i (t) = xi(t) for all t ≤ tErr

l1(t) ≤ x1
i (t) ≤ u1(t) for all t > tErr

. (4.21)

Notice that the weak inequalities are essential because the inputs could have reached the

containment bounds at time tErr. This is why we use the weak bounded(x1, . . . , xk) in

our input hypotheses.

Now integrate these functions to obtain a signal y1(t) satisfying the following:

{

y1(t) = y(t) for all t ≤ tErr

|iy(t, x1
1, . . . , x

1
k) − dy1(t)/dt| ≤ η for all t > tErr

. (4.22)

Equation 4.20 is a safety violation, and hence does not depend on the execution after

time tErr, giving us:

¬boundedtErr
(y1) ∨ ¬α−safetErr

(y1). (4.23)

This violates the gate specification for y because x1
1, . . . , x

1
k satisfy the input hypotheses.

4.4.6 The Application of the SIP

Recall (Section 4.4.3, Theorem 4) that the spatial induction principle can be applied when-

ever all gate specifications hold. We now proceed to show that the gate specification of each

gate y holds.

65

Suppose we have signals x1, . . . , xk and y as assumed by the gate specification (Sec-

tion 4.4.3, Definition 8). The input signals x1, . . . , xk satisfy the input hypotheses, and the

output signal y satisfies the circuit model. We must now show the output hypotheses, i.e.:

bounded(y) ∧ α−safe(y) (must be shown). (4.24)

4.4.6.1 Boundedness

We now show bounded(y). Recall (Equation 4.14) that bounded(y) is a condition holding

for all t:

bounded(y)
def
=

(

t/∈Prepare(yl)
)

⇒
(

ly(s) < y(s) < uy(s)
)

. (4.25)

We prove that the above inequality holds strongly during the Transition and Hold phases

(recall Figure 4.1) and weakly during Preparation phases. Our proof is by induction on the

phases, so that at the beginning of each phase we can assume that the signal was at least

weakly bounded by the bounds of the previous phase (whenever the containment bounds

u and l are themselves continuous). The first phase (starting at t = 0) is always a Hold0

phase, and the left endpoint bound for this phase is the initial condition on y.

4.4.6.2 Boundedness: Hold(y)i

Suppose t ∈ ((ty↑K)i, (ty↑P)i+1]. At the left endpoint the signal is completed, i.e.,

Vy↑C ≤ y((ty↑K)i) ≤ DCy↑ (4.26)

because this condition held at the end of the preceding phase, assuming no containment-

bound discontinuity. By construction of ty↑K (Section 4.2.4), a containment-bound dis-

continuity could only occur in this case if the atomic guard for y↓ were enabled within

[(ty↑P)i, (ty↑P)i + τy↑). But this violates a combination of input hypotheses: by noninter-

ference (iv) it implies that the guard of y↑ has two transitions within τy↑ of one another,

violating (ii).

We must now show that the condition of Inequality 4.26 continues to hold (in strength-

ened form) until (ty↑P)i+1. This amounts to the hold strength condition (Section 3.6.1,

Condition 3) which requires that we show that in each disjunct for the rule for y↓, some

term is below its initiation threshold.

66

Suppose some disjunct has all its terms at voltages above its initiation threshold. By

construction of the Hold phase, the guard for y↓ is not atomically enabled, so one of these

terms has an atomic value of 0 over the entire interval. Therefore, by (i), the only way that

this term could have a high voltage is if it recently (up to time τxi↓ ago) had a downgoing

transition. This contradicts (iii): we could perturb this transition to create a pulse in the

guard.

Finally, the Hold Strength condition makes an assumption about the staticizer, which

follows from the staticizer model (Section 3.7).

4.4.6.3 Boundedness: Prepare(y↓)i

Suppose t ∈ ((ty↑P)i, (ty↑I)i]. We must show that DCy↓ < y(t) ≤ Vy↑I . The indefinite DC

bound holds as a condition to the theorem (Section 3.6.1, Condition 4). By inductive as-

sumption, the bound holds at the left endpoint, and no seams ever occur in the containment

bounds there. The right endpoint is, by construction of φ, the earliest point beyond which

this inequality stops holding.

4.4.6.4 α-Safety and Transition(y↓)i Boundedness

The observation theorem assumes that the inertial delay (Section 3.6.3) and transient fence

conditions (Section 3.6.2) hold for y↓ in a controlled setting where each input has exactly

one upgoing transition during the Prepare(y↓) and Transition(y↓) phases, and the output

is initially above Vy↑C . Our inductive boundedness proof gives us the latter; the former

remains to be shown.

For now (as in Sections 3.6.2-Section 3.6.3) we assume a 1- or 2-input gate with inputs

a and (possibly) b. First, suppose the guard is a ∧ b (NAND, C-element, or INV). If

there are two transitions within the back-to-back Prepare and Transition phases, they must

occur within time τy↑ + αMy↑ (the maximum length of the two phases) of one another. By

assumption, the guard holds at the beginning of the Prepare phase, so it must be invalidated

soon thereafter, in contradiction of input hypothesis (ii).

For a guard a ∨ b, multiple transitions also invalidate the guard because we assume

mutual exclusion for the inputs of NOR gates. This assumption holds for the examples we

are studying, but is not technically necessary. FenceCalc allows multiple transitions on the

later-arriving input. Technically, to take advantage of this, we would have to allow this in

the theorem condition as well.

67

4.4.6.5 Environment-Driven Nodes

If y is driven by the environment in response to x1, . . . , xk, then it satisfies boundedness

and safety constraints (Section 3.8) which imply that the gate specification holds for y.

68

Chapter 5

Extended Stability

Recall (Section 2.2.2) that stability (for a nonvacuously enabled rule) requires a guard

to continue to hold until the target is assigned. This requirement was designed to avoid

glitches (undesired pulses). Electrically, it ensures that the driving circuit does not cut off

before the target has reached its final value.

Unfortunately, as we have seen, a signal’s digital value is not in general a direct instanta-

neous function of the value of the analog signal. Therefore it is possible that a driving circuit

is enabled when the digital guard is not. Clearly this condition can only exist temporarily,

immediately after a transition. Therefore there is concern when multiple transitions arrive

at a gate in rapid succession.

For example, suppose that two opposing transitions into a NAND gate arrive too close

to each other. An output dip can occur that was not atomically predicted, as shown below:

y

x

Figure 5.1: Two opposing transitions arriving at different gate inputs in rapid succession.

This failure can be viewed as an atomic instability that occurs when the inputs are

perturbed (i.e., shifted slightly in time with respect to one another). This principle (of

digital instability under perturbation) allows us to rule out such problems by defining a

new notion of extended stability over the domain of atomic executions.

Extended stability states that all guards should be stable, even under slight perturbations

of the inputs. It is purely a property of atomic executions. However, it is clearly also timing-

dependent: we can only guarantee such a property if we have a notion of inertial delay in

our atomic model. We therefore begin by defining this notion in Section 5.1.

69

In Section 5.2 we proceed to define how inertial delay adds (abstractly) over paths. In

Section 5.3 we prove the minimal perturbation principle, which extends event pertur-

bations to entire executions. In Section 5.4 we show how these minimal perturbations are

related to path delays. Finally, in Section 5.5 we prove the extended stability theorems,

which (under certain path-delay constraints) guarantee that inputs do not arrive too

close (in a precise sense).

5.1 Minimum-Delay Annotations

We begin by expanding the atomic timestamp model to include minimum-delay annotations

with semantics. A priori, the absolute values of timestamps are meaningless, as all times-

tamps can be scaled without changing the safety or progess of a trace. However, as noted

in Section 2.4.4, it is convenient to give new meaning to these timestamps as physical event

times. Thus our delay annotations (which represent physical delays) will directly restrict

timestamps:

Definition 9 (Minimum-Delay Annotation) A (Minimum-)delay–annotated PRS

is a PRS, having rule set R together with the delay annotation α : R → R+. An atomic

execution has valid delay timing (i.e., is α-safe) if and only if each time at which a rule

r becomes enabled and the next earliest time at which r is executed is always at least α(r).

Said another way, whenever the rule executes at time t, it was enabled over the time interval

(t − α(r), t].

We choose to define delay-annotation semantics in the atomic model, since such a se-

mantics naturally extends to the non-atomic model: an execution has valid delay timing

in the non-atomic model if and only if its observation has valid delay timing in the atomic

model. This gives the expected non-atomic semantics because we chose our observation rule

(Section 3.5) so that the atomic timestamp would be equal to the time at which propagation

was enabled in the non-atomic model.

5.2 Propagation Paths

We now describe feedback delays in terms of the annotations developed in the previous

section. The delay annotation semantics we have just chosen restrict the time between

the enabling of a rule’s guard and the next execution of the same rule. By applying this

70

restriction along successive stages of a propagation path, we can determine delays between

events separated by a propagation path:

Definition 10 (Rule Dependence) A rule g → y := v depends (positively) on rule

g′ → y′ := v′ if there is some assignment of binary values to nodes such that changing y ′ to

v′ causes an increase in g.

Definition 11 (Propagation Path Length) A propagation path p is any sequence of

rules such that each rule depends on the previous rule in the sequence, if any. The length

α(p) of the path is the sum of α(r) over all rules r in the sequence after (i.e., excluding)

the first rule.

These are static properties, as it is not necessary to simulate the system in order to

determine whether two rules are dependent and form a path.

5.3 Minimal Perturbation

For a stable production rule set, the length of a propagation path is a lower bound on the

time between events whose rules are the endpoints of the path. However, we do not bother

proving this fact, since we will actually need a more powerful property: perturbation of any

(atomic timestamp) execution by delaying an event e1 need not change any other event e2

until after a time of at least the propagation path length from e1 to e2. Before we show this

fact (in Section 5.4), we formalize perturbation.

We can perturb an execution H given any set E of events and positive delay amount δ.

An execution perturbed according to ∆
def
= (E, δ) is defined as follows:

Definition 12 (∆-Perturbation) A Delta-Perturbation of H is any execution which

agrees with H with the following exceptions only:

1. all events in E have been delayed by δ and

2. some other events may be delayed.

Definition 13 (Minimal Perturbation) Given ∆, the Minimal (Delta-)Perturbation

H∆ is the unique perturbed execution in which all transitions are minimally delayed. For-

mally, H∆ is minimal in the sense that there is no ∆-perturbation H ′
∆ and bijection φ :

H∆ → H ′
∆ such that φ preserves rules and never increases a timestamp.

71

We now prove that this is a proper definition. In other words, we prove that H∆ exists

and is unique. Clearly a ∆-Perturbation exists: the entire execution can be translated by δ.

There must be a unique minimal ∆-Perturbation; otherwise we would consider the earliest

time at which two assumed minimal ∆-Perturbations disagree and show by stability that

events were unnecessarily delayed in one of them.

5.4 The Propagation Property

We can now formally state the property (introduced at the beginning of the preceding

Section) that events need not be delayed until after the duration of propagation from the

perturbed transition:

Theorem 6 (Propagation Property) Consider any PRS with atomic execution H and

perturbation ∆. If a transition e occured at time t(e) in H but was delayed in H∆, then

there must be a propagation path from some e∆ ∈ E to e of length at most t(e) − t(e∆).

To prove this property we begin by considering a method of constructing H∆. We begin

with an empty event set H0, and we create a chain of partial executions by adding events

from H one at a time, delaying them as necessary to satisfy ∆-perturbation and timing

validity. To obtain Hi+1 from Hi, consider the earliest event e in H that has not yet been

mapped. Map e to a new event in Hi+1 according to the following cases:

1. If e /∈ E and Hi∪{e} is an execution with valid timing, then simply let Hi+1 = Hi∪{e}.

2. If e ∈ E, then let Hi+1 = Hi ∪ {(r(e), t(e) + δ)}. Hi+1 is an execution because the

new event was added after the last event in Hi. At this time its state matches the

state before e in H because the same assignments have occured in the same order.

3. If e /∈ E but Hi∪{e} is not an execution or does not have valid timing, then move the

event to α(r(e)) after the latest preceding time at which it was not enabled. There is

such a latest time because (as argued in case 2) e is enabled eventually.

Case 2 assumes that events are never delayed by more than δ. This can be shown by

induction on i: the hypothesis holds initially, and in each of the three cases the hypothesis

is preserved.

We first prove that the limiting execution
⋃

i Hi is a minimal perturbation, so that

H∆ =
⋃

i Hi. Suppose otherwise, and consider the first event e that’s earlier in H ′
∆. H ′

∆ is

72

a ∆-perturbation, so e /∈ E. e was moved in H∆ to satisfy delay timing or safety. But by

assumption, H∆ agrees with H ′
∆ up to time t(e), so e violates delay timing in H ′

∆.

Now we prove the theorem by constructing a propagation path from e∆ to e for any e

delayed in H∆. Let e0
def
= e. We construct a propagation path in reverse: r(e0) is the end

of the path. By induction, we construct a sequence of k + 1 delayed events ek, . . . , e0, with

e∆
def
= ek ∈ E and r(ek), . . . , r(e0) a path. The base case holds as e0 is delayed and forms

a trivial path. For the inductive step we assume some ei is delayed. Since H∆ is minimal,

ei could not be moved any earlier, owing to rule dependence on some other delayed event

ei+1. The inductive step fails when some ek ∈ E. At that point, we have constructed a

path of length at most t(e0) − t(ek).

5.5 The Extended Stability Theorem

5.5.1 Path-Delay Constraints

Assume the PRS comes with some annotation τ 1 which associates a positive real number

τ(r) to each rule r. This number will constrain the minimum delay on any path between

any two rules on which r has the opposite types of dependence:

Definition 14 (Safety Constraint) A PRS satisfies the path-delay constraints if it

has delay and slewtime annotations such that for all rules r depending positively on r ′ but

negatively on r′′, and p a path between r′ and r′′ (in either direction), we have:

τ(r) < α(p). (5.1)

1Throughout this thesis we use τ to represent slewtime because slewtime must satisfy path-delay con-
straints for our main result. Of course, in the atomic model slewtime has no meaning. For an abstract result
we therefore use the τ symbol here only to bound path delays.

73

5.5.2 The Theorem Statement

The theorem assumes we are given all of the following:

1. An (atomically) stable PRS with delay annotations α.

2. Any (atomic) execution H such that α−safe(H).

3. Path Delay annotations τ satisfying the path delay constraints.

4. Any rule r of the form g(x1, . . . , xk) → y := v.

The consequence of the theorem has two parts:

I. g never has two transitions within τ(r) of one another if y 6= v when the first transition

occurred.

II. Suppose y 6= v over some open interval containing some time t. For a decreasing

sequence of ε consider a calendar H ′
ε where delays less than τ(t) – i.e., delays in some

perturbation ∆ε – are carried out but no other inputs are changed. Then, for some

(sufficiently small) fixed ε′, the guard value g does not have two transitions both

within ε′ of t.

Intuitively, part I says that g has no pulses shorter than τ(r), and part II says that we

cannot cause arbitrarily short pulses in g by perturbing its inputs in any way (moving any

events we want by up to τ).

5.5.3 A Proof of Part I

Suppose for a contradiction that part I is violated: g had two transitions within τ(r) of one

another, and y 6= v when the first transition occurred. By stability, the first transition was

g ↑, and the order of all transitions (on g and r) was g↑ ; r ; g↓.
Let G↓ be a set of events – on which r negatively depends – which occured after the

g↑ and which suffice to cause g↓. Consider the minimal (r, τ)-perturbation. Some event

e ∈ G↓ was delayed, for else H(r,τ) is an unstable execution containing g ↑; g ↓; r.
The event e follows r by less than τ . Therefore, by the propagation property, there

is some propagation path p, from r to e, with α(p) < τ(r). This violates a path delay

constraint.

74

5.5.4 A Proof of Part II

Suppose for a contradiction that part II is violated: there is some time t contained in an

open interval T for which y 6= v. Furthermore, for any ε there is some perturbation ∆ε, less

than τ , leading to a calendar H ′
ε in which those perturbations are carried out but no other

inputs are changed.

Now consider the execution H∆ε
, which is the minimal ∆ε-perturbation. Since the PRS

is stable, we can assume that over T the guard value g(H∆ε
) has at most one transition.

Therefore, there is an interval Tε over which the guards disagree, i.e., g(H ′
ε) 6= g(H∆ε

)

over the entire interval, and the interval size decreases with ε. The interval size must decrease

in the sense that its endpoints converge to each other, and the endpoints coincide with events

begin(Tε) and end(Tε) that change guard g. Clearly, the guard depends positively on one

of these events and negatively on the other. Therefore the guard’s type of dependence on

one of these events differs from its type of dependence on some event in ∆ε which preceded

it by less than time τ(r). The path delay constraint on the path between these two events

is violated.

5.6 Conclusion

In this chapter we have shown that when a simple timing model is added to the atomic

timestamp model for PRS, transitions cannot arrive at a gate’s input in rapid succession so

as to cause glitches. Specifically, in part I of the theorem we saw that each individual input

has a minimum time between transitions. In part II we saw that if we perturb the arrival

times of different inputs within a small time window, we do not find a glitch in the guard.

A “small time” is defined in terms of the propagation delays through the circuit.

Extended stability is a self-contained result about atomic PRS executions. However, it

is also a central component of our proof of the observation theorem, used in Section 4.4.4.

Ultimately, in Section 4.4.6 we use extended stability to assume that each input to our gate

has a single isolated transition during the transition phase of the output.

75

Chapter 6

FenceCalcTM

FenceCalcTM – a 6,000-line Modula-3 program I have written – facilitates circuit verification

by checking that the conditions of the observation theorem that we discussed in Chapter 3

hold for any given circuit. Given any circuit, if such assumptions exist, they can be found

(in time linear in the circuit size) by the program using a novel form of Breadth-First Search

(BFS) discussed in Section 6.7.3.

FenceCalcTM postulates the theorem conditions by associating tentative DC and tran-

sient hypotheses to each transition. The hypotheses are locally updated until they satisfy

containment conditions. At each step, FenceCalcTM reports a containment distance

which allows us to detect divergence or convergence of the overall algorithm. When the

containment distance is small enough, the theorem conditions are met by the current set of

hypotheses.

When used with a standard script (see Appendix E.1), the program terminates success-

fully only if such fences are found and all conditions needed for rigorous circuit verification

have been checked.

76

6.1 The Input/Output Specification

The circuit to be verified is given in KAST form. KAST is a restricted form of CAST[55] with

extensions that specify the relative transconductance of each transistor and the current

noise of each node.

Recall that the observation theorem assumes that a number of quantities have been

postulated for each node y: the current-function iy and noise-bound ηy (Section 3.3), I/C

thresholds (Section 3.5), and the partial fences DCyl, leadyl, and trailyl (Section 3.6).

These quantities are handled by FenceCalcTM as indicated below:

sym. theorem param. source/destination representation

iy current-function KAST input file FcNode.T

ηy current-noise KAST input file FcNode.T

VylI initiation thresholds KAVL input (manual or defaulted) FcEpsilon.T

VylC completion thresholds KAVL inp. (automatically calculated) FcEpsilon.T

DCyl DC bounds postulated; checked and/or output FcHypothesis.DC

leadyl leading transient fence postulated; checked and/or output FcHypothesis.AC

trailyl trailing transient fence postulated; checked and/or output FcHypothesis.AC

Figure 6.1: FenceCalcTM I/O quantities associated with each node y.

77

6.2 User’s Guide

FenceCalcTM implements a number of operations that are sufficient to verify a circuit. The

functions are generally applied in the following sequence:

1. Input circuit equations and initiation (I) thresholds from user.

2. Find global DC bounds using synchronizing BFS.

3. Compute completion (C) thresholds.

4. Compute all AC (transition) hypotheses using synchronizing BFS.

5. Check the constant hypotheses (i.e., check consistency of user-provided thresholds).

6. Check all AC hypotheses.

7. Check slewtime constraints.

8. Subtract calculation error from η, yielding effective eta1. The effective eta must be

positive, and is the bound on noise allowed in the rigorous result.

These operations are accessible through the KAVL language (see Appendix E) and can

be performed by a universal KAVL script given in Section E.1.

If all the checks are successful, then the assumptions of the observation theorem are

satisfied. At this point the results of the program are conceptually plugged into a template

proof which assumes the facts checked in steps 5-8 and proves circuit correctness. In practice

we do not use an elementary proof checker, so this last step is purely conceptual: we are

done when the above operations complete successfully. Thus, to achieve provably correct

construction in the VLSI design methodology, it suffices to run the above FenceCalcTM

operations successfully as the last step of circuit synthesis.

1The command is actually called eta-eff.

78

6.3 Circuit Representation

A circuit is represented as a set of nodes; each node is uniquely labeled (name) and comes

with additional structure as shown below:

data members:

type: FcNode.T
name: TEXT
gate: FcGate.T
eta: FcUnits.Slope

init(...)methods:

Figure 6.2: The FcNode.T data structure.

The gate substructure lists the fanin nodes and defines the logic gate connected to those

nodes. eta is a floating-point number (in units of current, or FcUnits.Slope) representing

the target noise bound.

6.3.1 The Transition Representation, FcTransition.T

Recall that a target assignment consists of a target node and a target value. The FcTransition.T

data structure represents any such assignment:

direction: {Up, Down}

FcTransition.T
node: FcNode.T

init(...)

type:

methods:

data members:

Figure 6.3: The FcTransition.T data structure.

Each hypothesis in FenceCalcTM is associated to an FcTransition.T instance.

6.3.2 The System Representation, FcSystem.T

FenceCalcTMuses a large data structure, FcSystem.T, to represent the entire circuit. This

data structure allows retrieval of the sets of all nodes and transitions, and provides generic

graph abstractions for both, allowing a single BFS implementation to be used on either

graph.

The FcSystem.T instance represents only the circuit, not the hypotheses that are being

postulated for that circuit. That way, multiple sets of hypotheses could be postulated for a

single circuit (in principle).

79

6.4 The Transition Hypotheses, FcHypothesis.T

At every step of a verification algorithm in FenceCalcTM, the currently postulated DC and

AC (i.e., transient) hypotheses are represented for each transition and – by extension – for

the whole system.

6.4.1 Data Representation

Each transition hypothesis consists of an initiation threshold and a completion threshold

(represented together using FcEpsilonPair.T), a DC bounding value, and, additionally,

for an AC hypothesis, the leading and trailing fences.

Despite these differences, both types of hypotheses inherit a common abstraction, the

FcHypothesis.T, which allows the hypothesis to be updated based on the present input

hypotheses (retrieved from a FcSysHypo.T – see the next section) or output for monitoring.

This common superclass allows a single BFS (or checking) algorithm to be used directly on

both types of hypotheses. The complete class hierarchy is as follows:

output()

init(...)init(...)

epsilon: FcEpsilonPair.T

FcHypothesis.DC FcHypothesis.AC

value: FcUnits.Volts
dc: FcHypothesis.DC
fences: FcFencePair.T

transition: FcTransition.T

update(mode: UpdateMode,
 sysHypo: FcSysHypo.T)

FcHypothesis.T

Figure 6.4: The FcHypothesis.T type hierarchy.

The UpdateMode enumeration is defined in Modula-3 as follows:

TYPE
UpdateMode = {Check, (* leave all hypotheses unchanged *)

Accumulate, (* accumulate onto existing hypotheses *)
Replace (* replace existing hypotheses *)

};

This control parameter determines whether the updating Replaces existing hypotheses for

initial estimation, Accumulates in a conservative way, or is for a final Check.

80

6.4.2 Abstract Operation of the update Method

A call to update can only be unsuccessful if the mode is Check. In other modes, update

changes the hypothesis on the output, using the calculations described in the previous

section.

A successful call to update on a transition on y guarantees that the hypothesis for that

transition satisfies the conditions of the theorem, but the conditions may be destroyed for

the next stage (i.e., any gate which has y as an input).

Each call to update returns a containment distance which indicates how close the

hypothesis was from being satisfied at the beginning of the call. When update is used in

Check mode on every hypothesis in the system and the containment distance is everywhere

small enough to be analyzed as rounding error, the verification is complete. As we proceed

with many passes of updates (as described in Section 6.7.3), we can use the sequence of

containment distance to determine if the overall algorithm is converging or diverging.

6.4.3 Transient Fence Data Representation

Recall from Section 3.6 that a transient fence for transition g → y↑ consists of a pair of

functions, lead and trail, defined over [0, τy↑]. Furthermore, (Section 3.6.2) we require these

functions (when appropriately translated) to bound the output, assuming a single transition

on each input appearing in g. As noted in Section 1.6, a general way to achieve this is by

requiring lead and trail to be mathematical fences (satisfying the local conditions discussed

in Appendix C).

In general, a fence is not tight: it is not in general true that under extreme noise the

evolution comes arbitrarily close to the fence. However, our goal is to have tight results,

i.e., we would like our bounds to be actually achieved in the worst case. Therefore we

specifically compute isodynamic fences, defined as follows:

Definition 15 (Isodynamic Fence) An isodynamic fence y(t) – of the upper variety

– for iy(t, y) satisfies y′(t) = iy(t, y(t)) + η for some constant η.

A lower isodynamic fence is of course similarly defined with −η. I chose the word “Isody-

namic,” meaning “equal strength,” because these fences have the same strength η every-

where. In such a fence, there is no single “weak link” that constrains η.

In FenceCalcTM, hyp(y).update(. . .) computes isodynamic fences by integrating iy + η

and iy − η using Euler’s method[8]. Thus in practice the fences are not exactly isodynamic,

but can be arbitrarily close. We discuss the Euler error in Section D.5. The final output

81

(using the eta-eff command of Appendix E.2.4) takes all error sources into account, giving

a rigorous result.

To achieve uniform accuracy, Euler’s method evaluates a gate’s input values regularly

every stepsize seconds and produces a piecewise-linear output, represented by a new data

point at the same time as each evaluated input point. All hypotheses are piecewise-linear

functions represented by one data point for each stepsize seconds.

To avoid interpolation and aliasing problems, a standard stepsize is used for all cal-

culations. This allows us to represent all functions as discrete lists of points. Furthermore,

we synchronize our input and output calculations2 so that evaluating the inputs is simply

a matter of selecting a point from the input lists.

6.5 The FcScenario.T and Input-Cube for Multi-Input Gates

In general, a logic gate has many inputs. A transient hypothesis for the output must

hold, assuming each input has at most one transition (Section 3.6.2). These transitions

can happen at arbitrary times with respect to one another. However, for simplicity, we do

not explore the multidimensional space of relative arrival times using Charlie Diagrams[41].

Instead, we assume that one of the inputs is always critical, as we now illustrate.

Consider a 2-input NAND gate, with inputs a and b, initially 0. Suppose that a rises

first, long before b does, at time t. Notice that the pulldown is cut off, so we can ignore the

transitions on a. In fact, we can ignore the analog value of a completely without affecting

the calculation. In general, for a conjunctive rule, we can – correctly and with minimal loss

of generality – replace the leading fence of the earlier transition by a vacuous DC bound as

shown below:

b

V

La

t

L

TTa

b

b

IV

LbLa

t

TTa

I

Figure 6.5: Replacing the ignored leading bound La by a DC bound.

Furthermore, if we assume that the trailing fence is monotonic (a condition easily checked

at the end of the computation), then the trailing bound on any input transition on a is also

2This is sometimes overconservative, but by an amount which decreases with stepsize.

82

described (more weakly) as the same trailing bound, delayed to time t, as shown below:

t
V

LbLa

IV

La

Lb

Tb=Ta

t

TTa b

I

Figure 6.6: Shifting Ta to time t, without loss of generality.

This step involves no loss of generality (i.e., these are the tightest possible bounds we

can give on the input) because the case where both inputs cross the threshold at the same

time does indeed occur.

The above transformations allow us to express all input bounds on a single (1-dimensional)

time scale, assuming we have chosen a particular scenario (FcScenario.T). The scenario

identifies a critical input; thus the number of scenarios is at most equal to the number of

transistors in the pulldown network.

In summary, we can choose a single time t before which the guard is not yet initiated.

For each timestep after time t, given a scenario and a set of input hypotheses, we can

retrieve a single input cube3 which associates a voltage interval to each input.

6.6 The Algorithm For the Transient update Method

As discussed in the previous section, for each scenario we obtain a sequence of input cubes

that bound all inputs in lock-step. We use the input cubes to compute the partial hy-

pothesis for each scenario, using the following local condition: at each timestep, we ensure

that our output slope bounds the worst-case output current over all possible input values

in the input cube. We discuss the details of this calculation in Section D.3.

Finally, once we have a set of partial hypotheses, we combine them conservatively to

obtain an output hypothesis which satisfies the theorem conditions over all possible scenar-

ios.

3Our input cube is a set of analog voltage ranges, not to be confused with digital “input cubes” one
encounters when working with Karnaugh maps.

83

6.6.1 Synchronized Calculation of Leading and Trailing Bounds

Recall that a transient output hypothesis must bound the output transition after the signal

has crossed VyI↑. However, this time is not exactly known. In fact, we can only bound

the output initiation time (relative to the critical input initiation time) using the bounds

αy↑ and αMy↑, which we must compute. In addition to computing αy↑ and αMy↑, we must

ensure that our output fence holds, given any actual inertial delay in [αy↑, αM↑].

First, we compute αy↑ and αMy↑. Since the output is known to be in [Vy↓C , DCy↓] at

time t, we can extend both endpoints to isodynamic fences until they both reach Vy↑I . Then

t + αy↑ and t + αM↑ are, respectively, the resulting times of intersection with Vy↑I .

Recall that our output bounds are defined relative to the actual time to that the output

first crossed Vy↑I . However, since this time is unknown, we begin by computing a trailing

bound assuming to = t + αy↑.

Here we combine the assumption that the output-current function is monotonic in the

inputs (Section 3.2.4) with the assumption that the fences are monotonic (previous section)

to argue that the trailing bound we just computed is valid for any actual to. In general,

to ≥ t + αy↑, and the input fences are assumed monotonic, so in general the input voltages

will be equal or higher to the ones we used. Therefore the output currents will be equal or

higher to the ones we used, and our trailing bound holds for any actual to.

Similarly, we compute a leading bound assuming to = t + αMy↑.

84

The preceding calculation can be coded using exactly two sequences of Euler’s Method

output bounds, LeadTrail and TrailLead, that operate in parallel on a common sequence

of input cubes. Initially, ModeLT is “leading bound” and ModeTL is “trailing bound,”

and the timestep number i is 0. The inner loop consists of the following sequence of steps:

• Retrieve input cube C for the next timestep, number i after critical input

• Compute Euler step LeadTrail using C with bounding mode ModeLT

• Compute Euler step TrailLead using C with bounding mode ModeTL

• If LeadTrail has crossed VI , then

– Let ModeLT := “trailing bound”

– output α = i ∗ timestep

• If TrailLead has crossed VI , then

– Let ModeTL := “leading bound”

– output αM = i ∗ timestep

Notice that each input cube is used in exactly two calculations: the LeadTrail calcula-

tion, which is initially a leading bound but becomes trailing, and the TrailLead calculation,

which is initially trailing but becomes leading.

85

6.7 The System Hypotheses, FcSysHypo.T

The system hypothesis represents all currently-postulated parameters required by the Ob-

servation Theorem. Like the transition hypotheses, the system hypothesis has an update

algorithm which brings it closer to satisfying the conditions of the theorem. A correct

update algorithm results in satsifying all of the conditions simultaneously and therefore

yields a rigorous verification. We discuss correct system-hypothesis–updating algorithms in

Sections 6.7.2-6.7.4.

6.7.1 Data Representation

At present I am using verification algorithms that (at every step) require exactly one hy-

pothesis of each type (AC/DC) for each possible transition. Therefore, for each type of

hypothesis I use a data structure, FcSysHypo.T, which associates a hypothesis to each tran-

sition using the standard Modula-3 hashmap generic, instantiated as FcTransHypoTbl.T:

init(...)

(node: FcNode.T)
: FcVoltsCube.T

FcSysHypo.T
system: FcSystem.T
hypo: FcTransHypoTbl.T

update(mode: UpdateMode)
output()

getInputCube
(transition: FcTransition.T,

FcSysHypo.DC FcSysHypo.AC

 scenario: FcScenario.T,
 timeStep: CARDINAL);
: FcVoltsCube.T

init(...)

getInputCube

Figure 6.7: The FcSysHypo.T type hierarchy.

Given such a mapping, I define the getInputCube operation, which returns an FcVoltsCube.T,

given any gate’s output node. The FcVoltsCube.T associates each of the gate’s inputs to

the interval of possible voltages that are assumed in the partial-fence’s condition.

For an AC hypothesis this cube varies as time passes after the latest or earliest in-

put (depending on the gate type). Thus the form of FcSysHypo.AC.getInputCube must

indicate the specific scenario and timeStep that the cube is computed for. As with tran-

sition hypotheses, however, there is a common abstraction for updateing and outputting

the hypotheses for the entire system. In this case, the updateing is a synchronizing BFS

algorithm, which we discuss next.

86

6.7.2 The Nondeterministic Update Algorithm

For now, suppose every PR is exercised at least once. We now discuss algorithms which

find valid hypotheses for verification of an analog implementation, if they exist. We will

discuss both a simple algorithm (in this section) and a faster, more sophisticated algorithm

(in Section 6.7.3).

We begin with the simple algorithm. Suppose that some hypotheses H satisfying the

theorem conditions exist. The following algorithm knows the I/C thresholds but does not

know H initially. It discovers some hypotheses H ′ ⊆ H 4 satisfying the theorem conditions:

Definition 16 (Nondeterministic Verification Algorithm) The nondeterministic ver-

ification algorithm consists of the following two phases:

1. Transition capture. Simulate the system until each node has transitioned twice

(according to the observation rule). Define leadyl = trailyl and let this be the portion

of the signal from [(tylI)1, (tylC)1], shifted to begin at t = 0. Define the DC bounds as

the most extreme values ever observed in simulation.

2. Fence bloating. Choose some small tolerance δ. While some fence condition is

violated by more than δ, fairly choose a random transition and update its hypothesis

using the Accumulate mode.

We now prove the correctness of this algorithm5. Let the ghost variable H ′ denote the

current set of transition hypotheses in the algorithm. First, we show that it suffices to prove

the invariant H ′ ⊆ H. Since updates are done in Accumulate mode, they form the chain

H ′
0 ⊆ H ′

1 ⊆ · · · ⊆ H. Since the ⊆ correspond to inequalities and H is a compact space,

the sequence converges. Because the sequence converges, the changes to the hypotheses

become ever smaller and converge to zero. With probability 1, each transition is selected

infinitely often. Therefore each time a particular transition is selected, a smaller change

is required to make that transition satisfy the hypotheses. Therefore the containment

distance, or amount by which the hypotheses are not satisfied, goes to zero, and the

algorithm terminates. When the algorithm terminates, the fence conditions are violated by

at most δ, which can be taken into account by eta-eff.

4By H ′
⊆ H, we mean that if any set of complete signals L satisfies bounded(L)H′ then it also satsifies

bounded(L)H . Clearly this can be expressed as a set of inequalities directly on the fences.
5As this is a probabilistic algorithm, we show that the algorithm terminates with probability 1, and that

it only terminates with a correct result.

87

Now we just have to prove the invariant H ′ ⊆ H. Clearly H ′
0 ⊆ H because the simulation

is bound by the theorem since we assumed H exists and satisfies the theorem assumptions.

Suppose the invariant were violated by some fence. Since update calculates the fences by

solving the circuit equation with noise ±η, there is a simulation L with the corresponding

worst-case noise which equals that fence. Therefore we would have ¬bounded(L)H , a

contradiction.

6.7.3 The Synchronizing BFS Algorithm

The preceding algorithm is correct, but the fence-bloating phase is unnecessarily slow. Be-

sides the obvious runtime uncertainty associated with randomized algorithms, the algorithm

performs redundant computations to reach some global valid hypothesis assignment H.

Consider the transient hypotheses, which are propagated over the transition graph (i.e.,

henceforth a “node” in this graph abstraction is a actually a FcTransition.T). The key

observation is that once we have viable hypotheses (i.e., hypotheses that equal those in

H) for all external input nodes and all nodes in some transition-graph cutset, then each

remaining hypothesis can be computed in constant time using the following algorithm:

Definition 17 (Synchronizing BFS Algorithm) The synchronizing BFS algorithm

assumes that some set of nodes S0 has been updated initially. Between steps of the algo-

rithm, let S denote the set of nodes that have been updated. The algorithm performs the

following step repeatedly: some node not in S whose inputs have all been updated is updated.

When there is no such node left, the algorithm terminates.

This differs from the standard (non-synchronizing) BFS algorithm by requiring all inputs

of each new node to have been updated, not just one of them. FenceCalcTM implements

this algorithm for both the FcTransition.T graph (for transient and DC hypotheses) and

the FcNode.T graph (for DC hypotheses).

Thus we should focus our efforts on getting the hypotheses for the cutset to converge as

fast as possible (any other computation would be wasted CPU cycles). Thus, each update

should use the newest data available. To accomplish this, we simply perform a number of

synchronizing BFS passes. Since each new node is updated only when all of its inputs

were updated in the same pass, no node must be updated twice.

Each pass requires one update for each node in the circuit. Because all operations are

locally linear (in the neighborhood of H), the number of passes required is proportional to

the constant log(δ), where δ is the exit tolerance (a.k.a. bfs-tol). Therefore (for fixed δ

88

and fixed fence representation complexity) the algorithm runs in time linear in the size of

the circuit.

6.7.4 Eliminating the Transition Capture Step

As explained in Section 6.7.2, the objective of the transition capture step was to initially

establish the invariant H ′ ⊆ H over all nodes. We now discuss how this can be done without

looking at a simulation of the system.

The transition-capture phase of the algorithm is potentially tedious because it involves

simulating the circuit (with real data over many cycles, potentially) until each node transi-

tions twice. We propose two ways to eliminate this step, the bottom-symbol method and

the ramp-initialization method.

If the circuit has no internal initially-enabled PRs, we can do away with the transition-

capture phase of the algorithm using bottom symbols. We simply begin with the fences

for the external inputs (which are part of the environment specification), and all other

hypotheses are assigned the bottom symbol. We only update a transition if none of its

inputs are bottom. This maintains the invariant that H ′ ⊆ H over all nodes that are

not bottom. Since circuit transition is exercised, all bottoms disappear eventually, and

the algorithm is correct by the arguments of Section 6.7.2. However, this method has the

drawback that to avoid deadlock, we must define update(. . .) for hypotheses on multi-input

gates that have one or more input hypotheses bottom.

In the ramp-initialization method, each non-environment transition hypothesis is ini-

tialized to a simple piecewise-linear ramp shape. After a few stages of propagation, the

hypotheses converge to fixed-slewtime shapes, by the arguments given in Appendix B.2.

From that point on, the fence-bloating step proceeds as normal. In practice, this method

works as well as the preceeding methods.

6.8 Conclusion

Using FenceCalcTM with a standard script (see Appendix E.1), we can find and check the

conditions of the observation theorem for any circuit when those conditions exist.

We will use FenceCalcTM in two ways. First, we will use it to guide the selection of

thresholds and, possibly, delay elements, which we need in order to verify the circuit. As

we will see in Chapter 7, we can ensure that the observation theorem conditions exist by

properly choosing observation thresholds (Section 7.1) and, as a last resort, adding delay

89

to the circuit (Section 7.6). Since it is always possible to guarantee the existence of the

theorem conditions, and FenceCalcTM finds such conditions if they exist, we conclude that

we can always use FenceCalcTM (and the methods we will discuss in the next chapter) to

find theorem conditions.

Finally, we use FenceCalcTM to check the conditions of the observation theorem so that

we can conceptually apply the theorem to our circuit. When substituted into the theorem,

the conditions produced by FenceCalcTM give us a complete rigorous verification: the 4-

threshold observation of any possible analog evolution is an atomic execution.

90

Chapter 7

Rigorous Verification Results

I have successfully produced rigorous verifications of two non-trivial circuits using FenceCalcTM.

For both circuits it is assumed that the relative transconductance (see Section 3.2.1) of

NMOS transistors is twice that of PMOS transistors, that staticizers have 5% of the strength

of other gates, and that all transistors have a threshold VT that is 20% of VDD.

I have rigorously verified both circuits assuming that a current-noise of any form whose

peaks are as large as 0.1% of the maximum drive current of any gate can appear on that

gate’s output at any time. This is after taking error in the calculation itself into account. To

put this 0.1% in perspective, notice that we are using a pessimistic absolute noise measuring

method: the currents are measured relative to the maximum current that could theoretically

occur. Clearly we cannot hope for such a bound to be more than 5% (or even 2%, given our

p/n ratio) as this would obviously lead to examples where the staticizer is overpowered.

7.1 The Choice of Observation Thresholds

In all circuits I have verified, there was an arbitrary choice of initiation thresholds V lI.

This was the only arbitrary choice, because the methods of Section 6.7.3 guarantee that if

fence parameters corresponding to a given V lI choice exist, then FenceCalcTMfinds them.

To satisfy the hold strength condition (Section 3.6.1), we must have

Vy↑I < v0 < Vy↓I , (7.1)

where v0 is the logic threshold. Furthermore, if the above condition (adjusted slightly for

noise) holds, then we can always verify the circuit by adding more delay to the circuit.

The circuits I have verified have 5- and 7-stage feedback loops, meaning that they run

at 10 and 14 transitions per cycle, respectively. This is as fast as any reasonable circuit

91

runs[22]. I have rigorously verified them using FenceCalcTM, without adding any additional

delay beyond the delay that brings them to this cycle time.

I selected the initiation thresholds by first arbitrarily setting them to the transistor vT

thresholds. This worked for a trivial ring oscillator but not for the synchronized loops or

WCHB chain. I raised the initiation thresholds on every node in which a slewtime con-

straint was not met or on which the lead and trail fences diverged earliest. For completely

automatic verification, a generic search should be used.

7.2 A Synchronized Pair of Loops

The first non-trivial circuit I have verified is a synchronized pair of loops. This circuit has

internally enabled PRs and no environment (it is closed). As noted above, the relative

transconductance of NMOS transistors is twice that of PMOS transistors. I have chosen an

NMOS relative transconductance of 1 (volt/second)/(volt2). 1

The circuit is successfully verified with all nodes having effective η = 0.20 volts/second,

which corresponds to 0.5% of the maximum drive slewrate of any gate. This is after taking

error in the calculation itself into account. Before calculation error, η = 0.35. The circuit,

η, VDD, and the transistor parameters are given in KAST form, which we obtain by labeling

all nodes in the circuit, as follows:

n2

C
o

m1m2
m3

n3

m4

n4

n1

Figure 7.1: Synchronized pair of inverter rings.

See Section F.1 for the details of the verification calculations for this circuit.

1To apply the result to a circuit of a particular scale, the “second” can be replaced by some other time
unit (e.g., FO4s, or 13.7ps) without affecting the result. Therefore the absolute unit of time is irrelevant for
our purposes, and we use the “second,” which is easiest to write.

92

7.3 A Chain of Dual-Rail WCHB Buffers

parameter: vDD vT kn kp staticizers

value: 5V 1V 2 s−1V−1 1 s−1V−1 5%

WCHB Buffer #2 (R−S)

C

C

C

C

l0

le

l1

r0

re

r1

_r0

_r1

_s0

_s1

___le__le

_le

___se__se

_se

s0

se

s1

WCHB Buffer #1 (L−R)

Figure 7.2: Chain of dual-rail WCHB buffers.

As with the synchronizing loop circuit, we must specify the I/C thresholds that define

the observation rule. In addition, however, the WCHB chain has an environment, so we

must specify the hypotheses on the environment’s outputs using the tran command.

The circuit is successfully verified with all nodes having effective η = 0.05 volts/second,

which corresponds to 0.1% of the maximum drive slewrate of any gate. This is after taking

error in the calculation itself into account. Before calculation error, η = 0.09. In the next

two subsections, we will discuss how this was achieved.

93

7.3.1 Example: WCHB Verification, with Delay Insertion

To begin with, we set all I (initiation) thresholds to 1V, and we let FenceCalcTM infer the

tightest possible completion thresholds from this choice. We run FenceCalcTM, and BFS

diverges – the original circuit cannot be modified with these thresholds. However, as we

discuss in Section 7.6, any circuit can be verified2 if we add restoring delay elements to

internal cycles. In the case of our WCHB chain, the node Re is in all internal cycles, so it

suffices to add delay elements at Re. This result is verifiable in FenceCalcTM:

User Action FenceCalcTM η
Response

Set all I thresholds BFS diverges any
to 1V (relative to 0 or VDD)

Insert 6 inverters at Re Success ≤ .03 V/s

Figure 7.3: Delay Insertion for WCHB Verification.

7.3.2 Example: WCHB Verification, with Careful Threshold Selection

While the delay-insertion method is very general, it is obviously preferable to avoid modify-

ing (and possibly slowing down) the circuit that we are attempting to verify. It is sometimes

possible to do this by selecting the observation thresholds more carefully than we did in the

previous subsection. I have verified the WCHB chain shown in Figure 7.2 without adding

additional delay (beyond what is already in the figure), as follows:

User Action FenceCalcTM η
Response

Set all I thresholds BFS diverges any
to 1 (relative to 0 or VDD)

Raise all I I > C violated any
thresholds to 1.6 at C-element

Adjust I at C-elem Success ≤ 0.03
inputs back to 1

Fine-tune the thresholds Success ≤ 0.09

Account for arithmetic error Success ≤ 0.05

Figure 7.4: Careful Threshold Selection for WCHB Verification.

2assuming steady-state correctness

94

The final effective of η = 0.05 is the rigorous value claimed at the beginning of this

section. See Section F.2 for complete details of the verification calculations for this circuit.

7.3.3 Noise-Sensitivity Calculation

For a given circuit, FenceCalcTM gives us a “pass” or “fail” for any postulated noise bound

η. By the results of Chapter 6, we know that there is some critical η which separates the

“pass”es from the “fail”s. Thus we have a continuous metric that allows standard search

algorithms to be employed for noise-sensitivity optimization and threshold selection.

Furthermore, we can explore η as a multi-dimensional space, consisting of an indepen-

dent noise-bound for every node in the circuit. The following experiment illustrates such

an exploration.

For each node x, we will compute a noise tolerance. Let η0 denote the largest noise

bound which gives a successful verification when all nodes are allowed noise up to η0. The

noise tolerance ηx is defined as the largest noise bound we can have on x while all other nodes

have noise bound η0/2. For the WCHB chain, I have estimated ηx/η0 using FenceCalcTM,

as shown below:

33

C

C

C

C

4

7

7

2

24

4548 15 17 12 7

Figure 7.5: Noise Tolerance of Individual Internal Nodes of the WCHB Chain.

Lower numbers indicate more sensitivity to noise; larger numbers indicate more toler-

ance. In this result, the left handshake has an unrealistically large noise tolerance, because

there is no model for slewtime transfer through the environment, i.e., the environment gen-

erates a fixed transition shape regardless of how bad the transitions to the environment

are.

95

7.4 Fence Resolution Requirements

The preceding circuits can be verified with just 100 points per transient fence if we ignore

Euler error. However, for a rigorous result we need 2K-20K points per fence, depending on

which Euler error estimation method is used (Section D.5).

The small stepsize is needed primarily for the Euler error estimation. Therefore it is

not necessary to use it when first postulating the hypotheses. For example, suppose 8 BFS

phases are required (3-8 was typical). We could use a large stepsize for the first 6 phases and

a smaller stepsize for the last 2, for a speedup factor of 4. This would require upsampling

the hypotheses in between phases. This speedup was not used for the results in this thesis.

7.5 Parameter-Space Searches

In finite time, we can use our verification method to prove that a circuit is correct over

any closed region of parameter space. Traditional methods would require infinite time. A

closed region can be covered by a constant number of smaller closed patches. In each of

these patches we model the parameter uncertainty as dynamic noise and rigorously verify

the circuit assuming this extra dynamic noise is present.

This technique requires a finite amount of computation, but, unfortunately, the amount

of computation is proportional to the number of patches, and hence inversely proportional

to the average patch size. The patch size is limited by the dynamic noise we can handle.

96

7.6 Generality of the Method

If we add enough delay to the circuit, we can rigorously verify any implementation of PRS,

provided the circuit and implementation technology satisfy certain restrictions, as follows:

1. We assume that the technology satisfies the conditions given in Section 3.2.4. It can be

directly seen that these conditions hold for CMOS. One of those conditions (slewtime

restoration) implies that a particular ring of identical inverters can be verified in

FenceCalcTM.3 Suppose that in that verification some inverter’s transient hypothesis

(i.e., the set of transient fences for both types of output transitions) is S. Suppose

additionally that in that verification, on reset, the ring oscillator was initialized with

a step function.

2. The actual noise on the delay elements that we add is strictly less than that used

to claim slewtime restoration for the technology.

3. Steady-state correctness of the implementation. Thus, there exist VlI and VlC

thresholds such that the DC conditions of the theorem are satisfied everywhere. This

assumption is clearly necessary; without this assumption, there would be no logically-

valid voltages. We are free to choose any thresholds (with the proper ordering between

I and C) that have logically-valid voltages. For simplicity, in this section we assume

fixed threholds that are independent of the circuit node (this adds no restriction if

the gates are fully steady-state–composable in any combination).

We are given that some ring oscillator of some length l is verified with a transient

hypothesis S. Therefore, after 2l inverters, S is mapped back to S. The ring oscillator was

verified with some noise which we assumed was greater than the noise on the actual delay

elements that we will add. Therefore, we can assume that S is mapped back to rS (i.e., S

compressed in time by a factor of 1/r) for some r < 1.

Suppose that we have a circuit which failed verification. Cut all cycles, and postulate

S at all newly dangling inputs. By assumption, the dangling outputs do not all map to

S (for then we would have a complete verification), but they map to some finite-width

parallelogram B.

A very slow delay element (i.e., a pair of inverters with very low relative transconduc-

tance in both stages) has an inertial delay equal to the width of B and therefore treats

3Slewtime restoration must actually be checked over a range of inverter parameters; I have checked it for
CMOS in FenceCalcTM, assuming we can set VT = 0.2VDD; this could be extended to a large region using
the method described in Section 7.5.

97

B as a step function. By assumption, a step function maps to S in k steps for some k.

Therefore, after k delay elements, B is mapped to rnS, for some n. After a total of k + n

delay elements, B is mapped to S. Therefore the verification is complete at that point.

The process is summarized in the following figure:

n

C

B
S r

n
S S

I
S

C

I

J

k

r
n

S

k

r
n

S

J

S

(fails verification)

B S

n

B S

Figure 7.6: Adding delay elements to a circuit to make it pass verification.

Of course, this argument only serves to show that there is an upper bound on the number

of delay elements required, assuming we do not change the I/C thresholds from their default

values. The actual number required will be smaller, and we will only add delay after first

attempting to choose the thresholds properly. In the circuits I have rigorously verified, I

added at most two inverters beyond the theoretical minimum (which is 3 inverters on each

loop, for CMOS).

98

7.7 Limitations of Single-Bound Hypotheses

FenceCalcTM produces a tight calculation in the sense that if the theorem conditions can

be met, then FenceCalcTM will find valid conditions. However, if the theorem conditions

cannot be met and the procedure described in the preceding section is not used to correct

the problem, then as BFS proceeds in FenceCalcTM , the hypotheses diverge as shown below:

-1

 0

 1

 2

 3

 4

 5

 6

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

hypothesis(n0-)

leading
trailing

Figure 7.7: Diverging hypotheses: If the leading and trailing fences are too far apart, then
they continue to drift away from each other.

As we have seen in Section 6.7.2, this implies that conditions satisfying the theorem

cannot be found. However, this does not necessarily mean that the unmodified circuit is

unverifiable.

In our present theorem formulation, there is some slop in our transient fence conditions

(Section 3.6.2). Specifically, we assume that the input can be any function bounded by the

transient hypothesis. This clearly allows many possibilities that do not actually occur in

the analog model.

99

For example, suppose that the hypothesis of an input to an inverter contains an ex-

tremely wide rectangle, such as is the case in Figure 7.7. Below we sketch the function

contained in the hypothesis bounds which was used to compute the worst-case trailing

fence.

Legend

lead

trail

used to calculate
output trailing
fence

lead (output)

trail (output)

output hypothesis

input hypothesis

VI

Figure 7.8: Function within input-hypothesis bounds that is used to calculate the trailing
output-hypothesis bound.

We can sometimes solve this problem by using multiple sets of hypotheses correpespond-

ing to different scenarios. For example, consider our verification of the synchronized pair

of loops (Section 7.2). The PRS for this circuit contains initially-enabled internal PRs.

Therefore, as discussed in Section 3.4.1, we must assume that at reset the node with the

initial transition is driven with the transient hypothesis for that node.

In fact, we can also verify that circuit assuming the initial transition is a step function,

but not using our present version of the observation theorem. Consider the following three

possibilities for the hypotheses of the node containing the initial transition:

1. The step function (from the reset circuitry).

2. The steady-state hypothesis computed by BFS.

3. The conservative (but tight) combination of 1 and 2 expressed in the same way: as a

single pair of fences.

We know the circuit is verifiable using hypothesis (2). However, this does not al-

low hypothesis (1), which we would like to allow (for the reset transition). Nonetheless,

100

FenceCalcTM reports that if we use hypothesis (1), then, after a few stages of propagation,

the results are contained in (2).

Unfortunately, a calculation using (3) fails entirely, for the reasons discussed above.

Nonetheless, we have seen that we can temporarily have multiple hypotheses for a single

transition corresponding to different scenarios, and merge them later when they agree.

101

Chapter 8

Conclusions

My primary intellectual result is the demonstration of the soundness of PRS and its op-

erational model in terms of elementary mathematical concepts. It has been argued that a

system designer should not deal in operational models. This is a valuable principle, but

there always comes a time when we ask whether the model that the designer has used re-

ally matches the underlying operational model of the machine. The underlying operational

models deal with elementary mathematical constructs: functions of real-valued time and

sequences of values, and it is ultimately the properties of these functions and sequences that

we are interested in when we turn on the machine. Therefore, we must relate them to the

properties the designer has guaranteed, and I believe I have done that.

8.1 Summary

This thesis reinforces the QDI circuit methodology by demonstrating that the commonly

used atomic model (in which circuits are correct by construction) is provably implemented

by the more accurate bulk-scale analog model, SPICE level 0. The model is implemented in

the sense that any analog evolution agrees with some valid digital execution when observed

using a fixed 4-threshold observation rule.

As our PRS is obtained from Martin Synthesis, we can assume the PRS is stable and

noninterfering. The theory is otherwise general in the types of computations and PRS

allowed, except for two assumptions we make (for now) to keep the basic theory as simple as

possible: the observation theorem assumes mutually-exclusive disjuncts, and FenceCalcTM

assumes a maximum logic-gate fanin of two. Other than these restrictions, we can rigorously

verify any canonical PRS implementation, provided that, if necessary, enough delay elements

are added so that the conditions required by the observation theorem can be met. If the

conditions can be met, then FenceCalcTM will find sufficient conditions in time linear in the

102

number of logic gates.

8.2 Improvement over SPICE Simulation: The Noise Budget

At best, a SPICE simulation checks a single analog behavior. Recall from Section 1.10.3

that a SPICE simulation has all of the following limitations:

1. Environment timing and all noise sources must be exactly known, or infinitely many

simulations are required.

2. Device parameters must be exactly known, or infinitely many simulations are required.

3. SPICE has no way to account for its own numerical error.

By contrast, my method considers an infinite number of possible behaviors. We overcome

limitation 1 using a noise bound η. Let ηFenceCalc denote the η parameter supplied to

FenceCalcTM. We can trade some of this noide bound, ηDynamical, for parameter uncertainty

(as discussed in Section 7.5), overcoming limitation 2. Finally, we can trade additional noise

bound, ηNumerical, for numerical error (as explained in Chapter 6) overcoming limitation 3.

This leaves ηDynamical noise remaining for overcoming limitation 1.

In summary, ηFenceCalc is the total noise budget that we are allowed, for a rigorous

result. We compare the FenceCalcTM calculation to the actual analog model, and bound

differences in output current, yielding three categories of noise:

1. ηDynamical bounds total error due to model inaccuracy.

2. ηParam bounds total error from parameter uncertainty.

3. ηNumerical bounds numerical error.

The total noise must fit into the noise budget ηFenceCalc:

ηFenceCalc = ηNumerical + ηDynamical + ηParam

If we use the eta-eff command in FenceCalcTM then we obtain the quantity η =

ηFenceCalc − ηNumerical = ηDynamical + ηParam. This is technically the quantity defined in

Section 3.3 and used throughout most of this thesis.

103

8.3 Lessons Learned

When I started working on this problem I was originally hoping for a simple theory that

would be easy for everyone to understand. As we discuss in Section 8.4, many of my

results would clearly benefit from simplification, if possible. Nonetheless, in putting together

complete, rigorous verifications of non-trivial circuits, I have identified certain relatively

self-contained concepts which play important roles in reaching that result:

1. Until the underlying model is accurate enough, new failure modes are likely to arise.

There is no substitute for dealing directly with the underlying analog model.

2. To make sense of behaviors in this underlying model, we need an observation rule

(Section 3.5) that is immune to small noise and properly finds the events represented

in an analog signal.

3. The observation rule must have four thresholds if the observation theorem is to be

proved. This condition is necessary and sufficient.

4. Using the Spatial Induction Principle (SIP) (SIP, Section 4.4), we need only

prove each gate correct independently of the other gates. When we do this, we can

assume that the gate’s inputs satisfy all imaginable safety properties.

5. When proving a gate’s correctness, we can, using extended stability, (applied: Sec-

tion 4.4.4, proved: Section 5) suppose that each input transition occured in isolation

of other transitions on the same input.

6. It suffices to bound each transition by a pair of fences (leading and trailing) anchored

at the point of transition initiation.

7. Numerically postulating a complete set of hypotheses that are proper fences is, asymp-

totically, a faster computation than a traditional non-exhaustive simulation. We need

only a constant number of BFS passes over the circuit, regardless of the computation

implemented by the circuit.

8. As illustrated in Section 7.3.2, sometimes a circuit is correct and verifiable, but we

cannot verify it until we find the right observation thresholds. One general way to

find the thresholds is to add delay elements until the circuit is verifiable, and then

to use the continuous η metric discussed in Section 7.3.3 to fine-tune the thresholds,

increasing the noise margin until we can remove the delay elements that we added.

104

8.4 Future Work

8.4.1 Simplifications

We have argued that an observation rule must have at least 4 thresholds if it is to lead to

a provable observation theorem. This apparently necessary complexity pervades our entire

theory, resulting in a total of 3 phases that must be considered in case analysis (in Sec-

tion 4.4.6). Each of these cases has a corresponding calculation. While we have argued,

intuitively, that each of these calculations is necessary, it would be nice if all thresholds and

phases could be combined in some unified tabulation of some sort, with perhaps even a uni-

form intermediate operational model. My original approach was based on an intermediate

operational model, but I abandoned that approach when it appeared to be too complicated.

8.4.2 Increased Noise Tolerance

Our results are based on the assumption that noise is small. While we can verify any

circuit by adding delay elements, those elements must have small noise comparable to the

noise allowed when those elements are used in a ring oscillator (Section 7.6). The question

naturally arises as to whether we can handle more noise. Unfortunately, we cannot hope

to come close to the mathematical limit, as that limit is likely to be a complicated fractal

boundary[8]. However, it is also clear that our present results are not as close to that

boundary as is possible. For example, techniques such as the one outlined in Section 7.7

could be implemented and evaluated.

8.4.3 Generalization

A calculator (such as a new version of FenceCalcTM) should be written which extends

hypothesis postulation to gates of higher fanins. More importantly, I have chosen a very

simple type of underlying model and claimed that many deviations can be modeled as noise.

However, the verifications I have produced do not succeed when the noise is too large. A

theory should be developed to further characterize, through static analysis, the amount of

noise that can be tolerated. When a new phenomenon (such as crosstalk) is encountered, it

should be worked into the theory. Given such a phenomenon, there is perhaps an order in

which solutions might be tried starting with the least-disruptive modification to the theory:

1. Attempt to include the phenomenon in the current-functions as accurately as possible.

2. Attempt verification with the phenomenon modeled as noise.

105

3. Add additional thresholds with corresponding new phases that constrain the signal

more specifically than we have done.

4. Add additional analog state variables to the theory with corresponding notions of

boundedness (and, possibly, new safety properties).

8.4.4 Calculation Speedups

Calculations using my method take time linear in the circuit size. Furthermore, as discussed

in Section 8.2 we can do simulations that are not possible in a finite number of SPICE

simulations. However, there are two problems which make my present method slow to use

in practice: the large number of points required for numerical accuracy and large parameter

uncertainty.

First, in my present implementation the calculation takes time linear in 1/ηNumerical.

Unfortunately the present noise budget is so small that thousands of points must be eval-

uated for each fence, even using the improved error bounding method (Section 7.4). The

problem is that the underlying structure is a piecewise linear function, which requires many

parameters. Perhaps other types of functions (e.g., splines) could be carefully designed

to solve this problem, though I have found that even with splines of low degree, several

segments are still necessary to verify a trivial circuit.

Second, and more importantly, my method can be very slow when applied to a large

region of parameter space. As discussed in Section 7.5 we can, in finite time, verify a circuit

over any closed region of parameter space by decomposition into many smaller patches.

While this is much better than SPICE, it means that our calculation is now exponential

in the circuit size (whenever the actual parameter noise exceeds the noise budget of a

single calculation). Research is needed to find ways to reduce the amount of decomposition

required. Perhaps symbolically-derived fences can be developed or the multi-scenerio fences

proposed in Section 7.7 could be generalized.

106

Appendix A

Appendix: Failure-Causing
Attributes of Analog Circuits

As discussed in Section 1.1, only a rigorous approach to analog verification allows us to

rule out all possible failures, even those that have not been specifically discovered yet.

Nonetheless, much work has focused on specific failure modes[39][41][23][38][7][56][51].

Some failures are caused by specific phenomena such as charge on internal nodes,

crosstalk, and substrate phenomena that distort the physical behavioral model so much

that new design techniques are required[56][51]. In some cases, a careful designer – armed

with tools that simulate and analyze the specific phenomenon – can tolerate, correct, or

even harness the phenomenon in its full strength. However, the only method which handles

all phenomena consistently is to constrain the design in some way so that the phenomena

can be minimized and treated as noise. The question for any particular phenomenon then

becomes:

Can we treat this phenomenon as noise?

Recall that a rigorous approach refers to a specific model, and shows that no failures - i.e.,

no counterexample behaviors – are admitted in that model. We can view these failures as

evidence of attributes of the physical model that distinguish it from a known good model

(such as the atomic model). Therefore, we can answer the above question as follows:

A phenomenon is noise if its addition to the operational model

leads to no new failure examples.

Of course, this bottom-up reasoning is not an efficient way to arrive at a rigorous ar-

gument, so we do not employ it in our primary result, the observation theorem. How-

ever, for motivational purposes we attempt to consider various phenomena as individual

107

failure-causing attributes that we could (in principle) incrementally add to a model,

incrementally revealing various types of failures.

The most significant such attribute is non-atomicity, which we now consider in its

most abstract setting: as a property of concurrent composition.

A.1 Concurrent Composition Can Be Non-Atomic

Recall (Section 2.2.1) that the only requirements that a concurrent composition must satisfy

are that

1. Each sequential projection is a sequence of firings on a single PR and

2. The effect of a (nonvacuously executed) PR y:=v is the predicate on the Hoare triple

{P}y:=v{Q}, which states that Q = P , except that the value of y is changed to v.

But these conditions do not imply atomicity. In general, each firing may consist of

multiple events which are each individually interleaved into the execution. Thus, while it is

true that y is changed to v, we cannot conclude (based on the abstract notion of concurrent

composition) that this change happens in a single elementary step.

A.1.1 Spurious Ring Oscillators

Recall from Section 2.4.2 that spurious ring oscillation can occur in CMOS when a slewtime

is too long. I now present SPICE simulation results illustrating that such failures really

happen for the circuit shown in Figure 2.6. The amount of oscillation depends on the

slewtime of the input voltage signal x(t), as shown below:

108

 0

 1

 2

 3

 4

 5

 6

 0 2e-09 4e-09 6e-09 8e-09 1e-08 1.2e-08 1.4e-08 1.6e-08 1.8e-08 2e-08

"data.in"
"data.out"

Figure A.1: Slightly Spurious Response to 4ns Input Rise Time.

 0

 1

 2

 3

 4

 5

 6

 0 2e-09 4e-09 6e-09 8e-09 1e-08 1.2e-08 1.4e-08 1.6e-08 1.8e-08 2e-08

"data.in"
"data.out"

Figure A.2: More Spurious Response to 8ns Input Rise Time.

 0

 1

 2

 3

 4

 5

 0 2e-09 4e-09 6e-09 8e-09 1e-08 1.2e-08 1.4e-08 1.6e-08 1.8e-08 2e-08

"data.in"
"data.out"

Figure A.3: Even More Spurious Response to 16ns Input Rise Time.

109

To reproduce the above waveforms, use the default 0.6µm model that comes with Berke-

ley SPICE 3 to simulate the following circuit definition in SPICE 3:

* transistor models
.include mos.cir
.OPTIONS ACCT NOPAGE

.global GND Vdd
Vgnd GND 0 0

* logic gate definitions

.SUBCKT inv1 in out
MP Vdd in out Vdd P12L5 L=1.2U W=30U
MN GND in out GND N10L5 L=1.0U W=10U
.ENDS

.SUBCKT weak in out
MP Vdd in out Vdd P12L5 L=1.2U W=3U
MN GND in out GND N10L5 L=1.0U W=1U
.ENDS

.SUBCKT celem2 a b out
M1 Vdd a p Vdd P12L5 L=1.2U W=30U
M2 p b out Vdd P12L5 L=1.2U W=30U
M3 GND a n GND N10L5 L=1.0U W=10U
M4 n b out GND N10L5 L=1.0U W=10U
.ENDS

* power supply
VDD Vdd GND PWL(0 0 0.1N 5)

* input waveform
Vin in GND PWL(0N 0 0.2N 5 4.0N 5 20.0N 0)

X1 in out3 out celem2
X2 out out2 inv1
X3 out2 out3 inv1

*staticizer
X4 out2 out weak

.TRAN 0.05N 20.0N

.PLOT TRAN V(in) V(out)

.END

110

A.1.2 Forms of Non-Atomic Concurrent Composition

The preceding examples of spurious oscillation illustrate that we can define physically ac-

curate models1 that are based on non-atomic concurrent composition. To see this, we note

that a PR firing can be executed as a number of more elementary events; some possibilities

are shown below:

Thresholds

Isochronic
Fork

Non−Monotonic

0−X−1 (most general)

(Martin)

Diatomic (DeGloria)

x

x(t)

1

S I

X 0

S C

V

V

Dp

Tn

t

S (x:=0)
Atomic

P/N Transistor

Figure A.4: Ways to describe the multiple events making up the execution of statement S.

The most general[7] event-based non-atomic model executes statement S as an initia-

tion event SI followed by the completion event SC [38].

1Or, at least, models that are more physically accurate than the atomic model.

111

A.2 Nonoscillation

As mentioned in the introduction, all voltages could converge to a fixed point. Then no

further oscillation if possible. This could occur either in the system as a whole or for some

ring of gates.

This case is ruled out if the fixed point is non-attracting, which is guaranteed when the

eigenvalues of its linearization are negative[8].

A.3 Leakage Drift

Dynamic nodes that are not actively driven might drift to a forbidden value. This problem

is solved by using properly designed staticizers[1]. To rule out all counterexamples when

the underlying model has leakage or current-noise, it is therefore clearly essential that the

contributions of these staticizers also be included in the model.

A.4 Unexpected Slewtime

The shape of a transition into a gate affects the slewtime of the output of that gate. There-

fore it is possible that, after a signal passes through a number of gates and its slewtime is

incrementally improved, its shape becomes less and less desirable. A bad shape is one that

can later be misinterpreted as multiple transitions or a transition of a longer slewtime than

expected. It is easy to construct models in which this occurs.

Any analysis method which considers only the slewtime of transitions but not their entire

shape is thus not rigorous: there exist circuit models for which it will fail. By contrast, my

observation theorem and FenceCalcTM consider the entire transition shape. FenceCalcTM is

capable of distinguishing the models which exhibit unexpected slewtime from those that do

not.

Unfortunately, it appears unlikely that a verification based on a small number of pa-

rameters measuring transition shapes will succeed. I have tried hard to come up with such

parameters, countable by the fingers on one’s hand, that lead to a rigorous argument, but

in the end only had success with piecewise-linear bounds containing dozens of points each.

112

A.5 Coupled Failures

The preceding examples can all be seen as failures on a single ring, i.e., they all result in

some ring either oscillating too much or too little. However, in general, failures can occur

in the coupling between rings without being revealed on any single ring.

For example, we could extend the spurious ring oscillator (Section 2.4.2) to have multi-

ple points of synchronization. These extra synchronization points may control the overall

oscillation so that the ring oscillates “just the right amount.” However, the behavior still

contains unsafe transitions, manifested as premature transitions on a given cycle of the

behavior. To rule out such failures we need to relate the timing of the analog transitions to

timing of the digital transitions. Our observation rule does this.

113

Appendix B

Appendix: Restoration Properties
of CMOS

A CMOS circuit is a network consisting of MOSFET transistors. MOSFETS are three-

terminal devices with insulated gates, and there are two varieties: NFETs (enabled by a

positive gate voltage) and PFETS (enabled by a negative gate voltage). The drain-to-source

currents in and ip for NFETs and PFETs, respectively, are given by the formulas:

jn =
2

k
in = max (vGSn − vTn, 0)2 − max (vGDn − vTn, 0)2 and

jp =
2

k
ip = min (vGSp − vTp, 0)

2 − min (vGDp − vTp, 0)
2 , (B.1)

where vTn, vTp, and k are device parameters (n/p transistor thresholds and transconduc-

tance, respectively). We use jn and jp instead of in and ip when the units of current are

irrelevant.

114

B.1 Voltage Restoration

One can ask how the input voltage of a CMOS gate relates to its output voltage. Consider

the simplest nontrivial CMOS gate, the inverter shown below:

0

vin
vout

CL

vin vout

ip
vout

vin

in
S

S

D

D

v

Figure B.1: Symbol, circuit, and Voltage Transfer Characteristic (VTC) for an inverter.

Defining VDp = VDD + VTp, the MOSFET currents in an inverter circuit are:

jn =
2

k
in = max (vGSn − vTn, 0)2 − max (vGDn − vTn, 0)2 Tn and

jp =
2

k
ip = min (vGSp − vTp, 0)

2 − min (vGDp − vTp, 0)
2 Dp. (B.2)

Consider for a moment the function

j0(vin) = max(vin − vTn), 0)2 + min(vin − vDp), 0)
2. (B.3)

If we assume that VDp ≥ VTn, then there exists a unique v0 such that

j0(v0) = 0. (1)

To derive the voltage transfer graph in Figure B.1, we compute the steady-state value of

vout as a function of vin, i.e., we assume that CL can be ignored, and therefore jn + jp = 0.

Combining this with (B.1) and (B.3), we obtain

j0(vin) = max(vin − vout − vTn, 0)2 + min(vin − vout − vTp, 0)
2, (2)

and solving for vout in terms of vin yields:

vout = β(vin) =















vin − vTn . . . vin − vTp , vin = v0

vin − vTn +
√

j0(vin) , vin ≤ v0

vin − vTp −
√

j0(vin) , vin ≥ v0 ,

(3)

115

which is the curve drawn in Figure B.1.

Notice that β is locally constant near vin = 0 and vin = vDD and intersects the line

vin + vout = vDD at these points. This means that β is superattracting: for any vin,

the sequence (vDD − β)n(vin) quickly converges, i.e., when a DC voltage is fed through a

small chain of inverters, it becomes 0 or vDD. This well-known property is called voltage

restoration.

Any other CMOS gate is equivalent to an inverter if all its inputs are tied together

(because there is an Ohms Law for MOSFETs; see Appendix D.1), so the voltage transfer

curve is the same as for an inverter. Beware, however, that the voltage transfer curve does

not apply in the general case where inputs arrive at different times.

The voltage generation is best when NFETs are used as pulldowns and PFETs are used

as pullups[1].

B.2 Slewtime Restoration

If steady-state arguments alone are used to verify a circuit, then voltage restoration is

enough. But we have noted that in QDI, good input transitions must turn into good output

transitions. The most basic property of these transitions which must be controlled is their

slewtime.

One way to define slewtime is the time τ that it takes a transition signal to get from

vTn (the 0 threshold) to vDp (the 1 threshold). One can ask the same questions of slewtime

as one asked of steady-state voltage. Of course, the actual output slewtime is a function

not just of the input slewtime, but also of the input signal shape. Thus we will have to

eventually (to be rigorous) consider the relationship between classes of input signals and

classes of output signals. For a crude intuitive analysis, however, let us (for now) assume a

fixed input shape. In the limit of a very slow input we can ignore the gate output CL so we

can use the voltage transfer function β in order to compute the output signal as a function

of the input signal. Suppose that when τin = 1, the input shape is f1. This leads to some

output slewtime α:

vin,1(t) = f1(t)

vout,1(t) = β ◦ f1(t)

τout(τin=1)
def
= α. (B.4)

116

We can then scale the input shape f1 in order to obtain different input slewtimes, and the

corresponding output slewtimes:

vin,τin(t) = f1(t/τin)

vout,τin(t) = β ◦ f1(t/τin)

τout(τin) = α · τin, (B.5)

i.e., for slow signals the slewtime transfer function approaches a linear asymptote of slope

α. Note that α � 1 due to the steepness of the output when it is between the 0 and 1

thresholds (in fact one could even set the thresholds and supply voltage such that α = 0

due to the vertical segment in β. Beware of slow signals, however; see the next section, on

“rough monotonicity”).

For very quick input transitions, on the other hand, the input shape and speed is irrele-

vant due to the current integration at CL. In this case the output is a piecewise exponential

decay described by CL discharging through the NFET with fixed gate voltage VDD. The

slewtime τmin of this curve is the minimum possible slewtime.

The slewtime transfer function never achieves slope zero, so it is not actually superat-

tracting, but it is close to superattracting, due to the small slope α and hence the proximity

of the fixed point to the asymptote τout = τmin, i.e., any slewtime in the vicinity of τmin

becomes τmin after a small number of stages:

min

in

τout τout τin=
τout

τout

slewtime transfer

point
fixed

(voltage transfer)
inατ=

(minimum slewtime)

= τ

τ

Figure B.2: Slewtime transfer function with asymptotes and fixed point.

Slewtime restoration intuitively says that given a long enough chain of delay elements, a

fence pair of any slewtime is mapped to a fence pair of a fast slewtime. This can be checked

for any given circuit technology (I have checked it in FenceCalcTMfor VDD = 5VT with ¿1%

noise). We use this version of slewtime restoration in Section 3.2.4 and Section 7.6.

117

B.3 Rough Monotonicity

Clearly the preceding characterization of a slewtime transfer function depended on the

actual shape of the input transition signal (even though we ignored this fact for the purpose

of developing an intuition). In addition to the slewtime of a signal, we may also be interested

in some property of the signal’s shape, such as monotonicity.

Of course, no physical signal is actually monotonic, due to the presence of noise. Instead,

we characterize signals as “roughly monotonic.” In particular, if we know that an input

signal is not obnoxiously squirming about between the 0 and 1 thresholds for a prolonged

period of time, but rather is making its way towards its target at a steady pace, then we

might get much better slewrate restoration (not to mention glitch avoidance, if the gate

happens to be combinational).

A definition of “rough monotonicity” should constrain the shape of a transition from the

moment it first crosses the 0-threshold. Clearly it should not affect the output before this

time, but its affect on the output must be considered from this time on (due to the memory

of CL). If the first constraint on the input signal has the form of an upper bound shape,

then we can guarantee (by upper-bounding the current into CL) that the output cannot

cross the threshold taking it away from its previous value for a certain output dislodge time.

118

Once the output dislodge time has elapsed, the “output slewtime” stopwatch has been

started, so from this point on some sort of lower bound is required of the input signal,

enabling the output slewtime to be upper-bounded (by lower-bounding the current into

CL):

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

output
dislodge time

time of first 0−threshold crossing

lower bound shape

upper bound shape

1 threshold

0 threshold

voltage

time

input signal

	
	
	
	
	
	
	
	

Figure B.3: A roughly monotonic input transition signal.

Notice that the above arguments are actually easier to apply to dynamic gates than to

combinational gates because in dynamic gates the opposing guard has been cut off before

the input transition begins. v

119

Appendix C

Appendix: Fences

C.1 Motivation

As discussed in Section 1.6 we are confronted with the problem of how to bound waveforms

x(t). Fences[8] allow us to bound the x(t) – solutions to DEs (differential equations) –

without having to solve the DEs exactly.

In contrast to DE solutions, a fence can have virtually any mathematical form so long

as it is differentiable. Given a differential equation x′ = f(t, x), a fence need only satisfy

the following condition (depending on whether it is an upper or lower fence):

fence type condition

lower l′(t) < f(t, l(t))

upper u′(t) > f(t, u(t))

Figure C.1: A Fence Need Only Satisfy a Local Condition

The fence theorem[8] (Section 1.6) states that if a solution is above a lower fence or

below an upper fence, then it remains that way for all time. The remainder of this appendix

is devoted to examples of fences for various differential equations.

C.2 Trivial Example

Consider the differential equation x′ = −x. The function u(t) = 1 is an upper fence:

u′(t) = 0 > −1 = −u(t) = f(t, u(t)) (C.1)

Therefore once a solution is less than 1, then it is forever less than 1.

120

C.3 Example: DE with no solution formula

The differential equation x′ = x2 − t has no solution formula[8]. Nonetheless, the functions

x2− t = c are fences (whose type depends only on c and the branch of square root taken)[8].

Notice that this fence has a completely different form from the DE solution itself: the

fence has an elementary formula, while the DE solution can’t even be expressed in terms

of elementary and algebraic functions. This is of course the main point about fences: we

avoid having to find the exact mathematical form of the DE solutions. This will be true of

all the following examples in this Appendix.

C.4 Graphical Circuit-Waveform Example

Consider the simple example of an inverter in the lumped capacitance model presented in

Section 3.2.1. Suppose for simplicity that the input x(t) is a picewise-linear ramp function

as shown below:

5
4
3
2
1
0

6

-1

54321 60

5

4

3

2

1

0

6

-1

54321 60

y (t, y)

input
function x(t)

iy

iy (t, y)

t

t

x(t)

x
y

output

i

slope field

Figure C.2: Slope Field for Inverter Output Waveform.

We wish to bound the output y(t) without actually having to solve the DE. We can

easily visualize possible output waveforms by tracing the slope marks in Figure C.2 for

various initial conditions. We get some sort of falling transition, as expected.

In Section B.2 we suggested that the slewtime of a falling transition has a lower limit

121

given by the Voltage Transfer Characteristic (VTC) and an upper limit given by an RC

delay. To give a rigorous example we show that the former type of function is a leading

fence (i.e., lower fence for a falling transition) and the latter type of function is a trailing

fence (i.e., upper fence for a falling transition), as shown below:

5
4
3
2
1
0

6

-1

54321 60

5

4

3

2

1

0

6

-1

54321 60

eu(t) =l(t) = VTC(x(t))

lower (leading)
fence l(t)

iy

iy

upper (trailing)
fence u(t)

u’(t) (t, u(t))

l’(t) (t, l(t))

iy
x y

t

t

x(t)

−rtExample fences:

Figure C.3: Upper and Lower Fences for Inverter Output Waveform.

C.4.1 Leading Fence Example: VTC

By definition the Voltage Transfer Characteristic (VTC) is the steady-state output voltage,

i.e., it satisfies iy(t, V TC(x(t)) = 0.

Let l(t) = V TC(x(t)). The fence condition follows from the chain rule and the mono-

tonicity of V TC(x) and of x(t):

l′(t) =
dV TC(x(t))

dt
= V TC ′(x) · x′(t) ≤ 0 = iy(t, V TC(x(t)) = iy(t, l(t)) (C.2)

Thus for any circuit with negative-monotonic VTC, then the VTC is a lower fence on

the response to any positive-monotonic input.

122

C.4.2 Trailing Fence Example: Exponential Decay

We now show that for some constant r and any constant C, the functions u(t) = Ce−rt are

upper fences. We make the following two assumptions:

1. The rising input has reached (and remains above) VDp. Thus our fence has a left

endpoint.

2. C is such that the fence is initially less than 2VDD.

Our first assumption gives us

−iy(t, u(t)) ≥ −iy(x = VDp, y = u(t)). (C.3)

Combining this with our second assumption and the concavity of iy(y), we have:

−iy(t, u(t)) ≥ −iy(x = VDp, y = 2VDD)
u(t)

2VDD

. (C.4)

Thus we have a positive r for which the fence condition

iy(t, u(t)) ≤ −ru(t) = −u′(t) (C.5)

is satisfied.

C.5 Piecewise Linear Fences (FenceCalcTM)

FenceCalcTM uses piecewise-linear functions as fences. Clearly these functions are not them-

selves solutions to any continuous DE. However they are accurate fences because they satisfy

the fence conditions.

C.6 Higher-Dimensional Fences: The Generalized SIP

In my observation theorem fences allow us to bound a single waveform assuming all other

waveforms are bounded. However, the existing mathematical theory of fences does not

naturally give a way to bound all waveforms in the absence of given bounds.

I designed the Spatial Induction Principle (SIP) (Section 4.4) to solve this problem.

According to the SIP, if each signal is individually bounded (assuming everything around

it is weakly bounded), then all signals are bounded.

123

The SIP given in Section 4.4 is intertwined with my observation theorem because my

bounds are fences over some time intervals and derived from the observation rule over other

time intervals. However, as an exercise we can extract an abstract mathematical result from

the SIP, as follows:

Theorem 7 (Generalized SIP) Consider any multi-dimensional continuous ordinary DE

f , with differentiable bounds ly(t) and uy(t) for each variable y. Consider any solution s

and suppose that the following two conditions hold:

i. Suppose that each variable y satisfies the following spatial inductive step. Let

x1, . . . , xk denote the variables other than y. Suppose each is associated to any inte-

grable function (not necessarily DE solutions) bounded weakly by the corresponding l

and u bounds. Consider any spatially local solution py such that p′y(t, x1, . . . , xk, y) =

f(t, x1, . . . , xk, y, p(t, x1, . . . , xk, y)). The spatial inductive step is that py then satisfies

the bounds strongly.

ii. Suppose the following initial condition holds: ly(t0) < sy(t0) < uy(t0) for all y.

Then ly(t) < sy(t) < uy(t) for all t ≥ t0.

which is proved similarly to the SIP proved in Section 4.4.

Theorem 7 may well be the first published generalization of fences to higher dimension.

An interesting mathematical question is whether (under additional Lipschitz-like con-

ditions, perhaps) the word “weakly” in the above theorem can be changed to the word

“strongly”. Clearly this would be a stronger mathematical result, but of course there is no

difference for the practical application considered in this thesis.

124

Appendix D

Appendix: Current-Bounding
Calculations

A CMOS inverter has two transistors connected in parallel to the output; therefore the

output current io is simply the sum of the NFET and PFET currents, namely:

io = ip − in (D.1)

= kp

[

SM0(VDD − vi − vTp) − SM0(vo − vi − vTp)
]

− kn

[

SM0(vi − 0 − vTn) − SM0(vi − vo − vTn)
]

(using the SM0 notation of Section 2.5.3). In general, when a number of elements are

connected in parallel between supply rails and the output, the output current is the sum of

the individual elements’ output currents.

In a general CMOS gate, however, there are series transistors. In Section D.1 we show

how to exactly find the current-function for an arbitrary network of NFETs in the case

where all inputs are connected together. Of course, all-PFET networks are similar. Then

in Section D.2, we generalize our equations to handle different inputs for the 2-input case.

In Section D.3 we further generalize to the case where the inputs are not known exactly,

but are bounded.

Finally, in Sections D.4-D.5 we discuss DC bounding and error bounding used in FenceCalcTM.

D.1 Generalized Ohm’s Law

In this section we show how any network of NFETs with a common input signal is equivalent

to a single NFET. We show this by demonstrating that under a Change Of Variables

125

(COV), an NFET satisfies Ohm’s law. Therefore there is an equivalent circuit for any

network.

The idea of changing variables and finding an equivalent resistor netork has been used

in the analysis of linear circuits circuits[34]. For example, in the circuit below we begin by

assuming that each signal x has the form xest. By making a change of variables from xest

to x, we can view any circuit element as a resistor as shown below:

st i1

sC
1

ye st

stze

i1
ste i2 i3

COV
sC
1 +

sL + R

z

y

equiv.
RsL

z

y

C L R

ste eii2 3

Figure D.1: Analysis of a linear circuit using generalized Ohm’s law.

The change of variables is allowed because the new variables satisfy KCL, KVL, and Ohm’s

law. In this example, KVL is implicit, KCL holds by linearity of the change of variables,

and Ohm’s law holds for each component. For example,

i1 = sC(y − z) (D.2)

holds because it follows directly from the original component equation, namely,

i1e
st = C

d

dt

[

(y − z)est
]

. (D.3)

126

I now show that we can sometimes apply the same technique to nonlinear circuits by

using a nonlinear change of variables. Consider any network of NFETs with identical VT

and all inputs connected to the same node a. This situation would arise in any multi-input

gate if all input transitions were identical and arrived at the same time. We make a change

of variables to our NFET network for the voltages only: change all x to −SM0(a−x−VT),

as shown below:

−SM0(

2i1

1
k2

1
k3

1
k3

COV COV

k1

i3

i2i1
i3

1
k1

equiv. +

1
+ kk1 2

z

a

y

x
k

k2

3a

a

x

z

a

T)

i3

T)

T)

T)

T)

a − x − V

a − y − V

a − z − V
a − z − V

a − x − V

−SM0(

−SM0(

−SM0(

−SM0(
i

Figure D.2: Analysis of a common-gate network of NFETs using generalized Ohm’s law.

As in the linear circuit example, this change of variables is legal because KVL, KCL, and

Ohm’s law are satisfied. KVL is again implicit, and KCL has not changed because we only

changed the voltages. Ohm’s law holds, as before, because it gives us identical equations in

both circuits. For example, the equation for circuit element number 1 (in both circuits) is

as follows:

i1 = k1

[

SM0(a − z − VT) − SM0(a − y − VT)
]

(D.4)

Finally, we reduce the resulting resistor network to an equivalent circuit consisting of

a single resistor and convert back to a circuit consisting of a single NFET in the original

variables.

127

D.2 Current-Function for Two-Input Gates

In the preceding section we showed how to find the current-function for an arbitrary NFET

network if all inputs are the same. In general, of course, that assumption does not hold. Let

us now derive a more general current-function for a chain of 2 transistors in series. Let a

and b represent the input voltages less the transistor thresholds. Without loss of generality,

we can assume we have two NFETs connecting an output z to ground as shown below:

a
VT

VT

y

z

b

Figure D.3: Analysis of two NFETs in series.

Now make the assumption that both transistors have the same transconductance k.

This is a reasonable assumption because series transistors are typically cut out of a single

strip of diffusion and hence all have the same width. By KCL the two transistors have the

same current as follows:

i/k = SM0(a) − SM0(a−y) (D.5)

= SM0(b−y) − SM0(b−z).

Next we solve for the unknown voltage at y by collecting the terms containing y into

the following expression:

j
def
= SM0(a−y) + SM0(b−y) (D.6)

= SM0(a) + SM0(b−z).

Notice that we can compute j immediately; it is simply SM0(a) + SM0(b−z).

128

Now we continue to solve for y, but we don’t know how to evaluate SM0(a−y) or

SM0(b−y) yet because we don’t know if a ≥ y or b ≥ y. Therefore we do a case analysis

(i.e., we look for solutions in each quadrant), as follows:















(a − y)2 = j , if (a ≥ y) ∧ (b < y)

(b − y)2 = j , if (a < y) ∧ (b ≥ y)

(a − y)2 + (b − y)2 = j , if (a ≥ y) ∧ (b ≥ y)

(D.7)

Notice that we need not consider the case where (a < y)∧(b < y), as in this case the current

is zero, which we can see by choosing a = b = y, a case already covered.

Solving for y, we have:

2y =















2a − 2
√

j , if (a ≥ a −√
j) ∧ (b < a −√

j)

2b − 2
√

j , if (a < b −√
j) ∧ (b ≥ b −√

j)

a + b −
√

2j − (a − b)2 , otherwise

(D.8)

=



















2a − 2
√

j , if
(

(a − b)2 > j
)

∧ (a > b)

2b − 2
√

j , if
(

(a − b)2 > j
)

∧ (a < b)

a + b −
√

2j − (a − b)2 , if
(

(a − b)2 ≤ j
)

Ultimately we want the current-function, a function of this y. Referring back to Equa-

tion D.5, we obtain the following:

2i

k
=



















−2SM0(b − z) , if
(

(a − b)2 > j
)

∧ (a > b)

−2SM0(a) , if
(

(a − b)2 > j
)

∧ (a < b)

SM0(a) − SM0(b − z) + SM0(b − y)2 − SM0(a − y) , if
(

(a − b)2 ≤ j
)

.

(D.9)

Letting j∆
def
= SM0(a) − SM0(b − z), we can simplify the last case, as follows:

2i

k
= SM0(a) − SM0(b − z) + SM0(b − y)2 − SM0(a − y) (D.10)

= j∆ + (b − y)2 − (a − y)2

= j∆ + (b2 − a2) − 2(a − b)y

= j∆ + (a − b)
(

2y − (a + b)
)

= j∆ + (a − b)
√

2j − (a − b)2.

129

In summary, the current-function for a two-transistor series chain is as follows:

2i

k
= j∆ +



















−j , if
(

(a − b)2 > j
)

∧ (a > b)

j , if
(

(a − b)2 > j
)

∧ (a < b)

(a − b)
√

2j − (a − b)2 , if
(

(a − b)2 ≤ j
)

.

(D.11)

D.3 Input-Cube to Output Bound

The calculations described in Section 6.5 require us to compute the maximum or minimum

possible value of a gate’s current-function given that the inputs are contained in some cube

C, and the output has some value vo. Without loss of generality, consider the problem of

finding the minimum (or most negative) current. When v0 ∈ [0, VDD], the current-function

is anti-monotonic in the inputs, so the answer is trivial: we always choose the corner of C

which maximizes i.

Unfortunately, the starting points of our leading fences and the ending points of our

trailing fences fall outside [0, VDD], where the current-function does not have constant mono-

tonicity. In that case we have to solve an optimization problem.

For our current-function the extremum can probably be found exactly. However, it

suffices to compute a conservative lower bound on the current function, so that is what

FenceCalcTM does. To bound Equation D.11, we evaluate its derivatives1 with respect to

a and b at the corners of C. Since Equation D.11 has fixed concavity with respect to the

inputs, we can bound the current by evaluating (at each corner) the linearization of i at

each other corner, and taking the minimum.

The aforementioned bound is overconservative, but can be improved by subdividing the

cube. About 8 binary subdivisions are required to successfully verify the circuits described

in this thesis. At present this is a slow computation, but it can be improved by selective

subdivision and/or further symbolic analysis.

D.4 Calculation of DC bounds

To calculate the DC bounds we find constant-valued fences. It suffices to find voltages

such that for each gate, when the inputs are within the bounds, the output current at

the upper bound is negative and the output current at the lower bound is positve. The

DC version of the update method (Section 6.4.2) postulates these bounds quickly using

1The exact formula is easy to derive.

130

Newton’s method[57].

D.5 Euler Error

Any implementation of Euler’s Error has two sources of error: rounding error and the error

of the method itself. We focus on the later, which is much more signficant if the computer

has reasonable floating-point accuracy[8].

Let h denote the stepsize used. Assume a fixed differential equation. Then, as a

function of h, there exists an error bound εh such that the piecewise linear Euler solution

uh satisfies the slope error equation

∣

∣

∣u′
h(t) − f

(

t, uh(t)
)
∣

∣

∣ ≤ εh. (D.12)

One generic, conservative choice[8] of εh is as follows:

εh = h(P + KM) (D.13)

which tends to zero linearly in h. The constants M , P , and K are defined as follows:

sup |f | ≤ M volts / second (D.14)

sup |∂f

∂t
| ≤ P volts / second2

sup |∂f

∂x
| ≤ K second−1

assuming time is measured in seconds and trajectories in volts.

The eta-eff command in FenceCalcTM provides two rigorous methods of computing the

Euler error: a static method and a dynamic method. The user can choose whichever gives a

smaller error estimate. The static method uses the above formula, and the M , P , and K

above are derived from the circuit equations and DC bounds. That derivation is extremely

boring and takes 10 pages (which we omit) to describe in full detail. The importance of this

result is not so much that we can compute M , P , and K, but that they exist in theory, so

that the error decreases with h. From a practical point of view, there are better methods.

The dynamic method appears to be more practical, as it does not require h to be as

small. This method directly analyses the Euler-generated function over each time interval

[hi, hi+h]. Since the inputs are piecewise linear, we can find the input-cube that applies over

131

the entire interval [hi, hi+h] by simply taking the union of the input cubes at the endpoints

of the interval. We then use our existing bounding function over this cube and compare it

to what the ordinary Euler’s method did. Notice that these extra calculations need only

be done at the end of the verification after all the postulation is complete. Therefore the

advantages of the dynamic method (larger h) far outweigh its disadvantages (twice the work

in the very last phase of verification).

132

Appendix E

Appendix: The KAVL Interactive
Command Language

As discussed in Section 1.8, FenceCalcTM is driven by the interactive command language

KAVL. In Section E.1 we begin by discussing the standard KAVL script that I have developed

in order to attempt to verify any circuit. Then, in Section E.2, I give the general form of

all KAVL commands, including those used in the script.

133

E.1 Universal Verification Script

I have written a universal verification script in KAVL. This script applies the sequence

of verification steps presented in Section 6.2. The script can be applied to any canonically-

generated PRS circuit, and if it terminates successfully, the conditions of the theorem hold,

and therefore the circuit is rigorously verified:

load the circuit
load-kast syncloop.kast .0001

#########################
postulate hypotheses

#infer completion thresholds
epsilon calc

#calculate all hypotheses
bfs-tol 1.0e-4
bfs-limit 10
bfs dc
bfs tran init

#########################
check the result

#make sure epsilons are consistent with each other
epsilon check

#verify all hypotheses
bfs-tol 1.0e-6
bfs check

#check transmission-safeness
slew-check

#evaluate final noise tolerance of the proof,
#by subtracting all calculation error sources from "eta" for each node.
round-err 1.0e-2 #includes effect of bfs-tol
eta-eff verbose

#exit if successful
quit

If the script fails, then the circuit can always be modified to make the script succeed.

First, the initiation thresholds are modified (with the corresponding changes to completion

thresholds automatically inferred by the script). If this fails, then the circuit must be

changed: first sizing is changed, then delay stages are added as a last resort.

134

E.2 List of Existing Commands

Command descriptions in typewriter type are directly from the help command in FenceCalcTM.

help -- display list of commands
save <filename> -- save previously-executed commands
source <filename> -- execute commands from a file
quit -- exit the command loop
gnuplot ... -- manipulate active plots
digits [<val>] -- display/set floating-point output precision
bfs-tol [<val>] -- display/set exit tolerance (’delta’) for ’bfs’ command
bfs-limit [<val>] -- display/set limit to number of ’bfs’ passes
vtc-lo [<val>] -- display/set VTC lowest input voltage
vtc-hi [<val>] -- display/set VTC highest input voltage
round-err [<val>] -- display/set max absolute rounding error R
auto-display [<val>] -- display/set display plots on creation (see ’gnuplot’)
load-kast <file.kast> <stepsize-seconds> -- load KAST from <file.kast>
setup -- display general hypothesis-system info
nodes -- list circuit nodes
fanin <node> -- describe gate driving <node>
fanout <node> -- describe gates driven by <node>
dc ... -- manipulate dc hypothesis
tran ... -- manipulate transition hypothesis
eta ... -- manipulate noise-bound on nodes
epsilon ... -- manipulate initiation/completion thresholds
epsiset ... -- set multiple ’epsilon I’ thresholds
bfs [<modes>] -- calculate all system hypotheses using BFS
slew-check -- verify all slewtime constraints
handshakes [verbose] -- compute minimum delay for all handshakes
vtc <node> [<input-vnoise>] -- plot VTC of 1-input gate driving <node>
input-cube <tran> -- plot input intervals for <tran>
eta-eff [...] -- calculate effective eta (= eta - Euler err)
[...] -- comment (ignored by the program)

help <command> -- extended help is available for the following commands:
eta-eff vtc bfs epsiset epsilon eta tran dc gnuplot

E.2.1 The epsilon Command

epsilon ... -- manipulate initiation/completion thresholds

epsilon i -- display initiation thresholds for all transitions
epsilon c -- display completion thresholds for all transitions
epsilon <tran> [i|c] -- display initiation/completion threshold(s) for <tran>

epsilon <tran> i|c <value> -- set "i" or "c" threshold of <tran> to <value>
epsilon i|c <value> -- set all "i" or "c" thresholds to <value>

epsilon <tran> check -- check dc consistency of "c" thresh. of <tran>
epsilon check -- check dc consistency of all "c" thresholds

epsilon [<tran>] calc [<margin>]
automatically selects consistent "c" thresholds for <tran>
(or all transitions). A value a factor <margin> larger than
the minimum is chosen. If no <margin> is given, 1.1 is used.

135

E.2.2 The epsiset Command

epsiset ... -- set multiple ’epsilon I’ thresholds

epsiset <tran1> [<tran2> ...] <value12>
[<tran3> [<tran4> ...] <value34>
[...]

is equivalent to

epsilon <tran1> i <value12>
epsilon <tran2> i <value12> [...]
epsilon <tran3> i <value34>
epsilon <tran4> i <value34> [...]
:

E.2.3 The eta Command

eta -- display "eta" of all nodes
eta <value> -- set "eta" of all nodes to <value>
eta <node> -- display "eta" of <node>
eta <node> <value> -- set "eta" of <node> to <value>

E.2.4 The eta-eff Command

eta-eff [...] -- calculate effective eta (= eta - Euler err)

eta-eff [<node>] [<subdiv>] [verbose]

If <subdiv> is 0 or not given, use general Euler bound,
h(P + K*M). This formula depends only on the DC bounds and
input hypotheses, but is overconservative.

If <subdiv> is an integer >= 1, then evaluate error
directly on partial output hypotheses. Use larger <subdiv>
for more accuracy.

The arguments to "eta-eff" can be given in any order.

136

E.2.5 The vtc Command

This command is intended as a test of current-bounding and is not used in verification.

vtc <node> -- plot VTC of 1-input
gate driving <node>.

Output (current) noise is taken into consideration.
The VTC consists of two curves, "upper" and "lower",
corresponding to the range of possible steady-state
voltage for a noise of "eta(<node>)".

vtc <node> <input-vnoise> -- An extended form which takes both input
and output noise into consideration.

For each "<vin>" value, assumes only that the input voltage is
contained in the interval "<vin> +/- <input-vnoise>".

E.2.6 The dc Command

dc <node> -- display current dc hypothesis for <node>
dc <node> <lo> [<hi>] -- set hypothesis for <node>
dc <node> calc [acc] -- calculate hypothesis for <node> from fanin hypotheses

To weaken the existing hypothesis, use "acc".

E.2.7 The tran Command

The "tran" command allows manipulation of transition hypotheses.
A transition <tran> is specified as <node><+|->.

E.2.7.1 Displaying information about transition hypotheses

tran <tran> -- display current hypothesis for <tran>

tran <tran> check -- check and display containment at <tran>,
showing both current and calculated hypotheses,
but do not change the current hypothesis.
(see the "bfs check" command)

tran <tran> partial [raw] -- show partial-hypothesis fences for <tran>
(same as hypothesis for 1-input gate)
and (if indicated) "raw" data before
threshold-crossing.

137

E.2.7.2 Changing the transition hypotheses

tran <tran> <gap> [<slope>] -- set <tran> hyp. to 3-piece fences
with delay of "gap" between leading & trailing.

tran <tran> calc [acc] -- update hypothesis for <tran> based on fanin
hypotheses. To weaken the existing
hypothesis, use "acc"
(for all transitions, see the "bfs" command).

E.2.8 The bfs Command

bfs [<modes>] -- calculate all system hypotheses using BFS

E.2.8.1 General Form

bfs [init|acc|check] [dc|tran] [verbose-level]

When used without the "check" option, the bfs command
causes a BFS on the circuit, which continues until either

<containment-distance> < <bfs-tol> (see bfs-tol command)

or <bfs-limit> passes are reached (see bfs-limit command).

A BFS actually consists of one standard BFS starting from the
graph’s basis (for input nodes) followed by a "synchronizing BFS"
starting from the graph’s cutset.

E.2.8.2 The bfs check ... Form

This form of the command is used to check the results of a BFS.
It updates the hypothesis of every transition in the circuit,
returns the worst containment, and indicates whether this
is within tolerance.

As a check on the BFS algorithm itself, this command simply
iterates over all transitions in the circuit rather than doing a BFS.
After a "bfs check ..." command the existing hypotheses are unchanged.

138

E.2.8.3 Options for the bfs Command

[tran|dc] = dc -- update dc hypotheses
tran -- update transition hypotheses
<empty> -- update dc hyp., then update transition hyp.

[init|acc|check] = init -- do bfs without hypothesis accumulation
(i.e., replace existing hypotheses)

acc -- do bfs with accumulation
check -- do "bfs check" instead of bfs (see above)
<empty> -- do one "init" and one "acc".

[verbose-level] = 0 -- no output
10 -- print phase information (ac only)
15 -- print phase information

<empty> or 20 -- print step information (ac only)
25 -- print step information

E.2.9 The gnuplot Command

This command is a wrapper around the gnuplot program[58]. gnuplot is used to render

plots generated by the tran and vtc commands. The following commands are used to

manage those plots:

gnuplot -- list all active plots

gnuplot <plot> ps [<filename>] -- print <plot> to ps file <filename>
default filename is <plot-title>.ps.

gnuplot <plot> close -- close <plot>

gnuplot <plot> display -- display <plot> in a window.
This is done automatically when
<plot> is created unless
<auto-display>=FALSE

<plot> can be one of:
| <plot-title>
| $<plot-number>
| $! (last plot)
| $* (all plots)

139

Appendix F

Appendix: Rigorous Verification
Calculations

I now give detailed I/O for the FenceCalcTM verifications of the two circuit verifications

described in Chapter 7.

F.1 Synchronized Pair of Loops

F.1.1 KAST input

#global/default parameters
eta = 0.35;
vDD = 5;
stat_ratio = 0.05;

#default transconductance and transistor thresholds
kn = 2;
vTn = 1;
kp = 1;
vTp = 1;

celem2(m4, n4, o);

ring m
inv(o, m1);
inv(m1,m2);
inv(m2,m3);
inv(m3,m4);

ring n
inv(o, n1);
inv(n1,n2);
inv(n2,n3);
inv(n3,n4);

140

F.1.2 KAVL input

load in the circuit,
initializing transient hypotheses with specified stepsize
load-kast syncloop.kast .0001

the slewtime isn’t as bad if we start measuring it later.
also we need to increase this for the ’epsilon check’.
epsiset o- o+ 1.6

we have to adjust the I thresholds of the stages after the C-element
to deal with its long slewtime and stages after that
for accurate delay measurement.

epsiset n1- m1- 1.5 n2- m2- 1.3 n3- m3- 1.1
epsiset n1+ m1+ 1.3 n2+ m2+ 1.1 n3+ m3+ 1.0

epsilon calc

#calculate all hypotheses
bfs-tol 1.0e-4
bfs-limit 10
bfs dc
bfs tran init

#output some of the hypotheses
tran o+
tran o-
tran o- partial raw
tran m1+
tran m1-
tran m4+
tran m4-
gnuplot $*

#
#check the result
#

#make sure epsilon thresholds are consistent with each other
epsilon check

#verify all hypotheses
bfs-tol 1.0e-6
bfs check

#check transmission-safeness
slew-check

#evaluate final noise tolerance of the proof
#by subtracting all calculation error sources from "eta" for each node.
round-err 1.0e-2 #includes effect of bfs-tol
eta-eff verbose

141

F.1.3 Selected Output

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

hypothesis(o+)

leading
trailing

Figure F.1: Complete hypothesis for o↑ in the synchronizing loop circuit. The end of the
leading bound was padded with a conservative DC value to match the length of the trailing
bound.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.1 0.2 0.3 0.4 0.5 0.6

hypothesis(o-)

leading
trailing

Figure F.2: Complete hypothesis for o↓ in the synchronizing loop circuit.

142

 0

 1

 2

 3

 4

 5

 6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

raw-fences(o-)(scenario-0)

trail->lead
lead->trail

Figure F.3: Partial hypothesis for one of the two o↓ scenarios in the synchronizing loop
circuit. This includes the calculation of α and αM , computed in one pass as discussed in
Section 6.6.1. This is why there is a kink at V↓I .

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 0.1 0.2 0.3 0.4 0.5 0.6

hypothesis(m1+)

leading
trailing

Figure F.4: Complete hypothesis for m1↑ in the synchronizing loop circuit.

FenceCalc> load-kast syncloop.kast .0001
FenceCalc> epsiset o- o+ 1.6

143

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.1 0.2 0.3 0.4 0.5 0.6

hypothesis(m4-)

leading
trailing

Figure F.5: Complete hypothesis for m4↓ in the synchronizing loop circuit.

FenceCalc> epsiset n1- m1- 1.5 n2- m2- 1.3 n3- m3- 1.1
FenceCalc> epsiset n1+ m1+ 1.3 n2+ m2+ 1.1 n3+ m3+ 1.0
FenceCalc> epsilon calc

epsilon n2-[c] calc
n1 in [3.50000,6.50000]v (n1- not initiated)
n2 in [-0.02931,0.06074]v (n2- still within c of rail=0)

epsilon[n2-,c] := 0.0668116

epsilon n2+[c] calc
n1 in [-1.30000,1.30000]v (n1+ not initiated)
n2 in [4.90000,5.05805]v (n2+ still within c of rail=5)

epsilon[n2+,c] := 0.11

: (skipping)

epsilon o-[c] calc
fighting-staticizer case
m4 in [4.00000,6.00000]v (m4- not initiated)
n4 in [4.00000,6.00000]v (n4- not initiated)
o in [0.04520,0.19821]v (o- still within c of rail=0)

epsilon o-[c] calc (by scenario)
held by staticizer
using default range (not empty range) on node ‘m4’
using default range (not empty range) on node ‘n4’
scenario: input #0 latest (m4- not initiated)

144

o in [-0.41588,0.46447]v (o- still within c of rail=0)
scenario: input #1 latest (n4- not initiated)
o in [-0.41588,0.46447]v (o- still within c of rail=0)

epsilon[o-,c] := 0.510913

: (skipping)

FenceCalc> bfs-tol 1.0e-4
FenceCalc> bfs-limit 10
FenceCalc> bfs dc

******************* DC Hypothesis ***************

******* Hypothesis Iteration ********
Input-node phase. Node-graph basis B: n2
Span(cut-set) S: m4 n1 m3 n4 m2 n3 o m1 n2
B - S:

Cycle passes. Transition-graph cutset:
m4- n3+

*** pass 1
worst containment (in pass 1): -1e10

*** pass 2
worst containment (in pass 2): -9.00903e-7

******* Hypothesis Iteration ********
Accumulate enabled; skipping input-node phase.

Cycle passes. Transition-graph cutset:
m4- n3+

*** pass 1
worst containment (in pass 1): -1.76703e-11
FenceCalc> bfs tran init

******************* AC Hypothesis ****************

******* Hypothesis Iteration ********
Input-node phase. Node-graph basis B: n2
Span(cut-set) S: m4 n1 m3 n4 m2 n3 o m1 n2
B - S:

Cycle passes. Transition-graph cutset:
m4- n3+

*** pass 1
update n3+ [acc=FALSE]: containment = -3.99687
update m4- [acc=FALSE]: containment = -3.99367
update n4- [acc=FALSE]: containment = -3.9976
update o+ [acc=FALSE]
calculating fences for scenario: input #0 latest
calculating fences for scenario: input #1 latest

145

: containment = -3.39957
update m1- [acc=FALSE]: containment = -3.49881
update n1- [acc=FALSE]: containment = -3.49881
update m2+ [acc=FALSE]: containment = -3.89896
update n2+ [acc=FALSE]: containment = -3.89896
update n3- [acc=FALSE]: containment = -3.89873
update m3- [acc=FALSE]: containment = -3.89873
update n4+ [acc=FALSE]: containment = -3.99876
update m4+ [acc=FALSE]: containment = -3.99876
update o- [acc=FALSE]
calculating fences for scenario: input #0 latest
calculating fences for scenario: input #1 latest
: containment = -3.39927
update m1+ [acc=FALSE]: containment = -3.69905
update n1+ [acc=FALSE]: containment = -3.69905
update m2- [acc=FALSE]: containment = -3.69871
update n2- [acc=FALSE]: containment = -3.69871
update m3+ [acc=FALSE]: containment = -3.99887
worst containment (in pass 1): -3.99887

*** pass 2
update n3+ [acc=FALSE]: containment = -0.577043
update m4- [acc=FALSE]: containment = -1.43216
update n4- [acc=FALSE]: containment = -0.464585
update o+ [acc=FALSE]
calculating fences for scenario: input #0 latest
calculating fences for scenario: input #1 latest
: containment = -0.0748316
update m1- [acc=FALSE]: containment = -0.0956479
update n1- [acc=FALSE]: containment = -0.0956479
update m2+ [acc=FALSE]: containment = -0.0824946
update n2+ [acc=FALSE]: containment = -0.0824946
update n3- [acc=FALSE]: containment = -0.0974282
update m3- [acc=FALSE]: containment = -0.0974282
update n4+ [acc=FALSE]: containment = -0.0525842
update m4+ [acc=FALSE]: containment = -0.0525842
update o- [acc=FALSE]
calculating fences for scenario: input #0 latest
calculating fences for scenario: input #1 latest
: containment = -0.0292191
update m1+ [acc=FALSE]: containment = -0.0199324
update n1+ [acc=FALSE]: containment = -0.0199324
update m2- [acc=FALSE]: containment = -0.0240267
update n2- [acc=FALSE]: containment = -0.0240267
update m3+ [acc=FALSE]: containment = -0.0142127
worst containment (in pass 2): -1.43216

: (skipping)

*** pass 5
update n3+ [acc=FALSE]: containment = -0.0000211963
update m4- [acc=FALSE]: containment = -0.0000209979
update n4- [acc=FALSE]: containment = -0.0000209979
update o+ [acc=FALSE]
calculating fences for scenario: input #0 latest
calculating fences for scenario: input #1 latest

146

: containment = -5.28563e-6
update m1- [acc=FALSE]: containment = -6.90453e-6
update n1- [acc=FALSE]: containment = -6.90453e-6
update m2+ [acc=FALSE]: containment = -4.91001e-6
update n2+ [acc=FALSE]: containment = -4.91001e-6
update n3- [acc=FALSE]: containment = -5.48595e-6
update m3- [acc=FALSE]: containment = -5.48595e-6
update n4+ [acc=FALSE]: containment = -2.50509e-6
update m4+ [acc=FALSE]: containment = -2.50509e-6
update o- [acc=FALSE]
calculating fences for scenario: input #0 latest
calculating fences for scenario: input #1 latest
: containment = -1.30589e-6
update m1+ [acc=FALSE]: containment = -8.81998e-7
update n1+ [acc=FALSE]: containment = -8.81998e-7
update m2- [acc=FALSE]: containment = -9.94972e-7
update n2- [acc=FALSE]: containment = -9.94972e-7
update m3+ [acc=FALSE]: containment = -4.88793e-7
worst containment (in pass 5): -0.0000211963
FenceCalc>

: (skipping)

FenceCalc> bfs-tol 1.0e-6
FenceCalc> bfs check

******************* DC Hypothesis ***************

final containment = -0

******************* AC Hypothesis ****************

final containment = -4.88793e-7

FenceCalc> slew-check
mindelay([n2+] n3- n4+ o- n1+ n2-) - maxslew(n3-) = 1.0164s - 0.4839s
mindelay([n1+] n2- n3+ n4- o+ n1-) - maxslew(n2-) = 1.0308s - 0.436s
mindelay([m4+] o- n1+ n2- n3+ n4-) - maxslew(o-) = 1.0053s - 0.5249s
mindelay([m4-] o+ m1- m2+ m3- m4+) - maxslew(o+) = 1.0449s - 0.8555s
mindelay([n4+] o- m1+ m2- m3+ m4-) - maxslew(o-) = 1.0053s - 0.5249s
mindelay([m3-] m4+ o- m1+ m2- m3+) - maxslew(m4+) = 0.9958s - 0.812s
mindelay([n4-] o+ n1- n2+ n3- n4+) - maxslew(o+) = 1.0449s - 0.8555s
mindelay([m2-] m3+ m4- o+ m1- m2+) - maxslew(m3+) = 1.0338s - 0.783s
mindelay([n3-] n4+ o- n1+ n2- n3+) - maxslew(n4+) = 0.9958s - 0.812s
mindelay([m1-] m2+ m3- m4+ o- m1+) - maxslew(m2+) = 1.0194s - 0.6827s
mindelay([o-] m1+ m2- m3+ m4- o+) - maxslew(n1+ m1+) = 0.9719s - 0.5607s
mindelay([n2-] n3+ n4- o+ n1- n2+) - maxslew(n3+) = 1.0338s - 0.783s
mindelay([n1-] n2+ n3- n4+ o- n1+) - maxslew(n2+) = 1.0194s - 0.6827s
mindelay([m4+] o- m1+ m2- m3+ m4-) - maxslew(o-) = 1.0053s - 0.5249s
mindelay([m4-] o+ n1- n2+ n3- n4+) - maxslew(o+) = 1.0449s - 0.8555s
mindelay([m3+] m4- o+ m1- m2+ m3-) - maxslew(m4-) = 1.0544s - 0.5192s
mindelay([n4+] o- n1+ n2- n3+ n4-) - maxslew(o-) = 1.0053s - 0.5249s
mindelay([n4-] o+ m1- m2+ m3- m4+) - maxslew(o+) = 1.0449s - 0.8555s
mindelay([m2+] m3- m4+ o- m1+ m2-) - maxslew(m3-) = 1.0164s - 0.4839s
mindelay([n3+] n4- o+ n1- n2+ n3-) - maxslew(n4-) = 1.0544s - 0.5192s

147

mindelay([m1+] m2- m3+ m4- o+ m1-) - maxslew(m2-) = 1.0308s - 0.436s
mindelay([o+] m1- m2+ m3- m4+ o-) - maxslew(n1- m1-) = 1.0783s - 0.5311s

worst path: [m3-] m4+ o- m1+ m2- m3+
FenceCalc> round-err 1.0e-2 #includes effect of bfs-tol
FenceCalc> eta-eff verbose
node eff = eta - round -(red= h(P+ K* M))
n2 0.25908 = 0.35000 - 0.01 -(0.08092=0.0001(1.455+ 24.52* 32.94))
m1 0.20966 = 0.35000 - 0.01 -(0.13034=0.0001(4.016+ 28.25* 46))
o 0.29132 = 0.35000 - 0.01 -(0.04868=0.0001(0.5759+ 28.91* 16.82))
n3 0.25918 = 0.35000 - 0.01 -(0.08082=0.0001(0.5128+ 24.52* 32.94))
m2 0.25908 = 0.35000 - 0.01 -(0.08092=0.0001(1.455+ 24.52* 32.94))
n4 0.25920 = 0.35000 - 0.01 -(0.08080=0.0001(0.2406+ 24.52* 32.94))
m3 0.25918 = 0.35000 - 0.01 -(0.08082=0.0001(0.5128+ 24.52* 32.94))
n1 0.20966 = 0.35000 - 0.01 -(0.13034=0.0001(4.016+ 28.25* 46))
m4 0.25920 = 0.35000 - 0.01 -(0.08080=0.0001(0.2406+ 24.52* 32.94))

v/s = v/s - v/s -(v/s= s(v/s^2+ 1/s* v/s))
FenceCalc> quit # success if we got this far

F.2 Chain of Dual-Rail WCHB Buffers

F.2.1 KAST input

#global/default parameters
eta = 0.09;
vDD = 5;
stat_ratio = 0.05;

#default transconductance and transistor thresholds
kn = 2;
vTn = 1;
kp = 1;
vTp = 1;

#first buffer

celem2(l0,re,_r0);
celem2(l1,re,_r1);

inv(_r0, r0);
inv(_r1, r1);

nand2(_r0,_r1,___le);
inv(___le,__le);
inv(__le,_le);
inv(_le,le);

#second buffer

celem2(r0,se,_s0);
celem2(r1,se,_s1);

inv(_s0, s0);

148

inv(_s1, s1);

nand2(_s0,_s1,___re);
inv(___re,__re);
inv(__re,_re);
inv(_re,re);

#environment
cause/eff cause/eff
handshake le+ l0+ le- l0-
handshake le+ l1+ le- l1-
handshake s0+ se- s0- se+
handshake s1+ se- s1- se+

F.2.2 KAVL input

As with the synchronizing loop circuit, we must specify the I/C thresholds that define the

observation rule. In addition, however, the WCHB chain has an environment, so we must

specify the hypotheses on the environment’s outputs using the tran command.

load in the circuit,
initializing transient hypotheses with specified stepsize
load-kast bufchain.kast .0003

#set hypotheses for input nodes
epsilon se+ i 1.0
epsilon se+ c 0.5

epsilon se- i 1.0
epsilon se- c 0.5

tran se- .05 30
tran se+ .05 30

epsilon l0+ i 1.0
epsilon l0+ c 0.5

epsilon l0- i 1.0
epsilon l0- c 0.5

tran l0- .05 30
tran l0+ .05 30

epsilon l1+ i 1.0
epsilon l1+ c 0.5

epsilon l1- i 1.0
epsilon l1- c 0.5

149

tran l1- .05 30
tran l1+ .05 30

#adjust I thresholds of internal nodes

#celems
epsiset _s0+ _s1+ _s0- _s1- 1.8
epsiset _r0+ _r1+ _r0- _r1- 1.6

epsiset __le+ __re+ 1.6
epsiset __le- __re- 2.0

epsiset _le+ _re+ 1.6
epsiset _le- _re- 2.0

#nand2s
epsiset ___le+ ___le- 1.6
epsiset ___re+ ___re- 1.6

#1-after celem
epsiset r0+ r1+ s0+ s1+ 1.4
epsiset r0- r1- s0- s1- 1.8

#1-after nand2
epsiset __le+ __le- __re+ __re- 1.8

bfs dc

epsilon calc

#calculate all hypotheses
bfs-tol 5.0e-5
bfs-limit 13
bfs tran init

#
#check the result
#

#make sure epsilons are consistent with each other
epsilon check

#verify all hypotheses
bfs-tol 1.1e-5
bfs check

#check transmission-safeness
slew-check

handshakes

eta-eff verbose
eta-eff verbose 4

150

F.2.3 Selected Output

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

hypothesis(_le+)

leading
trailing

Figure F.6: Complete hypothesis for le↑ in the WCHB buffer chain.

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

hypothesis(__le-)

leading
trailing

Figure F.7: Complete hypothesis for le↓ in the WCHB buffer chain.

151

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

hypothesis(___le+)

leading
trailing

Figure F.8: Complete hypothesis for le↑ in the WCHB buffer chain.

152

Bibliography

[1] Alain J. Martin, “Compiling Communicating Processes into Delay-insensitive VLSI

circuits,” Distributed Computing, vol. 1, no. 4, 1986.

[2] Alain J. Martin and Andrew Lines and Rajit Manohar and Mika Nystroem and Paul

Penzes and Robert Southworth and Uri Cummings and Tak Kwan Lee, “The Design

of an Asynchronous MIPS R3000 Microprocessor,” in 17th Conference on Advanced

Research in VLSI. 1997, pp. 164–181, IEEE Computer Society Press.

[3] A.J. Martin and S.M. Burns and T.K. Lee and D. Borkovic and P.J. Hazewindus, “The

Design of an Asynchronous Microprocessor,” in ARVLSI: Decennial Caltech Conference

on VLSI, C.L. Seitz, Ed. 1989, pp. 351–373, MIT Press.

[4] Alain J. Martin and Mika Nystroem and Karl Papadantonakis and Paul I. Penzes

and Piyush Prakash and Catherine G. Wong and Jonathan Chang and Kevin S. Ko

and Benjamin Lee and Elaine Ou and James Pugh and Eino-Ville Talvala and James

T. Tong and Ahmet Tura, “The Lutonium: A Sub-Nanojoule Asynchronous 8051

Microcontroller,” in 9th IEEE International Symposium on Asynchronous Systems &

Circuits (ASYNC), May 2003.

[5] Takashi Nanya and Yoichiro Ueno and Hiroto Kagotani and Masashi Kuwako and

Akihiro Takamura, “TITAC: Design of a Quasi-Delay-Insensitive Microprocessor,”

IEEE Design and Test of Computers, vol. 11, no. 2, pp. 50–63, 1994.

[6] Merriam-Webster’s Collegiate Dictionary, Merriam-Webster, Incorporated, 10th edi-

tion, 2001.

[7] Karl Papadantonakis, “Design Rules for Non-Atomic Implementations of PRS,” Tech-

nical Report caltechCSTR/2005.001, Caltech, Pasadena, CA, 2005.

[8] John Hamal Hubbard and Beverly H. West, Differential Equations: A Dynamical

Systems Approach, Springer, 1991.

153

[9] N. Francez, Fairness, Springer-Verlag, New York, 1986.

[10] K. Mani Chandy, Parallel Program Design: A Foundation, Addison-Wesley, Reading,

Massachusetts, 1988.

[11] Stephen A. Ward and Robert H. Halstead, Computation Structures, McGraw-Hill,

1990.

[12] Keith Hanna, “Reasoning about Real Circuits,” in Proc 7th Intnl Conf on Higher-

Order Logic, Theorem Proving and its Applications. Malta. September 1994, Springer

Verlag.

[13] David E. Muller, “Asynchronous Logic and Applications to Information Processing,”

Switching Theory and Space Technology, 1963.

[14] Jin-fuw Lee and Donald T. Tang, “An Algorithm for Incremental Timing Analysis,”

in Proc. 32nd ACM/IEEE Conference on Design Automation, San Francisco, 1995.

[15] D. B. Armstrong and A.D. Friedman and P.R. Menon, “Design of Asynchronous

Circuits Assuming Unbounded Gate Delays,” IEEE Transactions on Computers, vol.

C-18, no. 12, pp. 1110–1120, December 1969.

[16] Robin Milner, “A Calculus of Communicating Systems,” Lecture Notes in Computer

Science, , no. 92, 1980.

[17] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, London, U.K.,

1984.

[18] K. Mani Chandy, An Introduction to Parallel Programming, Jones and Bartlett,

Boston, Massachusetts, 1992.

[19] Alain J. Martin, “The Limitations to Delay-Insensitivity in Asynchronous Circuits,”

in Sixth MIT Conference on Advanced Research in VLSI, W.J. Dally, Ed. 1990, pp.

263–278, MIT Press.

[20] Luciano Lavagno and Kurt Keutzer and Alberto Sangiovanni-Vincentelli, “Synthesis of

Hazard-Free Asynchronous Circuits with Bounded Wire Delays,” IEEE Transactions

on Computer-Aided Design, vol. 14, no. 1, pp. 61–86, January 1995.

154

[21] Rajit Manohar and Alain J. Martin, “QDI circuits are Turing-Complete,” Second In-

ternational Symposium on Advanced Research in Asynchronous Circuits and Systems,

March 1996.

[22] Andrew Matthew Lines, “Pipelined Asynchronous Circuits,” M.S. thesis, Caltech,

1995.

[23] Kees van Berkel, “Beware the Isochronic Fork,” Integration, the VLSI Journal, vol.

13, no. 2, pp. 103–128, June 1992.

[24] P. Beerel and T. H-Y. Meng., “Automatic Gate-Level Synthesis of Speed-Independent

Circuits,” in Proc. International Conf. Computer-Aided Design (ICCAD). November

1993, pp. 581–587, IEEE Computer Society Press.

[25] Tam-Anh Chu, “On the Models for Designing VLSI Asynchronous Digital Circuits,”

Integration, the VLSI Journal, vol. 4, no. 2, pp. 99–113, June 1986.

[26] A. Kondratyev and M. Kishinevsky and B. Lin and P. Vanbekbergen and A. Yakovlev,

“Basic Gate Implementation of Speed-Independent Circuits,” in Proceedings of the

Design Automation Conference, June 1994, pp. 56–62.

[27] R. Alur, Techniques for Automatic Verification of Real-Time Systems, Ph.D. thesis,

Stanford University, 1991.

[28] David L. Dill, “Trace Theory for Automatic Hierarchical Verification of Speed-

Independent Circuits,” ACM Distinguished Dissertations, 1989.

[29] P. Vanbekbergen and A. Wand and K. Keutzer, “A Design and Validation System

for Asynchronous Circuits,” Proc. ACM/IEEE Design Automation Conference, June

1995.

[30] Oriol Roig and Jordi Cortadella and Enric Pastor, “Hierarchical Gate-Level Verification

of Speed-Independent Circuits,” Asynchronous Design Methodologies, pp. 129–137,

May 1995.

[31] A. Kondratyev and M. Kishinevsky and B. Lin and P. Vanbekbergen and A. Yakovlev,

“On the Conditions for Gate-Level Speed-Independence of Asynchronous Circuits,” in

Proceedings of the ACM International Workshop on Timing Issues in the Specification

and Synthesis of Digital Systems (TAU), 1993.

155

[32] Karl Papadantonakis, “Stable PRS are Deterministic,” Technical Report caltechC-

STR/2003.003, Caltech, 2003.

[33] Karl Papadantonakis, “What is Deterministic CHP, and is Slack Elasticity that Use-

ful?,” M.S. thesis, Caltech, 2002.

[34] Norbert R. Malik, Electronic Circuits, Prentice Hall, 1995.

[35] W. Nagel, “SPICE 2 – A Computer Program to Simulate Semiconductor Circuits,”

EECS Memo M520, UC Berkeley, 1975.

[36] I. L. Wemple and A. T. Yang, “Mixed-Signal Switching Noise Analysis Using Voronoi-

Tessellated Substrate Macromodels,” in Proceedings of the Design Automation Con-

ference, 1995.

[37] Alain J. Martin, “Tomorrow’s Digital Hardware will be Asynchronous and Verified,”

Information Processing, vol. 1, pp. 684–695, 1992.

[38] A. Degloria and P. Faraboschi and M. Olivieri, “Design and Characterization of a

Standard Cell Set for Delay Insensitive Design,” IEEE Transactions on Circuits and

Systems - II, vol. 41, no. 6, June 1994.

[39] Mika Nystroem, “alint,” software, 1997.

[40] Mark R. Greenstreet, “Verifying Safety Properties of Differential Equations,” in Pro-

ceedings of the 1996 Conference on Computer Aided Verification, New Brunswick, NJ,

July 1996, pp. 277–287.

[41] Mark R. Greenstreet and Ian Mitchell, “Reachability Analysis Using Polygonal Pro-

jections,” Tech. Rep. www.cs.ubc.ca/ mrg/mypapers/hs99.ps, University of British

Columbia, 1999.

[42] Mika Nystroem, Asynchronous Pulse Logic, Ph.D. thesis, Caltech, May 2001.

[43] Ivan E. Sutherland, “Logical Effort: Designing for Speed on the Back of an Envelope,”

IEEE Advanced Research in VLSI, pp. 1–16, 1991.

[44] Tak Kwan Lee, A General Approach to Performance Analysis and Optimization of

Asynchronous Circuits, Ph.D. thesis, Caltech, May 1995.

[45] S. M. Burns, “Performance Analysis and Optimization of Asynchronous Circuits,”

Tech. Rep. Caltech-CS-TR-91-01, Caltech, December 1990.

156

[46] Jawahar Jain and Rajarshi Mukherjee and Masahiro Fujita, “Advanced Verification

Techniques Based on Learning,” in Proc. 32nd ACM/IEEE Conference on Design

Automation, San Francisco, 1995, pp. 420–426.

[47] Jens Spars/o and J/orgen Staunstrup, “Delay-Insensitive Multi-Ring Structures,” In-

tegration, the VLSI Journal, vol. 15, no. 3, pp. 313–340, 1993.

[48] T. E. Williams, “Performance of Iterative Computation in Self-Timed Rings,” Journal

of VLSI Signal Processing, vol. 7, no. 1-2, pp. 17–32, 1994.

[49] Alain J. Martin and P. J. Hazewindus, “Testing Delay-Insensitive Circuits,” in Pro-

ceedings of the Conference on Advanced Research in VLSI (ARVLSI), March 1991.

[50] Wonjin Jang and Alain J. Martin, “SEU-tolerant QDI Circuits,” in Proc. 11th IEEE

International Symposium on Asynchronous Systems and Circuits (ASYNC), March

2005.

[51] Neil H. E. Weste and David Harris, CMOS VLSI Design: A Circuits and Systems

Perspective, Addison-Wesley, third edition, 2005.

[52] R. Cori and D. Lascar, Mathematical Logic: A Course with Exercises, Oxford, 1993.

[53] Paul Penzes, Energy-delay Complexity of Asynchronous Circuits, Ph.D. thesis, Caltech,

May 2002.

[54] Jan M. Rabaey, Digital Integrated Circuits: A Design Perspective, Electronics and

VLSI. Prentice Hall, 1996.

[55] Rajit Manohar, “Caltech Asynchronous Synthesis Tools (CAST),” software, 1997.

[56] R. Anglada and A. Rubio, “An approach to crosstalk effect analyses and avoidance

techniques in digital CMOS VLSI circuits,” International Journal of Electronics, vol.

6, no. 5, pp. 9–17, 1988.

[57] John Hamal Hubbard and Barbara Burke Hubbard Hubbard, Vector Calculus, Linear

Algebra, and Differential Forms: A Unified Approach, Prentice Hall, 1999.

[58] Thomas Williams and Colin Kelley, “gnuplot,” software, http://www.gnuplot.info/,

1986.

157

Index

η (current-noise bound), 3, 35, 36, 42, 53

φ (observation rule), 4, 35

φ(y) – lowercase φ, 46

SM0, 26

LeadTrail, 84

TrailLead, 84

analog evolution, 35, 43

analog evolutions, 3

atomic model, 1, 3, 20, 23, 24

atomic timestamp model, 4, 24

atomicity, 20, 22

attribute, 2

bandwagon, 34

base case (input specification), 30

bottom symbol, 88

Breadth-First Search (BFS), 75

buffer, 14, 18

calendar, 4, 23

canonical implementation, 28, 35

Change Of Variables (COV), 124

combinational logic gates, 26

Complementary Metal-Oxide-Semiconductor

(CMOS), 1

completion event, 45, 110

completion thresholds, 45

concurrent composition, 3, 11, 17, 20

containment bounds, 59

containment distance, 75, 80, 86

containment phases, 58

contamination delay, 32

correct construction, 77

correctness, 1, 21

current noise, 42

DC, 7, 47

DC fences, 7

delay annotation, 69

Delay Insensitivity (DI), 9, 14

delay–annotated PRS, 69

depends (positively) on, 70

drain terminal, 25

drive strength condition, 49, 61

dynamic gate, 27

dynamic method, 130

effective eta, 77

enabled, 17

error bound, 130

events, 17, 23

eventually, 31

execution, 4, 17, 24

extended stability, 68, 103

extended stability theorem, 63, 69

failure-causing attributes, 107

fence bloating verification step, 86

fence theorem, 119

158

fences, 6, 54, 103

for any physical evolution, 34

forbidden zone, 29

formality, 2

four-threshold automaton, 45

gate (logic gate), 62

gate (transistor terminal), 24

gate specification, 6, 55, 62

generalized induction, 30

glitches, 68

global time, 3

guards, 16

handshake phases, 19

HandShaking Expansion (HSE), 19

hold strength condition, 49, 56, 65

idle, 7

indefinite DC bounds condition, 48, 49

inductive step (analog gate-specification),

30

inertial delay, 32, 50

initiation event, 110

initiation thresholds, 45

input cube, 82

input hypotheses, 62

internal hysteresis, 40

isochronic forks, 9

isodynamic fence, 80

kompletion event, 58

leading fence, 48, 121

leading/trailing convention, 48

leakage currents, 41

leakage drift, 2

learning algorithms, 12

length (of a propagation path), 70

Lipschitz constant, 41

liveness, 4, 17, 24

logic-gate specification, 6

logical effort, 12, 31

lower fence, 6

lowercase φ(L), 56

lumped capacitance, 37

Martin Synthesis (defined), 19

minimal perturbation, 69

monotonicity, 40

Muller buffer, 20

node hypothesis, 6

noise, 42

noise budget, 11, 102

noise on the delay elements, 96

non-atomic, 3, 11

non-atomicity, 2, 107

nondeterministic verification algorithm, 86

noninterference, 18

nonoscillation, 2

observation, 34

observation rule, 34, 103

observation theorem, 4, 34

Ohm’s law, 124

Ordinary Differential Equations (ODEs),

6

output hypotheses, 62

overoscillation, 2

partial fence, 47

partial fences, 7, 47

159

partial hypothesis, 82

passes, 87

path-delay constraints, 69, 72

perturbation, 70

physical evolution, 34

positive path, 70

PR firings, 23

preparation event, 48, 57

Production-Rule Set (PRS), 1

progress, 17

propagation path, 70

PRS, 16

pulldown guard, 28

PullDown Network (PDN), 28

PullUp Network (PUN), 28

Quasi Delay-Insensitivity (QDI), 9, 15

race condition, 31

ramp-initialization, 88

relative transconductance, 12, 37

reshuffling, 19

rigor, 1, 2

safety, 17, 24

Sau model, 25

Schmitt trigger, 45

semantics of PRS, 17, 22

sequences, 23

sequential gate, 27

sequential model, 23

series chain, 27

signal, 35

signal containment, 5

slewtime, 22, 48

slewtime constraints, 51

slewtime restoration, 40, 115

slope error equation, 130

SNI, 35

soundness, 1

source terminal, 25

Spatial Induction Principle (SIP), 6, 54,

63, 103

spatial inductive step, 123

Speed Insensitivity (SI), 9

stability, 18, 68

Stable and Non-Interfering (SNI), 18

state, 23

state-holding gate, 27

static method, 130

staticizer, 28

steady-state correctness, 40, 96

subthreshold current, 41

symbolically, 12

synchronizing BFS algorithm, 87

system state, 17, 23

target assignment, 78

target node, 16

target value, 16

threshold ordering condition, 49

timestamped assignments, 4

timing assumptions, 15

timing closure, 12

trailing fence, 48, 121

transconductance parameter, 25

transient, 7, 47

transient (transition) partial-fences, 48, 52

transient fence conditions, 98

transient fences, 7, 48

transistor threshold parameter, 25

160

transition, 7, 22, 35

transition capture verification step, 86

transition time, 11

unexpected slewtime, 2

unit-capacitance convention, 37

universal verification script, 133

upper fence, 6

valid delay timing, 69

voltage noise, 42

Voltage Transfer Characteristic (VTC), 114,

121

weak boundedness, 55

Weak Condition Half Buffer (WCHB), 8,

20

weakened observation rule φ, 55

Zeno’s paradox, 23, 31, 35, 47

