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Abstract

Ample experimental and observational evidence suggests that friction properties on natural

faults vary spatially. In the lab, rock friction depends on temperature and confining pressure

and it can be either velocity weakening or velocity strengthening, leading to either unstable

or stable slip. Such variations in friction rheology can explain patterns of seismic and

aseismic fault slip inferred from field observations.

This thesis studies earthquake source processes using models with relatively simple but

conceptually important patterns of velocity-weakening and velocity-strengthening friction

that can arise on natural faults. Based on numerical and analytical modeling, we explore the

consequences of such patterns for earthquake sequences, interseismic coupling, earthquake

nucleation processes, aftershock occurrence, peak ground motion in the vicinity of active

faults, and seismic slip budget at shallow depths. The velocity-dependence of friction is

embedded into the framework of logarithmic rate and state friction laws.

In addition to using existing boundary integral methods, which are accurate and effi-

cient in simulating slip on planar faults embedded in homogeneous elastic media, the thesis

develops spectral element methods to consider single dynamic ruptures and long-term his-

tories of seismic and aseismic slip in models with layered bulk properties.

The results of this thesis help to understand a number of observed fault slip phenom-

ena, such as variability in earthquake patterns and its relation to interseismic coupling,
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seismic quiescence following decay of aftershocks at inferred rheological transitions, in-

stances of poor correlation between static stress changes and aftershock occurrence, the

lack of universally observed supershear rupture near the free surface, and coseismic slip

deficit of large strike-slip earthquakes at shallow depths. The models, approaches, and nu-

merical methods developed in the thesis motivate and enable consideration of many other

earthquake source problems, such as the combined effect of two or more triggering mech-

anisms on aftershock rates, inferring friction properties on natural faults based on seismic

and geodetic measurements, seismic hazard assessment based on observed interseismic

coupling, and the effect of heterogeneous and/or nonelastic bulk properties on earthquake

sequences.
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Chapter 1

Introduction

Observations of seismic and aseismic slip on natural faults show spatio-temporal complex-

ity at a number of scales. This complexity is manifested by small and large earthquakes,

processes of earthquake nucleation, postseismic slip, creeping segments, and aseismic tran-

sients often accompanied by seismic tremor. At least some of the complexity is likely

caused by spatial variations in fault friction properties. In laboratory experiments, vari-

ability of friction properties is found in different rock types or the same rock type under

different physical conditions. Understanding the consequences of such heterogeneities for

seismic and aseismic slip is an interesting and fundamental scientific problem, which is

also very important for seismic hazard assessment.

In this thesis, we investigate earthquake source processes by constructing models with

relatively simple but conceptually important patterns of velocity-weakening and velocity-

strengthening properties that can arise on natural faults.
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1.1 Observational and experimental evidence for system-

atic variations in friction properties on natural faults

Evidence for variations in fault friction properties with the rock types, confining pressure,

and temperature have been found in a number of laboratory studies. In particular, rate- and

state-dependent friction laws (called rate and state friction laws in this work) have been

developed based on rock friction experiments [e.g.,Dieterich, 1978, 1979;Ruina, 1983;

Tullis, 1988;Blanpied et al., 1995;Marone, 1998] for slip velocities from10−8 to 10−3

m/s. The laws reflect variations of frictional shear strength of various materials due to their

dependence on slip velocity (also called slip rate) and on a state variable or variables that

describe(s) the evolving properties of the contact surface. In the standard aging formula-

tion for situations with time-independent effective normal stressσ̄, the shear strengthτ is

expressed as

τ = σ̄µ = σ̄

[
µ0 + a ln

(
V

V0

)
+ b ln

(
V0θ

L

)]
, (1.1)

dθ

dt
= 1− V θ

L
, (1.2)

wherea > 0 andb > 0 are rate and state constitutive parameters,V is slip velocity,µ0

is the reference friction coefficient corresponding to the reference slip velocityV0, θ is a

state variable which can be interpreted as the average age of the population of contacts

between two surfaces, andL is the characteristic slip for state evolution [e.g.,Dieterich,

1978, 1979;Rice and Ruina, 1983;Ruina, 1983;Dieterich and Kilgore, 1994]. Parameters

a, b, andL depend on a number of factors, such as rock types, effective normal stressσ̄, and
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bulk temperature. Note that other equations for state-variable evolution and formulations

with two and more state variables have been proposed [Ruina, 1983;Rice and Ruina, 1983;

Gu et al., 1984;Kato and Tullis, 2001]. Recent studies [Bayart et al., 2006;Ampuero and

Rubin, 2008] rekindled the discussion of which state evolution law matches experiments

better, and this is a subject of active research.

Another subject of active research on fault friction is enhanced dynamic weakening at

seismic slip velocities. There is growing evidence that friction is lower at seismic slip ve-

locities than rate and state friction laws predict [e.g.,Toro et al., 2003;Rice, 2006;Han

et al., 2007;Lu et al., 2007, and references therein]. One of the consequences of such

additional weakening, in particular of its rate-dependent formulation, is the promotion

of self-healing or pulse-like ruptures [e.g.,Heaton, 1990;Lu et al., 2007, and references

therein]. Conclusions in this thesis have been drawn on the basis of the standard rate and

state friction framework, without the inclusion of enhanced dynamic weakening. Verifying

the conclusions with the rate and state framework extended to include dynamic weakening

mechanisms remains a goal for future work.

Rate and state friction has been successfully used to model and explain various earth-

quake phenomena including earthquake nucleation, postseismic slip, foreshocks, after-

shocks, aseismic transients, small repeating earthquakes, the variability of earthquake source

duration, and the stability of the pattern of seismic asperities [e.g.,Rice and Ruina, 1983;

Ruina, 1983;Tse and Rice, 1986;Marone et al., 1991;Dieterich, 1992, 1994;Tullis, 1996;

Ben-Zion and Rice, 1997;Gomberg et al., 1998;Marone, 1998;Scholz, 1998;Bilek and

Lay, 2002;Lapusta and Rice, 2003;Perfettini et al., 2003;Bilek et al., 2004;Yamanaka
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and Kikuchi, 2004;Liu and Rice, 2005;Miyazaki et al., 2006;Kaneko and Lapusta, 2008;

Chen and Lapusta, 2009]. Stability of sliding and nucleation of seismic slip on rate and

state faults governed by laws (1.1) and (1.2) have been considered in a number of theoret-

ical studies [Rice and Ruina, 1983;Ruina, 1983;Dieterich, 1992;Rice et al., 2001;Rubin

and Ampuero, 2005]. Fault regions witha− b > 0 have steady-state velocity-strengthening

friction properties and tend to slip in a stable manner with the imposed loading rate. Fault

regions witha− b < 0 have steady-state velocity-weakening properties and are capable of

producing earthquakes. However, even on steady-state velocity-weakening fault regions,

sufficiently small slipping zones cannot develop fast slip under slow tectonic loading, and

the slipping zone has to become large enough to produce a rapid sliding event. Through-

out this thesis, we omit the words “steady-state” and simply refer to velocity weaken-

ing/strengthening. The aseismic process of slow and gradually accelerating slip in a small,

slowly varying zone that eventually leads to unstable slip is often referred to as a nucleation

process. The term “unstable slip” typically refers to simulated earthquakes that are iner-

tially controlled events characterized by rapid expansion of the slipping zone with rupture

speeds that are a significant fraction of wave speeds and slip velocities much larger than

the loading rate.

Hence analysis of rate and state laws predicts that fault regions can either slip stably

or produce stick-slip motion, depending on whether they are velocity weakening or veloc-

ity strengthening. Evidence of such behavior on natural faults comes from measurements

of surface deformation. Due to recent progress in geodetic, paleogeodetic, and remote-

sensing techniques to monitor surface deformation, it is becoming clear that, in the inter-
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1861
(Mw8.5)

200 km

Figure 1.1: The pattern of locking of the plate interface along the subduction zone offshore
Sumatra (Figure adopted fromChlieh et al.[2008]). Comparison of interseismic coupling
along the megathrust with the rupture areas of the giant 1979, 1833, 1861, and 2005 earth-
quakes [Chlieh et al., 2008]. Background color represents interseismic coupling obtained
by modeling of coral and GPS data. Green and red 5-m contour lines of slip for the 2004
Sumatra-Andaman and 2005 Nias-Simeulue earthquakes are fromChlieh et al.[2007] and
Briggs et al.[2006], respectively. Outermost contours depict the limits of rupture. Ruptures
during the great 1797 and 1833 earthquakes are from elastic dislocation models based on
uplift of coral microatolls [Natawidjaja et al., 2006].
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seismic period of stress build up between successive large earthquakes, some fault areas

remain locked while others are creeping. The pattern of interseismic coupling, defined as

the ratio of interseismic slip deficit divided by the long term slip, is thus generally found

to be heterogeneous [Freymueller et al., 2000; Igarashi et al., 2003;Fournier and Frey-

mueller, 2007;Chlieh et al., 2008]. This observation suggests interfingering of velocity-

weakening and velocity-strengthening regions on a given fault segment. The example of

the Sunda megathrust is particularly instructive (Figure 1.1). There, the pattern of locking

of the Sunda megathrust in the interseismic period shows both downdip and along strike

variations [Hsu et al., 2006;Chlieh et al., 2008]. Some regions on the megathrust remain

locked in the interseismic period and accommodate large earthquakes occasionally, while

others, e.g., the Batu Islands area near the equator and Enggano area, indicate continuous

interseismic creep. Observation of postseismic deformation following the 2005 Nias earth-

quake additionally revealed that its coseismic slip area is surrounded by areas with rapid

afterslip, and therefore are governed by velocity-strengthening friction [Hsu et al., 2006].

The variations of friction properties on natural faults have also been inferred to be

strongly depth dependent (e.g., Figure 1.1). The transition from velocity weakening to

velocity strengthening at the base of seismogenic zone has been understood in laboratory

experiments as the effect of increasing temperature with depths [Blanpied et al., 1991,

1995]. In addition, accumulating evidence supports the presence of velocity-strengthening

friction at shallow depths. In laboratory experiments, rock friction at low normal stress

typically exhibits velocity-strengthening behavior due to unconsolidated fault gouge [e.g.,

Marone et al., 1991;Marone, 1998]. Studies of interseismic shallow creep [e.g.,Lyons
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et al., 2002], shallow afterslip of large earthquakes [e.g.,Marone et al., 1991;Marone,

1998;Hsu et al., 2006], and the deficit of seismicity at shallow depths [e.g.,Shearer et al.,

2005] provide indirect observational evidence for velocity-strengthening fault rheology at

shallow depths.

Finally, heterogeneities of fault friction properties may exist on a wide range of scales.

For example, microearthquake studies in various tectonic settings provide some evidence

on interfingering of velocity-weakening and velocity-strengthening patches [Schaff et al.,

2002;Nadeau and McEvilly, 2004; Igarashi et al., 2003;Bourouis and Bernard, 2007].

Those earthquakes repeatedly rupture isolated fault segments, indicating that their ruptured

areas are surrounded by velocity-strengthening regions and suggest that heterogeneities of

fault friction proprieties exist even in much smaller scales than the scale shown in Fig-

ure 1.1.

Given that heterogeneities in friction properties commonly exist on natural faults, it is

important to understand the role of systematic variations in friction properties on seismic

and aseismic slip. In this thesis, we investigate the consequences of such variations for

earthquake sequences, interseismic coupling, earthquake nucleation processes, aftershock

occurrence, peak ground motion in the vicinity of active faults, and seismic slip budget at

shallow depths.
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1.2 Understanding patterns and interactions of seismic and

aseismic fault slip

One ultimate goal of seismotectonic studies is to provide ways of assessing the timing,

spatial extent, and moment of seismic ruptures. Simple conceptual models assume that

rupture segmentation is persistent and that earthquake timing and moment are related due

to requirement that, in the long term, any point of a given fault has to slip seismically, in

order to make up for slip deficit given by the secular relative motion of the adjacent stably

slipping domains. These simple models predict the quasi-periodic repetition of “charac-

teristic” earthquakes with similar rupture extent and moment [Schwartz and Coppersmith,

1984] or a time-predictable or slip-predictable behavior if non-quasi-periodic behavior is

allowed [Shimazaki and Nakata, 1980]. As observations have accumulated, it has become

quite evident that none of these simple models are applicable to natural faults [Schwartz,

1999;Murray and Segall, 2002;Weldon et al., 2004]. This is not surprising since inter-

actions due to stress transfers within a fault system favor complex chaotic behavior [e.g.,

Cochard and Madariaga, 1996]. However, real fault systems might, in fact, obey some

systematic behaviors in terms of their segmentation [Thatcher, 1990] and the timing of

major earthquakes [Sieh et al., 2008]. The spatial extent of seismic ruptures seems to be,

in part, controlled by geometrical complexities such as local non-planarity and fault step-

overs [Wesnousky, 2006]. As discussed in Section 1.1, there is also growing evidence that

spatial variations of fault friction properties is another important factor that could influence

both the spatial extent, the size, and the timing of earthquake ruptures, an issue that is the
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focus of Chapter 2.

As shown in well-studied behavior of the Sunda megathrust (Figure 1.1), some fault

regions tend to rupture in repeating similar “characteristic” earthquakes while others be-

have irregularly, with quite different rupture area and amount of slip in successive seismic

ruptures [Hsu et al., 2006;Chlieh et al., 2008;Konca et al., 2008;Sieh et al., 2008]. This

behavior seems to depend on areas of low interseismic coupling, which can act as system-

atic or non-systematic barriers to seismic rupture [Chlieh et al., 2008]. However, previous

studies showed that the relationship leading to heterogeneous interseismic stress and strain

build up is not unique [e.g.,Dmowska and Lovison, 1992]. Velocity-weakening segments

expected to rupture during earthquakes may accumulate partial amounts of interseismic

slip. Furthermore, velocity-strengthening patches do not necessarily creep significantly in

the interseismic period [e.g.,Bürgmann et al., 2005]. For example, the distribution of seis-

mic asperities in the Kurile-Japan trench seems to be relatively stationary [Yamanaka and

Kikuchi, 2004] and lie within a zone with high interseismic coupling [Ito et al., 2000]. The

area between the asperities could obey velocity-strengthening friction but might not creep

significantly in the interseismic period because of the stress shadow effect of the neighbor-

ing velocity-weakening segments. In that case, the interfingering of velocity-weakening

and velocity-strengthening regions is best inferred from the comparison of seismic slip and

afterslip distribution [Miyazaki et al., 2004;Baba et al., 2006]. The details of how the

pattern of interseismic coupling relates to earthquake ruptures is thus not straightforward.

In Chapter 2, we construct a simple fault model that reproduces behaviors observed

on the Sunda megathrust due to variations in friction properties. We use the simulation
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methodology developed byLapusta et al.[2000] that resolves for all stages of each earth-

quake episode: the aseismic nucleation process in gradually varying zones of accelerating

slip, the subsequent inertially controlled event (unstable slip) with realistic slip velocities

and rupture speeds, the postseismic slip, and the interseismic quasi-static deformation be-

tween events. A fault region of high interseismic coupling is modeled as two segments with

velocity-weakening friction separated by a relatively small velocity-strengthening patch.

The width and friction properties of the velocity-strengthening patch are varied so that

some events are stopped by the patch and hence rupture only one locked segment, while

others propagate through the patch, rupturing both locked segments and resulting in larger

earthquakes. In the latter case, the patch causes a decrease in seismic potency rate. By

varying the strength and width of the velocity-strengthening patch, we identify parameter

regimes in which such a patch acts either as a “permanent” or as a “intermittent” barrier.

Depending on the characteristics of intervening velocity-strengthening areas, seismic as-

perities can either rupture in isolation or simultaneously, leading to the kind of complexity

observed on the Sunda megathrust.

We find that the probability that an earthquake breaks through the velocity-strengthening

patch can be quantified by a non-dimensional parameterB that depends on friction prop-

erties and sizes of both the velocity-strengthening patch and velocity-weakening regions.

ParameterB also characterizes the effect of the variation in friction properties on inter-

seismic coupling, which can be observed from geodetic or remote-sensing measurements.

Patches with higher values ofB result in locally lower interseismic coupling and act as per-

manent barriers to seismic rupture. We find that interseismic coupling as high as 0.75 can
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indicate a permanent barrier. Patches with a range of lower values ofB lead to a more sub-

tle effect on interseismic coupling, decreasing it from 1 to values between 0.75 and 0.95,

but such patches can have a profound effect on the pattern of seismic ruptures, resulting

in complex sequences of large earthquakes with quite different rupture area and amount of

slip in successive seismic ruptures.

1.3 Modeling earthquake nucleation and aftershock oc-

currence

One special case of interaction between aseismic and seismic slip is the nucleation process,

i.e., aseismic, gradually accelerating, slip in a slowly varying zone that eventually leads

to a seismic event. Understanding earthquake nucleation is an important yet difficult task

due to lack of direct observations such as in situ measurements at seismogenic depths. A

widely accepted model for earthquake nucleation is a developing frictional instability on

a preexisting fault, the phenomenon inferred from laboratory experiments and theoretical

studies.

In Chapter 3, we simulate and compare several plausible scenarios of earthquake nu-

cleation in continuum models of rate and state faults. Two fault models are used to create

two different environments for earthquake nucleation. The first model incorporates uniform

velocity-weakening friction properties and a weaker patch of slightly (10%) lower effective

normal stress. By varying the size of the weaker patch, we can either achieve completely

homogeneous fault properties within the nucleation zone or induce normal-stress hetero-
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geneity there. This is a realistic nucleation scenario, as faults can contain such weaker

patches for a number of reasons that include local fault non-planarity or spatial variations

in pore pressure. At the same time, observations suggest that earthquakes tend to cluster

at inferred transitions from locked to creeping regions [e.g.,Schaff et al., 2002;Bollinger

et al., 2004;Waldhauser et al., 2004]. We explore that scenario in the second model that

contains a rheological transition from velocity-strengthening to velocity-weakening fric-

tion. Such transitions create stress concentrations that promote earthquake nucleation.

Nucleation processes are simulated as a part of spontaneously occurring earthquake

sequences on a fault that is subjected to slow, tectonic-like loading [Lapusta et al., 2000].

This approach allows us to study nucleation processes that naturally develop in our models,

with conditions before the nucleation originating from the previous stages of earthquake oc-

currence and not from arbitrarily selected initial conditions that one would need to impose

to study only one instance of earthquake nucleation.

We consider five representative cases of earthquake nucleation, compare them in terms

of their slip-velocity evolution, and discuss the effects of heterogeneity in normal stress,

heterogeneity in friction properties, and variations in loading. We find significant differ-

ences among the simulated nucleation processes. Different loading histories lead to dif-

ferent nucleation processes and sizes of nucleation zones. Nucleation processes at weaker

patches behave similarly to theories based on spring-slider models, with some notable de-

viations, whereas nucleation processes at rheological transitions behave differently, pro-

ducing complex slip-velocity histories. These differences have important implications for

aftershock phenomena as discussed in Chapter 4.
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Studying nucleation processes has also been motivated by aftershock occurrence. Earth-

quakes are typically followed by increased seismic activity, usually referred to as aftershock

sequences, that decays over time. The decay of aftershocks is well described empirically

by Omori’s law (seeUtsu et al.[1995] for a recent review). Several different mechanisms

have been proposed to explain the occurrence and time evolution of aftershocks, including

including increased loading rate due to aseismic processes such as postseismic slip [e.g.,

Benioff, 1951;Perfettini and Avouac, 2004] or relaxation of the viscoelastic lower crust

[e.g.,Freed and Lin, 2001], pore fluid motion and induced variations in fault strength [e.g.,

Nur and Booker, 1972;Bosl and Nur, 2002], triggering due to dynamic stress changes [e.g.,

Hill et al., 1993;Gomberg et al., 2003;Felzer and Brodsky, 2006], evolution of viscoelastic

damage rheology due to sudden increase in strain [e.g.,Ben-Zion and Lyakhovsky, 2006],

and accelerated nucleation on rate and state faults due to static stress changes induced by

the mainshock [Dieterich, 1994].

In Chapter 4, we build on the model proposed byDieterich [1994] and explore the

aftershock behavior due to static perturbations of rate and state nucleation processes us-

ing continuum earthquake models. The full explanation for aftershocks may well involve

a combination of mechanisms, with different mechanisms potentially dominating in dif-

ferent situations or during different stages of aftershock sequences. However, it becomes

increasingly clear that rate and state friction is a good description of the fault constitu-

tive response during slow slip, and hence accelerated rate-and-state nucleation due to static

stress changes has the potential to significantly contribute to all aftershock sequences.

Dieterich [1994] built an aftershock model that reproduced Omori’s law using static
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triggering of rate and state nucleation sites. In that model, a preexisting population of

rate and state nucleation sites is perturbed by static stress changes due to a mainshock. In

the population, each nucleation site is governed by the same nucleation process but time-

shifted in such a way that the population results in a constant background seismicity rate.

After a positive static shear stress step, the nucleation process at each site accelerates, pro-

ducing an increased seismicity rate (or aftershock rate) that matches Omori’s law for a

wide range of parameters. An important ingredient in this aftershock model is the nucle-

ation process and its response to static stress changes. InDieterich [1994], the nucleation

process was specified in terms of its slip-velocity evolution. To obtain the evolution, two

simplifications in modeling nucleation were used: (i) elastic interactions were described by

a one-degree-of-freedom spring-slider system and (ii) the assumptionV θ/LÀ 1 was used

to simplify the rate and state friction formulation based on a study of earthquake nucleation

in a continuum model [Dieterich, 1992]. These simplifications allowed the derivation of

analytical expressions for both slip-velocity evolution during nucleation and the resulting

aftershock rate. The approach ofDieterich [1994] has been further explored in a number

of works [Gomberg et al., 1998, 2000;Gomberg, 2001;Gomberg et al., 2005] and has

been used to interpret observed aftershock sequences [Gross and Kisslinger, 1997;Gross

and B̈urgmann, 1998;Toda et al., 1998, 2005]. In particular, aftershock rates based on

simulations in spring-slider systems with the full aging rate and state formulation were

found to follow the results ofDieterich [1994] quite well, validating simplification (ii) for

spring-slider models.

Given the determining role of the nucleation process in the aftershock model ofDi-
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eterich[1994] and subsequent studies, it is important to understand whether spring-slider

models provide a good approximation of the nucleation process on natural faults. Spring-

slider models approximate a slip zone of a constant size (inversely proportional to the

spring stiffness assumed) with uniform slip and stress history throughout the slip zone and

simplified elastic interaction with the surrounding bulk. Hence spring-slider models can-

not represent spatially inhomogeneous aseismic slip in a zone of evolving size, which is a

characteristic feature of nucleation processes in models that incorporate both rate and state

friction laws and elastic continuum [Rice, 1993;Lapusta and Rice, 2002, 2003;Rubin and

Ampuero, 2005].

In Chapter 4, we study the response of the simulated nucleation processes to static

stress changes and the resulting aftershock rates, compare them with the results ofDieterich

[1994], and explain the observed similarities and differences. We find that the model with

a weaker patch behaves similarly to the spring-slider model ofDieterich [1994], while

the model with rheological transition exhibits qualitatively different behavior. In partic-

ular, aftershock rates are affected by normal-stress heterogeneity in the nucleation zone.

Nucleation processes at rheological transitions behave differently, producing complex slip-

velocity histories, non-monotonic responses to static stress changes, and aftershock rates

with pronounced peaks and seismic quiescence. For such processes, positive stress steps

sometimes delay nucleation of seismic events by inducing aseismic transients that relieve

stress and postpone seismic slip. Superposition of the complex aftershock response for

spatially variable stress changes results in Omori’s law for a period of time followed by

seismic quiescence. Such behavior was observed at the base of the seismogenic zone near
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the 1984 Morgan Hill earthquake. We show that the computed aftershock rates are linked to

unperturbed slip-velocity evolution in the nucleation zone and construct simplified analyti-

cal scenarios that explain some features of the response. The qualitative differences we find

between the two nucleation models indicate that aftershock response of rate and state faults

to static stress changes would depend on the conditions under which nucleation occurs on

natural faults and may be different from predictions based on spring-slider models.

1.4 Developing a spectral element method (SEM) for sim-

ulations of fault slip: Effect of velocity-strengthening

fault friction at shallow depths on dynamic rupture

Understanding complex and realistic scenarios of seismic and aseismic slip demands ac-

curate and efficient numerical models that incorporate appropriate fault constitutive laws.

A common approach to model slip on a rate and state fault is to employ boundary integral

methods (BIMs), which are used in Chapters 2 - 4. In BIMs, field quantities are considered

only at the boundary of a domain, and integral expressions are used to account for elastic

interactions with the surrounding media. In the framework of BIM, nucleation, rupture

propagation, and arrest of earthquakes have been successfully modeled [e.g.,Ben-Zion and

Rice, 1997;Lapusta et al., 2000]. However, these studies have been mostly restricted to

planar faults embedded into a uniform elastic space. At the same time, observations point

to complicated crustal structures with variable bulk properties, fault damage zones, and

non-planar fault geometries. It is important to include those factors into earthquake mod-
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els, combining them with laboratory-derived constitutive fault relations such as rate and

state friction.

In Chapter 5, we develop a spectral element method (SEM) for simulating dynamic

rupture on rate and state faults. Finite element methods (FEMs) and, in particular, spectral

element methods (SEMs), can incorporate variable bulk properties and more complex fault

geometries. Using a SEM for seismic wave propagation dates back to the study ofKo-

matitsch and Vilotte[1998]. The 3D SEM we use was originally developed byKomatitsch

and Tromp[1999]; our work is an extension of the study byAmpuero[2002] that incorpo-

rated a LSW fault boundary into the SEM framework. We have extended the formulation to

rate and state faults. To validate the developed SEM approach, we have conducted detailed

comparison of SEM and BIM simulation results obtained for an antiplane problem. Incor-

porating rate and state faults into a SEM formulation requires a semi-implicit numerical

scheme which makes the implementation more challenging than that for LSW friction.

Using the developed SEM, we study how dynamic rupture is affected by a shallow fault

region of velocity-strengthening friction. Accumulating evidence supports the presence of

a velocity-strengthening region at shallow depths (.3 km), as discussed in Section 1.1.

Hence, it is important to understand how this affects earthquake rupture dynamics and, as a

consequence, ground motion and seismic hazard assessment in the vicinity of active faults.

Furthermore, the shallow velocity-strengthening region may also be relevant for tsunami

earthquakes in subduction zones as it may slow down the up-dip propagation of rupture,

boost the low-frequency content, and promote tsunami generation [Polet and Kanamori,

2000;Seno, 2002]. In addition, a typical Earth bulk structure has strong variation of elas-
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tic parameters with depth. The reduction of elastic moduli near the free surface results

in ground-motion amplification, and thus it has important consequences for seismic haz-

ard [e.g.,Olsen, 2000]. Such bulk variations cannot be accommodated with existing BIM

formulations, while SEM can incorporate them with ease. We simulate dynamic rupture

scenarios on a fault embedded in a layered bulk structure and studied how the peak ground

motion at on- and off-fault sites is affected by the bulk structure combined with different

fault rheologies.

We find that a shallow velocity-strengthening fault region can significantly alter dy-

namic rupture and ground motion. The velocity-strengthening region suppresses supers-

hear propagation at the free surface occurring in the absence of such region, which could

explain the lack of universally observed supershear rupture near the free surface. In ad-

dition, the velocity-strengthening region promotes faster falloff of slip velocity behind the

rupture front and decreases final slip throughout the entire fault, causing a smaller average

stress drop. The slip decrease is largest in the shallow parts of the fault, resulting in a depth

profile of slip qualitatively consistent with observations of shallow coseismic slip deficit

in large strike-slip earthquakes [Fialko et al., 2005]. The shallow velocity-strengthening

region also reduces the amplification of strong ground motion due to a low-velocity bulk

structure.

Earthquake ruptures in Chapter 5 are nucleated either abruptly or relatively rapidly, as

common in simulations of single-rupture scenarios [e.g.,Day et al., 2005;Rojas et al.,

2007;Harris et al., 2009]. While the conclusions in that Chapter should not depend on the

nucleation procedure, a number of earthquake problems (e.g., in Chapters 2 - 4) require
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the ability to simulate more gradual nucleation under slow tectonic loading, postseismic

and other aseismic slip, and sequences of simulated earthquakes, while still accounting for

inertial effects during simulated earthquakes. For simple fault geometries and a uniform

elastic medium, this has been accomplished by BIM approaches [e.g.,Lapusta et al., 2000;

Lapusta and Liu, 2009].

In Chapter 6, we develop a SEM that enables us to simulate long-term fault slip his-

tories while allowing flexibility in fault geometry and bulk properties. The developed 2D

model merges a quasi-static SEM with the fully dynamic SEM presented in Chapter 5.

Merging two methods to simulate long-term fault slip punctuated by dynamic earthquake

ruptures is challenging and requires the development of proper criteria for switching from

the quasi-static to dynamic SEM and vice versa. In addition, modeling long-term slip his-

tories of faults is challenging by itself due to the wide range of temporal and spatial scales

involved. Slow loading requires tens to thousands of years in simulated time, and large

earthquakes rupture faults that are tens to hundreds of kilometers long. At the same time,

rapid fluctuations in stress and slip rate at the propagating dynamic rupture tip during an

earthquake occur over distances of order meters and times of order a small fraction of a sec-

ond. Properly resolving all of these processes demands an efficient and accurate numerical

model. We thus set up an antiplane benchmark problem and validate the developed SEM

approach by comparing SEM and BIM simulation results in a 2D model of small repeating

earthquakes.

Using the developed formulation, we investigate the effect of both fault friction prop-

erties and bulk properties on coseismic slip deficit at shallow depths (.3 km). The con-
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sideration of the effect of friction properties is motivated by the results of Chapter 5 which

shows, based on single rupture scenarios, that such deficit can be caused by a shallow fault

region with velocity-strengthening friction. Now we can explore this effect in the con-

text of long-term slip histories. The effect of bulk properties is considered to investigate

another candidate mechanism of low initial stress in low-rigidity shallow bulk materials

resulting from uniform tectonic strain suggested byRybicki and Yamashita[1998]. We in-

vestigate both mechanisms in the context of an earthquake sequence using the developed

SEM (Chapter 6). For the set of parameters we have considered, low-rigidity shallow bulk

materials do not lead to coseismic slip deficit. While the low-rigidity materials do cause

lower interseismic stress accumulation, they also cause dynamic amplification of coseismic

slip rates, with the net effect on slip being nearly zero. At the same time, the addition of

velocity-strengthening friction to shallow parts of the fault leads to coseismic slip deficit in

all cases we have considered.
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Chapter 2

Influence of Variations in Fault Friction
Rheology on Earthquake Rupture
Patterns and Interseismic Coupling

Some fault regions with high interseismic coupling (ISC) tend to rupture in repeating simi-

lar ’characteristic’ earthquakes while others behave irregularly, with quite different rupture

area and amount of slip in successive seismic ruptures, as evidenced by the behavior of

the Sunda megathrust [Chlieh et al., 2008;Konca et al., 2008]. In this Chapter, we con-

struct a simple fault model based on rate and state friction that reproduces such behavior

due to variability in friction properties. We then investigate effect of variations in friction

properties on earthquake rupture patterns and interseismic coupling.

This Chapter is based on the manuscript in preparation by Y. Kaneko, J.-P. Avouac, and

N. Lapusta.
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Figure 2.1: (a) Schematic illustration for spatial variations of interseismic coupling (ISC)
on a plate interface along a generic subduction zone. The proportion of slip accommodated
by interseismic creep varies spatially, from 0% in fully locked areas (ISC = 1) to 100% in
areas creeping with the interplate rate (ISC = 0). (b) A sketch illustrating the fault model
we use. The VS regions are indicated by yellow.

2.1 Numerical model of earthquake cycles with heteroge-

neous interseismic coupling

The model contains a planar fault governed by rate and state friction with the aging form of

state variable evolution [Dieterich, 1978, 1979;Ruina, 1983] and embedded in a medium

of homogeneous elastic properties (Appendix 2.6). The fault has two identical velocity-

weakening (VW) segments separated and surrounded by velocity-strengthening (VS) re-

gions (Figure 2.1b). We opt for a simple 2D implementation in which the fault has assumed

distribution ofa andb of rate and state constitutive parameters and is loaded by imposing

a constant sliding velocity on both sides (Figure 2.2a). The edges of VS regions on both

sides of the model are thus made to creep with the plate rate, leading to locally zero ISC.

The computation of ISC is described in Appendix 2.8. The width of these VS patches is
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chosen large enough so that the seismic ruptures always taper off well before reaching the

edges of the patches. These patches slip aseismically throughout the simulated time and

thus represent permanent barriers (Figure 2b). As we show in the following, the width and

friction properties of the central VS patch can be adjusted so that it acts as a permanent or

intermittent barrier to the propagation of the seismic ruptures initiating on one or the other

adjacent VW segments. To assign slip potency and magnitudes to the simulated earthquake,

a downdip width of 40 km is assumed.

2.2 Earthquake sequence in presence of a velocity-

strengthening (VS) patch

Despite the simple geometry and distributions of friction properties, the model produces

rich earthquake patterns. An example is shown in Figure 2.2. Most earthquakes nucleate

at the transitions from VS to VW regions, where interseismic stress accumulation rate

is maximum. Some events remain small (e.g., events 3-7 in Figure 2.2b) while others

propagate across the VW segments. The intervening VS patch sometimes acts as a barrier

to the coseismic ruptures (Events 1, 26, and 33 in Figure 2.2b) even though, in this case,

the effect of the VS patch on ISC is subtle (ISC∼ 0.9). The VW segments are nearly fully

locked (ISC∼ 1) and generally correspond to the places of high coseismic slip (in other

words, they form seismic asperities). Larger earthquakes generally produce larger slip at

the same fault location, consistent with nearly constant stress drop.

This simple example qualitatively explains the complex sequence of recent and histor-
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Figure 2.2: An example of the simulated long-term fault behavior. (a) The imposed spa-
tial distribution of the friction parameter (a − b) (black) and the simulated interseismic
coupling (ISC). The computation of ISC is described in Appendix 2.8. (b) Contours of
slip accumulated over 1600-year history. Red lines are intended to capture dynamic events
and are plotted every 2 s during the simulated earthquakes, whenVmax > 1 cm/s. Blue
lines display slip accumulation every 10 years. Slip accumulation after each earthquake is
shown by black lines. Numbers indicate earthquakes in the order of their occurrence. (c)
Potency rate over time, using the updip distance of 40 km. The insets depict successive
events that occurred close in time. (d) Time dependence of slip deficit at the fault location
x = 50 km indicated by a star in panel b. Dashed lines are approximate fits to the time- and
slip-predictable models. (e) Potency deficit over the entire fault.
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ical events and their relation to ISC on the Sunda megathrust. The VS regions of low ISC

on both sides of the model act as permanent barriers to coseismic ruptures as observed in

the south of the Mentawai Islands area or near the Batu Island area in Sumatra [Chlieh

et al., 2008]. Partial ruptures of a locked segment of subduction megathrust beneath the

Mentawai islands [Konca et al., 2008] may be explained by the presence of narrow VS bar-

riers. After an event that ruptures only one of the VW segments, static stress transfers to the

neighboring VW segment, leading to “clustering” of earthquakes; the two VW segments

tend to rupture closer in time than their recurrence periods (Figure 2.2c). Negative stress

drop (i.e., stress increase after an event) in the ruptured VS patch promotes propagation

of the subsequent large earthquake through the patch. As a result, overlap of the slipped

regions and the larger size of the subsequent event are indications of the presence of VS

patches. These phenomena have been reported for the 700-year-long sequence of historical

earthquakes beneath the Mentawai islands [Sieh et al., 2008].

In the particular simulation of Figure 2.2, the system does not produce characteristic

earthquakes. At a given point on the fault, the behavior obeys neither the slip-predictable

nor the time-predictable model (Figure 2.2d). The behavior is closer to being slip pre-

dictable, even more so if one considers the average slip (or equivalently the slip potency)

rather than the slip at one particular point (Figure 2.2e). A nearly slip-predictable be-

havior is not a surprising outcome given the chosen friction law, since, after each earth-

quake, the shear stress on the ruptured area drops to a value approximately determined

by σ̄[fo + (a − b) ln(Vdyn/Vo)], whereσ̄ is the effective normal stress,f0 is the reference

friction coefficient corresponding to the reference slip rateV0, andVdyn is coseismic slip
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rate (∼1-10 m/s). Also, the chosen friction law does not imply a threshold shear stress for

earthquakes to nucleate so that it does not favor a time-predictable behavior. The simu-

lation also shows that assessing a time- or slip-predictable behavior requires an extended

history and is difficult with just a few earthquake cycles.

2.3 Characteristics of individual earthquakes

The rupture extent in individual earthquakes is determined by two kinds of barriers: lower

prestress resulting from slip in previous events or the VS patches. In the case of low pre-

stress close to the hypocenter, only relatively small events can develop (Figure 2.3a,d).

Some events rupture the entire VW segment in which they have nucleated but arrest at

the central VS patch, where the stress drop is negative (Figure 2.3b,e). For a given size

and σ̄(a − b) of the VS patch, the overall prestress in the VW segments generally deter-

mines whether the two locked segments rupture together or independently. For example,

in the case (c),(f) of Figure 2.3, the average prestress over the VW segment where the rup-

ture starts is higher (τ = f0σ̄ − 0.1 MPa) than in the case (b),(e) of Figure 2.3 (where

τ = f0σ̄ − 0.9 MPa). As a result, the rupture propagates through the central VS patch in

the former case but not in the latter case. The distribution of prestress is spatially heteroge-

neous for all cases because the arrests of previous earthquakes and rheological boundaries

create local stress concentrations. Static stress drops of the simulated earthquakes are in

the range (1-10 MPa) typical for natural earthquakes (Figure 2.3g). The distribution of

magnitudes has a gap between 7.8 and 8, which corresponds to the difference in magni-

tudes between the earthquakes confined to one VW segment and those rupturing across the
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central VS patch.

2.4 Quantifying the influence of a velocity-strengthening

(VS) patch on interseismic coupling and the rupture

pattern

Whether a VS patch can stop the propagation of seismic rupture depends on both the

amount of stress that is supplied to the patch by the incoming rupture and the amount

of stress increase needed for the patch to sustains seismic slip. Here, we show that the

behavior of the model, in terms of the percentage of ruptures that propagate through the VS

patch, can be described by a single non-dimensional parameter that incorporates the ratio

of these stresses and hence includes properties of both the VS and VW parts of the fault.

In Figure 2.4, we represent the effect of the sizeD and VS parameter(a − b) of the

central VS patch on the seismic rupture pattern and ISC (averaged over the patch). The

effect on seismic rupture patterns is quantified by the ratio of earthquakes that rupture both

VS segments (and thereby propagate through the VS patch) to earthquakes that rupture at

least one of the VW segments. We find that the percentage of the two-segment ruptures

and ISC are well characterized by the following non-dimensional parameter:

B =
[
(2π)1/2σ̄vs(avs − bvs)D

]
/ (µvwσ̄vwbvwLvwR)1/2 , (2.1)

wherea and b are rate and state constitutive parameters,R andD are the sizes of the
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events that reach the central VS patch and continue their propagation on the other side of
the patch. The VS patch causes a marked decrease in potency rate. (i) Postseismic slip of
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VW segment and the VS patch, respectively,σ̄ is the effective normal stress,µ is shear

modulus,L is the characteristic slip, and the subscripts ’vs’ and ’vw’ are used to denote

quantities related to the VS patch and VW segment, respectively. The derivation of the

parameter is shown in Appendix 2.9. The curves of constantB in Figure 2.4 approximately

follow the constant percentages of two-segment ruptures indicated by the color scale. When

B & 4, the patch acts as a permanent barrier, in the sense that no seismic rupture propagates

through the patch over the simulated 3000-year history. WhenB . 1, the patch acts as

an intermittent barrier (i.e., more than 50i% of one-segment ruptures propagate through

the patch). ForB . 0.2, 90% of rutpures that reach the patch propagate through. When

the patch acts as a permanent barrier, the resulting earthquakes are approximately confined

within each VW segment (Figure 2.4C1; Figure 2.5C1) and are more ’characteristic’ in

their sizes, whereas a VS patch withB . 4 leads to greater variability of event sizes by

allowing larger events to occur (Figure 2.4C2,C3; Figure 2.5C2).

In the case of the VS patch withB & 4, earthquakes still occur irregularly (Fig-

ure 2.5C1), since the lengthR of each VW segment is much larger than the nucleation

sizeh∗RA. WhenR . 3h∗RA, there would be quasi-periodic repetition of ’characteristic’

earthquakes with similar rupture extent and moment, whereas, forR & 3h∗RA, more com-

plex behavior arises due to emergence of smaller earthquakes at the VW-VS transitions. In

this study, we only consider the cases with VW segments much larger than the nucleation

sizes (R À 3h∗RA), with the typical values ofh∗RA andR of the order of 2 km and 70 km,

respectively.

The non-dimensional parameterB derived for explaining the coseismic rupture patterns
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can also capture the behavior of ISC over the VS patch (Figure 2.4b), where larger values

of B correspond to smaller values of ISC over the patch. Since accumulated slip at a given

time is relatively uniform over the fault domain and equals the sum of co-, inter-, and

postseismic slip, it is not surprising that seismic behavior is related to the interseismic slip

and hence to the values of ISC. We find that a patch with only slightly reduced ISC (ISC

≈ 0.75) can systematically arrest coseismic ruptures (Figure 2.4b and Figure 2.5c). This

means that most of the total slip at the VS patch occurs postseismically (Figure 2.5c). The

presence of a permanent barrier with relatively high values of ISC (ISC≈ 0.75) corresponds

to small percentages of co- and interseismic slip compared to that of afterslip.

The examples of Figures 2.4-2.5 and additional cases in Appendix 2.10 show that the

parameterB is a good predictor of the model behavior over a wide range of parameters.

Hence one can evaluate the values ofB on faults in different tectonic settings based on

observations of seismic and aseismic slip. Doing so would enable us to constrain the pa-

rameters of fault friction.

2.5 Conclusions

This study illustrates how heterogeneities of fault rheological properties can affect individ-

ual ruptures, earthquake sequences, and the pattern of ISC. The model described here is

able to reproduce a wide range of behaviors observed on natural faults. In particular, our

model is capable of explaining the complex sequence of recent and historical events, and

their relation to ISC, on the Sunda megathrust. Our results show that areas of relatively

high values of ISC (≈0.75) can act as permanent barriers to coseismic ruptures. Areas
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of lower ISC on natural faults may limit the rupture extent of large earthquakes, with im-

portant implications for seismic hazard. Our study suggests that VS barriers may be the

primary cause for the relative persistence of seismic rupture segmentation and asperities

observed in some tectonic settings.

We find that the probability that an earthquake breaks through the velocity-strengthening

patch can be quantified by a non-dimensional parameterB that depends on friction prop-

erties and sizes of both the velocity-strengthening patch and velocity-weakening regions.

ParameterB also characterizes the effect of the variation in friction properties on inter-

seismic coupling, which can be observed from geodetic or remote-sensing measurements.

Patches with higher values ofB result in locally lower interseismic coupling and act as

permanent barriers to seismic rupture. Patches with a range of lower values ofB lead to

a more subtle effect on interseismic coupling, decreasing it from 1 to values between 0.75

and 0.95, but such patches can have a profound effect on the pattern of seismic ruptures,

resulting in complex sequences of large earthquakes with quite different rupture area and

amount of slip in successive seismic ruptures.

Our results indicate that the presence of a VS patch can be identified from the rup-

ture kinematics of individual earthquakes and the distribution of afterslip. The source-time

functions of earthquakes that rupture through the VS patch contain double peaks (Fig-

ure 2.4C4-C6). This is because both the potency rate and the rupture velocity first decrease

as rupture propagates through the central VS patch and then increase after the rupture front

enters the neighboring VW segment. Once the rupture velocity history of an earthquake

is obtained from slip inversions, the patch size can be estimated from the duration of de-
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creased potency rates between two peaks. A double peaked source-time function could

also arise due to a region of lower prestress on a VW fault (sometimes referred to as an

’antiasperity’). However, the two types of heterogeneities can be distinguished using post-

seismic observations, since afterslip would occur within a VS barrier (Figure 2.3i), but not

within a VW region of lower prestress. Thus, variations in seismic potency rates combined

with the distribution of afterslip can be used to infer smaller-scale heterogeneities in fric-

tion properties within a locked region of high ISC, where relatively small VS patches could

have a profound effect on the long-term seismic behavior but a subtle effect on ISC, as is

the case in a number of simulations presented here.

2.6 Appendix: Description of the fault model and param-

eters

Our fault model is based on a 2D antiplane (Mode III) framework and contains varia-

tions in steady-state friction properties. The fault motion is in the along-dip direction, and

only variations with along-strike directionx are considered, so that the fault behavior is

described by dip-parallel slipδ(x, t), slip rateV (x, t) = ∂δ(x, t)/∂t, and the relevant com-

ponent of shear stressτ(x, t). The relation between slipδ(x, t), slip velocityV (x, t), and

the corresponding shear stressτ(x, t) is given by:

τ(x, t) = τ o(x) + f(x, t)− µ

2cs
V (x, t) , (2.2)
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whereµ is the shear modulus,cs is the shear wave speed,τ o is the loading stress that would

act on the interface if it were constrained against any slip, andf(x, t) is a linear functional

of prior slip over the causality cone [Rice, 1993;Lapusta et al., 2000]. The last term,

known as radiation damping, is extracted from the functionalf(x, t) so thatf(x, t) can be

evaluated without concern for singularities. The details of elastodynamics and simulation

methodology for the model are described inLapusta et al.[2000].

Earthquakes are simulated as a part of spontaneously occurring earthquake sequences

on a fault that is subjected to slow, tectonic-like loading. This approach allows us to study

naturally developing earthquakes in our models, with conditions before the nucleation orig-

inating from the previous stages of earthquake occurrence rather than from arbitrarily se-

lected prestress. Our simulations resolve all stages of each earthquake episode: the aseismic

nucleation process in gradually varying zones of accelerating slip, the subsequent inertially

controlled event (unstable slip) with realistic slip rates and rupture speeds, the postseismic

slip, and the interseismic quasi-static deformation between events.

The fault is governed by rate and state friction with the aging form of state variable

evolution. For situations with time-independent effective normal stressσ̄, the shear strength

τ is expressed as

τ = σ̄

[
f0 + a ln

(
V

V0

)
+ b ln

(
V0θ

L

)]
, (2.3)

dθ

dt
= 1− V θ

L
, (2.4)

wherea > 0 and b are rate and state constitutive parameters,V is slip rate,f0 is the

reference friction coefficient corresponding to the reference slip rateV0, θ is a state variable
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which can be interpreted as the average age of the population of contacts between two

surfaces, andL is the characteristic slip for state evolution [e.g.,Dieterich, 1978, 1979;Rice

and Ruina, 1983;Ruina, 1983;Dieterich and Kilgore, 1994]. The actual fault resistance to

sliding in our model is given by rate and state friction regularized at zero slip velocity [e.g.,

Lapusta et al., 2000].

We use parameters applicable for natural faults or derived from laboratory experiments

except for characteristic slipL. The value ofL used is 8 mm, larger than the laboratory

values of the order of 1-100µm, to make large-scale simulations numerically tractable.

Unless otherwise noted, we useµ = 30 GPa,cs = 3.3 km/s,̄σ = 50 MPa,f0 = 0.6,V0 = 10−6

m/s,avw = 0.010, andbvw = 0.015, where the subscript ’vw’ is used to denote quantities

related to the VW segments.

2.7 Appendix: Criteria for spatial discretization and time-

stepping parameters

The simulated fault domainλ = 480 km is composed of the 240-km region where friction

is applied, and the 240-km loading region of the prescribed slip rate. In our numerical

simulations, the spatial cell size∆x needs to be small enough to properly resolve both the

aseismic nucleation process and the cohesive zone size during dynamic rupture propaga-

tion. In all of our simulations, good resolution of the cohesive-zone size is a more strict

constraint on the spatial discretization. The ratioΛ/∆x of the cohesive zone sizeΛ to the

cell size∆x = 29 m needs to be 3-5 or larger for faults with rate and state friction [Kaneko
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et al., 2008]. The value ofΛ in a typical scenario is≈ 200 m and henceΛ/∆x > 5.

The resulting ratioh∗RA/∆x = 2µbL/[π(b − a)2σ̄∆x] = 63, whereh∗RA is the estimate of

the nucleation size fora/b & 0.5 given byRubin and Ampuero[2005], is high enough to

properly resolve the nucleation processes.

Time t is discretized into variable time steps. The minimum value of the time step is

related to the time∆tcell = ∆x/cs needed for the shear wave to propagate through one

spatial cell; it is given by0.5∆x/cs = 0.044 s. Such a small value of∆tmin is needed

because slip in one time step must be comparable to or smaller than the characteristic slip

L of the friction law to resolve the state-variable evolution. The largest time step allowed in

all simulations is 0.2 years. In the mode-dependent convolution truncation,Tw(1) = λ/cs

andqw = 4. A typical simulation with 3000 years of simulated slip history takes 5 days on

a single 2.33-GHz processor.

2.8 Appendix: Definition of interseismic coupling (ISC)

We consider interseismic periods at each point on the fault to correspond to the time periods

whenV (x, t) < Vpl, whereVpl is the plate rate. Such periods are illustrated in Figure 2.6.

For the interseismic periods, spatially and temporally variable ISC can be defined as1 −

V (x, t)/Vpl. To report a temporally averaged value of ISC for each fault locationx, we

compute:

ISC(x) = 1− δcum
int (x)/[VplT

cum
int (x)] , (2.5)
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with V (x, t) < Vpl. To compute a temporally averaged ISC, we use the sum ofTint andδint

for all interseismic periods in formula (2.5).

whereT cum
int is sum of the interseismic time intervals at the locationx for the entire simula-

tion andδcum
int is the slip accumulated atx over all interseismic periods.

2.9 Appendix: Derivation of the non-dimensional model

parameter B

The behavior of the model in terms of the percentage of ruptures that propagate through the

VS patch (Figure 2.4) can be described by a single non-dimensional parameter that incor-

porates properties of both VS and VW parts of the fault. Let us consider the condition under

which a single seismic rupture that has reached the VS patch would propagate through the

patch. During fast seismic slip, shear stress at the VS patch would go up, which means that

the patch requires additional shear stress∆τseis over its entire lengthD to sustain seismic
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slip. The rupture that has reached the VS patch increases shear stress at the patch due to

stress concentration in front of the rupture; if that stress increase is adequate, the rupture

would propagate through the patch. Hence we define the non-dimensional parameter as

B =
∆τseisD

∆T
, (2.6)

where∆T is the stress increase on the patch due to the rupture of the nearby VW segment

integrated through the patch. We would expect the rupture to always propagate through

the patch ifB ≤ 1. If B > 1, the rupture may still propagate through the patch after

combined stress deposition due to several earthquakes, unless the stresses are released in

the postseismic and interseismic periods. Hence forB > 1, we expect smaller percentage

of earthquakes to propagate through the patch.

Let us estimate∆τseis. Prior to the arrival of coseismic rupture, the shear stress inside

the patch is given by:

τ i
vs = σ̄vs

[
f0 + (avs − bvs) ln

(
V bg

vs /V0

)]
, (2.7)

whereV bg
vs is the interseismic slip rate in the VS patch. During seismic slip with slip rate

V dyn
vs , shear stress in the patch can be approximated as

τd
vs = σ̄vs

[
f0 + (avs − bvs) ln

(
V dyn

vs /V0

)]
. (2.8)
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Hence

∆τseisD = σ̄vs(avs − bvs)D ln
(
V dyn

vs /V bg
vs

)
. (2.9)

Now let us consider∆T . From (2.2), shear stress distributionτ(x) during a seismic

event can be written as

τ(x) = τbefore(x) + f(x, t)− µ

2cs
V (x) , (2.10)

whereτ o(x) in (2.2) is taken to be shear stress before the event andf(x, t) is redefined

accordingly. Integrating (2.10) over the entire fault, we have

∫

x

τ(x)dx =

∫

x

τbefore(x)dx− µ

2cs

∫

x

V (x)dx , (2.11)

since the integral overf(x, t) is zero [Zheng and Rice, 1998]. The last term on the right-

hand side is small compared to others, since slip velocity is appreciable only in relatively

small regions next to the crack tips. Ignoring that term, we obtain

∫

x

[
τ(x)− τbefore(x)

]
dx = 0 , (2.12)

or
∫

vw

[
τ(x)− τbefore(x)

]
dx+

∫

vs

[
τ(x)− τbefore(x)

]
dx = 0 . (2.13)

Considering the situation where one of the VW segments has ruptured and transferred stress

onto the surrounding VS regions, we get:
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∆T = (1/2)

∫ R

0

∆τvw(x)dx = ∆τvwR/2 , (2.14)

where∆τvw and∆τvw are the coseismic stress drop and its average value over the velocity

weakening segment, respectively. Equation (2.14) assumes that half of the shear stress is

transferred to the central VS patch (with the other half being deposited onto the larger VS

region on the other side of the ruptured segment) and that the velocity-strengthening patch

is large enough to host most of stress concentration due to rupture.

To obtain an analytical expression for the average stress drop∆τvw, we use the model

of the Mode III quasi-static 2D shear crack with uniform prestress in an infinite elastic

medium. The energy release rateG = K2
III/(2µvw), whereKIII = ∆τvw

√
πR/2 [e.g.,

Broberg, 1999], is balanced by the fracture energyGc, giving

∆τvw =

(
4µvwGc

πR

)1/2

. (2.15)

For the rate and state friction with the aging form of state variable evolution as used in this

work, the fracture energyGc is given byRubin and Ampuero[2005]

Gc =
σ̄vwbvwLvw

2

[
ln(V dyn

vw /V bg
vw )

]2
. (2.16)

Then (2.15) becomes

∆τvw =

(
2µvwσ̄vwbvwLvw

πR

)1/2

ln(V dyn
vw /V bg

vw ) . (2.17)
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Substituting the obtained estimates into (2.6), we obtain

B =
(2π)1/2σ̄vs(avs − bvs)D ln

(
V dyn

vs /V bg
vs

)

(µvwσ̄vwbvwLvwR)1/2 ln
(
V dyn

vw /V bg
vw

) ≈ (2π)1/2σ̄vs(avs − bvs)D

(µvwσ̄vwbvwLvwR)1/2
. (2.18)

In our simulations, the factorln
(
V dyn

vs /V bg
vs

)
/ ln

(
V dyn

vw /V bg
vw

) ≈ 0.7, but we ignore this

factor in (2.18) for simplicity. Figure 2.4 shows the correspondence between the simulated

results and the parameterB for variations in the size and friction properties of the VS patch.

Note thatB = 1 corresponds to about 60% of ruptures propagating through the VS patch,

not 100% as expected based on its definition, which is likely the result of the assumptions

made in derivingB. However, the parameter is a good predictor of the model behavior,

in the sense that the value ofB predicts the percentage of ruptures that would propagate

through as the model parameters are varied, as described in sections 2.4 and 2.10.

2.10 Appendix: Relation among the non-dimensional pa-

rameter B, the percentage of two-segment ruptures

P, and interseismic coupling (ISC) over a range of

parameters

To explore the usefulness of parameterB, we perform a series of simulations similar to the

ones discussed in section 2.4 (Figure 2.4) but with variations in several parameters entering

the expression (2.18). In each set of simulations, we change one model property from the

case of Figure 2.4 and consider the influence of the sizeD and(a− b) of the VS patch on
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Table 2.1: The range of model parameters used to explore the correspondence between the
non-dimensional parameterB and the model behavior (Figure 2.8).

Parameter Symbol Range

Shear modulus µ 30, 60 GPa
Characteristic slip distance in vw Lvw 8, 24 mm
Characteristic slip distance in vs Lvs 8, 24 mm
Effective normal stress in vw σ̄vw 25, 50 MPa
Effective normal stress in vs σ̄vs 25, 50 MPa
The size of the vw segment R 30− 100 km
The size of the vs patch D 5− 50 km
Rate and state parametera in vw avw 0.0025− 0.025
Rate and state parametera in vs avs 0.010− 0.020
Rate and state parameterb in vw bvw 0.0050− 0.030
Rate and state parameterb in vs bvs 0− 0.020

percentage of two-segment ruptures. We find that the curves of constantB approximately

correspond to the same color range in all cases we consider (e.g., in Figure 2.7, the curves

with B = 2 correspond to light green to dark green), suggesting thatB is a good predictor

of the percentage of two-segment ruptures in cases with different parameters considered

here.

In Figure 2.8, we quantify the goodness of the correspondence between the non-dimensional

parameterB and the behavior of the model for the simulations shown in Figure 2.4, Fig-

ure 2.7, and additional simulations with model parameters given in Table 2.1. We find that

the relation betweenB and the percentage of two-segment rupturesP is non-linear and can

be fitted with the following function:

Pest = 100(4−B)/(4 +B) for B ≤ 4

= 0 for B > 4 . (2.19)
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Figure 2.7: Phase diagrams similar to the one in Figure 2.4a, but for models with different
parameters, to verify the usefulness of parameterB. The parameters in Figure 2.4 areσ̄vw

= σ̄vs = 50 MPa,avw = 0.010, bvw = 0.015, andR = 72.5 km. Panels (a)-(d) each show
results for a set of simulations with one or two of these parameters modified. (a) Case with
σ̄vs = 25 MPa. (b) Case withR = 32.5 km. (c) Case withavw = 0.025 andbvw = 0.030.
(d) Case withavw = 0.005 andbvw = 0.015.
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wherePest would be the value ofP estimated based onB. The valueB = 4 corresponds

to P = 0% (a permanent barrier). We also find that the empirical relation betweenB and

the simulated ISC averaged over the patch is non-linear and given by

ISCest = 1− 0.085B0.62 , (2.20)

whereISCest would be the value of ISC estimated based onB. Combining (2.19) and

(2.20), and rewritingP as a function of ISC, we obtain

P = 100

[
4− (

1−ISC
0.085

)1/0.62

4 +
(

1−ISC
0.085

)1/0.62

]
for ISC ≥ 0.8

= 0 for ISC < 0.8 . (2.21)

As expected, the relation between the percentage of two-segment rupturesP and ISC can

be well approximated by (2.21) (Figure 2.8e). Note that a patch with only slightly reduced

ISC (ISC≈ 0.75) can systematically arrest coseismic ruptures.

We conclude that the non-dimensional parameterB is a good predictor of both coseis-

mic and interseismic slip over a wide range of parameters.
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Figure 2.8: Relation between the non-dimensional parameterB and the percentage of two-
segment rupturesP (panels a, b), and simulated ISC (panels c, d) over a range of param-
eters given by Table 2.1. (a) Each dot corresponds to simulatedP with a different set of
parameters. The red curve is a functionP = 100(4 − B)/(4 + B) for B ≤ 4 andP = 0
for B > 4. Note that the set of parameters corresponding to velocity-neutral (avs = bvs)
cases are excluded. (b) A histogram that shows good agreement between the prediction
and the simulatedP . (c) Each dot corresponds to a simulated value of ISC averaged over
the VS patch with a different set of model parameters. The red curve is a function ISC
= 1 − 0.085B0.62. (d) A histogram that shows good agreement between the prediction
and the simulated ISC. (e) Relation between the percentage of two-segment rupturesP and
simulated ISC of the VS patch. The red curve is the prediction based on formula (2.21).
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Chapter 3

Variability of Earthquake Nucleation in
Continuum Models of Rate and State
Faults

In this Chapter, we simulate, in the context of earthquake sequences, several plausible

scenarios of earthquake nucleation on faults embedded in an elastic medium and governed

by rate and state friction, and explore variability in simulated earthquake nucleation due to

fault heterogeneities and different loading conditions.

This Chapter is based on Sections 2-4 of the paper “Variability of earthquake nucleation

in continuum models of rate-and-state faults and implications for aftershock rates” by Y.

Kaneko and N. Lapusta (J. Geophys. Res., 2008).

3.1 Previous theoretical studies of earthquake nucleation

Studies of earthquake nucleation have concentrated on a theoretically interesting and prac-

tically important topic: the nucleation size, i.e., the size of the slipping zone right before an

earthquake. Several theoretical estimateshnucl of the nucleation size have been proposed,
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all of them in the form:

hnucl =
ηGL

σ̄F
, (3.1)

whereη is a model-dependent parameter of order one,G is the shear modulus, andF is a

function of rate and state parametersa andb. Rice and Ruina[1983], Ruina [1983], and

Rice et al.[2001] considered linear stability of perturbations from steady-state sliding and

determined thatF = b− a. Dieterich[1992] assumed that nucleation processes accelerate

fast enough forV θ/L À 1 to hold and obtainedF = b. The estimate ofDieterich [1992]

was later confirmed in meter-scale rock friction experiments [Dieterich and Kilgore, 1996].

Rubin and Ampuero[2005] proposed that there are two regimes controlled by the ratio

a/b. If a/b . 0.37, the nucleation proceeds in a fixed region of the size given by (3.1)

with F = b, as in the estimate byDieterich [1992]. If a/b & 0.5, the nucleation process

resembles an expanding crack and the nucleation size asymptotically approaches (3.1) with

F = (b − a)2/b. Note that all three estimates match, within factors of order 1, fora ¿ b

which impliesb−a ≈ b. Fora approachingb (friction properties close to velocity neutral),

both Rice-Ruina and Rubin-Ampuero estimates predict increasingly larger nucleation sizes

(although Rubin-Ampuero estimate increases significantly faster). This is consistent with

the fact that velocity-strengthening regions cannot spontaneously produce unstable sliding,

and hence the nucleation size fora ≥ b can be considered infinite.
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3.2 2D continuum models of earthquake nucleation

We consider earthquake nucleation on a planar fault embedded into an elastic medium of

homogeneous elastic properties with the shear wave speedcs = 3.0 km/s, shear modulus

G = 30 GPa, and Poisson’s ratioν = 0.25. On the fault, a potentially seismogenic patch

borders regions steadily moving with a prescribed slip rateVL = 1 mm/yr, as illustrated

in Figure 3.1A. That steady motion provides loading in our models. The loading slip rate

VL = 1 mm/yr is on the low end of typical plate rates but it could be representative of steady

slip achieved locally on faults, especially in the case of secondary faults or multiple fault

strands. The fault resistance to sliding is given by rate and state friction regularized at zero

slip velocity [Rice and Ben-Zion, 1996;Lapusta et al., 2000]. The value of characteristic

slip L in simulations presented in Chapters 3 and 4 is 80µm (unless noted otherwise), as

laboratory-like values ofL (of order 1-100µm) are required to account for the presence of

small (M ∼ 0) earthquakes on natural faults [e.g.,Lapusta and Rice, 2003].

Two simplified fault models that we use to create two conceptually different scenarios

of earthquake nucleation are described in sections 3.2.1-3.2.2 and illustrated in Figure 3.1B.

More details are given in appendix 3.6. The friction and stress parameters of the models

are summarized in Table 3.1 and Figure 3.2. To simulate spontaneous slip accumulation in

terms of earthquake sequences, we use the boundary integral method developed byLapusta

et al. [2000] andLapusta[2001].
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Figure 3.1: (A) 3D schematics of a planar fault in an elastic medium. This study employs
simplified 2D models and focuses on a small region indicated by the square. The fault
region governed by rate and state friction (shown in gray) is loaded by relative motion above
and below the region with a prescribed slip rateVL. (B) Schematics of fault properties in
the simplified 2D continuum models. In the model with a weaker patch (top), the fault
has steady-state velocity-weakening properties everywhere and contains a patch of lower
effective normal stress indicated by a square. In the model with rheological transition
(bottom), a steady-state velocity-weakening region is surrounded by steady-state velocity-
strengthening regions.

Table 3.1: Friction-related parameters of both models. In the model with a weaker patch,
σ̄ = 50 MPa in the patch and̄σ = 55.6 MPa outside the patch. The indicated values of
a andb are valid for the entire fault in the model with a weaker patch and for the part of
the steady-state velocity-weakening region of the model with rheological transition where
a andb are constant.

Parameter Symbol Value

Reference slip velocity V0 10−6 m/s
Reference friction coefficient µ0 0.6
Characteristic slip distance L 80.0 µm
Effective normal stress σ̄ 50.0 MPa
Rate and state parametera a 0.015 or 0.0015
Rate and state parameterb b 0.019 or 0.0055
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3.2.1 Model with a weaker patch

The first model incorporates a weaker patch of 10% lower effective normal stress. The

model is based on the crustal-plane model [Lapusta, 2001]; it restricts the fault to motions

parallel to the along-strike directionx, eliminates the fault depth by considering depth-

averaged quantities, and retains variations only in the along-strike directionx. These mod-

ifications turn the 2D planar fault into a 1D along-strike analog (Figure 3.1B), with the

fault behavior described by strike-parallel slipδ(x, t), slip velocity (or slip rate)V (x, t) =

∂δ(x, t)/∂t, and the relevant component of shear stressτ(x, t). Compressive effective nor-

mal stress̄σ(x) does not depend on time in the cases considered. At the ends of the fault,

there are zones of zero initial shear stress to stop dynamic events (Figure 3.2). Hence the

extent of the fault capable of sustaining dynamic events is 1000 m. A more physical ap-

proach would be to replace the zero-stress regions with regions of velocity-strengthening

properties, but that would create alternative places for earthquakes to nucleate, and in this

model we would like to avoid such complexities. By making earthquakes nucleate in the

designated place, i.e., at the weaker patch in the middle of the fault, we can control how

heterogeneous the imposed conditions are in the nucleation region.

We have done a number of simulations of earthquake sequences in this model, varying

the values of parametersa (0.0015-0.015),b (0.0055-0.019),L (10-120µm), and the size

of the weaker patch (2-200 m). We present results for three representative cases, all with

L = 80 µm:

Case 1: The size of the weaker patch, 100 m, is much larger than the nucleation size,

which is less than 30 m in this case. Hence there is no imposed heterogeneity within the
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Figure 3.2: Top panels: Distributions of effective normal stressσ̄ and initial shear stressτ o

in the two models. In the model with a weaker patch, the region of lowerσ̄ is introduced
in the middle of the fault to encourage earthquake nucleation there. The size of the weaker
region varies in different cases studied. Bottom panels: Examples of distributions of rate
and state parametersa and(a− b) in the two models. Locations witha− b = 0 correspond
to rheological transitions from velocity-weakening to velocity-strengthening steady-state
friction. We varya andb in the presented cases but keep(a− b) the same in all cases.
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nucleation zone. Valuesa = 0.015 andb = 0.019 are used (Figure 3.2), which are typical

of laboratory experiments. Nucleation proceeds under stress conditions that are relatively

homogeneous compared to other cases. However, in this and all other cases, shear stress

concentrations do develop, as expected, at the edges of the slowly varying zone of faster

slip.

Case 2: The size of the weaker patch, 10 m, is a significant fraction of the nucleation

zone that develops. Nucleation proceeds under imposed conditions of heterogeneous nor-

mal stress within the nucleation zone. The other parameters are the same as in Case 1.

Case 3: The value ofa = 0.0015 is 10 times smaller than that of Cases 1 and 2. This

value is representative of the ones inferred from aftershock observations based on the model

of Dieterich [1994], assuming overburden normal stress minus hydrostatic pore pressure

[Gross and Kisslinger, 1997;Gross and B̈urgmann, 1998;Toda et al., 1998, 2005]. The

parameterb = 0.0055 is chosen to keep(b− a) the same as in Cases 1 and 2, ensuring the

same steady-state velocity-weakening properties. The size of the weaker region, 10 m, is

a significant fraction of the nucleation zone, as in Case 2. Note that the ratioa/b is 0.27

in this Case, whilea/b = 0.79 for Cases 1 and 2. According to the study ofRubin and

Ampuero[2005], this represents a qualitative difference, as explained in section 3.1.

3.2.2 Model with rheological transition

The second model contains variations in steady-state friction properties that create rheo-

logical transitions. It is analogous to the depth-variable model ofLapusta et al.[2000].

The fault motion is still in the along-strike directionx, but only variations with depthz are
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considered, so that the fault behavior is described by strike-parallel slipδ(z, t), slip veloc-

ity (or slip rate)V (z, t) = ∂δ(z, t)/∂t, and the relevant component of shear stressτ(z, t).

Unlike the model studied inLapusta et al.[2000], the model here does not include the free

surface. The effective normal stressσ̄ is constant along the entire fault (Figure 3.2).

We have done a number of simulations in this model, varying the values ofa andb in

the velocity-weakening region (0.0015-0.015 and 0.0055-0.023, respectively) andL (20-

160µm). We present results for two representative cases, both withL = 80 µm.

Case 4:a = 0.015 andb = 0.019 in the steady-state velocity-weakening region, as in

Cases 1 and 2 of the model with a weaker patch. Full distributions ofa andb are shown

in Figure 3.2. This variation is qualitatively similar to the one inRice[1993] andLapusta

et al. [2000]. The distributions ofa andb are asymmetric with respect to the middle of the

fault, so that simulated earthquakes nucleate at one of the rheological transitions.

Case 5:a = 0.0015 andb = 0.0055 in the steady-state velocity-weakening region, as

in Case 3. Throughout the fault domain, this Case has 10 times smallera than Case 4 and

suchb that the distribution of(a − b) is the same in both Cases. The same distribution of

(a− b) ensures that rheological transitions are at the same locations in both cases.
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3.3 Simulated nucleation processes

3.3.1 Nucleation processes due to weaker patches and importance of

normal stress heterogeneity

As an example of fault slip simulated in the model with a weaker patch, consider the earth-

quake sequence for Case 1 (Figure 3.3A). Earthquakes nucleate in the middle of the fault,

due to the weaker patch. The earthquakes then spread bilaterally along the strike of the

fault; the dashed lines show slip accumulation every 0.01 s during the dynamic rupture.

When the rupture reaches zero-stress barriers, it arrests. The interseismic period is 28

years. We take the nucleation process of the third event as the representative one for this

Case; the corresponding part in Figure 3.3 is surrounded by a small rectangle.

To study nucleation sizes and aftershock rates, we need to define when the nucleation

process ends and the dynamic event begins. InDieterich [1992] andDieterich [1994],

quasi-static equations were used, and their solution ceased to exist (i.e., slip velocities be-

came infinite) when inertial effects would have been important in the complete formulation.

The time at which the solution ceased to exist was taken as the time of instability onset.

Since our simulations fully account for inertial effects and capture the smooth transition

between the quasi-static phase and dynamic rupture, defining the beginning of an earth-

quake is not so simple. We use the criterion based on rupture speed and take, as the onset

of instability, the time at which a tip of the actively slipping zone moves with the speed

that exceeds a fraction (10%) of the shear wave speed of the surrounding elastic medium.

The tips of the actively slipping zone are found as the locations of shear stress concentra-
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Figure 3.3: Examples of earthquake sequences simulated in the model with a weaker patch
(panel A) and in the model with rheological transition (panel B). Solid lines show slip accu-
mulation every 2 years. Dashed lines are intended to capture dynamic events and are plotted
every 0.01 seconds during the simulated earthquakes. For each earthquake, the dashed lines
are shown from 0.05 seconds before our definition of the onset of an earthquake (rupture
speed reaching 10% of the shear wave speed) until the maximum slip velocity on the fault
reduces to 1 mm/s. The nucleation process of a representative earthquake is indicated by a
rectangle in both panels.



57

tion. The sliding region changes very slowly in space during the quasi-static deformation,

and extends with rupture speeds comparable to the shear wave speed during the dynamic

phase. Hence this rupture definition allows us to appropriately capture the transition. An

alternative approach would be to define the beginning of an earthquake as the time when

slip velocities reach a certain value, e.g., 0.1 m/s, either at a particular location or as a max-

imum on the fault. Note that the two criteria are related, as faster slip velocities correspond

to larger rupture speeds.

Representative nucleation processes for Cases 1-3 are shown in Figure 3.4. The dashed

lines in panels A-C show slip accumulation every 0.01 s starting with 0.05 s before our

definition of the beginning of an earthquake. The first five dashed lines are almost on top

of each other, signifying still relatively slow slip and slow expansion of the sliding region.

The sixth line shows much faster slip and expansion, indicating the beginning of a dynamic

event. The panels D-F illustrate the imposed distribution of effective normal stress and the

approximate extent of the spontaneous nucleation zone.

The comparison of Cases 1 and 2 shows an interesting result. The presence of slight

normal stress heterogeneity within the nucleation zone in Case 2 leads to 1.5 times larger

nucleation size for that Case, 36 m vs. 24 m for Case 1. Average normal stress is larger in

Case 2, with all other parameters being the same, and all existing estimates of earthquake

nucleation sizes discussed in section 3.1 would predict that the nucleation size should be

smaller in Case 2 than in Case 1, but the opposite is observed. The antiplane estimate

of nucleation size byRubin and Ampuero[2005] gives 36 m for the parameters of these

cases. Since we use a depth-averaged model, the directionx is affected by a factor of
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Figure 3.4: (A)-(C) Nucleation processes at weaker patches. Cases 1-3 correspond to either
different sizes of the weaker patch or different constitutive parametersa andb. The other
parameters are the same for all three cases. Panels D-F show the distribution of effective
normal stress̄σ in a region that includes the nucleation zone. Double arrows indicate the
extent of the nucleation zone for each case. (G)-(H) Nucleation processes at rheological
transition. Cases 4 and 5 correspond to different constitutive parametersa andb. Solid and
dashed lines in panels A-C and G-H have the same meaning as in Figure 3.3. Shaded areas
correspond to velocity-strengthening regions.
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Z = 1/(1 − ν) = 4/3 (appendix 3.6) and hence the estimate becomes 48 m. This is

broadly consistent with the nucleation sizes in Cases 1 and 2, in the sense that the estimate

gives a close upper bound. Note that the energy balance in the expanding-crack solution

of Rubin and Ampuero[2005], when adopted to the normal-stress heterogeneity of Case

2, would be qualitatively consistent with the larger nucleation size for Case 2 (A. Rubin,

personal communication, 2007). This result demonstrates that stress heterogeneities on

faults can have significant, and sometimes counterintuitive, effect on nucleation processes.

Case 3, with a smaller value ofa/b, behaves differently from Cases 1 and 2. The

nucleation size in Case 3 is about 29 m. We simulated a number of cases similar to Case 3

but with different sizes of the weaker patch, including the case in which the weaker patch

was much larger than the resulting nucleation size. In all those cases, the nucleation size

changed very little compared to Case 3. This means that the effect of heterogeneity on the

nucleation size is diminished for sufficiently small values ofa/b. We also find that smaller

values ofa/b lead to shorter periods of interseismic deformation between two successive

earthquakes. In Case 3, the interseismic period is 23.8 years, smaller than the interseismic

period of 29.1 years in Case 2, despite the fact that(b− a) is the same in the two cases.

3.3.2 Nucleation processes due to rheological transitions

An earthquake sequence simulated in the model with rheological transition is shown in Fig-

ure 3.3B, using Case 4 as an example. The solid lines are plotted every 2 years and show

the continuous slow sliding (creep) of the steady-state velocity-strengthening regions. That

slow slip creates stress concentration at its tip and penetrates into the velocity-weakening
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region. In due time, an earthquake nucleates close to the transition; its progression is shown

by dashes lines. After an earthquake arrests, the velocity-strengthening region experiences

accelerated sliding, or afterslip, due to the transferred stress. The interseismic period be-

tween two successive events is 32 years. We take the nucleation process of the forth event

as the representative one for this Case; the relevant part of Figure 3.3 is surrounded by a

small rectangle.

Representative nucleation processes for Cases 4 and 5 are shown in Figure 3.4. Nucle-

ation of the simulated earthquakes occurs within the velocity-weakening region, but close

to transition to velocity-strengthening friction (panels G and E; the transition is atz = −32

m in both cases). Due to interactions with the nearby creeping region, such nucleation pro-

ceeds under temporally and spatially non-uniform stress field. The different values fora

andb (with the same value ofb−a) in Cases 4 and 5 lead to notable differences in nucleation

processes. The nucleation sizes in Cases 4 and 5 are different and approximately consistent

with the estimates ofRubin and Ampuero[2005], which are2µLb/(πσ̄(b− a)2) = 36 m

for Case 4 and2.74µL/(σ̄b) = 24 m for Case 5. Note thatRubin and Ampuero[2005]

gave formulae for half of the nucleation size, but we use full nucleation sizes here. In our

simulations, the nucleation sizes are 35 to 40 m for Case 4 and 18 to 24 m for Case 5, as

can be estimated from Figure 3.4.

As in the model with a weaker patch, smaller values ofa/b result in shorter interseismic

periods, but the effect is much stronger in the model with rheological transition. In Case

5, the interseismic period is 18 years, almost twice shorter than the interseismic period of

32 years in Case 4. In the model with a weaker patch, the interseismic period is dictated
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Figure 3.5: Slip-velocity evolution during one earthquake cycle for representative points
inside nucleation zones, on linear (panel A) and logarithmic (panel B) time scales. Time to
instabilityT is given byT = t2 − t, t1 < t < t2, wheret1 andt2 are the occurrence times
of two consecutive earthquakes. For each case, slip velocity for timest1 + 1 < t < t2 is
shown. Slip velocity atx = 0 km is plotted for Cases 1 and 2, and slip velocity atz = 0 is
plotted for Case 4. Note that slip-velocity evolution for nucleation processes at rheological
transition is non-monotonic.

by the loading time necessary to rebuild the stress relieved during a dynamic event and

hence depends on the static stress drop, which is similar in Cases 1 and 3. In the model

with rheological transition, the interseismic period is controlled by the time it takes for

the slow slip penetrating from the velocity-strengthening region to create a slipping zone

comparable to the nucleation size. Since the nucleation size is almost twice smaller in Case

5 than in Case 4, the interseismic period is also almost twice smaller.

3.3.3 Different time evolution of nucleation in the two models

The nucleation sizes in both models are comparable for a given set of rate and state pa-

rameters (Figure 3.4). The question arises whether the time evolution of the nucleation

processes in the two models is also similar. In Figure 3.5, we compare slip-velocity evo-
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lution for representative points inside the nucleation zones at weaker patches (Cases 1 and

2) and at rheological transitions (Case 4). In the model with a weaker patch, slip velocity

gradually increases through the interseismic period, and this behavior is qualitatively con-

sistent with that of spring-slider models [Dieterich, 1994;Gomberg et al., 2000]. Still, slip

velocity in Cases 1 and 2 is slightly different, especially for the period from10−3 to 100

years before an earthquake (Figure 3.5B). This can only be caused by normal-stress het-

erogeneity within the nucleation zone, as this is the only difference between Cases 1 and

2. Nucleation in the model with rheological transition (Case 4) is significantly different:

slip velocity increases first, then stays relatively constant for about 20 years, with some

oscillations, and later increases further. This complex non-monotonic behavior is due to

penetration of slip from the nearby slowly slipping region. The creeping region concen-

trates stress at its edge, causing slip there and expanding itself. This process moves the

stress concentration along the fault and results in time-dependent heterogeneity of shear

stress within the nucleation zone. We find the corresponding fluctuations of slip velocity

in all cases we have studied in the model with rheological transition. Note that variations

in slip velocity are linked to variations ofV θ/L, the quantity important in the aftershock

model ofDieterich[1994].

Hence we find that earthquake nucleation in the two models proceeds differently, as

demonstrated by slip-velocity evolution of points within the nucleation zone. The differ-

ences are caused by spatial and temporal stress heterogeneity within the nucleation zone

and result in significant consequences for aftershock rates (section 4.1).
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3.4 Dependence of nucleation processes and sizes on load-

ing history

As discussed in section 3.1, several simple analytical estimateshnucl = ηGL/(σ̄F ) for

the nucleation size have been proposed. In particular,F = b was advocated byDieterich

[1992]. Rubin and Ampuero[2005] found thatF = b is valid in a certain parameter regime,

a/b . 0.37, while F = b/(b − a)2 holds fora/b & 0.5. This is because, fora/b,& 0.5

the conditionV θ/L À 1 adopted byDieterich [1992] breaks down in the middle of the

nucleation zone under quasi-static tectonic loading. The Dieterich and Rubin-Ampuero

estimates are quite different for the values ofa close tob. Rubin and Ampuero[2005] men-

tioned that “the loading conditions play a role, and could potentially place nucleation in the

regimeV θ/LÀ 1 even for largea/b,” citing a stress step and the associated instantaneous

change in slip velocity as an example.

We find that nucleation evolution and size are indeed strongly controlled by loading

history. Our simulations of nucleation under slow tectonic loading result, for both models,

in nucleation sizes consistent with the estimates ofRubin and Ampuero[2005] (section

3.3). However, other reasonable loading histories can make the nucleation size closer to

the estimate ofDieterich [1992] even for the parameter rangea/b & 0.5. As an example,

consider a nucleation process in the model with a weaker patch for a case conceptually

similar to Case 1 of section 3.3, but withL = 20 µm, a/b = 0.94, b = 0.016, and the

weaker patch size of 200 m. If we use the model-dependent constantsη from antiplane

models (η = 2.5 for Dieterich,η = 2/π for Rubin and Ampuero) multiplied by parameter
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Figure 3.6: Dependence of nucleation processes on loading history. Panels A, C, and E
correspond to an unperturbed nucleation process in a model with a weaker patch anda =
0.015,a/b = 0.94,L = 20 µm and the weaker patch size of 200 m. The same nucleation
process but perturbed with∆τ = 3.0 MPa at one year before the original instability is shown
in panels B, D, and F. The dashed lines in panels A and B are plotted every 0.01 seconds
staring with 0.05 seconds before our definition of the onset of instability. The solid lines
in the rest of the panels correspond to the times of dashed lines from panels A and B. The
first 5 lines cluster, indicating the spatial extent of the nucleation zone. The insets show the
evolution ofV θ/L atx = 0 m. The nucleation sizes in these two cases differ by an order
of magnitude.



65

Z = 4/3 (appendix 3.6), the two estimates are 2.5 m and 162 m, respectively, with the

Rubin-Ampuero estimate 65 times larger than that of Dieterich. We consider two cases:

nucleation proceeding under slow tectonic loading (panels A, C, and E of Figure 3.6) and

nucleation that experiences, in addition to slow tectonic loading, a positive shear stress step

one year before the original time to instability (panels B, D, and F of Figure 3.6). We find

that the perturbed case has a much smaller nucleation size than the unperturbed case, 5.5

m vs. 53 m. The new time to instability is 0.014 years.

The difference between the two scenarios can be explained by the evolution ofV θ/L

in the nucleation zone, shown in panels E and F. The unperturbed scenario is consistent

with the study ofRubin and Ampuero[2005] and follows the evolution typical for values

of a/b & 0.5, with V θ/L of order 1 in the middle of the nucleation zone for times close to

instability (panel E). In the perturbed case,V θ/L becomes, after the shear stress step, much

larger than one throughout the nucleation zone andV θ/L reduces to one in the nucleation

region only after tips of the rupture start to expand dynamically (inset in panel F). Hence,

due to the stress perturbation, the conditionV θ/L À 1 becomes valid throughout the nu-

cleation zone and stays valid until the dynamic event, leading to a much smaller nucleation

size more consistent with the estimate ofDieterich[1992].

This example demonstrates how different loading conditions can change the nucleation

process and, in particular, cause order-of-magnitude differences in nucleation sizes. In

laboratory experiments, slow loading over tectonic time scales is not feasible, and much

faster loading must be used, rapidly increasingV and potentially leading toV θ/L À

1 everywhere within the nucleation region even fora/b & 0.5. This may explain why
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experiments ofDieterich and Kilgore[1996] were consistent with the results ofDieterich

[1992], even though laboratory values ofa/b often fall into the rangea/b & 0.5.

3.5 Conclusions

Using two different fault models, we have simulated several plausible scenarios of sponta-

neous earthquake nucleation. The nucleation processes have been simulated in continuum

models as a part of long-term slip history that involves rapid dynamic events (simulated

earthquakes) as well as pre-, inter-, and postseismic slip.

We find significant differences among the simulated nucleation processes. Nucleation

processes at weaker patches behave similarly to theories based on spring-slider models,

with some notable deviations, whereas nucleation processes at rheological transitions be-

have differently, producing complex slip-velocity histories. In particular, nucleation sizes

are affected by normal-stress heterogeneity in the nucleation zone. Nucleation processes

due to rheological transitions originate as the extension of creep in the nearby velocity-

strengthening region, producing non-monotonic evolution of slip velocity at the rheologi-

cal transition. These differences suggest that nucleation processes depend on the conditions

under which nucleation occurs on natural faults, and have important implications for after-

shock phenomena as discussed in Chapter 4.

Nucleation processes simulated with different loading histories can have nucleation

sizes that differ by an order of magnitude and cannot be predicted by a single existing the-

oretical estimate. Nucleation sizes obtained with slow tectonic-like loading are consistent

with the estimates ofRubin and Ampuero[2005]. For models witha/b & 0.5, loading his-
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tories that involve positive shear stress steps can result in significantly smaller nucleation

sizes, closer to the estimate ofDieterich [1992]. The behavior can be explained by the

evolution ofV θ/L in the nucleation zone and implies that final nucleation stages of after-

shocks and other triggered events may be different from those of events nucleating under

slow tectonic loading. In particular, nucleation sizes of aftershocks may be significantly

smaller.

3.6 Appendix: Elastodynamic equations and numerical

parameters

The model with a weaker patch is based on the crustal-plane model described inLapusta

[2001]. The only non-zero component of the displacement is in the along-strike direction

x and it is averaged over the depthHseismic of the fault. The elastodynamic equation for the

depth-averaged displacementū(x, y, t) is [Lehner et al., 1981;Lapusta, 2001]:

Z2∂
2ū

∂x2
+
∂2ū

∂y2
+

1

H2
eff

(
1

2
sign(y)VLt− ū

)
=

1

c2s

∂2ū

∂t2
, (3.2)

whereHeff = (π/4)Hseismic, Z = 1/(1 − ν), ν is Poisson’s ratio, andcs is the shear wave

speed. We useHseismic = 150 m. The third term on the left-hand side of the equation repre-

sents coupling to regions that are steadily moving with slip velocityVL. The crustal-plane

model inLapusta[2001] incorporated a free surface and loading from a deeper region. In

the model with a weaker patch, the seismogenic region is loaded by two regions and there

is no free surface (Figure 3.1A). This leads to a factor of two in front ofVL in equation
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(3.2). The effective shear wave speed in the direction of the strike isZcs = 4 km/s for

valuesν = 0.25 and cs = 3 km/s used in this study. The along-strike slip is given by

δ(x, t) = ū(x, y = 0+, t) − ū(x, y = 0−, t). Using the same notation as inLapusta et al.

[2000] andLapusta[2001], the typical numerical parameters are as follows. There are

Nele = 8192 spatial elements along the simulated fault domainλ = 2000 m. The ratio

h∗/h = 50.1 of the critical cell sizeh∗ to the cell sizeh = 0.244 m ensures well-resolved

simulations [Lapusta et al., 2000]. Timet is discretized into variable time steps, with the

minimum value of0.25h/cs = 15 µs and the maximum value of 0.2 years. In the mode-

dependent convolution truncation,Tw(1) = λ/cs andqw = 4.

The elastodynamic equations and simulation methodology for the model with rheologi-

cal transition are the same as inLapusta et al.[2000]. The simulated fault domainλ = 1200

m is composed of the 600-m region where friction is applied, and the 600-m loading re-

gion of the prescribed slip rate. InLapusta et al.[2000], domainλ also included a mirror

fault image to simulate the effects of a free surface, but the model here does not contain

a free surface. The domainλ is discretized intoNele = 4096 equal spatial elements, each

with the sizeh = 0.29 m, so thath∗/h = 32.2. For time discretization and convolution

computation, we use the same parameters as in the model with a weaker patch.
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Chapter 4

Aftershock Rates Due to Static
Triggering in Continuum Models of Rate
and State Faults

In Chapter 3, we have considered five representative cases of earthquake nucleation, com-

pared them in terms of their slip-velocity evolution, and discussed the effects of heterogene-

ity in normal stress, heterogeneity in friction properties, and variations in loading (sections

3.3 and 3.4). We find significant differences among the simulated nucleation processes.

Since their spatial extent varies with time and their slip and slip velocity vary with space,

it is not obvious how to make the direct comparison of the nucleation processes with each

other and the ones in spring-slider models. To facilitate such comparison, we study the

response of the simulated nucleation processes to static stress changes and the resulting af-

tershock rates, compare them with the results ofDieterich[1994], and explain the observed

similarities and differences (sections 4.1-4.4).

In computing the aftershock rates, we assume, following previous approaches [Di-

eterich, 1994;Gomberg et al., 2000;Gomberg, 2001], that the aftershock-producing nu-

cleation sites are all governed by the same nucleation process, albeit time shifted for each
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nucleation site. On natural faults, different nucleation sites may have different friction prop-

erties, stress conditions, stressing rates, etc., and one would need to consider, in general, a

combination of nucleation models of the kind studied in this Chapter to make meaningful

comparisons with aftershock observations. Our results on aftershock rates may be useful

for explaining observations in special cases, as we show in section 4.2 for a cluster of af-

tershocks located at rheological transition. However, the main purpose of the study is to

determine whether the response of rate and state faults to static stress perturbations changes

if one uses models of faults in elastic continuum rather than spring-slider models.

This Chapter is based on Sections 5-8 of the paper “Variability of earthquake nucleation

in continuum models of rate-and-state faults and implications for aftershock rates” by Y.

Kaneko and N. Lapusta (J. Geophys. Res., 2008).

4.1 Comparing nucleation processes by their response to

static stress changes and resulting aftershock rates

4.1.1 Procedure for determining aftershock rates

Following Dieterich [1994], we consider a preexisting population of rate and state nucle-

ation sites distributed in the volume of a prospective aftershock region (Figure 4.1A). Just

prior to the time of the mainshock, each site is at a different stage in the nucleation process

so that the population of nucleation sites would result in a constant background earthquake

rate if left unperturbed. The mainshock perturbs the nucleation sites, causing the nucle-

ation to proceed differently and resulting in a nonconstant rate, which can be called the
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Figure 4.1: (A) A cartoon illustrating a population of nucleation sites just before a stress
perturbation due to a mainshock. Each nucleation site follows nucleation behavior simu-
lated in a continuum fault model. At the time of the perturbation (shown by ’×’), nucleation
sites are at different stages of the nucleation process, with the stages selected in such a way
that the population would produce a constant (background) earthquake rate if left unper-
turbed. After stress step∆τ due to the mainshock, the population produces a nonconstant
earthquake rate (aftershock rate). (B) Nucleation process of each site and its perturbation
are illustrated using slip velocity at a representative point. The solid and dashed lines show
the unperturbed and perturbed response, respectively. A static stress step is applied at the
time indicated by ’×’. T andf(T ) denote the original time to instability and the new time
to instability, respectively. This example shows slip velocity at the middle of the nucleation
zone for Case 1. The model is perturbed atT = 16.4 years before instability with a stress
step∆τ = 3.0 MPa; the new time to instability isf(T ) = 3.4 years.

aftershock rate. We consider the situation when the population experiences a static stress

change in the form of a uniform positive shear stress step, except in section 4.2 where a

case with nonuniform stress step is studied.

To compute the aftershock rate, we need to know how the rate and state nucleation at

each site reacts to such change in stress. Let us denote byT the time from the application

of the stress perturbation to the unperturbed failure time. We callT the original time to

instability. Let us denote byf(T ) the new time to instability, i.e., the changed time to

instability due to the stress perturbation. To compute the aftershock rate, we only need to

know f(T ) for all T of interest. For monotonicf(T ), the aftershock rateR is given by
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(Gomberg et al.[2000], appendix 4.7)

R

r
=

dT

df
. (4.1)

For non-monotonicf(T ), which arise in one of the models, the inverse dependenceT (f)

is multivalued, and equation (4.1) cannot be used. The approach we developed for that

situation is described in appendix 4.7.

For each nucleation example described in section 3.3, we findf(T ) numerically by the

following procedure. Each stage of a given nucleation process can be labeled by its time to

instabilityT (Figure 4.1B). We select many values ofT and, for each of them, we conduct

a simulation in which we perturb the nucleation process by imposing a static stress step

in the fault model at timeT before the instability. In the simulation with the perturbation,

the instability occurs at a different time, giving us the new time to instabilityf(T ). This

numerically constructedf(T ) is used to compute the aftershock rate.

One of the important differences between our computation of aftershock rates and the

model ofDieterich [1994] is that the original time to instabilityT in our model cannot be

longer than the simulated interseismic period, whereas in the model ofDieterich [1994],

the population of preexisting nucleation sites can include sites with any original (or unper-

turbed) times to instabilityT . However, for any non-zero stressing rateτ̇ , the assumption

that nucleation processes can be arbitrarily long is not physically plausible. Ifτfail is an

upper bound of failure stress, then the nucleation site would have to fail within the time of

the order ofτfail/τ̇ . That consideration imposes a physical limit on how large the times to

instability T can be in the preexisting population even in the model ofDieterich [1994],
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although, mathematically, analytical expression (4.12) that relates the time to instability

and slip velocity of each nucleation site can be used for anyT .

Our method of computing aftershock rates can be used to find aftershock rates due to

perturbations of any time-dependent nucleation process. In addition, this approach can be

readily extended to dynamic perturbations and to more complex scenarios in terms of the

initial nucleation population and spatial distribution of stress change. One such combined

scenario, with spatially varying stress changes, is considered in section 4.2.

4.1.2 Aftershock rates based on nucleation processes at weaker patches:

Overall similarity to spring-slider models, effects of heteroge-

neous normal stress

Nucleation processes in the model with a weaker patch lead to response functionsf(T )

and aftershock rates shown as dotted lines in panels A-C and D-F of Figure 4.2. Each

dot in panels A-C corresponds to a separate simulation. Note that a nucleation site with

the new time to instabilityf will contribute to aftershock rates at the timef after the

mainshock, and that links the horizontal axes of panels A-C with those of panels D-F. For

Cases 1-2, the static stress step∆τ = 3.0 MPa is used; for Case 3 of ten times smallera,

∆τ = 0.30 MPa is used, to have the same value of∆τ/(aσ̄). The analytical solutions of

Dieterich [1994], computed from equations (4.16) and (4.12) of appendix 4.6, are shown

for comparison as dashed lines. To compute the analytical solutions, we take the value

of effective normal stress̄σ corresponding to the average over the nucleation zone. The

stressing ratėτ is computed in our simulations by taking the time derivative of shear stress
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outside the nucleation zone (i.e., in the locked region). We find thatτ̇ is constant before

and after the perturbation and equal to 0.255 MPa/yr.

The numerically computed response functionf(T ) and the corresponding aftershock

rates nearly coincide with the analytical solution ofDieterich [1994] for Case 1 (panels A

and D) of homogeneous̄σ within the nucleation zone. A small deviation occurs only for

times after the mainshock smaller than10−7 years, as shown in the inset of panel D. For

heterogeneous̄σ within the nucleation zone,f(T ) and aftershock rates clearly deviate from

the results ofDieterich [1994] (Case 2, panels B and E): The aftershock rates are higher

right after the mainshock, and there is a peak in the aftershock rates (panel E). This is con-

sistent with the differences in slip velocities for unperturbed nucleation processes discussed

in section 3.3 (Figure 3.5). New times to instability smaller than10−2 years, for which the

aftershock rates in Case 2 are higher than in the model ofDieterich[1994] and higher than

in Case 1, correspond to original times to instability smaller than about100 years, which

is when unperturbed slip velocities of Cases 1 and 2 develop more substantial differences

(Figure 3.5B). Case 3 (panels C and F) shows that decreasing the ratioa/b, while keeping

the same value of∆τ/(aσ̄), the same value of(b− a), and the same heterogeneity in nor-

mal stress, nearly eliminates the difference between the resulting aftershock rates and the

analytical solution. For all three cases, the aftershock duration agrees with the prediction

ta = aσ̄/τ̇ of Dieterich[1994], as do the aftershock rates for times close tota. These results

and their relation to the time evolution of slip velocity and the validity of the assumption

V θ/LÀ 1 are further analyzed in sections 4.3 and 4.4.

Aftershock rates exhibit a nearly constant value right after the stress step (panels D-F),
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Figure 4.2: Response to static stress steps and the resulting aftershock rates for Cases 1-3
of nucleation at a weaker patch. Panels A-C show the simulated response to stress steps
(dotted solid lines) and compare it with the analytical results ofDieterich [1994] (dashed
lines). In the text, the original time to instability is referred to asT and the new time
to instability is referred to asf(T ). Panels D-F depict aftershock rates computed based on
panels A-C (dotted solid lines) and compare them with Dieterich’s analytical result (dashed
lines). The new time to instability in A-C corresponds to the time after the mainshock in
D-F. The normalized stress step∆τ/(aσ̄) and the aftershock durationta = aσ̄/τ̇ for each
Case are indicated. Panels G-I show evolution ofV θ/L before the dynamic event for
unperturbed simulations at two locations inside the nucleation region.
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which lasts for about 3 days in Case 1. This plateau is consistent with the prediction of

spring-slider models. The plateau duration can be shortened by increasing the value of

∆τ/(aσ̄) (appendix 4.6). In Case 1,∆τ/(aσ̄) = 4.0 with ∆τ = 3.0 MPa, σ̄ = 50 MPa,

anda = 0.01. Since∆τ = 3.0 MPa is already a high value for a static stress change,

one can shorten the plateau duration only by using either smallerσ̄, or smallera, or both.

That is why interpretations of aftershock observations using the model ofDieterich[1994]

typically result in values ofaσ̄ one to two orders of magnitude smaller than the one we

use in Case 1 [Gross and Kisslinger, 1997;Gross and B̈urgmann, 1998;Toda et al., 1998,

2005]. Note that introduction of slight normal-stress heterogeneity in the nucleation region

(Case 2) results in higher aftershock rates after the mainshock followed by a peak, and that

behavior effectively shortens the duration of the plateau.

4.1.3 Aftershock rates based on nucleation processes at rheological

transitions: Aftershock peaks and seismic quiescence

Figure 4.3 shows aftershock rates computed using nucleation processes from the model

with rheological transition and compares them with the analytical rates computed based

on Dieterich [1994] (equation (4.12)). Cases 4 and 5 are defined in section 3.2.2. In Case

4, we apply shear stress step∆τ such that∆τ/(aσ̄) = 0.4. In Case 5, we use the same

∆τ that results in∆τ/(aσ̄) = 4.0. Case 6 is based on the nucleation process of Case 4

but perturbed with a higher shear stress step corresponding to∆τ/(aσ̄) = 4.0. For the

analytical solution ofDieterich [1994], we usēσ = 50 MPa andτ̇ = 0.087 MPa/year; the

value of the stressing rate is computed in our simulations by taking the time derivative of
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Figure 4.3: Response to static stress steps and the resulting aftershock rates for Cases 4
and 5 of nucleation at rheological transitions. Panels and lines have the same meaning as
in Figure 4.2. Note that responsef(T ) to static stress changes and the resulting aftershock
rates are non-monotonic and qualitatively different from the analytical results ofDieterich
[1994]. The box in panel A indicates the part off(T ) shown in Figure 4.10.

shear stress within the locked region close to the nucleation zone (atz = 50 m).

In contrast to the behavior of nucleation processes due to weaker patches, nucleation

processes due to rheological transitions give rise to complex non-monotonic responsef(T )

(Figure 4.3, panels A-C). To understand the origin of the complexity, let us consider the

effect of a static stress step applied to the nucleation process of Case 4 at several different

times. Panels A-F of Figure 4.4 give time histories of maximum slip velocity within a part
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Figure 4.4: Response to static stress steps in the model with rheological transition (Case 4).
Panels A-F: Solid lines show the unperturbed evolution of maximum slip velocity within
a part of the velocity-weakening region (-32 m≤ z ≤ 50 m) that contains the nucleation
zone. Times of the stress perturbation are given on the top of each panel and marked by
’×’. Red dashed lines indicate the resulting perturbed behavior. Panels G-I: The effect
of stress perturbations on the pattern of slip accumulation. The comparison between the
panels is discussed in the text. Note that a positive shear stress step can delay the timing of
the subsequent earthquake by inducing an seismic transient (panels C, D, I).
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of the velocity-weakening region,−32 m≤ z ≤ 50 m, for both unperturbed and perturbed

simulations. If the stress step is applied to the nucleation process when its original (unper-

turbed) time to instabilityT is 1 to 10 years, the triggered earthquake occurs in about 0.4

to 0.5 years (i.e.,f(T ) = 0.4 to 0.5 years), as illustrated in panels A-B. That is why the

aftershock rate for Case 4 has a pronounced peak at about 0.4 to 0.5 years after the main-

shock (Figure 4.3, panel D). However, stress perturbation atT = 11 years results in a very

different value off(T ) = 16 years (panel C), actually postponing the dynamic event. This

is because the immediate consequence of the stress step is to induce more rapid slip but,

for the perturbation atT = 11 years, this more rapid slip fails to accelerate all the way to

instability, relieving the elevated stress in the nucleation region aseismically and decreasing

slip velocities throughout the nucleation zone (from the maximum of about10−11 m/s to

10−14 m/s). That aseismic response postpones the next acceleration to dynamic instability

and makes the new time to instability larger than the original time to instability.

This behavior demonstrates how a positive shear stress step can delay the time to insta-

bility, inducing an aseismic slip transient instead of nucleating unstable slip sooner. The

change in slip behavior is actually gradual for differentT , with the size of the triggered

earthquakes decreasing as the stress step is applied at values ofT from 1 to 10 years, until,

for T & 10 years, the stress step only causes transient acceleration of aseismic slip that

fails to directly initiate a dynamic event. This is illustrated in panels G-I of Figure 4.4. For

a stress step applied atT = 7.0 years (panel G), the triggered earthquake is of comparable

size to events in the unperturbed simulation (Figure 3.3, panel B) but the triggered event

almost arrests halfway through, as evidenced by dense spacing of dashed lines, due to in-
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sufficient level of shear stress at locations fromz = 60 toz = 100 m. ForT = 9.0 years

(panel H), the triggered dynamic event is noticeably smaller than the unperturbed one; this

is because shear stress further along the fault is not yet ready to support a larger event.

Panel H also shows a larger event that occurs 20 years later. ForT = 12.0 years (panel I),

a stress step fails to induce dynamic instability and results in aseismic transient. The next

seismic event occurs in 18 years (panels D, I), which means that the stress step replaced the

original time to instability of 12 years with thelongernew time to instability off(T ) = 18

years. For largerT , the triggered aseismic slip decreases in magnitude and area, relieving

less of the accumulated stress and allowing the next dynamic event to initiate sooner, until

the new time to instability is shorter than the original time to instability (panel E). The

smaller and smaller immediate impact of the stress step for larger values ofT makes intu-

itive sense, since the model is farther from generating unstable slip. For stress steps at even

larger values ofT , the nucleation process exhibits even more complex response, trying to

accelerate twice before finally producing a dynamic event (panel F).

This response to static stress changes is more complex than the one found byPerfettini

et al. [2003] in a similar model with rheological transition.Perfettini et al.[2003] con-

cluded that the time advance of rate and state nucleation due to a static stress perturbation

is similar to the one predicted by the Coulomb-failure model for most of the earthquake

cycle. This is similar to the conclusion we draw for some cases in the model with a weaker

patch (section 4.4, scenario 1) but not for the model with the rheological transition. Simula-

tions inPerfettini et al.[2003] used quasi-dynamic methodology that does not fully account

for inertial effects as we do here, which may have diminished the slip response to abrupt
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stress changes. However, the main difference seems to be the selection of rate and state

parameters and the resulting nucleation size. For the parameter selections in our models,

nucleation sizes are several times smaller than the seismogenic region and nucleation oc-

curs close to the rheological transition. Hence the expanding slow-slip region enters the

zone of the eventual acceleration towards a dynamic event very early in the earthquake cy-

cle, and the time- and space-dependent stress concentration at the tip of the slow-slip region

constitutes a significant part of the nucleation zone. InPerfettini et al.[2003], parameter

choices led to much larger nucleation zone in the middle of the seismogenic zone, which

formed after the slow-slip regions from both sides of the seismogenic region merged. That

is likely why in the work ofPerfettini et al.[2003], for most of the interseismic period,

stress steps could only create an effect similar to Coulomb-failure models, as described by

scenario 1 of section 4.4.

The aftershock rates computed based on the complex non-monotonic functionsf(T )

do not have power-law decay and do not match the analytical solution ofDieterich [1994]

(Figure 4.3, panels D-F), exhibiting a pronounced delayed peak followed by the period of

very low or even zero aftershock rates (depending on whether one treats the changes in

f(T ) discussed above as continuous or discontinuous during interpolations). Note that the

smaller value ofa/b in Case 5 does not eliminate the significant differences between the

numerically constructed aftershock rates and the analytical results ofDieterich [1994], as

we have observed in the model with a weaker patch. In the model with rheological tran-

sition, the complex interplay of seismic and aseismic processes and the resulting complex

aftershock response occur for all values ofa/b, as the complexity is caused by the vicinity
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of rheological transition.

The periods of zero or near-zero aftershock rates correspond to seismic quiescence. In

Case 4, all new times to instability are either larger than 11 years or smaller than 0.5 years.

This means that there are no stages of the nucleation process that, when perturbed, result

in new times to instability between 0.5 to 11 years. That is why there is quiescence of

aftershocks in that time period (Figure 4.3, panel D). Using spring-slider models,Gomberg

et al.[2005] showed that quiescence at the end of the aftershock sequence can be explained

by the absence of nucleation sites that are sufficiently far from instability. That is consistent

with our results in Case 6 (Figure 4.3, panel F), where all available nucleation sites produce

earthquakes in the first10−2 years after the stress perturbation, and there are no nucleation

sites left to contribute to aftershock rates at later times. We emphasize that there is a dif-

ferent kind of quiescence in this model, one that originates not from the lack of nucleation

sites but rather from the non-monotonic response of nucleation processes to static stress

changes.

4.1.4 Dependence of aftershock rates on constitutive parametersband

L

Aftershock rates in the model ofDieterich [1994] do not depend on the rate and state

parameterb and the characteristic slipL. In the continuum models presented here, after-

shock rates show some dependence on parametersb andL for cases that exhibit deviations

from Dieterich’s model. For nucleation processes due to weaker patches, aftershock rates

depend on the ratioa/b and on the size of the weaker patch. Changingb while keepinga
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fixed would change the ratioa/b, while changingLwould change the size of the nucleation

zone and hence its relation to the size of the weaker region. For nucleation processes due

to rheological transitions, the value ofb affects the height of the delayed peak in aftershock

rates, while decrease inL results in a shorter average time interval between earthquake nu-

cleation at the same location, which can lead to more rapid initiation of seismic quiescence

after a period of aftershocks.

4.2 Aftershock rates due to nonuniform stress changes in

the model with rheological transition

How would the delayed peaks in aftershock rates that we observe for the model with rhe-

ological transition superimpose for nonuniform stress changes due to the distance from

the mainshock? To answer this question, let us consider a population of nucleation sites

uniformly distributed along the rheological transition and perturbed by shear stress change

due to slip at a circular asperity (i.e., an area of large coseismic slip) located just above the

transition (Figure 4.5). The population of nucleation sites along the transition experiences

nonuniform stress step∆τ that can be approximated by [Dieterich, 1994]:

∆τ = −∆τdrop




(
1− c3

[(c+ h)2 + d2]3/2

)−1/2

− 1


 , (4.2)

where∆τdrop is the stress drop in the asperity,c is the asperity radius,h is the distance from

the asperity edge to the transition, andd is the distance along the transition, withd = 0

corresponding to the point directly below the hypocenter. In our example,∆τdrop = 10
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MPa,c = 0.70 km, andh = 0.15 km.

We would like to determine aftershock rates due to a population of nucleation sites

uniformly distributed along the segment[−A/2, A/2] of the transition. Each nucleation site

is governed by the nucleation process of Case 4. We divide the segment into subsegments

Ai, i = 1, 2, ..., such that the change of the stress step within each subsegment is 0.25 MPa.

We assume that the stress step within each subsegment is constant and equal to the stress

step at the center of the subsegment. The aftershock rateRi/r for each subsegmentAi is

determined using the approach developed in this Chapter. The overall aftershock rate can

then be obtained as the weighted sum:

R

r
=

∑
i

Ri

r

Ai

A
. (4.3)

In our example,A/2 = 1.4 km, which corresponds to selecting nucleation sites located

approximately within one asperity radius from the edge of the mainshock. The computed

aftershock rate shows a power-law decay with time for about one year, and then quiescence

(Figure 4.6A, dotted line). Evidence of turnoff of aftershock activity was found at the base

of the seismogenic zone near the M6.2 1984 Morgan Hill earthquake [Tian and Rubin,

2005;Y. Tian, personal communication, 2005]. In that case, aftershocks followed Omori’s

law for several months and then disappeared (Figure 4.6B,C). This is qualitatively similar to

our computed aftershock rate (Figure 4.6A). We emphasize that the correspondence is only

qualitative; for example, we use a vastly simplified model of the mainshock. Stress changes

due to a realistic mainshock may be quite heterogeneous locally, and direct quantitative

comparison between models and observations would require a more detailed analysis.
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Figure 4.5: Model for estimating aftershock rates due to a population of nucleation sites lo-
cated along a segment of rheological transition perturbed by a mainshock asperity. Due to
the distance from the asperity, the nucleation sites along the segment experience a nonuni-
form stress step. The top panel illustrates the fault plane with a circular asperity of radiusc
and stress drop∆τd that imposes a variable static stress step on the nucleation sites located
along the transition shown by the horizontal axis.d measures the distance along the transi-
tion. Variation of static stress change withd for c = 0.70 km,h = 0.15 km, and∆τd = 10
MPa is shown in the bottom panel. The segment[−A/2, A/2] over which aftershock rates
are sought is separated into sub-regions of approximately constant stress steps as discussed
in the text.
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Figure 4.6: (A) Aftershock rates computed for the nonuniform static stress change and a
population of nucleation sites located along the rheological transition (Figure 4.5). Dots
represent the aftershock rates based on the model with rheological transition. The after-
shock rate based onDieterich[1994], for the same friction and stress parameters, is shown
by the dashed line. The slope oft−1 is plotted for reference. This model produces Omori’s
law in a limited time period followed by seismic quiescence. For the period of the power-
law decay of aftershocks, this model produces much higher aftershock rates than predicted
by the model ofDieterich [1994]. (B) and (C) FromTian and Rubin[2005], courtesy of
Y. Tian. A cluster of the 1984 Morgan Hill aftershocks occurred at a depth appropriate for
rheological transition. The cross-sectional view of one multiplet of aftershocks is shown
in panel B. Panel C gives the observed seismicity rate vs. time. The multiplet approxi-
mately followed Omori’s law, but seismicity terminated about one year after the Morgan
Hill earthquake. This behavior is qualitatively similar to that of the computed aftershock
rates in panel A.
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If the aftershock rate in our model were interpreted using the results ofDieterich[1994],

the parameteraσ̄ would be significantly underestimated. To find the aftershock rate based

on Dieterich [1994], we use the weighted sum (4.3) withRi/r given by the analytical for-

mula (4.12), which results in much smaller ratesDieterich [1994] (Figure 4.6A, dashed

line). To match the numerically computed aftershock rate, we need to use 10 times smaller

aσ̄ in (4.12) (and also 20 times smaller stressing rateτ̇ , to match the slope). While this

does not fully close the gap between the expected and observed values ofaσ̄, it is a step in

the right direction. This example shows that application of spring-slider solutions to earth-

quakes that potentially have more complex nucleation processes, such as the ones occurring

at rheological transitions, may lead to errors in estimating rate and state parameters.

Similar superposition of aftershock peaks, leading to Omori’s law in a limited time pe-

riod, should arise in a situation with a constant stress step∆τ but applied to a population

of nucleation sites with varying values ofaσ̄. For example, Cases 4 and 5 have the same

∆τ but Case 5 has ten times smalleraσ̄, and, as a result, the aftershock rate peak is much

larger in Case 5 and occurs much earlier. These results suggest that it might be difficult to

observe distinct peaks in aftershock rates on natural faults, because they would be obscured

by nonuniform stress changes and/or variable values ofaσ̄. However, the model with rhe-

ological transition and the associated complex aftershock response may explain deviations

from Omori’s law in appropriately chosen subsets of aftershocks.
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4.3 The link between aftershock rates and slip-velocity his-

tory of unperturbed nucleation processes

The unperturbed slip-velocity evolution in our models can be used to qualitatively capture

the numerically computed aftershock rates. Let us denote slip velocity in a given nucleation

process byVg(T ). Each point of the nucleation zone in a continuum model has its own slip-

velocity evolution, soVg(T ) denotes a characteristic measure. For example, for the model

with a weaker patch, we take slip velocity in the middle of the nucleation zone asVg(T ). Let

us assume that, after the perturbation,Vgθ/LÀ 1 in the nucleation zone for all subsequent

times. Then the new time to instability can be found from the analysis ofDieterich[1994]:

f(T ) = ta ln

(
τ̇

Hσ̄Vg(T ) exp (∆τ/(aσ̄))
+ 1

)
for τ̇ 6= 0, (4.4)

whereH = −k/σ̄ + b/L andk is the effective stiffness of the nucleation zone. With

each original time to instabilityT , we can associate slip velocityVD(T ) that the nucleation

process fromDieterich[1994] needs to have in order to nucleate an instability in timeT :

T = ta ln

(
τ̇

Hσ̄VD

+ 1

)
for τ̇ 6= 0. (4.5)

Combining (4.4) and (4.5), we can eliminateH and get:

f(T ) = ta ln




exp

(
T

ta

)
− 1

Vg(T )

VD(T )
exp

(
∆τ

aσ̄

) + 1


 for τ̇ 6= 0. (4.6)
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Similarly, one obtains

f(T ) =
T

Vg(T )

VD(T )
exp

(
∆τ

aσ̄

) for τ̇ = 0. (4.7)

Equations (4.6)-(4.7) give an analytical approximation off(T ) that can be used to approx-

imately compute aftershock rates. ForVg(T ) = VD(T ), we have a nucleation process that

follows the model ofDieterich[1994], and in that case we recover (4.10).

Figure 4.7 shows comparison, for Cases 2, 4, and 5, between the aftershock rates com-

puted based on numerous calculations with stress perturbations and the aftershock rates

obtained based on the approximate formula (4.6). We use the following unperturbed slip-

velocity histories asVg(T ): at the center of the nucleation zone for Case 2, atz = −5 m

for Case 4, and atz = −20 m for Case 5. Since Case 1 has the same friction parameters as

Cases 2 and 4, Case 3 has the same friction parameters as Case 5, and the aftershock rates

for Cases 1 and 3 generally agree very well with those based onDieterich [1994], we use

the unperturbed slip velocity at the center of the nucleation zone in Cases 1 and 3 asVD(T ).

Note that Cases 1 and 3 have about three times higher stressing rate (0.255 MPa/yr) than

Cases 4 and 5 (0.087 MPa/yr); hence we rerun the simulations for Cases 1 and 3 with the

correspondingly smaller value of the loading rateVL.

The semianalytical aftershock approximation qualitatively captures the computed af-

tershock rates for both models, for different stress steps and rate and state parameters

(Figure 4.7). The overall agreement for the model with a weaker patch (Figure 4.7A) is

better than for the model with rheological transition (Figure 4.7B). This is not surprising,
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Figure 4.7: Comparison of the aftershock rates computed using (i) simulations with stress
perturbations (solid dotted lines), (ii) the semi-analytical estimate based on equation (4.6)
(lines with crosses), and (iii) analytical results ofDieterich [1994] (dashed lines). Panel
A: Aftershock rates for Case 2 and three different values of the stress step (∆τ = 1.0, 3.0,
4.0 MPa). Panel B: Aftershock rates for Cases 4 and 5. In all cases, the semi-analytical
estimate qualitatively matches the main features of the computed aftershock rates. The
analytical results ofDieterich[1994] are significantly different.

as the semianalytical procedure is constructed assuming that the nucleation behavior after

perturbation is well approximated by spring-slider models, and the model with a weaker

patch compares much better with the results of spring-slider models than the model with

rheological transitions (sections 3.3 and 4.1). Moreover, it is difficult to choose a repre-

sentative slip velocityVg for nucleation processes in the model with rheological transition:

the nucleation zone is connected to the creeping region, and hence its middle of extent is

not easy to define, plus slip velocity within the nucleation region varies with distance in a

non-symmetric way. While slip velocity of most points gave qualitatively similar results,

reproducing a pronounced peak and the following quiescence, the agreement in terms of

timing and amplitude of those features was not as good for most points as shown in Fig-

ure 4.7B.
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The results suggest that (i) aftershock rates are linked to the unperturbed evolution

of slip velocity, and (ii) once the differences in slip-velocity history are accounted for,

the spring-slider approximation can qualitatively match the aftershock rates, at least for

the cases considered in this Chapter. To use the semi-analytical procedure predictively,

i.e., without having the computed aftershock rates for comparison, one needs to establish

an independent way of determining a representative slip velocity of a nucleation process.

Whether this is possible to do for any nucleation process remains a question for future

study.

4.4 The relation between aftershock rates and the validity

of the state-evolution assumption

The aftershock model ofDieterich [1994] is based on nucleation processes governed by

rate and state friction with the state-evolution assumptionV θ/L À 1. Let us consider

the validity of the assumption for nucleation processes in our models and how it relates

to similarities and differences between our numerically computed aftershock rates and the

results ofDieterich[1994].

4.4.1 Model with a weaker patch

Panels G-I in Figure 4.2 showV θ/L as a function of the original time to instabilityT for

two representative points within the nucleation zone. In this model,V θ/L varies for differ-

ent locations within the nucleation zone but we find that a large part of the nucleation zone
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around its middle behaves similarly. In the following, we take the behavior of the middle

point of the nucleation zone as being representative of the entire nucleation process. The

temporal correspondence betweenV θ/L in panels G-I and aftershock rates in panels D-F

can be established by using the panels A-C: the horizontal axis in panels G-I corresponds

to the vertical axis in panels A-C, and the horizontal axis in panels A-C corresponds to the

horizontal axis in panels D-F.

The first important observation is that some of the nucleation sites considered in our

aftershock rate calculations are characterized byV θ/L < 1 and evenV θ/L ¿ 1, not

V θ/L À 1 as assumed inDieterich [1994]. As an example, consider Case 3. Panel I

shows that all nucleation sites with original times to instability larger than 2 years have

V θ/L < 1, and, for most of them,V θ/L¿ 1. Nonetheless, panel F shows that these rates

match very well the model ofDieterich [1994], which assumesV θ/L À 1 at all times.

This observation is consistent with the findings ofGomberg et al.[2000] for spring-slider

models. To understand why the formulae ofDieterich[1994] still work in this situation, let

us consider the aftershock behavior of nucleation zones that are far from failure. A shear

stress step increases slip velocities by a factor ofexp [∆τ/(aσ̄)]. Two scenarios can be

distinguished in terms of the resulting aftershock rates.

Scenario 1: Slip velocities in the nucleation zone are small enough before the stress

step so that the conditionV θ/L ¿ 1 holds both before and after the stress step. In this

situation, the effect of stress step∆τ on the nucleation site is approximately equivalent to

the effect of gradual loadinġτ over time∆t = ∆τ/τ̇ (appendix 4.8, section 4.8.1), with

∆t independent ofT . Hence we approximately haveT − f(T ) = ∆τ/τ̇ = constant (or
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“constant clock advance”, in the terminology ofGomberg et al.[1998] who also identified

this scenario) andR/r = dT/df = 1. This explains the origin of the aftershock rates equal

to the background rate for Case 3 (time period marked (1) in panel F). Note that Cases

1 and 2 (panels D and E) do not have time periods during which the rates are equal to

the background rate. For those Cases, the nucleation processes at all times have such slip

velocities thatV θ/LÀ 1 after the stress step.

Scenario 2: Slip velocities in the nucleation zone are such thatV θ/L ¿ 1 before the

stress step butV θ/LÀ 1 after the stress step and until the instability. The analysis of this

scenario (appendix 4.8, section 4.8.2) predictsR/r = 1/[1 − exp(−f/ta)]. For f ¿ ta,

one hasR/r = ta/f , which shows a power law decay of the aftershock rate with the time

f after the mainshock. Forf À ta, one getsR/r = 1 and the aftershock rate is equal to

the background rate. The corresponding parts of the aftershock rates in panels D and F are

marked as time periods (2).

For nucleation zones close to failure, which we define as those zones that have reached

V θ/L À 1, subsequent deviations ofV θ/L from the conditionV θ/L À 1 create sig-

nificant discrepancies in aftershock rates relative to the results ofDieterich [1994]. This

is because such deviations reflect significant differences in slip-velocity histories, and the

importance of differences in slip velocity has already been shown (section 4.3). As an ex-

ample, let us consider Case 2 of heterogeneous effective normal stress within the nucleation

zone. Panel E of Figure 4.2 shows differences between the computed aftershock rates and

the prediction (4.12) ofDieterich [1994] for times shortly after the mainshock. The nucle-

ation zones that contribute to these differing aftershock rates have new times to instability
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f(T ) < 10−2 years (panel E) and original times to instabilityT < 1 years (panel B), with

the corresponding values ofV θ/L in the middle of the nucleation zone that change from

being much larger than 1 to the value of about 1.5. A value ofV θ/L close to 1 violates the

assumptionV θ/LÀ 1 and causes the corresponding deviation in aftershock rates. Case 1

has a similar deviation in aftershock rates from the analytical solution (4.12), for times after

mainshock smaller than10−7 years (the inset in panel D). That deviation is also related to

values ofV θ/L being close to 1 in the middle of the nucleation zone during the very end

of the nucleation process, for original times to instability that are outside of the time range

shown in panel G of Figure 4.2. In Case 3, however, as the end of the unperturbed nucle-

ation is approached, the conditionV θ/LÀ 1 stays valid. As the result, the corresponding

aftershock rates (panel F) show close agreement with the model ofDieterich [1994]. Note

that the behavior ofV θ/L for times close to instability is consistent with the study ofRubin

and Ampuero[2005].

The discrepancy between the computed aftershock rates and the ones based on the

model ofDieterich [1994] right after the mainshock can be estimated using appropriate

assumptions in the spring-slider model (appendix 4.8, section 4.8.3). For Cases 1 and 2

(panels D and E of Figure 4.2), the simulated aftershock rates are 3.2 and 3.8 times larger

than those predicted by the model ofDieterich [1994], while the two estimates derived in

section 4.8.3 give factors of 2.7 and 3.5, matching the discrepancy relatively well.
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4.4.2 Model with rheological transition

Panels G-H in Figure 4.3 illustrate the time evolution ofV θ/L for the unperturbed nucle-

ation processes of Cases 4 and 5 (Case 6 uses the unperturbed process of Case 4, but with

a different stress step). The panels show that conditionV θ/LÀ 1 becomes valid and then

violated relatively early in the earthquake cycle relative to the model with a weaker patch.

Consistently, the aftershock rates are significantly different from the model ofDieterich

[1994] (panels D-F, Figure 4.3). The variations inV θ/L are due to penetration of slow

slip from the nearby velocity-strengthening region. Note that the variations inV θ/L make

scenarios 1 and 2 of section 4.4.1 inapplicable to this model, as conditionV θ/L¿ 1 holds

for some points in the nucleation zone but not others, even for nucleation zones with large

original times to instability; in particular,V θ/LÀ 1 at the tip of the propagating slow slip.

Hence, in both models, similar behavior ofV θ/L causes similar effects in terms of

aftershock rates. However, the history and spatial distribution ofV θ/L is different in the

two models, resulting in qualitatively different aftershock behavior.

4.5 Conclusions

Using two different fault models, we have simulated several plausible scenarios of sponta-

neous earthquake nucleation (Chapter 3), investigated their response to static shear stress

steps, and inferred the corresponding aftershock rates. Overall, nucleation processes at

weaker patches are characterized by slip-velocity evolution and aftershock rates similar to

spring-slider models, although there are notable deviations. Nucleation processes at rheo-

logical transitions and the corresponding aftershock rates are significantly different.
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For both models, unperturbed slip-velocity history of nucleation zones and the resulting

aftershock rates are closely linked. In the model with a weaker patch, slip velocity in nucle-

ation zones is very low for most of the interseismic period, increasing approximately expo-

nentially in response to the approximately constant stressing rate due to tectonic loading.

This is similar to the behavior of spring-slider models and, in particular, to the analytical

solution ofDieterich [1994]. Aftershock rates created by such far-from-failure nucleation

zones closely follow the model ofDieterich [1994], despite the fact that the condition

V θ/L À 1 is violated for such zones. Nucleation processes due to rheological transitions

behave very differently in the interseismic period, due to penetration of slow slip from the

nearby velocity-strengthening region and the associated time- and space-dependent varia-

tions in slip velocity and shear stress. As the result, neitherV θ/L À 1 (as inDieterich

[1994]) norV θ/L ¿ 1 (as in the model with a weaker patch) holds throughout the nu-

cleation zone in the interseismic period. That is why the model with rheological transition

results in qualitatively different aftershock rates. Another type of deviation of aftershock

rates from the model ofDieterich[1994], evident in both models, occurs due to nucleation

zones close to instability for the parameter rangea/b & 0.5, consistently with the analysis

of Rubin and Ampuero[2005].

In the model with rheological transition, the response of nucleation processes to static

stress changes is complex and non-monotonic. For example, it is commonly assumed

that favorable static stress changes should lead to earthquakes occurring sooner. We find

that positive shear stress steps candelaythe time to instability by inducing aseismic tran-

sients that relieve stress in the nucleation zone and postpone seismic slip. Recent obser-
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vations have documented complex interactions of seismic and aseismic slip [Schwartz and

Rokosky, 2007, and references therein], and our findings provide one more instance where

such interactions may be important. If such behavior is common on natural faults, at least

in certain environments, it may partially explain the cases of poor correlation between static

stress changes and aftershock occurrence.

Aftershock rates based on nucleation processes at rheological transitions exhibit pro-

nounced peaks and seismic quiescence. This behavior is qualitatively different from that

of nucleation processes due to weaker patches, from Omori’s law, and from the results for

spring-slider models. The behavior may explain faster decay of aftershock activity than

that given by Omori’s law withp = 1 and delayed seismic quiescence reported in several

observational studies [e.g.,Daniel et al., 2008, and references therein]. We have shown

that superposition of such responses for spatially variable stress steps can result in Omori’s

law for a certain period of time followed by seismic quiescence, the behavior supported

by observations [Tian and Rubin, 2005]. If this computed aftershock rate were interpreted

using the model ofDieterich [1994], the inferred values ofaσ̄ would be an order of mag-

nitude smaller than the ones used in the simulations. The result suggests that complexity

of rate and state nucleation processes may be partially responsible for the discrepancy be-

tween the values ofaσ̄ predicted based on laboratory studies and inferred from aftershock

observations based on the model ofDieterich[1994].

The differences in nucleation processes and aftershock rates between the continuum

and spring-slider models arise due to the presence of heterogeneity, either in normal stress

or in friction properties. Hence the effect of fault heterogeneity on aftershock phenomena
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needs to be systematically examined. Note that the heterogeneity discussed here is the local

one that affects nucleation processes at individual aftershock sites. Aftershock sequences

are undoubtedly affected by another kind of heterogeneity, where different nucleation sites

may have different friction properties, stress conditions, stressing rates, etc., and hence fol-

low different nucleation processes. Our approach can be used to study certain aspects of

such “global” heterogeneity by simulating a number of nucleation processes with differ-

ent desired friction properties and stress conditions, determining their responses to stress

perturbations, and combining those responses into one aftershock rate.

This study employs the aging form of the state-variable evolution equation. Other for-

mulations have been proposed, as discussed in Chapter 1. Based on preliminary results

with the slip law, we predict that the main findings of this work would be qualitatively

similar for other rate and state formulations, in the following sense. Nucleation in rela-

tively homogeneous situations would still produce aftershock rates largely consistent with

spring-slider models. Nucleation at rheological transitions would still exhibit peaks in af-

tershock activity followed by quiescence, since this response mostly comes from the slow

slip penetrating from the nearby creeping region, the feature that would not qualitatively

change for other rate and state formulations.

Following earlier studies, we have assumed a population of nucleation sites that would

result in a uniform background rate if left unperturbed. That assumption implies a certain

distribution of initial conditions over the population at the time of the stress step and affects

the resulting aftershock rates. But parts of aftershock sequences may result from nucleation

sites created by coseismic processes such as bulk damage. Such nucleation sites would not
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have contributed to the background rate, and it may be possible to account for them by

considering a different distribution of initial conditions over the population of nucleation

sites in the developed approach.

The qualitative differences we find between the presented models indicate that more

studies are needed to understand which nucleation scenarios dominate on natural faults,

how they respond to static stress changes, and whether spring-slider models can provide an

adequate interpretation of that response. Natural faults may contain rate and state nucle-

ation zones developing under a number of conditions, in which case the response of faults

to static stress changes would combine a number of models of the kind considered in this

work.

Given that rate and state friction laws have been successfully used to explain a number

of earthquake phenomena and that mainshocks cause static stress changes, it is reason-

able to assume that at least some, and perhaps most, of aftershocks are caused by static

triggering of rate-and-state nucleation processes. At the same time, a number of studies

have proposed models of aftershocks based entirely on other mechanisms, as discussed in

Chapter 1. The developed approach enables us to study the combined effect of two or more

mechanisms on aftershock rates. For example, the response of rate-and-state nucleation

to static stress changes can be combined in our models with the effect of increased load-

ing rate due to aseismic processes, through prescribed variations in the loading rate. Such

combined models would help investigate the relative importance of different aftershock-

producing mechanisms.
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4.6 Appendix: The model of aftershocks inDieterich[1994]

In the study ofDieterich [1994], each nucleation site was assumed to proceed through the

slip-stress history that would occur in a spring-slider system with the aging form (1.1-1.2)

of rate and state friction. In that model, frictional sliding occurs on the block-substrate

interface, which serves as the model of a fault. The spring of stiffnessk provides elastic

interactions. The governing equation for slipδ(t) is given by

τ o + τ̇ t− kδ = σ̄

[
µ0 + a ln

(
V

V0

)
+ b ln

(
V0 θ

L

)]
, (4.8)

where the left-hand side gives shear stress on the interface with inertial effects ignored, the

right-hand side gives the rate and state frictional resistance of the interface,τ o is shear stress

that would act on the interface if it were constrained against slip andτ̇ is the stressing rate

applied directly to the interface. The rate and state formulation is simplified by assuming

that, during nucleation, slip accelerates fast enough for the state variable to be significantly

larger than its steady-state value, so thatV θ/L À 1. The assumptionV θ/L À 1 leads to

the following state evolution:

dθ

dδ
= − θ

L
and thus θ = θref exp

(
−δ − δref

L

)
, (4.9)

whereδref andθref are reference values.
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In this model, the time to instabilityT can be obtained analytically [Dieterich, 1994]:

T =
aσ̄

τ̇
ln

(
τ̇

Hσ̄V
+ 1

)
, for τ̇ 6= 0 , (4.10)

T =
a

HV
, for τ̇ = 0 , (4.11)

whereH = −k/σ̄ + b/L. A population of nucleation sites that results in a uniform back-

ground rater is created by assigning the appropriate distribution of initial slip velocityV to

the population. A positive shear stress step∆τ increases the initial slip velocity by a factor

of exp[∆τ/(aσ̄)], changing the time to instability for each nucleation site and resulting in

a different earthquake rateR (aftershock rate) given by:

R

r
=

1

[exp (−∆τ/(aσ̄))− 1] exp (−t/ta) + 1
, (4.12)

whereta = aσ̄/τ̇ and constant stressing rateτ̇ is assumed before and after the stress step.

Dieterich[1994] also considered scenarios with variable stress steps and stressing rates.

From expression (4.12), this model has two parameters:∆τ/(aσ̄) andta = aσ̄/τ̇ . Fig-

ure 4.8 illustrates the resulting aftershock rates and shows thatta is related to the aftershock

duration, since the earthquake rate becomes close to the background rate fort ≥ ta . From

(4.12),R/r = 1 for tÀ ta. For t¿ ta, exp(−t/ta) ≈ (1− t/ta) and from (4.12):

R =
K

(c+ t)p
, p = 1, (4.13)

K =
rta

1− exp (−∆τ/(aσ̄))
, c =

ta
exp (∆τ/(aσ̄))− 1

. (4.14)
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Figure 4.8: Aftershock rates for the analytical solution ofDieterich [1994] given by equa-
tion (4.12). The aftershock rateR is normalized by the background rater, and the timet
after the mainshock is normalized by the aftershock durationta. Each curve is computed
for a normalized stress step,∆τ/(aσ̄), with the indicated value. Adapted from Figure 2 of
Dieterich[1994].

Hence the model ofDieterich[1994] interprets parametersK andc of Omori’s law, which

were originally introduced as empirical constants. The time interval in which the after-

shock rates in this model follow the power law decay of aftershocks depends on the values

of ∆τ/(aσ̄) and ta. For times right after the instability, we haveexp(−t/ta) ≈ 1 and

R/r = exp[∆τ/(aσ̄)]. This “plateau” or constant aftershock rate right after the mainshock

is shorter for larger values of∆τ/aσ̄ (Figure 4.8).

Since static stress changes∆τ due to earthquakes are relatively well constrained, after-

shock observations can be used to constrain the productaσ̄. For the model to be consistent

with observations,aσ̄ has to be of the order of 0.01-0.1 MPa [Toda et al., 1998;Belardinelli

et al., 1999]. Larger values ofaσ̄, of order 1 MPa, are predicted by laboratory values ofa

(of order 0.01) and̄σ comparable to overburden minus hydrostatic pore pressure at typical

seismogenic depths (of order 100 MPa). If aftershock production is dominated by static
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Figure 4.9: Schematics showing how the time to instability for each nucleation site in the
population changes due to a stress step for a monotonic functionf(T ). The top arrow rep-
resents the (original) time to instabilityTi for the (

∑i
k=1 nk)th nucleation site in the absence

of perturbation, whereni is the number of earthquakes betweenTi−1 andTi. The bottom
arrow shows the (new) time to instabilityf(Ti) after the static stress step at time zero. The
time to instability of each nucleation site changes, resulting in a different earthquake rate
(aftershock rate).

stress triggering of preexisting nucleation sites, then, at least on parts of faults where after-

shocks nucleate, either the direct effect coefficienta is much smaller than in the laboratory,

or effective normal stress̄σ is abnormally low.

The dependencef(T ) for the model ofDieterich[1994] can be derived using the time-

to-instability expression (4.11). WithV exp [∆τ/(aσ̄)] in (4.10) instead ofV , we obtain:

f =
aσ̄

τ̇
ln

(
τ̇

Hσ̄V exp (∆τ/(aσ̄))
+ 1

)
. (4.15)

Solving (4.10) forτ̇ /(Hσ̄V ) and substituting this quantity into (4.15), we find

f(T ) = ta ln

(
exp (T/ta)− 1

exp (∆τ/(aσ̄))
+ 1

)
. (4.16)

whereta = aσ̄/τ̇ . We use (4.16) for comparison with our simulations.



104

4.7 Appendix: Aftershock rate calculations

4.7.1 For monotonic responsef(T)

We compute aftershock rates based on functionf(T ) that gives the perturbed (or new)

time to instability for a nucleation site with the unperturbed (or original) time to instabil-

ity T (Figure 4.1B). Without the perturbation, the population of rate and state nucleation

sites should produce earthquakes at a constant background rater. Hence, if one considers

discrete time intervals[Ti−1, Ti], T0 = 0, Ti ≥ Ti−1, i = 1, 2, 3, ..., with each of the inter-

vals containingni earthquakes (Figure 4.9), thenTi andni have to satisfy the following

relations:

r =
n1

T1 − T0

=
n2

T2 − T1

= ... =
ni

Ti − Ti−1

. (4.17)

If f(T ) is monotonic, thenni earthquakes that would have occurred in the time interval

[Ti−1, Ti] before the perturbation occur in the time interval[f(Ti−1), f(Ti)] after the per-

turbation (Figure 4.9). Hence the new earthquake rateR in each time interval is given

by R [f(Ti−1), f(Ti)] = ni/(f(Ti)− f(Ti−1)). Using (4.17), we obtain the normalized

aftershock rateR/r as

R [f(Ti−1), f(Ti)]

r
=

Ti − Ti−1

f(Ti)− f(Ti−1)
, (4.18)

or, in the limit of infinitely small lengths(Ti − Ti−1) of the time bins,

R/r = dT/df . (4.19)
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This procedure for computing the aftershock rateR/r for monotonicf(T ) is analogous

to the one inGomberg et al.[2000]. Using equation (4.19) withf(T ) for the model of

Dieterich [1994], given by (4.16), provides an alternative way of deriving the analytical

aftershock rates (4.12).

4.7.2 For nonmonotonic responsef(T)

Expression (4.19) is valid only for monotonic functionsf(T ), as it requires the existence

of the inverse functionT (f). For nucleation processes at rheological transition, however,

functionsf(T ) turn out to be non-monotonic for all cases we have considered. As an illus-

tration, considerf(T ) given in Figure 4.10. Aftershocks occurring in the time interval∆f

come from nucleation sites that, without perturbation, would have produced earthquakes in

threetime intervals∆T1, ∆T2, and∆T3. Thus, the aftershock rate in the time interval∆f

in Figure 4.10 is given by

R

r
=

∣∣∣∣
∆T1

∆f

∣∣∣∣ +

∣∣∣∣
∆T2

∆f

∣∣∣∣ +

∣∣∣∣
∆T3

∆f

∣∣∣∣ . (4.20)

To compute aftershock rates for a non-monotonicf(T ), we create time bins∆f equally

spaced on the logarithmic scale. That is, we choose∆fj = fj − fj−1, wherelog(fj) −

log(fj−1) = log(fj/fj−1) is the same for allj. For eachfj, we find the corresponding

values ofTj by linearly interpolating discretely specified correspondenceT (f). Eachfj

may have more than one correspondingTj, or equivalently, each interval∆fj may have

several corresponding intervals∆Tj(k). The aftershock rates can be obtained by adding the
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contribution of each∆Tj(k) to the corresponding time bin∆fj:

R

r

∣∣∣∣
∆fj

=
∑

k

∣∣∣∣
∆Tj(k)

∆fj

∣∣∣∣ . (4.21)

This procedure allows us to compute aftershock rates for complicated non-monotonic re-

sponses that we observe in the model with rheological transition.

4.8 Appendix: Aftershock rates for simplified scenarios

In the model ofDieterich [1994] (appendix 4.6), it is assumed that zones nucleating earth-

quakes always satisfy the conditionV θ/L À 1. In our simulations, nucleation zones that

contribute to aftershock response do not always satisfy that condition (section 4.4). To

understand the contribution of such zones to aftershock rates, we consider here several

simplified scenarios motivated by our simulations, using the spring-slider model (4.8).

4.8.1 Scenario 1: Nucleation zones withV θ/L ¿ 1 before and after

the perturbation

Our simulations in the model with a weaker patch show that, for much of the interseismic

period,V θ/L ¿ 1 in the nucleation zone because of the near-zero slip velocitiesV . Let

us consider such a nucleation site at a timetref , approximating it as a spring-slider system

with slip δref , slip velocityVref , state variableθref , and loading stressτ o
ref so that

τ o
ref − kδref = σ̄ [µ0 + a ln (Vref/V0) + b ln (V0θref/L)] . (4.22)
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Figure 4.10: An example of a non-monotonicf(T ). This is an actual response observed
in the model with rheological transition for Case 4. The data shown here is taken from
the rectangle in panel A of Figure 4.3. The bold lines on the curve represent three time
intervals∆T1, ∆T2 and∆T3 that contribute to the aftershock rate in the interval∆f .

SinceV θ/L¿ 1, the evolution of state variable can be simplified toθ(t) = θref +(t−tref),

and near-zero slip velocitiesV imply that we can approximately writeδ(t) = δref . The

governing equation (4.8) becomes

τ o
ref − kδref + τ̇(t− tref)

= σ̄

[
µ0 + a ln

(
V

V0

)
+ b ln

(
V0 (θref + (t− tref))

L

)]
. (4.23)

From the last two equations, we find the following time evolution of slip velocity:

V (t) = Vref exp

(
t− tref
ta

− b

a
ln

[
1 +

t− tref
θref

])
. (4.24)

In (4.24), slip velocity increases approximately exponentially with time, which is the same

functional dependence as in the model ofDieterich [1994] for times far from instability.
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The behavior is similar because, for times far from instability, slip velocities and hence

slip accumulation are very small, the state variable evolves slowly, and the assumption

regardingV θ/L does not make much difference.

After positive static stress step∆τ at timet > tref , slip velocityV abruptly increases to

V exp [∆τ/(aσ̄)]. In the nucleation process without perturbation, such larger slip velocity

would be achieved only after time∆t such thatV (t) exp [∆τ/(aσ̄)] = V (t + ∆t). Us-

ing equation (4.24) (which is applicable both before and after the perturbation, due to the

assumption thatV θ/L¿ 1 holds for both stages), with the logarithmic term under the ex-

ponential ignored in comparison with the linear term, this leads to∆t = ∆τ/τ̇ , consistently

with the time advance for Coulomb-like behavior [Gomberg et al., 2000;Perfettini et al.,

2003]. In the same time period, the state variable would change as well but if we ignore

that (since the change in state variable is linear with time while the change of slip velocity

is exponential), then the effect of the stress step is to essentially advance the nucleation

process by a constant time∆τ/τ̇ . UsingR/r = dT/df with f(T ) = T −∆τ/τ̇ , we find

R/r = 1. Hence nucleation sites considered in this scenario, taken by themselves, result in

the aftershock rate equal to the background rate. Their time to instability is advanced, but

by the same amount, so there is no pileup of the resulting earthquakes.

4.8.2 Scenario 2: Nucleation zones withV θ/L¿ 1 before the pertur-

bation but V θ/LÀ 1 after the perturbation

In this scenario, equations (4.22)-(4.24) continue to be valid. LetTref be the time to in-

stability corresponding to timetref andT be the time to instability corresponding to time
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t > tref . Thent− tref = Tref − T and equation (4.24) can be rewritten as:

V (T ) = Vref exp

(
Tref − T

ta
− b

a
ln

[
1 +

Tref − T

θref

])
. (4.25)

Due to stress step∆τ at timet > tref , slip velocity abruptly increases toV (T ) exp [∆τ/(aσ̄)]

and, in this scenario,V θ/L becomes much larger than 1. The new time to instability can

be found from equation (4.10):

f(T ) = ta ln

(
1 +

τ̇

Hσ̄Vref

exp
( τ̇(T − Tref)−∆τ

aσ̄
+
b

a
ln

[
1 +

Tref − T

θref

]))
. (4.26)

Keeping only the term linear inT under the exponential, one can solve forT and calculate

dT/df to obtain

R

r
=

1

1− exp (−f/ta) . (4.27)

For f ¿ ta, one hasR/r = ta/f , which shows a power law decay of the aftershock rate

with the normalized timef/ta. For f À ta, one getsR/r = 1 and the aftershock rate

becomes the background rate.

4.8.3 Scenario 3: Nucleation zones close to failure withV θ/L ∼ 1

before the perturbation and V θ/LÀ 1 after the perturbation

In simulations witha/b & 0.5, the value ofV θ/L becomes close to 1 for a large part of

the nucleation zone shortly before the instability (section 4.1.2), consistently with the study
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of Rubin and Ampuero[2005]. This results in elevated aftershock rates in comparison to

Dieterich’s estimate (e.g., Case 2 in Figure 4.2).

4.8.3.1 Approach I

To approximately estimate the impact ofV θ/L ∼ 1 on aftershock rates, let us consider a

nucleation process in the spring-slider model withV θ/L = 1 before the stress step. The

governing equation becomes

τ o
ref − kδ = σ̄

[
µ0 + (a− b) ln

(
V

V0

)]
. (4.28)

Here we ignore the loading terṁτt, considering a nucleation process that is so close to

failure that it is beyond the influence of slow tectonic loading. Taking into account that

τ o
ref − kδref = σ̄ [µ0 + (a− b) ln (Vref/V0)] and solving forV , we obtain

V (t) =
dδ

dt
=

Vref

Vref k̂(t− tref) + 1
, (4.29)

wherek̂ = k/((a − b)σ̄). As in section (4.8.2), we can rewrite this expression in terms of

the original time to instabilityT (usingt− tref = Tref −T ), get slip velocity after the stress

step asV (T ) exp [∆τ/(aσ̄)], and find the new time to instability corresponding to this slip

velocity using equation (4.11):

f(T ) =
a(Vref k̂(Tref − T ) + 1)

HVrefexp (∆τ/(aσ̄))
. (4.30)
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Solving forT and calculatingdT/df , we obtain

R

r
=

(
(b− a)bσ̄

aLk
− (b− a)

a

)
exp

(
∆τ

aσ̄

)
. (4.31)

In equation (4.31), aftershock rates right after the mainshock are different from the

model ofDieterich [1994] by the factor of[(b − a)bσ̄/(aLk) − (b − a)/a]. To compare

this result with our computed aftershock rates, we need to estimate the effective stiffness

k of the simulated nucleation process which changes with time. Since we are considering

the final stages of nucleation in this scenario, we setk = ηG/hnucl, wherehnucl is the

nucleation size right before instability. Using expression (3.1) forhnucl with F = (b−a)2/b

andη = 2/π found byRubin and Ampuero[2005] fora/b close to 1, we get

R

r
=

(
b2

2a(b− a)
− (b− a)

a

)
exp

(
∆τ

aσ̄

)
. (4.32)

For Case 2 (Figure 4.2), the simulated aftershock rates are larger by a factor of 3.8 relative

to the model ofDieterich[1994], while the estimate (4.32) predicts a factor of 2.7.

4.8.3.2 Approach II

Instead of using the unperturbed slip-velocity history (4.29), let us assume that the nucle-

ation process follows the behavior given by equation (44) ofRubin and Ampuero[2005]

for quasi-static nucleation witha/b close to 1:

T =
2

π

bL

(b− a)V
. (4.33)
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Continuing with the same steps as in Approach I, we obtain:

R

r
=

(
2b2

πa(b− a)
− 4(b− a)

πa

)
exp

(
∆τ

aσ̄

)
. (4.34)

For Case 2 (Figure 4.2), this estimate gives 3.5 for the factor of aftershock rate increase

relative to the model ofDieterich[1994], which is very close to the actual factor of 3.8.
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Chapter 5

Spectral Element Modeling of
Spontaneous Earthquake Rupture on
Rate and State Faults: Effect of
Velocity-Strengthening Fault Friction at
Shallow Depths on Dynamic Rupture

In this Chapter, we develop a spectral element method (SEM) for simulating dynamic rup-

ture on rate-and-state faults and use it to study how the rupture is affected by a shallow

fault region of steady-state velocity-strengthening friction. In particular, we identify dif-

ferent outcomes in two dynamic rupture scenarios on a fault embedded in homogeneous

elastic media: with and without a shallow velocity-strengthening fault patch (section 5.4).

We then simulate dynamic rupture scenarios on a fault embedded in a layered bulk struc-

ture and study how the peak ground motion at on- and off-fault sites is affected by the bulk

structure combined with different fault rheologies (section 5.5).

This Chapter is based on the paper “Spectral element modeling of spontaneous earth-

quake rupture on rate-and-state faults: Effect of velocity-strengthening friction at shallow

depths” by Y. Kaneko, N. Lapusta, and J.-P. Ampuero (J. Geophys. Res., 2008).
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5.1 Spectral element method (SEM) for simulations of dy-

namic ruptures

SEMs have been used to simulate single-earthquake scenarios, mostly with linear slip-

weakening (LSW) friction [e.g.,Oglesby et al., 1998;Aagaard et al., 2001;Ampuero, 2002;

Festa and Vilotte, 2006;Madariaga et al., 2006]. The application of SEM to wave propa-

gation problems is well developed [Komatitsch and Vilotte, 1998;Komatitsch and Tromp,

1999] and has been recently reviewed byKomatitsch et al.[2005] andChaljub et al.[2007].

SEMs combine the flexibility of FEMs with high numerical accuracy due to the use of

higher-order Lagrange interpolants on Gauss-Lobatto-Legendre (GLL) points that mimic

the behavior of the Legendre basis [Komatitsch and Vilotte, 1998;Komatitsch and Tromp,

1999]. Furthermore, the SEMs with a diagonal mass matrix reduce computational costs

associated with solving a large linear system and result in relatively simple parallel imple-

mentation. The method is well suited for describing surfaces of displacement discontinuity

with mixed traction-displacement interface conditions (e.g., faults) by the split-node tech-

nique, as in FEMs [Oglesby et al., 1998;Aagaard et al., 2001] and some finite difference

methods [Andrews, 1999;Day et al., 2005]. Fault surfaces with the split-node technique

have been implemented in 2D SEMs [Ampuero, 2002;Vilotte et al., 2006], and SEMs with

the split-node technique have been successfully applied to wave propagation across com-

pliant faults [Haney et al., 2007] and to earthquake source dynamics [Festa and Vilotte,

2005;Madariaga et al., 2006].

The 3D SEM we use was originally developed for wave propagation byKomatitsch and
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Tromp[1999]; our work is an extension of the study byAmpuero[2002] that incorporated a

linear slip-weakening (LSW) fault boundary into that SEM framework. We have extended

the formulation to RS faults. To validate the developed SEM approach, we have conducted

detailed comparison of SEM and BIM simulation results obtained for an antiplane problem

(section 5.3). Incorporating RS faults into a SEM formulation requires a semi-implicit

numerical scheme which makes the implementation more challenging than that for LSW

friction.

5.2 A SEM algorithm for simulations of dynamic rupture

on rate and state (RS) faults

5.2.1 Discretized elastodynamic relations

In SEM, the geometry of the mesh elements is represented by the product of low-degree

Lagrange polynomials like in the classical FEM, while the field-approximation function

is represented by the product of high-degree Lagrange polynomials defined on the Gauss-

Lobatto-Legendre (GLL) points. The choice of coincident nodes for interpolation and nu-

merical integration results in a diagonal mass matrix of the discretized domain, reducing the

computational costs associated with solving a large linear system and making its parallel

implementation relatively simple.

The discretization of the weak form of the equation of motion leads to the matrix equa-

tion:

Mü = −Ku + Bτ , (5.1)
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whereM andK are the mass and stiffness matrix respectively, given byKomatitsch et al.

[2005] (equation (57) and (59)), the fault-boundary matrixB is described in appendix A,

τ = T − τ o is the relative traction vector on the fault,T is the total traction, andτ o is

the traction on the fault that corresponds to the reference zero-displacement state. Vec-

torsu, u̇, andü collect the values of displacements, particle velocities, and accelerations,

respectively, of all the computational nodes of the bulk mesh.

Our time discretization scheme is based upon the explicit acceleration Newmark scheme:

un+1 = un + ∆tu̇n +
∆t2

2
ün , (5.2)

Mün+1 = −Kun+1 + Bτ n+1 , (5.3)

u̇n+1 = u̇n + ∆t
ün + ün+1

2
, (5.4)

where the subscripts “n” and “n + 1” refer to the number of the time step. Given all the

quantities at thenth time step, we would like to obtain the quantities at the(n + 1)th time

step. The non-trivial advance is to obtainτ n+1 in (5.3) on the fault simultaneously with

fault constitutive relations. Combining (5.3) and (5.4), one obtains

u̇n+1 = u̇free
n+1 +

∆t

2
M−1Bτ n+1 , (5.5)

where

u̇free
n+1 = u̇n +

∆t

2

(
ün −M−1Kun+1

)
(5.6)

is the “free velocity” that would prevail if the traction on the fault suddenly vanished,
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Figure 5.1: The fault divided into two non-overlapping surfacesΓ±.

creating free-boundary conditions. We now write relation (5.5) for the fault nodes with the

± signs indicating the values of field variables on the two sides of the fault (Figure 5.1):

u̇±n+1 = u̇free±
n+1 +

∆t

2
M−1

± B±τ±n+1 . (5.7)

Subtracting the minus side from the plus side, and using the sign conventionτ = −τ+ =

τ−, whereτ± are defined with respect to the outward normal from the fault boundaryΓ±

(Figure 5.1), we obtain

δ̇n+1 = δ̇
free

n+1 − Z−1τ n+1 , (5.8)

where vectorsδ, δ̇, andδ̈ refer to the slip, slip velocity, and slip acceleration, defined as

the difference between values of displacement, velocity, and acceleration, respectively, of

corresponding split nodes across the fault plane (e.g.,δ = u+ − u− andδ̇
free

= u̇free+ −

u̇free−), andZ is the fault impedance matrix given by

Z−1 ≡ ∆t

2

(
M−1

+ B+ + M−1
− B−

)
. (5.9)
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Note that for cases we consider in this study, the fault-normal component of tractionT

remains unchanged, and hence the fault-normal components ofτ and δ̇ are zero. The

matricesM andZ−1 are diagonal, andB+ = B− for conformal meshes. Solving (5.8) for

τ n+1 gives

τ n+1 = Z δ̇
free

n+1 − Z δ̇n+1 . (5.10)

The expression (5.10) is a local relation which can be solved node by node on the fault. It

is convenient to rewrite (5.10) in terms of total traction,T = τ + τ o:

Tn+1 = τ o + Z δ̇
free

n+1 − Z δ̇n+1

≡ T̃n+1 − Z δ̇n+1 , (5.11)

whereT̃ is the “stick traction” that would prevail if there were a sudden slip arrest.

5.2.2 Rate and state (RS) friction laws

Rate- and state-dependent friction laws were developed to incorporate observations of rock

friction experiments at relatively low sliding rates of10−8 to 10−3 m/s [Dieterich, 1978,

1979; Ruina, 1983;Blanpied et al., 1995, 1998;Marone, 1998]. In the situations with

constant effective normal stressσ̄, the shear strengthT is often expressed as

T = ψ(δ̇, θ)

= σ̄

[
f0 + a ln

(
δ̇

δ̇0

)
+ b ln

(
δ̇0θ

L

)]
, (5.12)



119

wherea > 0 andb are RS constitutive parameters with magnitudes of the order of 0.01,

δ̇ is the magnitude of slip velocity,f0 is a reference friction coefficient corresponding to a

reference slip velocitẏδ0, θ is a state variable which is typically interpreted as the average

age of the population of contacts between two surfaces, andL is the characteristic slip for

state evolution [Dieterich, 1978, 1979;Rice and Ruina, 1983;Ruina, 1983;Dieterich and

Kilgore, 1994]. Two types of state-variable evolution laws are commonly used in modeling:

dθ

dt
= 1− δ̇θ

L
(aging law) , (5.13)

dθ

dt
= − δ̇θ

L
ln

(
δ̇θ

L

)
(slip law) . (5.14)

The parameter combinationa − b < 0 corresponds to steady-state velocity-weakening

friction and can lead to unstable slip, whereasa − b > 0 corresponds to steady-state

velocity-strengthening and leads to stable sliding [Rice and Ruina, 1983;Ruina, 1983].

In expression (5.12), shear frictional strengthT is undefined for slip velocitieṡδ = 0,

which is unphysical. To regularize (5.12) nearδ̇ = 0, we follow the approach ofRice and

Ben-Zion[1996],Ben-Zion and Rice[1997], andLapusta et al.[2000] in using a thermally

activated creep model of the direct effect terma ln
(
δ̇/δ̇0

)
to obtain

T = ψ(δ̇, θ)

= aσ̄ arcsinh

[
δ̇

2δ̇0
exp

(
f0 + b ln(δ̇0θ/L)

a

)]
. (5.15)

This regularization is used in our simulations. It produces a negligible change from (5.12)

in the range of slip velocities explored by laboratory experiments; the difference inδ̇ at
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δ̇ ∼ δ̇0 is of the order ofexp(−2f0/a) or less, and the typical value off0/a in this study is

40.

5.2.3 Updating scheme: advancing one evolution time step

We have developed an updating scheme, based upon the explicit Newmark method de-

scribed in section 5.2.1, appropriate for the RS fault boundary condition. Here, we discuss

how values of field variables are updated over one evolution time step. Suppose that the

discretized values of particle displacementu, particle velocityu̇, and particle acceleration

field ü are known at thenth time step. To find the values of the field variables at the

(n+ 1)th time step, we perform the following steps.

1. Update the values of displacements, based on the known values at thenth time step:

un+1 = un + ∆t u̇n +
1

2
(∆t)2 ün . (5.16)

2. Perform the partial update of the particle velocity field in (5.4) by computing

u̇∗n+1 = u̇n +
1

2
∆t ün . (5.17)

3. Compute the “stick” traction in (5.11):

u̇free
n+1 = u̇∗n+1 −

∆t

2
(M−1Kun+1)

T̃n+1 = τ o + Z δ̇
free

n+1 . (5.18)
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4. Determine the first prediction of the state variable,θ∗n+1. By integrating the evolution

law (5.13) or (5.14) with the constant magnitudeδ̇n of slip velocity δ̇n = u+
n − u−n

during the time step, we obtain

θ∗n+1 = θn exp

(
− δ̇n∆t

L

)
+
L

δ̇n

(
1− exp

(
− δ̇n∆t

L

))
(5.19)

for the aging law, and

θ∗n+1 =
L

δ̇n

(
δ̇nθn

L

)exp
(
−δ̇n∆t/L

)

(5.20)

for the slip law. This approach for updating the state variable is different from the one

in Lapusta et al.[2000]. We compare the state-variable updating schemes in section

5.3.

5. Find the first prediction of slip velocity,̇δ
∗
n+1, by equating the magnitude of shear

stress in (5.11) and strength in (5.15). The directions of shear traction vectorTn+1

and slip velocity vectoṙδn+1 have to coincide. From (5.11), the stick tractionT̃n+1

has the same direction because the fault impedance matrixZ is isotropic (appendix

5.7). By projecting (5.11) onto that direction and equating the shear stress magnitude

with frictional strength, we obtain the following relation:

T ∗n+1 = T̃n+1 − Zxδ̇
∗
n+1 = ψ(δ̇∗n+1, θ

∗
n+1) , (5.21)

whereT andT̃ denote the magnitudes ofT andT̃, respectively. We finḋδ∗n+1 using
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the Newton-Raphson search withδ̇n as the first guess. Oncėδ∗n+1 are obtained, the

tractionT ∗n+1 can be readily found.

6. Calculate the final prediction of state variable,θ∗∗n+1, at the(n + 1)th time step by

replacingδ̇n in equation (5.19) or (5.20) with
(
δ̇n + δ̇∗n+1

)
/2.

7. Find the final predictionṡδ∗∗n+1 andT ∗∗n+1 by repeating step 5 withθ∗∗n+1 instead of

θ∗n+1.

8. Declare the value ofTn+1 to be equal to the predictions with the superscript double

asterisks. Using the directional cosines constructed from the components ofT̃n+1,

we obtain the components ofTn+1 and relative tractionτ n+1.

9. Solve for acceleration of the entire medium:

ün+1 = M−1[−Kun+1 + B τ n+1] . (5.22)

10. Complete the update oḟun+1 by adding the term containing̈un+1:

u̇n+1 = u̇∗n+1 +
1

2
∆t ün+1 . (5.23)

This scheme includes two iterations for the update of the state variable. Its accuracy,

for a given space grid, is comparable to that of BIM, as discussed in section 5.3. Note

that if the second iteration in the state-variable update is omitted, the accuracy significantly

decreases in comparison to BIM that also includes two iterations for the update of the state

variable.
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5.3 Comparison of numerical results obtained with 2D SEM

and 2D BIM

5.3.1 2D antiplane problem and comparison criteria

To assess the accuracy of numerical results based on the developed SEM approach, we

have conducted detailed comparison of simulation results obtained using SEM and BIM.

For simplicity and efficiency, we set up an anti-plane (2D) test problem. The BIM model

used for comparison is based on the BIM spectral formulation ofLapusta et al.[2000].

Figure 5.2 illustrates the geometry of the anti-plane SEM and BIM models. In SEM, a 15

km by 45 km rectangular domain is used, with four boundaries. The SEM model domain

is large enough to avoid any wave reflections from the boundaries during the simulated

time. The domain is replicated using periodic boundary conditions on both sides of the

domain (Figure 5.2). The fault boundary obeys rate and state (RS) friction with the aging

law of state variable evolution. By symmetry consideration, the medium across the fault

boundary has equal and opposite motion. In the analogous BIM model, wave propagation

is analytically accounted for by boundary-integral expressions. The fault in the BIM model

is repeated periodically, as in the SEM model.

The parameters used in the simulations are listed in Table 5.1, and the distribution of

initial shear stress on the fault is shown in Figure 5.3A. We make our test problem similar

to the SCEC code validation of dynamic rupture [Harris et al., 2009] and the study of

Day et al.[2005], in terms of bulk properties and cohesive-zone properties, but we use RS

friction and consider a 2D scenario. Within the 3-km nucleation region, we use an integer
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Figure 5.2: A cartoon illustrating the antiplane test problem for 2D SEM (left) and 2D BIM
(right). By symmetry consideration, the medium across the fault boundary in both models
has equal and opposite motion.

number of spectral elements for SEM and an odd number of computational cells for BIM.

We select the polynomial degree to be 4 in SEM throughout the comparison.

Table 5.1: Friction-related parameters used in 2D and 3D simulations. In 2D, the value of
θin within the rupture domain (Figure 5.3) is given. In 3D, the values ofσ̄, a, andb in the
region of constant(a− b) in the velocity-weakening area (Figure 5.7) are given.

Parameter Symbol Value in 2D Value in 3D

Reference slip velocity δ̇0 10−6 m/s 10−6 m/s
Reference friction coefficient f0 0.60 0.60
Characteristic slip distance L 0.0370 m 0.0135 m
Effective normal stress σ̄ 120.0 MPa 80.0 MPa
Initial slip velocity δ̇in 10−3 m/s 10−12 m/s
Initial state variable θin 92.7 s 34.38 years
Constitutive parametera a 0.0125 0.0080
Constitutive parameterb b 0.0172 0.0120

At the nucleation patch in the center of the fault, slip velocity increases abruptly due to

the difference between the initial shear stress imposed and initial shear strength given by

the RS friction. (Note that the initial bulk particle velocity is uniform and equal to half of

initial slip velocity on the fault outside the nucleation patch.) The resulting dynamic rupture

propagates bilaterally from the nucleation patch. On the RS fault, friction strength is not
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known in advance as it depends on the current values of slip velocity and state variable.

The RS parameters we use (Table 5.1) result in effective slip weakening similar to the

LSW friction of the SCEC code validation (Figure 5.3B).

To quantify differences between solutions, we use a quantity analogous to the rupture

arrival time. For problems with spontaneous dynamic rupture, the rupture arrival time has

been shown to be a sensitive indicator of numerical precision that reflects the nonlinearity

of the problem [Day et al., 2005]. In the SCEC code validation [Harris et al., 2009] and the

study ofDay et al.[2005], rupture arrival time was defined as the time when slip velocity

first exceeds 1 mm/s. In this study, we use the arrival time of peak slip velocity (PSV), an

analogous quantity. This quantity is more convenient for RS faults as it does not require

choosing a particular value of slip-velocity threshold and can be used in a wider context, for

example, for comparing rupture arrival times in velocity-strengthening regions, which may

not achieve slip velocity of 1 mm/s. To compare two solutions, we use root-mean-square

(RMS) difference of PSV arrival times, interpolated with the spacing of 0.1 km, over the

fault regionΩ given by 3.0 km≤ x ≤ 9.0 km.

The numerical accuracy critically depends on the ratioNc = Λ/∆x or the number of

fault node points (with average spacing∆x) within the cohesive (or slip-weakening) zone

sizeΛ [e.g.,Day et al., 2005]. We indicate the average cohesive-zone resolutionN̄c over

the fault domainΩ in the comparisons that follow. Note that the value ofΛ for the quasi-

stationary crack [e.g.,Rice; Day et al., 2005] is 0.62 km for this problem. By comparing

simulations with different spatial and temporal resolution, we find, consistently withDay

et al. [2005], that locations of the highest error correspond to fault regions far from the
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Table 5.1, the resulting effective slip dependence of the RS interface (solid lines) over the
comparison domain matches very closely the LSW friction in the SCEC validation problem
(dashed line). The open circle corresponds to the coefficient of friction associated with the
initial strength of the comparison domain.
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nucleation patch, because the cohesive-zone size gradually shrinks as rupture accelerates

along a homogeneously pre-stressed fault. Hence differences in PSV arrival time at a point

close to the end of the ruptured region (e.g.,x = 9 km) would be a more sensitive indicator

of the accumulated error than the RMS difference over the domain. However, RMS values

are more indicative of the overall error and help avoid the error scatter through averaging.

5.3.2 Convergence of SEM and BIM solutions with grid reduction

SEM and BIM simulations with high resolution (i.e., largēNc) result in virtually identical

solutions, in the sense that the difference in PSV arrival times and in peak slip velocities

is negligible compared to their absolute values. As an example, consider our highest-

resolution SEM and BIM simulations, which result in̄Nc of about 22. (The average node

spacing of the highest-resolution simulations is 0.0093 km in SEM and 0.0074 km in BIM).

At one of the most computationally demanding locations,x = 9 km, the difference in the

PSV arrival times is3 · 10−4 s or 0.01% of the PSV arrival time and the difference in peak

velocity is 5 · 10−3 m/s or 0.05% of the peak velocity. The nearly identical slip velocity

histories are shown in Figure 5.4A. Note that the slip velocity history has a pulse-like

shape due to the stopping phase arriving from the rupture arrest atx = 10 km.

The convergence of SEM and BIM solutions with grid reduction is shown in Fig-

ure 5.4B. The quantity plotted is the root-mean-square (RMS) difference of PSV arrival

times relative to the highest-resolution runs; the result is expressed as a percentage of the

RMS arrival time of the highest-resolution run. To determine PSV arrival times, we use

interpolation of near-peak slip velocity history by piecewise cubic splines with time inter-
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the errors of both SEM and BIM solutions are higher for this updating scheme.
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vals much smaller than the time step of the highest-resolution simulations. Open circles in

Figure 5.4B show RMS difference of PSV arrival times as a function of average node spac-

ing for SEM calculations, using the SEM highest-resolution simulation as the reference.

Open triangles show the same quantity for BIM, using the BIM highest-resolution simula-

tion as the reference. The differences in PSV arrival times approximately follow a power

law in the average node spacing, with the estimated exponents of 1.85 for SEM and 1.93

for BIM. Note that the convergence exponent is similar for SEM and BIM. The estimated

cohesive-zone sizeΛ averaged over the comparison domain is 0.21 km, and the numerical

accuracy depends on the cohesive-zone resolutionN̄c, consistently with the study byDay

et al. [2005].

The results show that the highest-resolution solutions, convergence rates, and errors for

both SEM and BIM are nearly identical, validating our SEM algorithm.

5.3.3 Evaluation of state-variable updating schemes

The results in section 5.3.2 are obtained using the state-variable updating scheme (5.19).

An alternative way of updating the state variable is to use the following relations in the

updating scheme (section 5.2.3):

θ∗n+1 = θn + ∆tθ̇n at step 4 ,

θ∗∗n+1 = θn +
∆t

2
(θ̇n + θ̇∗n+1) at step 6 , (5.24)

whereθ̇n is obtained from the state-variable evolution laws (5.13) or (5.14) withδ̇ = δ̇n

andθ = θn. This approach was used inLapusta et al.[2000]. Sinceθ∗n+1 in (5.24) is the
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first-order expansion of (5.19) and (5.20) with respect to∆t for a constant slip velocity, one

would expect the state-variable updating scheme (5.24) to be less accurate. We verify this

expectation by numerical simulations (Figure 5.4B, C). While the two updating schemes

are comparable for fine discretizations (Nc & 2), the errors for the updating scheme (5.24)

are higher in the case of coarser discretizations (Nc . 2), for both SEM and BIM. The

error difference for coarser discretizations may be important in 3D simulations, which tend

to require marginal discretizations due to their demand on computational resources.

5.3.4 Comparison of simulations with linear slip-weakening (LSW)

and rate and state (RS) friction

LSW friction laws are widely used to simulate dynamic rupture. Several dynamic rupture

codes for LSW faults have been compared in the SCEC code validation [Harris et al.,

2009]. LSW laws incorporate discontinuities in derivatives, such as the abrupt change

from weakening to a constant dynamic friction level. RS laws, on the contrary, are smooth.

Hence, it is reasonable to hypothesize that RS laws would lead to simulations with better

numerical accuracy than LSW laws. Since the aging form of RS laws can match the overall

shape of LSW laws quite well, we can use our simulations to test that conjecture. We use

the same LSW friction as in the SCEC code comparison, and the parameters of RS friction

are chosen to match that LSW friction during dynamic rupture (Figure 5.3).

Figure 5.5A shows that the two laws result in SEM simulations with comparable ac-

curacy. However, there are important differences. For the node spacing larger than∼0.1

km, the errors of solutions with LSW friction are 33% higher on average than those with
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for the simulations with the average node spacing of 0.036 km. The simulation with LSW
has much larger numerical oscillations. Note that the visible time difference between rup-
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faster rupture arrival in the simulation with RS friction indicates a larger average rupture
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x = 9.0 km for the highest-resolution SEM simulations with LSW and RS friction. The
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convergence behavior and numerical stability of simulations with RS friction as discussed
in the text.
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the aging law of RS friction. Hence, as expected, RS friction results in smaller errors for

the same node spacing. Even though the computational time for the same node spacing is

larger for RS friction than LSW friction, one can obtain the same accuracy using a coarser

node spacing in the calculations with RS friction, actually reducing the computational time

in comparison with LSW. To illustrate this point, we consider RMS difference in PSV ar-

rival time over the domain 8.5 km≤ x ≤ 9.0 km, where the errors would be expected to

be higher than for smallerx (Figure 5.5A inset). LSW simulation with∆x = 0.107 km

and RS simulation with∆x = 0.125 km have comparable error of about 1%. For the node

spacing of 0.107 km, the CPU time is 1.35 times longer in the calculation with RS friction

than in that with LSW friction. However, the CPU time and memory in the RS calculation

with the node spacing of 0.107 km is 1.53 and 1.36 times larger, respectively, than the one

with 0.125 km. Hence, RS calculation with∆x = 0.125 km takes 12% less CPU time

and 36% less memory than the LSW calculation with∆x = 0.107 km that has comparable

accurary. This illustrates that the computational cost with respect to a given accuracy of a

solution is smaller in calculations with RS friction than in those with LSW friction. Note

that the differences in CPU time and memory become even larger for 3D computations, as

the differences increase with the number of the node points.

In addition, numerical oscillations, caused by discontinuities of derivatives in LSW fric-

tion, increase numerical noise and prevent further reduction of errors for finer discretiza-

tions. Such numerical oscillations are appreciably smaller in simulations with RS friction

than in those with LSW friction, as Figure 5.5B shows for the node spacing of 0.036 km.

The oscillatory slip velocity near the peak in the LSW simulation results in much higher
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errors for finer discretizations (Figure 5.5B). Note that numerical damping in the form of

Kelvin-Voigt viscosity is often used to suppress numerical noise for the calculations with

LSW friction [e.g.,Day et al., 2005]. Our experience with using damping indicates that it

also results in slower rupture speed (longer PSV arrival time), which decreases the conver-

gence rate.

We quantify the degree of smoothness of the solutions obtained using the two friction

laws by comparing the spectra of slip velocity (Figure 5.5C). The spectra differ for high

frequencies (f > 20 Hz). While that frequency range cannot be resolved by inversions of

seismological data and it is beyond the frequency band relevant for most engineering ap-

plications, it reveals important differences in the behavior of the two solutions. The decay

of high frequencies (20 Hz . f . 100 Hz) for the simulation with RS friction is ap-

proximately proportional tof−5/2, which is faster than thef−3/2 decay for the simulation

with LSW friction. Hence slip velocity at the onset of sliding for RS and LSW friction are

proportional tot3/2 andt1/2, respectively, and the corresponding slip acceleration is propor-

tional tot1/2 andt−1/2. This behavior of the numerical solutions for LSW indicates that, in

the corresponding continuum solutions, slip acceleration at the onset of sliding is infinite,

consistently with the finding ofIda [1973], and abruptly jumps from zero, whereas slip ac-

celeration for RS friction is finite and smoothly changes from zero. The discontinuity in the

continuum solution with LSW friction limits the quality of the corresponding numerical so-

lutions. That is why the model with RS friction results in numerical solutions with smaller

oscillations and has better convergence than that with LSW friction (Figure 5.5A,B).

We conclude that, for a given accuracy of solutions, the aging form of RS law leads to
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more stable and accurate simulations than LSW law, while producing savings in computa-

tional time and memory.

5.3.5 Simulations with the slip law of state-variable evolution

In addition to the aging law considered so far, other formulations of the state-variable evo-

lution have been proposed, including the slip law, the composite law, and laws with more

than one state variable [Ruina, 1983;Rice and Ruina, 1983;Gu et al., 1984;Kato and

Tullis, 2001]. Several recent nucleation studies [Kato and Tullis, 2001;Rubin and Am-

puero, 2005;Ampuero and Rubin, 2008] found notable differences between models with

different state-variable evolution laws. Which formulations most adequately represent lab-

oratory experiments is a question of active current research [e.g.,Bayart et al., 2006].

Figure 5.6A shows that the errors of SEM solutions with the slip law are much higher

than those with the aging law, for the same parameters. In comparison with the aging

law, the slip law requires much higher numerical resolution to establish the same order of

accuracy. This is because the effective slip-weakening rate (i.e., the rate of stress decrease

with slip) is variable for the slip law, with the maximum effective slip-weakening rate

larger in simulations with the slip law than with the aging law for the same RS parameters

(Figure 5.6B) by a logarithmic factor of peak slip velocity [Ampuero and Rubin, 2008]. In

our test problem, when the value of the characteristic slipL in the slip law is increased eight

times, the maximum effective slip-weakening rate becomes approximately equal for both

laws in this particular model, and the errors in simulations with the slip law (Figure 5.6A)

become comparable to the errors in the simulations with the aging law (Figure 5.4B). These
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stress and slip at the PSV arrival time atx = 9.0 km.

results suggest that errors are controlled by the resolution of the maximum effective slip-

weakening rate. Note that this is consistent with the notion that the resolution of cohesive

zone controls errors for calculations with LSW friction and the aging law of RS friction.

In LSW friction, effective slip-weakening rate at the rupture front is constant, and the

cohesive-zone size reflects that rate. The aging law results in slip-dependent behavior close

to that of LSW friction (Figure 5.6B).
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5.4 Effect of velocity-strengthening fault friction at shal-

low depths on dynamic rupture

We use the SEM for rate-and-state faults developed in section 5.2 and validated in section

5.3 to investigate the effect of different fault rheologies on dynamic rupture in a 3D fault

model. The fault is governed by the aging form of RS friction, with relatively uniform pre-

stress. We consider two dynamic rupture scenarios on a vertical strike-slip fault embedded

into an elastic half-space: Case 1 with velocity-weakening friction extending up to the free

surface, and Case 2 with a shallow 3-km velocity-strengthening region next to the free sur-

face (Figure 5.7). Case 2 is motivated by the inferred existence of a velocity-strengthening

fault rheology at shallow depths as described in section 1. Absorbing conditions [Clayton

and Engquist, 1977] are used on all boundaries of the SEM model except the free surface

and the fault boundary, to simulate a semi-infinite elastic half-space.

Figures 5.7 and 5.8 illustrate parameters and initial conditions for the SEM model.

The effective normal stress,̄σ = min[1.0 + 16.2z, 80.0] MPa, wherez is in kilometers,

increases with depth due to the difference of overburden minus hydrostatic pore pressure

and becomes constant (80.0 MPa) at depths larger than 4.9 km, due to the assumption that

fluid over-pressure prevents further increase ofσ̄ with depth [Rice, 1993;Ben-Zion and

Rice, 1997]. We compute the initial stress distribution in Figure 5.8A based on (5.12) by

assuming that initial slip velocitẏδin = 10−12 m/s and initial state variableθin = 34.38

years are constant throughout the fault (Table 5.1). The initial stress distribution at shallow

depths are slightly different in Cases 1 and 2 due to the difference in the friction parameters
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Figure 5.7: A 3D model of a vertical strike-slip fault embedded into an elastic half space.
Two cases with different fault rheologies are considered, with and without shallow velocity-
strengthening patch. At the horizontal transitions from velocity-weakening to velocity-
strengthening properties (x = −10 km andx = 30 km), the value ofa stays constant and
the value of(a− b) abruptly changes from -0.004 (velocity weakening) to 0.004 (velocity
strengthening). The depth dependence ofa and(a − b) within the region−10 km< x <
30 km is shown in Figure 5.8.

a andb.

The medium is initially moving on the two sides of the fault with equal and opposite

horizontal particle velocities oḟδin/2 = 5 · 10−13 m/s, values much smaller than typical

plate loading rates of10−10 to 10−9 m/s. Starting at timet = 0, dynamic rupture is initiated

by imposing a rapid but smooth time-dependent variation of the horizontal shear traction

in a circular patch (E. Dunham, personal communication, 2008;Rojas et al.[2007]; ap-

pendix 5.8). This initiation procedure results in fast but gradual variations in slip velocity,

producing more stable numerical results for lower numerical resolutions in comparison to

the more abrupt initiation procedure (in the form of an overstressed patch of higher initial

stress) of section 2. The difference between the two procedures is especially important in

3D problems, which are expensive computationally.
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effective slip dependence of friction at the fault location (x, z) = (15 km, -7.5 km).

Dynamic ruptures in the two cases are compared in Figures 5.9-5.12. Each simulation

has an average node spacing of 0.050 km and takes 5 hours with 150 processors on Caltech

supercomputer, CITerra. Figure 5.9 gives snapshots of the strike-parallel component of

slip velocity every 2 seconds for Case 1 (top) and Case 2 (bottom). The rupture initiates

at the nucleation patch and then spontaneously propagates until it encounters velocity-

strengthening regions at the 15-km depth and at lateral distances of−10, 30 km, where

slip gradually terminates. The resulting slip dependence of the RS simulation at the fault

location(x, z) = (15 km,−7.5 km) is shown in Figure 5.8C.

5.4.1 Suppression of supershear rupture near the free surface

Significant differences between the two cases start to arise when the rupture reaches the

velocity-strengthening patch next to the free surface. In the absence of the shallow velocity-
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Figure 5.9: Snapshots of horizontal slip velocity (m/s) on the fault every 2 seconds for
Case 1 (top) and Case 2 (bottom). White lines on two snapshots represent the boundary
between velocity-weakening and velocity-strengthening regions. Slip velocity and slip at
the location of an inverted triangle are plotted in Figure 5.12. Note that only a part of the
fault close to the velocity-weakening region is shown.
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strengthening patch (Case 1), the rupture front next to the free surface propagates with a

supershear speed (Figure 5.9). This supershear rupture propagation near the free surface

has been observed in simulations with LSW faults [Aagaard et al., 2001;Day et al., 2008].

In the presence of the shallow velocity-strengthening patch (Case 2), the supershear

rupture propagation near the free surface is suppressed (Figure 5.9). This is consistent with

the fact that supershear rupture propagation near the free surface has not been commonly re-

ported in large crustal earthquakes. Our results indicate that velocity-strengthening friction

at shallow depths may account for, or at least contribute to, the lack of universal supershear

rupture near the free surface. Other factors might contribute to suppression of supershear

propagation at the free surface, such as a potential increase in breakdown work close to the

free surface due to more distributed shear at low normal stresses or lower initial shear stress

than assumed in this work.

Figure 5.10 shows particle-velocity seismograms on the free surface, 2.0 km away from

the fault trace. We see that the arrival phase in the waveforms (a solid black line) has a

speed higher than the shear wave speed (Vs). The differences in waveforms for the two

cases are significant due to the combination of two effects in Case 1: high slip velocity

on the fault near the free surface and the supershear phase. The differences indicate that

it might be possible to infer the existence of shallow velocity-strengthening patches from

seismic observations.
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Figure 5.10: (A) Off-fault receiver locations for the 3D SEM model. (B) Strike-parallel
particle velocity at those receivers. The amplitudes at the individual receivers are normal-
ized by the maximum amplitude at that receiver for Case 1 (red curve). The dashed lines
correspond to apparentVp andVs arrivals. The black solid line shows approximate arrival
of the phase that corresponds to the supershear rupture.

5.4.2 Smaller final slip throughout the fault

The shallow velocity-strengthening patch in Case 2 causes an appreciable slip reduction

over the entire fault (Figure 5.11). The existence of the shallow velocity-strengthening

patch suppresses the slip due to the combination of two effects. The first one is that the

healing phase created at the shallow rheological transition gradually ceases the slip at depth.

The second effect is that the rupture reflected from the free surface in Case 1 induces

further slip at depths, whereas in Case 2, the effect of the reflected rupture decreases due

to the suppressed slip in the velocity-strengthening patch at shallow depths. Thus, the total

amount of slip at depth is smaller in Case 2 than in Case 1 (i.e., 25% smaller at the receiver

in Figure 5.11). The difference in final slip between Case 1 and Case 2 is largest next to

the free surface. The resulting profile of slip with depth (Figure 5.11) indicates shallow
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Figure 5.11: Final slip over the fault and depth profiles of slip and stress drop along the
dashed lines for Case 1 (top row) and Case 2 (bottom row). Slip in Case 2 is reduced
throughout the fault. The shallow velocity-strengthening patch results in negative stress
drop (or stress increase).

coseismic slip deficit, which is qualitatively consistent with observations [Fialko et al.,

2005]. Note that these two rupture scenarios yield comparable moment magnitudes;Mw =

7.1 in Case 1 and 7.0 in Case 2.

The slip reduction corresponds to smaller stress drop. The values of depth-averaged

(from 0 km to 15 km) static stress drop for Case 1 and 2 (Figure 5.11) are 4.9 MPa and 3.5

MPa, respectively. Note that stress drop within the shallow velocity-strengthening patch

is negative, that is, shear stress increases after the earthquake. Another mechanism that

can contribute to negative stress drop at shallow depths is low initial stress in low-rigidity

shallow materials resulting from uniform tectonic strain [Rybicki and Yamashita, 1998].
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5.4.3 Faster decrease of slip velocity behind the rupture front: impli-

cations for the rise time

One of the important source parameters inferred by seismic inversions is the rise timeTs

(i.e., slip duration at a point on the fault). Let us consider the rise time for Cases 1 and

2. Figure 5.12A shows the evolution of slip velocity at the middle of the seismogenic

depth (7.5 km depth) at the distance of 15 km from the center of the nucleation patch

(the inverted triangle in Figure 5.9). This representative profile has a strong rupture front

followed by gradually decreasing weak “tail,” for both Cases 1 and 2. Such slip velocity

profile is commonly referred to as “crack-like,” as there is no self-healing behind the rupture

front. However, slip velocity in the “tail” is rather small and slowly varying compared to

the rupture front. The rise time that seismic inversions would determine for such rupture

should depend on the inversion method, the amount and quality of available seismic data,

and other factors, and determining that “seismic” estimate of the rise time is beyond the

scope of this study. To obtain some simple estimates, we consider here slip durations with

slip velocities larger than a given cutoff value (Figure 5.12B). Note that the resulting slip

durations are generally lower for Case 2 which contains the shallow velocity-strengthening

region.

We compare these slip durations with the study byHeaton[1990], which demonstrated

that the rise timeTs in seismic inversions is significantly shorter than the timeTH
s required

for rupture to receive the healing phase due to the effective seismogenic width of faults:

Ts ¿ TH
s ≡ 2

√
S

3Vr

, (5.25)
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whereTH
s is the rise time estimate fromDay [1982] used inHeaton[1990] for the fault

aspect ratio< 2, Vr is the velocity of the rupture front, andS is the ruptured area. Using

the average rupture velocity around the receiver location in Figure 5.9 (2.75 km/s) and the

ruptured area up to the location (25 km by 15 km), we obtainTH
s = 4.7 s. This value is

comparable to the slip duration in our simulations for the cutoff velocity of 0.1 m/s. For

larger cutoff velocities, the estimated slip durations are shorter, especially for the case with

the shallow velocity-weakening region, being closer to the range of rise times given by

seismic inversion data inHeaton[1990]. This is consistent with studies [e.g.,Beroza and

Mikumo, 1996] that noted that fault heterogeneity can produce local arrest phases and re-

duce the rise time. The shallow velocity-strengthening region acts as such a heterogeneity,

effectively reducing the width of the seismogenic zone, as well as diminishing the effect

of the free surface. Note that a number of dynamic weakening mechanisms promote self-

healing of ruptures and hence short rise times [e.g.,Lu et al., 2007, and references therein];

the work ofHeaton[1990] advocated strongly rate-dependent friction that can result from

shear heating [e.g.,Rice, 2006]. Our methodology can incorporate dynamic weakening

mechanisms by combining them with RS friction, and our implementation of enhanced co-

seismic velocity weakening in a 3D SEM code has been successfully validated as a part of

the SCEC code comparison exercise.
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Figure 5.12: (A) Horizontal slip velocity at a location indicated by an inverted triangle
in Figure 5.9 for Case 1 and Case 2. (B) Slip durations for Case 1 and 2 at the same
receiver for different slip-velocity cutoffs. The slip durations are smaller for the case with
the shallow velocity-strengthening region (Case 2).

5.5 Effect of velocity-strengthening friction at shallow depths

on ground-motion amplification due to a layered bulk

structure

In this section, we investigate how low-velocity bulk layers at shallow depths, in combi-

nation with different fault rheologies, affect the ground motion. Figure 5.13A illustrates

elastic parameters used for the layered bulk structure; two low-velocity layers above 5-km

depth are added to the homogeneous case used in section 5.4. This layered bulk model

approximately corresponds to the 1D Parkfield velocity structure used in the study by

Cust́odio et al. [2005]. Uniform bulk attenuation is accommodated by the approach of

Komatitsch and Tromp[1999], with the shear quality factorQµ = 40 and infinite bulk

quality factor.
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Figure 5.13: (A) A 3D model with a layered bulk structure. (B) Computed moment
rate for four different earthquake scenarios with: (1) homogeneous bulk structure without
the shallow velocity-strengthening patch; (2) homogeneous bulk structure with the shal-
low velocity-strengthening patch; (3) layered bulk structure without the shallow velocity-
strengthening patch; (4) layered bulk structure with the shallow velocity-strengthening
patch. (C) Peak ground velocity (PGV),u̇peak = max(

√
u̇2

x + u̇2
y + u̇2

z), at on-fault re-
ceivers (z = 0) shown in panel A. PGV is much smaller in the cases with the shallow
velocity-strengthening patch for both layered and non-layered bulk. (D) PGV at off-fault
receivers shown in panel A. The difference in PGV for the different fault rheologies re-
mains significant over off-fault distances comparable to the seismogenic width (∼15 km).
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We consider four earthquake scenarios. They are combinations of two different fault

rheologies (velocity weakening up to the free surface vs. a shallow 3-km velocity-strengthening

patch) and two different bulk structures (homogeneous vs. layered). We make the seismic

moment rate and total moment approximately equal in the four cases to create similar

source processes. As shown in section 5.4, for a given initial stress, the case with the

shallow velocity-strengthening patch results in smaller slip, and hence a smaller value of

seismic moment, than the case with no shallow velocity-strengthening patch. To obtain

similar values of seismic moment for the four scenarios considered here, we use, for the

cases with the shallow velocity-strengthening patch, 3% larger initial shear stress than the

one used in section 5.4. Figure 5.13B shows the computed moment rate for the four earth-

quake scenarios. We see that the four scenarios result in similar values of seismic moment

rate; the total moment differs by less than 4%. Note that the seismic moment is relatively

insensitive to the change in a bulk structure because the slip gets amplified at places where

the shear modulus is relatively low.

The change in bulk properties as well as the slip redistribution due to fault rheology

substantially influence the peak ground velocity (PGV). PGV at the on- and off-fault re-

ceivers is amplified in the layered bulk cases due to the reduction in elastic moduli (Fig-

ure 5.13C,D). An interesting feature is the smaller values of PGV, for a given bulk structure,

for the cases with the shallow velocity-strengthening patch, even as far as 10 km away from

the fault. For example, the PGV at the 7.5-km off-fault receiver is 45% smaller for the case

with the shallow velocity-strengthening patch (blue line) than for the case with no shal-

low velocity-strengthening patch (green line). The difference is large near the fault trace
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and decreases with the distance away from the fault. This result suggests that both bulk

structure as well as fault rheology are important parameters for the peak ground motion.

Another interesting feature is the presence of high-frequency surface waves whose en-

ergy is trapped within the shallow low-velocity bulk layers (Figure 5.14). In the case of

the layered bulk structure without the shallow velocity-strengthening fault rheology, high-

frequency Rayleigh waves (Figure 5.14A) form as a result of the large fault-perpendicular

particle velocities on the fault near the free surface (Figure 5.14B), which are, in turn, re-

lated to the large slip velocities (e.g., fault-parallel velocities) near the free surface. In

the absence of attenuation or for weaker attenuation (Qs & 40), the amplitude of the

Rayleigh waves becomes larger than the amplitude of body waves at the distance of sev-

eral kilometers from the fault trace and remains high over a wide range of the off-fault

distances. However, such high-frequency Rayleigh waves have not yet been observed in

strong-motion records (Heaton, personal communication, 2007). One explanation for the

absence of the high-frequency Rayleigh waves is their scatter by more complex bulk struc-

ture than the idealized layered bulk assumed in our simulations (Heaton, personal commu-

nication, 2007). We show that a shallow velocity-strengthening fault region can provide an

alternative explanation, since high-frequency Rayleigh waves do not form in the case with

velocity-strengthening fault friction at shallow depths (Figure 5.14), which suppresses slip

velocity near the free surface.
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Figure 5.14: (A) Fault-perpendicular particle velocity at the off-fault receiver located 10
km away from the fault, at the distance of 15 km from the nucleation point along the strike.
(B) Fault-perpendicular particle velocity at the on-fault receiver with the same along-strike
distance. (C) Fault-perpendicular particle velocity at the off-fault receiver in panel A in the
case without attenuation. These seismograms correspond to the cases with the layered bulk
structure. When there is no velocity-strengthening region close to the free surface (solid
lines in panels A, C), a high-frequency Rayleigh peak is observed. In the non-attenuating
medium (panel C), the amplitude of the high-frequency Rayleigh wave becomes signifi-
cantly higher than the body wave amplitude. Note that the scale is different in panels A
and C. The Rayleigh wave peak is not observed for the cases with the shallow velocity-
strengthening patch both with and without attenuation (dashed lines in panels A, C).
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5.6 Conclusions

We have developed an algorithm for simulating dynamic rupture on rate and state (RS)

faults in the context of 2D and 3D SEM models. Our SEM test results have accuracy

comparable to that of BIM over a wide range of node spacings. We have also demonstrated

that the computational cost with respect to a given accuracy of a solution is smaller in

calculations with the aging form of RS friction than with linear slip-weakening friction.

Simulations with the slip form of RS friction require much higher numerical resolution than

those with the aging form due to the higher maximum effective slip-weakening rate at the

rupture front for the slip law than for the aging law, for the same rate and state parameters.

As a result, we have found that solution errors in dynamic rupture problems are controlled

by the resolution of the maximum effective slip-weakening rate at the propagating rupture

front.

Using the developed SEM approach, we have shown that the presence of velocity-

strengthening fault friction at shallow depths significantly affects dynamic rupture. A shal-

low velocity-strengthening region suppresses supershear propagation near the free surface,

which could explain the lack of universal observations of such near-surface supershear

rupture. In addition, it decreases slip accumulation over the entire fault. The largest slip

decrease occurs close to the free surface, consistently with the observed deficit of shallow

coseismic slip in large earthquakes. Note that velocity-strengthening properties of the shal-

low layer can be adjusted to reduce the slip accumulation there further, or even completely

prevent the rupture from propagating to the free surface. A shallow velocity-strengthening

region results in faster decrease of slip at the tail of propagating rupture at seismogenic
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depths than in the case without such region, creating shorter effective rise times. The am-

plification of ground motion due to low-velocity elastic structure is decreased in the pres-

ence of a velocity-strengthening region at shallow depths, due to the redistribution of slip.

These results suggest the importance of the shallow velocity-strengthening fault region not

only for quasi-static response such as aseismic transients and afterslip, but also for dynamic

rupture and the associated seismic hazard.

There is growing evidence that friction is much lower at seismic slip velocities than

RS friction laws predict [e.g.,Toro et al., 2003;Rice, 2006;Han et al., 2007;Lu et al.,

2007, and references therein]. The presented SEM framework can be extended to include

dynamic weakening mechanisms such as pore pressurization and flash heating [Rice, 2006,

and references therein], which can be combined with RS friction to account for a wide range

of seismic and aseismic slip velocities. SEM can incorporate complex 3D geometrical

effects such as 3D basins and seismic Moho [Casarotti et al., 2007]. Furthermore, it can be

extended to include non-planar fault geometries and heterogeneous and/or non-elastic bulk

properties, factors that are important for understanding fault behavior, and in particular

large earthquakes.

5.7 Fault boundary matrix

The fault surfaceΓ consists of quadrilateral elementsΓe inherited from hexahedral ele-

ments lying on the two sidesΓ± of the fault. The matrixB in (5.1) is a sparse rectangular

matrix obtained by assembling the contributionsBe from each of the fault boundary ele-

mentsΓe that are the same for the three components of traction. The term ofBe associated
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with the GLL node with local indices(i, j) in Γe ∈ Γ± is

Be±
ij,ij = ±ωiωjJ

ij
e , (5.26)

whereωk denote the weights associated with the GLL integration quadrature and

J ij
e =

∥∥∥∥
∂x

∂ξ
× ∂x

∂η

∥∥∥∥ (ξi, ηj) (5.27)

is the Jacobian of the coordinate transformation fromx ∈ Γe to ξ = (ξ, η) ∈ [−1, 1]2.

The outward normal vector of the fault boundaryΓ+ is obtained by

n(ξ, η) =
1

Je

∂x

∂ξ
× ∂x

∂η
. (5.28)

5.8 Appendix: Rupture initiation procedure

To nucleate dynamic rupture in a short period of time, we need to abruptly increase slip

velocity from values below typical plate loading rate (∼10−12 m/s) to coseismic ones (∼1

m/s). To achieve this numerically, we use a perturbation of shear stress that smoothly grows

from zero to its maximum amplitude∆τo over a finite time intervalT , and is confined to

a finite circular region of the fault of radiusR. Following the approach used inRojas

et al. [2007] and in the 2008 SCEC code validation, we apply a horizontal shear traction

perturbation of the form:

∆τ(x, z, t) = ∆τoF (
√

(x− xo)2 + (z − zo)2)G(t) , (5.29)
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where

F (r) =





exp [r2/(r2 −R2)] if r < R ,

0 if r ≥ R ,

(5.30)

and

G(t) =





exp [(t− T )2/(t2 − 2tT )] if 0 < t < T ,

1 if t ≥ T .

(5.31)

The perturbation is radially symmetric, with the radial distance away from the hypocenter

along the fault given byr =
√

(x− xo)2 + (z − zo)2. We useR = 2.5 km, ∆τo = 19.0

MPa, andT = 0.1 seconds.
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Chapter 6

Spectral Element Modeling of
Long-term Slip Histories Punctuated by
Dynamic Ruptures on Rate and State
Faults

In this Chapter, we develop a 2D SEM that can enable us to simulate long-term fault slip

histories and that allows us to consider scenarios with heterogeneous bulk properties. Our

model merges a quasi-static SEM with the fully dynamic SEM presented in Chapter 5.

To validate the developed SEM approach, we compare SEM and BIM simulation results

in a 2D model of small repeating earthquakes (Section 6.2). Using the developed SEM

approach, we investigate the effect of variable fault-zone and bulk properties on earth-

quake cycles (Section 6.3). In particular, we study whether vertically stratified bulk struc-

ture can cause shallow coseismic slip deficit without the presence of a shallow velocity-

strengthening region.

This Chapter is based on the manuscript in preparation by Y. Kaneko, N. Lapusta, and

J.-P. Ampuero.
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6.1 A quasi-static SEM algorithm for simulations of long-

term deformation histories

6.1.1 Discretized elastodynamic relations

As in Chapter 5, we start from the discretized weak form of the equation of motion in its

matrix form:

Mü = −Ku + Bτ , (6.1)

whereM andK are the mass and stiffness matrix respectively,B is the fault-boundary

matrix,τ = T−τ o is the relative traction vector on the fault,T is the total traction, andτ o

is the traction on the fault that corresponds to the reference zero-displacement state. Vec-

torsu, u̇, andü collect the values of displacements, particle velocities, and accelerations,

respectively, of all the computational nodes of the bulk mesh.

The SEM dynamic model presented in Chapter 5 relies on an explicit time updating

scheme, the approach commonly used in SEMs for wave propagation [e.g.,Komatitsch

and Vilotte, 1998]. However, the explicit time scheme limits the maximum length of each

time step by the Courant condition. For dynamic rupture simulations, the value of this time

step is of the order of a fraction of a second, and hence simulating tens to thousands of

years of deformation histories is not computationally feasible. To take a longer time step,

one needs to use an implicit time updating scheme. SEMs with implicit schemes have been

been used to solve elastic and acoustic wave equations [e.g.,Ampuero, 2002;Zampieri and

Pavarino, 2006].
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We develop a quasi-static SEM with an adaptive time stepping and merge it with the

fully dynamic SEM. We switch from one regime to the other based on the values of the

maximum slip velocity on the fault. In the case of quasi-static static problems, the dis-

cretization of the weak form of the equation becomes

Ku = Bτ , (6.2)

Let us decompose the displacement valuesu into the ones on the fault, denoted byuf and

ones in the medium, denoted byum. Then

K11u
f + K12u

m = Bτ , (6.3)

K21u
f + K22u

m = 0 , (6.4)

whereK11 andK12 are the parts of the stiffness matrix corresponding touf , andK21 and

K22 are the parts corresponding toum. From (6.4), we have

K22u
m = −K21u

f . (6.5)

Given the displacement on the faultuf , one can obtain the corresponding displacement field

in the mediumum.

In (6.3), let us introduceA ≡ K11u
f + K12u

m. We now write relation (6.3) for the

fault nodes with the± signs indicating the values of field variables on the two sides of the
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Figure 6.1: The fault divided into two non-overlapping surfacesΓ±.

fault (Figure 6.1):

B±τ± = A± . (6.6)

Subtracting the minus side from the plus side, and using the sign conventionτ = −τ+ =

τ−, whereτ± are defined with respect to the outward normal from the fault boundaryΓ±

(Figure 6.1), we obtain

τ = −(B+ + B−)−1(A+ −A−) . (6.7)

Note thatB+ = B− for conformal meshes. The expression (6.7) is a local relation which

can be computed node by node on the fault. It is convenient to rewrite (6.7) in terms of

total traction,T = τ o + τ :

T = τ 0 + τ = τ 0 − (B+ + B−)−1(A+ −A−) . (6.8)
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6.1.2 Updating scheme: advancing one evolution time step during quasi-

static periods

We have developed an updating scheme appropriate for the rate and state fault boundary

condition. Here, we discuss how values of field variables are updated over one evolution

time step. Suppose that the discretized values of displacementu and particle velocitẏu are

known at thenth time step. To find the values of the field variables at the(n + 1)th time

step, we perform the following steps.

1. Update the values of displacements on the faultuf , based on the known values at the

nth time step:

u∗fn+1 = uf
n + ∆t u̇f

n . (6.9)

2. Solve for displacement field in the mediumu∗mn+1 using (6.5):

K22u
∗m
n+1 = −K21u

∗f
n+1 . (6.10)

This is solved by a preconditioned conjugate gradient method, an iterative method

for solving symmetric-positive-definite systems of equations. The algorithm we use

is based onHestenes and Stiefel[1952] and is summarized inTrefethen and Bau

[1997]. Because the stiffness matrixK22 is large (∼ 104 by 104), a direct method

such as Gaussian elimination cannot be used. Fortunately, the matrixK22 is sparse,

and the productKu is always computed at a local elemental level as in the case with

the dynamic SEM (Chapter 5). This is why we use an iterative method.



159

3. ComputeA∗ = K11u
∗f
n+1 + K12u

∗m
n+1 andT∗

n+1 in (6.8).

T∗
n+1 = τ 0 − (B+ + B−)−1(A∗

+, n+1 −A∗
−, n+1) . (6.11)

4. Determine the first prediction of the state variable,θ∗n+1. By integrating the evolution

law (5.13) or (5.14) with the constant magnitudeδ̇n of slip velocity δ̇n = u+
n − u−n

during the time step, we obtain

θ∗n+1 = θn exp

(
− δ̇n∆t

L

)
+
L

δ̇n

(
1− exp

(
− δ̇n∆t

L

))
(6.12)

for the aging law, and

θ∗n+1 =
L

δ̇n

(
δ̇nθn

L

)exp
(
−δ̇n∆t/L

)

(6.13)

for the slip law.

5. Find the first prediction of slip velocitẏδ
∗
n+1 by equating the magnitude of shear

stress in (6.11) and strength in (5.15). The directions of shear traction vectorTn+1

and slip velocity vectoṙδn+1 have to coincide. From (6.11), the tractionT∗
n+1 and

A∗
n+1 have the same direction. By projecting (6.11) onto that direction and using an

inverted form of (5.15), we obtain

δ̇∗n+1 = ψ(T ∗n+1, θ
∗
n+1) . (6.14)
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Using the directional cosines constructed from the components ofT∗
n+1, we obtain

the components oḟδ
∗
n+1.

6. Calculate the final prediction of displacement and slip on the fault,u∗∗fn+1 = 1
2
δ∗∗n+1, at

the(n+ 1)th time step by

u∗∗fn+1 = uf
n +

∆t

2

(
u̇f

n + u̇∗fn+1

)
. (6.15)

7. Make the corresponding predictionu∗∗mn+1 of the displacement in the medium using

theu∗∗fn+1 as in step 2.

8. Make the corresponding predictionT ∗∗n+1 andθ∗∗n+1 by repeating steps 3 and 4 and by

replacingδ̇n in equation (6.12) or (6.13) with
(
δ̇n + δ̇∗n+1

)
/2.

9. Find the final predictioṅδ∗∗n+1 and the components oḟδ
∗∗
n+1 by repeating step 5 with

T ∗∗n+1 andθ∗∗n+1 instead ofT ∗n+1 andθ∗n+1.

10. Declare the values oḟδn+1, θn+1, andTn+1 on the fault, and the values of displace-

ment of the entire mediumun+1, to be equal to the predictions with the superscript

double asterisks.

This scheme is second-order accurate in∆t for slip and state variable. As in the case of

single spontaneous dynamic rupture (Chapter 5), its accuracy is comparable to that of BIM

only when the second iteration is included.
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6.2 Implementation example

6.2.1 Formulation of a 2D model

The response of faults to tectonic loading is characterized by long periods of quasi-static

deformation combined with short periods of fast dynamic slip. To simulate such response,

we adopt the variable time stepping ofLapusta et al.[2000], in which the time step is

set to be inversely proportional to slip velocity on the fault as described in Appendix 6.5.

As a result, relatively large time steps, a fraction of a year, are used in the interseismic

periods, while small time steps, a fraction of a second or smaller, are used to simulate fast

seismic slip. Note that the stability of the stepping procedure relies on the presence of the

positive direct effect in the rate and state formulation, the feature that has ample laboratory

confirmation.

The updating scheme illustrated in the previous section can be merged with the one for

the dynamic SEM shown in Chapter 5. The main challenge in merging these two schemes is

to find proper criteria for switching from the quasi-static to dynamic scheme and vice versa.

Prior to the onset of earthquakes (or during nucleation processes), slip velocities abruptly

increase from values much smaller than typical plate loading rates (∼ 10−10 - 10−9 m/s) to

coseismic values (∼1 - 10 m/s), where inertial effects become dominant. Hence we switch

from one scheme to the other based on the values of the maximum slip velocity, which,

for the problems discussed below, areδ̇QD
max = 0.5 mm/s for switching from the quasi-static

to dynamic scheme, anḋδDQ
max = 0.2 mm/s from the dynamic to quasi-static scheme. The

selection of these values ensures that the field quantities change smoothly at the time of
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Figure 6.2: 2D fault models of a vertical strike-slip fault. Small repeating earthquakes
at seismogenic depths in a region indicated by a black rectangle are modeled using these
models. By symmetry consideration, the medium across the fault boundary has equal and
opposite motion.

the switch, that the time step is already equal to the minimum time step∆tmin given in

Appendix 6.5, and that the results compare well with BIM methods as discussed below.

More work is needed to formulate the criteria in terms of the magnitude of inertial terms

with respect to other forces in the problem.

To demonstrate how the ideas outlined so far are combined to produce long-term defor-

mation histories, let us consider response of a 2D fault model (Figure 6.2). In this model, a

vertical strike-slip fault is embedded in an elastic medium. On the fault, a potentially seis-

mogenic patch borders regions steadily moving with a prescribed slip rateVpl = 2 mm/yr,

as illustrated in Figure 6.2. That steady motion provides loading in the model. The fault

motion is in the along-strike directionx, but only variations with depthz are considered, so

that the fault behavior is described by strike-parallel slipδ(z, t), slip velocity (or slip rate)

δ̇(z, t) = ∂δ(z, t)/∂t, and the relevant component of shear stressT (z, t).
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It is convenient to express the formulae in terms of variables(u − Vplt/2) and(u̇ −

Vpl/2), in which caseτ0(z, t) becomes independent of time and equal to the initial stress

τ0(z). This approach was used for the BIM model ofLapusta et al.[2000]. For the 2D

problems we consider here, the medium across the fault boundary has equal and opposite

motion by symmetry consideration. Then the relations (5.11) and (6.8) on the fault become

T (z, t) = τ0(z) + T̃ (z, t)− Z(z)
(
δ̇(z, t)− Vpl

)
(6.16)

for the dynamic scheme, and

T (z, t) = τ0(z)− 1

2B(z)

{
K11(y, z, t)

[
uf(z, t)− Vplt

2

]
+K12(y, z, t)

[
um(z, t)− Vplt

2

]}

(6.17)

for the quasi-static scheme. Note that our mesh is conformal and henceB = B+ = B−.

The SEM model consists of a 90 km by 60 km rectangular domain (Figure 6.2). The

domain is replicated using periodic boundary conditions on both sides of the domain (Fig-

ure 6.2). The fault boundary obeys rate and state (RS) friction with the aging law of state

variable evolution. The model contains variations in steady-state friction properties that

create rheological transitions (Figure 6.3). The parameters used in the simulations are listed

in Table 6.1. The effective normal stressσ̄ and characteristic slipL are uniform along the

fault.

We use the criteria for spatial discretizations developed in the work byLapusta and

Liu [2009], which showed that resolving a cohesive zone size during the dynamic rupture

propagation is a more stringent requirement than resolving the nucleation size, for the
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Table 6.1: Parameters used in the 2D SEM and 2D BIM models of small repeating earth-
quakes. The indicated value ofb is valid for the steady-state velocity-weakening region in
Figure 6.2.

Parameter Symbol Value

Shear modulus µ 32 GPa
Shear wave speed Vs 3.46 km/s
Reference slip rate δ̇0 10−6 m/s
Reference friction coefficient f0 0.6
Characteristic slip distance L 84 µm
Effective normal stress σ̄ 120 MPa
Rate and state parametera a 0.0144
Rate and state parameterb b 0.0191
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aging formulation of rate and state friction and typical rate and state parameters. In our

simulations, we use∆x = 0.25 m, which results inΛ0/∆x ≈ µL/(bσ̄∆x) ≈ 5 where

Λ0 is the cohesive zone size at the rupture speedc → 0+. Such resolution has shown to

be adequate in the work ofDay et al. [2005] andLapusta and Liu[2009], and it leads

to stable results in our simulations that do not change due to finer discretizations. The

selected spatial discretization corresponds toh∗RA/∆x ≈ 50 (Figure 6.3b), whereh∗RA is

the estimate of the nucleation size obtained byRubin and Ampuero[2005] for a/b & 0.5,

which points to more than adequate resolution of nucleation processes.

6.2.2 Comparison of simulation results obtained with 2D SEM and 2D

BIM

To assess the accuracy of numerical results, we conduct comparison of simulation results

obtained using the quasi-static/dynamic combined SEM model with a BIM model. The

BIM model used for the comparison is based on the BIM spectral formulation ofLapusta

et al. [2000] that resolves all stages of each earthquake episode under a single computa-

tional scheme. Figure 6.2 illustrates the geometry of the antiplane SEM and BIM models.

In BIM, wave propagation is analytically accounted for by boundary integral expressions.

The fault is repeated periodically, as in the SEM model.

Earthquake sequences simulated in SEM and BIM models are shown and compared in

Figure 6.4. The solid lines are plotted every 0.5 years and show the continuous slow slid-

ing (creep) of the steady-state velocity-strengthening regions. That slow slip creates stress

concentration at its tip and penetrates into the velocity-weakening region. In due time, an
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of aseismic slip and seismic slip of the 2nd event are shown. Spatial distributions of slip
contours in these models agree very well. (b) Shear-stress and (c) slip-velocity histories at
the center of the fault. The 2nd, 3rd, and 4th earthquake events are shown. The timings of
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our quasi-static/dynamic combined SEM implementation.
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earthquake rupture nucleates and propagates bilaterally; its progression is shown by dashed

lines. After an earthquake arrests, the velocity-strengthening region experiences acceler-

ated sliding, or afterslip, due to the transferred stress. The interseismic period between two

successive events is 6 years. The overall agreement of spatial slip distributions between

two models during coseismic as well as interseismic periods validates our developed SEM

approach (Figure 6.4a). The histories of shear stress and slip velocity at the center of the

fault in these models are virtually identical, and the timings of the onset (δ̇max > 1 cm/s)

of the 4th seismic events in these models differ by 0.46% (Figure 6.4b,c). The agreement

is very good given that, in the SEM simulation, there are a total of∼40,000 adaptive time

steps, each of which includes 1 to 500 conjugate gradient iterations. To make sure that

the solution is accurate, we have checked that the result of a BIM simulation with a twice

higher resolution shows identical slip patterns and timings of seismic events, confirming

that the results here are grid independent.

There are several interesting observations in the outcome of this particular example.

Figure 6.5 shows the evolution of the displacement and velocity fields during the quasi-

static and dynamic periods in the SEM model. In Figure 6.5a, warm colors indicate a larger

amount of displacement relative to the displacement given by the plate loading, whereas

cold colors correspond to a smaller amount of displacement. About one minute before

the onset of the seismic event, the displacement field localizes near the eventual nucle-

ation site. The change in strain field associated with this localization can be detected if

a strain-meter were placed at an off-distance comparable to the size of the nucleation re-

gion. This is why observations of premonitory slip prior to the eventual mainshock are
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difficult, consistent with the study byTullis [1996]. After the seismic event that occurred

between the 4th and 5th panels in Figure 6.5a, the red-colored region gradually expands

due to afterslip on the velocity-strengthening segments of the fault. The corresponding

change in the displacement field for the afterslip is much larger than that for the nucleation

process. Therefore, one should look for signals associated with afterslip of small repeating

earthquakes before searching for signals for the nucleation process. In Chapter 2, we have

shown several implications for the presence of a velocity-strengthening patch: the termi-

nation of coseismic ruptures, decreased values of interseismic coupling, the decrease of

seismic potency rates, and the occurrence of afterslip. Another physical implication is the

formation of healing waves that propagate into a bulk, when the rupture front encounters a

velocity-strengthening region (Figure 6.5b).

6.3 Effect of variable bulk properties on earthquake cy-

cles: Can vertically stratified bulk structure cause shal-

low coseismic slip deficit?

Using the developed formulation, we investigate the effects of variable bulk properties

combined with different fault rheologies on shallow coseismic slip deficit inferred from

earthquake inversions [Fialko et al., 2005]. In Chapter 5, we showed that such deficit can

be caused by a shallow fault region of velocity-strengthening friction. Another candidate

mechanism is low initial stress in low-rigidity shallow bulk materials resulting from uni-

form tectonic strain [Rybicki and Yamashita, 1998]. Here we investigate both mechanisms
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using the developed SEM.

We model earthquake sequences on a planar vertical strike-slip fault embedded into an

elastic half-space (Figure 6.6). The setup is similar to the depth-variable model ofLapusta

et al.[2000], where friction acts in the top 24 km of the fault and its deeper extension moves

with a prescribed plate rate of 35 mm/year. The physical parameters of the simulations

presented in this work are shown in Figure 6.6 and Figure 6.7. The value ofL used is

8 mm, larger than the laboratory values of the order of 1 - 100µm, to make large-scale

simulations numerically tractable. The variation of friction parametersa andb with depth

shown in Figure 6.7a is similar to the one inRice [1993] andLapusta et al.[2000]; it is

derived from laboratory experiments [Blanpied et al., 1995]. The region between 3.0 km

and 15.3 km has steady-state velocity-weakening properties. The transition from steady-

state velocity weakening to steady-state velocity strengthening at 15.3-km depth is due to
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temperature increase with depth. The effective normal stressσ̄ becomes constant and equal

to 50 MPa at depths larger than 2.6 km (Figure 6.7b), due to the assumption that fluid

over-pressure prevents further increase ofσ̄ with depth [Rice, 1993;Ben-Zion and Rice,

1997].

We consider four different scenarios of earthquake sequences in: (i) homogeneous bulk

structure without the shallow velocity-strengthening fault patch, (ii) layered bulk structure

without the shallow velocity-strengthening fault patch, (iii) homogeneous bulk structure

with the shallow velocity-strengthening fault patch, and (iv) layered bulk structure with the

shallow velocity-strengthening fault patch. The layered bulk model approximately corre-

sponds to the 1D Parkfield velocity structure down to the depth of∼15 km used in the

study byCust́odio et al. [2005]. The scenarios with the velocity-strengthening patch at

depths less than 3.0 km (Figure 6.7a) are motivated by laboratory experiments and field

observations as discussed in Chapter 1.
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Figure 6.8a,b show earthquake sequences simulated in the 2D SEM model for scenar-

ios (i) and (ii). The solid lines are plotted every 5 years and show the continuous slow

sliding (creep) of the steady-state velocity-strengthening region at depth. That slow slip

creates stress concentration at its tip and penetrates into the velocity-weakening region.

In due time, an earthquake nucleates close to the transition. We show the progression of

earthquakes with dashed lines plotted every second.

The scenarios with homogeneous and layered bulk do not lead to shallow coseismic

slip deficit in this particular examples (Figure 6.8e,f). From the evolution of shear stress,

the stress accumulation rates in the lower-rigidity materials during the interseismic periods

are smaller than those in the materials with higher rigidity (Figure 6.8c,d). However, the

coseismic slip rates get amplified in the low-rigidity materials, resulting in the net effect on

slip being nearly zero. Note that the levels of the interseismic shear stress are different at

z = −2 and−4 km due to the depth-dependent effective normal stress (Figure 6.7b).

Figure 6.9a,b show earthquake sequences simulated in the 2D SEM model for scenarios

(iii) and (iv). The presence of the shallow velocity-strengthening patch lead to shallow

coseismic slip deficit regardless of the properties of the bulk (Figure 6.9e,f). Due to the

interseismic creep and afterslip on the shallow velocity-strengthening region, the stress

accumulation rates during the interseismic periods are very small in both scenarios. Hence

the coseismic slip at the shallow parts is driven by the dynamic stress supplied by the

incoming ruptures propagating updip.

The results here suggest that coseismic slip deficit can be caused by the presence of a

shallow velocity-strengthening region, but not by that of low-rigidity shallow bulk materi-
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als. In a model embedded in elastic media, the accumulated slip is equal to the sum of co-,

inter-, and postseismic slip. On velocity-weakening faults accommodating little inter- and

postseismic slip, the coseismic slip at a given point has to catch up with that on the rest of

the fault plane. Hence the cancellation of the net effect of dynamic amplification and low

interseismic stress accumulation in Figure 6.8 is reasonable. The studies byRybicki[1992]

andRybicki and Yamashita[1998], which proposed that shallow coseismic deficit can be

caused by the presence of low-rigidity materials, did not consider dynamic amplification

of coseismic slip, even though they considered a wider range of conditions. While explor-

ing the wider range of parameters is our next goal, our conclusions should still be valid,

unless certain conditions lead to significant interseismic creep or afterslip on faults with

velocity-weakening friction.

6.4 Conclusions

We have developed a 2D SEM algorithm for simulating long-term fault slip histories on

rate and state faults. We have set up an antiplane benchmark problem and validate the de-

veloped SEM approach by comparing SEM and BIM simulation results in a 2D model of

small repeating earthquakes. Our approach allows us to study seismic events that naturally

develop in our models, with conditions before the nucleation originating from the previous

stages of earthquake occurrence and not from arbitrarily selected initial conditions that one

would need to impose to study only one instance of an earthquake. The SEM model can

also allow for more flexibility in fault geometry and bulk properties in long-term simula-

tions of fault slip. Furthermore, while the methodology is presented using the 2D antiplane
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problem, it can be readily extended to the 2D in-plane and 3D problems.

Using the developed formulation, we have investigated the effects of variable fault-zone

bulk properties combined with different fault rheologies on nature of shallow coseismic slip

deficit. For the set of parameters we have considered, low-rigidity shallow bulk materials

do not lead to coseismic slip deficit. While the low-rigidity materials do cause lower inter-

seismic stress accumulation, they also cause dynamic amplification of coseismic slip rates,

with the net effect on slip being nearly zero. At the same time, the addition of velocity-

strengthening friction to shallow parts of the fault leads to coseismic slip deficit in all cases

we have considered.

6.5 Appendix: Variable evolution time step in 2D antiplane

problems

Simulations of long-term deformation histories with periods of rapid dynamic slip (earth-

quakes) requires time steps that change by orders of magnitude. For our quasi-static/dynamic

combined SEM model, we adopt the time-stepping scheme developed for BIM byLapusta

et al. [2000] for a 2D antiplane problem. This scheme works well for our 2D SEM model.

Note that the maximum time step is limited by the Courant condition and constant in the

dynamic SEM. The variable time step∆t is chosen as:

∆t = max{∆tmin,∆tev} , (6.18)
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where∆tmin is the minimum time step, and∆tev depends on slip velocity at each time step.

The minimum time step is set by the Courant condition and given by

∆tmin = γ∆xmin/cs , (6.19)

whereγ = 0.6 is used in our 2D antiplane problem. The same condition is used for

modeling single dynamic ruptures in the 2D antiplane test problem in Chapter 5. The time

step∆tev is set to be inversely proportional to slip velocity:

∆tev = min[ξiLi/δ̇i] , (6.20)

whereLi, δ̇i, andξi are the characteristic slip, the current slip velocity, and a prescribed

parameter for theith fault node of the discretized domain, respectively.ξi is a function of

friction properties from linear stability analysis [Lapusta et al., 2000], and it is constrained

to satisfyξi ≤ ξc, whereξc is a constant, to ensure that slip at each time step does not

exceedξcLi. As in Lapusta et al.[2000], we useξc = 1/2 in our 2D SEM and BIM models

used in this Chapter.
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