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ABSTRACT

I. The Rotation of a Gravitating Sphere in a Monatomic Gas

The flow resulting from the steady rotation of a gravitating
sphere in a monatomic gas at rest is studied in a variety of special
cases. The low speed rotation problem involves the solution of non-
uniform Stokes equations and exhibits the interesting property that,
if the field is large enough to make a ''scale height'' very small
compared to the sphere radius, the motion is very weak and occurs
primarily in a thin boundary layer on the sphere. The asymptotic
theory for the gravitational field strength very large with arbitrary
rotation speed shows essentially the same boundary layer, regardléss
of Reynolds number; the perturbation theory presents some interest-
ing mathematical problems as well. The high speed rotation case is
finally considered, and solutions have been obtained only for a gas
with small Prandtl number. Even then, the flow structure is very
complex. Depending on the relative sizes of the Prandtl number and
iniverse Reynolds number, there are six possibilities. In every case,
there is a thin Prandtl boundary layer on the surface of the sphere
and an essentially incompressible jet in the equatorial plane. In
some cases, a thermal layer outside the Prandtl boundary layer is
required to adjust the temperature, and in every case but one, it is
necessary to infer the existence of still another 1ayer, which is
inviscid but rotational, that adjusts the uniform flow into the layer
required by the strong hydrostatic constraints on the outer flow to
that necessary for Prandtl boundary layer entrainment. In some

cases these layers are unstable to small disturbances if the
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temperature on the sphere is sufficiently large.

II. The Drag of a Body Moving Transversely in a Confined Stratified

Fluid

The motion of a body through a stratified fluid bounded by
vertical plates is studied in the case when the motion of the body is
sufficiently slow to make the inertia of the fluid negligible. The case
studied is for a very small coefficient of diffusion (for salt in water,
for example). The density changes are quite large, and the drag is
quite easily computed without appeal to the structure of any boundary
layers or shear layers, depending only on changes of potential energy
of the fluid. The solution exhibits regions where the fluid is
unstably stratified, and hence mixes. Depending upon how complete
the mixing process is, the body might experience a thrust!

The equations for boundary layers are given, but details of
their solution are not dealt with here, because of their quasi-linear
nature. The horizontal shear layers consist of a simple density
adjustment layer surrounded by a thicker and quite complicated non-
linear dynamical layer. The more conventional Stewartson layers
do not appear here; these layers, because of the non-linearities, are
quite complex, and details of their structure have not yét been fully

worked out.
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1. Introduction

The rotation of a massive, and hence gravitating sphere in
a compressible monatomic gas presents a very interesting and per-
haps geophysically relevant problem to attack. As will be pointed
out in detail later, the solution to the incompressible version of the
problem, where the field can be absorbed into the pressure gradient,
is now well understood in both small and 1argge Reynolds number
regirﬁes. Jeffrey, (1) Bickley, (2) and Collins(3) have quite completely
accounted for the small Reynolds number flow; Howarth(4) and
Squire(5) have together correctly accounted for the large Reynolds

(6)

number solution, with Stewartson

(7)

resolving a difficulty due to
Nigam.
The compressible problem without gravity is clearly no diffi-
cult matter, and the solutions do not change substantially from their
incompressible counterparts. The additioﬁ of gravity as well as com-
pressibility, however, does bring a host of complications. The gravi-
tational field introduces a new length into the problem, physically

corresponding to an atmospheric scale height, so a new dimensionless

— _ sphere radius : 2
number may be formed, a= GM/aRTo = Scale height where GM/a

is the field strength per unit mass on the sphere of radius a, R is the
particular gas constant, and To is the temperature on the surface of
the sphere. In addition, there are the more conventional dimensionless
" combinations
Re- gz @° Yo

- ’ RT * k_ ~

o o
where ( )0 will always denote quantities evaluated on the sphere.

Compressibility also means that Too/To will be a parameter of
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importance, though it will be O(1) throughout.

Considering that the solution in general could be represented as
a point in an (@, Re, B, 0) space, it is clear that the lines of approach
are endless. The techniques of singular perturbation theory are very
useful in understanding certain restricted regions of this space.

Section 2 deals with the simplest of the asymptotic problems,
viz., the structure of the solutions near the Re = B = 0 plane. This
is essentially a Stokes problem which degenerates to Bickley's solu-
tion as @ ¥ 0. Because of the algebraic complexities of the general
solution, the @ — oo special cases are considered. The o ——oe limit
is singular, being characterized by the collapse of most of the fluid
into a thin layer of width a/a onto theepherical surface. Analysis of
the unsteady development of the primary flow, as well as a quite
general solution for weak meridional temperature variations on the
sphere in the a — oo limit complete this part of the work.

Because of the interesting nature of the @ — oo Stokes solution,
Section 3 contains the genefal o — oo problem with the pressure on the
surface held fixed. Some difficulties encountered in the perturbatien
procedure indicate why, if Ep(ﬁ;Re’ B,a,0) denotes the solution,k that

lim lim wu_+# lim 1lim u_, r fixed,

a—o Re—=0 P Re—0 a—ow
B—0 B —0

- except in the boundary layer. Holding Re fixed as @ —oco with P,
fixed essentially means that P 0 as @ — o0, so the Reynolds

number based on P BOES to zero with 1/¢. Viewed in this light,
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the Stokes-like nature of the solution is no surprise.
Finally, Section 4 deals with the solutions for Re —o0o. This

is the most difficult of the asymptotic problems dealt with here; it
has been possible to make progress only for 0 << 1, for a steady solu-
tion. In some Too/To ranges, for certain values of o, the solution
exhibits a certain non-uniqueness which is believed to be associated

with the fact that, for those same values of the parameters, Rayleigh-
type instability becomes possible in the fluid. A variety of boundary
layers occur as well as an equatorial-plane jet.

2. Asymptotic Solutions for Re -0, B — 0

The equations of motion for a viscous, heat-conducting

monatomic gas in a central gravitational field are just

EE ° =
o TV pe=0 @
ou z
B p§+Bp(E'V)E+VP=_ReV°Z'pa£/r (2)
2., wtl o
VT 2.2 - 9T ' 2
57T tEB @, =pRejtRepu VT -ZReu-Vp (3)
w 2

‘where the variables are similar to the usual Stokes variables(s), with

-1
_po’ Qa, To, poRTo’ Qp.o, 2 7, the dimensional density, velocity,

temperature, pressure, stress, and time respectively. Here ¢ is
the usual deformation tensor, e,, = ui’j +u. ., and (I:V is the viscous

ij j, 1
dissipation. The only variance from the usual Stokes scaling is the
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pressure, which scaling comes from the static atmosphere. We now

seek asymptotic solutions of (1) - (5) as Re, B f’O subject to

u=rxk
p=1 Onr =1 : (6)
T =T(@®)

where 0 is the polar angle, and IEI -0, T = Too as r — oo.

A. Steady Solution for T(l) = T(c0) =1

In this section, the solution is given for a steady state solution
of (1) - (5) with £(8) = 1 in boundary condition (6) and T_ =1 in (7).
For convenience, call BZ/Re2 = \, a parameter proportional to the
Knudsen number, and hence ord \ < 1 in order to assure the validity
of a continuum formulation. Also, because of its frequent occurrence,
- let T'= exp- Ol(-l-'-;—l) .

The perturbation scheme proceeds as

2 .
_ B 2
p=T[l+x;p; +B p,+...]
-1"[1+-]:°’E + B2 + ] (8)
p= Re P1 P ™ e

2

_ B 2
T=1+xgT;+BT,+...
E=31+Re22+... et al.

~If N\, 0, and @ are all order one, the insertion of (8) into (1. 7) gives,

to leading order, the Stokes equations
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subject to Tl(l) = pl(l,O) =0, _1_1_1(1) =r Xk; To =u = 0 at oo.

G. B. Jeffrey, in 1915, (1) first carried out the solution to (9) with
a = 0. Because all of the thermodynamic boundary conditions are
homogeneous, Jeffrey's solution is correct for any a, viz.

rxk

c
1
W)

-1
* (10)

Pp =P =Ty =0

which can be verified by direct substitution. The next step is to cal-
culate the secondary flow by substitution of (8) into (1)-(7) again and,

using (10), performing the same limit to give just

ar-u,
v'..u;z =3 (11)
r
ar 2 1%
T'(u;-V)u, + T'Vp,-I'T, :j =V, + -_,;V(? ©u,) (12)
. 2 a(r-u,)
12 18 sin"@ _ 2 — —2
'Ev T2+—5—-—r%———ﬁ —?—-———I‘ | (13)
p, =p, + T, (14)
subject to p,(0) =T, =0, u, =O0onr =1
(15)

ly_l — 0, Py Tz—-O as r — oo
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The solutions to (11)-(15) were found (actually the incompressible
equivalents) by Bickley, (2) in 1938 for o = 0, and the entire pertur-
bation procedure was investigated (for a = 0) quite completely by
Collins. (3) It is Bickley's solution that, surprisingly perhaps, lends
itself bto suitable generalization in this context. To proceed, one
notes that, if (uz, Vo WZ) are the velocity components in the radial,

polar, and azimuthal directions,

u, = U(r) (3 cosze - 1)

v, = V(r) sin® cos® (16)

One can split the solution to (13) into two particular intégrals and a

homogeneous solution. The result of that calculation is

2
T, = £ 6 (3c0s%0-1) [Q(r) - Q‘;) T 1—3)]
'y r T
1 1 1
t g0 -3 (17)
T
where Q is a particular integral of
2 a%Q aQ o
r :i—-z— + 2r dr - 6Q = X’TU(I’) ) (18a)
r ,
’ 2f1 P a,2
ie., Q=1 —-gf 5 £°T(E)U(£)dEdn (18b)
n .‘
Substitution of (16) into (11) gives
dU
V+r-&?+2U=%U (19)

Then, substitution of (16) and (17) into (12) yields two further
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equations; cross-differentiation to eliminate the pressure gives

_or(2 Q@) 1
LI(U) = 61"(5 ao(Q(r) - 3 ) - 3> (20a)
r r
where
4 3 2 2 2
4 d 3d a 6al 2 d a, d o
L,sr —+ 8t —5-|—5-—|r —5 -6(4- =)r —+8(3+=)
1 dr4 dr3 (rz r) er r’ dr r2
| (20b)
In addition,
: 1 5
b, = Alr)(3eos” -1) - 3t - 1+ R 2+ L - 2
T T’ 2r
1
+ 3 (1 + (a-6)Urr(l)—Urrr(1)) (21a)
where
A=-._1 1 [rz v + (br-a) a’u + 82 U] (21b)
6r4 6T dr3 dr2 r2

The simultaneous solution of (18) and (20) gives the complete selution,

using the boundary conditions

u(1) =%(1‘) =0, U, %}’——o, * = 00 (22)

Then, p, and T, are completely determined by (17) and (21). The
exact solution for any o can in principle be carried out by a Frobenius
method, but the result would be unwieldy and of littie use for under-
standing the nature of the solution. Hence, what follows is an exami-
nation of the solution to (17)-(22) for two extreme values of a.

(i) Weak Field Solution; a<<1

If @ = 0 in the equations (17)-(22), then (20) is especially
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simple, being a 4th order equation of equidimensional type, having
homogeneous solutions l/r2 and 1/1'4. Together with a particulér
solution, these solutions may be used with (22) to give Bickley's

1938(2) solution,

2
. 1lr-1 _1r-1
Up=-83)» Vo=3—7
r r
Q =0
o
(23)
1 1
A =—s 0 —
0 3% 43
2 1
Pyg = Ao(3cos -1) - —
- br

where the subscript denotes the fact that this is the @ = 0 solution.

A procedure like

U=U +aU, +...
(o]

1
V=V +aV, +...
o 1
et al.

will yield the next order solution; the operators are still equidimen-
sional and so the solution is straightforward though somewhat

involved. Without giving the details here, the result is simply

_5r+2 3 13 5 .2 1 1
Uy ="%7 Yo T 130 (5 -z o)z logr + 5 - )
Ir T r
- 1 2r-1 3 13 _5 1
Vl--z( = )V0+35(2 —20)r410gr (24)
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and similarly for Al' It is clear that this is a regular perturbation
expansion which might proceed indefinitely. One significant thing
about this result is that (18) and (20) were ngt coupled, whereas for
general o, (20) cannot be solved first as was done here. The reason
for the decoupling is that the order one pressure field is only slowly-
varying, and hence the work it does on the nioving fluid is quite small
compared with the rate of energy dissipation of the primary flow.
The streamlines for @ = 0 are shown in Figure 1.

(ii) Strong Field Solution; a >> 1

The asymptotic theory for o — oo is considerably more complex
than the theory for @ — 0. It is immediately clear from (20) that
o — oo presents a singular perturbation problem. It is convenient
in this context to let § = a-l, and to put U = §U. Rewriting (18), (19),
and (20) in this notation gives

2

2 d°“Q dQ _TI'=
r -d—2+2r5-6Q-—)\-U | - (25)
T
dU - 1=
Vi+rsgs+280=2T (26)
(D) =- 6r35 + %Z-GF[Q(I‘) - Q(3” + -;- (r'4-r‘3)] 27)
r r
where
4 3 2
—_ 244 2.3 d 1 66 d 2 d
= %" =— + 86 - (-2 r S5 - 6(48° - 2 =
dr4 dr3 rz r dr2 dr
+ 8(36% + -15) (28)
r

subject to
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FIG. | STRUCTURE OF THE Re- 0O SOLUTION
FORa=0 [from Bickley, Lz]]
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= dU
U(l)==4—(1)=0 on r =1
dr 29)

U, U —0, r—o
T

Outer Expansion

We proceed in the conventional way by hypothesizing an outer

expansion
T=F. +6F, + 6°F, + (30)
0 1 27
V : G + 6G + e e @
o 1
Q=0 +8Q, +... et al.,
o 1

and inserting it into (25)-(28). Doing the limit process 6§ — 0, r fixed,

it is important to notice that now I' = exp(- -1—;5:171—) and hence, for r fixed,

lim 6~kl" (r,8) =0 for any k
5—0
r fixed

This means that, in particular, Qn =0, n=0,1,2,..., and also that
,(27) is a homogeneous equation for U. Suppose F) is the first non-

zero term in (30); then,

2
a2F
2k g =0

r
: drz k

(31)
Fk -0, r ~o00
where the condition given on the solution is the only one we can as

yet pose. Clearly,

F =Cr ™

. . m=zN33-1)= 2.4 (32)

is the required solution 6f (31), but C is not known, since one cannot
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satisfy (29) with any choice but the trivial one. The general form of
the flow is shown in Figure 2.

Inner Expansion

Examination of (25)-(28) indicates that there is a singular layer

of size 6 on the spherical surface. Let

ﬁ:fo(y)+ of, (y) + ...
v=go(y)+ 6g1(y)+ (33)
Q =

q,(y) + dq; (y) + ...

where y = (r-1)/6. Then, I' = e Y, and insertion of these expansions

into (27) and (28) gives, on letting § — 0, y fixed,

d4f£ d2f£
—Z-——73 =0 (34)
dy dy

if f! is the first non-zero fk and £ < 3. It can be easily verified that
the solution to (34) is not sufficiently general to match with (32) and
satisfy (29). Hence, the conclusion is £ = 3 in which case (34) is

modified to become

3 23 = 6e”Y .89 oY (35)

2

d'ag oy

PR N T | (36)
df,

g3 =3 -3y (37)



«13-
i
- Polar Jet Of Width ae- 29

|Equatorial
Jet Of

Widtha ¢ ¢

/

Boundary Layer

, Of Width a/a
(a)
5..
4=
o L
o
s 2f
L
0 | T T

g Y
(b) Boundary Layer Streamlines (o =1)
Mass Flow = O(a~4)
FIG.2 THE STRUCTURE OF THE Re+0,a+>® SOLUTION
IN THE MERIDIONAL PLANE

%
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subject to the boundary conditions

df3
f3(0) =EY— (0) =0 (38)

The solution to (35)-(38) is

f3 = 3((y+1)e_y—1) + -%% [(y2+5y+5)e-y-5] (39)

g5 = 3((2y+1)e Y1) 2%( (2y%+8y+5)e™Y-5] (40)

3 2

1 60 -2
ag-a5(1) =gy [gov" + @+ Fhyl e

+ 20+ doya-e) - 2+ - (41)

Matching
Put r-1 =y Y'n where ordd < ordm <1 into (39) and into (32)

and let n — 0, holding yn fixed. Then, Ska(n, yn)-83f3 n, Y"’\) - GkC +

(3 + % 0)63 so, to make this quantity zero, take C = -3 - % o, and

k = 3. Notice that putting (30) into (26) gives »

=1

Tr F3’

and since — -3 - 3 casn—0 fixed

‘ g3 > n s Y.q s

lim (6°G

n—0
fixed
T

3,4y =
3- 87830 =0

also. Hence, the velocity field is now uniformly valid to 0(63). The
pressure is given in (21) and insertion of these expansions into that

expression gives
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A=-%+ow)
(42)
2

1 .
p, =5 sin"0 + O(s)

in the boundary layer and the outer flow pressure vanishing at infinity

is
1.1 64 2 -m-1, -, 5n-1
p, =3(1 + 3 o)Jm(m-1)(m+4) 3+ (3cos™6 -1)r +O(6°T )
o 1 5
+——5-—6-[;—5'-;];—2-] + 0(1) (43)

Asymptotically, as § — 0, it is clear that (43) gives

5%(3c0s%0-1)

mtl MREE
T

I'p, = %(1 4 % o)m(m-1)(m+4)

and insertion into (8) gives the outer expansion in §,

2
4 -
p =T+ +Lo)mm-1)m+e)s?B? 308 -4 (44)
2 2 1‘m+l
Regarded as an asymptotic expansion in the sequence 1, Bz/Re, Rez,

ReBz, «.., (44) is a Poincaré€ expansion. (9) Further, use of (42)

allows the formation of the composite expansion

r-1
- 2
- or 211 -y . 2 1.4 1 3cos 6-1
p~ e + B [E e ‘sin 0 + 2—6 (1+ Ea)m(m-l)(m+4) ——--—-—-—rm+l ]
(45)
Again, this is a Poincaré expansion as B — 0, 5 small and fixed.

However (43) represents a generalized asymptotic expansion(lo) for

P, only if the second term is uniformly smaller than the first, i.e.,

855> ¢~ 1/85 (462)
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which is certainly true as § — 0, but from a computational point of
view places a serious restriction on 6. Though (45) is acceptable
under B — 0, 6§ — 0 in that order, practically, it means more than

B<< 6. Rather, frorh (44), one needs
B2 << ¢~ 1/8/ 5% (46b)

Numerically, (46) represents a very serious restriction on B (or Re)
and mathematically it means that one is confined to the region of B-6

space where

5

055" 1/8 2 0(1) B =o(e /2852

) (47)

It seems clear, in fact, that the first of these restrictions arises
because (8) is too restrictive and that in fact p is the sum of two

Poincare expansions in B and § combined, viz.,

2
_ B 2
p-rﬂ+§;pl+B'%+,“]

4 64Bzg[pf + opf + 62p§ R O(Re)%

So, though it seems at first strange; replace (45) by
_ r-1 2
or B 0,1 5
P~ e [”m(—'g'—z)]
r 2r

2
211 -y . 2 1.4 1 3 0-1
+B [—Ze Ysin 9+—2-6 (l+—270)m(m-1)(m+4)(—%—1-——)} (48)

Now, (48) is the final composite expansion for the pressure, and
apparently requires, to be valid, a somewhat weaker condition,

2

B << MIﬁN(6/0, 54 e'l/a) (49)
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1/2).

or mathematically, B = O(% In summary, the composite expan-

sions for the velocity field are

3
~ 301+ 30) —2r 36%(1ry)e T+ 3T 2yPeyrs)e™Y (50a)
r
1 8t .4
U~ -3(1+50) ==+ 38" (l+ye Y43 o O (y2+5y+5) e (50b)
r
and the temperature,
1 1 1,,2 2 1,1 1,,.5
T,~g0 - ';74-) + % 0(3cos -1)[’2- (';z - -13)"“5 (q5(Y)-q5(0))]
(50c)

The streamlines in the outer flow are circular arcs since V>> U

everywhere except in a region of width re-l/ZGr

on the polar axis
and O(re'l/ 61‘) in the equatorial plane where the streamlines turn
inward. The boundary layer streamlines are sketched in Figure 2b;

the streamfunction is
- -y . 2
Y(oe,y) = f3e sin © cos@
and the vorticity distribution is

w = -38% sind cosB[2 + (1 +-‘;i0)y] eV

15, 7 /2
which has a minimum at y = ((—) + =+ E) -5 One can show by

integration that this flow carries no net mass; it is purely recircula-
tion.

B. Unsteady Development of the Primary Flow

The azimuthal momentum equation, from (2), is

por = VoW - (51)
r sin"0
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in the limit Re, B — 0. Further, in the same limit, (1) gives p = const

so replace p in (51) by I'. Then (51) is

- (r-l) .
2 w - r ' ow
VY te T .
which is to be solved for
w(l,0) = H(t) sin® (52b)

w—0, r o0

where H(t) is the Heaviside stepfunction.
o'}

Put w = sin® s(r, t) and then let S(p, r)Ef e‘Pts(r,t)dt.
(6}

The result is an ordinary differential equation

L 28 @+Hrys=o

S(l,p) =1/p | (53)
S—0, r —o0

which can be reduced to a form perhaps somewhat more useful by
S = r'l/zzb which gives
2a% . _a¢ [3.2. 2
rY =5+ - (-2—} + rpl'(r,a)|d =0 (54)
dr

The solution to this problem for @ = 0 was originally given by Ghildyal
in 1961, (11) If o = 0, the relevant solution to (54) is K3/2(p1/2r).
Denoting the solution with a superscript (o),

w© (e, t) -_-—1-2- i(r-l) [1-erf(1‘—-1- 4 \IE')]e‘r“‘1

r NFX: 4

+ 1-erf®=l) | (55)
NZE
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(i) Asymptotic Solution for Any &, r — oo

Clearly, if r >> 1, one can replacel’ by e ®. The (54) is
again a Bessel equation and the inversion is the same as where @ = 0.

Hence, as r — o

w(r, t) ~ const. W(o) (re-a /2, t)

Hence, it would appear from this that the unsteadiness fills more and
more of the fluid as @ — oo, provided the constant is O(1).

Asr —1, I" =1, so sufficiently close to the sphere, the soiu-
tion is precisely that given by (55). In this context, that means
r - 1<< 1/a.

(ii) Solution as @ — 0

It is clear that (54) is quite difficult to solve for general a.
- However, if @ << 1, then a regular perturbation expansion in @ is

quite straightforward. Let

w(r,t) = w(o)(r, t)v+ ozw(l)(r, t)+ ... : (56)

1)

Then, if S = S(o) + oes( + .0, s(l) = e-\lp (r-1) g(r,p), then (53)

gives

2 d° d
r —§+ 2r 3% (1-rp )-2(1+=\p )g

dr
oLy vEE | .
Pop+ 1

The general solution of (57) is quite involved. However, the transient
character of the motion may be examined from (57) by letting p be

large. In that case, the solution is easy, and
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1 1 logr
g=——¢Fot1-—2)

2\p
and therefore, for t sufficiently small,
W(l)“' 1 1 - _:_I._ _ lorgr) e 4¢ ' (58)

2\nt t
In addition to this result, if t = oo, the solution to (57) is approximately

g~ %p(l - -11-_-). Therefore, this is easily invertible, (12) the result

being ,
2 2 _=1®
wle (gt—r” [(l'z-tl) 23] e 4t (59)

as t — oo.

(iii) Solution as @ — oo

If one defines S = <I>/r2, then (53) becomes

r-1

2 -—
2d d 2
i :1—;%1 - er d';I-)—=Pr e 7o (60)

QOuter Solution

If we let 6 =0, s,r fixed in (60), the result is

2 q)o ‘I)o _
r -2r — =0
2 dr

: dr

the only bounded solution of which is <I>o = constant.

Inner Solution

If y % then (60) is
2
a°®.
21 = p62e-y<I>.
1
dy

and after some manipulation, (I)i can be shown to be a solution of
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2
d o, dd.

z2 1+zd1—z2<I>.=0,zEZvSpl/ze-l/zy
dz z '

which is Bessel's equation with solution Io(z).
Thus, cI>i = % I (Zpl/2 6e'Y/2)/I (Zpl/zb) which is quite easily inverted

by the residue theorem, and 1f ¢ is the inverse, then
-V t/46 7w e-y/Z)

e o' i
¢9;=1-2), v 7,00

i=1 i

where v, are the roots of Jo(v) = 0. Now, <I>o = consfant means that

d)o is a function of time only and letting y — oo in this result implies

that
o Vi t/46
9 = Z AR
and hence the composite expansion gives just
-v.zt/462
1 o i
w~g (1-2 L "——v——>
r : i=1 i
-V, t/46

7 w.e V2?1
o 1
70D

2]

i=}]

—
o
[y

N’

or, what is equivalent

-V, t/46 J (V e—Y/Z) )

o' i

(62)
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C. Steady Solution for a Slightly Non-uniform Temperature

Distribution on a Sphere with a Strong Field

In this section, we seek solutions of (1)-(5) under the same

expansion procedure (8), but for

2
T(1) = 1 +-§—éf(e).

(i) The Stokes Problem

We seek a solution of (9) as @ — oo (6 — 0) subject to

T, (1) = £(8)
p;(1,0) =0 | (63)
uy(1)=rxk

It is quite clear that the azimuthal momentum equation in (9)

is unchanged, band as in (10),
. 2 ‘ .
w, = sin® /r ‘ _ (64)

The difference here is that there is now a meridional flow to this
order, driven by pressure gradients and the non-uniform field created
by the non-uniform temperature.

Inner Expansion

A careful ordering investigation very similar to that described
in (2. A. ii) shows that u; = 0(63), vy = 0(62) so that the inner expan-

sion begins

a
1}
(=2}
=

<
[
]
(=4}
10}
[
+
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T1 =q1+...

and then, with r-1 = 6y, the boundary layer equations from (9) are

of

1 19 L
By * 56 56 glsme = fl | (65a)
2
da o'g
-y_1 .71
e 50 = > (65b)
oy
8a1
—W = ql (65C)
82q
___21_ =0 (65d)
9y

Equation (65d) clearly implies that q; = £(9) so al(y, 0) = y£(0) + b(0).

Then, (65b) is just
Y —L= @)y +b'(e)

e
Byz

Together with (65a) and fl(O, 0) = gl(O, 0) = 0 gives easily

£, =2 v(v1)E(0) [1-(1+y)eY]

1
(66)

g, = - 3 £(0)[ 1-(1+2y)eY]

where £(0) has been taken to be the Legendre Polynomial of order v
without loss of generality. In addition, b(0) = %(f(O)-f(G)) + £(0) using
the final condition in (63).

QOuter Expansion

Guided by the form of (66) as y =, let the outer expansions

begin
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u, = 63—;—1/ (VH1)E(O)F(r) + ...
v, = 2 1 f'(O)G(r) + .

- (67)
Py =&T P(r,9)+

T1 =Q(r,0)+ ...

and insertion into (9) and then letting & — 0 holding r fixed gives

F(r) = rG(r) (68)
2
zd St o2r ‘fﬁ 2 yw+1)G(x) = 0 (69)
dr
) |
v2Q =0 | (70)
1 4
P = £0)v(v+1) [3F' (r) - o= F(r)] (71)

The solution of (70) is quite easy, being

__10©) ‘
Q== (72)
T
and (69) also yields a simple result, viz.,
L,
G(r) = C/r | (73)

where lv =% (1+ \/(1+4v)(1+ -‘-;— v)). The matching on T1 has tacitly
been done in (72), since (65d) really implies that Tl has no boundary
layer, so the- solution to (70) should be uniformly valid. To match
(73) to (66) requlres C=1, and hence,
G(r) = l/r (74a)
F(r) =1 /r ‘ | (74b)

Q =£0)/c"! (74c)
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and (71) gives just

P ='?1;(‘é'”v)"("+”‘f‘% (744)
r

The General Solution

This problem is entirely linear; hence, let A be such that
1 ! -1 ,
A, =5 (2v+1) fl f(cos™ x)P (x)dx - (75)
Then, the general solution to (70) is
K 4, .
T, =), —57 P, (cos0) + O(8)
v=0 1t

and combination of each result for (67), (74), and (66) into a composite
expansion gives, in general,

3% 1 -4, -y
u, 5 vZ’oi v(v+1)[r -(yt1l)e ] AvPv(cose)

(76)
)
1.2, R -
~5 6 smevz_‘, O(r Vo(2y+1)e V)A P! (cose)

Vi

One can quite easily form a streamfunction for the boundary layér
solution, x= cos0,

dP
v

Qo
v =e Y [1-(1+y)e ] (1-x2)vZ=)OAv —= | (77)

It is very clear that (77) will exhibit { = 0 lines at places other than
dP
x = %1; ¢ = 0 also where -—d—% = 0 for every v; such a thing will happen

at x = 0 provided all the A 's vanish for odd v. There will also be

.0 dP
zeros where Z Av -a;{l = 0; this is a high order polynomial and hence
v=0

has many roots. As an example, suppose A, and A4 are the only non-

: 1
zero A's for some f(0). Then, U =O0onx = i(3/7)1/2 [1+%(A2/A4)] 2
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which has values |x| <1 only for --Z— < 2/A4 < 10/9. However, for
AZ/A4 in this range, the ¢ = 0 lines are: y =0, y =00, x =1, x=0,
and x = X i.e., a four-cell flow. |
The possibilities of (77) are endless, but the flow structure is
qualitatively like that shown previously in Figure 2b.

The Constraint

The pressure in the boundary layer is just
, ool 1 5
a,(y9) =v§0 A [3 P (cos8)@2y-3) + 5] (78)

and in the outer flow,
1 R 1 . -,
P=- 3‘;11}(1}+1)(§+ 1,)P, (cosb)r (79)

and then (79) together with (67) and (8) gives the constraint on the

solution
Re™! BZ << eml/ﬁ/ﬁ3

which again represents a severe restriction on O(Re), in terms of

which this may be rewritten as
Re = 0! 673 &7 1/8) (80)

(ii) Meridional Flow if A, = 0 for v# 0

If Av = 0 for every v but v = 0, then (76), (78) and (79) give

u; =vy =0, but

a, =% A_[(2y-3) + 5]

P

0
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Then, the next order equations in the Re expansion are to be consid-

ered, and they have a form nearly identical to (11)-(14), viz.,

rru,
BV'EZ = 3 (8la)
r
. 1'
Tlwy Viu TV, T (T4he T)) — = V2u,+3V[V-u,]
twe,+ VT, (81b)
. 2 r-u,
L (81c)
r
(81d)

12 18 sin _
sV Tt 5 5 = %

r
Py =Pt Ty e T
3A
VT T (k X r), i.e., ithas a compon—
= Ao/r here by (74c),

It is easy to show that &
1

ent in the azimuthal direction only Now, T,

and a substitution

p, T
_ A 171 |
by =Pt [ —zdr
C Ir
, (82)

rp, T
 E T
:* —_ -
P3 5{ 2 dr - e, T,

The new equations are

into (81) gives a modified (81b) and (81d)
T, -V)u, + IVp¥ -T = =V, + 9@ u)  (81b%)
vtV r3 - 32TV T3y,
: 3A
+ (EXE)
iy
sk
p =p3+ T, (81d%)

Equations (81%) are now identical in form with (11)-(14) apart from

the term labeled with an asterisk. However, that term has a
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component in the azimuthal direction only, and hence, under (82), the
problem is reduced to the problem solved in (2. A. ii). However, (¥)
in (81b*) does introduce an additional swirl velocity of O(Re), and
(81b*) in the azimuthal direction is

3w A sin®
o

which is easily reduced to an ordinary differential equation with the

substitution w, = AoW (r)sin® which gives

d 2 dwW _ 3w
T F)-W=-
T
and then, easily,
3on 1 i
W, = —g sme(;? - ;—Z) (84)

If 81r§2p.0a3 is the torque on the sphere when Ao = 0, one can easily

get that

Torque = 1+ wA_Re(1+1/8) | (85)
[o]
Bﬂﬂpga

3. Asymptotic Theory for a Strong Field and Fixed Viscosity

In this section, we develop an asymptotic theory for & — oo,

Re, B fixed. The only restriction on what follows appears to be
1
5. 2

Q25 RT0
lim —_—2 =0 (86)
GM_ _ _ GMv 2

aRT
o _
which means physiéally that the isothermal scale height, aZRTo/GM

: 1
is thin compared to a Prandtl boundary layer thickness (vO/Q)"‘. The
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boundary conditions to be satisfied are (6).

A, The Boundary Layer

An examination of (1)-(5) as § — 0 in a thin layer on the
sphere, under condition (86), will readily convince the reader that
any distinguished limit must be associated with a layer of width 6.
Hence, write r - 1 = 6y as before, but, using the scaling in (1)-(5),

put

65X (6) u

[+
1]

X (6) v

<
I

where X (8) is a function of § to be determined. Denoting all other

variables in the boundary layer by (~), the equations become

dpu 1  Jpv sin® _ '
oy ' Sine — 96 =0 (87a)
B 1% w22, g2 2 B, w B o 2
5t %5y p B w +Bx§p[uay+vae]_0(xB /8) (87b)
By 3n2 2[5 84 5 ) 52520t - BoX o 2 qu v
o6 P oy 561 ~P cotv = 2 a2 OY oy
(87c)
~ 2
0 ~w ow $2a
ZT° ¥ -0 87d
5 T oy - (87d)
2 gwdT, —p2ge (ﬁ‘l;-)2+0( 2y = o(x 8% 87
8Y oy oy X (X ) (87e)
p=pT (87£)

Provided that limy < oo, it is clear that X cannot be even O(1). If it
6—0
were, (87c)-(87f) indicate w, v and hence T are unchanged across
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the layer, and that means that (87a) and (87b) also have trivial solu-
tions. So, proceeding on the fact x =0O(6), one notes that x = 0(62)
is one distinguished limit of (87). However, carrying out the general
solution shows that one cannot satisfy the boundary conditions ony =0
and still have solutions that are not transcendentally large as y — oo
Thus, try x = 0(63). This turns out to give quite general solutions

with enough arbitrariness. Let the inner expansions begin,

it
o
+
[og
o
et
+

P

R
1

)
+
o

ol

Py

+

e
o 1

RT

with X(8) = 52 6. Putting these into (87) gives the O(1) equations,
o
dropping the ( ) notation for the moment,
op u Op v _sin®
0 o 1 00 _
8y ' 5ind 30 =0 (88a)
P,
By tp, =0 _ (88b)
aI)o 2.2 '
55 " powoB cotd = 0 (88c)

0 W o _
oy -0 (884)



-31-

0 W o _
By T0 5y - 0 (88e)
P, = poTo (88f)

If the temperature is uniform on the sphere, the use of (6) with (88d),
(88e) gives quite easily To =1, wo = sin®. Further, (88b) and (88c)

with (88f) are easily solved to give
1,2 . 2
Py = Py = exp[-z-B sin"0-y] (89)

using (6) again. Repeating the limit process yields the O(§) equations,

2 2
8T1— Bwl

oy oy

first of all. A little thought shows that all this and (88d, e) are saying
is that T, and w

1 1 change very slowly across this layer, so we replacé
T and w by their Taylor series expansions near r = 1. Regarding

these as known, let T1 =y a(6) and wy = yp(0)sin8. Now, one can

proceed with the remainder of the O(8) equations,

ip_1_+ =p_[(@+2)y + BZ sin%0] (90b)
oy Py =P, y
2
apl 0 A 2 o
-5 = —5;-2— + B cosesme[Zpo BO)y + Pl] (90c)

after a little manipulation has been done. The first two of these equa-

tions may be solved simultaneously and result in

p, =, Lz @+ 1)y? + By sind + y(0)] (91)
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where Y (0) is as yet arbitrary. Substituting this into (90c) results in
Bzv

2 = p_[(2+a-2p) Bsinfcosy + 3 a' (0)y + ¥'(0)]
oy

which may be integrated to give, with Vo = Oony = >0,

VO/PO = %‘ a' (Y2+4y) + (2-2pta )stinﬂcose y
+(1-e¥){30'+2(2-2p+2)B%sin6cosd +v'} (92)

Equations (89) and (92) inserted into (88a)'give a first order equation
for u_ which is easily solved and applibcation of uo(O) = 0 then eval-

uates y'(0); integrating once for Y (6),

2

0
v{@) = - % B sinze - -% f Bz[a (¢)-2p(¢)] sind cosd d¢
o

+ 2[a(0) - (0)] (93)

and insertion of this into (91) gives Py complete and into (92) and the

expression for u gives eventually,

%stinze 1

T ose [5 <a'> (y2+5y+5/2)e”Y + 7 ((2-2p+a )sindcos6)

B22y+1)e”Y- (1 - 2 e V)@ o>+ 3B® ((2-2p+akindcoss > ]

(94)
- 1B%sin%e 2 ) 2
v, =e [ (y“+4y)e Yiy(2-2p+a)B sinfcosd e
+He V-G ar + —]‘2-B2(2-25+oz )sinBcos)] (95)

where (94) contains an operator denoted by < >, defined as
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1 —stinze d stinze
{Yp= o5 © 30 (sin6 e V) (96)

One can easily calculate the mass flux out of the layer

M=4m,17% a3f 4 sin0de
=2mM, Py opoo

at any value of y. Multiplication of Po and u gives function of y times
a 0 derivative over sin®, so the integral is trivial and it is identically
zero for all y. This solution is interestingly enough just a generali-
zation of the solution given in (2. A. ii) and one may formally recover
(39) and (40) by letting B— 0 in (94) and (95). There is a net circu-

lation in each meridional plane,

2

2 5 %stin ¢
2ma -2 f sin@ e o (0)de
o

5, 7 3B%sin% )
+ZB fe o {0)sin Bcos0d6
o

%stinze
+

o

2 }f e sinze coseﬁ(e)de}

o
Solutions (94) and (95) are complete without aﬁy matching to the outer
flow since it is this boundary layer flow which drives the flow in thei
bulk of the fluid. The details of the solution do, of course, depend
upon the details of the temperature and swirl velocity solutions near

the sphere but the form of the solution does not.

B. The Outer Flow; The Temperature and Swirl Velocity

Notice that, as y— oo in (94) and (95), u_is O(1) and v_ is

O(l). Hence, u and v are :respectively 0(64) and 0(63) in the outer
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flow. In that case, it is quite clear that the azimuthal component of
(2) and (3) have inertial terms of negligible size. Hence, if the outer

expansions begin
T=T_ + 63T
o 3
w=w_ + 66w + ...
o 6

+ ...

the correct outer limit gi(res

2 W 5 ¥, E)logTo
VoW, - g ter 5 ) 5
r sin O
. w dlogT
sin®@ 9 _
te—2 90 Gme “we - ° 07)
2
w 2.0 218 Vo -
V. TO VTO + oB T0 r [‘é? T] =0 (98)

where w_=sinf, T =lonr =1
o o)

(99)

and w —+0, T—T asr —oo.
o] lo'o)

This problem constitutes a well-posed elliptic system, and

the solution is no difficulty in prinéiple, but because of the non-

linearity and coupling, is difficult in practice. If oBz — 0 then the
solution to (98) is just
; 1
o1 Top -] 2
To =1Tyo - — +O(0cB™) (100)

and then woo= F(r) sin0 + O(O’BZ) into (97) gives

w1

2dF, _arl, o e
PRl R T
14— %O

T

(101)



w 1 - T(::l
-Fi{2 - =0 (101)
(wtl) r l—ToQ:l Cont'd
1+._._r._____

F(l) =1, F(o) =0

When T00 =1, F= l/r2 whiich is also the solution for all T00 for r
sufficiently large. The other tractable case is when w = 0. This is
not ’e5pecia11y meaningful physically, since $<w <1 for a gas, but it
does give some information as to the structure of the solution.

Clearly (97) gives

s11219+ O () (102)

r
Substitution into (98) gives
2

2 _ 2 sin” 0
V TO—"90'B '—1"3——

the solution of which is easily done by Legendre polynomials,

_ 1,1p2 0 1
T =T+ (1-T)L+loB?d. r4)
2
+ % (3cos29-1)(—1—4- - -1-5) + O(wo B2) (103)
Ir Ir

C. The Outer Flow; The Meridional Plane

So, the outer flow splits into two parts, one just treated in-
volving the solution of two coupled equa;tionsn for the temperature and
swirl velocity fields, and the other the flow in the meridional planes
involving also the pressure field. This part will be dealt with here.

The momentum equafions may be written symbolically as
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r
Vp+—5—p-pC = 6L (104)
6r T :
where these vectors are two-dzimensional vectors in the meridional
Béw
e}

plane, T = V';-/SS and _g = (1, cotd) is the centrifugal force
term. The reason for the 63 scale on V°; is the order of (TJ.,;) as

y — 00, viz., vis 0(63). Consider the radial component of (104),

By 2—p-pC_ =5z (104')

6r°T r

Having solved for w and T in B, we know that Gr and T are uniformly
0(6°). The outer region is by definition one where gradients are O(1),
hence, let § — 0 holding r fixed in (104') and the result, if p=6"P+...,

is

- z (105)

Py
Having noted this, insertion of (105) into the 6-component of (104)

and doing the limit gives

Ee = O(d)

Further, the form of (105) implies from mass conservation that u and

v must be of the same order in this region. Let

o
i

3
6 (R':o/ﬂvo)uo + ...

3

v = > RT /v )V_+ ...

Then T =% +..., 7= (RT /Qv)r _+...
— —0 = [o] 0O =0

and the equations to be solved are just
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(106)
v.[rHo£- (v.go)] =0

Doing the matéhing with (94), (95) by any technique, like an inter-
mediate limit, immediately gives the boundary conditions on (106),

viz.,
Uo(l) =0

e%stinze{g Sl
2

v (1) =- 7

B (2-2p+a )sind cose} (107)

2

The density field is, of course, P4/T =r zor' For completeness,

we put here the expressions for _Z_)_O,

2U 9V sin®
wl2 o) 2 0o 10 o.
20 - To[v Uo- 2 2. L) t3 or \Y -[-‘Io)
r r r sin®
‘o alogTo 2 an ) EV- g1+ ® alogTo [_1_ an N r_@_ (_\_/2)]
or or 3 ~0 r 00 r 06 or ‘r ‘
(108a)
Vv ‘ ou
> =1®|vév -——° 2 _o9°.,1 3 gy
o o o . 2 00 3r 06 —0
0 r sin © r
+w_1_81°gTo _2_8V0+2U°__2_v,U
T 00 r 00 r 3r -0
‘ ologT v ou
o 0 o 1 o

It is quite clear that the hope of solving (106)-(1 08) is minimal indeed.
A rough solution by a Galerkin method is given in Appendix A. The
pressure (105) is algebraically determined and there is no arbitrari-

ness to be removed by matching. The composite expansion for the
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pressure, is symbolically, then,
%stinze-y 42
p~e +6°r°T I (109)
Notice that (109), and worse than that, (106)-(108) are not the equa-
tions solved under the limit sequence Re, B — 0, § — 0, though the
boundary layers are similar. The reasons for thig.are discussed by

means of a more careful treatment of (104) in Appendix B, If Re and

B are O(1l), that work shows the restriction on the solution to be

54 >> o~ 1/0 (110)

which is indeed true as 6 — 0, for 6 sufficiently small. A pictorial
representation of the solution is shown in Figure 3.

(i) The B= 0, Ty, = 1 Problem

In this case, Section B showed T =1, w_ = sine/rz. Then
‘a =1and B =-2. Hence, (106), (107) become

oV _sin ©
o

1 2 o 2 16
—_— =V°Uu - - +5==—V U
To r, o rZ rzsinze 08 3 or —0
(111a)
V.[r?u.z ] =0
o0 or
plus
Vv oU )
2 o 2 o 1 0 o -
ViVor 22t 275 "wr oY Yo=0 (1110)
r sin 0 r

Equation (111b) is the eQuation solved in (2. A. ii) but not together with
(111a), which was replaced there by a linear equation. The essential
difference, as pointed out in Appendix B, is that the outer flow in the

(2. A. ii) problem is in hydrostatic equilibrium; here, it is not.
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D. The Far Field

The arguments presented in C, and as elucidated in Appendix B,
on equation (104') are invalid for r sufficiently large, because then the
second term is less important than the first. Sufficiently far from
the sphere, the sphere itself may be replaced by a point torque at

r =0,

- lé 7rQa3

3 |"‘o.l_<. XVB(_{)

This vector has a component only in the r x k direction, so clearly,

if r — o0, the right hand sides of (104) vanish very rapidly, since the
meridional velocity components vanish at co, but p = const which may
be small in § but always dominates the right hand sides for r suffi-

ciently large. Thus, (104) becomes

% . _ P __ _g

G S
’ ' (112)

9 _
90 0

since the centrifugal forces vanish more rapidly than l/rz. Hence,

1
o f 5TT_ |
P=P, € and now the swirl equation, if u =k xVé + ... is

reducible to
)
szb = 47d(r) ——

The solution of which is easily written down,

Po 1
p=-—22

Moo
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sO
Mo I
Ve =2 =
¢ "Loo r3
and so
bo EXr
u~—-—-—-
- ”oo I‘3
(113)
1/5rToo
P~ Py(8) e

Though u is precisely determined, poo(ﬁ) is not known and must pre-
sumably be evaluated by a matching procedure to thé pressures from
Part C. This process appears to be enormously difficult, and has
not as yet been accomplished, partly because solutions of (106), (107)
are so difficult in themselves. So, O(poo) as 6§ — 0 is not known,
though it seems certain that lsimop00 = 0.

4. Asymptotic Theory for Smé,ll Viscosity and Small Prandtl Number

Perhaps the most natural attack on the general problem is to
seek solutions in the limit Qaz/vo — 00, holding the field strength
fixed. In that case, one expects that, if such a layer exists at all,
the Prandtl boundary layer will be much thinner than an isothermal
scale height, and its dynamics become the mechanism driving the
flow. This Reynolds nufnbef regime is then characterized by the

constraint

[

GMv 2 .
lim —1—2—-9— =0 : (114)
v,—0 92a°RT_

which is just the reciprocal of (86). Under (114), it has been possible

to complete the solution in a consistent way only if
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o<< 1, (115)

The extension for arbitrary Prandtl number is fraught with
difficulties and has not yielded to solution as yet.

As before, it is the motion induced by centrifugal forces near
the sphere that controls the dynamics of the entire gas, so we proceed
by analyzing the boundary layer first.

A. The Viscous Boundary Layer

Let z E-I:é—?’—. The boundary layer equations on the surface of

the rotating sphere are, as given in 1951 by Howarth, (4)

ov ov 2

ov oy =9 p v
pu 5, t PV 55 - PW cotd = = = (116)
ow ow =98 pow
pu 5~ + pv 30 + pvwcotf = 52 a oz (117)
opu 1 dpvsin® _
9z ' sin0 90 =0 (118)
9 2 . . v¥+w® . GM 1 9 u oh
pu%-z—+ PV 35 {h+ > + Y z}ﬁ('a--l)-a—z-a*gg (119)
2.2
2 p 9 v iw_
* Jdz a 6z.(h+ 2 )
%E =0 (120)
=%k (121)

where the variables are here dimensional, h being the enthalpy.
Actually, for pa h and o =1, these equations may be treated quite
generally, a Howarth-Doronitzyn transformation(ls) being all that
is required to make these into incorﬁpres sible equations. Solutions

may be done quite easily if h = const or _g_};_ = 0on z =0, being
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characterized by slight vertical scale distortion of O(Bz).
However, serious constraints on the outer flow require ¢ << 1

‘to make this all consistent. In that case, (119) implies

so h is unchanged across the layer, and, ‘by (EIZO), so are p and,
hence, p. Non-dimensionalizing by P’ ho’" Por Mo the values on
the sphere, Q2a for the (v,w) velocities and \/voﬂ for u gives

2

u¥k ovE + vk ovE W*Z cot® = 9 vk (122a)
By 50 I
Y
, 2 ;
uk IF o OWE L sk cotp = 2 WF (122b)
dy 99 ov2
y
oux* 1 ov¥sin® _ '
oy + sin O 96 = 0 (122¢)

s

VO 2
where z = ( > ) v.
Q
a
These equations are to be solved subject to the boundary conditions

u*(0,0) = v¥(0,0) = 0, w*(0,0) = sinb
(123)
u*(0, y) = v¥(0,y) = 0

and v¥(00, 0) = w¥(00,0) = 0 (124)

which, together with (122) constitute a well-posed problem for

(u*, v¥, w¥*), a paraboiic system. Despite a controversy after Howarth
first discussed the solution to (122)-(124) in connection with the rota-
tion of a sphere in an unbounded incompressible fluid, (4), started by
(5)

Nigam, '~’, in 1954 and apparently successfully resolved by



-44-
)

Stewartson in 1958, (6 it i.s very clear now that the solution to the
equations is as described by Howarth in 1951. The boundary condi-
tions at the edge given in (124) are certainly not obviously correct

in this problem. They are valid of course if @ = 0, so one might
expect, as indeed is true, that for certain ranges of the paramefers

o and ¢, they are also correct. There will be some discussion of
this poinf later; the true justification for (124) is Enostelriori, i. e.,
that their use allows the completion of the solution in a self-consistent

way. An integral of (122c) shows that the entrainment is

uw*(c0, 8) = - < | v*sine dy (125)

sin©® do

1 a
K

B. The Outer Solution

The next step in the solution of the problem is to compute
the flow in the bulk of the fluid, i.e., away from the boundary. Now,
certainly the outer flow must supply the boundary layer with the

amount of fluid required by (125). Denoting u*(co, ) by -E(08), we

have that
1
u(a, 0) = -Tl(voﬂ)2 E(0) (126a)
as a boundary condition on the outer flow, where T1 = h(0, 9)/ho.
The thermodynamic conditions
p(a,8) =p_, p(a,0) = Po/Tl,h(O,_G) =h T, (126Db)

must be satisfied as well, and also

h(e,0) =h_ (126¢)
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Now (126a) and the equation of continuity imply that the velocities
1
are O(Re 2) which ¥O as Re 4 o so the pressure-temperature field

is hydrostatic to leading order, and in fact, the outer expansion

begins
p=p©+
p=p©
h=h0® .,

X
u = Re’zu(o) + ...

1
v = Re-av(o) + ...

so the relevant equations are

vp'©) =, g %M | (127)
V- (0@ E(o)) =0 (128)
p©) =2 @)y (129)
p(©4) . gy _ 40). g @) =% Re+%v.[p(°)v1,‘°)] (130

to be solved subject to

u©)(a, ) = -QaE(®) |
(131)

8o, 0)=h, 1@, 0) =1, T}, 0@, 00= 5 T 00, 0) =p,

1’

The solutions to (127)-(131) depend crucially upon O(o) and O(Re);

the several possibilities are explored below.
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(o

CASE 1, 1>> g >> Re 2

If this constraint is used, then (130) reduces, in the limit

Re ~ 00, to an adiabatic thermal field,

p©)a©) L gy(0) _GM, g

(132).
ap® _ ©a
dr =P dr r

The solution of (132), with (131), is

h(ok) =h + GM

(e} T
2/5
(o) |1 +~2—oza/r
» _ 5
= > (133)
pO 1+g0[ »

where we can evaluate 'I'1 for this case,
T, =T +2a 134)
15Tt (

An ordering investigatidn of (127)-(130) indicates the outer expansion
proceeds in the following way
1
P= p(o) + (Re"2 /o) p(l) + ..

h=0®) s Re 2 /o) nM) 4 ...

p = p(o) + (Re-%/o) p(l) + ...

Putting these into (127)-(131) gives the following equations,
ap)  1)4a oM
e TP ar ) b
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ity =—25-[p(0)h(1) + pWnle) (135b)
(1) 2 (0)wt1
(0), (0)dh'™’ _  Qa® 1 d d h
pu ar " Powrl ;7 ar ¥ I h® (135C.)
o

which are to be solved with the boundary conditions
p10,0) = 0, 8V (0, 0) = 0, u(a, 8) = -RaE(®). (135d)

Notice that (135c) requires that u(o) be a function of r only. In that

case, (128) is exceedingly simple,

2 (o) (o) ..
1 dru 1 ov' 'sinB (o) d (o) -
T dar — Teme oe T Y arlogle /pg) =0
Putting u( (a/r) ( ) F(r) and solving the above equation for v(o),

requiring it to be regular on 6 = 0 and 6 = 7, gives

(o) cosO+1 a

R e B T s U

sin® r p(o) dr

(136)
e, ,
ul®) = @7 o )
where * denotes the solution for 9§ r/2.
From (136), it follows that V(o) has ‘a jump across‘ /2,
(o) T Zaz Po aF
[vi7ir, 3)] =—;—f;@-; a | (136')

The value of [v(o)(r, 7/2)] can be found from the jet solution given in -
 Section E, so F is determined to within a constant. Hence, regarding

[V(O)] as known,

r (o) |
F(r) = Fla) + 5 [ L;-ﬁ[v‘”(g)] 5—5 | (137)
a o ’ .
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and so
©) . 22 Po )+_1_fL(°_)(_§.)_[ (©) gy £d& (138)
PR T T e, 2

If we knew u(o)(a), then

! lu(c’)(a,,e) (139)

F(a) =T

The boundary condition (135d) is inconsistent with (139), hence be-
tween the viscous boundary layer of A and this outer flow, there must
be an adjustment in the radial velocity as well as the temperature.
Hence, one might expect an inviscid layer to adjust u and a thermal
boundary layer for the temperature discontinuity; how in fact these
adjustments are made can be found in C and D. Since F(a) is just a
number, it is clear that, since there is no place else for the mass

flux to go,
F(a) = -szaf E(0) sin6de (140)
O .

Having found F(r) from [v(o)] and F(a) from (140), the vélocity field

is complete and all that is left to solve is just

(1) l-w
Oy 20 )2 [ T, ]
dr T 4 ‘5T 2 oa

2
POQa T 1 TCO+ 'g-r—
and
24 f (o) (1),,(0) (1)}_ (1) d GM
5dr{p h™%h ™ = p ™ gy 657)
subject to

1Yo, 0) = 0, pMa) = 0.
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One can easily show that the streamlines are curves on which
F(r)[1 + cos®] = const, for 0 S /2. A sketch of these lines is given
in Figure 2; they will be qualitatively unchanged so long as F(r) is a

decreasing function of r on r> a.

1
CASE 11, ¢ = O(Re 2?)

1 .
Presumably, if 0 = O(Re 2), convection and diffusion of heat

are of equal importance, so (130) gives

; 1 (o)wt+l , w
@ Tan'® oM]_ Re™? 1 4 24 b /by (141)
2 dr 2 |" ' o 2 dr dr wtl
a r r
The same arguments given in CASE 1 apply here as well to the
velocity field, so (138), (140) are to be used to calculate u(o) and
v(o?. The difficulty is that the kernel of (138) is not known; equations
(127) and (129) give
(o) { fr 5GM
P =p_ expy- | —S5 7y —dA (142a)
° 2 22200
so the kernel is easily found to be such that
fr 5GMdA
v (o) “Ja .2, (0)
u‘(o) - (%)ZF(a) h - (r) o 22"hV (W)
° 3
r (o) " 542, (0)
h 22x°h .
+ %f[v(°)(g)] (0)(1‘) e A ™) _§§§_ (142b)
2 n'(g) r

Substitution of (142b) into (141) gives a hopelessly complex integro-
differential equation for h(o). Clearly, the equation is of sufficiently

high order to impose (T1 =1)

h(©)(a, 0) = ho,h(o)(oo, ) =T_h_
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Hence, the only thing that prevents this solution from being uniformly
valid into the edge of the velocity boundary layer is that, again, we.
require an adjustment in wl©), [See Section E.]

1 -
CASE 111, Re 2>> g >> Re 3/2

A look at (130) shows that diffusion of heat is now dominant,

hence, just as given in another context in (100),

1
(o) wt
h a _ ol
ho =[1+ (1--;)5] s s=T00 -1
w (143)
o) wtl
%::exp{-a——;l[{l'i'(l-%)s} -]}

To complete the solution to the next order, one notes that temperature

1 G -3/2

perturbations are O(cRe?) from (130) and if 0 >> Re , then (135a)

and (135b) apply to the ( )}) variables with

1
P = p(o) + oRe? p

1
p = p(o) + oRe? p

(1)+...

My
h =10+ oreZ B 4

and gives the energy equation

(0), (©) [qr.(0) . ' (0) ©
%) ran d GM]_1 d 24 h (1)
02 [dr - ar T]‘"‘Z &’ IRt (144)
Po r o
1(a,0) = (o, 8) = 0
SO
w
nl® ) l+s(l-a/r) 1
sn(mu)( )h‘”/ . =§{ KMUA-1)dx -+ [ KO)(-1)dx
o +s +s

(145a)
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where K() ={Z a 2L 4 oty F ) (145b)
The pressure field is a solution of
2, (0) 4_(1)
r“h'"’ dp (1) 2 (o), (1)
GM_ dr TP e B
(145c)

pMa,0) =0

Of course, (136)-(138) still apply in this situation; and again, a
thermal layer is obviousiy unnecessary, but a u(o) adjustment layer
remains important to determine a uniformly valid solution.

The o >> Re'?’/2 constraint is what is required for the thermo-

1 -
dynamic quantities to be O(Re?0). If o drops below Re 3/2

, the ()P
quantities are O(Re-l) and are not hydrostatic, but dynamical. Hence,
we are led to the next case.

CASE IV, o <Re~3/2

For reasons just delineated, we begin the outer expansions
P :p(o) + Re-l p(l) + ..
p = p(°)+ Rem1 p(l)-i- .
i
h =h® + ore? nt) 4

- Of course, (143) remains valid here, but the perturbation equations

are quite different, viz.,

p(o)(g(o)-V)g_(o) i Vp(l) _ p(l)v(_Cil\_/[_) (1462)

r ) h

(o)
p1yle) & [h(o) i QM] - 0o VI “ p®) (146b)

nt )=% nl0) (1), (oRe 3/2 )p(o)h(l) (146¢)
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The appropriate boundary conditions are
pM@,0) =M@, 0) =20, 0) = 0

v(o)(O, r) = V(o)(ﬂ', r)=0
o (1464)
[v(o) %, r)] given from jet solution

u(o)(a, 0) = -Qak(0)

A subcase of this case is when ¢ =o (Re'3/2); in that eventuality

(146b) is irrelevant and (146a) becomes just

@ 9) 5+ £1 9™ ) < 0 (147a)
with (128),
h(o)v_2(0)+ “(O)%{% %_ _ h(O)} =0 (147b)

If r is sufficiently large, it is trivial to show that (147) goes to the

incompressible form

@ 93+ 2,7 505 =0
(148)
V,P—(o) - 0

One can learn a lot from the curl of (147a)

(o) (0) , ..(0) ;2 _GM d (o) (o)
@™’ Vo'’ +u [gh(o)rz +’—a;10gh )] w

(o)
-1!: dalilro rx V(P(l)/P(o)), _‘9_(0)2 curl _g(o)

(11 N)

namely, that the flow is highly rotational, vorticity being generated

by 8(p*)/p(®))/86 # 0 and an'®) /ar+ o.
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This result is perhaps more what one might expect in this
problem, but this expected sort of 0 =0, Re — oo result will occur
only for o << Re'3/2.

C. The Thermal Layer

A study of the outer flow showed that one needs a thin boundary
layer on the sphere, external to the velocity boundary layer, which
removes what is found to be a jump in the tempera,fure of the fluid;
such a layer, as is easily seen from B, is necessary only when o is‘
in the range covered by CASE 1. For purposes of studying this layer,
let u = ¢ (Re, c)ﬂa?:l, v =% X (Re, G)Qa; where 6 is the layer thickness,
(r-a) = adn, and p =‘Epo, h=h ho' Then ¢, &, X are functions of Re
and ¢ such.'that ord x <1, Re-%< ord 6< 1, and 1> ord¢= Re-%. The

equations that result are

~~ 9 ~~9 . .~ 2 GM, _Re " 9 7 oh

(pu an + Xe VE’:) ( - gRaTo) = @6 31;" h 3;1' (1493)
op% . . Opvsing _ |

on X simpoe - ° | (149b)
9 ['; a .?.;_.;. ; ;X i] - GM (_§_3;_) E.E (149¢)
on am ] n23'3 ¢2X 20
Sh=1 (149d)

We now proceed to an investigation of these equations in what turns

. 1
out to be three regimes in ¢ for o in (1, Re” 2).

(i) 1>> o>> Re'l/6

fr

This structure is delineated with ¢ = Re 2, which is an obvious

choice but not necessarily correct a priori. Then (149a) is
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1
& = Re 2/0<< 1. We know that the rotational layer is external to this

thermal layer. Velocity matching clearly requires

N

X Rg = R: or X =»-§ << 1.
With this choice,
2
6 = ed = -€—<< 1
-1 c

since it will be shown in Section E(i) that € = Re'1/801/4. Hence,

the leading order equations are

h-T
The general solution is seen to be, for R= —l——,i.l'-,
T,

1 w
E@©)n _ A da
"é_wﬂ "'£[1 * ‘(Tl -1 5
1

which has a simple representation for w =1,

1-T E@®)n .
—— (1-R) - log R =-7%—hl

1 1

(150a)

(150b)

»(150c)

(1504)

(151a)

Also, the solution of (150c) that matches to the rotational layer is

v = a(®) =v(0,0) .

From (149b), there is a u velocity of O(x), as well as ; and h
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perturbation of O(x). So, denoting these O(x) perturbations by ( ),

8p'?1+ u'E + 1 a;;sinG

o sin6 80 0

So, integrating,

~ 1 Mo~ .
pu+u'p=-§—i—a——e—f8—9pvs1n6dn
C

and, as n —oo, p' =0, asu' ~ - ——1—-—- 4 ;.sine, which matches
n P sin® 1 do

with § -g—g (0,0) in the rotational layer, so thmgs go through easily.

(ii) o=O(Re” 2)

This is a distinguished value of 0. Here, X = O(1), and the

two layers are merged, so

pu n+vaa—— By o (152a)
dpu, X Opvsin _ |
on ' sind 98 - (152b)
~e v, me 9v) _dp
(pu TPV X358 "6 | (152c)
ph=1 , (152d)

In this particular case, the thermal layer and the rotational layer
(discussed in Section E) are merged into a complicated inviscid,
rotational, heat-conducting flow. Hence, one can expect to be able

to satisfy the boundary conditions
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Ue,0) = vl (a)/0a
u(0,8) = -E()
0(0,0) =h(0,6) = 1 | : (153)
h(c0,0) = T,

V(c0,0) = v(n, 0) = ;(n,%) =v(n,m) =0

Some commé_nts on the structure of the solutions to (152),
(153) and the well-posed nature of the problem may be found in

Appendix D, including the as asymptotic solution as n— o, viz.,

(o),
u (a;)n
ot
B~T, +G(o) e 'L B
2wt1 3 u(O)(a)
. T, 2wt1g3,3 T, 10a
1 dG 1 ,
v~ - = e (154)
o 302, u@y
N wt1
u - u(o)(a)~ 1 2 a L -é-sine L]‘-(-:'c-:':[‘l fa
[u(o)(a)] 4 sin@ do do

where G(0) is arbitrary in the asymptotic result, but clearly related

to a single'function E(e), as is u(o)(a)< 0.

1
(iii) Re"l/6 >>g >> Re 2

This final regime may be seen by putting O(x) £1 in (149) and
i i
doing the appropriate limits for ¢ = Re 2. Hence, § = Re 2/c again.

Equation (149c) is

~

) )
35 = 0 (155)
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so (149d) gives h= E(n), and hence (149a) is

[\

pua—n(h-gGm/aRT)- h B (156)

so clearly E u depends only on n as well, so (149b) gives

~~ cos@+1 dpu
XP YV =""gine dn

for 05 7 /2 (157)

However, we would like v to vanish on 7/2 as well; this is clearly

impossible from (157), hence (157) is to be replaced by

dpu _ | | (158)
n

which means O(x)< 1 and (156) is simply

_6__‘5(» sh _ Fla) t':)h—GM/aRTo (159)
on on Qa on

the solution of which is just that given in (i), but with E(0) replaced

by -F(a), viz.,

__E_i?;)__ [1 + (_ - 1);(]
QaT,® " jl'

1

Just what O(x) is will be determined from higher approximations and

w d)t (160)

matching as n =0 and n —oo, it is unnecessary to determine it to
carry out the leading order solution.

In contrast to what happened in (i), where the rotational layer
is external to the thermal layer, here, the implication of (158) is
that the rotational layer is interior to this thermal layer but outside
the velocity boundary layer. |

- For future use (in Section E), the Taylor series expansion

for h near n =0 is, from (160),
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2 |
R=1+%i)_11+.21!_-(%—()3‘2—)[w-1-w'r1]n2+... (161)
a

D. The Equatorial Jet

The fact that regularity of the solutions for the outer flow in
Cases 1-111 required a jump in v across 0 = 7/2 is really a secondary
indication of the fact that a swirling laminar jet exists in the © =%
plane to carry mass entrained by the boundary layer and angular
momentum to infinity. This is in marked contrast to the slow rotation
solutions which had angular momentum diffusing to infinity in the
entire fluid; here the angular momentum is convected away in a thin |
sheet. In 1955, Squire(s) computed the structure of such a jet in a
uniform environment, without swirl; the solution presented here is
a logical but by no means trivial extension of Squire's work.

One might expect that buoyancy forces in the environment of
the jet to limit its flow to some finite height. Thus far, the reason
for the o< 1 réstriction has not been clear; the boundary layer
and the outer flow can be done for all 0. However, if the jet eXtendé
only to a finite height, it represents a ring source of warm swirling
gas to the outer flow; one supposes that the streamlines close in that
case, but this can easily be shown to violate entropy and angular
momentum conservation for the fluid. Thus, unless o0 << 1, one
cannot piece together a self-consistent solution which probably means
(124) is no longer correct and perhaps even (116)-(121) are the wrong

equations in that case.
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If 0<< 1, by the arguments of A, heat diffusion is dominant

1
in such a layer of thickness Re 2, So,

BB (162)

Thus, the thermal conductivity is large enough to assume that the
pressure and temperature and hence density are at every point in the
jet their respective values just outside. The reason why the jet has
thickness O(Re-%) is the following: The mass ﬂux in the boundary
layer on the sphere is O(pOQaZ\/v_Oﬁ , and the angular momentum
flux is O(po’\} v, 93 a4). Further, if one is to have a jet, the inertial
terms balance the viscous terms, so, if u is the velocity along the
jet and & is the width, uGOCVO% by the mass flux order, and to balance
diffusion and inertia requires u’ocvo/é2 which together give ua 1 and

1

6ocv03. Similarly, w is O(l), so the equations of motion are juélt

2 (o) a2

ou, vou w _ Vv u '
U tT® T C 2 .2 (163a)
T 00
(o) 2. .
oW , v OW uw _ v 0w
Y trw T "2 2 (163Db)
r 00
(0) 2 (o)
dp' 'r’u orp' 'v _
o T e - 0© ' (163c)

where ( )(0) denotes the value outside the boundary layer. These
equations contain no streamwise pressure gradient because the outer

flow is hydrostatic, i.e.,

vl = o0y €M,

and hence the pfes sure gradient exactly balances the gravitational

force in the jet as well as in the outer flow. Equations (163) may be
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transformed to nearly incompressible form by a simple Howarth-

Doronitzyn transformation,

Po
(164)
(o) (o)
¢ =L _[v+ gur 1108 p ]
Po dr
which modifies the equations to
v 2
du ¥ u W _ o 9 u
ugi‘- -1‘—8_1]_? ZQ(I‘) -3 (165a)
r on
ow , ¢ ow, uw _ "o 62
u—a—t_-'!'—;—a—n'*'?:'—Z-Q——z ‘ (165b)
r on ,
1 orlu |, ov
T or om0 (165¢)

(o) :

where Q(r) =P5— (h(o)/ho)l-w . Defining x = r/a and using a stream-
o

function ¢,

u.= 224‘11’;’:'”1_24’;; - (166)

2 2 ' 2.2 _
e e N R Rl e
(167)
Lanx -LleWn =av QW'rm

where W = axw. The details of the solution to (167) by a similarity .

method are given in Appendix C. Only the results are given here

for brevity.
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If one writes

y = 2NTT Ax) F(E)

(168)

W =Qa’ Bx)F' (£)
then the solution is found to be

F(£) = tanh, £= n/6(x) (169a)

1
_3H Yo .2 2Q(x) . ‘

B(x) = ZA(x ) , 8(x) = Qaz) A (x) (169b, c)

where the function A(x) is found to be,
~ 1/3
Ax) = %1 +-—-§ 7L Q()t)\/M +H (1-27 )d). (1694)

The solution as given in (169) is dependent on three paraineters which

involve the initial mass flux, momentum flux, and angular momentum
flux; the numbers come from the details of the boundary layer solution
and in particular on structure of the solutions in the turning region

r =0f(a), 6 =O(r/2), discussed by Stewartson, () 2nd in E. Define

o |
m = 1@.9) 44 (1702)
¥o's} on
0.0 2 0
M= [ B (2,8) 44 (170b)
-oo‘/vOQ3aZ
[0.0]
and H= [ 2020NW(,0) 44 (170¢)

oy, Pt

The asymptotic structure is shown to be of the form
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3 1/3 1/3 2 21/6
Ax)~ 5)  [Q(w)] (M“+H") x

(171)
2/3

1/3
5ix) ~ (—2)° (L6 [Q(OO)] -

)(—")
Qaz 3 M2 + 5

The actual physical thickness is asymptotic to
1

(.'_’_2)3 (16)1/3 o [Qeo)?/> 172
Q 3 p(o)(oo) (M2+H2)1/6 (172)

In Cases 1, 11, and 111 respectively, the quantity [Q(oo)]z/3po/p(°)(oo)

is 5-2w -5/6

00 [1+ 5aRT]

5 © oM (o0)-1
i1, T exp ;—- —- h (A)dx
fo') 16 fo 7\2

3 w+l w
111. To eXP§3aRT w—(TOO-l)}
So, since boundary layer theory applies only when the layer is thin,
(172) and these give respectively what are apparently in some cases

more stringent conditions on the solutions than (114), i.e.,
5-2w

L = .2 am /8
1. Re? >> T, [1+ 5 aRT, —_1
) 5-2w .
5 5 GM 1 .
11. Re2>> T expg S dl% (173)
_ 0o _6-1; 2 h(o)()t)
5-2w
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The quantity of importance in determining the structure of the

outer flow is v(oo, r) - v(-oo, r)=[v]. With (143) one has

x (o)
- = - p_(x) dA
F(r) - F(a) = - Qa b o ppe dx

- If x is sufficiently large, p(o)/po — const, so

(o)
F(r)~- Qa L‘;—lﬂ) Alx)
o

1/3 (o) 1/6
~-ar @) 2 o) 3 + 1)
0

which gives the asymptotic structure of the flow for CASES 1-111,

the streamfunction being just r(l + cos 8) = const in 85 /2.

E. The Inviscid Rotational Layers

Recall that, in Section B, we found it impossible to match

~ the boundary layer entrainment to the outer flow in CASES 1-111, |
hence the hypothesis of another thin layer to adjust the mass flow

~ to that distribution required by the boundary layer. In addition, we
found that CAS'E 1 breaks into three subcases, (ii) having a merged
thermal layer and rotational layer. Thus, we have four distinct
structures to study, viz. CASE 1, (i) and (i), CASE 11, and CASE 111.
It is convenient to leave the equations in physical variables. Cer-

tainly the layer is hydrostatic,

p__GM (174a)

Also, since the temperature is uniform to leading order, the mass

conservation has the form
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_32 + 1 -9vsin®
0z sin® 00

=0 (174b)

There must be a pressure gradient along the sphere, so the horizon-
tal inertia balances 8p/80, and cross differentiation with (174a) gives

just

9
PR Bz

av v, _GM 8p'

oz Ve =72 e

(174c)

If (174c) is satisfied, it is quite easy to show, from the equation of

state, that
oh' 9p'
PR 36 + hR —Eae = 0 (1744d)

where PR and hR are reference values to be determined in the particu-

lar case studied, and ( )' means a perturbation quantity. Eliminating

(1744d),

9
R 0z

(u 8v+ ov +GM oh'

h 0z 86) a 00

=0 (174e)

As it happens, it is simplest to write

-1 -
h =TH(r) + Re3 h (£,0) (175)

€

where z = ¢£. This is essentially a two-variable expansion, i.e.,

oh __dh, Re”! oh
=a——+

B9z ~ “dr 4 9t

The energy equation is crucial, and if we use (175), the equation is

1 -~
p(r) (at vy h-SM  Re 4
1‘5 (176)
-1 8 8 rx Re”
T ae az“az[h(r” 3 ﬁ]
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Clearly, the terms are of the following order
ORe Z) + ORe 3/2/4) = oRe "L /o) + O(Re™2 /o)

There are constraints on O(c) in the general case, namely 1> O(e) >

1
2

O(Re 2). We now consider the various cases in sequence.

(i) CASE L, [i]

Here, the thermal layer lies beneath this layer, so ¢>> Re 2/0
necessarily, These constraints imply that the second and third terms
’Y :
of (176) are largest, so ¢ = O(oRe_3)1/4 and the energy equation is

-1 .

dh GM aRe L.l 8
"aaap

o 5z - X 2 )r=a t (“'E tev—g)—g— g

gl

(177)

All this can be simplified by the use of the results of C, CASE 1,
. - — -l — - .l —
especially (135c) to give, with h = hoh, u = Re 2Qau, v=Re 3/80 4Qav,

the set of equations

u %}é”f Vo (ST 3 T - Fla)/f] - (178a)
plus

SZM-" gg ‘“g""g*" ) - o (178b)

'g:Eﬁ * 's—ilne % (v sing) = 0 (178c)

to be solved with

u(0,0) = -E(0)

u(o, 0) = F(0)/Qa

v(0,8) =V(£,0) =V(£, 3) =V(E,m) =0
h(o0,0) =0

(1784d)
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Now, it is shown in Appendix D that (178) is not a well-posed problem.
The reason, as carried out there mathematically, is that this layer is
unstable to small disturbances, so the (178) solution contains an unde-
termined function for good reason. That this flow is unstable is |
intuitively obvious, since (178a) shows that the mean temperature
gradient in the layer is negative, which leads to the well-known Ray-
leigh instability. |

(ii) CASE 1, [iii]

Here, the rotational layer is sandwiched between the velocity
boundary layer and the thermal layer. In (175), h(r) is actually |
h(n) =E((r-a)/(aRe-%/o)), so actually, that term is O(o), as is term
| threé. A little investigation of the limits indicates that the second
term is irrelevant, and the final one balaﬁces the O(o) term. There-
fore, € = (Re‘l/o)2/5<< Re"%/c if 0 << Re-l/é. A little manipulation
of that equation, and using (159) and (161) will yield, with h = hoTl,

1 _ - —
‘u=RaRe 2 u,v =Qa02/5Re 1/10 v,

9 1 9vsin®

JE * Sin® 90 =0 (1802)
2—

e ISR SIEN
GM &h 9 — Ov , — dv, _ : .

-S;Z—;—g- —8? + 35(11 -gg‘f v—a—e—)—O (ISOC)

which is to be solved for
u(0,0) = -E(0)

U(oo, 8) = F(a)/Ra ~(1804)
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V(00,0) = V(£,0) =v(&,7/2) =v(E,T) =0
(180d)

_ _ Cont'd
h(0,6) = h(00,0) =0

Appendix D exhibits the nature of the solution to the problem which is
well-posed only if T1 > 1, for the same reasons described in (i) and
developed mathematically in Appendix D.
(iii) CASE 11
Here, b in (176) is h©)(r), so, from (141), the first and third
terms of (176) are O(Re-l/a). If the layer is thin, then the second
term is irrelevant, so ¢ = O(Re-l/s) and hence, with u = QaRe'%G,

-~

v =0 a,Re"4/5 v, and €= Re-1/5, h = hOTL the result is just'

_1 _ ,
2 4 ). M, ( Re *) [u - @(—)} 25 (182a)
o =2’ 13

%* silne avagine =0 - (182b)

n"-a3 gle? —g (‘6-8-%+ v e) =0 - (182¢)
Which are to be solved with
h(oo,6) =h(0,0) =0

u(0,90) = -E(8), u(ow, 0) = F(a)/Qa (182d)

V(oo,8) = V(E,0) = V(E, 5) =V(E, 1) = 0

Again, this problem is well-posed provided

GM)
r

d (o)
—d—]‘.‘_ (h - >0
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See Appendix D for details.
(iv) CASE 111
The scaling arguments are essentially those in (iii). Now, the
first term is identically of the same order as the third. Balancing
the fourth and first terms then gives ¢ = Re'?’/1 0/01/5 and the result-
ing equations are the same as (182) except that it is possible to eval-
uvate easily ?id? (h(o) - GM/r) Ir—a. Hence, with u = QaRe'%G,

v = Qa.Re'l/E'crl/5 v, h = hOE, we get

2—
s 2 — F(a);_0h '

{or rsetle-a3l="3 | - (1832)
13

du 1  9vsin® _ ~

FEJ' =9 —59 = © (183b)

GM 8h , 8 ~ov,— v, _

};2-;3 —a—e—+3€(u3-€+v3§)—0 » (183C)

to be solved with (182d) again. This problem is likewise discussed in

Appendix D, and the layer is stable to small disturbances only for

wtl | 2
T +tE @) a>1

Also, (183) with (182d) is well-posed only with this condition.

F. Summary

Because of the complexities of the solution for ¢ — 0, the
prime features are summarized here. All of the 0 — 0 solutions,
CASES 1-1V, exhibit a Prandtl boundary layer of width (vo/Q )%,
plus an equatorial jet of the same thickness. In the table below,
the first phrase in the column denoted ''Outer Flow'' denotes the

character of the thermal field off the boundaries; the second phrase
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refers to the character of the pressure perturbations and/or the
velocity field. Under ''Rotational Layer,'' the nature of the flow is

given as well as the layer thickness, and similarly under ''Thermal

Layer.'' In these two columns, the layer marked (*) is the thinner.
Case . Regime Quter Flow Rotational Layer Thermal Layer
EY
1 Re"1/8, 1) adiabatic, ¢ =Re1/81/% 5= Re"Z/oE(0)*
hydrostatic thermal convection
-1/6 - =Re 2 /o:
Re 6 =¢=Re 2/0; the two layers
1 ~ are merged here.
1 - - i
(Re™ 2, Re —6) e = (Re 1/0)2/5’ 6§ =Re 2/0

thermal¥* diffusion
and convection

1 -
11 Re 2 diffusion and ¢ = Re 1/5, ther- No Thermal
convection, mal diffusion and Layer in this
3 hydrostatic convection Range
- 1 )
111 (Re 2,Re"?) diffusion, e = Re~3/10/61/5
hydrostatic diffusion and
convection
-3/2 . . ‘ -
1Vv. (O,Re ) diffusion, No Rotational
dynamical Layer

and rotational

)=

Here (a,b) is understood to mean a << ¢ << b and an entry like Re"
means ¢ = O(Re-%). Notice that, as o0 — 0, that is, looking vertically
downward through the table, the thermal layer, thinner than the rota-
tionallayerin (1)(i), thickens to the same order, then becomes thicker
than the rotational layer, and finally heat diffusion occurs everywhere
in the fluid at CASE 11. The rotational layer fattens as well, though
not so rapidly as the thermal layer, and the flow céases to be hydro-

static only when CASE 1V is reached.
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Properly speaking, the first entry in the table is open to doubt
since the rotational layer solution is non-unique. It may be that this
particular steady solution is not a solution if the initial-boundary
value problem for the Navier Stokes equations st — co.

In the context of a conventional monatomic gas, this work is
meaningless, since the Chapman-Enskog theory that gives p ~ Tw,

k ~ T® also gives ¢ =2/3, (14) Hence, the proper way to interpret
this is perhaps that the thermal conduction term involves radiation
heat transfer in ar; optically thick atmosphere, in which case what
has been done goes through correctly if w = 3 in the thermal conduc-
tion coefficient only. (15)

5. Conclusion

The work presented here does not exhaust the possibilities of
the problem; the really inter’esting case remaining is Re—o00, 0 = O(1)
which is certainly the one of most geophysical relevance. For the

earth a is 10°-10°

, but Re is enormous (evén with an ''eddy'' viscos-
ity). Intuitively, the o = O( 1) flow appears to differ substantially
from that given for o — 0 in Section 4, because (124) is probably
incorrect; simple buoyancy force arguments seem to suggest angular
'rhomentum should be distributed throughout the entire fluid.

Of course, a rigid rotation cannot be a solution since the

pressure field would be given by (for the bardtropic case)
dp _.g/GM , 1 2 .2
pr V(—-——-—r +2522r sin~ @)

and
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y-1

Y v _ A 1.2 12 . 2
y-1 [(E(PJ) - 1] —Ol(';' 1)+'2‘B ((;") -1) sin

e

for the isentropic case. Clearly p— oo with (r/a) for any B and «.
One can make p a decreasing function of (r/a) provided we cut off

this solution at a radius T, such that

r2 << GM/2Pa

However, this sort of solution is unacceptable from the point of view
of a continuum formulation like that used here.

The terrestrial applications of this work are minimal anyway
because solar heating and various other significant effects have not
been included. However, it is conceivable that planets whose sur-
faces are sheltered by heavy clouds or are sufficiently far from the
sun might show some phenomena predicted here. Certainly, there
are planets that rotate slowly enough to make the results of Section 2
or 3 relevant.

In addition, astrophysical applications are possible, especially
for the work in Se.ction 4, which represents a radiating gas. The
solar atmosphere in particular might be the most natural application

of this latter work. .
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APPENDIX A

Galerkin Method Solution of the Large Field Outer Flow

We consider here solutions to (106), (107) by an approximate
technique; to a large extent, the results depend on the approximation
chosen, and no great claims are made for the usefulness or acc‘uracy
of such a solution. The attemp£ here is just to demonstrate the
plausibiiity of such a solution to the quasi-linear, elliptic problem
posed in (106). We will, since this is crude anyway, consider the
mathematically simplest case, w= 0, and thus we need to solve, first
of all

2 v

VV - 52— 4+

=0
rzsinze

2
? 90 3r 38 V' Yo

If we try, for V_, V_ = A(®) [r™™], then it is possible to show that

this equation is satisfied identically provided
U =B@O)[r"- %]

where

_ 4 1 4 .
B@®) =C+ n-8 Sin6 4o [A(e)smG]

and an arbitrary function of 6 was chosen to make Uo =0onr =1 as

required by (107). Further, one can compute from (108a) the value

of P4/TE py and

py=t " [’—1_ oo I+ 3 mrm-2)B - 2T L&

sin6 o °'™° g As ine]

-8 1 d . dB
-1 [—s-i-ﬁ-é— 'a—e— sin® -59— + 40B]
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Consider a region 1 £ r <R surrounding the sphere, say D. Then,

the integral form of mass conservation is

6%941;_0.£ds=o

However, lJ'_o n=0onr =]1aswellason® =0and 6 =7. There-

fore, all that remains is
e
f p4(R,08)U_(R, 8)sin6de = 0
o]

This would certainly be true for an exact solution. The typical sort

of Galerkin approach is to require

™ )
[e 4 U, sin6d® = minimum (n,C)
(o}

I

Putting p 4 and Uo into this gives

- - -8,14 +7
I=r""r " ] {g(n-Z)(n+l)al-a2— -ll:;-— a3}

-8, -n -8
-r [ T-r ]{40a1-a2}

2

. ,
2. __de . _f” dA
where a; -—!B (0)sinBdo, a, -0 (—de) sin6deo, a; = oB——de sin0do

To make this a good approximation for all R, we get the two auxiliary
conditions

T an2  dB.2

[[40B° - (5)"] sin0d® = minimum

o

4(n-2)(n+1)-120- (n+7)a,3/a1 = minimum

from making the two curly brackets vanish independently, subject to

the conditions that C and n are real and n >0.
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Example

One simple case is for OBZ—— 0. Then,

A(8) = -K sin6cosd, K = 2B [15 o+ (T +5)]

SO

_ 4K 2
B=C- .I_l:—g (3008 9-1)

Doing the integrals,

2
2.2 8K
a; =C"+ 3 g
1z 8K )
2 5 'n-8
2
2 32K
a3 =3 KC - 773
- Thus, 40a,-a, = min gives
68 8K 2
40c? 4+ 88 22 E%) = minifc=o.

The second condition then reduces to

2 9 ,7n m
dr) g bg) -z =min

and it is identically zero for n= 45/7= 6. 43.
So

Voz -KsinBcosH r-é' 4

U_ =2 5K(3cos20-1)[r 0 % - +~8]

Hence, the streamlines are solutions of

3c05%0-1 1.6

cos0sind

qr= 2.5 y[1-r71 9
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which, on integration, gives

C 1/1.6
r= |1+ > 5E
(sin"0cosB) ™"

(2)

which is very similar to Bickley's solution. These streamlines

are plotted in Figure 3.
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APPENDIX B

The Structure of the @ — oo Pressure Field

The purpose here is to deal with the problem posed in (104),

T

Vp + —3' p-p§_=63_2_ (104)
or T

divpu =0

Suppose we integrate (104') directly assuming that ZO is known. The

. T
result is
| - T-I

T - J(r)-J(r) —F— _

p =g(@) e_I/aeJ+63f Z_ (r,0)e e O 47

o
1 r
where IEJ?-————(E—— JEBny-ZG—’e)—d;
| 1 T2T(,0) p TI(E9)

In this expression, we have both hydrostatic pressure and that arising
from 230 . It is quite easy to show by integrating by parts that

r
r o I0-IE) - Un)-1E) _
\{Eo (r,9) e e dr
r

= 5v°T(r,8)S, +O(s°) as 6—0.
r .

It appears that g(0) must be determined by putting this expansion for

pressure,

/8 T4 %%z +0(s) | (Bl)

r

p=g®e

into the 0-component of (104). Keeping leading order terms only,

the result is
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2
-I/6 J) BsinBcos® , 1 8J 1 dI
g@) e e{-————-——-—r +?5€‘;356'Cef
GrZTEo : :
" o0 [% 5 - TTCyE, ] =672 (B2)
or 0

to be solved together with conservation of mass,
AV [(% e-1/6eJ + 64r220 )2] =0 , (B3)
Cr

It is not difficult to convince oneself that the limit process 6 =0, r
fixed will give, for (B2)

Z, =0 (106)

0

A little further work shows that indeed, & — 0 in (B2) with
12 ord(r-1)> ordd will give (106) also, so there is no difficulty
matching the velocity field in an overlap domain., However, since
Z}o is O(BZ), at least for B — 0, the crucial quantity in completing

T
the solution is

o5 5~ 4e~1/8)

B

°

If this quantity is large (B'— 0, § fixed), then the hydrostatic pressure

is dominant and the continuity equation is
V'[-&.(]:—?-)e-l/aeJu ]:o (B4)
..—o

It is this that leads to the structure described in Section 2, with

u, = O(VOG). On the other hand, if § — 0, B fixed, then we get

v - (rzzorzo) =0 | . (B5)
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which is the (non-linear) equation used in Section 3. These equations

are used as B2 << 6-4e-1/6, >> 6-46-1/6

respectively.

In the general case, clearly there are two kinds of pressure
in the outer flow, one hydrostatic, the other, Stokes-l:';ke. It is this
complication that makes the 6§ = 0 and B — 0 problem non-analytic in
the sense that the solution in the vicinity of 6 = B = 0 depends on the
path & = £{(B) that one follows to the origin.

For B = O(1), one can show that it is necessary to retain both
terms in the conservation of mass equation in a thin layer of width
na where 1 > ordn > 5. In fact, for the specialn = 610g(6-4), both
terms are precisely 0(64). ‘Therefore, if 610g6_4 > ordm > &, the
correct mass conservation equation is (B4), not (B5). Hence, the
solution of (B4) with (106) gives a velocity field which may be matched
nicely through an overlap domain 1 > ord n > § to the boundary layer
solution. However, to talk of matching the pressure field which is
a solution of (B1) and (B5) to the pressure on the sphere from a
boundary layer solution is clearly meaningless éince such an overlap
domain does not, in fact, exist. Omne can think of a region of width
na, 610g-4> ordn > § where the pressure is hydrostatic, but the veloc-
ity field is that of the outer flow from (105) and (B5) It is not a dis-
tinguished region and the velocities are unchanged across it, but it
is none the less there, its primary consequence being that one should
not expect to match the pressures of the outer flow to the boundary
layer solutions in the § — 0 theory. One could alternatively argue to
the same conclusion from quite general arguments given by Lager-

strom in Reference 16,
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APPENDIX C

The Equatorial Jet Solution

In this section, we derive the solution to (167)

2 2 2.2 _
Ubrpe = 5 Wy = Wby = 3 XW = av Qg

L!J WX - LIJXW'I’] = aonW

n mm

subject to

2
(1, @) =3 Vv Ta’m

(0.0]

2 3

[ ol (1,01 %an =\/vosz a’M
(e 0]

I v, W(l,n) an =\/v0€z3 2% u
-00

which when stated in a slightly variant form in (170). A substitution

2 i
4 = ®\Vo @ ARIF(E), W = 0a°Bx)G(E) where &= (2-)"n /b(x) gives
[o] .
the equations
[.fl(é)' E] (F )2 Al FF" (XB252) GZ -8 Fr
A T x A - AZ T~ 5A
B! A 0
B FG A G’ =5A G''

The integral constraints then reduce to
A(1)F(o0) = $m
2000 © T (e 2a =
AC() [ [F'(&)] “ag = Ms(1)
-Q0
Qo
A)B(1) [ F'(£)G(E)E = H
- Q0

One can integrate the (167) equations across the layer or integrate

the ordinary differential equations directly to obtain
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B' A, _, _
(——B+—,)_f F'GdE =0

[0 0]

1 [] 00 2 2
and ((A 8) -2-+-4—)f (F)2ag = X285 [ GPag
A

(A/5) "x A )
- Q00 - Q0

The first of these equations expresses conservation of flux of angular
momentum, and since the integral cannot vanish since it has a given

value, we get the ordinary differential equation

which immediately gives B = const/A. The second equation is

cons e‘rvation of jet momentum. If there were no swirl, H= 0 which
means B= 0 so this would mean linear momentum is a constant down
the jet. However, in fact the jet gains momentum through the action
of centrifugal forces, that is, the right hand si_de of the equation

when B# 0. Now, normalizing in an appropriate way, we have

A/8) 2 , A _xB%s
A;S x "R T2

Finally it is clear that the diffusion term must have the same x-

dependence as another term, hence A' = kQ/6. Putting this informa-
tion into the original equation gives

2 xB%s%

anl + FF" + (F') ==

K [G2-(#)%]

klag" + FG' + F'G = 0

- and, in summary, the ordinary differential equations in x are
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= kQ(x)/6
(Afs) 2, A _xB?s”
(A/6) " x A T AZ
B', A _
-]?‘l"x =0

These three equations for A, B, & can be‘ sol;red as functions of the
given function Q(x). That being the case, one can easily verify that
the solution does not in general have xB262/AA' = constant. There-
fore, the only possibility of solution to the equations for F(£) and
G(§) is for the right hand side of the first equation l;o vanish identi-
cally. In that case, the equations are identical, so the solution is
complete. A little algebra and applications of the integral conditions

for A(1), 5(1), B(1) then give the solutions
F(E) =tan §

and

1/3
A(x) = 3m[1 + 38 f 23am) #M 2yH%(1-17%) an]

m 1

B (x)A(x) = 22
8(x) = 2Q(x)/A' (x)

Asymptotic form as x—

Consider the intégral

1

X 2 } ’5
I(x) = { 2%Q0) (a-b/MA%) dx, a> b
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Now Q(m) # 0, and suppose we choose an N< oo such that IQ(OO)-Q(N)I
as small as we like, say lQ(oo)-9(N)' < 6. For simplicity, in fact,

suppose that
|Q(0)-Q(MN) | < —ag for all A > N
l ’ .

and some p > 0. Then,

x i x 4
I(x) = Q(co) 1"7\2[3. - -'9—2-]'2 ar + [ [2-Q(w)] Va- -'°—2]de
\ 1 A
s 1 3.3
fo! I(x)”Q(oo)§ x™ + & + €5

and one can easily show that

e, < N%a% @

: i
a3x3-p
|2l s =5
2 3-p
So, p> 0, the leading order asymptotic expansion is

1
I(x) ~ Q(ew) 5 22x°
Thus,

1 1
1, 1
A~ [2ae)® VM2 + B x, o [220% ()] JmPm?) 1/
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APPENDIX D

Analysis of the Thin Rotational Layers

All of the rotational, inviscid layers of Section 4 are non-linear
(or quasi-linear actually), and hence are not easily solved. The real
purpose of this Appendix is just to demonstrate the existence and
uniqueness of the solutions in a constructive, non-rigorous fashion.
There are essentially three different such layers, which will be studied

in sequence.

1., The Thermal-Rotational Layer, o= O(Re'1/6)

Recall equations (152)

Bw_ah

(pu%+pv-§%—)h=ﬁh = (D1)
%%u o et =0 (d2)
-;in (pu-g% + pv 3% = 28 (D3)
oh =1 | | | - (D4)

where the (") has been dropped, and x; is replaced by v. The bound-
ary conditions are

u(oo, 8) = F(a)/Qa

u(0, 8) = -E(8)

(D5)

p(0,0) =h(0.0) =1, h(co,0) = T,

v(c0, 8) = v(n,0) =v(n,7/2) =v(n,7) =0
The asymptotic solution is easy, since lvl — 0 and u — F(a)/a, (D1)

linearizes to
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__F@ 8h, 8% _,
TP s 0N an?
F(a)n
+1
QaTw
50 h~ T, + G(8) e 1 , as 1 —™ 0o

1

and (D4) is also quite simply, giving

T 2¢t1 3
1 3.3dG T; "Qa
Ve . —— Q7a 3 ©
[F(a)]
and finally F(a)
T13w+294a4 . 4 4G T1w+19a
u- F(a)/Ra~ — 8in® == e

[F(a)] 4 sin® d6 de

~ Sincethere is one arbitrary function in the asymptotic expansion, G(0),
it must be simply related to E(0) in a one-to-one way.

2. The Convective Rotational Layer

This layer occurs only in CASE 1, (i), and is given by equa-
tions (178). It is a simple matter to rescale these equatiohs and write

them in the simpler form,

uglg—i—v%% = u+l
oh 0 ov ov, _
-56-+€€-(u-8—§+va—9)—0 | (D6)

v, _1 avsine'_0
8¢ sin® 00

These equations are difficult to solve. Consider the following device

for studying them. Suppose that
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u(0,0) = -1 +e£(8)

where f =O(1) and ¢ ¥ 0. Putting this into (D6) gives what is essen-

tially an Oseen approximation to the equations,

1
—aallg- +u' =0
Oh! ____BZV' =0
96 =~ .2

8¢ | (D7)

ou' 1 ovsin® _
€ Tsime o8 -0
u'(0,0) = £(6)

where €¢' denotes the perturbation quantity. One can now write a

single equation for u'

- 1 _a_. sin® -a—u-'- =0
ag4: sin® 00 00

(D8)

u'( 6) = £(0)

fo'e) .

Let £ = E a_ P_ (cosf) where P_(x) is a Legendre Polynomial.
LHo nom n

Then, (D8) is

B4b

n
1=

y + (]:1+1)nbn =0

fo'e)

where u' = an(g)Pn(cose). The solutions bounded at oo are two, so
o

the solution is

-t b, & ®
u -nzzgn cosp £ e Pn(cose) + Z.:‘,un Pn(cose)

n(n+l) 1/4
where by = (-——Z——) and u;'; is an eigenfunction
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-p €

. n
u¥* = C_ sin e
n n p.n§

which is a solution of (D7) with f(8) =0. Hence, the solution is non-

unique.
Stability
The unsteady version of (D8) is just
2 .2
) 9.,” 9" u! a 9 _. ,ou _ _
Gt~ 38) ;z - mo w0 *M0 = (B9

where a =1 for the case here and a = -1 if the temp‘erature gradient
were positive, If we look for a solution
i(ot-Ay)

u' = Pn(cose) e

the algebraic equation for o is
(o-1) = ;I-_\]-a,n(n+l)

If a = -1, then there are wave-like solutions of (D9)

if (e YREE ) g |

e

which are, more or less, internal waves. In our case, a = 1, so the

solutions are
T \/n(n+ 1)
ix(t-y) A

e e

t

which grow in time. Therefore, the non-uniqueness of the solution of
(D7), and presumably of (D6), is because the layer structure is un-

stable to small disturbances.
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3. The Diffusive Rotational Layer

The other rotational layers, namely those given by (180), (182),‘

and (183), all have the same form, which can be scaled to give just

2
8h o (utl)

g

0 ov ov oh _
gg[u%+ V?)_é‘] +-5-é--—0

8u+ 1 ovsin® _ 0
9E " sin® ~ 00 -

For purposes of study, consider the Oseen equations as described in

(D7),

2%

——-81; =au'

o€

8%y _ oh

8§2 - 00

(D10).

ou' 1 9v'sin® =0

ot * sin 00

v'(00)=0, u(0,8) = £(8), h'(0) = h'(c0) = 0

These equations are easily solved, and

X T 27 T “Vpcos %TZ
u = ZO an{sin(sin 5 vnz) ~-tan -5——cos(sin gvnz)} e Pn (cos®)
n= 1/5
where a_ is defined as before, and v_ = [en(n+1)] , provided @ > 0.
If, however, a < 0, there are three linearly independent solutions, so

once again a non-uniqueness characterizes the solution of (D10).



-96-
Stability

The stability question then involves a solution of the time-
dependent version of (D10) with homogeneous boundary conditions.

The time-dependent equation to be solved is

82 0 o 0 ou'

o __2,L 6)-85-‘-1— 2% e = o (D11)
(agz'at Bt " BE) pZ " sinb 00 96

If one puts in a plane wave el(at'hy)Pn(cose), the dispersion relation

is

2
g MAT ‘/_1_ (r-ir2)? 4 en(ntl) (D12)
z =~ V2 N

If A is large, the solutions are ¢ =A, 0 = i)LZ, both of which are stable
perturbations. However, the possibility 6f inétability is at small A.
For sufficiently small A for any an # 0, the approximate form of the

dispersion relation is

which has a negative imaginary part if and only if < 0 for n > 0. The

neutrally stable disturbance is a solution of

(in?° - -12- @)% - 2anm+1) = 0

which is easily shown to have a real root A only if @ < 0. Hence, the
stability requirement o > 0 is exactly the condition for (D10), and

also clearly (180), (182), (183) to be well posed.
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notation for a particular characteristic in (-)
drag

potential energy

normal-direction and tangential-direction coordinates



sl d

<

()

()
)

)

-99.
LIST OF SYMBOLS (Cont'd)
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THE DRAG OF A BODY MOVING TRANSVERSELY
IN A CONFINED STRATIFIED FLUID

1. Introduction

In recent years great amounts of effort have been expended oh
the dynamics of rotating and/or stratified fluids in confined regions.
Part of the reason for doing the work is the hope of application to im-~
portant geophysical problems like ocean circulation and meteorology.

(

Recently Saffman and Moore, 1,2) have studied the vertical motion of
a body through a rotating fluid bounded by horizontal plates. There is
a general belief that ro-tating fluids and stratified fluids behave anal-
ogously; that belief was made precise by Veronis, (35) for a stratified
ﬂuid under Boussinesq approximation in a steady flow with o = O(1).
The term Prandtl number and symbol, o,‘ will be used throughout this
part, even though it may be in fact a number involving diffusion of
salt through water, sometimes called a Schmidt number.

In the work that follows, we study the horizontal motion of a
symmetric two-dimensional body through a stratified fluid bounded
by vertical plates, for the particular case when the Peclet number is
very large, and the Froude number, UZ/\/Ef, very small. Boundary
and shear layers are discussed in Sections 5 and 6 for one particular
range of large Peclet number, though that work is highly incomplete
at this stage. However, the drag computed in Section 4 is independent
of the structure of the boundary layers or éhear layers, provided

only that such layers do exist.
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2. Formulation of the Problem

The Boussinesq equations for a viscous fluid in the presence of

(4)

a uniform gravitational field are,

Veu =0 _ (1)
B2 = kv )

D2 Up = -pgk + 1% (3)
PO Dt P = -pg__ M —

Here, variations in p can be due to temperatui'e, salt, et al., and K
is the corresponding diffusion coefficient.

We will consider here the motion of a body of vertical dimen-
sion 2h at constant speed U through a stratified fluid bound by vertical
walls a distance L = L1 + L2 apart. The body moves to the right and
at t =0, it is at a distance L1 from the right-hand wall.

Throughout the work, we will suppose the motion is slow in

the sense that

g =

Y w1 (4)
VgL ‘
(This € corresponds to a Rossby number in rotating fluids. ) We now

non-dimensionalize (1)-(3) with
’ 1 % *
u=eVgL u¥, p =p p* p=p glp*, V=5V, t=Tt
which gives just

v¥.ou¥ =0 (5)
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< - *

0 "gg’; + (1_1_* . v*) p* = Pe lv 2 p* (6)
du* %

20 s + cBuk - V) wr+ VY = prk + RVYE M

where the following dimensionless combinations arise

e = UAgL
No?
pe = 9L _ NgL’ (8)
K K
R = Uv 2

) gLZ HV;’,—L?

plus the time scale parameter

ge T

D=

There is of course an additional parameter, h/L, which will be O(1)
in this treatment. Where appropriate, comments will be made as to
the restrictions on O(h/L).

There are three time scales associated with this problem, viz.,
those for momentum and density diffusion, Lz/v and LZ/K, respec- |
tively and the kinematic scale L/U related to the change in geometry

(cf. Figure 1). Notice in particular that

Pe = LZ/K _ diffusion time
- L/U ~ flow time

Now, if Pe >> 1 then the density diffusion can be neglected over the
total elapsed time for the flow. This point will be discussed further
in Section 4 and then in Section 6 in connection with a ''mixing time''

U/g. On the kinematic time scale, i.e., T = L/U, (5)-(7) become
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v . E* =0 (9)
Di¥p* _ %2
Pe ——E—Dt* =V ” p* | - (10)
D*u*
2 - *2
. E T)-ﬁ'l’v p* + p*_k_=Rv 11_* (11)

The problem to be solved will be for the particular range of parame-

ters
Pe>>1, e<<1, R<<1

in which case the following problem is posed

Dp _

5L =0 (12)
Vp + pgk = 0 | 13)
Veu = 0 (14)

subject to the initial condition
p(x,2,0) =S(z), S'(z)<0 . (15)
and the boundary conditions

E'£=EB'P. (16)

on solid boundaries with normal n, where BB

surface. There will, of course, be bouhdary and shear layers since

is the velocity of the

one cannot expect solutions to (12)-(14) to be uniformly valid in space.
Further, at this stage we restrict ourselves to convex bodies symmet-

ric about z = 0,
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Physically, this problem would be valid for salt and water
solution; there are other interesting limits which will be discussed
briefly later.

3. The Interior Solution

In this section, we solve the problem (12)-(16) formulated
in the previous section. Clearly, (13) means p is independent of x,
so (12) implies w is independent of x and go (14) is immediately

integrable
= ow
u=f(z,t) - x azv(z,t) (17)

We will now solve the problem for a particular case.

A. The Flat Plate

Clearly, (16) and (17) give, using the condition on x = % Ll’
: 2

ow
u, = (:!IL% - X)—é-z- (18)

where * denote quantities in front or behind the plate. Using the

boundary condition on the body, then,

ow, U

9z =L, -Ut
2

By symmetry, in the particular case S(z) = po(l-ﬂz), this integrates to

_ Uz '
+ iLl-Ut (19)
2 .

w

Then, we solve (13) which is now

%, _Us__ 8 _
ot T 3L,- Ut oz =0 (20)

2
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which is solvable by method of characteristics for first order equa-

tions. The characteristic directions are solutions of

dz =4 Uz
dt L, - Ut ’
2
viz., z(L, + Ut) = const. In particular, then
2
p, = Glz(L, ¥ Ut)] (21)
2
Now, ont =0, p, = po(l-ﬁz), so then (21) gives the solution for all
time as
Py =p,(1-pz [1+ Ut/L,]) (22)

2

However, notice that the characteristic that leaves t = 0 at z = h (see

Figure 2) has the equation, in the (-) region,
z(l + Ut/LZ) =h

so that the points behind the plate satisfying |

h

oL, < 7S h

are not accessible along characteristics originating on t = 0 for

|z]<h. In fact, (22) should be rewritten as

p, =p, [1-Bz(1-Ut/L))], [z|<h (23a)

po [1-Bz(1+Ut/L,)], |=]<h[1+Ut/L,]" (23b)

©
it

Now, the volume flux that leaves the region in front of the body enters

the region behind the plate along the lines z =%h, From\(l9),
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(L, -Tt) w, (h) + (L2+Ut)W-(ih) =0 (24a)

so the volume flux condition is satisfied. If mass flux is also to be

conserved, as it must be,
p_° (¢h) = p, (+h) (24b)

where ( )_ denotes variables in the (-) region where h(1+Ut/L2)-l<
lz | <h. All of this assumes, of course, that there exist shear
layers on z = th capable of delivering this mass flux to the rear of

the body. This is a boundary condition to be applied to (21) to give

just
: L.+L L. +Ut

~ 1 72 2 h

p_= po[l-ﬁh Ll + ﬁZ Ll ] s 1+Ut/L2 <z< h (25a)
and

L1+L2 L2+Ut Y
po=po i+ ph—p—+ pz—5—1], - gy >2> - (25D)
1 1 2

Of course, for all lz |> h, u=w= 0, and hence

p(z,t) = po(l-pz), lz l> h (25¢)

So, the solution is complete. It remains to calculate the drag in
Section 4.

B. The General Case

Here, the formulation of A will be extended to include a body

represented by

x=F+(z) . in (+)
(26a)
x = -F_(z) in (-)
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where Fi(ih) = 0 and further

F,(-z) = F (z) (26b)
Now, (18) is still correct. Then, using (16) on the body,

u, + F'i(z)wi=Uonx=Ut=i:Fi(z) (27)

Using this result and (18) gives the ordinary differential equation

oW,

{+L, - Ut¥F Fi(z)}-s—z—?F;:(z) w,=U (28)

b

The solution is easily found by the usual methods,

z- ¢, (t)
w,(z,t)=U — ' (29)
iLl-Ut + Fi(z)
2
where z = gi(t) is the w= 0 line. Requiring (24a) to be true immedi-

ately gives §,+E { . Just what ¢ is, willbedetermined at alater stage by
p, (#h) = p_(+h) (30)

The density will be constant on lines

dz

-&T:- =Wi(z,t)

which is, with 7 = Ut,
i(Ll-Fi'(z)) -T
dr

= 2
dz ~ z-¢(t) ‘ (31)

Sketches of these curves are given in Figure 2 in the very special

case { =0. It is quite clear from the geometry that

0<7<L, -F(0), (<h

1
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and the lines passing through z = +h have slope

iLI-'r
ar . _2 2
dz h-t <

so there is the same difficulty as in A for the genei'al case, viz.,
there will be a region behind the body adjacent to the z =+h lines
which cannot be reached along characteristics from 7 = 0, lzl < h.
Hence, the general problem involves the solution of an initial-
boundary value problem behind the body. We now specialize to the

particular case
S(z) = po(l-ﬂz) (32)

One can carry {(t) through to the end and determine it by (30), or
notice that in this special case, symmetry considerations imply

t=0. So, (31)is just
L, + F (2)-7

1
ar _ _ 2
dz ~ Z (33)
which is integrable, and gives solutions
z-z' — 1 [ '
T = :hL% = T = g' F,()ax (34)

where z' is the z-intercept; If z' = +h for example, in (=)
h
72 = Ly(h-2) - = [ F_()dx
2 zy -
However, we have

, |
[ F_ dx< (h-2)F(0)
zZ

S0
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o hs
7>[L2-F(0)]—~Z—>0, 0<z<h

and hence, on this characteristic z < h for all 7 > 0, so it does indeed
bound a region inaccessible from 7 = 0. Now, p depends only on the

value of z', hence
_ z
P, =G ([71FL,]=z -s:fFi (A)dx) (35)
(o]

In front of the body, we have simply an initial value problem (cf.

Figure 2), so (32) gives
o
G[-Ljz + £F+(7L)d)t] = p, (1-Bz)
SO
’ Z
py = p (1-pn, {[7-L,] z+ [F uax} (36a)
o]
where z = n, (§) is the solution of
Z
-Lyz+ [F, o ax=¢ | (36b)
o

So long as one is inside the lines z = z_(t) [cf. Figure 2], exactly

the same calculation can be made behind the body, the result being

Z
p_ = po(l-ﬁn_{(7+L2)z-£ F_(A)dx h K (37a)

lz |< zo('T)
where n_(g) is the solution z = n_(£) of
L,z - [F-dx =¢§ (37b)

Clearly, zo(t) is the solution of



(a)

The double lines are the
characteristics Z=2Z, (1) (b)
Behind the Body

FIG. 2 CHARACTERISTIC DIRECTIONS FOR THE DENSITY
FOR THE CASE {:(r)=0 |
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h
72 (r) = L,(h-z (7)) - f F_ mdx (38)

z4,(7)
Clearly, as before in (24b),
p,(¢h) = p_(zh)
which then gives, from (35), for z°< z<h,
h ' h
G([r+L,] h-c[ F.dx) = p_(1-pn {(r-L )b + £F+(7L)dh})
A little manipulation then gives

| h h |
5_=p0(1-f5n+{'rz-L1h -Lz(h-z)+£ F, dx+ iF-dx})
(39)

z <z<h
o
and similarly for the other strip,

h h
6_=p (1-pn {rz+L bl (htz) - [Edr+ [F dx})
. z (40)

-h< z< -z
o

Recall that in z_ < |z| <h, p_> 0in Part A.. Here, as well,

p p_T+L,-F-(z) : :
° 2 > 0 (41)

2. _
o 1-5_(z.t)/p

L,-F, ( 5

so what was true in A is also true in general.

Note that one can substitute the solution into (2) to obtain a

more careful restriction on the solution than Pe>>1, viz.,

s'(h) 22 >> 51k
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or @) P_>> 15" (n)/S'(h)

which shows clearly that (h/L) cannot be too small or the solution
fails.
4. The Drag

The drag of the body moving through the fluid is obviously

f

P+(Z) h (Z)

~1+F' f V1+F'

which, by one integration by parts and use of the symmetry gives

(42)

h | |
D =2g [[p, (2)f (2) - p_(2)f_(2)]dz (43a)
o]

where

Z
f,(a) = [ — (43b)

Vit {F )2

A. The Flat Plate

Recall from 3. A. that the solﬁtion is

P, =p [1-p(l-T/L )] , |z|<h

p_=p [1-p+7/Ly)] , |z|< 2, (44)
P. =Py [1+ -‘1% (z[L2+'r] -Lh)] , zo'< z< h
with

Then one can easily compute the drag from (43) and (44) and the
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result is
L.+L
_2 371 T2 1
Py =3rofer" 5~ |1- 7§ (452)
1 (1 N U:)
4 : T,

However, as was pointed out, in general the fluid in §_ is unstable,
so suppose it mixes to a uniform density. In that case, (69c) is re-

placed by

5_=p, (1-Bh(z- {—:] sgn(z))

in which case the drag becomes

b ob. 4 Lo ogd L, (Ut/L2)3 - (ish)
=D, +%p pgh’ 2 —— =%
271 6% Ly (1+Ut/LZ)2

However, as shown in Figure 3(b), the new density‘profile is still
statically unstable. Suppose then that the mixing process extends
below z = z  an amount 620 to a level that makes the density contin-

uous. Then, one finds that

p_ =p,(1-Bh(1-5))

where § is found to be

5 =-EE [\/'1'+—L27L1 -1]

2

and the drag is found to be

L
1 2L ‘l 2 '
D3 =D2+§(D2—D1)[r‘(l +L—- 1)—1] (450)

2 1

If we suppose all of the fluid mixes, then p_= Po and hence
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NN N

X
\ \_— U \
PN | \ [
A1 |
Lh-2otN \ Lh-z41
(a) (b)
No Mixing Mixing Of Unstable Layers

\ \ :
! N \\ :_»U
! NN
‘Lh-Zo(l-% |
, (c) (d)
Mixing Penetration into - Mixing Of All Fluid

Unstable Region Far Enough Behind The Piate
To Make Profile Stable

FI1G.3 POSSIBLE DENSITY PROFILES UNDER
VARIOUS ASSUMPTIONS ABOUT THE

MIXING PROCESS FOR THE FLAT PLATE
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3.pop gh’< 0 | (45d)

Dy=-3

This curious result will be discussed later.

B. A Thin Body

Suppose that the body is very slender, i.e.,

F,(0)
h

<< 1

In that case, write F:}; = eg,, << 1. All of the formalism of Section
3. B. may now be exceedingly simplified. If ( )(p) refers to the solu-

tion for the plate, then it is quite easy to get

Py —p?)

z(1-7 /L)
fg+0nd>x fg max}+ o()

: z(1+7/1,)
_ @), PP F
p.=p [e. mdA+f g, (VA ¢+ O(?)
o

L2
_ (46)
PP h 2
p=p P2 {f&ﬂ+f &aw}+ms)
L t= .QL_..h_ 2T
Ll"f Ll
and
h
h
) = /oy |-Eg, S eLoR
h ,
1+77L2

Any other than slender body shapes are of course consistent with the
general solution in Section 3, but in practice are very difficult be-
cause the inversion of (36b) and (37b) to give an explicit representa-

tion is very difficult; for a cylinder, for example, one finds that (36b)
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becomes

£ =-L

1zt % z \/hz-z2 + hzsin"l(z/h)

which is obviously analytically impossible to invert. Using (46) with

g,(z) =h cos (7)) will then give

(p) . poth i . TZ . TZ ]
p‘{_=p+ +-—;IT— LSln-Z—H— smﬁ(l-'r/Ll) (47a)
1 -
p = p(p) + -2:106—}12— -sinﬂ+ sin 22 (147/L )- (47b)
- - 1rL2 i 2h 2h 2"
(p) Zspoﬁhz ] mZ 7w L L2+T z
ﬁ_ = ﬁ-_p + ——7;31—-— Z-Sin(-z—h-) - Sin'i[fi - '-rl—- 'E-] (47c)
and
_h 2 h . T
i [ " Lr 1o I ’] (47d)
L , u ‘
2
From (47), the drag with the (43) formulation and g8,=8_ is
h - 5
D =2g [z[p () - p_(2)] dz + O(&) (48)
o ‘

since the cosine factor in the integral is O(ez). Here, again, ( )(p)
denotes the flat plate solufion. If € )1 denotes the corrections to

the ( )O quantities, then the drag is

h 1+7/L, h
D =D0+ 2ge -‘S‘ p =zdz -S p =zdz+ gp_l_ zdz]
"1 T 1
h o o

1+'T’7L2

+ 0(e?) (49)
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For the special case given in (47), the result of this computation for

L1 = L2 is
16p phig | 7(1-(/L,)%)-4r/L
_ 0 1 1 T
Dy =Dt e—=3 z2 . °% 3L
7 L, (1-(7/Ly)%) 1
2
+ (2-e) [1 ————1-———-2]
(1+ Ut/Ly)
24 2
= {1 iy '2]} Do
o L1
4 2 2
16p Bh'g w(1-7 /L1 .)-4'1'1/L1 r
+ 3 € : 5> cos S+ {50a)
7 L [1-(7, /L)) 1
1 B L |
4
16p Ph'g
and D, =D, +c¢ 2 T sin = — - 1 cos s
2 20 1r3L1 2(1—'1'/L1) ZL1 (1 "T/Ll )2 ."I’.L1
” [1r+1+2'r/L1]
-8in + cos (50b)
and similarly for D3. Also,
16poBh4g | T T T
D4—D40+EMW3L + TAoT Ll)<:os-2—(1---]—_l—1-)
1 X7
sin% (1-7/L;)
- (50c)

(I‘T/Ll)z
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C. Remarks on the Drag

We noticed in A that, though the drag is positive with slight
mixing, when the region behind the plate is cbmpletely mixed, then
the plate experiences a thrust. One can alternatively compute the
drag by considerations of potential energy directly. Recall that
Figure 3 shows the successive possible density configurations, de-
pending on the assumption involved in the mixing process. If the
plate experiences a drag, that means that the plate is doing work on
the fluid, so the potential energy must increase in that case. If we
let the potential energy reference be zero on z = 0, then, in the case
when the body is a plate, V = -/ legp(z, t)zdz. Then, in front of the

o
plate,

V@) = (1-1)[V(0) - T 7p_ph’] <V(0)

and behind the plate, a similar expression. The central region behind
the plate, ]z [ <z, similarly has V increasing with time. The two
regions z < Izl < h have potential energy decreasing. The sum de-
creases, so there is drag on the plate. However, the resultant
density structure is unstable. If it mixes as in Figure 3(b), the two ‘
- unstable strips have their potential energy further increased so the
drag is higher yet, and it increaseé still if the profile is as pictured
in Figure 3(c). Thisv apparently is the maximum drag cohfiguration,
because any further penetration of the mixing zone will, just from
the geometry, decrease the potential energy, and hence lower the
drag as well.

On the other hand, suppose in the mixing process that all of
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the fluid behind the ﬁlate gets mixed to a uniform density Po This
clearly is a state of_rr_l_@ lower potential energy, so, since the
potential energy in front of the plate decreases as well, the plate
actually experiences a thrust. So, the uhstable stratification behind
the plate triggers mixing that not only stabilizes the fluid, but mixes
enough to destroy the density gradient altogether, thus greatly de-
creasing thepotential energy and pushingtheplate against the far wall.

5. The Boundary Layers on Non-horizontal Solid Surfaces

If n is a coordinate normal to the boundary and s is a measure
of distance along it, then clearly the equations of motion in the bound-

ary layer are

o _

= = 0 (51)
d %%

Loy LE o 2T (52)
ds  1+F'2 on®

9,5 % ,508 _

5t 7% Bnt Vs = O (53)
5u . Ow _ |
55*-3; = 0 ‘ (54)

where u and W are velocities in the normal and tangential directions
respectively. If § is the thickness of the layer, we are here consid-

ering the case for which

-’% << U/h - | (55a)
6 .

and also neglect the inertia terms in the momentum equations, which

means that

[

e<< R (55b)
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from (10). We have neglected unsteady terms in (52) because they
are not important to the layer structure on the kinematic scale L/U.
There do exist other limits of the equations apart from the one de-
scfibed here that involve these unsteady terms. None the less, these
limits seem to describe the initial stages of growth and formation of
this quasi-steady layer. Since w is O(U), however, and s is O(h),
one must keep the time rate of change of the density in (53). Clearly

the only balance possible is for

1
2

6 = (vU/g)

i —_ —
so formally, if one puts n = LR%7n, s = L.§, p = P Ps U = UR?U, w=UW,
then the non-dimensional equations are ’
o
o 0

B(E,m) - p(E,c0) _ B%W (56)

VI+F (£)2 on’

% g
% +T

+Wg§=o (57)

gl

m

Iy

8n+

= 0 ' (58)

g
1

Then, (55a) becomes just
2
Kk << vU“/gh
or (-1];—‘) PeR™!>>1 (59)

which imposes an additional constraint on the solution. Further, this
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layer ceases to be thin near places when F'— oo, i.e.,

dF
dz

h2_-1
< F)°R A (60)
This layer is nothing like the Ekman-layer (or actually ''buoyancy

layer'' in Veronis, (3)) because, primarily, of (59) and the original

Pe >> 1 restriction. One can easily combine (56) and (57) to make

{—"i- +TJ'—8-+‘W'§€}\/1+F'Z 82W+[W(§ n)-W (£, oo)]—P—(L =0

ot on
(61)

subject to the following boundary conditions

W(E,0) = 0

_ (62)

U(,0) =0
where we have written

— 1

on the surface

N1+ F' 2

and  p(£, ) =p/p,

on the surface

We have definedn so that it is always positive in the layer, and the

sign in (63) is chosen + or - as the fluid is to the right or left of the

boundary. |
An asymptotic solution to (61) may be obtained for the case

pog < 0, and is just the solution for the flat plate,

pr— 2—_ — SR
2+ Wioo, &) 2 a—,l’-;—vg-f% pe (£, 00) [W-Ti(co)] =0
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and by Laplace transform a solution of this may be obt;ained, for the
(+) region,
+po t*/x

T ® sinpw P 3 -Xn
W - W (o0) = f(g(l-t*))f —;Lx e e | dx
o

-l<p<+l,p#0 . (64a)

which has the asymptotic expansion as n —+oo,

p/2 V-5, t¥n

-p it '
W - W(oo)~ (__:L) ( sinpw )1/4 :e 3 (64b)

-3 5772

Pog n
Notice the single arbitrary function in (64b) that would be determined
by (62). In general, the structure of the solutions to (61)-(63) is not

simple. If w(n)= - %—ng (£, m, t*), then an integral of (61) gives
fo's}
9w(0) ! L Y Il Pdn
ot > E13
Vitr (&) °
00

o, f nwdn =0
£ o

This layer does not of course satisfy boundary conditions on p; an
~ interior layer is required for that purpose. From arguments similar

to those given one can show the equation for p to be

9% 2 3 | |
—S+yfa gt = 0 (65a)
oy y

kY
where y is in the n-direction, scaled with the layer thickness (R/Pe)3.

Here, we have used the asymptotic expansion for U from the outer

layer solution, i.e.,
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T(E,m, )~ -n @ (&, t4) + ... (65b)
If the boundary condition on p is

p(0, €, %) = p_ £(E, t%)

then the solution is _ %a(&)ﬁ
_ e da ‘
£ = (6, o)+ [p(0, %, t4)-£(£, t¥)] 3 (66)
Po ® -tax
[ e ar

If the surface is insulating (or, if p variations are due to variations

in salt concentration) then
.QP_ *) =
5> (0,6, 1%) = 0

Now, (65a) must be replaced by

—?—-g + yza -g-ﬂ = yzoz -gﬂ (o) (67a)
oy y y
Then, we get
—%O[ (gs t*)Y3 )
Py = py(oo) l-e . (67b)

6. The Horizontal Shear Layers

We found in Section 3 that in general there will be a jump in
(u,w, p) across z = th (see Figure 1). The jump in w produces the
largest mass flux in a shear layer, so it is the discontinuity td be |
dealt with first. The approach, as in Section 5, will be to study the

shear layers for Pe= oo. Having done that, if Pe >> 1, or some
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more restrictive requirement, one can insert an interior diffusive

layer. Making the usual boundary layer approximations, and again

supposing K so small that

K << 8U (68)
where 6 is the layer thickness, the leading order terms are

-g—‘;-+ %Wz- =0 | | (69)

—31; tpg =0 (70)

2w % - | (71)

%%+u-g-xﬁ+w%§=o ' (72)

One can explore the possible limits in a variety of ways. Doing it

intuitively, it is clear that there must be vorticity produced by the

gravitational field as the flow turns. So, (70) and (71) give

9 3u '
z

If one puts p = p_(z,t) + 6p (z/6,x,t) into (72), the result is

op op ~ o
— % w2 O . w2OP -
ot TV T et W =0 (74)

where z'= 2z/6. From (69), u =}a-ﬁ and (73) then gives clearly the
thickness .

1/5

6 = (wL/gh?)  =o®Y>)

and (68) becomes
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_1/5n 2/5
(’L)

PeR >> 1 - (75)

which is less restrictive than (59). If we scale everything with the

obvious quantities, then (69), (73), (74), with ¢ = (zih)/LRl/s,

3

o u¥ 99—: =0 (76)

o3 | 0%

du¥ | Bwk _

pre il T | (77)
« 'o - '

uk -g)-%% - %%+ pz (WH-w( 00)) = 0 (78)

o) +h .

where the w*(+o0) term enters in the layers {< 0, but is identically
zero for the layers adjacent to the undisturbed fluid in lz' >h., If
we denote by * the layers in front and behind the body on lzl = h-,
and by ()", the single layer on Izl = h+, then there are a few obvious

boundary conditions,

p¥(x 00,x,t) =0

(79a)
u*(+ co,x,t) =0
and by matching,
Wj‘: (-o0,x,t) = wi(h, tlonz=h
(79b)
Wj‘: (00, %, t) = wi(—h, tjon z =-h
plus  w*\(z00,x,t) =0 on z = +h (79c)

The interior density layer that lies between the layers to smooth the

density discontinuity seems to require the interface to be a streamline,



-127-

Hence, if
¢ =, (x) (794)

denotes the interface between these back-to-back layers, we must

clearly have

wk(n (x),x, t) = n (x)u(n,x,t)

(79e)
wk' (n (x), x, t) = ! (x)u* (n(x), %, t) :
Quite clearly the tangential velocities must be continuous, so
w¥(n (x), %, t)n':,?(x Hruk(x, t)=w*'(n, x, t)n! tu¥ (x, t)
for x 2 Ut (79£)

The reason why n (x) is non-zero is just that it must be chosen such
that the pressure perturbation from an integral of (71) is continuous
across the interface. It is easy to show that this is equivalent to |
requiring that

GO . .
J e tx )L =0 (79g)
- Q0 .

(2)

By analogy from the rotating flow (Stewartson)layers, the correct

condition on u, will be

4

s L -Ut bux L,+Ut Buk
—aT(n’x’t)=W—5rT (n,X,t)’r'L—l'_l‘:'j_';—gn—(n,x,t) (79h)

where _g_ is symbolic of
n

L
on - ot -~ MY ok



-128-

A, Asymptotic Solution in +

For |§,| — o0 and w¥*(+o00)# 0, that is, for solutions denoted by

+ or -, an asymptotic expansion of the solution to (76)-(79) is possible.

We write

¥ -« wk_ = +
W:t Wedge WO+W1 W2+

u¥
+

+ + .
uo u1+u2

¥ =
P¥ po+p1+p2+...

where this will in fact be an asymptotic expansion if ¢n+l = o(d)n),

I{,I - 00, Wzdge # 0. The hiérarchy is

p L
p,  ntl 9t ' n ox* n ¢
8un+1 + 8Wn+1 =0 (80)
B T |
3 .
9"u op_ .,
n+l nt+l .
3 + o = 0, n=-1,0,1,...

9

and u_; = w_,=p_1 = 0. To leading order, (80) gives

Po

w, (+h) 9p
Z + o _
o (£h) w0+——--——--U ral
auo awo
3w 9p
Z o, Py
ag3 Ox*

Now, (81) can be redﬁced to



5 poiLU 2

0 u z 0 u, ,
+ = 0 (82)
87;,5 po(h)wi(h’ t) ax*z
Now, it is always true, from Section 3, that
Po LU
z

<0

P W (B, D)

1/5 ;
so, if p.E[—szo LU/pO(h)W:t (h, t)] / , then an asymptotic expansion
Z

for the layers on z = h- begins with
u, = sinmx e“t"cos"/s[asin(p. sin% t;)+bcos(psin% ¢l

w = . Teosmx ew“,cosw/S[

T s Ty s T
o m (acos 5 + bsin -5-)s1n(p51n 5 t)

+ (bcos —g— - asin %)cos(p,sin-#;£ )], ¢(—-o0 (83)

One can show, Wif.h considerable labor, that Wi P Wy all decay like-

(ep,gcosg/S)z’ { — -o0o, so the series is indeed asymptotic.
Approximate (Galerkin) solutions to (76)-(79) are not at all

easy and have not as yet been found, since they involve solution of

the simultaneous, non-linear ordinary differential equations.

B. The Density Layer

Clearly the equation to be solved to remove the density jump is

2

wl syl ooy 2o (84)
ox oz 0z ‘

In this layer, —?% = 0 so that u = UR'I/5 c(x) from the layer described
0z
previously, and so

-1/5 dc
dx

w = -z UR

so that (84) becomes
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2 ‘
C(N)Q‘g ";d_f‘ '@g = Kl 5 8~g - (85)
Ix dx 9z  UR™ / oz :

The z and x used here are actually, in general, not the previous z
and x, but a new orthogonal system with z in the direction k - n(x) .

If we now put

bR

s= [ clx)ax
1

then p = p(s, yc(;:)), where y is a coordinate scaled with the thickness

L(RY/5 /Pe) of this layer, and (85) is

ée__iz_e__
o

5 a(ye)

and the solution is

P =% [p(-oo)+p(+oo)] + %[p (+00)-p(~00)] e,rf{-y—lsﬁl} (86)

7. Conclusion

Although many details are left undone in the sense that solu-
tions for the boundary layers and shear layers have not been con-
structed, though the equations and boundary conditions have been
set down, we seem to have a self-consistent asymptotic theory for
the slow motion of a body through a fluid of small thermal conductivity.

The drag calculation required only
<< 1, R<< 1, Pe>> L/h

- However, the shear layers and boundary layers were fitted under
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further restrictions, the most severe of which, for h = O(L), were,

from the boundary layer structure,’

1
R_1 Pe>> 1, e<< R?

The second of these conditions is reminiscent of Rossby No. << (Ek-
1
man No, )? in certain rotating flow problems. We also found that

(h/L) must not be too small, viz.,

ple
v
|

1
>> R-?:/Pe'lr’/Z

L2

It appears that this flow will never be analogous to a rotating
flow. In the work on the analogy between rotating fluids and stratified

(3)

fluids, Veronis, uses a velocity scale determined by the buoyancy
forces. If the buoyancy forces are small, so are the velocities, and
only the Rayleigh number and a number (equivalent to Rossby number)
measuring the scale of the density variations compared to a mean
density are required to characterize the problem. However, this
problem has a velocity scale determined by the motion of the bound-
aries, not by the buoyancy forces. Further, slow motion (small
Froude number) does not necessarily imply small changes in the
density field. Hence, it should be no surprise that this flow ‘bears

no similarity to an analogous rotating flow. It appears to be the case
that stratified fluids behave analogously to rotatingv fluids only if the
boundary conditions are not kinematic but rather on p or 9% (as for

0
salts). In the rise of a body through a rotating ﬂuid,(l’ 2) the fluid
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is squeezed out in Ekman layers. Here, the fluid is squeezed out
through the entire slug of fluid ahead of the body which is precisely
why the drag is O(so) here, and Of(e) for the rotating fluid,

The small Peclet number problem is not especially trivial,
and though it appears that the drag is O(1) in that case, the details
of the flow have not been worked out as yet. This problem remains
an item for further research. |

An experimental check of these predictions seems quite feas-
ible; glycerine has a large Prandtl number (~ 7000), and certainly
the Schmidt number for salt is very large as weil, so it seems pos-
sible to arrange the problem as shown in Figure 1. Of particular

interest would be the mixing process behind the body.
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