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ABSTRACT

The material in this thesis is the result of a year's experience
in the solution of problems on the Cal Tech Electric Analog Computor.
Although much work has been done elsewhere, the solution of partial
differential equations is a relatively new field for the Cal Tech Com~
putor. It is natural that such an undertaking should initiate points
of view and techniques that differ from those of other investigators..
This thesis contains the development of certain ideas that have been
useful to the author in the solution of problems on the computor.

In Part I, finite difference methods are treated with reference
to problems with one space variable, Techniques are developed for
the representation of differential operators by means of electrical
networks and the question of unequal luwmping is discussed.

The solutions of the fourth order differential equations of a
beam are treated in Part II. Such practical considerations as the
effects of parasitic impedances and cell size are investigated. Solu-
tions are presented for the normal modes of a cantilever beam, the
transient vibration of a cantilever beam and the coupled modes of
vibration of an airplane wing.

Problems inveclving the scalar Laplacian operator are treated in
Part III. A general asymmetric network is developed that is useful
for problems with irregular boundaries and for problems where it is
desired to have variable cell size. These techniques are illustrated
with respect to a cavity resonator problem and an electromagnetic
radiation problem.

Elastic plate problems are treated in Part IV. The analogy for
the elastic plate is an extension of the beam analogy to two dimen—
sions. Here the difficult problems are those relating to the repre-
sentation of boundary conditions, particularly of boundary condi-
tions along an irregular edge.

Some conclusions regarding the construction of a network ana-
lyzer designed specifically for the solution of partial differential
equations are given in Part V., The chief conclusion is that such-

a computor must contain a much larger number of electrical elements
than are at present available in the Cal Tech Computor,
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1.
PREFACE

The subject of this thesis is the application of electrical
networks to the solution of partial differential equations. There
is no intention to imply that all of the important types of partial
differential equations of mathematical physics together with their
_>network anaiogues will be found here. The emphasis is rather upon
methods and techniques that have a wider application than fhe’equa-
tions that have been chosen for investigation.

Only linear partial differentizl equations having nét more than
two space dimensions have been coﬁsidered in this thesis, This type
of equation lends itself more satisfactorily than any othér ﬁo s0lu-
tion by means of electrical networks.,

It is impractical to construct a network analyzer for the solu-
tion of problems with three space dimensions because an eXcessiVé
number of elements would be required. For example, a cubical net-
work with only ten cells on a side would éontain 3000 impedance |
elements, Furthermore it is not practical to solve problems that
cannot be represented by bilateral impedance elements (e.g. a third
order equation). Such a network would require eiectronic amplifiers
for every cell. |

Certain types of nonlinear equations can be solved with a
passive bilateral network using iterative methods. In the author's
opinion these equations are not well suited to solution by net-
works and, except for one dimensional problems and problems in
which the non-linearities are small, other methods of computation

are more satisfactory,.



2.

The choice of examples has been influenced by still other
considerations. The emphasis on beam and plate problems results
from the fact that the Analysis Laboratory has recently been called
upon to solve such problems. These are, furthermore, problems
that have received little attention in the published literaturé’on
'analog'comﬁutors.‘ The emphasis on equations involving the Lapla-
bcian operator is a result of the unrivaled importance of this type
of équation.

Examples of important equations that have not been éonsidered
and for which network analogies exist in the literature are the

3,54

equations of compressible fluid flowl’gf Schroedinger's eéuation =,
and the general equations of elaéticity5i25

In the usual type of analog computor, time is regarded as the
independent variable., The alternative use of position as an indépen-
dent variable in an analog compubor is investigated here. It will
be shown that, even for problems with one independent variable, this

point of view has certain advantages. An electric analog computor

can readily be adapted to this technique.

3#*

Numbers refer to items in the bibliography, p 1L0-142



3.

I PROBLEMS WITH ONE SPACE VARIABLE

1.1 The Finite Difference Approximation

The essential mathematical step ih the solution of partial

differential equaticns by networks is the replacing of a differ—
ential operation by an equivalent finite difference operation. A
dependent Variablé which is a contiﬁuous function of the independent
‘variables is replaced by a set of variables each of which is defined
only for a discrete point in the coordinate space. The differenﬁial
equation is replaced by a:large number of algebraic equations relat—
ing the new set of variables. This is, in a sense, the inverse of
the usual process employed in the derivation of the diffefential
equations of physics, wherein thé distance between discrete points
is permitted to become infinitesimal. This mathematical step involves
an approximation which will determine the attainable accuracy of the
final solution,

The development of the method begins with the principle of
polynomial representation.¥* In the finite difference approximaﬁion
of a function of one independent variable the function is defined
only at discrete points and it is necessary for purposes of differ-
entiation, integration and interpolation to define the fuhction in
some manner for the intervening points. The function'passing through
the n+l defined points y, 15 Y2 - = =¥, which has the least number
of derivatives (i.e. the smoothest function) is a polynomial of
degree n:

Yy = co + Cc1X + 02X2 + = = 4 Cpx? _ (1.1)

% This treatment summarizes results given in R. V. Southwell,
Relaxation Methods in Theoretical Physics, ref. 6, pages 13-20 as
well as in books on finite difference methods.
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On the basis of this representation the value of the function at

x = 0 and its first two derivatives are:

Jo = Co

dy =
dx o

d2y

¢l
(1.2)

Co

4

o]

The coefficients cg, cl,‘cz, -==2C

n are functions of Yos ¥1s -

- = Ype Consequently the derivatives of the function may be expressed
in terms of its values at n+l discrete points. In this way tables
of three point, four point, or n-point differentiation may be built

6

up.  For example, for a range of three points and equal‘spacingZXX:

(), = 5(-376 + by - ¥2)

dx’o
dy = 1/
(a?c)l 5Ept Yo y2)
(), = 5=(70 = by1 + 372) @)
2
d 1o
(a%)o,l,z -E{?(yo 2y1 + yg)

The errors in these formulae may be estimated by means of the Mac-

Laurin series for the function and its derivatives. For example:

2 x>
y2 o yo + ZM)TOI + )“‘g);‘ yoll + _8_,34,}_;'_,yo"l + - e
d 2 :
(&), = vy +Axyr + By 4 - - - - (L.b)

Hence the remainder-error for the second of egns(l.3) is

1 2

(%z)l - m("YO ty2) = “‘é%{"yom"' -=- (1.5)

X
In general, the greater the number of points that are taken,

the smaller will be the error in the representation of a derivative,

although this will not always be the case. Since these errors
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depend.on the spacing,z&x, they can also be diminished by making
this quantity small. In the representation of these differentiation
formulae by electrical networks it is advisable to choose the sim—
plest formula that has a reasonably small error and to make the spac-
ing small, since the accuracy of the solution will be increased

more rapidiy in this way than by using more complicated formulae
that may be difficult tc represent electrically. The derivatives
that can be represented by electrical networks together with their
point differentiation formulae and remainder-errors are given in the

following table.

Table I

Derivative Formula : Error
(&) L (=g, + 7p) Ay
ax’1 7Ax Y0 2 _ 6 v
D : Chel s
d 1 - Ox - - AX 1v
(dX )l A—}?(yo ey + YQ) B 7o
L 2 .
&, n o = by + 63 = Ly + 3),) - Byt
(9_6%) 1 AX2

oY
)
W

W(yo - 6371 + lSYz - 20}73 + 15;}7)4 - 6,75 + yé) - TyOViii

Note that in all of these formulae the errors are proportional to
the square of the spacing and the second higher derivative. The
third, fifth and all higher odd order derivatives cannot be repre~

sented by bilateral electrical networks.
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1.2 An FElectrical Network for a Linear Second Order Differential

Equation
The general expression for a linear second order differ-
ential equation is:
d2 ' dy - ' ' N
a§§‘+ fl(x)ai + fo(x)-y = £3(x) (1.6)
’Akform of this equation that is more convenient for solution by

electrical network is:

L) = &) [t3(x) - £,(x) 7] @

where J )

g(x) = e Jr1 (e (1.8)
as may be verified by expanding egn.(l.7). We shall now replace
eqn.(1.7) by its finite difference equivalent. In Fig. 1l y is
represented as a single valued function of X continuous toge@her
with its first two derivatives. The valués, Yy» that will be used
in the finite difference representation are marked on thé curve.,

The spacing, Xp-Xk.j= AX, is constant.

N

i
:4»—A)& —p— AX —)P—AX—O-

|
|
[
|
|
!
I
|
)
Xn-2 K- X n Kns sz

Fig. 1.



Te
Define xny4i = xn+A—}2c-. Then, by the differentiation formulae

of Table I,
&y oy Inl (1.9)
dx’n+s Ax
is an approximation with an error proportional to the square of the
'incremvent, Ax. Furthermore

ayy . Yn+l =~ Im ‘
Eg(X)E&% g(xnyl) Fte 0 (1.10)

and
. \dy dy
d dyy ~ (e(x)gx)p.t - (elx)gg).1
[-C-E(g(x)a;(gfn = dx n+§X dx’/n-3

~ 805, 2) ny1 - V) = 8%, 1) (7 - Yn) (1.11)
AxE

Hénce, the finite difference equivalent of eqn.(l.7) is, for the

th

n" nodes
g(xp,2) g(xn1)
_Z.I%’_é_[yn-yl - Yr;‘ + -—Z%—Z—[Yn-l - yn]
=Axg(xn)[f3(xn) - fz(xn)y% (1.12)

for the n + 15% node:
g(xn,3/2) [yn 5 - ymi} + ig_(.’fn_.ié_).[yn - ¥n 1]
AX i AX *
=Ax g(xy,1) @3<xn+1> - f2(ka1 Vg1 (1.13)

We now turn to the representation of these equations by an electrical
network. In the network of Fig, 2., the Y's are the admittances of
the impedance branches, and the I's are currents inserted by an

external source, The V's are the potentials at the nodes.



In—)' In IV\H

_ va— 3/7. \{V\—'/—;_ \(vw Vo Yn+ 3/
Nin-y Vn N+l

\{V\—l » \{V\ YVH—I

Fig. 2

Electrical Network for a Second Order Differential Equation

Kirchoff's Current Law for the nJc’h node is:

Y43 (Vne1 - Vn) + ¥n2(Vp1 = Vn) = -In + TnVp ' (1)

Egns.(1.12) and‘(l.lh) are similar in form. They will be identical if

N =8 % k = n-1l, n, n+lr

Y 1= g(xn.,-—%—)

n+z alAx
| _glx,1)
Yn-—%' = __é_z.}_c....é._ 7 | (1.15)
v = —-g(x,) fo(xy)Ax
n -~ a
I = -shx g(xn) f3(xn)
n - a

where s and a are two arbitrary constants and are called the scale
change and the impedance base change respectively. Kirchoff's law
for the n-;-].st node can similarly be made identical with eqn’.(‘l.13).
Observe that the coefficient of y, 45 in eqn.(1.12) is the4 same as

the coefficient of yp, in eqn.(1.13). This symmetrical property per-
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mits thé representation of these terms by a bilateral admittance.
Since n may be considered as a running index every admittance is
bilateral.,

It has been shown that eqn.(l.7) can be represented by a simple
bilateral electrical lattice. The admittances of this network ﬁay
be either pdsifive'or negative. If they are all positive or all neg-
‘ative a network of resistances can represent the equation.’ If>somev
are positive and some negative a network containing inductances and
capacitances must be used. The conditions under which a fesistive
network may be used will now be determined.

By eqn.(1.8) g(x) is positive for all values of x pro&ided
that f1(x) is a r?al function of’x (which we shall assume is true).
Consequently Yk+% is positive for all values of x. Yy will be posi-
tive if fo(x) is negative. Consequently the necessary and sufficient
conditions for eqn.(l.6) to be represented by a network of resistances
is that f1(x) be real and f5(x) be real and negative for all valués
of x. If fy(x) is real and positive, Yk+% can be represented by an
inductance which has a constant positive reactive impedance for a
fixed frequéncy'and Y, can be represented by a capacitorlwhich has
a negative reactive impedance.

The continuity of the electricsl network requires that Yk+% not
vanish at any point. Points where Yk+% = 0 will be‘singular points

and cannot be represented. For example, in Bessel's equation

2 2
d 1 dy - - = )
Tgx =3 (1 ;?) y=0 (1.16)

g(x) = eﬁ'/X dx_ x | (1.17)

which vanishes for x = O, Hence x = 0 is a singular point énd can~-
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not be represented. Incidentally Bessel's equation cannot be repre-
sented by a resistance network but the modified Bessel equation can

be so represented,

13 A Theory of Unequal Lumping

In the derivations of the previous section it has been
éssumed that the cell size or spacing, Ax, is equal for all finite
difference intervals. For many preoblems it is desirable 1o have
unequal lumping, particularly where the independent variable exténds
to infinity. A co@ﬁenient method of introducing unequal lumping is
by means of a tranéformation of the independent variable.\ |

Let X be a new variable defined by
| X = F(x) ' (1.18)
where F(x) and its first derivative are smooth continuous functions.

Then eqn.(l.7) can be written:

St Frgh = Bl - e y] (1.19)

Allow the new variable to have equal finite difference increments,
AX, and define %, to be the value of x corresponding to X = nAX.
Then the finite difference equivalent of eqn.(1.19) for the ™ gis~

crete value of X iss

(X JF 1 (2041) g(xp 1 )F ' (xn.1) ‘
n+2AS'c S (¥ynel = yn) + 2 ?A}_c 22 (Yp-1 = ¥n)

X rather than X may be regarded as the independent variable of eqgn.

(1.20). This may be emphasized by defining
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(Bx),

1

A (1.21)

Bx)ny3 = Filg

By comparison»With eqn.(1.15) we see that the admittances and

-currénts of the network of Fig. 2. become:

1)
Tnsd = g(xny
aZAx5n+%

(1.22)
Tp = "g(xn)aEZ(er) (éx)n
I = s(ax)y elx,) f3(x,)
a

As an example consider a transformation appropriate to a semi-
infinite medium which it is desired to represent by a limited number
of electrical elements. Such a transformation is

— -X .
X=F(x)=1l-c¢ , 7 (1.23)
since when X = 0, X = O and when X me¢, X = 1. The lumping con-

stants are given by
@xhlaAie&I
(Ax)n_'.% =A% exn.‘.%. (1.2h)

The admittance and current values may be obtained from egn.(1.22).
The point X = oc , cannot actually be represented because Yh+%.be—
comes zero there. However x may be allowed to become very large
with only a few cells.

The condition that F'(x) must be continucus is an undesirable

restriction in view of the fact that finite differences are being

used., It is desirable 1o be able to represent y for any set of values
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of x thét we pleaée. Later on, in connection with a wing vibration
problem, we shall see that it would be extremely inconvenient not
to be able to do so.

In the finite difference equation, egn.(1.20), F(x) appears
only in differentiated form. Now F(x) need only be defined for -
discrete Vél;ue‘s of x, that is at the points that it is desired to
fepresent in the network. There are no restrictions on F'(x) at

these points or in between except that

Xn4l - |
J T ax = Ty - o =AR (1.25)
%
and
Xn.}.—l-
f °F1(x)dx = AX (1.26)
Xn_%— '

In finite difference form these integrals can be replaced by the
value of the integrand at the midpoint of the interval multiplied

by the length of the interval. Hence

F'(xn+d) (xn4l - xn) =OX (1.27)
and
F'(Xn)'(Xn+"3§ - Xn-—%—) =AX
so that
' A%
FI 1 Y e ———
(Xn+2) *n+l ~ *n
= 1.28
Py A% (1.28)

1 = 1
Xn+§ Xn—g

Substituting these expressions into eqn.(1.21) we find that

Ax), = sy = X¥n-

(1.29)
Ax)nel = 4] - X
Hence the quantity Qﬁx)n+% is actually the distance between two

adjacent nodal points and.(Ax)n is the width of the cell associated



13.
with the n™! node. Any definition of Xn+k is satisfactory provided
only that the cells do not overlap or underlap. Specifically the

nth node need not be at the center of its cell,

1.4 Representation of the Boundary Condition for a Second Order

Eqﬁafion.

Two boundary conditions must be supplied with a second
order differential equation., If the independent variable is a
space cecordinate these will ordinarily be conditions on the function
or its first derivative at two different points. Boundary condi-
tions of the type, y + A%% = B, will also be encountered. ‘If'time
is the independent variable both fhe function and its derivative are
frequently specified at the instant, t = 0. All of these conditions
can be represented in an electrical network as well as the conditions
at the boundary between regions of an inhomogeneous medium.

The boundary condition y =¥y at x = a may be satisfied in thé
network of Fig. 2 by maintaining the voltage equal to 5y; at that
point. X = a need not necessarily be a node of the network,

The boundary condition 9L = C at x = a may be'easilf imposed

dx
at the midpoint between two nodes since

dy £ Ynsl = In N
s Tax (1.30)

This is equivalent to specifying the current flowing at this point

since
Insd = Tnpd (Vny1 - Vn)

= 8(xn+t)

(1.31)
ahx '

S(Yn+l - yn)

Boundary conditions of this type may also be imposed at nodes of the
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‘network;‘ The conditionr%% = 0 at x = x, is equivalent to the state-
ment
/ Ynyl = Yn-1 = O (1.32)
By substituting this into eqn.(1.12), the finite difference equation

for the nth

node, the fictitious node at n+l can be eliminated. If
g(x) is a cohstant, this substitution indicates that Y, and I should
be given half of their normal value.

Boundary conditions of the form v+ A%% = B may be imposed at

the midpoint between twe nodes. In finite difference form,

dy Nl[ a.In.'.—]é
v+ A——] L BVl 4+ A ; (1.33)
[ dxln+s  SL O g Xn+%
so that
Aa A T,.1 '
sB -~V _ 1= T .2 = e oilkE .
n+3 N3 g(xn+%; % Tt (1.34)

The electrical circuit for this condition is shown in Fig. 3.

1
va——_'._

~—3= Vnel Vit Nnsz Vniz

sB o NAANA- AAAN—
%[Ymﬂ Z.'Ym-,;_ Ynea, Yot sty

= Yoo gY | gYﬁz

:

Fig. 3. DNetwork to Represent y + A%% = Bat x =z Xn4d

For problems in which the solution is known to be periodic with
a definite period, the network can be connected back upon itself.
The advantage of this type of network over the usual one in which

time is the independent variable is that the coefficients in the
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differentidl equation may be made to depend on the independent

variable without the need for complicated electrical devices.

1.5 Other Ordinary Differential Equations

The equivalent finite difference equations of a differ-
ential equatibh are a seﬁ_of simultaneous algebraic equations. An
 éxamination of the matrix of the coefficients of these equations
will reveal whether or not they can be represented by an glectricél
network since the impedance matrix of a bilateral electriéal‘net;

work must be symmetrical. For example consider the equation

%% + f2(x) ¥ = £3(x) (1.35)

The finite difference equivalent of this equation is
Jakl = Jn-l = |
Il 2=k o £5(x,) yy = £30x,) o (136)

In matrix forms
f3(Xk) - fg(Xk) T = akj ;Vj (1.37)
where

O+1 0 O O
-1 04+l 0 0 ~- =

1 Q-1 041 0 -~ =

This matrix is not symmetrical. It can be made symmetricalghowever,
by multiplying every other row of coefficients by -1. This is per-

missible if at the same time the left side of eqn.(1l.37) is also
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multiplied by -1 for the same rows, Hence

k = k
| (<L) [£3(m0) - £2030) 3 = (1)K ayy v (1.39)
The network of admittances that will represent this equation is shown
in Fig- )—l' Tn-1 IV\ -IYH"I IV\*L
Nn-2 Yy -\ Va-1 Vo Voe) Vniz
: +Yl - —\(l +\{| 'Yl
Yooz e “Yn Non
. 1 o folxg) - . s 3 (xk)
= e Yoy = « = —— AT
11 = 553% K y Ik =+ -

Fig. L. Network for Equation (1.35)

A third order differential equation cannot be represented by

a bilateral electrical network. As an example consider the equation

BY
X-

@9

+ £p(x) ¥ = £3(x) f (1.40)

[3)

The finite difference equivalent of this equation is

§%§3(2yn+2 - byp41 + Lypq = 2yp-2) + fo(xn) yn = £3(xn) (1.41)

The matrix of this equation is:

O~ 42 0 0 O
+h 0-h+2 0 0 -
-2+ 0 =L +2 O
ks | 024 sh e
0 0 0-24 0 -

(1h2)
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This»mafrix is not symmetrical and cannct be made symmetrical by
multiplying each row by a constant. Consequently it cannot be
represented by a network of bilateral impedance elements.

The matrix for every odd ordered derivative is unsymmetrical
and except for that of the first order cannot be represented by én
electrical het&ork; ‘The matrix for every even ordered derivative
.is‘symmetrical.

Non-linear differential equations can be solved by electrical
networks but the process involves the manual adjustment of the net-
work parameters. In eqn.(l.?).either g(x) or f3(x) may be functions
of y also. If g(x) is a function of y the network admittaﬁces must
be adjusted until the equation is satisfied. If only f3(x) is a

function of y then only the current fed into each node must be ad-
justed., The small computor constructed at Princeton University by
Johnson and Alley7 has been used principally for the solutibn of
this typevof problem. |

Systems of ordinary differential equations can also be solved
by passive bilateral networks provided that the coupling terms are
symmetrical,

Eigenvalue problems will be discussed in the next sedtion.

1.6 Partial Differential Equations Involving Time and One

Space Coordinate

The equation of heat flow and the wave equation may be
solved by the ladder-type network by making use of the transient
properties of electrical impedances. In such networks time is re-

presented as actual time. The eguation of one dimensional heat
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flow is'
) 3y dy
—;C(g(x)g;c) = f(X)a—t (1.h3)
The finite difference equivalent of this equation ist:
X
_(__Qta_[ym_l - Yn—_\+ M(yn_l - ¥p) = Ax f(xn)Byn (1.k)

If this eguation is regarded as a statement of Kirchoff's current law
for the n node , the right hand side represents the flow of current
through a capacitor to ground. The network for the solution of eqne

(L.hh) is shown in Fig. 5.

V-2 Rn-3, Vn-) Rn-4 Nn Rnrd Vn\\‘\
——W““

AN AAAA
— Cn-2 N — —Cn — Cu#
Ck = = _Ax
k =4x £(x) Rk-m

Fig. 5. Network for the Solution of Eqne(L.blb)

The one-dimensional wave equation which may be solved in a

similar way iss
ax(gb%@ - £¥% | (1.L5)
The finite difference equivalent of this equation is:
g(myd) g(xn-3) Py
___.,..,_a..[y 4 - yé&.,. ._..____2._[yn_l - yn-l =Ax f(x)—a—%—g (L.46)

If this equation is regarded as a statement of Kirchoff's law for the

nth node, the left side represents the flow of the time derivative

of current through inductors and the right side represenis the flow



19.
‘of the time derivative of current through a capacitor to ground. In

Fig. 5 the resistances are replaced by inductors with the same numer-

, 2
ical value. For the steady state 5%5 is replaced by —002° With this

substitution eqn.(l.45) may be regarded as an eigenvalue problem.
The resonant frequencies of the electrical network give the proper

values of w 2,

1.7 Two Examples of QOrdinary Differential Equations

The first example is the determination of the resonant
frequencies of a transmission line. The problem is such that the
network solution can easily be calculated analytically forvany num-
ber of cells. This example is stﬁdied in order to show how the
error in the network solution depends upon cell size. The way in
which the errors depend on cell size will determine the minimum
number of cells that can be used in the solution of a problem; This
is a matter of considerable practical importance.

- The mathematical problem is the solution of the equation

_.__l d2y +u.')205y = () ' v(lob-?)

i
Lg dx

where Cg and Ly are the capacitance and inductance per unit length
of line subjeét to the conditions

y = Csinwt at x = \

dy - 0 at x = (1.48)
dx
y:O at x=0

The line and its lumped electrical equivalent are shown in Fig. 6.
The values of the electrical elements and the boundary conditions

have been selected according to the analysis of the previous sections.
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The exact solution of eqn.(l.47) is

y = £sinyVigCa x) sin Wyt (1.49)
where |
WayTetal = (en+1)T 3 n=0,1,2 - -~ (1.50)

The exact solutions of the difference equations for the lumped net-

work may also be obtained for any number of cells, N. It is:

yK = ESIH(KF) Sln(wﬁt) K= O, l, 2 -~ =N : (1'51)

where N[ = (2n+1)‘2.q n=20,1, 2 - -~ (1.52)
2,2 '

and cos ' = [1 - T LsCs (1.53)
2N° - '

The criterion of resonance in the lumped electrical network has been
taken to be that the imput current is zero. Note that the depend-
ence of the solution on x is identical in the two cases and hence
that the r.m.s. values of the voltages in the lumped electrical net-
work are exactly correct, However, the values of the fr’equencies l

\'\) .
in the two cases are different. Solving for the ratio 55 from egns.

(1.50), (1.52) and (1.53):

L;)_d- = |"‘ . . ’ (105)4)

: o
where | = 2§+1 g. Table II gives the value of the ratioJ; Wy forn =20

and different numbers of cells, N. The table shows that for N},
the error in the network frequency of a guarter wave length trans-
mission line is less than 1%. This result will be approximately true
for many other problems involving the wave equation such as radia-
tion problems and cavity resonator problems. It will be.an important

guide in setting up networks to solve these problems.
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As a second example% consider the solution of the eguation

2

oy
o
+

(1.55)

o
4
M-
0,
gle
-+
S ]
t
N
dh
1
O

subject to the boundary conditions

dy _ =
a—}-{—o at x =0

y=0 at x ® 5.5

(1.56)

The exact solution of this problem in terms of modified Bessel func-

tion is:

y=1l- Tgﬁé%) ' - (1.57)

As a preliminary to the network solution, convert egqn.(1.55) into

the following equivalent form
d dy 1~ =
o Ux 3 +2x(-y) =0 (1.58)

The network values for the solution of this problem are, from egn.
(1.15), where we let a = s = 1t

Y 1 = )‘J‘ ( Xn-r-% )
n+3 Ax

o
H

2Ax- .
= (1.59)

1
B
[}

2Ax Xn

In addition, ietl&x = 1ls In Fig. 7, which is the eledtrical.represen~
tation of the problem, the numerical value of the admittances and
currents are shown. The numerical solution of the network equations
is not difficult and has been carried out. A comparison between the

numerical network solution and the exact solution of eqn.(1.57) is

* The network solution of this problem has been carried out for slight-
ly different values of parameters by Johnson and Alley in ref. 7.
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shown in Table IIi. This comparison shows that an accurate solution

of this problem may be obtained with only five cells even though the

values of the admittances and currents are sharply graded for small

values of X.

Table II

Comparison of the Exact and Network Frequencies for the Transmission

Line Problem, Fqn.(1.47)

No. of Cells, Eﬂ&

N

O ONE W N

Wy

0.900
0.974
0.989
0.994
0.997
0.9984

Table III

Comparison of the Analytical and Network Solutions of Eqn.(1.56)

Analytical

bd Solution

0.5 0.8996
1.5 -~ 0.8729
2.5 0.810L
3.5 0.6859
L.5 0.4L88

Network . percent

Solution difference
0.8923 0.81
0.8654 0.86
0.8015 1,10
0.6761 1.43
0.L4L0L - 1.87
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IT THE SCLUTION OF BEAM PROBLEMS BY MEANS OF ELECTRICAL NETWORKSst

In the first part of this thesis methods were developed for sol-
ving problems with one space coordinate. Particular emphasis was
placed upon second order differential equations. In this part these
methods are extended to the solution of the equations of a beam which
are fourth ordér differential equations with one space coordinate.
Electrical analogies for an elastic beam have previously been des-

cribed in the literaturelo’ll

but the dynamic analogy described here
seems to be superior both in the range of problems that it can be

used to solve and the speed and accuracy with which it can solve them,
It has been found to be well suited to the study of beams having
several coupled degrees of freedom including torsion and bending in
two directions. Damping and other complicating factors such as the

effect of rotational inertia about a transverse axis can readily

be handled.

2,1 Differential Egquations for the Vibration of Beams

This section comprises a tabulation of the beam equations
for which electrical analogies will be derived. The equation for

uncoupled torsional vibration is

9 dky _ - %
53-( (K ﬁ) = Io('a":'t‘é' (2'1)

where oo is the angular displacement, I, is the moment of inertia per

* The results of this investigation are also given in ref. 9. The
basic dynamic analogy for a beam in bending was derived by H. E.
Criner and G. D. McCann in 1946 while both were associated with the
Westinghouse Electric Corporation.
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unit length and K is the torsional rigidity. Both K and Iy may be

functions of x.

The equation for uncoupled bending vibration is

)2 D2y _
-a-;{?'(EI ‘_XZ) +m"—2 4] , (2.2)

where yvis the‘bending deflection, m is the mass per unit length,
E is Young's modulus, and I is the areal moment of inertia with re-
spect to the neutral plane.

If bending and torsional oscillations are coupled thfough an
unsymmetric load distribution, equations (2.1) and (2.2) become, for

the coupled motion:

5% T2 M5z 7O (2.3)
O (g oKy & ¥ .o R - | |
= (K ax> S« SHtlgs =0 | (2.k)

where S 1is the first moment per unit length. The choice of sign
depends on the choice of the positive sense of rotation.

If bending deflections in two perpendicular directions are con-
sidered, an additional equation is introduced, as well as coupling
between the bending modes through the product of inertia, Iyz; The

following equatiocns are valid only if X is small,

2 2 2 2 2
g 5 (B1e5Y + Bly3) + ndd 5 8% = 0 (2.5)
2 2
—5? (ﬁIy—"? + EIyZ—2'> + 'g—?' 2?0‘ =0 (2.6)
2 2 2
-2 (g s¢3%§ + Sdz%;; + I,‘%t% =0 | (2.7)

Besides these principal types of vibration certain other effects
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can be included in the electrical analogy. In eqn.(2.2) the effect
of rotational inertia about a transvefse axis has been omitted. For
slender beams this effect is negligible. When this effect cannot be

neglected the differential equation for bending is:

2
S end -

— (pI 5~§—2) + mggg ' (2 8)
xOt 2
where @ is the volumetric mass density and I' includes, besides the
areal moment of inertia of the shaft, I, the areal moment of inertia
of parts that do not contribute to the stiffness. Eqn.(2.8) is devel=-
oped in ref., 12, |
If the beam is subjected to a tension, T, the differential equa~

tion of bending becomes:

2 %y TPy 3%y _ |
52 IR -~ 552+ gz = O (2.9)

Egn.(2.9) is also developed in ref. 12,

No satisfactory simple theory of the internal damping of elastic
bodies is known tc the author. An approximation that givés fair
agreement with experimentzl results and yet is simple to fepresent
is obtained by replacing E by E + cg%. In this case eqn;(2.2) be-

comes $

2 2 ‘ :
%;2 (EI—;Z + Ic —ESEZ) + m§~2 =0 (2.10)

where ¢ is an experimental constant. For an account of this and other

theories of damping see ref., 13,
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2.2 The Electrical Circuit for Uncoupled Bending

Eqn.(2.2) above applies to the uncoupled bending vibration

of a non-uniform beam.,

If we define the slope, 8 =%}% (2.11)
e . N

and the shear, : S = g% (BT %E) (2.12)

then eqn.(2.2) becomes, . 5% ©)+ m Iy =0 (2.13)

It is simpler to write the finite difference equation corresponding

to egns.(2.11), (2.12), and (2.13) than to write the finite differ-
ence equation corresponding to eqn.(2.2).* This method has the ad-
vantage that it immediately revéals the correct form of the electrical
network for the solution of transient problems. It also gives simple
expressions for the case of unequal lumping. The finite difference

equations equivalent to egns.(2.11), (2.12) and (2.13) are:

. Inpl = In
T TRx (2.m)
o L EIns Eln
A37Sn+§ = (8ny3/2 = Opat) A;+ + (&p1 - en+%)'7§§ (2.15)
’ . BZYn .
(Spsd = 8pi) +Axmy 537 =0 | (2.16)

If egqns.(2.15) and (2.16) are to be regarded as statements of
Kirchhoff's laws for either current or voltage, S and 6 must be
quantities of different type (one current, one voltage) and élso
S and y must be quantities of different type. Consequently © and y
must be quantities of the same type and Ax in eqgn.(2.ll) must be a
dimensionless ratio in the electrical analogy. The circuit of Fig.

8a satisfies all three of these equations if © and y are/regarded

* See Table I, page 5.
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as voltéges. Eqn.(2.lh) expresses the relationship between the pri-
mary and secondary voltages of the transformers where the turns
ratio is Ax. Egn.(2.15) is Kirchhoff's law for the sum of the cur-
rents entering the node en+%. The current flowing in the secondary
of the transformer is the turns ratio times the current in the pfimary
i.e.vAXVSn+%. >Eqn.(2.16).is Kirchhoff's law for the sum of the cur—
rents entering the node Yne

Because of the presence of the second derivative with respect to
time in eqn.(2.16), S must be the time derivative of current in the
electrical network. By comparison with egn.(l.47) the network in-
ductance L, = é%; and the network capacitance C, =Ax mj. \The moment,
M= EI§§%, is the time derivative‘of the cwrent flowing in the induc-
tive branches.

The variables © and y in eqns.(2.1h), (2.15) and (2.16) can also
be regarded as circulating electrical charges, and the equations can
be regarded as Kirchhoff's laws for the voitages around the loops;

The network so obtained is the same as before, The analogies are
shown in Fig. 8b where the shears and moments become the voltages at
the nodes. The inductance L;l =Ax m, while the cépacitaﬁce Cn = Eélf'

In setting up an actual beam problem the value of inductance
given by Ly = é%f may be too large as might also be the case for the
capacitors. Also the turns ratio of the transformers and the unit
of time or frequency may be inconvenient. To meet this difficulty
arbitrary dimensional scale factors and other constants are,inﬁroduced

into the original equations which are later chosen to give practical

values of the electrical components.* This feature has been elimin~

* See section 2.7.
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ated here to simplify the analysis.

2.3 Boundary Conditions for a Beam in Bending

The three principal terminations for a beam are a clamped
end, a pinned end and a free end. The analytlcal expression of these
condltlons, together with their electrical representations are listed
in Fig. 9 for the mass-capacitance analogy alone.

In each case the end of the beam is chosen to coincide with é
node of the © circuit (n &« half-integer). The end could és easily
have been made to coincide with integral values of n. In the cir~
cuit for the clamped end (Fig. 9a) © should be grounded at‘x.g %,
and the center-tap of the primarj of the transformer for cell num-
ber % should be grounded at x = %. Since the secondary is also
grounded, y is zerc at x = 1, and the transformer may be left out;
Consequently in the electrical analogy, the deflection y isvzéro
at the center of the first section of a clémped>beam. The effect‘
of this approximation will be discussed later.,

In the circuit for the free end (Fig. 9b) the current analogous
to the shear force, S, and the current analogous to the moment,‘M,
are both zero at x = N+3. By virtue of the first conditidn the cur-
rent in the secondary of the transformer is zero so that My - Myyy =
Also MN+% -4 %(MN + MN+1) & 0 by the second conditipn. The only way
that both of these conditions can be satisfied is to set My = My, =

In the circuit for the pinned end (Fig. 9c¢) y is zero at x = %
and the center tap of the transformer is consequently grounded. M

is also zero at x =>% which means that Mg - M; = O or that the cur-

rent in the secondary of the transformer should be twice as great as



WV38 ONILVMEIA V ¥0d SNOILIONOD - AHVANNOE b -oid

2/,=X 1v G3NNId aN3 (3) - 2/+ N =X lv 3344 ON3 (q) 2/, =X 1V Q3dWVTD ON3 (e}

- uMK'W ‘D=4 : % KQ,. x@ 0= nmmux
0=W=geld o o=W= .w..HmmHm fo=8= ﬂfl.ﬂmu.m 8*%e ‘0
%,
1-N 2-N

SR - T d
I T T T

| _
|
|

10 " |

I£ “ ug 1-lg B T nw u.a K
_ .
_
|
|

ﬁbllw. 2
12

X ¢
0]
Y

e

i%
%
|
%

2y /%8

9



31,

the curfent in I;. But since only half of the primary winding is
used, the same effect can be produced in the primary circuit if the
current in the secondary equals Mj, instead of twice Mj. Consequently
the © circuit to the left of x = % may be omitted. In a similar man-
ner the circuit boundary conditions for the mass-inductance analégy
can readily be.determined..

An electrical network can also be developed for a beam with
elastic supports. In fact, the beam (or several beams) may be inte-

grated intc a complete mechanical or electro-mechanical system.,

2.1 The Normal Modes of a Uniform Cantilever Beam

The electrical analogy'described in the two preceding
sections was applied first to the calculation of the normal modes of
a uniform cantilever beam. Since this problem can easily be solved
analytically it provided a very satisfactory means for determining
the effect of the different sources of errof on the accuracy of thé
computor solution. The possible sources of error include the effects
of transformer impedances, cell size, parasitic resistance and capa-
citance and the methods of imposing iterminal conditions.,

In the Cal Tech Electric Analog Computorlh all capacifors‘and
resistors are éssentially perfect in the frequency range used. The
inductors have "Q's" of 100 or better and thus are representative
of low loss mechanical systems. All elements can be set to one per-
cent of the desired value. Frequency and circuit impedance bases are
so chosen that stray capacitance effects are negligible. = The only
elements with appreciable imperfections are the transformers. Al-

though they are designed for a high ratio of magnetizing to leakage
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impedaﬁce this ratic is not high encugh to eliminate the trans-
formers as a source of error.

The complete circuit for a cantilever beam with eight cells is
shown in Fig. 10 on page Lli. The methods of imposing the boundary
conditions at the clampéd and at the free ends are discussed in

v‘sectioxi 2.3; The network was driven by a voltage source connected
through a small resistor to the free end section. The preéence of
a resonant mode’was indiéated by a minimum current flowing in the
network at the proper freqguency. These minima were alwayé very
sharp and resonant frequencies were reproducible to within 0.2
percent, on consecutive trials. |

The mode shape data from the steady state itests are compared
with theoretical curves in Fig. 1l. The first, second, third and
fifth modes are presented using analogies with eight, sixteen and
twenty-four cells. OSince only relative amplitudes are given by

‘the theoretical curves, one point for each set‘of data can arbitra-
rily be placed on the curve. The points so chosen are indicated
in Fig. 11.

In the analogy used the displacement of the ﬁidpoint'ofvthe
first cell must be zerc. It may be seen from the curves ﬁhat,this
does not seriously affect the displacement at the secohd and third
cells. An important conclusion that can be drawn from these curves
is that, except as just mentioned, cell size has little effect on
the accuracy of the mode shapes., Eight cells are sufficient for
the first two modes and are nearly sufficient for the third mode.
As a consequence it is possible to representka uniform beam which,

for instance, is part of a larger engineering structure by a small
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number éf cells. This should also be true tc a limited extent for
non-uniform beams. These conclusions also imply that the boundary
conditions have been correctly imposéd, for if they were not,
marked improvement should have been obtained as the number of cells
was increased.

In additién to Calcuiating mode shapes, the normal mode fre-
quencies were measured for a large mmber of combinations of cell
size, mode number, and the network components L and C. The difference
between the measured frequency and the theoretical frequehcy was cal-
culated. The percent error is plotted in Fig. 12 as a function of
network frequency. In this figure it will be noticed that(fof a
given value of the ratio % the pefcent errcr lies close to a mean -
curve so that cell size and mode number have little effect on the
error. In the next section it will be shown that these errors are
due primcipally to the leakage and magnetizing inductances of'the

transformers.

2.5 The Effects of Transformer Impedances

In the network of Fig. 13, Lly and Lzy'represent res—-
spectively the leakage and magnetizing inductances of the £rans—
formers. The‘method that will be used here will be to write the
circuit equations for the network for Fig. 13; then to replace them
by the equivalent expressions for a continuous system (differential
equations); then to identify the circuit elements by reference to
the equations of a bean.

In Fig, 13 the arrows indicate the direction of assumed cur-

rent flow. Summing the currents at node y, we obtain
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Spel = Bpd = Cwly

The voltage in the slope circuit is given by:

- . R l

-
”e

or, ignoring (¥ - ¥n+l )/Lgy compared with Sy,

L = dn+l = Yn o 7. . s
Oyt = _I,l_T_rE;;__, + Ly Ax Snyd

Sum the currents at the node 8n+;:

2

1 . D - ) 1
g (Bny3/2 = 26,1 + Bn-1) "AX[Sn+$ - (yn = ¥ns1) 1‘2"3;:]

(2.17)

(2.18)v

- (2a9)

(2.20)

In these equations replace the difference expressions by the corres-

ponding differential expressions. Then

38 _ Gy _ G 3%
X% Ax Axg'_t?

Differentiate eqn.(2.23)

1 936 _1 35 , %y 1

— ——— W ——— ——

1 by Liy, 8 _123s %y 1
LyaxLL N Ly Ax Ax3 AXIX +'5_x? Lgy

Substitute forg—?c from eqn.(2.21)

1 aby 1Liyc dly C 2y 2y 1

g oxh ~ Ly Ox%Jte * A2 32 T 3% Loy -

(2.21)

(2.22)
(2.23)
(2.24)

(2.25)

(2.26)
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If we let

C = nix Qy=Ax%
=Ax A It
Ly === N
v T EI R iy

we see that eqn.(2.26) is equivalent to egns.(2.8) and (2.9).

Thus the effects of fotary inertia and tension can be includéd iﬁ

the network analogy of é vibrating beam, and will always be present

in small amounts due to the presence of the transformer impedanées.
If g%g is replaced by w2 in egn.(2.26) there results |

1 C 3% 32y[ wLiyC 1] |
% B2 3 PSRl L, T Iy 0 (2.27)

The term involving leakage and magnetizing inductance will vanish if

. L 1
fo = & = = VENC, - (@20

For the transformers in use with the Cal Tech Electric Analog
Computor Ly = .025 henry and Loy = 60 henries. For %X = 106,
fo = 131 cps. The values of f, for the different ratios %E are
indicated in Fig. 12 along the axis of zero error. The observed
errors cross the axis at approximately these points.

The effect of magnetizing and leakage inductances can be elim-
inated by tuning the transformers. At low frequenéies‘magnetizing
impedance is tuned with parallel condensers across the termiﬁals of
one winding and at high frequencies leakage impedance is tuned with
condensers in series with one winding. The values of these condensers
depends on frequency but if the resonant frequency is first obtained

without them, only a single adjustment has been found to be necessary.

In Table IV the effect of tuning is illustrated for typical cases,
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It is seén that the errors in natural frequency plotted in Fig. 12
can be considerably improved, even for extreme values of network
frequency.
For a transient study, where all frequency components are pre-
sent, it is impossible to tune the transformers, but in this casé the

accuracy requirements on frequency will usually be less strict.

TABLE IV

TRANSFORMER IMPEDANCES AND EFFECT OF
TUNING ON ACCURACY OF MODE FREQUENCIES

(a) Impedances
Leakage inductance = 0.025 henries, leakage resistance = 5 ohms.
Magnetizing inductance ranges from 55 to 80 henries for range
of frequency between 50 and 800 cps and 1 to 10 volts.

(b) Effect of Tuning out Transformer Inductances

Type of Tuning WMode Theoretical Cross_over Computer
Freg. cps Freq. Percent
Error
None First 43.75 131 : +4.0
Magnetizingt First L3.75 131 +1.2
None ‘ First 21.875 131 +6.0
Magnetizing First 21.875 131 +2.4
None Third 767 131 Y
Leakage® Third 767 131 -2.0
None . Seccnd 547 262 =2.,2
Leakage Second 5L7 262 +0.4

1. Tuning capacitors across one winding for 60 henries.

2. Tuning capacitors in series with one winding for 0.025 henries.

3. TFrequency at which effects of magnetizing and leakage cancel
each other.
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2.6 Response of a Cantilever Beam to an Impulsive Motion of

the Base

The transformer beam analogy is suited to the study of
the transient behavior of beams because the values of the electrical
components are not functions of frequency. This is in sharp coﬁ;
trast with ﬁhe other beam analogies mentioned. 1011 a5 an example of
transient behavior, the following problem was selected for investi-
gafion: a long homogeneous beam has a large mass concentrated at
its base. The base may not rotate, but otherwise there afe no cbn—
straints or supports. The large mass is given an impulse at t = O
so that it moves with nearly constant velocity in a directioﬁ per-
pendicular to the axis of the beém. The subsequent motion of points
along the beam is required.

The mechanical problem and its electrical analogy are illus-
trated in Fig. 1h. In the electrical network, time rate of change
of current is the analog of force. Conseqﬁently, the analog of ah
impulse is a step-current. Closing switch No. 1 of Fig. 1 allows
Col to charge up at a constant rate through Rj. A cyclic repetition
process of applying the transientl4 is used so that the solution is
displayed as a standing wave on the screen of a cathode réy’oscillo—
scope. Switches 2, 3, L4 and 5 remove the energy from the system while
switch 1 is open. For more complex beams a single application would
usually be made of the transient forcing function to eliminate the
switching circuit necessary to remove energy,

Oscillograms showing the response of the system are given in
Figs. 15 and 16. In Fig. 15 the solution is given for a beam with a

lowest natural frequency of 14.78 cps. The base has a mass 2.5 times
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the mass of the beam. From Fig. 15 (the solution for x = %—g) it may
be seen that there is no appreciable motion of the end of the beam
until the arrival of the initial surge and that initially the end
moves in a direction opposite to the direction of motion of the base.,

The electrical solution is compared with an analytical soiution
for.x = %% in.Fig; 17. yThe analytical solution is for a beam whose
base has an infinite mass, which. accounts for part of the discre-
pancy between the two curves.

In the oscillograms of Fig. 16 the lowest mode freqﬁengy of the
cantilever beam has been changed to 43.75 cps and the mass of the
base is 8.75 times the mass of the beam. Figs. 16a, 16b and 16c
shcw the deflections for x = I%’.%% and %g respectively. These solu-
tions are similar to those for the corresponding positions of the
first beam except that more cycles of oscillation are shown. Figs.
16d, 1lbe, and 16f show the slope (%Z) of the beam at x = %, % and %

X ,
respectively. The importance of higher mddes is more evident in‘
these oscillograms than in those of deflection. The secénd mode,
whose frequency is 6.25 times the frequency of the lowest mode, does
not appear in Fig. 16 for x = %. The reason for this is that at
x = % the slope of the second normal mode is small (see Fig.yllb)

Moment énd shear could have been measured in the network had
that been desired. The stresses in the beam could héve been obtained
from the network solution with only a small amount of additional
compufation. This is important because maximum stress is often the
desired result in a iransient beam study. All of these measurements

can be extended without difficulty to the study of non-uniform

beams, beams with coupled bending and torsion, and to beams with
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linear internal damping. In all of these cases numerical calcula-

tion is very difficult.

2.7 An Airplane Wing Vibration Study

The elastic properties of an airplane wing can, in many
eases, be appreximated by a beam of variable cross section. Besides
the simple bending modes already discussed, torsional modes will be
present. There ﬁill also be some coupling between bending and tor-
sion due bo masses that are hot symmetrical with respect to the elas-
tic axis,

Egns.(2.3) and (2.4) must be used to describe the vibrations
of the wing. Except for the terme involving the first moment, S,
analogles for these equations have already been derived, the second
equation having been discussed in section l.6. The points along
the beam where the nodes of the bending and torsion circuits are
‘placed should coincide. Then the coupling ierms in these equationé
can be represented by a mutual admittance between correspending |
nodes., If the sign of the coupling term does noit change along the
length of the beam this mutual admittance can be represeeted by a
capacitor as is illustrated in Fig. 18. If the sign of the coupling
term does change some of the mutual admittances can be represented
by inductances in a steady state analysis. For a transient analysis
these mutual admitiances must be converted into mutual inductances

and represented by transformers in the manner of section L.3.

The problem for which results are given in this section was sub-
mitted for sclution by the Engineering Department of the El Segundo
Branch of the Douglas Aircraft Co. The results are given in dimen-
sionless form in the interest of security.
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Thevfinite difference intervals shown in Fig. 18 are not con-
stant along the span. In the calculation of the elasiic and loading
constants the wing was divided into sections by the aircraft engin—
eers in the way that was most convenient for them. When the problem
was submitted by them for solution, it did not seem advisable tol
redistribute the constanté.of the wing into cells of equal length;
Instead use was made of the theory of unequal lumping developed- in
seciion l.3. If a new independent variable is defined by the‘traﬁs—
formation

=F (x) (2.29)
then eqns.(2.11), (2.12) and (2.13) become: o

o =% Fi(x) ' (2.30)
'SX & (EIF! (x) 2 ) (2.31)
¥, 1 n¥7-0 (2.32)

— m =
dX  F'(x) ot<
The finite difference expressions equivalent to these equations are:

_Jn+l = Vn

Ond = —(—A';{j;l:— ‘ (2.33)

(AX)IH"‘“ I'.H"g (6n+3/2 +—)_(5§¢)%1;—1- + (en.;.%- - en+~) —A.};)__ (2 03)4)
32yy ’ :

(Sn.'_.% - Sn__%-.) + (Ax)n- My, '-5':(?' = (2.35}

where (Ax), and (Ax), 1 have the same meaning as in egqns.(1.21) and

IH-“

(1.29). The physical elements of the bending network are given by

A
o, = m,- (Ax),, I = {n | (2.36)

and the transformer turns ratio, T, is (Ax)_ 1.
n+s
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According to eqn.(1.22) the network elements of the torsion cir-

cuit are given by:

C'p = (To)p (Ax)p Lped = -—-—z(K:iZ‘* (2.37)
-T2

With these formulae for the network elements the wing may be

divided into sections in any convenient manner since (Ax), is the

width of the nt cell and @ﬁX)n+% is the distance between the nth
‘ st

and the n+l” " cells.
In order to allow the widest possible freedom in the choice of
network elements several dimensionless parameters are inserted into

the differential eguations. In eqns.(2.3) and (2.4) the following

changes should be made:

Replace t by Nt (N = time base change)

Replace x by PX (P = metric scale change)

Replace o by o!/b ( b = dependent variable scale
change )

Divide through by a ( a = impedance base change)

Then eqns.(2.3) and (2J¢) become

N (B 32y m 3%y _ S _ %! - 0 (2.38)
dF a?h Bx?) ¥ aN® OT2  abN? JF° :
2 2 1.

- + =
ab®p? Bx able dt2 = abeNé Ot

The values of the physical elements in Fig. 18 become:

- - AX)n 5 - I, S
Cln - (gX%n ( ) C21’l - (a;?)n _624_ C3n = a(‘A;?)I'l( o ! 0()
- 2.2 A=
b s = -
Lip = ap”ﬁ%%?ﬂ Ljn = = £ gkx)n 2 Tnpd = (02

The four factors a, b, P and N permit these electrical parameters
to be chosen in such a way that they fit the range of available phy-

sical elements. In Fig. 18 the wing constants are given in dimen-
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sionlessvform in terms of the actual electrical parameters sel into
the computor.

The problem for which solution was desired was the determination
of the first and second torsional and bending mode frequencies and
shapes for both symmetrical and unsymmetrical displacements. The
correct boundarj conditioﬂs for all cases are listed in Fig. 18. The
unsymmetrical cases correspond to a simple support along the center
liné of the airplane with no constraint on the slopes atl that'poinf.
In the symmetrical cases the slopes, 8 and %%,are constraihed»to‘zero
value at the center. As indicated Sy is negative for the first two
cells requiring negative capacitors for Cp,e Since these ferms were
found to have little effect it was convenient to use inductors that
were adjusted for the final setting at each mode frequency.

Figs. 19 and 20 give the bending and torsional displacements '
and frequencies for the bending modes. To show the effect of coupling
with the torsional systiem the bending modesrwithout coupling are aiso

plotted.

2.8 Internal Damping and Bending in Two Directions

For simple bending %% is the admittance between nodes of

the slope circuit. For internal damping we see from egn.(2.10) that

e o represents an additional admittance (to rate of change of cur-

Ax a3t
rent) caused by the internal damping. Consequently in Fig. 13:

Ax and R = Ax

By = Iy-c 2 Ig-c

For bending deflections in two perpendicular directions we see

from eqns.(2.5) and (2.6) that ?iyz can be represented by a mutual
X

admittance between the slope circuits. In practice a mutual
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admittance must be expressed as a mutual impedance so that in Fig. 13:

27 -1
. Izz]
g =% [1y - 2 (2.10)
24-1
A I
4y = EE [Iz - "%&—] (2.41)
¥
- _Ax IyI -t -
Zys 2§ EIyz - Tﬁ;é] (2.L2)

In eqn.(2.7) we see that it is possible for both bending circuits to
be éoupled to the torsional circuit, through unsymmetrical loading.
The static loading of beams has not been discussed. Fér static
loading the capacitors representing the mass of the beam are replaced
by currents from an external source representing the load. lThe induc-
tors in the slope circuit may also be replaced by resistors which is
advantageous since it reduces the effects of itransformer leakage and

magnetizing impedances.
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FIG.13 ELECTRIC NETWORK FOR BENDING IN TWO DIMENSIONS INCLUDING THE
EFFECTS OF INTERNAL DAMPING, ROTARY INERTIA AND TENSION,

DX (1y222]"! X 1.2
‘é—é-r. ~~I‘!—h"‘ :.'.o_.l_:___— :Ax
Myz * Eb‘ﬂ Tyz L1y T EImAx Lzy ——;E
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III PROBLEMS INVOLVING THE SCALAR LAPLACIAN OPERATOR

It is difficult to exaggerate the importance of the Laplacian
operator. A branch of mathematics, potential theory, is devoted to
its study and in every branch of physics numerous examples will be
found of its application. The numerical and network solutions df
two dimensionél problems involving the Laplacian operator has also

received considerable attention. In his book, ‘Relaxation Methods in

Theoretical Physics, R. V. Southwell has appliied finite difference

methods with very great success to a large number of problems all of
which involve the two dimensional Laplacian operator. South&ell
used a network of strings under tension as an analogy for the finite
difference net. He could as easily have used a net of electrical

15,16

resistances to give a physical interpretation to his ideas.
The electrical analogy has an advantage in that the concept of
reactive impedance can be used to extend the technique to time-
dependent problems.

Many problems whose general equations are written iﬁ vector or
tensor form reduce to the solution of & scalar Laplacian in impor-
tant special cases. For example, the equations of elasticity are
simplified in this way when only plane shearing stresses4need be
considered. \Maxwell's equations reduce to a two dimensional scalar
Laplacian form whenever variations with respect to one of the three
orthogonal space coordinates is eliminated. Since it is not consi-
dered practical to construct an analog computor for the solution of
equations with three space coordinates, only two-dimensional problems
will be considered.

In the analytical solution of plane potential problems great
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‘ difficuity is usually encountered when the medium is inhomogeneous,
or anisotropic. For the relaxation and network methods of solution,
inhomogeneity makes little difference whereas anisotropy, unless it
be constant in direction, can be troublesome. Fortunately anisotropy
can often be removed by a transformation of coordinates. |

The decisive advantage of finite-difference methods lies in the
treatment of irregular boundaries. Whereas such boundaries pose very
gréat difficulties for analytical methods of solution, the generality
of thefinite~difference technique is such that the shape bf the bound-

aries is a matier of indifference.

3.1 The Rectangular Net

By using the methods of Part I a network analogy can be
constructed for a linear second order partial differential equation

with two space coordinates. Consider the équation:
d d .
& @163 ¢ 2 (8 4 56+ R =0 ()
The finite difference equivalent of this equation for the node m,n is:

%%{(gbm*'l:n - (Pm;n]'fl(m‘f'%:n) +[¢m—l,n '¢m,n} : fl(m—-—%—,n)} :
+ 2’;5{[¢m,n+l“ ¢m,n] *£2(m,n+3) +[¢m,n—l ‘”¢m,n] : fg(m_,n—é—)} _
+AxAy{f3(m,n) ¢m,n+ fh(m,n)} =0 o (3.2)

where the f's are written as functionsyof the node indices rather
than of x and y. The electrical network representation of this equa-

tion for the node m,n is shown in Fig. 21.



Fig., 21. Electrical Network for Egn.(3.2)

The values of the electrical elements of Fig. 21 are:

w A |
Tnsd,n = —% £1(m+3,n)

. Ay 1
Ym—.—,z—,n - Ax fl(m’gﬂﬂ)

- Ax 1
Yﬁ,n+% T iy fo(m,n+z) (3.3)
2 Ax 1 *
Ym,n-% = Ky fg(m,n—é)

Tn,n

Inn = AxAy-fh(m,n)

= ~AxAy-f3(m,n)

- Scale and impedance base changing factors may be introduced
into these formulae if it is so desired. The completed network for
the solution of eqn.(3.1) will be a grid of horizontal and verticai
elements connecting neighboring nodes.

For most problems of practical interest fy and fp will be posi~
tive functions of x and y. We then see that if fq is negatiﬁe for
all values of x and y, that the network of Fig. 21 méy be constructed
entirely of resistances. If f3 is positive, then, for é fixed net-

work frequency, Y

m.n °an be represented by a capacitor‘while the other
2

admittances will be represented by inductors. This arrahgement is

also applicable when f3 (x,y)*ﬁin egn.(3.1) is replaced by
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- 12 ‘
-fB(X,y) 5;%2 i.e. when eqn.(3.1) is the wave equation. In this case

a capacitor whose value is

Coyn = Axl\y fj(m,n) (3.4)
replaces Ym,n' »

When f3(x,y)4ﬁ.is replaced by —f3(x,y)%% eqn.(3.1) becomes the
,equction of transient heéﬁ flow. In this case Ym,n can be represented
by a capacitor whose value is given by egn.(3.4). The other aamit—
tances can be represented by resistive elements, the value of whose
conductances are given by eqn.(3.3).

The question of unequal lumping is one of considerable importance
for two dimensional electrical nets. There may be regions in the
plane which require considerably more detail than other regions.

A1l that can be done if the rectangular character of the network is
to be preserved is to transform each of the space coordinates separ-
. ately according to the procedure outlined in section 1.3. A more
general transformation will involve diagonal branches in the network.

The question of unequal lumping is connected with the problem
of the representation of boundary points. In contrast with the pro-
blems of one space variable it is not always possible tc allow the
boundaries of the space to coincide with nodes of the,network. Unless
the boundaries are natural for the coordinate system being ﬁsed
(rectangular for Cartesian coordinates) the boundary will cross some
network branches at intermediate points. Two general approaches are
possible in the representation of such points. The regulaf character
of the network may be retained and the treatment of "irrégular stars“

may proceed on the basis of physical reasoning and ficticious nodes . ¥

* See section L.6 or ref. 6, pages 67-78
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On the éther hand the nodes may be placed on the boundary and inter-
connected with interior points by an asymmetrical network, as will be
explained in the next sectioﬁ. This asymmetrical network, being per-
fectly general, can also be used for varying the cell size, and ob-
taining increased detail in critical regions. |

‘th.(B;l) cén represent Poisson's equation for an anisotropic
medium since f1(x,y) and fp(x,y) can be different functions. The
principal axes of the anisotropy, however, are necessarily parallél

to the coordinate axes. A more general equation than eqn}(B.l) is

: ' 9
281Gy 2) + ey )BE) + S5 y)E)

(s ay ) + 3y + fyny) =0 (3.5)

The additional terms can be represented by diagonal admittance branches
if fS and fé are constants. When f5 and f6 are slowly varying func-
tions the method to be described may be adequate if the finite diff-
erence cells are small, The finite difference equivaleht of such a

term is given by

2 K ' 7
€ S0 2 gy Petsnet ~Pustncd - ncdn * ZERSIRERY

The network branches to represent these terms are shown in Fig. 22a.
This circuit has the disadvantage that two of the four admittances
must be negative. An alternative form of eqn.(3.6) useful when K

is positive, is:

32 ¢ ~ K
(X axay)m,n = 20xAY [¢m+l,n+l '¢)m+l,n "¢m,n+l "'qsm,,n:(

K
+ M[g)m,n "¢m,n-l - (Pm-l,n + ¢m—l,n-1] (3.7)
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The network to represent these terms is shown in Fig. 22b. If K
is small compared with the coefficients of the other terms of the
differential equation, the resuliant value of the horizontal and
vertical admittances will still be positive. Fig. 22c shows the
appropriate network-for the case when K is negative. |

' It will be shbwn in -section 3.4 that under certair conditions
beqn.(B.S) represents Poisson's equation for an isotropic medium in
which the coordinates x and y are not orthogonal and that an elect-
rical network can be constructed that will solve the problem in’

this coordinate system.

(a)} K positive (b) K positive (¢) X negative
K K '
Y = Lixky Yo = Zixhy

d2¢

Fig., 22, Networks to Represent K[3§§§ n

3.2 The Asymmetric Net

In this section we shall derive a very general tﬁo
dimensiocnal network for the representation of the Laplacian operator.
Since current flow in a conducting sheet satisfies Laplace's equation,
it is convenient tc use this analogy in discussing the problem. The
problem may be stated as follows. "Imagine an isotropic région, R,
in which lLaplace's equation is known to apply and a larée number of

points, p, in R chosen at random. In what way should the points be



6li.

intercoﬁnected with electrical resistances in order that the voltages
at the nodes shall be as nearly as possible the correct solutions of
Laplace's equation®"

~The first step in the solution of this problem is to connect
the points, p,by a net of triangles. The resulting configuratidn is
 shoWn in Fig. 23. Branches of the net should not cross each other
and ncne of the triangles should be obtuse. It may be necessary in

order to fulfil the second condition to insert additional points.

Fig. 23. An Asymmetric Net

Consider a portion of this net shown in Fig. 2L. Drawing the
perpendicular bisectors of the sides of the triangles divides the
region into polygons surrounding each point, p. We shall consider
the intericr of the polygons as the cells into which the region is
divided and the détted lines as the boundaries across which current
flows from one cell to another. This distributed flux will be re-
placed by current flowing in a single conductor cornecting the centers
of adjacent cells. The problem is to calculate the resistance of
these coﬁductors.

In two dimensions the solution of Laplaceis equatidn may be
written as W = @ + j¥, where ¢ and Y are orthogonal potential functions.

We shall identify'¢ with the scalar potential and ¢ with the flux.
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If the voltage across the junction pair AB is ¢ﬁf‘¢B then the
current in the branch 4B may be identified with the normal flux
crossing the boundary 1-2.

The potential difference between the points A and B is

B
¢B-¢A=A§V¢'d§ (3.8)
where any path may be taken in going from 4 to B. This,»incidentally,
says that the net change in potential aroﬁnd a'completedvloop is iero
whiéh is, of course, satisfied by a lumped electrical network.

The normal flux crossing the boundary 1-2 is:

Y, -9 = §2V‘/"M (3.9
The region is assumed to be is;iropic so that the lines of current
flow are parallel to the potential gradient:
i= -V ¢ (3.10)
The surface conductivity, 07, can be a function of position i.e. the
conductiﬁg sheet may be inhomogeneous.
The gradient of the flux is given by

VY =k xi=-a(kxV) (A
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where k is a unit vector normal to the surface. Then

Vo - = -‘jz(ii xVP) a4 (3.12)
Approximations will now be made to the integrals in eqgns.(3.8) and
(3.12). It is assumed that the mesh is sufficiently fine that the
magnitude and direction of§7¢>change slowly in the region shown in
‘Fig. 24. If in eqn.(3.8)‘the path of integration is chosen as the

straight line AB then a good approximation is:

¢B —(PA’;-“VQDOITECOSOA | (3.13)
where G7¢)O is the absolute magnitude of the gradient measured at
0, the intersection of AB and 1-2. This point is halfway‘befween
A and B. & is the angle between‘the gradient and the lihe 4B at the
point U.

A good approximation to eqn.(3.12) is:

Wy W1 = -6, VOl cosx | ©(3.1h)
where le is the distance between 1 and 2. The point 0 is not neces-
sarily at the midpoint of 912° Consequently the approximation for the
flux is not as accurate as that for the voltage. If the mesh is suf-
ficiently fine, this will not lead to a large error. It indicates,
however, that an éttempt should be made to keep the triangles as
nearly regular as possible. From egns.(3.13) and (3.1h4) we‘see thaﬁ

¢A "QSB AB 3.1
= 15
Yo =P1  ooliz (3:15)

where ¢2—(P1 is the total current crossing the boundary 1-2.  If this
current flows in a single wire then the appropriate valﬁe of the

resistance of the wire is:
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BB = goTrs 31
o2 (3.16)
e now have a simple formula for calculating the value of resistance
for every branch in Fig. 2L. This network can immediately be applied
to Poisson's equation. The additional terms in Poisson's equation
represent current density while the currents in the network of Fig.
"2 fepresent total flux. ‘Consequently the additional terms in Pois-
son's equation should be multiplied by an appropriate area if>they
are to be included in the network. The appropriate area .for the point
B of Fig. 24 is that of the polygon 1-2-3~L-5,

A construction will now be described™ that makes it unnecessary
to draw the dotted polygons of Fig. 2L. An enlarged view of a portion

of Fig. 2l is shown in Fig. 25.

|
Fig. 25,

By a theorem in geometry we know that the point where the per-
pendicular bisectors of the sides of a triangle meet is the center
of the circumscribed circle, By another theorem the angles Qn and

/
) of Fig. 25 are equal. Hence

[ 1 S |
K%g_=_2.ctnel‘ :ECtnﬁl ) (3017)

*  This construction was suggested by Dr. Stanley Frankel of -the

Analysis Laboratory.
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and similarly Q
lo _ 1 ﬂ
= = ctn
2
B (3.18)

The value of the admittance inserted in the branch AB is, from

eqn.(3.16):
: a. "
T4p = O_%z = 59 (ctﬁ(zl + ctn(32) (3.19)

For Poisson's equation the area appropriate to the point A can
be divided into triangles of which the triangle A-1-2 will be one.

The area of this triangle is

— TR)2 o
% AB Q12 = ié%l— (ctn@:l + ctn(sg) (3.20)

The total area of the polygon is a sum of such terms, one for each
neighboring point. For the calculation of admittances and areas,
the function (ctn(31+ ctd@z) and the distances AB must be calculéted
for every branch in the network. If the network is first laid out
on a large sheet of drawing paper, the angles can be measured wifh
a protractor and the distances scaled off with sufficient accuracy
in a short time.

The method described in this section will work forrany network
configuration in which the perpendicular bisectors of fhé branches
meet at a point. Thus, besides for triangles, the method will work
fér rectangles, regular hexagons and isosceles trapezoids. -South—
well6 has derived the relaxation patterns for equilateral triangles
and regular hexagons by entirely different methods. For the limit-

ing case of an equilateral triangle the constants of the asymmetric

net are identical with his results.
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3.3 Boundary Conditions for the Asymmetric Net

A portion of an asymmeiric net near a boundary of the
region is shown in Fig. 26. Some of the points of the net have been

chosen to lie on the boundary.

Fig., 26. Asymmetric Net at a Boundary

Three types of boundary conditions will be considered with
- respect to Fig. 26.

l. The potential ¢>specified at the boundary: In this case the

voltages at the nodes on the boundary are set equal to the specified

values. For most problems this value will be zero or a constant value,

2.‘ The normal gradientf%%, specified at the boundary: In this
case currents\ihat are equal to the total flux crossing the bbundary
into the corresponding polygon are fed into the boundary points. The
current fed into node A is equal to GA(%%?L;QIZ « For Poisson's
equation additional currénts must be fed into every node of the net-
work including the boundary points. These currents are prbportional
to the portion of the area of the surrounding polygon thét is inter—‘

ior to the region.
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3. The quantity, ¢ + nggﬁ specified at the boundary: This

type of boundary condition is encountered, for example, in connection

with the cooling of metal rods. If

) = ,
¢, + Ko, (3§>A =, - (3.21)
then the total current entering the node A is
I, =0y ng (%—%)A = "%{‘2“(¢)0- gbA) o (3.22)
Tovsatisfy this condition, A is connectetho a source of potential,
12 '

(ﬁo, through an admittance whose value is X -

3.4 Poisson's Equation in Tensor Fomrm

The purpose of this éection is to show that a space which
is anisotropic can, under certain conditions, be transformed into a
space which is isotropic and, if it is desired, also homogeneous.
With the anisotropy removed, the asymmetric net can be used to full
‘advantage. Using tensor notation eqn.(3.5) of section 3.1 can be‘

written in the following form:

= (17 28) 4p = 0 .‘ (3.23)

f represents the last two terms of egn.(3.5). The indices « and
are summed over the coordinates x* and x2.
In vector form, Poisson's equation for an inhomogeneous‘but
isotropic medium can be written as
V- (KVd) +T =0 (3.24)
Poisson's equation can also be expressed in the following tensor

form*

% See A. D. Michal, ref. 17 page 117
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ok K —JE) LT = (3’25)

V‘ axg-(v—
This equation holds for a three dimensional space as well as for a
two dimensional space. It is evidehtly a séalar equation. The‘sig—_
nificance of the g's is as follows. In a Fuclidean 2-space the dis-
~tance between two pbints is given by
(a5)2 = g (axb)? + 2gp(abar) + gpp(e?)?  (3.26)
or

(4s)? = g q dx” axf

Referring to Fig. 27 we see that ygyy is thevlength of a unit

vector along xl, that \/gop is the length of a unit vector .along x? and

that
XZ
gl2 = ‘)gllglz CCS 6 . (3027)
LY
8° 4§? Bup is called the Ruclidean metric tensor.
% , o
5 The determinant of this tensor is (for
1
Ygu dx! X a 2-space)
Fig. 27.

€11 &2 |
g = 118 - (810)° | (3.28)
€12 822 -
The symbol g“@ used in eqn.(3.25) is the associated contravarient

metric tensor. In a Euclidean 2-space its components are:

_ 8o 12 _ 21 . &1 o2 _ 813
gt = gt =gt = - F e 75 (3.29)

Egns.(3.23) and (3.25) will be identical provided that

Ve e*f x
Vg -1 : (3.30)

[l

P

K, T and the components of the metric tensor can be solved for by means
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of these equations. Since gup = gpm'we see that a necessary condi-
tion for this transformation is that £*P = f@“} Another necessary

condition is that

£11p22 - (£12)2 > 0 o (3.31)
. If these conditions.are satisfied eqn.(3.23) can be made to represent
Poisson's equation for aﬁ isotropic medium. One of the five unknown
quantities in egn.(3.30) can be chosen arbitrarily. One possible
set of equivalence relationships is:
gu1 = £22

glo = ~f12 (3.32)
K = AfIIF22 T (F12)2

T

= i I
WTIIs22 (le)?
With the components of the metric tensor given, the isotropic

- space can be constructed.

As an example consider the equation

R (3.33)

valid in the region shown in Fig. 28a.

7B X
X
. &
5 | 7
a, Original Space —- b. Transformed Space --
Anisotropic Isotropic

Fig. 28. Transformation of a Space in Order to Remove Anisctropy
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Tﬁe components of the metric tensor are given by
€11 =P
g, = 2 (3.34)
12 = ©

so that the angle between the axes x and y is given by:

6 = cos™h 2 o (3.35)

The transformed isotropic space in which ¢ is a solution of Laplace's

eqﬁation is shown in Fig. 26&b.

3.5 The Separation of Maxwell's Equations into E and H Modes

In the next two sections examples will be given of the
solution of Maxwell's equations in a space with axial symmetry. As
a preliminary step to these solutions this section will describe the
separation of Maxwell's equations into E and H modes for the case
when there is no dependence on one of the Coordinates in an orthd—
gonal coordinate system.

Maxwell's equations may be written in M.K.S.»units as follows
for an orthogonal coordinate system.""L The physical com@onents of

the field vectors are employed.

* See Stratton, ref. 18, page 50
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H%hg, sz (03E(3)) - = (hZE(Q)): » 2 =0
%@ﬁ? (mEQ)) - Sy (g(s))| + E8L = 0
%i;—a%; (hgB(2)) - 52 <h1E<1)>j + %Bf) =0
R ) - 25 e - B -1y =0
i%ﬂ} .(%; (hyH(1)) - QI (h3H(3)): - %%3-1 - 1(2‘) L, 238
g%lg @%1 (roti(p)) = 27 (sia))] - FL) - 15y = 0

é_a{fl' (hoh3B(1)y) +§1—2- (hh3B(5)) 4-5%-3. (hyhpB(3)) = 0

5% (hph3D (7)) +£-§ (hih3D(p)) + 5% (njhpD(3)) = phyhohy

where
B(1) =rEQ) D) = eB@) ) = TEQ)  (3.7)

Substitute covariant components for physical components

hy E((x) = Ey
hO( H(D() - Ho&
. h2h3
hph3B(1) = Py o (3.38)

_ . h2h3

hoh3I(1) = cr_h.é
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Also set~jij = 0, Then the equations fall into two setls,
du

JE hoh
S? + PRy 1) = 0
N hqh _
St »a—t% +38) =0
dH, aHl- B( E3) hihy (3.39)
Jul 8wl T at "y 2T
haph hih -
}l[a—‘r( 2 1) + g-’z( : Hz)] =0
Q‘% '”—“L“—a(.h_z f1) ¢ 2223 Ep1 =0
hy
oH A("ﬁ"'"’E2) g h1h3 -
- 8?1% ho f2 =0
Es> aEl d Mhjho (3.40)

5ol - w2 PRy H3) =

J (hoh hih3 |
3 [Q—UL-I(—;Zl—l2 Ep) + 5%2(—%153- Ez)] =f hyhohy

Substitute jw for §%. Then in the first set

S NN L
1 Wn h2h36_u?

and ' | 3.41
"’ _ =3 hp 3E3 o :

u))_l hlh3 a
Substitute these equations into the third of egns.(3.39). The

resulting eguation is in terms of E3 alones

d , hp JdE3 d , h1 dE3,  hyhp 5 ' )
dul hihz Sul auZ(h2h3 S2)+ h E3 (W ug - jwuo) = 0 (3.42)

The fourth of eqns.(3.39) becomes an identity. E3 may be re-
garded as a scalar field in egn.(3.42). The second set of equations

reduce to an exactly similar form:

3 hy 6H3 d hl <5H3 hihp o . )
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In these equations h3 may be regarded as a characteristic of the

material. By the definition of the h's and equs.(3.29):

h h g
2 -2 _ B _ 11 PR
ETEm T =4E g (3.hk)
and 1 hihp T AR .
2
e N
hp  mhp A

With these substitutions eqns.(3.42) and (3.43) become

E ‘ .
1 = goux{ 3} we = Jupe
VE du?| hg N hs Hy

(3.L5)

This is exactly Poisson's equation for an inhomogeneocus medium® in
which K = H% and the components of o? are orthogonal coordinates.

In section 3.2 a general asymmetric net was developed for the solution
of Poisson's equation without regard to a particular cocrdinate sys-
tem. This method may be applied to the solution of eqn.(B.hS).v The

1 and u? need not be specified.

actual coordinates u
If hy = 1, (i.e. w? = 4, j, k or r) then eqn.(3.L5) is Poisson's
equation for a homogeneous plane space. If the space has axial sym-

metry and v’ =@, the azimuth angle, then h3 =(°, the distance from

the axis.

3.6 Example I: The Conical Line Resonator

The use of networks for the solution of Maxwell's equa-
tions has received considerable attention in the past few years.
Following G. Kron's publication of the equivalent circuits for the

field equations of Maxwelll9 in May, 194l articles appeared by mem—

*

Compare with eqn.(3.25) page 71
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bers of the General Electric Company giving results of network analyzer

studies.20’21

An outgrowth of this work was the construction of a
computing facility at Stanford University22 for the solution of wave
guide and cavity resonator problems. Two calculating boards were
constructed at Stanford, one for the solution of problems with plane
Symmetry and tﬁe other for the solution of problems with axial sym-
metry. Over 1000 coils are used in each network and the operating
freQuency is about 100 KC., The elemenlts are arranged in a fixed rec-
tangular pattern and have been used principally for the sdlution of
problems with rectangular boundaries.

The Cal Tech Electric Analog Computor has at present éighty
coils which is far fewer than the minimum number réquired for the
solution of problems with complex geometrical boundaries. However,
these elements may be connected in any desired pattern so that ef-
ficient use can be made of the asymmetric net.

Two considerations influenced the choiée of the conical line
resonator’as a subject of investigation. The first is that its cross-
sectional boundaries are not rectangular making it a good problem
on which to try out the asymmetric net. The second is that its lowest
modes are TEM modes whose expression in analytical form is.particu-
larly simple.

| A cross~-sectional view of the resonator is shown in Fig. 31.
The conical dimples each have a half-angle of 30°. Since the conduct-
ivity of the space in an air-filled cavity is zero, eqn.(3.45) for the

H modes becomes:

IE 5 H3 =0 | (3.46)
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wheref>.is the distance from the axis and Hj =f>H¢. This equation is
identical with Poisson's equation for an inhomogeneous plane sheet
in which the conductivity K = [% and the density of the inserted cur~
rents 1s given by the second term.

A network representing one half of the cavity is shown in Fig.
29, It is neéessary‘to represent only one-half of the cavity since
vall normal modes must be either symmetrical or anti-symmetrical with
respect to the equatorial plane. These conditions can be imposed by
either opening or shorting the network along the center line. The
values of the network elements were calculated as follows. Fig. 29
was laid out on a large sheet of graph paper with the radiu53 a,
arbitrarily chosen as 2L divisions. Then the geometrical,fa¢tors

Gyagﬁwere computed for every branch and the effective areas associated
12

with each node were divided byf). The values of the inductors were

LEr 2 (3.47)

where K, is an arbitrary constant. The capacitors were calculated from

calculated from

¢ =Ky (Areafff Cell) | | ' (3.48)

where K, is an arbitrary constant. The value of m¢ in eqn.(3.46) is
equal to KqKpo. In M.K.3. units 1 is the veloclty of propagation.
Ve 6 '

K, was chosen as 1072 and Ko was chosen as 107, The constants that

describe the problem are then:

a = 2L (units)
Ve =‘//71=; = 104 (units)/sec. (349)
8, = 30° ' |

The boundary conditions for H modes along the walls of the cavity

* See eqn.(3.16)
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are g%é = 0., This is imposed on the lumped electrical network by
opening the circuit at the edges as shown in Fig. 29. The resonant
frequencies of the H modes were obtained by exciﬁing the network‘at
an appropriate point with a voltage generator and adjusting the fre-
quency either for a maximum or a minimum input current. This islsimi-
lar to the wayiin which the normal modes of beams were excited in
fart II. Some insight and knowledge of the problem are required in
order to choose the best position for exciting a particular mode.

The boundary conditions for the E modes are that Eq =0 along
the wélls of the cavity. This condition can be imposed on the net-
work by grounding the nodes along the edges.

The analytical solution for the TEM modes of a conical line

R *
resonator is:

_ An sin(GED) gt

(H¢)n - r sin 8 ° . (3.50)
where .
W = 28 ' .
T Zayre (3.51)

Since Hj =]&¢1'sin€, Hy is independent of 6 for the TEM modes. A
comparison of measured and analytical values of H3;for the lowest

TEM mode is shown in Fig. 30. This mode was excited by connecting

a small voltage source near the apex of the cones and adjusting the
frequency for a maximum current input. A comparison of measufed and
exact resonant frequencies for the three lowest TEM modes is given in
Table V. The errors in the network frequencies are compared with

those calculated in Table II for a transmission line,

* 3ee ref. 23, page L12



80.
Thé field pattern for a higher H mode as measured by the net-
work is shown in Fig. 31, The lines of constant H3 are parallel

to the electric flux lines,

Table V

Compariéon of Measured and Analytically Computed Frequen-
cies of the Transmission Line Modes of a Conical Line Re-

sonator
Frequency Length of Error from
a Analytical Measured % Error Radial Cell Table II
Ay 10l.2 10k .6 #0.0 N2l -0.3%
M2 208.4 206 -1.15 212 -1.1%

3N 312.6 297 -5.25 M8 L =2.6%
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3.7 Example II The Field of a Spherical Radiator

In this section a network is described that is suitable
for the determination of the field near an axially symmetrical radiat-
ing body. The problems of radiation are distinguished from those of
non-radiating cavities and wave guides in that the whole of'spaée
v.must bé represented; For the network solution of such problems it is
essential that there exist a method for representing the character—
istic resistance of free space. Spherical polar coordinates are the
natural coordinate system in which to calculate a radiation problem
because at a great distance from the source all field components
except H<¢and Eg are negligible. Furthermore the equi—phase.surfaces
are nearly the spheres, r = constant. For these reasons and also
because space would be considerably compressed, a network with
and 6 as rectangular Cartesian coordinates would be appropriate.
Unfortunately egn.(3.43) would not be isotropic in such a region.

This difficulty is avoided if log r and © are chosen as coordinates.

If
wl =R = log r 7
) (3.52)
u® =8
then
dr
hl = ¥ =r
(3.53)
ho = r
and eqn.(3.L43) becomes, since hy = r siné:
d, 1 dH 3, 1 OH3, , refmeH3 _
§§(r sin © 73%) + 5§(r sin © 75%) * Sin e ">O (3.54)

This we recognize as Poisson's equation for an isotropic but inhomo-

geneous sheet in which K = 7 i.

in®

and R and 6 are Cartesian coordi-
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snates.v The boundaries of this sheet for the caée of a cylindrical
anpenna are shown in Fig, 35. The region near the origin is consi-
derably exaggerated in this space as the network will extend to
R = ~wfor r = 0. However, the values of inductors in the netwérk
are‘propcrtional to-r and hence become vanishingly small for small

‘r. The values of these inductors are, from eqns.(3.54) and (3.16):
iB o
L =K in © .
1 r sin ?EE | (3.55)

where K, is an arbitrary constant. The values of the capacitors

connecting the nodes of the network to ground are given by:

C =K siz 5 (Area of Cell) (3.56)

where Kp is an arbitrary constant. Then, from eqn.(3.5L), pe¢ is equal
to KiKo. For € equal to zero orm, L is zero and C is infinite. This
means that the network should be shorted to ground at these points.
Except for points near the boundary of the antenna the network
should be a rectangular grid. If a constant cell size is kept in
both the R and © directions, the points in space corresponding to
the nodes of the network will become farther and farther apart. This
is permissible insofar as 6 is concerned because the lines R = const.
are nearly equiphése lines. The field propagates along radial lines
almost as though each ray were independent of neighboring réys. The
spreading of points in a radial direction is not permissible and the
- discussion of section 1.7 on this point is applicable. In order to
have reasonably small errors, the maximum radial distance between
points in the network should be less than M/12,

The network can safely be terminated in the characteristic resis-
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tance bf space when the radial distance from the origin is about two
wavelengths (depending on the type of antenna). For points beyond
this the induction field is a small fraction of the radiation field.
The only radiating field components are H(¢) and E(e) and their ratio

is given by

b Ik R

The covarient field components are

H3 = h3H(<P) = r sin O H(‘f’) (3.58)
Ep ® hpli(g) = r E(g)
By eqn.(3 .LLO):
By= 1 he 9M3.__ 1 33 - 05

jWE hih3 Sut jwer sin © SR
J 3

In the network the following finite difference approximation is made:

OH
5

(H'3 )n-p}_\ - (H3 )n ;'ijﬂ+% In-l-%' | ‘
b} A = 3 (3.60)

- AR
where Ih*% is the current flowing in tne positive R direction.

For the rectangular network:

4 . . AR _ r -
Lg =K} rsin®3z5and C=Kp ST ARLO ’ (3.61)

Egns.(3.57) through (3.61) and the fact that in the network pe = KKp,

yield the following relationship

f3)  -cine i iy

This equation gives the value of the characteristic impedance with

which to terminate the network. We notice that the characteristic
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impedanée depends only on € and that it is equal to the characteristic
impedance of a transmission line made up of the capacitors and the
radial inductors in the network. For each value of 8 a resistorlwhose
value is given by eqn.(3.62) connects the last node of the network to
ground.

.The problém chosen for analysis on the analog computor is the
calculation of the field of an oscillating sphere. The radius of the
sphere was made equal to 1. Kj was chosen equal to lO'1 and Ko was

chosen equal to 2 x 10_6 so that the velocity of propagation,

1 radii
Ve _J—wi—-—é = 2236 “Sec C (3.63)

The network for the solution of this problem is shown in Fig. 32,
Since the field is symmetrical with respect to the equatorial plane,
only half of the sphere is represented in the network and symmetry
conditions are imposed at © ='g. The network is terminated after 7.5
‘sections at r = 8. The network was excited by a voltage generatof at
the node on the surface of the sphere nearest the equatorial plane,
This corré5ponds to specifying the total current that crosses the
equator of the sphere.

Solutions to the problem are shown in Figs. 33 and 3. The volt-
age in the network is H3 = r sind H(¢). The radiation component of

1 while the induction field

the magnetic field is proportional to r~
components are proportional to r "2and the higher negative powers of
r. Consequently the voltages in the network approach a constant

value asymptotically as r increases. This aids the visual interpre-

tation of the data shown in Figs. 33 and 34.

For the field of Fig. 33 the length of the largest radial cell .
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is,%/é.é almost twice the recommended maximum length. As a result
some standing waves are in evidence. These do not appear in Fig. 3k,
where A is about twice as large.
.The analytical solution with which the computor solution is com-
pared in Fig. 33 is taken from ref. 23, pages L66-L7h. Only two terms
6f the solution Weré calculated as the solution does not converge

on the surface of the sphere.
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IV ELASTIC PLATE PROBLEMS *

4.1 Two Dimensional Problems in Elasticity

The two dimensional problems of elasticity cannot in gen-
eral be reduced to the solution of Poisson's equation for a scalar
potential function. Exceptions to this statement are the problems
of the torsion of a long bar and the deflection of a membrane., If a
scalar potential function is introduced, the equations of elasticity
become fourth order partial differential equations. In the suc-
ceeding sections of this part, the bending of plates will be discussed
in terms of such equations. Alternatively the equations of elasti-

2L

clty may be expressed in tensor form. Using this point of view

G. Kron has derived the equivalent circuits of the elastic field. 5
His networks for the cases of plane strain and axially symmetrical
strain are of particular interest because they are networks that can
be solved practically by an analog computor. They consist of two
separate networks coupled through mutual inductances. The voltages
at the nodes of the two circuits are respectively the components of
the elastic displacement vector, while the currents are the components
of the stress tensor. When the dilitation, Ef, is zero the mutual
inductances drop out,.

One imporﬁant fact about the equations of elasticity is that they

cannot be represented by an asymmetrical electrical network. In both

Kron's networks for the elastic field and our networks for the elas-

L

The material included in this part will also be found in two Ana-
lysis Laboratory reports: refs. 26 and 27. The treatment in these
reports is more extensive than that given here. The first report in-
cludes a discussion of the capacitor analogy and the extension of the
dynamic analogy to a skew Cartesian coordinate system. A large amount
of experimental data is given in the second report.
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tic plate the voltages are components of vectors. The coordinate
system in which these vectors are expressed must remain fixed. As
a result it becomes somewhat more awkward to represent boundary points
along an irregularly shaped edge.

Electrical networks for plates can be derived by writing out the
Qbmplete finite difference equivalent of the fourth order equation
of equilibrium.* This technique has been used in the numerical solu-

28 and has even been extended to the case of

tion of plate problems
skew Cartesian coordinates.29 When applied to the derivation of an
electrical network, this method leads to the necessity of negative
inductances. Such elements can be simulated by capacitors for static
deflections but cannot be satisfactorily synthesized for transient
and normal mode studies. A further disadvantage is that slopes,
moments and shears are not represented in the network.

The dynamic analogy that will be derived here is quite similar
to the analogy for the beam derived in Part‘II. Its only disadvan;
tage is that it requires a large number of expensive, high quality

transformers for its realization.

L.2 The Dynamic Analogy for a Constant Thickness Plate

In this section an electrical analogy for the elastic
plate will be developed that is similar to that for beams given in
Part II. The notation is the same as that in Timoshenko's, Thecry

of Plates and Shells.30

The differential equation for a constant thickness plate is:

See Table i for the finite difference equivalent of gg%
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bhw’ ahW' 5hw g
ST R (b.1)

which can also be written in the following‘form:

2 EL_. F + 2 > - a ‘
dx o2 T oy 2) Yoy o T ) D (b.2)

where w is the deflection normal to the plate, g is the load density

and D is the stiffness constant. From Part II the equation for the

bending of a uniform elastic beam is:

i&_z_a_‘f_“-
ox

lu-Q

(L.3)

Q/

dx

e

I

The first term of egqn.(L.2) is the same as the left side of eqn.(h.3)
s 2 o2 laci &2 ti 2.2 it i that t
with 5;2 + 5§E-rep acing 5;2' In section 2.2 it is shown that the
two outside operators are represented by a transformer between two
ladder networks, in one of which w is the voltage to ground and in

2 :
the othergl}% = Ox is the voltage to ground. g__x.z is represented by an

impedance ladder in the 6 circuit.” The network to represent the
first term of egqn.(L.2) is shown in Fig. 36. In addition to the imped-

ances Z it has impedances Z__ oriented parallel to the y axis to re-

Xy

2
present the additional term.a
Oy?

connected by the impedances ny to form a two-dimensional grid.

« Kach row of transformers are inter-

The second term of eqn.(L.2) is represented by a secoﬁd network,
entirely similar to that of Fig. 36. The primaries of its trans-
formers, which are oriented parallel to the y axis, are joined at
the nodes of the w circuit with the x transformers, so that a two-

dimensional grid of transformer primary windings is fofmed. Thus

* See Fig. 8.
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there exist three separate two-dimensional grids which are only inter-
connected magnetically and in which the voltages to ground are respec-
tively w, 64 = Z;)_gv_ and 8y = . Plan views of these networks are shown
in Figs. 37a, 37b and 370. In Fig. 38 they are superimposed to show
the geometrical relationship of the nodes and currents of the three
net‘wofks. This superposition is useful for analytical investigations,

while the clarity of the separate views recommend this teéhniQué to

the solution of problems on the analog computor.
Ox

w
a
D

Fig. 36 Dynamic Analog for 15% Term of Eqn.(L.2)

4.3 The Dynamic Analogy for a Variable Thickness Plate

The equations given for the bending moments in ref. 30,

page 88, are, with the substitutions 6, %lv_ and 6y = 3w,

oy *
V = poisson's ratio :
ly = D +V ) (k)
My = —D(—9¥ + Vaex) (L.5)

Myx = -D(1 1/)59X = D(l—]/)%e{I - (L6)
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The shears are given by

ax = §25 + (Le7)
= ol QM
ay = §5F + 9 (L.8)

The static equilibrium of the plate requires that

20 . %y

Sk Fa ta=0 (L)

" Combining egns.(l.lL) through'(u.9) where D need not be constant, the

equation of the plate may be written as:

Bef2b@ ] + 2o 35

O [ d[n(By b@x] a[ 06 - \
4 y{y{n(ay +USE) + 2D(1-V) 53-}] =q (L.10)
Fung31 has shown that this equation which is based on the assump-

tion that the strain varies linearly from the top to the bottom sur-
faces of the plate, is inaccurate. He has derived an expression based
on a power series expansion in the thickness of the platevincluding
terms up to the third order. His expression contains additional terms
of the same order as those in eqn.(l4.10). For a COnstan£ thickness
plate his expression‘reduces to eqn.(k.l)., We shall not use his equa-
ticns because of their increased complexity.

The only terms of eqn.(L.10) that cannot be represented by the
network of Figs. 37 and 38 are those involving véa_;! and ug%s, The

other terms can be represented by the network with
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2! 2422_2_ Z = Ay2
x D Xy T B(I-v)
7! :Ay2 - AX2

s D Zyx " B(1-D)

X

éy circuits. In Fig. 38 it will be seen that the Z, and Zy branches

créss each other and that their currents are defined at the same

The terms‘vggzande§§¥ represent a mutual coupling between the 8, and
J

geometrical point. A mutual admittance between the two branches is

required where

vD
* BxAy

Yp =

In a physical circuit mutual admittances can be converted into

mutual impedances. iy and Zy are also modified as follows:

7. = _l_z.éég
X 1<V D
2, = 1,472
Y 1Y D
- _ UV Axpy
Iy =~ 132 5
(Le11)
7. = L A2
xy T 17U D
o =1 A%
yx T I D

Fig, 39 shows the network for a variable thickness plate. In
this network the currents in the slope circuits are proportional to
the moments as defined in egns.(lL.4), (L4.5) and (L.6) and the currents

in the w circuit are proportional to the shears:
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Current in iy = %ﬁ
; - M
Current in Zy = A—%
Current in Zy, = j\_g}}?{
Current in Z.. = X (L.a2)
: JX - Ax : )

Current in x branch of w circuit = AQ——;C
Current in y branch of w circuit = l%rf
The fact that the currents in the various branches of the network

have a physical significance for the plate is very fortunate., It
permits the direct measurement of the moments and shears, It simpli-
fies the problem of the representation of the boundary conditions at
a free edge., The identity between the plate and its electrical ana-
logy 1s so complete that it eventually becomes unnecessary, as shall
be seen, to justify every manipulation performed with the nefwork in

the representation of boundary points.

L.y The Method of Representing Boundary Points

The boundary conditions at a clamped edge’ are that w = 8]
and %% = O where n is the normal toc the edge.

The boundary conditions at a simply supported edge are that

2 2
w=0and My = —Dlg—g +Ug-g] = Q.
n

ot
The boundary conditions at a free edge are that M, = 0 and
QM
Qn + —Z)'%B‘ = 0.

It will be noted that the boundary conditions are paired in such

a way that one condition from each of the following two groups applies:



15% group w=0 (a)

Gn + % =0 (b) (4.13)
nd a__W = [¢]
2™ group 5% 0 (c)

M, =0 (d)

' Thevcombination (b), (¢) applies to a line of symmetry, with the fur-
ther derived condition that My, , the twisting moment, is equal to zero.

st

For the dynamic analogy the 1°" group of conditions apply to the w

circuit while the 20

group of conditions apply to the slope circuits,
Hence, we may expect that the representation of Boundary pointS'will
conform with physical intuition.

There are two ways of looking at the boundary conditions at the
edges of a plate. The conditions given above are the mathematical
consequences of physicael situations which are mechanically quite
simple. For example, the boundary conditions at a free edge express
the facts that there are no gonstraints, that no load is appiied‘at
points beyond the edge and that the stiffness constant Hecomes ZEerC
for poihts beyond the edge., In this simple form, however, the con-
ditions are not useful for the analytical solutidn of the problem.

As we have seen there is a one-to-one correlation bétwéen nearly
every property of an elastic plate and its dynamic electrical analogy.
Deflections, slopes, moments and shears can be measured in the net-
work. An important property of the variable thickness network is
that the value of each impedance depends only on the local value of
the stiffness constant and the cell size. Another important pro-
perty is that the grouping of the boundary conditions corresponds
with the division into deflection and slope circuits. The,féct that

there are three circuits and only two groups of equations can, in most
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cases, be explained by the fact that the two conditions imply a third
appropriate tc the additional circuit.

Because of these correlations the analogy may be looked upon
as though it were the plate. For example, the boundary condition at
a free edge can be imposed by allowing the local value of the stiff—
ness constant (and the corresponding impedances) to vanish. We shall
see that this procedure leads to results that agree with thé conven-
tional conditions in simple cases and we shall therefore gain confi-
dence for its application to more difficult cases that cannot be cal~
culated analytically. In this way the rectangular network can be

applied to plates of any shape whatsoever.

L.5 Boundary Conditions for Rectangular Plates

The analogy developed in section L.2 can be used only for
constant thickness plates with a combination of simply supportéd and
clamped edges. |

If the edge x = const. is clamped the constraints are that w = 0
and %g = 0 along the edge. As a consequence of the first constraint
gg is also equal to zero along the edge. These conditions_can be
imposed on the network by grounding the deflection and slope networks
at the point where they cross the boundary. If the boﬁndary does not
coincide with a node of a circuit, a part of the impedance element

is retained proportional to the remaining value of its “impedance

square", This is illustrated in Fig. LO.
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[ .75 AX

N\

ZX = 15 Ex

Fig, 4O Impedance Square

If the edge x = const, is simply supported the conditions are:

w=20 )
(La1l)
My = --D(a . —y-_—,.
As a consequency of the first condition
o _ 0 and 4w =0 (L4s15)
ay a—yz A
so that
92w = -  (L.16)

d3x2

In the circuit developed in section L.2 and illustraﬁed in Fig. 37
the current in the impedance elements Z, is proportional to g;g. Gon-
sequently, a Z, branch that crosses a simply supported edge is left
opens The w and Gy circuits are grounded where they‘crosé avsimply
supported edge. Fig. 41 shows the method of representing simply
supported and clamped edges when they coincide with nodes of the w
circuit.

The conditions at a free edge cannot be satisfied with this net-

work. To represent a free edge, the analogy for a variable thickness

plate must be used, even though the plate may be uniform.

The boundary conditions at clamped and at simply supported edges
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are impésed in the same way for the variable thickness network as
for the constant thickness plate illustrated in Fig. L1.

For a free edge along x = a the conventional conditions are

My =0
o + %%z -6 (b.17)

The physiéal conditions along a free edge are the absence of
any constiraints and the vanishing of the stiffness constant for points
bejond the edge. Applying these physical cenditions to the circuit of
Fig. 42 we reason that:

(Zy)é, (2.) g5 (Zyx)E and (ny)S must vanish (=%)

Consequently there can be no current in the y branches of the
w circuit along x = 6, and these branches can be left out. Since
there is no load at x = 6 no current can flow through the x branches
of the deflection circuit at x = 5. This means that no current flows
into the nodes of the Ox circuit through the transformer seéondaries.
Consequently no current flows in (Zx)h and‘these impedances can be
left out. |

Half of the impedance square for (Zy)h is empty so that the
impedance of this branch should be doubled. Furthermoré, since there
is no current in (Zx)h’ the mutual impedance between the twovcircuits
can be omitted. (This is not the same thing as omitting the mutual
admittance,a condition that would be appropriate if (Zx)h had been
shorted.) The resulting circuit for the free edge is shown in Fig. L3.

Since the load vanishes for points beyond the edge the average
load density at the edge is one-half the load density for points
inside the plate. Consequently the load current for points on the

edge should be reduced by one-half.
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It will now be shown that the network of Fig. L3 also satisfies
the mathematical boundary conditions given in eqn.(L.17). Fig. Lh
shows the location of the points where the moments are defined in the
neighborhood of a boundary point (L,L). The quantities M6l s MYXSS’

and MnyBare fictitious. By eliminating them from the boundary con-

dition équations a single equation is obtained that the real moments

must satisfy. In terms of the moments the differential equation is

%My . %M %y
2 VX Y = ) o1
Fywalie . +ay2 q (L.18)

and the boundary condition equations are

My =0
at x = L (L4.19)
QMK + QEMEZ =0
ax Ay -

The finite difference equivalent of eqn.(L.18) is:

ol = 2Mg)y + Mxo), 2[va55 - Myx53 + Myx33 - MVXBSJ
Ax? AxAy

, Myl6 = fg_guu + U2 o g | | (4.20)

The finite difference equivalents of eqn.(L.l19) are:

and
Mxbly = M2l | Myxsg + Myx3s - Myx33 = Myxs3 _ o (Le22)
2Ax Ay
Multiply egn.(l.22) by 52}—(
Mxbly, = Ml Q[MVXLE‘S + Myx3s - Myx33 = Myxs3|. (L.23)
AXZ AxAy

Subtract egn.(l4.23) from egn.(4.20). Then, utilizing eqn.(L.21) we

obtain:
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Mx2) 5 Myx33 = Myx3s  Myl6 - 2Myl), + My)2 _ alh (L.24)
‘—QL + =z + e
Ax A XAy 2Ay 2

This equation is satisfied by the network of Fig., L3. It indicates

that the impedance in the My circuit should be doubled at the edge

and that load current at the edge should be halved. Since M, = Q:

iy )y, = -DAV2) SO O (ha2s)
so that
LS - 20y° . ,
(Zy)xzl, = -247 Qy_LSMYhEyM = (1-11%7) = = 22y (L4.26)

Thus the circuiv of Fig. L3 is verified in every detail.,

L.6 Boundary Conditions for an Edge not Parallel to a Coordin-

ate Axis
By employing the physical reasoning of the previous sec~
‘tion it is possible to obtain boundary conditions for an'edgeinot‘
parallel to either of the coordinate axes, It becomes more difficult
to check the resulting configurations with the conventional mathema-
tical boundary conditions.

It is necessary to decide what should be done with impedance
elements that cross or lie close to the boundary. The‘transtrmer
primaries that constitute the w circuit do not involve the stiffness
constant and consequently will not be changed or eliminated when a
free edge is crossed. All that happens is that no load currents

. enter its nodes beyond the edge. For a clamped or simply sﬁpported
edge the deflection is constrained to zerc at the edge and the trans-
former being considered as a distributed coil is grounded where it

crosses the boundary. The part extending beyond the edge is not elim-



11l.
inated. A case in point is a continuous plate with multiple interior
supports. Along such edges the only effect on the electrical circuit
is that the w circuit is grounded where it crosses them.

Along clamped edges the slope circuits are also grounded where
they cross the edge, the impedance elements being considered aé dis-~
 tributed aioﬁg the length of their branches. A difficulty arises in
that the transformer secondaries cannot be so distributed and if they
fall on or beyond the clamped edge they are grounded. The priméries
of such transformers consequently behave as though they.were shorted
and as a result the deflecticn is made zero at a short distance from
the edge. This situation caused no appreciable inaccuraéy in the
cantilever beam analogy at points two or three cells distant from the
clamped end.

Some impedance elements in the slope circuits may run near but
not cross a clamped edge, so that their impedance squares; (Fig. L5),
cross the edge. In such cases it is probéblyAcorrect tq allow the
impedance elements their full value.

At free aﬁd at simply supported edges the stiffness constant is
zero for points beyond the edge. Fig. L5 shows four possible rela-

tionships of an Yimpedance square" with such an edge.
&

? 4 &
4 :
z <
pd >
S =
— < b —
> < 2 \
' — 2
(2) (b) (c) (d)

Fig. L5 Impedance Squares and an Edge where D Vanishes in Fach Case
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If it is assumed in each case that the appropriate value of the
stiffness constant is the average value over the square, then the
admittance of each element will be proportional to the area of the
square inside the plate. Case (b) has already been met in connection
with the free edge and we will shortly meet case (¢). The load cur-
fent'inéerted at a node of the deflection circuit will also, if it is
physically distributed, be multiplied by the effective per unit area
of its square.

It has been mentioned that when the current in the Z# or Zy
branch is zero, any mutual impedance associated with it is gero. In
like manner when such an element is shorted (at a clamped édgé) any

mutual admittance associated with it is zero. As an example consider

the impedances of eqn.(L.11). If the current in Zx is zero then

2 2
1 A . .
Zy = 152 _%_ but if Zy is shorted Zy =4%%n

We now have a set of simple rules for handling any type of
boundary situation. The question of the validiﬂy of these rules can-
not be entirely answered by an analysis of the electrical network and
must await the results of experimentation.

The example of a free edge crossing diagonaliy through the nodes
of the deflection circuit will now be analyzed, Considerrthe,rotation

of axes shown in Fig. L6

>>))\4\ J X = n cose -t sina
" ¥y = n sind + T cos &
s 5 N (4.27)
\ 5% = 5% cosA  # §§ sind&
o S __2 . 39
\ X ST = 3X31nd~ + 3; cos ot
/b\ —

Fig. L6. Rotation of Axes
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The boundary conditions along a free edge, n = const., are

2w a2w -
Uy = -D(EF + VS5 =0

(L4.28)

lMtn o
i +5% =0

Carrying out the transformation one obtains for the particular

case of o =TN:
L

= 3(My + My) + Myy

Mgy = 30y - My) | (b.29)

.1 My . IMyx aMVX]
Qn_\/'?_[ax +ay+ax oy

so that the boundary conditions at a free diagonal edge ares

My + My + Moy = O '
v yX
(4.30)

dly | My , Ay , Ayx , 1 aMV_aMX ___
ax ' Ay dx dy vV G )

We now turn to a determination of the network configuration from
physical reasoning. In Fig. L7 all impedances in the sloﬁe circuits
which lie‘wholly outside the plate must vanish. Therefore there is
no current in the transformers of the W'ciréuit lying outside the plate
except in those that are connected to nodes lying on the bbundary.
Furthermore, since there is no load current at node (6,L), for example,
the current in (Ty)63 is the negative of the current in (TX>EM' The

'impedances of the slope circuits that cross the boundary are given

twice the normal value.

. . M)y X .
The current flowing in (TX)S)J. is §[Ax2 y 53] Whlle the cur-

. . Myeo  Myxo3
t flow n (T )., is &[5 4 X2,
ren owing in ( 7063 Q[Ayz X
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Hence:v
(ip)gy + (in)e3 = (L + 2 %ﬁ}? + }gga =0 (4.31)

For the case of a diagonal edge Ax =Ay so that

Mg, + Mygp + 2Myes3 = O - (L.32)

 Sum the currents entering the node (L,L):

[M_xau_m | +M_-xx13_%cxzs] [_xm _xxsa]

Ax? 2 Axhy 2AXAY. 2Ax° 2AxAy
[_;mz gy |, ot _ms_z] P_”m ]=guu | (1.33)
Ay 2Ay AxAy 20xAy 20%° DxNy 2

Collect the terms and let Ax = Ay = \:

2
lply = Mgy, + Myp = Mgy, + 2yyg3 - Myygg - Myygs = WX (3w

Comparing the first of eqns.(lL.30) and (4.32) for the point
(5,3) we see that this boundary condition is almost but not quite

satisfied by the network. -Subtracting the two conditions:

Mys3 - Mgy, + Mys3 - Mpep & 284D = 0 (1s.35)

If the cell size‘ or the tangential variation of the twisting moment is
small this approximation is good.
To verify eqn.(L.3L) write the finite difference equivalent of

the second of egqns.(L.30) for the point (L,k):

Mxal = Mxo), + Myl - Myl2 ; Yyss - My33
2N 2A A

+ z]';x (My62=- My26 - Mxé2 + Mx26) = O , (L.36)

Multiply by 2/A and subtract this equation from eqn.(lj.20), the
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finite difference equivalent of the differential equation for the

point (L,l). The result is:

MXZh - MXLLh + Myhg - Myhh + 21\"13’}:33 - Myx53 - MyxBS
2 .
+ T (iya6 - Myeo + Mysp - Mype) = 2l (L.37)

Egns.(L.34) and (h.é?) are identical except for the tefmrin
brackets which represents the tangential derivative of twisting moment.
The twisting moment creates discrepancies for both boundary conditions
at a free diagonal edge. Not only are the missiﬁg terms not repre-—
sented in the network derived by physical reasoning but also there is
no simple way of including them,

As the reader can judge, the verification of the boundary condi-

tions for other than a diagonal edge is very difficult.

L7 Example I: Symmetrically Loaded Clamped Rectangular Plates

The networks that have been developed for ﬁhe elastic
plate have been applied to the solution of some simple and moderately
difficult problems with the intention of demonstfating'the feasibility
of solving platekproblems with an electric analog computor.v The num-
ber of cells that can be represented on the Cal Tech»Electrié Analog
lComputor is at present limited by the number of high quality trans-
formers that are available. Two such transformers are required for
every cell and there are at present 25 such transformers available
in the computor. The errors in our solutioﬁs due to an insufficient
number of cells are very appreciable. It was known befére this inves=-

tigation was undertaken that this would be the case and one of the
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purposes of the investigation was to determine the minimum number of
cells necessary for the satisfactory solution of general plate pro-
blems. It is estimated that a four-fold increase in the number of
cells is necessary for the adequate solution of problems having a
complexity equal to that of the problems investigated in this report
_énd a ténfold increase for the adequate solution of more complex
problems involving irregular shapes or multiple spans.

The coordinates used in the static deflection of a clamped plate
are shown in Fig. L4L8. The constant thickness analogy devéloped in
section .2 can be used for this problem and the network that was set
up is shown in Fig. 49. Since only symmetrical loads Were‘considered
it was necessary.to represent only one quarter of the plate. Symme-
try conditions™ were imposed along the interior edges.

The impedances in the slope circuits are resistances for static
loading tests. Since the transformer leakage and magnetizing:imped-
ances are reactive they will have less effect ih this case than tﬁey
will when the slope circuit impedances are inductances. The load
currents were fed into the nodes of thekdeflection circuit by connect-
ing each node to a voltage source through a resistor of large value,

The deflections for uniformly loaded clamped plates of two dif-
ferent shapes are given in Figs. 50 and 51. The defleétions»at the
ceﬁter of each plate were also obtained analytically** and are plotted
in these figures for comparison. The computor solution for the

deflection at the center of the square plate was low by 10.4% and the

* See eqn.(lL.13) conditions (b) and (c).
e3¢ See ref. 30, page 228, Table 30,
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solutioﬁ for the deflection of the plate of Fig. 51 was low by 8.3%.
The computor solutions for symmetrical point loads are tabulated in
Table VI, for a clamped square plate.

_In addition to these tests the normal mode frequencies and mode
shapes were calculated. The errors in the mode shapes were'smail but
the errors in frequency were high and tended to be larger for the
higher modes. This is in contrast with the results obtained with the
beém network analogy and indicates that the number of cells was ihsuf—

fiecient,



Deflection

Measured at
X J
I % 1.3L .86
g % bl .77
% % L0237
% g 3.22  1.78
g g 2.22  1.67
2 3 U3 .77
% % L.89 2.13
g % 3.22  1.78
% % 1.33  .855

119.

TABLE VI

Results for Symmetrical Point Loading of a Square Clamped Plate

D= .500

a=b=2§

applied load = 2,00

Point loads were applied at the points listed and simultaneously at the
image points in the other three gquadrants.
tions for any distributed symmetrical loading can be obtained by super-
position. See Fig. L8 for coordinates.
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A
(80) (8,8)
IMAGE IMAGE
l (4,4) |
L 7@ mmmmm - |
| I ’
! l
S S |
LOAD | IMAGE
i
l
|
|
l
! - X
(0,0 (0,8)

FIG.48 COORDINATES USED IN STATIC DEFLECTION OF A CLAMPED
PLATE, SHOWING APPLICATION OF SYMMETRIC POINT LOADS.
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;.8 Example II The Normal Modes of a Cantilever Square Plate

For this problem it was necessary to use the variable
thickness analogy derived in section 4.3. The electrical network for
the plate is shown in Fig. 52 and the constants of the plate and the
values of the electrical impedances are shown in Table VII. Eight of
the twelve nodes of the deflection circuit lie along free edges so
that the accuracy of the solution is very much dependent upon the
correct representation of boundary conditions. The impedances in
Table VII were derived according to the principles of section 4.5.
These impedances must be inductances for the study of normal ﬁodes.
Capacitances were connected to each node of the deflection circuit
whose value was equal to the average mass density for the cell sur-
rounding the node. Any convenient value for the density of the plate
can be chosen since the frequency of vibration is expressed in terms
of the constants of the plate. The only quantity that camnot be varied
in comparing results for two different square cantilever plateé is
Poisson's ratioco. The normal modes were excited by connecﬁing a volt-
age sourcé to one of the nodes of the deflection circuit and adjusting
the frequency of the source for a minimum current input.r

The results for the first five normal modes are plotted in Figs.
53 through 57. The contours of deflection were obtained from the
curves plotted on the left side of each figure. These results have
not previously been obtained by any method of computation.

The cantilever plate was also subjected to a uniform static
load along the overhanging edge and to point.loads at each of the
nodes in the deflection circuit. For these tests resistances were

substituted for the inductances in the slope circuits. The results of
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the uniform edge loading test are given in Table VIII where bending
and twisting moments are given as well as deflections. The results of
the point loading test are given in Table IX. Both of these tests
provide internal checks on the accuracy of the solution since symmetry
with respect to the center line of the plate is required. In adéition
two values of twisting moment are provided, each being independently

measured in one of the slope circuits.



VW CIRCIHT

126,
Tx Tx Tx
BEART S e Ll I R
Sy En BN sy
TX ] Tx ) TX
-—qhﬂh——fmg\_‘—jabp—- L {____' )
;Ti }%,Ty &;ry Ay =
T | Tx T, !
ra "'\ f"é"bf\ Jﬂ'gg‘\__ __m_x__ ]
QO
|
e Axzl e Axcier A g

8, CIRCUIT

8y CIRCUIT

-~

Fi6.52 NETWORK FOR THE SOLUTION OF THE RECTAMNGULAR
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TABLE VII
Data for the Electrical Analogy of the Rectangular Cantilever Plate,
Ax =1 Ay =1 V = .30 D = ,500

2 Ax% . 2,25
D (1-v¢) D

Ay? . 1.3
2 T3y T D

AX? VAxdy . W77
23 = 5192 T p (1=v) D

VA XAy - 033

“s = 5 (1-v¢) D
5% (?Lf/?) ) 1.11325
g o= _Ox% 1.3

Y15 @<V~ D

"D (%) "D @v¥) D

Zyp = Ay?2 VAxAy - 77

. 20y _ 2.25
Y3 S5 (%) - D




Loads - 1.000 were applied at (3,1) and (3,2)
Loads - 0.500 were applied at (3,0) and (3,3)
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TABLE VIIT

Results for Uniform Edge Load

This represents a uniform edge load equal to 1,000 per unit length
of edge. ' ' '
Deflections and Slopes
- 9 )
Xy X ¥y 6x = Sg X y 8y = 3%
1 0 2.95 0.5 O 2.97 1 0.5 460
2 0 10.3 1.5 0 7.36 2 0.5 455
3 0 19.8 2.5 0 9.53 3 0.5 .3u8
1 1 3.38 0.5 1 3.30 1 1.5 .008
2 1 10.8 1.5 1 7.35 2 1.5 .009
3 1 20.25 2.5 1 9.42 3 1.5 008
12  3.38 0.5 2 3.31 1 2.5 - L5k
2 2 10.8 1.5 2 7.35 2 2.5 - b2 -
3 2 20.2% 2.5 2 9.43 3 2.5 - .353
1 3 2.95 0.5 3 2.96
2 3 10.3 1.5 3 7.36
3 3  19.9 2.5 3 9.52
Moments

Two values of the twisting moments are given.

independently in the network.

They were measured
The sign of the moments was not

measured.
Bending Moments Twisting Moments
) M,
L Mx MY x|y My My x y meas. ih |meas, in
& circuit§ circuit
2500 2.61L 0 .25 2 13.35 0 5 .5 .119 .159
1.00| 0 |1.964 0 1,00} 2 2,05 |.43 1.5 .5 022 .009
2.0010 .986 0 2.00 2 |1.016(.104L 2.5 .5 .0l5 040
2511 [3.24 0 25| 3 (2,614 0 .5 (1.5 .00k «00L
1.0011 [2.07 L4201 1.00 | 3 11.960| O 1.5 1.5 .002 .001
2,0011 1.0l [.,102}2.,00] 3 .992 | 0 2.5 1.5 .001 .003
3,000 0 ¢} 3,00 2 0 154 S| 245 122 .154
3.001 0 A5 3.00 | 3 0 0 1.5{ 2.5 .023 .006
2.512.5 .050 .038
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TABLE IX
Results for Point Loading of a Square Cantilever Plate.

Applied Load = 2,000

Load appiied at (1,0) (2,0) (3,0) (1,1) (2,1) (3,1) | (3,2)

Deflection
measured at

(1,0) 1.83 2.63 3.28 880 1.65 2.30 1.48
(2,0) 2.62 7.10  10.1 1.74 .85 7.75 5.65
(3,0) 3.25 10.00 18.8 2.54 8.00 1L .40 11.0

(1,1) .88 1.73 2.58 975 1.67 241 2.11
(2,1) 1.63 L.81 7.95 1.65 L.78 7.70 6.80
(3,1) 2.29 7.70  1lh.h 2.40 7.65 1.0 12,60
(1,2) .3680  1.03 1.77 625 1.35 2.11 2.41
(2,2) SL0  3.21 5.90 1.3L L.00 6.80 7465
(3,2) 1..48 5.60 11.0 2.10 6.80 12.70 1L.4O
(1,3) L06L 391 855 .38 S0 1.7 2.30
(2,3) 392 1.91 L.05 1.03 3.24 5.65 7.70
(353) 5.90

845 L.0o 8.55 1.75 11.0 1u.ho
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V NOTES ON THE DESIGN OF A NETWORK ANALYZER FOR THE SOLUTION OF

PARTIAL DIFFERENTIAL EQUATIONS

The Cal Tech Electric Analog Computor was conceived as a general
purpose computor within the limitation that an analog computor is
only useful for the solution of problems for which an electricai
'analogy exists. It was recognized that there are many important pro-
‘blems in which there are a large nﬁmber of degrees of freedom and so
the computor was designed to eventually include one hundred each‘of
resistors, inductors and capacitors as well as a large nﬁmber of trans-
formers. At present the computor includes eighty of each of the pas-
sive impedance elements and twenty-five transformers. Fof the solu~
tion of non-linear problems and ﬁhe analysis of control éystems, a
large number of special electronic devices including amplifiers,
multipliers and function generators were also provided for.32 All
elements were designed to operate accurately in the frequehcy.range
from ten cycles to one thousand cycles per second.

Thevrequirements of a computor that could be described as a gen-
eral partial differential equation analyzer are not met by the Cal
Tech Electric Analog Computor. The one important'fact is that such
an analyzer requires an enormous numberbof passive impedahce elements.
This has.been borne  out by the examples that have been included in
‘this thesis. With the eighty inductors available a total of forty
nodes can be represented in the solution of a plane potential problem,
while with the few transformers available a total of twelve nodes can
:be represented in the solution of an elastic plate problem. In spite
of these limitations a variety of problems can be solved with an accur-

acy that is surprising to a person unacquainted with the finite differ-
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ence technique.

An estimate can be formed as to the number of elements that would
be necessary for the solution of different kinds of problems. Pro-
blems with one space coordinate can be adequately solved with the num-
ber of elements now available in the computor which is, moreover,

‘ adﬁirablyvsuited to thé solution of non-linear one dimensional pro-
bléms because of its large stock of non-linear devices., The radia-
tion‘problems described in section 3.7 probably require more elements
vthan any other type of plane potential problem. It was shoﬁn that'
twelve cells per radial wave length is a minimum requirement and that
the representation of two wave lengths will usually be adequéte; For
radiators that are unsymmetrical with respect to their equétorial
vplane it would be desirable to have 25 cells in the © direction.
Hence a total of 625 cells or 1250 inductors would be adequate for
the solution of this type of(problem. In section 4.7 the opinibn was
formed that most elastic plate problems can be soived with 120 cells.
For such a network 240 high quality transformers and 480 inductors
would be required. As a tentative estimate one is forced to the con-
clusion that a network analyzer for the solution of.partial differ-
ential equations would require approximately 1000 inductors; 1000
resistors, 500 capaciﬁors and 250 high quality transforhers.

The methods of construction employed in the present Cal Tech
computor could not be used in the design of a partial differential
equation computor. In the present computor the quality of the elements
was not sacrificed to their cost and the limitation of physically
available space was not a serious problem. The passive elements are

located in racks, = thirty elements to a L' x 6' rack — and are
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intercoﬁnected by means of plug-boards. The inductors cost approxi-
mately one hundred dollars each. A partial differential equation
computor constructed along these lines would be unreasonably expen-
sive and physically immense.

A precedent exists for the type of computor that has been envis-
ioned. Thié is fhé Nethrk Analyzer consiructed at Stanford University
for the solution of Electromagnetic Field Problems.22 Although this
nefwork analyzer is a special purpose computor the economics of its
construction are very impressive. The rectangular netwofk cqnsiSting
of over 1000 coils with fixed values of inductance was constructed
for $2,000. The‘cylindrical network with 1300 coils in tﬁelﬁe stand-
ard sizes from 2QO to 2L00 uh Waé constructed for $6,500. These
economies were achieved by using air-core coils consisting of only a
few turns of wire, by using standard 350 uufd trimmer condensers
variable from 50 to 500 uufd and by operating the network in a range
of freQuencies from 20KC to 300 KC. The nétwofk so constructed i§
soméwhat’rigid in its possible applications and the excéptionally
high frequency introduces problems that it would be desirable to avoid.
However, the economies achieved recommend this type of construction
to a very serious consideration. |

It is certain that some modificatioh‘of the method of intercon-
.nebting the Stanford computor must be adopted in the design of a
partial differential equation computor, In the Stanford Computor the
electrical elemeﬁts are physically located in the same way that they
are drawn in the circuit diagrams, The coils are Woundion forms which
fit into clips located at adjacent nodes. The result is an unusually

compact design.
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The type of partial differential equation computor envisioned
‘here would be considerably more flexible than that constructed at
Stanford. Besides solving plane potential problems it should be able
to solve the two dimensional problems of elasticity and elastic plate
problems. It should also be applicable to the solution of a certain
' nuﬁber bfvnon—linear ﬁrobleﬁs including compressible flow problems
and non-linear heat flow problems. The inclusion of elasticify pro-
blemé requires the use of a large number of essentially perfect trans-
formers which cannot be constructed to operate at high freqﬁencies;
The maximum frequency for the efficient operation of these trans-
formers will determine the operating frequency of the comput;r.:

The measurement technique on a very high frequency computor must
necessarily be cruﬁe in order to eliminate parasitic capacitances}
Such a limitation is unfavorable for the rapid solution of problems.
The metering system in the present Cal Tech Computor includes pﬁsh—
button relays by which any element in the computof can instantly be
metered by a single operator. This is a wvery desirable feature but
may be impractical in a computor with a very large number of elements.

The elements in the proposed computor should bé variable but
should be small‘in size and relatively inexpensive. Instead of build-
ing up elements out of fixed impedances that are set by fap switches,
as is done at present, it will probably be expedient to use contin-
uously variable elements that are calibrated every time that they
are adjusted. A system for the routine calibration of elements could
be devised easily. This provision would reduce the bulk of the ele-
ments and also reduce their total cost. It is easy to see how contin-

uously variable resistors and capacitors can be constructed but the
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design of continuously variable inductors is a more difficult problem.
The design of high quality transformers and coils that are both small
in size and inexpensive are the major problems that must be solved
in the design of a computor for the solution of partial differential
equations. The systems of interconnection, metering and current input
arevimportént secondary problems,

The operating frequency range that represents the best cdmprémise

is probably included between 1000 and 20,000 cps.
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