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ABSTRACT

Accompanying the technological advances of the past decade has been the
promise for widespread growth of autonomous systems into nearly all domains
of human society, including manufacturing, transportation, and healthcare. At
the same time, there have been several tragic failures that reveal potential risks
with the expansion of autonomous systems into everyday life, and indicate that
it is vital for safety to be accounted for in the design of control systems.

This thesis seeks to develop a theory of robust safety-critical control for au-
tonomous systems. This theory will be built upon the foundational tools of
Control Lyapunov Functions (CLFs) and Control Barrier Functions (CBFs),
which provide a powerful paradigm for the design of model-based safety-critical
controllers. The dependence of CLF and CBF-based controllers on a system
model makes them susceptible to modeling inaccuracies, potentially resulting
in unsafe behavior when deploying these controllers on real-world systems.

In this thesis I present methods for resolving four classes of model inaccura-
cies referred to as model error, disturbances, measurement error, and input
sampling, which are commonly faced challenges when designing controllers for
robotic systems. The proposed methods are unified by their shared use of
CLFs and CBFs to produce controllers possessing rigorous and robust safety
guarantees that can be demonstrated in simulation or experimentally. A hall-
mark of these methods is a focus on enabling control synthesis through convex
optimization, which ensures that controllers can be efficiently computed on
real-world robotic hardware platforms.

In addressing model error, I consider both data-driven learning approaches
and adaptive control approaches. I present three episodic learning frameworks
that iteratively augment existing CLF and CBF-based controllers specified via
convex optimization problems to improve the stability and safety properties of
a system, which I demonstrate in simulation and experimentally. I also estab-
lish a relationship between the degradation of stability and safety properties
with the magnitude of residual learning error through the perspective of Input-
to-State Stability (ISS) and Input-to-State Safety (ISSf). Lastly, I develop an
adaptive safety-critical control framework for systems with parametric model
error through the notion of adaptive CBFs.
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In addressing disturbances, I resolve challenges in balancing performance and
robustness with ISSf-based controllers through the notion of Tunable Input-
to-State Safety (TISSf), which permits prioritizing robustness to disturbances
only when safety requirements are close to being violated. I demonstrate the
capabilities of TISSf-based control design experimentally on an autonomous
semi-trailer truck system that is subject to input disturbances due to com-
plex unmodeled actuator dynamics. Lastly, I develop a framework for achiev-
ing ISSf-like finite-time safety guarantees for discrete-time systems subject to
stochastic disturbances through the use of CBFs and convex optimization.

In addressing measurement error, I develop the notion of Measurement-Robust
CBFs (MR-CBFs), which permit control synthesis through convex optimiza-
tion in the presence of imperfect measurements. I demonstrate the capability
of MR-CBFs on an experimental Segway system using a vision-based measure-
ment system, validating the tractability of using controllers specified through
increasingly complex classes of convex optimization problems on real-world
systems. Lastly, I present an application of Preference-Based Learning (PBL)
in tuning the robustness parameters of a CBF-based controller, demonstrating
the first use of PBL with CBFs and providing a tool for tuning the safety and
performance of the robust controllers proposed in this thesis.

In addressing input sampling, I consider both sampled-data and event-triggered
paradigms for modeling input sampling. I provide a method for synthesiz-
ing CLF-based controllers for sampled-data systems by integrating feedback
linearization with approximate discrete-time models, leading to a significant
improvement over continuous-time CLF-based controllers implemented with
input sampling. I then develop a framework for achieving safety of sampled-
data systems through approximate discrete-time models through the notion
of practical safety and Sampled-Data CBFs (SD-CBFs), which I demonstrate
with convex-optimization based controllers in simulation. Lastly, I develop
a method for event-triggered safety-critical control that uses ISSf to achieve
safety while satisfying the requirement of a minimum interevent time.

Collectively, these contributions constitute a significant advance in the theory
of robust safety-critical control by establishing a framework, unified by the use
of CLFs and CBFs in conjunction with convex optimization, that addresses a
wide class of challenges faced in the design of safety-critical control systems.
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C h a p t e r 1

INTRODUCTION

The goal of this thesis is to make progress towards a complete theory of ro-
bust safety-critical control for autonomous systems. The technological devel-
opments of the past decade have set the stage for the rapid proliferation of
autonomous systems that will fundamentally change the landscape of human
activity, including labor, transportation, and healthcare. It is estimated that
87% of hours spent on production activities performed by workers in manu-
facturing roles can be automated [1], while it is predicted that by 2030, 12%
of new passenger cars sold will feature L3+ autonomous driving technologies,
with that number increasing to 37% by 2035 [2]. At the same time, there
have been a number of high profile incidents of failures in autonomous driving
systems [3], [4], including some that have produced fatal accidents for both
passengers in the vehicle [5] and others outside the vehicle [6], [7]. These tragic
failures reveal the potential risks with the expansion of autonomous systems
into everyday life, and indicate that it is more important than ever for safety
to be accounted for in the design of control systems.

I will build this theory upon Control Lyapunov Functions (CLFs) [8], [9] and
Control Barrier Functions (CBFs) [10], [11], which are a foundation of model-
based safety-critical control theory, but which can break down when deployed
on real-world systems. The contributions of this thesis will extend the capabil-
ities of CLFs and CBFs to provide a coherent approach for synthesizing robust
safety-critical controllers that explicitly address the gap between system mod-
els and real-world systems. This direction is motivated by the fact that CLFs
and CBFs have been shown to be a promising tool for the constructive syn-
thesis of safety-critical controllers through a wealth of results demonstrating
their capabilities in experimental applications including mobile robots [12]–
[14], robotic swarms [15], autonomous aerial vehicles [16], robotic arms [17],
[18], robotic manipulators [19], brachiating robots [20], automotive systems
[21], quadrupedal robots [22], [23], and bipedal robots [24], [25].
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Figure 1.1. Ideal control system diagram.

The starting point of control design with CLFs and CBFs is often described by
the ideal control system seen in Figure 1.1. The system that is to be controlled
is captured by a nonlinear differential equation:

ẋ = f(x) + g(x)u, (1.1)

with state x ∈ Rn, input u ∈ Rm, and dynamics functions f : Rn → Rn and
g : Rn → Rn×m. The goal of control design is to produce a state-feedback
controller k : Rn → Rm that yields a closed-loop system:

ẋ = f(x) + g(x)k(x), (1.2)

displaying desired stability and safety properties.

In practice, real systems are subject to a number of discrepancies from this
ideal model, and are more accurately described by the control system seen
in Figure 1.2. This diagram highlights four challenges faced when designing
safety-critical controllers for real-world systems that I will address in this the-
sis. The first challenge, highlighted in red, is referred to as model error, and
refers to the fact that access to the true dynamics in (1.1) is not available when
designing a controller. Rather, a nominal model for the dynamics is utilized:

̂̇x = f̂(x) + ĝ(x)k(x), (1.3)

where the functions f̂ : Rn → Rn and ĝ : Rn → Rn×m are not necessarily equal
to their true counterparts f and g. The second challenge, highlighted in green,
is referred to as disturbances, and refers to both internal perturbations in the
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Nominal Model
d2(t)

Figure 1.2. Practical control system diagram featuring model error, disturbances, mea-
surement modules, and input sampling.

actuators of a system and external perturbations that are generally difficult
to model, leading to a nonlinear system with disturbances:

ẋ = f(x) + g(x)(k(x) + d1(t)) + d2(t), (1.4)

where d1 : R≥0 → Rm and d2 : R≥0 → Rn capture disturbance signals. The
third challenge, highlighted in purple, is referred to as measurement error, and
refers to the fact the state x is almost never perfectly measured and provided to
a controller. Rather, an estimate of the state x̂ is formed through potentially
imperfect measurement models and state estimators and used in a controller:

ẋ = f(x) + g(x)k(x̂). (1.5)

Notably, the system dynamics f and g depend on the true state of the system,
and thus if the estimate is imperfect, such that x̂ ̸= x, the controller may not be
using an accurate representation of the system dynamics. The last challenge,
highlighted in blue, is referred to as input sampling, and refers to the fact that
for cyber-physical systems such as robots, the underlying dynamics of the
system evolve according to a differential equation that is continuous in time,
while controllers are implemented on computing resources that are inherently
discrete-time in nature, leading to a mixture of continuous and discrete-time
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dynamics where inputs are held constant between sampling times tk and tk+1:

ẋ(t) = f(x(t)) + g(x(t))k(x(tk)), t ∈ [tk, tk+1). (1.6)

As I will show in the respective chapters of this thesis, neglecting these chal-
lenges in control design can lead to a failure to obtain the stability and safety
properties that make the paradigm of CLF and CBF-based control so powerful.
Thus, addressing these challenges will make substantial progress in developing
a theory of robust safety-critical control.

A key focus in my development of this theory will be on obtaining robust
safety-critical controllers that can be specified as convex optimization prob-
lems, which is a critical feature of the CLF and CBF-based control paradigm
[11], [26], [27]. The importance of this focus is best captured by the insightful
remark that “the great watershed in optimization isn’t between linearity and
nonlinearity, but convexity and nonconvexity” [28]. Convex optimization [29],
[30] provides a theoretically rigorous framework for minimizing a cost function
subject to a collection of problem-specific constraints, both of which must pos-
sess the important property of convexity. By satisfying these requirements, a
convex optimization problem enjoys two significant benefits. First, there ex-
ists strong statements about the ability to solve the problem numerically to an
arbitrary degree of accuracy with a complexity that is polynomial in the prob-
lem dimensionality [31], [32]. This is a vital property for safety-critical control
systems as decisions must often be made both accurately and quickly. Second,
there exists significant software infrastructure and commercial solvers includ-
ing tools such as CVXPY [33], YALMIP [34], ECOS [35], MOSEK [36], and
Gurobi [37], enabling not only rapid-prototyping of control systems, but robust
real-time implementations needed for real-world safety-critical systems. These
benefits suggest that extending the CLF and CBF-based control paradigm to
achieve robust theoretical guarantees and improved performance while pre-
serving convexity of the control synthesis process is a valuable endeavor.

Summary of Contributions
The contributions of this thesis are a collection of methods for addressing
the challenges of model error, disturbances, measurement error, and input
sampling in safety-critical control. Utilizing the design primitives of CLFs and
CBFs in conjunction with convex optimization, these methods constitute a
framework for robust safety-critical control that efficiently addresses a wide
set of challenges seen with real-world systems.
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Below I provide a statement of related works pertaining to each contribution
(identified by a bullet point). Note that a detailed discussion of related work
on each challenge is presented at the beginning of each chapter.

Chapter III: Learning & Adaptive Control for Nonlinear Systems
There has been a recent wealth of results addressing model error in safety-
critical control through data-driven learning techniques in conjunction with
CLFs [17], [38]–[41] and CBFs [16], [41]–[45]. I will focus on three directions
that have been unexplored in this work. The first is studying what properties
can ensure that CLFs and CBFs constructively synthesized for a nominal model
(such as with feedback linearization) can still be utilized in well-posed control
design for the true system, allowing learning to be used to augment a nominal
model-based controller that partially realizes a desired stability or safety task
encoded by a CLF or CBF. The second is utilizing the fact that only model
error that impacts the time derivative of a CLF or a CBF is relevant for
achieving stability or safety, respectively, and that learning model error in the
full-system dynamics is not required to achieve these objectives. The third
is analyzing the impacts of residual learning error in order to formalize a
relationship between learning accuracy and stability and safety.

• My first contribution is a collection of three episodic learning methods
that capture model error directly as it impacts the evolution of CLFs and
CBFs. I consider structural assumptions on the true system that enable
transferring CLFs and CBFs from a nominal model to the true system.
This allows me to utilize structured learning models that augment CLF
and CBF-based controllers specified via convex optimization problems
while preserving convexity and yielding significant improvements in sta-
bility and safety (Sections 3.3, 3.5, and 3.7). My second contribution is
a characterization of the impact of residual learning errors on stability
and safety built through the lens of Input-to-State Stability (ISS) and
Input-to-State Safety (ISSf) (Sections 3.4 and 3.6). I demonstrate the
episodic learning methods and analyze the effects of residual learning
error experimentally on a Segway and bipedal robotic system (Sections
3.5, 3.6, and 3.7).

Establishing the preceding contributions reveals that the frequent inability to
densely sample the control input space at a given state leads to potentially
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large worst-case residual learning errors associated with input directions not
seen in the data set. Conversely, residual learning error associated with input
directions seen in the data set tends to be significantly smaller, motivating
studying how to capitalize on these input directions during control synthesis.
The only work studying this question with CLFs and CBFs developed in par-
allel to my contributions and used Gaussian Process Regression (GPR) with
affine kernels and CLFs [46].

• My contribution is a data-driven control method that utilizes CLFs and
CBFs with robust convex optimization to ensure the stability and safety
of a system with only a partial characterization of model errors from data.
I integrate a characterization of possible model errors that are permitted
by a data set with CLF and CBF conditions to yield a controller specified
by a convex second-order cone program (SOCP) that I prove feasibility
results for and demonstrate in simulation (Section 3.8).

A key development in stabilizing adaptive control for nonlinear systems in
the presence of parametric model error was the concept of an adaptive CLF
introduced in [47] and further developed in [20], [48], [49]. Absent from this
work has been a focus on adaptively enforcing the forward invariance of a
particular set in the state space in the presence of parametric model error.

• My contribution is a method for safety-critical control of systems with
parametric model error. Inspired by [47], I achieve this by proposing
adaptive Control Barrier Functions as a tool for constructively synthe-
sizing adaptive controllers that render a particular set in the state space
forward invariant. I highlight challenges in adaptively ensuring forward
invariance that are not seen in adaptive stabilization through a coun-
terexample, and demonstrate the method in simulation (Section 3.9).

Chapter IV: Disturbance-Robust Safety Critical Control
The notion of CBFs that are robust to disturbances have primarily focused
on incorporating bounds on the worst-case disturbance in the controller to
enforce forward invariance of a particular set [50]–[55], which can often lead
to unnecessarily conservative behavior if the bounds are not tight. Building
upon the notion of Input-to-State Stability (ISS) [56], [57], an alternative
notion of robustness that describes the expansion of a forward invariant set in
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the presence of disturbances was captured by Input-to-State Safety (ISSf) and
ISSf-CBFs in [58]. A challenge with robust control design through ISSf-CBFs
is that it can still be difficult to balance meaningful safety guarantees (a small
expansion of the forward invariant set) with conservativeness (restricting the
system to deep within a forward invariant set), as I explore in Section 4.2.

• My contribution is an extension of ISSf-CBFs in the form of Tunable
Input-to-State Safe CBFs (TISSf-CBFs), which permit robust yet per-
formant control synthesis in the presence of disturbances (Section 4.3). I
provide a thorough analysis and design of a TISSf-CBF-based controller
that is experimentally demonstrated on a semi-trailer truck, the first
demonstration of a CBF-based controller on such a system (Section 4.4).

Early work studied the impact of stochastic disturbances on stability guaran-
tees through the perspective of Lyapunov functions [59], which was extended
to the setting of barrier functions and set invariance in [60], [61]. The advent
of CBFs in [11], [62] has led to a wide set of results addressing the safety of sys-
tems with stochastic disturbances, both in continuous-time [43], [63]–[71] and
discrete-time systems [69], [72]. While the work in [69] considers using CBFs to
provide finite-time safety guarantees for discrete-time systems with stochastic
disturbances using tools from [59], it did not address how to synthesize control
policies given a CBF for a system with stochastic disturbances.

• My contribution is an approach for synthesizing control policies given a
CBF for a discrete-time system with stochastic disturbances. Inspired by
both [69] and [59], I propose a method for establishing ISSf-like finite-
time safety guarantees for discrete-time systems subject to stochastic
disturbances. I explore how convexity properties of a CBF can be used
to permit convex optimization-based controllers that provide such safety
guarantees, which are demonstrated in simulation (Section 4.5).

Chapter V: Measurement-Robust Safety Critical Control
The work in [50] was the first to consider the impact of measurement errors
on CBF-based controllers by incorporating the covariance of an unscented
Kalman filter into the standard CBF inequality as an additive robustness
term. Subsequently, additional work has considered measurement noise using
stochastic differential equations [66], required a restricted sub-tangentiality
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condition on the boundary of a set that is to be kept forward invariant [73], or
studied measurement error using interval arithmetic and incremental stability
[74]. Absent from these works was a consideration of the interaction between
measurement errors and convexity as it impacts the control synthesis process.

• My contribution is the definition of Measurement-Robust CBFs (MR-
CBFs), which permit safe control synthesis through convex optimization
in the presence of measurement errors (Section 5.2), and the experimen-
tal demonstration of an MR-CBF-based controller specified via a convex
SOCP on a Segway platform using a vision-based measurement system
(Section 5.3). This experimental demonstration validates that the con-
trollers proposed throughout this thesis that are specified via increasingly
complex classes of convex optimization problems can be solved efficiently
enough to be deployed on real-world hardware platforms.

Preference-Based Learning (PBL) provides an approach for searching complex
parameter spaces via subjective feedback, without an explicitly defined reward
function [75]. In the context of control systems, there has recently been sig-
nificant effort in developing PBL approaches for tuning existing tools built
from control theory [76]–[80]. Notably, the use of PBL to tune parameters of
CBF controllers to balance the tradeoff between conservativeness in safety and
performance has yet to be considered.

• I will present an application of PBL to tune robustness parameters of a
CBF-based controller to achieve both safe and performant behavior on
an experimental quadrupedal robotic system. My particular contribu-
tions are the conceptualization of the idea to use PBL to tune robustness
parameters in a CBF-based controller, and an analysis of safety guar-
antees using reduced-order models in the presence of disturbances and
measurement error (Section 5.4). This work highlights a tool for tuning
the robust safety-critical control methods presented in this thesis.

Chapter VI: Sampled-Data & Event-Triggered Control
A key development in the design of stabilizing controllers for sampled-data
systems came with the framework using approximate discrete-time models
proposed in [81], [82], which led to a wide range of results focused on synthe-
sizing controllers for sampled-data systems using approximate discrete-time
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models [83]–[88]. This work has not addressed the design of controllers for
sampled-data systems with approximate discrete-time dynamics using CLFs
and convex optimization, which I highlight the importance of by demonstrat-
ing the fragility of continuous-time CLF-based controllers specified through
convex optimization to input sampling in Section 6.2.

• My contribution is an extension of the work in [81] that uses approximate
discrete-time models in conjunction with CLFs to synthesize stabiliz-
ing convex optimization-based controllers that significantly outperforms
continuous-time CLF-based controllers. I address how a CLF synthesized
for a system’s continuous-time dynamics through feedback linearization
possesses the necessary properties of a CLF for a set of approximate
discrete-time dynamics, and show how stability of zero-dynamics is pre-
served with input sampling, providing a full practical stability result for
a partially feedback linearizable system (Section 6.3).

There has been a number of recent works exploring safety-critical control for
sampled-data systems from the perspective of CBFs, [19], [73], [74], [89]–[93]
much of which has taken an emulation approach, where an additive correction
term is factored in to the standard continuous-time CBF inequality. This
correction term often relies on Lipschitz constants of the system dynamics
and bounds on the control inputs, which can be difficult to produce, and
over-approximations will often lead to conservative behavior that can only be
resolved with exceptionally high sample rates [90]. None of this work has
considered using approximate discrete-time models along the lines of the work
in [81], which often works exceptionally well even at low sample rates [94].

• My contribution is a method for studying safety of sampled-data systems
using approximate discrete-time models. I propose a notion of practical
safety and Sampled-Data CBFs that can be utilized with approximate
discrete-time models to enable safety-critical control synthesis through
convex optimization (Section 6.4), which I demonstrate in simulation.

Event-triggered control is a paradigm for effectively using actuation resources
when it is costly to switch the inputs to the system [95]. The work devel-
oped in [96] utilized Input-to-State Stable Lyapunov functions (ISS-LFs) to
capitalize on inherent robustness in a continuous-time system to produce a
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stabilizing event-triggered control implementation while maintaining a mini-
mum interevent time (MIET), which ensures that events (and input switching)
do not occur arbitrarily close together [97]. Notably, event-triggered work us-
ing CBFs has primarily focused on how they can be used to improve stability
[89], [98], rather than trying to enforce the forward invariance of a specific set.

• My contribution is a method for safety-critical control of event-triggered
systems. Drawing inspiration from [96], I utilize the concept of ISSf
barrier functions to provide guarantees of both safety and a minimum
interevent time, which I show in simulation (Section 6.5).

Outline of Thesis
Chapter II: Background presents a review of background material on core
tools from nonlinear control theory that will be utilized throughout this thesis,
including nonlinear dynamics, stability, safety, CLFs, feedback linearization,
CBFs, nonlinear dynamics with disturbances, ISS and ISSf, and their corre-
sponding variants of CLFs and CBFs. While this section is not a contribution
of the thesis, it provides pedagogical examples highlighting some of the finer
points of these concepts.

Chapter III: Learning & Adaptive Control for Nonlinear Systems
presents my first set of contributions on the topic of addressing model error
as it impacts safety-critical control. I begin by exploring related work ad-
dressing model error in the context of CLF and CBF-based controllers as well
safety-critical adaptive control. Next, I present a description of general and
parametric model error. In Section 3.3 I present an episodic learning method
for mitigating model error in the time derivative of a CLF, and establish
theoretical results on the robustness of stability to residual learning error in
Section 3.4. I extend this episodic learning method to the setting of CBFs in
Section 3.5 with an experimental demonstration on a Segway platform, and
provide theoretical safety guarantees in the presence of residual learning error
in Section 3.6. In Section 3.7 I study some of the challenges with the preced-
ing learning method for high-dimensional systems, and propose an alternative
episodic learning method that overcomes these challenges and is demonstrated
experimentally on a bipedal robotic platform. Building off of these previous
results, in Section 3.8 I present a data-driven control method that meets sta-
bility or safety requirements in the presence of a partial characterization of
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model error from data using robust convex optimization. Lastly, in Section
3.9, I provide a method for safety-critical control in the presence of parametric
model error through the notion of adaptive CBFs (aCBFs). I conclude with
thoughts on directions for future work.

Chapter IV: Disturbance-Robust Safety-Critical Control presents my
second set of contributions on the topic of addressing robustness to distur-
bances in safety-critical control. I begin by exploring related work on disturbance-
robust safety critical control and safety-critical control in the presence of
stochastic disturbances. In Section 4.2 I present some of the limitations of
ISSf and ISSf-CBFs as posed in [58] regarding robustness and performance.
Drawing inspiration from this, in Section 4.3 I present an extension of ISSf in
the form of Tunable Input-to-State Safety (TISSf), which prioritizes robustness
to disturbances near the boundary of a set that is to be kept forward invariant
as opposed to equally throughout the set. After demonstrating TISSf on a
simple inverted pendulum example, in Section 4.4 I present a detailed deploy-
ment of TISSf-based controllers on an experimental semi-trailer truck, once
again showing that TISSf can achieve safety in the presence of disturbances
without significantly conceding performance. Lastly, in Section 4.5 I present
a method for safety-critical control of discrete-time systems in the presence of
stochastic disturbances. I conclude with directions for future work.

Chapter V: Measurement-Robust Safety-Critical Control presents my
third set of contributions on the topic of addressing robustness to measurement
errors in safety-critical control. I begin by exploring related work in the areas
of measurement-robust safety critical control and the tuning of controllers us-
ing PBL. In Section 5.2 I present a definition of Measurement-Robust Control
Barrier Functions (MR-CBFs) that enable robust control synthesis through
convex optimization for systems with measurement errors. Following this, in
Section 5.3 I present the integration of MR-CBFs with backup set CBF meth-
ods and an experimental demonstration of a MR-CBF controller specified via
a SOCP on an experimental Segway system. Lastly, in Section 5.4 I present
results on using PBL to tune disturbance and measurement robustness param-
eters in a CBF-based controller to achieve both safety and performance.

Chapter VI: Sampled-Data & Event-Triggered Control presents my
fourth set of contributions on the topic of addressing robustness to sampling
in safety-critical control. I will begin exploring related work in the areas
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of sampled-data control through approximate discrete-time models, sampled-
data control and feedback linearization, and event-triggered control. In Section
6.2 I highlight the fragility of continuous-time CLF-based controllers specified
through convex optimization to sampling with simulation results and define
the sampled-data and event-triggered sampling paradigms. Following this, in
Section 6.3 I present the design of stabilizing controllers using approximate
discrete-time models and CLFs through convex optimization, with a focus
on how feedback linearizability of a continuous-time system can produce a
CLF for an approximate discrete-time model. I revisit the simulation settings
in Section 6.2, showing that the proposed control approach greatly outper-
forms the continuous-time approach. In Section 6.4 I present a framework for
safety-critical sampled-data control using approximate discrete-time models
and CBFs. I develop notions of practical safety, Sampled-Data barrier func-
tions, and Sampled-Data CBFs, which I use to produce controllers through
convex optimization that I demonstrate in simulation. Lastly, in Section 6.5,
I present a framework for event-triggered safety-critical control. I review sta-
bilizing event-triggered control as presented in [96], and show how naïvely
transferring the methods of this paper to the safety-critical setting fail to
produce a minimum interevent time with a counterexample. I then propose
modifications that yield both safety and a minimum interevent time, which I
demonstrate in simulation. I conclude with directions for future work.

Chapter VII: Conclusion provides my final conclusions, as well as a discus-
sion on future work that extends beyond the results presented in the thesis.

1.1 General Mathematical Outlook

This section briefly presents the mathematical methodology of robust control
that will be utilized throughout this thesis. There are two primary goals of
this presentation. The first is to highlight the two fundamental perspectives on
robustness that underlie the collection of results in this thesis. It is my hope
that readers will discover that many challenges in robust safety-critical control
are connected by the types of outcomes that can be produced through robust
control synthesis. The second is to preface the technical contributions of each
section in an effort to prepare a reader with an idea of the destination that
mathematical developments are building towards. This math in this section
is presented at an informal level, and should be interpreted to serve merely
as a collection of guide posts to the more rigorous theoretical descriptions
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provided in the subsequent chapters. A reader well-versed in nonlinear sys-
tems, Control Lyapunov Functions (CLFs), Control Barrier Functions (CBFs),
Input-to-State Stability (ISS), and Input-to-State Safety (ISSf) will find the
details of this section establish a conceptual understanding of what types of
technical contributions will be made in this thesis, while readers newer to these
concepts will be best served by reading the background material in Chapter 2
before returning to this section.

Nonlinear Dynamics

Consider a nonlinear control-affine system:

̂̇x = f̂(x) + ĝ(x)u, (1.7)

with state x ∈ Rn, input u ∈ Rm, and functions f̂ : Rn → Rn and ĝ : Rn →
Rn×m. Given a controller k : Rn → Rm, we may define a closed-loop system:

̂̇x = f̂(x) + ĝ(x)k(x). (1.8)

Assume that for any initial condition in x0 ∈ Rn, there exists a unique contin-
uously differentiable solution φ : R≥0 → Rn solving this closed-loop system.

Stability & Safety

Stability and safety properties for these types of system will be encoded
through a scalar function C : Rn → R that is continuously differentiable on
Rn. More specifically, stability and safety properties will require that:

Stability limt→∞ |C(φ(t))| = 0
Safety C(φ(t)) ≤ 0, ∀t ∈ R≥0

Table 1.1. General stability and safety properties.

Achieving this goal through control will rely on the fact that the time derivative
of C can be expressed as:

̂̇C(x,u) = ∂C

∂x
(x)
(
f̂(x) + ĝ(x)u

)
, (1.9)

noting that the input u appears. Consequently, we will seek to design a con-
troller k : Rn → Rm that satisfies:

̂̇C(x,k(x)) ≤ −αC(x), (1.10)
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for some α ∈ R>0, as such a controller will lead to the stability and safety prop-
erties defined above. The ability to find a controller satisfying this inequality
will be the special property that defines the function C as a CLF or CBF in the
settings of stability and safety, respectively. An optimization-based controller
structure that will serve as a starting point for more complex robust control
formulations that enforce this derivative inequality will be given by:

k(x) = argmin
u∈Rm

∥u− knom(x)∥2 (1.11)

s.t. ̂̇C(x,u) ≤ −αC(x), (1.12)

where knom : Rn → Rm is some nominal controller. Importantly, this controller
is specified by a convex quadratic program, ensuring that it can be efficiently
implemented on real-world hardware platforms.

Modeling Inaccuracies

The modeling inaccuracies of model error, disturbances, measurement error,
and input sampling will lead to a deviation from the nominal model in (1.7)
in various ways. Instead, let us consider a nonlinear control-affine system:

ẋ = f̂(x) + ĝ(x)u+∆(x,u, t), (1.13)

with a function ∆ : Rn×Rm×R≥0 → Rn capturing a general perturbation to
the nominal model in (1.7). Note that this general perturbation not only can
depend on the state of the system, but it may depend on the input and time.
Given a controller k : Rn → Rm, denote the closed-loop system:

ẋ = f̂(x) + ĝ(x)k(x) +∆(x,k(x), t), (1.14)

and assume that for any initial condition x0 ∈ Rn, there exists a unique
continuously differentiable solution φ : R≥0 → Rn to this closed-loop system.
The time derivative of C is given by:

Ċ(x,u, t) =
∂C

∂x
(x)
(
f̂(x) + ĝ(x)u

)
︸ ︷︷ ︸̂̇C(x,u)

+
∂C

∂x
(x)∆(x,u, t)︸ ︷︷ ︸

δ(x,u,t)

. (1.15)

Observe that the perturbation ∆ affects the time derivative of C in the form of
δ and will play a role in the ability to achieve stability and safety properties.
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No Robustness

The idea of robustness can be seen as living on a spectrum. At one end, we
can forgo any effort in ensuring our control design is robust to ∆ by designing
a controller that simply satisfies (1.10). Consequently, we have that:

Ċ(x,k(x), t) ≤ −αC(x) + δ(x,k(x), t). (1.16)

The presence of the term δ(x,k(x), t) without further assumptions will typi-
cally lead to a failure in rigorous stability and safety guarantees, such that one
may have an unstable or unsafe system:

Unstable limt→∞ |C(φ(t))| =∞
Unsafe ∃ t ∈ R≥0 s.t. C(φ(t)) > 0

Table 1.2. General unstable and unsafe properties.

Absolute Robustness

At the opposite end of the spectrum is an absolute form of robustness, in which
we will seek to design a controller k : Rn → Rm such that:

Ċ(x,k(x), t) ≤ −αC(x), (1.17)

and therefore we will recover the desired stability and safety properties by
effectively eliminating the affect of δ on the time derivative of C. This per-
spective on robustness is akin to binary notion of robustness in linear systems
theory [99], in which a system is either stable, or unstable. In this case, the
nonlinear system is either stable (safe), or unstable (unsafe). As we will see
in this thesis, this perspective on robustness typically leads to more complex
controllers that account for the value of δ(x,k(x), t) when specifying k.

Partial Robustness

In between these two ends of the robustness spectrum is an approach that
seeks to manage the degradation of stability or safety properties. In particular,
control design is done to produce controllers that achieve:

Ċ(x,k(x), t) ≤ −αC(x) + δ(x,k(x), t) ≤ −αC(x) + δ, (1.18)

for some δ ∈ R≥0. By achieving such a bound, one may establish the following
partially robust stability and safety properties for a function R : R≥0 → R≥0:
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Partially Robust Stability ∃ t∗ ∈ R≥0 s.t. |C(φ(t))| ≤ R(δ) ∀t ≥ t∗

Partially Robust Safety C(φ(t)) ≤ R(δ) ∀t ∈ R≥0

Table 1.3. General partially robust stability and safety properties.

An important property of the function R is that limδ→0+ R(δ) = 0, such that
for small perturbation bounds δ, the degradation in stability and safety prop-
erties is small. This concept of robustness was first proposed in [56] in the form
of Input-to-State Stability (ISS) and later as Input-to-State Safety (ISSf) in
[58]. Instead of trying to completely eliminate δ(x,k(x), t), one tries to man-
age it to some value (δ) that is tolerable in terms of its impact on stability and
safety properties. While I will explicitly use the technical definitions of ISS
and ISSf throughout this thesis when addressing disturbances (for which they
were originally posed), I will also make use of this idea of relaxing stability
and safety guarantees in a amount proportional to a perturbation at a con-
ceptual level throughout this thesis for settings outside of disturbances (such
as residual learning error and input sampling effects).

No Robustness Partial Robustness Absolute Robustness

Section 3.8:

Section 3.9:

Sections 5.2-5.3:Section 6.5:
Measurement-Robust CBFs

Data-Driven Control

Adaptive CBFs

Event-Triggered Safety
Section 6.4:
Sampled-Data Safety

Section 6.3:
Sampled-Data Stability

Section 5.4:
Preference-Based Learning

Section 4.5:
Stochastic Safety

Sections 4.3-4.4:
Tunable Input-to-State Safety

Sections 3.3-3.7:
Learning CLFs & CBFs

Section 2.7:
Input-to-State Stability & Safety

Figure 1.3. Spectrum of robustness properties of results presented in this thesis.

Chapter 3: Model Error

In Chapter 3 I will explore the problem of model error. In Sections 3.3-3.8 I
will consider a general form of model error yielding the perturbation:

∆(x,u) = f(x)− f̂(x)︸ ︷︷ ︸
f̃(x)

+(g(x)− ĝ(x))︸ ︷︷ ︸
g̃(x)

u, (1.19)
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with unknown functions f : Rn → Rn and g : Rn → Rn×m which capture
the true dynamics of the system. These unknown functions lead to the model
error terms f̃ : Rn → Rn and g̃ : Rn → Rn×m. Importantly, the time derivative
of the function C will be given by:

Ċ(x,u) = ̂̇C(x,u) +
δ(x,u)︷ ︸︸ ︷

∂C

∂x
(x)f̃(x)︸ ︷︷ ︸
b(x)

+
∂C

∂x
(x)g̃(x)︸ ︷︷ ︸
a(x)⊤

u . (1.20)

As previously noted, neglecting the function δ can lead to unstable and unsafe
behavior.

Sections 3.3-3.6: Learning CLFs and CBFs

The focus in Sections 3.3 (CLFs and stability) and 3.5 (CBFs and safety) will
be attempting to learn the functions b and a using data-driven estimators,
such that an estimator for δ can be constructed as follows:

δ̂(x,u) = b̂(x) + â(x)⊤u ≈ b(x) + a(x)⊤u, (1.21)

with δ̂ : Rn × Rm → R, b̂ : Rn → R, and â : Rn → Rm. The control-affine
form of this estimator is explicitly enforced in its construction to ensure that
it can be integrated into a convex optimization-based controller:

k(x) = argmin
u∈Rm

∥u− knom(x)∥2 (1.22)

s.t. ̂̇C(x,u) + b̂(x) + â(x)⊤u ≤ −αC(x).

Challenges that arise due to non-independently and identically distributed
training data will motivate constructing the estimator δ̂ in an episodic manner
in which data is collected, learning models are trained, a new controller is
synthesized using the learning models, and the new controller is deployed to
produce additional data that is aggregated with previous data. The learning-
informed controllers will enforce that:

Ċ(x,k(x)) ≤ −αC(x) +

δ′(x,k(x))︷ ︸︸ ︷
b(x)− b̂(x)︸ ︷︷ ︸

b̃(x)

+(a(x)− â(x))⊤︸ ︷︷ ︸
ã(x)⊤

k(x) . (1.23)

Notably, residual learning error leads to the function δ′ appearing, which will
still degrade the properties of stability and safety. In Sections 3.4 (Projection-
to-State Stability) and 3.6 (Projection-to-State Safety), I will establish theo-
retical stability and safety properties of the form:
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Proposition 1 (Informal). For a sufficiently large (and problem dependent)
set D ⊆ Rn, we have that:

|δ′(x,k(x))| ≤ δ ∀x ∈ D =⇒


Section 3.4

∃ t∗ ∈ R≥0 s.t.

|C(φ(t))| ≤ R(δ) ∀t ≥ t∗
,

Section 3.6 C(φ(t)) ≤ R(δ) ∀t ∈ R≥0.

This informal result captures the fact that when using CLF and CBF-based
controllers, residual learning error present after identifying the functions b and
a with corresponding estimators leads to degradation in stability and safety
properties that is proportional to the magnitude of residual learning error.
Importantly, small residual learning errors do not lead to catastrophic failures
in stability and safety. This is aligned with the notion of partial robustness
described above.

Section 3.7: Projected Disturbance Learning

In Section 3.7 I will explore some of the challenges related to data richness that
arise using the control-affine learning models in Sections 3.3-3.6. In particular,
given a data point (xi,ui, Ċi) ∈ Rn×Rm×R, there are infinitely many values
of the estimators b̂(xi) and â(xi) that satisfy:

Ċi =
̂̇C(xi,ui) + b̂(xi) + â(xi)

⊤ui, (1.24)

as the problem can be viewed as an underdetermined linear system. In the ab-
sence of a variety of inputs in the data set (which is typical of high-dimensional
systems), this challenge can lead to poor estimators and a large residual learn-
ing error bounds δ that significantly degrade stability and safety properties.
Instead, given a controller k : Rn → Rm, a purely state-based estimator can
be constructed:

δ̂(x) ≈ b(x) + a(x)⊤k(x). (1.25)

This estimator is built to capture the difference between Ċ and ̂̇C using the par-
ticular controller k. Importantly, it does not have the same underdetermined
problem that appeared with the control-affine estimator and its accuracy can
be evaluated when it is built. The estimator can subsequently be integrated
into an optimization-based controller as follows:

k′(x) = argmin
u∈Rm

∥u− knom(x)∥2 (1.26)

s.t. ̂̇C(x,u) + δ̂(x) ≤ −αC(x).
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A consequence of this state based approach is that we then have that:

Ċ(x,k′(x)) ≤ −αC(x)− δ̂(x) + δ(x,k′(x))︸ ︷︷ ︸
δ′(x)

, (1.27)

such that a new perturbation δ′ : Rn → R appears due to using the new
controller k′, while the estimator δ̂ was built based on information from us-
ing the previous controller k. Despite this difference, the structure of the
optimization-based controller k′ will enable the following result:

Proposition 2 (Informal). If the estimator δ̂ is an accurate estimator of the
function δ(·,k(·)), then:

∥a(x)∥ ≤
∥∥∥∥∂C∂x(x)ĝ(x)

∥∥∥∥ and δ̂(x) ≤ 0 =⇒ Ċ(x,k′(x)) ≤ Ċ(x,k(x)). (1.28)

The key part of this result is the first part of the precedent, which states that
the model error affecting the input to the system is small compared to how the
nominal model says input will affect the system. If this true, and the estimator
δ̂ built using the previous controller k indicates the system is not meeting the
necessary inequality on Ċ at the state x (the second term in the precedent),
the new controller k′ will improve upon the stability and safety of the system
at the state x.

Section 3.8: Data-Driven Control

In Section 3.8 I will explore an alternative approach to resolving the issues with
control-affine estimators by using robust convex optimization. I will construct
a convex set U(x) ⊂ Rm+1 of all possible values of the model errors (b(x), a(x))
that are permissible with a data set:

(b(x), a(x)) ∈ U(x). (1.29)

These sets can be integrated into an optimization-based controller as:

k(x) = argmin
u∈Rm

∥u− knom(x)∥2 (1.30)

s.t. ̂̇C(x,u) + q + p⊤u ≤ −αC(x), ∀(q,p) ∈ U(x).

This controller has an infinite number of constraints (one for each (q,p) ∈
U(x)). Addressing this leads to the following result:
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Proposition 3 (Informal). The controller k can be represented as a finite-
dimensional convex second-order cone program (SOCP) and under Lipschitz
continuity assumptions of f̃ and g̃, leads to:

Ċ(x,k(x)) ≤ −αC(x). (1.31)

This result state that is possible to tractably implement the robust controller,
and by doing so, ensure that stability and safety requirements are satisfied for
the true values of the model error (b(x), a(x)). I note that this aligns with
the form of absolute robustness described above, where the original stability
or safety requirement is still met in the presence of a perturbation.

Section 3.9: Adaptive CBFs

In Section 3.9 I consider a special form of parametric model error of the form:

∆(x) = F(x)θ⋆, (1.32)

where F : Rn → Rn×p is a known collection of basis functions and θ⋆ is an
unknown vector of parameters. I note that this setting does not consider model
error impacting how input affects the system. Motivated by the work studying
adaptive CLFs in [47], I will consider an adaptive control approach for ensuring
safety. In particular, I will explore controllers that maintain an estimate of
the parameters, θ̂ ∈ Rp, and update them according to an adaptation law:

˙̂
θ = τ (x, θ̂), (1.33)

where τ : Rn × Rp → Rp is the adaptation law. This will result in the
definition of adaptive Control Barrier Functions, which lead to optimization-
based controllers of the form:

k(x) = argmin
u∈Rm

∥u− knom(x)∥2 (1.34)

s.t. ̂̇C(x,u) + ∂C

∂x
(x)F(x)θ̂ ≤ 0,

that utilize the parameter estimate θ̂ and a (stronger in this case) bound on
the time derivative of C. This type of adaptation law and controller lead to
the following result:

Proposition 4 (Informal). For any initial parameter estimate θ̂0 ∈ Rp, there
exists an update law (with potentially high adaptive gains) such that the con-
troller k enforces:

C(φ(t)) ≤ 0, ∀t ∈ R≥0. (1.35)
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This result states that it is possible to produce an adaptation law and con-
troller that ensures a system remains safe in the presence of potentially large
parametric model errors. Furthermore, this is an instance of absolute robust-
ness, where a safety requirement is met despite the perturbation ∆.

Chapter 4: Disturbances

In Chapter 4 I will explore the problem of disturbances. In Sections 4.2-4.4 I
will consider a perturbation of the form:

∆(x, t) = g(x)d1(t) + d2(t), (1.36)

with matched disturbance signal d1 : R≥0 → Rm and unmatched disturbance
signal d2 : R≥0 → Rn. The difference between matched and unmatched dis-
turbances will matter in transferring CLFs and CBFs for systems without
disturbances to systems with disturbances. Both types of disturbance signal
can capture a very large class of unstructured perturbations to a system, and
are generally assumed not to have any known underlying structure that might
be identifiable with data. The time derivative of the function C is given by:

Ċ(x,u, t) = ̂̇C(x,u) +
δ(x,t)︷ ︸︸ ︷

∂C

∂x
(x) (g(x)d1(t) + d2(t)) . (1.37)

Once again, ignoring δ can lead to unstable and unsafe behavior.

Section 4.2 Limits of Input-to-State Safety

In Section 4.2 I will explore some of the limitations of the partial robustness
notion of Input-to-State Safety (ISSf). In particular, ISSf-based design focuses
on producing a controller k : Rn × R>0 → Rm such that:

Ċ(x,k(x, ϵ), t) ≤ −αC(x) + δ(ϵ), (1.38)

where ϵ ∈ R>0 is a robustness parameter that determines the size of the
perturbation δ(ϵ) related to disturbances in the time derivative of Ċ. As ISSf
is a notion of partial robustness, this leads to the outcome that:

C(φ(t)) ≤ R(δ(ϵ)), ∀t ∈ R≥0. (1.39)

In this way, it is possible to change the degradation of safety guarantees
through the parameter ϵ.
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In practice, this design approach struggles to balance performance and theoret-
ical safety guarantees. In particular, for small values of ϵ, one achieves a strong
theoretical statement about safety, such that R(δ(ϵ)) ≈ 0, but the closed-loop
system displays extremely conservative behavior, such that C(φ(t)) << 0 for
all t ∈ R≥0. For large values of ϵ, one does not have that C(φ(t)) << 0, such
that performance is recovered, but instead vacuous safety guarantees occur as
the value of R(δ(ϵ)) can be quite large.

Sections 4.3 and 4.4: Tunable Input-to-State Safety

In Sections 4.3 and 4.4 the limits of ISSf will be approached by viewing the
robustness parameter ϵ as a function of the value of C(x). This will allow
prioritizing robustness when the system is close to unsafe (ϵ(C(x)) is small
when C(x) ≈ 0) and relaxing robustness when the system is very safe (ϵ(C(x))
is large when C(x) << 0). In particular, a bound of the from:

Ċ(x,k(x, ϵ(C(x))), t) ≤ −αC(x) + δ(ϵ(C(x))), (1.40)

will be achieved. Theoretical safety properties with this modification will be
encoded by Tunable Input-to-State Safety, leading to a result of the form:

Proposition 5 (Informal). For a monotonically decreasing function ϵ : R→
R>0, the controller k : Rn×R>0 → Rm using a parameter function ϵ : R→ R>0

leads to a safety result of the form:

C(φ(t)) ≤ R(δ(ϵ(C(φ(t))))) ≈ 0, (1.41)

without leading to C(φ(t)) << 0 for all t ∈ R≥0.

This result states that Tunable Input-to-State Safety allows for tuning con-
trollers to achieve strong theoretical safety properties (the right-hand side of
the preceding equation is approximately 0) while not requiring that the sys-
tem display excessive degrees of conservativeness in maintaining safety. This
makes Tunable Input-to-State Safety appealing for designing controllers that
enforce partial robustness as it also allows for strong performance.

Section 4.5: Stochastic Disturbances

In Section 4.5 I will consider safety of discrete-time systems of the form:

xk+1 = F(xk,uk) + dk, k ∈ Z≥0, (1.42)
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where F : Rn × Rm → Rn and dk is a stochastic disturbance signal that is
distributed according to some distribution D, such that dk ∼ D. Given a
controller k : Rn → Rm, one may consider a closed-loop system:

xk+1 = F(xk,k(xk)) + dk, k ∈ Z≥0, (1.43)

which is assumed to have a solution φ : Z≥0 → Rn for any initial condition
x0 ∈ Rn and sufficiently well-behaved sequence of random disturbances. The
potential for unbounded disturbance signals (such as disturbances drawn from
a Gaussian distribution) will motivate the need to consider a notion of finite-
time safety, in which an inequality on C(φ(k)) will only need to be met for
some finite values of k with some probability. Pursuing this will lead to a
result of the following form:

Proposition 6 (Informal). If a controller k : Rn → Rm leads to a closed-loop
system satisfying:

E[C(xk+1)]− C(xk) ≤ −αC(xk) + δ(D), k ∈ Z≥0, (1.44)

then we have that for any K ∈ Z≥0:

P[C(φ(k)) ≤ R(δ(D)) for all k ≤ K] ≥ 1− ϵ(D, K). (1.45)

This result states that if a bound on the expected increment of the value
of C can be achieved, the probability of meeting a given safety requirement
(R(δ(D))) for a finite number (K) of time-steps can be lower-bounded. This is
a form of partial robustness, as it allows the value of C to increase above 0, and
only holds over a finite-time horizon. This work will further explore how such
a controller k can be designed using convex optimization, and what additional
modifications must occur to enforce the desired expectation condition.

Chapter 5: Measurement Error

In Chapter 5 I will explore the problem of measurement error. In Sections
5.2-5.4 I will consider a perturbation of the form:

∆(x,u) = f(x+ e(x))− f(x) + (g(x+ e(x))− g(x))u, (1.46)

where e : Rn → Rn is an unknown function capturing error in the estimate of
the state used by a controller. This perturbation can be seen as replacing the
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dynamics of the system with the dynamics of the system at the state x+e(x),
but the controller only has access to the state x.

Sections 5.2 and 5.3: Measurement-Robust CBFs

The focus in Sections 5.2 and 5.3 is on designing safety-critical controllers
in the presence of measurement error. To accomplish this, this setting will
be based on access to a state-based measurement y = p(x) ∈ Rp. This
measurement may be low-dimensional and directly include parts of the state,
or it may be high-dimensional, such as an image, and need to be converted
into a low-dimensional representation of the system state. Consequently, it
will be assumed that given a measurement y, an estimate of the state x can
be produced (though the state dynamics still use x+e(x)). It will be assumed
that accompanying the measurement y is an error set E(y), such that it is
known that:

e(x) ∈ E(y). (1.47)

This assumption states that given a measurement y, we can form an estimate
of the state x and know that the error e(x) is restricted to the set E(y). It
will additionally be assumed that the error set satisfies the following property:

sup
e∈E(y)

∥e∥ ≤ ϵ(y), (1.48)

for a known function ϵ : Rp → R≥0, such that it is known that ∥e(x)∥ ≤ ϵ(y).
This construction will lead to the following result:

Proposition 7 (Informal). There exists minimum values of the parame-
ters a, b ∈ R≥0 such that for all larger values, the convex second-order cone
program-based controller:

k(x,y) = argmin
u∈Rm

∥u− knom(x)∥2 (1.49)

s.t. ̂̇C(x,u) + (b+ a∥u∥)ϵ(y) ≤ −αC(x),

enforces:
C(φ(t)) ≤ 0, t ∈ R≥0. (1.50)

This results states that by incorporating the bound ϵ(y) on the measurement
error into the controller design, it is possible to meet the safety requirement
without needing to access e(x). This is a form of absolute robustness, as the
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original safety requirement is met despite the perturbation. Furthermore, this
controller is parameterized (in terms of a and b), and there is minimal values
of these parameters beyond which robust guarantees are achieved.

Section 5.4: Preference-Based Learning

The disturbance and measurement-robust controllers explored in Chapters 4
and 5 are often defined using a collection of robustness parameters (ϵ for
disturbance robustness and a, b for measurement robustness). As multiple
forms of robustness are built into a controller, it often leads to excessively
conservative behavior as the system is robust to more than it needs to be at
any given point in time. Tuning the robustness parameters is often a tedious
task, and control designers often have a limited understanding of how the
parameters interact to balance performance and robustness. Motivated by
this challenge, Section 5.4 explores how feedback on performance and robust
safety from a human control designer can be used to automate the process
of tuning control gains using preference-based learning. In particular, I will
consider controllers of the form:

k(x) = argmin
u∈Rm

∥u− knom(x)∥2 (1.51)

s.t. ̂̇C(x,u) + ϕ(x,u,θ) ≤ −αC(x),

with a robustness function ϕ : Rn×Rm×Rp → R≥0 capturing multiple forms
of robustness (disturbance and measurement error) and robustness parameters
θ ∈ Rp. The robustness function ϕ will be constructed using the formulations
for disturbance and measurement robustness to ensure this controller is defined
by a convex optimization problem. This controller construction will lead to
the following observation:

Proposition 8 (Informal). Utilizing human feedback and preferences about
closed-loop performance and safety, preference-based learning can be success-
fully used to iteratively tune the parameters θ to achieve safety of the form:

C(φ(t)) ≤ R(δ(θ)) ≈ 0, (1.52)

without requiring that C(φ(t)) << 0.

This result states that it is possible to automate the process of tuning ro-
bustness parameters using feedback about a control designer’s qualitative ob-
servations about performance and safety properties to achieve strong safety
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results without requiring that the system display excessive degrees of conser-
vativeness. This result, while more algorithmic and experimental in nature, is
promising as it may be deployed with many of the robust control approaches
in this thesis which may be parameterized.

Chapter 6: Input Sampling

In Chapter 6 I will explore the problem of input sampling. In Sections 6.3-6.5
I will consider a perturbation of the form:

∆(x,u, t) = −g(x)u+ g(x)u(tk), ∀t ∈ [tk, tk+1), (1.53)

where tk, tk+1 ∈ R≥0 are sequential sample times with tk < tk+1, and u(tk) is
the input applied to the system at time tk. I note that this type of pertur-
bation requires more care in modeling in this continuous-time formulation as
multiple points in time must be considered, but the approach taken in this
thesis will actually not begin its investigation by considering input-sampling
as a perturbation to a continuous-time system.

Sections 6.3 and 6.4: Approximate Discrete-Time Model Design

Instead of viewing input sampling from a continuous-time perspective, I will
view it from a discrete-time perspective. Given a sample period T ∈ R>0

separating sample times (tk+1 − tk = T ), the evolution of a sample-and-hold
system can be described by:

xk+1 = Fe
T (xk,uk) = xk +

∫ tk+1

tk

f(φ(τ)) + g(φ(τ))uk dτ, (1.54)

where uk is the input taken at sample time tk, and φ is the continuous-time
solution of the system under the sample-and-hold input. The function Fe

T is
known as the exact discrete-time map, and is generally difficult to compute
due to requiring an integral of general nonlinear functions. Motivated by the
work in [81], I will consider design using an approximation Fa

T : Rn×Rm → Rn:

Fa
T (xk,uk) ≈ Fe

T (xk,uk). (1.55)

In order to achieve theoretical stability and safety properties, the approxima-
tion will need to satisfy a one-step consistency property defined as:

∥Fe
T (xk,uk)− Fa

T (xk,uk)∥ ≤ Tρ(T ), (1.56)

for sufficiently small sample periods T , where ρ : R≥0 → R≥0 is monotonically
increasing and satisfies ρ(0) = 0. This property dictates the accuracy required
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by the approximation, stating that it must more accurately represent the exact
discrete-time map for smaller sample periods. I will demonstrate that stan-
dard approximation schemes such as Euler approximations and Runge-Kutta
approximations satisfy this property, and thus can be used in control design
while preserving stability and safety properties. In particular, I will develop
results of the form:

Proposition 9 (Informal). If the approximate discrete-time map Fa
T is one-

step consistent with the exact discrete-time map Fe
T , then for controllers of the

form:

kT (xk) = argmin
u∈Rm

∥u− knom(xk)∥2 (1.57)

s.t. C(Fa
T (xk,u))− C(xk) ≤ −TαC(xk),

we have stability properties of the form:

lim
k→∞
|C(φ(tk))| ≤ R(T ), (1.58)

and safety properties of the form:

C(φ(tk)) ≤ R(T ), (1.59)

for all k ∈ Z≥0.

There are a number of interesting observations about this result. First observe
that the controller considers a finite difference of the value of C across one sam-
ple period using an approximate discrete-time map, and the inequality with
the difference scales with the sample period. This differs from the continuous-
time formulations used in the previous chapters. Next, the stability and safety
properties are of a partial robustness form, as the violation of stability and
safety scales with the sample period, and can be made arbitrarily small with
sufficiently small sample periods. Lastly, the stability and safety guarantees
hold at the sample-times, and do not make statements about inter-sample
behavior (this can be done with additional analysis of this framework if so de-
sired). The unique variations in these controllers and properties arise because
rather than trying to view input sampling as a perturbation in continuous-time
dynamics, a completely different paradigm of design is taken using approxi-
mations of discrete-time systems. Lastly, a key focus in this work will be in
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ensuring that the controller in the preceding proposition is specified by a con-
vex optimization problem, and I will observe that different classes of convex
optimization problems arise due to the class of approximation and geometry
of stability and safety constraints, which is not seen in continuous-time.

Section 6.5: Event-Triggered Safety

In Section 6.5 I will explore a different paradigm of input-sampling known as
event-triggered control. In this setting, input-sampling is actually introduced
to a continuous-time system (it is assumed the controller could be implemented
continuously in time) in an effort to conserve actuation resources. In particu-
lar, this problem setting is concerned with minimizing costs that happen due
to switching the input to the system.

The goal in event-triggered control will be to determine a trigger-law that
dictates how sampling times are specified:

tk+1 = min{t ≥ tk | ρ(∥x− x(tk)∥) = 0}, (1.60)

where ρ : R≥0 → R is defined to ensure that:

Ċ(x(t),uk) ≤ −cαC(x(t)), (1.61)

where x(t) is the continuous-time evolution of the state at a time t ≥ tk using
the constant input uk, and c ∈ (0, 1). This states that a continuous-time con-
troller implementation that meets the original inequality on Ċ is implemented
with a sample-and-hold implementation that is updated to meet a relaxed in-
equality. In this sense, inherent robustness in the continuous-time controller
is being traded for more efficient use of actuation resources.

The burden of proof in this setting is to ensure the existence of a minimum
interevent time (MIET), such that the trigger law leads to the existence of some
τ ∈ R>0 such that tk+1 ≥ tk+ τ . This is not only important for ensuring there
is some efficiency benefit to an event-triggered implementation, but it also
is important for eliminating undesirable Zeno-like behavior, where infinitely
many events occur in a finite amount of time. Exploring this challenge will
lead to the following result:

Proposition 10 (Informal). There exists a function ρ : R≥0 → R such that
the corresponding trigger-law leads to a minimum interevent time and a safety
guarantee of the form:

C(φ(t)) ≤ ϵ, (1.62)
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where ϵ ∈ R>0 may be taken arbitrarily small at the expense of a smaller
minimum interevent time.

This result states that it is possible to use event-triggered implementations of
CBF-based controllers and satisfy a partial robustness property that can be
tuned to be an arbitrarily small degradation of the original safety property.
The cost for making this degradation smaller is a potentially smaller minimum
interevent time, which may degrade resource efficiency. The key challenge that
is addressed in this result is regulating the behavior of the system when it is on
the boundary between safe and unsafe states (C(x) = 0, where motion along
the boundary can lead to a failure to have an MIET.
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C h a p t e r 2

BACKGROUND

In this chapter I will present various background materials in nonlinear con-
trol systems that underlie my contributions presented later in this thesis. I
will begin by reviewing nonlinear dynamics and the properties of stability and
safety that are often an objective of control design. I next review Control Lya-
punov Functions (CLFs) as a tool for stabilizing control synthesis, followed
by feedback linearization as a constructive tool for synthesizing both stabiliz-
ing controllers and CLFs. I then proceed to review Control Barrier Functions
(CBFs) as a tool for safe control synthesis. Following this, I review nonlinear
dynamics with disturbances, the robustness properties of Input-to-State Sta-
bility (ISS) and Input-to-State Safety (ISSf), and corresponding variants of
CLFs and CBFs for achieving these properties.

2.1 Nonlinear Dynamics

Let E ⊆ Rn be an open set and consider a nonlinear control-affine system:

ẋ = f(x) + g(x)u, (2.1)

with state x ∈ E, input u ∈ Rm, and functions f : E → Rn and g : E → Rn×m

assumed to be locally Lipschitz continuous on E. This system is referred to
as an open-loop system, as the input u is unspecified. Let k : E → Rm be a
controller that is locally Lipschitz continuous on E. This controller yields the
following closed-loop system:

ẋ = f(x) + g(x)k(x). (2.2)

As the functions f , g, and k are locally Lipschitz continuous on E, for any ini-
tial condition x0 ∈ E there exists a maximal time interval I(x0) = [0, tmax(x0))

and a unique continuously differentiable solution φ : I(x0)→ E satisfying:

φ̇(t) = f(φ(t)) + g(φ(t))k(φ(t)), (2.3)

φ(0) = x0, (2.4)

for all t ∈ I(x0) [100], [101].
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A specific set of nonlinear dynamics that I will consider in various contributions
in this thesis are robotic system dynamics. The state of a robotic system will
be described by a set of nc generalized coordinates q ∈ Q ⊆ Rnc , where Q is
referred to as the configuration space, and a set of nc generalized coordinate

rates q̇ ∈ Rnc , yielding the state x ≜
[
q⊤ q̇⊤

]⊤
∈ Q × Rnc ≜ X ⊆ Rn. The

dynamics of a robotic system are governed by the Euler-Lagrange equations:

D(q)q̈+C(q, q̇) +G(q) = B(q)τ , (2.5)

with positive definite inertia matrix D : Q → Snc
≻0, Coriolis matrix C : X →

Rnc , gravitational matrix G : Q → Rnc , actuation matrix B : Q → Rnc×m,
and input torques τ ∈ Rm. The functions D,G, and B are assumed to be
locally Lipschitz continuous on Q and the function C is assumed to be locally
Lipschitz continuous on X . These dynamics can be written in the form of
(2.1) as follows:

d
dt

[
q

q̇

]
︸ ︷︷ ︸

ẋ

=

[
q̇

−D(q)−1(C(q, q̇) +G(q))

]
︸ ︷︷ ︸

f(x)

+

[
0nc

D(q)−1B(q)

]
︸ ︷︷ ︸

g(x)

τ︸︷︷︸
u

, (2.6)

noting that the functions f and g are locally Lipschitz continuous on X as the
matrix inverse is a locally Lipschitz continuous function [102, Theorem 9.8].
Lastly, a robotic system is said to be fully-actuated if m = nc and the matrix
B(q) is full-rank for each q ∈ Q.

2.2 Stability & Safety

The concept of stability has long been a focus in studying dynamic systems
[103], and is often an important objective in control design. Stability properties
of the closed-loop system (2.2) are defined with respect to an equilibrium point,
which is captured in the following definition:

Definition 1 (Equilibrium Point). A point xe ∈ E is said to be an unforced
equilibrium point of the open-loop system (2.1) if:

f(xe) = 0n. (2.7)

A point xe ∈ E is said to be a forced equilibrium point of the open-loop system
(2.1) if there exists a ue ∈ Rm such that:

f(xe) + g(xe)ue = 0n. (2.8)
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A point xe ∈ E is said to be an equilibrium point of the closed-loop system
(2.2) if:

f(xe) + g(xe)k(xe) = 0n. (2.9)

This enables the following definition of exponential stability [100]:

Definition 2 (Exponential Stability). Let xe ∈ E be an equilibrium point of
the closed-loop system (2.2). The closed-loop system (2.2) is said to be locally
exponentially stable with respect to xe if there exist an open set D ⊆ E with
xe ∈ D and M,λ ∈ R>0 such that:

x0 ∈ D =⇒ = ∥φ(t)− xe∥ ≤M∥x0 − xe∥e−λt (2.10)

for all t ∈ R≥0.

Note the requirement for local exponential stability that the unique continu-
ously differentiable solution φ exists for all time. If it is possible to find an
open set D′ ⊆ E with xe ∈ D′ such that:

x0 ∈ D′ =⇒ = ∥φ(t)− xe∥ ≤M∥x0 − xe∥e−λt. (2.11)

for all t ∈ I(x0), then an open set D ⊆ D′ with xe ∈ D and a compact set K
with D ⊂ K ⊂ D′ can be found such that for any initial condition x0 ∈ D,
φ(t) ∈ K for all t ∈ I(x0), and thus I(x0) = R≥0. [101, Chapter 2.4, Corollary
2]. This is a useful requirement in the definition of stability as it establishes a
well-posedness when discussing the evolution of the system (2.2) for all time.

The notion of safety I will consider for nonlinear dynamic systems is codified
through the concept of forward invariance [104]:

Definition 3 (Forward Invariance & Safety). A set C ⊆ E is said to be
forward invariant for the closed-loop system (2.2) if for any initial condition
x0 ∈ C, we have that φ(t) ∈ C for all t ∈ I(x0). If a set C is forward for the
closed-loop system (2.2), then the closed-loop system (2.2) is said to be safe
with respect to C.

If a closed-loop system (2.2) is safe with respect to a compact set C, then
I(x0) = R≥0 for any initial condition x0 ∈ C [101, Chapter 2.4, Corollary 2],
and thus φ(t) ∈ C for all t ∈ R≥0.
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2.3 Control Lyapunov Functions

Lyapunov theory is a fundamental tool for both certifying stability properties
of nonlinear systems and constructively synthesizing stabilizing controllers. I
will begin by reviewing exponential Lyapunov functions and their connection
with exponential stability [100]:

Definition 4 (Exponential Lyapunov Function). Let xe ∈ E be an equilib-
rium point of the closed-loop system (2.2). A function V : E → R≥0 that
is continuously differentiable on E is said to be a local exponential Lyapunov
function for the closed-loop system (2.2) and equilibrium point xe if there exist
an open set D ⊆ E with xe ∈ D and k1, k2, k3, a ∈ R>0 such that:

k1∥x− xe∥a ≤ V (x) ≤ k2∥x− xe∥a, (2.12)

V̇ (x) ≜
∂V

∂x
(x)f(x)︸ ︷︷ ︸

LfV (x)

+
∂V

∂x
(x)g(x)︸ ︷︷ ︸

LgV (x)

k(x) ≤ − k3∥x− xe∥a, (2.13)

for all x ∈ D.

Exponential Lyapunov functions enable the certification of exponential stabil-
ity, as codified in the following theorem [100, Theorem 4.10]:

Theorem 1. Let xe ∈ E be an equilibrium point of the closed-loop system
(2.2). If there exists a local exponential Lyapunov function V : E → R≥0

for the closed-loop system (2.2) and equilibrium point xe, then the closed-loop
system (2.2) is locally exponentially stable with respect to xe.

A converse result to this preceding theorem establishes the existence of a local
exponential Lyapunov function for a system that is locally exponentially stable
under mild regularity assumptions [100, Theorem 4.14]:

Theorem 2. Let xe ∈ E be an equilibrium point of the closed-loop system
(2.2), and suppose that the functions f ,g, and k are continuously differentiable
on E. If the closed-loop system (2.2) is locally exponentially stable with respect
to xe, then there exists a local exponential Lyapunov function V : E → R≥0

for the closed-loop system (2.2) and equilibrium point xe with a = 2 and cor-
responding open set D ⊆ E. Furthermore, there exists a k4 ∈ R>0 such that:∥∥∥∥∂V∂x (x)

∥∥∥∥ ≤ k4∥x− xe∥, (2.14)

for all x ∈ D.
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A result arising from the existence of a local exponential Lyapunov function
pertains to the existence and uniqueness of solutions when a controller is not
locally Lipschitz continuous at the equilibrium point xe [105, Theorem 1.2]:

Theorem 3. Let xe ∈ E be an equilibrium point of the closed-loop system
(2.2), and suppose that the function k : E → Rm is continuous on E, but only
locally Lipschitz continuous on E \ {xe}. If there exists a local exponential
Lyapunov function V : E → R≥0 for the closed-loop system (2.2) and equi-
librium point xe, then for the initial condition x0 = xe, there exists a unique
continuously differentiable solution φ : R≥0 → E to the closed-loop system
(2.2) given by φ(t) = xe for all t ∈ R≥0.

This result states that if a controller is not locally Lipschitz continuous at the
equilibrium point xe, but a local exponential Lyapunov function exists for the
closed-loop system (2.2) and equilibrium point xe, then an issue with non-
uniqueness of solutions for the closed-loop system (2.2) does not arise from
the initial condition xe. This precludes the pedagogical closed-loop system:

ẋ = f(x) = x
2
3 , (2.15)

which is not locally Lipschitz continuous at the equilibrium point xe = 0, and
has two solutions from the initial condition x0 = 0 given by φ1(t) = 0 and
φ2(t) =

(
t
3

)3 for all t ∈ R≥0. It is straightforward to see this system is not
locally exponentially stable (it is unstable), and thus we could not find a local
exponential Lyapunov function V that would certify that φ1(t) = 0 for all
t ∈ R≥0 is the unique solution from x0 = 0. This further shows how stability
and Lyapunov functions play a role in ensuring the existence and uniqueness
of solutions to the differential equations describing the system dynamics.

A powerful tool for jointly synthesizing both an exponentially stabilizing con-
troller and a corresponding local exponential Lyapunov function as a certifi-
cate of that exponential stability is the notion of a local exponential Control
Lyapunov Function (CLF). CLFs were first introduced in [8] and were sub-
sequently used to constructively synthesize stabilizing controllers in [9] and
[106]. Their use in synthesizing exponentially stabilizing controllers through
convex optimization was first considered in [26], [107]. I will explore how CLFs
can be synthesized using feedback linearization in Section 2.4, but other recent
work has synthesized CLFs using proportional-derivative (PD) control [108].
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Definition 5 (Control Lyapunov Function (CLF)). Let xe ∈ E be an un-
forced or forced equilibrium point of the open-loop system (2.1). A function
V : E → R≥0 that is continuously differentiable on E is said to be a local
exponential Control Lyapunov Function (CLF) for the open-loop system (2.1)
and equilibrium point xe if there exist an open set D ⊆ E with xe ∈ D, and
k1, k2, k3, a ∈ R>0 such that:

k1∥x− xe∥a ≤ V (x) ≤ k2∥x− xe∥a, (2.16)

inf
u∈Rm

V̇ (x′,u) ≜ LfV (x′) + LgV (x′)u < − k3∥x′ − xe∥a, (2.17)

for all x ∈ D and all x′ ∈ D \ {xe}.

There are a few notable observations to make about the definition of a local
exponential CLF. First, I note that a local exponential CLF is constructed
with respect to the open-loop system (2.1), rather than the closed-loop system
(2.2). Because of this, local exponential CLFs serve as a statement about how a
dynamic system could be stabilized. Defining stability properties still requires
specifying a controller k and producing a closed-loop system. This distinction
will be important in Chapter 3 when understanding the well-posedness of
addressing model error using local exponential CLFs.

Second, I note the strict inequality used in (2.17). This strict inequality is con-
sistent with the original definition of CLFs in [8, Theorem 4.1], and the more
recent definition in [51, Definition 1]. The importance of this strict inequality
is two-fold. First, the infimum in (2.17) may not be attained, and thus if the
inequality was non-strict, it may be impossible to produce a controller that
meets the exponential Lyapunov condition in (2.13) (for a particular value
of k3). Second, the strictness of this inequality is important when establish-
ing local Lipschitz continuity of controllers synthesized via local exponential
CLFs, as seen in [51, Theorem 1]. Furthermore, this strict inequality contrasts
with the non-strict inequality appearing in (2.13). Satisfying the non-strict
inequality is sufficient for ensuring stability of a closed-loop system, while the
importance of the strict inequality is in synthesizing controllers to go from an
open-loop system to a closed-loop system that satisfies the non-strict inequal-
ity. Lastly, the positive definiteness of a local exponential CLF as enforced by
(2.16) requires that the gradient of the local exponential CLF with respect to
the state vanishes at the equilibrium point xe, implying that V̇ (xe,u) = 0 for
all u ∈ Rm. Thus, the strict inequality in (2.13) cannot be enforced at this
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point, and thus it is omitted from consideration. This omission is acceptable
because any controller k : E → Rm satisfies V̇ (xe,k(xe)) = 0, meeting the
condition (2.13) for stability at the point xe.

Third, I note that the infimum condition in (2.17) can be equivalently rewritten
as the following implication:

LgV (x′) = 0m =⇒ LfV (x′) < −k3∥x′ − xe∥a, (2.18)

for all x′ ∈ D \ {xe}. This alternative perspective provides a geometrical in-
terpretation of the local exponential CLF condition (2.17). In the set of states
which the time derivative of the exponential CLF can not be manipulated
through the choice of control input (x′ satisfies the precedent), the unactu-
ated dynamics of the system (given by f) must display the necessary stability
properties (the antecedent). This interpretation will be useful later in Section
3.8 for proving feasibility results for optimization-based controllers synthesized
via local exponential CLFs in the presence of model error.

The utility of local exponential CLFs is in their characterization of exponen-
tially stabilizing inputs and subsequent role as local exponential Lyapunov
functions. Given a local exponential CLF for the open-loop system (2.1) and
equilibrium point xe, define the following pointwise set:

KCLF(x) =
{
u ∈ Rm | V̇ (x,u) ≤ −k3∥x− xe∥a

}
. (2.19)

This set leads to the following result [62], [109]:

Theorem 4. Let xe ∈ E be an unforced or forced equilibrium point of the
open-loop system (2.1), and let V : E → R≥0 be a local exponential CLF for
the open-loop system (2.1) and equilibrium point xe with corresponding open
set D ⊆ E. Then, the set KCLF(x) is non-empty for all x ∈ D, and for any
controller1 k : D → Rm that is continuous on D, locally Lipschitz continuous
on D\{xe}, renders xe an equilibrium point of the closed-loop system (2.2), and
satisfies k(x) ∈ KCLF(x) for all x ∈ D, the function V is a local exponential
Lyapunov function for the closed-loop system (2.2) and equilibrium point xe.

1The feedback linearization and optimization-based controllers I will work with in this
thesis will often not be naturally defined outside of an open set D ⊂ E, nor often can they
be extended beyond D while meeting regularity properties on all of E. When working with
these controllers it is natural to restrict the notion of the solutions to the closed-loop system
(2.2) to initial conditions x0 ∈ D and solutions φ : I(x0)→ D. Note that D is not the set
typically referred to as the “region of attraction” but rather contains the region of attraction.
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This result characterizes requirements on the controller k for which the ex-
ponential stability of (2.2) with respect to the equilibrium point xe can be
certified via the local exponential CLF V serving as a local exponential Lya-
punov function. Producing such a controller meeting the required regularity
properties was first considered in [9], wherein the notion of the small con-
trol property was proposed for unforced equilibrium points, and generalized in
[106, Definition 4.6] to forced equilibrium points in the form of the continuous
control property:

Definition 6 (Small Control Property (SCP)). Let xe ∈ E be an unforced
equilibrium point of the open-loop system (2.1), and let V : E → R≥0 be a
local exponential CLF for the open-loop system (2.1) and equilibrium point
xe. The local exponential CLF V is said to satisfy the small control property
(SCP) if for any ε ∈ R>0, there exists an open set D ⊆ E with xe ∈ D such
that for any x ∈ D \ {xe}, there exists a u ∈ Rm satisfying ∥u∥ < ε and:

V̇ (x,u) < −k3∥x− xe∥a. (2.20)

Definition 7 (Continuous Control Property (CCP)). Let xe ∈ E be a forced
equilibrium point of the open-loop system (2.1) for equilibrium input ue, and
let V : E → R≥0 be a local exponential CLF for the open-loop system (2.1)
and equilibrium point xe. The local exponential CLF V is said to satisfy the
continuous control property (CCP) if for any ε ∈ R>0, there exists an open set
D ⊆ Rn with xe ∈ D such that for any x ∈ D \ {xe}, there exists a u ∈ Rm

satisfying ∥u− ue∥ < ε and:

V̇ (x,u) < −k3∥x− xe∥a. (2.21)

These properties provide a statement about the behavior of a local exponential
CLF V as it approaches the equilibrium point xe. To highlight the importance
of the SCP in achieving the necessary regularity properties on a local expo-
nential CLF-based controller, consider the following simple example:

Example 1. Consider the simple scalar open-loop system:

ẋ = x+ x2u. (2.22)

The origin of this system is an unforced equilibrium point (xe = 0), and the
quadratic function V (x) = 1

2
x2 is a local exponential CLF for the open-loop
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system (2.22) and equilibrium point xe, as we have that:

inf
u∈R

V̇ (x, u) = inf
u∈R

x2 + x3u = −∞ (2.23)

for all x ∈ R \ {0}. The exponential CLF V does not satisfy the SCP. To see
this, consider an x ∈ R>0, and observe that the SCP condition (2.20) requires
that there exists a u ∈ Rm satisfying:

x2 + x3u < −k3xa ⇐⇒ u < −k3xa−3 − x−1. (2.24)

As x approaches 0 from the right, the input u must become unbounded in the
negative direction, and thus can not be made to satisfy |u| < ε for arbitrarily
small ε ∈ R>0 in some open set containing 0. Intuitively, we observe that in the
absence of input, the system (2.22) is an unstable linear system. Furthermore,
its input is multiplied by a quadratic term of the state. Thus, as x approaches
the origin, the magnitude of the input must become unbounded to compensate
for the faster decay of the quadratic term compared to the unstable linear term.

As I will discuss when exploring feedback linearization in the next section,
establishing that a local exponential CLF meets the small or continuous con-
trol property is often most easily done by constructing the local exponential
CLF through a controller k that is continuous at xe and for which xe is an
equilibrium point of the closed-loop system (2.2).

Let xe ∈ E be an unforced (ue = 0m) or forced equilibrium point with equilib-
rium input ue for the open-loop system (2.1), and let V be a local exponential
CLF for the open-loop system (2.1) and equilibrium point xe with correspond-
ing open set D ⊆ E. Consider the following optimization-based controller
kCLF : D → Rm, first introduced in [26], which is synthesized directly using
the local exponential CLF V :

kCLF(x) = argmin
u∈Rm

∥u− ue∥2 (CLF-QP)

s.t. V̇ (x,u) ≤ −k3∥x− xe∥a.

I make the following observations regarding this controller. First, for x = xe,
the constraint of the optimization problem is trivially satisfied for any value
of u, and thus the input that minimizes the cost function is u = ue, which
renders xe an equilibrium point of the closed-loop system (2.2). Second, the
cost function of the optimization problem defining the constraint is convex
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with respect to the input, and the function V̇ is affine in the input, making
this optimization problem a convex quadratic program (QP). The minimizing
solutions of these problems are well understood (there is a unique solution
to this particular optimization problem as the cost is strictly convex with re-
spect to the input), and they may be efficiently solved numerically [29], [110],
permitting their use on real-world systems such as bipedal walking platforms
[24], [107]. This optimization-based control framework will serve as a corner-
stone in the contributions of this thesis. Lastly, by construction, the resulting
closed-loop system (2.2) satisfies the local exponential Lyapunov function con-
dition (2.13), such that the closed-loop system is locally exponentially stable
by design. This is codified in the following result [51, Theorem 1]:

Theorem 5. Let xe ∈ E be an unforced (forced) equilibrium point of the
open-loop system (2.1) with equilibrium input ue, let V : E → R≥0 be a local
exponential CLF for the open-loop system (2.1) and equilibrium point xe with
corresponding open set D ⊆ E, let the function ∂V

∂x
: E → Rn be locally

Lipschitz continuous on D, and assume that V satisfies the small (continuous)
control property. Then the controller kCLF : D → Rm is continuous on D,
locally Lipschitz continuous on D \ {xe}, renders xe an equilibrium point of
the closed-loop system (2.2), and satisfies kCLF(x) ∈ KCLF(x) for all x ∈ D.

This result states that the CLF-QP controller meets the conditions of Theorem
4, and thus locally exponentially stabilizes the closed-loop system (2.2) with
respect to the equilibrium point xe.

2.4 Feedback Linearization

Feedback linearization is a geometric approach for synthesizing stabilizing con-
trollers for a special class of nonlinear systems [111], [112]. A feedback lineariz-
ing controller eliminates the nonlinear components in a subset of the system
dynamics, and replaces them with stable linear dynamics. While eliminating
nonlinear dynamics through control may result in less efficient controllers [109],
be fragile to model uncertainty [113], and induce unstable internal dynamics
[114], feedback linearization is an important constructive tool in nonlinear con-
trol design as it enables the synthesis of local exponential CLFs with which
efficient and robust control can be performed. My review of feedback lineariza-
tion will focus on only the elements necessary to support the contributions of
this thesis, and thus will begin from an advanced starting point rather than
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the usual starting point of defining a relative degree, but I note that a thorough
introduction to the material can be found in [111]. Following this definition, I
will provide a concrete example in the form of a fully-actuated robotic system.

I now provide the following definition of feedback linearizability [115]:

Definition 8 (Feedback Linearizability). Let xe ∈ E be an unforced or forced
equilibrium point of the open-loop system (2.1) with equilibrium input ue. The
open-loop system (2.1) is said to be locally feedback linearizable with respect
to the equilibrium point xe if there exists an open set D ⊆ E with xe ∈ D,
a function Φ : D → Rn that is a diffeomorphism2 between D and Φ(D)

satisfying Φ(xe) = 0n, constants γ, k ∈ Z>0 satisfying γ ≤ n and k ≤ m, a
controller kfbl : D × Rk → Rm that is locally Lipschitz continuous on D × Rk

and satisfies kfbl(xe,0k) = ue, a controllable pair (A,B) ∈ Rγ×γ × Rγ×k, and
functions fη : Φ(D) → Rγ, gη : Φ(D) → Rγ×m and ω : Φ(D) → Rn−γ that
are continuously differentiable3 on Φ(D) such that:

1. The functions fξ : Φ(D)→ Rn and gξ : Φ(D)→ Rn×m defined as:

fξ(ξ) ≜
∂Φ

∂x
(Φ−1(ξ))f(Φ−1(ξ)), gξ(ξ) ≜

∂Φ

∂x
(Φ−1(ξ))g(Φ−1(ξ)),

(2.25)

for all ξ ∈ Φ(D) satisfy:

fξ(ξ) =

[
fη(ξ)

ω(ξ)

]
, gξ(ξ) =

[
gη(ξ)

0n−γ

]
, (2.26)

for all ξ ∈ Φ(D).

2. We have that:

fη(ξ) + gη(ξ)kfbl(Φ
−1(ξ),ν) = Aη +Bν, (2.27)

for all ξ ∈ Φ(D) and ν ∈ Rk, where η ∈ Rγ and z ∈ Rn−γ satisfy
(η, z) = ξ.

2Φ : D → Rn is a diffeomorphism between D and Φ(D) if it is smooth on D, and there
exists an inverse function Φ−1 : Φ(D)→ D that is smooth on Φ(D). Note that this requires
that ∂Φ

∂x (x) is full rank for all x ∈ D.
3This assumption on fη, gη, and ω is typically stronger than necessary. It is made

here only to reason about stability using linearizations of ω. I note that if f and g are
continuously differentiable on E, then the smoothness of Φ implies these properties.
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If γ = n, the open-loop system (2.1) is said to be locally full-state feedback
linearizable with respect to the equilibrium point xe, and the function ω does
not appear in (2.26). The corresponding normal-form open-loop system is:

ξ̇ =

[
η̇

ż

]
≜

[
fη(ξ)

ω(ξ)

]
+

[
gη(ξ)

0n−γ

]
u = fξ(ξ) + gξ(ξ)u. (2.28)

The term ν is referred to as an auxiliary input to the controller kfbl. The
requirement that k ≤ m means that the number of outputs being feedback lin-
earized is less than or equal to the number of control inputs. The controllable
pair (A,B) are the linear dynamics achieved through feedback linearization,
and for which standard linear control design techniques such as pole-placement,
linear quadratic regulation (LQR), or robust control designs [99] can be used.
The constant γ captures the notion of a vector relative degree for the system,
while the function ω captures the internal dynamics that arise due to creat-
ing a linear relationship between control inputs and outputs through feedback
when γ < n. I will refer to ξ as the normal state, η as the output coordi-
nates, and z as the zero coordinates, and note I consider a specialized setting
of feedback linearization in which the dynamics of the zero coordinates do not
depend on the input u, which occurs frequently in robotics [116].

If ν is specified by an auxiliary controller kaux : Φ(D) → Rk that is locally
Lipschitz continuous on Φ(D) and satisfies kaux(0n) = 0k, then the definitions
in (2.25) imply that 0n is an equilibrium point of the closed-loop system:

ξ̇ = fξ(ξ) + gξ(ξ)kfbl(Φ
−1(ξ),kaux(ξ)). (2.29)

Defining k′
fbl : D → Rm as:

k′
fbl(x) = kfbl(x,kaux(Φ(x))), (2.30)

for all x ∈ D, observe that k′
fbl is locally Lipschitz continuous on D by the

smoothness of Φ and:

f(xe) + g(xe)k
′
fbl(xe) = 0n, (2.31)

such that xe is an equilibrium point of the closed-loop system (2.2) using the
controller k′

fbl.

More generally, (2.25) and the fact that ∂Φ
∂x

(xe) is full rank implies that xe is an
unforced (forced) equilibrium point of the open-loop system (2.1) if and only
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if the point 0n is an unforced (forced) equilibrium point of the normal-form
open-loop system (2.28), noting that this requires ω(0n) = 0n−γ whether the
equilibrium point is unforced or forced. Given a controller kξ : Φ(D) → Rm,
define a normal-form closed-loop system:

ξ̇ = fξ(ξ) + gξ(ξ)kξ(ξ). (2.32)

Similarly, 0n is an equilibrium point of the normal-form closed-loop system if
and only if xe is an equilibrium point of the closed-loop system (2.2) using
the controller k : D → Rm defined as k(x) = kξ(Φ(x)). The diffeomorphic
relationship between the closed-loop system (2.2) and normal-form closed-loop
system (2.32) allows for the following results regarding the perseverance of local
exponential stability4:

Theorem 6. Let the open-loop system (2.1) be locally feedback linearizable
with respect to an equilibrium point xe with corresponding open set D ⊆ E

with xe ∈ D and function Φ : D → Rn that is a diffeomorphism between D

and Φ(D) and satisfies Φ(xe) = 0n. Given a controller kξ : Φ(D)→ Rm that
renders 0n an equilibrium point of the normal-form closed-loop system (2.32),
the normal-form closed-loop system is locally exponentially stable with respect
to the equilibrium point 0n if and only if the closed-loop system (2.2) with the
controller k : D → Rm defined as k(x) = kξ(Φ(x)) is locally exponentially
stable with respect to the equilibrium point xe.

Considering the normal-form open-loop system (2.28), let K ∈ Rk×γ be a gain
matrix such that the matrix Acl ≜ A−BK is Hurwitz (all of its eigenvalues
have a negative real part). Such a gain matrix is guaranteed to exist as the
pair (A,B) is controllable [117]. Using the auxiliary controller kaux(ξ) = −Kη
implies the output coordinates of the closed-loop system (2.29) evolve as the
following output closed-loop system:

η̇ = fη(ξ) + gη(ξ)kfbl(Φ
−1(ξ),−Kη) = Aclη. (2.33)

Momentarily neglecting the dynamics of the zero coordinates, this output
closed-loop system is locally exponentially stable with respect to the unique
equilibrium point 0γ. In this way, a subset of the system dynamics can be

4I prove a similar result to this in Section 6.3, for which the proof steps can be followed
to establish this theorem.
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made into a stable linear system through an appropriate choice of feedback.
To achieve more efficient or robust control, this linearizing feedback can serve
as a starting point for synthesizing a CLF for the output open-loop system:

η̇ = fη(ξ) + gη(ξ)u, (2.34)

and equilibrium point 0γ. A core result in linear systems theory is that for
any positive definite matrix Q ∈ Sγ

≻0, there exists a unique positive definite
matrix P ∈ Sγ

≻0 satisfying the continuous-time Lyapunov equation (CTLE):

A⊤
clP+PAcl = −Q. (2.35)

For a given Q ∈ Sγ
≻0 with a corresponding solution P ∈ Sγ

≻0 to the CTLE, the
function V : Rγ → R≥0 defined as:

V (η) = η⊤Pη, (2.36)

satisfies:

λmin(P)∥η∥2 ≤ V (η) ≤ λmax(P)∥η∥2, (2.37)

V̇ (ξ,kfbl(Φ
−1(ξ),−Kη)) ≤ −λmin(Q)∥η∥2, (2.38)∥∥∥∥∂V∂η (η)

∥∥∥∥ ≤ λmax(P)∥η∥, (2.39)

for all ξ ∈ Φ(D), where (2.39) is an instance of the bound in (2.14). Further-
more, note that ∂V

∂η
is locally Lipschitz continuous on its domain. Consequently,

V serves as a local exponential Lyapunov function for the output closed-loop
system (2.33) and the equilibrium point 0γ.

As in [118], to ensure that V̇ satisfies the strict inequality necessary for a
local exponential CLF, consider a positive definite matrix Q2 ∈ Sγ

≻0 satisfying
Q2 ≺ Q, yielding:

V̇ (ξ,kfbl(Φ
−1(ξ),−Kη)) < −λmin(Q2)∥η∥2, (2.40)

for all ξ ∈ Φ(D) \ ({0γ} × Rn−γ). Consequently, we have that:

inf
u∈Rm

V̇ (ξ,u) < −λmin(Q2)∥η∥2, (2.41)

for all ξ ∈ Φ(D) \ ({0γ} × Rn−γ), and thus V is a CLF for the output open-
loop dynamics (2.34) and equilibrium point 0γ. We can define the non-empty
pointwise set:

KCLF(ξ) ≜ {u ∈ Rm | V̇ (ξ,u) ≤ −λmin(Q2)∥η∥2}, (2.42)
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for all ξ ∈ Φ(D), noting that kfbl(Φ
−1(ξ),−Kη) ∈ KCLF(ξ) for all ξ ∈ Φ(D),

and synthesize an optimization-based controller kCLF : Φ(D)→ Rm as follows:

kCLF(ξ) = argmin
u∈Rm

∥u− kfbl(Φ
−1(ξ),0k)∥2 (Output-CLF-QP)

s.t. V̇ (ξ,u) ≤ −λmin(Q2)∥η∥2.

Using the techniques in [51] with the local Lipschitz continuity of kfbl on
D × Rk, this controller can be shown to be locally Lipschitz continuous on
Φ(D) (including Φ(D) ∩ ({0γ} × Rn−γ)). While the techniques in [51] cover
the case when ξ ∈ Φ(D) \ ({0γ} × Rn−γ), I will briefly sketch why this
is true for ξ ∈ Φ(D) ∩ ({0γ} × Rn−γ). Note that for such ξ, we have
that kCLF(ξ) = kfbl(Φ

−1(ξ),0k). Let ξ′ = (η′, z′) ∈ Φ(D). Observe that
kfbl(Φ

−1(ξ′),−Kη′) ∈ KCLF(ξ
′) implies:

∥kCLF(ξ
′)− kCLF(ξ)∥ = ∥kCLF(ξ

′)− kfbl(Φ
−1(ξ),0k)∥, (2.43)

≤ ∥kfbl(Φ
−1(ξ′),−Kη′)− kfbl(Φ

−1(ξ),0k)∥, (2.44)

≤ Lkfbl

∥∥∥∥∥
[
Φ−1(ξ′)−Φ−1(ξ)

−Kη′

]∥∥∥∥∥ , (2.45)

≤ LkfblLΦ−1∥ξ′ − ξ∥+ Lkfbl∥K∥∥η′∥, (2.46)

≤ Lkfbl(∥K∥+ LΦ−1)∥ξ′ − ξ∥, (2.47)

where Lkfbl , LΦ−1 ∈ R≥0 are local Lipschitz constants that hold by restricting
ξ′ to a sufficiently small neighborhood of ξ, and the last inequality used the
fact that ∥η′∥ ≤ ∥ξ′−ξ∥. Because Φ is smooth, the controller k′

CLF : D → Rm

defined as k′
CLF(x) = kCLF(Φ(x)) is locally Lipschitz continuous on D.

While the output closed-loop dynamics may be locally exponentially stable
with respect to 0γ, local exponential stability of the zero coordinate dynamics
is still necessary for the full normal-form closed-loop system (2.2) to be locally
exponentially stable with respect to 0n. This is important to consider because
if the zero coordinates do not display stability properties, they can lead to
solutions φ that exit the domain D where the controllers kfbl and kCLF are
well-defined (the interval of existence of the solution would be finite). To this
end, define the zero dynamics system as:

ż = ω((0γ, z)), (2.48)

which correspond to the evolution of the zero coordinates when the output
η = 0γ. Note that 0n−γ is an equilibrium point for this system as xe is assumed
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to be an unforced or forced equilibrium point of the open-loop system (2.1),
implying ω(0n) = 0n−γ, yielding the following result [111, Proposition 4.4.2]:

Theorem 7. If the zero dynamics system (2.48) is locally exponentially stable
with respect to 0n−γ, then for any controller kξ : Φ(D) → Rm that is contin-
uous on Φ(D), locally Lipschitz continuous on Φ(D) \ {0n}, renders 0n an
equilibrium point of the normal-form closed-loop system (2.32), and satisfies
kξ(ξ) ∈ KCLF(ξ) for all ξ ∈ Φ(D), the normal-form closed-loop system (2.32)
is locally exponentially stable with respect to the equilibrium point 0n.

Combining Theorems 6 and 7, local exponential stability of the zero dynamics
in conjunction with a locally exponentially stabilizing controller kξ yields that
the closed-loop system (2.2) using k(x) = kξ(Φ(x)) is locally exponentially
stable with respect to the equilibrium point xe.

To provide a concrete example of feedback linearization, consider a fully-
actuated robotic system governed by (2.5) with a forced equilibrium point
xe = (qe,0nc) ∈ X and corresponding equilibrium torque:

τ e = B(qe)
−1(C(qe,0nc) +G(qe)). (2.49)

Let us define the function Φ : X → Rn as:

Φ(x) =

[
q− qe

q̇

]
= ξ. (2.50)

It is easy to see that Φ is smooth on X and has an inverse Φ−1 : Φ(X )→ X
that is smooth on Φ(X ). Consider a controller kfbl : X ×Rnc → Rm given by:

kfbl(x,ν) = B(q)−1D(q)(D(q)−1(C(q, q̇) +G(q)) + ν), (2.51)

which is locally Lipschitz continuous on X×Rnc , and observe that kfbl(xe,0nc) =

τ e. This controller yields:

ẋ =

[
0nc×nc Inc

0nc×nc 0nc×nc

]
︸ ︷︷ ︸

A

x+

[
0nc×nc

Inc

]
︸ ︷︷ ︸

B

ν, (2.52)

where (A,B) ∈ Rn×n × Rn×nc are a controllable pair. Noting that Axe = 0n

and denoting η = x− xe, these dynamics can be rewritten as:

η̇ = Aη +Bν, (2.53)
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mirroring the form in (2.27) with functions fη(ξ) = f(Φ−1(ξ)) and gη(ξ) =

g(Φ−1(ξ)) with f and g defined in (2.6), and no function ω, such that γ = n

and k = nc. Consequently, a fully-actuated robotic system is locally full-state
feedback linearizable with respect to the equilibrium point xe with D = X . A
detail that will appear in Chapter 3 when considering the impact of model error
on CLF-based controllers is the model dependence of the feedback linearizing
controller (2.51).

2.5 Control Barrier Functions

Historically, barrier methods were first developed in the context of constrained
optimization [119], wherein constraint satisfaction could be achieved through
increasingly large penalties on constraint violation. The idea to use barrier
functions (BFs) in the context of nonlinear dynamical systems was first pro-
posed in [120] with the goal of certifying the forward invariance of a set for
a closed-loop system, similar to the way in which local exponential Lyapunov
functions serve as a certificate of local exponential stability. This idea was fur-
ther developed in [10], yielding the first definition of Control Barrier Functions
(CBFs) as a tool for simultaneously synthesizing a safety-critical controller and
a BF for the corresponding closed-loop system. The controller in this work
was based on a structured design developed with CLFs for stabilization in [9].
A consequence of this structured design was that the controller’s only goal was
safety, which, while of vital importance, is often not the only control objective
that needs to be achieved (such as tracking performance).

An important pair of changes to the formulation of CBFs that increased
their potential to provide safety-critical yet performant control were proposed
in [11]. The first change was incorporating an extended class-K function (de-
fined below) into the CBF time derivative condition required for safety. This
change allowed the system state to approach the boundary of the forward
invariant set as long as it displayed a safe degree of “braking”, reducing the
conservative nature of the original definition of CBFs. The second change was
realizing that the CBF time derivative was affine in the control input, and
thus could be directly incorporated as a constraint in a convex optimization
problem, as was done with CLFs in Section 2.3. This resulted in a way to min-
imally “filter” a controller designed for performance such that it meets safety
requirements. Subsequently, the notion of zeroing CBFs were introduced in
[62], which reframed the preceding definition of CBFs in a way that was well-
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defined outside of a set being kept safe [121, Remark 3]. I note that in this
thesis my definition of CBFs will correspond to zeroing CBFs.

Before defining BFs and CBFs, I recall the following useful definitions:

Definition 9 (Class K Function [122]). Let a ∈ R>0. A function α : [0, a)→
R≥0 that is continuous on [0, a) is said to be class-K (α ∈ K) if α(0) = 0 and
α(r1) < α(r2) for all r1, r2 ∈ [0, a) satisfying r1 < r2. The function α is said
to be class-K∞ (α ∈ K∞) if a =∞ and limr→∞ α(r) =∞.

Definition 10 (Extended Class K Function [121]). Let a, b ∈ R>0. A function
α : (−b, a) → R that is continuous on (−b, a) is said to be extended class-K
(α ∈ Ke) if α(0) = 0 and α(r1) < α(r2) for all r1, r2 ∈ (−b, a) satisfying
r1 < r2. The function α is said to be extended class-K∞ (α ∈ Ke

∞) if a = ∞,
b =∞, limr→∞ α(r) =∞, and limr→−∞ α(r) = −∞.

A barrier function is used to describe the safety of the closed-loop system
(2.2) with respect to a set C ⊂ E specified as the 0-superlevel set of a function
h : E → R that is continuously differentiable on E:

C ≜ {x ∈ E | h(x) ≥ 0}, (2.54)

Int(C) ≜ {x ∈ E | h(x) > 0}, (2.55)

∂C ≜ {x ∈ E | h(x) = 0}. (2.56)

Given this construction, barrier functions are defined as in [62]:

Definition 11 (Barrier Function (BF)). Let C ⊂ E be the 0-superlevel set of
a function h : E → R that is continuously differentiable on E. The function h
is a barrier function (BF) for the closed-loop system (2.2) on C if there exists
an α ∈ Ke such that:

ḣ(x) ≜
∂h

∂x
(x)f(x)︸ ︷︷ ︸
Lfh(x)

+
∂h

∂x
(x)g(x)︸ ︷︷ ︸
Lgh(x)

k(x) ≥ −α(h(x)), (2.57)

for all x ∈ E.

Note that the function α ∈ Ke in this definition must be defined on the interval:(
inf
x∈E

h(x), sup
x∈E

h(x)

)
⊆ R. (2.58)
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The following result establishes how the existence of a barrier function for the
closed-loop system (2.2) on C certifies the safety of the closed-loop system (2.2)
with respect to C:

Theorem 8. Let C ⊂ E be the 0-superlevel set of a function h : E → R that is
continuously differentiable on E. If h is a BF for the closed-loop system (2.2)
on C, then the closed-loop system (2.2) is safe with respect to the set C.

This result was first established in [62, Proposition 1] only requiring that the
BF inequality (2.57) be satisfied for x ∈ C by using Nagumo’s theorem [104],
[123] under the requirement that the function h has 0 as a regular value:

h(x) = 0 =⇒ ∂h

∂x
(x) ̸= 0n, (2.59)

for all x ∈ E. Subsequently, an alternative proof of this result was provided in
[124, Theorem 1] that does not require h have 0 as regular value, but rather
uses the fact that α ∈ Ke and the barrier function inequality (2.57) is satisfied
for x ∈ E \ C. The definition of CBFs that I next consider will implicitly
require that h has 0 as a regular value.

CBFs provide a tool for synthesizing both a safety-critical controller and a BF
that certifies the corresponding closed-loop system (2.2) is safe with respect
to the set C:

Definition 12 (Control Barrier Function (CBF)). Let C ⊂ E be the 0-
superlevel set of a function h : E → R that is continuously differentiable
on E. The function h is a Control Barrier Function (CBF) for the open-loop
system (2.1) on C if there exists an α ∈ Ke such that:

sup
u∈Rm

ḣ(x,u) ≜ sup
u∈Rm

Lfh(x) + Lgh(x)u > −α(h(x)), (2.60)

for all x ∈ E

As with CLFs, the strict inequality in (2.60), which appears in [51], is impor-
tant not only for ensuring a controller k satisfying (2.57) can exist, but also
that a controller meeting suitable regularity properties can be found. Note
that the strictness also requires h to have 0 as a regular value. Similarly, an
equivalent requirement to (2.60) is given by:

Lgh(x) = 0m =⇒ Lfh(x) > −α(h(x)), (2.61)
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for all x ∈ E.

Given a CBF h for the open-loop system (2.1) on C and a corresponding
α ∈ Ke, define the point-wise set:

KCBF(x) =
{
u ∈ Rm

∣∣∣ ḣ(x,u) ≥ −α(h(x))} . (2.62)

This yields the following result [62]:

Theorem 9. Let C ⊂ E be the 0-superlevel set of a function h : E → R that is
continuously differentiable on E. If h is a CBF for the open-loop system (2.1)
on C, then the set KCBF(x) is non-empty for all x ∈ E, and for any controller
k that is locally Lipschitz continuous on E with k(x) ∈ KCBF(x) for all x ∈ E,
the function h is a BF for the closed-loop system (2.2) on C.

This result states that for a given α ∈ Ke, a CBF describes the set of inputs
that a controller can take such that the function h serves as a BF for the closed-
loop system (2.2) on C. To see how CBFs can minimally modify a performant
controller while ensuring safety, consider a nominal controller knom : E → Rm

that is locally Lipschitz continuous on E, and define the optimization-based
controller as was first presented in [27]:

kCBF(x) = argmin
u∈Rm

∥u− knom(x)∥2 (CBF-QP)

s.t. ḣ(x,u) ≥ −α(h(x)).

As with CLFs, because ḣ is affine with respect to the input u, this controller is
defined by a convex QP which can be efficiently solved. Moreover, if at a given
state x ∈ E the nominal controller knom satisfies ḣ(x,knom(x)) ≥ −α(h(x)),
then kCBF(x) = knom(x). Thus the nominal controller can be designed to
meet some performance criteria, and the controller (CBF-QP) can be used
to modify the nominal controller only when it is unsafe, as specified by the
BF requirement (2.57). The following result describes the properties of this
controller [51, Theorem 1]:

Theorem 10. Let C ⊂ E be the 0-superlevel set of a function h : E → R
that is continuously differentiable on E, let the function ∂h

∂x
: E → Rn be

locally Lipschitz continuous on E, let the nominal controller knom : E → Rm

be locally Lipschitz continuous on E, and let h be a CBF for the open-loop
system (2.1) on C with α locally Lipschitz continuous on its domain. Then the
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controller kCBF : E → Rm is locally Lipschitz continuous on E and satisfies
kCBF(x) ∈ KCBF(x) for all x ∈ E.

Suppose that beyond ensuring the closed-loop system (2.2) is safe with respect
to the set C, an objective of control design is to locally exponentially stabilize
the (2.2) system with respect to an unforced equilibrium point or forced equi-
librium point xe ∈ Int(C) with equilibrium input ue. Furthermore, suppose
that there exists a CBF h for the open-loop system (2.1) on C with corre-
sponding α ∈ Ke, and a local exponential CLF V for the open-loop system
(2.1) and equilibrium point xe with a corresponding open set D ⊆ E that
satisfies the small or continuous control property. A controller k : D → Rm

that incorporates both the CLF and CBF can be specified as follows [62]:

k(x) = argmin
(u,δ)∈Rm+1

∥u− ue∥2 + cδ2 (CLF-CBF-QP)

s.t. V̇ (x,u) ≤ −k3∥x− xe∥a + δ,

ḣ(x,u) ≥ −α(h(x)), (2.63)

for c ∈ R>0. This controller ensures the closed-loop system (2.2) is safe with
respect to C, and attempts to locally exponentially stabilize the closed-loop
system (2.2) with respect to the equilibrium point xe. Because it may not
be possible to simultaneously satisfy both the CLF and CBF inequality con-
straints, the CLF constraint is relaxed with the slack variable δ which is highly
penalized by a large value of c in the cost function. While this controller does
not endow the system with a formal stability guarantee, it can often effectively
stabilize a system while ensuring safety. Furthermore, alternative relaxation
schemes can be considered that provide local exponential stability results [51,
QP Problem −γm Version]. The continuity on D and local Lipschitz conti-
nuity on D \ {xe} of this controller can be established along the lines of [51,
Theorem 1] under assumptions on the small or continuous control property
and the local Lipschitz continuity of ∂V

∂x
and ∂h

∂x
.

I will now make a useful observation regarding the relationship between local
exponential CLFs and CBFs. First, as noted in [62, Proposition 2], outside of
the set C, a barrier function h : E → R for the closed-loop system (2.2) can be
used to construct a Lyapunov-like function for the closed-loop system (2.2) and
the set C, such that the closed-loop system (2.2) displays asymptotic stability
properties with respect to the set C. Considering the other direction, suppose
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that V : E → R≥0 is a local exponential CLF for the open-loop system (2.1)
and an unforced or forced equilibrium point xe ∈ E with corresponding open
set D. In this development, I will restrict the open set E in the definition of
forward invariance and CBFs to be E = D. The lower bound in (2.12) implies
the existence of a c ∈ R>0 such that for any c ∈ [0, c), the set C defined as:

C ≜ {x ∈ E | V (x) ≤ c}, (2.64)

satisfies C ⊂ D. Next, define function the h : D → R as follows:

h(x) = c− V (x), (2.65)

noting that C is the 0-superlevel set of h. We then have that:

sup
u∈Rm

ḣ(x,u) = sup
u∈Rm

−V̇ (x,u), (2.66)

= − inf
u∈Rm

V̇ (x,u),

> k3∥x− xe∥a,

≥ k3
k2
V (x),

>
k3
k2

(V (x)− c) = −k3
k2
h(x), (2.67)

for all x ∈ D\{xe}. We also have that V̇ (xe,u) = ḣ(xe,u) = 0 for all u ∈ Rm,
and h(xe) = c > 0, and consequently:

sup
u∈Rm

ḣ(xe,u) > −
k3
k2
h(xe). (2.68)

Thus we have that h is a CBF for the open-loop system (2.1) on the set C.
This is a useful observation as constructive tools such as feedback linearization
can be used to produce local exponential CLFs, and from these CBFs can be
constructed. The key step in this process occurs in (2.67), where the inequality
is relaxed by the offset −k3

k2
c. This term allows a system using a CBF to

approach the boundary of the safe set, rather than explicitly converge to the
point xe as is achieved with an exponential CLF and exponential stability.

2.6 Nonlinear Dynamics with Disturbances

The preceding developments of CLFs, feedback linearization, and CBFs were
presented in the context of the ideal control system seen in Figure 1.1. For
many real-world systems, control design is often complicated by challenges
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such as unmodeled actuator dynamics or external perturbations. These chal-
lenges can be studied by considering nonlinear systems with disturbances.

I will consider two classes of systems with disturbances. The first class is the
setting of unmatched disturbances described by the open-loop system:

ẋ = f(x) + g(x)u+ d(t), (2.69)

where the function d : R≥0 → Rn is piecewise continuous5 on R≥0 and reflects
a disturbance signal. A controller k : E → Rm that is locally Lipschitz on E

yields the closed loop system:

ẋ = f(x) + g(x)k(x) + d(t). (2.70)

As before, for any initial condition x0 ∈ E and piecewise continuous distur-
bance signal d : R≥0 → Rn, there exists a maximal time interval Id(x0,d) ≜

[0, tmax(x0,d)) and a unique piecewise continuously differentiable6 solution
φd : Id(x0,d)→ E to the closed-loop system (2.70) satisfying:

φ̇d(t) = f(φd(t)) + g(φd(t))k(φd(t)) + d(t), (2.71)

φd(0) = x0, (2.72)

for almost all t ∈ Id(x0,d) [100]. Note that the interval of existence and
uniqueness Id(x0,d) depends not only on the initial condition x0 as it did
in the absence of disturbances, but now it also depends on the particular
disturbance signal the system experiences. The second class I will consider is
the setting of matched disturbances, described by the open-loop system:

ẋ = f(x) + g(x)(u+ d(t)), (2.73)

where the function d : R≥0 → Rm is piecewise continuous on R≥0 and reflects
a disturbance in the input signal to the system. I will later show that this
setting permits specialized robust control designs to be developed using the
previous formulations of CLF and CBFs. A controller k : E → Rm that is
locally Lipschitz on E yields the closed loop system:

ẋ = f(x) + g(x)(k(x) + d(t)). (2.74)
5This definition is taken as in [100], where for every compact interval [a, b] ⊂ R≥0, there

exists a finite partition of the interval [a, b], T = {t0, t1, . . . , tN}, such that d is continuous
on the domain (ti−1, ti) and the one-sided limits limδ→0+ d(ti−1 + δ) and limδ→0− d(ti + δ)
exist for i = 1, . . . , N .

6Piecewise continuous differentiability is defined such that the function φd is continuous
on Id(x0,d) with a derivative that is piecewise continuous on Id(x0,d).
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As before, for any initial condition x0 ∈ E and piecewise continuous distur-
bance signal d : R≥0 → Rm, there exists a maximal time interval Id(x0,d) ≜

[0, tmax(x0,d)) and a unique piecewise continuously differentiable solution φd :

Id(x0,d)→ E to the closed-loop system (2.74) satisfying:

φ̇d(t) = f(φd(t)) + g(φd(t))(k(φd(t)) + d(t)), (2.75)

φd(0) = x0, (2.76)

for almost all t ∈ Id(x0,d) [100].

2.7 Input-to-State Stability & Input-to-State Safety

When studying nonlinear systems in the presence of disturbances, there are
two perspectives of robust stability and safety I will consider. The first ap-
proach is to ensure that exponential stability or safety are achieved no matter
what the disturbance signal may be, as is done with CBFs in [51]. In the
setting of safety, this may induce significant conservativeness as the system is
robust to worst-case disturbance signals that it may not experience. Achieving
exponential stability of an equilibrium point in the presence of disturbances is
often impossible, simply because it is impossible to choose one control input
that will enforce xe is an equilibrium point for all possible disturbance signals
without extremely restrictive assumptions [109, Section 3.4.1].

This particular challenge with stability in the presence of disturbances led
to the proposal of Input-to-State Stability (ISS) [56], [57], [125], and later
in the setting of safety, Input-to-State Safety (ISSf) [58]. These definitions
consider the degradation of stability and safety in the presence of disturbances.
In particular, systems that display ISS or ISSf properties gracefully degrade
in the presence of disturbances, such that the magnitude of degradation is
correlated with the magnitude of the disturbance that is experienced. This can
provide for a powerful design paradigm when working with real-world systems
in which disturbances are present [21], [126]. In this thesis I will explore several
ways in which this perspective on robust control synthesis can be powerful for
synthesizing performant yet robust controllers, including settings involving
residual learning error, disturbances, and input-sampling effects.

I will now mathematically define these robustness properties. I first note these
definitions are the same for both the unmatched and matched disturbance
settings, with the distinction between those settings arising when considering
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control synthesis in the next section. First, I will denote the following:

∥d∥∞ = ess sup
t∈R≥0

∥d(t)∥, (2.77)

where the essential supremum ess sup allows us to neglect the values of the
piecewise continuous disturbance signal d at the times at which it is discontin-
uous when assessing a bound on the disturbance. This permits the following
definition of Input-to-State Stability:

Definition 13 (Input-to-State Stability (ISS)). Let xe ∈ E be an equilibrium
point of the closed-loop system (2.2). The closed-loop system with unmatched
disturbances (2.70) or matched disturbances (2.74) is said to be locally expo-
nentially Input-to-State Stable (ISS) with respect to xe if there exist an open
set D ⊆ E with xe ∈ D, constants M,λ, d ∈ R>0, and γ ∈ K such that for all
d ∈ [0, d]:

x0 ∈ D =⇒ ∥φd(t)− xe∥ ≤M∥x0 − xe∥e−λt + γ(d), (2.78)

for all t ∈ R≥0 and disturbance signals d : R≥0 → Rn (Rm for matched
disturbances) that are piecewise continuous on R≥0 and satisfy ∥d∥∞ ≤ d.

This definition modifies the definition of local exponential stability by incorpo-
rating a class-K function of the worst-case magnitude disturbance experienced
by the system into the bound on the solution’s deviation from the equilib-
rium point. If d = 0, such that the disturbance signal satisfies d(t) = 0n

(0m for matched disturbances) for all t ∈ R≥0, we recover that the closed-loop
system (2.2) without disturbances must be locally exponentially stable with
respect to the equilibrium point xe. In the presence of disturbances, the sys-
tem must converge exponentially to a ball of radius γ(d) centered at xe, and
remain within that ball. ISS is inherently a statement about the behavior of
the closed-loop systems (2.70) or (2.74) across the spectrum of disturbances
which are essentially bounded by the maximum disturbance magnitude d. If
the disturbance the system experiences is small, then the ball the system con-
verges to is small, and likewise, if it is large (but satisfies the bound), the
ball it will converge to is bounded. Producing a concrete statement about the
size of the ball a closed-loop system with disturbances will actually remain in
during its evolution requires producing an estimate of the worst-case possible
disturbance signal the system will experience.

Before defining Input-to-State Safety, I present the following definition:
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Definition 14 (Disturbed Forward Invariance & Safety). Let d ∈ R≥0. A
set C ⊂ E is said to be forward invariant up to d for the closed-loop sys-
tem with unmatched disturbances (2.70) or closed-loop system with matched
disturbances (2.74) if for any initial condition x0 ∈ C and disturbance signal
d : R≥0 → Rn (Rm for matched disturbances) that is piecewise continuous on
R≥0 and satisfies ∥d∥∞ ≤ d, we have φd(t) ∈ C for all t ∈ Id(x0,d). In this
case, we call the system (2.70) or (2.74) safe up to d with respect to the set C.

The first perspective on robustness to disturbances, where a system must sat-
isfy safety properties with respect to the set C for any disturbance it may
experience, is described by the notion of the system being safe up to d with
respect to C. Input-to-State Safety will relax this definition as follows:

Definition 15 (Input-to-State Safety (ISSf)). Let C ⊂ E be the 0-superlevel
set of a function h : E → R that is continuously differentiable on E. The
closed-loop system with unmatched disturbances (2.70) or closed-loop system
with matched disturbances (2.74) is said to be Input-to-State Safe (ISSf) with
respect to the set C if there exist d ∈ R>0 and γ ∈ K such that for all d ∈ [0, d],
the set Cd ⊂ E defined as:

Cd = {x ∈ E | h(x) + γ(d) ≥ 0} , (2.79)

is forward invariant up to d for the closed-loop system (2.70) or (2.74). If the
system (2.70) or (2.74) is ISSf with respect to the set C, the set C is referred
to as an Input-to-State Safe set (ISSf set).

This definition states that the set that is kept forward invariant scales with
the magnitude of the disturbance up to some maximum disturbance, and that
in the absence of disturbances, safety of the original set C is retained. Note
that ISSf is explicitly constructed with a set that is the 0-superlevel set of a
function h : E → R that is continuously differentiable on E, rather than just
a general set C ⊂ E.

2.8 Input-to-State Stable Control Lyapunov Functions

Establishing ISS will be achieved through corresponding Lyapunov functions
that accommodate the disturbance signal. Producing these certificate func-
tions will be achieved through corresponding modifications to CLFs, where
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the importance of unmatched and matched disturbances will become appar-
ent. I now define Input-to-State Stable Lyapunov functions (ISS-LFs) as in
[125, Definition 2.2]:

Definition 16 (Input-to-State Stable Lyapunov Function (ISS-LF)). Let xe

be an equilibrium point of the closed-loop system (2.2). A function V : E →
R≥0 that is continuously differentiable on E is said to be a local exponential
Input-to-Stable Lyapunov function (ISS-LF) for the closed-loop system with
unmatched disturbances (2.70) and equilibrium point xe if there exist an open
set D ⊆ E with xe ∈ D, constants k1, k2, k3, a, d ∈ R>0, and ρ ∈ K such that:

k1∥x− xe∥a ≤ V (x) ≤ k2∥x− xe∥a, (2.80)

V̇ (x,d) ≜ LfV (x) + LgV (x)k(x)+
∂V

∂x
(x)d ≤ −k3∥x− xe∥a, (2.81)

for all x ∈ D and d ∈ Rn such that ∥d∥ ≤ d and ∥x − xe∥ ≥ ρ(∥d∥). The
function V is said to be a ISS-LF for the closed-loop system with matched
disturbances (2.70) and equilibrium point xe if (2.81) is replaced with:

V̇ (x,d) ≜ LfV (x) + LgV (x)k(x) + LgV (x)d ≤ −k3∥x− xe∥a, (2.82)

for all x ∈ D and d ∈ Rm such that ∥d∥ ≤ d and ∥x− xe∥ ≥ ρ(∥d∥).

This definition of ISS-LFs requires that the Lyapunov decay conditions (2.81)
or (2.82) be met only for disturbances that are smaller (with the class-K func-
tion ρ) than the distance of the state from the equilibrium point xe. A useful
alternative understanding of the requirement in (2.81) and (2.82) is captured
in the following result [125, Remark 2.4]:

Theorem 11. Let xe be an equilibrium point of the closed-loop system (2.2).
A function V : E → R≥0 satisfying (2.80) for some k1, k2, a ∈ R>0 is a local
exponential ISS-LF for the closed-loop system with unmatched disturbances
(2.70) (matched disturbances (2.74)) with corresponding open set D ⊆ E if
and only if there exist k′3, d ∈ R>0 and σ ∈ K such that:

V̇ (x,d) ≤ −k′3∥x− xe∥a + σ(∥d∥), (2.83)

for all x ∈ D and d ∈ Rn (d ∈ Rm) such that ∥d∥ ≤ d.

Note that this alternative condition uses the quantity k′3 ∈ R>0 which is po-
tentially different than the k3 in (2.81) and (2.82). ISS-LFs serve as certificate
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of local exponential ISS of a closed-loop system with respect to an equilibrium
point as follows [125, Theorem 1]:

Theorem 12. Let xe ∈ E be an equilibrium point of the closed-loop system
(2.2). If there exists a local exponential ISS-LF V : E → R≥0 for the closed-
loop system with unmatched disturbances (2.70) (matched disturbances (2.74))
and equilibrium point xe, then the closed-loop system with unmatched distur-
bances (2.70) (matched disturbances (2.74)) is locally exponentially ISS with
respect to xe.

Extending the notion of an ISS-LF to an ISS Control Lyapunov Function
(ISS-CLF) requires more care than the extension of Lyapunov functions to
CLFs. One potential way for defining an ISS-CLF in the setting of matched
disturbances would be to require that:

inf
u∈Rm

V̇ (x,u,d) ≜ inf
u∈Rm

LfV (x) + LgV (x)(u+ d) < −k3∥x− xe∥a + σ(∥d∥),
(2.84)

for all x ∈ D \ {xe} and d ∈ Rn (d ∈ Rm) such that ∥d∥ ≤ d. The issue with
such a definition is that it is unclear how control inputs should be chosen, given
the appearance of d, which is not a decision variable, but rather an unknown
perturbation. This issue of defining ISS-CLFs in a way that permits controller
design has been considered in [127, Theorem 2] and [106, Section 6]. In this
thesis, I will consider the following definition of an ISS-CLF:

Definition 17 (Input-to-State Stable Control Lyapunov Function (ISS-CLF)).
Let xe ∈ E be an unforced or forced equilibrium point of the open-loop system
(2.1). A function V : E → R≥0 that is continuously differentiable on E is
said to be a local exponential Input-to-State Stable Control Lyapunov Function
(ISS-CLF) for the open-loop system with unmatched disturbances (2.69) if
there exist an open set D ⊆ E with xe ∈ D and k1, k2, k3, ϵ ∈ R>0 such that:

k1∥x− xe∥2 ≤ V (x) ≤ k2∥x− xe∥2, (2.85)

inf
u∈Rm

LfV (x′) + LgV (x′)u+
1

ϵ

∥∥∥∥∂V∂x (x′)

∥∥∥∥2 < −k3∥x′ − xe∥2, (2.86)

for all x ∈ D and x′ ∈ D \ {xe}. The function V is said to be a local exponen-
tial ISS-CLF for the open-loop system with matched disturbances (2.73) and
equilibrium point xe if (2.86) is replaced with:

inf
u∈Rm

LfV (x′) + LgV (x′)u+
1

ϵ
∥LgV (x′)∥2 < −k3∥x′ − xe∥2, (2.87)
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for all x′ ∈ D \ {xe}.

First observe that I have specialized this definition to use a value of a = 2.
Second, observe that the ISS-CLF condition for the matched disturbance set-
ting (2.87) can be rewritten as the alternative CLF condition (2.18). This
implies that if V is a local exponential CLF for the open-loop system (2.1)
and equilibrium point xe, it is a local exponential ISS-CLF for the open-loop
system with matched disturbances (2.73) and equilibrium point xe. This is a
very useful property given the ability to synthesize CLFs through feedback lin-
earization demonstrated in Section 2.4, and is a significant difference between
the unmatched and matched disturbance settings.

Given a local exponential ISS-CLF V for the open-loop system with unmatched
disturbances (2.69) and equilibrium point xe, define the following pointwise set:

KISS(x) =

{
u ∈ Rm

∣∣∣∣∣ LfV (x) + LgV (x)u

+1
ϵ

∥∥∂V
∂x

(x)
∥∥2 ≤ −k3∥x− xe∥2

}
, (2.88)

and given a local exponential ISS-CLF V for the open-loop system with matched
disturbances (2.73) and equilibrium point xe, define the following pointwise set:

KISS(x) =

{
u ∈ Rm

∣∣∣∣∣ LfV (x) + LgV (x)u

+1
ϵ
∥LgV (x)∥2 ≤ −k3∥x− xe∥2

}
. (2.89)

This set leads to the following result7:

Theorem 13. Let xe ∈ E be an unforced or forced equilibrium point of the
open-loop system (2.1), and let V : E → R≥0 be a local exponential ISS-
CLF for the open-loop system with unmatched disturbances (2.69) (matched
disturbances (2.73)) and equilibrium point xe with corresponding open set D ⊆
E. Then, the set KISS(x) is non-empty for all x ∈ D, and for any controller
k : D → Rm that is continuous on D, locally Lipschitz continuous on D\{xe},
renders xe an equilibrium point of the closed-loop system (2.2), and satisfies
k(x) ∈ KISS(x) for all x ∈ D, the function V is a local exponential ISS-
LF for the closed-loop system with unmatched disturbances (2.70) (matched
disturbances (2.74)) and equilibrium point xe with k′3 = k3 and σ ∈ K defined
as σ(r) = ϵr2

4
.

7This result can be constructed along the proof steps used in Section 4.3.
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This theorem not only states that an ISS-CLF V characterizes the set of in-
puts that allow V to serve as an ISS-LF, but it also provides a characterization
of the constant k′3 and class-K function σ in the alternative definition of an
ISS-LF given in (2.83). Note that the impact of the disturbance can be made
smaller through small values of ϵ, but this requires that the controller provide
more aggressive stabilizing control inputs. This is an analog to the fundamen-
tal balance between mitigating disturbances and high-gain control commonly
studied in linear systems [128]. Building controllers using ISS-CLFs meeting
the conditions of Theorem 13 will require the following variants of the small
and continuous control properties:

Definition 18 (ISS Small Control Property (ISS-SCP)). Let xe ∈ E be an
unforced equilibrium point of the open-loop system (2.1), and let V : E → R≥0

be a local exponential ISS-CLF for the open-loop system with unmatched
disturbances (2.69) (matched disturbances (2.73)) and equilibrium point xe

with constant ϵ ∈ R>0. The local exponential ISS-CLF V is said to satisfy the
ISS small control property (ISS-SCP) if for any ε ∈ R>0, there exists an open
set D ⊆ E with xe ∈ D such that for any x ∈ D \ {xe}, there exists a u ∈ Rm

satisfying ∥u∥ < ε such that:

LfV (x) + LgV (x)u+
1

ϵ

∥∥∥∥∂V∂x (x)

∥∥∥∥2 < −k3∥x− xe∥2, (2.90)

for the unmatched disturbance setting, or such that:

LfV (x) + LgV (x)u+
1

ϵ
∥LgV (x)∥2 < −k3∥x− xe∥2, (2.91)

for the matched disturbance setting.

Definition 19 (ISS Continuous Control Property (ISS-CCP)). Let xe ∈ E be
a forced equilibrium point of the open-loop system (2.1) for equilibrium input
ue, and let V : E → R≥0 be a local exponential ISS-CLF for the open-loop
system with unmatched disturbances (2.69) (matched disturbances (2.73)) and
equilibrium point xe with constant ϵ ∈ R>0. The local exponential ISS-CLF
V is said to satisfy the ISS continuous control property (ISS-CCP) if for any
ε ∈ R>0, there exists an open set D ⊆ E with xe ∈ D such that for any
x ∈ D \ {xe}, there exists a u ∈ Rm satisfying ∥u− ue∥ < ε such that:

LfV (x) + LgV (x)u+
1

ϵ

∥∥∥∥∂V∂x (x)

∥∥∥∥2 < −k3∥x− xe∥2, (2.92)
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for the unmatched disturbance setting, or such that:

LfV (x) + LgV (x)u+
1

ϵ
∥LgV (x)∥2 < −k3∥x− xe∥2, (2.93)

for the matched disturbance setting.

I note that in the matched disturbance setting, the relationship between a local
exponential CLF satisfying the small or continuous property and a local ISS-
CLF satisfying the small or continuous control property is non-trivial. Rather,
it is necessary, but not sufficient, for the CLF to satisfy the small or continuous
control property for the ISS-CLF to satisfy the ISS small or continuous control
property. Lastly, I will define the convex optimization-based controllers:

kISS(x) = argmin
u∈Rm

∥u− ue∥2 (ISS-CLF-QP)

s.t. LfV (x) + LgV (x)u+
1

ϵ

∥∥∥∥∂V∂x (x)

∥∥∥∥2 ≤ −k3∥x− xe∥2,

and:

kISS(x) = argmin
u∈Rm

∥u− ue∥2 (ISS-CLF-QP)

s.t. LfV (x) + LgV (x)u+
1

ϵ
∥LgV (x)∥2 ≤ −k3∥x− xe∥2,

for the unmatched and matched disturbance settings, respectively. This leads
to the following result, which can be proven similarly to [51, Theorem 1]:

Theorem 14. Let xe ∈ E be an unforced (forced) equilibrium point of the
open-loop system (2.1) with equilibrium input ue, let V : E → R≥0 be a local
exponential ISS-CLF for the open-loop system with unmatched disturbances
(2.69) or matched disturbances (2.73) and equilibrium point xe with corre-
sponding open set D ⊆ E, let the function ∂V

∂x
: E → Rn be locally Lipschitz

continuous on D, and assume that V satisfies the ISS small (continuous) con-
trol property. Then the controller kISS : D → Rm is continuous on D, locally
Lipschitz continuous on D\{xe}, renders xe an equilibrium point of the closed-
loop system (2.2), and satisfies kISS(x) ∈ KISS(x) for all x ∈ D.

2.9 Input-to-State Safe Control Barrier Functions

Establishing ISSf will be achieved through corresponding barrier functions that
accommodate the disturbance signal. Producing these certificate functions will
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be achieved through corresponding modifications to CBFs, where the impor-
tance of unmatched and matched disturbances will become apparent. I now
define Input-to-State Safe barrier functions (ISSf-BFs) as in [58, Definition 4]:

Definition 20 (Input-to-State Safe Barrier Function (ISSf-BF)). Let C ⊂ E

be the 0-superlevel set of a function h : E → R that is continuously differ-
entiable on E. The function h is said to be an Input-to-State Safe barrier
function (ISSf-BF) for the closed-loop system with unmatched disturbances
(2.70) on C if there exist α ∈ Ke, ι ∈ K, and d ∈ R>0 such that:

ḣ(x,d) ≜ Lfh(x) + Lgh(x)k(x) +
∂h

∂x
(x)d ≥ −α(h(x))− ι(∥d∥), (2.94)

for all x ∈ E and d ∈ Rn such that ∥d∥ ≤ d. The function h is said to be an
ISSf-BF for the closed-loop system with matched disturbances (2.74) on C if
(2.94) is replaced with:

ḣ(x,d) ≜ Lfh(x) + Lgh(x)k(x) + +Lgh(x)d ≥ −α(h(x))− ι(∥d∥), (2.95)

for all x ∈ E and d ∈ Rm such that ∥d∥ ≤ d.

ISSf-BFs serve as a certificate of ISSf of a closed-loop system with respect to
a set C as follows [58, Theorem 1]:

Theorem 15. Let C ⊂ E be the 0-superlevel set of a function h : E → R
that is continuously differentiable on E. If h is an ISSf-BF for the closed-loop
system with unmatched disturbances (2.70) (matched disturbances (2.74)) on
C, then the closed-loop system with unmatched disturbances (2.70) (matched
disturbances (2.74)) is ISSf with respect to the set C.

In the same way that extending ISS-LFs to ISS-CLFs required considering the
difference between the unmatched and matched disturbances, the notion of an
ISSf-CBF will depend on what disturbance setting is being considered:

Definition 21 (Input-to-State Safe Control Barrier Function (ISSf-CBF)).
Let C ⊂ E be the 0-superlevel set of a function h : E → R that is continuously
differentiable on E. The function h is said to be an Input-to-State Safe Con-
trol Barrier Function (ISSf-CBF) for the open-loop system with unmatched
disturbances (2.69) on C if there exist α ∈ Ke and ϵ ∈ R>0 such that:

sup
u∈Rm

Lfh(x) + Lgh(x)u−
1

ϵ

∥∥∥∥∂h∂x(x)
∥∥∥∥2 > −α(h(x)), (2.96)
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for all x ∈ E. The function h is said to be an ISSf-CBF for the open-loop
system with matched disturbances (2.73) on C if (2.96) is replaced with:

sup
u∈Rm

Lfh(x) + Lgh(x)u−
1

ϵ
∥Lgh(x)∥2 > −α(h(x)), (2.97)

for all x ∈ E.

As with ISS-CLFs, the condition for the matched disturbance setting (2.97)
can be rewritten as the alternative CBF condition (2.61). This implies that
if h is a CBF for the open-loop system (2.1) on C, it is an ISSf-CBF for the
open-loop system with matched disturbances (2.73) on C.

Given an ISSf-CBF h for the open-loop system with unmatched disturbances
(2.69) on C, define the following pointwise set:

KISSf(x) =

{
u ∈ Rm

∣∣∣∣∣ Lfh(x) + Lgh(x)u

−1
ϵ

∥∥∂h
∂x
(x)
∥∥2 ≥ −α(h(x))

}
, (2.98)

and given an ISS-CBF h for the open-loop system with matched disturbances
(2.73) on C, define the following pointwise set:

KISSf(x) =

{
u ∈ Rm

∣∣∣∣∣ Lfh(x) + Lgh(x)u

−1
ϵ
∥Lgh(x)∥2 ≥ −α(h(x))

}
. (2.99)

This set leads to the following result:

Theorem 16. Let h : E → R be an ISSf-CBF for the open-loop system with
unmatched disturbances (2.69) (matched disturbances (2.73)) on C. Then, the
set KISSf(x) is non-empty for all x ∈ E, and for any controller k : E → Rm

that is locally Lipschitz continuous on E and satisfies k(x) ∈ KISSf(x) for all
x ∈ E, the function h is an ISSf-BF for the closed-loop system with unmatched
disturbances (2.70) (matched disturbances (2.74)) on C with ι ∈ K defined as
ι(r) = ϵr2

4
.

This theorem not only states that an ISSf-CBF h characterizes the set of inputs
that allow h to serve as an ISS-BF, but it also provides a characterization of
the class-K function ι in the definition of an ISSf-BF. Again, note that the
impact of the disturbance can be made smaller through small values of ϵ, but
this requires that the controller provide inputs that meet a stronger safety
criterion. This will be a trade-off that is studied in Chapter 4. Lastly, given a
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nominal controller knom : E → Rm that is locally Lipschitz continuous on E,
I will define the following convex optimization-based controllers:

kISSf(x) = argmin
u∈Rm

∥u− knom(x)∥2 (ISSf-CBF-QP)

s.t. Lfh(x) + Lgh(x)u−
1

ϵ

∥∥∥∥∂h∂x(x)
∥∥∥∥2 ≥ −α(h(x)),

and:

kISSf(x) = argmin
u∈Rm

∥u− knom(x)∥2 (ISSf-CBF-QP)

s.t. Lfh(x) + Lgh(x)u−
1

ϵ
∥Lgh(x)∥2 ≥ −α(h(x)),

for the unmatched and matched disturbance settings, respectively. This leads
to the following result, which can be proven similarly to [51, Theorem 1]:

Theorem 17. Let C ⊂ E be the 0-superlevel set of a function h : E → R
that is continuously differentiable on E, the function ∂h

∂x
: E → Rn be locally

Lipschitz continuous on E, the nominal controller knom : E → Rm be locally
Lipschitz continuous on E, and h be an ISSf-CBF for the open-loop system with
unmatched disturbances (2.69) or matched disturbances (2.73) on C. Then the
controller kISSf : E → Rm is locally Lipschitz continuous on E and satisfies
kISSf(x) ∈ KISSf(x) for all x ∈ E.
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C h a p t e r 3

LEARNING & ADAPTIVE CONTROL FOR NONLINEAR
SYSTEMS

The construction of controllers for nonlinear systems through Control Lya-
punov Functions (CLFs), feedback linearization, and Control Barrier Func-
tions (CBFs) is inherently a model-based design paradigm. In particular, the
functions f and g describing the open-loop system (2.1) appear in the inequal-
ity constraints in the optimization-based controllers (CLF-QP), (CBF-QP),
(CLF-CBF-QP), (ISS-CLF-QP), and (ISSf-CBF-QP), and similarly appear
in the feedback linearizing controller (2.51) synthesized for robotic systems.
Consequently, if there is error in a nominal model of the system (which will
be mathematically described in Section 3.2), these controllers will not neces-
sarily lead their respective true closed-loop systems to possess corresponding
Lyapunov and barrier functions that certify local exponential stability and
safety.

Robustness to model error is one of the core challenges in control theory that
the use of feedback is known to solve [99], [128]. A limitation of a purely
robust approach is that it requires a characterization of the possible model
errors, and a control design that meets stability or safety requirements for all
possible model errors. Importantly, the resulting controller will be robust to
model errors that are not actually present between the nominal model of the
system and the true dynamics of the system. Thus, a coarse characteriza-
tion of possible model error can lead to unnecessary conservativeness which
significantly degrades the performance of a controller

Alternatively, one may try to identify the actual model error between a nomi-
nal model of the system and true system, and design a controller using a cor-
rected version of the nominal model. Classically, control theory has explored
this question through the tools of system identification [129] and adaptive con-
trol [130]. System identification seeks to reduce model error by fitting models
that more accurately capture the functions f and g using data, while adap-
tive control seeks to identify parametric model errors online while modifying
parameters of a controller to ensure that stability and safety properties are
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met as the model errors are identified. Recently, the advent of machine learn-
ing techniques for identifying complex models from data has led to significant
development of data-driven techniques for control design beyond the classical
tools of system identification [131]–[133], including both learning model errors
and constructing updated model-based controllers [134]–[137], as well as direct
model-free controller design [138]–[142].

My work presented in this chapter focuses on data-driven techniques for reduc-
ing model errors in a way that is amenable to the convex optimization-based
control framework using CLFs and CBFs discussed in Chapter 2, as well as
an adaptive control approach for ensuring safety in the presence of parametric
model error. In Section 3.1 I discuss related work in the area of integrating
learning techniques with CLFs and CBFs, as well as some of the historical and
recent work in adaptive control for safety-critical systems. In Section 3.2 I
will describe the mathematical structure of model errors that I consider. In
Sections 3.3-3.6 I will present algorithms for learning model errors as they im-
pact the time derivative of a CLF or CBF with simulation and experimental
demonstrations, as well as provide a mathematical framework for understand-
ing the impact of residual learning error on stability and safety guarantees
through the lens of ISS and ISSf. In Section 3.7 I will consider some struc-
tural challenges that occur with the learning approaches in Sections 3.3 and
3.5 for high-dimensional systems, and explore an alternative learning frame-
work using projected disturbances that can overcome these challenges. This
work culminates in Section 3.8, wherein I will draw upon the lessons learned
in the previous sections to propose an alternative approach for data-driven
control using CLFs and CBFs that is constructed through robust convex opti-
mization. This leads to a controller specified via a second-order cone program
(SOCP), which is a convex optimization problem of a greater complexity than
the QP-based controllers considered in Chapter 2 and Sections 3.3-3.7. Lastly,
in Section 3.9, I will propose a framework for achieving safety of systems with
parametric model error through the notion of adaptive CBFs. Key contribu-
tions of this work are described at the beginning of each respective section.

3.1 Related Work

Learning with Control Lyapunov Functions

The certification of stability provided by Lyapunov functions is an appealing
tool for learning and control methods that seek to ensure a controller built
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using learning is stabilizing. Early work in the topic of learning for dynamic
systems used Lyapunov functions as a tool to ensure the stable learning of dy-
namics and regions of attraction of nonlinear systems [143], [144]. Similarly,
Lyapunov functions were paired with model-based reinforcement learning (RL)
to synthesize optimal controllers that provide stability guarantees [145], [146].
Further work has looked how existing models and controllers can be refined
online while being kept stable using Lyapunov functions [147], and how Lya-
punov functions can be learned from counterexamples [148]. A comprehensive
survey on methods for learning Lyapunov functions can be found in [45].

The combination of learning with CLFs in an effort to synthesize stabiliz-
ing controllers, rather than just certify stability, was first considered in [17]
to ensure stability of robotic reaching motions. The work in [38] proposed
an uncertainty-based CLF using Gaussian Process Regression (GPR) that al-
lowed the system to be driven into regions of the state space where there was
high confidence in the learning model’s ability to predict model error in the
system dynamics. Other work has looked at how CLFs can be learned from
counterexamples [39], or how CLFs can be used to in the cost function of an
RL problem to reduce sample-complexity [40].

My work in [149], which is presented in Section 3.3, was the first to look at
learning model error as it directly impacts the time derivative of a CLF. This
approach was motivated by the observation that only model errors appearing
in the time derivative of a CLF impacted the local exponential stability of
the system, and a complete characterization of model errors in the full state
dynamics was unnecessary to certify stability. To ensure the well-posedness of
this approach, I develop an understanding of structural assumptions that can
be made about the true system that allow transferring a CLF for a nominal
model to the true system. This enables enforcing a specific structure upon the
learning models that allow them to be integrated into the optimization-based
control framework described in Section 2 without destroying convexity. An
analysis of the impact of residual learning error on local exponential stability
guarantees was developed in my work in [150], which is presented in Section
3.4. Subsequent approaches have built upon the idea of learning model error
directly as it impacts a CLF time derivative, such as in the context of RL
[151]. Other work used affine GPR models to learn model errors in a CLF time
derivative and produce a robust optimization-based controller [46] based on
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the optimization-based control framework described in Section 2. My work in
[152], discussed in Section 3.8, also takes a robust optimization-based approach
for synthesizing a stabilizing controller directly using data, but takes a different
perspective on quantifying model error. A comprehensive survey of CLFs being
integrated with learning methods can be found in [41].

Learning with Control Barrier Functions

A significant amount of recent work has looked at utilizing learning with CBFs
for dynamic systems. An indicator of this is the several recent survey papers
focused on the two topics, including one focused on learning CBFs [45], one
focused on learning applications using CBFs [41], one looking at safe learn-
ing in robotics [133], and my own work surveying connections between data-
driven safety-filter techniques developed through Hamilton-Jacobi Reachabil-
ity, CBFs, and predictive control [153]. One key reason for this magnitude of
development compared to learning with CLFs is the permissive behaviors that
can be achieved when enforcing safety of systems with CBFs. In particular,
rather than stabilizing a system to a particular point or a trajectory, CBFs
can allow a system to explore a safe region as it acquires data, builds learning
models, and discovers optimal behaviors.

The first, and perhaps most obvious, way in which CBFs and learning can
be integrated is by learning model errors that impact CBF-based controllers.
Some approaches seek to do this task online, with the system required to
remain safe during the process of collecting data and building learning models.
This challenge was first explored in [16], where the dynamics of a quadrotor
were safely learned using GPR by enforcing CBF constraints during the data
collection process, while further work has looked at this task of safely learning
dynamics online, either through Bayesian learning approaches [43], [154], [155]
or online disturbance estimation [156]. Other approaches have taken an offline
approach in which the system collects data, learning models are built offline,
and the models are integrated into subsequent controller designs. The work
in [42] looks at learning nonlinear dynamics using GPR and integrating the
learning models into a CBF-based controller. Similar approaches using GPR
and CBFs have been explored for learning in the context of decentralized
collision avoidance [157] and elastic joint robots [158]. Additional approaches
use Koopman operators to learn open-loop dynamics to be used in CBF-based
controller synthesis [159], or learn the trajectories of closed-loop systems under
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back-up set CBF-based controllers to reduce online computations [160].

Inspired by my work on learning model error as it impacts the time derivatives
of CLFs presented in Sections 3.3 and 3.4, my work in [161], discussed in
Section 3.5, looked at how model error could be learned directly as it impacts
the time derivative of a CBF. This was an offline learning approach, in which
data is episodically collected, integrated into structured learning models that
preserve convexity of downstream control synthesis, and iteratively improve
the safety of a system. Based on this approach, I developed a rigorous analysis
of the impact of residual learning error on the safety of the system through
the lens of ISSf in my work in [162], discussed in Section 3.6. This idea of
learning model error only as it impacts a CBF time derivative was extended
to the RL setting in [151], and used in online learning with extreme learning
machines [163]. This idea was further explored in my work in [25], discussed
in Section 3.7, which looked at learning unstructured model errors in a CBF
time derivative when working with high-dimensional systems.

One direction of research that extended on the idea of learning model uncer-
tainty directly as it impacts the time derivative of a CBF was through the
use of robust optimization. This work began in the context of CLFs in [46],
but my work in [152] done in parallel provided an alternative perspective that
was applied to both CLFs and CBFs. The work in [46] was later extended
to the setting of CBFs with a focus on verifying the feasibility of the robust
optimization-based controllers in [164], and was subsequently utilized in an on-
line learning setting in [165]. I note that the robust control approach developed
in my work [152] has been specialized for certain cases of model uncertainty
that allow for more efficient robust optimization problems in [166] and [167].

Another area that has seen rapid development in integrating learning with
CBFs is safe RL. First steps in this area occurred in [44], [168], where CBFs
were used to restrict policy updates such that the RL algorithm would only
return safe policies. Work beyond this has sought to improve optimality and
relax requirements on knowledge of a conservative but safe controller when
starting the RL algorithm [169], [170]. Other work has looked at using approx-
imate dynamic programming methods for safely solving the optimal control
problem posed by RL online [171], multi-agent RL using multiple CBFs [172],
and safe inverse RL [173]. Though not explicitly RL, the recent work in [174]
looks at how online imitation learning can be safely performed using CBFs.
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Instead of learning model errors or controllers that optimize reward functions,
another avenue of recent work has explored how CBFs can be learned for non-
linear control systems. The first work considering this challenge was [175],
which looked to learn CBFs for motion planning of robotic manipulators from
human demonstrations. Following this, a framework for building CBFs from
data was proposed in [176], and extended to hybrid nonlinear systems in
[177]. Other developments have looked at the construction of CBFs online
for robotic systems operating in unknown environments using distance mea-
surements [178], using RL to synthesize CBFs that capture tolerable levels of
failure risk [179], integrating learned CBFs into Nonlinear Model Predictive
Control (NMPC) [180], and iteratively learning linear CBFs to approximate a
complex set that is to be kept forward invariant [181].

Learning and CBFs have been integrated in several other creative research di-
rections. One direction has looked at the tuning of CBFs and CBF-based con-
trollers, such as using RL to tune CBF parameters to enable efficient collision
avoidance of robotic manipulators [182], using RL to ensure input constraints
are satisfied [183], or my own work in [23], discussed in Section 5.4, which uses
Preference-Based Learning (PBL) to tune robustness parameters of a robust
CBF controller in an effort to meet performance requirements. Another direc-
tion has been in ensuring safety of controllers using learned vision modules,
such as my own work [184], or work on safe self-supervised online learning
using stereo vision [185]. Other ideas have looked at how CBFs can be used
to define cost functions for learning problems that produce bipedal walking
gaits [186], how CBFs can be used to quantify the safety of learning-based
autonomous driving (without controlling the system itself) [187], or how CBF
safety filters can be cheaply approximated using learning models [188].

Adaptive Safety

My work in adaptive safety through CBFs was motivated by the existing no-
tion of adaptive CLFs [47] that were used to stabilize systems in the presence of
parametric model error. Adaptive CLFs were extended into a modular frame-
work focused on ISS [189], considered in an inverse optimal control problem
[48], and integrated with sums-of-squares (SOS) programming [49]. Recently,
they have been used in an experimental setting on a brachiating robot [20].
Absent from these works was a focus on adaptively enforcing the safety of a
particular set in the state space, with the set being kept invariant using adap-
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tive CLFs lying in the composite state and parameter estimate space. My
work in [190] sought to translate much of the framework for adaptive CLFs
into the setting of adaptive safety, yielding a definition of adaptive CBFs. This
work explored how enforcing safety of a particular set in the state space in the
presence of parametric model error is more difficult than stabilizing a system
in the presence of parametric model error. A key extension of this work inte-
grated previously collected data by the system into the adaptation algorithm
[191], similarly to concurrent learning [192], allowing for a reduction in conser-
vativeness with respect to safety as a system evolves. Further extensions have
looked at fixed time adaptation laws [193], hybrid adaptation laws [194], mul-
tiple CBFs [195], higher-order CBFs [196], utilizing the certainty-equivalence
principle to simplify requirements for adaptive safety [197], dynamic regressor
extension and mixing [198], modular adaption law design [199], and approaches
for permitting parametric model error in the actuation matrix g [200].

3.2 Model Errors

Recall the open-loop system (2.1). In many practical settings, a control de-
signer may not have perfect knowledge of the functions f and g. This lack of
knowledge may arise due to unmodeled effects such as friction, or due to errors
in system parameters such as inertias. Instead, control design is done with a
nominal model that estimates the true open-loop system (2.1):

̂̇x = f̂(x) + ĝ(x)u, (3.1)

where the functions f̂ : E → Rn and ĝ : E → Rn×m are assumed to be locally
Lipschitz continuous on E. I note that this construction implicitly assumes
that the true system can be described by the state vector x, and that the true
open-loop system (2.1) is control-affine and time-invariant. I further note that
this permits error in how the actuation matrix g is modeled. Many existing
approaches assume certainty in how control inputs enter the system [38], [201],
[202]. These structural assumptions will ensure that the learning problem in
Sections 3.3 and 3.5 is well-posed, while they are necessary for the stability
and safety guarantees achieved by the data-driven control approach in Section
3.8. Adding and subtracting the nominal model open-loop system (3.1) from
the true open-loop system (2.1) yields the following description of the true
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open-loop system:

ẋ = f̂(x) + ĝ(x) + f(x)− f̂(x)︸ ︷︷ ︸
f̃(x)

+(g(x)− ĝ(x))︸ ︷︷ ︸
g̃(x)

u, (3.2)

where f̃ : E → Rn and g̃ : E → Rn×m are locally Lipschitz continuous on
E (by the assumptions on f ,g, f̂ , and ĝ) and capture the error between the
nominal model open-loop system (3.1) and the true open-loop system (2.1).

Example 2. Consider an inverted pendulum with input attenuation near the
upright configuration described by the true open-loop system:

ẋ =

[
x2

g
ℓ
sin(x1)

]
+

[
0

1−0.75 exp(−x2
1)

mℓ2

]
u, (3.3)

with state x ∈ R2, input u ∈ R, and gravitational acceleration, length, and
mass parameters g, ℓ,m ∈ R>0, respectively. I will consider a nominal model
of the true open-loop system given by:

̂̇x =

[
x2

ĝ

ℓ̂
sin(x1)

]
+

[
0
1

m̂ℓ̂2

]
u, (3.4)

where ĝ, ℓ̂, m̂ ∈ R>0 are estimates of the gravitational acceleration, length, and
mass parameters. The corresponding functions f̃ and g̃ are given by:

f̃(x) =

[
0(

g
ℓ
− ĝ

ℓ̂

)
sin(x1)

]
, g̃(x) =

[
0

1−0.75 exp(−x2
1)

mℓ2
− 1

m̂ℓ̂2

]
. (3.5)

A special case of model error that is typically considered in adaptive control
is parametric model error in the drift dynamics, such that the true open-loop
system (2.1) can be written as:

ẋ = f̂(x) + F(x)θ⋆︸ ︷︷ ︸
f(x)

+ ĝ(x)︸︷︷︸
g(x)

u, (3.6)

where the function F : E → Rn × Rn×p is locally Lipschitz continuous on E

and θ⋆ ∈ Rp. The function F captures a collection of basis functions that are
known to parameterize the model error, and θ⋆ is the vector of true parameters
that describe the system. Note that this construction does not permit error
in the actuation matrix (g̃(x) = 0n×m for all x ∈ E). Recalling the open-loop
robotic system (2.5), this can be a limiting setting as the mass and inertia
terms which appear in the matrix D are often estimated imperfectly, leading
to error between g and ĝ.
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Example 3. Considering the inverted pendulum with input attenuation in Ex-
ample 2, suppose that m̂ = m, ℓ̂ = ℓ, and the attenuation term −0.75 exp(−x21)
is absent. Then the true open-loop system is of the form in (3.6) with:

F(x) =

[
0

sin(x1)

]
, (3.7)

and θ⋆ = g−ĝ
ℓ

.

3.3 Learning with Control Lyapunov Functions

In this section I will present an episodic learning approach for mitigating model
errors as they directly impact the time derivative of a local exponential CLF.
The motivation for learning model error in this way is the idea that not all
of the model error needs to be identified to achieve local exponential stability,
but rather, only the model uncertainty that impacts the time derivative of
a corresponding local exponential CLF. This learning approach will utilize
a structured learning model that can be directly integrated into the convex
optimization-based (CLF-QP) controller to improve the stability of a system,
without destroying convexity.

One challenge in developing learning-based methods for controller improve-
ment is how best to collect training data that accurately reflects the desired
operating environment and control goals. In particular, exhaustive data col-
lection typically scales exponentially with dimensionality of the joint state and
control input space, and so should be avoided. But first pre-collecting data up-
front can lead to poor performance as downstream control behavior may enter
states that are not present in the pre-collected training data. I will leverage the
episodic learning idea of Dataset Aggregation (DAgger) [203] to address these
challenges in a data-efficient manner, and yield iteratively refined controllers.

The contributions of this section are as follows:

• An episodic learning algorithm that identifies model errors as they di-
rectly impact the time derivative of a local exponential CLF using a
structured learning model that permits use of the convex optimization-
based control framework described in Section 2.3.

• A characterization of the well-posedness of learning and control problems
using CLFs by justifying the transfer of a local exponential CLF for a
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nominal model open-loop system to the true open-loop system using
assumptions on structural properties of the true open-loop system.

The text for this section is adapted from:

A. J. Taylor, V. D. Dorobantu, H. M. Le, Y. Yue, and A. D. Ames,
“Episodic learning with control lyapunov functions for uncertain robotic
systems,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Sys.
(IROS), Macau, China, 2019, pp.6878-6884.

A. J. Taylor participated in the conception of the project, algorithm
design, simulation code implementation, and writing of the article.

Uncertainty in Control Lyapunov Functions

Let xe ∈ E be an unforced or forced equilibrium point with equilibrium input
ûe ∈ Rm for the nominal model open-loop system (3.1). Consider a local
exponential CLF V : E → R≥0 for the nominal model open-loop system (3.1)
and equilibrium point xe ∈ E, with corresponding open set D ⊆ E with
xe ∈ D, and k3, a ∈ R>0, such that:

inf
u∈Rm

̂̇V (x,u) ≜ inf
u∈Rm

∂V

∂x
(x)(f̂(x) + ĝ(x)u) < −k3∥x− xe∥a, (3.8)

for all x ∈ D \ {xe}. The time derivative of the function V uses the true
open-loop system (2.1), and thus using (3.2), we have that:

V̇ (x,u) = ̂̇V (x,u) +
∂V

∂x
(x)f̃(x)︸ ︷︷ ︸
b(x)

+
∂V

∂x
(x)g̃(x)︸ ︷︷ ︸
a(x)⊤

u. (3.9)

Consequently, choosing an input u ∈ Rm such that the inequality in (3.8) is
satisfied is insufficient to conclude that the time derivative of the local expo-
nential CLF V will meet the required inequality to guarantee local exponential
stability because of the functions b : E → R and a : E → Rm. Note that the
functions b and a capture the model errors in f̃ and g̃ only as they impact the
evolution of the local exponential CLF V , and consequently, local exponential
stability. This motivates considering a learning-based approach to identify the
functions b and a such that their effects on the CLF time derivative can be
accounted for in the control design process, and local exponential stability can
be achieved. Note that by explicitly learning the functions b and a, instead
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of learning their combined effect in a single function δ(x,u) = b(x) + a(x)⊤u

that takes both the state and control input as inputs, highly accurate nonlin-
ear learning models can be used without destroying the control-affine nature
of V̇ that permits control synthesis through convex optimization. To ensure
the well-posedness of this approach, I make the following assumptions:

Assumption 1. The point xe ∈ E is an unforced or forced equilibrium point
of true open-loop system (2.1) with known equilibrium input ue.

Assumption 2. The function V is a CLF for the true open-loop system (2.1)
and equilibrium point xe with corresponding open set D ⊆ E with xe ∈ D,
and constants k3, a ∈ R>0.

The first assumption states that trying to stabilize the true open-loop system
(2.1) to the point xe is well-posed, as xe can be rendered an equilibrium point
of the true open-loop system (2.1). It also states that the equilibrium input ue

needed to render xe an equilibrium point of the true open-loop system (2.1) is
known (it may be different than the one for the nominal model, i.e., ûe ̸= ue).
The second assumption states that V is a local exponential CLF for the true
open-loop system (2.1) and equilibrium point xe with the same open set D
and constants k3, a ∈ R>0 used for the nominal model open-loop system (3.1).
It is important to note that this is an assumption on how the true open-loop
system (2.1) can be controlled. In particular, this assumption states that for
a given x ∈ D \ {xe}, one knows that there exists an input u ∈ Rm such that:

V̇ (x,u) = ̂̇V (x,u) + b(x) + a(x)⊤u < −k3∥x− xe∥a, (3.10)

but not necessarily which value of u satisfies the inequality. If one knew the
functions b and a perfectly, the value of u satisfying this inequality could be
found. Thus, if one could learn these functions from data, the control synthesis
problem through CLFs would be well-posed. To better under this assumption
consider the following example of a fully-actuated robotic system.

Example 4. Consider the following nominal model for a fully-actuated robotic
system:

D̂(q)q̈+ Ĉ(q, q̇) + Ĝ(q) = B̂(q)τ , (3.11)

where D̂ : Q → Snc
≻0, Ĉ : X → Rnc , Ĝ : Q → Rnc , and B̂ : Q → Rm are locally

Lipschitz continuous functions on their respective domains. These functions
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are nominal models of the corresponding functions D,C,G, and B in the true
open-loop robotic system (2.5). Let (qe,0) ∈ X be a forced equilibrium point
of the nominal model open-loop robotic system (3.11) with equilibrium input:

τ̂ e = B̂(qe)
−1(Ĉ(qe,0nc) + Ĝ(qe)). (3.12)

Let us suppose that the true open-loop robotic system is fully-actuated, such
that B(q) is invertible for each q ∈ Q. Then (qe,0) is a forced equilibrium
point of the true open-loop robotic system (2.5) with equilibrium input:

τ e = B(qe)
−1(C(qe,0nc) +G(qe)). (3.13)

Let η =
[
(q− qe)

⊤ q̇⊤
]⊤

. A feedback linearizing controller k̂fbl : X ×Rnc →
Rm using the nominal model open-loop robotic system (3.11) can be designed:

k̂fbl(x,−Kη) = B̂(q)−1D̂(q)(D̂(q)−1(Ĉ(q, q̇) + Ĝ(q))−Kη), (3.14)

with K ∈ Rnc×n. For the nominal model open-loop robotic system (3.11), this
yields the linear closed-loop output dynamics:

η̇ = Aclη, (3.15)

which are locally exponentially stable for an appropriate choice of K. As
in Section 2.4, for a given Q ∈ Sn

≻0, the CTLE can be solved to produce a
matrix P ∈ Sn

≻0 that defines a local exponential CLF V for the nominal model
open-loop robotic system (3.11) and equilibrium point (qe,0). Considering
the true open-loop robotic system (2.5), a feedback linearizing controller kfbl :

X × Rnc → Rm can be specified as:

kfbl(x,−Kη) = B(q)−1D(q)(D(q)−1(C(q, q̇) +G(q))−Kη). (3.16)

Similarly, for the true open-loop robotic system (2.5), this controller leads to
the same closed-loop linear output dynamics in (3.15), for which the CTLE
produces the same matrix P ∈ Sn

≻0 that defined the local exponential CLF V .
While the controller (3.16) can not be evaluated as the functions D, C, G,
and B are not precisely known, the input it would return exists, and thus it is
sufficient to conclude that V is a local exponential CLF for the true open-loop
robotic system (2.5) and equilibrium point (qe,0). Thus, the assumption of V
being a local exponential CLF for the true open-loop robotic system (2.5) is
justified under other structural assumptions such as the robotic system being
fully-actuated. This ensures that successfully learning the functions b and a

will lead to a well-posed control problem.
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Data-Driven Episodic Learning Framework

Given that the formulation in (3.2) and (3.9) defines a general class of model
error (rather than parametric), it is natural to consider a data-driven method
to estimate the unknown functions b and a on the domain D. To motivate a
learning-based framework, first consider a simple approach of learning b and a

via supervised regression [204]: the true closed-loop system (2.2) is operated
using a given controller k : D → Rm, data points are gathered along the
system’s evolution, and functions that approximate b and a are produced via
supervised learning.

Concretely, let x0 ∈ D be an initial state. An experiment is defined as the
evolution of the true closed-loop system over a finite time interval from the
initial condition x0 using a sample-hold implementation of the controller k.
A resulting discrete-time state history is obtained, which is then transformed
with the local exponential CLF V and finally differentiated numerically to
estimate V̇ throughout the experiment. This yields a data set composed of
input-output pairs:

D = {((xi,ui), V̇i)}Ni=1 ⊆ (D × Rm)× R. (3.17)

Consider a class Hb of nonlinear functions mapping Rn to R and a class Ha

of nonlinear functions mapping Rn to Rm. For a given b̂ ∈ Hb and â ∈ Ha,
define the structured estimator ̂̇W as:

̂̇W (x,u) = ̂̇V (x,u) + b̂(x) + â(x)⊤u, (3.18)

and let H be the class of all such estimators mapping Rn×Rm to R. Observe
that the structure of this estimator ensures it is affine in the control input,
and thus can be directly integrated into the convex optimization-based control
framework presented in Section 2.3. Defining a loss function L : R×R→ R≥0,
the supervised regression task is then to find a function in H via empirical risk
minimization (ERM):

inf
â∈Ha

b̂∈Hb

1

N

N∑
i=1

L(̂̇W (xi,ui), V̇i). (3.19)

This experiment protocol can be executed either in simulation or directly on
hardware. While being simple to implement, supervised learning critically
assumes independently and identically distributed (i.i.d) training data. Each
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experiment violates this assumption, as the regression target of each data point
is coupled with the input data of the previous time step. As a consequence,
standard supervised learning with sequential, non-i.i.d data collection often
leads to error cascades [142].

Episodic learning refers to learning procedures that iteratively alternate be-
tween executing an intermediate controller (also known as a roll-out in rein-
forcement learning [132]) to collect data from that roll-out, and designing a
new controller using the newly collected data. My approach integrates learn-
ing b and a with improving the performance and stability of the controller
in such an iterative fashion. First, assume we are given a nominal controller
knom : E → Rm, which may not locally exponentially stabilize the result-
ing true closed-loop system (2.2) to the equilibrium point xe, but satisfies
knom(xe) = ue. With an estimator ̂̇W ∈ H defined in (3.18), specify a learning-
informed (CLF-QP) controller as:

k(x) = argmin
u∈Rm

∥u− knom(x)∥2 (3.20)

s.t. ̂̇W (x,u) ≤ −k3∥x− xe∥a.

This learning-informed (CLF-QP) controller finds the closest input to knom(x)

such that the local exponential CLF inequality is met using the estimator̂̇W for V̇ . However, error in the estimator ̂̇W degrades the local exponential
stability of the true closed-loop system (2.2) with respect to the equilibrium
point xe.

In an effort to reduce the remaining error in the estimator ̂̇W , an experiment
can be run using the learning-informed (CLF-QP) controller to produce data
by which to obtain better estimates of b and a. To overcome the limitations
in needing i.i.d data for conventional supervised learning, I leverage reduction
techniques: a sequential prediction problem is reduced to a sequence of super-
vised learning problems over multiple episodes [203], [205]. In particular, in
each episode, an experiment generates data using a different controller. The
data set is aggregated and a new ERM problem is solved after each episode.
This episodic learning implementation is inspired by the Data Aggregation
(DAgger) algorithm [203], with some key differences:

• DAgger is a model-free policy learning algorithm, which trains a policy
directly in each episode using optimal control input oracles. As such
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an oracle is not available in my problem setting, my algorithm defines a
controller indirectly via a local exponential CLF as in (3.20) to explicitly
drive the system towards stable behavior.

• The ERM problem is underdetermined, i.e., different approximations
(̂b, â) may achieve similar loss for a given data set while failing to ac-
curately model b and a. This issue will be explored more in Sections
3.7 and 3.8. This potentially introduces error in estimating V̇ for con-
trol inputs not reflected in the training data, and necessitates the use of
exploratory control action to constrain the estimators b̂ and â. Such ex-
ploration can be achieved by randomly perturbing the controller used in
an experiment at each time step. This need for exploration is an analog
to the notion of persistent excitation for adaptive systems [206].

Algorithm 1 specifies a method of computing a sequence of local exponential
CLF derivative estimates ̂̇W k and augmented1 controllers kk. During the kth

episode, the k − 1th augmented controller is used in an experiment, data is
collected and aggregated with the data set D and an estimate of the local
exponential CLF derivative ̂̇W k is formed. After this, a corresponding learning-
informed (CLF-QP) controller as in (3.20) is produced, scaled by a heuristically
chosen factor wk ∈ [0, 1] reflecting trust in the estimate and added to the
nominal controller k0 = knom for use in the subsequent experiment as an
augmented controller kk. The trust coefficients form a monotonically non-
decreasing sequence. Importantly, this experiment need not take place in
simulation; the same procedure may be executed directly on hardware. At a
high level, this episodic approach makes progress by gathering more data in
relevant regions of the state space, such as states close to xe. This extends the
generalizability of the estimator in its use by subsequent controllers.

There are a few practical concerns with this algorithm that should be observed.
First, the system will not necessarily be locally exponentially stable during the
episodic learning process. In general, one will often begin the learning process
with a controller that is unstable, or displays desirable behavior but possess no
guarantees of local exponential stability (such as a Lyapunov function). This
algorithm instead tolerates instability during the episodic learning process to

1I refer to these as augmented controllers if wk ̸= 1, as the learning-informed (CLF-QP)
controller in (3.20) is not fully used, but blended with the nominal controller k0.
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Algorithm 1 Dataset Aggregation for Control Lyapunov Functions (Da-
CLyF)

Require: Local exponential CLF V , derivative estimate ̂̇W 0 = ̂̇V , model
classes Ha and Hb, loss function L, nominal controller k0 = knom, number
of experiments T , sequence of trust coefficients 0 ≤ w1 ≤ · · · ≤ wT ≤ 1.

D = ∅ ▷ Initialize data set
for k = 1, . . . , T do

x0 ← sample D ▷ Get initial condition
Dk ← experiment(x0,kk−1) ▷ Run experiment
D← D ∪Dk ▷ Aggregate data set
âk, b̂k ← ERM(Ha,Hb,L,D, ̂̇W 0) ▷ Fit estimatorŝ̇W k ← ̂̇W 0 + â⊤

k u+ b̂k ▷ Update derivative estimator

kk ← (1− wk) · k0 + wk · augment(k0,
̂̇W k) ▷ Update controller

end for
return ̂̇W T ,kT

ensure that the system performs adequate exploration in the data acquisition
process and return a controller at the end of the episodic learning for which
meaningful stability properties can be established, as explored in Section 3.4.

Second, there can be issues that arise with the constraint in the learning-
informed (CLF-QP) controller (3.20). In particular, while we know that:

inf
u∈Rm

̂̇V (x,u) < −k3∥x− xe∥a, (3.21)

for all x ∈ D \ {xe}, and we assume that:

inf
u∈Rm

V̇ (x,u) < −k3∥x− xe∥a, (3.22)

for all x ∈ D\{xe}, such that the local exponential CLF constraint can be met
for the nominal model open-loop system (3.1) and the true open-loop system
(2.1), we do not know that:

inf
u∈Rm

̂̇W k(x,u) < −k3∥x− xe∥a, (3.23)

for all x ∈ D \ {xe} for k = 1, . . . , T . In particular, the learned models b̂ and
â can lead to this condition being violated. This means that the learning-
informed (CLF-QP) controller will not necessarily be feasible for all x ∈ D.
This issue is noticeable at the equilibrium point xe, as we must have:

b̂k(xe) + âk(xe)
⊤ue ≤ 0, (3.24)
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or the equilibrium input will not satisfy ̂̇W k(xe,ue) ≤ 0 (as ̂̇V (xe,ue) = 0), and
thus the controller will not use the equilibrium input at the equilibrium point.
In practice, the relaxation technique used in the (CLF-CBF-QP) controller
is utilized, such that the problem always remains feasible at the expense of
rigorous stability guarantees. This highlights a particular challenge in learning
and control, which is the analytic nature of the stability and safety guarantees
that come from CLFs and CBFs, and the numerical nature of learned models.
In reality, one will likely never be able to learn the functions b and a perfectly.
Instead, stability and safety guarantees will need to be built keeping in mind
that residual learning error arising from numerical learning methods will be
present in learning models, as explored in Sections 3.4 and 3.6.

Simulation Results

I apply this episodic learning algorithm to a planar Segway platform seen in
Figure 3.1. In particular, I consider a 4-dimensional planar Segway model
based on the simulation model in [27]. The system states consist of horizontal
position x ∈ R, horizontal velocity ẋ ∈ R, pitch angle θ ∈ R, and pitch angle
rate θ̇ ∈ R. Control is specified as a single voltage input supplied to both
wheel motors. The parameters of the model (including mass, inertias, and
motor parameters but excluding gravity) are randomly modified by up to 10%
of their nominal values and then held fixed for the simulations. Note that even
though this is parametric model error, it introduces error between ĝ and g,
which is typically not considered by adaptive control approaches.

I seek to stabilize the pitch angle and pitch angle rate to a trajectory generated
using the GPOPS-II Optimal Control Software [207] for the nominal model2.
The nominal controller k0 = knom is a linear proportional-derivative (PD)
controller on angle and angle rate error. A set of T = 20 experiments are
conducted with trust values wk varying from 0.01 to 0.99 in a sigmoid fashion.
The exploratory control is drawn uniformly at random between −20% and 20%

of the norm of the control input specified by the augmented controller kk for
2More precisely, the definition of local exponential stability in Definition 2 can easily be

extended to use a desired trajectory xd : R≥0 → E that satisfies the differential equation
(2.1) for some input signal ud : R≥0 → Rm instead of an equilibrium point xe. Furthermore,
the Segway system is underactuated, and thus the CLF considered is the one for the outputs
(the pitch angle tracking error and pitch angle rate tracking error) (2.36) produced using
feedback linearization. The goal is thus to drive the outputs to 02, but the stability of the
zero dynamics (and full system stability) are not considered.
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Figure 3.1. (Left) Nominal model-based (CLF-QP) controller fails to stabilize the system
to the trajectory. (Right) Improvement in angle tracking of system with learning-informed
(CLF-QP) controller over nominal PD controller. (Bottom) Corresponding visualizations of
state data. Video of this simulation is found at https://youtu.be/cB5MY_8vCrQ.

the first ten episodes. The percentages decay linearly to zero in the remaining
ten episodes. The model classes selected are sets of two-layer neural networks
with Recitified Linear Unit (ReLU) nonlinearities with a hidden layer width
of 2000 nodes that are implemented in Keras [208].

Failure of the nominal model-based (CLF-QP) controller is seen in the left
panel of Figure 3.1. The nominal PD controller k0 = knom and the final
learning-informed (CLF-QP) controller k20 produced using w20 = 1 can be
seen in the right panel of Figure 3.1. Corresponding visualizations of the
Segway states are displayed in the bottom panel of Figure 3.1. The final
learning-informed (CLF-QP) controller exhibits a notable improvement over
the nominal model-based (CLF-QP) controller and nominal PD controller in
its ability to track the desired trajectory. To verify the robustness of the
learning algorithm, the 20 experiment process was conducted ten times. After
each experiment the augmented controller kk was tested without exploratory
perturbations. For the last three experiments and a test of the final learning-
informed (CLF-QP) controller k20, the minimum, mean, and maximum angles
across all ten instances are displayed for each time step in Figure 3.2. The
mean trajectory consistently improves in these later episodes as the trust fac-

https://youtu.be/cB5MY_8vCrQ
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Figure 3.2. Augmented controllers consistently improve stabilization to trajectory across
episodes. Ten instances of the algorithm are executed with the shaded region formed from
minimum and maximum angles for each time step within an episode. The corresponding
average angle trajectories are also displayed.

tor increases. The variation increases but remains small, indicating that the
learning problem is robust to randomness in the initialization of the neural
networks, in the network training algorithm, and in the noise added during
the experiments. The performance of the controller in the earlier episodes
displayed negligible variation from the nominal PD controller k0 = knom due
to small trust factors.

Conclusion

In this section I have presented an episodic learning framework for learning
model errors between a nominal model open-loop system and the true open-
loop system as they directly impact the time derivative of a local exponential
CLF V . I provide a discussion on assumptions that ensure a local exponential
CLF V for the nominal model open-loop system is a local exponential CLF
for the true open-loop system, and provide justification of these assumptions
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through an example in the context of a fully actuated robotic system. I then
describe the episodic learning framework, and address practical concerns that
arise when integrating the analytic tools of local exponential CLFs with the
numerical tools of learning models. Lastly I provide a demonstration of the
efficacy of the algorithm in simulation on a planar Segway system.

3.4 Projection-to-State Stability

In this section I will present an analysis of the effects of residual learning error
on the local exponential stability of the true closed-loop system (2.2) using a
learning-informed (CLF-QP) controller. Building off of the episodic learning
algorithm in Section 3.3, I will consider learning model errors as they impact
the time derivative of a local exponential CLF. I will first demonstrate that
the inherent robustness properties of local exponential CLF-based controllers
yield a general robustness to residual learning errors in this learning and control
setting. This will be achieved by looking at the evolution of a local exponential
CLF as a disturbed dynamic system through a modification of ISS known
as Projection-to-State Stability (PSS). Second, I will consider the possible
residual learning errors that can occur given a data set D and estimator ̂̇W as
in Section 3.3, and what this will mean for the behavior of the true closed-loop
system (2.2) using an imperfect learning-informed controller.

The contributions of this section are as follows:

• A notion of robust stability in the form of Projection-to-State Stability
(PSS), which captures the impact of disturbances on stability only as
they impact the time derivative of a CLF, rather than the full-order
dynamics, as is done by ISS discussed in Section 2.7.

• A data-driven characterization of possible residual learning errors when
learning model errors as they impact the time derivative of a local expo-
nential CLF. The convex representations that arise from this character-
ization are the foundation of the work in Section 3.8.

The text for this section is adapted from:

A. J. Taylor, V. D. Dorobantu, M. Krishnamoorthy, H. M. Le, Y. Yue,
and A. D. Ames, “A control lyapunov perspective on episodic learning
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via projection to state stability,” in Proc. IEEE 58th Conf. on Decision
and Control (CDC), Nice, France, 2019, pp.1448-1455.

A. J. Taylor participated in the conception of the project, theoretical
analysis, simulation code implementation, and writing of the article.

Projection-to-State Stability and Residual Learning Error

Let xe ∈ E be an equilibrium point of the nominal model open-loop system
(3.1) and the true open-loop system (2.1) with known equilibrium inputs ûe

and ue, respectively. Suppose that V : E → R≥0 is a local exponential CLF
for the nominal model open-loop system (3.1) and true open-loop system (2.1)
and equilibrium point xe with corresponding open set D ⊆ E with xe ∈ D.
This amounts to the requirements of Assumptions 1 and 2 made in Section
3.3. Furthermore, consider the nominal model-based (CLF-QP) controller:

k̂(x) = argmin
u∈Rm

∥u− ue∥2 (3.25)

s.t. ̂̇V (x,u) ≤ −k3∥x− xe∥a.

This controller corresponds to the (CLF-QP) controller using the nominal
model open-loop system (3.1) for the time derivative of the local exponential
CLF V . The true closed-loop system using the controller k̂ may be written as:

ẋ = f(x) + g(x)k̂(x) = f̂(x) + ĝ(x)k̂(x) + f̃(x) + g̃(x)k̂(x). (3.26)

For a given initial condition x0 ∈ D, denote the solution to the true closed-loop
system (3.26) as φ : I(x0)→ D. Alternatively, this system can be understood
to evolve as a nominal model closed-loop system with unmatched disturbances:

ẋ = f̂(x) + ĝ(x)k̂(x) + d(t), (3.27)

where for any initial condition x0 ∈ D the disturbance signal is defined as:

d(t) = f̃(φ(t)) + g̃(φ(t))k̂(φ(t)). (3.28)

Viewing model error as an unmatched disturbance in the nominal model
closed-loop system motivates studying it through the lens of Input-to-State
Stability (ISS). If the nominal model closed-loop system with unmatched dis-
turbances (3.27) is ISS with respect to the equilibrium point xe, then small
model errors will lead to small disturbances and a small degradation in the
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local exponential stability that would be demonstrated by the nominal model
closed-loop system without disturbances:

ẋ = f̂(x) + ĝ(x)k̂(x). (3.29)

In the context of learning the time derivative of a local exponential CLF as
in Section 3.3, the disturbance signal is not as readily understood in the state
dynamics. In particular, recall that:

V̇ (x,u) = ̂̇V (x,u) + b(x) + a(x)⊤u. (3.30)

Let b̂ ∈ Hb and â ∈ Ha compose the estimator ̂̇W ∈ H as:̂̇W (x,u) = ̂̇V (x,u) + b̂(x) + â(x)⊤u, (3.31)

and let us assume that:

inf
u∈Rm

̂̇W (x,u) < −k3∥x− xe∥a, (3.32)

for all x ∈ D \ {xe}, and3 that ̂̇W (xe,ue) ≤ 0. Adding and subtracting the
estimators b̂ and â from V̇ yields:

V̇ (x,u) = ̂̇W (x,u) + b(x)− b̂(x)︸ ︷︷ ︸
b̃(x)

+(a(x)− â(x))⊤︸ ︷︷ ︸
ã(x)⊤

u. (3.33)

The functions b̃ : E → R and ã : E → Rm capture residual learning error left
after trying to learn the functions b and a with the estimators b̂ and â. As
these error terms appear in the time derivative of the local exponential CLF
V , they will consequently have an impact on the stability properties of the
system. Using the learning-informed (CLF-QP) controller:

k(x) = argmin
u∈Rm

∥u− ue∥2 (3.34)

s.t. ̂̇W (x,u) ≤ −k3∥x− xe∥a,
3This assumption will lead the learning-informed controller in (3.34) to satisfy k(xe) =

ue, such that xe is an equilibrium point of the true closed-loop system (2.2). This assumption
can often practically be enforced at the expense of additional residual learning error near the
equilibrium point xe by providing “artificial” training data specifying that ̂̇W (xe,ue) = −ϵ
for some ϵ ∈ R>0. A consequence of continuous learning models is that this artificial
modification will lead to ̂̇W (x,ue) ≤ −k3∥x − xe∥a for all x in a neighborhood of the
equilibrium point xe, such that k(x) = ue, even if V̇ (x,ue) > −k3∥x−xe∥a for some values
of x in that neighborhood. Thus, local exponential stability will be compromised. As we
are interested in studying the effects of residual learning errors as disturbances in a dynamic
system, we will only really be concerned with convergence to a neighborhood of the origin
as captured by ISS, making the loss of local exponential stability tolerable.
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yields:
V̇ (x,k(x)) = ̂̇W (x,k(x)) + b̃(x) + ã(x)⊤k(x). (3.35)

For any initial condition x0 ∈ D, let φ : I(x0)→ D denote the solution to the
true closed-loop system (2.2) using the learning-informed (CLF-QP) controller
(3.34). The evolution of (3.35) can be viewed as a closed-loop system with
unmatched disturbances:

V̇ (x,k(x)) = ̂̇W (x,k(x)) + δ(t), (3.36)

where for any initial condition x0 ∈ D the function δ : R≥0 → R defined as:

δ(t) = b̃(φ(t)) + ã(φ(t))⊤k(φ(t)). (3.37)

is a projected disturbance. As with model error in the state dynamics, this
motivates studying residual learning error through the lens of ISS. Observe
that the learning-informed controller enforces:

V̇ (x,k(x)) ≤ −k3∥x− xe∥a + |δ(t)|, (3.38)

≤ −k3
k2
V (x) + |δ(t)|. (3.39)

Consequently, we have that the identity map ι : R≥0 → R≥0 defined as ι(r) = r

for all r ∈ R≥0 satisfies:

|V (x)| ≤ ι(V (x)) ≤ |V (x)|, (3.40)
∂ι

∂r
(V (x))V̇ (x,k(x)) ≤ −k3

k2
V (x) + |δ(t)| = −k3

k2
|V (x)|+ |δ(t)|, (3.41)

and thus is a local exponential ISS-LF for the closed-loop system with un-
matched disturbances (3.36) with respect to 0. Thus, there exist an open set
D′ ⊆ D with xe ∈ D′, constants M,λ, d ∈ R>0, and a function γ ∈ K such
that for any initial condition x0 ∈ D′ and d ∈ [0, d], if ∥δ∥∞ ≤ d, then the
solution φ : R≥0 → D to the true closed-loop system (2.2) satisfies:

V (φ(t)) ≤MV (x0)e
−λt + γ(d), (3.42)

for all t ∈ R≥0. Using the bounds on V in (2.16), we have that:

∥φ(t)− xe∥a ≤
Mk2
k1
∥x0 − xe∥ae−λt +

1

k1
γ(d). (3.43)
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Using the weak class-K triangle inequality [56, Equation 12], we have that:

∥φ(t)− xe∥ ≤ a

√
2Mk2
k1
∥x0 − xe∥e−

λ
a
t +

(
2

k1
γ(d)

) 1
a

, (3.44)

≜M ′∥x0 − xe∥e−λ′t + γ′(d), (3.45)

where M ′ = a

√
2Mk2
k1

, λ′ = λ
a
, and γ′(r) =

(
2
k1
γ(r)

) 1
a . This bound appears like

a statement of ISS for the true closed-loop system (2.2) using the learning-
informed controller (3.34), but it is defined now in terms of a bound on the
projected disturbance signal δ rather than a disturbance signal d in the state
dynamics. Consequently, the true closed-loop system (2.2) with the learning-
informed controller (3.34) is said to be Projection-to-State Stable (PSS) with
respect to the equilibrium point xe and projection V . The utility of PSS is
that it consider the impacts of model error only as it impacts the time deriva-
tive of the local exponential CLF. By doing so, it provides a mathematical
framework for understanding the impact of introducing learning models for
the time derivative of a local exponential CLF, as it is not obvious how to rep-
resent residual learning error in learning models for a CLF time derivative as
a disturbance in the full state dynamics (2.2), making an analysis by standard
ISS difficult. Furthermore, it may potentially produce less conservative state-
ments on the degradation of local exponential stability by neglecting model
error that does not affect stability.

Quantifying Residual Learning Error

In the preceding construction, I use a local exponential ISS-LF to establish the
existence of some open set D′ ⊆ D with xe ∈ D′, constants M,λ, d ∈ R>0, and
function γ ∈ K such that if ∥δ∥∞ ≤ d, then conclusions can be drawn about
the PSS properties of the true closed-loop system (2.2). Recalling that given
a data set D and corresponding estimators b̂ and â, the system experiences
the particular projected disturbance signal in (3.37), this in and of itself is not
a particularly useful result if we do not actually know that ∥δ∥∞ ≤ d for all
initial conditions x0 ∈ D′. Consequently, an important question is whether or
not we can find an open set D′ ⊆ D with xe ∈ D′, constants M,λ, d ∈ R>0,
and a function γ ∈ K satisfying the relationship in (3.42) for all t ∈ R≥0 and
d ∈ [0, d], and for which we know that the particular disturbance signal in
(3.37) at least satisfies ∥δ∥∞ ≤ d for all initial conditions x0 ∈ D′. This task
can be reduced to finding just an open set D′ ⊆ D with xe ∈ D′ and a constant
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d ∈ R>0 such that for any initial condition x0 ∈ D′, the solution φ : R≥0 → D

to the true closed-loop system (2.2) is defined for all time and the projected
disturbance defined in (3.37) satisfies |δ(t)| ≤ d for all t ∈ R≥0. With these,
the constants M,λ and function γ can be established using the standard proof
showing ISS through an ISS-LF [56, Theorem 1].

While these concerns seem technical, the concrete concern in the context of
learning is if the residual learning error near the equilibrium point xe is large,
it may cause the system to evolve into states not present in the data set D,
leading to even more residual learning error and a larger projected disturbance,
leading to further deviation from xe and repetition of this cycle. This motivates
using a data-driven approach to quantify the projected disturbance signal with
the goal of finding the desired open set D′ and constant d ∈ R>0, for which
we know that for all initial conditions x0 ∈ D′, the solution φ : R≥0 → D

to the true closed-loop system (2.2) is defined for all time and the projected
disturbance defined in (3.37) satisfies |δ(t)| ≤ d for all t ∈ R≥0. To this end,
I will first describe the notion of a set-valued uncertainty function, and show
how such a function can be used to produce a set D′ and constant d. I will
then provide a data-driven construction of such an uncertainty function.

Let P(R× Rm) denote the powerset of R× Rm, and define the following:

Definition 22 (Uncertainty Function). A function ∆ : D → P(R×Rm) is an
uncertainty function if (̃b(x), ã(x)) ∈ ∆(x) for all x ∈ D.

It is straightforward to see that given an uncertainty function ∆, we have that:

V̇ (x,k(x)) ≤ ̂̇W (x,k(x)) + sup
(b,a)∈∆(x)

(b+ a⊤k(x)), (3.46)

for all x ∈ D. To see how this can be used, let us denote the c-sublevel set of
the local exponential CLF V as:

Ω(c) = {x ∈ E | V (x) ≤ c}. (3.47)

For a given c ∈ R≥0, I will denote the closure of Ω(c) in Rn by Ω(c). For
simplicity, I will assume that there exists some c ∈ R>0 such that Ω(c) ⊂ E

for all c ∈ [0, c). This is a mild technical assumption that can generally be
shown to hold with large values of c for commonly used local exponential CLFs
using the lower bound in (2.12). This leads to the following result:
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Theorem 18. If a value c ∈ (0, c) satisfies:

sup
x∈Ω(c)

sup
(b,a)∈∆(x)

b+ a⊤k(x) ≤ k3
k2
c, (3.48)

and Ω(c) ⊂ D, then for the set D′ = Int(Ω(c)) and constant d = k3
k2
c, we have

that for any initial condition x0 ∈ D′, the solution φ : R≥0 → D to the true
closed-loop system (2.2) exists for all time and the projected disturbance in
(3.37) satisfies |δ(t)| ≤ d for all t ∈ R≥0.

This theorem states that if the worst-case residual learning error permitted
by an uncertainty set ∆ satisfies a bound over a sublevel set of the local
exponential CLF V , and the sublevel set is contained in the domain D where
the time derivative of the local exponential CLF V can be bounded, we can
produce the desired open set D′ and constant d.

Proof. Note that for any c ∈ (0, c), the continuity of V yields that Ω(c) is
closed (Ω(c) = Ω(c)), and thus ∂Ω(c) ⊂ Ω(c). Additionally, the lower bound
in (2.12) ensures that the set Ω(c) is bounded, such that Ω(c) is compact.

Consider an x ∈ ∂Ω(c), noting that x ∈ Ω(c) and thus x ∈ D. First, observe
that V (x) = c. To see this, assume that V (x) < c (x /∈ Ω(c) if V (x) > c). By
the continuity of V on E, there exists an open set U with x ∈ U such that
V (y) < c for all y ∈ U , and thus U ⊂ Ω(c). Thus x ∈ Int(Ω(c)), and thus
x /∈ ∂Ω(c), yielding a contradiction. Next observe that ∂V

∂x
(x) ̸= 0n. To see

this, observe that x ̸= xe, as V (x) = c > 0. As we have that:

inf
u∈Rm

̂̇V (x,u) < −k3∥x− xe∥a < 0, (3.49)

for all x ∈ D, we must have that ∂V
∂x

(x) ̸= 0n, otherwise the left-hand side
would be 0. Now, we have that:

V̇ (x,k(x)) ≤ −k3∥x− xe∥a + sup
(b,a)∈∆(x)

b+ a⊤k(x), (3.50)

≤ −k3
k2
V (x) + sup

y∈Ω(c)

sup
(b,a)∈∆(y)

b+ a⊤k(y), (3.51)

≤ −k3
k2
c+

k3
k2
c = 0. (3.52)

Thus V̇ (x,k(x)) ≤ 0 for any x ∈ ∂Ω(c), and by Nagumo’s theorem [104],
[123], the set Ω(c) is forward invariant for the true closed-loop system (2.2).
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Consequently, by the compactness by Ω(c), for any initial condition x0 ∈ D′ ≜

Int(Ω(c)), we have that the solution φ : R≥0 → Ω(c) for the true closed-loop
system (2.2) exists for all time (I(x0) = R≥0) [101, Chapter 2.4, Corollary
2]. Furthermore, from any initial condition x0 ∈ D′ we have that the actual
projected disturbance encountered by the system satisfies:

|δ(t)| ≤ k3
k2
c ≜ d, (3.53)

for all t ∈ R≥0, such that ∥δ∥∞ ≤ d.

This theorem highlights a critical challenge when working with local exponen-
tial stability and data-driven methods. As the value of c increases, the bound
on the worst-case residual learning error is allowed to grow. This corresponds
to the fact that the inequality enforced in the learning-informed controller
(3.34) drives the system to the equilibrium point xe more aggressively the fur-
ther the state of the system is from xe, overpowering the projected disturbance.
At the same time, the worst-case residual learning error at additional states
(as Ω(c1) ⊂ Ω(c2) for c1 < c2) must be bounded. Furthermore, the value of c
must be small enough that Ω(c) ⊂ D, where the learning-informed controller
(3.34) is feasible. This creates a “racing” behavior, where the learning error
needs to grow slowly enough with c such that a small enough sublevel set Ω(c)
meeting the inequality in the theorem can be found inside D. While it may be
possible to change the learning-informed controller k to ensure that the condi-
tions of this theorem are met, one straightforward approach is to improve the
uncertainty function ∆, as captured in the following theorem:

Theorem 19. Consider uncertainty functions ∆,∆′ : D → P(R × Rm), and
let Ω(c) ⊂ D. If ∆′(x) ⊆ ∆(x) for all x ∈ Ω(c), then:

sup
x∈Ω(c)

sup
(b,a)∈∆′(x)

b+ a⊤k(x) ≤ sup
x∈Ω(c)

sup
(b,a)∈∆(x)

b+ a⊤k(x). (3.54)

Proof. The proof is straightforward as for any x ∈ Ω(c):

sup
(b,a)∈∆′(x)

b+ a⊤k(x) ≤ sup
(b,a)∈∆(x)

b+ a⊤k(x). (3.55)

This theorem states that if the possible uncertainties can be reduced (such
that ∆′(x) ⊆ ∆(x) for all x ∈ Ω(c)), the bound on the worst-case projected
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disturbance can be lowered, making it easier to satisfy the inequality in (3.48)
and thus achieve the forward invariance that yields a valid D′ and d.

I will now explore how an uncertainty function ∆ can be built from a data set
D of the form in (3.17), restated here:

D = {((xi,ui), V̇i)}Ni=1 ⊆ (D × Rm)× R. (3.56)

For notational convenience denote:

D0 = {(xi,ui) ∈ D × Rm | ((xi,ui), V̇i) ∈ D}. (3.57)

This leads to the following result:

Theorem 20. Suppose4 that the functions f̃ , g̃ are bounded on D by known
constants Mf̃ and Mg̃, respectively, and are Lipschitz continuous on D with
known Lipschitz constants Lf̃ and Lg̃, respectively. Then an uncertainty func-
tion ∆ can be constructed as:

∆(x) = {(b, a) ∈ R× Rm | ± (b+ a⊤ui) ≤ ϵ(x,xi,ui) for all (xi,ui) ∈ D0},
(3.58)

for all x ∈ D, where ϵ : D ×D × Rm → R≥0 is continuous on its domain.

Observe that for each x ∈ D, the set ∆(x) is a closed polyhedron, and bounded
given sufficiently diverse control inputs in the data set (as will be made rigorous
in Section 3.8). In this case, ∆(x) is a compact, convex set, and the supremum
in (3.46) can be computed via a convex linear program (LP) that yields a finite
optimal value.

Proof. Define the observed learning error as:

ℓ(xi,ui) =
∣∣∣V̇i − ̂̇W (xi,ui)

∣∣∣ , (3.59)

which can be computed from the data set D and the estimator ̂̇W . Observe
that we can rewrite this observed learning error as:

ℓ(xi,ui) =
∣∣∣̃b(xi) + ã(xi)

⊤ui

∣∣∣ . (3.60)
4Recall that D is a set associated with a local exponential CLF, and thus these bounds

and Lipschitz properties generally only need to hold over a small neighborhood of the equi-
librium point xe.
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Given a test point x ∈ D, we have that:

ℓ(xi,ui) =
∣∣∣̃b(x) + ã(x)⊤ui + b̃(xi)− b̃(x) + (ã(xi)− ã(x))⊤ui

∣∣∣ , (3.61)

≥
∣∣∣̃b(x) + ã(x)⊤ui

∣∣∣− ∣∣∣̃b(xi)− b̃(x)
∣∣∣− ∥ã(xi)− ã(x)∥ ∥ui∥, (3.62)

following from the reverse triangle inequality, triangle inequality, and Cauchy-
Schwarz inequality. This can be rearranged as:∣∣∣̃b(x) + ã(x)⊤ui

∣∣∣ ≤ ℓ(xi,ui) +
∣∣∣̃b(xi)− b̃(x)

∣∣∣+ ∥ã(xi)− ã(x)∥ ∥ui∥. (3.63)

We have that:∣∣∣̃b(xi)− b̃(x)
∣∣∣ =

∣∣∣∣∂V∂x (xi)f̃(xi)− b̂(xi)−
∂V

∂x
(x)f̃(x) + b̂(x)

∣∣∣∣ , (3.64)

≤
∣∣∣∣∂V∂x (xi)f̃(xi)−

∂V

∂x
(x)f̃(x)

∣∣∣∣+ ∣∣∣̂b(x)− b̂(xi)
∣∣∣ . (3.65)

We can then perform the following manipulation:∣∣∣∣∂V∂x (xi)f̃(xi)−
∂V

∂x
(x)f̃(x)

∣∣∣∣ =

∣∣∣∣∂V∂x (xi)f̃(xi)−
∂V

∂x
(x)f̃(xi)

+
∂V

∂x
(x)f̃(xi)−

∂V

∂x
(x)f̃(x)

∣∣∣∣ , (3.66)

≤
∥∥∥f̃(xi)

∥∥∥∥∥∥∥∂V∂x (xi)−
∂V

∂x
(x)

∥∥∥∥
+

∥∥∥∥∂V∂x (x)

∥∥∥∥∥∥∥f̃(xi)− f̃(x)
∥∥∥ , (3.67)

≤Mf̃ ϵ∞(x,xi) + Lf̃ ϵL(x,xi), (3.68)

where:

ϵ∞(x,xi) =

∥∥∥∥∂V∂x (xi)−
∂V

∂x
(x)

∥∥∥∥ , (3.69)

ϵL(x,xi) =

∥∥∥∥∂V∂x (x)

∥∥∥∥ ∥x− xi∥ . (3.70)

This yields:∣∣∣̃b(xi)− b̃(x)
∣∣∣ ≤Mf̃ ϵ∞(x,xi) + Lf̃ ϵL(x,xi) +

∣∣∣̂b(x)− b̂(xi)
∣∣∣ . (3.71)

A similar decomposition can be performed to establish:

∥ã(xi)− ã(x)∥ ≤Mg̃ϵ∞(x,xi)∥ui∥+ Lg̃ϵL(x,xi)∥ui∥+ ∥â(x)− â(xi)∥ ∥ui∥.
(3.72)
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Denoting:

ϵH(x,xi,ui) =
∣∣∣̂b(x)− b̂(xi)

∣∣∣+ ∥â(x)− â(xi)∥ ∥ui∥, (3.73)

we have that:∣∣∣̃b(x) + ã(x)⊤ui

∣∣∣ ≤ ℓ(xi,ui) + (Mf̃ +Mg̃∥ui∥)ϵ∞(x,xi)

+ (Lf̃ + Lg̃∥ui∥)ϵL(x,xi) + ϵH(x,xi,ui), (3.74)

≜ ϵ(x,xi,ui). (3.75)

Note that if the estimators b̂ and â are continuous functions on D, the function
ϵ is continuous on its domain. Breaking the absolute value on the left-hand
side in to two cases, we have:

±
(
b̃(x) + ã(x)⊤ui

)
≤ ϵ(x,xi,ui). (3.76)

Consequently, defining the uncertainty function ∆ as in (3.58), we have that
(̃b(x), ã(x)) ∈ ∆(x) as required.

Observe that given a test point x ∈ D, the function ϵ can be computed from
the data set D, estimator ̂̇W , and constants Mf̃ ,Mg̃, Lf̃ , and Lg̃, and thus it
is possible to evaluate the supremum in (3.46) at the test point by solving a
linear program. Furthermore, we have that:

ϵ(xi,xi,ui) = ℓ(xi,ui). (3.77)

This means that close to a data point, the bound on the uncertainty is only
determined by the observed learning error ℓ(xi,ui). Thus, the uncertainty
set can be kept small by sufficiently accurate learning models and sufficiently
dense data covering the set D.

Lastly, let us consider an estimator ̂̇W trained on a data set D. Suppose that
additional data is produced, and added to the data set D to produce a data
set D′ with D ⊂ D′, but the estimator ̂̇W is not retrained. For uncertainty
functions ∆,∆′ : D → P(R× Rm) constructed using the data sets D and D′,
respectively, we have that ∆′(x) ⊆ ∆(x) for all x ∈ D. This is because the
function ϵ is the same between the two constructions, such that for a data
point (xi,ui) ∈ D0, at a test point x ∈ D we have that ϵi(x,xi,ui) returns
the same value between the two constructions. But, by adding data points in
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going from D to D′, we have added additional constraints in the construction
of ∆′ compared to ∆, thus reducing possible residual learning errors. Thus,
continuing to add data allows the improvement of residual learning error with
a fixed estimator. If the estimator ̂̇W is retrained with the new data, this may
not necessarily be the case, as the observed residual learning error ℓ(xi,ui) and
the function ϵH(x,xi,ui) can increase for data points (xi,ui) ∈ D0. This must
be balanced with the benefits of achieving low observed residual learning error
on the data points appearing in D′ \D, which may be in regions of interest.

Simulation Results

In this section I apply the episodic learning DaCLyF algorithm in Algorithm
1 to an inverted pendulum subject to parametric model error. The nominal
model open-loop system is given by:

̂̇x =

[
x2

ĝ

ℓ̂
sin(x1)

]
+

[
0
1

m̂ℓ̂2

]
u, (3.78)

while the true open-loop system is given by:

ẋ =

[
x2

ĝ
ℓ
sin(x1)

]
+

[
0
1

mℓ2

]
u. (3.79)

The true mass m and length ℓ are perturbations of the nominal model mass m̂
and length ℓ̂ by up to 30% of the nominal model values. The nominal controller
knom is a linear PD controller set to track angle and angle rate trajectories.
The estimators b̂ and â are chosen from the class of two layer neural networks
with 200 hidden units and ReLU nonlinearities. The trust factors are chosen
in a sigmoid fashion. Naive exploratory control is introduced as in Section 3.3,
with perturbations chosen uniformly at random between -50% and 50% of the
value of the augmented controller kk. A comparison of the nominal model-
based (CLF-QP) controller and final learning-informed (CLF-QP) controller
demonstrating improved tracking performance is shown in Figure 3.3.

After performing the episodic learning process, a final data set D and estimator̂̇W are produced, and an uncertainty function ∆ can be built. I evaluate the
following quantities across the state space:

sup
(b,a)∈∆(x)

b+ a⊤k̂(x), (3.80)
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Figure 3.3. Comparison of tracking performance for PD controller and final learning-
informed (CLF-QP) controller in inverted pendulum example. The final learning-informed
(CLF-QP) controller tracks the desired angle trajectory significantly more accurately.

and:
sup

(b,a)∈∆(x)

b+ a⊤k(x). (3.81)

The first quantity corresponds to the worst-case residual learning error when
using the nominal model-based (CLF-QP) controller in (3.25), while the second
quantity is the worst-case residual learning error using the learning-informed
(CLF-QP) controller in (3.34). The closed-loop trajectories using these con-
trollers from the same initial conditions can be seen in Figure 3.4, on the
left and right, respectively. We see that the nominal model-based (CLF-QP)
controller does not stabilize the system to the desired trajectory and fails to
bring it to the origin, while the learning-informed (CLF-QP) controller does
stabilize the system and brings it to the origin. The value of the computed
supremums is indicated by the color-maps. Observe that there is some mild
change between the values for the nominal model-based (CLF-QP) controller
and learning-informed (CLF-QP) controller (in particular, in the top right of
the plot), but that the changes throughout the state space are fairly small.
This indicates that although the learning-informed (CLF-QP) controller is
able to stabilize the system, it has not greatly reduced the worst-case resid-
ual learning error possible by the uncertainty function ∆. This suggests that
the system is not actually experiencing the worst-case residual learning error,
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Figure 3.4. Comparison of worst-case residual learning errors (3.80) with nominal model-
based (CLF-QP) controller (Left) and (3.81) with final learning-informed (CLF-QP) con-
troller (Right). Closed-loop trajectories using the two controllers are displayed with dashed
lines. The learning-informed (CLF-QP) controller keeps the system in regions with lower
residual learning error, while the system leaves the region around the training data under
the nominal model-based (CLF-QP) controller. The heat maps were generated by sampling
states randomly about training data points and evaluating the upper bound for each sam-
pled state. The results were then discretized for ease of visualization. Each bin is colored
by the maximum disturbance observed in the bin.

and that reducing the worst-case residual learning error is not necessary for
successful stabilization if a controller does not “excite” the worst-case residual
learning error. This observation is the basis for the work in Section 3.8.

Conclusion

In this section I have presented an approach for analyzing the impacts of
residual learning errors when learning model errors between a nominal model
open-loop system and the true open-loop system as they directly impact the
time derivative of a local exponential CLF V . I propose a novel notion of robust
stability based on ISS in the from of Projection-to-State Stability (PSS), which
only considers the impacts of disturbances on local exponential stability as they
affect the time derivative of a local exponential CLF. I then provide an analysis
of closed-loop system behavior given a particular data set and learning models
through a data-driven construction of uncertainty functions. Lastly I perform
this data-driven analysis in simulation on an inverted pendulum, revealing that
stabilization can be achieved without needing to explicitly reduce worst-case
residual learning errors, which will motivate the work in Section 3.8.
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3.5 Learning with Control Barrier Functions

The inherent similarities between local exponential CLFs and CBFs suggest
that the episodic learning algorithm developed in Section 3.3 could naturally
be adapted to address model error directly as it impacts the time derivative of a
CBF. In this section I will adapt the DaCLyF episodic learning algorithm in Al-
gorithm 1 to the setting of CBFs, producing a corresponding algorithm named
DaCBarF. I will explore how model uncertainty impacts the time derivative
of a CBF, and how an ERM problem can be solved sequentially to overcome
challenges that arise when deploying standard supervised learning techniques
on non-i.i.d data sets. While these adaptions are fairly straightforward and
provided for completeness, the main contribution of this section is the demon-
stration of the episodic learning algorithm on a Segway hardware platform.
This result establishes the possibility of identifying error between a nominal
model and a real-world system using real data, and constructing learning mod-
els that can reflect this model error while remaining computationally efficient
enough to be evaluated in a closed-loop controller for a robotic system.

The contributions of this section are as follows:

• An adaption of the episodic learning algorithm presented in Section 3.3
for identifying model errors as they directly impact the time derivative
of a CBF, including using structured learning models to enable using the
convex optimization-based control framework described in Section 2.5.

• An experimental demonstration of the proposed episodic learning algo-
rithm on a Segway hardware platform.

The text for this section is adapted from:

A. J. Taylor, A. Singletary, Y. Yue, and A. D. Ames, “Learning for safety-
critical control with control barrier functions,” in Proc. 2nd Learning
for Dynamics and Control (L4DC), vol. 120, Berkeley, CA, USA, 2020,
pp.708-717.

A. J. Taylor participated in the conception of the project, algorithm
design, simulation and experimental code implementation, conduction
of experiments, and writing of the article.
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Uncertainty in Control Barrier Functions

Let C ⊂ E be the 0-superlevel set of a function h : E → R that is continuously
differentiable on E. Suppose that h is a CBF for the nominal model open-loop
system (3.1) on C with corresponding function α ∈ Ke, such that:

sup
u∈Rm

̂̇h(x,u) ≜ sup
u∈Rm

∂h

∂x
(x)(f̂(x) + ĝ(x)u) > −α(h(x)), (3.82)

for all x ∈ E. The time derivative of the function h uses the true open-loop
system (2.1), and thus using (3.2), we have that:

ḣ(x,u) = ̂̇h(x,u) + ∂h

∂x
(x)f̃(x)︸ ︷︷ ︸
b(x)

+
∂h

∂x
(x)g̃(x)︸ ︷︷ ︸
a(x)⊤

u. (3.83)

As with CLFs, simply choosing an input u such that the inequality in (3.82)
is satisfied is insufficient to conclude that the time derivative of the CBF h

will meet the required inequality to guarantee safety because of the functions
b : E → R and a : E → Rm. Note the functions b and a capture the
model errors in f̃ and g̃ only as they impact the evolution of the CBF h, and
consequently, safety. Once again, I will consider a learning-based approach
to identify the functions b and a, such that their effects on the CBF time
derivative can be accounted for in the control design process, and safety can
be achieved. To ensure the well-posedness of such an approach, I make the
following assumption:

Assumption 3. The function h is a CBF for the true open-loop system (2.1)
on C with corresponding function α ∈ Ke.

This assumption is similar to Assumption 2 and states that h is a CBF for
the true open-loop system (2.1) on C with the same function α ∈ Ke used for
the nominal model open-loop system (3.1). It is important to note that once
again, this is an assumption on how the true open-loop system (2.1) can be
controlled. In particular, this assumption states that for a given x ∈ E, one
knows that there exists an input u ∈ Rm such that:

ḣ(x,u) = ̂̇h(x,u) + b(x) + a(x)⊤u > −α(h(x)), (3.84)

but not necessarily which value of u satisfies the inequality. If one knew the
functions b and a perfectly, the value of u satisfying this inequality could be
found. Thus, if one could learn these functions from data, the control synthesis
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problem through CBFs would be well-posed. Recalling the construction of a
CBF from a local exponential CLF in Section 2.5 and the construction of a
local exponential CLF for both a fully-actuated robotic system nominal model
open-loop system and true open-loop system in Section 3.3, assumptions on
the structural properties of the true-open loop system can be sufficient to
ensure this assumption is met.

Data-Driven Episodic Learning Framework

As with CLFs, I consider a learning-based framework that learns the functions
b and a via supervised regression [204]. In particular, the true closed-loop
system (2.2) is operated using a given controller k : E → Rm, data points are
gathered along the system’s evolution, and functions that approximate b and
a are produced via supervised learning.

Concretely, let x0 ∈ E be an initial state. An experiment is defined as the
evolution of the true closed-loop system over a finite time interval from the
initial condition x0 using a sample-hold implementation of the controller k.
A resulting discrete-time state history is obtained, which is then transformed
with the CBF h and finally differentiated numerically to estimate ḣ throughout
the experiment. This yields a data set comprised of input-output pairs:

D = {((xi,ui), ḣi)}Ni=1 ⊆ (E × Rm)× R. (3.85)

Consider a class Hb of nonlinear functions mapping Rn to R and a class Ha

of nonlinear functions mapping Rn to Rm. For a given b̂ ∈ Hb and â ∈ Ha,
define ̂̇S as: ̂̇S(x,u) = ̂̇h(x,u) + b̂(x) + â(x)⊤u, (3.86)

and let H be the class of all such estimators mapping Rn×Rm to R. Defining
a loss function L : R×R→ R≥0, the supervised regression task is then to find
a function in H via empirical risk minimization (ERM):

inf
â∈Ha

b̂∈Hb

1

N

N∑
i=1

L(̂̇S(xi,ui), ḣi). (3.87)

This process can be executed either in simulation or directly on hardware.

Once again, standard supervised learning with sequential, non-i.i.d data col-
lection often leads to error cascades [142], motivating the use of an episodic
learning framework. My approach integrates learning b and a with improving
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the safety of the controller in such an iterative fashion. First, assume we are
given a nominal controller knom : E → Rm, which may not render the set C
safe for the resulting true closed-loop system (2.2). With an estimator ̂̇S ∈ H
defined in (3.18), specify a learning-informed (CBF-QP) controller as:

k(x) = argmin
u∈Rm

∥u− knom(x)∥2 (3.88)

s.t. ̂̇S(x,u) ≥ −α(h(x)).
This learning-informed (CBF-QP) controller finds the closest input to knom(x)

such that the CBF inequality is met using the estimator ̂̇S for ḣ. However,
error in the estimator ̂̇S degrades the safety of the true closed-loop system
(2.2) with respect to the set C.

In an effort to reduce the remaining error in the estimator ̂̇S, an experiment
can be run using the learning-informed (CBF-QP) controller to produce data
by which to obtain better estimates of b and a. In particular, in each episode,
an experiment generates data using a different controller. The data set is
aggregated and a new ERM problem is solved after each episode, once again
inspired by the Data Aggregation (DAgger) algorithm [203]. The DaCBarF
algorithm in Algorithm 2 specifies a method of computing a sequence of CBF
derivative estimates ̂̇Sk and augmented controllers kk. During the kth episode,
the learning-informed (CBF-QP) controller (3.88) associated with the estimate
of the CBF time derivative ̂̇Sk is scaled by a heuristically chosen factor wk ∈
[0, 1] reflecting trust in the estimate and added to the nominal model-based
(CBF-QP) controller k0 = kCBF for use in the subsequent experiment as an
augmented controller kk. The trust coefficients form a monotonically non-
decreasing sequence. Importantly, this experiment need not take place in
simulation; the same procedure may be executed directly on hardware. At a
high level, this episodic approach makes progress by gathering more data in
relevant regions of the state space, such as states inside C. This extends the
generalizability of the estimator in its use by subsequent controllers.

There are a few practical concerns with this algorithm that should be observed.
First, the system will not necessarily be safe with respect to the set C during
the episodic learning process. In general, one will often begin the learning
process with a controller that is unsafe, or displays desirable behavior but
possess no guarantees of safety (such as a barrier function). This algorithm



101

Algorithm 2 Dataset Aggregation for Control Barrier Functions (DaCBarF)

Require: CBF h, derivative estimate ̂̇S0 =
̂̇h, model classes Ha and Hb, loss

function L, nominal model-based (CBF-QP) controller k0 = kCBF, number
of experiments T , sequence of trust coefficients 0 ≤ w1 ≤ · · · ≤ wT ≤ 1

D = ∅ ▷ Initialize data set
for k = 1, . . . , T do

x0 ← sample E ▷ Get initial condition
Dk ← experiment(x0,kk−1) ▷ Run experiment
D← D ∪Dk ▷ Aggregate data set
âk, b̂k ← ERM(Ha,Hb,L,D, ̂̇S0) ▷ Fit estimatorŝ̇Sk ← ̂̇S0 + â⊤

k u+ b̂k ▷ Update derivative estimator
kk ← (1− wk) · k0 + wk · augment(k0,

̂̇Sk) ▷ Update controller
end for
return ̂̇ST ,kT

instead tolerates unsafe behavior during the episodic learning process to ensure
that the system performs adequate exploration in the data acquisition process
and return a controller at the end of the episodic learning for which meaningful
safety properties can be established, as explored in Section 3.6.

Second, there can be issues that arise with the constraint in the learning-
informed controller (3.88). In particular, while we begin knowing that:

sup
u∈Rm

̂̇h(x,u) > −α(h(x)), (3.89)

for all x ∈ E, and we assume that:

sup
u∈Rm

ḣ(x,u) > −α(h(x)), (3.90)

for all x ∈ E, such that the CBF constraint is met for the nominal model
open-loop system (3.1) and the true open-loop system (2.1), we do not know:

sup
u∈Rm

̂̇Sk(x,u) > −α(h(x)), (3.91)

for all x ∈ E for k = 1, . . . , T . In particular, it is possible that the learned
models b̂k and âk can lead to this condition being violated. This means that
the learning-informed controller will not necessarily be feasible for all x ∈ E.
In practice, the relaxation technique used in (CLF-CBF-QP) is utilized, such
that the problem always remains feasible at the expense of rigorous safety
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guarantees. In Section 3.6 safety guarantees will be built keeping in mind
that some amount of residual learning error arising from numerical learning
methods will be present in learning models.

Simulation & Experimental Results

I apply the proposed episodic learning algorithm to the Segway platform con-
sidered in Section 3.3, which can be seen in Figures 3.5 and 3.6. The nom-
inal controller knom : E → R is a hand-tuned proportional-derivative (PD)
controller which locally exponentially stabilizes the system to an equilibrium
configuration. A particular requirement for safety of the Segway system can
be encoded as limitations on how far and how fast the Segway is allowed to tip
from this equilibrium configuration. This appears mathematically as a CBF
on the pitch angle and pitch angle rate:

h(θ, θ̇) =
1

2

(
θ2max − (θ − θe)2 − cθ̇2

)
, (3.92)

where θ ∈ R is the pitch angle, θ̇ ∈ R is the pitch angle rate, θmax ∈ R>0 is a
limit on how far the pitch angle can deviate from the equilibrium pitch angle,
θe ∈ R, and the coefficient c ∈ R>0 scales the importance of the pitch angle
rate in defining safety. This construction of h is performed such that it is a
CBF for the nominal model open-loop system (3.1), and thus the (CBF-QP)
controller can be used to ensure the safety of the system (in the absence of
model errors).

To evaluate the impact of model errors on the ability of the nominal model-
based (CBF-QP) controller to ensure the safety of the system, I perturb the
mass and electrical parameters of the Segway model by up to 15%, but with-
hold these artificial model errors from the nominal model-based (CBF-QP)
controller. Figure 3.5 shows that the nominal model-based (CBF-QP) con-
troller is unable to achieve safety, with the state of the system leaving the
0-superlevel set of h (left), and the value of h falling below 0 (right).

I deploy the episodic learning framework on the Segway system to overcome
this model error and improve safety. In particular, I conduct a sequence of
ten experiments with varying initial conditions. Data from each experiment
is aggregated into a data set D that is used to train learning models b̂ and â

and construct the estimator ̂̇S. The learning models b̂ and â are chosen to be
neural networks with one hidden layer of 200 nodes and ReLU nonlinearities.
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Figure 3.5. Simulation results using the nominal model-based (CBF-QP) controller (green)
and learning-informed (CBF-QP) controller (3.88) (blue). Episodic data appears as red
traces. (Left) Segway simulation CAD model. (Middle) The phase portrait showing the
evolution of the state of the system leaves the safe set (black ellipse) with the nominal model-
based (CBF-QP) controller, while it remains within using the learning-informed (CBF-QP)
controller. (Right) The value of h drops below zero (twice) using the nominal model-based
(CBF-QP) controller, while it remains above zero using the learning-informed (CBF-QP)
controller. Video can be found at https://youtu.be/tD8zH4GF_8U.

These networks are implemented in Keras [208] and trained to minimize mean
absolute error using stochastic gradient descent (SGD). After each episode
the learning-informed (CBF-QP) controller (3.88) is blended with the nominal
model-based (CBF-QP) using trust factor weights that grow linearly across
the episodes. Figure 3.5 shows the behavior of the system when the learning-
informed (CBF-QP) controller (3.88) is deployed after episodic learning. The
state of the system is kept within the 0-superlevel set of h (left), with the
value of h being kept above 0 (right). This indicates that the proposed learning
approach is able to sufficiently identify model errors as they impact safety such
that the learning-informed (CBF-QP) controller is able to keep the system safe.

To further demonstrate the ability of this learning approach, I deploy it on the
Segway hardware platform seen in Figure 3.6. The nominal controller knom

was designed to track a desired horizontal velocity profile while satisfying a
safety constraint on the pitch angle rate specified by the 0-superlevel set of a
function h : E → R defined as:

h(θ, θ̇) =
1

2
(1− cθ̇2). (3.93)

The desired velocity profile is chosen to yield a violation of this safety con-
straint when using the nominal model-based (CBF-QP) controller, as seen in
Figure 3.6. A series of three episodes were conducted tracking this velocity
profile without introducing learning models into the controller, after which

https://youtu.be/tD8zH4GF_8U
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Figure 3.6. Experimental results using the nominal model-based (CBF-QP) controller
(green) and learning-informed (CBF-QP) controller (3.88) (blue). (Left) Custom robotic
Ninebot Segway platform. (Middle) The phase portrait showing the evolution of the state
of the system leaves the safe set (black strip) with the nominal model-based (CBF-QP)
controller, while it remains within using the learning-informed (CBF-QP) controller. (Right)
The value of h drops below zero (at t = 3) using the nominal model-based (CBF-QP)
controller, while it remains above zero using the learning-informed (CBF-QP) controller.
Video can be found at https://youtu.be/YCesvD_Ae00

estimators â and b̂ were implemented as neural networks with two hidden
layers of 50 nodes and ReLU nonlinearities, trained on this collected data,
and incorporated into the learning-informed controller (3.20). Note that this
implementation deviates from the DaCBarF algorithm by not updating the
controller between episodes, but performs an initial set of experiments to form
a data set and learning just using this data. In this experimental configura-
tion, natural variations in the initial condition of the system and behaviors of
the hardware platform led to enough variation of data to support successful
learning for this safety task. The closed-loop behavior of the system can be
see in Figure 3.6. The state of the system is kept within the 0-superlevel set
of h (left), with the value of h being kept above 0 (right). This indicates that
the proposed learning approach is able to sufficiently identify model errors as
they impact safety, the assumption of h being a CBF for the true-open loop
system is justified, and the learning-informed (CBF-QP) controller is able to
keep the system safe.

Conclusion

In this section I have presented an adaptation of the episodic learning frame-
work in Section 3.3 for learning model errors between a nominal model open-
loop system and the true open-loop system as they directly impact the time
derivative of a CBF h. I formalize how model errors appear in the time deriva-
tive of a CBF and adapt the episodic learning algorithm for the setting of CBFs,

https://youtu.be/YCesvD_Ae00
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yielding the DaCBarf algorithm. I demonstrate the algorithm in simulation,
and as the main contribution of this section, experimentally on a Segway hard-
ware platform.

3.6 Projection-to-State Safety

In this section I will present an analysis of the effects of residual learning error
on the safety of the true closed-loop system (2.2) using a learning-informed
(CBF-QP) controller. This analysis will mirror the one presented in Section 3.4
that considered residual learning error as a disturbance in the time derivative
of a local exponential CLF and culminated in the idea of Projection-to-State
Stability (PSS). In the setting of safety, I will build off of the episodic learning
algorithm in Section 3.5 and consider learning model errors as they impact the
time derivative of a CBF. This will lead to a characterization of the inherent
robustness of CBF-based controllers to residual learning errors in a modifica-
tion of ISSf known as Projection-to-State Safety (PSSf). Given a data set and
corresponding learning models, this will lead to a statement on the superlevel
set of a CBF that can be kept forward invariant in the presence of residual
learning errors. While the extensions in going from PSS to PSSf are relatively
straightforward due to the similarities between CLFs and CBFs, a key contri-
bution of this work will be the demonstration of PSSf behavior on a Segway
hardware platform.

The contributions of this section are as follows:

• A notion of robust safety in the form of Projection-to-State Safety (PSSf),
which adapts the analysis via CLFs and PSS in Section 3.4 to CBFs,
thereby capturing the impact of disturbances on safety only as they im-
pact the time derivative of a CBF, rather than the full-order dynamics,
as is done by ISSf discussed in Section 2.7.

• An experimental demonstration of PSSf behavior with respect to residual
learning errors on a Segway hardware platform, including a demonstra-
tion of how learning models can improve PSSf safety guarantees.

The text for this section is adapted from:

A. J. Taylor, A. Singletary, Y. Yue, and A. D. Ames, “A control barrier
perspective on episodic learning via projection-to-state safety,” in IEEE
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Control Sys. Let., vol. 5, no. 3, pp.1019-1024, 2021.

A. J. Taylor participated in the conception of the project, algorithm
design and theoretical analysis, simulation and experimental code im-
plementation, conduction of experiments, and writing of the article.

Projection-to-State Safety

In the context of learning model errors as they appear in the time derivative of
a CBF as in Section 3.5, it can be difficult to formalize residual learning errors
as a disturbance signal in the full state dynamics. Rather, as in Section 3.4, I
will look at residual learning error as it appears directly in the time derivative
of the CBF. In particular, recall that:

ḣ(x,u) = ̂̇h(x,u) + b(x) + a(x)⊤u. (3.94)

Let b̂ ∈ Hb and â ∈ Ha compose the estimator ̂̇S ∈ H as:

̂̇S(x,u) = ̂̇h(x,u) + b̂(x) + â(x)⊤u, (3.95)

and let us assume that:

sup
u∈Rm

̂̇S(x,u) > −α(h(x)), (3.96)

for all x ∈ E. Adding and subtracting the estimators b̂ and â from ḣ yields:

ḣ(x,u) = ̂̇S(x,u) + b(x)− b̂(x)︸ ︷︷ ︸
b̃(x)

+(a(x)− â(x))⊤︸ ︷︷ ︸
ã(x)⊤

u. (3.97)

Once again, the functions b̃ : E → R and ã : E → Rm capture residual learning
error left after trying to learn the functions b and a with the estimators b̂
and â. As these error terms appear in the time derivative of the CBF h,
they will consequently have an impact on the safety properties of the system.
Letting knom : E → Rm be a nominal controller, using the learning-informed
(CBF-QP) controller:

k(x) = argmin
u∈Rm

∥u− knom(x)∥2 (3.98)

s.t. ̂̇S(x,u) ≥ −α(h(x)),
yields:

ḣ(x,k(x)) = ̂̇S(x,k(x)) + b̃(x) + ã(x)⊤k(x). (3.99)
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For any initial condition x0 ∈ E, let φ : I(x0)→ E denote the solution to the
true closed-loop system (2.2) using the learning-informed (CBF-QP) controller
(3.98). We can then view the evolution of (3.99) as a closed-loop system with
unmatched disturbances:

ḣ(x,k(x)) = ̂̇S(x,k(x)) + δ(t), (3.100)

where for any initial condition x0 ∈ E, the function δ : R≥0 → R defined as:

δ(t) = b̃(φ(t)) + ã(φ(t))⊤k(φ(t)). (3.101)

is a projected disturbance. This perspective motivates studying residual learn-
ing error through the lens of ISSf. Observe that the learning-informed (CBF-QP)
controller enforces:

ḣ(x,k(x)) ≥ −α(h(x))− |δ(t)|. (3.102)

Considering the identity map ι : R→ R defined as ι(r) = r for all r ∈ R, note
that the 0-superlevel set of ι is R≥0. Furthermore, the identity map satisfies:

∂ι

∂r
(h(x))ḣ(x,k(x)) ≥ −α(h(x))− |δ(t)| = −α(ι(h(x)))− |δ(t)|, (3.103)

and thus is a ISSf-BF for the closed-loop system (3.100) on R≥0. Thus, noting
the relationship between the 0-superlevel set of h and 0-superlevel set of the
identity map ι, there exists a constant d ∈ R>0 and a function γ ∈ K such
that for all d ∈ [0, d], the set:

Cd = {x ∈ E | ι(h(x)) + γ(d) ≥ 0}, (3.104)

is forward invariant for the closed-loop system (3.100) if the projected distur-
bance satisfies5 ∥δ∥∞ ≤ d for all initial conditions x0 ∈ Cd.

This appears like a statement of ISSf for the true closed-loop system (2.2)
using the learning-informed controller (3.98), but it is defined now in terms of
a bound on the projected disturbance signal δ rather than a disturbance signal
d in the state dynamics. Consequently, the true closed-loop system (2.2) with
the learning-informed controller (3.98) is said to be Projection-to-State Safe

5In the setting of forward invariance and safety, we only care about the solution φ being
contained in a set for the interval on which it exists. Consequently, the particular projected
disturbance signal δ defined in (3.101) may not be defined on all of R≥0. In this case, the
∥ · ∥∞ norm is understood to be over the interval of existence of the solution.
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(PSSf) with respect to the set C and projection h. The utility of PSSf is that it
consider the impacts of model error only as it impacts the time derivative of the
CBF h. By doing so, it provides a mathematical framework for understanding
the impact of introducing learning models for the time derivative of a CBF,
as it is not obvious how to represent residual learning error in learning models
for a CBF time derivative as a disturbance in the full state dynamics (2.2),
making an analysis by standard ISSf difficult. Furthermore, it may potentially
produce less conservative statements on the degradation of safety by neglecting
model error that does not affect safety.

Ensuring Projection-to-State Safety with Residual Learning Error

As we saw with PSS in Section 3.4, the preceding analysis through PSSf pro-
duced some value of d which is not particularly useful if we do not know
that the particular projected disturbance signal in (3.101) at least satisfies
∥δ∥∞ ≤ d. We may not simply increase the value of d to achieve this, as we
must then consider initial conditions and subsequent projected disturbances
from larger sets Cd, which can lead to the need for larger bounds on the pro-
jected disturbance, and a repetition of this cycle. This is particularly prob-
lematic noting that the data-driven construction of an uncertainty function
in Section 3.4 revealed that proximity to training data is important for con-
structing meaningful bounds on the projected disturbance signal in (3.101).
This means we need data further and further outside of the set C if we are to
establish a viable bound d, which may not be tractable to acquire safely.

I will use uncertainty functions (Definition 22) to establish conditions yielding
a function γ ∈ K and a value of d such that the projected disturbance is
bounded from any initial condition x0 in the set Cd defined using the function
γ as in (3.104). While I will not establish this in the proof, it is straightforward
to show using the same proof technique that this function γ can be used to
evaluate the sets that are kept forward invariant if the projected disturbance
is bounded by a value of d ∈ [0, d], capturing the behavior of PSSf if the actual
projected disturbance the system experiences is bounded by a lower value than
the worst-case bound d. Denote the −c-superlevel set of the CBF h as:

C(c) = {x ∈ E | h(x) ≥ −c}, (3.105)

noting that C(0) = C. I denote the closure of C(c) in Rn by C(c), and for
simplicity, assume that there exists some c ∈ R>0 such that C(c) ⊂ E for all
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c ∈ [0, c). This is generally a weak assumption in many practical cases. This
leads to the following theorem:

Theorem 21. Let ∆ : E → P(R×Rm) be a uncertainty function and suppose
there exists a c ∈ (0, c) such that:

sup
x∈C(c)

sup
(b,a)∈∆(x)

b+ a⊤k(x) ≤ −α(−c). (3.106)

Then for any initial condition x0 ∈ C(c), we have that the projected disturbance
in (3.101) satisfies |δ(t)| ≤ d = −α(−c) for all t ∈ I(x0), and the function
γ ∈ K appearing in (3.104) is defined as:

γ(r) = −α−1(−r). (3.107)

Proof. First observe that by the continuity of h, the set C(c) is closed, such
that C(c) = C(c). Consider a point x ∈ ∂C(c), noting that this implies x ∈ E
by our assumption that C(c) ⊂ E. We can show by continuity of h that
x ∈ ∂C(c) implies that h(x) = −c. As h is a CBF on C for the nominal model
(3.1), we have:

sup
u∈Rm

∂h

∂x
(x)(f̂(x) + ĝ(x)u) > −α(h(x)) = −α(−c) > 0, (3.108)

as α ∈ Ke. This implies that ∂h
∂x
(x) ̸= 0n, and thus −c is a regular value of

the function h. Now, we have that:

ḣ(x,k(x)) ≥ −α(h(x))− sup
(b,a)∈∆(x)

b+ a⊤k(x), (3.109)

≥ −α(h(x))− sup
y∈C(c)

sup
(b,a)∈∆(y)

b+ a⊤k(y), (3.110)

≥ −α(−c) + α(−c) = 0. (3.111)

Thus ḣ(x,k(x)) ≥ 0 for any x ∈ ∂C(c), and by Nagumo’s theorem [104], [123],
we may conclude that the set C(c) is forward invariant for the true closed-loop
system (2.2). Consequently, for any initial condition x0 ∈ C(c), we have:

|δ(t)| ≤ −α(−c) ≜ d, (3.112)

for all t ∈ I(x0), such that ∥δ∥∞ ≤ d. Lastly, because the set C(c) is forward
invariant for the disturbance bound d, we wish for Cd to be equal to C(c).
Correspondingly, we have that:

γ(−α(−c)) = c, (3.113)
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from which we can manipulate to establish that:

γ(r) = −α−1(−r) (3.114)

for any r ∈ R≥0.

While not repeated here, similar results to Theorem 19 and Theorem 20 re-
garding the refinement of uncertainty sets yielding improved bounds and the
construction of an uncertainty function capturing residual learning errors when
learning a CBF time derivative through data can easily be constructed.

Simulation & Experimental Results

To demonstrate the ability of learning to improve safety guarantees via PSSf,
I deploy the episodic learning framework with CBFs presented in Section 3.5
on the Segway system described in Sections 3.3 and 3.5 in simulation6 and
experimentally. In both simulation and experimentally I run a sequence of
episodes to train the estimators b̂ and â, represented by 4-layer neural networks
with ReLU nonlinearities. In each episode the Segway was set to track a
desired trajectory in the pitch angle space without violating a barrier function
on a portion of its state, using an augmented (CBF-QP) controller. After the
sequence of episodes, the Segway was ran once more with a learning-informed
(CBF-QP) controller, and the projected disturbance δ as defined in (3.101)
was computed. This computation is performed by looking at the difference
between the measured value of ḣ (numerically approximated) and an estimated
value of ḣ at sample times ti. The first estimate I use only uses the nominal-
model based estimate of ḣ, given by ̂̇h, with no learning models, to produce a
projected disturbance signal:

δ(ti) = ḣ(φ(ti),k(φ(ti)))− ̂̇h(φ(ti),k(φ(ti))). (3.115)

The second estimate I consider uses the estimator ̂̇S produced after the episodic
learning process to produce a projected disturbance signal:

δl(ti) = ḣ(φ(ti),k(φ(ti)))− ̂̇S(φ(ti),k(φ(ti))). (3.116)

The worst case disturbances δ = ∥δ∥∞ and δl = ∥δl∥∞ were found, and a lower
bound on h for that trajectory was determined using the function α ∈ Ke

defined as α(r) = kr for k ∈ R>0, to produce γ(r) = r
k

as in (3.104).
6The simulation code (including an expression for the full system dynamics) can be

found at https://github.com/DrewSingletary/cyberpod_sim_ros

https://github.com/DrewSingletary/cyberpod_sim_ros
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Figure 3.7. Simulation results with Segway platform demonstrating improvement in PSSf
behavior. (Left) Absolute value of the projected disturbance along the trajectory without
learning models ((3.115), red) and with learning models ((3.116), blue), with learning re-
ducing the worse case projected disturbance (δ/k). (Right) The value of the barrier satisfies
the corresponding worst case lower bound with and without learning being used to compute
δ. The worst case lower bound is raised with learning (the blue dashed line lies above the
red dashed line).

In simulation, the Segway was given a bound on its position in space, con-
straining it to a one meter distance from its starting location. A CBF on the
entire system state that enforces this constraint was generated through the
backup controller method [13] (reviewed in Section 5.3). The simulation was
done in a Robot Operating System (ROS) based C++ environment similar to
[209]. The simulation environment accurately simulates the physical system
by adding input delay, sensor noise, and state estimation. The code is iden-
tical to that on the physical hardware for the state estimator, controller, and
CBF, apart from the ROS functionality. Experimentally, a CBF was specified
to limit the pitch angle and pitch angle rate of the Segway to an ellipse about
the Segway’s equilibrium state. The desired pitch angle trajectory leads the
Segway to tip quickly, leaving the safety set in the absence of the CBF and
safety-critical controller.

In both cases, we see that introducing learning estimators into the computation
of the projected disturbance decreases the worse case disturbance (δ > δl).
This leads to a greater lower bound on h, and thus a stronger guarantee on
the PSSf behavior of the system. I note that the conservative nature of the
lower bounds on h arise from the fact that the worst case disturbance δ along
the trajectory is used, while the system experiences a much lower projected
disturbance throughout most of its evolution. If the worst case disturbance
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Figure 3.8. Experimental results with Segway platform demonstrating improvement in
PSSf behavior. (Left) Absolute value of the projected disturbance along the trajectory
without learning models ((3.115), red) and with learning models ((3.116), blue), with learn-
ing reducing the worse case projected disturbance (δ/k). (Right) The value of the barrier
satisfies the corresponding worst case lower bound with and without learning being used to
compute δ. The worst case lower bound is raised with learning (the blue dashed line lies
above the red dashed line).

can be reduced (by data-aware control synthesis), stronger guarantees on safety
can be made that reflect this behavior.

Conclusion

In this section I have presented an approach for analyzing the impacts of
residual learning errors when learning model errors between a nominal model
open-loop system and the true open-loop system as they directly impact the
time derivative of a CBF h. I propose a notion of robust safety based on ISSf
in the from of Projection-to-State Safety (PSSf), which only considers the
impacts of disturbances on safety as they affect the time derivative of a CBF.
I demonstrate the safety guarantees ensured by PSSf in both simulation and
experimentally, with a focus on the fact that learning model errors directly as
they impact the time derivative of a CBF can reduce the projected disturbance
a system experiences and therefore lead to stronger conclusions on safety.

3.7 Projected Disturbance Learning with Control Barrier Func-
tions

In this section I will present an episodic learning approach for learning a pro-
jected disturbance directly as it impacts a CBF time derivative. In contrast to
the learning approach taken in Section 3.5, I will not utilize structured learning
models that attempt to learn the functions b and a individually in an effort to
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preserve convexity of downstream control synthesis. Rather, I will learn the
sum of these functions under a given feedback controller. I will first motivate
the reasoning behind this learning approach by considering some challenges
that arise from insufficiently rich data when trying to learn using structured
models on high-dimensional systems. I will then describe the episodic learn-
ing algorithm for directly learning projected disturbances as they impact the
time derivative of a CBF. I will conclude with an application of the learning
algorithm to a bipedal walking system, both in simulation and experimentally.

The contributions of this section are as follows:

• An analysis of challenges in using the structured learning models con-
sidered in Sections 3.3 and 3.5, and an episodic learning algorithm for
learning projected disturbances that circumnavigates these challenges.

• An implementation of the proposed algorithm on a bipedal walking plat-
form, both in simulation and experimentally.

The text for this section is adapted from:

N. Csomay-Shanklin, R. K. Cosner, M. Dai, A. J. Taylor and A. D. Ames,
“Episodic learning for safe bipedal locomotion with control barrier func-
tions and projection-to-state safety,” in Proc. 3rd Learning for Dynamics
and Control (L4DC), vol. 144, Zürich, Switzerland, 2021, pp.1041-1053.

A. J. Taylor participated in the conception of the project, algorithm
design, and writing of the article.

Challenges in Learning with Control Barrier Functions

To understand some of the challenges that can arise when trying to learn
structured models with insufficiently rich data, I will consider a simple single-
input example. Consider a data point ((xi, ui), ḣi) as in (3.85), and suppose
ui ̸= 0. The model error we are trying to reduce can be expressed as:

˜̇hi = ḣi − ̂̇h(xi, ui) = b(xi) + a(xi)ui. (3.117)

This can be represented in an affine form as:

˜̇hi = [ui 1
] [a(xi)

b(xi)

]
. (3.118)
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Figure 3.9. Schematic for challenges in learning CBF time derivatives with structured
models.

The vectors (ui, 1) and (a(xi), b(xi)) are visualized in Figure 3.9 (black and
blue, respectively) We can decompose the vector (a(xi), b(xi)) as follows:[

a(xi)

b(xi)

]
= γ1

[
ui

1

]
+ γ2

[
− 1

ui

1

]
, (3.119)

for some γ1, γ2 ∈ R, noting we have used an orthogonal basis. This decompo-
sition can be seen in Figure 3.9 (red and green vectors). Noting this decom-
position, we have that: ˜̇hi = γ1

∥∥∥∥∥
[
ui

1

]∥∥∥∥∥
2

. (3.120)

This indicates that in our data point we have information about the constant
γ1, but we do not have information about γ2. Suppose that we build accurate
learning models b̂ : Rn → R and â : Rn → R such that:

˜̇hi ≈ b̂(xi) + â(xi)ui. (3.121)

This can be represented in affine form as:

˜̇hi ≈ [ui 1
] [â(xi)

b̂(xi)

]
. (3.122)
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Figure 3.10. Schematic for introducing additional data for resolving challenges in learning
CBF time derivatives with structured models.

We can perform a similar decomposition on the estimators:[
â(xi)

b̂(xi)

]
= γ̂1

[
ui

1

]
+ γ̂2

[
− 1

ui

1

]
, (3.123)

for some γ̂1, γ̂2 ∈ R. What this reveals is that an accurate learning model
only needs to satisfy γ̂1 ≈ γ1, and there are no requirements on γ̂2 ≈ γ2. This
can be seen in Figure 3.9, where the estimator (pink) satisfies γ̂1 = γ1 (lies
on the dotted black line), but is dramatically different than the true value of
the error terms (the blue vector). Consequently, inserting this estimator into
the optimization-based controllers as in Section 3.3 and 3.5 can lead to poor
performance and failure to satisfy stability and safety requirements.

Reducing this problem can be achieved through richness in the inputs compos-
ing the data sets. Suppose that we have another data point at the same state,
but with a different input uj ̸= 0, and that the learning models are trained
accurately on this data to yield:

˜̇hj ≈ b̂(xi) + â(xi)uj. (3.124)

This additional data point is visualized in Figure 3.10. Considering the two
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data points together, we have that:˜̇hi˜̇hj
 ≈ [ui 1

uj 1

]
︸ ︷︷ ︸

A

[
â(xi)

b̂(xi)

]
. (3.125)

Accurately identifying the values of b(xi) and a(xi) with the corresponding
estimators can thus be seen as solving a least-squares problem locally at the
state xi. While learning is often done numerically through gradient-based
updates rather than taking a (psuedo)inverse of the matrix A, the numerical
stability in solving the learning problem accurately is effectively determined
by the condition number of the matrix A. If the input uj = −ui, then the
cond(A) = 1. In practice, taking dramatically different inputs at the same
state may be unsafe or damaging to a system, making it difficult to acquire
data that leads to a well conditioned matrix A. If instead uj = ui+ ϵ for some
small non-zero value ϵ ∈ R, we have that:

lim
ϵ→0

cond(A) =∞. (3.126)

Thus small perturbations to a nominal input do not significantly improve the
numerical stability of the estimation problem at this state.

This highlights an important challenge in learning with structured models that
ensure an affine dependence on the control input. Data collection that does not
damage a system is often limited to small perturbations around baseline inputs
which are already stabilizing or safe, but this does not provide strong numerical
foundations for the downstream learning problem. Moreover, this challenge is
exacerbated for high-dimensional systems with multiple inputs. The same
geometric decomposition can be performed in high dimensions, revealing the
need for m+1 data points with varying inputs at the same state to make sure
the learning problem is well conditioned. Additionally, for high-dimensional
systems, such as bipedal walking platforms, there are strong requirements
on what the input must be at a given state to achieve walking, prohibiting
large exploratory perturbations to inputs. In Section 3.8 I will explore how
this challenge can be approached through robust convex optimization. In
the remainder of this section, I will consider learning projected disturbances
without using structured learning models in an effort to avoid this problem.
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Learning Projected Disturbances

To motivate learning projected disturbances with unstructured models, I will
first indicate some challenges that can arise, and what assumptions justify
taking such a learning approach. First, note that for a given controller k :

E → Rm that is locally Lipschitz continuous on E, in the absence of learning
models b̂ and â, the value of the projected disturbance the system experiences
at any given state is defined in (3.101) and given by:

δ(x) = b(x) + a(x)⊤k(x). (3.127)

Importantly, this projected disturbance depends on the particular controller k.
If another controller k′ : E → Rm was designed to account for this projected
disturbance, then the value of the new projected disturbance would be:

δ′(x) = b(x) + a(x)⊤k′(x). (3.128)

This introduces a type of feedback loop in which modifying the controller
based on an estimate of the projected disturbance leads to a new projected
disturbance for which the estimator may not be accurate.

To understand why one may still consider learning the projected disturbance
directly, we will understand the impacts of introducing such a learning model
into the optimization-based controllers in Section 3.5. In particular, the nom-
inal model-based (CBF-QP) controller can be expressed as [21]:

kCBF(x) = knom(x) + λ(x)

(
∂h

∂x
(x)ĝ(x)

)⊤

︸ ︷︷ ︸
Lĝh(x)⊤

, (3.129)

for a function λ : Rn → R≥0 that is locally Lipschitz continuous on E. Suppose
that we have a function δ̂ : E → R that is locally Lipschitz continuous on E,
and we define a (CBF-QP) controller k′

CBF : E → Rm as:

k′
CBF(x) = argmin

u∈Rm

∥u− knom(x)∥2 (δ̂-CBF-QP)

s.t. ̂̇h(x,u) + δ̂(x) ≥ −α(h(x)).

This controller can be expressed as:

k′
CBF(x) = knom(x) + λ′(x)Lĝh(x)

⊤, (3.130)
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for a function λ′ : Rn → R≥0 that is locally Lipschitz continuous on E. It can
be shown that:

δ̂(x) ≥ 0 =⇒ λ′(x) ≤ λ(x), (3.131)

δ̂(x) ≤ 0 =⇒ λ′(x) ≥ λ(x). (3.132)

Denoting Lf̂h(x) =
∂h
∂x
(x)f̂(x), the time derivative of the CBF h using both of

these controllers is given by:

ḣ(x,kCBF(x)) = Lf̂h(x) + b(x) + (Lĝh(x) + a(x)⊤)knom(x)

+ λ(x)Lĝh(x)Lĝh(x)
⊤ + λ(x)a(x)⊤Lĝh(x), (3.133)

and:

ḣ(x,k′
CBF(x)) = Lf̂h(x) + b(x) + (Lĝh(x) + a(x)⊤)knom(x)

+ λ′(x)Lĝh(x)Lĝh(x)
⊤ + λ′(x)a(x)⊤Lĝh(x)

⊤. (3.134)

Let us suppose that:
∥Lĝh(x)∥ ≥ ∥a(x)∥, (3.135)

for all x ∈ E. This assumptions states that the impact of model error in
how the input affects the time derivative of h is less significant than the im-
pact of the input on the time derivative of h captured by our nominal model.
Consequently, we have that:

Lĝh(x)Lĝh(x)
⊤ ≥ a(x)⊤Lĝh(x)

⊤. (3.136)

Now let us suppose that for a particular state x ∈ E, we have δ̂(x) ≤ 0,
such that λ′(x) ≥ λ(x). If the function δ̂ is an (accurate) estimator for the
projected disturbance (3.127) using the controller kCBF, this indicates that:

ḣ(x,kCBF(x)) ≤ ̂̇h(x,kCBF(x)), (3.137)

such that the system may not satisfy the safety requirement:

ḣ(x,kCBF(x)) ≥ −α(h(x)). (3.138)

Because λ′(x) ≥ λ(x), we have that:

ḣ(x,k′
CBF(x)) ≥ ḣ(x,kCBF(x)), (3.139)

such that the introduction of δ̂ to the controller is doing more to ensure the
safety requirement is met. In this way by learning the projected disturbance
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using one controller, we can construct another controller that improves upon
the previous controller with respect to safety. As this modifies the projected
disturbance, this process can be iterated on to identify the new projected
disturbance and improve the safety of the controller further.

More concretely, consider the following setting: in an experiment, the system
is allowed to evolve forward in time from a particular initial condition x0 ∈ E
under a given controller k : E → Rm that is locally Lipschitz continuous on
E. During this experiment, state data xi ∈ E is collected at discrete sample-
times ti ∈ R≥0, providing a discrete-time history of the CBF, hi ≜ h(xi).
This time history is smoothed and numerically differentiated to compute an
approximate time history of the true value of the time derivative of the CBF,
ḣi ≜ ḣ(xi,k(xi)). This yields a collection of input-output pairs:

D =
{
((xi,k(xi)), ḣi)

}N

i=1
⊆ (E × Rm)× R. (3.140)

Given a nonlinear function class H : Rn → R and a loss function L : R×R→
R, a learning problem can be specified as finding a function δ̂ ∈ H to estimate
δ via empirical risk minimization (ERM):

inf
δ̂∈H

1

N

N∑
i=1

L
(̂̇h(xi,k(xi)) + δ̂(xi), ḣi

)
. (ERM)

A controller can then be synthesized as in (δ̂-CBF-QP). I directly build upon
the episodic learning framework from Sections 3.3 and 3.5 as outlined in Algo-
rithm 3. In each episode, the algorithm runs the current controller to collect
data, learns a new estimator δ̂ using the newly collected data, and synthesizes
a new controller. A notable difference is that data is not aggregated during
this process. This is because data from a previous episode corresponds to a
projected disturbance using a different controller, and thus would conflict with
data collected using a modified controller.

Bipedal System Application

Note that the contents of this subsection were primarily written by collabora-
tors, edited by Andrew Taylor for their appearance in conference proceedings,
and edited by Andrew Taylor for their appearance in this thesis.

We will now consider learning projected disturbances in the setting of bipedal
locomotion on stepping-stones. We will briefly introduce the theory of bipedal
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Algorithm 3 Projected Disturbance Learning (PDL)

Require: CBF h, CBF derivative estimate ̂̇h, model class H, loss function L,
nominal model-based (CBF-QP) controller k0 = kCBF, number of episodes
T

for k = 1, . . . , T do
x0 ← sampleE ▷ Sample initial condition
D← experiment(x0,kk−1) ▷ Run experiment
δ̂k ← ERM(H,L,D, ̂̇h) ▷ Fit estimator
kk ← augment(k0, δ̂k) ▷ Update controller

end for
return δ̂T ,kT

locomotion and then describe the barrier function formulations which allow
achieving safe bipedal locomotion across stepping-stones. A deeper exploration
of this material may be found in [210].

The bipedal robotic system we consider is the AMBER-3M robotic platform
seen in Figure 3.11, modeled as an underactuated, planar five-link robot with
point feet [211] and physical parameters reported in [212, Table 1]. The config-
uration coordinates q ∈ Q ⊂ R5 are given by q = [qsf , qsk, qsh, qnsh, qnsk]

⊤,
with stance foot angle qsf , stance knee angle qsk, stance hip angle qsh, non-
stance hip angle qnsh and non-stance knee angle qnsk. The full system state
is given by x = (q, q̇) ∈ Q × R5. The continuous-time equations of motion
are given by the Euler-Lagrange equations as in (2.5). Note that this is the
pinned model of the robot dynamics; for the unpinned model, refer to [213].
For AMBER-3M, the number of inputs is one fewer than the degrees of free-
dom, meaning the system has one degree of underactuation.

Taking pv : Q → R to represent the vertical position (height) of the swing foot,
the admissible states are given by the domain D = {(q, q̇) ∈ Q×R5 | pv(q) ≥
0}. The switching surface on which the impact events occur, also known as
the guard, is defined by:

S = {(q, q̇) ∈ Q× R5 | pv(q) = 0, ṗv(q, q̇) < 0} ⊂ D. (3.141)

Assuming that an impact at happens at time t ∈ R≥0, the impact dynamics7

7I do not discuss the notion of solutions for hybrid systems in this thesis, but an intro-
duction to the topic can be found in [214]. The relevant detail for this example is that the
corresponding solution φ will be discontinuous at impact times.
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Figure 3.11. (Left) Schematic diagram of the AMBER-3M robot with position coordinates.
(Center) Schematic of the foot placement in the stepping-stone problem. The boundaries of
virtual stepping-stones are captured via the blue and orange vertical lines. (Right) Virtual
stepping stone width as function of the phase variable τ(q).

[215] are defined by a reset map ∆ : S → D relating pre-impact states x− ≜

limτ→t−φ(τ) and post-impact states x+ = limτ→t+φ(τ) via x+ = ∆(x−).
Combining these concepts yields the following hybrid control system:

HC =

ẋ = f̂(x) + ĝ(x)u x− ∈ D \ S,

x+ = ∆(x−) x− ∈ S.
(3.142)

Control of bipedal systems uses a phasing variable, τ : Q → [0, 1], given by:

τ(q) =
δhip(q)− δ+hip

δ−hip − δ
+
hip

, (3.143)

where δhip : Q → R defined as δhip(q) = [−lt − lf , −lf , 0, 0, 0]q is the
linearized hip position with lt and lf the length of the robots tibia and femur,
respectively. The constants δ+hip and δ−hip are the linearized hip positions at the
beginning and the end of a step, ensuring that τ(q) increases monotonically
in time within a step. Desired trajectories resulting in walking gaits for the
robot can be synthesized via a hybrid zero dynamics framework [107], [210].

We are now equipped to define the relative degree 2 ([112]) outputs y : Q ×
Rp → R4 as the difference between the actual output ya : Q → R4 and the
desired output trajectory yd : R× Rp → R4:

y(q,α) ≜ ya(q)− yd(τ(q),α), (3.144)
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with α ∈ Rp being the coefficients of a Bézier polynomial coming from the
trajectory generation step. The actual output is given by the actuated coor-
dinates:

ya(q) =
[
04×1 I4×4

]
q. (3.145)

The nominal controller for this system is then given by the proportional-
derivative controller knom(x) = −KPy(q)−KDẏ(q, q̇) with proportional gain
KP ∈ S4

≻0 and derivative gain KD ∈ S4
≻0.

The stepping-stone problem uses virtual stepping-stones, which shrink over
the course of a step to confine foot placement to a targeted stone [22]. The
CBFs used to specify these foot position constraints are given by:

h1(q) = R(τ(q))− (Ox − Fx(q)), (3.146)

h2(q) = R(τ(q)) + (Ox − Fx(q)), (3.147)

where Fx(q) is the horizontal position of the swing foot, Ox > 0 is the hori-
zontal position of the center of stepping-stone, and the virtual stone width is
given by the function R : R→ R defined as:

R(τ(q)) =
ar − 1

1 + ar(e−λ(τ(q)−1) − 1)
+ 1 + r, (3.148)

where λ ∈ R>0 determines the decay rate of the barrier function, (1 + a)r is
half of the targeted stone width, and 1+r defines the half the width of the vir-
tual stepping-stone when τ = 0. These functions are visualized in Figure 3.11.
The safety constraints can be interpreted as keeping the swing foot horizontal
position in an interval centered at the middle of the stepping-stone, where the
interval shrinks as τ increases. As this formulation of CBFs is position-based
and therefore relative degree two, we employ the exponential CBF (ECBF)
extension technique [216] to both CBFs to attain the relative degree 1 CBFs:
he,i(x) ≜ Lf̂hi(x) + αehi(q) with αe ∈ R>0. The final Stepping Stone QP
(SS-QP) controller combines the robustifying term of the (δ̂-CBF-QP) con-
troller with the stepping-stone ECBF extensions of (3.146) and (3.147):

k(x) = argmin
u∈Rm

1

2
∥u− knom(x)∥2 (SS-QP)

s.t. L2
f̂
h1(x) + LĝLf̂h1(x)u+ αeLf̂h1(x) + δ̂1(x) ≥ −α(he,1(x)),

L2
f̂
h2(x) + LĝLf̂h2(x)u+ αeLf̂h2(x) + δ̂2(x) ≥ −α(he,2(x)).
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Figure 3.12. Simulation (S) and Hardware (H) data where model mismatch causes viola-
tions. (Far Left) Simulation where the barrier functions h1 (solid blue) and h2 (solid orange)
are enforced via a nominal model-based (CBF-QP) controller. A conservative controller us-
ing a worst-case upper bound on the projected disturbance is also shown (dashed blue,
dashed orange), which results in more conservative behavior over many steps. (Mid Left)
After three episodes of learning using the (SS-QP) controller in simulation, the maximum
barrier violation decreases from 2.0 to 0.3 [cm]. (Mid Right) Hardware where the barrier
functions h1 (blue) and h2 (orange) are enforced via a nominal model-based (CBF-QP)
controller. (Far Right) After two episodes of learning on hardware, the maximum barrier
violation decreases from 9.2 to 1.9 [cm] using the (SS-QP) controller.

Simulation & Experimental Results

Note that the contents of this subsection were primarily written by collabora-
tors, edited by Andrew Taylor for their appearance in conference proceedings,
and edited by Andrew Taylor for their appearance in this thesis.

We now apply the episodic learning algorithm in Algorithm 3, to the AMBER-
3M platform in both simulation with artificial model error and on hardware
with the model error inherent to real-world systems. In each instance the es-
timator δ̂ was implemented as a neural network with two hidden layers of 50
hidden units using the ReLU activation function. The network was trained
minimizing mean absolute error using mini-batch gradient descent. Mean ab-
solute error was chosen over other loss functions for its robustness to outliers.
The SS-QP controller was deployed in the RaiSim [217] simulation environ-
ment and on the AMBER-3M hardware platform.

The controllers and learning algorithm were first validated in simulation. Model
error was introduced by increasing the inertia of all limbs on the nominal
model by a factor of ten while maintaining constant mass to produce the true
system. Due to the underactuated nature of the robot and the relationship be-
tween step length and zero dynamics stability, not every set of stepping stones
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Figure 3.13. Gait tiles for Episode 2 of learning showing the AMBER-3M robot safely
traversing a set of stepping stones. Notice the change in step width and added lean of
the torso induced by the barrier functions. Video can be found at https://vimeo.com/
481809664

is navigable, even if safety is perfectly enforced with respect to the CBFs.
Therefore, a feasible stepping stone configuration was first generated for the
robot to traverse with stones of 4 [cm] in width. Without knowledge of the
modified model (δ̂1(x) = δ̂2(x) = 0 for all x ∈ E), the controller did not satisfy
the CBF constraints, resulting in a maximum violation at foot placement of
2.0 [cm], causing the robot to miss the stepping stone and fall over. Three
episodes of the PDL algorithm were run, after which the maximum violation
was reduced to be 0.3 [cm], only 15% of the original violation. Additionally, a
controller using a worst-case global upper bound on the projected disturbance
was implemented, which ensured safety but resulted in extremely conservative
behavior, resulting in poor qualitative walking, i.e. harsh foot strikes and an
over-bending torso. A comparison of the barrier functions h1 and h2 over the
steps with these controllers can be seen in Figure 3.12.

The same nominal model for the robot was used in the hardware experiments
as in simulation, with model uncertainty presenting itself as significant friction
in the joints, as well as imperfect mass and inertia measurements. The PDL
algorithm was implemented on the AMBER-3M robot across a sequence of two
episodes. The controllers ran on an off-board i7-6700HQ CPU at 2.6 [GHz]
with 16 GB RAM, which computed desired torques and communicated to
ELMO motor drivers on the 137 [cm] tall, 22 [kg] robot. The motor driver
communication ran at 2 [kHz], and the (SS-QP) ran at 1 [kHz]. The stepping
stone configuration was specified to the controller with stones of 8 [cm] in
width. The nominal model-based (CBF-QP) controller resulted in a maximum

https://vimeo.com/481809664
https://vimeo.com/481809664
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violation of the barriers of 9.2 [cm] due to model error. After running the PDL
algorithm for two episodes, the maximum violation of the barriers was 1.9 [cm],
only 21% of the original violation, as depicted in Figure 3.12. Gait tiles for
this improved traversal of the stepping stones are shown in Figure 3.13.

Conclusion

In this section I have presented an approach for learning projected disturbances
in the time derivative of a CBF with unstructured learning models. I begin
by analyzing some of the challenges that can occur with learning projected
disturbances with structured learning models that preserve a control-affine
relationship. I then motivate why directly learning a projected disturbance
produced using a particular controller and modifying the controller can lead
to improved safety, and produce an episodic learning algorithm. I then present
the problem of bipedal walking on stepping-stones, and present results from
deploying the proposed learning algorithm in simulation and experimentally
on the AMBER-3M bipedal platform.

3.8 Data-Driven Nonlinear Control

In this section I will present a data-driven control framework. This framework
directly incorporates data into a convex optimization problem that ensures
that a CLF or CBF condition is met for all possible model errors permitted
by the data. This approach is fundamentally different than the supervised
learning approaches in Sections 3.3, 3.5, and 3.7. Rather than building learning
models offline and deploying them in a controller online, which typically leads
to residual learning errors (that may be quite large as discussed in Section
3.7) that impact stability or safety (as studied in Sections 3.4 and 3.6), this
approach actively chooses control inputs that work for all possible model errors
allowed by a data set. A key result of this work will be the ability to synthesize
stabilizing or safe controllers without requiring the degree of variety in inputs
in a data set that was needed to ensure a well-conditioned learning problem
as discussed in Section 3.7. Rather, the use of robust convex optimization will
allow relying only on inputs that have been seen in the data set.

I will begin by considering the data-driven characterization of uncertainty in
Section 3.4, and establish some intuition behind the approach with geometric
visualizations. I will then introduce Control Certificate Functions (CCFs),
which is a generalization that captures both CLFs and CBFs and permits
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a single unifying framework. Next I will describe how model errors will be
characterized, (it will differ slightly than in Section 3.4) and how this leads to
a robust controller specified by a second-order cone program (SOCP), which
is a convex optimization problem of a more complex class than the quadratic
programs considered in Chapter 2 and Sections 3.3-3.7. After this, I will
address questions regarding the boundedness of the possible model errors given
properties of a data set, and provide a thorough proof of the feasibility of
the robust controller by generalizing the conditions required by CLFs and
CBFs to accommodate a set of model errors. Lastly, I will present simulation
results utilizing the robust controller, demonstrating that performance can be
achieved with limited variation of the inputs in the data set.

The contributions of this section are as follows:

• A data-driven control framework that is robust to model errors permitted
by a data set through the use of robust convex optimization.

• A characterization of feasibility of a robust controller by generalizing the
conditions required of CLFs and CBFs to include a set of model errors.

The text for this section is adapted from:

A. J. Taylor, V. D. Dorobantu, S. Dean, B. Recht, Y. Yue, and A. D.
Ames, “Towards robust data-driven control synthesis for nonlinear sys-
tems with actuation uncertainty,” in Proc. IEEE 60th Conf. on Decision
and Control (CDC), Austin, TX, USA, pp.6469-6476, 2021.

A. J. Taylor participated in the conception of the project, algorithm
design and theoretical analysis, simulation code implementation, and
writing of the article.

Data-Driven Intuition

I will begin by developing some intuition behind how partial characterizations
of model error from data can still permit controllers that meet stability or
safety requirements. Consider the true open-loop system (2.1), and the nomi-
nal model open-loop system (3.1), and suppose there is a single input (m = 1).
Suppose that xe is an unforced or forced equilibrium point of both the true
open-loop system (2.1) and the nominal model open-loop system (3.1), and
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max (LfV (x)) ≥ LfV (x)

Figure 3.14. Schematic of model error set arising from multiple data points.

the function V : E → Rn is a local exponential CLF for both the true-open
system (2.1) and nominal model (3.1) and equilibrium point xe. This amounts
to the requirements of Assumptions 1 and 2 in Section 3.3. Recall that:

V̇ (x, u) = LfV (x) + LgV (x)u, (3.149)̂̇V (x, u) = Lf̂V (x) + LĝV (x)u. (3.150)

For a given x ∈ D, the vectors (LgV (x), LfV (x)) and (LĝV (x), Lf̂V (x)) can
be visualized in Figure 3.14 (Top, Left). Model error between the true open-
loop system (2.1) and the nominal model (3.1) leads to a mismatch between
the two vectors.
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Consider the data-driven model error characterization in Section 3.4 in the
absence of estimators b̂ and â (such that ̂̇W (x, u) = ̂̇V (x, u) for all x ∈ D and
u ∈ R and ϵH does not appear). Given a data point ((xi, ui), Vi), we have that:

|b(x) + a(x)ui| ≤ ϵ(x,xi, ui). (3.151)

This data point tells us that the vector (LgV (x), LfV (x)) lies in a strip
that runs perpendicular to the vector (ui, 1), is centered about the vector
(LĝV (x), Lf̂V (x)), and has a width determined by ϵ(x,xi,ui), as visualized
in Figure 3.14 (Top, Right). If we consider another data point ((xj, uj), Vj)

with uj ̸= ui, we similarly have that:

|b(x) + a(x)uj| ≤ ϵ(x,xj, ui). (3.152)

This again defines another strip that the vector (LgV (x), LfV (x)) must lie
in, as seen in Figure 3.14 (Bottom, Left). Thus the vector (LgV (x), LfV (x))

must lie in the intersection of the two strips, which is a compact polytope as
visualized in Figure 3.14 (Bottom, Right). In this way, multiple data points
(even without dramatically different inputs) can lead to bounded sets of pos-
sible model errors, as will be explored later in this section. Intuitively, the
greater the difference between ui and uj (such as if uj = −ui), the smaller
the set of possible model errors will be. This is a manifestation of the well-
conditioning of the learning problem explored in Section 3.7. Still, even a
small amount of variation is sufficient to introduce a bounded set of possible
model errors, even if it would not lead to a well conditioned learning problem.

Observe that for all values of LfV (x) and LgV (x) permitted by the set of
possible model errors, we have that:

max(LfV (x)) ≥ LfV (x), (3.153)

0 < min(LgV (x)) ≤ LgV (x), (3.154)

as seen in Figure 3.14 (Bottom, Right). Consequently, if a negative input
u ∈ R<0 is chosen to satisfy:

max(LfV (x)) + min(LgV (x))u ≤ −k3∥x− xe∥a, (3.155)

then it satisfies:

LfV (x) + LgV (x)u ≤ −k3∥x− xe∥a, (3.156)
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and thus the LF condition needed for local exponential stability is satisfied
for the true closed-loop system. In this way, inputs can chosen based on
worst-case values in the possible set of model errors permitted by a data set to
ensure the desired stability or safety condition is met. Adding more data (with
more variety in the inputs) serves to reduce these worst-case model errors and
would yield a potentially less conservative (or more optimal) choice of u, but
importantly, is not needed for feasibility, just optimality. The choice of inputs
that are robust to the worst-case model errors will be rigorously codified via
a convex optimization problem later in this section.

Control Certificate Functions and Model Error

To develop a control framework that can flexibly accommodate both CLFs and
CBFs, I will use the notion of a Control Certificate Function (CCF), which
was first explored in [218], [219]:

Definition 23 (Control Certificate Function (CCF)). A function C : E → R
that is continuously differentiable on E is said to be a Control Certificate
Function (CCF) for the open-loop system (2.1) on the set D ⊆ E if there
exists a function α : R→ R such that:

inf
u∈Rm

Ċ(x,u) ≜ inf
u∈Rm

∇C(x)⊤︷ ︸︸ ︷
∂C

∂x
(x) f(x)︸ ︷︷ ︸
LfC(x)

+
∂C

∂x
(x)g(x)︸ ︷︷ ︸
LgC(x)

u < −α(C(x)), (3.157)

for all x ∈ D.

It is straightforward to see that if xe is an unforced or forced equilibrium point
of the open-loop system (2.1) and V : E → R≥0 is a local exponential CLF for
the open-loop system (2.1) and equilibrium point xe with a corresponding open
set D, then V is a CCF for the open-loop system (2.1) on the set D = D\{xe}
with a function α(r) = −k3

k2
r. Showing that a CBF h : E → R for the

open-loop system (2.1) on a set C defined as the 0-super level set of h is a
bit more difficult. It is easier if C is defined as the 0-sublevel set, such that
x ∈ C ⇐⇒ h(x) ≤ 0, in which case the CBF condition is replaced by:

inf
u∈Rm

ḣ(x,u) < −α(h(x)), (3.158)

for some α ∈ Ke and all x ∈ E. It is straightforward to transfer all of the
results relating BFs and CBFs to safety to this sign convention, and using
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CCFs is done simply to unify CLFs and CBFs under one mathematical tool.
In particular, h is a CCF for the open-loop system (2.1) on the set D = E. As
was done with both CLFs and CBFs, given a CCF C for the open-loop system
(2.1) on the set D ⊆ E and a function α, define the point-wise set:

KCCF(x) ≜
{
u ∈ Rm

∣∣ Ċ(x,u) ≤ −α(C(x))} . (3.159)

Any nominal controller knom : E → Rm that is locally Lipschitz continuous E
can be modified to take values in the set KCCF(x) via following controller:

k(x) = argmin
u∈Rm

1

2
∥u− knom(x)∥2 (CCF-QP)

s.t. ∇C(x)⊤ (f(x) + g(x)u) ≤ −α(C(x)).

Considering a nominal model as in (3.1) and the dynamics decomposition in
(3.2), we can see that the time derivative of a CCF for the open-loop system
(2.1) on the set D can be written as:

Ċ(x,u) =

̂̇C(x,u)︷ ︸︸ ︷
∇C(x)⊤f̂(x)︸ ︷︷ ︸

L
f̂
C(x)

+∇C(x)⊤ĝ(x)︸ ︷︷ ︸
LĝC(x)

u+∇C(x)⊤f̃(x)︸ ︷︷ ︸
L
f̃
C(x)

+∇C(x)⊤g̃(x)︸ ︷︷ ︸
Lg̃C(x)

u.

(3.160)
Consequently, even if C is a CCF for the nominal model (3.1) on the set D,
it is not necessarily a CCF for the open-loop system (2.1) on D. To ensure
that the data-driven control problem is well-posed, I will make the following
assumption as was seen in Sections 3.3 and 3.5:

Assumption 4. If the function C is a CCF for the nominal model (3.1) on
the set D, then it is a CCF for the open-loop system (2.1) on the set D.

Lastly, I will also make the following assumption:

Assumption 5. The functions f̃ and g̃ are Lipschitz continuous on E with
known Lipschitz constants Lf̃ and Lg̃.

Observe that this preceding assumption is about Lipschitz constants on the
error terms f̃ and g̃. This is an important detail because it suggests that
developing a better nominal model (reducing the error terms, and (likely) their
Lipschitz constants) will make the subsequent constructions less conservative,
and thus work invested in developing a good model-based controller before
employing data-driven techniques will require the data-driven techniques to
accomplish less.
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Data-Driven Robust Control Synthesis

Consider a dataset consisting of N tuples of states, inputs, and corresponding
state time derivatives, D = {(xi,ui, ẋi)}Ni=1, with xi ∈ E, ui ∈ Rm, and
ẋi ∈ Rn for i = 1, . . . , N . I now show how data allows us to reduce model
error by constraining the possible values of the functions f̃ and g̃ directly,
without a parametric estimator. Considering the true open-loop system (2.1)
evaluated at a state and input pair (xi,ui) in the dataset yields:

F̃i ≜ ẋi − (f̂(xi) + ĝ(xi)ui) = f̃(xi) + g̃(xi)ui, (3.161)

where F̃i ∈ Rn can be interpreted as the error between the true state time
derivative and the nominal model (3.1) evaluated at the state and input pair
(xi,ui). Considering a state x ∈ E (not necessarily present in the dataset D),
the second equality in (3.161) implies:

f̃(x) + g̃(x)ui − F̃i = f̃(x)− f̃(xi) + (g̃(x)− g̃(xi))ui. (3.162)

This expression provides a relationship between the possible values of the
unmodeled dynamics f̃ and g̃ at the state x and the values of the unmodeled
dynamics at the data point xi. Using the fact the functions f̃ and g̃ are
Lipschitz continuous on E yields the following bound:∥∥∥f̃(x) + g̃(x)ui − F̃i

∥∥∥ =
∥∥∥f̃(x)− f̃(xi) + (g̃(x)− g̃(xi))ui

∥∥∥ , (3.163)

≤
(
Lf̃ + Lg̃∥ui∥

)
∥x− xi∥ ≜ ϵi(x), (3.164)

where ϵi : E → R≥0 for i = 1, . . . , N . The bound grows with the magnitude
of the Lipschitz constants Lf̃ and Lg̃ and distance of the state x from the
data point xi. The values of Lf̃ and Lg̃ are not explicitly data dependent, and
thus the bound can be improved for a given dataset by reducing the possible
model error through improved modeling. Given this construction, I define the
point-wise error set:

Ui(x) ≜
{
(A,b) ∈ Rn×m × Rn

∣∣∣∣ ∥∥∥b+Aui − F̃i

∥∥∥ ≤ ϵi(x)

}
⊂ Rn×m × Rn,

(3.165)

noting that (g̃(x), f̃(x)) ∈ Ui(x) and Ui(x) is closed and convex. Performing
this construction over the entire dataset D yields a point-wise error set:

U(x) ≜
N⋂
i=1

Ui(x) ⊂ Rn×m × Rn, (3.166)
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noting that (g̃(x), f̃(x)) ∈ U(x) and U(x) is closed and convex. Therefore,
U(x) consists of all possible model errors that are consistent with the observed
data. This allows us to pose the following robust control problem:

Definition 24 (Data Robust CCF Optimization Problem).

kROB(x) = argmin
u∈Rm

1

2
∥u− knom(x)∥2 (DR-CCF-OP)

s.t. ̂̇C(x,u) +∇C(x)⊤ (b+Au) ≤ −α(C(x))

for all (A,b) ∈ U(x).

By construction we have that (g̃(x), f̃(x)) ∈ U(x), implying that kROB(x) ∈
KCCF(x) when the problem is feasible. I next present one the main results of
this section by using robust optimization [220] to yield a convex problem for
synthesizing such a robust controller.

Theorem 22. Let C : E → R be a CCF with on the set D ⊂ E with cor-
responding function α : R → R. The robust controller (DR-CCF-OP) is
equivalently expressed as:

kROB(x) = argmin
u∈Rm

λi∈Rn

1

2
∥u− knom(x)∥2 (DR-CCF-SOCP)

s.t. ̂̇C(x,u)− N∑
i=1

(
λ⊤

i F̃i − ∥λi∥ϵi(x)
)
≤ −α(C(x)),

N∑
i=1

λiu
⊤
i = −∇C(x)u⊤,

N∑
i=1

λi = −∇C(x).

Observe that this optimization problem is not a quadratic program, but rather,
a second-order cone program (SOCP) [29]. This is due to the fact that the
terms ∥λi∥ appear in an inequality constraint. SOCPs are a more complex type
of convex optimization problem (every QP can be written as an SOCP), but
may still be efficiently solved through various numerical solvers such as ECOS
[35] and MOSEK [36]. An important observation that I will also show in other
contributions of this thesis synthesizing robust controllers for various modeling
challenges through convex optimization is that robustifying an optimization
problem of a particular class (a QP) will generally make it more complex, such
as an SOCP. While I do not explore the local Lipschitz continuity properties of
the controller above, I will explore some local Lipschitz continuity results for
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SOCP-based controllers in Section 5.2. A meaningful area of future work in
robust convex optimization-based control through CLFs and CBFs will seek to
study the regularity properties of controllers specified through more complex
optimization problems than QPs (which have been well covered in [51], [221],
[222]) using concepts from variational analysis [223], [224]. Another interesting
feature of this form of the controller is the dependence of the control input u

on the inputs ui seen in the data set. In particular, the last two constraints
establish a relationship between u and ui where u must be in some sense
a linear combination of inputs ui in the data set. This relationship is best
captured by the colloquial description of do what has worked before, and avoid
what you don’t know. Lastly, the size of this optimization problem scales with
the numbers of data points N , as each data point adds a decision variable
λi. Solving this optimization problem in a computationally efficient manner
may require data segmentation for higher-dimensional problems [225], but a
detailed consideration is outside the scope of this thesis, which is focused on
theoretical foundations.

Proof. An input u ∈ Rm is feasible if the optimal value of the optimization
problem:

sup
A∈Rn×m

b∈Rn

̂̇C(x,u) +∇C(x)⊤(b+Au) (3.167)

s.t. ∥b+Aui − F̃i∥ ≤ ϵi(x) for all i ∈ 1, . . . , N,

is less than or equal to −α(C(x)). Each inequality constraint can be rewritten
as set membership in a second-order cone. Thus we can rewrite this optimiza-
tion problem as:

sup
A∈Rn×m

b∈Rm

̂̇C(x,u) +∇C(x)⊤ (b+Au) (3.168)

s.t.
(
b+Aui − F̃i, ϵi(x)

)
∈ Qn for all i ∈ 1, . . . , N,

where Qn ⊂ Rn+1 denotes the Lorentz (second-order) cone:

Qn = {(y, t) ∈ Rn × R : ∥y∥ ≤ t} . (3.169)
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The associated Lagrangian for this optimization problem is given by:

̂̇C(x,u) +∇C(x)⊤ (b+Au) +
N∑
i=1

[
λi

νi

]⊤ [
b+Aui − F̃i

ϵi(x)

]
= ̂̇C(x,u) +∇C(x)⊤b+

〈
∇C(x)u⊤,A

〉
+

N∑
i=1

(〈
λiu

⊤
i ,A

〉
+ λ⊤

i b− λ⊤
i F̃i + νiϵi(x)

)
, (3.170)

=

〈
∇C(x)u⊤ +

N∑
i=1

λiu
⊤
i ,A

〉
+

(
∇C(x) +

N∑
i=1

λi

)⊤

b

+ ̂̇C(x,u)− N∑
i=1

(
λ⊤

i F̃i − νiϵi(x)
)
, (3.171)

where (λi, νi) ∈ Qn are Lagrange multipliers corresponding to the constraints
imposed by the data point (xi,ui) and ⟨·, ·⟩ denotes the trace inner product.
The dual optimization problem is therefore:

inf
λi∈Rn

νi∈R

̂̇C(x,u)− N∑
i=1

(
λ⊤

i F̃i − νiϵi(x)
)

(3.172)

s.t.
N∑
i=1

λiu
⊤
i = −∇C(x)u⊤,

N∑
i=1

λi = −∇C(x),

∥λi∥ ≤ νi for all i ∈ 1, . . . , N.

For any (xi,ui), choosing Lagrange multipliers such that νi > ∥λi∥ increases
the corresponding value of the problem compared to choosing νi = ∥λi∥. I
therefore simplify the problem as:

inf
λi∈Rn

̂̇C(x,u)−∑
i=1

(
λ⊤

i F̃i − ∥λi∥ϵi(x)
)

(3.173)

s.t.
N∑
i=1

λiu
⊤
i = −∇C(x)u⊤,

N∑
i=1

λi = −∇C(x).

This optimization problem can be substituted in for the robust constraint in
(DR-CCF-OP) to yield the optimization problem (DR-CCF-SOCP).

Controller Feasibility

I now provide an analysis of the feasibility of the preceding controller. The
feasibility of the controller (DR-CCF-SOCP) at a given state x is determined
by the structure of the model error set U(x) defined in (3.166). The following
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lemma provides a condition on the inputs in the dataset that implies U(x) is
bounded for all x ∈ E:

Lemma 1. Consider a dataset D with N data points satisfying N ≥ m + 1.
If there exists a set of data points {(xi,ui, ẋi)}m+1

i=1 ⊆ D such that the set of
vectors:

M ≜

{[
ui

1

]}m+1

i=1

, (3.174)

are linearly independent, then the model error set U(x) is bounded (and thus
compact) for any x ∈ E.

Proof. Consider the setM, and define:

Mu ≜

{
ui ∈ Rm

∣∣∣∣
[
ui

1

]
∈M

}
. (3.175)

For arbitrary x ∈ E, let (A,b) ∈ U(x). By definition of the model error sets
Ui(x) and U(x) given in (3.165) and (3.166), respectively, we have that:∥∥∥Aui + b− F̃i

∥∥∥ ≤ ϵi(x), (3.176)

for ui ∈Mu. Defining vi ≜ Aui + b− F̃i, we have that:

m+1∑
i=1

∥∥∥Aui + b− F̃i

∥∥∥2 = m+1∑
i=1

n∑
j=1

|Vji|2 = ∥V∥2F , (3.177)

where ∥ · ∥F is the Frobenius norm and V =
[
v1 · · · vm+1

]
. Noting that

∥V∥F = ∥V⊤∥F , factoring and using the fact ∥P∥ ≤ ∥P∥F for any P ∈ Rm+1×n

in conjunction with (3.176) yields:∥∥∥∥∥∥∥∥


u⊤
1 1
...

...
u⊤
m+1 1


[
A⊤

b⊤

]
−


F̃⊤

1
...

F̃⊤
m+1


∥∥∥∥∥∥∥∥
2

≤
m+1∑
i=1

ϵi(x)
2. (3.178)

Taking the square root of both sides and employing the reverse triangle in-
equality we arrive at:∥∥∥∥∥∥∥∥∥∥∥∥


u⊤
1 1
...

...
u⊤
m+1 1


︸ ︷︷ ︸

U

[
A⊤

b⊤

]
∥∥∥∥∥∥∥∥∥∥∥∥
≤

√√√√m+1∑
i=1

ϵi(x)2 +

∥∥∥∥∥∥∥∥


F̃⊤
1
...

F̃⊤
m+1


∥∥∥∥∥∥∥∥ . (3.179)
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Noting that U has full rank by the linear independence of the vectors in the
setM, we have that:

σm+1(U)

∥∥∥∥∥
[
A⊤

b⊤

]∥∥∥∥∥ ≤
∥∥∥∥∥∥∥∥


u⊤
1 1
...

...
u⊤
m+1 1


[
A⊤

b⊤

]∥∥∥∥∥∥∥∥ , (3.180)

where σm+1(U) > 0 is the smallest singular value of U. Combining the two
previous inequalities shows that the model error set U(x) is bounded.

This result shows that variety in input directions is sufficient to assert bound-
edness of the model error set as a uniform property over the entire set E. As
seen in the proof, the bound on this set may be very large if the values of ϵi(x)
are large (as is the case when x is far away from the data points xi associated
with the inputs used to construct the bound). Alternatively, the model error
set will be small for a point x if there is local variety in input directions within
the training dataset. To understand how the size of U(x) impacts feasibility
of the optimization problem, I define the following set:

ŨC(x) ≜
{
(a, b) ∈ Rm × R | ∃ (A,b) ∈ U(x) s.t.

a = (∇C(x)⊤A)⊤, b = ∇C(x)⊤b
}
. (3.181)

The set ŨC(x) can be interpreted as the projection of the dynamics model error
set U(x) along the gradient of the CCF C, creating an m+ 1 dimensional set.
Additionally define the set:

UC(x) ≜
{(
LĝC(x)

⊤, Lf̂C(x)
)}
⊕ ŨC(x), (3.182)

where ⊕ denotes a Minkowski sum. The set UC(x) is the recentering of ŨC(x)
around the nominal model terms (LĝC(x)

⊤, Lf̂C(x)) ∈ Rm+1, such that it cap-
tures the possible values of (LgC(x)

⊤, LfC(x)). As multiplication by ∇C(x)⊤

is a linear transformation, ŨC(x) and UC(x) are convex, and if U(x) is bounded
(and therefore compact), then ŨC(x) and UC(x) are compact. I now present
the second main result of this section in the form of a necessary and sufficient
condition for feasibility of (DR-CCF-OP):

Theorem 23. For a state x ∈ E, let the sets U(x) and UC(x) be defined
as in (3.166) and (3.182), respectively. Define the ray R ⊂ Rm+1 as R =
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{0m}×(−α(C(x)),∞). Assuming that U(x) is bounded, the data-driven robust
controller (DR-CCF-SOCP) is feasible if and only if:

UC(x) ∩R = ∅. (3.183)

Intuitively, the ray R represents scenarios in which the CCF time derivative
can not be modified by actuation, and the CCF condition is not satisfied with-
out actuation. By Assumption 4, the tuple (LgC(x)

⊤, LfC(x)) is not contained
in R, but the possible model errors permitted by data need not necessarily
reflect this. If one possible model error in the set UC(x) is contained in R, it is
impossible to meet the CCF condition for that model error. Observe that the
error set not intersecting this ray is a direct analog of the alternative CLF and
CBF condition in (2.18) and (2.61), respectively. As those conditions enable
proving feasibility of the resulting optimization-based controller, the analog in
this setting will also permit proving feasibility.

Proof. The proof proceeds from the original structure of the robust control
problem (DR-CCF-OP). The constraint on the input u∗ specified by this
controller is given by:

Lf̂C(x) +∇C(x)
⊤b+ (LĝC(x) +∇C(x)⊤A)u∗ ≤ −α(C(x)), (3.184)

for all (A,b) ∈ U(x), Given the definitions of ŨC(x) and UC(x) in (3.181) and
(3.182), this constraint can be expressed as:

q + p⊤u∗ ≤ −α(C(x)), (3.185)

for all (p, q) ∈ UC(x).

Necessity

Assume that UC(x) ∩ R ≠ ∅. This implies that there exists a (p, q) ∈ UC(x)
such that q > −α(C(x)) and p = 0m. Thus for any input u ∈ Rm, we have
that:

q + p⊤u = q > −α(C(x)), (3.186)

violating the constraint in (3.185). Thus the optimization problem is infeasible.
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Sufficiency

Begin by defining the hyperplane H ⊂ Rm+1 with unit normal n =
[
0⊤
m 1

]⊤
and offset −α(C(x)) and define the set:

UC(x) =

{
(p, q) ∈ UC(x)

∣∣ 〈[0m

1

]
,

[
p

q

]〉
≥ −α(C(x))

}
, (3.187)

which corresponds to the tuples in the set UC(x) that do not meet the CCF
condition (3.185) strictly under no input (u∗ = 0m). Note that if u∗ = 0m

satisfies (3.185) for all (p, q) ∈ UC(x), then u∗ = 0m satisfies (3.185) for all
(p, q) ∈ UC(x). Also note that the set UC(x) is the closed subset of the
compact and convex set UC(x) that is also contained in a (convex) half-space
defined by the hyperplane H, meaning UC(x) is compact and convex (as it is
the intersection of convex sets). Therefore, we can define:

q⋆⋆ = max
(p,q)∈UC(x)

q = max
(p,q)∈UC(x)

〈[
0m

1

]
,

[
p

q

]〉
, (3.188)

which exists as the function
〈[

0⊤
m 1

]⊤
, ·
〉

: UC(x) → R is continuous on a

compact domain. We consider the case that q⋆⋆ > −α(C(x)), as otherwise
u∗ = 0m satisfies (3.185).

Define the projection function Π : Rm×R→ Rm such that for (p, q) ∈ Rm×R
we have:

Π((p, q)) = p. (3.189)

As Π is a linear transform, the image of the compact and convex set UC(x)

under Π, denoted as Π(UC(x)), is compact and convex and by assumption
satisfies:

Π(UC(x)) ∩ {0m} = ∅. (3.190)

We may use the strict separating hyperplane theorem [29] to separate the set
Π(UC(x)) from {0m} with the hyperplane Hβ with unit normal s ∈ Sm−1 and
offset β ∈ R>0. This hyperplane can also be shifted to pass through the origin,
given by H0 (with unit normal s ∈ Sm−1 and offset 0). This results in the
configuration seen in Figure 3.15. These hyperplanes can be extended back
into the ambient space Rm × R by defining hyperplanes H′

β ⊂ Rm × R and

H′
0 ⊂ Rm×R with normal vector s′ =

[
s⊤ 0

]⊤
and respective offsets β and 0.
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Rm

s

Hβ

H0

s
Π(UC(x))

Π(UC(x))

Figure 3.15. Projected view of model error set used in proving feasibility of the
(DR-CCF-OP). The green region corresponds to Π(UC(x)) while the orange region high-
lights the set UC(x) lying above the hyperplane H. The line Hβ represents the strictly
separating hyperplane with normal s and offset β, while H0 is the hyperplane shifted to
pass through the origin.

These hyperplanes serve to separate the vertical axis 0m×R from the cylinder
defined by Π(UC(x))× R. Define the two following open halfspaces:

H+
0 ≜

{
(p, q) ∈ Rm × R

∣∣∣∣
〈
s′,

[
p

q

]〉
= p⊤s > 0

}
, (3.191)

H−
0 ≜

{
(p, q) ∈ Rm × R

∣∣∣∣
〈
s′,

[
p

q

]〉
= p⊤s < 0

}
. (3.192)

We will now find a feasible input that lies anti-parallel to s, i.e., we will consider
inputs of the form u∗ = −γs for γ ∈ R≥0 throughout the rest of this proof.
Finding a feasible input satisfying constraint (3.185) amounts to finding a γ∗

such that q − γ∗p⊤s ≤ −α(C(x)) for all (p, q) ∈ UC(x). By definition we have
that for any (p, q) ∈ UC(x):〈

s′,

[
p

q

]〉
= s⊤p ≥ β. (3.193)

Let γ0 ∈ R>0 be defined as:

γ0 =
q⋆⋆ + α(C(x))

β
> 0. (3.194)

This value of γ0 implies that for any (p, q) ∈ UC(x) we have:

q − γ0p⊤s ≤ q⋆⋆ − γ0β ≤ −α(C(x)). (3.195)
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Define the set:

VC(x, γ) =
{
(p, q − γp⊤s) ∈ Rm × R | (p, q) ∈ UC(x)

}
, (3.196)

and the function:
ψ(γ) = max

(p,q)∈VC(x,γ)
q, (3.197)

that satisfies ψ(0) = q⋆⋆ and ψ(γ0) ≤ −α(C(x)). I later show that ψ is con-
tinuous, but note the intermediate value theorem implies the existence of a
γ∗ ∈ (0, γ0] with:

ψ(γ∗) = max
(p,q)∈VC(x,γ∗)

q = −α(C(x)). (3.198)

Fixing u∗ = −γ∗s, we have that condition (3.185) is satisfied for all points
(p, q) ∈ H+

0 ∩ UC(x). Likewise, consider a point (p, q) ∈ H+
0 ∩ (UC(x)\UC(x)),

for which the condition (3.185) is satisfied with no input as q < −α(C(x)), and
note that p⊤s > 0. We have that:

q + p⊤u∗ = q − γ∗p⊤s < −α(C(x)). (3.199)

Combining these results, we have that condition (3.185) is satisfied for all
(p, q) ∈ H+

0 ∩ UC(x). Additionally, for any (p, q) ∈ H′
0 ∩ UC(x), p⊤s = 0, as

s′ is normal to H′
0. As strict separation implies that q < −α(C(x)) for any

(p, q) ∈ H′
0 ∩ UC(x), we have q − γ∗p⊤s < −α(C(x)) and condition (3.185) is

satisfied.

Lastly, we must consider points (p, q) ∈ H−
0 ∩ UC(x). To this end, define the

set:

WC(x, γ
∗) =

{
(p, q − γ∗p⊤s) ∈ Rm × R | (p, q) ∈ UC(x)

}
. (3.200)

This set can be interpreted as an invertible linear transformation of the set
UC(x) as we have:[

p′

q′

]
=

[
p

q − γ∗p⊤s

]
=

[
Im×m 0m

−γ∗s⊤ 1

][
p

q

]
, (3.201)

implying that WC(x, γ
∗) is compact and convex. Similarly, define the set:

WC(x, γ
∗) =

{
(p, q) ∈ WC(x, γ

∗)

∣∣∣∣
〈[

0m

1

]
,

[
p

q

]〉
≥ −α(C(x))

}
. (3.202)

The set WC(x, γ
∗) is convex and contains points in WC(x, γ

∗) that are in or
above the hyperplane H, or points that meet with equality or violate (3.185),
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respectively. By the specific choice of γ∗, there exists at least one point v+ ∈
H+

0 ∩WC(x, γ
∗). Furthermore, by the preceding strict separation, we have that

H′
0 ∩WC(x, γ

∗) = ∅. Now assume for contradiction that H−
0 ∩WC(x, γ

∗) ̸= ∅,
or that there exists v− ∈ H−

0 ∩WC(x, γ
∗). As the set WC(x, γ

∗) is convex and
⟨s′,v+⟩ > 0 and ⟨s′,v−⟩ < 0, there is a λ∗ ∈ (0, 1) satisfying:

⟨s′, (1− λ∗)v+ + λ∗v−⟩ = 0, (3.203)

implying (1 − λ∗)v+ + λ∗v− ∈ H′
0 ∩ WC(x, γ

∗). This contradicts the fact
H′

0 ∩ WC(x, γ
∗) = ∅, implying that H−

0 ∩ WC(x, γ
∗) = ∅, or that condition

(3.185) is satisfied for all points (p, q) ∈ H−
0 ∩ UC(x). Combining all previous

results, condition (3.185) is satisfied for all points (p, q) ∈ UC(x) for the input
u∗ = −γ∗s, ensuring feasibility.

I now show that ψ is continuous. For γ, γ′ > 0 and (p, q) ∈ UC(x), we have:

min
(p′,q′)∈VC(x,γ′)

∥∥∥∥∥
[

p

q − γp⊤s

]
−

[
p′

q′

]∥∥∥∥∥ (3.204)

≤

∥∥∥∥∥
[

p

q − γp⊤s

]
−

[
p

q − γ′p⊤s

]∥∥∥∥∥ ≤ p⊤s|γ − γ′|, (3.205)

and similarly, for (p′, q′) ∈ UC(x), we have:

min
(p,q)∈VC(x,γ)

∥∥∥∥∥
[
p

q

]
−

[
p′

q′ − γ′(p′)⊤s

]∥∥∥∥∥ ≤ (p′)⊤s|γ − γ′|. (3.206)

Therefore, the Hausdorff distance between VC(x, γ) and VC(x, γ′) is bounded:

dH(VC(x, γ),VC(x, γ′)) ≤
(

max
(p,q)∈UC(x)

p⊤s

)
|γ − γ′|,

implying VC(x, γ) is Lipschitz continuous (with respect to the Hausdorff met-
ric) as a function of γ. The support function of a nonempty, compact, and
convex set A ⊂ Rm × R given by hA : Rm+1 → R is defined as:

hA(v) = max
(p,q)∈A

〈
v,

[
p

q

]〉
. (3.207)

Recalling n =
[
0⊤
m 1

]⊤
, the Hausdorff distance between two nonempty, com-

pact, and convex sets A,B ⊂ Rm × R satisfies:

dH(A,B) = max
v∈Sm

|hA(v)− hB(v)| ≥ |hA(n)− hB(n)|.
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Noting that ψ can be expressed in terms of the support function as a compo-
sition, with:

ψ(γ) = max
(p,q)∈VC(x,γ)

q = hVC(x,γ)(n),

implies ψ is a continuous function.

Simulation Results

To demonstrate the proposed controller, I simulate the inverted pendulum
with input attenuation in (3.3) with gravitational acceleration g = 10, length
ℓ = 0.7, and mass m = 0.7. The nominal model for the system is given by (3.4)
with gravitational acceleration estimate ĝ = 10, length estimate ℓ̂ = 0.63, and
mass estimate m̂ = 0.63. Consider functions V : R2 → R≥0 and h : R2 → R,
given by V (x) = x⊤Px and h(x) = x⊤Px− c with:

P =

[√
3 1

1
√
3

]
, (3.208)

and a constant c = 0.2. Noting that both the nominal model open-loop sys-
tem (3.4) and the true open-loop system (3.3) are feedback linearizable, V
and h satisfy the CCF condition (3.157) for the comparison function α(r) =

σr/λmax(P) with σ ∈ (0, 1), for both the nominal model open-loop system
(3.4) and the true open-loop system (3.3) (implying Assumption 4 is met). In
particular, V may serve as a CLF, and h as a CBF.

I explore both data-driven stability and safety with this system. I compare
the robust data-driven controller with an oracle controller, which is a true
model-based (CCF-QP) controller, and a baseline controller, which is a nom-
inal model-based (CCF-QP) controller. In each setting, the system model
underestimates the pendulum mass and length and assumes that the input
gain is independent of the state. As a result, the Lipschitz constants of the
errors can be bounded by Lf̃ = g|ℓ− ℓ̂|/(ℓℓ̂) and Lg̃ = 0.75

√
2 exp(−1

2
)/(mℓ2).

For the stability experiment, I generate data sets by gridding the state and in-
put spaces. I consider x1 in the interval [0, 1] and x2 in the interval [−0.25, 0.25],
with grid sizes ϵθ = ϵθ̇ = 1

40
. I generate a sparse data set by considering

u ∈ {−5,−1} and a dense data set by considering u ∈ {−5,−3,−1, 1, 3, 5}. I
set the controller knom to be a feedback linearizing controller designed using
the nominal model and linear gains kp = 1/2 and kd =

√
3/2. The system

is simulated from the initial condition x0 = [0.8, 0.1]⊤ for 10 [s], with control
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Figure 3.16. The value of the certificate function C(x) (Top) and input u (Bottom)
over time for the stability (Top Pair) and safety (Bottom Pair) experiments. I compare the
behavior of a true model-based (CCF-QP) controller (oracle, black square), a nominal-model
based (CCF-QP) controller (baseline, red diamond), and the proposed (DR-CCF-SOCP)
controller using dense input data (R-dense, blue triangle) and sparse input data (R-Sparse,
green circle). For stability, the desired behavior for C(x) is to converge towards 0, while for
safety it is to remain non-positive.

inputs specified at 100 [Hz]. For the safety experiment, I consider a similar
pair of sparse and dense data sets with x1 in the interval [0, 0.25] and x2 in the
same interval as the stability experiment, the same grid sizes, and the same
sets of control inputs. The system is simulated with no nominal controller
(knom = 0 for all x ∈ E) from the initial condition x0 = [0.1, 0.1]⊤ for the
same amount of time and the same control input frequency.

The results of the simulations may be seen in Figure 3.16. In both experiments,
we see that the baseline controller fails to achieve the specified objective, while
the oracle controller succeeds. Furthermore, we see that the data-driven con-
trollers perform nearly identically for both the sparse and dense input data
sets. This similarity indicates that greater variety in input directions and cov-
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erage of the input space by the data set are not needed to achieve satisfactory
closed-loop behavior.

Conclusion

In this section I have presented an approach for data-driven robust control
through convex optimization. I first provide a geometric understanding of
model error as it impacts the time derivative of a CLF, and indicate how data
can be used to bound potential model errors in a way that permits robust
control. I then consider Control Certificate Functions as a generalization that
captures both CLFs and CBFs. This leads to a robust optimization problem
with an infinite number of constraints which can be shown to be equivalent to
a finite dimensional second-order cone program through a duality argument.
I then provide a statement about the boundedness of model error sets given
sufficiently rich input data, and use this to provide a proof on the feasibil-
ity of the robust controller. I demonstrate the proposed control approach in
simulation on the inverted pendulum with input attenuation in Section 3.2.

3.9 Adaptive Safety via Control Barrier Functions

In this section I will present work on the problem of adaptive safety-critical
control through CBFs. I will first review the work in [47] which describes the
adaptive control setting considered in this work, and defines adaptive CLFs
as a tool for stabilization in the presence of parametric model error. Building
off of the ideas in this work, I will propose a novel notion of an adaptive
barrier function (aBF) and Control Barrier Function (aCBF) that must meet
an inequality condition over both states and possible parameter values. I
will then show how an aBF yields safety of a closed-loop system and how an
aCBF can be used to synthesize a controller that yields an aBF for a closed-
loop system. I will then analyze some of the conservative conditions that
define aBFs and aCBFs through a rigorous counterexample, demonstrating
how a naïve approach to defining aCBFs can lead to a failure of rigorous
safety guarantees. Lastly, I demonstrate the tool of aCBFs in simulation on
an adaptive cruise control (ACC) example.

The contributions of this section are as follows:

• The definition of adaptive Control Barrier Functions for ensuring the
safety of a nonlinear control system with parametric model error.
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• A detailed analysis of the strong requirements needed for forward in-
variance of a set in the presence of parametric model error through a
theoretically rigorous counterexample.

The text for this section is adapted from:

A. J. Taylor and A. D. Ames, “Adaptive safety with control barrier func-
tions,” in Proc. IEEE American Control Conf. (ACC), Denver, CO,
USA, 2020, pp.1399-1405.

A. J. Taylor participated in the conception of the project, algorithm
design and theoretical analysis, simulation code implementation, and
writing of the article.

Adaptive Systems

Recall the formulation of parametric model error described in Section 3.2 yield-
ing the open-loop system (3.6) which is restated here:

ẋ = f̂(x) + F(x)θ⋆ + ĝ(x)u, (3.209)

where θ⋆ ∈ Rp is a vector of unknown parameters and F : E → Rn×p is
a collection of known basis functions and is assumed to be locally Lipschitz
continuous on E. The challenge of designing explicit controllers that are robust
to a wide range of unknown parameters suggests considering a larger class of
controllers to ensure the safety of (3.209). In particular, controllers that update
an estimate of the unknown parameters. These are called adaptive controllers,
and take the form:

u = k(x, θ̂), (3.210)
˙̂
θ = Γτ (x, θ̂), (3.211)

where θ̂ ∈ Rp represents an estimate of the unknown parameters θ⋆ maintained
by the controller, k : E ×Rp → Rm is locally Lipschitz continuous on E ×Rp,
Γ ∈ Sp

≻0 is a matrix adaptive gain, and τ : E × Rp → Rp is a adaptation law
that is locally Lipschitz continuous on E × Rp. Introducing this parameter
update results in a composite closed-loop system:[

ẋ
˙̂
θ

]
=

[
f̂(x) + F(x)θ⋆ + ĝ(x)k(x, θ̂)

Γτ (x, θ̂)

]
. (3.212)
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I refer to the state portion of this system as the state closed-loop system, and
the parameter portion as the parameter closed-loop system. The composite
system evolves in E × Rp, such that for any initial condition (x0, θ̂0) ∈ E ×
Rp, there exists a maximal interval I(x0, θ̂0) = [0, tmax(x0, θ̂0)) and a unique
continuously differentiable solution (φx,φθ̂) : I(x0, θ̂0)→ E × Rp satisfying:[

φ̇x(t)

φ̇θ̂(t)

]
=

[
f̂(φx(t)) + F(φx(t))θ

⋆ + ĝ(φx(t))k(φx(t),φθ̂(t))

Γτ (φx(t),φθ̂(t))

]
, (3.213)

for all t ∈ I(x0, θ̂0). For simplicity, in this work I will assume that the closed-
loop system (3.212) is forward complete, such that for any initial condition
(x0, θ̂0) ∈ E × Rp, the interval I(x0, θ̂0) = R≥0.

Adaptive Control Lyapunov Functions

Stabilization of a system with parametric model errors has long been a goal of
adaptive control, though the work in [47] was the first to consider achieving it
through CLFs. It is useful to review this work as it will guide the formulation
taken for achieving safety in the presence of parametric model errors through
the use of adaptive CBFs. In this setting we are interested in driving the
system to a forced or unforced equilibrium xe ∈ E of the open-loop system
(3.209). Because we are considering potentially unbounded parameter errors,
we will restrict our attention to global stability results. To ensure the well-
posedness of the stabilization problem, I will assume that F(xe) = 0n, such
that xe only needs to be an unforced or forced equilibrium point of the nominal
model open-loop system:

ẋ = f̂(x) + ĝ(x)u. (3.214)

Next, I will relax the assumption that the controllers I consider be locally
Lipschitz continuous on E × Rp, but rather require that they only be locally
Lipschitz continuous on (E \ {xe}) × Rp. Furthermore, the controllers will
need to render xe an equilibrium point of the state portion of the closed-loop
system (3.212), such that:

f̂(xe) + ĝ(xe)k(xe, θ̂) = 0n, (3.215)

for all θ̂ ∈ Rp. This leads to the following notion of adaptive stability:

Definition 25 (Adaptive Stability). Let xe ∈ E be an unforced or forced
equilibrium point of the open-loop system (3.209). The composite closed-loop
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system (3.212) is said to be adaptively stable with respect to xe if for any initial
condition (x0, θ̂0) ∈ E×Rp, we have that the solution (φx,φθ̂) : R≥0 → E×Rp

is bounded on R≥0 and satisfies limt→∞φx(t) = xe.

Note that the requirements for adaptive stability are rather weak in the sense
that φθ̂(t) is not required to converge to θ⋆. We will see, in fact, that conver-
gence of φθ̂(t) to θ⋆ is not necessary for φx(t) to converge to xe. Establishing
that a system is adaptively stable with respect to an equilibrium point xe can
be achieved through an adaptive Lyapunov Function (aLF):

Definition 26 (Adaptive Lyapunov Function (aLF)). Let xe ∈ E be an
equilibrium point of the state closed-loop system of (3.212). A function
Va : E → R≥0 that is continuously differentiable on E with ∂Va

∂x
: E → Rn

locally Lipschitz continuous on E is said to be an adaptive Lyapunov function
(aLF) for the state closed-loop system in (3.212) and equilibrium point xe if
there exists k1, k2, k3, a ∈ R>0 such that:

k1∥x− xe∥a ≤ Va(x) ≤ k2∥x − xe∥a, (3.216)

V̇a(x, θ̂) ≜
∂Va
∂x

(x)
(
f̂(x) + F(x)θ̂ + ĝ(x)k(x, θ̂)

)
≤ − k3∥x− xe∥a, (3.217)

for all x ∈ E and θ̂ ∈ Rp.

The importance of ∂Va

∂x
being locally Lipschitz continuous on E will be impor-

tant for ensuring the update law τ is locally Lipschitz continuous on E × Rp.
An aLF can be used to certify the adaptive stability of the closed-loop system
(3.212), as captured in the following theorem:

Theorem 24. Let xe ∈ E be an equilibrium point of the state closed-loop
system in (3.212). If there exists an adaptive Lyapunov function Va : E → R≥0

for the state closed-loop system in (3.212) and equilibrium point xe, then for
any Γ ∈ Sp

≻0, the update law:

τ (x, θ̂) =

(
∂Va
∂x

(x)F(x)

)⊤

, (3.218)

renders the closed-loop system (3.212) adaptively stable with respect to xe.

It is useful to review this proof, as similar steps will be taken when considering
adaptive safety through adaptive barrier functions:
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Proof. Denote the parameter error:

θ̃ = θ⋆ − θ̂, (3.219)

to be the difference between the actual and estimated parameters. Consider
now the candidate composite Lyapunov function:

V (x, θ̂) = Va(x) +
1

2
θ̃
T
Γ−1θ̃, (3.220)

noting that it satisfies:

k1∥x− xe∥a +
1

2λmax(Γ)

∥∥∥θ̃∥∥∥2 ≤ V (x, θ̂) ≤ k2∥x− xe∥a +
1

2λmin(Γ)

∥∥∥θ̃∥∥∥2 .
(3.221)

Computing its derivative we can obtain:

V̇ (x, θ̂) = V̇a(x,θ
⋆)− θ̃

T
Γ−1 ˙̂θ, (3.222)

≤ −k3∥x− xe∥a + θ̃
T

((
∂Va
∂x

(x)F(x)

)T

− τ (x, θ̂)

)
. (3.223)

It is now easy to see that using the update law:

τ (x, θ̂) =

(
∂Va
∂x

(x)F(x)

)T

, (3.224)

implies:
V̇ (x, θ̂) ≤ −k3∥x− xe∥a, (3.225)

from which we conclude that the solution (φx,φθ̂) is bounded on R≥0. It
now follows from LaSalle’s invariance principle [100, Theorem 4.4] that φx

converges to the largest invariant subset of the collection of points x ∈ E

satisfying k3∥x− xe∥a = 0, which is x = xe, such that limt→∞φx(t) = xe.

The proof utilizes LaSalle’s invariance principle, which has two effects. First,
it does not allow us to draw conclusions about the convergence of φθ̂ to the
true parameter θ⋆. This is generally achieved by requiring conditions such as
persistence of excitation [206], but this will not be considered in this thesis.
Second, it only provides a weak bound on the transient behavior of the state
of the system. In particular, the time derivative of V can be made negative
by decreasing the parameter error, while increasing the deviation of φx from
the equilibrium point xe. It is this behavior that will have to be carefully
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considered when considering forward invariance of a set in the state space
when developing adaptive CBFs.

The notion of adaptive LFs naturally generalizes to adaptive CLFs, as captured
in the following definition:

Definition 27 (Adaptive Control Lyapunov Function (aCLF)). Let xe ∈ E

be an unforced or forced equilibrium point of the open-loop system (3.209).
A function Va : E → R≥0 that is continuously differentiable on E is said to
be an adaptive Control Lyapunov Function (aCLF) for the open-loop system
(3.209) and equilibrium point xe if there exists k1, k2, k3, a ∈ R>0 such that:

k1∥x− xe∥a ≤ Va(x) ≤ k2∥x− xe∥a, (3.226)

inf
u∈Rm

V̇a(x
′, θ̂,u) ≜ inf

u∈Rm

∂Va
∂x

(x′)
(
f̂(x′) + F(x′)θ̂ + ĝ(x′)u

)
< − k3∥x′ − xe∥a,

(3.227)

for all x ∈ E, x′ ∈ E \ {xe} and θ̂ ∈ Rp.

Given an aCLF for the open-loop system (3.209) and equilibrium point xe ∈ E,
we can define the following pointwise set:

KaCLF(x, θ̂) = {u ∈ Rm | V̇a(x, θ̂,u) ≤ −k3∥x− xe∥a}. (3.228)

This leads to the following theorem typically seen with CLFs:

Theorem 25. Let xe ∈ E be an unforced or forced equilibrium point of the
open-loop system (3.209) and let Va : E → R≥0 be an aCLF for the open-loop
system (3.209) and equilibrium point xe. Then, the set KaCLF(x, θ̂) is non-
empty for all x ∈ E and θ̂ ∈ Rp, and for any controller k : E × Rp → Rm

that is continuous on E×Rp, locally Lipschitz continuous on (E \ {xe})×Rp,
renders xe an equilibrium point of the state closed-loop system in (3.212), and
satisfies k(x, θ̂) ∈ KaCLF(x, θ̂) for all x ∈ E and θ̂ ∈ Rp, the function Va is
an aLF for the state closed-loop system in (3.212) and equilibrium point xe.

Naturally, this motivates synthesizing a controller through convex optimization
as follows:

kaCLF(x, θ̂) = argmin
u∈Rm

∥u− ue∥2 (aCLF-QP)

s.t. V̇a(x, θ̂,u) ≤ −k3∥x− xe∥a.
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While not provided in the thesis, continuity and local Lipschitz continuity
results for controllers built through CLFs and optimization in Section 2.3 can
be extended to this controller under appropriate small or continuous control
property assumptions on Va that hold for all parameter values θ̂ in some
bounded set (noting that the proof of adaptive stability through aLFs yields
that φθ̂(t) is bounded).

Adaptive Control Barrier Functions

The strong parallels between CLFs and CBFs motivate the consideration of
achieving safety for systems with parametric model error through the use of
adaptive control in conjunction with CBFs. In spite of these parallels, one
challenge that is hidden in the proof relating an aLF and adaptive stability
is the transient behavior of the solution φx. In particular, one does not have
that the sublevel sets of the aLF Va are forward invariant, but rather that
the sublevel sets of the composite LF V are forward invariant. Because of
this, the system state may leave sublevel sets of Va while V decreases because
the error between the parameter estimates and true parameters is sufficiently
decreasing. This will be an issue if it is necessary to keep the state of the
system within a particular set during the evolution of the system.

In an effort to translate the work on aCLFs to the setting of safety and CBFs
and overcome the aforementioned challenges, I will propose a novel notion of
adaptive safety:

Definition 28 (Adaptive Safety). Let C ⊂ E be the 0-superlevel set of a
function ha : E → R that is continuously differentiable on E. The composite
closed-loop system (3.212) is said to be adaptively safe with respect to C if
there exists a δ ∈ R>0 such that the set:

Cδ ≜ {x ∈ Rn | ha(x) ≥ δ}, (3.229)

is non-empty and for any initial condition (x0, θ̂0) ∈ Cδ × Θ where Θ ⊂ Rp is
some collection of possible initial parameter estimates, we have that φx(t) ∈ C
for all t ∈ R≥0.

There are a few notable observations about this definition. First, it is posed
for a set C that can be represented as the 0-superlevel set of a function ha that
is continuously differentiable on E, rather than any general set in E. This
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structure allows us to construct a contraction of C by shifting the value of the
superlevel set up to produce Cδ. The state initial conditions are restricted to
this set Cδ to provide a buffer between when the system begins evolving (when
adaptation begins) and when the system can encounter the boundary of the
set C. We will see when proving that an adaptive barrier function renders
a system adaptively safe with respect to the set C, the size of this buffer
determines requirements on the adaption rate (the magnitude of the adaptive
gain Γ). Second, we consider a restricted initial parameter set Θ, rather than
all of Rp. This initial parameter set typically contains the true parameters θ⋆,
its size will be related to possible initial parameter errors, and it will similarly
yield requirements on the adaptive gain Γ.

Given this definition, I now provide a novel definition of adaptive barrier func-
tions (aBFs):

Definition 29 (Adaptive Barrier Function (aBF)). Let C ⊂ E be the 0-
superlevel set of a function ha : E → R that is continuously differentiable
on E, with ∂ha

∂x
: E → Rn locally Lipschitz continuous on E, ∂ha

∂x
(x) ̸= 0n

when ha(x) = 0, and suppose there exists an x ∈ E such that ha(x) > 0.
The function h is an adaptive barrier function (aBF) for the state closed-loop
system in (3.212) on C if:

ḣa(x, θ̂) ≜
∂ha
∂x

(x)
(
f̂(x) + F(x)θ̂ + g(x)k(x, θ̂)

)
≥ 0, (3.230)

for all x ∈ E and θ̂ ∈ Rp.

Observe that the typical extended class-K function that lower bounds the time
derivative has been replaced with 0. It is natural to wonder if this could be
replaced with −α(ha(x)) for some α ∈ Ke. I will show that this weakening of
the lower bound will not lead to adaptive safety in the next subsection through
a rigorous counterexample.

The following theorem relates adaptive safety and aBFs:

Theorem 26. Let C ⊂ E be the 0-superlevel set of a function ha : E → R.
If ha is an aBF for the state closed-loop system in (3.212) on C, then for any
c ∈ R>0, there exists an adaptive gain Γ ∈ Sp

≻0 such that the update law:

τ (x, θ̂) = −
(
∂ha
∂x

(x)F(x)

)⊤

, (3.231)
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renders the closed-loop system (3.212) adaptively safe with respect to C with:

Θ =
{
θ̂0 ∈ Rp | ∥θ̂0 − θ⋆∥ ≤ c

}
. (3.232)

This theorem states that for any maximum initial parameter error c, there
exists an adaptive gain Γ and update law τ that renders the composite closed-
loop system (3.212) adaptively safe with respect to C. In contrast to adaptive
stabilization, the same adaptive gain may not work for all possible initial
parameter errors, as shown in the following proof:

Proof. By assumption, there exists an x ∈ C such that ha(x) ≜ δ > 0. Let
Γ ∈ Sp

≻0 satisfy:

λmin(Γ) ≥
c2

2δ
. (3.233)

Note that this inequality requires the adaptive gain to grow with larger possible
initial parameter errors, as well as grow as the buffer between the set C and Cδ
becomes smaller. Notice that for a fixed adaptive gain, the size of the buffer
can be smaller for smaller initial parameter errors. Consider a continuously
differentiable function h : E × Rp → R defined as:

h(x, θ̂) = ha(x)−
1

2
(θ⋆ − θ̂)⊤Γ−1(θ⋆ − θ̂). (3.234)

Observe that rather than add the quadratic function of the parameter error
as was done with aCLFs, I have subtracted it. To see that 0 is a regular value
of h, consider its gradient:[

∂h
∂x
(x, θ̂)

∂h

∂θ̂
(x, θ̂)

]
=

[
∂ha

∂x
(x)

(θ⋆ − θ̂)⊤Γ−1

]
. (3.235)

Suppose that h(x, θ̂) = 0. If ha(x) = 0, then ∂h
∂x
(x, θ̂) = ∂ha

∂x
(x) ̸= 0n. If

ha(x) ̸= 0, then θ⋆ − θ̂ ̸= 0p, such that ∂h

∂θ̂
(x, θ̂) = (θ⋆ − θ̂)⊤Γ−1 ̸= 0p as Γ−1

is full rank. Thus 0 is a regular value of h. Next, note that by construction:

(θ⋆ − θ̂)⊤Γ−1(θ⋆ − θ̂) ≤ λmax(Γ
−1)∥θ⋆ − θ̂∥2, (3.236)

=
1

λmin(Γ)
∥θ⋆ − θ̂∥2. (3.237)
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Thus for any initial condition (x0 θ̂0) ∈ Cδ ×Θ, we have that:

h(x0, θ̂0) = ha(x0)−
1

2
(θ⋆ − θ̂0)⊤Γ−1(θ⋆ − θ̂0), (3.238)

≥ δ − 1

2λmin(Γ)
∥θ⋆ − θ̂0∥2, (3.239)

≥ δ − 2δ

2c2
∥θ⋆ − θ̂0∥2 ≥ 0. (3.240)

Thus, the adaptive gain Γ has been chosen large enough to ensure that the
value of the composite barrier function h is positive for all initial conditions
(x0, θ̂0) ∈ Cδ ×Θ. The time derivative of h is given by:

ḣ(x, θ̂) =
∂ha
∂x

(x)
(
f̂(x) + F(x)θ⋆ + ĝ(x)k(x, θ̂)

)
+ θ̃

⊤
Γ−1 ˙̂θ,

=
∂ha
∂x

(x)
(
f̂(x) + F(x)θ⋆ + ĝ(x)k(x, θ̂)

)
+
∂ha
∂x

(x)F(x)θ̂

−∂ha
∂x

(x)F(x)θ̂ + θ̃
T
τ (x, θ̂),

=
∂ha
∂x

(x)
(
f(x) + F(x)θ̂ + g(x)k(x, θ̂)

)
+
∂ha
∂x

(x)F(x)θ̃ + θ̃
⊤
τ (x, θ̂),

≥ θ̃
⊤
((

∂ha
∂x

(x)F(x)

)⊤

+ τ (x, θ̂)

)
,

≥ 0,

where the first inequality follows as ha is an aBF for the state closed-loop
system in (3.212) on C and the second inequality follows by the choice of update
law τ . Thus by Nagumo’s theorem [104], [123], we have that h(φx(t),φθ̂(t)) ≥
0 for all t ∈ R≥0. Lastly, we may conclude that:

ha(φx(t)) ≥
1

2
(θ⋆ −φθ̂(t))

⊤Γ−1(θ⋆ −φθ̂(t)), (3.241)

≥ 0, (3.242)

such that φx(t) ∈ C for all t ∈ R≥0 as desired.

The proof reveals that all superlevel sets of h are forward invariant, which is a
potentially conservative requirement, but also a non-trivial one to circumnavi-
gate. As h can not be computed without knowing the true parameters θ⋆, it is
not possible to set ḣ(x, θ̂) ≥ −α(h(x, θ̂)) for some extended class-K function
α as is typical with CBFs. Furthermore, we have that ha(x) ≥ h(x, θ̂) for all
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x ∈ E and θ̂ ∈ Rp, implying that −α(ha(x)) ≤ −α(h(x, θ̂)) for all x ∈ E,
θ̂ ∈ Rp, and α ∈ Ke. Thus setting ḣ(x, θ̂) ≥ −α(ha(x)) does not yield the de-
sired lower bound on ḣ(x, θ̂). One may note that setting ḣ(x, θ̂) ≥ −α(ha(x))
leads to ḣ(x, θ̂) ≥ 0 when ha(x) = 0, or when the state is on the bound-
ary of C. This fact is concurrent with the common forward invariance proof
technique utilizing Nagumo’s theorem [104], [123]. Despite this, it is in fact
possible to construct simple examples (in R2) such that the state must leave
the set C defined by ha for any choice of differentiable α ∈ Ke and Γ ∈ Sp

≻0,
as shown in the following subsection. The reason these challenges are avoided
with adaptive CLFs is because the proof concludes by using LaSalle’s invari-
ance principle, and neglecting the transient behavior of φx. It is precisely the
transient behavior which describes whether or not the state remains within a
particular set during the course of its evolution.

Extending the notion of adaptive BFs to adaptive CBFs requires a small
amount of care. In particular, we must be careful when translating the non-
strict inequality in (3.244) to a strict inequality as is typical when defining a
CBF variant. If there exists a state x ∈ Int(C) such that ∂ha

∂x
(x) = 0n, then

it will be impossible to satisfy the strict inequality at that state through the
choice of input. This eliminates considering any set C that is compact, as
any continuously differentiable function ha must8 have a critical point in the
interior of C. Fortunately, at any such state x ∈ Int(C), ḣa(x, θ̂,u) = 0 for
all θ̂ ∈ Rp and u ∈ Rm, so the aBF property is still satisfied at these states
as required for adaptive safety even if the strict inequality can’t be satisfied
there. Note that such states must not appear on the boundary of C so that
Nagumo’s theorem may be used. To this end, I will denote the following set:

AC =

{
x ∈ E | x ∈ Int(C) and

∂ha
∂x

(x) = 0n

}
, (3.243)

and propose the following definition:

Definition 30 (Adaptive Control Barrier Function (aCBF)). Let C ⊂ E be
the 0-superlevel set of a function ha : E → R that is continuously differentiable
on E with ∂ha

∂x
: E → Rn locally Lipschitz continuous on E, ∂ha

∂x
(x) ̸= 0n when

ha(x) = 0, and suppose there exists an x ∈ E such that ha(x) > 0. The
function ha is said to be an adaptive Control Barrier Function (aCBF) for the

8I do not offer a proof of this in this thesis, but it is relatively easy to show through
first-order optimality conditions.
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open-loop system (3.209) on C if:

sup
u∈Rm

ḣa(x, θ̂,u) ≜ sup
u∈Rm

∂ha
∂x

(x)
(
f̂(x) + F(x)θ̂ + ĝ(x)u

)
> 0, (3.244)

for all x ∈ E \ AC and θ̂ ∈ Rp.

Given an aCBF for the open-loop system (3.209) on C, we can define the
following pointwise set:

KaCBF(x, θ̂) = {u ∈ Rm | ḣ(x, θ̂,u) ≥ 0}. (3.245)

This leads to the following theorem:

Theorem 27. Let C ⊂ E be the 0-superlevel set of a function ha : E → R and
let ha be an adaptive CBF for the open-loop system (3.209) on C. Then, the
set KaCBF(x, θ̂) is non-empty for all x ∈ E and θ̂ ∈ Rp, and for any controller
k : E ×Rp → Rm that is locally Lipschitz continuous on E ×Rp, and satisfies
k(x, θ̂) ∈ KaCBF(x, θ̂) for all x ∈ E and θ̂ ∈ Rp, the function ha is an aBF
for the state closed-loop system in (3.212) on C.

Letting knom : E × Rp → Rm be locally Lipschitz continuous on E × Rp, we
may consider the following controller:

kaCBF(x, θ̂) = argmin
u∈Rm

∥u− knom(x, θ̂)∥2 (aCBF-QP)

s.t. ḣa(x, θ̂,u) ≥ 0.

This controller can be shown to be locally Lipschitz continuous on E×Rp under
a variant of the continuous control property that requires for each (x, θ̂) ∈
AC×Rp, there exists an open set D(x,θ̂) ⊆ E×Rp and a constant L(x,θ̂) ∈ R≥0

such that for any (y, ψ̂) ∈ D(x,θ̂), there exists an input u ∈ Rm such that:

∥u− knom(x, θ̂)∥ ≤ L(x,θ̂)∥y − x∥+ L(x,θ̂)∥ψ̂ − θ̂∥, (3.246)

and:
ḣa(y, ψ̂,u) ≥ 0. (3.247)

I note that it is important that kaCBF be locally Lipschitz continuous on E×Rp,
and not just locally Lipschitz continuous on (E \ AC)×Rp and continuous on
E×Rp. An important requirement of Nagumo’s theorem [104], [123] used in the
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proof of adaptive safety are that solutions are unique. Theorem 3 establishes
the existence of a unique solution to the closed-loop system (2.2) from the
initial condition xe ∈ E at which the controller k is only continuous (but not
locally Lipschitz continuous) by requiring that xe be an equilibrium point of
the closed-loop system (2.2) and the existence a local exponential Lyapunov
function. If kaCBF was only locally Lipschitz continuous on (E \A)×Rp, using
Theorem 3 would require that each point xa ∈ AC be an equilibrium point
of the state closed-loop system in (3.212). Furthermore, if x ∈ AC is a local
minimum of the function ha we would require an open set D(x,θ̂) such that
ḣa(y, ψ̂) ≤ 0 for all (y, ψ̂) ∈ D(x,θ̂). Given the requirements of an aBF, this
would require that ḣa(y, ψ̂) = 0 for all (y, ψ̂) ∈ D(x,θ̂). We can avoid inducing
these unwanted stable equilibrium points throughout the set C by requiring
the Lipschitz-like continuous control property noted above.

Counterexample

I now analyze the aCBF condition to verify that, in fact, it is not overly
conservative. In particular, changing the aCBF condition ḣa(x, θ̂) ≥ 0 to
ḣa(x, θ̂) ≥ −α(ha(x)) does not necessarily lead to adaptive safety. Consider
the simple open-loop system given by:

ẋ = θ⋆ + u, (3.248)

with θ⋆ ∈ R unknown and the function ha : R→ R defined as:

ha(x) = 1− x2, (3.249)

yielding the set C = {x ∈ R | x2 ≤ 1}. It is easy to see that ha is an aCBF
for the open-loop system (3.248) on C. Let δ ∈ (0, 1), c ∈ R≥0, and consider a
composite barrier function given by:

h(x, θ̂) = ha(x)−
1

2
γ−1θ̃2, (3.250)

with γ ∈ R>0 satisfying:

γ ≥ c2

2δ
. (3.251)

Define the following sets, which are seen in Figure 3.17:

U = {(x, θ̃) ∈ R2 | x ∈ C}, (3.252)

H0 = {(x, θ̃) ∈ R2 | h(x, θ̂) ≥ 0}. (3.253)
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Figure 3.17. Schematic of aCBF counterexample.

Note that the set U extends infinitely along the θ̃-axis, and completely contains
H0. Furthermore, H0 ∩ ∂U = {(−1, 0), (1, 0)}. The time derivative of the
composite barrier function h is given by:

ḣ(x, θ̂, u) = −2x(θ̂ + u) + θ̃(−2x+ τ(x, θ̂)), (3.254)

for ˙̂
θ = γτ(x, θ̂). Choose the update law τ(x, θ̂) = 2x and controller k(x, θ̂) =

−θ̂ + 1
2
xα(ha(x)), with continuously differentiable extended class-K function

α. Note that both τ and k are locally Lipschitz continuous on E ×Rp. These
choices yield:

ḣ(x, θ̂) = −x2α(ha(x)) ≥ −α(ha(x)), (3.255)

as when α(ha(x)) ≥ 0, x2 ≤ 1, and when α(ha(x)) ≤ 0, x2 ≥ 1. Noting the
construction of U , we have the implication that (x, θ̃) ∈ U =⇒ ḣ(x, θ̂) ≤
0. Instead of considering the composite dynamics in (3.212), we will instead
consider an equivalent composite closed-loop system built using the parameter
error as a state: [

ẋ
˙̃θ

]
=

[
θ̃ + 1

2
xα(ha(x))

−2γx

]
=

[
θ̃ − F (x)
−g(x)

]
, (3.256)

which has an unstable equilibrium point at the origin. This system is an
example of a Liénard system (like the Van der Pol oscillator) as in [101, Section
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3.8], with F (x) = −1
2
xα(ha(x)) and g(x) = 2γx. For systems of this form,

the following theorem [101, Section 3.8, Theorem 1], attributed to Liénard,
provides the existence of a unique, stable limit cycle:

Theorem 28. Under the assumption that F, g are continuously differentiable
on R, F and g are odd functions of x, xg(x) > 0 for x ̸= 0, F (0) = 0,
F ′(0) < 0, F has a single positive zero at x = a, and F increases monotonically
to infinity for x ≥ a as x→∞, it follows that the Liénard system (3.256) has
exactly one limit cycle and it is stable.

As α is continuously differentiable in addition to being extended K∞, the
assumptions of this theorem are met by the functions given in (3.256). Note
that a = 1 in this given example. Thus we can conclude that the system
(3.256) has a stable periodic orbit, which is denoted Φ ⊂ R2. Denote the open
set in R2 enclosed by the limit cycle as int(Φ). Additionally, the proof of this
theorem as in [101, Section 3.8] implies the following corollary:

Corollary 1. The stable limit cycle Φ is symmetric about the origin and passes
through a point, denoted as P2 = (x2, θ̃2), such that x2 > a.

Given that a = 1, this corollary reveals that the stable limit cycle leaves the
set U , for which the state is considered safe. Additionally, as the limit cycle
is symmetric about the origin, and the origin is an unstable equilibrium, the
origin is contained in int(Φ).

This corollary also implies that H0 ⊂ (Φ ∪ int(Φ)). To see this, note that
as the limit cycle encircles the origin, it must reenter the set U after leaving
the point P2. At any point v = (v1, v2) ∈ U that the limit cycle enters, we
must have h(v1, v2) ≤ 0, given the two points in H0 ∩ ∂U . Once the limit
cycle enters U , we have ḣ(x, θ̂) ≤ 0 until the limit cycle leaves U as previously
noted. Thus, h(x, θ̂) ≤ 0 along the portion of the limit cycle contained in
U , implying H0 ⊂ (Φ ∪ int(Φ)). To complete the proof, we will employ the
following definition [100, p. 127] and lemma [100, Lemma 4.1]:

Definition 31. The positive limit set L+ of a solution (φx, φθ̃) is defined as
all points p ∈ R2 such that there is a sequence {tn} with tn →∞ as n→∞,
and (φx(tn), φθ̃(tn))→ p as n→∞.
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Figure 3.18. Simulation trajectory of aCBF counterexample. The system state leaves the
prescribed safe set as it converges to the limit cycle.

Lemma 2. If a solution (φx, φθ̃) of (3.256) is bounded on R≥0, then its positive
limit set L+ is a nonempty, compact, invariant set, and (φx, φθ̃) approaches
L+ as t→∞.

Note that the unstable equilibrium point is not contained within the positive
limit set L+ of a solution (φx, φθ̃) starting from any initial condition (x0, θ̂0) ∈
H0 \ {02}. As the 0-superlevel set of h, and thus all possible initial conditions
given our bound on θ̃0, are contained inside the limit cycle, all solutions to
(3.256) are bounded (by the limit cycle). Furthermore, for the solution (φx, φθ̃)

starting from any initial condition (x0, θ̂0) ∈ H0 \ {02}, we have that L+ = Φ,
and thus all solutions starting in the 0-superlevel of h except for the origin
approach Φ. As the point P2 ∈ Φ, and P2 /∈ U , we see that any solution
starting in the 0-superlevel set of h leaves the desired state safe set C. Hence,
the relaxation does not achieve safety of the state, as seen in Figure 3.18.

Simulation Results

To demonstrate how an aCBF can be used to render a system adaptively safe,
I consider the problem of adaptive cruise control (ACC) as posed in [11]. The
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dynamics of the system9 are given by:

d

dt

[
v

D

]
=

[
0

v0 − v

]
− 1

m

[
1 v v2

0 0 0

]f0f1
f2

+

[
1
m

0

]
u, (3.257)

with v the velocity of the vehicle, D the distance between the vehicle and a
leading vehicle traveling at a fixed velocity v0, m the vehicle’s mass, and f0, f1,
and f2 unknown parameters associated with rolling frictional force. Define the
state as x = (v,D). In this problem, I seek to drive the velocity to a desired
velocity, vd, while simultaneously ensuring the distance between the vehicles
satisfies a safety constraint given by:

D ≥ 1.8v. (3.258)

The parameters f0, f1, and f2 are often determined empirically, and if they are
not accurate, the desired velocity may not be accurately tracked. Furthermore,
if the parameters do not exactly match the true parameters, it may not be
possible to certify that the system will satisfy the safety constraint. The
control objective of tracking a desired velocity can be achieved with a hand-
designed controller knom, or encoded using a CLF, and the safety constraint can
be encoded using a CBF. Additional constraints on the maximum acceleration
and deceleration can be enforced to maintain passenger comfort. To handle
error in the parameters, I utilize the tool of aCBFs to maintain and update
estimates of these parameters. An aCBF that yields desirable results is defined
as the following continuously differentiable function:

ha(v,D) =

β2 if D − 1.8v ≥ β,

β2 − (D − 1.8v − β)2 if D − 1.8v < β,
(3.259)

for β > 0. This particular construction of ha is constant away from the
safety boundary and diminishes to 0 (quadratically to preserve continuous
differentiability) as the boundary is approached. In practice, this is to handle
the fact that superlevel sets of the composite safety function h are forward
invariant. In regions where ha is constant, ∂ha

∂x
(x) = 0n, and thus the update

law in (3.231), is 0p, thus making ḣ(x, θ̂) = 0.
9This system will violate the assumption that F(xe) = 02 for the point xe ∈ R2 that I

try to stabilize the system to. In general, this will compromise stability guarantees, which
are not well-posed. Still, for this example, I am able to achieve interesting behavior showing
the benefit of using adaptive elements.
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Figure 3.19. Comparison of different adaptive and non-adaptive control methodologies.
(Top, Left) An aCBF controller is able to enforce safety of the nominal controller knom. (Top,
Right) An aCLF-aCBF controller is able to track the desired velocity with zero steady state
error (Top, Right). (Bottom) Both aCBF controllers are able to keep the vehicle within the
safe region for all time.

aCBF-QP Controller: A simple proportional controller knom on tracking
error v − vd can be implemented and achieve good tracking performance, but
is not necessarily safe. A CBF alone would not ensure the safety of this
controller with model parametric model error, but by using the proportional
controller knom in a (aCBF-QP) controller, safety can be achieved.

aCLF-aCBF-QP Controller: Additionally, we can unify an aCLF and an
aCBF in a quadratic program based controller to receive the benefits of op-
timal and adaptive tracking while remaining safe. Separate estimates of the
parameters are maintained for the aCLF and the aCBF, as the form of the
update laws in (3.218) and (3.231) may not be simultaneously satisfiable for
only one estimate of the parameters. The CLF in [11] on the velocity tracking
error v− vd, given by Va = (v− vd)2, also satisfies the aCLF condition (3.227).
Letting θ̂ and ψ̂ be parameter estimates associated with the aCLF and aCBF,
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respectively, I formulate a QP-based controller:

k(x, θ̂, ψ̂) = argmin
u∈Rm

J(u) + cV (x)δV + cp(x)δp

s.t. V̇a(x, θ̂, u) ≤ −k3(v − vd)2 + δV ,

ḣa(x, ψ̂, u) ≥ 0,

u ≤ umax + δp,

u ≥ −umax − δp,

δV , δp ≥ 0,

with parameter updates for θ̂ and ψ̂ as in (3.224) and (3.231), respectively.
The function J is a cost function on the input, and the variables δV and δp are
relaxations to the optimization problem to ensure its feasibility, while safety
is ensured. The functions cV and cp are Lipschitz continuous and are used to
ensure the optimization problem is well-conditioned.

With initial parameter estimates
[
f̂0 f̂1 f̂2

]
= 10

[
f ⋆
0 f ⋆

1 f ⋆
2

]
(less friction

than modeled), the results of this controller appear in Figure 3.19. We see that
the proportional controller fails to keep the vehicle safe, but filtering it with
the aCBF-QP keeps it safe (with D ≥ 1.8v for all time) even with parametric
model error. A CLF-CBF controller with no adaptive elements fails to either
track the desired velocity (with steady state error) or keep the vehicle safe.
The CLF-aCBF controller keeps the vehicle safe but has steady state tracking
error, while an aCLF-aCBF controller accurately tracks the desired velocity
with no steady state error, and keeps the vehicle safe.

Conclusion

In this section I have presented a novel definition of adaptive Control Barrier
Functions as a tool for safety-critical control synthesis in the presence of para-
metric model error. I begin by reviewing adaptive CLFs as formulated in [47]
as a starting point for developing adaptive CBFs. I then propose a notion of
adaptive safety and a definition of adaptive BFs that ensure adaptive safety.
Subsequently, I introduce a notion of adaptive CBFs and explain some of the
challenges that must be considered when ensuring the controllers producing
using adaptive CBFs satisfy regularity properties. I then show that the conser-
vative nature of adaptive CBFs is not unnecessary through a rigorous counter
example. I lastly highlight the usefulness of adaptive elements in simulation
with an adaptive cruise control system.
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3.10 Conclusion and Future Work

In this chapter I have presented a collection of results for addressing general
model error and parametric model error. In Section 3.3 I presented an episodic
learning framework for learning general model errors as they impact the time
derivative of a CLF and local exponential stability. In Section 3.4 I explored
how residual learning error could be understood as a disturbance in a closed-
loop system, and how robustness to these disturbances can be codified with
Projection-to-State Stability. I additionally explore how possible model errors
can be restricted through the use of a data set. In Section 3.5 I extend the
preceding episodic learning algorithm to the setting of safety by considering
how model error can be learned directly as it impacts the time derivative of a
CBF, with an experimental demonstration. In Section 3.6 I rigorously codify
safety guarantees that can be achieved in the presence of residual learning
error through the notion of Projection-to-State Safety, and demonstrate the
ability to improve safety guarantees through learning in simulation and exper-
imentally. Building off of these previous results, in Section 3.7 I consider some
of the challenges that arise when learning with structured models that pre-
serve convexity of downstream control synthesis. To resolve these challenges,
I present an episodic learning framework that uses an unstructured learning
model, and demonstrate the ability to achieve safe walking on stepping-stones
with a bipedal platform both in simulation and experimentally. This work cul-
minates in Section 3.8 in which I propose a data-driven control framework that
ensures robustness to all model errors permitted by a data set. I propose a con-
vex optimization-based controller specified via a second-order cone program,
and develop a rigorous theoretical understanding of this controller’s feasibility
using an analog of the alternative CLF and CBF condition. Lastly, in Section
3.9 I propose a notion of adaptive CBFs for achieving safety in the presence
of parametric model error. I further highlight how the conservative nature of
the proposed definition is necessary through a rigorous counterexample.

I believe there are two major directions of future work worthwhile pursuing
based on the contributions of this chapter. The first direction pertains to the
data-driven control framework in Section 3.8. In the context of data-driven
control, there are challenges with implementing the proposed controller with
large data sets. This is due to the fact that the size of the optimization
problem scales with the size of the data set. A similar challenge is seen in non-
parametric learning methods, such as GPR, where evaluating a model scales



164

in complexity with the size of the data set [226]. One potential approach for
resolving this issue is developing heuristics for selecting relevant data close to
a test point while achieving necessary input variance, similar to the notion of
k-nearest neighbors with diversity [227]. Another approach would be to build
outer-approximations of the model error sets offline that can be quickly utilized
in online control synthesis. There is perhaps great potential in this direction
because the model error sets are defined by a collection of convex constraints,
and there exist efficient ways for approximating such sets [30, Chapter 11].
Another worthwhile direction is extending this framework to the sampled-
data setting in Chapter 6, as well as capturing robustness to disturbances and
measurement error discussed in Chapters 4 and 5, respectively.

The other direction of future work looks at further developing the notion of
adaptive CBFs established in Section 3.9, with some work already being con-
sidered in this direction [191], [196], [197], [199], [200]. The main objective
of much of this work is in reducing the conservative nature of the adaptive
CBFs presented in this thesis through the use of data. In particular, these
approaches seek to find ways to introduce the extended class-K function back
into the aCBF formulation, at the expensive of potentially more conserva-
tiveness until adequate data can be collected. Building upon this work with
methods for collecting relevant data necessary for adaptation is one future di-
rection. Another direction of work is to address the challenge of parametric
model error in the function g, which has not been considered until only very
recently in [200]. This opens up the classes of systems that adaptive systems
can be deployed on, such as robotic systems that have error in their mass and
inertia parameters.
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C h a p t e r 4

DISTURBANCE-ROBUST SAFETY-CRITICAL CONTROL

In this chapter I will present results from my work on developing methods for
safety-critical control that are both performant and robust to disturbances.
Disturbances, either unmatched or matched, can serve as a sort of catch-all
for various types of challenges in nonlinear control design. In fact, model er-
rors, measurement errors, and sampling effects, as presented in Chapters 3, 5,
and 6, respectively, can all be cast as disturbances in a nonlinear system. Of-
ten times though, this perspective can obscure important structural properties
of these different types of challenges that can be used to synthesize controllers
that are both robust and performant. Instead, disturbances are best for cap-
turing challenges for which there is no underlying structure that can easily be
understood. For robotic systems, this may include things such as perturbing
external forces created by the environment (objects, people, or other robots
bumping into the robot), or complex actuator dynamics that are abstracted
away when assuming that the inputs to the system are torques (for systems
with electric motors, the inputs are typically voltage or current commands
which are passed to a motor controller that attempts to produce a certain
motor torque). In the former case, there may be no reasonable model that
could be constructed to capture the myriad of potential unexpected interac-
tions, even from data, while in the latter case, constructing a first-principles
model may require significant work, and collecting data to build a data-driven
model may require extensive additional sensing capabilities. Moreover, if a
robot is subjected to multiple challenges, such as both external forces and ac-
tuator dynamics (which they likely will be), the modeling challenges becomes
increasingly difficult. Instead, one may simply capture the collective effects as
a disturbance that the control design must be robust to. Thus, disturbance
robustness is a general form of robustness to the many different challenges
that can be captured as disturbances (even if they can be captured using more
structure, as in the other chapters of this thesis).

Instead of trying to ascribe structure to the system’s environment or produce
models for complex underlying structures, designs that consider disturbances
generally require the control designer to produce a bound on the potential
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disturbance signal. This in and of itself can be a difficult problem, and pro-
ducing a weak bound can have significant consequences for the performance
of a system. Intuitively, for larger potential disturbances, a larger degree of
robustness is required. If the system never actually experiences such a large
disturbance, then the system is potentially conceding a significant amount of
performance for robustness to something it never encounters. Moreover, if it
were to encounter this disturbance, robustness in the controller would be most
important near the boundary of a set that is to be kept forward invariant,
rather than deep inside the set, as the disturbance must take time to make
the system unsafe if it is deep inside the safe set, and feedback control can be
used to respond during this time.

My work in this chapter focuses on balancing robustness to disturbances with
performance in safety-critical control through a modification to Input-to-State
Safety, as well as a characterization of safety guarantees in the presence of
stochastic disturbance signals. In Section 4.1 I discuss related work in the set-
ting of ISSf, disturbance robust control, and stochastic safety-critical control.
In Section 4.2 I will discuss some of the limitations of ISSf and ISSf-CBFs as
presented in Section 2.7 and 2.9. In Section 4.3 I will resolve some of these
limitations through the proposal of a novel modification of ISSf known as Tun-
able Input-to-State Safety (TISSf) that allows the prioritization of robustness
to disturbances near the boundary of a set that is to be kept forward invariant,
rather than over the entire set. I will then highlight the ability for TISSf to
balance performance with robustness through an inverted pendulum example.
In Section 4.4 I demonstrate the efficacy of TISSf with an application on an
autonomous semi-trailer truck. I first present a model, safety specification
captured via a CBF, and nominal controller design for this system. I show
that the simplified model for this system neglects important dynamics in the
actuation of an experimental system, leading to violations of safety when using
the CBF-QP controller presented in Section 2.5. Using the tool of TISSf, I
design a robust yet performant controller that successfully keeps the experi-
mental autonomous semi-trailer truck system safe. Lastly, in Section 4.5, I will
consider CBFs for discrete-time systems subjected to stochastic disturbances.
I develop a notion of probabilistic safety related to the idea of ISSf, and show
how CBFs satisfying convexity properties can be used to meet the necessary
requirements to produce probabilistic safety guarantees. Key contributions of
this work are described at the beginning of each respective section.
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4.1 Related Work

Disturbance Robust Safety-Critical Control

The inherent robustness properties of CBFs were first observed in [221]. In
particular, this work observed that if the CBF property was satisfied on the
set E, including outside of the set C, then asymptotic stability of the set C
could be established under a CBF-based controller. This asymptotic stability
property was then used to establish an ISS result with respect to the set C for
a system experiencing unmatched disturbances [221, Proposition 5]. This idea
was codified through the concept of Input-to-State Safety (ISSf) in [58] for sys-
tems with matched disturbances. This work introduced the notion of ISS-BFs
and ISSf-CBFs as tool for certifying and constructively achieving ISSf. Impor-
tantly, this work established a paradigm for safety-critical control design that
focuses on controlling the enlargement of the set C that is kept forward invari-
ant, rather than trying to explicitly enforce the forward invariance of the set
C itself. It is this paradigm that will be utilized in my work. My contributions
in this chapter focus on improving the balance of performance and robustness
to disturbances that is achieved using ISSf-CBFs. In particular, my work in
[228], presented in Sections 4.2 and 4.3, modifies the definitions of ISSf and
ISSf-CBFs from those in [58] to permit controllers that achieve rigorous safety
guarantees without greatly degrading performance. This is accomplished by
relaxing the robustness terms in an ISSf-CBF deep in the interior of the set C,
and only requiring robustness to be enforced near the boundary of C. My work
in [21] demonstrates the effectiveness of this approach on the challenging real-
world problem of keeping an automated semi-trailer truck at a safe following
distance behind a lead vehicle, including an experimental demonstration.

In parallel to the development of ISSf, other notions of robust CBFs that en-
sure the forward invariance of the set C in the presence of disturbances were
formulated in [50]–[55], [229]–[231]. These approaches require knowledge of a
bound on the disturbance that is utilized directly in the controller. Conse-
quently, if the bound is weak, the system is more robust than necessary and
displays conservative behavior, as was seen in the results of [50]. The work
in [52] models dynamics of disturbances through the use of differential inclu-
sions in which the disturbance is seen as taking values in some set (rather
than just satisfying a bound on its magnitude). The work in [55] considers
sector-bounded uncertainties affecting the input of the system (such as satu-
ration) as a matched disturbance signal that takes a worst-case value based on
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the input to the system, while the work in [232] considers unmodeled actua-
tor dynamics leading to a matched disturbance. An interesting direction that
could be paired with much of this work is the synthesis of CBFs that can be
rendered robust to disturbances through control by utilizing a modified form
of Hamilton-Jacobi reachability [229]. Other work that could be paired with
many of these approaches considers using a disturbance observer to reduce the
worst-case disturbance the system needs to be robust to [230], [231].

Stochastic Safety-Critical Control

Instead of considering disturbances simply as piecewise continuous signals, it
is often interesting to ascribe more structure through the form of a statement
on the probability distribution of the disturbance value, leading to a stochastic
disturbance signal. This perspective allows one to weight the frequency that
a certain disturbance value occurs more highly than others. This contrasts
much of the work studying disturbances through ISSf and other robustness
approaches mentioned above, which typically assumes that the disturbance
can (and will) always take the worst-case value when establishing safety guar-
antees. Because it is still possible for a stochastic disturbance signal to take
these worst-case values (perhaps with low-probability), it is important that the
resulting safety guarantees be designed to account for not only this situation,
but make use of the fact that a stochastic disturbance is frequently not taking
worst-case values.

Results using CBFs for safety-critical control in the setting of stochastic dis-
turbances can generally be divided along two axes, the first being the use
of continuous versus discrete-time dynamics, and the second being chance-
constraints versus finite-time safety guarantees. Results in continuous-time
consider stochastic differential equations, with the standard closed-loop sys-
tem (2.2) perturbed by a Brownian motion [233]. This assumption typically
implies that the stochastic disturbances experienced by the system at two dif-
ferent points in time are correlated based on how far those points in time
are spaced apart, imparting significant structure that can be utilized in prov-
ing safety guarantees. Early work on this challenge developed results using
Lyapunov functions [59], but work building off of this in the context of bar-
rier functions focused on autonomous continuous-time systems (without con-
trol inputs) [60], and subsequently, synthesizing stochastic barrier certificates
through Sums-of-Squares (SOS) programming [61]. The advent of CBFs in
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[62] led to the rapid development of CBFs designed to enable control synthesis
for stochastic differential equations [43], [63]–[71]. Results in discrete-time also
stem from the early work [59] which additionally studied safety guarantees us-
ing Lyapunov functions for discrete-time systems with stochastic disturbances.
Typically, stochastic disturbances in this setting are not assumed to be corre-
lated across discrete-time instances in contrast to continuous-time. The work
in [61] also considered verifying safety for discrete-time systems with stochas-
tic disturbances using SOS with the tools in [59]. Developed shortly after
continuous-time CBFs, discrete-time CBFs [234] provided an analog for study-
ing safety-critical control synthesis for discrete-time systems with stochastic
disturbances [69], [72]. My work in [235], discussed in Section 4.5, also takes a
discrete-time CBF-based approach for studying safety-critical control synthe-
sis, and utilizes the framework in [59] to establish rigorous safety guarantees.
One direction that has remained fairly unexplored is the mixture of continuous
and discrete-time stochastic systems. In particular, control systems are often
based on discrete-time measurements with a sample-and-hold control imple-
mentation, as I will discuss in Chapter 6. The discrete-time measurements are
often susceptible to noise, suggesting a discrete-time approach for modeling
stochastic disturbances. Underlying the sample-and-hold inputs to the system
is the continuous-time evolution of the system dynamics (with the input held
constant). The work I present in Section 4.5 is a first step in this direction,
with future work beyond this thesis seeking to unify it with the developments
in Chapter 6.

The other major axis in stochastic safety-critical control pertains to chance-
constraints versus finite-time safety guarantees. Chance-constraints typically
require that a CBF-based inequality constraint be satisfied at any given time
instance with high probability as a means for prescribing safety [43], [70], [72].
One challenge with this approach is that one instantaneous failure of the CBF
constraint in closed-loop does not necessarily imply the system is unsafe, but
rather that the change in the value of the CBF is larger than desired. Instead,
the failure of safety typically arises from the compounding of several successive
failures to satisfy the CBF inequality.

Understanding this compounding behavior has been the focus of stochastic
safety-critical control seeking finite-time safety guarantees. Much of this work
focuses on bounding the probability that the state of the system leaves the set
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C over some finite time horizon. I note that this differs from the typical notion
of safety, which considers whether or not the state remains in the set C over the
entire interval on which a solution exists (potentially for all time). Considering
a finite time horizon allows for considering potentially unbounded disturbances
(such as a discrete-time disturbance signal with a Gaussian distribution), for
which considering an infinite horizon leads to a system being unsafe with prob-
ability 1 [68, Footnote 7]. This pursuit of finite-time safety guarantees using
Lyapunov functions can be seen in the early work [59], which established safety
guarantees using Martingale theory and has served as a source of motivation
for many subsequent works. Examples of such work include [60], [61], which
were the first to use barrier functions to certify finite-time safety properties
in the presence of stochastic disturbances. Subsequently, the introduction of
CBFs in [62] led to the rapid development of stochastic variants for achieving
finite-time safety guarantees by synthesizing CBFs and polynomial controllers
for continuous and discrete-time systems through SOS [63], [69], considering
online optimization-based control for continuous-time systems [67], considering
continuous-time hybrid systems [65], and proposing definitions for continuous-
time stochastic CBFs that achieve less conservative guarantees [71].

My work in [235], discussed in Section 4.5, also develops off of the work in
[59] in conjunction with the work in [69] to develop online optimization-based
CBF-based controllers for discrete-time systems that provide finite-time safety
guarantees. The focus of this work is on the properties that need to be satisfied
by a CBF and the dynamic system to permit robust control synthesis through
convex optimization. Additionally, this work takes an approach akin to ISSf by
providing probabilistic safety guarantees based on enlargements of the set C,
rather than only C. An alternative perspective that forgoes Martingale-based
analysis but focuses on finite-time safety guarantees is proposed in [68]. This
approach focuses on the continuous-time evolution of the entire distribution
of the value of a CBF, which can be captured by the solution to a convection-
diffusion partial differential equation. Alternatively, the tools developed in
this work were considered again in [64] to propose a method for achieving
long-horizon safety guarantees using the forward invariance of level sets of
the safety probability. Lastly, the work in [66] considers reciprocal CBFs (as
defined in [11]) and continuous-time dynamics, allowing for strong claims on
infinite horizon safety with probability 1.
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4.2 Limitations of Input-to-State Safety

Note that the contents of this section were primarily written by collaborators,
edited by Andrew Taylor for their appearance in journal proceedings, and edited
by Andrew Taylor for their appearance in this thesis.

In this section we will explore some of the limitations of ISSf and ISSf-CBFs
as proposed in [58] and presented in Section 2.9.

The text for this section is adapted from:

A. Alan, A. J. Taylor, C. R. He, G. Orosz, and A. D. Ames, “Safe
controller synthesis with tunable input-to-state safe control barrier func-
tions", IEEE Control Sys. Let., vol. 6, pp. 908-913, 2022.

A. J. Taylor participated in the conception of the project, algorithm
design and theoretical analysis, and writing of the article.

This will be done through a simple illustrative example.

Consider a open-loop system:

d

dt

[
x1

x2

]
=

[
−x2
0

]
+

[
0

1

]
u, (4.1)

with state x =
[
x1 x2

]⊤
∈ R2 and input u ∈ R. A controller k : R2 → R

that is locally Lipschitz continuous on R2 can be specified as follows:

k(x) = x1 − 2x2 − 1, (4.2)

for which the resulting closed-loop system (2.2) has a locally exponentially

stable equilibrium point xe =
[
1 0

]⊤
. Next consider a function h : R2 → R

that is continuously differentiable on R2 that is defined as:

h(x) = x1 − x2, (4.3)

yielding the set C defined as:

C =
{
x ∈ R2 | x1 − x2 ≥ 0

}
. (4.4)

The time derivative of h is given by:

ḣ(x) = −x1 + x2︸ ︷︷ ︸
−h(x)

+1 > −h(x). (4.5)
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Thus for α ∈ Ke defined as α(r) = r, we have that:

ḣ(x) ≥ −α(h(x)), (4.6)

and thus h is a BF for the closed-loop system (2.2) on C. Simulation results
for the closed-loop system can be seen in Figure 4.1(a), where all of the tra-
jectories initiated from different initial conditions x0 ∈ C approach the locally
exponentially stable equilibrium point xe while remaining inside C.

Now introduce a matched disturbance to the system (4.1), yielding:

d

dt

[
x1

x2

]
=

[
−x2
0

]
+

[
0

1

]
u+

[
0

1

]
d(t), (4.7)

where d : R≥0 → R is piecewise continuous on R≥0. Using a harmonic distur-
bance signal d(t) = δ sin t with δ = 3, we see the evolution of the closed-loop
system with matched disturbances (2.74) from the previous initial conditions
x0 ∈ C in Figure 4.1(b). Observe that the disturbance makes the state tra-
jectories leave the set C periodically. Note that Lgh(x) = −1 for all x ∈ R2.
Inspired by the definition of ISSf-CBFs in Section 2.9, consider a controller
k′ : R2 → R that is locally Lipschitz continuous on R2 that is defined as:

k′(x) = k(x) +
Lgh(x)

ϵ0
, (4.8)

for ϵ0 ∈ R>0, noting that for the corresponding closed-loop system with
matched disturbances (2.74), we have that:

ḣ(x, t) ≥ −α(h(x)) + |Lgh(x)|2

ϵ0
− Lgh(x)d(t), (4.9)

for all x ∈ R2 and t ∈ R≥0. Completing the square, we have that:

ḣ(x, t) ≥ −α(h(x))− ϵ0
4
|d(t)|2, (4.10)

for all x ∈ R2 and t ∈ R≥0. Consequently, the closed-loop system with matched
disturbances (2.74) is ISSf with respect to the set C with γ ∈ K defined as
γ(r) = −α−1(− ϵ0

4
r2). Observe that we can make the enlargement of the set C

that is kept forward invariant smaller with smaller values of ϵ0 at the expense
of the controller k′ specifying larger inputs. Using the harmonic disturbance
with δ = 3, the set Cδ (the set Cd defined in (2.79) with d = δ), we can see the
evolution of the closed-loop system with matched disturbances (2.74) using the
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Figure 4.1. Simple example demonstrating limits of ISSf in achieving performance and
meaningful theoretical safety guarantees. (a) Safe controller with no disturbances. (b)
Impact of harmonic disturbance signal without modifications to controller design. (c) ISSf
based controller designs for different values of the parameter ϵ0. Large values of ϵ0 lead to
weak theoretical guarantees, while small values lead to conservative behavior.

controller k′ with different values of ϵ0 in Figure 4.1(c). Observe that for both
values of ϵ0, the system remains in the corresponding set Cδ as required by ISSf.
For the value of ϵ0 = 1, the boundary of the set Cδ is relatively far away from
the boundary of the set C compared to how close the solutions remain to the set
C. In this case, a small violation of the original safety requirement is occurring,
but the ISSf safety guarantee is fairly weak and does not accurately describe
the closed-loop behavior. The weakness of this guarantee can make it useless as
a guiding principle when designing robust controllers. In contrast, for ϵ0 = 0.1,
the boundary of Cδ is very close to the boundary of C, providing a rigorous
theoretical statement on small violations of safety. Unfortunately, with this
strong guarantee comes undesirable closed-loop behavior, as the system evolves
deep into the safe set, potentially degrading performance if the system is to
remain near the equilibrium point xe. In fact, this introduces an even wider gap
between the theoretical guarantee on the closed-loop behavior and the actual
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realized closed-loop behavior, suggesting that once again, this is a vacuous
guiding principle in producing a robust control design. The developments
in the next sections in this chapter will seek to balance this tradeoff between
strong theoretical guarantees and performant closed-loop behavior by replacing
the parameter ϵ0 with a function that prioritizes safety only at the boundary
and outside of the set C.

4.3 Tunable Input-to-State Safety

In this section I will present work on balancing performance with robustness
to disturbances through a modification of ISSf in the form of Tunable Input-
to-State Safety (TISSf). I will first present the idea of TISSf, and establish
what theoretical safety guarantees are achieved using it. Next I will consider
its application on the simple example presented in Section 4.2. Following
this, I will present a detailed inverted pendulum example that shows how the
parameters of a TISSf-based controller can be used to balance performance
and theoretical safety guarantees.

The contributions of this section are as follows:

• The definition of Tunable Input-to-State Safety (TISSf), which modifies
the original definition of ISSf in [58] to permit performant behavior with
meaningful theoretical safety guarantees.

• A detailed application of TISSf-based control design to an inverted pen-
dulum with a focus on how the parameters of a TISSf controller deter-
mine performance and theoretical safety guarantees.

The text for this section is adapted from:

A. Alan, A. J. Taylor, C. R. He, G. Orosz, and A. D. Ames, “Safe
controller synthesis with tunable input-to-state safe control barrier func-
tions", IEEE Control Sys. Let., vol. 6, pp. 908-913, 2022.

A. J. Taylor participated in the conception of the project, algorithm
design and theoretical analysis, and writing of the article.

A. Alan, A. J. Taylor, C. R. He, A. D. Ames, and G. Orosz, “Control
barrier functions and input-to-state safety with application to automated
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vehicles", conditionally accepted as a Full Paper in IEEE Trans. on
Control Sys. Tech., 2022.

A. J. Taylor participated in the conception of the project, algorithm
design and theoretical analysis, simulation code implementation, and
writing of the article.

Tunable Input-to-State Safety

I will begin by defining the notion of Tunable Input-to-State Safety, which will
lead to corresponding variants of ISSf-BFs and ISSf-CBFs.

Definition 32 (Tunable Input-to-State Safety (TISSf)). Let C ⊂ E be the
0-superlevel set of a function h : E → R that is continuously differentiable on
E. The closed-loop system with unmatched disturbances (2.70) or closed-loop
system with matched disturbances (2.74) is said to be Tunable Input-to-State
Safe (TISSf) with respect to the set C if there exists a function γT : R×R≥0 →
R≥0 with γT(a, ·) ∈ Ke

∞ for all a ∈ R≥0 and γT(·, b) continuously differentiable
on R for all b ∈ R≥0 such that defining the function hT : E × R≥0 → R as:

hT(x, d) = h(x) + γT(h(x), d), (4.11)

for all d ∈ R≥0 the set Cd,T ⊂ E defined as:

Cd,T = {x ∈ E | hT(x, d) ≥ 0} , (4.12)

is forward invariant up to d for the closed-loop system (2.70) or (2.74). If the
system (2.70) or (2.74) is TISSf with respect to the set C, the set C is referred
to as a Tunable Input-to-State Safe set (TISSf set).

TISSf simply modifies the original definition of ISSf presented in Section 2.7
by allowing the function γT to not only depend on the disturbance signal,
but to also depend on the value of the function h itself. While the utility of
this modification is not immediately clear, it will be more easily understood
when considering control synthesis. Another small modification is dropping
the maximum disturbance magnitude d, and just requiring the property to
hold for disturbances of arbitrarily large magnitudes. This is a simplifying
assumption, and is not necessary if one keeps track of the appropriate domains
for various functions throughout subsequent proofs. The objective of control
synthesis will be producing a type of ISSf-BF, as captured in the following:
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Definition 33 (Tunable Input-to-State Safe Barrier Function (TISSf-BF)).
Let C ⊂ E be the 0-superlevel set of a function h : E → R that is continuously
differentiable on E with ∂h

∂x
(x) ̸= 0n when h(x) = 0. The function h is said to

be a Tunable Input-to-State Safe barrier function (TISSf-BF) for the closed-
loop system with unmatched disturbances (2.70) on C if there exist functions
α ∈ Ke

∞ with α−1 ∈ Ke
∞ continuously differentiable on R and ϵ : R → R>0

that is continuously differentiable on R such that:

Lfh(x) + Lgh(x)k(x)−
1

ϵ(h(x))

∥∥∥∥∂h∂x(x)
∥∥∥∥2 ≥ −α(h(x)), (4.13)

for all x ∈ E, and:
∂ϵ

∂r
(r) ≥ 0, (4.14)

for all r ∈ R. The function h is said to be a TISSf-BF for the closed-loop
system with matched disturbances (2.74) on C if (4.13) is replaced with:

Lfh(x) + Lgh(x)k(x)−
1

ϵ(h(x))
∥Lgh(x)∥2 ≥ −α(h(x)), (4.15)

for all x ∈ E.

I note this definition looks closer to the definition of ISSf-CBFs than ISSf-
BFs in Section 2.9. This is done as it will allow explicitly highlighting the
importance of the function ϵ, which has replaced the constant parameter ϵ0
that appears in the definition of ISSf-CBFs and was shown in Section 4.2 to
heavily dictate performance and theoretical safety guarantees in the presence
of disturbances. Note that the function ϵ must always take positive values,
thereby requiring that the controller k always meet a stricter requirement than
the standard CBF-QP condition (2.60). It also must increase (or not decrease)
with its argument. This suggests that when h(x) is larger, or the system state
is deep inside the set C, the modification to the standard CBF inequality (2.60)
is reduced, as ϵ(h(x)) is larger. As h(x) gets smaller, such as when the state
of the system approaches the boundary of C or moves further away from C,
the value of ϵ must get smaller, and the importance of the robustifying term
increases. This reflects the intuitive idea that robustness is more important
near the boundary of C, and less important when the system is sufficiently far
inside C. Examples of such functions can be seen in Figure 4.2

TISSf-BFs serve as a certificate of TISSf of a closed-loop system with respect
to a set C as follows:
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Figure 4.2. Examples of the function ϵ that satisfy the condition in (4.14).

Theorem 29. Let C ⊂ E be the 0-superlevel set of a function h : E → R
that is continuously differentiable on E. If h is a TISSf-BF for the closed-loop
system with unmatched disturbances (2.70) (matched disturbances (2.74)) on
C, then the closed-loop system with unmatched disturbances (2.70) (matched
disturbances (2.74)) is TISSf with respect to the set C with a function γT :

R× R≥0 → R≥0 defined as:

γT(r, d) ≜ −α−1

(
−ϵ(r)d

2

4

)
. (4.16)

I will prove this theorem for the matched disturbance setting here, but a similar
proof for the unmatched disturbance case is provided in Appendix A.

Proof. Observe that by assumption α−1 and ϵ are continuously differentiable
on R, such that the function γT(·, b) is continuously differentiable for any
b ∈ R≥0. Similarly, as ϵ(r) > 0 for all r ∈ R and α−1 ∈ Ke

∞, the function
γT(a, ·) ∈ Ke

∞ for any a ∈ R as required. Our next goal is to verify that for all
d ∈ R≥0, the set Cd,T defined in (4.12) is forward invariant up to d. Consider
a value of d ∈ R≥0 and consider a disturbance signal d : R≥0 → Rm that is
piecewise continuous on R≥0 and satisfies ∥d∥∞ ≤ d. As h is a TISSf-BF for
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the closed-loop system with matched disturbances (2.74), we have that:

ḣ(x, t) ≜ Lfh(x) + Lgh(x)k(x) + Lgh(x)d(t), (4.17)

≥ −α(h(x)) + 1

ϵ(h(x))
∥Lgh(x)∥2 + Lgh(x)d(t). (4.18)

Noting that:

Lgh(x)d(t) ≥ −∥Lgh(x)∥ ∥d∥∞ ≥ −∥Lgh(x)∥ d, (4.19)

for all x ∈ E and t ∈ R≥0 and ϵ(h(x)) > 0 for all x ∈ E, adding and
subtracting ϵ(h(x))d2

4
, and completing the squares yields:

ḣ(x, t) ≥ −α(h(x))− ϵ(h(x))d2

4
. (4.20)

Next, observe that:

∂γT

∂r
(r, d) =

d2

4

∂α−1

∂r

(
−ϵ(r)d

2

4

)
∂ϵ

∂r
(r) ≥ 0, (4.21)

for all r ∈ R. Taking the time derivative of the function hT defined in (4.11)
yields:

ḣT(x, d, t) =

(
1 +

∂γT

∂r
(h(x), d)

)
ḣ(x, t). (4.22)

noting that d is a fixed constant in this proof. By (4.21), we have that:

1 +
∂γT

∂r
(h(x), d) > 0, (4.23)

for all x ∈ E. Substituting (4.20) into (4.22), we obtain:

ḣT(x, d, t) ≥
(
1 +

∂γT

∂r
(h(x), d)

)(
−α(h(x))− ϵ(h(x))d2

4

)
. (4.24)

Next, consider a state x ∈ ∂Cd,T, such that hT(x, d) = 0, for which (4.11) and
(4.16) imply:

−α(h(x))− ϵ(h(x))d2

4
= 0, (4.25)

yielding:
ḣT(x, d, t) ≥ 0, (4.26)

for all t ∈ R≥0. In the case that d = 0, such that hT(x, 0) = h(x), we have that
hT(x, 0) = 0 implies ∂h

∂x
(x) ̸= 0n. Considering d > 0, because γ(a, ·) ∈ Ke

∞ for
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all a ∈ R, when hT(x, d) = 0, we have −α(h(x)) > 0. Thus, the inequality in
(4.15) requires that ∂h

∂x
(x) ̸= 0n for x ∈ ∂Cd,T. Finally, we have:

∂hT

∂x
(x, d) =

(
1 +

∂γT

∂r
(h(x), d)

)
︸ ︷︷ ︸

>0

∂h

∂x
(x) ̸= 0n, (4.27)

using (4.23). Therefore, Nagumo’s theorem [104], [123] implies the set Cd,T is
forward invariant as hT(x, d) = 0 implies ḣT(x, d, t) ≥ 0 for all t ∈ R≥0, and
∂hT
∂x

(x, d) ̸= 0n.

Let us now consider a TISSf-based controller for the simple example we con-
sidered in Section 4.2. For the open-loop system with matched disturbances in
(4.7) with the particular harmonic disturbance signal d(t) = δ sin t with δ = 3,
I pick the following differentiable function:

ϵ(h(x)) ≜ ϵ0eλh(x), (4.28)

with constants ϵ0, λ ∈ R>0. Considering a controller k′ : R2 → R that is locally
Lipschitz continuous on R2 that is defined as:

k′(x) = k(x) +
Lgh(x)

ϵ(h(x))
= x1 − 2x2 − 1− 1

ϵ0eλ(x1−x2)
, (4.29)

the function h as defined in (4.3) is a TISSf-BF with α(r) = r for corresponding
closed-loop system on C. Thus, the set:

Cδ,T =

{
x ∈ R2

∣∣∣∣ x1 − x2 + ϵ0eλ(x1−x2)δ2

4
≥ 0

}
, (4.30)

is forward invariant up to δ (which the system experiences). It is noted that
λ = 0 recovers the ISSf-based controller with ϵ(h(x)) = ϵ0 for all x ∈ R2,
whereas a larger λ pulls ∂Cδ,T closer to ∂C, and decreases the effect of the cor-
responding term in the controller (4.29) for h(x) > 0. The set Cδ,T is depicted
in Figure 4.3(d) with ϵ0 = e−2, λ = 2 chosen such that ∂Cδ,T corresponds to
∂Cδ using ϵ0 = 0.1. In this sense, it is possible to achieve the same theoretical
safety guarantee using both TISSf and ISSf with small values of ϵ0. Addition-
ally, solution trajectories from the same set of initial conditions are also shown.
Observe that all solution trajectories stay within the set Cδ,T as required by
TISSf. Moreover, the system is allowed to evolve close to the boundary of the
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Figure 4.3. Simple example using TISSf to achieve both meaningful theoretical safety
guarantees and non-conservative behavior.

set Cδ,T and is not forced deep into the set C. Thus, both meaningful theo-
retical guarantees and non-conservative behavior can be achieved using TISSf.

Given a value of d ∈ R≥0, the boundary of the set Cd,T that is rendered forward
invariant is defined as the 0-level set of the TISSf-BF h. The value of h on
this level set, denoted as h∗ ≤ 0, can be found by solving the equation:

h∗−α−1

(
−ϵ(h

∗)d2

4

)
︸ ︷︷ ︸

γT(h∗,d)

= 0. (4.31)

By definition, γT(h
∗, d) must be strictly positive for d > 0, implying that

h∗ < 0 in the presence of disturbances. Moreover, as d increases, h∗ must
get more negative, implying that the boundary of Cd,T falls farther from the
boundary of C. Control over this degradation in safety can be achieved by
modifying the function ϵ to yield different values of h∗ as specified in (4.31).
From a practical perspective, h(φd(t)) ≥ h∗ can be seen as a design objective
with h∗ chosen to satisfy a minimum tolerable safety requirement in the pres-
ence of disturbances. With this mindset, a control designer must appropriately
choose ϵ to ensure h∗ meets these minimum tolerable safety requirements.

It is straightforward to extend the idea of an TISSf-BF to a TISSf-CBF:

Definition 34 (Tunable Input-to-State Safe Control Barrier Function (TISS-
f-CBF)). Let C ⊂ E be the 0-superlevel set of a function h : E → R that is
continuously differentiable on E with ∂h

∂x
(x) ̸= 0n when h(x) = 0. The func-

tion h is said to be a Tunable Input-to-State Safe Control Barrier Function
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(TISSf-CBF) for the open-loop system with unmatched disturbances (2.69) on
C if there exist functions α ∈ Ke

∞ with α−1 ∈ Ke
∞ continuously differentiable

on R and ϵ : R→ R>0 that is continuously differentiable on R such that:

sup
u∈Rm

Lfh(x) + Lgh(x)u−
1

ϵ(h(x))

∥∥∥∥∂h∂x(x)
∥∥∥∥2 > −α(h(x)), (4.32)

for all x ∈ E, and:
∂ϵ

∂r
(r) ≥ 0, (4.33)

for all r ∈ R. The function h is said to be a TISSf-CBF for the open-loop
system with matched disturbances (2.73) on C if (4.32) is replaced with:

sup
u∈Rm

Lfh(x) + Lgh(x)u−
1

ϵ(h(x))
∥Lgh(x)∥2 > −α(h(x)), (4.34)

for all x ∈ E.

As with the notion of ISSf-CBFs presented in Section 2.9, in the setting of
matched disturbances, if h is a CBF for the open-loop system (2.1) with a
function α ∈ Ke

∞ that has an inverse α−1 ∈ Ke
∞ that is continuously differ-

entiable on R, then for any ϵ : R → R>0 that is continuously differentiable
on R and satisfies (4.33), the function h is a TISSf-CBF for the open-loop
system with matched disturbances on C. This makes it relatively easy to ro-
bustify standard CBF-based controllers to matched disturbances if necessary.
As typical, given a nominal controller knom : E → Rm that is locally Lipschitz
continuous on E, an optimization-based controller can be specified as follows:

kTISSf(x) = argmin
u∈Rm

∥u− knom(x)∥2 (TISSf-CBF-QP)

s.t. Lfh(x) + Lgh(x)u−
1

ϵ(h(x))
∥Lgh(x)∥2 ≥ −α(h(x)),

with a similar specification possible for the unmatched disturbance setting.
The optimization problem defining this controller remains a quadratic pro-
gram, as there is no modification to how the constraint depends on the de-
cision variable u from the standard CBF-QP controller. As with the CBF-
QP controller, under assumptions of local Lipschitz continuity of the function
∂h
∂x

: E → Rn and α this controller can be shown to be locally Lipschitz
continuous on E.
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Inverted Pendulum Example

Consider a control system for an inverted pendulum described by the model:

d

dt

[
θ

θ̇

]
=

[
θ̇

g
l
sin θ

]
︸ ︷︷ ︸

f(x)

+

[
0
1

ml2

]
︸ ︷︷ ︸
g(x)

u, (4.35)

with pendulum angle θ ∈ R and angular velocity θ̇ ∈ R defining the state
x = [θ, θ̇]⊤, and parameters given by the mass m ∈ R>0, length l ∈ R>0, and
gravitational acceleration constant g ∈ R>0. In this example I will use the
parameter values m = 2 [kg], l = 1 [m] and g = 10 [m/s2]. The single input
u ∈ R is a torque applied on the pendulum. A set C that we wish to keep safe
for the inverted pendulum that restricts the angular position and velocity is
given by the 0-superlevel set of a function h : R2 → R defined as:

h(θ, θ̇) = 1− θ2

a2
− θ̇2

b2
− θθ̇

ab
, (4.36)

with parameters a, b ∈ R>0. In this example I will use the parameter values
a = 0.25 [rad] and b = 0.5 [rad/s]. The resulting set:

C =

{[
θ

θ̇

]
∈ R2

∣∣∣∣∣ 1− θ2

a2
− θ̇2

b2
− θθ̇

ab
≥ 0

}
, (4.37)

is an ellipse as depicted in Figure 4.4 by a gold region. The function h given
as in (4.36) is a CBF for the inverted pendulum system (4.35) on C. To see
this, consider a function α ∈ Ke

∞ defined as α(r) = αcr with αc > 0 satisfying
αc ≤ b/a. In this example I use the parameter value αc = 0.2 [1/s]. The CBF
condition defined in (2.61) yields that:

Lgh(θ0, θ̇0) = 0 =⇒ θ̇0 = −
b

2a
θ0. (4.38)

This equation defines a line as depicted in Figure 4.4 by a solid black line. We
have that on this line:

Lfh(θ0, θ̇0) + α(h(θ0, θ̇0)) = αc +
3

4a2

(
b

a
− αc

)
θ20 > 0, (4.39)

such that the condition (2.61) is met for our choice of αc.

I note that if we consider a set C̃ defined as the 0-superlevel set of a function
h̃ : R2 → R given by:

h̃(θ, θ̇) = 1− θ2

a2
− θ̇2

b2
, (4.40)
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Figure 4.4. Simulation results for the inverted pendulum system. The gold ellipse is
the set C as defined in (4.37). The black line is the set where Lgh(x) = 0 as defined in
(4.38). The dashed blue line is the trajectory of the system evolving under knom as defined
in (4.43), which leaves the set C. The green and purple regions indicate where the controller
knom meets and fails to meet the CBF condition, respectively. The dashed red line is the
trajectory of the system evolving under kCBF which remains inside the set C.

which does not include the term θθ̇/ab, then the function h̃ is not a CBF for
the system (4.35) on C̃. To see this, note that:

Lgh̃(θ0, θ̇0) = 0 =⇒ θ̇0 = 0. (4.41)

In turn, we have that for any α ∈ Ke
∞:

Lf h̃(θ0, θ̇0) + α(h̃(θ0, θ̇0)) = α
(
1− θ20/a2

)
. (4.42)

The condition (2.61) is not satisfied for |θ0| ≥ a, including |θ0| = a which is
in ∂C̃). Thus, it is important to choose the safe set and design the CBF to
be compatible with the system dynamics, eliminating points where the CBF
condition is not met.

Consider a controller knom : R2 → R that is locally Lipschitz continuous on
R2 that locally exponentially stabilizes the pendulum to an upright position,
given by the feedback linearization controller:

knom(θ, θ̇) = ml2
(
−g
l
sin θ −Kpθ −Kdθ̇

)
, (4.43)
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with controller gains Kp, Kd ∈ R>0. This controller yields the closed-loop sys-
tem:

d

dt

[
θ

θ̇

]
=

[
0 1

−Kp −Kd

][
θ

θ̇

]
, (4.44)

such that the equilibrium point xe =
[
0, 0
]⊤

is locally exponentially stable. In
this example I will use the parameter valuesKp = 0.6 [1/s2] andKd = 0.6 [1/s].
I simulate the system from the initial condition x0 = [−0.1, 0.5]⊤ ∈ C. This
trajectory is depicted in Figure 4.4 by a dashed blue curve. Although the
controller knom stabilizes the system to the upright position, in doing so it
causes the state of the system to leave the set C.

I next deploy the (CBF-QP) controller kCBF : R2 → R for the inverted pen-
dulum system using the nominal controller knom defined in (4.43). I simulate
the system from the initial condition x0 = [−0.1, 0.5]⊤ ∈ C. This trajectory
is depicted in Figure 4.4 by a dashed red curve. Observe that the (CBF-QP)
controller kCBF ensures that the system state remains within the set C.

To see how this controller is impacted by disturbances, I will consider a
matched disturbance signal specified as:

d(t) =M(1− s(t− 5)− s(t− 10) + s(t− 15)), (4.45)

where M ∈ R≥0 and s : R→ R is the Heaviside function:

s(τ) =

0 if τ < 0,

1 if τ ≥ 0.
(4.46)

With this disturbance we have ∥d∥∞ =M . In this example I use the parameter
value M = 0.75 [N·m] and the corresponding disturbance signal is depicted in
Figure 4.5. I deploy the (CBF-QP) controller with the nominal controller
knom as in (4.43) to the inverted pendulum system without considering the
disturbance d defined in (4.45). We see in Figure 4.6 that this controller fails
to keep the system in the set C, and deviates from it significantly.

I will next consider a design through TISSf. In particular, I will use the
(TISSf-CBF-QP) controller kTISSf with a function ϵ defined as:

ϵ(r) = ϵ0eλr, (4.47)
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Figure 4.5. Disturbance signal for the inverted pendulum system example as defined in
(4.45).

with parameters ϵ0 ∈ R>0 and λ ∈ R≥0. Using this controller will render h a
TISSf-BF for the corresponding closed-loop system, and thus given the choice
of α, Theorem 29 yields the sets Cd,T defined in (4.12) are forward invariant
up to d with the function γT defined as:

γT(h(θ, θ̇), d) =
ϵ(h(θ, θ̇))d2

4αc
. (4.48)

As the disturbance signal is bounded by M , the forward invariant set we will
be interested in studying is determined by considering d =M . Thus, I use
d = 0.75 [N·m]. Next, we have that (4.31) reduces to:

h∗ +
ϵ0eλh

∗
d2

4αc
= 0. (4.49)

Once ϵ0 and λ are specified, (4.49) can be solved for h∗ to find the value of h
that corresponds to the boundary ∂Cd,T. The left panel of Figure 4.7 shows
the value of h∗ for the different choices of ϵ0 and λ specified in Table 4.1. The
boundary ∂Cd,T corresponding to each set of parameters is shown in the right
panel of Figure 4.7. The black and red parameter sets return (approximately)
the same value of h∗, and thus the produce the same boundary ∂Cd,T. In
contrast, the green parameter set yields a larger set Cd,T as indicated by the
smaller value of h∗ in Table 4.1.
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Figure 4.6. (Right) Simulation results for the inverted pendulum system with disturbances.
The gold ellipse is the safe set C defined in (4.37). The blue line is the trajectory of the
system evolving under kCBF defined in (CBF-QP), which is not robust to disturbances and
leaves the safe set. The black, green, and dashed red lines are trajectories of the system
evolving under kTISSf defined in (TISSf-CBF-QP) with different values for ϵ0 and λ.

Color Black Red Green
ϵ0 [

1
N2m2s ] 0.15 0.5 0.5
λ 0 12 0
h∗ −0.1055 −0.1026 −0.3516

Table 4.1. Parameters sets used in (4.47) and (4.49) for the inverted pendulum example.

I next deploy the (TISSf-CBF-QP) controller kTISSf with the nominal controller
knom as in (4.43) in simulation with the exponential function given in (4.47)
utilizing the parameter pairs specified in Table 4.1. I first observe in Figure
4.6 that with the black parameter set, which corresponds to a standard ISSf
design, the system is very conservative and the trajectory of the system rapidly
converges to the equilibrium. Increasing the value of ϵ0 returns the green
parameter set, which is also a standard ISSf design. We see in the right panel
of Figure 4.7 that a larger value of ϵ0 leads to a larger set Cd,T as specified
by the lesser value of h∗ in Table 4.1, while in Figure 4.6 we see that a larger
value of ϵ0 allows the system to evolve less conservatively. This highlights that
larger values of ϵ0 generally lead to less conservative closed-loop behavior and
an expansion of the set possessing theoretical safety guarantees.
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Figure 4.7. (Left) Curves corresponding to the value of h∗ solving (4.49) across the (ϵ0, λ)
parameter space for the inverted pendulum example. (Right) The boundary of the set Cd,T
rendered forward invariant for different choices of the parameters ϵ0 and λ for the inverted
pendulum example. Note that the Cd,T contains the set C for each parameter choice.

Comparing the red and black parameter sets, we can see in the left panel of
Figure 4.7 that the red parameters lie on the same h∗-level-set curve as the
black parameters, and thus return the same expanded safe set Cd,T as seen in
the right panel of Figure 4.7. In contrast, we see in the right panel of Figure
4.7 that the closed-loop system is much less conservative and approaches the
boundary of the safe set. This behavior indicates that ϵ0 and λ can be jointly
tuned to return the same theoretical guarantees as a small value of ϵ0 without
inducing conservativeness. The red parameter set has the same value of ϵ0 as
the green parameter set, allowing us to observe directly the impact of λ. We
see in the right panel of Figure 4.7 that the red parameters yield a smaller
set Cd,T, implying stronger theoretical safety guarantees, while in Figure 4.6
we see that the closed-loop behavior of the red parameter set is much less
conservative. Thus, the introduction of λ not only allows one to improve the
theoretical safety guarantees for a fixed value of ϵ0, but also allows one to
reduce the conservativeness of the system. Lastly, we see in Figure 4.6 that
for all three parameter sets, the controller keeps the trajectories within C, and
thus, within Cd,T, that is, it guarantees h(φd(t)) ≥ h∗.

Conclusion

In this section I have presented an approach for robust safety-critical con-
trol synthesis in the presence of disturbances. This approach builds off the
intuition that robustness to disturbances is most important when near the
boundary of the set C to propose a novel modification of ISSf in the form
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of Tunable Input-to-State Safety (TISSf). The definition of TISSf allows for
static parameters in ISSf-CBF-based controllers to be replaced by functions
that weight robustness to disturbances according to the value of a CBF h. I
then show how this allows for meaningful theoretical safety guarantees while
permitting a significant reduction in conservativeness of a closed-loop system
on an inverted pendulum.

4.4 Tunable Input-to-State Safety on Automated Truck

In this section I will present work deploying TISSf-based controllers on an
automated semi-trailer truck. I will begin by describing a simplified model for
the system dynamics, followed by codifying a safety specification of maintain-
ing a safe following distance behind a lead vehicle in the form of a CBF. Next,
I will design a nominal controller for this system which tries to track a desired
velocity while maintaining ride comfort. I show in simulation that this nominal
controller does not satisfy safety constraints, while the controller (CBF-QP)
does meet safety constraints. In deploying the controller (CBF-QP) on the ex-
perimental system as seen in Figure 4.8, I find it fails to keep the system safe
due to actuator dynamics that can be captured by a matched disturbance. I
then deploy the TISSf-based control framework from Section 4.3 using different
parameters, demonstrating the ability to achieve meaningful theoretical safety
guarantees with desirable performance in both simulation and experimentally.

The contributions of this section are as follows:

• A design and evaluation of TISSf-based controllers for a heavy-duty semi-
trailer truck system, both in simulation and experimentally.

The text for this section is adapted from:

A. Alan, A. J. Taylor, C. R. He, A. D. Ames, and G. Orosz, “Control
barrier functions and input-to-state safety with application to automated
vehicles,” conditionally accepted as a Full Paper in IEEE Trans. on
Control Sys. Tech., 2022.

A. J. Taylor participated in the conception of the project, algorithm
design and theoretical analysis, simulation code implementation, and
writing of the article.
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Figure 4.8. Experimental configuration for heavy-duty semi-trailer truck problem. (Top)
Controller design without robustifying element yields safety violation. (Bottom) Robust
safety-critical controller ensures semi-trailer truck brakes early and aggressively enough to
maintain safe distance.

System Model, Safety Specification, & Control Design

Note that the contents of this subsection were primarily written by collabora-
tors, edited by Andrew Taylor for their appearance in journal proceedings, and
edited by Andrew Taylor for their appearance in this thesis. Andrew Taylor’s
particular contributions in this subsection are the verification of the CBF from
equation (4.57) to (4.58).

We will begin by designing a safety-critical longitudinal controller for a con-
nected automated semi-trailer truck. We first introduce the physical system
and define a safe set via a CBF. Following this, we will present a nominal
performance-based controller, and synthesize a safety-critical controller that
modifies this nominal controller in a minimally invasive way while ensuring
safety. We note that these constructions do not yet explicitly consider distur-
bances in the system model.

In this work we consider a rear-axle-driven truck without a trailer. Assuming
the truck’s tires roll without slipping and the truck travels on a flat road with
no headwind, the longitudinal dynamics of the truck are described by the
following model:

v̇ =
T

meffR
− kdv

2 +mgσ

meff
. (4.50)

Here the state is given by the truck’s longitudinal speed v ∈ R, the input is the
torque applied on the rear axle T ∈ R, and the parameters in the model are
the mass of the truck m ∈ R>0, the mass moment of inertia of the rotating ele-
ments I ∈ R>0, the tire radius R ∈ R>0, the effective mass meff = m+ I

R2 , the
air drag constant kd ∈ R>0, gravitational acceleration g ∈ R>0, and rolling re-
sistance coefficient σ ∈ R>0. Note that the second term in (4.50) is dissipative
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Figure 4.9. A connected automated truck following a connected vehicle.

in nature, and slows down the vehicle when it has a positive velocity. This term
may be accounted for in the control design via feedback linearization, or may be
ignored as its omission introduces a factor of conservativeness to the controller
in terms of safety. The torque input to the system is computed from a desired
longitudinal acceleration command u ∈ R via feed-forward maps. This torque
input command is provided by a drive-by-wire system to the braking systems
that produce the actual torque T ; see Figure 4.9. With these feed-forward
maps in mind, we simplify the longitudinal dynamics model to:

v̇ = u. (4.51)

Now let us consider the scenario when the truck follows a connected vehicle
as depicted in Figure 4.9. Using the truck model in (4.51), the dynamics of
this connected system are given by:

Ḋ = vL − v,

v̇ = u,

v̇L = aL,

(4.52)

where vL, aL ∈ R are the speed and acceleration of the lead vehicle, respec-
tively, and D ∈ R denotes the bumper-to-bumper headway distance between
the truck and the lead vehicle, yielding the state x = [D, v, vL]

⊤ ∈ R3. The
truck and lead vehicle are outfitted with vehicle-to-everything (V2X) com-
munication systems, permitting the truck to receive motion information from
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the lead vehicle such as its Global Positioning System (GPS) position which
yields the distance D, its speed vL, and its acceleration aL. We assume that
the leader’s behavior satisfies:

aL ∈ [−aL, aL], vL ∈ [0, vL], (4.53)

where aL, aL, vL ∈ R>0 reflect a city-driving scenario; see Table 4.2 below.

The safety task for the truck is to maintain a safe distance behind the leader.
This task motivates a CBF h : R3 → R of the form:

h(D, v, vL) = D − ρ(v, vL), (4.54)

where the headway function ρ : R2 → R describes the minimum safe distance
between the vehicles given their current velocities, v and vL. Motivated by
[62] and [236], we define the headway function as:

ρ(v, vL) = c0 + c1v + c2vL + c3v
2 + c4vvL + c5v

2
L, (4.55)

with parameters ci ∈ R for i = 0, . . . , 5; see Table 4.2. The value of the function
ρ is seen in Figure 4.10. The corresponding set C defined by h is given by:

C =


Dv
vL

 ∈ R3

∣∣∣∣∣∣∣ D ≥ ρ(v, vL)

 . (4.56)

To verify that the function h is a CBF for (4.52), observe that:

Lgh(D0, v0, vL,0) = 0 =⇒ c1 + 2c3v0 + c4vL,0 = 0, (4.57)

which describes a line in (v, vL) space where the CBF condition (2.61) must
be met for all D ∈ R. We consider α(r) = αcr with αc ∈ R>0, yielding:

Lfh(D, v0, vL,0) + α(h(D, v0, vL,0)) = vL,0 − v0 − aL(c2 + c4v0 + 2c5vL,0)

+ αc(D − ρ(v0, vL,0)). (4.58)

Since checking the alternative CBF condition (2.61) analytically may be cum-
bersome using (4.58), we graphically evaluate it over a range of D and vL,0

(and v0 defined implicitly through (4.57)) that are states of interest in this
problem, while taking the worst case value of aL making (4.58) as negative
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Figure 4.10. (Left) The value of the function ρ defined in (4.55), which defines the
minimum safe following distance as a function of the leader’s velocity vL and truck velocity
v. (Right) The value of Lfh(x) + α(h(x)) as defined in (4.58) when Lgh(x) = 0 for various
distances. As the function is strictly positive over the domain of interest, h is a CBF on C
for (4.52).

Figure 4.11. (Top) Range policy V defined in (4.60). (Bottom) Speed policy W defined
in (4.61).

as possible; see Figure 4.10. For αc = 0.1 [1/s], the value of (4.58) is strictly
positive, ensuring the CBF condition (2.61) is met.

Beyond the task of safety, we wish for the controller to have other desirable
properties such as plant stability and string stability in the presence of commu-
nication delay [237], or optimal performance regarding energy efficiency and
passenger comfort [238]. To accomplish this, we first design a nominal con-
troller that prioritizes performance. In particular, we design a connected cruise
controller (CCC) for the truck that utilizes information about the lead vehicle
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Figure 4.12. Example profile for acceleration aL of lead vehicle used in simulation.

available through V2X connectivity. We propose the controller structure:

knom(D, v, vL) = A(V (D)− v) +B(W (vL)− v), (4.59)

with parametersA,B ∈ R>0 and functions V : R≥0 → R≥0 andW : R≥0 → R≥0.
The first term in (4.59) specifies a distance-based speed error with:

V (D) = max
{
0,min{κ(D −Dst), v}

}
, (4.60)

depicted in the top panel of Figure 4.11, producing a desired speed based on
the distance D. Here Dst ∈ R>0 is the desired stopping distance, 1/κ > 0 is
the desired time headway, and Dgo = v/κ+Dst. The second term in (4.59)
specifies the error related to the relative speed with the speed policy:

W (vL) = min{vL, v}, (4.61)

depicted in the bottom panel of Figure 4.11, which bounds the speed error if
the lead vehicle violates vL ≤ v.

aL = 5 [m/s2] c0 = 2 [m] κ = 0.8 [1/s]
aL = 10 [m/s2] c1 = 1.1 [s] αc = 0.1 [1/s]
vL = 20 [m/s] c2 = 0.6 [s] Dst = 5 [m]
δ = 4.5 [m/s2] c3 = 0.03 [s2/m] Dgo = 30 [m]
ϵ0 = 0.5 [s3/m] c4 = −0.03 [s2/m] A = 0.4 [1/s]
λ = 0.4 [1/m] c5 = −0.03 [s2/m] B = 0.5 [1/s]

Table 4.2. Parameter values used in controller design.
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Figure 4.13. (Left) Velocity vL of lead vehicle (black) and velocity of the truck using the
nominal controller (4.59) (blue) and (CBF-QP) controller (red). (Right) Following distance
D and value of CBF h using the nominal controller (4.59) and (CBF-QP) controller.

We simulate both the nominal controller knom and (CBF-QP) controller from
the initial condition x0 = [27.4, 16, 16]⊤ ∈ C. We use parameter values as spec-
ified in Table 4.2. The acceleration aL of the lead vehicle is given by a time
profile reflecting a hard braking event, as seen in Figure 4.12. The velocity of
the truck converges to zero and a crash does not occur for both controllers,
but only the (CBF-QP) controller ensures the truck maintains a safe distance
(indicated by hCBF(φ(t)) ≥ 0) as seen in Figure 4.13. Observe that the nomi-
nal controller brakes less aggressively than the (CBF-QP) controller, and thus
does not react quickly enough to avoid violating the safe following distance
requirement.

Robust Control Design & Experimental Results

We now provide a description of the automated semi-trailer truck experimen-
tal configuration and present results using the nominal controller (4.59) and
(CBF-QP) controller. Subsequently, we will deploy TISSf-based controllers
and demonstrate their advantages experimentally.

Note that the contents of the following paragraph were primarily written by
collaborators, edited by Andrew Taylor for their appearance in journal proceed-
ings, and edited by Andrew Taylor for their appearance in this thesis.

The automated truck used in the experiments is an International ProStar+
Class-8 truck developed by the Navistar [239]; see Figure 4.14(a). Both the
automated truck and the lead vehicle are equipped with a V2X Onboard Unit
(OBU) developed by Commsignia [240]. These units are equipped with an
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accelerometer, gyroscope, magnetometer, and GPS unit. Furthermore, these
OBUs support peer-to-peer communication such that the automated truck may
receive position, velocity, and acceleration data from the lead vehicle through
V2X antennas shown in Figure 4.14(a). The automated truck is additionally
equipped with a Mobile Real-Time Targeting Machine developed by Speedgoat
[241], which interfaces with the V2X OBU and the truck’s Engine Controller
Unit (ECU) through a Controller Area Network (CAN) bus. The Speedgoat
runs the controller for the system given a stream of values for D, v, vL, and
aL coming from the V2X OBUs. It computes a desired acceleration input and
converts it to a corresponding torque value through a feed-forward map. A
drive-by-wire system controls the engine and the brake torques accordingly.
The steering of the truck is done by a human driver in the experiments.

In an effort to evaluate the repeatability of the experiments, it is necessary to
eliminate variation in the lead vehicle’s behavior, which is being driven by a
human. To achieve this, we use a recorded time profile of position, velocity,
and acceleration of the lead vehicle while it performs a hard braking event.
This profile for aL and vL is seen in Figure 4.12 and the left panel of Figure
4.13, respectively, and was used to produce the simulation results. During
the experiments, this data is played back to the truck controller as a perceived
lead vehicle, which the truck uses in it control computations. Experiments also
include a physical lead vehicle for visualization purposes which travels on the
other lane for safety reasons; see Figure 4.14(b)-(e) and notice the “collision” in
panel (c). We note that this lead vehicle closely follows the previously recorded
time profiles, but does not provide any data to the truck during the actual
experiments. Importantly, the quantitative analysis of safety is performed by
evaluating the CBF using the truck’s measured state with the recorded time
profiles of the perceived lead vehicle.

The nominal controller and (CBF-QP) controller are deployed on the auto-
mated truck with results as seen in Figure 4.15. Observe that not only does
the nominal controller consistently fails to meet the safety requirements im-
posed by the CBF h, but the (CBF-QP) controller also consistently fails to
meet the safety requirements. The top row in Figure 4.8 illustrates an exper-
imental run with the nominal controller. To understand why the (CBF-QP)
controller fails, we examine the discrepancy between the commanded acceler-
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Figure 4.14. (a) Vehicles used in experiments. (b) Image from the dashboard of the
truck during an experimental run. (c,d,e) Final configurations of separate experiments. See
https://youtu.be/9dJtC1TCBbA for a video.

ation and actual acceleration of the automated truck, as seen in the left panel
of Figure 4.16. One may observe a delay between the commanded acceleration
and the achieved acceleration. This delay in acceleration is due to the fact
that the brakes of the truck are a complex nonlinear dynamical system that
has been imperfectly abstracted away by the feed-forward maps that allow the

https://youtu.be/9dJtC1TCBbA
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Figure 4.15. Mean value (lines) and standard deviations (fills) of the distance D and the
CBF h when using the nominal controller (4.59) (blue) and the (CBF-QP) controller (red)
in the truck experiment. The experiments with these controllers are highly consistent.

simplified model in (4.51). Rather than working with the braking dynamic
system and improving the feed-forward maps, we describe the discrepancy in
commanded and actual acceleration as a disturbance in the simplified model:

v̇ = u+ d(t), (4.62)

where d : R≥0 → R reflects the difference between commanded acceleration
and actual acceleration. As the disturbance d is caused by the complicated
interactions of the drive-by-wire system and brake dynamics, it may be diffi-
cult to use model-based techniques to construct a meaningful bound δ ∈ R≥0

for the worst-case disturbance magnitude. Instead, we estimate the worst-
case disturbance empirically by comparing the actual acceleration v̇(t) to the
commanded acceleration u(t). Observe in the right panel of Figure 4.16 that
the largest difference in the commanded and actual acceleration is around
4 [m/s2]. Thus, we study the degradation of safety taking a slightly larger
value δ = 4.5 [m/s2].

To overcome this disturbance and improve the safe behavior of the truck, we
deploy the tool of TISSf-CBFs described in Section 4.3. As h satisfies the
CBF condition (2.61), and our disturbance it is matched, it also satisfies the
TISSf-CBF condition (4.34), where we take:

ϵ(r) = ϵ0e
λr, (4.63)
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Figure 4.16. (Left) Discrepancy between acceleration commanded by safety-critical con-
troller (black) and actual acceleration of the automated truck (red). (Right) Disturbance
signal in input seen by the truck used to define the model (4.62).

with ϵ0 ∈ R>0 and λ ∈ R≥0. The parameter λ introduces a measure of flexibil-
ity by allowing one to require a greater degree of robustness when the truck is
close to the leading vehicle, and less robustness when the distance is greater.
Given (4.63) and the particular value of δ we consider, the smallest set that is
forward invariant up to δ is given by:

Cδ =


Dv
vL

 ∈ R3

∣∣∣∣∣∣∣ h(D, v, vL) ≥ −
ϵ0eλh(D,v,vL)δ2

4αc

 . (4.64)

As in the inverted pendulum example in Section 4.3, the set Cδ being forward
invariant up to δ implies that h(φd(t)) ≥ h∗, where h∗ is the value of the TISSf-
CBF h on the boundary of Cδ, which can be calculated by solving (4.31). The
value of h∗ for different choices of ϵ0 and λ can be seen in Table 4.3 below.

We simulate the nominal controller, (CBF-QP) controller, and (TISSf-CBF-QP)
controller from the initial condition x(0) = [27.4, 16, 16]⊤ ∈ C while disturbing
the input using the signal shown in the right panel of Figure 4.16. We use
parameter values as specified in Table 4.2. Observe in Figure 4.17 that intro-
ducing the disturbance signal into our simulation allows the recreation of the
failures of the nominal controller and (CBF-QP) controller that were seen ex-
perimentally in Figure 4.15. Furthermore, observe that the (TISSf-CBF-QP)
controller maintains the safety of the system even in the presence of the dis-
turbance.
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Figure 4.17. Following distance D and value of h using the nominal controller (4.59)
(blue), (CBF-QP) controller (red), and (TISSf-CBF-QP) controller (green) in the disturbed
simulation.
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Figure 4.18. Mean value (lines) and standard deviations (fills) of the following dis-
tance D and h using the nominal controller (4.59) (blue), (CBF-QP) controller (red), and
(TISSf-CBF-QP) controller (green) in experiment.

We next deploy the TISSf-based control design on the experimental platform.
Sets of three experimental runs were conducted using each parameter pair
ϵ0 and λ shown in Table 4.3. The experimental results using the parameter
set ϵ0 = 0.5 [s3/m] and λ = 0.4 [1/m] (labeled as parameter pair (A)) can be
seen in Figure 4.17 and are visualized in the bottom row of Figure 4.8. With
these parameters the system is safe, as the value of h does not drop below
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Figure 4.19. (Left) Parameter values for ϵ0 and λ used in the truck experiments, with
contours showing theoretical values of h∗. Green markers denote parameter sets which
achieve the original safety goal (h(φd(t)) ≥ 0), while red markers denote parameter sets for
which the original safety goal is violated. (Right) Theoretical values of h∗ and the shift in
steady-state tracking distance D̃ss, for the parameter sets used in the truck experiments. The
blue markers denote parameter sets with λ > 0, while the black markers denote parameter
sets with λ = 0.

0. Although the TISSf-based controller has a larger standard deviation across
the experimental runs, it consistently satisfies the original safety requirement.

To evaluate how the system behavior depends on the values of the parameters
ϵ0 and λ, we first consider whether the original safety requirement is met,
i.e., whether or not the value of h remains positive. While the TISSf-based
controller does not provide a theoretical guarantee that h will remain non-
negative (it guarantees that h(φd(t)) ≥ h∗), for certain values of ϵ0 and λ the
original safety requirement is still met. The minimum value hmin of the TISSf-
CBF observed during the experimental runs is shown in Table 4.3. In the
left panel of Figure 4.19, green and red markers indicate parameter values for
which the original safety requirement is and is not met, respectively. Safety is
achieved using the ISSf-CBF formulation presented in Section 2.9 (with λ = 0)
for small values of ϵ0, but is also achieved using small values of λ.

We remark that when changing the controller from kCBF to kTISSf, the equi-
librium of the system is shifted as can be noticed when comparing the runs
in Figure 4.18. We characterize this by the shift in the steady-state tracking
distance error:

D̃ss ≜ Dexp
ss −D∗. (4.65)

Here Dexp
ss is the steady-state distance captured in experiments when the
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ϵ0 λ h∗ hmin D̃ss

Label [s3/m] [1/m] [m] [m] [m]
(B) 0.8 0 −40.50 22.09 25.43

3 0 −151.88 2.99 6.19
(D) 4 0 −202.50 1.02 4.69

5 0 −253.13 −0.45 3.54
(A) 0.5 0.4 −4.38 0.35 4.70

0.5 0.5 −3.80 −1.27 2.22
(C) 0.8 0.25 −7.01 0.78 4.34

0.8 0.35 −5.64 −1.03 2.22
1.0 0.25 −7.59 −0.86 3.07

Table 4.3. Sets of parameter values used for the exponential function (4.63) in the auto-
mated truck experiments with theoretical safety guarantee h∗, minimum experimental value
of the TISSf-CBF hmin, and shift in the steady-state tracking distance D̃ss in (4.65).

leader is moving with the steady-state speed v∗ ∈ (0, v) before braking. The
term D∗ = V −1(v∗) captures the desired steady-state distance given by the
inverse of the range policy (4.60). In the experiments v∗ = 16 [m/s], yielding
D∗ = 25 [m]. The values of D̃ss corresponding to different parameter pairs are
given in Table 4.3. In the right panel of Figure 4.19 we visualize the theoretical
values of h∗ and the experimental values of D̃ss for different parameter sets.
The black markers indicate parameter sets with λ = 0, while the blue markers
show parameter sets with λ > 0. With λ = 0, the theoretical guarantees are
nearly meaningless (observe the large negative values of h∗), and improving
them requires dramatically increasing D̃ss. In contrast, the parameter sets
with λ > 0 allow us to obtain significantly (an order of magnitude) stronger
theoretical guarantees without greatly increasing D̃ss, thereby also achieving
good performance. In the Figure 4.20, we give experimental results of three
other parameter pairs labeled as (B), (C), and (D) in Table 4.3. The poor
performance of case (B) is indicated by the large value of D̃ss. The results
for cases (C) and (D) nearly overlap, but the introduction of λ yield a strong
theoretical guarantee for case (C), which is missing for case (D).

Conclusion

In conclusion, in this section I have developed a robust yet performant safety-
critical controller for a connected automated semi-trailer truck system. I begin
by presenting a simple model for this system, a safety specification via a CBF, a
nominal controller, and simulation and experimental results using a (CBF-QP)
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Figure 4.20. Experimental results for parameter pairs (B), (C), and (D) in Table 4.3.
Case (B) is conservative as indicated by the large steady-state tracking distance. Cases
(C) and (D) display nearly identical behavior, but case (C) possesses a stronger theoretical
guarantee.

controller. Unmodeled actuator dynamics lead to a matched disturbance in
the experimental system, resulting in the (CBF-QP) controller failing to keep
the experimental system safe. I develop a collection of TISSf-based controllers
and explore how the parameters of these controllers an be tuned to achieve
both meaningful theoretical safety guarantees and strong performance. These
conclusions are then realized on the experimental system.

4.5 Safety with Stochastic Disturbances

In this section I will present work on safety-critical control in the presence
of stochastic disturbances. This work will study conditions on a discrete-
time system and a corresponding CBF for which it is possible to synthesize
controllers that return finite-time ISSf-like safety guarantees using convex op-
timization. I will begin by reviewing discrete-time dynamics and CBFs for
discrete-time systems. I will then briefly review martingales, Ville’s Inequal-
ity, and Jensen’s Inequality, which are tools for analyzing stochastic systems.
Next, I will propose an ISSf-like notion of finite-time safety for discrete-time
systems with stochastic disturbances, and establish how a discrete-time BF
meeting an expectation condition on its change across time steps certifies this
safety property. Following this, I will explore how a discrete-time CBF sat-
isfying certain convexity properties can be used to synthesize a safety-critical
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controller that yields a discrete-time BF. Lastly, I show the proposed method
in simulation on several examples, including a quadrupedal robot.

The contributions of this section are as follows:

• An ISSf-like characterization of finite-time safety for discrete-time sys-
tems experiencing stochastic disturbances.

• An exploration of how convexity properties of a discrete-time CBF must
be utilized with a stochastic disturbance signal to ensure the convexity
of downstream control synthesis.

The text for this section is adapted from:

R. K. Cosner, P. Culbertson, A. J. Taylor, and A. D. Ames, “Robust
safety under stochastic uncertainty with discrete-time control barrier
functions,” accepted in Robotics: Science and Sys. (RSS) XIX, 2023.

A. J. Taylor participated in the conception of the project, theoretical
analysis, and writing of the article.

Discrete Dynamics

In this section I provide a review of safety-critical control systems for discrete-
time nonlinear systems via CBFs. Consider a discrete-time (DT) open-loop
system with dynamics given by:

xk+1 = F(xk,uk), ∀k ∈ N, (4.66)

with state xk ∈ E, input uk ∈ Rm, and dynamics F : E × Rm → Rn that
are continuous on E × Rm. A controller k : E → Rm that is continuous on E
yields the DT closed-loop system:

xk+1 = F(xk,k(xk)), ∀k ∈ Z≥0. (4.67)

I assume for any x0 ∈ E, there exists a set I(x0) = {0, 1, . . . , kmax(x0)} ⊆ N
and a unique solution φ : I(x0)→ E satisfying:

φ(k + 1) = F(φ(k),k(φ(k))), ∀k ∈ I(x0), (4.68)

φ(0) = x0. (4.69)

The notion of safety for systems of this form is similarly formalized using the
concept of forward invariance [104]:
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Definition 35 (Discrete-Time Forward Invariance & Safety). A set C ⊂ E

is forward invariant for the closed-loop system (4.67) if x0 ∈ C implies that
φ(k) ∈ C for all k ∈ I(x0). In this case, the closed-loop system (4.67) is said
to be safe with respect to the set C.

Discrete-time barrier functions (DT-BFs) are a tool for guaranteeing the safety
of discrete-time systems. Consider a set C expressed as the 0-superlevel set of
a function h : E → R that is continuous on E. I refer to such a function h as
a DT-BF1 if it satisfies the following properties [234]:

Definition 36 (Discrete-Time Barrier Function (DT-BF)). Let C ⊂ E be the
0-superlevel set of a function h : E → R that is continuous on E. The function
h is a discrete-time barrier function (DT-BF) for the closed-loop system (4.67)
on C if there exists an α ∈ [0, 1] such that:

h(F(x,k(x))) ≥ αh(x). (4.70)

for all x ∈ E,

DT-BFs serve as a certificate of forward invariance as captured in the following
theorem [234]:

Theorem 30. Let C ⊂ E be the 0-superlevel set of a function h : E → R that
is continuous on E. If h is a DT-BF for the closed-loop system (4.67) on C,
then the closed-loop system (4.67) is safe with respect to the set C.

Intuitively, the value of h(φ(k)) can only decay as fast as the geometric se-
quence αkh(x0), which is lower-bounded by 0, thus ensuring the safety (i.e.,
forward invariance) of C.

Discrete-time Control Barrier Functions (DT-CBFs) [234] provide a tool for
constructively synthesizing controllers that yield closed-loop systems that pos-
sess a DT-BF:

Definition 37 (Discrete-Time Control Barrier Function (DT-CBF)). Let C ⊂
E be the 0-superlevel set of a function h : E → R that is continuous on E.

1The state constraint xk ∈ C for all k ∈ I(x0), when expressed as h(xk) ≥ 0 for all
k ∈ I(x0), is the special case of a DT-BF with α = 0.
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The function h is a discrete-time Control Barrier Function (DT-CBF) for the
open-loop system (4.66) on C if there exists an α ∈ [0, 1] such that:

sup
u∈Rm

h(F(x,u)) > αh(x), (4.71)

for all x ∈ E.

Given a CBF h for (4.66) and a corresponding α ∈ [0, 1], I define the point-wise
set of control values:

KCBF(x) = {u ∈ Rm | h(F(x,u)) ≥ αh(x)} . (4.72)

This yields the following result [242]:

Theorem 31. Let C ⊂ E be the 0-superlevel set of a function h : E → R that
is continuous on E. If h is a DT-CBF for the open-loop system (4.66) on C,
then the set KCBF(x) is non-empty for all x ∈ E, and for any controller k

that is continuous on E with k(x) ∈ KCBF(x) for all x ∈ E, the function h is
a DT-BF for the closed-loop system (4.67) on C.

Given a nominal controller knom : E → Rm that is continuous on E and a
DT-CBF h for the open-loop system (4.66) on C, a controller can be specified
via the following optimization problem:

kCBF(x) = argmin
u∈Rm

∥u− knom(x)∥2 (DT-CBF-OP)

s.t. h(F(x,u)) ≥ αh(x),

noting that kCBF(x) ∈ KCBF(x) for all x ∈ E. I note that unlike the affine
inequality constraint that arises in the continuous-time (CBF-QP), the DT-
CBF inequality constraint (4.71) is not necessarily convex with respect to
the input, preventing it from being integrated into a convex optimization-
based controller. To solve this issue, it is often assumed that the function
h ◦ F : E × Rm → R is concave with respect to its second argument [234],
[243], [244]. This assumption will be studied later in Section 6.4.

Martingales & Jensen’s Inequality

In this section I review tools from probability theory that will allow utilizing
information about the distribution of a stochastic disturbance signal in con-
structing a notion of stochastic safety and corresponding safety-critical con-
trollers. I choose to provide this background material at the level necessary
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to understand subsequent constructions of stochastic safety and safety-critical
controllers, but refer to [245] for a precise measure-theoretic presentation of
the following concepts. The key tool underlying the construction of a no-
tion of stochastic safety is a nonnegative supermartingale, a specific type of
expectation-governed random process:

Definition 38 (Martingales). Let xk, k ∈ Z≥0, be a sequence of random
variables that take values in Rn, W : Rn × Z≥0 → R, and suppose that
E
[
|W (xk, k)|

]
< ∞ for all k ∈ Z≥0. The process Wk ≜ W (xk, k) is a super-

martingale if:

E[Wk+1 | x0:k] ≤ Wk almost surely for all k ∈ Z≥0, (4.73)

where x0:k indicates the random variables {x0,x1, . . . ,xk}. If, additionally,
Wk ≥ 0 for all k ∈ Z≥0, Wk is a nonnegative supermartingale. If the process
is non-decreasing in expectation, the process Wk is a submartingale. If the
inequality (4.73) holds with equality, the process Wk is a martingale.

An important result from martingale theory that I will use to develop proba-
bilistic safety guarantees is Ville’s inequality, which allows bounding the prob-
ability that a nonnegative supermartingale will rise above a certain value [246]:

Theorem 32. If Wk is a nonnegative supermartingale, then for all λ ∈ R>0:

P

{
sup
k∈Z≥0

Wk > λ

}
≤ E[W0]

λ
. (4.74)

Intuitively, Ville’s inequality can be compared with Markov’s inequality [245]
for nonnegative random variables; since the process Wk is non-increasing in
expectation, Ville’s inequality allows for controlling the probability the process
instead moves upward above λ. Lastly, as I will show when synthesizing safety-
critical controllers in the presence of stochastic disturbances, conditions will
need to be enforced on the expectation of a DT-CBF. In doing so, I will need
to relate the expectation of the DT-CBF h(xk+1) to the expectation of the
state xk+1. This will be achieved using Jensen’s inequality [247]:

Theorem 33. Consider a function h : E → R that is continuous on E and a
random variable x that takes values in E with E[∥x∥] <∞. We have that:if h is convex, then E[h(x)] ≥ h(E[x]),

if h is concave, then E[h(x)] ≤ h(E[x]).
(4.75)
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Safety of Stochastic Systems

In this section I provide one of the main results of this work in the form of a
bound on the probability that a system with stochastic disturbances will exit
a given superlevel set of a DT-BF over a finite time horizon. Consider the
following the DT open-loop system with additive disturbances:

xk+1 = F(xk,uk) + dk, ∀k ∈ Z≥0, (4.76)

with dk ∈ Rn. A controller k : E → Rm that is continuous on E yields the
following closed-loop system:

xk+1 = F(xk,k(xk)) + dk, ∀k ∈ Z≥0. (4.77)

I assume that for any initial condition x0 ∈ E and sequence of disturbances
D = {dk} for k ∈ Z≥0, there exists a set Id(x0,D) = {0, 1, . . . , kmax(x0,D)} ⊆
Z≥0 and a unique solution φd : I(x0,D)→ E satisfying:

φd(k + 1) = F(φ(k),k(φ(k))) + dk, ∀k ∈ Id(x0,D), (4.78)

φd(0) = x0. (4.79)

I assume that x0 ∈ E is known and consider sequences of disturbances D =

{dk} for k ∈ Z≥0 that are independently and identically distributed (with
distribution D) random variables2 with (potentially unbounded) support on
Rn, generating the random process x1:k ≜ {φd(1),φd(1), . . . ,φd(k)} (this is
done for notational convenience). To study the safety of this system, I will use
the following definition:

Definition 39 (K-Step Exit Probability). Let the function h : E → R be
continuous on E. For any K ∈ Z≥0, γ ∈ R≥0, and initial condition x0 ∈ E,
the K-step exit probability of the closed-loop system (4.77) is given by:

Pu(K, γ,x0) = P
{

min
k∈{0,...,K}

h(xk) < −γ
}
. (4.80)

This definition describes the probability that the state of the closed-loop sys-
tem will leave the −γ superlevel set of h within K steps. This is inherently
a finite-time safety guarantee, as it only considers finite values of K. The

2This implies the dynamics define a Markov process, i.e. E[h(F(xk,k(xk))+dk) | x0:k] =
E[h(F(xk,k(xk)) + dk) | xk], since the state xk+1 at time k + 1 only depends on the state
xk and disturbance dk at time k.



208

finite-time aspect of K-step exit probabilities is critical since systems exposed
to unbounded disturbances will exit a bounded set with probability Pu = 1

over an infinite horizon [61], [68]. Intuitively, this is because a sufficiently large
sample will eventually be drawn from the tail of the distribution that forces
the system out in a single step. Additionally, observe that this definition is
directly related ISSf as it reasons about all superlevel sets of the function h,
rather than just the 0-superlevel set. For the remainder of this work, I will
omit the dependence of Pu on K, γ, and x0 for notational simplicity.

Given this definition, I now provide one of the main results of this work by
relating DT-BFs to K-step exit probabilities. I note that this result is a
reframing of the stochastic invariance theorem in [59], [63]. This reframing
features three key components. First, it develops the results using the standard
formulation of DT-BFs covered above. Second, it yields a probability bound
not only for C (defined as the 0-superlevel set of h, such that γ = 0), but for all
non-positive superlevel sets of h (γ ≥ 0), providing a stochastic variant of ISSf.
Third, I present a complete proof of the result, with the goal of illuminating
how to leverage tools from martingale theory to reason about the safety of
discrete-time stochastic systems.

Theorem 34. Let the function h : E → R be continuous and upper-bounded
on E with upper bound M ∈ R>0. Suppose there exists an α ∈ (0, 1) and3

δ ≤M(1− α) such that the closed-loop system (4.77) satisfies:

E[h(F(x,k(x)) + d) | x] ≥ αh(x) + δ, (4.81)

for all x ∈ E, with d ∼ D. For any K ∈ N and γ ∈ R≥0, if δ < −γ(1 − α),
we have that:

Pu ≤
(
M − h(x0)

M + γ

)
αK +

M(1− α)− δ
M + γ

K∑
i=1

αi−1. (4.82)

Alternatively if δ ≥ −γ(1− α), then:

Pu ≤ 1− h(x0) + γ

M + γ

(
Mα + γ + δ

M + γ

)K

. (4.83)

3The original presentation of Theorem 34 in [59] considers variable δk for k ∈ {0, . . . ,K},
which are known a priori. In most practical applications, one assumes a lower bound that
holds for all δk, motivating the use of a constant δ. Moreover, the use of a constant δ
significantly clarifies the proof.
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The upper bound δ ≤ M(1 − α) is relatively non-restrictive, as not only is δ
typically negative, but it must hold such that, in expectation, h(xk+1) cannot
rise above the upper bound M on h. The switching condition between (4.82)
and (4.83) of δ = γ(1−α) corresponds to whether, in expectation, the one-step
evolution of the system remains in the set Cγ = {x ∈ E | h(x) ≥ −γ} when
it begins on the boundary of Cγ. To make the following argument clear at a
high level, I begin with a short proof sketch before proceeding in detail.

Proof sketch: The key tool in proving Theorem 34 is Ville’s inequality (4.74).
Since h(xk), in general, is not a super- or submartingale, I will first construct
a nonnegative supermartingale, Wk ≜ W (xk, k), by scaling and shifting h(xk).
I can then apply Ville’s inequality (4.74) to bound the probability of Wk going
above any λ > 0. Next I find a particular value of λ, denoted λ∗, such that:

max
k∈{0,...,K}

Wk ≤ λ∗ =⇒ min
k∈{0,...,K}

h(xk) ≥ −γ. (4.84)

Intuitively, this means that any sequence Wk that remains below λ∗ ensures
that the corresponding sequence h(xk) remains (safe) above −γ. This allows
bounding the K-step exit probability Pu of the original process h(xk) with the
probability that Wk will rise above λ∗:

Pu ≤ P
{

max
k∈{0,...,K}

Wk > λ∗
}
≤ E[W0]

λ∗
=
W0

λ∗
, (4.85)

where the last equality will follow as it is assumed x0 is known a priori. Par-
ticular choices of W and λ∗ will yield the bounds stated in the theorem, com-
pleting the proof.

Proof. Proof: Constructing a Nonnegative Supermartingale

I will begin by constructing a nonnegative supermartingale, allowing the use
of Ville’s inequality. To construct this supermartingale, first note that by
rearranging terms in the inequality in (4.81), the process M −h(xk) resembles
a supermartingale:

E[M − h(xk+1) | xk] ≤ α(M − h(xk)) +M(1− α)− δ,

≜ α(M − h(xk)) + φ, (4.86)

but with a scaling α and additive term φ ≜ M(1 − α) − δ that makes
E [M − h(xk+1) | xk] ≰ M − h(xk) in general. To remove the effects of α
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and φ, consider the function W : Rn × Z≥0 → R defined as:

W (xk, k) ≜ (M − h(xk))θ
k︸ ︷︷ ︸

negate and scale

−φ
k∑

i=1

θi︸ ︷︷ ︸
cancel φ

+ φ
K∑
i=1

θi︸ ︷︷ ︸
ensure W ≥ 0

, (4.87)

where θ ∈ [1,∞) will be used to cancel the effect of α, but is left as a free
variable that I will later use to tighten the bound on Pu. Denoting Wk ≜

W (xk, k), I now verify Wk is a nonnegative supermartingale. I first show that
Wk ≥ 0 for all k ∈ {0, . . . , K}. Combining the two sums in (4.87) yields:

Wk = (M − h(xk))θ
k + φ

K∑
i=k+1

θi, (4.88)

which is nonnegative as h(x) ≤ M for all x ∈ E, θ ≥ 1, and φ ≥ 0 since
δ ≤M(1−α) by assumption. I now show thatWk satisfies the supermartingale
inequality (4.73):

E[Wk+1 | x0:k] = E[Wk+1 | xk], (4.89)

= (M − E[h(xk+1) | xk])θ
k+1 + φ

K∑
i=k+2

θi, (4.90)

≤ (M − αh(xk)− δ)θk+1 + φ
K∑

i=k+2

θi, (4.91)

= αθ(M − h(xk))θ
k + θk+1 ((1− α)M − δ)︸ ︷︷ ︸

=φ

+φ
K∑

i=k+2

θi,

= αθ︸︷︷︸
req.≤1

(M − h(xk))θ
k + φ

K∑
i=k+1

θi ≤ Wk, (4.92)

where (4.89) is due to the Markovian nature of system (4.77), (4.90) comes
from using (4.88) to write Wk+1, (4.91) follows from (4.81), and (4.92) follows
from the preceding line using the definition of φ and assuming the further
requirement that θ ≤ 1

α
. Thus, I have shown that Wk is a nonnegative super-

martingale.

Proof: Bounding the Exit Probability via Ville’s inequality

Since Wk is a nonnegative supermartingale, Ville’s inequality can be applied
to establish:

P
{

max
k∈{0,...,K}

Wk > λ

}
≤ E[W0]

λ
=
W0

λ
. (4.93)
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for all λ ∈ R>0. To relate this bound to the K-step exit probability Pu, I seek
a value of λ, denoted λ∗, such that:

max
k∈{0,...,K}

Wk ≤ λ∗ =⇒ min
k∈{0,...,K}

h(xk) ≥ −γ. (4.94)

In short, I will choose a value of λ∗ such that all trajectories of Wk that
remain below λ∗ must also have hk ≥ −γ. To this end, I use the geometric
series identity4 ∑k

i=1 θ
i−1 = 1−θk

1−θ
to rewrite Wk as:

Wk = (M − h(xk))θ
k + φθ

θK − θk

θ − 1
. (4.95)

Define:

λk =

(
γ +M − φθ

θ − 1

)
θk +

φθ

θ − 1
θK > 0, (4.96)

which, intuitively, applies the same time-varying scaling and shift to a con-
stant, −γ, that was applied to h(xk) to yield Wk (4.95). I then choose:

λ∗ ≜ min
k∈{0,...,K}

λk. (4.97)

Since I assume maxk∈{0,...,K}Wk ≤ λ∗, we can write, for all k ∈ {0, . . . , K}:

0 ≥ Wk − λ∗ ≥ Wk − λk = (−γ − hk)θk. (4.98)

Since θ > 1, this implies that −γ − hk ≤ 0 for all k ∈ {0, . . . , K}, and thus
mink∈{0,...,K} h(xk) ≥ −γ, as needed.

Proof: Choosing θ to Minimize the Ville’s Inequality

Since the supermartingaleWk includes a free parameter θ ∈ (1, 1
α
], I will choose

a value of θ in this interval which provide the tightest bound on Pu.

Case 1: Consider the first case where δ < −γ(1 − α), implying φ > (M +

γ)(1 − α). In this case 1
α
< M+γ

M+γ−φ
and thus all of the allowable choices of

θ ∈ (1, 1
α
) are such that θ < M+γ

M+γ−φ
. Denoting k∗ such that λ∗ = λk∗ , we have

that:

λ∗ =

(
γ +M − φθ

θ − 1

)
︸ ︷︷ ︸

≤0

θk
∗
+

φθ

θ − 1
θK . (4.99)

4At θ = 1, the fraction 1−θk

1−θ is not well-defined. However, the proof can be carried
out using the summation notation. In this case λ∗ = M + γ, and (4.93) yields Pu ≤
1− h(x0)+γ−φK

M+γ .
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Thus, we know mink∈{0,...,K} λk occurs at k∗ = K and so:

Pu ≤
W0

λ∗
=
M − h(x0) +

φθ
θ−1

(
θK − 1

)
(M + γ)θK

. (4.100)

Since this bound is a decreasing function of θ (as shown in Lemma 3 following
this proof), I choose the largest allowable value θ∗ = 1

α
to achieve the bound:

Pu ≤
W0

λ∗
=
M − h(x0) +

φ
1−α

(
α−K − 1

)
(M + γ)α−K

, (4.101)

=

(
M − h(x0)

M + γ

)
αK +

M(1− α)− δ
M + γ

K∑
i=1

αi−1, (4.102)

where I again use the geometric series identity.

Case 2: Now consider the second case where δ ≥ −γ(1 − α), so φ ≤ (M +

γ)(1−α), which implies that the set [ M+γ
M+γ−φ

, 1
α
] is nonempty. Choosing a value

of θ in this set ensures that:

λ∗ =

(
γ +M − φθ

θ − 1

)
θk

∗

︸ ︷︷ ︸
≥0

+
φθ

θ − 1
θK . (4.103)

Thus mink∈{0,...,K} λk occurs at k∗ = 0 and:

Pu ≤
W0

λ
=

(M − h(x0)) +
φθ
θ−1

(
θK − 1

)
(M + γ) + φθ

θ−1
(θK − 1)

, (4.104)

= 1− h(x0) + γ

M + γ + φθ
θ−1

(θK − 1)
. (4.105)

Since this bound is increasing in θ (as shown in Lemma 4 following this proof),
I choose θ∗ = M+γ

M+γ−φ
to achieve the bound:

Pu ≤ 1−
(
h(x0) + γ

M + γ

)(
Mα + γ + δ

M + γ

)K

. (4.106)

If, alternatively, I choose θ ∈
(
1, M+γ

M+γ−φ

]
, then the inequality in (4.99) holds,

k∗ = K, and the bound is decreasing in θ as in Case 1. Evaluating this bound
for the minimizing value θ∗ = M+γ

M+γ−φ
again yields:

Pu ≤
M − h(x0) + (M + γ)(θK − 1)

(M + γ)θK
, (4.107)

= 1−
(
h(x0) + γ

M + γ

)(
Mα + γ + δ

M + γ

)K

. (4.108)
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I now state and prove the lemmas used in the preceding proof to prove optimal-
ity of the bound in Theorem 34 Cases 1 and 2. These lemmas were originally
stated without proof in [59].

Lemma 3. For M ∈ R>0, γ, φ ∈ R≥0 , h(x0) ∈ [−γ,M ], and K ∈ Z≥1, the
function Ψ1 : (1,∞)→ R defined as:

Ψ1(θ) =
M − h(x0) +

φθ
θ−1

(
θK − 1

)
(M + γ)θK

, (4.109)

is monotonically decreasing.

Proof. The geometric series identity yields:

Ψ1(θ) =
M − h(x0)

M + γ
θ−K +

φ

(M + γ)

K∑
i=1

θi−K , (4.110)

dΨ1

dθ
= −M − h(x0)

M + γ
Kθ−K−1 − φ

K∑
i=1

(K − i)θi−K−1

M + γ
,

≤ 0, (4.111)

for all θ ∈ (1,∞).

Lemma 4. For M ∈ R>0, γ, φ ∈ R≥0, h(x0) ∈ [−γ,M ], and K ∈ Z≥1, the
function Ψ2 : (1,∞)→ R defined as:

Ψ2(θ) = 1− h(x0) + γ

M + γ + φθ
θ−1

(θK − 1)
, (4.112)

is monotonically increasing.

Proof. The geometric series identity yields:

Ψ2(θ) = 1− h(x0) + γ

M + γ + φ
∑K

i=1 θ
i
, (4.113)

dΨ2

dθ
=

(h(x0) + γ)
(
φ
∑K

i=1 iθ
i−1
)

(
M + γ + φ

∑K
i=1 θ

i
)2 , (4.114)

≥ 0, (4.115)

for all θ ∈ (1,∞).
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Practical Considerations in Enforcing Safety of Stochastic Systems

Theorem 34 allows reasoning about the finite-time safety of systems governed
by DT-BFs. To utilize the results of this theorem in a control setting, I aim to
use DT-CBFs to develop controllers which enforce the expectation condition:

E[h(F(xk,uk) + dk) | xk] ≥ αh(xk). (4.116)

Like the DT-CBF-OP controller, I seek to enforce this constraint using an
optimization-based controller that enforces safety while achieving pointwise
minimal deviation from a nominal controller knom : E → Rm in the form of an
Expectation-based DT-CBF (ED) controller:

kED(xk) = argmin
u∈Rm

∥u− knom(xk)∥2 (ED)

s.t. E[h(F(xk,u) + dk) | xk] ≥ αh(xk).

The expectation in (ED) adds complexity that is not generally considered
in the application of deterministic DT-CBFs. Typically, CBF-based con-
trollers solve “certainty-equivalent” optimization programs, like this Certainty-
Equivalent DTCBF (CED) controller, that replace the expected barrier value
E[h(xk+1) | xk] with the barrier at the expected next state, h(E[xk+1 | xk]):

kCED(xk) = argmin
u∈Rm

∥u− knom(xk)∥2 (CED)

s.t. h(F(xk,u) + E[dk]) ≥ αh(xk),

where E[F(xk,uk) | xk] = F(xk,uk) and E[dk|xk] = E[dk]. This constraint
is often easier to evaluate than (4.116) since it allows control actions to be
selected with respect to the expected disturbance E[dk] without needing to
model the disturbance distribution D. If the disturbance is zero-mean, then
this form of the constraint is implicitly enforced by DT-CBF controllers such
as those presented in [234], [244]. However, when replacing ED with CED it
is important to consider the effect of Jensen’s inequality in Theorem 33.

If the “certainty-equivalent” constraint in CED is strictly concave5, then we can
apply the results of Theorem 34 directly since Jensen’s inequality tightens the
constraint and ensures satisfaction of the expectation condition (4.81). Unfor-
tunately, using such a controller is a non-convex optimization program which

5The constraint h(xk + u) ≥ αh(xk) is concave in u when h is convex and it is convex
in u when h is concave.
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can be impractical to solve. If, instead, the constraint is convex, then CED is
a convex program, but does not necessarily enforce the expectation condition
(4.81) in Theorem (34) due to the gap introduced by Jensen’s inequality. In
order to apply the results of Theorem 34 to controllers of the form (CED) with
convex constraints, we must first provide a bound on the gap introduced by
Jensen’s Inequality. In particular, for any concave function h : E → R and
random variable d ∼ D, I seek to determine a value ψ ∈ R≥0 such that, for all
x ∈ E and u ∈ Rm:

E[h(F(x,u) + d) | x] ≥ h(F(x,u) + E[d])− ψ, (4.117)

thus quantifying the gap introduced by Jensen’s inequality. A large body
of work has studied methods for finding the smallest possible ψ that satis-
fies (4.117). Here I adapt a result in [248] to achieve a relatively loose, but
straightforward bound:

Lemma 5. Consider a function h : Rn → R that is twice-continuously dif-
ferentiable on Rn, concave, and satisfies supx∈Rn ∥∇2h(x)∥2 ≤ λmax for some
λmax ∈ R≥0, and a random variable x that takes values in Rn with E[∥x∥] <∞
and ∥cov(x)∥ <∞. Then we have that:

E[h(x)] ≥ h(E[x])− λmax

2
tr(cov(x)). (4.118)

Proof. Consider the function η : Rn → R which is twice-continuously differ-
entiable on E and convex that is defined as η = −h. The Intermediate Value
Theorem [249, Theorem 4.5.1] implies that for all y, z ∈ Rn, there exists an
ω ∈ [0, 1] such that:

η(z) = η(y) +∇η(y)⊤e+ 1

2
e⊤∇2η(c)e, (4.119)

where e ≜ z− y, c ≜ ωz+ (1− ω)z, and ∇2η(c) is the Hessian of η evaluated
at c. We then have that:

η(z) = η(y) +∇η(y)⊤e+ 1

2
tr
(
∇2η(c)ee⊤

)
, (4.120)

≤ η(y) +∇η(y)⊤e+ 1

2
∥∇2η(c)∥2tr

(
ee⊤

)
, (4.121)

≤ η(y) +∇η(y)⊤e+ λmax

2
tr
(
ee⊤

)
, (4.122)

where the first inequality is a property of the trace operator for positive semi-
definite matrices [250] (and ∇2η(c) is positive semi-definite as η is convex),
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and the second inequality follows by our definition of λmax. Let x be a random
variable taking values in Rn with probability density function p : Rn → R≥0,
and let µ ≜ E[x]. We then have that:

E[η(x)]− η(E[x]) =
∫
Rn

(η(x)− η(µ))p(x)dx, (4.123)

≤
∫
Rn

∇η(µ)⊤e+ λmax

2
tr
(
ee⊤

)
p(x)dx, (4.124)

=
λmax

2
tr(cov(x)), (4.125)

where e = x− µ. Replacing η with −h yields:

E[h(x)] ≥ h(E[x])− λmax

2
tr(cov(x)). (4.126)

I first note that this theorem requires considering Rn instead of an open set
E ⊂ Rn. This is important for ensuring the the first term in the integral in
(4.124) evaluates to 0. This could likely be relaxed with additional assumptions
on the nature of the distribution D. Next, I note that although this value
of ψ = λmax

2
tr(cov(x)) is easy to interpret, tighter bounds exist which have

less restrictive assumptions than a globally bounded Hessian [247]. Lastly, I
note that sampling-based methods could be used to approximately satisfy the
constraint (4.117) by estimating ψ empirically.

Next, I present a controller which combines the mean-based control of the “cer-
tainty equivalent” (CED) while also accounting for Jensen’s inequality. This
Jensen-Enhanced DT-CBF (JED) controller includes an additional control pa-
rameter cJ ≥ 0 to account for Jensen’s inequality:

kJED(xk) = argmin
u∈Rm

∥u− knom(xk)∥2 (JED)

s.t. h(F(xk,uk) + E[dk])− cJ ≥ αh(xk).

Given this controller and a method for bounding ψ, we can now apply Theorem
34 while accounting for (or analyzing) the effects of Jensen’s inequality on the
(JED) controller:

Theorem 35. Consider the closed-loop system (4.77) and let the function
h : Rn → R be twice-continuously differentiable on Rn, concave, and satisfy
supx∈Rn h(x) ≤ M for M ∈ R>0 and supx∈Rn ∥∇2h(x)∥2 ≤ λmax for λmax ∈
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R≥0. Suppose there exists an α ∈ (0, 1) and a cJ ∈ [0, λmax
2

tr(cov(d)) +M(1−
α)] such that:

h(F(x,k(x)) + E[d])− cJ ≥ αh(x), (4.127)

for all x ∈ Rn with d ∼ D. Then we have that:

E[h(F(x,k(x)) + d) | x] ≥ αh(x) + δ, (4.128)

for all x ∈ Rn with d ∼ D and δ = cJ − λmax
2

tr(cov(d)).

Proof. Given x ∈ Rn, Lemma 5 ensures that:

0 ≤ h(F(x,k(x)) + E[d])− cJ − αh(x), (4.129)

≤ E[h(F(x,k(x)) + d) | x] + ψ − cJ − αh(x), (4.130)

where ψ = λmax
2

tr(cov(d)). Letting δ = cJ − λmax
2

tr(cov(d)) yields the desired
result.

Simulation Results

Note that the contents of this subsection were primarily written by collabora-
tors, edited by Andrew Taylor for their appearance in conference proceedings,
and edited by Andrew Taylor for their appearance in this thesis.

We now consider a variety of simulation examples that highlight the key fea-
tures of the proposed approach.

Linear 1D System

Here we analyze the finite-time safety probability bounds by considering the
case of unbounded i.i.d. disturbances dk ∼ N (0, 1) (normal distribution with
zero mean and variance of one) for the system:

xk+1 = xk + 2 + uk + σdk, (4.131)

with a function h : R → R defined as h = 1 − x2 yielding the set C = {x |
1− x2 ≥ 0}. Observe that h is upper bounded by 1 on Rn and as a constant
Hessian of value −2. The Jensen gap for this system and DT-CBF is bounded
by ψ = σ2. For simulation, we employ the JED controller with cJ = σ2,
α = 1 − σ2, and nominal controller knom(xk) = 0. Figure 4.21 shows the
results of 500 one second long trials run with a variety of σ ∈ [0, 0.2] and also
displays how the bound on Pu decreases as γ increases.
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Figure 4.21. The dashed lines represent the theoretical probability bounds for the system
as in Theorem 34. The solid lines represent the Monte Carlo (MC) estimated Pu across 500
experiments.

Simple Pendulum

Next we consider an inverted pendulum about its upright equilibrium point
with the DT dynamics:[

θk+1

θ̇k+1

]
=

[
θk +∆tθ̇k

θ̇k +∆t sin(θk)

]
+

[
0

∆t

]
u+ dk, (4.132)

with time step ∆t = 0.01, i.i.d disturbances6 dk ∼ N (02,Diag([0.0052, 0.0252]]),
and set C defined as:

C =
{
x ∈ Rn

∣∣∣∣ 1− 62

π2
x⊤

[
1 3−

1
2

3−
1
2 1

]
x︸ ︷︷ ︸

hpend(x)

≥ 0

}
, (4.133)

which is constructed using the CTLE as in [115] and for which |θ| ≤ π/6 for
all x ∈ C. Figure 4.22 shows the results of 500 one second long trials for each
x0 ∈ C using the JED controller with parameters α = 1 − ψ, cJ = ψ, where
ψ = λmax

2
tr(cov(dk)). This figure highlights the influence of x0 and shows how

the bound on Pu increases as h(x0) decreases.

Quadruped

Finally, we consider controlling a simulated quadrupedal robot locomoting
along a narrow path. The simulation is based on a Unitree A1 robot as shown

6Diag: Rn → Rn×n generates a square diagonal matrix with its argument along the
main diagonal.
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Figure 4.22. (Top Left) System diagram of the inverted pendulum. (Top Right) 500 one
second long example trajectories starting at x0 = 0. (Bottom Left) Monte Carlo estimates
of Pu for γ = 0 using 500 one second long trials for each initial conditions represented by a
black dot. (Bottom Right) The (conservative) theoretical bounds on Pu from Theorem 34.

in Figure (4.23) which has 18 degrees of freedom and 12 actuators. An inverse
dynamics-based (ID) QP controller designed using concepts in [251] and im-
plemented at 1 [kHz] is used to track stable walking gaits with variable planar
velocities and angle rate using the motion primitive framework presented in
[252]. The full 18 degree of freedom quadruped dynamics are simulated at
1 [kHz], but the methodology in [253] is used by considering the following
simplified discrete-time single-integrator system for DT-CBF-based control:

xk+1 = xk +∆t

cos θ − sin θ 0

sin θ cos θ 0

0 0 1


v

x
k

vyk
θk

+ dk, (4.134)

where xk =
[
x, y, θ

]⊤
. In order to represent the error caused by uncertain

terrain, zero mean Gaussian disturbances are added to the quadruped’s (x, y)
body position and velocity with variances of 2.25× 106 and 0.01 respectively.
This random noise along with the dynamics-mismatch between the full-order
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Figure 4.23. Safety of a simulated quadrupedal robot locomoting on a narrow path for a
variety of controllers. (Top Left) The safe region that the quadruped is allowed to traverse.
(Bottom Left) A system diagram depicting the reduced-order model states of the quadruped[
x y θ

]⊤. (Top Right) 50 trajectories for 3 controllers: one without any knowledge of
safety (knom), one with the standard (DT-CBF-OP) controller, and finally the proposed
method which accounts for stochasticity (JED). (Bottom Right) Plots of h(x), a scalar
value representing safety. The system is safe (i.e., in the green safe region) if h(x) ≥ 0.

quadrupedal dynamics and (4.134) is modeled as an i.i.d. random process dk.

The quadruped is commanded to stand and then traverse a 7 [m] path that is
1 [m] meter wide, with the set C = {x ∈ Rn | 0.52 − y2 ≥ 0}. For this simu-
lation, three controllers are compared: a simple nominal controller knom(x) =[
0.2, 0, −θ

]⊤
with no understanding of safety, the DT-CBF-OP controller

with α = 0.99, and the proposed JED controller with α = 0.99 and cJ = ψ us-

ing the mean and covariance estimates, E[dk] ≈
[
−0.0132, −0.0034, −0.0002

]⊤
and tr(cov)(dk)) ≈ ψ = 0.000548, which were generated using 15 minutes of
walking data controlled by knom. The results of 50 trials for each controller
can be seen in Figure 4.23. As expected, knom generated the largest safety
violations and JED the smallest and fewest safety violations.
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Conclusion

In conclusion, in this section I have developed a framework for safety-critical
control of discrete-time systems with stochastic disturbances using CBFs and
convex optimization. I begin by reviewing discrete-time nonlinear dynamics
and corresponding variants of BFs and CBFs for such systems, followed by a
review of tools from probability theory that are useful for studying systems
with stochastic disturbances. I then consider nonlinear discrete-time systems
with stochastic disturbances and propose a notion of finite-time safety akin to
ISSf. I show how discrete-time BFs certify this finite-time safety property, and
then show how convexity properties of discrete-time CBFs can be used to syn-
thesize controllers that yield discrete-time BFs through convex optimization.
I conclude with a set of simulations on various systems.

4.6 Conclusion

In this chapter I have presented a collection of results on designing controllers
that are performant while providing robustness to disturbances. In Section 4.2
I looked at some of the limitations of controllers designed through ISSf-CBFs
as originally posed in [58] and presented in Section 2.9. This investigation
focuses on balancing meaningful theoretical guarantees with conservative be-
havior. Drawing motivation from this analysis, in Section 4.3 I present a novel
modification of ISSf in the form of Tunable Input-to-State Safety (TISSf) that
permits controllers that provide not only meaningful theoretical guarantees,
but also strong closed-loop performance. I then explore the capabilities of
TISSf in the context of a simple inverted pendulum. In Section 4.4, I con-
sider the significantly more challenging problem of designing a safety-critical
controller for a connected automated semi-trailer truck. A simplified model
for this system neglects important actuator dynamics in an experimental sys-
tem that lead to the failure of standard CBF-based controllers to render the
system safe. Capturing the effect of these dynamics as a matched distur-
bance, I design a host of controllers utilizing ISSf-CBFs and TISSf-CBFs, and
demonstrate the ability of TISSf to produce improvements in theoretical guar-
antees and closed-loop performance over ISSf-CBF based controllers, including
on the experimental system. In Section 4.5, I consider safety-critical control
for discrete-time systems subject to stochastic disturbances. I review tools
for discrete-time safety critical control and probabilistic tools for studying
stochastic disturbances. I then propose a notion of finite-time safety that
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draws inspiration from the set-expansion paradigm posed by ISSf, and show
how discrete-time barrier functions certify this safety property. I conclude
with studying how convexity properties of a discrete-time CBF play an impor-
tant role in permitting the design of controllers that are robust to stochastic
disturbances through convex optimization, and demonstrate such controllers
on a collection of simulation environments.

I think there are a number of meaningful directions of future work stemming
from these results. In the context of ISSf and TISSf, TISSf makes signifi-
cant strides in achieving theoretical guarantees that more accurately describe
the closed-loop behavior of a system operating under a controller that is ro-
bust to disturbances. Still, I believe that there still remains the potential to
more closely match theoretical safety guarantees with the closed-loop behavior
that is actually observed, thereby ensuring that designs focused on pursuing
quantitative theoretical guarantees don’t produce excessively conservative con-
trollers. One particular observation is that both ISSf and TISSf rely on the
∞-norm of the disturbance. This contrasts the fact that disturbance signals
impact the evolution of the state by being integrated over a period of time.
If the disturbance is large but present for a small period of time, it will yield
a large ∞-norm and have potentially little impact on the evolution of the
system (this is why the essential supremum is used in the first place!). This
is not a new observation in terms of studying the impact of disturbances on
systems, which has been well characterized for linear systems [99] and codified
for stability through the notion of L-stability [100, Chapter 5]. I believe that
developing notions of ISSf that are based on Lp-norms may permit stronger
theoretical guarantees for a system exposed to a specific class of disturbances.
An another idea that would likely share connections with this line of thinking
is that of integral Input-to-State Stability [254].

In the context of safety-critical control in the presence of stochastic distur-
bances, I also think there are a number of future work directions that would
directly improve the results in Section 4.5. First, there is likely significant
room for improving the quality of the bounds achieved through this analysis
through the intelligent choice of CBFs, or synthesis of CBFs that optimize
these bounds (similar to the work in [61]). Other approaches for improving
the bound could look at making stronger claims on the higher-order moments
of the disturbance distributions and making use of stronger tools than Ville’s
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inequality. A potentially better avenue would consider the fact that the nom-
inal controller knom is rarely attempting to make a system unsafe, such that
the required CBF inequality constraint is rarely active. I hypothesize this
may require studying the state distribution, similar to the line of work in [68].
Lastly, I think there is a natural opportunity to consider the impact of noisy
measurements on safety-critical control through this framework. While the
work in the next chapter makes some initial steps into measurement-robust
safety-critical control, it takes a deterministic model of measurement error,
and thus could be expanded to capture the fact that most measurement errors
are better captured through a stochastic model.
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C h a p t e r 5

MEASUREMENT-ROBUST SAFETY-CRITICAL CONTROL

In this chapter I will present results from my work developing methods for
safety-critical control that are robust to measurement errors. Feedback con-
trol is predicated on the ability to observe some portion (or all) of the system
state, which is then used as a state estimate in subsequent control compu-
tations. Forming a state estimated is generally done through a combination
of direct measurements of states and observers such as Kalman filters which
produce estimates of states that are not directly measured through an internal
model of the system dynamics [255]. Direct measurements are almost always
subject to some amount of noise, while observers can be subjected to errors
in an internal model, and may need to use a simplified internal model to per-
mit online computation (such as the linearization step that happens in an
extended Kalman filter [255]). The recent development of vision-based mea-
surement systems for robotic systems offers the promise of operating in highly
unstructured environments, but also comes with its own challenges. In par-
ticular, vision-based measurement systems, and especially those built using
learning methods, must convert a high-dimensional (and noisy) measurement
(such as an image) down into a low-dimensional estimate of the system state
(such as position, orientation, and velocities), which is an often imperfect pro-
cess. Thus, the resulting state estimate is often not exactly equal to the true
system state, introducing a mismatch between the state being used in the
theory-driven control computations and the true system state. Consequently,
this can not only lead to a failure to achieve theoretical guarantees, but poor
closed-loop system behavior. It is worth noting that is an issue that will face
the practical deployment of all of the methods developed in Chapters 2, 3, 4,
and 6 of this thesis. Thus, a thorough characterization of robust methods for
safety-critical control synthesis should consider the impacts of errors between
a state estimate and the true system state.

At the same time, building systems that are increasingly robust to different
challenges comes with its own challenge of over-conservative closed-loop be-
havior. As studied in Chapter 4, if a controller is built to provide rigorous
theoretical safety guarantees in the presence of potentially large disturbances,
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and worst-case disturbances are not experienced, it can lead to unnecessarily
poor performance. If a system must be robust to both worst-case disturbances,
and worst-case measurement errors, it is reasonable to expect that this will
only lead to greater degrees of conservativeness. In practice, the designer of
a control system is often left performing the tedious task of tuning various
robustness parameters to try and balance the various types of robustness until
they get an acceptable level of closed-loop performance. This can be a time
consuming task, as often the designer of the control system doesn’t have a com-
plete understanding of how the various parameters interact to dictate overall
robustness and closed-loop performance. One thing the control designer is of-
ten capable of easily providing feedback on is whether or not they think that
the system is too conservative, or not safe enough. It is this observation that
will motivate the contents of Section 5.4.

My work in this chapter focuses on developing CBF-based control designs that
are robust to measurement errors, as well as an algorithm for tuning robust-
ness parameters of a CBF-based controller through preference-based learning
(PBL). In Section 5.1 I discuss related work in the topics of safety-critical
control techniques that are robust to measurement errors as well as the use
of preference-based learning for tuning controller parameters. In Section 5.2
I will present the notion of a Measurement-Robust Control Barrier Function
(MR-CBF). I begin by discussing how measurement error appears when trying
to certify safety of a system. I will then present MR-CBFs and show how they
can be used to synthesize controllers that are robust to measurement errors
using convex optimization, resulting in a controller specified as a second-order
cone program (SOCP). Following this, I show how this controller can be con-
verted to a standard form SOCP and establish some local Lipschitz properties
of a relaxed form of the controller. In Section 5.3 I will present the integration
of MR-CBFs with backup set CBFs as formulated in [256]. I review backup set
CBFs, present their integration with MR-CBFs, and demonstrate the ability
to keep a Segway system using vision-based measurements safe in the pres-
ence of measurement errors in both simulation and experimentally. Lastly, in
Section 5.4, I will present work on tuning robustness parameters in a CBF-
based controller through the use of PBL. I will review PBL, frame the tuning
of robustness parameters as a PBL problem, and demonstrate the proposed
approach in simulation and experimentally. Key contributions of this work are
described at the beginning of each respective section.
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5.1 Related Work

Measurement-Robust and Vision-Based Control Barrier Functions

The consideration of measurement errors and their impact on CBF-based con-
trollers has been a topic of recent interest. The work in [50] was the first to
consider the impact of measurement errors by incorporating the covariance of
an unscented Kalman filter into the CBF inequality as an additive term. In
[66] measurements are modeled using stochastic differential equations, and a
CBF is robustified against potential estimation error, while in [73] a bounded
set of measurement errors is considered by requiring that a controller satisfy
a restricted sub-tangentiality condition on the boundary of a set C that is to
be kept forward invariant. The work in [74], [93] utilizes interval arithmetic
to consider all possible evolutions of the value of a CBF in the presence of
measurement errors, and chooses control inputs to require that all possible
evolutions satisfy a safety constraint. In [257], measurement errors are treated
as errors in the specification of safety via an uncertain CBF, and made sub-
sequently robust. The work in [258] forms barriers based on locally sensed
constraints drawn from online measurements. Additional work considering
observers for forming state estimates has used the notion of ISSf explored in
Section 2.7 to quantify the impact of observation errors on safety [259], used
function approximation techniques to capture estimation error and synthesize
robust controllers [260], and provided a framework for understanding safety
with general observers that achieve ISS or bounded error properties [261].

Vision-based control in robotics has also seen significant development [262]–
[264] (these reflect only a tiny fraction of the extensive body of recent work). A
collection of this work has focused primarily on the problem of achieving the-
oretical stability or safety guarantees in the presence of imperfect perception
systems. The work in [265] considers linear systems with imperfect perception-
based measurements and achieves robust stability guarantees through the per-
spective of System Level Synthesis (SLS), while the work in [266] considers
certainty-equivalent perception-based control for linear systems. The work
in [267], [268] focuses on discrete-time system with perception-based measure-
ments that are subject to adversarial attacks, and provides rigorous theoretical
guarantees utilizing Lyapunov-based arguments. The use of CBFs with vision-
based systems (not including my work and its extensions, discussed below) has
considered producing barrier functions for LiDAR-based vision systems sub-
ject to sensor faults and attacks [269], or considered the use of Neural Radiance
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Fields (NeRFs) in conjunction with CBFs [270].

My work in [184], presented in Section 5.2 proposes the notion of a Measurement-
Robust Control Barrier Function (MR-CBF). This definition considers how er-
ror in a state estimate propagates through nonlinear control-affine dynamics,
revealing specific structure on how measurement error reacts with the input to
the system when determining the time derivative of a MR-CBF. This leads to a
convex optimization-based controller specified as a second-order cone program
(SOCP), which I evaluate the local Lipschitz continuity of. I demonstrate the
proposed approach in simulation on a planar Segway system. In Section 5.3,
which features my work in [23], I explore how MR-CBFs can be unified with
backup set CBFs [256], leading to the first experimental demonstration of MR-
CBFs. Extensions of this work have looked at performing self-supervised learn-
ing using stereo vision and MR-CBFs [185] and end-to-end imitation learning
with MR-CBFs [174], as well as ways in which perception systems can be
improved to ensure feasibility of CBF-based inequalities [271].

Preference-Based Learning

Preference-based learning (PBL) provides an approach for searching complex
parameter spaces via subjective feedback, without an explicitly defined reward
function [75]. The main advantage of online PBL is its ability to interactively
infer a user’s latent utility function using only subjective feedback such as
pairwise preferences and ordinal labels [272], [273]. It has seen application on
a wide-range of problems including recommender systems [274], search engines
[275], trajectory planning [276]–[278], and spinal cord stimulation [279]. A
particular area of development relevant for control systems is safe PBL, which
seeks to ensure the recommendations to users do not violate some prespecified
safety criterion [135], [279], [280]. In the context of control systems, there
has recently been significant effort in developing PBL approaches for tuning
existing tools built from control theory. One such example is the selection of
walking gaits preferred by a patient that is utilizing a lower-body exoskeleton,
which has been explored extensively in [76]–[78]. These ideas were further
extended to autonomous bipedal systems to tune walking gait parameters for
the AMBER-3M planar biped explored in Section 3.7 [79], or used to tune the
parameters of a (CLF-QP) controller for the AMBER-3M planar biped and
Cassie 3D biped [80]. A toolbox and comprehensive survey of the use of PBL
for robotic systems can be found in [281].
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My work in [23], presented in Section 5.4, draws inspiration from the ideas in
[80] to tune parameters of a convex optimization-based controller. While the
work in [80] focused specifically on learning the parameters of a (CLF-QP)
focused on stabilizing a bipedal system, I will focus on tuning the parameters
of a CBF-based controller that is robust to both disturbances and measure-
ment errors. In particular, this controller will unify the reduced-order model
tools for CBFs developed in [253] with ISSf-CBFs presented in Section 2.9 and
MR-CBFs developed in Section 5.2 to design a robust safety-critical controller
for a quadrupedal robotic system. This controller is initially extremely con-
servative, with almost negligible performance. PBL is deployed to adjust the
parameters of this controller until a balance can be struck between robustness
and performance in both simulation and experimentally.

5.2 Measurement-Robust Control Barrier Functions

In this section I will present work on developing Measurement-Robust Con-
trol Barrier Functions (MR-CBFs) for safety-critical control in the presence of
measurement errors. I begin by describing the setting of measurement error
that I consider. Following this, I present novel definitions of Measurement-
Robust Barrier Functions (MR-BFs), show how an MR-BF leads to safety
in the presence of measurement errors. I then extend the notion of an MR-
BF to an MR-CBF, and demonstrate its application on a Segway system in
simulation. Lastly, I show how the convex optimization problem defining an
MR-CBF-based controller can be cast as an SOCP in standard form, and then
establish local Lipschitz properties of the controller under a mild relaxation.

The contributions of this section are as follows:

• The definition of Measurement-Robust Control Barrier Functions (MR-
CBFs) as a tool for achieving safety-critical control in the presence of
measurement errors through convex optimization.

• A detailed analysis of the regularity properties of the resulting SOCP-
based controllers synthesized using MR-CBFs.

The text for this section is adapted from:

S. Dean, A. J. Taylor, R. K. Cosner, B. Recht, and A. D. Ames, “Guar-
anteeing safety of learned perception modules via measurement-robust



229

control barrier functions,” in Proc. Conf. on Robotics Learning (CoRL),
Cambridge, MA, USA, 2020.

A. J. Taylor participated in the conception of the project, algorithm
design and theoretical analysis, and writing of the article.

Measurement Error

In many applications, the state x is not directly available to the controller, but
rather a corresponding measurement y ∈ Rk which satisfies the relationship:

y = p(x), (5.1)

for a function p : E → Rk that is assumed to be locally Lipschitz continuous
on E. In this work I assume the relationship between the measurement and
the true state is deterministic, such that the evolution of the system can be de-
scribed by an ordinary differential equation rather than a stochastic differential
equation. I further assume that there exists a function q : p(E) → E that is
locally Lipschitz continuous on p(E) and for any x ∈ E with a corresponding
measurement y ∈ p(E), satisfies q(y) = x. This assumption implies that the
state x could be uniquely determined from its corresponding measurement y

if the function q was known, but that is often not the case in many modern
control applications (such as when using vision-based measurement systems).

While the function p is often determined by the physical attributes of a system
and its sensors, an estimate of the function q, given by the function q̂ : p(E)→
E which is assumed to be locally Lipschitz continuous on p(E), is constructed
such that given an x ∈ E with a corresponding measurement y ∈ p(E), an
estimate of the state, x̂ ∈ E, can be determined as x̂ = q̂(y). For notational
simplicity, I define the measurement-estimate function v̂ : E → p(E) × E

such that v̂(x) = (p(x), q̂(p(x)) and v̂(E) as the image of the set E under
the measurement-estimate function.

The function q̂ is constructed either via system and measurement models,
or from data using learning methods, and thus its accuracy in estimating q

degrades with imperfections in sensor fabrication and integration, or imperfec-
tions in learning models and training data. Thus, given a state x ∈ E and a
corresponding measurement y ∈ p(E), I assume that the corresponding state
estimate x̂ is related to the true state by:

x̂ = q̂(y) ≜ x+ e(y), (5.2)
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Figure 5.1. Visualization of the point-wise sets X̂ (x) and X (y, x̂). The set X̂ (x) consists
of all possible estimates that may correspond to the state x, and the set X (y, x̂) consists of
all the possible states for a given measurement-state estimate pair (y, x̂).

for an unknown function e : p(E) → Rn that is defined implicitly via q̂. In
practice, the function e can often be characterized via upper bounds on mea-
surement model errors or via data-driven arguments for learning models. In
particular, I assume that while e(y) is not known for a particular measure-
ment y ∈ p(E), it is known that e(y) ∈ E(y) for a measurement-dependent,
compact pointwise set E(y) ⊂ Rn. This leads to the definition of the following
two pointwise sets:

X̂ (x) ≜ {x̂ ∈ Rn | ∃ e ∈ E(p(x)) s.t. x̂ = x+ e} , (5.3)

X (y, x̂) ≜ {x ∈ Rn | ∃ e ∈ E(y) s.t. x̂ = x+ e} . (5.4)

The first of these two pointwise sets can be interpreted as all possible state
estimates x̂ corresponding to a particular state x, restricted by the possible
error dictated by the set E(p(x)). The second pointwise set consists of all
potential states that may yield a measurement-state estimate pair. This set is
directly computable given a measurement and state estimate, and will play an
important role in control synthesis. These sets are visualized in Figure 5.1.

Measurement-Robust Control Barrier Functions

Consider a controller k : p(E)× E → Rm that is locally Lipschitz continuous
on p(E) × E and depends on a measurement y and state estimate x̂, rather
than explicitly on the state x. This leads to the closed-loop system:

ẋ = f(x) + g(x)k(y, x̂). (5.5)

I assume that for any initial condition x0 ∈ E, there exists an interval I(x0) =

[0, tmax(x0)) ⊆ R≥0 and a unique continuously differentiable solution φ :
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I(x0)→ E satisfying:

φ̇(t) = f(φ(t)) + g(φ(t))k(p(φ(t)), q̂(p(φ(t)))), t ∈ I(x0), (5.6)

φ(0) = x0. (5.7)

Consider a function h : E → R that is continuously differentiable on E and
its corresponding 0-superlevel set C. Observe that satisfying the BF condition
in (2.57) would require that:

ḣ(x) =
∂h

∂x
(x) (f(x) + g(x)k(y, x̂)) ≥ −α(h(x)), (5.8)

for each x ∈ E with corresponding measurement-state estimate pair (y, x̂) ∈
v̂(E) for some α ∈ Ke. Importantly, while the controller k only has access to
the measurement-state estimate pair, the safety constraint depends on the true
state in several ways, including the value of h and ∂h

∂x
as well as the dynamics

f and g. Thus, I will propose an alternative condition which depends on only
a measurement y, a state estimate x̂, and the set X (y, x̂). Observe that to
ensure safety with a BF, it is sufficient for the following condition to hold for
all (y, x̂) ∈ v̂(E):

inf
x∈X (y,x̂)

∂h

∂x
(x)(f(x) + g(x)k(y, x̂)) ≥ −α(h(x)). (5.9)

This condition implies that the controller k renders the system safe for all pos-
sible states corresponding to a given measurement-state estimate pair. Veri-
fying that this condition holds can be difficult for an arbitrary CBF, and it is
not easily (or possibly) enforced in a convex-optimization based controller. To
resolve these problems, I introduce the following definition:

Definition 40 (Measurement-Robust Barrier Function (MR-BF)). Let C ⊂ E

be the 0-superlevel set of a function h : E → R that is continuously dif-
ferentiable on E. The function h is a Measurement-Robust barrier func-
tion (MR-BF) for the closed-loop system (5.5) on C with parameter function
(b, a) : v̂(E)→ R2

≥0 that is locally Lipschitz continuous on v̂(E) if there exists
α ∈ Ke such that:

∂h

∂x
(x̂)(f(x̂)+g(x̂)k(y, x̂))− (b(y, x̂)+a(y, x̂)∥k(y, x̂)∥) ≥ −α(h(x̂)). (5.10)

for all (y, x̂) ∈ v̂(E).
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The definition of a MR-BF introduces the non-positive term −(b(y, x̂) +
a(y, x̂)∥k(y, x̂)∥) to the BF condition (2.57), requiring that a stronger de-
gree of safety be enforced compared to the typical BF. Furthermore, the norm
of the input appears in this term, indicating that for large values of a(y, x̂),
large inputs will often violate this constraint. The advantage of this is that
knowledge of the true state x can be removed from the BF condition and re-
placed with only knowledge of the measurement y and state estimate x̂ which
are available to the controller k. This enables the following safety result:

Theorem 36. Let C ⊂ E be the 0-superlevel set of a function h : E → R
that is continuously differentiable on E. Assume1 the functions Lfh, Lgh, and
α ◦ h : E → R are Lipschitz continuous on E with Lipschitz constants LLfh,
LLgh, and Lα◦h, respectively. Further let a function ϵ : p(E) → R≥0 that is
locally Lipschitz continuous on p(E) satisfy:

max
e∈E(y)

∥e∥ ≤ ϵ(y) (5.11)

for all y ∈ p(E). If h is a MR-BF for (5.5) on C with parameter function
(ϵ(y)(LLfh + Lα◦h), ϵ(y)LLgh), then the system (5.5) is safe with respect to C.

Before proving this theorem, note that if h is an MR-BF for the closed-loop
system (5.5) on C with a parameter function (b, a) : v̂(E) → R2

≥0 such that
b(y, x̂) ≥ ϵ(y)(LLfh + Lα◦h) and a(y, x̂) ≥ ϵ(y)LLgh for all measurement-
state estimate pairs (y, x̂) ∈ v̂(E), then h is an MR-BF for the closed-loop
system (5.5) on C with the parameter function (ϵ(y)(LLfh + Lα◦h), ϵ(y)LLgh).
Thus, even if tight Lipschitz constants of these functions are not known, over-
approximations can be used and theoretical safety guarantees will be retained
(at the expense of potential conservativeness).

Proof. Define the function c : E × Rm → R as

c(x,u) = Lfh(x) + Lgh(x)u+ α(h(x)). (5.12)

This proof will follow from the proof of Theorem 8 by showing that for any
x ∈ E, with corresponding measurement-state estimate pair (y, x̂) = v̂(x):

c(x,k(y, x̂)) ≥ 0. (5.13)
1The following results developed using MR-CBFs will focus on maintaining forward

invariance of the set C, rather than an enlargement of C as was considered in Chapter 4.
Due to this, the set that this assumption needs to hold over can be any arbitrarily small
open set containing C, to which E is understood to be restricted to. This assumption is
particularly reasonable if the set C is compact.
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To show that (5.13) is true, consider a measurement-state estimate pair (y, x̂) ∈
v̂(E). A sufficient condition for (5.13) to hold is given by:

inf
x∈X (y,x̂)

c(x,k(y, x̂)) ≥ 0. (5.14)

Recalling that x̂ = x+ e(x), we have:

inf
x∈X (y,x̂)

c(x,k(y, x̂)) = inf
e∈E(y)

c(x̂− e,k(y, x̂)), (5.15)

= c(x̂,k(y, x̂)) + inf
e∈E(y)

c(x̂− e,k(y, x̂))− c(x̂,k(y, x̂)),

(5.16)

≥ c(x̂,k(y, x̂))− sup
e∈E(y)

|c(x̂− e,k(y, x̂))− c(x̂,k(y, x̂))|.

(5.17)

The assumption on Lipschitz continuity of Lfh, Lgh, and α ◦ h on E enables
the following bound:

|c(x′,u)− c(x,u)| ≤ |Lfh(x
′)− Lfh(x)|+ |Lgh(x

′)u− Lgh(x)u|

+ |α(h(x′))− α(h(x))|, (5.18)

≤ LLfh ∥x′ − x∥+ ∥Lgh(x
′)− Lgh(x)∥ ∥u∥

+ Lα◦h ∥x′ − x∥ , (5.19)

≤ (LLfh + LLgh ∥u∥+ Lα◦h) ∥x′ − x∥ . (5.20)

Therefore, using the definition of ϵ(y) we have:

sup
e∈E(y)

|c(x̂− e,k(y, x̂)) − c(x̂,k(y, x̂))|

≤ sup
e∈E(y)

(LLfh + LLgh ∥k(y, x̂)∥+ Lα◦h) ∥e∥ , (5.21)

≤ (LLfh + LLgh ∥k(y, x̂)∥+ Lα◦h)ϵ(y). (5.22)

Thus:

inf
x∈X (y,x̂)

c(x,k(y, x̂)) ≥ c(x̂,k(y, x̂))− (LLfh + LLgh ∥k(y, x̂)∥+ Lα◦h)ϵ(y).

(5.23)

By the MR-BF condition and the design of k we have that:

c(x̂,k(y, x̂))− ϵ(y)(LLfh + Lα◦h)− ϵ(y)LLgh ∥k(y, x̂)∥ ≥ 0, (5.24)

implying the condition (5.13).
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As with BFs and CBFs, the notion of an MR-BF extends to an MR-CBF:

Definition 41 (Measurement-Robust Control Barrier Function (MR-CBF)).
Let C ⊂ E be the 0-superlevel set of a function h : E → R that is continuously
differentiable on E. The function h is a Measurement-Robust Control Barrier
Function (MR-CBF) for the open-loop system (2.1) on C with parameter func-
tion (b, a) : v̂(E) → R2

≥0 that is locally Lipschitz continuous on v̂(E) if there
exists α ∈ Ke such that:

sup
u∈Rm

∂h

∂x
(x̂)(f(x̂) + g(x̂)u− (b(y, x̂) + a(y, x̂)∥u∥) > −α(h(x̂)). (5.25)

for all (y, x̂) ∈ v̂(E).

This condition is equivalently stated as:

∥Lgh(x̂)∥ ≤ a(y, x̂) =⇒ Lfh(x̂) > −α(h(x̂)) + b(y, x̂). (5.26)

In contrast to the implication in (2.61), we must not only consider where
Lgh(x̂) = 0m, but also where it is smaller than some threshold. Intuitively,
this captures the fact that if we are unsure of how the input will impact
the time derivative of the MR-CBF (we don’t know the direction of Lgh(x̂)

sufficiently well), then large inputs can be highly detrimental, and we can’t
take them to achieve safety. As ϵ(y) becomes smaller, the level of robustness
required by an MR-CBF approaches that of a regular CBF for the same set
C, and recovers the original CBF condition with no measurement error.

Given a MR-CBF h for (2.1) on C with parameter function (b, a) and a corre-
sponding α ∈ Ke, define the pointwise set:

KMR-CBF(y, x̂) ≜

{
u ∈ Rm

∣∣∣∣∣ Lfh(x̂) + Lgh(x̂)u

−(b(y) + a(y)∥u∥) ≥ −α(h(x̂))

}
, (5.27)

for (y, x̂) ∈ v̂(E). Given this construction, we have the following result:

Theorem 37. Let C ⊂ E be the 0-superlevel set of a function h : E → R
that is continuously differentiable on E. If h is an MR-CBF for the open-loop
system (2.1) on C with parameter function (b, a) : v̂(E) → R2

≥0, then the set
KMR-CBF(y, x̂) is non-empty for all (y, x̂) ∈ v̂(E), and for any controller k

that is locally Lipschitz continuous on v̂(E) with k(y, x̂) ∈ KMR-CBF(y, x̂) for
all (y, x̂) ∈ v̂(E), the function h is a MR-BF for the closed-loop system (5.5)
on C with parameter function (b, a).
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One advantage of this approach for resolving the impact of measurement model
error on safety is that the constraint in (5.27) remains convex. Given a nominal
controller knom : E → Rm that is locally Lipschitz continuous on E, this
constraint can then be directly integrated into an optimization based controller
as follows:

kMR-CBF(y, x̂) = argmin
u∈Rm

1

2
∥u− knom(x̂)∥2 (MR-CBF-SOCP)

s.t. Lfh(x̂)− b(y, x̂) + Lgh(x̂)u− a(y, x̂)∥u∥ ≥ −α(h(x̂)).

This optimization problem is a second-order cone program (SOCP), with an
explicit conversion to standard form provided below. As this constraint is non-
smooth, existing methods for computing closed-form solutions via Lagrangian
duality and assessing local Lipschitz continuity [51] are not applicable. Future
work will consider methods from variational analysis to study the Lipschitz
continuity of solutions to this problem [223]. In practice, a slack variable, δ,
is often added to ensure constraint feasibility. This relaxation is penalized in
the cost with a large coefficient c ∈ R>0:

kR-MR-CBF(y, x̂) = argmin
u∈Rm

1

2
∥u− knom(x̂)∥2 + cδ2 (R-MR-CBF-SOCP)

s.t. Lfh(x̂)− b(y, x̂) + Lgh(x̂)u− a(y, x̂)∥u∥ ≥ −α(h(x̂))− δ.

While this relaxed controller does not necessarily enforce the desired safety
constraint, if δ remains small the impact on safety can be understood through
the notion of Projection-to-State Safety (PSSf) discussed in Section 3.6. Fur-
thermore, this relaxation ensures that the resulting controller is locally Lip-
schitz continuous on v̂(E), and with the assumptions on p and q̂, is locally
Lipschitz continuous with respect to the true state x on E, as shown below.

Simulation

Note that the contents of this subsection were primarily written by collabora-
tors, edited by Andrew Taylor for their appearance in journal proceedings, and
edited by Andrew Taylor for their appearance in this thesis.

We now present simulation results using MR-CBFs on a simulated planar
Segway platform. The Segway can be seen in the left panel of Figure 5.2, and
uses the model in [27] as was done in Sections 3.3, 3.5, and 3.6. The nominal
controller knom is a simple PD controller as was used in Section 3.5. The
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Figure 5.2. (Left) The Segway model used in simulation from the perspective of the
fixed virtual camera used to estimate its state. (Right) Simulation results for worst-case
measurement model uncertainty of ϵ = 0.2 subtracted from the true pitch angle θy when
measured. A state trajectory generated using the the (CBF-QP) controller (red) and the
(MR-CBF-SOCP) controller (blue) are shown as projections onto their pitch angle and
pitch rate components. The set C is plotted in green. Given the same initial condition,
the (MR-CBF-SOCP) controller ensured safety of the trajectory whereas the (CBF-QP)
controller did not.

simulation2 was written in a ROS based environment using a mixture of C++
and Python to mimic the code structure of the existing hardware platform
[27]. The set C was defined as C = {x ∈ R4 | h1(x) ≥ 0, and h2(x) ≥ 0} with:

h1(x) = −θ̇ + αe(c− θ + θ⋆) h2(x) = θ̇ + αe(c+ θ − θ⋆), (5.28)

where θ ∈ R is the pitch angle, θ̇ ∈ R is the pitch angle rate, θ⋆ is the pitch
angle at equilibrium, and c, αe ∈ R>0. The MR-CBF constraint in (5.25) was
applied simultaneously to both functions in (5.28) and was then implemented
using the ECOS SOCP solver [35]. The parameter function for each MR-
CBF was given by parameter function (ϵ(y)(LLfh +Lα◦h), ϵ(y)LLgh), with the
Lipschitz constants in this constraint being estimated by sampling Lfh, Lgh

and α ◦ h on a set of gridded values around the system’s equilibrium point by
taking the maximum of the slopes between any two adjacent grid points. For
measurement error, we assumed that direct measurements of the pitch angle
θ were offset by a constant factor of ε > 0, such that θ̂ = θ− ε. Implementing
the (MR-CBF-SOCP) controller with ϵ(y) = ε for all y ∈ p(E) ensures safety
for this measurement error. As a baseline comparison, a (CBF-QP) controller
was implemented and applied using both functions in (5.28). The effect of this
type of worst-case measurement model error in the Segway system with the
(CBF-QP) and (MR-CBF-SOCP) controllers can be seen in Figure 5.2.

2Simulation code at https://github.com/rkcosner/cyberpod_sim_ros.git.

https://github.com/rkcosner/cyberpod_sim_ros.git
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Conversion to Second-Order Cone Program Standard Form

I now show how the optimization problem specified by (MR-CBF-SOCP) can
be written in standard SOCP form. Recalling the (MR-CBF-SOCP) controller,
first, the constant term can be removed from the cost such that it becomes:
1
2
∥u∥2 − knom(x̂)

⊤u. Additionally, the constraint can be written in terms of a
second order cone:

q =

[
Lgh(x̂)

a(y, x̂)Im

]
u+

[
α(h(x̂)) + Lfh(x̂)− b(y, x̂)

0m

]
, q ∈ Qm, (5.29)

where3 Qm ≜ {(q0,q1) ∈ R × Rm | q0 ≥ ∥q1∥} is the second-order cone in
Rm+1. Furthermore, by adding the decision variable t ∈ R, the quadratic cost
function can be converted to an equivalent linear cost, t− knom(x̂)

Tu, with a
rotated second order cone constraint, ∥u∥2 ≤ 2t, that can be converted to a
standard second order cone constraint via a rotation matrix R ∈ R(m+2)×(m+2)

[30]. Thus the additional constraint can be written as:

r = R
[
t 1 u⊤

]⊤
, r ∈ Qm+1. (5.30)

Combining the two second order cone constraints, the problem is rewritten as:

kMR-CBF(y, x̂) = argmin
(u,t,s)∈R3m+4

[
1 0 −knom(x̂)

⊤
] [
t 1 u⊤

]⊤
(5.31)

s.t. G(y, x̂)

 t1
u

+ s = h(y, x̂),

s ∈ Qm+1 ×Qm,

where:

G(y, x̂) = −

R1 0 R3:m+2

0 0 Lgh(x̂)

0m 0m a(y)Im

 , (5.32)

h(y, x̂) =

 R2

α(h(x̂)) + Lfh(x̂)− b(y, x̂)
0m

 . (5.33)

Here Ri represents the ith column of R, and R3:m+2 represents the columns 3
throughm+2. This equivalent formulation of (MR-CBF-SOCP) is in standard
SOCP form as in [35].

3This is a slight abuse of notation from Section 3.8 for the sake of notational convenience.
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Lipschitz Continuity of Second-Order Cone Program Controller

I now show that the controller (R-MR-CBF-SOCP) is locally Lipschitz con-
tinuous on E in terms of the true state x. Recall this controller is given by:

kR-MR-CBF(y, x̂) = argmin
u∈Rm

1

2
∥u− knom(x̂)∥2 + cδ2 (R-MR-CBF-SOCP)

s.t. Lfh(x̂)− b(y, x̂) + Lgh(x̂)u− a(y, x̂)∥u∥ ≥ −α(h(x̂))− δ,

where y = p(x) and x̂ = q̂(p(x)), with p and q̂ locally Lipschitz continuous
on E. Thus if we prove that kR-MR-CBF is locally Lipschitz continuous on
v̂(E) with respects to its arguments, the composition of kR-MR-CBF with the
measurement functions will be locally Lipschitz continuous on E. Note this
optimization problem is always feasible, even if h is not an MR-CBF, due to
the relaxation δ, and there is a unique minimizer as the cost is strictly convex.

The constraint in this problem can be restated as a conic constraint:

kR-MR-CBF(y, x̂) = argmin
(u,δ)∈Rm×R

1

2
∥u− knom(x̂)∥2 + cδ2 (R-MR-CBF-SOCP)

s.t.

[
Lgh(x̂)u+ δ + α(h(x̂)) + Lfh(x̂)− b(y, x̂)

a(y, x̂)u

]
∈ Qm.

To prove local Lipschitz continuity of this controller, I will make use of Theo-
rem 4 in [282], stated below. To draw parallels with the notation of this work,
I define the following:

w ≜ (u, δ) ∈ Rm+1, (5.34)

C(y,x̂)(w) ≜
1

2
∥u− knom(x̂)∥2 + cδ2, (5.35)

G(y,x̂)(w) ≜

[
Lgh(x̂)u+ δ + α(h(x̂)) + Lfh(x̂)− b(y, x̂),

a(y, x̂)u

]
, (5.36)

The optimization problem can then be written as:

kR-MR-CBF(y, x̂) = argmin
w∈Rm+1

C(y,x̂)(w) (5.37)

s.t. G(y,x̂)(w) ∈ Qm.

I note that G(y,x̂) : Rm+1 → Rm+1, with Rm+1 a Banach space, and that Qm ⊂
Rm+1 is a closed, convex cone with its vertex at the origin. Furthermore, C(y,x̂)

and G(y,x̂) are twice differentiable with respect to w, and these derivatives are
locally Lipschitz continuous with respect to (y, x̂) by local Lipschitz continuity
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of knom and (b, a) on their domains and Lipschitz continuity of Lfh, Lgh, α◦h
on E (an assumption that appears in Theorem 36).

Let H(y,x̂) denote the Lagrangian:

H(y,x̂)(w,λ) = C(y,x̂)(w)− ⟨λ, G(y,x̂)(w)⟩, (5.38)

where λ ∈ Rm+1. The first-order necessary conditions associated with a solu-
tion (w⋆

(y,x̂),λ
⋆
(y,x̂)) to (5.37) can be expressed as:

∂H(y,x̂)

∂w
(w⋆

(y,x̂),λ
⋆
(y,x̂)) = 0m+1, (5.39)

⟨λ⋆
(y,x̂), G(y,x̂)(w

⋆
(y,x̂))⟩ = 0, (5.40)

G(y,x̂)(w
⋆
(y,x̂)) ∈ Qm, (5.41)

where w⋆
(y,x̂) ∈ Rm+1 and λ⋆

(y,x̂) ∈ Qm. We also have that the following
coercivity condition is met:〈

∂H(y,x̂)

∂w
(w⋆

(y,x̂),λ
⋆
(y,x̂))(v2 − v1),v2 − v1

〉
≥ ∥v2 − v1∥2, (5.42)

for any v1,v2 ∈ Rm+1 as:

∂H(y,x̂)

∂w
(w⋆

(y,x̂),λ
⋆
(y,x̂)) = Im+1, (5.43)

for all measurement-state estimate pairs (y, x̂) ∈ v̂(E). Lastly, I note that:

∂G(y,x̂)

∂w
(w⋆

(y,x̂)) =

[
Lgh(x̂) 1

a(y, x̂)Im 0m

]
. (5.44)

Under the assumption that a(y, x̂) ̸= 0 for all (y, x̂) ∈ v̂(E) (or that ev-
ery measurement has some amount of worst-case error), we have the map
∂G(y,x̂)

∂w
(w⋆

(y,x̂)) is surjective from Rm+1 to Rm+1. Thus we have that all of the
conditions of the following theorem are met [282]:

Theorem 38. If ∂G(y,x̂)

∂w
(w⋆

(y,x̂)) is surjective and the coercivity condition (5.42)
holds, then there exists s ∈ R>0 such that (5.37) has a strict local mini-
mizer w⋆

(y,x̂) for each (y′, x̂′) ∈ Bs((y, x̂)), and both w⋆
(y,x̂), and the associated

(unique) multiplier λ⋆
(y,x̂) satisfying the first-order necessary condition (5.39),

are Lipschitz continuous functions of (y′, x̂′) ∈ Bs((y, x̂)).

As (y, x̂) were arbitrary, and are locally Lipschitz continuous functions of the
true state x, we have that kR-MR-CBF is locally Lipschitz with respect to x.
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Conclusion

In this section I have presented an approach for safety-critical control in the
presence of measurement errors through the notion of Measurement-Robust
Control Barrier Functions (MR-CBFs). I begin by introducing the notion of
measurement error that I consider, and propose definitions of MR-BFs and
MR-CBFs that allow controllers to be synthesized that provide rigorous safety
guarantees in the presence of these measurement errors. I demonstrate the
proposed approach in simulation on a planar Segway system that has an im-
perfect measurement of its pitch angle. Lastly, I show how the MR-CBF-based
controller can be specified in standard SOCP form, and prove that a relaxed
version of the controller is a locally Lipschitz continuous function of the un-
derlying state of the system.

5.3 Integration with Backup-Set Methods

In this section I will present work on unifying MR-CBFs with backup set
CBF methods to produce performant yet robust safe behavior in the pres-
ence of measurement errors. I will begin by briefly reviewing backup set CBF
methods, followed by integrating them with MR-CBFs. Following this, I will
provide demonstrations of the proposed approach in both simulation and ex-
perimentally on a planar Segway system. Experimentally, the Segway system
will utilize a vision-based measurement system for describing objects in its
environment, providing the not only the first experimental demonstration of
MR-CBFs, but also the first experimental demonstration of MR-CBFs using
vision-based measurement systems.

The contributions of this section are as follows:

• The integration of backup set CBF methods with Measurement-Robust
CBFs as a way of achieving both performant and safe behavior in the
presence of measurement errors.

• An experimental demonstration of MR-CBFs on a Segway platform using
an onboard vision system.

The text for this section is adapted from:

R. K. Cosner, A. W. Singletary, A. J. Taylor, T. G. Molnar, K. L.
Bouman, and A. D. Ames, “Measurement-robust control barrier func-
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tions: certainty in safety with uncertainty in state,” in Proc. IEEE/RSJ
Int. Conf. on Intelligent Robots and Sys. (IROS), Prague, Czech Re-
public, 2021, pp. 6286-6291.

A. J. Taylor participated in the conception of the project, algorithm
design, and writing of the article.

Backup-Set Control Barrier Functions

I now briefly review the topic of backup set CBFs methods, which a more
detailed description of can be found in [256]. Let C ⊂ E be the 0-superlevel
set of a function h that is continuously differentiable on E. To guarantee that
a safe control input exists, one needs to ensure that the function h satisfies
the CBF condition (2.60) for the open-loop system (2.1). For a given set C,
fulfilling this requirement can be nontrivial and potentially impossible (h may
not be a CBF on C for the open-loop system (2.1)). To this end, I will focus
on finding a set CI ⊆ C which is control invariant:

Definition 42 (Control Invariance). A set CI ⊆ E is control invariant for the
open-loop system (2.1) if there exists a controller k : E → Rm that is locally
Lipschitz continuous on E such that the set CI is forward invariant for the
closed-loop system (2.2).

A control invariant set CI is a set that can be kept forward invariant, and thus
makes logical sense as a set we would wish to find a CBF for (we will never
find one for a set that is not control invariant)4. If a control invariant set CI
can be found such that CI ⊆ C, then for initial conditions in CI , it is possible to
keep the system state within the set C (as they can be kept in CI). Thus, while
C itself will not necessarily be forward invariant (considering initial conditions
x0 ∈ C \ CI), it will be possible to satisfy φ(t) ∈ C for all t ∈ I(x0) if x0 ∈ CI .

While directly computing control invariant sets remains challenging in general,
we may define one implicitly via a backup set [256]. Suppose that we desire to
keep the system state within the set C, but C is not necessarily control invariant
for the open-loop system (2.1). Additionally, suppose there exists a set CB ⊂ C,
defined as the 0-superlevel set of a function hB : E → R that is continuously

4Throughout this thesis, when taking a CBF h on a set C for the open-loop system (2.1),
I am implicitly assuming that C is control invariant. In this way, backup-set CBF methods
can offer a strong starting point for getting to a CBF that can later be robustified, as is
done in this section.
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differentiable on E and which is known a priori to be control invariant for
the open-loop system (2.1) and can be rendered forward invariant for all time
(I(x0) = R≥0 for all x0 ∈ CB) by a known backup controller kB : E → Rm that
is locally Lipschitz continuous on E. I refer to CB as the backup set. For simple
backup controllers (such as linear controllers designed for the linearization
of a system) it is possible to find analytical expressions for local regions of
attraction to serve as backup sets. Alternatively, numerical tools such as SOS
may be used to synthesize control invariant sets [283]. I extend the backup set
to a larger control invariant set CI ⊂ E, satisfying CB ⊆ CI ⊆ C, by considering
the backup trajectory over a finite and fixed time T ∈ R>0 as follows. Assume
that for any x ∈ E there exists a unique solution φB : [0, T ]→ E satisfying:

φ̇B(τ) = f(φ(τ)) + g(φ(τ))kB(φ(τ)), τ ∈ [0, T ], (5.45)

φB(0) = x. (5.46)

The solution φB may be interpreted as the evolution of the system over the
interval [0, T ] from a state, x, under the backup controller kB. I denote
ϕB
τ (x) ≜ φB(τ) for the initial condition x and τ ∈ [0, T ]. Using this nota-

tion, I define the set CI ⊆ C as:

CI =
{
x ∈ C

∣∣ h(ϕB
τ (x)) ≥ 0 ∀τ ∈ [0, T ] and hB(ϕB

T (x)) ≥ 0
}
. (5.47)

The first inequality implies safety under the backup policy (ϕB
τ (x) ∈ C for all

τ ∈ [0, T ]), and the second inequality implies the backup trajectory reaches CB
by time T (ϕB

T (x) ∈ CB). The set CI is thus control invariant as there exists
at least one controller that is locally Lipschitz continuous on E, kB, which
renders it forward invariant5. While CI is not necessarily the largest control
invariant subset of C due to its implicit dependence on CB (see viability kernel,
[284]), backup-sets provide a computationally tractable method for finding an
under-approximation of the largest control invariant set.

5This is a non-obvious fact. Note that for any state x ∈ CB , we have ϕB
τ (x) ∈ CB for all

τ ∈ [0, T ] by our assumption that kB renders CB forward invariant for all time. As CB ⊂ C,
we have that both inequalities in (5.47) are satisfied, and thus CB ⊂ CI . Additionally, the
first inequality defining CI requires that x ∈ CI =⇒ x ∈ C, such that CI ⊆ C. Now suppose
that x ∈ CI , and consider an x′ ∈ C such that x′ = ϕB

τ ′(x) for some τ ′ ∈ [0, T ]. If CI
is forward invariant using the backup controller kB , then we must have x′ ∈ CI . To see
this, observe that ϕB

τ (x
′) ∈ C for all τ ∈ [0, T − τ ′] and ϕB

T−τ ′(x′) ∈ CB because x ∈ CI .
Moreover, by the forward invariance of CB using the backup controller kB , we have that
ϕB
τ (x

′) ∈ CB ⊂ C for all τ ∈ [T − τ ′, T ], and thus x′ ∈ CI .
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For notational simplicity, define the continuously differentiable functions hτ :

E → R and hB : E → R as:

hτ (x) ≜ h(ϕB
τ (x)), hB(x) ≜ hB(ϕ

B
T (x)). (5.48)

Given these definitions, the CBF condition (2.60) can then be specified as:6:

sup
u∈Rm

ḣτ (x,u) ≜ sup
u∈Rm

Lfhτ (x) + Lghτ (x)u ≥ −α(hτ (x)), ∀τ ∈ [0, T ],

(5.49)

sup
u∈Rm

ḣB(x,u) ≜ sup
u∈Rm

LfhB(x) + LghB(x)u ≥ −α(hB(x)), (5.50)

for7 α ∈ Ke. Any controller k : E → Rm that is locally Lipschitz continuous on
E that satisfies both of the constraints (5.49) and (5.50) for all x ∈ E (impor-
tantly, not just the backup controller kB) will render the closed-loop system
(2.2) safe with respect to CI [13, p. 6]. I note that enforcing the constraint
(5.49) is not necessarily tractable as it must hold for all τ ∈ [0, T ]. To resolve
this, it can be reduced to a finite collection of more conservative constraints
through constraint tightening. Given a nominal controller knom : E → Rm

which is locally Lipschitz continuous on E, a controller which implements the
finite number of tightened constraints, and thus renders (2.2) safe with respect
to CI , is given by the following quadratic program-based controller:

kBS(x) = argmin
u∈Rm

1

2
∥u− knom(x)∥2 (BS-QP)

s.t. Lfhτj(x) + Lghτj(x)u ≥ −α(hτj(x)− µ),

LfhB(x) + LghB(x)u ≥ −α(hB(x)),

for all τj ∈ {0,∆t, . . . , T}, where ∆t ∈ R>0 is a time-step such that T/∆t ∈ Z≥0

and µ ∈ R>0 satisfies:

µ ≥ ∆t

2
Lh sup

x∈E
∥f(x) + g(x)kB(x)∥, (5.51)

6Taking the time derivative of the function hτ and hB requires evaluating ∂ϕB
τ

∂x (x), which
is a first-order approximation of the change in the value of φB(τ) if the initial condition x
is changed. This evaluation requires integrating a sensitivity matrix as explained in [256,
Section B.2]. Effort to make this computation easier through learning was proposed in [160].

7Note that α need not be the same between both constraints. Further, observe that just
because kB keeps CI forward invariant, it will not necessarily satisfy these barrier constraints
for a fixed α. In practice, this is usually overcome by parameterizing the function α with
a linear constant (α(r) = kr for k ∈ R>0) and allowing the constant k to be a decision
variable in the resulting optimization-based controller [256, Section 2.C].
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with Lh ∈ R>0 a Lipschitz constant8 for h on E [256, Theorem 1].

Backup Set & Measurement-Robust Control Barrier Functions

In this section I will unify the backup set CBF method with MR-CBFs. I
will assume that the functions Lfhτj , Lghτj , LfhB, LghB, hτj , hB, and α

are Lipschitz continuous on E with known Lipschitz constants LLfhτj
, LLghτj

,
LLfhB

, LLghB
, Lhτj

, LhB
, Lα ∈ R≥0. Using the MR-CBF condition (5.25) the

finite set of constraints in the BS-QP become:

Lfhτj(x̂) + Lghτj(x̂)u− (bτj(y, x̂) + aτj(y, x̂)∥u∥) ≥ −α(hτj(x̂)− µ),
(5.52)

LfhB(x̂) + LghB(x̂)u− (bB(y, x̂) + aB(y, x̂)∥u∥) ≥ −α(hB(x̂)), (5.53)

with parameter functions:

bτj(y, x̂) = (LLfhτj
+ LαLhτj

)ϵ(y), (5.54)

aτj(y, x̂) = LLghτj
ϵ(y), (5.55)

bB(y, x̂) = (LLfhB
+ LαLhB

)ϵ(y), (5.56)

aB(y, x̂) = LLghB
ϵ(y), (5.57)

for all τj ∈ {0,∆t, . . . , T}, with ϵ : p(E) → R≥0 satisfying the relationship in
(5.11) for the pointwise error set E(y). These constraints can be used to define
the following set:

KBS-MR-CBF(y, x̂) = {u ∈ Rm | u satisfies (5.52) and (5.53)} . (5.58)

These constructions enable the following definition:

Definition 43 (Measurement-Robust Implicit Safe Set). The set CI ⊆ C ⊆ E

defined as in (5.47) is a Measurement-Robust Implicit Safe Set (MRISS) for
the open-loop system (2.1), error function ϵ : p(E) → R≥0, and parameter
functions a0, b0, . . . , aT , bT , aB, bB : v̂(E)→ R≥0 if:

• the constant µ ∈ R≥0 satisfies (5.51),
8As in Section 5.2, we are interested in keeping the system state inside C, and thus this

constant and norm bound only needs to hold over some open set E that contains C, thus
allowing us to restrict our attention to a potentially small set E containing C, especially if
C is compact.
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• The set KBS-MR-CBF(y, x̂) is non-empty for each measurement-state esti-
mate pair (y, x̂) ∈ v̂(E).

Next, using this definition, I show that the safety of such sets can be made
robust to measurement model error.

Theorem 39. Given a MRISS CI for the open-loop system (2.1), error func-
tion ϵ, and parameter functions a0, b0, . . . , aT , bT , aB, bB, if a controller k :

v̂(E) → Rm is locally Lipschitz continuous on v̂(E) and satisfies k(x) ∈
KBS-MR-CBF(y, x̂) for all (y, x̂) ∈ v̂(E), then the closed-loop system (5.5) is
safe with with respect to CI .

The proof of this follows the proof of Theorem 36 in Section 5.2 and is thus not
provided. This result allows an alternative to the BS-QP controller which adds
the measurement-robustness of MR-CBFs. The constraints (5.52) and (5.53)
can be directly integrated into a Measurement-Robust Backup Set Second-
Order Cone Program controller MR-BS-SOCP as:

k(y, x̂) = argmin
u∈Rm

1

2
∥u− knom(x̂)∥2 (MR-BS-SOCP)

s.t. Lfhτj(x̂) + Lghτj(x̂)u

− (bτj(y, x̂) + aτj(y, x̂)∥u∥) ≥ −α(hτj(x̂)− µ),

LfhB(x̂) + LghB(x̂)u

− (bB(y, x̂) + aB(y, x̂)∥u∥) ≥ −α(hB(x̂)),

for all τj ∈ {0,∆t, . . . , T}. Since this controller is a second-order cone program
(SOCP), there exist a variety of solvers capable of implementing it including
ECOS [35] and MOSEK [36]. Notably, the conservative nature of the method
scales with the bound on the measurement-model error ϵ(y) and the MR-
BS-SOCP reduces to the BS-QP when ϵ(y) = 0 for all y ∈ p(E). I remark
that the feasibility of MR-BS-SOCP for all (y, x̂) ∈ v̂(E) can be ensured by
adding a slack variable to the optimization problem, the impact of which can
be understood via the concept of PSSf in Section 3.6.

Simulation & Experimental Results

Note that the contents of this subsection were primarily written by collabora-
tors, edited by Andrew Taylor for their appearance in journal proceedings, and
edited by Andrew Taylor for their appearance in this thesis.
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Figure 5.3. Simulation results for a measurement model of x̂ = x − 0.4 [m] and constant
desired velocity of 1 [m/s]. (Left) Trajectories generated using the (BS-QP) controller.
Solid line represents the true state, dashed line shows the estimated state, and green region
indicates the safe set C. The true trajectory fails to be safe and exits the safe set at
t = 3 [s]. (Right) Trajectories generated using the (MR-BS-SOCP) controller. An additional
robustness region is plotted in blue to indicate the set of of true states which the control
input renders safe. Both the true and measured trajectories are safe demonstrating the
robustness of the (MR-BS-SOCP) controller when compared to the (BS-QP) controller.

We now demonstrate the efficacy of the proposed (MR-BS-SOCP) controller
on Segway platform from Section 5.2 in both simulation and experimentally.
The backup set method for generating control invariant sets is particularly
relevant for this system due to its non-minimum phase dynamics.

The set C was chosen to be the set of states with position less than 2 [m] from
the origin, i.e. C = {x ∈ R4 | x ≤ 2} and h(x) = 2− x. The backup controller
was an LQR controller on the linearized system dynamics and the backup set
was an estimate of the region of attraction of the LQR controller to the upright
equilibrium state, given by a quadratic Lyapunov function. This set is then
translated to match the current position of the Segway, while not allowing it
to exceed the set boundary. The functions hτ , τ ∈ [0, T ] were converted into
four CBFs hτj . Lastly, the Lipschitz constants for hτj were found explicitly by
inspection of the Segway dynamics and the Lipschitz constants for hB were
estimated by sampling the state space in simulation and taking the largest
numerical gradient.

The (MR-BS-SOCP) controller was first validated in simulation in a ROS-
based environment9. Measurement error was achieved by adding a constant
error of −0.4 [m] to the true state, such that e(y) = −0.4 [m] for all y ∈ p(E).

9Simulation code at github.com/rkcosner/mrcbf_IROS21.git.

github.com/rkcosner/mrcbf_IROS21.git
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The simple test scenario involved driving the Segway forward with a constant
desired velocity of 1 [m/s]. As seen in Figure 5.3, the MR-BS-SOCP con-
troller provided robustness to this error. Importantly, without measurement-
robustness, the system would be unsafe due to error in the state estimate.

The MR-BS-SOCP controller was then implemented on hardware. State es-
timates for ẋ, θ, and θ̇ were found using wheel incremental encoders and a
VectorNav VN-100 Inertial Measurement Unit (IMU). The position estimate
for x was obtained from an Intel RealSense T265 onboard camera running pro-
prietary Visual Inertial Odometry (VIO) based SLAM. Onboard computation
was performed by a Jetson TX2 which computes control inputs and relays
them to the low-level motor controllers. The TX2 concurrently runs Linux
with ROS, enabling external communication and logging, and the ERIKA3
real-time operating system, which enables real-time low-level communication
and computation of the control input.

As the (ẋ, θ, θ̇) state estimates provided by the encoders and IMU are highly
accurate, the is focus on making the system robust to measurement error in its
vision-based position estimate x̂. An OptiTrack motion capture system was
used in laboratory experiments to provide x estimates which are considered
true. These closely matched the encoder position estimates for short trials,
so the encoder x estimates were considered true in the outdoor experiments.
This data was used to determine the error bound ϵ(y) that appears in the
MR-CBF constraint when using the onboard camera. The function ϵ(y) =

0.4 for all y ∈ p(E) was chosen as an upper bound on the measurement
error. The (MR-BS-SOCP) controller was implemented at the embedded level
in the ERIKA3 operating system using the ECOS SOCP solver [35]. The
nominal controller knom was a PD controller tracking user velocity inputs.
The backup trajectory ϕB

τ (x̂) and its partial derivatives were approximated
via Euler integration using a time step of ∆t = 5 [ms] and the time used to
expand the backup set CB to CI was T = 1 [s]. The MR-BS-SOCP controller
ran at 250 [Hz] with 5 decision variables, 4 linear constraints, and 6 second
order cone constraints and saturated at ±20 [N·m].

To demonstrate the method, a simple scenario is executed on the Segway in
which it is driven forward at a desired velocity of 1 [m/s]. This scenario is
performed with both the BS-QP and MR-BS-SOCP controllers. The results of
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Figure 5.4. Experimental results using SLAM from the onboard Intel RealSense T265 and
constant desired velocity of 1 m/s. The notation and color schemes are the same as in Figure
(5.3). (Left) Trajectories generated using the (BS-QP) controller. The true trajectory exits
the safe set at t = 6.7 [s]. The measurement error is plotted in blue. (Right) Trajectories
generated using the (MR-BS-SOCP) controller. Both the true and measured trajectories
are safe demonstrating the robustness of the (MR-BS-SOCP) controller compared to the
(BS-QP) controller.

Figure 5.5. Images from the experiment using the (MR-BS-SOCP) controller. The Segway
is piloted towards a wall of yellow boxes and the controller ensures that it remains safe, i.e.
that it does not crash into the boxes. (Top) Time lapse of the Segway trajectory. (Bottom)
Camera images taken from the perspective of the Segway throughout the experiment. The
images are displayed in chronological order from left to right. A video can be found at
https://vimeo.com/520247516.

these experiments can be found in Figure 5.4, and images from the experiment
can be seen in Figure 5.5. With the BS-QP controller the estimated state x̂

remains safe, but the true state x becomes unsafe whereas with the MR-BS-
SOCP controller both the estimated and the true state are kept safe. This
highlights the importance of providing robustness against measurement error,
as achieved by Theorem 39.

https://vimeo.com/520247516
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Conclusion

In conclusion, in this section I have presented work on integrating backup set
CBF methods with MR-CBFs. I begin by reviewing backup set methods. Fol-
lowing this, I show how the modifications to CBF constraints that occur when
forming MR-CBFs can be translated to CBFs synthesized using backup set
methods. Following this, I demonstrate the proposed combination in simula-
tion and experimentally on a Segway system using a vision system to estimate
its position relative to obstacles.

5.4 Preference-Based Learning for Robust Controller Tuning

In this section I present work on utilizing preference-based learning (PBL)
to tune the robustness parameters of a CBF-based controller to achieve both
robust safety and performant behavior. I begin by reviewing PBL, including
an algorithm developed in this work (not my explicit contribution) for per-
forming PBL in a safety-aware way. Next, I consider the setting of designing
safety-critical controllers with reduced-order models and measurement error,
producing a controller that unifies the concepts of ISSf-CBFs and MR-CBFs
to provide a wide range of robustness properties. As worst-case robustness pa-
rameters for this controller can yield excessively conservative behavior, PBL is
used to adjust the parameters according to a user’s feedback on performance
and safety. Following this, I provide demonstrations of the proposed approach
in both simulation and experimentally on a quadrupedal system using a vision-
based measurement system for obstacle detection.

The contributions of this section are as follows:

• The utilization preference-based learning (PBL) as a tool for tuning the
robustness parameters of a CBF-based controller to achieve both robust
safety and performant behavior.

• A rigorous unification of reduced-order CBFs methods with ISSf and MR-
CBFs to produce a convex optimization-based controller that provides
robustness to a wide-range of challenges addressed in this thesis.

The text for this section is adapted from:

R. K. Cosner, M. Tucker, A. J. Taylor, et al., “Safety-aware preference
based learning for safety-critical control,” in Proc. 4th Learning for Dy-
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Figure 5.6. An overview of the Safety-Aware Preference-Based Learning design paradigm.
Safety-Aware LineCoSpar is used to generate actions which are rolled out in experiments
as parameters of the CBF-based safety filter to obtain user preferences and safety ordinal
labels which are then used to update the user’s estimated utility and generate new actions.

namics and Control (L4DC), vol. 168, Stanford, CA, USA, 2022, pp.
1020-1033.

A. J. Taylor participated in the conception of the project, theoretical
analysis, and writing of the article.

Safety-Aware Preference-Based Learning

Note that the contents of this subsection were primarily written by collabora-
tors, edited by Andrew Taylor for their appearance in journal proceedings, and
edited by Andrew Taylor for their appearance in this thesis.

I now present Safety-Aware LineCoSpar, as outlined in Algorithm 4. I note
that this algorithm is not explicitly a contribution of mine (Andrew Taylor)
in this work, but introducing it will provide background information on PBL
that will support the later developments in the context of tuning robust safety-
critical controllers. This is a modification of the LineCoSpar algorithm [77],
which iteratively selects actions to query user for subjective feedback and up-
dates its belief of the user’s underlying utility function via Bayesian inference.

Let a denote an action, such as a collection of l parameters used in a controller,
that takes values in a finite search space A ⊂ Rl. We assume that each action
a ∈ A has an unknown utility to the user, defined by a function r : A → R.
These utilities are given by rA = [r(a1), . . . , r(a|A|)]

⊤ ∈ R|A|. In each iteration,
s ∈ Z>0 actions are sampled from A and executed. Then, the user is queried
for two forms of feedback: pairwise preferences and ordinal labels, describing
performance and safety, respectively, which is collected into a dataset D.

Since collecting an exhaustive dataset to estimate the unknown utility rA is ex-
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pensive for non-trivial action spaces, Bayesian optimization (BO), a sampling
efficient paradigm, is used to identify the optimizer. In BO, rA is modeled as a
Gaussian process with priorN (0|A|,Σ

pr), where each element of the covariance
matrix Σpr ∈ S|A|×|A|

≻0 is computed as Σpr
ij = k(ai, aj) with a kernel function

k : A × A → R and ai ∈ A denoting the ith action in A. The function k is
selected to be the squared exponential kernel, yielding a prior given by the
multivariate Gaussian:

P(rA) =
1

(2π)|A|/2|Σpr|1/2
exp

(
−1

2
r⊤A(Σ

pr)−1rA

)
. (5.59)

Given a dataset D, the posterior is proportional to the likelihood and the
prior by Bayes’ theorem, i.e., P(rA | D) ∝ P(D | rA)P(rA). Denote the
maximum a posteriori (MAP) estimate of the posterior by r̂A ∈ R|A|, which
is defined as r̂A ≜ argmaxrA∈R|A| P(rA | D), noting that r̂A is equivalent to
the minimizer of S(rA) = − ln(P(D | rA)) + 1

2
rTA (Σpr)−1 rA. As is common in

BO, the posterior is modeled as a multivariate Gaussian centered at r̂A with
the covariance ΣA ∈ S|A|×|A|

≻0 defined10 as ΣA = (∂
2S

∂r2A
(r̂A))

−1 [75]. Additionally,
tractability of calculating r̂A can be improved by reducing the action space A
to a subset S ⊂ A, forming a partial characterization of the utilities denoted
by P(rS | D) ≈ N (r̂S,ΣS), with rS, r̂S ∈ R|S|.

A pairwise preference is defined as a relation between two actions a1, a2 ∈ A,
where a1 ≻ a2 if action a1 is preferred to a2. Since user preferences are
expected to be corrupted by noise, individual pairwise preferences are modeled
via a likelihood function:

P(a1 ≻ a2 | r(a1), r(a2)) = gp

(
r(a1)− r(a2)

cp

)
, (5.60)

where gp : R → [0, 1] is any monotonically-increasing link function, and cp ∈
R>0 accounts for preference noise. The function gp is chosen to be the sigmoid
function, i.e., gp(r) = 1/(1 + e−r). Assuming conditional independence, the
likelihood function for a collection of K ∈ Z>0 preferences, Dp, can be modeled
as the product of each individual preference likelihood:

P(Dp | r(a11), r(a12), · · · , r(aK2)) =
K∏
k=1

P(ak1 ≻ ak2 | r(ak1), r(ak2)), (5.61)

10This is known as the Laplace approximation of the distribution P(rA | D), i.e.,
P(rA | D) ≈ N (r̂A,ΣA).
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where ak1, ak2 ∈ A are the preferred and non-preferred actions, respectively,
in the kth preference.

The action space is partitioned into “unsafe” and “safe” actions by leveraging
the ordinal nature of these definitions (i.e., unsafe actions are always consid-
ered worse than safe actions). A user provides this feedback as an ordinal
label, which assigns an action to a discrete ordered category such as “bad”
and “good” [285]. While ordinal labels can be generalized to any number of
ordinal categories [78], only two categories are used to represent “unsafe” and
“safe”. In this case, the action space is decomposed into two disjoint sets,
A = O1 ∪ O2, with a ∈ O1 if r(a) < β and a ∈ O2 if r(a) ≥ β, with the
ordinal threshold β ∈ R. As with preferences, it is assumed that ordinal label
feedback is corrupted by noise and is modeled as:

P(a ∈ O1 | r(a)) = go

(
β − r(a)

co

)
, (5.62)

P(a ∈ O2 | r(a)) = 1− go
(
β − r(a)

co

)
, (5.63)

where go : R → [0, 1] is any monotonically-increasing link function and co

quantifies the noise in the ordinal label feedback. Again, go is chosen to be the
sigmoid function go(r) = 1/(1 + e−r). Assuming conditional independence of
ordinal label queries, the likelihood function for a collection ofM ∈ Z>0 ordinal
labels, Do, can be modeled as the product of individual ordinal likelihoods:

P(Do | r(a1), · · · , r(ak)) =
M∏
k=1

P
(
ak ∈ Oo(k) | r(ak)

)
, (5.64)

where ak ∈ A refers to the action corresponding to the kth ordinal label,
o(k) ∈ {1, 2}. For the simulation and experimental results in this section,
the hyperparameters cp, co, β are determined in advance. Lastly, assuming
conditional independence of the feedback mechanisms, the combined likelihood
function is calculated as the product of the individual likelihoods, P(D | r) =
P(Dp | r)P(Do | r).

In the first iteration (i = 1), s ∈ Z>0 actions are sampled randomly from A,
recorded as the set of visited actions V1 = {a(1)

1 , . . . , a
(s)
1 }, executed on the

system, and the preferences and ordinal labels are collected into a dataset
D1. In each subsequent iteration (i > 1), s new actions are sampled using
Thompson sampling, which is shown to have desirable regret minimization
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Algorithm 4 Safety-Aware LineCoSpar (SA-LineCoSpar)
Require: s uniform random actions V1 ⊂ A, corresponding feedback D1,

for i = 2, . . . , N do
P(r̂A | D)← Vi−1 ▷ Update posterior
â∗
i−1 ← argmaxa∈Vi−1

r̂Vi−1
(a) ▷ Find optimal action

Li ← â∗
i−1 ▷ Sample random intersecting line

Si = Li ∪ Vi−1 ▷ Construct subspace
P(r̂Si

| D)← Si ▷ Update posterior over Si

SROI
i ← P(r̂Si

| D) ▷ Determine ROI
for j = 1, . . . , s do

r(j) ∼ N (r̂Si
,ΣSi

) ▷ Sample utility
a
(j)
i ← argmaxa∈SROI

i
r(j) ▷ Sample action from utility sample

end for
Dp,Do ← {a(1)

i , . . . a
(s)
i } ▷ Collect preferences and ordinal labels

Vi ← Vi−1 ∪ {a(1)
i , . . . a

(s)
i } ▷ Aggregate Actions

Di ← Di−1 ∪Dp ∪Do ▷ Aggregate preferences and ordinal labels
end for

properties [286]. Ideally, Thompson sampling draws s samples from the pos-
terior P(rA | Di−1), i.e r(j) ∼ P(rA | Di−1) for j ∈ {1, . . . , s}, and the action
a
(j)
i ∈ A maximizing each r(j) is selected to execute on the system. These

sampled actions {a(1)
i , . . . , a

(s)
i } are concatenated with Vi−1 to produce Vi, ex-

ecuted on the system, and the resulting preferences and ordinal labels are
concatenated with Di−1 to produce Di. However, since it is intractable to
approximate P(rA | D) for high-dimensional action spaces, a dimensionality-
reduction technique introduced in [77] that instead updates the posterior over
a subset Si ⊂ A is utilized. Motivated by [287], a subset of actions is con-
structed as Si = Li ∪ Vi−1, where Li ⊂ A is the collection of e ∈ Z>0 actions
in A closest to a randomly drawn line ℓi ⊂ Rl. This line is drawn to inter-
sect with the believed best action, computed as â∗

i−1 = argmaxa∈Vi−1
r̂Vi−1

(a)

where r̂Vi−1
is the MAP estimate of the posterior P(rVi−1

| Di). See [77] for
more details.

It is important to avoid unsafe actions during sequential decision making in
certain applications, such as learning robotic controllers on hardware, where
low-reward actions might lead to physical damage of the platform. Safe ex-
ploration algorithms [135], [279], [280] considered the setting where actions
below a prespecified safety threshold are catastrophic and must be avoided at
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Figure 5.7. A comparison of Safety-Aware LineCoSpar and standard LineCoSpar on a
synthetic utility function (drawn from the Gaussian prior) averaged over 50 runs with stan-
dard error shown by the shaded region. The safety-aware criteria reduces the number of
sampled unsafe actions with a minimal effect on the prediction error, defined as |â∗i − a∗|
with â∗i ≜ argmaxa r̂Si

and a∗ ≜ argmaxa r(a).

all cost. As this work constructs controllers that account for safety, a more
optimistic learning approach called safety-aware is adopted. In this case, ac-
tions labeled by a human as “unsafe” are not catastrophic but undesirable.
Thus, the algorithm avoids these actions; whereas the safe exploration algo-
rithms guarantee that no such actions are sampled which can be sometimes
exceedingly conservative in settings like that considered in this work.

To achieve this safety-awareness, the approach introduced in [78] is leveraged,
which uses ordinal labels to identify a region of interest (ROI) in A. In this
work, the ROI is defined to be the actions labeled as “safe”. In each iteration
i an estimate an ROI within the set Si is formed as:

SROI
i = {a ∈ Si | r̂Si

(a) + λσSi
(a) > β}, (5.65)

where r̂Si
(a) and σSi

(a) are the posterior mean and standard deviation, re-
spectively, evaluated at the action a ∈ Si. The variable λ ∈ R determines
how conservative the algorithm would be in estimating the safety region, as
illustrated in Figure 5.7. We see that lower values of λ result in fewer unsafe
actions being sampled, with only a slight effect on sample-efficiency. The re-
striction to SROI

i is added to LineCoSpar by only considering actions in SROI
i
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during Thompson sampling. This algorithm is referred to as Safety-Aware
LineCoSpar (SA-LineCoSpar), and is outlined in Algorithm 4.

Preference-Based Learning for Robust Controller Tuning

I now propose a design paradigm that leverages SA-LineCoSpar to select pa-
rameters for a CBF-based controller that achieves performance and safety
for a multi-layered control system. Drawing inspiration from [253], I note
that many real-life engineering systems have high-dimensional state spaces
and complex dynamics. Hence control systems are often designed as a set
of interconnected subsystems, such as a low-dimensional subsystem that pro-
vides reference signals capturing safe behavior and a high-dimensional subsys-
tem that tracks these reference signals. In particular, let nξ,mξ ∈ Z>0, let
E ≜ Ex×Eξ ⊂ Rn×Rnξ be an open set, and consider the following cascaded
open-loop system:

ẋ = f(x) + g(x)κ(ξ), (5.66)

ξ̇ = fξ(x, ξ) + gξ(x, ξ)u, (5.67)

with state (x, ξ) ∈ E, control input u ∈ Rmξ , and functions f : Ex → Rn,
g : Ex → Rn×m, κ : Eξ → Rm, fξ : E → Rnξ , and gξ : E → Rnξ×mξ

assumed to be locally Lipschitz continuous on their domains. I note that
the input u from (2.1) was replaced by κ(ξ) in the top-level system (5.66).
These dynamics may represent Euler-Lagrange systems such as robots, where
x reflects base position, ξ captures base velocities and joint positions and
velocities, and the input u reflects the torques applied to the joints. Control
in this setting will be based on a measurement y = p(x, ξ) ∈ p(E) and
state estimate x̂ = q̂(y) ∈ Ex (I will address ξ shortly) defined using the
measurement model setting in Section 5.2, noting that v̂(x) = (y, x̂).

Given this cascaded system, I will seek to establish the Input-to-State Safety of
a set C that can be described as the 0-superlevel set of a function h : Ex → R
that is continuously differentiable on Ex and only depends on the states x

and not the states ξ. For example, in the context of a robotic system, this
assumption is justified if safety is described as keeping the base position of
the robot away from obstacles. Second, I assume there exists a controller
π : v̂(E) × Eξ × Rm → Rmξ and µ ∈ R≥0 such that for any continuous,
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bounded signal s : R≥0 → Rm, the closed-loop system:

ẋ = f(x) + g(x)κ(ξ), (5.68)

ξ̇ = fξ(x, ξ) + gξ(x, ξ)π(y, x̂, ξ, s(t)), (5.69)

satisfies the following implication:

∥κ(ξ0)− s(0)∥ ≤ µ =⇒ ∥κ(φξ(t))− s(t)∥ ≤ µ, t ∈ R≥0, (5.70)

for all initial conditions (x0, ξ0) ∈ E, where φξ is the part of the corresponding
solution (φx,φξ) from the initial condition (x0, ξ0). This assumption reflects
that a separate controller may be designed11 for the high-dimensional dynamics
to track well-behaved reference signals synthesized via the low-dimensional
model. In particular, if a continuous measurement-based controller k : v̂(E)→
Rm is designed for the low-dimensional system (2.1) and ∥κ(ξ0)−k(v̂(x0))∥ ≤
µ, then we have that the controller π ensures ∥κ(φξ(t)) − k(v̂(φx(t)))∥ ≤ µ

for t ∈ R≥0. With this assumption in mind, we may explicitly define the
signal s and study the ISSf behavior of the closed-loop system with matched
disturbances:

ẋ = f(x) + g(x)(k(y, x̂) + d(t)), (5.71)

ξ̇ = fξ(x, ξ) + gξ(x, ξ)π(y, x̂, ξ,k(y, x̂)), (5.72)

where similar to Sections 3.4 and 3.6, the disturbance signal d : R≥0 → Rm

satisfies the relationship d(t) = κ(φξ(t))−k(v̂(φx(t))) for any initial condition
(x0, ξ0) ∈ E, and thus must satisfy ∥d∥∞ ≤ µ.

I now combine the robustness properties of MR-CBFs and ISSf-CBFs to ac-
count for measurement uncertainty and the disturbance, d, allowing us to make
robust safety guarantees for the full closed-system (5.72). This is formalized
in the following theorem:

Theorem 40. Let C ⊂ Ex be the 0-superlevel set of a function h : Ex → R
that is continuously differentiable on Ex. Suppose that the functions Lfh, Lgh,
∥Lgh∥2, and α◦h are Lipschitz continuous on their domains, and assume that

11The controller π is assumed to have perfect measurements of ξ. Note that it yields
bounded tracking error (by a particular value of µ, the implication is not for all values of
µ) for φξ. This bound tracking can be seen as an abstraction that captures the effect of
explicit measurement error in x̂ as well as implicit measurement error in the value of ξ being
passed to π.
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∥x̂ − x∥ ≤ ϵ for some ϵ ∈ R≥0 and all x ∈ Ex. Then there exists a, b ∈ R≥0

such that if h satisfies:

sup
ν∈Rm

Lfh(x̂) + Lgh(x̂)ν − ϕ∥Lgh(x̂)∥2 − b− a∥ν∥ > −α(h(x̂)), (5.73)

for all x̂ ∈ q̂(p(E)) and some a, b ∈ R≥0 satisfying a ≥ a and b ≥ b, then
there exists a controller k : Ex → Rm such that (5.72) is ISSf with respect to
C with γ(d) = −α−1(−d2/(4ϕ)).

Before proving this result, I note that given a nominal controller knom : Ex →
Rm that is locally Lipschitz continuous on Ex, the constraint in (5.73) can
be incorporated into a convex second-order cone program-based controller
kTR-SOCP : Ex → Rm referred to as a Tunable Robustified Second-Order Cone
Program (TR-SOCP) controller with tunable parameters α, ϕ, a, and b:

kTR-SOCP(x̂) = argmin
ν∈Rm

∥ν − knom(x̂)∥2 (TR-SOCP)

s.t. Lfh(x̂) + Lgh(x̂)ν − ϕ∥Lgh(x̂)∥2

− b− a∥ν∥ ≥ −αh(x̂).

Here a linear extended class-K∞ function with coefficient α ∈ R>0 is used to
set up the use of PBL, but is not necessary for the following proof.

Proof. I will show that the controller kTR-SOCP : Ex → Rm using values of a
and b that are greater than a particular pair (a, b) implies satisfaction of the
ISSf-BF constraint for matched disturbances (2.95). For this I choose:

b = ϵ(LLfh + Lα◦h + Lϕ∥Lgh∥2), (5.74)

a = ϵLLgh, (5.75)

where L(·) indicates the Lipschitz coefficient of the subscripted function on its
domain. Define the function c : Ex × Rm → R such that:

c(x,ν) ≜ Lfh(x) + Lgh(x)ν − ϕ∥Lgh(x)∥2 + α(h(x)). (5.76)

Using this definition we have for all ν ∈ Rm that:

c(x,ν) = c(x̂,ν) + c(x,ν)− c(x̂,ν), (5.77)

≥ c(x̂,ν)− ϵ(LLfh + Lα◦h + Lϕ∥Lgh∥2)︸ ︷︷ ︸
b

− ϵLLgh︸ ︷︷ ︸
a

∥ν∥, (5.78)

≥ c(x̂,ν)− b− a∥ν∥. (5.79)
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Above I added zero in (5.77) and used the Lipschitz coefficients and the worst-
case measurement error ϵ to achieve the bound in (5.78). Thus we have that:

c(x,kTR-SOCP(x̂)) ≥ c(x̂,kTR-SOCP(x̂))− b− a∥kTR-SOCP(x̂)∥ ≥ 0, (5.80)

and thus we may follow the proof of Theorem 29 to show that C is ISSf with
γ(d) = −α−1(−d2/(4ϕ)) where α−1 ∈ Ke.

The parameter selection process of the TR-SOCP controller is particularly im-
portant, since the parameters a and b guaranteed to exist by Theorem 40 are
worst-case approximations of the uncertainty generated using Lipschitz con-
stants. Such approximations often lead to undesired conservatism and may
render the system incapable of performing its goal (as seen in Figure 5.8).
Thus, as illustrated in Figure 5.6, SA-LineCoSpar is used to identify user-
preferred parameters of the TR-SOCP controller. This relaxes the worst-case
over-approximation to experimentally realize performant and safe behavior.
This design paradigm relies on the tunable construction of the TR-SOCP con-
troller, allowing the definition of actions for SA-LineCoSpar as a = (α, ϕ, a, b).
I note the construction of the TR-SOCP controller assures that unsafe actions
are not necessarily catastrophic, as any α, ϕ, a, b > 0 endows the system with
a non-zero degree of robustness to disturbances and measurement error. This
allows using a safety-aware approach where unsafe actions are considered un-
desirable as opposed to a more conservative safety-critical approach to learning
where unsafe actions are considered catastrophic.

Simulation & Experimental Results

Note that the contents of this subsection were primarily written by collabora-
tors, edited by Andrew Taylor for their appearance in journal proceedings, and
edited by Andrew Taylor for their appearance in this thesis.

The proposed design paradigm is applied to a perception-based obstacle avoid-
ance task with a Unitree A1 quadrupedal robot as seen in Figure 5.6 in simula-
tion and on hardware for both indoor and outdoor environments. The action
space A and hyperparameters of PBL are defined in Table 5.1. A unicycle
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model is used as the low-order model (5.66):

ẋẏ
ψ̇


︸︷︷︸

ẋ

=

00
0


︸︷︷︸
f(x)

+

cos(ψ) 0

sin(ψ) 0

0 1


︸ ︷︷ ︸

g(x)


[
v

ω

]
︸︷︷︸

ν

+d(t)

 , (5.81)

where (x, y) is the planar position of the robot, ψ is the yaw angle, v is planar
velocity, and ω is the yaw rate. The nominal controller knom is given by:

knom(x) =

[
Kvdg + C

−Kω

(
sin(ψ)− (yg−y)

dg

)] , (5.82)

where (xg, yg) is the goal position of the robot, dg = ∥(xg − x, yg − y)∥ is the
distance to the goal, and Kv, Kω, C ∈ R>0.

Obstacle avoidance is encoded via the 0-superlevel set of the function:

h(x) = dobs − robs − ζ cos(ψ − θ), (5.83)

where (xobs, yobs) is the location of an obstacle, dobs = ∥(xobs − x, yobs − y)∥
and θ = arctan((yobs − y)/(xobs − x)) are the distance and angle from the
obstacle, robs is the sum of the radii of the obstacle and robot, and ζ > 0

determines the effect of the heading angle on safety. The TR-SOCP controller
with the nominal controller knom from (5.82) is used to drive the system. In
practice, infeasibility of the (TR-SOCP) controller was assigned an ordinal
label of unsafe and the inputs were saturated such that v ∈ [−0.2, 0.3] [m/s]
and ω ∈ [−0.4, 0.4] [rad/s]. The velocity command v is computed at 20 [Hz]
and error introduced by this sampling scheme is captured by the tracking error
d(t). Tracking of v is performed by an inverse dynamics quadratic program

Hyperparameter Value
λ −0.5
β 0

Name Min. Max. ∆
α 0.5 5 0.5
ϕ 0 1 0.1
b 0 1 0.1
a 0 0.05 0.005

Table 5.1. The safety-aware hyperparameters, and action space bounds (minimum and
maximum) with discretizations ∆.
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Figure 5.8. Actions sampled during simulation in 30 iterations with 3 new actions in each
iteration. The preferred action, â30 = (3, 0.6, 0.5, 0.015), is shown in black and white. A
conservative action, a = (2, 0.5, 0.0651, 0.485), is indicated by the black circle, where a and
b were determined by estimating the Lipschitz coefficients present in the proof of Theorem
40. The conservative action fails to progress whereas Safety-Aware LineCoSpar provides an
action which successfully navigates between obstacles.

(ID-QP) walking controller designed using the concepts in [251], which realizes
a stable walking gait for (5.67) at 1 [kHz].

The quadruped is simulated executing the proposed controller with parameters
provided by SA-LineCoSpar, and the resulting trajectories and the position of
the obstacles12 are shown in Figure 5.8. Thirty iterations were ran, with 3
new actions sampled in each iteration (s = 3), to obtain user preferences and
ordinal labels in between each set of actions. To simulate perception error,
the measurements of the obstacles were shifted by −0.1 m in the y-direction.
The parameters found with SA-LineCoSpar allow the robot to navigate be-
tween obstacles. For comparison, a conservative action is also shown, which
is safe but fails to progress towards the goal. SA-LineCoSpar eliminates this
conservatism with only minor safety violations and determines a parameter
set which is both safe and performant.

After simulation, learning was performed with hardware experiments in a lab-
12The simulation uses two CBF constraints, one for each obstacle, and both are enforced

in the (TR-SOCP) controller.
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Figure 5.9. Seven additional iterations of 3 actions executed indoors. The preferred action,
â∗37 = (4, 0.6, 0.4, 0), successfully traverses between the obstacles.

oratory setting for 7 additional iterations until the user was satisfied with the
experimental behavior. The robot and obstacle positions were estimated using
Intel RealSense T265 and D415 cameras to perform SLAM and segmentation.
Centroids of segmented clusters in the occupancy map were used as the mea-
sured obstacle positions. The true robot and obstacle positions were obtained
for comparison using an OptiTrack motion capture system. The results of these
experiments is seen in Figure 5.9. Afterwards, three iterations were conducted
outdoors on grass until the user was satisfied with the experimental behavior.
The resulting best trajectory can be seen in Figure 5.10. The preferred action
was tested on other obstacle arrangements to confirm its generalizability.

Conclusion

In conclusion, in this section I have presented work on using PBL to tune the
robustness parameters of CBF-based controllers. I begin by reviewing PBL,
and present an algorithm (not my explicit contribution) for safety-aware PBL.
Following this, I unify reduced-order CBF methods with ISSf-CBFs and MR-
CBFs to produced a second-order cone program-based controller that provides
a wide range of robustness properties. Following this, I demonstrate the use of
PBL to tune the parameters of this controller for a quadrupedal system until
safety and performance are adequately balanced.



262

Figure 5.10. The preferred action, â∗40 = (5, 0.1, 0.4, 0.02), after simulation, indoor experi-
ments, and 3 additional iterations of 3 actions in an outdoor environment is shown alongside
views from the onboard camera. Video can be found at https://youtu.be/QEuwRDTG7TE

5.5 Conclusion

In this chapter I have presented a collection of results on designing safety-
critical controllers that are robust to measurement errors. In Section 5.2 I
look at how measurement errors can arise in a control system and how they
present challenges for standard CBF-based design techniques. This leads to
the definition of Measurement-Robust Barrier Function (MR-BFs), which cer-
tify safety in the presence of measurement errors. These are then extended to
Measurement-Robust Control Barrier Functions (MR-CBFs) which can be in-
corporated to controllers specified via convex second-order cone programs, one
of which I explore local Lipschitz continuity properties of. Next, in Section 5.3
I unify MR-CBFs with backup set CBF methods. I begin by reviewing backup
set CBF methods, and then show how they can be modified to incorporate MR-
CBF constraints, providing a tool for specifying measurement-robust control
invariant sets. This leads to the first demonstration of an MR-CBF-based
controller on an experimental Segway system using a vision-based measure-
ment system for object detection. Importantly, this result reveals that more
complex convex optimization problems can be efficiently solved to the point
they can be deployed in real-time robotic applications. Lastly, in Section 5.4,
I consider using preference-based learning (PBL) for tuning the parameters of
a robust CBF-based controller. I provide a review of PBL, and then consider
the setting of safety-critical control with a reduced-order model and measure-
ment errors. By unifying the tools of ISSf-CBFs and MR-CBFs, I provide
a parameterized robust CBF-based controller that address the reduced-order
and full-order model gap utilizing ISSf guarantees that hold in the presence of
measurement errors. As this robust controller using worst-case parameter es-
timates can be excessively conservative, PBL is deployed to adjust parameters

https://youtu.be/QEuwRDTG7TE
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according to user feedback on performance and safety, producing a safety-
critical controller that is robust to a wide set of real-world challenges while
remaining performant.

There are a number of potential directions for future work stemming from
the contributions in this chapter. One direction would be exploring MR-CBFs
in different settings of measurement error than the one considered in Section
5.2. In particular, it is often not possible to determine the entire state x from
a single measurement, but rather, a time history of measurements are used
to produce a state estimate x̂ using a model-based observer, such as in [50],
[261]. Thus, quantifying the error in an observer for a nonlinear system and
integrating that with MR-CBFs may expand their capabilities to a wider range
of systems. Furthermore, direct measurements are almost always corrupted by
noise, and observers often provide probabilistic state estimates, suggesting that
extending MR-CBF guarantees to the stochastic measurement setting would
more accurately describe real-world systems. The work explored in Section
4.5 is a potential path forward for this task, but will need to address how
probabilistic properties of state estimates are propagated through MR-CBF-
based controllers while ideally preserving convexity.

Another direction would continue to explore how PBL can be further inte-
grated into the tuning process of robust controllers. The significant body of
work [76]–[80], [281] and the results in Section 5.4 suggests that PBL can suc-
cessfully capture the underlying preferences of a control system designer to
produce desirable closed-loop behavior. This raises the question of how can
problems in control be set up parametrically so that PBL can be deployed us-
ing user feedback. One example may include parameterizing a reduced-order
model for a full-order system and querying feedback from the control designer
on the ability of the full-order system to track the behaviors produced by the
reduced-order model (seeking to produce the constant µ in Section 5.4). A
second example could include parameterizing the model error sets in Section
3.8 instead of constructing them from data, and querying control designer
feedback on the performance and robustness of the controller, similar to the
results in Section 5.4.
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C h a p t e r 6

SAMPLED-DATA & EVENT-TRIGGERED CONTROL

In this chapter I will present results from my work developing methods for
safety-critical control in the presence of input sampling. Very early feedback
control systems, such as governors [288], employed mechanical means for im-
plementing feedback loops, such that the implementation of a controller was
intrinsically a continuous process that is accurately captured by the closed-loop
model (2.2). The advent of modern compute resources has led control system
design to dramatically depart from this type of implementation. Now, the
majority of autonomous systems feature a host of computers sampling mea-
surements from various analog and digital sensors, performing numerically-
intensive control computations, and sending commands to actuators. Impor-
tantly, this process is not instantaneous. Rather, there is time required to
sample sensors, time required to perform control computations, and time re-
quired to send an input command to actuators. During these collective times,
the actuators typically continue to perform the previously commanded input,
such that inputs are applied with a sample-and-hold implementation. This
fundamentally differs1 from the modeling paradigm that CLFs and CBFs uti-
lize in providing rigorous guarantees on stability and safety, and thus, can
compromise said guarantees (including the ones developed in Chapters 2-5 of
this thesis). Thus, it is critical that a framework for robust safety-critical
control address the effects of sampling and ensure that theoretically rigorous
stability and safety guarantees can be made.

There are different paradigms for considering the effect of sampling on con-
trol systems, including sampled-data control [289], event-triggered control [95],
[96], and time-delays in control [290]. Of these, my results will focus on
sampled-data control and event-triggered control. The perhaps most natural
setting for describing sample-and-hold input implementations is sampled-data
control. In this setting, inputs are held constant across a fixed period of time,

1I note that classical linear system theory focuses on the notion of bandwidth to describe
the underlying frequency at which things are being performed in the control-loop. The same
issues with limited bandwidth for linear systems are bound to occur for nonlinear systems
as well, they are just not as easily mathematically quantified.
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referred to as a sample period, and updated at sequential sample times. This
is an accurate description for many cyber-physical systems, especially those
running a real-time operating systems (RTOS), in which the control-loop is
ran at a fixed sample rate. Within the sampled-data paradigm, approaches
can generally be broken into three categories [289]. The first category focuses
on emulation, or how a controller designed for a continuous-time system model
can be modified in implementation to account for the fact it will be sampled.
The second category, and the direction my work will take, is discrete-time
design, which uses a discrete-time model of the sampled-data dynamics to de-
sign controllers. The last category, focuses on design that is both continuous
and discrete-time in nature, but there have been few results in this direction
given the complexity of the problem. In contrast, event-triggered control does
not assume a fixed sample period, but assumes that the control system can
monitor2 for events while holding the control input constant, and when an
event occurs, update the input. While this is perhaps not as natural in the
setting of robotic systems, it provides a powerful tool for efficient utilization of
resources when there is a cost to changing the input, such as context switching
in compute tasks [291], or firing thrusters on a spacecraft [292]. The challenge
in developing rigorous event-triggered control paradigms is to ensure that the
trigger-law defining events leads to some minimum amount of time between
events, more commonly known as a minimum interevent time (MIET).

My work in this chapter focuses on CLF and CBF-based control designs
for sampled-data systems using approximate discrete-time models, as well as
developing a method for safety-critical event-triggered control through ISSf-
CBFs. In Section 6.1 I will review related work in the area of sampled-data
control with CLFs and CBFs as well as safety-critial event-triggered control.
Following this, in Section 6.2 I will provide some empirical studies of the effects
of sampling on the (CLF-QP) controller for different systems, highlighting its
fragility as motivation for my results. I will then provide a mathematical de-
scription of sampled-data control and event-triggered control. Next, in Section
6.3, I will present work on sampled-data stabilization using CLFs. I will first
review some important structural results regarding feedback linearization and
sampled-data control which will underlie the subsequent theory. Then, I will

2For most problems in which event-triggered control is of interest, events can be moni-
tored significantly more quickly than they occur, such that event monitoring is abstracted
to be in continuous-time. That being said, a complete addressing of the problem would
consider the fact that event monitoring is also a process that involves sampling.
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review approximate discrete-time models and practical stability as a goal when
designing stabilizing controllers for sampled-data systems. This will lead to
the main result of this work, which is a constructive approach for extending
feedback linearizability of continuous-time dynamics to a set of approximate
discrete-time dynamics that allows the synthesis of practically stabilizing con-
trollers through convex optimization. I will conclude by revisiting the simu-
lation results from Section 6.2 with this control paradigm and demonstrate a
significant improvement in closed-loop stability properties.

In Section 6.4 I will develop a framework for safety-critical control of sampled-
data systems with CBFs and approximate discrete-time models. I will begin
by considering a more general class of approximate discrete-time models that
allow working with CBFs that do not possess a relative degree of one. Next,
I will define practical safety and Sampled-Data Barrier Functions (SD-BFs)
and Sampled-Data Control Barrier Functions (SD-CBFs), and show how SD-
BFs can be used to certify practical safety of a sampled-data system. I will
conclude by exploring how convexity properties of a SD-CBF lead to a convex
optimization-based controller that I demonstrate in simulation. Lastly, in Sec-
tion 6.5, I will consider the problem of safety-critical event-triggered control
using ISSf-CBFs. I will briefly review event-triggered control for stability as
in [96] to motivate the approach for event-triggered control for safety. Then, I
will consider how errors introduced by an event-triggered control scheme can
be captured by ISSf-BFs when considering safety. I will consider a trigger-law
similar to that proposed for stability in [96], and show that it fails to pro-
duce a MIET through a counterexample, highlighting the importance of how
a system behaves near the boundary of a set that is to be kept forward in-
variant. Following this, I will modify the trigger-law slightly to achieve safety-
critical event-triggered control while ensuring the existence of a MIET, which
I demonstrate in simulation. Key contributions of this work are described at
the beginning of each respective section.

6.1 Related Work

Sampled-Data Stabilization

A key overview and starting point for exploring sampled-data control for non-
linear systems is the review in [289]. My review of the literature will focus
in particular on discrete-time design with approximate models, its relation-
ship with feedback linearizability, and methods that have used CLFs. A key
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challenge in discrete-time design for sampled-data nonlinear systems is that it
is difficult to produce a computationally tractable representation of the exact
discrete-time dynamics of the sampled-data system. Finding an analytic ex-
pression requires solving a general nonlinear differential equation (known to
be quite a difficult task), and numerically integrating the differential equations
poses computational challenges in synthesis that have been prohibitive (until
perhaps recently with modern compute resources, such as with the backup
set CBF methods in Section 5.3). The idea to instead use approximations of
the discrete-time sampled-data dynamics was proposed early in the pursuit
of controllers for nonlinear sampled-data systems [293]–[295] A key develop-
ment in this direction was the sequence of work in [81], [82], [296], which built
a framework which identified properties of both approximation schemes and
controllers that ensure a property known as practical stability. This framework
permitted simple approximations such as first-order Euler methods (which I
will frequently use in this chapter), which greatly simplified the synthesis prob-
lem. This led to a wealth of work extending control techniques such as back-
stepping [83], [84], Lyapunov redesign [85], and finite-horizon optimization-
based schemes (such as Model Predictive Control (MPC)) [86]–[88]. One of
the observations of this work was that sampled-data designs with approxi-
mate discrete-time models often significantly outperform their counterparts
designed with continuous-time models, and even successfully operate at low
sample rates [94]. This will be something that I observe in Sections 6.2 and
6.3 with my proposed method. I also note that the notion of practical stability
was extended to corresponding ideas of ISS [297] and integral ISS [298].

Given the constructive relationship between feedback linearization and CLFs
established in Chapter 2, CLF-based controllers developed for sampled-data
nonlinear systems should account for the interactions between feedback lin-
earization and sampling. The relationship between feedback linearization and
sampled-data control was a deeply studied topic in the early formulation of
controllers for nonlinear sampled-data systems [293], [294], [299]–[302]. A key
result from this work appeared in [293]. In particular, this work identified
that feedback linearizability and sampling do not commute. In particular,
there were three critical observations.

• Even if the continuous-time dynamics of a system are feedback lineariz-
able, the exact discrete-time sampled dynamics are not necessarily feed-
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back linearizable.

• The feedback linearizability of approximate discrete-time dynamics for
feedback linearizable continuous-time dynamics can depend on the order
of the approximation used.

• The feedback linearizability of approximate discrete-time dynamics for
feedback linearizable continuous-time dynamics can depend on the co-
ordinates in which the continuous-time dynamics are expressed before
being approximately discretized.

The second and third point of this preceding list will be important in Sec-
tion 6.3, as producing CLF-based controllers will rely on the order of the
approximate discrete-time dynamics considered, as well as what coordinates
the discretization is performed in. I note that zero-dynamics that arise due to
sampling and higher-order approximations have been studied [303]–[305], but
the effects of sampling on the stability of zero-dynamics for a continuous-time
system that is feedback linearizable have yet to be studied (I will consider them
in Section 6.3). Lastly, sampled-data control with CLFs has been explored in
[306], [307], but it did not make use of approximate discrete-time models or
convex optimization as I will do in my work.

My work in [115], presented in Section 6.3, will translate the pipeline from feed-
back linearization to the optimization-based (CLF-QP) controller in Chapter
2 to the sampled-data setting by integrating with the sampled-data stabiliza-
tion framework through approximate discrete-time models proposed in [81],
thereby yielding a constructive method for optimization-based stabilizing con-
trol for sampled-data systems. To do this, I will first review important tools
from [81] regarding approximate discrete-time models and practical stability,
and show that properties of these tools are preserved when considering co-
ordinate transformations needed to preserve feedback linearizability between
continuous-time and approximate discrete-time models. I will then show that
a CLF synthesized for a feedback linearizable continuous-time system still sat-
isfies the necessary properties to permit CLF-based control synthesis for the
approximate discrete-time dynamics. Given a controller from this process, I
will then show that if the zero-dynamics of the continuous-time feedback lin-
earizable system are locally exponentially stable, that stability is preserved
with sampling. Lastly, I will use the CLF to propose a novel optimization-
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based controller specified as a convex quadratically constrained quadratic pro-
gram (QCQP). I note that a convex QCQP is a more complex class of convex
optimization problem than a QP, but is a sub-class of the class of second-order
cone programs (SOCPs) seen throughout this thesis. Lastly, I demonstrate the
significant improvement in closed-loop behavior of this controller over deploy-
ing a continuous-time (CLF-QP) controller with a sampled implementation on
the problem settings considered in Section 6.2.

Safety-Critical Sampled-Data Control

The development of safety-critical controllers for sampled-data systems is a sig-
nificantly more nascent field than the development of stabilizing controllers, in
large part due only to the recent development of CBFs in [11], [62]. The first
work looking at the effect of sampled-and-hold inputs through the perspective
of barrier functions [308], which considered only the setting of a double integra-
tor. Subsequently, a wide collection of work was developed for safety-critical
control of sampled-data systems [19], [73], [74], [89]–[93]. Much of this work
takes an emulation approach, where an additive correction term is factored in
to the CBF inequality [19], [73], [90]–[93]. This correction term often relies on
Lipschitz constants of the system dynamics and bounds on the control inputs,
which can be difficult to produce, and over-approximations will often lead to
conservative behavior that can only be resolved with exceptionally high sample
rates, as studied in [90]. The work in [74] takes a computationally intensive
approach to reduce conservatism by propagating sensitivity functions, which
may be difficult for high-dimensional systems. Notably, none of this work
considers using discrete-time designs with approximate discrete-time models.

My work in [309], presented in Section 6.4, is the first to consider safety-critical
control using CBFs and discrete-time design with approximate discrete-time
models for nonlinear sampled-data systems. In particular, it will draw inspi-
ration from the framework in [81] and my preceding work in Section 6.3. I will
begin by establishing that the class of higher-order Runge-Kutta approxima-
tion schemes satisfy the necessary consistency properties to provide rigorous
safety-critical control guarantees. Then, by considering the notions of practi-
cal stability and corresponding Lyapunov functions in [81] and discrete-time
CBFs in [234], I will produce a notion of practical safety and corresponding
Sampled-Data barrier functions (SD-BFs) that certify practical safety. I will
then extend this to a definition of a Sampled-Data Control Barrier Function
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(SD-CBF). To ensure that SD-CBFs can be used in convex optimization-based
control synthesis, I will establish a result relating convexity properties of an
SD-CBF with the order of a Runge-Kutta approximate discrete-time model to
ensure that the inequality constraint that leads to practical safety is convex
with respect to the input, enabling its use in convex optimization-based con-
trollers. Lastly, in simulation I will demonstrate the efficacy of this method
in ensuring practical safety of nonlinear sampled-data systems, including the
ability to operate at low sample rates without being conservative.

Event-Triggered Safety-Critical Control

Event-triggered control provides a framework that allows the prescription of,
in a principled way, when certain resources (such as actuators, sensors, access
to a communication network with neighboring agents, or even a human) should
be utilized in order to guarantee the satisfaction of said control objectives ef-
ficiently, The first exploration into advantages of event-triggered control was
the work in [310], [311], which was later expanded to a collection of results
focused on stabilization [96], [312]–[314]. Following this, a number of frame-
works and generalizations have been proposed to extended the capabilities and
improve the performance of event-triggered control schemes [95], [97], [315],
[316]. A key observation in the event-triggered control literature is the need to
ensure the existence of a minimum interevent time (MIET) [97], [317], [318],
thereby preventing the accumulation of events in “Zeno-like” like behavior.
One notable investigation into output-based event-triggered control observed
challenges in ensuring an MIET if the entire system state did not converge
to an equilibrium point [319], which is a challenge that will translate into my
work on safety-critical event-triggered control.

Early work in safety-critical event-triggered control considered using Barrier-
Lyapunov functions, which unify both stability and safety into one function,
and enforce forward invariance by requiring stability [320]. The first worked
that looked at using BFs and CBFs in the context of event-triggered control
were focused on improving the stabilizing properties of a controller, rather
than enforcing the forward invariance of a particular set in the state space
[89], [98]. Taking inspiration from the approach for event-triggered stabiliza-
tion using ISS in [96], my work in [321], presented in Section 6.5, was the first
to explicitly explore safety-critical event-triggered control (without requiring
stabilization) through ISSf. My work shows that naïvely extending the ap-
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proach in [96] does not lead to a MIET using a counterexample that does not
converge to an equilibrium point, similarly to the issues seen in [319]. I instead
propose an alternative triggering scheme that ensures that a system remains
safe while possessing an MIET, which I both prove and show in simulation.
There have been follow-on to this work that has considered relaxing assump-
tions on boundedness of dynamics (made locally in my work, but a strong
assumption to take globally) [322], safety-critical event-triggered control with
model error [323], and greedy approaches to maximize event separation [324].
Similarly, there have been a number of applications of the ideas in this work to
different settings, including spacecraft orbit adjustment [292], connected au-
tomated vehicles [325], and a Stefan partial differential equation system with
actuator dynamics [326].

6.2 Sampling Paradigms

In this section I will present some motivating simulation results highlight-
ing the fragility of the (CLF-QP) controller to sampling on a set of systems,
and then provide a mathematical description of the sampled-data and event-
triggered sampling schemes. I will first consider the inverted pendulum system:

θ̈ =
g

ℓ
sin(θ) +

1

mℓ2
u, (6.1)

with angle θ, angle rate θ̇, gravity g, length ℓ, and mass m. The point xe = 02

is an unforced equilibrium point of this system, and the system is full-state
feedback linearizable to this point. Thus, a CLF V can be synthesized as in
Section 2.4. In this example, I will use a matrix Q2 = 0.99Q, where Q is used
to find the matrix P via the CTLE. I will deploy the (CLF-QP) controller on
this system with a sample-and-hold implementation at a variety of different
sample rates, as seen in Figure 6.1. Observe that at 10 [Hz], the controller
is not stabilizing. At 20 [Hz], the controller does stabilize the system, but it
displays undesirable properties where the control input periodically drops to
0 before reactivating. At 50 [Hz], this controller is stabilizing and the input
profile does not display undesirable behavior. This aligns with the mentality
of “just run it fast enough and it will work” that controllers designed with
continuous-time models are often implemented with.

Now let us consider the more complicated system of a double inverted pendu-
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Figure 6.1. Results using sample-and-hold implementation of (CLF-QP) controller on
inverted pendulum at various sample rates.

lum, seen in Figure 6.2, with the dynamics:[
(m1 +m2)ℓ

2
1 +m2ℓ

2
2 + 2m2ℓ1ℓ2 cos(θ2) m2ℓ

2
2 +m2ℓ1ℓ2 cos(θ2)

m2ℓ
2
2 +m2ℓ1ℓ2 cos(θ2) m2ℓ

2
2

][
θ̈1

θ̈2

]

+

[
0 −m2ℓ1ℓ2(2θ̇1 + θ̇2) sin(θ2)

1
2
m2ℓ1ℓ2(2θ̇1 + θ̇2) sin(θ2) −1

2
m2ℓ1ℓ2θ̇1 sin(θ2)

][
θ̇1

θ̇2

]

+ g

[
(m1 +m2)ℓ1 sin(θ1) +m2ℓ2 sin(θ1 + θ2)

m2ℓ2 sin(θ1 + θ2)

]
=

[
1 0

0 1

][
u1

u2

]
. (6.2)

This system has an unforced equilibrium point xe = 04 to which it is full-
state feedback linearizable. This can be used to synthesize a CLF (using Q2 =

0.99Q) and a corresponding (CLF-QP) controller. The results of deploying this
controller on the system with a sample-and-hold implementation at various
frequencies can be seen in Figure 6.3. Observe that this controller fails to
stabilize the system at sample rates of 10 [Hz], 100 [Hz], and even at 1000
[Hz], which is likely beyond a reasonable sample rate that can be achieved
on lightweight compute platforms. Moreover, the system is wholly unstable
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Figure 6.2. Double Inverted Pendulum Schematic

and displays very frequency high oscillations in the input that would not be
possible with real actuators (such as motors that have inertia).

Lastly, I will consider a planar quadrotor system, as seen in Figure 6.4. This
system has dynamics given by:

ẍ =
ft
m

sin(θ), (6.3)

z̈ = −g + ft
m

cos(θ), (6.4)

θ̈ =
1

J
τ, (6.5)

with horizontal position x, vertical position z, horizontal velocity ẋ, vertical
velocity ż, roll angle θ, roll angle rate θ̇, thrust force ft, torque τ , mass m,
inertia J , and gravity g. If this system is dynamically extended by treating
ft and ḟt as states and the inputs to the system as f̈t and τ , the system is
full-state feedback linearizable [327] to the unforced equilibrium point xe =[
0 0 ze 0 0 0 mg 0

]⊤
for any ze ∈ R>0. This permits the constructive

synthesis of a CLF. Once again synthesizing a CLF with Q2 = 0.99Q, the
results of using the (CLF-QP) controller deployed with a sample-and-hold
implementation can be see in Figure 6.5 Observe that at both 10 [Hz] and
100 [Hz] the controller fails to stabilize the system. At 500 [Hz] the system
is stabilized, but the controller displays large, high frequency oscillations that
would likely be undesirable (or impossible) on a real-world hardware platform.

These simulation results suggest that not only does a sample-and-hold imple-
mentation compromise theoretical stability guarantees, but the degree of the
failures also indicate that the sample rates needed to justify the mentality of
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Figure 6.3. Results using sample-and-hold implementation of (CLF-QP) controller on
double inverted pendulum at various sample rates.

“just run it fast enough and it will work” for these continuous-time CLF-based
controllers may not be obtainable on real-world hardware platforms. In Section
6.3 I will revisit each of these examples using a controller using discrete-time
approximations, and demonstrate the ability of said control approach to work
at every one of the frequencies presented in these results (including 10 [Hz]).
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Figure 6.4. Planar Quadrotor Schematic

This supports the idea that addressing how a controller is implemented in its
design is vital for achieving desirable behavior.

Sampled-Data Sampling

I now describe the sampled-data control paradigm for describing systems with
input sampling. Consider the open-loop system (2.1), and consider an open
subset Z ⊆ E × Rm and its projection onto the state space:

X ≜ {x ∈ E | ∃ u ∈ Rm s.t. (x,u) ∈ Z} ⊆ E. (6.6)

I will assume that there exists a Tmax ∈ R>0 such that for every state-input
pair (x,u) ∈ Z, there exists a unique continuously differentiable solution φ :

[0, Tmax]→ E satisfying:

φ̇(t) = f(φ(t)) + g(φ(t))u, (6.7)

φ(0) = x, (6.8)

for all t ∈ (0, Tmax). Given a sample period T ∈ (0, Tmax], a controller k :

X → Rm is T -admissible if for any x ∈ X , the state-input pair (x,k(x))

satisfies (x,k(x)) ∈ Z and the corresponding solution φ satisfies φ(t) ∈ X
for all t ∈ [0, T ]. This requirement on T -admissible controllers will ensure
that in the sampled-data context, the closed-loop system is forward complete
and its evolution may be described by iterative solutions to (6.7) and (6.8).
Though verifying T -admissibility of a controller may be intractable, assuming
that a controller is T -admissible and renders the set X invariant is relatively
weak as X is defined to ensure the continued existence of solutions rather than
reflecting a task-specific set.

The preceding construction of solutions and admissible controllers describes
the sampled-data control setting, in which inputs are applied to the system
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Figure 6.5. Results using sample-and-hold implementation of (CLF-QP) controller on
planar quadrotor at various sample rates.

with a zero-order hold over a sample period. More precisely, the set of possible
sample periods is given by I = (0, Tmax]. Given a sample period T ∈ I and
a T -admissible controller k : X → Rm, we have that for any initial condition
x0 ∈ X , there exists a unique solution φSD : R≥0 → X that is piecewise
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continuously differentiable on R≥0 and satisfies:

φ̇SD(t) = f(φSD(t)) + g(φSD(t))k(φSD(tk)), ∀t ∈ [tk, tk+1) (6.9)

φSD(0) = x0, (6.10)

with sample times satisfying tk+1 − tk = T for all k ∈ Z≥0. Given an x0 ∈ X ,
I will denote the solution at sample times as xk ≜ φSD(tk) for k ∈ Z≥0.
An alternative way of representing the evolution of the system over a sample
period is given by the exact map Fe

T : Z → Rn:

Fe
T (x,u) = x+

∫ T

0

[f(φ(τ)) + g(φ(τ))u] dτ, (6.11)

for all state-input pairs (x,u) ∈ Z. For all T ∈ I such that kT is T -admissible
and any initial condition x0 ∈ X , the solution φSD satisfies the recursion:

xk+1 = Fe
T (xk,kT (xk)) ∈ X , (6.12)

for all k ∈ Z≥0. Closed-form expressions for exact maps are rarely obtainable,
suggesting the use of approximations in control synthesis, which I will consider
in Sections 6.3 and 6.4. I call {kT : X → Rm | T ∈ I} a family of admissible
controllers if there is a T ∗ ∈ I such that for each T ∈ (0, T ∗), kT is T -
admissible. This enables the following definition:

Definition 44 (Exact Family). I define the exact family of maps {Fe
T | T ∈ I},

and for a family of admissible controllers {kT | T ∈ I}, I define the exact family
of controller-map pairs {(kT ,F

e
T ) | T ∈ I}.

Lastly, if xe ∈ X is an unforced or forced equilibrium point of the open-loop
system (2.1) for an equilibrium input ue ∈ Rm such that (xe,ue) ∈ Z, then
xe is said3 to be an unforced or forced equilibrium point of the exact family of
maps {Fe

T | T ∈ I}, noting that:

Fe
T (xe,ue) = xe. (6.13)

3Throughout this work I will require that a point be an unforced or forced equilibrium
point of an underlying continuous-time open-loop system to define it as an unforced or forced
equilibrium point of a discrete-time family of maps. Notably, just satisfying a condition
(6.13) will not define an equilibrium point for a discrete-time family of maps, as it does not
say anything about equilibrium behavior in the inter-sample behavior. Rather, relationships
like (6.13) are a consequence of the definition I take.
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Given a family of admissible controllers {kT | T ∈ I}, the point xe is said to be
an equilibrium point of the exact family of controller-map pairs {(kT ,F

e
T ) | T ∈

I} if there exists a T ∗ ∈ I such that:

kT (xe) = ue, (6.14)

for all T ∈ (0, T ∗).

Event-Triggered Sampling

I now describe the event-triggered control paradigm for systems with input
sampling. I will assume that for every state-input pair4 (x,u) ∈ Rn×Rm, there
exists a unique continuously differentiable solution φ : R≥0 → Rn satisfying:

φ̇(t) = f(φ(t)) + g(φ(t))u, (6.15)

φ(0) = x, (6.16)

for all t ∈ R≥0. The assumption that solutions exist for all time may appear
strong, but note that the control input is fixed, and thus this is mainly a
requirement that the functions f and g won’t lead to finite escape times. Im-
portantly, it will later permit arbitrarily large spacing between events, which
is a desirable property in event-triggered control.

The implementation of a controller k : Rn → Rm is done by sampling the state
at sample times tk for k ∈ Z≥0 with t0 = 0 and tk ≤ tk+1, evaluating the con-
troller on the corresponding state x(tk), and holding the input constant until
the next sample-time. This leads to an event-triggered closed-loop system:

ẋ(t) = f(x(t)) + g(x(t))k(x(tk)) ∀t ∈ [tk, tk+1), (6.17)

where the argument t is used for x to denote that it continues to evolve con-
tinuously in time while the input k(x(tk)) is held constant. As opposed to the
sampled-data sampling paradigm, the sample times at which the controller is
updated are determined by a state-dependent execution rule or trigger-law:

tk+1 = min{t ≥ tk | ρ(x(t), tk) = 0}, (6.18)

for a function ρ : Rn×R≥0 → R. Given a trigger-law, for any initial condition
x0 ∈ Rn, there exists an interval I(x0) ≜ [0, tmax(x0)), sample times tk ∈ R≥0

4I work with Rn instead of an open set E ⊆ Rn with this topic for simplicity. This is not
needed, but otherwise requires some additional labor maintaining function domains that is
not particularly illuminating.
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with t0 = 0 and tk ≤ tk+1 < tmax(x0) for all k ∈ Z≥0, and a function φET :

I(x0)→ Rn that is piecewise continuously differentiable on I(x0) and satisfies:

φ̇ET(t) = f(φET(t)) + g(φET(t))k(φET(tk)), ∀t ∈ [tk, tk+1) (6.19)

φET(0) = x0. (6.20)

There are two interesting behaviors to observe regarding this paradigm. First,
it maybe possible for tk+1 to be undefined (tk+1 = tmax =∞) for all k greater
than some k∗ ∈ Z≥0 if ρ(φET(t)) never equals 0 for t ∈ [tk,∞). This is actually
a desirable probably in the event-triggered paradigm, as it means the control
input to the system does not need to be changed (with switching assumed to
have some undesirable cost). The other, more pressing behavior is if tk+1 can
become arbitrarily close to tk as k → ∞, such that there is no minimum in-
terevent time (MIET). This is described as Zeno behavior5, and is undesirable
as it requires the controller essentially be implemented continuously in time,
which not only defeats the purpose of an event-triggered implementation, but
is likely not possible on real-world hardware platforms.

6.3 Sampled-Data Stabilization

In this section I will present work on stabilizing sampled-data control through
feedback linearization and CLF-based controllers specified via convex opti-
mization problems. I will begin by extending the sampled-data sampling
paradigm in Section 6.2 to account for the coordinate transformations that
occur with feedback linearization. Next I will consider approximate discrete-
time models, with a focus on the Euler approximation. I review an important
property for relating the accuracy of approximate discrete-time models known
as one-step consistency, and show how regularity properties on the dynam-
ics and controller lead to one-step consistency. Next, I will review the no-
tion of practical stability and asymptotic stability by equi-Lipschitz Lyapunov
functions, which allows for establishing stability results for sampled-data sys-
tems based on approximate discrete-time models. Following this, in the first
main contribution of this work, I show that a feedback linearizable continuous-

5What I will show in the counterexample in Section 6.5 is Zeno-like behavior. Zeno
behavior requires that the tk converge to a finite tmax(x0) as k → ∞. Instead, I will not
require tk converge to a limit, but I will show that for any ϵ ∈ R>0, there exists some
k ∈ Z≥0 such that |tk+1 − tk| < ϵ, which is equally undesirable. The distinction is best
understood by the two series

∑∞
k=1

1
k and

∑∞
k=1

1
k2 . The terms in each series converge to

0, but the first series does not converge (the behavior I achieve) while the second series
converges (Zeno behavior).
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time system with locally exponentially stable zero-dynamics can be rendered
practically stable with a sample-data implementation of the continuous-time
feedback linearizing controller. After this, I will present the second main con-
tribution of this work by extending the results from feedback linearization to
produce CLF-based controllers specified via convex optimization for sampled-
data systems. I conclude by demonstrating the proposed control approach on
the simulation environments in Section 6.2, demonstrating significant improve-
ments over continuous-time counterparts.

The contributions of this section are as follows:

• Adaptation of the framework for stabilizing sampled-data control with
approximate discrete-time models [81] to support the coordinate trans-
formations and local stability results that are common with feedback
linearization and zero-dynamics, leading to a full system stability result
for a sampled-data system using feedback linearization.

• A method for synthesizing CLF-based controllers specified as convex op-
timization problems for sampled-data systems that greatly outperforms
continuous-time counterparts in simulation.

The text for this section is adapted from:

A. J. Taylor, V. D. Dorobantu, Y. Yue, P.Tabuada, and A. D. Ames,
“Sampled-data stabilization with control lyapunov functions via quadrat-
ically constrained quadratic programs,” IEEE Control Sys. Let., vol.6,
pp.680–685, 2022.

A. J. Taylor participated in the conception of the project, algorithm
design and theoretical analysis, simulation code implementation, and
writing of the article.

Feedback Linearization for Sampled-Data Control

I will begin by expanding the sampled-data sampling paradigm in Section 6.2
to account for the coordinate transformation that accompanies feedback lin-
earization. First, define the following reachable set using the solution satisfying
(6.7) and (6.8):

D ≜
{
x ∈ E | ∃(x0,u0) ∈ Z, t ∈ [0, Tmax] s.t. x = φ(t)

}
, (6.21)
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noting that X ⊆ D. This set can be interpreted as the region of the state
space which can be reached by the continuous-time solution φ within Tmax

time from an initial condition x0 ∈ X with an input u0 that satisfies (x0,u0) ∈
Z. Let xe ∈ X be an unforced or forced equilibrium point of the open-loop
system (2.1) such that (xe,ue) ∈ Z, and recalling the definition of feedback
linearization in Section 2.4, assume that the open-loop system (2.1) is locally
feedback linearizable with respect to the equilibrium point xe with an open
set D that satisfies D ⊆ D. This additional assumption that D ⊆ D is made
simply so that the diffeomorphism Φ is well defined on all of the states that
can be encountered when evolving from an initial condition x0 ∈ X with an
input u0 satisfying (x0,u0) ∈ Z, and may require considering a restricted set
Z that restricts X to achieve D ⊆ D.

As shown in [293], feedback linearizability of a continuous-time system does
not guarantee feedback linearizability of the resulting discrete-time sampled-
data system, even when using approximate discrete-time models. In particular,
this property may be lost due to a change of coordinates. The preservation of
this property motivates studying the evolution of the normal-form open-loop
system in the sampled-data context. To this end, define the set:

Zξ =
{
(ξ,u) ∈ Φ(X )× Rm | (Φ−1(ξ),u) ∈ Z

}
, (6.22)

noting that by assumption, for every state-input pair (ξ0,u0) ∈ Zξ, there
exists a unique solution ψ : [0, Tmax]→ Φ(D) satisfying:

ψ̇(t) = fξ(ψ(t)) + gξ(ψ(t))u0, (6.23)

ψ(0) = ξ0, (6.24)

for all t ∈ (0, Tmax). For T ∈ (0, Tmax], a controller k : Φ(X ) → Rm is a
T -admissible controller if the corresponding controller k′ : X → Rm given by
k′(x) = k(Φ(x)) for all x ∈ X is T -admissible. A controller kaux : Φ(X )→ Rk

is a T -admissible auxiliary controller if kξ
fbl : Φ(X )→ Rm given by:

kξ
fbl(ξ) = kfbl(Φ

−1(ξ),kaux(ξ)), (6.25)

is a T -admissible controller.

Because we are working with two different coordinate systems (state coordi-
nates and normal-form coordinates), the evolution of the system over a sample
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period can be described by both the exact state discrete map Fe,x
T : Z → D

and exact normal discrete map Fe,ξ
T : Zξ → Φ(D):

Fe,x
T (x0,u0) = x0 +

∫ T

0

[f(φ(τ)) + g(φ(τ))u0] dτ, (6.26)

Fe,ξ
T (ξ0,u0) = ξ0 +

∫ T

0

[fξ(ψ(τ)) + gξ(ψ(τ))u0] dτ, (6.27)

for all state-input pairs (x0,u0) ∈ Z and all normal state-input pairs (ξ0,u0) ∈
Zξ. The exact maps are related by:

Fe,ξ
T (ξ0,u0) = Φ(Fe,x

T (Φ−1(ξ0),u0)), (6.28)

for all normal state-input pairs (ξ0,u0) ∈ Zξ. While an equivalence between
the exact state discrete map and exact normal discrete map is achieved via the
diffeomorphism Φ, it is useful to define both maps as the notion of stability I
later consider for sampled-data systems is defined for a particular exact map.
I call {kT : Φ(X )→ Rm | T ∈ I} a family of admissible controllers if there is
an T ∗ ∈ I such that for each T ∈ (0, T ∗), kT is T -admissible. This enables the
following definition:

Definition 45 (Exact Families). I define the exact state family of maps
{Fe,x

T | T ∈ I} and exact normal family of maps {Fe,ξ
T | T ∈ I}, and for

a family of admissible controllers {kT : Φ(X ) → Rm | T ∈ I}, I define the
exact state family of controller-map pairs {(kT ◦ Φ,Fe,x

T ) | T ∈ I} and exact
normal family of controller-map pairs {(kT ,F

e,ξ
T ) | T ∈ I}.

For all T ∈ I such that kT is T -admissible, the recursion:

ξk+1 = Fe,ξ
T (ξk,kT (ξk)) ∈ Φ(X ), (6.29)

is well-defined for all ξ0 ∈ Φ(X ) and k ∈ Z≥0. As before, if xe ∈ X is
an unforced or forced equilibrium point of the open-loop system (2.1) for an
equilibrium input ue ∈ Rm such that (xe,ue) ∈ Z, it is said to be an unforced
or forced equilibrium point of the exact state family of maps {Fe,x

T | T ∈ I}.
The relationship in (2.25) implies that:

fξ(0n) + gξ(0n)ue = 0n, (6.30)

such that xe is an unforced or forced equilibrium point of the exact state family
of maps {Fe,x

T | T ∈ I} if and only if 0n is an unforced or forced equilibrium
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point of the exact normal family of maps {Fe,ξ
T | T ∈ I}, implying that:

Fe,ξ
T (0n,ue) = 0n, (6.31)

for all T ∈ I. Moreover, given a family of admissible controllers {kT : Φ(X )→
Rm | T ∈ I}, (2.25) also implies that the point xe is an equilibrium point of
the exact state family of controller-map pairs {(kT ◦ Φ,Fe,x

T ) | T ∈ I}, such
that kT (Φ(xe)) = ue for all T ∈ I, if and only if the point 0n is an equilibrium
point of the exact normal family of controller-map pairs {(kT ,F

e,ξ
T ) | T ∈ I}

as kT (0n) = ue for all T ∈ I. This is an important point as it suggests that
relating stability results for the exact normal family of controller-map pairs to
the exact state family of controller-map pairs will be well-posed.

Approximate Discrete-Time Models

In practice, closed-form expressions for the exact maps are rarely obtainable,
suggesting the use of approximations in the control synthesis process. While
there are many approaches to approximating this map, I will use the following
approximation of the exact normal map:

Definition 46 (Euler Approximation Family). For every sample period T ∈ I,
define the map Fa,ξ

T : Zξ → Rn as:

Fa,ξ
T (ξ0,u0) = ξ0 + T (fξ(ξ0) + gξ(ξ0)u0), (6.32)

for all (ξ0,u0) ∈ Zξ, yielding the Euler approximation family of maps {Fa,ξ
T | T ∈

I}. For a family of admissible controllers {kT : Φ(X ) → Rm | T ∈ I}, I de-
fine the corresponding Euler approximation family of controller-map pairs is
{(kT ,F

a,ξ
T ) | T ∈ I}.

The motivation behind this particular approximation will be preserving the
strict feedback nature of the normal form [84], which I will utilize later when
considering control synthesis. Observe that by (6.30), 0n is an unforced or
forced equilibrium point of the exact normal family of maps {Fe,ξ

T | T ∈ I} if
and only if:

Fa,ξ
T (0n,ue) = 0n. (6.33)

Also note that if a family of admissible controllers {kT : Φ(X )→ Rm | T ∈ I}
satisfies kT (0n) = ue for all T ∈ (0, T ∗) for some T ∗ ∈ I, then:

Fa,ξ
T (0n,kT (0n)) = 0n. (6.34)
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This is an important point as it suggests that designing for stability with the
Euler approximation family of controller-map pairs in an effort to stabilize the
exact normal family of controller-map pairs will be well-posed.

For T ∈ I, we can also define Fa,η
T : Zξ → Rγ and Fa,z

T : Φ(X ) → Rn−γ such
that for all (ξ,u) = ((η, z),u) ∈ Zξ:

Fa,ξ
T (ξ,u) =

[
Fa,η

T (ξ,u)

Fa,z
T (ξ)

]
=

[
η + T (fη(ξ) + gη(ξ)u)

z+ Tω(ξ)

]
. (6.35)

First, observe that using kξ
fbl yields:

Fa,η
T (ξ,kξ

fbl(ξ)) = (Iγ + TA)η + TBkaux(ξ), (6.36)

such that the Euler approximation of the output dynamics appear as a linear
discrete-time system. Moreover, it is straightforward to show that (A,B) be-
ing a controllable pair implies that (Iγ+TA, TB) is a discrete-time controllable
pair for all T ∈ I, such that the Euler approximation of the output dynamics
can be rendered a stable discrete-time system through an appropriate choice
of kaux. I note that if the approximation was taken using the state coordinates
instead of the normal coordinates, this structure would not necessarily appear.
This is an instance of sampling and feedback linearization failing to commute,
but it also suggests that if the coordinate transformation associated with feed-
back linearization is performed before sampling, it is possible to retain the
desirable control properties of feedback linearizability. Second, observe that
there may be a T ∈ I such that the controller kT is T -admissible but the
recursion ξk+1 = Fa,ξ

T (ξk,kT (ξk)) is not well-defined for all ξ0 ∈ Φ(X ) and
k ∈ Z≥0. This is due to this map enabling ξk /∈ Φ(X ) for some k > 0. While
my results do not need this recursion to be well-defined, this can be achieved
by extending the domains of fξ, gξ, and kT to Rn.

The following definition characterizes how accurately an approximate map
captures the exact map:

Definition 47 (One-Step Consistency). A family of controller-map pairs,
{(kT ,FT ) : T ∈ I}, is one-step consistent with the exact normal family of
controller-map pairs {(kT ,F

e,ξ
T ) | T ∈ I} if, for each compact set K ⊆ Φ(X ),

there exist a function ρ ∈ K∞ and T ∗ ∈ I such that for all ξ ∈ K and
T ∈ (0, T ∗), we have:

∥Fe,ξ
T (ξ,kT (ξ))− FT (ξ,kT (ξ))∥ ≤ Tρ(T ). (6.37)
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The next lemma establishes that the Euler approximation family of controller-
map pairs is one-step consistent with the exact normal family of controller-map
pairs. I note that this result is based on [81, Lemma 1], which establishes the
one-step consistency of the Euler approximation family of controller-map pairs
with an exact family of controller-map pairs. The proof of my lemma will only
provide conditions for which I show the sufficient conditions of [81, Lemma
1] are met. The conclusion of one-step consistency in my lemma can then be
established by directly following the proof of [81, Lemma 1]. In this sense,
this lemma should be understood as at most a minor contribution of my work,
but important for understanding my later results. I also note that in Section
6.4 I will provide a complete proof of one-step consistency for a larger class of
approximate discrete-time maps that includes the Euler approximation family
which will follow the steps I have omitted here.

Lemma 6. Suppose fξ and gξ are locally Lipschitz continuous on Φ(X ). Con-
sider a family of admissible controllers {kT : Φ(X ) → Rm | T ∈ I} and sup-
pose that for any compact set K ⊂ Φ(X ) there exist T ∗ ∈ I and a bound
M ∈ R>0 such that for every sample time T ∈ (0, T ∗), the controller kT is
bounded by M on K. Then the Euler approximation family of controller-map
pairs {(kT ,F

a,ξ
T ) | T ∈ I} is one-step consistent with the exact normal family

of controller-map pairs {(kT ,F
e,ξ
T ) | T ∈ I}.

I note that since f , g, Φ, and ∂Φ
∂x

are assumed to be locally Lipschitz continuous
on at least D and X ⊆ D ⊆ D, the first condition of Lemma 6 is met.

Proof. Consider a compact set K ⊂ Φ(X ) and corresponding T ∗ ∈ I and
M ∈ R>0, and fix a sample period T ∈ (0, T ∗). By assumption, kT is bounded
on K, and since fξ and gξ are continuous, fξ and gξ are also bounded on K,
implying there exists a bound M ′ ∈ R>0 with:

∥fξ(ξ2) + gξ(ξ2)kT (ξ1)∥ ≤M ′, (6.38)

for all normal states ξ1, ξ2 ∈ K. As fξ and gξ are locally Lipschitz continuous
on the compact set K, it follows that fξ and gξ are Lipschitz continuous on
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K. Therefore:

∥fξ(ξ2) + gξ(ξ2)kT (ξ1)− (fξ(ξ1) + g(ξ1)kT (ξ1))∥

≤ ∥fξ(ξ2)− fξ(ξ1)∥+ ∥gξ(ξ2)− gξ(ξ1)∥∥kT (ξ1)∥, (6.39)

≤ (Lfξ + Lgξ
M)∥ξ2 − ξ1∥, (6.40)

≜ ρ(∥ξ2 − ξ1∥), (6.41)

for all states ξ1, ξ2 ∈ K, where Lfξ , Lgξ
∈ R>0 are Lipschitz constants for fξ

and gξ, respectively, on K, and ρ ∈ K∞ satisfies ρ(r) = (Lfξ + Lgξ
M)r for

all r ∈ R≥0. The remainder of the proof directly follows the proof of Lemma
1 in [81] by substituting (using the notation of [81]) X = N(K, ϵ) ⊂ Φ(X ),
with proper containment implied for some ϵ ∈ R>0 as Φ(X ) is open, and
substituting T ∗

1 = min{T ∗, ϵ/M ′}.

Practical Stability

Before defining the notion of practical stability which will be the objective of
stabilizing controller design for sampled-data systems, I recall the following
definition [100]:

Definition 48 (Class-KL Function). Let a ∈ R>0. A continuous function
β : [0, a) × R≥0 is said to be a class-KL function (β ∈ KL) if for all s ∈ R≥0

the function β(·, s) : [0, a) → R≥0 is a class-K function, and for all r ∈ [0, a)

and s1, s2 ∈ R≥0 satisfying s1 < s2, the function β(r, ·) : R≥0 → R≥0 satisfies
β(r, s2) < β(r, s1) and lims→∞ β(r, s) = 0. A class-KL function is said to be a
class-KL∞ function (β ∈ KL∞) if a =∞.

This allows the following definition of practical stability, defined for both the
exact state discrete map and the exact normal discrete map:

Definition 49 (Practical Stability). Let ζe be an equilibrium point of a family
of controller-map pairs {(kT ,FT ) | T ∈ I}, let β ∈ KL∞, and let N ⊆ Rn be an
open set with ζe ∈ N . The family of controller-map pairs {(kT ,FT ) | T ∈ I} is
(β,N)-practically stable with respect to ζe if for each R ∈ R>0, there exists a
T ∗ ∈ I such that for each sample period T ∈ (0, T ∗), initial state ζ0 ∈ N , and
number of steps k ∈ Z≥0, the recursion ζk+1 = FT (ζk,kT (ζk)) is well-defined
and:

∥ζk − ζe∥ ≤ β(∥ζ0 − ζe∥, kT ) +R. (6.42)
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This definition requires that the state of the system converge to a neighborhood
of the equilibrium point ζe (standing in for both xe and 0n) that can be
made arbitrarily small (smaller values of R) by requiring potentially higher
sample rates (a smaller value of T ∗). The following lemma relates the practical
stability of the exact normal family and the exact state family of controller-map
pairs. Importantly, it justifies considering the sampled normal form dynamics,
which can be feedback linearized, rather than the sampled state dynamics that
may not be feedback linearizable. I note that this lemma is a contribution of
my work.

Lemma 7. Suppose that for any compact sets K,K ′ ⊂ Rn, Φ and Φ−1 are
Lipschitz continuous on K ′∩X and K∩Φ(X ), respectively. If the exact normal
family of controller-map pairs {(kT ,F

e,ξ
T ) | T ∈ I} is (β,N)-practically stable

with respect to 0n for an open set N ⊆ Φ(X ) with 0n ∈ N , then there exist
β′ ∈ KL∞ and a bounded open set N ′ ⊆ X with xe ∈ N ′ such that the
exact state family of controller-map pairs {(kT ◦Φ,Fe,x

T ) | T ∈ I} is (β′, N ′)-
practically stable with respect to xe.

Proof. Let N ′ ⊆ Φ−1(N) be a bounded open set satisfying cl(N ′) ⊆ X and
xe ∈ N ′, noting that such an N ′ exists as X is open and xe ∈ Φ−1(N) ⊆ X . As
cl(N ′) is compact and Φ is a homeomorphism (because it is a diffeomorphism)
between X and Φ(X ), we have Φ(cl(N ′)) ⊆ Φ(X ) is compact and satisfies
Φ(cl(N ′)) = cl(Φ(N ′)). Fix R ∈ R>0 and define the corresponding radii
r, r′ ∈ R>0 as:

r = max
ξ0∈cl(Φ(N ′))

β(∥ξ0∥, 0) +R, (6.43)

r′ = max
x0∈cl(N ′)

∥x0∥, (6.44)

and let Br, Br′ ⊂ Rn be closed norm-balls centered at of radius r centered at 0n

and r′ centered at xe, respectively. By assumption, Φ−1 and Φ are Lipschitz
continuous on Φ(X )∩Br and X∩Br′ with Lipschitz constants LΦ−1 , LΦ ∈ R>0,
respectively. Given an arbitrary R′ ∈ R>0, pick R < min{R,R′/LΦ−1}. Let
x0 ∈ N ′ and let ξ0 = Φ(x0) ∈ Φ(N ′) ⊆ N . By the (β,N)-practical stability
of the exact normal family of controller-map pairs, corresponding to R, there
exists a T ∗ ∈ I such that for any sample period T ∈ (0, T ∗), the recursion
ξk+1 = Fe,ξ

T (ξk,kT (ξk)) ∈ Φ(X ) satisfies ∥ξk∥ ≤ β(∥ξ0∥, kT ) +R, and implies
ξk ∈ Φ(X ) ∩ Br for all k ∈ Z≥0. Letting xk+1 = Fe,x

T (xk,kT (Φ(xk))) for all
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k ∈ Z≥0, note that xk = Φ−1(ξk). It follows that for all k ∈ Z≥0:

∥xk − xe∥ = ∥Φ−1(ξk)−Φ−1(0n)∥, (6.45)

≤ LΦ−1∥ξk − 0n∥, (6.46)

≤ LΦ−1(β(∥ξ0∥, kT ) +R), (6.47)

= LΦ−1(β(∥Φ(x0)−Φ(xe)∥, kT ) +R), (6.48)

≤ LΦ−1(β(LΦ∥x0 − xe∥, kT ) +R), (6.49)

< β′(∥x0 − xe∥, kT ) +R′, (6.50)

where β′(r, s) = LΦ−1β(LΦr, s) for all r, s ∈ R≥0 is a class-KL∞ function.
Note that the first inequality results from the fact we have taken R < R,
such that ξk ∈ Φ(X ) ∩ Br for all k ∈ Z≥0, and thus the Lipschitz bound can
be used, while the second inequality follows from the way r′ is defined and
the fact x0 ∈ N ′. Therefore, the exact state family of controller-map pairs is
(β′, N ′)-practically stable.

Certifying practical stability will come through the following class of Lyapunov
functions defined in [81]:

Definition 50 (Asymptotic Stability by Equi-Lipschitz Lyapunov Functions).
A family of controller-map pairs {(kT ,FT ) | T ∈ I} is asymptotically stable
by equi-Lipschitz Lyapunov functions if for some open set N ⊆ Φ(X ) with
0n ∈ N and any compact set K ⊂ N , there exist T ∗ ∈ I, comparison functions
α1, α2 ∈ K∞ and α3 ∈ K, a family {VT : Rn → R≥0 | T ∈ (0, T ∗)}, and a
Lipschitz constant M ∈ R>0 such that:

α1(∥ξ1∥) ≤ VT (ξ1) ≤ α2(∥ξ1∥), (6.51)

VT (FT (ξ2,kT (ξ2)))− VT (ξ2) ≤ −Tα3(∥ξ2∥), (6.52)

|VT (ξ3)− VT (ξ4)| ≤M∥ξ3 − ξ4∥, (6.53)

for all ξ1 ∈ Rn, normal states ξ2 ∈ N and ξ3, ξ4 ∈ K, and sample times
T ∈ (0, T ∗).

The first condition is the standard positive-definite condition seen with Lya-
punov functions. The second condition is a discrete-time decrement condition
on the value of the Lyapunov function that scales with the sample-rate T .
Observe that (6.51) and (6.52) require that:

FT (0n,kT (0n)) = 0n. (6.54)



289

The last condition requires that the function VT be Lipschitz continuous on
any compact set K ⊆ N . Notably, the functions α1, α2, α3 and the constant
M must hold uniformly for all T ∈ (0, T ∗), leading to the name equi-Lipschitz.

These functions link one-step consistency to practical stability in the next
lemma. I note that this lemma is a modification of [81, Theorem 2], which is
the main result of that work and provides a global practical stability result.
My modification focuses on making the technically necessary adjustments that
allow for local stability results, as I will be later studying the local exponential
stability of zero-dynamics. A full proof of this lemma would require significant
repetition of the steps in [81], and thus my “proof” should be seen as a list of
instructions that can be followed to modify the proof steps of [81, Theorem 2]
rather than a full proof. Again, in this sense, this lemma should be seen as at
most a minor contribution of my work, but it is important for justifying my
later results.

Lemma 8. If the corresponding Euler approximation family of controller-map
pairs {(kT ,F

a,ξ
T ) | T ∈ I} is asymptotically stable by equi-Lipschitz Lya-

punov functions, then there exist β ∈ KL∞ and a bounded open set U ⊆
Φ(X ) with 0n ∈ U such that the exact normal family of controller-map pairs
{(kT ,F

e,ξ
T ) | T ∈ I} is (β,N)-practically stable for any open set N ⊆ U with

0n ∈ N .

The importance of this lemma is that it states that controllers designed using
the Euler approximation family of maps can endow the corresponding exact
normal family of controller-map pairs with practical stability guarantees, and
using Lemma 7, endow the exact state family of controller-map pairs with
practical stability guarantees.

Proof. Consider the open set N ⊆ Φ(X ) and the functions α1, α2 ∈ K∞

and α3 ∈ K as specified by Definition 50. Let K ⊂ N be a compact set
with 0n ∈ int(K). By one-step consistency and asymptotic stability by equi-
Lipschitz Lyapunov functions, there exist a ρ ∈ K∞, a Lipschitz constant
M ∈ R≥0, and an T ∗

0 ∈ I such that for all T ∈ (0, T ∗
0 ), (6.37), (6.51), (6.52),

and (6.53) hold for all ξ, ξ1, . . . , ξ4 ∈ K. There exists a radius R ∈ R>0 such
that the closed norm-ball of radius R centered at 0n is contained in K. I
modify the claim of [81, Equation 37] for the local setting in this work as
follows:
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Claim 1. For any d,D ∈ R>0 with D ≤ α−1
2 (α1(

R
2
)) and d ≤ 2α2(R), there

exists an T ∗ ∈ (0, T ∗
0 ) such that for every ξ ∈ Φ(X ) and T ∈ (0, T ∗), if

∥ξ∥ ≤ D and max {VT (Fe,ξ
T (ξ,kT (ξ))), VT (ξ)} ≥ d, then:

VT (F
e,ξ
T (ξ,kT (ξ)))− VT (ξ) ≤ −

T

2
α3(∥ξ∥). (6.55)

In the language of [81], the restrictions on d and D imply ∆ ≤ R, and the
proof follows by replacing the sets X and X1 with K, the constant M with
the Lipschitz constant M given above, and the constants T ∗

1 and T ∗
2 with T ∗

0 .
Letting U ⊂ K be the open ball of radius α−1

2 (α1(α
−1
2 (α1(

R
2
)))), the modified

claim may be used to prove the existence of a β ∈ KL∞ such that the exact
normal family of controller-map pairs {(kT ,F

e,ξ
T ) | T ∈ I} is (β,N ′)-practically

stable for any open set N ′ ⊆ U containing the origin by following the proof of
Theorem 2 in [81].

Sampled-Data Stabilization

In now present my main result establishing feedback linearization as a method
for practically stabilizing sampled-data nonlinear systems. The first result
builds on [328] to make a claim on the stabilizability of the output dynamics:

Lemma 9. Let the open-loop system (2.1) be feedback linearizable to an un-
forced or forced equilibrium point xe ∈ X , consider K ∈ Rk×γ such that
Acl ≜ A−BK is Hurwitz, and let Pη ∈ Sγ

≻0 solve the CTLE:

A⊤
clPη +PηAcl = −Qη, (6.56)

for some Q ∈ Sγ
≻0. Define the function Vη : Rγ → R≥0 as Vη(η) = η⊤Pηη for

all η ∈ Rγ. For any Qη ∈ Sγ
≻0 such that Qη ≺ Q and c ∈ (0, 1), there exists

T ∗
η ∈ I such that for any η0 ∈ Rγ, ξ = (η, z) ∈ Φ(X ) \ {0n}, and T ∈ (0, T ∗

η),
there exists an input u ∈ Rm such that:

λmin(Pη)∥η0∥2 ≤ Vη(η0) ≤ λmax(Pη)∥η0∥2, (6.57)

Vη(F
a,η
T (ξ,u))− Vη(η) < −Tcλmin(Qη)∥η∥2. (6.58)

This result states that if the continuous-time open-loop system (2.1) is feed-
back linearizable to an equilibrium point xe and we pick a stabilizing linear
gain K for the output dynamics, we can solve the CTLE for the output portion
of the corresponding closed-loop normal-form dynamics to produce a type of
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discrete-time CLF for the output portion of the Euler approximation family
of maps. While I have yet to show that the equi-Lipschitz property is met
(I will shortly), note that Vη satisfies the necessary uniformity properties in
the sample period T with respect to α1, α2 and α3 required by equi-Lipschitz
Lyapunov functions.

Proof. The bounds in (6.57) follow from the definition of Vη. Define the aux-
iliary controller kaux((η, z)) = −Kη for all (η, z) ∈ Φ(X ). For the controller
kξ

fbl defined in (6.25), we have:

Vη(F
a,η
T (ξ,kξ

fbl(ξ)))− Vη(η) = Vη((Iγ + TAcl)η)− Vη(η), (6.59)

= Tη⊤(A⊤
clPη +PηAcl + TA⊤

clPηAcl)η (6.60)

< −T (λmin(Qη)− Tλmax(A
⊤
clPηAcl))∥η∥2,

(6.61)

for all ξ = (η, z) ∈ Φ(X ) \ {0n} and T ∈ I. Picking T ∗
η ∈ I with:

T ∗
η ≤ (1− c)λmin(Qη)/λmax(A

⊤
clPηAcl), (6.62)

implies that for all T ∈ (0, T ∗
η ] and ξ ∈ Φ(X ) \ {0n}, the input kξ

fbl(ξ) satisfies
(6.58).

I note that the preceding result did not include 0n, as the strict inequality
can not be satisfied there. Observe that using the controller kξ

fbl with kaux as
defined in the proof, (2.33) implies that Fa,η

T (0n,k
ξ
fbl(0n)) = 0γ. Furthermore,

if xe is an unforced or forced equilibrium point of the open-loop system (2.1),
the assumption that the dynamics of z do not depend on the input implies that
ω(0n) = 0n−γ. Thus, with this controller, we have that Fa,ξ

T (0n,k
ξ
fbl(0n)) = 0n.

The function Vη is said to be a discrete-time CLF for the output portion of
the Euler approximation family of maps for T ∈ (0, T ∗

η ]. For each T ∈ (0, T ∗
η),

define UT : Φ(X )→ P(Rm) as:

UT (ξ) =

{
u ∈ Rm

∣∣∣∣∣ (ξ,u) ∈ Zξ and
Vη(F

a,η
T (ξ,u))− Vη(η) ≤ −Tcλmin(Qη)∥η∥2

}
,

(6.63)

for all ξ ∈ Φ(X ), noting that it if kaux as in the proof of Lemma 9 is T -
admissible for all T ∈ (0, T ∗

η ], then this set is non-empty for all T ∈ (0, T ∗
η ]
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and ξ ∈ Φ(X ), as kξ
fbl(ξ) ∈ UT (ξ). The next result connects these functions

to continuous-time stability of the zero-dynamics, implying the conditions of
Lemma 8 are met for controllers other than feedback linearizing controllers:

Theorem 41. Let Vη and T ∗
η be defined as in Lemma 9, and the zero-dynamics

system governed by the differential equation:

ż = ω((0γ, z)), (6.64)

for zero-coordinate signal z is locally exponentially stable with respect to 0n−γ.
Let {kT : Φ(X )→ Rm | T ∈ I} be a family of admissible controllers satisfying
kT (ξ) ∈ UT (ξ) for all T ∈ (0, T ∗

η ] and ξ ∈ Φ(X ). Then the Euler approxi-
mation family of controller-map pairs {(kT ,F

a,ξ
T ) | T ∈ I} is asymptotically

stable by equi-Lipschitz Lyapunov functions.

Proof. The local exponential stability of (6.64) implies that for any Qz ∈ Sn
≻0

and d ∈ (0, 1), there exist an open neighborhood of the origin N ⊆ Rn−γ, a
T ∗
z ∈ I, a Pz ∈ Sn

≻0, and a quadratic Lyapunov function Vz : Rn−γ → R≥0

defined as Vz(z) = z⊤Pzz for all z ∈ Rn−γ and satisfying:

λmin(Pz)∥z0∥2 ≤ Vz(z0) ≤ λmax(Pz)∥z0∥2, (6.65)

Vz(F
a,z
T ((0γ, z)))− Vz(z) ≤ −Tdλmin(Qz)∥z∥2, (6.66)

for all z0 ∈ Rn−γ, z ∈ N , and T ∈ (0, T ∗
z ). Construction of Vz, N , and T ∗

z

first follows the proof steps of [100, Theorem 4.7] with the linearization of
ω(0γ, ·) at 0n−γ to produce a suitable neighborhood N and then follows the
proof steps of Lemma 9 to produce T ∗

z . Let σ ∈ R>0 be a coefficient to be
specified later. Let Vη, c, and T ∗

η be defined as in Lemma 4, and define the
composite Lyapunov function V : Rn → R≥0 as:

V (ξ) = σVη(η) + Vz(z), (6.67)

for all ξ = (η, z) ∈ Rn. First, note that (6.57) and (6.65) imply:

min {σλmin(Pη), λmin(Pz)}∥ξ∥2 ≤ V (ξ) ≤ max {σλmax(Pη), λmax(Pz)}︸ ︷︷ ︸
≜µ

∥ξ∥2,

(6.68)

for all ξ ∈ Rn, implying (6.51) is met. Second, note that:∥∥∥∥∂V∂ξ (ξ)
∥∥∥∥ ≤ 2 (σλmax(Pη)∥η∥+ λmax(Pz)∥z∥) , (6.69)

≤ 2(µ∥ξ∥+ µ∥ξ∥) = 4µ∥ξ∥,
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for all ξ = (η, z) ∈ Φ(X ), implying that for any compact set K ⊂ Φ(X ),
(6.53) is met as we have:

|V (ξ1)− V (ξ2)| ≤ 4µ

(
max
ξ∈K
∥ξ∥
)
∥ξ1 − ξ2∥, (6.70)

for all ξ1, ξ2 ∈ K. Third, define a bounded open set Nξ ⊂ Rn with 0n ∈ Nξ

and closure cl(Nξ) ⊂ Φ(X )∩(Rγ×N), let Lω ∈ R>0 be a Lipschitz constant of
ω on Nξ, and let T ∗

1 = min {T ∗
η , T

∗
z }. Note that Lω exists as ω is continuously

differentiable on Φ(X ) ⊆ Φ(D), and cl(Nξ) is a compact set contained in
Φ(X ). For all ξ = (η, z) ∈ Nξ and T ∈ (0, T ∗

1 ), we have:

V (Fa,ξ
T (ξ,kT (ξ)))− V (ξ)

= σ(Vη(F
a,η
T (ξ,kT (ξ)))− Vη(η)) + Vz(F

a,z
T (ξ))− Vz(z), (6.71)

≤ −σTcλmin(Qη)∥η∥2 + Vz(F
a,z
T ((0γ, z)))− Vz(z)

+ Vz(F
a,z
T ((η, z)))− Vz(Fa,z

T ((0γ, z))), (6.72)

≤ −σTcλmin(Qη)∥η∥2 − Tdλmin(Qz)∥z∥2

+ 2Tz⊤Pz(ω((η, z))− ω((0γ, z)))

+ T 2(ω((η, z))⊤Pzω((η, z))− ω((0γ, z))
⊤Pzω((0γ, z))), (6.73)

≤ −σTcλmin(Qη)∥η∥2 − Tdλmin(Qz)∥z∥2

+ 2Tλmax(Pz)Lω∥η∥∥z∥+ T 2λmax(Pz)Lω∥ξ∥2, (6.74)

= −T

[
∥η∥
∥z∥

]⊤ [
θη(σ, T ) −θ×
−θ× θz(T )

]
︸ ︷︷ ︸

≜Θσ(T )

[
∥η∥
∥z∥

]
, (6.75)

where θη(σ, T ) = σcλmin(Qη)−Tλmax(Pz)Lω, θ× = λmax(Pz)Lω, and θz(T ) =
dλmin(Qz) − Tλmax(Pz)Lω. Observe that in going from (6.73) to (6.74) I
dropped the last term (as it is negative), and used the Lipschitz property
of ω to produce the term ∥ξ∥2, which can be decoupled into the diagonal
terms of the matrix Θσ(T ). Pick T ∗

2 ∈ (0, T ∗
1 ] such that T ∗

2 < dλmin(Qz)/θ×,
implying θz(T ) > 0 for all T ∈ (0, T ∗

2 ), and note that θz(T2) ≥ θz(T1) for all
T1, T2 ∈ (0, T ∗

2 ) such that T2 < T1. Choosing σ such that:

σ > (θ2×/θz(T
∗
2 ) + T ∗

2 θ×)/(cλmin(Qη)), (6.76)

then implies that Θσ(T ) ∈ Sn
≻0 for all T ∈ [0, T ∗

2 ]. The composition λmin ◦Θσ

is continuous and R>0-valued for all T ∈ [0, T ∗
2 ] as Θσ is an affine function,
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and thus attains its minimum on the compact interval [0, T ∗
2 ], such that:

α ≜ min
T ′∈[0,T ∗

2 ]
λmin(Θσ(T

′)) > 0. (6.77)

Therefore:

V (Fa,ξ
T (ξ,kT (ξ)))− V (ξ) ≤ −Tλmin(Θσ(T ))∥ξ∥2, (6.78)

≤ −Tα∥ξ∥2, (6.79)

for all ξ ∈ Nξ and T ∈ (0, T ∗
2 ].

As the controller kξ
fbl with kaux defined in the proof of Lemma 9 does not

explicitly depend on the sample-period T , if (ξ,kξ
fbl(ξ)) ∈ Zξ for all ξ ∈

Φ(X ) and kξ
fbl is T0-admissible for some T0 ∈ I, then it is T -admissible for

all T ∈ (0, T0) (as (ξ,kξ
fbl(ξ)) ∈ Zξ for all T ∈ (0, T0)). Consequently, this

result implies that if such a T0 exists, the exact normal family of controller-
map pairs {(kξ

fbl,F
e,ξ
T ) | T ∈ I} is (β,N)-practically stable with respect to 0n

for some β ∈ KL∞ and open set N ⊆ Φ(X ) with 0n ∈ N . In this way, I
have shown that a feedback linearizing controller for a continuous-time system
will render the corresponding sampled-data system practically stable, without
modification of the feedback linearizing controller.

Optimization-Based Control Synthesis

The existence of the feedback linearizing controller ensures the function Vη

is also a local exponential CLF for the continuous-time output dynamics and
equilibrium point 0γ. For a sample period T ∈ I, continuous-time design
yields the standard (CLF-QP) controller kCLF

T : Φ(X )→ Rm specified as:

kCLF
T (ξ) = argmin

u∈Rm

∥u∥2 (CLF-QP)

s.t. LfηVη(ξ) + LgηVη(ξ)u ≤ −λmin(Qη)∥η∥2,

for all ξ = (η, z) ∈ Φ(X ). As shown in Section 6.2, this controller often dis-
plays degradation in performance with sampling, motivating the specification
of a sampled-data controller. For T ∈ (0, T ∗

η ], using the Euler approximate
model Fa,η

T , consider a controller kSD−CLF
T : Φ(X ) → Rm specified by the

following convex quadratically constrained quadratic program (QCQP):

kSD-CLF
T (ξ) = argmin

u∈Rm

∥u∥2 (CLF-QCQP)

s.t. Vη(F
a,η
T (ξ,u))− Vη(η) ≤ −Tcλmin(Qη)∥η∥2,

(6.80)
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for all ξ = (η, z) ∈ Φ(X ). To see that this controller is a convex QCQP, we
can expand the constraint to reveal the alternative form:

kSD-CLF
T (ξ) = argmin

u∈Rm

∥u∥2 (CLF-QCQP)

s.t. u⊤ΛT (ξ)u+ 2λT (ξ)
⊤u+ lT (ξ) ≤ 0,

for all ξ = (η, z) ∈ Φ(X ), where ΛT : Φ(X ) → Sm
⪰0, λT : Φ(X ) → Rm, and

lT : Φ(X )→ R are defined with Pη, Qη, and c from Lemma 9:

ΛT (ξ) = Tgη(ξ)
⊤Pηgη(ξ), (6.81)

λT (ξ) = gη(ξ)
⊤Pη(η + T fη(ξ)), (6.82)

lT (ξ) = fη(ξ)
⊤Pη(2η + T fη(ξ)) + cλmin(Qη)∥η∥2, (6.83)

for all ξ = (η, z) ∈ Φ(X ). For any ξ ∈ Φ(X ), the input kξ
fbl(ξ) is in the

feasible set of the corresponding optimization problem, and as the feasible set
is closed and the ∥kξ

fbl(ξ)∥2-sublevel set of the continuous objective function
is compact, there exists a minimizer in this sublevel set. Since the objective
function is strictly convex and the feasible set is convex, this minimizer is
unique and can be found in polynomial time [35]. For each T ∈ (T ∗

η , Tmax],
define kSD−CLF

T : Φ(X ) → Rm arbitrarily. If {kSD−CLF
T | T ∈ I} is a family

of admissible controllers, then the exact family {(kSD−CLF
T ,Fe,ξ

T ) | T ∈ I} is
(β,N)-practically stable for some β ∈ KL∞ and open set N ⊆ Φ(X ) by
Theorem 41. This follows as the feasibility of the feedback linearizing control
input implies the family {(kSD−CLF

T ,Fa,ξ
T ) | T ∈ I} is asymptotically stable by

the same equi-Lipschitz Lyapunov functions as the family {(kξ
fbl,F

a,ξ
T ) | h ∈ I}.

Simulation Results

To illustrate the advantage of sampled-data design, I will first consider the
following system with exponentially stable zero-dynamics:

η̇1 = η2, (6.84)

η̇2 = 10 sin(η1) + u, (6.85)

ż = η21 − z, (6.86)

where (η1, η2), z, and u denote the output, zero-coordinate, and control sig-
nal, respectively. For K =

[
1/2

√
3/2
]
, Qη = I2, c = 0.5, T = 0.2, and

initial condition (1, 0, 1), the (CLF-QP) fails to stabilize the system, while the
(CLF-QCQP) stabilizes the system as seen in Figure 6.6.
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Figure 6.6. With inputs applied via a zero-order hold, the (CLF-QP) controller does not
stabilize the system (6.84) (Top), while the (CLF-QCQP) does (Bottom). Simulation code
listed at https://bit.ly/CLF-QCQP.

Next, I deploy the proposed (CLF-QCQP) controller on the inverted pen-
dulum, double inverted pendulum, and planar quadrotor simulation environ-
ments considered in Section 6.2, with the results seen in Figures 6.7, 6.8, and
6.9, respectively. We see that the proposed controller stabilizes each system
at each sample rate, including the exceptionally low sample rate of 10 [Hz].
Moreover, the input does not display high frequency oscillations for any system
at any frequency. I do note the large input jump that occurs with the double
inverted pendulum near the beginning of the simulation, which suggests the
controller is quickly pushing the system into a region of the state space from
which it continues to produce smooth inputs. These simulation results show
that addressing sampling in the control design can lead to significantly better
performance, and my results in this section highlight that there is a rigorous
theoretical path towards doing so.

Conclusion

In this section I presented my work on stabilizing sampled-data control through
feedback linearization and CLF-based controllers specified via convex opti-
mization. I begin by reviewing the stabilizing sampled-data control framework
with approximate discrete-time models in [81] and providing necessary adjust-
ments to support local stability results and the coordinate transformations that
accompany feedback linearization. I then demonstrate how a continuous-time

https://bit.ly/CLF-QCQP
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Figure 6.7. Simulation results for the inverted pendulum system using the (CLF-QCQP)
controller.

system that is feedback linearizable with locally exponentially stable zero-
dynamics can be rendered practically stable using the continuous-time feed-
back linearization controller without modification. I then use this result to
develop CLF-based controllers specified via convex quadratically constrained
quadratic programs (QCQP), a more complex class of convex optimization
problems than the standard QPs. I conclude by demonstrating this control
approach in simulation on the systems in Section 6.2, demonstrating a signifi-
cant improvement over the standard continuous-time (CLF-QP) controller.

6.4 Sampled-Data Safety

In this section I will present work on sampled-data safety-critical control
through approximate discrete-time models. Building off of the work in Section
6.3, I will propose a framework for achieving theoretically meaningful safety
guarantees for sampled-data systems through controllers that are specified via
convex optimization problems. I will begin by considering the class of Runge-
Kutta discrete-time approximations, which include the Euler approximation
used in Section 6.3, but also permit working with CBFs that have a rela-
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Figure 6.8. Simulation results for the double inverted pendulum system using the
(CLF-QCQP) controller.

tive degree higher than one. I will show that these approximations satisfy a
one-step consistency property, suggesting that designing controllers with these
approximations can endow the exact family of controller-map pairs with safety
guarantees. Next, I will present the notion of practical safety as a theoretical
safety property for sampled-data systems. I subsequently define a notion of
sampled-data barrier functions (SD-BFs) and sampled-data Control Barrier
Functions (SD-CBFs) that satisfy properties uniformly in the sample rate. In
the largest contribution of this work, I provide a rigorous proof that a family
of SD-BFs for a Runge-Kutta approximation family of controller-map pairs
leads to practical safety of the exact family of controller-map pairs. Then,
I consider a common class of nonlinear systems (with integrator structure),
and show that given a SD-CBF satisfying a convexity property, the order
of a Runge-Kutta approximation can be chosen to ensure that the SD-CBF
inequality constraint is convex, and thus can be incorporated into a convex
optimization-based controller. I conclude by demonstrating the proposed con-
trol strategy in simulation.
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Figure 6.9. Simulation results for the planar quadrotor system using the (CLF-QCQP)
controller.

The contributions of this section are as follows:

• A complete framework for safety-critical of sampled-data systems through
approximate discrete-time models, including a characterization of one-
step consistency of Runge-Kutta approximate discrete-time models, a
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definition of practical safety, sampled-data barrier functions, and sampled-
data Control Barrier Functions, and a rigorous statement relating control
designs for approximate discrete-time models to practical safety of the
exact family of controller-map pairs.

• A characterization of the relationship between system dynamics, SD-
CBF convexity properties, and Runge-Kutta approximation order that
yields controllers that can be specified via convex optimization problems,
which I demonstrate in simulation.

The text for this section is adapted from:

A. J. Taylor, V. D. Dorobantu, R. K. Cosner, Y. Yue, and A. D. Ames,
“Safety of sampled-data systems with control barrier functions via ap-
proximate discrete time models,” in Proc. IEEE 61st Conf. on Decision
and Control (CDC), Cancún, Mexico, 2022, pp.7127–7134.

A. J. Taylor participated in the conception of the project, algorithm
design and theoretical analysis, simulation code implementation, and
writing of the article.

Approximate Discrete-Time Models

I will begin by considering a larger class of discrete-time approximations that
include the Euler approximation used in Section 6.3. The purpose for consider-
ing higher-order approximations is that CBFs are often not relative degree one
(motivating the use of extended CBFs as was done in Section 3.7), where the
CLFs considered in Section 6.3 are typically relative degree one. The impor-
tance of this is that the input u may not show up in a first-order approximation
of the evolution of a function with relative degree greater than one6. Later in
this section I will show how these higher-order approximations can ensure the
input appears when studying the evolution of a CBF, and provide simulation
examples where higher-order approximations are necessary.

Definition 51 (Runge-Kutta Approximation Family). Let p ∈ Z>0. The
Runge-Kutta approximation family of maps {Fa,p

T | T ∈ I} is defined such
6This is relatively easy to see for a double integrator with a CBF h(x) = x1. Using an

Euler approximation returns h(Fa,1
T (x, u)) = x1 +Tx2, such that the input does not appear

in the value h at the next time step.
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that for every sample period T ∈ I, the function Fa,p
T : Z → Rn is defined

recursively as:

Fa,p
T (x,u) = x+ T

p∑
i=1

bi(f(zi) + g(zi)u), (6.87)

zi = x+ T

i−1∑
j=1

ai,j(f(zj) + g(zj)u), (6.88)

for all pairs (x,u) ∈ Z, with z1 = x. Here, b1, . . . , bp ∈ R≥0 satisfy
∑p

i= bi = 1

and ai,j ∈ R for each i ∈ {1, . . . p} and j ∈ {1, . . . , i − 1}. For a family of
admissible controllers {kT | T ∈ I}, I define the Runge-Kutta approximation
family of controller-map pairs {(kT ,F

a,p
T ) | T ∈ I}.

I will once again make use of one-step consistency, which I define slightly
differently (the introduction of the set A) from the definition in Section 6.3:

Definition 52 (One-Step Consistency). A family of controller-map pairs {(kT ,FT ) :

T ∈ I} is one-step consistent with the exact family of controller-map pairs
{(kT ,F

e
T ) | T ∈ I} over a set A ⊆ X if there exist ρ ∈ K∞ and T ∗ ∈ I such

that for all x ∈ A and T ∈ (0, T ∗), we have:

∥Fe
T (x,kT (x))− FT (x,kT (x))∥ ≤ Tρ(T ). (6.89)

Before establishing a relationship between a Runge-Kutta approximation fam-
ily and one-step consistency, I state the following lemma I will use throughout
this work:

Lemma 10. For any compact set K ⊂ X , there is an ε ∈ R>0 such that
K ⊕ Bε ⊂ X and K ⊕ Bε is compact, where Bε is the closed norm-ball of
radius ε and ⊕ is the Minkowski sum.

Proof. As X is open, for every x ∈ K, there is a corresponding open ball
centered at x with radius δx ∈ R>0 that is contained in X . Let Bx ⊂ X
be the open ball centered at x of radius δx/2. Consider the collection {Bx :

x ∈ K}; this is an open cover for the compact set K, so some finite collec-
tion Bx1 , . . . , BxN

for some x1, . . . ,xN ∈ K, respectively, also covers K [249,
Theorem 3.3.8]. Let δ = mini δxi

, and consider any z ∈ K ⊕ Bδ/4. There is
some x ∈ K such that ∥z − x∥ ≤ δ/4 and some i ∈ {1, . . . , N} such that
∥x − xi∥ < δxi

/2. Thus, ∥z − xi∥ < δ/4 + δxi
/2 < δxi

, so z ∈ X . As z was
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arbitrary, K ⊕ Bδ/4 ⊆ X , so pick ε ≤ δ/4. The set K ⊕ Bε is compact as
K ×Bε is compact and (x,y) 7→ x+ y is continuous.

I now provide the first result of this work showing how properties of the dy-
namics and a family of controllers can be used to establish one-step consistency
of the Runge-Kutta approximation family with the exact family of controller-
map pairs:

Theorem 42. Let K ⊂ X be compact, consider a family of admissible con-
trollers {kT | T ∈ I}, and suppose there exists T1 ∈ I and a bound MK ∈ R≥0

such that for every sample period T ∈ (0, T1), the controller kT is bounded in
norm by MK over K. Then for any p ∈ Z>0, the Runge-Kutta approximation
family of controller-map pairs {(kT ,F

a,p
T ) | T ∈ I} is one-step consistent with

the family of controller-map pairs {(kT ,F
e
T ) | T ∈ I} over K.

Proof. Consider a compact set K ⊂ X and corresponding T1 ∈ I and MK ∈
R>0, and fix a sample period T ∈ (0, T1). By Lemma 10, there exists an
ε ∈ R>0 such that the compact set N = K ⊕ Bε satisfies N ⊂ X . By
assumption, kT is bounded on K, and f and g are bounded on N by continuity,
implying there exists an M ∈ R>0 such that:

∥f(z) + g(z)kT (y)∥ ≤M, (6.90)

for all y ∈ K and z ∈ N . As f and g are locally Lipschitz continuous over X ,
they are Lipschitz continuous over the compact set N . Therefore:

∥f(z) + g(z)kT (y)− (f(y) + g(y)kT (y))∥ (6.91)

≤ ∥f(z)− f(y)∥+ ∥g(z)− g(y)∥∥kT (y)∥, (6.92)

≤ (Lf + LgMK)∥z− y∥, (6.93)

= ρ(∥z− y∥), (6.94)

for all y ∈ K and z ∈ N , with Lf , Lg ∈ R>0 Lipschitz constants of f and g on
N , respectively, and ρ ∈ K∞ satisfying ρ(r) = (Lf + LgMK)r for all r ∈ R≥0.
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Let x ∈ K. Then:

Fe
T (x,kT (x))− Fa,p

T (x,kT (x)) (6.95)

=

∫ T

0

[f(φ(t)) + g(φ(t))kT (x)] dt− T
p∑

i=1

bi(f(zi) + g(zi)kT (x)) (6.96)

=

∫ T

0

[f(φ(t)) + g(φ(t))kT (x)− (f(x) + g(x)kT (x))]dt

+ T

p∑
i=1

bi[f(x) + g(x)kT (x)− (f(zi) + g(zi)kT (x))], (6.97)

where I use the fact
∑p

i=1 bi = 1. To bound the first term in (6.97), let
T2 ∈ (0, T1) satisfy T2 < ε/M . By continuity of the solution φ, if φ(t0) ̸∈ N
for any t0 ∈ I, then there is a minimal t∗ ∈ (0, t0) such that ∥φ(t) − x∥ < ε

(φ(t) ∈ N) for all t ∈ [0, t∗) and ∥φ(t∗)− x∥ = ε. We have:

∥φ(t)− x∥ ≤
∫ t

0

∥f(φ(s)) + g(φ(s))kT (x)∥ ds ≤Mt, (6.98)

for all t ∈ [0, t∗]. Since ε = ∥φ(t∗)− x∥ ≤Mt∗, we know that t∗ ≥ ε/M > T2.
Thus if T ∈ (0, T2), then:

∥φ(t)− x∥ ≤Mt ≤MT < MT2 < ε, (6.99)

for all t ∈ [0, T ], implying φ(t) ∈ N for all t ∈ [0, T ]. To bound the second term
in (6.97), I show by induction that if T is sufficiently small, then zi ∈ N for all
i ∈ {1, . . . , p}. First, since z1 = x, we have z1 ∈ N . Next, for i ∈ {1, . . . , p},
suppose zj ∈ N for all j ∈ {1, . . . , i − 1}. Considering the definition of zi in
(6.88) and the bound (6.90):

∥zi − x∥ ≤ T
i−1∑
j=1

|ai,j|∥f(zj) + g(zj)kT (x)∥, (6.100)

≤MT

i−1∑
j=1

|ai,j| ≤MT (p− 1)max
j,k
|aj,k| ≜ LT. (6.101)

Let T ∗ ∈ (0, T2) satisfy T ∗ < ε/L. Then for T ∈ (0, T ∗), we have ∥zi−x∥ < ε,
or zi ∈ N . Since this choice of T ∗ does not depend on i, we can conclude
by induction that if T ∈ (0, T ∗), then zi ∈ N for all i ∈ {1, . . . , p}. I have
shown that if T ∈ (0, T ∗), then φ(t) ∈ N for all t ∈ [0, T ], and zi ∈ N for
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i ∈ {1, . . . , p}. Thus, using the bound (6.94) in (6.97), we have that:

∥Fe
T (x,kT (x))− Fa,p

T (x,kT (x))∥, (6.102)

≤
∫ T

0

ρ(∥φ(t)− x∥) dt+ T

p∑
i=1

biρ(∥zi − x∥), (6.103)

≤ Tρ(MT ) + T

p∑
i=1

biρ(LT ), (6.104)

≤ T ρ̃(T ), (6.105)

and ρ̃ ∈ K∞ satisfies ρ̃(r) = ρ(Mr) + ρ(Lr) for all r ∈ R≥0.

Practical Safety & Sampled-Data Control Barrier Functions

I now develop a notion of practical safety for sampled-data systems, define
Sampled-Data Control Barrier Functions (SD-CBFs) as a tool for safety-critical
sampled-data control synthesis, and highlight how a function with 0 as a reg-
ular value satisfies a specific property required by SD-CBFs. I begin with the
following definition relating the evolution of a sampled-data system and a set:

Definition 53 (Discrete-Time Forward Invariance). A set C ⊆ X is forward
invariant for a controller-map pair (k,F) if for every x0 ∈ C and number of
steps k ∈ Z≥0, the recursion xk+1 = F(xk,k(xk)) is well-defined and satisfies
xk ∈ C.

This definition of forward invariance requires that the system state be con-
tained in the set C only at sample times, which is aligned with the notion of
practical stability for sampled-data systems presented in [81] and used in Sec-
tion 6.3. This differs from the standard definition of forward invariance used
in the existing sampled-data safety literature, which additionally requires that
the solution remain in the set C between sample times, i.e. φ(t) ∈ C for
t ∈ [tk, tk+1]. As seen in this literature, requiring inter-sample safety typically
requires selecting control actions that meet a robustified continuous-time CBF
time derivative condition. This robust condition typically depends on parame-
ters of the system that are difficult to estimate, and using over-approximations
may produce very conservative behavior [90]. Reducing this conservativeness
usually amounts to operating at exceedingly high sample rates, which may not
be practical, and which may excite unmodeled features of the system dynam-
ics. Moreover, in practice, inter-sample safety violations at high sample rates
can be inconsequential (and may not even be detectable).
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As we are focused on designing controllers using an approximate family of
maps, the following definition will describe the safety properties of the exact
family of controller-map pairs when design uses approximations:

Definition 54 (Practical Safety). The family of controller-map pairs
{(kT ,FT ) | T ∈ I} is practically safe with respect to a set C ⊆ X if for each
R ∈ R>0, there exists a T ∗ ∈ I such that for each sample period T ∈ (0, T ∗),
there is a corresponding set CT ⊆ X that is forward invariant for the controller-
map pair (kT ,FT ) and satisfies C ⊆ CT ⊆ C ⊕BR.

This definition is posed to mirror that of practical stability for sampled-data
systems proposed in [81] and used in Section 6.3. In particular, the burden
of proof lies with small values of R. If R′ ≥ R and CT is a forward invariant
subset of C⊕BR, then it is automatically a forward invariant subset of C⊕BR′ .

Before defining Sampled-Data Control Barrier Functions, for a non-empty set
C ⊆ X , denote dC(x) = infy∈C ∥y − x∥ for all x ∈ X . I now define Sampled-
Data Barrier Functions and Sampled-Data Control Barrier Functions:

Definition 55 (Sampled-Data Barrier Function Candidate). Consider a set
C ⊆ X . A collection of functions {hT : X → R | T ∈ I} is a family of
Sampled-Data Barrier Function Candidates on C if there exist T ∗ ∈ I, a
function α ∈ Ke, a radius ε ∈ R>0, and a Lipschitz constant M ∈ R>0 such
that:

hT (x1) > 0, hT (x2) = 0, hT (x3) < 0, (6.106)

Tα(hT (x4)) ≤ hT (x4), (6.107)

|hT (x5)− hT (x6)| ≤M∥x5 − x6∥, (6.108)

for all states x1 ∈ Int(C), x2 ∈ ∂C, x3 ∈ X \ C, x4 ∈ C, x5,x6 ∈ X ∩ (C ⊕Bε),
and sample periods T ∈ (0, T ∗). Additionally, I require that for each η ∈ R>0

there exists a δ ∈ R>0 such that7:

dC(x) > η =⇒ hT (x) < −δ, (6.109)

for all x ∈ X ∩ (C ⊕Bε) and T ∈ (0, T ∗).

Definition 56 (Sampled-Data Control Barrier Functions (SD-CBFs)). A fam-
ily of Sampled-Data Barrier Function Candidates {hT | T ∈ I} is a family of

7See Theorem 43 for how this property relates to regular values.
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Sampled-Data Control Barrier Functions (SD-CBFs) on C for the family of
maps {FT | T ∈ I} if for each state x ∈ X and sample time T ∈ (0, T ∗), there
exists a corresponding input u ∈ Rm such that (x,u) ∈ Z and:

hT (Fh(x,u))− hT (x) > −Tα(hT (x)). (6.110)

Definition 57 (Sampled-Data Barrier Functions (SD-BFs)). Given a family
of admissible controllers {kT | T ∈ I}, a family of Sampled-Data Barrier Func-
tion Candidates {hT | T ∈ I} is a family of Sampled-Data Barrier Functions
(SD-BFs) on C for the family of controller-map pairs {(kT ,FT ) | T ∈ I} if:

hT (FT (x,kT (x)))− hT (x) ≥ −Tα(hT (x)), (6.111)

for all states x ∈ X and sample times T ∈ (0, T ∗).

I note that the conditions in (6.106) and (6.107) are standard conditions re-
quired by barrier functions for discrete-time systems [234]. The inequalities in
(6.106) imply that for each T ∈ (0, T ∗), C is the 0-superlevel set of hT . The in-
equality in (6.107) places a requirement on the SD-BF decrement through
(6.111) that implies that for each T ∈ (0, T ∗), C is forward invariant for
(kh,Fh). The condition in (6.108) requires the SD-BF to be Lipschitz continu-
ous over a slightly larger set than C with a Lipschitz constant that is uniform in
the sample period, and will be used to relate exact and approximate families of
controller-map pairs through one-step consistency. The implication in (6.109)
resembles a coercivity condition, requiring the SD-BF value to decrease locally
outside of the set C in a way that is uniform in the sample period. This prop-
erty will be critical for producing forward invariant sets contained in C ⊕ BR

for arbitrarily small values of R. The distinction between (6.110) and (6.111)
is that the former condition states the possibility of safe control synthesis for
an open-loop system, while the latter applies as a certificate for a closed-loop
system. These properties are illustrated in Figure 6.10.

To more clearly understand the nature of the coercivity condition (6.109), the
following result makes a connection with regular values that are common with
continuous-time CBFs:

Theorem 43. If h : X → R is twice continuously differentiable with a compact
0-superlevel set C and 0 as a regular value, then there is an ε ∈ R>0 such that
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Figure 6.10. Visualizing the properties (6.106)-(6.109) of SD-BF candidates. The dark
green region represents the lower bound Tα(hT (x4)) and hT (x6) cannot be in the red region
due to the Lipschitz bound.

each η ∈ R>0 corresponds to a δ ∈ R>0 satisfying:

dC(x) > η =⇒ h(x) < −δ, (6.112)

for all states x ∈ X ∩ (C ⊕Bε).

Proof. The boundary ∂C is compact as a closed subset of the compact set C.
Thus, σ ≜ minx∈∂C ∥∇h(x)∥ is strictly positive since 0 is a regular value. By
Lemma 10, there is an ε′ ∈ R>0 with C ⊕ Bε′ ⊂ X and C ⊕ Bε′ compact.
Consider a state x ∈ C ⊕ Bε′ with x ̸∈ C. There exists a y ∈ ∂C such
dC(x) = ∥y − x∥ > 0. Since h has 0 as a regular value, by [329, Proposition
1.1.9] we have that:

∇h(y) = −∥∇h(y)∥ x− y

∥x− y∥
, (6.113)

that is ∇h(y) is anti-parallel to x−y. As Bε′ is convex, (1−λ)y+λx ∈ C⊕Bε′

for all λ ∈ [0, 1], and Lagrange’s Remainder Formula [249, Theorem 6.6.3]
implies that for some λ∗ ∈ [0, 1], ξ ≜ (1− λ∗)y + λ∗x satisfies:

h(x) = h(y) + (x− y)⊤∇h(y) + 1

2
(x− y)⊤∇2h(ξ)(x− y), (6.114)

= −∥∇h(y)∥∥x− y∥+ 1

2
(x− y)⊤∇2h(ξ)(x− y). (6.115)

Since C ⊕Bε′ is compact, there is an upper bound µ ∈ R≥0 such that:

max
z∈C⊕Bε′

∥∇2h(z)∥ = µ, (6.116)

and thus we have:

h(x) ≤ −(σ − µ

2
∥x− y∥)∥x− y∥. (6.117)
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If ∥x− y∥ ≤ σ/µ, then:

h(x) ≤ −σ
2
∥x− y∥ = −σ

2
dC(x). (6.118)

I pick ε ∈ R>0 such that ε ≤ min {ε′, σ/µ}, and for any η ∈ R>0, I pick
δ ∈ R>0 such that δ < ση/2.

Practical Safety via Sampled-Data Control Barrier Functions

In this section I present the main contribution of this work by establishing how
a family of SD-BFs for an approximate family of controller-map pairs can be
used to ensure the practical safety of the exact family of controller-map pairs
via one-step consistency:

Theorem 44. Consider a set C ⊆ X and a family of admissible controllers
{kT | T ∈ I}. Suppose that:

1. There exists a family of Sampled-Data Barrier Functions on C for a
family of controller-map pairs {(kT ,FT ) | T ∈ I}.

2. There exists an ε′ ∈ R>0 such that the family of controller-map pairs
{(kT ,FT ) | T ∈ I} is one-step consistent with the exact family of controller-
map pairs {(kT ,F

e
T ) | T ∈ I} over the set X ∩ (C ⊕Bε′).

Then the exact family of controller-map pairs {(kT ,F
e
T ) | T ∈ I} is practically

safe with respect to C.

Proof. Let T ∗
1 , α, ε, and M be defined as in Definition 55. By assumption,

there exists a T ∗
2 ∈ I and ρ ∈ K∞ such that (6.89) holds for all x ∈ X∩(C⊕Bε′)

and T ∈ (0, T ∗
2 ). As the family of controllers is assumed admissible, there is

an T ∗
3 ∈ I such that kT is T -admissible for each T ∈ (0, T ∗

3 ).

Let R ∈ R>0, and pick R′ ∈ R>0 such that R′ ≤ min{ε, ε′, R}. By (6.109),
there exist δ,∆ ∈ R>0 such that:

dC(x) > R′/2 =⇒ hT (x) < −δ, (6.119)

dC(x) > δ/(2M) =⇒ hT (x) < −∆, (6.120)

for all x ∈ X ∩(C⊕Bε) and T ∈ (0, T ∗
1 ). Fix T ∈ I with T < min {T ∗

1 , T
∗
2 , T

∗
3 }.

For any c ∈ R, I denote the c-superlevel set of hT as:

Ωc,T = {x ∈ X | hT (x) ≥ c}. (6.121)
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Case 1
Case 2

Case 3

Figure 6.11. A visual representation of the main sets and three cases discussed in the
proof of Theorem 44.

For any state x ∈ Ω−δ,T , we have dC(x) ≤ R′/2, and thus C ⊆ Ω−δ,T ⊆
X ∩ (C ⊕BR′/2) ⊆ C ⊕BR.

I will prove that for small enough T , the set Ω−δ,T is forward invariant for
the controller-map pair (kT ,F

e
T ). I denote three cases, as seen in Figure 6.11,

considering a state x ∈ X such that either:

1. x ∈ C,

2. x ∈ Ω−δ,T \ C and dC(x) ≤ δ/(2M),

3. x ∈ Ω−δ,T \ C and dC(x) > δ/(2M).

Case 1: Suppose x ∈ C. From (6.111) and (6.107), we have:

hT (FT (x,kT (x)))− hT (x) ≥ −Tα(hT (x)) ≥ −hT (x), (6.122)

so hT (FT (x,kT (x))) ≥ 0, or FT (x,kT (x)) ∈ C. By one-step consistency, we
have:

∥Fe
T (x,kT (x))− FT (x,kT (x))∥ ≤ Tρ(T ), (6.123)

so if Tρ(T ) ≤ ε, then Fe
T (x,kT (x)) ∈ X ∩ (C ⊕Bε). Thus:

|hT (Fe
T (x,kT (x)))− hT (FT (x,kT (x)))| ≤MTρ(T ), (6.124)

and if MTρ(T ) ≤ δ as well, then:

hT (F
e
T (x,kT (x))) ≥ hT (FT (x,kT (x)))−MTρ(h) ≥ −δ, (6.125)
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giving us Fe
T (x,kT (x)) ∈ Ω−δ,T . The analysis of this case gives us the require-

ment Tρ(T ) ≤ min{ε, δ/M}.

Before continuing to cases 2 and 3, I establish some additional properties.
First, note that the superlevel sets have the containment property Ω−δ/2,T ⊆
Ω−δ,T . Next, for any η ∈ R>0 and any x ∈ X ∩ (C ⊕ Bε) with x /∈ C, there is
a state y ∈ C such that ∥x− y∥ < dC(x) + η. Therefore:

hT (x) ≥ hT (y)−M∥x− y∥ ≥ −MdC(x)−Mη, (6.126)

since hT (y) ≥ 0. Since η can be chosen arbitrarily small, we have hT (x) ≥
−MdC(x). If dC(x) ≤ δ/(2M), then hT (x) ≥ −δ/2, so X ∩ (C ⊕ Bδ/(2M)) ⊆
Ω−δ/2,T ⊆ Ω−δ,T .

Next, consider x ∈ Ω−δ,T \ C. Since x /∈ C, meaning hT (x) < 0 and thus
α(hT (x)) < 0, we have from (6.111) that:

hT (FT (x,kT (x))) ≥ hT (x)− Tα(hT (x)) > −δ. (6.127)

Thus FT (x,kT (x)) ∈ Ω−δ,T ⊆ X ∩ (C ⊕ BR′/2) so we can apply one-step
consistency to achieve:

∥Fe
T (x,kT (x))− FT (x,kT (x))∥ ≤ Tρ(T ). (6.128)

If Tρ(T ) ≤ R′/2, then Fe
T (x,kT (x)) ∈ X ∩ (C ⊕ BR′), in which case the

Lipschitz property of hT yields the bound:

|hT (Fe
T (x,kT (x)))− hT (FT (x,kT (x)))| ≤MTρ(T ). (6.129)

Note that because R′/2 < ε, the requirement from Case 1 can be replaced by
Tρ(T ) ≤ min {R′/2, δ/M}.

Case 2: Suppose x ∈ Ω−δ,T \ C and dC(x) ≤ δ/(2M). Since x ̸∈ C and
X ∩ (C ⊕Bδ/(2M)) ⊆ Ω−δ/2,T , we have −δ/2 ≤ hT (x) < 0. Therefore:

hT (FT (x,kT (x))) ≥ hT (x)− Tα(hT (x)) ≥ −δ/2, (6.130)

so FT (x,kT (x)) ∈ Ω−δ/2,T . By adding and subtracting hT (Fe
T (x,kT (x))) and

using (6.129), we have:

hT (F
e
T (x,kT (x))) ≥ −MTρ(T )− δ/2, (6.131)
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when Tρ(T ) ≤ R′/2. If MTρ(T ) ≤ δ/2 as well, then hT (Fe
T (x,kT (x))) ≥ −δ,

or Fe
T (x,kT (x)) ∈ Ω−δ,T . Thus I update the requirements to be Tρ(T ) ≤

min {R′/2, δ/(2M)}.

Case 3: Suppose x ∈ Ω−δ,T \C and dC(x) > δ/(2M). From (6.120), we have:

hT (FT (x,kT (x)))− hT (x) > −Tα(−∆). (6.132)

Adding and subtracting hT (Fe
T (x,kT (x))) and (6.129) yield:

hT (F
e
T (x,kT (x))) > hT (x)−MTρ(T )− Tα(−∆), (6.133)

= hT (x)− T (Mρ(T ) + α(−∆)), (6.134)

when Tρ(T ) ≤ R′/2. If Mρ(T ) ≤ −α(−∆) as well, then hT (F
e
T (x,kT (x))) >

hT (x) ≥ −δ, or Fe
T (x,kT (x)) ∈ Ω−δ,T .

To conclude, if both:

1. T < min {T ∗
1 , T

∗
2 , T

∗
3 , ρ

−1(−α(−∆)/M)},

2. Tρ(T ) ≤ min {R′/2, δ/(2M)},

then the set CT ≜ Ω−δ,T ⊆ C⊕BR is forward invariant for the exact controller-
map pair (kT ,F

e
T ), and thus the exact family of controller-map pairs

{(kT ,F
e
T ) | T ∈ I} is practically safe with respect to C.

Optimization-Based Controller Synthesis

I will now explore convexity of the CBF decrement condition, and define an
optimization-based controller via an SD-CBF for achieving practical safety.
The following result establishes how for a system with a block integrator struc-
ture, a Runge-Kutta approximation family of maps of the appropriate order
can preserve a convexity property of a family {hT | T ∈ I}:

Theorem 45. Consider ℓ, γ, q ∈ Z≥>0 such that n = ℓγ and q ≤ γ. Suppose
the system dynamics have the form:

ẋ =


0ℓ×ℓ Iℓ

. . . . . .

0ℓ×ℓ Iℓ

0ℓ×ℓ


︸ ︷︷ ︸

A

x+


0ℓ

...
0ℓ

fγ(x) + gγ(x)u


︸ ︷︷ ︸

r(x,u)

, (6.135)
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where fγ : E → Rℓ and gγ : E → Rℓ×m. For each T ∈ I, consider a function
hT : X → R, and suppose there exists a function h̃T : (Rℓ)q → R satisfying:

hT (x) = h̃T (ζ1, . . . , ζq), (6.136)

for all x = (ζ1, . . . , ζγ) ∈ X . If the function h̃T is concave with respect to its
last argument and p = γ − q + 1, then for α ∈ Ke, the function ϕT : Z → R
defined as:

ϕT (x,u) = −hT (Fa,p
T (x,u)) + hT (x)− Tα(hT (x)), (6.137)

is convex in its second argument.

Proof. For all (x,u) ∈ Z, denote:

Fa,p
T (x,u) = ((F1)

a,p
T (x,u), . . . , (Fγ)

a,p
T (x,u)), (6.138)

where (Fi)
a,p
T : Z → Rℓ for all i ∈ {1, . . . , γ}. For (x,u) ∈ Z, the block vector

r(x,u) can be nonzero only in the last (γth) block. Noting the block chain-
of-integrators structure of A, for any degree d ∈ {0, . . . , γ − 1}, Adr(x,u)

can be nonzero only in the (γ − d)th block, and for a degree d polynomial ρd,
ρd(A)r(x,u) can be nonzero only in the last d+1 blocks (that is, blocks γ−d
through γ).

Consider a state-input pair (x,u) ∈ Z. We have:

Fa,p
T (x,u) = x+ T

p∑
i=1

bi(Azi + r(zi,u)), (6.139)

zi = x+ T

i−1∑
j=1

ai,j(Azj + r(zj,u)), (6.140)

with z1 = x. By induction, for any i ∈ {1, . . . , p}, I show:

zi = ρi,i−1(A)x+
i−1∑
j=1

σi,i−j−1(A)r(zj,u), (6.141)

where ρi,i−1 is a degree i− 1 polynomial, and for j ∈ {1, . . . , i− 1}, σi,i−j−1 is
a degree i− j − 1 polynomial. Indeed, z1 = In · x, and assuming (6.141) holds
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for 0, . . . , i− 1, substituting (6.141) into (6.140) yields the following:

zi =

degree i−1︷ ︸︸ ︷(
I+ T

i−1∑
j=1

ai,j

degree j︷ ︸︸ ︷
Aρj,j−1(A)

)
︸ ︷︷ ︸

≜ρi,i−1(A)

x+ T
i−1∑
j=1

ai,jr(zj,u)

+ T

i−1∑
k=1

k−1∑
j=1

ai,kAσk,k−j−1(A)r(zj,u), (6.142)

which we may further manipulate to obtain:

zi − ρi,i−1(A)x =
i−1∑
j=1

T

(
ai,j +

i−1∑
k=j+1

ai,k Aσk,k−j−1(A)︸ ︷︷ ︸
degree k−j

)
︸ ︷︷ ︸

degree i−j−1

r(zj,u), (6.143)

≜
i−1∑
j=1

σi,i−j−1(A)r(zj,u), (6.144)

establishing (6.141) holds for i. Substituting the expression (6.141) into (6.139)
and following a similar sequence of steps, we find a degree p polynomial ρ̃p,
and for each i ∈ {1, . . . , p}, a degree p− i polynomial σ̃p−i such that:

Fa,p
T (x,u) = ρ̃p(A)x+

p∑
i=1

σ̃p−i(A)r(zi,u). (6.145)

For i ∈ {1, . . . , p}, the term σ̃p−i(A)r(zi,u) can be nonzero only in blocks
γ − (p − i) = q + i − 1 through γ. The highest-order polynomial multiplying
the block vectors r(z1,u), . . . , r(zp,u) is σ̃p−1 = σ̃γ−q. Therefore, the functions
(F1)

a,p
h , . . . , (Fq−1)

a,p
T are independent of their second argument (they depend

only on state). Moreover, (Fq)
a,p
T (x,u) depends on the block vector r(z1,u) =

r(x,u), which depends on u affinely, and does not depend on the block vectors
r(z2,u), . . . , r(zp,u), which may depend on u nonlinearly. The composition
hT ◦ Fa,p

T : Z → R satisfies:

hT (F
a,p
T (x,u)) = h̃T ((F1)

a,p
T (x,u), · · · , (Fq)

a,p
T (x,u)), (6.146)

for all (x,u) ∈ Z. The composition of concave and affine functions is concave,
so hT ◦ Fa,p

T is concave in its second argument, and ϕT in (6.137) is convex in
its second argument.
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The following result highlights how we may synthesize a family of controllers
that achieve practical safety through optimization using only a Runge-Kutta
approximation family of maps and not requiring knowledge of the exact family
of maps:

Theorem 46. Let {hT | T ∈ I} be a family of SD-CBFs on C for a Runge-
Kutta approximation family of map {Fa,p

T | T ∈ I} such that the set:

FT (x) = {u ∈ Rm | (x,u) ∈ Z and ϕT (x,u) ≤ 0}, (6.147)

is closed and convex for each T ∈ I and x ∈ X . Consider a set of controllers
{kT | T ∈ I} satisfying:

kT (x) = argmin
u∈Rm

1

2
∥u− knom(x)∥2 (SD-CBF-OP)

s.t. hT (F
a,p
T (x,u))− hT (x) ≥ −Tα(hT (x)),

for each x ∈ X and T ∈ (0, T ∗), where knom : X → Rm is a nominal controller.
If {kT | T ∈ I} is a family of admissible controllers, then {hT | T ∈ I} is a
family of Sampled-Data Barrier Functions on C for the Runge-Kutta approx-
mation family of controller-map pairs {(kT ,F

a,p
T ) | T ∈ I}.

Proof. Consider T ∈ (0, T ∗) and x ∈ X . As hT is a SD-CBF on C, there is a
u′ ∈ Rm such that (x,u′) ∈ Z and:

hT (F
a,p
T (x,u′))− hT (x) ≥ −Tα(hT (x)), (6.148)

implying that u′ ∈ FT (x). Thus the optimization problem in (SD-CBF-OP)
is feasible. Define the compact, convex set:

A =
{
u ∈ Rm | ∥u− knom(x)∥2 ≤ ∥u′ − knom(x)∥2

}
. (6.149)

Note that u′ ∈ A. As FT (x) is closed and convex, A ∩ FT (x) is compact,
convex, and non-empty. As the cost is continuous and strictly convex with
respect to u, there is a unique minimizer u∗ ∈ A ∩ FT (x). We have ∥u∗ −
knom(x)∥2 ≤ ∥u′−knom(x)∥2 < ∥u−knom(x)∥2 for all u ∈ FT (x)\A, implying
u∗ is the unique minimizer in FT (x) (the argmin is well-defined). Thus:

hT (F
a,p
T (x,kT (x)))− hT (x) ≥ −Tα(hT (x)), (6.150)

and as x and T were arbitrary, we have that {hT | T ∈ I} is a family of SD-
BFs on C for the Runge-Kutta approximation family of controller-map pairs
{(kT ,F

a,p
T ) | T ∈ I}.
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Figure 6.12. The single (left) and double (right) inverted pendulums and their sets C.
The inverted pendulum sets C are, from left to right, a configuration ellipsoid, a halfspace,
and a Lyapunov sublevel set. The far right image shows the set C for the double inverted
pendulum where (θ1, θ2) ∈ R2 are constrained to an ellipse and no constraint is placed on
(θ̇1, θ̇2) ∈ R2 (represented by vertical fibers).

Simulation Results

I now evaluate the proposed (SD-CBF-OP) on the inverted pendulum and
double inverted pendulum in Section 6.2. With state vector x = (q, q̇) ∈ Rn,
the dynamics of these systems can be expressed in the form (6.135), where
ℓ = m and γ = 2. For the inverted pendulum, I use sets C with the form of a
Lyapunov sublevel (hT (x) = 1−x⊤Px with P ∈ S2

≻0), a configuration ellipsoid
(hT (θ) = 1 − θ2), and a halfspace (hT (θ) = θ + 0.1). For the double inverted
pendulum I enforce safety of a configuration ellipsoid (hT (q) = 1 − ∥q∥2).
These sets are visualized in Figure 6.12. I use Runge-Kutta approximations
with p = 1 (forward Euler) for the Lyapunov sublevel set and p = 2 (midpoint
rule) for the other settings. Controllers of the form (SD-CBF-OP) are em-
ployed with identity comparison functions; for the Lyapunov sublevel set, knom

is a feedback linearizing controller with auxiliary PD control (proportional gain
1, derivative gain 2), and for the other settings, knom is a zero (constant) con-
troller. With 11 sample periods spaced logarithmically (over [0.05, 0.5] and
[0.01, 0.1] seconds for the single and double inverted pendulums, respectively)
and initial conditions sampled from each set C, the sampled-data closed-loop
systems are simulated for 10 seconds. For the inverted pendulum, 500 initial
states are sampled uniformly from the Lyapunov sublevel set, and 41 × 41

grids of initial states cover [−1, 1]× [−5, 5] for the configuration ellipsoid and
[−0.1, 1] × [−5, 5] for the halfspace. For the double inverted pendulum, 500
initial states are uniformly sampled with configurations in the unit Euclidean
ball in R2 and velocities in [−1, 1]2. The worst-case distances from the safe sets
are reported as a function of sample period in Figure 6.13. These distances
decrease for sufficiently small sample periods, as predicted by the definition of
practical safety.
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Figure 6.13. The maximum distance from the safe set C (lower is better) achieved during
trials vs. the the sampling frequency. The simulations and animations be found at https:
//bit.ly/CBF-OP and https://vimeo.com/690803272. (Top) The inverted pendulum for
3 different safe sets. (Bottom) The double inverted pendulum.

Conclusion

In this section I have presented my work on sampled-data safety-critical con-
trol through approximate discrete-time models. I show how Runge-Kutta ap-
proximation models satisfy important consistency properties, and define the
concepts of practical safety, sampled-data barrier functions, and sampled-data
Control Barrier Functions. In the main contribution of this work, I show how
a family of sampled-data barrier functions for a Runge-Kutta approximation
family of controller-map pairs implies the exact family of controller-map pairs
is practically safe, permitting theoretical guarantees for the exact discrete-
time systems using controllers designed with approximations. I then show
how for a common class of nonlinear systems, the convexity properties of a
SD-CBF can be preserved with a Runge-Kutta approximation family of a
specific order, allow safety-critical controllers using approximate discrete-time
models to be specified as convex optimization problems. Lastly I demonstrate
these controllers in a variety of simulation settings, highlighting that worst-
case safety violations decrease with increasing sample rate as predicted by
practical safety.

6.5 Event-Triggered Safety

In this section I will present work on safety-critical event-triggered control. I
will begin by reviewing event-triggered control for stabilization using ISS-LFs
as presented in [96]. Drawing inspiration from this, I will propose a direct

https://bit.ly/CBF-OP
https://bit.ly/CBF-OP
https://vimeo.com/690803272
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translation of the ideas in this paper to the safety-critical setting using ISSf-
BFs. I will then demonstrate that this direct translation does not lead to a
minimum interevent time (MIET) through a rigorous counterexample. I re-
solve the issues shown with this counter example through a concept known as
the strong event-triggered ISSf barrier property, which requires a more strin-
gent degree of safe behavior on the boundary of a set that is to be kept forward
invariant. Lastly, I demonstrate that this trigger law ensures both safety and
an MIET in simulation on the system used in the counterexample.

The contributions of this section are as follows:

• The first framework for safety-critical event-triggered control that takes
inspiration from [96] by utilizing the tools of ISSf-BFs.

• A rigorous counterexample highlighting challenges not seen when per-
forming event-triggered stabilization, and a proposed method for resolv-
ing these challenges.

The text for this section is adapted from:

A. J. Taylor, P. Ong, J. Cortés, and A. D. Ames, “Safety-critical event
triggered control via input-to-state safe barrier functions,” IEEE Control
Sys. Let., vol. 5, no. 3, pp. 749–754, 2021.

A. J. Taylor participated in the conception of the project, algorithm
design and theoretical analysis, simulation code implementation, and
writing of the article.

Event-Triggered Stability

I will now review the approach for event-triggered stabilization as presented in
[96], which will inspire how I develop my proposed approach for safety-critical
event-triggered control. Let k : Rn → Rm be a controller, and recall the
event-triggered closed-loop system:

ẋ(t) = f(x(t)) + g(x(t))k(x(tk)) ∀t ∈ [tk, tk+1). (6.151)

I define the sampling error e : [tk, tk+1)→ Rn as:

e(t) = x(tk)− x(t) ∀t ∈ [tk, tk+1), (6.152)
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noting that this in conjunction with (6.151) implies:

ẋ(t) = −ė(t) = f(x(t)) + g(x(t))k(x(tk)) ∀t ∈ [tk, tk+1). (6.153)

This can alternatively be written as:

ẋ(t) = f(x(t)) + g(x(t))k(x(t) + e(t)) ∀t ∈ [tk, tk+1). (6.154)

Let xe ∈ Rn be an equilibrium point of the continuous-time closed-loop system:

ẋ = f(x) + g(x)k(x). (6.155)

I will define an ISS-LF in the event-triggered setting as follows:

Definition 58 (Event-Triggered ISS-LF (ET-ISS-LF)). Let xe ∈ Rn be an
equilibrium point of the continuous-time closed-loop system (6.155). A func-
tion V : Rn → R≥0 that is continuously differentiable on Rn is said to be an
exponential Event-Triggered Input-to-Stable Lyapunov function (ET-ISS-LF)
for the continuous-time closed-loop system (6.155) and equilibrium point xe if
there exist constants k1, k2, k3, a, and σ ∈ K∞ such that:

k1∥x− xe∥a ≤ V (x) ≤ k2∥x− xe∥a, (6.156)

V̇ (x, e) ≜ LfV (x) + LgV (x)k(x+ e) ≤ −k3∥x− xe∥a + σ(∥e∥), (6.157)

for all x, e ∈ Rn.

Suppose that we have an ET-ISS-LF for an equilibrium point xe of the continuous-
time closed-loop system (6.155). If the trigger-law is defined to enforce:

σ(∥e(t)∥) ≤ ck3∥x(t)− xe∥a, (6.158)

for c ∈ (0, 1), then the ET-ISS-LF condition (6.157) implies that:

LfV (x(t)) + LgV (x(t))k(x(t) + e(t)) ≤ (c− 1)k3∥x(t)− xe∥a, (6.159)

for all t ∈ [tk, tk+1) and k ∈ Z≥0, such that V is an exponential Lyapunov
function for the the event-triggered closed-loop system (6.151) and equilibrium
point xe and the event-triggered closed-loop system (6.151) is exponentially
stable with respect to the equilibrium point xe. In this way, a controller that is
designed to be robust to sampling error (such that (6.157) is met) can be used
with an event-triggered implementation and recover the desired exponential
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stability property at the expense of convergence rate ((c−1)k3 < k3 in (6.159)).
The inequality in (6.158) can be enforced by defining the trigger-law as:

tk+1 = min {t ≥ tk | σ(∥e(t)∥) = ck3∥x(t)− xe∥a} . (6.160)

As is typical in event-triggered control formulations, it is critical to show that
such a trigger-law does not lead to the control being updated at arbitrarily
close time instances [315], or that the interevent times {tk+1 − tk}k∈Z≥0

are
lower bounded by a positive constant τ ∈ R>0, referred to as the minimum
interevent time (MIET). The results of [96] ensure that a MIET exists under
the trigger-law (6.159) under the assumption that the functions f , g, and k

are Lipschitz continuous on any compact set K ⊂ Rn and σ is Lipschitz con-
tinuous on any compact set K ⊂ R≥0, noting that if these function are locally
Lipschitz continuous on their domains, then they are Lipschitz continuous on
any compact set contained in their domain.

Counterexample

I will now begin to set up an approach for safety-critical event-triggered con-
trol. In attempting to mirror the approach for stabilization, I will reveal a
challenge that occurs with a naïve trigger-law near the boundary of a set C
that is to be kept safe. I will explore resolving this in the subsequent section.

I will define an ISSf-BF in the event-triggered context as follows:

Definition 59 (Event-Triggered ISSf-BF (ET-ISSf-BF)). Let C ⊂ Rn be the
0-superlevel set of a function h : Rn → R that is continuously differentiable on
Rn. The function h is said to be an Event-Triggered Input-to-State Safe barrier
function (ET-ISSf-BF) for the continuous-time closed-loop system (6.155) on
C if there exist α ∈ Ke

∞ and ι ∈ K∞ such that:

ḣ(x, e) ≜ Lfh(x) + Lgh(x)k(x+ e) ≥ −α(h(x))− ι(∥e∥), (6.161)

for all x, e ∈ Rn.

Given the similarity of the ET-ISS-LF constraint (6.157) and the ET-ISSf-BF
constraint (6.161), it is natural to propose a trigger-law that enforces:

ι(∥e(t)∥) ≤ cα(h(x(t))), (6.162)

for some c ∈ R>0, implying:

Lfh(x(t)) + Lgh(x(t))k(x(t) + e(t))) ≥ −(1 + c)α(h(x(t))), (6.163)
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for all t ∈ [tk, tk+1) and k ∈ Z≥0, such that h is a barrier function for the
event-triggered closed-loop system (6.151) on C, and thus the event-triggered
closed-loop system is safe with respect to the set C. This can be interpreted as
conserving actuation resources at the expense of allowing the system to more
quickly approach the boundary of the set C from the inside. It is important to
note that inside C it is possible to satisfy (6.162) and thus enforce safety, but
it is impossible to satisfy (6.162) outside C as α(h(x(t))) < 0 if x(t) /∈ C. This
type of behavior does not arise in the context of event-triggered stabilization,
where convergence is to a point. One way to solve this issue is to instead define
the trigger-law to enforce:

ι(∥e(t)∥) ≤ c|α(h(x(t)))|, (6.164)

for c ∈ (0, 1), which enforces (6.163) if x(t) ∈ C and enforces:

Lfh(x(t)) + Lgh(x(t))k(x(t) + e(t)) ≥ −(1− c)α(h(x(t))), (6.165)

if x(t) /∈ C. In this formulation, the system is not only allowed to more quickly
approach the boundary, but is also not required to converge to the set as
quickly when outside of the set. This is a generalization of event-triggered
stabilization to a set. Even with this solution, it is not guaranteed that this
trigger law will have an MIET. Although ruling out Zeno behavior is not
required to guarantee safety, unlike stabilization (unique solutions must exist
for all time), it is important to have an MIET in term of implementation of
the controller [97]. The key difference between stability and safety leading
to the failure of an MIET to exist for a safe event-triggered controller lies in
how the system dynamics must behave close to an equilibrium point compared
to how they can behave close to the boundary of the set C. In stabilization,
the continuity of the dynamics requires that they vanish as the equilibrium is
approached, leading to the error dynamics in (6.153) vanishing. In safety, the
dynamics close to the boundary of the safe set need not vanish as the boundary
is approached, such that the error dynamics in (6.153) need not vanish. I
provide the following counterexample to illustrate how this difference can lead
to a MIET failing to exist for the trigger-law design (6.164).

Consider the following system:

d

dt

[
x1

x2

]
=

[
x2

−x1

]
︸ ︷︷ ︸

f(x)

+

[
x1

x2

]
︸ ︷︷ ︸
g(x)

u, (6.166)
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for which we wish to ensure the safety of the set C, given by the 0-superlevel
set of the continuously differentiable function h(x) = 1− x21 − x22 = 1− ∥x∥2.
The time derivative of this function along solutions to (6.166) is given by
ḣ(x, u) = −2(x21+x22)u, for which the controller k(x) = 1

2
(1−x21−x22) = 1

2
h(x)

yields ḣ(x) = −(x21 + x22)h(x) ≥ −h(x) for all x ∈ R2, which implies h is a BF
for the resulting closed-loop system on the set C.

In an event-triggered context, the closed-loop system is given by:

ẋ(t) =

[
k(x(tk)) 1

−1 k(x(tk))

]
x(t) ∀t ∈ [tk, tk+1). (6.167)

This leads to the time derivative of h along solutions to (6.167) being given
by:

ḣ(x(t), e(t)) = −∥x(t)∥2h(x(tk)) = −∥x(t)∥2h(x(t) + e(t)), (6.168)

for t ∈ [tk, tk+1), where e(t) = x(tk) − x(t). To see that h is in fact an ET-
ISSf-BF, note that its time derivative can be bounded as follows:

ḣ(x(t), e(t)) = −∥x(t)∥2h(x(t) + e(t)),

= −∥x(t)∥2(1− ∥x(t)∥2 − 2x(t)⊤e(t)− ∥e(t)∥2),

≥ −∥x(t)∥2(1− ∥x(t)∥2)− 2∥x(t)∥3∥e(t)∥,

≥ −(1− ∥x(t)∥2)− 2∥x(t)∥3∥e(t)∥,

≥ −h(x(t))− 2r3∥e(t)∥,

for all r ∈ R≥0 such that r ≥ 1 and x(t) ∈ R2 such that ∥x(t)∥ ≤ r. Note
that for a fixed value of r, this restricts the claim to a neighborhood of the
compact set C. The value of r can be chosen arbitrarily large to produce an
arbitrarily large neighborhood, but this detail is not critical for the subsequent
results regarding the non-existence of an MIET. Given that h is an ET-ISSf-
BF on some domain containing the unit circle (choose r > 1), the trigger-law
enforcing (6.164) is given by:

tk+1 = min{t ≥ tk | 2r3∥e(t)∥ = c|h(x(t))|}, (6.169)

with c ∈ (0, 1). This will guarantee that C is safe as:

ḣ(x(t), e(t)) ≥

−(1 + c)h(x(t)), ∥x(t)∥ ≤ 1,

−(1− c)h(x(t)), 1 < ∥x(t)∥ ≤ r.
(6.170)
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Despite the fact f , g, k, α (α(r) = r), and ι ((ι(r) = 2r3) are Lipschitz
continuous on compacts, which was sufficient in the case of stabilization, the
following result shows the trigger-law fails to provide an MIET:

Lemma 11. The system (6.167) with the trigger-law defined as in (6.169)
does not possess an MIET.

Proof. To show that the interevent times {tk+1−tk}k∈Z≥0
are not lower bounded,

I will proceed via contradiction. In particular, let us assume that there ex-
ists an MIET τ ∈ R>0 such that tk+1 − tk ≥ τ for all k ∈ Z≥0. If the state
xk = x(tk) at event time tk is used as an initial condition, the solution to the
event-triggered closed-loop system (6.167) is:

x(t) = exp

(
h(xk)∆tk

2

)[
cos(∆tk) sin(∆tk)

− sin(∆tk) cos(∆tk)

]
xk, (6.171)

= Mk(∆tk)xk, (6.172)

for t ∈ [tk, tk+1) with ∆tk = t − tk. Denote ωk = h(xk)∆tk and observe that
the norm of the error is lower bounded by a function monotonically increasing
in time:

∥e(t)∥ = ∥(I2 −Mk(∆tk))xk∥, (6.173)

=

√(
exp (ωk)− 2 exp

(ωk

2

)
cos(∆tk) + 1

)
∥xk∥, (6.174)

≥
√(

exp (ωk)− 2 exp
(ωk

2

)
+ 1
)
∥xk∥, (6.175)

=

√(
exp

(ωk

2

)
− 1
)2
∥xk∥, (6.176)

≥
∣∣∣exp(ωk

2

)
− 1
∣∣∣ ∥xk∥. (6.177)

This lower bound on the error grows unbounded in time. This implies that no
matter the state in Int(C) that an event occurs, another event must occur at
some time in the future (or the bound in (6.169) will be violated as h is upper
bounded on C). Thus, for all T > 0, there exists an event time tk > T .

Next, I show that limt→∞ h(x(t)) = 0. Note that:

h(x(t)) = 1− ∥x(t)∥2 = 1− exp (h(xk)∆tk)∥xk∥2, (6.178)

with time derivative:

ḣ(x(t)) = −h(xk) exp (h(xk)∆tk)∥xk∥2, (6.179)
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for t ∈ [tk, tk+1). Within the safe set we have that ḣ(x(t)) ≤ 0, such that
h(x(t)) is monotonically decreasing in time. The safety of C implies h(x(t)) is
lower bounded by 0, and thus we can conclude that limt→∞ h(x(t)) exists by
the Monotone Convergence Theorem [249, Theorem 2.4.2] Assume that this
limit is some value 0 < a < 1. For any δ ∈ R>0, there exists T > 0 such
that for t > T , h(x(t)) < a + δ. Since there are an infinite number of events,
we deduce there exists tk > T such that h(x(tk)) < a + δ. As h(x(t)) is
monotonically decreasing, it also follows h(x(t)) ≥ a for all t. This implies:

ḣ(x(t)) ≤ −a exp (a∆tk)(1− (a+ δ)) ≤ −a+ a2 + aδ < 0. (6.180)

for t ≥ tk where δ can be chosen small enough to enforce the strict inequality
with 0 as a2 < a. Thus, between two events we have:

h(x(tk+1)) ≤ h(x(tk)) + τ(−a+ a2 + aδ), (6.181)

where τ is the assumed MIET. Choosing δ < τ(a−a2)/(1+τa) in conjunction
with h(x(tk)) < a + δ implies h(x(tk+1)) < a, contradicting the assumption
that a ̸= 0 (and maintaining the assumption on the existence of τ).

To complete the proof, note e(tk) = 0n and take the second-order (one-sided)
Taylor expansion of ∥e(t)∥2 at t = tk:

∥e(t)∥2 =
(
ė(tk)

⊤ė(tk)
)
(t− tk)2 +O((t− tk)3) (6.182)

= (1 + k(x(tk)))∥x(tk)∥2(t− tk)2 +O((t− tk)3) (6.183)

≥ ∥x(tk)∥2(t− tk)2 − c3(t− tk)3, (6.184)

with c3 ∈ R>0. The first term in the inequality follows from k(x(tk)) ≥ 0 for
x(tk) ∈ C. To understand the second term, note that for any t ∈ [tk, tk+1),
Lagrange’s Remainder Formula [249, Theorem 6.6.3] implies there exists a
t′ ∈ (tk, t) such that:

∥e(t)∥2 =
(
ė(tk)

⊤ė(tk)
)
(t− tk)2 +

1

6

d3

dt3
∥e(t′)∥2(t− tk)3. (6.185)

As d3

dt3
∥e(t)∥2 is a continuous function of x(t) and x(tk) (can be shown by

expanding it), both of which remain in the compact set C, we must have that
d3

dt3
∥e(t)∥2 is bounded by a constant, denoted by 6c3 ∈ R≥0, for all t ∈ R≥0,

including t = t′. This yields the desired bound.

At trigger time tk, let h(x(tk)) = ϵk for ϵk ∈ R>0. Note that for arbitrarily
small ϵ ∈ R>0, there exists a trigger time tk such that ϵk < ϵ due to the
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existence of infinite triggers and convergence of h(x(t)) to 0. This implies
∥x(tk)∥2 = 1 − ϵk. Let n ∈ Z≥0 be such that 1

c3
< nτ and define t⋆k =

tk +
1
n

(
1−ϵk
c3

)
, noting t⋆k < tk + τ . It follows from the Taylor expansion that:

∥e(t⋆k)∥2 ≥
(1− ϵk)3

c23

n− 1

n3
. (6.186)

As ϵk can be chosen arbitrarily small, I choose it such that:

(1− ϵk)3 ≥
c2n3

4r6(n− 1)
ϵ2k,

which indicates that:

2r3∥e(t⋆k)∥ ≥ c|h(x(tk))| ≥ c|h(x(t⋆k))|,

as h(x(t)) is monotonically decreasing. As t⋆k < tk + τ , this contradicts that
τ is the MIET. Figure 6.14 shows the number of events as a function of time
and distance from the barrier. The blue curves in Figure 6.15 correspond to
the interevent times.

In the proof of Lemma 11, we see the fact that the dynamics of the event-
triggered closed-loop system (6.167) are not required to vanish on the boundary
of the set C. This leads to the derivative of the measurement error, d

dt
∥e(tk)∥,

being uniformly lower bounded at event times tk, which, together with the con-
vergence of h to 0, as seen in Figure 6.14, leads to arbitrarily small interevent
times. In particular, the dynamics evolve tangentially to the boundary of the
set C, leading to growing measurement error while moving arbitrarily close to
the 0-level set of h. As the original controller may have additional objectives
beyond safety (such as stabilization), it is desirable that the event-triggered
implementation not completely eliminate tangential motion near the boundary
that may be necessary to achieve the other objectives. To accommodate this,
I will introduce a trigger-law that limits dynamic evolution tangential to the
boundary of the safe set.

Event-Triggered Safety & Simulation Results

I now propose an alternative trigger-law that ensures an MIET exists. To
resolve the issues in the preceding example, I introduce the following definition:
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Figure 6.14. Simulation results for the system (6.167) using the trigger law (6.169). Even
as the boundary of the safe set is approached (h(φET(t))→ 0), the growth rate of the error
does not diminish, leading to arbitrarily small interevent times.

Definition 60 (Strong ET-ISSf Barrier Property). An ET-ISSf-BF h for the
continuous-time closed-loop system (6.155) satisfies the strong ET-ISSf barrier
property if there exists a d ∈ R>0 such that:

Lfh(x) + Lgh(x)k(x+ e)) ≥ −α(h(x)) + d− ι(∥e∥), (6.187)

for all x, e ∈ Rn.

This property introduces a positive constant, d, into the ET-ISSf-BF condition
(6.161). In the presence of zero measurement error, this enforces that the
state dynamics must lie in the interior of the tangent cone [104] when on the
boundary of the safe set C. It also enforces that d

dt
|h(x(tk))| will be greater

than a positive constant as we approach the boundary, similarly to d
dt
∥e(tk)∥.

I now show this property is sufficient to design a trigger-law that ensures safety
with a MIET.

Theorem 47. Let h be an ET-ISSf-BF for the continuous-time closed-loop
system (6.155) on a set C ⊂ Rn defined as the 0-superlevel set of a function h

that is continuously differentiable on Rn, with corresponding functions α ∈ Ke
∞

and ι ∈ K∞. Let β ∈ Ke
∞ and c ∈ (0, 1]. If the following assumptions hold:

1. h satisfies the strong ET-ISSf barrier property for a constant d ∈ R>0,

2. ι is Lipschitz continuous with Lipschitz constant Lι,

3. there exists F ∈ R>0, such that for all x, e ∈ Rn:

∥f(x) + g(x)k(x+ e))∥ ≤ F, (6.188)
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4. β(r) ≥ α(r) for all r ∈ R,

then the trigger-law:

tk+1 = min
{
t ≥ tk | ι(∥e(t)∥) = β(h(x(t)))− α(h(x(t))) + cd

}
, (6.189)

deployed recursively enforces:

ḣ(x(t), e(t)) = Lfh(x(t)) + Lgh(x(t))k(x(t) + e(t)) ≥ −β(h(x(t))), (6.190)

thus rendering the set C safe. Furthermore, there exists a MIET given by:

tk+1 − tk ≥ τ ≜
cd

LιF
, ∀k ∈ Z≥0. (6.191)

Before proving the result, I make a few observations regarding its assumptions.
Assumption 3 on the boundedness of the dynamics need not hold over the
entire state space for safety, but can hold for (x, e) ∈ C ×Rn. Furthermore, if
C is compact, the trigger-law enforces the existence of a compact set K ⊂ Rn

such that e(t) ∈ K for all t ∈ R≥0. Thus, the continuity of f , g, and k on
Rn would imply the assumption is satisfied on C × K, which also would be
sufficient for the result to hold. Assumption 4 ensures the right-hand side
of the equality in the trigger will always be positive. The function β can be
viewed as a tuning function which can raise interevent times (but not the
MIET) at the expense of less “braking” within the safe set and convergence
outside of the safe set. One choice is β = α, in which case interevent times are
lowered for more braking and faster convergence. Lastly, I note this trigger-
law can be used in conjunction with (6.160) to jointly achieve event-triggered
stabilization and safety if there exists an ET-ISS-LF for the continuous-time
closed-loop system (6.155).

Proof. To see the set C is rendered safe, observe that:

ḣ(x(t), e(t)) = Lfh(x(t)) + Lgh(x(t))k(x(t) + e(t)), (6.192)

≥ −α(h(x(t))) + d− ι(∥e(t)∥), (6.193)

≥ −α(h(x(t))) + d− (β(h(x(t)))− α(h(x(t))) + cd), (6.194)

= −β(h(x(t))) + (1− c)d (6.195)

≥ −β(h(x(t))), (6.196)
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for all t ∈ [tk, tk+1) and k ∈ Z≥0, implying that h is a barrier function for the
event-triggered closed-loop system (6.151) on C, such that the event-triggered
closed-loop system (6.151) is safe with respect to C. To see the interevent
times are lower bounded, observe that:

∥e(t)∥ =

∥∥∥∥e(tk) + ∫ t

tk

(−f(x(τ))− g(x(τ))k(x(τ) + e(τ)))dτ

∥∥∥∥ , (6.197)

=

∥∥∥∥∫ t

tk

(−f(x(τ))− g(x(τ))k(x(τ) + e(τ)))dτ

∥∥∥∥ , (6.198)

≤
∫ t

tk

Fdτ. (6.199)

This inequality together with the trigger law (6.189) yields:

tk+1 ≥ min {t ≥ tk | Lι∥e(t)∥ = cd} , (6.200)

≥ min {t ≥ tk | LιF (t− tk) = cd} (6.201)

=
cd

LιF
+ tk, (6.202)

ensuring the desired result.

In the case that an ET-ISSf-BF h does not satisfy the strong barrier property,
an auxiliary ET-ISSf-BF, hb, satisfying the strong ISSf barrier property can
be synthesized via h at the expense of keeping a larger set safe:

Theorem 48. Let h be an ET-ISSf-BF for the continuous-time closed-loop
system (6.155) on a set C ⊂ Rn defined as the 0-superlevel set of a function
h : Rn → R that is continuously differentiable on Rn, with corresponding
functions α ∈ Ke

∞ and ι ∈ K∞. Then the function hb : Rn → R defined
as hb(x) = h(x) + b, with b ∈ R>0, is an ET-ISSf-BF satisfying the strong
ET-ISSf barrier property on the set Cb ⊂ Rn defined as:

Cb ≜ {x ∈ Rn | hb(x) ≥ 0}. (6.203)

Proof. Observe that:

Lfhb(x) + Lghb(x)k(x+ e) = Lfh(x) + Lgh(x)k(x+ e), (6.204)

≥ −α(h(x))− ι(∥e∥), (6.205)

≥ −α(hb(x)− b) + α(−b)− α(−b)− ι(∥e∥),
(6.206)

= −αb(hb(x)) + db − ι(∥e∥), (6.207)
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for all x, e ∈ Rn, where αb ∈ Ke
∞ is defined as αb(r) = α(r − b) − α(−b) and

db = −α(−b) > 0.

Thus an ET-ISSf-BF can be used with the trigger law (6.189) by enlarging the
safe set an arbitrarily small amount, captured by the following result:

Corollary 2. If h is an ET-ISSf-BF for (6.155) on the set C satisfying As-
sumptions (2-4) of Theorem 47, then hb is an ET-ISSf-BF for (6.155) on the
set Cb satisfying Assumptions (1-4) of Theorem 47 such that the correspond-
ing trigger-law renders the event-triggered closed-loop system (6.151) safe with
respect to Cb, and yields an MIET.

This is effectively an instance of Input-to-State Safety, in which case the orig-
inal set C defined via h becomes an ISSf safe set. We note that the larger
the set is made (via a larger choice of b), the larger the MIET will be. This
effectively highlights a trade-off that arises in the context of safety but not in
stabilization: allowing motion near the boundary of a safe set requires addi-
tional relaxations to achieve the additional desirable property of an MIET. To
verify the ability of this trigger to keep the system safe and have a MIET, I
simulate the event-triggered closed-loop system (6.167) using both the naïve
trigger law (6.169) and the corrected trigger-law (6.189). The results of these
simulations can be seen in Figure 6.15. Observe that although both systems
are kept safe, the trigger-law not using the strong ISSf barrier property has
interevent times that approach 0.

Conclusion

In this section I have presented work on safety-critical event-triggered control.
I begin by reviewing the formulation of event-triggered stabilization through
ISS-LFs as originally presented in [96]. In attempting to translate these results
to the safety-critical setting through the use of ISSf-BFs, I reveal a challenge
that occurs due to motion of the system along the boundary of a set C that is to
be kept forward invariant. I rigorously show that this challenge can prevent the
existence of an MIET through a counterexample. I conclude by proposing the
notion of the strong ET-ISSf barrier property, which limits tangential motion
on the boundary of the set C and allows for a trigger-law that possesses an
MIET, as I show in simulation.
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Figure 6.15. Simulation results demonstrating safety achieved with an event-triggered
controller. (Top, Left) State trajectories for both triggers remain within the safe set for
the length of the simulation. (Top, Right) The value of the ISSf-BF h remains above zero
for the length of the simulation, corresponding to the system remaining safe. (Right) The
interevent times of the two trigger laws. The interevent times of the trigger law (6.169)
decreases towards 0 as predicted by Lemma 11 while the trigger law (6.189) satisfies the
theoretical bound.

6.6 Conclusion

In this chapter I have presented a collection of results on designing safety-
critical controllers that are robust to input sampling. In Section 6.2 I look
at a few simulation examples that demonstrate the fragility of the (CLF-QP)
controller to sampling, even at high sample rates. Following this, I provide
mathematical descriptions of the sampled-data and event-triggered sampling
paradigms. Next, in Section 6.3 I present my first set of contributions in the
form of a framework for using feedback linearization and CLF-based controllers
specified via convex optimization problems for sampled-data systems. I aug-
ment the framework of sampled-data control through approximate discrete-
time models presented in [81] to support local stability results and the coordi-
nate transformations that accompany feedback linearization. Given this setup,
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I show that a continuous-time feedback linearizable system with locally expo-
nentially stable zero dynamics can be practically stabilized at sufficiently high
sample rates using a sample-and-hold implementation of the continuous-time
feedback linearizing controller without modification. As was reviewed in Sec-
tion 2.4, I then use feedback linearization to produce a discrete-time CLF which
I can incorporate into a CLF-based controller specified as a convex quadrat-
ically constrained quadratic program (QCQP). This controller is shown to
greatly outperform a sample-and-hold implementation of the continuous-time
(CLF-QP) controller in the simulation environments in Section 6.2. In Section
6.4, I present my second set of contributions in the form of a framework for
safety-critical sampled-data control through Control Barrier Functions and
approximate discrete-time models. I consider a larger class of approximate
discrete-time models that support working with CBFs that have a relative de-
gree greater than one, and show how these models satisfy certain consistency
properties. Following this, I present definitions of practical safety, sampled-
data barrier functions, and sampled-data Control Barrier Functions, and es-
tablish how a family of sampled-data barrier functions for a family of approxi-
mate discrete-time models implies the exact discrete-time system is practically
safe. Following this, I consider a large class of nonlinear systems for which I
can show that convexity properties of a sampled-data CBF can be preserved
through the use of a Runge-Kutta approximation of the appropriate order,
leading to controller that can be specified as convex optimization problems.
I demonstrate these controllers in simulation, showing that safety violations
decrease with increased sample rate as described by practical safety. Lastly, in
Section 6.5 I present my third set of contributions in the form of a framework
for safety-critical event-triggered control through ISSf-BFs. I first review the
framework for event-triggered stabilization through ISS-LFs presented in [96].
I then consider a naïve transfer of this framework to the safety-critical setting,
and show that the importance requirement of a minimum interevent time fails
to hold through a rigorous counterexample. Building off the challenges seen
in this counterexample, I present a modification that leads to event-triggered
controllers that ensure safety and a minimum interevent time, which I show
in simulation.

There are several directions for future work building off the results presented in
this chapter. The controllers that were produced through CLFs and CBFs with
convex optimization in Sections 6.3 and 6.4, respectively, are more complex
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forms of convex optimization problems than QPs. In particular, the CLF-based
controllers are QCQPs, and the CBF-based controllers depend on the safe set
specification, returning QPs for half-space CBFs, QCQPs for ellipsoidal CBFs,
SOCPs for norm CBFs, and more general convex programs for CBFs that uti-
lize other convex functions. While the sampled-data control paradigm doesn’t
require controllers be locally Lipschitz continuous, or even continuous (because
they are not evaluated continuously in time in the differential equation, they
are held constant), these types of regularity properties are often desirable in
practically implementing these controllers. Thus, it would be worthwhile to
characterize the regularity properties of these controllers similar to the way
that regularity properties of the (CLF-QP) and (CBF-QP) controllers have
been characterized in [51]. Doing so may not be able to rely on the sort of
tools used in [51], and may require a more analysis-driven approach using tools
from variational analysis [223], [224].

Another direction would consider the approximate discrete-time models used.
My work uses the relatively simple Euler and Runge-Kutta approximations, in
large part due to their wide existing use, but also because they can be shown to
preserve the feedback linearization and convexity properties ideal for control
synthesis. I first note that my theory did not require any thing about the coef-
ficients ai,j in the Runge-Kutta approximation. Many methods (of the same-
order) for numerical approximation fall under the umbrella of Runge-Kutta
approximations with different values for these coefficients, and can be shown
to demonstrate different desirable properties for specific problem structures.
Thus, a comparative study, both theoretically and empirically, evaluating con-
troller performance using different values of the coefficients associated with
common numerical approximation schemes may be a worthwhile direction of
exploration. Second, other approximation schemes outside of Runge-Kutta
approximations could be explored, with the goal of obtaining higher approx-
imation accuracy or conforming more closely to underlying structure in the
dynamics. An important focus of this study would be on what sorts of ap-
proximations preserve convexity in a way that allows for efficient downstream
control synthesis, as was considered in my work.

Lastly, I think there are interesting avenues to consider event-triggered paradigms.
As noted in [95], the widespread adoption and use of event-triggered control
schemes has been lacking. It is my belief that the adoption of such methods in
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robotics has not happened because the cost for switching inputs to a robot at
a torque level are fairly negligible, and it is generally best to run a controller
as fast as possible on a given set of hardware. Instead, I think that the use
of event-triggered ideas in robotics need to focus on tasks that are costly to
perform, and for which it is desirable not to have to perform many times. One
such example could be event-triggered learning, where new data is incorpo-
rated into learning models only after it has been deemed to contain enough
information to warrant the expensive learning process. In fact, recent work
has even begun to explore this question [330]. I believe it would be worthwhile
to develop an understanding of the stability and safety of these types of dy-
namic processes through tools from event-triggered control as explored in this
thesis.
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C h a p t e r 7

CONCLUSION

Motivated by the tragic failures seen with the ongoing proliferation of au-
tonomous systems in modern society, this thesis has focused on making progress
towards a complete theory of robust safety-critical. Built upon the founda-
tional tools of Control Lyapunov Functions (CLFs) and Control Barrier Func-
tions (CBFs), my contributions in this thesis constitute a collection of methods
for resolving the challenges of model error, disturbances, measurement error,
and input sampling seen in real-world applications. In each chapter of this the-
sis, I show the consequences for safety in failing to address these challenges in
control design through simulation or experimental demonstration. Equipped
with an understanding of these failures, I develop methods that provide theo-
retically rigorous guarantees of robust safety. A hallmark of my contributions
is the focus on developing controllers that can be specified via convex opti-
mization problems, enabling their computationally efficient implementation on
real-world platforms, as demonstrated in the collection of experimental results
presented in this thesis.

In summary, the contributions of this thesis are as follows:

• Learning Frameworks: In Sections 3.3-3.8 I present a series of three
episodic learning frameworks for resolving model error as it directly im-
pacts stability or safety as encoded by CLFs and CBFs, respectively. In
particular, these frameworks address the fact that only model error that
affects the time derivative of a CLF or CBF needs to be characterized to
achieve a control objective. The frameworks in Sections 3.3 and 3.5 take
an episodic learning approach built on supervised learning with a focus
on learning models that are affine in the control input, permitting their
direct integration into existing convex optimization-based controllers.
Accompanying these frameworks in Sections 3.4 and 3.6 are a rigorous
characterization of the impacts of residual learning error on stability and
safety through the notions of Projection-to-State Stability (PSS) and
Projection-to-State Safety (PSSf). In Section 3.7 I explore some of the
challenges with these frameworks on high-dimensional system, and utilize
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a learning model that instead learns a projected disturbance associated
with a particular controller, allowing iterative improvement in achieving
safety objectives. Lastly, in Section 3.8, I draw upon the lessons collected
in developing the preceding frameworks to present a data-driven control
method through robust convex optimization. Importantly, this method
capitalizes on the fact that it is not necessary to completely characterize
model error to choose robust control inputs.

• Adaptive Safety-Critical Control: In Section 3.9 I present the first
instance of an adaptive Control Barrier Function for safety-critical con-
trol in the presence of parametric model error. Building upon the tool of
adaptive Control Lyapunov Functions in [47], I develop an understanding
of the challenges in achieving forward invariance as opposed to stability
with adaptive control techniques, and present a notion of aCBFs that
resolve these challenges.

• Tunable Input-to-State Safety: In Section 4.2 I highlight some of
the challenges in balancing performance and robustness to disturbances
with controllers designed with Input-to-State Safe Control Barrier Func-
tions as presented in [58]. In Sections 4.3 and 4.4 I greatly improve upon
this balance of performance and robustness through the the notion of
Tunable Input-to-State Safety, which allows prioritizing robustness to
disturbances near the boundary of a set that is to be kept forward in-
variant, and relaxing robustness requirements deep within the set. This
methodology is experimentally demonstrated on an autonomous semi-
trailer truck, showcasing it on a challenging real-world problem.

• Stochastic Safety-Critical Control: In Section 4.5 I present a frame-
work for safety-critical control of discrete-time systems with stochastic
disturbances. This work focuses on using the inherent robustness prop-
erties of CBFs to produce ISSf-like finite-time safety guarantees. Addi-
tionally, it studies how the the interaction between convexity properties
of CBFs and the distributions of stochastic disturbances must be ac-
counted for in producing theoretically rigorous safety-critical controllers
specified as convex optimization problems.

• Measurement-Robust Control Barrier Functions: In Sections 5.2
I explore how model error impacts safety-critical control, and develop
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the notion of Measurement-Robust Control Barrier Functions as a tool
for measurement-robust control synthesis through convex optimization.
In Section 5.3 MR-CBFs are integrated with backup-set CBF methods
to produced a measurement-robust controller specified as a second-order
cone program (SOCP) that is demonstrated experimentally on a Segway
platform. Importantly, this result indicates that the controllers specified
via convex optimization problems that are more complex than QPs (such
as QCQPs and SOCPs) in this thesis are efficient enough to be deployed
in real-time on real-world robotic systems.

• Preference Based Learning: In Section 5.4 I explore how preference-
based learning can be used to tune the robustness parameters of a CBF-
based controller, which is the first instance of using preference-based
learning with CBFs. While my particular contributions in this work focus
on the control theoretic aspects of safety guarantees, it is an important
result as it presents a methodology that may be deployed with many of
the methods presented in this thesis to produce controllers that are both
robust and performant.

• Sampled-Data Control: In Section 6.2 I highlight the fragility of the
continuous-time (CLF-QP) controller to a sample-and-hold implementa-
tion for a number of systems in simulation. I resolve this issue in Sec-
tion 6.3 by presenting a framework for stabilizing sampled-data control
through approximate discrete-time models. Building upon the frame-
work in [81], I show how continuous-time feedback linearizable systems
can be practically stabilized through a sample-hold implementation of a
feedback linearizing controller. Furthermore, I extend the pipeline from
feedback linearization to CLFs to this setting, producing discrete-time
CLFs which can be incorporated into convex-optimization based con-
trollers specified as quadratically constrained quadratic programs (QC-
QPs). I demonstrate the significant improvement in performance of these
controllers over their continuous-time counterparts with a sampled-data
implementation in simulation. In Section 6.4 I develop a framework for
safety-critical sampled-data control through CBFs. I propose notions
of practical safety and sampled-data CBFs, and rigorously connect de-
signs using approximate discrete-time models to the practically safety
of the exact discrete-time sampled-data dynamics of a system. Lastly, I
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show how convexity properties of a SD-CBF can be utilized with an ap-
propriately chosen approximate discrete-time model to produce convex
optimization-based controllers.

• Event-Triggered Safety-Critical Control: In Section 6.5 I provide
a framework for event-triggered safety-critical control. Drawing inspira-
tion from the work in [96] that studies stabilizing event-triggered control
through ISS-LFs, my approach studies event-triggered safety through
the perspective of ISSf-BFs. I show that that directly transferring the
approach in [96] is sufficient to ensure safety, but will not guarantee a
minimum interevent time. To resolve this, I propose the strong ISSf-BF
property and show how it can be used to guarantee both safety and a
minimum interevent time.

Together, these contributions constitute a significant advance in the theory
of robust safety-critical control, and unified by the use of CLFs and CBFs,
provide a cohesive approach for addressing the vital challenges faced by real-
world systems.

7.1 Infeasible Optimization Problems

Throughout this thesis there has been a focus on developing controllers spec-
ified via convex optimization problems. In implementing these controllers, a
relevant question that practitioners may face is what to do if the optimization
problem defining these controllers returns that there is no feasible solution (or
does not return a result at all). This is certainly an important question for
developing the ability to trace faults in complex systems. I wish to note that
in some sense, the ability to entirely eliminate the possibility of infeasibility
while maintaining rigorous theoretical stability and safety guarantees is tied
directly to whether the assumptions a control designer makes actually hold.
If exceptional events can happen (as they are want to do in the real world)
that violate these assumptions, there is always some potential for infeasibility
or failure to achieve stability and safety. The following discussion seeks to
highlight common reasons for infeasibility, and discuss practical methods that
can be used to improve upon feasibility. A practitioner will hopefully find this
helpful in identifying why their controller went infeasible, and provide a spec-
trum of increasingly involved options to consider in trying to improve upon
their design.
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Numerical Issues

First, the cost functions in these controllers tend to be fairly well-behaved, and
issues with infeasibility (either certifiable infeasibility, or due to the solver not
returning any result) are almost always due to the constraints. One annoying,
but fairly mild, source of infeasibility is numerical conditioning, which typically
leads to the solver not returning. If we recall the CLF condition:

LfV (x) + LgV (x)u ≤ −k3∥x− xe∥2, (7.1)

with a = 2, we note that the term LgV (x) multiplies the decision variable u

in the optimization problem. At the equilibrium point xe, we will often have
that LfV (x) and LgV (x) will converge to 0 and 0m, respectively, linearly with
the value of ∥x − xe∥, while the right hand-side converges to 0 quadratically
in ∥x − xe∥. In this case, the vanishing of the term multiplying the decision
variable can be rectified by rescaling the problem by dividing by ∥x − xe∥,
noting that the quadratic term will remain small. In fact, most off-the-shelf
optimization tools will perform this sort of rescaling for a user. But such
rescaling away from xe is not so straightforward. In particular, if we have a
state x∗ ̸= xe such that LgV (x∗) = 0m, then for a state x close to x∗, dividing
each term of the constraint by ∥LgV (x)∥ will amplify the terms LfV (x) and
−k3∥x− xe∥2 greatly, thereby still leading to a poorly scaled problem. Many
off-the-shelf optimization tools will struggle with this problem, but it reflects
important geometric properties of the interaction between the underlying sys-
tem dynamics and CLF. Instead, observe that if we have a CLF, then in a
neighborhood of x∗, we have that:

LfV (x) ≤ −k3∥x− xe∥2 + ϵ, (7.2)

for some small value of ϵ ≈ 0. This states that by taking no input (or using
knom), we are almost satisfying the inequality we need for local exponential
stability. Thus, rather than solve the optimization problem, it may be prudent
to set a tolerance on the value of ∥LgV (x)∥ under which no input (or knom)
is used. The price of this is a small degradation in the convergence rate of
stability, or ISS-like behavior. The same sort of issue arises with CBFs when
Lgh(x

∗) = 0m, and can be similarly addressed by using knom directly at the
expense of ISSf behavior. This type of case-based solution is an effective tool
for many of the CLF and CBF-based methods throughout this thesis, and
generally leads to insignificant degradation in stability and safety guarantees.
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Infeasible Constraints

Another source of infeasibility (that often produces certifiable infeasibility) is
when a function V or h is not actually the purported type of CLF or CBF it is
claimed to be when it is used as a constraint in the optimization problem. Why
does this happen? One example is if the CLF or CBF is simply specified for
the system without using a constructive technique like feedback linearization
as shown in Chapter 2. In this case, the CLF or CBF is being used as a
heuristic design primitive, but not necessarily as a rigorous control theoretic
tool. As shown by many of the simulation and experimental results in this
thesis, this is often an okay approach (though I will discuss alternatives if
it is not). Another example is if the CLF or CBF has numerical models
(like learning models in Chapter 3) integrated into the constraint. These
numerical models often do not display exactly the right analytical behavior
at the “pain points” (such as when LgV (x) or Lgh(x) approach 0m), and
can lead to infeasibility in the constraint. Note that this sort of problem
can occur even if the CLF or CBF is in fact a CLF or CBF for the true
dynamics of the system, as discussed in Section 3.3. An additional example
is when a CLF or CBF for a system (one that actually is a CLF or CBF) is
modified with robustness terms. Examples include using ISS-CLFs or ISSf-
CBFs with unmatched disturbances (this is why matched disturbances are a
nicer problem to work with), adding model error sets into the CLF or CBF
constraint as in Section 3.8 (where I explicitly address feasibility), and MR-
CBFs in Section 5.2. The robustness modifications in these formulations may
lead to infeasibility, especially if large robustness parameters are used. This
is not unintuitive, as requiring robustness to an increasingly large quantity
of model inaccuracies will at some point become impossible in most control
formulations. Lastly, and perhaps most importantly, even if a CLF or CBF
meets the necessary infimum and supremum conditions used throughout this
thesis, nearly all real-world systems face limitations to their inputs, such as
input bounds. It is generally not possible to take any input in Rm. In this
case, if these input constraints are enforced in the optimization with the CLF or
CBF constraint, infeasibility may occur. If instead input saturation is applied
after solving the optimization problem, it will not only be unclear if theoretical
stability or safety properties will be preserved, but it will also be unclear if a
potential feasible solution satisfying input bounds did in fact exist.
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Relaxations

What are our options in the face of these potential causes of infeasibility?
There are three main directions, all of which I believe are currently areas
of research interest. The first is simply to relax the optimization problems.
Such a relaxation was employed in the (CLF-CBF-QP) controller, and used
throughout many of the experimental results in this thesis. This approach
can guarantee the “feasibility” of the optimization problem in the face of not
having a valid CLF or CBF, poorly behaved numerical models, excessive ro-
bustness, and input constraints. Of course, it is not a silver bullet, and will
compromise the theoretical stability and safety guarantees of the controller.
If the relaxation is kept small (one is only a small distance away from being
feasible) over a region of the interest in the state space, one could employ the
ideas of PSS and PSSf explored in Sections 3.4 and 3.6, respectively, to state
what the degradation of the guarantees will be. But there are perhaps more in-
teresting and principled approaches for relaxation, which suggest the potential
for further research into the topic. Examples include the formulation in [51,
QP Problem −γm Version], which uses a particular structure of the relaxation
term to ensure that local exponential stability guarantees are preserved for
equilibrium points that remain inside the interior of a set C that is to be kept
forward invariant. An other idea is to add additional decision variables to the
controller that allow the strength of stability or safety requirements to be mod-
ulated online to achieve feasibility. Examples would be making the parameter
k3 in a CLF constraint a decision variable that is constrained to remain above
some small positive value, or parameterizing the function α ∈ Ke in a CBF
constraint to be a linear function with a coefficient that is a decision variable
constrained above some small positive value, as was done in [256, Section 2.C].
This type of scheme relaxes the convergence rate of local exponential stability,
or allows a system to more rapidly approach the boundary of a set that is
to be kept forward invariant, but can improve the feasibility of the controller
while still giving some form of stability and safety guarantees.

Constructing CLFs and CBFs

The second direction is the offline construction of CLFs and CBFs that satisfy
the necessary requirements arising from system dynamics, safety specifications,
robustness considerations, and input constraints. In this way, one can reduce
the number of assumptions made on the satisfaction of these requirements by



340

explicitly addressing them. Examples would include tools such as sums-of-
squares (SOS) programming which has been used for computing CLFs [331]
and CBFs [332], [333], solving the Hamilton-Jacobi-Bellman (HJB) equations
to produce control invariant sets that yield CLFs [334] and CBFs [229], [335],
or constructing CLFs and CBFs through data-driven methods [176], [177]. A
significant benefit of these approaches is the potential to utilize large computa-
tional capabilities to produce solutions meeting all of the above requirements
simultaneously in a way that can be verified before deployment on a safety-
critical system. Of course, if these requirements are insufficient for the actual
control task at hand, infeasibility may still occur, and these offline computa-
tions may need to be performed again with adjusted requirements. One limit
of this approach is the well-known “curse of dimensionality”, with many of
these methods being limited to single-digit state and input dimensions and of-
fline computations. For a high-dimensional system, a prudent course of action
may be to reduce the system to a collection of smaller, interconnected subsys-
tems, and deploy the computational techniques with additional requirements
to compensate for any issues that arise due to using an interconnected system
modeling perspective.

Multi-Rate Control

Drawing some degree of inspiration from this previous comment, the third
direction is to offload some of the requirements that a CLF or CBF-based con-
troller needs to satisfy to a higher-level in the autonomy stack. For instance,
one may require that the equilibrium state or trajectory that a CLF controller
is stabilizing to be designed (online) to ensure that the CLF controller can
accurately track the trajectory while meeting robustness requirements and in-
put constraints. This was the focus on my work in [336], which modified the
constraints of a low-frequency model predictive controller (MPC) producing
desired trajectories to ensure the resulting trajectory could be tracked by a
(CLF-QP) controller. Other recent work has also begun to explore this sort
of multi-rate control paradigm, where high-level and mid-level tasks effec-
tively reduce the requirements that need to be satisfied by low-level CLF and
CBF-based controllers [337]–[339]. A particular interesting observation in this
direction occurred in my work in [22]. By fusing CBF constraints into both
a low-level controller and a mid-level model predictive controller producing
trajectories, it was possible to achieve consistently safer behavior than merely
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using CBFs only at the low-level, using CBFs only at the mid-level, and us-
ing hard state constraints at the mid-level and CBFs at the low-level. This
suggests that truly robust safety is not a problem that can, nor should, be
achieved at one level in the autonomy stack. Instead, feasibility at all levels
of the autonomy stack is best achieved by allocating some portion of safety
requirements to each level in a principled manner. I believe that this will
be a critical direction of future research over the next 20 years as efforts con-
tinue to transfer theoretically rigorous control systems into complex real world
applications.

7.2 Future Work

At the conclusion of each chapter I have provided directions for future work re-
lated to achieving robustness to each respective challenge. One future direction
that stems from the results of this thesis is the construction of a safety-critical
control framework that is simultaneously robust to each of the presented chal-
lenges. In reality, real-world systems will face model error, disturbances, mea-
surement error, and input sampling all at once. As each chapter of this thesis
has shown, neglecting any one of these challenges can lead to significant viola-
tions of safety requirements. I believe that capturing the results of this thesis
into a singular framework will require addressing two challenges:

• A theme of my approaches is taking the (CLF-QP) and (CBF-QP) con-
trollers and making them robust by producing controllers specified by
more complex convex optimization problems than QPs, and in particu-
lar QCQPs and SOCPs. This can be observed in the data-driven control
framework in Section 3.8, the measurement-robust control in 5.2, and
the sampled-data controllers in Sections 6.3 and 6.4. The question that
must be addressed is if it is possible to integrate multiple forms of ro-
bustness without compromising the convexity of the control synthesis
process. Throughout this thesis structural assumptions such as Lips-
chitz continuity or approximate models are used in a way that permits
convex synthesis. Answering this question will rely on finding the right
set of structural assumptions and approximations that ensure multiple
forms of robustness while maintaining convexity. It is my belief that
the most fruitful starting point for addressing this question will follow
along the lines of the robust optimization used in the data-driven control
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framework in Section 3.8 in conjunction with the discrete-time approxi-
mations used in Sections 6.3 and 6.4. In particular, if model error, distur-
bances, and measurement error can be cast as the model error sets used
in Section 3.8, it may be possible to consider satisfying CLF and CBF
requirements for all discrete-time approximations permitted by these er-
ror sets. It is likely this will yield more complex convex optimization
problems, such as semidefinite programs. As the capabilities of comput-
ing resources become increasingly powerful, the potential to deploy these
complex controllers on real-world systems may become possible.

• In Section 5.4 both disturbance robustness using ISSf and measurement
robustness using MR-CBFs are integrated into the same controller. The
purpose of that work was in addressing the fact that having both forms of
robustness led to extremely conservative behavior that was not desirable.
As more forms of robustness are brought into the same controller, it is
likely that conservativeness will continue to increase, rendering such a
controller pointless. Thus, how to tune these robust controllers to attain
performance and robustness is an important question. Preference-based
learning was shown to be a powerful tool for achieving this, but there
may be opportunities to achieve this through other data-driven tech-
niques. In particular, if data can be used to identify robustness that is
not necessary (because the model error, disturbances, or measurement
error being robustified against isn’t actually present), then the charac-
terization of error being used in this controller can be improved until a
desirable level of performance is achieved.

In conclusion, I believe there many important questions remaining in building
safety-critical controllers. I think that the most important focus of this work
is continuing to integrate with advancing computational capabilities, and uti-
lizing real experimental data to balance conservativeness and performance.
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A p p e n d i x A

UNMATCHED TUNABLE INPUT-TO-STATE SAFETY
PROOF

In this appendix I will provide a proof of the unmatched disturbance case of
Theorem 29 for completeness. Recall Theorem 29 as it appears in Section 4.3.

Theorem 29. Let C ⊂ E be the 0-superlevel set of a function h : E → R
that is continuously differentiable on E. If h is a TISSf-BF for the closed-loop
system with unmatched disturbances (2.70) (matched disturbances (2.74)) on
C, then the closed-loop system with unmatched disturbances (2.70) (matched
disturbances (2.74)) is TISSf with respect to the set C with a function γT :

R× R≥0 → R≥0 defined as:

γT(r, d) ≜ −α−1

(
−ϵ(r)d

2

4

)
. (A.1)

Proof. Observe that by assumption α−1 and ϵ are continuously differentiable
on R, such that the function γT(·, b) is continuously differentiable for any
b ∈ R≥0. Similarly, as ϵ(r) > 0 for all r ∈ R and α−1 ∈ Ke

∞, the function
γT(a, ·) ∈ Ke

∞ for any a ∈ R as required. Our next goal is to verify that for all
d ∈ R≥0, the set Cd,T defined in (4.12) is forward invariant up to d. Consider
a value of d ∈ R≥0 and consider a disturbance signal d : R≥0 → Rn that is
piecewise continuous on R≥0 and satisfies ∥d∥∞ ≤ d. As h is a TISSf-BF for
the closed-loop system with unmatched disturbances (2.74), we have that:

ḣ(x, t) ≜ Lfh(x) + Lgh(x)k(x) +
∂h

∂x
(x)d(t), (A.2)

≥ −α(h(x)) + 1

ϵ(h(x))

∥∥∥∥∂h∂x(x)
∥∥∥∥2 + ∂h

∂x
(x)d(t). (A.3)

Noting that:

∂h

∂x
(x)d(t) ≥ −

∥∥∥∥∂h∂x(x)
∥∥∥∥ ∥d∥∞ ≥ −∥∥∥∥∂h∂x(x)

∥∥∥∥ d, (A.4)

for all x ∈ E and t ∈ R≥0, and ϵ(h(x)) > 0 for all x ∈ E, adding and
subtracting ϵ(h(x))d2

4
, and completing the squares yields:

ḣ(x, t) ≥ −α(h(x))− ϵ(h(x))d2

4
. (A.5)
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Next, observe that:

∂γT

∂r
(r, d) =

d2

4

∂α−1

∂r

(
−ϵ(r)d

2

4

)
∂ϵ

∂r
(r) ≥ 0, (A.6)

for all r ∈ R. Taking the time derivative of the function hT defined in (4.11)
yields:

ḣT(x, d, t) =

(
1 +

∂γT

∂r
(h(x), d)

)
ḣ(x, t). (A.7)

noting that d is a fixed constant in this proof. By (A.6), we have that:

1 +
∂γT

∂r
(h(x), d) > 0, (A.8)

for all x ∈ E. Substituting (A.5) into (A.7), we obtain:

ḣT(x, d, t) ≥
(
1 +

∂γT

∂r
(h(x), d)

)(
−α(h(x))− ϵ(h(x))d2

4

)
. (A.9)

Next, consider a state x ∈ ∂Cd,T, such that hT(x, d) = 0, for which (4.11) and
(A.1) imply:

−α(h(x))− ϵ(h(x))d2

4
= 0, (A.10)

yielding:
ḣT(x, d, t) ≥ 0, (A.11)

for all t ∈ R≥0. In the case that d = 0, such that hT(x, 0) = h(x), we have that
hT(x, 0) = 0 implies ∂h

∂x
(x) ̸= 0n. Considering d > 0, because γ(a, ·) ∈ Ke

∞ for
all a ∈ R, when hT(x, d) = 0, we have −α(h(x)) > 0. Thus, the inequality in
(4.13) requires that ∂h

∂x
(x) ̸= 0n for x ∈ ∂Cd,T. Finally, we have:

∂hT

∂x
(x, d) =

(
1 +

∂γT

∂r
(h(x), d)

)
︸ ︷︷ ︸

>0

∂h

∂x
(x) ̸= 0n, (A.12)

using (A.8). Therefore, Nagumo’s theorem [104], [123] implies the set Cd,T is
forward invariant as hT(x, d) = 0 implies ḣT(x, d, t) ≥ 0 for all t ∈ R≥0, and
∂hT
∂x

(x, d) ̸= 0n.


	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	List of Tables
	Nomenclature
	Introduction
	General Mathematical Outlook

	Background
	Nonlinear Dynamics
	Stability & Safety
	Control Lyapunov Functions
	Feedback Linearization
	Control Barrier Functions
	Nonlinear Dynamics with Disturbances
	Input-to-State Stability & Input-to-State Safety
	Input-to-State Stable Control Lyapunov Functions
	Input-to-State Safe Control Barrier Functions

	Learning & Adaptive Control for Nonlinear Systems
	Related Work
	Model Errors
	Learning with Control Lyapunov Functions
	Projection-to-State Stability
	Learning with Control Barrier Functions
	Projection-to-State Safety
	Projected Disturbance Learning with Control Barrier Functions
	Data-Driven Nonlinear Control
	Adaptive Safety via Control Barrier Functions
	Conclusion and Future Work

	Disturbance-Robust Safety-Critical Control
	Related Work
	Limitations of Input-to-State Safety
	Tunable Input-to-State Safety
	Tunable Input-to-State Safety on Automated Truck
	Safety with Stochastic Disturbances
	Conclusion

	Measurement-Robust Safety-Critical Control
	Related Work
	Measurement-Robust Control Barrier Functions
	Integration with Backup-Set Methods
	Preference-Based Learning for Robust Controller Tuning
	Conclusion

	Sampled-Data & Event-Triggered Control
	Related Work
	Sampling Paradigms
	Sampled-Data Stabilization
	Sampled-Data Safety
	Event-Triggered Safety
	Conclusion

	Conclusion
	Infeasible Optimization Problems
	Future Work

	Bibliography
	Unmatched Tunable Input-to-State Safety Proof

