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ABSTRACT

The rapid pace of development of new responsive and structural materials
along with significant advances in synthesis techniques, which may incorporate
multiple materials in complex architectures, provides an opportunity to design
functional devices and structures of unprecedented performance. These include
implantable medical devices, soft-robotic actuators, wearable haptic devices,
mechanical protection, and energy storage or conversion devices. However, the
full realization of the potential of these emerging techniques requires a robust,
reliable, and systematic design approach. This thesis explores this through
optimal design methods. By investigating pressing engineering problems which
exploit these advances in materials and manufacturing, we develop optimal
design methods to realize next-generation structures.

We begin by reviewing classical optimal design methods, the mathematical
difficulties they raise, and the practical approaches of overcoming these diffi-
culties. We introduce the canonical problem of compliance minimization of a
linear elastic structure. After illustrating the intricacies of this seemingly sim-
ple problem, we detail contemporary methods used to address the underlying
mathematical issues.

We then turn to extending these classical methods for emerging materials and
technologies. We must incorporate optimal design with rich physical models,
develop computational approaches for efficient numerics, and study mathemat-
ical regularization to obtain well-posed optimization problems. Additionally,
care must be taken when selecting an application-tailored objective function
which captures the desired behavior. Finally, we must also take into account
manufacturing constraints in scenarios where the fabrication pathway affects
the structural layout. We address these issues by exploring model optimal
design problems. While these serve to ground the fundamental study, they are
also relevant, pressing engineering problems.

The first application we consider is the design of responsive structures. Re-
cent developments in material synthesis and 3D printing of anisotropic materi-
als, such as liquid crystal elastomers (LCE), have facilitated the realization of
structures with arbitrary morphology and tailored material orientation. These
methods may also produce integrated structures of passive and active material.
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This creates a trade-off between stiffness and actuation flexibility when design-
ing such structures. Thus, we turn to optimal design. This is complicated by
anisotropic behavior and finite deformations, manufacturing constraints, and
choice of objective function. Like many optimal design problems, the naive
formulations are ill-posed giving rise to mesh dependence, lack of convergence,
and other numerical deficiencies. So, starting with a simple setting using lin-
ear kinematics and working all the way to finite deformation, we develop a
systematic mathematical theory that motivates, and then rigorously proves,
an alternate well-posed formulation. We examine suitable objective functions,
before studying a series of examples in both small and finite deformation.
However, the manufacturing process constrains the design as extrusion-based
3D printing aligns nematic directors along the print path. We extended the
formulation with these considerations to produce print-aware designs while
also recovering the fabrication pathway. We demonstrate the formulation by
designing and producing physical realizations of these actuators.

Next, we explore optimal design of impact resistant structures. The complex
physics and numerous failure modes of structural impact creates challenges
when designing for impact resistance. Here, we apply gradient-based topology
optimization to the design of such structures. We start by constructing a
variational model of an elastic-plastic material enriched with gradient phase-
field damage, and present a novel method to accurately and efficiently compute
its transient dynamic time evolution. Sensitivities over this trajectory are
computed through the adjoint method, and we develop a numerical method to
solve the resulting adjoint dynamical system. We demonstrate this formulation
by studying the optimal design of 2D solid-void structures undergoing blast
loading. Then, we explore the trade-offs between strength and toughness in
the design of a spall-resistant structure composed of two materials of differing
properties undergoing dynamic impact.

We conclude by summarizing the presented work and discuss the contribution
towards the overarching goal of optimal design for emerging materials tech-
nologies. From our study, key issues have arose which must be addressed to
further progress the field. We examine these and lay a pathway for future stud-
ies which will allow optimal design to tackle complicated, pressing engineering
problems.
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C h a p t e r 1

INTRODUCTION

The rapid pace of development of new responsive and structural materials
along with significant advances of synthesis techniques, which may incorporate
multiple materials in complex architectures, provide an opportunity to design
functional devices and structures of unprecedented performance. These include
implantable medical devices, soft-robotic actuators, wearable haptic devices,
and mechanical protection. However, the full realization of the potential of
these emerging techniques requires a robust, reliable, and systematic design
approach. This is especially true when complex materials, dynamic loading,
multi-physics coupling, or manufacturing constraints become involved. Ad-
ditionally, with advances in computational capabilities, numerical methods to
iteratively design these complex structures are now feasible. This thesis focuses
on developing rigorous optimal design methods to translate these advances in
materials and synthesis towards practical applications.

In practice, engineers typically design structures by starting with industry
standards and intuition, followed by sophisticated dynamical simulations to
iterate on a design before it undergoes physical testing. While this allows en-
gineers to design adequate structures for simple scenarios, it may fall short in
situations which are governed by richer physics, complex material behavior,
or include manufacturing constraints. Optimal design methods replace the
empirical and incremental approach in favor of a systematic computational
procedure which eliminates the guesswork and human factor in structural de-
sign. Rather than manually designing a structure, optimal design looks to
solve the inverse problem of finding the layout of material that optimizes a
performance metric. This is typically solved using well-developed, contempo-
rary optimization techniques. While these methods were once prohibitively
computationally expensive, the ever-increasing amount of available computing
power may allow us to employ these methods to solve complicated problems
producing application tailored structures.

The ideas of optimal design date back to over a century ago, however much
of the development has occurred in the past few decades [16]. The subject
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was originally contemplated in the late 1800s by James Clark Maxwell and
Anthony Michell [17, 18]. These works went largely unnoticed by the com-
munity until the mid 20th century, when researchers began optimizing thick-
nesses of truss members [24, 9, 34]. This grew over the decades to consid-
ering material distributions in continuous solids [26, 6, 27]. However, these
early methods often relied on ad-hoc methods to regularize the formulation
to achieve a computationally tractable problem [28, 22]. While these methods
have been shown to have physical significance [30], there has been work to
mathematically formalize these techniques to rigorously prove well-posedness
of the design problem [12, 13, 14, 7]. The general ideas of optimal design have
since been extended to a wide array of applications including acoustic band-
gaps [29], piezoelectric transducers [31], micro-electro-mechanical systems [20],
magneto-responsive structures [40], energy conversion devices [8], and fluid
structure interaction [39]. However, these are mainly linear or steady-state
problems.

The field of optimal design as been extensively formulated for optimizing sim-
ple objective functions using basic mechanics models. While somewhat aca-
demic in nature, this has yielded a rich literature which we may base this
work on [5, 7, 1]. Before we consider optimal design for complex problems,
we first discuss these previously developed methods. However, even for simple
problems, care must be taken in the formulation to achieve a tractable op-
timization problem. We review these difficulties, discuss the new challenges
which arise from more complex problems, and discuss how we plan to ad-
dress them. Finally, we give a brief outline of the thesis and how each of the
projects discussed fit into the larger framework of optimal design for emerging
technologies.

1.1 Optimal Design Methods

We detail the three main approaches to optimal design. These are sizing,
shape, and topology optimization. We discuss the details of these methods,
explore each of their strengths and limitations, and provide relevant applica-
tions.
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Figure 1.1: The original (left) and converged (right) geometries for sizing op-
timization (a), shape optimization (b), and topology optimization (c). Taken
from Topology Optimization: Theory, Methods and Applications, 2nd edition,
Springer by Bendsøe and Sigmund, 2003.

1.1.1 Sizing Optimization

The earliest and least computationally intensive method is sizing optimization.
Here, the optimization problem is posed as finding the dimensions of known
structural elements. This is commonly used to determine the optimal thickness
distribution of truss members [34]. While this simple method is restrictive by
assuming the placement of these elements, it has been applied to complex
problems such as tuning acoustic band gaps of lattice structures [11], and
designing crash-resistant truss structures undergoing plasticity [19].

1.1.2 Shape Optimization

Shape optimization looks to find the optimal design of a structure through
controlling the shape of voids or sub-regions of the domain. Here, the struc-
ture is assumed to have a set number of voids or sub-regions, with the shape of
them considered as the optimized quantity. This is commonly formulated with
sharp-interface methods, where the interface of the sub-regions are considered
as level-sets of a scalar design function. Then, optimizing over this function
evolves the shape to achieve the desired performance [2, 1, 4]. Another method
of shape optimization is the method of mappings [35]. Here, the initial design
with pre-placed holes or sub-regions is considered as the reference configura-
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tion, where a smooth mapping deforms the structure to the design. Then,
optimizing over this mapping function optimizes the structure. This requires
careful consideration of the mapping, often being the solution to an auxiliary,
elliptic PDE to ensure regularity [10].

The main benefit of shape optimization is that the sharp interface between ma-
terial species is preserved. Additionally, perturbing the shape of these regions
often results in optimization algorithms converging quicker than topology op-
timization methods. However, restricting the design to a known number of
sub-regions is quite prohibitive. Nonetheless, researchers have applied these
to study problems ranging from multi-material structural optimization [38] to
multi-physics problems [25].

1.1.3 Topology Optimization

Topology optimization looks to find the optimal placement of material in a
given domain. At the cost of computational expense, topology optimization
is the most powerful of the three methods as it does not involve any prede-
fined configurations [5]. Typical density-based methods consider the density
of material at each point in the domain as the unknown before the design is
posed as an optimization problem over these densities. Then, gradient-based
optimization methods are used to iteratively update the design, where sen-
sitivities are usually computed through the adjoint method [23]. However,
the basic formulation often results in an ill-posed optimization problem [12].
Therefore, researchers use a variety of techniques to recover a well-posed opti-
mization problem. Ad-hoc methods such as sensitivity filtering, where gradi-
ents are locally averaged prior to design updates, produce viable structures [5].
However, more systematic approaches such as density filtering [7], phase-field
methods [33, 21], slope penalization [22], and PDE filtering techniques [15, 37]
regularize the underlying mathematical problem. This also serves practical
purposes by introducing a minimum length scale of features through the filter
radii and transition lengths. For all these methods, care must be taken in
determining the behavior of intermediate densities between material species,
while ensuring the final design is composed mostly of either species. This is
usually achieved by implicitly penalizing intermediate densities [5], and we
discuss these ideas further in the proceeding chapter.

While the filtering and phase-field methods incur an additional computational
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expense, topology optimization remains the most general optimal design for-
mulation. By not assuming the number or placement of structural members,
topology optimization is the most expressive, being able to search a wider
range of the design space. However, this is at the cost of introducing a large
optimization problem, with the number of design variables usually well into
the thousands. This is not seen as a major issue, as modern gradient-based
update schemes are able to handle these problems [32], with the majority of
the computational time spent on repeatedly solving the governing PDEs.

Gradient-based optimization methods are the most conventionally used tech-
niques for structural optimization. Whether for sizing, shape, or topology
optimization, gradient-based methods outclass Bayesian or genetic algorithm
approaches due to the high cost of evaluation. A solution to the governing PDE
is required to obtain the objective value for a given design. Thus, Bayesian
methods, where the number of required evaluations scale exponentially with
the parameter space of the design, are computationally infeasible. This is
especially true for topology optimization, where the number of design vari-
ables may exceed several thousand. Conversely, gradient-based optimization
schemes tend to scale only with the complexity of the underlying problem,
rather than the dimension of the parameterization. Furthermore, the adjoint
method allows one to obtain these gradients at a cost on the same order as the
evaluation. It is typical for gradient-based optimal design schemes to converge
on the order of a hundred evaluations. Thus, gradient-based optimization
remains the most popular choice in these settings.

As the focus of the presented work will be restricted to topology optimization
methods, in Chapter 2 we review the canonical problem of minimum com-
pliance optimization of a linear elastic structure. We start by discussing a
classical formulation for topology optimization. As the naiive construction of-
ten results in an ill-posed optimization problem, we detail the density filtering
method to regularize and recover well-posedness. Then, we discuss the adjoint
method for obtaining the sensitivities used for gradient-based optimization.
Finally, we touch on the computational details and how this method is imple-
mented in practice.
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1.2 Optimal Design for More Complex Problems

While the minimum compliance example detailed in Chapter 2 introduces the
topology optimization formulation, regularization techniques, and standard
computational procedures for optimal design, there are a number of difficul-
ties that must be addressed when tackling design problems related to the
emerging materials and manufacturing technologies. These include modeling
richer physics, computational approaches for efficient numerics, and regular-
ization to obtain well-posed optimization problems. Additionally, care must be
taken when selecting an application-tailored objective function which captures
the desired behavior. Finally, we must also take into account manufacturing
constraints in scenarios where the fabrication pathway affects the structural
layout.

Applications which are of interest to engineers are often governed by complex
physical interactions. Materials for soft robotics and actuation can involve
large deformation of stimuli responsive materials and microstructural evolu-
tion. While there has been some work exploring optimal design with finite
deformation theory [21], formulating this for a responsive structure remains
a challenge. Another application area is 3D printed metals for mechanical
protection. Here, transient dynamics, plasticity, and material failure become
relevant. Thus, optimal design formulations must account for this through the
modeling and design methodology.

As optimal design is an iterative process, requiring repeated mechanics sim-
ulations, computational efficiency is of great importance. However, modeling
complex physical interactions incurs increased computational cost. Thus, de-
veloping numerical schemes which may efficiently perform the required com-
putations is a key challenge. In the compliance minimization example, the
forward and adjoint problems are both simple linear problems. However, this
is not true in general, especially when nonlinear mechanics, dynamics, and
material failure are involved. As such, we must address computational ac-
curacy, efficiency, and scalability for both the forward and associated adjoint
problems.

Once the complex mechanics and its computational algorithms are addressed,
we must direct our focus towards optimization. Here, we should give careful
consideration for proper objective functions which correlate to desired perfor-
mance. This is a non-trivial endeavor. Complex models introduce new field
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variables through dynamic trajectories which need to be used to quantify a
performance metric. Furthermore, we must ensure the resulting optimization
problem is well-posed. As we will discuss in the minimum compliance example,
naiive approaches can result in mesh dependency and fine structure formation
in the optimal solutions. For density-based topology optimization, filtering
schemes work well. However, with additional design variables such as material
orientation, we must develop suitable regularization methods.

As we intend to develop methods which may translate to applications, we must
consider manufacturability. Filtering techniques introduce a minimum length
scale for features, which can often be set to that of the manufacturing reso-
lution. This is appropriate for isotropic materials, as conventional methods
of translating the design to a fabrication pathway will yield the desired struc-
ture. However, this is not the case for certain classes of anisotropic materials.
Here, the 3D print path may determine the material orientation [3, 36]. Ad-
ditionally, ensuring the structure may be printing in a time-efficient manner
is desired. We must account for these aspects in the design formulation to
achieve manufacturable designs.

1.3 Outline of Thesis

We address these issues of modeling, computation, optimization, and manu-
facturability by exploring model optimal design problems. While these serve
to ground the fundamental study, they are also relevant, pressing engineering
problems. By examining the optimal designs, we may gain mechanics insight
into the physical interactions that give rise to improved performance. Thus,
our exploration is aimed at developing foundational methods while demon-
strating them for relevant applications.

We start in Chapter 2 by introducing the example of minimum compliance
for an isotropic linear elastic structure. As the naiive formulation results in
an ill-posed optimization problem, we discuss regularization through density
filtering. Then, we introduce the adjoint method for obtaining sensitivities
for design updates. Finally, we detail the general computational procedure
and finite element discretizations used to solve the problem in practice. This
provides a foundation which we may extend to emerging materials and man-
ufacturing technologies.

We move on to Chapter 3 by investigating optimal design of responsive struc-
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tures. Here, we explore integrated structures composed of passive and active
materials for use in actuation. We consider linear kinematics, and explore
different objective functions for this problem. We adopt the filtering and pe-
nalization methods we detailed for the minimum compliance problem, and
rigorously prove regularization in this setting. We study examples in 2D and
3D by designing lifting and torsional actuators. While this work considering
small deformation theory and fixed actuation strains, it develops key insights
related to objective functions and mathematical regularization for responsive
materials.

In Chapter 4 we extend these ideas to consider large deformations, anisotropic
responsive materials with spatially varying orientations, and manufacturing
constraints. We consider the model problem of designing responsive actu-
ators made of liquid crystal elastomers. These materials are composed of
rod-like nematic molecules embedded in an elastomer matrix. Upon heating,
these materials undergo a solid-to-solid phase transformation where the ne-
matic molecules transition from an aligned to disordered state. This pulls
the elastomer matrix, resulting large deformation. We develop optimal design
methods which account for this large deformation and the microstructural evo-
lution. As the orientation of the nematic molecules, or director field, can be
tailored through manufacturing processes, we optimize the material orienta-
tion. However, 3D printing methods for these materials aligns the directors
along the print path. This introduces an additional constraint, which extend
the formulation to account for. Through this, we develop mathematically
rigorous theory to ensure regularization of the optimization problem. Addi-
tional, we present physical realization of these designs which are produced by
a collaborating research lab.

The last example we consider in Chapter 5 is that of impact resistant structures
for mechanical protection. Here, the complex physics of transient dynamics,
plasticity, and material failure must be accounted for. We formulated a vari-
ational model with such considerations and develop a novel computational
approach for simulating the forward and adjoint problem. We accomplish
this through an operator-splitting method to decouple the non-linearity and
non-locality for the damage updates. This results in an accurate and efficient
computational procedure for the required simulations. We formulate optimal
design through density-based topology optimization, and construct interpo-
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lation function to both penalize intermediate densities and preserve natural
boundary conditions. We apply these methods to investigate the design of
solid-void structures for blast loading. Then, we explore the trade-offs between
strength and toughness to design spall-resistant impact resistant structures.

Through these examples, we address the challenges posed in Section 1.2. We
develop general optimal design methods, backed by rigorous mathematical the-
ory, to tackle complex design problems related to actuation and mechanical
protection. This is detailed in Chapter 6. Additionally, we discuss the diffi-
culties that have arose through our investigations. We conclude by laying the
groundwork for future investigations that may allow optimal design methods
to exploit emerging materials and manufacturing technologies while solving
pressing engineering problems.
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C h a p t e r 2

BACKGROUND: MINIMUM COMPLIANCE

As the focus of the work presented in the proceeding chapters is on topol-
ogy optimization, we start by reviewing the canonical problem of minimum
compliance optimization of a linear elastic structure. We introduce a naive for-
mulation for the topology optimization problem, and quickly realize the math-
ematical issues with this approach. We discuss the different methods used to
relax and regularize this ill-posed optimization problem. In particular, we de-
tail the density filtering method to recover well-posedness. Then, we discuss
the adjoint method for obtaining the design sensitivities used for gradient-
based optimization. Finally, we provide computational details through a finite
element discretization, and how the method is implemented in practice.

2.0.1 Formulation

We consider a bounded region Ω ⊂ Rn, n = 2, 3, occupied by two isotropic
linear elastic materials with elastic moduli C1 and C2, occupying regions D1 ⊂
Ω, D2 ⊂ Ω, D1 ∪ D2 = Ω, respectively. Here, we assume a large stiffness
contrast ‖C2‖ >> ‖C1‖. We consider fixed displacements u = u0 on some
region of the boundary ∂uΩ ⊂ ∂Ω, with boundary tractions f applied to
∂fΩ ⊂ Ω. Thus, with u : Ω 7→ Rn as a displacement field, we assume an
energy function for the structure as

E(u, χ) :=
∫

Ω

[
(1− χ)1

2C1ε(u) · ε(u) + (χ)1
2C2ε(u) · ε(u)

]
dΩ

−
∫
∂fΩ

f · u dS,
(2.1)

where ε(u) := 1/2(∇u+∇uT ) is the symmetric gradient and χ is the charac-
teristic function of the region D2,

χ(x) :=

0 if x ∈ D1

1 if x ∈ D2

. (2.2)

Then, the equilibrium displacement field is determined through energy mini-
mization

ueq = arg min
u∈U
E(u, χ), (2.3)
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where
U := {u ∈ H1(Ω), u = u0 on ∂uΩ} (2.4)

is the space of admissible displacements. The compliance is defined as

C(χ) :=
∫
∂fΩ

f · ueq dS. (2.5)

Then, the optimization problem is to minimize the compliance subject to a
volume constraint on the stiffer material,

inf
χ∈D
C(χ) =

∫
∂fΩ

f · ueq dS

Subject to : ueq satisfying (2.3),
(2.6)

where
D :=

{
χ : Ω 7→ {0, 1}, 1

|Ω|

∫
Ω
χ dΩ ≤ α

}
(2.7)

is the space of admissible designs, with α being the restricted volume fraction.

2.0.2 Relaxation and Regularization

The optimization problem (2.7) is ill-posed. As fine mixtures of material
species has enhanced stiffness, infinitely fine structure may emerge in the
optimization [7]. Mathematically, this design problem is not lower semi-
continuous, that is a minimizing sequence may not converge on the minim-
imzer. This issue manifests in computation deficiencies such as mesh depen-
dencies and checkerboard structures [3]. To proceed, there are a few options.
The mathematically rigorous approach to solving (2.7) is to relax the prob-
lem by instead considering the G-closure, that being the space of all effective
elastic moduli tensors achievable through fine mixtures of C1 and C2. Then,
by optimizing point-wise over these effective moduli, we recover a well-posed
optimization problem [1, 4]. This is referred to as homogenization methods,
and while effective in simple 2D cases where the G-closure is determined, such
as electrical conductor design [2], it does not translate well to 3D or nonlinear
problems. Additionally, even if we can find micro-structures associated with
each effective moduli, this poses manufacturing issues when producing this
fine-scale structure.

Instead, we take the approach of density relaxation combined with a convolu-
tion filter and penalization [5]. We relax the problem to consider a continuous,
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scalar density variable ρ : Ω 7→ [0, 1], where regions of ρ = 0 and ρ = 1 cor-
respond to regions of material with moduli C1 and C2. Then, intermediate
densities ρ ∈ (0, 1) represent mixtures of the two materials. Finally, we fil-
ter the density variable through a convolution filter with filter function F of
characteristic length Rf ,

F ∈ W 1,2(Rn),

Supp(F ) ⊂ BRf ,

F ≥ 0 a.e. in BRf ,∫
BRf

F dx = 1,

(2.8)

where BRf denotes the open ball of radius Rf of Rn, and we define the convo-
lution over the bounded region Ω as

(F ∗ ρ)(x) :=
∫

Ω
F (x− y)ρ(y) dy. (2.9)

Then, the energy function depends on the filtered density as

E(u, ρ) :=
∫

Ω

[
(1− (F ∗ ρ)p) 1

2C1ε(u) · ε(u)

+ (F ∗ ρ)p1
2C2ε(u) · ε(u)

]
dΩ−

∫
∂fΩ

f · u dS,
(2.10)

where p ∈ R, p > 1 is the penalization power. This implicitly penalizes regions
of intermediate densities, as there is little stiffness gain in the intermediate re-
gions compared to the fully stiff regions. Under the constraint that the total
volume of stiffer material is constrained, this results in unfavorable intermedi-
ate densities. This technique is known classically as the solid isotropic material
with penalization (SIMP) method. Then, the minimum compliance problem
becomes

inf
ρ∈Dρ

C(ρ) =
∫
∂fΩ

f · ueq dS

Subject to : ueq = arg min
u∈U

E(u, ρ),
(2.11)

where
Dρ :=

{
ρ : Ω 7→ [0, 1], 1

|Ω|

∫
Ω
ρ dΩ ≤ α

}
(2.12)

is the space of admissible designs. With this relaxation and regulation through
the filter, the optimization problem 2.11 is proven to be well posed [5]. That
is, there exists a design ρ̄ ∈ Dρ which attains the minimum to the optimization
problem. Thus, the previously mentioned issue of fine structure formation is
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alleviated, with the filter length Rf prescribing the length scale of features.
Intuitively, the filter smooths out the design and eliminates the effect of fine
structure on the energy functional. Thus, the minimizing design will not have
this infinitely fine structure. Mathematically, the filter allows weakly converg-
ing designs to result in a strongly converging operator in the governing PDE,
resulting in lower semi-continuity of the objective function.

2.0.3 Adjoint Method for Sensitivities

To solve (2.11), gradient based optimization is typically employed. Starting
with an initial design, the elasticity PDE is solved, followed by the adjoint
method to obtain the sensitivities, that is, the derivative of the objective func-
tion with respect to the design variables. These sensitivities are used to update
the design with a gradient based optimization method, and the process is iter-
ated until convergence. However, the design affects equilibrium displacement
fields which are used to compute the objective. This variation of the equi-
librium displacement with the design variable is difficult to obtain through
standard means. Thus, we introduce the adjoint method to circumvent this
calculation [8]. This results in an adjoint problem whose solution is used to
recover the sensitivities. We detail this procedure for the minimum compliance
example.

The minimization criteria for the equilibrium displacement ueq in (2.11) can
be equivalently written in weak form,

0 =
∫

Ω

[
(1− (F ∗ ρ)p)C1ε(u) · ε(δu)

+ (F ∗ ρ)pC2ε(u) · ε(δu)
]
dΩ−

∫
∂fΩ

f · δu dS ∀δu ∈ U0,
(2.13)

where
U0 := {u ∈ H1(Ω), u = 0 on ∂uΩ} (2.14)

is the space of admissible displacement variations. Then, assuming ueq satisfies
equilibrium, the compliance is equivalent to the Lagrangian

L(ρ) :=
∫
∂fΩ

f · ueq dS +
∫

Ω

[
(1− (F ∗ ρ)p)C1ε(ueq) · ε(λ)

+ (F ∗ ρ)pC2ε(ueq) · ε(λ)
]
dΩ

−
∫
∂fΩ

f · λ dS,

(2.15)
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for any adjoint field λ ∈ U0. Here, it is clear that L is equivalent to C as
we have only added zero through the satisfied weak form of equilibrium. We
denote the variation of functional L(ρ) in the direction of δρ as

L,ρδρ := d
dv [L(ρ+ vδρ)]

∣∣∣∣∣
v=0

, (2.16)

and the variations of the function ueq with ρ as

δρu
eq := d

dv
[
ueq|ρ+vδρ

]∣∣∣∣∣
v=0

. (2.17)

Then, taking variations of (2.15) gives

L,ρδρ :=
∫
∂fΩ

f · δρueq dS

+
∫

Ω

[
(1− (F ∗ δρ)p)C1ε(ueq) · ε(λ)

+ (F ∗ δρ)pC2ε(ueq) · ε(λ)

+ (1− (F ∗ ρ)p)C1ε(δρueq) · ε(λ)

+ (F ∗ ρ)pC2ε(δρueq) · ε(λ)
]
dΩ.

(2.18)

The term δρu
eq is the most difficult to compute. We circumvent this by instead

choosing a particular λ to eliminate terms which contain variations of the
equilibrium displacement. Then, the sensitivity reduces to

L,ρδρ = C,ρδρ =
∫

Ω

[
(1− (F ∗ δρ)p)C1ε(ueq) · ε(λ)

+ (F ∗ δρ)pC2ε(ueq) · ε(λ)
]
dΩ

(2.19)

if the adjoint field λ ∈ U0 satisfies

0 =
∫

Ω

[
(1− (F ∗ ρ)p)C1ε(δρu) · ε(λ)

+ (F ∗ ρ)pC2ε(δρueq) · ε(λ)
]
dΩ

+
∫
∂fΩ

f · δρueq dS ∀δρueq ∈ U0.

(2.20)

It should be noted that for this particular objective function and linear elastic
model, in the case of homogeneous boundary conditions it can be easily shown
that λ = −ueq. However, in general this is not the case, requiring one to solve
the adjoint problem. The standard procedure is to first compute the solution
to the elasticity problem (2.13), then solve the adjoint problem (2.20), before
computing the sensitivities (2.19).
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2.0.4 Computational Implementation

To solve the optimization problem (2.11) using the adjoint method detailed
above, we turn to computation. As linear elasticity lends itself well to a
standard Galerkin finite element formulation, this is the approach we take.
However, it should be noted that the choice to discretization is quite arbitrary,
and the presented discussion mainly serves to illustrate the computational
procedure.

We consider a standard Galerkin finite element formulation with Lagrange
polynomial shape functions [6]. We consider the displacement field discretized
as

uh(x) =
N∑
i=1

uiN
i(x), (2.21)

where {N i} ⊂ H1(Ω) are the vector valued shape functions and {ui} are their
scalar amplitudes. We consider the associated approximation space

Uh :=
{
u ∈ H1(Ω), uh =

N∑
i=1

uiN
i, uh = u0 on ∂uΩh

}
, (2.22)

where Ωh is the tessellated domain. As is standard, we choose a discontinous
Galerkin discretization for the density field [3],

ρh =
Ne∑
β=1

ρβΦβ, (2.23)

where {Φβ} ⊂ L2(Ω) are the non conforming shape functions for the density,
and {ρβ} is the amplitude. Usually, it is assumed that the shape functions take
a value of identity on regions of compact support for each of the Ne elements
of the finite element mesh. Then, the design space is reduced to

Dhρ :=
{
ρh : Ω 7→ [0, 1], ρh =

Ne∑
β=1

ρβΦβ,
1
|Ωh|

∫
Ωh
ρh dΩ ≤ α

}
. (2.24)

Minimizing the elastic energy with respect to displacement fields in the ap-
proximation space results in the equilibrium relation

0 =
∫

Ωh

[ (
1− (F ∗ ρh)p

)
C1ε(uh) · ε(∇N i)

+ (F ∗ ρh)pC2ε(uh) · ε(∇N i)
]
dΩ

−
∫
∂fΩh

f ·N i dS i = 1, . . . , N,

(2.25)
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along with the associated Dirichlet boundary conditions. This is a set of N
linear equations with N unknowns being the amplitudes of the unknown dis-
placement field. The adjoint variable is discretized in the same finite element
space as the displacements,

λh(x) =
N∑
i=1

λiN
i(x). (2.26)

Then, the discrete counterpart to the adjoint problem in (2.20) is

0 =
∫

Ωh

[ (
1− (F ∗ ρh)p

)
C1ε(∇N i) · ε(λh)

+ (F ∗ ρh)pC2ε(∇N i) · ε(λh)
]
dΩ

−
∫
∂fΩh

f ·N i dS i = 1, . . . , N,

(2.27)

with the associated boundary conditions. Again, this is a set of equations for
theN adjoint amplitudes. In all of the above, these integrals are conventionally
approximated with Gaussian quadrature, with the compact support of the
shape functions providing efficient computation.

Then, the sensitivities may be computed as

dC
dρβ

= C,ρΦβ =
∫

Ωh

[ (
1− (F ∗ Φβ)p

)
C1ε(uh) · ε(λh)

+ (F ∗ Φβ)pC2ε(uh) · ε(λh)
]
dΩ,

(2.28)

where u is the equilibrium displacement field computed from (2.25). In prac-
tice, the continuous form of the filter is usually replaced with a discrete ana-
logue [5]. Here, the filtered density is taken constant on each element β as

(F ∗ ρh)β =

∑
i∈V (β)

ρi

∫
Ωhi
F (x− cβ) dx

∑
i∈V (β)

∫
Ωhi
F (x− cβ) dx

, (2.29)

where Ωh
i is element i, cβ is the center of element β, and V (β) is the set

of elements whose centers are within the filter radius Rf to element β. The
denominator in (2.29) normalizes the filter density, allowing the filtered density
to attain values of unity near the boundary.

With the sensitivity calculated, the density values are then updated using
a gradient based optimization scheme. For simple problems, such as linear
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elastic compliance minimization, optimality criteria methods may be used [10].
However, for more complicated problems, stochastic gradient descent or more
sophisticated algorithms such as method of moving asymptotes [9] is usually
employed. The designs are continuously updated until convergence, usually
requiring O(100) iterations [3].

2.1 Conclusion

Through the minimum compliance example, we introduced the underlying
mathematical issues that arise in optimal design. The lack of lower-semicontinuity
of the optimization problem allows the formation of infinitely fine structure
along minimizing sequences. We discussed the methods to regularize the de-
sign problem to recover well-posedness. In particular, we detailed the density
filtering method, where the effect of fine oscillations in microstructure is av-
eraged through a convolution filter. We introduced the adjoint method to
obtain design sensitivities, allowing us to apply well-developed gradient-based
optimization methods. Finally, we discussed how this method is implemented
in practice, providing a standard finite element discretization.

This seemingly simple example illustrated the key fundamental aspects of op-
timal design related to mathematical regularizing and sensitivity calculation.
Additionally, it introduced methods which we will invoke when moving to-
wards more complex problems. Density filtering and the SIMP interpolation
scheme provide a foundation which we will extend to responsive actuators and
impact-resistant structures. The ideas of mathematical regularization will be-
come crucial when understanding the proper formulation when optimizing over
both structure and material orientation.
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Abstract

With recent advances in both responsive materials and fabrication techniques
it is now possible to construct integrated functional structures, composed of
both structural and active materials. We investigate the robust design of such
structures through topology optimization. By applying a typical interpolation
scheme and filtering technique, we prove existence of an optimal design to a
class of objective functions which depend on the compliances of the stimulated
and unstimulated states. In particular, we consider the actuation work and
the blocking load as objectives, both of which may be written in terms of
compliances. We study numerical results for the design of a 2D rectangular
lifting actuator for both of these objectives, and discuss some intuition behind
the features of the converged designs. We formulate the optimal design of
these integrated responsive structures with the introduction of voids or holes
in the domain, and show that our existence result holds in this setting. We
again consider the design of the 2D lifting actuator now with voids. Finally,
we investigate the optimal design of an integrated 3D torsional actuator for
maximum blocking torque.

3.1 Introduction

Recent advances in active or responsive materials, approaches to synthesis
and fabrication, and significant applications ranging from soft robotics, wear-
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able and prosthetic devices, microfluidics, etc. have led to the development of
various integrated functional materials and devices (E.g. [32, 30, 45]). These
devices integrate responsive or active materials such as shape-memory alloys,
piezoelectrics, dielectric elastomers and liquid crystal elastomers with struc-
tural polymers and metals. Further, there have been rapid strides in advancing
3D printing and other synthesis technologies for responsive or active materi-
als [9, 23, 42, 27, 19], and in combining them with structural components to
build integrated functional materials and structures [34]. As the complexity
and fidelity of the function, and consequently the complexity of the devices
increase, it is important to develop a systematic design methodology.

Topology optimization has proven to be an extremely powerful tool in struc-
tural applications [12]. The naive formulation of the classical minimum compli-
ance problem is ill-posed (e.g. [18, 1]). However, it can be relaxed for example
using the homogenization method [4, 1] or regularized using perimeter penal-
ization [8] or phase-field approach [15]. In particular, the “simple isotropic
material with penalization (SIMP)” interpolation in conjunction with a filter
is known to be well-posed and has proven to be extremely effective in prac-
tice [12]. While topology optimization led to many real-life applications, the
designs were typically complex, and manufacturing optimal designs remained
a challenge. The advent of 3D printing and similar net-shape fabrication
techniques have greatly addressed these challenges and given new impetus
to optimal design. In particular, conceptual links have been established be-
tween the multi-scale nature of topology optimization and the idea of tiling,
and regularization to a method of incorporating manufacturing constraints.
These have established a pathway to 3D print (almost) optimal structures
(e.g., [28, 36, 21]).

The optimal design of structural actuators has been studied in a number of
works. The design of thermomechanical actuators was originally considered by
Rodrigues and Fernandes [33] for 2D linear elastic solids undergoing thermal
expansion. These ideas were later extended to the design of multiphysics
actuators using topology optimization methods by Sigmund [39, 40] for the
application of micro-electrical mechanical systems (MEMS).

Since then, various researchers have considered optimal design of diverse struc-
tural actuators including soft piezoelectric microgrippers [35], magnetic actu-
ators [29], and electro-fluid-thermal compliant actuators [44]. In these studies,
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the actuator is characterized by three primary objectives. The first is the actu-
ation work which is equivalent to the flexibility or displacement on actuation.
The second is the blocking load, or the applied load that can nullify the actu-
ation. The third is the “workpiece” objective, which balances flexibility and
stiffness of the structure using a spring attached to a point of interest.

In this work, we provide a mathematical framework to explore the use of topol-
ogy optimization for the design of integrated responsive structures. Specifi-
cally, we consider an actuating structure composed of both an active material
which can deform or change modulus in response to a stimulus, and a pas-
sive material. We formulate the design of these structures as an optimization
problem for a general class of objective functions which are dependent on
the compliances in the passive (unstimulated) and active (stimulated) states.
Modified with a generalized SIMP interpolation and density filter, we prove
existence of an optimal design. It can be shown that all three of the objectives
described in the previous discussion can be written as functions of compli-
ance, and thus satisfy the requirements for existence. In particular, we study
the actuation work and blocking load objectives. The first is the difference
in compliances while we show that the second is equivalent to the ratio of
compliances. We provide numerical examples for both of these objectives, and
discuss intuition behind the converged designs.

We begin in Section 3.2 by reviewing the ill-posed minimum compliance prob-
lem, and recall how a SIMP interpolation and filtering technique may lead to
a well-posed problem. In Section 3.3 we introduce the energy functional for
the responsive structure, and formulate an optimal design problem in which
the objective is dependent on the compliances of both the stimulated and un-
stimulated structure. By regularizing with a SIMP interpolation and density
filter, we then prove existence of solutions to this optimal design problem.
We continue in Section 3.4 where we discuss objective functions used to char-
acterize actuating systems, namely a generalized “workpiece” objective, the
actuation work, and the blocking load. We show that all of these can be writ-
ten in terms of compliances and thus satisfy the requirements for our existence
result. Additionally, we show that the latter two appear as limiting cases of
the generalized “workpiece” objective. In Section 3.5 we consider numerical
examples of actuating structures. We begin in Section 3.5.1 with the actua-
tion work objective and consider the 2D design of bimorph lifting actuators for
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varying elastic moduli ratios of passive and responsive material, volume frac-
tions of active material, and domain aspect ratios. Next, in Section 3.5.2, we
consider the design of identical actuator setups now optimized for the block-
ing load. In Section 3.6 we consider the introduction of holes or voids in the
domain, and show that the existence result continues to hold for the blocking
load objective. We consider the 2D design of a lifting actuator with voids in
Section 3.6.1. Then, in Section 3.6.2, we demonstrate the formulation in a 3D
setting by considering the optimal design of a torsional actuator. Finally, in
Section 3.7, we discuss challenges and directions for further studies.

3.2 Background: Compliance Optimization

We briefly recall the classical minimum compliance problem [12]. Consider a
bounded domain Ω ⊂ Rn, n = 2, 3, subject to a known traction f on a part
∂fΩ ⊂ ∂Ω of its boundary, and prescribed displacement u0 on ∂uΩ ⊂ ∂Ω.
The domain is partitioned into two regions, D1 and D2, occupied respectively
by two known linear elastic materials of moduli C1 and C2. We seek the
arrangement of the regions D1 and D2 that minimize the compliance,

inf
(D1,D2)∈CA

C(D1, D2) :=
∫
∂fΩ

f · u dS, (3.1)

where CA is a set of admissible designs subject to inclusions and volume frac-
tion constraints, and u the equilibrium displacement solution of a linearized
elasticity problem. It is well known that problem (3.1) is ill-posed: its so-
lution consists of fine mixtures of regions D1 and D2 instead of a “conven-
tional” design. In the homogenization approach [4, 1], the design variables
and the state equation are reformulated in terms of the so-called G-closure
or the set of all Hooke’s laws achievable by mixtures of materials D1 and
D2. In this sense, the design of optimal structures reduces to that of optimal
metamaterials. Metamaterials with optimal properties have been constructed
explicitly [20, 25, 18, 26, 1] for well-ordered non-degenerate materials. How-
ever, optimal metamaterials are not known explicitly in general. Further,
homogenization-based approaches do not always lead to manufacturable de-
signs even with additive manufacturing, since optimality generally requires
multiple length-scales [20, 25, 2, 16], which can make manufacturing optimal
structures challenging.

The issue of manufacturability can be tackled by enforcing geometric con-
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straints [3, 31, 43, 5, 6, 7], or by seeking near-optimal designs with reduced
complexity. The SIMP approach [11] relaxes the problem to “grey-scale” de-
signs through a material density φ taking values in [0, 1]. The effective Hooke’s
law is then interpolated to C = φpC1 + (1− φp)C2, p > 1. In some cases, this
is equivalent to the homogenization approach within a family of sub-optimal
micro-geometries [11]. In any case, this approach does not lead to a well-posed
problem. Practically, a SIMP-based implementation alone suffers from mesh
dependencies (the smallest feature detected depends on the mesh size) and
checkerboards (design patterns at the scale of the finite element mesh that are
poorly approximated by low order finite elements). Thus, they are commonly
used in conjunction with a filtering technique [37], where either the sensitiv-
ities or densities are averaged during optimization, which has been shown to
lead to a well-posed problem [14]. Roughly speaking, introducing a non-local
term in the response function (the filter) provides compactness of minimizing
sequences of designs which combined with the lower semi-continuity of the ob-
jective function, is sufficient to prove existence of “classical” solutions. We will
borrow these ideas for the optimal design of responsive structures to formulate
a well-posed problem.

3.3 Optimizing Responsive Structures

3.3.1 Responsive Material

A responsive material is one that changes its shape and/or stiffness in response
to a stimulus. These could include activated, ferroelectric, and magnetostric-
tive materials. The corresponding elastic energy density may be described
as

W (ε, S) := 1
2(ε(u)− ε∗(S)) · C(S)(ε(u)− ε∗(S)), (3.2)

where ε(u) = (∇u + ∇uT )/2 is the linearized strain, S ∈ [0, 1] the stimulus
(assumed here to be a scalar), ε∗(S) is the stimulus-dependent actuation or
spontaneous strain, and C(S) is the possibly stimulus-dependent elastic mod-
ulus. We assume that ε∗(0) = 0.

We briefly describe actuation strains of different physical systems. For the
case of a liquid crystal elastomer which transforms from an isotropic to ne-
matic phase, the 3D spontaneous strain takes a volume-preserving, trans-



28

versely isotropic form

ε∗ = 3
2γ
(
a⊗ a− 1

3I3×3

)
, (3.3)

where a is a unit vector corresponding to the preferred nematic orientation
and γ > 0 is the amplitude [17]. This corresponds to an extension along
axis a by γ and a contraction along directions perpendicular to a by γ/2.
The next transformation strain we consider is that of a hydrogel. Due to the
uniform dilatation upon transformation, the spontaneous strain takes the form
ε∗ = α

3 In×n, where α is the volumetric expansion. Of course, α may be either
positive or negative to model swelling or shrinkage upon stimulation. Finally,
we consider the transformation strain for a shape-memory alloy. Transforming
from a low symmetry martensite phase to a high symmetry austenite phase
upon temperature increase, the induced spontaneous strains depend heavily
on the material composition. This can give rise to a transformation which may
extend and shear [13].

3.3.2 Optimal Design

Consider an integrated functional structure occupying a bounded region Ω ⊂
Rn of volume V , consisting of a structural material and a responsive material.
Let χs, χr : Ω 7→ {0, 1} be the characteristic functions of the regions the
structural and responsive materials occupy. Φ := (χs, χr) then describes the
design. The structural material may either be a stiff framework or a soft
binder. In this section, we assume that there are no voids, i.e., χs + χr = 1.

Subject to a traction f ∈ L2(∂fΩ) on ∂fΩ and displacement u0 on ∂uΩ, the
energy function describing this structure for a given displacement field u under
stimulus S ∈ [0, 1] is

E(Φ, u, S) :=
∫

Ω

1
2 [χsε(u) · Csε(u) + χr(ε(u)− ε∗) · Cr(S)(ε(u)− ε∗)] dx

−
∫
∂fΩ

f · u ds, (3.4)

where Cs and Cr denote respectively the Hooke’s laws of the structural and
responsive materials. We assume that these Hooke’s laws are non-degenerate
in the sense that there exist 4 positive constants 0 < ms,mr,Ms,Mr such that

mr,s ≤ Cr,sη · η ≤Mr,s (3.5)
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for any symmetric n-dimensional second order tensor η with unit norm. The
compliance of a design is

C(Φ, S) :=
∫
∂fΩ

f · u ds, (3.6)

where u is the displacement given by the equilibrium condition

u = argmin
u∈U

E(Φ, u, S), (3.7)

where
U := {u ∈ W 1,2(Ω) : u = u0 on ∂uΩ}. (3.8)

Equivalently, u satisfies

G(Φ, S;u) := −div [χs(x)Csε(u) + χr(x)Cr(ε(u)− ε∗(S))] = 0, (3.9)

subject to the boundary conditions. The task is to find the design Φ that
minimizes an objective function, which we assume to be dependent on the
compliances of two states with different stimuli. Thus, we consider a class of
optimization problems

inf
Φ∈D

O(Φ) := Ō(C(Φ, S1), C(Φ, S2)), (3.10)

where Ō : R × R 7→ R is a given continuous function, amongst the set of
allowable designs:

D = {Φ : χr + χs = 1 on Ω,
∫

Ω
χr dV ≤ V̄r}. (3.11)

Here, we have specified the allowable designs such that the materials occupy
the whole domain and consider a restriction on the volume of responsive ma-
terial, where V̄r ≤ V is the maximum allowed. The above problem is often
ill-posed, suffering from the same issues as that of the standard compliance
optimization problem in (3.1). Thus, we introduce a SIMP interpolation and
a filter as discussed in the previous section.

3.3.3 Reformulation Using Interpolation and Regularization

Consider the relaxed energy functional for the responsive structure with a
SIMP interpolation of penalty factor p > 1,

Ef (φ, u, S) :=
∫

Ω

1
2 [(1− (F ∗ φ)p)Csε(u) · ε(u)

+(F ∗ φ)pCr(S)(ε(u)− ε∗(S)) · (ε(u)− ε∗(S))] dx

−
∫
∂fΩ

f · u ds, (3.12)
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where F is the filter function of characteristic length Rf > 0 satisfying

F ∈ W 1,2(Rn),

Supp(F ) ⊂ BRf ,

F ≥ 0 a.e. in BRf ,∫
BRf

F dx = 1,

(3.13)

where BRf denotes the open ball of radius Rf of Rn, and we define the convo-
lution over the bounded region Ω as

(F ∗ φ)(x) :=
∫

Ω
F (x− y)φ(y) dy. (3.14)

The field φ : Ω 7→ [0, 1] describes the topology, with regions of φ = 0 and
φ = 1 corresponding to passive and active material, respectively. We assume
the transformation strain ε∗(S) ∈ L2(Ω). Notice that since the integral in
(3.14) is over Ω, the filtered density near the boundary will not be able to
take values near 1. In practice, we renormalize the convolution following the
lines of [14] to avoid such boundary effects, as discussed in Section 3.5. The
compliance of a design is, again,

C(φ, S) :=
∫
∂fΩ

f · u ds, (3.15)

where u is the displacement associated with the design Φ and stimulus S
minimizing Ef (φ, u, S). It should be noted that under the assumptions on Cs

and Cr in (3.5), u is the unique solution of the Euler-Lagrange equations.

Qf (φ, u, v, S) = 0 ∀ v ∈ U0, (3.16)

with

Qf (φ, u, v, S) :=
∫

Ω
[(1− (F ∗ φ)p)Csε(u) · ε(v)

+(F ∗ φ)pCr(S)(ε(u)− ε∗(S)) · (ε(v))] dx

−
∫
∂fΩ

f · v ds, (3.17)

and
U0 := {u ∈ W 1,2(Ω) : u = 0 on ∂uΩ}. (3.18)

We again consider the class of optimization problems

inf
φ∈Df

O(φ) := Ō(C(φ, S1), C(φ, S2)), (3.19)
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where we optimize over the set

Df :=
{
φ : φ(x) ∈ [0, 1] a.e. on Ω,

∫
Ω
φ dx ≤ V̄r

}
. (3.20)

Remark 1. Ellipticity: From the definition of D, the properties of the Hooke’s
laws (3.5), and the properties of the filter, there exists a constant m > 0, only
depending on Ω and S such that for any φ and u ∈ U the following holds:
∫

Ω

1
2 [(1− (F ∗ φ)p)Csε(u) · ε(u)

+(F ∗ φ)pCr(S)ε(u) · ε(u)] dx ≥ m‖u‖2
W 1,2(Ω). (3.21)

3.3.4 Existence of Solutions

We establish the existence of solutions to (3.10) through the following theorem
in this section

Theorem 3.3.1. Recall the definition of the compliances from (3.15), and set

O(φ) := Ō(C(φ, S1), C(φ, S2)), (3.22)

where Ō is bounded below and continuous. There exists a φ̄ ∈ Df such that,

O(φ̄) = inf
φ∈Df

O(φ). (3.23)

The proof of the theorem extends the strategy of Bourdin [14] that established
existence in compliance optimization. We first provide a brief synopsis of the
proof. The key idea is that the filter prevents any fine scale oscillations in the
optimization problem. Precisely, the regularization provided by the filter pro-
vides weak continuity of the compliances in both the actuated and un-actuated
states. Thus, we can consider any minimizing sequence to the optimization
problem, show that it is uniformly bounded, extract a subsequence and pass to
the limit in both the compliance in both the actuated and un-actuated states.
Further, since we assume the objective to be continuous in these compliances,
we can pass to the limit in the compliances and existence follows.

Remark 2. While density filtering is used here for regularization, this analysis
can be straightforwardly extended to other methods so long as we recover strong
convergence of the elliptic operator. This includes approaches such as PDE
filtering [24] and perimeter penalization [22].
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We now turn to the proof. We need the following lemma, which establishes
the weak continuity of the solutions to the elliptic problem and whose proof
is provided in Appendix 3.A.

Lemma 3.3.2. Let {uk} ⊂ U be the sequence of equilibrium solutions to (3.16)
corresponding to sequence {φk} ⊂ Df for some fixed S. If

(F ∗ φk)p → (F ∗ φ̄)p uniformly on Ω when k → +∞ (3.24)

then
uk ⇀ ū in W 1,2(Ω) when k → +∞, (3.25)

up to a subsequence, where ū ∈ U is the equilibrium configuration corresponding
to φ̄ ∈ Df .

Proof of Theorem 3.3.1. Let {φk} ⊂ Df be a minimizing sequence for (3.23).
Df implies that φk is uniformly bounded in L2(Ω) and thus there exists φ̄ ∈ Df
such that

φk ⇀ φ̄ in L2(Ω) when k → +∞, (3.26)

up to a subsequence. Because F ∈ L2(Rn),

(F ∗φ̄)(x)− lim
k→∞

(F ∗φk)(x) = lim
k→∞

∫
Ω
F (x−y)

(
φ̄(y)− φk(y)

)
dy = 0. (3.27)

Since this holds for all x ∈ Ω,

F ∗ φk → F ∗ φ̄ uniformly on Ω when k → +∞. (3.28)

Because (F ∗ φ)(x) is bounded for all φ ∈ Df ,

(F ∗ φk)p → (F ∗ φ̄)p uniformly on Ω when k → +∞. (3.29)

Let u1k, u2k ∈ U be the equilibrium solutions to (3.16) corresponding to φk for
S = S1 and S = S2, respectively:

u1k = arg min
u∈U

Ef (φk, u, S1), u2k = arg min
u∈U

Ef (φk, u, S2). (3.30)

Then, from Lemma 3.3.2,

u1k ⇀ ū1 in W 1,2(Ω) when k → +∞,

u2k ⇀ ū2 in W 1,2(Ω) when k → +∞,
(3.31)
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where ū1, ū2 ∈ U are the equilibrium configurations corresponding to φ̄ for
S = S1 and S = S2:

ū1 = arg min
u∈U

Ef (φ̄, u, S1), ū2 = arg min
u∈U

Ef (φ̄, u, S2). (3.32)

Because (ū1−u1k) ∈ U0, Qf (φ̄, ū1, (ū1−u1k), S) = 0. Then, using the definition
of the compliance (3.15) and the weak convergence of u1k to ū1,

lim
k→∞

C(φk, S1) = C(φ̄, S1). (3.33)

Likewise,
lim
k→∞

C(φk, S2) = C(φ̄, S2). (3.34)

It follows

lim
k→∞

Ō(C(φk, S1), C(φk, S2)) = Ō(C(φ̄, S1), C(φ̄, S2)). (3.35)

Therefore,
lim
k→∞

O(φk) = O(φ̄). (3.36)

Since φk is a minimizing sequence,

O(φ̄) = inf
φ∈D
O(φ). (3.37)

3.3.5 Sensitivities Through the Adjoint Method

We solve the optimal design problem using a gradient-based approach. To
do so, we need to compute the directional derivative of the objective function
with respect to a design changes. To this end, we utilize an adjoint approach.
Consider u1 and u2 associated with S = S1 and S = S2 which satisfy (3.16)
for some design φ ∈ Df . To find the directional derivative of some func-
tional F(φ, u1, u2), we introduce the augmented objective L(φ, u1, u2, λ1, λ2) =
F(φ, u1, u2) for any λ1, λ2 ∈ U0,

L(φ, u1, u2, λ1, λ2) := F(φ, u1, u2) +Qf (φ, u1, λ1, S1)

+Qf (φ, u2, λ2, S2). (3.38)

One can easily show that the directional derivative of F in the direction φ̃ is

F ′(φ)φ̃ = F,φ(φ, u1, u2)φ̃+Qf,φ(φ, u1, λ
∗
1, S1)φ̃+Qf,φ(φ, u2, λ

∗
2, S2)φ̃, (3.39)

where λ∗1, λ∗2 ∈ U0 are solutions of the uncoupled adjoint equationsF,u1(Φ, u1, u2)ũ+Qf,u1(φ, u1, λ
∗
1, S1)ũ = 0 ∀ ũ ∈ U0,

F,u2(Φ, u1, u2)ũ+Qf,u2(φ, u2, λ
∗
2, S2)ũ = 0 ∀ ũ ∈ U0.

(3.40)
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3.4 Objective Functions

3.4.1 General Workpiece Objective

We discuss a variety of objective functions used to characterize actuating sys-
tems. We define the general workpiece objective to be

Ō(C(φ, 0), C(φ, 1)) = κC(φ, 1) + 1
κC(φ, 0) + 1 , (3.41)

where κ ∈ (0,+∞) is a parameter. In the case where f is a point load in
direction n̂ at point x0, this objective is equivalent to maximizing the force
carried by a linear elastic spring in direction n̂ of stiffness κ attached at x0

(see Appendix 3.B). Further, this objective is dependent on the compliances of
the stimulated and unstimulated states and therefore satisfies the conditions
of Theorem 3.3.1. This workpiece objective has interesting limits when the
parameter tends to either zero or infinity.

First, consider the limit of small κ. Using the Taylor expansion of (3.41) about
κ = 0,

κC(φ, 1) + 1
κC(φ, 0) + 1 ≈ 1 + κ (C(φ, 1)− C(φ, 0)) . (3.42)

Thus, for small κ, the workpiece objective is equivalent to the difference in
compliance. We show in Section 3.4.2 that this is equivalent to the work of
actuation. Additionally, we will show that this is a measure of flexibility as
it is equivalent to maximizing the displacement of actuation in a particular
direction.

Next, consider the limit of large κ:

lim
κ→+∞

κC(φ, 1) + 1
κC(φ, 0) + 1 = C(φ, 1)

C(φ, 0) . (3.43)

For large κ, the workpiece objective reduces to a ratio of compliances, which we
will show is equivalent to the blocking load objective in Section 3.4.3. Because
it is a ratio of stimulated to unstimulated compliances, this objective considers
not only the actuation flexibility, but also the unstimulated stiffness.

3.4.2 Work of Actuation

The work of actuation is the work done against the applied load f as we go
from the unactuated to the actuated states:

O(Φ) := −
∫
∂fΩ

f · (uS=1 − uS=0) ds = C(Φ, 0)− C(Φ, 1). (3.44)
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The identity follows from (3.6) and shows that the work of actuation is equal
to the difference in compliance. To get further insight into this objective,
consider the case where the modulus of the responsive material is independent
of the stimulus. Using (3.9), the objective (3.44) can now be written as

O(Φ) = −
∫
∂fΩ

f · v ds, (3.45)

where v satisfies
−div [χs(x)Csε(v) + χr(x)Crε(v)] = −div [χr(x)Crε

∗(1)] in Ω,

v = 0 on ∂uΩ,

[χs(x)Csε(v) + χr(x)Crε(v)]n = [χr(x)Crε
∗(1)]n on ∂fΩ.

(3.46)

The solution v to (3.46) is the displacement induced in the structure due
to only the spontaneous strain field χr(x)Crε

∗(1), and may be expressed as
v = ΓΦχr(x)Crε

∗(1) for the appropriate operator ΓΦ. Thus, our optimal design
problem is

inf
Φ∈D

∫
∂fΩ

f · [ΓΦχr(x)Crε
∗(1)] ds, (3.47)

or finding the arrangement of the responsive material that maximizes the re-
sulting spontaneous displacement in the direction of f . Thus, the actuation
work objective is a measure of flexibility upon stimulation.

3.4.3 Blocking Load

The blocking load is the magnitude of the applied load that nullifies the actu-
ation. Consider the external traction as scaled by a nonzero constant α ∈ R,
f = αf̄ , where f̄ is some (unit) loading profile. The blocking load is the value
of α for which the displacement of the actuated structure in the direction of
the loading profile vanishes

O(Φ) := α where Cα(Φ, 1) =
∫
∂fΩ

f̄ · uf=αf̄,S=1ds = 0. (3.48)

We now show that this is equivalent to the ratio of compliances. From (3.44)
and (3.45),

Cα(Φ, 1) = Cα(Φ, 0) +
∫
∂fΩ

f · v ds =
∫
∂fΩ

f · (uS=0,αf̄ + v) ds (3.49)

where v solves (3.46) and is independent of f , and uS=0,αf̄ minimizes the
elastic energy (3.4) with S = 0 and f = αf̄ . Assuming homogeneous Dirichlet
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conditions u0 = 0 on ∂uΩ, it is easy to see using the linearity of the Euler-
Lagrange equations that uS=0,αf̄ = αuS=0,f̄ . Therefore, the zero compliance
condition Cα(Φ, 1) = 0 can then be written as

0 =
∫
∂fΩ

f · (α ūS=0,f̄ + v) ds = α
∫
∂fΩ

f̄ · (α ūS=0,f̄ + v) ds, (3.50)

or
0 =

∫
∂fΩ

f̄ · (α ūS=0,f̄ + v) ds. (3.51)

The loading amplitude is then

α = −
∫
∂fΩ f̄ · v ds∫

∂fΩ f̄ · ūS=0,f̄ ds
= −

∫
∂fΩ f̄ · ūS=1,f̄ ds∫
∂fΩ f̄ · ūS=0,f̄ ds

+ 1 = −C1(Φ, 1)
C1(Φ, 0) + 1. (3.52)

It follows that the blocking load objective is equivalent to minimizing the ratio
of the stimulated to unstimulated compliance under fixed load

inf
Φ∈D

O(Φ) = C(Φ, 1)
C(Φ, 0) . (3.53)

We conclude with the comment comparing the two objectives, the work of
actuation and the blocking load. Recalling the first identity in (3.49), we see
that

C1(Φ, 1)
C1(Φ, 0) = 1 + 1

C1(Φ, 0)

∫
∂fΩ

f · v ds (3.54)

Thus, the blocking load objective is the ratio of the work of actuation objective
to the compliance of the unstimulated structure. Thus, the blocking load
objective leads to a structure that balances the work of actuation and the
stiffness of the structure. Finally, these objectives become equivalent when the
moduli of the structural and responsive materials are equal, i.e., when Cs = Cr.
This is because the compliance of the unstimulated state is independent of the
design, i.e., C(Φ, 0) = C is independent of Φ.

3.5 Examples of Optimal Responsive Structures

Here, we explore optimal designs for 2D rectangular lifting actuators. We
present results for both the actuation work and blocking load objective, where
each are computed under identical computational frameworks.
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Figure 3.1: 2D Cantilever of length L and height H. The left edge at X1 = 0
is fixed rigidly to the wall, with an applied point load f in the bottom right
corner.

Consider a 2D rectangular domain Ω = (0, L)× (0, H) as shown in Figure 3.1.
We take the elastic modulus of both the responsive and structural materials
to be isotropic and independent of actuation. We discretize with standard
p = 1 Lagrange polynomial shape functions on a quadrilateral mesh through
the C++ deal.II finite element library [10]. The density variable φ is taken
to be constant on each element. As described in the previous section, we
use a SIMP interpolation and density filter for regularization. We employ a
discrete renormalizing filter as described in [14]. This ensures that the density
variable is able to take values of φ = 1 near the boundary. Denoting φk as
the constant density value of element k, and V (k) the set of elements located
within distance Rf from element k, the filtered density value on element k is

(F ∗ φ)k =

∑
i∈V (k)

(
φi

∫
i
F (x− ck) dx

)
∑
i∈V (k)

∫
i
F (x− ck) dx

, (3.55)

where ck is the center of element k. Sensitivities are calculated using the ad-
joint method, and the density is updated using the method of moving asymp-
totes (MMA) subject to the linear constraint on total responsive material [41].
Following convergence of these pixelated designs, a MATLAB® code traces
smooth contours on the boundaries of the passive and active material do-
mains. We initialize the design to uniform φ = V̄r/V , and begin iterations
thereafter.

3.5.1 Optimizing the Work of Actuation

We present optimal designs for the lifting actuator optimized for actuation
work. Figure 3.2 shows the converged designs for a spontaneous strain of
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(a) L/H = 1 (b) L/H = 3

(c) L/H = 6

Figure 3.2: Converged bimorph designs for optimal work done through actu-
ation. The red and blue regions are the active and passive materials, respec-
tively. Varying aspect ratios, stiffness ratios, and responsive material volume
constrains are considered. A Poisson ratio of ν = 0.3 is used for both the pas-
sive and responsible materials. Normalized actuation work and volume ratios
of the converged designs are shown.

ε∗(1) = −0.1e1⊗e1 +0.1e2⊗e2 (elongation along the horizontal and extension
along the vertical) in the responsive material upon stimulation, where {ei} is
the standard basis aligned with the axis shown. We investigate these designs
for varying domain aspect ratios L/H, responsive material volume constraints
V̄r/V , and stiffness ratio Er/Es of the responsive to passive material. These
were computed on uniform finite element meshes of 60 × 60, 60 × 180, and
60× 360 for aspect ratios of L/H = 1, 3, and 6, respectively. The filter radius
was taken to be 1.5 times the element width.

Figure 3.2 (a), (b) and (c) shows the designs for aspect ratios of L/H = 1,
3, and 6 respectively. For each aspect ratio, the rows show the designs for
fixed ratio of elastic moduli Er/Es as the allowable ratio of active to passive
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material Vr/V is varied. Similarly, the columns show the designs for fixed
allowable ratio of active to passive material Vr/V but varying ratio of elastic
moduli Er/Es. Note that the ratio of responsive to passive material Vr/V is
imposed as an inequality constraint: the actual ratio used is indicated below
each design. Finally, the optimal value of the objective is also indicated below
each design.

To understand these results, we start with Figure 3.2 (b) where L/H = 3, and
specifically with the middle row where Er/Es = 1. The design is similar to
the bi-material strip with the active material on the top and passive material
on the bottom. When stimulated, the active material contracts horizontally,
causing the domain to bend upward and perform work against the load. When
the allowed volume fraction of responsive material is small (left), the design
uses the entire allowed volume fraction and places it close to the support since
it can provide the maximum moment against the load. As the allowed volume
fraction of responsive material increases, the design continues to use the entire
allowed volume fraction with roughly a uniform thickness. However, at large
allowed volume fraction (right), the design does not use the full allocation.
Instead, it saturates at about 51% because it needs a sufficient amount of
passive material to convert its horizontal contraction into work against the
vertical load. The value of the objective increases with the allowed volume
fraction of responsive material, but saturates when the volume fraction does.

The designs remain roughly similar as we change the ratio of the stiffness
of the responsive material to that of the structural material (Er/Es). The
design uses more responsive material when it is more compliant (top row of
Figure 3.2 (b) ), as it requires more of the responsive material to actuate
against the stiffer structural material. The opposite is true when the respon-
sive material is stiffer (bottom row). The value of the objective increases with
the relative stiffness of the responsive material when we fix the allowed vol-
ume fraction (columns); however, the saturated value when we allow sufficient
volume fraction is relatively independent of the stiffness ratio.

We now study the effect of aspect ratio L/H comparing the designs of Fig-
ure 3.2 (b) with those in Figure 3.2 (a, c). The designs and the trends against
allowable volume fraction of responsive material and stiffness ratio are simi-
lar (except for high stiffness of the responsive material and short aspect ratio
where the design has diagonal laminates to provide stiffness against shear).
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The optimal value increases with aspect ratio.

3.5.2 Optimizing the Blocking Load

We consider the same domain and loading as described in Figure 3.1, and
look to optimize the blocking load applied to the bottom right corner. The
numerical schemes are identical, with the only difference being the objective
function. Figure 3.3 shows the converged designs for a spontaneous strain of
ε∗(1) = −0.1e1 ⊗ e1 + 0.1e2 ⊗ e2 in the responsive material upon stimulation.
The designs and the trends are broadly similar to those obtained by optimizing
the work of actuation. When the stiffnesses of the two materials are the same
(Er/Es = 1) the designs coincide since the objectives are identical as noted
above. In the other situations, the blocking load designs tend to use more stiffer
material (more structural material when Er/Es = 0.1 and more responsive
material when Er/Es = 10). We also see more diagonal reinforcement.

3.6 Optimizing Responsive Structures with Voids

Motivated by a structural frame actuated by muscle-like actuators, we now
consider a responsive structure with voids or holes in the domain. We now
have χs + χr ≤ 1. We introduce a SIMP interpolation and filter as before
through an additional density variable. We consider ρ : Ω 7→ [ρmin, 1] for
some 1 >> ρmin > 0, which determines void or solid and consider the energy
functional

Ev(φ, ρ, u, S) :=
∫

Ω
(F ∗ ρ)p

(1
2

) [
(1− (F ∗ φ)p)Csε(u) · ε(u)

+ (F ∗ φ)pCr(S)(ε(u)− ε∗(S)) · (ε(u)− ε∗(S))
]
dx−

∫
∂fΩ

f · u ds. (3.56)

The compliance is, again,

C(φ, ρ, S) =
∫
∂fΩ

f · u ds, (3.57)

where u is an equilibrium solution,

u = arg min
u∈U

Ev(φ, ρ, u, S). (3.58)

Note that the voids have some residual stiffness since ρmin > 0 to maintain the
coercivity of (3.56). We choose this small enough so that it has only a limited
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(a) L/H = 1 (b) L/H = 3

(c) L/H = 6

Figure 3.3: Converged bimorph designs for optimal actuation blocking load.
The red and blue regions are the active and passive materials, respectively.
Varying aspect ratios, stiffness ratios, and responsive material volume con-
strains are considered. A Poisson ratio of ν = 0.3 is used for both the passive
and responsible materials. Normalized blocking load values and volume ratios
of the converged designs are shown.

effect on the resulting designs. We again consider a compliance dependent
objective

inf
φ∈Df , ρ∈Rf

O(φ, ρ) := Ō(C(φ, ρ, S1), C(φ, ρ, S2)), (3.59)

where we optimize over the space of feasible designs

Df =
{
φ : φ ∈ [0, 1] a.e. in Ω,

∫
Ω
ρφ dx ≤ V̄r

}
,

Rf =
{
ρ : ρ ∈ [ρmin, 1] a.e. in Ω,

∫
Ω
ρ dx ≤ V̄0

}
,

(3.60)

where V̄0 and V̄r are the allowed volumes total material and responsive mate-
rial, respectively.
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Theorem 3.6.1. Recall the definition of the compliances from (3.57), and set

O(φ, ρ) := Ō(C(φ, ρ, S1), C(φ, ρ, S2)), (3.61)

where Ō is bounded below and continuous. There exists a φ̄ ∈ Df and ρ̄ ∈ Rf

such that,
O(φ̄, ρ̄) = inf

φ∈Df , ρ∈Rf
O(φ, ρ). (3.62)

Proof. The weak continuity results from Lemma 3.3.2 can be extended for the
additional filtered density field ρ. The rest of the proof follows the same steps
as the proof for Theorem 3.3.1.

We now consider the two objectives that we introduced in the previous section.
We begin with the work of actuation in Section 3.5.1 which is the difference
between the compliances in the stimulated and unstimulated states. However,
the compliances are not bounded since we have voids1. Thus, this objective
does not satisfy the hypothesis of the theorem, and a brute-force implementa-
tion does not converge to meaningful designs.

So we focus on the blocking load or mechanical advantage introduced in Sec-
tion 3.5.2. Since this objective considers the ratio of the two compliances, it
remains bounded satisfying the hypothesis of the theorem above. Specifically,
we consider the optimization problem

inf
φ∈Df , ρ∈Rf

O(φ) = C(φ, ρ, 1)
C(φ, ρ, 0) . (3.63)

The numerical schemes are nearly identical to the case of no holes, except
for an additional density field. We consider this density variable constant on
each element. We adopt a sequential update scheme to handle the nonlinear
constraint posed in (3.60). After obtaining sensitivities through the adjoint
method, the discrete ρ’s are updated using MMA under the linear constraint of
allowable material. Then, using the newly updated ρ’s to write the constraint
as linear, we update the φ’s with another MMA. This results in only applying
linear constraints for updates.
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Figure 3.4: Converged designs for maximum blocking load of a 2D cantilever
structure with aspect ratio L/H = 2. The inequality constraints V0/V ≤ 0.5
and Vr/V ≤ 0.25 are enforced for all cases. The red and blue regions are
the active and passive materials, respectively. Designs are shown for varying
stiffness ratios for different spontaneous strains. A Poisson ratio of ν = 0.3
is used for both the passive and responsible materials. Normalized blocking
load values and converged responsive material volume ratios are shown. In all
cases, the designs converged to V0/V = 0.5.

3.6.1 Example in Two Dimensions: Lifting Actuator

We look to optimize the blocking load applied to the bottom right corner of
Figure 3.1. We consider a domain aspect ratio of L/H = 2, and a uniform finite
element mesh of 60× 120 quadrilateral elements. The filter radius for both of
the SIMP variables is taken as 1.5 times the element width, Rf = 0.0125L.
We constrain the responsive materials to be a quarter of less of the total area
(Vr/V ≤ 0.25), and the combination of the structural and responsive materials
to be less than half the total area (V0/V ≤ 0.5 ). The designs are all initialized
to uniform φ = V̄r/V̄0 and ρ = V̄0/V .

Figure 3.4 shows converged designs following contour smoothing in MATLAB®.
Designs are shown for various spontaneous strains of responsive material and
various ratios of the stiffnesses of the responsive and structural materials: the
columns have the same spontaneous strain while the rows have the same stiff-
ness ratio. Consider the first column where the spontaneous strain contracts

1Precisely, it is bounded by a constant that depends on ρmin and becomes unbounded
as ρmin → 0
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Figure 3.5: Cylindrical geometry for the torsional actuator of radius R and
length L. The face at X1 = 0 is fixed rigidly to the wall, and the far edge at
X1 = L has uniform tangential loading.

along the horizontal and expands along the vertical. As in the situation with-
out the voids (Figure 3.2), the active material is concentrated on the top.
Also as before, in the cases of large stiffness contrast we see thick domains of
the softer material, whether that be passive or responsive. However, in this
situation, the stiffer material resembles a frame as in the classical problem of
optimizing the compliance under a volume constraint.

The overall shape remains similar even when the spontaneous strain of re-
sponsive materials change. However, the placement of the responsive material
changes significantly. For example, in the second column where the sponta-
neous strain is an elongation along the horizontal direction and contraction
along the vertical, the responsive material is concentrated at the bottom. It
should be noted that in all of these cases the designs saturated the total al-
lowed material, converging to V0/V = 0.5. Additionally, nearly all of the
designs saturated the constraint on responsive material.

3.6.2 Example in Three Dimensions: Torsional Actuator

Thus far we have only considered the design of plane strain 2D structures.
Here, we study the 3D design of a torsional actuator for optimal blocking
load. We consider the cylindrical domain shown in Figure 3.5, with one face
completely fixed to a wall and uniform tangential loading applied to its far
edge. Optimizing the blocking load under this loading is analogous to max-
imizing the blocking torque of the actuator. We consider the formulation of
the previous section for two materials with voids, with identical numerical
schemes.
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We consider a cylindrical domain of aspect ratio L/R = 4, computed on a finite
element mesh of 245,760 hexahedral elements. This corresponds to a charac-
teristic element side length of about L/100. To account for the variability in
element sizes, the filter radius was taken rather large at 3 times this length or
Rf = 0.03L. We investigate varying total material volume constraints V0/V ,
and stiffness ratios Er/Es of the responsive to passive material. We consider
the volume of responsive material to be constrained to Vr/V0 ≤ 0.5. Thus, we
restrict the amount of responsive material to be less than half the amount of to-
tal material in the domain. We consider two cases of spontaneous strain upon
stimulation: a transversely isotropic elongation along X1 and contractions in
the X2 −X3 plane, as well as isotropic contraction.

Figure 3.6 shows converged designs of the torsional actuator for a transversely
isotropic transformation strain of ε∗(1) = 0.1e1⊗e1−0.05e2⊗e2−0.05e3⊗e3. As
one would expect, we see the responsive material is arranged helically towards
the outer edges of the domain. Similarly to the 2D case, for Er/Es = 0.1 we
see thicker clumps of responsive material, where for Er/Es = 10 it is spread
more thinly. For V0/V = 0.25, the material is mostly concentrated towards the
outer edges of the domain, with more material near the center for V0/V = 0.5.
This is understandable, as torsional stiffness is maximized by placing material
farther from the center.

Figure 3.7 shows converged designs for the torsional actuator for an isotropic
transformation strain of ε∗(1) = −0.033 I3×3. The general trends outlined
in the previous discussion remain valid. However, the direction of the heli-
cal responsive material now goes in the opposite direction, as the responsive
material now contracts rather than expands along the X1 direction.

For both cases of spontaneous strains, the designs completely saturate the
total allowed material converging to V0 = V̄0. Additionally, the volume of
responsive material is nearly saturated in all cases.

In the previous 2D cases, the gradients of the objective with the design vari-
ables for the initial uniform density designs were sizeable. This lead to fast
convergence through the MMA algorithm from initialization. However, for
the 3D torsional actuator, the gradients of the blocking load objective with
the design variable φ were nearly zero for a uniform density design, especially
in the case of Er/Es = 1. This resulted in dozens of early iterations with
small changes to design. To remedy this, we consider an initial nonuniform
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configuration

φ(X1, X2, X3) = (Vr/V ) + ε cos
(

2θ − 2πX1

L

)
, (3.64)

where θ = tan−1(X3/X2). ε = 0.05 was used for the previously described
designs. This initial design is a small perturbation towards a helical φ with
two “strands” running along the X1 axis. This is the reason that the converged
designs all have two main “strands” of responsive material. While the form of
the perturbation may seem presumptuous, the magnitude of the perturbation
was small. We also used the same perturbation for both cases of spontaneous
strain which resulted in converged designs with helices in different directions.
Additionally, initializing the designs with random perturbations resulted in
designs that, while different, had objective values within 3% of that of the
helical perturbation. Thus, we argue that this perturbation is an acceptable
means to quicker convergence. It should be noted that while we have proven
existence of solutions, there is no uniqueness. It is expected for problems of
this nature to have multiple local minima and for the initial guess to have a
sizeable effect on the converged design. However, so long as the final objective
value does not differ markedly, the designs are all adequate.

3.7 Conclusions

We have investigated the optimal design of responsive structures through
topology optimization. By considering a filtering scheme and SIMP inter-
polation, we have proven existence of optimal designs for a class of objective
functions dependent on the compliances of the stimulated and unstimulated
states. In particular, we have considered the actuation work and blocking
load objective. We showed that these can both be written as functions of
compliances. For each of these objectives, we presented numerical results for
the design of bimorph actuators on a 2D rectangular domain. The converged
designs contain complex structures that would otherwise be difficult to in-
truitively conjure, especially for the blocking load objective. Additionally,
we considered the introduction of voids for the blocking load optimal design.
This resulted in a rich array of structures highly dependent on the spontaneous
strain and the stiffness ratios of the passive and responsive materials. Finally,
we considered the design of a 3D torsional actuator for maximum blocking
torque. We investigated the design for varying stiffness and volume ratios for
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two cases of transformation strain. As expected, the converged designs had
responsive material distributed in helices at the outer edges of the domain,
with the direction dependent on the transformation strain.

We now discuss further directions that could extend this work. Here, we only
consider linear elastic materials. As many active materials may undergo finite
strains through both deformation and actuation, it may be worth investigating
the design of structures under richer material models. In particular, geometric
nonlinearities may lead to insightful designs. Another extension is coupling the
stimulation and response. Physically, this could be realized though a number
of mechanisms including magnetostriction, heat diffusion for shape memory
alloys, or photo-responsive materials. The challenges would not only include
the formulation and implementation for such a system, but also the choice
of a suitable objective function. Additionally, in our work we considered the
actuation strain to be prescribed and constant throughout the whole domain.
With the recent developments in directional 3D printing in materials such as
liquid crystal elastomers [23], an interesting extension might involve optimizing
over the responsive materials spatially varying direction as well.
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Figure 3.6: Converged designs for maximum blocking torque on the cylindrical
domain for the transversly isotropic transformation strain ε∗(1) = 0.1e1⊗ e1−
0.05e2 ⊗ e2 − 0.05e3 ⊗ e3. The red is the responsive material and the blue
passive. Designs are shown for varying moduli ratios and amount of total
allowed material. The ratio of responsive material to passive material was
constrained to Vr/V0 ≤ 0.5 for all cases. That is, the left column is constrained
to Vr/V ≤ 0.125 and the right to Vr/V ≤ 0.25. Normalized blocking torque
values and converged responsive material volume ratios are shown. In all cases,
the designs converged to V0/V = 0.5.
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Figure 3.7: Converged designs for maximum blocking torque on the cylindrical
domain for the volumetric transformation strain ε∗(1) = −0.033 I3×3. The red
is the responsive material and the blue passive. Designs are shown for varying
moduli ratios and amount of total allowed material. The ratio of responsive
material to passive material was constrained to Vr/V0 ≤ 0.5 for all cases. That
is, the left column is constrained to Vr/V ≤ 0.125 and the right to Vr/V ≤ 0.25.
Normalized blocking torque values and converged responsive material volume
ratios are shown. In all cases, the designs converged to V0/V = 0.5.
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APPENDIX TO CHAPTER 3

3.A Proof of Lemma 3.3.2

Here, we provide the proof of Lemma 3.3.2.

Proof. We will first show by compactness that there exists a u∞ ∈ U such that
uk ⇀ u∞ in W 1,2(Ω). Then, we will show that we must have u∞ = ū.

Since uk is the equillibrium solution corresponding to φk for some fixed S, it
satisfies

uk = argmin
u∈U

Ef (φk, u, S), (3.65)

and for any ũ ∈ U , we have

Ef (φk, uk, S) ≤ Ef (φk, ũ, S). (3.66)

Furthermore,

Ef (φk, ũ, S) ≤
∫

Ω

1
2 [Csε(ũ) · ε(ũ) + Cr(S)(ε(ũ)− ε∗(S)) · (ε(ũ)− ε∗(S))] dx

−
∫
∂fΩ

f · ũ ds = M (3.67)

where M is some constant, independent of k. So,

Ef (φk, uk, S) ≤M. (3.68)

Now, expanding the energy functional

Ef (φk, uk, S) =
∫

Ω

1
2
[
(1− (F ∗ φk)p)Csε(uk) · ε(uk)

+ (F ∗ φk)pCr(S)ε(uk) · ε(uk)

+ (F ∗ φk)pCr(S)ε∗(S) · ε∗(S)

− 2(F ∗ φk)pCr(S)ε∗(S) · ε(uk)
]
dx

−
∫
∂fΩ

f · uk ds,

(3.69)
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and using the ellipticity from Remark 1

m‖uk‖2W1,2(Ω) −
∣∣∣∣∫

Ω
(F ∗ φk)pCr(S)ε∗(S) · ε(uk) dx

∣∣∣∣− ∫
∂f Ω

f · uk ds ≤ Ef (φk, uk, S),

m‖uk‖2W1,2(Ω) −
∫

Ω
(F ∗ φk)p |Cr(S)ε∗(S) · ε(uk)| dx−

∫
∂f Ω

f · uk ds ≤ Ef (φk, uk, S),

m‖uk‖2W1,2(Ω) −
∫

Ω
(F ∗ 1)p |Cr(S)ε∗(S) · ε(uk)| dx−

∫
∂f Ω

f · uk ds ≤ Ef (φk, uk, S),

m‖uk‖2W1,2(Ω) −
∫

Ω
|Cr(S)ε∗(S) · ε(uk)| dx−

∫
∂f Ω

f · uk ds ≤ E(φk, uk, S),

m‖uk‖2W1,2(Ω) − ‖Cr(S)ε∗(S)‖L2(Ω)‖ε(uk)‖L2(Ω) −
∫
∂f Ω

f · uk ds ≤ Ef (φk, uk, S),

m‖uk‖2W1,2(Ω) − c‖uk‖W1,2(Ω) −
∫
∂f Ω

f · uk ds ≤ Ef (φk, uk, S)

(3.70)

for some constants m, c > 0, independent of k. Additionally,

m‖uk‖2
W 1,2(Ω) − c‖uk‖W 1,2(Ω) −

∣∣∣∣∣
∫
∂fΩ

f · uk ds
∣∣∣∣∣ ≤ Ef (φk, uk, S),

m‖uk‖2
W 1,2(Ω) − c‖uk‖W 1,2(Ω) − ‖f‖L2(∂fΩ)‖uk‖L2(∂fΩ) ≤ E(φk, uk, S),

m‖uk‖2
W 1,2(Ω) − c‖uk‖W 1,2(Ω) − ‖f‖L2(∂fΩ)‖uk‖L2(∂Ω) ≤ Ef (φk, uk, S),

m‖uk‖2
W 1,2(Ω) − c‖uk‖W 1,2(Ω) − a‖uk‖W 1,2(Ω) ≤ Ef (φk, uk, S),

(3.71)

for some constant a > 0. Then,

m‖uk‖2
W 1,2(Ω) − b‖uk‖W 1,2(Ω) ≤M =⇒ ‖uk‖W 1,2(Ω) ≤ d, (3.72)

for some constant b > 0, where d > 0 is a constant independent of k. Thus,
uk is a bounded sequence in W 1,2(Ω), and there exists a u∞ ∈ U such that

uk ⇀ u∞ in W 1,2(Ω) when k → +∞, (3.73)

up to a subsequence. Next, consider ū ∈ U such that

ū = argmin
u∈U
Ef (φ̄, u, S). (3.74)

Then
Ef (φ̄, ū, S) ≤ Ef (φ̄, u∞, S). (3.75)

Similarly,

Ef (φk, uk, S) ≤ Ef (φk, ū, S) = Ef (φk, ū, S)− Ef (φ̄, ū, S) + Ef (φ̄, ū, S)

− Ef (φ̄, uk, S) + Ef (φ̄, uk, S), (3.76)
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or
Ef (φ̄, uk, S) ≤Ef (φ̄, ū, S) + Ef (φk, ū, S)

− Ef (φ̄, ū, S) + Ef (φ̄, uk, S)− Ef (φk, uk, S).
(3.77)

Then taking limits, and using the strong convergence of the convolution gives

lim
k→∞

Ef (φ̄, uk, S) ≤ Ef (φ̄, ū, S). (3.78)

The convexity of the energy integrand in ∇u and u for a given φ and S gives
lower semi-continuity of our energy function

Ef (φ̄, u∞, S) ≤ lim
k→∞

Ef (φ̄, uk, S), (3.79)

so
Ef (φ̄, u∞, S) ≤ Ef (φ̄, ū, S). (3.80)

Then from (3.75),
Ef (φ̄, u∞, S) = Ef (φ̄, ū, S). (3.81)

From the uniqueness of the minimizer of Ef (φ̄, ·, S) we have

u∞ = ū. (3.82)

Then, as desired,

uk ⇀ ū in W 1,2(Ω) when k → +∞. (3.83)

3.B Workpiece Objective as Force in Spring

Here we show the workpiece objective is equivalent to maximizing the load
of a point spring. This is equivalent to the objective used by Sigmund in
an earlier work to study thermal actuators [38]. However, we include the
derivation here for completeness. Consider a linear spring in direction n̂ of
spring constant κ > 0 connected to the boundary of the domain at some point
of interest x0 ∈ ∂fΩ. The aim is to maximize the load carried by this spring
upon actuation. Thus, we look to maximize the load in the spring:

sup{f0 : f0 = −κu(x0) · n̂,Φ ∈ D} (3.84)

where u is the equilibrium solution corresponding to S = 1 and f = f0δ(x −
x0)n̂. Assuming homogeneous Dirichlet conditions u0 = 0 on ∂uΩ, it is easy
to see using the linearity of the Euler-Lagrange equations

u = v + uS=0,f0n̂ (3.85)
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where uS=0,f0n̂ minimizes the elastic energy (3.4) with S = 0 and f = f0δ(x−
x0)n̂. Invoking linearity again gives uS=0,f0n̂ = f0uS=0,n̂. The displacement
can then be written as

u = v + f0uS=0,n̂. (3.86)

Evaluating at x = x0, taking an inner product with n̂, and using the constraint
that f0 = −κu(x0) · n̂ gives

− f0

κ
= v(x0) · n̂+ f0uS=0,n̂(x0) · n̂. (3.87)

Rearranging gives

f0 = −κv(x0) · n̂
κuS=0,n̂(x0) · n̂+ 1 = −κv(x0) · n̂− κuS=0,n̂(x0) · n̂− 1

κuS=0,n̂(x0) · n̂+ 1 − 1 (3.88)

or
f0 = −κuS=1,n̂(x0) · n̂− 1

κuS=0,n̂(x0) · n̂+ 1 − 1. (3.89)

We recognize uS=0,n̂(x0) · n̂ and uS=1,n̂(x0) · n̂ as the unactuated and actuated
compliances under loading f = δ(x− x0)n̂. Thus, the workpiece objective can
then be written as a function of compliancies,

inf
Φ∈D
O(Φ) = κCn̂(Φ, 1) + 1

κCn̂(Φ, 0) + 1 (3.90)
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C h a p t e r 4

OPTIMAL DESIGN OF 3D PRINTED SOFT RESPONSIVE
ACTUATORS

Abstract

With recent advances in both responsive material synthesis and fabrication
techniques, it is now possible to construct integrated multifunctional structures
composed of both passive and active materials. Additionally, developments in
3D printing of anisotropic materials, such as liquid crystal elastomers, have
facilitated the realization of structures with arbitrary morphology and tailored
material orientation. However, the design of these structures is complicated
by trade-offs between properties such as flexibility and stiffness, especially
when finite strains are considered. Additionally, the manufacturing process
constrains the design as extrusion-based 3D printing aligns nematic directors
along the print path. We have developed an efficient and robust numeri-
cal method to optimally design simultaneously structural layout and material
orientation for manufacturable structures, while also yielding the print path.
We use this formulation to investigate a variety of lifting actuators. Then,
we demonstrate the method by producing physical realizations of the designs
through advanced 3D printing processes.

4.1 Introduction

Wearable technology, biomedical devices, and soft robotics applications require
flexible actuators that generate large forces in compact form factors. While
pneumatic [26, 28] and piezoelectric [17, 22] actuators remain popular, they
suffer from reliance on external pumps, limited displacements, or inflexibility.
Recent advances in material synthesis technologies have allowed responsive
materials – ones that deform upon stimulus application – to shift towards a
“material as the machine” approach [10]. Rather than using dedicated actua-
tors at discrete joints, the material which composes the structure performs the
actuation through micro-scale reconfiguration leading to macro-scopic shape
change. This is observed in metallic shape memory alloys where temperature
change or mechanical loading causes a solid-to-solid phase transformation [9].
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Additionally, there are a wide variety of responsive polymers which may re-
spond to other stimuli such as light [32], pH [19], or moisture [1].

Of these responsive polymers, liquid crystal elastomers (LCEs) have enormous
potential. Composed of rod-like liquid crystal mesogens embedded in a poly-
meric matrix, these materials undergo a temperature induced phase transfor-
mation [31, 27]. At the mico-scale, these mesogens transition from a disordered
to aligned state, pulling the polymeric matrix, and leading to large deforma-
tions of up to 55% contraction. This results in an unprecedented work output
density reported up to 2.6 J/Kg [30], all while maintaining a soft mechanical
response.

More recently, researchers have now been able to apply advanced manufactur-
ing techniques to produce integrated structures composed of both LCEs and
support material through 3D printing methods [20, 4]. This may realize struc-
tures of arbitrary material layout with tailored micro-structural orientation.
However, researchers have used these and other advanced manufacturing tech-
niques to predominately designed shape changing structures which only utilize
free recovery [29, 21]. That is, structures that are not designed for load carry-
ing capacity, and therefore do not take full advantage of these materials’ high
work output density. But designing these structures for load bearing applica-
tions is difficult. When 3D printing these materials, the extrusion through the
nozzle aligns the nematic directors along the print path [20, 4]. These man-
ufacturing constraints along with the large deformation actuation mechanics
makes designing integrated responsive actuators, which balance both actuation
flexibility and structural stiffness, extremely challenging.

To address this difficult design problem, we borrow ideas from the field of
structural optimization. Here, the design of a structure is posed as an opti-
mization problem before being solved computationally. Thus, we may real-
ize high-performance structures through a systematic and robust design ap-
proach. This removes the reliance on human intuition and guesswork, which
may break down when applied to complicated scenarios. While these ideas
were originally developed to design minimum compliance structure for small
deformations [8, 25, 7], they have since been applied to a wide range of actuat-
ing systems such as micro-electromechanical systems [23], magneto-responsive
structures [33], electro-mechanical systems [3], and small-deformation respon-
sive structures [2]. However, these methods must be heavily extended to design
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integrated LCE actuators which remain compatible with 3D printing methods.

To this end, we formulate a rigorous optimal design formulation which ac-
counts for microstructural evolution leading to actuation, finite deformation
mechanics, and manufacturing constraints to design 3D printed multi-material
responsive actuators composed of both LCE and support polymer. We demon-
strate the methodology by considering a variety of soft responsive lifting ac-
tuators. Finally, we use the optimized designs and recovered print paths to
realize physical 3D printed LCE actuators.

To develop the formulation, we start from simplified linearized kinematics
before building the theory to include finite deformation and manufacturing
constraints. We begin in Section 4.2 by considering design of both structure
and material orientation in the linearized setting for actuators composed of
anisotropic responsive materials. Then, in Section 4.3, we extend the theory
to handle finite deformations and the associated micostructural evolution using
a classical model for LCEs. Here, particular attention is put towards regular-
ization, as there exist fundamental distinctions between the small strain and
finite deformation settings. In Section 4.4, we study lifting actuators in 2D
and 3D using the developed formulations. We notice that these structures are
infeasible to manufacture. The micromechanics of the 3D printing process for
LCEs creates a coupling between the design and the manufacturing pathway.
We adapt the formulation to include manufacturing constraints in Section 4.5,
and revisit the lifting actuator. Additionally, we present physical realizations
of these structures through advanced 3D printing processes. We conclude in
Section 4.6 by summarizing our finding and discuss directions moving forward.

4.2 Design for Small Strains

To develop a fundamental understanding of the design problem, we first con-
sider the simplified case of linearized kinematics. We formulate the design of
both structure and material orientation for a transversely isotropic actuation
strain. We investigate mathematical regularization by applying filtering meth-
ods to the material densities. However, we still must address the possible fine
structure formation in the material orientations. By exploiting the linearity of
the system and considering a particular class of objective functions, we prove
well posed-ness of the design problem without any further regularization to
the material orientation.
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4.2.1 Transversely Isotropic Responsive Materials

As in [2], we consider a linear elastic responsive material which may change
shape or stiffness in response to a stimulus with energy density

W (ε, a, S) := 1
2(ε(u)− ε∗(S, a)) · C(S)(ε(u)− ε∗(S, a)), (4.1)

where ε(u) = (∇u + ∇uT )/2 is the linearized strain, S ∈ [0, 1] the stimulus
(assumed here to be a scalar), ε∗(S, a) is the stimulus-dependent actuation
or spontaneous strain, and C(S) is the possibly stimulus-dependent elastic
modulus. In the linearized setting, the spontaneous strain takes the form [15]

ε∗(S, a) = ε0(S)
n− 1 [In×n − n(a⊗ a)] . (4.2)

Here, the spontaneous strain is a volume-preserving and transversely isotropic
about axis a ∈ Rn with magnitude ε0, where n = 2, 3 is the spatial dimension.
In 3D this corresponds to a contraction along a by ε0 and extension along
directions perpendicular to a by ε0/2. This is inspired by contraction along
directors in active materials such as LCE’s when transforming from a nematic
to isotropic state. We assume here that ε0(0) = 0.

4.2.2 Optimization

Consider an integrated functional structure occupying a bounded region Ω ⊂
Rn of volume V , consisting of a structural material and a responsive material.
Let χs, χr : Ω 7→ {0, 1} be the characteristic functions of the regions that the
structural and responsive materials occupy. We allow for a spatially varying
isotropy axis of the responsive material. Let Sn−1 be the unit sphere on Rn,

Sn−1 = {v ∈ Rn : ‖v‖l2 = 1}. (4.3)

a : Ωχr=1 7→ Sn−1 is the extension axis of the responsive material as described
in (4.2). Φ := (χs, χr, a) then describes the design. In this section, we first
assume that there are no voids, i.e., χs + χr = 1.

Subject to a traction t ∈ L2(∂fΩ) on ∂tΩ and displacement u0 on ∂uΩ, the
energy function describing this structure for a given displacement field u under
stimulus S ∈ [0, 1] is

E(Φ, u, S) :=
∫

Ω

1
2[χsε(u) · Csε(u)

+ χr(ε(u)− ε∗(S, a)) · Cr(S)(ε(u)− ε∗(S, a))] dx

−
∫
∂tΩ

t · u ds,

(4.4)
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where Cs and Cr denote, respectively, the non-degenerate Hooke’s laws of the
structural and responsive materials. The compliance of a design is

C(Φ, S) :=
∫
∂tΩ

t · u ds, (4.5)

where u is the displacement given by the equilibrium condition

u = argmin
u∈U

E(Φ, u, S), (4.6)

where
U := {u ∈ W 1,2(Ω) : u = u0 on ∂uΩ}. (4.7)

The task is to find the design Φ that minimizes an objective function, which
we assume to be dependent on the compliances of two states with different
stimuli. Thus, we consider a class of optimization problems

inf
Φ∈D

O(Φ) := Ō(C(Φ, S1), C(Φ, S2)), (4.8)

where Ō : R × R 7→ R is a given continuous function, amongst the set of
allowable designs:

D = {Φ : χr + χs = 1 on Ω,
∫

Ω
χr dV ≤ V̄r, a(x) ∈ Sn−1 on Ωχr=1}. (4.9)

Here, we have specified the allowable designs such that the materials occupy
the whole domain and consider a restriction on the volume of responsive ma-
terial, where V̄r ≤ V is the maximum allowed. The above problem is often
ill-posed, suffering from the same issues as that of the standard compliance
optimization. Thus, we introduce a SIMP interpolation and a filter as dis-
cussed in the previous chapter. We also relax the transformation strains and
consider optimizing over this relax set. We will show well posedness of this
new problem. Additionally, we will show that for a certain class of objective
functions, the optimal transformation strains will be of the form (4.2).

4.2.3 Relaxation and Penalization

We relax the energy for the responsive structure through a SIMP interpolation
of penalty factor p > 1 with the field φ : Ω 7→ [0, 1] describing the topology.
Regions of φ = 0 and φ = 1 corresponding to passive and active material,
respectively. We also relax the transformation strains to instead consider the
convexification of the original space of transversly isotropic transformation
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strains [11]. This being the space of all effective transformation strains achiev-
able through fine mixtures. Thus, we consider the energy function

Ef (φ, ε̂∗, u, S) :=∫
Ω

1
2

{
(1− (f ∗ φ)p)Csε(u) · ε(u)

+ (f ∗ φ)pCr(S) [ε(u)− ε0(S)ε̂∗] · [ε(u)− ε0(S)ε̂∗]
}
dx

−
∫
∂tΩ

t · u ds,

(4.10)

where f is the filter function of characteristic length Rf > 0 satisfying

f ∈ W 1,2(Rn),

Supp(f) ⊂ BRf ,

f ≥ 0 a.e. in BRf ,∫
BRf

f dx = 1,

(4.11)

and BRf denotes the open ball of radius Rf of Rn. We define the convolution
over the bounded region Ω as

(f ∗ φ)(x) :=
∫

Ω
f(x− y)φ(y) dy. (4.12)

Notice that since the integral in (4.12) is over Ω, the filtered density near the
boundary will not be able to take values near unity. In practice, we renormalize
the convolution following the lines of [14] to avoid such boundary effects. The
compliance of a design is, again,

C(φ, ε̂∗, S) :=
∫
∂tΩ

t · u ds, (4.13)

where u is the displacement associated with the design Φ and stimulus S min-
imizing Ef (φ, u, S). Assuming non-degenerate elastic moduli, u is the unique
solution of the Euler-Lagrange equations,

Qf (φ, ε̂∗, u, v, S) = 0 ∀ v ∈ U0, (4.14)

with

Qf (φ, ε̂∗, u, v, S) :=
∫

Ω

{
(1− (f ∗ φ)p)Csε(u) · ε(v)

+ (f ∗ φ)pCr(S) [ε(u)− ε0(S)ε̂∗] · (ε(v))
}
dx−

∫
∂tΩ

t · v ds, (4.15)
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and
U0 := {u ∈ W 1,2(Ω) : u = 0 on ∂uΩ}. (4.16)

Rather than consider the space of transversly isotropic transformation strains,
we relax the problem to account for all fine mixtures of transformations. Thus,
we consider

inf
φ∈Dφ, ε̂∗∈DQCε

O(φ, ε̂∗) := Ō(C(φ, ε̂∗, S1), C(φ, ε̂∗, S2)), (4.17)

where we optimize over the sets

Dφ :=
{
φ : φ(x) ∈ [0, 1] a.e. on Ω,

∫
Ω
φ dx ≤ V̄r

}
, (4.18)

DQCε := {ε̂∗ : ε̂∗(x) = [ε̂∗(x)]T , Tr(ε̂∗(x)) = 0,

with principle values − 1 ≤ ε1, ε2, ε3 ≤ 1/2 for all x ∈ Ω}.
(4.19)

Here, we are considering a spatial dimension of n = 3. The following analysis
is easily extended to n = 2.

Remark 3. Ellipticity: From the definition of D, the properties of the Hooke’s
laws (3.5), and the properties of the filter, there exists a constant m > 0, only
depending on Ω and S such that for any φ and u ∈ U the following holds:∫

Ω

1
2 [(1− (f ∗ φ)p)Csε(u) · ε(u) + (f ∗ φ)pCr(S)ε(u) · ε(u)] dx

≥ m‖u‖2
W 1,2(Ω).

(4.20)

We will now prove existence of structures and relaxed transformation strains
that minimize a compliance dependent objective. The proof follows closely
to that of Theorem 2.1 of [2]. As such, we require the following supporting
lemmas. These establish weak continuity of solutions to the elasticity problem
and weak continuity of the compliance.

Lemma 4.2.1 (Weak continuity of elastic solutions). Let {uk} ⊂ U be the se-
quence of equilibrium solutions to (4.14) corresponding to sequence {φk, ε̂∗k} ⊂
Dφ ×DQCε , for some fixed S. If

(f ∗ φk)p → (f ∗ φ̄)p uniformly on Ω when k → +∞ (4.21)

and
ε̂∗k ⇀ ε̄∗ in L2(Ω) when k → +∞, (4.22)
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then
uk ⇀ ū in W 1,2(Ω) when k → +∞, (4.23)

up to a subsequence, where ū ∈ U is the equilibrium configuration corresponding
to φ̄ ∈ Dφ and ε̄∗ ∈ DQCε

ū = arg min
u∈U

Ef (φ̄, ε̄∗, u, S). (4.24)

Proof. It is estabilished in [2] that uk is uniformly bounded in W 1,2(Ω), and
thus there exists a ū ∈ U such that

uk ⇀ ū in W 1,2(Ω) when k → +∞, (4.25)

up to a subsequence. Then,

(1−(f ∗ φk)p)Csε(uk) + (f ∗ φk)pCr(S) [ε(uk)− ε0(S)ε̂∗k)] ⇀

(1− (f ∗ φ̄)p)Csε(ū) + (f ∗ φ̄)pCr(S) [ε(ū)− ε0(S)ε̄∗)]

in L2(Ω) when k → +∞.

(4.26)

Then, from (4.14), ū is the unique equilibrium solutions corresponding to φ̄
and ε̄∗,

ū = arg min
u∈U

Ef (φ̄, ε̄∗, u, S). (4.27)

Lemma 4.2.2 (Continuity of the compliance). Let {uk} ⊂ U be the sequence
of equilibrium solutions corresponding to sequence {φk} ⊂ Dφ, {ε̂∗k} ⊂ DQCε for
some fixed S. If

uk ⇀ ū in W 1,2(Ω) when k → +∞, (4.28)

where ū ∈ U is the equilibrium configuration corresponding to φ̄ ∈ Dφ and
ε̄∗ ∈ DQCε then

lim
k→∞

C(φk, ε̂∗k, S) = C(φ̄, ε̄∗S). (4.29)

Proof. This is clear from the definition of the compliance and the weak con-
vergence of {uk}.

We are now ready to prove existence of solutions for relaxed transformation
strains.
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Theorem 4.2.3 (Existence for relaxed transformation strains). Recall the
definition of the compliances from (4.13), and set

O(φ, ε̂∗) := Ō(C(φ, ε̂∗, S1), C(φ, ε̂∗, S2)), (4.30)

where Ō is bounded below and continuous. There exists φ̄ ∈ Dφ and ε̄∗ ∈ DQCε
such that,

O(φ̄, ε̄∗) = inf
φ∈Dφ, ε̂∗∈DQCε

O(φ, ε̂∗). (4.31)

Proof. Let {φk, ε̂∗k} ⊂ Dφ × DQCε be a minimizing sequence for (4.31). Dφ
implies that φk is uniformly bounded in L2(Ω) and thus there exists φ̄ ∈ Dφ
such that

φk ⇀ φ̄ in L2(Ω) when k → +∞, (4.32)

up to a sub-sequence. Because F ∈ L2(Rn),

(f ∗ φ̄)(x)− lim
k→∞

(f ∗φk)(x) = lim
k→∞

∫
Ω
f(x−y)

(
φ̄(y)− φk(y)

)
dy = 0. (4.33)

Since this holds for all x ∈ Ω,

f ∗ φk → f ∗ φ̄ uniformly on Ω when k → +∞. (4.34)

Because (f ∗ φ)(x) is bounded for all φ ∈ Dφ,

(f ∗ φk)p → (f ∗ φ̄)p uniformly on Ω when k → +∞. (4.35)

Additionally, ε̂∗k is uniformly bounded in L2(Ω). Because DQCε is sequentially
compact, there exists a ε̄∗ ∈ DQCε such that

ε̂∗k ⇀ ε̄∗ in L2(Ω) when k → +∞, (4.36)

up to a sub-sequence. Let u1k, u2k ∈ U be the equilibrium solutions to (4.14)
corresponding to φk, ε̂∗k for S = S1 and S = S2, respectively:

u1k = arg min
u∈U

Ef (φk, ε̂∗k, u, S1), u2k = arg min
u∈U

Ef (φk, ε̂∗k, u, S2). (4.37)

Then, from Lemma 4.2.1,

u1k ⇀ ū1 in W 1,2(Ω) when k → +∞,

u2k ⇀ ū2 in W 1,2(Ω) when k → +∞,
(4.38)
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where ū1, ū2 ∈ U are the equilibrium configurations corresponding to φ̄ and ε̄∗

for S = S1 and S = S2:

ū1 = arg min
u∈U

Ef (φ̄, ε̄∗, u, S1), ū2 = arg min
u∈U

Ef (φ̄, ε̄∗, u, S2). (4.39)

From Lemma 4.2.2,

lim
k→∞

C(φk, ε̂∗k, S1) = C(φ̄, ε̄∗, S1), lim
k→∞

C(φk, ε̂∗k, S1) = C(φ̄, ε̄∗, S2). (4.40)

It follows

lim
k→∞

Ō(C(φk, ε̂∗k, S1), C(φk, ε̂∗k, S2)) = Ō(C(φ̄, ε̄∗, S1), C(φ̄, ε̄∗, S2)). (4.41)

Therefore,
lim
k→∞

O(φk, ε̂∗k) = O(φ̄, ε̄∗). (4.42)

Since {φk}, {ε̂∗k} is a minimizing sequence,

O(φ̄, ε̄∗) = inf
φ∈Dφ, ε̂∗∈DQCε

O(φ, ε̂∗). (4.43)

Thus far, we have shown well-posedness of the optimization problem over the
relaxed space of transformation strains. We will now show that there exists
optimal solutions that have transformation strains of the form (4.2) for a
certain class of objective functions. That is, solutions exist without relaxing
the transformation strains which are optimal for the relaxed problem. We
consider the space of transversly isotropic transformation strains

Dε =
{
ε̂∗ : ε̂∗(x) = 1

2[3a(x)⊗ a(x)− I3×3], a(x) ∈ S2, for all x ∈ Ω
}
.

(4.44)

Theorem 4.2.4 (Optimality of transversely isotropic transformation strains).
Consider an objective that depends on both an actuated and un-actuated com-
pliance,

O(φ, ε̂∗) := Ō(C(φ, ε̂∗, S), C(φ, ε̂∗, 0)). (4.45)

If Ō is affine in the actuated compliance, then there exists φ̄ ∈ Dφ and ε̄∗ ∈ Dε
such that,

O(φ̄, ε̄∗) = inf
φ∈Dφ, ε̂∗∈Dε

O(φ, ε̂∗) = inf
φ∈Dφ, ε̂∗∈DQCε

O(φ, ε̂∗). (4.46)
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Proof. From Theorem 4.2.3, there exists φ̄ ∈ Dφ and ε̃∗ ∈ DQCε such that

O(φ̄, ε̃∗) = inf
φ∈Dφ, ε̂∗∈DQCε

O(φ, ε̂∗). (4.47)

Because Ō is affine in the actuated compliance,

O(φ, ε̂∗) = h0(C(φ, ε̂∗, 0)) + h1(C(φ, ε̂∗, 0))C(φ, ε̂∗, S), (4.48)

where h0 and h1 are some functions of the un-actuated compliance. The ac-
tuated compliance may be written as

C(φ, ε̂∗, S) =
∫
∂tΩ

t · v dx+ C(φ, ε̂∗, 0), (4.49)

where v satisfies

−∇ · [(1− (f ∗ φ)p)Csε(v) + (f ∗ φ)pCrε(v)]

= −∇ · [(f ∗ φ)pCrε0(S)ε̂∗] in Ω,

v = 0 on ∂uΩ,

[(1− (f ∗ φ)p)Csε(v) + (f ∗ φ)pCrε(v)]n

= [(f ∗ φ)pCr(f ∗ ε0(S))ε̂∗]n on ∂fΩ.

(4.50)

Clearly, v is linear in ε̂∗. Thus, there exists some fundamental solution, G,
such that

v(x) =
∫

Ω
G(x, y)ε̂∗(y) dy (4.51)

almost everywhere. Then, the objective can be written as

O(φ, ε̂∗) = h0(C(φ, ε̂∗, 0)) + h1(C(φ, ε̂∗, 0))
[∫
∂tΩ

t · v dx+ C(φ, ε̂∗, 0)
]

= h0(C(φ, ε̂∗, 0))

+ h1(C(φ, ε̂∗, 0))
[∫
∂tΩ

t ·
∫

Ω
G(x, y)ε̂∗(y)dy dx+ C(φ, ε̂∗, 0)

] (4.52)

or

O(φ, ε̂∗) =

h0(C(φ, ε̂∗, 0))

+ h1(C(φ, ε̂∗, 0))
[∫

Ω

∫
∂tΩ

t(x) ·G(x, y)ε̂∗(y) dx dy + C(φ, ε̂∗, 0)
]
.

(4.53)

For a fixed φ, we consider
inf

ε̂∗∈DQCε
O(φ, ε̂∗). (4.54)



71

The unactuated compliance is independent of ε̂∗, so we may localize to

min
ε̂∗(y)∈DQCε

I(ε̂∗(y), y) := h1

∫
∂tΩ

t(x) ·G(x, y)ε̂∗(y) dx (4.55)

for each y ∈ Ω. Suppose this minimum is attained by

ε̂∗(y) =
3∑
i=1

εiei ⊗ ei (4.56)

where εi and ei the principle values and corresponding axis of ε̂∗. We must
have that

{ε1, ε2, ε3} = arg min
ε1,ε2,ε3

I(ε̂∗(y), y) =
3∑
i=1

Ii(y)εi

s.t. − 1 ≤ ε1, ε2, ε3 ≤ 1/2

ε1 + ε2 + ε3 = 0

(4.57)

where
Ii(y) := h1

∫
∂tΩ

t(x) ·G(x, y)ei ⊗ ei dx. (4.58)

This is a standard linear programming problem. It is established that ex-
tremum values are guaranteed to be found at a vertex. In this case, it is when
one of {ε1, ε2, ε3} takes the value −1 and the others 1/2. This holds for all
y ∈ Ω, so there exists a ε̄∗ ∈ Dε and φ̄ ∈ Dφ which minimizes (4.47). Because
Dε ⊂ DQCε ,

O(φ̄, ε̄∗) = inf
φ∈Dφ, ε̂∗∈Dε

O(φ, ε̂∗) = inf
φ∈Dφ, ε̂∗∈DQCε

O(φ, ε̂∗). (4.59)

4.2.4 With Voids

We now consider a responsive structure with voids or holes in the domain. In
this case, χs +χr ≤ 1. We introduce a SIMP interpolation and filter as before
through an additional density variable. We consider ρ : Ω 7→ [ρmin, 1] for
some 1 >> ρmin > 0, which determines void or solid and consider the energy
functional

Ev(φ, ρ, ε̂∗, u, S) :=
∫

Ω
(f ∗ ρ)p

(1
2

){
(1− (f ∗ φ)p)Csε(u) · ε(u)

+ (f ∗ φ)pCr(S) [ε(u)− ε0(S)ε̂∗] · [ε(u)− ε0(S)ε̂∗]
}
dx−

∫
∂tΩ

t · u ds. (4.60)
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The compliance is, again,

C(φ, ρ, ε̂∗, S) =
∫
∂tΩ

t · u ds, (4.61)

where u is an equilibrium solution,

u = arg min
u∈U

Ev(φ, ρ, ε̂∗, u, S). (4.62)

As ρmin > 0, the voids have some residual stiffness as to maintain the coercivity
of 4.60. We choose this residual stiffness to be small as to have a negligible
effect on the design. We again consider a compliance dependent objective

inf
φ∈Dφ, ρ∈Dρ, ε̂∗∈Dε

O(φ, ρ, ε̂∗) := Ō(C(φ, ρ, ε̂∗, S1), C(φ, ρ, ε̂∗, S2)), (4.63)

where we optimize over the space of feasible designs

Dφ =
{
φ : φ ∈ [0, 1] a.e. in Ω,

∫
Ω
ρφ dx ≤ V̄r

}
,

Dρ =
{
ρ : ρ ∈ [ρmin, 1] a.e. in Ω,

∫
Ω
ρ dx ≤ V̄0

}
,

(4.64)

where V̄0 and V̄r are the allowed volumes total material and responsive mate-
rial, respectively.

Theorem 4.2.5 (Existence for transversely isotropic transformation strains
and voids). Consider an objective that depends on both an actuated and un-
actuated compliance,

O(φ, ρ, ε̂∗) := Ō(C(φ, ρ, ε̂∗, S), C(φ, ρ, ε̂∗, 0)). (4.65)

If Ō is affine in the actuated compliance, then there exists φ̄ ∈ Dφ, ρ̄ ∈ Dρ
and ε̄∗ ∈ Dε such that,

O(φ̄, ρ̄, ε̄∗) = inf
φ∈Dφ, ρ∈Dρ, ε̂∗∈Dε

O(φ, ρ, ε̂∗)

= inf
φ∈Dφ, ρ∈Dρ, ε̂∗∈DQCε

O(φ, ρ, ε̂∗).
(4.66)

Proof. The proof almost exactly the same as the case without voids in Theo-
rem 4.2.4.
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4.3 Design for Finite Strains

We now extend the formulation to consider the design through finite deforma-
tion theory. In particular, we consider an integrated responsive structure where
the active material is a liquid crystal elastomer (LCE). We formulate the de-
sign problem again for both structure and material orientation. We investigate
the regularization, however, the finite deformation kinematics severely com-
plicates the mathematics. We begin by detailing the adopted material model,
before discussing the chosen objective function and optimization formulation.

4.3.1 Material Model

Upon heating, LCEs transform from an ordered nematic state where mesogens
prefer to be aligned, to a disordered isotropic state without such preference.
This induces large deformation which must be treated by finite deformation
kinematics. Here, we consider the LCE to be manufactured in the nematic
state with a spatially varying initial alignment direction with order parameter
r0 > 1. Upon stimulation, the order parameter r decreases where a value
of unity represents a completely isotropic, nematic state. We analyze the
problem in a 3D setting, as the 2D problem is strictly easier. We consider an
open, bounded region Ω ⊂ R3. Again, we assume a boundary load t acting on
boundary ∂tΩ ⊂ ∂Ω, and fixed displacements u = u0 on boundary ∂uΩ ⊂ ∂Ω.
Additionally, we consider a : Ω 7→ S2 as the spatially varying initial alignment.
We assume the internal strain energy density of the LCE to be [16]

Wl(a, r, r0, F ) = W̃l(`−1/2(r)F`1/2
0 (r0)), (4.67)

for some deformation gradient F . We assume W̃ to be an isotropic, compress-
ible Mooney-Rivlin energy density

W̃l(M) =µl2
(
‖M‖2

M − 3− 2 log(DetM)
)

+ αµl
2
(
‖AdjM‖2

M − 3− 4 log(DetM)
)

+ µlν

1− 2ν (DetM − 1)2,

(4.68)

‖·‖M denotes the Frobenius norm. µl and νl are the shear modulus and the
Poisson ratio, while α << 1 is a small constant to ensure near Neo-Hookean
behavior while preserving coercivity. `1/2

0 is the transversely isotropic deforma-
tion experienced by the material from an isotropic state to the nematic state



74

along direction a,

`
1/2
0 (r0) = r

−1/6
0 (I3x3 + (r1/2

0 − 1)a⊗ a). (4.69)

`1/2 is the deformation experienced by the material through re-orientation of
the mesogens. Here, we assume the LCE to be heavily cross-linked. Thus, the
re-orientation of the nematic director is described by the deformation of its
orthogonal plane [16]

`−1/2(r) = r1/6
(
I3x3 + (r−1/2 − 1) F−Ta

‖F−Ta‖
⊗ F−Ta

‖F−Ta‖

)
. (4.70)

In the transformed, isotropic state, the order parameter takes the value of
unity. Thus, `−1/2(1) = I3×3, and the material experiences a spontaneous de-
formation of `−1/2

0 (r0), which corresponds to a contraction along a by r−1/3 and
extension along the perpendicular directions by r1/6. We consider a structure
composed of both the LCE as well as a passive, finite elastic material described
by internal energy density Wp. As in (4.4), we consider a relaxed energy for
displacement field u : Ω 7→ R3

E(φ, a, u, r) :=W(φ, a, u, S)−
∫
∂tΩ

t · u dΩ,

W(φ, a, u, r) :=
∫

Ω
[(1− (f ∗ φ)p)Wp(F ) + (f ∗ φ)pWl(a, r, r0, F )] dΩ,

(4.71)

where F (u) := ∇u + I3×3 is the deformation gradient. Wp is a poly-convex
strain energy function

Wp(F ) = W̄p(F,AdjF,DetF ), (4.72)

where W̄p is convex in each of its arguments, and satisfy the growth conditions
outlined in [5].

To characterize designs, we consider deformations which minimize this energy.
Thus, we prove existence of such minimizers.

Lemma 4.3.1. Suppose Wp is polyconvex with Wp(B) ≥ C1‖B‖pF − C2, for
p > 3, Wl is of the form (4.67) with W̃l as the Mooney-Rivlin energy density
from (4.68), and t ∈ L1(∂tΩ). There exists a solution ueq ∈ U such that

E(φ, a, ueq, S) = inf
u∈U
E(φ, a, u, S),

U := {u ∈ W 1,p : u = u0 on ∂uΩ}.
(4.73)
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Proof. It suffices to show polyconvexity of Wl(a, r, r0, F ) in F . We do so for
r0 = 1 and then extend this for arbitrary r0 > 1. Substituting M = `−1/2F in
(4.68),

Wl(a, r, 1, F ) = W̃l(`−1/2F )

= µ

2
(
Tr
(
F T `−1F

)
− 3− 2 log det(`−1/2F )

)
+ αµ

2
(
Tr
(
adj(`−1/2F ) adj(`−1/2F )T

)
− 3− 4 log det(`−1/2F )

)
+ µν

1− 2ν (det(`−1/2F )− 1)2.

(4.74)
It is a straight-forward calculations to show that

Tr
(
F T `−1F

)
= r1/3

(
‖F‖2

M + (r−1 − 1)
(
a · F−1F−Ta

)−1
)
. (4.75)

Recalling that adjM = (detM)M−T when detM 6= 0,
adj(`−1/2F ) = adj(`−1/2) adj(F ) = `1/2 adj(F ). Further,
`1/2 = r−1/6(I + (r1/2 − 1)(adjFa⊗ adjFa)/‖adjFa‖2). It follows that

Tr
(
adj(`−1/2F ) adj(`−1/2F )T

)
=

r1/3

‖adjF‖2
M + (r − 1)

∥∥∥(adjF )T (adjF )a
∥∥∥2

‖adjFa‖2

 . (4.76)

Finally, det(`−1/2F ) = detF . Putting these together,

Wl(a, r, 1, F ) = µr1/3

2 W1(F ) + αµr−1/3

2 W2(adjF ) +W3(detF ) (4.77)

where

W1(A) = ‖A‖2
M + (r−1 − 1)

(
a · A−1A−Ta

)−1
− 3r−1/3,

W2(A) = ‖A‖2
M + (r − 1)

∥∥∥(A)TAa
∥∥∥2∥∥∥Aa2
∥∥∥ − 3r1/3,

W3(x) = −(µ+ 2αµ) log(det(x)) + µν

1− 2ν (x− 1)2.

(4.78)

Note that W1,W2 are homogeneous of degree 2. Define

m1 = max
‖A‖M=1,‖B‖M=1

B ·
(
∂2

∂A2

(
a · A−1A−Ta

)−1
)
B,

m2 = max
‖A‖M=1,‖B‖M=1

B ·

 ∂2

∂A2

∥∥∥ATAa∥∥∥2∥∥∥Aa2
∥∥∥
B. (4.79)
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It is easy to see that m1,m2 exist and are finite. Therefore, there exists r∗ > 1
such that the second derivatives of W1,W2 are positive definite and therefore
W1,W2 are convex for any r ∈ [1, r∗]. Finally, W3 is convex, and therefore
Wl(a, r, 1, F ) is polyconvex in F for any given a, r ∈ [1, r∗]. Therefore, exis-
tence follows in light of the growth conditions [5, 13].

Turning now to the general case r0 > 1, observe that

Wl(a, r, r0, F ) = Wl(a, r, 1, F `1/2
0 ). (4.80)

The polyconvexity and the growth conditions are preserved, and therefore
existence follows.

4.3.2 Optimization

To characterize the design, we consider the stimulus dependent compliance.
In the small strain setting this is

∫
∂tΩ t ·u dΩ, where u is the energy minimizer.

However, because the possible multiplicity of the solutions, we instead consider

C(φ, a, r) := inf
u∈Umin(φ,a,r)

∫
∂tΩ

t · u dΩ, (4.81)

where Umin(φ, a, r) is the set of energy minimizing configurations. This is
the technique used in [24]. While we might be concerned with the worst-
case compliance, that is the maximum over equilibrium solutions, this lacks
sequential weak lower semicontinuity. Thus, we will consider the minimum
compliance over equilibrium solutions, as we will see it allows us to prove
existence to the optimal design problem.

We must now choose a suitable objective to optimize. In [2], it is shown
that minimizing the ratio of the stimulated to un-stimulated compliance in
the small-strain setting is equivalent maximizing the blocking load. However,
optimizing for blocking load does not exploit the large deformations and shape-
change the structure may undergo through actuation. Thus, we choose to
consider the compliance ratio,

inf
φ∈Dφ, a∈N

C(φ, a, 1)
C(φ, a, r) , (4.82)

where N is the space of unit vector fields on Ω,

N := {a : a(x) ∈ Sn−1 a.e. on Ω}. (4.83)
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In the small strain setting, we proved that additional regularization was not
necessary. However, in the current setting there may be fine structure forma-
tion in a; the nonlinearity in the kinematics and material model now allow fine
mixtures of actuation strains to be favorable. To address this, we consider a
modified problem where we regularize a through penalizing the gradients of
the director field,

inf
φ∈Dφ, a∈Da

O(φ, a) := C(φ, a, 1)
C(φ, a, r) + P(a), (4.84)

where
P(a) :=

∫
Ω

[
rg
4 ‖∇a‖

4
]
dΩ, (4.85)

Da := {a ∈ W 1,4(Ω), a(x) ∈ Sn−1 a.e. on Ω}, (4.86)

and we reuse the definition of Dφ from (4.64). We may prove existence to
the optimization problem under some suitable assumptions. Following a sim-
ilar study which analyzed existence for finite deformation structures [24], we
require two lemmas to support this. The first being the sequential lower-
semicontinuity of the energy function, and the second being its Γ−convergence.
This enables us to establish lower-semincontinuity of the compliancs, which we
then use to prove existence.

Lemma 4.3.2. SupposeWp is isotropic and polyconvex withWp(B) ≥ C1‖B‖pF−
C2, for p > 3, Wl is of the form (4.67) with W̃l as the Mooney-Rivlin en-
ergy density from (4.68), and t ∈ L1(∂tΩ). Then W(φ, a, u, S) is sequen-
tially lower semi-continuous along sequences {φk, ak, uk} ⊂ Dφ × Dn × U
with φk ⇀ φ̄ in L2(Ω), ak ⇀ ā in W 1,s(Ω), s > 3, uk ⇀ ū in W 1,p(Ω)
with (F (uk),Adj F (uk),Det F (uk)) ⇀ (F (ū),Adj F (ū), Det F (ū)) in Lp(Ω)×
Lq(Ω)× Lr(Ω) for q, r > 1.

Proof. Notice that since W̃l is isotropic,

Wl(a, r, r0, F ) = Wl(e, r, r0, FR(a)) (4.87)

where R(a) ∈ SO(3) is the minimal rotation that maps a constant unit vector
e ∈ R3 to a. As {ak} is a bounded sequence in W 1,s(Ω), the compact em-
bedding of W 1,s(Ω) in L∞(Ω) gives ak → ā strongly in L∞(Ω). Additionally,
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R(ak)→ R(ā) strongly in L∞(Ω). Then,

(F (uk)R(ak), Adj(F (uk)R(ak)), Det(F (uk)R(ak))) ⇀

(F (ū)R(ā)), Adj(F (ū)R(ā)), Det(F (ū)R(ā)))

in Lp(Ω)× Lq(Ω)× Lr(Ω).

(4.88)

Following the arguments of [24] and using the continuity of W with f ∗ φ and
the strong convergence of f ∗φk → f ∗φ̄ gives the required result. Additionally,
the linearity of C and the convergence of {uk} give sequential weak lower semi-
continuity of the energy function E .

Lemma 4.3.3. SupposeWp is isotropic and polyconvex withWp(B) ≥ C1‖B‖pF−
C2, for p > 3, Wl is of the form (4.67) with W̃l as the Mooney-Rivlin energy
density from (4.68), and t ∈ L1(∂tΩ). For a sequence {φk, ak} ⊂ L2(Ω)×W 1,s,
s > 3, where φk ⇀ φ̄ in L2(Ω), ak ⇀ ā in W 1,s, then

Γ− lim
k→∞
E(φk, ak, ·, S) = E(φ̄, ā, ·, S). (4.89)

Proof. As in [24], we only need to show Γ-convergence ofW . To establish this,
we first show the lim-inf followed by the lim-sup condition [14].

Let uk ⇀ ū in W 1,p(Ω) with lim supk→∞W(φk, ak, uk, S) < ∞. From the
growth conditions of W we obtain boundedness of (Adj F (uk),Det F (uk)) in
Lp/2(Ω) × Lp/3(Ω) and thus the weak convergence of a subsequence. Then,
from [5], we find that (F (uk),Adj F (uk),Det F (uk)) ⇀
(F (ū),Adj F (ū),Det F (ū)) in Lp(Ω)×Lp/2(Ω)×Lp/3(Ω). Lemma 4.3.2 yields
the lim inf condition W(φ̄, ā, ū, S) ≤ lim infk→∞W(φk, ak, uk, S).

For the lim sup condition we consider the convergence ofW(φk, ak, ū, S). From
the weak convergence of φk, the properties of the filter, and the strong con-
vergence of ak in L∞, the integrand of W(φk, ak, ū, S) converges pointwise to
the integrand of W(φ̄, ā, ū, S). Additionally,

(1− (f ∗ φ)p)Wp(F (ū)) + (f ∗ φ)pWl(ak, r, r0, F (ū))

≤ Wp(F (ū)) +Wl(ak, r, r0, F (ū)).
(4.90)

As ak is uniformly bounded in L∞(Ω), we may assume that Wl(ak, r, r0, F (ū))
is uniformly bounded. Thus

(1− (f ∗ φ)p)Wp(F (ū)) + (f ∗ φ)pWl(ak, r, r0, F (ū)) ≤ G(ū), (4.91)
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where G is some measurable function independent of k. Then, by Lebesque
dominated convergence, limk→∞W(φk, ak, ū, S) = W(φ̄, ā, ū, S). For a recov-
ery sequence uk = ū for all k, lim supk→∞W(φk, ak, uk, S) = W(φ̄, ā, ū, S).
This proves the lim sup condition.

Before we prove existence to the optimization problem 4.84, we require weak
lower-semicontinuity of C(φ, a, r) along sequences of designs.

Theorem 4.3.4. SupposeWp is isotropic and polyconvex withWp(B) ≥ C1‖B‖pF−
C2, for p > 3, Wl is of the form (4.67) with W̃l as the Mooney-Rivlin energy
density from (4.68), and t ∈ L1(∂tΩ). Then C(φ, a, r) is sequentially lower
semi-continuous along sequences {φk, ak} ⊂ Dφ × Dn with φk ⇀ φ̄ in L2(Ω),
ak ⇀ ā in W 1,s(Ω), s > 3.

Proof. We may consider an energy minimizing solution uk ∈ Umin(φk, ak, 1)
associated with the minimum actuated compliance such that

∫
∂tΩ t · uk dΩ =

C(φk, ak, r). Then, using that uk is an energy minimizing solution, the growth
conditions on Wp and Wl gives a uniform bound on the W 1,4(Ω) norm. Thus,
there exists a ū ∈ W 1,4(Ω) such that uk ⇀ ū in W 1,4(Ω) up to a subsequence.
Then, the Γ-convergence of Lemma 4.3.3 ensures that ū ∈ Umin(φ̄, ā, 1). The
compact embedding of W 1,4(Ω) in L∞(Ω) gives uk → ū strongly in L∞(Ω)
and L∞(∂tΩ). Then, C(φk, ak, 1) converges to

∫
∂tΩ t · ū dΩ. As C(φ̄, ā, r) ≤∫

∂tΩ t · ū dΩ, we recover sequential lower semi-continuity of C(φk, ak, r).

With the lower semi-continuity of the compliance established, we are now
ready to prove existence of optimal designs to (4.84) under some suitable
assumption.

Theorem 4.3.5. SupposeWp is isotropic and polyconvex withWp(B) ≥ C1‖B‖pF−
C2, for p > 3, Wl is of the form (4.67) with W̃l as the Mooney-Rivlin energy
density from (4.68), and t ∈ L1(∂tΩ). Consider

O(φ, a) := C(φ, a, 1)
C(φ, a, r) + P(a). (4.92)

If the prescribed boundary displacements u0 = 0 and there exists some {φ̃, ã} ∈
Dφ × Da such that O(φ̃, ã) ≤ 0, then there exists an optimal design {φ̄, ā} ∈
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Dφ ×Da such that
O(φ̄, ā) = inf

φ∈Dφ, a∈Da
O(φ, a). (4.93)

Proof. We may assume that for t 6= 0 that C(φ, a, r) > 0 for all {φ, a} ∈
Dφ×Da. As C(φ, a, 1) is bounded from below, O(a, φ) is bounded from below.

Consider a minimizing sequence {φk, ak} ⊂ Dφ × Da, and extract a subse-
quence such that ak is uniformly bounded in W 1,4(Ω). Thus there exists a
ā ∈ W 1,4(Ω) such that ak ⇀ ā in W 1,4(Ω) up to a subsequence. From the
compact embedding of L∞(Ω) in W 1,4(Ω), ak → ā strongly in L∞(Ω). As
magnitude is preserved under strong convergence, ā ∈ Da. Additionally, from
the definition of Dφ, there exists a φ̄ ∈ Dφ such that φk ⇀ φ̄ in L2(Ω) up to
a subsequence. Theorem 4.3.4 gives the the sequential weak lower semiconti-
nuity of the compliances C(φk, ak, r) and C(φk, ak, 1) as φk ⇀ φ̄ and ak ⇀ ā.
From the condition that there exists of designs with non-positive objectives,
we assume C(φk, ak, 1) ≤ 0 for k > K. Then, since C(φk, ak, 1) ≤ 0 and
C(φk, ak, r) > 0, the ratio C(φk, ak, 1)/C(φk, ak, 0) remains sequentially weakly
lower semicontinuous. The sequential weak lower semicontinuity of P(a) im-
plies that of O(φk, ak), which completes the proof.

4.3.3 With Voids

We may consider the introduction of voids in the finite elastic setting in a
similar manner to Section 4.2.4. Then, Theorem 4.3.5 and the associated
lemmas can straightforwardly be extended to the case for voids. We introduce
the additional scalar field ρ : Ω 7→ [ρmin, 1] which indicates solid or void, and
consider the energy

E(φ, ρ, a, u, r) :=W(φ, ρ, a, u, r)−
∫
∂tΩ

t · u dΩ,

W(φ, ρ, a, u, r) :=
∫

Ω
(f ∗ ρ)p[(1− (f ∗ φ)p)Wp(F )

+ (f ∗ φ)pWl(a, r, r0, F )] dΩ.

(4.94)

Again, we consider the the minimum compliance,

C(φ, ρ, a, r) := inf
u∈Umin(φ,ρ,a,S)

∫
∂tΩ

t · u dΩ, (4.95)

where Umin(φ, ρ, a, r) is the set of energy minimizing displacement fields. Then,
we consider minimizing the compliance ratio with the added penalty terms on
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a,
inf

φ∈Dφ, ρ∈Dρ, a∈Da
O(φ, ρ, a) := C(φ, ρ, a, 1)

C(φ, ρ, a, r) + P(a), (4.96)

where we re-use the definitions of the design spaces from (4.64) and (4.86).
The existence proof for two-material designs in Theorem 4.3.5 may be simply
extended for the inclusion of voids.

Theorem 4.3.6. SupposeWp is isotropic and polyconvex withWp(B) ≥ C1‖B‖pF−
C2, for p > 3, Wl is of the form (4.67) with W̃l as the Mooney-Rivlin energy
density from (4.68), and t ∈ L1(∂tΩ). Consider

O(φ, ρ, a) := C(φ, ρ, a, 1)
C(φ, ρ, a, r) + P(a). (4.97)

If the prescribed boundary displacements u0 = 0 and there exists some {φ̃, ρ̃, ã} ∈
Dφ × Dρ × Da such that O(φ̃, ρ̃, ã) ≤ 0, then there exists an optimal design
{φ̄, ρ̄, ā} ∈ Dφ ×Dρ ×Da such that

O(φ̄, ā) = inf
φ∈Dφ, a∈Da

O(φ, a). (4.98)

Proof. The proof follows almost exactly as Theorem 4.3.5, where the associated
lemmas and theorem may be simply extended to the case of the additional
design variable.

4.4 Examples of Lifting Actuators

We consider numerical examples using the formulations detailed in Section 4.2
and 4.3. We consider 2D and 3D lifting actuators occupying rectangular do-
mains for both the small strain and finite deformation setting. We detail the
parameterization, the numerical solution scheme, and present the converged
designs. Throughout all of the presented examples, we consider a standard
Galerkin finite element discretization with Largrange polynomial shape func-
tions. As conventional, we use a discontinuous Galerkin approximation for the
density variables ρ and φ, where their values are assumed constant on each
element. The continuous filter is replaced by the discrete renormalizing filter
in 2.29. The adjoint method is used to obtain the design sensitivities, and
gradient-based updates are performed using the classical Method of Moving
Asymptotes algorithm [41].
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Figure 4.1: Rectangular domain of length L and height h for the 2D lifting
actuator. Here, we apply a downward force t to the bottom right corner.

4.4.1 2D Lifting Actuator

Small Strains To simplify the computations in the small strain setting, we
parameterize the director field through a single scalar angle θ : Ω 7→ [0, π)
such that

a(x) = cos(θ(x))e1 + sin(θ(x))e2, (4.99)

where {e1, e2} is the standard basis in R2. Then, for optimizing a structure
with voids, we consider

inf
φ∈Dφ, ρ∈Dρ, θ∈[0,π)

O(φ, ρ, a(θ)) := Ō(C(φ, ρ, a, S1), C(φ, ρ, a, S2)). (4.100)

We consider the optimal design of a lifting actuator on the 2D rectangular
domain shown in Figure 4.1, with a vertical load applied to the bottom right-
hand corner. We look to minimize the compliance ratio

inf
φ∈Dφ, ρ∈Dρ, θ∈[0,π)

O(φ, ρ, a(θ)) = C(φ, ρ, a, 1)
C(φ, ρ, a, 0) . (4.101)

We discretize the domain with a 80×40 mesh and consider a standard Galerkin
finite element formulation with first order elements [12]. We set the densities
φ and ρ to be constant on each element, as well as the material orientation
angle θ. After computing the actuated and un-actuated displacement for a
given design and calculating the objective, sensitivities are computed using
the adjoint method. Then, we update the design through the gradient-based
Method of Moving Asymptotes (MMA) [9]. This is implemented in the C++
deal.ii finite element library [6].

Figure 4.2 shows the converged designs for varying elastic modulus ratios for
the responsive vs passive material, Er/Es. We use a fixed Poisson ratio of
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Figure 4.2: Converged designs for the rectangular lifting actuator of Figure 4.1
in the small strain setting for varying stiffness ratios for the active vs passive
material. The red indicates responsive material while blue denotes passive.
The director field a is shown in black lines.

ν = 0.48, and aspect ratio L/h = 2. We see that for the case of softer re-
sponsive material, the structure contains large regions of responsive material.
Conversely, for the case of stiffer responsive material, it is distributed thinly
as a frame. When the stiffness of the responsive and passive material is iden-
tical, the design resembles that of a standard minimum compliance structure.
Throughout all of these, the director field is oriented nearly vertical on the
bottom of the structure, and horizontal at the top. This allows it to lengthen
horizontally along the bottom edge and contract at the top, creating a hinging
effect, and thus lifting the load.

Finite Strains In the finite strain setting, we look to optimize the same
actuator shown in Figure 4.1. Here, we model both the passive and responsive
materials as compressible Neo-Hookean with strain energy functions

W̃l(F ) = µl
2
(
‖F‖2

F − 2− 2 log(DetF )
)

+ 2µlνl
1− 2νl

(Det F − 1)2 ,

Wp(F ) = µp
µl
W̃l(F ),

(4.102)

where µl and µp are the shear moduli for the LCE and passive material. We
use a Poisson ratio of νl = 0.48 as to give a near-incompressable response while
avoiding locking issues which may arise numerically from a fully incompressible
material model. Similar to the small strain regime, we discretize the densities φ
and ρ as constant on each element. However, as we need to evaluate gradients
of the director, we discretize this field through vector-valued first order finite
elements. Thus, we consider the director field a as parameterized through its
two scalar components

a(x) = a1(x)e1 + a2(x)e2, (4.103)
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where {e1, e2} is the standard basis in R2. Then, after updating these through
MMA, we apply a radial return to a unit vector at each nodal point.

Figure 4.3 shows converged designs for optimal compliance ratio in (4.84) for
varying shear moduli ratios of responsive to passive materials for a domain
aspect ratio of L/h = 2. This shares the general trends discussed for the small
strain setting of Figure 4.2. However, they differ in that these designs use
a large distribution of the responsive material along the bottom edge of the
structure. Here, the finite deformation kinematics allow for the lengthening of
these members to cause considerable vertical displacement.

4.4.2 3D Lifting Actuator

Small Strains In 3D, a parameterization through angles leads to a non-
uniform discretization of the unit sphere. Thus, we consider the direction a

parameterized through its 3 scalar components

a(x) = a1(x)e1 + a2(x)e2 + a3(x)e3 (4.104)

where, again {ei} is the standard basis on R3.

We consider maximizing the blocking load of an actuator occupying a cantelev-
ered rectangular prism under a uniform distributed load over a circular region
on the far face shown in Figure 4.4. We update the director field through
method of moving asymptotes, where we a apply a radial return to a unit
vector at each element after updating. Again, we consider a Poisson ratio
of ν = 0.48, and domain aspect ratio L/h = 2. Figure 4.5 shows converged
designs computed on a 80× 40× 40 mesh. These designs are quite similar in
nature to their 2D counterparts shown in 4.2.

Finite Strains In the finite strain setting, we look to optimize the same
actuator shown in Figure 4.4. We consider both the passive and responsive
materials as compressible Mooney-Rivlin material,

Wp(F ) = µp
µl
W̃l(F ), (4.105)

where W̃l is the compressible Mooney-Rivlin model from (4.68). Here, we
choose the α = 0.05 to give near Neo-Hookean response while maintaining
coercivity. Again, we choose a Poisson ratio of νl = 0.48 and domain aspect
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Figure 4.3: Converged designs for the rectangular lifting actuator of Figure 4.1
in the finite strain setting for varying stiffness ratios for the active vs passive
material. The red indicates responsive material while blue denotes passive.
The left column shows the reference configuration, with director fields a is
shown in black lines. The right column shows the deformed configuration
after actuation.
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Figure 4.4: 3D rectangular domain of side lengths L × h × h for the lifting
actuator. A uniform, downward distributed load t is applied to a circular
region at the center of the far face of the domain.

ratio L/h = 2. The director field a is parameterized through (4.104) and
discretized using a first order vector-valued finite element space. Again, we
update the director field through MMA, where we apply a radial return at
each node after updates.

Figure 4.5 shows converged designs computed on a 80× 40× 40 mesh. While
similar to the small-strain designs of 4.5, these have a smoother variation of
the director field which arises from the penalty term.

4.5 Simultaneous Design with Printing Constraints

The converged designs shown in Section 4.4 are optimized without considera-
tions for manufacturing constraints. This results in structures that could be
difficult to produce from a practical standpoint. Thus, we look to restrict the
design space to those which are feasible to produce. We detail how the manu-
facturing pathways for LCEs impacts the structural design. Then, we present a
print-aware design formulation. By restricting the space to solenoidal director
fields, we ensure manufacturability through emerging 3D printing techniques.
We prove well posedness in this setting, and demonstrate the formulation by
revisiting the previously explored lifting actuator, designing both the structure
and material orientation while recovering print paths. We observe that includ-
ing these print constraints in the formulation drastically alters the design.
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Figure 4.5: Converged designs for the 3D rectangular lifting actuator of Fig-
ure 4.4 in the small strain setting for varying stiffness ratios for the active
vs passive material. The red indicates responsive material while blue denotes
passive. The director field a is shown in black arrows.
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Figure 4.6: Converged designs for the 3D rectangular lifting actuator of Fig-
ure 4.4 in the finite strain setting for varying stiffness ratios for the active
vs passive material. The red indicates responsive material while blue denotes
passive. The director field a is shown in black arrows.
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4.5.1 Formulation

LCEs are typically printed using extrusion methods, with the mesogens aligned
along the extrusion axis [20, 4]. Thus, slender struts with nematic orientation
misaligned with the member are inefficient to print, requiring a large number
of passes. Additionally, structures with direction fields that vary heavily may
not have a printable path to match both the structure and nematic direction.
To this end, we look to incorporate these constraints to design both effective
and manufactureable responsive structures. We analyze this in a 2D setting,
as 3D printing for arbitrary directions is severely limited by the typical “layer-
by-layer” methods.

We introduce the scalar valued function Ψ : Ω 7→ R whose contours describe
the print path in the responsive structure domain. We constrain ∇Ψ · a =
0, which orients the contours along the nematic direction. Additionally, we
constrain ‖∇Ψ‖ = 1, which ensures that these contours are evenly space. We
note that the first constraint may be satisfied by ∇Ψ = Ra, where R ∈ SO(2)
is a counter-clockwise π/2 rotation. Thus, Ra is a gradient field, and thus has
zero curl, ∇×Ra = 0. This implies ∇ · a = 0. Therefore, we may enforce the
constraint that contours lie tangent to the direction field by ensuring that a
is solenoidal. An additional requirement is reducing the number of times the
print path alters course. This affects the print resolution as undesired material
is layed when the print head turns around. Additionally, this increases the
manufacturing duration and extends the time in which the partially cured
polymer is exposed to the environment. To this end, we also penalize print
paths which lie tangent to responsive material boundaries. This may occur
either on the boundary of the design domain, or in the interior near holes or
material interfaces.

To accomplish these requirements, we introduce an additional penalty on the
director field,

Pprint(φ, ρ, a) :=
∫

Ω

[
c1

2 g(ρf )g(φf )(∇ · a)2

+ c2 (g(ρf ) |a · ∇φf |+ g(φf ) |a · ∇ρf | )
]
dΩ

+
∫
∂Ω
c2g(φf )g(ρf )|a ·m| dΓ,

(4.106)

where m is the outward unit normal of ∂Ω and the subscript f denotes filtered
fields. Here, c1, c2 ∈ R+ are scalar constants. The first term in Pprint penalizes
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deviations from solenoidal director fields in the responsive structure domain.
The second term penalizes director fields perpendicular to the boundary of
the responsive structure inside the domain. Finally, the boundary integral
penalizes director fields which are perpendicular to the boundary of the do-
main for responsive solid. The absence of these constraints in void or passive
solid regions allow for restructuring of Ψ in these regions, which allows for
accommodation of print paths in disconnected regions of active material. It is
expected that c1 >> c2, as the solenoidal condition is a hard requirement while
the print path altering course is only softly penalized. g is a monotonically
increasing function which is chosen to ensure regions of intermediate density
are not favorable. Thus, we consider

g(q) = 1− (1− q)p. (4.107)

This penalizes intermediate densities with similar weight as fully solid or re-
sponsive regions.

The print path may be obtained by solving

inf
Ψ∈DΨ

Oprint :=
∫

Ω
φfρf

[
c3

2 (∇Ψ · a)2 + c4

2 (∇Ψ ·Ra− 1)2
]
dΩ (4.108)

where
DΨ :=

{
Ψ ∈ H1(Ω),

∫
∂Ω

Ψ dΓ = 0
}
. (4.109)

By adding Pprint to (4.96), we may obtain a printable structure. Then, solv-
ing (4.108) recovers the print path. We extend the proof of Theorem 4.3.6 to
include the print constraints Pprint.

Theorem 4.5.1. SupposeWp is isotropic and polyconvex withWp(B) ≥ C1‖B‖pF−
C2, for p > 3, Wl is of the form (4.67) with W̃l as the Mooney-Rivlin energy
density from (4.68), and t ∈ L1(∂tΩ). Consider

O(φ, ρ, a) := C(φ, ρ, a, 1)
C(φ, ρ, a, r) + P(a) + Pprint(φ, ρ, a). (4.110)

If the prescribed boundary displacements u0 = 0 and there exists some {φ̃, ρ̃, ã} ∈
Dφ × Dρ × Da such that O(φ̃, ρ̃, ã) < 0, then there exists an optimal design
{φ̄, ρ̄, ā} ∈ Dφ ×Dρ ×Da such that

O(φ̄, ā) = inf
φ∈Dφ, a∈Da

O(φ, a). (4.111)
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Proof. We need only to establish sequential lower-semicontinuity of Pprint
along sequences {φk, ρk, ak} ⊂ Dφ × Dρ × Da with φk ⇀ φ̄ in L2(Ω), ρk ⇀
ρ̄ in L2(Ω), and ak ⇀ ā in W 1,s(Ω), s > 3. Of course f ∗ φk → f ∗ ρ̄,
f ∗ ρk → f ∗ ρ̄ point-wise. As

∇(f ∗ ψ)(x) =
∫

Ω
∇f(x− y)ψ(y) dy, (4.112)

∇(f ∗ φk)→ ∇(f ∗ φ̄), ∇(f ∗ ρk)→ ∇(f ∗ ρ̄) point-wise as well. Additionally,
ak → ā in L∞(Ω). Then, as the last three terms of (4.106) are clearly uniformly
bounded, Lebesgue dominated convergence implies these terms are continuous
along such sequences. Finally, the convexity of (∇ · a)2 in ∇a gives lower
semi-continuity of the first term.

4.5.2 Revisited 2D Lifting Actuator

Figure 4.7 shows converged designs for identical parameters which were used
to generate Figure 4.3. We first examine the case of µr/µs = 1 in the middle
rows of Figure 4.7 and Figure 4.3. We observe that the print considerations
have a drastic impact on the design. While the free design acts as a pushing ac-
tuator with responsive material distributed along the bottom edge with nearly
vertical director alignment, the print-aware design acts mainly as a pulling
actuator with responsive material distributed along the top of the structure.
Additionally, the nematic directors in the print-aware case are aligned with
the main strut of active material. This trend is echoed in the other cases of
µr/µs = 0.2 and µr/µs = 5.

4.5.3 Physical Realization of Printed Structure

With the optimal design and print paths in the responsive material regions, we
may now manufacture the actuators. Prof. Taylor Ware, his student Seelay
Tasmim, and his postdoctoral scholar Asaf Dana fabricated the structures
at Texas A&M University. Figure 4.8 shows a design which is 3D printed
using liquid crystal elastomer and passive polymer as in [4]. That is, through
layer-by-layer extrusion based 3D printing followed a UV cure after the entire
structure is printed. Figure 4.9 shows the actuation through heating in an oil
bath. We see the expected lifting motion, verifying that the material synthesis
director orientation is suitable.
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Figure 4.7: Converged designs for the rectangular lifting actuator of Figure 4.1
in the finite strain setting with the inclusion of manufacturing constraints.
Designs for varying stiffness ratios for the active vs passive material are shown.
The red indicates responsive material while blue denotes passive. Left column
shows the reference configurations, with the director field a shown in black
lines. The associated print paths for the active material domains are shown in
the right column.
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Figure 4.8: Optimal design and print path of the rectangular lifting actuator
(right), along with printed structure (left). The darker yellow is the responsive
material, while the transparent material is passive. We see that the print lines
of the responsive structure follows the desired paths quite well.

Figure 4.9: Printed structure undergoing actuation in a heated oil bath. We
see that the actuation is a lifting motion as expected.

Currently, these designs are undergoing testing in a mechanical testing appa-
ratus. We plan to compare the compliance ratio for the loaded structure to
that of intuitive designs to verify optimality.

4.6 Conclusion

We have developed a general optimal design framework for soft responsive
actuators. Starting with the simplified case of linearized kinematics, we de-
veloped the theory to account for finite deformation, microstructure recon-
figuration, and manufacturing constraints for the model LCE system. We
addressed key issues of mathematical regularization while including considera-
tions for the fabrication pathway’s effect on the material orientation. Through
this, we developed a robust framework for designing actuators which take full
advantage of these emerging materials and manufacturing technologies. We
demonstrated this by designing lifting actuators which we physically realize
through advanced 3D printing methods.
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While the developed formulation is effective for the studied scenarios, it is not
without its shortcomings. Here, we designed for quasi-static conditions with
complete disregard for the kinetics driving actuation. In most applications,
speed of response is tremendously important. Thus, the kinetics leading to ac-
tuation (e.g., heat diffusion), must be modeled and accounted for in the design
formulation. Additionally, researchers have begun to develop responsive ma-
terial systems with multiple actuation modes [18]. Thus, incorporating multi-
functionality into the optimization framework would be a natural progression.
On the theoretical side, there remains mathematical intricacies which must be
solved. In particular, structural instabilities must be rigorously treated for a
fully robust design approach. However, the mathematical formulation in such
settings is quite unclear. This is in part due to instability phenomena be-
ing driven by the evolution of local energy minimizers, whereas the presented
treatment works with global minimization. A rigorous mathematical study
into these issues is required.

Even with these limitations, this work may serve as a starting point to guide
actuator design towards a myriad of applications. It is straightforward to
adapt the formulation to other responsive material systems including magneto-
responsive structures, hydrogels, and shape memory alloys. Additionally, an
identical treatment of the print constraints may be used for other anisotropic
3D printed materials. Finally, the rigorous mathematical approach we take
may be extended to include design considerations necessary for application
deployment such as actuation kinetics and strucrual instabilities.
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C h a p t e r 5

OPTIMAL STRUCTURES FOR FAILURE RESISTANCE
UNDER IMPACT

A. Akerson, Optimal structures for failure resistance under impact,
Journal of Mechanics and Physics of Solids 172 105172, 2023.

Abstract

The complex physics and numerous failure modes of structural impact cre-
ates challenges when designing for impact resistance. While simple geometries
of layered material are conventional, advances in 3D printing and additive
manufacturing techniques have now made tailored geometries or integrated
multi-material structures achievable. Here, we apply gradient-based topology
optimization to the design of such structures. We start by constructing a
variational model of an elastic-plastic material enriched with gradient phase-
field damage, and present a novel method to efficiently compute its transient
dynamic time evolution. We consider a finite element discretization with ex-
plicit updates for the displacements. The damage field is solved through an
augmented Lagrangian formulation, splitting the operator coupling between
the nonlinearity and non-locality. Sensitivities over this trajectory are com-
puted through the adjoint method, and we develop a numerical method to
solve the resulting adjoint dynamical system. We demonstrate this formula-
tion by studying the optimal design of 2D solid-void structures undergoing
blast loading. Then, we explore the trade-offs between strength and tough-
ness in the design of a spall-resistant structure composed of two materials of
differing properties undergoing dynamic impact.

5.1 Introduction

The design of structures for impact or blast loading is encumbered by the
complex interactions between wave propagation, plasticity, and material dam-
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age. This leads to failure modes such as plugging, fracture, petaling, and spall
which are highly dependent on the material parameters, loading conditions,
and structural layout [4]. This is further complicated by the trade-offs be-
tween properties such as strength and toughness when designing integrated
structures of multiple materials. In practice, engineers typically start with
industry standards and intuition, followed by sophisticated dynamical simu-
lations to iterate on a design before it undergoes physical testing. Usually,
these designs consist of simple geometries of layered materials [23, 25, 20].
However, with recent advances in additive manufacturing and 3D printing,
we may now look to tailored designs with complex geometries and integrated
materials [40, 2, 18]. Additionally, the exponential growth of computational
capabilities makes algorithmic optimal design methods feasible. This may al-
low us to efficiently design structures of unprecedented impact performance in
scenarios where intuitive design is not sufficient.

Of the optimal structural design formulations, topology optimization has proven
to be one of the most powerful methodologies. Density-based methods con-
sider the density of material at each point in the domain as the unknown
before the design is posed as an optimization problem over these densities.
Then, gradient-based optimization methods are used to iteratively update the
design, where sensitivities are usually computed through the adjoint method.
Originally introduced to optimize the compliance of linear elastic structures [8],
density-based topology optimization has since been applied to a wide range of
applications including acoustic band-gaps [44], piezoelectric transducers [45],
micro-electro-mechanical systems [37], energy conversion devices [14], and fluid
structure interaction [51]. Another common method is level-set topology op-
timization. Here, the boundary of the structure is defined as a level set of a
scalar-valued function, and optimization is performed over this function using
the shape-gradient [1]. Finally, phase-field approaches remain popular as their
variational form yields a favorable mathematical structure [10].

For the optimal design of impact problems, it is necessary to include transient
dynamics, rate-dependent plasticity, and damage mechanics when modeling
the material response. Past studies have addressed optimal design for transient
dynamic evolution with elastic material models [43, 33]. Additionally, plastic-
ity has been considered in both quasi-static [42, 49, 15, 48, 30] and dynamic
settings [32, 22]. However, a structure with damage has only been considered
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in the quasi-static case. This has been studied in both the ductile [26, 27]
and quasi-brittle [16, 34, 6] regime to design damage resistant structures. A
variational mechanics model, where solutions are computed through energy
principles, are favored to accurately model the physics and provide mathe-
matical structure. Furthermore, an efficient computational method for these
fields is necessary, as the iterative design process requires repeatedly simulating
the dynamics for updated designs.

To address the above mentioned requirements, we consider small-strain, rate-
dependent plasticity enriched with continuum damage through a variational
phase-field model in a transient dynamic setting. To efficiently simulate the
dynamic response, we consider a finite element discretization where we employ
an explicit update scheme for the displacement fields, and an implicit update
for both the plasticity and damage. Because these irreversible damage updates
are both nonlinear and non-local in nature, a direct computation would be
prohibitively expensive. To this end, we use an operator-splitting augmented
Lagrangian alternating direction method of multipliers. By introducing an
auxiliary damage and Lagrange multiplier field, we accurately and efficiently
solve for the damage updates by iterating between a nonlinear local problem,
a linear global problem, and a Lagrange multiplier update.

We look to optimize the material placement of the structure over the dynamic
trajectory for a given objective function. By assuming the material parameters
are dependent on a continuous design variable, we derive sensitivities through
the adjoint method. This results in an adjoint dynamical system that we solve
in a manner which shares similarities to the forward problem numerics. We use
a explicit update scheme for the adjoint displacement variable, and another
augmented Lagrangian method for the adjoint damage variable. However, the
adjoint problem is solved backwards in time, and the adjoint damage operator
is linear rather than the nonlinear operator seen in the forward problem. With
the adjoint solution, we compute the sensitivities and update the design.

We start in Section 5.2 by presenting the energy functional for system, then
discuss the dynamic equilibrium relations. We apply the adjoint method,
where sensitivities and adjoint relations are derived for a general objective.
In Section 5.3 we detail the solution process. First, we apply an augmented
Lagrangian to operator split the damage updates. Then, using a finite ele-
ment discretization, we solve the system with explicit displacement updates,
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followed by implicit plasticity and damage updates. We demonstrate the ac-
curacy and efficiency of the numerical scheme by considering the solution con-
vergence and time-scaling for a model problem. We use a similar numerical
scheme for the adjoint system and the associated dual variables. Next, in
Section 5.4, we discuss material interpolation schemes through intermediate
densities for both solid-void structures and multi-material designs. In Sec-
tion 5.5, we demonstrate the methodology by looking at two examples. First
we consider the design of 2D solid-void structures optimized for blast loading.
Next, we explore the trade-offs between strength and toughness in a two ma-
terial spall-resistant structure undergoing impact. Finally, in Section 5.6, we
summarize our findings and discuss further directions.

5.2 Theoretical Formulation

5.2.1 Forward Problem

We consider an elastic-plastic material capable of sustaining damage occupy-
ing a bounded, open domain Ω ⊂ Rn in its reference configuration over time
[0, T ]. We assume prescribed loads on ∂fΩ ⊂ ∂Ω and prescribed displacements
on ∂uΩ ⊂ ∂Ω. We consider small-strain, rate-dependent J-2 plasticity with
isotropic hardening to model the plasticity [35, 29]. Damage is measured by
the phase-field scalar quantity a : Ω × [0, T ] 7→ [0, 1], where values of 0 and
1 correspond to the undamaged and fully damaged states. Here, we use a
phase-field fracture model which we adapt for damage by considering a finite
length scale [11]. These models have been modified for ductile fracture by
including small-strain plasticity [13], and we adopt a similar formulation. We
assume the material parameters are dependent on a design field η : Ω 7→ [0, 1]
which determines the species of material at each point. We consider a vari-
ational structure, where minimization principles yields the internal variable
evolution [36]. Thus, we consider the incremental energy
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E(u, q, εp, a, η) =
∫

Ω

W e(ε, εp, a, η)

+ d(a)
[
W p(q, η) +

∫ t

0
g∗(q̇, η) dt

]
+ Gc(η)

4cw

[
wa(a, η)
`(η) + `(η)‖∇a‖2

]

+
∫ t

0
ψ∗(ȧ, η)dt

dΩ,

(5.1)

where u : Ω×[0, T ] 7→ Rn is the displacement field, εp : Ω×[0, T ] 7→ Rn×n is the
volume preserving plastic strain, and q : Ω × [0, T ] 7→ R+ is the accumulated
plastic strain whose evolution is defined by

q̇ =
√

2
3 ε̇

p · ε̇p. (5.2)

W e is the stored elastic energy density, which accounts for the tension-compression
asymmetry in its damage dependence [3],

W e(ε, εp, a, η) = K(η)
2 tr−(εe)2 + d(a)

[
K(η)

2 tr+(εe)2 + µ(η)εeD : εeD
]
, (5.3)

where K and µ are the bulk and shear moduli. d(a) models the weakening of
the material with damage,

d(a) = (1− a)2 + d1a
2, (5.4)

where d1 << 1. εe = ε − εp is the elastic strain, and εeD is its deviatoric
component. tr+(ε) and tr−(ε) are the positive and negative parts of the strain
trace,

tr+(ε) = max(tr(ε), 0), tr−(ε) = min(tr(ε), 0). (5.5)

This decomposition of the volumetric strain allows for tension-compression
asymmetry in the damage model; the tensile bulk modulus is affected by dam-
age, while the compressive bulk modulus remains unaffected. W p and wa are
the plastic and damage hardening functions, respectively. The damage param-
eters Gc and ` control the toughness and damage length scale, with cw as a
normalization constant. Finally, the rate dependence of both the damage and
plastic hardening is handled by the dissipation potentials ψ∗ and g∗, respec-
tively. These functions also account for irreversibility, as they take a value of
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+∞ for negative rates,

g∗(q̇, η) =

ḡ
∗(q̇, η) q̇ ≥ 0

∞ q̇ < 0
, ψ∗(ȧ, η) =

ψ̄
∗(ȧ, η) ȧ ≥ 0

∞ ȧ < 0
. (5.6)

For the plastic potentials, we consider power-law hardening and rate-sensitivity
functions

W p(q, η) = σy

q + nεp0
n+ 1

(
q

εp0

)(n+1)/n
 ,

ḡ∗(q̇, η) = mσyε̇
p
0

m+ 1

(
q̇

ε̇p0

)(m+1)/m

.

(5.7)

εp0 and ε̇p0 are the reference plastic strain and strain rate and σy is the initial
yield stress. n and m are the powers for the hardening and rate sensitivity,
with the perfecty plastic and rate-indepdendent cases occurring as n → ∞+
and m → ∞+, respectively [35]. These plastic hardening and rate-hardening
parameters may all depend on η. For the damage hardening, we consider a
quadratic function

wa(a, η) = w1a+ (1− w1)a2, (5.8)

where w1 ∈ [0, 1], which ensures wa(1) = 1, and may be dependent on η.
For simplicity, we consider the damage to be rate-independent by choosing
ψ̄∗(ȧ, η) = 0. Here, we scale both the plastic potential and shear modulus with
the same damage function d(a). Thus, the yield strength and Mises stress
have the same damage dependence, leading to damage independent plastic
updates. A further discussion on the behavior of a similar material model can
be found in [13]. However, this choice of constitutive is not essential, and the
methodologies we present below remain general.

We consider dynamic evolution through the incremental action integral

L(u, q, εp, a, η) =
∫ t2

t1

{
E(u, q, εp, a, η)−

∫
Ω

ρ(η)
2 |u̇|

2dΩ

−
∫

Ω
fb · u dΩ−

∫
∂fΩ

f · u dS
}
dt,

(5.9)

where fb and f are the body force and surface tractions, and ρ is the material
density. Stationarity of this action integral gives the dynamic evolution and
the kinetics of the internal variables [31]
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0 =
∫

Ω

[
ρü · δu+ ∂W e

∂ε
· ∇δu− fb · δu

]
dΩ

−
∫
∂fΩ

f · δu dΩ ∀δu ∈ U , (5.10a)

0 ∈ σ̄M −
∂W p

∂q
− ∂g∗, on Ω, (5.10b)

0 = ε̇p − q̇M on Ω, (5.10c)

0 ∈ ∂W
e

∂a
+ ∂d

∂a

(
W p +

∫ t

0
g∗(q̇) dt

)
−∇ ·

(
Gc`

2cw
∇a

)
+ Gc

4cw`
∂wa

∂a
+ ∂ψ∗ on Ω, (5.10d)

a = 0 on ∂uΩ, ∇a · n = 0 on ∂fΩ. (5.10e)

Here, we assume quiescent initial conditions. U is the space of admissible
displacement variations

U = {u ∈ H1(Ω), u = 0 on ∂uΩ}. (5.11)

(5.10a) is the second-order dynamic evolution of the displacement field. (5.10b)
and (5.10c) are the yield relation and the evolution of the plastic strain, where
σ̄M is the normalized Mises stress (divided through by d(a)), and M is the di-
rection of plastic flow. (5.10d) is the irreversible evolution of the damage field,
with (5.10e) being the boundary conditions for a. The differential inclusion in
the yield relation and damage equilibrium enforces the irreversibility of their
respective internal variables. A further discussion on the damage evolution
relation (5.10d) can be found in [28].

We briefly comment on the regularity of the solution to the forward prob-
lem. The plastic strains may be discontinuous in space, however, they remain
continuous in time as the rate-dependence provides temporal regularity. The
damage field, a ∈ L∞((0, T );H1(Ω;Rn)), is continuous in space while being
possibly discontinuous in time in the rate-independent case (ψ̄∗(ȧ, η) = 0). Fi-
nally, the displacement field, u ∈ H1((0, T );H1(Ω;Rn)), is continuous in both
space and time as the inertia provides temporal regularity.

5.2.2 Sensitivities and Adjoint Problem

We look to find the design field η(x) such that an objective, dependent on the
dynamic trajectory, is minimized. Thus, we consider a general objective of
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integral form

min
η(x)

O(η) :=
∫ T

0

∫
Ω
o(u, q, εp, a, η) dΩ dt

subject to: Equillibrium relations in (5.10).
(5.12)

To conduct gradient-based optimization, the variation of the objective with η
must be computed. For this, we employ the adjoint method [38]. We introduce
fields ξ, γ, µ, and b as the dual variables to the displacement, plastic hardening,
plastic strain, and the damage fields, respectively. We consider the necessary
Kuhn-Tucker conditions for the irreversible equilibrium relations, and carry
out the adjoint calculation. The full details of this can be found in 5.A. This
gives the total variation of the objective as

O,ηδη =
∫ T

0

∫
Ω

{
∂o

∂η
+ ∂ρ

∂η
ü · ξ + ∂2W e

∂ε∂η
· ∇ξ

+ bȧ

(
∂2W e

∂a∂η
+ ∂d

∂a

∂W p

∂η
+ ∂d

∂a

∫ t

0

∂g∗

∂η
dτ

)

+ 1
2cw

∂(Gc`)
∂η

∇(bȧ) · ∇a+ bȧ

(
wa′

4cw
∂(Gc/`)
∂η

+ ∂2ψ∗

∂ȧ∂η

)

+ γq̇

(
∂σ̄M
∂η
− ∂σ0

∂η
− ∂2g∗

∂q̇∂η

)}
δη dΩ dt,

(5.13)
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where the adjoint variables satisfy the dynamic evolution

0 =
∫

Ω

[(
∇ξ · ∂

2W e

∂ε∂ε
+ bȧ

∂2W e

∂a∂ε

+γq̇ ∂σ̄M
∂ε
− q̇µ · ∂M

∂ε

)
· ∇δηu

+ρξ̈ · δηu+ ∂o

∂u
· δηu

]
dΩ ∀δηu ∈ U , (5.14a)

d
dt

[
γ

(
σ̄M − σ0 −

∂ḡ∗

∂q̇

)
− γq̇ ∂

2ḡ∗

∂q̇2

+∂ḡ
∗

∂q̇

(∫ T

t
bȧd′(a)dτ

)
− µ ·M

]

= ∂o

∂q
+ bȧd′(a)∂W

p

∂q
− γq̇ ∂σ0

∂q
on Ω, (5.14b)

dµ
dt = ∂o

∂εp
+∇ξ · ∂

2W e

∂ε∂εp
+ bȧ

∂2W e

∂a∂εp

+ γq̇
∂σ̄M
∂εp
− q̇µ · ∂M

∂εp
on Ω, (5.14c)

d
dt

[
Dab+ ∂2ψ̄∗

∂ȧ2 bȧ

]
= ∂o

∂a
+ ∂2W e

∂a∂ε
· ∇ξ

+ bȧ

(
∂2W e

∂a2 + Gc

4cw`
∂2wa

∂a2

)

+ bȧd′′
(
W p +

∫ t

0
g∗dτ

)
−∇ ·

(
Gc`

2cw
∇(bȧ)

)
on Ω, (5.14d)

ξ|t=T = 0, ξ̇|t=T = 0,

γ|t=T = 0, µ|t=T = 0, b|t=T = 0,

where

Da = ∂W e

∂a
+ ∂d

∂a

(
W p +

∫ t

0
g∗ dτ

)
−∇·

(
Gc`

2cw
∇a

)
+ Gc

4`cw
∂wa

∂a
+ ∂ψ̄∗

∂ȧ
. (5.15)

These are dependent on the forward problem solution and must be solved back-
wards in time. Once the forward problem is solved in time for u(t), a(t), q(t),
and εp(t), they can be used to solve the adjoint problem backwards in time for
ξ(t), b(t), γ(t), and µ(t). The sensitivities can then be computed from (5.13).
Details of the numerical methods to solve the forward and adjoint problem are
discussed in the proceeding section.
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It should be noted that both the adjoint problem and expression for the sensi-
tivities may have issues with well-posedness. As we have used an elastic energy
function which remains strongly convex, the Hessian which appears above is
well defined. However, for a different choice of elastic energy this may not
be the case. Furthermore, the convexity of the adjoint problem with respect
to the entire variable set {ξ, γ, µ, b} is not established, which may lead to an
ill-posed problem. While inertia is thought to provide some temporal regu-
larity, the reader is nontheless cautioned in this regard. Additionally, issues
may arise from the possible temporal discontinuities of the damage field dis-
cussed previously in Section 5.2.1. Thus, the ȧ found in the adjoint relations
may not be well-defined. A rigorous investigation into these matter would
be quite worthwhile. However, after discretization we find that the presented
formulation is sufficient in practice, perhaps providing the required regularity.

5.3 Numerics

5.3.1 Forward Problem

We discuss the details for the numerical evolution of the forward dynamics.
First we introduce an augmented Lagrangian formulation to split the nonlin-
ear and non-local operator coupling in the damage field equilibrium. Then,
using a finite element discretization, we discuss the computational procedure
for updating the displacements, plasticity and damage variables. Finally, we
study the accuracy and efficiency of our formulation by studying the solution
behavior for varying mesh sizes.

Augmented Lagrangian

The differential inclusion and gradient terms in the damage evolution of (5.10d)
result in a nonlinear and non-local state equation for the damage updates.
While there exist methods to directly solve these non-local constrained prob-
lems, they result in expensive computations that would be required at every
timestep. Thus, we consider an augmented Lagrangian formulation to split
this operator, and solve the system using an alternating direction method of
multipliers (ADMM) [19, 17]. This method has been used to efficiently solve
non-linear elasticity problems with internal variable evolution [52]. We intro-
duce the auxiliary field α ∈ L2(Ω) and constrain a = α weakly for all time with
the Lagrange multiplier λ ∈ L2(Ω) and penalty factor r. Thus, we consider
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the modified incremental energy

E =
∫

Ω

W e(ε, εp, α, η) + d(α)
[
W p(q, η) +

∫ t

0
g∗(q̇, η) dt

]

+ Gc(η)
4cw

[
wa(α, η)
`(η) + `(η)‖∇a‖2

]
+
∫ t

0
ψ∗(α̇, η)dt

+ r

2(a− α)2 + λ(a− α)

 dΩ.

(5.16)

Stationarity of the action integral using this augmented energy results in the
equilibrium relations identical to that of (5.10), with the exception that (5.10d)
be replaced by

λ+ r(a− α)− ∂W e

∂α
− d′(α)

[
W p(q) +

∫ t

0
g∗(q̇) dt

]
− Gc

4cw`
∂wa

∂α
(α) ∈ ∂ψ∗ (α̇) on Ω, (5.17a)

0 =
∫

Ω

[
Gc`

2cw
∇a · ∇δa+ r(a− α)δa+ λδa

]
dΩ ∀δa ∈ A, (5.17b)

0 =
∫

Ω
(a− α)δλ dΩ ∀δλ ∈ L2(Ω), (5.17c)

where
A = {a ∈ H1(Ω), a = 0 on ∂uΩ}. (5.18)

With α as the unknown, (5.17a) is a nonlinear local problem. Correspondingly,
the second line (5.17b) is a linear global problem for a. The de-coupling of
nonlinearity and non-locality allows for the efficient computation of the damage
evolution, which we discuss with the numerical implementation.

Discretization and Solution Procedure

We discretize the system with standard p = 1 Lagrange finite elements for the
displacement field u and the damage field a as

u =
nu∑
i=1

uiN
u
i (x), a =

na∑
i=1

aiN
a
i (x), (5.19)

where Nu
i : Ω 7→ Rn and Na

i : Ω 7→ R are standard vector and scalar valued
first-order shape functions with compact support. The fields α, q, and εp are
discretized at quadrature points

α(xg) = αg, q(xg) = qg, εp(xg) = εpg, (5.20)
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for some Gauss point xg. The Lagrange multiplier field λ is discretized in the
same finite element space we use for a as

λ =
na∑
i=1

λiN
a
i (x). (5.21)

Finally, the design field η is assumed constant on each element.

We start with an explicit central difference scheme to update the displace-
ment field. Because the plasticity updates do not depend on the damage field,
q and εp are next computed implicitly with a backwards Euler update. Fi-
nally, the damage field is updated implicitly by iterating between a nonlinear
local problem for α by solving (5.17a), a linear global problem for a through
(5.17b), and a Lagrange multiplier update for λ until convergence. Since the
operator for the global problem remains identical between iterations, we need
only construct the system matrix and perform the sparse LU decomposition
once, where subsequent solves involve only a right-hand side assembly and
back-substitution. For the n to n+ 1 time-step the displacement updates are

üni = M−1
ij F

n
j (un, εp,n, αn, tn),

u̇
n+1/2
i = u̇

n−1/2
i + ∆tn üni ,

un+1
i = uni + ∆tn+1/2 u̇

n+1/2
i ,

(5.22)

where
Mij =

∫
Ω
ρ(x)Nu

i ·Nu
i dΩ,

F n
j =

∫
Ω

[
−∂W

e

∂ε
(εn, εp,n, αn, η) · ∇Nu

j + fb ·Nu
j

]
dΩ

−
∫
∂fΩ

f ·Nu
j dΩ.

(5.23)

In standard fashion, these integrals are approximated with Gauss quadrature.
Again, since the plastic evolution does not depend on the damage field, we
update the plasticity variables through an implicit backwards Euler discretiza-
tion. For this, we employ a predictor-corrector scheme [35] to solve point-wise
at each quadrature point,

0 ∈ σ̄M(εn+1|xg , εp,(n+1)
g , η(xg))− σ0(qn+1

g , η(xg))− ∂g∗
(
qn+1
g − qng

∆t , η(xg)
)
,

εp,(n+1)
g = εp,ng + ∆qM(εn+1

g , εp,(n+1)
g ).

(5.24)
The update for α uses an implicit backwards Euler method, coupled with
ADMM for the fields a and λ. This reduces to iterations between a nonlinear
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point-wise problem for the updates of α, a linear global problem for a, and an
update for λ.

We summarize these operations for the n to n+1 time-step. Given un+1, qn+1,
εp,(n+1), we initialize values λ̃0 = λn, ã0 = an, and iterate over i:

• Step 1: Non-linear local problem. Update α̃i+1 by solving at each xg

−∂W
e

∂α

(
εn+1|xg , α̃i+1

g , η(xg)
)

− d′(α̃i+1
g )

[
W p(qn+1

g , η(xg)) +
∫ t

0
g∗(q̇g, η(xg)) dt

]
− Gc(η(xg))

4cw`(η(xg))
∂wa

∂α

(
α̃i+1
g , η(xg)

)
+ λ̃i|xq + r

(
ãi|xg − α̃i+1

g

)
∈ ∂ψ∗

(
α̃i+1
q − αnq

∆tn
, η(xq)

)
.

(5.25)

• Step 2: Linear global problem. Update ãi+1 by solving

Kpj ã
i+1
j = Vp(α̃i+1, λ̃i), (5.26)

where

Kpq =
∫

Ω

[
Gc(η)`(η)

2cw
∇Na

p · ∇Na
q + rNa

pN
a
q

]
dΩ,

Vp(α, λ) =
∫

Ω
(rα− λ)Na

p dΩ.
(5.27)

• Step 3: Update Lagrange multiplier. Update λ̃i+1 by

λ̃i+1
j = λ̃ij + r(ãi+1

j − S−1
jk α̂

i+1
k ), (5.28)

where
Sjk =

∫
Ω
Na
j N

a
k dΩ, α̂i+1

k =
∫

Ω
α̃i+1Na

k dΩ. (5.29)

Note: this is the weak form of the update ∆λ = r(a− α).

• Step 4: Check for convergence. Check both primal and dual feasibility

rp :=
∥∥∥āi+1 − α̂i+1

∥∥∥
l2
≤ 1
√
na
rtolabs + rtolrel max

(∥∥∥α̂i+1
∥∥∥
l2
,
∥∥∥āi+1

∥∥∥
l2

)
,

rd := r
∥∥∥āi+1 − āi

∥∥∥
l2
≤ 1
√
na
rtolabs + rtolrel

∥∥∥λ̄i+1
∥∥∥, (5.30)

where
āi+1
j = Sjkã

i+1
k , λ̄i+1

j = Sjkλ̃j. (5.31)
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Figure 5.1: The model problem we use to study the accuracy and efficiency of
our formulation. We consider a rectangular geometry with a impulse Gaussian
loading profile (a). Additionally, deformed configurations with accumulated
plasticity (b) and damage fields (c) are shown at the final time-step computed
on a 200×50 mesh.

In the above, we use the vector l2 norm

‖ā‖2
l2 =

na∑
i=1

ā2
i . (5.32)

until convergence, and update αn+1 = α̃i, an+1 = ãi, and λn+1 = λ̃i. For
faster convergence, we update the penalty value r between iterations. As
larger values of r improve primal feasibility convergence while slowing the
dual feasibility convergence (and vice-versa), adapting the value of r based on
these feasibility values can lead to few iterations [52, 12]. Thus, we consider
the following scheme

r =


min(γrr, rmax) if rp/rd > τ

max(r/γr, rmin) if rd/rp > τ

r else

. (5.33)

In our study, we choose τ = 10, and take γr = 2.

Accuracy and Efficiency

To analyze the efficiency and efficacy of the above formulation, we study a
model problem. We consider a clamped bar undergoing dynamic loading on
its top surface, as shown in Figure 5.1a. The loading is chosen such that the
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Parameter Value Used Description
Parameters for Accuracy and Scaling Tests

H/L 0.25 Aspect ratio of domain
ν 0.3 Poisson ratio
σy0/E 1.0× 10−2 Yield strength
εp0 0.13 Reference plastic strain
n 10 Isotropic hardening power
ε̇p0L/

√
E/ρ 0.32 Reference plastic strain rate

m 6 Rate sensitivity power
`/L 0.02 Damage length scale
Gc0/(`E) 1.5× 10−2 Toughness
d1 0.01 Relative stiffness when fully damaged
w1 0.95 Damage hardening parameter
f0d/E 1.04× 10−2 Loading peak magnitude
Lf/L 0.1 Half width of Gaussian loading profile
σf/L 0.05 Standard Deviation of loading profile
t̄
√
E/ρ/L 1.26 Duration of loading

T
√
E/ρ/L 11.3 Simulation time

Table 5.1: Non-dimensional geometric, loading, and material parameters used
numerical accuracy and efficiency validation.

structure undergoes both plastic and damage evolution along its trajectory.
Table 5.1 shows the geometric, loading, and material parameters used for this
study. Figure 5.1b and 5.1c show the plasticity and damage fields at the final
time. We investigate the solution convergence and time-scaling for uniform
meshes varying from 60×15 to 600×150 for a constant 18,000 time-steps. Each
of the simulations are run on 6 CPU cores using shared memory. The absolute
and relative ADMM tolerance is set to a constant rtolabs = rtolrel = 10−7.

To study the solution convergence, we consider the L2 norm in time of the H1

norm in space, which we denote as ‖‖ · ‖‖ := ‖
(
‖ · ‖H1(Ω)

)
‖L2(0,T ). We investi-

gate ‖‖u‖‖ for the varying meshes. As an analytical solution does not exist, we
consider the solution on the 600 × 150 mesh as the reference, ū. Figure 5.2a
shows the convergence of the displacement norm for varying characteristic
mesh size h. A linear fit yields a convergence rate of 1.31, demonstrating



113

(a) (b)

Figure 5.2: Solution convergence and time-scaling plots for varying mesh sizes.
The solution norm ‖‖u‖‖ is studied relative to the characteristic mesh size h
(a). For time-scaling, we consider the wall time v.s. the number of element,
NE (b). The black dots represent data for each of the simulations, while the
red lines show the linear fits, with the first order coefficients denoted on the
triangles.

super-linear convergence even while undergoing large plastic and damage evo-
lution. Next, we study the time-scaling for varying mesh sizes. For meshes
varying from 900 to 90,000 elements, we see a growth rate with wall time of
1.26. This exceptional scaling may be attributed to the ADMM algorithm for
computing the damage evolution. As the linear global problem has a constant
operator for each penalty value r, these matrices may be pre-computed and
treated with an LU decomposition in set-up. Then, each of the linear solves
may be executed through efficient back-substitution. It is expected that this
scaling breaks down if the number of elements increases significantly, as the
solution time is then dominated by the more inefficient LU decomposition.
Finally, 5.C presents a convergence study with respect to temporal resolution,
and we see convergence in this regard as well.

5.3.2 Adjoint Problem

We now turn to the details of the numerical evolution of the adjoint problem,
which must be solved backwards in time using the solution to the forward
problem. For efficiency, we employ another augmented Lagrangian formula-
tion for the adjoint damage variable update. Then, we discretize with finite
elements and describe the solution procedure.
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Augmented Lagrangian

The adjoint damage evolution for b in (5.14d) is challenging to efficiently solve.
While the equation itself is linear, the ȧ dependence makes the discretized op-
erator dependent on the time-step. Therefore, we look to apply an augmented
Lagrangian to cast this as a constant-operator global problem and a time-step
dependent local problem. We introduce the auxillary field z ∈ A, and con-
strain z = ȧb weakly through the Lagrange multiplier field χ ∈ L2(Ω). By
writing the adjoint damage update as a minimization problem, we apply an-
other augmented Lagrangian through the penalty parameter r (See 5.B). This
gives the adjoint damage evolution as

0 =
∫

Ω

[
(r(z − ȧb) + χ) δz + Gc`

2cw
∇z · ∇δz

]
dΩ ∀δz ∈ A, (5.34a)

d
dt
[
bDa + ψ̄∗′′ȧb

]
= ∂o

∂a
+ ∂2W e

∂a∂ε
· ∇ξ

+ ȧb

(
∂2W e

∂a2 + Gc

4`cw
∂2wa

∂a2

)

+ ȧbd′′
[
W p +

∫ t

0
g∗dτ

]
− r(z − ȧb)− χ on Ω, (5.34b)

0 =
∫

Ω
(z − ȧb) δχ dΩ ∀δχ ∈ L2(Ω). (5.34c)

The first line (5.34a) is linear constant-operator global problem for z. (5.34b)
is a linear local problem for b. Finally, the last line (5.34c) is the constraint
that z = ȧb weakly. We discuss the iterative method of solving this in the
next section.

Discretization and Solution Procedure

The adjoint variables are discretized in the same manner as their forward
counterparts. The adjoint displacement field ξ, the adjoint damage field z,
and adjoint Lagrange multiplier fields are then

ξ =
nu∑
i=1

ξiN
u
i (x), z =

na∑
i=1

ziN
a
i (x), χ =

na∑
i=1

χiN
a
i (x). (5.35)

The fields b, γ, and µ are discretized at quadrature points:

b(xg) = bg, γ(xg) = γg, µ(xg) = µg, (5.36)
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for some Gauss point xg. The adjoint problem must be solved backwards in
time. Similar to the forward problem, we use an explicit central difference
scheme for the adjoint displacement variable. Then, we implicitly update the
adjoint damage variables through an alternating direction method of multipli-
ers. After these converge, the adjoint plastic variables are updated implicitly.
For the n+ 1 to the n time-step the displacement updates are

ξ̈n+1
i = M−1

ij H
n+1
j (un+1, εp,n+1, αn+1, ξn+1, bn+1, γn+1, µn+1),

ξ̇
n+1/2
i = ξ̇

n+3/2
i −∆tn+1 ξ̈n+1

i ,

ξni = ξn+1
i −∆tn+1/2 ξ̇

n+1/2
i ,

(5.37)

where

Hn
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j
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(5.38)

The update for b uses an implicit forward Euler method, coupled ADMM for
fields z and χ. This results in iterations between a point-wise linear problem
for b, a constant-matrix linear global problem for z, and an update for χ.

We describe this for the n + 1 to n time-step. Given ξn, intialize χ̃0 = χn+1,
z̃0 = zn+1, and iterate over i:

• Step 1: Linear local problem. Update b̃i+1 by solving at each xg

b̃i+1
g =

α̇n+1
g bn+1
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∣∣
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(5.39)

where

D̃n
a,g =

[
∂W e

∂α
+ Gc

4`cw
∂wa

∂α
+ ∂d

∂α

(
W p +

∫ t

0
g∗ dτ

)
+ ∂ψ̄∗

∂α̇

]
xg ,tn

− r(an|xg − αng )− λn|xg .
(5.40)

• Step 2: Linear global problem. Update z̃i+1 by solving

Kpj z̃
i+1
j = Up(b̃i+1, χ̃i), (5.41)

where
Up(b, χ) =

∫
Ω

(rα̇nb− χ)Na
p dΩ. (5.42)
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• Step 3: Update Lagrange multiplier. Update χ̃i+1 by

χ̃i+1
j = χ̃ij + r(z̃i+1

j − S−1
jk ẑ

i+1
k ), (5.43)

where
ẑi+1
k =

∫
Ω
α̇nb̃i+1Na

k dΩ. (5.44)

Note: this is the weak form of the update ∆χ = r(z − α̇b).

• Step 4: Check for convergence. Check both primal and dual feasibility,

rp :=
∥∥∥z̄i+1 − ẑi+1

∥∥∥
l2
≤ 1
√
na
rtolabs + rtolrel max

(∥∥∥ẑi+1
∥∥∥
l2
,
∥∥∥z̄i+1

∥∥∥
l2

)
,

rd := r
∥∥∥z̄i+1 − z̄i

∥∥∥
l2
≤ 1
√
na
rtolabs + rtolrel

∥∥∥χ̄i+1
∥∥∥, (5.45)

where
z̄i+1
j = Sjkz̃

i+1
k , χ̄i+1

j = Sjkχ̃
i+1
k . (5.46)

until convergence, and set bn = b̃i, zn = z̃i, and χn = χ̃i. We adapt the penalty
value r similarly to the forward problem in (5.33).

Finally, the adjoint plastic variables γng and µng are implicity updated by solving
at each quadrature point:[
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(5.47)

This is a linear system of equations which may be solved by direct inversion.
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Figure 5.3: Diagram of the computational method for gradient-based topology
optimization over the dynamic trajectory with plasticity and damage.

5.3.3 Sensitivities and Design Updates

Optimal design problems in structural mechanics often lead to ill-posed min-
imization problems, where minimizing sequences develop fine scale oscilla-
tions [24, 46]. To recover a well-posed problem, we filter the design variable η.
These density-based filtering methods have been shown to lead to well-posed
problems for linear, static compliance optimization. We consider η constant
on each element, and adopt a discrete re-normalized filter with a linear weight
function [9]. Sensitivities, accounting for the filtering, are then computed
from (5.13). These are used to update η using the gradient-based method of
moving asymptotes (MMA) [47]. This process is continued until convergence.
Figure 5.3 shows a flow diagram of the entire computational process.

5.4 Material Interpolation

In the preceding section, we developed a computational method for evolving
the forward and adjoint problem to compute sensitivities. However, we still
must define how the material parameters depend on the design parameter η.
That is, we must determine how the material density, elastic energy, plastic
potential and dissipation, and also the damage parameters depend on η. In
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this section, we discuss interpolation schemes for both solid-void designs, as
well as designs composed of two materials of differing parameters.

The approach that we take implicitly penalizes intermediate densities, as is
done by Solid Isotropic Material with Penalization (SIMP) methods used in
static linear elastic compliance minimization [7]. Thus, we interpolate the ma-
terial properties for intermediate densities while maintaining desired properties
of each of the full material species. However, as there are multiple material
parameters, rather than just the elastic modulus of SIMP, this leads to a com-
plicated procedure which we describe below. Additionally, as SIMP in the
linear elastic setting is specialized for compliance minimization, our method
is specialized for failure resistance. Other objective functions would require
a different interpolation scheme, as to render the intermediate densities un-
favorable. Finally, sharp interface methods do not require interpolation [50].
However, the behavior of the full material species which we present would still
be valid, and other issues might arise when computing the shape derivative.

5.4.1 Solid-Void Designs

We consider η as differentiating between void at η = ηmin << 1 and solid
at η = 1. Usually ηmin ≈ 0.01. Similar to traditional topology optimiza-
tion, we would like to penalize intermediate densities so converged designs are
dominated by regions of completely solid or void. In the following, the sub-
script 0 denotes parameters for the completely solid material. We propose the
following interpolation scheme:

Material density We consider η a density variable, and assume the material
density varies linearly:

ρ(η) = ηρ0. (5.48)

Elastic Energy For simplicity, we consider a separable dependence for the
elastic energy through a Bezier curve interpolation. This ensures that the ratio
of stiffness to density does not go to zero in the limit of small η. This mitigates
spurious dynamical modes which could arise from artificial acoustic properties
of the voids [7]. We consider

W e(ε, εp, a, η) = Be(η)W e
0 (ε, εp, a), (5.49)
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where W e
0 is the elastic energy of the solid and Be(η) is defined through

η = 1− k2

k1 − k2
(3v − 3v2) + v3,

Be = k1
1− k2

k1 − k2
(3v − 3v2) + v3.

(5.50)

Given η, the top equation may be solved for v, which is then used to compute
Be in the second equation. k1 and k2 are the derivative values dB

dη
at η = 0

and η = 1, respectively. Typical values for these slopes are k1 ≈ 0.2, k2 ≈ 5.

Plastic potentials For the plastic potentials, we will again consider a sep-
arable dependence

W p(q, η) = Bp(η)W p
0 (q), g∗(q̇, η) = Bp(η)g∗0(q̇). (5.51)

However, care must be taken in choosing Bp(η), as we require this interpolation
to satisfy certain properties:

• Strong voids : The yield stress should be sufficiently high as to reduce
excessive permanent deformation in the void regions. Additionally, we do
not want to waste computational effort on plastic updates in the voids.
This requires

1 < Bp(ηmin)
Be(ηmin) . (5.52)

• Unfavorable intermediate densities : The interpolation of the plastic po-
tential should ensure that the relative yield stress is not excessively high
in regions of intermediate density, so optimal solutions are dominated by
regions of either completely solid or void. This requires

Bp(η)
Be(η) < τp ∀η ∈ [η1, η2], (5.53)

where ηmin < η1 < η2 < 1 and τp ∼ 1.

We may accomplish both of these by considering a shifted Bezier curve inter-
polation as

Bp(η) = Be(η) + δp
1 + δp

, (5.54)

where Be(ηmin) < δp << 1.
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Damage parameters We now discuss the interpolation for the damage be-
havior. For simplicity, we assume that the normalized damage potential wa(a)
is independent of the density. The damage length scale will also be considered
constant with density

`(η) = `0. (5.55)

This allows the same computational mesh to resolve damage in both the solid
and void regions. Then, we must only prescribe the interpolation on the
toughness Gc. We assume a separable dependency

Gc(η) = Ba(η)Gc0, (5.56)

where the interpolation function Ba must satisfy the following:

• Boundary condition preservation : The behavior at the solid-void in-
terface should be nearly equivalent to the natural boundary conditions.
This ensures that the voids behave similarly to free boundaries and do
not add artificial toughness. This requires

Ba(ηmin) << Ba(1). (5.57)

• Tough voids: We require that the damage not propagate through the
void regions, which could result in damage ”jumping” from one solid
region to another by moving through voids. This requires

1 < Bp(ηmin)
Be(ηmin) <<

Ba(ηmin)
Be(ηmin) , (5.58)

ensuring that the relative toughness of the voids is much larger than that
of the solid.

• Unfavorable intermediate densities : The damage interpolation should
ensure that the relative toughness is not excessively high in regions of
intermediate density, so optimal solutions are dominated by regions of
either completely solid or void. This requires

Ba(η)
Be(η) < τa ∀η ∈ [η1, η2], (5.59)

where ηmin < η1 < η2 < 1 and τa ∼ 1.
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Figure 5.4: Plot of the interpolation functions for the elasticity (Be), plasticity
(Bp), and damage (Ba) for parameters k1 = 0.2, k2 = 5.0, δp = k1ηmin, and
δa = 9k1ηmin. Here, ηmin = 0.01.

We may again accomplish these through a shifted Bezier curve,

Ba(η) = Be(η) + δa
1 + δa

, (5.60)

where Be(ηmin) << δp < δa << 1.

For our investigation, we choose a value of δp = k1ηmin, δa = 9k1ηmin. Thus,
the yield strain of the void regions is roughly twice that of the solid. Addition-
ally, the voids have around 10 times the relative toughness of the solid regions.
Figure 5.4 shows these interpolation functions plotted for typical values.

5.4.2 Two-Material Design

We now consider designs composed of two materials, where η = 0 and η = 1
represents solids of either species. We propose to interpolate the majority
of these parameters through standard power-law functions. These penalize
regions of intermediate densities, while also being efficient and simple to im-
plement. We discuss this further in Section 5.5.2 where we consider a specific
example.

5.5 Examples

We now demonstrate the methodology using two examples which are of inde-
pendent interest for the insights they offer on damage resistant structures. The
first is a solid-void design to resist impulse loading. The second example ex-
plores the trade-offs between strength and toughness in a spall-resistant struc-
ture composed of two different materials undergoing dynamic impact. The
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forward dynamics, adjoint problem, sensitivity calculation, and MMA update
schemes are implemented using the deal.II C++ finite element library [5].

5.5.1 Solid-Void for Blast Loading

We consider η as a density variable distinguishing between solid material and
void. To model blast loading, we assume a fixed loading prescribed on the
boundary. Thus, we consider a rectangular 2D geometry and impulse loading
as shown in Figure 5.5. We look to minimize a sum of the time-space norm of
the displacements, plastic dissipation, and damage dissipation

O = σy0L

T 1/s ‖
(
‖u‖H1(Ω)

)
‖Ls(0,T ) + cpDp + caDa, (5.61)

where cp and ca are weights, and Dp and Da are measures of the dissipated
energy to plasticity and damage,

Dp =
∫

Ω
d(a(T ))

(
W̃ p

∣∣∣
t=T

+
∫ T

0
g̃∗ dt

)
dΩ,

Da =
∫

Ω

[
G̃cw

a(a(T ))
4cw`

+
∫ T

0
ψ̃∗ dt

]
dΩ.

(5.62)

We use a modified interpolation scheme in the objective to penalize interme-
diate densities. That is, we choose W̃ p, g̃∗, G̃c, and ψ̃∗ to remain relatively
large for intermediate η. Thus, we consider a concave power-law interpolation

W̃ p(q, η) = P (η)W p
0 (q), g∗(q̇, η) = P (η)g∗0(q),

G̃c(η) = P (η)Gc0, ψ∗(q̇, η) = P (η)ψ∗0(q),
(5.63)

where
P (η) = 1− (1− η)pO . (5.64)

Here, pO is a growth factor parameter. s is the power for the norm in time.
Because we intend to minimize the largest displacements, we choose s = 4 for
the following studies. Additionally, we choose a value of pO = 8.

We consider material parameters shown in Table 5.2. We also show material
parameters for Al2014-T6, which were approximated from [39] where applica-
ble, to demonstrate that we are indeed studying a realistic regime. We consider
a Gaussian loading profile of standard deviation σf = L/20, truncated to a
total width of 2Lf = L/5. We use objective penalty values of cp = 5, ca = 50.
Thus, we look to heavily penalize damage. For the interpolation parameters,
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Parameter Value Used AL2014-T6 Description
Geometric and Material Parameters

H/L 0.25 N/A Aspect ratio of domain
ν 0.3 0.33 Poisson ratio
σy0/E 1.0× 10−2 0.71× 10−2 Yield strength
εp0 0.13 0.7 Reference plastic strain
n 10 1.48 Isotropic hardening power
ε̇p0L/

√
E/ρ 0.32 0.33 Reference plastic strain rate

m 6 3.3 Rate sensitivity power
`/L 0.02 N/A Damage length scale
Gc0/(`E) 1.5× 10−2 0.61× 10−2 Toughness
d1 0.01 N/A Relative stiffness fully damaged
w1 0.95 N/A Damage hardening parameter

Table 5.2: Non-dimensional geometric and material parameters used for the
solid-void structures. Where applicable, approximate values for a Al2014-T6
specimen of length L = 1m are included to illustrate the typical value ranges
(taken from Deformation behaviours of Al2014-T6 at different strain rates and
temperatures, Prakash et al., Structures 2020.

we linearly update the Bezier slopes from k1 = 0.5, k2 = 2.0 to k1 = 0.125,
k2 = 8 from the first to the 50th iteration. This allows the structure topol-
ogy to more free change at lower iterations before intermediate densities are
severely penalized, and is standard practice in topology optimization [7]. Be-
cause the structure may not be able to withstand the loading (without severe
damage) for the early iterations, we begin with a lower loading amplitude
before gradually increasing to the final desired value. We set the loading am-
plitude to be 70% of the final value until iteration 60, which we then linearly
increase to the final value by iteration 100. Computations are performed on a
100× 25 mesh, with a density filter radius of 0.021L. Additionally, we restrict
the amount of material used to be no more than half the volume of Ω. Designs
are then initialized to uniform density fields equal to the total allowed volume
fraction η = 0.5. We consider designs converged when the maximum change
in density variable is less than 10−3, or after 300 iterations.

We explore optimal designs for varying applied impulse magnitude
I =

∫ T
0
∫
∂fΩ |f | dΩdt, and loading duration t̄. Here, we consider a reference
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Figure 5.5: Geometry and dynamic impulse loading we consider for the solid-
void structure.

loading duration t0 = 1.47 L/cL, cL =
√
E/ρ, roughly the time that it takes

a longitudinal wave to traverse three half-length of the domain. For the ref-
erence impulse, we consider I0 = 6.3 × 10−4 L2√Eρ. The simulation time is
set to T = 19t0 with 4000 timesteps. Figure 5.6 shows the converged design
after contour smoothing in MATLAB®. This smoothing is performed by trac-
ing contours along the filtered density function on the finite element mesh at
a level-set value 0.5. Along each row, the loading impulse is constant, while
along each columns the loading duration is constant. Although the structures
share similar supports near the boundaries, their topologies near the loading
site vary drastically. We see that for that for longer loading duration (right col-
umn), the structure is similar to what we would expect from static compliance
optimization: truss-like members forming triangular structures [7]. However,
for shorter loading duration, the structures have more mass congregated un-
derneath the applied load. This not only provides damage resistance, but the
additional inertia also reduces the energy the structure absorbs from the im-
pulse loading. We also see more mass placed near the loading surface for large
impulse magnitude. This is likely to reduce plasticity and damage near the
loading site.

5.5.2 Two Material Design for Impact

We now consider the design of a structure composed of two materials undergo-
ing impact. Figure 5.7a shows the stress-strain response of the two materials in
a quasi-static tensile simulation. While one material has double the strength
and stiffness (red curve), the other has roughly twice the toughness (blue
curve). We represent the strong solid with η = 1, and the tough solid with
η = 0. Thus, we consider,

E1 < E2, (σy0)1 < (σy0)2 , (Gc)1 > (Gc)2 , (5.65)
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Figure 5.6: Converged solid-void designs under impulse loading following con-
tour smoothing. Along each row, the impulse is constant, while along the
columns we vary the loading duration. Values of the objective are shown for
each of the designs. All of the designs saturated the constraint that V ≤ 0.5|Ω|.

where E, Gc, and σy0 denotes the elastic modulus, fracture toughness, and
yield stress. The subscripts 1 and 2 denotes properties of the tough and
strong solid, respectively. For simplicity, we assume the rest of the material
properties are identical (density, hardening parameters, damage length scale).
As discussed in the previous section, we adopt a power-law interpolation for
material parameters. However, to ensure that the intermediate η remains
unfavorable, we must carefully choose the concavity of each of the interpolation
functions. Since it is assumed that a larger value for each of the differing
parameters is favorable, the interpolation is convex for all of these:

E(η) = E1 + ηp(E2 − E1),

σy0(η) = (σy0)1 + ηp
[
(σy0)2 − (σy0)1

]
,

Gc(η) = (Gc)2 + (1− η)p [(Gc)1 − (Gc)2] .

(5.66)

Similarly to the solid-void structure, we start with a penalty value of p = 2,
and linearly increase it to p = 8 by the 100th iteration and onward.

We consider the geometry as Figure 5.7b. Here, we consider a linear elas-
tic flyer of density ρ0 and elastic modulus E0 with an initial velocity of v0.
We note that enforcing strict contact conditions would complicate the adjoint
sensitivity calculations, and also be computationally expense. Therefore, we
consider a relaxation by introducing a layer of asymmetric linear elastic ele-
ments between the domain Ω and the flyer. These elements have a high bulk
modulus in compression, with nearly zero resistance to shear or hydrostatic
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Figure 5.7: (a) Normalized stress-strain response of the strong (red) and tough
(blue) material in a uniaxial quasi-static 2D tensile test. Damage fields are
plotted on deformed configurations at a few points throughout loading. (b)
Geometry and loading for the two-material structure.

tension. Therefore, they may support compressive contact forces, while allow-
ing the flyer and substrate to separate. This is consistent with the adjoint
formulation we have derived, while providing the necessary physics of contact
and separation. However, we are limited to cases where the impact site is
known a priori and the impacting faces are parallel. While this regularization
will give proper behavior of the traveling elastic waves far from the impact site,
the loads nearby will be somewhat reduced. This is an acceptable compromise,
as we are mainly interested in the spall phenomena occuring near the center
of the structure, as well as hinging at the boundaries. But it should be noted
that the behavior near the impact site may be inconsistent with true impact.

First, we consider the optimal design of the multi-material structure undergo-
ing a relatively high impact velocity of 0.110cL, where cL is the longitudinal
wave speed of the strong material. Here, we consider a simulation time of
T = 6.5 L/cL. In this case, a structure composed entirely of strong material
experiences heavy damage, as shown in Figure 5.8a. The damage nucleates
internally along a line parallel to the impact surface, which is characteristic
of spall failure. Conversely, a structure made of only the tough material has
large permanent deformation. There is regions of plasticity near the impact
site as well as hinging near the boundary, as shown in Figure 5.8b. We apply
the optimal design approach to this loading scenario, as we hypothesize that
a mixture of both strong and tough material will yield a structure of better
performance. We consider the objective shown in (5.61). Since η does not have
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Figure 5.8: (a) Damage field of a domain composed entirely of the strong
material shortly after impact (left), and long after impact (right). (b) Accu-
mulated plasticity field of a domain composed entirely of the tough material
shortly after impact (left), and long after impact (right).

a large effect on the dissipation functions, we do not need to modify the inter-
polation scheme in the objective as was done in the solid-void case. Table 5.3
shows the material parameters we consider. Computations are performed on
a 100× 25 mesh for the rectangular domain, with a 60× 16 mesh for the flyer.
A filter radius of 0.021L is used. Again, we use objective weights of cp = 5,
ca = 50. The design is initialized to a uniform density field of η = 0.5. The
converged optimal design is shown in Figure 5.7a. Red regions are occupied
by strong material, and blue regions by the tough material. We see regions of
strong (red) material near the boundaries and the impact site to mitigate large
deformations and provide strength. However, the center is occupied by tough
(blue) material to control spall. In terms of quantified performance, the con-
verged design yields an objective value of O = 10.6× 10−4. This is improved
performance over both the completely strong structure (O = 29.7×10−4), and
the completely tough structure (O = 11.3× 10−4).

Next, we study optimal designs for varying flyer velocity and allowed volume
of strong material, Vs. We again consider the objective in (5.61). Figure 5.10
shows the converged designs. For lower impact velocities, the strong material
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Parameter Value Description
Geometric Parameters

H/L 0.25 Aspect ratio of domain
L0/L 0.6 Length of flyer
H0/L 0.1 Height of flyer

Elastic Material Parameters
E1/E2 0.5 Young’s modulus ratio tough to strong
ν 0.3 Poisson ratio of strong and tough material
E0/E2 0.3 Young’s modulus ratio of flyer to strong
ν0 0.4 Poisson ratio of flyer
ρ0/ρ 0.4 Density ratio of flyer to target

Plastic Material Parameters
(σy0)1/E2 0.5× 10−2 Yield strength of tough material
(σy0)2/E2 1.0× 10−2 Yield strength of strong material
εp0 0.22 Reference plastic strain
n 3 Isotropic hardening power
ε̇p0L/

√
E2/ρ 0.22 Reference plastic strain rate

m 3 Rate sensitivity power
Damage Material Parameters

(Gc0)1/(`E2) 1.0× 10−2 Toughness of tough material
(Gc0)2/(`E2) 0.5× 10−2 Toughness of strong material
`/L 0.01 Damage length scale
d1 0.01 Relative stiffness when fully damaged
w1 0.95 Damage hardening parameter

Table 5.3: Non-dimensional geometric and material parameters for the multi-
material structures.
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Figure 5.9: (a) Optimal design of the multi-material structure under impact
loading following contour smoothing. The red regions correspond to the strong
material, and the blue regions are the tough material. (b) Damage field of this
design shortly after impact (left), and long after impact (right). (c) Accumu-
lated plasticity field of this design shortly after impact (left), and long after
impact (right).

is favored. In cases where no restrictions put on the design, the converged de-
signs are almost completely occupied by strong material. This can primarily
be attributed to the stiffness difference between the strong and tough material.
At v0 = 0.019cL, there is almost no plasticity or damage, while at v0 = 0.058cL
there is only a small amount of plasticity. However, at v0 = 0.110cL, the con-
verged designs have large areas of tough material, even in the case when there
is no restriction placed on the amount of strong material. As discussed pre-
viously, this is to control spall which occurs at the higher impact velocities.
Additionally, strong material is used at the larger two velocities on the top sur-
face underneath the sides of the flyer. This is to mitigate the shear-dominated
plugging failure.

Finally, we study optimal designs for varying yield strength and toughness
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Figure 5.10: Converged multi-material designs for impact resistance following
contour smoothing. Along each row the impact velocity is constant, while
along the columns the allowed amount of strong material is prescribed. cL
denotes the longitudinal wave speed of the strong material. The red regions
denote the strong material, while the blue regions are the tough material.
Values of the objective as well as the volume fraction of strong material are
shown for each design.

values. Figure 5.11 shows converged designs for a constant impact velocity of
v0 = 0.096cL. We constrain Vs ≤ 0.5. The material parameters we use are
identical to that of the previous study, with the following exceptions. Moving
from the right to left column, the yield strength of the strong material is
amplified by 50% from the previous study, while moving from the top row
to the bottom row has an increased toughness of the tough material by 50%.
While the designs do vary, qualitatively they all have strong material placed
near the loading site attached to struts that connect to the boundary to provide
stiffness.

5.6 Discussion and Conclusion

We have developed a formulation for the optimal design of impact resistant
structures. After presenting a novel method to accurately and efficiently sim-
ulating phase field damage and plasticity evolution in a transient dynamic
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Figure 5.11: Converged multi-material designs for impact resistance following
contour smoothing. Here, we consider a constant impact velocity of v0 =
0.096cL and restrict V2/V ≤ 0.5. Along each row, the the toughness of both
material are held constant, while along the columns we prescribe the yield
strengths. The red regions denote the strong material, while the blue regions
are the tough material. Values of the objective are shown for each design.
In all of the cases, the designs saturate the constraint on allowed amount of
strong material.

setting, we apply gradient based optimization through the adjoint method
to find optimal structures. An important issue we address is the proper in-
terpolation scheme for material parameters through intermediate densities.
In the case of solid-void design, our formulation ensures that damage will
not propagate through the void regions while preserving the natural bound-
ary conditions at the interface. For the multi-material design, we assumed a
power law interpolation for the material parameters. This implicitly penalizes
intermediate densities only when either higher or lower values are clearly favor-
able. These would include elastic stiffness, yield stress, and fracture toughness,
where higher values are almost universally preferred. For parameters such as
the damage length scale, it is unclear if a higher or lower value is favorable.
However, in our study, we only consider cases where these parameters are
identical for both materials.

We demonstrate these capabilities through the design of both a solid-void
structure for blast loading, and a multi-material structure undergoing impact.
We find that the optimal designs for the solid-void case are highly dependent
on loading magnitude and duration. For the short time-scale loading, inertia
plays a large role in minimizing the energy transferred to the structure. This
leads to a complex trade-off between inertia and support, all while mitigating
material failure. As for the multi-material structures, optimal designs use a
mixture of strong and tough material when the impact velocity is high. The
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propagation and interaction between stress waves leads to a balance of strength
and toughness throughout different parts of the domain.

We now discuss possible extensions and their challenges. As detailed in Sec-
tion 5.2.2, there remain issues with regularity in the adjoint and sensitivity
calculation. A rigorous investigation into this matter would be needed to
give a deep understanding of the underlying mathematics of these methodolo-
gies. Another avenue would be to reformulate this work for a sharp interface
topology optimization method [50]. This would eliminate the need for such a
complex interpolation scheme, however, issues may arise from shape-derivative
computation. Additionally, a systematic study comparing density based meth-
ods to sharp-interface methods in the case of a complex mechanics model would
be quite beneficial to the community.

On the modeling side, we have chosen a small-strain elastic-plastic material
model. While we have used a particular form for this plasticity and dam-
age constitutive, the procedure of both the forward solution and optimization
scheme remain general. Thus, it would be would be worthwhile and straight-
forward to apply this methodology to explore other models, such as a finite
plasticity, and compare the results. These methods could also be easily ap-
plied to a local damage description. In such a case, there would be no need
to for the operator-splitting method we have used, leading to a more efficient
and straightforward calculation. Furthermore, the adjoint problem would also
have a local description for the adjoint damage updates. However, these local
damage models often suffer from ill-posed mathematical structures, relying
heavily on ad-hoc update schemes. The methods presented would necessarily
be reduced to such a setting. Additionally, we have simplified the contact
mechanics by using asymmetric elastic elements, while also neglecting friction
and adhesion. These would be necessary to model ballistic events. It would be
beneficial to incorporate frictional contact through efficient active set methods
to preserve the computational scaling [21]. Of course, the sensitivity and ad-
joint formulation would need to be modified to account for this complication.
Thermal effects and shock physics would be another key modeling addition.
Currently, empirically derived models exist for a variety of materials which
could be incorporated into this framework [41].

It would also be interesting to explore other objective functionals. One might
be interested in designing energy-absorbing structures that are designed to
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undergo plasticity and damage, rather than the objective which we chose to
mitigate these. However, this would require a reformulation of the interpola-
tion scheme. We also note that the designs we obtain depend on the location
of the load. It would be straightforward to extend this work to consider multi-
ple loading scenarios, and optimize the structure over the collective response.
Finally, our simulations were done in 2D, and were readily performed on a
single machine with shared memory. It would be natural to extend the imple-
mentation to a 3D settings, requiring distributed memory parallelization.
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APPENDIX TO CHAPTER 5

5.A Adjoint Method for Sensitivities

We consider an objective of integral from

O(u, q, εp, a, η) =
∫ T

0

∫
Ω
o(u, q, εp, a, η) dΩ. (5.67)

To conduct gradient based optimization, we require the total variation of
this objective with the field η(x), which we will compute through the ad-
joint method. We consider adjoint fields ξ ∈ U , γ : Ω 7→ R, µ : Ω 7→ Rn×n,
and b : Ω 7→ R which correspond to the displacement, plastic hardening, plas-
tic strain, and the damage field, respectively. As is standard for the adjoint
method, we consider these fields as the variations in their corresponding equi-
librium relations, which we add to the objective. However, for the ir-reversible
damage and platicity evolution, we use the necessary Kuhn-Tucker conditions.
The augmented objective is

O =
∫ T

0

∫
Ω

{
o+ ρü · ξ + ∂W e

∂ε
· ∇ξ − fb · ξ + γq̇

[
σM − σ0 −

∂ḡ∗

∂q̇

]

+ µ · (ε̇p − q̇M) + bȧ

[
∂W e

∂a
+ d′

(
W p +

∫ t

0
ḡ∗dτ

)

−∇ ·
(
Gc`

2cw
∇a

)
+ Gc

4cw`
∂wa

∂a
+ ∂ψ̄∗

∂ȧ

]}
dΩdt

+
∫ T

0

∫
∂Ω

(f · ξ) dS dt.

(5.68)
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We then take variations with η.

O,ηδη =
∫ T

0

∫
Ω

{
∂o

∂η
+ ∂ρ

∂η
ü · ξ + ∂2W e

∂ε∂η
· ∇ξ + bȧ

(
∂2W e

∂a∂η
+ ∂d

∂a

∂W p

∂η
+ ∂d

∂a

∫ t

0

∂g∗

∂η
dτ

)
+ 1

2cw
∂(Gc`)
∂η

∇(bȧ) · ∇a+ bȧ

(
wa′

4cw
∂(Gc/`)
∂η

+ ∂2ψ∗

∂ȧ∂η

)
+ γq̇

(
∂σ̄M
∂η
− ∂σ0

∂η
− ∂2g∗

∂q̇∂η

)}
δη dΩ dt

+
∫ T

0

∫
Ω

{
∂o

∂u
δηu+ ρξ · δηü+

(
∇ξ · ∂

2W e

∂ε∂ε
+ bȧ

∂2W e

∂a∂ε
+ γq̇

∂σ̄M
∂ε
− q̇µ · ∂M

∂ε

)
· ∇δηu

+
(
∂o

∂q
− γq̇ ∂σ0

∂q
+ bȧd′

∂W p

∂q

)
δηq +

(
−γq̇ ∂

2ḡ∗

∂q̇2 + γ

[
σM − σ0 −

∂ḡ∗

∂q̇

]
− µ ·M

)
δη q̇

+ bȧd′
∫ t

0

(
∂ḡ∗

∂q̇
δη q̇

)
dτ + µ · δη ε̇p

+
(
∂o

∂εp
+∇ξ · ∂

2W e

∂ε∂εp
+ bȧ

∂2W e

∂a∂ε
+ γq̇

∂σ̄M
∂∂εp

− q̇µ · ∂M
∂εp
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· δηεp

+
(
∂o

∂a
+ ∂2W e

∂a∂ε
· ∇ξ + bȧ

[
∂2W e

∂a2 + Gc
4cw`

∂2wa

∂a2

]
+ bȧd′′

[
W p +

∫ t

0
g∗dτ

)]
δηa

− bȧ∇ ·
(
Gc`

2cw
∇δηa

)
+ bDaδηȧ+ bȧ

∂2ψ̄∗

∂ȧ2 δηȧ

}
dΩ dt,

(5.69)

where

Da = ∂W e

∂a
+ ∂d

∂a

(
W p +

∫ t

0
g∗ dτ

)
−∇·

(
Gc`

2cw
∇a

)
+ Gc

4`cw
∂wa

∂a
+ ∂ψ̄∗

∂ȧ
. (5.70)

The standard procedure would then be to integrate by parts, and enforce
quiescence conditions on the adjoint variables at time t = T . However, for the
accumulated plastic dissipation term, this is not straightforward. However, we
will re-write this as∫ T

0
bȧd′

∫ t

0

(
∂ḡ∗

∂q̇
δη q̇

)
dτ dt

=
∫ T

0
− d

dt

[∫ T

t
bȧd

′
dτ

] ∫ t

0

(
∂ḡ∗

∂q̇
δη q̇

)
dτ dt

= −
[(∫ T

t
bȧd

′
dτ

)∫ t

0

(
∂ḡ∗

∂q̇
δη q̇

)
dτ

]T
0

+
∫ T

0

(∫ T

t
bȧd

′
dτ

)
∂ḡ∗

∂q̇
δη q̇ dt.

(5.71)

The boundary term in the above expression is indentically zero, thus
∫ T

0
bȧd′

∫ t

0

(
∂ḡ∗

∂q̇
δη q̇

)
dτ dt =

∫ T

0

(∫ T

t
bȧd

′
dτ

)
∂ḡ∗

∂q̇
δη q̇ dt. (5.72)
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Using this in 5.69, we may integrate by parts. Enforcing initial quiescent
conditions on the adjoint variables and localizing gives the sensitivities as

O,ηδη =
∫ T

0

∫
Ω

{
∂o

∂η
+ ∂ρ

∂η
ü · ξ + ∂2W e

∂ε∂η
· ∇ξ

+ bȧ

(
∂2W e

∂a∂η
+ ∂d

∂a

∂W p

∂η
+ ∂d

∂a

∫ t

0
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)

+ 1
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∇(bȧ) · ∇a+ bȧ
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4cw
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+ ∂2ψ∗

∂ȧ∂η
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+ γq̇

(
∂σ̄M
∂η
− ∂σ0

∂η
− ∂2g∗

∂q̇∂η

)}
δη dΩ dt,

(5.73)

if the adjoint variables satisfy the evolution

0 =
∫

Ω

[(
∇ξ · ∂

2W e

∂ε∂ε
+ bȧ

∂2W e

∂a∂ε

+γq̇ ∂σ̄M
∂ε
− q̇µ · ∂M

∂ε

)
· ∇δηu

+ρξ̈ · δηu+ ∂o

∂u
· δηu

]
dΩ ∀δηu ∈ U , (5.74a)

d
dt

[
γ

(
σ̄M − σ0 −

∂ḡ∗

∂q̇

)
− γq̇ ∂

2ḡ∗

∂q̇2

+∂ḡ
∗
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(∫ T

t
bȧd′(a)dτ
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− µ ·M

]

= ∂o

∂q
+ bȧd′(a)∂W

p

∂q
− γq̇ ∂σ0

∂q
on Ω, (5.74b)

dµ
dt = ∂o

∂εp
+∇ξ · ∂

2W e

∂ε∂εp
+ bȧ

∂2W e

∂a∂εp

+ γq̇
∂σ̄M
∂εp
− q̇µ · ∂M

∂εp
on Ω, (5.74c)

d
dt

[
Dab+ ∂2ψ̄∗

∂ȧ2 bȧ

]
= ∂o

∂a
+ ∂2W e

∂a∂ε
· ∇ξ

+ bȧ

(
∂2W e

∂a2 + Gc

4cw`
∂2wa

∂a2

)

+ bȧd′′
(
W p +

∫ t

0
g∗dτ

)
−∇ ·

(
Gc`

2cw
∇(bȧ)

)
on Ω, (5.74d)

ξ|t=T = 0, ξ̇|t=T = 0,

γ|t=T = 0, µ|t=T = 0, b|t=T = 0.
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5.B Adjoint Problem as Minimization

It is natural to employ an augmented Lagrangian formulation to efficiently
solve the adjoint problem as we have done for the forward problem. However,
we first need to write the second line of (5.14) as a minimization problem.
Recall that this reads,

d
dt

[
Dab+ ∂2ψ̄∗

∂ȧ2 bȧ

]
= ∂o

∂a
+ ∂2W e

∂a∂ε
· ∇ξ

+ bȧ

(
∂2W e

∂a2 + Gc

4cw`
∂2wa

∂a2

)

+ bȧd′′
(
W p +

∫ t

0
g∗dτ

)
−∇ ·

(
Gc`

2cw
∇(bȧ)

)
on Ω,

(5.75)

where,

Da = ∂W e

∂a
+ ∂d

∂a

(
W p +

∫ t

0
g∗ dτ

)
−∇·

(
Gc`

2cw
∇a

)
+ Gc

4cw`
∂wa

∂a
+ ∂ψ̄∗

∂ȧ
. (5.76)

If ȧ > 0, then Da = 0. Otherwise, if ȧ = 0, then ∂2ψ̄
∂ȧ2 = 0. Writing this as an

implicit forward-euler discretization (as we will be solving this backwards in
time) from timestep n+ 1 to n, gives,

1
∆t

[(
bn+1Da|tn+1 + ψ̄∗′′

∣∣∣
tn+1

bn+1ȧn+1
)
− ψ̄∗′′

∣∣∣
tn
bnȧn

]
= ∂o
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∣∣∣∣
tn

+ ∂2W e
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∣∣∣∣∣
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]
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−∇ ·
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Gc`
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∇(bnȧn)

)
on Ωȧn>0,

1
∆t

[
bnDa|tn −

(
bn+1Da|tn+1 + ψ̄∗′′

∣∣∣
tn+1

bn+1ȧn+1
)]

= ∂o

∂a

∣∣∣∣
tn

+ ∂2W e

∂a∂ε

∣∣∣∣∣
tn

· ∇ξn on Ωȧn=0.

(5.77)

If we define
zn = ȧnbn, (5.78)
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we may write the first line of (5.77) as a minimization problem

inf
z=0 on Ωȧn=0

I[z] =
∫

Ω

 1
2∆tψ̄∗′′|tn

[ (
bn+1Da|tn+1 + ψ̄∗′′

∣∣∣
tn+1

bn+1ȧn+1
)

− ψ̄∗′′
∣∣∣
tn
z
]2

+
(
∂o

∂a

∣∣∣∣∣
tn

+ ∂2W e

∂a∂ε

∣∣∣∣∣
tn

· ∇ξn
)
z

+
(
∂2W e

∂a2

∣∣∣∣∣
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+ d′′
[
W p +

∫ t

0
g∗dτ

]
tn

)
z2

2

+ Gc`

4cw
|∇z|2

 dΩ.

(5.79)

We now introduce another augmented Lagrangian with an auxiliary field ζ ∈
L2(Ω), and enforce ζ = z through the Lagrange multiplier field χ ∈ L2(Ω) and
penalty factor r. Thus, the previous minimization is equivalent to finding the
saddle point of

L̂(z, ζ, χ) =
∫

Ω

{
1

2∆tψ̄∗′′|tn

[ (
bn+1Da|tn+1 + ψ̄∗′′

∣∣∣
tn+1

bn+1ȧn+1
)

− ψ̄∗′′
∣∣∣
tn
z
]2

+
(
∂o

∂a

∣∣∣∣
tn

+ ∂2W e

∂a∂ε

∣∣∣∣∣
tn

· ∇ξn
)
z

+
(
∂2W e

∂a2

∣∣∣∣∣
tn

+ d′′
[
W p +

∫ t

0
g∗dτ

]
tn

)
z2

2

+ Gc`

4cw
|∇z|2 + χ (z − ζ) + r

2(z − ζ)2
}
dΩ,

(5.80)

subject to the constraints that ζ = 0 on Ωȧ=0. Then, conditions for stationarity
are

0 =
∫

Ω

[
(r(z − ζn) + χ) δz + Gc`

2cw
∇z · ∇δz

]
dΩ ∀δz ∈ A,

0 =
∫

Ω
(z − ζn) δχ dΩ ∀δχ ∈ L2(Ω),

(5.81)
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and 
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(5.82)

Using ζn = ȧnbn gives

0 =
∫

Ω

[
(r(z − ȧnbn) + χ) δz + Gc`

2cw
∇z · ∇δz

]
dΩ ∀δz ∈ A,

0 =
∫

Ω
(z − ȧnbn) δχ dΩ ∀δχ ∈ L2(Ω),
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(5.83)

5.C Forward Problem Convergence with Temporal Resolution

We include a convergence study with respect to temporal resolution for the
forward problem algorithm presented in Section 5.3. Here, we consider iden-
tical parameters to those discussed in Section 5.3.1. However, the number of
timesteps is varied from 4.8×103 to 7.2×104 for fixed 160×40 mesh over a con-
stant simulation time equivalent to that presented in Section 5.3. Figure 5.C.1
shows that the solution converges with respect to temporal resolution, with a
convergence rate of 1.38. As an analytical solution does not exist, the reference
solution ū is computed over 105 timesteps.
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Figure 5.C.1: Solution convergence with respect to temporal resolution. The
solution norm ‖‖u‖‖ is studied relative to the timestep size ∆t. The black
dots represent the data for each simulation, while the red lines show the linear
fit, with the first order coeffcient shown on the triangle.
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C h a p t e r 6

CONCLUSION

In this thesis we explored optimal design for applications which exploit recent
advances in materials and manufacturing. After a brief discussion on the
classical methods for optimal design and its challenges, we considered two
concrete examples.

First, we examined optimal design of soft responsive actuators. We started
from a linear elastic theory with spatially constant actuation. Then, we worked
our way up to a formulation which includes finite deformations, microstruc-
tural evolution, and 3D print constraints to optimize both structure and ma-
terial orientation for the model LCE system. Through this, we applied direct
methods of calculus of variations to prove well-posedness of a class of care-
fully chosen objective functions. Here, special attention was placed towards
regularization on the spatially varying director field. We designed a variety
of integrated lifting actuators in 2D and 3D. Finally, we achieved physical
realizations of these structures through advanced 3D printing techniques.

Next, we examined the optimal design of impact resistant structures. We
formulated a model which includes transient dynamics, viscoplasticity, and
material damage. We developed an accurate and efficient scheme to compute
the dynamic trajectory by exploiting an augmented Lagrangian operator split-
ting method. Then, we introduced optimal design. Careful consideration was
put towards material interpolation rules, ensuring natural boundary condition
preservation, unfavorable intermediate densities, and efficient numerics. With
this formulation, we explored two examples demonstrating dynamic resistance.
First, we designed solid-void designs for blast loading. Then, we explored the
trade-offs between strength and toughness to design a multi-material spall-
resistant structure.

Through these studies, we have addressed major challenges related to the
broader goal of optimal design for emerging materials and manufacturing tech-
nologies. The investigation on soft actuation explored optimal design for fi-
nite deformation and microstructural evolution while considering mathemat-
ical regularization for orientation design of anisotropic materials. We also
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included manufacturing constraints by encoding the link between fabrication
pathway and material microstructure into the design formulation. All of this
was treated with rigorous mathematical theory to prove well-posedness of the
resulting optimization problem. By studying optimal design for impact re-
sistance, we investigated optimal design for structures with complex material
behavior undergoing transient dynamic evolution. We explored the challenges
associated with material interpolation, adjoint sensitivity analysis for irre-
versible processes, and objective choice for impact resistance.

6.1 Extensions

Our contributions to the field of optimal design can be readily extended to
include further design considerations, allowing one to tackle related engineering
problems. We detail these opportunities and discuss general pathways moving
forward.

The first direction of continuation is designing fast actuating responsive struc-
tures. Many responsive materials, such as the LCEs we studied, are actuated
through heating. Thus, the timescale of forward and reverse actuation are
controlled by the heating and cooling of the structure. This creates challenges
when quick actuation is required. We may extend the work on soft responsive
actuators to additionally consider the response time in the objective. Here, the
responsive and passive material might have differing heat conductance, leading
to a trade-off between actuation stroke and response time. However, formu-
lating this in an optimal design setting would introduce challenges associated
with the modeling and design quantification. We first need to understand the
proper objective function in this setting. The initial step is to investigate the
design of integrated responsive structures in the small-strain regime where the
actuation is temperature dependent, necessitating thermodynamic modeling.
We may then introduce finite deformations, orientation dependence, and 3D-
printing constraints to design manufacturable, fast responding actuators for
real-world deployment.

Another avenue to explore is the design of structures for ballistic loading
regimes by extending the formulation for impact resistant structures. To model
ballistic impact in solids, thermodynamics plays a large role. Heating through
plasticity results in loss of strength which may manifest as adiabatic shear
banding. By including thermodynamics into the formulation, we may design
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for ballistic loading regimes. Additionally, frictional contact at the impact site
is needed to accurately model such scenarios. We may also explore different
objective functions such as energy absorption or payload protection.

Another pressing engineering problem we may explore through optimal design
is that of energy conversion or storage devices. These systems are complicated
by physical mechanisms such as ionic transport coupled with solid deformation
and material failure. After developing high-fidelity models to capture these
multi-physics interactions in a use-case setting, we may apply optimal design
in this setting. The methods we developed may be adapted for such problems.
Here, we could explore the design of energy storage devices such as solid-
state batteries with greatly improved capacity and lifespan. We may also
examine a similar problem of energy conversion devices, where a reaction-
diffusion process converts inert gas to usable fuel. Here, special attention
must be put towards manufacturing constraints and accurately capturing the
chemical mechanisms driving energy flow.

Finally, the tools developed for optimal design may be applied to other PDE
based optimization problems. For instance, the methodology may be applied
to data-driven constitutive modeling. The rich data sets obtained from emerg-
ing experimental techniques provide an opportunity to model material behav-
ior with remarkable precision. However, current methods are limited when
accounting for history dependence, fracture, and microstructural evolution.
Here, we may apply PDE based optimization methods to construct a method-
ology similar to optimial design, where the design parameters are now the
weights and biases of a neural-net constitutive law. We have recently begun
to explore this through a mechanically-consistent formulation which accounts
for history dependence.

6.2 Challenges Moving Forward

While there are a number of exciting applications where we may apply optimal
design, there are major challenges which must be addressed before optimal
design is used in practice for complex engineering problems in a practical
setting. We discuss some of these issues and give insights into how they may
be approached.

The first issue is rigorously developing means to design for instabilities. Elastic
structures undergoing finite deformations may admit multiple energy minimiz-
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ing solutions through solution bifurcations. This is desirable in cases such as
bi-stable actuators, where one might want to design for such phenomenon.
Conversely, buckling in a lifting actuator would lead to poor performance. In
both cases, understanding how to deal with instabilities in an optimal design
setting is crucial. There are a number of open questions on this front. On the
theoretical side, a proper formulation leading to a well-posed design problem is
not clear. In terms of computation, ensuring stability or searching for multiple
solutions is not straightforward. There remains an interesting research front
in formalizing optimal design in these settings to either harness or mitigate
structural instabilities.

Another open question is understanding how to design robust structures.
Many uncertainties exist when deploying structures in an application setting.
Material properties, loading site and magnitude, and boundary conditions are
all subject to variance in practice. Thus, performing optimal design for set
values may not guarantee sufficient performance. This is especially the case
for chaotic systems, such as impact, where a small change in these system pa-
rameters may lead to a large change in dynamic trajectory. Thus, we propose
that robustness to these uncertainties be included in the design formulation.
This could be achieved by a combination of penalizing parameter sensitivities,
parallel modeling over a range of system parameters with a “worst case” per-
formance metric, or utilizing methods of uncertainty quantification. A main
focus should be developing a design formulation which reliably handles possible
discontinuities in dynamic trajectory in a mathematically rigorous fashion.

Rigorous formulations including these considerations may allow optimal design
to tackle pressing engineering problems while taking full advantage of emerging
materials and manufacturing technologies. The work presented in this thesis
will serve as a starting point to these investigations.
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