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ABSTRACT

This thesis focuses on the analysis of tape springs folded in the opposite sense and
their dynamic deployment, and aims to use methods to reduce the computational
cost of the analysis. The tape spring is a thin shell deployable structure that has
features in common with other deployable structures. The deployment process of
such structures can be difficult to predict, and the use of numerical models can be
a more cost-effective alternative to experimental testing. Approaches to reduce the
computational cost of the analysis of tape springs are investigated such as adaptive
meshing and reduced order models. The thesis also presents an accurate analysis
of tape spring deployment and a detailed study of the energies and the physics of
the deployment. This is used to investigate the energy leak observed in previous
tape spring deployment work. Overall, this thesis contributes to improving the
efficiency and accuracy of the analysis of deployable structures, particularly tape
springs, which can have significant applications in spacecraft technology.
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C h a p t e r 1

INTRODUCTION

1.1 Overview
Deployable structures
Deployable structures have been used for spacecraft applications such as antennas
and solar power. These structures can be packaged in a small volume during launch
and deployed in space such that they cover large surface areas. Deployable structure
concepts that rely on the release of stored strain energy during deployment do not
require motors and have reduced number of components. Concepts of this type have
increased packaging efficiency and lower complexity. However, the predictability
of the deployment process is decreased in these concepts. Various approaches are
used to predict the deployment.

Experimental testing
Gravity and air damping modify the testing conditions of deployable structures with
respect to space. Methods used to solve this issue include using drop towers and
reduced-gravity flights. Testing in drop towers involves releasing the structure near
the top of the tower. The air drag can be reduced by producing a vacuum, although
residual air pressure and therefore air drag is unavoidable. This approach requires
structures that are either inexpensive or robust enough to survive the fall.

Another option is to use reduced-gravity flights. The deployable structure is con-
tained inside an aircraft which follows a series of parabolic flight paths. By control-
ling the thrust and drag appropriately, weightlessness is achieved for a portion of
the flight. The main issue is that air drag is still present inside the aircraft, which is
particularly troublesome for thin structures commonly used for deployable structure
concepts.

Experimental testing has a series of disadvantages which make it difficult to re-
produce space applications. In addition, it can be very expensive, and performing
parametric studies is difficult. The main alternative is the use of numerical models
for predicting the deployment process.
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Numerical modeling
The use of numerical models for analysis of structures is widespread. In particular,
the Finite Element Method (FEM) is commonly used. Different element formula-
tions have been developed such as truss, beam, plate, shell and continuum elements.
Shell elements are usually the optimal choice for the analysis of thin deployable
structures. Various shell elements are available in commercial FEM software and
many more have been proposed in the literature.

Using FEM for the analysis of large complex structures requires using a fine element
discretisation. This can result in a very high computational cost, making the analysis
unfeasible. Various methods have been developed to improve the efficiency of
the numerical analysis. Adaptive meshing involves using a non-uniform element
discretisation through the structure. This method has been studied extensively for
linear problems, but for nonlinear problems the optimal adaptive meshing approach
remains uncertain due to the huge variability of problems. Other approaches involve
using reduced order models. This involves using a simplified representation of the
original high-fidelity model.

Numerical artifacts are present in the analysis of structures using FEM. The spe-
cific details of the element formulation will dictate the potential for undesirable
numerical effects. Although these numerical artifacts can be avoided by applying
different fixes, some of these corrections result in an even higher computational cost.
Therefore, a careful selection of the element formulation can significantly reduce
the computational cost by avoiding these numerical artifacts.

1.2 Objective
This work focuses on the analysis of tape springs in opposite-sense bending and
dynamic deployment. In addition, the computational cost of the analysis will be
reduced.

Tape springs are thin shell deployable structures that have various features common
with other more complex deployable structures. Tape springs present regions of
localized elastic deformation, denoted as folds. The folds both allow efficient
packaging and greatly difficults the numerical analysis. The first area of research
is improving the analysis efficiency for the tape spring opposite-sense bending
problem. This is a challenging problem due to snap-through buckling.

A second area of research is the accurate analysis of the tape spring dynamic
deployment. This would allow an improved understanding of the physics of the
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deployment, which can often be clouded by the presence of confounding variables
such as damping in experimental testing and numerical artifacts in numerical models.

The third area of research is the use of techniques to reduce the cost of the dynamic
deployment of tape springs. The physics understanding of the deployment can be
used to define simplified models tailored for these specific problems. The physics
features are common with other thin shell deployable structures, and thus these
simplified models can be extended to more complex structures.

1.3 Layout of dissertation
This dissertation is composed by seven chapters, including this first chapter.

Chapter 2 introduces various examples of deployable structures in the literature.
The tape spring is presented and various special features are illustrated. Approaches
for finite element modeling are discussed, and previous work on the analysis of tape
springs is reviewed.

Chapter 3 introduces the tape spring opposite-sense bending problem and solves it
using an in-house finite element code. The in-house code is motivated by the need
for careful managing of variables in reduced order models, which is not possible in
commercial FEM software.

Chapter 4 presents two approaches for improving the efficiency of the tape spring
opposite-sense bending problem. A reduced order modeling approach is presented
and applied. Afterwards, a novel adaptive meshing procedure is presented, which
is shown to be very effective for the analysis of tape spring bending.

Chapter 5 introduces the tape spring deployment problem and solves it using both
the ABAQUS FEM software and the in-house finite element code. Issues with
the ABAQUS model are highlighted. Afterwards, it is shown that the element
formulation used for the in-house code can avoid these issues due to various special
properties.

Chapter 6 presents an analysis of the energy leak in tape spring deployment. Unlike
experimental testing, the in-house code can have truly zero damping and therefore it
is used to shine light in the energy leak phenomenon. The physics of the deployment
are investigated by analyzing the energy components within the tape spring.

Chapter 7 presents two approaches for improving the efficiency of the tape spring
deployment problem. An adaptive meshing approach based on the fold position is
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used. Afterwards, the solution using implicit solvers is explored. A novel locking
effect is investigated and a method for alleviating it is detailed.
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C h a p t e r 2

BACKGROUND

This chapter is split into three sections. The first section gives an overview of
ultralight boom deployable structures. In the second section, the tape spring is
introduced as a simple example of an ultralight deployable structure. In the third
section, modeling approaches currently used to analyze tape springs are presented.

2.1 Ultralight boom deployable structures
Strain energy deployable booms
Booms that can self-deploy are an attractive option due to their reduced complexity
and part count. Strain energy stored within the boom during packaging is often used
to drive the deployment. The strain energy can be generated by folding a part of the
structure.

An example are thin-walled composite tubes with tape spring hinges [35]. A tape
spring is defined as a thin cylindrical shell with an open cross-section. The tape
spring hinges are created by cutting a region out from the tube, as shown in Figure
2.1a. The folded configuration is achieved through bending, as shown in Figure
2.1b. A holding mechanism is included to keep the boom packaged during launch

(a) (b)

Figure 2.1: Cylindrical boom with a cutout hinge in (a) deployed and (b) partially
folded configuration.

and then released in space.

Coilable booms
Instead of forming localized folds, booms can be flattened and wrapped around a
hub. Such booms allow for very efficient packaging and thus are attractive for space
applications.
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Tape springs are very simple coilable booms and hence are used for small scale
applications. Bi-stable tape springs have been manufactured using fiber reinforced
materials [39]. These tape springs are stable in the fully rolled and fully unrolled
configuration. The bi-stability avoids the requirement of a complex containment
mechanism for packaging and deployment. A deployment mechanism for such tape
springs is shown in Figure 2.2, used in a CubeSat design [28]. One disadvantage of
tape springs is that in most cases they do not have equal bending stiffness in different
directions, and therefore the ratio of stiffness over mass is not optimal.

Figure 2.2: Exploded view of deployment mechanism for bi-stable tape springs
[28].

A slightly more complex design is the Storable Tubular Extendible Member (STEM)
[53]. While a tape springs only covers part of the cylinder formed by its radius of
curvature, STEM booms have a cross-section where the angle subtended by the
arc of cylinder is greater than 2𝜋 radians. This is illustrated in Figure 2.3a. A
further modification is the bi-STEM, where two tape springs are overlapped during
deployment, as illustrated in Figure 2.3b. This has the advantage of reducing the size
of the transition region between the coiled and cylindrical parts. Another variation
is the interlocked STEM boom, where matching tabs are formed on the strip edges
and a roller mates the tabs during deployment. This is illustrated in Figure 2.3c.
This provides a much larger torsional stiffness than the other STEM designs.

Another coilable booms design is the Triangular Rollable and Collapsible (TRAC)
boom [38]. The design joins two tape springs along one edge, as shown in Figure
2.4. An advantage over tape springs is that by careful choice of the cross-section
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(a) (b) (c)

Figure 2.3: Cylindrical boom with a cutout hinge in (a) deployed and (b) partially
folded configuration.

geometry parameters, similar bending stiffness in both directions can be achieved,
therefore having optimal relative stiffness. These booms have been used in various
CubeSat designs due to their low mass and high packaging efficiency.

Figure 2.4: TRAC boom.

2.2 Tape springs
As seen in the previous section, tape springs are commonly used as a component
of ultralight deployable structures. In this section, a more detailed overview of the
tape spring structural response is presented.

By applying bending rotations at the ends, a localized fold appears via snap-through
buckling. Therefore, they can store elastic energy during folding and release it
when deployed. Many folded configurations can be achieved by creating folds at
different locations, offering a wide range of possibilities for deployment. When a
tape spring is subjected to opposite-sense bending moments it is deformed as shown
in Figure 2.5. Initially the tape spring deforms smoothly as a beam. However, as
the moment is increased the deformation becomes localized, and a fold forms at the
center. Same-sense bending can also be applied on the tape spring ends. In this
case, there is a combined flexion-torsion deformation, complicating the analysis.
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Figure 2.5: Opposite-sense bending [55]. (i) Smooth beam-like bending. (ii)
Localized fold formation.

A testing apparatus to study this phenomenon was presented in [55]. One end of
the tape spring is fixed longitudinally, while the other end is free to slide. This is
illustrated in Figure 2.6.

Figure 2.6: Tape spring bending experiment setup [55].

The tape spring opposite-sense bending process can be characterized by plotting
the relation between the moment reaction at the ends and the rotation applied at the
ends. A schematic diagram of this relationship is shown in Figure 2.7. For small
end rotations the moment-rotation relationship is linear. As the rotation is increased,
a peak moment, Mmax, is reached as the cross-section near the center of the tape
suddenly flattens. With further rotation increases, the deformation localizes in a
small region, and a snap-through behavior occurs between points A and B. If the
rotation is increased further, the moment stays almost constant.

The dynamic deployment of tape springs is also a problem of interest. For this
purpose, a fold can be formed in the tape spring via opposite-sense bending and
held in place. Afterwards, one end of the tape spring is released. Experiments
involving the deployment of tape springs have been studied in [55], and frames of
the deployment process were taken, as shown in Figure 2.8.
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Figure 2.7: Moment-rotation schematic relationship.

Figure 2.8: Experimental deployment sequence [55].

2.3 Finite element modeling
Element integration
Gaussian quadrature is used to evaluate integrals within the elements numerically.
Using the appropriate number of gauss points for exact integration of the polynomial
shape functions in linear problems is known as full integration. On the other hand,
using fewer gauss points than what would be needed for full integration is known
as reduced integration. The choice between integration methods is dependent on
the presence of numerical artifacts known as shear locking and hourglassing. Shear
locking involves an overly stiff behavior and can observed in elements with full
integration under certain conditions [59]. Hourglassing involves an overly flexible
behavior where deformation can occur without strain energy, being common in
elements with reduced integration [5]. Additionally, using reduced integration is
significantly less computationally expensive, and is therefore preferred. It must be
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noted that for nonlinear problems exact integration is not possible in general, even
when using full integration.

The commercial finite element package ABAQUS will be used extensively in the
current work. The shell finite elements available include S4 and S4R, which are
4-noded quadrilateral shells. The S4R element uses reduced integration, and can
be prone to hourglassing. Therefore, it has different control methods to limit
hourglassing [1]. On the other hand, the S4 element uses full integration, and can
be prone to shear locking.

Hourglass control
Hourglassing appears due to the presence of zero-energy modes of deformation
[1]. For example, consider a first-order element subjected to a bending moment. If
reduced integration is used, only a single point in the center is used for integration.
Therefore, the element strains and stresses are defined by the dotted lines. The
deformed element has a different shape, but the dotted lines remain the same. This
causes the strains and stresses at the single integration point to be zero. Therefore
the element has deformed without any strain energy being generated.

Figure 2.9: Deformation of an element with reduced integration and hourglassing
present [1].

Despite the presence of hourglassing, the use of elements with reduced integration
is preferred in computational structural mechanics due to the reduced computational
cost. Due to this, many approaches to control hourglassing have been proposed. The
most common approach is to control hourglassing by identifying the zero-energy or
hourglassing modes of the element formulation. Afterwards, artificial nodal forces
are applied to counteract the hourglass modes, as first proposed in [22]. This is the
approach used in most finite element software, including ABAQUS [1]. For shell
elements, the artificial nodal forces used are derived from the presentation given in
[4]. Various hourglass control settings within the software specify the definition
of the artificial nodal forces. The issue with this approach is that these artificial
nodal forces produce work, denoted as artificial energy. If left unchecked, the
artificial energy will add an excessive amount of energy to the system, resulting in
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non-physical results. The ABAQUS manual recommends keeping the ratio between
artificial energy and strain energy below 5% [1].

A different approach is modifying the stiffness matrix by hourglass stabilization
matrices [5]. This approach will also result in artificial energies being introduced
in the system. Therefore, similar issues appear as when artificial nodal forces are
introduced.

Implicit and explicit dynamic analyses
There are two main approaches available for dynamic analysis of structures, which
differ in the method used for discretising time: implicit and explicit solvers. Implicit
solvers allow using relatively large time steps and thus often result in much lower
computational cost. However, implicit methods are inefficient with high frequency
vibrations, contact and highly nonlinear effects. Explicit methods require very small
time steps to be stable, but are efficient for highly nonlinear or impact problems.

Consider the following general structural dynamics equation without damping:

M¥u𝑛 + f𝑖𝑛𝑡 (u𝑛) = f𝑛 (2.1)

where M is the mass matrix, f𝑖𝑛𝑡 is the vector of internal forces, f is the vector
of external forces, and (u𝑛, ¤u𝑛, ¥u𝑛) are the displacement, velocity and acceleration
vectors respectively. It is assumed that kinematic quantities at a previous time step
(u𝑛−1, ¤u𝑛−1, ¥u𝑛−1) are known. From (2.1) the acceleration ¥u𝑛 can be obtained as the
solution of a linear system if approximations for u𝑛, ¤u𝑛 are defined.

The explicit Newmark method [40], also known as explicit central difference scheme,
defines approximations for u𝑛, ¤u𝑛 by the following equations:

¤u𝑛 = ¤u𝑛−1 +
Δ𝑡

2
( ¥u𝑛−1 + ¥u𝑛)

u𝑛 = u𝑛−1 + Δ𝑡 ¤u𝑛−1 +
Δ𝑡2

2
¥u𝑛−1

(2.2)

Combining (2.1) and (2.2) the structural solution can be advanced in time while re-
quiring only solving a linear system at each time step. The explicit Newmark method
is still used extensively, being the explicit solver of choice in the ABAQUS soft-
ware. Recent advances in explicit solvers for structures have focused on increasing
the order of accuracy while preserving stability [51].
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The implicit Newmark method defines approximations as follows:
¤u𝑛 = ¤u𝑛−1 +

Δ𝑡

2
( ¥u𝑛−1 + ¥u𝑛)

u𝑛 = u𝑛−1 + Δ𝑡 ¤u𝑛−1 +
Δ𝑡2

2
( ¥u𝑛−1 + ¥u𝑛)

(2.3)

Combining (2.1) and (2.2) results in a nonlinear equation for ¥u𝑛 due to the nonlin-
earity introduced by the function f𝑖𝑛𝑡 . Therefore iterations are required to obtain the
solution at every time step.

Implicit solvers can use larger time steps while preserving stability of the solution.
However, using large time steps results in not being able to resolve high-frequency
vibrations present in the structure, depending on the Nyquist frequency correspond-
ing to the time step used. These vibrations may be an artifact of the finite element
discretisation and thus it is desirable to dampen high-frequency oscillations in im-
plicit solvers [31]. Many implicit methods have been proposed for this purpose,
such as the Newmark-𝛽 method [40], the 𝐻𝐻𝑇 − 𝛼 method [24] and the 𝐶𝐻 − 𝛼

method [14]. These methods can be considered particular cases of a more general
formulation known as generalized−𝛼 method [20]. This method controls the dissi-
pation via the spectral radius at infinity, allowing control on the dissipation at the
high-frequency range. ABAQUS currently uses the 𝐻𝐻𝑇 −𝛼 method as the implicit
solver.

Shell element formulations
Classical shell theories can be classified depending on the thickness of the shell. The
Kirchhoff-Love shell theory is accurate for thin shells, while the Reissner-Mindlin
shell theory is more appropriate for thick shells. However, there are many more
differences between these shell theories. To illustrate these differences, we define
a three-dimensional shell body using a curvilinear coordinate system, as shown
in Figure (2.10). The in-plane coordinates are b𝛼, where 𝛼 = (1, 2). The shell
thickness direction is b3. The position vector X is defined as a function of the
midsurface position R and the director vector A3 as [19]:

X (b1, b2, b3) = R (b1, b2) + b3A3 (b1, b2) (2.4)

The Kirchhoff-Love shell theory considers that the director A3 is always perpen-
dicular to the mid-surface. Therefore, the shell body can be described uniquely by
the midsurface position R, and only displacement variables are used. Moreover,
since the director always follows the midsurface, the out-of-plane shear strains are
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Figure 2.10: Reference and current configurations of shell body [42].

not present in the formulation. This has the advantage of eliminating shear locking
at the formulation level. However, displacement-based shell finite elements using
the Kirchhoff-Love shell theory require shape functions with 𝐶1 continuity between
elements. This has been proven to be very difficult to formulate using standard
polynomial shape functions [61].

The Reissner-Mindlin shell theory considers that an additional rotation can be im-
posed in the director vector A3 such that it is not always perpendicular to the mid-
surface. Therefore, this theory uses additional rotational degrees of freedom. This
theory only requires 𝐶0 continuity between elements and therefore they are com-
patible with standard lagrangian shape functions. Due to this, the Reissner-Mindlin
shell theory is used routinely in commercial finite element software. However, the
inclusion of rotational degrees of freedom has many drawbacks, including the pres-
ence of shear locking, complex large-rotation transformations and rotational inertias
scaling in dynamic simulations. In addition, these additional degrees of freedom
increase the computational cost with little benefit for thin shell analysis.

2.4 Tape spring analysis
The analysis of tape spring folding and deployment remains challenging due to the
presence of different instabilities. The folds form suddenly, can move along the tape
spring, split into different folds, or merge into a single fold. Numerical effects such
as locking and hourglassing can distort the accuracy of the solution and prevent
getting a true understanding of the phenomenon. Experiments can be similarly



14

challenging due to the sensitivity of the structural behavior to instabilities.

Various simplified models for prediction of tape spring bending have been developed.
A planar rod model has been presented in [7]. It was assumed that the cross-section
remains circular, but with potentially different radii of curvature along the rod length.
The model is based on 4 variables at each point of the rod: the 2 coordinates that
define the position within a plane, the rotation of the cross-section and a variable
related to the curvature of the cross-section. This model was further improved in
[45] and extended for 3D motion in [44].

An experimental analysis of tape spring deployment is presented in [55]. The
experimentally obtained fold position and angle are identified using a normalized
fold position _ with the tape length 𝐿. Additionally, a fold angle \ is defined, as
shown in Figure 2.11. A typical plot of the fold position _ and angle \ is shown in

Figure 2.11: Fold geometry description.

Figure 2.12. Initially _ increases because the fold moves towards the support, while
the fold angle \ simultaneously reduces as the tape spring starts to straighten. As
the fold gets closer to the support, eventually there is a reversal in the fold velocity
direction which occurs around 𝑡 = 0.12 s. The fold then moves back through the
tape spring while the fold angle begins to increase. However, the tape spring does
not return to the original state.

2.5 Open-source finite element software
Although commercial finite element software is easy to use in predefined cases,
customization is limited and integration with external tools can be very difficult.
On the other hand, an open-source software has source code freely available and
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Figure 2.12: Typical tape spring deployment plots for fold position _ and angle \

[55].

can be modified according to the needs of the user. This makes them attractive
for specific applications where precise control and modifications of the solution
process is required, such as in reduced order modeling. There are currently many
open-source software available for finite element analysis. In this section, a brief
overview of current open-source codes for finite element analysis is given.

Calculix is an open-source package for solution of problems via the finite element
method. It uses an input format similar to ABAQUS, and therefore the input data
is compatible. Python language can be used for automating the creation of models.
Although 4-node and 8-node shell elements are available, during calculations they
are expanded into three-dimensional 8-node and 20-node brick elements respectively
[11]. This expansion does not always result in correct answers, such as when
rotational boundary conditions are applied.

FEniCS Project is a collection of software components aimed at the solution of
partial differential equations. It was initiated in 2003 by a joint collaboration
between the University of Chicago and Chalmers University of Technology. It uses
Python language to easily express high-level finite element procedures and uses C++
for assembly and solution. Various external libraries are used for numerical linear
algebra, meshing and distributed computing. It includes Von Karman shallow
shell elements, where some higher order strain terms are neglected by assuming
moderate rotations, and Naghdi shell elements. Reduced integration is available for
the elements.
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Elmer is a software for multiphysics problems developed by the CSC - IT Center
for Science, which is owned by the Finnish state. It is written using C, C++ and
Fortran90 languages. Although shell elements are available via an additional file,
there is no documentation.

OpenSees is a software developed via sponsorship of the Pacific Earthquake En-
gineering Research Center, which is a research center located at the University of
California, Berkeley. It is primarily written in C++ with various numerical libraries
in Fortran. It includes MITC4 shell elements, where the strain components are
interpolated to alleviate shear locking, and generalized conforming shell elements,
where the conforming conditions are not applied exactly but in an integral sense.
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C h a p t e r 3

TAPE SPRING OPPOSITE-SENSE BENDING - SIMULATION

This chapter is concerned with developing an in-house code for the simulation of the
tape spring opposite-sense bending. The physical details of the physical problem to
simulate are introduced. This problem has been studied before in commercial finite
element software [49], as well as with in-house code implementations of various
finite element formulations [58]. Afterwards, a shell finite element formulation is
presented following [30]. The in-house code allows the reduced order modeling
methods used in the next chapter, which require manipulation of variables and
precise control of the solution methods and is often not possible in commercial
finite element software. The details of the finite element formulation used and
comparison with the ABAQUS software are presented.

3.1 Problem description
A tape spring can be described as a cylindrical shell of length 𝐿, thickness 𝑡, radius
of curvature 𝑅 and angle subtended 𝛼. The XY plane of the coordinate system is
parallel to the cross-section, where the X axis is parallel to the chords connecting
the ends of the circular cross-section, as shown in Figure 3.1. The Z axis is the
longitudinal axis of the tape spring. The center of the coordinate system is the center
of the circular arc in the cross-section on one end of the tape spring.

Figure 3.1: (a) Tape spring geometry, where the origin is represented by the green
point. (b) Tape spring cross-section.

Opposite-sense bending is applied by rotating both ends of the tape spring around an
axis parallel to the X axis. For this purpose, we identify the two cross-sections where
boundary conditions will be applied in (3.2): The top and bottom cross-section are
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Figure 3.2: Boundary condition regions for opposite-sense bending of tape spring.

rotated in opposite directions with respect to the X axis. The bottom cross-section is
completely fixed in translation, while the top cross-section can move longitudinally
(along the 𝑍 axis) but is otherwise fixed in translation. The boundary conditions
are indicated in (3.1), where nodes contained in a plane are indicated by just listing
a single coordinate (plane equation).

Table 3.1: Boundary conditions for opposite-sense bending of tape spring.

.
Region Location Boundary condition
Bottom cross-section 𝑧 = 0 𝑢𝑥 = 𝑢𝑦 = 𝑢𝑧 = 𝜙𝑦 = 𝜙𝑧 = 0 , 𝜙𝑥 = \

Top cross-section 𝑧 = 𝐿 𝑢𝑥 = 𝑢𝑦 = 𝜙𝑦 = 𝜙𝑧 = 0 , 𝜙𝑥 = −\

3.2 Arc length method
As described in Chapter 2, there is a sudden localization and a snap-through when
opposite-sense rotations are applied to a tape spring. This requires a special in-
cremental approach in order to be able to trace the stable and unstable equilibrium
paths. For this purpose, the Riks method can be used [52]. Continuation through
limit and bifurcation points is possible by using the length of the equilibrium path
as a control parameter. This requires adding to the standard equilibrium equations
a constraint equation, which destroys the symmetric banded nature of the finite ele-
ment equations. A modified Riks approach was presented in [15] which preserves
the symmetric banded form of the matrices used while maintaining the capabilities
of the Riks method. This will be the method used in the code implementation.

A brief description of the Riks method follows. We consider here a general
quasi-static structural problem with geometrical nonlinearities but within the elas-
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tic regime. After discretisation, the problem is defined by the following nonlinear
equation:

r [u] = f [u] − f𝑒𝑥𝑡 = 0 (3.1)

where r is the residual vector, u ∈ R𝑁 is the displacement vector, f ∈ R𝑁 is the vector
of internal forces within the structures and f𝑒𝑥𝑡 ∈ R𝑁 is the vector of external forces.
The displacement vector u is the unknown in this equation. For the tape spring
snap-through buckling problem there are no external forces, so f𝑒𝑥𝑡 = 0. However,
the rotations \ and −\ imposed at the tape spring ends act as the loading, such that
the equation (3.1) is modified as follows:

r [u, \] = f [u, \] = 0 (3.2)

It is possible to trace an equilibrium path by progressively incrementing \ and
solving the resulting nonlinear equation. However, this approach does not allow
tracing the complete stable and unstable equilibrium paths. To see this, an example
of the equilibrium path desired is shown in Figure 3.3, obtained for a tape spring with
parameters 𝐿 = 300 mm, 𝑡 = 0.1 mm, 𝛼 = 110◦ , 𝑅 = 10 mm, Young’s modulus
𝐸 = 131 GPa and Poisson’s ratio a = 0.3. The plot contains both the stable and
unstable equilibrium paths. If we choose to increment the rotation \ monotonically,
we only trace part of this path, as shown in Figure 3.4. To trace both the stable and

0 5 10 15 20 25 30
0

50

100

150

200

250

300

M
o
m

e
n
t 
(N

.m
m

)

Figure 3.3: Stable and unstable equilibrium path for opposite-sense bending of tape
spring obtained by the arc-length method.

unstable equilibrium paths it is required to simultaneously modify u and \, such that
both of them become variables of the problem. Given an initial state u0 and \0, the
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Figure 3.4: Part of equilibrium path for opposite-sense bending of tape spring.

variables are the increments Δu and Δ\. The system is closed by constraining the
total combined increment and adding this condition to (3.2):

r [u, \] = f [u, \] = 0
u = u0 + Δu
\ = \0 + Δ\

∥Δu∥2 + _ (Δ\)2 = Δ𝑠2

(3.3)

where Δ𝑠 defines the step size taken during every increment and is chosen such that
the equilibrium path is traced accurately, and _ defines a scaling factor between Δu
and Δ\.

The value of Δ𝑠 can be chosen adaptively such that the equilibrium path is traced
efficiently, resulting in the adaptive arc length method. The adaptive arc length
method was used in Figure 3.3, where the value of the increment size Δ𝑠 is reduced
as the equilibrium path becomes more nonlinear. Additional details regarding the
solution of this system of equations are given in [15]. This method is used in the
remainder of this chapter to model the opposite-sense bending of the tape spring.

3.3 Isogeometric shell finite element
Isogeometric finite elements [27] use the same shape functions as the geometries
defined in computer-aided design software, that is, Non-Uniform Rational B-Spline
(NURBS) shape functions. These functions can model certain geometric features
exactly, such as circular arcs. This makes them attractive for the analysis of elastic
folds, which are almost (but not completely) cylinders with circular arc cross-section.
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In this section, details from an in-house isogeometric shell finite element code are
presented.

NURBS basis functions for surfaces
A brief overview of the bidimensional NURBS basis functions used in the finite
element procedure and the B-spline functions which are used as building blocks
is presented here. These functions are significantly different than the standard
lagrangian shape functions used in commercial finite element software. More
details are given in [27].

Univariate B-spline basis functions of degree 𝑝 are constructed by defining a non-
decreasing sequence of numerical values

{
b1, ..., b𝑛+𝑝+1

}
, each of which is called a

knot. There are 𝑛 basis function associated with this knot sequence, which can be
computed using the Cox-de-Boor recursion formula:

𝑁𝑖,𝑝 (b) =
b − b𝑖

b𝑖+𝑝 − b𝑖
𝑁𝑖,𝑝−1(b) +

b𝑖+𝑝+1 − b
b𝑖+𝑝+1 − b𝑖+1

𝑁𝑖+1,𝑝−1(b) (3.4)

For the case 𝑝 = 0 a piece-wise constant basis function is defined:

𝑁𝑖,0 (b) =
{

1, if b𝑖 ≤ b < b𝑖+1

0, otherwise
(3.5)

Bidimensional B-spline basis functions are obtained as a tensor product of sets of
univariate B-spline functions. On each dimension we use the variables

(
b1, b2)

respectively, the degrees of the functions
(
𝑝1, 𝑝2) and

(
𝑛1, 𝑛2) basis functions. The

bidimensional B-spline basis functions are defined as:

𝐵𝑖,p (𝝃) = 𝑁𝑖1,𝑝1

(
b1

)
𝑁𝑖2,𝑝2

(
b2

)
(3.6)

where 𝑖 = 𝑖1 + 𝑛1(𝑖2 − 1), p =
{
𝑝1, 𝑝2}, 𝝃 =

(
b1, b2) and 𝑖𝑘 =

{
1, ..., 𝑛𝑘

}
. Bidimen-

sional NURBS basis functions are defined as:

𝑅𝑖,p (𝝃) =
𝑤𝑖𝐵𝑖,p (𝝃)∑𝑛
𝑖=1 𝑤𝑖𝐵𝑖,p (𝝃)

(3.7)

where 𝑛 = 𝑛1𝑛2 and 𝑤𝑖 are specified weights. NURBS sufaces are defined using the
bidimensional NURBS basis functions as follows:

S (𝝃) =
𝑛∑︁
𝑖=1

𝑷𝑖𝑅𝑖,p (𝝃) (3.8)

where 𝑷𝑖 ∈ 𝑅3 are control points which form the surface mesh. An example of a
surface and corresponding control points is shown in 3.5. By carefully choosing the
control points 𝑷𝑖 and the weights 𝑤𝑖, various surfaces can be obtained. It must be
noted that the control points P𝑖 are not located on the surface S in general.
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Figure 3.5: Surface mesh and corresponding control points.

Isogeometric concept
The isogeometric concept uses the NURBS basis functions for interpolation within
finite elements. The knots define the finite element boundaries (not including
the repeated knots). The control point coordinates P𝑖 become the displacement
variables, while the weights 𝑤𝑖 remain fixed. To illustrate the isogeometric concept,
the quadratic B-spline basis functions for a knot vector [0, 0, 0, 1, 2, 3, 3, 3] are
shown in Figure 3.6. For comparison, the quadratic lagrangian basis functions, used
in standard finite elements, are shown in Figure 3.7. Some special features of the
B-spline basis functions, and by extension of the NURBS basis functions [46], are
as follows:

• They can have non-zero values over multiple elements

• They have smooth derivatives over multiple elements

• They are non-interpolatory at the element boundaries

Figure 3.6: Quadratic B-spline basis functions.

Additionally, the continuity at the element boundaries can be controlled by adding
repeated knots. In this manner, arbitrary degrees of continuity can be obtained.
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Figure 3.7: Quadratic lagrangian basis functions.

Shell formulation
An isogeometric shell element using Kirchhoff-love shell theory and 𝐶1 NURBS
shape functions has been presented in [30]. This element uses only displacement
variables and therefore avoids the previously mentioned drawbacks of the Reissner-
Mindlin shell theory. The 𝐶1 continuity requirement is obtained via the NURBS
shape functions. The shell three dimensional continuum is reduced to the midsurface
of the shell. Transverse normal stresses and transverse shear strains are neglected,
following the assumptions of the Kirchhoff-Love theory. The strain is linear through
the thickness, with a constant part due to membrane effects and a linear part due to
bending. The NURBS shape functions are used within the finite element method
via standard procedures [3] to develop the shell element.

Rotational boundary conditions
The absence of rotational variables in the Kirchhoff-Love shell theory has many
advantages. However, the application of rotational boundary conditions requires
special treatment. To do so, we use the special properties of the NURBS curves and
surfaces.

Although a NURBS curve in general does not pass through the control points, it can
be shown that the first and last control point of the curve are interpolated exactly.
Additionally, the tangents to a NURBS curve at the start and end of the curve are
parallel to the lines that connect the two control points closest to the start and end
respectively. In an analogous manner, the control points in the boundary of the
NURBS surface are interpolated exactly. Also, the tangent to a NURBS surface at
a location in the boundary of the surface is parallel to the line connecting the two
points closest to the boundary location.

Therefore, to apply the clamped boundary condition at a boundary of a NURBS
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surface we fix the two rows of control points next to the boundary. Fixing the first
row ensures that the boundary does not move (since the control points in the first row
are exactly interpolated). Fixing the second row ensures that the boundary does not
rotate (since the slope of the boundary is defined by the line connecting the control
points of the two rows adjacent to the boundary).

To apply a non-zero rotation angle on a boundary, displacements are applied to the
control points along the boundary. The rotation axis is defined as the geometric
center of the boundary. With the rotation axis and angle defined, the position of the
rotated boundary can be calculated and the control points are displaced appropriately.

Implementation
A geometrically nonlinear shell finite element code using the isogeometric elements
previously described has been implemented in MATLAB. The code relies exten-
sively on efficient vectorized algorithms [16] which are optimal for implementation
in vector languages. This allows the implementation to be competitive with other
coding language choices. Additionally, the computations leverage the GPU capa-
bilities to obtain a fast execution time. The computer used to run the code in the
numerical results of this thesis is a laptop with Intel i7-8750H CPU processor, 16
GB RAM and a GeForce GTX 1070 GPU.

3.4 Numerical results
The tape spring opposite-sense bending problem is used to verify the isogeometric
shell code implementation. Quadratic degree NURBS functions in both directions
are used for interpolation within each element. The tape spring considered has
geometrical parameters 𝐿 = 300 mm, 𝑡 = 0.1 mm, 𝛼 = 110◦ and 𝑅 = 10 mm.
An isotropic material is considered, with Young’s modulus 𝐸 = 128.7 GPa and
Poisson’s ratio a = 0.3. Results from ABAQUS finite element software are used to
verify the implementation. In both the isogeometric shell code and ABAQUS the
arc-length method is used to trace the complete equilibrium path accurately. The
mesh used in ABAQUS is made of 4000 S4 elements, with 200 elements along the
length and 20 elements along the arc cross-section.

Figure 3.8 shows the comparison between the isogeometric shell code and ABAQUS
software for the tape spring opposite-sense bending. The moment reaction at the
tape spring ends is computed by force balance for the isogeometric shell code. It
can be observed that there is good agreement between both models, validating the
shell code implementation.
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Figure 3.8: Moment-rotation plots for opposite-sense bending of tape springs for
isogeometric shell code and ABAQUS.

3.5 Higher order NURBS functions
Using higher order NURBS functions increases the accuracy for a given number of
degrees of freedom [6]. However, using higher-order NURBS functions in practice
results in a high computational cost. Although reducing the number of degrees of
freedom reduces the size of the linear system formed from the discretisation, the
matrix is less sparse when higher-order functions are used. This increases the cost of
solving the linear system. Additionally, the cost of assembling the matrix increases
significantly due to the higher number of gauss points required.

To illustrate this point, the sparsity pattern of the stiffness matrix created by using
quadratic NURBS functions and quartic NURBS functions with two different meshes
will be shown. Table 3.2 details the number of finite elements and the degrees of
freedom of the two meshes, as well as the density and the non-zero elements of the
stiffness matrix for both degrees used.

Table 3.2: Mesh and stiffness matrix parameters for different NURBS degrees.

Parameter Quadratic NURBS Quartic NURBS
Elements 1024 512
Degrees of freedom 3900 2448
Matrix density 0.017% 0.078%
Non-zero elements 255004 468859

It can be observed that despite having fewer degrees of freedom, the matrix built
using quartic NURBS functions has more non-zero elements. The sparsity patterns
for both cases are shown in Figure 3.9, where it can be seen that the matrix formed
using quartic NURBS functions is significantly less sparse. This not only increases
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the computational cost of solving the linear system but also the cost of assembling
the system.
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Figure 3.9: Sparsity pattern of matrices (a) Using quadratic NURBS functions (b)
Using quartic NURBS functions.

Although this analysis would suggest that using lower degrees is more efficient, there
is a lower limit to the permissible NURBS degree. The Kirchhoff shell formulation
computes curvatures via second derivatives of the displacements. Therefore, at least
a quadratic degree is required, and this degree is used for the analysis of the tape
spring opposite-sense bending.

3.6 Discussion
The opposite-sense bending of tape spring problem has been introduced. The
presence of stable and unstable equilibrium paths is illustrated, and the necessity for
the arc-length method is detailed. Afterwards, the isogeometric shell finite element
formulation is presented. Various interesting properties of the isogeometric basis
functions are shown. The implementation of the isogeometric shell code has been
detailed.

Numerical results have been developed to validate the isogeometric shell code
using the opposite-sense bending of tape springs as a test case. Results from the
ABAQUS software are used as reference. The comparison indicates that there is
good agreement between both models and the shell code implementation has been
validated.
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C h a p t e r 4

TAPE SPRING OPPOSITE-SENSE BENDING - SPEEDUP

This chapter is concerned with the efficient analysis of the tape spring snap-through
buckling problem by reducing the computational cost. It is of interest to obtain this
speedup within a single simulation procedure. Therefore, no data from previous
simulations, also known as off-line simulations, is used. This single-simulation
approach is known as an on-the-fly procedure. The use of reduced order modeling
techniques and adaptive meshing within an on-the-fly procedure will be studied.
Since these methods require manipulation of variables often not available directly
in commercial finite element software, an in-house finite element code will be
developed. The details of the finite element formulation used are described below.

4.1 Reduced order modeling
In this section we illustrate the construction of a reduced order basis via the method
of snapshots as presented in [57]. Afterwards, the state-of-the-art energy-conserving
and weight sampling hyper-reduction method [21] is applied as a second layer of
reduction. The ROM framework will be tested on the tape spring opposite-sense
bending to evaluate the efficiency of the reduced order model approach. Due
to various particular features of the tape spring opposite-sense bending problem,
various novel modifications need to be introduced with respect to the framework
presented in [21].

Reduced order basis
A quasi-static structural problem with geometrical nonlinearities but within the
elastic regime is considered here. After discretisation, the problem is defined by the
following nonlinear equation, denoted as the full-order model (FOM):

r [u] = f [u] − f𝑒𝑥𝑡 = 0 (4.1)

where the displacement vector u ∈ R𝑁 is the unknown in this equation. Solving this
system of dimension 𝑁 is expensive, motivating a reduction of the dimension. The
displacement vector can be approximated within a subspace of dimension 𝑘 << 𝑁

as follows:
u = Vq (4.2)
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where q ∈ R𝑘 is a vector of reduced coordinates, and the matrix V defines a reduced
order basis. Substituting (4.2) in (4.1) and constraining the residual to be orthogonal
to the reduced order basis 𝑉 :

r [q] = V𝑇 f [Vq] − V𝑇 f𝑒𝑥𝑡 = 0 (4.3)

To solve this system of equations we use the Newton-Raphson iteration method [3].
We define an initial guess q0 and correct this solution by construct a sequence of
increments Δq as:

JΔq = −r (4.4)

where J ∈ R𝑘×𝑘 is the jacobian of equation (4.3):

J =
𝜕r
𝜕q (4.5)

Substituting (4.3) in (4.5):
J = V𝑇KV (4.6)

where K is the stiffness matrix, defined by:

K =
𝜕f
𝜕u (4.7)

Substituting (4.6) and (4.3) in (4.4):(
V𝑇KV

)
Δq = −V𝑇 f + V𝑇 f𝑒𝑥𝑡 (4.8)

The cost of solving the nonlinear system of equations (4.8) of size 𝑘 is less than
the original system since 𝑘 << 𝑁 . However, constructing this system requires
calculating f and K for computing the reduced quantities V𝑇 f and V𝑇KV respectively.
Therefore, the construction of this system still scales with the dimension of the FOM.
This motivates a further layer of reduction, described in the following sub-section.

It must be noted that the displacement variables part of the boundary conditions
are known and therefore do not require approximation. Therefore, in practice the
reduced order basis is defined only for the degrees of freedom which are not part of
the displacement boundary conditions. In other words, if the structural problem is
defined in the region Ω and has displacement boundary conditions of the form:

u|Ω1 = ū (4.9)

Then the reduced order basis approach is used in the region Ω − Ω1, such that
equation (4.2) becomes:

u|Ω−Ω1 = Vq (4.10)

where the operator − in this context indicates a subtraction of sets.
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Hyper-reduction scheme
The scheme described here will follow [21]. The vector of internal forces f can be
expressed as a sum of components at the element level, following standard assembly
procedures [3]:

f =
𝑛𝑒∑︁
𝑒=1

R𝑇
𝑒 f𝑒 (4.11)

where 𝑛𝑒 is the number of finite elements in the mesh, f𝑒 ∈ R𝑑 is the vector of
internal forces within an element 𝑒, R𝑇

𝑒 ∈ R𝑁×𝑑 is a boolean matrix with 0s and
1s that indexes f𝑒 within the global internal force vector f, and 𝑑 is the number
of degrees of freedom per finite element. Similarly, the stiffness matrix K can be
expressed as a sum of components at the element level:

K =

𝑛𝑒∑︁
𝑒=1

R𝑇
𝑒K𝑒R𝑒 (4.12)

where K𝑒 ∈ R𝑑×𝑑 is the stiffness matrix of an element 𝑒. The reduced vector of
internal forces V𝑇 f, required to evaluate (4.3), can be expressed similar to (4.11):

V𝑇 f =
𝑛𝑒∑︁
𝑒=1

V𝑇R𝑇
𝑒 f𝑒 (4.13)

The reduced stiffness matrix V𝑇KV, required to evaluate (4.8), can be expressed
similar to (4.12):

V𝑇KV =

𝑛𝑒∑︁
𝑒=1

V𝑇R𝑇
𝑒K𝑒R𝑒V (4.14)

We observe that evaluating (4.13) and (4.14) scales with the number of total elements
in the mesh 𝑛𝑒, being expensive computationally.

The hyper-reduction method is defined by approximating the vector V𝑇 f using only
a subset of the original mesh, herein denoted as a reduced mesh, and scaling the
element contributions with a weight. More specifically, given the original set of
finite elements 𝐸0 we identify a subset �̂� of size ℎ << 𝑛𝑒 and a set of weights b𝑒

such that the weight is zero for elements not contained in the subset �̂� :{
b𝑒 = 0 𝑒 ∉ �̂�

b𝑒 ≠ 0 𝑒 ∈ �̂�
(4.15)

This is used to approximate the reduced internal forces vector (4.13) as follows:

V𝑇 f =
𝑛𝑒∑︁
𝑒=1

V𝑇R𝑇
𝑒 b𝑒f𝑒 (4.16)
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where the terms of the sum are zero if 𝑒 ∉ �̂� and can be ignored. Therefore this
expression is equivalent to:

V𝑇 f ≈
∑︁
𝑒∈Ê

V𝑇Rb𝑒f𝑒 (4.17)

Similarly, the reduced stiffness matrix (4.14) is approximated as follows:

V𝑇KV ≈
∑︁
𝑒∈Ê

V𝑇R𝑇
𝑒K𝑒R𝑒V (4.18)

In this manner, the computation of V𝑇 f now scales with the size ℎ of the subset
�̂� , much smaller than the size 𝑛𝑒 of the original set of elements 𝐸0. In order to
find the mesh subset �̂� and the weights b𝑒 an optimization procedure is used [21]
based on data acquired. For different training configurations 𝑖 ∈ {1, 2, ..., 𝑛𝑡}, which
can correspond to different load magnitudes or times, the internal forces will have
different values, and are denoted as f𝑖. We identify the reduced internal forces
vectors at the element and global level as:

g𝑖𝑒 = V𝑇R𝑒f𝑖𝑒 (4.19)

b𝑖 = V𝑇 f𝑖 (4.20)

The reduced order basis is defined on the degrees of freedom not associated with
displacement boundary conditions, that is, in the region (Ω −Ω1). Therefore the
vectors g𝑖𝑒 and b𝑖 are defined with degrees of freedom in the region (Ω −Ω1).

g𝑖𝑒 = V𝑇 (R𝑒f𝑖𝑒)
��
Ω−Ω1

(4.21)

b𝑖 = V𝑇 f𝑖 |Ω−Ω1 (4.22)

Using these equations with (4.13) it is evident that:

𝑛𝑒∑︁
𝑖=1

g𝑖𝑒 = b𝑖 (4.23)

The element and global contributions for different configurations are organized in
block-matrix form as follows:

G =


g11 ... g1𝑛𝑒
... ...

g𝑛𝑡1 ... g𝑛𝑡𝑛𝑒

 (4.24)
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b =


b1

...

b𝑛𝑡

 (4.25)

These matrices will be used in the optimization procedure for the weights b𝑒 and
the mesh subset �̂� . The weights b𝑒 are grouped in a vector 𝝃 and an error metric is
defined as:

k = ∥G𝝃 − b∥2 (4.26)

We observe that choosing all the weights b𝑒 equal to 1 corresponds to an error
metric k = ∥G𝝃 − b∥2 = 0 due to (4.23), (4.24) and (4.25). This indicates that
the full mesh, where all the elements are correctly accounted for, has zero error
metric. Choosing a different vector of weights 𝝃 will define a mesh subset �̂� for
computations with error defined by (4.26).

Optimal values 𝝃0 are found via a minimization using the 𝐿0 norm:

𝝃0 = arg min
𝝃∈Φ
∥𝝃∥0 (4.27)

where Φ is the space of acceptable solutions. The use of 𝐿0 minimizes the non-zero
components of the weights vector, which is desirable since this minimizes the size
of the subset �̂� . The space of acceptable solutions Φ is defined in [21] as:

Φ = {b ∈ R𝑛𝑒 : k ≤ 𝜏 ∥b∥2 , 𝝃 ≥ 0} (4.28)

The equations (4.27) and (4.28) define an optimization problem which finds a vector
𝝃 with a minimal number of non-zero elements that bounds the error, as measured
by k, using a tolerance 𝜏. The condition 𝝃 ≥ 0 ensures that the element weights are
positive.

The exact solution of the optimization problem requires an exhaustive search and
is NP-hard [21]. Therefore, an algorithm that yields a suboptimal solution is used,
namely the algorithm for solving the sparse non-negative least squares problem [32].
The procedure start with a guess of 𝝃 as the zero vector 𝝃 = 0 and finds an optimal
element to add to the subset �̂� , that is, the component of the vector 𝝃 which should
be non-zero. This is repeated iteratively by adding more and more elements until
the error metric drops below the tolerance, or equivalently, the condition k ≤ 𝜏 ∥b∥2
is satisfied.

Hyper-reduction scheme - Modifications
Various modifications are introduced with respect to the approach presented [21],
since it is not possible to use the optimization procedure directly.
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• For the tape spring opposite-sense bending problem, the displacement degrees
of freedom within the region Ω1 produce the ends rotation, and internal forces
are produced in those degrees of freedom. On the other hand, the displacement
degrees of freedom within the region (Ω −Ω1) not part of the displacement
boundary conditions are free of external forces. Therefore at equilibrium we
have: {

f𝑖 |Ω1 ≠ 0
f𝑖 |Ω−Ω1 = 0

(4.29)

Since the reduced order basis is only defined for the region (Ω −Ω1), following
(4.22) we have that b𝑖 = 0 and therefore from (4.25) we get b = 0. Since
we start the optimization procedure with the zero vector 𝝃 = 0 then the error
metric k = ∥G𝝃 − b∥2 is zero trivially and therefore is not useful.

A well-defined optimization procedure is introduced by including the internal
forces where the displacement boundary conditions are defined, that is, f𝑖 |Ω1 .
We define a new vector b∗𝑖 as:

b∗𝑖 =
[

V𝑇 f𝑖 |Ω−Ω1

f𝑖 |Ω1

]
=

[
0

f𝑖 |Ω1

]
(4.30)

We also define a new vector g∗
𝑖𝑒

as:

g∗𝑖𝑒 =
[

V𝑇 (R𝑒f𝑖𝑒) |Ω−Ω1

V𝑇 (R𝑒f𝑖𝑒) |Ω1

]
(4.31)

The element and global contributions for different configurations are organized
in block-matrix form as follows:

G∗ =


g∗11 ... g∗1𝑛𝑒
... ...

g∗
𝑛𝑡1 ... g∗𝑛𝑡𝑛𝑒

 (4.32)

b∗ =


b∗1
...

b∗𝑛𝑡

 (4.33)

The new error metric is defined as:

k∗ = ∥G∗𝝃 − b∗∥2 (4.34)

The space of acceptable solutions is defined as:

Φ = {b ∈ R𝑛𝑒 : k∗ ≤ 𝜏 ∥b∗∥2 , 𝝃 ≥ 0} (4.35)
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From (4.29), (4.30) and (4.33) we get that b∗ ≠ 0. Therefore we can start the
optimization procedure with a weight vector 𝝃 = 0 while from (4.34) we get
k∗ ≠ 0, that is, the error metric is non-zero (as desired).

• The condition 𝝃 ≥ 0 was introduced in [21] as a way to guarantee the positive-
definiteness of the reduced stiffness matrices V𝑇KV, since the weights b𝑒 are
used in the approximation (4.18). However, the tape spring opposite-sense
bending problem involves tracing stable and unstable equilibrium paths, for
which the stiffness matrices may not necessarily be positive-definite.

Therefore we drop this condition in the current hyper-reduction implementa-
tion. The space of acceptable solutions is defined as:

Φ = {b ∈ R𝑛𝑒 : k∗ ≤ 𝜏 ∥b∗∥2} (4.36)

The optimal values of the weights vector 𝝃0 are found via a minimization
using (4.27).

Since we no longer need to guarantee that 𝝃 ≥ 0, a modification of the algorithm
presented in [21] is in order. The new algorithm is shown in Table 4.1, where we
denote by G∗

�̂�
the column-wise restriction of the matrix G∗ according to the subset

�̂� . Similarly, 𝝃 �̂� is the restriction of the vector 𝝃 to the components indicated by the
subset �̂� .

Table 4.1: Modified hyper-reduction optimization algorithm.

�̂� ← ∅
𝑍 ← {1, 2, ..., 𝑛𝑒}
𝝃 ← 0
while ∥G∗𝝃 − b∗∥2 do

`← G∗𝑇 (b −G∗𝝃)∗
�̂� ← �̂� ∪ {maxIndex (`)}
𝑍 ← {1, 2, ..., 𝑛𝑒} − �̂�

𝝃 �̂� ←
(
G∗𝑇

�̂�
G∗

�̂�

)−1
G∗

�̂�
b∗

𝝃 �̂� ← 0

On-the-fly algorithm
We seek to construct a ROM without using previous simulation data. For this
purpose, we initially use the FOM for 𝑁𝐹 load steps of the static solver. Afterwards,
we construct a ROM using the data from the previous load steps. The reduced order
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basis matrix V is computed using the method of snapshots [57]. The reduced mesh
�̂� and weight coefficients b𝑒 are computed as described in the previous subsection.

The ROM obtained is used in subsequent load steps, and is adjusted based on the
error observed (error computation is discussed below). The algorithm is described
in Figure 4.1. If the ROM error is high, the FOM is used for the current load step,
and the solution is used to reconstruct the ROM with the augmented data. If the
ROM error is below a specified tolerance, the ROM solution is accepted, and the
ROM is used for the next load step. Note that in this case the solution vector is not
used to augment the ROM already constructed.

Figure 4.1: On-the-fly algorithm for ROM application.

The error incurred by the ROM can be computed exactly or approximated using
various approaches, as presented in [10] and [9]. In this work we choose to compute
this error as:

𝑒𝑅𝑂𝑀 =

rΩ−Ω1


∥r∥ (4.37)

where rΩ−Ω1 is the restriction of the residual vector r to the rows indexed by the
active degrees of freedom, therefore not including the degrees of freedom where
displacement boundary conditions are applied. This particular choice for the error
metric (and not simply r) is necessary because of the characteristics of the opposite-
sense tape spring bending problem. When convergence is achieved

rΩ−Ω1

 ≈ 0
while ∥r∥ ≠ 0. The error tolerance is denoted by 𝛿𝑅𝑂𝑀 , such that the ROM solution
is accepted if 𝑒𝑅𝑂𝑀 < 𝛿𝑅𝑂𝑀 .

This error metric allows us to identify correctly when the ROM ceases to be ac-
curate. However, the cost of computing ∥r∥ exactly scales with the dimension of
the FOM, noticeably increasing the computational cost. Nevertheless, this cost is
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still significantly lower cost than computing the stiffness matrix K of the FOM.
Therefore, this choice seeks to strike a balance between the high speed of the pure
ROM approach and the accuracy obtained with the FOM.

Numerical results
We use the tape spring opposite-sense bending problem for application of the pro-
posed ROM approach. An arc-length solver is used, using the rotation applied at
the ends as the incremental variable. The total rotation applied is chosen to be high
enough to observe the snap-through behavior. An adaptive arc length algorithm is
used to trace the snap-through curve efficiently. An isotropic tape spring is con-
sidered in the following. It has Young’s modulus 𝐸 = 131 GPa and Poisson’s ratio
a = 0.3. The angle subtended by the cross-section is 𝛼 = 110°.

The FOM was used for the first 𝑁𝐹 = 14 load steps and then the ROM is con-
structed, defining a reduced order basis and a subset of the mesh for computations.
The reduced order basis constructed with the previous displacement snapshots and
without compression is used. This choice does not affect computational efficiency
due to the low amount of snapshots acquired at this point. The hyper-reduction
method tolerance chosen is 𝜏 = 0.00025. The initial mesh, shown in Figure 4.2, has
2048 elements. After hyper-reduction the subset �̂� (reduced mesh) has 86 elements
at the first step that the ROM is constructed. The reduced mesh is shown in Figure
4.2, where the tape spring 2D mesh is shown along the longitudinal and arc axes. It
can be observed that the reduced mesh contains all the elements in the bottom and
top ends of the tape spring as well as some internal elements.

Longitudinal direction
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Figure 4.2: Reduced mesh for ROM application, where the initial mesh has 128 x
16 uniform finite elements and the red rectangles represent elements in the reduced
mesh.

The ROM error tolerance was set to be 𝛿𝑅𝑂𝑀 = 0.008. This value is such that
accurate results could be obtained. Looser tolerances result in equilibrium paths that
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diverge significantly from the true solution. The results are shown in Figure 4.3. It
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Figure 4.3: Opposite-sense bending of tape spring problem analyzed with on-the-fly
reduced order basis and hyper-reduction construction.

can be observed that the ROM constructed is very effective around the regions where
a small arc length is used. However, it does not perform well after the snap-through
is completed and the fold forms (after the rotation of the ends increases beyond
10°). The CPU time comparisons are given in table 4.2. The ROM approach has a
speedup factor of 1.2x compared to the full order model. The ROM is successful
in obtaining an accurate solution in 27 out of 61 possible increment step. However,
the ROM fails to be accurate in 34 out of 61 increment steps and therefore it is
required to switch to the FOM, which significantly penalizes the computation time.
In addition, the ROM does not seem useful after the snap-through is completed.

Table 4.2: CPU time for full and reduced order model.

Model CPU time
Full order model 120 s
Reduced order model 95 s

To study whether the ROM failure after the fold forms is due to the hyper-reduction
approximation, we repeat the computations but without using the hyper-reduction
procedure. Therefore, the ROM approximation only involves the reduced order
basis, and this is equivalent to applying an on-the-fly POD procedure. The results
are shown in Figure 4.4. It can be observed that the ROM is still ineffective after
the fold forms. The ROM is successful in obtaining an accurate solution in 23 out
of 61 possible increment steps.
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Figure 4.4: Opposite-sense bending of tape spring problem analyzed with on-the-fly
reduced order basis and no hyper-reduction.

To investigate this issue further we plot the tape spring at various stages of the
folding process, as shown in Figure 4.5. We observe that the straight parts mainly
rotate as the fold angle increases, and the fold region size progressively increases.
It is well known that of POD models have very limited ability to account for trans-
lation or rotation invariances [8]. Expert knowledge of the model can help identify
proper mathematical procedures to deal with the invariances, but this strategy has
limitations.

(a) (b) (c)

Figure 4.5: Tape spring during opposite-sense bending at different end rotations.
(a) Ends rotated by 8° (b) Ends rotated by 40° (c) Ends rotated by 65°.

It is tempting to divide the structure by considering each straight part of the tape
spring and the fold as different regions. The displacement approximation for the
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straight parts of the tape can be assumed to be in an arbitrary orientation with
respect to the coordinate system. We can apply a rotation by an angle 𝜓 to obtain
the approximation oriented with the coordinate system:

u = R (𝜓) Vq (4.38)

The angle 𝜓 is unknown initially and therefore a new variable of the problem. The
application of (4.38) for model reduction is complicated by the fact that different
tape spring sections will have different orientations in general. Therefore the dis-
placement approximations quickly become very involved as multiple superimposed
rotations are required. This becomes not viable within an on-the-fly approach due
to the high amount of data required before good approximations are possible. Note
that (4.38) is a special case of the general approximation for autoencoders, which
are neural networks used for reduced order modeling [43]:

u = V (𝜓) q (4.39)

where V (𝜓) q indicates an arbitrary function dependence. For this case, neural
networks working with large amounts of offline simulations are often used. Since
an on-the-fly procedure is the goal, this approach is not pursued further.

4.2 Adaptive meshing procedure
In this section we detail another approach to reduce the computational cost with an
on-the-fly procedure by using an adaptive meshing procedure. The presentation here
is partially based on the work of the author given in [13]. This approach involves
using a non-uniform distribution of finite elements by using a fine discretisation in
regions where more precise interpolation is required. An example of a tape spring
with a non-uniform mesh is shown in Figure 4.6.

Figure 4.6: Tape spring with non-uniform mesh of finite elements.

The adaptive procedure is different than for standard finite elements due to the
tensor product structure of NURBS shape functions. Refinement in the literature



39

is commonly performed in every axis of a given element, which is not possible in
general when using NURBS shape functions. Therefore, we propose a new adaptive
meshing procedure which is suitable for meshes formed by tensor product. This
procedure is described by specifying (i) the refinement indicator and (ii) the method
for remeshing. Both are defined below.

Refinement indicator
The refinement indicator is the parameter used to decide whether an element needs
to be refined or not. We propose using one refinement indicator for each direction
in the local shell finite element coordinate system. Each refinement indicator 𝑟𝑖 is
defined using the bending strain ^𝑖 and the element length ℎ𝑖 along the corresponding
curvilinear coordinate axis 𝑖 (local to the shell element):

𝑟𝑖 = ^𝑖ℎ𝑖 (4.40)

It must be noted that the bending strains along each curvilinear coordinate axis are
closely related to the curvature changes along each curvilinear axis. Subdivisions
are added along a given element axis if the refinement indicator corresponding to
that axis exceeds a threshold value 𝑟0. In addition, we define an element length limit
ℎ𝑡ℎ at which no further refinement is carried out:

IF

{
𝑟𝑖 > 𝑟0

ℎ𝑖/2 > ℎ𝑡ℎ
REFINE along 𝑖 axis (4.41)

The indicator threshold value 𝑟0 will be found by a calibrating procedure. The
element length limit ℎ𝑡ℎ is defined using the tape spring radius 𝑅 and thickness 𝑡:

ℎ𝑡ℎ =
√
𝑅𝑡 (4.42)

This parameter is related to the edge effect in tape springs [12]. When there is a fold
in a tape spring, within the fold area there is a transition along the arc curvilinear
coordinate axis, between the free edges and the central uniform curvature region.
To illustrate this region, a tape spring with a fold is shown in Figure 4.7. The
red box contains part of the fold region, and the blue curve identifies points at a
tape cross-section within the fold region. The fold region seems to have curvature
in one direction (along the longitudinal axis) while having close to zero curvature
along the other perpendicular axis. Therefore the points along the blue curve would
be expected to form an approximately straight line. A plot of the Y coordinate
along the blue curve, using the coordinate system from (3.1) is illustrated in Figure



40

Figure 4.7: Bent tape spring with red box showing fold region and blue curve
illustrating a cross-section of the tape spring.

4.8, where 𝑐 is a non-dimensional coordinate along the blue curve (a tape spring
cross-section), and the coordinate 𝑦 is non-dimensionalized using the tape spring
thickness 𝑡. It can be seen that the center region of the blue curve is almost straight,
but the outer regions are not flat, and the deviations are significant with respect to
the tape spring thickness 𝑡. Therefore, there is a transition between the outer region
and the central, almost flat region. This transition region requires a fine mesh to
be modeled accurately. The parameter ℎ𝑡ℎ describes this transition length and is
therefore used to control the mesh refinement.

-0.5 0 0.5

-0.2

0

0.2

0.4

Figure 4.8: Z coordinate along a cross-section within the fold region.

Remeshing scheme
When the refinement indicator 𝑟𝑖 exceeds the threshold value 𝑟0, the element is
marked for refinement. We refine the element along the axis 𝑖 by introducing
subdivisions. For example, consider the mesh in Figure 4.9a. If the top two
elements are considered for refinement along the vertical axis, we introduce the
subdivision shown in Figure 4.9b. If the same two elements are considered for
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refinement along the horizontal axis, we introduce subdivisions such as those shown
in Figure 4.9c.

(a) (b) (c)

Figure 4.9: Refined meshes. (a) Initial mesh with elements marked for refinement in
yellow. (b) Elements subdivided along vertical direction. (c) Elements subdivided
along horizontal direction.

.

It must be noted that this type of remeshing (where the additional subdivision lines
extend through the whole mesh) is necessary due to the grid structure of the NURBS
shape functions used. However, due the particular nature of the folds in tape springs
(which drive the adaptive meshing), the proposed adaptive meshing procedure is
still efficient, because the fold region is a relatively small rectangular region.

After the finer mesh is defined, the displacement data in the coarse mesh is interpo-
lated to the fine mesh using the NURBS shape functions. However, the interpolated
displacement data does not in general satisfy the equilibrium equations defined with
the fine mesh. Therefore, a new equilibrium is solved for using the Newton-Raphson
method. This is done with the load level fixed at the value from the previous step.
Due to the presence of snap-through behavior in tape springs, the standard Newton-
Raphson solver might fail. Therefore, a backtracking line search [41] is added to
the Newton-Raphson scheme to increase robustness.

Numerical results
Tape springs of various geometries are tested using the adaptive procedure described
above. The refinement indicator threshold 𝑟0 is found by a calibration procedure,
evaluating the error of a coarse mesh by comparing with results from a fine mesh for
a few load steps. We stop this procedure when the error of the coarse mesh exceeds
1%, and the maximum value of the refinement indicator 𝑟𝑖 given in Eq. (4.40) is
taken as the threshold. We observed that this value only changes very slightly when
different tape spring geometries are used, so it is assumed constant. Using this
method, the refinement indicator threshold is chosen to be 𝑟0 = 0.019.

The Newton-Raphson solver is used, using the rotation applied at the ends as the
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incremental variable. The total rotation applied is chosen to be high enough to
observe the snap-through behavior. The rotation increment at each step is fixed, and
dependent on the tape spring geometry. The same step increment is used for results
using a uniform mesh and the adaptive mesh procedure.

A geometrically nonlinear isogeometric shell element formulation [29] has been
implemented in MATLAB using GPU commands and is used to carry out the
analysis. Computations are performed using an Intel i7-8750H processor, 16 GB
RAM and a GeForce GTX 1070 GPU. Results from ABAQUS/Standard 2018 finite
element software using shell elements S4 and the arc-length method [17] are used
for reference.

An isotropic tape spring is considered in the following. It has Young’s modulus
𝐸 = 131 GPa and Poisson’s ratio a = 0.3. The angle subtended by the cross-section
is 𝛼 = 110°. Initially, we consider a tape spring with the geometrical parameters
𝐿 = 300 mm, 𝑅 = 10 mm and 𝑡 = 0.1 mm. The initial mesh of the tape spring
contains 4 elements along the length and 4 elements along the arc. Using Eq.
(4.42), the element length limit for the adaptive procedure is ℎ𝑡ℎ = 1 mm.

The initial and final states of deformation of the tape spring are shown in Figure
4.10; the formation of a localized deformation at the center is evident. Using
the adaptive procedure we obtain the results shown in Figure 4.11. Results from
ABAQUS are also shown to ascertain the accuracy of the uniform fine mesh. The
adaptive procedure results show good accuracy compared to results from ABAQUS
and results from a fine mesh. Meshes used at different rotation angles are shown in
Figure 4.12, as well as the uniform fine mesh used for comparison.

It is observed that after the snap-through behavior occurs (at around 10° of rotation
of the ends) the mesh remains unchanged until the end, indicating that the bending
strains do not increase further. Also, the number of elements along the arc is the
same at the end of the adaptive procedure as with the uniform mesh. However, the
number and distribution of elements along the length of the tape spring differs.

Influence of tape spring length, radius and thickness
We tested the adaptive procedure for tape springs of two different lengths: 𝐿 =

150 mm, and 𝐿 = 600 mm keeping the radius and thickness the same as before. We
plot the results using the adaptive meshing method and the results obtained using
a uniform fine mesh as a reference in Figure 4.13. Good agreement is observed in
both cases. The steady-state moment is almost the same in both cases, which agrees
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(a) (b) (c)

Figure 4.10: Tape spring with parameters 𝐿 = 300 mm, 𝑅 = 10 mm and 𝑡 = 0.1 mm.
(a) Initial state. (b) Deformed state before snap-through. (b) Final deformed state.
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Figure 4.11: Moment-rotation plots for tape spring with parameters 𝐿 = 300 mm,
𝑅 = 10 mm and 𝑡 = 0.1 mm.

with the analytical results from [55].

The speedup factor of the adaptive procedure compared to using a uniform mesh
with similar accuracy is given in Table 4.3. This includes time spent remeshing and
finding a new equilibrium solution after remeshing. With longer lengths, the fold
that is created in the tape spring becomes a smaller part of the total structure and is
more localized. This is shown in Figure 4.14, where the final deformation state for
the two tape spring geometries are presented. Due to the more localized nature of
the fold as the tape spring is longer, the adaptive procedure is more efficient.
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(a) (b) (c) (d) (e)

Figure 4.12: Meshes at different rotation angles from adaptive meshing simulation
shown in Figure 4.11 and uniform mesh. (a) Initial mesh (16 elements). (b) 2.4°
rotation (32 elements). (c) 5.6° rotation (192 elements). (d) 10.4° rotation (832
elements). (e) Uniform mesh (2048 elements).
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Figure 4.13: Moment-rotation plots for tape springs with parameters 𝑅 = 10 mm,
𝑡 = 0.1 mm and different lengths. (a) 𝐿 = 150 mm. (b) 𝐿 = 600 mm.

.

We now consider tape springs with two sets of radii and thicknesses, given in Table
5.9. Using Eq. (4.42), the element length limit is ℎ𝑡ℎ = 1.2 mm for the first case and
ℎ𝑡ℎ = 1.4 mm for the second case. The initial mesh is the same as before, with 4
elements along the length and 4 elements along the arc. Results are shown in Figure
4.15 for both the adaptive procedure and the uniform fine mesh. The speedup factor
of the adaptive procedure compared to using a uniform mesh with similar accuracy
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Table 4.3: Speedup factors for three tape springs with different lengths.

.

Properties Speedup Factor
𝑅 = 10 mm, 𝑡 = 0.1 mm, 𝐿 = 150 mm 3.4
𝑅 = 10 mm, 𝑡 = 0.1 mm, 𝐿 = 300 mm 4.7
𝑅 = 10 mm, 𝑡 = 0.1 mm, 𝐿 = 600 mm 10.6

(a) (b)

Figure 4.14: Tape spring with ends rotated 60° and parameters 𝑅 = 10 mm and
𝑡 = 0.1 mm. (a) 𝐿 = 150 mm. (b) 𝐿 = 600 mm.

is given in Table 4.4. It is observed that less accuracy is obtained than in previous
cases, although the speedup factor is higher. This suggests that a smaller refinement
indicator threshold 𝑟0 should be used in order to get more accurate results while
keeping good computational speed.

Table 4.4: Speedup factors for two tape spring geometries with different element
length limit.

.
Properties Speedup Factor
𝑅 = 15 mm, 𝑡 = 0.1 mm, 𝐿 = 300 mm 4.2
𝑅 = 20 mm, 𝑡 = 0.1 mm, 𝐿 = 300 mm 3.6

4.3 Comparison with energy-based refinement
The static analysis of hyperelastic structures is governed by the principle of minimum
potential energy [48]. It has been proposed to use this principle to guide the adaptive
refinement process [37]. When a mesh refinement is desired, we can choose it
based on the reduction in the potential energy. Refinements which result in larger
reductions of the potential energy are deemed more accurate.
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Figure 4.15: Moment-rotation plots for tape springs with 𝐿 = 300 mm and variable
element length limit. (a) 𝑅 = 15 mm, 𝑡 = 0.1 mm. (b) 𝑅 = 20 mm, 𝑡 = 0.1 mm.

.

Formulation of minimization problem
We consider a displacement field u, a strain energy 𝑊 , and tractions T applied on
the traction boundary 𝜕Ω2. The total potential energy 𝐼 of the hyperelastic structure
is then given by:

𝐼 (u) = 𝑊 (u) −
∫
𝜕Ω2

T • u𝑑𝐴 (4.43)

We will specialize this expression for the present problem of opposite-sense bending
of tape springs. Since the element formulation uses only displacement variables, the
rotations applied correspond to non-homogeneous essential boundary conditions ū
in the domain Ω1. Therefore, there are no external tractions applied on the structure,
and the total potential energy of the structure reduces to:

𝐼 (u) = 𝑊 (u)
where u|Ω1 = ū

(4.44)

We now introduce the finite element discretisation and invoke the principle of
minimization of total potential energy. Therefore, we seek a displacement vector u
contained within the finite element discretisation space 𝑉 that minimizes the strain
energy 𝑊 while satisfying the boundary conditions in a region Ω1:

inf
u ∈ 𝑉

u|Ω1 = ū

𝑊 (u) (4.45)

Numerical comparisons
We consider a tape spring with parameters 𝐿 = 300 mm, 𝑅 = 10 mm and 𝑡 = 0.1 mm.
and 𝛼 = 110°. We consider an initial mesh with 8 elements along the arc and 8
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elements along the length. We perform the simulation up to a rotation of ends of
7.2°. Figure 4.16 shows the comparison of the results from this coarse mesh with a
reference result using a fine mesh.
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Figure 4.16: Moment-rotation results for 8 x 8 mesh.

Ideally, an adaptive procedure would refine the mesh appropriately in order to follow
the reference result more closely. We will test the improvement of the solution when a
single subdivision in the longitudinal direction is introduced (adding more elements
along the length), as illustrated in Figure 4.17. For every possible longitudinal
subdivision, a new mesh will be defined and studied.

(a) (b)

Figure 4.17: Meshes used during refinement, where the length of the tape spring
spans in the vertical direction (a) Initial 8 x 8 mesh (b) One possible refined mesh.
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After each new mesh is defined, a new equilibrium solution is found by iteration since
the finite element discretization space changes. The new strain energy and moment
at the same rotation of 7.2° are measured. The change in the strain energy and
the change in the moment due to the refinement of the mesh for the 8 subdivisions
possible are plotted in Figure 4.18. Note that two of the subdivisions give very
similar results and thus the points overlap in the figure.
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Figure 4.18: Comparison of changes in strain energy and moment for each of the 8
subdivisions possible with reduced integration.

Following the minimization in Eq. (4.45), the solution is improved by refinement
when the change in the strain energy is negative. Additionally, since in Figure 4.16
the solution from the 8 x 8 mesh results in a moment higher than from the reference
result, the solution is improved by refinement when the change in the moment is
negative. We observe that the additional subdivision does not always correspond
with an improvement of the moment (a negative change). In particular, one of the
subdivisions which results in the largest strain energy decrease will increase the
moment and thus the moment-rotation relationship becomes even more inaccurate.
The two subdivisions corresponding to the largest strain energy decreases are shown
in Figure 4.19, where the tape spring end fixed longitudinally is represented with a
black boundary.

It can also be observed from Figure 4.18 that some of the subdivisions introduced
result in a slight increase of the strain energy. This seems to be an artifact of the
reduced integration used. When full integration is used, no increase of strain energy
is observed as a result of refining the mesh (as expected). Figure 4.20 illustrates the
changes in strain energy and moment for the same previous case, except that full
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(a) (b)

Figure 4.19: Refined meshes with largest strain energy decrease. The end fixed
longitudinally is shown with a black boundary (a) Largest moment increase (less
accurate) (b) Largest moment decrease (more accurate).

integration is used. Nevertheless, the same issue of large decreases in strain energy
resulting in increases of the moment (less accurate) is observed.
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Figure 4.20: Comparison of changes in strain energy and moment for each of the 8
subdivisions possible with full integration.

Since evaluating the strain energy is costly, in practice the minimization is performed
using a lower bound estimate. For this purpose, we define a ring of elements incident
to the refined elements 𝑒 as Star(e). We then only allow the displacements in the new
mesh to differ from the displacements on the old mesh in Star(e). This is illustrated
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in Figure 4.21. The estimate obtained in this manner is a lower bound on the true
strain energy [37].

Figure 4.21: Mesh with a single subdivision added in yellow. Control points which
are allowed to change given in red.

An attempt to use the minimization method after every increment was performed.
The reduction in strain energy was estimated as indicated before. It turned out
that in some meshes attempting to perform the jump, that is, when the fold forms
suddenly, can be very difficult. Even though an individual mesh can be forced to
perform the jump via the backtracking line search in the Newton-Raphson scheme,
convergence of some of the refined meshes can be excessively difficult. The solver
runs into problems as it tries to refine the mesh while avoiding non-convergence.

4.4 Discussion
The efficient analysis of tape spring opposite-sense bending problem has been
investigated using reduced order modeling and adaptive meshing. The method
is based on an energy-conserving sampling and weighting of internal forces used
during the finite element assembly. An algorithm for applying this reduced order in
an on-the-fly approach is presented. Numerical results indicate an speedup of 1.25𝑥
times with respect to the high-fidelity model. By analyzing the motion during the
tape spring bending, it is observed that the translation and rotation invariances are
an important part of the model simplification. However, the current reduced order
model is incapable of dealing with such invariances efficiently.

A new adaptive meshing procedure for thin shell structures with localized folds has
been presented. By using one refinement indicator per element axis, the refinement
procedure can be oriented along a particular axis. A refinement limit specific for
tape springs has also been introduced based on an estimate of the boundary layer
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effect of the fold. Test cases have analyzed the effects of various geometrical
parameters.The proposed adaptive procedure performs well for the tape springs
considered. It is particularly efficient when the tape spring is long relative to its
cross-section dimensions.

The energy-based approach presented in [37] was also tested. It was shown that
basing the successive refinements purely on the strain energy is not always a robust
approach. In particular, the accuracy of the moment-rotation curve can be ham-
pered even when the governing variational principle guides the adaptive procedure.
Although this method can test many meshes efficiently, it requires performing equi-
librium iterations around the snap-through jump with every mesh. For some of
the meshes, achieving convergence can be very difficult. The proposed adaptive
procedure is more efficient to apply since the refinement scheme is based on the
current curvature state in the elements and it does not require dealing with multiple
snap-through jumps.
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C h a p t e r 5

TAPE SPRING DEPLOYMENT - SIMULATION

In this chapter, the deployment of tape springs will be analyzed using both ABAQUS
commercial software and an in-house finite element code. It will be shown that
ABAQUS is very inefficient at analyzing this problem, and this is due to the element
formulation used in ABAQUS. Following this, the same problem is tackled using
the isogeometric shell code developed in chapter 3, which avoids issues encountered
with ABAQUS.

5.1 Problem description
A tape spring is deformed such that a fold forms at the center. One end of the
tape spring has a fixed support, while the other end of the tape spring is kept in
equilibrium due to forces applied, as shown in Figure 5.1. Afterwards, one end is
released and the tape spring deployment occurs. The intermediate folding steps can
be defined in various ways, but the end result after folding should be the same. It
must be noted that only the final state after folding is relevant for the accuracy of the
subsequent dynamic deployment. Therefore, the specific folding procedure is not
important.

Figure 5.1: Tape spring with a fold at the center, with one end fixed by a support
and the other end held kept in equilibrium due to forces applied.

The tape spring considered has geometrical parameters 𝐿 = 505 mm, 𝑡 = 0.1 mm,
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𝛼 = 108◦, 𝑅 = 14.5 mm. An isotropic material is considered with Young’s modulus
𝐸 = 128.7 GPa, Poisson’s ratio a = 0.275 and density 𝜌 = 8200 kg/m3. These
properties will be used for all the simulations of tape spring dynamic deployment.

5.2 ABAQUS simulation - Tape spring folding
An approach for the tape spring folding simulation performed in LS-DYNA finite
element software was presented in [60]. A series of folding steps were performed
using a dynamic solver, allowing enough time and introducing enough damping
to minimize the kinetic energy present in the structure. We followed a similar
approach for analysis in ABAQUS finite element software, but defining the fold
steps in a slightly different way in order to minimize the artificial energy. We
used the explicit solver in ABAQUS with time steps defined by the software. The
linear and quadratic bulk viscosity parameters were kept at 𝑏1 = 0.06 and 𝑏2 = 1.2
respectively.

The mesh was constructed using S4R elements, which have 4 nodes per element,
and 6 degrees of freedom per element (3 translations and 3 rotations). Reduced
integration is used within these elements. The mesh was composed of 2 640 finite
elements and 17 238 degrees of freedom, divided uniformly through the structure
by defining an approximate global size.

Center cross-section flattening
The first step is to flatten the center cross-section. For this purpose, we fixed the
middle point of the center cross-section, and we moved the points at the outer ends of
the center cross-section such that they reach the same𝑌 coordinate as the fixed middle
point. The displacement can be computed geometrically as 𝑢𝑦0 = 𝑅 (1 − cos (𝛼/2)).
The boundary conditions are indicated in Table 5.1, where nodes contained in a
plane are indicated by just listing a single coordinate (plane equation). The regions
at which boundary conditions are applied are shown in Figure 5.2. The displacement
condition is applied as a smooth step in order to minimize generating stress waves,
and it is applied over 0.8 s. Afterwards, there is no increase in displacement loads
over 0.1 s in order to damp out any kinetic energy within the structure. Therefore,
this step takes place over 0.9 s.

The final state of the tape spring is shown in Figure 5.3, where it can be observed
that the center cross-section is successfully flattened.
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Figure 5.2: Location of boundary conditions for center cross-section flattening,
relocation of free end and tip rotation.

Table 5.1: Boundary conditions for center cross-section flattening.

Region Node location Boundary condition
Bottom cross-section 𝑧 = 0 𝑢𝑥 = 𝑢𝑦 = 𝑢𝑧 = 0, \𝑥 = \𝑦 = \𝑧 = 0
Edge nodes 𝑥 = ±𝑎/2, 𝑧 = 𝐿/2 𝑢𝑦 = 𝑢𝑦0

Center point 𝑥 = 0, 𝑧 = 𝐿/2 𝑢𝑥 = 𝑢𝑦 = 𝑢𝑧 = 0

Figure 5.3: Tape spring after center cross-section flattening.

Free end motion
The free end at 𝑧 = 𝐿 moves as a consequence of the center cross-section flattening.
Therefore, we relocate this end such that it returns to the initial position. We keep
the edge nodes and the center point of the center cross-section fixed, while we apply
a displacement 𝑢𝑦1 at one point in the free end along the Y axis. The displacement
magnitude 𝑢𝑦1 is such that the point returns to the original coordinate. The boundary
conditions are indicated in the Table 5.2, where the regions at which the boundary
conditions are applied are shown in Figure 5.2. The displacement condition is
applied as a smooth step in order to minimize generating stress waves, and it is
applied over 0.15 s. Afterwards, there is no increase in displacement loads over 0.05
s in order to damp out any kinetic energy.
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Table 5.2: Boundary conditions for free end motion.
.

Region Node location Boundary condition
Bottom cross-section 𝑧 = 0 𝑢𝑥 = 𝑢𝑦 = 𝑢𝑧 = 0, \𝑥 = \𝑦 = \𝑧 = 0
Edge nodes 𝑥 = ±𝑎/2, 𝑧 = 𝐿/2 𝑢𝑦 = 0
Center point 𝑥 = 0, 𝑧 = 𝐿/2 𝑢𝑥 = 𝑢𝑦 = 𝑢𝑧 = 0
Tip node 𝑥 = 0, 𝑧 = 𝐿 𝑢𝑦 = 𝑢𝑦1

The final state of the tape spring is shown in Figure 5.4, where it can be observed that
the free end returns to the original position while the center cross-section remains
flattened.

Figure 5.4: Tape spring after free end motion.

Tip rotation
To increase the fold angle one end of the tape spring was rotated with respect to
the flattened location, forming a fold. The edge nodes and center point of the
center cross-section remain fixed. It is desired to move the tip node such that the
fold develops, forming an almost cylindrical shape. Therefore, the tip node was
translated in the Y and Z axes following the geometrical path defined by coiling
around a cylinder, which is given in [60] as follows:{

𝑢𝑦1 = 𝑅𝑐 (1 − cos \) +
(
𝐿
2 − 𝑅𝑐\

)
sin \

𝑢𝑧1 = 𝑅𝑐 sin \ +
(
𝐿
2 − 𝑅𝑐\

)
cos \ − 𝐿

2
(5.1)

where 𝑅𝑐 is the radius of the coiling cylinder and is taken as 1.06𝑅. It must be noted
that the radius of the fold has been shown to be slightly larger than the initial radius
of the tape spring cross-section [56], and therefore we choose 𝑅𝑐 slightly larger than
𝑅.

The boundary conditions are indicated in the Table 5.3, where the location of the
boundary conditions are shown in Figure 5.2. The displacements are applied in
tabular form over 1.6 s, and afterwards there is no increase in displacement loads
over 0.2 s in order to damp out any kinetic energy. Application of a smooth step
for the tip rotation results in very high artificial energy and thus it is not considered
here. The angle \ goes from 0 to = 95.7◦. The final state of the tape spring is shown
in Figure 5.5, where a fold angle slightly larger than 90 degrees can be observed.
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Table 5.3: Boundary conditions for tip rotation.
.

Region Node location Boundary condition
Bottom cross-section 𝑧 = 0 𝑢𝑥 = 𝑢𝑦 = 𝑢𝑧 = 0, \𝑥 = \𝑦 = \𝑧 = 0
Edge nodes 𝑥 = ±𝑎/2, 𝑧 = 𝐿/2 𝑢𝑦 = 0
Center point 𝑥 = 0, 𝑧 = 𝐿/2 𝑢𝑥 = 𝑢𝑦 = 𝑢𝑧 = 0
Tip node 𝑥 = 0, 𝑧 = 𝐿 𝑢𝑦 = 𝑢𝑦2, 𝑢𝑧 = 𝑢𝑧2

Figure 5.5: Tape spring after tip rotation.

Force release
The points held fixed at the center cross-section was released, which result in a tape
spring held just at the ends with a fold at the center. The edge nodes and the center
point of the center cross-section are held fixed. The whole cross-section at the free
end is kept fixed. The boundary conditions are indicated in the Table 5.4, where the
location of the boundary conditions are shown in Figure 5.6. This step takes place
over 0.3 s. The final state of the tape spring is shown in Figure 5.7. The tape spring

Table 5.4: Boundary conditions for force release step.

.
Region Node location Boundary condition
Bottom cross-section 𝑧 = 0 𝑢𝑥 = 𝑢𝑦 = 𝑢𝑧 = 0, \𝑥 = \𝑦 = \𝑧 = 0
Top cross-section 𝑧 = 𝐿 𝑢𝑦 = 𝑢𝑧 = 0

configuration changes only very slightly.

Energy history
The strain, kinetic, artificial and total energies of the folding simulation are shown
in Figure 5.8. A necessary condition for a simulation is an almost constant total
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Figure 5.6: Location of boundary conditions for force release step.

Figure 5.7: Tape spring after force release.

energy and an artificial energy below 5% of the strain energy. It can be seen that the
total energy remains fairly constant, and the artificial energy is kept small [1]. At
the final time step of the folding procedure the artificial energy is 4.8% of the strain
energy, and thus it remains within what is generally considered an acceptable range.
Although having long durations for the folding steps increases the computational
cost, it was observed that reducing the time duration of the different folding steps
created more artificial energy, possibly due to there being more kinetic energy in
the system and thus there is a sudden motion introduced.
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Figure 5.8: Energy history during tape spring folding in ABAQUS.

5.3 ABAQUS simulation - Tape spring deployment
Initial result
In this section, the tape spring, deformed by the folding steps previously described,
is deployed. For this purpose, the points held fixed at one end of the tape spring
were released. The boundary conditions are indicated in the Table 5.5, where the
location of the boundary conditions are shown in Figure 5.2. The same mesh as
before was used, with 17,238 degrees of freedom. This step takes place over 0.3 s.
No damping is applied during the dynamic deployment.

Table 5.5: Boundary conditions for deployment.

. Region Node location Boundary condition
Bottom cross-section 𝑧 = 0 𝑢𝑥 = 𝑢𝑦 = 𝑢𝑧 = 0, \𝑥 = \𝑦 = \𝑧 = 0

The energy history is shown in Figure 5.9, where the X axis indicates the time since
the deployment started. It can be observed that the artificial energy is initially small
but grows quickly. By the end of the deployment simulation the artificial energy
dominates the analysis, being larger than the strain energy. This indicates that the
results are not reliable.

Refinement of results
In order to reduce the artificial energy the ABAQUS manual suggests the following
approaches [1]:

• Avoiding boundary conditions applied at a single point
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Figure 5.9: Energy history during tape spring deployment in ABAQUS with mesh
of 17,238 DOFs.

• Changing the hourglass control

• Refining the mesh

Although boundary conditions are applied at a single point during the folding
steps, the artificial energy is kept low. However, the artificial energy grows during
deployment, and yet there are no boundary conditions applied at a single point.
Therefore, the point boundary conditions are not the issue in the current simulation.

Refining the mesh is the last resort due to the high computational cost involved.
Two additional refined meshes were used: one with 37,506 DOFs and another with
76,626 DOFs. The artificial energies during deployment are shown in Figure 5.10.
It can be observed that the mesh refinement results in much lower artificial energy.
However, the refined mesh with 76,626 DOFs requires a long simulation time, taking
6 days to complete with 4 CPUs in a desktop with Intel Xeon E5-2643 v3 processor
and 128 GB of RAM. Therefore, using more refined meshes is not pursued further.

The energy history for the mesh with 76,626 DOFs is shown in Figure 5.11. Although
the artificial energy remains low, by the end of the simulation the artificial energy
is 10.9% of the strain energy. This is deemed as still too high according to the
ABAQUS manual recommendations [1]. Although the results would be expected to
be more accurate than before, they are still not ideal and more refined meshes are
required.
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Figure 5.10: Artificial energy during tape spring deployment in ABAQUS for
different meshes.
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Figure 5.11: Energy history during tape spring deployment in ABAQUS with mesh
of 76,626 DOFs.

Discussion
Although the ABAQUS software can simulate the tape spring folding accurately,
it is very inefficient for simulation of the tape spring deployment. Large meshes
are required solely to reduce the hourglassing effects, which greatly increase the
computational cost. Therefore, in the next section we present an alternative element
formulation which avoids hourglassing and shear locking effects simultaneously
while maintaining low computational cost.
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5.4 Hourglassing in isogeometric elements
Hourglass control involves applying artificial forces to reduce the effect of hourglass
modes. This is the method of choice in ABAQUS software. Since this method was
shown to be very inefficient for the analysis of tape spring deployment, we would like
to eliminate hourglassing completely. This can be achieved with fully integrated
elements, but this introduces shear locking as an undesirable numerical effect.
Figure 5.12 illustrates the difference between full and reduced integration for linear
elements with standard polynomial shape functions. In standard finite elements the

(a) (b)

Figure 5.12: Integration rules for linear standard 2D elements (a) Full integration
(b) Reduced integration.

.

dichotomy between full and reduced integration implies a choice between dealing
with shear locking or hourglassing. However, this dichotomy appears due to the
polynomial shape functions commonly used, and is not generally true for other shape
functions.

In chapter 3 an isogeometric shell code was implemented, and various of the unique
properties of the isogeometric elements were illustrated. The unique continuity of
the shape functions used in isogeometric formulations allows non-uniform gauss
integration schemes to be introduced [2]. A full integration rule and a special
reduced rule are compared in Figure 5.13. The special rule is defined by using
4 integration points in the corner elements, 2 integration points for the remaining
elements in the boundaries and 1 integration point for the elements not within the
boundaries. Many other unique reduced integration rules for isogeometric elements
have been devised.

Unlike for standard finite element, the reduced integration concept for isogeometric
elements is not a specific rule but instead encompasses a set of rules. The hour-
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(a) (b)

Figure 5.13: Integration rules for linear isogeometric 2D elements (a) Full integra-
tion (b) A reduced integration rule [26].

.

glassing and shear locking of each of these rules have been studied for quadratic
and cubic isogeometric elements [54]. In particular, one reduced integration rule
for quadratic isogeometric elements has been shown to avoid hourglassing entirely.
This property has been demonstrated for practical nonlinear shell problems [26].
The rule is similar to the special integration rule mentioned before, but with one
extra point in each direction. Shear locking is eliminated at the formulation level by
using the Kirchhoff-Love shell theory.

5.5 Isogeometric shell code - Simulation procedure
General description
The tape spring deployment will be simulated using the isogeometric shell finite
elements described in chapter 3. Before the deployment can take place, a fold must
be generated in the tape spring. The folding steps differ slightly than those used
in ABAQUS software since artificial energy is not present due to hourglassing not
being a concern.

In the ABAQUS results from the previous section the quasi-static solution for the
folded state was obtained using a dynamic solver and allowing enough time and
damping for the kinetic energy to be reduced. However, a quasi-static solution can
be achieved exactly by using static solvers for the folding steps, instead of a dynamic
solver. Using static solvers reduces the computational cost compared to explicit
dynamic solvers, but could result in failure to converge. Nevertheless, convergence
was achieved for all the folding steps with the isogeometric shell elements.
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Center cross-section flattening
In this step, the cross-section located at the center of the tape spring will be approxi-
mately flattened. A static solver is used in this step. Figure 5.14 shows an schematic
of the boundary condition locations for this step. The bottom cross-section is fixed
in translation and rotation, while the longitudinal centerline is fixed in translation.
The center cross-section is flattened by moving the two nodes located at the edges
along the Y axis until they meet the Y coordinate of the longitudinal centerline. In
other words, we set 𝑢𝑦 = 𝑢𝑦0 = 𝑅 (1 − cos (𝛼/2)) for the edge nodes of the center
cross-section. The boundary conditions are listed in Table 5.6.

Figure 5.14: Location of boundary conditions for center cross-section flattening.
The origin of the coordinate system is represented by the green point.

Table 5.6: Boundary conditions for center cross-section flattening.

.

Node location Boundary condition
𝑧 = 0 𝑢𝑥 = 𝑢𝑦 = 𝑢𝑧 = 0, \𝑥 = \𝑦 = \𝑧 = 0
𝑥 = 0 𝑢𝑥 = 𝑢𝑦 = 𝑢𝑧 = 0
𝑥 = ±𝑎/2, 𝑧 = 𝐿/2 𝑢𝑦 = 𝑢𝑦0

Tip rotation
In this step, one end of the tape spring was rotated with respect to the center of the
tape spring, forming a fold. A static solver was used in this step. The boundary
condition locations are identified in Figure 5.15. The center cross-section is fixed
in translation, while the bottom cross-section is fixed in translation and rotation.
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The node (or nodes) at the tip of the tape spring are translated in the Y and Z axis
following the path of a tape spring being coiled around a cylinder [60] as follows:{

𝑢𝑦1 = 𝑅 (1 − 𝑐𝑜𝑠\) +
(
𝐿
2 − 𝑅\

)
sin \

𝑢𝑧1 = 𝑅 sin \ +
(
𝐿
2 − 𝑅\

)
cos \ − 𝐿

2
(5.2)

The boundary conditions are listed in Table 5.7.

Figure 5.15: Location of boundary conditions for center cross-section flattening.

Table 5.7: Boundary conditions for tip rotation.

.

Region Location Boundary condition
Bottom cross-section 𝑧 = 0 𝑢𝑥 = 𝑢𝑦 = 𝑢𝑧 = \𝑥 = \𝑦 = \𝑧 = 0
Center cross-section 𝑧 = 𝐿/2 𝑢𝑥 = 𝑢𝑦 = 𝑢𝑧 = 0
Tip node 𝑥 = 0, 𝑧 = 𝐿 𝑢𝑦 = 𝑢𝑦1, 𝑢𝑧 = 𝑢𝑧1

Force release
In this step, the center cross-section was released, allowing the formation of a fold
while only holding the ends of the tape spring. A static solver was used in this
step. Figure 5.15 shows a schematic of the boundary condition locations for this
step. The tip node is fixed in translation, while the bottom cross-section is fixed
in translation and rotation. The boundary conditions are listed in Table 5.8, where
nodes contained in a plane are indicated by just listing a single coordinate (plane
equation).
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Table 5.8: Boundary conditions for force release step.

.
Region Location Boundary condition
Bottom cross-section 𝑧 = 0 𝑢𝑥 = 𝑢𝑦 = 𝑢𝑧 = \𝑥 = \𝑦 = \𝑧 = 0
Tip node 𝑥 = 0, 𝑧 = 𝐿 𝑢𝑦 = 𝑢𝑧 = 0

Deployment
In this step, one end of the tape spring was released, allowing the fold to move and
the fold angle to change. The Newmark explicit dynamic solver was used [40]. Zero
viscous damping was used during this step. The boundary condition locations are
identified in Figure 5.15. Only the bottom cross-section is held fixed in translation
and rotation. The boundary conditions are listed in Table 5.9.

Table 5.9: Boundary conditions for dynamic deployment.

. Region Location Boundary condition
Bottom cross-section 𝑧 = 0 𝑢𝑥 = 𝑢𝑦 = 𝑢𝑧 = \𝑥 = \𝑦 = \𝑧 = 0

5.6 Fold identification algorithm
It will be helpful to define the fold position and fold angle from 3D displacement data
obtained via finite element simulations. The fold is identified using the following
parameter, which is similar to the one used in [45]:

𝑘 (𝑧) =
√︃(

Δ𝑃𝑦 (𝑧)
)2 + (Δ𝑃𝑧 (𝑧))2 (5.3)

where Δ𝑃𝑖 (𝑧) = 𝑝𝑖 (𝑥 = 0, 𝑦 = 𝑅, 𝑧) − 𝑝𝑖 (𝑥 = −𝑎/2, 𝑦 = 0, 𝑧) and 𝑝𝑖 (𝑥0, 𝑦0, 𝑧0) is
the current position coordinate in the 𝑖 axis of the point initially located in the
position (𝑥0, 𝑦0, 𝑧0). A schematic of Δ𝑃𝑦 at a particular location 𝑧 of the initial
tape spring geometry is shown in Figure 5.16. The parameter 𝑘 is equal to zero
when the cross-section is completely flattened and lies a plane parallel to the XY
plane. A typical plot of 𝑘/𝑘0 along the length coordinate 𝑧 of a tape spring with a

Figure 5.16: Schematic of Δ𝑃𝑦.
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fold is shown in Figure 5.17, where 𝑘0 is the value obtained from Eq. 5.3 for the
undeformed tape spring. It can be seen that there is a region with small but non-zero
values of 𝑘 , corresponding to the fold region. This is because the cross-section is not
completely flat within the fold due to small bulges near the edges, as mentioned in
[55]. We can identify the fold region by using a threshold for the parameter 𝑘/𝑘0. By

Figure 5.17: Typical plot for 𝑘/𝑘0.

finding the center of the resulting fold region we can define the fold position along
the longitudinal axis of the tape spring. The threshold is set to be 𝑘/𝑘0 = 0.025.

With the fold position along the tape spring defined by the previous procedure, the
fold angle is identified by the angle between two lines that originate from the fold
position. The first line is defined from the tape spring support (cross-section at
𝑧 = 0) to the fold position, being normal to the support. To define the second line
it is required to decide on a representative point close to the free end of the tape
spring. Due to the oscillations present during deployment, this point is found by
averaging 10 control point positions along the tape spring centerline.

5.7 Isogeometric shell code - Results
The fold position _ and fold angle \ are shown in Figure 5.18a. The tape spring
starts with a fold at the middle (_ = 0.5) and a fold angle slightly higher than 90
degrees (\ = 1.67 rad). The fold initially moves towards the bottom support while
the tape spring starts to straighten and the fold angle is reduced. The fold approaches
the support around 𝑡 = 0.1 s (with _ close to 1) and then reflects, moving in the
opposite direction back through the tape spring. The fold travels for some time and
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stops around 𝑡 = 0.2 s close to the enter of the tape spring (_ = 0.6). Afterwards,
there is another fold velocity reversal, and the fold travels back towards the support.

The energy evolution during deployment is shown in Figure 5.18b. Since no hour-
glassing correction is attempted, there is no artificial strain energy. It can be observed
that the total energy remains constant. This is because no energy dissipation mech-
anism was introduced. However, the fold does not return the initial position, as
illustrated in 5.18a. The implications of this result for tape spring deployment will
be analyzed in the following section.
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Figure 5.18: Finite element results (a) Fold position _ and angle \ (b) Kinetic, strain,
potential and total energies during deployment.

.
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C h a p t e r 6

TAPE SPRING DEPLOYMENT - PHYSICS ANALYSIS

In this chapter, the apparent energy leak reported in previous work of the literature
is analyzed. First, a brief introduction to the analytical formulation presented in
[55] is given. Although this formulation gives accurate evolution of kinematic
variables, there is an apparent energy leak. This has motivated the use of various
energy dissipation mechanisms in tape spring modeling. Afterwards, a simulated
experiment approach is used to try to reproduce the energy leak when various
simplifications are applied. The finite element code discussed in chapter 5 is used
to analyze the energy history in different parts of the tape spring. It is shown
that the energy leak is an artifact of the simplified model used in previous work.
Furthermore, this energy analysis illustrates various physical features of the tape
spring deployment. These features can help identify regions and quantities of
interest for posterior reduced order modeling.

6.1 Analytical formulation
Evolution of kinematic variables
An analytical formulation is developed in [55] for folded tape springs using a two
degrees of freedom model. Figure 6.1 illustrates the variables and coordinate
systems used. The fold position _ and fold angle \ are taken as kinematic variables,
where the fold is considered localized at a point B. There are 2 coordinate systems
used to define position vectors: one centered in the support (point O) and another
one centered in the fold (point B). The position of a generic point P in the straight
part AB of the tape spring is described by a non-dimensional longitudinal coordinate
b. The position vector of the point B is given by:

r𝑃 = (1 − _) 𝐿e0 + (b − 1 + _) 𝐿e1 (6.1)

This expression is used to derive the equations of motion for the degrees of free-
dom _ and \. The comparison of the analytical predictions with the experimental
results is given in Figure 6.2. The analytical formulation has good agreement with
experimental results regarding the fold position and fold angle evolution over time.
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Figure 6.1: Kinematic variables and coordinate system used in [55].

Figure 6.2: Comparison of experimental and analytical estimates. The circles
and crosses represent experimental measurements and solid lines correspond to
analytical predictions.

Energy formulas
Simplified expressions for the kinetic, strain and potential energy of the tape spring
with a fold as a function of the kinematic variables _ and \ can be derived. As a first
approximation, the strain energy can be considered to be concentrated on the fold.
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An analytical expression for the strain energy in the fold region can be obtained by
considering a region of constant transverse and longitudinal curvatures. Following
the derivation in [55], the strain energy 𝑈 is given by:

𝑈 = 𝐷 (1 + a)𝛼\ (6.2)

where 𝐷 = 𝐸𝑡3/12(1 − a2), 𝐸 is the Young’s modulus and a is the Poisson’s ratio.
An analytical expression for the kinetic energy of the top straight part (which rotates
as the fold angle changes) can be obtained as a function of the fold position _ and
angle \, as well as their time derivatives. Following [55], the kinetic energy 𝑇 is
given by:

𝑇 = 𝜌𝐿3
[
_ ¤_2 (1 − 𝑐𝑜𝑠\) + 1

2
_2 ¤_ ¤\ sin \ + 1

6
_3 ¤\2

]
(6.3)

Energy leak
The fold position and angle observed experimentally were used as input to evaluate
the different energy components, and the total energy predicted is shown in Figure
6.3. A sudden decrease in the total energy predicted is observed around 𝑡 = 0.12

Figure 6.3: Total energy computed via analytical estimates using experimentally
obtained _ and \ [55].

s and 𝑡 = 0.35 s. This event corresponds with the fold reaching the support and
reflecting. Afterwards, the total energy increases but does not reach the same level as
before. This is the motivation for introducing damping in the analytical formulation
for the dynamics of _ and \.

It is hypothesized in [55] that energy is radiated through the support, accounting par-
tially for the energy loss. Also, the authors note that the energy calculation involves
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various simplifications, which can result in false energy variation behaviors. This
observed energy leak is the motivation for using damping or other mechanisms for
energy loss in other numerical models for tape spring deployment presented in the
literature. There is an apparent hysteresis effect present during quasi-static bending
of tape springs [18], and structural damping has also been proposed as the source
of energy leak. In [25], an analysis of tape spring hinges is presented. Numerical
damping is used to represent the energy loss which is attributed to hysteresis damp-
ing. The energy leak can also be modeled via viscous damping or special boundary
conditions. A finite element analysis of tape spring deployment using LS-DYNA
has been presented in [60]. Dissipation effects were added using non-reflecting
boundary conditions and nodal damping to improve slightly the agreement with
experimental results from [55]. Composite tape spring hinges have been studied in
ABAQUS [36]. Infinite elements were used at the support to account for dissipation
at the boundaries. Bulk viscosity was also used as an additional dissipation mech-
anism. In summary, the main source of energy leak is currently unknown and the
correct modeling procedure is uncertain.

6.2 Simulated experiment
General approach
In [55] the energy was computed using the previously discussed two degrees of
freedom model as follows: the tape spring deployment was performed experimen-
tally, the parameters _ and \ were measured from the experiment, and energies were
computed using the analytical estimates from the two DOF model. The process is
illustrated in Figure 6.4 This resulted in an energy leak from the experiments, which

Figure 6.4: Process for computing total energy history in [55].

contrasts with the constant total energy observed in the simulations of chapter 5.

It is unclear if the energy leak occurs due to errors of the analytical estimates used for
the energies, if there is intrinsic damping in the tape spring deployment experiment,
or if both effects are present. We will separate both effects by removing any damp-
ing mechanisms and performing comparisons of energy histories for tape spring
deployment with and without the analytical estimates for the energy. However,
we cannot perform experiments without damping mechanisms, since those mecha-
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nisms are currently unknown. Therefore, we use finite element simulations to obtain
"damping-free" deployment data. Afterwards, the high-dimensional data from the
simulation can be used to obtain the true energy values via gauss integration over
all the finite elements, as shown in Figure 6.5. Alternatively, the high-dimensional
data can be used to measure the values of the fold position _ and fold angle \, as
shown in Figure 6.6. This will be denoted as a "simulated experiment", where we
obtain measurements of _ and \, just like in [55], and use them with the analytical
formulas to obtain the energy history.

Figure 6.5: Process for computing total energy history using a high-fidelity finite
element model.

Figure 6.6: Process for computing total energy history in simulated experiment
approach.

The energy results obtained directly from the high-fidelity finite element mesh and
from the simulated experiment will be compared. This will provide an assessment of
the accuracy of the analytical formulas presented in [55] for energy computations.
Additionally, this detailed energy analysis will allow a deeper understanding of
various physical features of the tape spring deployment.

Strain energy
The equation (6.2) is used to compute the strain energy. The fold angle \ identified
from simulation is used to evaluate the analytical expression in the simulated exper-
iment. The strain energy obtained from the finite element model is compared with
the simulated experiment values in Figure 6.7a. It is observed that there is a large
difference in the strain energy predicted. The main reason for the discrepancy is
that the simulated experiment approach neglects various energy components from
the tape spring:

• Strain energy of the transition region
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Figure 6.7: Comparison of strain energy variation during deployment from the finite
element simulation and the simulated experiment (a) Raw values (b) After offset of
simulated experiment values.

.

• Strain energy of the straight parts

This is due to the analytical model used in the simulated experiment. Accounting
for the energy in the transition region analytically is complicated. However, as
mentioned in [55], the transition region can be assumed to have constant strain
energy. This would mean that the total strain energy would be off by a constant
at all time, and hence applying a vertical offset, as shown in Figure 6.7b, would
solve the discrepancy. However, there is still significant disagreement in the results.
This is because when the fold gets close to the support, the transition region size
changes. This fold-support interaction has been studied in [55], and the interaction
approximately begins when the distance 𝑦 from the support satisfies the following
relation:

𝑦 < 1.5𝑅𝛼2 (6.4)

Since the fold position can be "measured" from simulations, the time intervals where
there is fold-support interaction can be identified. In Figure 6.8 these intervals are
shown as shaded regions. It can be seen that even ignoring the time intervals
where the transition region changes in size there is still discrepancy after the fold
reflects off the support (after 𝑡 = 0.1 s). Therefore, it is hypothesized that the strain
energy of the straight parts, neglected during analytical calculations in the simulated
experiment, is actually non-negligible. To verify this, we define a region centered
around the fold which encompasses 25% of the tape spring length, denoted as the
25% region. Figure 6.9 illustrates this region for a particular fold position. The
strain energy of the 25% region as predicted by the finite element model is shown
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Figure 6.8: Strain energy variation, with regions of fold-support interaction shaded
in red.

in Figure 6.8, where it can be observed that it matches closely with the simulated
experiment results (after applying the offset). Therefore, the strain energy from the
finite element model using the full tape spring is slightly higher than the simulated
experiment results due to the contribution of the straight parts of the tape spring.

Figure 6.9: Region of tape spring centered on the fold for strain energy calculation
with 25% of the length.

To study in detail the strain energy in the straight parts of the tape spring, the
strain energy of each shell element is divided into membrane and bending terms. In
addition, since the Kirchhoff-Love shell theory is used, for each term there are only 3
strain components: in the longitudinal axis, in the transverse (arc) direction, and due
to an in-plane shear strain. Figure 6.10 shows the strain energy distribution in the
straight parts of the tape spring at 𝑡 = 0.20 s. It can be observed that the membrane
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strain in the longitudinal axis of the straight parts (which stretches/compresses the
tape spring length-wise) is the main contributor to the strain energy of the straight
parts and therefore to the discrepancy, accounting for 43 % of the strain energy
discrepancy.

14%

43%

7%

19%

9%

9%
Membrane - Arc

Membrane - Longitudinal

Membrane - Shear

Bending - Arc

Bending - Longitudinal

Bending - Shear

Figure 6.10: Breakdown of strain energy in straight parts of the tape spring at
𝑡 = 0.20 s.

Therefore, in this section we have established that the analytical model does not
correctly predict the strain energy, even after accounting for the transition region
(as compared to the FEM simulation) since it neglects the membrane strain energy
present in the straight parts of the tape spring.

Kinetic energy
Although the values of _ and \ can be "measured" from the simulation directly, the
derivatives need to be calculated. In order to compute accurate derivatives it will
be necessary to smoothen the data obtained from the fold identification algorithm.
To do so, a cubic smoothing spline approach is used [50].

Given observations {𝑥𝑖, 𝑦𝑖} of a function 𝑓 , estimates 𝑓 (𝑥𝑖) of the function at the
observation points are defined by minimizing the following expression among the
twice differentiable function space:

𝑛∑︁
𝑖=1

{
𝑦𝑖 − 𝑓 (𝑥𝑖)

}
+ 𝑤

∫
𝑓 ′′ (𝑥)2 𝑑𝑥 (6.5)

The smoothing parameter 𝑤 controls the weight of the roughness penalty term. A
value of 𝑤 = 5 × 10−7 is used for fitting in the present work.

Figure 6.11 shows the raw and fitted data for the fold position _ and fold angle
\. The time derivatives of _ and \ can be computed from the smoothed data, and
the kinetic energy can be evaluated using equation (6.3). Figure 6.12a shows the
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Figure 6.11: Data fitting of raw kinematic variables measurement from FEM simu-
lation (a) Fold position _ (b) Fold angle \.

.

kinetic energy variation during deployment for both the simulated experiment and
the finite element model. It can be observed that initially there is good agreement.
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Figure 6.12: Comparison of kinetic energy during deployment predicted by the
finite element model and the simulated experiment (a) FEM results use full tape
model (b) FEM results restricted to top straight part of the tape spring and ignoring
out-of-plane velocity components in the X axis.

However, when the fold approaches the support and then reflects (around 𝑡 = 0.1 s),
discrepancies arise. The FEM results for the full tape spring predicts higher kinetic
energies consistently after the fold reflection. The reasons for this are as follows:

• Fold kinetic energy is neglected

• Small out-of-plane oscillations (in X axis)
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The fold kinetic energy becomes particularly relevant due to the phenomenon of
transverse fold oscillations, illustrated in Figure 6.13. A vertical red line is used for
reference to help identify the oscillations, which occur within the plane where the
tape spring centerline is located. It can be observed that the transverse oscillation
results in minimal fold position and fold angle change. Therefore, the transverse fold
oscillations cannot be accounted for in a model which uses only the fold position
and fold angle as kinematic variables.

(a) (b)

(c) (d)

Figure 6.13: Tape spring configuration at two close times. The vertical red line is
shown to illustrate the oscillations (a) 𝑡 = 0.174 s (b) 𝑡 = 0.183 s (c) 𝑡 = 0.191 s (d)
𝑡 = 0.201 s.

.

We can restrict the kinetic energy obtained from the simulation by neglecting the
contribution due to the X axis velocity components and only considering the top
straight part of the tape spring, neglecting the fold region. To define the fold region,
we construct a region encompassing 6% of the length of the tape spring and centered
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on the fold position, and exclude it from computations. The region where the kinetic
energy will be computed is shown in Figure 6.14. The resulting kinetic energy from
the restricted FEM mesh is shown in Figure 6.12b. It can be observed that there
is improved agreement between the analytical and simulation results after the fold
reflects (after 𝑡 = 0.1 s). However, the prediction of the peak in kinetic energy right
before the fold reflection is slightly less accurate.

Figure 6.14: Region of tape spring centered on the fold for kinetic energy calculation
(shown in red).

Therefore, in this section we have established that the analytical model does not
correctly predict the kinetic energy (as compared to the FEM simulation) since it
ignores the kinetic energy in the fold region and out-of-plane oscillations.

Total energy
By summing the energy components described previously the total energy predicted
by the simulated experiment can be obtained. Figure 6.15 shows the total energy
evolution over time. It can be observed that the total energy predicted decays after
the fold reflection (after 𝑡 = 0.1 s). Afterwards, the energy increases again but does
not return to the initial value, and an energy leak is observed. This is the same
behavior that was observed with experiments using the analytical formulation in
[55]. As described in the previous section, this apparent energy dissipation is an
artifact of the analytical model used. The energy is still present, but in the form of
strain energy of the straight parts of the tape spring, kinetic energy of out-of-plane
velocity components and kinetic energy due to transverse fold oscillations.
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Figure 6.15: Total energy predicted by the simulated experiment.

6.3 Frequency analysis
Short-time Fourier transform
The transfer of energy from low to high-frequency dynamic components can be
analyzed quantitatively by using the short-time Fourier transform (STFT). The STFT
is used to describe the changes over time of the frequency content of a signal. Given
a discrete time signal 𝑥 [𝑛], the discrete STFT is expressed as:

𝑋 (𝑡, 𝜔) =
∞∑︁

𝑛=−∞
𝑥 [𝑛] 𝑤 [𝑛 − 𝑡] 𝑒−𝑖𝜔𝑛 (6.6)

where 𝑤 is a window function which is nonzero only during a short period of time,
usually a Gaussian window centered around zero. Therefore, the parameter 𝑡 is the
location of the center of the window 𝑤. This computation is repeated using different
windows by modifying the parameter 𝑡.

The square of the magnitude of the STFT is used in a time-frequency representation
of the signal known as a spectrogram:

spectrogram {𝑥 [𝑛]} (𝑡, 𝜔) = |𝑋 (𝑡, 𝜔) |2 (6.7)

Application to finite element results
Among the kinematic quantities available during dynamic analysis, the velocity is
considered the most relevant for frequency analysis due to the influence over the
kinetic energy. Results from finite element analysis yield a velocity vector for every
time step with components for every DOF. This is denoted in discrete form as 𝑣𝑖 [𝑛],
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where 𝑛 indicates the time step and 𝑖 indicates the corresponding DOF. The STFT
of every velocity component 𝑣𝑖 is computed using equation (6.6):

𝑉𝑖 (𝑡, 𝜔) =
∞∑︁

𝑛=−∞
𝑣𝑖 [𝑛] 𝑤 [𝑛 − 𝑡] 𝑒−𝑖𝜔𝑛 (6.8)

To obtain a time-frequency representation that accounts for all the DOFs, the discrete
STFT of every DOF is computed and the values are added together:

𝑋 (𝑡, 𝜔) =
𝑁∑︁
𝑖=1

𝑉𝑖 (𝑡, 𝜔) (6.9)

where 𝑁 is the number of degrees of freedom in the finite element model. After-
wards, the spectrogram representation is computed using equation (6.7).

Results
In order to obtain a better frequency resolution, the signal must be sampled over
a longer period of time. For this purpose, the tape spring dynamic deployment
was analyzed using an explicit solver as described in chapter 5 but over a period of
time of 0.9 s instead of 0.3 s. The same material and geometric parameters were
used. The energy evolution is shown in Figure 6.16. It can be observed that the
tape spring energies oscillate initially with a period of around 0.2 s. However, after
𝑡 = 0.5 s the oscillations become more complex. This is because the tape spring
starts experiencing torsional deformation.
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Figure 6.16: Kinetic, strain, potential and total energies during deployment of tape
spring.

The spectrogram representation of the velocity vector was computed by using equa-
tions (6.7) - (6.9). The signal was divided into 8 sections of equal length, and a
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50 % overlap between sections was defined. The sections were windowed using
a Gaussian window. The resulting spectrogram is shown in Figure 6.17. It can
be observed that initially the lower frequency components dominate the dynamics.
However, over time the higher frequency content increases and cannot be neglected.
This can be observed more clearly in Figure 6.18, which is a zoomed in plot of the
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Figure 6.17: Spectrogram of the velocity vector which accounts for all the DOFs in
the finite element model.

previous spectrogram. Initially the frequency content is mainly contained around 5
Hz, corresponding to the frequency of the main oscillation of the kinetic energy as
observed from Figure 6.16 (with period of 0.2 s). However, as the time advances,
the frequency content spreads out more evenly.
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Figure 6.18: Zoomed in spectrogram of the velocity vector which accounts for all
the DOFs in the finite element model.
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6.4 Discussion
The finite element code for the analysis of tape spring deployment has been used to
analyze the physics of the deployment. Results from the finite element code indicate
there is no energy loss during the deployment. However, previous work showed
an energy decay during tape spring deployment by using analytical estimates for
the energies involved. It was unclear if this decay was due to damping within the
experiments or inaccuracies of the analytical model. We used the finite element
model to separate both effects due to its capability to perform the deployment
without damping. A simulated experiment approach has been demonstrated.

Results indicate that the loss of energy is an artificial effect due to the simplfied
analytical model used. In the high-fidelity finite element simulation the energy does
not dissipate, but gets transformed into:

• Strain energy of the straight parts (mainly membrane strains along the tape
spring length)

• Kinetic energy due to out-of-plane velocity components

• Kinetic energy due to transverse fold oscillation

Therefore, in order to get consistent energy during the deployment, a reduced order
model for the tape spring deployment must be able to account for these effects.
These results can be used to guide the construction of tape spring reduced order
models.

Additionally, a spectral analysis of the velocity vector during tape spring deployment
was performed using the short-time Fourier transform. It was observed that at the
start of the deployment the lower frequency components dominate the analysis.
However, as the deployment advances in time, the higher frequency components
become more relevant. This indicates that for proper analysis of the tape spring
deployment, the transfer of energy from low to high-frequency components must be
accounted for.
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C h a p t e r 7

TAPE SPRING DEPLOYMENT - SPEEDING UP
COMPUTATIONS

In this chapter, techniques for speeding up the dynamical analysis of the tape spring
deployment problem are analyzed. The adaptive meshing procedure discussed in
chapter 4, which was shown to be effective for speeding up opposite-sense bending
of tape springs, is extended for dynamical analysis. Afterwards, the use of implicit
solvers is analyzed. A novel locking behavior is shown to be present in implicit
dynamical analysis of tape springs. A mixed formulation is extended for the dynamic
case to alleviate the locking.

7.1 Adaptive meshing
Adaptive procedure
During deployment, the localized fold deformation requires a fine mesh for accurate
analysis, and this fold moves along the tape spring length during the simulation.
Therefore, using a uniform fine mesh results in inefficient simulations. A similar
adaptive procedure as the one used in chapter 4 is used for the tape spring deployment
problem. A significant difference between the opposite-sense bending and the
deployment problems is that during opposite-sense bending the formation of the
fold is part of the analysis, but during deployment the fold is already formed and
moves within the tape spring. Therefore, it is more efficient to define a mesh which
adapts based on the current fold position.

We define a non-uniform mesh as shown in Figure 7.1. The position of the fold is
defined by the parameter 𝑝. A fine mesh centered around the fold is defined, with
a width defined by the parameter 𝑑. Therefore, the non-dimensional parameters
𝑝/𝐿 and 𝑑/𝐿 define the structure of the mesh. The element size in the fine mesh is
defined using a similar approach as in chapter 4 via the boundary layer effect size,
as described by equation 4.42. The element size in the coarse mesh is defined as
four times larger than the element size in the fine mesh.

At each time step the fold position is calculated using the same procedure as in
chapter 6, using equation 5.3. If the position of the fold changes (as measured
within the discretisation limits) with respect to the previous time step, the mesh is
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Figure 7.1: Adaptive mesh for dynamic simulations.

redefined based on the new fold position, and the kinematic variables are transferred
to the new mesh. The pseudo-algorithm of the adaptive procedure is shown in (7.1).

Table 7.1: Adaptive meshing algorithm based on fold position.

For 𝑁𝑡 time steps
Advance solution using explicit solver
Compute new fold position
If fold position changes

Construct new mesh
Transfer variables to new mesh

Transfer of kinematic variables
In static problems, after redefining a mesh the new values of the displacements are
found by calculating a new equilibrium. This is possible because there is a unique
solution for a given mesh and given loads applied. This was the approach used for
adaptive meshing in chapter 4. However, in dynamic problems the correct approach
is not evident. It was shown in [47] that if the mesh is redefined, the new solution
becomes path-dependent on the meshes used. This is because the solution of a
dynamic problem is dependent not only on the current mesh and the loads applied
but also on all the previous kinematic states, which depends on the previous meshes
used. Therefore, the new solution cannot be found as a result of an equilibrium step
with just the new mesh and loads applied as inputs.

A solution for the transfer of kinematic variables between meshes in dynamic prob-
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lems has been presented in [47], and the details are given below. We consider two
meshes defined by interpolation functions 𝜙𝑖 and Φ𝑖. For each mesh we denote
the displacement along a coordinate axis as 𝑢∗ and 𝑈∗. The interpolation of the
displacement for each mesh is defined as:

𝑢∗ (x) =
𝑛∑︁
𝑖=1

𝜙𝑖 (x) 𝑢𝑖 (7.1)

𝑈∗ (x) =
𝑁∑︁
𝑖=1

Φ𝑖 (x)𝑈𝑖 (7.2)

where x is a position vector, and (u,U) are the vectors of nodal displacements
for each of the meshes, which contain the values (𝑢𝑖,𝑈𝑖) respectively. We define
auxiliary matrices for the mesh transfer as:

M𝑖 𝑗 =

∫
Ω

Φ𝑖Φ 𝑗𝑑Ω (7.3)

m𝑖 𝑗 =

∫
Ω

Φ𝑖𝜙 𝑗𝑑Ω (7.4)

where Ω is the domain where the mesh is defined. Given the current nodal displace-
ments u, the current shape functions 𝜙𝑖 and the shape functions of the new mesh Φ𝑖,
the new nodal displacements U corresponding to the new mesh are given by:

U = M−1mu (7.5)

It is shown in [47] that for linear shape functions the transfer of variables reduces
trivially to direct interpolation within the mesh. However, for more complex shape
functions the solution is not obvious, and equation 7.5 must be used.

Numerical results
The adaptive meshing procedure discussed with the corresponding variable transfer
is used to solve the tape spring deployment problem. The folding steps are performed
as in chapter 5, and the dynamic deployment step is performed using the new
approach with an explicit solver. The tape spring properties are the same as in
chapter V. The fine mesh width parameter is set to 𝑑/𝐿 = 0.12, which results in
using 25% of the number of degrees of freedom compared to a uniform mesh. The
mesh at the initial state of the deployment is shown in Figure 7.2. The energy
history is shown in Figure 7.3. It can be observed that the total energy oscillates
significantly and does not behave correctly. Therefore, the adaptive mesh used is
too coarse to simulate the deployment accurately.
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Figure 7.2: Adaptive mesh for tape spring deployment simulation with 𝑑/𝐿 = 0.12.
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Figure 7.3: Energy history for tape spring deployment using adaptive meshing
procedure.

The results are refined by increasing the width of the fine mesh region, setting
𝑑/𝐿 = 0.3, which results in using 49% of the number of degrees of freedom
compared to a uniform mesh. The mesh at the initial state of the deployment is
shown in Figure 7.4. The energy history is shown in Figure 7.5. It can be observed
that the total energy does not oscillate. However, there is a decay in the total energy
after the fold reflects (𝑡 = 0.1 s). This is an undesirable result, since we expect that
the total energy remains constant due to the absence of damping. It is suspected
that, despite their apparent geometric simplicity, the straight parts of the tape spring
cannot be modeled accurately using coarse meshes. As shown in chapter 6, the
dynamic buckling effects in the straight parts of the tape spring appear after the fold
reflection (𝑡 = 0.1 s). Given that the present energy decay is also observed after
(𝑡 = 0.1 s), causation is suspected. Resolving the dynamic buckling effects would
require a fine mesh in a section of the straight parts of the tape spring.
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Figure 7.4: Adaptive mesh for tape spring deployment simulation with 𝑑/𝐿 = 0.3.
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Figure 7.5: Energy history for tape spring deployment using adaptive meshing
procedure.

Although more accurate results would be expected by increasing the fine mesh
width parameter 𝑑/𝐿, higher values result in less efficient computations since the
fine mesh region encompasses most of the tape spring and the mesh becomes very
similar to a uniform fine mesh.

7.2 Implicit solvers
Generalized alpha method
The tape spring deployment problem has been analyzed using explicit solvers in
chapter 5. However, it is possible to use implicit solvers to compute the solution.
This has the advantage of allowing the use of larger time steps, being potentially more
computationally efficient. An important issue for implicit solvers within structural
dynamics is the presence of high-frequency dynamic components in the system as
artifacts of the discretisation. Since large time steps can be used in implicit solvers,
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the high-frequency motion is often not correctly resolved. The implicit solver must
be able to dampen out the high-frequency components, otherwise the presence of the
artificial high-frequency dynamics will difficult the convergence and greatly reduce
the efficiency of the solver. We will use the generalized-alpha method [20] as the
implicit solver due to its capability to dampen motion at high frequencies while
reproducing low-frequency dynamics accurately. A brief description of the method
is given below.

We recall that the standard structural dynamics equation without damping is given
by:

Ma𝑖+1 + f𝑖𝑛𝑡
(
u𝑖+1

)
− F𝑖+1 = 0 (7.6)

where M is the mass matrix (assumed constant), f is the vector of internal forces, F
is the vector of external forces, and

(
u𝑖+1, v𝑖+1, a𝑖+1

)
are the displacement, velocity

and acceleration vectors respectively. The system is closed by adding the Newmark
approximations [40], where (𝛽, 𝛾) are the Newmark parameters:{

u𝑖+1 = u𝑖 + Δ𝑡v𝑖 + (Δ𝑡)2
((

1
2 − 𝛽

)
a𝑖 + 𝛽a𝑖+1

)
v𝑖+1 = v𝑖 + Δ𝑡

(
(1 − 𝛾) a𝑖 + 𝛾a𝑖+1

) (7.7)

The generalized-alpha method is based on modifying equation (7.6) by evaluating
various quantities at different times as follows:

Ma𝑖+1−𝛼𝑚 + f
[
u𝑖+1−𝛼 𝑓

]
− F𝑖+1−𝛼 𝑓 = 0 (7.8)

where 𝛼 𝑓 , 𝛼𝑚 are parameters of the generalized alpha method. The quantities
evaluated at intermediate times are evaluated using linear interpolation as follows:{

u𝑖+1−𝛼 𝑓 = (1 − 𝛼 𝑓 )u𝑖+1 + 𝛼 𝑓 u𝑖

a𝑖+1−𝛼𝑚 = (1 − 𝛼𝑚)a𝑖+1 + 𝛼𝑚a𝑖
(7.9)

The choice of 𝛼 𝑓 and 𝛼𝑚 determines the numerical damping introduced in the model
as well as various stability and accuracy properties of the method. It is shown in [20]
that in order to have stability and second-order accuracy the variables

(
𝛽, 𝛾, 𝛼 𝑓 , 𝛼𝑚

)
must be related in such a way that they can be expressed as a function of a single
variable 𝜌∞. This variable is related to the damping introduced for dynamic motion
components with infinite frequency. Therefore, 𝜌∞ directly controls the amount of
numerical damping in the model, with higher values resulting in less damping.
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Numerical results
The implicit solver was used for simulation of the tape spring deployment problem.
The folding and deployment steps are the same as those described in chapter 5 for
the isogeometric code with the explicit solver. The same tape spring properties are
used. For the generalized alpha method, we use 𝜌∞ = 0.85 and Δ𝑡 = 10−5𝑠. The
energy history is shown in Figure 7.6. The simulation stops slightly before 𝑡 = 0.1 s
due to failure of convergence.
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Figure 7.6: Energy history using implicit generalized alpha solver with 𝜌∞ = 0.85
and Δ𝑡 = 10−5 s.

In order to improve the convergence behavior the time step can be reduced, although
this increases the computational cost significantly. This is shown in Figure 7.7,
where the time step was chosen as Δ𝑡 = 10−6 s. It can be seen that the simulation
can be completed up to 𝑡 = 0.3 s without convergence failure. However, there is
a decay of the total energy of the system. This is due to the numerical damping
introduced, which dampens out high-frequency motion in the system. Therefore,
the high-frequency dynamic components during tape spring deployment contain a
significant part of the energy in the system. Ideally the numerical damping deals
with the high-frequency components which are artifacts of the discretisation and not
the high-frequency components which are truly present and part of the deployment
problem. Therefore, we seek to obtain constant total energy in the system by
adjusting the solver parameters.

The convergence behavior can also be improved by reducing 𝜌∞, which introduces
higher damping of high-frequency motion. Although this significantly speeds up
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Figure 7.7: Energy history using implicit generalized alpha solver with 𝜌∞ = 0.85
and Δ𝑡 = 10−6 s.

convergence and reduces the computational cost, the total energy decay is even
larger. Therefore, this option is not ideal for our purposes. Instead we want to
reduce 𝜌∞ such that the energy decay is smaller. Since there will be more high-
frequency components activated, the convergence will deteriorate. Therefore this
should be accompanied with a smaller time step Δ𝑡. Unfortunately, this results in a
very high computational cost. Although it is possible to switch to an explicit solver
as it was done in chapter 5, it will be shown in the next section that the difficulties
present in the implicit solver are related to a novel locking effect.

7.3 Interpolation locking
Introduction
The Newton-Raphson method has been used extensively for analyzing structures
using the finite element method, as detailed in [3]. The equilibrium equations are
solved by a sequence of fixed increments. This method can occasionally fail if
a large step increment is used, requiring reducing the increment and increasing
the computational cost. It is shown in [23] that the failures in convergence can be
related to a locking phenomenon, caused by the difference between the true jacobian
and the estimate used in the iterative process. The locking phenomenon, hereafter
denoted as “interpolation locking”, appears in slender structures, such as thin shells
[34]. Unlike traditional locking effects, this locking does not cause a reduction in
accuracy, but greatly increases the number of iterations for convergence in nonlinear
problems solved by iteration. The locking effect appears due to the high flexural-
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axial stiffness ratio and this requires taking smaller step increments as the structure
gets thinner.

The importance of this locking phenomenon depends on the nonlinearity of the
problem on the interpolation variables. In particular, displacement-based formula-
tions can be very sensitive to interpolation locking. Mixed formulations interpolate
both the stress and the displacements, and have been shown to greatly reduce the
influence of the locking effect [33], although with increased computational cost. The
Mixed Interpolation Method (MIP) has been shown to be an effective and efficient
way to alleviate interpolation locking in thin structures. By using condensation of
variables, this method avoids the additional cost of standard mixed formulations
[23]. The interpolation locking has been mainly studied more for path-following
static problems using the arc-length method. In dynamic problems the jacobian
is modified by the addition of a mass matrix [3], and it could be argued that this
addition makes the iterative process less prone to locking, but this is unclear.

In this section, the presence of interpolation locking in the solution of the tape
spring dynamic deployment problem with implicit solvers is studied. It is shown
that application of standard implicit solvers result in severe interpolation locking
for the tape spring deployment simulation. Afterwards, the Mixed Interpolation
Point (MIP) method is extended to the dynamic case as a method for alleviating the
interpolation locking while maintaining computational efficiency.

Locking in static problems
The description of the locking phenomenon in this section will follow the presenta-
tion given in [23]. Using finite element discretization, the equilibrium of an elastic
structure can be expressed by the following nonlinear equation:

r [u] = f [u] − F = 0 (7.10)

where r is the residual vector, u is the displacement vector, f is the vector of internal
forces and F is the vector of external forces. Given an initial guess u0, the nonlinear
equation (7.10) is solved via the Newton-Raphson iteration method. The jacobian
matrix of equation (7.10) is defined as:

J =
𝑑r
𝑑u (7.11)

A sequence of increment estimates Δu 𝑗 are computed using the jacobian matrix J 𝑗 :

J 𝑗Δu 𝑗 = −r 𝑗 (7.12)



92

where
J 𝑗 = J

[
u 𝑗

]
(7.13)

Δu 𝑗 = u 𝑗+1 − u 𝑗 (7.14)

r 𝑗 = r
[
u 𝑗

]
(7.15)

We can define a secant jacobian matrix J̄ 𝑗 [23] as the average jacobian matrix along
the increment path:

J̄ 𝑗 =

∫ 1

0
J
[
u 𝑗 + 𝑡

(
u 𝑗+1 − u 𝑗

) ]
𝑑𝑡 (7.16)

From the mean value theorem and (7.11) it is evident that this matrix satisfies the
following condition:

r 𝑗+1 − r 𝑗 = J̄ 𝑗

(
u 𝑗+1 − u 𝑗

)
(7.17)

Substituting (7.12) in (7.17):

r 𝑗+1 =

(
I − J̄ 𝑗J−1

𝑗

)
r 𝑗 (7.18)

The iterative scheme given in (7.12) is guaranteed to converge if the norm of the
residual r decreases at each iteration. Therefore from (7.18) we observe that the
iterative scheme has guaranteed convergence if the following condition is satisfied:

𝜌

(
I − J̄ 𝑗J−1

𝑗

)
< 1 (7.19)

where 𝜌(.) is the spectral radius of matrix (.). If the increment Δu 𝑗 is very small
then the secant jacobian matrix through the increment step is almost the same as the
tangent jacobian matrix at the initial point. Therefore if

Δu 𝑗

 ≈ 0 then J̄ 𝑗 and J 𝑗

are almost equal to each other and 𝜌

(
I − J̄ 𝑗J−1

𝑗

)
≈ 0. This case corresponds to fast

convergence of the iterative scheme when a small increment is used.

However, for large increments the secant and tangent jacobian matrices can differ
considerably such that the condition (7.21) may not be satisfied and convergence
is not guaranteed. This will result in convergence difficulties, requiring use of a
smaller increment. This phenomenon is denoted as interpolation locking in [23].

We can consider configuration-independent external forces, that is, external forces
F which do not depend on the current displacement u. Therefore, from (7.10) and
(7.11) we can identify J as the classic tangent stiffness matrix K, where:

K =
𝑑f
𝑑u (7.20)
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Similarly, the secant jacobian J̄ 𝑗 becomes the secant stiffness matrix K̄ 𝑗 , that is, the
average stiffness matrix through the step increment. Substituting the jacobians for
tangent matrices in (7.19) we get:

𝜌

(
I − K̄ 𝑗K−1

𝑗

)
< 1 (7.21)

Similar conclusions drawn before for the secant and tangent jacobian matrixes can
be stated for the secant and tangent stiffness matrixes.

Locking in dynamic problems
The interpolation locking has not been studied previously for dynamic problems.
Therefore, in this section we extend the previously discussed locking effect for dy-
namic equations. The solution at the time increment 𝑖 + 1 for a dynamic system
involves solving for the displacement vector u𝑖+1, the velocity v𝑖+1 and the accel-
eration a𝑖+1. Following the generalized alpha time-stepping procedure [20] and
considering no damping, the following balance equation is solved:

r
[
u𝑖+1−𝛼 𝑓 , a𝑖+1−𝛼𝑚

]
= Ma𝑖+1−𝛼𝑚 + f

[
u𝑖+1−𝛼 𝑓

]
− F𝑖+1−𝛼 𝑓 = 0 (7.22)

where 𝛼 𝑓 , 𝛼𝑚 are parameters of the generalized alpha method, and M is the mass
matrix which is assumed constant. Configuration-independent structures are con-
sidered in the following. The system is closed by defining the kinematic quantities
at intermediate times as:{

u𝑖+1−𝛼 𝑓 = (1 − 𝛼 𝑓 )u𝑖+1 + 𝛼 𝑓 u𝑖

a𝑖+1−𝛼𝑚 = (1 − 𝛼𝑚)a𝑖+1 + 𝛼𝑚a𝑖
(7.23)

and adding the Newmark approximations (where 𝛽, 𝛾 are Newmark parameters):{
u𝑖+1 = u𝑖 + Δ𝑡v𝑖 + (Δ𝑡)2

((
1
2 − 𝛽

)
a𝑖 + 𝛽a𝑖+1

)
v𝑖+1 = v𝑖 + Δ𝑡

(
(1 − 𝛾) a𝑖 + 𝛾a𝑖+1

) (7.24)

To solve equation (7.22) for a𝑖+1 we define the jacobian matrix J as:

J =
𝑑r

𝑑a𝑖+1
(7.25)

We construct a sequence of estimates for the increments Δa𝑖+1
𝑗

as:

J 𝑗Δa𝑖+1𝑗 = −r 𝑗 (7.26)

where
J 𝑗 = J

[
u𝑖+1−𝛼 𝑓

𝑗
, a𝑖+1−𝛼𝑚

𝑗

]
(7.27)
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Δa𝑖+1𝑗 = a𝑖+1𝑗+1 − a𝑖+1𝑗 (7.28)

r 𝑗 = r
[
u𝑖+1−𝛼 𝑓

𝑗
, a𝑖+1−𝛼𝑚

𝑗

]
(7.29)

We can define a secant jacobian matrix using conditions similar to (7.17) and (7.16):

r 𝑗+1 − r 𝑗 = J̄ 𝑗

(
a 𝑗+1 − a 𝑗

)
(7.30)

J̄ 𝑗 =

∫ 1

0
J
[
a 𝑗 + 𝑡

(
a 𝑗+1 − a 𝑗

) ]
𝑑𝑡 (7.31)

Due to the similarities of equations (7.26) and (7.12), the convergence of the iterative
process is guaranteed if the condition (7.19) is satisfied. However, the jacobian J
is different for the dynamic case. Using (7.25), (7.22), (7.23), (7.24) and (7.20) in
(7.27), we obtain:

J 𝑗 = (1 − 𝛼𝑚)M +
(
1 − 𝛼 𝑓

)
𝛽 (Δ𝑡)2 K

[
u𝑖+1−𝛼 𝑓

𝑗

]
(7.32)

We observe that the jacobian for the dynamic case consists of the standard stiffness
matrix but modified by the addition of the mass matrix. Therefore, the conditions in
which interpolation locking appears, that is, when the secant and tangent jacobians
are significantly different, are not the same as in static problems. Substituting (7.32)
and (7.29) into (7.26):

Δa𝑖+1𝑗 = −
(
(1 − 𝛼𝑚)M +

(
1 − 𝛼 𝑓

)
𝛽 (Δ𝑡)2 K

[
u𝑖+1−𝛼 𝑓

𝑗

] )−1
r
[
u𝑖+1−𝛼 𝑓

𝑗
, a𝑖+1−𝛼𝑚

𝑗

]
(7.33)

Equation (7.33) is used to compute the increments at each iteration.

Mixed formulation framework
The strain-displacement matrix B𝑒 of an element 𝑒 is defined as:

B𝑒 =
𝜕𝝐 𝑒
𝜕u𝑒

(7.34)

where 𝝐 𝑒 is the strain vector within the element and u𝑒 are the element nodal
displacements. The internal forces at the element level are obtained by gauss
integration as [3]:

f𝑒 =
∑︁
𝑘

B𝑘𝑇
𝑒 [u𝑒] 𝝈𝑘

𝑒𝑤
𝑘 (7.35)

where the 𝑘 is the gauss point index, B𝑘
𝑒 is the strain-displacement matrix of the

element 𝑒 evaluated at the gauss point 𝑘 , 𝝈𝑘
𝑒 are the stresses of the element 𝑒 at the

gauss point 𝑘 , and 𝑤𝑘 are the gauss weights.
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Considering elastic materials, we have a constitutive equation which for each element
uses an elastic matrix C𝑘

𝑒 and the strain vector 𝝐 𝑘𝑒 , both evaluated at the gauss point
𝑘 . The strains are a function of the nodal displacements of the element u𝑒:

𝝈𝑘
𝑒 = C𝑘

𝑒𝝐
𝑘
𝑒 [u𝑒] (7.36)

The standard procedure is to use (7.36) to evaluate (7.35), making the internal forces
only a function of displacements:

f𝑒 [u𝑒] =
∑︁
𝑘

B𝑘𝑇
𝑒 [u𝑒] C𝑘

𝑒𝝐
𝑘
𝑒 [u𝑒] 𝑤𝑘 (7.37)

By assembling over all the elements we obtain the global internal forces vector given
as follows:

f [u] =
∑︁
𝑒

∑︁
𝑘

V𝑒B𝑘𝑇
𝑒 [u] C𝑘

𝑒𝝐
𝑘
𝑒 [u] 𝑤𝑘 (7.38)

where V𝑒 is a boolean matrix with zeros and ones as entries that maps between
element and global indexes. We get the stiffness matrix (7.20) by differentiating
with respect to the global displacements and substituting (7.36) and (7.34):

K [u] =
∑︁
𝑒

∑︁
𝑘

V𝑒

(
𝜕B𝑘𝑇

𝑒

𝜕u [u] 𝝈𝑘
𝑒 [u] + B𝑘𝑇

𝑒 [u] C𝑘
𝑒B𝑘

𝑒 [u]
)

V𝑇
𝑒𝑤

𝑘 (7.39)

Instead of following the standard approach, a mixed formulation can be developed
by considering in (7.35) that the stresses 𝝈 are an independent variable. Therefore,
the the internal forces of the element are now a function of displacements u𝑒 and
stresses 𝝈𝑒:

f̂𝑒
[
u𝑒,𝝈

𝑘
𝑒

]
=

∑︁
𝑘

B𝑘𝑇
𝑒 [u𝑒] 𝝈𝑘

𝑒𝑤
𝑘 (7.40)

By assembling over all the elements we obtain the global internal forces vector given
as follows:

f̂
[
u,𝝈𝑘

𝑒

]
=

∑︁
𝑒

∑︁
𝑘

V𝑒B𝑘𝑇
𝑒 [u] 𝝈𝑘

𝑒𝑤
𝑘 (7.41)

The notation used emphasizes that the vector f is a function of the global displace-
ment vector u and the stresses 𝝈𝑘

𝑒 at each gauss point of each element.

Using (7.41) instead of (7.37) during the assembly of the governing equations given
in (7.22) adds the stresses of each element at each gauss point 𝝈𝑘

𝑒 as new variables.
Therefore, a new equation must be added, namely the constitutive equation (7.36)
at the time increment

(
𝑖 + 1 − 𝛼 𝑓

)
for each element and gauss point, to close the

system: {
r̂ = Ma𝑖+1−𝛼𝑚 + f̂

(
u𝑖+1−𝛼 𝑓 ,

(
𝝈𝑘

𝑒

) 𝑖+1−𝛼 𝑓

)
− F𝑖+1−𝛼 𝑓 = 0

g𝑘
𝑒 =

(
𝝈𝑘

𝑒

) 𝑖+1−𝛼 𝑓 − C𝑘
𝑒𝝐

𝑘
𝑒

[
(u𝑒)𝑖+1−𝛼 𝑓

]
= 0

(7.42)
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where r̂ and g𝑘
𝑒 are the residuals of the system of equations, dependent on both

displacements and stresses of the elements. The hat notation is used to differentiate
from the residual (7.22) where the element stresses are not independent variables.
The derivatives of (7.41) will be used in the following section:

𝜕 f̂
𝜕u =

∑︁
𝑒

∑︁
𝑘

V𝑒

𝜕B𝑘𝑇
𝑒

𝜕u𝑒

𝝈𝑘
𝑒𝑤

𝑘V𝑇
𝑒

𝜕 f̂
𝜕𝝈𝑘

𝑒

= V𝑒B𝑘𝑇
𝑒 𝑤𝑘

(7.43)

We also define a stiffness matrix similar to (7.39) but where the stresses are computed
independent from the displacements:

K̂
[
u,𝝈𝑘

𝑒

]
=

∑︁
𝑒

∑︁
𝑘

V𝑒

(
𝜕B𝑘𝑇

𝑒

𝜕u [u] 𝝈𝑘
𝑒 + B𝑘𝑇

𝑒 [u] C𝑘
𝑒B𝑘

𝑒 [u]
)

V𝑇
𝑒𝑤

𝑘 (7.44)

The nonlinear system of equations (7.42) can be solved for (u𝑖+1−𝛼 𝑓 ,
(
𝝈𝑘

𝑒

) 𝑖+1−𝛼 𝑓 )
using the Newton-Raphson method. We construct a sequence of estimates for the
increments by solving the following system of equations:

𝜕r̂
𝜕a𝑖+1

Δa𝑖+1𝑗 +
∑︁
𝑒

∑︁
𝑘

𝜕r̂
𝜕

(
𝝈𝑘

𝑒

) 𝑖+1−𝛼 𝑓
Δ

(
𝝈𝑘

𝑒

) 𝑖+1−𝛼 𝑓

𝑗
= −r̂ (7.45)

𝜕g𝑘
𝑒

𝜕a𝑖+1
Δa𝑖+1𝑗 +

𝜕g𝑘
𝑒

𝜕
(
𝝈𝑘

𝑒

) 𝑖+1−𝛼 𝑓
Δ

(
𝝈𝑘

𝑒

) 𝑖+1−𝛼 𝑓

𝑗
= −g𝑘

𝑒 (7.46)

where Δa𝑖+1
𝑗

and Δ
(
𝝈𝑘

𝑒

) 𝑖+1−𝛼 𝑓 are the increments, with their corresponding coeffi-
cients the terms of the jacobian. The increments satisfy the following equations:

Δa𝑖+1𝑗 = a𝑖+1𝑗+1 − a𝑖+1𝑗 (7.47)

Δ

(
𝝈𝑘

𝑒

) 𝑖+1−𝛼 𝑓

𝑗
=

(
𝝈𝑘

𝑒

) 𝑖+1−𝛼 𝑓

𝑗+1
−

(
𝝈𝑘

𝑒

) 𝑖+1−𝛼 𝑓

𝑗
(7.48)

The system of equations indicated in (7.45) and (7.46) can be solved at each iteration
for Δa𝑖+1

𝑗
and Δ

(
𝝈𝑘

𝑒

) 𝑖+1−𝛼 𝑓

𝑗
. However, this system of equations is larger than the

system given in (7.26) since the element stresses are additional variables. Therefore,
the use of a mixed formulation has increased the computational cost.

Using (7.42), (7.23), (7.24), (7.34) and (7.43) we find the terms of the jacobian of
the system as:

𝜕r̂
𝜕a𝑖+1

= (1 − 𝛼𝑚)M +
(
1 − 𝛼 𝑓

)
𝛽 (Δ𝑡)2

∑︁
𝑒

∑︁
𝑘

V𝑒

𝜕B𝑘𝑇
𝑒

𝜕u𝑒

𝝈𝑘
𝑒𝑤

𝑘V𝑇
𝑒 (7.49)
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𝜕r̂

𝜕
(
𝝈𝑘

𝑒

) 𝑖+1−𝛼 𝑓
= V𝑒B𝑘𝑇

𝑒 𝑤𝑘 (7.50)

𝜕g𝑘
𝑒

𝜕a𝑖+1
= −

(
1 − 𝛼 𝑓

)
𝛽 (Δ𝑡)2 C𝑘

𝑒B𝑘
𝑒V𝑇

𝑒 (7.51)

𝜕g𝑘
𝑒

𝜕
(
𝝈𝑘

𝑒

) 𝑖+1−𝛼 𝑓
= I (7.52)

where these terms, being parts of the jacobian of the system, are evaluated at inter-
mediate times and for the current iteration, as indicated by (7.27). The evaluation is
not indicated explicitly to simplify the notation.

Condensation of variables
The system of equations for the mixed formulation defined by (7.45) and (7.46) can
be simplified by condensing out one equation. Substituting (7.51), (7.52) and (7.42)
in (7.46):

Δ

(
𝝈𝑘

𝑒

) 𝑖+1−𝛼 𝑓

𝑗
=

(
1 − 𝛼 𝑓

)
𝛽 (Δ𝑡)2 C𝑘

𝑒B𝑘
𝑒V𝑇

𝑒Δa𝑖+1𝑗 −
(
𝝈𝑘

𝑒

) 𝑖+1−𝛼 𝑓

+ C𝑘
𝑒𝝐

𝑘
𝑒

[
(u𝑒)𝑖+1−𝛼 𝑓

]
(7.53)

Substituting (7.53), (7.49) and (7.50) into (7.45):

©«
(1 − 𝛼𝑚)M +

(
1 − 𝛼 𝑓

)
𝛽 (Δ𝑡)2

∑︁
𝑒

∑︁
𝑘

V𝑒

𝜕B𝑘𝑇
𝑒

𝜕u𝑒

𝝈𝑘
𝑒𝑤

𝑘V𝑇
𝑒

+
∑︁
𝑒

∑︁
𝑘

(
1 − 𝛼 𝑓

)
𝛽 (Δ𝑡)2 V𝑒B𝑘𝑇

𝑒 𝑤𝑘C𝑘
𝑒B𝑘

𝑒V𝑇
𝑒

ª®®®®¬
Δa𝑖+1

𝑗
=

∑︁
𝑒

∑︁
𝑘

V𝑒B𝑘𝑇
𝑒 𝑤𝑘

(
𝝈𝑘

𝑒

) 𝑖+1−𝛼 𝑓

−
∑︁
𝑒

∑︁
𝑘

V𝑒B𝑘𝑇
𝑒 𝑤𝑘C𝑘

𝑒𝝐
𝑘
𝑒

[
(u𝑒)𝑖+1−𝛼 𝑓

]
− r̂

(7.54)

We identify the stiffness matrix with stresses computed independently as in (7.44).
Substituting also (7.42):(
(1 − 𝛼𝑚)M +

(
1 − 𝛼 𝑓

)
𝛽 (Δ𝑡)2 K̂

[
u,𝝈𝑘

𝑒

] )
Δa𝑖+1

𝑗
=

∑︁
𝑒

∑︁
𝑘

V𝑒B𝑘𝑇
𝑒 𝑤𝑘

(
𝝈𝑘

𝑒

) 𝑖+1−𝛼 𝑓

−
∑︁
𝑒

∑︁
𝑘

V𝑒B𝑘𝑇
𝑒 𝑤𝑘C𝑘

𝑒𝝐
𝑘
𝑒

[
(u𝑒)𝑖+1−𝛼 𝑓

]
−Ma𝑖+1−𝛼𝑚 − f̂

(
u𝑖+1−𝛼 𝑓 ,

(
𝝈𝑘

𝑒

) 𝑖+1−𝛼 𝑓

)
+ F𝑖+1−𝛼 𝑓

(7.55)
Substituting (7.41) and (7.38):(
(1 − 𝛼𝑚)M +

(
1 − 𝛼 𝑓

)
𝛽 (Δ𝑡)2 K̂

[
u,𝝈𝑘

𝑒

] )
Δa𝑖+1

𝑗
= −f

(
u𝑖+1−𝛼 𝑓

)
−Ma𝑖+1−𝛼𝑚 + F𝑖+1−𝛼 𝑓

(7.56)
We identify on the right side the residual r of the dynamic problem considering
stresses as a function of displacements, as in (7.22):(

(1 − 𝛼𝑚)M +
(
1 − 𝛼 𝑓

)
𝛽 (Δ𝑡)2 K̂

[
u,𝝈𝑘

𝑒

] )
Δa𝑖+1

𝑗
= −r (7.57)
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The terms must be evaluated at the intermediate times as indicated by (7.27) and
(7.29) for the current iteration 𝑗 . Indicating the evaluation explicitly:

Δa𝑖+1
𝑗

= −
(
(1 − 𝛼𝑚)M +

(
1 − 𝛼 𝑓

)
𝛽 (Δ𝑡)2 K̂

[
u𝑖+1−𝛼 𝑓

𝑗
,
(
𝝈𝑘

𝑒

) 𝑖+1−𝛼 𝑓

𝑗

] )−1
r
[
u𝑖+1−𝛼 𝑓

𝑗
, a𝑖+1−𝛼𝑚

𝑗

]
(7.58)

This expression is used to compute the increment Δa𝑖+1
𝑗

. It can be observed that
this equation is very similar to the equation for the increment Δa𝑖+1

𝑗
in a standard

formulation (not mixed), given by(7.33). The only difference is that the stiffness ma-
trix is computed with element stresses being independent of displacement variables.
Therefore, the condensation procedure has allowed using a mixed formulation with
the same computational cost as standard formulations.

To compute Δ
(
𝝈𝑘

𝑒

) 𝑖+1−𝛼 𝑓

𝑗
we use (7.53), where the evaluation of the variables for

the corresponding iteration is expressed explicitly as:

Δ

(
𝝈𝑘

𝑒

) 𝑖+1−𝛼 𝑓

𝑗
=

(
1 − 𝛼 𝑓

)
𝛽 (Δ𝑡)2 C𝑘

𝑒B𝑘
𝑒V𝑇

𝑒Δa𝑖+1𝑗 −
(
𝝈𝑘

𝑒

) 𝑖+1−𝛼 𝑓

𝑗
+ C𝑘

𝑒𝝐
𝑘
𝑒

[
u𝑖+1−𝛼 𝑓

𝑗

]
(7.59)

Numerical results
In this section, we will study the efficacy of the MIP method in speeding up the
solution of the tape spring deployment problem. An implicit dynamics solver with
the generalized alpha method is used. This is necessary because the MIP is only
applicable with an implicit solver. We use the same tape spring properties as in
chapter 5.

The results without using the MIP method are shown in Figure 7.6, where 𝜌∞ = 0.85
andΔ𝑡 = 10−5𝑠. We now consider the same problem but using the MIP method. The
energy history is shown in Figure 7.8. In this case, the simulation proceeds until the
end (𝑡 = 0.3 s) despite using a relatively large time step Δ𝑡 = 10−5 s. We observe the
results at a given time are the same as those obtained without using the MIP method,
which is expected since the MIP method does not directly change the solution at
every time step but only improves convergence. To analyze the convergence failure
we plot the number of iterations required at every time increment with and without
applying the MIP method, as shown in Figure 7.9. We observe that initially both
approaches require the same number of iterations. However, after 𝑡 = 0.1𝑠 the
number of iterations required when using the MIP method stays constant. On the
other hand, the results when not using the MIP method require increasingly more
iterations around 𝑡 = 0.1𝑠 and eventually too many iterations are required, producing
convergence failure.
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Figure 7.8: Energy history using MIP method with 𝜌∞ = 0.85 and Δ𝑡 = 10−5 s.

0 0.05 0.1 0.15 0.2 0.25 0.3

Time (s)

0

1

2

3

4

5

6

N
u
m

b
e
r 

o
f 
it
e
ra

ti
o
n
s

Without MIP

With MIP

Figure 7.9: Number of iterations required for convergence with and without MIP.

To further study the improved convergence, we use the condition given in equation
(7.19). The spectral radius at different time steps when MIP is not used is shown in
Figure 7.10. It can be observed that the spectral radius is initially small but gradually
increases, approaching values close to 1 right before 𝑡 = 0.1𝑠, and afterwards the
simulation fails to converge. Therefore, interpolation locking is present in the
simulation. The failure to convergence is correctly identified by the spectral radius
condition. We now use the MIP method and recompute the spectral radius for this
case, as shown in Figure 7.11. We observe that the spectral radius remains low and
close to 0, which explains the low number of iterations for convergence. Therefore,
the MIP method was successful in alleviating the interpolation locking and allowing
convergence of the simulation.
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Figure 7.10: Spectral radius of matrix (I − J̄J−1) when no MIP procedure is used.
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Figure 7.11: Spectral radius of of matrix (I − J̄J−1) with MIP procedure.

The CPU times for the solution with and without MIP using 𝜌∞ are shown in table
7.2. It can be observed that using MIP allows convergence of the solution until
the end (denoted as a complete solution) while using a relatively large time step.
Reducing the time step also allows a complete solution, but with significantly more
computational cost. Additionally, the time taken for the simulation using MIP is
very similar to the one not using MIP if 𝜌∞ and Δ𝑡 are kept fixed.

7.4 Discussion
An adaptive meshing procedure for dynamic analysis of tape spring deployment was
developed. A fine mesh is defined around the fold position and a coarse mesh is
used elsewhere. When this adaptive mesh is chosen to have 49% of the uniform fine
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Table 7.2: CPU time for implicit solver with and without MIP.

.

𝜌∞ Δ𝑡 (s) MIP Status CPU time (s)
0.85 10−5 No Incomplete 5 207
0.85 10−6 No Complete 34 546
0.85 10−5 Yes Complete 5 367

mesh degrees of freedom, a decaying total energy is obtained. It is suspected that
a coarse mesh in the straight parts of the tape spring is insufficient due to dynamic
buckling effects, and this produces inaccurate results.

The generalized alpha implicit solver was used to solve the tape spring deployment
problem. Numerical damping is introduced to dampen artificial high-frequency
dynamic components. It was observed that the numerical damping significantly
reduces the total energy of the system, which implies that the tape spring deployment
intrinsically has high-frequency dynamic motion with significant energy.

The interpolation locking effect was presented and extended for dynamic problems.
A mixed formulation framework was developed for dynamic problems as a method
to potentially alleviate the interpolation locking. The computational efficiency was
retained by using a condensation of variables known as Mixed Interpolation Point
(MIP). Numerical results show that the interpolation locking effect is present in
the tape spring deployment problem, and that the MIP procedure is effective at
alleviating the locking effect by reducing the number of iterations to convergence.
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C h a p t e r 8

CONCLUSIONS AND FUTURE WORK

Deployable structures are used in various space applications. Experimental testing
has a high cost and there are difficulties in reproducing space conditions. Therefore,
numerical models are used for prediction of the deployment process.

This thesis had three research objectives. Firstly, to reduce the computational cost of
the tape spring opposite-sense bending. Secondly, to perform an accurate numerical
analysis of the tape spring deployment, allowing various physical effects to be
investigated. Thirdly, to improve the computational efficiency of the analysis of tape
spring deployment using various techniques.

8.1 Efficient analysis of tape spring opposite-sense bending
The tape spring opposite-sense bending problem was studied using an in-house
finite element code, validated using ABAQUS finite element software. Afterwards,
a reduced order model based on energy-conserving sampling and weighting of data
was presented. An on-the-fly algorithm is introduced for application of the reduced
model. This approach was used to model the tape spring opposite-sense bending
problem. The speedup achieved is about 1.25𝑥 compared to the original high-
fidelity model. It was shown that the reduced order model is incapable of dealing
with translation and rotation invariances, which greatly decreases the effectiveness
of this method.

A novel adaptive meshing procedure was then introduced. This procedure uses
the curvature changes along each curvilinear coordinate of each finite element to
dictate the refinement. A stopping condition based on the boundary layer effect on
tape springs is presented. The adaptive meshing approach is used for the analysis
of the tape spring opposite-sense bending. The method results in highly efficient
computations, and the dependence on the tape spring geometry was explored. The
computational speedup is in the order of 2𝑥−4𝑥 depending on the specific geometry.

8.2 Modeling of tape spring deployment
The tape spring deployment problem was studied using ABAQUS finite element
software. It was shown that the element formulation used is inadequate for analysis
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of tape spring deployment due to the hourglassing present, which results in an
excessive amount of artificial energy. Although this can be alleviated by refining
the mesh, the computational cost is increased excessively.

The in-house isogeometric shell code was shown to be capable of avoiding hour-
glassing due to the special properties of the shape functions. Using a special reduced
integration rule, both hourglassing and shear locking are almost entirely avoided.
This makes this formulation optimal for the analysis of tape spring deployment. The
Newmark explicit solver was used to discretise the time. Numerical results are then
presented for the energy history and the fold kinematics during deployment.

Afterwards, the energy leak present in tape spring deployment experiments was in-
vestigated. This effect is of relevance since it motivates the use of damping for tape
spring deployment in the literature. Unlike experiments, the in-house shell code can
have truly zero damping. This allows it to examine the effect of various simplifi-
cations used in analytical models from previous work while not being distorted by
damping on experiments. After a detailed analysis of energy components within the
tape spring, it is observed that the analytical models previously used are partially
responsible for the energy leak. This analysis also demonstrates that the straight
parts of the tape spring have significant strain energy after the fold reflection, and
thus it may not be necessarily easier to model than the fold region. The kinetic
energy of in-plane and out-of-plane oscillations is also shown to be significant.

Additionally, the transfer of energy from low to high-frequency dynamic components
was analyzed using the short-time Fourier transform. It was observed that initially
low-frequency components dominate the analysis, but over time there is a transfer
of energy to high-frequency components. Therefore, the dynamics become more
complex as the time advances.

8.3 Efficient analysis of tape spring deployment
The tape spring deployment problem was solved using an adaptive mesh. The mesh
is defined based on the fold position, where a finer discretisation is used in the fold
region and a coarse discretisation outside of this fold region. Since the transfer of
variables between meshes is not straightforward in dynamic problems with special
shape functions, a special transfer method is used. Numerical results are shown
using an adaptive mesh with 49% of the degrees of freedom of the high-fidelity
model. Accurate results are obtained up to the fold reflection. However, after
the fold reverses direction the total energy slowly decreases, indicating that the
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mesh used is not sufficient for accurate analysis. Although an adaptive mesh with
more degrees of freedom could be used, the computational efficiency becomes less
attractive.

Afterwards, the solution using an implicit solver was explored. The generalized al-
pha implicit solver was used due to the capability of controlling damping in the high
and low frequency range. Numerical results showed a decrease in the total energy,
unlike the solution with an explicit solver. The results showed that a significant part
of the energy in the deployment is contained in high-frequency components, which
is difficult to solve correctly using implicit solvers. Although smaller time steps and
moving the high-frequency threshold to even higher frequencies reduces the mag-
nitude of the decrease in total energy, this significantly increases the computational
cost.

The efficiency of using implicit solvers for tape spring deployment analysis was
shown to be related to a novel locking effect known as interpolation locking. This
locking effect does not directly reduce the accuracy but significantly increases the
number of iterations for convergence. Therefore, this locking ultimately forces
the use of larger damping to improve the convergence behavior, resulting in even
more total energy decrease. Since mixed formulations alleviate this locking effect,
a mixed formulation framework is presented and extended for dynamic problems.
Afterwards, a condensation procedure known as Mixed Interpolation Point (MIP) is
applied to maintain the same number of variables as the original formulation while
taking advantage of the mixed formulation properties. Numerical results showed that
after the fold reflection the MIP method significantly improves the computational
cost. This was shown to be related to the presence of interpolation locking in the
tape spring deployment when the MIP method is not used.

8.4 Future Work
To further develop the work in this thesis, the following steps can be taken:

• Analyze the dynamic deployment of more complicated thin-shell deployable
structures

• Apply adaptive meshing and the MIP method for more complex structures

• Explore other reduced order modeling techniques to further reduce the com-
putational cost
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• Develop experiments to validate the computational results

• Study the damping present in experiments and implement an appropriate
damping formulation in the simulation.
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