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Abstract

Wind energy is poised to play a considerable role in the global transition to clean-
energy technologies within the next few decades. Modern wind turbines, like aircraft
and other aerodynamic structures, are typically designed with the assumption that
the flows they encounter will be uniform and steady. However, atmospheric flows
are highly unsteady, and systems operating within them must contend with gust
disturbances that can lead to performance losses and structural damage. Therefore,
the next generation of wind-energy systems requires physics-informed design prin-
ciples that effectively account for and even leverage these unsteady flow phenomena
for enhanced power generation, robustness, and operational longevity. Accord-
ingly, this work details experimental and analytical efforts to characterize unsteady
aerodynamics in wind-turbine contexts. First, the effects of unsteady streamwise
motion on turbine performance are studied, as recent work has suggested that these
dynamics may enable time-averaged efficiencies that exceed the steady-flow Betz
limit on turbine efficiency. The power production of and flow around a period-
ically surging wind turbine are thus investigated using wind-tunnel experiments,
which suggest that turbines in these flow conditions could leverage unsteady surge
motions for power-extraction gains of up to 6.4% over the stationary case. Lin-
earized and nonlinear dynamical models of the response of the turbine to these
time-varying flows are derived and validated against the experimental data. These
models are also coupled with a potential-flow model of the upstream induction
zone of the turbine in order to predict temporal variations in the flow velocities and
pressures in this region. Unsteady contributions to the time-averaged efficiency are
also considered through theoretical potential-flow derivations. Additionally, a novel
three-dimensional particle-tracking velocimetry approach using artificial snow as
seeding particles is deployed to obtain volumetric flow measurements in the wakes
of full-scale vertical-axis wind turbines in field conditions. These measurements
yield insights into the effects of unsteady vortex dynamics on the structure of the
near wake, with implications for the performance of turbines in wind-farm arrays.
These investigations provide the analytical and experimental foundations for future
studies of unsteady atmospheric flows, and will lead to the development of principles
and techniques for wind-farm siting, control, and optimization.
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Preface: A Brief Discourse on the Current
Climate Crisis

Note: The ideas expressed in this section represent the opinions of the author, and
are not intended to contribute to the technical content of this work.

It is high time that we as a species take responsibility for the world in which we live.
Particularly in the colonial, industrial, and modern eras, we have treated the Earth
and its resources as things we may possess, control, and use for our shortsighted
purposes. The consequences of our aggrandizing tendencies are becoming more
drastically apparent in the 21st century. The recently released Sixth Assessment
Report of the Intergovernmental Panel on Climate Change (IPCC AR6) states that
global temperature levels between 2011 and 2020 were on average 1.09◦C higher
than the average global temperature between 1850 and 1900 (IPCC, 2023). This
report, which summarizes a vast collection of scientific findings from recent years,
suggests that average global temperature levels exceeding 1.5 or 2◦C will lead to
significant and irreversible damages to ecosystems, climate patterns, agriculture,
and human health. Many scientists have expressed skepticism that keeping average
global temperature levels at or below 1.5◦C above pre-industrial levels is achievable
(Tollefson, 2021). According to the 2022 Emissions Gap Report of the United
Nations Environment Programme, current global emissions policies provide “no
credible pathway to 1.5◦C,” with projected average global temperature increases
above pre-industrial levels of 2.4 to 2.8◦C by the end of this century (UN, 2022).

In addition to the ecological and environmental crises instigated by human activ-
ities and their resulting climate impacts, climate change represents a fundamental
threat to human flourishing worldwide. According to the IPCC AR6 investigation,
“approximately 3.3–3.6 billion people live in contexts that are vulnerable to climate
change” (IPCC, 2023). Detrimental impacts of climate change on human liveli-
hoods and health include severe weather, food and water shortages, rising sea levels,
increased disease transmission, and the decimation of local wildlife. These conse-
quences are largely felt by low-income communities around the world, particularly
in the Global South. Conversely, developed nations in the West have historically
been responsible for the majority of carbon emissions and unsustainable resource-
consumption practices, in addition to the exploitative and dehumanizing approach
these countries often took toward other people groups. Thus, the crisis of climate
change is inextricably tied to systemic problems of injustice on a global scale.
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Since anthropogenic climate change is such a pressing global problem, the approach
to mitigating its deleterious effects must involve a concerted effort from all nations,
communities, industries, and vocations. Solutions will need to incorporate justice-
focused policy and legislation, economic incentives, public outreach and education,
financial and medical support for those directly affected by climate disasters, socio-
logical and ethical analyses of the impacts of climate change on human flourishing,
and many other contributions from diverse fields and perspectives. While it is
not the intention of this dissertation to prescribe particular approaches for these
initiatives, this broader perspective is included at the outset to remind scientists
and engineers that technical advancements represent only one facet of the solution
space to humanity’s most significant challenges. Western cultures steeped in scien-
tific positivism tend to overestimate the scope and capabilities of technology, and
several philosophical, cultural, and corporate movements in the past few centuries
have sought solutions to the world’s most persistent problems exclusively through
logical reasoning, empirical investigations, and scientific innovation. Those of us
in science and engineering, however, would do well to remember that science and
technology are just as often contributors to global problems as they are solutions.
For instance, the rapid industrialization of the modern era, coupled with its philo-
sophical prioritizations of mass production and efficiency, have fueled unchecked
increases in global emissions, dehumanizing labor conditions in developing nations,
and rampant cycles of consumerism and waste generation. Scientists and engineers
are thus neither innocent in the origins of the climate crisis nor solely responsible
for its resolution.

These considerations are provided to properly contextualize the work presented in
this dissertation in light of the current state of the climate crisis. Though the contri-
butions of renewable-energy technologies such as wind power are well-established
and will greatly reduce our dependence on high-carbon energy sources in the future,
they should not be touted as the ultimate solutions to our climate woes. Our world is
a complex and interconnected system, and our approaches to global-scale problems
should reflect and respect this complexity. This dissertation investigates a micro-
cosm of that coupling – the relationship between wind-energy systems and unsteady
flows in the atmosphere. More broadly, however, I hope that research explorations
such as these will inspire a deeper appreciation for the interconnected nature of
global climate and human activities, leading to more robust cross-disciplinary con-
versations and collaborations, and ultimately to a more unified and comprehensive
global effort to care for our planet and its inhabitants.
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Chapter 1

Introduction

“The Earth is what we all have in common.”

Wendell Berry, The Unsettling of America: Culture & Agriculture

1.1 Wind power as a sustainable solution to global
energy demands

Climate change poses an existential threat to human and ecological flourishing
worldwide. Carbon-neutral sources of energy are urgently needed to satisfy growing
global energy demands while also reducing the harmful impacts of anthropogenic
emissions, pollution, and waste on vulnerable human populations and ecological
regions. Given these challenges, the progress of wind power over the past few
decades is encouraging. Wind energy has grown rapidly, climbing to 906 GW
of installed capacity by the end of 2022; 77.6 GW was installed in 2022 alone
(Hutchinson and Zhao, 2023). In 2021, wind energy accounted for 6.5% of all
electricity generated worldwide, representing 23.5% of the total contributed by
renewables (BP, 2022). Some countries, such as Germany, are generating over
a quarter of their electricity with wind power (Burger, 2023). Additionally, the
levelized cost of energy (LCOE) of wind, a function of the lifetime cost of an
installation divided by its total energy production, has decreased sharply over time.
The global weighted average LCOE of onshore wind has sunk below the minimum
values for fossil-fuel plants since 2018, and offshore wind is not far behind (IRENA,
2022). Offshore wind in particular represents a promising avenue for growth in the
near future, as favorable wind resource off the eastern and western coasts of the US
attract increased attention (Shaw et al., 2022), while similar investments are already
underway off the coasts of east Asia and northern Europe. Therefore, wind-energy
systems are becoming increasingly more important to characterize and optimize as
the world seeks to transition to zero-carbon energy infrastructure.

Wind-energy systems have come a long way from their origins in Persia around the
9th century C.E. (Lucas, 2006). Today’s wind turbines are larger and more efficient
than ever before, with rotor diameters in excess of 140 m and power-extraction
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efficiencies (relative to the power available in the incident wind) approaching 50%.
These engineering feats are due in large part to advances in materials and manufac-
turing technologies, as well as the fact that winds tend to be stronger with increasing
altitude (Veers et al., 2019). In addition to traditional land-based horizontal-axis
wind turbines (HAWTs), several turbine variants are currently being explored. Off-
shore wind turbines, for example, can be larger than their land-based counterparts
to take advantage of strong offshore winds at higher altitudes. For offshore appli-
cations where the water depth makes fixed-bottom turbines prohibitively expensive,
turbines mounted on floating platforms can serve as a depth-independent alternative
(Gueydon et al., 2020). To capitalize on stronger winds at even higher altitudes,
turbines mounted to tethered aerial kites have been proposed and tested (Jonkman,
2021). Departing from the horizontal-axis design paradigm, vertical-axis wind tur-
bines (VAWTs) have shown potential for achieving high power densities in closely
packed arrays (Dabiri, 2011). Non-rotating energy-harvesting systems consisting of
pitching and plunging airfoils have also been explored, particularly for hydrokinetic
applications in rivers and tidal zones (Young et al., 2014). Finally, oscillating en-
ergy harvesters that convert vortex-induced vibrations to energy either mechanically
(Bernitsas and Raghavan, 2009) or using piezoelectric elements (Abdelkefi, 2016)
may have fewer moving parts than traditional turbines and can operate at smaller
scales and lower flow speeds.

Despite this extensive array of wind-energy technologies, the growth rate of the
wind-energy sector is only projected to meet 68% of the estimated capacity required
by 2030 to keep pace with the 1.5◦C pathway instituted by the Paris Agreement,
with a fivefold increase in annual capacity installation needed to meet 2030 targets
(Hutchinson and Zhao, 2023). As this would require a 250% increase in total
installed capacity within the next seven years, these goals cannot be achieved solely
by building more wind turbines. Rather, as wind farms expand into more diverse
and complex flow environments, such as offshore areas and terrestrial sites with
uneven terrain, more work needs to be done to improve the ways in which wind-
energy systems respond to and leverage these flows. The response of wind turbines
to gusts, wakes, temporary lulls in wind speed, and other turbulent or unsteady flow
phenomena is particularly important, as these disturbances may lower an array’s
aggregate performance below its rated capacity. The structural elements of the
turbines, such as blades, gearboxes, and towers, also need to be resilient against
fluctuating wind loads, as unanticipated fatigue cycles can decrease a turbine’s
operational lifespan and slow the expansion of wind energy in regions with variable
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Figure 1.1: Schematic of the control-volume modeling approach of Betz (1920).
Circled numbers denote streamwise interrogation locations (1 through 4). The
pressure is assumed to be discontinuous across the disc, and is taken to be 𝑝∞ at
locations 1 and 4.

atmospheric conditions. In light of these considerations regarding the operation of
wind turbines in complex flows, it is apparent that future wind-energy systems will
need to comprehensively account for the impact of unsteady flow phenomena on
their performance and longevity.

1.2 Wind-energy systems and unsteady fluid mechan-
ics

Wind turbines are typically designed under the assumption of steady-flow conditions
(Hau, 2013a; Hansen, 2015), but some extensions to unsteady flows do exist. We
will now define steady, unsteady, and quasi-steady dynamics in the context of wind-
energy systems, and review modeling and diagnostic tools that have been used to
study and characterize these dynamics.

1.2.1 Steady, unsteady, and quasi-steady flows in wind-energy
systems

The canonical steady-flow analysis of a general device that harnesses energy from a
moving fluid was developed in the early 1900s by several engineers and mathemati-
cians, including Lanchester, Betz, Joukowsky, Froude, and others (cf. Van Kuik,
2007). The energy-harvesting system is modeled as an actuator disc, and the flow
through it is bounded by a streamtube (shown schematically in Figure 1.1). The
flow is assumed to be incompressible, irrotational, inviscid, and steady. A control-
volume analysis is conducted, and flow quantities are referenced at four streamwise
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locations: far upstream of the disc (1), immediately upstream and downstream of the
disc (2 and 3), and far downstream of the disc (4). The power-conversion efficiency
of the actuator disc is given by the coefficient of power, which is defined as the
power extracted by the device from the flow, P, normalized by the available power
in the incident wind, i.e.

𝐶𝑝 =
P

1
2𝜌𝜋𝑅

2𝑢3
1
. (1.1)

Further, an axial induction factor (or induction coefficient) may be defined to pa-
rameterize the difference in velocities between locations 1 and 2:

𝑎 =
𝑢1 − 𝑢2
𝑢1

. (1.2)

Applying conservation laws for mass and momentum, as well as the Bernoulli
relation between velocities and pressures along a streamline, we find that

𝐶𝑝 = 4𝑎(1 − 𝑎)2, (1.3)

and maximizing this expression for 𝑎 gives 𝐶𝑝,𝑚𝑎𝑥 = 16/27 ≈ 59.3% at 𝑎 = 1/3.
This theoretical limit on the efficiency of any wind-energy or hydrokinetic system
is known as the Betz limit (Betz, 1920). The limit appears empirically valid, as
the most efficient turbines today have maximum efficiencies of around 50%. The
theoretical analysis has also been applied to airborne wind-energy systems (De Lellis
et al., 2018) and flapping-foil power generators (Young et al., 2020).

However, as mentioned in the preceding section, the flows encountered by wind-
energy systems need not conform to the steady-flow assumption enforced by this
analytical framework. This is particularly the case in the atmospheric boundary
layer in which wind-turbines operate, where turbulence, gusts, and other unsteady
phenomena are the rule rather than the exception. In this work, we define an unsteady
process as a behavior whose dynamics involve a non-negligible time evolution of
a quantity of interest, i.e. 𝜕

𝜕𝑡
≠ 0. As outlined in Table 1.1, unsteady dynamics

can appear in wind-energy systems either as a function of local atmospheric flow
conditions or as a consequence of their own operation. Unsteady flow disturbances,
such as axial gusts for ground-fixed turbines or platform oscillations for floating
offshore systems, introduce a time-varying inflow condition to the turbine that will
affect both its dynamics and power generation. Conversely, a turbine operating in a
steady wind may still excite unsteady dynamics. The blades of a vertical-axis wind
turbine, for example, experience local flow conditions that vary as a function of
azimuthal position within a single rotation cycle. Thus, unsteady flow phenomena
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Source of
unsteadiness

Inflow
condition

Turbine
dynamics Examples

Steady flow
(Betz) Constant Steady HAWT in steady flow

External
disturbance

Time-
varying

Quasi-steady
or unsteady

HAWT in axial gust; FOWT with
platform motion (Chs. 2 and 3)

Turbine
operation Constant Unsteady

VAWT blades in steady flow (Ch.
4); HAWT with time-varying
generator load or blade pitch

Table 1.1: Overview of scenarios involving unsteady flows in wind-energy contexts:
1) steady flow (baseline case), 2) unsteady dynamics due to an external disturbance),
and 3) unsteady dynamics due to time-varying turbine operating conditions (e.g.
changing generator load or blade pitch angle). HAWT stands for horizontal-axis
wind turbine, FOWT stands for floating offshore wind turbine, and VAWT stands
for vertical-axis wind turbine.

such as dynamic stall and vortex shedding occur on the blades, and these signatures
are convected downstream into the wake of the turbine. Similarly, changes in the
blade pitch angle or generator load of a wind turbine can induce changes in the
turbine rotation rate and power extraction that affect the surrounding flow field in an
unsteady manner. As these unsteady effects are propagated within the wake of the
turbine, they may then act as unsteady inflow disturbances for downstream turbines
in an array. Both of these types of unsteady dynamics will affect the performance
and operation of wind-energy systems, and thus the wind-energy sector stands to
benefit from improved parameterizations of these phenomena.

The so-called quasi-steady approximation is often invoked to simplify the unsteady
contribution to a system’s dynamics. A quasi-steady approximation assumes a
local static equilibrium at every instant in time that is independent from all other
instances. A separate steady-flow relation can then be solved independently at each
timestep. This modeling approach often stems from the assumption that the time-
varying forcing is slow or small enough that terms involving time derivatives become
negligibly small, and thus this approximation is often applied when nondimensional
forcing frequencies such as the reduced frequency or Strouhal number lie below a
certain threshold (cf. Leishman, 2006).

Practically, there are different ways to implement a quasi-steady approximation in
a model. One could hypothesize that a given input parameter does not change
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appreciably as a function of time and treat it as a constant, as done by Johlas
et al. (2021) for the coefficient of power of a turbine in an oscillating inflow.
Alternatively, a hybrid quasi-steady/unsteady model can be applied, in which some
time-dependent characteristics are considered and others are neglected. Take, for
instance, an application of Newton’s second law for rotation:

𝐽
𝑑𝜔

𝑑𝑡
= 𝜏1(𝑡) − 𝜏2(𝑡), (1.4)

where 𝐽 is the rotational moment of inertia, 𝜔 is the rotation rate, and 𝜏1 and 𝜏2
are opposing torques, which themselves may include unsteady contributions. (This
example, known in the turbine literature as the swing equation, will be explored
in detail in Chapter 2.) A fully quasi-steady approach would neglect 𝑑𝜔

𝑑𝑡
and the

unsteady components of 𝜏1 and 𝜏2 and compute a separate value of 𝜔 for every
instance of 𝜏1(𝑡) ≈ 𝜏2(𝑡). It is also possible, however, to neglect the unsteady
components of the torques and retain the unsteady rotational-acceleration term. This
model would be considered quasi-steady with respect to the torques and unsteady
with respect to the rotation rate. The term “quasi-steady” is therefore somewhat
ambiguous, and care must be taken to clarify the dynamics that are targeted when
such an approximation is made.

These distinctions may seem pedantic, but their importance lies in the interpretation
of the models they describe. A fully unsteady model will capture different mecha-
nisms and dynamics than a quasi-steady model of the same system, and their regimes
of applicability will differ accordingly. Thus, to extend the oft-quoted aphorism that
“All models are wrong but some are useful,”1 we might add that the usefulness
of a model depends primarily on its assumptions and its applications. If we are
careful to specify the nature of the dynamics that are captured by a set of models,
and which are neglected by assumption, we will be more successful in using these
models to describe and predict the response of wind-energy systems in real-world
flow conditions.

1.2.2 Models and measurements of unsteady aerodynamics in
wind-energy systems

With these considerations and caveats in place, we may now survey the range of
modeling approaches that have been applied to unsteady dynamics in wind-energy
contexts, as well as the numerical and experimental techniques that have been
developed to validate these approaches.

1This proverb is generally attributed to the British statistician George E. P. Box.
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Models seeking to capture unsteady effects in wind-energy systems span a wide
range of fidelities. Unsteady actuator-disc models have been proposed to parame-
terize the effects of unsteady inflow conditions on the performance of a turbine and
the dynamics of its wake (e.g. Chattot, 2014). These models often treat the wake
of the turbine as a cylindrical vortex tube, and map the effects of flow unsteadiness
onto the circulation of the sheet (Yu et al., 2016). Multiple vortex tubes can also
be used to model the effects of radially nonuniform circulation profiles, stemming
from spanwise differences in the bound circulation on the turbine blade sections
(Branlard and Gaunaa, 2015). For a time-resolved characterization of the wake,
free-vortex wake models can be employed (e.g. Sebastian and Lackner, 2012). For
example, de Vaal et al. (2014b) developed a model in which discrete vortex rings are
shed with each blade passing and are advected into the wake via Biot-Savart induc-
tion. More granular models invoke blade-element momentum (BEM) computations
to determine the forces on and shed circulation from radial blade sections; com-
monly applied models include those of Pitt and Peters (1980) and Snel and Schepers
(1995). Combinations of BEM models and free-vortex wake simulations, such as
QBlade, are widely used in turbine-design applications today (Marten, 2020). Fi-
nally, unsteady-aerodynamics models may be employed to parameterize unsteady
forces on two-dimensional blade sections, in cooperation with BEM codes. Analyt-
ical models derived from potential-flow theory can be used for small-perturbation
disturbances, such as transverse gusts (Sears, 1941; Atassi, 1984), streamwise gusts
(Greenberg, 1947), airfoil oscillations (Theodorsen, 1934), and combinations of
these disturbances (Wei and Shende, 2023). This class of models has been exten-
sively validated in experiments, and in some cases can capture the lift response of
unsteady airfoils even outside of the ideal-flow small-perturbation regime (e.g. Baik
et al., 2012; Wei et al., 2019). Semi-empirical models are also widely used to capture
the flow-separation and reattachment properties associated with the phenomenon of
dynamic stall, including the ONERA (Tran and Petot, 1980), Beddoes-Leishman
(Leishman and Beddoes, 1989), and Øye (Øye, 1991) models.

These models give physical insights into the unsteady dynamics of wind-energy
systems, but because of their reduced-order nature, they are limited by their as-
sumptions. A higher-fidelity approach is to use numerical simulations in tandem
with these modeling frameworks. Direct numerical simulation (DNS) of the Navier-
Stokes equations is generally not feasible for full-scale wind-energy systems, as the
number of grid points required for a fully resolved simulation scales with 𝑅𝑒9/4,
and the Reynolds number of a utility-scale turbine is on the order of 106 to 108.
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Blade-resolved large-eddy simulation (LES) studies are more feasible than DNS
(Sprague et al., 2020), but the complex fluid-structure interactions involved make
actuator-line and actuator-disc models that parameterize the coupling between the
flow and the turbine blades more practical for simulations of individual turbines and
turbine arrays (Stevens and Meneveau, 2017). For instance, NREL’s OpenFAST
code captures the dynamics of the entire turbine system, including aerodynamics,
structural dynamics, control and electrical systems, and floating-platform hydrody-
namics (Jonkman et al., 2018), and it can be coupled with LES or Reynolds-Averaged
Navier-Stokes (RANS) solvers such as OpenFOAM (Churchfield et al., 2012) and
Nalu-Wind (Ananthan et al., 2019).

While high-fidelity numerical simulations continue to grow in their predictive ca-
pabilities, questions still arise regarding their ability to effectively capture unsteady
flow phenomena such as separation and fluid-structure coupling. These numerical
tools are thus complemented by an array of experimental techniques for studying
wind-energy systems at laboratory and field scales. Conventional facilities include
water channels (e.g. Strom et al., 2022) and wind tunnels (e.g. Tescione et al., 2014),
in which optical flow-field measurements using particle-image velocimetry (PIV)
can be carried out. Turbines can be operated in freely rotating or driven states
(Araya and Dabiri, 2015); alternatively, for studies of turbine arrays, the turbines
can be replaced by porous discs (e.g. Howland et al., 2016; Kurelek et al., 2023).
For studies of unsteady flows, turbines can be moved in specified velocity profiles
to mimic the effects of axial gusts or floating-platform motions (Bayati et al., 2017;
El Makdah et al., 2019), or unsteady flows can be generated upstream using an active
grid (Berger et al., 2022). While these studies can shed light on flow mechanisms,
the length scales in these facilities are typically orders of magnitude lower than full-
scale systems. To replicate the flow conditions experienced by full-scale turbines in
terms of nondimensional aerodynamic parameters, the Reynolds number, tip-speed
ratio, and tip Mach number, given by

𝑅𝑒𝐷 =
𝜌𝑈∞𝐷

𝜇
, 𝜆 =

𝜔𝑅

𝑈∞
, and 𝑀𝑎 =

𝜔𝑅

𝑈𝑠𝑠
(1.5)

respectively, must be matched. (Here, 𝜌 is the fluid density, 𝑈∞ is the free-stream
flow velocity, 𝐷 is the turbine diameter, 𝜇 is the dynamic viscosity of the fluid,
𝑅 is the turbine radius, and 𝑈𝑠𝑠 is the speed of sound in the fluid.) Though the
tip-speed ratio and tip Mach number are not strictly fluid-mechanical inputs of the
system, since they depend on the control torque applied to the turbine shaft, they are
nonetheless important for capturing turbine-blade aerodynamics and the resulting
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power-generation characteristics of the turbine. One solution to this dynamic-
similarity problem is to use pressurized air, which increases the Reynolds number
without modifying the tip-speed ratio or the Mach number, since the speed of
sound is a weak function of pressure. Miller, Duvvuri, Brownstein, et al. (2018)
and Miller et al. (2019) utilized this approach to study the dynamics of vertical-
and horizontal-axis turbines at full-scale Reynolds numbers in lab-scale experi-
ments. However, controlling other atmospheric parameters such as unsteady gusts,
boundary-layer turbulence, and atmospheric stability are still difficult in these types
of facilities. Field experiments are therefore important tools for ascertaining the
performance of wind-energy systems in real-world flow conditions. Structural di-
agnostics such as strain gauges and vibration sensors can be deployed to monitor
the health and response of turbine blades and support elements (Sun et al., 2022).
Power measurements from the turbines themselves can also be used in conjunction
with reduced-order models to test novel flow-control schemes such as wake steering
(Howland et al., 2019). Flow measurements are possible using LiDAR systems
(e.g. Larsen and Hansen, 2014), meteorological masts (e.g. Kinzel et al., 2012),
and even fleets of drones (Wetz and Wildmann, 2023). These systems, however,
are relatively limited in their ability to resolve unsteady flow phenomena and spatial
inhomogeneities. By contrast, Hong et al. (2014) used natural snowfall to perform
PIV measurements near a full-scale horizontal-axis wind turbine, and were able to
resolve the evolution of tip vortices shed from the turbine blades. Recent advances
in three-dimensional particle-tracking velocimetry (3D-PTV), such as Shake-The-
Box PTV (Schanz et al., 2016), are making three-dimensional volumetric flow-field
measurements more feasible at the larger scales required for field campaigns. For
example, Bristow et al. (2023) were able to measure the trajectories of falling snow
particles in a 4×4×6-m3 volume. These techniques have also been used successfully
in lab-scale experiments to quantify vortical structures in the wakes of VAWT pairs
(Brownstein et al., 2019), but since full-scale turbines span length scales on the
order of tens to hundreds of meters, three-dimensional flow measurements around
operational wind turbines in field conditions are still absent in the literature.

1.3 Aims and scope of the dissertation
The overview in the preceding section highlights the diversity of modeling and
diagnostic tools available for the study of unsteady-flow effects on wind-energy
systems. However, there still remain significant questions regarding the correspon-
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dence of models of varying fidelity and experimental measurements, particularly
when analyzing full-scale systems in real atmospheric flow conditions. The as-
sumptions embedded in different modeling frameworks often require experimental
validation to determine the conditions in which they apply, even for steady-flow
analyses. Several models also have parameters that require empirical fitting and ex-
perimental calibration, which limits their generality. Additionally, field-scale flow
measurements are only now starting to be able to sample spatial and temporal flow
variations at scales large enough to be relevant for modern wind-energy systems.
Therefore, there exists a pressing need for experimentally validated, physically in-
terpretable models, as well as experimental techniques that can identify signatures
of unsteady flow physics around active utility-scale wind turbines.

Furthermore, a conceptual paradigm shift in our approach to wind-energy technolo-
gies may be warranted. Rather than treating unsteady flows as annoying compli-
cations that need to be controlled or rejected, there is much potential in viewing
unsteady flows as integral to the design and operation of the next generation of
wind-energy systems. The lower atmosphere is fundamentally an unsteady place;
perhaps our design methodologies should reflect this fact, rather than dismiss it.
Wind-energy technologies that can account for and even creatively utilize unsteady
dynamics may unlock new levels of energy-conversion performance and operational
longevity, thereby accelerating the growth of the wind-energy sector and bringing
the world closer to its climate goals.

This dissertation thus seeks to develop modeling frameworks, experiments, and
measurement techniques to investigate and leverage unsteady fluid mechanics in
wind-energy systems. First, the effects of streamwise unsteadiness on a horizontal-
axis wind turbine are considered, since, as discussed previously, studies by Dabiri
(2020), Johlas et al. (2021), and others have suggested that this mode of unsteadiness
can lead to power-extraction gains over the steady-flow case. In Chapter 2, torque
and power data from wind-tunnel experiments with a periodically surging turbine
are presented, and the results are parameterized using a linearized dynamical model
of the system. Time-averaged power-extraction enhancements of up to 6.4% above
the steady reference case are also observed. In Chapter 3, a more general nonlinear
dynamical model is proposed to clarify the mechanisms behind these power en-
hancements, and a potential-flow model is derived for the flow properties upstream
of the surging turbine and is coupled to the nonlinear dynamical model. These ana-
lytical tools are validated using turbine-power and flow measurements. A theoretical
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consideration of the contributions of an unsteady velocity potential is also outlined.
Finally, Chapter 4 details the deployment of a field-scale 3D-PTV measurement
system that uses artificial snow as seeding particles. This technique is used to obtain
volumetric measurements of the flow fields in the wakes of utility-scale vertical-
axis wind turbines with straight and helical blades. An unsteady vortex-shedding
mechanism is proposed to qualitatively describe trends observed in the data. The
conclusions and implications of these studies, as well as potential opportunities for
future research, are laid out in Chapter 5.
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Chapter 2

Linearized Dynamics of a Periodically
Surging Wind Turbine

The contents of this chapter have been adapted from Wei and Dabiri (2022), pub-
lished in the Journal of Renewable and Sustainable Energy under the title “Phase-
averaged dynamics of a periodically surging wind turbine.” As the first author,
Nathan Wei made the primary contributions to experiment design, data acquisition
and analysis, analytical modeling, and writing. Co-author John Dabiri contributed
to the conceptualization of the study, funding acquisition, analysis and interpretation
of the results, and feedback on the manuscript.

Abstract
The unsteady power generation of a wind turbine translating in the streamwise di-
rection is relevant to floating offshore wind turbines, kite-mounted airborne wind
turbines, and other non-traditional wind-energy systems. To study this problem
experimentally, measurements of torque, rotor speed, and power were acquired
for a horizontal-axis wind turbine actuated in periodic surge motions in a fan-
array wind tunnel at the Caltech Center for Autonomous Systems and Technologies
(CAST). Experiments were conducted at a diameter-based Reynolds number of
𝑅𝑒𝐷 = 6.1 × 105 and at tip-speed ratios between 5.2 and 8.8. Sinusoidal and
trapezoidal surge-velocity waveforms with maximum surge velocities up to 23%
of the free-stream velocity were tested. A model in the form of a linear ordinary
differential equation (first-order in time) was derived to capture the time-resolved
dynamics of the surging turbine. Its coefficients were obtained using torque mea-
surements from a stationary turbine, without the need for unsteady calibrations. Its
predictions compared favorably with the measured amplitude- and phase-response
data. Furthermore, increases in the period-averaged power of up to 6.4% above
the steady reference case were observed in the experiments at high tip-speed ratios
and surge velocities, potentially due to unsteady or nonlinear aerodynamic effects.
Conversely, decreases in mean power with increased surge velocity at low tip-speed
ratios were likely a result of the onset of stall on the turbine blades. These results
inform the development of strategies to optimize and control the unsteady power
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generation of periodically surging wind turbines, and motivate further investigations
into the unsteady aerodynamics of wind-energy systems.

2.1 Introduction
New innovations in wind energy technology motivate the study of wind-turbine
performance in previously unexplored operational regimes. In particular, while
traditional land-based wind turbines are fixed in place, wind-energy systems such
as floating offshore wind turbines (FOWTs) and airborne wind turbines undergo
streamwise oscillations that may potentially complicate the aerodynamics of these
systems. The periodic motions of the turbine rotor in these situations introduce
additional dynamics that can affect the power generation of the wind turbines and
the fatigue loading on their blades, thereby impacting their contribution to global
energy demands. Therefore, this study investigates the dynamics of a periodically
surging wind turbine through analytical modeling and laboratory-scale experiments.

2.1.1 Current progress in surging-turbine aerodynamics
Previous studies have generally considered surge motions typical of wave-driven
FOWTs (Gueydon et al., 2020), which are of increasing relevance as the emerging
offshore-wind sector continues to expand. The majority of attention regarding
turbine aerodynamics has been focused on time-averaged quantities. Using a model
FOWT in a wind tunnel and wave tank, Farrugia et al. (2014) found that the time-
averaged coefficient of power, 𝐶𝑝, increased above the steady case by 1% when
oscillations in the turbine were present. A similar increase in 𝐶𝑝 by 1% was
observed in wind-tunnel experiments by Khosravi et al. (2015) and free-vortex
wake simulations by Shen et al. (2018). Farrugia et al. (2016) showed using free-
vortex wake simulations that 𝐶𝑝 increased with surge frequency at tip-speed ratios
above the rated value by up to 13.7%, but decreased with surge frequency at tip-
speed ratios below the rated value. Independent simulations by Wen et al. (2017)
yielded similar results. Johlas et al. (2021) suggested that the increases in average
power with surge velocity can be described by a simple quasi-steady model, where
the term “quasi-steady” refers to effects for which successive instances in time can
be considered as being in independent states of local equilibrium. Since the model
is derived from the cubic dependence of power on the incident inflow velocity at the
rotor, the relative power gains over the steady value of 𝐶𝑝 from surge motions in the
upwind direction outweigh the relative losses from surge motions in the downwind
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direction. Their model agrees well with the time-averaged power results from their
numerical simulations of a surging turbine, but the validity of the model has not yet
been evaluated over a wide range of surge velocities and operating conditions. A
fully characterized, quantitatively accurate explanation for the observed increases in
𝐶𝑝 thus remains elusive.

The time-resolved dynamics of a turbine in surge have been explored as well. These
unsteady dynamics determine the unsteady loads on the turbine and its support
structures, and therefore inform the design of FOWT control systems. The presence
of fluctuations in turbine thrust, torque, and power at the same frequency as the
imposed surge motion is well-documented in the literature (Farrugia et al., 2014;
Farrugia et al., 2016; Shen et al., 2018; Tran and Kim, 2016; Wen et al., 2017;
Johlas et al., 2021). These fluctuations increase in amplitude as the surge frequency
is increased (Farrugia et al., 2016). Mancini et al. (2020), however, showed in
wind-tunnel experiments with a surging turbine that the relationship between torque
amplitude and surge frequency increases above the prediction of their linear quasi-
steady model at high frequencies. They attributed this to mechanical resonance,
and not to a breakdown of their linearization of power as a function of the surge
velocity or the influence of unsteady aerodynamics. By contrast, torque amplitudes
measured in wind-tunnel experiments by Sant et al. (2015) were much lower than
those computed by quasi-steady and dynamic-inflow codes.

The phase response of the turbine similarly lacks a single consistent characterization
in the literature. The model developed by Johlas et al. (2021) predicts that the
instantaneous power from the turbine will be in phase with the surge velocity. The
linear quasi-steady model of Mancini et al. (2020) supports the same prediction.
Some computational (Farrugia et al., 2016; Tran and Kim, 2016; Wen et al., 2017;
Wen, Tian, et al., 2018) and experimental (Mancini et al., 2020) results, however,
have shown phase differences in excess of 90◦, while others displayed close to zero
phase offset (Micallef and Sant, 2015; Shen et al., 2018; Wen, Dong, et al., 2018).
The discrepancies in the literature regarding the amplitude and phase of the torque
and power output of surging turbines motivates the current study.

The lack of consensus with respect to mean quantities and their amplitude and phase
stems in large part from unanswered questions regarding the relative importance of
quasi-steady and unsteady effects. The models of Johlas et al. (2021) and Mancini
et al. (2020) can be classified as purely quasi-steady models that neglect unsteady
effects. Other models have incorporated unsteady effects directly. For example, de
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Vaal et al. (2014a) compared the results of different dynamic inflow models, which
include corrections for time-varying inflow velocity and acceleration, that were
paired with blade-element momentum (BEM) simulations of a surging turbine.
They concluded that these engineering models were capable of capturing global
forces on FOWTs in typical offshore conditions. In a different approach, Fontanella
et al. (2020) derived a state-space model that maps linearized turbine aerodynamics
and wave dynamics to the time derivatives of the kinematic parameters of the
turbine. The model was shown to perform well both in simulations and as the basis
for control systems (Fontanella et al., 2021). In addition to these models, others
have suggested various unsteady flow phenomena that could influence the turbine
dynamics. For instance, several of the aforementioned studies have considered the
effects of airfoil stall, particularly at the blade root, on time-averaged and fluctuating
quantities (Farrugia et al., 2016; Tran and Kim, 2016; Wen et al., 2017; Wen, Tian,
et al., 2018). In addition to blade stall, Sebastian and Lackner (2013) postulated
the formation of unsteady recirculation regions in or downstream of the rotor plane
during turbine surge, as a result of slip-stream violations. Furthermore, Wen, Tian,
et al. (2018) attributed the phase differences observed in their simulations to added-
mass effects, blade-wake interactions, and unsteady aerodynamics. These unsteady
flow phenomena may affect the structure, dynamics, and recovery of the wake of a
surging turbine (Rockel et al., 2016; Tran and Kim, 2016; Bayati et al., 2017; Lee
and Lee, 2019; Kopperstad et al., 2020; Rezaeiha and Micallef, 2021). However, it
still remains to be seen which (if any) of these unsteady effects must be accounted
for in a model to capture the torque and power production of real surging turbines,
or whether existing quasi-steady models are sufficient for this purpose.

Lastly, since nearly all existing work on surging-turbine aerodynamics has been
conducted in the context of surge oscillations typical of FOWTs under normal oper-
ating conditions, the dynamics of wind turbines surging through larger amplitudes
or higher frequencies remain relatively unexplored. Larger surge oscillations would
be relevant not only to FOWTs in more extreme conditions, but also to airborne wind
turbines mounted to aircraft or crosswind kites (Cherubini et al., 2015). Crosswind
kites generally fly through large periodic orbits with length scales much greater than
the size of the aircraft itself (Jonkman, 2021). Turbines mounted to these kites would
therefore undergo surge motions at amplitudes far larger than those experienced by
FOWTs. In addition, Dabiri (2020) recently suggested that streamwise unsteadi-
ness could be leveraged to increase the efficiency of wind-energy systems above
the theoretical steady limit. Since increases in time-averaged power have already
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been observed at the relatively low levels of unsteady motion typical of FOWTs,
an investigation of higher surge amplitudes and frequencies could provide insights
toward the practical realization of these theoretical efficiency gains.

2.1.2 Research objectives
This study aims to address several open questions regarding the time-resolved dy-
namics of a wind turbine in surge. The amplitude and phase of torque and power
relative to the surge motions are investigated in wind-tunnel experiments. Trends in
the data are parameterized by a model that accounts for quasi-steady aerodynamic
torques and unsteady generator torques. The model is first-order in time and linear in
the turbine surge velocity and rotor speed; thus, it shall henceforth be referred to as a
first-order linear model. An important feature of the model is that its coefficients can
be computed from measurements obtained under steady conditions; no data from
actual surge tests are required to obtain time-resolved torque and power predictions.
The experiments span higher levels of unsteadiness than previous studies in the lit-
erature, with scaled amplitudes up to 𝐴∗ = 𝐴/𝐷 = 0.51 and nondimensional surge
velocities up to 𝑢∗ = 𝑓 𝐴/𝑢1 = 0.23, where 𝐴 is the surge amplitude, 𝑓 is the surge
frequency in radians per second, 𝑢1 is the free-stream velocity, and 𝐷 is the turbine
diameter. By contrast, the highest values reported in the literature are 𝐴∗ = 0.13
(Tran and Kim, 2016) and 𝑢∗ = 0.42 (Wen, Tian, et al., 2018) in simulations, and
𝐴∗ = 0.15 (Sant et al., 2015) and 𝑢∗ = 0.079 (Mancini et al., 2020) in experiments.
These values are all relatively high compared to the motion amplitudes measured on
the Hywind Demo floating offshore turbine, which in calm seas underwent average
surge amplitudes of 𝐴∗ ≈ 0.03 and surge-velocity amplitudes of 𝑢∗ ≈ 0.06 (Skaare
et al., 2015). When the controller on the floating platform was removed, amplitudes
of up to 𝑢∗ ≈ 0.16 were reported. The numerical simulations of Johlas et al. (2021)
produced similar results, with average surge-velocity amplitudes of 𝑢∗ ≈ 0.09 and
maximum values of 𝑢∗ ≈ 0.23 in higher-amplitude wave conditions. The findings
in the present study may thus be generalized to FOWTs operating under extreme
conditions, as well as novel airborne wind-energy systems and other emergent tech-
nologies. The combined analytical and experimental results presented in this work
provide a foundation upon which questions regarding the influence of unsteadiness
and nonlinearity, including the dependence of the mean torque and power on surge
kinematics, may be more comprehensively investigated in future work.

The paper is structured as follows. In Section 2.2, a first-order linear model is
derived that enables a disambiguation between aerodynamic and generator torques.
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Its amplitude and phase characteristics are also analyzed. In Section 2.3, the exper-
imental apparatus is described, and methods for computing the coefficients of the
analytical model from measurements in steady conditions are given. Phase-averaged
results from experiments with sinusoidal and trapezoidal surge-velocity waveforms
are presented in Section 2.4, and the results are compared with model predictions.
Finally, a discussion regarding model capabilities and limitations, nonlinear and
unsteady effects, and application to full-scale wind turbines is provided in Section
2.5.

2.2 Analytical model
In this section, we derive a model for the torque generated by a surging horizontal-
axis turbine from an ordinary differential equation that is first-order in time and
linear in the turbine surge velocity and rotor speed (or rotation rate). We linearize the
aerodynamic torque with respect to the inflow velocity and rotor speed, and combine
it with a model for the generator torque to obtain a differential equation for the rotor
speed of the turbine. We then derive transfer functions in the frequency domain
to characterize the amplitude and phase relative to the surge-velocity waveform
of the aerodynamic and generator torque. A notable advantage of this model is
that the model coefficients can be extracted directly from torque and rotation-rate
measurements of the turbine in steady conditions (i.e. without surge motions); these
methods will be described in Section 2.3.4 for the turbine used in these experiments.

2.2.1 Aerodynamic-torque model
A first-order linear model for the aerodynamic torque can be derived using a local
linearization with respect to the inflow velocity and rotor speed:

𝜏𝑎𝑒𝑟𝑜 ≈ 𝜏0 +
𝜕𝜏

𝜕𝑢

����
𝑢=𝑢1,𝜔=𝜔

(𝑢 − 𝑢1) +
𝜕𝜏

𝜕𝜔

����
𝑢=𝑢1,𝜔=𝜔

(𝜔 − 𝜔), (2.1)

where 𝑢 = 𝑢1 + 𝑈 (𝑡) is the instantaneous inflow velocity relative to the turbine,
𝑈 (𝑡) is the turbine surge velocity in a stationary frame of reference, 𝜔 is the rotor
speed, and 𝜏0 is the steady aerodynamic torque, i.e. the mean torque measured on
a stationary turbine at a wind speed of 𝑢1. In this work, bars denote time averages
over a single streamwise-motion oscillation period for time-dependent variables in
the case of unsteady streamwise motion, while the subscript 0 denotes the value of
a variable in the reference case corresponding to a steady inflow at speed 𝑢1. We
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then define the performance coefficients

𝐾ℓ =
𝜕𝜏

𝜕𝑢

��
𝑢=𝑢1,𝜔=𝜔

(2.2)

and
𝐾𝑑 = − 1

𝑅

𝜕𝜏

𝜕𝜔

��
𝑢=𝑢1,𝜔=𝜔

, (2.3)

where 𝑅 is the radius of the turbine. These coefficients qualitatively correspond to
lift and drag terms in a blade-element expression for aerodynamic torque. Values for
these constants can be obtained empirically from measurements of the turbine torque
taken with a stationary turbine over a range of wind speeds and loading conditions
(cf. Section 2.3.4). Simplifying the above expression yields the following model:

𝜏𝑎𝑒𝑟𝑜 ≈ 𝐾ℓ𝑈 − 𝐾𝑑𝑅(𝜔 − 𝜔) + 𝜏0. (2.4)

The accuracy of this aerodynamic model depends on whether 𝜏 is sufficiently linear
in 𝑢 and 𝜔 in the neighborhood of the steady operating condition (𝑢 = 𝑢1 and
𝜔 = 𝜔). Since the model is inherently quasi-steady, its accuracy will also depend on
whether any unsteady effects such as dynamic stall on the turbine blades are present.

2.2.2 Generator-torque model
The torque applied by the generator (𝜏𝑔𝑒𝑛) in opposition to the aerodynamic torque
(𝜏𝑎𝑒𝑟𝑜) represents the torque that is converted to usable power at each instant in time.
It thus also represents the mechanically measurable torque on the turbine shaft
(𝜏𝑚𝑒𝑎𝑠). The generator torque is not necessarily equal to the aerodynamic torque
in the case of unsteady rotation, with any difference between the two inducing a
change in the angular velocity of the rotor.

The equations of motion for a permanent-magnet generator are identical in principle
to those for a permanent-magnet motor, which is frequently modeled as a first-order
ordinary differential equation in time (Concordia, 1951):

𝜏𝑔𝑒𝑛 = 𝜏𝑚𝑒𝑎𝑠 = 𝐾2
𝑑𝜔

𝑑𝑡
+ 𝐾1𝜔 + 𝐾0, (2.5)

where 𝐾2 is the moment of inertia of the generator about its rotational axis, 𝐾1 is
the generator constant, and 𝐾0 is an empirical zero-speed offset. Since the generator
torque is proportional to the current through the generator coils, 𝐾1 and 𝐾0 scale
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inversely with the resistive load applied to the generator (Concordia, 1951). Hence,
a higher resistive load applied to the generator corresponds to a lower physical load
on the turbine. This formulation assumes that the generator is directly driven by
the turbine; a gear-ratio scaling could be incorporated to map the rotor speed to the
generator rotation rate for turbines with gearboxes.

Additionally, the generator model in its current form does not include any effects of
control, such as tip-speed ratio control systems that are typically present in utility-
scale wind turbines. For the purposes of this study, the use of a direct-drive generator
with fixed resistive loading and no speed control simplify the modeling of the turbine
dynamics and subsequent model validation against experimental data. However, the
linear form of the model means that linear or linearized tip-speed ratio controllers
can readily be incorporated using classical analytical techniques.

2.2.3 Governing equation and its transfer functions
The dynamics of a turbine under the influence of competing aerodynamic and
generator torques are given by the swing equation (Stevenson and Grainger, 1994),

𝐽
𝑑𝜔

𝑑𝑡
= 𝜏𝑎𝑒𝑟𝑜 − 𝜏𝑔𝑒𝑛, (2.6)

where 𝐽 is the moment of inertia of the turbine, its shaft assembly, and the generator
about the axis of rotation, and is thus in practice much larger than 𝐾2. Deviations
of the instantaneous aerodynamic torque away from equilibrium, if not immediately
matched by the generator torque, will lead to a change in the rotor speed until the
generator torque overcomes inertia and restores the torque balance. This implies that
the torque measured by a torque transducer, and consequently the power measured
from the generator, will lag behind the aerodynamic torque.

Substituting Equations 2.4 and 2.5 into the above relation, we arrive at the equation
of motion

𝐽
𝑑𝜔

𝑑𝑡
= (𝐾ℓ𝑈 − 𝐾𝑑𝑅(𝜔 − 𝜔) + 𝜏0) −

(
𝐾2
𝑑𝜔

𝑑𝑡
+ 𝐾1𝜔 + 𝐾0

)
. (2.7)

In the limit of equilibrium, in which all time-derivatives are zero, the steady aero-
dynamic torque 𝜏0 must equal the generator torque, i.e. 𝜏0 = 𝐾1𝜔 + 𝐾0. We can
therefore simplify the model into a more informative form:
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𝐽
𝑑𝜔

𝑑𝑡
= 𝐾ℓ𝑈 − 𝐾𝑑𝑅(𝜔 − 𝜔) − 𝐾2

𝑑𝜔

𝑑𝑡
− 𝐾1(𝜔 − 𝜔). (2.8)

The resulting model is conceptually similar to that of Fontanella et al. (2020), though
in this work the linearization for the aerodynamic torque is obtained differently and
the generator torque is an output, rather than an input, to the system. An additional
benefit of the model in Equation 2.8 is that it requires no data from unsteady surge
experiments to make time-resolved predictions, since all of its coefficients can be
computed either from measurements in steady flow or from geometric properties
of the turbine and generator. The model has the form of a linear time-invariant
(LTI) system, which allows transfer functions of the aerodynamic and measured
torques to be computed in order to quantify the phase and amplitude behavior of the
system. Taking the Laplace transform of Equation 2.8 with respect to an arbitrary
surge velocity 𝑈 (input) and the resulting rotor speed 𝜔 (output) yields the transfer
function

𝜔(𝑠)
𝑈 (𝑠) =

𝐾ℓ

(𝐽 + 𝐾2)𝑠 + 𝐾1 + 𝐾𝑑𝑅
. (2.9)

This transfer function has the form of a first-order low-pass filter with critical
frequency 𝑓𝑐 =

𝐾1+𝐾𝑑𝑅

𝐽+𝐾2
. Using this transfer function, we can also derive transfer

functions for the aerodynamic and generator torques:

𝜏𝑎𝑒𝑟𝑜 (𝑠)
𝑈 (𝑠) = 𝐾ℓ − 𝐾𝑑𝑅

𝜔(𝑠)
𝑈 (𝑠) = 𝐾ℓ

(𝐽 + 𝐾2)𝑠 + 𝐾1
(𝐽 + 𝐾2)𝑠 + 𝐾1 + 𝐾𝑑𝑅

(2.10)

and

𝜏𝑔𝑒𝑛 (𝑠)
𝑈 (𝑠) = (𝐾2𝑠 + 𝐾1)

𝜔(𝑠)
𝑈 (𝑠) = 𝐾ℓ

𝐾2𝑠 + 𝐾1
(𝐽 + 𝐾2)𝑠 + 𝐾1 + 𝐾𝑑𝑅

, (2.11)

which share the same critical frequency 𝑓𝑐. The frequency response can be computed
from these transfer functions using the imaginary part of the Laplace variable 𝑠, i.e.
Im(𝑠) = 𝑓 . Phase and amplitude predictions from the model can thus be obtained
analytically, and the mean torque is given by the steady-state value 𝜏0. Power
can then be computed as P = 𝜏𝜔. The linear form of the model dictates that,
for periodic surge motions with zero net displacement, the period-averaged mean
torque and power are not functions of the surge motions. According to this model,
then, unsteady surge motions will not affect the period-averaged power generation
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of the turbine. The model thus forgoes the ability to predict time-averaged quantities
in favor of an analytical formulation of the time-resolved turbine dynamics. The
consequences of this tradeoff will be discussed in Section 2.5.2.

The transfer functions suggest that the relevant nondimensional parameters for the
surge dynamics are the nondimensional surge velocity, 𝑢∗ = 𝑓 𝐴/𝑢1, and the nor-
malized surge frequency, 𝑓 ∗ = 𝑓 / 𝑓𝑐. The analysis suggests that the amplitude of the
unsteady torque oscillations scales directly with 𝑢∗, with a frequency dependence
dictated by 𝑓 ∗. Either the reduced frequency 𝑘 = 𝑓 𝐷/𝑢1 or the nondimensional
surge amplitude 𝐴∗ = 𝐴/𝐷 would complete the nondimensional parameterization
by including the length scale of the turbine, but in contrast to suggestions in the
literature (Bayati et al., 2017; Wen et al., 2017), these parameters do not appear to
follow directly from the transfer-function formulation of the model.

2.3 Experimental methods
In this section, the experimental apparatus used to study the torque and power pro-
duction of a wind turbine in periodic surge motions is described. First, the wind
tunnel and turbine apparatus are described. Then, the parameter space explored in
these experiments is presented, and the experimental procedure is outlined. Finally,
methods for empirically determining values for the scaling coefficients of the analyt-
ical model derived in the previous section and an overview of sources of uncertainty
are provided.

2.3.1 Experimental apparatus
Experiments were conducted in a large open-circuit fan-array wind tunnel at the
Caltech Center for Autonomous Systems and Technologies (CAST). The fan array
was composed of 2,592 computer fans arranged in two counter-rotating layers within
a 2.88 × 2.88 m frame, mounted 0.61 m above the floor of the facility (cf. Figure
2.1). The open-air test section downstream of the fan array vented directly to the
atmosphere, while the other three sides and ceiling of the arena were enclosed
with walls or awnings to mitigate the effects of atmospheric disturbances. The
experiments in this study were carried out at a free-stream velocity of 𝑢1 = 8.06±0.16
ms−1, corresponding to a diameter-based Reynolds number of approximately 𝑅𝑒𝐷 =

6.13 × 105. The relevance of this study to Reynolds numbers typical of utility-
scale wind turbines is discussed in Section 2.5.3. The turbulence intensity in the
tunnel, represented by the standard deviation of the velocity fluctuations normalized
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by the average streamwise velocity, was measured to be 2.20 ± 0.17%. These
measurements were obtained with an ultrasonic anemometer (Campbell Scientific
CSAT3B) placed at the hub height and streamwise zero position of the wind turbine.
Because the facility was exposed to the atmosphere and experiments were conducted
over a range of atmospheric conditions and times of day, temperature and relative-
humidity readings were recorded with measurement precisions of ±1◦C and ±5%
from a portable weather station (Taylor Precision Products model 1731) so that the
air density could be calculated accordingly.

The turbine apparatus was constructed on an aluminum frame (80/20 1515 T-slotted
profile) that was bolted to the floor and secured with sandbags. The frame was 2.00
m long, 0.69 m wide, and 0.87 m tall. Two 2-m long rails with two ball-bearing
carriages each (NSK NH252000AN2PCZ) were mounted on top of the frame,
parallel to the streamwise direction and spaced 0.65 m apart in the cross-stream
direction. A traverse was mounted on the ball-bearing carriages, which supported
a 0.99-m tall, 0.038-m wide turbine tower. The wind-turbine shaft assembly was
placed on top of this tower at a hub height of 1.97 m above the floor. The origin of
the surge motions of the turbine was located 3.09 m downstream of the fan array,
and the rails afforded a maximum surge stroke of 1.52 m upstream of the origin. A
schematic of the apparatus and its position relative to the wind tunnel is given in
Figure 2.1.

A three-bladed horizontal-axis wind turbine (Primus Wind Power AIR Silent X)
with a rotor diameter of 𝐷 = 1.17 m and hub diameter of 0.127 m was attached
to a 25.4-mm diameter steel shaft supported by two axially mounted shaft bearings
(Sealmaster NP-16T). The blade chord ranged from 100 mm at the root to 32 mm
at the tip. The blades were constructed from a laminated carbon-fiber composite.
A rotary encoder (US Digital EM2-2-4096-I) with a resolution of 4096 counts per
revolution was attached between the shaft bearings. A rotary torque transducer
(FUTEK TRS300, 20 Nm torque rating) was connected to the turbine shaft on one
end and to the turbine generator (Primus Wind Power AIR 30, 48V) by means
of a floating 19.0-mm diameter steel shaft on the other. The shaft assembly was
surrounded by a 4.76-mm thick acrylic nacelle (0.610 × 0.152 × 0.152 m) with a
slanted rear section intended to reduce bluff-body separation effects in the turbine
wake. The estimated blockage of the swept area of the turbine and all support
structures, relative to the fan-array surface area, was 14%.

The load on the turbine was controlled electrically with resistors. The three-phase
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Figure 2.1: Schematic of the experimental apparatus, including fan-array wind
tunnel (left) and surging turbine (center-right). The turbine is illustrated at its
maximum upstream position relative to the origin. The estimated blockage of the
swept area of the turbine and all support structures, relative to the fan-array surface
area, is 14%.

alternating current produced by the generator was converted to DC by a bridge
rectifier (Comchip Technology SC50VB80-G) and passed to a bank of resistors.
Different combinations of fixed 10-Ohm resistors (TE Connectivity TE1000B10RJ)
in series or parallel and an 8-Ohm rheostat (Ohmite RRS8R0E) were used to achieve
a range of loading conditions that spanned the operational envelope of the turbine.
An emergency short-circuit switch built from a solid-state relay (Crydom D1D12)
and a 12-A fuse (Schurter 4435.0368) were included in the circuit for safety purposes.

The turbine traverse was driven in the streamwise direction by a piston-type magnetic
linear actuator (LinMot PS10-70x320U-BL-QJ). Its sliding cylinder was attached
to the traverse at rail height and its stator was mounted to the downstream end of
the frame. The motions of the traverse were controlled by a servo driver (LinMot
E1450-LU-QN-0S) with an external position sensor (LinMot MS01-1/D) mounted
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along one of the two rails for increased repeatability. Power for the system was
provided by a step-up transformer (Maddox MIT-DRY-188). Motion profiles were
loaded onto the driver, and a TTL pulse was used to start each successive motion
period. In these experiments, the maximum surge velocity was 𝑈 = 2.40 ms−1 and
the maximum surge acceleration was 𝑑𝑈

𝑑𝑡
= 23.7 ms−2, while the average absolute

position error was 0.68 mm and the average absolute velocity error was 8.33× 10−3

ms−1.

Data were collected from the rotary encoder and torque transducer using a data
acquisition card (National Instruments USB-6221), as well as an amplifier (FUTEK
IAA100) for the raw torque voltage signals. Data collection occurred at a sam-
pling rate of 1 kHz. A LabVIEW control program coordinated data collection and
triggering for the linear actuator. It was also used to adjust the resistance of the rheo-
stat remotely via a stepper motor (Sparkfun ROB-13656). After each experiment,
the program converted the raw voltage signals from the amplifier to dimensional
values by interpolating between calibrated points, and it performed a fourth-order
central-difference scheme on the angular measurements from the encoder to obtain
a rotation-rate signal. Furthermore, the measured torque signals were filtered using
a sixth-order Butterworth filter with a cutoff frequency of 100 Hz to reduce the
influence of electrical noise.

2.3.2 Experimental parameters
The apparatus described in the previous section was used to investigate the unsteady
torque and power production of a wind turbine actuated in surge motions. Surge
amplitudes between 𝐴 = 0.150 and 0.600 m (𝐴∗ = 𝐴/𝐷 = 0.128 and 0.514) were
tested in combination with motion periods between 𝑇 = 0.5 and 12 s. These com-
binations resulted in reduced frequencies 𝑘 = 𝑓 𝐷/𝑢1 between 0.079 and 1.821 and
nondimensional surge velocities 𝑢∗ = 𝑓 𝐴/𝑢1 between 0.039 and 0.234. The specific
combinations of 𝐴 and 𝑇 explored in this study, and their respective values of 𝑢∗,
are given in Table 2.1. Sinusoidal and trapezoidal surge-velocity waveforms served
as motion profiles for these experiments. The trapezoidal waveforms consisted of
alternating segments of constant acceleration and constant velocity. The relative
duration of the constant-acceleration phases was parameterized by 𝜉, defined as the
total time of nonzero acceleration in a single cycle divided by the cycle period.
Hence, 𝜉 = 0 corresponded to a square wave, while 𝜉 = 1 corresponded to a triangle
wave. The types of waveforms used in these experiments are shown in Figure 2.2.
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𝑢∗ 𝐴∗ = 0.128 𝐴∗ = 0.257 𝐴∗ = 0.385 𝐴∗ = 0.514

𝑇 = 12 s − − − 0.039

𝑇 = 6 s − − − 0.078

𝑇 = 3 s − − − 0.156

𝑇 = 2 s − 0.117 0.175 0.234

𝑇 = 1 s − 0.234 − −

𝑇 = 0.5 s 0.234 − − −

Table 2.1: Combinations of nondimensional amplitude 𝐴∗ = 𝐴/𝐷 and motion
period 𝑇 tested in this study, tabulated with their respective nondimensional surge
velocities 𝑢∗.

Figure 2.2: Surge-velocity waveforms used in these experiments. Sinusoidal profiles
and four types of trapezoidal profiles (parameterized by 𝜉) were tested.

The wind turbine was tested with resistive loads of 7.39, 7.48, 9.80, 10, 20, and
40 Ohms. The first three loads were attained using the rheostat and fixed resistors,
and the second three were achieved using fixed 10-Ohm resistors in series. These
corresponded to steady tip-speed ratios 𝜆0 = 𝑅𝜔0/𝑢1 between 5.21 ± 0.22 and
8.77 ± 0.35, and coefficients of power 𝐶𝑝,0 = P0/ 𝜋2 𝜌𝑅

2𝑢3
1 between 0.176 ± 0.010

and 0.288 ± 0.013. A summary of the loading conditions and their corresponding
steady nondimensional parameters is given in Table 2.2. Additionally, a power
curve consisting of a collection of measurements at different wind speeds and
loading conditions is shown in Figure 2.3. Each of these steady measurements was
conducted 3.09 m downstream of the fan array and over a duration of at least two
minutes.



Chapter 2 26

Resistive Load 7.39 Ω 7.48 Ω 9.80 Ω 10 Ω 20 Ω 40 Ω

Case Identifier

𝜆0, sinusoidal
cases

5.21 ±
0.22

5.34 ±
0.22

6.11 ±
0.25

6.21 ±
0.25

7.72 ±
0.31

8.64 ±
0.35

𝜆0, trapezoidal
cases − − 6.11 ±

0.25
6.27 ±
0.26

7.67 ±
0.31

8.77 ±
0.35

𝐶𝑝,0, sinusoidal
cases

0.261±
0.013

0.270±
0.012

0.264±
0.011

0.288±
0.013

0.250 ±
0.012

0.181 ±
0.009

𝐶𝑝,0, trapezoidal
cases − − 0.264±

0.011
0.286±
0.014

0.249 ±
0.012

0.176 ±
0.010

𝐾ℓ
[
kgm

s
]
,

sinusoidal cases 0.458 0.456 0.445 0.444 0.422 0.409

𝐾ℓ
[
kgm

s
]
,

trapezoidal cases − − 0.445 0.443 0.423 0.407

𝐾𝑑
[
kgm

s
]
,

sinusoidal cases 0.0262 0.0264 0.0276 0.0278 0.0302 0.0317

𝐾𝑑
[
kgm

s
]
,

trapezoidal cases − − 0.0276 0.0279 0.0301 0.0319

𝐾1

[
kgm2

s

]
− 0.0141 0.0111 0.0112 0.00649 0.00376

𝐾0 [Nm] − 0.153 0.125 0.119 0.0850 0.0676

Table 2.2: Performance characteristics and model constants for the six loading
conditions investigated in this study. The values of 𝐾1 and 𝐾0 were not measured
directly for the 7.39 Ω case; the values from the 7.48 Ω case were used instead.

Figure 2.3: Steady power curve for the turbine used in this study, measured over a
range of resistive loads (3.5 to 100 Ω) and wind speeds (6.05 to 12.09 ms−1).
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2.3.3 Experimental procedure
Experiments were conducted in the CAST fan-array wind tunnel between May and
July 2021. A zero-offset reading was taken for the torque sensor at the start of every
day of measurements. To bring the turbine from rest to its prescribed operating
condition, a higher wind speed was initially applied for at least two minutes to
mitigate the effects of startup hysteresis in the shaft assembly. Each unsteady
experiment was paired with a corresponding steady reference case, conducted within
one hour of the unsteady case to minimize the influence of changing atmospheric
conditions. The steady measurements were taken 3.09 m downstream of the fan
array, defined as 𝑥 = 0 (where 𝑥 is positive in the upstream direction). In the unsteady
experiments, the turbine moved between 𝑥 = 0 and 𝑥 = 2𝐴 at a prescribed frequency
𝑓 = 2𝜋/𝑇 . Each unsteady test began with five to ten startup periods to allow
the system to reach cycle-to-cycle equilibrium. After these initial cycles, torque
and rotation-rate measurements were recorded over 100 successive motion periods.
For the shortest motion periods (𝑇 = 0.5 s), 200 motion periods were measured.
The torque data were filtered and numerical derivatives of the angular-encoder
readings were obtained, and these data were used to compute temporal means and
time-resolved, phase-averaged profiles. The amplitudes and phases of these phase-
averaged profiles were calculated by means of a fast Fourier transform. Finally, the
aerodynamic torque was inferred via Equation 2.6, where 𝜏𝑔𝑒𝑛 was supplied by the
phase-averaged measured torque and 𝑑𝜔

𝑑𝑡
was computed using a second-order central

differencing scheme and was filtered using a sixth-order Butterworth filter with a
cutoff frequency of 100 Hz to attenuate numerical-differentiation errors.

2.3.4 Computing model constants
To compare the experimental results with the model derived in Section 2.2, empirical
methods were developed to compute the coefficients of the model. Both the generator
constants 𝐾1 and 𝐾0 and the aerodynamic model coefficients 𝐾ℓ and 𝐾𝑑 were
computed from steady torque measurements, without requiring any information
from unsteady tests.

The generator constants 𝐾1 and 𝐾0 were obtained by applying a constant resistive
load to the turbine and measuring torque over a range of wind speeds. From
these data, linear fits for the generator torque as a function of rotor speed could be
extracted for each loading condition. The fit coefficients corresponded directly with
the generator constants 𝐾1 and 𝐾0 from Equation 2.5. The calculated values are
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Figure 2.4: Measured torque from steady experiments with different resistive loads,
plotted against rotor speed. The two coefficients from the linear fits (shown as
dashed lines, 𝑅2 > 0.999) correspond to the generator constants 𝐾1 and 𝐾0.

reported in Table 2.2 above, and, as expected for this type of generator, they scaled
inversely with resistance. The accuracy of the generator-torque model depends
primarily on the linearity of the generator within the typical operating conditions
of the turbine. As evidenced by the data and linear fits shown in Figure 2.4, the
generator used in this study fulfilled this condition well (𝑅2 > 0.999 in all cases).

The same steady torque data were used to compute the aerodynamic model co-
efficients 𝐾ℓ and 𝐾𝑑 . The steady torque data was plotted as a three-dimensional
set of points with respect to the wind speed and rotor speed, and a second-order
polynomial surface fit was applied to the points. The fit equation gave an analytical
expression for the partial derivatives with respect to 𝑢1 and 𝜔0 at any point, from
which the coefficients 𝐾ℓ and 𝐾𝑑 were calculated by means of the definitions given
in Equations 2.2 and 2.3. The accuracy of the method as a quasi-steady aerodynamic
representation is limited by the topology of the torque surface and the fidelity of
the applied surface fit. For the turbine used in this study, the second-order polyno-
mial surface (shown in Figure 2.5) was only weakly quadratic and fit the data with
𝑅2 > 0.999, so the model was expected to perform well over the range of conditions
tested in these experiments.

The moment of inertia of the generator was estimated from manufacturer specifica-
tions of the mass and radius of its rotor to be 𝐾2 = 6.96× 10−4 kg m2. The moment
of inertia of the turbine and shaft assembly (including the generator), 𝐽, could be
estimated in this manner as well. However, given the number of parts and nontrivial
geometries in the assembly, a more empirical approach was taken. A 3D-printed
spool with a diameter of 6 cm was attached to the turbine shaft, and the generator
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Figure 2.5: Measured torque from steady experiments with different resistive loads,
plotted against both wind speed and rotor speed. A second-order polynomial surface
(𝑅2 > 0.999) was fitted to the points to facilitate the computation of the linearized
sensitivities 𝐾ℓ and 𝐾𝑑 .

circuit was disconnected. A string was wrapped around the spool and connected to
a weight, suspended from the turbine tower by means of a pulley. The weight was
dropped ten times, and using the average measured torque and a fit based on the
measured rotation-rate signal and the equation of motion of the system, an average
moment of inertia was found to be 𝐽 = 0.0266 ± 0.0008 kgm2. This value aligned
with the results of geometric estimates.

Thus, the only information required to obtain first-order predictions of the dynamics
of a surging turbine were two moments of inertia and a series of steady torque
measurements over a range of rotor speeds and wind speeds. Using the constants
obtained from these prerequisites, the amplitude and phase of the aerodynamic and
measured torques could be calculated analytically using the transfer functions given
in Equations 2.10 and 2.11. To predict the time-resolved dynamics of the turbine for
general surge-velocity waveforms, a numerical integration of the model as an initial-
value problem was required. This was carried out using a fourth-order Runge-Kutta
integration scheme with a time step of 10−3 s over ten motion periods, with the rotor
speed initialized at 𝜔

��
𝑡=0 = 𝜔0. The final period served as a representation of the

steady-state model prediction.

2.3.5 Sources of uncertainty
Before the results of the experiments can be discussed in detail, the nature of the
experimental facility requires a consideration of the sources of uncertainty in the
measurements. These sources can be divided into two types: those that occurred
over short time scales relative to a single test case, and those that occurred over
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longer time scales and were thus not captured in the error estimates computed from
each data set.

Sources of uncertainty that occurred over short time scales contributed to the error
bounds that will be shown in the figures in the following section. The standard
deviation of the wind speed in the tunnel, measured over five minutes, was 2.20 ±
0.17% of the average wind speed. This variability includes fluctuations due to
turbulence and short-period fluctuations in the bulk flow velocity due to atmospheric
disturbances. Though external winds were generally stronger during the afternoon,
no corresponding increase in torque or rotation-rate uncertainty was evident for
measurements conducted under these conditions. Therefore, despite the exposure
of the facility to local atmospheric conditions, gusts and pressure fluctuations had a
small influence on the results compared to other factors. Electrical noise from the
torque sensor also contributed to measurement uncertainties, though these effects
were reduced by the 100-Hz lowpass filter applied to the raw torque signal. Lastly,
a slight misalignment in the turbine shaft was responsible for small variations
in the measured torque within every full rotation of the turbine. These intracycle
variations accounted for much of the uncertainty on the mean-torque measurements,
and were occasionally visible in the phase-averaged torque and rotation-rate profiles.
However, since their time scales were dictated by the rotor speed and were thus one
to two orders of magnitude faster than the time scales of the surge oscillations, they
did not directly affect the surge dynamics that were the focus of this study.

The open-air nature of the facility, however, meant that changing conditions through-
out the day and across multiple days introduced additional sources of uncertainty
that were not explicitly captured in the error estimates computed directly from each
data set. Measurements of the wind speed at a single location over temperatures
between 24.7 and 31.9◦C showed a mild dependence of wind speed on temperature
(𝑅2 = 0.535), resulting in a 3.0% overall difference in wind speed. Given that
temperatures in the facility ranged from 16.8 to 32.6◦C across all experiments, a
linear model would predict an uncertainty in the wind speed of ±3.2%. However,
since no wind-speed measurements were taken at temperatures below 24◦C, the
fidelity of a linear model across the entire range of temperatures could not be di-
rectly confirmed. Because of these uncertainties, no temperature corrections were
applied a posteriori to the wind-speed data. This source of uncertainty complicated
comparisons of mean torque and power between test cases, though this was to some
extent ameliorated by normalizing the mean data from unsteady tests by a temporally
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proximal steady case. By contrast, the amplitude and phase depended primarily on
the surge kinematics, which were comparably repeatable on account of the precision
of the linear actuator, and were thus less affected by relatively small differences in
wind speed.

In addition, the zero offset of the torque sensor exhibited a hysteretic dependence
on temperature. To test this, the torque sensor was left in the facility for a period
of 28 hours, and a voltage measurement was recorded every ten minutes. After
the measurements were completed, during which the temperature in the facility
ranged from 19.5 to 33.3◦C, the difference between the initial and final voltage
measurements corresponded to a torque difference of 0.014 Nm. Compared to the
average torque measurements reported in this study, this represented a total shift
of 1.2 to 2.9%. Since the torque sensor was zeroed at the start of every day of
experiments, this served as an upper bound on the uncertainty introduced by the
zero-offset drift. This additional uncertainty again primarily obfuscated the mean
measured torque, without affecting the amplitude and phase.

Finally, the intracycle torque variations described previously increased in magnitude
in the tests conducted during June and July 2021, increasing the reported experi-
mental error of the longest-period tests (𝑇 = 6 and 12 s). Higher temperatures and
direct sunlight on the apparatus during these experiments may have caused the shaft
assembly materials to expand, thereby exacerbating the rotational asymmetries in
shaft friction responsible for the torque variations. This temperature dependence
of friction could have influenced both the mean torque and power as well as their
amplitude.

To demonstrate the cumulative effect of these sources of uncertainty, a series of
13 test cases, composed of six sinusoidal motion profiles at two different loading
conditions, and a single sinusoidal motion profile at a third loading condition,
was tested twice at different times of day. All of these data were included in the
results presented in the following section for visual comparison. These thus serve
as qualitative indicators of the influence of environmental conditions and system
hysteresis on the results and analysis. As suggested previously, the effects of these
factors will be most evident in the mean torque and power measurements, and to a
lesser extent in the measured torque amplitudes.
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2.4 Experimental results
Experiments were conducted with 32 different sinusoidal waveforms over 6 loading
conditions and 42 different trapezoidal waveforms over 4 loading conditions and 4
values of the waveform parameter 𝜉. As mentioned previously, 13 of the sinusoidal
cases were repeated at different times of day to convey the additional uncertainty
due to changing conditions in the facility: 6 at 𝜆0 = 6.11, 6 at 𝜆0 = 8.64, and 1 at
𝜆0 = 7.72. The data from these experiments are presented in this section, in terms
of torque amplitude, torque phase, and mean power. A selection of phase-averaged
power measurements and their associated model predictions are provided as Figures
A.1 through A.5 in Appendix A.1.

2.4.1 Torque amplitude response
Aerodynamic-torque amplitudes, referenced to their respective surge-velocity am-
plitudes𝑈 = 𝑓 𝐴, are shown for sinusoidal and trapezoidal waveforms in Figure 2.6,
while similar plots for the generator (measured) torque are given in Figure 2.7. The
transfer-function magnitudes were normalized by the steady torque for each case
𝜏0 and the wind speed 𝑢1. The aerodynamic torque was predicted by the model to
increase in amplitude and asymptotically approach a maximum value above 𝑓 ∗ ≈ 1.
The generator torque predictions showed behavior more characteristic of a low-pass
filter, where the amplitude decreased with increased frequency. The data for both the
aerodynamic torque and generator torque showed good agreement with the model
predictions for low values of 𝑓 ∗, except for the two lowest tip-speed ratios in the
sinusoidal-waveform cases. Excluding these tip-speed ratios and the highest three
values of 𝑓 ∗, the average relative error between the model predictions and measured
data was 2.79% and 2.13% for the aerodynamic and generator torque amplitudes,
respectively. At the two lowest tip-speed ratios, the turbine was close to stall, a flow
regime not accounted for in the model. Decreasing the resistive load by 0.1 Ω in
the steady case caused the turbine to stall completely, slowing to a rotor speed of
less than 10 rads−1. Unsteady tests undertaken at these two loading conditions with
higher amplitudes and frequencies than those shown also caused the turbine to stall
completely. Therefore, it was likely that the downstream surge motions caused the
turbine to experience stall due to a reduction in the incident wind velocity relative to
the turbine, thus decreasing the amplitude of the torque oscillations. A less severe
decrease in amplitude could be seen at steady tip-speed ratios close to 𝜆0 ≈ 6.2,
which represented the optimal operating condition for the turbine (cf. Figure 2.3).
At normalized frequencies approaching 𝑓 ∗ = 1, the amplitude began to drop below
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(a) (b)

Figure 2.6: Aerodynamic torque amplitude data (markers), compared with model
predictions (dashed lines), for (a) sinusoidal and (b) trapezoidal surge-velocity
waveforms. For these and all following figures in this section, circular mark-
ers (◦) represent sinusoidal waveform cases, while non-circular markers represent
trapezoidal-waveform cases with 𝜉 = 0.01 (×), 0.25 (□), 0.5 (⋄), and 1 (⊲).

(a) (b)

Figure 2.7: Generator torque amplitude data (markers), compared with model pre-
dictions (dashed lines), for (a) sinusoidal and (b) trapezoidal surge-velocity wave-
forms.

the model prediction. Given the evidence of stall at lower tip-speed ratios, it is
likely that this deviation was an effect of stall onset along a portion of the turbine
blades as well. This conjecture is also in agreement with the simulations of Tran and
Kim (2016), who suggested that large surge motions at low to intermediate tip-speed
ratios can cause stall to occur at the roots of the turbine blades and propagate radially
outwards.

In contrast to the decreases in amplitude observed at low tip-speed ratios, the
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amplitudes at higher normalized frequencies ( 𝑓 ∗ > 1) and tip-speed ratios above
the optimal value increased above the model predictions. Increases in amplitude
were also correlated with increasing 𝜉 (i.e. increasing proportions of streamwise
acceleration within each motion cycle) in the trapezoidal-waveform experiments.
The higher tip-speed ratios implied that the local angle of attack along the turbine
blades was lower in these cases, reducing the likelihood that these increases in
amplitude were due to stall phenomena. Since the model appeared to accurately
capture the torque amplitudes at lower frequencies, it could be hypothesized that
these trends were evidence of additional dynamics that became more salient at
higher levels of unsteadiness. The specific nature of these dynamics cannot be
identified definitively in the absence of flow measurements or a higher-order model
for validation, but the present measurements do permit speculation as to the source of
the observed discrepancies with the model. These considerations will be discussed
in Section 2.5.2.

2.4.2 Torque phase response
The aerodynamic and generator phase-response data for the same experimental cases
shown in Figures 2.6 and 2.7 are given in Figures 2.8 and 2.9 and are compared with
model predictions. The generator torque phase lagged behind the forcing signal𝑈 (𝑡)
across all tested frequencies, while the aerodynamic torque phase led the forcing
signal for all cases except those at the lowest two tip-speed ratios. Excluding the
lowest two tip-speed ratios, the average difference between the model predictions and
measured data was 3.59◦ and 3.21◦ for the aerodynamic and generator torque phase,
respectively. The phase in the anomalous cases showed an approximately 20◦ lag
relative to the predictions of the model, suggesting again that the turbine blades were
experiencing the effects of stall under these conditions. The tests conducted at higher
tip-speed ratios followed the qualitative trends predicted by the model, though the
model slightly overpredicted the aerodynamic and generator torque phase by around
6◦ at low normalized frequencies. Unlike the torque amplitude, the torque phase
was relatively insensitive to changes in the trapezoidal-waveform parameter 𝜉.

2.4.3 Mean power
While the amplitude and phase responses of the aerodynamic and generator torque
were nontrivial, the first-order linear model predicted zero change in the mean
torque and power for all surge motions. The period-averaged measured torque and
power, however, diverged from these predictions as the surge motions became more
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(a) (b)

Figure 2.8: Aerodynamic torque phase data (markers), compared with model predic-
tions (dashed lines), for (a) sinusoidal and (b) trapezoidal surge-velocity waveforms.

(a) (b)

Figure 2.9: Generator torque phase data (markers), compared with model predictions
(dashed lines), for (a) sinusoidal and (b) trapezoidal surge-velocity waveforms.

pronounced. When plotted against the nondimensional surge velocity 𝑢∗ and a
nondimensional surge acceleration defined as 𝑎∗ = 𝑓 2𝐴/𝑢

2
1
𝐷

(cf. Figure 2.10), the
normalized period-averaged measured power P/P0 diverged from unity at higher
levels of unsteadiness. For tip-speed ratios at or below the optimal operating point,
the average power decreased with increasing surge velocity and acceleration. This
was especially the case for the lowest two tip-speed ratios tested; at higher surge ve-
locities than those shown, the turbine stalled completely and the normalized average
power dropped nearly to zero. It is thus reasonable to infer that the occurrence of
stall along portions of the turbine blades was responsible for the decrease in power
observed at lower tip-speed ratios and higher surge velocities.
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(a) (b)

Figure 2.10: Period-averaged measured power P, normalized by the reference
steady power P0, plotted for all cases against (a) the nondimensional surge velocity
𝑢∗ and (b) the nondimensional surge acceleration 𝑎∗. Circular markers (◦) represent
sinusoidal waveform cases; non-circular markers represent trapezoidal-waveform
cases with 𝜉 = 0.01 (×), 0.25 (□), 0.5 (⋄), and 1 (⊲). For the sake of clarity, error
bars are only plotted for every sixth point.

For higher tip-speed ratios, the average power increased with increasing surge ve-
locity and acceleration, with a maximum measured value of P/P0 = 1.064± 0.045.
The increases appeared well-correlated with these surge parameters, whereas the
specific type of waveform did not appear to significantly affect the results. Fur-
thermore, the apparent consistency in trend over a range of testing conditions and
times of day suggests that these results cannot simply be attributed to long-period
variations in the conditions in the facility. These trends were similar to those shown
by Farrugia et al. (2016) (cf. Fig. 8 in their paper) and Wen et al. (2017) (cf. Fig.
15b in their paper), though those studies focused on the reduced frequency as the
unsteady parameter of interest. These large deviations from the predictions of the
first-order linear model will be discussed in the following section.

2.5 Discussion
2.5.1 Performance of the model
As shown in Sections 2.4.1 and 2.4.2, as well as in the results presented in Ap-
pendix A.1, the first-order linear model was able to capture trends in amplitude
and phase for torque and power, using only a priori measurements from the turbine
under steady-flow conditions. The time-resolved model predictions for power were
qualitatively similar to the measured phase-averaged data shown in Figures A.1



Chapter 2 37

through A.5 for all surge-velocity waveform types, both sinusoidal and trapezoidal.
The model was also able to account for the effects of changes in the aerodynamic
and generator parameters of the system, particularly through the characteristic fre-
quency 𝑓𝑐. These results demonstrated that while the aerodynamic torque tends to
increase in amplitude with frequency up to 𝑓 ∗ ≈ 1 and leads the input surge-velocity
waveform, the generator acts as a low-pass filter on the measured torque and power,
leading to decreases in amplitude and phase lags.

The nontrivial phase prediction is particularly noteworthy, since previous studies
showed little consensus in the phases of their torque and power data. The existing
quasi-steady models in the literature (e.g. Mancini et al., 2020; Johlas et al., 2021)
predicted zero phase difference with the input surge-velocity waveform. The present
results have demonstrated that the aerodynamic and generator characteristics of the
system produce phase differences of up to 60◦, with greater differences observed in
cases at low tip-speed ratios where stall is purported to have an effect. The success of
the first-order linear model in recovering these trends over a wide range of loading
conditions, surge frequencies, and surge amplitudes suggests that the model can
help explain the variation in phase trends reported in the literature, and serve as an
analytical foundation for future studies involving the time-resolved dynamics and
control of surging turbines.

2.5.2 Discrepancies between measurements and model predic-
tions

Though the model showed good agreement with the measured data in terms of
amplitude and phase, some discrepancies were still evident. The model tended to
overpredict the torque amplitude at low tip-speed ratios and high surge frequencies
and underpredict the torque amplitude at high tip-speed ratios and high surge fre-
quencies. The model also did not correctly predict the trends in period-averaged
power at high surge velocities. These deviations and their implications merit further
discussion.

The observed decreases in torque amplitude and phase, as well as period-averaged
power, were attributed to the onset of stall on the turbine blades. The turbine was
close to static stall at the two lowest tip-speed ratios tested, as any slight decrease
in the resistive load or inflow velocity would cause its rotor speed to fall to nearly
zero. This observed behavior is in accordance with the assumption that the turbine
blades were designed to maximize their lift-to-drag ratio near the optimal operating
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condition of 𝜆0 ≈ 6.2, as lower tip-speed ratios would imply higher induced angles
of attack that would bring the blade sections closer to the static stall angle. If this
was the case, then at tip-speed ratios near or below the optimal operating condition
of the turbine, increased induced angles of attack on the blades through the addition
of unsteady surge motions could be expected to increase the local angle of attack
above the static stall angle. This explanation aligns well with the observed decreases
in the amplitude, phase and time-averaged responses of the system with increasing
normalized frequency and decreasing tip-speed ratio. It would be useful to verify
this conjecture with flow measurements or numerical simulations in the future.

The discrepancies in which the model underpredicts the measured data, by con-
trast, have physical sources that are more difficult to identify given the present
data. For the two highest tip-speed ratios tested, the torque amplitude data ex-
ceeded the model predictions at higher normalized frequencies. Furthermore, in the
trapezoidal-waveform cases shown in Figure 2.6b, the torque amplitudes for cases
with identical surge frequencies and amplitudes consistently increased with increas-
ing 𝜉 (i.e. an increasing proportion of surge acceleration within each motion cycle).
These increases in amplitude run counter to the predictions of classical unsteady-
aerodynamic theory for an isolated, two-dimensional airfoil. The Sears function,
an analytical transfer function for the unsteady lift response of a two-dimensional
airfoil in a transverse gust, predicts a decrease in the lift amplitude relative to the
quasi-steady case for a turbine blade section undergoing surge motions (Sears, 1941).
A reduction in torque amplitude with increasing reduced frequency would thus be
expected if the Sears function is a sufficient model for the unsteady aerodynamics
of a surging turbine. Since the opposite trend is observed in the data, additional
dynamics must be involved to account for the divergence from the model predictions,
such as spanwise flow along the blades, blade-wake interactions, or other unsteady
effects.

The divergence in the period-averaged power data from the model further under-
scores the need to appeal to additional dynamics. The linear nature of the model
dictated that the period-averaged power for a periodically surging turbine would
never differ from the steady reference power, irrespective of surge kinematics. Thus,
the increases in the period-averaged power over the steady reference case observed
at higher levels of unsteadiness must have been the result of effects that were not
accounted for in the linear model.

Either the assumption of linear aerodynamics or the assumption of quasi-steady
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aerodynamics could be called into question to explain the observed enhancements
in torque amplitude and period-averaged power. For instance, the quasi-steady
model of Johlas et al. (2021), which is derived from the scaling of power with the
cube of the incident wind velocity and is thus nonlinear, predicts that the period-
averaged power should scale with (𝑢∗)2. This trend qualitatively agrees with the
average-power data shown in Figure 2.10a, though their model does not capture the
time-resolved turbine dynamics. This observation suggests that an incorporation
of the nonlinear dependence of power on 𝑢3 into the first-order linear model could
better account for the improvements in period-averaged power with increasing 𝑢∗.

Alternatively, the enhancements in torque amplitude and average power in the un-
steady cases at high tip-speed ratios could be the result of unsteady fluid mechanics.
As a proxy for flow unsteadiness, we briefly consider the surge acceleration. Re-
turning to the apparently systematic increases in torque amplitude with increasing
𝜉, we recall that higher values of the parameter 𝜉 corresponded to waveforms in
which segments of constant acceleration occupied a larger fraction of each period
(with 𝜉 = 1 representing one half-cycle of constant acceleration, followed by one
half-cycle of constant deceleration). Therefore, the increase in torque amplitude
with 𝜉 could be interpreted as an effect of surge acceleration. To extend this point
further, the relative error between the measured and modelled torque amplitude was
plotted with respect to the nondimensional surge velocity 𝑢∗ and surge acceleration
𝑎∗ in Figure 2.11. While the data in Figure 2.11a became multi-valued at the highest
value of 𝑢∗, more uniform trends were evident when the data were plotted against 𝑎∗

in Figure 2.11b, suggesting that the surge acceleration was a more robust indicator
of the difference between measured and predicted torque amplitudes. Finally, the
apparent lack of scatter in the period-averaged power data when plotted against 𝑎∗

might similarly suggest that the surge acceleration could play a systematic role in
producing the increases in average power, though the strength of this argument is
limited by the fact that the definition of 𝑎∗ involves the same kinematic parameters
as that of 𝑢∗. The role of surge acceleration cannot necessarily be accounted for in a
linear sense, since adding a linear acceleration-dependent term to the existing model
would introduce a 90◦ phase lead that would disrupt the accuracy of the model with
respect to phase (cf. Figures 2.8 and 2.9). Still, these observations do suggest that
the discrepancies with respect to the first-order linear model are systematic, and that
the physics behind these systematic deviations may include unsteady effects.

Flow-field measurements at both the blade and rotor scale would greatly facilitate
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(a) (b)

Figure 2.11: Relative error between measured and modelled torque amplitudes,
plotted for all cases against (a) the nondimensional surge velocity 𝑢∗ and (b) the
nondimensional surge acceleration 𝑎∗. Circular markers (◦) represent sinusoidal
waveform cases; non-circular markers represent trapezoidal-waveform cases with
𝜉 = 0.01 (×), 0.25 (□), 0.5 (⋄), and 1 (⊲). For the sake of clarity, error bars are only
plotted for every sixth point.

the identification of unsteady contributions to the turbine dynamics. El Makdah et
al. (2019) provided some evidence of unsteady effects in their investigations of the
wake structure of an accelerating low-inertia rotor, which were conducted in a water
channel using planar particle-image velocimetry. A similar study at higher Reynolds
numbers and involving periodic rather than unidirectional surge motions, and with
the first-order linear model derived in this study as a baseline for torque and power
comparisons, would be informative for establishing the relative influence of nonlin-
ear and unsteady effects. Without such quantitative flow measurements, however,
it is difficult to definitively conclude at this stage that either quasi-steady nonlinear
effects or purely unsteady aerodynamic effects are responsible for the observed en-
hancements in torque amplitude and period-averaged power. The main conclusion
to be drawn from these speculative considerations is that enhancements in torque
and power due to unsteady streamwise motions are possible, and that these scale
systematically with the surge kinematics. If unsteady fluid mechanics do play a role
in these enhancements, as Dabiri (2020) has suggested analytically, then additional
experimental and modelling studies could uncover novel solutions that leverage
these unsteady effects to produce higher period-averaged turbine efficiencies.
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2.5.3 Applications to full-scale wind turbines
Though these experiments were conducted at diameter-based Reynolds numbers
that were one to two orders of magnitude smaller than those encountered in modern
full-scale wind turbines, the dual analytical-empirical nature of the first-order linear
model should in principle allow for a seamless extension to operational systems in
field conditions. The topology of the torque space spanned by 𝑢1 and 𝜔 will be
different for full-scale systems, given the differences in full-scale turbine design and
aerodynamics. A lack of Reynolds-number invariance in these results may also play
a role in the precise topology of the torque space, since the chord-based Reynolds
numbers encountered in these experiments (5.6 × 104 ≲ 𝑅𝑒𝑐 ≲ 9.2 × 104) were
much lower than the invariance criterion of 𝑅𝑒𝑐 ≥ 3.5 × 106 proposed by Miller
et al. (2019). Still, as long as a sufficiently reliable local linearization is possible,
the procedure outlined in Section 2.3.4 for computing the aerodynamic constants
𝐾ℓ and 𝐾𝑑 should continue to give accurate predictions of time-resolved dynamics.
Methods for characterizing the generator constants 𝐾0, 𝐾1, and 𝐾2 may differ for
full-scale generators, and gearbox effects may need to be taken into account, but
these do not represent fundamental challenges to the validity of the model at scale.
Thus, while to our knowledge no experiments with surging full-scale wind turbines
have been carried out, the first-order linear model derived in this work should allow
the dynamics of full-scale systems to be predicted solely on the basis of information
from steady measurements, which may be readily obtained from onshore or fixed-
bottom offshore turbines.

For floating offshore wind turbines, the surge amplitudes and velocities experienced
due to typical surface-wave forcing patterns will likely be much smaller than the
largest motions investigated in this study. Still, even for small perturbations, the
disambiguation between aerodynamic and generator torque that the first-order lin-
ear model provides could inform design considerations and control strategies that
leverage generator and turbine inertia or dynamic load-control schemes to reduce
surge-induced fatigue loads on the turbine blades. These strategies could also be
used to mitigate the effects of blade stall that may be encountered even in small
surge motions if the turbine blades are operating at high static angles of attack.

In the extreme cases in which large surge excursions do occur, the surge motions
of a FOWT would be coupled with large tilt disturbances, an effect not covered
in this study. Therefore, it is questionable whether a FOWT will experience the
large pure-surge oscillations represented by the maximally unsteady cases in these
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experiments. However, these kinds of surge kinematics may be possible in more
nascent wind-energy technologies, such as kite-based airborne wind turbines. In
these contexts, the large surge motions could be leveraged to increase the efficiency
of the turbines above their steady values. The first-order linear model would inform
decisions regarding trade-offs between surge-induced efficiency gains and the onset
of stall at high surge-velocity amplitudes, as well as the aerodynamic design of the
turbine blades themselves for these inherently unsteady environments.

Finally, the potential of the time-averaged power enhancement empirically demon-
strated in this study should not be missed. The increasing size of wind turbines
and wind farms, combined with logistical difficulties involving siting for new wind-
power plants, makes traditional wind power increasingly challenging to implement
on a global scale. The theoretical limitation of the efficiency of wind-energy devices
to 59.3% (Betz, 1920) also remains a fundamental roadblock to the engineering and
economic efficacy of wind power. Thus, if the overall capacity of wind power is
to be expanded over the next few decades, then innovative solutions for increasing
the efficiency of wind-energy systems must be considered. The land-independent
nature of floating offshore wind farms and airborne wind-energy systems already
represents an appealing solution to the problem of land-based siting. If the unsteady
surge motions inherent to these systems and other nascent technologies could be
leveraged for increased efficiency, the constraints on both efficiency and large-scale
implementation could potentially be circumvented.

2.6 Conclusions
In this study, the torque, rotor speed, and power of a horizontal-axis wind turbine
undergoing periodic surge motions were investigated. A first-order linear model
was derived to explain trends in amplitude and phase, and the experimental results
compared favorably with the predictions of the model. Deviations from the model
predictions were observed at low tip-speed ratios, a behavior that was attributed to
the onset of stall on the turbine blades. At high tip-speed ratios, enhancements in the
torque amplitude and period-averaged power were observed at high normalized surge
frequencies. While the relative contributions of unsteady and nonlinear effects to
these enhancements cannot be separated based on these experiments, it is nonetheless
noteworthy that periodic surge motions can lead to increased period-averaged turbine
efficiencies relative to the steady case. The trends captured by the model and data
are expected to hold qualitatively for utility-scale wind turbines, both in the floating-
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offshore context and in novel applications that inherently leverage unsteady flow
physics for increased power-conversion efficiencies.
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Chapter 3

Nonlinear and Unsteady Mechanisms for
Power-Generation Enhancements of

Turbines in Unsteady Flow Conditions

The contents of this chapter have been adapted from Wei and Dabiri (2023), which
has been accepted for publication in the Journal of Fluid Mechanics under the ti-
tle “Power-generation enhancements and upstream flow properties of turbines in
unsteady inflow conditions.” As the first author, Nathan Wei made the primary
contributions to experiment design, data acquisition and analysis, analytical model-
ing, and writing. Co-author John Dabiri contributed to the conceptualization of the
study, funding acquisition, analysis and interpretation of the results, and feedback
on the manuscript.

Abstract
Energy-harvesting systems in complex flow environments, such as floating offshore
wind turbines, tidal turbines, and ground-fixed turbines in axial gusts, encounter un-
steady streamwise flow conditions that affect their power generation and structural
loads. In some cases, enhancements in time-averaged power generation above the
steady-flow operating point are observed. To characterize these dynamics, a non-
linear dynamical model for the rotation rate and power extraction of a periodically
surging turbine is derived and connected to two potential-flow representations of
the induction zone upstream of the turbine. The model predictions for the time-
averaged power extraction of the turbine and the upstream flow velocity and pressure
are compared against data from experiments conducted with a surging-turbine ap-
paratus in an open-circuit wind tunnel at a diameter-based Reynolds number of
𝑅𝑒𝐷 = 6.3 × 105 and surge-velocity amplitudes of up to 24% of the wind speed.
The combined modeling approach captures trends in both the time-averaged power
extraction and the fluctuations in upstream flow quantities, while relying only on
data from steady-flow measurements. The sensitivity of the observed increases
in time-averaged power to steady-flow turbine characteristics is established, thus
clarifying the conditions under which these enhancements are possible. Finally,
the influence of unsteady fluid mechanics on time-averaged power extraction is ex-
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plored analytically. The theoretical framework and experimental validation provide
a cohesive modeling approach that can drive the design, control, and optimization
of turbines in unsteady flow conditions, as well as inform the development of novel
energy-harvesting systems that can leverage unsteady flows for large increases in
power-generation capacities.

3.1 Introduction
Energy-harvesting turbines in atmospheric and oceanic flows are routinely exposed
to unsteady flow conditions from gusts, tides, turbulent fluctuations, and other
strongly time-dependent fluid motions. These unsteady effects induce time-varying
forces and loads on the turbine components, which impact the time-averaged effi-
ciency and operational lifespans of these systems. Oscillations in the streamwise ve-
locity incident on the turbine are thus of major concern for conventional ground-fixed
turbines in axial gusts, hydrokinetic turbines in tidal flows, and turbines mounted
to airborne kites, which may undergo rapid changes in incident wind speed as they
sweep through atmospheric flow gradients. These dynamic-inflow conditions are
also related by means of a reference-frame transformation to the problem of a turbine
moving in periodic linear surge motions in a steady inflow. This problem is of par-
ticular interest for emerging offshore-wind technologies, such as floating offshore
wind turbines (FOWTs). Since these turbines are not fixed to the ocean floor, they
can move under the influence of wind gusts and surface waves. Of these motions,
the linear-surge oscillation mode tends to exhibit larger amplitudes relative to other
degrees of freedom of motion (Johlas et al., 2019). In certain forcing scenarios and
platform configurations the velocity amplitude of the turbine motions may exceed
25% of the wind speed (Wayman, 2006; Larsen and Hanson, 2007; de Vaal et al.,
2014a). In spite of these complicating factors, FOWTs have the potential to enable
wind-energy conversion in areas of the ocean whose depths prohibit the installation
of conventional fixed-bottom systems, thereby creating additional avenues for the
expansion of wind power as a contributor to global energy demands. They can
capitalize on strong offshore wind resources, are by nature located close to coastal
urban centers, and have fewer constraints on size and placement compared to their
land-based and seafloor-mounted counterparts. The characterization of the aerody-
namics of oscillating turbines, in addition to that of stationary turbines in oscillatory
inflow conditions, is thus of critical importance to the design and control of the next
generation of wind-energy technologies.
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Unsteady streamwise flow conditions are particularly intriguing from both a fluid-
mechanics and engineering perspective because they have the potential to yield sub-
stantial increases in the time-averaged power extraction of an energy-harvesting sys-
tem. The one-dimensional (1D) axial momentum theory developed by Betz (1920)
(as well as Lanchester, Joukowski, and others) posits that the power-conversion ef-
ficiency of an energy-harvesting system may not exceed 𝐶𝑝,𝐵𝑒𝑡𝑧 = 16/27 ≈ 59.3%,
but this analysis was conducted under the assumption of steady flow. Dabiri (2020)
recently relaxed that assumption and suggested that the contribution of an unsteady
velocity potential could lead to theoretical efficiencies in excess of the so-called
Betz limit. In parallel with this prediction, several studies have shown relative
power enhancements over the steady operating power for turbines in surge motions
or unsteady flows, both experimentally (Farrugia et al., 2014; El Makdah et al.,
2019; Mancini et al., 2020; Wei and Dabiri, 2022) and in simulations of varying
fidelity (Farrugia et al., 2016; Wen et al., 2017; Johlas et al., 2021). However, the
extent to which unsteady flow physics contributed to these observed power enhance-
ments is unclear. For example, Wen et al. (2017) and Johlas et al. (2021) found that
a quasi-steady model for the time-averaged power could qualitatively describe the
trends in the power enhancements. Mancini et al. (2020), by contrast, found that
data from wind-tunnel experiments exceeded the predictions of their quasi-steady
solution, though this solution differed from that of Johlas et al. (2021). Additionally,
both Farrugia et al. (2016) and Wei and Dabiri (2022) found that the magnitude of the
power enhancements depends on the turbine tip-speed ratio, and that under certain
conditions, time-averaged power losses relative to the steady case are also possible.
A full explanation and parameterization of these divergent observations remains
lacking in the literature, and is urgently needed if the floating offshore wind-turbine
technologies currently under development are to take advantage of these effects for
increased power-generation capabilities.

The 1D axial momentum theory of Betz also asserts that the deceleration of the
upstream flow approaching a wind turbine, or induction, is coupled with the op-
eration and power output of a turbine. This induction effect dictates the flow and
loading conditions encountered by the blades of a turbine and is directly related to
the turbine’s thrust force and efficiency. The induction zone, defined roughly as the
region in which the flow velocity along the turbine’s centerline is below 95% of the
free-stream velocity, extends at least two turbine diameters upstream of the turbine
itself (Medici et al., 2011). These reduced velocities can thus bias tower-based
estimates of the true wind speed by anemometers and LiDAR systems (e.g. Larsen
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and Hansen, 2014; Howard and Guala, 2016; Simley et al., 2016; Borraccino et al.,
2017; Mann et al., 2018). For floating turbines, the coupling between incident wind
conditions, blade-pitch control systems, and turbine thrust can also yield negatively
damped (i.e. unstable) streamwise surge oscillations that increase fatigue loading on
the turbine blades (Larsen and Hanson, 2007; Jonkman, 2008; López-Queĳa et al.,
2022). It is therefore instructive for turbine modeling and control to quantify the
coupling between unsteady streamwise flow conditions, the dynamics of the turbine,
and the flow properties in the upstream induction region.

The flow deceleration upstream of a stationary horizontal-axis wind turbine has been
thoroughly studied in the literature, and several parameterizations of the induction
region exist. One frequently used modeling approach treats the wake of the turbine as
a cylindrical vortex sheet (Branlard and Gaunaa, 2015). This model lends itself well
to free-vortex wake simulations (Sarmast et al., 2016), and shows good agreement
with experimental data (Medici et al., 2011; Howard and Guala, 2016; Bastankhah
and Porté-Agel, 2017; Borraccino et al., 2017). It has also been extended to unsteady
inflow conditions (Chattot, 2014; Yu et al., 2019). Rather than rely on assumptions
regarding near-wake structure, alternative approaches model the induction effect of
the turbine using potential-flow objects such as Rankine half-bodies (Araya et al.,
2014; Gribben and Hawkes, 2019; Meyer Forsting et al., 2021) or porous discs
(Modarresi and Kirchhoff, 1979). These models reflect the common practice in
both numerical and experimental studies of modeling the turbine as an actuator
disc. Other models, such as the self-similar solution of Troldborg and Meyer
Forsting (2017), are better able to capture the radial dependence of the streamwise
flow velocity in the induction region. To the authors’ knowledge, these models have
not yet been extended to dynamically varying streamwise inflow conditions, such as
axial gusts or turbine surge motions, as most existing studies involving these flow
conditions do not investigate the upstream induction region.

The lack of parameterizations for the time-averaged power enhancements of turbines
in unsteady inflow conditions and their coupled upstream flow properties motivates
the present theoretical and experimental study. The work is structured as follows.
First, in Section 3.2, a nonlinear dynamical model for the power extraction of a
periodically surging turbine is derived, and a method is proposed that couples the
time-varying power generated by the turbine to the turbine induction. This mod-
eling framework is combined with two induction models to yield time-resolved
predictions of the flow field upstream of the surging turbine. These predictions
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rely solely on turbine data obtained from steady-flow measurements, namely the
turbine power curve and the streamwise velocity averaged radially across the face
of the rotor. A brief note on the dynamic equivalence between a surging turbine in
a steady inflow and a stationary turbine in an oscillatory inflow is also presented.
In Section 3.3, velocity and pressure measurements upstream of a surging-turbine
apparatus are described, and the time-averaged power extraction and flow measure-
ments are compared with the predictions of the modeling framework in Section 3.4.
Additional analyses of the sensitivity of the modeling framework to the steady-flow
aerodynamics of the turbine and the role of unsteady fluid mechanics are presented
in Section 3.5. Finally, implications of the findings for the design, optimization, and
control of turbines in unsteady flow environments are discussed.

3.2 Nonlinear dynamics of a periodically surging tur-
bine

In this section, we derive a nonlinear dynamical model for the power extraction and
flow properties upstream of a periodically surging turbine. We present a nonlinear
ordinary differential equation for the turbine rotation rate as a function of known
steady-flow turbine-aerodynamics and generator characteristics. This model can
predict the time-varying and time-averaged rotation rate, torque, and power of the
turbine. By applying 1D momentum theory, the axial induction factor of the turbine
can be estimated from the instantaneous turbine power, and coupling this estimate
with flow models allows the flow velocity and pressure at any point upstream of the
turbine to be predicted. The modeling framework captures the unsteady dynamics
of the surging-turbine problem using a quasi-steady parameterization of the turbine
aerodynamics; potential contributions from unsteady fluid dynamics are explored
later in Section 3.5.2.

In our notation, time-averaged quantities are marked with overbars, steady-flow or
quasi-steady quantities are labeled with a zero subscript (e.g. P0), spatial averages
are denoted with angle brackets, and amplitudes are denoted with a circumflex (e.g.
�̂�). Additionally, if a flow variable lacks a specified radial dependence, it refers to a
quantity measured on the turbine centerline (i.e. 𝑟 = 0).
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3.2.1 A nonlinear model for turbine rotation rate and power
extraction

We build upon the linear modeling approach of Wei and Dabiri (2022), who describe
the time-varying dynamics of a turbine using the swing equation (i.e. Newton’s
second law for rotation),

𝐽
𝑑𝜔

𝑑𝑡
= 𝜏𝑎𝑒𝑟𝑜 − 𝜏𝑔𝑒𝑛, (3.1)

where 𝐽 is the moment of inertia of the turbine system about its axis of rotation
and 𝜔 is the rotation rate of the turbine. Deviations from equilibrium between the
aerodynamic and generator torques 𝜏𝑎𝑒𝑟𝑜 and 𝜏𝑔𝑒𝑛 produce changes in the turbine
rotation rate. Wei and Dabiri (2022) model the generator torque using the ordinary
differential equation for the torque from a permanent-magnet motor,

𝜏𝑔𝑒𝑛 = 𝐾2
𝑑𝜔

𝑑𝑡
+ 𝐾1𝜔 + 𝐾0, (3.2)

where 𝐾2 is the moment of inertia of the generator about its axis of rotation, 𝐾1

is the generator constant, and 𝐾0 is an empirical offset. These parameters can be
established empirically for a given generator over a range of resistive loads.

While Wei and Dabiri (2022) utilized a linearized model for the aerodynamic torque,
in this work we explicitly include the nonlinear relationship between the turbine
coefficient of power,

𝐶𝑝 =
P

1
2𝜌𝜋𝑅

2𝑢3
∞
, (3.3)

and the tip-speed ratio,

𝜆 =
𝑅𝜔

𝑢∞
, (3.4)

where P is the power extracted by the turbine from the flow, 𝜌 is the fluid density,
𝑅 is the radius of the turbine, and 𝑢∞ is the free-stream flow velocity. While
the aforementioned linearization incorporates the wind speed and rotation rate as
separate input parameters (cf. Figure 2.5), the present parameterization collapses
these dependencies onto a single manifold, known as the turbine power curve.
For a specified blade-pitch angle, any given turbine has a power curve defined as
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𝐶𝑝 = 𝐶𝑝,0(𝜆), which has a local maximum at a power-maximizing tip-speed ratio
𝜆𝑜𝑝𝑡 . In this work, we will use the subscript 0 to refer to steady-flow quantities.
Since the turbine power is determined by the product of the torque on the turbine
and its rotation rate, the torque on the turbine can be written in terms of the power
curve as

𝜏 =
1
2
𝜌𝜋𝑅2𝑢3

∞
𝐶𝑝,0(𝜆)
𝜔

. (3.5)

For a given surge-velocity profile 𝑈 (𝑡), the effective free-stream velocity is 𝑢∞ =

𝑢1 −𝑈 (𝑡), where we define 𝑢1 as the far-field wind speed relative to a ground-fixed
frame. Thus, we may write the aerodynamic torque as

𝜏𝑎𝑒𝑟𝑜 = 𝜏𝑎𝑒𝑟𝑜 (𝜔,𝑈, 𝑡) =
1
2
𝜌𝜋𝑅2 (𝑢1 −𝑈 (𝑡))3

𝜔
𝐶𝑝,0

(
𝑅𝜔

𝑢1 −𝑈 (𝑡)

)
. (3.6)

Substituting Equations 3.2 and 3.6 into Equation 3.1 results in a nonlinear ordinary
differential equation for the turbine rotation rate that is first-order in time and depends
on the surge velocity as an input forcing parameter:

𝑑𝜔

𝑑𝑡
=

1
𝐽 + 𝐾2

[
1
2
𝜌𝜋𝑅2 (𝑢1 −𝑈 (𝑡))3

𝜔
𝐶𝑝,0

(
𝑅𝜔

𝑢1 −𝑈 (𝑡)

)
− 𝐾1𝜔 − 𝐾0

]
. (3.7)

This model is a nonlinear and nonautonomous ordinary differential equation, which
precludes straightforward mathematical characterization, but it can be integrated
forward in time from an initial condition 𝜔(𝑡 = 0) until it reaches a period-averaged
equilibrium. The model can therefore yield numerical predictions of the time-
varying and time-averaged rotation rate, torque, and power of a turbine under surge
motions or dynamic inflow conditions. This stands in contrast to the linearized
model developed by Wei and Dabiri (2022), which can be written as a transfer
function for convenient analysis but is unable to capture changes in time-averaged
quantities.

As a limiting case, we may consider a quasi-steady solution to the model in which
𝑑𝜔
𝑑𝑡

= 0 and𝐶𝑝,0 is constant as a function of time. The time-averaged power is defined
as P = 𝜏𝑔𝑒𝑛𝜔 = 𝐾1𝜔2 + 𝐾0𝜔, which suggests that for a sinusoidal surge-velocity
waveform with amplitude 𝑢∗ = �̂�/𝑢1, the time-averaged power is

P =
𝑓

2𝜋

∫ 2𝜋
𝑓

0

1
2
𝜌𝜋𝑅2𝐶𝑝,0 (𝑢1 −𝑈 (𝑡))3 𝑑𝑡 = P0

(
1 + 3

2
𝑢∗2

)
. (3.8)
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Figure 3.1: Schematic of the parameters and control volumes referenced in Section
3.2. The actuator disc is located instantaneously at 𝑥2(𝑡) and moves with velocity
𝑈 (𝑡) relative to the inertial frame defined by the 𝑥- and 𝑟-axes. Circled numbers
denote streamwise interrogation locations (1 through 4).

This result is identical to that derived by Wen et al. (2017) and Johlas et al. (2021)
for a surging turbine, and is equivalent to that of a stationary turbine with constant
𝐶𝑝 in an oscillating inflow.

3.2.2 Modeling the relationship between turbine dynamics and
upstream flow conditions

The 1D momentum theory derived by Betz (1920) can be used to infer flow prop-
erties upstream of the turbine rotor plane from the power extracted by the turbine.
This theoretical framework employs conservation relations over a control volume
composed of an axisymmetric streamtube surrounding the turbine, which is mod-
eled as an actuator disc. An axial induction factor, representing the decrease in
velocity from far upstream of the turbine to the upstream face of the actuator disc
(i.e. location 2 in Figure 3.1), is defined as

𝑎 =
𝑢1 − 𝑢2
𝑢1

. (3.9)

The induction factor is the single free parameter needed to compute the coefficient
of power within this framework, which is given by

𝐶𝑝 = 4𝑎(1 − 𝑎)2. (3.10)

This yields a theoretical maximum for the efficiency of a wind-energy system of
𝐶𝑝,𝐵𝑒𝑡𝑧 = 16/27, which is attained at 𝑎 = 1/3. For the surging-turbine system, then,
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we have the similar relation

𝜏𝑔𝑒𝑛𝜔

1
2𝜌𝜋𝑅

2𝑢3
1
= 4𝑎(1 − 𝑎)2. (3.11)

1D momentum theory assumes that the flow is inviscid, incompressible, irrotational,
and steady. Upstream of the turbine rotor plane, the first three assumptions are
reasonable to make. If we further assume that the flow upstream of the turbine can
be modeled in a quasi-steady manner, we can use the rotation rate given by Equation
3.7 to compute an instantaneous coefficient of power 𝐶𝑝 (𝜔, 𝑡), and by inverting
Equation 3.11, we can estimate the time-varying induction factor 𝑎(𝑡). Since the
induction factor is physically constrained as 𝑎 ∈ [0, 1], two solutions are possible
for 𝐶𝑝 < 𝐶𝑝,𝐵𝑒𝑡𝑧. The upper solution for 𝑎 represents a heavily loaded turbine, and
for 𝑎 ≳ 0.37 the theoretical framework breaks down (Wilson and Lissaman, 1974).
In a majority of cases, including the experiments presented in this work, the turbine
is not heavily loaded, and thus the lower solution for 𝑎 is assumed to represent the
system.

Equations 3.7 and 3.11 therefore connect the time-varying dynamics of a turbine
under dynamic axial-flow conditions to the flow properties just upstream of the rotor
disc. To propagate these predictions further upstream, an induction model for the
turbine is needed. As mentioned previously, a common modeling approach involves
representing the wake of the turbine as a cylindrical vortex sheet and performing
Biot-Savart integration to compute the induced velocity from this wake model at any
point in the domain (Johnson, 1980; Branlard and Gaunaa, 2015). This is known as
vortex-sheet or vortex-cylinder theory (hereafter abbreviated as VCT). Evaluating
this integral upstream of the turbine along its rotational axis yields a model for the
induced velocity along the upstream centerline of the turbine (Medici et al., 2011):

𝑢(𝑟 = 0, 𝑥)
𝑢∞

= 1 − 𝑎
[
1 + 𝑥 − 𝑥2

𝑅

(
1 +

(𝑥 − 𝑥2
𝑅

)2
)−1/2

]
, (3.12)

where 𝑥 is the streamwise coordinate along the axis of the turbine (originating at
the turbine and positive downstream) and 𝑥2 is the instantaneous location of the
turbine, as shown in Figure 3.1. For a surging turbine, the induction effect in the
second term should scale with the effective free-stream velocity 𝑢1 −𝑈 (𝑡), since in
the limiting case where the turbine is moving downstream at velocity 𝑈 (𝑡) = 𝑢1,
the turbine should have no effect on the flow, and the flow everywhere upstream of
the turbine should be equal to 𝑢1. Involving the time-varying induction factor 𝑎(𝑡)
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provided by 1D momentum theory, we thus obtain the flow velocity at any upstream
location 𝑥 < 𝑥2 and at any time as

𝑢(𝑟 = 0, 𝑥, 𝑡) = 𝑢1 − 𝑎(𝑡) (𝑢1 −𝑈 (𝑡))
1 + 𝑥 − 𝑥2(𝑡)

𝑅

(
1 +

(
𝑥 − 𝑥2(𝑡)

𝑅

)2
)−1/2 .

(3.13)

To complete the description of flow properties upstream of the surging turbine,
the pressure along the centerline may be modeled by substituting the model for
𝑢(𝑟 = 0, 𝑥, 𝑡) into the steady Bernoulli equation,

𝑝(𝑟 = 0, 𝑥) = 𝑝1 +
1
2
𝜌

(
𝑢1

2 − 𝑢 (𝑟 = 0, 𝑥, 𝑡)2
)
, (3.14)

where 𝜌 is the density of the fluid and 𝑝1 is the ambient pressure in the free stream.
If the velocity potential of the induction model is known, the unsteady Bernoulli
equation may be applied instead. For the purposes of this work, however, we
maintain quasi-steady assumptions for the flow physics in the induction zone, in
keeping with the quasi-steady aerodynamics parameterized by the turbine model
and 1D momentum theory. As mentioned previously, the effect of this unsteady
potential will be considered in more detail in Section 3.5.2. While the expressions
presented here have been confined to the centerline, Branlard and Gaunaa (2015)
provide full relations for 𝑢(𝑟, 𝑥) that can be employed in place of Equation 3.12 to
allow this modeling framework to cover the entire upstream induction zone.

Alternatively, we can model the effect of the surging turbine on the flow using a
porous-disc representation in potential flow, which does not rely on parameteriza-
tions of the turbine wake geometry and vorticity. This is inspired by the work of
Taylor (1944) and Koo and James (1973), which has recently been extended by
Steiros and Hultmark (2018) for flat plates of arbitrary porosity and Bempedelis and
Steiros (2022) for wind turbines at arbitrary loading conditions. The porous-disc
approach, which has not been widely investigated in the wind-energy literature,
is presented to demonstrate the robustness of the overall modeling framework put
forth in this work to the choice of induction model. Its velocity potential is also
more readily accessible than that of VCT, which will be advantageous when we
consider the effects of unsteady fluid mechanics in Section 3.5.2. Finally, the model
provides a convenient generalization to rotors with arbitrary radial distributions of
streamwise velocity, which, though not explored in detail in this study, could be ex-
ploited to integrate this model with blade-element momentum (BEM) computations
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that generate radially varying induction-factor profiles. We will refer to the model
throughout this paper as the porous-disc theory (PDT).

3.2.3 A porous-disc induction model for a surging turbine
We first consider a circular porous disc with radius 𝑅 located at streamwise coor-
dinate 𝜉 = 0, represented as a distribution of sources with a velocity potential of
𝜙(𝑟, 𝜉 = 0) = 𝐶

√
𝑅2 − 𝑟2 for 𝑟 < 𝑅 and 𝜙(𝑟, 𝜉 = 0) = 0 for 𝑟 > 𝑅, where 𝐶 > 0 is

an arbitrary constant that represents the aggregate strength of the source distribution.
Using this distribution as a boundary condition at 𝜉 = 0, we may solve the Laplace
equation ∇2𝜙 = 0 in cylindrical coordinates to obtain the velocity potential of a
porous disc (cf. Lamb, 1916; Tranter, 1968):

𝜙 (𝑟, 𝜉) = −
√︂
𝜋

2
𝐶𝑅3/2

∫ ∞

0
𝑠−1/2𝐽3/2(𝑅𝑠)𝐽0(𝑟𝑠)𝑒−𝑠𝜉𝑑𝑠; 𝜉 > 0. (3.15)

Here, 𝐽𝜈 (𝑧) is a Bessel function of the first kind, and 𝑠 is a dummy integration
variable. The choice of 𝐶 = 2

𝜋
𝑉 gives the velocity potential of a solid disc moving

at axial velocity 𝑉 in a quiescent fluid (Lamb, 1916, §102.4). More generally, the
velocity 𝑉 represents the velocity of the disc relative to that of the fluid in the far
field. For a porous disc, we may define a representative source term 𝑎, directly
corresponding to the induction factor defined in Equation 3.9, such that 𝐶 = 2

𝜋
𝑎𝑉 .

The choice of 𝑎 dictates the porosity of the disc: 𝑎 = 0 represents a fully permeable
disc, 𝑎 = 1 yields a fully solid disc, and intermediate values (0 < 𝑎 < 1) reduce the
source strength from the solid-disc solution so that a nonzero mass flux through the
disc is established. Evaluating Equation 3.15 along the centerline yields

𝜙 (𝑟 = 0, 𝜉) = −𝑎𝑉 2
𝜋

[
𝑅 − 𝜉 arctan

(
𝑅

𝜉

)]
; 𝜉 > 0. (3.16)

This solution is only valid for 𝜉 > 0. To describe the other half of the domain as
well, one might follow the ansatz of Taylor (1944) and use the even extension of 𝜙 to
represent 𝜉 < 0. The velocity discontinuity across the disc that this extension creates
could then be removed using the base-suction correction of Steiros and Hultmark
(2018). However, since in this work we are only concerned with the upstream region,
we leave these derivations for future consideration.

We differentiate the velocity potential with respect to 𝜉 to obtain the streamwise
velocity along the centerline:

𝑢 (𝑟 = 0, 𝜉) = −𝑎𝑉 2
𝜋

[
𝑅𝜉

𝜉2 + 𝑅2 − arctan
(
𝑅

𝜉

)]
; 𝜉 > 0. (3.17)
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This relation emphasizes the effect of the porosity parameter (or equivalently, the
induction factor) on the behavior of the model. For 𝑎 = 0, the flow is everywhere
unaffected by the motion of the disc. For 𝑎 = 1, 𝑢(𝑟 = 0, 𝜉 → 0+) = 𝑉 , which
satisfies the surface boundary condition for a moving solid disc.

We now apply this expression in an inertial frame containing a uniform flow with
free-stream velocity 𝑢1, in which the disc translates at velocity 𝑈 (𝑡) relative to the
frame. In this frame, we define the downstream-oriented axial coordinate 𝑥 and the
instantaneous position of the disc 𝑥2(𝑡) as shown in Figure 3.1, such that 𝜉 = 𝑥2 − 𝑥
and 𝑈 (𝑡) =

𝑑𝑥2
𝑑𝑡

. The velocity of the disc relative to the far-field flow velocity is
thus 𝑉 = 𝑈 (𝑡) − 𝑢1. Applying these definitions to Equation 3.17, we arrive at the
following model for the centerline velocity in the upstream induction zone (𝑥 < 𝑥2):

𝑢 (𝑟 = 0, 𝑥, 𝑡) = 𝑢1 − 𝑎(𝑡) (𝑢1 −𝑈 (𝑡)) 2
𝜋

[
𝑅(𝑥 − 𝑥2(𝑡))

(𝑥 − 𝑥2(𝑡))2 + 𝑅2
− arctan

(
𝑅

𝑥 − 𝑥2(𝑡)

)]
.

(3.18)
We reiterate that the model cannot be used to predict the velocity downstream of the
porous disc, given the constraint of 𝜉 > 0 on the velocity potential. Additionally,
though the solution is technically valid if the turbine moves downstream faster than
the wind speed, i.e. 𝑢1 −𝑈 (𝑡) < 0, we expect that the model will cease to be valid
in this case because the rotor will interact with its own wake.

As with the expression obtained from VCT, Equation 3.15 can in principle be inte-
grated at any point upstream of the porous disc so that the velocity and pressure can
be computed throughout the entire induction zone. In both models, the streamwise
velocity 𝑢2 on the upstream face of the rotor plane is predicted to be constant over
𝑟, i.e.

𝑢(𝑥 = 𝑥2, 𝑟) = 𝑢1 − 𝑎(𝑡) (𝑢1 −𝑈 (𝑡)). (3.19)

This is generally a poor approximation for real turbines, whose streamwise velocities
typically increase toward the free-stream value with increasing radial distance from
the hub (cf. Medici et al., 2011; Troldborg and Meyer Forsting, 2017). An additional
advantage of the porous-disc modeling approach is that arbitrary radial-velocity
profiles can be modeled by changing the source-strength distribution in Equation
3.15. For example, if the turbine blade geometry is known, radial variations in
the induction factor can be computed from blade-element momentum theory as a
function 𝑎(𝑟) and integrated to obtain a modified velocity potential. A correction
factor for the effects of nonuniform velocities at the disc face can then be derived by
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defining a rotor-averaged induction factor,

⟨𝑎⟩ = 2
𝑅2

∫ 𝑅

0
𝑎(𝑟)𝑟𝑑𝑟 =

[
2
𝑅2

∫ 𝑅

0

𝑎(𝑟)
𝑎(𝑟 = 0) 𝑟𝑑𝑟

]
𝑎(𝑟 = 0) ≡ 𝜅𝑎(𝑟 = 0). (3.20)

The scaling constant 𝜅, which maps the centerline induction factor to the equivalent
rotor-averaged induction factor, can be computed from a known velocity-deficit
radial profile, such as the self-similar solution of Troldborg and Meyer Forsting
(2017) or a BEM computation. For a top-hat velocity-deficit profile, 𝜅 = 1. If
the radial induction-factor distribution does not change much throughout the surge
cycle (i.e. the velocity-deficit profile remains self-similar), 𝜅 can be assumed to be
independent of the surge kinematics for a given loading condition, and thus can be
treated as a constant for that particular wind speed and mean tip-speed ratio.

The distinction between the centerline and rotor-averaged induction factors is par-
ticularly important for a quantitative comparison between the 2D axisymmetric
induction theories developed in this section and the 1D axial-momentum theory of
Betz. Because 1D momentum theory by definition does not account for radial dif-
ferences in streamwise velocity, the induction factor estimated using Equation 3.11
must represent the rotor-averaged induction factor. By the same logic, the induction
factor in the VCT and PDT expressions for the streamwise velocity is the centerline
induction factor, and is what will be measured by a point anemometer placed along
the rotational axis of the turbine. The parameter 𝜅 thus serves as a bridge between
the 1D and 2D analyses employed in this modeling framework.

For the remainder of this paper, we will focus on measurements taken along the
rotational axis of the turbine (𝑟 = 0), and therefore the flow quantities 𝑢(𝑥), 𝑝(𝑥),
and 𝑎 will implicitly refer to these centerline quantities.

The modeling approach presented in this work may be summarized as follows:

1) Identify the turbine power curve 𝐶𝑝,0(𝜆) and generator and inertia constants 𝐾0,
𝐾1, 𝐾2, and 𝐽 from steady-flow measurements and manufacturer specifications.

2) Integrate Equation 3.7 in time with a given surge-velocity forcing𝑈 (𝑡) to obtain
the turbine rotation rate 𝜔(𝑡).

3) From 𝜔(𝑡), use Equations 3.2 and 3.11 to predict the coefficient of power 𝐶𝑝 (𝑡)
and the rotor-averaged induction factor ⟨𝑎(𝑡)⟩.

4) Calculate the centerline induction factor 𝑎(𝑡) using an analytical or empirical
correction factor 𝜅.
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5) Include 𝑎(𝑡) in an induction model (e.g. Equation 3.13 for VCT or 3.18 for PDT)
to obtain the velocity field upstream of the turbine.

6) Use the steady Bernoulli equation to obtain the pressure field from the velocity
field.

We reiterate that this modeling framework invokes a quasi-steady assumption for
the aerodynamics of the turbine, and the time dependence of the model comes from
an unsteady treatment of the turbine rotation rate as a function of the aerodynamic
and generator torques. The practical benefit of this approach is that time-resolved
predictions of the turbine dynamics and upstream flow properties can be obtained
solely on the basis of steady-flow measurements; the model does not depend on em-
pirical calibrations from unsteady test cases. From a fluid-mechanics perspective,
the approach provides an instructive disambiguation between the rotational dynam-
ics of the turbine and the actuator-disc aerodynamics associated with the rotor and
its motions. Furthermore, this analytical foundation allows the effects of unsteady
flow physics to be more directly characterized.

3.2.4 On the problem of a stationary turbine in an oscillating
inflow

The preceding analysis has focused on the case of a periodically surging turbine in
a uniform inflow. From the work of Wen et al. (2017), El Makdah et al. (2019),
Johlas et al. (2021), and others, it is apparent that the case of a stationary turbine
in an axial gust can be made equivalent to the surging-turbine case by shifting from
a ground-fixed to a turbine-fixed frame of reference. The time-averaged power is
not affected by this transformation. To determine the effect of noninertial-frame
accelerations, we consider the force on a body oscillating with velocity𝑊𝑖 (𝑡) in an
oscillating inflow𝑈𝑖 (𝑡), which is given by Brennen (1982) as

𝐹𝑖 = −𝑀𝑖 𝑗

𝑑𝑊 𝑗

𝑑𝑡
+

(
𝑀𝑖 𝑗 + 𝜌𝑉𝐷𝛿𝑖 𝑗

) 𝑑𝑈 𝑗

𝑑𝑡
; 𝑗 = 1, 2, 3. (3.21)

Here, 𝑀𝑖 𝑗 is the added-mass tensor of the body, 𝑉𝐷 is the volume of the body,
𝛿𝑖 𝑗 is the Kronecker delta operator, and the flow is assumed to be inviscid. This
expression thus quantifies the influence of added-mass effects and an unsteady
buoyancy force, which comes from the oscillating pressure gradient that drives the
oscillating inflow (Granlund et al., 2014). We assume that neither the added-mass
tensor nor the volume of the body changes as a function of time for a porous disc,
and that 𝑈𝑖 (𝑡) and 𝑊𝑖 (𝑡) are periodic. Since 𝑈𝑖 (𝑡) and 𝑊𝑖 (𝑡) are periodic, the time
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Figure 3.2: Schematic of the experimental apparatus, including the fan-array wind
tunnel (left) and surging turbine (center-right). The turbine is illustrated at its
maximum upstream position relative to the origin (𝑥 = −0.6 m). The inset figure (top
right) shows the two types of surge-velocity waveforms used in these experiments.

averages over a single period of 𝑑𝑈 𝑗

𝑑𝑡
and 𝑑𝑊 𝑗

𝑑𝑡
are both zero. It thus follows that the

time-averaged force on the body due to these two types of unsteady contributions
is also zero, and therefore neither of these unsteady effects creates a theoretical
difference between the time-averaged performance of an oscillating turbine and a
stationary turbine in an oscillating inflow. Additionally, the volume of a 2D actuator
disc is effectively zero, and thus the unsteady buoyancy force that differentiates
the two scenarios should be negligible. These considerations do not exclude the
possibility of additional differences between these two cases, for example due to
viscous time-history effects, vortex dynamics, or other flow physics not captured by
the potential-flow assumption.
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3.3 Experimental methods
3.3.1 Experimental apparatus
To characterize the range of conditions over which the ideal-flow model holds, ve-
locity and pressure measurements were conducted in a 2.88 × 2.88 m2 open-circuit
fan-array wind tunnel at the Caltech Center for Autonomous Systems and Tech-
nologies (CAST). A three-bladed, fixed-pitch horizontal-axis wind turbine (Primus
Wind Power AIR Silent X) with a rotor diameter of 𝐷 = 1.17 m was mounted on a
traverse that translated along 2-m long rails (NSK NH-series) and was actuated by
a magnetic piston-type linear actuator (LinMot PS10-70x320U). A diagram of this
apparatus is given in Figure 3.2. The hub height of the turbine was 1.97 m above the
floor of the facility, and the farthest-downstream position of the turbine (defined as
𝑥 = 0) was 3.09 m downstream of the fan array. The electrical load on the turbine
was provided by 10, 20, and 40-Ohm resistors (TE Connectivity TE1000-series). A
rotary torque transducer (FUTEK TRS300) and rotary encoder (US Digital EM2)
were used to measure the power produced by the turbine. The estimated blockage of
the swept area of the turbine and all support structures, relative to the surface area
of the fan array, was 14%. Further details regarding the dimensions and capabilities
of the apparatus may be found in Wei and Dabiri (2022).

A constant-temperature hot-wire anemometry system (Dantec MiniCTA 54T42) and
differential pressure transducer (MKS Baratron 398-series with Type 270B signal
conditioner) were used to measure flow properties at two locations along the turbine
centerline, one upstream of the turbine at 𝑥𝑢 = −0.840𝐷 and one downstream at
𝑥𝑑 = 0.810𝐷. The hot-wire probe was placed approximately on the centerline,
while the input line of the pressure transducer was located 3.8 cm to the side. The
transducer’s reference line was placed in a shielded area outside the flow of the wind
tunnel. Data were collected at a sampling rate of 20 kHz and were low-pass filtered
using a sixth-order Butterworth filter with a cutoff frequency of 100 Hz. The hot-
wire anemometer was calibrated in the wind tunnel against a Pitot probe using the
same pressure transducer. Because the facility was exposed to the atmosphere, the
temperature and relative humidity were recorded during all experiments to estimate
the air density and correct the hot-wire calibration for temperature changes.

3.3.2 Experimental procedure
Experiments were conducted over two nights in March 2022, in which the free-
stream velocities in the wind tunnel were 𝑢1 = 7.79 ± 0.10 and 7.96 ± 0.11 ms−1,
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Resistive Load 10 Ω 20 Ω 40 Ω

Case Identifier
𝜆0 6.48 ± 0.25 7.84 ± 0.28 8.77 ± 0.27
𝐶𝑝,0 0.298 ± 0.013 0.248 ± 0.012 0.165 ± 0.010
𝐾1

[
kg m2s−1] 0.0112 0.00649 0.00376

𝐾0 [Nm] 0.119 0.0850 0.0676
𝑎0 (VCT) 0.252 0.267 0.221
𝑎0 (PDT) 0.286 0.301 0.250
𝜅 (VCT) 0.364 0.278 0.222
𝜅 (PDT) 0.320 0.247 0.196

Table 3.1: Performance characteristics and model constants for the three loading
conditions investigated in this study.

corresponding to an average diameter-based Reynolds number of 𝑅𝑒𝐷 = 6.27×105.
The hot-wire anemometer was calibrated at the beginning and end of each set
of experiments. The turbine was operated at three tip-speed ratios, 𝜆0 = 6.48 ±
0.25, 7.84 ± 0.28, and 8.77 ± 0.27, with corresponding coefficients of power of
𝐶𝑝,0 = 0.298 ± 0.013 ≈ 𝐶𝑝,𝑚𝑎𝑥 , 0.248 ± 0.012, and 0.165 ± 0.010. The generator
constants for these cases were obtained from the data of Wei and Dabiri (2022), as
were the turbine and generator moments of inertia (𝐽 = 0.0266 ± 0.0008 kg m2;
𝐾2 = 6.96 × 10−4 kg m2). The operating parameters of the turbine are summarized
in Table 3.1. The turbine was actuated in sinusoidal and trapezoidal motions
(see inset, Figure 3.2) with an amplitude of 𝐴 = 0.3 m (0.257𝐷) and periods
between 𝑇 = 1 and 6 s, corresponding to nondimensional surge-velocity amplitudes
between 𝑢∗ ≡ 𝑓 𝐴/𝑢1 = 0.039 and 0.242. Data were phase-averaged over 100
motion periods. The amplitudes and phases of each quantity of interest were
computed from an FFT of the phase-averaged signal. Upstream and downstream
flow measurements were collected in separate tests. Additionally, a series of quasi-
steady flow measurements were obtained for each tip-speed ratio by placing the
turbine at six equally spaced streamwise locations between 𝑥/𝐷 = −0.514 and 0
and recording measurements over 120 s. To correct against differences in the ambient
conditions between measurement sessions and facilitate more direct comparisons,
quasi-steady measurements taken at 𝑥/𝐷 = 0 on both sessions were used to scale the
measured velocities and pressures from one session to match those from the other
session.
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Figure 3.3: Steady power curve for the turbine used in these experiments, measured
over a range of resistive loads and wind speeds. Some of these data points are
reproduced from Wei and Dabiri (2022). The result of the exponential fit given by
Equation 3.22 is shown as a solid red line.

3.3.3 Determination of model parameters from steady-flow mea-
surements

3.3.3.1 Power-curve parameterization and model integration
To compare the analytical modeling framework with the experimental data, it was
first necessary to parameterize the steady-flow power curve of the turbine, 𝐶𝑝,0(𝜆).
The data in the measured power curve of the turbine, shown in Figure 3.3, were
fitted to a type of exponential function frequently used for wind-turbine modeling:

𝐶𝑝 =

(
𝑐1

𝜆 + 𝑐2
− 𝑐3

)
exp

(
−𝑐4
𝜆 + 𝑐2

)
. (3.22)

Several coefficients from the general model form given by Heier (2014) were omitted
to simplify the model; the four remaining fitted coefficients were 𝑐1 = 16.784,
𝑐2 = −1.510, 𝑐3 = 1.702, and 𝑐4 = 8.764. This parameterization was employed
(as opposed to e.g. polynomial fits) to ensure that the slope and concavity at the
extremes of the power curve would be captured reliably, since it will be shown in
Section 3.4.1 that the performance of the modeling framework is sensitive to these
factors.

To obtain time-resolved predictions of the turbine rotation rate, torque, and power,
Equation 3.7 was numerically integrated over ten surge periods using a fourth-
order Runge-Kutta scheme. Timesteps were kept no larger than 0.001𝑇 to maintain
numerical stability and accuracy. The steady-flow turbine rotation rate 𝜔0 was used
as the initial condition, and convergence was typically established within a few
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Figure 3.4: Streamwise-velocity measurements at six different streamwise distances
upstream of the turbine for the highest tip-speed ratio tested, compared with two-
parameter fits based on the VCT (dotted line) and PDT (dashed-dotted line) induction
models. The PDT model shows a slightly more aggressive drop in streamwise
velocity close to the turbine and a lower predicted free-stream velocity than the VCT
model.

forcing periods. The model predictions for the amplitude, phase, and time-average
of each quantity were computed from the final period in the simulation.

3.3.3.2 Steady-flow induction data
To estimate the steady induction-factor values of the turbine at the three tip-speed
ratios tested in this study, quasi-steady measurements of the streamwise velocity
𝑢(𝑥) (described in Section 3.3.2) were plotted as a function of streamwise distance
𝑥/𝐷, and two-parameter fits for the wind speed 𝑢1 and centerline induction factor
𝑎0 were applied to these data. Dimensional data for the highest tip-speed ratio
tested are shown in Figure 3.4 with fits using the VCT (Equation 3.13) and PDT
(Equation 3.18) models. This test case demonstrates the slight differences between
the modeling frameworks: for the same data, the PDT model predicts a stronger
induction effect (as 𝑥/𝐷 → 0) and a slightly lower free-stream velocity (𝑥/𝐷 ≤ −2)
than the VCT model. The fit results for all three tip-speed ratios are shown in Figures
3.5a (VCT) and 3.5b (PDT), where the measured and modeled flow velocities are
normalized by the wind speeds identified by each two-parameter fit. These steady-
flow tests demonstrate that, within the range of streamwise distances tested, the
agreement of both models with the trends observed in the data is reasonably good.

The centerline induction-factor values shown in Figure 3.5 were compared with the
rotor-averaged values estimated using Equation 3.11 and a 𝐶𝑝 calculated from the
average of the measured turbine torque and rotation rate over all six streamwise
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(a) (b)

Figure 3.5: Streamwise-velocity measurements at six different streamwise distances
upstream of the turbine and three tip-speed ratios, compared with fits based on the
(a) VCT and (b) PDT induction models. The velocity data are normalized by the
free-stream velocities obtained from the two-parameter fits.

locations. The ratio between these estimates of ⟨𝑎0⟩ and the fitted values of 𝑎0

gave an empirical estimate for the correction factor 𝜅 for each tip-speed ratio. The
estimated values of 𝑎0 and 𝜅 are given in Table 3.1 for the two induction-model
frameworks. For comparison, an analytical correction factor can be calculated by
integrating the self-similar solution of Troldborg and Meyer Forsting (2017), which
yields 𝜅 = 0.649. This is larger than the empirically estimated values of 𝜅. However,
the ratio of the turbine hub diameter to the turbine diameter for the simulations used
to calibrate the self-similar solution was 2.4%, whereas for the turbine used in
this study the ratio was around 12%. It is therefore expected that the flow would
decelerate more strongly along the centerline of this particular turbine, due to the
increased blockage effect from the larger hub and nacelle, thus lowering the ratio
between the rotor-averaged and centerline induction factors.

3.3.3.3 Wind-speed and pressure corrections
Since changes in the turbine tip-speed ratio correspond to changes in the thrust force
on the turbine, the operation of the turbine in the open test section of the wind
tunnel created a blockage effect that influenced the wind speed in the open test
section — an effect that is well-documented in the literature (e.g. Eltayesh et al.,
2019). To correct against this additional source of error, a wind-speed correction
was computed for each unsteady test case by comparing the mean of the streamwise-
velocity measurements with the wind speeds measured by the hot-wire anemometer
during calibration (where the turbine was present in the tunnel but was not rotating).
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The average of these fitted wind speeds across all of the unsteady and quasi-steady
tests for each tip-speed ratio was then used as an adjusted wind speed for normalizing
the recorded velocity and pressure data.

Further corrections were implemented to reduce the influence of sources of un-
certainty in the pressure data. Since the absolute pressure at the reference of the
pressure transducer was unknown, the mean value of this pressure prediction was
scaled to be equal to that of the data. Additionally, due to the long length of the
tubes that connected the pressure transducer to the measurement location, a first-
order low-pass filter with a cutoff frequency of 2.48 Hz was inferred from the phase
of the measured pressure data relative to the velocity signal. This filter was then
applied to the calculated model predictions for pressure. Remaining discrepancies
between the measured and modeled pressure signals could be attributed to the true
filtering effect of the tubes being of higher order than the first-order filter model
(Bergh and Tĳdeman, 1965).

3.4 Experimental results
In this section, the predictions of the nonlinear dynamical model derived in Sec-
tion 3.2.1 are compared with experimental measurements of time-averaged and
fluctuating quantities. The induction-factor estimates collected from the nonlinear
dynamical model are then used to predict the streamwise velocity and pressure up-
stream of the surging turbine. Predictions based on vortex-cylinder theory (VCT)
and porous-disc theory (PDT) are compared with flow measurements to demonstrate
that the proposed modeling framework is able to reproduce trends observed in the
measured response of the system.

3.4.1 Power generation
The predictions of the nonlinear ordinary differential equation given in Equation 3.7
are compared with rotation-rate, torque, and power data collected from the surging-
turbine experimental apparatus. For this purpose, we reuse the experimental torque
and power measurements of Wei and Dabiri (2022) and plot the results of the present
modeling framework against these data. This dataset contained measurements at
three lower tip-speed ratios, in addition to those investigated in the present study,
and measurements were conducted over a wider range of surge-velocity amplitudes
and frequencies.

Figure 3.6 shows the measured torque amplitude and phase from these data, plotted
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(a) (b)

Figure 3.6: Generator-torque (a) amplitude and (b) phase for a series of sinusoidal
surge-velocity waveforms, plotted against normalized frequency and compared with
model predictions (dashed lines). Data are reproduced from Wei and Dabiri (2022).

against surge frequency. The torque amplitude was scaled by the surge-velocity
amplitude 𝑢∗ = 𝑓 𝐴 in the manner of a transfer-function gain, and this was nondi-
mensionalized by the steady reference torque 𝜏𝑔𝑒𝑛,0 and the free-stream velocity.
The frequency was nondimensionalized by a characteristic frequency 𝑓𝑐 derived
from the linear model of Wei and Dabiri (2022). The trends in the data are rela-
tively well-captured by the model predictions, and the nonlinear model shows some
improvement over the linear model at the lowest tip-speed ratios tested (cf. Wei and
Dabiri, 2022, Figures 7a and 9a). This suggests that the nonlinear model derived in
this work is an effective generalization of the linearization developed and validated
in the preceding study.

The benefit of the nonlinear model is evident when predictions for time-averaged
quantities of interest are required. According to the preceding linearized model,
the time-averaged rotation rate and power of the turbine will not deviate from
their corresponding steady-flow quantities. Departures from this ansatz are clearly
evident in Figure 3.7, as the mean rotation rate and power decrease as a function
of increasing surge-velocity amplitude for low tip-speed ratios, and increase for
high tip-speed ratios. The predictions of the nonlinear model, however, are able
to follow these trends. The largest enhancements in time-averaged power over the
steady case are predicted at the highest tip-speed ratios, while the greatest decreases
in time-averaged power occur at the lowest tip-speed ratios. The nonlinear model
still overpredicts these power decreases; it is likely that these additional losses are a
result of the inception of flow separation on the turbine blades. The turbine stalled
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(a) (b)

Figure 3.7: Time-averaged (a) rotation rate and (b) power, plotted against surge-
velocity amplitude. Data are reproduced from Wei and Dabiri (2022); model
predictions derived from Equation 3.7 are plotted as dashed lines and colored by tip-
speed ratio. Circles represent sinusoidal surge-velocity waveforms and diamonds
and other markers represent trapezoidal waveforms. Error bars are plotted on every
sixth point for the sake of clarity.

and stopped spinning when forced to operate at or below 𝜆0 ≈ 5, and so the decrease
in power as a function of decreasing tip-speed ratio was in reality much sharper
than that suggested by the fit to the turbine power curve in Figure 3.3. The lack of
a parameterization for these dynamics in the current modeling framework is thus
probably responsible for the lack of quantitative agreement at lower tip-speed ratios.

The discussion of flow separation and the extent to which stall is captured in the tur-
bine power curve emphasizes the key point that the critical nonlinearity in Equation
3.7 is the functional form of the power curve itself. In other words, the present quasi-
steady modeling framework hinges on a reliable characterization of the turbine in
steady flow conditions. This is a considerable advantage of the modeling approach,
since it precludes the need for unsteady calibration and can thus be applied directly
to the design of turbines in unsteady flow conditions when only steady-flow data
are available. It also implies, however, that particular attention must be paid to the
parameterization of the steady-flow power curve of the turbine. This dependence
and its implications will be discussed in Section 3.5.1.

3.4.2 Upstream flow properties
We now investigate the extension of the nonlinear model for the turbine dynamics
to the flow properties in the upstream induction region of the turbine. The unsteady
and quasi-steady data from three selected experimental cases, all measured at 𝑥 = 𝑥𝑢,
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are shown in Figure 3.8. The streamwise-velocity signals showed a phase lead and
increased amplitude with respect to the quasi-steady measurements. Also shown in
these figures are the VCT and PDT model predictions, which align well with the
shape of the phase-averaged data and anticipate the increased amplitudes and phase
leads as well. For all of these cases, both models show good agreement with the
velocity and pressure data, as well as with each other.

The differences between the induction predictions of the models is reflected in
the induction factors estimated from the power data. The time-averaged induction
factors estimated using the VCT and PDT models and correction factors are shown
in Figures 3.9a and 3.9b, respectively. The induction factors all increase with
increasing surge-velocity amplitude, but at different rates depending on tip-speed
ratio. The trends are consistent between the two models; the main difference is
that the estimated induction factors from the PDT model are slightly higher, in
accordance with the model’s sharper induction profile (noted previously in Figure
3.4).

The increases in time-averaged induction factor with surge-velocity amplitude are
tied to increases in the thrust force exerted by the turbine on the incoming flow.
According to 1D momentum theory, the thrust coefficient of the turbine is given as

𝐶𝑡 ≡
𝐹𝑡

1
2𝜌𝜋𝑅

2𝑢2
∞

= 4⟨𝑎⟩ (1 − ⟨𝑎⟩) , (3.23)

which, for the relatively low values of ⟨𝑎⟩ considered in this study, increases with
increasing ⟨𝑎⟩. The induction-factor estimates in Figure 3.9 therefore suggest that
the thrust force on the turbine increases with increasing surge-velocity amplitude.

This aligns with a simplified analysis of the thrust force of a turbine in an oscillating
inflow. If𝐶𝑡 is held constant and the dimensional thrust is integrated over a sinusoidal
surge-velocity waveform, as done for 𝐶𝑝 in Equation 3.8, the time-averaged thrust
enhancement is

𝐹𝑡

𝐹𝑡,0
= 1 + 1

2
𝑢∗2
, (3.24)

which is also an increasing function with 𝑢∗. Although direct thrust measurements
were not possible in this study due to the large inertial forces associated with the
turbine motions, the induction-factor estimates and constant-𝐶𝑡 analysis both suggest
that unsteady surge motions increase the time-averaged thrust loading on the turbine
rotor. In accordance with the trends observed in the time-averaged power data in
Figure 3.7b, the time-averaged thrust may decrease with increasing surge-velocity
amplitudes for tip-speed ratios lower than those investigated here.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: Phase-averaged velocity and pressure profiles for (a,b) a sinusoidal surge-
velocity waveform with 𝜆0 = 6.48, (c,d) a trapezoidal waveform with 𝜆0 = 6.48,
and (e,f) a trapezoidal waveform with 𝜆0 = 8.77. All surge-velocity waveforms
had 𝑢∗ = 0.242. The solid red lines represent unsteady measurements, the blue
squares represent quasi-steady measurements, the dotted lines show the VCT model
predictions, and the dashed-dotted lines show the PDT model predictions.
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(a) (b)

Figure 3.9: Time-averaged induction-factor estimates from the (a) VCT and (b) PDT
models. For these and all following figures, circles indicate sinusoidal-waveform
data and diamonds denote trapezoidal-waveform data. Points are estimated from
measured power data, while lines are estimated from the nonlinear dynamical model
of the turbine.

The case studies in Figure 3.8 and induction-factor estimates in Figure 3.9 suggest
that the VCT and PDT models produce quantitatively similar results. For the sake
of clarity, Figures 3.10 through 3.12 will only show PDT predictions. The VCT
predictions are qualitatively similar, and are provided for completeness in Appendix
B.1.

In Figure 3.10, the amplitude and phase (relative to the surge-velocity waveform)
of the estimated induction factors are presented as a function of surge-velocity
amplitude. The induction-factor amplitudes and phase offsets decrease in magnitude
with increasing tip-speed ratio; the highest amplitudes observed in the measured
data do not exceed 12% of the time-averaged values. Good agreement between the
estimates from the measured data and the estimates from the nonlinear dynamical
model is observed.

Good agreement between the model predictions and measured data is also observed
in the streamwise-velocity data, shown in terms of amplitude and phase (relative
to the quasi-steady measurements) in Figure 3.11. As noted previously, the surge
motions slightly increase the amplitude of the velocity oscillations above the quasi-
steady case, and a slight phase lead accrues with increasing surge-velocity amplitude.
There is some quantitative mismatch between the phase measurements and model
predictions, including a plateau in the phase data at the highest surge-velocity ampli-
tude that is not reflected by the model. Given the large experimental uncertainties in
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(a) (b)

Figure 3.10: (a) Amplitude and (b) phase of the estimated induction factors using
the PDT model, plotted against surge-velocity amplitude. Model predictions are
given as dashed-dotted lines.

(a) (b)

Figure 3.11: (a) Amplitude and (b) phase of the measured flow velocity at 𝑥 =

𝑥𝑢, plotted against surge-velocity amplitude. PDT model predictions are given as
dashed-dotted lines. Error bars are plotted on every fourth point for clarity.

the streamwise-velocity measurements, this is not surprising. However, the slopes of
the model-prediction lines still align with the slopes of the measured data (except for
the highest surge-velocity amplitude tested), which differ slightly across tip-speed
ratios. This suggests that the modeling framework is able to capture some of the
more subtle differences in flow properties in the upstream induction region as the
tip-speed ratio of the turbine changes.

Similar agreement in trend is observed in the pressure data, shown in amplitude
and phase (relative to the quasi-steady measurements) in Figure 3.12. The slight
increase in pressure amplitude as a function of surge-velocity amplitude is generally
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(a) (b)

Figure 3.12: (a) Amplitude and (b) phase of the measured relative pressure at
𝑥 = 𝑥𝑢, plotted against surge-velocity amplitude. PDT model predictions are given
as dashed-dotted lines. Error bars are plotted on every fourth point.

reflected in the model predictions, and as in the streamwise-velocity phase data, the
model predictions of the pressure phase follow similar slopes to those evident in the
data. Again, some quantitative differences are apparent in the plots, but given the
measurement uncertainties and the relatively small magnitude of the signals being
quantified and predicted, the qualitative agreement between the model predictions
and measured data suggests that the modeling framework is parameterizing the
salient dynamics of the system.

Finally, the time-averaged difference between the upstream and downstream pres-
sure measurements at 𝑥 = 𝑥𝑢 and 𝑥 = 𝑥𝑑 , respectively, is shown as a function of
surge-velocity amplitude in Figure 3.13 for both the VCT and PDT models. The
corresponding model predictions are calculated by evaluating the model at 𝑥 = 𝑥𝑢

and 𝑥 = −𝑥𝑑 , and assuming that the pressure exhibits odd symmetry about the
turbine rotor plane so that 𝑝(𝑥 = −𝑥𝑑) = −𝑝(𝑥 = 𝑥𝑑), as is the case for 1D mo-
mentum theory. For a real turbine with a low-pressure wake region, this is likely
not a tenable assumption. However, the model predictions still follow the trends
in the data within measurement uncertainty. The measured pressure difference can
be understood as an analogue to the thrust force on the turbine, and as previously
implied by the time-averaged induction-factor estimates, it increases with increasing
surge-velocity amplitude. As well as further demonstrating the predictive capabil-
ities of the modeling framework, these data suggest that the model could also be
extended to serve as an initial condition for wake models of the surging turbine,
which will depend on the thrust force and pressure drop across the rotor.



Chapter 3 72

(a) (b)

Figure 3.13: Pressure difference across the turbine, Δ𝑝 = 𝑝(𝑥 = 𝑥𝑢) − 𝑝(𝑥 = 𝑥𝑑),
normalized by the quasi-steady pressure difference and plotted against surge-velocity
amplitude. Model predictions are given as dotted lines for the VCT model in (a)
and as dashed-dotted lines for the PDT model in (b). Error bars are shown on every
fourth point.

In summary, both induction-model frameworks are able to reproduce the trends
observed in the centerline flow measurements recorded upstream of the turbine, and
the modeling approach may have some bearing on the near-wake region downstream
of the turbine as well. This observed agreement implies that the proposed modeling
framework is capturing the dominant dynamics of the surging-turbine system, in
spite of only incorporating empirical data from the turbine power curve and the
induction-factor correction parameter 𝜅 — both of which can be obtained from
steady-flow theories, simulations, or experiments. While the nonlinear dynamical
model accounts for unsteady rotation accelerations of the turbine, the aerodynamics
of the turbine itself are treated in a quasi-steady manner, as a function of the power
curve and the induction models. The fact that this quasi-steady first-principles model
still manages to align with data collected from a real surging turbine might suggest
that unsteady flow physics are not unambiguously present in this system. However,
the uncertainties in these experiments preclude us from ruling out this possibility,
and we will thus present a theoretical analysis of the effects of unsteady flows in
Section 3.5.2.

3.5 Further theoretical considerations
The experimental results presented in Section 3.4 establish the predictive capabili-
ties of the modeling framework outlined in Section 3.2. In this section, we address
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remaining considerations regarding the sensitivity of the unsteady turbine perfor-
mance to its steady-flow aerodynamics and the influence of unsteady flow physics
on the system. These analyses highlight potential design strategies for maximiz-
ing unsteady power enhancements with wind-energy systems in dynamic-inflow
conditions.

3.5.1 Time-averaged power enhancements
The results presented in Section 3.4.1 suggested that the amount of enhancement
in the time-averaged power extraction of a surging turbine relative to the steady
case depends on the characteristics of the power curve of the turbine. To explore
this connection further, a parametric survey using simulations of the turbine model
from Equation 3.7 with simplified power curves was instantiated. For four known
equilibrium points along the power curve, corresponding to four of the tip-speed
ratios tested in experiments, local quadratic power curves were constructed with the
form

𝐶𝑝 (𝜆) = 𝐶𝑝 (𝜆0) +
𝑑𝐶𝑝

𝑑𝜆
|𝜆0 (𝜆 − 𝜆0) +

1
2
𝑑2𝐶𝑝

𝑑𝜆2 (𝜆 − 𝜆0)2, (3.25)

where the local slope 𝑑𝐶𝑝

𝑑𝜆
|𝜆0 was taken from the fitted power curve in Equation

3.22 and the concavity 𝑑2𝐶𝑝

𝑑𝜆2 was varied between -0.1 and 0.02. The four tip-speed
ratios used in this exploration were 𝜆0 = 5.47, 6.33, 7.67, and 8.69, and the local
slope of the second tip-speed ratio was approximated as zero. This parameterization
created a set of power curves for each equilibrium point with identical local slope
but different concavities, and the effect of changing local slope could be ascertained
by comparing the simulation results across tip-speed ratios. A fixed surge-velocity
amplitude of 𝑢∗ = 0.24 was used for the simulations; other relevant parameters
were 𝑢1 = 8 ms−1, 𝜌 = 1.19 kgm−3, and Δ𝑡 = 0.001 s. As before, a fourth-order
Runge-Kutta scheme was used to integrate the model forward in time over ten surge-
oscillation periods. A strict convergence metric required the difference between
successive periods to decrease monotonically; test cases that failed this criterion
were deemed unstable and were not plotted.

The results of these simulations are shown in Figure 3.14, where the relative power
enhancement 𝐶𝑝/𝐶𝑝,0 − 1 is plotted as a function of power-curve concavity for the
four selected tip-speed ratios. Filled circles show the concavity of the full power
curve from Equation 3.22, corresponding approximately to the power gains and
losses observed in Figure 3.7b at 𝑢∗ ≈ 0.24. At zero slope and zero concavity,
the system reduces to the quasi-steady prediction derived by Wen et al. (2017) and
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Johlas et al. (2021) (Equation 3.8, shown as a red × in the figure). Where the
concavity is zero, differences are still evident across local slopes: the two highest
tip-speed ratios have negative local slopes and larger power enhancements relative
to the constant-𝐶𝑝 case. Conversely, the lowest tip-speed ratio (which has a positive
local slope) exhibits the lowest power enhancement. As concavity decreases from
zero, these power gains decrease and eventually become losses, finally becoming
unstable below some critical concavity. Positive concavities, by contrast, show
increasing power enhancements.

The influence of power-curve concavity can be understood geometrically. The
dynamics of the turbine are constrained in the present model to its power curve, and
thus periodic forcings represent periodic excursions along the power curve centered
at some equilibrium point 𝜆0. First, let us assume that the local slope at 𝜆0 is zero.
If the curve is concave-down in a neighborhood about 𝜆0, then the value of 𝐶𝑝 at
𝜆0 ± 𝜖 will be lower than 𝐶𝑝 (𝜆0). Therefore, the integrated value over a periodic
excursion away from 𝜆0 will be lower than the equilibrium value at 𝜆0. The opposite
is true when the power curve is concave up; since 𝐶𝑝 (𝜆0) is now a local minimum,
nonzero perturbations away from 𝜆0 will lead to an increased time-averaged 𝐶𝑝.
These arguments also hold qualitatively for a nonzero local slope at 𝜆0, though the
local slope does have an influence on the time-averaged value across a periodic
perturbation.

This analysis underscores the point that the geometry of the steady power curve
and the equilibrium operating point of the turbine dictate the time-averaged power
enhancements or losses that a surging turbine will experience relative to the steady-
flow case. In general, it will be favorable to operate in regions of a power curve that
have minimal concavity. In terms of turbine design, this implies that turbines whose
power curves exhibit a relatively flat maximal region will benefit the most from time-
averaged power enhancements relative to the steady case. Flattening the curve in this
manner may be achieved through traditional turbine-design methods; alternatively,
the pitch of the turbine blades could be varied within a single oscillation period to
produce the same topological effect on the 𝐶𝑝 manifold. Finally, while concave-up
power curves are not typically found in current wind-energy systems, this analysis
does suggest that such designs (if physically possible) would lead to even greater
power enhancements in unsteady flow conditions.
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Figure 3.14: Fractional enhancements in the time-averaged coefficient of power,
plotted against the concavity of the power curve (approximated as a quadratic func-
tion with fixed local slope and variable concavity), for four tip-speed ratios. A
sinusoidal surge-velocity waveform with 𝑢∗ = 0.24 was used for these simulations.
The red × shows the constant-𝐶𝑝 solution given in Equation 3.8, and the solid cir-
cles denote the approximate concavity of the actual power curve at each reference
tip-speed ratio.

3.5.2 The role of unsteady flow physics
Until this point, we have neglected the contribution of unsteady fluid mechanics to
the system in question. We now investigate these effects analytically. The analysis in
this section is purely theoretical, and is included to complete the conceptual picture
of wind-energy systems in dynamic-inflow conditions that has been presented in
this work. Thus, quantitative predictions and comparisons with the experimental
results shown previously are not pursued.

3.5.2.1 Specifying velocity potentials for an unsteady extension to 1D momen-
tum theory

To characterize the influence of streamwise unsteadiness on the theoretical efficiency
of wind-energy systems, we extend the analytical framework of Dabiri (2020) using
the potential-flow modeling approach proposed in Section 3.2.3. This unsteady
extension to the 1D momentum theory of Betz uses the same control volume shown
in Figure 3.1, but makes use of two additional unsteady terms:

𝑑

𝑑𝑡
[𝐾𝐸] = 𝑑

𝑑𝑡

[
−1

2
𝜌

∬
𝐴2

𝜙�̂� · ∇𝜙𝑑𝐴
]
, (3.26)

which represents the unsteady power associated with changes in the streamwise
kinetic energy of the actuator disc, and

Φ𝑡 =
𝜕𝜙2
𝜕𝑡

− 𝜕𝜙3
𝜕𝑡
, (3.27)
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which is the difference in the unsteady potential across the face of the actuator
disc. These quantities are accounted for in energy-conservation relations to obtain
expressions for the time-averaged unsteady power. Here, we use 𝐴𝑖 to refer to the
cross-sectional area at streamwise location 𝑖; this is not to be confused with the
surge-motion amplitude 𝐴 used elsewhere in this work.

By specifying a velocity potential for the moving actuator disc, we aim to close
these two terms and parameterize the instantaneous and time-averaged coefficients
of power as a function of the induction factor (as in the steady Betz analysis) and the
surge kinematics of the actuator disc. For the sake of simplicity, we will assume that
the induction factor 𝑎 varies in a quasi-steady manner, and will not consider time-
derivatives of 𝑎. Additionally, we only consider the velocity potential associated
with the surge velocity 𝑈 (𝑡), and assume that the velocity potential connected to
the free-stream velocity 𝑢1 has no unsteady contribution. We begin by completing
the analysis for a moving porous disc, and then explore the effects of more general
classes of velocity potentials. For the sake of brevity, we omit intermediate steps in
the derivations here; several of these details are provided in Appendix B.2.

From Equation 3.15, the velocity potential for a moving porous disc located instan-
taneously at 𝑥 = 𝑥2 can be written as

𝜙 (𝑟, 𝑥) = 𝑎(𝑢1 −𝑈)
√︂

2
𝜋
𝑅3/2

∫ ∞

0
𝑠−1/2𝐽3/2(𝑅𝑠)𝐽0(𝑟𝑠)𝑒𝑠(𝑥−𝑥2)𝑑𝑠; 𝑥 < 𝑥2, (3.28)

and from this expression, the kinetic energy of the disc moving at velocity𝑈 can be
derived as

𝐾𝐸𝑑𝑖𝑠𝑐 =
4
3
𝜌𝑎2𝑈2𝑅3 (3.29)

(cf. Lamb, 1916, Art. 102, Eq. 20). The time derivative is therefore

𝑑

𝑑𝑡
[𝐾𝐸𝑑𝑖𝑠𝑐] =

8
3
𝜌𝑅3𝑎2𝑈

𝑑𝑈

𝑑𝑡
. (3.30)

The unsteady-potential term Φ𝑡 can be computed by applying the chain rule to
Equation 3.28, which gives

𝜕𝜙2
𝜕𝑡

= −2
𝜋
𝑎
√︁
𝑅2 − 𝑟2 𝑑𝑈

𝑑𝑡
+ 𝑎𝑈2. (3.31)

Using the odd extension to model the region immediately downstream of the disc,
we obtain an expression for 𝜕𝜙3

𝜕𝑡
that is identical except that the first term in positive.

Averaging this over the area of the disc gives

⟨Φ𝑡⟩ ≡ Φ𝑡,𝑑𝑖𝑠𝑐 = −8𝑅
3𝜋
𝑎
𝑑𝑈

𝑑𝑡
. (3.32)
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These results may now be introduced into the framework of Dabiri (2020), with
some additional considerations that reduce the parameter space of the theory. The
unsteady power associated with the motion of the disc leads to a difference between
the available power upstream and downstream of the disc (cf. Dabiri, 2020, Eq. 11):

1
2
𝜌𝐴2

(
𝑢3

2 − 𝑢
3
3

)
=
𝑑

𝑑𝑡
[𝐾𝐸] . (3.33)

Defining additional induction factors 𝑏 = 1−𝑢3/𝑢1 and 𝑐 = 1−𝑢4/𝑢1, this expression
can be written as

(1 − 𝑎)3 − (1 − 𝑏)3 =
2

𝜌𝐴2𝑢
3
1

𝑑

𝑑𝑡
[𝐾𝐸] , (3.34)

which we can solve for 𝑏 in terms of 𝑎:

𝑏 = 1 −
[
(1 − 𝑎)3 − 2

𝜌𝐴2𝑢
3
1

𝑑

𝑑𝑡
[𝐾𝐸]

]1/3

. (3.35)

A nondimensional form of the momentum equation for this problem can be written
by means of the unsteady Bernoulli equation as

−2𝑐(1 − 𝑎) = (1 − 𝑐)2 + (1 − 𝑎)2 − (1 − 𝑏)2 − 1 + 2Φ𝑡

𝑢2
1
, (3.36)

which can be solved for the remaining induction factor 𝑐 as

𝑐 = 𝑎 ±
√︄

2𝑎 − 1 + (1 − 𝑏)2 − 2Φ𝑡

𝑢2
1
. (3.37)

In this expression, the larger root is taken to satisfy the physical requirement that
the flow must slow down between locations 2 and 4, which implies 𝑐 > 𝑎. Having
written the additional induction factors 𝑏 and 𝑐 in terms of the original induction
factor 𝑎 and the known unsteady contributions 𝑑

𝑑𝑡
[𝐾𝐸] and Φ𝑡 , we can find the

instantaneous coefficient of power using the relation

𝐶𝑝 =
1
2

(
4𝑐 − 4𝑐2 + 𝑐3

)
+ 1

2
(2 − 𝑐)

[
(1 − 𝑏)2 − (1 − 𝑎)2] − (2 − 𝑐)

(
Φ𝑡

𝑢2
1

)
. (3.38)

This expression is limited by the physical constraints 𝑏 ∈ [0, 1], 𝑐 ∈ [0, 1], and
𝐶𝑝 ≥ 0, which enforce that the velocities at locations 3 and 4 cannot be negative
or exceed the free-stream velocity, and that the power extracted from the actuator
disc cannot be negative. This analysis does not account for quasi-steady changes in
𝐶𝑝 due to the normalization by the effective inflow velocity 𝑢1 − 𝑈 (𝑡); therefore,
changes in 𝐶𝑝 predicted by this theoretical framework will appear in practice as
adjustments to the time-averaged power predictions of the quasi-steady modeling
approach outlined in Section 3.2.1.
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3.5.2.2 Phase-plane analysis of a surging porous disc
While Dabiri (2020) assumed that the parameters 𝑎, 𝑏, 𝑐, and Φ𝑡 were independent,
we now have a theoretical framework that only depends on the induction factor 𝑎
and the surge kinematics of the actuator disc, 𝑈 and 𝑑𝑈

𝑑𝑡
. For a given induction

factor, we may therefore use the system of equations described above to construct a
phase portrait for 𝐶𝑝 in terms of the surge kinematics. Contours of 𝐶𝑝 in the 𝑈- 𝑑𝑈

𝑑𝑡

phase plane are shown for four values of 𝑎 (0.21, 0.27, 1/3, and 0.40) in Figure 3.15.
The orange contour marks the Betz efficiency (𝐶𝑝/𝐶𝑝,𝐵𝑒𝑡𝑧 = 1), and grey regions
represent locations in the phase plane where one of the physical constraints on 𝐶𝑝
is violated.

If 𝑎 is constant, a surge waveform will appear as a periodic loop in the phase plane
that must be centered on the origin so that the turbine has no net displacement.
A sinusoidal waveform will follow an elliptical trajectory about the origin, while
a trapezoidal waveform will appear as a rectangular trajectory. The time-averaged
coefficient of power is calculated by evaluating the line integral of 𝐶𝑝 along one
closed cycle of this trajectory. The depiction of 𝐶𝑝 in the phase plane thus allows
the effects of the unsteady velocity potential and power terms from the porous disc
to be evaluated by topological reasoning.

To illustrate this line of argumentation, we consider the case where 𝑎 = 1/3 (Figure
3.15c). A trajectory that is centered on the origin will experience instantaneous
values of 𝐶𝑝 in excess of the steady-flow Betz limit for positive surge accelerations,
while 𝐶𝑝 will decrease below 𝐶𝑝,𝐵𝑒𝑡𝑧 for negative surge accelerations. However,
the slope of the contours of 𝐶𝑝 is greater below the Betz-limit contour than above
it. Thus, for a nonzero surge trajectory, the lower 𝐶𝑝 values sampled below the
zero-acceleration axis will outweigh the higher 𝐶𝑝 values sampled above the axis,
and the time-averaged coefficient of power will be lower than the steady coefficient
of power. This mathematical effect is qualitatively similar to the concavity-based
arguments described above in Section 3.5.1.

For values of 𝑎 that are above or below the steady-flow optimal value of 1/3, the same
arguments hold: the topology of 𝐶𝑝 in the phase plane implies that nontrivial surge
motions will yield a decrease in time-averaged efficiency as a result of unsteady
effects. Furthermore, if 𝑎 is allowed to vary in a quasi-steady manner, the surge
trajectory will exist in a three-dimensional phase space spanned by 𝑈, 𝑑𝑈

𝑑𝑡
, and 𝑎.

Ascertaining the precise differences in time-averaged power extraction may be done
numerically for a given profile of 𝑎(𝑡), e.g. one obtained from the amplitude and
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(a) (b)

(c) (d)

Figure 3.15: Contours of 𝐶𝑝/𝐶𝑝,𝐵𝑒𝑡𝑧 calculated from Equation 3.38 for a moving
porous disc, plotted in the surge-kinematics phase plane as a function of surge
velocity and acceleration for induction factors of (a) 0.21, (b) 0.27, (c) 1/3, and (d)
0.40. The orange line indicates𝐶𝑝 = 𝐶𝑝,𝐵𝑒𝑡𝑧, and grey regions denote dynamics that
violate one or more assumptions of the theoretical framework. To nondimensionalize
the surge acceleration, 𝑇 is taken to be 1 s.

phase data shown in Figure 3.10. Still, as the region in the phase plane where
efficiencies above the steady Betz limit occur moves away from the origin for
𝑎 ≠ 1/3, it is apparent that oscillations in 𝑎 will further decrease the time-averaged
efficiency of the system.

3.5.2.3 General velocity potentials and the effects of fore-aft asymmetry
We have shown that the unsteady contribution to the time-averaged efficiency of
a wind-energy system modeled as a surging porous disc is negative. However,
efficiency enhancements may be attained with a different choice of velocity potential.
Consider a general velocity potential for a moving body with translation velocity U,
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angular velocity 𝛀, and circulation Γ, located instantaneously at a point x = x0 in
an otherwise quiescent fluid:

𝜙(x) = U · 𝚵 +𝛀 ·𝚯 + Γ

(
𝜃

2𝜋
+ 𝜓

)
(3.39)

(Batchelor, 2000, Eq. 6.4.10). Here, boldfaced variables refer to vectors in 3-space.
The functions 𝚵, 𝚯, and 𝜓 are geometric descriptors that only depend on location
relative to the body, x − x0. For bodies producing zero circulation, Γ = 0. We
also ignore the effect of rotation and set 𝛀 = 0. (The effect of rotation is explained
in Appendix B.2.) The translational kinetic energy associated with such a moving
body scales as𝑈2, and thus the unsteady power term will always scale as

𝑑

𝑑𝑡
[𝐾𝐸] ∼ 𝑈𝑑𝑈

𝑑𝑡
, (3.40)

irrespective of the body geometry parameterized by the function 𝚵.

The time derivative of the velocity potential, on the other hand, is affected by body
geometry. This can be written as

𝜕𝜙

𝜕𝑡
=
𝑑U
𝑑𝑡

· 𝚵 − U · u (3.41)

(Batchelor, 2000, Eq. 6.4.22), where u is the local flow velocity at x. To compute
Φ𝑡 from the unsteady theoretical framework, we assume that the local flow velocity
in the quiescent-fluid frame at streamwise locations 2 and 3 scales with the velocity
of the body, 𝑈. Additionally, since the velocity on either side of the translating
body must decrease with increasing distance from the body, the geometric function
𝚵 must exhibit odd symmetry about the body plane.

For a translating symmetric body in potential flow, u on either side of the body will
be identical. Therefore, when taking the difference of the unsteady-potential terms
upstream and downstream of the body, the U ·u term will cancel. The odd symmetry
of the geometric function 𝚵 will retain the acceleration-dependent term, and thus
for a symmetric body, we have

Φ𝑡 ∼ 𝑅
𝑑𝑈

𝑑𝑡
. (3.42)

For a body that exhibits fore-aft asymmetry about its flow-normal center plane,
however, u may differ across the upstream and downstream sides of the body. In
this case, the quadratic velocity term may not cancel, suggesting that

Φ𝑡 ∼ 𝑅
𝑑𝑈

𝑑𝑡
±𝑈2. (3.43)



Chapter 3 81

The additional dependence on𝑈2 will change the topology of 𝐶𝑝 in the phase plane
and affect the time-averaged coefficients of power that are possible in the theoretical
framework.

To illustrate these effects, we conduct a phase-plane analysis by assuming the exis-
tence of a velocity potential for a moving asymmetric body that yields

Φ𝑡 = − 8
3𝜋
𝑎

(
𝑅
𝑑𝑈

𝑑𝑡
+𝑈2

)
. (3.44)

We keep the same scaling coefficients as for the surging porous disc for the sake
of comparison, and use the same expression for the kinetic energy of the body
(Equation 3.30). Contours of 𝐶𝑝 for the same four values of 𝑎 shown previously
are given for this representative model in Figure 3.16. We again first consider the
case where 𝑎 = 1/3 (Figure 3.16c). Here, we observe that the addition of the 𝑈2

term in the expression for Φ𝑡 has curved the contours of 𝐶𝑝 such that the region
where𝐶𝑝 > 𝐶𝑝,𝐵𝑒𝑡𝑧 now extends below the zero-acceleration axis. This implies that
a trajectory centered on the origin can have a time-averaged efficiency that exceeds
the steady Betz limit. This may also be possible if we allow for small oscillations in
𝑎, depending on the surge kinematics applied and their corresponding trajectories
in the phase space.

If the sign of the 𝑈2 term in Equation 3.44 were reversed, the concavity of the
contours would also be reversed, leaving the region where 𝐶𝑝 > 𝐶𝑝,𝐵𝑒𝑡𝑧 on the
interior of a concave-up parabola with respect to the surge velocity. In this scenario,
a periodic trajectory will spend less time in the efficiency-enhancing region relative
to the efficiency-depleting region, and the time-averaged efficiency will therefore
drop below the steady Betz limit. Thus, fore-aft asymmetry in the velocity potential
is a necessary but not sufficient condition for enhancements in the time-averaged
efficiency of a periodically translating actuator body.

This conceptual exercise demonstrates that, for symmetric bodies in potential flow,
the unsteady contribution to time-averaged efficiency will be negative. As the
modeling efforts and experiments presented previously seem to suggest that a mov-
ing porous-disc model captures the dominant dynamics of a periodically surging
horizontal-axis wind turbine, it is likely that unsteady effects would act against
the time-averaged power enhancements described in Section 3.5.1 above. This
hypothesis appears to be consistent with the time-averaged power data shown in
Figure 3.7b, which at high surge-velocity amplitudes tend to be overpredicted by
the nonlinear turbine model (which assumes quasi-steady aerodynamics). However,
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wind-energy systems need not be symmetric. Streamwise asymmetries across the
rotor plane could be introduced either mechanically, through the geometry of the
turbine, or dynamically, through intracycle blade-pitch or generator-load control.
These non-traditional design and control paradigms could create beneficial asym-
metries in the equivalent velocity potential of the system that could be leveraged to
achieve higher time-averaged efficiencies than steady-flow or quasi-steady analyses
would suggest. In the case of dynamic induction-control schemes, the influence
of unsteady induction-factor variations 𝑑𝑎

𝑑𝑡
may no longer be negligible, and the

analysis presented here would need to be expanded to include these variations in
a four-dimensional phase space. Still, the present analysis can serve as a helpful
theoretical framework for characterizing trends in unsteady contributions to the
efficiency of wind-energy systems.

3.6 Conclusions
In this work, a nonlinear dynamical model for the power generation of a periodically
surging wind turbine was paired with a potential-flow model for the flow properties
upstream of the turbine. This modeling framework was shown to reproduce trends
in experimental measurements of both the time-averaged power extraction and up-
stream flow-velocity and pressure, at surge-velocity amplitudes of up to 24% of the
wind speed. These results are posited to be equally applicable to stationary turbines
in dynamically varying inflow conditions, such as axial gusts. A key advantage of
this approach is that the entire modeling approach is calibrated only by steady-flow
quantities: the turbine power curve and the radial induction profile of the turbine
at the rotor plane. The theoretical analyses also identified and parameterized con-
tributions to power-extraction enhancements over the steady-flow case, such as a
dependence on the local concavity of the turbine power curve and the role of stream-
wise asymmetries in unsteady power gains. This work thus not only informs the
design, characterization, and control of wind and hydrokinetic turbines in unsteady
flow environments, such as floating offshore wind farms and tidal currents, but also
yields fundamental insights into the relative influences of quasi-steady and unsteady
fluid mechanics in energy-harvesting systems.

While similar theoretical tools have been widely applied to the analysis of wind
turbines in steady flow, a major contribution of this work is the extension of these
methods to unsteady flow contexts. The porous-disc model is also similar in prin-
ciple to the actuator-disc models often used in numerical simulations of large wind
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(a) (b)

(c) (d)

Figure 3.16: Contours of𝐶𝑝/𝐶𝑝,𝐵𝑒𝑡𝑧 for a moving porous asymmetric body (param-
eterized by Equation 3.44), plotted in the surge-kinematics phase plane as a function
of surge velocity and acceleration for induction factors of (a) 0.21, (b) 0.27, (c)
1/3, and (d) 0.40. The orange line indicates 𝐶𝑝 = 𝐶𝑝,𝐵𝑒𝑡𝑧, and grey regions denote
dynamics that violate one or more assumptions of the theoretical framework.

farms (e.g. Calaf et al., 2010; Stevens and Meneveau, 2017), and thus this study
could inform modifications of existing actuator-disc simulations for surging-turbine
or dynamic-inflow conditions. This may be particularly useful for large-eddy simu-
lations (LES) of floating offshore turbine arrays, where the analytical turbine model
can help to parameterize the coupling between turbine inflow conditions, sea-surface
waves, and floating-platform dynamics. Additionally, the induction and thrust-force
predictions of this modeling framework could be used as initial conditions for wake
models of turbines in dynamic inflow conditions, which could further improve
parameterizations of turbine aerodynamics in numerical simulations. Such a con-
nection was recently developed for yawed turbines by Heck et al. (2023), whose
modeling philosophy was influential in the development of the present analytical
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approach. These wake-modeling initiatives would further benefit from the work of
Steiros and Hultmark (2018) and Bempedelis and Steiros (2022), particularly for
capturing wake-pressure effects in highly loaded turbine configurations.

This work has several implications for full-scale wind-energy systems in real-world
flow conditions. First, the analytical model for flow properties upstream of a
surging turbine can be used in conjunction with nacelle-mounted LiDAR units for
improved load control and wind-speed estimation in floating offshore applications.
The same principles can be applied to stationary turbines in gusty environments and
kite-mounted aerial turbines. Secondly, these analytical and experimental results
reinforce and parameterize the evidence collected by Wen et al. (2017), El Makdah
et al. (2019), Johlas et al. (2021), and Wei and Dabiri (2022) that streamwise
unsteadiness (either in the flow or in the turbine itself) can lead to increases in
power extraction above the reference steady case. The present investigations suggest
both quasi-steady and unsteady mechanisms that can be exploited to capitalize on
these power-extraction enhancements. Future work can investigate turbine design
and control strategies, such as active blade pitching and intracycle load control (e.g.
Strom et al., 2017), that may further increase the time-averaged power extraction
of floating offshore wind turbines and other systems that can operate in inherently
unsteady flows. The modeling framework also provides a means to estimate thrust
loads on turbines from dynamic inflow conditions, which may increase fatigue
loading on turbine blades and support structures. The analytical tools outlined in
this study can inform control strategies that anticipate the changes in thrust and blade
loading as a function of changing inflow conditions and dynamically adjust the blade
pitch or generator load to mitigate the unsteady loads of unwanted disturbances and
oscillations. Whether these models are used to enhance unsteady power-conversion
gains or extend the operational lifespan of energy-harvesting systems by controlling
unsteady loads, this work makes the case that unsteady flow phenomena should be
at the forefront of design considerations for structures operating in the atmosphere
and ocean.
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Chapter 4

Field Measurements of the Near-Wake
Structure of Full-Scale Vertical-Axis Wind

Turbines

The contents of this chapter have been reproduced from Wei et al. (2021), published
in the Journal of Fluid Mechanics under the title “Near-wake structure of full-scale
vertical-axis wind turbines.” As the first author, Nathan Wei made the primary
contributions to data processing, data analysis, modeling, and writing, and also
conducted the artificial-snow validation experiments described in the appendix of
this work. Ian Brownstein oversaw the conceptualization, planning, and execution
of the field experiments, and Jen Cardona and Mike Howland assisted with data
collection. John Dabiri contributed to the conceptualization of the study, funding
acquisition, and analysis and interpretation of the results. All co-authors provided
input on the final manuscript draft.

In addition, large-eddy simulations of the field-experiment scenario were conducted
by collaborators from the University of Houston and have been published in the
Journal of Renewable and Sustainable Energy (Gharaati et al., 2022). Though these
results are not discussed in this chapter, many qualitative similarities can be observed
between the experimental and simulation data, and the simulations provide time-
resolved evidence of the vortex-motion mechanisms described in this work. Nathan
Wei contributed to the conceptualization of the numerical study, the interpretation
of its results, and feedback on the manuscript.

Abstract
To design and optimize arrays of vertical-axis wind turbines (VAWTs) for maximal
power density and minimal wake losses, a careful consideration of the inherently
three-dimensional structure of the wakes of these turbines in real operating con-
ditions is needed. Accordingly, a new volumetric particle-tracking velocimetry
method was developed to measure three-dimensional flow fields around full-scale
VAWTs in field conditions. Experiments were conducted at the Field Laboratory
for Optimized Wind Energy (FLOWE) in Lancaster, CA, using six cameras and ar-
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tificial snow as tracer particles. Velocity and vorticity measurements were obtained
for a 2-kW turbine with five straight blades and a 1-kW turbine with three helical
blades, each at two distinct tip-speed ratios and at Reynolds numbers based on the
rotor diameter 𝐷 between 1.26 × 106 and 1.81 × 106. A tilted wake was observed
to be induced by the helical-bladed turbine. By considering the dynamics of vortex
lines shed from the rotating blades, the tilted wake was connected to the geometry
of the helical blades. Furthermore, the effects of the tilted wake on a streamwise
horseshoe vortex induced by the rotation of the turbine were quantified. Lastly, the
implications of these dynamics for the recovery of the wake were examined. This
study thus establishes a fluid-mechanical connection between the geometric features
of a VAWT and the salient three-dimensional flow characteristics of its near-wake
region, which can potentially inform both the design of turbines and the arrangement
of turbines into more efficient arrays.

4.1 Introduction
Wind turbines are becoming increasingly important contributors to global energy
supplies, as they represent a low-carbon alternative to traditional power-generation
technologies that rely on the combustion of fossil fuels. If wind power is to comprise
a larger share of global energy production, the efficiency and power density of wind
farms will need to be improved (Jacobson and Archer, 2012). The critical limitation
of these large arrays is not the efficiency of individual wind turbines, which already
operate at efficiencies approaching their theoretical maximum (Betz, 1920), but
rather the dynamics of wind-turbine wakes and their effects on downstream turbines
(Stevens and Meneveau, 2017). The efficiency of the large-scale deployment of wind
power thus depends largely on a more careful consideration of the wake dynamics
of wind turbines.

Horizontal-axis wind turbines (HAWTs) typically have long wakes that extend up
to 20 turbine diameters (𝐷) downstream of the turbine itself (Vermeer et al., 2003;
Meyers and Meneveau, 2012; Hau, 2013b; Stevens and Meneveau, 2017), although
wake persistence may vary with field conditions (e.g. Nygaard and Newcombe,
2018). HAWTs placed in closely packed arrays therefore generally incur significant
losses from the wakes of upstream turbines (e.g. Barthelmie et al., 2007; Barthelmie
and Jensen, 2010; Barthelmie et al., 2010). Vertical-axis wind-turbine (VAWT)
wakes, by contrast, have been observed to recover their kinetic energy within 4 to
6 𝐷 downstream of the turbine, albeit with lower individual coefficients of thrust
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and power (Kinzel et al., 2012; Kinzel et al., 2015; Ryan et al., 2016). VAWTs can
also be arranged in pairs, to capitalize on synergistic fluid interactions between the
turbines (e.g. Rajagopalan et al., 1990; Brownstein et al., 2016; Ahmadi-Baloutaki
et al., 2016; Hezaveh et al., 2018; Brownstein et al., 2019). Taken together, these
factors imply that arrays of VAWTs can potentially achieve power densities an order
of magnitude higher than those of conventional wind farms (Dabiri, 2011).

The dynamics of VAWT wakes are therefore relevant to the design of large-scale
wind farms with higher energy densities, and accordingly have been analyzed in
several recent studies. The replenishment of momentum in both HAWT and VAWT
wakes has been shown to be dependent on turbulent entrainment of fluid from
above the turbine array, through modeling (Meneveau, 2012; Luzzatto-Fegiz and
Caulfield, 2018), simulations (Calaf et al., 2010; Hezaveh and Bou-Zeid, 2018),
wind-tunnel experiments (Chamorro and Porté-Agel, 2009; Cal et al., 2010), and
field experiments (Kinzel et al., 2015). VAWTs also exhibit large-scale vortical
structures in their wakes that may further augment wake recovery. These vortex
dynamics have been observed in scale-model studies of varying geometric fidelity,
from rotating circular cylinders (Craig et al., 2016) to complete rotors (e.g. Tescione
et al., 2014; Brownstein et al., 2019). The inherently three-dimensional nature of
these vortical structures, coupled with the high Reynolds numbers of operational
VAWTs, complicates experimental and numerical studies of the dynamics of VAWT
wakes.

Accordingly, numerical simulations with varying levels of complexity have been
applied to study VAWT wakes. For studies of wake interactions within arrays, two-
dimensional (2D) Reynolds-averaged Navier-Stokes (RANS) simulations have often
been employed (e.g. Bremseth and Duraisamy, 2016; Zanforlin and Nishino, 2016).
Large-eddy simulation (LES) studies have generally used actuator-line models to
approximate the effects of the individual blades on the flow (e.g. Shamsoddin and
Porté-Agel, 2014; Shamsoddin and Porté-Agel, 2016; Abkar and Dabiri, 2017;
Hezaveh and Bou-Zeid, 2018; Abkar, 2018). Posa et al. (2016) and Posa and Balaras
(2018) were able to resolve the unsteady vortex shedding of individual blades in
the spanwise component of vorticity using LES with periodic boundary conditions
in the spanwise direction, which meant that tip-vortex shedding was not captured.
More recently, Villeneuve et al. (2020) used delayed detached-eddy simulations
(DDES) and a fully three-dimensional turbine model in a rotating overset mesh to
study the effects of end plates on VAWT wakes, resolving 3D vortex shedding and
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the wake dynamics up to 10 𝐷 into the wake. Numerical simulations have thus
continued to improve in their capacity to resolve the salient dynamics in the wakes
of VAWTs.

Laboratory- and field-scale experiments have been extensively employed to charac-
terize the wake dynamics of HAWTs over a large range of configurations and inflow
conditions (e.g. Chamorro and Porté-Agel, 2009; Bastankhah and Porté-Agel, 2017;
Schottler et al., 2017; Bartl et al., 2018), and similar laboratory-scale experiments
have proved invaluable for the analysis of the wake structures of VAWTs as well.
Experiments with VAWTs, however, have generally been limited to planar measure-
ments in the laboratory (e.g. Brochier et al., 1986; Ferreira et al., 2009; Battisti et
al., 2011). The deployment of stereoscopic particle-image velocimetry (stereo-PIV)
has allowed some three-dimensional effects to be captured (Tescione et al., 2014;
Rolin and Porté-Agel, 2015; Rolin and Porté-Agel, 2018), as has the use of planar
PIV with multiple imaging planes (Parker and Leftwich, 2016; Parker et al., 2017;
Araya et al., 2017). These planar techniques have been successful in identifying
characteristic vortex phenomena, such as dynamic stall on turbine blades (Ferreira
et al., 2009; Dunne and McKeon, 2015; Buchner et al., 2015; Buchner et al.,
2018) and tip-vortex shedding from the ends of individual blades (Hofemann et al.,
2008; Tescione et al., 2014). Generally, however, it is difficult to compute all three
components of vorticity or the circulation of vortical structures with purely planar
measurements. The analysis of the three-dimensional character of vortical struc-
tures in the wake is therefore greatly facilitated by fully three-dimensional flow-field
measurements. Such experiments have only recently been carried out in laboratory
settings. Using tomographic PIV, Caridi et al. (2016) resolved the three-dimensional
structure of tip vortices shed by a VAWT blade within a small measurement volume
with a maximum dimension of 5.5 blade chord lengths. Ryan et al. (2016) obtained
3D time-averaged velocity and vorticity measurements of the full wake of a model
VAWT using magnetic-resonance velocimetry (MRV). Most recently, Brownstein
et al. (2019) used 3D particle-tracking velocimetry (PTV) to obtain time-averaged
measurements of the wakes of isolated and paired VAWTs. These studies were all
carried out at laboratory-scale Reynolds numbers, which fell between one and two
orders of magnitude below those typical of operational VAWTs. Miller, Duvvuri,
Brownstein, et al. (2018) attained Reynolds numbers up to 𝑅𝑒𝐷 = 5 × 106 using
a compressed-air wind tunnel, and their measurements of the coefficients of power
demonstrated a Reynolds-number invariance for 𝑅𝑒𝐷 > 1.5 × 106. These power
measurements suggest that Reynolds numbers on the order of 106 may be required
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to fully capture the wake dynamics of field-scale turbines. As an alternative to lab-
oratory experiments at lower 𝑅𝑒𝐷 , experiments in field conditions at full scale are
possible, but these have been limited to pointwise anemometry (Kinzel et al., 2012;
Kinzel et al., 2015) or 2D planar velocity measurements (Hong et al., 2014). Thus,
for the validation and extension of existing experimental work on the wake dynamics
of VAWTs, 3D flow measurements around full-scale VAWTs in field conditions are
desirable.

The additional benefit of 3D flow measurements is that they enable the effects of
complex turbine geometries on wake structures to be investigated. This is particu-
larly useful for VAWTs, since several distinct geometric variations exist. Because
of the planar constraints of most experimental and numerical studies, VAWTs with
straight blades and constant spanwise cross-sections have primarily been studied
due to their symmetry and simplicity of construction. However, there exist several
VAWT designs that incorporate curved blades. Large-scale Darrieus-type turbines
have blades that are bowed outward along the span, and these have historically
reached larger sizes and power-generation capacities than straight-bladed turbines
(Möllerström et al., 2019). Similarly, many modern VAWTs have helical blades that
twist around the axis of rotation, following the design of the Gorlov Helical Turbine
(Gorlov, 1995), to reduce fatigue from unsteady loads on the turbine blades. Rela-
tively few studies have investigated the flow physics of these helical-bladed VAWTs
in any kind of detail. Schuerich and Brown (2011) used a vorticity-transport model
for this purpose, and Cheng et al. (2017) approached the problem using unsteady
RANS, 2D LES, and wind-tunnel experiments. Aliferis et al. (2019) studied the 2D
planar wake structure of a Savonius-type VAWT with helical blades using a Cobra
probe on a traverse. Lastly, Ouro et al. (2019) analyzed turbulence quantities in
the wake of a helical-bladed VAWT in a water channel using pointwise velocity
measurements from an anemometer on a traverse. A full treatment of the effects
of the helical blades on the three-dimensional vorticity fields and corresponding
vortical structures in the wake has yet to be undertaken.

Thus, the purpose of this work is to study the three-dimensional flow features of op-
erational VAWTs in the field. The work revolves around two primary contributions:
the development of a field-deployed 3D-PTV measurement system, and the analysis
of topological and dynamical characteristics of vortical structures in the wakes of
full-scale VAWTs. First, the characterization of the artificial-snow-based technique
for obtaining three-dimensional, three-component measurements of velocity and
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vorticity in field experiments around full-scale VAWTs will be documented (Sec-
tion 4.2). Experiments with two VAWTs, one with straight blades and one with
helical blades and each at two tip-speed ratios, will then be outlined. Velocity and
vorticity fields from these experiments will be presented, and a difference in the
three-dimensional structure of the wake between the two types of turbines will be
identified (Sections 4.3.1 and 4.3.2). This tilted-wake behavior will be analyzed
further, to establish a connection between blade geometry and wake topology (Sec-
tion 4.3.3). The results from these analyses shed light on the dynamics that govern
the near wake of VAWTs (up to ∼ 3 𝐷 downstream, cf. Araya et al., 2017), and
implications of these findings for future studies and for the design and optimization
of VAWT wind farms will be discussed (Sections 4.3.4 and 4.3.5). This work rep-
resents the first full-scale, fully three-dimensional flow-field study on operational
VAWTs in field conditions, and therefore provides fundamental insights into the
wake dynamics at high Reynolds numbers and the fluid mechanics of wind energy.

4.2 Experimental methods
In this section, the setup of the field experiments is outlined, and a novel technique for
3D-PTV measurements in field conditions is introduced. The experimental proce-
dure is discussed, and the post-processing steps for computing velocity and vorticity
fields are described. Additional details and characterizations of the measurement
system are given in appendices C.1 and C.2.

4.2.1 Field site and turbine characterization
Experiments were carried out during the nights of 9-11 August 2018 at the Field
Laboratory for Optimized Wind Energy (FLOWE), located on a flat, arid segment
of land near Lancaster, California, USA. Details regarding the geography of the site
are provided by Kinzel et al. (2012). Wind conditions at the site were measured with
an anemometer (First Class, Thies Clima) and a wind vane (Model 024A, Met One),
which recorded data at 1 Hz with accuracies of ±3% and ±5◦, respectively. These
were mounted on a meteorological tower (Model M-10M, Aluma Tower Co.) at a
height of 10 m above the ground. The tower also recorded air temperature, which
was used to interpolate air density from a density-temperature table. A datalogger
(CR1000, Campbell Scientific) recorded these data at 1- and 10-minute intervals.
The height difference between the anemometer and the VAWTs was corrected using
a fit of an atmospheric boundary-layer profile to data collected previously at the
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(a) (b)

Figure 4.1: (a) Wind rose for conditions during experiments (9-11 August 2018).
The plotted wind speeds and directions are those recorded by the tower-mounted
anemometer, located 10 m above the ground, and have been binned in ten-minute
averages by 1 ms−1 and 5◦, respectively. (b) Wind speeds and directions, from a
single experiment (three eight-minute data sets), binned in one-minute averages.

site at multiple heights (cf. Kinzel et al., 2012). The correction resulted in a 3%
change in the free-stream velocity, which compared more favorably with the particle-
based flow-field measurements than the uncorrected readings. The measured wind
conditions at the site during experiments were uniform in both magnitude and
direction: the wind speed was 11.01 ± 1.36 ms−1, and the wind direction was from
the southwest at 248± 3◦. These statistics were calculated from sensor data that had
been averaged by the datalogger into ten-minute readouts, and are summarized in
the wind rose shown in Figure 4.1a.

For these experiments, two types of VAWTs were employed. A 1-kW, three-bladed
VAWT with helical blades, built by Urban Green Energy (UGE), was compared with
a 2-kW, five-bladed VAWT with straight blades from Wing Power Energy (WPE).
The blades of both turbines had constant cross-sectional geometries. The blade
twist of the helical-bladed turbine, representing the angle of twist with respect to
the axis of rotation per unit length along the span of the turbine, was 𝜏 = 0.694
rad · m−1. Photos and details of these two turbines, referred to in this work by their
manufacturer’s acronyms (UGE and WPE), are given in Figure 4.2. Each turbine
was tested at two different tip-speed ratios, defined as

𝜆 =
𝜔𝑅

𝑈∞
, (4.1)
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Helical-Bladed Turbine (UGE)

Manufacturer Urban Green Energy
Model VisionAir 3
Rated Power 1 kW
Number of Blades 3
Turbine Radius 0.9 m
Turbine Span 3.2 m
Blade Chord 0.511 m
Solidity (𝜎) 0.271 ± 0.030

Straight-Bladed Turbine (WPE)
Manufacturer Wing Power Energy
Model N/A
Rated Power 2 kW
Number of Blades 5
Turbine Radius 1.1 m
Turbine Span 3.7 m
Blade Chord 0.483 m
Solidity (𝜎) 0.349 ± 0.020

Figure 4.2: Photographs (left) and specifications (right) of the helical-bladed UGE
turbine (top) and the straight-bladed WPE turbine (bottom). The blade twist of the
UGE turbine is 𝜏 = 0.694 rad · m−1.

where 𝜔 is the rotation rate of the turbine (rad · s−1), 𝑅 is the radius of the turbine
(m), and 𝑈∞ is the magnitude of the free-stream velocity (ms−1). The turbines had
different solidities, quantified as the ratio of the blade area to the swept area of the
rotating blades. This was defined as

𝜎 =
𝑛𝑐

𝜋𝐷
, (4.2)

where 𝑛 is the number of blades, 𝑐 is the chord length of each blade, and 𝐷 is the
turbine diameter. The parameters for the four experiments presented in this work
are given in Table 4.1.

The turbines were mounted on the same tower for experiments, setting the mid-span
location of each at a height of 8.2 m above the ground. A Hall-effect sensor (Model
55505, Hamlin) on the tower measured the rotation rate of the WPE turbine by
recording the blade passing frequency. This method could not be implemented with
the UGE turbine due to its different construction. Therefore, the rotation rate of
the UGE turbine was calculated from videos of the turbine in operation, taken at
120 frames per second with a CMOS camera (Hero4, GoPro), by autocorrelating
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Case Identifier

Turbine UGE UGE WPE WPE
Wind Speed,𝑈∞
(ms−1) 11.15±1.37 11.39±1.25 12.76±1.54 10.10±1.29

Duration, 𝑇 (s) 1393 1343 1453 1393
Duration,
𝑇∗ = 𝑇 𝑈∞

𝐷
(–) 8627 8491 8423 6396

Reynolds Number,
𝑅𝑒𝐷 × 106 1.26 ± 0.15 1.29 ± 0.14 1.81 ± 0.22 1.43 ± 0.18

Tip-Speed Ratio, 𝜆 1.19 ± 0.13 1.40 ± 0.14 0.96 ± 0.10 1.20 ± 0.16

Solidity, 𝜎 0.271 ±
0.030

0.271 ±
0.030

0.349 ±
0.020

0.349 ±
0.020

Table 4.1: Experimental parameters for the four test cases presented in this work.
From the left, the first two experiments were carried out on 9 August 2018, the
third on 10 August, and the fourth on 11 August. The nondimensional duration 𝑇∗

represents the number of convective time units 𝐷/𝑈∞ captured by each experiment.
Uncertainties from the average values represent one standard deviation over time.

the pixel-intensity signal to establish a blade passing time. Electrical power outputs
from the turbines were measured and recorded in 10-minute intervals using a second
datalogger (CR1000, Campbell Scientific). The coefficient of power was then
calculated as

𝐶𝑝 =
𝑃

1
2𝜌𝑆𝐷𝑈∞

3 , (4.3)

where 𝑃 is the power produced by the turbine, 𝜌 is the density of air, and 𝑆 is
the turbine span. The computed coefficients of power of the two turbines for each
of the tested tip-speed ratios are shown in Figure 4.3. The 𝐶𝑝 values for both
turbines agree with measurements from previous experiments at the FLOWE field
site reported by Miller, Duvvuri, Brownstein, et al. (2018) that suggested that the
optimal tip-speed ratio for maximizing 𝐶𝑝 was on the order of 𝜆 ≈ 1 for the WPE
turbine. This operating tip-speed ratio is low compared to those of larger-scale
VAWTs with lower solidities (cf. Möllerström et al., 2019), but is consistent with
those of turbines of the same power-production class (e.g. Han et al., 2018). The
results also agree with the findings of other studies that the optimal tip-speed ratio
for power production decreases with increasing solidity (Miller, Duvvuri, Kelly,
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Figure 4.3: Coefficient of power as a function of tip-speed ratio for the four experi-
ments outlined in Table 4.1.

et al., 2018; Rezaeiha et al., 2018).

4.2.2 Particle-tracking velocimetry
A new method for volumetric flow measurements in field conditions was developed
to obtain three-dimensional velocity measurements in a large measurement volume
encapsulating the near wake of full-scale turbines. Because of the arid climate at
the field site, natural precipitation could not be relied on to populate the required
measurement volume with seeding particles (cf. Hong et al., 2014). Therefore, to
quantify the flow around the turbines, artificial snow particles were used as seeding
particles for the flow. These were produced by four snow machines (Silent Storm
DMX, Ultratec Special Effects) that were suspended by cables from two poles ap-
proximately four turbine diameters (𝐷) upstream of the turbine tower. The machines
could be raised to different heights with respect to the turbine, to adjust the distri-
bution of particles in the measurement volume. The particles were illuminated by
two construction floodlights (MLT3060, Magnum), so that their images contrasted
the night sky. Six CMOS video cameras (Hero4, GoPro) were mounted on frames
and installed in a semicircle on the ground to capture the particles in the turbine
wake from several different angles. The layout of the entire experiment (excluding
the upstream meteorological tower) is shown in Figure 4.4. The low seeding density
and high visibility of the particles under these conditions meant that unambiguous
particle trajectories could be extracted from the camera images, making PTV a nat-
ural choice for obtaining three-dimensional, three-component volumetric velocity
measurements.

The degree to which the artificial snow particles follow the flow was an important
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Figure 4.4: Schematic (a) and photograph (b) of the field experiment. The snow
machines in (a) are not drawn to scale. The video cameras are labeled as Cam 1
through Cam 6. The direction of rotation for the turbine in the diagram is clockwise,
and the 𝑍-coordinate points vertically upward from the ground. The WPE turbine
(𝑆 = 3.7 m) is shown in the photo. The artificial snow particles are visible moving
with the flow toward the left of the frame.

factor for the accuracy of the PTV measurements, and their aerodynamic charac-
teristics were accordingly considered in detail. The particles were composed of an
air-filled soap foam with an average effective diameter of 𝑑𝑝 = 11.2±4.2 mm and an
average density of 𝜌 = 6.57 ± 0.32 kgm−3. Since the particles were relatively large
and non-spherical, experiments were conducted in laboratory conditions to establish
their aerodynamic characteristics. A detailed description of the experiments, results,
and analyses regarding particle response and resulting experimental error is given in
appendix C.1. By releasing the particles into a wind tunnel as a jet in cross-flow and
tracking them using 3D-PTV with four cameras, the particle-response time scale
𝜏𝑝 and slip velocity 𝑉𝑠 were computed. Comparing 𝜏𝑝 with the relevant flow time
scale, 𝜏 𝑓 = 𝐷/𝑈∞, yielded a particle Stokes number of 𝑆𝑘 = 𝜏𝑝/𝜏 𝑓 ≈ 0.23. The
worst-case slip velocities for the field experiments were estimated to be 𝑉𝑠 ≲ 0.170
ms−1, or less than 2% of the average wind speed. Therefore, the particles were
found to follow the flow with sufficient accuracy to resolve the large-scale structures
encountered in VAWT wakes in the field.

To ensure that the entire measurement domain was sampled with sufficient numbers
of particles, multiple iterations of each experimental case were conducted, focusing
on different regions of the measurement volume. This was accomplished by raising
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the snow machines to three distinct heights with respect to the turbine: at the turbine
mid-span, above the turbine mid-span, and at the top of the turbine (approximately
8 m, 9 m, and 10 m above the ground, respectively). Vector fields obtained from
the data for each case were combined, so that each experiment listed in Table 4.1
represents the combination of three separate recording periods. The effects of time
averaging are further discussed in Section 4.2.4.

The six video cameras were arranged in a semicircle around the near-wake region of
the turbines, up to 7 to 8 𝐷 downstream of the turbine. They recorded video at 120
frames per second and a resolution of 1920 × 1080 pixels, with an exposure time of
1/480 s and an image sensitivity (ISO) of 6400. The test cases outlined in Table 4.1
thus represent between 161,000 and 175,000 images per camera of the measurement
volume. Because the cameras were all positioned on the downstream side of the
turbine, some flow regions adjacent to the turbine were masked by the turbine itself,
and thus could not be measured. This, however, did not affect the measurement of
the wake dynamics downstream of the turbine. The total measurement volume was
approximately 10 m × 7 m × 7 m, extending up to 2 𝐷 upstream of the turbine and
at least 3 𝐷 downstream into the wake.

To achieve the 3D reconstruction of the artificial snow particles in physical space
from the 2D camera images, a wand-based calibration procedure following that of
Theriault et al. (2014) was carried out. A description of the procedure and its
precision is included in appendix C.2.1. The two calibrations collected at the field
site resulted in reconstruction errors of distances between cameras of 0.74 ± 0.39%
and 0.83 ± 0.41%, and reconstruction errors in the spans of the turbines of 0.21%
and 0.32%. The calibrations therefore allowed particle positions to be triangulated
accurately in physical space.

4.2.3 Experimental procedure
The collection of data for the field experiments was undertaken as follows. The
rotation rate of the turbine was controlled via electrical loading to change the tip-
speed ratio between experiments. The snow machines were hoisted to the desired
height relative to the turbine, and artificial snow particles were advected through
the measurement domain by the ambient wind. All six cameras were then initiated
to record 420 to 560 seconds of video. Wind speed and direction measurements
from the meteorological tower were averaged and recorded in one-minute bins over
the duration of the recording period. The procedure was then repeated for the three
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different snow-machine heights listed in Section 4.2.2, corresponding to three data
sets in total for each experimental case.

4.2.4 Data processing and analysis
The procedure and algorithms used to obtain accurate time-averaged velocity fields
from the raw camera images are presented in detail in appendix C.2.2, along with
an analysis of the statistical convergence of the averaged data. An overview of the
procedure is given here.

Particles were isolated in the raw images through background subtraction and mask-
ing. Because the cameras were not synchronized via their hardware, the images from
the camera views were temporally aligned using an LED band (RGBW LED strip,
Supernight) that was mounted on the turbine tower below the turbine blades and
flashed at one-minute intervals. Particles were then identified in the synchronized
images by thresholding based on pixel intensities. The particles were mapped to 3D
locations in physical space using epipolar geometry (Hartley and Zisserman, 2003).
A multi-frame predictive-tracking algorithm developed by Ouellette et al. (2006)
and Xu (2008) computed Lagrangian particle trajectories and velocities from these
locations. Velocity data recorded with the snow machines set at different heights
were combined into a single unstructured volume of instantaneous velocity vectors.
This field was averaged into discrete cubic voxels with side lengths of 25 cm. The
standard deviation of the velocity magnitude over all vectors in these voxels was be-
low 5% of the average value for over 50% of the voxels in the measurement domain.
This quantity can be interpreted as an analogue for measurement precision, though
some variation due to turbulence across vectors within the voxels was expected. In
the wake of the turbine, the volume of interest for the analyses presented in this
work, 87% of voxels had standard deviations below 5%, with 58% having values
below 2%. The best-case precision for the most densely sampled voxels was below
1%. A more thorough account of these statistical-convergence studies is provided in
appendix C.2.2. The velocity fields were finally filtered to enforce a zero-divergence
condition (Schiavazzi et al., 2014) and were used to compute vorticity fields.

It is important to briefly consider the effect of time averaging, which was inherent
to this PTV method. Temporal averaging removed the presence of turbulence
fluctuations in the data, and thus the resulting velocity and vorticity fields necessarily
contained only flow phenomena that were present in the mean flow. Conjectures
regarding the effects of turbulence fluctuations on momentum transfer into the
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wake are therefore not possible based on these measurements. These effects are
expected to dominate the far wake, whereas the near wake is characterized by
large-scale vortical structures. Therefore, for the purposes of this study, it was
deemed acceptable to forgo the resolution of turbulence fluctuations. Similarly,
unsteady vortex dynamics were not resolved in these experiments. However, the
effects of vortex dynamics occurring at large scales can still be observed in the time-
averaged flow fields, as will be shown in the following section. It is thus possible
to infer connections between the time-averaged results of these experiments and
the underlying unsteady dynamics observed in previous studies (e.g. Battisti et al.,
2011; Tescione et al., 2014; Parker and Leftwich, 2016; Araya et al., 2017; Rolin
and Porté-Agel, 2018).

4.3 Experimental results
In this section, the results of the field experiments described in the previous section
are presented and further analyzed. First, the velocity fields for the four experimental
cases given in Table 4.1 are shown to highlight three-dimensional flow features.
Next, the vorticity fields for these cases are presented, and a tilted wake is observed
for the helical-bladed turbine. The tilted wake is then analyzed further, and a
connection between turbine-blade geometry and wake tilt is established. Finally, the
dynamics of the identified vortical structures are considered, and the implications
of the results for arrays of VAWTs are outlined.

4.3.1 Velocity fields
Velocity fields for the time-averaged streamwise-velocity component 𝑈 on three
orthogonal planar cross-sections are given in Figures 4.5 and 4.6 for the helical-
bladed (UGE) and straight-bladed (WPE) turbines at tip-speed ratios of 𝜆 = 1.19 and
𝜆 = 1.20, respectively. The wake structure was not observed to change significantly
with the changes in 𝜆 achieved in these experiments. A more detailed analysis of the
wake velocity fields for both turbines, including comparisons with previous wake
studies at lower 𝑅𝑒𝐷 , is provided in appendix C.3.1. As this study seeks to ascertain
the effects of turbine-blade geometry on the 3D structure of the near wake, two key
differences between the velocity fields of the two turbines are highlighted.

First, in 𝑌𝑍 cross-sections of 𝑈 downstream of the turbine, topological differences
were evident in the wake region, where the local streamwise velocity fell below
the free-stream velocity. This region was observed to tilt in the clockwise direction



Chapter 4 100

Figure 4.5: Three orthogonal time-averaged planar fields of the streamwise velocity
𝑈 for the helical-bladed turbine, taken at 𝑍/𝐷 = 0, 𝑌/𝐷 = 0, and 𝑋/𝐷 = 1.5
(counter-clockwise, from top left). A slight tilt from the vertical in the clockwise
direction, shown by a fit to minima in the streamwise velocity (dashed green line),
is visible in the velocity-deficit region in the 𝑌𝑍 cross-section.

when viewed from downstream in the case of the helical-bladed turbine (Figure 4.5),
while no such tilt was observed in the case of the straight-bladed turbine (Figure
4.6). This tilted-wake behavior will be analyzed in detail in Section 4.3.3, and it
will be shown that this topological difference was a consequence of the blade shape
of the helical-bladed turbine.

Secondly, a slice of the time-averaged vertical-velocity component 𝑊 through the
central axis of the turbine further implied the existence of more complex three-
dimensional dynamics in the wake of the helical-bladed turbine (Figure 4.7). The
vector field at𝑌/𝐷 = 0 for the straight-bladed turbine showed a downward sweep of
fluid from above the turbine and an upward sweep of fluid from below the turbine, as
would be expected from a bluff body in cross-flow (Figure 4.7b). The corresponding
field for the helical-bladed turbine showed a qualitatively different scenario, in which
a uniform central updraft was present (Figure 4.7a). At planar slices of𝑌/𝐷 on either
side of𝑌/𝐷 = 0, corresponding uniform downward motions of fluid were observed.
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Figure 4.6: Three orthogonal time-averaged planar fields of the streamwise velocity
𝑈 for the straight-bladed turbine, taken at 𝑍/𝐷 = 0, 𝑌/𝐷 = 0, and 𝑋/𝐷 = 1.5
(counter-clockwise, from top left). In contrast to Figure 4.5, no wake tilt is present
in the 𝑌𝑍 cross-section, as evidenced by the relatively vertical alignment of the fit
to the wake profile (dashed green line).

These differences in the vertical-velocity fields implied that the 3D structure of the
helical-bladed turbine had an effect on the wake dynamics that could not be resolved
simply by examining the velocity fields. A three-dimensional analysis of the vortical
structures present in the wakes of these VAWTs is required to explain these observed
differences. This will be provided in Section 4.3.2.

4.3.2 Vortical structures and wake topology
An analysis of the vortical structures in the streamwise direction (𝜔𝑥) demonstrates
the importance of three-dimensional considerations to the wake dynamics of these
VAWTs. Streamwise planar slices of 𝜔𝑥 are shown in Figures 4.8 and 4.9. The
structures visible in these plots comprised a horseshoe-shaped vortex induced by
the rotation of the turbine, observed previously by Rolin and Porté-Agel (2018)
and Brownstein et al. (2019). While in the case of the straight-bladed turbine, the
two branches of the vortex were symmetric about the mid-span of the turbine, the
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(a) (b)

Figure 4.7: Time-averaged planar fields of the vertical velocity𝑊 for (a) the helical-
bladed turbine at 𝜆 = 1.19 and (b) the straight-bladed turbine at 𝜆 = 1.20, taken at
𝑌/𝐷 = 0. The wake of the straight-bladed turbine is characterized by symmetric
sweeps of high-momentum fluid into the wake from above and below. In contrast,
the wake of the helical-bladed turbine exhibits a uniform updraft at 𝑌/𝐷 = 0. This
difference suggests that the helical blades have a pronounced three-dimensional
effect on the wake structure.

Figure 4.8: Streamwise slices of the streamwise vorticity 𝜔𝑥 in the case of the
helical-bladed turbine for 𝜆 = 1.19. The 𝑋-axis is stretched on 0.5 ≤ 𝑋/𝐷 ≤ 3 to
show the slices more clearly. These fields show marked asymmetry and a vertical
misalignment in the two branches of the horseshoe vortex induced by the rotation
of the turbine, compared to those shown in Figure 4.9.

corresponding structure for the helical-bladed turbine was asymmetric. The offset
of the upper branch with respect to the lower branch induced the central updraft of
fluid observed in Figure 4.7a. It will be argued in Section 4.3.3 that this asymmetry
was a result of the blade twist of the helical-bladed turbine, which skewed the overall
wake profile and thereby affected the alignment of the streamwise vortical structures.
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Figure 4.9: Streamwise slices of the streamwise vorticity 𝜔𝑥 in the case of the
straight-bladed turbine for 𝜆 = 1.20. The 𝑋-axis is stretched on 0.5 ≤ 𝑋/𝐷 ≤ 3 to
show the slices more clearly. Compared to the wake of the helical-bladed turbine
(Figure 4.8), the streamwise vortical structures are symmetric about the 𝑍/𝐷 = 0
plane. Small counter-rotating secondary vortices are also present to the right of each
main streamwise vortex, possibly similar to those observed in full-scale HAWTs by
Yang et al. (2016).

Similar asymmetric behavior in the wake of the helical-bladed turbine was observed
in the vertical vortical structures (𝜔𝑧), shown in streamwise slices in Figures 4.10
and 4.11. In both cases, the structure with positively signed vorticity initially had a
linear shape and was oriented vertically, while the structure with negatively signed
vorticity was bent toward the positive 𝑌 direction. This initial geometry was related
to the mechanics of formation of these vortices. The positively signed structure
was composed of vortices shed from turbine blades as they rotated into the wind,
which formed a vortex line that was advected downstream. These vortices have
been observed in two dimensions for straight-bladed turbines by Tescione et al.
(2014), Parker and Leftwich (2016), and Araya et al. (2017), and in 3D simulations
of straight-bladed turbines by Villeneuve et al. (2020). The arched shape of the
negatively signed structures was a consequence of the low-velocity wake region.
Behind the straight-bladed turbine, these two structures remained vertically oriented
and relatively parallel. In contrast, behind the helical-bladed turbine, these structures
began to tilt with respect to the vertical as they were advected downstream. This
tilt was analogous to that observed in the horseshoe vortex (Figure 4.8). Since
the structures in 𝜔𝑧 were formed by vortex shedding from the turbine blades, we
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Figure 4.10: Streamwise slices of the vertical vorticity𝜔𝑧 downstream of the helical-
bladed turbine for 𝜆 = 1.19. As in the previous figures, the 𝑋-axis is stretched
on 0.5 ≤ 𝑋/𝐷 ≤ 3. These structures exhibit a tendency to tilt with increasing
streamwise distance from the turbine, as evidenced by fits to the zero-vorticity
region between the structures (dashed green lines).

hypothesize that the helical blades of the UGE turbine were the cause of this observed
asymmetric wake behavior.

The spanwise vortical structures (𝜔𝑦) did not show any significant signs of asym-
metry (appendix C.3.2, Figures C.13 and C.14). These structures represented time-
averaged tip vortices shed by the passing turbine blades, as documented by Tescione
et al. (2014), and were thus not expected to change in geometry in these experiments.
Together, the blade-shedding structures in 𝜔𝑦 and 𝜔𝑧 bounded the near wake. Their
time-averaged profiles outlined and encapsulated the regions of streamwise-velocity
deficit in the wake shown in Figures 4.5 and 4.6. This topological correspondence
suggested that vortex shedding from the turbine blades has a dominant effect on the
overall shape of the near wake.

4.3.3 Effect of blade twist
In the previous section, connections between vortex shedding from VAWT blades
and the 3D topology of VAWT wakes were observed. A more thorough investigation
of the tilted wake is now undertaken to develop a more comprehensive description
of the dynamics in the near wake.

The results presented thus far have shown that the wake of the helical-bladed turbine
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Figure 4.11: Streamwise slices of the vertical vorticity 𝜔𝑧 downstream of the
straight-bladed turbine for 𝜆 = 1.20. The 𝑋-axis is again stretched on 0.5 ≤ 𝑋/𝐷 ≤
3. These structures remain upright with respect to the vertical (again denoted by
dashed green lines), in contrast to their counterparts from the helical-bladed turbine.

was tilted at some angle with respect to the vertical, whereas the wake of the straight-
bladed turbine was not. To quantify this effect, two measures were employed: the
angle of the velocity-deficit region, and the angle of the region of zero vorticity
between the two vertical vortical structures. These two measures were selected
on the premise that the dynamics of the vertical vortical structures are tied to the
geometry of the near wake. Both were computed on slices parallel to the 𝑌𝑍
plane, taken at several streamwise positions downstream of each turbine. For the
first measure, the location of minimum velocity was identified at every 𝑍-position
in each slice, and a linear fit through these points on each slice was computed
to approximate the slope of the velocity-deficit region. For the second measure,
the location of minimum vorticity between the two vertical vortical structures was
identified at every 𝑍-position in each slice using linear interpolation, and a linear fit
through these points on each slice represented the orientation of the structures. For
both measures, confidence intervals of one standard deviation on the slope of the
linear fit served as error bounds. The results of this procedure are shown in Figure
4.12a for the velocity-deficit measure and Figure 4.12b for the vortical-structure
measure. The results demonstrated that the wake orientation of the straight-bladed
turbine did not exhibit a strong deviation from the vertical in the near-wake region. In
contrast, the wake orientation of the helical-bladed turbine increased monotonically
with streamwise distance for both of the tip-speed ratios tested in the experiments.
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(a) (b)

Figure 4.12: Wake orientation measurements from all four experimental cases,
computed from (a) the locations of minima in the velocity-deficit region, 𝑈𝑚𝑖𝑛,
and (b) the coordinates of the zero-vorticity strip between the two vertical vortical
structures, |𝜔𝑧 |𝑚𝑖𝑛. The wake orientation of the helical-bladed turbine increases
monotonically, while that of the straight-bladed turbine does not exhibit a strong
trend away from zero.

These measures thus quantified the various observations from the previous section
regarding changes in the wake topology between the two turbines.

The wake-orientation measurements shed light on the mechanism responsible for
the tilted wake observed for the helical-bladed turbine. First, the orientation profiles
were consistent between the two measures, supporting the hypothesis that the shape
of the near wake is directly tied to the dynamics of the vertical vortical structures.
Additionally, the profiles did not show a strong dependence on turbine solidity, and
no significant dependence on tip-speed ratio over the limited range of 𝜆 tested in
these experiments was observed. Though the measurements did separate into two
classes corresponding to the two turbine geometries, the three-dimensional nature
of the tilted-wake behavior made it unlikely that solidity, which is not defined using
three-dimensional geometric parameters, was the dominant factor. These results
thus isolate the geometry of the turbine blades as the primary contributing factor to
the observed differences in wake topology.

A mechanism by which turbine-blade geometry can affect the wake topology is
now proposed. As described previously, the vortical structures visible in the time-
averaged fields of 𝜔𝑧 represent the profiles of vortex lines shed from the rotating
turbine blades and advected away from the turbine by the free stream. We expect
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that the shape of these vortex lines will depend on the shape of the blades: a straight
blade will shed a straight vortex line, while a helical blade will shed a vortex line
with non-zero curvature. The latter hypothesis is drawn from the fact that a helical
blade, in contrast to a straight blade, is yawed relative to the incoming flow and
experiences a range of local angles of attack along its span as it rotates around
the turbine. A yawed or swept blade with respect to the incoming flow exhibits
three-dimensional vortex shedding in dynamic stall (Visbal and Garmann, 2019),
due in part to a net transport of vorticity along the span of the blade (Smith and
Jones, 2019). A linearly increasing spanwise angle-of-attack profile in dynamic
stall similarly induces a spanwise transport of vorticity that affects the stability of
the leading-edge vortex and thus the character of the vortex shedding from the blade
(Wong et al., 2017). Given these observations, we conclude that the spanwise non-
uniformity of the flow over helical VAWT blades makes the vortex lines shed by the
dynamic-stall mechanism inherently nonlinear and three-dimensional.

To model the evolution of these vortex lines as they are advected downstream, the
principle of Biot-Savart self-induction can be applied. In an inviscid flow field, the
self-induced velocity at any point r on a single vortex line with finite core size 𝜇,
defined by the curve r′ and parameterized by the arc length 𝑠′, can be written as

𝜕r
𝜕𝑡

= − Γ

4𝜋

∫ (r − r′) × 𝜕r′
𝜕𝑠′

( |r − r′|2 + 𝜇2)3/2
𝑑𝑠′, (4.4)

where the integration is performed over the length of the vortex line (Leonard, 1985).
This model for the self-induced deformation of curved vortex lines has been studied
numerically using both approximate methods (Arms and Hama, 1965) and exact
simulations (Moin et al., 1986). The quantity (r − r′) × 𝜕r′

𝜕𝑠′ in the numerator of the
integrand is only non-zero when the displacement vector between two points on the
vortex line does not align with the direction of the vortex line. Therefore, a vortex line
with curvature or piecewise changes in alignment will undergo deformation under
self-induction, while a purely linear vortex line will not. Self-induced deformations
of a similar nature have been observed in curved and tilted vortex lines in numerous
computational and experimental contexts (e.g. Hama and Nutant, 1961; Boulanger
et al., 2008).

Given that the precise shape of the curved vortex lines shed by the helical-bladed
turbine cannot be extracted from the time-averaged vorticity fields, Equation 4.4
cannot be applied quantitatively in this case. However, it can still be used qualita-
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Figure 4.13: Schematic of the𝑌 component of the induced velocities,𝑉𝑖𝑛𝑑𝑢𝑐𝑒𝑑 , along
a helical vortex line due to Biot-Savart self-induction (Equation 4.4). The scale of
the vectors and the streamwise location of the vortex line are both arbitrary, and
the streamwise and vertical components of the induced velocity are not shown for
clarity. The stretching induced on the vortex line matches the behavior of the tilted
wake.

tively to connect the development of the tilted wake to blade geometry. We therefore
consider a helical vortex line that corresponds to the helical shape of the UGE tur-
bine blades, shed from a blade as it rotates upstream into the prevailing wind. This
model system accounts for the three-dimensional blade geometry while abstracting
the precise dynamics of the vortex-shedding mechanism on the blades. The curve is
parameterized for 𝑍 ∈ [−𝑆/2, 𝑆/2] as 𝑋 = −𝑎𝑅 sin(𝜏𝑍) and 𝑌 = −𝑅 cos(𝜏𝑍). The
constant 𝑎 accounts for stretching of the vortex line in the streamwise direction due
to differences between the tip-speed velocity of the turbine and advection from the
free stream. The selection 𝑎 = 1/𝜆, for example, recovers the expected asymptotic
result that the curved vortex line will become a straight vertical line as 𝜆 → ∞.
The initial induced velocities along this vortex line, computed numerically from
Equation 4.4, apply a stretching in the 𝑌 direction that corresponds directly with the
previous observations of the tilted wake (Figure 4.13). The streamwise and vertical
induced velocities are not addressed in this analysis since they do not contribute to
the tilted wake. The computed vectors also do not represent the full time evolution
of the vortex line, as only the initial induced velocities u (r(𝑡 = 0)) are given. The
demonstration shows qualitatively that the mechanism of Biot-Savart self-induction
provides a direct connection between blade geometry and the evolution of the wake
topology.

Based on these results, the propagation of the influence of turbine-blade geometry in
the dynamics of the near wake can be outlined. The shape of the blades determines
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the shape of the vortex lines shed by the blades as they rotate around the turbine.
The shape of these vortex lines in turn drives their evolution downstream of the
turbine. As these structures bound the wake region, topological changes in the
vortex lines are reflected in the shape of the velocity-deficit region of the wake.
These developments affect the shape of the horseshoe vortex, which is not directly
affected by differences in blade geometry but is necessarily bound to the shape of
the wake region. The connection between blade twist and wake tilt described in
this section therefore provides a unifying framework that accounts for the trends
previously observed in the wake velocity and vorticity fields.

4.3.4 Wake dynamics
In the previous section, it was hypothesized that the shape of VAWT blades dictates
the near-wake topology through Biot-Savart self-induction of shed vortex lines. The
wake dynamics are now analyzed in detail, to quantify the evolution of the vortical
structures in the wake and to identify their contributions to wake recovery. The
circulation of the wake structures in each direction, Γ𝑖, was calculated as a function
of downstream distance from the turbine. The circulation was computed at a series
of streamwise positions 𝑋/𝐷 by integrating the vorticity component in question
over a square 𝐷 × 𝐷 window, which was oriented normal to the direction of the
vorticity component. This window was placed at the center of the vortex at several
points along the vortex line. The center was identified at each point by applying a
threshold based on the standard deviation of the vorticity field and computing the
center of mass of the isolated vorticity distribution. The values of the circulation
along the vortex line, computed with these windows, were averaged to obtain a rep-
resentative circulation for the structure. Error bars were determined by propagating
the standard deviations of the components of individual velocity vectors from the
particle trajectories in each voxel through the curl operator and the circulation inte-
gration. This computation was done independently for the positively and negatively
signed vortical structures. The resulting circulations in 𝑋 , 𝑌 , and 𝑍 are plotted
on 0.5 ≤ 𝑋/𝐷 ≤ 2.3 in Figures 4.14, 4.15a, and 4.15b, respectively. Circulation
measurements downstream of this region were inconclusive due to measurement
noise, or possibly as a result of atmosphere-induced unsteady modulations in the
wake similar to those observed in full-scale HAWTs (Abraham and Hong, 2020).

The circulations of the streamwise structures (Γ𝑥 , Figure 4.14) appeared to extend
farther into the wake than the vortical structures in 𝑌 and 𝑍 , whose circulations
declined monotonically after 𝑋/𝐷 ≈ 1.5 (as shown in Figure 4.15). This difference
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Figure 4.14: Circulation of the positive and negative streamwise vortical structures,
Γ𝑥 , for all four experimental cases. Compared to the plots of Γ𝑦 and Γ𝑧 shown in
Figure 4.15, Γ𝑥 did not decay as significantly with increasing streamwise distance,
and the horseshoe vortex was thus hypothesized to extend farther into the wake than
the structures induced by vortex shedding from the blades.

(a) (b)

Figure 4.15: Circulations of the positive and negative (a) spanwise vortical structures
(Γ𝑦) and (b) vertical vortical structures (Γ𝑧) for all four experimental cases. The
circulation profiles collapse approximately by turbine, implying that turbine solidity
is a dominant factor in these dynamics. The decaying trends of the profiles past
𝑋/𝐷 ≈ 1.5 show that these structures are only influential in the near wake.
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in dynamical behavior agrees with the previously stated hypothesis that the horseshoe
vortex is induced by the rotation of the turbine rather than unsteady vortex shedding
from the turbine blades. Furthermore, the streamwise circulation at the lowest tip-
speed ratio (𝜆 = 0.96) began to decline at 𝑋/𝐷 ≈ 1.7, prior to those at higher
tip-speed ratios, which suggests that the persistence of the horseshoe vortex in the
wake increases with increasing 𝜆. Given the limited range of tip-speed ratios and
streamwise locations considered in these experiments, a definitive relation between
Γ𝑥 and 𝜆 cannot be isolated from these results. Still, the comparatively long-lived
coherence of the horseshoe vortex in the wake does imply that it plays an important
role in the dynamics of wake recovery, considering its influence on vertical velocities
in the wake and thus the entrainment of momentum into the wake (Figure 4.7).
Additionally, the difference in the alignment of the branches of the horseshoe vortex
between the helical- and straight-bladed turbines suggests that the wake recovery
will also differ as a function of blade geometry.

The circulations of the structures corresponding to vortex shedding from the turbine
blades (Γ𝑦 and Γ𝑧, shown in Figures 4.15a and 4.15b) exhibited uniform behavior
for both turbines. Taken together with the time-resolved results of Araya et al.
(2017), these trends confirm that the vortex-shedding dynamics that contribute to
the wake structure are only active in shaping the near wake (𝑋/𝐷 ≲ 2). An apparent
dependence on turbine solidity is evident in these data, as the circulation profiles
separated into groups by turbine rather than by tip-speed ratio. This trend is likely
not a function of three-dimensional blade shape, because the measurements of Γ𝑦
and Γ𝑧 were averaged in𝑌 and 𝑍 , respectively. Again, because of the limited number
of turbine geometries considered in this study, a definitive relation between Γ𝑦, Γ𝑧,
and 𝜎 cannot be established from these data. These results, however, do indicate
that the contributions of the blade-shedding structures to wake recovery will not
differ significantly between the two turbine geometries considered in this study.

The main conclusion from the circulation analysis presented in this section is that
the horseshoe vortex extends farther into the wake than the vortical structures in
the 𝑌 and 𝑍 directions, which begin to decay in strength soon after they are shed
from the turbine blades. These results thus suggest that, though the vortex lines
shed by the turbine blades define the topology of the near wake, the horseshoe
vortex has a larger contribution to wake recovery due to its comparative longevity
in the wake. The analysis also noted possible dependencies of Γ𝑥 on 𝜆 and of Γ𝑦
and Γ𝑧 on 𝜎. The contributions of vortex breakdown and turbulent entrainment of
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momentum from the free stream to wake recovery have not been considered here,
because of the time-averaged nature of the experimental data. These effects become
more significant downstream of the limit of our measurement domain, and thus will
also be affected by the mean-flow dynamics identified in this work.

4.3.5 Implications for turbine arrays
The findings of this study have parallels in recent studies of the wake dynamics of
HAWTs that highlight the implications of the present results for the arrangement
of VAWTs in closely packed arrays. In both experiments with a porous disc and
large-eddy simulations with actuator-disc and actuator-line models, Howland et al.
(2016) reported an alteration to the shape of the wake profile, known as a curled
wake, behind HAWTs yawed with respect to the incoming flow caused by counter-
rotating streamwise vortices that are induced by the yawed turbine. Bastankhah and
Porté-Agel (2016) and Shapiro et al. (2018) modelled this topological phenomenon
analytically, leading to new estimates of the wake deflection and available power
downwind of a yaw misalignment wind turbine. Fleming et al. (2017) confirmed
the existence of these vortices for yawed turbines in field conditions. Additionally,
Fleming et al. (2018) demonstrated that these changes in wake topology affect the
performance of downstream and adjacent turbines in an array. Howland et al.
(2019) and Fleming et al. (2019) then utilized these analytic models to demonstrate
the potential for wake steering control in field experiments of HAWTs at full scale.
Given the qualitative similarities in the dynamics of the tilted wake observed in this
study and the curled wake observed in HAWTs, the ramifications of the tilted wake
for arrays of VAWTs could be analogous as well.

The performance of VAWTs downstream of a given turbine will be affected by the
dynamics identified in this study. The strong vortex shedding in the near wake of a
VAWT (𝑋/𝐷 ≲ 2) will lead to a severe decrease in the performance of downstream
turbines placed in this region. Brownstein et al. (2019) observed this effect in
experiments with turbine pairs. For greater streamwise separations, the horseshoe
vortex will be the primary large-scale mean-flow vortical structure encountered by
downstream turbines. At these distances, the effects of helical blades on wake
recovery will be more evident, and will affect the overall performance of the VAWT
array. The tilted wake will also lead to a modified wake profile that will affect the
optimal placement of helical-bladed turbines in arrays by at least one turbine radius,
in a manner similar to that reported by Bossuyt et al. (2016) for HAWTs.
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The performance of adjacent VAWTs will also be affected, especially for turbines
placed in close proximity to each other for the enhancement of power production.
The mean-flow mechanisms observed by Brownstein et al. (2019) will be altered by
the presence of the three-dimensional vortex shedding from helical-bladed turbines,
and it is thus likely that these turbines would experience a different degree of
performance enhancement observed in that work for straight-bladed turbines.

Lastly, the vortical structures and topological effects isolated in this study are ex-
pected to hold for vertical-axis wind turbines in general, with variations for different
turbine geometries. The horseshoe vortex, in particular, is expected to be enhanced
for VAWTs that operate at higher tip-speed ratios than those employed in these ex-
periments. The significance of the tilted wake for helical-bladed turbines will vary
with aspect ratio and blade twist. The 3D effects of blade geometry will also need
to be reconsidered for the bowed blades of the large-scale Darrieus-type turbines
studied by Klimas and Worstell (1981). Particular differences notwithstanding, it
can be inferred that the three-dimensional dynamics identified here will have sig-
nificant effects on the dynamics and topology of the wake for VAWTs of all designs
and power outputs, and thereby affect the aerodynamics and overall efficiency of
VAWT arrays.

4.4 Conclusions
In this study, a novel method for conducting volumetric three-dimensional, three-
component flow-field measurements in field conditions was developed and used to
quantify the wake dynamics of two full-scale vertical-axis wind turbines. This 3D-
PTV setup demonstrated sufficient precision and resolution to resolve large-scale
vortical structures in the wakes of the turbines. Time-averaged velocity and vorticity
fields showed a tilted wake downstream of helical-bladed turbines, compared to the
wake profile of straight-bladed turbines. A fully three-dimensional analysis of
the vortical structures present in the near wakes of VAWTs was undertaken, and
demonstrated that the topology of the near wake is dependent primarily on the
mechanics of vortex shedding from the turbine blades. The connection between
blade geometry and wake dynamics was clarified by considering the Biot-Savart
self-induction of curved vortex lines. Measurements of the circulation of the vortical
structures in the wake revealed that the vortical structures shed by the blades decay
in influence relatively quickly but affect the topology of the horseshoe vortex, which
extends farther into the wake and is thus related to wake recovery. Therefore, a line
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of influence was established between blade geometry, vortex shedding, near-wake
topology, the horseshoe vortex, and wake recovery.

A major point of emphasis in this work is that three-dimensional effects are signifi-
cant to the dynamics and evolution of VAWT wakes. Many of the flow phenomena
observed in this study would be difficult to resolve completely by planar measure-
ment techniques; the vorticity and circulation measurements in particular required
three-component 3D data to collect. The experimental method for obtaining time-
averaged velocity and vorticity measurements in field conditions and high Reynolds
numbers is therefore well suited to further analyses of wind-turbine wake dynamics
at full scale. The method is also flexible enough in its deployment to be applied to
other large-scale flow phenomena and atmosphere-structure interactions.

While this study focused on differences in flow topology that stemmed from the use
of helical blades in VAWTs, the connection between object geometry and vortex
dynamics proposed in this work could be applied in wider aerodynamic contexts,
such as rotorcraft, flapping flight, and more complex fluid-structure interaction
problems. This study provides both an experimental method and a theoretical
framework for wake analysis that can be leveraged for future studies of the three-
dimensional vortex dynamics in engineering-scale wakes.

The limited number of test cases in this study precluded the execution of a full scaling
analysis of the vortical structures and circulation profiles with respect to turbine
solidity and tip-speed ratio. A larger series of test cases, involving different turbine
geometries and a wider range of tip-speed ratios, would allow these relationships
to be established more quantitatively. In addition, a larger measurement volume
would allow the wake-topology observations of this study to be extended into the
far wake, so that the effects of the tilted wake and the streamwise vortical structures
on wake recovery could be more thoroughly investigated. Given the size of the
measurement domain that would be required for these kinds of experiments, as
well as the range of parameters involved, it may be more feasible to carry out
this analysis in a laboratory or computational setting. This study can thus provide
validation cases to demonstrate that flow phenomena observed in VAWT wakes
in laboratory experiments and numerical simulations are representative of those
present in the wake of operational turbines in field conditions.
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Chapter 5

Conclusions

“We know truth, not only by reason, but also by the heart.”

Blaise Pascal, Pensées

A comprehensive approach to the current climate crisis requires coordinated action
from every sector of human society that appreciates the complex interconnections
between regions, disciplines, and people groups. This dissertation seeks to ex-
plore one small portion of that broader interdisciplinary solution space, with the
recognition that technological solutions alone do not have the power to solve these
problems. In this section, the main findings of this work are reviewed, and several
potential areas for future investigations are outlined. More generally, it is my hope
that a more cohesive and constructive understanding of unsteady flows can lead to
significant innovation and transformative design initiatives in the renewable-energy
sector and beyond.

5.1 Summary of contributions
This series of studies was aimed at addressing gaps in the wind-energy litera-
ture in three major areas: unsteady flow modeling, experimental measurements of
unsteady-flow models, and experimental techniques for resolving large-scale flow
patterns in field applications. The first two sections of this work addressed lin-
earized and nonlinear analytical frameworks for the dynamics and power extraction
of a horizontal-axis wind turbine oscillating in periodic surge motions in the stream-
wise direction, whereas the third section described a novel field-scale measurement
approach for quantifying flow fields in the wakes of utility-scale vertical-axis wind
turbines.

Specifically, in Chapter 2, a linear ordinary differential equation was derived to
model the time-varying dynamics of a surging turbine. The model coefficients
were obtained from steady-flow torque measurements and a priori knowledge of the
characteristics of the turbine and generator. The model predictions for fluctuating
quantities such as torque, rotation rate, and power compared favorably with data
collected from a surging-turbine apparatus in a fan-array wind tunnel. However,
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changes in time-averaged quantities were not predicted by the linearized approach,
while deviations from the steady-flow power output between −17% and +6.4% were
observed in the data. The power decreases were hypothesized to be connected to
flow separation on the turbine blades at low tip-speed ratios and high sectional
angles of attack.

In Chapter 3, a nonlinear dynamical model was proposed as a generalization of the
linear model. In keeping with the philosophy of the linear model, it only depended
on knowledge of the steady-flow characteristics of the turbine, with the turbine power
curve introducing the key nonlinearity. This model was able to capture the changes
in the time-averaged power extraction of the turbine that the linear model could
not, without significantly affecting the predictions of the fluctuating quantities. In
addition, a potential-flow model was derived using a collection of point sources to
represent a surging porous disc. This flow-field representation was coupled with
the nonlinear dynamical model of the turbine via 1D axial-momentum theory to
enable time-varying predictions of flow quantities in the upstream induction zone
of the surging turbine. This modeling framework was validated using wind-tunnel
experiments. Furthermore, the dependence of the power-extraction enhancements
observed in the experiments on the local slope and concavity of the turbine power
curve was investigated using simulations of the model, which clarified the conditions
in which these enhancements are possible. Finally, fully unsteady contributions
to the time-averaged power extraction of the turbine were considered through an
extension of the theoretical framework of Dabiri (2020). These demonstrated that
time-averaged unsteady power-extraction gains are only realizable for wind-energy
systems with streamwise fore-aft asymmetry.

In Chapter 4, a three-dimensional particle-tracking velocimetry technique was de-
veloped for field-scale volumetric flow measurements in the wakes of utility-scale
vertical-axis wind turbines. Artificial snow particles were used as flow seeding, and
multiple ground-based cameras allowed the particle tracks to be quantified. Time-
averaged velocity and vorticity fields in the near wakes of VAWTs with straight
and helical blades were obtained. An unsteady vortex-shedding mechanism was
proposed to explain differences observed in the wakes of the two types of tur-
bines, thereby establishing a connection between VAWT blade geometry and wake
dynamics.

The salient contributions of these studies to the understanding and quantification
of the flow physics of wind-energy systems, as well as their implications, can be
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summarized as follows.

1. A linearized model for the dynamics of a turbine translating in the stream-
wise direction was developed and experimentally validated. The model
depends only on turbine and generator parameters that can be obtained from
steady-flow measurements, and requires no unsteady calibration for use in
practical applications. Therefore, it is directly applicable to the modeling
and control of floating offshore wind turbines, aerial turbines, and traditional
ground-fixed turbines in streamwise flow perturbations. The linear nature of
the model can facilitate the implementation of classical control techniques,
such as PID controllers, for mitigating fluctuations in torque, power, and re-
sulting fatigue loads due to unsteady disturbances (cf. Fontanella et al., 2020).

2. Enhancements in the time-averaged power extracted by a periodically
surging turbine of up to 6.4% above the steady reference case were mea-
sured experimentally and were parameterized by a nonlinear dynamical
model. These increases were observed at high tip-speed ratios, whereas mean
power losses in excess of −17% relative to the steady case were incurred at
low tip-speed ratios. The nonlinear dynamical model was able to param-
eterize these behaviors. The identified time-averaged power enhancements
suggest that floating offshore wind farms, aerial wind turbines, and other
wind-energy systems involving unsteady streamwise flows can achieve large
power-generation gains over their steady-flow counterparts — provided the
dependencies of these gains on the turbine power curve, tip-speed ratio, and
surge kinematics discussed in Chapter 3 are taken into account. In today’s
burgeoning wind-energy market, even a single-percent increase in power gen-
eration could translate to gigawatts of additional energy for consumption and
close to 800 million US dollars of additional revenue. These unsteady flow
effects could give floating offshore wind farms an additional advantage over
traditional ground-fixed installations.

Conversely, the nonlinear dynamical model also suggests ways in which
generator-load control (also known as induction control) or blade-pitch con-
trol can be used to mitigate power losses due to unsteady flow conditions when
turbines are operating at low tip-speed ratios and high blade-section angles of
attack. The model was not able to parameterize the effects of flow separation
on the turbine blades, but as it predicted the correct trends in torque and power
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at these tip-speed ratios, it can still be used as a reference for control strategies
that seek to avoid blade stall in unsteady flows. This topic for future work will
be particularly important for turbines operating in gusty environments near
the cutoff wind speed.

3. A potential-flow model coupled with the dynamical model for the turbine
captures the time-varying behavior of flow properties in the upstream
induction region of the turbine. Such a connection, which spans potential-
flow theory, 1D axial-momentum theory, and nonlinear turbine modeling,
serves as a helpful analytical foundation for wind-energy systems in unsteady
flows, as well as a demonstration of the continued relevance of simple fluid-
mechanical modeling frameworks for parameterizing the dynamics of complex
systems. The model can be used for real-time control and flow sensing in
wind-energy systems where direct measurements of the far-field wind speed
are not possible, for instance for individual turbines in large arrays. This could
potentially be achieved by using the model in tandem with nacelle-mounted
LiDAR systems or anemometers to infer the “true” incident wind speed, or
even by inverting the model to infer the wind speed from the instantaneous
torque and rotation rate of the turbine itself.

4. The 3D-PTV technique allowed for the first volumetric flow-field mea-
surements around utility-scale wind turbines. This method was shown to
be effective in resolving time-averaged flow structures in an unprecedentedly
large 10 m × 7 m × 7 m volume. It does not depend on natural precipita-
tion and involves relatively inexpensive components (compared to a LiDAR
system or met tower), and can thus be used for general field measurements
of full-scale structures in atmospheric flows. This method is limited to noc-
turnal use due to visibility constraints from the particles. However, recent
developments in glare-point tracking using soap bubbles could allow similar
3D-PTV approaches to be employed using different seeding particles in day-
time conditions, using sunlight as a light source (e.g. Hou et al., 2021; Kaiser
and Rival, 2022).

5. The geometry of VAWT blades affects the vorticity distribution within
and shape of the near wake of the turbine. The symmetry-breaking effect
of curved turbine blades introduces topological changes in the near wake,
including a central updraft or downdraft along the turbine centerline that
can potentially deflect the downstream evolution of the wake upwards or
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downwards. (Though the far-wake effects were not shown directly in this work,
the numerical study of Gharaati et al. (2022) demonstrated the connections
between the near-wake dynamics observed here and far-wake characteristics.)
These vortex-evolution and wake behaviors are particularly important for the
design and optimization of closely packed VAWT arrays, as evidenced by the
turbine-pair measurements of Brownstein et al. (2019).

5.2 Opportunities for further exploration
Taken together, the findings detailed in this work and their implications provide a
foundation for future studies of unsteady fluid mechanics in wind-energy and climate
contexts. In the future, combinations of large-scale flow-measurement campaigns
and analytical modeling efforts will reveal further ways in which unsteady flows
can be leveraged for performance and robustness improvements in wind-energy
technologies, as well as other engineering systems that are exposed to atmospheric
flows. Several possible directions for further exploration are listed in this section.

5.2.1 Dynamics and control of horizontal-axis wind turbines in
unsteady flow conditions

The studies described in Chapters 2 and 3 involved actuated turbine motions. If
the performance enhancements observed in these experiments are to be achieved
in practical systems, self-excited and self-sustaining oscillations will need to be
induced. The existing modeling framework provides an analytical foundation for a
dynamical-systems analysis of the problem. For instance, the negatively damped
platform-oscillation mode described by López-Queĳa et al. (2022) in floating off-
shore wind turbines could be excited and maintained by varying the turbine tip-speed
ratio in controlled oscillations, thereby inducing changes in the thrust force of the
rotor and taking advantage of the streamwise degree of freedom of the floating plat-
form. Alternatively, without employing any time-varying turbine control schemes,
the design of the floating platforms could be tuned to accentuate rather than damp
out oscillations in the direction of the incident wind. Ambient wave forcings,
then, would provide the disturbances required to achieve turbine oscillations and
the accompanying additional power gains. In a sense, therefore, the floating off-
shore wind turbine in unsteady operation could be viewed as a dual wind and wave
energy-harvesting device.

In a terrestrial system, a similar effect could be obtained using a turbine mounted to
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the top end of an inverted pendulum, balanced by a counterweight below the point of
rotation. Periodic changes in the generator load or blade pitch angle could be used
to excite swinging oscillations of the pendulum system, which for relatively small
angles can be approximated as linear surge motions at the location of the turbine.
Simulations using either the linearized or nonlinear dynamical models described
previously in this work, in combination with a control system and model for the
floating-platform or pendulum dynamics, would give a preliminary indication of
whether these oscillations could be incited and sustained, and whether they would
lead to sizeable power-extraction enhancements.

It is also important to note that the experiments described in this work employed
a turbine with fixed-pitch blades. The true power curve of a turbine, however, is a
function of the blade pitch angle as well as the tip-speed ratio. This extra degree
of freedom could therefore allow for additional control authority over the surge-
induced power enhancements demonstrated in this work. For instance, varying the
blade pitch angle within a surge-oscillation cycle could have the same effect as
flattening the power curve of a fixed-pitch turbine, thereby leading to higher power-
extraction gains. At low tip-speed ratios, blade-pitch control schemes could also be
employed strategically to mitigate or avoid flow separation on the blades in critical
phases of the surge-oscillation cycle. Since the dynamical models derived in this
work give time-resolved predictions of the turbine rotation rate, the instantaneous
angle of attack along the turbine blades can be calculated, and based on the steady
lift polars of the blade sections, parts of the cycle in which the static stall angle
may be exceeded can be identified. The blade pitch angle can then be modulated
in these segments to reduce the local angle of attack and inhibit flow separation.
Hypothetically, blade-pitch control could even be used to induce dynamic stall on
the turbine blades, so that the extra lift provided by the roll-up of the leading-edge
vortex could be leveraged for increased turbine power.

The ability to control the turbine generator load and blade pitch angle also suggests
the possibility of integrating the dynamical models derived in this work into a feed-
forward control system that includes built-in knowledge of the effects of unsteady
flow disturbances. This kind of physics-informed controller could be used in floating
offshore systems to maximize the time-averaged power enhancements as a function
of unsteady surge motions. Alternatively, for ground-fixed turbines in unsteady
flow environments, the control scheme could be used to anticipate the effects of
incoming flow disturbances and mitigate their impact on structural components.
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This application could be particularly useful for wind turbines operating near their
cut-in wind speed, i.e. the wind speed below which the turbine would stop operating.
The data presented in Chapter 2 suggest that turbines operating near the cut-in wind
speed would be particularly sensitive to flow separation during axial-gust events,
which could lead to power losses, unsteady fatigue loads, and an unstable decrease
in turbine rotation rate leading to full turbine stall. A control scheme that can
anticipate and mitigate the effects of unsteady flow disturbances could therefore
ensure that turbines are able to more reliably operate at wind speeds just above the
cut-in speed. This would in turn increase the capacity factor of these wind farms,
by keeping more wind turbines producing power in low-wind conditions. Further
analysis is needed to understand the effects of turbine inertia, the timescales of flow
disturbances in these low wind speeds, and whether the control authority a turbine
has over its operation would be strong enough to overcome the negative effects of
these perturbations.

The present work also only investigated flow properties upstream of the surging
turbine. The time-varying properties of the wake, however, are critical to the
performance of downstream turbines in an array. The time-varying thrust force of
the turbine rotor from streamwise flow disturbances or turbine surge oscillations will
imprint a periodic unsteady forcing onto the near wake of the turbine, which will
propagate downstream into the far wake and appear as an unsteady inflow condition
to downstream turbines. An extension of the induction model into the near-wake
region could be used as an initial condition for a turbulent far-wake model, as done
by Heck et al. (2023) for yaw-misaligned turbines in steady flow. The effects of this
unsteady wake on downstream turbines could then be studied in a computationally
inexpensive manner, and the extended modeling framework could be used in the
design and control of floating offshore wind farms and traditional ground-fixed
farms in unsteady inflow conditions.

Furthermore, periodic fluctuations in a turbine’s thrust and rotation rate could induce
instabilities that would affect the evolution of the wake of the turbine. Brown et al.
(2021) and Brown et al. (2022) have suggested that intracycle blade-pitch and rotor-
speed oscillations for a turbine operating in steady flow can excite an instability
in the tip vortex shed by the turbine, leading to vortex pairing that causes the
wake to break down and recover faster than in the steady reference case. Though
on slower timescales, the unsteady oscillations in the thrust and rotation rate of a
surging turbine, or a turbine in an axial gust, could produce similar instabilities and
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corresponding increases in the wake-recovery distance. This in turn could lead to
shorter spacing increments between turbines in a floating offshore wind farm, thereby
increasing the effective power density of the array. Still, Rockel et al. (2016) found
that the uncontrolled rocking motions of model floating offshore turbines lead to
decreased turbulent mixing within their wakes, implying that these turbines would
need to be spaced farther apart than their fixed-bottom counterparts for effective
operation in an array. Clearly, these questions require further clarification.

These open questions regarding the wake dynamics of turbines in unsteady flow
conditions were the subject of a flow-measurement campaign with collaborators
from David Rival’s group at Queen’s University in Kingston, Ontario during the
summer of 2022. While the data have not been sufficiently analyzed to be included
in this work, we anticipate that these measurements will shed light on some of the
problems and hypotheses discussed above.

5.2.2 Dynamics and optimization of vertical-axis wind turbines
in arrays

The field experiments and analysis given in Chapter 4 described qualitative mech-
anisms for unsteady vortex shedding from VAWT blades as a function of blade
shape, as well as their effect on the near wake of the turbine. These phenomena
were also visible in the large-eddy simulations of Gharaati et al. (2022), though the
specific vortex dynamics and vortex-shedding mechanisms were not analyzed. The
qualitative agreement between the field data and the numerical simulations lends
credence to the proposed mechanism for wake deformation in turbines with curved
blades. Further studies, however, could investigate these relationships with more
granularity — particularly since the LES computations invoked actuator-line models
for the effect of the turbine blades on the flow, and therefore were unable to fully
capture the complex interactions of the blades with the local flow conditions they
encountered in each rotation period.

The effects of the observed vortical structures on neighboring turbines in closely
packed arrays could also be explored in more detail. The experiments of Brownstein
et al. (2019) were able to visualize differences in strength and spatial arrangement
of some of these vortical structures in paired arrangements of VAWTs; however,
these time-averaged flow fields belie the complex fluid-structure interactions that
the vortical structures shed by one turbine would have on its neighbor in a pair. The
timing of these external influences may be particularly significant for the perfor-
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mance of VAWTs, as dynamic stall is typically present on the turbine blades, and
Strom et al. (2017) have shown that intracycle changes in the flow conditions expe-
rienced by VAWT blades can significantly affect the power extraction of the turbine.
Three-dimensional blade shapes, such as the helical blades considered in this work,
further complicate these dynamics, and the dynamic-stall process on these kinds of
rotating surfaces needs to be more clearly understood. Overall, the unsteady aero-
dynamics of VAWT blades and their associated vortical structures continues to be
an active area of research. Better parameterizations of these dynamics would enable
flow-control schemes and wind-farm arrangements to be developed that improve ag-
gregate efficiency, longevity, and robustness, while also strategically leveraging the
shed vortical structures to enhance momentum transport into the wake and thereby
increase the effective power density of the array.

5.2.3 Unsteady flow estimation in and around wind-energy in-
stallations

Finally, the modeling efforts and experiments presented in this work can inspire
more ambitious efforts to quantify and leverage unsteady flows in real atmospheric
conditions. As a first step, the feasibility of using wind turbines themselves to de-
tect unsteady flow phenomena may be investigated. Since this work has presented
modeling frameworks whose inputs are the time-varying flow conditions encoun-
tered by a turbine and whose outputs are the rotation rate, torque, and power of the
turbine, it is reasonable to ask whether these models may be inverted, so that the
rotation rate and power of a turbine might serve as indicators of unsteady flows. If
the frequency, amplitude, and phase of the flow disturbance can be inferred from
the inverted modeling framework, then the propagation of an unsteady event could
be tracked across an array of turbines and its spatial and temporal variability could
be estimated. If possible, this would give existing wind farms a method for char-
acterizing the unsteady flow phenomena they typically encounter as a function of
the specific topography and layout of the site, without requiring the installation of
additional met towers or other flow sensors.

The wind-energy industry would also benefit from scalable and inexpensive methods
for characterizing unsteady flows in remote areas, regions with complex terrain,
and new and existing wind-farm sites. Existing methods for flow sensing, such
as met towers, LiDAR systems, and point anemometers, tend to be expensive,
limited in spatial and temporal resolution, and restricted in altitude. The 3D-PTV
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technique described in Chapter 4 suggests that sparse Lagrangian flow measurements
could allow much larger measurement domains to be sampled, while still encoding
temporally resolved information about local flow statistics along a trajectory. For
sampling the atmospheric flows relevant to wind-energy and environmental contexts,
the objects used to seed the flow do not necessarily need to resolve the smallest
scales of atmospheric turbulence, as large-scale flow structures will often dominate
in terms of mixing, convection, and transport. Therefore, Lagrangian drifters such
as balloons or passive gliders could be employed to traverse large regions of the
atmosphere and collect flow information along their flight paths. Active airborne
vehicles such as drones could also be used, provided that transfer functions for
their response to quasi-steady and unsteady flow disturbances can be derived so
that their dynamics can be decoupled from the flows they are trying to sense.
These aircraft could carry onboard anemometers for mobile flow sensing, such
as the MEMS system recently developed by Simon et al. (2022). Alternatively,
since the length scales of the aircraft will be much smaller than those of the flows
they are investigating, the aircraft themselves could be treated as flow sensors, as
perturbations from their intended flight paths will contain information about the
flow disturbances encountered at those points in space and time. The recent study
by Wetz and Wildmann (2023) demonstrates a proof-of-concept application of this
idea to in-situ measurements of wind-turbine wakes. At larger scales, these kinds
of systems could be employed to better characterize the so-called terra incognita
of atmospheric flows: submesoscale flow motions on the order of hundreds of
meters to kilometers in length (Wyngaard, 2004). Overall, the scalability of sparse
Lagrangian flow-sensing paradigms lends itself well to the study of unsteady flows
at atmospheric scales, particularly in comparison to traditional Eulerian methods.
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Afterword: On the Exploration of Scientific
Questions in Community

Note: The ideas expressed in this section represent the opinions of the author, and
are not intended to contribute to the technical content of this work.

As surveyed in the previous section, the topics explored in this work open several
possibilities for further research and exploration. In light of these opportunities,
I would like to conclude this dissertation by emphasizing that collaboration and
community are essential to the practice of scientific and technological innovation
in their most potent forms. Given the wide range of pressing issues facing modern
society, and the ever-multiplying number of research problems motivated by these
questions, robust dialogue and cross-disciplinary communication are indispensable
for effectively prioritizing, approaching, and addressing the problems that are most
critical to the promotion of human flourishing worldwide. To this end, I believe
the full potential of the scientific enterprise can only be reached when people from
diverse backgrounds are able to bring their unique perspectives, experiences, and
worldviews — in other words, their whole human selves — to the table as we work
together to tackle these problems. This is science for humanity and by humanity,
and its practice requires empathy, humility, and compassion along with technical
expertise and rigor. Only in this manner will we be able to meaningfully engage
with the wounds and suffering of a broken and hurting world.

“The practice of science is not some purely and generically human enterprise, nor
some autonomous self-governing and self-sustaining enterprise; but an eminently
concrete social-historical enterprise incorporating goals and standards and intuitions
and values that people bring to it and that emerge from their interaction with each
other after their induction into the practice. We enter the conversation of science as
concrete beings of diverse convictions and commitments. We do not shed all our
ordinary convictions and commitments at the door of the conversation room of
science and enter nakedly human; nor do we shed them all to put on some pure white
cloak of science. We enter as who we are; and we begin conversing on whatever is
the topic in hand. When some disagreement turns up, we deal with that. We do not
make sure that we have forestalled it in advance. Often we learn from our
disagreements.”

Nicholas Wolterstorff, Educating for Shalom
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Appendix A

Supplementary Material for Chapter 2

A.1 Phase-averaged power profiles
The plots shown in this section compare the measured, phase-averaged power over a
single period (blue) with the prediction of the first-order linear model (orange) and
the steady reference power (green). The model prediction was computed using a
fourth-order Runge-Kutta time-integration scheme with a time-step of 10−3 s. Ten
periods were simulated to attenuate startup effects, and the last period was extracted
to represent the model prediction. The model did not capture the time-averaged
power for the unsteady cases, but good agreement was still observed in terms of
amplitude, phase, and waveform shape.

A set of four cases, consisting of two nondimensional surge amplitudes (𝐴∗ = 0.257
and 0.514), three reduced frequencies (𝑘 = 0.304, 0.455, and 0.911), and three
nondimensional surge velocities 𝑢∗ = 0.117, 0.156, and 0.234) are shown for com-
parison across waveform shapes and loading conditions. This set of parameters is
presented for various loading conditions and waveform types: sinusoidal waveforms
with a load of 10 Ω (Figure A.1), sinusoidal waveforms with a load of 40 Ω (Figure
A.2), trapezoidal waveforms with a load of 9.8 Ω and 𝜉 = 0.25 (Figure A.3), and
trapezoidal waveforms with a load of 40 Ω and 𝜉 = 1 (Figure A.4). Additionally,
to highlight the accuracy of the model in predicting time-resolved dynamics, two
trapezoidal cases with 𝜉 = 0.01, 𝐴∗ = 0.257, 𝑘 = 0.076, and 𝑢∗ = 0.039 and loads
of 10 and 40 Ω are shown in Figure A.5. These cases are not hand-picked for
agreement; they represent the general fidelity of the model with respect to the data
in all of the cases presented in this study, with the exception of the cases involving
the two lowest tip-speed ratios.
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(a) 𝐴∗ = 0.257, 𝑘 = 0.455, 𝑢∗ = 0.117 (b) 𝐴∗ = 0.257, 𝑘 = 0.911, 𝑢∗ = 0.234

(c) 𝐴∗ = 0.514, 𝑘 = 0.304, 𝑢∗ = 0.156 (d) 𝐴∗ = 0.514, 𝑘 = 0.455, 𝑢∗ = 0.234

Figure A.1: Sinusoidal waveforms with a load of 10 Ω (𝜆0 = 6.21 ± 0.25), for four
representative cases: (a) 𝐴 = 0.3 m and 𝑇 = 2 s, (b) 𝐴 = 0.3 m and 𝑇 = 1 s, (c)
𝐴 = 0.6 m and 𝑇 = 3 s, and (d) 𝐴 = 0.6 m and 𝑇 = 2 s.
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(a) 𝐴∗ = 0.257, 𝑘 = 0.455, 𝑢∗ = 0.117 (b) 𝐴∗ = 0.257, 𝑘 = 0.911, 𝑢∗ = 0.234

(c) 𝐴∗ = 0.514, 𝑘 = 0.304, 𝑢∗ = 0.156 (d) 𝐴∗ = 0.514, 𝑘 = 0.455, 𝑢∗ = 0.234

Figure A.2: Sinusoidal waveforms with a load of 40 Ω (𝜆0 = 8.64 ± 0.35), for four
representative cases: (a) 𝐴 = 0.3 m and 𝑇 = 2 s, (b) 𝐴 = 0.3 m and 𝑇 = 1 s, (c)
𝐴 = 0.6 m and 𝑇 = 3 s, and (d) 𝐴 = 0.6 m and 𝑇 = 2 s.
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(a) 𝐴∗ = 0.257, 𝑘 = 0.455, 𝑢∗ = 0.117 (b) 𝐴∗ = 0.257, 𝑘 = 0.911, 𝑢∗ = 0.234

(c) 𝐴∗ = 0.514, 𝑘 = 0.304, 𝑢∗ = 0.156 (d) 𝐴∗ = 0.514, 𝑘 = 0.455, 𝑢∗ = 0.234

Figure A.3: Trapezoidal waveforms with 𝜉 = 0.25 and a load of 9.8 Ω (𝜆0 =

6.11 ± 0.25), for four representative cases: (a) 𝐴 = 0.3 m and 𝑇 = 2 s, (b) 𝐴 = 0.3
m and 𝑇 = 1 s, (c) 𝐴 = 0.6 m and 𝑇 = 3 s, and (d) 𝐴 = 0.6 m and 𝑇 = 2 s.
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(a) 𝐴∗ = 0.257, 𝑘 = 0.455, 𝑢∗ = 0.117 (b) 𝐴∗ = 0.257, 𝑘 = 0.911, 𝑢∗ = 0.234

(c) 𝐴∗ = 0.514, 𝑘 = 0.304, 𝑢∗ = 0.156 (d) 𝐴∗ = 0.514, 𝑘 = 0.455, 𝑢∗ = 0.234

Figure A.4: Trapezoidal waveforms with 𝜉 = 1 and a load of 40Ω (𝜆0 = 8.77±0.35),
for four representative cases: (a) 𝐴 = 0.3 m and 𝑇 = 2 s, (b) 𝐴 = 0.3 m and 𝑇 = 1 s,
(c) 𝐴 = 0.6 m and 𝑇 = 3 s, and (d) 𝐴 = 0.6 m and 𝑇 = 2 s.

(a) Load: 10 Ω (𝜆0 = 6.27 ± 0.26) (b) Load: 40 Ω (𝜆0 = 8.77 ± 0.35)

Figure A.5: Long-period trapezoidal waveforms with 𝜉 = 0.01, 𝐴∗ = 0.257, 𝑘 =

0.076, and 𝑢∗ = 0.039, for resistive loads of (a) 10 Ω (𝜆0 = 6.27 ± 0.26) and (b) 40
Ω (𝜆0 = 8.77 ± 0.35).
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Appendix B

Supplementary Material for Chapter 3

B.1 Vortex-cylinder theory results
Since Figures 3.10, 3.11, and 3.12 in Section 3.4.2 omitted the predictions of VCT,
these results are included in this appendix. The data in Figures B.1, B.2, and B.3
are identical to the aforementioned figures, but VCT model predictions are shown
instead of PDT predictions. Similar trends are observed, though slight quantitative
differences exist between the two sets of model predictions. Overall, both models
appear to capture the trends observed in the data reasonably well.

(a) (b)

Figure B.1: (a) Amplitude and (b) phase of the estimated induction factors using the
VCT model, plotted against surge-velocity amplitude. Model predictions are given
as dotted lines.
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(a) (b)

Figure B.2: (a) Amplitude and (b) phase of the measured flow velocity at 𝑥 = 𝑥𝑢,
plotted against surge-velocity amplitude. VCT model predictions are given as dotted
lines. Error bars are plotted on every fourth point.

(a) (b)

Figure B.3: (a) Amplitude and (b) phase of the measured relative pressure at 𝑥 = 𝑥𝑢,
plotted against surge-velocity amplitude. VCT model predictions are given as dotted
lines. Error bars are plotted on every fourth point.
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B.2 Additional derivations from the unsteady theo-
retical analysis

B.2.1 Porous-disc derivations
The kinetic energy associated with the motion of a solid disc is given by

𝐾𝐸𝑑𝑖𝑠𝑐 = −1
2
𝜌

∬
𝐴

𝜙�̂� · ∇𝜙𝑑𝐴, (B.1)

where the flux integral is taken on an infinitesimally thin control surface surrounding
the disc. Across this surface, ∇𝜙 = 𝑈𝑖. The kinetic energy of the disc can thus be
written as

𝐾𝐸𝑑𝑖𝑠𝑐 = −1
2
𝜌𝑈

∬
𝐴

𝜙
(
�̂� · 𝑖
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𝑟
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3
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(B.2)

The odd extension to the upstream velocity potential given in Equation 3.28 is

𝜙 (𝑟, 𝑥) = −𝑎(𝑢1 −𝑈)
√︂

2
𝜋
𝑅3/2

∫ ∞

0
𝑠−1/2𝐽3/2(𝑅𝑠)𝐽0(𝑟𝑠)𝑒−𝑠(𝑥−𝑥2)𝑑𝑠; 𝑥 > 𝑥2.

(B.3)

We may differentiate the expression for 𝜙 at streamwise location 3 in time, noting
that 𝑥3 represents a fixed spatial coordinate with zero time derivative, while 𝑥2

represents the instantaneous position of the actuator disc such that 𝑑𝑥2
𝑑𝑡

= 𝑈:
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𝜕𝜙3
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(B.4)

The following integrals are used in this derivation:∫ ∞

0
𝑠−1/2𝐽0(𝑟𝑠)𝐽3/2(𝑅𝑠)𝑑𝑠 =

√︂
2
𝜋

√︁
𝑅2 − 𝑟2𝑅−3/2, 0 ≤ 𝑟 ≤ 𝑅 (B.5)

and ∫ ∞

0
𝑠1/2𝐽0(𝑟𝑠)𝐽3/2(𝑅𝑠)𝑑𝑠 =

√︂
𝜋

2
𝑅−3/2, 0 ≤ 𝑟 ≤ 𝑅. (B.6)

By a similar process, we obtain

𝜕𝜙2
𝜕𝑡

= −𝑎 2
𝜋

√︁
𝑅2 − 𝑟2 𝑑𝑈

𝑑𝑡
+ 𝑎𝑈2. (B.7)

Combining these two unsteady potentials, we arrive at the relation

Φ𝑡 = −4
𝜋
𝑎
√︁
𝑅2 − 𝑟2 𝑑𝑈

𝑑𝑡
, (B.8)

which may be averaged across the face of the actuator disc to obtain

⟨Φ𝑡⟩ =
2𝜋
𝐴2

∫ 𝑅

0

[
−4
𝜋
𝑎
√︁
𝑅2 − 𝑟2 𝑑𝑈

𝑑𝑡

]
𝑟𝑑𝑟 = −8𝑅

3𝜋
𝑎
𝑑𝑈

𝑑𝑡
≡ Φ𝑡 . (B.9)

B.2.2 Rotating actuator bodies
We consider the case of a purely rotating actuator body, for which U = 0 and 𝛀 ≠ 0.
Equation 3.39 becomes

𝜙(x) = 𝛀 ·𝚯, (B.10)
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where 𝛀 is an axial vector. The kinetic energy of the rotating body scales as |𝛀|2,
so that in the quasi-1D formulation, we find

𝑑

𝑑𝑡
(𝐾𝐸) ∼ Ω

𝑑Ω

𝑑𝑡
, (B.11)

ignoring geometric constants. This is analogous to the case of a purely translating
body, for which the time derivative of the kinetic energy scales as𝑈 𝑑𝑈

𝑑𝑡
.

Taking the time derivative of Equation B.10 yields

𝜕𝜙

𝜕𝑡
=
𝜕𝛀
𝜕𝑡

·𝚯 +𝛀 · 𝜕𝚯
𝜕𝑡

=
𝜕𝛀
𝜕𝑡

·𝚯 +𝛀 ·
(
𝜕 (x − x0)

𝜕𝑡
· ∇𝚯

)
. (B.12)

Noting that 𝜕 (x−x0)
𝜕𝑡

= −U = 0, the second term vanishes. For the quasi-1D case, we
write the vector-valued functions 𝛀 and 𝚯 as scalar-valued functions and obtain the
result

𝜕𝜙

𝜕𝑡
= Θ

𝑑Ω

𝑑𝑡
. (B.13)

Comparing Equations B.11 and B.13 with the previously obtained results for a
purely translating body with a locally symmetric flow field, we see that there is no
symmetry-breaking term for a purely rotating body that will yield time-averaged
efficiencies in excess of the Betz limit. This aligns with intuition, as changes in
the rotation rate of an actuator body should affect the flow on either side of the
body symmetrically, which, as we have seen, will not lead to net improvements in
efficiency. It is possible that, in a real wind turbine, changes in the rotation rate
would lead to unsteadiness at the turbine-blade level, potentially due to dynamic stall
or other kinds of vortex-shedding events. These effects, however, would manifest
themselves as streamwise unsteadiness (e.g. changes in induced velocities) rather
than rotational unsteadiness. Thus, streamwise unsteadiness remains the primary
parameter of interest for these investigations.
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Appendix C

Supplementary Material for Chapter 4

C.1 Dynamics of artificial snow particles
Since the choice of flow seeding particles is critical to the accuracy of PTV mea-
surements, the generation and characterization of the artificial snow particles used
in these experiments were carefully considered. Natural snowfall had been used
successfully by Hong et al. (2014) as seeding particles for 2D particle-image ve-
locimetry in the wake of a full-scale HAWT. In the present experiments, artificial
snow was used due to the lack of natural snowfall at the FLOWE site. The artificial
snow used in these experiments was composed of an air-filled soap foam (ProFlake
Falling Snow Fluid, Snow Business), which formed irregularly shaped particles with
a range of sizes. The particles that were visible in the images from the field site had
diameters of 𝑑𝑝 = 11.2± 4.2 mm and an average density of 𝜌 = 6.57± 0.32 kgm−3.
Smaller particles would have been more ideal as ‘tracer’ particles, but these were dif-
ficult to visually identify and isolate in the recorded videos and were thus unfeasible
for these experiments. The settling velocity of these particles in quiescent air was
measured to be 𝑊𝑠 = 0.60 ± 0.18 ms−1, which corresponds to a particle Reynolds
number 𝑅𝑒𝑝 =

𝑊𝑠𝑑𝑝
𝜈

of 448. Since this Reynolds number is outside the Stokes-flow
regime, the relative influence of inertial effects on the ability of the particles to
follow the flow had to be ascertained. A considerable body of research documents
the dynamics of various types of inertial particles in turbulence (e.g. Böhm, 1988;
Aliseda et al., 2002; Xu and Bodenschatz, 2008; Toschi and Bodenschatz, 2009;
Bourgoin and Xu, 2014; Ireland et al., 2016; Nemes et al., 2017; Petersen et al.,
2019). Regardless, the foam-based composition and irregular shapes of the artificial
snow particles meant that laboratory experiments were required to more accurately
characterize their dynamics.

In this section, a series of laboratory experiments are detailed that allowed the flow
response of the artificial snow particles to be quantified. This is followed by a
qualitative analysis based on scaling arguments that confirms the findings of the
laboratory experiments in the field data.
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C.1.1 Laboratory experiments with a snow machine
Laboratory experiments in a wind tunnel were designed to determine the aero-
dynamic response characteristics of the artificial snow particles used in the field
experiments. To measure the particle response to a step change in velocity, a snow
machine was arranged to release particles normal to the flow in the wind tunnel,
creating a jet in cross-flow. As this canonical flow has been studied extensively in
experiments, simulations, and analytical investigations (cf. Fric and Roshko, 1994;
Gopalan et al., 2004; Su and Mungal, 2004; Mahesh, 2013; Karagozian, 2014), it
served as a well-documented baseline against which the particle dynamics could be
evaluated. The spanwise discrepancy between the profile of the jet in cross-flow and
the particle trajectories could then be analyzed to establish a particle relaxation time
and quantify the effects of particle inertia on flow fidelity. The dynamics of the large
particles used in the field experiments were therefore compared with the behavior
of smaller, more regularly shaped particles generated by increasing the blower flow
rate and decreasing the fluid injection rate in the snow machine. The response of
each particle type was studied at two distinct free-stream velocities. The impulse
response and slip velocity of the particles were then calculated from the measured
jet profiles.

Experiments to characterize the dynamics of particles produced by a single snow
machine (Silent Storm DMX, Ultratec Special Effects) were conducted in an open-
circuit wind tunnel with flow driven by a 4× 4 grid of fans at the inlet of the tunnel.
The test section was 4.88 m long in the streamwise direction (𝑋), 2.06 m in width
(𝑌 ), and 1.97 m in height (𝑍). The tunnel was operated with free-stream velocities
of 5.64±0.45 ms−1 and 6.58±0.45 ms−1, as measured with a hot-film anemometer.
A full description of the wind-tunnel facility is given by Brownstein et al. (2019).

The snow machine was positioned on a platform 2.8 m downstream of the tunnel
inlet, so that the output nozzle was perpendicular to the centerline of the tunnel (cf.
Figure C.1). The end of the nozzle was offset at𝑌 = −0.2 m in the spanwise direction
from the center of the tunnel. The blockage from this configuration was less than
5%. Four hardware-synchronized cameras (N-5A100, Adimec) were positioned
around the tunnel, with one located directly above the measurement volume. These
cameras captured a measurement volume of approximately 1.2 m × 0.5 m × 0.5
m in the 𝑋 , 𝑌 , and 𝑍 directions, respectively. The cameras recorded images at a
resolution of 2048× 1008 pixels and a frequency of 250 frames per second, with an
exposure of 600 𝜇s.
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Figure C.1: Schematic of the experimental setup for snow-machine experiments.
Flow is in the positive 𝑋 direction, and the snow machine (blue) emits particles in
the positive 𝑌 direction. Sample particle tracks (light blue) illustrate the extent of
the measurement volume. The four cameras are shown in red, and arrows denote
their viewing angles.

Three-dimensional PTV was used to quantify the movements of the snow particles.
A wand-based calibration procedure, identical to that used in the field experiments
(given in appendix C.2.1), was used to reconstruct particle tracks in three dimensions.
A wand composed of a pair of LEDs spaced 10 cm apart was moved throughout the
measurement volume, and the calibration utility of Theriault et al. (2014) established
the camera positions from image coordinates of the two lights in each camera view.
The wand length was reconstructed with an error of 0.75%, suggesting that the
calibration was sufficiently accurate. The global coordinate system was set using
a plumb line at the center of the wind tunnel, so that the nozzle was located at
(𝑋,𝑌, 𝑍) = (0,−0.2, 0) m. Particles were identified, triangulated in physical space,
and tracked using the procedure outlined in appendix C.2.2. Because of the high
seeding density of the particles, only the largest 10% by area of the identified
particles in the raw images were triangulated into physical coordinates. This was
done to reduce triangulation ambiguities, and to isolate the large particles that
would have been observable in the field experiments for analysis. A statistical
analysis of the size distributions of the particles from the two output settings was
achieved by binarizing images taken by the camera positioned directly above the
measurement volume (Figure C.2), and converting the pixel areas of the identified
particles to effective diameters in physical dimensions. The largest 10% of the
particles by area had effective diameters of 𝑑𝑝 = 11.2 ± 4.2 mm in the large-snow
case and 𝑑𝑝 = 5.9 ± 1.1 mm in the small-snow case. For each experiment, at least
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10 cm

Snow Outlet

U∞

Figure C.2: Photograph of snow particles of the type used in the field experiments,
viewed from above (Camera 2). Particles are generated at the nozzle at the lower
left (green arrow) and are convected toward the right of the image.

120 seconds of data were recorded, corresponding to over 30,000 raw images per
camera. The resulting velocity vectors were binned and time-averaged into 3-cm
cubic voxels with at least 10 vectors per displayed voxel.

C.1.2 Experimental results
Particle time scales and response characteristics were computed from the data in
the following manner. First, the jet in cross-flow was identified from velocity fields
measured with the small snow particles. This was accomplished by applying a
high-pass filter to streamwise slices of the spanwise velocity 𝑉 to isolate the jet in
cross-flow from the signal of the larger particle jet. A hill-climbing search algorithm
was then applied within this region to find the local maximum of spanwise velocity
corresponding to the center of the jet at each streamwise location. These maxima
were projected into the 𝑋𝑌 plane to define the jet centerline (Figure C.3). To educe a
jet profile from these data, it was assumed that the trajectory of the jet in cross-flow
would follow the similarity solution given by Hasselbrink and Mungal (2001) for
the region near the jet orifice

𝑥

𝑟𝑑
=

(
2
𝑐𝑒 𝑗

𝑦

𝑟𝑑

)1/2
. (C.1)

The jet diameter 𝑑 was estimated as 3 cm based on the diameter of the snow-
machine particle generator, and the velocity ratio 𝑟 = 𝑉 𝑗𝑒𝑡

𝑈∞
was calculated based on

the maximum velocity measured on the jet centerline. A single-parameter fit for
the measured jet centerline was then applied to estimate the entrainment coefficient,
𝑐𝑒 𝑗 . Between the two small-snow experiments (𝑟 = 0.29 and 0.36), the extracted
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Figure C.3: Contours of spanwise velocity 𝑉 at the plane 𝑍 = 0, for experiments
with small snow particles at 𝑈∞ = 6.58 ± 0.45 ms−1. Grey crosses represent
the identified cross-flow jet centerline from the data, and the black curve shows
the resulting fit according to the profile given by Hasselbrink and Mungal (2001).
Negative velocities upstream of 𝑋 ≲ 0.1 m were likely spurious, as particles in this
region were clumped together and thus hard to identify accurately.

entrainment coefficient was 𝑐𝑒 𝑗 = 0.39 ± 0.01. This was slightly larger than the
value of 𝑐𝑒 𝑗 = 0.32 given by Ricou and Spalding (1961) for a free jet in controlled
conditions, likely due to the higher turbulence intensities in this experiment. The
jet in cross-flow in the large-snow experiments was harder to identify in the velocity
fields because of its lower velocity ratio (a consequence of the lower snow-machine
blower setting), which resulted in a lower signal-to-noise ratio. The presence of
instabilities in the jet at low velocity ratios likely further obscured the jet profile in
the time-averaged velocity fields (Ilak et al., 2012; Klotz et al., 2019). Thus, for
the sake of consistency across experiments, the measured value for 𝑐𝑒 𝑗 from the
small-snow experiments was used to infer the trajectory of the jet in cross-flow in
the large-snow experiments.

The particle jet was identified using images taken from above the measurement
domain (Figure C.4). The particles detected in each frame were binned into 3-cm
square areas and were plotted as a 2D distribution of particles, averaged over all
images in the experiment. The center of the jet was identified at each streamwise
location to subpixel accuracy using a three-point parabolic fit. The results were
then fitted with a two-parameter power-law fit of the form 𝑦(𝑥) = 𝑎𝑥𝑛 − 0.2, where
another parabolic fit was applied along the line 𝑌 = −0.2 m to fix the coordinate
system with respect to the jet orifice.
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Figure C.4: Contours of 2D particle number density at the plane 𝑍 = 0, for experi-
ments with large snow particles at 𝑈∞ = 6.58 ± 0.45 ms−1. Grey crosses represent
the identified particle-jet centerline from the data, and the black curve shows the
resulting power-law fit, 𝑦(𝑥) = 0.291𝑥0.268 − 0.2. The profile of the jet in cross-flow
(𝑐𝑒 𝑗 = 0.39, 𝑟 = 0.116) is given in light grey.

Given trajectories 𝑦(𝑥) for the cross-flow and particle jets and information about the
convective velocities along the trajectories, time-dependent profiles 𝑥(𝑡) and 𝑦(𝑡)
could be inferred for the two jets. For the jet in cross-flow, it was assumed that ideal
tracer particles would follow the velocity profile derived from the aforementioned
similarity solution of Hasselbrink and Mungal (2001) as

𝑈 (𝑥) = 𝑈∞

(
1 −

𝑐𝑣 𝑗

𝑐𝑒 𝑗

𝑑

𝑥

)
, (C.2)

where the profile coefficient 𝑐𝑣 𝑗 was taken to be unity. A time history could then be
extracted by integrating across point values of Δ𝑡 = Δ𝑥/𝑈 (𝑥). For the particle jet,
the streamwise velocity averaged across 𝑌 and 𝑍 at each streamwise location 𝑋 was
taken to represent the average convective velocity of the particles at that location.
This velocity followed a nonlinear relaxation in 𝑋 that was used to extract an average
particle time history. The streamwise coordinates of the cross-flow and particle jets,
𝑥𝑐 𝑓 (𝑡) and 𝑥𝑝 (𝑡), were computed for a common series of time steps by interpolation.
Then, the spanwise coordinates 𝑦𝑐 𝑓 (𝑡) and 𝑦𝑝 (𝑡) were computed from 𝑥(𝑡) using
the corresponding fit function for each jet profile.

From the matched time histories of 𝑦𝑐 𝑓 (𝑡) and 𝑦𝑝 (𝑡), a spanwise error was defined as
𝛿(𝑡) = 𝑦𝑝 (𝑡) − 𝑦𝑐 𝑓 (𝑡). This difference represents the deviation of an inertial particle
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Figure C.5: Impulse response in acceleration for the artificial snow particles used
in the field experiments, at two free-stream velocities. Oscillations are artifacts of
numerical errors from interpolation.

from the background flow. Differentiating once with respect to time yielded the
spanwise slip velocity of a particle subjected to a step change in 𝑉 . Differentiating
again in time gave the particle’s impulse response in acceleration (Figure C.5). The
reliance on numerical differentiation required smooth signals to obtain meaningful
results; it is for this reason that fit functions were used instead of measured data
to obtain 𝑦(𝑡). In addition, a modest smoothing was required on 𝑥(𝑡) to prevent
interpolation errors from accumulating through numerical differentiation. Error
bars were computed from the residuals of the fits for 𝑦𝑝 (𝑥) and 𝑦𝑐 𝑓 (𝑥). The steady-
state value of the profiles was computed as the mean of the latter half of the time
history of the signal. The particle-response time scale 𝜏𝑝 was defined as the time at
which the profiles of 𝜕2𝛿

𝜕𝑡2
decayed to within one standard deviation of the converged

value. The steady-state values of 𝜕𝛿
𝜕𝑡

provided an estimation of the slip velocity 𝑉𝑠
of the particles. Computed particle time scales and slip velocities are given for the
four experimental cases in Table C.1.

C.1.3 Implications for field experiments
The small snow particles had slightly shorter timescales and smaller slip velocities
than the large snow particles. For both types of particles, the particle-response
timescales showed little dependence on the free-stream velocity, while the slip
velocities increased modestly with𝑈∞, most noticeably for the large snow particles.
This was a consequence of the functional difference between the impulse response in
acceleration, which does not depend on the magnitude of the disturbance, and the step
response in velocity, which does. The particle-response timescales for the large snow
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Experimental
Case

Small Snow
1

Small Snow
2

Large Snow
1

Large Snow
2

Particle
Diameter, 𝑑𝑝
(mm)

5.9 ± 1.1 5.9 ± 1.1 11.2 ± 4.2 11.2 ± 4.2

Tunnel Speed,
𝑈∞ (ms−1) 5.64 ± 0.45 6.58 ± 0.45 5.64 ± 0.45 6.58 ± 0.45

Particle Time
Scale, 𝜏𝑝 (ms) 35.5 ± 1.2 34.4 ± 2.0 39.2 ± 0.3 40.5 ± 6.7

Slip Velocity,
𝑉𝑠 (ms−1) 0.019±0.013 0.025±0.017 0.088±0.004 0.101±0.030

Table C.1: Particle diameters, timescales, and estimated slip velocities for the four
cases in this experiment. Uncertainties represent one standard deviation from the
mean quantities.

particles were therefore representative of those expected in the field experiments.
The relevant flow timescale in the field experiments was 𝜏 𝑓 = 𝐷/𝑈∞ ≈ 0.18,
resulting in a particle Stokes number of 𝑆𝑘 ≈ 0.23. Since 𝜏𝑝 < 𝜏 𝑓 , it could be
assumed that the large snow particles used in the field experiments would respond
rapidly enough to resolve the flow structures of interest to this study.

Since the slip velocities showed a tendency to increase with the free-stream velocity,
the particle slip velocities in the field experiments were expected to be somewhat
larger than those measured in the laboratory experiments. Assuming the particle
slip velocity is directly proportional to 𝑈∞, a linear extrapolation to the average
wind speed at the field site (𝑈∞ = 11 ms−1) yields a worst-case particle slip velocity
of 𝑉𝑠,𝑚𝑎𝑥 = 0.170 ms−1. The acceleration-impulse condition produced in the wind-
tunnel cross-flow configuration was somewhat dramatic compared to conditions
encountered by the particles in the field experiments, in which the jet was aligned
with the free-stream flow. Therefore, this slip velocity should be treated as an upper
bound on the flow fidelity of the particles. Errors due to particle slip in the field
experiments were thus estimated to be below 2% of the free-stream velocity, which
was similar to the precision of the 3D-PTV measurement system (cf. appendix
C.2.2).

Lastly, the effect of the snow machines on the flow incident on the wind turbine in the
field experiment can be ascertained from the results of the laboratory experiments.
The maximum velocity of the flow exiting the snow machine for the large-snow
case was 0.993 ± 0.165 ms−1. Since the snow machines expelled their particles in
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the streamwise direction in the field experiments, this injection of momentum was
minimal compared to the average wind speed. In addition, the particle-response time
scales measured in the laboratory suggest that the particles would have equilibrated
to the background flow well in advance of their approach to the turbine (on the order
of 1 m from the snow-machine nozzle). Given the turbulent nature of the wind
conditions at the field site, the presence of the snow machines was not expected to
disrupt the inflow condition to the turbine. These considerations suggested that the
effect of the snow machines on the quality and measurement of the flow conditions
was negligible.

C.2 Processing procedures
C.2.1 Camera calibration
Calibrations were performed before each turbine was raised into position to facilitate
wand motion throughout the measurement volume. One calibration was used for
all measurements with the UGE turbine, and a second calibration was used for all
measurements with the WPE turbine. A wand, consisting of two 2,000-lumen LEDs
(XLamp XM-L, Cree Components) spaced 1.15 m apart, was moved throughout the
measurement volume using a reach forklift. A light located in the middle of the
wand was flashed to provide a synchronization signal for the cameras. Using the
MATLAB tool developed by Theriault et al. (2014), the LED positions and wand
lengths were reconstructed in an arbitrarily assigned global coordinate system. The
standard deviations of the reconstructed wand lengths from the two calibrations, over
all recorded images of the wand as it moved through the measurement domain, were
0.16% and 0.20% of the measured wand length. The accuracy of the calibrations
was further examined by comparing the calculated and measured distances between
cameras, to quantify reprojection errors. The average reprojection errors across all
inter-camera distances were 0.74±0.39% and 0.83±0.41% for the two calibrations.
These corresponded to less than 10 cm in physical space, which was within the error
tolerances of the tape-based physical measurements themselves. Lastly, the two
calibrations were compared by applying both calibrations to the videos of the first
calibration. After matching the two coordinate systems using principal-component
analysis, the average distance between corresponding LED positions in the two
calibrations was 1.34 cm. This corresponded to a difference on the order of 1 pixel
in the camera images, suggesting that the difference between the two calibrations
was negligible. Still, for the sake of consistency, the first calibration was used for
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all of the experiments with the UGE turbine, while the second calibration was used
for all experiments with the WPE turbine. As a final check on the validity of the
calibrations, images in which the turbines were present in the camera views were
used to reconstruct the spans of the turbines. Several points along the top and bottom
of each turbine were selected in several camera views, and an elliptical fit of these
points identified points lying on the central axis of the turbine. Triangulating the
positions of these points in 3D space (using the methods outlined later in Section
4.2.4) yielded turbine spans that differed by 0.21% and 0.32%, respectively, from
the actual values. Overall, these analyses demonstrated that both calibrations were
accurate and consistent in their 3D reconstruction of objects in the measurement
domain.

C.2.2 3D-PTV processing and statistical convergence
To obtain accurate time-averaged velocity fields from the raw camera images, a
series of processing steps were undertaken. First, for every individual data set, the
images from each camera were averaged to produce a background image, which was
then subtracted from each image to remove glare and stationary structures. Then, the
turbine and support structures visible in each frame were masked using an intensity
threshold and object-detection routine. Through this combination of background
subtraction and masking, the artificial snow particles in each image were isolated.
The results of these steps were checked manually for each data set to confirm that
the correct regions of the flow field were isolated.

To compute the temporal offset between images from different cameras, the signal
of the synchronization light on the turbine tower was tracked in each image. The
mean of the pixel intensities in a small region containing the synchronization light
was computed for every frame in each set of camera images. A custom edge-finding
routine was then used to locate the frames in each camera view in which the light
was switched on. The six sets of images were temporally aligned according to these
reference frames, and the subset of time instances that were represented in all six
camera views was selected for the particle-identification step.

To identify particles in this set of images, intensity thresholds were chosen for
every camera in each data set. These thresholds were used to binarize the images,
and were set manually by iterating on a subset of the images in a data set, so that
approximately 200 particle candidates would be identified in each image. This
target number of particles was found to be sufficiently high to remain sensitive
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to poorly illuminated particles, while low enough to prevent false positives from
obfuscating actual particles. Pixel coordinates for each particle candidate were
determined by computing its centroid, which was more robust to the non-spherical
nature of the particles than other measures. These identified coordinates in 2D image
space were then triangulated onto 3D global coordinates based on the calibrations
outlined in Section 4.2.2, using epipolar geometry (Hartley and Zisserman, 2003).
To reduce the number of ghost particles (non-physical artifacts from ambiguities
in epipolar geometry) detected by this triangulation approach, it was required that
a particle appear in at least three camera views in order for it to be triangulated
into 3D space (Elsinga et al., 2010). Particle trajectories and velocities were then
numerically computed from these spatial coordinates for all time instances in the
data set using a multi-frame predictive-tracking algorithm developed by Ouellette
et al. (2006) and Xu (2008). The velocity fields for three data sets with different
snow-machine heights were then combined into a single unstructured 3D volume
of three-component velocity vectors. This volume was rotated into the coordinate
system given in Figure 4.4 from the arbitrary one assigned by the calibrations using
the axis of the turbine and the tips of the snow-machine towers as references. The
result of this procedure was a collection of velocity vectors distributed throughout the
measurement domain, representing instantaneous velocity measurements at various
time instances during the experiment.

The unstructured velocity vectors were then interpolated onto a grid of cubic voxels
to produce a single time-averaged velocity field. As the choice of the voxel size
influenced both the resolution and statistical convergence of the measured velocity
field, statistical analyses were carried out to inform this selection. First, the effect
of the number of vectors per voxel on statistical convergence was ascertained.
For this analysis, the first case of the helical-bladed UGE turbine was selected.
Bootstrap sampling was employed to obtain better estimates of the statistics of the
population (Efron, 1979). For a voxel with a side length of 25 cm located upstream
of the turbine, 9,000 bootstrap samples of 𝑁 vectors were taken, and the mean
and standard deviation of the velocity magnitude were computed for each sample.
This process was repeated for values of 𝑁 from 1 to the total number of vectors
in that voxel. The standard deviation of these bootstrapped means represented the
uncertainty due to computing an average from samples of the entire population.
This uncertainty decreased with increasing 𝑁 , and dropped below 5% of the average
velocity magnitude of all samples in the voxel, |U|, at 𝑁 ≈ 25 (Figure C.6a). The
uncertainty fell below 2% at 𝑁 ≈ 150. A similar conclusion regarding the value of
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(a) (b)

Figure C.6: Statistical analysis of vectors contained in a 25-cm cubic voxel, located
1.5 𝐷 upstream of the UGE turbine. The variations of the (a) standard deviation
of bootstrapped means and (b) mean of bootstrapped standard deviations of the
velocity magnitude are shown against the number of vectors taken in each sample.
In both figures, the converged value of each measure for 𝑁 >> 1 is shown as a red
dashed line, while bounds for acceptable convergence are given as dotted magenta
lines. 𝑁 ≳ 25 yields convergence within 5%, while 𝑁 ≳ 150 yields convergence
within 2%.

𝑁 was drawn from the average of the bootstrapped standard deviations for various
values of 𝑁 (Figure C.6b). Hence, subsequent analyses sought to include 25 vectors
per voxel, where possible.

Given that the distribution of particle traces in the domain was not uniform, a series
of voxel sizes was tested on the same data set used above to determine a voxel size
that balanced spatial resolution and the target number of vectors per voxel. Voxels of
various sizes were used to discretize the domain, and voxels that contained at least 3
vectors were counted toward the total number of voxels in each discretization. The
fraction of these voxels that contained at least 25 vectors began to converge around
a grid dimension of 30 cm (Figure C.7a). A grid dimension of 25 cm resulted in
over 50% of voxels having at least 25 vectors (5% precision, according to Figure
C.6a), as well as over 20% having at least 150 vectors (2% precision). In a volume
encapsulating the turbine wake (bounded by 𝑋/𝐷 > 1

2 , |𝑌/𝐷 | ≤ 3
2 , and |𝑍/𝐷 | ≤ 3

2 ),
87% of voxels had at least 25 vectors, and 58% of voxels had at least 150 vectors.
Therefore, the level of precision of the results presented in this work, which focus
on this wake volume, was comfortably below 5% in the area of interest for voxels
of this size. In addition, the standard deviation of the bootstrapped means for all
vectors within a voxel of a given size dropped below 1% of |U| for a grid dimension
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(a) (b)

Figure C.7: Measures for the determination of an appropriate voxel size for binning
and averaging velocity vectors. (a) shows the fraction of voxels containing at least
𝑁 = 25 and 𝑁 = 150 vectors, representing the number of vectors required for 5%
and 2% measurement precision, for the entire measurement domain (circles) and
the wake region (triangles). (b) shows the standard deviation of bootstrapped means
for all vectors in a given voxel, representing the best-case precision possible for a
given voxel size. Both measures suggest that a grid dimension of 25 cm is a good
compromise between spatial resolution and statistical convergence.

of 25 cm (Figure C.7b). This indicated good best-case statistical convergence for
voxels of at least this size.

In light of these results, a voxel size of 25 cm was used to discretize the domain,
serving as a good compromise between grid resolution and statistical convergence.
At least half of all voxels in the measurement volume had standard deviations in the
velocity magnitude below 5%, with 20% of these having a measurement precision
below 2%. In the wake of the turbine, the precision for 87% of the voxels was below
5%, with close to 60% of this volume having a precision below 2%. The best-case
precision for the most densely populated voxels was below 1%.

Once the velocity vectors had been binned and averaged into 25-cm cubic voxels,
a filter developed by Schiavazzi et al. (2014) was employed to enforce a zero-
divergence criterion on the vector fields, in keeping with the negligible Mach num-
bers (𝑀𝑎 < 0.05) of the experimental conditions. The effect of this filter was to
attenuate unphysical deviations in the velocity fields due to spurious particle trajec-
tories, especially near the edges of the domain where velocity vectors were more
sparse (cf. Figure C.8).

From these filtered velocity fields, values for the velocity incident on the turbine and
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the settling velocity of the artificial snow particles were computed by averaging all
velocity vectors at least 1𝐷 upstream of the axis of rotation of the turbine. Compared
to the settling velocity of the particles measured in quiescent air,𝑊0

𝑠 = 0.60 ± 0.18
ms−1, the observed settling velocities measured in the prevailing wind conditions at
the field site were higher: 𝑊𝑠 = 0.89±0.12 ms−1. The discrepancy was likely due to
the presence of a slight downward slope in the local topography at the site. According
to data collected by Kinzel et al. (2012), the corresponding bias in the vertical
velocity was 𝑊 ≈ −0.22 ms−1, which is consistent with the discrepancy observed
in the present data. It is also possible that atmospheric turbulence contributed to
the increased settling velocity as well, an effect that has been observed for natural
snowflakes (Nemes et al., 2017) and general inertial particles (Petersen et al., 2019)
in turbulent conditions. Thus, the average settling velocity measured upstream of the
turbine,𝑊𝑠, was subtracted from the entire velocity field, so that the time-averaged
vertical velocity𝑊 induced by the turbine could be isolated.

Fields of vorticity were computed from these velocity fields. Due to the relatively
coarse grid size and the error associated with numerical differentiation, a 3 × 3 × 3
median filter was applied to all fields involving velocity derivatives. This was mainly
employed to remove unphysical results from numerical differentiation near the edges
of the measurement domain, but also had a modest smoothing effect on the vortical
structures present in the wake.

To demonstrate the effects of the filters applied to the velocity and vorticity fields, a
single planar slice at 𝑋/𝐷 = 1.5 was isolated from the WPE turbine data at 𝜆 = 1.20,
and the vertical vorticity component 𝜔𝑧 was plotted in Figure C.8. The unfiltered
vorticity fields were marked by significant noise on the boundaries of the domain
(Figure C.8a). Applying the solenoidal filter to the velocity fields resulted in locally
smoothed velocity vectors, corresponding to slight smoothing in the vorticity fields
(Figure C.8b). By contrast, applying the 3×3×3 median filter to the vorticity fields
removed the shot noise from the boundaries of the domain, while smoothing over
the large-scale structures (Figure C.8c). The combination of the two filters resulted
in smoothed velocity and vorticity fields that allowed trends in the flow fields to be
identified more readily (Figure C.8d).

C.3 Velocity and vorticity fields
In this section, salient features of the velocity and vorticity fields in the wake are
described and discussed. These results are compared with previous studies in the
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(a) No filtering (b) Solenoidal filtering only

(c) Median filtering only (d) Both solenoidal and median filtering

Figure C.8: Effects of the two filters applied to the voxel-averaged velocity and
vorticity fields, demonstrated on a cross-section of vertical vorticity (𝜔𝑧) at 𝑋/𝐷 =

1.5 downstream of the WPE turbine for 𝜆 = 1.20. The solenoidal filter affects both
the velocity and vorticity readings, while the median filter is only applied to the
vorticity field.

literature to show that many of the trends observed in laboratory experiments at
lower Reynolds numbers still apply for full-scale turbines in field conditions.

C.3.1 Velocity fields
Velocity fields for the time-averaged streamwise-velocity component 𝑈 on three
orthogonal planar cross-sections are given for the UGE and WPE turbines respec-
tively, each at two tip-speed ratios, in Figures C.9 and C.10. The velocity deficit
in the wakes were slightly more pronounced in the higher-𝜆 cases, and the wake
regions were shifted slightly toward the negative spanwise direction due to the rota-
tion of the turbine. This is consistent with the wake trends observed by Parker and
Leftwich (2016). The magnitude of the velocity deficit was significantly larger for
the WPE turbine, consistent with its higher solidity. These flow fields qualitatively
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paralleled those reported by Araya et al. (2017), which were recorded in a water
channel at a significantly lower Reynolds number (𝑅𝑒𝐷 = 8 × 104). This supports
the inference of Parker and Leftwich (2016) that the general shape of the turbine
wake is not sensitive to Reynolds number in this parameter range, despite the fact
that the coefficients of power only converge for 𝑅𝑒𝐷 ≳ 1.5 × 106 (Miller, Duvvuri,
Brownstein, et al., 2018).

Velocity fields for the time-averaged spanwise-velocity component 𝑉 , also taken at
the mid-span of the turbines, are shown in Figures C.11a and C.11b for the UGE
and WPE turbines at 𝜆 = 1.2. A clear upstream bifurcation of the flow due to the
presence of the turbine was visible in Figure C.11a, and a negatively skewed velocity
field, representing spanwise flow induced by the rotation of the turbine, was present
downstream of the turbine in both cases. This region grew more rapidly in thickness
behind the WPE turbine than behind the UGE turbine, again likely due to its higher
solidity and correspondingly stronger flow induction.

The wake recovery of the two turbines also followed previously observed trends in
the literature (cf. Ryan et al., 2016; Araya et al., 2017). The wake recovery was
quantified by thresholding planar slices of the streamwise velocity component at
various streamwise positions downstream of the turbine by the average upstream
flow velocity incident on the turbine,𝑈0. For each slice, this thresholding procedure
divided the wake region, defined as the region of flow where the local streamwise
velocity component was less than𝑈∞, from the surrounding free-stream region. The
average velocity within the wake region, ⟨𝑈⟩, was taken for each streamwise slice,
and was plotted against streamwise distance (Figure C.12). The analysis of these
wake-recovery profiles has been undertaken comprehensively by Araya et al. (2017),
and the trends found in these experiments show good agreement with their findings.
The minimum value of ⟨𝑈⟩/𝑈0 was observed to decrease with increasing 𝜆 and
increasing 𝜎. These differences were most prominent in the near wake (𝑋/𝐷 ≲ 2),
in which vortex shedding from the turbine blades is most significant (Tescione et al.,
2014; Parker and Leftwich, 2016; Araya et al., 2017). The streamwise extent of the
measurement domain was not large enough to observe the full transition to bluff-
body wake dynamics described by Araya et al. (2017), but the presently measured
wake profiles exhibit similarity to that previous work within the domain of present
interest.
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(a) (b)

Figure C.9: Time-averaged planar fields of the streamwise velocity 𝑈 for the UGE
turbine at (a) 𝜆 = 1.19 and (b) 𝜆 = 1.40, taken at 𝑍/𝐷 = 0. The differences in the
shape of the wake between the two tip-speed ratios are minor.

(a) (b)

Figure C.10: Time-averaged planar fields of the streamwise velocity𝑈 for the WPE
turbine at (a) 𝜆 = 0.96 and (b) 𝜆 = 1.20, taken at 𝑍/𝐷 = 0. As in Figure C.9, the
differences in the wake between these two tip-speed ratios are minor.

(a) (b)

Figure C.11: Time-averaged planar fields of the spanwise velocity𝑉 for (a) the UGE
turbine at 𝜆 = 1.19 and (b) the WPE turbine at 𝜆 = 1.20, taken at 𝑍/𝐷 = 0. The
V-shaped region of negative spanwise velocity downstream of the turbines is more
prominent for the WPE turbine, which has a higher solidity.



Appendix C 175

Figure C.12: Profiles of ⟨𝑈⟩/𝑈0 versus distance downstream of the turbine for all
four experimental cases. Here, angle brackets denote spatial averages across 𝑌𝑍-
sections of the wake, and𝑈0 represents the velocity directly upstream of the turbine.
Profile discrepancies corresponding to differences in 𝜆 and 𝜎 are present in the near
wake (𝑋/𝐷 ≲ 2), whereas the wake recovery in the far wake appears to be more
uniform.

C.3.2 Vorticity fields
For the sake of completeness, streamwise slices of the spanwise vorticity 𝜔𝑦 are
provided in Figures C.13 and C.14. The time-averaged vortical structures visible
in these plots represented tip vortices shed from the turbine blades (Tescione et al.,
2014). These structures did not display a strong degree of asymmetry, suggesting
that they were relatively unaffected by the tilted-wake behavior observed in the
vortical structures in 𝜔𝑥 and 𝜔𝑧.
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Figure C.13: Streamwise slices of the spanwise vorticity𝜔𝑦 downstream of the UGE
turbine for 𝜆 = 1.19. These structures are products of vortex shedding from the tips
of the turbine blades (Tescione et al., 2014). Note that the 𝑋-axis is stretched on
0.5 ≤ 𝑋/𝐷 ≤ 3.

Figure C.14: Streamwise slices of the spanwise vorticity 𝜔𝑦 downstream of the
WPE turbine for 𝜆 = 1.20. These structures are not significantly different from
those shown in Figure C.13.
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