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Abstract

The goal of this work is to investigate the use of holographic techniques for infor-

mation processing and transmission systems. Until recently information has been

processed and transmitted mainly electronically. With the advent of optical fiber

communications the monopoly of electronics has receded in the telecommunica-

tions field, but the domain of information processing is still dominated by electronic

processors.

This thesis follows a top-down approach to the design of processors that integrate

both electronic and optical components. It begins with the design considerations of

a compact, rapidly reconfigurable opto-electronic processor, which possesses an

optical bus in addition to the traditional electronic bus. The optical bus takes advan-

tage of the massive parallelism that is afforded by optics and can be coupled to a

holographic digital memory, allowing rapid reconfiguration of the device. The capa-

bility of rapid reconfiguration gives rise to a new computational paradigm, where

the reprogramming of the device can become part of the computation. We suggest

additional applications of this processor, namely as a smart reading head for large

scale holographic disk memories. Finally we present novel algorithms that were

developed specifically to take advantage of the additional capabilities of our pro-

cessor.

The next section is concerned with the wavelength and angular tuning of strong

volume holograms, both in the reflection and 90-degree geometries. Since photons

have no charge, we need to rely on their wave properties to manipulate them, both

for long-range transmission, such as telecommunications, and short-range trans-

mission, such as on chip interconnects. In this section we investigate how volume

holograms can be used to selectively redirect information bearing light beams.

The final part of this thesis is concerned with material issues. Holographic record-

ing of strong volume gratings is one of the most commonly used approaches, and

photorefractive materials have a strong bearing on the overall performance of the

final system. Two properties of iron doped lithium niobate are investigated, namely
vi



the dependence of absorption on temperature and the quadratic electro-optic coef-

ficient. The former is crucial for the commonly used technique of thermal fixing, and

the latter can become significant should we choose to use applied continuous fields

to tune our gratings.
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1 Introduction
1.1 Holography for information systems
In this thesis we investigate the use of holography in the context of information pro-

cessing. Information can be encoded on light beams, by modifying their temporal

or spatial properties. Holograms can be used to manipulate the properties of those

light beams, effectively processing the information they bear. In this section we will

discuss, in the most general terms, what kind of processing can be implemented

using holographic elements.

Plane waves are the eigenmodes of free space [1-1]. Sinusoidal gratings can be

used to couple two such elementary modes [1-2]. It is also possible to superimpose

multiple gratings in the same volume, thus enabling more complicated wavefronts

to be coupled to the input wavefront. In most holographic memory systems, a
1



Introduction
single reference plane wave is coupled to multiple gratings in order to reconstruct

the highly structured information page [1-3]. These memories can be interfaced to

optoelectronic circuits, thus enhancing key aspects of their performance [1-4,1-5]. 

Due to their large number of periods, holographic gratings exhibit significant selec-

tivity to angular and wavelength detuning. It is, therefore, possible for strong

volume holograms to act as filters that isolate and redirect specific spatial and

spectral information. Such gratings can be used to implement tunable intercon-

nects for a chip, act as wavelength filters [1-6,1-7] or demultiplexers [1-8] for Wave-

length Division Multiplexing (WDM) fiber communications systems, or be used to

perform spatially and spectrally selective imaging [1-9,1-10].

In this thesis we will focus on the investigation of two of these possible uses. The

first is the use of holograms as memory elements, and their combination with opto-

electronic circuits. The second is the use of strong holographic volume gratings as

filtering elements for WDM optical communications. In the next sections of this

chapter we present an outline of the thesis.

1.2 Optically programmable gate arrays
We will begin in Chapter 2 by detailing the design, implementation, and testing of

a compact, rapidly reconfigurable, optoelectronic processor. We will go through ini-

tial design considerations and briefly mention all the constituent components,

spending more time on the testing and integration of the silicon circuit that com-

bines photodetectors with logic circuits. We will then detail experiments to imple-

ment and test the integration of these devices, culminating in the demonstration of

holographic reconfiguration of our processor.

In Chapter 3, we will generalize our architecture, and show how a real-time video

processing algorithm can be mapped to it. Then, we will present two algorithms

specifically designed to take advantage of this device. The first one is a Neural Net-

work based approach to the classification of cursive digits, that presents a new

computational paradigm by introducing the reconfiguration of the device as part of

the computation. The second one is an algorithm that allows OPGA’s to be used
2



Introduction
as smart head that are able to retrieve classes of objects from large, non indexed

holographic databases.

1.3 Strong volume gratings
As mentioned in Section 1.1, strong volume gratings can be used to implement tun-

able interconnects as well as filters of WDM fiber communication systems. In

Chapter 4 we will investigate the behavior of strong gratings, in the reflection

geometry. We will start with a general treatment of waves in two-dimensional peri-

odic media. Then we will focus on the reflection geometry, and investigate some of

the finer aspects of the coupled mode theory, with applications to polarization

dependence, angular, wavelength, and thermal detuning. Finishing with the reflec-

tion geometry we present experimental results confirming our theories. 

We will then proceed to the 90-degree geometry, in Chapter 5. We will extend the

coupled mode formalism to two dimensions, and present theoretical and experi-

mental results regarding diffraction efficiency. Next, we will discuss wavelength

detuning, and develop a numerical solution for the coupled-mode equations in that

case. We will conclude the chapter with a numerical calculation of the impulse

response of strong volume gratings in the 90-degree geometry.

1.4 Materials
In Chapter 4 and Chapter 5, we discuss the use of strong volume gratings as filters.

In this context the lifetime of the recorded gratings becomes an issue. One of the

most promising methods to increase the lifetime of holographically recorded grat-

ings is thermal fixing, which involves recording at elevated temperatures. In

Chapter 6 we will discuss the effects of temperature on the absorption spectrum of

iron doped lithium niobate (LiNbO3). First we will give an outline of the absorption

mechanisms. Then we will present the experimental methods we used and the

results obtained. Finally we will propose a theoretical model that explains our

experimental observations, and discuss its implications in terms of possible appli-

cations and extensions to different dopants.
3
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Our ability to record gratings in photorefractive materials is due to the electro-optic

effect, which allows electric fields induced by charge redistribution to be mani-

fested as a modulation of the refractive index. Though the presence of grating is

due, for all practical purposes, to the linear electro-optic effect, it is of interest to

investigate the magnitude of the quadratic electro-optic effect. In Chapter 7 we will

begin by reviewing an experimental setup used to measure the linear electro-optic

coefficients. We will then proceed to describe the limitations that prevent the use

of such a setup for the measurement of the quadratic electro-optic coefficients,

highlighting the challenges presented. Finally, we will present the design of a mea-

surement system capable of measuring the quadratic electro-optic coefficients,

even in the presence of much stronger linear electro-optic coefficients, as well as

results for the case of manganese-doped lithium niobate (LiNbO3:Mn).
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2Optically programmable 
gate array
2.1 Introduction
Information processing and transmission has been dominated, until recently, by

the use of electronic encoding. This is due to the fact that electrons, thanks to their

charge, are fairly easy to manipulate, and since they constitute part of matter, it is

straightforward to achieve interaction between a device and an electronic stream

of information. In the last few years, optical and optoelectronic systems have been

widely adopted in the realm of telecommunications, a trend mainly due to their

higher bandwidth. Still, there is no similar penetration of use of optical techniques

in local information processing. This is due to photons having no charge, thus forc-

ing us to manipulate them by taking advantage of their wave properties. Neverthe-
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less, it is considerably harder to force light to interact with matter than it is to force

electrons to do so.

On the other hand, again due to the lack of charge, photons have the very advan-

tageous property of not interacting with each other. This inherently reduces the

crosstalk of optical communications, and allows unprecedented degrees of paral-

lelism in on-chip interconnects, hardly conceivable in the case of purely electronic

circuits. Furthermore, the decrease of device size in VLSI circuits is not followed by

a similar decrease in interconnect dimensions. As devices shrink and operating fre-

quencies increase the need for more efficient, less real-estate-consuming intercon-

nection solutions will become pressing. We believe that optical interconnects will

provide an elegant solution to this problem [2-1].

In this chapter, we propose the use of photonics to implement data transfer, on a

chip scale. More specifically, we discuss the design, fabrication, and characteriza-

tion of a compact, rapidly reconfigurable optoelectronic processor [2-3, 2-4], which

relies on the interfacing of a silicon optoelectronic circuit with a holographic optical

memory [2-5, 2-6]. The device we propose is an extension of a Field Programma-

ble Gate Array (FPGA) [2-7], a widely used class of reconfigurable digital circuits.

The main idea behind FPGA’s is that any Boolean function can be implemented by

proper combination of elementary Boolean functions (e.g., all Boolean functions

can be implemented using NAND gates). FPGA circuits contain two components:

• Reconfigurable look-up tables (LUT’s).

• Reconfigurable interconnects.

The LUT’s implement elementary Boolean functions. By configuring the look-up

tables and combining their outputs using interconnects, FPGA’s can implement

any logic function. The versatility, ease of programming, and computing power of

FPGA’s has propelled them from limited use in development and prototyping,

which was their initial target application, to widespread use in many commercial

electronic products. In addition, FPGA’s, occupying the middle ground between the

processing power of Application Specific Integrated Circuits (ASIC’s) and the ease
7
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of programming of microprocessors, are widely used in demanding Digital Signal

Processing (DSP) applications [2-8, 2-9].

The enhancement of FPGA’s with optical interfaces has been discussed in litera-

ture, mainly in terms of high-bandwidth I/O [2-10] and interchip interconnects [2-

11]. The device we propose, namely the Optically Programmable Gate Array

(OGPA), addresses one of the main limitations of FPGA’s: Their long reconfigura-

tion time. FPGA’s have only one set of inputs/outputs (I/O), they communicate

electronically through the pins of the chip. Since most of these I/O resources are

used for the transfer of data that is processed by the device, very few I/O ports are

available for its reconfiguration. As a result the reconfiguration of an FPGA can last

several milliseconds, and in practice FPGA’s are programmed before the data pro-

cessing begins and do not alter their functionality during operation.

By contrast, the OPGA has an additional set of inputs, namely a set of photodetec-

tors on the surface of the chip. These inputs are linked to a holographic memory

that contains the reconfiguration data necessary to program the logic functionality

of the device. The inherent 2-D aspect of holographic memories, combined with

fast access, allows OPGA’s to be reprogrammed in a matter of microseconds, thus

providing a new computational paradigm, where the reconfiguration of the device

can be part of the computation. 

In this chapter we discuss the design and implementation of the OGPA device. We

present the elements of the device and some of the trade-offs involved. Then we

focus on the chip that combines the reconfigurable logic and detectors, discuss the

methods used to characterize it and the corresponding results. Finally, we intro-

duce a demo setup that showcases the successful reconfiguration of an electronic

circuit, using a holographic memory. 

2.2 Elements of the OPGA
The OPGA is composed of the following basic elements (see  Figure 2-1):

• A silicon integrated circuit combining reconfigurable logic and photodetectors.
8
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• A holographic memory element, where the reconfiguration templates are 
stored.

• An addressing device, used to access information in the holographic memory, 
and transfer it to the silicon circuit.

The processing element of the OGPA is located on the silicon circuit, and is imple-

mented by configuring properly the logic blocks and interconnects. The information

required to configure the processing element is stored in the holographic memory

element. When we want to change the functionality of the processing element we

use an addressing device to select a specific reconfiguration data page from the

memory, and transfer it on the surface of the chip. There, the photodetectors

receive this information, which is then routed to the reconfigurable elements. The

information is used to change the parameters of these elements, leading to the

implementation of a new functionality.

The holographic memory element can be made using several different materials,

such as polymers (Aprilis [2-12], DuPont [2-13]), or photorefractive crystals

(LiNbO3:Fe), and the information can be recorded using a number of different mul-

tiplexing techniques, such as reflection geometry [2-14], transmission geometry,

90o geometry [2-15], shift multiplexing [2-16], and peristrophic multiplexing [2-17].

In selecting the holographic material and multiplexing technique, we need to

address the competing needs for memory capacity and efficient reconstruction of

the stored information [2-18].

Figure 2-1. Compact OPGA module. The addressing devices access different pages stored in 
the holographic memory element. The information contained in these pages is imaged on the 

surface of the chip. There photodetectors collect the information, which is then used to reconfigure 
the programmable logic that is also implemented on the chip.
9
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The addressing devices are crucial in determining the minimum reconfiguration

time, in the sense that they should enable us to access rapidly different memory

pages, and have enough power, so that the information that is reconstructed on the

surface of the chip can be integrated by the photodetectors in a short time. Devices

that fulfill these requirements are arrays of Vertical Cavity Surface Emitting Lasers

(VCSEL’s) [2-19], and Micro-electro-mechanical (MEM’s) arrays combined with

laser diodes.

2.3 The OGPA chip
The OPGA chip consists of two main elements: a photodetector array and recon-

figurable logic. Since the reconfiguration data is to be transferred from the memory

to the photodetectors, and then to be used to reconfigure the LUT’s and intercon-

nects, it would make sense to place the reconfigurable logic elements and the pho-

todetectors used to reconfigure them in close proximity. Such an optically

reconfigurable LUT is shown in Figure 2-2. Optical information collected by the

Active Pixel Sensor (APS) array is transferred to an array of 16 latches. A four-bit

Figure 2-2. Optically Reconfigurable Look-Up Table. The information received by the 
photodetector array is stored in the latches. The input defines through a decoder which latch value 

will be output, thus implementing the LUT.
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decoder receives an input and presents the contents of the corresponding latch at

the output. By selecting the values stored in the latches we can implement any 4-

bit input, 1-bit output Boolean function.

Combining the photodetectors and reconfigurable logic elements has obvious

advantages, in terms of minimizing the wiring required for configuration-data trans-

fer. On the other hand, such a design results in bigger pixels with smaller fill-factor,

putting a strain on the power requirements of the laser source, and the diffraction

efficiency requirements of the holographic memory.

We designed and fabricated a prototype OPGA chip in collaboration with Photobit

Inc. The chip was fabricated using a 0.35 micron, CMOS technology. It is shown in

Figure 2-3, where the two main elements, the photodetector array and the recon-

figurable logic, are easily distinguishable. In this prototype chip we chose to imple-

ment the photodetector array and the logic at different locations, mainly in order to

facilitate testing. The trade-offs between the two possible designs should be con-

Figure 2-3. Photograph of the OPGA chip. (a) 64 × 64 Active Pixel Sensor Array. (b) 
Reconfigurable logic.
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sidered in future implementations. In the following sections we describe in detail

these two elements.

2.3.1 The APS array
The photodetector array was implemented as a 64 × 64 active pixel sensor differ-

ential array [2-20, 2-21]. Each pixel of this array is an active pixel, the difference

between a passive pixel and an active pixel being that in an active pixel the charge

generated by the photodiode is actively amplified before being red-out (see

Figure 2-4). As a result, active pixels achieve significantly better signal-to-noise

(SNR) ratios than their passive counterparts.

The array also employs differential encoding, so that every pair of pixels encodes

only one bit, i.e., a pixel combination of dark-bright corresponds to 1 and a combi-

nation of bright-dark corresponds to 0. This encoding is a rudimentary error correct-

ing code, used to counter the fact that the intensity across large reconstructed

holographic data pages is not constant. The pixel combinations dark-dark and

bright-bright are not permitted, and result to a random flickering value and a zero

value respectively. Examples illustrating the concept of differential encoding are

shown in Figure 2-5. The differential encoding is implemented by driving the output

voltages of the two pixels of a pixel pair through a comparator, as shown in

Figure 2-4. Schematic diagrams of Passive and Active Pixels. For the Passive Pixel the charge 
of the floating diffusion is output directly. For the Active Pixel it is amplified in-situ before being 

output.
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Figure 2-6. The nonpermitted states result from the fact that the corresponding

inputs drive the comparator out of its normal operation region. The different behav-

ior for different nonpermitted states stems from the asymmetric design of the com-

parator.

The APS array can be read row-wise, and rows can be accessed in random order.

When a row is being read out, the corresponding pixel values are compared pair-

Figure 2-5. Examples of differential encoding. The left column corresponds to the data projected 
on the APS array, with white squares corresponding to illuminated pixels and black ones to dark 

pixels. The right column corresponds to the data that is read out, with black corresponding to 1 and 
white corresponding to 0. The last two examples illustrate the response of the array to 

nondifferential inputs.
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wise, and the resulting outcomes are stored at the output latches of the array. Due

to differential encoding, the 64 × 64 APS array produces 64 lines of 32 bits.

2.3.2 The reconfigurable logic
The reconfigurable logic, illustrated in Figure 2-7, consists of the following:

Figure 2-6. Schematic diagram of the differential APS pair. The two pixels are amplified 
independently, and then driven through a comparator. The outcome of the comparison is stored in 

a latch, and accessed during readout.

Figure 2-7. Schematic diagram of the reconfigurable logic. It is composed from four 5-bit input, 1-
bit output LUT’s, five interconnection matrixes and four I/O ports.
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• Four 5-bit input, 1-bit output LUT’s.

• Five interconnection matrixes.

• Four I/O ports.

• A five-line bus is used to transmit data to and from the different elements.

Each input of each LUT can be connected to any bus line, and the same holds for

its output. Therefore the reconfiguration of a LUT block requires 25 = 32 bits for the

LUT itself, 5 × 5 bits for the reconfiguration of the input connections, and 5 bits for

the reconfiguration of the output connections, bringing the total to 62 bits. As a

result two lines of the APS array are necessary to reconfigure any LUT block.

Each of the five interconnection matrixes connects four segments of the 5-line bus.

The corresponding lines of the four segments can be connected in 6 different ways,

therefore 5×6 bits are required for the reconfiguration of an interconnection matrix,

corresponding to a single line of the APS array.

The I/O ports are implemented using tri-state buffers, so that they can be set to

operate in input-only, output-only, or input-output mode.

The reconfiguration of the entire logic requires 4×2 + 5×1 = 13 lines of the APS

array. Since each data page consists of 64 lines, it contains enough information for

four complete reconfigurations of the logic.

2.3.3 Performance characterization of the APS array
The first test we performed on the chip was to characterize the APS array. The chip

is mounted on a board that generates the necessary bias voltages and timing sig-

nals. It also has an interface to the parallel port of a PC, through which we are able

to collect and visualize the information displayed on the APS array. In order to test

the APS array we need to pixel-match it to a Spatial Light Modulator (SLM), a liquid

crystal device commonly used in overhead digital projectors. The pixel pitch of the

APS array was designed to be 15 µm, equal to the pixel pitch of the Kopin 320

CyberDisplay SLM. There are several well-known techniques used to pixel-match

SLM’s to detectors. They rely on the display of known geometrical patterns on the

SLM, and subsequent adjustment of the detector’s position, based on the readout.
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In the case of the APS array, the use of such a technique was rendered impossible

due to the differential encoding used. Due to that, the output of the array flickers

randomly when it is not pixel matched, and only stabilizes when we are very close

to pixel match. In order to circumvent this hurdle we designed the optical setup

shown in Figure 2-8.

In this setup the light of a HeNe laser is collimated and spatially modulated using

the SLM. It is then imaged on the surface of the chip using a 4-f system, formed by

(a)

(b)
Figure 2-8. Pixel matching experimental setup. (a) Schematic diagram. (b) Detail of the 

experimental setup.
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two low-aberration Nikon lenses. The chip and board are mounted on a combina-

tion of translation and rotation stages allowing five degrees of freedom (three trans-

lational and two rotational). The surface of the chip acts as a partial reflector, so the

illuminating pattern is reflected back through the 4-f system. A beam-splitter,

placed between the SLM and the first lens, splits the reflected light, part of which

is imaged on a CCD camera through a microscope objective. A pair of LED’s illu-

minates the surface of the chip independently, so that the image of the chip is

superimposed to the image of the illuminating pattern on the CCD. Using the rota-

tion and translation controls of the chip mount we are able to align the APS pixels

and the illuminating pattern, thus achieving pixel-matching between the two, as

shown in Figure 2-9.

The next step is to vary the intensity of known illuminating patterns using a variable

attenuator, and measure the number of errors on the APS output. We used both

random and structured patterns, shown in Figure 2-10. More information about the

patterns can be found in Table 2-1. The probability of error  is plotted vs. inten-

sity (arbitrary units) in Figure 2-11, for three different random patterns. The three

patterns are generated using the same distribution of random numbers by chang-

ing a threshold. Very low intensities lead essentially to the dark-dark combination

Figure 2-9. Images used for pixel matching. (a) Image of pixels. (b) Image of illumination pattern. 
(c) Superposition of pixels and illumination pattern.

Pe
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(a) (b)
Figure 2-10. Patterns used to test the APS array.
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(c) (d)

(e) (f)
Figure 2-10. Patterns used to test the APS array.
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being displayed on the APS array, and as a result we get quasi-random flickering,

leading to a  of about 50% for all patterns. At the other end of the spectrum,

when the displayed pattern intensity is very high, we have the bright-bright pixel

combination, which leads to an all-white output (white is equivalent to 0). As a

result, the  for each pattern is close to its percentage of black (or 1) pixels. In the

middle of these two extremes we have a region where the  drops and even

reaches zero. This region is interrupted by a bump, whose height seems to be inde-

Figure 2-11. Probability of readout error  vs. illuminating intensity (arbitrary units) for three 
random patterns.

Pattern Description % Black pixels Figure

25 Random pattern 25 Figure 2-10 (a)

501 Random pattern 50 Figure 2-10 (b)

75 Random pattern 75 Figure 2-10 (c)

503 Random pattern 50 Figure 2-10 (d)

chs Chessboard pattern 50 Figure 2-10 (e)

hlds Alternating 2-pixel witch black and white lines 50 Figure 2-10 (f)

Table 2-1. Patterns used to test the APS array.
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pendent of the percentage of dark pixels in the pattern. The actual intensity per

pixel corresponding to the minimum BER (75 arbitrary units) is 0.37 pW.

In Figure 2-12, we compare the  for two different random patterns, both having

50% black pixels. Their behavior is in good agreement. In order to gain some

insight as to the origin of the bump we compare the  of a random pattern with

50% black pixels, a chessboard pattern, and a pattern consisting of two-pixel thick

horizontal lines. Note that all patterns have 50% black pixels. The results, shown

in Figure 2-13, indicate that the frequency of change from black to white and vice-

versa along the vertical direction is related to the  in the middle intensity range.

Indeed, the horizontal lines pattern has the lowest such frequency, followed by the

random pattern, and then the chessboard pattern, which has the highest such fre-

quency possible. This behavior is an indication that the errors in the middle inten-

sity range are due to limitations of the latches, which are unable to switch states

rapidly enough.

Figure 2-12. Probability of readout error  vs. illuminating intensity (arbitrary units) for two 
random patterns, both having 50% black pixels.
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In conclusion, the latches are a target area for future improvements of the APS

array. Nevertheless, the current design allows error-free readout of the information

displayed on the APS in a specific intensity range. This enabled us to incorporate

the chip to a holographic memory system, in order to demonstrate the reconfigura-

tion of an electronic circuit, using a holographic memory, as described in the next

section.

2.4 The OPGA demo
In this section we discuss the implementation of a system allowing the reconfigu-

ration of the OPGA chip using data stored in a holographic memory. The main

advantage of this design over the one using an SLM as the reconfiguration tem-

plate source, is the considerably lower switching time of holographic memories.

The schematic diagram of the setup is shown in Figure 2-14. It is very similar to the

setup used to test the APS array with a few modifications and additions, namely a

piece of DuPont photopolymer was mounted on a rotational stage, and placed

between the SLM and the beam-splitter. The configuration data was recorded on

the DuPont photopolymer [2-12] using peristrophic multiplexing [2-17]. The choice

Figure 2-13. Probability of readout error  vs. illuminating intensity (arbitrary units) for one 
random and two structured patterns, all three having 50% black pixels.
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22



Optically programmable gate array
of this material dictated the change of the laser source, which in this case was an

Ar-ion laser, producing cw light at wavelength =514 nm. Part of the raw beam of

the laser was tapped-off, collimated, and used as the reference beam for the

recording of the reconfiguration information.

We recorded two different data pages, each of them containing two reconfiguration

templates. The first reconfiguration, contained in the first data page, receives an

input at the left I/O port of the logic block and routes it to the upper I/O port. The

second reconfiguration of the first data page receives an input again from the left

I/O port and routes it to the right I/O port. The functionality of the two reconfigura-

tions is illustrated in Figure 2-15. We reconstructed the first data page. The corre-

sponding APS readout is shown in Figure 2-16, along with a detail of the actual

hologram.

We can program the electronic board that provides the bias and timing signals to

the OPGA to input a counter to the left I/O port. Then, by monitoring the output of

the upper and right ports with an oscilloscope (see Figure 2-17), we can confirm

the successful configuration of the device. The time it takes for the counter output

to switch from the upper to the right I/O is an upper bound for the reconfiguration

Figure 2-14. Schematic diagram of OGPA demo setup.

λ
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time , and is measured to be 127 µs. The fact that we only perform a partial

reconfiguration of the device does not affect this estimate. Since the limiting effect

(a) (b)
Figure 2-15. Functionality of the reconfiguration templates contained in the first data page. Thick 

lines denote the connections implemented in this reconfiguration.

(a)

(b)

Figure 2-16. (a) APS readout of the first data page. (b) Detail of the hologram containing the first 
data page.

Trcf
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is the photodetector integration, and not the transfer of the reconfiguration data to

the logic, the time would be about the same for a full reconfiguration.

The functionality of the two reconfigurations contained in the second data page is

illustrated in Figure 2-18. The first one separates the lines of the bus into two

groups, odd (1, 3) and even (0, 2, 4). The odd lines are routed to the upper I/O port,

while the even lines are routed to the right I/O port. The second reconfiguration of

the second data page broadcasts all five bus lines to both I/O ports. By rotating the

holographic material, we can reconstruct that second data page. The correspond-

ing APS readout and a detail of the data page hologram are shown in Figure 2-19,

while the oscilloscope output is shown in Figure 2-20, confirming the successful

configuration of the device.

Figure 2-17. Output of the OGPA chip undergoing reconfiguration. The time  required to 
switch between the two output sets an upper bound for the reconfiguration time we can achieve 

with the device under test, and is measured to be 127 µs.
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In conclusion, we demonstrated the successful reconfiguration of the OPGA chip

using holographic data, contained in a peristrophically multiplexed database. The

(a) (b)
Figure 2-18. Functionality of the reconfiguration templates contained in the second data page. 

Thick lines denote the connections implemented in this reconfiguration.

(a)

(b)

Figure 2-19. (a) APS readout of the second data page. (b) Detail of the hologram containing the 
second data page.
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extension to larger APS arrays, more reconfigurable logic blocks, and holographic

reconfiguration databases with more data pages should be straightforward.

2.5 Discussion
In this chapter we discussed the integration of a holographic memory and a silicon

circuit combining photodetectors and reconfigurable logic elements, to build the

OGPA device. We presented briefly the elements of the device, and focused on the

silicon circuit. We characterized the APS array and reconfigurable logic of a demo

unit that was fabricated. Finally, we built a setup where we interfaced a holographic

memory to the circuit, and demonstrated successful reconfiguration, using optically

reconstructed data.

From the characterization of the APS array we conclude that our design can

achieve error-free reconstruction for a range of incident intensities. This error-free

intensity range is limited, among other things, by the output latches, a point that

should be addressed in future implementations. The differential encoding scheme

has a good performance, but its complexity exceeds the benefits, therefore it

should be dropped. This is especially true if we use MEMS as the addressing

Figure 2-20. Output of the OGPA chip undergoing reconfiguration.
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device, since in that case we have enough power to produce reconstruction of the

holographic data with high SNR.

From the OPGA demonstration setup we obtained a reconfiguration time

 µs, limited by the integration time of the detectors. A clear direction for

future research is to investigate how much further this time can be reduced.

Our design should be, in principle, scalable, both in terms of data pages, and in

terms of pixels per data page. The implementation of larger holographic databases

should be straightforward, therefore, future research should focus on the imple-

mentation of larger, distributed pixel sensor arrays.
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3Applications for the 
OPGA
3.1 Introduction
The OPGA device that we presented in Chapter 2 is a reconfigurable optoelec-

tronic processor, characterized by its very low reconfiguration time. The ability to

change the functionality of the processor in a time scale similar to that of the actual

computation, gives rise to a new computational paradigm, where the reconfigura-

tion becomes part of the computation.

The most straightforward way to take advantage of the fast reconfiguration time of

the OPGA device is to substitute several FPGA devices with a single OPGA

device, which will circle through the functionality of FPGA’s in real time. This can

be though of as “multiplexing” several FPGA’s in time, and an application along
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those lines will be presented in Section 3.2, where we will show how the OPGA can

be used for real-time image processing.

Taking the “multiplexing in time” approach a step further, we can think of applica-

tions where the next configuration is decided based on the outcome of the current

computation, as opposed to going through a predefined sequence of configura-

tions. Such an application is the classification of cursive digits, discussed in

Section 3.3. The hardware presented in the previous chapter uses a read-only

holographic memory. In a device with a read-write memory, we could even think of

applications, where configurations are developed based on the outcome of compu-

tations, thus we have a circuit that can learn and adapt to an evolving environment.

Though the OPGA chip was designed as part of a compact reconfigurable proces-

sor, we can use it as a component of a number of different systems. One such

system is proposed in Section 3.4, where we use the OPGA chip as a smart head

to read out and perform queries on large holographic databases. In Section 3.5 we

discuss briefly a number of other interesting applications that are not fully devel-

oped in this work.

3.2 Real-time video processing
The rapid reconfigurability of the OGPA makes it a good match for time-con-

strained applications, such as real-time video processing [3-1]. The use of OPGA’s

for such an application is illustrated in Figure 3-1. The processing that we want to

perform on the video stream is the application of 100 different convolution kernels,

one of the most common image processing operations. Assume that we have a

camera collecting frames at a rate of 30 frames per second (fps). Each frame is

512 × 512 pixels, monochrome with an 8-bit resolution. Once collected by the cam-

era, each frame is buffered for 33 ms, allowing for a 330 µs processing time per

convolution kernel. Assuming that the OGPA has a 64-bit bus and runs at 120

MHz, both rather conservative assumptions, the processing time for a 8 × 8 pixel

kernel should be about 280 µs. A reconfiguration time of 50 µs, which is well within
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the capabilities of the OPGA, brings the total processing time to 330 µs per frame,

allowing the application of 100 convolution kernels per frame in real time.

By way of contrast, the reconfiguration time of an FPGA is in the order of ms,

making it impossible for this device to apply more than one convolution per frame.

Therefore a system consisting of FPGA’s with the same processing power would

have 100 FPGA’s, with the associated costs. This comparison suggest an intuitive

way to think about the operation of the OGPA in this application: It can be thought

of as a device that multiplexes several FPGA’s in time. The convolutions that we

want to carry out could be performed in parallel by a hundred different processors.

Instead, we use a single processor, which successively implements each of those

hundred required processors. At this point we should stress the fact that, in this

particular application, each reconfiguration is independent of the results of the

computation performed by the previous configuration. In the next section we will

discuss an application where the opposite is true.

Figure 3-1. Schematic diagram of Real-Time Video Processing application using OGPA’s.
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3.3 Cursive digit classification
3.3.1 Introduction
In this section we discuss an algorithm for cursive digit classification that requires

rapid reconfiguration, similar to that offered by the OGPA device. Any pattern clas-

sification problem is solved, in its most abstract form, by defining subspaces in a

multidimensional space [3-2]. To make this statement more concrete, imagine that

we have 8×8 pixel images of handwritten digits. These images lie in a 64-dimen-

sional space. Classifying the digits as 0, 1, 2, etc., is equivalent to defining 10

hypersurfaces, each surrounding the occurrences of the corresponding class. The

complexity of the classification lies in the requirement to specify these hypersur-

faces. 

This complexity becomes evident if we try to perform the classification using limited

computational resources, such as the Neural Network (NN) shown in Figure 3-2,

which has one hidden layer with two nodes. We train the network using the back

propagation with momentum algorithm [3-3, 3-4]. Our database consists of training

set of 3823 digits and a test set of 1797 digits. In Figure 3-3 we plot the correct clas-

sification performance of the NN vs. the number of classes it attempts to classify

in. Note that when there is one output class (essentially we ask the question: “Is

this digit X?”), the probability of obtaining the correct answer is almost 100%. This

Figure 3-2. Simple neural network consisting of one hidden layer with two nodes.
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probability drops fast as we increase the number of output classes, and when we

reach 10 classes, it’s almost 10%, meaning we are equally well off assigning each

input sample to a random class. The algorithm we present in this section provides

a method to tackle the full classification problem, using such limited computational

resources.

3.3.2 Divide and conquer classification algorithm
A way to simplify the full classification task is to break it down to simpler tasks, so

that the final result is reached by navigating through a decision tree. This principle

is illustrated in Figure 3-4, where, going back to our example, instead of directly

classifying each digit to one of ten classes, we can initially classify it to one of the

following three sets: {1,2,3,8}, {0,5,9}, and {4,6,7}1. Since we only have three

output classes, the probability of correct classification is substantial. Once we have

decided in which class the digit belongs, we can proceed to clarify which digit it is.

Again, this is a fairly simple question, and we can expect to receive the correct

Figure 3-3. Probability of correct classification vs. the number of output classes for the Neural 
Network of Figure 3-2.

1.  These sets were selected as to maximize the correlation of the digits within each set.
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answer with high probability. Finally, once we have reached the conclusion that this

is most likely digit X, we can use a NN with a single output to verify this hypothesis.

The graph in Figure 3-3 indicates that this is a virtually error-free decision, resulting

in high accuracy for the complete algorithm.

In order to better illustrate the algorithm and understand how it maps to the OGPA

device, let’s walk through a specific example (see Figure 3-5): We initialize the

OPGA device to implement the NN that distinguishes between the three sets

{1,2,3,8}, {0,5,9}, and {4,6,7}. Assume that the digit 2 is presented to input, and that

the NN correctly classifies it into the first set. Based on this outcome, the next

reconfiguration will program the OPGA to implement the NN that distinguishes

between digits 1,2,3, and 8. The same input is presented to this network, and let

us assume, for the sake of argument, that in this case the NN erroneously con-

cludes that this is the digit 3. This outcome will dictate the next reconfiguration,

namely a single output NN that classifies its input as either the digit 3 on not. Since

such a NN has very low probability of error, more likely than not it will detect the

mistake of the previous layer. The OPGA device is reconfigured to its previous

functionality, and the second most likely outcome is selected, say, that the input is

the digit 2. We will have one last reconfiguration to the NN that classifies the input

as the digit 2 or not, and again, most likely, this will confirm that the input is indeed

the digit 2 and the final outcome will be presented at the output.

Figure 3-4. Decision tree for the divide and conquer classification algorithm.
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3.3.3 Algorithm performance
To determine the performance of the algorithm we define three metrics:

• The probability of n reconfigurations , defining the probability that the 
algorithm will produce an output after n reconfigurations, regardless of the cor-
rectness of that output.

• The probability of correct classification , defining the probability that the 
algorithm will classify the input correctly.

• The probability that the algorithm will end without classifying the input .

The first metric, , relates to the speed of the algorithm. Ideally we would

like the algorithm to produce an output after as few reconfigurations as possible.

The second metric, , defines the success rate of the algorithm, and the third

Figure 3-5. Mapping of the divide and conquer classification algorithm on the OPGA device.
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metric, which can be incorporated to the probability of error, quantifies the worse

case scenario, where we have to navigate the whole decision tree without reaching

any conclusions.

In order to determine the merits of our algorithm, we compared it with three other

algorithms, which are outlined here:

• Fully Parallel Classification (FPC): This algorithm would be implemented by 
having ten FPGA’s running in parallel, each implementing a NN with a single 
output. The input is be presented to all NN’s in parallel and the highest output 
determines the class.

• Sequential Classification (SC): To implement this algorithm we would use an 
OGPA to successively implement the single output NN’s corresponding to digits 
0, 1, 2, etc. The output of each successive implementation is compared to a 
threshold. Once the threshold is exceeded we classify the digit in the corre-
sponding class and abort.

• Exhaustive Sequential Classification (ESC): This algorithm is a sequential ver-
sion of the Fully Parallel one. An OPGA implements successively the single 
output NN’s. Their outputs are buffered and once we go through all ten of them 
they are compared, and the highest output determines the class.

Table 3-1 summarizes the results from the comparison of these three algorithms to

the divide and conquer (DAC) algorithm. Regarding the probability of correct clas-

Parameter

Algorithm

Fully Parallel 
(FPC)

Divide and 
Conquer 
(DAC)

Sequential 
(SC)

Exhaustive 
Sequential 
(ESC)

Correct classification probabil-
ity for the training set

0.98378 0.97253 0.97332 0.98378

Correct classification probabil-
ity for the test set

0.93656 0.91096 0.89705 0.93656

Average number of reconfigu-
rations for the training set

1 3.5124 5.3421 10

Average number of reconfigu-
rations for the test set

1 3.9104 5.0534 10

Required memory 10 14 10 10

Required computational 
resources

10 1 1 1

Table 3-1.  Performance comparison of the four algorithms used to classify cursive digits.
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sification for the test set, we notice that the FPC and ESC share the best perfor-

mance, as expected, followed by the DAC and the SC algorithms. Regarding the

average number of reconfigurations for the test set, the FPC has the least, the DAC

comes second, and the SC and ESC algorithms follow. The FPC has the best per-

formance, both in terms of speed and accuracy. Nevertheless this performance

comes at a steep price, since it requires ten times the computational resources

required by any other algorithm. The ESC has the same high accuracy perfor-

mance, but in this case in comes to the expense of execution speed, since it

requires the most number of reconfigurations. The DAC algorithm has better per-

formance than the SC, both in terms of speed and accuracy. This performance

comes with an overhead in memory requirement, but since we are implementing

the memory holographically it is an abundant resource. Overall, the DAC algorithm

that we introduced in the previous section offers a nice compromise between

speed, accuracy, and computational resources, leveraging on the high capacity of

holographic memories.

3.3.4 Modeling of algorithm performance
In order to gain a better understanding of the parameters that affect the perfor-

mance of this algorithm, we formulated a theoretical model and compared it to sim-

ulation results. We first assume a 3-layer, balanced, binary decision tree, like the

one shown in Figure 3-6. We assume that all the NN’s at level  have a specific

Figure 3-6. Three-layer, balanced, binary decision tree.

i
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probability of providing the correct answer, , with  being the root. The prob-

abilities defined in Section 3.3.3 on page 37, , , and , can be

expressed in terms of the probabilities . As an example we can calculate

. We will have three reconfigurations in the following cases:

• A correct classification is made at all levels .

• A correct classification is made at the root, the second layer misclassifies and 
the third does not catch the mistake .

• The root makes an erroneous classification, and the third layer does not catch it 
.

Therefore . From these

terms only  will contribute to , and none to . All other results

can be obtained using similar reasoning.

In order to test our analytical calculations we implemented a simulation algorithm,

which implements the tree and goes through several thousand classification trajec-

tories, dictated by the probabilities . The theory and simulation are in excellent

agreement, as shown in Figure 3-7 and Table 3-2. Note that we cannot have clas-

sification after 5 reconfigurations, since at that point the OPGA would be imple-

menting a node in the second layer of the tree.

We can use the analytical formulas for , , and  to investigate

the effect of the probabilities  on correct classification and reconfiguration time.

This information is crucial in determining how to best allocate our computational

Parameter
Analytical 
value

Simulated 
value

Normalized 
difference

0.80627 0.80619 9.3 × 10-5

0.0729 0.07242 3.3 × 10-4

Table 3-2. Comparison of analytical and simulated values for performance measures of the binary, 
three-layer decision tree.
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resources in order to optimize performance. In Figure 3-8 we plot the probability of

correct classification  and the average number of reconfigurations vs.  and

 for specific values of . These and similar plots allow us to reach the following

conclusions:

• The most important parameter in determining the overall probability of correct 
classification  is the probability of correct classification at the leaf level, 

.

• The probability of correct classification at higher layers determines the average 
number of reconfigurations, assuming reasonably good performance of the leaf 
layer.

The first conclusion is intuitively appealing, since if the last layer is always correct,

it can compensate for mistakes of higher layer, which only result in a penalty in

terms of number of reconfigurations. The second conclusion doesn’t come as a

surprise either, given that, when a mistake is made at a node, the algorithm must

visit the whole subtree before realizing the error. The higher the node, the bigger

the subtree. From these two conclusions it follows that in order to optimize the

overall performance of the algorithm, we should allocate more computational

Figure 3-7. Probability of n reconfigurations for a binary, three-layer decision tree.
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resources at higher levels, and make sure that the NN’s at the leaf level are as effi-

cient as possible.

The theory was extended to account for 3-layer, balanced, ternary classification

trees. In this case, for each level  we define the probability that the right output will

appear at order  as , so that the probability that the nodes at the leaf level pro-

duce the right answer at the first try is . In this case the theoretical calculations

become intractable, therefore we developed an algorithm that extracts all possible

trajectories through the search tree and produces the analytical formulas corre-

(a) (b)

(c) (d)
Figure 3-8. Performance of the Divide and Conquer classification algorithm as a function of the 
performance of the individual NN’s. (a) Probability of correct classification vs.  and , given 

. (b) Average number of reconfigurations vs.  and , given . (c) Probability 

of correct classification vs.  and , given . (d) Average number of reconfigurations 

vs.  and , given .

P1 P2
P3 0.9= P1 P2 P3 0.9=
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sponding to , , and . A different algorithm, similar to the one

developed for the binary case, is used to validate these analytical results. The com-

parison of the results, shown in Figure 3-9 and Table 3-3, shows excellent agree-

ment between the two.

The considerations for overall performance optimization discussed in the case of

the binary tree hold here as well. Still, there is one additional aspect we need take

into account: In the case of the ternary tree, even when a NN does not produce the

right answer, it makes a difference whether the correct answer is classified as

second or third. This is an aspect that is not addressed by our training algorithm,

that only takes into account whether the answer of the NN is correct or not. Incor-

Figure 3-9. Probability of n reconfigurations for a ternary, three-layer decision tree.

Parameter
Analytical 
value

Simulated 
value

Normalized 
difference

0.75406 0.75403 3.7 × 10-5

0.04305 0.04304 1.6 × 10-4

Table 3-3. Comparison of analytical and simulated values for performance measures of the 
ternary, three-layer decision tree.
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porating this aspect of evaluation into the training algorithm would improve the

overall performance of the Divide and Conquer classification algorithm.

3.3.5 Discussion
In this section we introduced a new algorithm that performs complex classification

tasks by dividing them into simpler ones, which it resolves sequentially. This algo-

rithm takes advantage of the unique properties of the OPGA device. It employes

not only its ability of fast reconfiguration, but also the fact that the each reconfigu-

ration can be dictated by the current outcome.

In order to demonstrate the performance of the algorithm, we used it to classify cur-

sive digits, a problem that has been often addressed in literature [3-5]. Our algo-

rithm is a nice compromise between required computational resources and

execution time. It minimizes the computational resources requirement with a pen-

alty in time, which is not substantial given the rapid reconfigurability of the OPGA

device, and an overhead in memory, which is a resource abundantly available,

since it is implemented holographically. Finally, we developed and tested an ana-

lytical model of the algorithm, that allows us to understand which are the parame-

ters that affect its performance.

3.4 Fast queries in large-scale non-indexed 
holographic databases
3.4.1 Introduction
In Section 3.2 and Section 3.3, we discussed applications that can be mapped

directly to the compact OPGA device. In this section we present an application that

uses the OPGA chip as part of a larger system. Before going into the details of that

system, it is useful to approach the OGPA on a more abstract level. The OGPA

chip differs from a common FPGA chip in the fact that it processes an array of pho-

todetectors. In that sense, we can think of it as an integrated circuit that, in addition

to the commonly available electronic bus, has an optical input bus. This optical bus

allows the input of data at a much higher rate than the electronic bus. The applica-
44



Applications for the OPGA
tions discussed previously required fast reconfiguration, therefore, the fast optical

bus was used to transfer reconfiguration data. In this section we discuss an appli-

cation where the operation performed by the OGPA chip is applied to large

amounts of data, thus, the optical bus is used to input the data to the device and

the electronic bus is used to reconfigure the device and output the outcome of the

computation (see Figure 3-10.)

In Section 3.4.2 we introduce the Constellation Model algorithm, an image classi-

fication algorithm that relies on local photometry and global geometry. In

Section 3.4.3 we discuss a system that performs queries in non-indexed, large,

holographic databases, based on the Constellation Model algorithm.

3.4.2 The constellation model
The detection of image classes, though performed effortlessly by humans, is a par-

ticularly hard problem if we try to approach it using digital computers. The main

reason for that is that objects within a category can vary to a large extent, and the

extraction of the common properties of the members of the class is far from being

straightforward. As an example we can mention trees. Even a child has no problem

classifying as trees specimens ranging from bonsai to sequoias, but it is very hard

to extract the essence of “treeness,” in a way that would allow a computer to make

the distinction between a tree and a nontree.

The Constellation Model algorithm developed by Burl et al. [3-6] proposes the use

of local photometry and global geometry to implement recognition of object

classes. The main idea behind the algorithm is that objects that belong in a class

have common features that have small variations from instance to instance. As an

example we can think of human faces. Though it would be particularly hard to find

a template that would correlate well with a large number of faces, the opposite is

true if we are targeting more restricted features, such as eyes, nostrils, or mouth

corners. The problem with the detection of simple features is that usually the algo-

rithms used to implement it produce false positives. The answer to that problem is

obtained through the use of global photometry. Going back to the example of

human faces, in Figure 3-11 it is easy to distinguish between the assortment of fea-
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tures that correspond to a human face and those that do not. The Constellation

Model algorithm works as follows: First it uses several detectors to detect a number

(a)

(b)
Figure 3-10. Different uses of the optical and electronic buses of the OPGA. (a) For applications 
that require fast reconfiguration the optical bus is used to input the reconfiguration data. (b) When 

the same reconfiguration is used to process large amounts of data it makes sense to use the 
optical bus to input that data. In both cases the outcome is output through the electronic bus.
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of different features, keeping track of which feature was detected at which location.

Next it generates combinations of the detected features to form a constellation1.

For each generated constellation, it computes the probability that it corresponds to

the object class in question. Finally, this probabilistic score is compared to a thresh-

old, and thus we reach the conclusion as to whether an object of the class appears

in the image.

Further work has been done on the automatic extraction of the Constellation Model

by Weber et al. [3-7]. In this context an unsupervised algorithm processes a

number of images, and uses a clustering technique to identify features. It then pro-

ceeds to the extraction of Constellation Models for the object classes in the training

images.

(a) (b)

(c) (d)
Figure 3-11. Constellations composed of face features. The human observer can immediately 

assess that cases (a) and (b) correspond to human faces, while cases (c) and (d) do not.

1.  The model takes occlusion into account, as a result some of the generated constellations do not have all 
features.
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3.4.3 The application
In this section we discuss how the Constellation Model algorithm can be used to

perform queries into large, non-indexed, holographic databases. Assume that we

have large number of images stored in a Holographic Disk [3-8, 3-9], and we want

to identify those stored images that contain objects of a specific class. We first feed

several instances of the class to the algorithm that extracts the Constellation Model

for that class (see Figure 3-12). Once the features of the model have been

selected, we program a number of OGPA’s to detect those features. In this context

OPGA chips act as smart readout heads for the holographic disk (see Figure 3-13).

As the disk rotates images are transferred to the OPGA photodetector array and

convolutions are run to locate features. The output of each OPGA chip for each

image is the coordinates of the feature it has been programmed to detect on that

image. The outputs of all OPGA heads are collected and combined to form models,

which are then assigned probabilistic scores. These scores allow the selection of

those images that contain objects of the target class. Note that the OPGA chip is

used in this case as an extremely efficient interface between the high volume holo-

Figure 3-12. Schematic diagram of the system that performs queries in large, non-indexed 
holographic databases using the Constellation Model algorithm. In this case OPGA’s are used as 

smart heads that detect features in images stored in the database.
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graphic database (images) and the low dimensional output (coordinates of constel-

lation features).

3.5 Other applications
A number of other applications have been developed for the OGPA that are not

covered in this work. One of the most interesting ones is the use of OGPA’s for

neural prosthetics, developed by Shenoy et al. [3-10, 3-11]. In that project neural

signals produced by the motion planning centers of the brain are used to control a

robotic arm. The compactness and processing power of the OPGA could contrib-

ute significantly to the creation of implantable devices.

Another application is the use of the OPGA chip for 4-D imaging (3 spatial dimen-

sions and frequency) [3-12]. In this case the optical input to the OPGA chip is pro-

vided by a natural scene that is diffracted from a holographic element in a way that

Figure 3-13. OPGA’s act as smart heads that read out the data from the holographic disk 
database.
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maps the 4-D information of the scene to the 2-D surface of the chip, where it can

be processed using the available logic (see Figure 3-14.)

3.6 Discussion
In this chapter we presented a number of applications that utilize the unique prop-

erties of the OPGA. The capability of the device to reconfigure itself in a time scale

comparable to that associated with computation, gives rise to a new computational

paradigm, where the reconfiguration becomes part of the computation. We pre-

sented several applications that illustrate the point. In Section 3.2 we showed how

a single OPGA can substitute a large number of FPGA’s in a real-time video pro-

cessing task. In Section 3.3 we mapped a divide and conquer classification algo-

rithm to the OPGA, taking advantage of the ability of the device to reconfigure itself

selectively, based on the outcome of the previous computation.

We also investigated how the OPGA chip can be incorporated in various informa-

tion-processing systems, such as large holographic databases, as we discussed in

Figure 3-14. Extension of the OGPA chip used as a detector for a 4-D holographic imaging 
system.

Detector +
Circuit

Holographic
Element
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Section 3.4. Finally, we mentioned some even more far-reaching extensions of the

OPGA architecture in Section 3.5.

From the wealth of applications presented in this chapter, it becomes evident that

much is to be gained by the combination of photodetectors and processing logic in

a single circuit. The large data-transfer rates, achieved through the optical inter-

face, allow us to take advantage of the high processing bandwidth that is available

on-chip, and which cannot be put in full use otherwise, due to the restrictive, low-

bandwidth, electronic interface.

3.7 References
[3-1] A. Benedetti and P. Perona, A system for real-time 2-D feature detection based on

field programmable gate arrays. Integrated Computer-Aided Engineering, 2000.
7(3): pp. 181-191.

[3-2] J. Daugman, Face and gesture recognition: Overview. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 1997. 19(7): pp. 675-676.

[3-3] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by
back-propagating errors. Nature, 1986. 323(6088): pp. 533-536.

[3-4] D. Plaut, S. Nawlan, and G. Hinton, Experiments of learning by back propagation.
Technical Report CMU-CS-86-126. 1986, Carnegie Mellon University: Pittsburgh.

[3-5] J. L. Blue, G. T. Candela, P. J. Grother, R. Chellappa, and C. L. Wilson, Evaluation
of pattern classifiers for fingerprint and OCR applications. Pattern Recognition,
1994. 27(4): pp. 485-501.

[3-6] M. C. Burl, L. Asker, P. Smyth, U. Fayyad, P. Perona, L. Crumpler, and J. Aubele,
Learning to recognize volcanoes on Venus. Machine Learning, 1998. 30(2-3): pp.
165-194.

[3-7] M. Weber, M. Welling, and P. Perona, Unsupervised learning of models for recog-
nition. Computer Vision - ECCV 2000, Pt I, Proceedings, 2000. 1842: pp. 18-32.

[3-8] D. Psaltis and A. Pu, Holographic 3-D disks. Optoelectronics-Devices and Tech-
nologies, 1995. 10(3): pp. 333-342.
51



Applications for the OPGA
[3-9] A. Pu and D. Psaltis, High-density recording in photopolymer-based holographic
three-dimensional disks. Applied Optics, 1996. 35(14): pp. 2389-2398.

[3-10] K. V. Shenoy, S. A. Kureshi, D. Meeker, B. L. Gillikin, D. J. Dubowitz, A. P.
Batista, C. A. Buneo, S. Cao, J. W. Burdick, and R. A. Andersen. Toward prosthetic
systems controlled by parietal cortex. Society for Neuroscience, 1999(25).

[3-11] J. Mumbru, Optoelectornic circuits using holographic elements, Ph.D. Thesis,
California Institute of Technology, 2002.

[3-12] W. H. Liu, D. Psaltis, and G. Barbastathis, Real-time spectral imaging in three spa-
tial dimensions. Optics Letters, 2002. 27(10): pp. 854-856.
52



4Strong volume gratings 
in the reflection 
geometry
4.1 Introduction
In this chapter we investigate the role of strong volume gratings as a means to con-

trol information-bearing light beams. The original motivation stems from the use of

volume gratings to implement interconnects for a chip. This approach is closely

related to the Optical Programmable Gate Array device, presented in Chapter 2.

Indeed, if we replace the holographic memory of the device with a holographic ele-

ment where we superimpose strong gratings, we can use those to allow different

parts of the chip to communicate with each other, using Vertical Cavity Surface

Emitting Lasers (VCSEL) to transmit information and photodetectors to receive it,

as shown in Figure 4-1.
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The same gratings can be used in the field of Wavelength Division Multiplexing

(WDM) optical fiber communications, both as filters [4-1, 4-2] and as de-multiplex-

ers [4-3]. Using holography we can record periodic refractive index structures with

tens of thousands of periods, in devices of length to the order of cm. Other technol-

ogies, such as thin-film filters, offer much stronger refractive index modulation, but

a substantially smaller number of periods. The high number of periods results in

filters with very fine Bragg selectivity, while the lack of modulation depth can be

easily complemented by the use of longer devices. In addition, the free-space

nature of volume gratings gives rise to degrees of freedom not present in more

established technologies, such as fiber Bragg gratings.

In the remainder of this chapter we will develop the theoretical background neces-

sary for the treatment of diffraction from strong volume gratings. We will start with

a general treatment of waves in two-dimensional periodic media in Section 4.2.

Then we will focus on the reflection geometry and investigate some of the finer

aspects of the coupled mode theory, with applications to polarization dependence,

angular, wavelength, and thermal detuning, in Section 4.3. At the end of the sec-

tion we will present experimental results confirming our theories. Finally, in

Section 4.4, we will discuss the implications of our findings to the design of WDM

filters.

Figure 4-1. Holographic element with strong reflection gratings, used to implement intra-chip 
interconnects. VCSEL’s are denoted by red and photodetectors by green.

Hologram

Logic, VCSELS and detectors

Hologram

Logic, VCSELS and detectors
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A portion of the theoretical material in this chapter is well documented in literature

[4-4]. It is presented here with minor extensions, for the sake of completeness and

notation uniformity, but mainly to give us the opportunity to accentuate what we

consider to be points of particular interest, and to compare and contrast different

approaches to the problem of strong volume gratings in reflection geometry.

4.2 Waves in two-dimensional periodic media
4.2.1 Introduction
In this section we use the Bloch formalism to draw conclusions on the properties of

mode-coupling in 2-D periodic media. Note that, in this analysis, we assume that

both the medium and the periodicity are two-dimensional. Some of the properties

will be used to justify, otherwise intuitive, arguments that will be made in

Section 5.2.2, where we will derive the coupled-mode equation for the 90o geom-

etry. 

4.2.2 Modes in periodic media
We know that in isotropic media eigenmodes are plain waves. What happens if we

impose a periodic modulation to the dielectric coefficient of the medium ? Assume

a medium with  and magnetic susceptibility  constant. The ques-

tion that we are going to answer here is, which solutions to the wave equation can

exist independently in this medium.

Since the dielectric coefficient is periodic, we can express it as a Fourier Series:

, (EQ 4-1) 

where  is an integer,  is the lattice vector, and  is the reciprocal-lattice

vector.

There is some electric field  in the medium, for which at this point we know very

little. Still this unknown field has a Fourier Transform:

ε

ε r( ) ε r a+( )= µ

ε r( ) εle jlgr–

l
∑=

l a g 2π
a 2
--------a=

E

55



Strong volume gratings in the reflection geometry
. (EQ 4-2) 

The other thing we know about  is that it will satisfy Maxwell’s equations:

(EQ 4-3) 

Plugging Equation 4-1 and Equation 4-2 into Equation 4-3 we get1:

So we have: 

. (EQ 4-4) 

For Equation 4-4 to be true, all the coefficients of  must be equal to , so we

have:

. (EQ 4-5) 

Now comes a subtle argument: From Equation 4-5 it should be obvious that out of

all the Fourier components of a possible solution , only those separated by  are

coupled. So, if a field component of specific spatial frequency  is present in the

medium, the complete solution should be composed of it and other frequency com-

ponents separated by integer multiples of . Another way of stating this is that the

periodicity of the medium imposes a coupling between harmonic components of

the electric field. This last statement will form the basis of Coupled-Mode Analysis,

which will be presented in Section 4.3.

1.  Taking the FT of  is a nice way to be able to handle the double curl in a tractable fashion.
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Let us assume a solution corresponding to a specific spatial frequency . We have

. So the solu-

tion is in the form:

, (EQ 4-6) 

with

, (EQ 4-7) 

for which obviously

. (EQ 4-8) 

4.2.3 Modes in media with two-dimensional periodicity
We assume that we have a periodic modulation of the dielectric constant in the -

plane. Then Equation 4-1 becomes 

. (EQ 4-9) 

Accordingly Equation 4-5 will become

, (EQ 4-10) 

where  and , with  and  the unit vectors along the  and 

axes respectively. Again using the same arguments we have:

, (EQ 4-11) 

and

. (EQ 4-12) 
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We have assumed , therefore . We have also

assumed , so we have  and

. So Equation 4-10 will

become

, (EQ 4-13) 

where we adopt the notation .

As mentioned before, and as we can see from Equation 4-13, only modes sepa-

rated by the Fourier components of the dielectric constant will be coupled with each

other. Still which modes  are strongly coupled? In answering this question it

would be helpful to write a few terms of Equation 4-13:

(EQ 4-14) 

Solving for  we get

. (EQ 4-15) 

By setting  in Equation 4-13, Equation 4-14 becomes

(EQ 4-16) 

Solving for  we get

. (EQ 4-17) 

In the most general case we have

(EQ 4-18) 
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Assume now that we have a mode that meets the propagation condition:

 (EQ 4-19) 

and there exists , such that:

, (EQ 4-20) 

where . It should be obvious from Equation 4-15 to Equation 4-18 that only

the modes  and  will be important, and all the rest can be neglected.

If we neglect everything but these two modes these equations boil down to:

, (EQ 4-21) 

, (EQ 4-22) 

where , since we assume that  is real. 

Let us now step back from the algebraic details, and give a more intuitive overview:

We started with the assumption that we have a periodic modulation of the dielectric

constant of the medium. Using that fact we proved that, from all possible plane

waves that can exist in the medium, only those separated by the grating vectors

(equivalently Fourier components of ) can exist independently. Then, we went

one step further, and showed that, if a Bragg-like condition is met for two of these

modes, then only those two modes should be considered.

Now assume that we excite one of the propagating modes of such a pair in the

medium. According to the theory we just went through, it suffices to just keep track

of that mode and of the one coupled to it, in order to have a complete picture of the

field in the medium. Notice that we did not make any assumptions about the rela-

tive magnitudes of the Fourier components of the dielectric coefficient. Our only

assumption is that this coefficient is periodic in the -plane. All this gives us a very

strong support to make the assumptions we will make while deriving the coupled

mode equations for the 90o geometry, in Section 5.2.2.
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4.2.4 Photonic band gap
Given a frequency , the assumption that , and that the electric field is

polarized along the  direction, we can use the results of the previous section to

calculate  as a function of , also known as the dispersion relation.

Equation 4-21 and Equation 4-22 form a homogeneous system. In order for that

system to have nontrivial solutions, its determinant needs to be zero. So, by adopt-

ing the notation  and , we get

, (EQ 4-23) 

or

. (EQ 4-24) 

This last equation is an implicit dispersion relation. The simplest way to proceed

would be to solve for  as a function of  and identify potential stop-bands, where

 becomes complex, also known as band gaps [4-5]. Unfortunately, solving

Equation 4-24 for  is not straightforward. So in an attempt to get something out of

it let us rewrite it as:

. (EQ 4-25) 

The corresponding discriminant is

, (EQ 4-26) 

or, after some trivial simplification:

. (EQ 4-27) 

It should be obvious that . So for every  we have two solutions for , given

by:

. (EQ 4-28) 
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By inspection of Equation 4-28 we can see that . We can easily calculate

the difference between the two frequencies for any given . Again, from

Equation 4-28 we get

. (EQ 4-29) 

When is the difference between the two frequencies minimized? To figure that out

we need to take the derivative of  with respect to

 and equate it to . Calculating this derivative requires some pretty straightfor-

ward algebra and the final result is

(EQ 4-30) 

The solution to the last equation is , the Bragg condition in reflection geom-

etry. What are the frequencies that correspond to this ? The answer can be

obtained by plugging the last equality in Equation 4-28, but it’s simpler to go back

to Equation 4-24, plug in and solve. In any case the final solution is

. (EQ 4-31) 

These frequencies have the smallest distance between them, and correspond to

the Bragg condition. What happens when we are at a frequency between  and

? To answer this question let’s see what happens close to the Bragg match con-

dition, i.e.,

, (EQ 4-32) 

where . In that case Equation 4-24 becomes
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where  is the angle between  and . The terms , , and  vanish

compared to , so solving for  we get

. (EQ 4-33) 

So now the question is, when is  real? For  to be real we must have  which

we can easily see corresponds to

, (EQ 4-34) 

or

, (EQ 4-35) 

which are the same results obtained in Equation 4-31. So these two frequencies

define the limits of the stop band, and any field with frequency  such that

 will decay exponentially.

4.2.5 Band gap width
From Equation 4-31 we can calculate the single-side bandwidth of the photonic

band gap, defined as , where . We have
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. (EQ 4-36) 

We see that the width of the band gap is proportional to the modulation depth .

4.3 Reflection geometry using coupled-mode 
analysis
4.3.1 Introduction
In this section we start by presenting the Coupled-Mode formalism, first introduced

by Kogelnick [4-6]. We focus on mode coupling in free-space, as opposed to

waveguides, and derive the Coupled-Mode equations. Then we discuss in detail

how the coupling constant is affected by the anisotropy that characterizes the most

commonly used photorefractive crystals, such as LiNbO3. We proceed to an ana-

lytical solution of the Coupled-Mode equations in reflection geometry. At this point,

we start viewing the strong reflection gratings as filters, and investigate how each

parameter of the grating affects the characteristics of the resulting filter. We then

compare the results with those derived using the Bloch formalism in Section 4.2.5.

Finally, we investigate the effects of angular and thermal detuning on filters imple-
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mented using strong volume gratings in reflection geometry, and propose a

method for athermal design.

4.3.2 Coupled mode equations in free space
Assume that we have a medium, whose dielectric coefficient has a sinusoidal mod-

ulation:

, (EQ 4-37) 

where  is the dielectric constant of the crystal and  is the amplitude of the

dielectric coefficient modulation1. Assume also that the medium is a photorefrac-

tive crystal, therefore both  and  are tensors. An additional assumption is that

dielectric constant modulation is weak, i.e., .

Since the perturbation of the dielectric coefficient is small, the crystal modes

remain quasi-plain waves:

, (EQ 4-38) 

where  is a unit vector along the polarization direction of . Based on

Equation 4-38, we have the orthogonality condition:

. (EQ 4-39) 

The total field in the crystal can be described as a superposition of different modes:

. (EQ 4-40) 

Starting from the wave equation, we can write in the perturbed medium:

where we assumed that . From , we get

1.  This notation is strictly equivalent to the one introduced in Section 4.2.4 on page 60.
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. (EQ 4-41) 

The right-hand side of Equation 4-41 becomes zero when  is perpendicular to ,

the grating vector. This is exactly true when the wave vector  of the field is parallel

to , and approximately true when the two vectors form a small angle. Therefore,

in the case of the reflection geometry,  is a valid approximation.

In the unperturbed crystal the wave equation becomes

. (EQ 4-42) 

Plugging Equation 4-40 in the wave equation we get

. (EQ 4-43) 

The last equation is the FT (Fourier transform) of the quantity ,

and since it is equal to zero the quantity itself must be zero:

. (EQ 4-44) 

We assume the boundaries of the medium to be perpendicular to the  axis, as a

result the quasi plane waves will get coupled and exchange energy along that axis.

Therefore , and Equation 4-40 in the perturbed medium will become

. (EQ 4-45) 

Plugging Equation 4-45 in Equation 4-42 we get

. (EQ 4-46) 

We have . 
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Assuming that the energy exchange between modes is much slower than the oscil-

lation of the field1 we can use the approximation:

, (EQ 4-47) 

where we have defined  and . Plugging Equation 4-37 and

Equation 4-47 into Equation 4-46, we get

(EQ 4-48) 

Since the perturbation  is small,  will satisfy Equation 4-44, and therefore

Equation 4-48 is simplified to:

. (EQ 4-49) 

We multiply this last equation with  and integrate over 2. By changing the

order of integration, taking into account the orthogonality relation described in

Equation 4-39, and the assumption that the medium is infinite along the  direction

we get 

This last equation allows us to deduce that the amplitude change of any quasi

plane wave is a linear combination of the product of the perturbation with the ampli-

tudes of the modes in the crystal:

1.  This approximation is also known as the parabolic approximation.
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This can be rewritten as:

where  is the complex conjugate of .

Solving for  we get

The integrals with respect to  will average to  unless , or

. For the sake of argument let us assume . Then we

have

. (EQ 4-50) 

Going back to the physics of the problem we notice that since we have defined the

 component of  and , the propagation condition

imposed by the wave equation  allows us to define unambiguously

. By defining  we finally have

. (EQ 4-51) 
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. (EQ 4-52) 

Using the definitions ,

 , (EQ 4-53) 

, (EQ 4-54) 

(EQ 4-55) 

 we can finally write Equation 4-51 and Equation 4-52 as:

, (EQ 4-56) 

which are the Coupled-Mode equations.

4.3.3 Mode coupling in anisotropic media

4.3.3.1 Introduction
In this section we discuss the effects of anisotropy on mode coupling. We focus on

lithium niobate (LiNbO3), which is the most commonly used volume holographic

material. Anisotropy is manifested by the fact that the refractive index  perceived

by an incident field depends on its polarization, or, equivalently, that the electro-

optic coefficients are given by a tensor [4-4, 4-7]:

. (EQ 4-57) 

z∂
∂ A k2 z,( ) j

ω2µê2
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Since , it is straightforward to prove that, for small perturbations,

. We define  and we have

. (EQ 4-58) 

At this point we need to define two reference frames, the incidence reference frame

 and the crystal reference frame . The direction and polarization of the inci-

dent and diffracted beams and the grating direction are defined in the incidence

frame, while the crystal frame is defined by the crystallographic axes. In the most

general case the two reference frames differ by some rotation.

4.3.3.2 Grating parallel to the c-axis
Assume that the grating lies along the -axis of the incidence frame. Also assume

that the incidence and crystal frames are the same, therefore the direction of the

recorded grating is parallel to the c-axis, and that the incident and diffracted beams

propagate at an angle  (see Figure 4-2.) 

In that case the space charge field is

 . (EQ 4-59) 

Therefore, according to Equation 4-58, we have

, (EQ 4-60) 

where the subscripts denote ordinary and extraordinary polarization.
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Since  is diagonal from Equation 4-53 and Equation 4-54, we deduce that there

will be no polarization coupling.

Ordinary polarization. In this case we have , so combining

Equation 4-60, Equation 4-53, and Equation 4-54 we get

 , (EQ 4-61) 

Figure 4-2. Simple mode-coupling geometry. The grating vector  is parallel to the -axis. Both 
the incident and diffracted beam wavevectors form an angle  with the grating vector. The 

polarization vectors shown correspond to in-plane, or extraordinary polarization.
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θ

y

z
1k
r

2k
r

K
r

1̂e 2ê
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, (EQ 4-62) 

The expressions for  and  can be simplified further. We have

. 

We can also write

Therefore,

, (EQ 4-63) 

. (EQ 4-64) 

These last expressions for the coupling constants are the ones most often encoun-

tered in literature. Notice the factor  in the denominator. This factor is due to

the fact we are only interested in the  component along the axis of power

exchange, which in this case is . Note also that sometimes there is factor of 2 in

the denominator. The presence of this factor depends on how the perturbation is

defined. In our case it is defined as , so there is no

such factor. If we were to define  then the factor of 2 would

appear in the denominator.
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Extraordinary polarization. Again, referring to Figure 4-2, we have  

and .

From Equation 4-60 we get , so we

finally have

, (EQ 4-65) 

. (EQ 4-66) 

 Notice that in this case there can be no further simplification, since

 , (EQ 4-67) 

still .

4.3.3.3 Grating off the c-axis
In this case we assume that there is an angle between the grating and the c-axis,

still the c-axis lies within the plane defined by the grating and the propagation direc-

tions of the two beams, i.e., the c-axis lies is the -plane of the incidence frame.

Under these constraints we can move from one reference system to the other using

two rotations, one around the -axis by , and the other around the -axis by .

These rotations can be expressed as a matrix:

. (EQ 4-68) 

The matrix  takes a vector from the incidence frame  to the crystal frame

, and its transpose  does the opposite. It is easy to check that the  vector
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in the crystal frame (c-axis) gets mapped to , thus lies in the 

plane, as required. The electro-optic coefficients in the crystal frame are given by

Equation 4-58. The space-charge field lies along the -axis in the incidence frame,

therefore the electro-optic coefficients are given by 

,

or, in matrix form:

.

Ordinary polarization. In this case we have , so by Equation 4-53 on

page 68 we get

, which, using some straightforward algebra, boils down

to:

. (EQ 4-69) 

Note that for  and  we have .
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Also note that, since both  and  see the same refractive index, we will have

.

Extraordinary polarization. In this case we have

. Again, cranking through the algebra we get

(EQ 4-70) 

In this case, since  and  do not see the same refractive index, we will have

.

Cross-polarization coupling. Since the matrix  is not diagonal, we expect to

have coupling from ordinary polarization to extraordinary, and vice versa. Indeed,

we have , so

. (EQ 4-71) 
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Similarly we get ,

so

. (EQ 4-72) 

Note that for  cross-polarization coupling drops to zero as expected, since

 lies across the c-axis. Also note that for  there is no cross-polarization

coupling, no matter what the value of .This is just an algebraic effect. We have

the term  in the coupling coefficient, so there exists some  that will diago-

nalize , thus reducing cross-polarization coupling to zero.

4.3.4 Solution of coupled-mode equations
Assume that the grating is along the c-axis, as discussed in Section 4.3.3.2 on

page 69. In that case we have , so defining , Equation 4-56 on

page 68 becomes

(EQ 4-73) 

The general solution of this system of differential equations, with boundary condi-

tions  and , is [4-4]

(EQ 4-74) 
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(EQ 4-75) 

where

, (EQ 4-76) 

and we have assumed there is no absorption in the medium.

In the context of filters, the boundary conditions become  and

. In that case we are interested in the Diffraction Efficiency (DE) of the

grating, which is defined as:

. (EQ 4-77) 

Plugging the boundary conditions into Equation 4-74 and Equation 4-75, and sub-

stituting in Equation 4-77 we get

. (EQ 4-78) 

4.3.5 Bragg detuning of strong volume gratings in reflection 
geometry

4.3.5.1 Introduction
In this section we investigate the effect of Bragg detuning on the diffraction effi-

ciency  of strong volume gratings in reflection geometry. After some general

remarks regarding the dependence of  on Bragg detuning, we proceed to

examine the spectral response of holographic filter, as well as the combined effects

of angular and wavelength detuning.
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Diffraction efficiency  is a function of , the Bragg detuning, defined in

Equation 4-55 on page 68. From Equation 4-78 and Equation 4-76 we conclude

that when , we get , and . Therefore, when the Bragg

condition is met, given sufficient length, the  becomes equal to unity. If we

increase , we still have this exponential behavior of  vs. , as long as 

remains real. When  becomes larger than ,  becomes imaginary, and the

behavior of  becomes oscillatory. In other words, when Bragg detuning is small:

, (EQ 4-79) 

power is coupled unidirectionally from the incident beam to the diffracted beam,

and, provided the grating is long enough, the incident beam will become extinct and

all its power will be reflected through the diffracted beam. When the Bragg detuning

exceeds the threshold specified in Equation 4-79, energy is exchanged back and

forth between the two beams, and the total exchange quickly averages to zero,

leaving the incident beam to go through the grating practically unperturbed.

A more intuitive approach to Bragg detuning is to think of the diffracted beam as

the superposition of the parts of the incident beam that get reflected at different

points of the grating. When the Bragg condition is met, the reflected beams com-

bine constructively, producing a strong diffracted beam. Using energy conserva-

tion, we deduce that, in that case, the incident beam is depleted. When detuning is

large, the superposition of the reflected beams averages to zero, therefore the inci-

dent beam is transmitted through the grating.

The length of the grating  is not of crucial importance, as long as it exceeds a cer-

tain minimum, which will allow the energy to be coupled from the incident to the dif-

fracted beam. This is due to the fact that the energy exchange is exponential with

length in the stop-band. The effect of  out of the stop-band is limited to controlling

the period of the oscillations of the side bands.
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4.3.5.2 Wavelength detuning
In order to calculate the spectral response of a holographic filter, it suffices to

express Bragg detuning  in terms of wavelength detuning , and use

Equation 4-78. From the k-sphere diagram shown in Figure 4-3, assuming

, , and taking into account that , we get:

. (EQ 4-80) 

Plugging Equation 4-80 into Equation 4-78 gives an expression of  vs. . We

have plotted this function in Figure 4-4, assuming ,  nm,

, and  cm. For  close to zero we see that the diffraction effi-

ciency  is close to unity. The dashed vertical lines indicate the point where

. Outside those lines the behavior of  becomes oscillatory, and grad-

ually decreases to zero.

Figure 4-3. The k-sphere diagram for the reflection geometry.
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4.3.5.3 Filter bandwidth vs. photonic band gap width
In this section we compare the bandwidth of the filter, assuming ordinary polariza-

tion incidence, with the Photonic Band Gap width derived in Section 4.2.5 on

page 62. The edge of the bandwidth is given by the solution of the equation:

. (EQ 4-81) 

Taking into account that , where  the speed of light in the medium, and

Equation 4-55 on page 68, we get

. (EQ 4-82) 

From Equation 4-61 on page 70, for , we get

. (EQ 4-83) 

Figure 4-4. Diffraction efficiency  of a strong reflection volume grating vs. wavelength 

detuning . The parameters for this plot are ,  nm, , and 
 cm. The dashed vertical lines denote the extent of the stop-band.
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Plugging Equation 4-82 and Equation 4-83 into Equation 4-81, and using

, we finally get for the single-side bandwidth:

, (EQ 4-84) 

which is the same result obtained in Equation 4-36 on page 63.

This is not surprising, since both approaches describe the same effect. Namely, for

some frequencies, the partial reflections on each period of the grating interfere con-

structively, generating a strong diffracted beam, and depleting the incident beam.

4.3.5.4 Angular and wavelength detuning
In Equation 4-80 on page 78 we expressed Bragg detuning  as a function of

wavelength detuning . Assuming that we have both angular and wavelength

detuning, we get

. (EQ 4-85) 

We can obviously choose  and  such that , therefore angu-

lar and wavelength detuning can compensate each other.

Another way of approaching this result is by viewing an angle change as a modifi-

cation of the Bragg condition. As a result of such a change a different wavelength

is required to meet this new condition, essentially yielding a filter with a different

center frequency.

Constant grating. Assume that we record a strong grating in a holographic mate-

rial. Also assume that when the incidence angle1 is  the center wavelength of
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the corresponding filter is , and that we use ordinary light polarization. Therefore,

the spatial frequency of the grating  will satisfy the equation:

, (EQ 4-86) 

where . Assume now that the filter is rotated, so that the new incidence

angle is . In order to have Bragg match it must be

. (EQ 4-87) 

Since  is known for LiNbO3 [4-8], Equation 4-87 can be solved numeri-

cally. The results are plotted in Figure 4-5. It should be evident that by rotating the

filter, we are able to tune its center wavelength. Notice that the range of angles 

is fairly limited. This is to avoid Polarization Mode Dispersion (PMD), which will

occur in larger angles, since, in principle, we do not have control of the input polar-

1.  All incidence angles are internal to the medium, unless otherwise specified.

Figure 4-5. Dependence of the filter center of a fixed grating on the incidence angle .The 
parameters for this plot are  and  nm.
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ization. Notice also that the angular tuning range is in the order of nanometers,

therefore, this method cannot be used as the main tuning mechanism for, say,

WDM tunable filters. 

Since the angular tuning range is limited, we can assume that , in

which case Equation 4-87 can be simplified to:

. (EQ 4-88) 

Equation 4-87 and Equation 4-88 yield practically the same result, confirming the

validity of the approximation.

Next we consider the effect of angular tuning of the filter on the double-side band-

width, defined as the absolute difference of the two wavelengths/frequencies that

satisfy Equation 4-81 on page 79. Since 

, (EQ 4-89) 

we can write

. (EQ 4-90) 

Assuming again that  we get

. (EQ 4-91) 

In Figure 4-6 we plot the numerical solution of Equation 4-90 and the approximate

solution given by Equation 4-91. Obviously, in this case, the approximation is no

longer valid. In Figure 4-7 we plot the numerical solution of Equation 4-90. We con-

clude that in the angular range in which we are confined the bandwidth is pretty

much stable.

There is a simple explanation of why larger angles  lead to larger bandwidths. As

mentioned in Section 4.3.5.2 on page 78 the bandwidth depends on the coupling

strength . From Equation 4-89 we see that as  increases  becomes larger.
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Figure 4-6. Dependence of the bandwidth of a fixed grating on the incidence angle . The solid 
line corresponds to the exact solution of Equation 4-90, and the dashed line to the approximate 
solution, given by Equation 4-91. The results do not agree, therefore the approximate solution is 

not valid. The parameters for this plot are ,  nm, and .

Figure 4-7. Dependence of the bandwidth of a fixed grating on the incidence angle , based on 
the exact solution of Equation 4-90. The parameters for this plot are ,  nm, and 
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Again, this is easy to understand intuitively, since, when light is incident at increas-

ing angles, the interaction length per grating period increases.

Constant filter center. Let us now start from a different assumption, namely, that

we have a specific target center wavelength for our filters, and that for each filter

we record a different grating, each of them corresponding to a different incidence

angle. In this case we have

, (EQ 4-92) 

where  indexes across different filters. Despite the fact that all filters have the

same center they have different bandwidths. For the edge wavelength  we

have, again from Equation 4-81 on page 79:

, (EQ 4-93) 

which we can solve numerically, thus obtaining the bandwidth. In Figure 4-8 we plot

the bandwidth  for both the fixed grating  and the fixed center  case. Though

in the fixed center case the bandwidth is higher, it remains practically constant .

Consideration of external angle. Previously we assumed that the internal inci-

dence angle  was constant vs. wavelength . In practice, we can only control the

external incidence angle . The internal incidence angle (from now on denoted

as ), and the external incidence angle  are related by Snell’s law:

. (EQ 4-94) 

Assume that we have a specific grating, described by it’s spatial period . We pre-

viously figured out the center wavelength  corresponding to every angle . For

these angles and wavelengths we can calculate the corresponding external angles

 using Equation 4-94.
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Assume now that we set the external angle to . We know the corresponding

filter center, and want to calculate the bandwidth. As we scan the wavelength the

internal angle  will change, so Equation 4-81 on page 79 becomes

(EQ 4-95) 

Again, we can solve Equation 4-95 numerically, thus obtaining the bandwidth,

which we plot in Figure 4-9. It is clear from this plot that keeping  constant

results in smaller bandwidth than assuming that  is constant. This is expected,

since changing the wavelength will also change  due to the wavelength depen-

dence of the refractive index , thus leading to faster Bragg detuning.

Figure 4-8. Dependence of the bandwidth on the incidence angle . The solid line corresponds 
to a fixed grating, and the dashed line to different gratings, each having the same center  for the 
given incidence angle. The bandwidth is smaller for the fixed grating. The parameters for this plot 

are ,  nm, and .
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4.3.5.5 Experiments

Experimental methods. In order to provide experimental support to the theory

presented in the previous sections, we recorded strong volume gratings in the

reflection geometry, using an iron-doped lithium niobate crystal (LiNbO3:Fe). The

crystal has dimensions 3×10×20 mm3, with the c-axis along the longest dimension.

The doping level is 1.8×1025 atoms/m3 and the concentration ratio  is

0.01. 

Since we want to record filters with centers in the vicinity of 1550 nm, and

LiNbO3:Fe has very limited absorption in that range of wavelengths, we recorded

using a Nd:YAG laser operating at 532 nm, by creating an interference pattern

along the 10×20 mm2 face of the crystal1. In Figure 4-10 we plot the k-sphere dia-

Figure 4-9. Dependence of the bandwidth on the incidence angle , for different gratings, each 
having the same center  for the given incidence angle. The solid line corresponds to a fixed 

external angle , and the dashed line to a fixed internal angle . The results for the two 

cases are similar. The parameters for this plot are ,  nm, and .

1.  This technique is more commonly referred to as “recording from the top.”
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grams for the recording and readout wavelengths, shown with dashed and solid

lines, respectively. From these diagrams we get: 

. (EQ 4-96) 

Using Snell’s law1 

, (EQ 4-97) 

we finally obtain o, where  is the angle between the face of the crys-

tal and the recording beam.

Figure 4-10. k-sphere diagram illustrating recording from the top. The dashed sphere 
corresponds to the shorter recording wavelength. The solid sphere corresponds to the longer 

readout wavelength.

1.  This equation is different from Equation 4-94 on page 84 because of the different definition of angles.
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In order to obtain filters with reasonable bandwidth, we need to attain modulation

depths of  in the order of 10-4. This requires recording times in the order of

hours, which in turn necessitates the use of active stabilization. Indeed, for our

experiments we used a stabilization scheme first introduced in [4-9], and described

in more detail in Section 7.3.3 on page 148.

Once the grating is recorded, we use a different setup to measure the filter proper-

ties. The crystal is mounted on a rotation stage, and we monitor the transmitted

light coming from a tunable laser.

Experimental results. We recorded for one hour using the parameters mentioned

in the previous section. A typical recording curve (  at  nm vs. time) is

shown in Figure 4-11.

Once recording was complete, we measured the filter shapes corresponding to dif-

ferent angles. In Figure 4-12 we plot some of the resulting filters. We can clearly

see that rotation results in filters of different centers. Deviation of the filter shape

from the one predicted by theory (see Figure 4-4 on page 79) is due to the fact that

Figure 4-11. Recording curve of a strong grating, using an active stabilization system.

∆n

DE λ 532=
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the recorded grating is not perfect, which in turn can be traced back to the deviation

of the recording beams from perfect plane waves.

In Figure 4-13 we plot the filter center vs. incidence angle. We fit these data to:

Figure 4-12. Filter shapes of strong volume reflection gratings, for different values of incidence 
angle. Increasing incidence angles result in shorter filter centers.

Figure 4-13. Filter center  vs. incidence angle. The dots are experimental results, and the 
solid line a fit using Equation 4-98.

λcenter
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, (EQ 4-98) 

which is Equation 4-88 on page 82, where we assume , take into account

the external angle, and correct for a possible offset of the rotation stage by .

The experimental data are in excellent agreement with theory, and the resulting

parameters are shown in Table 4-1.

4.3.6 Thermal detuning of strong volume gratings in reflection 
geometry

4.3.6.1 Introduction
In Section 4.3.5 we discussed how the characteristics of a strong volume grating

filter are affected as we change the parameters of the incident beam, namely angle

and wavelength. In this section we investigate the effects of temperature on these

filters. We start be presenting the parameters of the filter that are affected by tem-

perature changes, namely spatial period  and average refractive index , and

we proceed with a discussion on how these effects can be combined with Bragg

detuning to yield an athermal design for a holographic filter.

4.3.6.2 Effect of temperature on center wavelength
The Bragg condition for reflection gratings at temperature  can be written as:

, (EQ 4-99) 

Parameter Value and 95% CI

1569.4000 ± 9×10-4 nm

-0.00460 ± 7×10-5 rad

2.260 ± 5×10-3

Table 4-1. Parameter values and 95% Confidence Intervals (CI) resulting from the fitting of the 
angular filter tuning data to Equation 4-98.
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where the subscript  corresponds to the temperature . Using Snell’s law, we

can rewrite Equation 4-99 in terms of  for a temperature :

. (EQ 4-100) 

Since both  and  are functions of temperature the center wavelength of a

volume strong grating filter  will also be a function of temperature.

For the case of LiNbO3, the thermal expansion coefficient and the dependence of

the refractive index on temperature are both documented in literature [4-10], there-

fore Equation 4-100 can be solved numerically. In Figure 4-14 we plot the center

wavelength vs. temperature taking into account thermal expansion only (dashed

curve), or both effects (solid curve), assuming  oC,  nm,

and . From this plot we conclude that thermal expansion and temperature

dependence of the refractive index have a comparable effect, and act in the same

Figure 4-14. Effect of temperature on the filter center of strong volume reflection gratings. The 
solid curve takes into account both thermal dispersion and thermal expansion. The dashed curve 
only takes into account thermal expansion. We can conclude that the two effects act in the same 

direction, and that they are comparable.
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direction. Note that, since we assumed the grating to lie along the c-axis, there is

no need to account for the anisotropic thermal expansion of the crystal.

4.3.6.3 Angular compensation of thermal filter center drift
At a temperature , Equation 4-99 becomes

. (EQ 4-101) 

Since in both cases  is the same, by dividing the two equations we get

, (EQ 4-102) 

which means that we can compensate the effects of thermal filter center drift by

changing the incidence angle. Using Snell’s law we can rewrite Equation 4-102 as:

. (EQ 4-103) 

This last equation defines which external angle of incidence we should use to mit-

igate the effects of temperature change on the center of the filter.

4.3.6.4 Experiments

Experimental methods. We recorded a strong reflection volume grating similarly

to what is described in Section 4.3.5.5 on page 86. The readout setup was fitted

with a thermo-electric coupler (TEC) to change the temperature of the crystal, and

a thermistor to monitor the temperature. Initially we measured the filter properties

at room temperature and , and determined the filter center .

Then we used the TEC to adjust the temperature of the crystal, and for each tem-

perature measured the angle  that resulted in a filter center as close as possi-

ble to .

Experimental results. In Figure 4-15 we plot the experimentally obtained angles

required for the compensation of thermal detuning vs. temperature. In Figure 4-16

we plot the filter center deviation from  obtained by rotating the filter by the
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thermal compensation angles. The deviation can be minimized further by using a

rotation stage with finer step.

Figure 4-15. Angles required for the compensation of thermal detuning vs. temperature. Circles 
indicate experimental data points. The solid line is the fit curve, obtained using Equation 4-106.

Figure 4-16. Deviation of the filter center obtained using angular compensation of thermal 
detuning, from the target filter center vs. temperature.
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In order to fit the thermal compensation data, and since the temperature range is

fairly limited, we can assume that both the refractive index  and the spatial period

of the grating  vary linearly with temperature:

, (EQ 4-104) 

. (EQ 4-105) 

Plugging Equation 4-104 and Equation 4-105 into Equation 4-103 on page 92, and

taking into account that , we get

. (EQ 4-106) 

This last equation was used to fit the data, yielding a satisfactory fitting curve,

which is plotted in Figure 4-15.

Finally, we characterized the filter shapes of the angularly compensated filters.

This was done by measuring the bandwidth at the -3, -5, -10, and -20 dB level, as

shown in Figure 4-17 for a particular temperature. The results for all temperature

are plotted in Figure 4-18. All filters have similar characteristics. The tendency of

Figure 4-17. Filter shape corresponding to a grating at 32.8 oC, after angular compensation of 
thermal detuning. Pointers indicate the -3, -5, -10, and -20 dB levels.
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the bandwidth to decrease as the temperature increases is due, mainly, to the fact

that the grating we used for our experiments was not fixed, and as a result it was

getting erased as we increased the temperature.

4.4 Discussion
We started this chapter with a discussion on the propagation of waves in 2-D media

in Section 4.2. We proceeded, in Section 4.3, with the derivation of the coupled-

mode equations in the reflection geometry, and demonstrated the equivalence of

the two approaches. We also investigated in detail the effect of polarization on

mode-coupling in LiNbO3, and concluded that, as long as the grating vector is par-

allel to the -axis of the crystal, there is no coupling across polarizations.

We then presented a solution of the coupled mode equations, and used it to char-

acterize the performance of strong reflection gratings as filters. We concluded that

the two most important parameters are the period of the grating , which defines

the center wavelength of the filter, and the modulation of the refractive index ,

Figure 4-18. Experimentally measured bandwidths, corresponding to the -3, -5, -10, and -20 dB 
levels, for filters whose thermal detuning has been compensated using rotation, vs. temperature. 

The tendency of the bandwidth to decrease as the temperature increases is due, mainly, to the fact 
that the grating we used for our experiments was not fixed, and as a result it was getting erased as 

we increased the temperature.
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which controls the bandwidth. The length of the grating, once over a certain thresh-

old, only affects the period of the side bands.

The next step was to investigate Bragg detuning. In fiber Bragg gratings, there are

two mechanisms of detuning, namely, wavelength and temperature. In the case of

volume gratings, since we are in free space, we have the additional degree of free-

dom of angular detuning. We examined the effect of both thermal and angular

detuning on the center wavelength and bandwidth of strong volume reflection grat-

ings. We also obtained experimental results that confirm our theory.

We concluded that neither of the two tuning methods offers a wide enough range

to make them suitable for the tuning of filters in the context of WDM fiber commu-

nications. Nevertheless, we can use angular tuning to compensate for the effects

of thermal detuning, thus obtaining an athermal design. In addition, due to the small

sensitivity of the center wavelength of the filter to either method of tuning, we can

use each method independently to make fine adjustments, which can be used to

mitigate various effects, such as laser drift.
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5Strong volume gratings 
in the 90o geometry
5.1 Introduction
In this chapter, we extend our investigation of the use of strong volume gratings as

a means to control information-bearing light beams, to include the 90o geometry.

This geometry takes advantage of the fact that we are dealing with beams propa-

gating in free space in a more direct way than the reflection geometry. In free

space, unlike waveguides, we have infinite directions of propagation, and a contin-

uum of modes for each direction, as opposed to waveguides, where the boundary

conditions impose mode discretization, and limit the possible directions of propa-

gation. The use of the 90o geometry allows us to implement systems with two axes

of propagation, which are perpendicular to each other.
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The diffraction of strong gratings in the 90o geometry can be treated using a

number of different approaches. Among them are the scalar field diffraction theory

[5-1, 5-2, 5-3], where the Born approximation should not be used. Formulating the

problem as a system of differential equations with boundary conditions and using

purely numerical methods, such as FDTD, to solve it, is also an option [5-4, 5-5]. A

third approach is to formulate and solve the coupled-mode equations in the 90o

geometry. The last approach is the one we are going to undertake in this chapter,

mainly because of its computational efficiency, in some particular cases, which turn

out to be the most interesting ones.

We will start the remainder of this chapter by deriving the coupled-mode equations

for the 90o geometry in Section 5.2, and presenting a solution for the Bragg-

matched case. In Section 5.3 we will discuss the diffraction efficiency of 90o geom-

etry gratings. In Section 5.4 we will present a numerical solution of the coupled-

mode equations for the non Bragg-matched case, and will use it to investigate

wavelength detuning. We will proceed in Section 5.5 with a discussion of the

impulse response. Since the use of the 90o geometry has been partially investi-

gated in the case of imaging systems [5-5], in Section 5.6 we will focus on issues

pertaining to its use as a filter for WDM optical telecommunications.

5.2 Coupled mode equations in the 90o geometry
5.2.1 Introduction
The coupled-mode equations, first introduced by H. Kogelnik [5-7], can account for

any angle between the incident and diffracted beams. As a result, it would seem

that they could be used to investigate the 90o geometry. Nevertheless, more care-

ful consideration reveals that, inherent in that derivation, is the fact that the bound-

ary conditions are two parallel planes, or, equivalently, that the exchange of energy

between the incident and diffracted beams takes place along a single axis.

In the 90o geometry, the boundary conditions are specified on a rectangle, and the

orientation of the grating results in power exchange along two axes, which are per-
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pendicular to each other. In order to account for that, we need to assume field

amplitudes that will be function of two coordinates, say , as opposed to the

solutions in the reflection geometry, which only depend on one variable (see

Section 4.3.2 on page 64).

The derivation of the coupled-mode equations for the 90o geometry has been

attempted in literature [5-8, 5-9]. The derivation that follows is similar to the one in

[5-9], though it avoids some of the unfounded generalizations presented in that

paper, namely the use of nonperpendicular grating boundaries and nonplane

waves.

5.2.2 Derivation of coupled mode equations
Assume a cubic medium, of finite dimensions along the  and  axes, and infinite

along the  axis (see Figure 5-1). Also assume that in this medium we record a

strong grating. The grating is in the  plane, the light field is along z. The grating

vector  is given by:

, (EQ 5-1) 

where , and  is the refractive index of the unperturbed medium. The

resulting modulation of the electro-optic coefficient can be expressed as:

, (EQ 5-2) 

where we assume that . 

Assume now that we come with an incident field , where .

According to Section 4.2.3 on page 57, we expect a solution in the form:

, (EQ 5-3) 

where all fields are polarized along , and thus, we will, from now on, convert to

scalar notation.

The solution must satisfy the wave equation:
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. (EQ 5-4) 

We have

. (EQ 5-5) 

Assuming that the energy exchange between modes is much slower than the oscil-

lation of the field, we can use the approximation:

. (EQ 5-6) 

Similarly, for , we have

Figure 5-1. Grating, incident beam, and diffracted beam for the 90o geometry.  and  denote 

the dimensions of the crystal along each axis.  and  are the complex amplitudes of the 
incident and diffracted wave respectively.
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. (EQ 5-7) 

Plugging Equation 5-2 and Equation 5-3 into Equation 5-4, and using Equation 5-

6 and Equation 5-7, we get

(EQ 5-8) 

Since we assumed that , we will have , and

, therefore Equation 5-8 can be simplified to:

(EQ 5-9) 

Assuming that the spatial bandwidth of  and  are small compared to ,

we can multiply Equation 5-9 with  and integrate over the  plane, thus obtain-

ing:

, (EQ 5-10) 

where 

. (EQ 5-11) 

Similarly, multiplication with  and integration over the  plane leads to

. (EQ 5-12) 

Defining  we can finally write Equation 5-10 and Equation 5-12 as
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, (EQ 5-13) 

, (EQ 5-14) 

which are the coupled mode equations in the 90o geometry.

5.2.3 Analytical solution of the coupled mode equations in the 
Bragg match case

In the Bragg match case, , it is possible to solve the coupled mode equa-

tions analytically. The solution is presented in this section for completeness, and

the reader may opt to skip to Equation 5-24 and Equation 5-25 at the end of the

section, as the rest of the material in the chapter does not depend on the derivation.

For , Equation 5-13 and Equation 5-14 become

, (EQ 5-15) 

. (EQ 5-16) 

We take the Laplace Transform (LT) of Equation 5-15 with respect to :

. (EQ 5-17) 

Assuming  to be a constant , we get

. (EQ 5-18) 

We now take the LT of Equation 5-16 with respect to , obtaining

. Substituting  from Equation 5-18 we have

. (EQ 5-19) 

The homogeneous solution corresponding to Equation 5-19 is

, and its solution is
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. (EQ 5-20) 

Assuming , and plugging Equation 5-20 in Equation 5-19 we get

, (EQ 5-21) 

and by substitution in Equation 5-20:

, (EQ 5-22) 

where  remains to be determined. In order to do that, we assume that

, where  is a constant, therefore: . Using

Equation 5-22 we get , so by substitution we finally get

. (EQ 5-23) 

Taking the Inverse Laplace Transform of this last equation we obtain

, (EQ 5-24) 

and, symmetrically:

. (EQ 5-25) 

5.3 Diffraction efficiency in the 90o geometry
5.3.1 Theory
In practice, we would like to use strong gratings in the 90o geometry as filters,

pretty much in the same way we used strong reflection gratings in Chapter 4. In this

case, we can assume that the incident field is , and that . The solu-

tions to the coupled mode equations then become

, (EQ 5-26) 
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. (EQ 5-27) 

In Figure 5-2 we plot  and , using  nm,  cm,

, and . Note that the field amplitudes  and  on the

output boundaries (  and , respectively) are not constant, therefore

the diffracted and transmitted beams are not plane waves. The intensity profile of

the diffracted beam at the output boundary is a function of  given by:

. (EQ 5-28) 

In Figure 5-3 we plot the intensity profile vs.  for various values of . Note that

as the modulation depth of the grating  increases, more energy is diffracted from

the area closer to the input boundary.

Since the diffracted beam is not a plane wave we can only define the Power Dif-

fraction Efficiency , as opposed to the Intensity Diffraction Efficiency, com-

monly used with weak gratings. 

The incident, or input, power will be proportional to . The

diffracted, or output, power will be proportional to:

(a) (b)
Figure 5-2. Color-coded plots of the field amplitude in the Bragg-matched case: (a) Incident 

beam. (b) Diffracted beam. Note that the color code is different for the two plots.
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. (EQ 5-29) 

By using the change of variables , and referring to integral tables we

can calculate that last integral in closed form, obtaining:

. (EQ 5-30) 

For  we have 

. (EQ 5-31) 

The  is an increasing function of  (see Figure 5-4.) Indeed,

increasing the coupling strength  should increase . Probably the best way to

understand intuitively the effect of the term , is to think of it as a measure of

the surface over which the incident and diffracted waves interact. As long as we

Figure 5-3. Intensity profile of the diffracted beam along the output boundary, for various values 
of refractive index modulation . As  increases, the grating becomes stronger, and more 

energy is diffracted from the area closer to the input boundary.
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are close to Bragg match, energy will get transferred from the incident to the dif-

fracted beam, therefore an increase of the interaction surface should lead to an

increase in .

In the previous derivation we defined  assuming that all the light on the output

boundary can be used. In practice, assuming, say, a WDM filter that uses a strong

grating in the 90o geometry, we would have to collect all the diffracted light, and

couple it into a fiber. Given that the diffracted beam is not a plane wave, this is not

straightforward, and, therefore, the  calculated here is an upper bound of what

can be expected in practice.

5.3.2 Experiments
We used a 45o-cut crystal to record strong gratings in the 90o geometry. The crys-

tal is made of LiNbO3, and is doped with iron and cerium, with  %wt and

 %wt. The dimensions of the crystal are 10 × 10 × 10 mm3. The source

is a HeNe laser (  nm.) The schematic of the recording setup is shown in

Figure 5-5. The HeNe beam is filtered and collimated, then split in two beams of

Figure 5-4. Diffraction efficiency  of a strong grating in 90o geometry vs. .DEP v 2κ LxLy=

DEP

DEP

DEP

cFe 0.05=

cCe 0.03=

λ 632=
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equal intensity, which are interfered within the crystal volume to record the grating.

The duration of the exposure is five hours, and every 15 minutes we block beam 1,

and use the camera to record the pattern resulting from the diffraction of beam 2.

In Figure 5-6 we show four of these frames. Notice that, as time goes by, the grat-

ing becomes stronger, and more energy is diffracted in the area closer to the input

boundary, as predicted by Equation 5-28. In Figure 5-7 we plot several intensity

profile curves corresponding to increasing recording times.

In order to test our theory we fit each intensity profile to the following equation:

. (EQ 5-32) 

The parameter  is used to compensate for the auto-gain feature of the camera,

which results in different gain for each frame. The parameter  is used because

we exclude the edges of the frame, in order to avoid scattering noise. Finally, the

parameter  will allow us to calculate the grating strength  corresponding to

frame, according to:

. (EQ 5-33) 

Figure 5-5. Schematic diagram of the experimental setup used to monitor the evolution of grating 
strength vs. recording time, for strong volume gratings in the 90o geometry.
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With a derivation similar to the one in Section 4.3.3.2 on page 69 we can show that

, therefore we can calculate

. (EQ 5-34) 

In Figure 5-8 we plot two data curves along with the corresponding fits, from which

we can conclude that the fit is successful. In Figure 5-9 we plot the values of 

vs. recording time . We see that the modulation depth of the grating increases with

time and moves towards saturation. Due to the large confidence intervals resulting

from the data fit (see Figure 5-10) it is not possible to conclude whether the growth

(a) (b)

(c) (d)
Figure 5-6. Diffracted beam profiles collected during the recording of a strong volume grating in 

the 90o geometry: (a) t=45 min, (b) t=120 min, (c) t=195 min, (d) t=285 min. As recording time 
increases the grating becomes stronger, and more energy is diffracted from the area closer to the 

input boundary.
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of  is exponential with time. Note also that Equation 5-32 results from the

assumption of a Bragg matched constant grating. Dynamic recording effects,

which are present in our experiment, might lead to deviations from this assumption.

Figure 5-7. Intensity profile of the diffracted beam along the output boundary. Different curves 
correspond to different points in time during recording. As recording time increases the grating 

becomes stronger, and more energy is diffracted from the area closer to the input boundary. Note 
that we exclude 1 mm on each side of the crystal to avoid edge effects.

Figure 5-8. Fitting results of Equation 5-32 to experimentally measured intensity profiles.
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Figure 5-9. Refractive index modulation  (fit parameter to Equation 5-32) vs. recording time. 
The connecting line is a guide for the eye.

Figure 5-10. Refractive index modulation  (fit parameter to Equation 5-32) vs. recording time. 
The error bars indicate the 95% confidence intervals. The connecting line is a guide for the eye.
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5.4 Wavelength detuning of strong gratings in the 
90o geometry
5.4.1 Introduction
In this section we discuss the effect of wavelength detuning on the Diffraction Effi-

ciency  of strong gratings in the 90o geometry. In Section 5.2.2 we derived the

coupled mode equations, assuming that both incident fields are perpendicular to

the input boundaries. In Section 5.2.3 we solved analytically those equations, in

the case of Bragg match, . Unfortunately, no analytical solution exists for

the  case.

We start this section by presenting an algorithm that allows us to solve numerically

the coupled mode equations in the case of . We proceed by discussing

some of the issues that arise regarding the accuracy of the numerical solution, and

derive methods to calculate the required simulation parameters. Finally we present

simulation results.

At this point we do not discuss angular detuning. It is possible to re-derive the cou-

pled mode equations to take into account incident fields nonperpendicular to the

input boundaries. Nevertheless, the requirement to match the rectangular bound-

ary conditions to the nonrectangular computational grid of our numerical solution

increases the computational strain considerably.

5.4.2 Numerical solution of the coupled mode equations

5.4.2.1 Algorithm
The coupled mode equations can be rewritten in differential form, yielding

, (EQ 5-35) 

. (EQ 5-36) 

Regarding , from Equation 5-11 on page 102 we can write
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, (EQ 5-37) 

where . An intuitive way to think about these equations is that, if we

know both  and  for a specific point , we can “propagate” the solution for

 along , and the solution for  along .

We know the boundary conditions  and . Since we know both

 and , we can calculate  and , therefore we have

the complete solution on the input boundaries. From the points  we can cal-

culate . From the points  we can calculate . Therefore we

have the complete solution for the point . 

Now we have the same situation as in the beginning of the algorithm, namely we

know  along the  axis,  along the  axis, and both at the new origin .

Therefore, by repeating the same steps, we can calculate  and  everywhere.

The fact that we can “propagate” the solution through the crystal is the result of the

causality of the 90o geometry. Light that propagates along  can only be diffracted

along , and vice versa. A photon that goes through point  will never return

to that point, unlike the reflection geometry. We will see more effects of this cau-

sality in Section 5.5, where we will discuss the impulse response of strong gratings

in the 90o geometry.

Our algorithm, and for that matter the coupled-mode equations in 90o geometry, is

limited to gratings that have the same spatial frequency throughout their extent.

Nevertheless, it is perfectly suitable to address gratings whose modulation depth

is a function of space. Indeed, in Equation 5-35 and Equation 5-36 we can assume

 without affecting the algorithm. Therefore our algorithm can be used to

simulate, say, apodized gratings, but not chirped gratings.
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5.4.2.2 Numerical stability considerations
Assume that we are considering detuning in frequency. In that case Equation 5-37

becomes

, (EQ 5-38) 

where  is the speed of light in vacuum.

Assuming that the step of the computational grid is the same in both directions, i.e.,

, we have

, (EQ 5-39) 

where  an integer. To maintain the accuracy of the simulation we must have

, otherwise we will have constructive interference of the incident and dif-

fracted fields, despite finite detuning. Using Equation 5-39, this last condition

becomes

, (EQ 5-40) 

therefore the higher the detuning, the more dense the computational grid required.

5.4.3 Simulation results
In Figure 5-11 we give color-coded plots of the amplitude of the incident field 

and the diffracted field , vs.  and , for various degrees of detuning1. As detun-

ing increases, light beams diffracted from different points of the grating interfere

destructively. As a result, for large values of detuning, the incident beam goes

through the grating producing minimal diffraction.

In Figure 5-12 we plot the diffraction efficiency  vs. wavelength  for various

values of . Similarly to what was observed in the reflection geometry (see

Section 4.3.5 on page 76), we see that increasing the grating strength leads to an

1.  The parameters used here are the same as in Section 5.3.1 on page 104.
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(a) (b)

(c) (d)

(e) (f)

Figure 5-11. Color-coded plots of field amplitude for the incident beam , and the diffracted 

beam , for various values of detuning : (a)  for  nm. (b)  for  nm. 

(c)  for  nm. (d)  for  nm. (e)  for  nm. (f)  for 

 nm. Note that the color code is different for each plot.
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increase of the width of the stopband. Again, notice that for reasonable values of

 the resulting bandwidths are in the order of tenths of a nm, and thus allow us

to create very fine notch filters.

5.5 Impulse response of 90o volume holograms
5.5.1 Introduction
In this section we discuss the impulse response of strong gratings in the 90o geom-

etry, in order to complete their characterization. Having studied their spectral prop-

erties in Section 5.4, we will use their response in the frequency domain to

calculate the impulse response. Since there is no analytical solution for the non

Bragg-matched case, we will have to approach this problem numerically as well.

We start, in Section 5.5.2, by discussing how we can use the Fast Fourier Trans-

form (FFT) to address problems in continuous time and frequency, and how we can

define the minimum sampling requirements. In Section 5.5.3 we combine those

requirements with the ones presented in Section 5.4.2.2, regarding the numerical

stability of the detuning simulation, as to obtain a complete picture of the computa-

Figure 5-12. Diffraction efficiency  vs. wavelength, for various values of refractive index 

modulation . Higher values of  result in larger bandwidth.
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tional requirement for the calculation of the impulse response. Finally, in

Section 5.5.4, we present and discuss the results of our simulations.

5.5.2 Use of FFT with continuous time and frequency
Since our problem is defined in continuous time and frequency, and we are using

a digital computer to simulate it, we need a mapping from continuous time and fre-

quency to discrete time and frequency.

The definition of the Fourier Transform (FT) is [5-10]

, (EQ 5-41) 

and the definition of the Discreet Fourier Transform (DFT)1 is

. (EQ 5-42) 

The number of samples  of the DFT is equal to the number of samples of the time

series , and is one of the simulation parameters we will have to choose.

According to sampling theory we have

. (EQ 5-43) 

The sampling frequency  is mapped to point  on the unit circle in -space. The

value of  corresponding to  is, according to Equation 5-43,

, so  corresponds to , and  to

.

1.  The notation we are using adheres to what would be used in a Matlab implementation, therefore indexes 
run from 1 to N, as opposed to the more commonly used 0 to N-1 range.
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The value of  corresponding to  is , so  corresponds to .

Since the mapping from continuous to discrete frequency is linear, it is easy to

extrapolate all intermediate values, and therefore calculate , for

.

Since we assume our signals to be real, we have for the FT:

. (EQ 5-44) 

For the DFT we will have equivalently:

. (EQ 5-45) 

This last equation is valid for , therefore from the values of  for

 we can obtain the values for  respectively, thus obtaining

all the values of  required to calculate  in the discrete time domain.

Sampling parameters. Assume we have  samples (  will be the same both in

frequency and time). It is recommended to chose  for  integer, as most

FFT implementations are optimized under this assumption.
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Assume that the total duration of the signal is . The time between samples is

. We have by definition . The distance between samples in

frequency is , so the longer the duration, the finer the sam-

pling in frequency. But we have from the Nyquist theorem:

, (EQ 5-46) 

so if we want to make the frequency sampling finer or have signals with high fre-

quency components we are forced to use a larger value for .

5.5.3 Numerical stability considerations
In this section we combine the results of the previous section with those of

Section 5.4.2.2 to derive limits for our simulation parameters. In theory the input

pulse is a -function, therefore its spectrum extends to infinity. In practice, any

short-pulse laser has a limited bandwidth. Let us assume we have a Ti:Saphire

pulsed laser, operating at a center wavelength of 800 nm, which produces pulses

in the order of femptoseconds, with a bandwidth of about 20 nm, which allows us

to calculate . Also assume that we have a square crystal, of side . Since dif-

fraction in the 90o geometry is causal, all light will be out of the crystal after time

, where , with  the speed of light in vacuum, and  the refractive index

of the crystal. So let’s assume .

Since we have both  and  we can use Equation 5-46 to calculate  and

round it upwards to the closest power of two, so we have , where  is an
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integer. We can now write: . Assume that we

use  points per meter in the computational grid of the numerical calculation of the

coupled mode equations, the grid step will then be . Since ,

Equation 5-40 on page 114 can be written as , therefore, we finally get

, and for our simulations we can choose .

5.5.4 Simulation results
Before applying our simulation to the 90o geometry, we used the analytical results

derived in Section 4.3.5.2 on page 78 regarding the reflection geometry, to test our

algorithm. The results we obtained in this case were confirmed by results available

in literature [5-11].

Simulation parameters. We run our simulation using  nm, ,

, and  cm. In Figure 5-13 we have a color-coded plot of

the output field intensity vs. time  and distance from the input face of the crystal

. For point  the impulse response starts at  and ends at ,

having a duration of , as expected from the causality of the geometry.

In Figure 5-14 we plot the impulse response vs. time for specific points of the output

face of the crystal. At  the output is a square pulse, since all the light was

diffracted only once, and had to travel different distances. At  we see that the

impulse response is limited between  and , but is not constant. This is

due to the fact that light can reach these points travelling thought different paths in

the crystal. The light components that arrive at the output at any given point
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through different paths have each undergone a different series of diffractions, and

therefore have a different phase. The summation of these components is what

makes the impulse response vary within the abovementioned time window.

5.6 Discussion
In the previous sections we developed theoretical and numerical tools that allow us

to investigate the properties of strong volume gratings in the 90o geometry. In this

section we use these results to discuss the use of those strong gratings as filters

for WDM optical communications. The main parameters that we are interested in

are the diffraction efficiency , the bandwidth, and the dispersion properties of

the filters.

As we concluded in Section 5.3.1 on page 104, the  is a monotonic function of

. The high diffraction efficiency required by telecommunications filters can

be achieved by increasing any of these three parameters.

Figure 5-13. Color-coded plot of the output field intensity vs. time  and distance from the input 
face of the crystal . 
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The first parameter, the grating coupling strength  depends linearly on the mod-

ulation of the refractive index . For known photorefractive materials, there is a

limit to the modulation depth that we can achieve. In addition,  also determines

the bandwidth of the filter, but since the maximum  we can achieve results in

relatively small bandwidths, we can say that the recording material properties

define the limit on the value of .

The second parameter, the length of the output boundary , is limited by two fac-

tors. The first one, which also comes into play for , is the degree of difficulty

(a) (b)

(c) (d)
Figure 5-14. Impulse response vs. time for specific points of the output face of the crystal: (a) 

 cm. (b)  cm. (c)  cm. (d)  cm.The dashed vertical 

lines correspond to  and .
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involved with the recording of a uniform grating over a large volume. The second

factor has to do with the coupling of the diffracted light to a fiber, or any other

waveguide. Even if we assume that we can elongate  at will, we will have to col-

lect all (or at least most) of the diffracted light coming out of that surface, and couple

it to a fiber. It should be obvious that the longer , the more challenging, and less

efficient, this coupling will be, possibly balancing the effects of a high  on the final

.

The third parameter, the length of the input boundary , is limited, mainly, by the

dispersion properties of the grating. In Section 5.5.4 on page 120 we found that the

duration of the impulse response is , therefore, increasing  would elon-

gate the incoming pulses, which would then overlap at the output.

The abovementioned points demonstrate that the use of strong volume gratings in

the 90o geometry presents considerable challenges, namely meeting the require-

ment for high , while keeping dispersion down to tolerable levels, and coupling

the diffracted light back into a fiber. Collimating the light coming out of the input

fiber and Bragg matching it to the grating constitutes an additional hurdle. Future

work in this area should address these problems. One possible path would be to

focus on the design of dispersive elements that can improve coupling efficiency

and counter dispersion. An alternative route would be to manipulate the properties

of the recorded grating, e.g. by chirping it, or apodizing it, as to mitigate some of

the undesired effects mentioned here.
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6Effect of temperature on 
absorption in LiNbO3:Fe
6.1 Introduction
In the previous chapters we explored the use of holographic gratings for a number

of applications. One of the most promising holographic recording materials is iron-

doped lithium niobate (LiNbO3:Fe). The most severe limitation of LiNbO3:Fe is that

stored holograms are erased upon readout. 

The recording mechanism in photorefractive crystals is well understood [6-1], and

can be briefly described as follows: Inhomogeneous illumination excites electrons

from high intensity areas. These electrons migrate and are trapped in low intensity

regions. Thus electric space–charge fields build up and modulate the refractive

index via the electro-optic effect. Light absorption is the initial and hence a crucial

step of this photorefractive process. Homogenous light is used to read out the
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recorded grating, eventually redistributing the electrons and erasing the electronic

pattern.

Several techniques have been developed to limit this effect [6-2, 6-3, 6-4, 6-5]; one

of the most promising among them is thermal fixing [6-6, 6-7], which consists of

heating the crystal (typically to 180 oC) during recording. As a result, the electronic

space–charge pattern is copied to an ionic one that is persistent against illumina-

tion at room temperature. Although thermal fixing is applied frequently, only little is

known about how the electronic excitation and transport parameters are affected

by heating.

In this chapter we examine the effect of temperature on absorption in iron–doped

lithium niobate crystals. First we give an outline of the absorption mechanisms

(Section 6.2) and discuss theoretical considerations (Section 6.3). Then we

present the experimental methods we used (Section 6.4) and the results obtained

(Section 6.5). Finally we propose a theoretical model which explains our experi-

mental observations and discuss its implications in terms of possible applications

and extensions to different dopants (Section 6.6).

6.2 Absorption Mechanisms in LiNbO3:Fe
The introduction of Fe atoms in LiNbO3 crystals generates two absorption bands.

Absorption of blue or green light excites electrons from  to the conduction

band, generating . Furthermore, there is a crystal-field splitting of the 

level, adding a new energy level denoted  (Figure 6-1) [6-8]. The excitation

 takes place at about 1200 nm. In addition, LiNbO3 shows funda-

mental band-to-band absorption at short wavelengths, starting with a weak tail at

about 600 nm, and becoming strong below 400 nm.

The absorption peaks attributed to the abovementioned mechanisms are fairly

broad. We assume that thermal vibrations of the crystal lattice induce broadening

of the corresponding energy states [6-9, 6-10]. Two important outcomes of this

model are: On the energy scale, absorption spectra should have a Gaussian

Fe2+

Fe3+ Fe2+

Fe2+( )∗

Fe2+ Fe2+( )∗→
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shape. In the ground state as well as in the excited state the electrons can have

vibrational thermal energy that decreases or increases the photon energy required

for an optical transition.

6.3 Theoretical considerations
As mentioned in Section 6.2, each absorption band on the  vs.  curve should

have a Gaussian shape [6-9, 6-10]:

, (EQ 6-1) 

where  is the peak absorption energy,  is the width of the absorption band, and

 is a constant proportional to the concentration of atoms responsible for the

absorption in that band.

We propose that, for each absorption band, the width  is an increasing function

of temperature , while the other parameters,  and , are temperature indepen-

dent. Therefore the change in absorption  will follow:

Figure 6-1. Absorption mechanisms in LiNbO3:Fe. Two possible transitions are shown, 
 and .Fe2+ Fe3+ e-+→ Fe2+ Fe2+( )∗→
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, (EQ 6-2) 

where  and .

6.4 Experimental methods
6.4.1 Experimental setup
We use a Cary 500 spectrometer to measure the optical density of a LiNbO3:Fe

crystal. The Fe doping level of our crystal is  atoms/m3, and the concen-

tration ratio  is 0.32. The dimensions of the crystal are 

mm3, with the c–axis along the longest dimension. Light propagates along the

shortest dimension of the crystal. A polarizer is used to select the polarization state

of the incident light. We mount the crystal on a custom-made heatable holder,

whose temperature we adjust with a Eurotherm 2000 temperature controller, that

provides us 0.1 oC accuracy. The holder keeps the crystal tilted to a 5o angle to

avoid Fabry–Perot effects. We vary the temperature of the crystal in the range from

30 to 150 oC with 10 oC steps. For each temperature we measure the optical den-

sity, which is defined as , where  is the light intensity going in the

crystal and  is the light intensity that makes it through the crystal.

6.4.2 Reflection correction
In order to calculate the absorption coefficient  we need to take into account the

multiple reflections on both surfaces of the crystal. Assume  is the thickness of

the crystal and  the incidence angle. Then the effective thickness of the crystal is

defined as . Also assume  (for ) to be the reflection

coefficient, where  is the refractive index of the crystal. When the beam enters or

exits the crystal, it maintains  of its original intensity. When it is reflected, it
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maintains  of its original intensity, and each time it travels through the crystal, its

intensity is multiplied by a factor of  (see Figure 6-2). Taking all this into

account the output intensity  will be

Defining  we get:

so finally we have

. (EQ 6-3) 

We proceed to calculate the optical absorption coefficient , using Equation 6-3,

taking into account the dependence of the refractive index  on wavelength (mod-

ified Sellmeier equations) and on temperature [6-11], as well as the thermal expan-

sion of the crystal [6-12, 6-13].
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6.5 Experimental results
6.5.1 Temperature dependence of absorption
Our initial results consist of curves of optical absorption coefficient  vs. photon

energy  for various temperatures (see, e.g., Figure 6-3). In order to obtain a

clearer view, as well as to exclude band–edge effects, we proceed to subtract the

 vs.  curves pairwise. Thus we obtain the curves of  vs. 

shown in Figure 6-4.

We fit the experimentally obtained  vs.  curves to Equation 6-2 on page 128.

For each absorption band we isolate the corresponding photon energy region, and

feed the data of all absorption differences  to our fitting algorithm simulta-

neously. We obtain as fit parameters the absorption width  for all tempera-

tures, as well as  and . A juxtaposition of experimental data and fitting curves

can be seen in Figure 6-4.

It makes sense to keep the parameter  constant across all temperatures for each

absorption band, since it is related to the total number of absorbing atoms that is

Figure 6-2. Reflection correction for calculation of the absorption coefficient  from optical 
density data.
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Figure 6-3. Absorption coefficient  vs. photon energy  with varying crystal temperature. 
Ordinary light polarization is used.

Figure 6-4. Absorption coefficient change  between 30 oC and 150 oC (dotted line) and fitting 
curve (solid line). Ordinary light polarization is used.

α E

∆α
131



Effect of temperature on absorption in LiNbO3:Fe
not changed by heating. And since just a single photorefractive center is involved,

the energy position  of the absorption band should also remain constant vs. tem-

perature. The resulting values and 95% confidence intervals for  and  are

shown in Table 6-1.

The resulting fitting parameters for , the absorption band width, are shown in

Figure 6-5 for all three absorption bands. Error bars indicate the 95% confidence

intervals. As predicted by our model, the absorption width increases with tempera-

ture.

6.5.2 Model validation
The model we propose describes well the experimental data (Figure 6-4). Still, we

would like to check our model from the learning theory point of view. In order to do

that, we attempt to fit our experimental data to the equations detailed in Table 6-2.

Since the model we propose is a difference of Gaussians, and each Gaussian has

three parameters, our model should have at least four parameters, i.e., in the case

where the two Gaussians share all parameters but one. Therefore, for the first two

 [m-1]  [m-1]  [eV]  [eV]

Extraordinary polarization, 
high photon energy

1486 219 2.6264 0.0012

Ordinary polarization, high 
photon energy

1874 191 2.5179 0.0007

Ordinary polarization, low 
photon energy

199 61 1.0740 0.0005

Table 6-1. Fitted values and 95% confidence intervals for the parameters  and  of 

Equation 6-2.

E0

C E0

C δC E0 δE0

C E0

σ

132



Effect of temperature on absorption in LiNbO3:Fe
models, having two and three fit parameters respectively, we arbitrarily choose to

use polynomials.

(a) (b)

(c)

Figure 6-5. Absorption width  (fit parameters to Equation 6-2) for different light polarization 
states and photon energy levels. (a) Extraordinary light polarization, high photon energy. (b) 

Ordinary light polarization, high photon energy. (c) Ordinary light polarization, low photon energy. 
Error bars indicate 95% confidence intervals and the connecting lines are guides to the eye.

No. of 
parameters Model

2

3

Table 6-2. Equations used to fit the experimental data for model validation.

σ
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We proceed to fit our data using the equations in Table 6-2, and collect the residual

norm for each case, i.e., the square root of the squared difference of the experi-

mental data and the corresponding fit (see Figure 6-6). There is a substantial drop

of the residual norm as we switch from three to four parameters. As we increase

the number of parameters further, we observe a much slower decline.

Experimental error in the measurement of the crystal thickness , the refractive

index  and its optical density  result in uncertainty of a few percent for the

4

5

6

7

(a) (b)
Figure 6-6. Residual fitting norm vs. number of fitting parameters. (a) Considerable drop from 
three to four parameters. (b) Moderate drop for increases of the number of parameters beyond 

four.

No. of 
parameters Model

Table 6-2. Equations used to fit the experimental data for model validation.
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values of  used for fitting (see Equation 6-3 on page 129). The fitting error we

obtain using four parameters is comparable to the experimental uncertainty. This

precludes us from assessing that the slow decline of the residual error using more

than four parameters bears convincing evidence to four being the right number of

parameters for our model. On the other hand, it provides a strong indication that

our theoretical model is an adequate description of the experimental data.

In order to be able to proceed to a more thorough validation of our model, we would

need to reduce the experimental error. Our error analysis indicates that the main

source of experimental error is the uncertainty about the thickness of the crystal ,

which comes as no surprise given that the absorption coefficient  depends loga-

rithmically on all other parameters (see Equation 6-3 on page 129). Therefore, a

more accurate technique to measure the crystal thickness would be required to

allow us to perform model validation.

6.5.3 Polarization dependence
In Figure 6-5 we present fit parameters for different light polarizations and photon

energy levels. High photon energy levels (around 2.5 eV) correspond to the

 transition, and low photon energy levels (about 1 eV) to the

 transition. No results are presented for extraordinary light polariza-

tion and low photon energy, since the  transition is very weak for

this light polarization [6-8].

We notice that the absorption width corresponding to the  transi-

tion (  eV) is larger than the width corresponding to the

 transition (  eV). For the high photon energy

absorption band, the width of the band , and its variation vs. temperature, depend

rather weakly on light polarization. The absorption band for extraordinary light

polarization is slightly broader (about 10%) than that for ordinarily polarized light.

∆α

d

α

Fe2+ Fe3+ e-+→
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6.5.4 Absorption increase in the near infrared
In Figure 6-7 we show the absorption coefficient  at 780 nm vs. temperature .

The data shown in this figure was obtained directly from measurement, using ordi-

narily polarized light. The absorption coefficient  more than doubles as a result of

moderate heating (to 150 oC). This significant increase of absorption is very prom-

ising for a corresponding increase in holographic recording sensitivity in the infra-

red region.

6.6 Discussion
The measurements and corresponding fits that are presented in previous sections

show that the width of each absorption band depends on temperature. Thus our

initial assumption, that the line-broadening arises chiefly from thermal processes,

is confirmed. However, it can not be excluded that a portion of the broadening

comes from, e.g., iron centers that are embedded into different environments of

intrinsic crystal defects. But this effect is evidently not the main reason for the line

broadening.

Figure 6-7. Absorption coefficient  at 780 nm vs. temperature for ordinary light polarization.
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Our experiments reveal that the  absorption bands in LiNbO3 are significantly

broadened (up to about 0.07 eV for ordinary light polarization and 0.09 eV for

extraordinary light polarization) by moderate heating (up to 150 oC). The width of

absorption bands increases linearly with temperature both in the visible and infra-

red regions.

In Equation 6-1 the absorption coefficient  due to a specific transition is modeled

as a Gaussian whose only temperature dependent parameter is the width . The

area under the Gaussian function, which is proportional to the number of atoms

participating in the corresponding transition, should remain constant with tempera-

ture, as should the photon energy corresponding to maximum absorption .

Our experimental results confirm this theoretical model. Indeed, we obtain good fits

of experimental data to Equation 6-2, assuming constant values for  and ,

while  increases linearly with temperature.

The dependence of absorption on temperature is of great practical importance.

Thermal fixing techniques that are widely used to provide holograms with long life-

times require recording at high temperature. Knowledge of the behavior of absorp-

tion at such high temperatures is essential in enabling a better understanding of the

mechanisms involved. Our results also indicate that by increasing the temperature

of LiNbO3:Fe, spectral sensitivity can be broadened, thus most probably facilitating

improved holographic recording in the infrared region.

As we mentioned at the beginning of this section, the physical mechanisms leading

to absorption broadening are very fundamental. LiNbO3 crystals with different

dopants and even different photorefractive crystals should exhibit similar behav-

iors. In all these cases temperature tuning of absorption and therefore sensitivity

should be possible, enabling holographic recording in parts of the spectrum which

are inaccessible at room temperature.
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7Measurement of 
quadratic electro-optic 
coefficient
7.1 Introduction
One possible method of holographic grating tuning is the application of external

electric fields [7-1, 7-2], which are used to modulate the refractive index via the

electro-optic effect [7-3, 7-4]. The application of a homogeneous electric field

affects the dc part of the refractive index. Nevertheless the quadratic electro-optic

coefficient will affect existing gratings even with the application of a homogeneous

external electric field.

The quadratic electro-optic coefficient has been measured, e.g., for paraelectric

KTN [7-5]. The method described in [7-5] can be extended in a straightforward way

to other cubic 432 crystals that do not have a linear electro-optic effect. The mea-

surement of the quadratic electro-optic coefficient in the presence of a linear elec-
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tro-optic coefficient is, however, considerably more challenging, since the effect of

the former is usually several orders of magnitude smaller than the effect of the later

for reasonable applied fields: Stated simply, any quadratic effect in the measure-

ment system will appear at the output as quadratic through the linear electro-optic

coefficient. The quadratic electro-optic effect of the crystal, being so much smaller

than its linear counterpart, is virtually indistinguishable, and can be easily eclipsed

by the quadratic effects of the system.

In this chapter we begin by reviewing an experimental setup used to measure the

linear electro-optic coefficient. We then proceed to explain which are the limitations

that prevent the use of such a setup for the measurement of the quadratic electro-

optic coefficient in materials that have also linear electro-optic coefficients, high-

lighting the challenges presented. Finally, we present the design of a measurement

system capable of capturing the quadratic electro-optic coefficient even in the pres-

ence of a much stronger linear electro-optic coefficient, as well as results for the

case of manganese-doped lithium niobate (LiNbO3:Mn).

7.2 Measurement of the linear electro-optic 
coefficient
7.2.1 Introduction
The application of an electric field to a crystal results in a change of the refractive

index. This is known as the electro-optic effect. The first order approximation of this

effect is the linear electro-optic effect, which is described by

, (EQ 7-1) 

where  is the  component of the impermeability tensor and  is the -com-

ponent of the applied field [7-4]. The corresponding linear electro-optic coefficient

is defined as . The linear electro-optic effect of a crystal is characterized by a

3×3×3 tensor, which, due to symmetry, has 18 independent elements. In the fol-

d 1
nij

2
------ 
  rijkEk=

nij i j, Ek k
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lowing sections we will describe the theory behind an experiment to determine the

linear electro-optic coefficients, and we will give experimental details and results.

7.2.2 Theory
We place the crystal, whose linear electro-optic coefficient we want to measure, in

one arm of a Mach-Zehnder interferometer. Assume that the interferometer shown

in Figure 7-1 induces a phase difference of  between its two arms. The intensity

 measured by the photodetector versus the phase difference  is given by

. (EQ 7-2) 

Application of a field  on the crystal will induce a change of the refractive index 

through the electro-optic effect, as described by Equation 7-1. Fixing the indexes

, , and , by applying the field on a specific direction and measuring the index

change for a specific polarization, we can write [7-4]:

. (EQ 7-3) 

Figure 7-1. Schematic diagram of the experimental setup used for the measurement of the linear 
electro-optic coefficient of a crystal.
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Measurement of quadratic electro-optic coefficient
The resulting phase change is

, (EQ 7-4) 

where  is the thickness of the crystal along the direction of light propagation, and

 the wavenumber, with  the wavelength in free space.

Assume that we apply a sinusoidal field to the crystal:

. (EQ 7-5) 

The phase difference between the two arms of the interferometer can be written as

, where  is given by Equation 7-4. For reasonable values of , i.e.,

in the order of a few thousand V/m, we expect . We can now expand

Equation 7-2 to its Taylor series, obtaining:

(EQ 7-6) 

Given Equation 7-4, the third term of Equation 7-6 will be proportional to the linear

electro-optic coefficient , and the fourth and higher terms will be proportional to

, , etc., and, since  and , can be ignored. Therefore, using Equa-

tions 7-4 and 7-5, Equation 7-6 can be simplified to:

(EQ 7-7) 

It becomes obvious that the output intensity  will have a frequency component 

of amplitude . We can use a Lock-In Amplifier to measure the

amplitude of this frequency component, as shown on Figure 7-1. Since we apply a

triangular signal on the piezo actuator which controls one of the mirrors of the inter-

ferometer,  will take values in the range , therefore the amplitude of

the trace on the scope  will be proportional to . Since Lock-In

Amplifiers output the RMS value of the frequency component under measurement

we will have for the peak-to-peak (p-p) measured value:
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, (EQ 7-8) 

where  is a constant depending on the efficiency of the photodiode.

If we apply no field on the crystal, Equation 7-6 becomes

. So by measuring the output of the photodiode without

applying any field, we can obtain the voltage value proportional to , which we

define as:

. (EQ 7-9) 

Finally, the amplitude of the applied field  can be calculated from the applied

voltage  and the dimension of the crystal along the direction of the applied

field, :

. (EQ 7-10) 

Taking into account Equation 7-8, Equation 7-9, and Equation 7-10 we finally

obtain

, (EQ 7-11) 

where we have used . 

7.2.3 Experimental methods and results
In this section we give details about the experimental setup, present the measured

values, and compare them to existing results from literature. Our sample is a Mn

doped Lithium Niobate crystal, with doping level 0.5 wt%. The dimensions of the

crystal are 3.98 × 0.84 × 5 mm3, with the c-axis lying along the longest dimension.

The refractive index of the crystal is . As a light source we use a HeNe

laser, with . The light propagates along the dimension of length

 and is polarized along the c-axis of the crystal.
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Measurement of quadratic electro-optic coefficient
We apply a triangular waveform to the piezo, whose frequency is 0.02 Hz and

whose peak-to-peak amplitude is about 100 V after amplification. With no applied

field we measure the peak-to-peak value of the photodetector .

We then apply a field to the crystal along the c-axis, at frequency 

and amplitude . The dimension of the crystal along the direction of

the applied field is . We use a Stanford Research Systems SR830 DSP

Lock-In Amplifier to measure the effect of the applied field at frequency . The mea-

sured output of the Lock-In Amplifier is .

Given the light polarization and the direction of the applied field, the linear electro-

optic coefficient that we measure is . Plugging the experimentally measured

values in Equation 7-11 for LiNbO3:Mn, we obtain . Values

found in literature range from  to  [7-6,

7-7], and measurements we have performed using different methods have con-

vinced us that the value of  should lie at the lower end of that range. Therefore

our method produces results that are consistent with our expectations.

7.3 Measurement of the quadratic electro-optic 
coefficient
7.3.1 Introduction
The electro-optic effect can be described more accurately by adding a quadratic

term, so that Equation 7-1 on page 141 becomes

. (EQ 7-12) 

The quadratic electro-optic effect of a crystal is characterized by a 3 × 3 × 3 × 3

tensor, which, due to symmetry, has 36 independent elements. In the following

sections we will give the theoretical background that will allow us to analyze the
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f 9.963 kHz=
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f
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r33
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----------=
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Measurement of quadratic electro-optic coefficient
challenges pertaining the measurement of the quadratic electro-optic coefficient in

the presence of a much stronger linear electro-optic effect. We will devise a mea-

surement technique that circumvents these difficulties, and present the corre-

sponding experimental details and results.

7.3.2 Theory
In the presence of a quadratic electro-optic coefficient  Equation 7-3 on page 142

becomes

, (EQ 7-13) 

and Equation 7-4 becomes

, (EQ 7-14) 

where .

The application of a sinusoidal field, as described by Equation 7-5, would lead in

this case to the output intensity  having both a frequency component  and a fre-

quency component . Unfortunately, we cannot attribute the  component

exclusively to the quadratic electro-optic effect. This is clearly illustrated in

Figure 7-2, where it is shown how the linear electro-optic effect can produce a 

output, if the phase difference  is not , .

Alternatively, from Equation 7-6 on page 143, we see that the term 

will generate a  component even if we assume the quadratic electro-optic coef-

ficient  to be zero. By examining Equation 7-6 more carefully, we notice that,

assuming , we obtain

(EQ 7-15) 
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Measurement of quadratic electro-optic coefficient
Therefore the measured intensity  is an odd function of , and as a consequence

the linear electro-optic effect will not produce any  component. In addition to

that, since both  and  are much smaller than unity, for reasonable values of the

applied field , we can ignore  and terms of higher order, thus obtaining

. (EQ 7-16) 

So by locking  to  we should, in principle, be able to measure the quadratic

electro-optic coefficient .

In the next section we will present a setup that allows us to lock the phase differ-

ence between the two arms of the Mach-Zehnder interferometer to either , or

, . The sections after that do not depend on this setup, which is

presented here for the sake of completeness.

Figure 7-2. This plot demonstrates graphically how the same small phase perturbation can lead 
to intensity perturbations of different frequencies, depending on the center phase.
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Measurement of quadratic electro-optic coefficient
7.3.3 Phase locker setup
Active phase locking is a well known technique that is used widely to record strong

holograms in photorefractive materials [7-8, 7-9]. In this section we present an

overview of this technique in the context of the formalism we have developed.

In Section 7.2.2 we arrived at Equation 7-6 on page 143 by assuming that a small

perturbation of the phase difference is induced through the application of an elec-

tric field, via the electro-optic effect. We will now assume that no field is applied to

the crystal (for that matter a crystal does not even need be present in the path of

the interferometer), but instead that a small sinusoidal perturbation is applied on

the piezo on which one of the mirrors is mounted (see Figure 7-3), leading to

. Additionally, we assume that the phase perturbation  is small

enough, so that we can ignore higher order terms, thus obtaining

. (EQ 7-17) 

If we set up the Lock-In-Amplifier to detect the second harmonic , it should be

evident from Equation 7-17 that it will provide an output proportional to .

If we integrate this output, add it to the sinusoidal excitation and feed it to the piezo,

the dc component of the phase  will change until it takes a value such that

. At this point the output of the Lock-In Amplifier will become zero, there-

fore the output of the integrator will remain constant and  will stop changing. The

solution of  is , . It is easy to verify that, depend-

ing on the phase setting of the Lock-In Amplifier, either , or

, , will be stable equilibrium points. In any case, using this

technique, we are able to lock  in a position where the intensity measured by the

photodetector  is locally an odd function of .
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Measurement of quadratic electro-optic coefficient
If we set up the Lock-In-Amplifier to detect the first harmonic  we can show with

a similar derivation that the phase  will be locked at  or

, , where  is locally an even function of .

We should also mention that by using a frequency  for the phase-locking setup

and a different frequency  for the field applied on the crystal, we are able to lock

the phase of the setup without affecting any measurements performed using a dif-

ferent Lock-In Amplifier to characterize the electro-optic effect.

7.3.4 Harmonic limited measurement setup
Based on the discussion in Section 7.3.2, it would seem that by adding a phase-

locker to the setup used to measure the linear electro-optic coefficient and by using

the Lock-In Amplifier to detect the second harmonic of the applied electric field, we

should be able to measure the quadratic electro-optic coefficient. The schematic

diagram of such a setup is shown in Figure 7-3. Indeed, using the phase locker we

Figure 7-3. Schematic diagram of the experimental setup intended to measure the quadratic 
electro-optic coefficient of a crystal.
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Measurement of quadratic electro-optic coefficient
are able to lock the phase difference between the two arms of the interferometer to

, thus the intensity monitored by the photodiode is described by Equation 7-

16. Plugging Equation 7-14 into Equation 7-16 we get

. (EQ 7-18) 

Assuming the applied field is , we can easily conclude that the 

component of the intensity detected by the Lock-In Amplifier will be . It

would seem that we can use this frequency component to measure the quadratic

electro-optic coefficient , if it were not for one important detail: All function gener-

ators, no matter how precise, generate harmonics. Therefore a more realistic

assumption for the applied field would be

. (EQ 7-19) 

The ratio of first to second harmonics is typically  for the output of a digi-

tally synthesized waveform generator, such as the reference generator of our

Lock-In Amplifier. This ratio is decreased when the reference signal is amplified

through a high voltage amplifier, before being applied to the crystal. As a result of

Equation 7-19 the  component will be , so instead of

measuring  we would be measuring . For typical parameter values the

second term could easily eclipse the quadratic electro-optic coefficient that we

want to measure.

More generally, any nonlinearity along the loop formed by the Lock-In Amplifier,

high voltage amplifier, crystal, and photodetector, will contribute to the  compo-

nent through the linear electro-optic coefficient . Though the quadratic electro-

optic coefficient  will be manifested through the main driving force, the square of
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Measurement of quadratic electro-optic coefficient
the first harmonic of the applied field , it could still have a significantly smaller

contribution to the  term, thus rendering this technique inadequate for its mea-

surement.

7.3.5 Quadratic electro-optic measurement setup
As we saw in Section 7.3.4, any quadratic effect along the measurement loop will

allow the linear electro-optic effect to produce a  component at the output of the

measurement system. Since, for reasonable values of the applied field , the

effect of the linear electro-optic coefficient  is expected to be larger than the effect

of the quadratic electro-optic coefficient  by several orders of magnitude, any non-

linearity of the measurement system will interfere with the measurement of . A

simple solution to this problem is to use the quadratic electro-optic effect as a non-

linearity that will allow us to mix two different signals applied on the crystal. The

experimental setup for this approach is shown in Figure 7-4 and operates as fol-

lows:  

Figure 7-4. Schematic diagram of the experimental setup used for the measurement of the 
quadratic electro-optic coefficient of a crystal.
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Measurement of quadratic electro-optic coefficient
Two frequencies,  and  with  are generated and amplified indepen-

dently. They are then applied in series to our crystal sample. Assuming that they

each have a second harmonic, we will have for the total applied field on the crystal:

, (EQ 7-20) 

where we assume that the second harmonics are considerably smaller than the

first ones, i.e., .

The two signals composing  are also mixed and low-pass filtered as to produce

a signal of frequency , which is fed to the Lock-In Amplifier as a reference

signal.

Squaring Equation 7-20 generates a number terms of different frequencies. Still

the only component of frequency  is the term .

Note that this frequency component is produced by the squared applied field ,

and therefore will appear at the output only through the quadratic electro-optic

effect. The linear electro-optic effect does not generate any signal at this fre-

quency. So, going back to Equation 7-15 on page 146 and using Equation 7-14,

we get

. (EQ 7-21) 

At this point we are again faced with the question of how to connect these results

with experimentally measurable quantities. Again, very similarly to the derivations

at the end of Section 7.2.2, we have

, (EQ 7-22) 

where  is a constant depending on the efficiency of the photodiode, and 

. (EQ 7-23) 

Putting together Equation 7-21, Equation 7-22, Equation 7-23 and Equation 7-9 on

page 144 we finally get
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Measurement of quadratic electro-optic coefficient
. (EQ 7-24) 

7.3.6 Experimental methods and results
Many of the experimental details for this measurement, such as the sample and the

light source, remain the same as those mentioned in Section 7.2.3 on page 144.

For the phase locker, we apply a sinusoidal modulation of  on the

piezo actuator. We lock onto the second harmonic and achieve stable equilibrium,

which we successfully test by applying small perturbations to the system.

We then apply two independently generated and amplified sinusoidal fields on the

crystal, with frequencies  and . We also mix and low-

pass filter the output of the two generators using a custom-made circuit, in order to

produce a signal of frequency , which we then feed as the reference to a

second Lock-In Amplifier. In order to improve the accuracy of the measurement we

vary the peak-to-peak values of the applied voltages  and  mea-

sure the output of the Lock-In Amplifier  at . As expected, the output of

the amplifier is proportional to the product of the applied voltages, as can be seen

on Figure 7-5. By performing a linear fit to the acquired data we obtain a measure-

ment for . 

Given the light polarization and the direction of the applied fields the quadratic elec-

tro-optic coefficient that we measure is . Plugging the value for

 into Equation 7-24, we finally get .

7.4 Discussion
In this chapter we developed a method to measure the quadratic electro-optic coef-

ficients of a crystal that has much larger corresponding linear electro-optic coeffi-

cients. We discussed how the presence of a linear electro-optic effect, combined
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Measurement of quadratic electro-optic coefficient
with quadratic effects in the measurement loop, can affect our measurement, and

we proposed a technique to overcome this hurdle.

This technique was used to measure , and resulted in a value of 

m2/V2 [7-10]. The same coefficient  was measured using two different methods:

The first one consists of recording holographically a grating in the crystal, and then

applying a high field, and monitoring its effect on the Bragg angle. The second also

consists of applying a high field on a recorded grating, but in this case the value of

 is inferred from the effect of the field on the diffraction efficiency. Both methods

yield essentially the same value, namely,  m2/V2 [7-10], which is

smaller than the one measured interferometrically. This discrepancy could be the

result of some remnant quadratic effect in the measurement loop of the interfero-

metric setup. Therefore, at this point, we can only state that our method provides

an upper bound for the quadratic electro-optic coefficient, until further investiga-

tions lead us to the root of the discrepancy.

Figure 7-5. Output of the Lock-In Amplifier vs. the product of applied voltages on the crystal. The 
circles represent data points and the solid line a linear fit.
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