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ABSTRACT

This dissertation contains three essays in three chapters. Chapter 1 contributes to the
literature on reference dependent preferences, chapter 2 introduces a new solution
concept for games played by teams of players, and chapter 3 analyzes a model of
biased beliefs in law enforcement.

In Chapter 1, I study the role of reference dependent preferences in motivating
effort in online chess. In online chess, players are assigned ratings that measure
chess skill and update after every game. I find evidence of bunching above round
numbers in the distribution of ratings, suggesting that players care about their rating
and that round numbers serve as reference points. I estimate a dynamic discrete
choice model of the decision to end a playing session that nests both loss aversion
and an alternative ‘aspiration’ specification involving a discrete jump in utility at
reference points. I reject loss aversion in favor of aspirational preferences. I show
that higher skilled players are significantly more aspirational, and that aspiration
does not diminish with experience.

In Chapter 2, coauthored with Jeongbin Kim and Thomas R. Palfrey, we develop a
general framework for the analysis of games where each player is a team and members
of the same team all receive the same payoff. The framework combines standard
non-cooperative game theory with collective choice theory, and is developed for
both strategic form and extensive form games. We introduce the concept of team
equilibrium and identify conditions under which it converges to Nash equilibrium
with large teams. We identify conditions on the collective choice rules such that
team decisions are stochastically optimal: the probability the team chooses an action
is increasing in its equilibrium expected payoff. The theory is illustrated with some
binary action games.

In Chapter 3, I model a social welfare maximizing law enforcement agency that
does not know the supply of crime, that may have incorrect beliefs about its ability
to detect crime, and that only observes the quantity of crime that it detects. An
equilibrium is defined in which the enforcement agency is not surprised by the
crime data it observes, and believes itself to be maximizing social welfare. Sufficient
conditions for existence are provided. The model is shown to capture the intuition of
crime-policing “feedback loops" in which inefficient overpolicing or underpolicing
is supported in equilibrium.
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INTRODUCTION

Individual and group decision makers are the smallest unit of analysis, the funda-
mental building blocks, of modern economic theory. All economic models studied
by economists therefore rest on a foundation of some theory of economic decision
making and behavior. Typically, decision makers are assumed to possess well-
behaved preferences over material outcomes, to have accurate beliefs about how
their behavior interacts with their environment to produces these outcomes, and
to be capable of optimally responding to their environment in order to maximally
satisfy their preferences. In recent decades, behavioral economists have critiqued
this description of purely rational, materially oriented behavior as unrealistic, and
have worked to introduce a higher degree of psychological realism into economic
models.

This dissertation contains three essays that contribute to this effort. One (Chapter 1)
is an empirical study on non-standard preferences, another (Chapter 2) is a theoretical
study, co-authored with Jeongbin Kim and Thomas R. Palfrey, of how collective
decision making procedures effect group behavior in strategic contexts, and the third
(Chapter 3) is an analysis of a model of monitoring and enforcement that captures
how a decision maker’s incorrect, biased beliefs about their environment can be
sustained even in the presence of informational feedback from which the decision
maker could learn and update their beliefs toward the truth. These three chapters
contribute to an understanding of how decision makers’ preferences, beliefs, and
decision making processes, respectively, may depart from the neo-classical vision
of a rational economic actor in meaningful ways.

In Chapter 1, I study reference dependence, the dependence of a decision maker’s
evaluation of an outcome on a comparison to some reference outcome, and the
intrinsic motivation of effort. To date, the popular loss aversion model, in which
agents are more sensitive to changes in outcomes below the reference outcome than
above it, has predominated in the literature on reference dependence. Loss averse
agents may suffer from the endowment effect in their trading behavior if giving up
their endowment is perceived as a loss, they may be willing to bear higher costs of
effort to improve outcomes when they are averse to shortfalls below the reference
point, and they may be unreasonably risk averse over small stakes gambles, because
even small losses loom larger than small gains.
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However, in some contexts, decision makers may only care about whether or not their
outcome compares favorably to the reference, and may not attend to the magnitude of
shortfalls. When reference points are goals that decision makers aspire to achieve,
all failures to meet the goal may be perceived to be equally undesirable. This
distinction between loss aversion and goal aspirations is relevant to understanding
the motivation of effort in settings in which agents can choose to expend effort
to improve their outcome, as in labor supply decisions and decisions over effort
provision in contests, and has received little attention in the behavioral economic
literature.

I leverage an ideal data set for the study of aspirational goals as reference points,
a set of approximately 20 million online ‘blitz’ chess games played on the website
lichess.org, to distinguish between two different models of reference dependence,
and to study the motivational role of goals in this non-pecuniary, intrinsically mo-
tivated activity. On the website, players are assessed an individual ‘glicko rating’,
a measure of latent chess skill, which updates after every game, adjusting upward
after a win and downward after a loss. I model the decision of when to stop a playing
session as a dynamic discrete choice problem. The model nests two different mod-
els of reference dependence, the common loss aversion model, and an alternative
‘aspirational’ model. I reject loss aversion as an explanation of player behavior,
and find that the aspirational model provides a good fit to observed choices. I also
investigate heterogeneity in these preferences, and find that higher skill players are
more reference dependent than low skill players, and that these preferences do not
diminish with experience. The result on experience runs contrary to evidence from
many other economic contexts of decreasing reference dependence or other ‘behav-
ioral’ patterns in behavior with experience, which I hypothesize to be due to there
being no pecuniary benefit to ‘unlearning’ reference dependence in this activity.

In Chapter 2, coauthors Thomas Palfrey, Jeongbin Kim and I study collective deci-
sion making in teams in strategic settings. When applying game theoretic models
to institutions composed of large numbers of individuals (firms, political parties,
unions, governments), many researchers adopt the unitary actor assumption, model-
ing strategic units as individual decision makers. This assumption is unreasonable
in many contexts, because the internal decision making process of those institutions
influences the strategic choices of the group, and actors in strategic situations may
find it necessary to account for the decision making process of other actors in order
to make optimal choices themselves. For example, democracies may behave sys-
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tematically differently from dictatorships in international diplomacy and war, and
therefore members of democracies and dictators must rationally take into account
the constitutions of their opponents when making their own decisions.

We define a new model and solution concept for games played by teams of players,
in which team members share common payoffs, may have heterogeneous beliefs
about the expected payoffs received from taking actions available to their team, and
are endowed with collective choice rules that aggregate their heterogeneous beliefs.
In a team equilibrium, team members must have on average accurate beliefs about
payoffs given the behavior of all other teams, and team choices are determined by
the team’s collective choice rule. We identify conditions on collective choice rules
that guarantee that team equilibria converge to nash equilibria as team sizes grow
to infinity, and show how with small teams, a teams behavior is sensitive both to
its own collective choice rule, and to the collective choice rules adopted by other
teams.

In Chapter 3, I study a theoretical behavioral model of belief formation, monitoring
and enforcement, in the presence of information feedback. A robust finding of
behavioral economists is that agents often hold biased beliefs about the determinants
of outcomes. For example agents may be persistently overconfident in their own
abilities, believing that their effort is more effective at producing desirable outcomes
than it is in truth. When decision makers act on their biased beliefs, they may pursue
sub-optimal plans or make harmful decisions. However, if agents receive feedback
from their decision that contradict their incorrect beliefs, we might expect them to
learn from their prediction errors, and update their beliefs toward the truth with
experience.

I contribute to the nascent theoretical literature on misspecified learning, by de-
veloping a model of a biased decision maker facing a monitoring, enforcement,
or policing problem. Decision makers are endowed with a model, which may be
misspecified, of the relationship between their monitoring investment and the prob-
ability of detecting a harmful action taken by another agent. Agents are assumed
to make optimal investments into monitoring given their beliefs, and must not be
surprised by the feedback they receive, i.e. the realized frequency of detection,
given their investment decision. Decision makers with misspecified models may
persistently make suboptimal investments, and never update because the feedback
they observe confirms their incorrect beliefs. Thus agents in the model are capable
of systematically under- or over- investing in monitoring.



4

If enforcement agents suffer from these biases, they may cause harm by under or over
policing, and escape corrective measures because their model of crime explains the
data they collect and justifies their behavior. In future work I hope to apply this model
to questions about racial statistical discrimination and bias in law enforcement, to
help detect these biases, and hope to use it to discover better ways to evaluate the
performance of law enforcement agencies.
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C h a p t e r 1

REFERENCE POINTS AS MOTIVATING GOALS: EVIDENCE
FROM ONLINE CHESS

1.1 Introduction
Over the past 30 years, an accumulation of experimental and field evidence in
economics and psychology verifies the principle that an agent’s evaluation of an
outcome may depend in part on a comparison of that outcome to some reference
outcome, or reference point, a phenomenon known as reference dependent pref-
erence (DellaVigna, 2009, Kahneman, 1992). Several classes of reference points
have accrued significant empirical observation and theoretical attention. Principle
among these are status quo reference points, as in prospect theory introduced by
Kahneman (1979), and forward looking expectations based references, introduced
by Kőszegi and Rabin (2006). A third type of reference outcome, the aspirational
goal, has received considerably less attention.

In this paper, using data from the chess website lichess.org, I provide novel evidence
of reference dependence and effort motivating goals in the decisions of online chess
players of when to end a playing session. To facilitate matching of similarly skilled
players, chess players are assessed a ‘glicko rating’, a measure of latent chess skill.
This rating is updated after every game, increasing after a win and decreasing after a
loss. I find that on average, players are discontinuously more likely to end a playing
session (an uninterrupted run of short games) when their rating lies just above a
multiple of 100, than when it lies just below, indicating that at least some players care
about the evolution of their rating, and focus on particularly salient round numbers
when evaluating ratings.

An observable consequence of this stopping behavior is so-called ‘bunching’ in the
distribution of player ratings, ratings are more likely to be just above a round number
reference point than just below. Bunching in the distribution of a variable generally
arises when some related incentive or preference is discontinuous or kinked in the
bunching variable.1 In reference dependent choice, evaluations of the outcome

1For an example of bunching arising from rational responses to external incentives, in the field
of public finance, Saez (2010) finds evidence of bunching at the EITC kink, Mortenson and Whitten
(2020) finds bunching at seven different kinks in the income tax schedule, and Patel et al. (2017)in
the corporate tax schedule.
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variable are typically discontinuous at the reference point, the boundary between
perceived ‘losses’ and ‘gains’. Bunching of this kind has been previously observed
by Allen et al. (2017), who find that the distribution of marathon run times bunches
just below hour marks, and show that if evaluations of finishing times are modeled by
a utility function, three different discontinuities could, separately or jointly, explain
this pattern: a ‘jump’ in the utility function at reference points, which I will call
the ‘aspirational’ model, a discontinuity in the first derivative at reference points,
commonly referred to as ‘loss aversion’ when the utility function is steeper below the
reference point than above, and a discontinuity in the second derivative of utility at
reference points, characteristic of the original prospect theory value function. They
point out, however, that which of these three types of discontinuity best explains
the observed bunching cannot be identified simply from the bunched distribution
itself.2

To separate the loss aversion and aspirational models using choice data, I adopt
a structural econometric approach and model the decision to continue or end a
playing session as a dynamic discrete choice problem. Upon stopping a session, the
player realizes a payoff that depends upon his current rating, and how that rating
compares to round number reference ratings, while choosing to play a game yields a
payoff that does not depend on reference points, and continues the playing session.
I estimate this model with a stopping utility that nests both piece-wise linear loss
aversion, and the aspirational specification with discrete jumps in stopping utility
at reference points. I also allow for a disntinction between reference dependent
preferences associated with reference points above and below the status quo, taken
to be the player’s rating at the beginning of their session. In principle, players may
perceive reference points that compare favorably to the status quo differently than
they perceive reference points that are less desirable than the status quo.

The aspirational model maximum likelihood estimates fit the data better than the loss
aversion specification at ratings near reference points, and in the the combined spec-
ification the estimated loss aversion parameters are significantly below 1, indicating
loss tolerance rather than loss aversion. I also derive comparative statics results for
stopping probability with respect to rating, and show that the loss aversion speci-
fication predicts increasing stopping probabilities in rating below reference points,

2Markle et al. (2018) provide further evidence on hour reference points in marathons by survey-
ing runners and eliciting directly their subjective satisfaction with different finishing times (unincen-
tivized). They find evidence for both loss aversion and aspiration, however the question is still open
whether these stated preferences on the part of runners accurately reflects their true preferences, and
whether it is reflected in their choices of effort provision throughout actual races.
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contrary to observed stopping probabilities, while the aspirational specification pre-
dicts stopping probabilities decreasing in rating below reference points, matching
the data. I therefore reject the loss aversion specification in favor of the aspirational
specification.

I next turn to the study of the relationship between reference dependent preferences
for rating and the intrinsic motivation to play and improve at chess. Reference
ratings may serve as goals for players to aspire to, and players who attend more
to these goals may be motivated to play more games than those who do not attend
to goals, thereby accumulating more games played and improving their abilities
through practice. If this were the case, we should observe a positive relationship
between session length, skill, and reference dependent behavior.

A related question concerns how experience relates to reference dependence. If
reference ratings motivate effort, experience may be positively associated with the
intensity of reference dependent preferences. Conversely, if players it may be that
as players gain experience, they learn to disregard round number comparisons to
their rating. Player beliefs about their own chess ability may stabilize over time,
rendering short-run rating fluctuations less important to the player, or alternatively
players may come to understand round numbers are arbitrary. If so we should
expect to find that experienced players are less reference dependent. This second
possibility has received some supporting evidence in market contexts, in which many
participants are found to become less ‘behavioral’ with experience. For example,
List (2003) finds that the magnitude of the endowment effect among sports card
traders decreases with experience, De Sousa and Munro (2012) similarly find that
the endowment effect diminishes with experience in trading virtual items in an online
multiplayer game, and in an experimental market, Mayhew and Vitalis (2014) found
that experience mitigates myopic loss aversion. In each example, participants may
have learned to maximize value through repeated market interactions. To the extent
that reference dependence impedes the maximization of portfolio value, it tends to
be unlearned over time. In the chess setting, as in other settings that don’t involve
pecuniary incentives, it is an open question whether similar experience effects exist,
or whether, conversely, experience serves an important motivating function in the
absence of material rewards.

To study the relationship between experience, skill and reference dependence, I
estimate a heterogeneous version of the aspirational model in which all utility
parameters are modeled as linear functions of two observable characteristics of the
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player-session observation, experience, measured by the number of sessions played
previously to the current playing session, and skill level, measured by rating at the
beginning of a session. The estimated coefficients for skill in the aspirational bonus
parameters are both positive and statistically significant, that is, more skilled players
are estimated to be more reference dependent than low skill players. Experience is
estimated to be positively associated with the reference point below player’s starting
rating, and negatively associated with reference points that lie above session starting
rating. Players of all experience and skill groups are estimated to be reference
dependent to some degree. The results suggest that reference dependence is not
unlearned with experience, but neither is it strongly positively associated with
experience. On the other hand, skill is strongly positively associated with reference
dependence.

Finally, in order to study the motivational function of reference dependent prefer-
ences, I compute the average partial effects of the utility parameters on stopping
behavior. If, holding all other utility parameters constant, an increase in the aspi-
rational bonus causes stopping probabilities to decrease on average, then we can
say that aspiration is motivational and at least partly contributes to the observed
heterogeneity of stopping behavior with respect to skill and experience. To the
contrary, I find increasing the aspirational bonus is predicted to have little effect on
stopping probability and session length. Aspiration can actually be de-motivational,
and cause sessions to be shorter, because players may tend to stop playing earlier
in order to avoid their rating falling below a reference point. This de-motivational
effect balances out the motivational effect aspirations in this setting.

An understanding of the motivational effect of aspirational goals induced by the
glicko rating system may aid in the design of non-pecuniary incentive systems that
increase user demand of online chess services, or other similar services.3 If ranking
systems or explicit goals tend to increase participation, these systems might be
implemented and designed in order to increase demand. Conversely, if ranking
systems discourage use by inducing anxiety or fear of a falling ranking, demand
might be increased by not using rankings or hiding rankings from users. Indeed,
lichess has recently taken action to help players avoid rating related anxieties by
implementing an optional ‘zen mode’ which, when activated, hides glicko ratings

3non-pecuniary incentive structures have also been applied in non-game contexts, as in ‘gamifi-
cation’, in which game elements such as scores or points, rankings, badges, or levels, are incorporated
into activities that traditionally do not involve these elements, for the purpose of improving motivation
or productivity, or otherwise altering behavior. See Blohm and Leimeister (2013) for a review.
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on the user interface.

Online chess data provide a unique opportunity for the study of effort provision and
strategic decision making, and a number of other studies have recently made use of
this data. Two papers have previously addressed session stopping behavior in online
chess. Anderson and Green (2018) show that online chess players are more likely
to quit a playing session just after achieving a personal best rating. Avoyan et al.
(2020) find that some online chess players are more likely to end a playing session
after a loss, and some are more likely to after a win, and apply this finding to the
design of a matching algorithm that may increase session lengths. On the topic of
rational inattention, Howard (2021) studies the trade-off players must make between
better moves and more time for future moves, and finds that while skilled players
make this trade-off optimally on average, unskilled players tend to leave too little
time to future moves, they are sub-optimally too attentive to each move. Salant and
Spenkuch (2021) develop a model of decision-making under complexity and tests
its predictions using chess move data, finding that errors are more likely in more
complex positions.

The paper is organized as follows: In section 2 I introduce the institutional setting
and data, define playing sessions and measures of skill and experience; in section
3 I present a dynamic discrete choice model of when to end a playing session, and
prove several results on the comparative statics of stopping probability with respect
to rating; in section 4 I present the main results and compare the aspirational model
with the loss aversion model, the estimates for the heterogeneous preferences model,
and show how the observed heterogeneity in stopping probability and session length
is not explained by heterogeneity in reference dependence; and finally conclude in
section 5.

1.2 Data
Data on online chess games played from the beginning of 2013 to the end of
2015 was collected from the chess website lichess.org, a free to use, open source
chess website run by volunteers and funded primarily through donations. The site
offer match making services, matching players from around the world against other
players of similar skill who are searching for chess games of the same type. The site
additionally hosts tournaments and provides computer analysis, streaming video and
other services. It makes information on all rated games publicly available, including:
the account names of the opponents, their ratings, the time control, the start time,
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the end condition, all moves played, and computer analysis for a subset of games.

Most competitive games on the site are timed. When it is a player’s turn to move,
her clock counts down until she makes a move. If a player’s clock hits zero, that
player either immediately loses the game, or the game is drawn if the board state
is such that it is impossible for the opponent to give checkmate on a future move.
Typically players are given a fixed amount of time with which to make all moves (the
starting time on each players clock), and in some time controls an additional amount
of time (the increment) is added to the clock for each move. Games are categorized
by amount of time given to each player, from longest game to shortest these are
correspondence, classical, blitz and bullet.4 Correspondence games are untimed,
each of the other categories consist of multiple different controls. The longest
starting time for each player for classical games in the sample is 180 minutes,
but the most popular classical time control is 10 minutes for each player with no
increment, so that while most classical games last for about half an hour to an hour,
a portion of these games can last for longer than 6 hours. The longest blitz starting
time is 7 minutes for each player, and the most popular blitz time control is 5 minutes
with no increment, followed by 3 minutes with no increment. The upper bound for
bullet games is 2 minutes for each player and the single most popular time control
on the site is one minute for each player with no increment.

Table 1.1 displays summary statistics for the four game types. Statistics are shows for
non-tournament, ‘standard’, games and tournament games separately. The ‘Games’
and ‘Players’ columns show the total number of rated games played and the number
of unique accounts playing at least one game, in thousands, of each game type. Of
the four game types, blitz is the most popular by number of games played, with a total
of about 15.4 million non-tournament games, while classical is the most popular
by number of unique players and amount of time spent playing. The ‘Games-per-
player’ column shows the average number of games played by each unique account
name participating in at least one game of that type. The ‘Games-per-day’ column
shows the average number of games players initiate on days in which they play at
least one game.

For the remainder of the analysis, I focus on non-tournament blitz games, because
this is the most popular category by number of games and because these games are
short enough to allow players the opportunity to play longer sessions.

4The rapid category, for game shorter than classical and longer than blitz games, was first added
in 2017, after the sample period.
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Table 1.1: Rated Game Summary Statistics

Games (000s) Players (000s) Games-per-player Games-per-day

Correspondence 157 107 2.9 2.0

Classical standard 11309 125 180.3 4.8
tournament 287 105 5.5 3.7

Blitz standard 15386 121 255.2 6.8
tournament 3021 103 58.6 7.1

Bullet standard 10929 113 193.8 10.0
tournament 3477 107 65.1 9.1

Glicko Ratings
In order to facilitate the matching of similarly skilled players, each player is given a
rating, a measure of latent chess skill, for each category of game that user participates
in. Player ratings are calculated using the Glicko-2 rating system, introduced by
Glickman (2012),5 which models player performance as a random variable with a
distribution with player-specific unknown mean. When two players play a game,
they each receive a realization from their distribution, if the realizations lie within
some distance of each other, the game is a draw, and otherwise the player with the
higher realization wins the game. A player’s glicko rating is a point estimate of
the mean of that player’s distribution of performance, which is updated according
to principles of bayesian statistics after every individual game or sample of games.
Ratings increase after wins and decrease after losses, with the magnitude of the
adjustment depending upon the difference in rating between the players, and in the
degree of uncertainty about the player’s rating, which in the Glicko-2 system is a
function of the number of games recently played and the volatility in the player’s
recent results.

On lichess.org, ratings are updated immediately after every game, and players are
able to observe their new rating upon the conclusion of each game, before choosing
to play a new game or not. Furthermore, ratings are prominently displayed in
multiple locations on the user interface, always next to user names. The association
of ratings with the identity of the player, and the fact that ratings measure chess

5This rating system is a refinement of the Glicko system, detailed in Glickman (1995), which
was itself an improvement on the popular Elo rating system. For details see Elo (1978). Variations
and improvements on the Elo rating system are standard in many chess federations, and have also
come into use in many other sports.
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(a) All Ratings (b) Ratings Averaged Over Time

Figure 1.1: Glicko Rating Distribution

ability, a characteristic that players are typically interested in, make it likely that
many players take a personal interest in their rating and possibly take action to
improve it.

Figure 1.1 displays density plots of the distribution of blitz glicko ratings. The left
panel shows the density of ratings for every player for every game in the sample. The
distribution is a smooth gaussian, centered around 1700 and ranging from about 700
to 2700. 1500 is the starting rating for all new players, resulting in extra mass at that
rating. The right panel shows the density of ratings at the end of playing sessions
in the sample. The distribution of ratings at the beginning of playing sessions is
similar, because ratings do not change until a game is played. Bunching can be
observed just above round number ratings in this distribution, with corresponding
missing mass just below. This bunching is not a feature of the rating system itself;
if it were, bunching would be observed in the full distribution of ratings in the left
panel of 1.1, rather it must be the result of decisions made by players about when to
end playing sessions.

Playing Sessions
The average number of non-tournament blitz games played per day per player in
the sample is 6.8. These games are often played in succession, forming sequences
of games which I call playing sessions. Player decisions of when to initiate and
terminate playing sessions that are sensitive to round number reference ratings can
generate the bunching phenomenon discussed above.

I formally define a session as a run of games played by one user, in which there is no
hour long gap between two game start times. To generate my main data set, I first
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Figure 1.2: Session Stopping Probabilities By Rating

drop all non-blitz games, then separate blitz games for each player into sessions, then
drop all sessions in which the player either has a provisional rating for at least one
game, or plays at least one tournament game. It is necessary to drop sessions that
include tournament games because tournaments typically run on a fixed schedule.
After completing this process, there are 23.8 million games in 6.3 million sessions
played by 176 thousand unique players in the sample. The mean session length is
3.9 games and the standard deviation is 5.5 games. The maximum number of games
played in a single session was 299. Each additional game played in a session adds
on average 7.9 additional minutes to the time length of the session.

In Figure 1.2, session stopping probabilities by rating are shown. This is the prob-
ability that a game is the final game in a session. There is a large scale trend of
decreasing stopping probability rating, as more skilled players play longer sessions
on average than lower skilled players. Stopping probabilities increase discontinu-
ously at multiples of 100 and sharply decrease in rating just below reference points,
matching the bunching pattern observed in the distribution of ratings.

This sensitivity of stopping behavior to reference ratings clearly suggests reference
dependent preferences for ratings. Participants are likely to care about their own
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ability, prefer to improve measures of their own ability, and act in ways that tend
to accomplish this. Since current rating is the most relevant indicator of ability,
it is reasonable to hypothesize that players experience psychological rewards or
punishments based on their current rating. Furthermore, since ratings only update
after a game, players can ‘lock in’ their current rating for a period of time by choosing
not to play and ending their current playing session. Players should accrue a larger
reward for their end of session rating, than for transitory, mid-session ratings, simply
because they will enjoy this rating for a longer period of time. This may explain
why players are more likely to end a session when their rating yields a relatively
large psychological reward, in this case, when it compares favorably to a reference
rating.

Skill and Experience
Figure 1.2 is suggestive of heterogeneity in reference dependent preferences, as the
magnitude of the jumps in stopping probability at round numbers increase with
rating, for example there is an increase in stopping probability from 2295 to 2300
of about 7.0%, but further down the rating distribution, the jump from 1695 to 1700
is only about 1.1%. It may be that higher skilled or more experienced players are
more reference dependent than lower skill players. To facilitate the study of this
heterogeneity, I introduce measures of skill and experience.

In this subsection, I present summary statistics on the relationship between skill,
experience, session stopping behavior, and average session length. For each session
observation, I adopt as a measure of experience the number of sessions completed
before the beginning of the current session, and as a measure of skill the player
rating at the beginning of the session.

To solve the dynamic discrete choice model presented in section 3, a fixed point
must be computed for every value of the parameters. In the heterogeneous version
of the model, utility parameters will be modeled as functions of skill and experience.
Solving for the fixed points is computationally expensive, so to render the computa-
tion estimation procedure computationally feasible, the number of possible values of
the skill and experience variables must be constrained through binning. I therefore
define player skill at the time of a given session, by the 100 rating point-wide bin
in which the sessions starting rating lies. For example, every session in which the
starting rating lies between 1200 and 1299 is assigned the same value for the skill
variable, sessions with starting rating between 1300 and 1399 have a skill value that
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(a) Experience Distribution (b) Skill Distribution

(c) Average Session Length by Experience (d) Average Session Length by Skill

Figure 1.3: Experience and Skill Statistics

is one greater, and so on. All sessions with starting rating below 1000 are binned
together and assigned the lowest value for skill of 0. Similarly, experience is defined
by the number of sessions played, in bins of 25. Every player-session observation
in which the player has previously played in 0-24 sessions is assigned an experience
of 1, 25-49 and experience value of 1, and so forth, up to a value of 21 for players
who have participated in at least 500 previous sessions.

Figure 1.3 shows the distributions of these variables and their relationship with
average session length. Both variables are positively associated with session length,
with session length increasing approximately linearly in number of sessions played,
and increasing in skill in the middle of the skill distribution, then plateauing near 5
games per session above ratings of about 1800. The relationship between skill and
experience, which is not shown in the figure, is non-monotonic, with players in the
middle of the skill distribution having more sessions played on average than both
low skill and high skill players.
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1.3 Model
I model the decision of players to end or continue a playing session. Decisions
in each session are made independently of every other session played by the same
player. That is, I assume that when a player decides to end a session or not, he
is not taking into account the effect of this decision on the payoffs he will receive
from future sessions. Within a session, periods are indexed by 𝑡 ∈ {0, 1, ...}, and
the decision in period 𝑡 > 0 occurs after t games have been played. The decision
in each period starting at period 1 is 𝑑𝑡 ∈ {0, 1}, where 0 denotes continue and 1
denotes stop.

To reduce the size of the state space, ratings are binned together in groups of 5, so
for example every player-period observation with a glicko rating between 1795 and
1799 are binned together, 1800 to 1804 are binned together, and so on. Denote the
rating bin in period t by 𝑟 𝑡 ∈ R = {1, 2, ..., 𝑅}, with 𝑟0 denoting the rating at the
beginning of the session, before any games are played. Let R ⊂ R be a fixed set of
reference rating bins, corresponding to ratings bins at multiples of 1006.

For each player-session observation, there are two key reference ratings that figure
into the stopping utility function of the player, the highest reference rating at or
below 𝑟0, denoted 𝑟1, and the lowest reference rating above 𝑟0, denoted 𝑟2. These
references differ in how they compare to the status quo at the beginning of the
session. Players may perceive these reference ratings differently, weight them
differently when comparing them to their current rating, or have different internal
experiences when their rating approaches them. In comparing their results to the
lower reference point 𝑟, players are evaluating how their rating is situated relative
to a bad outcome. We can interpret stopping utility shortfalls below 𝑟 as punishing
losses, being unfavorable in comparison to the focal rating below the status quo.
In contrast, the upper reference point 𝑟 may function as an aspirational, motivating
goal for the player during the playing session. Ratings that exceed this point are
likely to be perceived as rewarding gains.

The full set of payoff relevant, observable state variables are 𝑧𝑡 = (𝑟 𝑡 , 𝑠𝑡 , 𝑒𝑡). 𝑠𝑡 ∈ R+
denotes the skill of the player at time t, and 𝑒𝑡 ∈ R+ denotes the experience level
at time t7 Both of these variables are fixed within session, so the t superscript for

6Glicko ratings in which the two trailing digits are between 00 and 05 are binned into reference
rating bins.

7The measures 𝑠𝑡 and 𝑒𝑡 are presented in section 2.4. 𝑠𝑡 is calculated from the rating at the
beginning of the session 𝑟0, in particular sessions are binned by starting rating into bins of width
100, so that every player-session observation that has the same leading two digits are assigned the
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these variables is dropped going forward. The unobserved state variable for period
t is 𝜖 𝑡 = (𝜖 𝑡0, 𝜖

𝑡
1), which are assumed to be two iid type 1 extreme value distributed

random variables for each of the two actions. These variables capture payoff shocks
flowing from opportunity costs, cognitive costs, or other costs or benefits of playing
an additional game that vary stochastically between periods.

When the choice in a period is to continue playing, the flow utility received for that
period is −(𝑐0 + 𝑐1(𝑟 𝑡 − 𝑟1)) + 𝜖 𝑡0. I call 𝑐0 + 𝑐1(𝑟 𝑡 − 𝑟1) the ‘cost’ of playing a game
at rating 𝑟 𝑡 , 𝑐0(𝑠, 𝑒) is the cost intercept, which gives the average cost of playing a
game at the lower reference rating 𝑟1, and 𝑐1 is a linear coefficient on rating in the
playing cost function. This cost of playing a game is really the difference between
the costs and benefits of playing a game at a given state. Costs may include the
cost of cognitive effort or attention, the pain of losing or potentially losing a game,
as well as the opportunity costs of forgoing other activities, while benefits may
include the enjoyment of playing a game, winning a game, or temporarily attaining
a rating between games of a session. The cost of playing is allowed to vary with
rating through the parameter 𝑐1 because all of these costs and benefits may vary
with rating. For example higher rated players are on average matched with higher
rated opponents, who play higher quality moves on average that necessitate more
careful thought for the identification of adequate responses, so that games played
at higher ratings may be more cognitively taxing on average than games played at
lower ratings.

After a choice of continue, a game is played and state variables are updated following
the transition probabilities 𝑝(𝑧𝑡+1, 𝜖 𝑡+1 |𝑧𝑡 , 𝜖 𝑡) = 𝑝(𝑟 𝑡+1, 𝜖 𝑡+1 |𝑟 𝑡 , 𝜖 𝑡) = 𝑝(𝑟 𝑡+1 |𝑟 𝑡)𝑞(𝜖 𝑡+1),
which denote the probability that the next period rating is x given that the current
period rating is y.

If the choice in a period is to stop, then the payoff received in that period is
𝑣(𝑧𝑡 |R) + 𝜖 𝑡1, the session ends and no further payoffs are received.8 The stopping
payoff 𝑣(𝑧𝑡 |R) is a reference dependent utility function, with two reference points,
of the following form.

same value of 𝑠𝑡 . 𝑒𝑡 is calculated from the number of sessions played prior to the current session,
with bins of width 15 sessions.

8This follows the assumption that players are myopic with respect to future playing sessions
when making decisions in the present playing session.
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𝑣(𝑧𝑡 |R) =


𝜆1𝜆2𝜂(𝑟 𝑡 − 𝑟1) if 𝑟 𝑡 < 𝑟1

𝛼1 + 𝜆2𝜂(𝑟 𝑡 − 𝑟1) if 𝑟1 ≤ 𝑟 𝑡 < 𝑟2

𝛼1 + 𝛼2 + 𝜂(𝑟 𝑡 − 𝑟2) + 𝜆2𝜂(𝑟2 − 𝑟1) if 𝑟2 < 𝑟
𝑡

Figure 1.4 illustrates the stopping utility in the case when 𝛼1, 𝛼2, 𝜂 > 0 and 𝜆1, 𝜆2 >

1. The two reference points 𝑟1 and 𝑟2 divide the domain of rating bins into three
regions, the region below the lower reference point, which can be thought of as a
region of losses, a gain region above the upper reference point, and a status quo
region between the two reference points where the first two digits of ratings are equal
to the first two digits of the session starting rating. Associated with each reference
point are piece-wise linear loss aversion parameters 𝜆1 and 𝜆2, and aspirational
bonus parameters 𝛼1 and 𝛼2. The parameter 𝜂 is a ‘gain’ utility parameter, giving
the slope of the utility function with respect to rating bin in the gain domain. The
slope of the utility function in the status quo region is 𝜆2𝜂 and the slope in the loss
domain is 𝜆1𝜆2𝜂. The loss aversion parameters are therefore the ratio of the marginal
utilities of rating above and below reference points, as in other piecewise-linear loss
aversion models common in the literature. When 𝜂 > 0 and 𝜆1, 𝜆2 > 1, players are
loss averse, they are more sensitive to changes in rating below reference points than
above.

When 𝛼1, 𝛼2 > 0, the player gains a ‘utility bonus’ from ending their session above
reference points. These bonuses parameters differ from loss aversion parameters
in that they do not influence the slope of the stopping utility function with respect
to rating. The specification nests a pure loss aversion model, when 𝛼1 = 𝛼2 = 0,
and also nests a pure bonus specification when 𝜆1 = 𝜆2 = 1. In addition, single
reference point specifications are nested, when for example 𝜆1 = 1 and 𝛼1 = 0, only
the upper reference point is relevant to session stopping decisions, and the lower
reference point acts like any non-reference rating bin.

To study the relationship between experience, skill, and preferences, a heterogeneous
version of the model is estimated, in which all utility parameters discussed above are
modeled as linear functions of skill and experience. For example, the value of the
utility gain parameter 𝜂 for a given session is a linear function of skill and experience,
parametrized by (𝜂0, 𝜂𝑒, 𝜂𝑠), the intercept, the coefficient on experience and the
coefficient on skill, respectively, and for any given session with observable state
variable 𝑧𝑡 = (𝑟 𝑡 , 𝑠, 𝑒), we have 𝜂(𝑧𝑡) = 𝜂0 + 𝜂𝑒𝑒 + 𝜂𝑠𝑠. For each utility parameter 𝑋 ,
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Figure 1.4: Example of Stopping Utility

the parameters 𝑋𝑒, 𝑋𝑠 give the estimated relationship between preference parameter
𝑋 and experience or skill respectively, holding the other constant. Since the value
of e and s are fixed within session, the value of each utility parameter is also fixed
within session, and players maximize their sum of discounted payoffs given their
fixed utility functions over rating.

Given the utilities of continuing and of stopping the playing session for each value
of the state variable, and the transition probabilities for ratings, players maxi-
mize their discounted expected utility, in every period choosing the maximum of
𝑢(𝑑𝑡 = 1, 𝑧𝑡 , 𝜖 𝑡) = 𝑣(𝑧𝑡 |R) + 𝜖 𝑡1 and 𝑢(𝑧𝑡 = 0, 𝑟 𝑡 , 𝜖 𝑡) = −𝑐0(𝑧𝑡) − 𝑐1(𝑧𝑡)𝑟 𝑡 + 𝜖 𝑡0 +
𝛽E[𝑉 (𝑧𝑡+1, 𝜖 𝑡+1) |𝑑𝑡 = 0, 𝑧𝑡 , 𝜖 𝑡], where the value function is given by the recursive
formula 𝑉 (𝑧𝑡+1, 𝜖 𝑡+1) = max{𝑢(𝑑𝑡 = 1, 𝑧𝑡 , 𝜖 𝑡), 𝑢(𝑧𝑡 = 0, 𝑟 𝑡 , 𝜖 𝑡)}. Given the distribu-
tional assumptions on 𝜖 𝑡 , choice probabilities are given by the familiar logit formula
below.

𝑃(𝑧𝑡) = P[𝑑𝑡 = 1|𝑧𝑡] = exp{𝑣(𝑧𝑡 |R)}
exp{𝑣(𝑧𝑡 |R)} + exp{𝑐(𝑧𝑡) + 𝛿EV(𝑧𝑡)}
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where the expected value function 𝐸𝑉 (𝑧𝑡) is the integral of the value function with
respect to rating and structural errors at time 𝑡 + 1. Since the expected value of the
maximum of two type 1 extreme value variables with means 𝑥, 𝑦 is 𝑙𝑜𝑔[exp{𝑥} +
exp{𝑦}], we have the 𝐸𝑉 (𝑧𝑡) is the unique fixed point of the contraction mapping
𝑇 (·) written below

EV(𝑧𝑡) = 𝑇 (EV) (𝑧𝑡) =
∑︁

log[exp{𝑣(𝑧𝑡+1 |R)}+

exp{𝑐(𝑧𝑡+1) + 𝛿EV(𝑧𝑡+1)}]𝑝(𝑟 𝑡+1 |𝑧𝑡)

Reference Dependence and Stopping Probabilities
The two models, loss aversion and aspiration, both nested in the stopping util-
ity function introduced above, generate sharply divergent predictions of stopping
probabilities, and how stopping probabilities change with rating. Generally, in this
dynamic setting, the stopping probability of loss averse players will be increasing in
rating just below reference ratings, while aspirational players will have decreasing
stopping probabilities in rating just below reference ratings. Below, I prove that
this property holds for a subset of the parameter space of the model, in which there
is only one reference rating 𝑟1 relevant to stopping decisions, there is no skill or
experience heterogeneity, and the cost of playing is constant over current rating.
This occurs when 𝜆2 = 1, 𝛼2 = 0, and 𝑐1 = 0. The value of stopping is then given
by

𝑣(𝑟 𝑡 |R) = ⊮{𝑟 𝑡 < 𝑟1}[𝜆1𝜂(𝑟 𝑡 − 𝑟1)] + ⊮{𝑟 𝑡 ≥ 𝑟1}[𝛼1 + 𝜂(𝑟 𝑡 − 𝑟1)]

First note that, for any distribution of 𝜖 𝑡 , we have that the probability of stopping at
rating 𝑟 𝑡 is

𝑃(𝑟 𝑡) = P[𝜖 𝑡1 − 𝜖
𝑡
0 > 𝛿EV(𝑟 𝑡) − 𝑣(𝑟 𝑡 |R)]

We can see that 𝑃(𝑟 𝑡 + 1) ≥ 𝑃(𝑟 𝑡), the stopping probability increases from rating
𝑟 𝑡 to rating 𝑟 𝑡 + 1, if and only if 𝛿EV(𝑟 𝑡 + 1) − 𝛿EV(𝑟 𝑡) ≤ (𝑣(𝑟 𝑡 + 1) − 𝑣(𝑟 𝑡)), i.e.
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if the value of stopping increases faster than the delta discounted expected value
of continuing. The following proposition uses the fact that 𝑇 (·) is a contraction
mapping to establish a useful upper bound for 𝛿EV(𝑟 𝑡 + 1) − 𝛿EV(𝑟 𝑡).

Proposition 1: Suppose 𝑐1 = 0. For any value function 𝑣, 𝛿EV(𝑟 𝑡 +1) − 𝛿EV(𝑟 𝑡) ≤
max𝑟 𝑡 {𝑣(𝑟 𝑡 + 1) − 𝑣(𝑟 𝑡)}

Proof. Denote 𝑚 = max𝑟 𝑡 {𝑣(𝑟 𝑡 + 1) − 𝑣(𝑟 𝑡)}.

Suppose EV0 is such that EV0(𝑟 𝑡 + 1)−EV0(𝑟 𝑡) ≤ 1
𝛿
𝑚 for all 𝑟 𝑡 . We can write

𝑇 (𝐸𝑉0) (𝑟 𝑡 + 1) − 𝑇 (𝐸𝑉0) (𝑟 𝑡) =

=
∑︁
𝑟 𝑡+1

{log( exp(𝑣(𝑟 𝑡+1 + 1)) + exp(𝛿𝐸𝑉0(𝑟 𝑡+1 + 1))
exp(𝑣(𝑟 𝑡+1)) + exp(𝛿𝐸𝑉0(𝑟 𝑡+1))

)}𝑝(𝑟 𝑡+1 |𝑟 𝑡)

≤
∑︁
𝑟 𝑡+1

{log( exp(𝑣(𝑟 𝑡+1) + 𝑚) + exp(𝛿𝐸𝑉0(𝑟 𝑡+1) + 𝑚)
exp(𝑣(𝑟 𝑡+1)) + exp(𝛿𝐸𝑉0(𝑟 𝑡+1))

)}𝑝(𝑟 𝑡+1 |𝑟 𝑡)

=
∑︁
𝑟 𝑡+1

{log(exp(𝑚))}𝑝(𝑟 𝑡+1 |𝑟 𝑡)

= 𝑚 ≤ 1
𝛿
𝑚

The result follows from the fact that T is a contraction mapping.

□

The proposition says that the continuation value cannot increase in rating faster than
the fastest rate at which the stopping utility increases. This means that, at those
ratings where the stopping value is increasing at its fastest possible rate, the stopping
probability must be increasing, leading to the following two corollaries correspond-
ing to the pure loss aversion case and the pure aspirational case respectively.

Corollary 1: When 𝑐1 = 0, 𝜆2 = 1 and 𝛼1 = 𝛼2 = 0, 𝜂 > 0, and 𝜆1 > 1, we have
𝑃(𝑟) − 𝑃(𝑟 − 1) ≥ 0 whenever 𝑟 ≤ 𝑟1.

Corollary 2: When 𝑐1 = 0, 𝜆1 = 𝜆2 = 1, 𝛼2 = 0, 𝜂 > 0, and 𝛼1 > 0, we have
𝑃(𝑟1) − 𝑃(𝑟1 − 1) ≥ 0.
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Corollary 1 says that under loss aversion with a single reference point, the stopping
probability must be increasing in rating at all ratings below the reference point.
Corollary 2 says that under the aspirational model with a single reference point,
there must be a jump in stopping probability at the reference point.

The differences in the stopping behavior of players under these two models can be
further illustrated computationally in the following simplified example. Let the set
of ratings be R = {1, ..., 99 and the only reference rating 𝑟1 = 50. Assume that
the transition probabilities are 𝑝(𝑟 𝑡 + 1|𝑟 𝑡) = 𝑝(𝑟 𝑡 − 1|𝑟 𝑡) = 0.5, for all 𝑟 𝑡 ≠ 1, 99,
and 𝑝(2|1) = 𝑝(1|1) = 𝑝(98|99) = 𝑝(99|99) = 0.5. That is, at every rating the
probability the rating increases or decreases by 1 (upon choosing to continue) is 0.5,
except when the rating is already at the minimum or maximum possible rating, in
which case there is 0.5 chance the rating stays the same. Fix the cost of playing to
𝑐0 = 0.5, the gain parameter 𝜂 = 0.1, and the variance of the unobservable error
terms to 1.

In Figure 1.5 I plot the predicted stopping probabilities by rating, under different
values for the parameters 𝛼1, 𝜆1. In the left panel, the value of 𝛼1 is fixed to 0, and
the value of 𝜆1 varies from 1 (no loss aversion) to 7. Increasing the value of 𝜆1, the
degree of loss aversion, increases the stopping probability at every rating, and also
increases the prominence of a ‘peak’ in stopping probability centered at the reference
rating. In the right panel, the value of 𝜆1 is fixed at 1 and the value of 𝛼1 is varied
from 0 (no aspirational preference) to 3. As 𝛼1 increases, stopping probabilities
above the reference rating increase, and decrease below the reference rating. The
closer the rating is to the reference rating, the larger the partial derivative of stopping
probability with respect to 𝛼. As a result, increasing 𝛼1 causes the magnitude of the
discontinuous jump in stopping probability at the reference rating to increase. In all
cases, at ratings far away from the reference point, stopping probabilities increase
with rating due to the positive value of the gain parameter 𝜂.

Note that, following the result of Corollary 1, pure loss aversion implies that stopping
probabilities increase in rating at ratings below the reference point. In this numerical
example, pure aspirational preferences predict the opposite, decreasing probabilities
in rating below the reference point. These properties are generally robust to changes
in the values of the other parameters, and to the addition of more reference points.
Comparing these predictions to the empirical choice probabilities displayed in Figure
1.2, it seems likely that the aspirational model outperforms loss aversion in fitting
the data. In the next section I confirm this conjecture by estimating the model
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(a) Loss Aversion Only (b) Aspiration Only

Figure 1.5: Simplified Model Stopping Probabilities

parameters and evaluating model.

1.4 Estimation and Results
To estimate maximum likelihood model parameters, I implement the nested fixed
point algorithm introduced by Rust (1987), which follows a two stage procedure.
The data consists of tuples 𝑥𝑡

𝑖
= (𝑑𝑡

𝑖
, 𝑟 𝑡
𝑖
, 𝑠𝑖, 𝑒𝑖), where 𝑑𝑡

𝑖
is the decision of the player

whether to end session i in period t, 𝑟 𝑡
𝑖

is the rating in session i, period t, and 𝑠𝑖, 𝑒𝑖
are the skill and experience of the player in session i. Denote by 𝑇𝑖 the total number
of periods in session i, and denote by 𝐼 the total number of sessions. Under the
independence assumptions on the unobserved state variables, the full likelihood and
log-likelihood functions are

ℓ({𝑥𝑡𝑖 }) =
𝐼∏
𝑖=1

𝑇𝑖∏
𝑡=1

𝑃(𝑟 𝑡𝑖 , 𝑠𝑖, 𝑒𝑖)𝑑
𝑡
𝑖 (1 − 𝑃(𝑟 𝑡𝑖 , 𝑠𝑖, 𝑒𝑖))1−𝑑𝑡

𝑖 𝑝(𝑟 𝑡𝑖 |𝑟 𝑡−1
𝑖 )

log(ℓ({𝑥𝑡𝑖 })) =
𝐼∑︁
𝑖=1

𝑇𝑖∑︁
𝑡=1

𝑃(𝑟 𝑡𝑖 , 𝑠𝑖, 𝑒𝑖)𝑑
𝑡
𝑖 (1 − 𝑃(𝑟 𝑡𝑖 , 𝑠𝑖, 𝑒𝑖))1−𝑑𝑡

𝑖 +
𝐼∑︁
𝑖=1

𝑇𝑖∑︁
𝑡=1

𝑝(𝑟 𝑡𝑖 |𝑟 𝑡−1
𝑖 )

In the first stage of the estimation procedure, maximum likelihood estimates of
state transition probabilities are obtained from sample averages of the data. These
estimates maximize the second sum in the log-likelihood formula above. In the
second stage, utility parameters are estimated via maximization of the first sum of
the log-likelihood function, using the transition probability estimates from the first
stage. This maximization involves an ‘outer loop’ that searches over values of the
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utility parameters, in every run of the loop computing the choice probabilities for a
given set of parameter values. To compute choice probabilities, the expected value
function must be computed, necessitating an ‘inner loop’ that solves the contraction
mapping 𝑇 (·) at every iteration of the outer loop.9

Homogeneous Stopping Utility
In this section, I present estimates of a version of the model in which all players
are assumed to have identical stopping utilities, while the cost of playing is allowed
to vary with skill and experience, in other words 𝜆1(𝑧𝑡), 𝜆2(𝑧𝑡), 𝜂(𝑧𝑡), 𝛼1(𝑧𝑡), 𝛼2(𝑧𝑡)
are all constants in 𝑧𝑡 , and 𝑐(𝑧𝑡) = 𝑐0. Heterogeneity in playing costs is necessary
for the model to adequately fit the macro-scale trend of decreasing average stopping
probabilities in skill and experience present in the data.10

The first column of table 1.2 reports the estimated stopping utility parameters of
the full model specification including loss aversion and aspirational preferences.
Columns 2 and 3 present estimates for the restricted, loss aversion only and aspiration
only models. Standard errors are reported in the parentheses. The scale of the
utilities are fixed by the assumption that the structural error terms have variance 𝜋

6 .
At every state, the standard deviations of the stage payoffs of both playing a game
and stopping are roughly 0.72. The magnitude of the parameter estimates should be
compared to this value.

In the full model, the marginal benefit of increasing rating above the upper reference
point, 𝜂 is estimated to be about 0.3, or roughly three sevenths of a standard deviation
of the error terms. Both loss aversion parameters are estimated to be below one,
indicating that players are on average loss tolerant, they are less sensitive to changes
in rating below the upper reference point than above. These estimates contrast
sharply with the typical finding in the behavioral literature, recently summarized
in a meta analysis by (Brown et al., 2021), which found that the mean reported
loss aversion estimate from 150 articles in economics and psychology was between
1.8 and 2.1. The products of the estimated loss aversion parameters with 𝜂 give
the estimated slope of the stopping utility between the two reference points and

9To solve for the fixed point of 𝑇 (·), I adopt the ‘polyalgorithm’ described in Rust (2000).
Successive iterations of 𝑇 (·) are first performed, then Newton-Kantorovich iterations are used to
convergence.

10I find that when playing costs are assumed to be homogeneous, the marginal benefit of rating 𝜂
is estimated to be negative, which allows the model to fit this decreasing stopping probability trend
but renders the stopping utility estimates unintelligible because a negative marginal benefit of rating
would imply players could maximize their stopping utility by intentionally losing their games.
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Table 1.2: Homogeneous Stopping Utility Estimates

Parameter Full Model Loss Aversion Aspiration

Upper Bonus (𝛼2) 0.1743 0∗ 0.1589
(0.0013) (0.0014)

Lower Bonus (𝛼1) 0.0692 0∗ 0.0432
(0.0011) (0.0009)

Gain (𝜂) 0.2948 0.2953 0.2454
(0.0020) (0.0020) (0.0019)

Upper Loss (𝜆2) 0.7651 0.7656 1∗
(0.0021) (0.019)

Lower Loss (𝜆1) 0.8312 0.8739 1∗
(0.0023) (0.0018)

log-likelihood -1.3212e7 -1.3214e7 -1.3214e7

below the lower reference point, which are about 0.226 and 0.187 respectively. The
estimated slopes in the restricted model with 𝛼1 = 𝛼2 = 0 are close to those in the
full model, at 0.226 and 0.188.

The aspirational estimates are positive, with the upper bonus more than twice the
size of the lower bonus. Both bonuses are smaller than the estimated slope of
the stopping utility everywhere, implying that a player’s stopping utility is always
increased more by increasing his rating by two bins, than by increasing his rating
by one bin from just below to just above a reference point. These results also hold
in the restricted model with loss aversion parameters fixed at 1.

In Figure 1.6, observed stopping probabilities and predicted stopping probabilities
from the fitted models are plotted. In each panel of the Figure, the x-axis is the
difference between the current rating and the center of the starting 100 point-wide
rating bin. All players begin their session with rating between -50 and +50, the
lower reference rating is at -50 and the upper reference rating is at +50, and zero
on the x-axis corresponds to a rating with trailing digits between 50 and 55. Data
for all skill and experience groups is thereby pooled together based on how the
current rating compares to the two reference points. The solid black line shows the
observed sample averages of stopping decision by bin. Stopping probability initially
decreases in rating, plateaus at close to 0.25 just below the lower reference point,
then increases in rating above the upper reference point. At the lower reference
point, the stopping probability jumps by about 0.009 in one rating bin, and at the
upper reference point it increases by 0.022. Between these two points, the stopping
probability steadily decreases by a total of 0.022.
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(a) Full Model Fit

(b) Restricted Model Fit

Figure 1.6: Homogeneous Model Fit

In the top panel, the dashed line shows the predicted stopping probabilities from
the fitted full model. The predicted stopping probabilities generally co-moves with
rating in the same direction as the data, with the exception of the region between the
lower reference point and the mid-point between the reference points, and the region
just above the upper reference point, in which the predicted stopping probabilities
increase in rating. The predicted troughs and just below, and peaks at reference
points are too low, though the predicted size of the jumps from -55 to -50 and from
45 to 50 approximately match the data, at .008 and .023 respectively.

In the bottom panel, the dashed line shows the predicted probabilities for the re-
stricted aspiration only model, and the dotted line for the loss only model. This plot
illustrates how the two restricted models decompose the predicted behavior from the
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full model fit into a portion attributable to loss tolerance, and a portion attributable
to aspirations. The loss only model predictions form inverted tent shapes around
reference points, with probabilities decreasing below the reference rating, then in-
creasing above it, with no discontinuous jump at the reference point. As rating
approaches a reference point, the player become more risk loving for gambles over
rating, and therefore more likely to play an additional game. In contrast, the aspi-
rational model behavior more closely matches the observed behavior, with jumps
in stopping probability at reference points, and stopping probability decreasing in
rating everywhere else. The aspirational model predicts jumps of 0.007 and 0.027
at the lower and upper reference points respectively, and predicts a gradual decrease
in stopping probability of 0.016 between reference points.

The fit of the aspirational model is superior to that of the loss aversion model at
every bin from -50 to +70, except for one where the predictions of the two models
cross, with the best over-performance at ratings just above reference points, where
the loss aversion model fails to predict any discontinuous jump. The fit of the loss
aversion model is superior at all ratings outside of that range. The loss aversion
parameters control the slope of the stopping utility over the entire range of ratings,
so that predicted behavior at all ratings is influenced by small changes in the loss
aversion parameters, whereas the aspirational bonuses can only influence behavior
when a player’s rating is close to a reference point, and it is more likely for the
player’s rating to cross the reference point in the near future. This may explain
why the loss aversion model has an advantage in fitting data far away from reference
points, whereas the aspirational model has an advantage near reference points, where
observed behavior qualitatively matches the predictions of that model. It is clear
from these observations how the two sets of parameters contribute to the fit of
the full model. The full model predictions coincide with the loss aversion model
predictions far from reference points, the discontinuous behavior at reference points
is entirely the contribution of the aspirational model, and between reference points
the full model predictions are a mix of the two restricted models.

Heterogeneous Stopping Utility
In this subsection I present estimates for the version of the aspirational model with
heterogeneity in utility parameters. The specification of playing costs remains
unchanged from the models estimated in the previous section, and every stopping
utility parameter is modeled as a linear function of skill and experience.
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Table 1.3 shows the coefficient estimates for each of the stopping utility parameters.
First, the estimated aspirational bonus for the upper reference point is larger than the
estimated bonus for the lower reference point, for players of all skill and experience.
Both 𝛼1 and 𝛼2 increase in skill, with 𝛼2 increasing faster, so that the gap between
𝛼1 and 𝛼2 grows with skill. The estimated coefficient on experience is closer to 0
for both, with a negative coefficient for the upper bonus and positive for the lower
bonus, implying that the difference shrinks with experience. Reference dependence
does not generally diminish in this setting, in contrast to various market settings in
which it has been shown that loss aversion diminishes with experience. The gain
parameter 𝜂 has a negative intercept, but is strongly positively associated with skill,
so that by the second lowest skill group it is positive. The fact that 𝜂 is estimated to
be less than zero for some players is likely the result of the linear specification.

The fixed playing costs 𝑐 is estimated to be decreasing in both skill and experience,
but with a positive second derivative with respect to both, the interpretation being
that higher skill and experience is associated with lower costs, or high average payoff,
from playing an additional game. This is unsurprising, as we should expect players
who enjoy playing games more, or who have lower opportunity costs for their time,
to play more games and improve their skill over time, and conversely those who
have played more games and have greater ability are likely to have acquired stronger
tastes for playing. The linear in rating playing cost parameter 𝑘 , is estimated to be
negative for all players, indicating that the average payoff from playing increase in
rating. One potential explanation might be that at higher ratings players are matched
with higher ability opponents, and games played against stronger competition may
be more enjoyable.

In Figure 1.7, average stopping probabilities by rating are plotted along with the
predicted stopping probabilities from the fitted model. The quadratic specification
of 𝑐 allows the model to neatly fit both the decreasing stopping probability in rating
in the lower to middle portion of the rating distribution, and the plateau around 0.2
above a rating of 1800. The model also fits the increasing sensitivity to reference
ratings with increasing skill.

The empirical and predicted stopping probabilities for two different skill groups are
shown in Figure 1.8, players with session starting ratings between 1400 and 1500 in
the top panel, starting ratings between 2000 and 2100 in the bottom panel. These
figures illustrate the key observed patterns in the relationship between skill and
stopping behavior. First, stopping behavior for both skill groups is more responsive



29

Table 1.3: Heterogeneous Stopping Utility Estimates

Coefficient Estimates

Intercept Experience Skill Experience2 Skill2

Upper Bonus (𝛼2) 0.0331 -0.0025 0.0287
(0.0035) (0.0002) (0.0005)

Lower Bonus (𝛼1) -0.1190 0.0054 0.0197
(0.0031) (0.0002) (0.0006)

Gain (𝜂) -0.1651 -0.0207 0.1061
(0.0031) (0.0002) (0.0009)

Cost (𝑐) 0.5968 -0.0038 -0.0736 0.0001 0.0032
(0.0002) (3.3e-5) (9.5e-5) (1.6e-6) (8.6e-6)

Linear Cost (𝑘) -0.0026 0.0002 -0.0004
(3.2e-5) (2.4e-6) (9.4e-6)

log-likelihood -1.3212

Figure 1.7: Heterogeneous Model Fit

to the reference point that lies above their starting rating, in fact the low skill group
has no apparent jump in stopping probabilities at the lower reference point, and only
a small jump of about 0.02 at the upper reference point. The higher skill players
react more strongly to both reference points than do lower skill players, with jumps
in stopping probability of about 0.031 and 0.065 at the lower and upper reference
points respectively.

Separating the data by skill group makes it clear that nearly the entirety of the
stopping probability jumps and bunching at reference points below the median
rating of about 1500, is the result of the behavior of players who have improved
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their rating from the beginning of their playing session. For example, the jump
at a rating of 1300 apparent in Figure 1.7 is almost entirely caused by players
who started their session between 1200 and 1300 and played until their rating rose
above 1300 and stopping, and almost none of it is caused by players who started
between 1300 and 1400 and stopped their session prematurely before their rating
fell below 1300. At higher ratings, players with falling ratings and rising ratings
both contribute to bunching at a given reference rating, however the asymmetry
in aspirational preferences between 𝑟1 and 𝑟2 means that a majority of the players
with end of session rating in the bunching regions improved their rating over their
session.

Other notable patterns in the data include that the stopping probability of the low
skill group is above that of the high skill group at every rating bin, and decreases in
rating, while the high skill players become more likely to stop as rating increases. The
model fits all of these patterns, with the higher skill group estimated to have a lower
playing cost, higher marginal benefit of increasing rating, and greater aspirational
bonuses, resulting in lower stopping probabilities, a positive slope in rating, and
larger jumps at reference points.

Aspiration and Session Length
Reference dependent, aspirational preferences may motivate players to prolong their
playing sessions in an effort to improve to their goal rating, thereby playing more
games per session on average, accumulating more games played and improving their
abilities at a faster rate if they are able to learn from their experience. If this is the
case, the heterogeneity in aspiration found in the previous section may provide a
unified explanation for the relationship between responsiveness in stopping behavior
to reference points, average session lengths, and skill levels of the players in the
sample. That is, higher skilled players may play more games and improve their
abilities at least in part because they are more motivated to achieve goal ratings.

In this section I use the estimated heterogeneous aspirational model to study this
question. First, I decompose the average partial effects of skill and experience on
stopping probability into the various utility parameter channels. We can write the
expected partial derivatives of stopping probability with respect to the skill and
experience as
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(a) Skill Group 1400-1500

(b) Skill Group 2000 - 2100

Figure 1.8: Heterogeneity of Reference Dependence in Skill
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where Θ is the set of utility parameters in the model, here 𝛼1, 𝛼2, 𝜂, 𝑐, and 𝑘 ,
and the expectations are taken with respect to the distribution of the observable
state variable. Each summand above is one component of the effect of skill or
experience on average stopping probability. They can be interpreted as the change
in average stopping probability when a player is given the estimated utility parameter
of an otherwise identical player, but in the next higher skill or experience bin. By
the consistency of the maximum likelihood estimates and the continuous mapping
theorem, consistent estimates for these average partial effects can be computed
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Table 1.4: Partial Effects

Average Partial Effects

𝜃 E[ 𝜕𝑃
𝜕𝜃
] E[ 𝜕𝑃

𝜕𝜃
𝜕𝜃
𝜕𝑒
] E[ 𝜕𝑃

𝜕𝜃
𝜕𝜃
𝜕𝑠
]

𝛼1 0.0108 5.9e-5 0.0002
𝛼2 -0.0038 9.7e-6 -0.0001
𝜂 0.0655 -0.0013 0.0070
𝑐 0.7286 -0.0012 -0.0264
𝑘 7.2313 0.0012 -0.0032

E[ 𝜕𝑃
𝜕𝑒
] = −0.0012 E[ 𝜕𝑃

𝜕𝑠
] = −0.0225

by differentiating the stopping probabilities at the estimated parameter values, and
taking sample averages.

Table 1.4 shows the estimated average partial effects of experience and skill, acting
through the various utility parameters. The average partial effects of experience and
skill, shown at the bottom of the table, are both negative, confirming that higher skill
and experience are associated with lower stopping probabilities and longer sessions.
These are simply the sums of the terms in the column above them in the table.

The partial effect of 𝛼1 is positive, the more players care about their rating not
dropping below the lower reference point, the sooner they end their session on
average. The other bonus parameter 𝛼2 on the other hand has a negative effect
on stopping probability, because players that care more about reaching the next
higher reference point will prolong their session in order to reach that point, they
are willing to bear a larger total playing cost in order to have a better chance of
reaching their goal. These effects are small however, because stopping probability
moves in opposite directions with 𝛼 above and below reference points. Since both
parameters increase with skill, the effect of increasing skill on stopping probability,
acting through the 𝛼1 and 𝛼2 channels, is positive and negative, respectively. On
average, when a player is given the 𝛼1 parameter of an otherwise identical player,
but in one skill bin higher, their average stopping probability is predicted to increase
by 0.0002, and when given the 𝛼2 parameter of a player in the next highest skill bin,
their stopping probability decreases by -0.0001. The combined effect of changing
both reference dependence utility parameters is simply the sum of these two effects,
meaning that on balance, reference dependence is estimated to be very slightly
de-motivational for players in this sample.

The model attributes most of the heterogeneity in stopping probabilities to difference
in fixed playing costs. Higher playing cost induces larger stopping probabilities,



33

and both skill and experience are estimated to be negatively related to playing cost.
Notably, the effect of the gain parameter is positive, so that the higher the marginal
benefit of increasing the rating is, the more often players end their session, and this
effect is much stronger than the effect of reference dependence.

1.5 Conclusion
Users of an online chess website are discontinuously more likely to end their sessions
above reference points than below them. Using structural, reference dependent,
dynamic discrete choice model of the decision to end a playing session that nests
loss aversion and an alternative aspirational utility specification, I show that loss
aversion fails to explain stopping behavior near reference points, but that aspiration
explains it well, matching the qualitative features of observed behavior and providing
a superior fit to the loss aversion model near reference points.

I also show that players have heterogeneous reference dependent preferences, with
the magnitude of the estimated aspirational bonuses growing significantly with skill,
but only a small relationship between reference dependence and experience. The
result that reference dependence does not diminish with experience is notable, as
many recent studies have found that decision-makers become less loss averse with
experience. One potential explanation for this discrepancy is that, in this setting,
there are no pecuniary rewards at stake, and so ‘behavioral’ decisions are not as
materially costly as they are in market settings.

Indeed, in the absence of financial incentives, intrinsic psychological incentives, like
the goal oriented ones studied in this paper, may serve an important motivational
function, and decision makers who are not motivated by goals may be more likely
to stop participating, leaving only goal motivated players behind to become more
experience and skilled. It could also be that reference dependence in session stopping
decisions directly motivates effort, by causing players to prolong their sessions.
However, an analysis of the partial effects of the utility parameters reveals that
aspirational preferences are neither motivational nor de-motivational, in the sense
that increasing the magnitude of player aspirations neither increases nor decreases
average stopping probability, and therefore the average number of games played per
session. To confirm the validity of these causal claims of the aspirational model, it
would be necessary to gather experimental evidence in future work on the effect of
goals on the provision of effort and risk taking in a similar environment. If exogenous
manipulations of the location and importance of goals or reference points could be
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performed without monetary incentives, evidence of their causal effects on behavior
could be gathered and compared to the predictions of the aspirational model.

Beyond developing a better understanding of the psychology of decision involving
effort and risk, the results of this study have the potential to inform the design of
non-pecuniary incentives in other settings, such as in the video game industry, or in
the gamification of other activities.
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C h a p t e r 2

GAMES PLAYED BY TEAMS OF PLAYERS

2.1 Introduction
For most applications of game theory, each "player" of the game is actually a
team of players. For reasons of analytical convenience and longstanding tradition,
these teams are modeled as if they are unitary actors - i.e., single individuals.
Examples abound. In spectrum auctions, the players are giant corporations such as
Verizon, AT&T, and Sprint. The same is true in virtually any model used to study
problems in industrial organization: oligopoly, limit pricing and entry deterrence,
R&D races, and so forth. In the crisis bargaining literature aimed at understanding
international conflict, the players are nation states. In the political arena key players
include parties, civic organizations, campaign committees, large donor groups,
commissions, panels of judges, advisory committees, etc. These “teams" range not
only in size and scope but also in their organizational structure and procedures for
reaching decisions.

A basic premise of the theoretical framework developed in this paper is that the
unitary actor approach misses a critical component of these strategic environments,
namely the collective choice problem within each competing team. This premise is
not merely conjectural but is supported by a growing body of experimental work that
has begun to uncover inconvenient facts pointing to important behavioral differences
between games played by teams of players and games played by individual decision
makers.

Many of the studies that compare group and individual behavior in games find that
team play more closely resembles the standard predictions of game theory. To
quote from Charness and Sutter (2012): “In a nutshell, the bottom line emerging
from economic research on group decision-making is that groups are more likely to
make choices that follow standard game-theoretic predictions...” Similarly, Kugler
et al. (2012) summarize the main finding of their survey in the following way: “Our
review suggests that results are quite consistent in revealing that group decisions are
closer to the game-theoretic assumption of rationality than individual decisions.”
A similar conclusion has been reached in many individual choice experiments as
well. For example a variety of judgment biases that are commonly observed in
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individual decision making under uncertainty are significantly reduced by group
decision-making.1

Given these extensive findings about group vs. individual choice in games, which
cross multiple disciplines, it is perhaps surprising that these observations remain in
the category of “anomalies” for which there is no existing general theoretical model
that can unify these anomalies under a single umbrella. In particular, one hopes
such a model might apply not only to interactive games, but also to non-interactive
environments such as those experiments that have documented similar team effects
with respect to judgment biases and choice under uncertainty. This paper takes a
step in that direction.2

Our theoretical framework of team games combines two general approaches to
modeling strategic behavior and team behavior: non-cooperative game theory and
collective choice theory.3 Non-cooperative game theory provides the basic structure
of a strategic form game, formalized as a set of players, action sets, and payoff
functions, or more generally a game in extensive form, which includes additional
features including moves by nature, order of play, and information sets. The focus
here is exclusively on games played by teams in a pure common value setting, i.e.,
all players on the same team share the same payoff function.4

1Such biases include probability matching (Schulze and Newell, 2016), hindsight bias (Stahlberg
et al., 1995), overconfidence (Sniezek and Henry, 1989), the conjunction fallacy (Charness et al.,
2010), forecasting errors (Blinder and Morgan, 2005), and inefficient portfolio selection (Rockenbach
et al., 2007).

2Charness and Sutter (2012) and others have offered some qualitative conjectures about factors
that might play a role in the differences between group and individual decision making. For example,
perhaps group dynamics lead to more competitive attitudes among the members, due to a sense of
group membership. Or perhaps groups are better at assessing the incentives of their opponents; or
groups follow the lead of the most rational member (“truth wins"). Of these conjectures, our model
is closest to the last one, in the sense that the aggregation process of the diverse opinions can produce
better decisions if there is a grain of truth underlying those opinions. However, this would depend
on the collective decision-making procedures.

3There is also a more distant connection with the economic theory of teams. See Marschak and
Radner (1972), although the focus there is on other issues, such as communication costs, with no
strategic interaction between different teams.

4The assumption of common values is motivated to a large extent by the many experimental
studies of games played by teams of players, where all players on the same team receive exactly
the same payoff. Given the extensive empirical findings in these pure common value settings, it
seems like the natural starting point for developing a team theory of games. In principle, this
could be extended to allow for heterogeneous preferences among the members of the same team, for
example diverse social preferences. It should be clear that the focus here is not on applications where
individual members of a group engage in costly private investments of different amounts for the
benefit of some common outcome for the group, as for example in partnership games, voter turnout
games, or more generally in public good contribution games where free riding plays a key role.
Those settings already have their own extensive theoretical and empirical/experimental literatures.



37

Collective choice theory provides an established theoretical structure to model the
effect of different procedures or rules according to which a group of individuals
produces a group decision. If all members of the team have perfectly rational ex-
pectations about the equilibrium expected payoffs in the game, then they could all
agree unanimously on an optimal action choice, and the collective choice problem
would be trivial. For this reason, our approach relaxes the usual assumption of
perfectly rational expectations about the expected payoffs of actions. Instead, indi-
vidual members’ expectations about the payoff of each available action to the team
are correct on average, but subject to unbiased errors, so that members of the same
team will generally have different expectations about the payoff of each available
action, which one can view as opinions, but on average these expectations are the
same for all members and equal the true (equilibrium) expected payoffs of each
action.5

Thus, the aggregation problem within a team arises because different members of
the team have different opinions about the expected payoffs of the available actions,
where these different opinions take the form of individual estimates of the expected
payoff of each possible action. The collective choice rule is modeled abstractly as a
function mapping a profile of team members’ opinions (i.e., estimates) into a team
action choice. Because the individual estimates are stochastic, this means that the
action choices by a team will not be deterministic, but will be “as if" mixed strategies,
with the distribution of a team’s effective mixed strategy a product of both the error
distribution of the individual team members’ estimates and the collective choice rule
that transforms these estimates into a team action choice. The equilibrium restriction
is that individuals have rational expectations on average, given the mixed strategy
profile of all the other teams, which results from aggregation of their members’
diverse estimates via some collective choice rule for each of the other teams.

Even though the collective choice rules are modeled abstractly, many of these
collective choice rules correspond to voting rules or social choice procedures that
are familiar. For example, if a team has exactly two possible actions, then the
majority rule would correspond to a collective choice rule in which the team’s
action choice is the one for which a majority of members estimate to have the
higher expected payoff (with some tie-breaking rule in case of an even-number of

5These errors could alternatively be interpreted as idiosyncratic additive payoff disturbances, as
in quantal response equilibrium. In fact, if each team has only one member, the team equilibrium
of the game will be a quantal response equilibrium (McKelvey and Palfrey, 1995), (McKelvey and
Palfrey, 1996), (McKelvey and Palfrey, 1998), because there is no collective choice problem. That
correspondence generally breaks down for teams with more than one member.
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members). With more than two actions, this could be extended naturally to plurality
rule. Weighted voting would give certain member estimates more weight than others.
At the extreme, a dictatorial rule would specify a particular team member, and the
team action choice would be the one that is best in the opinion of only that team
member. A Borda rule would add up the individual opinion ordinal ranks of each
action and choose the one with the highest average ranking.

Many other collective choice rules that are included in our formulation do not have an
obvious natural analog in social choice or voting theory. Various choice procedures
involving direct communication between team members could be encoded in a
collective choice rule. For example, an average rule would average the members’
announced estimates of each action’s expected payoff and choose the action with
the highest average opinion. Thus, the notion of collective choice rules includes all
familiar ordinal-based rules, but is broader in the sense that it includes rules that
can depend on the cardinal values of the estimates as well.

The existing literature on games played by teams of players is extensive and growing,
and essentially all focused on experimental investigations of differences between the
choice behavior of teams and individuals, where - as in the theory presented here -
team choices are determined by an exogenously specified collective choice rule and
all members of the same team receive identical payoffs. There are two identifiable
strands depending on whether the experimental task was a multi-player game (such
as the prisoners dilemma), or a single-player decision problem (such as a lottery
choice task or the dictator game). There are far too many papers to describe them
all here, and the interested reader should consult the surveys of experimental studies
of groups vs. individuals by Charness and Sutter (2012) and Kugler et al. (2012)
mentioned earlier.

The focus here is on the experimental studies of games rather than single-agent
decision tasks, although we note that the broad finding in both classes of studies
is that group decision making conforms more closely to economically rational
behavior than individual decision making. The range of games studied to date
is quite broad. The earliest studies were conducted by social psychologists who
were interested in examining alternative hypotheses about social dynamics, based
on psychological concepts such as social identity, shared self-interest, greed, and
schema-based distrust (fear that the other team will defect). The consistent findings
in those studies is that teams defect more frequently than individuals.6 Bornstein

6The experimental social psychology literature on the subject is extensive. See, for example,



39

and Yaniv (1998) find that teams are more rational than individuals in the ultimatum
game, in the sense that proposers offer less and responders accept less. Elbittar
et al. (2011) study several different voting rules in ultimatum bargaining between
groups, with less clear results, but also report that proposers learn with experience
to offer less. Bornstein et al. (2004) find that teams "take" earlier than individuals
in centipede games. In trust games, Kugler et al. (2007), Cox (2002), and Song
(2008) find that trustors give less and trustees return less. Cooper and Kagel (2005)
find that teams play more strategically than individuals in a limit-pricing signaling
game. Charness and Jackson (2007) compare two different voting rules for team
choice in a network-formation game that is similar to the stag-hunt coordination
game. They report a highly significant effect of the voting rule. Sheremeta and
Zhang (2010) observe 25% lower bids by teams than individuals in Tullock contests,
where individuals bid significantly above the Nash equilibrium. A similar finding
is reported in Morone et al. (2019) for all pay auctions. Group bidding behavior
has also been investigated in auctions (Cox and Hayne (2006), Sutter et al. (2009)).
Most studies compare the behavior of individuals with the behavior of teams of 2
or 3 members. Variations in team size are not usually considered. An exception
is Sutter (2005) in which an individual, a team with two members, and a team
with four members play a beauty-contest game for four rounds. He finds that the
behavior of 4-member teams is closer to the Nash equilibrium action, while there is
no significant difference between individuals and 2-member teams.

We are aware of only two other comparable theoretical models of team behavior in
games. Duggan (2001) takes the opposite approach to the present paper, by assuming
that members of the team share common and correct beliefs about the distribution
of actions of the other teams, but have different fixed (i.e., non-stochastic) payoff
functions. The team action is assumed to be the core of a voting rule. With this
approach, existence of team equilibrium typically fails because of non-existence of
a core for many voting rules in many environments. Cason et al. (2019) proposes
a model specifically for the prisoner’s dilemma game that incorporates homoge-
neous group-contingent inequity-averse preferences and common/correct beliefs.
The team decision is determined by a symmetric quantal response equilibrium of
the within-team majority-rule voting game, assuming all members have identical
inequity averse preferences. In their model, voting behavior in the team decision
Insko et al. (1988) and several other studies by Insko and various coauthors. This literature refers
to this difference between teams and individuals as a “discontinuity effect". Wildschut and Insko
(2007) provide a survey of much of this literature in the context of various explanations that have
been proposed.
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process becomes more random as team size increases which can lead to behavior
further from Nash equilibrium, in contrast to the experimental findings cited above,
and in contrast to the results in this paper.

We first develop the formal theoretical structure of finite team games in strategic
form, and provide a proof of the general existence of team equilibrium. In Section
3, the effects of changing team sizes on team equilibrium are illustrated with three
examples with majority rule in 2× 2 games. These effects can be rather unintuitive:
while these examples illustrate how majority rule converges to Nash equilibrium with
large teams, they also show that convergence is not necessarily monotone in team
size; i.e., larger teams can lead to team equilibria further from Nash equilibrium.
Furthermore, in mixed strategy equilibrium, individual voting probabilities within
a team can be very different from the team mixed strategy equilibrium; in fact,
if the Nash equilibrium is mixed, then individual voting probabilities converge to
one-half, while the team equilibrium converges to the Nash equilibrium. Section
4 generalizes the finding in the examples in Section 3 that team equilibrium with
large teams converges to Nash equilibrium under majority rule in 2 × 2 games.
We prove that this Nash convergence property holds in all finite 𝑛-person games if
the collective choice rules used by each team is a scoring rule. Section 5 shows
that under general conditions on collective choice rules, team choice behavior will
satisfy two different kinds of stochastic rationality for all finite 𝑛-person games:
payoff monotonicity, where the probability a team chooses a particular action is
increasing in its equilibrium expected payoff; and rank dependence, where a team’s
choice probabilities will always be ordered by the expected payoffs of the actions.
Section 6 generalizes the framework to extensive form games, establishes existence,
and proves that the results about stochastic rationality and Nash convergence extend
to arbitrary extensive form team games. In fact, every convergent sequence of team
equilibrium as teams grow large necessarily converges to a sequential equilibrium of
the game. Team equilibrium in extensive form games are illustrated in Section 7, with
a sequential prisoner’s dilemma game and the four-move centipede game. Section
8 discusses the results of the paper and points to some possible generalizations and
extensions of the framework.

2.2 Team Games in Strategic Form
A team game is defined as follows. Let T = {1, ..., 𝑡, ..., 𝑇} be a collection of teams,
where 𝑡 = {𝑖𝑡1, ..., 𝑖

𝑡
𝑗
, ..., 𝑖𝑡

𝑛𝑡
}, where 𝑖𝑡

𝑗
denotes member 𝑗 of team 𝑡, and denote the

team size profile by 𝑛 = (𝑛1, ..., 𝑛𝑇 ). Each team has a set of available actions,
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𝐴𝑡 = {𝑎𝑡1, ..., 𝑎
𝑡
𝐾 𝑡 } and the set of action profiles is denoted 𝐴 = 𝐴1 × ... × 𝐴𝑇 . The

payoff function of the game for team 𝑡 is given by 𝑢𝑡 : 𝐴 → ℜ. Given an action
profile 𝑎, all members of team 𝑡 receive the payoff 𝑢𝑡 (𝑎). A mixed strategy for team
𝑡, 𝛼𝑡 , is a probability distribution over 𝐴𝑡 , and a mixed strategy profile is denoted
by 𝛼. We denote the expected payoff to team 𝑡 from using action 𝑎𝑡

𝑘
, given a mixed

strategy profile of the other teams, by𝑈𝑡
𝑘
(𝛼) = ∑

𝑎−𝑡∈𝐴−𝑡

[∏
𝑡′≠𝑡

𝛼𝑡
′ (𝑎𝑡′)

]
𝑢𝑡 (𝑎𝑡

𝑘
, 𝑎−𝑡). For

each 𝑡, given 𝛼, each member 𝑖𝑡
𝑗
observes an estimate of𝑈𝑡

𝑘
(𝛼) equal to true expected

payoff plus an estimation error term. Denote this estimate by 𝑈̂𝑡
𝑖𝑘

= 𝑈𝑡
𝑘
(𝛼) + 𝜀𝑡

𝑖𝑘
,

where the dependence of 𝑈𝑡
𝑖𝑘

on 𝛼 is understood.7 We call 𝑈̂𝑡
𝑖
= (𝑈̂𝑡

𝑖1, ..., 𝑈̂
𝑡
𝑖𝐾 𝑡 ) 𝑖’s

estimated expected payoffs, and 𝑈̂𝑡 = (𝑈̂𝑡1, ..., 𝑈̂
𝑡
𝑛𝑡
) is the profile of member estimated

expected payoffs in team 𝑡. The estimation errors for members of team 𝑡, {𝜀𝑡
𝑖𝑘
},

are assumed to be i.i.d. draws from a commonly known probability distribution 𝐹 𝑡 ,
which is assumed to have a continuous density function that is strictly positive on
the real line. We also assume the distribution of estimation errors are independent
across teams, and allow different teams to have different distributions. Denote
any such profile of estimation error distributions, 𝐹 = (𝐹1, ..., 𝐹𝑇 ), admissible. A
team collective choice rule, 𝐶𝑡 , is a correspondence that maps profiles of estimated
expected payoffs in team 𝑡 into a nonempty subset of elements of 𝐴𝑡 . That is,
𝐶𝑡 : ℜ𝑛𝑡𝐾 𝑡 → A𝑡 , where A𝑡 is the set of nonempty subsets of 𝐴𝑡 . Thus, for any
𝛼 and 𝜀𝑡 , 𝐶𝑡 (𝑈̂𝑡) ∈ A𝑡 . Different teams could be using different collective choice
rules, and denote 𝐶 = (𝐶1, ..., 𝐶𝑇 ) the profile of collective choice rules.

For any strategic form game 𝐺 = [T, 𝐴, 𝑢], and for any admissible 𝐹 and profile of
team choice rules 𝐶, call Γ = [T, 𝐴, 𝑛, 𝑢, 𝐹, 𝐶] a team game in strategic form. We
assume that team 𝑡 chooses randomly over𝐶𝑡 (𝑈̂𝑡) when it is multivalued, according
to the uniform distribution.8 That is, the probability team 𝑡 chooses 𝑎𝑡

𝑘
at 𝑈̂𝑡 (𝛼) is

given by the function 𝑔𝑡
𝑘

defined as:𝑔𝐶
𝑡

𝑘 (𝑈̂𝑡) = 1
|𝐶𝑡 (𝑈̂𝑡) |

if 𝑎𝑡𝑘 ∈ 𝐶
𝑡 (𝑈̂𝑡) (2.1)

= 0 otherwise

An example of a team choice rule is the average rule, which mixes uniformly over
the actions with the highest average estimated payoff. That is, let 𝑈̂

𝑡

𝑘 = 1
𝑛𝑡

∑
𝑖∈𝑇
𝑈̂𝑡
𝑖𝑘

7In some instances later we will write out the dependence on 𝛼 explicitly to avoid ambiguity.
8The assumption that ties are broken fairly is made for convenience to reduce notation and to

avoid artificially creating a source of bias into all collective choice rules. Ties could be broken by
other means, for example by choosing the lowest index element of 𝐶𝑡 (𝑈̂𝑡 ). It is not essential to the
results in the paper, except for Section 5.2 and Theorem 8, where neutrality of 𝐶𝑡 is assumed.
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and define 𝐶𝑡𝑎𝑣𝑒 (𝑈̂𝑡) = {𝑎𝑡
𝑘
∈ 𝐴𝑡 |𝑈̂

𝑡

𝑘 ≥ 𝑈̂
𝑡

𝑙 for all 𝑙 ≠ 𝑘} to be the set of actions

that maximize 𝑈̂
𝑡

at given values of 𝛼−𝑡 and 𝜀𝑡 . This implies a team mixed strategy,
𝑔𝑎𝑣𝑒, defined by:

𝑔𝑎𝑣𝑒𝑘 (𝑈̂𝑡) = 1
|𝐶𝑡𝑎𝑣𝑒 (𝑈̂𝑡) |

if 𝑎𝑡𝑘 ∈ 𝐶
𝑡
𝑎𝑣𝑒 (𝑈̂𝑡)

= 0 otherwise

Another example is plurality rule, which chooses the action for which the greatest
number of team members estimate to have to highest payoff. That is, define𝑉 𝑡

𝑘
(𝑈̂𝑡) =

#{𝑖 ∈ 𝑡 |𝑈̂𝑡
𝑖𝑘

≥ 𝑈̂𝑡
𝑖𝑙

for all 𝑙 ≠ 𝑘} and then 𝐶𝑡
𝑝𝑙
(𝑈̂𝑡) = {𝑎𝑡

𝑘
∈ 𝐴𝑡 |𝑉 𝑡

𝑘
(𝑈̂𝑡) ≥ 𝑉 𝑡

𝑘 ′ (𝑈̂
𝑡) for

all 𝑘′ ≠ 𝑘}. Then 𝑔𝑝𝑙 is defined by:𝑔
𝑝𝑙

𝑘
(𝑈̂𝑡) = 1

|𝐶𝑡
𝑝𝑙
(𝑈̂𝑡) |

if 𝑎𝑡𝑘 ∈ 𝐶
𝑡
𝑝𝑙 (𝑈̂

𝑡)

= 0 otherwise

Team response functions and team equilibrium
It is important to note that the team choices are generally stochastic (unless 𝐶 is a
constant function), and for any given distribution of other teams’ action choices, the
distribution of the mixed strategy by team 𝑡 is inherited from the estimation error
distribution via a team collective choice rule. It is this distribution of each team’s
choices under their team collective choice rule that is the object to which we ascribe
equilibrium properties.

Given a team game Γ = [T, 𝐴, 𝑛, 𝑢, 𝐹, 𝐶], we can define a team response function
for team t, 𝑃𝐶𝑡 : ℜ𝐾 𝑡 → Δ𝐴𝑡 , a function that maps profiles of expected utilities for
team actions to a team distribution over actions by taking an expectation of 𝑔𝐶𝑡 over
all possible realizations of 𝜖 𝑡 :

𝑃𝐶
𝑡

𝑘 (𝑈𝑡 (𝛼)) =
∫
𝜖 𝑡
𝑔𝐶

𝑡

𝑘 (𝑈̂𝑡 (𝛼))𝑑𝐹 𝑡 (𝜖 𝑡) (2.2)

where 𝑔𝐶𝑡

𝑘
(𝑈̂𝑡) is defined as in equation (2.1). An equilibrium of a team game is a

fixed point of 𝑃 ◦𝑈.
Definition 1. A team equilibrium of the team game Γ = [T, 𝐴, 𝑛, 𝑢, 𝐹, 𝐶] is a mixed
strategy profile 𝛼∗ = (𝛼∗1, ..., 𝛼∗𝑇 ) such that, for every 𝑡 and every 𝑘 = 1, ..., 𝐾 𝑡 ,
𝛼∗𝑡
𝑘
= 𝑃𝐶

𝑡

𝑘
(𝑈𝑡 (𝛼∗)).

Theorem 1. For every Γ a team equilibrium exists.

Proof. This follows in a straightforward way. With the admissibility assumptions
on 𝐹, the integral on the right hand side of equation (2.2) is well-defined for all
admissible 𝐹 and 𝑃𝐶𝑡

𝑘
is continuous in 𝛼. Brouwer’s fixed point theorem then implies

existence. □
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It is one thing to define aggregation rules in the abstract, but quite another to model
how such an aggregation rule might be implemented within a team. In a sense, team
games nest a game within a game, but the definition above models the game within a
game in reduced form, via the function 𝑔𝐶𝑡 . Different communication mechanisms
might correspond to different collective choice rules. For example, one possibility
for the average rule would be a mechanism in which each player announces 𝑈̂𝑡

𝑖
to the

other members of the team, and the team just takes the average, and then chooses the
action that maximizes the average announced estimated expected payoff. Because it
is a common value problem for the team, there is an implicit assumption of sincere
reporting, and the team is choosing optimally. One might also conjecture that free
form communication within a group would lead to group choice approximating the
average rule, with a dynamic similar to what has been theoretically modeled as
group consensus formation (McKelvey and Page (1986), and others).9

More directly, the group might implement a collective choice rule such as plurality,
qualified majority, or Borda count, by voting. The next section illustrates team
equilibrium in 2 × 2 games under simple majority and qualified majority rule.
The examples illustrate three different features of team equilibrium: (a) limiting
properties of team equilibrium as teams become large; (b) team equilibrium with
a large team playing against a small team; and (c) team equilibrium when teams
use a supermajority collective choice rule. Most of the focus of the examples is on
the first of these features, i.e., how does team equilibrium change as the team sizes
increase?

The examples illustrate how an increase in team sizes can be understood conceptually
in terms of two different effects. One effect, which is especially intuitive in 2 × 2
games where teams use majority rule, is the consensus effect. In this case, suppose,
for some fixed 𝛼, 𝑈𝑡1(𝛼) > 𝑈𝑡2(𝛼). Then for any admissible 𝐹, the probability
that 𝑈𝑡

𝑖1(𝛼) > 𝑈𝑡
𝑖2(𝛼) for an individual member of team 𝑡, which we denote by

𝑝𝑡1(𝛼) is greater than 1
2 . Thus, fixing 𝛼−𝑡 , under majority rule, 𝑃𝐶𝑡1 (𝑈𝑡 (𝛼), 𝑛) =∑𝑛

𝑘= 𝑛+1
2

(𝑛
𝑘

)
(𝑝𝑡1(𝛼))

𝑘 (1− 𝑝𝑡1(𝛼))
𝑛−𝑘 > 1

2 and increases in 𝑛monotonically, eventually
converging to 1, because an increase in team size increases the likelihood of a
majority consensus for 𝑎𝑡1, and this consensus is guaranteed in the limit as 𝑛 increases
without bound.10

9The formal connection between the average rule and the consensus formation literature is not
direct, as that approach assumes the members of the group share a common prior. Our model of
estimation errors does not specify a common prior distribution of expected payoffs from actions.
Rather individual beliefs are modeled simply as unbiased point estimates of an unknown true value.

10If𝑈𝑡
1 (𝛼) = 𝑈

𝑡
2 (𝛼) then 𝑝𝑡1 (𝛼) is exactly equal to 1

2 and 𝑃𝐶𝑡
1 (𝑈𝑡 (𝛼), 𝑛) = 1

2 for all 𝑛, so there is
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Thus, for any fixed strategy profile 𝛼, as 𝑛 grows for a team, the estimated expected
payoffs of different actions by individual members of a team converges on average
to the "true" expected payoffs of the actions. Similarly, the individual members’
ranking of an action’s estimated expected payoff converges to it’s true ranking, given
𝛼. Thus, for many rules, such as plurality rule, scoring rules, and the average rule, the
collective choice of large teams will reflect a consensus about the relative expected
payoffs of the various actions, as if all members shared common and correct beliefs
about𝑈𝑡 (𝛼). In the case of majority rule, this is simply a consensus about whether
𝑈𝑡1(𝛼) is greater than, less than, or equal to𝑈𝑡2(𝛼).

Of course the equilibrium analysis is more complicated than this. One cannot take
𝛼 as fixed when 𝑛 changes, because of the second effect, the equilibrium effect. As
𝑛 changes, the team equilibrium 𝛼∗ changes, so we denote its dependence on 𝑛 here
by 𝛼∗𝑛. Even in the case where |𝐴𝑡 | = 2, it will typically be the case that for 𝑛 ≠ 𝑛′,
𝑈𝑡1(𝛼

∗
𝑛) −𝑈𝑡2(𝛼

∗
𝑛) ≠ 𝑈𝑡1(𝛼

∗
𝑛′) −𝑈𝑡2(𝛼

∗
𝑛′), so under majority rule 𝑝∗𝑡1 (𝛼∗𝑛) ≠ 𝑝∗𝑡1 (𝛼∗

𝑛′),
which feeds back and affects each team’s mixed strategy response. Thus, while the
consensus effect only looks at how changes in one team’s size affect the actions of
that team, fixing the actions of the other teams, the equilibrium effect takes into
account that as team size changes (even for a single team) the actions frequencies of
all teams will typically change. Because it is an indirect rather than a direct effect,
the equilibrium effect can produce some unintuitive consequences for some games
and some voting rules, and it’s possible that the equilibrium effect can dampen or
even work in the opposite direction of the consensus effect.

What ultimately happens in the limit of team equilibrium with large teams depends
on the relative strength of these two effects, which will typically be game-dependent
and rule-dependent. In Section 4, we show that these two effects interact in a way
such that, for a broad class of collective choice rules, in all games every limit point
of team equilibria as teams grow without bound is a Nash equilibrium of the game,
which we call Nash Convergence. Nash convergence can fail to hold if the collective
choice rules are non-neutral, i.e., biased in favor or against certain actions. The next
section provides an example illustrating such a failure of Nash convergence with
a non-neutral rule, where a sequence of team equilibria in the prisoner’s dilemma
game converges to a mixed strategy in the limit.11

no consensus effect.
11Nash convergence also generally fails with large teams if one of the team’s collective choice

rule is dictatorial. This is shown in one of the examples below. A related question is whether the
limit points of team equilibria are restricted by familiar refinements of Nash equilibrium, such as
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The interaction of these two effects can also lead to other surprising properties of
team equilibrium. For example, because the equilibrium effect can work in the
opposite direction of the consensus effect, with relatively small team sizes, the
effect of increasing team size can drive the team equilibrium away from the Nash
equilibrium of the underlying normal form game. This can even arise in games that
are strictly dominance solvable with a unique rationalizable strategy profile. In 2×2
games where team equilibria with majority rule converge to a mixed strategy Nash
equilibrium, the consensus effect essentially disappears with large teams, because
the individual voting probabilities converge to 1

2 as the expected payoffs of the
two actions approach equality. These and other phenomena that can arise in team
equilibrium are illustrated with examples in the next section.

2.3 Team Size Effects in 2 × 2 Games
The model is easiest to illustrate in the simple case of 2 × 2 games with majority
rule as the collective choice rule for each team.. That is, the team choice is the
action for which a majority of team members estimate to have a higher expected
payoff, with ties broken randomly. Let 𝑇 = {1, 2}, 𝐴𝑡 = {𝑎𝑡1, 𝑎

𝑡
2}, and the set of

action profiles is 𝐴 = 𝐴1× 𝐴2. Denote by 𝛼𝑡 the probability that team 𝑡 chooses
action 𝑎𝑡1. Then member 𝑖 of team 𝑡 estimates the expected payoff if team 𝑡 chooses
action 𝑎𝑡

𝑘
when team −𝑡 uses a mixed strategy 𝛼−𝑡 by 𝑈𝑡

𝑖𝑘
= 𝑈𝑡

𝑘
(𝛼) + 𝜀𝑡

𝑖𝑘
where

𝑈𝑡
𝑘
(𝛼) = 𝛼−𝑡𝑢𝑡 (𝑎𝑡

𝑘
, 𝑎−𝑡1 ) + (1 − 𝛼−𝑡)𝑢𝑡 (𝑎𝑡

𝑘
, 𝑎−𝑡2 ). Because there are only two actions

for each team and majority rule depends only on each member’s ranking of the
estimated payoff of each action, the notation can be simplified by letting 𝜀𝑡

𝑖
= 𝜀𝑡

𝑖1−𝜀
𝑡
𝑖2

denote the difference in estimation errors for individual 𝑖 on team 𝑡 and denote by
𝐻𝑡 the distribution of the difference of these estimation errors, 𝜀𝑡

𝑖
.12 Given that

each of the payoff estimation errors, 𝜀𝑡
𝑖1 and 𝜀𝑡

𝑖2, are distributed according to an
admissible error distribution, 𝐻𝑡 is also admissible and symmetric around 0. That
is, for all 𝑧 ∈ ℜ, 𝐻𝑡 (𝑧) = 1 − 𝐻𝑡 (−𝑧), implying 𝐻 (0) = 1

2 . Thus, we can write
Δ𝑈𝑡

𝑖
(𝛼) ≡ 𝑈𝑡

𝑖1(𝛼) −𝑈
𝑡
𝑖2(𝛼) = 𝑈

𝑡
1(𝛼) −𝑈

𝑡
2(𝛼) + 𝜀

𝑡
𝑖
.

trembling-hand perfection and proper equilibrium. The answer is negative. In particular, there are
examples of simple games with limit points of team equilibria under plurality rule that are not perfect
(and hence not proper). The refinement implied by limit points of team equilibrium seems more
closely related to approachability in the sense of Harsanyi (1973).

12Some collective choice rules depend on more than just the profile of estimated payoff differences.
An example of such a collective choice rule is the maximin rule:

𝐶𝑡
max min(𝑈̂

𝑡 ) = {𝑎𝑡𝑘 ∈ 𝐴𝑡 |𝑀𝑖𝑛𝑖{𝑈𝑡
𝑖𝑘} ≥ 𝑀𝑖𝑛𝑖{𝑈𝑡

𝑖𝑙} ∀𝑙 ≠ 𝑘}

i.e., select the action that has the highest minimum estimated expected payoff.
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A team choice rule, 𝐶𝑡 , maps each profile of individual estimated expected payoff
error, Δ𝑈𝑡 (𝛼) = (Δ𝑈𝑡1(𝛼), ...,Δ𝑈

𝑡
𝑛𝑡
(𝛼)) into the nonempty subsets of 𝐴𝑡 , and 𝑔𝑡

𝐶

randomly selects one of these choices with equal probability. We next illustrate
team size effects under majority rule in three different kinds of 2 × 2 games.

The Prisoner’s Dilemma played by teams
Consider the family of PD games displayed in Table 2.1, where the two parameters
𝑥 > 0 and 𝑦 > 0 are, respectively the payoff gain from defecting if the other player
cooperates and the payoff gain from defecting if the other player defects.

Table 2.1: Prisoner’s dilemma game

Column Team (2)
Row Team (1) Cooperate(C) Defect(D)
Cooperate(C) 5, 5 3 − 𝑦, 5 + 𝑥

Defect(D) 5 + 𝑥, 3 − 𝑦 3, 3

Suppose that both teams have 𝑛 (odd) members and the same distribution of esti-
mation error differences, 𝐻, let 𝛼∗𝑛 be a symmetric team equilibrium probability of
either team choosing D in the game, and 𝑝∗𝑛 = Prob(𝑈𝑡

𝐶
(𝛼∗) −𝑈𝑡

𝐷
(𝛼∗) < 𝜖 𝑡

𝐷
− 𝜖 𝑡

𝐶
)

be a symmetric team equilibrium probability that any player votes for action D.
Equilibrium requires the behavior of each team to solve the following equations
simultaneously:

𝛼∗𝑛 =
𝑛∑︁

𝑘= 𝑛+1
2

(
𝑛

𝑘

)
(𝑝∗𝑛)𝑘 (1 − 𝑝∗𝑛)𝑛−𝑘 , 𝑝∗𝑛 = 𝐻 (𝑥 − (𝑥 − 𝑦)𝛼∗𝑛).

If 𝑥 ≠ 𝑦, then 𝑝∗𝑛 will generally depend on 𝑛, so there is an equilibrium effect in
addition to the consensus effect. The equilibrium and consensus effects can go in
opposite directions. For example, if 𝑥 > 𝑦, the effect of increasing 𝑛 is buffered by
the countervailing effect that increasing 𝛼∗𝑛 leads to a decrease in 𝑝∗𝑛. To see this
formally, notice that the equilibrium condition for 𝑝∗𝑛 depends on 𝛼∗𝑛 according to
𝑝∗𝑛 = 𝐻 (𝑥−(𝑥−𝑦)𝛼∗𝑛) which is strictly decreasing in 𝛼∗𝑛 precisely when 𝑥 > 𝑦. Since
(𝑥−(𝑥−𝑦)𝛼𝑛) > 0 for all 𝑥, 𝑦, it is easy to see that as n grows large, lim𝑛→∞(𝛼∗𝑛) = 1
and lim𝑛→∞(𝑝∗𝑛) = 𝐻 (𝑦)

When 𝑥 = 𝑦 the analysis is straightforward and intuitive, because the expected payoff
difference between Defect and Cooperate for either team is𝑈𝑡

𝐷
(𝛼∗𝑛) −𝑈𝑡𝐶 (𝛼

∗
𝑛) = 𝑥 >

0, which does not depend on 𝛼∗𝑛 and hence is independent of 𝑛. In any team
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equilibrium, the probability that any team member votes for D is 𝐻 (𝑥) > 1
2 . Thus,

in this special case, changes in the team equilibrium as 𝑛 increases are entirely due
to the consensus effect.

Team Equilibrium in PD games with different team sizes

Consider the case where 𝑥 > 𝑦, the size of the row team is fixed at 1, and the
size of the column team, 𝑛, is variable.13 In this case, for any 𝑛 the equilibrium
is of the form (𝑞∗𝑛, 𝛼∗𝑛, 𝑝∗𝑛), where 𝑞∗𝑛 denotes the single row team member’s defect
probability, which depends on the of the column team’s defect probability, 𝛼∗𝑛, and
𝑝∗𝑛 denotes a column team member’s probability of defection, which depends on 𝑞∗𝑛.

Thus, the equilibrium conditions are interdependent. Formally an equilibrium solves
the following three equations:

𝑞∗𝑛 = 𝐻 (𝑥+(𝑦−𝑥)𝛼∗𝑛), 𝛼∗𝑛 =
𝑛∑︁

𝑘= 𝑛+1
2

(
𝑛

𝑘

)
(𝑝∗𝑛)𝑘 (1−𝑝∗𝑛)𝑛−𝑘 , 𝑝∗𝑛 = 𝐻 (𝑥+(𝑦−𝑥)𝑞∗𝑛).

Since 𝑥 > 𝑦, as noted above, the row team’s defection probability, 𝑞∗𝑛, and the
column team’s defection probability, 𝛼∗𝑛, move in opposite directions. Similarly,
𝑞∗𝑛 and 𝑝∗𝑛 also move in opposite directions. Because the column team members’
defection probability, 𝑝∗𝑛 is strictly bounded above 0.5, 𝛼∗𝑛 must eventually increase
to 1 as 𝑛 increases without bound, so the consensus effect eventually dominates
the equilibrium effect. Similarly, the row team’s defection probability, 𝑞∗𝑛, must
eventually decrease to a limiting value of 𝐻 (𝑦), and the column team members’
defection probability, 𝑝∗𝑛 eventually increases to a limiting value of 𝐻 (𝑥 + (𝑦 −
𝑥)𝐻 (𝑦)).14

This is illustrated in the left panel of Figure 2.1, which displays the team equilibrium
values, (𝛼∗𝑛, 𝑞∗𝑛, 𝑝∗𝑛), as a function of 𝑛 for 𝑥 = 5, 𝑦 = 2 and𝐻 (𝑧) = 1

1+𝑒−.3𝑧 , for column
team sizes up to 200 (row team size fixed at 1).

Equilibrium with PD games with different voting rules

Even in games as simple as the PD game, the equilibrium effects in team games
can be quite subtle. To illustrate this, we consider the same game as above, except

13This example also serves as an illustration where the two teams use different collective choice
rules, with the row team using a dictatorial rule and the column team using simple majority rule.

14We conjecture that the three equilibrium values, 𝛼∗𝑛, 𝑞∗𝑛, and 𝑝∗𝑛 each converge monotonically.
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(a) Row team size = 1. Column = n. (b) 2/3 voting rule. Team sizes equal.

Figure 2.1: Team equilibrium in PD as a function of n (x=5, y=2).

where the teams are the same size and both teams use a supermajority voting rule:
the team action is to defect if at least 2/3 of the team members favor defection;
otherwise the team cooperates. In this case, the equilibrium conditions for a team
equilibrium are:

𝛼∗𝑛 =
𝑛∑︁

𝑘=⌈ 2𝑛
3 ⌉

(
𝑛

𝑘

)
(𝑝∗𝑛)𝑘 (1 − 𝑝∗𝑛)𝑛−𝑘 , 𝑝∗𝑛 = 𝐻 (𝑥 + (𝑦 − 𝑥)𝛼∗𝑛),

where
⌈2𝑛

3
⌉

denotes the least integer greater than or equal to 2𝑛
3 . For the parameters

used in the left panel of Figure 2.1 (𝑥 = 5, 𝑦 = 2 and 𝐻 (𝑧) = 1
1+𝑒−.3𝑧 ), we get the

surprising result that 𝛼∗𝑛 does not converge to 1. The logic behind this is that if 𝛼∗𝑛
did converge to 1 then in the limit we would have 𝑝∗𝑛 → 𝐻 (𝑦) = 1

1+𝑒−.3𝑦 ≈ 0.65 < 2
3 ,

which (given the 2
3 rule) would imply that 𝛼∗𝑛 → 0, a contradiction. A similar

argument shows that 𝛼∗𝑛 cannot converge to 0 either. For if 𝛼∗𝑛 did converge to 0
then in the limit we would have 𝑝∗𝑛 → 𝐻 (𝑥) = 1

1+𝑒−.3𝑥 ≈ 0.82 > 2
3 , which would

imply that 𝛼∗𝑛 → 1, a contradiction. Hence, in the limit with large 𝑛 a symmetric
team equilibrium must converge to a mixed equilibrium! 15 The only way this can
happen is if 𝑝∗𝑛 → 2

3 . Hence, the limiting equilibrium team probability of defection
is calculated from the second equilibrium condition: 𝑝∗∞ = 2

3 = 𝐻 (𝑥 − (𝑥 − 𝑦)𝛼∗∞),
which gives 𝛼∗∞ ≈ 0.89. The right panel of Figure 2.1 displays the team equilibrium
(𝑝∗𝑛, 𝛼∗𝑛) as a function of 𝑛 for 𝑥 = 5, 𝑦 = 2 and 𝐻 (𝑧) = 1

1+𝑒−.3𝑧 , for column team sizes
up to 200. Convergence is much slower because the limiting team defect strategy is
mixed.

15There are also asymmetric team equilibria that converge to pure strategies in the limit, where
one team defects and the other team cooperates.
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The Weak Prisoner’s Dilemma
We next examine a class of team games where two teams, each of size 𝑛 (odd), play
a variation on the prisoner dilemma game displayed in Table 2.1, which we call the
Weak Prisoner’s Dilemma. While (D,D) is not a dominant strategy equilibrium, D
is strictly dominant for the row player and is the unique solution to the game in two
stages of iterated strict dominance. The column player is best off matching the row
player’s action choice. We characterize the team equilibrium for this class of games
under majority rule. We have three free parameters to the game, which is displayed
in Table 2.2. The first two, 𝑥 and 𝑦, are the same as above, and for this example,
we assume 𝑥 = 𝑦. The third parameter, 𝑧, is the payoff gain the column player gets
from cooperating if the row player cooperates.

Table 2.2: Weak Prisoner’s Dilemma (WPD) game

Column Team (2)
Row Team (1) Cooperate(C) Defect(D)
Cooperate(C) 5, 5 3 − 𝑥, 5 − 𝑧

Defect(D) 5 + 𝑥, 3 − 𝑥 3, 3

Let 𝛼∗𝑛 = (𝛼∗1𝑛 , 𝛼∗2𝑛 ) be the team equilibrium probabilities of choosing D in the weak
prisoner’s dilemma game for row (team 1) and column (team 2). Following similar
steps as in the PD example, we have for the row team:

𝛼∗1𝑛 =

𝑛∑︁
𝑘= 𝑛+1

2

(
𝑛

𝑘

)
(𝑝∗1𝑛 )𝑘 (1 − 𝑝∗1𝑛 )𝑛−𝑘 , 𝑝∗1𝑛 = 𝐻 (𝑥).

For a player on the column team, the probability of voting for D, 𝑝∗2𝑛 , varies with 𝑛,
as it depends directly on 𝛼∗𝑛. So the two equations for the column team are:

𝛼∗2𝑛 =

𝑛∑︁
𝑘= 𝑛+1

2

(
𝑛

𝑘

)
(𝑝∗2𝑛 )𝑘 (1 − 𝑝∗2𝑛 )𝑛−𝑘 , 𝑝∗2𝑛 = 𝐻 (𝛼∗1𝑛 (𝑥 + 𝑧) − 𝑧).

For any values of 𝑛, 𝑥, 𝑧, and 𝐻, a team equilibrium is given by any solution of this
system of four equations.

Figure 2.2 illustrates how the equilibrium voting and team choice probabilities
(𝑝∗1𝑛 , 𝛼∗1𝑛 , 𝑝∗2𝑛 , 𝛼∗2𝑛 ) vary with 𝑛, for the parameters 𝑥 = 1, 𝑧 = 8 and 𝐻 (𝑧) = 1

1+𝑒−.3𝑧

for team sizes up to 200. Notice that for relatively small teams sizes (< 20) the
column team becomes more cooperative as it grows. This results from a combination



50

Figure 2.2: Team equilibrium in Weak Prisoner’s Dilemma.

of the consensus effect (since 𝑝∗2𝑛 < .5) and the equilibrium effect (since 𝛼∗1𝑛 is
increasing).

Asymmetric Matching Pennies Games
We examine a class of simple team games where two teams, each of size 𝑛 (odd),
play a 2 × 2 game with a unique (mixed-strategy) Nash equilibrium, which we refer
to as asymmetric matching pennies (AMP) games. The payoffs are displayed in
table 2.3, where 𝑎 > 𝑐, 𝑏 < 𝑑, 𝑤 < 𝑥, 𝑦 > 𝑧:

Table 2.3: Asymmetric matching pennies game

Column
Row L R
U 𝑎, 𝑤 𝑏, 𝑥

D 𝑐, 𝑦 𝑑, 𝑧

In a team equilibrium 𝛼∗𝑛, for any distribution of estimation errors, 𝐹, the probability
that an individual player on the row team estimates that U is better than D is equal
to: 𝑝∗1𝑛 = 𝐻 (𝑎(1 − 𝛼∗2𝑛 ) + 𝑏𝛼∗2𝑛 − 𝑐(1 − 𝛼∗2𝑛 ) − 𝑑𝛼∗2𝑛 ) (2.3)
The probability that a column team member estimates that R is better than L is equal
to:

𝑝∗2𝑛 = 𝐻 (𝑧(1 − 𝛼∗1𝑛 ) + 𝑥𝛼∗1𝑛 − 𝑦(1 − 𝛼∗1𝑛 ) − 𝑤𝛼∗1𝑛 ) (2.4)

These are the voting probabilities. As in the previous examples, given 𝑝∗1𝑛 and 𝑝∗2𝑛
we can compute 𝛼∗1𝑛 and 𝛼∗2𝑛 , as the probability that at least 𝑛+1

2 members of the



51

(a) x=0.5 (b) x=1.0

(c) x=2.0

Figure 2.3: Team Equilibrium in Asymmetric Matching Pennies.

respective team estimate that U (R) yields a higher expected payoff than D (L).
Hence:

𝛼∗1𝑛 =

𝑛∑︁
𝑘= 𝑛+1

2

(
𝑛

𝑘

)
(𝑝∗1𝑛 )𝑘 (1 − 𝑝∗1𝑛 )𝑛−𝑘 (2.5)

𝛼∗2𝑛 =

𝑛∑︁
𝑘= 𝑛+1

2

(
𝑛

𝑘

)
(𝑝∗2𝑛 )𝑘 (1 − 𝑝∗2𝑛 )𝑛−𝑘 (2.6)

The team equilibrium is obtained by solving equations (2.3), (2.4), (2.5), and (2.6)
simultaneously for 𝑝∗1𝑛 , 𝑝∗2𝑛 , 𝛼∗1𝑛 , and 𝛼∗2𝑛 . The team equilibrium and the equilibrium
individual voting probabilities are displayed in Figure 2.3 for the parameters 𝑤 =

𝑏 = 𝑐 = 𝑧 = 0, 𝑑 = 𝑦 = 1, 𝑎 = 5, 𝑥 = 0.5, 1.0, 2.0, and 𝐻 (𝑧) = 1
1+𝑒−.𝑧 for team sizes

up to size 200.

From these examples, we see that lim𝑛→∞ 𝛼∗𝑛 = ( 𝑦−𝑧
𝑦−𝑧+𝑥−𝑤 ,

𝑎−𝑐
𝑎−𝑐+𝑑−𝑏 ), the unique Nash

equilibrium, in all three cases. As will be proved in Section 4, when teams use
majority rule, convergent sequences of team equilibria must converge to a Nash
equilibria, so this is a general feature of team equilibria of any 2 × 2 game with a
unique mixed strategy equilibrium.

An interesting implication is that in the limit of team equilibria, individual team
members are voting randomly. That is, lim𝑛→∞ 𝑝∗1𝑛 = lim𝑛→∞ 𝑝∗2𝑛 = 1

2 , which is



52

necessarily the case because the expected payoffs of the two strategies are equal
in the Nash equilibrium limit. The argument is similar to the earlier illustration
of a mixed equilibrium in the PD game with a two-thirds voting rule. Suppose
to the contrary that lim𝑛→∞ 𝑝∗1𝑛 > 1

2 . Then lim𝑛→∞ 𝛼∗1𝑛 = 1, implying that the
right hand side of equation 2.4 converges to 𝐻 (𝑥 − 𝑤) > 1

2 because 𝑥 − 𝑤 > 0,
implying lim𝑛→∞ 𝑝∗2𝑛 > 1

2 , so lim𝑛→∞ 𝛼∗2𝑛 = 1. This in turn implies that the right
hand side of equation 2.3 converges to 𝐻 (𝑏 − 𝑑) < 1

2 because 𝑏 − 𝑑 < 0, and
hence lim𝑛→∞ 𝑝∗1𝑛 < 1

2 , a contradiction. A similar contradiction arises if one were
to suppose instead that lim𝑛→∞ 𝑝∗1𝑛 < 1

2 .

In this class of games, the equilibrium effect works in the opposite direction and
thereby dampens the consensus effect, even in the limit. Without the equilibrium
effect, which pushes 𝑝∗𝑛 to exactly 1

2 for both teams, the reinforcement effect by itself
would lead to a pure strategy team actions in the limit. This is illustrated starkly
in the examples shown in Figure 2.3, where for all 𝑛, 𝑝∗𝑡𝑛 > 1

2 for both teams, yet
lim𝑛→∞ 𝛼∗𝑛 ≠ (1, 1).

2.4 Nash convergence
A collective choice rule satisfies the Nash convergence property if, as the size of
all teams increases without bound, every convergent sequence of team equilibria
converges to a Nash equilibrium. In the examples of the previous section, it was the
case that the Nash convergence held if both teams used majority rule and the sizes
of both teams increased without bound. This observation raises the more general
question whether majority rule or 2×2 games are somehow unique in this regard, or
if it is a property shared by a broader class of collective choice rules and a broader
class of games. It is clearly not unique, as it is not difficult to show that the average
rule also has this property. Thus the challenge is to characterize, at least partially, the
class of collective choice rules and game environments with this Nash convergence
property.

We show that all anonymous scoring rules satisfy the Nash convergence property.

Definition 2. An Individual Scoring Function 𝑆𝑡
𝑖

: 𝐴𝑡 ×ℜ𝐾 𝑡 → ℜ𝐾 𝑡 , is a function
defined such that 𝑆𝑡

𝑖𝑘
(𝑈̂𝑡

𝑖
) = 𝑠𝑖𝑚 whenever |{𝑎𝑡

𝑙
∈ 𝐴𝑡 : 𝑈̂𝑡

𝑖𝑙
> 𝑈̂𝑡

𝑖𝑘
}| = 𝑚 − 1, for some

given set of 𝐾 𝑡 scores 𝑠𝑡
𝑖1 ≥ 𝑠𝑡

𝑖2 ≥ ... ≥ 𝑠𝑡
𝑖𝐾 𝑡 ≥ 0 such that 𝑠𝑡

𝑖1 > 𝑠
𝑡
𝑖𝐾 𝑡 .

Definition 3. A team collective choice rule 𝐶𝑡 is an Anonymous Scoring Rule if
there exists a profile of individual scoring functions, (𝑆𝑡1, ...𝑆

𝑡
𝑛𝑡
) with 𝑆𝑡

𝑖
= 𝑆𝑡

𝑗
= 𝜎𝑡
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for all 𝑖, 𝑗 ∈ 𝑡, such that alternative 𝑎𝑡
𝑘

is chosen at 𝑈̂𝑡 if and only if
∑𝑛𝑡

𝑖=1 𝜎
𝑡
𝑘
(𝑈̂𝑡

𝑖
) ≥∑𝑛𝑡

𝑖=1 𝜎
𝑡
𝑙
(𝑈̂𝑡

𝑖
) for all 𝑙 ≠ 𝑘 .

The individual scoring functions depend only on a team member’s ordinal estimated
expected utilities of the alternatives, and each alternative is awarded a score that is
weakly increasing in its estimated expected utility rank by that team member. The
individual scores for each team member are then summed to arrive at a total score
for the team, and the alternatives with the highest total score are chosen. In an
anonymous scoring rule, all members of the team have the same individual scoring
function. Examples of common anonymous scoring rules include: plurality rule,
where 𝑠𝑡

𝑖1 = 1 and 𝑠𝑡
𝑖𝑚

= 0 for all 𝑖 ∈ 𝑡 and for all 𝑚 > 1, and Borda count, where
𝑠𝑖𝑚 = 𝐾 𝑡−𝑚 for all 𝑖 ∈ 𝑡 and for all𝑚.We note that in our framework, every member
of every team almost always has a strict order over the 𝐾 𝑡 actions (i.e., 𝑈̂𝑡

𝑖𝑙
≠ 𝑈̂𝑡

𝑖𝑘
for

all 𝑙, 𝑘, 𝑡, 𝑖 with probability one), so ties in an individual member’s ordinal rankings
are irrelevant.

Theorem 2. Consider an infinite sequence of team games, {Γ𝑚}∞𝑚=1 such that (1)
𝐴𝑡𝑚 = 𝐴𝑡

𝑚′ = 𝐴𝑡 for all 𝑡, 𝑚, 𝑚′; (2) 𝑢𝑡𝑚 = 𝑢𝑡
𝑚′ = 𝑢

𝑡 ∀𝑡, 𝑚, 𝑚′; (3) 𝑛𝑡
𝑚+1 > 𝑛

𝑡
𝑚 for all

𝑚, 𝑡; and (4) 𝐶𝑡𝑚 = 𝜎, an anonymous scoring rule, for all 𝑚, 𝑡. Let {𝛼𝑚}∞𝑚=1 be a
convergent sequence of team equilibria where lim𝑚→∞ 𝛼𝑚 = 𝛼∗. Then 𝛼∗ is a Nash
equilibrium of the strategic form game [T, 𝐴, 𝑢].

Proof. Suppose 𝛼∗ is not a Nash equilibrium. Then there is some team 𝑡 and some
pair of actions, 𝑎𝑡

𝑘
, 𝑎𝑡

𝑙
such that 𝑈𝑡

𝑘
(𝛼∗) > 𝑈𝑡

𝑙
(𝛼∗), but 𝛼𝑡∗

𝑙
= 𝜉 > 0. Since 𝐶𝑡 is an

anonymous scoring rule, 𝜎, we know that for all 𝑡, for all 𝑛𝑡 , for all 𝛼,and for all
𝑎𝑡
𝑘
∈ 𝐴𝑡 , 𝑎𝑡

𝑘
∈ 𝐶𝑡 (𝑈̂𝑡 (𝛼)) if and only if

𝑛𝑡∑︁
𝑖=1

𝜎𝑘 (𝑈̂𝑡𝑖 (𝛼)) ≥
𝑛𝑡∑︁
𝑖=1

𝜎𝑙 (𝑈̂𝑡𝑖 (𝛼)) for all 𝑙 ≠ 𝑘

⇔
𝜎𝑡𝑘𝑛𝑡 (𝑈̂

𝑡 (𝛼)) ≥ 𝜎𝑡𝑙𝑛𝑡 (𝑈̂
𝑡 (𝛼)) for all 𝑙 ≠ 𝑘.

where 𝜎𝑡𝑘𝑛𝑡 (𝑈̂𝑡 (𝛼)) denotes the average score of 𝑎𝑡
𝑘

among the 𝑛𝑡 members of 𝑡 at
𝑈̂𝑡 (𝛼). That is, the score of 𝑎𝑡

𝑘
is maximal if and only if the average individual score

of 𝑎𝑡
𝑘

is maximal. If𝑈𝑡
𝑘
(𝛼) > 𝑈𝑡

𝑙
(𝛼) then 𝜎𝑘 stochastically dominates 𝜎𝑙 , and hence

their respective expected scores are strictly ordered. That is, 𝐸{𝜎𝑘 (𝑈̂𝑡𝑖 (𝛼))} >
𝐸{𝜎𝑙 (𝑈̂𝑡𝑖 (𝛼))}, where

𝐸{𝜎𝑘 (𝑈̂𝑡𝑖 (𝛼))} =
∫

𝜎𝑘 (𝑈𝑡 (𝛼) + 𝜖 𝑡𝑖 )𝑑𝐹 𝑡 (𝜖 𝑡𝑖 )
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Hence, at the limiting strategy profile,𝛼∗, we have𝐸{𝜎𝑘 (𝑈̂𝑡𝑖 (𝛼∗))} > 𝐸{𝜎𝑙 (𝑈̂𝑡𝑖 (𝛼∗))}.
Since𝑈𝑡 (𝛼𝑚) → 𝑈𝑡 (𝛼∗) and𝐸{𝜎} is continuous in𝛼,𝜎𝑡

𝑘𝑛𝑡𝑚
(𝑈̂𝑡 (𝛼𝑚)) → 𝐸{𝜎𝑡

𝑘
(𝑈̂𝑡 (𝛼∗))}

and 𝜎𝑡
𝑙𝑛𝑡𝑚

(𝑈̂𝑡 (𝛼𝑚)) → 𝐸{𝜎𝑡
𝑙
(𝑈̂𝑡 (𝛼∗))} in probability as 𝑚 → ∞. Therefore,

𝐸{𝜎𝑘 (𝑈̂𝑡𝑖 (𝛼∗))} > 𝐸{𝜎𝑙 (𝑈̂𝑡𝑖 (𝛼∗))} implies ∃ 𝑚 such that Pr{𝜎𝑡
𝑘𝑛𝑡𝑚

(𝑈̂𝑡 (𝛼𝑚)) ≤
𝜎𝑡
𝑙𝑛𝑡𝑚

(𝑈̂𝑡 (𝛼𝑚))} < 𝜉

2 ∀𝑚 > 𝑚. This leads to a contradiction to the initial hypothesis
that 𝛼𝑡∗

𝑙
= 𝜉 > 0 since Pr{𝜎𝑡

𝑘𝑛𝑡𝑚
(𝑈̂𝑡 (𝛼𝑚)) ≤ 𝜎𝑡

𝑙𝑛𝑡𝑚
(𝑈̂𝑡 (𝛼𝑚))} < 𝜉

2 ∀𝑚 > 𝑚, implies
that 𝛼𝑡

𝑙𝑛𝑡𝑚
<

𝜉

2 ∀𝑚 > 𝑚 and hence 𝛼𝑡∗
𝑙
< 𝜉. □

It is useful to clarify the implications and generality of the result with a few com-
ments. First, the theorem does not imply that team equilibrium with larger teams
is necessarily closer to Nash equilibrium than equilibrium with smaller teams. It
is an asymptotic result for large teams. Examples in the last section show that the
convergence can be non-monotonic even in very simple games.

Second, Nash convergence is an upper hemicontinuity property of the team equilib-
rium correspondence, but that correspondence is not generally lower hemicontinu-
ous. Some Nash equilibria are not approachable, just as some weak Nash equilibria
fail to be limit points of payoff disturbed games (Harsanyi (1973)) or limit points of
quantal response equilibria as the error terms vanish (McKelvey and Palfrey (1995)).
In the following game, (D,R) is a Nash equilibrium that cannot be approached by
a sequence of large team equilibria. It is easy to see that in any team equilibrium,

Table 2.4: Example of a Nash equilibrium that is not a limit of team equilibria with
majority rule.

Column Team (2)
Row Team (1) Left (L) Right (R)

Up (U) 1, 1 0, 0
Down (D) 0, 0 0, 0

for any 𝑛, the probability the row team plays Up and the probability the column
team plays Left is always greater than 0.5. Hence (𝐷, 𝑅) cannot be a limit of team
equilibria.

Third, the scoring rule does not have to be the same for all teams in order to obtain
Nash convergence; different teams can use different anonymous scoring rules and
the result still holds. While not formally stated in the theorem, it is an obvious
generalization. Fourth, the rate of convergence to large teams can differ across
teams. Fifth, the result only characterizes conditions that are sufficient for the Nash
convergence property; the condition is clearly not necessary as the average rule is not
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a scoring rule but satisfies the Nash convergence property. Finally, we conjecture
that the class is much broader than scoring rules, including many other anonymous
and neutral collective choice rules. Scoring rules operate only on the individual
ordinal rankings of estimated expected payoffs. One imagines that there are many
collective choice rules that operate on the cardinal values of the estimates and also
have the Nash convergence property, such as weighted average rules.

2.5 Stochastic Rationality and Team Response Functions
In our framework, individual team member estimated expected utilities obey two
intuitive, normatively appealing properties of stochastic rationality. First, the prob-
ability a member of team 𝑡 ranks action 𝑎𝑡

𝑘
as having the highest estimated expected

payoff (and hence would be chosen if it were an individual choice problem) is
increasing in 𝑈𝑡

𝑘
(𝛼), the ‘true’ equilibrium expected payoff of action 𝑘 , ceteris

paribus, a condition we call payoff monotonicity. Second, the probability a member
of team 𝑡 ranks action 𝑎𝑡

𝑘
’s estimated expected payoff as highest is greater than the

probability the member ranks action 𝑎𝑡
𝑙
’s highest if and only if 𝑈𝑡

𝑘
(𝛼) > 𝑈𝑡

𝑙
(𝛼), a

condition we call rank dependence.16 In the context of team decision making, it is
the collective choice rule in combination with the error structure that determines
team choice probabilities. It is easy to see that team decision making will not gener-
ally inherit these two properties for all collective choice rules. Given the normative
appeal of these two properties, this naturally leads to the following question. Under
what conditions on the collective choice rule will team response functions satisfy
them? In addition to the normative appeal of payoff monotonicity and rank depen-
dence, violations of these two properties might affect the incentives faced by team
members during the team decision making process. While our framework does not
explicitly model individual choice behavior in the team decision making process, it
is plausible that stochastically irrational collective choice rules that violate payoff
monotonicity or rank dependence, could hinder the ability for teams to effectively
aggregate members’ diverse beliefs. For example, if payoff monotonicity fails for
the prescribed collective choice rule, then individual team members might profit by
behaving as if their expected utility estimates for some of the actions are lower or
higher than they are in truth.

This section identifies restrictions on the collective choice rule that guarantee team
16This follows from the i.i.d. assumption on estimation errors. Furthermore, the estimated

expected payoffs are continuous in 𝑈𝑡 and have full support on the real line. Thus, they have
properties similar to the individual choice probabilities in a quantal response equilibrium.



56

response functions to satisfy these two properties. We first show that payoff mono-
tonicity of team response functions requires only two weak assumptions on the
collective choice rule, unanimity and positive responsiveness. On the other hand,
rank dependence holds only for a more restricted class of neutral collective choice
rules. Many non-neutral collective choice rules, such as those that give a status quo
advantage to an action, will fail to satisfy rank dependence, as the last example in
section 3.1 demonstrates. Second, we show that rank dependence is satisfied for
𝐾 𝑡 = 2 with any collective choice rule satisfying unanimity, positive responsiveness,
and neutrality, and for 𝐾 𝑡 > 2 with plurality rule or weighted average rules.
Payoff Monotonicity
For any team game, Γ, 𝑃𝐶𝑡 depends on the strategy profile 𝛼, the distribution
of member’s estimation errors, 𝐹 𝑡 , and the team collective choice rule, 𝐶𝑡 . In this
section we identify conditions on𝐶𝑡 that are sufficient for 𝑃𝐶𝑡 to be payoff monotone
for all admissible 𝐹 𝑡 . The formal definition of payoff monotonicity is given below.

Definition 4. A team collective choice rule 𝐶𝑡 satisfies Payoff Monotonicity if, for
all 𝑎𝑡

𝑘
, 𝛼, 𝛼′:

𝑈𝑡𝑘 (𝛼) > 𝑈
𝑡
𝑘 (𝛼

′) and𝑈𝑡𝑙 (𝛼) = 𝑈
𝑡
𝑙 (𝛼

′) ∀𝑙 ≠ 𝑘 ⇒
𝑃𝐶

𝑡

𝑘 (𝑈𝑡 (𝛼)) > 𝑃𝐶𝑡

𝑘 (𝑈𝑡 (𝛼′)).

Specifically, we require team collective choice rules to satisfy two axioms: unanimity
and positive responsiveness. The first condition, unanimity, simply states that if all
members of the team estimate that 𝑎𝑡

𝑘
has the highest expected utility, then it is

uniquely chosen by 𝐶𝑡 .17

Definition 5. A team collective choice rule 𝐶𝑡 satisfies Unanimity if:
𝑈𝑡𝑖𝑘 > 𝑈

𝑡
𝑖𝑙 for all 𝑖 ∈ 𝑡 and for all 𝑙 ≠ 𝑘 ⇒ 𝐶𝑡 (𝑈𝑡) = {𝑎𝑡𝑘 }.

In addition to using this axiom to prove payoff monotonicity, it also guarantees that
team response functions are interior, in the sense that every action is chosen with
positive probability. The second axiom, positive responsiveness, requires that the
team choice responds positively to all members of a team increasing their estimated
expected payoff of an action, keeping all other estimated expected payoffs the same.
The following definition is used in the statement of the axiom.
Definition 6. A profile 𝑈̃𝑡 of member estimated expected utilities is a monotonic
transformation of 𝑈̂𝑡 with respect to action 𝑎𝑡

𝑘
if, for all members 𝑖 ∈ 𝑡, we have

𝑈̃𝑡
𝑖𝑘
≥ 𝑈̂𝑡

𝑖𝑘
and 𝑈̃𝑡

𝑖𝑙
= 𝑈̂𝑡

𝑖𝑙
for all 𝑙 ≠ 𝑘 .

17For the "standard" case of games played by one-person teams, unanimity implies that if 𝑛 = 1
then every team equilibrium is equivalent to a quantal response equilibrium of the strategic form
game, [𝑇, 𝐴, 𝑢].
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Definition 7. A team collective choice rule 𝐶𝑡 satisfies Positive Responsiveness
if 𝑎𝑡

𝑘
∈ 𝐶𝑡 (𝑈̂𝑡) ⇒ 𝑎𝑡

𝑘
∈ 𝐶𝑡 (𝑈̃𝑡) ⊆ 𝐶𝑡 (𝑈̂𝑡), for all 𝑎𝑡

𝑘
, 𝑈̂𝑡 and all monotonic

transformations 𝑈̃𝑡 of 𝑈̂𝑡 with respect to action 𝑎𝑡
𝑘
.

This definition of Positive Responsiveness is essentially a cardinal version of the
usual definition of positive responsiveness from the social choice literature. It says
that if an action 𝑎𝑡

𝑘
is chosen at some profile of estimated expected utilities, and

all team members’ estimates of the expected utility of that action weakly increase,
ceteris paribus, then 𝑎𝑡

𝑘
must still be chosen, and no new actions can be added to the

choice set.

Many collective choice rules satisfy positive responsiveness. For example, any
weighted average rule, where the team choice corresponds to the action with the
highest weighted average of individual members estimates, is positively responsive.
Plurality rule also clearly satisfies this condition. In this section we consider a class
of collective choice rules, called generalized scoring rules, and show that positive
responsiveness is satisfied for any such collective choice rule. A generalized scoring
rule is substantially more general than the standard definition of a scoring rule in the
social choice literature, which was defined in the previous section as an anonymous
scoring rules (i.e., all the individual scoring functions are the same). Generalized
scoring rules relax the anonymity requirement that all individual scoring functions
are the same. It includes a wide range of non-anonymous collective choice rules,
including dictatorial rules.

Definition 8. A team collective choice rule𝐶𝑡 is a Generalized Scoring Rule if there
exists a profile of individual scoring functions, (𝑆𝑡1, ...𝑆

𝑡
𝑛𝑡
), such that for all 𝑎𝑡

𝑘
∈ 𝐴𝑡

and for all 𝑈̂𝑡 ∈ ℜ𝐾 𝑡𝑛𝑡 , 𝑎𝑡
𝑘
∈ 𝐶𝑡 (𝑈̂𝑡) if and only if

∑𝑛𝑡

𝑖=1 𝑆
𝑡
𝑖𝑘
(𝑈̂𝑡

𝑖
) ≥ ∑𝑛𝑡

𝑖=1 𝑆
𝑡
𝑖𝑙
(𝑈̂𝑡

𝑖
) for

all 𝑙 ≠ 𝑘 .

Proposition 1. All generalized scoring rules satisfy positive responsiveness.18

Proof. Positive responsiveness follows from the fact that the value of the team
score function evaluated at any alternative is weakly increasing in that alternative’s
estimated expected utility for each team member, and weakly decreasing in every
other alternative’s estimated expected utility. □

We can now state the main result of this subsection.
18If 𝑠𝑡

𝑖1 > 𝑠
𝑡
𝑖2 for all 𝑖 ∈ 𝑡, then the scoring rule also satisfies unanimity.
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Theorem 3. If 𝐹 𝑡 is admissible and 𝐶𝑡 satisfies unanimity and positive responsive-
ness then 𝑃𝐶𝑡 satisfies payoff monotonicity.

Proof. Let 𝐶𝑡 satisfy positive responsiveness and unanimity and 𝐹 𝑡 admissible.
Suppose that𝑈𝑡

𝑘
−𝑈 ′𝑡

𝑘
= 𝛿 > 0, and𝑈𝑡

𝑙
= 𝑈

′𝑡
𝑙

, ∀𝑙 ≠ 𝑘 . Then for all realizations of the
estimation errors 𝜖 𝑡 , we have that𝑈𝑡+𝜖 𝑡 is a monotonic transformation of𝑈 ′𝑡+𝜖 𝑡 with
respect to 𝑎𝑡

𝑘
. So by positive responsiveness of 𝐶𝑡 we have that if 𝑎𝑡

𝑘
∈ 𝐶𝑡 (𝑈 ′𝑡 + 𝜖 𝑡)

then 𝑎𝑡
𝑘
∈ 𝐶𝑡 (𝑈𝑡 + 𝜖 𝑡), and if 𝑎𝑡

𝑙
∈ 𝐶𝑡 (𝑈𝑡 + 𝜖 𝑡) then 𝑎𝑡

𝑙
∈ 𝐶𝑡 (𝑈 ′𝑡 + 𝜖 𝑡). So

𝑔𝐶
𝑡

𝑘
(𝑈𝑡+𝜖 𝑡) ≥ 𝑔𝐶𝑡

𝑘
(𝑈 ′𝑡+𝜖 𝑡) for all 𝜖 𝑡 , and therefore 𝑃𝐶𝑡

𝑘
(𝑈𝑡) ≥ 𝑃𝐶

𝑡

𝑘
(𝑈 ′𝑡). To show the

strict inequality, 𝑃𝐶𝑡

𝑘
(𝑈𝑡) > 𝑃𝐶𝑡

𝑘
(𝑈 ′𝑡), we show that there exists a region 𝛽 ⊂ ℜ𝐾 𝑡×𝑁 𝑡

with positive measure such that if 𝜖 𝑡 ∈ 𝛽, then 𝑔𝐶𝑡

𝑘
(𝑈𝑡 + 𝜖 𝑡) > 𝑔𝐶

𝑡

𝑘
(𝑈 ′𝑡 + 𝜖 𝑡). In

particular, unanimity of 𝐶𝑡 is used as follows to construct 𝛽 such that if 𝜖 𝑡 ∈ 𝛽, then
𝑔𝐶

𝑡

𝑘
(𝑈𝑡 + 𝜖 𝑡) = 1 > 𝑔𝐶

𝑡

𝑘
(𝑈 ′𝑡 + 𝜖 𝑡) = 0. That is, such that 𝑎𝑡

𝑘
is uniquely chosen

under𝑈𝑡 + 𝜖 𝑡 , and not chosen under𝑈 ′𝑡 + 𝜖 𝑡 . Let 𝑈̃𝑡 be an estimated expected utility
profile such that all team members strictly prefer some action 𝑎𝑡

𝑙
to action 𝑎𝑡

𝑘
, all

members prefer 𝑎𝑡
𝑘

to all other actions 𝑎𝑡𝑚 (i.e., all members rank 𝑎𝑡
𝑘

second), and
for all members we have 𝑈̃𝑡

𝑙
− 𝑈̃𝑡

𝑘
= 𝛿

2 . Define:

𝛽 = {𝑈̃𝑡 −𝑈 ′𝑡 + 𝜉 : 𝜉𝑘 ∈ (0, 𝛿
4
), 𝜉𝑙 ∈ (−𝛿

4
, 0), 𝜉𝑚 < 0}

Then if 𝜖 𝑡 ∈ 𝛽, by unanimity we have 𝐶𝑡 (𝑈 ′𝑡 + 𝜖 𝑡) = {𝑎𝑡
𝑙
} and 𝐶𝑡 (𝑈𝑡 + 𝜖 𝑡) = {𝑎𝑡

𝑘
},

so 𝑔𝐶𝑡

𝑘
(𝑈𝑡 + 𝜖 𝑡) = 1 > 𝑔𝐶

𝑡

𝑘
(𝑈 ′𝑡 + 𝜖 𝑡) = 0. 𝛽 is an open set and hence has positive

measure since the distribution of 𝜖 𝑡 has full support. Therefore 𝑃𝐶𝑡

𝑘
(𝑈𝑡) > 𝑃𝐶𝑡

𝑘
(𝑈 ′𝑡),

as desired. □

Rank Dependence
In this section we show that 𝑃𝐶𝑡 satisfies rank dependence for 𝐾 𝑡 = 2 with any
collective choice rule satisfying unanimity, positive responsiveness and neutrality,
and for 𝐾 𝑡 > 2 with plurality rule and weighted average rules. The formal definition
of rank dependence is:

Definition 9. A team collective choice rule 𝐶𝑡 satisfies Rank Dependence if, for all
𝑎𝑡
𝑘
, 𝑎𝑡

𝑙
, 𝛼,𝑈𝑡

𝑘
(𝛼) > 𝑈𝑡

𝑙
(𝛼) ⇒ 𝑃𝐶

𝑡

𝑘
(𝑈𝑡 (𝛼)) > 𝑃𝐶𝑡

𝑙
(𝑈𝑡 (𝛼))

Neutrality is an essential property for proving that team response functions satisfy
rank dependence. Informally a neutral team collective choice rule is one that is not
biased against or in favor of any particular action. This is analogous to the neutrality
axiom from the social choice literature.
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Let 𝜓 : 𝐴𝑡 → 𝐴𝑡 be any permutation of team actions. Denote by 𝑈𝑡,𝜓 =

(𝑈𝑡
𝜓(1) , ...,𝑈

𝑡
𝜓(𝐾 𝑡 )) the permuted profile of expected utilities and by 𝑈̂𝑡,𝜓 ≡ (𝑈𝑡

𝜓(1) +
𝜖 𝑡
𝜓(1) , ...,𝑈

𝑡
𝜓(𝐾 𝑡 ) + 𝜖

𝑡
𝜓(𝐾 𝑡 )) the permuted profile of estimated expected utilities. We

can then define neutrality formally.

Definition 10. A team collective choice rule 𝐶𝑡 satisfies Neutrality if, for all 𝑎𝑡
𝑘
, 𝑈̂𝑡 ,

for all permutations 𝜓, 𝑎𝑡
𝑘
∈ 𝐶𝑡 (𝑈̂𝑡) ⇔ 𝑎𝑡

𝜓(𝑘) ∈ 𝐶
𝑡 (𝑈̂𝑡,𝜓)

Neutrality, along with admissibility of 𝐹 𝑡 , imply that when the expected payoffs of
team actions are permuted, the team choice probabilities are permuted.

Lemma 1. If 𝐹 𝑡 is admissible and𝐶𝑡 satisfies neutrality, then 𝑃𝐶𝑡

𝑘
(𝑈𝑡) = 𝑃𝐶𝑡

𝜓(𝑘) (𝑈
𝑡,𝜓)

for all expected utility profiles,𝑈𝑡 , actions, 𝑎𝑡
𝑘
, and permutations 𝜓.

Proof. By neutrality of 𝐶𝑡 , for any expected utility profile, 𝑈𝑡 , action, 𝑎𝑡
𝑘
, belief

error profile, 𝜖 𝑡 , and permutation 𝜓, 𝑔𝐶𝑡

𝑘
(𝑈̂𝑡) = 𝑔𝐶𝑡

𝜓(𝑘) (𝑈̂
𝑡,𝜓), that is the probability

that 𝑎𝑡
𝑘

is chosen at 𝑈̂𝑡 is equal to the probability that 𝑎𝑡
𝜓(𝑘) is chosen at 𝑈̂𝑡,𝜓 .

Therefore 𝑃𝐶𝑡

𝑘
(𝑈𝑡) =

∫
𝜖 𝑡
𝑔𝐶

𝑡

𝑘
(𝑈̂𝑡)𝑑𝐹 𝑡 (𝜖 𝑡) =

∫
𝜖 𝑡
𝑔𝐶

𝑡

𝜓(𝑘) (𝑈̂
𝑡,𝜓)𝑑𝐹 𝑡 (𝜖 𝑡). Finally, since

the estimation errors are i.i.d,
∫
𝜖 𝑡
𝑔𝐶

𝑡

𝜓(𝑘) (𝑈̂
𝑡,𝜓)𝑑𝐹 𝑡 (𝜖 𝑡) =

∫
𝜖 𝑡
𝑔𝐶

𝑡

𝜓(𝑘) (𝑈̂
𝑡,𝜓)𝑑𝐹 𝑡 (𝜖 𝑡,𝜓) =

𝑃𝐶
𝑡

𝜓(𝑘) (𝑈
𝑡,𝜓). □

A corollary to the lemma is that when two actions have equal expected payoffs, the
team must play these actions with equal probability. It is easy to see that non-neutral
collective choice rules can lead to violations of rank dependence. For example,
collective choice rules that favor one action (e.g. a status quo action) over another
will generally lead to violations, as in the last example of Section 3.1 with a 2/3
voting rule. Consider 𝐾 𝑡 = 2 and a choice rule that selects action 𝑎𝑡1 if and only if all
team members estimate its expected utility to be greater than that of action 𝑎𝑡2, and
selects action 𝑎𝑡2 otherwise. For any admissible 𝐹 𝑡 , if the size of the team is large
enough, a team using this choice rule will select action 𝑎𝑡2 more often than action
𝑎𝑡1 even when𝑈𝑡1(𝛼) > 𝑈

𝑡
2(𝛼).

Next, for the case of 𝐾 𝑡 = 2, we prove that neutrality, together with unanimity
and positive responsiveness is sufficient to guarantee that a team response function
satisfies rank dependence for all admissible 𝐹 𝑡 . This is proved below.

Theorem 4. If 𝐾 𝑡 = 2, 𝐹 𝑡 is admissible and 𝐶𝑡 satisfies unanimity, positive respon-
siveness and neutrality, then 𝑃𝑡 satisfies rank dependence.
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Proof. Pick any 𝑈𝑡 such that 𝑈𝑡1 > 𝑈𝑡2 and let 𝛿 = 𝑈𝑡1 − 𝑈𝑡2. Let 𝑈 ′𝑡 = (𝑈𝑡1 −
𝛿,𝑈𝑡2), then by lemma 1, 𝑃𝐶𝑡

1 (𝑈 ′𝑡) = 𝑃𝐶
𝑡

2 (𝑈 ′𝑡) = 1
2 . Since 𝐶𝑡 satisfies positive

responsiveness and unanimity, theorem 3, together with the fact that 𝑃𝐶𝑡

1 (𝑈𝑡) +
𝑃𝐶

𝑡

2 (𝑈𝑡) = 1, implies that 𝑃𝐶𝑡

1 (𝑈𝑡) > 𝑃𝐶𝑡

1 (𝑈 ′𝑡) = 𝑃𝐶𝑡

2 (𝑈 ′𝑡) > 𝑃𝐶𝑡

2 (𝑈𝑡). □

If 𝐾 𝑡 > 2 the next two propositions prove rank dependence with additional restric-
tions on the team collective choice rule.

Theorem 5. If 𝐹 𝑡 is admissible and 𝐶𝑡 is plurality rule, then 𝑃𝐶𝑡 satisfies rank
dependence.

Proof. Consider any profile of expected payoffs𝑈𝑡 . By neutrality and admissibility
we can without loss of generality label the actions such that 𝑈𝑡1 ≥ 𝑈𝑡2 ≥ ... ≥ 𝑈𝑡

𝐾 𝑡 .
By lemma 1, if𝑈𝑡

𝑘
= 𝑈𝑡

𝑙
, then 𝑃𝐶𝑡

𝑘
= 𝑃𝐶

𝑡

𝑙
.

Suppose𝑈𝑡
𝑘
> 𝑈𝑡

𝑙
. The probability that any team member 𝑖 ranks action 𝑘 highest is

𝑝𝑘 = 𝑃𝑟𝑜𝑏(𝑈𝑡𝑘 + 𝜖
𝑡
𝑖𝑘
− max 𝑗≠𝑘 {𝑈𝑡𝑗 + 𝜖 𝑡𝑖 𝑗 } ≥ 0). Let 𝜓 : {1, ..., 𝐾 𝑡} → {1, ..., 𝐾 𝑡} be

the pairwise permutation of 𝑘 and 𝑙, that is the permutation that maps 𝑘 to 𝑙 and 𝑙 to
𝑘 and all else to itself. By exchangeability of the error terms, ((𝑈𝑡1+𝜖

𝑡
1, ...,𝑈

𝑡
𝐾 𝑡 +𝜖 𝑡𝐾 𝑡 )

has the same joint distribution as (𝑈𝑡1 + 𝜖
𝑡
𝜓(1) , ...,𝑈

𝑡
𝐾 𝑡 + 𝜖 𝑡𝜓(𝐾 𝑡 )), and so 𝑈𝑡

𝑘
+ 𝜖 𝑡

𝑖𝑘
−

max 𝑗≠𝑘 {𝑈𝑡𝑗 + 𝜖 𝑡𝑖 𝑗 } has the same distribution as 𝑈𝑡
𝑘
+ 𝜖 𝑡

𝑖𝜓(𝑘) − max 𝑗≠𝑘 {𝑈𝑡𝑗 + 𝜖 𝑡𝑖𝜓( 𝑗)}.
Since𝑈𝑡

𝑘
> 𝑈𝑡

𝑙
, we have for all 𝜖 𝑡

𝑖
,𝑈𝑡

𝜓(𝑘) + 𝜖
𝑡
𝑖𝜓(𝑘) < 𝑈

𝑡
𝑘
+ 𝜖 𝑡

𝑖𝜓(𝑘) , and max 𝑗≠𝑘 {𝑈𝑡𝜓( 𝑗) +
𝜖 𝑡
𝑖𝜓( 𝑗)} ≥ max 𝑗≠𝑘 {𝑈𝑡𝑗 + 𝜖 𝑡𝑖𝜓( 𝑗)}. By the full support assumption, it follows that
𝑃𝑟𝑜𝑏(𝑈𝑡

𝑘
+ 𝜖 𝑡

𝑖𝜓(𝑘) −max 𝑗≠𝑘 {𝑈𝑡𝑗 + 𝜖 𝑡𝑖𝜓( 𝑗)} ≥ 0) > 𝑃𝑟𝑜𝑏(𝑈𝑡
𝜓(𝑘) + 𝜖

𝑡
𝑖𝜓(𝑘) −max 𝑗≠𝑘 {𝑈𝑡𝑗 +

𝜖 𝑡
𝑖𝜓( 𝑗)} ≥ 0) = 𝑝𝑙 , so 𝑝𝑘 > 𝑝𝑙 .

Now, still supposing that𝑈𝑡
𝑘
> 𝑈𝑡

𝑙
, and therefore that 𝑝𝑘 > 𝑝𝑙 , denote by (𝑛1, ..., 𝑛𝐾)

the tuple of number of team members that rank each action first for a given 𝑈̂𝑡 . For
any choice set 𝐵 ⊆ 𝐴𝑡 , let 𝑉𝐵 = {(𝑛1, ..., 𝑛𝐾) |∀𝑎𝑘 ∈ 𝐵,∀𝑎 𝑗 , 𝑛𝑘 ≥ 𝑛 𝑗 and

∑𝐾
𝑗=1 𝑛 𝑗 =

𝑛} be the set of feasible ’vote’ totals that result in 𝐵 being chosen. Then, since
estimated expected utilities are independent across individuals conditional on 𝑈𝑡 ,
we can write the probability of this subset being chosen as

𝑃𝑟𝑜𝑏(𝐶𝑡 (𝑈̂𝑡) = 𝐵) =
∑︁
𝑉𝐵

𝑛!
𝑛1!𝑛2!...𝑛𝐾!

Π𝐾
𝑗=1𝑝

𝑛 𝑗

𝑗

Let 𝜓 : {1, ..., 𝐾 𝑡} → {1, ..., 𝐾 𝑡} be the pairwise permutation between 𝑘 and 𝑙 as
defined earlier. Pick any 𝐵 that contains 𝑎𝑘 and not 𝑎𝑙 . Then (𝑛1, ..., 𝑛𝐾) ∈ 𝑉𝐵
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if and only if (𝑛𝜓(1) , , ..., 𝑛𝜓(𝐾)) ∈ 𝑉 (𝐵−{𝑎𝑘})∪{𝑎𝑙}, the set of vote totals that results
in the choice set being 𝐵, minus 𝑎𝑘 and adding 𝑎𝑙 . Then, since 𝑛𝑘 > 𝑛𝑙 , we have
that 𝑝𝑛𝑘

𝑘
𝑝
𝑛𝑙
𝑙
> 𝑝

𝑛𝑙
𝑘
𝑝
𝑛𝑘
𝑙

, so every term of the sum in 𝑃𝑟𝑜𝑏(𝐶𝑡 (𝑈̂𝑡) = 𝐵) is greater
than the corresponding term in 𝑃𝑟𝑜𝑏(𝐶𝑡 (𝑈̂𝑡) = (𝐵 − {𝑎𝑘 }) ∪ {𝑎𝑙}). So we have
for all 𝐵 containing 𝑎𝑘 and not 𝑎𝑙 , that 𝑃𝑟𝑜𝑏(𝐶𝑡 (𝑈̂𝑡) = 𝐵) > 𝑃𝑟𝑜𝑏(𝐶𝑡 (𝑈̂𝑡) =

(𝐵 − {𝑎𝑘 }) ∪ {𝑎𝑙}). Finally, define 𝐵0 to be the subsets of 𝐴𝑡 that contain neither
𝑎𝑘 nor 𝑎𝑙 , 𝐵𝑘 the subsets containing only 𝑎𝑘 , 𝐵𝑙 the subsets containing only 𝑎𝑙 and
not 𝑎𝑘 , and 𝐵𝑘𝑙 the set containing both. Then

𝑃𝐶
𝑡

𝑘 (𝑈𝑡) = 0 ×
∑︁
𝐵∈𝐵0

𝑃𝑟𝑜𝑏(𝐶𝑡 (𝑈̂𝑡) = 𝐵) +
∑︁
𝐵∈𝐵𝑘

1
|𝐵 |𝑃𝑟𝑜𝑏(𝐶

𝑡 (𝑈̂𝑡) = 𝐵)

+ 0 ×
∑︁
𝐵∈𝐵𝑙

𝑃𝑟𝑜𝑏(𝐶𝑡 (𝑈̂𝑡) = 𝐵) +
∑︁
𝐵∈𝐵𝑘𝑙

1
|𝐵 |𝑃𝑟𝑜𝑏(𝐶

𝑡 (𝑈̂𝑡) = 𝐵)

𝑃𝐶
𝑡

𝑙 (𝑈𝑡) = 0 ×
∑︁
𝐵∈𝐵0

𝑃𝑟𝑜𝑏(𝐶𝑡 (𝑈̂𝑡) = 𝐵) + 0 ×
∑︁
𝐵∈𝐵𝑘

𝑃𝑟𝑜𝑏(𝐶𝑡 (𝑈̂𝑡) = 𝐵)

+
∑︁
𝐵∈𝐵𝑙

1
|𝐵 |𝑃𝑟𝑜𝑏(𝐶

𝑡 (𝑈̂𝑡) = 𝐵) +
∑︁
𝐵∈𝐵𝑘𝑙

1
|𝐵 |𝑃𝑟𝑜𝑏(𝐶

𝑡 (𝑈̂𝑡) = 𝐵)

𝑃𝐶
𝑡

𝑘
and 𝑃𝐶𝑡

𝑙
share all terms of the fourth sum, so

𝑃𝐶
𝑡

𝑘 [𝑈𝑡] − 𝑃𝐶𝑡

𝑙 [𝑈𝑡] =
∑︁
𝐵∈𝐵𝑘

1
|𝐵 |𝑃𝑟𝑜𝑏[𝐶

𝑡 (𝑈̂𝑡) = 𝐵] −
∑︁
𝐵∈𝐵𝑙

1
|𝐵 |𝑃𝑟𝑜𝑏[𝐶

𝑡 (𝑈̂𝑡) = 𝐵]

𝑃𝐶
𝑡

𝑘 [𝑈𝑡] − 𝑃𝐶𝑡

𝑙 [𝑈𝑡] =
∑︁
𝐵∈𝐵𝑘

1
|𝐵 | [𝑃𝑟𝑜𝑏[𝐶

𝑡 (𝑈̂𝑡) = 𝐵] − 𝑃𝑟𝑜𝑏[𝐶𝑡 (𝑈̂𝑡) = (𝐵 − {𝑎𝑘 }) ∪ {𝑎𝑙}]] > 0

Therefore, whenever𝑈𝑡
𝑘
> 𝑈𝑡

𝑙
, we have 𝑝𝑘 > 𝑝𝑙 , which implies 𝑃𝐶𝑡

𝑘
(𝑈𝑡) > 𝑃𝐶𝑡

𝑙
(𝑈𝑡).
□

Define a weighted average rule as follows:

Definition 11. A team collective choice rule 𝐶𝑡 is a Weighted Average Rule if
there exists a profile of non-negative individual voting weights, (𝑤𝑡1, ..., 𝑤

𝑡
𝑛𝑡
) with∑𝑛𝑡

𝑖=1 𝑤
𝑡
𝑖
= 1 such that for all 𝑎𝑡

𝑘
∈ 𝐴𝑡 and for all 𝑈̂𝑡 ∈ ℜ𝐾 𝑡𝑛𝑡 , 𝑎𝑡

𝑘
∈ 𝐶𝑡 (𝑈̂𝑡) if and

only if
∑𝑛𝑡

𝑖=1 𝑤
𝑡
𝑖
𝑈̂𝑡
𝑖𝑘
≥ ∑𝑛𝑡

𝑖=1 𝑤
𝑡
𝑖
𝑈̂𝑡
𝑖𝑙

for all 𝑙 ≠ 𝑘.

Theorem 6. If 𝐹 𝑡 is admissible and𝐶𝑡 is a weighted average rule, then 𝑃𝐶𝑡 satisfies
rank dependence.

Proof. Consider any profile of expected payoffs 𝑈𝑡 , and suppose 𝑈𝑡
𝑘
> 𝑈𝑡

𝑙
. We

have 𝑃𝐶𝑡

𝑘
(𝑈𝑡) =

∫
1{∑𝑛𝑡

𝑖=1 𝑤
𝑡
𝑖
𝑈̂𝑡
𝑖𝑘

≥ max{∑𝑛𝑡

𝑖=1 𝑤𝑖𝑈̂
𝑡
𝑖 𝑗
}𝐾 𝑡

𝑗=1}𝑑𝐹
𝑡 . Note that the prob-

ability that any of these weighted averages are exactly equal is 0. Now, since
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𝐹 𝑡 (𝑦 − 𝑈𝑡
𝑘
) < 𝐹 𝑡 (𝑦 − 𝑈𝑡

𝑙
) for all 𝑦 ∈ ℜ, we have 𝑈̂𝑡

𝑖𝑘
>𝑠𝑡 𝑈̂

𝑡
𝑖𝑙
, where >𝑠𝑡 denotes

the strict first stochastic order, for all members 𝑖. This order is closed under convo-
lutions, so

∑𝑛𝑡

𝑖=1 𝑤
𝑡
𝑖
𝑈̂𝑡
𝑖𝑘
>𝑠𝑡

∑𝑛𝑡

𝑖=1 𝑤
𝑡
𝑖
𝑈̂𝑡
𝑖𝑙
. Since 1{𝑧 > 0} is increasing, non-constant

and bounded, we therefore have

∫
1{

𝑛∑︁
𝑖=1

𝑤𝑖𝑈̂
𝑡
𝑖𝑘 ≥ max{

𝑛∑︁
𝑖=1

𝑤𝑖𝑈̂
𝑡
𝑖 𝑗 }𝐾𝑗=1}}𝑑𝐹 >

∫
1{

𝑛∑︁
𝑖=1

𝑤𝑖𝑈̂
𝑡
𝑖𝑙 ≥ max{

𝑛∑︁
𝑖=1

𝑤𝑖𝑈̂
𝑡
𝑖 𝑗 }𝐾𝑗=1}}𝑑𝐹

𝑃𝐶
𝑡

𝑘 (𝑈𝑡) > 𝑃𝐶𝑡

𝑙 (𝑈𝑡)

□

2.6 Team Equilibrium in Extensive Form Games
A finite extensive form game consists of a Player set I ={1, ..., 𝐼}, an action set
A, a set of sequences contained in 𝐴 called histories, Ξ, a subset of these being
terminal histories, 𝑍 , initial chance moves, 𝑏0, a player function, 𝜄, information
sets for each player, Π𝑖, a feasible action function, 𝐴, that specifies the set of
actions available at each information set, and payoff functions, 𝑢 = (𝑢1, ..., 𝑢𝑖, ..., 𝑢𝐼),
defined on 𝑍 . Thus an extensive form game, in shorthand, can be written as
𝐺𝐸𝐹 = (I,A,Ξ, 𝐴, 𝜄,Π, 𝑏0, 𝑢).

We extend this definition to (finite) team extensive form games, modifying the
notation in the following ways. As in the definition of team games in strategic
form, let T = {0, 1, ..., 𝑡, ..., 𝑇} be a finite collection of teams, 𝑡 = {𝑖𝑡1, ..., 𝑖

𝑡
𝑗
, ..., 𝑖𝑡

𝑛𝑡
},

where each team consists of 𝑛𝑡 members, or individuals, and denote the team
size profile by 𝑛 = (𝑛1, ..., 𝑛𝑇 ). Team “0” is designated chance. Let A be a
finite set of 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 and Ξ be a finite set of histories, that satisfy two properties:
∅ ∈ Ξ; and (𝑎1, ..., 𝑎𝐾) ∈ Ξ ⇒ (𝑎1, ..., 𝑎𝐿) ∈ Ξ for all 𝐿 < 𝐾 . A history
ℎ = (𝑎1, ..., 𝑎𝐾) ∈ 𝑍 ⊆ Ξ is terminal if there does not exist 𝑎 ∈ A such that
(ℎ, 𝑎) ∈ Ξ, and the set of terminal histories is denoted 𝑍 . The set of actions
available at any non-terminal history ℎ is determined by the function 𝐴 : Ξ → 2A,
where 𝐴(ℎ) = {𝑎 | (ℎ, 𝑎) ∈ Ξ}. There is a team function 𝜄 : Ξ − 𝑍 → T that assigns
each history to a unique team. Without loss of generality, assume that 𝜄(∅) = 0 and
𝜄(ℎ) ≠ 0 for all ℎ ≠ ∅, and denote by 𝑏0 the probability distribution of chance actions
at ℎ = ∅ and assume without loss of generality that 𝑏0(𝑎) > 0 for all 𝑎 ∈ 𝐴(∅). For
each 𝑡 ∈ {0, 1, ..., 𝑡, ..., 𝑇}, there is an information partition Π𝑡 of {ℎ ∈ Ξ|𝜄(ℎ) = 𝑡}.
Elements of Π𝑡 are 𝑡’s information sets, and are denoted 𝐻𝑡

𝑙
, where 𝑙 indexes 𝑡’s

information sets. The set of available actions to 𝑡 are the same in all histories that
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belong to the same information set. That is, if ℎ ∈ 𝐻𝑡
𝑙
and ℎ′ ∈ 𝐻𝑡

𝑙
for some 𝐻𝑡

𝑙
∈ Π𝑡

then 𝐴(ℎ) = 𝐴(ℎ′) ≡ 𝐴(𝐻𝑡
𝑙
) = {𝑎𝑡

𝑙1, ..., 𝑎
𝑡
𝑙𝑘
, ..., 𝑎𝑡

𝑙𝐾 𝑡
𝑙

} where 𝐾 𝑡
𝑙
= |𝐴(𝐻𝑡

𝑙
) |.

The payoff function of the game for team 𝑡 ≠ 0 is given by 𝑢𝑡 : 𝑍 → ℜ. Given
any terminal history 𝑧 ∈ 𝑍 , all members of team 𝑡 receive the payoff 𝑢𝑡 (𝑧). A
behavioral strategy for team 𝑡 is a function 𝑏𝑡 = (𝑏𝑡1, ..., 𝑏

𝑡
𝑙
, ..., 𝑏𝑡

𝐿𝑡
), where 𝐿𝑡 = |Π𝑡 |

and 𝑏𝑡
𝑗

: 𝐻𝑡
𝑙
→ Δ𝐴(𝐻𝑡

𝑙
), where Δ𝐴(𝐻𝑡

𝑙
) is the set of probability distributions over

𝐴(𝐻𝑡
𝑙
). Denote by 𝐵 the set of behavioral strategy profiles, and 𝐵𝑜 the interior of

𝐵, i.e., the set of totally mixed behavioral strategy profiles.

Each behavioral strategy profile 𝑏 ∈ 𝐵𝑜 determines a strictly positive realization
probability 𝜌(𝑧 |𝑏) for each 𝑧 ∈ 𝑍 . For any 𝑡 ≠ 0 and 𝑏 ∈ 𝐵𝑜, define the expected
payoff function for team 𝑡, 𝑣𝑖 : 𝐵𝑜 → R by:

𝑣𝑡 (𝑏) =
∑︁
𝑧∈𝑍

𝜌(𝑧 |𝑏)𝑢𝑡 (𝑧).

Similarly, for any 𝑡 ≠ 0 and any information set 𝐻𝑡
𝑙
∈ Π𝑡 , and for each 𝑎𝑙𝑘 ∈

𝐴(𝐻𝑡
𝑙
), any 𝑏 ∈ 𝐵𝑜 determines a strictly positive conditional realization probability

𝜌(𝑧 |𝐻𝑡
𝑙
, 𝑏, 𝑎𝑙𝑘 ) for each 𝑧 ∈ 𝑍 .19 This is the probability distribution over 𝑍 , condi-

tional on reaching 𝐻𝑡
𝑙

given the behavioral strategy profile 𝑏, with 𝑏𝑡
𝑙
replaced with

the pure action 𝑎𝑙𝑘 . For each 𝑡 ≠ 0, for each 𝐻𝑡
𝑙
∈ Π𝑡 , and for each 𝑎𝑙𝑘 ∈ 𝐴(𝐻𝑡

𝑙
),

define the conditional payoff function by

𝑈𝑡𝑙𝑘 (𝑏) =
∑︁
𝑧∈𝑍

𝜌(𝑧 |𝐻𝑡𝑙 , 𝑏, 𝑎𝑙𝑘 )𝑢
𝑡 (𝑧).

This is the conditional payoff to 𝑡 of playing the (pure) action 𝑎𝑙𝑘 ∈ 𝐴(𝐻𝑡
𝑙
) at 𝐻𝑡

𝑙

with probability one, and otherwise all teams (including 𝑡) playing 𝑏 elsewhere.

The rest of the formal description of extensive form team games closely follows the
structure of team games in strategic form. At each information set 𝐻𝑡

𝑙
, each member

of team 𝑡 gets a noisy estimate of the true conditional payoff of each currently
available action, given a behavioral strategy profile of the other teams, 𝑏−𝑡 . These
estimates are aggregated into a team decision via a team collective choice rule, 𝐶𝑡

𝑙
.

Formally, given 𝑏 ∈ 𝐵𝑜, for every 𝑡, and each of 𝑡’s information sets, 𝐻𝑡
𝑙
∈ Π𝑡 , at any

history in 𝐻𝑡
𝑙
, for each 𝑎𝑙𝑘 ∈ 𝐴(𝐻𝑡

𝑙
) member 𝑖 ∈ 𝑡 observes an estimate of 𝑈𝑡

𝑙𝑘
(𝑏)

equal to the true conditional expected payoff,𝑈𝑡
𝑙𝑘
(𝑏), plus an estimation error term.

That is,𝑈𝑡
𝑖𝑙𝑘

= 𝑈𝑡
𝑙𝑘
(𝑏) + 𝜀𝑡

𝑖𝑙𝑘
, where the dependence of𝑈𝑡

𝑖𝑙𝑘
on 𝑏 is understood. We

call 𝑈𝑡
𝑖𝑙
= (𝑈𝑡

𝑖𝑙1, ...,𝑈
𝑡
𝑖𝑙𝐾 𝑡

𝑙

) member 𝑖’s estimated conditional payoffs at 𝐻𝑡
𝑙
, given

19The restriction to 𝐵𝑜 is without loss of generality in our framework, as we will show later.
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𝑏. Denote by 𝑈𝑡
𝑙
= (𝑈𝑡1𝑙 , ...,𝑈

𝑡
𝑛𝑡 𝑙
) is the profile of member estimated conditional

payoffs at 𝐻𝑡
𝑙
∈ Π𝑡 . The estimation errors for members of team 𝑡 are i.i.d. draws

from a commonly known admissible probability distribution 𝐹 𝑡
𝑙
. We also assume

the estimation errors are independent across information sets, but allow different
distributions at different information sets.20

A team collective choice rule at information set 𝐻𝑡
𝑙
, 𝐶𝑡

𝑙
, is a correspondence that

maps profiles of member estimated payoffs at 𝐻𝑡
𝑙
∈ Π𝑡 into a subset of elements of

𝐴(𝐻𝑡
𝑙
). Thus,𝐶𝑡

𝑙
is a social choice correspondence. That is,𝐶𝑡

𝑙
:ℜ𝑛𝑡𝐾 𝑡

𝑙 → 2𝐴(𝐻𝑡
𝑙
) , so

𝐶𝑡
𝑙
(𝑈𝑡) ⊆ 𝐴(𝐻𝑡

𝑙
). In principle, teams could be using different collective choice rules

at different information sets, and denote𝐶 = (𝐶1, ..., 𝐶𝑇 ), where𝐶𝑡 = (𝐶𝑡1, ..., 𝐶
𝑡
𝐿𝑡
).

We assume that team 𝑡 always mixes uniformly over𝐶𝑡
𝑙
(𝑈𝑙

𝑡). That is, the probability
team 𝑡 chooses 𝑎𝑡

𝑙𝑘
at𝑈𝑙

𝑡 (𝑏) is given by the function 𝑔𝑡 defined as:
𝑔
𝐶𝑡
𝑙

𝑙𝑘
(𝑈𝑡𝑙 ) =

1
|𝐶𝑡
𝑙
(𝑈𝑡

𝑙
) |

if 𝑎𝑡𝑙𝑘 ∈ 𝐶
𝑡
𝑙 (𝑈𝑙

𝑡)

= 0 otherwise

Given a behavioral strategy profile, 𝑏, for each realization of (𝜀𝑡
𝑙1, ..., 𝜀

𝑡
𝑙𝑛𝑡
) at infor-

mation set 𝐻𝑡
𝑙
∈ Π𝑡 ,, team 𝑡 using collective choice rule 𝐶𝑡

𝑙
at 𝐻𝑡

𝑙
is assumed to take

the action 𝑎𝑙𝑘 ∈ 𝐴(𝐻𝑡𝑙 ) with probability 𝑔𝐶
𝑡
𝑙

𝑙𝑘
(𝑈𝑡

𝑙
).

We require 𝐶𝑡
𝑙

to satisfy Unanimity for all 𝑡 and 𝑙, defined analogously to Definition
3. That is, for every team 𝑡 ≠ 0 and every information set 𝐻𝑡

𝑙
∈ Π𝑡 , if 𝑈𝑡

𝑖𝑙𝑘
> 𝑈𝑡

𝑖𝑙𝑘 ′

for all 𝑎𝑙𝑘 ′ ∈ 𝐴(𝐻𝑡𝑙 ) − {𝑎𝑙𝑘 } and for all 𝑖 ∈ 𝑡, then 𝐶𝑡
𝑙
(𝑈𝑙

𝑡) = {𝑎𝑙𝑘 }. It is important to
note that our assumptions about 𝐹, together with unanimity of the collective choice
rules, imply that for every 𝑡, every 𝐻𝑡

𝑙
∈ Π𝑡 , and every 𝑎 ∈ 𝐴(𝐻𝑡

𝑙
), the probability

that 𝜀𝑡
𝑙

is such that 𝑈𝑡
𝑖𝑙𝑘

> 𝑈𝑡
𝑖𝑙𝑘 ′ for all 𝑎𝑙𝑘 ′ ∈ 𝐴(𝐻𝑡

𝑙
) − {𝑎𝑙𝑘 } and for all 𝑖 ∈ 𝑡 is

strictly positive. Therefore the behavioral strategies implied by the team choice
probabilities are always totally mixed. That is for all 𝑏 ∈ 𝐵𝑜, for all 𝑡 ∈ T, for all
𝐻𝑡
𝑙
∈ Π𝑡 , and for all 𝑎 ∈ 𝐴(𝐻𝑡

𝑙
), 𝑃𝐶

𝑡
𝑙

𝑙𝑘
(𝑈𝑡

𝑙
(𝑏)) > 0, and hence every possible history

in the game occurs with positive probability. Thus, there are no "off-path" histories,
so 𝜌(𝑧 |𝐻𝑡

𝑙
, 𝑏, 𝑎𝑙𝑘 ) is always well-defined and computed according Bayes’ rule.

Team response functions are defined in the following way. Any totally mixed behav-
ioral strategy profile, 𝑏, implies a profile of true conditional expected continuation
payoffs𝑈𝑡

𝑙
for each action at each information set 𝐻𝑡

𝑙
. Given𝑈𝑡

𝑙
, the team collective

20This specification of errors can be interpreted in terms of an agent model the extensive form
game.
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choice rule, 𝐶𝑡
𝑙
, and the distribution of individual estimation errors, 𝐹 𝑡

𝑙
, together

imply a behavioral strategy response to 𝑏 for team 𝑡 at information set 𝐻𝑡
𝑙
, which

we denote a team response function for team 𝑡 by 𝑃𝐶
𝑡
𝑙 , where 𝑃𝐶

𝑡
𝑙

𝑙𝑘
specifies the

probability 𝜀𝑡
𝑙
is such that 𝑎𝑡

𝑙𝑘
is the team’s action choice at 𝐻𝑡

𝑙
in response to 𝑏. That

is: 𝑃
𝐶𝑡
𝑙

𝑙𝑘
(𝑈𝑡𝑙 (𝑏)) =

∫
𝜀𝑡
𝑙

𝑔
𝐶𝑡
𝑙

𝑙𝑘
(𝑈𝑡𝑙𝑘 (𝑏))𝑑𝐹

𝑡
𝑙 (𝜀

𝑡
𝑙) (2.7)

where 𝐹 𝑡
𝑙

denotes the distribution of 𝜀𝑡
𝑙
= (𝜀𝑡

𝑙1, ..., 𝜀
𝑡
𝑙𝑛𝑡
).

For any extensive form game, any admissible 𝐹, and any profile of collective choice
rules 𝐶 call Γ𝐸𝐹 = [T,A, 𝑛,Ξ, 𝐴, 𝜄,Π, 𝑏0, 𝑢, 𝐹, 𝐶] a team game in extensive form.
An equilibrium of a team game in extensive form is a fixed point of 𝑃.

Definition 12. A team equilibrium of the team extensive form game Γ𝐸𝐹 is a
behavioral strategy profile 𝑏 such that, for every 𝑡 ≠ 0, and every information set
𝐻𝑡
𝑙
∈ Π𝑡 and every 𝑎𝑡

𝑙𝑘
∈ 𝐴(𝐻𝑡

𝑙
), 𝑏𝑡

𝑙𝑘
= 𝑃𝑡

𝑙𝑘
(𝑈𝑡 (𝑏)).

Theorem 7. For every team game in extensive form a team equilibrium exists and
is in totally mixed behavioral strategies.

Proof. For each 𝑡, and each𝐻𝑡
𝑙
∈ Π𝑡 and each 𝑎 ∈ 𝐴(𝐻𝑡

𝑙
), define 𝑏𝑡

𝑙𝑘
= inf𝑏∈𝐵𝑜 𝑃𝑡

𝑙𝑘
(𝑈𝑡

𝑙
(𝑏)).

By Unanimity of 𝐶𝑡
𝑙
, 𝑃𝑡

𝑙𝑘
(𝑈𝑡

𝑙
(𝑏)) > 0 so 𝑏𝑡

𝑙𝑘
≥ 0. Furthermore, we have 𝑏𝑡

𝑙𝑘
> 0

since 𝑈𝑡
𝑙
(𝑏) is uniformly bounded in 𝐵𝑜 for all 𝑡 and 𝑙, and hence, from Unanimity,

𝑃𝑡
𝑙𝑘
(𝑈𝑡

𝑙
(𝑏)) is bounded strictly away from 0 for all 𝑡, 𝑙 and 𝑘 and for all 𝑏 ∈ 𝐵𝑜.

Define 𝐵𝑜 = {𝑏 ∈ 𝐵 |𝑏𝑡
𝑙𝑘

≥ 𝑏𝑡
𝑙𝑘

for all 𝑡, 𝑙 and 𝑘} ⊂ 𝐵𝑜. Since 𝐵𝑜 is compact and
convex and 𝑃𝑡

𝑙𝑘
is a continuous function for all 𝑡, 𝑙 and 𝑘 , by Brouwer’s fixed point

theorem there exists a 𝑏 ∈ 𝐵𝑜 such that 𝑏𝑡
𝑙𝑘
= 𝑃𝑡

𝑙𝑘
(𝑈𝑡 (𝑏)) for all 𝑡, 𝑙 and 𝑘 . □

A few observations about team equilibria in extensive form games are worth noting.
First, the results in Section 4 about conditions for team response functions to satisfy
payoff monotonicity and rank dependence carry through to extensive form team
games, as applied to the behavioral strategies of each team. This is formally stated
as follows.

Theorem 8. For each 𝑡, Π𝑡 , and 𝐻𝑡
𝑙
∈ Π𝑡 , if 𝐹 𝑡

𝑙
is admissible and 𝐶𝑡

𝑙
satisfies

unanimity and positive responsiveness then 𝑃𝐶
𝑡
𝑙

𝑙
satisfies payoff monotonicity. Fur-

thermore, if 𝐶𝑡
𝑙

also satisfies neutrality and |𝐴(𝐻𝑡
𝑙
) | = 2, or if |𝐴(𝐻𝑡

𝑙
) | > 2 and 𝐶𝑡

𝑙

is plurality rule or a weighted average rule, then 𝑃𝐶
𝑡
𝑙

𝑙
satisfies rank dependence.
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Proof. The proof is essentially the same as the proof of Theorems 3, 4, and 5. □

Second, a stronger version of the Nash convergence property holds for team extensive
form games. It is stronger because any limit point of a sequence of team equilibria in
an extensive form game when teams become large is not just a Nash equilibrium, but
must also be sequentially rational. This follows because equilibria in team games
are always in 𝐵𝑜, so all information sets are on the equilibrium path and continuation
payoffs are always computed simply using Bayes’ rule.21 This is formally stated as
follows.

Theorem 9. Consider an infinite sequence of team extensive form games,
{
Γ𝐸𝐹𝑚

}∞
𝑚=1,

where Γ𝐸𝐹𝑚 = [T,A, 𝑛𝑚,Ξ, 𝐴, 𝜄,Π, 𝑏0, 𝑢, 𝐹, 𝐶],where 𝑚 indexes an increasing se-
quence of team sizes, with all the other characteristics of the game being the same.
That is, 𝑛𝑡

𝑚+1 > 𝑛𝑡𝑚 for all 𝑚, 𝑡. Suppose 𝐶𝑡
𝑙

is an anonymous scoring rule for all
𝑡, 𝑙 and let {𝑏∗𝑚}∞𝑚=1 be a convergent sequence of team equilibria where lim𝑚→∞ 𝑏∗𝑚
= 𝑏∗. Then 𝑏∗ is a sequential equilibrium strategy of the corresponding extensive
form game (I,A,Ξ, 𝐴, 𝜄,Π, 𝑏0, 𝑢).

Proof. The proof is essentially the same as the proof of Theorem 2 except to
additionally show that limit points are sequentially rational. First, the statement is
not vacuous because for each 𝑚 there exists at least one team equilibrium, 𝑏∗𝑚, and
hence exists at least one convergent sequence of equilibria {𝑏∗𝑚}∞𝑚=1 by the Bolzano-
Weierstrass Theorem, with lim𝑚→∞ 𝑏∗𝑚 = 𝑏∗. What we need to show is that there exist
consistent beliefs, 𝜇∗ (i.e., assignments of a probability distribution over the histories
at each information set that satisfy the Kreps-Wilson (1982) consistency criterion)
such that, under those beliefs 𝑏∗ specifies optimal behavior at each information set.
That is, 𝑏∗ is sequentially rational given 𝜇∗ and 𝜇∗ is consistent with 𝑏∗. We first
show that 𝜇∗ is consistent with 𝑏∗. Because 𝐹 𝑡 has full support for all 𝑡 and plurality
rule satisfies unanimity, it follows that 𝑏∗𝑚 >> 0 for all 𝑚. That is, for every 𝑚,
𝑡, 𝐻𝑡

𝑙
, and 𝑎𝑡

𝑙𝑘
∈ 𝐴(𝐻𝑡

𝑙
), 𝑏𝑡∗

𝑚𝑙𝑘
> 0. Consequently every history occurs with positive

probability, so, by Bayes’ rule, for each information set 𝐻𝑡
𝑙
, and for all 𝑚, 𝜇∗

𝑙𝑚
is

uniquely defined, where 𝜇∗
𝑙𝑚

denotes the equilibrium beliefs over the histories in
the information set 𝐻𝑡

𝑙
. Since 𝜇 varies continuously with 𝑏 there is a unique limit,

𝜇∗ = lim𝑚→∞ 𝜇∗𝑚. Since 𝜇∗𝑚 >> 0, and lim𝑚→∞ 𝑏∗𝑚 = 𝑏∗ it follows that 𝜇∗ and
consistent beliefs under 𝑏∗. What remains to be shown is that 𝑏𝑡∗

𝑙
is optimal for all

21Not all sequential equilibria are approachable as limit points of team equilibria in extensive
form. The example of non-approachability provided earlier applies here as well.
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𝑡 and for all 𝐻𝑡
𝑙
. The proof is virtually the same as the proof of Theorem 2, so we

omit it. □

Third, extensive form team games include games of incomplete information where
teams have private information. For example, each team may have private informa-
tion about 𝑢𝑡 , or may have imperfect information about the path of play. Classic
applications include signaling games.

Fourth, there is a rough connection between team equilibria and the extensive form
version of quantal response equilibrium (Mckelvey and Palfrey 1998), with the main
differences being that team size is fixed at n=1 in quantal response equilibrium and
that the disturbances in team equilibrium are private value payoffs, but estimation
errors, so all members of a team have common values. As in the agent model of
quantal response equilibrium, in team games it is assumed that estimated expected
continuation payoffs of each member of 𝑡 at 𝐻𝑡

𝑙
are not observed until 𝐻𝑡

𝑙
is reached.

If instead, each member of 𝑡 observed all its estimates at the beginning of the game,
this would lead to a different formulation of the model.

A last observation is that an alternative way to model team equilibrium in extensive
form games would be to represent an extensive form game by its normal form or
reduced normal form, and then apply the theory developed in Section 2 of this
paper for games in strategic form. However, team equilibrium are not invariant to
inessential transformations of the extensive form, so equilibria of the normal form
or the reduced normal form will in general not be observationally equivalent to team
equilibria in behavioral strategies derived from the extensive form. Such theoretical
differences are suggestive of possible testable implications of the team equilibrium
framework.
2.7 Examples of Extensive Form Games
Sequential Weak Prisoner’s Dilemma Games
Next, we examine a sequential version of the Weak Prisoner’s Dilemma, the simul-
taneous version of which we analyzed in section 3 (Table 2.2). In the sequential
game, the equilibrium outcome depends on the order of moves. If column moves
first, the unique subgame perfect Nash equilibrium is for both teams to defect. This
is because after either cooperate or defect is chosen by column, row is better off
choosing to defect. Since column optimizes by matching row’s action, column
should choose defect.

However, when row moves first, the unique subgame perfect equilibrium is for both
teams to cooperate. This is because in equilibrium team 2 will choose whichever
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action team 1 chooses, defect after defect and cooperate after cooperate, and so team
1 will choose cooperate since 𝐶 > 𝐷.

Figure 2.4 displays the team equilibrium for the two versions of this game with
𝑥 = 𝑦 = 1, and 𝑧 = 8, the same parameter values used for the analysis of the
simultaneous version in Section 3. The left panel shows the team equilibria if team
2 (column) moves first, and the right panel for the case where team 1 (row) moves
first, for (odd) 𝑛 ranging from 1 to 199, and 𝐻 (𝑥) = 1

1+𝑒−0.3𝑥 . The solid light gray
line is the team 2’s (first mover) defect probability, and the dashed light gray line
is team 2’s individual member’s defect probability. The solid black line the defect
probability of team 1 after either cooperation or defection by team 2, and the dashed
black line is team 1’s individual member defect probability after either cooperation
or defection by team 2.22

(a) Sequential WPD, team 2 moves first (b) Sequential WPD, team 1 moves first

Figure 2.4: Team Equilibrium in the Sequential WPD

When team 2 moves first, team 1’s individual voting probabilities for defect are
independent of 𝑛, because 𝑥 = 𝑦 = 1, so the payoff difference between defect and
cooperate for team 1 is the same. In fact, they are the same as in the simultaneous
version studied in Section 3, namely 𝐻 (𝑦). So in this case, for any 𝐻 (·) and for
any 𝑛, the team equilibria of the simultaneous move version and team 2 first mover
sequential version of the game are identical.

However, when team 1 moves first the team equilibria converge rapidly to the action
profile (𝐶,𝐶). When team 1 chooses cooperate, the difference in expected utility to
team 2 between choosing defect and cooperate is −𝑧 < 0, so the individual voting
probabilities are 𝐻 (−𝑧) < 1

2 , and when team 1 chooses defect, the difference is 𝑦,
so the individual voting probabilities in this case are 𝐻 (𝑦) > 1

2 .
22The black and dark gray curves coincide in the left panel (a) of Figure 2.4, so both appear as

black.
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These voting probabilities are constant for all 𝑛, so team 2’s individual voting prob-
ability of defection after defection converges to 1 and defection after cooperation
converges to 0. Therefore, as 𝑛 increases, the expected utility difference between
defection and cooperation for team 1 decreases, and the team 1 individual vot-
ing probabilities and team probabilities decrease and converge to 0 probability of
defection.

Centipede Games
Finally, we analyze team equilibria in a 4-move centipede game with exponentially
increasing payoffs. At every outcome of this game, there is a high payoff and a
low payoff, which initially equal 4 and 1, respectively. Two teams (1 and 2) take
turns choosing to take or pass in sequence, starting with team 1. If team 1 chooses
take the game ends, and team 1 receives the higher payoff while team 2 receives the
lower payoff. If team 1 chooses pass, the two payoffs are doubled and team 2 gets
to choose take or pass. This continues for up to 4 moves (fewer if one of the teams
takes before the 4 node of the game), with the payoffs doubling after each pass. If
pass is chosen at the last node, the game ends and team 1 receives 64 while team 2
receives 16. The two teams alternately play at most two nodes each in this game.

Since this is a finite game, the unique subgame perfect Nash equilibrium can be
solved for by backward induction: choose take at every node.

In Figure 2.5 we display the team equilibrium majority-rule choice probabilities and
individual voting probabilities for this game for (odd) 𝑛 ranging from 1 to 119, and
𝐻 (𝑥) = 1

1+𝑒−𝑥/8 . In the left panel are the team probabilities and in the right panel are
the individual voting probabilities, with probability of taking and voting for take on
the y axis and team size on the x axis.

(a) Centipede Game, Team Take Proba-
bilities

(b) Centipede Game, Individual Voting
Probabilities

Figure 2.5: Team Equilibrium in the Centipede Game
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At the final node of the game, observe that the individual voting probabilities are
fixed at 𝐻 (16) ≈ 0.88. As 𝑛 increases, the team probability of taking at this node
converges rapidly and monotonically to 1. Voting probabilities at the early nodes
are influenced by the team choice probabilities at future nodes. As 𝑛 increases, the
probability that the opposing team will take at future nodes increases, decreasing
the continuation value of passing. This causes the voting probabilities for take to
increase and hence the team equilibrium probability of taking increases at every
node as team size grows, which is consistent with experimental findings (Bornstein
et al. 2004). Since, if the opposing team takes at the next node with probability 1, it
is better to take at the current node than to pass, the individual voting probabilities
converge to values strictly above 1/2, and so majority rule ensures that all team take
probabilities eventually converge to 1.
2.8 Discussion and Conclusions
This paper proposed and developed a theory of games played by teams of players.
The framework combines the non-cooperative approach to model the strategic in-
teraction between teams, with a collective choice approach to the decision making
process within teams. The individual members of each team have correct beliefs
on average about the expected payoffs to each available team strategy, given the
distribution of strategy profiles being used by the other teams in the game. A team
collective choice rule maps the profile of members’ beliefs into a team strategy deci-
sion. Given an error structure and a collective choice rule, this induces a probability
distribution over strategy choices for each team. A team equilibrium is a profile of
mixed strategies, one for each team, with the property that the collective choice rule
of each team will generate its equilibrium mixed strategy, given the distribution of
beliefs of the individual members of the team.

The approach is initially formulated for finite games in strategic form. Four main
results are proved for strategic form team games. First, team equilibria generally ex-
ist. Second, we show that all anonymous scoring rules satisfy the Nash convergence
property: as team sizes become large, all limit points of team equilibria are Nash
equilibria. Counterexamples are constructed to illustrate non-Nash limit points if
teams do not use anonymous and/or neutral scoring rules. Third, we identify two
weak conditions, unanimity and positive responsiveness, that are sufficient for team
response functions to satisfy payoff monotonicity, in the sense that the probability
a team chooses a particular action is increasing in the true expected payoff of that
action. Fourth, we identify stronger conditions on the collective choice rule that
guarantee rank dependence, i.e., the property that team choice probabilities are
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ordered by the actions’ true expected payoffs.

Team equilibria for games in strategic form are illustrated for several 2 × 2 games,
where the collective choice rule is majority rule. These examples illustrate two
distinct effects of changing team size on outcomes. The first is the consensus
effect. If the probability any individual on a team chooses one of the strategies is
𝑝 > 1/2, then the probability a majority of the individuals on the team choose that
strategy is greater than 𝑝, and is strictly increasing in the size of the team. The
second effect is the equilibrium effect, which arises because in equilibrium, 𝑝 will
generally vary with 𝑛, and this equilibrium effect can go in the opposite direction
from the consensus effect. Some of the examples suggest possible team games that
might be interesting to study in the laboratory, where increasing team size can push
equilibrium outcomes further away from Nash equilibrium.

The second half of the paper extends the framework to finite games in extensive form.
Individuals are assumed to have correct beliefs on average at every information set
about the expected continuation value of each available action at that information
set. The results for strategic form team games about payoff monotonicity and
rank dependence of team response functions and Nash convergence also apply to
extensive form team games, with the latter result strengthened to show that limit
points of team equilibrium in extensive form games are sequential equilibria.

We are hopeful that this framework is a useful starting point for the further explo-
ration and understanding of how teams of players play games. There are many open
questions that deserve further study and we mention a few. One is to generalize
the class of collective choice rules that have the Nash convergence property. We
identified one broad class of such collective choice rules (anonymous scoring rules),
but we are well aware that there are many other rules with this property. One tempt-
ing conjecture is that Nash convergence obtains if all teams use a collective choice
rule that satisfies unanimity, payoff monotonicity, rank dependence, neutrality, and
anonymity. However it turns out that this is not sufficient. Consider the collective
choice rule that uniquely selects action 𝑎𝑡

𝑘
if and only if 𝑎𝑡

𝑘
is unanimously ranked

highest by all team members, and otherwise the collective choice rule selects the
entire set, 𝐴𝑡 . This satisfies all the above properties, but in the limit the team’s
strategy will always converge to uniform mixing over 𝐴𝑡 , regardless of the mixed
strategies of the other teams.

An interesting related question is how to extend the results about rank dependence
with more than two actions to more general collective choice rules. We conjec-
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ture that rank dependence holds generally for collective choice rules that satisfy
unanimity, positive responsiveness, and neutrality.

The framework can be expanded in several interesting directions. This paper as-
sumed the collective choice rule of each team was exogenous, but as several of
the examples suggest, teams may have preferences over collective choice rules in
particular games. That is, one could pose the question, given the collective choice
rule of the other teams, what would be an optimal collective choice rule for my team
in the sense that the resulting team equilibrium with this profile of collective choice
rules gives members the highest expected utility? Would optimal collective choice
rules satisfy payoff monotonicity and rank dependence? Taking this a step further,
one could define an equilibrium in collective choice rules and study its properties
in different games.

Another direction to extend the framework would be to allow for a broader class
of games than the finite games studied here. Many games of significant interest
have infinite strategy spaces, including oligopoly, auction, and bargaining models
in economics and spatial competition models in political science. In principle,
the framework might be able to accommodate such an extension, for example by
using finite approximations to the strategy space, but specific applications might
face computational challenges. Similarly, some Bayesian games of interest, such as
auctions, have a continuum of types; allowing for a continuum of types would seem to
be a feasible extension if the action spaces are finite. The incorporation of behavioral
biases and preferences (loss aversion, judgement biases, social preferences, etc.)
would be straightforward, provided the effects are homogeneous across members of
the group.

There are alternative approaches to modeling team games and extensions of the
present approach that are beyond the scope of the framework presented here. For
example, one might try to formalize the notion of “truth wins" - i.e., the idea that
the team will adopt the choice favored by the most rational member of the group.
This would require some formal notion of how to rank the rationality of the group
members (such as level-k), coupled with a theory of persuasion, whereby the more
rational members are able to change the beliefs of less rational members. Another
alternative approach, which is more in the spirit of implementation theory and
mechanism design, is to model the internal team decision making process as non-
cooperative game rather than an abstract collective choice rule. This would create a
nested game-within-a-game structure, which would add another layer of complexity.
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C h a p t e r 3

BIAS AND BELIEFS IN DETERRENCE AND DETECTION

3.1 Introduction
The economic analysis of crime typically focuses on the role of deterrence, through
the enforcement of laws, in harm reduction and the protection of property rights. By
outlawing harmful behaviors and imposing sanctions upon individuals or organiza-
tion that might transgress the law, governments seek to reduce harm via deterrence.
The possibility of punishment, however, places a strong incentive on offenders to
actively hide their behavior. The quantity of crime is thus inherently difficult to
measure. Only the portion of crime that enforcement agents successfully detect
is observable to themselves, to other government officials and representatives, and
ultimately to the public.

In light of this measurement problem, how do law enforcement agencies make
decisions about investments into the detection of crime? In this paper, I present
a law enforcement model, and an equilibrium notion, in order to address these
issues. In the model, an enforcement agency makes a trade-off between a costly
investment into detection that contributes to deterrence, and the harm caused by
crime. The optimal investment depends on the magnitude of its deterrent effect,
which is unknown to the agency.

By expending more resources on the detection of crime, enforcement agencies can
increase the probability that any individual crime is detected, thereby imposing a
greater expected punishment for committing the crime on potential offenders and
reducing the quantity of offenses. This deterrent effect tends to decrease the quantity
of crime the agency observes. By increasing its investment into detection, the agency
also increases the proportion of crimes committed that it detects, which tends to
increase the quantity of crime observed.

The only feedback available to the agency is the quantity of crime that it detects,
and only from this data, and knowledge of its own behavior, can it learn about the
quantity of crime and the response of crime to enforcement efforts. An equilibrium
is an investment into detection, along with beliefs pertaining to the supply of crime,
such that the investment is optimal given beliefs, and the data observed by the agency
is consistent with beliefs. If the agency has an incorrectly specified model of the
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processes that generate the data it observes, it can hold incorrect beliefs and take
sub-optimal actions in equilibrium even as it correctly predict the data.

One key insight captured by this model is the possibility of an inefficiently high
or low detection investment arising from “feedback loops" between crime data and
policing decisions. Many scholars in the law, criminology and machine learning
communities, as well as numerous political activists, have pointed to the possibility
for these feedback loops in the area of local policing. If a police department
dispatches more police to patrol one neighborhood than it does to patrol another,
it may detect more crime in the first neighborhood than in the second simply by
virtue of having sent more police there. On the basis of this feedback it may
incorrectly learn that the first neighborhood has more crime than it actually does,
reinforcing its decision to assign more police to it. An equilibrium of the model in
this paper captures exactly this intuition, and allows for a more precise analysis of the
conditions under which a population is likely to be over-policed or under-policed.

The paper proceeds as follows. In section 2 I cover the related literature in economics.
There I highlight especially connections to the theoretical economic literature on
crime, the behavioral literature on overconfidence, and the empirical literature on
police deterrence. In section 3, I present the model and equilibrium concept,
and provide an illustrative example. Section 4 contains some general results on
existence of equilibria. In section 5 I analyze a version of the model in which only
equilibria with over-policing, or only equilibria with under-policing, exist under
some conditions. Finally, in section 6 I conclude and discuss avenues for future
study.

3.2 Related Literature
Becker (1968) is generally recognized as having inaugurated the modern theoretical
economic study of crime. In this literature, the act of committing a crime is modeled
as a risky gamble that imposes harm on third parties, and potential criminals as selfish
expected utility maximizers. The objective of law enforcement is generally taken
to be the maximization of social welfare, and the primary policy instruments are
the magnitudes and types of punishments levied against offenders, and the quantity
of costly effort expended toward detection and apprehension. Becker (1968) argues
that the socially optimal policy is to maximize punishment magnitude and reduce
detection effort, since increasing punishment magnitude is costless while detection
effort is costly, and these variables are substitute determinants of the expected
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punishment for offending.

Subsequent studies identify conditions under which maximal punishments are so-
cially undesirable. Since imprisonment is socially costly for many reasons, the
maximal prison term length is generally not optimal, and less costly punishments
should be used when possible (Becker (1968), Posner (1980)). When agents are risk
averse in wealth, reducing fines may improve social welfare by reducing risk born
by agents (Polinsky and Shavell (1979), Kaplow (1992)). If agents are uninformed
of the legality of an illegal act (Kaplow (1990)), or if they are unsure of the probabil-
ity of apprehension (Bebchuk and Kaplow (1992)), optimal fines are generally not
maximal. Many other theoretical justifications of non-maximal punishments have
been offered, Polinsky and Shavell (2000) and Garoupa (1997) give useful reviews
of these and other related extensions of the model. In general, when there are some
costs associated with increasing punishment severity, non-maximal punishments are
optimal and some amount of costly investment into detection and apprehension is
socially preferable, and it is the use of this policy instrument that is the focus of this
study.

This previous literature on optimal law enforcement generally takes as known the
distribution of benefits from crime in the population and the detection capabilities of
enforcement agents. To extend the analysis to the case in which these primitives are,
more realistically, unknown, I adopt a modeling approach related to several strands
of recent theoretical study.

First, the equilibrium notion I use roughly corresponds to a notion of self-confirming
equilibrium, introduced by Fudenberg and Levine (1993). In a self-confirming
equilibrium, each agent best responds given his beliefs, and beliefs are correct
along the equilibrium path but may be incorrect off-path. Similarly, I will say the
law enforcement agency is in equilibrium when its beliefs about the crime data it
observes are correct given its actual investment decision.

Secondly, there is a multitude of studies on the behavior of agents with incorrect
beliefs about, or misspecified models of, their environment. For example, Kagel and
Levin (1986) among others document a winners curse in common value auctions in
the lab, especially among inexperienced bidders. Eyster and Rabin (2005) introduce
the cursed equilibrium solution concept inspired by this phenomenon, in which
agents do not understand how the actions of other agents depend on their private
information. In another example, Rabin (2002) studies a model in which agents
suffer from a belief in the “law of small numbers", the tendency to over-infer from
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small samples.

Most relevant for this study is the behavioral literature on overconfidence, an un-
realistic belief in personal ability. Heidhues et al. (2018) study an overconfident
agent that chooses an action in some production process, receives payoff feedback,
and learns from this about a primitive of the production process. In my model,
the mapping from detection investment to the probability of detecting crime can be
interpreted as the enforcement agency’s ability, and the incorrect beliefs about this
mapping held by the agency can be interpreted as an institutional over- or under-
confidence. Thus I contribute to the overconfidence literature by showing how an
institution that is over- or underconfident at the organizational decision making level
can be confirmed in its incorrect beliefs while making suboptimal decisions.

Alongside the large body of theoretical work on crime, is the large empirical liter-
ature in economics that seeks to estimate the deterrent effect of law enforcement.
Chalfin and McCrary (2017) provides a helpful, recent review of methods and evi-
dence. At least two key impediments to the estimation of the causal effect of policing
on crime are generally acknowledged.

First, variance in enforcement efforts is likely not exogenous to other determinants
of the quantity of crime. For example governments may increase police funding
and manpower in response to increases in crime. Many early panel data studies
using data on police manpower and crime found very small or incorrectly signed
relationships between policing and crime. More recent instrumental variable and
natural experiment studies, including Levitt (2002), Evans and Owens (2007) and
Lin (2009) find large negative effects of police on crime. I am aware of little
econometric work on the other direction of causation, the response of police behavior
to crime.

Second, some authors have recognized that errors in the measurement of police
activity or quantity of crime may influence empirical results. Levitt (1998) discusses
random errors in the measurement of the quantity of crime, and dismisses the
possibility that it has a major influence on empirical estimates of the deterrence
effect. Chalfin and McCrary (2013, 2018) argue that mis-measurement of the
quantity of police is a better explanation than simultaneity bias for the small estimates
of the deterrent effect in cross-sectional and panel data studies. After correcting for
measurement error they find a strongly negative relationship between policing and
the quantity of violent crime.
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However, to the best of my knowledge, measurement error in the quantity of crime
resulting from variation in policing intensity has not been addressed in the empirical
literature. Crime data collected by police agencies are likely to suffer from a missing
data problem. Only those crimes detected by police show up in the data, and the
proportion of crime detected depends on the allocation of police resources. It is
possible that, holding the actual amount of crime constant, more heavily policed
areas show up as having more crime in the data. Without a more thorough under-
standing of the relationship between crime data and police behavior, it is unclear
what its implications are for empirical estimates of the deterrent effect.

3.3 Model
In this section I introduce a model of public enforcement of the law, extend the model
to the case in which certain primitives are unknown, and finally provide conditions
for existence of an equilibrium.

Public Law Enforcement Model
A population of agents with unit mass must each decide either to commit a potentially
harmful act, yielding private benefit 𝑏ℎ, or engage in some alternative, harmless
activity yielding private benefit 𝑏𝑙 . The agents have heterogeneous net private
benefits 𝑏 = 𝑏ℎ − 𝑏𝑙 , distributed according to cdf 𝐺 (·), with pdf or pmf 𝑔(·). The
act imposes a harm, or cost ℎ > 0 on third parties, while the harmless act imposes
no costs on third parties. A government authority outlaws the act, making it a crime,
establishes a fine, and tasks an enforcement agency with detection, investigation and
apprehension of agents that commit the act.

The enforcement agency chooses an investment into detection 𝑥 ≥ 0, which has
a constant marginal cost of 1. An investment in detection may for example be an
investment of resources into police patrol, or auditing. Let 𝑝 : R+ → [0, 1], the
“detection function", give the probability of detecting a crime given the level of
investment. Assume p is twice continuously differentiable, and that 𝑝′ > 0 and
𝑝
′′ ≤ 0. Let 𝑓 be the fixed expected fine conditional on being detected. Assume the

potential criminals are risk neutral, then potential criminals will commit the crime
when 𝑏 > 𝑝(𝑥) 𝑓 .

The objective of the law enforcement agency is to maximize social welfare, defined
here as the sum of all agents’ payoffs. If the fine is treated as a cost-less transfer, the
social welfare can be written as follows.
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𝑊 (𝑥) =
∫ ∞

𝑝(𝑥) 𝑓
(𝑏 − ℎ)𝑔(𝑏)𝑑𝑏 − 𝑥

=

∫ ∞

𝑝(𝑥) 𝑓
𝑏𝑔(𝑏)𝑑𝑏 − [1 − 𝐺 (𝑝(𝑥) 𝑓 )]ℎ − 𝑥

A typical analysis of the model would proceed with the assumption that the law
enforcement agency knows the distribution 𝐺 (·), detection function 𝑝(·) the harm
ℎ and the constant marginal cost 1, and selects the investment into detection that
maximizes𝑊 (𝑥).

For a continuous distribution over benefits, the first order condition for a non-zero
investment is

𝑔(𝑝(𝑥) 𝑓 )𝑝′(𝑥) 𝑓 [ℎ − 𝑝(𝑥) 𝑓 ] = 1

The marginal benefit of increasing 𝑥 is the product of the marginal decrease in the
mass of crimes committed 𝑔(𝑝(𝑥) 𝑓 )𝑝′(𝑥) 𝑓 , with the social benefit of deterring
the marginal crime [ℎ − 𝑝(𝑥) 𝑓 ], and this must equal the marginal cost of 1. A
sufficient second order condition for optimality is that the density 𝑔(𝑝(𝑥) 𝑓 ) is
weakly decreasing for all 𝑥 ≥ 0, which guarantees that the objective is strictly
concave over all 𝑥 such that 𝑝(𝑥) 𝑓 ∈ [𝑝(0) 𝑓 , 𝑓 ], the set of feasible expected fines
imposed on potential criminals.

Not the important observation first made by Polinsky and Shavell (1984) that at the
optimal investment, all efficient crimes, those with private benefit greater than harm
ℎ, are committed, and some inefficient crimes, those with private benefit less than
ℎ, also go undeterred since [ℎ − 𝑝(𝑥) 𝑓 ] must be positive.

However, it remains to be explained how the law enforcement agency knows the
primitives that appear in their social welfare objective. In particular the distribution
𝐺 (·) and the detection function 𝑝(·) that determines the supply of crime.

Beliefs and Equilibrium
In this section, I extend the law enforcement model presented in the previous section
to the case of unknown𝐺 (·) and 𝑝(·). The general modeling approach taken follows



79

in the spirit of the self-confirming equilibrium literature. The enforcement agency
is endowed with some beliefs about 𝐺 (·) and 𝑝(·) and maximizes social welfare
given these beliefs. Crime data gathered by the agency provides it with observable
feedback about the supply of crime. Only when this data is consistent with the
agency’s beliefs does the agency have no reason to update its beliefs. Only when the
agency believes it is maximizing social welfare does it have no reason to change its
investment choice. These two conditions motivate the solution concept presented in
this section.

Definition 1. An Enforcement Environment is a tuple (𝑝, 𝑝,Θ, 𝜃∗, (𝐺𝜃)𝜃∈Θ, ℎ, 𝑓 ).

The family of distributions (𝐺𝜃)𝜃∈Θ parametrized by Θ represents the set of distri-
butions the agency believes to be possible a priori. A (point) belief of the agency
is a parameter 𝜃 ∈ Θ. Let 𝜃∗ ∈ Θ be the parameter corresponding to the true distri-
bution 𝐺𝜃∗ . I assume the agency is endowed with a fixed belief about the detection
function, 𝑝(.), with 𝑝′ > 0 and 𝑝′′ ≤ 0. The true detection function is labeled 𝑝(·),
also with 𝑝′ > 0 and 𝑝′′ ≤ 0. The parameters ℎ and 𝑓 are the fixed harm and fine
respectively.

The assumption of a fixed, incorrect belief about some primitive of the model is
similar to the assumptions made in the over-confidence literature, for example in
Heidhues et al. (2018), in which the agent is assumed to have a fixed belief about
his own ability, and learns about some other primitive of a production process
by observing payoff feedback. The detection function in this model may in some
ways be interpreted as an analog of personal ability in over-confidence models. It
represents the agency’s ability to use resources to fulfill its role in detecting crime.
When 𝑝(𝑥) > 𝑝(𝑥) for all 𝑥, the agency may be said to display “over-confidence",
and when 𝑝(𝑥) < 𝑝(𝑥) for all 𝑥 we might label it “under-confident".

Let 𝑥∗(𝜃) and 𝑥(𝜃) denote the sets of maximizers of social welfare at 𝜃 under the
true detection function 𝑝(·), and under the belief 𝑝(.), respectively.

𝑥∗(𝜃) = argmax𝑥≥0

∫ ∞

𝑝(𝑥) 𝑓
𝑏𝑔𝜃 (𝑏)𝑑𝑏 − [1 − 𝐺𝜃 (𝑝(𝑥) 𝑓 )]ℎ − 𝑥

𝑥(𝜃) = argmax𝑥≥0

∫ ∞

𝑝(𝑥) 𝑓
𝑏𝑔𝜃 (𝑏)𝑑𝑏 − [1 − 𝐺𝜃 (𝑝(𝑥) 𝑓 )]ℎ − 𝑥
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The only observable data available to the agency is the quantity of crime that it
detects, which is determined jointly by the probability the agency detects a crime,
and the quantity of crime committed. The quantity of crime committed is in turn
determined by the incentives faced by potential criminals: the private benefit, the
fine, and the probability of being detected.

Given a distribution of benefits𝐺𝜃 and fixed fine f, the supply of crime as a function
of the probability of detection 𝑝 is given by 𝑆𝜃 (𝑝) = [1 − 𝐺𝜃 (𝑝 𝑓 )]. When the
agency invests 𝑥 into detection, its observable data is 𝑝(𝑥)𝑆𝜃∗ (𝑝(𝑥)). When the
agency has belief 𝜃, it expects to observe 𝑝(𝑥)𝑆𝜃 (𝑝(𝑥)).

Adopting the notation of Heidhues et al. (2018), define the surprise function
Γ(𝑥, 𝜃; 𝜃∗) as follows:

Γ(𝑥, 𝜃; 𝜃∗) = 𝑝(𝑥)𝑆𝜃∗ (𝑝(𝑥)) − 𝑝𝑆𝜃 (𝑝(𝑥))

Γ(𝑥, 𝜃; 𝜃∗) gives the difference between the quantity of detected crime and the
quantity the agency expects to detect when the agency holds belief 𝜃 and invests 𝑥.
Equilibrium attains when the agency is not surprised by the feedback generated by
its investment, and it chooses an investment that maximizes its objective given its
beliefs.

Definition 2. An Equilibrium of an enforcement environment (𝑝, 𝑝,Θ, 𝜃∗, (𝐺𝜃)𝜃∈Θ, ℎ, 𝑓 ),
is an ordered pair (𝑥, 𝜃) ∈ R+ × Θ such that

1. 𝑥 ∈ 𝑥(𝜃) = argmax𝑥≥0
∫ ∞
𝑝(𝑥) 𝑓 𝑏𝑔𝜃 (𝑏)𝑑𝑏 − [1 − 𝐺𝜃 (𝑝(𝑥) 𝑓 )]ℎ − 𝑥

2. Γ(𝑥, 𝜃; 𝜃∗) = 0

Discrete Distribution Example
To illustrate the equilibrium concept, I present an example with a two point discrete
distribution over the private benefit of crime and linear detection functions.

Suppose all potential criminals derive benefit 𝑏 ∈ {𝑏, 𝑏}, with 0 < 𝑏 < 𝑏. Let the
true proportion of potential criminals with benefit 𝑏 be 𝜃∗ ∈ Θ = [0, 1]. Let the
true detection function be 𝑝(𝑥) = 𝑥 + 𝛽, and suppose the police agency believes the
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detection function is 𝑝(𝑥) = 𝑥 + 𝛽. The law enforcement agency holds incorrect
beliefs about the proportion of crime detected when the investment is 0. In the
interest of simplicity let ℎ = 𝑓 = 1.

Suppose that 𝛽 < 𝛽 < 𝑏 < 1 < 𝑏. At zero investment, no crime is deterred, since
the true and perceived expected fine at this investment is 𝑝(0) 𝑓 = 𝛽 and 𝑝(0) 𝑓 = 𝛽.
Additionally, it is efficient for the high benefit crime to be committed, since the high
benefit is greater than the harm of 1. Consequently full deterrence is dominated by
partial deterrence, and so will never be chosen.

The law enforcement agency therefore chooses between two investment levels:
𝑥 = 0, the no deterrence investment, and 𝑥 = 𝑏−𝛽, the partial deterrence investment,
to deter only the low benefit potential criminals. The agency perceives that any
intermediate investment wastes resources, that there exists a lower investment that
deters the same amount of crime.

The choice between partial deterrence and no deterrence pivots on the value of 𝜃.
For low values of 𝜃, most potential criminals have a low benefit, and so deterrence
is highly effective. At higher values of 𝜃, the high benefit group outnumbers the low
benefit group, and the costs of deterrence outweighs the smaller amount of crime
deterred. In particular, we have that partial deterrence is preferred when

𝜃 (𝑏 − 1) − (𝑏 − 𝛽) > 𝜃 (𝑏 − 1) + (1 − 𝜃) (𝑏 − 1)
𝜃 (𝑏 − 1) > (𝑏 − 1) + (𝑏 − 𝛽)

𝜃 < 1 −
𝑏 − 𝛽
1 − 𝑏

and otherwise no deterrence is preferred.

In figure 1 I plot 𝑥(𝜃), the enforcement agency’s optimal investment as a function
of the distribution parameter, given their belief about the detection function 𝑝(𝑥),
and the optimal investment 𝑥∗(𝜃) given the true detection function, for the values
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Figure 3.1: Equilibrium For Two Point Distribution Example

𝛽 =
1
8
, 𝛽 =

2
5

𝑏 =
1
2
, 𝑏 = 2, 𝜃∗ = 2/3

The actual investment into detection required for partial deterrence is 𝑏 − 𝛽 = 3
8 , but

the agency invests only 1
10 , so that at no belief 𝜃 will the agency achieve even partial

deterrence.

In equilibrium, the agency must be optimizing given its beliefs, and the quantity of
detected crime must be equal to the quantity of crime the agency predicts it will
detect. The surprise function gives the difference between these two quantities.

Γ(𝑥, 𝜃; 𝜃∗) = 𝑝(𝑥)𝑆𝜃∗ (𝑝(𝑥)) − 𝑝(𝑥)𝑆𝜃 (𝑝(𝑥))
= (𝑥 + 𝛽)𝜃∗ − (𝑥 + 𝛽)𝜃 if 𝑥 ≥ (𝑏 − 𝛽)
= (𝑥 + 𝛽) − (𝑥 + 𝛽)𝜃 if 𝑥 ∈ [(𝑏 − 𝛽), (𝑏 − 𝛽))
= (𝑥 + 𝛽) − (𝑥 + 𝛽) < 0 if 𝑥 < (𝑏 − 𝛽)

An equilibrium is a point belief 𝜃 ∈ Θ, along with investment 𝑥(𝜃), such that
(𝑥(𝜃), 𝜃) has zero surprise, that is Γ(𝑥(𝜃), 𝜃; 𝜃∗) = 0. In figure 1, this is visualized
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as the intersection of two sets, {𝑥, 𝜃; 𝑥 = 𝑥(𝜃)}, the graph of the otpimizer, and
{𝑥, 𝜃; Γ(𝑥, 𝜃; 𝜃∗) = 0}, the region of (𝑥, 𝜃) space in which the surprise is zero.

We search now for such an equilibrium. First, since there does not exist a 𝜃 for
which 𝑥(𝜃) > (𝑏 − 𝛽), this case can be discarded. Since 𝛽 > 𝛽, the surprise is
strictly negative whenever 𝑥 < (𝑏 − 𝛽), so this case is also eliminated.

The only remaining possibility for an equilibrium is the case in which 𝑥(𝜃) ∈
[(𝑏−𝛽), (𝑏−𝛽)), in particular at the partial deterrence investment 𝑏−𝛽. Computing
the surprise function for this value of 𝑥:

Γ((𝑏 − 𝛽), 𝜃; 𝜃∗) = 0

(𝑏 − 𝛽 + 𝛽) − 𝑏𝜃 = 0

𝜃 =
𝑏 − 𝛽 + 𝛽

𝑏

So there is an equilibrium with 𝜃 = 𝑏−𝛽+𝛽
𝑏

and 𝑥(𝜃) = 𝑏 − 𝛽, as long as 𝜃 < 1− 𝑏−𝛽
1−𝑏 .

For the numerical values displayed in figure 3.1, we have that this is 𝜃 = 9
20 and

𝑥(𝜃) = 1
10 . The blue curve in figure 1 traces out set of pairs (𝑥, 𝜃) at which the

surprise function Γ is equal to 0, for 𝜃∗ = 2/3. The equilibrium is the point where
the zero surprise curve intersects with 𝑥(𝜃).

In this equilibrium, the enforcement agency invests in what it believes to be the
partial deterrence probability of detection. In truth it does not deter any crime, so
that the true supply of crime is 1. The agency believes that the high benefit type of
potential criminal is undeterred, so different values of 𝜃 induce different predictions
by the agency about the quantity of detected crime. Exactly one of those values
of 𝜃 rationalizes the data observed by the agency, and if this belief supports partial
deterrence, then it is an equilibrium belief.

3.4 Equilibrium Existence
In this section, I provide sufficient conditions on 𝑝(·), 𝑝(.) and (𝐺𝜃)𝜃∈Θ for the
existence of an equilibrium. An example of an enforcement environment in which
no equilibrium exists is first given, in order to motivate the subsequent section in
which the sufficient conditions are described.
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Figure 3.2: Equilibrium Non-Existence with Two Point Distribution

Example of Non-Existence under Misspecification
In the two-point distribution example presented in the previous section, when 𝛽 <
𝛽 < 𝑏 < 1 < 𝑏, an equilibrium exists if and only if the zero surprise belief at
the perceived partial deterrence investment 𝑏 − 𝛽 is small enough so that partial
deterrence is optimal. In the inequality below, the left hand side is the zero surprise
belief and the right hand side is the cutoff for optimality of the partial deterrence
investment.

(𝑏 − 𝛽 + 𝛽)
𝑏

≤ 1 −
𝑏 − 𝛽
1 − 𝑏

Fixing 𝑏, 𝑏, 𝛽, the parameter 𝛽 must be large enough to guarantee existence. Non-
existence is illustrated in figure 3.2. All parameters are the same as in figure 3.1
except for 𝛽 which is now set to 1

4 .

When 𝛽 is not large enough, the surprise at the optimal allocation Γ(𝑥(𝜃), 𝜃; 𝜃∗)
is strictly positive when the partial deterrence investment is optimal, and strictly
negative when 0 investment is optimal.

The key obstructions to existence in this case are the discontinuity of the surprise
function and optimum investment, and the fact that at a detection investment of
zero, the quantity of crime does not vary with the distribution parameter. Both of
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these features are consequences of the discreteness of the benefit distribution. By
focusing on continuous distributions over benefits, both obstructions can be lifted
with some mild assumptions.

Sufficient Conditions for Existence
In this section I focus on families of continuous distributions (𝐺𝜃)𝜃∈Θ and provide
sufficient conditions under which an equilibrium is guaranteed to exist.

The general strategy I follow to prove existence involves identifying conditions
under which the surprise function Γ(𝑥(𝜃), 𝜃; 𝜃∗) is continuous in 𝜃, positive at one
extreme of Θ, and negative at the other extreme. The result then follows from the
intermediate value theorem.

Assumption 1: For all 𝜃 ∈ Θ, 𝐺𝜃 (.) is continuously differentiable with derivative
𝑔𝜃 (.) weakly decreasing on R+.

First, recall from section 3.3 that if the density of benefits 𝑔𝜃 (.) is weakly decreasing
on R+, then the enforcement agency’s objective is strictly concave on R+ and the
second order condition is satisfied. Strict concavity also guarantees unique maxima,
so that 𝑥(𝜃) and 𝑥∗(𝜃) are functions.

Next, note that an investment of zero dominates any investment greater than the
harm ℎ. For all 𝜃, for all 𝑥′ > ℎ, we have

[𝐺𝜃 (𝑝(𝑥′) 𝑓 ) − 𝐺𝜃 (𝑝(0) 𝑓 )]ℎ − 𝑥′ < 0 <
∫ 𝑝(𝑥′) 𝑓

𝑝(0) 𝑓
𝑏𝑔𝜃 (𝑏)𝑑𝑏∫ ∞

𝑝(𝑥′) 𝑓
(𝑏 − ℎ)𝑔𝜃 (𝑏)𝑑𝑏 − 𝑥′ <

∫ ∞

𝑝(0) 𝑓
(𝑏 − ℎ)𝑔𝜃 (𝑏)𝑑𝑏

Intuitively, the maximum social harm net of private benefit prevented by an invest-
ment of 𝑥′ is ℎ, so an investment that costs more than ℎ is always worse than an
investment of zero. As a result we can, wlog, restrict the choice set of the agency
to the compact interval [0, ℎ]. The maximum theorem then implies that 𝑥(𝜃) and
𝑥∗(𝜃) are continuous functions.

Assumption 2: Θ = (0,∞), 𝐺𝜃 (.) converges point-wise to the constant function
that equals 0 as 𝜃 → ∞, and point-wise to 1 as 𝜃 → 0, and 𝐺𝜃 (𝑧) is continuous in
𝜃 for all 𝑧.
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Assumption 2 is a technical, richness assumption on the family of distributions
(𝐺𝜃)𝜃∈Θ. It says that a proportion 𝜙 of the mass of the distribution can be pushed
(in a continuous way) arbitrarily far away from zero by increasing 𝜃, and an arbi-
trary amount of mass can be pushed below zero by decreasing 𝜃. In other words,
the agency’s model of crime does not reject, a priori, the possibility that no one
would ever commit crime, or that everyone would always commit crime, so that
enforcement policies have no effect on the supply of crime.

Examples of families of distributions that satisfy both assumptions 1 and 2 include
the uniform on [0, 𝜃], the exponential with parameter 1/𝜃.

Assumption 3: 𝑝(0) = 𝛽 > 0 and 𝑝(0) = 𝛽 > [1 − 𝐺𝜃∗ (𝛽 𝑓 )].

Assumption 3 says that at an investment of zero the agency actually detects, and
believes it detects, a positive proportion of crime 𝛽 and 𝛽 respectively. Even when no
investment is made into detecting crime, some crime may be revealed either through
the self-reports of victims, or through some secondary sources of information. For
example victims of theft may file a report with the police, and traffic accidents may
reveal evidence of some traffic violations independently of the activity of highway
patrol.

The condition that 𝛽 > [1 − 𝐺𝜃∗ (𝛽 𝑓 )] says that at an investment of zero, the
proportion of crime the agency expects to detect is greater than the quantity of
crime it actually detects.

Theorem 1. If the enforcement environment (𝑝, 𝑝,Θ, 𝜃∗, (𝐺𝜃)𝜃∈Θ, ℎ, 𝑓 ) satisfies
assumptions 1-3, then there exists an equilibrium.

Proof. Assumption 1 implies that 𝑥(𝜃) is single valued for all 𝜃 ∈ Θ. Since 𝑥(𝜃)
is bounded above by h, the maximum theorem implies that 𝑥(𝜃) is a continuous
function of 𝜃. It follows immediately that 𝑆𝜃∗ (𝑝(𝑥(𝜃)) 𝑓 ) is continuous in 𝜃.

By assumption 2, 𝐺𝜃 (.) is continuous in 𝜃, so we have that 𝑆𝜃 (𝑝(𝑥(𝜃))) = [1 −
𝐺𝜃 (𝑝(𝑥(𝜃)) 𝑓 )] is a continuous function of 𝜃. It follows that Γ(𝑥(𝜃), 𝜃; 𝜃∗) =

𝑝(𝑥(𝜃))𝑆𝜃∗ (𝑝(𝑥(𝜃))) − 𝑝(𝑥(𝜃))𝑆𝜃 (𝑝(𝑥(𝜃))) is continuous in 𝜃.

Assumption 2 and 3 together imply that there exist 𝜃, 𝜃 ∈ Θ with 𝜃 < 𝜃 such that

1. 𝛽[1 − 𝐺𝜃∗ ( 𝑓 )] ≥ [1 − 𝐺𝜃 (𝛽 𝑓 )]
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2. [1 − 𝐺𝜃∗ (𝛽 𝑓 )] ≤ 𝛽[1 − 𝐺
𝜃
(𝛽 𝑓 )]

𝑝 increasing implies that 𝑝(𝑥(𝜃)) [1 − 𝐺𝜃∗ (𝑝(𝑥(𝜃)) 𝑓 )] ≥ 𝛽[1 − 𝐺𝜃∗ ( 𝑓 )] and 𝑝

increasing implies that [1 − 𝐺𝜃 (𝛽 𝑓 )] ≥ 𝑝(𝑥(𝜃)) [1 − 𝐺𝜃∗ (𝑝(𝑥(𝜃)) 𝑓 )]. So line 1
above guarantees that Γ(𝑥(𝜃), 𝜃; 𝜃∗) ≥ 0.

By the same argument, line 2 guarantees that Γ(𝑥(𝜃), 𝜃; 𝜃∗) ≤ 0. It follows from the
intermediate value theorem that there exists a 𝜃 ∈ [𝜃, 𝜃] such that Γ(𝑥(𝜃), 𝜃; 𝜃∗) = 0,
and by definition (𝑥(𝜃), 𝜃) is an equilibrium.

□

3.5 Over-Policing and Under-Policing
In this section I present an analysis of a class of enforcement environments in which
the equilibrium detection investment may be either above or below the optimal in-
vestment level, which I refer to as “over-policing" and “under-policing" respectively.

Let the family of distributions over benefits from crime be the uniform distributions
on [0, 𝜃], 𝐺𝜃 (𝑧) = 𝑧

𝜃
, for 𝑧 ≤ 𝜃. Let the detection functions be linear with

𝑝(𝑥) = 𝑥 + 𝛽 and 𝑝(𝑥) = 𝛼𝑥 + 𝛽, with 𝛼 ≥ 1. The agency has the correct
belief about the proportion of crime detected at an investment of 0, but incorrect
beliefs about the marginal benefit of increasing the investment. In particular it is
overconfident since it overestimates its probability of detecting any given crime at
every 𝑥. Let 𝑓 = ℎ = 1. Since the fine is 1, the expected fine imposed on offenders
by an investment x is 𝑝(𝑥).

As a first step in the analysis, the optimal investment under 𝑝 and 𝑝 for every belief
𝜃 must be derived. First note that any potential offenders with benefit 𝑏 < 𝛽 are
deterred from committing the crime at any investment level. When the investment
is 0, the expected fine is 𝛽, so 𝜃 ≤ 𝛽 implies the entire population is deterred at an
investment of zero. The optimal investment for the agency must be zero.

When 𝜃 > 𝛽, some investment is required for full deterrence. In particular, in order
for the agency to believe that it achieves full deterrence, it must be that the expected
fine is greater than the maximum benefit, 𝑝(𝑥) ≥ 𝜃 or 𝑥 ≥ 𝜃−𝛽

𝛼
.

When 𝑥 < 𝜃, the first derivative of the social welfare objective with respect to
investment 𝑥 is
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𝜕

𝜕𝑥
𝑊 (𝑥) = 𝑔𝜃 (𝑝(𝑥))𝑝′(𝑥) [1 − 𝑝(𝑥)] − 1

=
1
𝜃
𝛼[1 − (𝛼𝑥 − 𝛽)] − 1

=
1
𝜃

2[1 − (2𝑥 − 1
4
)] − 1

This derivative is decreasing in 𝑥, so the objective is indeed strictly concave. When
this derivative is positive at the full deterrence investment, it must be that full
deterrence is optimal. This is true when

1
𝜃
𝛼[1 − (𝛼𝜃 − 𝛽

𝛼
+ 𝛽)] ≥ 1

[1 − 𝜃] ≥ 𝜃

𝛼
𝛼

𝛼 + 1
≥ 𝜃

When the derivative is negative at 𝑥 = 0, it must be negative for all 𝑥, so zero
investment is optimal. That condition is written below.

1
𝜃
𝛼[1 − 𝛽] ≤ 1

𝛼[1 − 𝛽] ≤ 𝜃

For any intermediate value, the first order condition binds and the optimal investment
is given by

1
𝜃
𝛼[1 − 𝛼𝑥 − 𝛽] = 1

𝑥 =
(1 − 𝛽)
𝛼

− 𝜃

𝛼2
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Figure 3.3: Over-Policing with 𝜃∗ = 1
3

We therefore have that the optimal investment when the detection function is 𝛼𝑥 + 𝛽,
and the distribution of benefits from crime is 𝑈 [0, 𝜃], is given by the continuous,
piecewise linear function:

𝑥(𝜃) = 0 if 𝜃 < 𝛽

=
𝜃 − 𝛽
𝛼

if 𝜃 ∈ [𝛽, 𝛼

𝛼 + 1
)

=
(1 − 𝛽)
𝛼

− 𝜃

𝛼2 if 𝜃 ∈ [ 𝛼

𝛼 + 1
, 𝛼(1 − 𝛽))

= 0 if 𝜃 ≥ 𝛼(1 − 𝛽)

For 𝑝(𝑥) = 𝑥 + 1
4 and 𝑝(𝑥) = 2𝑥 + 1

4 , the functions 𝑥∗(𝜃) and 𝑥(𝜃) are displayed
in figures 3.3 and 3.4. The dashed diagonal emanating from 𝑥(𝜃) shows the full
deterrence investments for every 𝜃, under the agency’s belief 𝑝. On the upward
sloping segment of these curves, full deterrence is optimal, on the downward sloping
segments, partial deterrence is optimal, with the optimal investment decreasing in
𝜃, and elsewhere the optimal investment is zero.

The intersection of the graph of 𝑥(𝜃), with the set of pairs (𝑥, 𝜃) such that the
surprise Γ(𝑥, 𝜃; 𝜃∗) is zero, forms the set of equilibria. We need next to derive the
latter set.

There are four disjoint regions of (𝑥, 𝜃) space that require separate analyses: The
region in which 𝑥 provides full deterrence under both 𝑝 and 𝑝, in which 𝑥 provides
full deterrence under only 𝑝 and not under 𝑝, in which 𝑥 provides full deterrence
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Figure 3.4: Under-Policing with 𝜃∗ = 1
2

only under 𝑝 and not under 𝑝, and in which 𝑥 does not provide full deterrence under
either.

Region 1: 𝑥 ≥ (𝜃∗ − 𝛽) and 𝑥 ≥ 𝜃−𝛽
𝛼

Since 𝑥 ≥ (𝜃∗ − 𝛽), we have 𝑝(𝑥) ≥ 𝜃∗, so in truth the expected fine imposed on
offenders is greater than the maximum benefit, so the true supply of crime is zero.
Similarly by the second inequality, 𝑝(𝑥) ≥ 𝜃, so the agency believes that it deters all
crime. Therefore, the surprise is zero in this entire region, as the agency correctly
predicts that it will observe no crime. In figures 3.3 and 3.4, this is the top left
region.

When this region intersects with 𝑥(𝜃), as in figure 3.3, there exists an interval of
equilibria in which the agency believes it fully deters all crime, and does indeed
achieve full deterrence. All of these equilibria have over-policing.

Region 2: 𝑥 < (𝜃∗ − 𝛽) and 𝑥 ≥ 𝜃−𝛽
𝛼

In this region, the agency believes that it fully deters all crime, but in reality it does
not. As a result, the difference between the quantity of crime it observes and the
quantity it expects to observe (which is zero) is strictly positive. In figure 3.3 and
figure 3.4, this is the lower left region, above the upward sloping portion of 𝑥(𝜃),
and below the full deterrence investment (𝜃∗ − 𝛽).

Region 3: 𝑥 ≥ (𝜃∗ − 𝛽) and 𝑥 < 𝜃−𝛽
𝛼

In this region, the agency deters all crime, but believes that it does not. The surprise
is therefore strictly negative everywhere in this region, since the agency observes
zero crime, but expects to observe some positive amount of crime. In the figures,
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this region is in the top right, below the upward sloping part of 𝑥(𝜃) and above the
full deterrence investment.

Region 4: 𝑥 < (𝜃∗ − 𝛽) and 𝑥 < 𝜃−𝛽
𝛼

In this region, there is only partial deterrence in truth and in the agency’s expecta-
tions. The surprise function is given by

Γ(𝑥, 𝜃; 𝜃∗) = 𝑝(𝑥) [1 − 𝐺𝜃∗ (𝑝(𝑥))] − 𝑝(𝑥) [1 − 𝐺𝜃 (𝑝(𝑥))]

= (𝑥 + 𝛽) [1 − 𝑥 + 𝛽
𝜃∗

] − (𝛼𝑥 + 𝛽) [1 − 𝛼𝑥 + 𝛽
𝜃

]

Note that the surprise function is strictly decreasing in 𝜃 for all 𝑥 and is continuous
in 𝑥 and 𝜃, so setting it equal to zero and solving for 𝜃 in terms of 𝑥 yields a formula
for a continuous curve along which the surprise is zero.

Furthermore, consider the surprise at an investment of zero.

Γ(0, 𝜃; 𝜃∗) = 𝑝(0) [1 − 𝐺𝜃∗ (𝑝(0))] − 𝑝(0) [1 − 𝐺𝜃 (𝑝(0))]

= 𝛽[1 − 𝛽

𝜃∗
] − 𝛽[1 − 𝛽

𝜃
]

At an investment of zero, the agency has correct beliefs about the proportion of
crime detected, and therefore the expected fine imposed on offenders. The surprise
is therefore equal to zero when 𝜃 = 𝜃∗. This says that the zero surprise curve must
hit the 𝜃 axis at 𝜃∗.

Figures 3.3 and 3.4 display the zero surprise region 1, and the zero surprise curve
in region 4 for two different values of 𝜃∗, for 𝑝(𝑥) = 𝑥 + 1

4 and 𝑝(𝑥) = 2𝑥 + 1
4 .

In figure 3.3, 𝜃∗ = 1
3 . An interval of equilibria with over-policing exist for this 𝜃∗,

highlighted by a thick blue line. In these equilibria, the agency fully deters all crime
and believes that it fully deters crime. These are the only equilibria for this value of
𝜃∗

In figure 3.4, 𝜃∗ = 1
2 . In this case, region 1 does not intersect the graph of 𝑥(𝜃),

so full deterrence equilibria do not exist for this value of 𝜃∗. However, the zero
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surprise curve in region 4 does intersect with the downward sloping segment of
𝑥(𝜃), and there is a unique, partial deterrence equilibrium at this intersection. This
equilibrium is necessarily an under-policing equilibrium, because 𝑥∗( 1

2 ) > 𝑥(𝜃) for
all 𝜃.

3.6 Conclusion
In this paper, I propose a model and equilibrium concept for the analysis of an
investment into the detection of crime by a law enforcement agency, when the
preferences of the population of potential offenders is unknown, and the agency
holds incorrect beliefs about the mapping from investment to detection probability.
I provide sufficient conditions for the existence of an equilibrium. It is then shown
that the model is able to explain how an enforcement agency may overpolice, or
underpolice a population, even though its beliefs are entirely consistent with the
data it observes, and it believes itself to be maximizing social welfare.

Future study of this model can hopefully clarify the conditions under which over-
policing or underpolicing are likely to occur. An extension of the model to the
problem of allocating a fixed budget, earmarked for detection efforts, between mul-
tiple neighborhoods or types of crime might shed further light on the possibility of
self-reinforcing over-policing. This issue is critical, because intense policing incom-
mensurate with the true needs of a community may not only be inefficient, but also
unfair, since overpolicing of one sub-population necessitates, under a fixed budget,
underpolicing of the rest of the population. This unfair and unequal application of
the law may undermine dearly held democratic principles, and may contribute to an
erosion of confidence in the law and justice system among the people.

Also note that it would be quite easy to apply this model to any enforcement situation,
it need not only apply to government enforced law. For example, managers inside
an organization such as a firm, political party or government agency may wish to
enforce internal rules and regulations, and may exert effort to detect noncompliance.
The same logic behind the model presented in this paper would equally apply in
those settings.

This modeling approach might also be applied to contracting situations characterized
by moral hazard with the possibility of costly monitoring. The idea in this application
might be that, when one or more of the contracting agents have incorrect beliefs
about their ability to detect noncompliance, or the incentives of the other parties not
to comply, contracting may be inefficient, even though agents are not surprised by
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the outcomes of the contract they observe.



94

Bibliography

Eric J Allen, Patricia M Dechow, Devin G Pope, and George Wu. Reference-
dependent preferences: Evidence from marathon runners. Management Science,
63(6):1657–1672, 2017.

Ashton Anderson and Etan A Green. Personal bests as reference points. Proceedings
of the National Academy of Sciences, 115(8):1772–1776, 2018.

Ala Avoyan, Robizon Khubulashvili, and Giorgi Mekerishvili. Call it a day: History
dependent stopping behavior. Technical report, CESifo Working Paper, 2020.

Lucian Arye Bebchuk and Louis Kaplow. Optimal sanctions when individuals are
imperfectly informed about the probability of apprehension. The Journal of Legal
Studies, 21(2):365–370, 1992.

Gary Becker. Crime and punishment: An economic approach. The Journal of
Political Economy, 169:176–177, 1968.

Alan S Blinder and John Morgan. Are two heads better than one? monetary policy
by committee. Journal of Money, Credit and Banking, pages 789–811, 2005.

Ivo Blohm and Jan Marco Leimeister. Gamification. Business & information systems
engineering, 5(4):275–278, 2013.

Gary Bornstein and Ilan Yaniv. Individual and group behavior in the ultimatum
game: are groups more “rational” players? Experimental Economics, 1:101–
108, 1998.

Gary Bornstein, Tamar Kugler, and Anthony Ziegelmeyer. Individual and group
decisions in the centipede game: Are groups more “rational” players? Journal
of Experimental Social Psychology, 40(5):599–605, 2004.

Alexander L Brown, Taisuke Imai, Ferdinand Vieider, and Colin Camerer. Meta-
analysis of empirical estimates of loss-aversion. Available at SSRN 3772089,
2021.

Timothy N Cason, Sau-Him Paul Lau, and Vai-Lam Mui. Prior interaction, identity,
and cooperation in the inter-group prisoner’s dilemma. Journal of Economic
Behavior & Organization, 166:613–629, 2019.

Aaron Chalfin and Justin McCrary. The effect of police on crime: New evidence from
us cities, 1960-2010. Technical report, National Bureau of Economic Research,
2013.

Aaron Chalfin and Justin McCrary. Criminal deterrence: A review of the literature.
Journal of Economic Literature, 55(1):5–48, 2017.

Gary Charness and Matthew O Jackson. Group play in games and the role of consent
in network formation. Journal of Economic Theory, 136(1):417–445, 2007.



95

Gary Charness and Matthias Sutter. Groups make better self-interested decisions.
Journal of Economic Perspectives, 26(3):157–176, 2012.

Gary Charness, Edi Karni, and Dan Levin. On the conjunction fallacy in probability
judgment: New experimental evidence regarding linda. Games and Economic
Behavior, 68(2):551–556, 2010.

David J Cooper and John H Kagel. Are two heads better than one? team versus
individual play in signaling games. American Economic Review, 95(3):477–509,
2005.

James C Cox. Trust, reciprocity, and other-regarding preferences: Groups vs.
individuals and males vs. females. Experimental business research, pages 331–
350, 2002.

James C Cox and Stephen C Hayne. Barking up the right tree: Are small groups
rational agents? Experimental Economics, 9:209–222, 2006.

Yannick Ferreira De Sousa and Alistair Munro. Truck, barter and exchange versus
the endowment effect: Virtual field experiments in an online game environment.
Journal of Economic Psychology, 33(3):482–493, 2012.

Stefano DellaVigna. Psychology and economics: Evidence from the field. Journal
of Economic literature, 47(2):315–72, 2009.

John Duggan. Non-cooperative games among groups. 2001.

Alexander Elbittar, Andrei Gomberg, and Laura Sour. Group decision-making and
voting in ultimatum bargaining: An experimental study. The BE Journal of
Economic Analysis & Policy, 11(1), 2011.

Arpad E Elo. The rating of chessplayers, past and present. Arco Pub., 1978.

William N Evans and Emily G Owens. Cops and crime. Journal of Public Eco-
nomics, 91(1-2):181–201, 2007.

Erik Eyster and Matthew Rabin. Cursed equilibrium. Econometrica, 73(5):1623–
1672, 2005.

Drew Fudenberg and David K Levine. Self-confirming equilibrium. Econometrica:
Journal of the Econometric Society, pages 523–545, 1993.

Nuno Garoupa. The theory of optimal law enforcement. Journal of economic
surveys, 11(3):267–295, 1997.

Mark E Glickman. The glicko system. Boston University, 16:16–17, 1995.

Mark E Glickman. Example of the glicko-2 system. Boston University, pages 1–6,
2012.



96

John C Harsanyi. Games with randomly disturbed payoffs: A new rationale for
mixed-strategy equilibrium points. International journal of game theory, 2(1):
1–23, 1973.

Paul Heidhues, Botond Kőszegi, and Philipp Strack. Unrealistic expectations and
misguided learning. Econometrica, 86(4):1159–1214, 2018.

Greg Howard. A check for rational inattention. 2021.

Chester A Insko, Rick H Hoyle, Robin L Pinkley, Gui-Young Hong, Randa M Slim,
Bret Dalton, Yuan-Huei W Lin, Paulette P Ruffin, Gregory J Dardis, Paul R
Bernthal, et al. Individual-group discontinuity: The role of a consensus rule.
Journal of Experimental Social Psychology, 24(6):505–519, 1988.

John H Kagel and Dan Levin. The winner’s curse and public information in common
value auctions. The American economic review, pages 894–920, 1986.

Daniel Kahneman. Prospect theory: An analysis of decisions under risk. Econo-
metrica, 47:278, 1979.

Daniel Kahneman. Reference points, anchors, norms, and mixed feelings. Or-
ganizational Behavior and Human Decision Processes, 51(2):296–312, March
1992. URL https://ideas.repec.org/a/eee/jobhdp/v51y1992i2p296-
312.html.

Louis Kaplow. Optimal deterrence, uninformed individuals, and acquiring informa-
tion about whether acts are subject to sanctions. JL Econ & Org., 6:93, 1990.

Louis Kaplow. Rules versus standards: An economic analysis. Duke Lj, 42:557,
1992.

Botond Kőszegi and Matthew Rabin. A model of reference-dependent preferences.
The Quarterly Journal of Economics, 121(4):1133–1165, 2006.

Tamar Kugler, Gary Bornstein, Martin G Kocher, and Matthias Sutter. Trust between
individuals and groups: Groups are less trusting than individuals but just as
trustworthy. Journal of Economic psychology, 28(6):646–657, 2007.

Tamar Kugler, Edgar E Kausel, and Martin G Kocher. Are groups more rational
than individuals? a review of interactive decision making in groups. Wiley
Interdisciplinary Reviews: Cognitive Science, 3(4):471–482, 2012.

Steven D Levitt. Why do increased arrest rates appear to reduce crime: deterrence,
incapacitation, or measurement error? Economic inquiry, 36(3):353–372, 1998.

Steven D Levitt. Using electoral cycles in police hiring to estimate the effects of
police on crime: Reply. American Economic Review, 92(4):1244–1250, 2002.

Ming-Jen Lin. More police, less crime: Evidence from us state data. International
Review of Law and Economics, 29(2):73–80, 2009.

https://ideas.repec.org/a/eee/jobhdp/v51y1992i2p296-312.html
https://ideas.repec.org/a/eee/jobhdp/v51y1992i2p296-312.html


97

John A List. Does market experience eliminate market anomalies? The Quarterly
Journal of Economics, 118(1):41–71, 2003.

Alex Markle, George Wu, Rebecca White, and Aaron Sackett. Goals as reference
points in marathon running: A novel test of reference dependence. Journal of
Risk and Uncertainty, 56(1):19–50, 2018.

Jacob Marschak and Roy Radner. Economic Theory of Teams. 1972.

Brian W Mayhew and Adam Vitalis. Myopic loss aversion and market experience.
Journal of Economic Behavior & Organization, 97:113–125, 2014.

Richard D McKelvey and Talbot Page. Common knowledge, consensus, and ag-
gregate information. Econometrica: Journal of the Econometric Society, pages
109–127, 1986.

Richard D McKelvey and Thomas R Palfrey. Quantal response equilibria for normal
form games. Games and economic behavior, 10(1):6–38, 1995.

Richard D McKelvey and Thomas R Palfrey. A statistical theory of equilibrium in
games. The Japanese Economic Review, 47(2):186–209, 1996.

Richard D McKelvey and Thomas R Palfrey. Quantal response equilibria for exten-
sive form games. Experimental economics, 1:9–41, 1998.

Andrea Morone, Simone Nuzzo, and Rocco Caferra. The dollar auction game: A
laboratory comparison between individuals and groups. Group Decision and
Negotiation, 28:79–98, 2019.

Jacob A Mortenson and Andrew Whitten. Bunching to maximize tax credits: Evi-
dence from kinks in the us tax schedule. American economic journal: Economic
policy, 12(3):402–32, 2020.

Elena Patel, Nathan Seegert, and Matthew Smith. At a loss: The real and reporting
elasticity of corporate taxable income. Available at SSRN 2608166, 2017.

A Mitchell Polinsky and Steven Shavell. The optimal tradeoff between the proba-
bility and magnitude of fines. The American Economic Review, 69(5):880–891,
1979.

A Mitchell Polinsky and Steven Shavell. The optimal use of fines and imprisonment.
Journal of Public Economics, 24(1):89–99, 1984.

A Mitchell Polinsky and Steven Shavell. The economic theory of public enforcement
of law. Journal of economic literature, 38(1):45–76, 2000.

Richard A Posner. Optimal sentences for white-collar criminals. American Criminal
Law Review, 17:409, 1980.



98

Matthew Rabin. Inference by believers in the law of small numbers. The Quarterly
Journal of Economics, 117(3):775–816, 2002.

Bettina Rockenbach, Abdolkarim Sadrieh, and Barbara Mathauschek. Teams take
the better risks. Journal of Economic Behavior & Organization, 63(3):412–422,
2007.

John Rust. Optimal replacement of gmc bus engines: An empirical model of harold
zurcher. Econometrica: Journal of the Econometric Society, pages 999–1033,
1987.

John Rust. Nested fixed point algorithm documentation manual: Version 6. De-
partment of Economics, Yale University, 2000.

Emmanuel Saez. Do taxpayers bunch at kink points? American economic Journal:
economic policy, 2(3):180–212, 2010.

Yuval Salant and Jörg L Spenkuch. Complexity and choice. Available at SSRN
3878469, 2021.

Christin Schulze and Ben R Newell. More heads choose better than one: Group
decision making can eliminate probability matching. Psychonomic bulletin &
review, 23:907–914, 2016.

Roman M Sheremeta and Jingjing Zhang. Can groups solve the problem of over-
bidding in contests? Social Choice and Welfare, 35(2):175–197, 2010.

Janet A Sniezek and Rebecca A Henry. Accuracy and confidence in group judgment.
Organizational behavior and human decision processes, 43(1):1–28, 1989.

Fei Song. Trust and reciprocity behavior and behavioral forecasts: Individuals
versus group-representatives. Games and economic behavior, 62(2):675–696,
2008.

Dagmar Stahlberg, Frank Eller, Anne Maass, and Dieter Frey. We knew it all
along: Hindsight bias in groups. Organizational Behavior and Human Decision
Processes, 63(1):46–58, 1995.

Matthias Sutter. Are four heads better than two? an experimental beauty-contest
game with teams of different size. Economics letters, 88(1):41–46, 2005.

Matthias Sutter, Martin G Kocher, and Sabine Strauss. Individuals and teams in
auctions. Oxford Economic Papers, 61(2):380–394, 2009.

Tim Wildschut and Chester A Insko. Explanations of interindividual–intergroup
discontinuity: A review of the evidence. European review of social psychology,
18(1):175–211, 2007.


	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	List of Tables
	Introduction
	Reference Points as Motivating Goals: Evidence from Online Chess
	Introduction
	Data
	Model
	Estimation and Results
	Conclusion

	Games Played by Teams of Players
	Introduction
	Team Games in Strategic Form
	Team Size Effects in 22 Games
	Nash convergence
	Stochastic Rationality and Team Response Functions
	Team Equilibrium in Extensive Form Games
	Examples of Extensive Form Games
	Discussion and Conclusions

	Bias and Beliefs in Deterrence and Detection
	Introduction
	Related Literature
	Model
	Equilibrium Existence
	Over-Policing and Under-Policing
	Conclusion

	Bibliography

