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ABSTRACT

The prediction and inference of dynamical systems is of widespread interest across sci-
entific and engineering disciplines. Data assimilation (DA) offers a well-established
and successful paradigm for blending such models with noisy observational data.
However, traditional DA-based inference often fails when available data are insuffi-
ciently informative. Chapter 2 copes with this challenge by introducing constraints
into Ensemble Kalman Filtering, which is shown to improve forecasting of glucose
dynamics in real patient-level clinical data. Chapter 3 addresses this identifiability
challenge by instead developing a simplified, reduced-order stochastic model for
glucose dynamics that is more easily identified from patient data. Despite these
successes, the forecasting performance of the methods are fundamentally limited by
the fidelity of the employed model, which is often not fully understood a priori.

Chapter 4 presents a general picture of how noisy, partially-observed time-series
data can be used to learn flexible (e.g., neural network-based) corrections to a
pre-specified mechanistic model. In Chapter 5, the proposed methodology is then
validated in simulated settings for glucose-insulin models. Chapter 6 provides further
perspective on learning flexible model corrections, comparing approaches that use i)
gradient-based or gradient-free optimization, ii) temporal or time-averaged data, iii)
different model parameterizations, iv) deterministic and stochastic corrections, and
v) physical conservation laws to constrain inference.

Chapter 7 studies how these perspectives on machine learning and dynamical systems
can help us understand the roles of biochemical networks. In particular, it considers
protein dimerization networks from the lens of approximation theory and evaluates
how the equilibria of these networks can be fine-tuned to perform a variety of
biological computations.
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C h a p t e r 1

INTRODUCTION

1.1 Background
Dynamical systems offer a powerful mathematical foundation for describing systems
that evolve in time. Broadly, they can be defined as any class of recurrence relations
(i.e., maps and flows), and common examples include systems of partial, ordinary, and
stochastic differential equations. Such models date back to Newtonian Mechanics,
and their early mathematical study can be traced to Poincaré. Dynamical systems
have since been used to model temporal processes in nearly every discipline of
science and engineering.

While mathematical analysis of dynamical systems brought clarity and predictive
power to many fields, the computational revolution of the past 75 years—paired with
an evolving suite of numerical algorithms—has allowed us to simulate impressively
complex dynamics that were previously unattainable (e.g., global weather, epidemic
spread, aircraft flight, human endocrine dynamics). Moreover, the increasing
availability of relevant and timely data streams has provided tremendous opportunities
for grounding such dynamical models in observations (i.e., via data assimilation
algorithms), resulting in actionable forecasts (e.g., impending storms and viral spread)
and automatic control systems (e.g., aircraft autopilot and automated insulin delivery).
These successes crucially rely on: 1) sufficiently reliable dynamical models (i.e.,
an accurate mathematical description of relevant governing mechanisms) and 2)
adequately informative data. From a Bayesian perspective, we can view (1) as our
prior knowledge and (2) as our data—both are held in balance, and uncertainty in
one can be counter-balanced by confidence in the other to yield a similarly accurate
posterior estimate. When (1) and/or (2) is severely lacking, forecasting fidelity can
drop to un-usable levels.

Over the past decade, however, we have witnessed a data-driven revolution in which
machine learningmethods can overcome a complete lack of (1) with an overwhelming
abundance of (2) by approximating the unknown functions that generate the data.
Indeed, substantial progress has been made towards learning dynamical systems
from data, but these approaches tend to fail without exceptionally rich data sources.

Despite the growing availability of data streams, many processes that we strive
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to model, predict, and control have remained difficult to observe. Often times,
quantities of interest are inaccessible or are captured by heavily biased measurements.
Biomedicine provides countless examples of such challenges, where many physiologic
processes are nearly impossible to measure (without causing harm) and the data that
are collected (e.g., in a hospital’s electronic health record database) can be deeply
biased (i.e., missing not-at-random, recorded out of order, and designed to justify
insurance billing). Thus, purely data-driven approaches often fail in biomedical
settings.

Fortunately, it is possible to compensate for reduced data-fidelity with increased
prior knowledge. In the context of dynamical systems, this often comes in the form
of approximate mechanistic models, as well as physical properties of the model or its
solution (e.g., conservation laws, boundedness, etc.). Thus, a key current challenge
is to leverage and combine existing paradigms for model-based and data-driven
inference to cope with common scenarios in which both our knowledge (1) and our
data (2) are limited, yet complimentarily informative. Applications in biomedicine
and geophysics, in particular, stand to benefit from such innovation. This thesis
studies these scenarios from various angles, providing novel application-neutral
approaches for hybridizing mechanisms and data, application-specific approaches for
improved modeling of the glucose-insulin system, and new insights into computations
that can be performed by biology itself:

• Chapter 2 focuses on infusing additional knowledge (specifically, state-based
constraints) into a data assimilation algorithm (specifically, the Ensemble
Kalman Filter) to create a contrained Ensemble Kalman Filter (cEnKF).
This proves especially valuable when missing key observational components,
creating substantial model un-identifiabilities. We find this in the case
of observing patient blood glucose levels (we cannot measure their blood
insulin levels) and assimilating this information into dynamical models of the
glucose-insulin system. The numerical results show that incorporating simple
state-based constraints via the proposed algorithm improves fidelity of glucose
forecasting.

• Chapter 3 focuses specifically on the challenge of modeling patient-specific
glucose dynamics with limited patient-level data. While Chapter 2 addresses
the limited data problem by constraining the inference, Chapter 3 explicitly pro-
poses a new data-driven model (derived from a Ornstein-Uhlenbeck stochastic
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differential equation) that is identifiable under challenging data constraints
and uses state-based stochasticity to capture the uncertainty induced by such
limited data. The numerical results suggest non-inferiority of the proposed
simple linear model when compared to state-of-the-art non-linear models
(paired with non-linear data assimilators) in data-poor settings.

• Chapter 4 takes a broad view of hybrid modeling of dynamical systems in which
we fuse incomplete models with data. First, it provides a substantial literature
review on the topic. Then, it rigorously analyzes hybrid modeling under
idealized data assumptions (i.e., fully-observed continuously in time without
noise). Finally, it proposes and evaluates a novel algorithm for learning hybrid
ordinary differential equations from noisy, partially-observed, irregularly
spaced timeseries data by embedding auto-differentiable data assimilation
algorithms within a neural ordinary differential equations inference framework.

• Chapter 5 identifies a common infidelity amongst mechanistic models of
glucose-insulin dynamics and applies the methodology proposed in Chapter 4
to learn data-driven model corrections. Specifically, we recognize that even
state-of-the-art mechanistic models of glucose-insulin dynamics fail to fully
capture how the glucose-insulin system responds to different meal-types
(e.g., a sandwich versus lasagna). Popular models are designed to take only
carbohydrate quantities as inputs, but not other macronutrients (e.g., fat, protein,
fiber); this is likely due to a lack of experimentally-identified mechanisms
for such effects. However, these effects are empirically well-characterized
(i.e., via glycemic index), and ought to be learnable from data. To test this
hypothesis, we use the methodology proposed in Chapter 4 to learn targeted
nutrition-specific corrections to the Bergman minimal model using simulated
data.

• Chapter 6 reviews and unifies a variety of approaches for learning structural
errors in models of dynamical systems. In contrast to Chapter 4, which focuses
on learning deterministic models from trajectory-based data, this work takes
a broader view. For example, we i) admit data that are either temporal or
come from time-averaging, ii) consider deterministic and stochastic closure
models, iii) discuss common choices for model parameterization, iv) discuss
gradient-based and gradient-free optimization techniques for learning, and v)
discuss how to incorporate physical laws and constraints into the learning. We
have written this manuscript for accessibility to a broad geophysical readership.
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• Chapter 7 focuses on viewing protein dimerization networks in biology through
the mathematical lens of function approximation theory. In particular, we
view these chemical reactions as functions that map initial concentrations of
protein monomers to equilibrium concentrations of protein dimers, which
are of interest due to their known biochemical activities. We use numerical
simulations of these networks to examine the range of input-output functions
that can be computed by different networks. These computational experiments
allow us to characterize the expressivity and versatility of input-output maps
induced by combinatorial protein dimerization networks, and we study these
properties as a function of both network size and connectivity. Understanding
these properties may allow for the prediction and control of natural cellular
behaviors and enable the design of synthetic circuits.

1.2 Contributions
The chapters of this thesis are derived from manuscripts written for publication in
journals or conference proceedings.

Chapter 2 is primarily derived from [1], and highlights its contributions in constrained
Ensemble Kalman Filtering (cEnKF), and applications of this approach to forecasting
problems in blood glucose dynamics. Thus, sections in [1] that discuss constrained
Ensemble Kalman Inversion (cEKI) and its applications to geophysical problems has
been omitted. Furthermore, Section 2.5.2 of Chapter 2 includes additional blood
glucose forecasting results that are excerpted from [2]; these results come from direct
application of the methodologies and models described in Chapter 2 and [1].

My contributions to [1] (published in Inverse Problems in 2019) were as follows:

• Writing of algorithms for cEnKF and cEKI in the paper

• Implementation of numerics for cEnKF and blood glucose model for real
patient data

• Co-writing and co-editing the manuscript

My contributions to [2] (Journal of Biomedical Informatics in 2022) were as follows:

• Conceptualization and design of experiments

• Implementation of computational infrastructure for performing experiments
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• Co-writing and co-editing the manuscript

Chapter 3 is taken directly from [6] (submitted to Chaos in 2023), and focuses on
the introduction of a simple stochastic differential equation (SDE) model for blood
glucose dynamics. The key insight of this work is the recognition that typical ODE
models for blood glucose dynamics are so un-identifiable in some low-data regimes
that it may, instead, be beneficial to work with an identifiable reduced-order model
(our SDE). My contributions to [6] were as follows:

• Conceptualization of underpinning mathematical model

• Conceptualization of experiments, which compare to other state-of-the-art
approaches

• Design and implementation of computational infrastructure for performing
experiments

• Co-writing and co-editing the manuscript

Chapter 4 is taken directly from [5] (published in Communications of the American
Mathematical Society in 2022), and focuses on learning hybrid (i.e., physics-based
and data-driven) models of dynamical systems from partially-observed, noisy data.
My contributions to [5] were as follows:

• Conceptualization of underpinning mathematical framework

• Invention of novel algorithms for learning dynamics from partially-observed
and/or noisy data (i.e., leveraging autodifferentiable data assimilation)

• Writing and research of comprehensive review on the topic (this paper has
substantial review content in the first sections)

• Conceptualization and design of numerical experiments

• Writing and editing the manuscript

Chapter 5 is taken directly from [7], and focuses on applying and evaluating the
novel methods in Chapter 4 in an applied glucose-insulin modeling setting. My
contributions to [5] were as follows:
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• Conceptualization of underpinning mathematical model

• Conceptualization and design of numerical experiments

• Implementation of methods in [5] for the specific glucose-insulin model.

• Co-writing and co-editing the manuscript

Chapter 6 is taken directly from a manuscript that is currently in preparation [3].
This work reviews and unifies a variety of approaches for learning structural errors
in models of dynamical systems, and is aimed towards a geophysical audience. My
contributions to [3] are as follows:

• Conceptualization of underpinning mathematical framework

• Conceptualization and implementation of numerical experiments for learning
structural error terms from non-ergodic systems using timeseries data. This
extends concepts in Chapter 4 to derivative-free optimization settings.

• Co-writing and co-editing the manuscript

Chapter 7 describes ongoing joint work with Michael Elowitz, Pietro Perona, Andrew
Stuart, Jacob Parres-Gold, and Benjamin Emert, for which a manuscript is currently
being prepared [4]. This project focuses on viewing protein dimerization networks
in biology through the mathematical lens of function approximation theory. In
particular, we are interested in the expressivity and versatility of mathematical
functions that can be realized through biological networks. My contributions to [4]
are as follows:

• Conceptualization of underpinning mathematical framework

• Conceptualization and implementation of numerical experiments for evaluating
quantitative metrics for network expressivity and versatility using simulations
of protein dimerization reactions.

• Co-writing and co-editing the manuscript
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1.3 Notation
Throughout the paper we use N to denote the positive integers {1, 2, 3, · · · } and Z+ to
denote the non-negative integers N ∪ {0} = {0, 1, 2, 3, · · · }. The matrix �" denotes
the identity on R" .We use | · | to denote the Euclidean norm, and the corresponding
inner-product is denoted 〈·, ·〉. A symmetric, square matrix � is positive definite (resp.
positive semi-definite) if the quadratic form 〈D, �D〉 is positive (resp. non-negative)
for all D ≠ 0. By | · |� we denote the weighted norm defined by |E |2

�
= E∗�−1E for any

positive-definite �. The corresponding weighted Euclidean inner-product is given
by 〈·, ·〉� := 〈·, �−1·〉. We use ⊗ to denote the outer product between two vectors:
(0 ⊗ 1)2 = 〈1, 2〉0.
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C h a p t e r 2

ENSEMBLE KALMAN METHODS WITH CONSTRAINTS

2.1 Introduction
One of the key challenges in predicting physiologic dynamics is reconciling available
data with pre-existing mechanistic models to provide greater insight and enhanced
predictions. Data assimilation (DA) [225] offers a mathematical framework for
striking this balance, and has been successfully leveraged in a variety of physiologic
contexts; we introduce this framework in Section 2.2.

However, the performance of DA-based methods has been limited, in part, due to the
underdetermined inference problem that results from projecting infrequent, noisy,
partially-observed data streams onto large, highly parameterized physiologic models.
We can address this identifiability challenge by either constraining the inference
(the focus of Section 2.4) or simplifying the model (the focus of Chapter 3). In
Section 2.4, we derive a novel online data assimilation method that incorporates
convex constraints into its inference of physiologic states and parameters. We evaluate
this method as a replacement for an existing data assimilation scheme developed for
forecasting blood glucose levels in people with diabetes [10] using identical models
and datasets as the original work.

Remark 2.1.1. This chapter is derived from the manuscript published by Albers,
Blancquart, Levine, Seylabi, and Stuart [9], and contains both excerpts and additions
to that work. The numerics section is supplemented by results from Albers, Sirlanci,
Levine, Classen, Der Nigoghossian, and Hripcsak [11].

2.1.1 Overview
Kalman filter based methods have been enormously successful in both state and
parameter estimation problems. However, a major disadvantage of such methods is
that they do not naturally take constraints into account. The ability to constrain a
system often has a number of advantages that can play an important role in state and
parameter estimation: they can be used to enforce physicality of modeled systems
(non-negativity of physical quantities, for example); relatedly they can be used to
ensure that computational models are employed only within state and parameter
regimes where the model is well-posed; and finally the application of constraints
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may provide robustness to outlier data. Resulting improvements in algorithmic
efficiency and performance, bymeans of enforcing constraints, has been demonstrated
in the recent literature in a diverse set of fields, including process control [405],
biomechanics [45], cell energy metabolism [147], medical imaging [232], engine
health estimation [387], weather forecasting [191], chemical engineering [444], and
hydrology [422].

In the probabilistic view of filteringmethods, constraintsmay be introduced bymoving
beyond the Gaussian assumptions that underpin Kalman methods and imposing
constraints through the prior distributions on states and/or parameters. This, however,
can create significant computational burden as the resulting distributions cannot be
represented in closed form, through a finite number of parameters, in the way that
Gaussian distributions can be. In this paper, we circumvent this issue by taking
the viewpoint that ensemble Kalman methods constitute a form of derivative-free
optimization methodology, eschewing the probabilistic interpretation. The ensemble
is used to calculate surrogates for derivatives. With this optimization perspective,
constraints may be included in a natural way. Standard ensemble Kalman methods
employ a quadratic optimization problem encapsulating relative strengths of belief in
the predictions of the model and the data; these optimization problems have explicit
analytic solutions. To impose constraints the optimization problem is solved only
within the constraint set; when the constraints form a non-empty closed convex set,
this constrained optimization problem has a unique solution.

In this introductory section, we give a literature review describing existing work in
this setting, we describe the contributions in this paper, and we outline notation used
throughout.

2.1.2 Literature Review
Overviews of state estimation using Kalman based methods may be found in [126,
345, 225, 70]. The focus of this article is on ensemble based Kalman methods,
introduced by Evensen in [127] and further developed in [65, 126]. The extension of
the ensemble Kalman methodology to parameter estimation and inverse problems is
overviewed in [302], especially for oil reservoir applications, and in an application-
neutral formulation in [188]. Equipping Kalman-based methods with constraints can
be desirable for a variety of inter-linked reasons described in the previous subsection:
to enforce known physical boundaries in order to improve estimation accuracy;
to operationalize filtering of a model which is ill-posed in subsets of its state or
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parameter space; and to provide robustness to noisy data and outlier events.

In extending the Kalman filter to non-Gaussian settings, a number of methods may
be considered. Particle filters provide the natural methodology if propagation of
probability distributions is required for state [112] or parameter [104] estimation. In
the optimization setting, there are three primary methodologies: the extended Kalman
filter, the unscented Kalman filter and the ensemble Kalman filter. The extended
Kalman filter is based on linearization of the nonlinear system and therefore needs
the computation of derivatives for propagation of the state covariance; this makes
them unattractive in high dimensional problems. Unscented and ensemble Kalman
filters, on the other hand, can be considered as particle-based methods which are
derivative-free. In the unscented Kalman filter, the particles (sigma points) are chosen
deterministically and are propagated through the nonlinear system to approximate the
covariance, which is then corrected using the Kalman gain to compute the new sigma
points. In the ensemble Kalman filter, the particles (ensemble members) are chosen
randomly from the initial ensemble and are propagated through the dynamical system
and corrected using the Kalman gain without needing to maintain the covariance.

In [386], and more recently in [15], overviews of different ways to impose constraints
in linear and nonlinear state estimation are presented. To ensure that the estimates
satisfy the constraints, moving horizon based estimators that solve a constrained
optimization problem have been proposed [355, 341]. The paper [412] proposed
a recursive nonlinear dynamic data reconciliation (RNDDR) approach based on
extended Kalman filtering to ensure that state and parameter estimates satisfy the
imposed bounds and constraints. The updated state estimates in this method are
obtained by solving an optimization problem instead of using the Kalman gain. The
resulting covariance calculations are, however, still similar to the Kalman filter: that
is, unconstrained propagation and correction involving the Kalman gain, which can
affect the accuracy of the estimates. To eliminate this deficiency, [241] proposed a
Kullback-Leibler based method to update states and error covariances by solving a
convex optimization problem involving conic constraints.

On the other hand, the paper [411] combined the concept of the unscented transfor-
mation [194] with the RNDDR formulation. In the prediction step, they propose
step sizes to scale sigma points asymmetrically to better approximate the covariance
information in the presence of lower and upper bounds. Then, for the update of
each sigma point, they solve a constrained optimization problem. One disadvantage
of this procedure is that the chosen step sizes for scaling the sigma points can
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only ensure the bound constraints. The paper [405] also tested various algorithms
based on constrained optimization, projection [388] and truncation [387] to enforce
bound constraints on unscented Kalman filtering. The paper [278] developed a
class of estimators named constrained unscented recursive estimators to address the
limitations of the unscented RNDDR method using optimization-based projection
algorithms for obtaining sigma points in the presence of convex, non-convex and
bound constraints.

As mentioned earlier, since the corrected covariance is used to compute the sigma
points, unscented formulations always require enforcing constraints in both prop-
agation and correction/update steps. In contrast, ensemble-based methods only
require constraints to be enforced in the update step. In this context, the paper [422]
tested projection and accept/reject methods to constrain ensemble members in a
post-processing step, after application of the unconstrained ensemble Kalman filter.
In the former, they project the updated ensemble members to the feasible space
if they violate the constraints and in the latter they enforce the updated ensemble
members to obey the constraints by resampling the dynamic and/or data model errors.
On the other hand, [327, 326] proposed updating the state estimates in ensemble
Kalman filtering by solving a constrained optimization problem while truncating
the Gaussian distribution of the initial ensemble. The paper [191] demonstrated
how to enforce a physics-based conservation law on an ensemble Kalman filtering
based state estimation problem by formulating the filter update as a set of quadratic
programming problems arising from a linear data acquisition model subject to linear
constraints. Here we develop this body of work on constraining ensemble Kalman
techniques, providing a unifying framework with an underpinning theoretical basis.

2.1.3 Our Contribution
The preceding literature review demonstrates that the imposition of constraints on
state and parameter estimation procedures is highly desirable. It also indicates that
ensemble Kalman methods offer the most natural context in which to attempt to do
this, as extended Kalman methods do not scale well to high dimensional state or
parameter space, whilst the unscented filter does not lend itself as naturally to the
incorporation of constraints.

In this paper we build on the application-specific papers [422, 191] which demonstrate
how to impose some specific constraints on ensemble based parameter and state
estimation problems respectively. We formulate a very general methodology which
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is application-neutral and widely applicable, thereby making the ideas in [422, 191]
accessible to a wide community of researchers working in inverse problems and
state estimation. We also describe a straightforward mathematical analysis which
demonstrates that the resulting algorithms are well-defined since they involve the
solution of quadratic minimization problems subject to convex constraints at each
step of the algorithm; these optimization problems have a unique solution. And
finally we showcase the methodology on two applications, one from biomedicine
and one from seismology.

Sections 2.2 to 2.4 outlines the ensemble Kalman (EnKF) methodology for state
estimation, with and without constraints. Section 2.5 describes the numerical
experiments which illustrate the foregoing ideas.

2.2 Data Assimilation
Here we briefly introduce the framework for data assimilation given by Law, Stuart,
and Zygalakis [225], which considers the dynamics, Ψ, of an underlying process E,
which is noisily measured by a linear operator � to acquire measurements H:

Dynamics Model: E 9+1 = Ψ(E 9 ) + b 9 , 9 ∈ Z+

Data Model: H 9+1 = �E 9+1 + [ 9+1, 9 ∈ Z+

Probabilistic Structure: E0 ∼ N(<0, �0), b 9 ∼ N(0,Σ), [ 9 ∼ N(0, Γ)
E0 ⊥ {b 9 } ⊥ {[ 9 } independent.

(2.1)
We assume that H1,H2 are separable Hilbert spaces. Then E 9 ∈ H1, and Ψ :
H1 ↦→ H1 is the state-transition operator. The operator � : H1 ↦→ H2 is the linear
observation operator and H 9 ∈ H2. The covariance operators �0,Σ are assumed
trace-class onH1, and Γ onH2 which ensures that the initial condition E1 and the
noises b 9 and [ 9 live inH1,H1 andH2 (respectively) with probability one.

Here b 9 ∼ N(0,Σ), [ 9 ∼ N(0, Γ) are assumed independent gaussian noises in the
model state dynamics and measurement operations with mean zero and covariances
Σ and Γ, respectively. We also assume a known distribution N(<0, �0) for initial
condition E0.

Remark 2.2.1. Throughout this chapter we derive our theoretical results in the setting
whereH1 andH2 are finite dimensional; however the update formulae we derive are
well-defined in the general Hilbert space setting and this fact is important because it
means that the methods derived have a robustness to mesh refinement and similar
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procedures arising when the problem of interest is specified via a partial differential
equation, or other infinite dimensional problem.

Remark 2.2.2. We restrict attention to linear observation operators � because this
leads to solvable quadratic optimization problems within the context of Kalman-based
methods. In principle, a non-linear observation operator could be used, but the
optimization problems defining the algorithms arising in this work might not have a
unique solution in this setting.

The problem of filtering aims to use historical measurements .: := {H 9 }:9=1 to
estimate the current state E:—that is, to estimate the probability of E: |.: . The
forecasting problem is highly related, and aims to estimate E:+1 |.: ; it typically does
this by solving the filtering problem, then iterating the dynamics forward over the
filtered distribution.

Filtering and prediction can be performed with many methods, which are surveyed
in [225]. In settings where the dynamics Ψ are linear, the classical Kalman Filter
[201] and its descendants are often the best choice. Indeed, these methods also lend
themselves well to constrained state estimation [386]. Systems with non-linear Ψ,
on the other hand, are much harder to filter, and have given rise to a wide array of
non-linear stochastic filters. One of the most popular, which we focus on, is the
Ensemble Kalman Filter (EnKF) [128], which can be highly advantageous for its
derivative-free nature. Similar algoriths, such as the Unscented Kalman Filter (UKF)
[194] are also worth studying; for example, the UKF was successfully deployed for
glucose prediction problems in people with type 2 diabetes in [10]. Here, we focus
on Ensemble Kalman Filtering, and introduce a rigorous approach to constraining
its inference, as presented by Albers et al. [11]. We note that [11] also presents
an analogous constraint methodology for Ensemble Kalman Inversion techniques,
which we do not discuss here.

2.3 Ensemble Kalman Filter
The ensemble Kalman filter is a particle-based sequential optimization approach to
the state estimation problem. The particles are denoted by {E (=)

9
}#
==1 and represent

a collection of # candidate state estimates at time 9 . The method proceeds as
follows. The state of all the particles at time 9 + 1 are predicted using the dynamics
model to give {Ê (=)

9+1}
#
==1. The resulting empirical covariance of the particles is then

used to define the objective function �filter, 9 ,= (E), which encapsulates the model-data
compromise. This is minimized in order to obtain the updates {E (=)

9+1}
#
==1.
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The prediction step is

Ê
(=)
9+1 = Ψ(E

(=)
9
) + b (=)

9
, = = 1, ..., # (2.2a)

<̂ 9+1 =
1
#

#∑
==1

Ê
(=)
9+1 (2.2b)

�̂ 9+1 =
1
#

#∑
==1

(̂
E
(=)
9+1 − <̂ 9+1

) (̂
E
(=)
9+1 − <̂ 9+1

))
. (2.2c)

Here we have b (=)
9
∼ N(0,Σ) i.i.d.. Because the empirical covariance contains only

# − 1 independent pieces of information, (2.2c) is sometimes scaled by # − 1 and
not #; making this change would lead to no changes in the statements and proofs
of all the theorems, and would only affect the definition of covariance within the
algorithms.

Let R(�̂ 9+1) denote the range of �̂ 9+1. The update step is then

E
(=)
9+1 = argmin

E

�filter, 9 ,= (E) (2.3)

where

�filter, 9 ,= (E) :=


1
2 | H

(=)
9+1 − �E |

2
Γ
+1

2 | E − Ê
(=)
9+1 |

2
�̂ 9+1

if E − Ê (=)
9+1 ∈ R(�̂ 9+1).

∞ otherwise.
(2.4)

It can be useful to rewrite the objective function for the optimization problem in an
equivalent and more standard form for input to software:

1
2E
)
(
�)Γ−1� + �̂−1

9+1

)
E−

(
�̂−1)
9+1 Ê

(=)
9+1 + �

)Γ−1) H
(=)
9+1

))
E if E − Ê (=)

9+1 ∈ R(�̂ 9+1).
∞ otherwise.

The H (=)
9+1 are either identical to the data H 9+1, or found by perturbing it randomly.

Note that �̂ 9+1 is an operator of rank at most # − 1, and thus can only be invertible
when # − 1 is larger than the dimension ofH1. For moderate- and high-dimensional
systems, it is often impractical to satisfy this condition. However, the minimizing
solution can be found by regularizing �̂ 9+1 by addition of n � for n > 0, deriving the
update equations and then letting n → 0.We give the resulting formulae, and then
justify them immediately afterwards, in the following subsubsection. Alternatively it
is possible to directly seek a solution in R(�̂ 9+1), which is a subspace of dimension
# − 1; this is done in the subsequent subsubsection.
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Formulation In The Original Variables
The well-known Kalman update formulae arising from solution of the minimization
problem (2.4) are as follows:

( 9+1 = ��̂ 9+1�
) + Γ (2.5a)

 9+1 = �̂ 9+1�
)(−1

9+1 (KalmanG08=) (2.5b)

H
(=)
9+1 = H 9+1 + B[

(=)
9+1, = = 1, ..., # (2.5c)

E
(=)
9+1 = (� −  9+1�)Ê

(=)
9+1 +  9+1H

(=)
9+1, = = 1, ..., # (2.5d)

Here [(=)
9
∼ N(0, Γ) i.i.d. and the constant B takes value 0 or 1. When B = 1 the H (=)

9+1
are referred to as perturbed observations. The choice B = 1 is made to ensure the
correct statistics of the updates in the linear Gaussian setting when a probabilistic
viewpoint is taken, and more generally to introduce diversity into the ensemble
procedure when an optimization viewpoint is taken. Derivation of the formulae may
be found in [225]. In brief the formulae arise from completing the square in the
objective function �filter, 9 ,= (·) and then applying the Sherman–Morrison formula to
rewrite the updates in the data space rather than state space; the latter is advantageous
in many applications whereH2 has dimension much smaller thanH1.

We summarize with the following pseudo-code:

Algorithm 1 EnKF Algorithm

1: Choose {E (=)0 }
#
==1, 9 = 0

2: Predict {Ê (=)
9+1}

#
==1, �̂ 9+1 from (2.2)

3: Update {E (=)
9+1}

#
==1 from (2.5)

4: 9 ← 9 + 1, go to 2.

An equivalent formulation of the minimization problem is now given by means of a
penalized Lagrangian approach to incorporate the property that the solution of the
optimization problem lies in the range of the empirical covariance. The perspective
is particularly useful when further constraints are imposed on the solution of the
optimization problem.

Theorem 2.3.1. Suppose that the dimensions ofH1 andH2 are finite. Let 9 be in
Z+ and 1 ≤ = ≤ # . Define H′ = H (=)

9+1 − �Ê
(=)
9+1. Then the update formulae (2.2), (2.5)
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may be given alternatively by

E
(=)
9+1 = Ê

(=)
9+1 + argmin

(0,E′)∈A

(1
2
| H′ − �E′ |2Γ +

1
2
〈0, E′〉

)
(2.6)

where A = {(0, E′) ∈ H1 ×H1 : �̂ 9+10 = E′} and the argmin is projected from the
pair (0, E′) onto the E′ coordinate only. Moreover E (=)

9+1 = lim
n→0

En with

En = argmin
E∈H1

(1
2
| H (=)

9+1 − �E |
2
Γ +

1
2
| Ê (=)

9+1 − E |
2
�̂n

)
and �̂n = �̂ 9+1 + n �.

Proof. For notational convenience denote �̂ = �̂ 9+1 and see that the minimization
(2.6) is performed under the constraint �̂0 = E′. Then notice that 〈0, E′〉 =| E′ |2

�̂
with

E′ lying in the range of the operator �̂; this is a convex constraint. The restriction of
�̂ over the constraint set is positive definite which means that the quadratic objective
function, now depending only on E′, is strongly convex. Therefore the problem has a
unique solution and its Lagrangian is written as:

L(E′, 0, _) = 1
2
|H′ − �E′|2Γ +

1
2
〈0, E′〉 + 〈_, �̂0 − E′〉

To express optimality conditions compute the derivatives and set them to zero:

−�)Γ−1(H′ − �E′) + 1
2
0 − _ = 0,

1
2
E′ + �̂_ = 0,

E′ − �̂0 = 0.

The last two equations imply that �̂ (2_ + 0) = 0. Thus we set _ = −1
20 and drop the

second equation, replacing the first by

−�)Γ−1(H′ − ��̂0) + 0 = 0.

Solving this for 0 gives

E
(=)
9+1 = Ê

(=)
9+1 + E

′

= Ê
(=)
9+1 + �̂0

= Ê
(=)
9+1 + �̂ (�

)Γ−1��̂ + �)−1�)Γ−1H′

= Ê
(=)
9+1 + �̂ (�

)Γ−1��̂ + �)−1�)Γ−1(H (=)
9+1 − �Ê

(=)
9+1)

= (� −  9+1�)Ê (=)9+1 +  9+1H
(=)
9+1 .
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It remains to show that  9+1 agrees with the prescription given in the formulae above.
To see this we note that if we choose ( to be any matrix satisfying  9+1 = �̂�)(−1

then
�)(−1 = (�)Γ−1��̂ + �)−1�)Γ−1

so that
(�)Γ−1��̂ + �)�) = �)Γ−1(.

Thus
�)Γ−1��̂�) + �) = �)Γ−1(

which may be achieved by choosing any ( so that

Γ−1(��̂�) + Γ) = Γ−1(

and multiplication by Γ gives the desired formula for ( 9+1.

Concerning the alternative representation of the solution, we note that �)Γ−1� +�̂−1
n

is strictly positive definite and hence the related quadratic function is strongly convex.
As a consequence we have existence and uniqueness of the solution, and the optimality
condition becomes,

(�)Γ−1� + �̂−1
n )En = �)Γ−1H

(=)
9+1 + �̂

−1
n Ê
(=)
9+1 .

Then if we apply Woodbury matrix identity we obtain

En = (�̂n − �̂n�) (��̂n�) + Γ)−1��̂n ) (�)Γ−1H
(=)
9+1 + �̂

−1
n Ê
(=)
9+1)

and rearranging the terms:

En = (� − �̂n�) (��̂n�) + Γ)−1�)Ê (=)
9+1 + �̂n�

) (��̂n�) + Γ)−1H
(=)
9+1.

Finally, as � ↦→ �−1 is continuous over the set of invertible matrices, letting n → 0
gives:

lim
n→0

En = (� −  9+1�)Ê (=)9+1 +  9+1H
(=)
9+1

which concludes the proof. �

Formulation In Range Of The Covariance
The form of the minimization problem for each individual particle has a special
structure which follows from the fact that the predicted covariance is computed
empirically and is a sum of rank one matrices. This allows us to seek the solution of



18

the minimization problem as a linear combination of a given set of vectors, and to
minimize over the scalars which define this linear combination. This reformulation
of the optimization problem is useful if the number of ensemble members # is much
smaller than the dimension of the data space, where the inversion of ( takes place to
form Kalman gain  .

In order to implement the minimization in the # dimensional subspace we note that
�filter, 9 ,= (E) is infinite unless

E − Ê (=)
9+1 = �̂ 9+10

for some 0 ∈ R=. From the structure of �̂ 9+1 given in (2.2c) it follows that

E = Ê
(=)
9+1 +

1
#

#∑
<=1

1<4
(<) , 4(<) := Ê (<)

9+1 − <̂ 9+1. (2.8)

Here each unknown parameter 1< ∈ R and 1 := {1<}#<=1, is the unknown vector to
be determined. This form for E follows from the fact that

�̂ 9+1 =
1
#

#∑
<=1

4(<) ⊗ 4(<) (2.9)

which in turn implies that

�̂ 9+10 =
1
#

#∑
<=1

1<4
(<) . (2.10)

Note that the unknown vector 1 depends on = as we need to solve the constrained
minimization problem for each of the particles, indexed by = = 1, . . . , #; we have
suppressed the dependence of 1 on = for notational simplicity.

The expression (2.8) for E in terms of the 4(<) can be substituted into (2.4) to obtain
a functional �filter, 9 ,= (1) to be minimized over 1 ∈ R# , because E is an affine function
of 1. Equation (2.8) may be written in compact form as

E = Ê
(=)
9+1 + �1 (2.11)

where � is the linear mapping from R# intoH1 defined by

�1 :=
1
#

#∑
<=1

1<4
(<) .

We now identify �filter, 9 ,= (1). We note that (2.10) is solved by taking

1< = 〈4(<) , 0〉.
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Now note that

1
2
| E − Ê (=)

9+1 |
2
�̂ 9+1

=
1
2
〈0, �̂ 9+10〉 =

1
2#

#∑
<=1

12
< .

Using this and (2.11) in the definition of �filter, 9 ,= (E) we obtain

�filter, 9 ,= (1) = �filter, 9 ,=
(̂
E
(=)
9+1 + �1

)
and hence, from (2.4),

�filter, 9 ,= (1) :=
1
2
| H (=)

9+1 − �Ê
(=)
9+1 − ��1 |

2
Γ +

1
2#
|1 |2 (2.12a)

=
1
2
1)

(
�)�)Γ−1�� + 1

#
�

)
1 −

(
�)�)Γ−1(H (=)

9+1 − �Ê
(=)
9+1)

))
1 + const.

(2.12b)

Once 1 is determined it may be substituted back into (2.11) to obtain the solution to
the minimization problem.

The preceding considerations also yield the following result, concerning the un-
constrained Kalman minimization problem; its proof is a corollary of the more
general Theorem 2.4.1 from the next subsection, which includes constraints in the
minimization problem.

Corollary 2.3.2. Suppose that the dimensions of H1 and H2 are finite. Given the
prediction (2.2a), the unconstrained Kalman update formulae may be found by
minimizing �filter, 9 ,= (1) from (2.12) with respect to 1 and substituting into (2.11).

We summarize the ensemble Kalman state estimation algorithm, using minimization
over the vector 1, in the following pseudo-code:

Algorithm 2 EnKF Algorithm formulated in range of covariance

1: Choose {E (=)0 }
#
==1, 9 = 0

2: Predict {Ê (=)
9+1, 4

(=)}#
==1, from (2.2)

3: Optimize {1 (=)}#
==1 as argmin of (2.12)

4: Update E (=)
9+1 = Ê

(=)
9+1 + �1

(=) from (2.11)
5: 9 ← 9 + 1, go to 2.
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2.4 Constrained Ensemble Kalman Filter
In this subsection we introduce linear equality and inequality constraints on the state
variable into the ensemble Kalman filter. We make prediction according to (2.2),
and then incorporate data by solving the minimization problem (2.4) subject to the
additional constraints

�E = 5 , (2.13a)

�E � 6. (2.13b)

Here � and � are linear mappings which, respectively, take the state E into the
number of equality and inequality constraints; the notation � denotes inequality
componentwise.

Formulation In The Original Variables
The preceding considerations lead to the following algorithm for ensemble Kalman
filtering subject to constraints (the theoretical justification for using this algorithm
follows from Theorem 2.4.1 below):

Algorithm 3 Constrained EnKF Algorithm

1: Choose {E (=)0 }
#
==1, 9 = 0

2: Predict {Ê (=)
9+1}

#
==1, �̂ 9+1 from (2.2)

3: Update {E (=)
9+1}

#
==1 from (2.5)

4: for = = 1 : #
5: if E (=)

9+1 violates constraints in (2.13)
6: E

(=)
9+1 ← argmin of (2.4) subject to (2.13)

7: end if
8: end for
9: 9 ← 9 + 1, go to 2.

Formulation In Range Of The Covariance
The linear constraints (2.13) can be rewritten in terms of the vector 1, by means of
(2.11), as follows:

��1 = 5 − �Ê (=)
9+1, (2.14a)

��1 � 6 − �Ê (=)
9+1. (2.14b)
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We may thus predict and then optimize the objective function �filter, 9 ,= (1), given by
(2.12), subject to the constraints (2.14). Implementation of this leads to following
algorithm for ensemble Kalman filtering subject to constraints:

Algorithm 4 Constrained EnKF Algorithm formulated in range of covariance

1: Choose {E (=)0 }
#
==1, 9 = 0

2: Predict {Ê (=)
9+1, 4

(=)}#
==1, from (2.2)

3: Update 1 (=) ← argmin of (2.12), E (=)
9+1 = Ê

(=)
9+1 + �1

(=) from (2.11)
4: for = = 1 : #
5: if E (=)

9+1 violates constraints in (2.13)
6: 1 (=) ← argmin of (2.12) subject to (2.14)
7: Update E (=)

9+1 = Ê
(=)
9+1 + �1

(=) from (2.11)
8: end if
9: end for
10: 9 ← 9 + 1, go to 2.

Justification for the use of this algorithm, working in the constrained space parame-
terized by 1, is a consequence of the following:

Theorem 2.4.1. Suppose that the dimensions ofH1 andH2 are finite. The problem
of finding E (=)

9+1 as the minimizer of �filter, 9 ,= (E) subject to the constraints (2.13) is
equivalent to finding 1 to minimize �filter, 9 ,= (1) subject to the constraints (2.14)
and then using (2.11) to find E (=)

9+1 from 1. Furthermore, both of these constrained
minimization problems have a unique solution provided that the constraint sets are
non-empty.

Proof. For notational convenience set Ê = Ê (=)
9+1, H = H

(=)
9+1, H

′ = H − �Ê, �̂ = �̂ 9+1

and �̂n = �̂ 9+1 + n �.
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Denote

E∗ =argmin
E′

1
2
| H′ − �E′ |2Γ +

1
2
〈0, E′〉

subject to • �̂0 = E′

• �E′ = 5 − �Ê
• �E′ � 6 − �Ê

(2.15)

En =argmin
E

1
2
| H − �E |2Γ +

1
2
| E − Ê |2

�̂n

subject to • �E = 5

• �E � 6

(2.16)

and

� (E) = 1
2
| H − �E |2Γ +

1
2
| E − Ê |2

�̂

�n (E) =
1
2
| H − �E |2Γ +

1
2
| E − Ê |2

�̂n

The part of the statement of Theorem 2.4.1 concerning existence of a minimizer
is a consequence of the Lemma 2.4.2 stated and proved below. The second part,
concerning the equivalence of minimization over 1 and over E (or E′) was shown
prior to the theorem statement. This concludes the proof. �

Lemma 2.4.2. Suppose that the constraint sets of (2.15) and (2.16) are non empty,
then E∗ exists and is unique and for all n > 0, En exists and is unique. Furthermore
;8< En
n→0

= E∗ + Ê.

Proof. To prove existence and uniqueness of the solution of (2.15), notice that it can
be reformulated as

argmin
E′

� (E′ + Ê)

subject to • �̂0 = E′

• �E′ = 5 − �Ê
• �E′ � 6 − �Ê

and that the restriction of �̂ over its range is strictly positive definite. Hence � is a
strongly convex function being minimized over a non empty closed convex set. From
standard theory E∗ exists and is unique. Then as �̂n is strictly positive definite, the
same type of arguments provide existence and uniqueness of En .
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Now we prove the second part of the lemma. We note that E∗ + Ê matches the
constraints of (2.16). It follows that for all n > 0, �n (En ) ≤ �n (E∗ + Ê). Then let us
prove that �n (E∗ + Ê) →

n→0
� (E∗ + Ê). First denote by _1 ≤ · · · ≤ _#−1 the strictly

positive eigenvalues of �̂ (recall that �̂ is symmetric positive semidefinite and that
rank(�̂) = # − 1 almost surely). Hence �̂−1

n =
∑#−1
:=1

1
_:+n 0:0

)
:
+ ∑dim(H1)

:=#
1
n
0:0

)
:

where the 0:’s are the eigenvectors of �̂ (the first and second sums respectively
gather the vectors of the range and of the nullspace of �̂) . As E∗ lies in the range of
�̂, it holds that | E∗ + Ê − Ê |2

�̂n
= | E∗ |2

�̂n
=

∑#−1
:=1

1
_:+n (0

)
:
E∗)2. Now as the 0:’s do

not depend on n , by letting n tending to zero, this quantity will tend to
#−1∑
:=1

1
_:
(0): E

∗)2 =| E∗ |2
�̂
=| E∗ + Ê − Ê |2

�̂
.

Therefore it holds that �n (E∗ + Ê) →
n→0

� (E∗ + Ê). From this we deduce that there
exists X > 0 such that for all 0 < n < X, �n (En ) ≤ � (E∗ + Ê) + 1.

Then set Fn = En − Ê = F0
n +F1

n where F0
n lies in the nullspace of �̂ and F1

n in its range
(recall that for a symmetric matrix nullspace and range are orthogonal) and see that
�n (En ) = 1

2 | H
′−�Fn |2Γ +

1
2 | Fn |

2
�̂n
. It holds that 1

2 | Fn |
2
�̂n
≤ �n (En ) ≤ � (E∗+ Ê)+1

for n sufficiently small. Furthermore | Fn |2
�̂n
=| F0

n |2
�̂n
+ | F1

n |2
�̂n
= 1

n
| F0

n |2 + |
F1
n |2

�̂n
, and since this quantity is bounded from above we deduce that F0

n →
n→0

0

and that F1
n is bounded. Let (n<)<∈N be a sequence of positive real numbers such

that n< →
<→∞

0, and from the preceding extract a converging subsequence (denoted
(n<)<∈N for simplicity) such that (F1

n<
)<∈N converges to a limit denoted F∗. As

F1
n<

lies in R(�̂), we can use the eigenvalue decomposition of �̂ to show that
| F1

n<
|2
�̂n<
→
<→∞
| F∗ |2

�̂
. This limiting identity, and the fact that F0

n has limit 0, may
be used to establish the first equality within the following chain of equalities and
inequalities:

� (F∗ + Ê) = lim
<→∞

1
2
| H′ − �Fn< |2Γ +

1
2
| F1

n<
|2
�̂n<
≤ lim
<→∞

�n< (En<)

≤ lim
<→∞

�n< (E∗ + Ê) = � (E∗ + Ê).

Now note that F∗ matches all the constraints of (2.15). Indeed F1
n<

lies in the range
of �̂ which is a closed space, also En< − Ê = F0

n<
+ F1

n<
→
<→∞

F∗. It is clear that
En< − Ê matches the equality and inequality constraints of (2.15) for all < and hence
passing to the limit we have that F∗ satisfies the equalities and inequalities.

From the uniqueness of the minimizer of (2.15) we have that F∗ is equal to E∗. In
particular this means that E∗ is the unique cluster point of the original sequence
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(F1
n<
)<∈N. Since the original sequence was arbitrarily chosen, we conclude that

lim En
n→0

= E∗ + Ê. �

Remark 2.4.3. Notice that the proof remains true ifwe take general convex inequalities.
We simply need the constrained sets to be closed and convex; however we have
restricted to linear equality and inequality constraints for simplicity and because
these arise most often in practice.

2.5 Blood glucose forecasting experiments
Here we present an application of the constrained EnKF to the tracking and forecasting
of human blood glucose levels. In Section 2.5, we use self-monitoring data collected
by an individual with Type 2 Diabetes; in Section 2.5.2, we use electronic health
record data from the Columbia University Irving Medical Center critical care unit.

We model the glucose-insulin system with the ultradian model proposed by Sturis
et al. [398]. The primary state variables are the glucose concentration, �, the plasma
insulin concentration, �?, and the interstitial insulin concentration, �8; these three
state variables are augmented with a three stage delay (ℎ1, ℎ2, ℎ3) which encodes a
non-linear delayed hepatic glucose response to plasma insulin levels. The resulting
ordinary differential equations have the form:

3�?

3C
= 51(�) − � (

�?

+?
− �8
+8
) −

�?

C?
(2.17a)

3�8

3C
= � (

�?

+?
− �8
+8
) − �8

C8
(2.17b)

3�

3C
= 54(ℎ3) + <� (C) − 52(�) − 53(�8)� (2.17c)

3ℎ1
3C

=
1
C3
(�? − ℎ1) (2.17d)

3ℎ2
3C

=
1
C3
(ℎ1 − ℎ2) (2.17e)

3ℎ3
3C

=
1
C3
(ℎ2 − ℎ3) (2.17f)

Here <� (C) represents a known rate of ingested carbohydrates, 51(�) represents the
rate of glucose-dependent insulin production, 52(�) represents insulin-independent
glucose utilization, 53(�8)� represents insulin-dependent glucose utilization and
54(ℎ3) represents delayed insulin-dependent hepatic glucose production; the func-
tional forms of these parameterized processes can be found in Section 2.5.3, along
with a description of model parameters.
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In the EnKF setting, we write D = [�?, �8, �, ℎ1, ℎ2, ℎ3], and use (6.25) to define �
such that

3D

3C
= � (D, C, \),

where \ contains model parameters. We then extend the state vector in order to
perform joint parameter estimation: E = [D, \]) .

For the purposes of this paper, the function <� (C) may be viewed as known; it is
determined from data describing meals consumed by the patient. Since insulin (�?
and �8) and delay variables (ℎ1, ℎ2, and ℎ3) are not measured, whilst glucose is
measured, we define the measurement operator to be � = [0, 0, 1, 0, 0, 0, 0]. The
discrete time forward model is obtained by integrating the deterministic model
in (6.25) between consecutive measurement time-points and applying an identity
map to \. Because these time-points may not be equally spaced, and because the
time-dependent forcings (meals) will differ in different time-intervals, this leads to a
map of the form

E 9+1 = Ψ 9 (E 9 ).

This is a slight departure from the methodology outlined in Section 2.2, where Ψ
does not depend on 9 (autonomous dynamics) but is a straightforward extension
which the reader can easily provide.

We present EnKF results from a single patient’s data when run with and without
constraints (Algorithms 1 and 3 respectively). We performed joint state-parameter
estimation, augmenting the state with parameter \ (see Section 2.5.3 for details of
where specific parameters appear) and adding identity-map dynamics for parameter
\.

2.5.1 Type 2 diabetes self-monitoring data
We use the "P1" data set described by Albers et al. [10]; this dataset includes
measurements of blood glucose and consumed nutrition, and is publicly available on
physionet.org. For more information on the data, and on an unconstrained data
assimilation approach using the unscented Kalman filter, see [10].

We choose to only estimate the parameter '6 (along with the physiologic state D),
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and impose the following constraints:

0.01
0.01
2000
0.01
0.01
0.01

0


� E �



10000
10000
40000
10000
10000
10000

1000000


(2.18)

Figure 2.1 compares the overall distribution of updated state means over time when
running EnKF with and without these state constraints. While individual particles
in this experiment often violated the constraints, the overall updated means did not.
Nevertheless, enforcement of lower-bound constraints shifts up the state distribution
slightly. Note that upper bound constraints were never violated in this experiment.

Figure 2.2 shows a two-dimensional state projection of updated particles at a given
time step before and after applying the constrained optimization. Note that particles
may additionally violate constraints in unplotted dimensions—this explains why one
particle whose unconstrained update appears to live within the constraints is in fact
differently updated under the constrained optimization. Time step 126 was selected
for illustrative purposes, and was the measurement event in which particles most
often violated the constraints.

Figure 2.3 depicts the overall frequency of constraint violations. We observe that the
the measured state (blood glucose) never violated a constraint, nor did the inferred
parameter '6. However, other model states did often violate constraints, and up to
30% (4/13) of particles simultaneously violated the constraints at a single time-step.

By adding constraints, we ensure that all the simulations which constitute the
ensemble method are biologically plausible.

2.5.2 Intensive care unit patient dataset
Here, we report results from [11], which applies the previously discussed modeling
and filtering methodology to a dataset of blood glucose measurements and meal
events collected in the neurological intensive care unit at the Columbia University
Irving Medical Center. In this work, the unconstrained and constrained EnKF were
compared across individual patient timeseries, and various physiologically motiviated
constraint sets were further studied. They found the insulin state most necessary to
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Figure 2.1: The distribution of mean state updates when running EnKF with
and without inequality constraints. Black vertical lines denote lower bound state
constraints.

Figure 2.2: Particle updates at a given time-step (here, measurement 126) are shown
using a traditional Kalman gain versus using the constrained optimization. The black
lines denote lower bound constraints on the states ℎ1 and ℎ3.
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Figure 2.3: Percentage map of the constraint violations, where each lower-bound
constraint is represented by a row. At each iteration, the percentage of particles that
violated a constraint is color-coded, with yellow representing the largest proportion
of constraint violations.

constrain, and found substantial success by imposing severe constraints on insulin
levels (�8, �? ∈ [75, 275]) and not constraining any other state or parameter. The
constrained EnKF (with the severe insulin constraints) enabled accurate forecasts
after 1 − 1.5 days of data instead of 4 − 4.5 and decreased mean-squared-error by a
factor of 5 when compared to the unconstrained EnKF approach.

To illustrate this improvement, we provide an example of glucose forecasting for
patient 593 performed with and without insulin constraints. Figure 2.4 shows
predictions and inferences without constraints—note that the insulin states eventually
converge to the aforementioned constraint set, but spend significant time exploring
physiologically unlikely values during the first 4 days of data collection. Figure 2.5
shows the same experiment performed with insulin constraints—we observe much
faster convergence of the insulin states and faster synchronization with the observed
glucose measurements, enabling predictions with significantly lower error to be
available much sooner than in Figure 2.4.
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Figure 2.4: Oh caption, my caption.

2.5.3 Ultradian model of glucose-insulin dynamics
We give the details of the ultradian model of glucose-insulin dynamics used as the
forward model in Section 2.5. An example of the induced dynamics is given in
Figure 6.13.
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Figure 2.5: This figure demonstrates how constraints on the insulin states improve
forecast accuracy and robustness, compared with the unconstrained EnKF forecast
results shown in Figure 2.4. The right panels show insulin dynamics are quickly
constrained to lie within the realistic constraint boundaries, resulting in the model
entraining to the patient within 1 − 1.5 days instead of 4 − 4.5 days. The upper left
panel shows the forecast ensemble converging and estimating the patient’s mean BG;
the variance in BG is under-estimated.
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) −
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3�8

3C
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(2.20)

3�

3C
= 54(ℎ3) + <� (C) − 52(�) − 53(�8)� (2.21)

3ℎ1
3C

=
1
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(�? − ℎ1) (2.22)

3ℎ2
3C

=
1
C3
(ℎ1 − ℎ2) (2.23)

3ℎ3
3C

=
1
C3
(ℎ2 − ℎ3) (2.24)

where, for # meals at times {C 9 }#9=1 with carbohydrate composition {< 9 }#9=1

<� (C) =
#∑
9=1

< 9 :

60
exp(: (C 9 − C)), # = #{C 9 < C} (2.25)

and

51(�) =
'<

1 + exp( −�
+621
+ 01)

: the rate of insulin production (2.26)

52(�) = *1 (1 − exp( −�
�2+6

)) : insulin-independent glucose utilization (2.27)

53(�8) =
1

�3+6
(*0 +

*< −*0

1 + (^�8)−V
), 53(�8)� : insulin-dependent glucose utilization

(2.28)

54(ℎ3) =
'6

1 + exp(U( ℎ3
�5+?
− 1))

: delayed insulin-dependent glucose utilization

(2.29)

^ =
1
�4
( 1
+8
− 1
�C8
) (2.30)
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Figure 2.6: Here we show the oscillating dynamics of the glucose-insulin response
in the ultradian model, driven by an exponentially decaying nutritional driver <� .
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C h a p t e r 3

AN SDE-BASED REDUCED-ORDER MODEL OF
GLUCOSE-INSULIN DYNAMICS

Remark 3.0.1. This chapter is derived from the manuscript by Sirlanci, Levine,
Wang, Albers, and Stuart [389], which is under review at Chaos.

3.1 Introduction
Broadly speaking mathematical models of human physiology may serve one of
two purposes: elucidation of the detailed mechanisms which comprise the complex
systems underlying observed physiology; or prediction of outcomes from the complex
system, for the purposes of medical intervention to ameliorate undesirable outcomes.
In principle, these two objectives interact: a model which explains the detailed
mechanisms, if physiologically accurate and compatible with observed data, will
of course be good for prediction. However, human physiological data are often too
sparse for use in resolving high-fidelity physiological details; moreover, this sparsity
can induce severe model unidentifiability that impedes inference efficiency and
results in suboptimal predictive performance. While the previous chapter focuses on
methods for constraining inference, this chapter demonstrates how model reduction
and stochastic closure techniques can be applied to physiologic models to make
them more identifiable from available data. This, of course, comes with a cost of
reduced fidelity; however, we find that this tradeoff often sides with model simplicity,
especially when data are low-fidelity (i.e. sparse and noisy) and the underlying
system is not fully understood (i.e. available ”high-fidelity" models have substantial
inadequacies). The human glucose-insulin system provides an important example
of this challenge because in many settings, insulin—a dominant state variable—is
rarely measured.

The objective of thework presented here (and in [389]) is to distill existingmechanistic
models of the human endocrine system into an interpretable model of human
glucose dynamics that is identifiable from real-world clinical data. We do this by
approximating the insulin’s glycemic regulation as an Ornstein-Uhlenbeck process
(a linear stochastic differential equation with exponential mean-reversion), then
further introducing forcing terms that parameterize exogenous effects of nutrition and
medication. We then evaluate the predictive performance of this simple model on
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clinical data sets in an outpatient type 2 diabetes setting and an inpatient intensive care
unit setting. We compare its predictive performance with state-of-the-art predictions
given by the constrained EnKF (Section 2.4) paired with popular mechanistic models
of the glucose-insulin system (from which our reduced model was inspired).

The key finding from this work is non-inferior predictive capacity of our simple
linear stochastic model when compared to higher complexity non-linear models.
This indicates that the severity of our clinical data constraints prevented us from
extracting additional expressivity from the non-linear models beyond the simple
dynamics encoded by a forced linear SDE. Alternatively, it may be that the additional
expressivity of the non-linear models is not of the right type, and thus does not offer
much additional predictive advantage (despite having clear mechanistic validity).

3.1.1 Clinical settings
Type 2 Diabetes Mellitus (T2DM)

Intensive Care Units (ICU)

3.1.2 Advantages of a linear SDE model
In accordance with our goal, which is to develop a highly simplified yet interpretable
model, we work with a forced SDE of Ornstein-Uhlenbeck type to describe glucose
evolution, together with an observation model of linear form, subject to additive
Gaussian noise. The Gaussian structure allows for computational tractability in
prediction since probability distributions on the glucose state are described by
Gaussians and hence represented by simply a mean and variance. Note that the
protocols for managing glucose depend on intervals; e.g., a goal may be to keep
glucose between 80-150 mg/dl and interval deviation from this goal, e.g., 151-180
mg/dl, induce changes in the insulin dosage. Thismeans that decisions aremade based
on boundaries of glycemic trajectories. Nevertheless, because glucose oscillates
under continuous feeding, clinicians typically aim to ensure that the glycemic mean
does not fall below 60 mg/dl or above 180 mg/dl for any length of time. The intervals
are then a proxy for this balance of managing the mean and protecting against
trajectories diverging too high or low at any time, including between observations.
Hence accurately resolving mean and standard deviation in BG levels is extremely
important.

Furthermore the Kalman filter may be used to incorporate the data, and also works
entirely within the Gaussian framework; and finally parameter learning, although
non-Gaussian, is well-developed in the Kalman filter setting, both from the fully
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Bayesian and optimization (empirical Bayes) perspectives. The Ornstein-Uhlenbeck
process has three contributions: a damping term which drives the BG level towards
its base value at a rate which is possibly insulin dependent; a forcing representing
nutritional intake and a white noise contribution, which is used to encapsulate the
high-frequency dynamics as these dynamics are difficult to be resolved with sparse
measurements. The presence of noise in the glucose evolution model, as well as in
the data acquisition process, allows for model error which is natural in view of the
the rather simple modeling framework.

Our Contribution

• We describe a simple, interpretable, modeling framework limited to states and
parameters that are directly observable or inferable from data for prediction
within the human glucose-insulin system, based on a continuous time linear,
Gaussian, stochastic differential equation (SDE) for glucose dynamics, in
which the effect of insulin appears parametrically.

• We completely describe and detail the inference machinery necessary—in a
data assimilation and inverse problems framework—to estimate a stochastic
differential equation model of glucose dynamics with real-world data.

• The framework is sufficiently general to be usable within the ICU, T2DM and
potentially T1DM settings.

• We demonstrate, in a train-test set-up, that the models are able to fit individual
patients with reasonable accuracy; both ICU and T2DM data are used. The
test framework we use is a predictive one laying the foundations for future
control methodologies.

• Comparison of the data fitting for T2DM and ICU patients reveals interesting
structural differences in their glucose regulation.

• We make a comparison of the predictive power of our stochastic modeling
framework with that of more sophisticated models developed for both T2DM
and the ICU, demonstrating that the simple stochastic approach is generally
more accurate in both settings.

Outline
An outline of the chapter is as follows. In Section 3.3, we introduce the general
continuous-time mathematical model that describes the human glucose-insulin
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system. Then, in Section 3.3.2, we introduce the specific versions of this model
relevant in T2DM and ICU settings. The two model classes all derive from a single
general model, and differ according to how nutrition uptake and glucose removal are
represented. In Section 3.4, we construct the framework for stating the parameter
estimation problem and its solution. In Section 3.5, we describe the datasets, the
experiments we design for parameter estimation and forecasting, and the methods
we use for parameter estimation and forecasting for the T2DM and ICU settings.
Section 3.6 presents the numerical results on parameter estimation and forecasting
along with some uncertainty quantification (UQ) results separately for T2DM and
ICU settings. Finally, in Section 3.7, we make some concluding remarks and discuss
future directions that we intend to pursue.

3.2 Literature Review
Researchers have developed various mathematical models ranging from extremely
simple to highly complex, using ordinary differential equations (ODEs) and machine
learning (ML) to predict and describe human glucose metabolism. We discuss these
efforts organized according to model usage.

Models Developed to Understand Physiology, Pathophysiology and Disease
Pathogenesis: Some mechanistic models are developed to investigate a specific
phenomenon of the glucose-insulin system such as to understand the different phases
of insulin secretion with respect to different glucose stimulation patterns, to estimate
insulin sensitivity in the intravenous glucose tolerance test (IVGTT) setting, and to
elucidate the cause of the ultradian (long-period) oscillations of insulin and glucose,
[156, 35, 240, 384, 399, 239, 259]. Others have developed models by clinically
minded motivations to describe V-cell mass, glucose, and insulin dynamics and to
investigate T2DM pathophysiology, [407, 36, 158, 146]. Some researchers developed
models to describe the underlying system in more detailed way such as the events
that occur during oral glucose ingestion [98, 231], or relevant organ systems, [121].
A nice review of the models developed for clinical and physiological investigation
BG homeostasis and T2DM can be found in [280].

There are also machine learning models developed to understand model phenotypic
and health care process differences and to predict T2DM development, [3, 12, 7, 6,
183, 186, 10, 1, 197].

Models Developed for Prediction and Control: Researchers have developed
mechanistic models to address challenges including fast evolution of the underlying
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system (parameter variation in time), wide variation in clinical response within and
between patients, sparse measurements, and concerns about safety issues with the
goals of prediction and control of BG levels, [379, 414, 248, 251, 328, 211, 357, 212,
419, 169, 314]. Others developed stochastic (mechanistic) models with the same
purpose, [457, 102, 250, 249, 228, 103, 119].

Glucose control based on mechanistic modeling is the focus of the artificial pancreas
project in the type 1 diabetes mellitus (T1DM) setting andmanymodels are developed
for this purpose, [58, 312, 92, 130, 129, 216, 313]. A comprehensive range of
BG control algorithms can be found in [76]. Finally, other researchers conducted
clinical trials to compare the efficacy between different closed-loop artificial pancreas
systems and sensor-assisted pump therapy for T1DM patients, [31, 57, 62, 404, 406].

ML approaches have been proposed in pure prediction tasks such as predicting
next glucose values or hypoglycemia. For these purposes, some researchers used
classification methods and neural network models, [401, 293, 144, 450, 39, 356,
464], while others used ARIMA (auto-regressive integrated moving average) and
linear regression models, [281, 443, 292, 347, 52, 141, 393, 458].

Finally, in [286], the authors developed a hybrid model balancing a physiological
and statistical model of glucose-insulin dynamics to forecast long-term BG levels of
T1DM patients based on real-world data, showing the possibility of outperforming
the forecasting of BG levels obtained by either pure physiological or pure statistical
models alone.

Models Used for Patient-Centered Disease Self-Management: Patient-centered
disease self-management is a crucial tool to improve health condition of patients
focusing on their needs, life style, and preferences. Some researchers developed
decision support tools for T2DM patients based on mechanistic or machine learning
models, [276, 277, 106, 105, 8, 290].

Mathematical Techniques Used for Estimation: In all of the models discussed
above, parameter estimation plays a vital role in the accuracy of predictions. Param-
eters are rarely directly measurable, and their values will vary from one patient to
another. There are two overarching approaches to estimating parameters, optimization
where a model-data mismatch is minimized to determine parameters [124], and the
Bayesian approach [199] where the distribution of the parameters, given the data and
given the assumed (noisy) model-data framework, is computed. Researchers used
various approaches for parameter estimation. The most common approaches are the
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standard least squares optimization, [414, 441], nonlinear least squares optimization,
[173], and Bayesian approach to estimate both time-invariant and time-varying model
parameters, [181].

3.3 Modeling framework
We begin by providing a constructive explanation of the continuos-time model
including the model equations, the description of unknown model parameters and
the precise role of each component of the model. Then, we also provide a detailed
conceptual explanation of how a stochastic modeling approach could be used to
represent blood glucose dynamics.

3.3.1 Model construction
To begin construction of a simple, one-state model for glucose dynamics, we first
consider the classical two-state Bergman [35] equations:

¤� = <external(C) + 5HGP(�) − (2 + B� �)� (3.1a)
¤� = �external(C) + V 5ISR(�) − : �. (3.1b)

Here, � denotes plasma glucose concentration and � denotes plasma insulin concen-
tration. External inputs of nutrition and inuslin are given by <external(C), �external(C),
respectively. The insulin dynamics, beyond external forcing, are primarily governed
by a glucose-dependent secretion rate 5ISR(�), insulin-producing beta-cell mass V,
and linear degradation rate : . The glucose dynamics, aside from external forcing
(i.e. meals), are driven by a glucose-dependent (insulin independent) hepatic glu-
cose production 5HGP, an insulin-dependent glucose removal rate �� (with insulin
sensitivity factor B�), and a linear degradation rate 2.

In this work, we hypothesize that the pancreatic and hepatic regulation of glucose can
instead be approximated by a simple function of glucose 5internal(�) and a closure
term a. This results in a new single-state equation

¤� = <external(C) + 5internal(�) + 5external(�) + a(C), (3.2)

where the closure term a(C) accounts for additional glycemic dynamics not captured
by the first three terms. To begin evaluating the utility of this perspective, we choose
simple forms for these unknown functions.

Specifically, we assume that glucose regulation can be roughly approximated by an
exponential decay to a fixed point �1 at rate W such that 5internal(�) := W

(
�1 −� (C)

)
.
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We also assume that the effect of external insulin delivery has a simple relationship
5external(�) := V�external with proportionality constant V. Finally, we assume that the
possibly large residual errors induced by these simplifiying assumptions are given
by a Brownian Motion, (C) with variance proportional to W (with proportionality
constant f2); i.e a(C) :=

√
2Wf2 ¤, (C).

These choices yield the following Ornstein-Uhlenbeck model for evolution of blood
glucose � (C):

¤� (C) = −W(� (C) − �1) + <(C) − V� (C) +
√

2Wf2 ¤, (C). (3.3)

There are four basic parameters for the model in eq. (3.3). �1 (mg/dl) represents the
basal glucose (i.e. the mean of the unforced process), W (1/min) is the decay rate for
the exponential mean reversion, V (mg/(dl*U)) is a proportionality constant for the
linear effect of IV insulin-based glucose removal, and f governs the variance of the
oscillations described by, (C).

We use simple models for the meal function <(C) and the insulin delivery function
� (C) (defined in section 3.3.2) that enable explicit solution of the continuous time
model between events. We define events as times at which the meal or insulin
delivery functions change discontinuously, or points at which BG is measured.

The simple linear Gaussian structure of Ornstein-Uhlenbeck models, along with
appropriately simple forcing terms <(C), � (C) (defined in section 3.3.2), allow for
tractable solutions to eq. (3.3). Specifically, integration of the system leads to a
solution � (C) that is normally distributed with analytically calculable means and
variances.

3.3.2 Event-Time Model
For computational purposes, and because data are typically available at discrete
times, we develop a discrete-time version of the model (3.3). We first present it
in generality, then develop it specifically for outpatient Type 2 Diabetes (T2DM)
glucose modeling (see Section 3.3.3) and for inpatient intensive care unit (ICU)
glucose modeling (see Section 3.3.4). Note that ICU and T2DM settings are also the
focus for our data-driven studies.

The time discretization is defined completely by a dataset in the following sense.
Let {C (<)

:
} <
:=1 denote the times of relevant nutrition events, let {C (8)

:
} 8
:=1 denote the

times of relevant insulin delivery events, and let {C (>)
:
} >
:=1 denote the times of glucose
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measurements. We call the re-ordered union of these sets,

{C: }#:=0 := {C (<)
:
} <
:=1 ∪ {C

(8)
:
} 8
:=1 ∪ {C

(>)
:
} >
:=1

as event times.

We can obtain the following event-time model by integrating (3.3) over the event-time
intervals, [C: , C:+1) for : = 0, 1, ..., # − 1, via use of Itô formula: 1

� (C:+1) = �1 + 4−Wℎ: (� (C: ) − �1) +
∫ C:+1

C:

4−W(C:+1−B)<(B)3B −
∫ C:+1

C:

4−W(C:+1−B) � (B)3B

+ f
√

1 − 4−2Wℎ: b: ,

(3.4)

where ℎ: := C:+1 − C: and b: ∼ # (0, 1) independent random variables. We exhibit
specific versions of this general event-time model for T2DM and ICU settings in
more detail in the following sections.

3.3.3 T2DM
Glucose dynamics in type 2 diabetes settings are driven by a combination of diet,
activity, medication, and internal physiology. Here, we specifically focus onmodeling
the effect of carbohydrate intake on glycemic levels of people with T2DM. Because
our T2DM self-monitoring datasets are collected from patients who do not take
insulin, we have � (C) ≡ 0 for this setting, and will thus ignore the exogenous insulin
term in the T2DM event-time model. The meal function, <(C), on the other hand, is
essential for capturing the uptake of glucose into the bloodstream from consumed
carbohydrates. Here, we define <(C) as the difference of two exponential functions
(this choice was shown to be effective in the T2DM case by Albers et al. [10]):

<(C) =
 <∑
:=1

�:

2:
(4−0(C−C

(<)
:
) − 4−1(C−C

(<)
:
))1[C (<)

:
,∞) (C) (3.5)

where C (<))
:

is the time of the : Cℎmeal,�: is the total amount of glucose (mg) in the : Cℎ

meal, and 2: (/dl) is a normalizing constant so that
∫ ∞
C
(<)
:

(4−0(C−C
(<)
:
)−4−1(C−C

(<)
:
))3C = 1.

Therefore, the model in (3.3) becomes

¤� (C) = −W(� (C) −�1) +
 <∑
:=1

�:

2:
(4−0(C−C

(<)
:
) − 4−1(C−C

(<)
:
))1[C (<)

:
,∞) (C) +

√
2Wf2 ¤, (C),

(3.6)
1equivalent to using integrating factors in this case
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in the T2DM setting. In this model, the first term represents body’s own effect
to remove insulin from the bloodstream, the second term represents the effect of
nutrition on the rate of change of BG, and the last term models the residual infidelities
of our model as a Brownian Motion. Integrating over [C0, C], we can write the analytic
solution of this equation as

� (C) = �1 + 4−W(C−C0) (� (C0) − �1)

+
 <∑
:=1

�:

2:

(
4−0(C−C

(<)
:
) − 4−W(C−C

(<)
:
)

W − 0 − 4
−1(C−C (<)

:
) − 4−W(C−C

(<)
:
)

W − 1

)
1[C (<)

:
,∞) (C)

+
∫ C

C0

4−W(C−B)
√

2Wf23, (B).

(3.7)

Note that, in practice, we need to evaluate BG level at specific time points and hence
need the discrete-time model implied by the continuous time representation in (3.7).
Now, by integrating (3.6) over [C: , C:+1) and denoting 6: := � (C: ), we obtain

6:+1 = �1 + 4−Wℎ: (6: − �1) + <: + f
√

1 − 4−2Wℎ: b: , (3.8)

as a special case of (3.4). Also, for any fixed C: , find the meal times C (<)
9

such that
C
(<)
9
≤ C: and denote the index set of these meal times by I: . Then <: in (3.8)

becomes

<: =
∑
9∈I:

� 9

2 9

(
4
−0(C:+1−C (<)9

) − 4−Wℎ: 4−0(C:−C
(<)
9
)

W − 0 − 4
−1(C:+1−C (<)9

) − 4−Wℎ: 4−1(C:−C
(<)
9
)

W − 1

)
.

(3.9)
Hence, note that in this case, we have five model parameters to be estimated:
�1, W, f, 0, 1. Recall that in this setting, �1 represents the basal glucose value
that BG level stays around starting some time after nutrition intake until the next
nutrition intake. W represents the decay rate of BG level to �1 after the nutrition
intake, and f represents the amplitude of the BG level oscillations. The parameters
0 and 1 entering the meal function implicitly control the time needed for the glucose
nutrition rate to reach its peak value, and the time needed for this rate to return back
to the vicinity of 0. Because of these simple physiological meanings, the parameters
entering the event-time model are important not only for accurately capturing, and
predicting, glucose dynamics based on data, but also contain implicit information
about the health condition of the patient. For example, the basal glucose value is
measured during some tests to check if an individual is healthy, pre-diabetic, or
diabetic.
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3.3.4 ICU
In the ICU setting, glucose dynamics are given by a combination of changing patient
physiologic state, nutrition (delivered intravenously and enterally through a feeding
tube that runs to the gut), and insulin delivery. In our ICU dataset, 8-10% of the ICU
patients are diabetic and only 5% of those are T1DM patients. However, more than
90% of ICU patients require glycemic management and 10-20% of them experience
a hypoglycemic event over the course of management. Consequently, regardless
of being diabetic or non-diabetic, they are typically given IV insulin to control BG
levels. Thus, we must model both <(C) and � (C) in this setting.

We choose to model these external forcings as piecewise constants functions; this
choice correspondes to clinical practice, in which constant infusions are peridiocally
adjusted, and also allows for simple calculations. Here, we define the nutritional
forcing function as:

<(C) =
 <∑
:=1

3:1[C (<)
:

,C
(<)
:+1 )
(C), (3.10)

where C (<)
:

is the time at which a clinician changes the nutrition delivery rate, 3: is
the nutrition rate over the time interval [C (<)

:
, C
(<)
:+1); these features are both directly

available in our clinical dataset.

Similarly, we define the external insulin delivery rate as:

� (C) =
 8∑
:=1

8:1[C (8)
:
,C
(8)
:+1)
(C), (3.11)

where 8: is the rate of insulin over the time interval [C (8)
:
, C
(8)
:+1), again obtained directly

from the data set.

Therefore, substituting (3.10) and (3.11) into the general equation (3.3), the ICU
version of our model becomes

¤� (C) = −W(� (C) − �1) +
 <∑
:=1

3:1[C (<)
:

,C
(<)
:+1 )
(C) − V

 8∑
:=1

8:1[C (8)
:
,C
(8)
:+1)
(C) +

√
2Wf2 ¤, (C).

(3.12)

In this model, the first term models the glucose removal rate with body’s own effort
(W), the second term shows the effect of nutrition <(C) on the BG level, the third
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term, V� (C), models the external insulin effect, and the last term models infidelities
as Brownian Motion.

We integrate (3.12) to get the analytical solution for any C ≥ C0 as follows

� (C) = �1 + 4−W(C−C0) (� (C0) − �1) +
 <∑
:=1

3:

∫ C

C0

4−W(C−B)1[C (<)
:

,C
(<)
:+1 )
(B)3B

− V
 8∑
:=1

8:

∫ C

C0

4−W(C−B)1[C (8)
:
,C
(8)
:+1)
(B)3B +

√
2Wf2

∫ C

C0

4−W(C−B)3, (B).

(3.13)

As in the previous section, we can also integrate (3.12) over [C: , C:+1) to obtain
solutions at event-times

6:+1 = �1 + 4−Wℎ: (6: − �1) +
1
W
(1 − 4−Wℎ: )3: − V

1
W
(1 − 4−Wℎ: )8: + f

√
1 − 4−2Wℎ: b:

(3.14)

as another special case of (3.4). Here, we have four model parameters to estimate:
�1, W, f, V. Remember once again, �1 is the basal glucose value and W is the decay
rate of the BG level to its basal value, and f is a measure for the magnitude of the
BG oscillations. Finally, V is another proportionality constant, which is used to scale
the effect of IV insulin on the BG rate change appropriately. These four parameters
represent physiologically meaningful quantities that could properly resolve the mean
and variance of the BG level.

3.4 Parameter Estimation
Our goal in this section is to formulate the parameter estimation problem. In
Section 3.4.1, we construct an overarching Bayesian framework for our parameter
estimation problems. We then describe two solution approaches for this problem:
an optimization based approach which identifies the most likely solution, given
our model and data assumptions; and MCMC, which samples the distribution on
parameters, given data, under the same model and data assumptions. These two
solution approaches are detailed in Sections 3.4.2 and 3.4.3, respectively.

As shown in detail before, our model takes slightly different forms in the T2DM and
ICU settings. In the former the model parameters to be estimated are �1, W, f, 0, 1

whereas in the latter the unknown parameters are �1, W, f, V. However, we adopt a
single approach to parameter estimation. To describe this approach we let the vector,
\ represent the unknown model parameters to be determined from the data, noting
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that this is a different set of parameters in each case. Many problems in biomedicine,
and the problems we study here in particular, have both noisy models and noisy data,
leading to a relationship between parameter \ and data H of the form

H = G(\, Z) (3.15)

where unknown Z is a realization of a mean zero random variable, but its value is not
known to us. The objective is to recover \ from H. We will show how our models of
the glucose-insulin system lead to such a model.

3.4.1 Bayesian Formulation
The Bayesian approach to parameter estimation is desirable for two primary reasons:
first it allows for seamless incorporation of imprecise prior information with uncertain
mathematical model and noisy data, by adopting a formulation in which all variables
have probabilities associated to them; secondly it allows for the quantification of
uncertainty in the parameter estimation. Whilst extraction of information from the
posterior probability distribution on parameters given data is challenging, stable
and practical computational methodology based around the Bayesian formulation
has emerged over the last few decades; see [396]. In this work, we will follow two
approaches: (a) obtaining the maximum a posteriori (MAP) estimator, which leads
to an optimization problem for the most likely parameter given the data, and (b)
obtaining samples from the posterior distribution on parameter given data, using
Markov Chain Monte Carlo (MCMC) techniques.

Now let us formulate the parameter estimation problem. Within the event-time
framework, let 6 = [6: ]#:=0 be the vector of BG levels at event times {C: }#:=0, and
H = [H: ] >:=1 be the vector of measurements at the measurement times {C (>)

:
} >
:=1 ⊂

{C: }#:=0. By using the event-time version, and defining {b: }#:=0 to be independent
and identically distributed standard normal random variables, we see that given the
parameters \, 6 has multivariate normal distribution, i.e., P(6 |\) = # (<(\), � (\)).
Equivalently,

6 = <(\) +
√
� (\)b, b ∼ # (0, �). (3.16)

Let ! be a >×(#+1)matrix that maps {6: }#:=0 to {H: }
 >
:=1. That is, if a measurement

8 ∈ 1, ...,  > is taken at the event time C 9 , 9 ∈ 0, 1, ..., # , then the 8Cℎ row of ! has all
0’s except the ( 9 + 1)BC element, which is 1. Adding a measurement noise, we state
the observation equation as follows:

H = !6 +
√
Γ(\)[, [ ∼ # (0, �), (3.17)
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where Γ(\) is a diagonal matrix representing the measurement noise. Thus, we
obtain the likelihood of the data, given the glucose time-series and the parameters,
namely

P(H |6, \) = # (!6, Γ(\)).

However, when performing parameter estimation, we are not interested in the glucose
time-series itself, but only in the parameters. Thus we directly find the likelihood of
the data given the parameters (implicitly integrating out 6) by combining (3.16) and
(3.17) to obtain

H = !<(\) +
√
((\)Z, Z ∼ # (0, �), (3.18)

where ((\) = !� (\)!) + Γ(\). Since Z has multivariate normal distribution, using
the properties of this distribution, we find that given the parameters, \, H also has
multivariate normal distribution with mean !<(\) and covariance matrix ((\). This
is the specific instance of equation (3.15) that arises for the models in this paper.

We have thus obtained P(H |\) = # (!<(\), ((\)), that is,

P(H |\) = 1√
(2c) < det(((\)))

exp
(
−1

2
(H − !<(\)))((\)−1/2(H − !<(\))

)
;

(3.19)
this is the likelihood of the data, H, given the parameters, \. Also, since we prefer to
use − log(P(H |\)) rather than directly using P(H |\) for the sake of computation, we
state it explicitly as follows:

−log(P(H |\)) =  <
2

log(2c)+1
2

log(det(((\)))+1
2
(H−!<(\)))((\)−1(H−!<(\)).

(3.20)
Moreover, by using Bayes Theorem, we write

P(\ |H) = P(H |\)P(\)
P(H) ∝ P(H |\)P(\). (3.21)

Note that the second statement of proportionality follows from the fact that the term,
P(H), on the denominator is constant with respect to the parameters, \, and plays the
role of a normalizing constant.

From another point of view, considering (3.16) and (3.18), we see that given \, (6, H)
has multivariate normal distribution with mean and covariance matrix that could be
computed from the above equations since, given \, everything is explicitly known.
Then, integrating 6 out, in other words, computing the marginal distribution we
obtain the distribution of H |\, which corresponds to the one stated in (3.18).
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Now, to define the prior distribution P(\) we assume that the unknown parameters
are distributed uniformly across a bounded set Θ and define

P(\) = 1
|Θ|1Θ(\) =


1
|Θ| , \ ∈ Θ,

0, \ ∉ Θ,
(3.22)

where 1Θ(·) is the characteristic function and |Θ| is the volume of the region defined
by Θ. Thus, by substituting the likelihood, (3.19), and the prior distribution, (3.22),
into (3.21), we formulate the posterior distribution as follows

P(\ |H) = 1
|Θ|

√
(2c) < det(((\)))

exp
(
−1

2
(H − !<(\)))((\)−1/2(H − !<(\))

)
1Θ(\).

(3.23)
Now, we will show how we use this posterior distribution to state the parameter
estimation problem.

3.4.2 Optimization
In this approach, the goal is to determine parameter values, \, which maximize the
posterior distribution, P(\ |H) and is called to be the MAP estimator. Using the prior
distribution as specified above, the parameter estimation problem becomes

\∗ = arg max
\

P(\ |H) = arg max
\∈Θ

P(H |\) = arg min
\∈Θ

− log(P(\ |H)). (3.24)

Then, substituting (3.20) into (3.24), the problem will take the form

\∗ = arg min
\∈Θ

| |((\)−1/2(H − !<(\)) | |2 + log(det(((\))). (3.25)

Hence, placing uniform prior distribution turns the problem of finding the MAP
estimator into a constrained optimization problem. To solve this problem, we
use built-in MATLAB functions, such as fmincon and multistart. fmincon is a
gradient-based minimization algorithm for nonlinear functions. multistart starts
the optimization procedure from the indicated number of starting points that are
picked uniformly over the region defined by the constraints. It uses fmincon and
other similar type of algorithms to perform each optimization process independently
and provides the one that achieves the minimum function value among the result of
all separate runs. With this approach, we have the opportunity to compare different
optimization procedures that starts from different initial points. This provides some
intuitive understanding of the solution surface and hence the estimated optimal
parameters.
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3.4.3 MCMC
Once an optimal point has been found, wemay also employ the Laplace approximation
[275, 305] to obtain a Gaussian approximation to the posterior distribution. The
Laplace approximation is a reasonable approximation in many data rich scenarios
in which all parameters are identifiable from the data, because of the Bernstein
Von Mises Theorem [413], which asserts that the posterior distribution will then be
approximately Gaussian, centered near the truth and with variance which shrinks
to zero as more as more data is acquired. However data is not always abundant,
and not all parameters are identifiable even if it is; in this setting sampling the
posterior distribution is desirable. MCMC methods are a flexible set of techniques
which may be used to sample from a target distribution, which is not necessarily
analytically tractable, [258, 352]. For example, the distribution P(\ |H) is the
conditional distribution of the random model parameters, \ given the data, H. Even
though we can explicitly formulate it as in equation (3.21), it is not always an easy
task to extract useful quantities, such as posterior mean and variance, from that
formula. In such cases, MCMC techniques are used to generate random samples
from this target distribution and this random sample is used to obtain the desired
information, which could be anything such as the mean, mode, covariance matrix, or
higher moments of the parameters. Moreover, this technique is also very helpful to
obtain UQ results for the estimated parameters.

In order to obtain more extensive knowledge than MAP estimator can provide about
the posterior distribution of parameters given the data, \ |H, we use MCMC methods
as a natural choice to sample from that distribution. Among different possible
algorithms (see [143]), we use the standard random walk Metropolis-Hastings
algorithm. In order to make sure the resulting sample is indeed a good representer of
the posterior distribution, we perform some diagnostics such as checking if chains
for each parameter converged and if they are uncorrelated. Then, after removing the
burn-in period, we compute the mean and the covariance matrix fro the remaining part
of the sample. We use the mean as a point estimator for simulation and forecasting,
and the covariance matrix provided valuable information to quantify uncertainty for
the estimated parameters.

In practice, it can be hard to obtain efficient results with MCMC methods even when
sampling from the joint distribution of four or five parameters, due to issues of
parameter identifiability. Moreover, obtaining accurate results with this approach
requires careful choice of starting point and tuning some other parameters. In general
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the performance of the algorithm will depend on the initial point. We tested the use
of both random starting points and MAP estimators as starting point. The former
enables us to detect when several modes are present in the posterior distribution;
the latter helps to focus sampling near to the most likely parameter estimate and
to quantify uncertainty in it. However, it is also important to note that using MAP
estimator as a starting point is not helpful in all cases. More precisely, if the MAP
estimator is not a global minimum but a local minimum, then the chain could get
stuck around this point. Therefore, it requires careful analysis, comparison and
synthesis of the results obtained with these different approaches.

3.5 Methods, Datasets, and Experimental Design
In this section, we describe the datasets that we have in the T2DM and ICU settings,
the experiments that we design to present our numerical results, and the methods
that we follow to perform parameter estimation and forecasting. Depending on
the specifics of each case and to reflect the real-life situation, we designed slightly
different experiments in the T2DM and ICU settings. However, the mathematical
solution approaches for parameter estimation and forecasting stay the same for both
settings because we use similar mechanistic models. In this opening discussion we
first describe the features that are common to both the T2DM and the ICU settings.
The two following subsections 3.5.1, 3.5.2 then detail features specific to each of the
two cases.

Because we use a linear, Gaussian stochastic differential equation to model the BG
level, our forecast is a Gaussian characterized by its mean and standard deviation.
Hence, rather than having a point estimate for the future BG levels, we obtain a
normal random variable for each prediction. In testing predictions of the model it is
natural to check if 1− and 2− stdev intervals around the respective means capture the
true BG levels. Note that the probability of a Gaussian random variable to take values
within 1− and 2− stdev regions around its mean are ∼ 68% and ∼ 95%, respectively.

We define the observational noise covariance Γ(\), defined in (3.17), to be a diagonal
matrix with form 3806(Γ(\)) := _ ∗ !<(\). Whilst we could estimate _ alongside \,
from the data, we have chosen a heuristic to set it in advance. Specifically we found
that above a value of around 0.3 all forecasts were very noisy and contained little
predictive value; on the other hand, below 0.3 results appeared to be fairly robust to
the value chosen for _; in all the experiments presented in Section 3.6 we choose
_ = 0.1.
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3.5.1 T2DM
3.5.1.1 Model, Parameters, and Dataset

In this setting, we use the model (3.8) with the function<: defined as in (3.9). Hence,
there are five parameters to be estimated: basal glucose value, �1, BG decay rate
W, the measure for the amplitude of BG oscillations, f, and 0 and 1, which are the
parameters implicitly modeling the time needed for the rate of glucose in the nutrition
entering the bloodstream to reach its maximum value and the total time needed for this
rate to decrease back to 0. We assume that the prior distribution is non-informative
and initially the parameters are independent, except for a constraint on the ordering
of 0 and 1. We determine realistic lower and upper bound values for each of them,
define Θ′ := [0, 750] × [0.01, 0.5] × [0, 100] × [0.01, 0.05] × [0.01, 0.05] (in the
order of �1, W, f, 0, 1), and then define Θ from Θ′ by adding the constraint 0 < 1.
We thereby form the prior distribution as defined in (3.22). Recall that these bounds
define the constraints employed when we define the parameter estimation problem in
the optimization setting for the MAP point. The set Θ is determined from clinical
and physiological prior knowledge, and by simulating the model (3.6) and requiring
realistic BG levels. Data are collected from three different T2DM patients. For each
patient the dataset consists of the meal times, the glucose amount in the meal and
BG measurements along with the measurement times. More detailed information
on the dataset such as number of measurements, recorded meals, and mean glucose
value over training, testing or over entire data sets can be found in Table 3.1.

3.5.1.2 Parameter Estimation and Uncertainty Quantification

We perform parameter estimation for three patients separately. First, we estimate
parameters by using data over four consecutive, non-overlapping time intervals with
optimization and MCMC approaches. Besides estimated values, we also provide UQ
results. In the optimization setting, we use the Laplace approximation as discussed
at the start of subsection 3.4.3. The optimal parameters determine the mean of
the Gaussian approximation, and the inverse of the Hessian matrix becomes the
covariance matrix, providing the tools for UQ. In the MCMC approach, we use the
resulting random samples for UQ.

3.5.1.3 Forecasting

We adopt a train-test set-up as follows. Since the health conditions of the T2DM
patients are unlikely to change over time intervals that are on the order of days, we
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design an experiment in which we use one week of data for training the patient-
specific parameters. Then, we use the estimated parameters to form a patient-specific
model and use this model to forecast BG levels for the following three weeks,
using the known glucose input through the meals; this leads to a three-week testing
phase. From a practical patient-centric point of view this leads to a setting in which
forecasting BG levels for the following three weeks requires patients to collect BG
data for only one week in every month, and then the patient-specific model will be
able to capture their dynamics and provide forecasts based on nutrition intake data
over the rest of the month.

3.5.2 ICU
3.5.2.1 Model, Parameters, and Dataset

In the ICU setting, we use the model (3.14), and there are now four parameters to
be estimated: basal glucose value, �1, BG decay rate, W, the parameter used to
quantify the amplitude of the oscillations in the BG level, f, and a proportionality
constant, V to scale the effect of insulin IV on the BG level. Similar to what we
did in the T2DM setting, we find realistic lower and upper bounds for the unknown
parameter values and set Θ := [0, 750] × [0.02, 0.5] × [0, 100] × [20, 110] to obtain

Patient ID patient 1 patient 2 patient 3
Total # glucose measurement 304 211 91
Total # meals recorded 122 76 46
Total # days measured 26.6 27.67 28.12
Mean measured glucose 113±25 127±32 124±26
Training set: # glucose measurement 80 53 29
Training set: # meals recorded 26 18 15
Training set: # days measured 7.02 7 7.05
Training set: mean measured glucose 112±25 116±28 125±24
Testing set: # glucose measurement 224 158 31
Testing set: # meals recorded 96 58 62
Testing set: # days measured 19.58 20.67 21.07
Testing set: mean measured glucose 113±25 130±33 123±27

Table 3.1: Information about the data set that is used in the T2DM setting, which
is collected from three different T2DM patients. Note that there is a considerable
variability between the data collection behaviour of each patient, which is also
reflected in the number of recorded measurements and meals. Also, recall that we
intentionally used one week of data for training and the following three week of data
for testing.
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the prior distribution as defined in (3.22). In this case, we impose two further linear
constraints, namely �1 − 3.5 ∗ V < 115 and V − 1110W < 10. These constraints
are imposed to ensure that the model predictions remaining biophysically plausible,
and are determined simply by forward simulation of the SDE model; the resulting
inequality constraints do not overly constrain the parameters in that good fits can
be found which satisfy these constraints, and yet they yield more realistic BG level
behavior than solutions found without them. Thus as in the T2DM case, we the
bounds and constraints chosen are based on physiological knowledge and requiring
simulated BG levels resulting from values within the region Θ to be realistic.

In this case, the dataset consists of the rate of glucose in the nutrition and the rate of
insulin infusion along with the times at which there is a rate change. It also contains
the BG measurements and the measurement times. Summary statistics about the
data set that is used in the ICU setting can be found in Table 3.2. Note that in this
case, we used all available data for each patient to perform parameter estimation and
forecasting, and all three ICU patients are non-T2DM.

Patient ID patient 4 patient 5 patient 6
Total # glucose measurement 177 204 271
Total # days measured 13.99 16.8 24.48
Mean measured glucose 141±18 151±32 151±43
Training set: average # glucose measurement 14.13 13.5 14.07
Testing set: average # glucose measurement 1 1 1

Table 3.2: Information about the dataset that is used in the ICU setting, collected
from three ICU patients who are not T2DM. Because of the experiment we designed
the training sets are moving with by overlapping with each other. So, we provide
average number of glucose measurements over these moving windows. Also, since
we forecast until the next measurement time following the training time window,
each testing set contains only one glucose measurement. Other information that is
included in Table 3.1, but not here, such as mean measured glucose over training
set(s) is neither meaningful nor helpful in this setting.

3.5.2.2 Parameter Estimation and Uncertainty Quantification

We use both the optimization and MCMC approaches for parameter estimation in a
patient-specific manner, in this setting, too. However, for UQ, we use only MCMC
to estimate the posterior mean and variance on the parameter; this is because there
were cases where it was not appropriate to use the Laplace approximation, something
that will be explained in more detail in Section 3.6.2.
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3.5.2.3 Forecasting

Patients in the ICU exhibit BG time-series that are very different from T2DM patients;
in particular the time-series is often non-stationary in complex ways and on different
time scales. On slower time scales, patients eventually leave the ICU because their
health either improves or declines. But there can be fast time scale changes too
due to interventions and/or sudden health-related events, such as a stroke. These
health changes will lead to changes in the best-fit parameters of the model; in other
words the patient-specific model itself may change abruptly, in contrast to the T2DM
case where changes in the best-fit parameters typically occurs on a much longer
time-scale, and reflects gradual changes in health condition. To avoid compensating
for different values of parameters over longer time intervals, and to make more
accurate predictions, we use only one day of data for parameter estimation in the ICU.
Moreover, to construct an experiment that reflects real-life scenarios, we need be able
to estimate the model parameters with smaller size datasets than in the T2DM case,
because of the imperative of regular intervention within the ICU setting, typically
on a time-scale of hours. As a consequence our train-test set-up in this case differs
quantitatively from the T2DM case. The training sets for each patient consist of
approximately one day of data over a moving time intervals, with end points chosen
to be BG measurement times. Thus, the time windows are obtained by moving the
left end point to the next BG measurement time and choosing its right end point
with the constraint that it contains approximately one day of data and the new time
window is not contained in the previous one. So, in this case, there is a large overlap
between the consecutive time windows of the training sets.

On the other hand, because of rapidly changing conditions, forecast of BG levels
needs only to be accurate over shorter time-scales, too. Indeed, in general, it is
important to know glycemic dynamics on the order of hours (not days) to manage
the glycemic response of patients. So, for each training set, the left end point of the
time window of the corresponding testing set is chosen to be the right end point of
the time window of the patient’s training set. Then, we choose the right end point of
the test set to be the next BG measurement time. We follow the same procedure over
the moving time intervals to the end of the whole dataset for each patient. Note that
from a practical point of view, this experiment exhibits a real life situation in which
we use only one day of data for parameter estimation and then perform forecasting
for the next few hours based on the estimated parameters. Such a set-up would be
desirable as a support to glycemic management of these patients.
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3.5.3 Evaluation Metrics
Before having a closer look at the numerical results in the next section, let us give the
definitions of the statistics that will be used to evaluate and compare the forecasting
capability of the models. Let {H8}#8=1 denote the true BG measurements over the
predefined testing time window for an experiment. Let {Ĥ8}#8=1 denote the forecast
at the true measurement time points obtained by a model. Note that if the model
is a stochastic one, {Ĥ8}#8=1 represents the mean of the model output, while it is
simply the model output for a deterministic ODE model. When a stochastic model is
used, it is natural to obtain a confidence interval as this may be obtained as a direct
consquence of the fact that the model output is in the form of a random variable; such
a model output cannot be obtained for an ODE type of a model when parameters are
learned through optimization. However, by using appropriate parameter and state
estimation techniques, it may again be possible to obtain a similar kind of confidence
interval for the model output which is in the form of a point-estimate. When we have
probabilistic forecasts we let {n8}#8=1 denote the corresponding standard deviation for
each forecast at the true measurement points so that we can form 1- and 2-stdev bands
as [ Ĥ8 − n8, Ĥ8 + n8]#8=1 and [ Ĥ8 − 2n8, Ĥ8 + 2n8]#8=1, respectively. Then, for each model,
we can compute the percentage of true measurements, {H8}#8=1, that are captured in
their respective 1- and 2-stdev bands. These two percentages will be two of the
evaluation tools that will be used in evaluation below. In addition, in some cases, we
will use standard measures such as mean-squared error (MSE), root-mean-squared
error (RMSE) and mean percentage error (MPE), which are computed as follows.

"(� =
1
#

#∑
8=1
(H8−Ĥ8)2, '"(� =

√√√
1
#

#∑
8=1
(H8 − Ĥ8)2, "%� =

#∑
8=1

|H8 − Ĥ8 |
H8

∗100.

3.6 Numerical Results
In this section we present numerical results concerning the simple, yet interpretable,
model introduced in this paper; we refer to this as the minimal stochastic glucose
(MSG) model from now on for ease of exposition. The two primary conclusions are
that:

• we can achieve good accuracy forecasting future BG levels in both the T2DM
and ICU settings, and the uncertainty bands with which we equip our forecasts
play an important role in this regard;
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• we can learn a substantial amount about the interpretable parameters within
the models, with possible clinical uses deriving from the parameter estimates,
and from tracking them over time, again using the uncertainty measures that
accompany them as measures of confidence.

We justify these conclusions using T2DM self-monitoring data from a previous
prospective self-management trial, and using retrospective ICU data extracted from
the Columbia University Medical Center Clinical Data Warehouse. The combination
of simple predictive model and data acquisition model accounts for the uncontrolled
and complex nature of the data, including data sparsity, inaccuracy, noisiness, non-
stationarity, and biases resulting from the health care process [5, 13, 185, 183,
184, 186, 235, 322], whilst also being interpretable and leading to patient-specific
parameter inference and prediction. To forecast BG for individuals we first solve
the parameter estimation problem to entrain the model to the individual, and we
present the numerical results in this order. Even though the MSG model is relatively
simple physiologically it is not always identifiable, given data. For example, having
two parameters, W and V, related to BG decay rate in the ICU context made it
hard to identify these parameters accurately given the sparsity of the data, the non-
stationarity of the patient, and the complexity of the glycemic dynamics. Despite lack
of identifiability of some parameters, parameters as estimated lead to models which
are able to forecast and represent the glucose-insulin dynamics. For example, in both
the T2DM and ICU cases, the UQ results along with estimated parameter values
indicate that the estimates of both the basal glucose rate, �1, and the proportionality
constant between the basal glucose rate and the variance of the glycemic dynamics,
U, reflect realistic values with uncertainties that manage to capture future data but
remain narrow enough to potentially delineate different treatment pathways. To
answer whether the parameter estimates, forecasts, and uncertainty quantification
are good enough to impact clinical understand and decision-making or to construct
physiologically-anchored phenotypes [6, 7, 8] would require evaluation, e.g., manual
chart review in conjunction with a qualitative trial of clinical decision-making or a
phenotyping analysis respectively. In the absence of these analyses we will rely on
face validity validation [91, 164, 431] of the forecasting and UQ capturing future
measures as well as a host of quantitative measures of forecast accuracy. We also
reemphasize that the parameter estimates themselves may be useful as they carry
information about gradual disease progression (T2DM) and sudden changes in health
condition (ICU).
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(a) optimization (b) MCMC

(c) optimization (d) MCMC

(e) optimization (f) MCMC

Figure 3.1: Parameter estimation and uncertainty quantification in the T2DM setting.
The left-hand panel is obtained with optimization and the right-hand panel is obtained
with MCMC, both are in a patient-specific manner. It shows that the point estimates
obtained with two approaches are very close to each other in most cases. Also the
width of the 1- and 2-stdev intervals, which are obtained with Laplace approximation
(in the optimization case) and directly from the approximate posterior samples (in the
MCMC) setting, are also agreement with each other. In addition, obtaining estimated
values that are in alignment with real physiological values, these results enforces the
reliability of the parameter estimation results.

3.6.1 T2DM
We will start by showing numerical results for parameter estimation and forecasting
based on the real-world data collected from T2DM patients. These results demon-
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strate the effectiveness of the MSG model in capturing the patients’ BG dynamics.
Specifically the effectiveness is reflected in the estimated parameter values and in the
efficacy in forecasting future BG levels, using these parameters, over time periods of
length up to three weeks.

3.6.1.1 Parameter Estimation

Our numerical results exhibit three substantive pieces of evidence which support
the validity of the model and its potential effectiveness for both understanding the
physiologic state of an individual, and for forecasting for that individual, in the context
of T2DM. First, the estimated model parameter values and their evolution over time
are physiologically meaningful. That is, the estimated values reflect the patient’s
state as evaluated given available data. Moreover, the evolution of the estimated
parameter values over time reflects changes in the patients’ states in a manner
consistent with both the data and what is known about the non-stationary nature of
T2DM. Second, the UQ intervals for the estimated parameters are physiologically
plausible and have three features that make the model potentially useful: (i) relative
to the value of the estimated parameter, the UQ intervals are wide enough to provide
information on the reliability of the point estimates of the model parameters (ii) the
UQ intervals evolution over time, demonstrating a sensitivity to time and the ability
to adapt to non-stationary patients, and (iii) the UQ intervals are narrow enough to
plausibly be used to differentiate behavior choices. And third, the UQ and parameter
estimation appears to be robust; different estimation methods arrive at similar results.
A comparison of the estimated parameter values and corresponding UQ intervals
obtained using optimization and MCMC are very similar in almost all of the cases,
implying robustness of the estimates and a relative insensitivity to the estimation
methodology. Together these features imply that with a reasonable inference scheme
this model could potentially provide useful information for clinical decision making
and deeper clinical understanding of the patient robustly.

To demonstrate that the estimated parameters are physiologicallymeaningful, consider
Figure 3.1 where we see the point estimates as well as UQ intervals for all parameters
and all three patients obtained with optimization andMCMCmethods. The estimated
basal glucose, �1, values are in the ranges of ∼ 95 − 105 mg/dl, ∼ 105 − 140
mg/dl, and ∼ 105 − 125 mg/dl over the course of four weeks for patients 1, 2, and
3, respectively. These values are indeed in the expected ranges based on the BG
measurements of these patients. In addition, as we will describe later in more



57

detail, the estimated parameters are able to usefully predict the glycemic mean and
variance of patients with T2DM on time-scales of around three weeks. The forecast
of glycemic mean and variance in response to nutrition is limited to three weeks
because the data shows non-stationary effects over longer time-intervals. Figure 3.1
reveals parameter changes that, over four weeks, are significant enough to render
predictions less reliable, whilst on a three-week time horizon they are accurate.

To show that the UQ intervals are potentially useful in practice, once again consider
Figure 3.1. The range of UQ intervals for each estimated parameter in most of
the cases contains physiologically plausible parameter values that are tight enough
to enforce the reliability of the point estimates of the parameters. To quantify
this statement we computed the coefficient of variation, defined as the standard
deviation over the mean. This measure is generally interpreted as a dispersion of
the probability density and can be interpreted as the variability of the distribution in
relation to the mean. Smaller values of coefficient of variation imply less variability
or dispersion within the population and that the distribution is accumulated around
the mean. When the coefficient of variability is low, point estimates of the mean
are particularly meaningful and represent the population well whereas when the
coefficient of variation is large, the mean is less representative of the population as a
whole. Note that the population we are quantifying here is not of different patients,
but rather a population of different forecasts, parameter estimates, or realizations of
the stochastic model, for the same patient at a given time. For basal glucose rate, �1,
and amplitude of oscillations, f, the coefficient of variation is in the ∼ 2 − 3% band
and ∼ 8− 20% band, respectively for all three patients, implying that the mean of the
estimated �1 is a very good point estimator. Even though the coefficient of variation
values are not as small for f, these values are still quite small and demonstrate
limited dispersion. Together these results support the reliability of the point estimates
that are used to form patient-specific models to describe dynamics of each patient.
In addition, the evolution of these UQ intervals for each parameter over four weeks,
present in Figure 3.1, demonstrates their sensitivity to time and the model’s ability to
adapt and capture the non-stationarity in the dynamics of patients over time.

We can see the robustness of the estimated parameter values by comparing parameter
estimates using two different methods, MCMC and optimization. The results
are shown in Figure 3.1; the left and right columns show parameter estimates
using optimization and MCMC, respectively. The point estimates as well as
the corresponding UQ intervals for basal glucose value, �1, and amplitude of
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oscillations, f, obtained with optimization and MCMC are very close to each other.
Some parameters have more variation between methods; specifically, the rate of decay
to the basal glucose rate, W, and the meal function nutrition absorption parameters 0
and 1 do show variation between the results obtained with optimization and MCMC
methods. This variation does not seem to have substantial effect on the model’s
ability to represent patient dynamics. The overall result is a model whose ability to
represent the data is relatively insensitive to parameter estimation techniques.

3.6.1.2 Forecasting

The stochastic modeling approach is simple in the sense that we have few state and
parameters and the model’s high-frequency dynamics are represented as a diffusion
process whose centroid is governed by processes such as physiology-driven mean
reversion. In contrast, this modeling approach is complex because a stochastic
process doesn’t have an explicit glucose trajectory—a particular glucose value—at a
given time but rather is a function that defines a glycemic distribution at every time
point, e.g., with a mean and a variance. Because of this subtly, the model is both
intuitive—it reflects what we know and do not know about glycemic dynamics at
given, unmeasured, time—and it is foreign because there is not an explicit glycemic
trajectory. However, we can construct an example glycemic trajectory, or a realization

(a) An arbitrary realization with BG measurements (b) Kernel density estimates

Figure 3.2: In (3.2a) a realization of the estimated Ornstein-Uhlenbeck process is
shown over the first week of the test data along with the true BG measurements,
and in (3.2b) kernel density estimates of BG measurements and realizations of the
estimated model are shown. In 3.2a, the red circles show true BG measurements,
the blue crosses show an arbitrary realization of the model output, and the gray
area represents the estimated 2-stdev band around the mean of the model output.
This figure shows rationale behind the MSG model. Comparison of the true BG
measurements and an arbitrary realization of the estimated distribution implies that
they could indeed be considered as two different realizations of the same random
process, as most of the true and simulated BG levels stay within the 2-stdev band.
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of the stochastic process by sampling the SDE-defined glycemic distribution at every
time point. In another words, the realization is one of the infinitely many possible
trajectories that the stochastic process could follow when it is realized. Similarly,
we assume the collected measurements represent a realization of a random process
that is described by the solution of our SDE model. Together these pieces form a
framework within which we interpret and evaluate the model. As such, we evaluate
the model along two pathways, a face validity pathway that is mostly motivated
by potential clinical decision-making, and a more statistical-based pathway that is
motivated by our desire to be quantitative. In a sense, both evaluations address
whether the data could plausibly be generated by the model.

The first evaluation—face validity—is to consider whether the model can capture the
dynamics qualitatively. Because the model’s forecast is in the form of a distribution,
the forecast we have to evaluate is anchored to the mean and standard deviation.
An initial inspection of Figure 3.2a where the red circles represent the true BG
measurements and blue crosses represent one realization of the model over only the
first week of the test set does indeed seem to represent the data well.

The second evaluation quantifies how plausible it is that the data we observe could
have originated from the model. We quantify this plausibility using the two-sample
Kolmogorov-Smirnov (KS) test. To start, Figure 3.2b shows the kernel density
estimates obtained from the BG measurements (blue curve) and from ensemble of
100 different realizations of the estimated stochastic process (red curve) over the
same time period in Figure 3.2a. To generate the data to compute the model-based
density estimate we select a sample from the distribution defined by the model at
every time point. The model can also be visualized as a probability density function;
for example, the kernel density estimate of a model realization is the probability
density function of the distribution and the real data are shown in the right panel of
Figure 3.2. The similarity of the behavior of the estimated realization (blue crosses)
with the assumed realization (red circles) of the stochastic process in Figure 3.2a and
kernel density estimates in Figure 3.2b support the idea that both are plausible draws
from the same distribution. To calculate the two-sample Kolmogorov-Smirnov (KS)
test we created data sets: (i) resampled 1,000 points from the raw BG measurement
data, and (ii) a realization of the estimated stochastic process over the same time
period as shown in Figure 3.2a. The two-sample Kolmogorov-Smirnov test did not
reject the hypothesis that the two samples came from the same distribution with a
p-value of 9.8217 ∗ 10−9. This implies that our initial assumption, which is that the
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BG values can be described by our simplified stochastic model, is indeed a valid
assumption in this setting.

Given this understanding of the model, our evaluation of BG forecasting focuses on
evaluating the ability of the model to estimate and track the mean and variance of
BG levels. The MSG model’s forecast is in the form of a distribution because it is
stochastic and is therefore represents the glycemic distribution at every time point.
In this way, the only forecast we have to evaluate is the mean and variance. And,
clinical understanding and decision-making is done relative to the mean and variance
of glycemic dynamics. As such we have two key results. First, the forecasted mean
of the MSG model output, the stochastic model for BG movements, captures the
essence of the behavior of true BG measurements in a realistic way. And second,
the forecast uncertainty as quantified using the standard deviation of the process
encapsulates a large percent—94% on average over the three patients—of true future
BG measurements while remaining narrow enough to delineate changes in nutrition
input and potentially treatment strategy. Surprisingly, the forecast uncertainty is
more narrow than the empirical uncertainty while capturing more of the data,
meaning that the forecast uncertainty captures the future uncertainty of the data more
accurately—more narrow but more specific—than the data themselves capture their
own uncertainty. This is of course possible because the model is modeling glycemic
response, not just the glycemic time-series. Because the optimization and MCMC
approaches produced very similar parameter estimation and hence forecasting results,
we only used the MAP estimators obtained with the first week of data to form the
patient-specific model for forecasting over the following three weeks.

The mean of our glucose model represents the mean glycemic homeostasis and the
mean glycemic response to nutrition. Figure 3.3 demonstrates how this mean reflects

1-stdev % 2-stdev % model stdev data stdev
Patient 1 73.66 94.20 19.3700 24.4629
Patient 2 62.66 89.87 25.6625 32.5589
Patient 3 51.61 96.77 22.2388 27.1433

Table 3.3: Percentages of the true BG measurements included in the forecasted 1-
and 2-stdev bands, in the T2DM setting. Besides visuals provided for forecasting
results, this table shows indeed a large amount of true BG measurements are captured
in the forecasted confidence intervals. Comparison of the model stdev with the raw
BG data stdev shows that the confidence intervals act really as tight bands around
the measurement values, hence providing true information about their variance.
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the dynamics of true BG measurements. In this figure we estimated the model
parameters using one week of data, producing a model of the glycemic homeostasis
and response given nutrition input. To evaluate the forecasting ability of this model
we then use this model to forecast glucose for the following three weeks. The
subfigures of Figure 3.3 show the resulting forecast of BG for patients 1, 2, and 3,
respectively for the three weeks after the model was estimated. In each subfigure,
red circles represent the BG measurements, the blue curve shows the mean of the
MSG model output and the gray area is the 2-stdev band around the mean. We
see that the blue curve—the proper forecast—encapsulates the behavior of the true
measurements for each three patients.

Not all glycemic responses follow the mean, and forecasts carry uncertainty. One
particularly important and challenging task of a forecast is accurate estimate of
uncertainty. Because of the nature of our stochastic model, uncertainty is quantified
naturally using the standard deviation of the model process. Figure 3.3 demonstrate
the effectiveness of the models’ ability to capture relevant forecast uncertainty with
two standard deviation (2-stdev) bands around the model mean; these bands capture
nearly every future BGmeasurement. These results are further quantified in Table 3.3
that shows summary statistics for how often the measurements were captured by the
2-stdev bands as well as the estimated standard deviation of BG measurements and
the empirical standard deviation obtained directly from the raw BGmeasurement data.
Being able to contain ∼ 90 − 97% of the true BG measurements in these confidence
regions with a smaller model standard deviation than the empirical standard deviation
for all three patients is an indicator of this model’s capability in capturing the patient
dynamics and hence its predictive capability. This model is providing substantial
forecasting information beyond what is available given the data alone.

3.6.1.3 Comparison of Forecasting Accuracy with LDP Model

In this section, we will compare the forecasting accuracy of the T2DM version of
the MSG model with a well-known model developed by Ha & Sherman [159]. It
is important to note that this model, the longitudinal diabetes pathogenesis (LDP)
model, was designed to understand diabetes progression, not for forecasting future
BG level purposes. The experiment in this setting will be the same as described
above in Section 3.6.1.2. This model consists of a set of coupled ODEs. To estimate
the unknown model parameters within the LDP model we use a constrained ensemble
Kalman filter (EnKF) algorithm, whose details can be found in [4]. As a result of
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using this type of an algorithm, whose output comprises an ensemble of estimates,
we can also assess the uncertainty in the estimated parameters, using the ensembles.
Moreover, we can propagate the uncertainty in the estimated model parameters to
quantify the uncertainty in the forecasted model states. Thus, using this approach,
we can obtain confidence bands, as we do with the MSG model. The LDP model
that we use for comparison has 11 model parameters. However, we will not attempt
to estimate all these parameters as it is not a feasible task to achive with the sparse
data that we have available. Instead we set some model parameters to reasonable
values based on the literature, and estimate the remaining ones using the constrained
EnKF method. More precisely, we perform the same experiment by estimating three
different sets of parameters, {f, (�}, {f, (�, ℎ4?0(�}, {f, (�, ℎ4?0(�, A20}, and
setting the remaining parameters at known default values. The comparison results
can be found in Table 3.4.

The results in Table 3.4 show that the MSG model is better at forecasting future BG
levels in T2DM patients than all variants of the LDP model considered. First, even
though we fit the normal distributed model output to the data rather than directly
fitting the mean of the model output to the data, we can achieve smaller MSE and
MPE than all different variations of the LDP model for all three patients. Second, we
see the advantage of using a stochastic model which quantifiies the level of certainty
in the BG predictions for both the LDP and MSG cases. It is worth noting that the
MSG model is based on learning parameters of a stochastic model, whilst the LDP
quantifies uncertainties by learning an ensemble of parameters; this may contribute
to the differences between them at the level of uncertainty prediction. The pecentages
in Table 3.4 show that the MSG model is substantially better in capturing the true
measurements in the corresponding confidence bands. Note also that the MSE is also
smaller for the MSG than for the LDP, demonstrating that it is preferable as a point
estimator, as well as probabilistically. In summary the MSG model is preferable to
the LDP for decision making in the context we use here, as it gives a better point
forecasts and better confidence bands, enabling knowledge of possible high and low
values for future BG levels.

Finally, we want to note also that the datasets belonging to Patient 1 and Patient 2
here were also used in [10] to compare the efficacy of some other data assimilation
techniques to forecast future BG levels. Among different filtering approaches and
mechanistic models, the best performance was achieved by a modified dual unscented
Kalman filter (UKF) that estimates both the states and unknown model parameters
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that is used along with the Ultradian model. With this approach, the MSE for patient
1 is reported to be 680 (mg/dl)2 whereas it is 950 (mg/dl)2 for patient 2. This
shows that we obtain better forecasting accuracy with the MSG model for patient
1, however, the forecasting accuracy is better for patient 2 with the UKF approach
used with the Ultradian model. In addition, the authors used the well known Meal
model, introduced in [98] for forecasting future BG levels. For this model, among
various different filtering techniques, they achieved the best accuracy again with
UKF. The MSEs obtained with the Meal model along with UKF are 730 (mg/dl)2

and 1300 (mg/dl)2 for patients 1 and 2, respectively. The MSG model achieves better
forecasting accuracy than the Meal model for both of the patients. These comparisons
are another indicator that the MSG model can provide accurate forecasting results
for T2DM patients without including exogenous insulin as a state variable and with a
relatively simpler representation of the underlying physiology.

Patient 1
1-std % 2-std % mse rmse mpe

MSG Model 73.66 94.20 403.94 20.10 12.84

LDP Model
f, SI 41.96 65.62 524.03 22.89 13.72
f, SI, hepaSI 40.18 66.96 483.99 22.00 13.77
f, SI, hepaSI, r20 43.30 65.62 487.89 22.09 13.59

Patient 2
1-std % 2-std % mse rmse mpe

MSG Model 62.66 89.87 1123.40 33.52 17.35

LDP Model
f, SI 20.89 37.34 1563.20 39.54 21.00
f, SI, hepaSI 15.82 32.91 1952.30 44.18 24.20
f, SI, hepaSI, r20 18.35 33.54 1630.60 40.38 21.71

Patient 3
1-std % 2-std % mse rmse mpe

MSG Model 51.61 96.77 586.32 24.21 17.11

LDP Model
f, SI 29.03 50.00 1043.40 32.20 18.98
f, SI, hepaSI 30.65 53.23 1080.90 32.88 18.69
f, SI, hepaSI, r20 19.35 46.77 1117.60 33.43 19.81

Table 3.4: Comparison of the forecasting results with two different models. For each
different case of the LDP model the results in the corresponding row shows which
parameters are estimated during the whole forecasting experiment. Note that we
obtain better forecasting accuracy with the MSG model than with the LDP model.
Furthermore, for the LDP model, the forecasting accuracy decreases as the number
of parameters being estimated increases.
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3.6.2 ICU
We now move from evaluating the model with T2DM self-management data to the
more complex and difficult case of modeling and forecasting glycemic dynamics in
the ICU, where non-stationarity is manifest on much shorter time-scales. Parameter
estimation and prediction are, in general, harder in the ICU context because patients
within the ICU typically have much more volatile physiological dynamics for at
least three reasons: glycemic dynamics under continuous feeding are oscillatory, the
patients are acutely ill and their health state changes quickly because of their disease
state, and the patients are constantly being intervened on to help them heal. To paint
a picture, 90%+ of the patients will not require insulin outside of the ICU but do
during their ICU stay, and around 20% of patients have a hypoglycemic episode that
would not occur when they are not acutely ill. The ICU is a much more complex
forecasting and modeling setting.

3.6.2.1 Parameter Estimation

The difficulties presented in the ICU setting are reflected in our parameter estimation
results. Despite these complexities, Our numerical results exhibit four substan-
tive pieces of evidence which support the validity of the model and its potential
effectiveness for both understanding the physiological state of an individual, and
for forecasting for that individual, in the context of ICU patients. First, the model
captures the dynamics as meaningfully as possible based on the data. That is, the es-
timated model parameters are physiologically plausible and represent the observable
dynamics. Second, the estimated model parameters, which have the most influence
in resolving the mean and variance of the BG level, are physiologically meaningful
in most of the cases, as was the case in the T2DM setting. Third, the changes in the
parameter estimation results over moving time windows are realistic and reflective of
the expected non-stationary behavior of ICU patients. And fourth, the UQ results
show that the parameters (basal glucose rate, �1 and the model standard deviation,
f), which have the most influence in resolving mean and variance of BG levels are
estimated with more certainty. Having tighter bands around the point estimates for
these parameters indicates the robustness of the estimation.

Before we begin the evaluation, first consider Figure 3.4, which demonstrates both
the model’s relative robustness and its capability of capturing the dynamics and
various complexities encountered in different conditions in the ICU setting. These
figures show simulated BG values for patient 4 (see Table 3.2) over different training
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time windows, whose data, nutrition rate and BG measurements, are used to estimate
the corresponding model parameters using the optimization approach. Here the the
red curves represent the mean of the blood glucose dynamics that are assumed to be
oscillatory, the amplitude of oscillations are expected to lie in the gray region as it
is the 2-stdev band around the mean, and the BG measurements are shown as red
circles and the blue curve shows the tube-nutrition input rate. For simplicity we are
considering patient 4 who did not need external insulin, so the tube-feed nutrition
is the only driver of the BG level. Each subfigure of Figure 3.4 shows a different
training time window that is representative of different circumstances relative to our
ability to estimate the basal glucose rate �1, the decay of glucose to the basal rate, W,
and the parameter that resembles the width of the glycemic dynamics, f. Figure 3.4a
shows a situation where the BG measurements reflect the nutrition rate quite well. In
this case all the estimated model parameters are physiologically meaningful and the
resulting simulation is a good representative of the dynamics, as can be seen by the
parameter and state estimates tracking one another. In contrast, Figures 3.4b and 3.4c
demonstrate a situation where the BG measurements do not reflect the nutrition rate
over the time window; this failure is seen by the lack of consistency in the movement
of the parameters to one another and the nutrition rate. This failure can have one of
two sources. First, if there is no change in the nutrition rate over the training time
window, it is impossible to estimate the glycemic decay rate parameter, W. Second,
when changes in the BG measurements are uncorrelated with the changes in the
nutrition rate, potentially due to changes in health states or other interventions, e.g.,
other hormone drips, it is also impossible for the model parameters to accurately
reflect the physiology as they are accounting for dynamical glucose features they
were not designed to accommodate. These issues do not mean the model cannot
represent and forecast the glycemic dynamics, it still is usually able to represent
glycemic dynamics, but some of the parameters might lose their intended meaning.
For example, in the two respective examples, despite parameter estimate issues, in
both of these cases the estimated basal glucose rate, �1, and the the parameter, f
that is a measure for the amplitude of the BG level oscillations are physiologically
meaningful and these parameters are enough to capture the mean and variance of
the BG measurements accurately. Moreover, estimated decay parameter, W, takes an
arbitrary value larger than a pre-set threshold resulting in that the mean of the model
being estimated as flat. These examples are not the only cases where we observe
parameter estimates that are not physiologically meaningful while at the same time
the glucose forecast and modeling itself remains accurate. The other examples are
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all variations on the same theme; we do not have the available data to estimate a
parameter accurately, or the data are behaving in a more complex manner, and in both
cases, the parameters make up for these data-driven and model-driven short-comings
by deviating from their normal roles to render a robust glucose forecast. It is likely
that problems such as these will not be eliminated by using more complex data sets
and more complex models, because full representation of the relevant processes is
out of reach in such non-stationary ICU settings.

With the complexity of ICU data in mind, Figures 3.5 and 3.6 show the time
course of parameter estimates for each ICU patient obtained with MCMC and
optimization approaches respectively, and demonstrate how the estimated parameters
are physiologically plausible. In Figure 3.5 we show estimated basal glucose rate,
�1, the decay parameter, W, the parameter used as a measure for the amplitude of BG
level oscillations, f, and the proportionality constant, V, for each of the patients. The
mean of each parameter, as estimated using MCMC, is shown using blue stars; the
parameters are estimated for every forecasting process using data from the previous
day allow us to update the model to forecast the glycemic response and states,
implying a moving time window of parameter estimates. These parameter estimates
are physiologically plausible for all three patients except in a small number of cases.
For example, estimates of the basal glucose rate, �1, were around ∼ 110− 150mg/dl,
∼ 140 − 200mg/dl, ∼ 120 − 200mg/dl, for patients 4, 5, and 6, respectively, all
plausible values given the patient’s data. As was the case for the example discussed
in the first paragraph of this section, it was not possible to compute good estimates
for parameters W and V in some of the cases.

If we estimate the parameters using optimization—changing the paradigm under
which we estimate parameters—we can gain further insight into complexities
regarding parameter estimation. Figure 3.6 demonstrates some variability and
occasionally unrealistic estimates for basal glucose rate, �1. In Figure 3.6 we
observe times where the basal glucose rate, �1 being estimated very low, too low
to be plausible. The reason why the basal rate is estimated incorrectly, however, is
not so complex and is in fact correctable. The time periods where the basal rate
is incorrectly estimated coincide with time intervals where we cannot estimate the
decay rate, W; this problem occurs again when the nutrition rate is not changed over
the course of the training period, making it impossible to estimate glycemic response
to nutrition. If, over the course of the optimization, the decay rate is estimated to be
too high, it negates the effect of nutrition to the BG rate. Because the model now
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has much less dependence on nutritional input, it makes up for this by estimating
the basal rate, �1 as being higher than it should be. In contrast, if the estimated
decay rate, W, is underestimated then the influence of nutrition on BG is excessive
and, to make up for this, the basal rate is underestimated. In this situation we can
still calculate the basal rate accurately by estimating the shifted basal rate, which
is the sum of estimated basal glucose value and estimated effect of nutrition rate.
This shifted basal rate is how the model is modeling the glucose in the system,
and the calculation for the shifted basal rate is effectively deconvolving how the
model is coping with the data insufficiency. This example demonstrates some of
the ICU-specific complexity and that, despite the identifiability failure due to data
sparsity, the model was robust enough able to estimate the data. And, because the
model is relatively simple, this further demonstrates how we are able to pull apart
the modeling inaccuracies such that we can understand and account or otherwise
compensate for these model errors. In addition, the estimated f values which are the
measures of the amplitude of BG level oscillations, attain physiologically meaningful
values, using the optimization approach, as well. This is important because it is
generally the amplitude of oscillations that will have the largest impact on clinical
decision-making. And finally, despite these difficulties, the BG dynamics were still
quite accurate as we will see in the forecasting evaluation (cf Figures 3.7 and 3.8).

Figure 3.5 also shows that the time evolution of the estimated parameters is realistic
within the ICU context. In ICU the training timewindowsmove in positive (increasing
time) direction increments of measurements—given a measurement the model is
estimated using the previous 24 hours of data, ∼ 14 data points to forecast the future
measurement whenever it comes—so that the consecutive time windows have an
overlap of 20-23 hours. This means that the model varies relatively continuously
between consecutive time windows. This relative continuity is reflected in Figure
3.5 that shows the time evolution of estimated parameters for all three patients. The
choice of the time window used to estimate the model faces the same problem that
all moving window approaches: short time windows imply less data and higher
estimation variance and long time windows imply poor adaptability in non-stationary
settings but have lower variance and ample data. This is an optimization problem
we will not tackle here. Instead, we set the window size on the assumption that
the patient health state defined by the parameters would not change too much over
the previous 24 hours, and assumption that is usually but not always correct. Even
though the health condition of the ICU patients can change rapidly, the estimated
parameters do not change wildly (in most of the cases), reflecting the expectation
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under these settings. Nevertheless, the patients are clearly non-stationary and the
observed evolution of the parameter estimates, e.g., of the basal glucose value,�1and
decay rate, W, shown in Figure 3.4 reflect this non-stationarity.

And finally, as was the case in the T2DM setting, the model is relatively robust to
the methods used to estimate it; however, as can be seen in Figure 3.8 and inferred
from the discussion above about parameters and their face validity to physiology, the
ICU formulation of the model can have more complex parameter estimation issues
compared to the T2DM setting. In particular, in the ICU setting there are some cases
where the Laplace approximation does not work well because the parameter misfit
solution surface is flat in some parameter directions – a reflection of identifiability
issues. In these cases we used MCMC to provide UQ results. In general we observe
that the basal glucose rate �1 and the parameter related to variance, f, both allow
for more robust estimation compared to the estimation of W and V. The robustness of
the estimation of f is important for clinical applications because the variance, f,
is what is used for deciding insulin doses. As a demonstration of the robustness of
f, consider Figure 3.5. Here we can see the 2-stdev band around the mean for f is
tighter than or as tight as the 2-stdev bands for �1, W, and V for all three patients.
This implies that the MSG model is able to robustly estimate the amplitude of the
BG level fluctuations, which again is important to clinicians. On the other hand,
considering the plots for W and V estimation, the width of the 2-stdev bands shows
that we are less certain about the estimated values. Remember that both of these
parameters are related to the glucose removal rate from the blood. This is, perhaps,
an indicator of an identifiability issue for these parameters. But it is also true that we
are indeed less certain about this physiology; glucose can be removed at different
rates by different physiological processes, e.g., liver versus adipose tissue, and we are
not resolving these physiological subsystems. Moreover, due to the non-stationary
and sparse nature of the data in the ICU setting, it is harder to estimate some of the
model parameters accurately. Separating these inference issues is not possible given
the data presently collected in these settings. Nevertheless, the parameters that play
a key role in resolving the mean and variance of the BG dynamics can be estimated
accurately up to the desired level.

3.6.2.2 Forecasting

Forecasting results in the ICU setting are indicative of two major features of this
model: (i) we can capture the trend of BG measurements through the mean of the
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model and (ii) we can estimate the variance of the BG measurements accurately.
Once again, since resolving mean and variance of BG dynamics is central to glycemic
management, these results show potential usefulness of this model in the ICU context.

1-stdev % 2-stdev % average model stdev data stdevoptimization mcmc optimization mcmc optimization mcmc
Patient 4 59.06 64.33 94.15 93.57 16.69 17.48 17.21
Patient 5 60.62 67.36 84.46 87.05 25.70 29.09 29.15
Patient 6 55.81 62.40 86.05 89.54 33.64 37.79 38.12

Table 3.5: Percentages of the true BG measurements included in the forecasted 1-
and 2-stdev bands, in the ICU setting. These percentages show that a large number of
forecasted confidence intervals include the true BG measurements. MCMC approach
provides slightly better rates, which is in accordance with the higher average model
stdev in the MCMC case. The average model stdev values obtained with optimization
and MCMC for all three patients are smaller than the raw data stdev in all but one
case. Together with the percentage values, this means that the confidence bands are
tight enough to provide accurate information on the variance of BG levels in the ICU
context, as well.

Figures 3.7 and 3.8 demonstrate that the forecasted mean of the model and reflect it
encapsulates the essence of the behavior of BG measurements for all three patients.
In each of the plots in Figures 3.7 and 3.8, the red circles show the BG measurements
and the blue stars are the mean of the model, the gray region is the 2-stdev band
around the mean once again obtained separately for each forecasting process with the
corresponding patient-specific model. In addition to representing the trend of the BG
measurements, the forecasted mean of the model is nearly identical when computed
using two independent methods, reinforcing the point that the model is reliable.

To observe the effectiveness of this model in estimating the variance of the BG
measurements accurately, consider Figures 3.7 and 3.8 and Table 3.5. Figures 3.7
and 3.8 shows the ability of the models to estimate the variance in glycemic dynamics
visually where a large number of true BG measurements are contained in the gray
regions that represent the forecasted 2-stdev bands around the forecasted mean.
These results are quantified in Table 3.5 which contains summary statistics both
for optimization and MCMC methods. We see that with one exception, MCMC
model estimation for patient 4, the average model standard deviation is smaller
than the empirical standard deviation of the BG measurements, yet the proportion
of the BG measurements captured in these regions are in the range of 84 − 94%
for all three patients with two different methods. These results demonstrate the
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forecasting accuracy of the MSG model, and imply potential use in the ICU for
glycemic management.

3.6.2.3 Comparison of Forecasting Accuracy With The ICU Minimal Model

In this section, we will use the ICU Minimal Model (ICU-MM) introduced in [414]
and [173] for the comparison of the forecasting result we obtain with the ICU version
of the MSG model. The ICU-MM has twelve unknown model parameters. One of
those model parameters is used for the purpose of having units equal on both sides
of the equation and set to be 1. Two of the model parameters represent the volume
of glucose and insulin distribution space and are set to nominal values from the
literature. This leaves us with nine unknown model parameters to be estimated. To
estimate these parameters, we use the constrained EnKF method as we did in when
fitting the LDP model in the T2DM setting. Recall that with this type of approach,
the ensemble enables us to obtain confidence bands for our forecasting results.

patient 4
1-std % 2-std % mse rmse mpe

MSG Model 60.23 93.57 343.31 18.53 11.03
ICU-MM 49.71 80.70 335.15 18.31 10.48

patient 5
1-std % 2-std % mse rmse mpe

MSG Model 60.62 84.46 1104.20 33.23 19.20
ICU-MM 23.83 49.22 1480.40 38.48 20.52

patient 6
1-std % 2-std % mse rmse mpe

MSG Model 55.81 86.05 1927.50 43.90 25.84
ICU-MM 26.74 46.90 2018.40 44.93 25.28

Table 3.6: Comparison of the forecasting results obtained with the MSG model and
the ICU-MM. The percentages of 1- and 2-stdev bands that capture the true BG
measurements with the MSG model is substantially higher than the ICU-MM. On the
other hand, MSE and MPE values are much closer yet the MSG model still provides
smaller value for these measures, as well.

The numerical results for the comparison are shown in Table 3.6. First, similar
to the results in T2DM setting, the percentages of the true BG measurements that
are captured in the 2-stdev bands with the MSG model are higher than the ones
obtained for the ICU-MM by using the constrained EnKF algorithm. Second, the
point estimators in the MSG case exhibit comparable, or improved, accuracy in
comparison to the ICU-MM: MSE and MPE are also smaller for the MSG model
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except for patient 4. These results show that with a relatively simple model, we are
able to reach the same, or better, accuracy in forecasting BG behavior than a more
physiologically based high-fidelity model, with a larger number of unknown model
parameters. Third, the confidence bands that we use to quantify possible high and
low values of BG level could provide better results. The improved accuracy of the
MSG model in terms of uncerainty forecasting may be related, in part, to the fact that
the model we use is inherently stochastic, and fits the stochastic fluctuations to data;
in contrast in the ICU-MM provides uncertainty bands only through the ensemble of
solutions which are a product of the algorithm used to fit the data, and not inherent
to the model itself. Once again, this improved forecast and uncertainty accuracy is
indeed a crucial tool in making decisions regarding future BG levels of ICU patients.

3.7 Conclusion
Summary of the modeling framework: In this paper, we introduce a new mathe-
matical model that describes the glucose-insulin regulatory system in humans. The
model was developed with five goals in mind: (i) to create a model anchored to real
clinical data, and that given these data the model would be useful for personalized
parameter estimation and state forecasting [380]; (ii) to create a model that was
interpretable in the sense that patient specific parameters may be used to explain, and
quantify, basic physiological mechanisms; (iii) a model which is physiologically sim-
ple, even if it was functionally complex, to avoid parameter identifiability problems
present in many existing physiological models; (iv) a model framework generalizable
and adaptable to several contexts including T2DM and glycemic management in the
ICU; and (v) a model that was amenable to a model-based control environment.

With these goals driving the model development, the model we developed follows
a somewhat different approach compared to many other glucose-insulin modeling
efforts where the goals of increasing physiological fidelity, or explaining a new
physiological subsystem, were drivers. For example, where as others, e.g., Sturis et
al. [399] or Lui et al. [259], work to understand and resolve the nature of the fast
time-scale oscillations, the model developed here incorporates these sub-day glucose
fluctuations into the noise process and the parameter estimation is aimed at capturing
the slower moving dynamical properties such as the evolution of the rates of glucose
use and production; this is done whilst keeping their compartmentalization, and thus
number of parameters, to a minimum. We do this because in many cases we do
not have data to support resolution of higher-fidelity physiological processes [184]
as is the case in many common real-world data collection settings. And, since our
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overarching goal andmodel validation and evaluationmetrics are based on the models’
ability to forecast future BG levels accurately, for the sake of computational efficiency,
we end up developing a lower-fidelity model which is simple yet interpretable and
anchored to physiology.

Summary of key results: The model developed here is flexible enough to enable a
priori plausible models valid for T2DM and ICU settings. Experiments with T2DM
and ICU data demonstrate that this a priori plausibility is borne out a posteriori.
The model has physiologically interpretable parameters, which can be estimated
robustly based on real-world data. Moreover, the estimated parameter values are
physiologically plausible for both the T2DM and ICU settings. Hence, the new model
has demonstrable capability to capture the BG dynamics of T2DM and ICU patients;
in particular it does so well enough to resolve the mean and variance of their BG
levels in both retrospective and predictive modes. This feature of the model reveals
its potential for use in glycemic management. It also reveals the potential for future
BG level forecasting. After being trained based on one week of data, it can accurately
forecast future BG levels for the following three weeks in the T2DM context. On
the other hand, in the ICU context, it is capable of capturing the dynamics based
on one day of data. Then, it can be used for forecasting BG levels for the following
2-4 hours. In both settings, the choice of mathematical model naturally provides
confidence bands for the future forecasting of BG levels. These confidence bands
are extremely helpful to have an understanding about how low and how high BG
levels could be in the future, and hence for the design of glucose or insulin uptake
strategies to ameliorate undesirable health effects.

Model development constrained by real world data: Restricting model devel-
opment to the constraints imposed by readily available real world data is a severe,
but important, restriction. We can hypothesize how physiology might work in detail,
and we can envisage experiments to gather new datasets that could exist to test our
hypotheses; but we have not yet exploited data that are readily available to forge an
understanding of what can be explained and predicted given current data acquisition
instruments, cost constraints on data acquisition and time-constraints required for
real-time prediction. To help facilitate the circular process of allowing our knowledge
of systems physiology to inform and impact how people and clinicians manage the
health of people, and help allow the gaps in understanding at the bedside to help us
choose impactful systems physiological problems to focus our efforts on, we need



73

a bridge between these worlds, and the bridge proposed here is through inference
with data based on simple yet interpretable models.

Application in clinical settings: Within a clinical setting there are two scenarios
where model-based efforts could be of potential help: (i) obtaining deeper understand-
ing of the patient-specific attributes of the glucose-insulin regulatory system; this
requires accurate parameter estimation; (ii) guidance for immediate decision-making
such as insulin administration and glycemic management; this is a situation where
we can tolerate some inaccuracy with parameter estimation provided that the state
forecasts, including the uncertainty bands, are accurate and robust. In the context
of the model introduced here we have shown situations where the model parameter
estimates are accurate as well as situations where model parameter estimates are not
accurate. Nevertheless, in the situations where the parameter estimates are not accu-
rate, the state forecast accuracy remains robust, and the parameter estimate failures
can be explained and for a large part mitigated. For example, in some circumstances
in the ICU we cannot directly estimate the basal glucose rate accurately, but we
are nevertheless able to obtain an accurate estimate of the rate at which glucose
returns to its base value. In many situations we demonstrate that this is enough
to make accurate short-term forecasts; and also provides a starting point for more
fundamental physiologically-based systems. A key requirement when translating the
model framework to a clinical setting is quantification of uncertainty in predictions.
In this context our modeling effort was a success in both T2DM and ICU settings.

Blood glucose forecasting summary: The MSG model works well at estimating
and forecasting blood glucose mean and variation boundaries in T2DM and ICU
settings. For example, the model-based forecasts have more forecasting accuracy
while retaining tighter uncertainty bands compared to measures derived from the data
alone. The model identifies different characteristic behaviors between T2DM and
ICU patients, demonstrating both generalizability and robustness of the models with
respect to forecasting. Moreover, in these two scenarios the models are able to cope
with the relative pace of non-stationarity of the patients, order weeks and order days
for the T2DM and ICU settings, respectively. This demonstrates both the efficiency
of the MSG model and its flexibility. Given these results and the fact that the model
is simple and interpretable with understandable parameters implies a potential for
providing a new perspective in understanding the glucose-insulin system in humans.
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Comparison of the efficacy of the model for T2DM and ICU settings: The
T2DM and ICU contexts are very different settings, primarily because of the time-
scales on which parameters change, and the different relative importance of external
events not included in the model; this difference imposes different needs in the two
settings. For example, the change of the health states of the T2DM patients are in the
order of days, or even weeks, whereas health states change on the order of hours for
ICU patients. Keeping these case-specific differences in mind, one obvious way to
compare the effectiveness of the model in these two settings is through the forecasting
results. However, unlike other fields such as atmospheric physics, biomedicine
is mostly missing a standardized and normalized techniques for context-sensitive
forecast verification and evaluation, especially in regard to clinical effectiveness of the
forecast. Because of this gap, evaluation of the models and quantitative comparison
of their potential usefulness in a context-dependent way is not possible. Regardless,
it is important to emphasize that we do not expect the results for the two settings to
have the same accuracy due to the characteristic differences mentioned before. More
precisely, comparison of Figures 3.3, 3.7, and 3.8 shows that the mean of the model
output in ICU setting does not look as close to the true BG measurements as the
same comparative forecasts in the T2DM case. Once again, this situation is expected
due to highly non-stationary behavior of ICU patients. However, in this setting, it
could be argued that being able to forecast the variance of glycemic dynamics to
identify, e.g., hypoglycemia, could be more important to capture than the dynamics
with the mean model output. These different needs are context-specific, and without
context-specific evaluation machinery, direct, quantitative comparisons are not yet
possible. Instead we are left showing Figures 3.7c and 3.8c that demonstrate the
model can forecast a hypoglycemia event on day ∼ 13 for patient 6, a feature that
does demonstrate the context-specific effectiveness of the model in the ICU setting.

Developing amodel that is as simple as possible but not simpler: While building
the final model presented here, we started with the simplest possible representation of
each process and built in complexity until the model had desired predictive capability.
For example, to model the meal function in the T2DM setting, we first used an
impulse function that concentrates all the ingested glucose at a single meal time
instant. Numerical simulations showed that this choice was too simple to reflect
reality. The source of the problem is insightful: concentrating all of the glucose
in the meal at one time point, the start time of the meal, caused the corresponding
simulated BG levels to increase very rapidly to very high values, which were not
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even on the same order as the true BG measurements, e.g., when BG measurements
are in the range of ∼ 100 − 150 mg/dl, the simulated BG values are in the range
of ∼ 700 − 800 mg/dl. Physiologically, it is likely that a sharp spike in glucose
intake would cause a spike in BG, but it is also likely the spike would be narrow and
BG would return to near normal values quickly; however a full discussion of the
physiological effects of such a dose of glucose is beyond the scope of this discussion.
We then tried a simplistic solution in which we represented nutrition ingestion as a
square-wave function, which was sum of constant functions that have the value �8/)
over the interval [C (<)

8
, C
(<)
8
+ )] where �8 is the total amount of glucose ingestion

in the meal starting at time C (<)
8

, and ) is a time-scale for transfer of glucose from
stomach to blood. That is, we set <(C) = ∑ <
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8
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model parameter to be estimated for each patient from data. This function produced
reasonable, realistic simulation results. However, the cost function we minimize to
fit the model to data (see (3.25)) exhibited discontinuities related to discontinuous
behaviour of the meal model with respect to ) . The somewhat surprising result
of this discontinuity was our inability to accurately estimate glycemic responses to
nutrition. Meaning, with a square wave nutrition delivery function, inference failed.
These failures led us to choose a smooth function for nutrition delivery that then led
to a continuous cost function with respect to the unknown model parameters. These
issues led to the meal function as defined in (3.5) that satisfies both the requirements.
Meaning, the model development was driven both by the need to reconcile the model
with realistic physiology and by the need to be able to preform inference with data.
Similar considerations applied to other aspects of model development.

Impact of the Nutrition Function Choice in the ICU Context: We also consider
different form for the nutrition function in the ICU setting, in order to test robustness
of our modeling to the simplistic piecewise constant model that we adopt in this
case, and in view of the fact that in the T2D setting we found the need for a more
sophistictaed model for nutrition uptake. First, note that because of ICU patients
are tube-fed with nutrition quantities that are considerably less, per unit time, than a
healthy indivudual would ingest, per unit time, over the duration of a regular meal,
it is reasonable to consider the use of a piecewise constant function to model the
effect of nutrition on the BG levels for ICU patients. Nonetheless we investigated if
modifying the piecewise constant function as shown in Figure 3.9 could improve the
parameter estimation and/or forecasting results. The idea behind this modification
is to model the effect of nutrition on BG level via an initial exponential increase



76

that reaches a maximum value and then, when the nutrition delivery stops, this
effect decreases exponentially. The rate of increase and decrease are represented
by two model parameters 0 and 1. These parameters are similar to the ones that
we used to model the effect of nutrition in the T2DM context, but the nutrition
function is not exactly the same since the nutrition effect in these two cases have
different characteristics. In addition, since the values of these two parameters can be
patient-specific, using this function introduces two more parameters to be estimated
in the ICU setting, increasing the flexibility and the complexity at the same time.
Hence the parameters to be estimated are �1, W, f, V, 0, 1.

The function we use has the following form:
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is the normalizing constant for : = 1, 2, ...,  <.

The numerical results concerning the forecasting capability of the MSG model with
this nutrition function are summarized in Table 3.7. A quick comparison of these
results with the ones in Tables 3.5 and 3.6 shows that the percentages for 1- and
2-stdev bands are a little less whereas MSE and MPE are either the same or slightly
higher than the ones obtained with piecewise constant nutrition function. Hence
this comparison suggests that using the more physiologically accurate version of
the meal function did not, in this ICU case, introduce any improvements. Since the
new function introduced two more new parameters to be estimated this also leads to
a problem that is computationally more challanging, especially when the problem
is prone to identification issues. Overall our work comparing the original and new
meal function demonstrates that the original piecewise constant choice of the meal
function is an appropriate choice in this case.

Comparison of Forecasting Efficiency with Other Models: In order to evaluate
the effectiveness of the MSG model, we ran experiments comparing it with the
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1-std % 2-std % mse rmse mpe average model std
Patient 4 56.73 91.81 392.90 19.82 11.87 16.86
Patient 5 59.59 83.42 1239.70 35.21 19.68 25.25
Patient 6 57.36 84.11 2094.70 45.77 26.01 33.40

Table 3.7: Forecasting results obtained with optimization approach for the MSG
model with the nutrition function given in (3.26). Even though the nutrition function
could be considered as a better representation of the reality, it did not introduce
improvement in the forecasting results.

LDP model (the T2DM setting) and with the ICU-MM (the ICU setting). The LDP
and ICU-MM models are built to represent the co-evolution of glucose and insulin
dynamics, in contrast to our simplified model which models glucose dynamics with
insulin as parameterically-dependent input. For the purpose of comparison, we used
1− and 2−stdev band percentages, MSE, RMSE, and MPE as the evaluation metrics.
In both the T2DM ICU settings we showed that: (i) even though the MSG model was
developed to capture the mean behavior of BG level, and the numerical scheme used
for identification is not specifically designed to minimize the MSE, the MSE over
the test data obtained with the MSG level is typically smaller than, and in the worst
case at the same level as, the MSE obtained with the LDP model (for T2DM) and
ICU-MM (for ICU); (ii) the confidence bands obtained via the MSG model are more
effective in that they capture a higher proportion of the true BG measurements than
the confidence bands found from the LDP model and the ICU-MM. This is likely due
in part to the fact that the MSG model uses a stochastic description to encapsulate
possible fluctuations around the mean in the quanity of interest, which is the BG
measurements; the LDP and ICU-MM are deterministic models and fluctuations are
captured through the ensemble method used to fit the data. These two points show
that the MSG model is at least as effective in forecasting future BG levels as the LDP
and ICU-MM models, in the T2DM and ICU settings; indeed it is typically more
effective. Achieving this level of accuracy in the two different settings is achieved by
using a simple model, apprpropriate for the available data, but complex enough to be
interpretable and to capture the underlying physiology. The resulting simple MSG
model has a smaller number of unknown parameters than do the LDP and ICU-MM
models, therby providing more robust estimation and inference results.

Generalizability of parameter estimation: Finally, a careful investigation of the
estimated parameters and simulated BG levels in the ICU context shows that we
can estimate parameter values that represent the BG levels very well when the true
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BG measurements are interpretable with the model (3.12). That is, if measured
BG values are responsive to the changes in the rate of nutrition and insulin IV,
then the BG simulations with the estimated parameters based on this data provide
a very good representation of the dynamics. However, if the BG level behavior is
not driven by the nutrition and the insulin IV rates, i.e., if its response is driven
by other factors such as stress-induced counter-regulatory hormone levels, then the
model-estimated mean is estimated to be almost-constant. This mean estimate is still
good as a representation of the average of BG measurements and the variance of the
measurements are still estimated accurately enough that the 2-stdev band around the
mean envelopes nearly every BG measurement. For all patients in all disease cases,
independent of parameter estimation complexities, we obtain good estimates of the
forecast mean and variance of the BG levels we achieve with the model are likely
accurate enough to be helpful in clinical settings.

Outlook: The model we have developed has demonstrable predictive capability
and discriminates between datasets in a patient-specific manner. Yes it has some
limitations, which give space for future development, and also suggests some natural
next-step applications. We outline a number of possible future directions. Glycemic
control: Given the MSG model construction, an obvious next step is to formulate
the work on the control problem where we determine estimates of the input ranges
of nutrition and insulin, necessary to keep the output, here BG, in a desired target
range. This is a similar approach to something like the artificial pancreas/beta-cell
project, but the inputs would include nutrition, the settings would include T2DM and
ICU glycemic management, and the goal would not be a closed loop but rather an
open loop system. Parameter estimation short-comings and advancement: In T2DM
setting, the estimation results with optimization and MCMC approaches for the
parameters 0 and 1 used to define the rate of appearance and absorption of glucose
produce conflicting results. In the ICU setting, we observe some identifiability
issues for the parameters modeling glucose removal with body’s own effort and with
insulin IV. We plan to address these issues in future. Key questions are whether
different parameter estimation techniques can resolve the problems, or whether
further data is required, and if so which data, and more fundamentally whether the
model used is appropriate for the data. A related issue is the possibility of using
mixed effects models [395, 418] in order to share common information in different
patient data sets, whilst also retaining the advantages of patient specific learning.
Comparison with more complex models: In order to have a better understanding about
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the effectiveness of this model to encapsulate BG dynamics and resolve the mean
and variance of BG levels, we plan to compare it with more complex models, such
as a second order linear SDE (which would allow for oscillatory dynamics but retain
the advantages of linearity and Gaussianity exploited here) and the Ultradian model
[399] (which is a widely- accepted physiogically based model). Such a comparison
would happen within design similar to what we used in this paper for both T2DM and
ICU context. Furthermore in the situation where control machinery has been added
to the model, we can evaluate the various model’s effectiveness in a control-based
setting. Phenotyping: Because the parameters of the MSG model are interpretable
and track physiology reasonable well, we could potentially use the model parameter
estimates for phenotyping studies, [6, 7, 8]. Meaning, we could estimate parameter
for individuals in a given health state, establishing an inferred phenotype for the
patient, and then relate this phenotype to other external health features or cluster
the patient phenotypes in an effort to find structure among the inferred physiology.
We have deemed efforts such as this high-fidelity phenotyping [184] and believe
that this model has the potential to be used to these ends. Exploiting model error
to understand physiology: It is known that BG levels are mainly driven by the
carbohydrates, however, there are also other factors that impact glucose levels. A
partial list of particularly interesting features that impact BG levels and are of practical
interest include macro-nutrients other than carbohydrates, exercise, sleep, and stress
levels of patients. The presence of these features will induce systematic forecasting
errors allowing us to use machine learning to explore the statistical relationship
between these factors and BG levels. This would give us a systematic platform for
potentially furthering the understanding of the glucose-insulin system and result in
more accurate parameter estimation and forecasting. Further model generalization to
include other glucose-data driven situations: We have not investigated how the MSG
model might work given oral glucose tolerance test (OGTT) data. The OGTT is one
of the standard settings for glucose-insulin model development and potential use;
we know of only one model that currently generalized to both OGTT and clinical
data [158] and we would like to add the MSG model to this list. T1DM: We have
a initial version of the MSG model that could be used within T1DM setting. It
would be interest to test this version on T1DM data. Since the time-scales of health
progression here are more similar to those of T2DM than the ICU setting, giving
hope that the method might have similar predictive capability in this setting. Because
of not having access to such a T1DM dataset, we haven’t been able to work with this
version in this paper. We plan to pursue a number of the research directions outlined
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here in the immediate future.
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(a) Patient 1

(b) Patient 2

(c) Patient 3

Figure 3.3: Forecasting results in the T2DM setting obtained via models formed by
using the estimated parameters with the optimization approach. In each plot, the
red circles show the true BG measurements, the blue curve shows the mean of the
model output, and the gray region is the estimated 2-stdev band around the mean
of the model output. These forecasting results show that the proposed model mean,
when equipped with confidence bands found from standard deviations, estimate the
BG levels accurately, and in a patient specific way. This reinforces the claim that the
model parameters could be used to provide information about the health condition of
individual patients.
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(a) �1=108.24, W=0.09,
f=1.35 (b) �1=135.23, W=0.51,

f=0.0016

(c) �1=139.87, W=1.00,
f=10.17

Figure 3.4: BG simulations are shown with respective to the estimated parameters
over training time window. In each plot, the light blue curve is the glucose rate in
the nutrition delivered to the patient (right y-axis), the red circles show the true BG
measurements (left y-axis), the red curve is the mean of the model output (left y-axis),
and the gray area is the 2-stdev band around the mean of the model output (left
y-axis). These figures show two main cases that could arise as a result of parameter
estimation in the ICU setting: Figure 3.4a: The input (nutrition rate) is reflected in
the output (BG measurements), Figures 3.4b and 3.4c: The input is not reflected in
the output, which makes it impossible to estimate the decay rate W.
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(a) patient 4

(b) patient 5

(c) patient 6

Figure 3.5: Parameter estimation and uncertainty quantification results in the ICU
setting obtained with MCMC approach. In each plot, the blue stars represent the
point-estimate of each parameter (mean of the resulting random samples) and the
gray area is the 2-stdev band around the point-estimates (also obtained from the
resulting random samples). These results show that the estimated model parameters
exhibit biophysically realistic values and change relatively smoothly; this is to be
expected since the consecutive (moving) time windows (each of length around one
day) have a large overlap. However, the cases where there is a considerable change
in the estimated parameter are also understandable because of rapid changes in the
patients’ health condition and/or the difficulty in extracting such information due
to patients’ glycemic response. On the other hand, 1- and 2-stdev bands enforces
the reliability of the estimated parameters, especially, �1 and f, which are the most
important parameters in predicting the mean and variance of BG levels.
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(a) patient 4

(b) patient 5

(c) patient 6

Figure 3.6: Parameter estimation results in the ICU setting obtained with the
optimization approach. In each plot, the blue stars represent the MAP estimator of
the corresponding model parameter. These results provide important understanding
of the system through the cases whether the data is interpretable through the model
or not. When both of the basal glucose value, �1 and the decay rate, W attain
physiologically plausible values, this is mostly representative of a case where the
data is interpretable through the model, whereas other cases reflect when it is not
possible to estimate the decay rate and how this situation propagates through the
other estimated parameters.
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(a) patient 4

(b) patient 5

(c) patient 6

Figure 3.7: Forecasting results obtained based on parameters estimated with op-
timization, in the ICU setting. In each plot, the red circles show the true BG
measurements, the blue stars show the mean of the model output, and the gray region
shows the 2-stdev band around this mean. For all three patients, the forecasted mean
captures the actual behavior of BG levels (not used in the training of parameters).
Moreover, the 2-stdev band narrows down over the time periods on which BG levels
are relatively stable, and widen over the intervals where the BG value has larger
variance. Capturing this behavior with reasonably tightly confidence bands is a very
useful and valuable feature of the proposed model.
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(a) patient 4

(b) patient 5

(c) patient 6

Figure 3.8: Forecasting results obtained based on parameters estimated with MCMC,
in the ICU setting. In each plot, the red circles show the true BG measurements, the
blue stars show the mean of the model output, and the gray region shows the 2-stdev
band around this mean. These results are, in general, very close to those obtained
using the optimization approach, and the most relevant properties are shared by them
both. Obtaining similar results with another numerical solution technique based on
the same mechanistic model shows the reliability of the model and estimated model
parameters.



87

Figure 3.9: Smoothing piecewise constant nutrition function that is used for ICU
patients
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C h a p t e r 4

A FRAMEWORK FOR MACHINE LEARNING OF MODEL
ERROR IN DYNAMICAL SYSTEMS

Remark 4.0.1. This chapter is derived from the manuscript by Levine and Stuart
[238] published in Communications of the American Mathematical Society.

4.1 Introduction
4.1.1 Background and Literature Review
The modeling and prediction of dynamical systems and time-series is an important
goal in numerous domains, including biomedicine, climatology, robotics, and the
social sciences. Traditional approaches to modeling these systems appeal to careful
study of their mechanisms, and the design of targeted equations to represent them.
These carefully built mechanistic models have impacted humankind in numerous
arenas, including our ability to land spacecraft on celestial bodies, provide high-
fidelity numerical weather prediction, and artificially regulate physiologic processes,
through the use of pacemakers and artificial pancreases, for example. This paper
focuses on the learning of model error: we assume that an imperfect mechanistic
model is known, and that data are used to improve it. We introduce a framework
for this problem, focusing on distinctions between Markovian and non-Markovian
model error, providing a unifying review of relevant literature, developing some
underpinning theory related to both the Markovian and non-Markovian settings, and
presenting numerical experiments which illustrate our key findings.

To set our work in context, we first review the use of data-driven methods for time-
dependent problems, organizing the literature review around four themes comprising
Sections 4.1.1.1 to 4.1.1.3 and 4.1.1.5; these are devoted, respectively, to pure data-
driven methods, hybrid methods that build on mechanistic models, non-Markovian
models that describe memory, and applications of the various approaches. Having
set the work in context, in Section 4.1.2 we detail the contributions we make, and
describe the organization of the paper.
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4.1.1.1 Data-Driven Modeling of Dynamical Systems

A recent wave of machine learning successes in data-driven modeling, especially in
imaging sciences, has shown that we can demand even more from existing models, or
that we can design models of more complex phenomena than heretofore. Traditional
models built from, for example, low order polynomials and/or linearized model
reductions, may appear limited when compared to the flexible function approximation
frameworks provided by neural networks and kernel methods. Neural networks, for
example, have a long history of success in modeling dynamical systems [294, 148,
217, 350, 348, 351, 223] and recent developments in deep learning for operators
continue to propel this trend [268, 40, 245, 244].

The success of neural networks arguably relies on balanced expressivity and general-
izability, but other methods also excel in learning parsimonious and generalizable
representations of dynamics. A particularly popular methodology is to perform
sparse regression over a dictionary of vector fields, including the use of thresholding
approaches (SINDy) [61] and !1-regularized polynomial regression [408, 368, 367,
369]. Non-parametric methods, like Gaussian process models [342], have also
been used widely for modeling nonlinear dynamics [423, 138, 213, 86]. While a
good choice of kernel is often essential for the success of these methods, recent
progress has been made towards automatic hyperparameter tuning via parametric
kernel flows [162]. Successes with Gaussian process models were also extended
to high dimensional problems by using random feature map approximations [335]
within the context of data-driven learning of parametric partial differential equations
(PDEs) and solution operators [295]. Advancements to data-driven methods based
on Koopman operator theory and dynamic mode decomposition also offer exciting
new possibilities for predicting nonlinear dynamics from data [410, 214, 14].

It is important to consider whether to model in discrete- or continuous-time, as
both have potential advantages. The primary positive for continuous-time modeling
lies in its flexibility and interpretability. In particular, continuous-time approaches
are more readily and naturally applied to irregularly sampled timeseries data, e.g.
electronic health record data [358], than discrete-time methods. Furthermore, this
flexibility with respect to timestep enables simple transferability of a model learnt
from discrete-time data at one timestep, to new settings with a different timestep
and indeed to variable timestep settings; the learned right-hand-side can be used
to generate numerical solutions at any timestep. On the other hand, applying a
discrete-time model to a new timestep either requires exact alignment of subsampled
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data or some post-processing interpolation step. Continuous-time models may also
provide greater interpretability than discrete-time methods when the right-hand-side
of the ordinary differential equation (ODE) is a more physically interpretable object
than the ΔC-solution operator (e.g. for equation discovery, [196]).

Traditional implementations of continuous-time learning require accurate estimation
of time-derivatives of the state, but this may be circumvented using approaches that
leverage autodifferentiation software [304, 358, 195] or methods which learn from
statistics derived from time-series, such as moments or correlation functions [375].
Keller and Du [204] and Du et al. [114] provide rigorous analysis demonstrating how
inference of a continuous-time model from discrete-time data must be conducted
with great care; they prove how stable and consistent linear multistep methods for
continuous-time integration may not possess the same guarantees when used for
the inverse problem, i.e. discovery of dynamics. Queiruga et al. [332] provide
pathological illustrations of this phenomenon in the context of Runge-Kutta methods.

Discrete-time approaches, on the other hand, are easily deployed when train and test
data sample rates are the same. For applications in which data collection is easily
configured (e.g. simulated settings, available automatic sensors, etc.), discrete-time
methods are typically much easier to implement and test than continuous-time
methods. Moreover, they allow for “non-intrusive” model correction, as additions
are applied outside of the numerical integrator; this may be relevant for practical
integration with complex simulation software. In addition, discrete-time approaches
can be preferable when there is unavoidably large error in continuous-time inference
[90, 266].

Both non-parametric and parametric model classes are used in the learning of
dynamical systems, with the latter connecting to the former via the representer
theorem, when Gaussian process regression [342] is used [66, 145, 165].

4.1.1.2 Hybrid Mechanistic and Data-Driven Modeling

Attempts to transform domains that have relied on traditional mechanistic models, by
using purely data-driven (i.e. de novo or “learn from scratch”) approaches, often
fall short. Now, there is a growing recognition by machine learning researchers that
these mechanistic models are very valuable [289], as they represent the distillation
of centuries of data collected in countless studies and interpreted by domain experts.
Recent studies have consistently found advantages of hybrid methods that blend
mechanistic knowledge and data-driven techniques; Willard et al. [434] provide a
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thorough review of this shift amongst scientists and engineers. Not only do these
hybrid methods improve predictive performance [316], but they also reduce data
demands [333] and improve interpretability and trustworthiness, which is essential
for many applications. This is exemplified by work in autonomous drone landing
[382] and helicopter flying [334], as well as predictions for COVID-19 mortality risk
[392] and COVID-19 treatment response [331].

The question of how best to use the power of data and machine learning to leverage
and build upon our existing mechanistic knowledge is thus of widespread current
interest. This question and research direction has been anticipated over the last thirty
years of research activity at the interface of dynamical systems with machine learning
[350, 437, 263], and now a critical mass of effort is developing. A variety of studies
have been tackling these questions in weather and climate modeling [203, 131];
even in the imaging sciences, where pure machine learning has been spectacularly
successful, emergingwork shows that incorporating knowledge of underlying physical
mechanisms improves performance in a variety of image recognition tasks [25].

As noted and studied by Ba, Zhao, and Kadambi [25] and Freno and Carlberg [137]
and others, there are a few common high-level approaches for blending machine
learning with mechanistic knowledge: (1) use machine learning to learn additive
residual corrections for the mechanistic model [364, 382, 196, 165, 131, 267, 264,
446]; (2) use themechanistic model as an input or feature for amachine learningmodel
[316, 233, 46]; (3) use mechanistic knowledge in the form of a differential equation as
a final layer in a neural network representation of the solution, or equivalently define
the loss function to include approximate satisfaction of the differential equation [339,
340, 81, 391]; and (4) use mechanistic intuition to constrain or inform the machine
learning architecture [160, 282]. Many other successful studies have developed
specific designs that further hybridize these and other perspectives [161, 137, 445,
192]. In addition, parameter estimation for mechanistic models is a well-studied topic
in data assimilation, inverse problems, and other mechanistic modeling communities,
but recent approaches that leverage machine learning for this task may create new
opportunities for accounting for temporal parameter variations [287] and unknown
observation functions [255].

An important distinction should be made between physics-informed surrogate
modeling and what we refer to as hybrid modeling. Surrogate modeling primarily
focuses on replacing high-cost, high-fidelity mechanistic model simulations with
similarly accurate models that are cheap to evaluate. These efforts have shown great
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promise by training machine learning models on expensive high-fidelity simulation
data, and have been especially successful when the underlying physical (or other
domain-specific) mechanistic knowledge and equations are incorporated into the
model training [339] and architecture [282]. We use the term hybrid modeling, on
the other hand, to indicate when the final learned system involves interaction (and
possibly feedback) between mechanism-based and data-driven models [316].

In this work, we focus primarily on hybrid methods that learn residuals to an imperfect
mechanistic model. We closely follow the discrete-time hybrid modeling framework
developed by [165], while providing new insights from the continuous-time modeling
perspective. The benefits of this form of hybrid modeling, which we and many others
have observed, are not yet fully understood in a theoretical sense. Intuitively, nominal
mechanistic models are most useful when they encode key nonlinearities that are not
readily inferred using general model classes and modest amounts of data. Indeed,
classical approximation theorems for fitting polynomials, fourier modes, and other
common function bases directly reflect this relationship by bounding the error with
respect to a measure of complexity of the target function (e.g. Lipschitz constants,
moduli of continuity, Sobolev norms, etc.) [107][Chapter 7]. Recent work by E,
Ma, and Wu [120] provides a priori error bounds for two-layer neural networks and
kernel-based regressions, with constants that depend explicitly on the norm of the
target function in the model-hypothesis space (a Barron space and a reproducing
kernel Hilbert space, resp.). At the same time, problems for which mechanistic
models only capture low-complexity trends (e.g. linear) may still be good candidates
for hybrid learning (over purely data-driven), as an accurate linear model reduces the
parametric burden for the machine-learning task; this effect is likely accentuated in
data-starved regimes. Furthermore, even in cases where data-driven models perform
satisfactorily, a hybrid approach may improve interpretability, trustworthiness, and
controllability without sacrificing performance.

Hybrid models are often cast in Markovian, memory-free settings where the learned
dynamical system (or its learned residuals) are solely dependent on the observed
states. This approach can be highly effective when measurements of all relevant
states are available or when the influence of the unobserved states is adequately
described by a function of the observables. This is the perspective employed by
Shi et al. [382], where they learn corrections to physical equations of motion for an
autonomous vehicle in regions of state space where the physics perform poorly—
these residual errors are driven by un-modeled turbulence during landing, but can
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be predicted using the observable states of the vehicle (i.e. position, velocity, and
acceleration). This is also the perspective taken in applications of high-dimensional
multiscale dynamical systems, wherein sub-grid closure models parameterize the
effects of expensive fine-scale interactions (e.g. cloud simulations) as functions of
the coarse variables [153, 207, 403, 53, 301, 344, 375, 37]. The result is a hybrid
dynamical system with a physics-based equation defined on the coarse variables with
a Markovian correction term that accounts for the effects of the expensive fine scale
dynamics.

4.1.1.3 Non-Markovian Data-Driven Modeling

Unobserved and unmodeled processes are often responsible for model errors that
cannot be represented in a Markovian fashion within the observed variables alone.
This need has driven substantial advances in memory-based modeling. One approach
to this is the use of delay embeddings [402]. These methods are inherently tied
to discrete time representations of the data and, although very successful in many
applied contexts, are of less value when the goal of data-driven learning is to fit
continuous-time models; this is a desirable modeling goal in many settings.

An alternative to understanding memory is via the Mori-Zwanzig formalism, which
is a fundamental building block in the presentation of memory and hidden variables
and may be employed for both discrete-time and continuous-time models. Although
initially developed primarily in the context of statistical mechanics, it provides the
basis for understanding hidden variables in dynamical systems, and thus underpins
many generic computational tools applied in this setting [89, 462, 152]. It has
been successfully applied to problems in fluid turbulence [117, 311] and molecular
dynamics [242, 176]. Lin and Lu [253] demonstrate connections between Mori-
Zwanzig and delay embedding theory in the context of non-linear autoregressive
models using Koopman operator theory. Indeed, Gilani, Giannakis, and Harlim [145]
show a correspondence between the Mori-Zwanzig representation of the Koopman
operator and Taken’s delay-embedding flow map. Studies by Ma, Wang, and E [274]
and Wang, Ripamonti, and Hesthaven [427] demonstrate how the Mori-Zwanzig
formalism motivates the use of recurrent neural networks (RNNs) [361, 149] as a
deep learning approach to non-Markovian closure modeling. Harlim et al. [165] also
use the Mori-Zwanzig formalism to deduce a non-Markovian closure model, and
evaluate RNN-based approximations of the closure dynamics. Closure modeling
using RNNs has recently emerged as a new way to learn memory-based closures
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[202, 75, 165].

Although the original formulation of Mori-Zwanzig as a general purpose approach
to modeling partially observed systems was in continuous-time [89], many practical
implementations adopt a discrete-time picture [101, 90, 253]. This causes the learned
memory terms to depend on sampling rates, which, in turn, can inhibit flexibility
and interpretability.

Recent advances in continuous-time memory-based modeling, however, may be
applicable to these non-Markovian hybrid model settings. The theory of continuous-
time RNNs (i.e. formulated as differential equations, rather than a recurrence relation)
was studied in the 1990s [139, 30], albeit for equations with a specific additive
structure. This structure was exploited in a continuous-time reservoir computing (RC)
approach by Lu, Hunt, and Ott [270] for reconstructing chaotic attractors from data.
Comparisons between RNNs and RC (a subclass of RNNs with random parameters
fixed in the recurrent state) in discrete-time have yielded mixed conclusions in terms
of their relative efficiencies and ability to retain memory [330, 142, 421, 74]. Recent
formulations of continuous-time RNNs have departed slightly from the additive
structure, and have focused on constraints and architectures that ensure stability and
accuracy of the resulting dynamical system [72, 125, 299, 358, 381, 304]. In addition,
significant theoretical work has been performed for linear RNNs in continuous-time
[243]. Nevertheless, these various methods have not yet been formulated within
a hybrid modeling framework, nor has their approximation power been carefully
evaluated in that context. A recent step in this direction, however, is the work by
Gupta and Lermusiaux [157], which tackles non-Markovian hybrid modeling in
continuous-time with neural network-based delay differential equations (DDEs).

4.1.1.4 Noisy Observations and Data Assimilation

For this work we consider settings in which the observations may be both noisy and
partial; the observations may be partial either because the system is undersampled in
time, or because certain variables are not observed at all. We emphasize that ideas
from statistics can be used to smooth and/or interpolate data to remove noise and deal
with undersampling [94] and to deal with missing data [285]; and ideas from data
assimilation [21, 227, 346] can be used to remove noise and to learn about unobserved
variables [82, 151, 150]. In some of our experiments we will use noise-free data in
continuous-time, to clearly expose issues separate from noise/interpolation; but in
other experiments we will use methodologies from data assimilation to enhance our
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learning [82].

4.1.1.5 Applications of Data-Driven Modeling

In order to deploy hybrid methods in real-world scenarios, we must also be able to
cope with noisy, partial observations. Accommodating the learning of model error
in this setting, as well as state estimation, is an active area of research in the data
assimilation (DA) community [329, 131, 41]. Learning dynamics from noisy data is
generally non-trivial for nonlinear systems—there is a chicken-and-egg problem in
which accurate state estimation typically relies on the availability of correct models,
and correct models are most readily identified using accurate state estimates. Recent
studies have addressed this challenge by attempting to jointly learn the noise and the
dynamics. Gottwald and Reich [151] approach this problem from a data assimilation
perspective, and employ an Ensemble Kalman Filter (EnKF) to iteratively update the
parameters for their dynamics model, then filter the current state using the updated
dynamics. A recent follow-up to this work applies the DA-approach to partially-
observed systems, and learns a model on a space of discrete-time delay-embeddings
[150]. Similar studies were performed by Brajard et al. [50], and applied specifically
in model error scenarios [49, 131, 432]. Ayed et al. [24] focus on learning a
continuous-time neural network representation of an ODE from partial observations,
and learn a separate encoder neural network to map a historical warmup sequence to
likely initial conditions in the un-observed space. Kaheman et al. [196] approach
this problem from a variational perspective, performing a single optimization over
all noise sequences and dynamical parameterizations. Nguyen et al. [298] use
an Expectation-Maximization (EM) perspective to compare these variational and
ensemble-based approaches, and further study is needed to understand the trade-offs
between these styles of optimization. Chen, Sanz-Alonso, and Willett [82] study an
EnKF-based optimization scheme that performs joint, rather than EM-based learning,
by running gradient descent on an architecture that backpropagates through the data
assimilator.

We note that data assimilators are themselves dynamical systems, which can be tuned
(using optimization and machine learning) to provide more accurate state updates and
more efficient state identification. However, while learning improved DA schemes
is sometimes viewed as a strategy for coping with model error [461], we see the
optimization of DA and the correction of model errors as two separate problems that
should be addressed individually.
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When connecting models of dynamical systems to real-world data, it is also essential
to recognize that available observables may live in a very different space than
the underlying dynamics. Recent studies have shown ways to navigate this using
autoencoders and dynamical systems models to jointly learn a latent embedding and
dynamics in that latent space [71]. Proof of concepts for similar approaches primarily
focus on image-based inputs, but have potential for applications in medicine [255]
and reduction of nonlinear PDEs [282].

4.1.2 Our Contributions
Despite this large and recent body of work in data-driven learning methods and
hybrid modeling strategies, many challenges remain for understanding how to best
combine mechanistic and machine-learned models; indeed, the answer is highly
dependent on the application. Here, we construct a mathematical framework that
unifies many of the common approaches for blending mechanistic and machine
learning models; having done so we provide strong evidence for the value of hybrid
approaches. Our contributions are listed as follows:

1. We provide an overarching framework for learning model error from (pos-
sibly noisy) data in dynamical systems settings, studying both discrete- and
continuous-time models, together with both memoryless (Markovian) and
memory-dependent representations of the model error. This formulation
is agnostic to choice of mechanistic model and class of machine learning
functions.

2. We study the Markovian learning problem in the context of ergodic continuous-
time dynamics, proving bounds on excess risk and generalization error.

3. We present a simple approximation theoretic approach to learning memory-
dependent (non-Markovian) model error in continuous-time, proving a form
of universal approximation for two families of memory-dependent model error
defined using recurrent neural networks.

4. We describe numerical experiments which: a) demonstrate the utility of
learning model error in comparison both with pure data-driven learning and
with pure (but slightly imperfect) mechanistic modeling; b) compare the
benefits of learning discrete- versus continuous-time models; c) demonstrate
the utility of auto-differentiable data assimilation to learn dynamics from
partially observed, noisy data; d) explain issues arising in memory-dependent
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model error learning in the (typical) situation where the dimension of the
memory variable is unknown.

In Section 4.2, we address contribution 1. by defining the general settings of interest
for dynamical systems in both continuous- and discrete-time. We then link these
underlying systems to a machine learning framework in Sections 4.3 and 4.4; in the
former we formulate the problem in the setting of statistical learning, and in the
latter we define concrete optimization problems found from finite parameterizations
of the hypothesis class in which the model error is sought. Section 4.5 is focused
on specific choices of architectures, and underpinning theory for machine learning
methods with these choices: we analyze linear methods from the perspective of
learning theory in the context of ergodic dynamical systems (contribution 2.); and
we describe an approximation theorem for continuous-time hybrid recurrent neural
networks (contribution 3.). Finally, Section 4.6 presents our detailed numerical
experiments; we apply the methods in Section 4.5 to exemplar dynamical systems of
the forms outlined in Section 4.2, and highlight our findings (contribution 4.).

4.2 Dynamical Systems Setting
In the following, we use the phrase Markovian model error to describe model
error expressible entirely in terms of the observed variable at the current time, the
memoryless situation; non-Markovian model error refers to the need to express the
model error in terms of the past history of the observed variable.

We present a general framework for modeling a dynamical system with Markovian
model error, first in continuous-time (Section 4.2.1) and then in discrete-time
(Section 4.2.2). We then extend the framework to the setting of non-Markovian
model error (Section 4.2.3), including a parameter Y which enables us to smoothly
transition from scale-separated problems (where Markovian closure is likely to be
accurate) to problems where the unobserved variables are not scale-separated from
those observed (where Markovian closure is likely to fail and memory needs to be
accounted for).

It is important to note that the continuous-time formulation necessarily assumes an
underlying data-generating process that is continuous in nature. The discrete-time
formulation can be viewed as a discretization of an underlying continuous system,
but can also represent systems that are truly discrete.

The settings that we present are all intended to represent and classify common
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situations that arise in modeling and predicting dynamical systems. In particular, we
stress two key features. First, we point out that mechanistic models (later referred to
as a vector field 50 or flow map Ψ0) are often available and may provide predictions
with reasonable fidelity. However, these models are often simplifications of the true
system, and thus can be improved with data-driven approaches. Nevertheless, they
provide a useful starting point that can reduce the complexity and data-hunger of
the learning problems. In this context, we study trade-offs between discrete- and
continuous-time framings. While we begin with fully-observed contexts in which
the dynamics are Markovian with respect to the observed state G, we later note that
we may only have access to partial observations G of a larger system (G, H). By
restricting our interest to prediction of these observables, we show how a latent
dynamical process (e.g. a RNN) has the power to reconstruct the correct dynamics
for our observables.

4.2.1 Continuous-Time
Consider the following dynamical system

¤G = 5 †(G), G(0) = G0, (4.1)

and define XB := � ( [0, B];R3G ). If 5 † ∈ �1(R3G ;R3G ) then (4.1) has solution
G(·) ∈ X) for any ) < )max = )max(G0) ∈ R+, the maximal interval of existence.

The primary model error scenario we envisage in this section is one in which the
vector field 5 † can only be partially known or accessed: we assume that

5 † = 50 + <†

where 50 is known to us and<† is not known. For any 50 ∈ �1(R3G ;R3G ) (regardless
of its fidelity), there exists a function <†(G) ∈ �1(R3G ;R3G ) such that (4.1) can be
rewritten as

¤G = 50(G) + <†(G). (4.2)

However, for this paper, it is useful to think of <† as being small relative to 50; the
function <† accounts for model error. While the approach in (4.2) is targeted at
learning residuals of 50, 5 † can alternatively be reconstructed from 50 through a
different function <†(G) ∈ �1(R23G ;R3G ) using the form

¤G = <†(G, 50(G)). (4.3)
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Both approaches are defined on spaces that allow perfect reconstruction of 5 †.
However, the first formulation hypothesizes that the missing information is additive;
the second formulation provides no such indication. Because the first approach
ensures substantial usage of 50, it has advantages in settings where 50 is trusted by
practitioners and model explainability is important. The second approach will likely
see advantages in settings where there is a simple non-additive form of model error,
including coordinate transformations and other (possibly state-dependent) nonlinear
warping functions of the nominal physics 50. Note that the use of 50 in representing
the model error in the augmented-input setting of (4.3) includes the case of not
leveraging 50 at all. It is, hence, potentially more useful than simply adopting an
G−dependent model error; but it requires learning a more complex function.

The augmented-input method also has connections to model stacking [439] or bagging
[51]; this perspective can be useful when there are # model hypotheses:

¤G = <†
(
G, 5

(1)
0 (G), . . . 5

(#)
0 (G); \

)
.

The residual-based design in (4.2) relates more to model boosting [371].

Our goal is to use machine learning to approximate these corrector functions <†

using our nominal knowledge 50 and observations of a trajectory {G(C)})
C=0 ∈ X) , for

some ) < )max(G0), from the true system (4.1). In this work, we consider only the
case of learning <†(G) in equation (4.2). For now the reader may consider {G(C)})

C=0
given without noise so that, in principle, { ¤G(C)})

C=0 is known and may be leveraged.
In practice this will not be the case, for example if the data are high-frequency but
discrete in time; we address this issue in what follows.

4.2.2 Discrete-Time
Consider the following dynamical system

G:+1 = Ψ
†(G: ) (4.4)

and define X := ℓ∞
(
{0, . . . ,  };R3G

)
. If Ψ† ∈ � (R3G ;R3G ), the map yields

solution {G: }:∈Z+ ∈ X∞ := ℓ∞
(
Z+;R3G

)
.1 As in the continuous-time setting, we

assumewe only have access to an approximate mechanistic modelΨ0 ∈ � (R3G ;R3G ),
which can be corrected using an additive residual term <† ∈ � (R3G ;R3G ):

G:+1 = Ψ0(G: ) + <†(G: ), (4.5)
1Here we define Z+ = {0, . . . , }, the non-negative integers, including zero.
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or by feeding Ψ0 as an input to a corrective warping function <† ∈ � (R23G ;R3G )

G:+1 = <
†(G: ,Ψ0(G: ));

we focus our experiments on the additive residual framing in (4.5).

Note that the discrete-time formulation can be made compatible with continuous-time
data sampled uniformly at rate ΔC (i.e. G(:ΔC) = G: for : ∈ N). To see this, let
Φ†(G0, C) := G(C) be the solution operator for (4.1) (and Φ0 defined analogously for
50). We then have

Ψ†(E) := Φ†(E,ΔC) (4.6a)

Ψ0(E) := Φ0(E,ΔC), (4.6b)

which can be obtained via numerical integration of 5 †, 50, respectively.

4.2.3 Partially Observed Systems (Continuous-Time)
The framework in Sections 4.2.1 and 4.2.2 assumes that the system dynamics are
Markovian with respect to observable G. Most of our experiments are performed in the
fully-observed Markovian case. However, this assumption rarely holds in real-world
systems. Consider a block-on-a-spring experiment conducted in an introductory
physics laboratory. In principle, the system is strictly governed by the position and
momentum of the block (i.e. 50), along with a few scalar parameters. However
(as most students’ error analysis reports will note), the dynamics are also driven
by a variety of external factors, like a wobbly table or a poorly greased track. The
magnitude, timescale, and structure of the influence of these different factors are
rarely known; and yet, they are somehow encoded in the discrepancy between the
nominal equations of motion and the (noisy) observations of this multiscale system.

Thus we also consider the setting in which the dynamics of G is not Markovian. If
we consider G to be the observable states of a Markovian system in dimension higher
than 3G , then we can write the full system as

¤G = 5 †(G, H), G(0) = G0 (4.7a)

¤H = 1
Y
6†(G, H), H(0) = H0. (4.7b)
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Here 5 † ∈ �1(R3G ×R3H ;R3G ), 6† ∈ �1(R3G ×R3H ;R3H ), and Y > 0 is a constant
measuring the degree of scale-separation (which is large when Y is small). The
system yields solution 2 G(·) ∈ X) , H(·) ∈ Y) for any ) < )max(G(0), H(0)) ∈ R+,
the maximal interval of existence. We view H as the complicated, unresolved, or
unobserved aspects of the true underlying system.

For any 50 ∈ �1(R3G ;R3G ) (regardless of its fidelity), there exists a function
<†(G, H) ∈ �1(R3G ×R3H ;R3G ) such that (4.7) can be rewritten as

¤G = 50(G) + <†(G, H) (4.8a)

¤H = 1
Y
6†(G, H). (4.8b)

Now observe that, by considering the solution of equation (4.8b) as a function of
the history of G, the influence of H(·) ∈ YC on the solution G(·) ∈ XC can be captured
by a parameterized (w.r.t. C) family of operators <†C : XC ×R3H ×R+ ↦→ R

3G on the
historical trajectory {G(B)}C

B=0, unobserved initial condition H(0), and scale-separation
parameter Y such that

¤G(C) = 50
(
G(C)

)
+ <†C

(
{G(B)}CB=0; H(0), Y

)
. (4.9)

Our goal is to use machine learning to find a Markovian model, in which G is part of
the state variable, using our nominal knowledge 50 and observations of a trajectory
{G(C)})

C=0 ∈ X) , for some ) < )max(G0, H0), from the true system (4.7); note that
H(·) is not observed and nothing is assumed known about the vector field 6† or the
parameter Y.

Note that equations (4.7), (4.8) and (4.9) are all equivalent formulations of the same
problem and have identical solutions. The third formulation points towards two
intrinsic difficulties: the unknown “function” to be learned is in fact defined by a
family of operators <†C mapping the Banach space of path history intoR3G ; secondly
the operator is parameterized by H(0) which is unobserved. We will address the
first issue by showing that the operators <†C can be arbitrarily well-approximated
from within a family of differential equations in dimension R23G+3H ; the second
issue may be addressed by techniques from data assimilation [21, 227, 346] once
this approximating family is learned. We emphasize, however, that we do not
investigate the practicality of this approach to learning non-Markovian systems and
much remains to be done in this area.

2With Y) defined analogously to X) .
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It is also important to note that these non-Markovian operators <†C can sometimes be
adequately approximated by invoking a Markovian model for G and simply learning
function <†(·) as in Section 4.2.1. For example, when Y → 0 and the H dynamics,
with G fixed, are sufficiently mixing, the averaging principle [32, 415, 319] may be
invoked to deduce that

lim
Y→0

<
†
C

(
{G(B)}CB=0; H(0), Y

)
= <†(G(C))

for some <† as in Section 4.2.1. This fact is used in section 3 of [193] to study
the learning of closure models for linear Gaussian stochastic differential equations
(SDEs).

It is highly advantageous to identify settings where Markovian modeling is sufficient,
as it is a simpler learning problem. We find that learning <†C is necessary when
there is significant memory required to explain the dynamics of G; learning <† is
sufficient when memory effects are minimal. In Section 4.6, we show that Markovian
closures can perform well for certain tasks even when the scale-separation factor Y is
not small. In Section 4.3 we demonstrate how the family of operators <†C may be
represented through ODEs, appealing to ideas which blend continuous-time RNNs
with an assumed known vector field 50.

4.2.4 Partially Observed Systems (Discrete-Time)
The discrete-time analog of the previous setting considers a mapping

G:+1 = Ψ
†
1(G: , H: ) (4.10a)

H:+1 = Ψ
†
2(G: , H: ) (4.10b)

with Ψ†1 ∈ � (R
3G × R3H ;R3G ), Ψ†2 ∈ � (R

3G × R3H ;R3H ), yielding solutions
{G: }:∈Z+ ∈ X∞ and {H: }:∈Z+ ∈ Y∞. We assume unknown Ψ†1,Ψ

†
2, but known

approximate model Ψ0 to rewrite (4.10) as

G:+1 = Ψ0(G: ) + <†(G: , H: ) (4.11a)

H:+1 = Ψ
†
2(G: , H: ). (4.11b)

We can, analogously to (4.9), write a solution in the space of observables as

G:+1 = Ψ0
(
G:

)
+ <†

:

(
{GB}:B=0, H0

)
(4.12)
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with <†
:

: X: ×R3H → R
3G , a function of the historical trajectory {GB}:B=0 and the

unobserved initial condition H0. If this discrete-time system is computed from
the time ΔC map for (4.1) then, for Y � 1 and when averaging scenarios apply as
discussed in Section 4.2.3, the memoryless model in (4.5) may be used.

4.3 Statistical Learning for Ergodic Dynamical Systems
Here, we present a learning theory framework within which to consider methods for
discovering model error from data. We outline the learning theory in a continuous-
time Markovian setting (using possibly discretely sampled data), and point to its
analogs in discrete-time and non-Markovian settings.

In the discrete-time settings, we assume access to discretely sampled training data
{G: = G(:ΔC)} :=0, where ΔC is a uniform sampling rate and we assume that  ΔC = ).
In the continuous-time settings, we assume access to continuous-time training
data { ¤G(C), G(C)})

C=0; Section 4.6.2.1 discusses the important practical question of
estimating ¤G(C), G(C) from discrete (but high frequency) data. In either case, consider
the problem of identifying < ∈ M (whereM represents the model, or hypothesis,
class) that minimizes a loss function quantifying closeness of < to <†. In the
Markovian setting we choose a measure ` on R3G and define the loss

L` (<, <†) :=
∫
R3G

‖<(G) − <†(G)‖223`(G).

If we assume that, at the true <†, G(·) is ergodic with invariant density `, then we
can exchange time and space averages to see, for infinitely long trajectory {G(C)}C≥0,

I∞(<) := lim
)→∞

1
)

∫ )

0
‖<(G(C)) − <†(G(C))‖223C

=

∫
R3G

‖<(G) − <†(G)‖223`(G)

= L` (<, <†).

Since we may only have access to a trajectory dataset of finite length ) , it is natural
to define

I) (<) :=
1
)

∫ )

0
‖<(G(C)) − <†(G(C))‖223C

and note that, by ergodicity,

lim
)→∞
I) (<) = L` (<, <†).
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Finally, we can use (4.2) to get

I) (<) =
1
)

∫ )

0
‖ ¤G(C) − 50(G(C)) − <(G(C))‖223C. (4.13)

This, possibly regularized, is a natural loss function to employ when continuous-time
data is available, and should be viewed as approximating L` (<, <†).We can use
these definitions to frame the problem of learning model error in the language of
statistical learning [416].

If we letM denote the hypothesis class over which we seek to minimize I) (<) then
we may define

<∗∞ = arg min
<∈M

L` (<, <†) = arg min
<∈M

I∞(<), <∗) = arg min
<∈M

I) (<).

The risk associated with seeking to approximate <† from the classM is defined by
L` (<∗∞, <†), noting that this is 0 if <† ∈ M . The risk measures the intrinsic error
incurred by seeking to learn <† from the restricted classM, which typically does not
include <†; it is an approximation theoretic concept which encodes the richness of
the hypothesis classM. The risk may be decreased by increasing the expressiveness
ofM. Thus risk is independent of the data employed. Empirical risk minimization
refers to minimizing I) (or a regularized version) rather than I∞, and this involves
the specific instance of data that is available. To quantify the effect of data volume
on learning <† through empirical risk minimization, it is helpful to introduce the
following two concepts. The excess risk is defined by

') := I∞(<∗) ) − I∞(<∗∞) (4.14)

and represents the additional approximation error incurred by using data defined
over a finite time horizon ) in the estimate of <†. The generalization error is

�) := I) (<∗) ) − I∞(<∗) ) (4.15)

and represents the discrepancy between training error, which is defined using a
finite trajectory, and idealized test error, which is defined using an infinite length
trajectory (or, equivalently, the invariant measure `), when evaluated at the estimate
of the function <† obtained from finite data. We return to study excess risk and
generalization error in the context of linear (in terms of parametric-dependence)
models for <†, and under ergodicity assumptions on the data generating process, in
Section 4.5.2.
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We have introduced a machine learning framework in the continuous-time Markovian
setting, but it may be adopted in discrete-time and in non-Markovian settings. In
Section 4.4, we define appropriate objective functions for each of these cases.

Remark 4.3.1. The developments we describe here for learning in ODEs can be
extended to the case of learning SDEs; see [33, 221]. In that setting, consistency in
the large ) limit is well-understood. It would be interesting to build on the learning
theory perspective described here to study statistical consistency for ODEs; the
approaches developed in the work by McGoff et al. [284] and Su and Mukherjee
[400] are potentially useful in this regard. �

4.4 Parameterization of the Loss Function
In this section, we define explicit optimizations for learning (approximate) model
error functions <† for the Markovian settings, and model error operators <†C for the
non-Markovian settings; both continuous- and discrete-time formulations are given.
We defer discussion of specific approximation architectures to the next section. Here
we make a notational transition from optimization over (possibly non-parametric)
functions < ∈ M to functions parameterized by \ that characterize the classM.

In all the numerical experiments in this paper, we study the use of continuous- and
discrete-time approaches to model data generated by a continuous-time process. The
set-up in this section reflects this setting, in which two key parameters appear: ) ,
the continuous-time horizon for the data; and ΔC, the frequency of the data. The
latter parameter will always appear in the discrete-time models; but it may also be
implicit in continuous-time models which need to infer continuous-time quantities
from discretely sampled data. We relate ) and ΔC by  ΔC = ). We present the
general forms of J) (\) (with optional regularization terms '(\)). Optimization
via derivative-based methodology requires either analytic differentiation of the
dynamical system model with respect to parameters, or the use of autodifferentiable
ODE solvers [358].

4.4.1 Continuous-Time Markovian Learning
Here, we approximate the Markovian closure term in (4.2) with a parameterized
function <(G; \). Assuming full knowledge of ¤G(C), G(C), we learn the correction
term for the flow field by minimizing the following objective function of \:

J) (\) =
1
)

∫ )

0

 ¤G(C) − 50(G(C)) − <(G(C); \)2
3C + '(\) (4.16)
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Note that J) (\) = I)
(
<( · ; \)

)
+ '(\); thus the proposed methodology is a

regularization of the empirical risk minimization described in the preceding section.

Notable examples that leverage this framing include: the paper [196], where \ are
coefficients for a library of low-order polynomials and '(\) is a sparsity-promoting
regularization defined by the SINDy framework; the paper [446], where \ are
parameters of a deep neural network (DNN) and !2 regularization is applied to the
weights; the paper [382], where \ are DNN parameters and '(\) encodes constraints
on the Lipschitz constant for < provided by spectral normalization; and the paper
[429] which applies this approach to the Lorenz ’96 Multiscale system using neural
networks with an !2 regularization on the weights.

4.4.2 Discrete-Time Markovian Learning
Here, we learn the Markovian correction term in (4.5) by minimizing:

J) (\) =
1
 

 −1∑
:=0

G:+1 −Ψ0(G: ) − <(G: ; \)
2 + '(\) (4.17)

This is the natural discrete-time analog of (4.16) and may be derived analogously,
starting from a discrete analog of the loss L` (<, <†) where now ` is assumed
to be an ergodic measure for (4.4). If a discrete analog of (4.13) is defined, then
parameterization of <, and regularization, leads to (4.17). This is the underlying
model assumption in the work by Farchi et al. [131].

4.4.3 Continuous-Time Non-Markovian Learning
We can attempt to recreate the dynamics in G for (4.9) by modeling the non-Markovian
residual term. A common approach is to augment the dynamics space with a variable
A ∈ R3A leading to a model of the form

¤G = 50(G) + 51(A, G; \) (4.18a)

¤A = 52(A, G; \). (4.18b)

We then seek a 3A large enough, and then parametricmodels { 5 9 (A, G; ·)}2
9=1 expressive

enough, to ensure that the dynamics in G are reproduced by (4.18). Note that, although
the model error in G is non-Markovian, as it depends on the history of G, we are
seeking to explain observed G data by an enlarged model, including hidden variables
A, in which the dynamics of [G, A] is Markovian.
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When learning hidden dynamics from partial observations, we must jointly infer
the missing states A (C) and the, typically parameterized, governing dynamics 51, 52.
Furthermore, when the family of parametric models is not closed with respect to
translation of A it will also be desirable to learn A0; when G is observed noisily, it is
similarly important to learn G0.

To clarify discussions of (4.18) and its training from data, let D = [G, A] and 5 be the
concatenation of the vector fields given by 50, 51, 52 such that

¤D = 5 (D; \), (4.19)

with solution D(C; E, \) solving (4.19) (and, equivalently, (4.18)) with initial condition
E (i.e. D(0; E, \) = E). Consider observation operators �G , �A , such that G = �GD,
and A = �AD, and further define noisy observations of G as

I(C) = G(C) + [(C),

where [ is i.i.d. observational noise. We now outline three optimization approaches
to learning from noisily, partially observed data I.

4.4.3.1 Optimization; Hard Constraint For Missing Dynamics

Since (4.18) is deterministic, it may suffice to jointly learn parameters and initial
condition D(0) = D0 by minimizing [358]:

J) (\, D0) =
1
)

∫ )

0

I(C) − �GD(C; D0, \)
2
3C + '(\) (4.20)

A similar approach was applied in [24], but where initial conditions were learnt as
outputs of an additional DNN encoder network that maps observation sequences (of
fixed length and temporal discretization) to initial conditions.

4.4.3.2 Optimization; Weak Constraint For Missing Dynamics

The hard constraint minimization is very sensitive for large ) in settings where the
dynamics is chaotic. This can be ameliorated, to some extent, by considering the
objective function

J)
(
\, D(C)

)
=

1
)

∫ )

0

I(C) − �GD(C)2
3C

+ _ 1
)

∫ )

0

 ¤D(C) − 5 (D(C); \)2
3C.

(4.21)

This objective function is employed in [304], where it is motivated by the weak-
constraint variational formulation (4DVAR) arising in data assimilation [227].
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4.4.3.3 Optimization; Data Assimilation For Missing Dynamics

The weak constraint approach may still scale poorly with ) large, and still relies on
gradient-based optimization to infer hidden states. To avoid these potential issues,
we follow the recent work of [82], using filtering-based methods to estimate the
hidden state. This implicitly learns initializations and it removes noise from data.
It allows computation of gradients of the resulting loss function back through the
filtering algorithm to learn model parameters. We define a filtered state

D̂C,g := D̂C
(
g; Ê, \DYN, \DA,

{
I(C + B)

}g
B=0

)
as an estimate of D(C + g) |{I(C + B)}g

B=0 when initialized at D̂C,0 = Ê. 3 In this
formulation, we distinguish \DYN as parameters for modeling dynamics via (4.18),
and \DA as hyper-parameters governing the specifics of a data assimilation scheme.
Examples of \DA are the constant gain matrix  that must be chosen for 3DVAR,
or parameters of the inflation and localization methods deployed within Ensemble
Kalman Filtering. By parameterizing these choices as \DA, we can optimize them
jointly with model parameters \DYN. To do this, let \ = [\DYN, \DA] and minimize

J) (\) =
1

() − g1 − g2)g2

∫ )−g1−g2

C=0

∫ g2

B=0

I(C + g1 + B) − �GD(B; D̂C,g1 , \)
2
3B 3C.

(4.22)
Here, g1 denotes the length of assimilation time used to estimate the state which
initializes a parameter-fitting over window of duration g2; this parameter-fitting leads
to the inner-integration over B. This entire picture is then translated through C time
units and the objective function is found by integrating over C. Optimizing (4.22)
can be understood as a minimization over short-term forecast errors generated from
all assimilation windows. The inner integral takes a fixed start time C, applies data
assimilation over a window [C, C + g1] to estimate an initial condition D̂C,g1 , then
computes a short-term (g2) prediction error resulting from this DA-based initialization.
The outer integral sums these errors over all available windows in long trajectory of
data of length ) .

In our work, we perform filtering using a simple 3DVAR method, whose constant
gain can either be chosen as constant, or can be learnt from data. When constant,
a natural choice is  ∝ �)G , and this approach has a direct equivalence to standard
warmup strategies employed in RNN and RC training [421, 316]. The paper [82]
suggests minimization of a similar objective, but considers more general observation

3In practice we have found that setting Ê = 0 works well.
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operators ℎ, restricts the outer integral to non-overlapping windows, and solves the
filtering problem with an EnKF with known state-covariance structure.

Remark 4.4.1. To motivate learning parameters of the data assimilation we make the
following observation: for problems in which the model is known (i.e. \DYN is fixed)
we observe successes with the approach of identifying 3DVAR gains that empirically
outperform the theoretically derived gains in [224]. Similar is to be expected for
parameters defining inflation and localization in the EnKF. �

Remark 4.4.2. Specific functional forms of 51, 52 (and their corresponding parameter
inference strategies) reduce (4.18) to various approaches. For the continuous-time
RNN analysis that we discuss in Section 4.5 we will start by considering settings in
which 51 and 52 are approximated from expressive function classes, such as neural
networks. We will then specify to models in which 51 is linear in A and independent
of G, whilst 52 is a single layer neural network. It is intuitive that the former may
be more expressive and allow a smaller 3A than the latter; but the latter connects
directly to reservoir computing, a connection we make explicitly in what follows.
Our numerical experiments in Section 4.6 will be performed in both settings: we will
train models from the more general setting; and by carefully designed experiments we
will shed light on issues arising from over-parameterization, in the sense of choosing
to learn a model in dimension higher than that of the true observed-hidden model,
working in the setting of linear coupling term 51, depending only on A . �

Remark 4.4.3. The recent paper [157] proposes an interesting, and more compu-
tationally tractable, approach to learning model error in the presence of memory.
They propose to learn a closure operator <g (· ; \) : Xg → R

3G for a DDE with finite
memory g:

¤G(C) = 50
(
G(C)

)
+ <g

(
{G(C − B)}gB=0; \

)
; (4.23)

neural networks are used to learn the operator <g . Alternatively, Gaussian processes
are used to fit a specific class of stochastic delay differential equation (SDDE) (4.23)
in [375]. However, although delay-based approaches have seen some practical
success, in many applications they present issues for domain interpretability and
Markovian ODE or PDE closures are more desirable. �
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4.4.4 Discrete-Time Non-Markovian Learning
In similar spirit to Section 4.4.3, we can aim to recreate discrete-time dynamics in G
for (4.12) with model

G:+1 = Ψ0(G: ) +Ψ1(A: , G: ; \) (4.24a)

A:+1 = Ψ2(A: , G: ; \) (4.24b)

and objective function

J) (\, A0) =
1
 

 −1∑
:=0

G:+1 −Ψ0(G: ) −Ψ1(A: , G: ; \)
2 + '(\)

s.t. {A: } −1
:=1 solves (4.24b).

(4.25)

Observe that estimation of initial condition A0 is again crucial, and the data assimilation
methods discussed in Section 4.4.3 can be adapted to this discrete-time setting. The
functional form of Ψ1,Ψ2 (and their corresponding parameter inference strategies)
reduce (4.24) to various approaches, including recurrent neural networks, latent
ODEs, and delay-embedding maps (e.g. to get a delay embedding map, Ψ2 is a
shift operator). Pathak et al. [316] use reservoir computing (a random features
analog to RNN, described in the next section) with !2 regularization to study an
approach similar to (4.24), but included Ψ0(G: ) as a feature in Ψ1 and Ψ2 instead of
using it as the central model upon which to learn residuals. The data-driven super-
parameterization approach in [75] also appears to follow the underlying assumption
of (4.24). Harlim et al. [165] evaluate hybrid models of form (4.24) both in settings
where delay embedding closures are employed and where RNN-based approximations
via LSTMs are employed.

4.5 Underpinning Theory
In this section we identify specific hypothesis classesM .We do this using random
feature maps [335] in the Markovian settings (Section 4.5.1), and using recurrent
neural networks in the memory-dependent setting. We then discuss these problems
from a theoretical standpoint. In Section 4.5.2 we study excess risk and generalization
error in the context of linear models (a setting which includes the random features
model as a special case). And we conclude by discussing the use of RNNs
[149][Chapter 10] for the non-Markovian settings (discrete- and continuous-time)
in Section 4.5.3; we present an approximation theorem for continuous-time hybrid
RNN models. Throughout this section, the specific use of random feature maps and
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of recurrent neural networks is for illustration only; other models could, of course,
be used.

4.5.1 Markovian Modeling with Random Feature Maps
In principle, any hypothesis class can be used to learn <†. However, we focus on
models that are easily trained on large-scale complex systems and yet have proven
approximation power for functions between finite-dimensional Euclidean spaces.
For the Markovian modeling case, we use random feature maps; like traditional
neural networks, they possess arbitrary approximation power [338, 337], but further
benefit from a quadratic minimization problem in the training phase, as do kernel or
Gaussian process methods. In our case studies, we found random feature models
sufficiently expressive, we found optimization easily implementable, and we found the
learned models generalized well. Moreover, their linearity with respect to unknown
parameters enables a straightforward analysis of excess risk and generalization error
in Section 4.5.2. Details on the derivation and specific design choices for our random
feature modeling approach can be found in Section 4.8.4, where we explain how
we sample � random feature functions i : R3G → R and stack them to form a
vector-valued feature map q : R3G → R

� . Given this random function q, we define
the hypothesis class

M = {< : R3G → R
3G | ∃ � ∈ R3G×� : <(G) = �q(G)}. (4.26)

4.5.1.1 Continuous-Time

In the continuous-time framing, our Markovian closure model uses hypothesis class
(4.26) and thus takes the form

¤G = 50(G) + �q(G(C)).

We rewrite (4.16) for this particular case with an !2 regularization parameter _ ∈ R+:

J) (�) =
1

2)

∫ )

0

 ¤G(C) − 50(G(C)) − �q (
G(C)

)2
3C + _

2
‖�‖2. (4.27)

We employ the notation � ⊗ � := ��) for the outer-product between matrices
� ∈ R<×=, � ∈ R;×=, and the following notation for time-average

�) :=
1
)

∫ )

0
�(C)3C
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of � ∈ !1( [0, )],R<×=). The objective function in (4.27) is quadratic and convex
in � and thus is globally minimized for the unique �∗ which makes the derivative
of J) zero. Consequently, the minimizer �∗ satisfies the following linear equation
(derived in Section 4.8.5):

(/ + _�) (�∗)) = . . (4.28)

Here, � ∈ R�×� is the identity and

/ = [q ⊗ q]) ∈ R�×� ,

. = [q ⊗ <†]) ∈ R�×3G .
(4.29)

Of course <† is not known, but <†(C) = ¤G(C) − 50(G(C)) can be computed from data.

To summarize, the algorithm proceeds as follows: 1) create a realization of random
feature vector q; 2) compute the integrals in (4.29) to obtain /,. ; and 3) solve
the linear matrix equation (4.28) for �∗. Together this leads to our approximation
<†(G) ≈ <∗

)
(G; \) := �∗q(G).

4.5.1.2 Discrete-Time

In discrete-time, our Markovian closure model is

G:+1 = Ψ0(G: ) + �q(G: ),

and is learnt by minimizing

J) (\) =
1
 

 −1∑
:=0

G:+1 −Ψ0(G: ) − �q
(
G(C)

)2 + _
2
‖�‖2. (4.30)

The objective function in (4.30) is quadratic in � and thus globally minimized at
�∗. As in Section 4.5.1.1, we can compute /,. and solve a linear system for �∗ to
approximate <†(G) ≈ <∗

)
(G; \) := �∗q(G). This formulation closely mirrors the

fully data-driven linear regression approach in [151].

4.5.2 Learning Theory for Markovian Models with Linear Hypothesis Class
In this subsection we provide estimates of the excess risk and generalization error
in the context of learning <† in (4.2) from a trajectory over time horizon ) . We
study ergodic continuous-time models in the setting of Section 4.4.1. To this end we
consider the very general linear hypothesis class given by

M = {< : R3G → R
3G | ∃ \ ∈ R? : <(G) =

?∑
ℓ=1

\ℓ 5ℓ (G)}; (4.31)
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we note that if the { 5ℓ} are i.i.d. draws of function q in the case � = 3G then
this too reduces to a random features model, but that our analysis in the context
of statistical learning does not rely on the random features structure. In fact our
analysis can be used to provide learning theory for other linear settings, where { 5ℓ}
represents a dictionary of hypothesized features whose coefficients are to be learnt
from data. Nonetheless, universal approximation for random features [335] provides
an important example of an approximation class for which the loss function I∞ may
be made arbitrarily small by choice of ? large enough and appropriate choice of
parameters, and the reader may find it useful to focus on this case. We also note
that the theory we present in this subsection is readily generalized to working with
hypothesis class (4.26).

We make the following ergodicity assumption about the data generation process:

Assumption 4.5.1. Equation (4.2) possesses a compact attractor A supporting
invariant measure `. Furthermore the dynamical system onA is ergodic with respect
to ` and satisfies a central limit theorem of the following form: for all Hölder
continuous i : R3G ↦→ R, there is f2 = f2(i) such that

√
)

(
1
)

∫ )

0
i
(
G(C)

)
3C −

∫
R3G

i
(
G
)
`(3G)

)
⇒ # (0, f2) (4.32)

where⇒ denotes convergence in distribution with respect to G(0) ∼ `. Furthermore
a law of the iterated logarithm holds: almost surely with respect to G(0) ∼ `,

limsup)→∞
( )

log log)

) 1
2

(
1
)

∫ )

0
i
(
G(C)

)
3C −

∫
R3G

i
(
G
)
`(3G)

)
= f. (4.33)

Remark 4.5.2. Note that in both (4.32) and (4.33) i(·) is only evaluated on (compact)
A obviating the need for any boundedness assumptions on i(·). In the work of
Melbourne and co-workers, Assumption 4.5.1 is proven to hold for a class of
differential equations, including the Lorenz ’63 model at, and in a neighbourhood
of, the classical parameter values: in [178] the central limit theorem is established;
and in [27] the continuity of f in i is proven. Whilst it is in general very difficult to
prove such results for any given chaotic dynamical system, there is strong empirical
evidence for such results in many chaotic dynamical systems that arise in practice.
This combination of theory and empirical evidence justify studying the learning of
model error under Assumption 4.5.1. Tran and Ward [408] were the first to make use
of the theory of Melbourne and coworkers to study learning of chaotic differential
equations from time-series. �
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Given < from hypothesis classM defined by (4.31) we define

\∗∞ = arg min
\∈R?

I∞
(
<(· ; \)

)
= arg min

\∈R?
L`

(
<(· ; \)

)
(4.34)

and
\∗) = arg min

\∈R?
I)

(
<(· ; \)

)
. (4.35)

(Regularization is not needed in this setting because the data is plentiful—a continuous-
time trajectory—and the number of parameters is finite.) Then \∗∞, \∗) solve the
linear systems

�∞\
∗
∞ = 1∞, �)\

∗
) = 1)

where

(�∞)8 9 =
∫
R3G

〈
58 (G), 5 9 (G)

〉
`(3G), (1∞) 9 =

∫
R3G

〈
<†(G), 5 9 (G)

〉
`(3G),

(�) )8 9 =
1
)

∫ )

0

〈
58
(
G(C)

)
, 5 9

(
G(C)

)〉
3C, (1) ) 9 =

1
)

∫ )

0

〈
<†

(
G(C)

)
, 5 9

(
G(C)

)〉
3C.

These facts can be derived analogously to the derivation in Section 4.8.5. Given \∗∞
and \∗

)
we also define

<∗∞ = <(· ; \∗∞), <∗) = <(· ; \∗) ).

Recall that it is assumed that 5 †, 50, and<† are�1.Wemake the following assumption
regarding the vector fields defining hypothesis classM .

Assumption 4.5.3. The functions { 5ℓ}?ℓ=0 appearing in definition (4.31) of the
hypothesis classM are Hölder continuous on R3G . In addition, the matrix �∞ is
invertible.

Theorem 4.5.4. Let Assumptions 4.5.1 and 4.5.3 hold. Then the scaled excess risk√
)') in (4.14) (resp. scaled generalization error

√
) |�) | in (4.15)) is bounded

above by ‖E'‖ (resp. ‖E� ‖), where random variable E' ∈ R? (resp. E� ∈ R?+1)
converges in distribution to # (0,Σ') (resp. # (0,Σ�)) w.r.t. G(0) ∼ ` as ) → ∞.
Furthermore, there is constant � > 0 such that, almost surely w.r.t. G(0) ∼ `,

limsup)→∞
( )

log log)

) 1
2 (
') + |�) |

)
≤ �.

The proof is provided in Section 4.8.1.
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Remark 4.5.5. The convergence in distribution shows that, with high probability
with respect to initial data, the excess risk and the generalization error are bounded
above by terms of size 1/

√
). This can be improved to give an almost sure result, at

the cost of the factor of
√

log log) . The theorem shows that (ignoring log factors
and acknowledging the probabilistic nature of any such statements) trajectories of
length O(n−2) are required to produce bounds on the excess risk and generalization
error of size O(n).

The bounds on excess risk and generalization error also show that empirical risk
minimization (of I) ) approaches the theoretically analyzable concept of risk mini-
mization (of I∞) over hypothesis class (4.31). The sum of the excess risk ') and the
generalization error �) gives

�) := I) (<∗) ) − I∞(<∗∞).

We note that I) (<∗) ) is computable, once the approximate solution <∗
)
has been

identified; thus, when combined with an estimate for �) , this leads to an estimate for
the risk associated with the hypothesis class used.

If the approximating spaceM is rich enough, then approximation theory may be
combined with Theorem 4.5.4 to estimate the trajectory error resulting from the
learned dynamical system. Such an approach is pursued in Proposition 3 of [453] for
SDEs. Furthermore, in that setting, knowledge of rate of mixing/decay of correlations
for SDEs may be used to quantify constants appearing in the error bounds. It would
be interesting to pursue such an analysis for chaotic ODEs with known mixing
rates/decay of correlations. Such results on mixing are less well-developed, however,
for chaotic ODEs; see discussion of this point in [178], and the recent work [27].

Work by Zhang, Harlim, and Li [452] demonstrates that error bounds on learned
model error terms can be extended to bound error on reproduction of invariant
statistics for ergodic SDEs. Moreover, E, Ma, and Wu [120] provide a direction for
proving similar bounds on model error learning using nonlinear function classes (e.g.
two-layer neural networks).

Finally we remark on the dependence of the risk and generalization error bounds
on the size of the model error. It is intuitive that the amount of data required to
learn model error should decrease as the size of the model error decreases. This is
demonstrated numerically in Section 4.6.2.3 (c.f. Figures 4.2a and 4.2b). Here we
comment that Theorem 4.5.4 also exhibits this feature: examination of the proof
in Section 4.8.1 shows that all upper bounds on terms appearing in the excess and
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generalization error are proportional to <† itself or to <∗∞, its approximation given
an infinite amount of data; note that <∗∞ = <† if the hypothesis class contains the
truth. �

4.5.3 Non-Markovian Modeling with Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are one of the de facto tools for modeling systems
with memory. Here, we show straightforward residual implementations of RNNs
for continuous- and discrete-time, with the goal of modeling non-Markovian model
error.

4.5.3.1 General Case

Equation (4.18b), and its coupling to (4.18a), constitute a very general way to
account for memory-dependent model error in the dynamics of G. In fact, for 51, 52
sufficiently expressive (e.g. random feature functions, neural networks, polynomials),
and 3A ≥ 3H, solutions to (4.18) can approximate solutions to (4.8) arbitrarily well.
We make this type of universal approximation theorem concrete in Theorems 4.5.10
and 4.5.15. We start by proving Theorem 4.5.10, which rests on the following
assumptions:

Assumption 4.5.6. Functions 5 †, 6†, 50, 51, 52 are all globally Lipschitz.

Note that this implies that <† is also globally Lipschitz.

Assumption 4.5.7. Fix ) > 0. There exist d0 ∈ R, d) ∈ R such that, for equation
(4.8),

(
G(0), H(0)

)
∈ �(0, d0) implies that

(
G(C), H(C)

)
∈ �(0, d) ) ∀ C ∈ [0, )].

Assumption 4.5.8. The hidden state in (4.18), A ∈ R3A , has the same dimension as
the true hidden state H in (4.8); that is 3A = 3H.

Assumption 4.5.9. Let functions 51(· ; \) ∈ �1(R3G ×R3H ; R3G ) and 52(· ; \) ∈
�1(R3G ×R3H ; R3H ) be parameterized 4 by = ∈ N and \ ∈ R=. Then, for any X > 0,
there exists = > 0 and \ ∈ R= such that

sup
G,H∈�(0,d) )

‖ 5 †(G, H) − 51(G, H; \)‖ ≤ X

and
sup

G,H∈�(0,d) )
‖6†(G, H) − 52(G, H; \)‖ ≤ X

4Here we define N = {1, 2, . . . , }, the strictly positive integers.



117

Note that Theorem 4.5.9 can be satisfied by any parametric function class possessing
a universal approximation property for maps between finite-dimensional Euclidean
spaces, such as neural networks, polynomials and random feature methods. The next
theorem transfers this universal approximation property for maps between Euclidean
spaces to a universal approximation property for representation of model error with
memory; this is a form of infinite dimensional approximation since, via its own
dynamics, the memory variable A maps the past history of G into the model error
correction term in the dynamics for G.

Theorem 4.5.10. Let Assumptions 4.5.6-4.5.9 hold. Fix any ) > 0 and d0 > 0,
let G(·), H(·) denote the solution of (4.8) with Y = 1 and let GX (·), AX (·) denote the
solution of (4.18) with parameters \ ∈ R=. Then, for any X > 0 and any ) > 0,
there is a parameter dimension = = =X ∈ N and parameterization \ = \X ∈ R=X with
the property that, for any initial condition

(
G(0), H(0)

)
∈ �(0, d0) for (4.8), there is

initial condition (GX (0), AX (0)) ∈ R3G+3H for (4.18), such that

sup
C∈[0,)]

‖G − GX‖ ≤ X.

The proof is provided in Section 4.8.2; it is a direct consequence of the approximation
power of 51, 52 and the Gronwall Lemma.

Remark 4.5.11. Note that this existence theorem also holds for 3A > 3H by freezing
the dynamics in the excess dimensions and initializing it at, for example, 0. However
it is possible for augmentations with 3A > 3H to introduce numerical instability when
imperfectly initialized in the excess dimensions, despite their provable correctness
when perfectly initialized (see Section 4.6.4). Nevertheless, we did not encounter
such issues when training the general model class on the examples considered in this
paper – see Section 4.6.3). �

4.5.3.2 Linear Coupling

We now study a particular form RNN in which the coupling term 51 appearing in
(4.18) is linear and depends only on the hidden variable:

¤G = 50(G) + �A (4.36a)

¤A = f(�A + �G + 2). (4.36b)

Here f is an activation function. The specific linear coupling form is of particular
interest because of the connection we make (see Remark 4.5.18 below) to reservoir
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computing. The goal is to choose �, �, �, 2 so that output {G(C)}C≥0 matches output
of (4.8), without observation of {H(C)}C≥0 or knowledge of <† and 6†. As in the
general case from the preceding subsection, inherent in choosing these matrices
�, �, � and vector 2 is a choice of embedding dimension for variable A which will
typically be larger than dimension of H itself. The idea is to create a recurrent state
A of sufficiently large dimension 3A whose evolution equation takes G as input and,
after a final linear transformation, approximates the missing dynamics <†(G, H).

There is existing approximation theory for discrete-time RNNs [370] showing that
a discrete-time analog of our linear coupling set-up can be used to approximate
discrete-time systems arbitrarily well; see also Theorem 3 of [165]. There is also a
general approximation theorem using continuous-time RNNs proved in [139], but it
does not apply to the linear-coupling setting. We thus extend the work in these three
papers to the context of residual-based learning as in (4.36). We state the theorem
after making three assumptions upon which it rests:

Assumption 4.5.12. Functions 5 †, 6†, 50 are all globally Lipschitz.

Note that this implies that <† is also globally Lipschitz.

Assumption 4.5.13. Let f0 ∈ �1(R;R) be bounded and monotonic, with bounded
first derivative. Then f(D) defined by f(D)8 = f0(D8) satisfies f ∈ �1(R?;R?).

Assumption 4.5.14. Fix ) > 0. There exist d0 ∈ R, d) ∈ R such that, for equation
(4.8),

(
G(0), H(0)

)
∈ �(0, d0) implies that

(
G(C), H(C)

)
∈ �(0, d) ) ∀ C ∈ [0, )].

Theorem 4.5.15. Let Assumptions 4.5.12-4.5.14 hold. Fix any ) > 0 and d0 > 0,
let G(·), H(·) denote the solution of (4.8) with Y = 1 and let GX (·), AX (·) denote
the solution of (4.36) with parameters \ ∈ R=. Then, for any X > 0 and any
) > 0, there is embedding dimension 3A ∈ N, parameter dimension = = =X ∈ N
and parameterization \ = \X = {�X, �X, �X, 2X} with the property that, for
any initial condition

(
G(0), H(0)

)
∈ �(0, d0) for (4.8), there is initial condition

(GX (0), AX (0)) ∈ R3G+3A for (4.36), such that

sup
C∈[0,)]

‖G − GX‖ ≤ X.

The complete proof is provided in Section 4.8.3; here we describe its basic structure.
Define <(C) := <†

(
G(C), H(C)

)
and, with the aim of finding a differential equation for

<(C), recall (4.8) with Y = 1 and define the vector field

ℎ†(G, H) := ∇G<†(G, H) [ 50(G) + <†(G, H)] + ∇H<†(G, H)6†(G, H). (4.37)
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Since ¤<(C) is the time derivative of <†
(
G(C), H(C)

)
, when (G, H) solve (4.8) we have

¤< = ℎ†(G, H).

Motivated by these observations, we now introduce a new system of autonomous
ODEs for the variables (G, H, <) ∈ R3G ×R3H ×R3G :

¤G = 50(G) + < (4.38a)

¤H = 6†(G, H) (4.38b)

¤< = ℎ†(G, H). (4.38c)

To avoid a proliferation of symbols we use the same letters for (G, H) solving equation
(4.38) as for (G, H) solving equation (4.8). We now show< = <†(G, H) is an invariant
manifold for (4.38); clearly, on this manifold, the dynamics of (G, H) governed by
(4.38) reduces to the dynamics of (G, H) governed by (4.8). Thus <(C) must be
initialized at <†

(
G(0), H(0)

)
to ensure equivalence between the solution of (4.38)

and (4.8).

The desired invariance of manifold < = <†(G, H) under the dynamics (4.38) follows
from the identity

3

3C

(
< − <†(G, H)

)
= −∇G<†(G, H)

(
< − <†(G, H)

)
. (4.39)

The identity is derived by noting that, recalling (4.37) for the definition of ℎ†, and
then using (4.38),

3

3C
< = ℎ†(G, H)

= ∇G<†(G, H) [ 50(G) + <†(G, H)] + ∇H<†(G, H)6†(G, H)
= ∇G<†(G, H) [ 50(G) + <)] + ∇H<†(G, H)6†(G, H)

− ∇G<†(G, H)
(
< − <†(G, H)

)
=
3

3C
<†(G, H) − ∇G<†(G, H)

(
< − <†(G, H)

)
.

We emphasize this calculation is performed under the dynamics defined by (4.38).

The proof of the RNN approximation property proceeds by approximating vector
fields 6†(G, H), ℎ†(G, H) by neural networks and introducing linear transformations of
H and < to rewrite the approximate version of system (4.38) in the form (4.36). The
effect of the approximation of the vector fields on the true solution is then propagated
through the system and its effect controlled via a straightforward Gronwall argument.
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Remark 4.5.16. The details of training continuous-time RNNs to ensure accuracy
and long-time stability are a subject of current research [72, 125, 304, 82] and in this
paper we confine the training of RNNs to an example in the general setting, and not
the case of linear coupling. Discrete-time RNN training, on the other hand, is much
more mature, and has produced satisfactory accuracy and stability for settings with
uniform sample rates that are consistent across train and testing scenarios [165]. The
form with linear coupling is widely studied in discrete time models. Furthermore,
sophisticated variants on RNNs, such as Long-Short Term Memory (LSTM) RNNs
[177] and Gated Recurrent Units (GRU) [87], are often more effective, although
similar in nature RNNs. However, the potential formulation, implementation and
advantages of these variants in the continuous-time setting [299] is not yet understood.
We refer readers to [149] for background on discrete RNN implementations and
backpropagation through time (BPTT). For implementations of continuous-time
RNNs, it is common to leverage the success of the automatic BPTT code written in
PyTorch and Tensorflow by discretizing (4.36) with an ODE solver that is compatible
with these autodifferentiation tools (e.g. torchdiffeq by [358], NbedDyn by [304],
and AD-ENKF by [82]). This compatibility can also be achieved by use of explicit
Runge-Kutta schemes [332]. Note that the discretization of (4.36) can (and perhaps
should) be much finer than the data sampling rate ΔC, but that this requires reliable
estimation of G(C), ¤G(C) from discrete data. �

Remark 4.5.17. The need for data assimilation [21, 227, 346] to learn the initialization
of recurrent neural networks may be understood as follows. Since <† is not known
and H is not observed (and in particular H(0) is not known) the desired initialization
for (4.38), and thus also for approximations of this equation in which 6† and ℎ†

are replaced by neural networks, is not known. Hence, if an RNN is trained on a
particular trajectory, the initial condition that is required for accurate approximation
of (4.8) from an unseen initial condition is not known. Furthermore the invariant
manifold < = <†(G, H) may be unstable under numerical approximation. However
if some observations of the trajectory starting at the new initial condition are used,
then data assimilation techniques can potentially learn the initialization for the RNN
and also stabilize the invariant manifold. Ad hoc initialization methods are common
practice [170, 88, 26, 315], and rely on forcing the learned RNNwith a short sequence
of observed data to synchronize the hidden state. The success of these approaches
likely rely on RNNs’ abilities to emulate data assimilators [166]; however, a more
careful treatment of the initialization problem may enable substantial advances. �



121

Remark 4.5.18. Reservoir computing (RC) is a variant on RNNs which has the
advantage of leading to a quadratic optimization problem [190, 272, 154]. Within the
context of the continuous-time RNN (4.36) they correspond to randomizing (�, �, 2)
in (4.36b) and then choosing only parameter � to fit the data. To be concrete, this
leads to

A (C) = GC
(
{G(B)}CB=0; A (0), �, �, 2

)
;

here GC may be viewed as a random function of the path-history of G upto time C
and of the initial condition for A. Then � is determined by minimizing the quadratic
function

J) (�) =
1

2)

∫ )

0
‖ ¤G(C) − 50(G(C)) − �A (C)‖2 3C +

_

2
‖�‖2.

This may be viewed as a random feature approach on the Banach space X) ; the use
of random features for learning of mappings between Banach spaces is studied by
Nelsen and Stuart [295], and connections between random features and reservoir
computing were introduced by Dong et al. [109]. In the specific setting described
here, care will be needed in choosing probability measure on (�, �, 2) to ensure a
well-behaved map GC; furthermore data assimilation ideas [21, 227, 346] will be
needed to learn an appropriate A (0) in the prediction phase, as discussed in Remark
4.5.17 for RNNs. �

4.6 Numerical Experiments
In this section, we present numerical experiments intended to test different hypotheses
about the utility of hybrid mechanistic and data-driven modeling. We summarize
our findings in Section 4.6.1. We define the overarching experimental setup in
Section 4.6.2.1, then introduce our criteria for evaluating model performance
in Section 4.6.2.2. In the Lorenz ’63 (L63) experiments (Section 4.6.2.3), we
investigate how a simple Markovian random features model error term can be
recovered using discrete and continuous-time methods, and how those methods scale
with the magnitude of error, data sampling rate, availability of training data, and
number of learned parameters. In the Lorenz ’96 Multiscale (L96MS) experiments
(Section 4.6.2.4), we take this a step further by learning a Markovian random
features closure term for a scale-separated system, as well as systems with less
scale-separation. As expected, we find that the Markovian closure approach is highly
accurate for a scale-separated regime. We also see that the Markovian closure has
merit even in cases with reduced scale-separation. However, this situation would
clearly benefit from learning a closure term with memory, a topic we turn to in
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Section 4.6.3, where we demonstrate that non-Markovian closure models can be
learnt from noisy, partially observed data; for low-dimensional cases (e.g. L63), our
method of training converges to return a good model with high short-term accuracy
and long-term statistical validity. For higher-dimensional cases (e.g. L96MS), we
find the method to hold promise, but further research is required in this general area.
In Section 4.6.4, we demonstrate why non-Markovian closures must be carefully
initialized and/or controlled (e.g. via data assimilation) in order to ensure their
long-term stability and short-term accuracy.

4.6.1 Summary of Findings from Numerical Experiments
1. We find that hybrid modeling has better predictive performance than purely

data-driven methods in a wide range of settings (see Figures 4.2a and 4.2b
of Section 4.6.2.3): this includes scenarios where 50 is highly accurate (but
imperfect) and scenarios where 50 is highly inaccurate (but nevertheless
faithfully encodes much of the true structure for 5 †).

2. We find that hybrid modeling is more data-efficient than purely data-driven
approaches (Figure 4.3 of Section 4.6.2.3).

3. We find that hybrid modeling is more parameter-efficient than purely data-
driven approaches (Figure 4.4 of Section 4.6.2.3).

4. Purely data-driven discrete-time modeling can suffer from instabilities in the
small timestep limit ΔC � 1; hybrid discrete-time approaches can alleviate this
issue when they are built from an integrator Ψ0, as this will necessarily encode
the correct parametric dependence on ΔC � 1 (Figure 4.5 of Section 4.6.2.3).

5. In order to leverage standard supervised regression techniques, continuous-time
methods require good estimates of derivatives ¤G(C) from the data. Figure 4.5
of Section 4.6.2.3 quantifies this estimation as a function of data sample rate.

6. Non-Markovian model error can be captured by Markovian terms in scale-
separated cases. Section 4.6.2.4 demonstrates this quantitatively in Figure 4.6,
and qualitatively in Figure 4.7. Beyond the scale-separation limit, Markovian
terms will fail for trajectory forecasting. However, Markovian terms may still
reproduce invariant statistics in dissipative systems (for example, in cases with
short memory-length). Section 4.6.2.4 demonstrates this quantitatively in
Figure 4.6; Figure 4.7 offers intuition for these findings.
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7. Non-Markovian description of model error is needed to accurately represent
problems where the hidden dynamics is not scale-separated from the observed
dynamics. Section 4.6.3 shows how partial and noisy observations can be
exploited by augmented ODEmodels of form (4.18) when the noise and hidden
dynamics are learnt implicitly by auto-differentiable data assimilation. We
observe high-quality reconstruction of the L63 system along its first-component
when choosing a correct (Figure 4.8) or overly enlarged (Figure 4.9) hidden
dimension. We also observe promising reconstruction of the L96MS system in
its slow components (Figure 4.10); however, long-time solutions to the learnt
model exhibited instabilities inconsistent with the true system.

8. Non-Markovian models must be carefully initialized, and indeed data assimila-
tion is needed, in order to ensure accuracy (Section 4.6.4) of invariant statistics
(Figure 4.12), long-term stability (Figure 4.13), and accurate short-term predic-
tions (Figure 4.14). We explain observed phenomena in terms of the properties
of the desired lower-dimensional invariant manifold which is embedded within
the higher dimensional system used as the RNN’s basis of approximation.

4.6.2 Learning Markovian Model Errors from Noise-Free Data
4.6.2.1 Experimental Set-Up

In theMarkovian errormodeling experiments described in Sections 4.6.2.3 and 4.6.2.4,
whether using continuous- or discrete-time models, we train a random features model
on noise-free trajectories from the true system (an ODE). The problems we study
provably have a compact global attractor and are provably (L63) or empirically
(L96MS) ergodic; the invariant distribution is supported on the global attractor and
captures the statistics of long-time trajectories which, by ergodicity, are independent
of initial condition. The data trajectories are generated using scipy’s implementation
of Runge-Kutta 5(4) (via solve_ivp) with absolute and relative tolerances both
10−9 and maximum step size 10−4 [111, 420]. In order to obtain statistical results, we
create 5 training trajectories from the true system of interest with initial conditions
sampled independently from its attractor. Note that each training trajectory is long
enough to explore the attractor, and each is used to train a separate model; the
purpose is to observe the variance in learnt models with respect to randomly sampled
paths through the attractor. We use the same sampling procedure to generate short
independent validation and testing trajectories—we use 7 validation trajectories and
10 testing trajectories (these are short because we only use them to evaluate a model’s
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short term forecast performance; when assessing long-term statistics of a learnt
model, we compare to very long simulations from the true system). All plots use
error bars to represent empirical estimates of the mean and standard deviation of the
presented performance metric, as computed by ensembling the performance of the 5
models (one per training trajectory) over the 10 testing trajectories for a total of 70
random performance evaluations.

Each training procedure also involves an independent draw of the random feature
functions as defined in (4.54). A validation step is subsequently performed to
optimize the hyperparameters l, V, as well as the regularization parameter _. We
automate this validation using Bayesian Optimization [291, 300], and find that it
typically identifies good hyperparameters within 30 iterations. The entire process of
entraining a model to a single, long training trajectory (including hyperparameter
validation) typically takes approximately 30 minutes on a single core of a 2.1GHz
Skylake CPU with an allocated 1GB RAM. Given a realization of random features
and an optimal _, we obtain the minimizer�∗ using theMoore-Penrose Pseudoinverse
implemented in scipy (pinv2). This learned �∗, paired with its random feature
realization, is then used to predict 10 unseen testing trajectories (it is given the true
initial condition for each of these testing trajectories).

When implementing in continuous-time, given high frequency but discrete-time
data, two computational issues must be addressed: (i) extrapolation of the data
to continuous-time; (ii) discretization of the resulting integrals. The approach we
adopt avoids “inverse crimes” in which favourable behaviour is observed because
of agreement between the data generation mechanism (with a specific integrator)
and the approximation of the objective functions [93, 198, 438]; see Queiruga et al.
[332] for further illustration of this issue and Keller and Du [204] and Du et al. [114]
for a rigorous analysis of this inversion process in the context of linear multistep
integration methods for deep learning. We interpolate the data with a spline, to obtain
continuous-time trajectories, and then discretize the integrals using a simple Riemann
sum; this strikes a desirable balance between robustness and efficiency and avoids
inverse crimes. The discrete-time approaches, however, are able to learn not only
model-discrepancy, but also integrator-based discrepancies; hence, the discrete-time
methods may artificially appear to outperform continuous-time approaches, when, in
fact, their performances might simply be considered to be comparable.
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4.6.2.2 Evaluation Criteria

Models are evaluated against the test set for their ability to predict individual
trajectories, as well as invariant statistics (the invariant measure and the auto-
correlation function).

Trajectory Validity Time: Given threshold W > 0, we find the first time CW at which
the norm of discrepancy between true and approximate solutions reaches W:

CW = arg min
C∈[0,)]

{
C : ‖G(C) − G< (C)‖ ≥ W‖G(C)‖

}
,

where G(C) is the true solution to (4.2), G< (C) is the learned approximation, and the
normed time average ‖G(C)‖ is approximated from training data. If the threshold is
not violated on [0, )], we define CW := ) ; this is rare in practice. We take W = 0.05
(i.e. 5% relative divergence).

Invariant Distribution: To quantify errors in our reconstruction of the invariant
measure, we consider the Kullback-Leibler (KL) divergence [220] between the true
invariant measure ` and the invariant measure produced by our learned model `<.
We approximate the divergence

3KL(`, `<) :=
∫
R

log
(
3`

3`<

)
3`

by integrating kernel density estimates with respect to the Lebesgue measure.

Autocorrelation: We compare the autocorrelation function (ACF) with respect
to the invariant distribution of the true and learned models. We approximate the
ACF using a fast-fourier-transform for convolutions [378], and compare them via a
normalized !2 norm of their difference.

4.6.2.3 Lorenz ’63 (L63)

Setting The L63 system [262] is described by the following ODE

¤DG = 0(DH − DG)
¤DH = 1DG − DH − DGDI
¤DI = −2DI + DGDH

(4.40)

whose solutions are known to exhibit chaotic behavior for parameters 0 = 10, 1 =
28, 2 = 8

3 . We align these equations with our framework, starting from equation (4.1),
by letting G = (DG , DH, DI)) and defining 5 †(G) to be the vector field appearing on the



126

right-hand-side in (4.40). We define a discrete solution operator Ψ† by numerical
integration of 5 † over a fixed time window ΔC corresponding to a uniform data
sampling rate, so that the true system is given by (4.1) in continuous-time and (4.6a)
in discrete-time.

To simulate scenarios in which our available physics are good, but imperfect, we
assume there exists additive unknown model error of form

<†(G) = n <1(G) (4.41)

with function <1 determining the structure of model error, and scalar coefficient n
determining its magnitude. Recall that 5 † = 50 + <† and we assume 50 is known
to us. Our task is then to learn 5 † by learning <† and adding it to 50. The discrete
solution operator Ψ0 is obtained as in (4.6b) by numerical integration of 50 over a
fixed time window ΔC.

To simplify exposition, we explicitly define <†, then let 50 := 5 † − <†. We first
consider the setting where

<1(G) :=


0
1DG

0

 (4.42)

(as in [316]) and modulate n in (4.41) to control the magnitude of the error term.
In this case, 50 can be viewed as the L63 equations with perturbed parameter
1̃ = 1(1 − n), where 1 is artificially decreased by 100n%.

Then, we consider a more general case of heterogeneous, multi-dimensional residual
error by drawing <1 from a zero-mean Gaussian Process (GP) with a radial basis
kernel (lengthscale 10). We form a map from R

3 into itself by constructing three
independent draws from a scalar-valuedGP onR3. The resulting function is visualized
in two-dimensional projections in Figure 4.1.

Observe that in the continuous-time framing, changes to n do not impact the
complexity of the learned error term; however, it does grow the magnitude of
the error term. In the discrete-time framing, larger values of n can magnify the
complexity of the discrepancy Ψ0(G) −Ψ†(G).

Results We perform a series of experiments with the L63 system in order to
illustrate key points about using data to learn model errors in dynamical systems.
First, we demonstrate that hybrid modeling tends to outperform data-only and
physics-only methods in terms of prediction quality. We first consider model error
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Figure 4.1: Here we visualize an example of the function <1 in (4.41), which is
obtained as a single random draw from a zero-mean Gaussian Process mapping
R

3 → R
3. We have plotted its output surface as three scalar functions (left to right)

of the first two inputs (the plot axes) with the third input component fixed at 0.

as in (4.42); see Figure 4.2a in which we study performance (validity time) versus
model error amplitude (n), using random feature maps with � = 200, and a single
trajectory of length ) = 100 sampled at timestep ΔC = 0.001. Unless otherwise
specified, this is also the configuration used in subsequent experiments.

We see identical trends in Figure 4.2b for a more general case with the non-parametric
model error term constructed from Gaussian processes. Interestingly, we see that
for small and moderate amounts of model error n , the hybrid methods substantially
outperform data-only and physics-only methods. Eventually, for large enough model
discrepancy, the hybrid-methods and data-only methods have similar performance;
indeed the hybrid-method may be outperformed by the data-only method at large
discrepancies. For the simple model error this appears to occur when the discrepancy
term is larger in magnitude than 50 (e.g. for 1 = 28 and n = 2, the model error term
n1DG can take on values larger than 5 † itself).

Figure 4.2b also shows that a continuous-time approach is favored over discrete-time
when using data-only methods, but suggests the converse in the hybrid modeling
context. We suspect this is an artifact of the different integration schemes used in data
generation, training, and testing phases; the data are generated with a higher-fidelity
integrator than the one available in training and testing. For the continuous-time
method, this presents a fundamental limitation to the forecast quality (we chose this
to avoid having artificially high forecast validity times). However, the discrete-time



128

method can overcome this by not only learning the mechanistic model discrepancy,
but also the discrepancy term associated with a mis-matched integrator. This typically
happens when a closure is perfectly learnable and deterministic (i.e. our Lorenz
’63 example); in this case, the combination of physics-based and integrator-sourced
closures can be learned nearly perfectly. In later experiments with a multiscale
system, the closures are considered approximate (they model the mean of a noisy
underlying process) and the discrete- and continuous-time methods perform more
similarly, because the inevitable imperfections of the learned closure term dominate
the error rather than the mis-specified integrator. Note that approximate closures
driven by scale-separation are much more realistic; thus we should not expect the
hybrid discrete-time method to dramatically outperform hybrid continuous-time
methods unless other limitations are present (e.g. slow sampling rate).

Importantly, the parameter regime for which hybrid methods sustain advantage over
the imperfect physics-only method is substantial; the latter has trajectory predictive
performance which drops off rapidly for very small n . This suggests that an apparently
uninformative model can be efficiently modified, by machine learning techniques, to
obtain a useful model that outperforms a de novo learning approach.

Next, we show that hybrid methods simplify the machine learning task in terms of
complexity of the learned function and, consequently, the amount of data needed
for the learning. Figure 4.3 examines prediction performance (validity time) as a
function of training data quantity using random feature maps with � = 2000 and
a fixed parametric model error (n = 0.2 in (4.41)) and sampling rate ΔC = 0.01.
We see that the hybrid methods substantially outperform the data-only approaches
in regimes with limited training data. For the continuous-time example, we see
an expected trend, where the data-only methods are able to catch up to the hybrid
methods with the acquisition of more data. The discrete-time models do not exhibit
this behavior, but we expect the data-only discrete-time model to eventually catch
up, albeit with additional training data and number of parameters. Note that greater
expressivity is also required from data-only methods—our choice of a large � = 2000
aims to give all methods ample expressivity, and thus test convergence with respect
to training data quantity alone. These results demonstrate that the advantage of
hybrid modeling is magnified when training data are limited and cannot fully inform
de novo learning. Figure 4.4 further studies the impact of expressivity by again
fixing a parametric model error (n = 0.05 in (4.41)), training length ) = 100, and
sampling rate ΔC = 0.001. We see that all methods improve with a larger number of
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(a) (b)

Figure 4.2: These plots shows the temporal length of the forecast validity of our
learnt models of L63 (4.40), each as a function of model error, as parameterized
by n (4.41) (with � = 200, ) = 100, and ΔC = 0.001). Continuous-time methods
are shown in blue, discrete-time approaches in orange. Dotted lines indicate purely
data-driven methods to learn the entire vector field defining the dynamics; solid lines
indicate methods that learn perturbations to the imperfect mechanistic models 50 or
Ψ0. Integration using the imperfect mechanistic model, without recourse to data, is
shown in green. In Figure 4.2a, we employ the linear form of model error <1 defined
in (4.42). In Figure 4.2b, we let <1 be a single draw from a Gaussian Process, whose
structure is shown in Figure 4.1. Here, we plot means, with error bars as 1 standard
deviation.

random features, but that relative superiority of hybrid methods is maintained even
for � = 10000.

Finally, we study trade-offs between learning in discrete- versus continuous-time for
the L63 example (4.40). Figure 4.5 examines prediction performance (validity time)
as a function of data sampling rate ΔC using random feature maps with � = 200 with
a fixed parametric model error (n = 0.05 in (4.41)) and an abundance of training
data ) = 1000. We observe that for fast sampling rates (ΔC < 0.01), the continuous-
time and discrete-time hybrid methods have similar performance. For ΔC > 0.01,
derivatives become difficult to estimate from the data and the performance of the
continuous-timemethods rapidly decline. However, the discrete-timemethods sustain
their predictive performance for slower sampling rates (ΔC ∈ (0.01, 0.1)). At some
point, the discrete-time methods deteriorate as well, as the discrete map becomes
complex to learn at longer terms because of the sensitivity to initial conditions that is
a hallmark of chaotic systems. Here, the discrete-time methods begin to fail around
ΔC = 0.2; note that they can be extended to longer time intervals by increasing � and
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Figure 4.3: Here we examine the performance of the proposed methods as a function
of the length of the interval over which the training data is provided, where ΔC = 0.01,
(n = 0.2 in (4.41)), and � = 2000 are held constant for the L63 example (4.40). See
description of Figure 4.2 for explanation of legend. We observe that all methods
improve with increasing training lengths. We see that, in continuous-time, the
primary benefit in hybrid modeling is when the training data are limited.

amount of training data, but returns diminish quickly.

4.6.2.4 Lorenz ’96 Multiscale (L96MS) System

Setting Here, we consider the multiscale system [260] of form (4.7), where each
variable -: ∈ R is coupled to a subgroup of fast variables .: ∈ R� . We have
- ∈ R and . ∈ R ×� . For : = 1 . . .  and 9 = 1 . . . �, we write

¤-: = 5: (-) + ℎG. : (4.43a)

¤.:, 9 =
1
Y
A 9 (-: , .: ) (4.43b)

. : =
1
�

�∑
9=1
.:, 9 (4.43c)

5: (-) = −-:−1(-:−2 − -:+1) − -: + � (4.43d)

A 9 (-: , .: ) = −.:, 9+1(.:, 9+2 − .:, 9−1) − .:, 9 + ℎH-: (4.43e)

-:+ = -: , .:+ , 9 = .:, 9 , .:, 9+� = .:+1, 9 (4.43f)
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Figure 4.4: Here we examine the performance of the proposed methods as a function
of model complexity, where ΔC = 0.001, n = 0.05, and ) = 100 are held constant for
the L63 example (4.40). See description of Figure 4.2 for explanation of legend. We
observe that all methods improve with increasing number of parameters, and that
hybrid methods are especially beneficial when available complexity is limited.

where Y > 0 is a scale-separation parameter, ℎG , ℎH ∈ R govern the couplings
between the fast and slow systems, and � > 0 provides a constant forcing. We set
 = 9, � = 8, ℎG = −0.8, ℎH = 1, � = 10; this leads to chaotic dynamics for Y
small. When studying scale-separation, we consider Y ∈ {2−7, 2−5, 2−3, 2−1}.

We consider the setting in which we learn Markovian random features models in
variable - alone, from - data generated by the coupled (-,. ) system. Large
scale-separation between the observed (-) and unobserved (. ) spaces can simplify
the problem of accounting for the unobserved components; in particular, for sufficient
scale-separation, we expect a Markovian term to recover a large majority of the
residual errors. In fact, we further simplify this problem by learning a scalar-valued
model error " that is applied to each -: identically in the slow system:

¤-: ≈ 5: (-) + " (-: ).

This choice stems from observations about statistical interchangeability amongst
the slow variables of the system; these properties of the L96MS model in the
scale-separated regime are discussed in [132]. We can directly align our reduction of
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Figure 4.5: This shows temporal forecast validity as a function of the step size
of training data for the tested methods in the L63 example (4.40). We hold fixed
� = 200, n = 0.05, and ) = 1000. See description of Figure 4.2 for explanation
of legend. We see that while purely data-driven discrete-time methods struggle
at short time steps, the hybrid version thrives in this scenario. All approaches, of
course, eventually decay as large time steps create more complex forward maps, due
to sensitivity to initial conditions. We also see continuous-time methods work well
for small time steps, then deteriorate in tandem with quality of estimated derivatives.

(4.43) with the Markovian hybrid learning framework in (4.2) as follows:

¤- ≈ 50(-) + <(-)
50(-) := [ 51(-), · · · , 5 (-)])

<(-) := [" (-1), · · · , " (- )]) .

Results We plot the performance gains of our hybrid learning approaches in
Figure 4.6 by considering validity times of trajectory forecasts, estimation of the
invariant measure, and ACF estimation. In all three metrics (and for all scale-
separations Y), de novo learning in discrete (Ψ† ≈ <) and continuous-time ( 5 † ≈ <)
is inferior to using the nominal mechanistic model 50. We found that the amount of
data used in these experiments is insufficient to learn the full system from scratch.
On the other hand, hybrid models in discrete (Ψ† ≈ Ψ0 + <) and continuous-time
( 5 † ≈ 50 + <) noticeably outperformed the nominal physics.

Surprisingly, Figure 4.6 shows that the Markovian closure methods still qualitatively
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reproduce the invariant statistics even for large Y settings where we would expect
substantial memory effects. Figure 4.6 also demonstrates this quantitatively using
KL-divergence between invariant measures and mean-squared-error between ACFs.
It seems that for this dissipative system, memory effects tend to average out in the
invariant statistics. However, the improvements in validity time for trajectory-based
forecasting deteriorate for Y = 2−1.

To visualize this non-Markovian structure, and how it might be exploited, we examine
the residuals from 50 in Figure 4.7 and observe that there are discernible trajectories
walking around the Markovian closure term. For small Y, these trajectories oscillate
rapidly around the closure term. For large Y (e.g. 2−1), however, we observe a
slow-moving residual trajectory around the Markovian closure term. This indicates
the presence of a stronger memory component, and thus would benefit from a
non-Markovian approach to closure modeling.

Jiang and Harlim [193] show that the memory component in this setting with Y = 2−1

can be described using a closure term with a simple delay embedding of the previous
state at lag 0.01. They learn the closure using a kernel method cast in an RKHS
framework, for which random feature methods provide an approximation.

4.6.3 Learning From Partial, Noisy Observations
In this section, we focus on the non-Markovian setting outlined in Section 4.2.3,
and attempt to model the dynamics of the observable using (4.18), with 51, 52 given
by two-layer, fully connected neural networks with GeLU activations [172], and
perform the learning by minimizing (4.22) from Section 4.4.3.3, using 3DVAR for
the data assimilation [227, 224], with the ADAM optimizer [209]. The learning
rate was initialized at 0.01 and tuned automatically using a scheduler that halved the
learning rate if the training error had not decreased over 10 (mini-batched) epochs.
Data were sampled at ΔC = 0.01 in all cases, and normalized to have mean zero
and unit variance. Numerical integration was performed with the torchdiffeq
implementation of the Dormand-Prince adaptive fifth-order Runge-Kutta method: for
the L63 example, simple backpropagated autodifferentiation was performed through
this solver; for the L96MS example, we used the adjoint method provided by [358].

4.6.3.1 Lorenz ’63

We first consider modeling the dynamics of the first-component of the L63 system
in (4.40), where we noisily observe the first-component – that is, we observe a
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Figure 4.6: This figure shows the performance of different approaches to modeling
the L96MS slow subsystem (4.43). In 5 † ≈ 50, we only use the nominal physics 50.
In Ψ† ≈ < and 5 † ≈ <, we try to learn the entire right-hand-side using only data (in
discrete- and continuous-time settings, respectively). InΨ† ≈ Ψ0+< and 5 † ≈ 50+<,
we focus on learning Markovian residuals for the known physics (in discrete- and
continuous-time settings, respectively). The residual-based correctors substantially
outperform the nominal physics and purely data-driven methods according to all
presented metrics: invariant measure (shown qualitatively in the first row and
quantitatively in the third row), ACF (shown qualitatively in the second row and
quantitatively in the fourth row), and trajectory forecasts (shown in the final row).
The boxplots show the distributions of quantitative metrics (e.g. KL-divergence,
squared errors, validity time), which come from different models, each trained
on a different trajectory, and generated using an independent random feature set.
Notably, the Markovian residual-based methods’ performance deteriorates for small
scale-separation (Y = 2−1), where the Markovian assumption breaks down.
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Figure 4.7: This figure shows the observed and estimated residuals of the nominal
physics model 50 for the L96MS slow subsystem (4.43) at different scale-separation
factors. The first row shows the density of these residuals (yellow is high density,
blue is low), as well as the fit of our closure terms in continuous- (blue) and discrete-
(orange) time (the discrete model was normalized by dividing by ΔC). The second
row shows temporal structure in the errors of our residual fit by superimposing a
short (T=1) one-dimensional trajectory (this represents ∼ 0.1% of training data).

noisy trajectory of DG (i.i.d. additive zero-mean, variance-one Gaussian), but do not
observe the remaining components DH, DI. We jointly trained on 100 trajectories,
each of length ) = 10 and randomly initialized from a box around the attractor; we
chose this approach to ensure that we had data coverage both on and off the attractor
although we note that similar success is obtained with a single trajectory of length
) = 1000.). The neural network had width 50. We chose an assimilation time of
g1 = 3 and a forecast time of g2 = 0.1. The optimization ran for approximately 200
epochs, and took roughly 24hrs on a single GPU. Adequate results were obtained
using a fixed 3DVAR gain matrix  = [0.5, 0, 0]) . However, we present results
using the algorithm in which  = \DA is jointly learned along with parameters \DYN,
as described in Section 4.4.3.3; this demonstrates that the gain need not be known a
priori.

First, we present results using knowledge that the correct hidden dimension 3A = 2:
in Figure 4.8a, we show an example of the trained model being assimilated (using
3DVAR with learnt  ) during the first 3 time units, then predicting for another 7 time
units; recall that training was performed using only a g2 = 0.1 forecasting horizon,
but we evaluate on a longer time horizon to provide a robust test metric. Observe
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that the learnt hidden dynamics in gray are synchronized with the data, then used to
perform the forecast. In Figures 4.8b and 4.8c, we show that by solving the system
for long time (here, ) = 104), we are able to accurately reproduce invariant statistics
(invariant measure and autocorrelation, resp.) for the true system. In Figure 4.8d, we
show the evolution of the learnt  .

Next, we let 3A = 10, exceeding the true dimension of the hidden states; thus we are
able to explore issues caused by learning an overly expressive (in terms of dimension
of hidden states) dynamical model. Figure 4.9 shows dynamics for a learnt model in
this setting; we found its reproduction of invariant statistics to be similar to the cases
in Figures 4.8b and 4.8c, but omit the plots for brevity. This success aligns with
the approximation theory, as discussed in Remark 4.5.11, and provides empirical
reassurance that the methodology can behave well in situations where the dimension
of the hidden variable is unknown and dimension 3A used in learning exceeds its
true dimension. Nevertheless, we construct an example in Section 4.6.4 in which a
specific embedding of the true dynamics in a system of higher dimension can lead
to poor approximation; this is caused by an instability in the model which allows
departure from the invariant manifold on which the true dynamics is accurately
captured. However, we emphasize that this phenomenon is not observed empirically
in the experiment reported here with 3A = 10. Nonetheless we also note expected
decreases in efficiency caused by over-estimating the dimension of the hidden
variable, during both model training and testing; thus determining the smallest choice
for 3A , compatible with good approximation, is important. Recent research has
addressed this challenge in the discrete-time setting by applying manifold learning to
a delay-embedding space, then using the learnt manifold to inform initialization and
dimensionality of LSTM hidden states [205].

Note that our early attempts at achieving these numerical results, using the optimiza-
tion ideas in Sections 4.4.3.1 and 4.4.3.2, yielded unstable models that exhibited
blow-up on shorter time scales (e.g. ) < 1000); however, by incorporating data
assimilation as in [82], and further tuning the optimization to achieve lower training
errors, we were able to obtain a model that, empirically, did not exhibit blow-up, even
when solved for very long time (e.g. ) = 105). We also note that we were unable
to achieve such high-fidelity results using the methods of [304] on neural networks
with non-linear activation functions; this may be explained by noting that Ouala
et al. [304] achieved their results using linear, identity-based activations, resulting in
inference of polynomial models containing the true L63 model.
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Figure 4.8: This figure concerns learning of a continuous-time RNN to model the
L63 system (4.40), based on noisy observation of only the first component; it uses an
augmented state space 3A = 2. Figure 4.8a shows how the trained model can be used
for forecasting—by first synchronizing to data using 3DVAR, then forecasting into the
future. The top-half depicts dynamics of the observed component (model-solutions
in blue; observations in yellow); the bottom-half depicts the augmented state space
(both hidden components are shown in gray). We observed a validity time of roughly
3 model time units. Figures 4.8b and 4.8c shows that long-time solutions of the learnt
model accurately mirror invariant statistics (invariant measure and autocorrelation,
resp.) for the true system. Figure 4.8d shows the learning process for estimating a
3DVAR gain  .
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Figure 4.9: This figure concerns learning of a continuous-time RNN to model the
L63 system (4.40), based on noisy observation of only the first component; it uses
an augmented state space 3A = 10. The top-half depicts dynamics of the observed
component (model-solutions in blue; observations in yellow); the bottom-half depicts
the augmented state space (all 10 hidden components are shown in gray). In the first
3 time units, the model is assimilated to a sequence of observed data using 3DVAR,
then in the subsequent 7 time units, a forecast is issued. We found this model to have
similar short-term and long-term fidelity when compared to the model presented in
Figures 4.8a to 4.8d, which used the correct hidden dimension 3A = 2.

4.6.3.2 Lorenz ’96 Multiscale (Y = 2−1)

Recall that Markovian closures fail to capture autocorrelation statistics for the slow
components of this model in the case of Y = 2−1 (see top right panel of Figure 4.6). As
evidenced by the slow-moving trajectory around the Markovian closure in Figure 4.7,
this is a case ripe for non-Markovian modeling. We investigate the applicability of
our continuous-time ODE formulation in (4.18), using a neural network of width of
1000. We applied the above described methodology for minimizing (4.22), under
the data setting described in Section 4.6.2.4, to learn hidden dynamics. Similarly to
the previous section, we jointly trained on 100 trajectories, each of length ) = 20
and randomly initialized from a box around the attractor. We chose an assimilation
time of g1 = 2 and a forecast time of g2 = 1; note that longer times can become quite
costly, especially for high-dimensional systems; nevertheless, the assimilation time
g1 appears intrinsically tied to the amount of memory present in the system.

In Figures 4.10a and 4.10b, we plot comparisons of the true and learnt (via (4.18))
ACF and invariant measure, and observe substantial improvement over the Markovian
closure. However, this learnt model exhibited instabilities when solved for longer
than ) = 500. We expect that this can be remedied via further training (as was found
for the L63 example); however, the incorporation of stability constraints into the
model, as in [375], would be valuable. In order to train this larger model for longer
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Figure 4.10: This figure concerns learning of a continuous-time RNN to model
the first 9 (slow) components of the L96MS system (Y = 0.5 in (4.43)), based on
noisy observations of these slow components; it uses an augmented state space
3A = 72. We trained using noised observations (standard deviation 0.01) of only the
first 9 components of the true 81−dimensional system. These plots show that this
model can accurately reproduce both the invariant measure (Figure 4.10a) and ACF
(Figure 4.10b) for these observed states. These statistics were calculated by running
the learnt model for ) = 500 model time units; longer runs encountered instabilities
that caused trajectories to leave the attractor and blow-up.

time, further studies of efficient optimization must also be performed in this setting
([82] has begun highly relevant investigation in this direction).

In Figure 4.11, we visualize the learnt 3DVAR gain (which encodes the learnt model’s
covariance structure), inwhich each row corresponds to the gain for a given component
of the learnt model as a function of observed components (indexed in the columns);
trends are elucidated via hierarchical clustering and a row-based normalization of the
learnt matrix  . It clearly learns a consistent diagonal covariance structure for the
observables. More impressively, it illustrates cross-covariances between observed
and hidden components that mirror the compartmentalized structure of the model
in (4.43); note that each observed component has a distinct grouping of hidden
variables which have high correlation (white) primarily with that component and low
correlation (black) with other observables. This type of analysis may provide greater
interpretability of learnt models of hidden dynamics.
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Figure 4.11: Here we visualize the learnt 3DVAR gain matrix  (81 x 9) (\DA in
Section 4.4.3.3) associated with the non-Markovian learning of L96MS (4.43). We
first compute entry-wise absolute values, then apply a row-normalization; white
indicates highest correlation, and black indicates lowest correlation. The top 9
rows shown directly correspond to the first 9 rows of  . The bottom 72 rows
are re-ordered (via hierarchical clustering) to illustrate associations between the 9
observed components and the 72 hidden variables.

4.6.4 Initializing and Stabilizing the RNN
As mentioned in Remark 4.5.17 the RNN approximates an enlarged system which
contains solutions of the original system as trajectories confined to the invariant
manifold < = <†(G, H); see identity (4.39). However, this invariant manifold may be
unstable, either as a manifold within the continuous-time model (4.38), or as a result
of numerical instability. We now demonstrate this with numerical experiments. This
instability points to the need for data assimilation to be used with RNNs if prediction
of the original system is desired, not only to initialize the system but also to stabilize
the dynamics to remain near to the desired invariant manifold.

To illustrate these challenges, we consider the problem of modeling evolution of
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a single component of the L63 system (4.40). Consider this as variable G in (4.7).
As exhibited in (4.38), model error may be addressed in this setting by learning a
representation that contains the hidden states H in (4.7) (i.e. the other two unobserved
components of (4.40)), but since the dimension of the hidden states is typically not
known a priori the dimensions of the latent variables in the RNN (and the system it
approximates) may be greater than those of H; in the specific construction we use
to prove the existence of an approximating RNN we introduce a vector field for
evolution of the error < as well as H. We now discuss the implications of embedding
the true dynamics in a higher dimensional system in the specific context of the
embedded system (4.38). However the observations apply to any embedding of the
desired dynamics (4.7) (with n = 1) within any higher dimensional system.

We choose examples for which (4.39) implies that < − <† is constant in time. Then,
under (4.38), (

< − <†(G, H)
)
(C) = constant;

that is, it is constant in time. The desired invariant manifold (where the constant is 0)
is thus stable. However this stability only holds in a neutral sense: linearization about
the manifold exhibits a zero eigenvalue related to translation of < −<† by a constant.
We now illustrate that this embedded invariant manifold can be unstable; in this case
the instability is caused by numerical integration, which breaks the conservation of
< − <† in time.

Example 1: Consider equation (4.40) which we write in form (4.8) by setting
G = DG and H = (DH, DI). Then we let 50(DG) := −0DG yielding <†(DH) = 0DH. Thus
5 † = 50 + <† is defined by the first component of the right-hand side of (4.40).
The function 6†(DH, DI) is then given by the second and third components of the
right-hand side of (4.40). Applying the methodology leading to (4.38) to (4.40)
results in the following four dimensional system:

¤DG = 50(DG) + <, DG (0) = G0, (4.44a)

¤DH = 1DG − DH − DGDI, DH (0) = H0, (4.44b)

¤DI = −2DI + DGDH, DI (0) = I0, (4.44c)

¤< = 0
(
1DG − DH − DGDI

)
, <(0) = <†(H0). (4.44d)

Here we have omitted the DH-dependence from the equation (4.40) for DG , and aim to
learn this error term; we introduce the variable < in order to do so. This system,
when projected into DG , DH, DI, behaves identically to (4.40) when <(0) = <†(H0).
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Thus the 4−dimensional system in (4.44) has an embedded invariant manifold on
which the dynamics is coincident with that of the 3−dimensional L63 system.

We numerically integrate the 4−dimensional system in (4.44) for 10000 model
time units (initialized at G0 = 1, H0 = 3, I0 = 1, <0 = 0H0 = 30), and show in
Figure 4.12 that the resulting measure for DG (dashed red) is nearly identical to
its invariant measure in the traditional 3−dimensional L63 system in (4.40) (solid
black). However, we re-run the simulation for a perturbed <(0) = <†(H0) + 1, and
see in Figure 4.12 (dotted blue) that this yields a different invariant measure for DG .
This result emphasizes the importance of correctly initializing an RNN not only
for efficient trajectory forecasting, but also for accurate statistical representation of
long-time behavior.

Figure 4.12: Here, we show that the invariant density for the first component of L63
(black) can be reproduced by a correctly initialized augmented 4−d system (dashed
red) in (4.44). However, incorrect initialization of <(0) in (4.44) (dotted blue) yields
a different invariant density.

Example 2: Now we consider (4.40) which we write in form (4.8) by setting
G = DI and H = (DG , DH). We let 50(DI) := −2DI and <†(DG , DH) := DGDH, so that
5 † = 50 + <† corresponds to the third component of the right-hand side of (4.40).
Function 6†(DG , DH) is defined by the first two components of the right-hand side of
(4.40). We again form a 4−dimensional system corresponding to (4.40) using the
methodology that leads to (4.38):

¤DG = 0(DH − DG), DG (0) = G0, (4.45a)

¤DH = 1DG − DH − DGDI, DH (0) = H0, (4.45b)

¤DI = 50(DI) + <, DI (0) = I0, (4.45c)

¤< = DG ¤DH + DH ¤DG , <(0) = <†(G0, H0). (4.45d)
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We integrate (4.45) for 3000 model time units (initialized at G0 = 1, H0 = 3, I0 =

1, <0 = G0H0 = 3), and show in Figure 4.13 that the 3−dimensional Lorenz attrac-
tor is unstable with respect to perturbations in the numerical integration of the
4−dimensional system. The solutions for DG , DH, DI eventually collapse to a fixed
point after the growing discrepancy between <(C) and <† becomes too large. The
time at which collapse occurs may be delayed by using smaller tolerances within the
numerical integrator (we employ Matlab rk45) demonstrating that the instability is
caused by the numerical integrator. This collapse is very undesirable if prediction
of long-time statistics is a desirable goal. On the other hand, Figure 4.14 shows
short-term accuracy of the 4−dimensional system in (4.45) up to 12 model time units
when correctly initialized (<0 = <

†(G0, H0), dashed red), and accuracy up to 8 model
time units when initialization of <0 is perturbed (<0 = <

†(G0, H0) + 1, dotted blue).
This result demonstrates the fundamental challenges of representing chaotic attractors
in enlarged dimensions and may help explain observations of RNNs yielding good
short-term accuracy, but inaccurate long-term statistical behavior. While empirical
stability has been observed in some discrete-time LSTMs [421, 165], the general
problem illustrated above is likely to manifest in any problems where the dimension
of the learned model exceeds that of the true model; the issue of how to address
initialization of such models, and its interaction with data assimilation, therefore
merits further study.

4.7 Conclusions
In this work we evaluate the utility of blending mechanistic models of dynamical
systems with data-driven methods, demonstrating the power of hybrid approaches.
We provide a mathematical framework that is consistent across parametric and
non-parametric models, encompasses both continuous- and discrete-time, and allows
for Markovian and memory-dependent model error. We also provide basic theoretical
results that underpin the adopted approaches. The unified framework elucidates
commonalities between seemingly disparate approaches across various applied and
theoretical disciplines. It would be desirable if the growing recognition of the need for
hybrid modeling were to motivate flexible incorporation of mechanistic models into
open-source software for continuous-time Markovian and non-Markovian modeling
of error [304, 358, 72, 125, 17, 157].

Our work is focused on immutable mechanistic models ( 50 and Ψ0), but these
models themselves often have tunable parameters. In principle one can jointly
learn parameters for the mechanistic model and closure term. However, the lack of
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Figure 4.13: Here we show that the embedded 3−dimensional manifold of L63,
within the 4−dimensional system given by (4.45), is unstable. Indeed the correctly
initialized 4−dimensional system (dashed red) has solution which decays to a fixed
point. The bottom figure shows divergence of the numerically integrated model
error term <(C) and the state-dependent term <†; this growing discrepancy is likely
responsible for the eventual collapse of the 4−dimensional system.

identifiability between modifying the closure and modifying the physics brings up
an interesting question in explainability. Future work might focus on decoupling
the learning of parameters and closure terms so that maximal expressivity is first
squeezed out of the mechanistic model [324, 323].

Our numerical results demonstrate the superiority of hybrid modeling over learning
an entire system from scratch, even when the available mechanistic model has large
infidelities. Hybrid modeling also showed surprisingly large performance gains
over using mechanistic models with only small infidelities. We quantify these
improvements in terms of data hunger, demands for model complexity, and overall
predictive performance, and find that all three are significantly improved by hybrid
methods in our experiments.

We establish bounds on the excess risk and generalization error that decay as
1/
√
) when learning model discrepancy from a trajectory of length ) in an ergodic

continuous-time Markovian setting. We make minimal assumptions about the
nominal physics (i.e. 50 ∈ �1); thus, our result equivalently holds for learning the
entire vector field 5 † (i.e 50 ≡ 0). However the upper bounds on excess risk and
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Figure 4.14: Here, we show short-term accuracy for the 4−dimensional system
in (4.45). Predictions using the correct initialization of <0 (dashed red) remain
accurate for nearly twice as long as predictions that use a perturbed initialization
(<0 = <

†(DG , DH) + 1). The bottom figure shows that <(C) diverges from the state-
dependent <† more quickly for the poorly initialized model, but in both cases errors
accumulate over time.

generalization error scale with the size of the function being learned, hence going
some way towards explaining the superiority of hybrid modeling observed in the
numerical experiments. Future theoretical work aimed at quantifying the benefits
of hybrid learning versus purely data-driven learning is of interest. We also note
that the ergodic assumption underlying our theory will not be satisfied by many
dynamical models, and alternate statistical learning theories need to be developed in
such settings.

We illustrate trade-offs between discrete-time and continuous-time modeling ap-
proaches by studying their performance as a function of training data sample rate.
We find that hybrid discrete-time approaches can alleviate instabilities seen in purely
data-driven discrete-time models at small timesteps; this is likely due to structure
in the integrator Ψ0, which has the correct parametric dependence on timestep.
In the continuous-time setting, we find that performance is best when derivatives
can accurately be reconstructed from the data, and deteriorates in tandem with
differentiation inaccuracies (caused by large timesteps); continuous-time hybrid
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methods appear to offer additional robustness to inaccurate differentiation when
compared to purely data-driven methods. In cases of large timesteps and poorly
resolved derivatives, ensemble-based data assimilation methods may still allow for
accurate learning of residuals to the flow field for continuous-time modeling [151].

Finally, we study non-Markovian memory-dependent model error, through numer-
ical experiments and theory, using RNNs. We prove universal approximation
for continuous-time hybrid RNNs and demonstrate successful deployment of the
methodology. Future work focusing on the effective training of these models, for
more complex problems, would be of great value; ideas from data assimilation are
likely to play a central role [82]. Further work on theoretical properties of reservoir
computing (RC) variants on RNNs would also be of value: they benefit from convex
optimization, and may be viewed as random feature methods between Banach spaces.
These RNN and RC methods will benefit from constraining the learning to ensure
stability of the latent dynamical model. These issues are illustrated via numerical
experiments that relate RNNs to the question of stability of invariant manifolds
representing embedded desired dynamics within a higher dimensional system.

4.8 Supplementary Information
4.8.1 Proof of Excess Risk/Generalization Error Theorem
Note that in both (4.32) and (4.33) i(·) is only evaluated on (compact) A obviating
the need for any boundedness assumptions on the functions { 5ℓ}?ℓ=0 and <

† in what
follows.

Lemma 4.8.1. Let Assumptions 4.5.1 and 4.5.3 hold. Then there is Σ positive semi-
definite symmetric in R?×? such that \∗

)
→ \∗∞ almost surely, and

√
) (\∗

)
− \∗∞) ⇒

# (0,Σ) with respect to G(0) ∼ `. Furthermore, there is constant � ∈ (0,∞) such
that, almost surely w.r.t. G(0) ∼ `,

limsup)→∞
( )

log log)

) 1
2 ‖\∗) − \∗∞‖ ≤ �.

Proof. By rearranging the equation for \∗∞ we see that

�)\
∗
) = 1) ,

�)\
∗
∞ = 1∞ + (�) − �∞)\∗∞.

Thus, subtracting,

(\∗) − \∗∞) = �−1
) (1) − 1∞) − �−1

) (�) − �∞)\∗∞. (4.46)
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Because { 5ℓ (·)} and<†(·) are Hölder (Assumption 4.5.3, and discussion immediately
preceding it), so are

〈
58 (·), 5 9 (·)

〉
and

〈
<†(·), 5 9 (·)

〉
. Thus each entry of matrix �)

(resp. vector 1) ) converges almost surely to its corresponding entry in �∞ (resp. 1∞),
by the ergodicity implied by Assumption 4.5.1, and the pointwise ergodic theorem.
The almost sure convergence of \∗

)
to \∗∞ follows, after noting that �∞ is invertible.

Furthermore, also by Assumption 4.5.1, there are constants {f8 9 }, {f9 } such that
√
)

(
(�) )8 9 − (�∞)8 9

)
⇒ # (0, f2

8 9 ),
√
)

(
(1) ) 9 − (1∞) 9

)
⇒ # (0, f2

9 ).

Since arbitrary linear combinations of the {(�) )8 9 }, {(1) ) 9 } are time-averages of
Hölder functions, it follows that

√
){�) − �∞, 1) −1∞} converges in distribution to a

Gaussian, by the Cramér-Wold Theorem [155]. Weak convergence of
√
) (\∗

)
−\∗∞) to

aGaussian follows from (4.46) by use of the Slutsky Lemma [155], since �) converges
almost surely to invertible �∞.Matrix Σ cannot be identified explicitly in terms of
only the {f8 9 }, {f8} because of correlations between �) and 1) . The almost sure
bound on ‖\∗

)
− \∗∞‖ follows from (4.46) after multiplying by ()/log log)) 1

2 , noting
that �) → �∞ almost surely, and the almost sure bounds on ()/log log)) 1

2 {‖�) −
�∞‖, ‖1) − 1∞‖}, using Assumption 4.5.1. �

In what follows it is helpful to define

'+) = (\∗) − \∗∞)
(
‖\∗) ‖ + ‖\∗∞‖ + 1

)
,

�+) = I) (<∗∞) − I∞(<∗∞).

Lemma 4.8.2. Let Assumption 4.5.3 hold. Then, assuming G(0) ∼ `, there is
constant � > 0 such that the excess risk ') satisfies

') ≤ �‖'+) ‖.

Furthermore the generalization error satisfies

|�) | ≤ 2�‖'+) ‖ + |�+) |.

Proof. For the bound on the excess risk we note that

') = L` (<∗) , <†) − L` (<∗∞, <†)

=

∫
R3G

〈
(<∗) − <∗∞) (G), (<∗) + <∗∞ − 2<†) (G)

〉
`(3G)
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≤
(∫
R3G

(<∗) − <∗∞) (G)2
`(3G)

) 1
2
(∫
R3G

(<∗) + <∗∞ − 2<†) (G)
2
`(3G)

) 1
2
.

The first follows from the boundedness of the { 5ℓ}?ℓ=1 and <
†, since the first term in

the product above is bounded by a constant multiple of ‖\∗
)
− \∗∞‖ and the second

term by a constant multiple of ‖\∗
)
‖ + ‖\∗∞‖ + supA ‖<†‖.

For the bound on the generalization error we note that

�) = I) (<∗) ) − I∞(<∗) )
= I) (<∗) ) − I) (<∗∞)

+ I) (<∗∞) − I∞(<∗∞)
+ I∞(<∗∞) − I∞(<∗) )

=
(
I) (<∗) ) − I) (<∗∞)

)
+ �+) − ') .

The third term in the final identity is the excess risk that we have just bounded; the
first term may be bounded in the same manner that we bounded the excess risk, noting
that integration with respect to ` is simply replaced by integration with respect to the
empirical measure generated by the trajectory data which, by assumption, is confined
to the attractor A; the second term is simply �+

)
. Thus the result follows. �

Proof of Theorem 4.5.4. By Assumption 4.5.1, with choice of i(G) = ‖<†(G) −
<∗∞(G)‖2,

√
)�+

)
converges in distribution to a scalar-valued centred Gaussian. By

Lemma 4.8.1 and the Slutsky Lemma [155],
√
)'+

)
converges in distribution to a

centred Gaussian in R? . By the Cramer-Wold Theorem [155]
√
) ('+

)
, �+

)
) converges

in distribution to a centred Gaussian in R?+1.

The convergence in distribution results for excess risk ') and generalization error
|�) | then follow from Lemma 4.8.2, under Assumption 4.5.1. Furthermore, by
Lemma 4.8.1, there is constant �1 > 0 such that

limsup)→∞
( )

log log)

) 1
2 ‖'+) ‖ ≤ �1;

similarly, possibly by enlarging �1, Assumption 4.5.1 gives

limsup)→∞
( )

log log)

) 1
2 |�+) | ≤ �1.

The desired almost sure bound on ') + |�) | follows from Lemma 4.8.2.

�
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4.8.2 Proof ofContinuous-TimeODEApproximationTheorem (GeneralCase)
Proof. Recall equations (4.38). By 4.5.9, for any X> > 0 there exist dimensions
#6 and #< and parameterizations \6 ∈ R#6 , \< ∈ R#< such that for any

(
G, H

)
∈

�(0, 2d) ), and in the maximum norm,

‖6†(G, H) − 52(G, H; \6)‖ ≤ X>
‖<†(G, H) − 51(G, H; \<)‖ ≤ X> .

By using these, we can rewrite (4.38) as

¤G = 50(G) + 51(G, H; \<) + 4G (C)
¤H = 52(G, H; \6) + 4H (C)

(4.47)

where, uniformly for
(
G(0), H(0)

)
∈ �(0, d0),

sup
C∈[0,)]

‖4H (C)‖ ≤ X>

sup
C∈[0,)]

‖4G (C)‖ ≤ X> .

By removing the bounded error terms, we obtain the approximate system:

¤GX = 50(GX) + 51(GX, HX; \<)
¤HX = 52(GX, HX; \6)

(4.48)

Next, we obtain a stability bound on the discrepancy between the approximate
system (4.48) and the true system (originally written as (4.8) and re-formulated as
(4.47)). First, let F = (G, H), FX = (GX, HX) and define � to be the concatenated
right-hand-side of (4.48). Note that � is !−Lipschitz in the maximum norm on
�(0, 2d) ), for some ! related to the Lipschitz continuity of 50, 51, and 52. Then we
can write the true and approximate systems, respectively, as (using the maximum
norm)

¤F = � (F) + 4F (C) (4.49a)

¤FX = � (FX), (4.49b)

where
sup
C∈[0,)]

‖4F (C)‖ ≤ sup
C∈[0,)]

‖4H (C)‖ + sup
C∈[0,)]

‖4G (C)‖ ≤ 2X> .

Let %F = (G, H). Then, for any C ∈ [0, )], and for all %F(0), %FX (0) ∈ �(0, d0)
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‖F(C) − FX (C)‖ ≤
F(0) − FX (0) + ∫ C

0

4F (B)3B + ∫ C

0

� (
F(B)

)
− � (FX (B)

)3B.
This follows by writing (4.49) in integrated form, subtracting and taking norms.
Using the facts that

4F (B) ≤ 2X> and � is !−Lipschitz we obtain, for C ∈ [0, )],F(C) − FX (C) ≤ F(0) − FX (0) + 2X>) + !
∫ C

0

F(B) − FX (B)3B.
By the integral form of the Gronwall Lemma, it follows that for all C ∈ [0, )]:F(C) − FX (C) ≤ [

‖F(0) − FX (0)‖ + 2X>)
]

exp(!C).

Thus,
sup
C∈[0,)]

F(C) − FX (C) ≤ [
‖F(0) − FX (0)‖ + 2X>)

]
exp(!)).

By choice of initial conditions and X> sufficiently small we can achieve a X > 0
approximation. Finally, we note that the approximate system (4.48) is a function of
parameter \X = [\<, \6] ∈ R#X with =X = #6 + #< . �

4.8.3 Proof of Continuous-Time RNN Approximation Theorem (Linear in
Observation)

Proof. Recall equations (4.38). By approximation theory by means of two-layer
feed-forward neural networks [95], for any X> > 0 there exist embedding dimensions
#6 and #ℎ and parameterizations

\6 = {�6 ∈ R3H×#6 , �6 ∈ R#6×3G , �6 ∈ R#6×3H , 26 ∈ R#6},
\ℎ = {�ℎ ∈ R3G×#ℎ , �ℎ ∈ R#ℎ×3G , �ℎ ∈ R#ℎ×3H , 2ℎ ∈ R#ℎ }

such that for any
(
G, H

)
∈ �(0, 2d) ), and in the maximum norm,

‖6†(G, H) − �6f(�6G + �6H + 26)‖ ≤ X>
‖ℎ†(G, H) − �ℎf(�ℎG + �ℎH + 2ℎ)‖ ≤ X> .

Without loss of generality we may assume that �6 and �ℎ have full rank since, if
they do not, arbitrarily small changes can be made which restore full rank. By using
these parameterizations and embedding dimensions, we can rewrite (4.38) as

¤G = 50(G) + <
¤H = �6f(�6G + �6H + 26) + 4H (C)
¤< = �ℎf(�ℎG + �ℎH + 2ℎ) + 4<† (C)

(4.50)
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where, uniformly for
(
G(0), H(0)

)
∈ �(0, d0),

sup
C∈[0,)]

‖4H (C)‖ ≤ X>

sup
C∈[0,)]

‖4<† (C)‖ ≤ X> .

By removing the bounded error terms, we obtain the approximate system:

¤GX = 50(GX) + <X
¤HX = �6f(�6GX + �6HX + 26)
¤<X = �ℎf(�ℎGX + �ℎHX + 2ℎ)

(4.51)

Here <X (C) is initialized at <†(G(0), H(0)). Next, we obtain a stability bound
on the discrepancy between the approximate system (4.51) and the true system
(originally written as (4.8) and re-formulated as (4.50)). First, let F = (G, H, <),
FX = (GX, HX, <X) and define � to be the concatenated right-hand-side of (4.51).
Note that � is !−Lipschitz in the maximum norm, for some ! related to the
Lipschitz continuity of 50, approximation parameterization \X, and regularity of
nonlinear activation function f. Then we can write the true and approximate systems,
respectively, as

¤F = � (F) + 4F (C) (4.52a)

¤FX = � (FX), (4.52b)

where
sup
C∈[0,)]

‖4F (C)‖ ≤ sup
C∈[0,)]

‖4H (C)‖ + sup
C∈[0,)]

‖4<† (C)‖ ≤ 2X> .

Let %F = (G, H) and %⊥F = <; recall that %⊥F(0) is defined in terms of %F(0).
Then, for any C ∈ [0, )], and for all %F(0), %FX (0) ∈ �(0, d0)

‖F(C) − FX (C)‖ ≤
F(0) − FX (0) + ∫ C

0

4F (B)3B + ∫ C

0

� (
F(B)

)
− � (FX (B)

)3B.
By following the logic in Section 4.8.2, we have

sup
C∈[0,)]

F(C) − FX (C) ≤ [
‖F(0) − FX (0)‖ + 2X>)

]
exp(!)).

By choice of initial conditions and X> sufficiently small we can achieve a X > 0
approximation.
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Finally, we note that the approximate system (4.51) may be written as a recurrent
neural network of form (4.36) as follows. Consider the equations

¤GX = 50(GX) + �ℎ=X
¤IX = f(�6GX + �6�6IX + 26)
¤=X = f(�ℎGX + �ℎ�6IX + 2ℎ)

(4.53)

where we have defined (IX, =X) in terms of (HX, <X) by HX = �6IX and <X = �ℎ=X.
Now note that (4.53) is equivalent to (4.36), with recurrent state AX and parameters
\X given by:

• AX =

[
IX

=X

]
• �X =

[
0 �ℎ

]
• �X =

[
�6

�ℎ

]

• �X =

[
�6�6 0
�ℎ�6 0

]

• 2X =

[
26

2ℎ

]
Any initial condition on (HX (0), <X (0)) may be achieved by choice of initializations
for (IX (0), =X (0)), since �6, �ℎ are of full rank.

�

4.8.4 Random Feature Approximation
Random feature methods lead to function approximation for mappings between
Hilbert spaces - → . . They operate by constructing a probability space (Θ, a, F )
with Θ ⊆ R? and feature map i : - × Θ → . such that : (G, G′) := Eo [i(G; o) ⊗
i(G′; o)] ∈ L(.,. ) forms a reproducing kernel in an associated reproducing kernel
Hilbert space (RKHS)  . Solutions are sought within span{i(· ; o;)}<;=1 where the
{o;} are picked i.i.d. at random. Theory supporting the approach was established in
finite dimensions by Rahimi and Recht [335]; the method was recently applied in the
infinite dimensional setting in [295].
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We now explain the precise random features setting adopted in Section 4.5, and
hypothesis classes given by (4.26) and (4.31). We start with random feature functions
i(· ; o) : R3G → R, with o = [F, 1],

F ∈ R3G ∼ U(−l, l)
1 ∈ R ∼ U(−V, V)

i(G; F, 1) := tanh(F)G + 1),

(4.54)

and l, V > 0. We choose � i.i.d. draws of F, 1, and stack the resulting random
feature functions to form the map q(G) : R3G → R

� given by

q(G) :=
[
i(G; F1, 1F) . . . i(G; F� , 1�)

])
.

We define hypothesis class (4.26) by introducing matrix � : R� → R
3G and seeking

approximation to model error in the form<(G) = �q(G) by optimizing a least squares
function over matrix �. This does not quite correspond to the random features model
with - = . = R3G because, when written as a linear span of vector fields mapping
R
3G into itself, the vector fields are not independent. Nonetheless we found this

approach convenient in practice and employ it in our numerics.

To align with the random features model with - = . = R3G , we choose � = 3G

and draw ? functions q(·), labelled as { 5ℓ (·)} i.i.d. at random from the preceding
construction, leading to hypothesis class (4.31): we then seek approximation to
model error in the form <(G) = ∑?

ℓ=1 \ℓ 5ℓ (G).We find this form of random features
model most convenient to explain the learning theory perspective on model error.

4.8.5 Derivation of Tikhonov-Regularized Linear Inverse Problem
Here, we show that optimization of (4.27)

J) (�) =
1

2)

∫ )

0

 ¤G(C) − 50(G) − �q (
G(C)

)2
3C + _

2
‖�‖2

reduces to a Tikhonov-regularized linear inverse problem. Since (4.30) is quadratic
in �, there exists a unique global minimizer for �∗ such that mJ)

m�
(�∗) = 0. The

minimizer �∗ satisfies:

(/ + _�)�) = .
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where
/ = [q ⊗ q])
. = [q ⊗ ( ¤G − 50)]) .

and
[� ⊗ �]C := �(C)�) (C)

�) :=
1
)

∫ )

0
�(C)3C

for �(C) ∈ R<×=, �(C) ∈ R<×; .

To see this, observe that

J) (�) =
1

2)

∫ )

0
‖ ¤G(C) − 50

(
G(C)

)
− �q(G(C))‖23C + _

2
‖�‖2

=
1

2)

∫ )

0
‖ ¤G(C) − 50

(
G(C)

)
‖2,

+
〈
�q

(
G(C)

)
, �q

(
G(C)

)〉
− 2

〈
¤G(C) − 50

(
G(C)

)
, �q

(
G(C)

)〉
3C + _

2
〈�,�〉

and

mJ) (�)
m�

=
1

2)

∫ )

0
2�

[
q
(
G(C)

)
⊗ q

(
G(C)

) ]
− 2

[
( ¤G(C) − 50

(
G(C)

)
) ⊗ q

(
G(C)

) ]
3C + _�.

By setting the gradient to zero, we see that

�

[
1
)

∫ )

0

[
q
(
G(C)

)
⊗ q

(
G(C)

) ]
3C + _�

]
=

1
)

∫ )

0

[ (
¤G(C) − 50

(
G(C)

) )
⊗ q

(
G(C)

) ]
3C.

Finally, we can take the transpose of both sides, apply our definitions of ., / , and
use symmetry of / to get

[/ + _�]�) = . .
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C h a p t e r 5

LEARNING ABSORPTION RATES IN GLUCOSE-INSULIN
DYNAMICS FROMMEAL COVARIATES

Remark 5.0.1. This chapter is derived from the manuscript by Wang, Levine, Shi,
and Fox [425], which was published and spotlighted at NeurIPS Timeseries for
Health 2022 Workshop.

5.1 Abstract
Traditional models of glucose-insulin dynamics rely on heuristic parameterizations
chosen to fit observations within a laboratory setting. However, these models cannot
describe glucose dynamics in daily life. One source of failure is in their descriptions
of glucose absorption rates after meal events. A meal’s macronutritional content has
nuanced effects on the absorption profile, which is difficult to model mechanistically.
In this paper, we propose to learn the effects of macronutrition content from glucose-
insulin data and meal covariates. Given macronutrition information and meal times,
we use a neural network to predict an individual’s glucose absorption rate. We use
this neural rate function as the control function in a differential equation of glucose
dynamics, enabling end-to-end training. On simulated data, our approach is able to
closely approximate true absorption rates, resulting in better forecast than heuristic
parameterizations, despite only observing glucose, insulin, and macronutritional
information. Our work readily generalizes to meal events with higher-dimensional
covariates, such as images, setting the stage for glucose dynamics models that are
personalized to each individual’s daily life.

5.2 Introduction
Type-1 diabetes is a chronic condition of glucose dysregulation that affects 9 million
people around the world. Decades of research have produced dozens of glucose-
insulin dynamics models in order to understand the condition and help diabetics
manage their daily lives. These models are typically developed using physiological
knowledge and validated in laboratory settings. However, these mechanistic models
are incomplete; they are not flexible enough to fit observations outside of controlled
settings, due to unmodelled variables, unmodelled dynamics, and external influences.
As a result, these mechanistic models fail to fully describe an individual’s glycemic
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response to external inputs like nutrition.

Standard models, such as Dalla Man, Rizza, and Cobelli [99], focus on the glycemic
impact of carbohydrates in a meal—carbohydrates are broken down into glucose
molecules, then absorbed into blood. However, these models typically ignore
other macronutrients, such as fat, fiber, and protein, which are known to contribute
substantially to the amount and timing of glucose absorption into the blood. Indeed,
this phenomenon is the basis for the glycemic index of various foods. In reality,
individual glycemic responses to nutrition go beyond such a simple characterization.
For example, Zeevi et al. [451] identified multiple patient sub-groups with different
glycemic responses to complex foods.

In our paper, we propose a method that can leverage real-world nutrition and glucose-
insulin measurements to improve the fidelity of existing mechanistic models. While
we tailor this approach to the specific application of type-1 diabetes, we note that
our methodology fits within a broad paradigm of hybrid modeling of dynamical
systems [435, 237, 288, 349]. These approaches can improve mechanistic ODEs
using flexible components that learn from observations of the system and its external
controls.

5.3 Background on modelling glucose-insulin dynamics
Our paper builds on the tradition of modelling physiological dynamics via ordinary
differential equations (ODEs), [34, 397, 99, 181, 279]. Traditional models consider
ODEs of the form ¤G(C) = 5 (C, G(C)) + D(C), where G ∈ R= denotes physiologic states,
5 : R= → R

= encodes mechanistic knowledge of their interactions, and D : R→ R
=

represents external time-varying inputs into the system. Significant effort has gone
towards identifying D from insulin, exercise, and meal data, but D is typically
represented via a gastrointestinal ODE model [122, 97] or via hand-chosen functional
forms [182, 174, 257]. Both approaches for representing meals depend only on
carbohydrate consumption and do not consider other macronutrient quantities.

Our paper considers the minimal model of glucose-insulin dynamics by Bergman
et al. [34]:

¤� (C) = −21 [� (C) − �1] − � (C)- (C) + D� (C) (5.1a)
¤- (C) = −22- (C) + 23 [� (C) − �1] (5.1b)
¤� (C) = −24 [� (C) − �1] + D� (C) (5.1c)

where G = (�, -, �) and D = (D� , D�). Here, � : R→ R represents plasma glucose
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concentration, � : R → R represents plasma insulin concentration, - : R → R

represents the effect of insulin on glucose, �1, �1 ∈ R represent basal glucose and
insulin levels, respectively, and 21, 22, 23, 24 ∈ R represent rate constants for the
interactions. Importantly, D� : R → R represents the appearance of glucose in
the blood (e.g. absorbed from nutrition in the gut) and D� : R→ R represents the
appearance of insulin in the blood (e.g. absorbed from subcutaneous injection or
drip). See Gallardo-Hernández et al. [140] for a modern exposition and the units of
each quantity.

Modelling nutrition absorption from discrete meal events. When simulating
the daily management of diabetes, the continuous functions D� , D� are typically
derived from observed discrete events (e.g. meals and insulin injections). Each
discrete-time event 48 = (C8, <8) consists of a timestamp C8 and a covariate <8. If 48
is a meal event, <8 may consist of macronutritional information, an image of the
food, or both. Pharmacodynamics models are often used to map the insulin dose to a
continuous absorption profile D� that is compatible with the above model. However,
the dependence of glucose absorption D� on full macronutritional content of a meal
event is less well-understood; thus we focus on modelling D� in this paper.

Mechanistic D� models often derive D� as the solution to another set of heuristic
ODEs[99]. However, this approach introduces additional handcrafted parameteri-
zations to explain quantities that are unobservable outside of the lab setting, such
as the glucose concentration in the stomach over time after a meal. A simpler yet
effective approach is to directly model D� phenomenologically, and estimate it from
data [174, 257]. Instead of deriving D� from an intricate model of the human body,
this approach represents D� directly using a parametric function adapted from data.

5.4 Phenomenologically modelling the absorption rate
Let each meal event 8 be 48 = (C8, <8) where C8 ∈ R is the meal time and <8 ∈ R" is
a vector of meal covariates, such as its macronutrition content or even a photo of the
food. We assume we have data on a set � of these meal events. For each meal 8, we
associate a parametric function 08 : R+ → R+, such that 08 (C) is the absorption rate
of the meal at time C. The overall control function D� is then a sum over the events:

D� (C) =
|� |∑
8=1

08 (C). (5.2)

08 is usually compactly supported, since meals only affects glucose locally in time.
Decomposing D� into a sum allows us to model the effect of each meal individually,
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instead of all at once.

A simple heuristic choice is a square function 08 (C) = 681[0,F) (C − C8)/F where
F is the width of the square as a free parameter and 68 ∈ R is the amount of
glucose produced from the meal. Another choice is the bump function 08 (C) =
681[0,∞) (C − C8) (4−11 (C−C8) − 4−12 (C−C8))/13 where 11 and 12 are free parameters and
13 is a normalization constant [10, 389]. For both choices, 68 must be estimated by
the patient or by a nutritionist (e.g. when <8 is a food image), which can be highly
inaccurate. More importantly, the shape of these parameterizations does not depend
on <8, even though foods vary in absorption profiles.

A neural phenomenological model. The form of Equation (5.2) suggests a natural
extension that takes advantage of the flexiblity of neural networks. Given a meal
event 48 = (C8, <8), we model its absorption rate using a neural network 0\ such that

08 (C) = 68 · 0\ (C − C8, <8)1[0,∞) (C − C8). (5.3)

We make use of the estimated glucose content 68 following prior approaches since it
is often already available in the meals dataset, and gives an expert-informed glucose
absorption scale factor. Alternatively, 68 can be included as another input to 0\
instead of being a multiplicative constant. Even if the estimated 68 is inaccurate,
0\ has the flexiblity to rescale 68 based on the observed <8. Most importantly, our
parameterization differs in that its shape can adapt to the meal covariates <8. We
share one neural network 0\ across all meal events, allowing it to generalize to
macronutritional information similar to, but not exactly the same as, meals from
the training set. Altogether, Equations (5.1),(5.2),(5.3) define our neural differential
equation model.

End-to-end training on partial observations. Having defined our parametric
function, we now discuss how to learn the parameters \ in a setting that is realistic
to settings outside of the laboratory. Recent technologies like continuous glucose
monitors and artificial pancreases enable real-time measurements of glucose levels
and insulin dosage. However, most of a patient’s physiological state is unobserved.
Within Equation (5.1), we do not observe insulin � and its effect - .

Let G be the state of our differential equation from Equation (5.1). We assume our
temporal data consists of noisy partial observations over time {(C: , H: )}):=1, where
H: = �G(C: ) + Y. We assume the projection operator � : (�, -, �) ↦→ (�, 0, 0) and
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Y is a zero-mean i.i.d. noise process. Given initial condition G(C0) = G0, we can
numerically integrate Equation (5.1) with a given D� and our parameterized D� (· ; \)
to obtain an estimate Ĥ(C: ) = �Ĝ(C: ) where Ĝ(C: ) = Integrate( 5 , D, G0, C0, C: ). We
then minimize the mean squared error objective ! (\) = ∑)

:=1 ‖ Ĥ(C: ) − H: ‖22/) with
respect to \ to fit our parametric model [134]. However, this procedure requires us
to know G0, which is not fully observed in practice.

Many methods exist for performing such under-determined state and parameter
estimation; often, the state-estimation component is performed using filtering or
smoothing [48, 237, 82, 79, 359], but can also be learnt through other data-driven [23,
205] or gradient-descent [304] methods. In our experiments, we estimate an initial
state G0 by using a sequence of � observations (� (C−�+1), � (C−�+2), . . . , � (C0)) as a
forcing functionwhen forward integrating Equation (5.1), described in Section 4.4.3.3.
This simple procedure was sufficient for our model to learn a good \, likely due to
the rapidly decaying autocorrelation of (5.1).

5.5 Experiments
We evaluate our proposed method on simulated data. We simulate 28 days worth
of glucose, insulin, and meal data for one virtual patient using Equation (5.1). We
evaluate our method against baseline methods with and without glucose observation
noise. We also evaluate each method in the realistic setting where the time of each
meal is noisily reported, since in daily life, the recorded meal time is often only
approximately correct.

Data generation. For each day, we generate four meals: breakfast, lunch, din-
ner, and a late snack. Meals occur uniformly at random within 6-9AM, 11AM-
2:30PM, 5-8PM, and 10-11PM, respectively. Each meal contains a glucose amount
uniformly random within 5-65g, 20-70g, 40-100g, and 5-15g respectively. For
each meal event 8, we convert grams of glucose to plasma glucose concentra-
tion, assuming the individual has 50dl of blood, and use the result as 68. To
simulate different absorption profiles, each meal is a convex mixture of three
“absorption templates”. Each template 9 is given by delayed bump function
0 9 (C) ∝ 681[0,∞) (C − C8 − 3) (4−11 (C−C8−3) − 4−12 (C−C8−3)), each with its own set of pa-
rameters (11, 12, 3) ∈ {(0.04, 0.09, 5min), (0.08, 0.13, 5min), (0.03, 0.04, 30min)},
visualized in Figure 5.1. The templates represent regular absorption, fast absorp-
tion, and slow absorption, respectively. The macronutrition of meal 8 is then the
vector of mixture coefficients <8 ∈ R3 such that meal 8 has absorption profile
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Figure 5.1: Left: (Top) “Absorption templates” used to generate D� . (Bottom) 5
Samples of ground truth and learned D� for meals from the test set. Right: Glucose
forecast and predicted absorption rates of each model over a 2 day window from the
test trajectory.
08 (C) =

∑3
9=1 <8 90

9 (C). To ensure 08 is smooth, we average each value 08 (C) with a
grid of 50 points from the past 5 minutes.

For each meal time C8, we simulate an insulin bolus dose at a time sampled
from N(C8, (10min)2). We sample a glucose to insulin conversion for each meal
from N(7g/U, (1g/U)2). To simulate imperfect measurements, we add a relative
# (0, 0.052) observation noise. To simulate imperfect meal time recordings, we add
# (5min, (2.5min)2) noise to meal times. We use a square function D� , correspond-
ing to a constant insulin absorption rate, over 30 minutes, which we assume to be
known to every model. We use parameters from Andersen and Højbjerre [18] for
Equation 5.1, and we use Euler integration with a step size of 0.1 minutes to produce
an observation every 5 minutes.

Experimental setup. We split our generated data temporally into 3 disjoint training,
validation, and testing trajectories. We optimize using Adam [208] for 1000 iterations,
with a half-period cosine learning rate schedule following a linear ramp up to 0.2
over the first 30 iterations. We use minibatches of 512 sequences of 4 hour windows
(48 observations) and use 10 observations for estimating the initial condition. We
minimize the mean squared error on the observed glucose values with respect to
the parameters \ of 0\ , keeping the other parameters of Equation (5.1) fixed. We
parameterize our neural 0\ using a feedforward network with 2 hidden layers of
64 units and GELU activations. We found that appropriately scaling the input and
outputs of 08 is crucial for stable optimization.

Evaluations. We compare our neural absorption function against the two common
parameterizations of D� from Section 5.4, fit via gradient-based optimization.
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Exact timestamps Noisy timestamps

08 Exact observations Noisy observations Exact observations Noisy observations

Neural 0.95mg/dl 3.66mg/dl 1.48mg/dl 3.63mg/dl

Bump 9.52mg/dl 10.11mg/dl 9.53mg/dl 10.24mg/dl

Square 11.60mg/dl 11.53mg/dl 11.65mg/dl 11.56mg/dl

Table 5.1: Forecast RMSE computed over all possible 4 hour windows of the test set
trajectory, reflecting the window size used for training.
We approximate the piece-wise constant square function using a difference of
sigmoids; otherwise the width cannot be learned. Our neural model is able to closely
approximate the ground truth D� , especially in the tails, as shown in Figure 5.1 (left).
This results in significantly better forecasts, and our neural model closely tracks the
ground truth glucose values and absorption rates, even extrapolating to durations
much longer than what was seen in training. We visualize such long term forecasts
in Figure 5.1 (right). We also report the forecast RMSE on the test set in Table 5.1.
Our neural model attains lower forecast errors across all settings. In the noiseless
case, our neural model is 10x more accurate than heuristic parameterizations. The
RMSEs generally increase as we add noise, though the bump and square functions
are already such poor forecasters that noise does not worsen their errors significantly.

5.6 Discussion
Our experiments show that our proposed method is a promising way to learn
absorption profiles that depend on macronutritional information. Our approach
readily generalizes to handle arbitrary meal covariates beyond macronutritional
information, such as food images or descriptions. Although this paper only uses
synthetic data, our method can complement any glucose dynamics model of real-
world data. Learning accurate dynamics from data, however, remains a challenging
problem. We see our method as a vital component in future data-driven hybrid
models of glucose-insulin dynamics.



162

C h a p t e r 6

LEARNING ABOUT STRUCTURAL ERRORS IN
MODELS OF COMPLEX DYNAMICAL SYSTEMS

Remark 6.0.1. This chapter is derived from the manuscript in preparation by Huang,
Levine, Schneider, Shen, Stuart, and Wu [187].

6.1 Introduction
Numerical simulation is at the heart of modeling, predicting, and understanding
dynamical systems that are too complex to be amenable to analytical solution.
Complex dynamical systems here extend from molecular dynamics with quantum
effects to the planetary scales of weather and climate. The range of dynamically
important scales in these systems can be vast, for example, in case of the atmosphere,
extending over 13 orders of magnitude from the micrometers of cloud droplets and
aerosols to the tens of thousands kilometers of planetary waves. The number of
degrees of freedom that would need to be resolved for a faithful simulation of such
systems (e.g., & 1021 for a typical atmospheric boundary layer flow) often exceeds
what will be computationally feasible for the foreseeable future [377].

Instead of direct numerical simulation, a variety of approaches have been devised
to approximately resolve the most important degrees of freedom in numerical
simulations. The degrees of freedom that remain unresolved but, because of
nonlinear interactions, are still important for the resolved degrees of freedom are then
represented by closure models, which link what is unresolved to what is resolved.
The state - of the approximate system evolves according to dynamics of the form

¤- = 5 (-; \P), (6.1)

where 5 may depend on derivatives of the state -; hence, the system may represent
partial differential equations. The system depends on empirical parameters \P that
appear in closure models. For example, in large-eddy simulations of turbulent flows,
the most energetic “large eddies” are explicitly resolved in the dynamics represented
by 5 . The effect of the unresolved scales is modeled by subgrid-scale models, such
as the classical Smagorinsky model [390], which depend on empirical parameters \P
(e.g., the Smagorinsky coefficient). Similar semi-empirical models are used in many
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other fields. They encode domain-specific knowledge, and their parameters \P need
to be calibrated with data.

Data H that are informative about the system come in a variety of forms, such as direct
measurements of the time evolution of the state - or more indirect mappings of the
state - onto observables, which may, for example, be statistical aggregates of state
variables or convolutions of state variables with kernels. Convolutional data arise,
for example, when representing the effect of a state variable such as temperature on
the radiative energy fluxes that a satellite measures from space. Generally, we can
write that the state maps to observables via an observation operatorH , such that

Ĥ = H(-). (6.2)

The challenge is that simulated observables Ĥ generally are biased estimates of actual
data H. The actual data H are affected by measurement error, and the simulated data
Ĥ are affected by structural errors in the approximate dynamical system (6.1). For
example, while a general feature of turbulence is to enhance mixing of conserved
quantities, turbulent mixing is not always diffusive in character. Therefore, diffusive
subgrid-scale models such as the Smagorinsky model are not always structurally
correct, especially in convective situations with coherent flow structures [179].
This can lead to biases that, for example, adversely affect the calibration of model
parameters \P.

The purpose of this paper is to summarize principles of, and algorithms for, learning
about structural error models that correct semi-empirical closure models. Wholesale
replacement of semi-empirical closure models with neural networks and other deep
learning approaches promises to overcome the structural strictures of existing closure
models through more expressive models; it has recently received much attention
[254, 430, 343, 283, 118, 459, 372, 60]. However, existing semi-empirical closure
models encode valuable domain-specific knowledge. Learning flexible corrections
to these models is often less data hungry, more interpretable, and potentially more
generalizable than replacing them wholesale.

What follows is a distillation of experiences we gained in studying various complex
dynamical systems. Our goal is to provide guidelines and algorithms that can lead to
a broad-purpose computational framework for systematically learning about model
error in dynamical systems. We focus two important parts of error modeling: (i)
how to construct an error model, and (ii) how to calibrate an error model.
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Our approach to constructing error models builds upon but goes beyond the classical
work of Kennedy and O’Hagan [206], who accounted for model error through an
external bias correction term X(-; \E), parameterized by parameters \E and inserted
at the boundary between output from a computer model Ĥ = G(\P) and data H:

H = Ĥ + X(-; \E) + [. (6.3)

Here, G(\P) = H[- (\P)] corresponds to solving (6.1) for the time series of the state
- , which depends parameterically on \P, and then applying the observation operator
(6.2); hence, G is a mapping from the space of model parameters \P to the space of
observations H. The noise [ represents additional (e.g., observation) errors, assumed
to have zero mean. In this approach, the model parameters \P remain fixed (i.e.,
a property of G) while parameters \E in the error model X are tuned such that the
residual H − Ĥ has a small magnitude and zero mean. This approach of externalizing
model error for bias correction has been applied and further expanded in many
subsequent papers [e.g., 175, 428, 63, 409, 69]. A key advantage of the external
model error approach is that the model producing Ĥ can be treated as a black-box,
which facilitates use of this approach across different domains. State variables -
and residuals H − Ĥ form input-output pairs from which the error model X(-; \E) can
be learned, for example, with supervised learning1 approaches, usually in an offline
setting separate from learning about the model parameters \P.

However, the external model error approach has several drawbacks:

• It is difficult to incorporate physical (or other process-based) knowledge or
constraints (e.g., conservation laws) in the error model X(-; \E) [63].

• It cannot improve predictions for quantities other than the observations H on
which the error model X(-; \E) has been trained.

• It leads to interpretability challenges because X(-; \E) is a catch-all error term
that typically represents the sum total of errors made in several, and often
disparate, closure models.

To address these drawbacks, a few researchers have started to explore an approach
that internalizes model error [394, 171, 362]. Such an internal model error approach
embeds ! error models X; (-; \ (;)I ) (; = 1, . . . , !) within the dynamical system, at

1Supervised learning refers to regression or interpolation of data.
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the places (e.g., in closure models) where the errors are actually made. Let their
collection be written as

X(-; \I) :=
{
X;

(
- ; \ (;)I

)}!
;=1

(6.4)

so that we can write for the overall system

¤- = 5

(
-; \P, X(-; \I)

)
. (6.5)

The error models internal to the dynamical system are chosen so that the error-
corrected computer model Ĥ = G(\P; \I) = H[- (\P; \I)] provides unbiased
estimates of the data H:

H = G(\P; \I) + [, (6.6)

where the additional errors [ are still assumed to have zero mean. Figure 6.1
illustrates and contrasts the external and internal approaches to modeling structural
errors.
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Figure 6.1: External and internal approaches to modeling structural errors in complex
dynamical systems.

Such an approach has found applications, for example, in turbulence modeling [123,
303, 85, 442, 321, 424, 440]. By incorporating the structural error models X(-; \I)
inside the dynamical system, the error models can in principle lead to improved
predictions even of quantities that were not used to train the error models. The
error models can be learned alongside the model parameters \P in an online setting.
They also are more amenable to interpretation because they are included in the
places where errors are actually made. A potential downside of internalizing model
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error is that the effects of the structural errors X map onto data H only through the
solved state - of the dynamical system, and residuals H − Ĥ are generally not directly
informative about how the structural errors X(-; \I) depend on state variables -;
thus, learning about structural errors X(-; \I) can generally not be accomplished
with direct supervised learning approaches. Instead, residuals H − Ĥ only provide
indirect information about structural errors X(-; \I). Additionally, if derivatives of
the dynamical system 5 with respect to parameters are not easily available, or if the
dynamical system is not differentiable, gradient-based methods for learning about
the model errors X(-; \I) are difficult or impossible to use.

Here we show various ways of constructing models for structural errors and demon-
strate how one can learn about the structural errors from direct or indirect data in the
absence of derivatives of the dynamical system. As error models, we will consider:

• Gaussian processes, as in Kennedy and O’Hagan [206];

• Models assembled from dictionaries of terms (e.g., involving differential
operators), as in the data-driven discovery of partial differential equations [366,
360, 365, 448, 385, 234];

• Neural networks, for their expressivity [254, 55, 343, 283, 449, 56];

• Stochastic models, because without a clear scale separation between resolved
and unresolved degrees of freedom, homogenization theory suggests that
closure models generally should be stochastic [e.g., 465, 271, 136, 306];

• Non-local models, because structural errors may be non-local in space [460,
463, 115, 96, 307], in time [273, 426, 252], or in both [73].

We will discuss how to learn about such error models both from direct and indirect
data. Supervised learning of various types of error models X; from direct data has
been performed in a number of settings, for example, to discover terms in differential
equations or neural network closure models from residual time tendencies that give
direct information about the error model that is sought [e.g., 59, 424, 440, 236].
However, data directly informative about error models, such as high-resolution time
tendencies, are not always available. When training an error model on time tendencies,
it can also be difficult to ensure both stability of the dynamical system including
the error model and satisfaction of physical constraints (e.g., energy conservation)
[e.g., 56]. Training an error model with indirect data, in an inverse problem rather
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than supervised learning setting [e.g., 442, 376, 456], can be advantageous in those
circumstances. We demonstrate how it can be accomplished.

The principles and algorithms we will discuss are broad purpose and applicable
across a range of domains and model complexities. To illustrate their properties in
a relatively simple setting, we use two versions of the Lorenz 96 [261] dynamical
system: the basic version of the model and its multiscale generalization [133].
Section 6.2 discusses the calibration of internal error models with direct or indirect
data and the enforcement of constraints such as conservation properties. Section 6.3
introduces various ways of constructing error models. Section 6.4 introduces two
Lorenz 96 systems and then proceeds to present various concepts and methods
through numerical results for these systems. Section 6.5 is organized similarly to
the previous section, but concerns a model of the human glucose-insulin system.
Section 6.6 summarizes the conclusions.

6.2 Calibrating Error Models
We first summarize several important aspects of calibrating internal error models,
including (i) direct or indirect data, (ii) gradient-based or derivative-free optimization,
and (iii) enforcing constraints (e.g., sparsity or physical laws). We discuss these
aspects with a generic internal error model X(-; \I), which may represent any one of
the error model types we will introduce later.

6.2.1 Data Availability
6.2.1.1 Direct Data

Direct data to calibrate X are defined as “labeled” input-output pairs {- (C8), X(- (C8))}#8=1,
where 8 denotes a time index. Consider the additive error model

¤- = 5 (-; \P) + X(-; \I)

as an example. A fine temporal resolution of - (C) is usually needed to approximate
¤- − 5 (-; \P) and obtain estimates of the error X(-; \I) as a residual. With this
method, it becomes challenging to obtain reliable direct data when the trajectories ¤-
are noisy, for example, when the dynamical system is chaotic [59]. Furthermore it
may not be possible to observe the entirety of - . This may be handled as a missing
data problem [256], and could be handled by joint parameter-state estimation for
example using data assimilation; see [42, 83].

An additional complication with using direct data is ensuring the stability of the
dynamical system with the calibrated error model X(·). Although with direct data,
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we can get more control of the accuracy of the error model itself, the calibrated
error model often leads to unstable simulations of the dynamical system with the
error model [29, 54]. There are several ways to mitigate the instability introduced by
the error model, e.g., adopting a structure that ensures physical constraints [447],
enforcing physical constraints [38], ensuring stability by bounding the eigenvalues of
the linearized operator, and limiting the Lipschitz constant of X(·) [383]. However, a
systematic approach to ensure stability is lacking.

6.2.1.2 Indirect Data

Instead of assuming access to direct data {-, X(-)}, the error model can also be
calibrated with indirect data by solving an inverse problem associated with (6.32)
(i.e., solve for the most likely parameters \P, \I given the model G and data H). Using
indirect data involves simulating the dynamical system with the error model as in
(6.5); therefore, the calibration procedure with indirect data favors error models
that lead to stable simulations, an important advantage over the direct methods.
Typical examples of problems giving rise to indirect data include time-series of
- for which the resolution is not fine enough to extract direct data for calibration
[47], time-averaged statistics of - [373] or dynamical systems which are partially
observed [325]. More generally, indirect data can also be interpreted as constraints
on - , and thus physical constraints can be enforced via augmenting indirect data.

6.2.2 Methods of Calibration
Using direct data {-, X(-)} for calibration leads to a regression problem, which can
be solved with standard methods for a given parameterization of the error model
(e.g., least squares fit for dictionary learning, gradient descent methods for neural
network). By contrast, using indirect data for calibration leads to an inverse problem
associated with Eq. (6.32). Indirect methods can be linked to direct methods by
framing as a missing data problem [256] and alternating between updating the
missing data and then updating the calibration parameters using learned direct data,
for example using the EM algorithm [285]. However, in this section we focus on
the calibration in the inverse problem setting, without introducing missing data,
and discussing gradient-based and derivative-free optimization methods and how to
enforce constraints.
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6.2.2.1 Gradient-based or Derivative-free Optimization

Eq. (6.32) defines a forward problem in which G, \P, \I and noise [ can be used to
generate simulated data. The associated inverse problem involves identifying the
most likely parameters \P, \I for G, conditioned on observed data H. To formalize
this, we first define a loss function

L(\) =1
2
��H − G (

\P; \I
) ��2
Σ
, (6.7)

where \ = [\I, \P] and Σ denotes the covariance of the zero-mean noise [.2 The
inverse problem

\∗ = arg min
\

L(\)

can be solved by gradient descent methods once the gradient

3L
3\

=
3G
3\

)

Σ−1(H − G) (6.8)

is calculated. In practice, the action of the term 3G/3\) is often evaluated via
adjoint methods for efficiency. Although the gradient-based optimization is usually
more efficient when G is differentiable, the evaluation of G can be noisy (e.g.,
when using finite-time averages to approximate infinite-time averaged data [116]) or
stochastic (e.g., when using stochastic processes to construct the error model). In
these settings, gradient-based optimization may no longer be suitable, and derivative-
free optimization becomes necessary. In this paper we focus on Kalman-based
derivative-free optimization for solving the inverse problem; 6.7 briefly reviews a
specific easily implementable form of ensemble Kalman inversion (EKI), to illustrate
how the methodology works, and gives pointers to the broader literature in the field.

6.2.2.2 Enforcing Constraints

There are various types of constraints that can be enforced when calibrating an
error model. Two most common constraints are sparsity constraints and physical
constraints (e.g., conservation laws). Here we present the general concept of enforcing
these two types of constraints in calibration, and 6.7 presents more details about
using EKI to solve the corresponding constrained optimization problems.

2By | · |�, we denote the covariance-weighted norm defined by |E |� = E∗�−1E for any positive-
definite �.
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To impose sparsity on the solution of \I, we aim to solve the optimization prob-
lem [374]

L(\;_) :=
1
2
��H − G (

\P; \I
) ��2
Σ
+ _ |\I |ℓ0 ,

\∗ = arg min
\∈V

L(\;_),
(6.9)

where V = {\ : |\I |ℓ1 ≤ W}. The regularization parameters W and _ can be
determined via cross-validation. In practice, adding the ℓ0 constraint is achieved by
thresholding the results from ℓ1-constrained optimization. The detailed algorithm
was proposed in [374] and is summarized in 6.7.

In many applications, we are also interested in finding a solution of \I that satisfies
certain physical constraints, e.g., energy conservation. To impose physical constraints
on the solution of \I from EKI, we first generalize the constraint as:

V = {\ : R(\I) ≤ W}. (6.10)

Here, R can be interpreted as a function that evaluates the residuals of certain
physical constraints (typically, by solving Eq (6.5)). The constraint function R can
be nonlinear with respect to \I. Taking the additive error model ¤- = 5 (-) + X(-; \I)
as an example, the function R corresponding to the energy conservation constraint
can be written explicitly as

R(\I) =
��� ∫ )

0

(
〈X(- (C); \I), - (C)〉

)
3C

���, (6.11)

which constrains the total energy introduced into the system during the time interval
[0, )]. Alternatively, a stronger constraint can be formulated as

R(\I) =
∫ )

0

��〈X(- (C); \I), - (C)〉��3C, (6.12)

which constrains the additional energy introduced into the system at every time step
within the time interval [0, )]. The notation 〈·, ·〉 denotes the inner product. Both
forms of constraint in (6.11) and (6.12) can be implemented by using augmented
observations, i.e., including the accumulated violation of energy constraint as a
additional piece of observation data whose true mean value is set to zero.

6.3 Constructing Error Models
To be concrete we highlight three different approaches to representing structural
errors: dictionary learning, Gaussian processes, and neural networks; however the
reader may wish to consider the use of other representations for structural error,
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within the overarching framework proposed here. For these three approaches, existing
work mainly focuses on constructing deterministic error models that are locally
dependent on state variables; however the approaches can all be extended to the
construction of stochastic error models or can be made non-locally dependent on
state variables as described in Sections 6.3.4 and 6.3.5. For simplicity, we define the
error models for the whole collection of structural errors X(-, \I) as written in (6.5);
however, we can also define and learn them independently for each component of the
structural error model X; (-, \;I) for ; = 1, . . . , !.

6.3.1 Dictionary Learning
If a set of candidate terms in error models is known or can be approximated, an error
model can be constructed via learning from a dictionary of � candidate terms,

X(-; \I) =
�∑
9=1
U 9q 9 (-; V 9 ), (6.13)

where \I = {U, V} and q 9 (-; V 9 ) denote user-specified, parametric basis functions
that can, for example, include differential operators [59, 360, 366, 365]. In practice,
it is difficult to know all suitable basis functions a priori, and thus it is common to
include redundant basis functions in the dictionary. Basis functions can then be
pruned based on data by imposing sparsity constraints on the coefficients U 9 . Such
sparsity constraints have proven to be beneficial in the construction of data-driven
models of dynamical systems [59, 360, 366, 365, 374]. They are also commonly
used in compressed sensing [110], where dictionary learning has been widely used.

An advantage of using dictionary learning is the potential interpretability of the
constructed error model, arising because the error model is a linear combination
of user-specified and hence interpretable basis functions. On the other hand, this
approach can be overly restrictive when the dictionary of basis functions {q 9 } is
misspecified, resulting in an insufficiently expressive error model.

6.3.2 Gaussian Processes
Another option of constructing an error model is via Gaussian processes (GPs) [436],3

X(-; \I) ∼ GP (<,K) , (6.14)
3We emphasize that here we use only the mean of the GP and the methodology is simply a form

of data-adapted regression; at this point we are not utilizing any of the uncertainty quantification that
may be used with GPs.
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where < : X ↦→ R denotes the mean of X and K : X × X ↦→ R represents a kernel.
Given data at � different points - ( 9) for 9 = 1, 2, ..., �, the mean of the error model
can be written as a linear combination of basis functions,

<(-) =
∑
9

U 9K(- ( 9) , -;k), (6.15)

where k denotes the hyper-parameters of the kernel K. Therefore, the parameters
that characterize the error model become \I = {U, k} if the mean of a GP is used to
represent the model error term X. The GP approach requires the choice of a kernelK ,
which then determines the kernel functionsK(- ( 9) , ·) in Eq. (6.15). This may appear
restrictive, but we highlight the fact that the hyper-parameters of K are learned from
the data; thus the set of functions in which the solution is sought is data-adapted.
This confers a potential advantage over dictionary learning, in particular for problems
lacking in strong prior knowledge about the functional form of the model <(·) to be
learned. In the case of indirect data, the locations - ( 9) must also be chosen a priori
(or learnt as additional parameters).

Because of the similar forms of Eqs. (6.15) and (6.13), the GP shares similar
shortcomings as dictionary learning when the kernel K is misspecified, even in
the presence of hyper-parameter learning. In practice, a more sophisticated kernel
K =

∑
8

K8 is often constructed from some basic kernels K8 [163, 100, 229]. If a
redundant set of basic kernels is used, sparsity constraints can be imposed in a similar
way as in dictionary learning to prune the kernel set. A further limitation of using
GPs is the computational cost, which grows exponentially with the dimension of X.
This pathology can be ameliorated by representing the GP as a linear combination of
Random Fourier Features [336], which allows us to recast a GP as a dictionary-based
approach in which the bases q 9 are drawn randomly from a special distribution
known to reproduce a kernel of interest.

6.3.3 Neural Networks
Compared to dictionary learning, neural networks are more expressive, and they are
more scalable than GPs, as the latter suffer from the curse of dimensionality if the
model has high-dimensional input. Neural networks can also be used to construct an
error model,

X(-; \I) = NN(-; \I), (6.16)

where NN denotes a neural network and \I the coefficients (biases and weights)
of the neural network. While neural networks are expressive and scalable, it is
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more difficult to enforce stability of a dynamical system with a neural network
error model [54]. This is mainly because the nonlinearity introduced by a neural
network is often more difficult to analyze compared with dictionary learning, for
which we explicitly specify basis functions and thus can avoid using those that lead
to instability; it is also more difficult to analyze than GP based learning because the
latter is easier to interpret, as the kernels are hand-picked and then tuned to data. In
Section 6.2.2.2, we discuss a general approach to enhancing stability by enforcing
energy constraints in the context of learning from indirect data.

6.3.4 Stochastic Extension
In the preceding sections, we briefly summarized commonly used tools for construct-
ing error models. All of those models were deterministic, with fixed parameters \I.
To quantify uncertainties, we can take a Bayesian perspective, view the unknown
parameters as random variables, and infer the distributions of those parameters given
the data. We can then propagate the uncertainties of those parameters to the simulated
state - and predicted observations Ĥ via Monte Carlo simulations. Although this
is a standard approach to quantifying uncertainties, it cannot directly account for
the impact of neglected information of unresolved scales upon the resolved state - .
The randomness of the unresolved state can have an order one impact upon -; this
issue is particularly prevalent in applications without a clear scale separation, such
as turbulence, but can also happen in scale-separated problems. In such a scenario,
directly modeling this impact as randomness in the resolved state becomes more
appropriate, and it can be achieved by further adding a stochastic processes to the
deterministic error model:

X

(
-; \I

)
= Xdet(-; \det) +

√
f2(-; \ran) ¤,, (6.17)

where det indicates a deterministic model,, denotes the Wiener process and the
overall unknown parameters are defined as \I = {\det, \ran}. In practice, the above
formulation can be further generalized by using stochastic processes (e.g., with
desired temporal correlations) other than the Wiener process.

Fitting stochastic models to time-series data has been explored in some previous
works [433, 354, 353, 309]; a common problem when applying these methods is
the inconsistency between data and the incremental structure of the Gaussian noise
driving the model as time step is approaching zero [455, 318, 310, 44]. A common
practice to address this issue is the multi-scale use of data, e.g., via subsampling [454,
325, 308, 317, 28, 2]. Some previous works also explored Kramers–Moyal averaging
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with finite sampling rate correction [180, 222, 67]. On the other hand, fitting a
discretized version of stochastic processes to time-series data has been explored
using autoregressive models [20, 265]. For some dynamical systems, the unresolved
state has conditional (with respect to the resolved state) Gaussian statistics [78, 77],
and then fitting the stochastic models can be achieved using analytically derived
likelihoods.

In the absence of the whole trajectories of time-series data, some recent works
started to explore fitting stochastic models to statistics of time-series data [219, 218,
200, 376]. Using time-averaged data to estimate linear SDEs has been studied for
decades to account for climate variablity [168, 135, 320], and extension to nonlinear
SDEs was discussed in [167]. In addition, fitting discretized versions of stochastic
processes with statistics of time-series data has also been explored in [297] using
autoregressive models.

6.3.5 Representing Non-local Effects
Spatial Non-locality: The states - (C) for approximate models and their structural
corrections typically consider - (C) as a discretized spatial field. Most traditional
closure models are formed locally; that is, they rely on the assumption of local
dependence on - (C, A), where - (C, ·) : R? ↦→ R is a spatial field, and A ∈ R?

represents the spatial coordinate. For some applications, it is useful to consider
non-local effect in the error model. Indeed, our formulations of the approximate
physical model in (6.1) and models for structural error in Sections 6.3.1 to 6.3.3
are well-specified for scalar (local, component-wise) or vector-valued (non-local) - .
Moreover, we note that non-local functions of the state - (C) are best conceptualized
as function-valued operators—while they take as inputs a vector of neighboring
coordinates from - (C), this vector represents a discretized spatial function. Thus,
when designing spatially non-local closures, it is often sensible to build them to be
consistent across different spatial discretizations.

In the case of neural networks, we can build spatially non-local closures with
convolutional neural networks (CNNs); the Fourier Neural Operator (FNO) [246] or
deep operator network (DeepONet) [269] provide an extension to an operator limit.
Similarly, Gaussian Processes (GPs) and Random Feature Methods (a dictionary-
based formulation of GPs) can be designed with spatially non-local vectorized inputs
from - (C); recent theoretical work has also allowed these basic methods to be taken
to a continuous operator limit [296, 80].
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As an emerging topic in the context of data-driven modeling, some recent works
have explored non-local diffusion [115, 96, 113, 307] and spatially non-local
modeling [460, 463, 73]. In this work, we capture the spatially non-local dependence
on - via a data-driven convolution kernel:

X

(
- (C, A); \I

)
=

∫
A ′∈Ω

Xloc(- (C, A′); \loc)C(A − A′; \non-loc)3A′ (6.18)

where Ω ⊂ R? represents a subset of R? that contains A , and C : R? ↦→ R denotes a
convolution kernel with hyper-parameters \non-loc. The overall parameterization is
defined by \I = {\loc, \non-loc}, such that the unknown parameters in the local error
model Xloc and the convolutional kernel C can be jointly estimated.

Note that hyper-parameters can be made state-dependent: \non-loc(- (C, A); ^); then
the additional unknowns ^ can be learnt, appending it to \I. Similarly, learning a
nonlinear integral kernel has been discussed in [215] and showed as a continuous
generalization of the transformer architecture [417]. The form of non-local closure
in (6.18) draws inspiration from a series of works about non-local modeling [113], in
which Xloc corresponds to a local Laplace operator. Some mathematical foundations
of non-local operators and calculus were summarized in [113], and the connection to
fractional differential operators was illustrated in [64].

Temporal Non-locality

Non-locality in time – memory – is also important. Generically, any form of variable
elimination or coarse-graining results in memory effects which require, at each
current point in time, integration of the entire time-history from the initial condition
upto the current time [465]. Such memory effects are undesirable as they lead to
computational algorithms which scale poorly with respect to length of time-interval.
Markovian models which encapsulate memory can be constructed, for example by
introducing a recurrent neural network [236], or by the use of delay embedding
[363]; such Markovian models are more computational expedient. Temporally
non-local modeling has received significant recent attention [273, 426, 73, 252]. If
diffusion/advection mechanisms present in the resolved system, memory effects of
any state variable at a given point in space would manifest themselves in the state
variables of current time at a spatially non-local region around that given point. For
this reason non-local models with a flexible enough kernel could potentially be used
to capture memory effects, without significantly increasing the computational costs.
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6.4 Lorenz 96 Systems as Illustrative Examples
For our simulation studies concerning structural model error in this section we
will take two variants on the celebrated Lorenz 96 model [261], described in the
Subsection 6.4.1. Then, in Subsection 6.4.2, we present numerical result based on
these models.

6.4.1 Lorenz Models Considered
We consider a multiscale Lorenz 96 model, together with a single-scale companion
model, to illustrate the principles and algorithms described in the subsequent sections.
In each case, we use an untruncated version of the model as the true data-generating
model and a truncated version as the model in which structural error models are to
be learned.

6.4.1.1 Multiscale Lorenz 96 Model

The Lorenz 96 multi-scale system [261] describes the evolution of a simplified
atmospheric flow, which is periodic along latitude circles (space). It does so through
one set of slow variables, G: (: = 1, . . . ,  ), coupled to a set of fast variables, I 9 ,:
( 9 = 1, . . . , �), whose indices label space coordinates:

¤G: = −G:−1(G:−2 − G:+1) − G: + � − ℎ2Ī: ,
1
2
¤I 9 ,: = −1I 9+1,: (I 9+2,: − I 9−1,: ) − I 9 ,: +

ℎ

�
G: .

(6.19)

Reflecting the periodicity along latitude circles, the variables are periodic in their
indices, with

G:+ = G: , I 9 ,:+ = I 9 ,: , I 9+�,: = I 9 ,:+1. (6.20)

The coupling term ℎ2Ī: describes the impact of the fast dynamics on the slow
dynamics, with only the average

Ī: =
1
�

�∑
9=1

I 9 ,: (6.21)

of the fast variables affecting the slow variables. To generate data, we work with the
parameter choices  = 36, � = 10, and � = 1 = 10 [261, 373]. The choices of ℎ and
2 are summarized in Subsection 6.4.2 for different cases.

To study how to model structural errors, we consider a coarse-grained system in
which we only simulate approximate versions -: of the slow variables G: , neglecting
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the fast variables. The approximate slow variables are governed by the system,
¤-: = −-:−1(-:−2 − -:+1) − -: + � + X(-: , -−: ; \I),

-:+ = -: ,
(6.22)

for -−
:
= (-:−3 , · · · , -:−1, -:+1, · · · , -:+3). Here, X(·) is the error model that

accounts for the missing multiscale interactions. If there is no dependence on -−
:
we

say the model is local; otherwise we allow for non-local dependency with stencil
of width 3 on either side of -: . If specified correctly, the model error ensures that
-: approximates G: the solution of (6.22). We will use data generated with the full
system (6.19)–(6.21) to learn about the error model X(·) in the coarse-grained system
(6.22).

As data H = H(G(C)) we consider, let E denote expectation with respect to the
stationary distribution of G. If G(·) ∈ X := � (R+;R ) denotes a solution trajectory
of the system and F : X ↦→ R@ is a function on the space of solution trajectories,
where @ denotes the dimension of data space, then defineH : X ↦→ R@ by

H(G(·)) = EF (G(·)).

We use both moments of the vector G and the averaged auto-correlation function as
data:

(i) We will use <th−moments of vector G at time C = 0:

F< (G(·)) = Π:∈"G: (0),

where G: denotes the : th element of vector G, and " is a subset of size <
comprising indices (repetition allowed) from {1, · · · ,  }.

(ii) We will also use autocorrelation function F02 (G(·)) = G(C) ⊗ G(0). In this work,
we only consider the autocorrelation of the same element in the vector G, i.e.,
G: (C)G: (0).

6.4.1.2 Single-scale Lorenz 96 Model

We now introduce the single-scale Lorenz 96 system, which does not include the fast
variables, to illustrate the combined use of direct and indirect data and the advantage
of enforcing conservation constraints in error models. The single-scale Lorenz 96
system describes the evolution of the G: variables alone,

¤G: = −G:−1(G:−2 − G:+1) − G: + �,
G:+ = G: ,

(6.23)
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and we use it to generate data in the setting where  = 36 and � = 10.

As the truncated system, we will only assume that we know the linearized part of the
dynamics, resulting in approximate model of the form

¤-: = −-: + � + X(-:−2, -:−1, -:+1, -:+2; \I),
-:+ = -: .

(6.24)

Here, X is the error model that models the missing quadratic terms; we note that
we postulate the need to learn a single universal function X to account for model
error in each component of the equation, reflecting an a priori assumption about
the homogeneity of the structural error with respect to :. Since the error model X
accounts for the unknown convection term and thus should not introduce additional
energy, the state variable -: is excluded from the inputs of X in the : Cℎ equation.
We will use data generated from the untruncated system (6.23) to learn about the
error X in the truncated system (6.24). As data H = H(G(C)) we employ the same
types of data (i.e., moments and autocorrelation of the vector G) as described in
Section 6.4.2.2.

6.4.2 Numerical Results for Lorenz Models
Before presenting detailed numerical results for Lorenz systems, we summarize
several highlights of our numerical results.

1. For a multiscale system with a clear scale separation, local deterministic
error model using either direct or indirect data leads to satisfactory model fits.
Detailed results are presented in Figs. 6.2 and 6.3.

2. For a multiscale system with less clear scale separation, a local deterministic
error model using direct data or indirect data does not lead to a satisfactory
model fit. Detailed results are presented in Figs. 6.4 and 6.5. However
non-local or stochastic error models do lead to satisfactory fits. Detailed results
are presented in Figs. 6.6 to 6.8.

3. For the single-scale Lorenz model we show how an energy constraint can be
incorporated into the EKI learning framework; and we show that doing so
leads to enhanced calibration of the error model. Detailed results are presented
in Figs. 6.9 to 6.11.
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6.4.2.1 Lorenz 96 Multi-scale Model

We first studied the multi-scale Lorenz 96 system from (6.19). The numerical
examples of multi-scale Lorenz 96 systems are summarized as below:

(i) For 2 = 10 and ℎ = 1 in the multi-scale Lorenz 96 system, a dictionary-learning-
based model is trained as local deterministic error model X(-: ) using direct
data ({G: , ℎ2I: }), and a fully-connected neural network is trained using indirect
data (first and second moments of the slow variable G:). For the indirect data
in this example, we assume partial observation of first eight slow variables and
include cross-terms of second moments (i.e., E(G8G 9 ) for different 8 and 9). The
results are presented in Figs. 6.2 and 6.3.

(ii) For 2 = 3 and ℎ = 10/3 in the multi-scale Lorenz 96 system, the scale
separation between fast and slow variables becomes smaller and thus leads
to a more challenging case. In this case, a fully-connected neural network is
trained as the local deterministic error model X(-: ) using either direct data
({G: , ℎ2I: }) or indirect data (first to fourth moments of the slow variable G:
and the autocorrelation of G: ). For the indirect data in this and next examples,
we enable the full observation of all 36 slow variables and preclude the use
of all cross-terms of second to fourth moments. The results are presented in
Figs. 6.4 and 6.5.

(iii) For 2 = 3 and ℎ = 10/3 in the multi-scale Lorenz 96 system, we trained
a non-local deterministic error model X(-) = ∑

: ′ X(-: ′)C(: − :′; \non-loc),
a local stochastic error model with additive noise X(-: ) +

√
f2 ¤,: , and a

local stochastic error model with multiplicative noise X(-: ) +
√
f2(-: ) ¤,: ,

using indirect data (first to fourth moments of the slow variable G: and the
autocorrelation of G: ). The results are presented in Figs. 6.6 to 6.8.

Figure 6.2a presents the direct data {G: , ℎ2I: }. Based on direct data, a regression
model X(-: ) can be trained and then used to simulate the dynamical system of -: in
(6.22). In this work, we train such a regression model using fully-connected neural
network with two hidden layers (five neurons at the first hidden layer and one neuron
at the second hidden layer). It can be seen in Fig. 6.2a that the trained model captures
the general pattern of the training data. We also simulate the dynamical system in
(6.22) for a long time trajectory and compare the invariant measure of -: with the
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true system in (6.19). As shown in Fig. 6.2b, we obtain a good agreement between
the invariant measures of the modeled system and the true system.
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Figure 6.2: Direct training of the error model (2 = 10) using neural network, with
results of (a) the trained error model and (b) invariant measures.

Because direct data {G: , ℎ2I: } may not be accessible for some applications, we
also explored the use of indirect data to calibrate the error model X(-: ). In this
example, the first and second order moments of the first eight components of G: are
used for the calibration. We tested different approaches that parameterize the error
model X(-: ), including dictionary learning (Fig. 6.3), GPs and neural networks.
The error model based on dictionary learning has the form X(-: ) =

∑2
8=1 U8q8 (-: ),

where we choose the basis function dictionary q8 (-: ) ∈ {tanh(V1-: ), tanh(V2-
2
:
)}.

Therefore we have {U8, V8}28=1 as unknown parameters that can be learned. Instead
of using polynomial basis functions, we have introduced the hyperbolic tangent
function tanh(·) to enhance the numerical stability. The error model based on a GP
has the form X(-: ) =

∑7
9=1 U 9K(-

( 9)
:
, -: ; k), where we chose the - ( 9): as seven

fixed points uniformly distributed in [−15, 15], and K as a squared exponential
kernel with unknown constant hyper-parameters k = {fGP, ℓ}, where fGP denotes
the standard deviation and ℓ the length scale of the kernel. The results with a GP and
with a neural network are similar to the ones with dictionary learning in Fig. 6.3 and
are omitted here. The calibrated models of all three tests lead to good agreement in
both data and invariant measure, and the performance of the calibrated model is not
sensitive to the specific choice of parameterization approaches.

Although the performance of the calibrated error model is not sensitive to either the
types of data or the parameterization approaches for this numerical example with
2 = 10, we emphasize that the specific choices made in constructing and calibrating
error model are still important in general, especially for more challenging scenarios,
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Figure 6.3: Indirect training of the error model (2 = 10) using dictionary learning,
with the results of (a) first and second order moments and (b) invariant measures.
The results with a GP and a neural network have similar performance and are omitted
here.

e.g., the resolved and unresolved degrees of freedom have less noticeable scale
separation. To illustrate the advantage of using indirect data and stochastic/non-local
error model, we studied a more challenging scenario where the scale separation
between G: and H 9 ,: in (6.19) is narrower, by setting ℎ = 10/3 and 2 = 3 for both
slow and fast dynamics. It can be seen in Fig. 6.4a that the general pattern of direct
data is still captured by the trained error model X(-: ). However, the comparison of
invariant measures in Fig. 6.4b shows that the long-time behaviour of the trained
model does not have a good agreement with the true system, indicating the limitation
of merely using direct data for the calibration of a local and deterministic error
model.
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Figure 6.4: Direct training of the error model (2 = 3) using neural network, with
results of (a) the trained error model and (b) invariant measures..

We further investigated the use of indirect data. Specifically, the first four moments
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of -: and ten points sampled from the averaged autocorrelation function of -: are
used as training data. Figure 6.5 presents the results of calibrated local model X(-: ).
It can be seen in Fig. 6.5a that the trained error model provides a good agreement
with the training data, while the invariant measures in Fig. 6.5b still demonstrates
noticeable difference between the calibrated and the true systems, indicating an
overfitting of training data.
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Figure 6.5: Indirect training of the error model (2 = 3) using deterministic model
(local), with the results of (a) first four moments and autocorrelation, and (b) invariant
measures.

To avoid the overfitting in Fig. 6.5, we tried to calibrate a non-local error model as
discussed in Section 6.3.5. Compared to the results of the local error model, it can
be seen in Fig. 6.6 that the invariant measure of the calibrated system has a better
agreement with the true system, which indicates that the closure model X(·) in (6.22)
with non-local effect would better characterize closure for unresolved scales if there
is a less clear scale separation between resolved and unresolved scales.

We also explored the learning of stochastic error model for this example. Figure 6.7
presents the results of calibrated system with an additive stochastic error model.
Compared to the results of deterministic error models in Figs. 6.5 and 6.6, we can see
that the invariant measure of the calibrated system demonstrates a better agreement
with the true system in Fig. 6.7b. We further tested the stochastic error model by also
learning a state-dependent diffusion coefficient. As shown in Fig. 6.8b, the calibrated
system achieves better agreement with the invariant measure of the true system,
which confirms that increased flexibility in the stochastic error model can help
achieve improved predictive performance via training against indirect data. It should
be noted that Figs. 6.6 to 6.8 do not display a single converged invariant measure;
this is due to the fact that the calibrated parameters vary across the ensemble, and do
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Figure 6.6: Indirect training of the error model (2 = 3) using deterministic model
(non-local), with the results of (a) first four moments and autocorrelation, and (b)
invariant measures.

not reach consensus at a single value; this leads to a family of structural error model
that all fit the data with similar accuracy. We surmise that this is caused by the fact
that the indirect data contains only partial information about the invariant measure.
Nonetheless the fits are all far superior to that obtained with the local deterministic
model.
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Figure 6.7: Indirect training of the error model (2 = 3) using stochastic model with
additive noise, with the results of (a) first four moments and autocorrelation, and (b)
invariant measures.

6.4.2.2 Lorenz 96 Single-scale Model

We studied the Lorenz 96 single-scale system to learn the quadratic term as an error
model. Using this numerical example, we demonstrate the merit of combined use
of direct and indirect data and the importance of enforcing physical constraints.
More specifically, we assume that the quadratic term of the true system in (6.23) is
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Figure 6.8: Indirect training of the error model (2 = 3) using stochastic model with
multiplicative noise, with the results of (a) first four moments and autocorrelation,
and (b) invariant measures.

unknown and then calibrate an error model X(-:−2, -:−1, -:+1, -:+2) as in (6.24).
The numerical examples of the single-scale Lorenz 96 system are summarized as
below:

(i) We train a fully-connected neural network as an error model X(·) using time-
series of G: and the true quadratic term as direct data. The results are presented
in Fig. 6.9.

(ii) We train a fully-connected neural network as an error model X(·) using indirect
data (first to fourth moments of the state variable G: and the autocorrelation of
G: ). The results are presented in Fig. 6.10.

(iii) We train a fully-connected neural network as an error model X(·) using indirect
data (first to fourth moments of the state variable G: and the autocorrelation of
G: ) and the energy conservation constraint in (6.12). The results are presented
in Fig. 6.11.

Figure 6.9 presents the comparison of invariant measures between the calibrated
system and the true system. As we can see in Fig. 6.9, the calibrated system
using direct data still demonstrates noticeable differences in the invariant measure,
indicating a difference from the long-time behaviour of the true system.

In order to improve the results of Fig. 6.9, we further incorporate indirect data about
the G: . Specifically, we employ the trained model using direct data as the prior
mean of EKI, and we set the prior standard deviation as 30% of the mean values
for each unknown coefficients of the error model. We then use EKI to calibrate
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Figure 6.9: Invariant measures via direct training of the error model (2 = 10) for the
single-scale Lorenz 96 system.

the error model based on the first four moments of -: and the ten sampled points
from the autocorrelation function of -: . Without enforcing energy conservation
of the error model, we can see in Fig. 6.10b that the performance of the calibrated
model is similar to the calibrated system using direct data in Fig. 6.9. On the other
hand, we also performed the calibration based on indirect data and enforced the
energy conservation of the error model as discussed in Section 6.2.2.2. As shown in
Fig. 6.11, the calibrated error model with energy conservation leads to a modeled
system that better fits the training data and achieves a good agreement with the
invariant measure of the true system.
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Figure 6.10: Results from trained error model (2 = 10) for the single-scale Lorenz
96 system without energy conservation constraint, including (a) first four moments
and autocorrelation, and (b) invariant measures.

6.5 Human Glucose-Insulin Model as Illustrative Example
We consider the ultradian model of the glucose-insulin system proposed in [398]. Its
primary state variables are the plasma glucose concentration, �, the plasma insulin
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Figure 6.11: Results from trained error model (2 = 10) for the single-scale Lorenz
96 system with energy conservation constraint, including (a) first four moments and
autocorrelation, and (b) invariant measures.

concentration, �?, and the interstitial insulin concentration, �8. We omit the delays
proposed in the original work for simplicity. The resulting ordinary differential
equations have the form:

3�?

3C
= 51(�) − �

( �?
+?
− �8
+8

)
−
�?

C?
(6.25a)

3�8

3C
= �

( �?
+?
− �8
+8

)
− �8
C8

(6.25b)

3�

3C
= 54(�?) − 52(�) − 53(�8)� + <� (C) (6.25c)

Here <� (C) represents a known rate of ingested carbohydrates appearing in the
plasma, 51(�) represents the rate of glucose-dependent insulin production, 52(�)
represents insulin-independent glucose utilization, and 53(�8)� represents insulin-
dependent glucose utilization. and 54(�?) represents insulin-dependent hepatic
glucose production. The functional forms of these parameterized processes are

51(�) =
'<

1 + exp
( −�
+621
+ 01

) : the rate of insulin production (6.26)

52(�) = *1

(
1 − exp( −�

�2+6
)
)

: insulin-independent glucose utilization (6.27)

53(�8) =
1

�3+6

(
*0 +

*< −*0

1 + (^�8)−V
)
, 53(�8)� : insulin-dependent glucose utilization

(6.28)

54(�?) =
'6

1 + exp
(
U( ℎ3

�5+?
− 1)

) : insulin-dependent glucose utilization (6.29)

^ =
1
�4

( 1
+8
− 1
�C8

)
. (6.30)
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The functions 51, 52, 53, 54 are graphed in Figure 6.12, at typical parameter values
used in simulations to follow.

The uptake of carbohydates is modeled by the function

<� (C) =
# (C)∑
9=1

< 9 :

60
exp(: (C 9 − C)), # (= #{C 9 < C} (6.31)

in which # meals occur at times {C 9 }#9=1, with carbohydrate composition {< 9 }#9=1.
A specifc choice of carbohydrate uptake function, the the resulting model-predicted
dynamics of plasma insulin and glucose is shown in in Figure 6.13.

Figure 6.12: Here we show dynamic range for the scalar functions 51, 52, 53, 54 which
appear in (6.25).

Models such as (6.25) are simplifications of complex physiology that is incompletely
understood. To improve existing models, we often wish to use data to infer correction
terms – that is, to learn about structural model error. Longitudinal clinical data
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Figure 6.13: Here we show the oscillating dynamics of the glucose-insulin response
in the ultradian model, driven by an exponentially decaying nutritional driver <� .

sets are often available, which include time-series of noisy measurements of blood
glucose levels � (C) (sampled at roughly 5 minute intervals) and recorded meal
consumption. However, the other modeled states of the patient’s physiology are
not typically observed: measuring plasma insulin levels, �?, in the blood is an
atypical procedure, although exogenous insulin doses may be known in diabetic
sub-populations; and the filter bank variables ℎ8 are analogous to a parameterization
in subgrid scale atmospheric models and are not measurable quantities. Because the
system is partially and noisily observed, the resulting inference of a structural error
model to a system of equations such as (6.25) is indirect in nature. Furthermore we
cannot appeal to ergodicity to remove nuisance initialization parameters as we did
for the Lorenz ’96 model examples considered previously; thus we must recover the
unobserved states along with the parameters describing the missing structural model
error terms.

We mimic this inference problem in a simulated setting, enabling us to demonstrate
a flexible ensemble Kalman based approach to such model error learning. To do
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this we artificially remove terms from (6.25), resulting in a mis-specified model �̃,
then attempt to recover them via data-driven inference. To align with presented
notation, let - = [�?, �8, �], and use (6.25) to define the true system � such that
¤- = � (-, C), where the time-component comes exclusively from <� (C). For the
purposes of this paper, the function <� (C) may be viewed as known; it is determined
from data describing meals consumed by the patient.4 Measurements are drawn
from this system according to

. (C: ) = �- (C: ; -0) + [: ,

where - (C: ; -0) solves the true equations for initialization - (0) = -0, observation
operator � = [0, 0, 1], [: ∼ N(0, f�), and C: := ℎ: (ℎ = 5 minutes) .

We define a mis-specified model by removing 51 from �, and let �̃ (G, C) :=
� (G, C; '< = 0). We aim to correct it via an additive structural error model
X

¤G = �̃ (G, C) + X(G; \ �),

whose solutions we denote G(C; \ � , G0, B) when initialized at G(B) = G0.

This results in an indirect data inference problem in which we must calibrate a model
of form (6.5) from a time-series of noisy, partial observations from the true system
in (6.25). Importantly, when calibrating to short-term, partly and noisily observed
time-series, it is essential to estimate initial conditions. Concatenating the data to
obatin observation vector H and noise to obtain noise vector [ we arrive at an inverse
problem for (\ � , G0) of the form

H = G(\I, G0) + [. (6.32)

To allow for a clean exposition we will imagine that the data is given in continuous
time (and in practice observing at 5 minute intervals is high frequency on the
timescales of the model). This leads to an optimization problem to solve the inverse
problem, taking the form

� (\, G0) =
1
)

∫ )

0
‖. (C) − �G(C; \ � , G0, 0)‖23C. (6.33)

To reduce the complexity of this joint-inference problem, it is common to perform
alternating descent schemes (Carassi et al. [49]). However, recent methodology

4Learning the form of <� (·) from consumption data is itself an interesting problem[425] but we
do not consider it here.
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developed in [83] and further explored in [236] suggests that this objective can be
well-approximated by a constrained objective that implicitly defines initial condition
G0 as a function of parameters \ and data . , effectively removing the nuisance
parameter G0, by using data assimilation on parts of the trajectory data:

J (\ �) =
1

) − g

∫ )

g

‖. (C) − �G(C; \ � , Gg, g)‖23C

s.t. Gg = A
(
\ � , {. (B)}gB=0

)
,

(6.34)

where A is defined by a data assimilation algorithm (e.g., Ensemble Kalman Filter,
3DVAR, etc. [226, 345, 22]) to obtain an estimate Gg for the filtered state

G(g) | \ � , {. (B)}gB=0, G(0) = 0.

This then defines a G as

G(\ �) :=
{
�G

(
C; \ � ,A

(
\ � , {. (B)}gB=0

)
, g

)})
C=g
.

Thus, for every evaluation of J (\ �), we first perform data assimilation over an initial
window of length g in order to synchronize our approximate system with the true
system. We use the resulting state estimate to initialize a prediction for the remaining
data sequence over window of length ) − g, and the value of J is defined to measure
the quality (via path-wise squared error) of this prediction at given parameter \ � .
Ensemble Kalman inversion techniques are well suited to minimizing J (\ �) as they
avoid differentiating the complex dependence of J (·) via the map A. Variants
on this approach, for example by estimating initial conditions at a set of points in
the interval, may also be used and are discussed in [236]; however the basic form
proposed here suffices for our simulation study.

First, we demonstrate in Figure 6.14 that Ensemble Kalman Filtering is a successful
data assimilation algorithmwhen given partial noisy measurements under full, correct
knowledge of the governing equations in (6.25). Then we evaluate the quality of
state estimation when using mis-specified models. Figures 6.15-6.16 shows the state
estimation when removing the 53 and 51 term, respectively, from (6.25). We see that
the inference is corrupted when removing 53 (insulin-dependent glucose utilization),
but still remains tractable; the removal of 51, which governs all glucose-dependent
production of insulin, is much more impactful, leading to erroneous inferences in the
unobserved components.
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Next, we will show how we can recover these types of model errors by using EKI to
minimize Equation (6.33) 5.
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Figure 6.14: Here we show dynamic range for the scalar functions 51, 52, 53, 54 which
appear in (6.25).

6.6 Conclusions
Complex nonlinear dynamics and/or high degrees of freedom present in many
complex systems, for example in physiological models of the human body, and
turbulent flows around an airplane or in the wake of wind turbines; typically closure
models are needed if some degrees of freedom being not resolved by numerical
simulations. Without a clear scale separation between resolved and unresolved
degrees of freedom, it is expected that most existing models, which are deterministic
and local and calibrated by limited amount of data, are not sophisticated enough
to capture the true dynamics of the resolved degrees of freedom. Therefore, it is
important to study, and learn about, the model error for such complex systems in
order to improve the predictive capability of numerical simulations. In this work,
we summarize some key aspects of learning model error from data, including the
construction of model error and the calibration of model error. In doing so we
provide some guidelines about the learning of model error for complex dynamical

5Numerical results in preparation and will appear in published version.
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Figure 6.15: Here we show dynamic range for the scalar functions 51, 52, 53, 54 which
appear in (6.25).
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appear in (6.25).
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systems, ranging from some basic aspects such as different parameterization and
calibration techniques (e.g., incorporation of sparsity and physical constraints), to a
few advanced aspects such as the combined use of direct and indirect data and the
merit of using non-local/stochastic error model. By addressing all these aspects in
a systematical manner, our goal is to inspire further applied, methodological and
theoretical research in this area; ultimately converge towards a systematic approach
of learning model error for complex dynamical systems.

All codes are available at:
https://github.com/jinlong83/Learning-Structural-Errors.git.

6.7 Ensemble Kalman inversion
The use of ensemble Kalman based methods for parameter calibration and the
solution of inverse problems, and history of this subject, is overviewed in [Section
4][68]. To be concrete we will concentrate on a particular variant of the methodology,
sometimes termed Ensemble Kalman inversion (EKI). This is a specific ensemble-
based, gradient-free optimization scheme that was proposed and studied in [188];
we emphasize that other ensemble Kalman based methods share the core desirable
attributes of EKI, namely that it is derivative-free, is effective with relatively few
evaluations of the forward model G and is robust to the presence of noise in the
evaluations of G.

The core task of EKI is equivalent to a quadratic optimization problem, which
facilitates adding linear equality and inequality constraints [4]. To explain the details
of EKI, we first introduce a new variable F = G(\) and variables E and 6(E):

E = (\, F)>,
6(E) = (\,G(\))> .

(6.35)

Using these variables we formulate the following noisily observed dynamical system:

E<+1 = 6(E<)
H<+1 = �E<+1 + [<+1.

(6.36)

Here � = [0, �], �⊥ = [�, 0], and hence �E = F, �⊥E = \. In this setting, {E<}
is the state and {H<} are the data. The objective is to estimate �⊥E< = \< from
{Hℓ}<ℓ=1 and to do so iteratively with respect to <. In practice we only have one data
point H and not a sequence H<; we address this issue in what follows below.

https://github.com/jinlong83/Learning-Structural-Errors.git
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The EKI methodology creates an ensemble {E ( 9)< }�9=1 defined iteratively in < as
follows:

!
( 9)
< (E) :=

1
2
��H ( 9)
<+1 − �E

��2
Γ
+ 1

2
��E − 6 (E ( 9)< ) ��2

�
66
<
,

E
( 9)
<+1 = arg min

E

!
( 9)
< (E).

(6.37)

The matrix �66 is the empirical covariance of {6(E ( 9)< )}�9=1. The data H
( 9)
<+1 is either

fixed so that H ( 9)
<+1 ≡ H or created by adding random draws to H from the distribution

of the [, independently for all< and 9 . At each step, < ensemble parameter estimates
indexed by 9 = 1, · · · , � are found from \

( 9)
< = �⊥E ( 9)< .

Using the fact that E = (\, F)) , the minimizer E ( 9)
<+1 in (6.37) decouples to give the

update formula

\
( 9)
<+1 = \

( 9)
< + �\G<

(
�GG< + Γ

)−1 (
H
( 9)
<+1 − G(\

( 9)
< )

)
; (6.38)

here the matrix �GG< is the empirical covariance of {G(\ ( 9)< )}�9=1, while matrix �\G<
is the empirical cross-covariance of {\ ( 9)< }�9=1 with {G(\

( 9)
< )}�9=1.

To impose sparsity on the solution of \ from EKI, we solve the following constrained
optimization problem after each EKI update step:

!
( 9)
< (E, _) :=

1
2
��H ( 9)
<+1 − �E

��2
Γ
+ 1

2
��E − 6 (E ( 9)< ) ��2

�
66
<
,

E
( 9)
<+1 = arg min

E∈V
!
( 9)
< (E),

(6.39)

where
V = {E : |�⊥E |ℓ1 ≤ W}. (6.40)

We also employ the thresholding function T on vectors defined by

T (\8) =


0, if |\8 | <
√

2_

\8, otherwise,
(6.41)

to threshold those \8 with values close to zero, after having solving the constrained
optimization problem in (6.39). Such a thresholding step after the ℓ1-constrained
optimization in (6.39) is equivalent to adding ℓ0 constraint. More details about
imposing sparsity into EKI can be found in [374].
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C h a p t e r 7

PROTEIN DIMERIZATION NETWORKS AS FUNCTION
APPROXIMATORS: EXPRESSIVITY AND ROBUSTNESS

Remark 7.0.1. This chapter is derived from the manuscript in preparation by J
Parres-Gold, B Emert, ME Levine, P Perona, AM Stuart, and M Elowitz [189], and
contains both excerpts and additions to that work.

7.1 Introduction
In living cells, circuits of interacting proteins compute responses to signals from
other cells, the environment, and their own internal state. What functions can these
circuits compute? How do they compute them? And why do they use specific circuit
architectures to do so? Addressing these questions would both allow the prediction
and control of natural cellular behaviors and enable the design of synthetic circuits,
such as those engineered to correct disease states [84, 247, 230].

Many natural biochemical circuits employ families of protein variants that interact
with one another in a many-to-many fashion. We refer to the binding of two proteins
as dimerization, which can occur between two monomers of the same or different
proteins to produce homo- and hetero-dimerized proteins, respectively. Previous
work has suggested that dimerization networks can respond in complex ways to
changes in the concentrations of monomer inputs, e.g., [19, 210]. In particular,
we focus our attention on responses of dimer concentrations to starting monomer
concentrations, as dimerized proteins are typically the biochemically active species
in naturally ocurring dimerization networks [16]. We view this input-output response
as a computation or an execution of a function (in the mathematical sense).

However, little is known about the overall range of input-output computations that
dimerization networks can perform. Here, we examine the range of input-output
functions that can be computed by a simple chemical-equilibrium based model of
combinatorial dimerization networks using random parameter screens and targeted
optimization trials. These computational experiments allow us to characterize the
expressivity and versatility of input-output maps induced by combinatorial protein
dimerization networks, and we study these properties as a function of both network
size and connectivity. We use the term expressivity to refer to the range of unique
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input-output functions that a given class of networks can perform. We use the term
versatility to describe the ability of a single network of proteins to perform different
functions in different cell types (which express network components at different
abundances).

Figure 7.1 (courtesy of Jacob Parres-Gold) gives a series of representative schematics
for the problem setting, which we formalize mathematically in Section 7.2.

7.2 Mathematical setting
Here, we investigate how systems of chemical reactants can transform starting
concentrations (e.g., monomeric proteins) into resulting equilibrium concentrations
(e.g., dimerized proteins) (see (B) in Figure 7.1).

We begin by introducing a model for chemical reaction kinetics, and prove uniqueness
of its equilibrium solution along with its useful re-scaling properties. Then, we
specify this model to the case of dimerization networks, and use this formulation
to define resulting input-output maps. This allows us to mathematize notions of
expressivity and versatility with respect to the resulting maps.

7.2.1 Chemical reactions: general case
The temporal evolution of concentrations of = chemical components undergoing A
simultaneous reactions can be described by the following differential equation:

¤2(C) = #>E
(
2(C); :+, :−

)
, 2(0) = 20, (7.1)

where 2(C) ∈ R= denotes the concentration of the = chemical species at time
C, 20 ∈ R= denotes their initial concentrations, :+, :− ∈ RA denote the forward
and backward equilibrium constants, respectively, for each of the A reactions,
E : R= ×RA ×RA → R

A computes the instantaneous velocity of the A reactions given
a current concentration 2(C) and equilibrium constants :+, :−, and # ∈ RA×= denotes
the stoichiometric matrix associated with the system (which maps the A reaction
rates determined by E to rates of change for each of the = individual species). It is a
standing assumption that = ≥ A and we will in fact assume = > A which is typically
the case. Consequently there exists � ∈ R(=−A)×= such that �#> = 0 ∈ R(=−A)×A .
Note that �2(C) = �20 ∈ R=−A because �#> = 0.

We define E component-wise for each of its A output dimensions as:

E8 (2; :+8 , :−8 ) := :+8
∏
9∈#−

8

2
|#8 9 |
9
− :−8

∏
9∈#+

8

2
#8 9

9
, (7.2)
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Figure 1. Dimerization networks occur in biology; introduce model; introduce questions
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where #−
8

:= { 9 : #8 9 < 0}, #+
8

:= { 9 : #8 9 > 0}, and :+
8
, :−
8
∈ R denote the

forwards and backwards equilibrium rates, respectively, for the 8’th reaction.

We can now write the equilibrium equations for Equation (7.1) as

#>E(2; :+, :−) = 0,

�2 = �20.
(7.3)

This can be simplified to rely only on relative or effective equilibrium concentrations.
To see this, let :8 = :+8 /:−8 and introduce Ẽ : R= ×RA → R

A component-wise as

Ẽ8 (2; :8) := :8
∏
9∈#−

8

2
|#8 9 |
9
−

∏
9∈#+

8

2
#8 9

9
. (7.4)

Then, we have
E8 (2; :+8 , :−8 ) = :−8 Ẽ8 (2; :8). (7.5)

Hence, we simplify our equilibrium equations to be:

#>Ẽ(2; :) = 0,

�2 = �20.
(7.6)

Theorem 7.2.1. Fix stochiometric matrix # ∈ RA×=, equilibrium constants : ∈ RA

and initial conserved quantities �20 ∈ R=−A . Then there is a unique non-negative
solution 2∗ ∈ R= to Equation (7.6), the equilibrium equations for 2.

See Section 3 of [108] for proof.

Theorem 7.2.2. Fix stochiometric matrix # ∈ RA×=, equilibrium constants : ∈ RA

and initial conserved quantities �20 ∈ R=−A . Let 2∗ ∈ R= be the unique equilibrium
solution to Equation (7.6). Then, for any _ ∈ R+, _2∗ is the unique equilibrium
solution to the modified system:

#>Ẽ(2; :_) = 0,

�2 = _�20,

where
:_ :=

[
_B1:1, · · · , _BA :A

]
,

and

B8 :=
=∑
9=1

#8 9

denotes the 8’th row sum of stoichiometric matrix # .
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Proof. Clearly, the linear constraint is satisfied by taking 2 = _2∗. To verify that
_2∗ is also an equilibrium, we show that Ẽ8 (_2∗; _B8 :8) = 0 for all 8. We do this by
setting (7.4) to 0 and re-arranging terms to yield

:8_
B8

∏
9∈#−

8

(_2∗9 ) |#8 9 | =
∏
9∈#+

8

(_2∗9 )#8 9 . (7.7)

Take logs of both sides to obtain:

log(:8) + B8 log(_) +
∑
9∈#−

8

|#8 9 | log(_) +
∑
9∈#−

8

|#8 9 | log(2∗9 ) =
∑
9∈#+

8

#8 9 log(_) +
∑
9∈#+

8

#8 9 log(2∗9 )

(7.8a)

log(:8) + B8 log(_) −
∑
9∈#−

8

#8 9 log(_) −
∑
9∈#−

8

#8 9 log(2∗9 ) =
∑
9∈#+

8

#8 9 log(_) +
∑
9∈#+

8

#8 9 log(2∗9 )

(7.8b)

log(:8) + B8 log(_) −
∑
9∈#−

8

#8 9 log(_) −
∑
9∈#+

8

#8 9 log(_) =
∑
9∈#+

8

#8 9 log(2∗9 ) +
∑
9∈#−

8

#8 9 log(2∗9 )

(7.8c)

log(:8) + log(_)
(
B8 −

=∑
9=1

#8 9

)
=

=∑
9=1

#8 9 log(2∗9 ) (7.8d)

By definition of B8, we have

log(:8) =
=∑
9=1

#8 9 log(2∗9 ) (7.9)

and hence
log(:8) = #>8 log(2∗). (7.10)

Observe that Ẽ8 (2∗; :) = 0 iff (7.10) holds. The original system (i.e. with _ = 1)
satisfies this relation at equilibrium, so the new system also must be at equilibrium.
Since _2∗ is an equilibrium solution, by Theorem 7.2.1, it is also the unique
equilibrium �

7.3 Chemical Reactions: Specific Case
In this section, we specify the general treatment of chemical reaction equilibria
in Section 7.2.1 to the context of protein dimerization networks. To start, we let
2> = (m>, d>) ∈ R=, with m ∈ R< denoting the protein monomers and d ∈ R3

denoting the protein dimers. Thus 3 = 1
2<(<+1) (we assume no B-mer formation for
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B > 2, but self-dimerization is allowed). In this setting, to register with the general
case in the previous section, we take = = < + 3 and A = 3. The 3 reactions concern
only the creation of dimers from monomers, and the reverse reactions also occur,
whereby dimers break down into monomers; however it is assumed that there is no
direct inter-conversion amongst monomers themselves. If we further assume that the
initial concentration of dimers is 0 then we may take the conserved quantities to be
�2(0) = m(0) ∈ R< (noting that < = = − A in the notation of the previous section).
Furthermore, since the dimers d can be viewed as forming the (upper-triangular) part
of a symmetric < × < matrix, we may also rewrite the equilibrium constants vector
in terms of a symmetric matrix : ∈ R<×<

sym . 1 Finally, we note that specifying this
system with a particular< fully defines the stoichiometric matrix # , upto reorderings
of indices for monomers and dimers.

Example 7.3.1. Consider monomers �, � and dimers ��, �� and ��. Assume the
following chemical reactions:

� + � 
 ��

� + � 
 ��

� + � 
 ��

Thus < = 2 and 3 = 3. Let 21, 22 denote concentrations of monomers �, � and
23, 24, 25 the concentrations of dimers ��, ��, ��. Assume stochiometric matrix
# ∈ R3×5 given by

# =
©«

2 0 −1 0 0
1 1 0 −1 0
0 2 0 0 −1

ª®®®¬
and chemical reactions which, since they are restricted to creation of dimers from
monomers, are doubly indexed:

E11 = :
+
1123 − :−112

2
1,

E12 = :
+
1224 − :−122122,

E22 = :
+
2225 − :−222

2
2.

1Note that when log(·) is applied to : to obtain the analog of Theorem 7.2.1, this is done
componentwise.
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The evolution equations for the chemical concentrations are thus

¤21 = 2E11 + E12, 21(0) = 21,0,

¤22 = E12 + 2E22, 22(0) = 22,0,

¤23 = −E11, 23(0) = 0,

¤24 = −E12, 24(0) = 0,

¤25 = −E22, 25(0) = 0.

Note that the conserved quantities (under this dynamics) are

21 + 223 + 24,

22 + 24 + 225

and that, since we choose the initial dimer concentrations to be zero, then the
conserved quantities are simply equal to 21,0, 22,0. The matrix � ∈ R2×5 is thus given
by

� =

(
1 0 2 1 0
0 1 0 1 2

)
Note that �#> = 0 ∈ R5×5 as required. The equilibrium equations are

:+1123 − :−112
2
1 = 0

:+1224 − :−122122 = 0

:+2225 − :−222
2
2 = 0

21 + 223 + 24 = 21(0)
22 + 24 + 225 = 22(0).

These may be written as a system of five equations parameterized by : ∈ R2×2
sym with

entries :11, :12, :22 and by the input values 21,0, 22,0 of the conserved quantities. ♦

7.3.1 Defining parametric input-output maps from protein dimerization
We now introduce a function that solves for the equilibrium in Equation (7.6),
which we denote 6̃ : R= × RA → R

=. Note that 6̃(20; :) maps an initial species
concentration 20 ∈ R= to the equilibrium value 2∗ ∈ R= determined by equilibrium
constants : ∈ R3 . These equilibria can be identified numerically (e.g., by fixed point
iterations) using publicly available software, eqtk [43]; we view this code as an
instantiation of 6̃.



202

In the context of protein dimerization networks described in Section 7.3, we have
2>0 =

(
m>(0), d>(0)

)
, with d>(0) = 0. To simplify notation, we write the vector

of initial conserved quantities as m = m(0). We further split this vector into
m> = (G>, 0>) where G ∈ R@ are referred to as inputs and 0 ∈ R<−@ are referred to
as accessories. This defines a new map 6 : R@ ×R<−@ ×R3 → R

3 via the relation

6(G; 0, :) := �3 6̃(20, :), (7.12)

where �3 : R3+< → R
3 is a linear map defined to extract only dimer concentrations

(i.e., d = �32) and 2>0 =
(
G, 0, 03

)
, with 03 a 3−length vector of 0’s (assuming 0

initial dimer concentrations).

We view 6(G; 0, :) as a function with inputs G that is parameterized by both
accessory monomer concentrations, 0, and binding affinities : . This is motivated
by the knowledge that dimerization networks execute a response to a changing
situation, communicated by changing concentration levels of protein monomers
G. This response is mediated, of course, by the rules governing the reaction; that
is, the binding affinities : . More interestingly, it is also thought that other protein
monomers 0, which we term accessories, are differentially expressed across cell
types in order to allow different responses 6 to the same inputs G. This may enable a
single dimerization network to execute fine-tuned, cell-type specific functions.

We further consider scalar-valued output signals given by non-negative linear
combinations of dimer outputs:

� (G; 0, :, V) := V)6(G; 0, :) (7.13)

with V ∈ R3
+. Throughout this chapter, we will focus on scalar inputs G ∈ R such that

@ = 1, but note that higher-dimensional inputs may be very relevant for expressing
complex bioligical functions. We will consider scenarios in which V is allowed
to take real-values in all entries (i.e., it weights and combines different dimers to
produce a single signal), and we will also consider the case when V is all zeros,
except for a single entry of a 1 (i.e., it simply selects a particular dimer as an output).

With this perspective, we can ask what sorts of functions 5 (G) can be expressed
by � through varying choices of \ = [:, 0, V] ∈ R3\ , with 3\ = 23 + (< − 1).
Alternatively, we can specify target functions 5 (G), and ask what choices of \ best
allow us to approximate 5 .
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7.4 Evaluating network expressivity by fitting to a target library
In order to evaluate expressivity of dimerization networks, we define a fixed library
F of 168 target functions (in the form of step functions), and consider the ability
of networks of size < to approximate these functions. In this section, we focus on
identifying the existence of a pair (:, 0) that can produce a dimer response curve
similar to a prescribed target function. For each target function 5 , we define the loss
for a given network configuration (:, 0) as

L(:, 0; 5 ) = min
9=1...3

1
|� |

∫
�

���log
(
5 (G)

)
− log

(
6 9 (G; :, 0)

) ���23G,
where the inner minimization over index 9 allows us to choose a single best dimer
across the vector of output functions 6. We choose domain � = [10−3, 103] ⊂
R based on a range of physically relevant input concentrations. We can then
define expressivity of size < networks as the average loss across all targets F =

{ 51, . . . , 5# }:

Q(<;F ) = 1
#

#∑
==1
L

(
:∗

(
5=
)
, 0∗

(
5=
)
; 5=

)
, (7.14)

where
:∗( 5 ), 0∗( 5 ) = arg min

:∈K,0∈A
L(:, 0; 5 )

are the optimal parameters for approximating a target 5 . We define constraint set

A := [10−3, 103]<−1 ⊂ R<−1

and
K = { ∈ [10−7, 105]3 ⊂ R3 :  22 ≥  33 ≥ . . . ≥  <<}

based on realistic physical values. The additional inequality constraints for K
are imposed to remove a permutation invariance of L with respect to re-ordering
of monomer species indices (note that  11 is purposely omitted, as this index
corresponds to the input monomer, and is thus fixed).

We evaluate Q(<;F ) by running independent optimizations for each target 5= ∈ F
and for each network size <. The estimation of Q requires a sequence of challenging
non-convex optimizations over the space of possible (:, 0) pairs for each target
function and each network size <. To establish an initial lower bound on expressivity,
we perform a grid-based search over the parameter space. Then, to refine our
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estimates, we apply a genetic algorithm initialized in regions of low loss that were
identified by the grid-search. We evolve the genetic algorithm to approach a local
minimum in the space of (:, 0) pairs, and report a refined (more generous) estimate
of expressivity at each size <.

Section 7.4 summarizes the results of this experiment, demonstrating that overall
expressivity improves with larger network sizes; we see this both in the terms of the
mean of all misfits (see Equation (7.14) in (a)) and in terms of the number of library
functions that are fit within a specified error tolerance (see (b)). We show that these
trends appear when using grid-based optimization, but that our genetic algorithm
allows for better fits and stronger estimates of expressivity.

Figure 7.3 focuses on 4 example target functions which were fit using either grid-based
(’x’ marks in the plots) or optimization-based techniques.

• Target 67: We find that optimization was able to identify good fits for networks
as small as < = 4, whereas the grid-based search yielded poorer fits (which
started to improve for larger <).

• Target 110: This is an example for which all tested network sizes and inference
approaches yielded very poor fits. It is likely that this curve is not feasibly
expressed by networks within our defined class. Nevertheless, the optimization
approach identified better fits than the grid-based methods, especially for
< ∈ {4, 5}.

• Target 127: We find that both optimization and grid-based approaches yield
high-fidelity fits to this target function at a variety of network sizes (< > 3).
For < = 3, we identify lower fidelity fits; however, the optimization method
yields better fits than a simple grid search.

• Target 128: This is an example where both grid-based and optimization-based
approaches yield similar fits. Moreover, we observe that fits improve with
larger <, and highest fidelity fits are obtained with < = 10.
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7.4.1 Random Networks: Expressivity and Versatility
In this section, we investigate properties of networks with randomly drawn binding
affinities : and tunable accessory concentrations 0. We do this by first defining a
library of target functions F< that were identified by coarsely sampling over (:, 0)
and clustering the resulting dimer curves into a set of functions F< := { 5 (<)1 . . . 5

(<)
#<
},

where #< := |F< | 2. Note that the library differs for each network size <; this
allows us to study the fraction of known expressible functions (which may themselves
depend on network size <) that can be expressed from a random : and tuned 0.

We consider two metrics for evaluating fit quality to a target 5 using affinity : and
dimer index 9 :

L2(0; 9 , :, 5 ) = 1
|� |

∫
�

���log
(
5 (G)

)
− log

(
6 9 (G; :, 0)

) ���23G, (7.15)

and
L∞(0; 9 , :, 5 ) = sup

G∈�

���log
(
5 (G)

)
− log

(
6 9 (G; :, 0)

) ��� (7.16)

In our experiments, we tune 0 in order to optimize Equation (7.15), but evaluate the
quality of the resulting fit using Equation (7.16); in the future, it is likely best to
employ the same metric during both optimization and evaluation. That is, we have

0∗( 5 , 9 , :) = arg min
0∈A

L2(0; 9 , :, 5 ).

We then define a network-size specific versatility metric V< for a given : ∈ R3

(associated with a network of < interacting monomers) and its particular 9’th dimer
as

V< (:, 9) :=
1
#<

#<∑
==1

[
L∞

(
0∗

(
5
(<)
= , 9 , :

)
; 9 , :, 5 (<)=

)
≤ W

]
, (7.17)

where we choose W = 1. Observe that we are summing a boolean, which corresponds
to whether or not the 9’th dimer resulting from our identified 0∗ is able to fit the given
target within a specified maximum tolerance W. We termV< as versatility because it
reports the fraction of target functions that were expressible by a given (:, 9) pair;
this pair is more versatile if it can express many targets by simply tuning 0.

We let : ∼ Ulog
(
[10−7, 105]3

)
, so thatV< (:, 9) becomes a random variable induced

by the distribution over : . In order to characterize the distribution of V< and its
dependence on <, we perform a Monte Carlo sample over : (50 samples), and

2Details on the procedure for generating the target library are reported in [189].
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subsequently perform the necessary inner optimizations to obtain 50 i.i.d. samples
ofV< (we also evaluateV< for every possible 9). We visualize the distribution of
versatilities in Figure 7.4, which shows that larger random networks possess greater
potential for versatility than smaller random networks. Figure 7.5 further shows
that this increase in versatility among larger networks is most pronounced when
looking at response curves formed by dimerization of the accessory monomers, with
heterodimerization the most powerful.
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We also study the expressivity of randomly drawn networks by introducing a related
experiment. First, we redefine

0∗( 5 , :), 9∗( 5 , :) = arg min
0∈A, 9=1...3

L2(0; 9 , :, 5 ),

which yields an expressivity metric that is independent of dimer index:

E< (:) :=
1
#<

#<∑
==1

[
L∞

(
0∗

(
5
(<)
= , :

)
; 9∗, :, 5 (<)=

)
≤ W

]
. (7.18)

This expressivity metric allows us to quantify the expressive power of a single
network : when given the freedom to use different dimer responses (given by index
9) in order to achieve different functions.

Figure 7.6 visualizes the distribution of E< induced by 50 randomly drawn networks
: . Much like versatility, we observe that expressivity increases in larger networks,
and may indeed begin to saturate for < = 10.
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