
Distributed and Localized Model Predictive Control

Thesis by
Carmen Amo Alonso

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2023
Defended May 12, 2023

ii

© 2023

Carmen Amo Alonso
ORCID: 0000-0001-7593-5992

All rights reserved

iii

ACKNOWLEDGEMENTS

I am grateful to a lot of people without whom this thesis would not have been
possible. But since this is an academic piece, I will only mention here those who
directly played a role in my academic development during these years.

First and foremost, I feel incredibly lucky to have had Prof. John Doyle as my
advisor. When I first reached out to him, I was still an aerospace student who had as
much curiosity as ignorance about control theory. In spite of this, he was incredibly
supportive: he helped me switch departments, join his group, and become a CDS
student. Many years later, I approached him with an even harder proposition: I
wanted to apply control theory to natural language and language technologies. John
was once again incredibly supportive and encouraging, and he devoted a lot of
energy into helping me shape these ideas. I feel very grateful for all of this. During
these years, I have enjoyed the flexibility of being his student, and learned a lot from
his creative way of thinking. In no other place I would have had the freedom that
led me to where I am today.

During my earlier years as a graduate student, many people helped me learn the
foundations and take my first steps in research. I feel very grateful to Prof. Nikolai
Matni for all his mentorship during these years. Without him, the topic of this
thesis would have been very different. I am also very grateful to Prof. James
Anderson, who also provided very helpful guidance and insights on my papers. I
also want to thank Dr. Shih-Hao Tseng, who taught me all I know about hardware
implementations. Shih-Hao is the most patient person I know; he met with me
weekly for two pandemic years to help me become a better researcher and a better
engineer. I am very grateful for all the time and energy that Shih-Hao devoted to
my growth.

This thesis would not have been the same without the wonderful collaborations that
I had during these years. First, I want to thank my colleague Lisa Li. I had the
pleasure and honor to collaborate with Lisa in a big part of the papers that make this
thesis. I feel very lucky to have had the chance to work alongside her, learn from
her, and get her honest feedback every time. I also want to thank Fengjun Yang,
who has been a great collaborator and colleague. He was always able to make our
Zoom meetings very fun regardless of how tired I was. I feel also very lucky to
have worked with Dimitar Ho. Our collaboration started when he once came to my

iv

office to pick up a monitor, and he ended up as a co-author of my first paper. I also
want to thank all my other colleagues in John’s group for giving advice and sharing
moments throughout these years.

Lastly, I want to express gratitude to those who have supported me during my
recent transition to applying control to the study of language, particularly Prof. Lior
Pachter, Dr. Damian Blasi, and Prof. Terry Sejnowski. I also want to thank all
the people who made it possible for me to be here today: Dr. Esperanza Barrera-
Medrano, Prof. Ricardo Martinez-Botas, Prof. Ignacio Gomez, Prof. Isabel
Perez-Grande, Prof. Michael Ortiz, Prof. Manuel Martinez-Sanchez, Prof. Carmen
Guerra-Garcia, and, especially, Dr. Carlos Enol Garcia. Thank you for having given
me an opportunity to gain experience in and exposure to research. Thank you for
showing me how education can transform someone’s life.

v

ABSTRACT

The power grid, the internet, a city of autonomous cars, neural networks in humans
and intelligent systems, and the microbiome are just a few examples of large-scale
distributed bio- and cyber-physical systems (CPS). Our reliance on these systems
has been dramatically accelerating, yet we lack the principled theory to control their
behavior that we have for more traditional applications such as in aerospace, chemical
process, and robotic systems. Often, CPS are used in safety-critical applications
and it is imperative that our control algorithms are able to robustly handle diverse
constraints despite diverse uncertainties, and that they enjoy theoretical guarantees
for feasibility and stability. Model Predictive Control (MPC) is the foundational
method to address these challenges, and it has proven very successful in a wide
variety of applications. However, most of these applications require a centralized
MPC controller with poor scalability. For bio and CPS networks, its online real-
time requirements quickly make communications and computing intractable. The
work in this thesis responds to this need and provides a novel optimal and robust
control framework based on MPC that is able to achieve stringent requirements with
highly-scalable communications and computing. We show how these results extend
naturally to the data-driven case where no models are available and control is based
on past observations only. We also provide novel hardware implementations that
exploit GPU technology to further accelerate computations. In order to achieve this,
we leverage a feature of large-scale distributed systems that is often neglected: their
sparsity. A major challenge of most distributed control algorithms to date is the
fact that the global information exchanges that one achieves in the centralized case
are hindered by the fact that these systems often exhibit great sparsity. Contrary to
prior works, we take advantage of such sparsity, and illustrate that by integrating
ideas from control theory, optimization and learning into this framing, we can
develop a completely new set of algorithms, theoretical results and architectures to
optimally control distributed cyber-physical systems for safety-critical applications.
To do so, we introduce locality constraints in the formulation, which restrict each
subsystem in the network to only communicate and influence a small neighborhood
of subsystems as opposed to the entire network. By doing so, we achieve the
following contributions:

1. Distributed and localized synthesis and implementation of closed-loop model
predictive controllers (MPC). We present for the first time a MPC algorithm

vi

for large-scale linear systems where both its synthesis as well as implemen-
tation can be performed in a distributed and localized way without strong
assumptions. We call our algorithm Distributed and Localized Model Predic-
tive Control (DLMPC). In this scheme, only local state and model information
needs to be exchanged between subsystems for the computation and imple-
mentation of control actions. Moreover, the resulting distributed algorithms
are robust to various types of additive disturbances and computations scale
independent of the side of the network for the first time, making this approach
scalable for arbitrary sizes of the systems.

2. Minimally conservative guarantees for asymptotic stability and recursive fea-
sibility. In the existing literature, the introduction of these guarantees either
led to excessive conservatism in the solution provided by the algorithms or
resulted in additional computational burden while still introducing some con-
servatism. In this thesis we provide theoretical results and algorithms to
compute theoretical guarantees for stability and feasibility of MPC. These
computations can be performed offline prior to the DLMPC algorithm —
so they do not add to the computational burden — and they introduce the
minimal possible conservatism. By virtue of the locality constraints, these
computations can be performed in a distributed and localized way for the first
time, which makes computation very scalable.

3. Globally optimal guarantees as compared with global MPC. We provide a
rigorous analysis of the optimal performance of DLMP as compared with a
MPC scheme where global communication is allowed. We demonstrate that
in cases where the underlying topology of the system is sparse (as is the case in
most large-scale networks), the inclusion of local communication constraints
does not result in a suboptimal solution. These results highlight the advantage
of introducing locality constraints: while they do not impact globally optimal
performance in a wide range of scenarios, they provide a more scalable and
efficient solution than their global counterpart.

4. Data-driven extension. We extend the results in this thesis to the purely data-
driven case, so no model of the system is needed. We show that all previous
guarantees hold and the need for a model is fully replaced by past-trajectory
data. Moreover, by virtue of locality constraints the sample complexity of
the resulting algorithm is kept small and independent of the size of the whole
network. This contribution makes our work applicable to real-world systems

vii

since, given their large dimension and extreme complexity, it is often impos-
sible to have a model of this system. The data-driven version of DLMPC
makes optimal control with guarantees accessible to these systems. Prelimi-
nary comparisons are very favorable with methods based on ML and AI that
lack any of the guarantees of DLMPC.

5. Efficient hardware implementation. We derive and demonstrate an efficient
GPU implementation of DLMPC by exploiting the fact that the structure of the
DLMPC problem fits well within the limitations of GPU computations. This
work illustrates how locality constraints are not only beneficial in distributed
settings, but also in centralized settings requiring parallelizable and efficient
computations. This work presents an additional utility to locality constraints
that can be exploited to create layered and efficient control architectures.

In summary, the work in this thesis provides for the first time a tractable and unifying
framework for distributed control algorithms subject to constraints. DLMPC is the
first online distributed control algorithm that allows for the robust, scalable, efficient
and data-driven computations while enjoying theoretical guarantees and parallel
hardware implementations. The framework presented in this thesis highlights the
importance of considering locality constraints and opens a new frontier to develop
effective layered control systems enabled by locality constraints. First, our theoret-
ical contributions in 1, 2 and 3 solve several existing theoretical challenges in the
field of distributed control. Second, our work in 4 makes these results applicable
to real-world distributed systems where a model of the system is lacking. Lastly,
5 offers the possibility of leveraging our approach even in a centralized setting to
massively speed up computations. Together, these different frontiers can be layered
together to create effective and scalable control architectures for real-world com-
plex and large-scale systems. This thesis shows how all of this can be achieved by
leveraging the intrinsic and ubiquitous sparsity of large-scale distributed systems in
technology and biology.

viii

PUBLISHED CONTENT AND CONTRIBUTIONS

[1] J. S. Li and C. Amo Alonso, “Global performance guarantees for localized
model predictive control,” Submitted to IEEE Open Journal of Control
Systems, 2023. doi: 10.48550/arXiv.2303.11264,
C.A.A. co-lead the conception of the project, participated in the development
of the theoretical results and algorithms, helped with the conception of the
experimental simulations, and revised the writing of the manuscript.

[2] C. Amo Alonso, J. S. Li, J. Anderson, and N. Matni, “Distributed and lo-
calized model predictive control. Part I: Synthesis and implementation,”
IEEE Transactions on Control of Network Systems, pp. 1–12, 2022. doi:
10.1109/TCNS.2022.3219770,
C.A.A. participated in the conception of the project, developed the theoret-
ical results and algorithms, helped in the conception of the simulations, and
lead the writing of the manuscript.

[3] C. Amo Alonso, J. S. Li, J. Anderson, and N. Matni, “Distributed and
localized model predictive control. Part II: Theoretical guarantees,” IEEE
Transactions on Control of Network Systems, pp. 1–11, 2022. doi: 10.1109/
TCNS.2023.3262650,
C.A.A. participated in the conception of the project, lead the development
of the theoretical results and algorithms, helped in the conception of the
simulations, and lead the writing of the manuscript.

[4] C. Amo Alonso and S.-H. Tseng, “Effective GPU parallelization of dis-
tributed and localized model predictive control,” pp. 199–206, 2022. doi:
10.1109/ICCA54724.2022.9831839,
C.A.A. participated in the conception of the project, developed the theoret-
ical results and algorithms, conceived and implemented the experimental
simulations, and lead the writing of the manuscript. This paper was awarded
the Best Student Paper Award.

[5] C. Amo Alonso*, F. Yang*, and N. Matni, “Data-driven distributed and lo-
calized model predictive control,” IEEE Open Journal of Control Systems,
vol. 1, pp. 29–40, 2022. doi: 10.1109/OJCSYS.2022.3171787,
C.A.A. participated in the conception of the project, participated in the
development of the theoretical results and algorithms, conceived the exper-
imental simulations, and participated the writing of the manuscript.

[6] C. Amo Alonso, J.S. Li, N. Matni, and J. Anderson, “Robust distributed
and localized model predictive control,” arXiv preprint arXiv:2103.14171,
2021. doi: 10.48550/arXiv.2103.14171,
C.A.A. participated in the conception of the project, developed the theoret-
ical results and algorithms, conceived and implemented the experimental
simulations, and lead the writing of the manuscript.

ix

[7] J. S. Li, C. Amo Alonso, and J. C. Doyle, “Frontiers in scalable distributed
control: SLS, MPC, and beyond,” pp. 2720–2725, 2021. doi: 10.23919/
ACC50511.2021.9483130,
C.A.A. participated in the conception of the project, participated in the
development of the algorithms, helped in the conception of the experimental
simulations, and revised the writing of the manuscript.

[8] C. Amo Alonso and N. Matni, “Distributed and localized closed-loop model
predictive control via System Level Synthesis,” pp. 5598–5605, 2020. doi:
10.1109/CDC42340.2020.9303936,
C.A.A. participated in the conception of the project, developed the theoret-
ical results and algorithms, conceived and implemented the experimental
simulations, and lead the writing of the manuscript.

[9] C. Amo Alonso, N. Matni, and J. Anderson, “Explicit distributed and local-
ized model predictive control via System Level Synthesis,” pp. 5606–5613,
2020. doi: 10.1109/CDC42340.2020.9304349,
C.A.A. participated in the conception of the project, developed the theoret-
ical results and algorithms, conceived and implemented the experimental
simulations, and lead the writing of the manuscript.

[10] C. Amo Alonso, D. Ho, and J.M. Maestre, “Distributed linear quadratic
regulator robust to communication dropouts,” IFAC-PapersOnLine, vol. 53,
no. 2, pp. 3072–3078, 2020, 21st IFAC World Congress. doi: 10.1016/j.
ifacol.2020.12.1012,
C.A.A. participated in the conception of the project, developed the theoret-
ical results and algorithms, conceived and implemented the experimental
simulations, and lead the writing of the manuscript.

[11] S.-H. Tseng, C. Amo Alonso, and S. Han, “System level synthesis via
dynamic programming,” pp. 1718–1725, 2020. doi: 10.1109/CDC42340.
2020.9304369,
C.A.A. participated in the development of the algorithms, helped obtain the
figures from simulations, and participated in the writing of the manuscript.

x

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . v
Published Content and Contributions . viii
Table of Contents . ix
Chapter I: Introduction . 1

1.1 Prior work . 2
1.2 Contributions and Roadmap . 4
1.3 Notation . 6

Chapter II: Synthesis and Implementation 8
2.1 Introduction . 9
2.2 Problem Formulation . 10
2.3 Localized MPC via System Level Synthesis 14
2.4 Distributed AND Localized MPC Based on ADMM 23
2.5 Simulation Experiments . 28
2.6 Conclusion . 31

Chapter III: Recursive Feasibility, Convergence, and Asymptotic Stability
Guarantees . 33
3.1 Introduction . 34
3.2 Problem Formulation . 35
3.3 Feasibility and Stability Guarantees 36
3.4 Feasible and Stable DLMPC . 41
3.5 Simulation Experiments . 49
3.6 Conclusion . 53

Chapter IV: Global Performance Guarantees 55
4.1 Introduction . 56
4.2 Problem Statement . 57
4.3 Global Performance for Localized MPC 58
4.4 Algorithmic Implementation of Optimal Locality Selection 67
4.5 Simulations . 69
4.6 Conclusion . 73

Chapter V: Data-driven Approach in the Noiseless Case 75
5.1 Introduction . 76
5.2 Problem Formulation . 77
5.3 Data-driven System Level Synthesis 78
5.4 Localized data-driven System Level Synthesis 80
5.5 Distributed AND Localized algorithm for Data-driven MPC 86
5.6 Simulation Experiments . 90
5.7 Conclusion . 95

Chapter VI: Explicit Solution and GPU Parallelization 96

xi

6.1 Introduction . 97
6.2 Problem Formulation . 99
6.3 An Explicit Solution for DLMPC 100
6.4 A GPU Parallelization for DLMPC 105
6.5 Simulation Experiments . 114
6.6 Conclusion and Future work . 119

Chapter VII: Conclusion . 120
7.1 Challenge Addressed . 120
7.2 Main Contributions . 121
7.3 Future Research Directions . 123

1

C h a p t e r 1

INTRODUCTION

Model Predictive Control (MPC) has proven to be a successful control strategy
across a wide variety of applications [1]. One of the reasons why MPC has become
such a popular approach is its ability to seemingly handle hard constraints on the
state and the input, which allows for setting where saturation and safety constraints
need to be taken into consideration in the presence of disturbances. Moreover, MPC
approaches are equipped with theoretical guarantees, such as recursive feasibility
and asymptotic stability; and sufficient conditions based on terminal sets and cost
functions have been established [2]. However, the need to control increasingly large-
scale, distributed, and networked systems has limited its applicability to smaller-
scale centralized systems.

Large-scale distributed systems, such as power grids and intelligent transport sys-
tems, are often impossible to control with a centralized controller. Even when such
a centralized controller can be implemented, the high computational demand of
MPC renders it impractical. Thus, efforts have been made to develop distributed
MPC (DMPC) algorithms, wherein sub-controllers solve a local optimization prob-
lem, and potentially coordinate with other sub-controllers in the network. How-
ever, porting the ideas of centralized MPC to distributed systems is a challenging
task, both theoretically and computationally. Furthermore, contemporary large-
scale distributed systems such as the Internet of Things enjoy ubiquitous sensing
and communication, but are locally resource constrained in terms of power con-
sumption, memory, and computation power. If such systems are to move from
passive data-collecting networks to active distributed control systems, algorithmic
approaches that exploit the aforementioned advantages subject to the underlying
resource constraints of the network must be developed.

Hence, the challenge of developing distributed MPC algorithms goes beyond the
need for extending the centralized approaches to a distributed setting. We seek to
devise a framework that exploits the aforementioned intrinsic network and commu-
nication structure and that allows for scalable algorithms independent of the size
of the global system. The aim is to do so in a non-conservative and computation-
ally efficient manner, so that DMPC can be used in real-world applications. In

2

order to do so, additional considerations are needed to provide efficient and non-
conservative theoretical guarantees together with a rigorous characterization of the
impact of local communication constraints on performance. Moreover, we believe
that having a data-driven approach to DMPC is paramount, since it eliminates the
need for expensive system identification algorithms. Our hypothesis is that for such
systems, collecting local trajectory data from a small subset of neighboring sys-
tems is a far more feasible approach than deriving the intricate and detailed system
models needed by model-based control algorithms. Thus far, the field is lacking a
framework for DMPC that takes into account the structure of the underlying system
and provider efficient, scalable, data-driven and non-conservative solutions with
theoretical guarantees.

1.1 Prior work
Most of the research on DMPC has concentrated on the collaborative scenario,
where sub-controllers communicate information regarding state and control actions
to synchronize their actions to achieve a common goal, usually by means of dis-
tributed optimization [3]–[10]. Since most of these approaches rely on nominal
open-loop approaches, they often do not enjoy robustness guarantees [11]. To
maintain robustness in the presence of additive disturbances, closed-loop policies
are desirable. However, although many closed-loop formulations exist, they rely
on strong assumptions and/or are unsuitable for distributed computation [12]–[17].
Prior to this thesis, a closed-loop DMPC algorithm that (i) computes structured feed-
back policies via convex optimization and (ii) can be solved at scale via distributed
optimization does not currently exist in the literature.

In terms of guarantees, the majority of prior DMPC approaches rely on the use of
distributed terminal costs and terminal sets to provide theoretical guarantees, similar
to centralized MPC settings. However, in order to make them amenable to distributed
settings, they often rely on additional structure or relaxation techniques that leads
to conservative solutions [18]–[22]. A different line of work proposes to synthesize
and update structured terminal sets online, which increases the computational and
communication burden at each iteration while still relying on approximations that
introduce conservatism [6], [23]–[27]. Prior DMPC approaches lack minimally
conservative guarantees that can be computed offline in a scalable and efficient
manner. Furthermore, few analyses exist as to the performance guarantees of
DMPC when subject to structural constraints of the underlying system. Although
local communication has been found to facilitate faster computational speed [28]

3

and convergence [29] in offline distributed controllers, this typically comes at the
cost of suboptimal global performance [30]–[33] and convergence [34]. In the realm
of predictive control, communication constraints are important considerations [35],
the improved computational speeds typically come at the cost of suboptimal global
performance and lack of stability and convergence guarantees [36]. Prior works
lack a principled study of this phenomenon that could inform the design of DMPC
with structural constraints that preserve optimal performance.

In terms of data-enabled formulations, the majority of data-driven control ap-
proaches prior to this thesis that do not require a system identification step have
focused on providing solutions to the linear quadratic regulator (LQR) problem [37]–
[42]. Among those, the ones relying on behavioral systems theory [41] have given
rise to several different data-enabled Model Predictive Control (MPC) approaches
in the centralized setting [43]–[46]. Since these approaches require gathering past
trajectories of the global system, their scalability and applicability in the distributed
setting is hindered. Moreover, among the few recent works where data-driven ap-
proaches were applied to the distributed setting, providing theoretical guarantees for
these approaches has proven difficult [47]. Prior work does not provide a solution
on how to develop a scalable distributed MPC approach where the system model
is unknown and only local measurements are available for each subsystem. It is
important that such an approach enjoys the same theoretical guarantees of recursive
feasibility and asymptotic stability as standard MPC approaches.

Lastly, applicability of MPC is often limited to slow processes given the big compu-
tational burden of solving an online optimization. This issue is further highlighted
in the case of DMPC, where several optimization problems are solved per time step
in iterative approaches. Standard methods to speed up computations, both algo-
rithmic and hardware-wise, are currently not applied to DMPC appraoches. On
the algorithmic side, the success of explicit MPC [48]–[50], which moves most
of the burden offline and replaces an online optimization by a look-up table, fail
to scale to large-dimensional systems. On the hardware side, most of the efforts
are centered around achieving efficient computations by appropriately exploiting
algorithmic features, and rely on hardware to simply parallelize mathematical op-
erations. Hence, prior work on the hardware implementation of the algorithms
is completely decoupled from the original system formulation, and therefore any
hardware-intrinsic overhead can only be handled by using efficient programming
practices. Despite the great promise of DMPC frameworks to deal with algorithmic-

4

enhancements and hardware-intrinsic overheads in a principled manner through the
problem formulation, its full potential has not been realized in the literature prior to
this thesis.

1.2 Contributions and Roadmap
The goal of this thesis is to fill this gap in the literature, and provide a closed-loop
DMPC framework that enjoys computationally efficient data-driven and scalable
algorithms and implementations, non-conservative solutions and theoretical guar-
antees. In what follows, we describe the results and their organization in this thesis.
For the sake of reproducibility, we also point to readily-available code to replicate
all the simulations presented on this thesis.

Chapter 2: We present the Distributed Localized MPC (DLMPC) algorithm for
linear time-invariant systems. We leverage the SLS framework [51] to define a novel
parameterization of distributed closed-loop MPC policies such that the resulting
synthesis problem is both convex and structured, allowing for the natural use of
distributed optimization techniques. We show that by exploiting the sparsity of the
underlying distributed system, we are able to distribute the computation via ADMM
[52], thus allowing the online computation of closed-loop MPC policies to be carried
out in a scalable localized manner. Our results apply to the nominal case as well as
the robust case, and provide a unifying algorithm that applies to all cases and does not
rely on simplifying approximations. Through numerical experiments, we confirm
that the complexity of the subproblems solved at each subsystem scales as 𝑂 (1)
relative to the state dimension of the full system for both the nominal and the robust
case. Code to replicate the experiments can be found at https://github.com/
unstable-zeros/dl-mpc-sls/tree/master/2022_TNCS_DLMPC-Part-I.

Chapter 3: We provide recursive feasibility and asymptotic stability guarantees for
the DLMPC method. Our first key contribution is to provide the first exact, fully dis-
tributed computation of the maximal positive invariant set, or terminal set. We show
that it can be expressed in terms of the closed-loop system responses, and when they
are localized, the set is naturally structured without requiring additional assump-
tions. We leverage this to provide a distributed and localized offline algorithm for
computation of the set. Our second key contribution is to provide the necessary
additions to the original DLMPC algorithm to incorporate the coupled terminal
constraint and terminal cost associated with the maximal positive invariant set–this
provides the algorithm with feasibility and stability guarantees, respectively. We

5

provide additions to the algorithm to accommodate coupled terminal constraint and
cost based on a nested ADMM-based consensus algorithm. Overall, throughout all
proposed algorithms, only local information exchanges within local neighborhoods
are necessary, and computational complexity is independent of the global system
size; each sub-controller first solves for its local portion of the terminal set, offline,
then solves a local online MPC problem. We validate these results and further con-
firm the minimal conservatism introduced by this method through simulations. Code
to replicate the experiments can be found at https://github.com/unstable-
zeros/dl-mpc-sls/tree/master/2022_TNCS_DLMPC-Part-II.

Chapter 4: We analyze the impact of introducing locality constraints on the overall
optimal performance of DMPC. First, we provide a rigorous characterization of how
local communication constraints restrict (or preserve) the set of trajectories available
under predictive control, and use this to provide guarantees on optimal global
performance for localized MPC. Secondly, we provide an exact method for selecting
an appropriate locality parameter 𝑑 for localized MPC. To the best of our knowledge,
these are the first results of this kind on local communication constraints. We provide
simulation experiments validating our results. Code to replicate the experiments can
be found at https://github.com/flyingpeach/LocalizedMPCPerformance.

Chapter 5: We present a data-driven version of the model-based DLMPC algorithm
for linear time-invariant systems in a noise-free setting. We extend the results on
data-driven SLS [46], which show that optimization problems over system-responses
can be posed using only libraries of past system trajectories without explicitly
identifying a system model, to the localized and distributed setting where subsystems
can only collect and communicate information within a local neighborhood. In this
way, the model-based DLMPC problem can equivalently be posed using only local
libraries of past system trajectories, without explicitly identifying a system model.
We then exploit this structure, together with the the separability properties of the
objective function and constraints, and provide a distributed synthesis algorithm
based on ADMM where only local information sharing is required. Hence, in the
resulting implementation, each sub-controller solves a low-dimensional optimization
problem defined over a local neighborhood, requiring only local data sharing and
no system model. Since this problem is analogous to the model-based DLMPC
problem, our approach directly inherits its guarantees for convergence, recursive
feasibility and asymptotic stability. Through numerical experiments, we validate
these results and further confirm that the complexity of the subproblems solved

6

at each subsystem does not scale relative to the full size of the system. Code
to replicate the experiments can be found at https://github.com/unstable-
zeros/dl-mpc-sls/tree/master/2022_OJCS_DataDriven-DLMPC.

Chapter 6: We propose a GPU implementation for DLMPC that exploits the
structure of the problem to overcome the computational limitations of the hardware
architecture. Our first contribution is to propose an explicit solution for DLMPC.
We leverage the separability of the DLMPC problem to provide explicit analytical
solutions to the optimization problem solved by each subcontroller. We show that
explicit solution requires just 3 partitions of the solution space per system state/input
instantiation, thus making the point-location problem trivial when solving for each
of the instantiations sequentially. Our second contribution is a principled parallel
implementation of explicit DLMPC and overhead analysis through an appropriate
distributed MPC framework that allows for local communication constraints. We
exploit the potential for parallelization of this scheme in a GPU, where the GPU is
not used to parallelize arithmetic computations but rather each computing thread is
tasked with computing the operations corresponding to a subsystem in the network.
Moreover, we demonstrate how simply applying standard parallelization techniques
to the algorithm incurs unnecessary overhead, and we show that communication
exchange constraints embedded in the framework allow us to explicitly deal with
these hardware-intrinsic communication overheads in a principled manner. We note
that the limitations in communication among the GPU computing threads resemble
the communication scheme in control systems for large-networks, and we take
advantage of the local communication constraints that are already included in the
DLMPC algorithm. We demonstrate through simulations the effectiveness of our
method. Code to replicate the experiments can be found at https://github.com/
camoalon/DLMPC-GPU.

1.3 Notation
Lower-case and upper-case letters such as 𝑥 and 𝐴 denote vectors and matrices,
respectively, although lower-case letters might also be used for scalars or functions
(the distinction will be apparent from the context). Bracketed indices denote time-
step of the real system, i.e., the system input is 𝑢(𝑡) at time 𝑡, not to be confused
with 𝑥𝑡 which denotes the predicted state 𝑥 at time 𝑡. Superscripted variables with
or without curly brackets, e.g., 𝑥𝑘 or 𝑥{𝑘}, correspond to the value of 𝑥 at the
𝑘 𝑡ℎ iteration of a given algorithm. ∥ · ∥𝐹 denotes the Frobenius norm, and the
† superscript denotes the pseudo-inverse of a matrix. An arrow above a matrix

7

quantity denotes vectorization, i.e.,
⃗⃗ ⃗⃗
𝐴 is the vectorization of 𝐴. Calligraphic letters

such as S denote sets (with the exception of A and B), and script letters such as 𝔠
denote a subset of Z+, e.g., 𝔠 = {1, ..., 𝑛}. Square bracket notation, i.e., [𝑥]𝑖 denotes
the components of 𝑥 corresponding to subsystem 𝑖, and, by extension [𝑥] 𝑗∈S denotes
the components of 𝑥 corresponding to every subsystem 𝑗 ∈ S. Unless otherwise
stated, boldface lower and upper case letters such as x and K denote finite horizon
signals and block lower triangular (causal) operators, respectively:

x =


𝑥0

𝑥1
...

𝑥𝑇


, K =



𝐾0 [0]
𝐾1 [1] 𝐾1 [0]
...

. . .
. . .

𝐾𝑇 [𝑇] . . . 𝐾𝑇 [1] 𝐾𝑇 [0]


,

where each 𝑥𝑖 is an 𝑛-dimensional vector, and each 𝐾𝑖 [𝑗] represents the value of
matrix𝐾 at the 𝑗 th time-step computed at time 𝑖. Unless required, dimensions are not
stated, and compatible dimension can be assumed. K(𝔯, 𝔠) denotes the submatrix of
K composed of 𝔯 rows and 𝔠 columns, respectively. We denote the block columns of
K by K{1},...,K{𝑇}, i.e. K {1} := [𝐾0 [0]T . . . 𝐾𝑇 [𝑇]T]T, and we use : to indicate
the range of columns, i.e. K {2 : 𝑇} contains the block columns from the second to
the last.

In some instances of Chapter 4, we alter the matrix notation for ease of readability.
For instance, we denote each matrix forming K as 𝐾𝑖, 𝑗 instead of 𝐾𝑖 [𝑗]. For matrix
𝐴, (𝐴)𝑖,: denotes the 𝑖th row of 𝐴, (𝐴):, 𝑗 denotes the 𝑗 th column, and (𝐴)𝑖, 𝑗 denotes
the element in the 𝑖th row and 𝑗 th column. (𝐴)𝑖:,: denotes the rows of 𝐴 starting from
the 𝑖th row. For matrix 𝐴, (𝐴)ℜ,ℭ denotes the submatrix of 𝐴 composed of the rows
and columns specified by 𝔯 and 𝔠, respectively; for vector 𝑥, (𝑥)𝔯 denotes the vector
composed of the elements specified by 𝔯.

For ease of variable manipulation, we also introduce augmented variables. For any
matrix 𝑍 , the corresponding augmented matrix 𝑍blk is defined as a block-diagonal
matrix containing 𝑁𝑥 copies of 𝑍 , i.e., 𝑍blk := blkdiag(𝑍, . . . 𝑍). For any matrix
𝑌 = 𝑍Λ, the corresponding vectorization can be written as

⃗⃗⃗
𝑌 = 𝑍blk

⃗⃗ ⃗⃗
Λ.

For state 𝑥0, the corresponding augmented state 𝑋 is defined as

𝑋 (𝑥0) :=
[
(𝑥0)1𝐼 (𝑥0)2𝐼 . . . (𝑥0)𝑁𝑥

𝐼

]
.

For notational simplicity, we write 𝑋 instead of 𝑋 (𝑥0); dependence on 𝑥0 is implicit.
For any matrix Λ, Λ𝑥0 = 𝑋

⃗⃗ ⃗⃗
Λ.

8

C h a p t e r 2

SYNTHESIS AND IMPLEMENTATION

Abstract

In this chapter we present the Distributed and Localized Model Predictive Con-
trol (DLMPC) algorithm for large-scale linear systems. DLMPC is a distributed
closed-loop model predictive control (MPC) scheme wherein only local state and
model information needs to be exchanged between subsystems for the computation
and implementation of control actions. We use the System Level Synthesis (SLS)
framework to reformulate the centralized MPC problem, and show that this allows us
to naturally impose localized communication constraints between sub-controllers.
The structure of the resulting problem can be exploited to develop an Alternating Di-
rection Method of Multipliers (ADMM) based algorithm that allows for distributed
and localized computation of closed-loop control policies. We demonstrate that
computational complexity of the subproblems solved by each subsystem in DLMPC
is independent of the size of the global system. DLMPC is the first MPC algo-
rithm that allows for the scalable computation and implementation of distributed
closed-loop control policies, and deals with additive disturbances.

The content in this chapter has been published in [53].

9

2.1 Introduction
Model Predictive Control (MPC) has seen widespread success across many ap-
plications. However, the need to control increasingly large-scale, distributed, and
networked systems has limited its applicability. Large-scale distributed systems
are often impossible to control with a centralized controller, and even when such a
centralized controller can be implemented, the high computational demand of MPC
renders it impractical. Thus, efforts have been made to develop distributed MPC
(DMPC) algorithms, wherein sub-controllers solve a local optimization problem,
and potentially coordinate with other sub-controllers in the network.

Prior work

The majority of DMPC research has focused on the cooperative setting, where sub-
controllers exchange state and control action information in order to coordinate their
behavior so as to optimize a global objective, typically through distributed optimiza-
tion [3]–[10]. Most of these approaches rely on nominal open-loop approaches, and
while nominal MPC enjoys some intrinsic robustness [54], the resulting closed-loop
can be destabilized by an arbitrary small disturbance [11]. Thus, to maintain robust-
ness in the presence of additive disturbances, closed-loop policies are desirable.

Two main closed-loop MPC approaches are used. The first approach, which we
use here, is to compute dynamic structured closed-loop policies using suitable
parameterizations. This strategy was introduced by Goulart et al. [15]. More recent
methods exploit Quadratic Invariance [16] and the Youla parameterization [17].
These methods allow distributed closed-loop control policies to be synthesized via
convex optimization; however, the resulting optimization problem lacks structure
and is not amenable to distributed optimization techniques. Thus, these methods do
not scale to large systems. Similarly, recent works exploit the System Level Synthesis
(SLS) parametrization to design robust MPC controllers [55]; however, it is unclear
how these can be applied in the distributed setting. The alternative approach is to
directly extend centralized methods (i.e., constraint tightening, tube MPC) instead
of relying on a convex parametrization of distributed feedback policies. Contrary
to the first approach, these methods are computationally efficient, but they require
pre-computed stabilizing controllers, and often rely on strong assumptions, such as
the existence of a static structured stabilizing controller (as in [12]) which can be
NP-hard to compute [13], or decoupled subsystems (as in [14]).

Overall, though many closed-loop formulations exist, they rely on strong assump-
tions and/or are unsuitable for distributed computation. We seek a closed-loop

10

DMPC algorithm that (i) computes structured feedback policies via convex opti-
mization and (ii) can be solved at scale via distributed optimization. To the best of
our knowledge, no such algorithm exists.

Contributions

In this chapter we address this gap and present the Distributed Localized MPC
(DLMPC) algorithm for linear time-invariant systems, which allows for the dis-
tributed computation of structured feedback policies with recursive feasibility and
asymptotic stability guarantees. We leverage the SLS framework [51] to define a
novel parameterization of distributed closed-loop MPC policies such that the result-
ing synthesis problem is both convex and structured, allowing for the natural use of
distributed optimization techniques. Thanks to the nature of the SLS parametriza-
tion, this approach deals with disturbances in a straightforward manner with no
additional assumptions. We show that by exploiting the sparsity of the underly-
ing distributed system and resulting closed-loop system, as well as the separability
properties [51] of commonly used objective functions and constraints, we are able
to distribute the computation via ADMM [52], thus allowing the online computa-
tion of closed-loop MPC policies to be carried out in a scalable localized manner.
Our results apply to the nominal case (as presented in [56]) as well as the robust
case, and provide a unifying algorithm that applies to all cases and does not rely on
simplifying approximations. In the resulting implementation, each sub-controller
solves a low-dimensional optimization problem requiring only local communication
of state and model information. Through numerical experiments, we validate these
results and confirm that the complexity of the subproblems solved at each subsystem
scales as𝑂 (1) relative to the state dimension of the full system for both the nominal
and the robust case.

2.2 Problem Formulation
Consider a discrete-time linear time-invariant (LTI) system with dynamics:

𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝑤(𝑡), (2.1)

where 𝑥(𝑡) ∈ R𝑛 is the state, 𝑢(𝑡) ∈ R𝑝 is the control input, and 𝑤(𝑡) ∈ W ⊂ R𝑛 is
an exogenous disturbance. The system is composed of 𝑁 interconnected subsystems
(each having one or more states), so the state, control, and disturbance inputs can
be suitably partitioned as [𝑥]𝑖, [𝑢]𝑖, and [𝑤]𝑖 for each subsystem 𝑖, consequently
inducing a compatible block structure [𝐴]𝑖 𝑗 , [𝐵]𝑖 𝑗 in the system matrices (𝐴, 𝐵). We
model the interconnection topology of the system as a time-invariant unweighted

11

directed graph G(𝐴,𝐵) (E,V), where each subsystem 𝑖 is identified with a vertex
𝑣𝑖 ∈ V and an edge 𝑒𝑖 𝑗 ∈ E exists whenever [𝐴]𝑖 𝑗 ≠ 0 or [𝐵]𝑖 𝑗 ≠ 0.

Example 1. Consider the linear time-invariant system structured as a chain topology
as shown in Fig. 2.1. Each subsystem 𝑖 is subject to the dynamics

[𝑥(𝑡 + 1)]𝑖 =
∑︁

𝑗∈{𝑖,𝑖±1}
[𝐴]𝑖 𝑗 [𝑥(𝑡)] 𝑗 + [𝐵]𝑖𝑖 [𝑢(𝑡)]𝑖 + [𝑤(𝑡)]𝑖 .

We choose 𝐵 to be diagonal, so coupling between subsystems is defined by the 𝐴
matrix–thus, the adjacency matrix of the corresponding graph G coincides with the
support of 𝐴.

.. ..
….

….

.. ..
….

….

[u]j[u]i[u]1 [x]1 [x]i [x]j

[w]1 [w]i [w]j

[x]j[x]i[x]1

[u]N [x]N

[x]N

[w]N

Figure 2.1: Schematic representation of a system with a chain topology.

We study the case where the control input is a model predictive controller optimizing
a nominal objective and is subject to constraints on the state and the input. As is
standard, at each time step 𝜏 the controller solves an optimal control problem over a
finite prediction horizon of length 𝑇 using the current state as the initial condition:

min
𝑥𝑡 ,𝑢𝑡 ,𝛾𝑡

𝑇−1∑︁
𝑡=0

𝑓𝑡 (𝑥𝑡 , 𝑢𝑡) + 𝑓𝑇 (𝑥𝑇) (2.2)

s.t.

𝑥0 = 𝑥(𝜏), 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤𝑡 ,
𝑥𝑇 ∈ X𝑇 , 𝑥𝑡 ∈ X𝑡 , 𝑢𝑡 ∈ U𝑡 ∀𝑤𝑡 ∈ W𝑡 ,

𝑡 = 0, ..., 𝑇 − 1,

where 𝑓𝑡 (·, ·) and 𝑓𝑇 (·) are closed, proper, and convex. In the nominal (i.e., noiseless)
case,X𝑡 andU𝑡 are closed convex sets containing the origin. When noise is present,
we consider polytopic sets: X𝑡 := {𝑥 : 𝐻𝑥,𝑡𝑥 ≤ ℎ𝑥,𝑡} and U𝑡 := {𝑢 : 𝐻𝑢,𝑡𝑢 ≤ ℎ𝑢,𝑡}

12

where 𝐻𝑥,𝑡 , 𝐻𝑢,𝑡 and ℎ𝑥,𝑡 , ℎ𝑢,𝑡 are matrices and vectors of compatible size, andW𝑡

is a norm-bounded or polytopic set.

In order to have a closed-loop approach to MPC, where it is possible to deal with
robustness as well as have guarantees for feasibility and stability, we modify the
formulation (2.2) to optimize over closed-loop policies as opposed to simply control
inputs. At each time-step 𝜏 the formulation is:

min
𝑥𝑡 ,𝑢𝑡 ,𝛾𝑡

𝑇−1∑︁
𝑡=0

𝑓𝑡 (𝑥𝑡 , 𝑢𝑡) + 𝑓𝑇 (𝑥𝑇) (2.3)

s.t.

𝑥0 = 𝑥(𝜏), 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤𝑡 ,
𝑥𝑇 ∈ X𝑇 , 𝑥𝑡 ∈ X𝑡 , 𝑢𝑡 ∈ U𝑡 ∀𝑤𝑡 ∈ W𝑡 ,

𝑢𝑡 = 𝛾𝑡 (𝑥0:𝑡 , 𝑢0:𝑡−1), 𝑡 = 0, ..., 𝑇 − 1,

where 𝛾𝑡 (·) is a measurable function of its arguments. Notice that the introduction
of 𝛾𝑡 (·) makes the formulation be closed-loop at the expense of increasing the com-
plexity of the formulation. In order to handle this complexity, two main approaches
are used: (i) extending method from the centralized approach to the distributed
setting (tube MPC, etc.) [12], [14]; or (ii) relying on a parametrization of a dynamic
structured closed-loop policy [15]–[17]. The first approach is often hindered by
strong assumptions. The method presented in this chapter belongs to the second
group, but contrary to prior work, we are able to provide a distributed solution for
the synthesis problem.

Our goal is to define an algorithm that allows us to solve the MPC problem (2.3) in a
tractable and distributed manner while respecting local communication constraints.
To achieve this goal, we impose that information exchange–as defined by the graph
G(𝐴,𝐵) (E,V)–is localized to a subset of neighboring sub-controllers. In particular,
we use the notion of a 𝑑-local information exchange constraint [51], which restricts
sub-controllers to exchange their state and control actions with neighbors at most
𝑑-hops away, as measured by the communication topology G(𝐴,𝐵) . This notion is
captured by the 𝑑-outgoing and 𝑑-incoming sets of subsystem.

Definition 1. For a graph G(V, E), the d-outgoing set of subsystem 𝑖 is out𝑖 (𝑑) :={
𝑣 𝑗 | dist(𝑣𝑖 → 𝑣 𝑗) ≤ 𝑑 ∈ N

}
. The d-incoming set of subsystem 𝑖 is in𝑖 (𝑑) :={

𝑣 𝑗 | dist(𝑣 𝑗 → 𝑣𝑖) ≤ 𝑑 ∈ N
}
. Note that 𝑣𝑖 ∈ out𝑖 (𝑑) ∩ in𝑖 (𝑑) for all 𝑑 ≥ 0,

and dist(𝑣𝑖 → 𝑣 𝑗) denotes the distance between 𝑣𝑖 and 𝑣 𝑗 , i.e., the number of edges
in the shortest path connecting subsystems 𝑖 and 𝑗 .

13

Although somewhat cumbersome to define, these notions are intuitive, and naturally
identified with the graph topology G(𝐴,𝐵) associated with the system dynamics (2.1),
as we illustrate in the following example.

Example 2. Consider a system (2.1) composed of 𝑁 = 6 scalar subsystems, with
𝐵 = 𝐼6 and 𝐴 matrix with support represented in Fig. 2.2(a). This induces the
interconnection topology graph G(𝐴,𝐵) illustrated in Fig. 2.2(b). The 𝑑-incoming
and 𝑑-outgoing sets can be directly read off from the interaction topology. For
example, for 𝑑 = 1, the 1-hop incoming neighbors for subsystem 5 are subsystems 3
and 4, hence in5(1) = {3, 4, 5}; similarly, out5(1) = {4, 5, 6}.

[x]1

[x]2

[x]3

[x]4

[x]5 [x]6

in5(1)
<latexit sha1_base64="1JEcviQhMfIQm1uSssknsCdTCgo=">AAAB+XicdVDLSgMxFM3UV62vUZdugkWomyHTasfuim5cVrAPaIchk2ba0MyDJFMoQ//EjQtF3Pon7vwbM20FFT0QOJxzLzn3+AlnUiH0YRTW1jc2t4rbpZ3dvf0D8/CoI+NUENomMY9Fz8eSchbRtmKK014iKA59Trv+5Cb3u1MqJIujezVLqBviUcQCRrDSkmeagxCrsR9kLJp7lxX73DPLyLLr1QZqQGTV6g2EHE1QFdUdB9oWWqAMVmh55vtgGJM0pJEiHEvZt1Gi3AwLxQin89IglTTBZIJHtK9phEMq3WyRfA7PtDKEQSz0ixRcqN83MhxKOQt9PZnnlL+9XPzL66cquHL1UUmqaESWHwUphyqGeQ1wyAQlis80wUQwnRWSMRaYKF1WSZfwdSn8n3Sqll2zqncX5eb1qo4iOAGnoAJs4IAmuAUt0AYETMEDeALPRmY8Gi/G63K0YKx2jsEPGG+fErmTTA==</latexit>

out5(1)
<latexit sha1_base64="dJ8tltppdhD/G4zhafyilaNcAqI=">AAAB+nicdVDNS8MwHE3n15xfnR69BIcwL6WtG9tx6MXjBPcBWylplm5haVOSVBl1f4oXD4p49S/x5n9juk1Q0Qchj/d+P/LygoRRqWz7wyisrW9sbhW3Szu7e/sHZvmwK3kqMOlgzrjoB0gSRmPSUVQx0k8EQVHASC+YXuZ+75YISXl8o2YJ8SI0jmlIMVJa8s3yMEJqEoQZT9Xcr1edM9+s2Fbdtl2nAW1L302nBnPFtd0adLSSowJWaPvm+3DEcRqRWGGGpBw4dqK8DAlFMSPz0jCVJEF4isZkoGmMIiK9bBF9Dk+1MoIhF/rECi7U7xsZiqScRYGezIPK314u/uUNUhU2vYzGSapIjJcPhSmDisO8BziigmDFZpogLKjOCvEECYSVbqukS/j6KfyfdF3LObfc61qldbGqowiOwQmoAgc0QAtcgTboAAzuwAN4As/GvfFovBivy9GCsdo5Aj9gvH0C1bCTuA==</latexit>

[x]1

[x]2

[x]3 [x]4 [x]5

in5(1)
<latexit sha1_base64="1JEcviQhMfIQm1uSssknsCdTCgo=">AAAB+XicdVDLSgMxFM3UV62vUZdugkWomyHTasfuim5cVrAPaIchk2ba0MyDJFMoQ//EjQtF3Pon7vwbM20FFT0QOJxzLzn3+AlnUiH0YRTW1jc2t4rbpZ3dvf0D8/CoI+NUENomMY9Fz8eSchbRtmKK014iKA59Trv+5Cb3u1MqJIujezVLqBviUcQCRrDSkmeagxCrsR9kLJp7lxX73DPLyLLr1QZqQGTV6g2EHE1QFdUdB9oWWqAMVmh55vtgGJM0pJEiHEvZt1Gi3AwLxQin89IglTTBZIJHtK9phEMq3WyRfA7PtDKEQSz0ixRcqN83MhxKOQt9PZnnlL+9XPzL66cquHL1UUmqaESWHwUphyqGeQ1wyAQlis80wUQwnRWSMRaYKF1WSZfwdSn8n3Sqll2zqncX5eb1qo4iOAGnoAJs4IAmuAUt0AYETMEDeALPRmY8Gi/G63K0YKx2jsEPGG+fErmTTA==</latexit>

out5(1)
<latexit sha1_base64="dJ8tltppdhD/G4zhafyilaNcAqI=">AAAB+nicdVDNS8MwHE3n15xfnR69BIcwL6WtG9tx6MXjBPcBWylplm5haVOSVBl1f4oXD4p49S/x5n9juk1Q0Qchj/d+P/LygoRRqWz7wyisrW9sbhW3Szu7e/sHZvmwK3kqMOlgzrjoB0gSRmPSUVQx0k8EQVHASC+YXuZ+75YISXl8o2YJ8SI0jmlIMVJa8s3yMEJqEoQZT9Xcr1edM9+s2Fbdtl2nAW1L302nBnPFtd0adLSSowJWaPvm+3DEcRqRWGGGpBw4dqK8DAlFMSPz0jCVJEF4isZkoGmMIiK9bBF9Dk+1MoIhF/rECi7U7xsZiqScRYGezIPK314u/uUNUhU2vYzGSapIjJcPhSmDisO8BziigmDFZpogLKjOCvEECYSVbqukS/j6KfyfdF3LObfc61qldbGqowiOwQmoAgc0QAtcgTboAAzuwAN4As/GvfFovBivy9GCsdo5Aj9gvH0C1bCTuA==</latexit>

G(E, V)
<latexit sha1_base64="j/aAlbIvUiXkyKUyvq/6Tyi+hjc=">AAAB+HicbVDLSgMxFL1TX7U+OurSTbAIFaTMVEGXRRFdVrAPaIeSSdM2NJMZkoxQh36JGxeKuPVT3Pk3ZtpZaOuBwOGce7knx484U9pxvq3cyura+kZ+s7C1vbNbtPf2myqMJaENEvJQtn2sKGeCNjTTnLYjSXHgc9ryx9ep33qkUrFQPOhJRL0ADwUbMIK1kXp2sRtgPSKYo9vyzWnzpGeXnIozA1ombkZKkKHes7+6/ZDEARWacKxUx3Ui7SVYakY4nRa6saIRJmM8pB1DBQ6o8pJZ8Ck6NkofDUJpntBopv7eSHCg1CTwzWQaUy16qfif14n14NJLmIhiTQWZHxrEHOkQpS2gPpOUaD4xBBPJTFZERlhiok1XBVOCu/jlZdKsVtyzSvX+vFS7yurIwyEcQRlcuIAa3EEdGkAghmd4hTfryXqx3q2P+WjOynYO4A+szx/3RZH6</latexit>

supp(A) =

2
664

? 0 0 0 0 0
? ? 0 0 0 0
? 0 ? 0 0 0
0 ? 0 ? ? 0
0 0 ? ? ? 0
0 0 0 0 ? ?

3
775

<latexit sha1_base64="4NIkNv0SX4yPCPVLr2fwTYefEgk=">AAADW3icjZLPb9MwFMedZGwl7EcH4sTFWrVpu1TJhsQuSAMuHIdEt0lNVTnua2fVcTz7ZaJE/Sc5bQf+FYTTFgRtxvhKlr56733s5OmbaiksRtG95wdrT9Y3Gk/DZ5tb2zvN3ecXNi8Mhw7PZW6uUmZBCgUdFCjhShtgWSrhMh1/qPqXt2CsyNVnnGjoZWykxFBwhq7U3/VuQuqUZAyvTVbaQuvp4bsj+pYmlhuh0YqvMB9JYSRUmbpJI75MXR+ZoQc0WjlJMgOW9QuoBx+BolrwAWh5ePXlf4B1wH+D9RckoAa/Fxf2m62oHc1EV028MC2y0Hm/+S0Z5LzIQCGXzNpuHGnslcyg4BKmYVJY0IyP2Qi6ziqWge2Vs2xM6b6rDOgwN+4opLPqn0TJMmsnWeomqwzY5V5VrOt1Cxye9kqhdIGg+PyhYSEp5rQKGh0IAxzlxBnmkuS+lfJrZhhHF8dqCfHyL6+ai+N2fNI+/vS6dfZ+sY4GeUX2yCGJyRtyRj6Sc9Ih3LvzfvgbfsP/HgRBGGzOR31vwbwgfyl4+ROWHuAP</latexit>

[x]1

[x]2

[x]3

[x]4

[x]5 [x]6

in5(1)
<latexit sha1_base64="1JEcviQhMfIQm1uSssknsCdTCgo=">AAAB+XicdVDLSgMxFM3UV62vUZdugkWomyHTasfuim5cVrAPaIchk2ba0MyDJFMoQ//EjQtF3Pon7vwbM20FFT0QOJxzLzn3+AlnUiH0YRTW1jc2t4rbpZ3dvf0D8/CoI+NUENomMY9Fz8eSchbRtmKK014iKA59Trv+5Cb3u1MqJIujezVLqBviUcQCRrDSkmeagxCrsR9kLJp7lxX73DPLyLLr1QZqQGTV6g2EHE1QFdUdB9oWWqAMVmh55vtgGJM0pJEiHEvZt1Gi3AwLxQin89IglTTBZIJHtK9phEMq3WyRfA7PtDKEQSz0ixRcqN83MhxKOQt9PZnnlL+9XPzL66cquHL1UUmqaESWHwUphyqGeQ1wyAQlis80wUQwnRWSMRaYKF1WSZfwdSn8n3Sqll2zqncX5eb1qo4iOAGnoAJs4IAmuAUt0AYETMEDeALPRmY8Gi/G63K0YKx2jsEPGG+fErmTTA==</latexit>

out5(1)
<latexit sha1_base64="dJ8tltppdhD/G4zhafyilaNcAqI=">AAAB+nicdVDNS8MwHE3n15xfnR69BIcwL6WtG9tx6MXjBPcBWylplm5haVOSVBl1f4oXD4p49S/x5n9juk1Q0Qchj/d+P/LygoRRqWz7wyisrW9sbhW3Szu7e/sHZvmwK3kqMOlgzrjoB0gSRmPSUVQx0k8EQVHASC+YXuZ+75YISXl8o2YJ8SI0jmlIMVJa8s3yMEJqEoQZT9Xcr1edM9+s2Fbdtl2nAW1L302nBnPFtd0adLSSowJWaPvm+3DEcRqRWGGGpBw4dqK8DAlFMSPz0jCVJEF4isZkoGmMIiK9bBF9Dk+1MoIhF/rECi7U7xsZiqScRYGezIPK314u/uUNUhU2vYzGSapIjJcPhSmDisO8BziigmDFZpogLKjOCvEECYSVbqukS/j6KfyfdF3LObfc61qldbGqowiOwQmoAgc0QAtcgTboAAzuwAN4As/GvfFovBivy9GCsdo5Aj9gvH0C1bCTuA==</latexit>

G(E, V)
<latexit sha1_base64="j/aAlbIvUiXkyKUyvq/6Tyi+hjc=">AAAB+HicbVDLSgMxFL1TX7U+OurSTbAIFaTMVEGXRRFdVrAPaIeSSdM2NJMZkoxQh36JGxeKuPVT3Pk3ZtpZaOuBwOGce7knx484U9pxvq3cyura+kZ+s7C1vbNbtPf2myqMJaENEvJQtn2sKGeCNjTTnLYjSXHgc9ryx9ep33qkUrFQPOhJRL0ADwUbMIK1kXp2sRtgPSKYo9vyzWnzpGeXnIozA1ombkZKkKHes7+6/ZDEARWacKxUx3Ui7SVYakY4nRa6saIRJmM8pB1DBQ6o8pJZ8Ck6NkofDUJpntBopv7eSHCg1CTwzWQaUy16qfif14n14NJLmIhiTQWZHxrEHOkQpS2gPpOUaD4xBBPJTFZERlhiok1XBVOCu/jlZdKsVtyzSvX+vFS7yurIwyEcQRlcuIAa3EEdGkAghmd4hTfryXqx3q2P+WjOynYO4A+szx/3RZH6</latexit>

(a) (b)

Figure 2.2: Topology of the system. (a) Support of matrix 𝐴. (b) Example of
1-incoming and 1-outgoing sets for subsystem 5.

Hence, we can enforce a 𝑑-local information exchange constraint on the MPC
problem (2.3)–where the size of the local neighborhood 𝑑 is a design parameter–by
imposing that each sub-controllers policy respects

[𝑢𝑡]𝑖 = 𝛾𝑖𝑡 ([𝑥0:𝑡] 𝑗∈in𝑖 (𝑑) , [𝑢0:𝑡−1] 𝑗∈in𝑖 (𝑑) , [𝐴] 𝑗 ,𝑘∈in𝑖 (𝑑) , [𝐵] 𝑗 ,𝑘∈in𝑖 (𝑑)) (2.4)

for all 𝑡 = 0, . . . , 𝑇 and 𝑖 = 1, . . . , 𝑁 , where 𝛾𝑖𝑡 is a measurable function of its
arguments. This means that the closed-loop control policy at sub-controller 𝑖 can be
computed using only states, control actions, and system models collected from 𝑑-hop
incoming neighbors of subsystem 𝑖 in the communication topology G(𝐴,𝐵) . Given
such an interconnection topology, suitable structural compatibility assumptions be-
tween the cost function and state, input, and information exchange constraints are
necessary for both the synthesis and implementation of a localized control action at
each subsystem.

Assumption 1. In formulation (2.3), objective function 𝑓𝑡 is such that 𝑓𝑡 (𝑥, 𝑢) =
𝑁∑
𝑖=1
𝑓 𝑖𝑡 ([𝑥] 𝑗 , [𝑢] 𝑗) with 𝑗 ∈ in𝑖 (𝑑) for local functions 𝑓 𝑖𝑡 , and state constraint sets X𝑡

14

are such that 𝑥 ∈ X𝑡 if and only if [𝑥] 𝑗∈in𝑖 (𝑑) ∈ X𝑖𝑡 ∀𝑖 and 𝑡 ∈ {0, ..., 𝑇} for local sets
X𝑖𝑡 , and idem for (U𝑡 ,U𝑖

𝑡).

Assumption 1 imposes that whenever two subsystems are coupled through either
the constraints or the objective function, they must be within the 𝑑-local regions–
𝑑-incoming and 𝑑-outgoing sets–of one another. This is a natural assumption for
large structured networks where couplings between subsystems tend to occur at a
local scale. We will show that under these conditions, DLMPC allows for localized
synthesis and implementation of a control action at each subsystem by imposing
appropriate 𝑑-local structural constraints on the closed-loop system responses of the
system. For the remainder of this chapter we focus on developing a distributed and
localized algorithmic solution and defer the design of a terminal cost and set that
provides theoretical guarantees to the next chapter.

2.3 Localized MPC via System Level Synthesis
We introduce the SLS framework [51] and justify its utility in MPC problems.
We show how SLS naturally allows for locality constraints [51] to be imposed on
the system responses and corresponding controller implementation, and discuss
how state and input constraints can be imposed in the presence of disturbances by
extending the results from [57], leading to the formulation of the Distributed and
Localized MPC problem in the SLS framework.

Time domain System Level Synthesis
The following is adapted from §2 of [51]. Consider the dynamics of system
(2.1) and let 𝑢𝑡 be a causal linear time-varying state-feedback controller, i.e., 𝑢𝑡 =
𝐾𝑡 (𝑥0, 𝑥1, ..., 𝑥𝑡) where 𝐾𝑡 is some linear map to be designed.1 Let 𝑍 be the block-
downshift matrix,2 and define �̂� := blkdiag(𝐴, ..., 𝐴) and �̂� := blkdiag(𝐵, ..., 𝐵, 0).
Using the signal (bold) notation, we can compactly write the closed-loop behavior
of system (2.1) under the feedback law u = Kx, over the horizon 𝑡 = 0, ..., 𝑇 , which
can be entirely characterized by the system responses 𝚽𝑥 and 𝚽𝑢:

x = (𝐼 − 𝑍 (�̂� + �̂�K))−1w =: 𝚽𝑥w

u = K(𝐼 − 𝑍 (�̂� + �̂�K))−1w =: 𝚽𝑢w.
(2.5)

1Our assumption of a linear policy is without loss of generality, as an affine control policy
𝑢𝑡 = 𝐾𝑡 (𝑥0:𝑡) + 𝑣𝑡 can always be written as a linear policy acting on the homogenized state 𝑥 = [𝑥; 1].

2A matrix with identity matrices along its first block sub-diagonal and zeros elsewhere.

15

Here x, u and w are the finite horizon signals corresponding to state, control input,
and disturbance, respectively. By convention, we define the disturbance to contain
the initial condition, i.e., w = [𝑥T

0 𝑤
T
0 . . . 𝑤T

𝑇−1]
T.

The approach taken by SLS is to directly parameterize and optimize over the set
of achievable system responses {𝚽𝑥 ,𝚽𝑢} from the exogenous disturbance w to the
state x and the control input u, respectively.

Theorem 1. (Theorem 2.1 of [51]) For the system (2.1) evolving under the state-
feedback policy u = Kx, where K is block-lower-triangular, the following are true:

1. The affine subspace

𝑍𝐴𝐵𝚽 :=
[
𝐼 − 𝑍 �̂� − 𝑍�̂�

] [𝚽𝑥

𝚽𝑢

]
= 𝐼 (2.6)

with lower-triangular {𝚽𝑥 ,𝚽𝑢} parameterizes all possible system responses
(2.5).

2. For any block lower-triangular matrices {𝚽𝑥 ,𝚽𝑢} satisfying (2.6), the con-
troller K = 𝚽𝑢𝚽−1

𝑥 achieves the desired response (2.5) from w ↦→ (x, u).

The SLS framework relies on part 1 of Theorem 1 to reformulate optimal control
problems as a search over system responses 𝚽 lying in subspace (2.6), rather than
an optimization problem over states and inputs {x, u}. Using parametrization (2.5),
we reformulate the MPC subroutine (2.3) in terms of the system responses as

min
𝚽

𝑓 (𝚽{1}𝑥0) (2.7)

s.t. 𝑍𝐴𝐵𝚽 = 𝐼, 𝑥0 = 𝑥(𝜏), 𝚽w ∈ P ∀w ∈ W,

where the polytopeW := ⊗𝑇
𝑡=0W𝑡 , and the polytope P is defined so that 𝚽w ∈ P

if and only if 𝑥𝑡 ∈ X𝑡 , and 𝑢𝑡 ∈ U𝑡 , for all 𝑡 = 0, ..., 𝑇 − 1. Notice thatW is defined
so that it does not restrict 𝑥0. The objective function 𝑓 is defined consistent with
the objective function of problem (2.3). Note that Assumption 1 directly applies
to the objective function and constraint set of the SLS reformulation (2.7). We
emphasize that 𝚽{1}𝑥0 appears in the objective function as it corresponds to the
nominal (noise-free) state and input responses.

The equivalence between the MPC SLS problem (2.7) and the original MPC problem
(2.3) stems from the well known fact–restated in terms of the SLS parameterization–
that linear time-varying controllers are as expressive as nonlinear controllers over

16

a finite horizon, given a fixed initial condition and noise realization. In fact, for
a fixed initial condition and noise realization w, any control sequence 𝒖(w) :=
[𝑢⊤0 , . . . , 𝑢

⊤
𝑇−1]

⊤ can be achieved by a suitable choice of feedback matrix 𝑲 (w) such
that 𝒖(w) = 𝑲 (w)x (that such a matrix always exists follows from a dimension
counting argument). As this control action can be achieved by a linear-time-varying
controller 𝑲 (w), Theorem 1 states that there exists a corresponding achievable
system response pair {𝚽𝑥 ,𝚽𝑢} such that 𝒖(w) = 𝚽𝑢w. Thus the SLS reformulation
introduces no conservatism relative to open-loop MPC. We discuss the closed-loop
setting at the end of this section, and show that the disturbance based parametrization
[15] is a special case of ours.

Why use SLS for Distributed MPC

In the centralized setting, where both the system matrices (𝐴, 𝐵) and the system
responses {𝚽𝑥 ,𝚽𝑢} are dense without information constraints, the SLS parameter-
ized problem (2.7) is slightly more computationally costly than the original MPC
problem (2.2), as there are now 𝑛(𝑛+ 𝑝)𝑇 decision variables, as opposed to (𝑛+ 𝑝)𝑇
decision variables. However, under suitable localized structural assumptions on 𝑓𝑡

and constraint sets X𝑡 and U𝑡 , lifting to this higher dimensional parameterization
makes the problem decomposable; it allows us to take advantage of the structure of
the underlying system. This allows for not only the convex synthesis of a distributed
closed-loop control policy (as is similarly done in [15], [17]), but also for the solu-
tion of this convex synthesis problem to be computed using distributed optimization.
Notice that the comparison being made here is between an open-loop approach (2.2)
and a closed-loop one, since problem (2.7) is a reformulation of problem (2.3).
Given that problem (2.3) as stated is intractable, the reformulation into the SLS
parametrization as in problem (2.7) already provides an advantage.

This latter feature is one of the main contributions of this chapter. In particular, we
show that the resulting number of optimization variables in the local subproblems
solved at each sub-system scales as𝑂 (𝑑2𝑇), where 𝑑 is the size of the neighborhood
for each subsystem as per Definition 1 (usually 𝑑 ≪ 𝑛) and 𝑇 is the time horizon;
complexity is independent of the global system size 𝑛. To the best of our knowledge,
this is the first distributed closed-loop MPC algorithm with such properties.

Locality in System Level Synthesis
Here we illustrate how to enforce the information sharing constraint (2.4) in the
SLS framework, and how localized system responses result in a localized controller

17

implementation.

A key advantage of using the SLS framework is that the system responses not
only parametrize the closed-loop map but also provide a controller realization. In
particular, the controller achieving the system responses (2.5) can be implemented
as

u = 𝚽𝑢ŵ, x̂ = (𝐼 −𝚽𝑥)ŵ, ŵ = x − x̂, (2.8)

where x̂ is the nominal state trajectory, and ŵ = 𝑍w is a delayed reconstruction of
the disturbance. The advantage of this controller implementation, as opposed to u =

𝚽𝑢𝚽−1
𝑥 x, is that any structure imposed on the system response {𝚽𝑢,𝚽𝑥} translates

directly to structure on the controller implementation (2.8). This is particularly
relevant for imposing locality constraints, and we will show how locality in system
responses translates into locality of the controller implementation.

We begin by defining the notion of 𝑑-localized system responses, which follows
naturally from the notion of 𝑑-local information exchange constraints (2.4). They
consist of system responses with suitable sparsity patterns such that the information
exchange needed between subsystems to implement the controller realization (2.8)
is limited to 𝑑-hop incoming and outgoing neighbors.

Definition 2. Let [𝚽𝑥]𝑖 𝑗 be the submatrix of system response 𝚽𝑥 describing the map
from disturbance [𝑤] 𝑗 to the state [𝑥]𝑖 of subsystem 𝑖. The map 𝚽𝑥 is d-localized
if and only if for every subsystem 𝑗 , [𝚽𝑥]𝑖 𝑗 = 0 ∀ 𝑖 ∉ out 𝑗 (𝑑). The definition for
d-localized 𝚽𝑢 is analogous but with disturbance to control action [𝑢]𝑖.

When the system responses are 𝑑-localized, so is the controller implementation
(2.8). In particular, by enforcing 𝑑-localized structure on 𝚽𝑥 , only a local subset
[ŵ] 𝑗∈in𝑖 (𝑑) of ŵ are necessary for subsystem 𝑖 to compute its local disturbance
estimate [ŵ]𝑖, which ultimately means that only local communication is required to
reconstruct the relevant disturbances for each subsystem. Similarly, if 𝑑-localized
structure is imposed on 𝚽𝑢, then only a local subset [ŵ] 𝑗∈in𝑖 (𝑑) of the estimated
disturbances ŵ is needed for each subsystem to compute its control action [u]𝑖.
Hence, each subsystem only needs to collect information from its 𝑑-incoming set
to implement the control law (2.8), and it only needs to share information with its
𝑑-outgoing set to allow for other subsystems to implement their respective control
laws. Furthermore, such locality constraints are enforced via an affine subspace
constraint in the SLS formulation (2.7).

18

Definition 3. A subspace L𝑑 enforces a 𝑑-locality constraint if (𝚽𝑥 ,𝚽𝑢) ∈ L𝑑
implies that 𝚽𝑥 is 𝑑-localized and 𝚽𝑢 is (𝑑 +1)-localized. 3 A system (𝐴, 𝐵) is then
𝑑-localizable if the intersection of L𝑑 with the affine space of achievable system
responses (2.6) is non-empty.

Remark 1. Although 𝑑-locality constraints are always convex subspace constraints,
not all systems are 𝑑-localizable. The locality diameter 𝑑 can be viewed as a design
parameter, and for the remainder of the chapter, we assume that there exists a
𝑑 ≪ 𝑛 such that the system (𝐴, 𝐵) to be controlled is 𝑑-localizable. Notice that the
parameter 𝑑 is tuned independently of the horizon 𝑇 , and captures how “far” in the
interconnection topology a disturbance striking a subsystem is allowed to spread–as
described in detail in [51], localized control is a spatio-temporal generalization of
deadbeat control.

Example 3. Consider the chain in Example 1, and suppose that we enforce a
1-locality constraint on the system responses: then 𝚽𝑥 is 1-localized and 𝚽𝑢 is
2-localized. Due to the chain topology, this is equivalent to enforcing a tridiagonal
structure on 𝚽𝑥 and a pentadiagonal structure on 𝚽𝑢. The resulting 1-outgoing
and 2-incoming sets at node 𝑖 are then given by out𝑖 (1) = {𝑖 − 1, 𝑖, 𝑖 + 1} and
in𝑖 (2) = {𝑖 − 2, 𝑖 − 1, 𝑖, 𝑖 + 1, 𝑖 + 2}, as illustrated in Fig. 2.3.

..

..

….

….

.. ..
….

….

[w]1

[u]N [x]N

[x]N

....[u]1 [x]1

[x]1 [x]2 [x]3 [x]4

[x]2 [x]4[x]3
[u]2 [u]3 [u]4

Localized region for [w]1

Affected States

Activated Subontrollers

Figure 2.3: Graphical representation of the scenario in Example 3.

While it was not possible to incorporate locality (2.4) into the classical MPC formu-
lation (2.3) in a convex and computationally tractable manner, it is straightforward

3Notice that we are imposing 𝚽𝑢 to be (𝑑 + 1)-localized because in order to localize the effects
of a disturbance within the region of size 𝑑, the “boundary” controllers at distance 𝑑 + 1 must take
action (for more details the reader is referred to [51]).

19

to do so via the affine constraint (𝚽x,𝚽u ∈ L𝑑 as per Definition 2, with the only re-
quirement that some mild compatibility assumptions as per Assumption 1 between
the cost functions, state and input constraints, and 𝑑-local information exchange
constraints are satisfied. In the remainder of this section we exploit this fact when
tackling robust state and input constraints, which in turn results in a problem struc-
ture that is can be solved using distributed optimization. The resulting control
policies are computed using only local information.

State and input constraints in System Level Synthesis
Here we extend the method to deal with robust state and input constraints. We
emphasize that the resulting SLS reformulation retains the locality structure of the
original problem, which is key to enabling a distributed solution to the problem.

As previously stated, in the noisy case we restrict ourselves to polytopic constraints,
such that

P = {[x⊺ u⊺]⊺ : 𝐻 [x⊺ u⊺]⊺ ≤ ℎ},

where 𝐻 := blkdiag(𝐻𝑥,1, ..., 𝐻𝑥,𝑇 , 𝐻𝑢,1, ..., 𝐻𝑢,𝑇−1) and ℎ := (ℎ𝑥,1, ..., ℎ𝑥,𝑇 , ℎ𝑢,1, ...,
ℎ𝑢,𝑇−1). We assume 𝐻 and ℎ are known. We consider two scenarios for the structure
of the noise, which to distinguish from the initial condition 𝑥0 we denote by 𝜹, i.e.,
w = [𝑥T

0 𝜹T]T.

Locally norm-bounded disturbance

Definition 4. W𝜎 is a separable local norm-bounded set if for every signal 𝜹 ∈ W𝜎,
∥ [𝜹]𝑖∥𝑝 ≤ 𝜎 ∀𝑖 and 𝑝 ∈ Z≥1.

Remark 2. Note that 𝜹 ∈ W𝜎 if and only if ∥𝜹∥∞ ≤ 𝜎.

Lemma 1. Let the noise signal belong to a separable local norm-bounded set
W𝜎. Then, problem (2.7) with additional localization constraints has the following
convex reformulation

min
𝚽

𝑓 (𝚽{1}𝑥0) (2.9)

s.t. 𝑍𝐴𝐵𝚽 = 𝐼, 𝑥0 = 𝑥(𝜏), 𝚽 ∈ L𝑑 , [𝐻𝚽{1}]𝑖 [𝑥0]𝑖

+
∑︁
𝑗

𝜎

𝑒⊺𝑗 [𝐻𝚽{2 : 𝑇}]𝑖

∗
𝑒 𝑗 ≤ [ℎ]𝑖

where 𝑒 𝑗 are vectors of the standard basis, and ∥·∥∗ the dual norm of ∥·∥𝑝.

20

Proof. The proof follows from a simple duality argument on the robust polytopic
constraint 𝚽w ∈ P ∀w ∈ W. In particular, 𝚽 has to satisfy

𝐻𝚽{1}𝑥0 + max
{∥[𝜹]𝑖 ∥𝑝 ∀𝑖}

𝐻𝚽{2 : 𝑇}𝜹 ≤ ℎ,

where the maximization over 𝜹 and the inequality are element-wise. Since 𝚽 is
localized and the disturbance set is separable and local, this can be equivalently
written as:

[𝐻𝚽{1}]𝑖 [𝑥0]𝑖 + max
∥ [𝜹]𝑖 ∥𝑝

[𝐻𝚽{2 : 𝑇}]𝑖 [𝜹]𝑖 ≤ [ℎ]𝑖 ∀𝑖.

And by definition of the dual norm, the equation above can be re-written as

[𝐻𝚽{1}]𝑖 [𝑥0]𝑖 +
∑︁
𝑗

𝜎

𝑒⊺𝑗 [𝐻𝚽{2 : 𝑇}]𝑖

∗
𝑒 𝑗 ≤ [ℎ]𝑖 ∀𝑖.

□

Remark 3. Notice that the argument of Lemma 1 can be extended to any setting for
which a closed-form expression for

∑
𝑗

(
sup[w]𝑖∈W𝑖 𝑒

⊺
𝑗
[𝐻𝚽]𝑖 [w]𝑖

)
𝑒 𝑗 ≤ [ℎ]𝑖 can

be computed. Moreover, since 𝐻 is localized block-diagonal, and 𝚽 is localized,
this constraint can be enforced using only local information.

Polytopic disturbance

Lemma 2. Let the noise signal belong to a polytope, i.e., 𝜹 ∈ {𝜹 : 𝐺𝜹 ≤ 𝑔}, where

𝐺 := blkdiag(𝐺1, ..., 𝐺𝑇) and 𝑔 := (𝑔1, ..., 𝑔𝑇),

and each of the {𝐺 𝑡}𝑇𝑡=1 are block-diagonal with structure compatible with subsystem-
wise decomposition of w. Then, problem (2.7) with 𝚽 ∈ L𝑑 is reformulated as

min
𝚽,𝚵≥0

𝑓 (𝚽{1}𝑥0) (2.10)

s.t. 𝑍𝐴𝐵𝚽 = 𝐼, 𝑥0 = 𝑥(𝜏), 𝚽 ∈ L𝑑 , 𝚵 ∈ L𝑑𝐻 ,
𝐻𝚽{1}𝑥0+𝚵𝑔 ≤ ℎ, 𝐻𝚽{2 : 𝑇} = 𝚵𝐺,

with the constraint 𝚵 ≥ 0 satisfied component-wise, and L𝑑𝐻 denotes the subspace
of matrices with the same sparsity as 𝐻𝚽{2 : 𝑇}.

21

Proof. The reformulation of the robust polytopic constraint follows from duality. In
particular, 𝚽 has to satisfy

𝐻𝚽{1}𝑥0 + max
𝐺𝜹≤𝑔

𝐻𝚽{2 : 𝑇}𝜹 ≤ ℎ.

We study this constraint row-wise and focus on the second term on the left-hand
side, which can be seen as a linear program (LP) in 𝜹 for each row of 𝐻. Since
strong duality holds, we have that each of the LPs can equivalently be replaced by
its corresponding dual problem. In particular, we can solve for the 𝑘 th row of the
second term on the left-hand side as

min
𝚵(𝑘,:)≥0

𝚵(𝑘, :)𝑔

s.t. 𝐻 (𝑘, :)𝚽{2 : 𝑇} = 𝚵(𝑘, :)𝐺,

where the matrix operator 𝚵 results from stacking the dual variables from the row-
wise dual LPs. Hence, the robust polytopic constraint can be replaced by

𝐻𝚽{1}𝑥0 + 𝚵𝑔 ≤ ℎ, 𝐻𝚽{2 : 𝑇} = 𝚵𝐺,

where 𝚵 ≥ 0 (satisfied component-wise) becomes a decision variable of the MPC
problem. Furthermore, the constraint𝐻𝚽{2 : 𝑇} = 𝚵𝐺 allows for a sparse structure
on 𝚵. In particular, 𝚵𝐺 has to have the same sparsity as 𝐻𝚽{2 : 𝑇}. When 𝐺 is
block-diagonal, it immediately follows that if

∑
𝑘 𝐻 (𝑖, 𝑘)𝚽{2 : 𝑇}(𝑘, 𝑗) = 0, then

𝚵(𝑖, 𝑗) = 0. Hence, 𝚵 lies in L𝑑𝐻 , and together with the dual reformulation of the
robust polytopic constraint 𝐺𝜹 ≤ 𝑔, gives rise to problem (2.10). □

Remark 4. By Assumption 1, the subspace L𝑑𝐻 contains matrices with sparsity
such that subsystems at most 2𝑑-hops away are coupled.

These results allow us to solve the DLMPC problem (2.7) using standard convex
optimization methods, and further preserves the locality structure of the original
problem under the given assumptions. Imposing 𝑑-local structure on the system
responses, coupled with an assumption of compatible 𝑑-local structure on the objec-
tive functions and constraints of the MPC problem (2.3), leads to a structured SLS
MPC optimization problem (2.7). This structural compatibility in all optimization
variables, cost functions, and constraints is the key feature that we exploit in Sec-
tion 5.5 to apply distributed optimization techniques to scalably and exactly solve
problem (2.7).4

4Notice that these locality constraints are defined in terms of the topologyG(𝐴,𝐵) , so the structure
imposed on 𝚽 will be compatible with the structure of the matrix 𝑍𝐴𝐵 that defines constraint (2.6).

22

Why previous methods are not amenable to distributed solutions

While previous methods [15], [17] allow for similar structural constraints to be
imposed on the controller realization through the use of either disturbance feedback
or Youla parameterizations (subject to Quadratic Invariance [16] conditions), the
resulting synthesis problems do not enjoy the structure needed for distributed op-
timization techniques to be effective. We focus on the method defined in [15], as
a similar argument applies to the synthesis problem in [17]. Intuitively, the distur-
bance based feedback parameterization of [15] only parameterizes the closed-loop
map 𝚽𝑢 from w → u, and leaves the state x as a free variable. Hence, regardless
as to what structure is imposed on the objective functions, constraints, and the map
𝚽𝑢, the resulting optimization problem is strongly and globally coupled because
the state variable x is always dense. This can be made explicit by noticing that
the disturbance feedback parameterization of [15] can be recovered from the SLS
parameterization of Theorem 1.

Proposition 1. The disturbance based parametrization (M, v) defined in Section 4
of [15] as u = Mw + v is a special case of the SLS parametrization (2.5).

Proof. We start with the statement from Theorem 1 and in particular affine constraint
(2.6). Multiplying this constraint by w on the right we obtain:

[
𝐼 − 𝑍 �̂� − 𝑍�̂�

] [𝚽𝑥

𝚽𝑢

]
w = w,

where by definition of 𝚽𝑥 , x =: 𝚽𝑥w. Hence, by Theorem 2.1 in [51] the SLS MPC
subproblem

min
x,𝚽𝑢

𝑓 (x,𝚽𝑢w)

s.t. (𝐼 − 𝑍 �̂�)x = 𝑍�̂�𝚽𝑢w + w, 𝑥0 = 𝑥(𝑡),
x ∈ X,𝚽𝑢w ∈ U ∀w ∈ W,

is equivalent to problem (2.3) when restricted to solving over linear time-varying
feedback policies.

Now, if we consider nominal (disturbance free) cost, i.e., w = [𝑥⊤0 , 0, . . . , 0]
⊤ the

problem becomes

min
x,𝚽𝑢

𝑓 (x,𝚽𝑢{1}𝑥0)

s.t. (𝐼 − 𝑍 �̂�)x = 𝑍�̂�𝚽𝑢w + w, 𝑥0 = 𝑥(𝑡),
x ∈ X,𝚽𝑢w ∈ U ∀w ∈ W.

23

Notice that by setting M = 𝚽𝑢 and v = w, we recover the optimization problem over
disturbance feedback policies u = Mw + v suggested in Section 4 of [15]. □

An equivalent derivation arises in the Youla-based parameterization suggested in
[17]. This limits their usefulness to smaller scale examples where centralized
computation of policies is feasible. In contrast, by explicitly parameterizing the
additional system response 𝚽𝑥 from w→ x, we can naturally enforce the structure
needed for distributed optimization techniques to be fruitfully applied.

2.4 Distributed AND Localized MPC Based on ADMM
We now use the previous results to reformulate the DLMPC problem (2.7) in a way
that is amenable to distributed optimization techniques, and show that ADMM [52]
can be used to find a solution in a distributed manner. We exploit the separability
(Assumption 1), locality constraints, and the notion of row/column-wise separability
(to be defined next), to solve each of the local subproblems in parallel and with 𝑑-
local information only. In what follows, we restrict Assumption 1 to the case where
only dynamical coupling is considered. In the next section we extend these results
to all cases considered in Assumption 1, i.e., constraints and objective functions
that introduce 𝑑-localized couplings. Hence, all cost function and constraints have
structure:

𝑓 (x, u) =
𝑁∑︁
𝑖=1

𝑓 𝑖 ([x]𝑖, [u]𝑖), and

[x⊺ u⊺]⊺ ∈ P if and only if

[
[x]𝑖
[u]𝑖

]
∈ P𝑖,

where P = P1 × · · · × P𝑁 .

By definition of the SLS system responses (2.5), we can equivalently write these
conditions in terms of 𝚽 as

𝑓 (𝚽{1}𝑥0) =
𝑁∑︁
𝑖=1

𝑓 𝑖
(
𝚽{1}(𝔯𝑖, :)𝑥0

)
, and

𝚽 ∈ P if and only if 𝚽(𝔯𝑖, :)𝑥0 ∈ P𝑖 ∀𝑖,

where 𝔯𝑖 is the set of rows in 𝚽 corresponding to subsystem 𝑖, i.e., those that
parametrize [x]𝑖 and [u]𝑖. These separability features are formalized as follows:

Definition 5. Given the partition {𝔯1, ..., 𝔯𝑘 }, a functional/set is row-wise separable
if:

24

• For a functional 𝑔, 𝑔(𝚽) =
∑𝑘
𝑖=1 𝑔𝑖

(
𝚽(𝔯𝑖, :)

)
for some functionals 𝑔𝑖 for

𝑖 = 1, ..., 𝑘 .

• For a set P, 𝚽 ∈ P if and only if 𝚽(𝔯𝑖, :) ∈ P𝑖 ∀𝑖 for some sets P𝑖 for
𝑖 = 1, ..., 𝑘 .

An analogous definition exists for column-wise separable functionals and sets [51],
where the partition {𝔠1, ..., 𝔠𝑘 } entails the columns of 𝚽, i.e., 𝚽(:, 𝔠𝑖).

When the objective function and all the constraints of an optimization problem are
separable with respect to a partition of cardinality 𝑘 , then the optimization trivially
decomposes into 𝑘 independent subproblems. However, this is not the case for the
localized DLMPC problem (2.7), since some elements are row-wise separable while
others are column-wise separable. To make it amenable to a distributed solution, we
propose the following reformulation, which applies to the noise-free case as well as
to both noisy cases (locally norm-bounded and polytopic) considered in the previous
section:

min
�̃�,�̃�

𝑓 (𝑀1�̃�{1}𝑥0) (2.11)

s.t. 𝑍𝐴𝐵𝑀2�̃� = 𝐼, 𝑥0 = 𝑥(𝜏), �̃�, �̃� ∈ L𝑑 ,
�̃� ∈ P̃, �̃� = �̃��̃�,

where:

• In the noise-free case:

�̃� := 𝚽{1}, �̃� := 𝚿{1}, 𝑀1 = 𝑀2 = �̃� =: 𝐼,

P̃ = {𝚽{1} : 𝚽{1}𝑥0 ∈ P}.

• In the noisy case:

𝑀1 :=

[
𝐼 0
0 0

]
, 𝑀2 :=

[
0 𝐼

]
, �̃� :=

[
𝐼 0
0 𝐻

]
,

– when noise is locally bounded:

�̃� :=

[
𝚽{1} 0
𝛀{1} 𝛀{2 : 𝑇}

]
, �̃� :=

[
𝚿{1} 0
𝚿{1} 𝚿{2 : 𝑇}

]
,

P̃ := {𝛀 : [𝛀{1}]𝑖 [𝑥0]𝑖 +
∑︁
𝑗

𝜎

𝑒⊺𝑗 [𝛀{2 : 𝑇}]𝑖𝑒 𝑗

∗

≤ [ℎ]𝑖∀𝑖}.

25

– when noise is polytopic:

�̃� :=

[
𝚽{1} 0
𝛀{1} 𝚵𝐺

]
, �̃� :=

[
𝚿{1} 0
𝚿{1} 𝚿{2 : 𝑇}

]
,

P̃ := {𝛀,𝚵 : 𝛀{1}𝑥0 + 𝚵𝑔 ≤ ℎ, 𝚵 ≥ 0}.

The matrices 𝚿 and 𝛀 are simply duplicates of 𝚽, and 𝚵 is the dual variable
as introduced in Lemma 2. The advantage of introducing these variables and
creating the augmented variables �̃� and �̃� is that all components of problem (2.11)
involving �̃� are row-wise separable, and all components involving �̃� are column-
wise separable. We can easily separate these two computations via ADMM using the
relationship between both variables �̃��̃� = �̃�. Furthermore, we take advantage of the
structure of these subproblems and separate them with respect to a row and column
partition induced by the subsystem-wise partitions of the state and control inputs,
[x]𝑖 and [u]𝑖 for each subsystem 𝑖. Each of these row and column subproblems
resulting from the distribution across subsystems can be solved independently and
in parallel, where each subsystem solves for its corresponding row and column
partition. Moreover, since locality constraints are imposed, the decision variables
�̃�, �̃� have a sparse structure. This means that the length of the rows and columns
that a subsystem solves for is much smaller than the length of the rows and columns
of 𝚽. For instance, when considering the column-wise subproblem evaluated at
subsystem 𝑖, the 𝑗 th row of the 𝑖th column partitions of 𝚽𝑥 and 𝚽𝑢 is nonzero only
if 𝑗 ∈ ∪𝑘∈out𝑖 (𝑑)𝔯𝑘 and 𝑗 ∈ ∪𝑘∈out𝑖 (𝑑+1)𝔯𝑘 , respectively.5 Thus, the subproblems that
subsystem 𝑖 solves for are:

[�̃�]𝑘+1𝑖𝑟
=


argmin
[�̃�]𝑖𝑟

𝑓 ([𝑀1𝚽]𝑖𝑟 [𝑥0]𝑖𝑟)+
𝜌

2
𝑔𝑖𝑟 (�̃�, �̃�𝑘 ,𝚲𝑘)

s.t. [�̃�]𝑖𝑟 ∈ P̃𝑖 ∩ L𝑑 , [𝑥0]𝑖𝑟 = [𝑥(𝜏)]𝑖𝑟

 (2.12a)

[�̃�]𝑘+1𝑖𝑐
=


argmin
[�̃�]𝑖𝑐

𝑔𝑖𝑐 (�̃�𝑘+1, �̃�,𝚲𝑘)

s.t. [𝑍𝐴𝐵]𝑖𝑐 [𝑀2�̃�]𝑖𝑐 =[𝐼]𝑖𝑐

 (2.12b)

[𝚲]𝑘𝑖𝑐 = [�̃�]
𝑘+1
𝑖𝑐
− [�̃�]𝑖𝑐 [�̃�]𝑘+1𝑖𝑐

+ [𝚲]𝑖𝑐 , (2.12c)

where the scalar 𝜌 is the ADMM multiplier, operator𝚲 is the dual variable associated
with ADMM, and

𝑔•(�̃�, �̃�,𝚲) =

[�̃�]• − [�̃�]• [�̃�]• + [𝚲]•

2

𝐹
,

5An algorithm to find the relevant components for each subsystem rows and columns can be
found in Appendix A of [51].

26

where • indicates 𝑖𝑟 or 𝑖𝑐 depending on the context. To simplify notation we denote
as [𝚽]𝑖𝑟 the submatrix of 𝚽 formed by the nonzero components of the relevant
rows for subsystem 𝑖, 𝔯𝑖, and as [𝚽]𝑖𝑐 the submatrix of 𝚽 formed by the nonzero
components of the relevant columns for subsystem 𝑖, 𝔠𝑖. We use a similar bracket
notation for the vectors and matrices that multiply the decision variables to indicate
that those are composed from the relevant components of their global versions.

In subroutine (2.12), the computation of iterate (2.12b) can be sped up by virtue of
the following Lemma:

Lemma 3. Let 𝑧★(𝑀, 𝑣, 𝑃, 𝑞) := argmin
𝑧

∥𝑀𝑧 − 𝑣∥2𝐹 s.t. 𝑃𝑧 = 𝑞. Then

[
𝑧★

𝜇★

]
=

[
𝑀𝑀⊺ 𝑃⊺

𝑃 0

]† [
𝑀⊺𝑣

𝑞

]
,

where † denotes pseudo-inverse, is the optimal solution and 𝜇★ is the corresponding
optimal Lagrange multiplier.

Proof. The proof follows from applying the KKT conditions to the optimization
problem. By the stationarity condition, 𝑀⊺𝑀𝑧★−𝑀⊺𝑣 +𝑃⊺𝜇★ = 0, where 𝑧★ is the
solution to the optimization problem and 𝜇★ the optimal Lagrange multiplier vector.
From the primal feasibility condition, 𝑃𝑧★ = 𝑞. Hence, 𝑧★ and 𝜇★ are computed as
the solution to this system of two equations. □

This results in the following closed-form solution for iterate (2.12b):

[𝚿]𝑘+1𝑖𝑐
= 𝑧∗

(
[�̃�]𝑖𝑐 , [�̃�]𝑘+1𝑖𝑐

+ [�̃�]𝑘𝑖𝑐 , [𝑍𝐴𝐵𝑀2]𝑖𝑐 , [𝐼]𝑖𝑐
)
. (2.13)

Notice that the number of nonzero components for both the rows and columns is
much smaller than the size of the network 𝑁 since it is determined by the size of
the local neighborhood 𝑑 through the locality constraints. In turn, this implies that
the subsystem only requires small submatrices of the system and constraint matrices
(𝐴, 𝐵, 𝐻, etc.) to perform the computations. Therefore, the DLMPC subroutine
(2.12) can be distributed across the subsystems and solved in parallel, where each
subsystem solves for a local patch of system responses. In Alg. 1 we present the
DLMPC algorithm that each sub-controller executes, and where only information
exchanges within 𝑑-hop neighbors take place. Alg. 1 is guaranteed to converge as
shown in the next section.

27

Algorithm 1 Subsystem 𝑖 DLMPC implementation
input: 𝜖𝑝, 𝜖𝑑 , 𝜌 > 0.

1: Measure local state [𝑥(𝜏)]𝑖, 𝑘 ← 0.
2: Share the measurement with neighbors in out𝑖 (𝑑). Receive the corresponding
[𝑥(𝜏)] 𝑗 from in𝑖 (𝑑) and build [𝑥0]𝑖𝑟 .

3: Solve optimization problem (2.12a).
4: Share [�̃�]𝑘+1

𝑖𝑟
with out𝑖 (𝑑). Receive the corresponding [�̃�]𝑘+1

𝑗𝑟
from in𝑖 (𝑑) and

build [�̃�]𝑘+1
𝑖𝑐

.
5: Solve problem (2.12b) via the closed form (2.13).
6: Share [�̃�]𝑘+1

𝑖𝑐
with out𝑖 (𝑑). Receive the corresponding [�̃�]𝑘+1

𝑗𝑐
from in𝑖 (𝑑) and

build [�̃�]𝑘+1
𝑖𝑟

.
7: Perform the multiplier update step (2.12c).
8: if

[�̃�]𝑘+1𝑖𝑟
− [�̃�]𝑖𝑟 [�̃�]𝑘+1𝑖𝑟

𝐹
≤ 𝜖𝑝

and

[�̃�]𝑘+1𝑖𝑟

− [�̃�]𝑘
𝑖𝑟

𝐹
≤ 𝜖𝑑:

Apply control action [𝑢0]𝑖 = [Φ𝑢,0 [0]]𝑖𝑟 [𝑥0]𝑖𝑟 , and return to step 1.6
else:

Set 𝑘 ← 𝑘 + 1, return to step 3.
Computational complexity of Alg. 1

The complexity of the algorithm is determined by update steps 3, 5 and 7. In
particular, steps 5 and 7 can be directly solved in closed form, reducing their
evaluation to the multiplication of matrices of dimension𝑂 (𝑑2𝑇2) in the noisy case,
and𝑂 (𝑑2𝑇) in the noise-free case. In general, step 3 requires an optimization solver
where each local iterate sub-problem is over 𝑂 (𝑑2𝑇2) optimization variables in the
noisy case, and 𝑂 (𝑑2𝑇) in the noise-free case, subject to 𝑂 (𝑑𝑇) constraints. In
certain cases, step 3 can also be computed in closed form if a proximal operator
exists for the formulation [52]. This is true, for instance, if step 3 reduces to
a quadratic convex cost function subject to affine equality constraints, in which
case complexity reduces to 𝑂 (𝑑2𝑇) since piece-wise closed form solutions can be
computed [58]. Notice that the complexity of the subproblems is largely dependent
on whether noise is considered. The reason for this is that in the noise-free case,
only the first block-column of𝚽 is considered, whereas in the presence of noise all𝑇
block-columns must be computed. Regardless, the use of locality constraints leads
to a significant computational saving when 𝑑 ≪ 𝑁 (recall that both the local radius
𝑑 and the time horizon 𝑇 are independent design parameters). The communication
complexity–as determined by steps 2, 4 and 6–is limited to the local exchange of
information between 𝑑-local neighbors.

28

2.5 Simulation Experiments
We now apply the DLMPC algorithm to a power system inspired example. After
introducing the simplified model, we present simulations7 under different noise
realizations and validate the algorithm correctness and optimal performance by
comparing to a centralized algorithm, as well as its ability to achieve constraint
satisfaction in the presence of noise. We further demonstrate the scalability of the
proposed method by verifying different network and problem parameters (locality,
network size and time horizon), and in particular show that runtime stays steady as
network size increases.

System model
We begin with a two-dimensional square mesh, where we randomly determine
whether each node connects to each of its neighbors with a 40% probability. The
expected number of edges is 0.8 ∗ 𝑛 ∗ (𝑛 − 1). Each node represents a two-state
subsystem that follows linearized and discretized swing dynamics[

𝜃 (𝑡 + 1)
𝜔(𝑡 + 1)

]
𝑖

=
∑︁

𝑗∈in𝑖 (1)
[𝐴]𝑖 𝑗

[
𝜃 (𝑡)
𝜔(𝑡)

]
𝑗

+ [𝐵]𝑖 [𝑢]𝑖 + [𝑤]𝑖,

where [𝜃]𝑖, [¤𝜃]𝑖, [𝑢]𝑖 are the phase angle deviation, frequency deviation, and control
action of the controllable load of bus 𝑖. The dynamic matrices are

[𝐴]𝑖𝑖 =
[

1 Δ𝑡

− 𝑘𝑖
𝑚𝑖
Δ𝑡 1 − 𝑑𝑖

𝑚𝑖
Δ𝑡

]
, [𝐴]𝑖 𝑗 =

[
0 0

𝑘𝑖 𝑗
𝑚𝑖
Δ𝑡 0

]
,

and [𝐵]𝑖𝑖 =

[
0 1

]⊺
for all 𝑖. Parameters in bus 𝑖: 𝑚−1

𝑖
(inertia inverse), 𝑑𝑖

(damping) and 𝑘𝑖 𝑗 (coupling) are randomly generated and uniformly distributed
between [0, 2], [0.5, 1], and [1, 1.5], respectively. The discretization step is
Δ𝑡 = 0.2, and 𝑘𝑖 :=

∑
𝑗∈in𝑖 (1) 𝑘𝑖 𝑗 .

In simulations, we optimize a quadratic cost 𝑓𝑡 (𝑥𝑡 , 𝑢𝑡) = 𝑥⊺𝑡 𝑥𝑡 + 𝑢
⊺
𝑡 𝑢𝑡 for all 𝑡, and

start with a randomly-generated initial condition. We study three noise scenarios:
noise-free, polytopic noise, and locally-bounded noise. Noise follows a uniform
distribution, and in the locally-bounded case it is scaled appropriately to meet the
local bounds within each 𝑑-local neighborhood (see code for details). The baseline
parameter values are 𝑑 = 3, 𝑇 = 5, 𝑁 = 16 (4 × 4 grid).

7Code needed to replicate these experiments is available at https://github.com/unstable-
zeros/dl-mpc-sls; this code makes use of the SLS toolbox [59] at https://github.com/sls-
caltech/sls-code, which includes ready-to-use MATLAB implementations of all algorithms
presented in this thesis.

29

Optimal performance
We observe the trajectories of the closed-loop system when using DLMPC for the
different noise realizations. We compare these results with the solution to the
corresponding centralized MPC problem (using CVX [60]). For a randomly chosen
initial condition and network topology, we plot the evolution of the two states of
subsystem 4 under the different noise conditions. We use the following constraints
for all 𝑖 and all 𝑡: [𝜃]𝑖 ∈ [−0.3, 0.3] in the noiseless case, [𝜃]𝑖 ∈ [−10, 10] and
[𝜔]𝑖 ∈ [−0.5, 1.5] for locally-bounded noise, and [𝜃]𝑖 ∈ [−3.2, 3.2] for polytopic
noise.

0 5 10 15 20
0

0.5

1

0 5 10 15 20
-0.4

-0.2

0

0.2

0 5 10 15 20
0

2

4

0 5 10 15 20
-1

0

1

0 5 10 15 20
0

2

4

0 5 10 15 20

-6

-4

-2

0

2

Figure 2.4: Evolution of the states of subsystem 4 under a nominal (green) and
a robust (purple) controller. Red dashed line indicates upper or lower bound,
respectively. Both DLMPC and centralized MPC controller yield the same result.
In the absence of noise, both the nominal and robust controller lead to the same
trajectory, whereas in the presence of noise (both locally-bounded and polytopic),
the nominal controller leads toa violation of state bounds.

30

Results from simulations are summarized in Fig. 2.4. In all cases, the centralized
solution coincides with the solution achieved by the DLMPC algorithm, validating
the optimality of the algorithm proposed. It is worth noting that in the absence
of noise, both nominal and robust DLMPC yield the same result, illustrating that
the robust formulation of DLMPC is a generalization of the nominal case, but the
former is more computationally efficient. In the noisy cases, nominal DLMPC
violates state bounds, illustrating the need for a robust approach. In general, ro-
bust DLMPC can introduce conservatism, as it anticipates worst-case disturbances;
this is more apparent for locally-bounded noise than for polytopic noise. This is
because there always exists a worst-case polytopic noise realization, but there does
not always exist a worst-case locally-bounded noise realization. Different 𝑑-local
neighborhoods overlap, and are sometimes strict subsets of other neighborhoods;
though the algorithm assumes a worst-case local disturbance at each neighborhood,
the worst-case disturbance at some node 𝑖 may be different for each 𝑑-local neigh-
borhood containing 𝑖. Thus, there may be no noise realization that is worst-case for
every 𝑑-local neighborhood simultaneously. Overall, locally-bounded noise formu-
lations inherently introduce some conservatism, as they anticipate a worst-case that
is generally mathematically impossible.

Computational complexity
To assess the scalability of the algorithm, we measure runtime8 while varying
different network and problem parameters: locality 𝑑, network size 𝑁 9 and time
horizon 𝑇 . We run 5 different simulations for each of the parameter combinations,
using different realizations of the randomly chosen parameters as to provide a
consistent estimation of runtimes. In this case, constraints are [𝜃]𝑖 ∈ [−4, 4] and
[𝜔]𝑖 ∈ [−20, 20] across all scenarios.

We study the scalability of the DLMPC algorithm for each of the different compu-
tation strategies presented: noiseless, locally-bounded noise, and polytopic noise.
For the sake of comparison, we include an additional computation strategy based
on explicit MPC that reduces the overhead in the noiseless case by replacing the
optimization solver by a piece-wise solution (we discuss this in detail in Chapter
6). We observe the behavior for these four different strategies in Fig. 6.7, and we
note that the computation strategy determines the order of magnitude of the run-

8Runtime is measured after the first iteration, so that all the iterations for which runtime is
measured are warm-started.

9To increase network size, we vary the size of the grid over 4 × 4 (32 states), 6 × 6 (72 states),
8 × 8 (128 states), and 11 × 11 (242 states) grid sizes.

31

time, ranging from 10−3 − 10−2𝑠 in the noiseless case–depending on whether or not
explicit solutions are used–to 10−1𝑠 in the locally-bounded case, and around 1−10𝑠
when polytopic noise is considered. This difference is expected, and is explained by
the size of the decision variables across different scenarios, i.e., �̃� has a much larger
dimension in the polytopic case than in the noiseless case. Despite this difference in
order of magnitude, the trends observed are the same for each of the different sce-
narios, and radically different from that observed when using a centralized solver–
ranging from 10−2𝑠 to 1𝑠–where runtime does significantly increase with the size of
the network. In contrast, when using Alg. 1 runtime barely increases with the size of
the network, and the slight increase in runtime–likely due to the larger coordination
needed–does not seem to be significant and appears to level off for sufficiently large
networks. These observations are consistent with those of [61] where the same
trend was noted. In contrast, runtime appears to increase with time horizon, and
more notably with locality region size. This is also expected, as according to our
complexity analysis the number of variables in a DLMPC subproblem scales as
𝑂 (𝑑2𝑇2) for the robust cases and as 𝑂 (𝑑2𝑇) for the nominal case. It is well-known
that a larger time horizon, while providing an improvement in performance, can be
detrimental for computational overhead. The same is true for locality size, which
is much smaller than the size of the network. Although a larger localized region 𝑑
can lead to improved performance, as a broader set of subsystems can coordinate
their actions directly, it also leads to an increase in computational complexity and
communication overhead. Thus by choosing the smallest localization parameter 𝑑
such that acceptable performance is achieved, the designer can tradeoff between
computational complexity and closed-loop performance. This further highlights the
importance of exploiting the underlying structure of the dynamics, which allow us
to enforce locality constraints on the system responses, and consequently, on the
controller implementation.

2.6 Conclusion
We defined and analyzed a closed-loop Distributed and Localized MPC algorithm.
By leveraging the SLS framework, we were able to enforce information exchange
constraints by imposing locality constraints on the system responses. We further
showed that when locality is combined with mild assumptions on the separability
structure of the objective functions and constraints of the problem, an ADMM
based solution to the DLMPC subproblems can be implemented that requires only
local information exchange and system models, making the approach suitable for

32

Nominal DLMPC
(Explicit) Nominal DLMPC Robust DLMPC

(Loc. noise)
Robust DLMPC

(Poly. noise)

20 60 100

10-2

100

2 4 6 8 10

10-2

100

4 6 8 10

10-2

100

Figure 2.5: Average runtime per DLMPC iteration with network size (left), locality
parameter (middle), and time horizon (right). The lines are the mean values and the
shaded areas show the values within one standard deviation. Since computations are
parallelized across subsystems, runtime is measured on a subsystem, normalized per
state, and averaged out after the MPC controller is finished. In the case of increasing
network sizes, an equivalent runtime measure was made using a centralized solver
and results are presented with dashed lines, where the color used matches the
corresponding scenario.

large-scale distributed systems. This is the first DMPC algorithm that allows for the
distributed synthesis of closed-loop policies.

Given that the presented algorithm relies on multiple exchanges of information be-
tween the subsystems, how communication loss affects the closed-loop performance
of the algorithm is an interesting question. Although a formal analysis is left as
future research, the work done in [62] suggests that it would be possible to slightly
modify the proposed ADMM-based scheme to make it robust to unreliable com-
munication links. Moreover, only two types of noise were explored in this chapter.
Results in polytopic containment [63] could enable a convex DLMPC reformulation
of other noise scenarios. Finally, it is of interest to extend these results to infor-
mation exchange topologies defined with both sparsity and delays–while the SLS
framework naturally allows for delay to be imposed on the implementation structure
of a distributed controller, it is less clear how to incorporate such constraints in a
distributed optimization scheme.

33

C h a p t e r 3

RECURSIVE FEASIBILITY, CONVERGENCE, AND
ASYMPTOTIC STABILITY GUARANTEES

Abstract

In this chapter, we provide recursive feasibility, convergence, and asymptotic stabil-
ity guarantees for DLMPC. We leverage the System Level Synthesis framework to
express the maximal positive robust invariant set for the closed-loop system and its
corresponding Lyapunov function in terms of the closed-loop system responses. We
use the invariant set as the terminal set for DLMPC, and show that this guarantees
feasibility with minimal conservatism. We use the Lyapunov function as the termi-
nal cost, and show that this guarantees stability. We provide fully distributed and
localized algorithms to compute the terminal set offline, and also provide necessary
additions to the online DLMPC algorithm to accommodate coupled terminal con-
straint and cost. In all algorithms, only local information exchange is necessary, and
computational complexity is independent of the global system size–we demonstrate
this analytically and experimentally. This is the first distributed MPC approach
that provides minimally conservative yet fully distributed guarantees for recursive
feasibility and asymptotic stability in the nominal and robust settings.

The content in this chapter has been published in [64].

34

3.1 Introduction
Ensuring recursive feasibility and asymptoptic stability for MPC is a well-studied
topic in the centralized setting [1], and sufficient conditions based on terminal sets
and cost functions have been established [2]. Porting these ideas to distributed
systems is a challenging task, both theoretically and computationally. High compu-
tational demand, limited and local communication, and coupling among subsystems
prevents the use of techniques from the centralized setting. Thus, efforts have been
made to develop theoretical guarantees for distributed MPC.

Prior work

The majority of distributed MPC approaches rely on the use of distributed terminal
costs and terminal sets to provide theoretical guarantees. In order to obtain structure
in the terminal cost, standard methods rely on Lyapunov stability results, often
combined with relaxation techniques to make them amenable to distributed settings
[18]–[20]. For terminal sets, proposed distributed methods are often limited by
the coupling among subsystems–this often leads to small terminal sets that result
in too conservative solutions (see for example [21], [22] and references therein).
In order to overcome these issues, several approaches have recently been proposed
to synthesize structured terminal sets with adaptive properties, i.e., local terminal
sets defined as the sub-level set of a structured Lyapunov function, which change
at each iteration in order to avoid unnecessary conservatism [6], [23]–[27]. These
approaches successfully design structured robust positive invariant sets and reduce
conservatism; however, they require online updates of the terminal set at each
MPC iteration, which increase the controller’s overall computational complexity
and communication overhead. Moreover, the imposed structure unavoidably leads
to a possibly small approximation of the maximal control invariant set (the least
conservative option for a terminal set). To move away from structured sets and costs,
a data-driven approach was recently developed in [10], where locally collected data
are used to construct local control invariant sets and costs that provide guarantees.
However, this approach is mainly limited to iterative control tasks, and conservatism
of the terminal cost and set only reduces asymptotically as the system collects data.
Online computation and refinements of the terminal set are also key to this approach.

Given the state of the art, our goal is to design a distributed MPC approach with
distributed and minimally conservative feasibility and stability guarantees. We seek
a distributed MPC algorithm with (i) a maximal positive invariant terminal set, and
(ii) a fully distributed and scalable offline algorithm to compute this set. This will

35

allow us to use the associated Lyapunov function of the terminal set as the terminal
cost, and requires no explicit a priori structural assumptions. No method satisfying
these requirement currently exists in the literature.

Contributions

We provide recursive feasibility and asymptotic stability guarantees for the Dis-
tributed Localized MPC (DLMPC) method presented in Chapter 2, for nominal and
robust MPC (robust to additive polytopic or locally norm-bounded disturbances).
This consists of two key contributions. Our first key contribution is to provide the
first exact, fully distributed computation of the maximal positive invariant set, or
terminal set. We show that it can be expressed in terms of the closed-loop system
responses, as defined in the System Level Synthesis (SLS) framework [51]. Then,
we show that when the closed-loop system is localized, the set is naturally structured
without requiring additional assumptions; we leverage this to provide a distributed
and localized offline algorithm for computation of the set. Our second key contri-
bution is to provide the necessary additions to the original DLMPC algorithm to
incorporate the coupled terminal constraint and terminal cost (i.e., global Lyapunov
function [65]) associated with the maximal positive invariant set–this provides the
algorithm with feasibility and stability guarantees, respectively. We provide addi-
tions to the algorithm to accommodate coupled terminal constraint and cost; this is
done by using a nested Alternating Direction Method of Multipliers (ADMM)-based
consensus algorithm. Overall, throughout all proposed algorithms, only local in-
formation exchanges within local neighborhoods are necessary, and computational
complexity is independent of the global system size; each sub-controller first solves
for its local portion of the terminal set, offline, then solves a local online MPC
problem. We validate these results and further confirm the minimal conservatism
introduced by this method through simulations.

3.2 Problem Formulation
In Chapter 2, we showed how (3.1) can be both synthesized and implemented in
a distributed and localized way. To do this, we performed a SLS reformulation of
equation (2.12) and applied an ADMM distributed optimization technique, resulting
in Algorithm 1. Under this framework, each subsystem requires only local infor-
mation to synthesize and implement its local sub-controller and determine the local
control action. This is made possible by imposing appropriate 𝑑-local structural
constraints L𝑑 on the closed-loop system responses of the system 𝚽𝑥 and 𝚽𝑢, which

36

become the decision variables of the MPC problem. However, no explicit treatment
was given to the terminal set X𝑇 and terminal cost 𝑓𝑇 in subroutine, and as a result
the proposed framework lacks feasibility, and stability guarantees. Convergence
guarantees of the algorithm were also not discussed.

In this chapter, we explicitly tackle the formulation and synthesis of the terminal
set X𝑇 and terminal cost 𝑓𝑇 , and we leverage these to provide the aforementioned
feasibility and stability guarantees. To do so, we start with the DLMPC formulation
(2.12) presented in Chapter 2, but make the terminal set X𝑇 and terminal cost 𝑓𝑇
explicit in the formulation. Hence, the DLMPC subroutine over time horizon 𝑇 at
time 𝜏 is as follows:

min
𝚽

𝑓 (𝚽{1}𝑥0) + 𝑓𝑇 (𝚽{1}𝑥0) (3.1)

s.t.
𝑍𝐴𝐵𝚽 = 𝐼, 𝑥0 = 𝑥(𝜏), 𝚽 ∈ L𝑑 ,
𝚽w ∈ P, 𝚽𝑥,𝑇w ∈ X𝑇 , ∀w ∈ W,

where 𝚽 :=
[
𝚽⊺𝑥 𝚽⊺𝑢

]⊺
, 𝑓𝑡 (·, ·) and 𝑓𝑇 (·) are closed, proper, and convex cost

functions, and P is defined so that 𝚽w ∈ P if and only if x ∈ X, and u ∈ U.
By convention, we define the disturbance to contain the initial condition, i.e., w =

[𝑥⊺0 𝑤
⊺
0 . . . 𝑤

⊺
𝑇−1] =: [𝑥⊺0 𝜹⊺] andW is defined over 𝜹 so that it does not restrict

𝑥0. In the nominal case, i.e., 𝑤𝑡 = 0 ∀𝑡, P and X𝑇 are closed and convex sets
containing the origin. When noise is present, we restrict ourselves to polytopic sets
only: P := {[x⊺ u⊺]⊺ : 𝐻 [x⊺ u⊺]⊺ ≤ ℎ}, and consider different options for set
W:

• Polytopic set: 𝜹 ∈ {𝜹 : 𝐺𝜹 ≤ 𝑔}.

• Locally norm-bounded: [𝜹]𝑖 ∈ {𝜹 : ∥𝜹∥𝑝 ≤ 𝜎} ∀𝑖 = 1, ..., 𝑁 and 𝑝 ≥ 1.

In the remainder of this chapter, we address all of these gaps: we provide theoretical
guarantees by selecting an appropriate terminal set and cost, and present distributed
and localized algorithms that perform the necessary computations. Additionally,
Algorithm 1 was developed under the assumption that subsystems are not coupled.
We want to augment the algorithm to accommodate coupling as per Assumption 1.

3.3 Feasibility and Stability Guarantees
Theoretical guarantees for the DLMPC problem (3.1) are now derived. First, we
describe a maximal positive invariant set using an SLS-style parametrization; recur-
sive feasibility for DLMPC is guaranteed by using this set as the terminal set. We

37

also use this set to construct a terminal cost to guarantee asymptotic stability for the
nominal setting and input-to-state stability (ISS) for the robust setting. Convergence
results from the ADMM literature are used to establish convergence guarantees.

Feasibility guarantees
Recursive feasibility guarantees for the DLMPC problem (3.1) are given by the
following lemma:

Lemma 4. Let the terminal set X𝑇 for the DLMPC problem (3.1) be of the form

X𝑇 := {𝑥0 ∈ R𝑛 : 𝚽
[
𝑥
⊺
0 𝜹⊺

]⊺
∈ P ∀𝜹 ∈ W}, (3.2)

for some 𝚽 satisfying 𝑍𝐴𝐵𝚽 = 𝐼. Then recursive feasibility is guaranteed for the
DLMPC problem (3.1). Moreover, X𝑇 is the maximal robust positive invariant set
for the closed-loop described by 𝚽.

Proof. First, we show that X𝑇 is the maximal robust positive invariant set. By
Algorithm 10.4 in [1], the set

S :=
∞⋂
𝑘=0
S𝑘 , with S0 = X,

S𝑘 = {𝑥 ∈ R𝑛 : 𝐴𝑥 + 𝐵𝑢 + 𝑤 ∈ S𝑘−1 ∀𝑤 ∈ W}

is the maximal robust positive invariant set for the closed-loop system (2.1) with
some fixed input 𝑢 ∈ U. We show by induction that S𝑘 can also be written as

S𝑘 = {𝑥0 ∈ R𝑛 : 𝑥𝑘 ∈ X ∀𝑤0:𝑘−1 ∈ W} (3.3)

for some sequence 𝑢0:𝑘−1 ∈ U. The base case at 𝑘 = 1 is trivially true, sinceS0 = X.
For the inductive step, assume that equation (3.3) holds at 𝑘 . Then, at 𝑘 = 1,

S𝑘+1 =
{
𝑥 ∈ R𝑛 : 𝐴𝑥 + 𝐵𝑢 + 𝑤 ∈ S𝑘 ∀𝑤 ∈ W

}
=
{
𝑥0 ∈ R𝑛 : 𝑥 := 𝐴𝑥0 + 𝐵𝑢 + 𝑤 𝑠.𝑡.

𝐴𝑘+1𝑥 +
𝑘∑︁
𝑗=0

𝐴 𝑗 (𝐵𝑢 𝑗 + 𝑤) ∈ X ∀𝑤 ∈ W
}

=
{
𝑥0 ∈ R𝑛 : 𝑥𝑘+1 ∈ X, ∀𝑤0:𝑘 ∈ W

}
for some sequence of inputs 𝑢0:𝑘 ∈ U. This implies that S can be written as

S = {𝑥0 ∈ R𝑛 : x ∈ X ∀𝑤 ∈ W} for some u ∈ U.

38

From the definition of 𝚽, this implies directly that

S = {𝑥0 ∈ R𝑛 : 𝚽
[
𝑥
⊺
0 𝜹⊺

]
∈ P ∀𝜹 ∈ W} := X𝑇 ,

for some 𝚽 satisfying 𝑍𝐴𝐵𝚽 = 𝐼. This constraint automatically enforces that the
resulting closed-loop is feasible, i.e., that u = 𝚽𝑢

[
𝑥
⊺
0 𝜹⊺

]
exists; furthermore, all

inputs u can be captured by this closed-loop parametrization since it parametrizes
a linear time-varying controller over a finite time horizon [51]. Hence, X𝑇 is the
maximal robust positive invariant set for the closed-loop system as defined by 𝚽.

Next, we show that imposing X𝑇 as the terminal set of the DLMPC problem (3.1)
guarantees recursive feasibility. Notice that by definition, X𝑇 is not only a robust
positive invariant set but also a robust control invariant set. We can directly apply
the proofs from Theorem 12.1 in [1] to the robust setting–recursive feasibility is
guaranteed if the terminal set is control invariant, which X𝑇 is. □

Remark 5. Recursive feasibility is guaranteed by a control invariantX𝑇 . In the ideal
case, we wantX𝑇 to be the maximal robust control invariant set, in order to minimize
conservatism introduced by X𝑇 in (3.1). However, this set generally lacks sparsity,
violates Assumption 1, and is not amenable for inclusion in our distributed and
localized algorithm. For this reason, we use the maximal robust positive invariant set
in Lemma 4. Here, the choice of𝚽 is critical in determining how much conservatism
X𝑇 will introduce. As suggested in §12 of [1], we choose 𝚽 corresponding to the
unconstrained closed-loop system. In the interests of distributed synthesis and
implementation, we additionally enforce 𝚽 to have localized structure. We discuss
how this 𝚽 is computed in §3.4, and demonstrate that the resulting terminal set X𝑇
introduces no conservatism in §3.5.

By Assumption 1, constraint sets are localized, i.e.,X = X1∩ ...∩X𝑁 , where 𝑥 ∈ X
if and only if [𝑥]in𝑖 (𝑑) ∈ X𝑖 for all 𝑖 (and idem for U). Moreover, we can use the
constraint L𝑑 to enforce that the system response 𝚽 is localized. This implies that
the set X𝑇 is also localized:

X = X1
𝑇 ∩ ... ∩ X𝑁𝑇 , where

X𝑖𝑇 = {[𝑥0]in𝑖 (𝑑) ∈ R[𝑛]𝑖 : [𝚽]in𝑖 (𝑑)
[
𝑥
⊺
0 𝜹⊺

]
in𝑖 (2𝑑)

∈ P𝑖 ∀[𝜹]in𝑖 (2𝑑) ∈ Win𝑖 (𝑑)}

and 𝑥 ∈ X𝑇 if and only if [𝑥]in𝑖 (𝑑) ∈ X𝑖𝑇 for all 𝑖. We will show in §3.4 that this
allows for a localized and distributed computation of the terminal set X𝑇 .

39

Stability guarantees
Stability guarantees for the DLMPC problem (3.1) are given by the following lemma:

Lemma 5. Consider system (2.1) subject to the MPC law (3.1), where:

1. The cost 𝑓 is continuous and positive definite.

2. The set P contains the origin and is closed.

3. X𝑇 is defined by (3.2).

4. 𝑓𝑇 (𝑥) = inf {𝜂 ≥ 0 : 𝑥 ∈ 𝜂X𝑇 }.

Then, in the nominal setting, the origin is asymptotically stable with domain of
attraction X. In the robust setting, X𝑇 is input-to-state stable with domain of
attraction X.

Proof. It suffices to show that these conditions immediately imply satisfaction of
the necessary assumptions in [66], together with the additional sufficient conditions
of Theorem 4.2 in [67]. These results state that if

(i) 𝑓 and 𝑓𝑇 are continuous and positive definite,

(ii) X, U, X𝑇 contain the origin and are closed,

(iii) X𝑇 is control invariant, and

(iv) min
𝑢∈U

𝑓 (𝑥, 𝑢) + 𝑓𝑇 (𝐴𝑥 + 𝐵𝑢) − 𝑓𝑇 (𝑥) ≤ 0 ∀𝑥 ∈ X𝑇 ,

then the desired stability guarantees hold.

Condition 1) implies satisfaction of the part of (i) that concerns 𝑓 . Condition 2)
implies satisfaction of (ii). If P contains the origin and is closed, by definition this
implies that X and U also contain the origin and are closed. Also, since X𝑇 is
defined in terms of P in (3.2), X𝑇 also contains the origin and is closed. Condition
3) implies satisfaction of (iii) by virtue of Lemma 4. Condition 4) implies that 𝑓𝑇
is a Lyapunov function on {𝑥 ∈ R𝑛 : 1 ≤ 𝑓𝑇 (𝑥)} ⊇ X𝑇 since it is the Minkowski
functional of the terminal setX𝑇 (see Theorem 3.3. in [65]). Therefore, the condition
stated in (iv) is automatically satisfied for all 𝑥 ∈ X𝑇 . Moreover, 𝑓𝑇 is necessarily
positive definite, so the part of (i) that concerns 𝑓𝑇 is satisfied as well.

40

Therefore, by virtue of the results in [66] and [67], we guarantee asymptotic stability
of the origin in the nominal setting and ISS of X𝑇 in the robust setting, both with
domain of attraction X. □

For any cost 𝑓 and constraint P that satisfy conditions 1) and 2) of Lemma 5, we can
choose an appropriate terminal setX𝑇 and terminal cost 𝑓𝑇 as per 3) and 4) to satisfy
the lemma. This guarantees stability for the DLMPC problem (3.1). However,
as stated, 𝑓𝑇 does not satisfy Assumption 1, and therefore it is not localized. In
particular, 𝑓𝑇 can be written as:

𝑓𝑇 (𝑥) = inf
𝜂
{𝜂 ≥ 0 : [𝑥]in𝑖 (𝑑) ∈ 𝜂X𝑖𝑇 ∀𝑖}, (3.4)

which cannot be written as a sum of local functions. Nonetheless, this scalar
objective function admits a distributed and localized implementation–we can add it
in the DLMPC algorithm using the ADMM-based consensus technique described
in §3.4.

Convergence guarantees
Algorithm 1 relies on ADMM. We can guarantee convergence of the overall algo-
rithm by leveraging the ADMM convergence result from [52].

Lemma 6. In Algorithm 1, the residue, objective function, and dual variable con-
verge as 𝑘 →∞, i.e.,

�̃��̃�𝑘 − �̃�𝑘 → 0, 𝑓 (�̃�𝑘𝑥0) → 𝑓 (�̃�∗𝑥0), �̃�𝑘 → �̃�∗,

where ★ indicates optimal value.

Proof. Algorithm 1 is the result of applying ADMM to the DLMPC problem (2.12),
then exploiting the separability and structure of resulting sub-problems to achieve
distributed and localized implementation, as presented in Chapter 2. Thus, to prove
convergence, we only need to show that the underlying ADMM algorithm converges.
By the ADMM convergence result in [52], the desired convergence of the residue,
objective function, and dual variable are guaranteed if, for this algorithm,

1. The extended-real-value functional is closed, proper, and convex, and

2. The unaugmented Lagrangian has a saddle point.

41

We first show 1). The extended-real-value functional ℎ(�̃�) is defined for this
algorithm as

ℎ(�̃�) =


𝑓 (𝑀1�̃�{1}𝑥0) if 𝑍𝐴𝐵𝑀2�̃�

†�̃� = 𝐼,

�̃� ∈ L𝑑 , �̃�𝑥0 ∈ P,

∞ otherwise,

where �̃�† is the left inverse of �̃� from (2.11); �̃� has full column rank. When
formulating the DLMPC problem (3.1) as an ADMM problem, we perform variable
duplication to obtain problem (2.11). We can write (2.11) in terms of ℎ(�̃�) with
the constraint �̃� = �̃��̃�:

min
�̃�,�̃�

ℎ(�̃�) s.t. �̃� = �̃��̃�.

By assumption, 𝑓 (𝑀1�̃�𝑥0) is closed, proper, and convex, and P̃ is a closed and
convex set. The remaining constraints 𝑍𝐴𝐵�̃� = 𝐼 and �̃� ∈ L𝑑 are also closed and
convex. Hence, ℎ(�̃�) is closed, proper, and convex.

We now show 2). This condition is equivalent to showing that strong duality holds
[68]. Since problem (3.1) is assumed to have a feasible solution in the relative
interior of P by means of Lemma 4 (given that the first iteration is feasible), Slater’s
condition is automatically satisfied, and therefore the unaugmented Lagrangian of
the problem has a saddle point.

Both conditions of the ADMM convergence result from [52] are satisfied–Algorithm
1 converges in residue, objective function, and dual variable. □

Remark 6. It is important to note that the communication network might be a
directed graph–depending on the elements in the incoming as outgoing sets. The
proof outlined here holds as well for the case where the communication graph is
directed. For additional details on ADMM convergence over directed networks
readers are referred to [69] and references therein.

3.4 Feasible and Stable DLMPC
We incorporate theoretical results from §3.3 into the DLMPC computation. We
provide an algorithm to compute the terminal set X𝑇 . We also provide a distributed
and localized computation for the terminal cost function 𝑓𝑇 . The terminal set and
cost generally introduce local coupling among subsystems; this minimizes conser-
vatism but requires an extension to Algorithm 1 to accommodate coupling. All

42

algorithms provided are distributed and localized, with computational complexity
that is independent of the global system size.

Offline synthesis of the terminal set X𝑇
Our first result is to provide an offline algorithm to compute terminal set X𝑇 from
(3.2) in a distributed and localized manner. As discussed in §3.3, we compute the
maximal robust positive invariant set for the unconstrained localized closed-loop
system. We use SLS-based techniques to obtain a localized closed-loop map 𝚽.

Our algorithm is based on Algorithm 10.4 from [1]. The advantage of implementing
this algorithm in terms of the localized closed-loop map 𝚽 is twofold: i) we can
work with locally-bounded and polytopic disturbance setsW by leveraging Lemmas
1 and 2, and ii) the resulting robust invariant set is automatically localized given the
localized structure of the closed-loop map.

We start by finding a localized closed-loop map 𝚽 for system (2.1). To do this, we
need to solve

min
𝚽

𝑓 (𝚽) s.t. 𝑍𝐴𝐵𝚽 = 𝐼, 𝚽 ∈ L𝑑 . (3.5)

This is an SLS problem with a separable structure for most standard cost functions
𝑓 [51]. The separable structure admits localized and distributed computation. Even
when separability is not apparent, a relaxation can often be found that allows for
distributed computation (see for example [70]). The infinite-horizon solution for
quadratic cost is presented in [71]. For other costs, computing an infinite horizon
solution to (3.5) remains an open question–in these cases, we can use finite impulse
response SLS with sufficiently long time horizon.

Once a localized closed-map 𝚽 has been found, we can compute the associated
maximal positive invariant set. In the robust case, we leverage results from Lemmas
1 and 2, which use duality arguments to tackle specific formulations of W. We
denote 𝜎 as the upper bound of ∥ [𝛿]𝑖∥∗ for all 𝑖, where ∥·∥∗ is the dual norm of ∥·∥𝑝.
Also, Each 𝑒 𝑗 is the 𝑗 𝑡ℎ vector in the standard basis.

• Nominal (i.e., no disturbance):

S :={𝑥0 ∈ R𝑛 : 𝚽{1}𝑥0 ∈ P}.

• Locally bounded disturbance:

S := {𝑥0 ∈ R𝑛 : [𝐻]𝑖 [𝚽{1}]𝑖 [𝑥0]𝑖 +
∑︁
𝑗

𝜎

𝑒⊺𝑗 [𝐻]𝑖 [𝚽{2 : 𝑇}]𝑖

∗
≤ [ℎ]𝑖 ∀𝑖}.

43

• Polytopic disturbance:

S := {𝑥0 ∈ R𝑛 : 𝐻𝚽{1}𝑥0 + Ξ𝑔 ≤ ℎ,where

Ξ(𝑗 , :) = min
Ξ 𝑗≥0

Ξ 𝑗𝑔 s.t. 𝐻 (𝑗 , :)𝚽{2 : 𝑇} = Ξ 𝑗𝐺 ∀ 𝑗}.

As per Lemma 4, we calculate S by iteratively computing S𝑘+1 from S𝑘 .1 Assume
S𝑘 can be written as

S𝑘 = {𝑥0 ∈ R𝑛 : �̂�𝑥 ≤ ℎ̂}.

Then, we can write S𝑘+1 as

S𝑘+1 = {𝑥0 ∈ R𝑛 : Φ𝑥,1 [1]𝑥0 ∈ F (S𝑘),Φ𝑢,0 [0]𝑥0 ∈ U}, (3.6)

where F (S𝑘) := S𝑘 in the nominal case. In the case of locally bounded disturbance,

F (S𝑘) := {𝑥 ∈ R𝑛 : [�̂�]𝑖 [𝑥]𝑖 +
∑︁
𝑗

𝜎

𝑒⊺𝑗 [�̂�]𝑖

∗ ≤ [ℎ̂]𝑖 ∀𝑖},
and for polytopic disturbance,

F (S𝑘) := {𝑥 ∈ R𝑛 : �̂�𝑥 + Ξ𝑔 ≤ ℎ̂,

where Ξ(𝑗 , :) = min
Ξ 𝑗≥0

Ξ 𝑗𝑔 s.t. �̂� (𝑗 , :) = Ξ 𝑗𝐺 ∀ 𝑗}.

These formulations use the simplifying fact that Φ𝑥,0 [0] = 𝐼 for all feasible closed-
loop dynamics. Also, notice that by using S𝑘 to calculate S𝑘+1, the only elements
of 𝚽 that we require are Φ𝑥,1 [1] and Φ𝑢,0 [0].

The conditions stated in (3.6) are row- and column-wise separable in 𝚽 (and Ξ);
this allows us to calculate S𝑘 in a distributed way. Furthermore, F (S𝑘) andU are
localizable by Assumption 1, in both nominal and robust settings. Since 𝚽 is also
localized, we can exploit the structure of 𝚽 to and rewrite 𝑆𝑘+1 as the intersection
of local sets, i.e., 𝑆𝑘+1 = 𝑆1

𝑘+1 ∩ · · · ∩ 𝑆
𝑁
𝑘+1, where

S𝑖𝑘+1 = {[𝑥0]in𝑖 (𝑑) ∈ R[𝑛]𝑖 :

[Φ𝑥,1 [1]]in𝑖 (𝑑) [𝑥0]in𝑖 (𝑑) ∈ F (S
in𝑖 (𝑑)
𝑘
),

[Φ𝑥,1 [1]]in𝑖 (𝑑) [𝑥0]in𝑖 (𝑑) ∈ Uin𝑖 (𝑑)}.

(3.7)

We now present Algorithm 2 to compute the terminal set X𝑇 := S in a distributed
and local manner. Each subsystem 𝑖 computes its own local terminal set S𝑖 using
only local information exchange. This algorithm is inspired by Algorithm 10.4 in
[1].

1For simplicity of presentation, we write outS only for finite-horizon 𝚽; the proposed algorithm
to synthesize S works for infinite-horizon 𝚽 as well.

44

Algorithm 2 Subsystem 𝑖 terminal set computation
input: [Φ𝑥,1 [1]]in𝑖 (𝑑) , [Φ𝑢,0 [0]]in𝑖 (𝑑) ,Uin𝑖 (𝑑)

for polytopic noise, also [𝐺]in𝑖 (𝑑) , [𝑔]in𝑖 (𝑑)
1: S𝑖0 ← X

𝑖, 𝑘 ← −1
2: repeat:
3: 𝑘 ← 𝑘 + 1
4: Share S𝑖

𝑘
with out𝑖 (𝑑) .

Receive S 𝑗
𝑘

from all 𝑗 ∈ in𝑖 (𝑑).
5: Compute S𝑖

𝑘+1 via (3.7).
6: S𝑖

𝑘+1 ← S
𝑖
𝑘
∩ S𝑖

𝑘+1
7: until: S𝑖

𝑘+1 = S𝑖
𝑘

for all 𝑖
8: X𝑖

𝑇
← S𝑖

𝑘

output: X𝑖
𝑇

If state and input constraints X and U induce no coupling (as assumed in Algo-
rithm 1), the resulting terminal setX𝑇 will be 𝑑-localized. IfX andU induce 𝑑-local
coupling, the terminal set will be 2𝑑-localized since–in the presence of coupling–
Alg. 2 requires communication with not only local patch neighbors, but also neigh-
bors of those neighbors. Convergence is guaranteed for system (2.1) if it is stable
when 𝑢 = 0, 𝑤 = 0, and when the constraint and disturbance sets X, U, W are
bounded and contain the origin, as per [72].

Computational complexity of the algorithm: In Algorithm 2, step 4 refers to
communication exchanges, while steps 5, 6, and 7 tackle computational steps. In
terms of the computational complexity of Algorithm 2, the order of magnitude of
the computations at each local subsystem 𝑖 is 𝑂 (𝑚𝑖𝑑), where 𝑚𝑖 is the number of
constraints on subsystem 𝑖. Notice that in the case of a coupled scenario, the number
of constraints at subsystem 𝑖, 𝑚𝑖, is in general larger than in the uncoupled case,
since additional constraints couple neighboring subsystems. Notice also that the
communication exchanges occur only within each 𝑑-local neighborhood, and there-
fore the computation of the maximal robust positive invariant set can be computed
in a purely distributed and localized manner. Hence, its scalability is independent
from the size of the whole system. It is also worth noting that this computation
occurs offline, where both communication and computational complexity are not so
critical.

Online synthesis of DLMPC
DLMPC Algorithm 1 was developed under the assumption that no coupling is intro-
duced through cost or constraints. We now extend this algorithm to accommodate
local coupling, which is allowed as per Assumption 1. This allows us to incorpo-

45

rate the terminal set and cost introduced in the previous sections, both of which
generally induce local coupling. We will use notation that assumes all constraints
and costs (including the terminal set) are 𝑑-localized. In the case that the terminal
set is 2𝑑-localized, subsystems will need to exchange information with neighbors
up to 2𝑑-hops away; simply replace { out𝑖 (𝑑), in𝑖 (𝑑) } with { out𝑖 (2𝑑), in𝑖 (2𝑑) }
wherever they appear in Algorithms 1, 2, and 3.

Appending the terminal set (3.2) and terminal cost (3.4) to the DLMPC problem
(2.11) gives:

min
�̃�,�̃�,𝜂

𝑓 (𝑀1�̃�{1}𝑥0) + 𝜂 (3.8)

s.t. 𝑍𝐴𝐵𝑀2�̃� = 𝐼, 𝑥0 =𝑥(𝜏), �̃�, �̃� ∈ L𝑑 ,
�̃� ∈ P̃, �̃��̃� =�̃�,

𝑀1�̃�𝑇 {1}𝑥0 ∈ 𝜂X𝑇 , 0 ≤ 𝜂 ≤ 1,

where �̃�𝑇 represents block rows of �̃� that correspond to time horizon 𝑇–e.g., in the
nominal setting, the last block row of 𝚽𝑥 , and the set P̃ is defined so that translates
the constraint on �̃�𝑥0 ∈ P into a constraint directly on �̃�.

Remark 7. In the robust setting, we incorporate the terminal constraint into P̃ to
ensure robust satisfaction of the terminal constraint. However, X𝑇 still appears as
nominal constraint in order to integrate the definition of the terminal cost (3.4) into
the DLMPC formulation (3.1).

In the original formulation (2.11), we assume no coupling; as a result, all expres-
sions involving �̃� are row-separable, and all expressions involving �̃� are column-
separable. If we allow local coupling as per Assumption 1, we lose row-separability;
row-separability is also lost in the new formulation (3.8) due to local coupling in the
terminal set. This is because without coupling, [𝑥]𝑖 and [𝑢]𝑖 (which correspond to a
fixed set of rows in 𝚽), can only appear in 𝑓 𝑖 and P𝑖; thus, each row of 𝚽 (and �̃�) is
solved by exactly one subsystem in step 3 of Algorithm 1. With coupling, [𝑥]𝑖 and
[𝑢]𝑖 can appear in 𝑓 𝑗 and P 𝑗 for any 𝑗 ∈ in𝑖 (𝑑); now, each row of 𝚽 is solved for
by multiple local subsystems at once, and row-separability is lost. This only affects
step 3 of Algorithm 1 (i.e., the row-wise problem); other steps remain unchanged.

46

We write out the row-wise problem corresponding to (3.8):

min
�̃�

𝑓 (𝑀1�̃�{1}𝑥0) + 𝜂 + 𝑔(�̃�, �̃�𝑘 ,𝚲𝑘) (3.9)

s.t. �̃� ∈ P̃ ∩ L𝑑 , 𝑀1�̃�𝑇 {1}𝑥0 ∈ 𝜂X𝑇 ,
0 ≤ 𝜂 ≤ 1, 𝑥0 = 𝑥(𝜏),

where 𝑔(�̃�, �̃�,𝚲) = 𝜌

2

�̃� − �̃��̃� + 𝚲

2

𝐹
, and 𝚲 is the additional variable introduced

by ADMM.

Note that if P induces coupled linear inequality constraints, row-separability is
maintained. Though [𝑥]𝑖 and [𝑢]𝑖 appear in multiple P 𝑗 , this corresponds to
distinct rows of 𝛀, each solved by one subsystem, as opposed to one row of 𝚽 that
is solved for by multiple subsystems. A similar idea applies if coupling is induced
by some quadratic cost, i.e., 𝑓 (𝚽𝑥0) = ∥𝐶𝚽𝑥0∥2𝐹 for some matrix 𝐶 which induces
coupling. In this case, we can modify �̃� such that we enforce 𝚽 = 𝐶𝚿, and rewrite
the cost as ∥𝚽𝑥0∥2𝐹 ; now, each row of 𝚽 is solved by exactly one subsystem, and
row-separability is maintained.2 However, this technique does not apply to coupling
in the general case; nor does it apply to the coupling induced by the terminal cost–it is
generally true that each row of �̃�will be need to be solved for by several subsystems.
We introduce a new vector variable

X := 𝑀1�̃�{1}𝑥0.

This variable facilitates consensus between subsystems who share the same row(s)
of �̃�. Each subsystem solves for components [X]in𝑖 (𝑑) , and comes to a consensus
with its neighboring subsystems on the value of these components. In the interest
of efficiency, we directly enforce consensus on elements of X instead of enforcing
consensus on rows of �̃�. We introduce a similar variable for terminal cost 𝜂; we
define vector 𝜼 :=

[
𝜂1, . . . , 𝜂𝑁

]
. Subsystem 𝑖 solves for 𝜂𝑖, which is its own copy

of 𝜂. It then comes to a consensus on this value with its neighbors, i.e., 𝜂 𝑗 has the
same value ∀ 𝑗 ∈ in𝑖 (𝑑). Assuming that G(𝐴,𝐵) is connected, this guarantees that
𝜂𝑖 has the same value ∀𝑖 ∈ {1 . . . 𝑁}, i.e., all subsystems agree on the value of 𝜂.
We combine these two consensus-facilitating variables into the augmented vector
variable

X̃ :=
[
X⊺ 𝜼⊺

]⊺
.

With this setup, we follow a variable duplication strategy and apply ADMM for
consensus [73]. In particular, we duplicate variables so each subsystem has its own

2We would also need to use [Ψ𝑢,0 [0]]𝑖 for the algorithm output instead of [Φ𝑢,0 [0]]𝑖 .

47

copy of the components of X̃. Problem (3.9) becomes:

min
�̃�,X̃,Ỹ

𝑓 (X̃) + 𝑔(�̃�, �̃�𝑘 ,𝚲𝑘) (3.10)

s.t. �̃�, X̃ ∈ Q, X̃ ∈ X̃𝑇 , �̃� ∈ L𝑑 , 𝑥0 = 𝑥(𝜏),
[X̃]𝑖 = [𝑀1�̃�]𝑖𝑟 [𝑥0]𝑖, [X̃] 𝑗 = [Ỹ] 𝑗 ∀ 𝑗 ∈ in𝑖 (𝑑) ∀𝑖

where we define 𝑓 , X̃𝑇 , and Q as follows:

• 𝑓 (X̃) := 𝑓 (X) + 1
𝑁

∑𝑁
𝑖=1 𝜂𝑖,

• X̃ ∈ X̃𝑇 if and only if 𝑀1�̃�𝑇 {1}𝑥0 ∈ 𝜂𝑖X𝑇 ∀𝑖,

• �̃�, X̃ ∈ Q if and only if 0 ≤ 𝜼 ≤ 1 and {�̃� ∈ P̃ if P̃ induces linear inequalities
or X̃ ∈ P otherwise}.3

The structure of problem (3.10) allows us to solve it in a distributed and localized
manner via ADMM-based consensus. In particular, each subsystem 𝑖 solves:


[�̃�]𝑘+1,𝑛+1

𝑖𝑟 ,

[X̃]𝑛+1in𝑖 (𝑑)

=

argmin
[�̃�]𝑖𝑟 , [X̃]in𝑖 (𝑑)

�̃�𝑖𝑘 (X̃, �̃�)+
𝜇

2
ℎ𝑖 (X̃, Ỹ𝑛, Z̃𝑛)

s.t.
[�̃�]𝑟𝑖 ∈Q𝑖, [X̃𝑇]𝑖∈X̃𝑖𝑇 ∩ Q

𝑖,

[X̃]𝑖 = [𝑀1�̃�]𝑟𝑖 [𝑥0]𝑖


(3.11a)

[Ỹ]𝑛+1𝑖 =
ℎ𝑖 (X̃𝑛+1, 0, Z̃𝑛)
|in𝑖 (𝑑) |

, (3.11b)

[Z̃]𝑛+1𝑖 𝑗 = [Z̃]𝑛𝑖 𝑗 + [X̃]
𝑛+1
𝑖 − [Ỹ]𝑛+1𝑗 , (3.11c)

where to simplify notation, we define

�̃�𝑖𝑘 (X̃, �̃�) := 𝑓 𝑖 ([X̃]in𝑖 (𝑑)) + 𝑔
(
[𝚽]𝑖𝑟 − [𝚿]𝑘𝑖𝑟 + [𝚲]

𝑘
𝑖𝑟

)
,

ℎ𝑖 (X̃, Ỹ𝑛, Z̃𝑛) :=
∑︁

𝑗∈in𝑖 (𝑑)

[X] 𝑗 − [Y]𝑛𝑖 + [Z]𝑛𝑖 𝑗

2

𝐹
.

Consensus iterations are denoted by 𝑛, outer-loop (i.e., Algorithm 1) iterations are
denoted by 𝑘 , and 𝜇 is the ADMM consensus parameter. Intuitively, �̃�𝑖

𝑘
represents

the original objective from (3.9), and ℎ𝑖 represents the consensus objective.

The subroutine described by (3.11) allows us to accommodate local coupling induced
by cost and constraint (including terminal), and can be implemented in a distributed

3By the assumptions in [53], P (and therefore P̃) must induce linear inequalities in the robust
setting. The only case where P̃ may induce something other than linear inequalities is in the nominal
setting.

48

and localized manner. As stated above, this subroutine solves the row-wise problem
(3.9), corresponding to step 3 of Algorithm 1. Thus, in order to accommodate
local coupling (including terminal set and cost), we need only to replace step 3 of
Algorithm 1 with the subroutine defined by Algorithm 3 below. Convergence is
guaranteed by a similar argument to Lemma 6.

Algorithm 3 Subsystem 𝑖 implementation of step 3 in Algorithm 1 when subject to
localized coupling

input: tolerance parameters 𝜖𝑥 , 𝜖𝑧, 𝜇 > 0.
1: 𝑛← 0.
2: Solve optimization problem (3.11a).
3: Share [X]𝑛+1

𝑖
with out𝑖 (𝑑). Receive the corresponding [X]𝑛+1

𝑗
from 𝑗 ∈ in𝑖 (𝑑).

4: Perform update (3.11b).
5: Share [Y]𝑛+1

𝑖
with out𝑖 (𝑑). Receive the corresponding [Y]𝑛+1

𝑗
from 𝑗 ∈ in𝑖 (𝑑).

6: Perform update (3.11c).
7: if

[X]𝑛+1
𝑖
− [Z]𝑛+1

𝑖

𝐹
< 𝜖𝑥

and

[Z]𝑛+1

𝑖
− [Z]𝑛

𝑖

𝐹
< 𝜖𝑧 :

Go to step 4 in Algorithm 1.
else: Set 𝑛← 𝑛 + 1 and return to step 2.

Computational complexity of the algorithm: The presence of coupling induces
an increase in computational complexity compared to the uncoupled scenario (i.e.,
Algorithm 1); however, the scalability properties from the uncoupled scenario still
apply. Complexity in the current algorithm is determined by steps 2, 4, 6 of
Algorithm 3 and steps 5 and 7 of Algorithm 1. Except for step 2 in Algorithm 3,
all other steps can be solved in closed form. Sub-problems solved in step 2 require
𝑂 (𝑑2𝑇2) optimization variables in the robust setting (𝑂 (𝑑𝑇2) in the nominal setting)
and𝑂 (𝑑2𝑇) constraints. All other steps enjoy less complexity since their evaluation
reduces to multiplication of matrices of dimension 𝑂 (𝑑2𝑇2) in the robust setting,
and 𝑂 (𝑑2𝑇) in the nominal setting. The difference in complexity between the
nominal and robust settings is consistent with the uncoupled scenario. Compared to
the uncoupled scenario, additional computation burden is incurred by the consensus
subroutine in Algorithm 3, which increases the total number of iterations. The
consensus subroutine also induces increased communication between subsystems,
as it requires local information exchange. However, this exchange is limited to a
𝑑-local region, resulting in small consensus problems that converge quickly, as we
illustrate empirically in §3.5. As with the original uncoupled algorithm, complexity
of this new algorithm is determined by the size of the local neighborhood and does
not increase with the size of the global network.

49

3.5 Simulation Experiments
Using examples, we demonstrate how adding terminal constraint and cost affects
the performance of the DLMPC algorithm. We verify that introducing terminal
constraint and cost produces the desired feasibility and stability. We empirically
characterize the computational complexity of algorithms presented in previous sec-
tions and verify that complexity is independent of global network size for both
offline and online algorithms.4

System model
Simulations are performed on the same system as in Chapter 2; a two-dimensional
square mesh, where each node represents a two-state subsystem that follows lin-
earized and discretized swing dynamics[

𝜃 (𝑡 + 1)
𝜔(𝑡 + 1)

]
𝑖

=
∑︁

𝑗∈in𝑖 (1)
[𝐴]𝑖 𝑗

[
𝜃 (𝑡)
𝜔(𝑡)

]
𝑗

+ [𝐵]𝑖 [𝑢]𝑖 + [𝑤]𝑖,

where [𝜃]𝑖, [¤𝜃]𝑖, [𝑢]𝑖 are the phase angle deviation, frequency deviation, and control
action of the controllable load of bus 𝑖. The dynamic matrices are

[𝐴]𝑖𝑖 =
[

1 Δ𝑡

− 𝑘𝑖
𝑚𝑖
Δ𝑡 1 − 𝑑𝑖

𝑚𝑖
Δ𝑡

]
, [𝐴]𝑖 𝑗 =

[
0 0

𝑘𝑖 𝑗
𝑚𝑖
Δ𝑡 0

]
, and [𝐵]𝑖𝑖 =

[
0 1

]⊺
for all 𝑖.

Connectivity among nodes is determined at random; each node connects to each of its
neighbors with a 40% probability. The expected number of edges is 0.8∗𝑛 ∗ (𝑛−1).
The parameters in bus 𝑖: 𝑚−1

𝑖
(inertia inverse), 𝑑𝑖 (damping) and 𝑘𝑖 𝑗 (coupling

term) are randomly generated and uniformly distributed between [0, 2], [0.5, 1],
and [1, 1.5], respectively. We set the discretization step Δ𝑡 = 0.2, and define
𝑘𝑖 :=

∑
𝑗∈in𝑖 (1) 𝑘𝑖 𝑗 .

We study both the nominal setting and robust setting with uniformly distributed
polytopic noise. The baseline parameter values are 𝑑 = 3, 𝑇 = 5, 𝑁 = 16
(4 × 4 grid). Unless otherwise specified, we start with a random-generated initial
condition. We use a quadratic cost and polytopic constraints on both angle and
frequency deviation, and impose upper and lower bounds.

4Code to replicate these experiments is available at https://github.com/unstable-
zeros/dl-mpc-sls; this code makes use of the SLS toolbox [59] at https://github.com/sls-
caltech/sls-code, which includes ready-to-use MATLAB implementations of all algorithms
presented in this thesis.

50

Performance
The addition of the terminal set and cost to the DLMPC algorithm introduces
minimal conservatism in both nominal and robust settings. We study the the DLMPC
cost for varying values of the time horizons for three different cases: (i) without
terminal set and cost (ii) with terminal set, (iii) with terminal set and terminal cost.
Results are summarized in Fig. 3.1. Observe that the difference between the optimal
cost across all three cases are negligible, indicating that our proposed terminal set
and cost introduce no conservatism (while still providing the necessary theoretical
guarantees).

Terminal set Terminal cost and terminal set

4 6 8 10

0

2

4

6

8
10-3

4 6 8 10

0

2

4

6

8
10-3

Figure 3.1: Relative difference of the optimal cost obtained (i) with terminal set
(pink) and (ii) with both terminal set and cost (yellow) compared to the optimal cost
computed without terminal set and cost. Relative difference is obtained by taking
the difference of the two costs and normalizing by the non-terminal-constrained
cost. The difference obtained by adding the terminal set (indicated in pink) is on the
order of 10−5 and is not visible on the plot.

Generally, the inclusion of the terminal set and cost introduce minimal change.
In the vast majority of cases (e.g., all simulations from Chapter 2), the DLMPC
algorithm is feasible and stable even without a terminal set. This phenomenon
has already been observed for the centralized case [1]. However, we also want to
demonstrate how the terminal set and cost can make a difference–example subsystem
trajectories for the three different cases are shown in Fig. 3.2 for the nominal case
and in the presence of polytopic disturbances. For these simulations only, we use
a smaller (𝑁 = 5), more unstable (𝑚−1

𝑖
between [0, 16]) system, extremely short

time horizon (𝑇 = 2), and somewhat hand-crafted initial states and disturbances to
obtain clearly visible differences between cases–without such instability, short time

51

horizon, and hand-crafting, differences are generally tiny and not visible. In all
cases, the centralized solution (computed via CVX [60]) coincides with the solution
achieved by the DLMPC Algorithm 1, validating the optimality of the proposed
algorithm. The effects of introducing terminal set and terminal cost are apparent
and consistent with the theoretical results presented in this paper.

Computational complexity
Simulation results verify the scalability of the proposed methods. We measure run-
time5 while varying different network and problem parameters: locality 𝑑, network
size 𝑁 , and time horizon 𝑇 .6 We run 5 different simulations for each of the parame-
ter combinations, using different realizations of the randomly chosen parameters to
provide consistent runtime estimates.

First, we study the scalability of the offline Algorithm 2 to compute the terminal set;
results are shown in Fig. 3.3. Consistent with theoretical analyses in §3.4, runtime
does not increase with the size of the network; rather, it increases with the size of the
neighborhood. As expected, computations for the robust set take slightly longer than
for the nominal set, since the variables in the robust setting have greater dimension.
Overall, synthesis times for both nominal and robust settings are extremely low,
especially when a small locality size is used.

We also study how scalability of the DLMPC algorithm is affected when we impose
a terminal set and terminal cost, and use Algorithm 3 to handle coupling. Results are
shown in Fig. 3.4; this figure was generated using the same systems and parameters
as Fig. 6.7, allowing for direct comparison of online runtimes. The addition of
the terminal set/cost slightly increases runtime, as expected. In the nominal case,
runtime is increased from about 10−3s to 10−1s. In the case of polytopic disturbances,
runtime is increased from about 1 − 10s to 10s. Scalability is maintained; runtime
barely increases with the size of the network. Overall, simulations indicate that
the introduction of a terminal set and cost preserve scalability, minimally impact
computational overhead and performance, and provide the desired guarantees.

5In online simulations, runtime is measured after the first iteration, so that all iterations for which
runtime is measured are warm-started.

6To increase network size, we vary the size of the grid over 4 × 4 (32 states), 6 × 6 (72 states),
8 × 8 (128 states), and 11 × 11 (242 states) grid sizes.

52

Simulation 3: Polytopic Noise

Simulation 2: Noiseless

Simulation 1: Noiseless

Method 1 becomes
infeasible

No terminal cost or set

Distributed (Alg. 1)

Centralized

Terminal set

Distributed (Alg. 1+3)

Centralized

Terminal cost and set

Distributed (Alg. 1+3)

Centralized

Method 1 Method 2 Method 3

Figure 3.2: Comparison of behaviors across methods. For simulations with various
initial conditions and state bounds: method 1 (green) uses DLMPC with no terminal
cost or set, method 2 (yellow) uses DLMPC with only a terminal set, and method
3 (pink) uses DLMPC with both terminal set and terminal cost. In all simulations
shown, method 1 becomes infeasible at some time, highlighted by the arrow; how-
ever, both methods 2 and 3 maintain feasibility, due to the inclusion of the terminal
set constraint. Dashed red lines indicate state constraints. Simulation 1: noiseless
evolution of the states of subsystem 4. Method 1 becomes infeasible after 𝑡 = 2.
Methods 2 and 3 appear very similar; the addition of the terminal cost introduces lit-
tle change. Simulation 2: noiseless evolution of the states of subsystem 3. Method
1 becomes infeasible after 𝑡 = 14. Here, method 2 displays large oscillations; but
method 3 does not: here, the inclusion of the terminal cost plays a large role in
improving performance. Simulation 3: evolution of the states of subsystem 4 under
polytopic noise. Method 1 becomes infeasible after 𝑡 = 13. Methods 2 and 3 appear
very similar.

53

Nominal DLMPC
(Explicit)

Robust DLMPC
(Poly. noise)

4 6 8 10
0

0.1

0.2

0.3

0 50 100
0.01

0.015

0.02

0.025

0.03

Figure 3.3: Average runtime of Algorithm 2 with network size (left) and locality
parameter (right). The lines are the mean values and the shaded areas show the
values within one standard deviation. Since computations are parallelized across
subsystems, runtime is measured on a subsystem, normalized per state, and averaged
after the algorithm computation is finished.

Nominal DLMPC
(Explicit)

Robust DLMPC
(Poly. noise)

0 50 100

10-1

100

101

Figure 3.4: Average runtime per DLMPC iteration with network size when terminal
set and terminal cost are imposed. The lines are the mean values and the shaded areas
show the values within one standard deviation. Since computations are parallelized
across subsystems, runtime is measured on a subsystem, normalized per state, and
averaged out after the MPC controller is finished.

3.6 Conclusion
In this chapter we provide theoretical guarantees for the closed-loop DLMPC ap-
proach, in both nominal and robust settings. In particular, we ensure recursive

54

feasibility and stability by incorporating a terminal set and terminal cost. We also
give guarantees for convergence of the algorithm. For the terminal set, we choose
the maximal robust positive invariant set, which can be expressed compactly in the
SLS parametrization. We introduce an algorithm to scalably compute this terminal
set. We also provide the requisite modifications to the online DLMPC algorithm to
accommodate local coupling induced by the terminal set and cost, as well as gen-
eral coupling induced by process cost and constraints. All algorithms require only
local information exchange, and enjoy computational complexity that is indepen-
dent of the global system size. Although the cost and delays of the communication
exchanges are beyond the scope of this paper, if the communication delays and pack-
age dropouts can be modeled either as a polytopic or locally bounded disturbance,
then the guarantees provided in this paper for convergence, recursive feasibility and
asymptotic stability still hold. The results in this paper are the first to provide a dis-
tributed and localized computation of the maximal robust positive invariant control
set and Lyapunov function of a large-scale system.

55

C h a p t e r 4

GLOBAL PERFORMANCE GUARANTEES

Abstract

In this chapter, we provide analysis and guarantees on global performance of local-
ized MPC–in particular, we derive sufficient conditions for optimal global perfor-
mance in the presence of local communication constraints. We also present an algo-
rithm to determine the communication structure for a given system that will preserve
performance while minimizing computational complexity. The effectiveness of the
algorithm is verified in simulations, and additional relationships between network
properties and performance-preserving communication constraints are character-
ized. Overall, this chapter offers theoretical understanding on the effect of local
communication on global performance, and provides practitioners with the tools
necessary to deploy localized model predictive control by establishing a rigorous
method of selecting local communication constraints. This work also demonstrates
that the inclusion of severe communication constraints need not compromise global
performance.

The content in this chapter has been published in [74].

56

4.1 Introduction
Distributed control is crucial for the operation of large-scale networks such as power
grids and intelligent transport systems. Distributed model predictive control (MPC)
is of particular interest, since MPC is one of the most powerful and commonly used
control methods. The distributed and localized MPC (DLMPC) method discussed in
this thesis provides scalable algorithms with stability and feasibility guarantees. As
the name suggests, DLMPC incorporates local communication constraints, which
are typically encapsulated in a single parameter 𝑑 (rigorously defined in Section
5.3). The question of how to select this parameter remains unresolved, as two op-
posing forces come into play: smaller values of 𝑑 represent stricter communication
constraints, which correspond to decreased complexity–however, overly strict com-
munication constraints may render the problem infeasible, or compromise system
performance. In this work, we address this problem by providing a rigorous char-
acterization of the impact of local communication constraints on performance. We
focus on cases in which optimal global performance may be obtained with local
communication; in other words, the performance of the system is unchanged by
the introduction of communication constraints. We find that under reasonable as-
sumptions, optimal global performance can be achieved with relatively strict local
communication constraints.

Prior work

For large networked systems, several studies have been conducted on the use of
offline controllers with local communication constraints. Local communication can
facilitate faster computational speed [28] and convergence [29], particularly in the
presence of delays [75]–however, this typically comes at the cost of supoptimal
global performance [30]. In [31], a trade-off between performance and decentral-
ization level (i.e., amount of global communication) is found for a truncated linear
quadratic regulator. In system level synthesis, the offline predecessor of DLMPC
[51], localization is typically associated with reduced performance of around 10%
relative to the global controller. More generally, for both global and localized
control, the topology of the network and actuator placement [76] plays a role in
achievable controller performance [32], [33] and convergence [34]. In the realm
of predictive control, communication constraints are important considerations [35].
However, the improved computational speeds offered by local predictive controllers
typically come at the cost of suboptimal global performance and lack of stability
and convergence guarantees [36]. The novel DLMPC method overcomes some

57

of these drawbacks, providing both stability and convergence guarantees–however,
thus far, its performance has not been substantially compared to that of the global,
full-communication controller.1 In the few instances that it has, it performed nearly
identically to the global controller despite the inclusion of strict communication
constraints [77], prompting further investigation.

Contributions

This work contains two key contributions. First, we provide a rigorous charac-
terization of how local communication constraints restrict (or preserve) the set of
trajectories available under predictive control, and use this to provide guarantees
on optimal global performance for localized MPC. Secondly, we provide an exact
method for selecting an appropriate locality parameter 𝑑 for localized MPC. To the
best of our knowledge, these are the first results of this kind on local communication
constraints; our findings are useful to theoreticians and practitioners alike.

4.2 Problem Statement
In Chapter 2, we provided a formulation for the MPC problem (2.3). In order to
solve problem (2.3) in a distributed manner while respecting local communication
constraints, we introduced information exchange constraints through equation (2.4).
These constraints, which we shall refer to interchangeably as local communication
constraints or locality constraints, restrict sub-controllers to exchange their state
and control actions with neighbors at most 𝑑-hops away, as per the incoming and
outgoing sets from Definition 1. The goal of this chapter is to investigate how local
communication constraints restrict the optimal trajectory provided as a solution
of the MPC problem (2.3), and identify under which conditions the inclusion of
locality constraints does not impact the optimal solution of the MPC problem. We
also investigate a principled method to select an appropriate locality parameter 𝑑
such that the optimality is preserved.

In this chapter, we restrict our analysis to the noiseless case. Notice that in the
where no driving noise is present, the disturbance vector takes the form w :=[
𝑥⊤0 0 . . . 0

]⊤
. Then, only the first block column of 𝚽 needs to be computed.

1Prior work focuses on comparisons between centralized and distributed optimization schemes
for localized MPC.

58

In this case, problem (2.7) at time-step 𝜏 becomes:

min
𝚽{1}

𝑓 (𝚽{1}𝑥0) (4.1a)

s.t. 𝑥0 = 𝑥(𝜏), (4.1b)

𝑍𝐴𝐵𝚽{1} = 𝐼, (4.1c)

𝚽{1}𝑥0 ∈ P, (4.1d)

where 𝐼 :=
[
𝐼 0

]⊺
.

Remark 8. We denote the number of rows of 𝚽 as 𝑁Φ := 𝑁𝑥 (𝑇 + 1) + 𝑁𝑢𝑇 . To
shorten notation in what follows, we denote 𝚽1 := 𝚽1:𝑁𝑥 ,:, and 𝚽2 := (𝚽)𝑁𝑥+1:,:.

For the remainder of the chapter we abuse notation and refer to the first block-
column of the full matrix 𝚽–denoted as 𝚽{1}–as 𝚽, where we drop the term {1}
for convenience. From here on, we shall use global MPC to refer to (2.3), or
equivalently, (4.1). We shall use localized MPC to refer to problem (4.1) with the
additional locality constraints as per Definition 3, i.e., 𝚽 ∈ L𝑑 . As discussed in
previous chapters, localized MPC is less computationally complex than global MPC–
also, for appropriately chosen locality constraints, it confers substantial scalability
benefits. For this reason, here we explore conditions where we can keep the locality
parameter 𝑑 small without affecting the overall optimal performance of the system.

4.3 Global Performance for Localized MPC
In this section, we analyze the effect of locality constraints 𝚽 ∈ L on the optimal
performance of the MPC problem (2.7). We are especially interested in scenarios
where localized MPC achieves optimal global performance, i.e., 𝑓 ∗ = 𝑓 ∗L , where 𝑓 ∗

and 𝑓 ∗L are the solutions to the global MPC problem and localized MPC problem,
respectively, for some state 𝑥0.

First, we must analyze the space of available trajectories from state 𝑥0 for both global
and localized MPC. We denote an available trajectory y :=

[
x⊺1:𝑇 u⊺

]⊺
.

Definition 6. Trajectory set Y(𝑥0) denotes the set of available trajectories from
state 𝑥0 under dynamics (2.1):

Y(𝑥0) := {y : ∃𝚽 s.t. 𝑍𝐴𝐵𝚽 = 𝐼, y = 𝚽2𝑥0}.

Localized trajectory set YL (𝑥0) denotes the set of available trajectories from state
𝑥0 under dynamics (2.1) and locality constraint 𝚽 ∈ L𝑑:

YL (𝑥0) := {y : ∃𝚽 s.t. 𝑍𝐴𝐵𝚽 = 𝐼, 𝚽 ∈ L𝑑 , y = 𝚽2𝑥0}.

59

Lemma 7. (Optimal global performance) Given an initial condition 𝑥0, if the local
communication constraint set L𝑑 is chosen such that Y(𝑥0) = YL (𝑥0), then the
localized MPC problem will attain optimal global performance.

Proof. Global MPC problem (4.1) can be written as

min
y

𝑓 (y)

s.t. y ∈ Y(𝑥(𝜏)) ∩ P .

Similarly, the localized MPC problem can also be written in this form by replacing
Y(𝑥(𝜏)) with YL (𝑥(𝜏)). Thus, if Y(𝑥(𝜏)) = YL (𝑥(𝜏)), the two problems are
equivalent and will have the same optimal values. □

Remark: This is a sufficient but not necessary condition for optimal global perfor-
mance. Even if this condition is not satisfied, i.e., YL (𝑥0) ⊂ Y(𝑥0), the optimal
global trajectory may be contained within YL (𝑥0). However, this is dependent on
objective 𝑓 . Our analysis focuses on stricter conditions which guarantee optimal
global performance for any objective function.

We now explore cases in which Y(𝑥0) = YL (𝑥0), i.e., the localized MPC problem
attains optimal global performance. Localized trajectory set YL (𝑥0) is shaped by
the dynamics and locality constraints:

𝑍𝐴𝐵𝚽 = 𝐼 (4.2a)

𝚽 ∈ L. (4.2b)

To obtain a closed-form solution forYL (𝑥0), we will parameterize these constraints.
Two equivalent formulations are available. The dynamics-first formulation param-
eterizes constraint (4.2a), then (4.2b), and the locality-formulation parameterizes
the constraints in the opposite order. The dynamics-first formulation clearly shows
how local communication constraints affect the trajectory space; the locality-first
formulation is less clear in this regard, but can be implemented in code with lower
computational complexity than the dynamics-first formulation. We now derive each
formulation.

Dynamics-first formulation
We first parameterize (4.2a), which gives a closed-form expression for trajectory set
Y(𝑥0).

60

Lemma 8. (Image space representation of trajectory set) The trajectory set from
state 𝑥0 is described by:

Y(𝑥0) = {y : y = 𝑍𝑝𝑥0 + 𝑍ℎ𝑋𝜆, 𝜆 ∈ R𝑁Φ},

where 𝑍𝑝 := (𝑍†
𝐴𝐵
)𝑁𝑥+1:,:𝐼 and 𝑍ℎ := (𝐼 − 𝑍†

𝐴𝐵
𝑍𝐴𝐵)𝑁𝑥+1:,:; and the size of the

trajectory set is
dim(Y(𝑥0)) = rank(𝑍ℎ𝑋).

If 𝑥0 has at least one nonzero value, then dim(Y(𝑥0)) = 𝑁𝑢𝑇.

Proof. We start by noticing that for any𝚽𝑥 satisfying constraint (4.1d),𝚽1 = 𝐼. This
is due to the structure of 𝑍𝐴𝐵. Also, constraint (4.1d) is always feasible, with solution
space of dimension 𝑁𝑢𝑇 . To see this, notice that rank(𝑍𝐴𝐵) = rank

[
𝑍𝐴𝐵 𝐼

]
always

holds, since 𝑍𝐴𝐵 has full row rank due to the identity blocks on its diagonal; apply the
Rouché-Capelli theorem [78] to get the desired result. Hence, we can parameterize
the space of solutions 𝚽 as:

𝚽 = 𝑍
†
𝐴𝐵
𝐼 + (𝐼 − 𝑍†

𝐴𝐵
𝑍𝐴𝐵)Λ (4.3)

where Λ is a free variable with the same dimensions as 𝚽. Since 𝚽1 = 𝐼 always
holds, we can omit the first 𝑁𝑥 rows of (4.3). Hence,

𝚽2 = 𝑍𝑝 + 𝑍ℎΛ. (4.4)

Combining (4.4) and the definition of y, we have

y = 𝚽2𝑥0 = 𝑍𝑝𝑥0 + 𝑍ℎΛ𝑥0. (4.5)

Making use of augmented state 𝑋 , rewrite this as

y = 𝚽2𝑥0 = 𝑍𝑝𝑥0 + 𝑍ℎ𝑋
⃗⃗ ⃗⃗
Λ . (4.6)

This gives the desired expression for Y(𝑥0) and its size.

Notice that if 𝑥0 has at least one nonzero value, then rank(𝑍ℎ𝑋) = rank(𝑍ℎ) due
to the structure of 𝑋 . All that is left is to show rank(𝑍ℎ) = 𝑁𝑢𝑇 . First, note
that rank(𝑍𝐴𝐵) = 𝑁𝑥 (𝑇 + 1) due to the identity blocks on the diagonal of 𝑍𝐴𝐵. It
follows that rank(𝑍†

𝐴𝐵
) = rank(𝑍†

𝐴𝐵
𝑍𝐴𝐵) = 𝑁𝑥 (𝑇 + 1). Thus, rank(𝐼 − 𝑍†

𝐴𝐵
𝑍𝐴𝐵) =

𝑁Φ − 𝑁𝑥 (𝑇 + 1) = 𝑁𝑢𝑇 . Recall that 𝑍ℎ is simply 𝐼 − 𝑍†
𝐴𝐵
𝑍𝐴𝐵 with the first 𝑁𝑥 rows

removed; this does not result in decreased rank, since all these rows are zero (recall
that 𝚽1 is always equal to 𝐼). Thus, rank(𝑍ℎ) = rank(𝐼 − 𝑍†

𝐴𝐵
𝑍𝐴𝐵) = 𝑁𝑢𝑇 . □

61

To write the closed form of localized trajectory setYL (𝑥0), we require some defini-
tions:

Definition 7. Constrained vector indices 𝔏 denote the set of indices of 𝚽2 that are
constrained to be zero by the locality constraint (4.2b), i.e.

(
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝚽2)𝔏 = 0⇔ 𝚽 ∈ L.

Let 𝑁𝔏 be the cardinality of 𝔏.

We now parameterize (4.2b) and combine this with Lemma 8, which gives a closed-
form expression for localized trajectory set YL (𝑥0).

Lemma 9. (Image space representation of localized trajectory set) Assume there
exists some 𝚽 that satisfies constraints (4.2a) and (4.2b). Then, the localized
trajectory set from state 𝑥0 is described by the following:

YL (𝑥0) = {y : y = 𝑍𝑝𝑥0 + 𝑍ℎ𝑋𝐹†𝑔 + 𝑍ℎ𝑋 (𝐼 − 𝐹†𝐹)𝜇, 𝜇 ∈ R𝑁𝔏},

where 𝐹 := (𝑍blk
ℎ
)𝔏,: and 𝑔 := −(

⃗⃗⃗⃗ ⃗⃗⃗
𝑍𝑝)𝔏; and the size of the localized trajectory set is

dim(YL (𝑥0)) = rank(𝑍ℎ𝑋 (𝐼 − 𝐹†𝐹)).

Proof. Using the augmented matrix of 𝑍ℎ, we can write the vectorization of (4.4)
as ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝚽2 =
⃗⃗ ⃗⃗ ⃗⃗⃗
𝑍𝑝 +𝑍blk

ℎ

⃗⃗ ⃗⃗
Λ (4.7)

where
⃗⃗ ⃗⃗
Λ is a free variable. Incorporate locality constraint (4.2b) using the con-

strained vector indices:
(
⃗⃗ ⃗⃗ ⃗⃗⃗
𝑍𝑝 +𝑍blk

ℎ

⃗⃗ ⃗⃗
Λ)𝔏 = 0. (4.8)

This is equivalent to (
⃗⃗ ⃗⃗ ⃗⃗⃗
𝑍𝑝)𝔏 + (𝑍blk

ℎ
)𝔏,:
⃗⃗ ⃗⃗
Λ = 0, or 𝐹

⃗⃗ ⃗⃗
Λ = 𝑔. We can parameterize this

constraint as ⃗⃗ ⃗⃗
Λ = 𝐹†𝑔 + (𝐼 − 𝐹†𝐹)𝜇 (4.9)

where 𝜇 is a free variable. Plugging this into (4.6) gives the desired expression for
YL (𝑥0) and its size. We remark that there is no need to consider 𝚽1 = 𝐼 in relation
to the locality constraints, since the diagonal sparsity pattern of the identity matrix
(which corresponds to self-communication, i.e., node 𝑖 ‘communicating’ to itself)
satisfies any local communication constraint. □

62

Theorem 2. (Optimal global performance) If 𝑥0 has at least one nonzero value,
then localized MPC attains optimal global performance if:

1. there exists some 𝚽 that satisfies constraints (4.2a) and (4.2b), and

2. rank(𝑍ℎ𝑋 (𝐼 − 𝐹†𝐹)) = 𝑁𝑢𝑇 .

Proof. By definition, YL (𝑥0) ⊆ Y(𝑥0). Equality is achieved if and only if the two
sets are of equal size. Applying Lemmas 8 and 9 shows that the conditions of the
theorem are necessary and sufficient forYL (𝑥0) andY(𝑥0) to be equal. Then, apply
Proposition 7 for the desired result. □

This formulation provides intuition on how the inclusion of locality constraints
affects the trajectory set–this is made clear in numerical examples in Section 4.3.
However, checking the conditions of Theorem 2 is computationally expensive. In
particular, we must assemble and compute the rank of matrix 𝑍ℎ𝑋 (𝐼 − 𝐹†𝐹). The
complexity of this operation is dependent on the size of the matrix, which increases
as 𝚽 becomes more sparse (as enforced by locality constraints). This is a problem,
since it is generally preferable to use very sparse 𝚽, as previously mentioned–this
would correspond to an extremely large matrix 𝑍ℎ𝑋 (𝐼 − 𝐹†𝐹), which is time-
consuming to compute with. Ideally, sparser 𝚽 should instead correspond to lower
complexity; this is the motivation for the next formulation.

Locality-first formulation
We first parameterize (4.2b), then (4.2a). This directly gives a closed-form expres-
sion for localized trajectory set YL (𝑥0). We introduce some definitions that will
prove helpful in the derivation of this formulation.

Definition 8. Support vector indices 𝔐 denote the set of indices of
⃗⃗ ⃗⃗⃗
𝚽 such that

(
⃗⃗⃗⃗⃗
𝚽)𝔐 ≠ 0 is compatible with locality constraint (4.2b). Let 𝑁𝔐 be the cardinality

of 𝔐.

Remark: this is complementary to Definition 7. Instead of looking at which indices
are constrained to be zero, we now look at which indices are allowed to be nonzero.
A subtlety is that this definition considers the entirety of 𝚽, while Definition 7 omits
the first 𝑁𝑥 rows of 𝚽.

63

Lemma 10. (Image space representation of localized trajectory set) Assume there
exists some 𝚽 that satisfies constraints (4.2a) and (4.2b). Then, the localized
trajectory set from state 𝑥0 is described by the following:

YL (𝑥0) = {y : y = (𝑋2):,𝔐𝐻†𝑘 + (𝑋2):,𝔐 (𝐼 − 𝐻†𝐻)𝛾, 𝛾 ∈ R𝑁𝔐 },

where 𝑋2 := (𝑋)𝑁𝑥+1:,:, 𝐻 = (𝑍blk
𝐴𝐵
):,𝔐 and 𝑘 :=

⃗⃗
𝐼; and the size of the localized

trajectory set is

dim(YL (𝑥0)) = rank((𝑋2):,𝔐 (𝐼 − 𝐻†𝐻)).

Proof. Future trajectory y can be written as

y = 𝑋2
⃗⃗ ⃗⃗⃗
𝚽 = (𝑋2):,𝔐 (

⃗⃗⃗⃗⃗
𝚽)𝔐 (4.10)

where the first equality arises from the definitions of y and 𝑋 , and the second equality
arises from the fact that zeros in

⃗⃗ ⃗⃗⃗
𝚽 do not contribute to y; thus, we only need to

consider nonzero values (
⃗⃗⃗⃗⃗
𝚽)𝔐.

Using the augmented matrix of 𝑍𝐴𝐵, constraint (4.2a) can be rewritten as 𝑍blk
𝐴𝐵

⃗⃗ ⃗⃗⃗
𝚽 = 𝑘 .

Nonzero values (
⃗⃗⃗⃗⃗
𝚽)𝔐 must obey

𝐻 (
⃗⃗⃗⃗⃗
𝚽)𝔐 = 𝑘. (4.11)

Constraint (4.11) is feasible exactly when constraints (4.2a) and (4.2b) are feasible.
By assumption, solutions exist, so we can parameterize the solution space as

(
⃗⃗⃗⃗⃗
𝚽)𝔐 = 𝐻†𝑘 + (𝐼 − 𝐻†𝐻)𝛾 (4.12)

where 𝛾 is a free variable. Substituting (4.12) into (4.10) gives the desired expression
for YL (𝑥0) and its size. □

Theorem 3. (Optimal global performance) If 𝑥0 has at least one nonzero value,
then localized MPC attains optimal global performance if:

1. there exists some 𝚽 that satisfies constraints (4.2a) and (4.2b), and

2. rank((𝑋2):,𝔐 (𝐼 − 𝐻†𝐻)) = 𝑁𝑢𝑇 .

Proof. Similar to Theorem 2; instead of applying Lemma 9, apply Lemma 10. □

64

To check the conditions of Theorem 3, we must assemble and compute the rank of
matrix (𝑋2):,𝔐 (𝐼 −𝐻†𝐻). The complexity of this operation is dependent on the size
of this matrix, which decreases as 𝚽 becomes more sparse (as enforced by locality
constraints). This is beneficial, since it is preferable to use very sparse 𝚽, which
corresponds to a small matrix (𝑋2):,𝔐 (𝐼 − 𝐻†𝐻) that is easy to compute with. This
is in contrast with the previous formulation, in which sparser 𝚽 corresponded to
increased complexity. However, from a theoretical standpoint, this formulation does
not provide any intuition on the relationship between the trajectory set Y(𝑥0) and
the localized trajectory set YL (𝑥0).

For completeness, we now use the locality-first formulation to provide a closed-form
expression of Y(𝑥0). The resulting expression is equivalent to–though decidedly
more convoluted than–the expression in Lemma 8:

Lemma 11. (Image space representation of trajectory set) The trajectory set from
state 𝑥0 is described by:

Y(𝑥0) = {y : y = 𝑋2𝑍
blk
𝐴𝐵𝑘 + 𝑋2(𝐼 − 𝑍blk†

𝐴𝐵
𝑍blk
𝐴𝐵)𝛾, 𝛾 ∈ R𝑁Φ}.

Proof. In the absence of locality constraints, 𝔐 includes all indices of
⃗⃗ ⃗⃗⃗
𝚽 since all

entries are allowed to be nonzero. Here, 𝑁𝔐 = 𝑁Φ, (𝑋2):,𝔐 = 𝑋2, (
⃗⃗⃗⃗⃗
𝚽):,𝔐 =

⃗⃗ ⃗⃗⃗
𝚽, and

𝐻 = 𝑍blk
𝐴𝐵

. Substitute these into the expression in Lemma 10 to obtain the desired
result. □

Remark: By definition, 𝑋2𝑍
blk
𝐴𝐵
𝑘 = 𝑍𝑝𝑥0 and 𝑋2(𝐼 − 𝑍blk†

𝐴𝐵
𝑍blk
𝐴𝐵
) = 𝑍ℎ𝑋 . Substituting

these quantities into Lemma 11 recovers Lemma 8.

Numerical example
To provide some intuition on the results from the previous subsections, we present
a simple numerical example. We work with a system of three nodes in a chain
interconnection, as shown in Fig. 4.1.

𝑢1 𝑢2

plant

actuation

𝑥1 𝑥2 𝑥3

Figure 4.1: Example system with three nodes, two of which are actuated.

65

The system matrices are:

𝐴 =


1 2 0
3 4 5
0 6 7

 , 𝐵 =


1 0
0 0
0 1

 . (4.13)

We set initial state 𝑥0 =

[
1 1 1

]⊤
, and choose a predictive horizon size of 𝑇 = 1.

Here, 𝑁Φ = 𝑁𝑥 (𝑇 + 1) + 𝑁𝑢𝑇 = 8. We choose locality constraints L such that each
node may only communicate with its immediate neighbors; node 1 with node 2,
node 2 with both nodes 1 and 3, and node 3 with node 2. Then, locality constraint
(4.2b) is equivalent to

𝚽 =



∗ ∗ 0
∗ ∗ ∗
0 ∗ ∗
∗ ∗ 0
∗ ∗ ∗
0 ∗ ∗
∗ ∗ 0
0 ∗ ∗



(4.14)

where ∗ indicate values that are allowed to be nonzero. The support vector indices
are 𝔐 = {1, 2, 4, 5, 7, 9 − 16, 18, 19, 21, 22, 24}, and the constrained vector indices
are 𝔏 = {3, 5, 11, 14} (recall that indices in 𝔏 do not include the first 𝑁𝑥 rows of 𝚽).
We confirm that there exists some 𝚽 that satisfies both dynamics constraints (4.2a)
and locality constraints (4.2b) by checking that constraint (4.11) is feasible.

We start with dynamics-first formulation. In our case,

𝑍ℎ =

[
05×3 𝑐1 05×1 𝑐2 𝑐1 𝑐2

]
(4.15)

where 𝑐1 and 𝑐2 are defined as

𝑐1 :=
1
2



1
0
0
1
0


, 𝑐2 :=

1
2



0
0
1
0
1


(4.16)

𝑍ℎ has a rank of 2. Then, 𝑍ℎ𝑋 =

[
𝑍ℎ 𝑍ℎ 𝑍ℎ

]
, also has a rank of 2. Per Lemma 8,

this is the size of the trajectory setY(𝑥0), which is exactly equal to 𝑁𝑢𝑇 , as expected.

66

𝑍ℎ𝑋 =

[
05×3 𝑐1 05×1 𝑐2 𝑐1 𝑐2 05×3 𝑐1 05×1 𝑐2
𝑐1 𝑐2 05×3 𝑐1 05×1 𝑐2 𝑐1 𝑐2

]
(4.17)

𝑍ℎ𝑋 (𝐼 − 𝐹†𝐹) =
[
05×3 𝑐1 05×2 𝑐1 05×4 𝑐1 05×1 𝑐2 𝑐1 𝑐2
05×5 𝑐2 05×1 𝑐2

]
(4.18)

(𝑋2):,𝔐 (𝐼 − 𝐻†𝐻) =
[
05×2 𝑐1 05×1 𝑐1 05×3 𝑐1 05×1 𝑐2 𝑐1 𝑐2
05×3 𝑐2 𝑐2

]
(4.19)

We write out 𝑍ℎ𝑋 and 𝑍ℎ𝑋 (𝐼 − 𝐹†𝐹) in full in equations (4.17) and (4.18). Boxed
columns represent columns zeroed out as a result of locality constraints, i.e., if we
replace the boxed columns in 𝑍ℎ𝑋 with zeros, we obtain 𝑍ℎ𝑋 (𝐼 − 𝐹†𝐹). In our
example, 𝑍ℎ𝑋 (𝐼 − 𝐹†𝐹) also has a rank of 2; by Theorem 2, the local trajectory set
is equal to the trajectory set, and by Theorem 2, the localized MPC problem attains
optimal global performance.

Two observations are in order. First, we notice that the rank of 𝑍ℎ𝑋 (= 2) is
low compared to the number of nonzero columns (= 12), especially when 𝑥0 is
dense. Additionally, the structure of 𝑍ℎ𝑋 is highly repetitive; the only two linearly
independent columns are 𝑐1 and 𝑐2, and each appears 6 times in 𝑍ℎ𝑋 . Furthermore,
the specific values of 𝑥0 do not affect the rank of these matrices–only the placement
of nonzeros and zeros in 𝑥0 matters. Second, notice that post-multiplying 𝑍ℎ𝑋 by
(𝐼 − 𝐹†𝐹) effectively zeros out columns of 𝑍ℎ𝑋 . However, due to the repetitive
structure of 𝑍ℎ𝑋 , this does not result in decreased rank for 𝑍ℎ𝑋 (𝐼 − 𝐹†𝐹). In fact,
it is difficult to find a feasible locality constraint that results in decreased rank. This
observation is corroborated by simulations in Section 4.5, in which we find that
locality constraints that are feasible also typically preserve global performance. For
more complex systems and larger predictive horizons, post-multiplication of 𝑍ℎ𝑋
by (𝐼 − 𝐹†𝐹) no longer cleanly corresponds to zeroing out columns, but similar
intuition applies.

We now apply the locality-first formulation. To check the conditions of Theorem 3,
we must construct the matrix (𝑋2):,𝔐 (𝐼 − 𝐻†𝐻) and check its rank. This matrix is
written out in equation (4.19). As expected, the rank of this matrix is also equal to
two. Additionally, notice that (𝑋2):,𝔐 (𝐼−𝐻†𝐻) contains the same nonzero columns
as 𝑍ℎ𝑋 (𝐼−𝐹†𝐹): 𝑐1 and 𝑐2 are each repeated four times, in slightly different orders.
This is unsurprising, as the two formulations are equivalent.

67

4.4 Algorithmic Implementation of Optimal Locality Selection
Leveraging the results of the previous section, we introduce an algorithm that selects
the appropriate locality constraints for localized MPC. For simplicity, we restrict
ourselves to locality constraints corresponding to 𝑑-local neighborhoods, though we
remark that Subroutine 4 is applicable to arbitrary communication structures.

The localized MPC problem can be solved via distributed optimization techniques;
the resulting distributed and localized MPC problem enjoys complexity that scales
with locality parameter 𝑑, as opposed to network size 𝑁 as illustrated in Chapter 2.
Thus, when possible, it is preferable to use small values of 𝑑 to minimize compu-
tational complexity. For a given system and predictive horizon length, Algorithm
4 will return the optimal locality size 𝑑–the smallest value of 𝑑 that attains optimal
global performance.

As previously described, the specific values of 𝑥0 do not matter–only the placement
of nonzeros and zeros in 𝑥0 matters. We will restrict ourselves to considering dense
values of 𝑥0. For simplicity, our algorithm will work with the vector of ones as
𝑥0–the resulting performance guarantees hold for any dense 𝑥0.

To check if a given locality constraint preserves global performance, we must check
the two conditions of Theorem 3. First, we must check whether there exists some 𝚽
that satisfies both dynamics and locality constraints; this is equivalent to checking
whether (4.11) is feasible. We propose to check whether

∥𝐻 (𝐻†𝑘) − 𝑘 ∥∞ ≤ 𝜖 (4.20)

for some tolerance 𝜖 . Condition (4.20) can be distributedly computed due to the
block-diagonal structure of 𝐻. Define partitions [𝐻]𝑖 such that 𝐻 = blkdiag([𝐻]1,
[𝐻]2 . . . [𝐻]𝑁)2. Then, (4.20) is equivalent to

∥ [𝐻]𝑖 ([𝐻]†𝑖 [𝑘]𝑖) − [𝑘]𝑖∥∞ ≤ 𝜖 ∀𝑖. (4.21)

If this condition is satisfied, then it remains to check the second condition of Theorem
3. To so, we must construct matrix 𝐽 := (𝑋2):,𝔐 (𝐼−𝐻†𝐻) and check its rank. Notice
that 𝐽 can be partitioned into submatrices 𝐽𝑖, i.e., 𝐽 :=

[
𝐽1 𝐽2 . . . 𝐽𝑁

]
, where

each block 𝐽𝑖 can be constructed using only information from subsystem 𝑖, i.e.,
[𝐻]𝑖, [𝑘]𝑖, etc. Thus, 𝐽 can be constructed in parallel–each subsystem 𝑖 performs
Subroutine 4 to construct 𝐽𝑖.

2𝐻 should have 𝑁𝑥 blocks, where 𝑁𝑥 is the number of states. Since 𝑁 ≤ 𝑁𝑥 and one subsystem
may contain more than one state, we are able to partition 𝐻 into 𝑁 blocks as well.

68

Subroutine 4 Local sub-matrix for subsystem 𝑖

inputs: [𝐻]𝑖, [𝑘]𝑖, 𝜖
output: 𝐽𝑖

1: Compute 𝑤 = [𝐻]†
𝑖
[𝑘]𝑖

2: if ∥ [𝐻]𝑖𝑤 − [𝑘]𝑖∥∞ > 𝜖 :
𝐽𝑖 ← False

else :
𝐽𝑖 ← 𝐼 − [𝐻]†

𝑖
[𝐻]𝑖

return
Subroutine 4 checks whether the dynamics and locality constraints are feasible by
checking (4.21), and if so, returns the appropriate submatrix 𝐽𝑖. Notice that the
quantity [𝐻]𝑖 is used in both the feasibility check and in 𝐽𝑖. Also, 𝑥0 does not
appear, as we are using the vector of ones in its place.

Having obtained 𝐽 corresponding to a given locality constraint, we need to check its
rank to verify whether global performance is preserved, i.e., rank(𝐽) = 𝑁𝑢𝑇 , as per
Theorem 3. As previously described, we restrict ourselves to locality constraints of
the 𝑑-local neighborhood type, preferring smaller values of 𝑑 as these correspond
to lower complexity for the localized MPC algorithm 1. Thus, in Algorithm 4, we
start with the smallest possible value of 𝑑 = 1, i.e., subsystems communicate only
with their immediate neighbors. If 𝑑 = 1 does not preserve global performance,
we iteratively increment 𝑑, construct 𝐽, and check its rank, until optimal global
performance is attained.

Algorithm 4 Optimal local region size
inputs: 𝐴, 𝐵, 𝑇 , 𝜖
output: 𝑑
for 𝑑 = 1 . . . 𝑁 :

1: for 𝑖 = 1 . . . 𝑁 :
Construct [𝐻]𝑖, [𝑘]𝑖
Run Subroutine 4 to obtain 𝐽𝑖
if 𝐽𝑖 is False :

continue
2: Construct 𝐽 =

[
𝐽1 . . . 𝐽𝑁

]
3: if rank(𝐽) = 𝑁𝑢𝑇 :

return d

In Step 1 of Algorithm 4, we call Subroutine 4 to check for feasibility and construct
submatrices 𝐽𝑖. If infeasibility is encountered, or if optimal global performance is
not attained, we increment 𝑑; otherwise, we return optimal locality size 𝑑.

69

Complexity
To analyze complexity, we first make some simplifying scaling assumptions. As-
sume that the number of states 𝑁𝑥 and inputs 𝑁𝑢 are proportional to the number of
subsystems 𝑁 , i.e.,𝑂 (𝑁𝑥 +𝑁𝑢) = 𝑂 (𝑁). Also, assume that the number of nonzeros
𝑁𝔐 for locality constraint corresponding to parameter 𝑑 are related to one another
as 𝑂 (𝑁𝔐) = 𝑂 (𝑁𝑑𝑇).

Steps 1 and 3 determine the complexity of the algorithm. In Step 1, each subsystem
performs operations on matrix [𝐻]𝑖, which has size of approximately 𝑁𝑥 (𝑇 + 1)
by 𝑑𝑇–the complexity will vary depending on the underlying implementations of
the pseudoinverse and matrix manipulations, but will generally scale according to
𝑂 ((𝑑𝑇)2𝑁𝑥𝑇), or 𝑂 (𝑇3𝑑2𝑁). In practice, 𝑑 and 𝑇 are typically much smaller than
𝑁 , and this step is extremely fast; we show this in the next section.

In Step 3, we perform a rank computation on a matrix of size (𝑁𝑥 + 𝑁𝑢)𝑇 by
𝑁𝔐. The complexity of this operation, if Gaussian elimination is used, is 𝑂 ((𝑁𝑥 +
𝑁𝑢)1.38𝑇1.38𝑁𝔐), or 𝑂 (𝑇2.38𝑁2.38𝑑). Some speedups can be attained by using
techniques from [79], which leverage sparsity–typically, 𝐽 is quite sparse, with less
than 5% of its entries being nonzero. In practice, Step 3 is the dominating step in
terms of complexity.

We remark that this algorithm needs only to be run once offline for any given
localized MPC problem. Given a system and predictive horizon, practitioners should
first determine the optimal locality size 𝑑 using Algorithm 4, then run Algorithm 1
to solve for the DLMPC problem.

4.5 Simulations
We first present simulations to supplement runtime characterizations of Algorithm
4 from the previous section. Then, we use the algorithm to investigate how optimal
locality size varies depending on system size, actuation density, and prediction
horizon length. We find that optimal locality size is primarily a function of actuation
density. We also verify in simulation that localized MPC performs identically
to global MPC when we use the optimal locality size provided by Algorithm 4,
as expected. Code needed to replicate all simulations can be found at https:
//github.com/flyingpeach/LocalizedMPCPerformance. This code uses the
SLS-MATLAB toolbox [59], which includes an implementation of Algorithm 4.3

3When implementing subroutine 4 in MATLAB, use of the backslash operator (i.e., H\k) is faster
than the standard pseudoinverse function (i.e., pinv(H)*k). The backslash operator also produces

70

System and parameters
Simulations are performed on the same system as in Chapter 2; a two-dimensional
square mesh, where each node represents a two-state subsystem that follows lin-
earized and discretized swing dynamics[

𝜃 (𝑡 + 1)
𝜔(𝑡 + 1)

]
𝑖

=
∑︁

𝑗∈in𝑖 (1)
[𝐴]𝑖 𝑗

[
𝜃 (𝑡)
𝜔(𝑡)

]
𝑗

+ [𝐵]𝑖 [𝑢]𝑖 + [𝑤]𝑖,

where [𝜃]𝑖, [¤𝜃]𝑖, [𝑢]𝑖 are the phase angle deviation, frequency deviation, and control
action of the controllable load of bus 𝑖. The dynamic matrices are

[𝐴]𝑖𝑖 =
[

1 Δ𝑡

− 𝑘𝑖
𝑚𝑖
Δ𝑡 1 − 𝑑𝑖

𝑚𝑖
Δ𝑡

]
, [𝐴]𝑖 𝑗 =

[
0 0

𝑘𝑖 𝑗
𝑚𝑖
Δ𝑡 0

]
, and [𝐵]𝑖𝑖 =

[
0 1

]⊺
for all 𝑖.

Connectivity among nodes is determined at random; each node connects to each of
its neighbors with a 40% probability. The expected number of edges is 0.8 ∗ 𝑛 ∗
(𝑛 − 1). We consider only fully connected graphs. The parameters in bus 𝑖: 𝑚−1

𝑖

(inertia inverse), 𝑑𝑖 (damping) and 𝑘𝑖 𝑗 (coupling term) are randomly generated and
uniformly distributed between [0, 2], [0.5, 1], and [1, 1.5], respectively. We set
the discretization step Δ𝑡 = 0.2, and define 𝑘𝑖 :=

∑
𝑗∈in𝑖 (1) 𝑘𝑖 𝑗 .

Under the given parameter ranges, the system is typically neutrally stable, with a
spectral radius of 1. The baseline system parameters are 𝑛 = 5 (corresponding to a
5 × 5 grid containing 25 nodes, or 50 states) and 100% actuation. Note: this does
not correspond to ‘full actuation’ in the standard sense; it means that each subsystem
(which contains 2 states) has one actuator–50% of states are actuated. We use a
prediction horizon length of 𝑇 = 15 unless otherwise stated.

Algorithm runtime
We plot the runtime of Algorithm 4 in Fig. 4.2 for different system sizes and horizon
lengths. We separately consider runtimes for matrix construction (Step 1) and rank
determination (Step 3). The former is parallelized, while the latter is not.

Runtime for matrix construction is extremely small. Even for the grid with 121
subsystems (242 states), this step takes less than a millisecond. Interestingly, matrix
construction runtime also stays relatively constant with increasing network size,
despite the worst-case runtime scaling linearly with 𝑁 , as described in the previ-
ous section. This is likely due to the sparse structure of 𝐻. Conversely, matrix
construction runtime increases with increasing horizon length.
𝐽𝑖 matrices that are as sparse as possible, which facilitates faster subsequent computations.

71

Runtime for rank determination dominates total algorithm runtime, and increases
with both system size and horizon length. Rank determination runtime appears to
increase more sharply with increasing horizon length than with increasing system
size. Further runtime reductions may be achieved by taking advantage of techniques
described in the previous section; however, even without additional speedups, the
runtime is no more than 10 seconds for the grid with 242 states.

Figure 4.2: Runtime of matrix construction (Step 1, green) and rank determination
(Step 3, pink) of Algorithm 4 vs. network size and horizon length. Parallelized (i.e.,
per-subsystem) runtimes are shown for matrix construction. The algorithm was run
for grids containing 16, 25, 36, 64, and 121 subsystems. For each point, we run the
algorithm on five different systems, and plot the average and standard deviation–
here, the standard deviation is so small that it is barely visible. As expected, the
rank determination step dominates total runtime, while the matrix construction step
is extremely fast.

Optimal locality size as a function of system parameters
We characterize how optimal locality size changes as a function of the system size
and horizon length–the results are summarized in Figure 4.3. Actuation density is
the main factor that affects optimal locality size. Remarkably, at 100% actuation,
the optimal locality size always appears to be 𝑑 = 1, the smallest possible size (i.e.,
communication only occurs between nodes that share an edge). As we decrease
actuation density, the required optimal locality size increases. This makes sense, as
unactuated nodes must communicate to at least the nearest actuated node, and the
distance to the nearest actuated node grows as actuation density decreases.

72

The optimal locality size also increases as a function of system size–but only when
we do not have 100% actuation. At 60% actuation, for 121 nodes, the optimal
locality size is around 𝑑 = 5; this still corresponds to much less communication
than global MPC.

Predictive horizon length does not substantially impact optimal locality size. At
short horizon lengths (𝑇 ≤ 10), we see some small correlation, but otherwise,
optimal locality size stays constant with horizon size. Similarly, the stability of the
system (i.e., spectral radius) appears to not affect optimal locality size; this was
confirmed with simulations over systems with spectral radius of 0.5, 1.0, 1.5, 2.0,
and 2.5 for 60%, 80%, and 100% actuation (not included in the plots).

Figure 4.3: Optimal locality size as a function of various parameters. Each point
represents the average over five different systems; standard deviations are shown by
the fill area. (Left) Optimal locality size vs. actuation density. The two are inversely
correlated. (Center) Optimal locality size vs. network size for 60% actuation (pink),
80% actuation (blue), and 100% actuation (green). For 60% and 80% actuation,
optimal locality size roughly increases with network size. For 100% actuation, the
optimal locality size is always 1, independent of network size. (Right) Optimal
locality size vs. predictive horizon length for 60% actuation (pink), 80% actuation
(blue), and 100% actuation (green). For 60% and 80% actuation, optimal locality
size increases with horizon size up until 𝑇 = 10, then stays constant afterward. For
100% actuation, the optimal locality size is always 1.

73

Optimal performance with locality constraints
From the previous section, we found that with 100% actuation, the optimal locality
size is always 1. This means that even in systems with 121 subsystems, each node
need only communicate with its immediate neighbors (i.e., 4 or less other nodes) to
attain optimal global performance. This is somewhat surprising, as this is a drastic
(roughly 30-fold) reduction in communication compared to global MPC. To confirm
this result, we ran simulations on 20 different systems of size 𝑁 = 121 and 100%
actuation. We use LQR objectives with random positive diagonal matrices 𝑄 and
𝑅, and state bounds 𝜃𝑖 ∈ [−4, 4] for phase states and 𝜔𝑖 ∈ [−20, 20] for frequency
states. We use random initial conditions where each value (𝑥0)𝑖 is drawn from a
uniform distribution over [−2, 2].

For each system, we run localized MPC with 𝑑 = 1, then global MPC, and compare
their costs over a simulation of 20 timesteps. Over 20 simulations, we find the
maximum cost difference between localized and global MPC to be 5.6 · 10−6. Thus,
we confirm that the reported optimal locality size is accurate, since the cost of
localized and global MPC are nearly identical.

Feasibility-optimality trade-off with locality constraints
In Algorithm 4, a given locality size is determined to be suboptimal if (1) the locality
constraints are infeasible, or (2) the locality constraints are feasible, but matrix 𝐽
has insufficient rank. The example from Section 4.3 suggests that the second case
is rare–to further investigate, we performed 200 random simulations, in which all
parameters were randomly selected from uniform distributions–grid size 𝑁 from
[4, 11] (corresponding to system sizes of up to 121 subsystems), actuation density
from [0.2, 1.0], spectral radius from [0.5, 2.5] and horizon length from [3, 20]. In
these 200 simulations, we encountered 4 instances where a locality constraint was
feasible but resulted in insufficient rank; in the vast majority of cases, if a locality
constraint was feasible, the rank condition was satisfied as well.

4.6 Conclusion
In this work, we provided analysis and guarantees on locality constraints and global
performance. We presented lemmas, theorems, and an algorithm to certify opti-
mal global performance–these are the first results of their kind, to the best of our
knowledge. We then leveraged these theoretical results to provide an algorithm that
determines the optimal locality constraints that will expedite computation while
preserving the performance–this is the first exact method to compute the optimal

74

locality parameter 𝑑 for DLMPC.

Several directions of future work may be explored:

1. The results in this work can be leveraged to investigate the relationship be-
tween network topology and optimal locality constraints, i.e., the strictest
communication constraints that still preserve optimal global performance.
Certain topologies may require long-distance communication between hand-
ful of nodes; others may require no long-distance communications. A more
thorough characterization will help us understand the properties of systems
that are suited for localized MPC.

2. Algorithm 4 considers 𝑑-local communication constraints; a natural extension
is to consider non-uniform local communication constraints, which are sup-
ported by the theory presented in this work. A key challenge of this research
direction is the combinatorial nature of available local communication con-
figurations; insights from the research direction suggested above will likely
help narrow down said set of configurations.

3. Simulations suggest that feasibility of a given locality constraint overwhelm-
ingly coincides with optimal global performance. This poses the question
of whether feasibility of a given locality constraint is sufficient for 𝐽 to be
full rank under certain conditions, and what these conditions may be. Addi-
tional investigation could reveal more efficient implementations of Algorithm
4, as bypassing the rank checking step would save a substantial amount of
computation time.

4. This work focuses on nominal trajectories. Additional investigation is required
to characterize the impact of locality constraints on trajectories robust to
disturbances. For polytopic disturbances, the space (or minima) of available
values of 𝚵𝑔 from problem (2.11) in Chapter 2 is of interest. Due to the
additional variables in the robust MPC problem, we cannot directly reuse
techniques from this chapter, though similar ideas may be applicable.

75

C h a p t e r 5

DATA-DRIVEN APPROACH IN THE NOISELESS CASE

Abstract

In this chapter, we present a novel data-driven distributed control algorithm that
is synthesized directly from trajectory data. Our method, data-driven Distributed
and Localized Model Predictive Control (D3LMPC), builds upon the data-driven
System Level Synthesis (SLS) framework, which allows one to parameterize closed-
loop system responses directly from collected open-loop trajectories. The resulting
model-predictive controller can be implemented with distributed computation and
only local information sharing. By imposing locality constraints on the system
response, we show that the amount of data needed for our synthesis problem is
independent of the size of the global system. Moreover, we show that our algo-
rithm enjoys theoretical guarantees for recursive feasibility and asymptotic stability.
Finally, we also demonstrate the optimality and scalability of our algorithm in a
simulation experiment.

The content in this chapter has been published in [80].

76

5.1 Introduction
Contemporary large-scale distributed systems such as the Internet of Things enjoy
ubiquitous sensing and communication, but are locally resource constrained in terms
of power consumption, memory, and computation power. If such systems are to
move from passive data-collecting networks to active distributed control systems,
algorithmic approaches that exploit the aforementioned advantages subject to the
underlying resource constraints of the network must be developed. Motivated by this
emerging control paradigm, we seek to devise a distributed control scheme that is
(a) model-free, eliminating the need for expensive system identification algorithms,
and (b) scalable in implementation and computation. Our hypothesis is that for such
systems, collecting local trajectory data from a small subset of neighboring systems
is a far more feasible approach than deriving the intricate and detailed system models
needed by model-based control algorithms. In this chapter, we show that such a
data-driven distributed control approach can scalably provide optimal performance
and constraint satisfaction, along with feasibility and stability guarantees.

Prior work

The majority of data-driven control approaches have focused on providing solutions
to the linear quadratic regulator (LQR) problem. Among these works, we focus
on the direct methods that do not require a system identification step [37]–[42].
Specifically, we highlight the work in [41], which applies behavioral systems theory
to parametrize systems from past trajectories.1 This idea has then given rise to sev-
eral different data-enabled Model Predictive Control (MPC) approaches [43]–[46].
However, these approaches require gathering past trajectories of the global system,
which hinders their scalability and challenges their applicability in the distributed
setting. Even though some recent works have been developed where data-driven
approaches were applied to the distributed setting, providing theoretical guarantees
for these approaches remain difficult. For instance, the work in [47] provides an
algorithm to solve the LQR problem where the dynamic matrices are unknown and
communication only occurs at a local scale. This algorithm relies on the existence
of “auxiliary” links among subsystems, which can make its extension to an online
approach (eg. MPC) very costly. It is also unclear how theoretical guarantees can
be derived for an MPC approach relying on these techniques. On the other hand,
some approaches use data-driven formulations to provide theoretical guarantees (re-

1For a more in-depth treatment of behavioral system theory in the context of control problems,
interested readers are referred to [81], [82], and the references therein.

77

cursive feasibility and asymptotic stability) in distributed MPC approaches where
providing guarantees with conventional techniques is in general a hard problem and
usually results in conservatism [10], [83]. However, in these cases knowledge of
the system dynamics is assumed. It remains as an open question how to develop a
scalable distributed MPC approach where the system model is unknown and only
local measurements are available for each subsystem. It is important that such an ap-
proach enjoys the same theoretical guarantees of recursive feasibility and asymptotic
stability as standard MPC approaches.

Contributions

We address this gap and present a data-driven version of the model-based Distributed
Localized MPC (DLMPC) algorithm for linear time-invariant systems in a noise-
free setting. We rely on recent results on data-driven SLS [46], which show that
optimization problems over system-responses can be posed using only libraries of
past system trajectories without explicitly identifying a system model. We extend
these results to the localized and distributed setting, where subsystems can only
collect and communicate information within a local neighborhood. In this way, the
model-based DLMPC problem can equivalently be posed using only local libraries
of past system trajectories, without explicitly identifying a system model. We then
exploit this structure, together with the the separability properties of the objective
function and constraints, and provide a distributed synthesis algorithm based on
the Alternating Direction Method of the Multipliers (ADMM) [52] where only
local information sharing is required. Hence, in the resulting implementation,
each sub-controller solves a low-dimensional optimization problem defined over a
local neighborhood, requiring only local data sharing and no system model. Since
this problem is analogous to the model-based DLMPC problem in Chapter 2, our
approach directly inherits its guarantees for convergence, recursive feasibility and
asymptotic stability discussed in Chapter 3. Through numerical experiments, we
validate these results and further confirm that the complexity of the subproblems
solved at each subsystem does not scale relative to the full size of the system.

5.2 Problem Formulation
In Chapter 2, we provided an algorithmic solution to compute a localized MPC
controller for the discrete-time linear time-invariant (LTI) system with dynamics
(2.1) composed of 𝑁 interconnected subsystems. Here, we extend these results to
the case where the topology is G(𝐴,𝐵) (V, E) is known, but the system model (𝐴, 𝐵)

78

is unknown. In this setup, each subsystem 𝑖 has access to a collection of past local
state and input trajectories, and only local communication is possible among 𝑑-hop
neighboring subsystems. We rely on the notion of locality in Definition 1, and we
add to that the 𝑑-external set, which will be helpful in future derivations.

Definition 9. For a graph G(V, E), the 𝑑-external set of subsystem 𝑖 is defined as
ext𝑖 (𝑑) :=

{
𝑣 𝑗 | dist(𝑣 𝑗 → 𝑣𝑖) > 𝑑 ∈ N

}
, where dist(𝑣 𝑗 → 𝑣𝑖) denotes the distance

between 𝑣 𝑗 and 𝑣𝑖, i.e., the number of edges in the shortest path connecting 𝑣 𝑗 to 𝑣𝑖.

Similar to Chapter 4, we assume no noise is present in this case. Hence, our goal
is to solve the MPC subroutine (4.1) subject to locality constraints, i.e., 𝚽 ∈ L𝑑
when the matrices 𝐴 and 𝐵 are unknown at the synthesis time. In the same spirit of
Chapter 2, we work under mild structural assumptions such as Assumption 1.

In what follows we show problem (2.3) admits a distributed solution and implemen-
tation requiring only local data and no explicit estimate of the system model.

5.3 Data-driven System Level Synthesis
In this section, we introduce an abridged summary of the SLS extension to a data-
driven formulation [46] based on the behavioral framework of Willems [84]. This
section is adapted from §2 of [46]. In following sections, we build on these concepts
to provide the necessary results to provide a tractable reformulation of problem
(2.3).

Behavioral system theory [41], [81], [82], [84] offers a natural way of studying the
behavior of a dynamical system in terms of its input/output signals. In particular,
Willem’s Fundamental Lemma [84] offers a parametrization of state and input
trajectories based on past trajectories as long as the data matrix satisfies a notion of
persistance of excitation.

Definition 10. A finite-horizon signal x with horizon 𝑇 is persistently exciting (PE)
of order 𝐿 if the Hankel matrix

𝐻𝐿 (x) :=



𝑥(0) 𝑥(1) . . . 𝑥(𝑇 − 𝐿)
𝑥(1) 𝑥(2) . . . 𝑥(𝑇 − 𝐿 + 1)
...

...
. . .

...

𝑥(𝐿 − 1) 𝑥(𝐿) . . . 𝑥(𝑇 − 1)


has full rank.

79

Lemma 12. (Willem’s Fundamental Lemma [84]) Consider the LTI system (??)
with controllable (𝐴, 𝐵) matrices, and assume that there is no driving noise. Let
{x̃, ũ} be the state and input signals generated by the system over a horizon 𝑇 . If ũ
is PE of order 𝑛 + 𝐿, then the signals x and u are valid trajectories of length 𝐿 of
the system (2.1) if and only if[

x
u

]
= 𝐻𝐿 (x̃, ũ) 𝑔 for some 𝑔 ∈ R𝑇−𝐿+1, (5.1)

where 𝐻𝐿 (x̃, ũ) :=
[
𝐻𝐿 (x̃)⊺ 𝐻𝐿 (ũ)⊺

]⊺
.

A natural connection can be established between the data-driven parametrization
(5.1) and the SLS parametrization (2.5). In particular, the achievability constraint
(2.6) can be replaced by a data-driven representation by applying Willems’ Fun-
damental Lemma [84] to the columns of the system responses. Given a system
response, we denote the set of columns corresponding to subsystem 𝑖 as 𝚽𝑖, i.e.,

𝚽 =

[
𝚽1 𝚽2 ... 𝚽𝑁

]
.

The key insight is that, by definition of the system responses (2.5), 𝚽𝑖
𝑥 and𝚽𝑖

𝑢 are the
impulse response of x and u to [𝑥0]𝑖, which are themselves, valid system trajectories
that can be characterized using Willemsâ Fundamental Lemma. This can be seen
from the following decomposition of the trajectories[

x
u

]
= 𝚽[𝑥0]𝑖 =

𝑁∑︁
𝑖=1

𝚽𝑖 [𝑥0]𝑖 .

Lemma 13. (Lemma 1 of [46]) Given the assumptions of Lemma 12, the set of
feasible solutions to constraint (2.6) over a time horizon 𝑡 = 0, 1, ..., 𝐿 − 1 can be
equivalently characterized as:

𝐻𝐿 (x̃, ũ)G, for all G s.t. 𝐻1(x̃)G = 𝐼. (5.2)

Proof. The proof to this Lemma can be found in [46], and consists on showing the
set equality:

{𝚽 : 𝑍𝐴𝐵𝚽 = 𝐼} = {𝐻𝐿 (x, u)G : G s.t. 𝐻1(x)G = 𝐼}.

□

80

The following Corollary follows naturally from Lemma 13, and will be useful later
to provide locality results in this data-driven parametrization.

Corollary 3.1. The following is true:

{𝚽𝑖 : 𝑍𝐴𝐵𝚽𝑖 = 𝐼𝑖} = {𝐻𝐿 (x̃, ũ)G𝑖 : G𝑖 s.t. 𝐻1(x̃)G𝑖 = 𝐼𝑖},

where 𝐼𝑖 denotes the 𝑖-th block column of the identity matrix.

Proof. This follows directly from Lemma 13 by noting that the constraints can be
separated column-wise. □

While this connection between SLS and the behavioral formulation does not offer
an immediate benefit, we will build on it in the following sections to equip the data-
driven parametrization (5.2) with locality constraints so as to provide a reformulation
of the localized MPC subroutine (2.3).

5.4 Localized data-driven System Level Synthesis
In this section we present the necessary results that allow us to recast the con-
straints in (2.12) in a localized data-driven parametrization. We first provide a naive
parametrization of system responses subject to locality constraints based on Lemma
13 in terms of G. We then build on this parameterization and show that localized
system responses can be characterized using only locally collected trajectories.

Locality constraints in data-driven System Level Synthesis
We start by rewriting the locality constraints using the data-driven parameterization
(5.2).

Lemma 14. Consider the LTI system (2.1) with controllable (𝐴, 𝐵) matrices, where
each subsystem 𝑖 is subject to locality constraints (2.4). Assume that there is no
driving noise. Given the state and input trajectories {x̃, ũ} generated by the system
over a horizon 𝑇 with u PE of order at least 𝑛 + 𝐿, the following parametrization
over G characterizes all possible 𝑑-localized system responses over a time span of
𝐿 − 1:

𝐻𝐿 (x̃, ũ)G, for all G s.t. 𝐻1(x̃)G = 𝐼, (5.3)

𝐻𝐿 ([x̃]𝑖)G 𝑗 = 0 ∀ 𝑗 ∉ in𝑖 (𝑑),
𝐻𝐿 ([ũ]𝑖)G𝑘 = 0 ∀𝑘 ∉ in𝑖 (𝑑 + 1),

for all 𝑖 = 1, . . . , 𝑁.

81

Proof. We aim to show that

{𝚽 : 𝑍𝐴𝐵𝚽 = 𝐼,𝚽 ∈ L𝑑} = {𝐻𝐿 (x̃, ũ)G : G s.t. (5.3)}.

(⊆) First, suppose that 𝚽 ∈ L𝑑 satisfies that 𝑍𝐴𝐵𝚽 = 𝐼. From Lemma 13, we
immediately have that there exists a matrix G s.t. 𝚽 = 𝐻𝐿 (x̃, ũ)G. Thus, we need
only verify that this G satisfies the linear constraint in (5.3). This follows directly
from the assumption that 𝚽 ∈ L𝑑 , which states that

𝐻𝐿 ([x̃]𝑖)G 𝑗 = [𝚽𝑥]𝑖 𝑗 = 0 ∀ 𝑗 ∉ in𝑖 (𝑑),
𝐻𝐿 ([ũ]𝑖)G𝑘 = [𝚽𝑢]𝑖𝑘 = 0 ∀𝑘 ∉ in𝑖 (𝑑 + 1).

Hence, 𝚽 ∈ RHS, proving this direction.

(⊇) Now suppose that there exists a G that satisfies the constraints on the RHS
and let 𝚽 = 𝐻𝐿 (x̃, ũ)G. Since 𝐻1(x̃)G = 𝐼, from Lemma 2, we have that 𝚽 is
achievable. From the other two constraints, we have that 𝚽 ∈ L𝑑 , proving this
direction and hence the lemma. □

It is important to note that even though Lemma 14 allows one to capture the locality
constraint (2.4) by simply translating the locality constraints over 𝚽 to constraints
over G, it cannot be implemented with only local information exchange. In order
to satisfy the constraints (5.3), each subsystem has to have access to global state
and input trajectories and construct a global Hankel matrix. The PE condition of
Lemma 12 further implies that the length of the trajectory that needs to be collected
grows with the dimension of the global system state. In what follows we show
how constraint (5.3) can further be relaxed to only require local information without
introducing any additional conservatism.

Localized Data-driven System Level Synthesis
In this subsection we show that constraint (5.3) can be enforced (i) with local
communication between neighbors, i.e., no constraints are imposed outside each
subsystem 𝑑-neighborhood, and (ii) the amount of data needed, i.e., trajectory
length, only scales with the size of the 𝑑-localized neighborhood, and not the global
system. We start by providing a result that allows constraint (5.3) to be satisfied
with local information only.

Definition 11. Given a subsystem 𝑖 satisfying the local dynamics

[𝑥(𝑡 + 1)]𝑖 =
∑︁

𝑗∈{𝑖,𝑖±1}
[𝐴]𝑖 𝑗 [𝑥(𝑡)] 𝑗 + [𝐵]𝑖𝑖 [𝑢(𝑡)]𝑖 + [𝑤(𝑡)]𝑖, (5.4)

82

we define its augmented 𝑑-localized subsystem as the system composed by the states
[𝑥]in𝑖 (𝑑+1) and augmented control actions [�̄�]𝑖 := ([𝑢]⊺in𝑖 (𝑑+2) [𝑥]

⊺
𝑗
)⊺, ∀ 𝑗 𝑠.𝑡. dist(𝑗 →

𝑖) = 𝑑 + 2. That is, the system given by

[𝑥(𝑡 + 1)]in𝑖 (𝑑+1) = [𝐴]in𝑖 (𝑑+1) [𝑥(𝑡)]in𝑖 (𝑑+1) + [�̄�]in𝑖 (𝑑+1) [�̄�(𝑡)]𝑖, (5.5)

with �̄� :=
[
[𝐵]in𝑖 (𝑑+2) [𝐴]𝑖 𝑗

]
∀ 𝑗 s.t. 𝑑𝑖𝑠𝑡 (𝑗 → 𝑖) = 𝑑 + 2.

Notice that by treating the state of the boundary subsystems as additional control
inputs, we can view the augmented 𝑑-localized system as a standalone LTI system.

Lemma 15. For 𝑖 = 1, . . . , 𝑁 , let 𝚿𝑖 be an achievable system response for the
augmented 𝑑-localized subsystem (5.5) of subsystem 𝑖. Further assume that each 𝚿𝑖

satisfies constraints (5.6):

[𝚿𝑖
𝑥] 𝑗 = 0, ∀ 𝑗 s.t. 𝑑 + 1 ≤ dist(𝑗 → 𝑖) ≤ 𝑑 + 2, (5.6a)

[𝚿𝑖
𝑢] 𝑗 = 0, ∀ 𝑗 s.t. dist(𝑗 → 𝑖) = 𝑑 + 2 (5.6b)

for all 𝑖. Then, the system response 𝚽 defined by (5.7) is achievable for system (??)
and 𝑑-localized.

[𝚽]𝑖 𝑗 :=

[𝚿𝑖] 𝑗 , ∀ 𝑗 ∈ in𝑖 (𝑑 + 1)

0, otherwise
(5.7)

for all 𝑖 = 1, . . . , 𝑁 is also achievable and 𝑑-localized.

Proof. First, from the fact that 𝚿𝑖 is achievable for all 𝑖 = 1, . . . , 𝑁 , we have that
Φ𝑥 [0] = 𝐼 by construction. Thus, to show that 𝚽 is achievable, it suffices to show
that

Φ𝑥 [𝑡 + 1] = 𝐴Φ𝑥 [𝑡] + 𝐵Φ𝑢 [𝑡], ∀ 0 ≤ 𝑡 ≤ 𝑇 − 1.

We show this block-column-wise. Specifically, we show that the block columns Φ𝑖
𝑥

and Φ𝑖
𝑢 associated with each subsystem satisfy

Φ𝑖
𝑥 [𝑡 + 1] = 𝐴Φ𝑖

𝑥 [𝑡] + 𝐵Φ𝑖
𝑢 [𝑡], ∀ 0 ≤ 𝑡 ≤ 𝑇 − 1. (5.8)

We further partition the rows of these block-columns into four subsets as follows:

Φ𝑖
𝑥 =

[
[Φ𝑖

𝑥]
⊺
in𝑖 (𝑑) [Φ

𝑖
𝑥]
⊺
𝑑+1 [Φ

𝑖
𝑥]
⊺
𝑑+2 [Φ

𝑖
𝑥]
⊺
ext𝑖 (𝑑+2)

]⊺
,

where the notation [Φ𝑖
𝑥]𝑘 represents the entries of Φ𝑥 corresponding to subsystems

𝑘-hops away from the 𝑖-th subsystem. Identical notation holds for the partition of
Φ𝑖
𝑢.

83

Using this partition, we have the following for Φ𝑖
𝑥 and Φ𝑖

𝑢 [𝑡] given their definition
in terms of 𝚿:

Φ𝑖
𝑥 [𝑡] =


[Ψ𝑖

𝑥 [𝑡]]in𝑖 (𝑑)

0
0
0


, Φ𝑖

𝑢 [𝑡] =


[Ψ𝑖

𝑢 [𝑡]]in𝑖 (𝑑)

[Ψ𝑖
𝑢 [𝑡]]𝑑+1

0
0


.

We also partition the dynamics matrices 𝐴 and 𝐵 accordingly, where

𝐴 =


𝐴

in(𝑑)
in(𝑑) 𝐴

in(𝑑)
𝑑+1 0 0

𝐴𝑑+1in(𝑑) 𝐴𝑑+1
𝑑+1 𝐴𝑑+1

𝑑+2 0
0 𝐴𝑑+2

𝑑+1 𝐴𝑑+2
𝑑+2 𝐴𝑑+2ext𝑖 (𝑑+2)

0 0 𝐴
ext𝑖 (𝑑+2)
𝑑+2 𝐴

ext𝑖 (𝑑+2)
ext𝑖 (𝑑+2)


,

𝐵 =


𝐵

in(𝑑)
in(𝑑) 0 0 0
0 𝐵𝑑+1

𝑑+1 0 0
0 0 𝐵𝑑+2

𝑑+2 0
0 0 0 𝐵

ext𝑖 (𝑑+2)
ext𝑖 (𝑑+2)


.

Here, the superscript represents an index on the block row and the subscript repre-
sents an index on the block column. The sparsity pattern of the partition follows
directly from the definition of augmented 𝑑-localized subsystems and the subsystem
dynamics (5.4).

We can now show that equation (5.8) holds for each of the 𝑖th block-columns and Φ𝑖

is an achievable impulse response of the system. First, note that

[Φ𝑖
𝑥 [𝑡 + 1]]in𝑖 (𝑑) = [𝐴Φ𝑖

𝑥 [𝑡] + 𝐵Φ𝑖
𝑢 [𝑡]]in𝑖 (𝑑)

= 𝐴
in𝑖 (𝑑)
in𝑖 (𝑑) [Ψ

𝑖
𝑥 [𝑡]]in𝑖 (𝑑) + 𝐵

in𝑖 (𝑑)
in𝑖 (𝑑) [Ψ

𝑖
𝑢 [𝑡]]in𝑖 (𝑑) + 𝐵

in𝑖 (𝑑)
𝑑+1 [Ψ

𝑖
𝑢 [𝑡]]𝑑+1

= [Ψ𝑖
𝑥 [𝑡 + 1]]in𝑖 (𝑑) ,

where the second equality comes from the sparsity patterns of 𝐴, 𝐵, and 𝚽𝑖, and
the third equality from the achievability of 𝚿𝑖. Similarly, to show that the boundary
subsystems satisfy the dynamics, we note that

[Φ𝑖
𝑥 [𝑡 + 1]]𝑑+1 = 𝐴𝑑+1in𝑖 (𝑑) [Ψ

(𝑖)
𝑥 (𝑡)]in𝑖 (𝑑) + 𝐵𝑑+1𝑑+1 [Ψ

(𝑖)
𝑢 (𝑡)]𝑑+1

= [Ψ(𝑖)𝑥 (𝑡 + 1)]𝑑+1
= 0.

84

Lastly, from the sparsity pattern of the dynamic matrices and Φ𝑖 [𝑡], we trivially
have that

[Φ(𝑖)𝑥 (𝑡 + 1)]ext𝑖 (𝑑) = [𝐴Φ𝑖
𝑥 [𝑡] + 𝐵Φ𝑖

𝑢 [𝑡]]ext𝑖 (𝑑) = 0,

concluding the proof for the achievability of 𝚽. We end by noting that 𝚽 is 𝑑-
localized by construction. □

In light of this result, locality constraints as in Definition 2, i.e., [𝚽𝑥]𝑖 𝑗 = 0 ∀ 𝑖 ∉
out 𝑗 (𝑑), do not need to be imposed on every subsystem 𝑖 ∉ out 𝑗 (𝑑). Instead, it
suffices to impose this constraint only on subsystems 𝑖 at a distance 𝑑+2 of subsystem
𝑗 . Intuitively, this can be seen as a constraint on the propagation of a signal: if
[𝑤] 𝑗 has no effect on subsystem 𝑖 at distance 𝑑 + 1 because [𝚽𝑥]𝑖 𝑗 = 0, then the
propagation of that signal is stopped and localized within that neighborhood. This
idea will allow us to reformulate constraint (5.3) so that it can be imposed with only
local communications.

However, despite the fact that locality constraints can now be achieved with local
information exchanges, the amount of data that needs to be collected scales with the
global size of the network 𝑛 because we require that the control trajectory be at least
PE of order at least 𝑛 + 𝐿. In the following theorem, we build upon the previous
results and show how this requirement can also be reduced to only depend on the
size of a 𝑑-localized neighborhood.

Theorem 4. Consider the LTI system (2.1) composed of subsystems (5.4), each
with controllable ([𝐴]in𝑖 (𝑑+2) , [𝐵]in𝑖 (𝑑+2)) matrices for the augmented 𝑑-localized
subsystem 𝑖. Assume that there is no driving noise and that the local control
trajectory at the 𝑑-localized subsystem [ũ]in𝑖 (𝑑+1) is PE of order at least 𝑛in𝑖 (𝑑) + 𝐿,
where 𝑛in𝑖 (𝑑) is the dimension of [x̃]in𝑖 (𝑑) . Then, 𝚽 is an achievable 𝑑-localized
system response for each subsystem (5.4) if and only if it can be written as

[𝚽𝑖]in𝑖 (𝑑) = 𝐻𝐿 ([x̃]in𝑖 (𝑑+1) , [ũ]in𝑖 (𝑑+1))G𝑖, (5.9a)

[𝚽𝑖]ext𝑖 (𝑑+1) = 0, (5.9b)

where G𝑖 satisfies
𝐻1([x̃]in𝑖 (𝑑+1))G𝑖 = 𝐼𝑖, (5.10a)

𝐻𝐿 ([x̃] 𝑗)G𝑖 = 0 ∀𝑖, 𝑗 s.t. 𝑑 + 1 ≤ dist(𝑗 → 𝑖) ≤ 𝑑 + 2, (5.10b)

𝐻𝐿 ([ũ] 𝑗)G𝑖 = 0 ∀𝑖, 𝑗 s.t. dist(𝑗 → 𝑖) = 𝑑 + 2. (5.10c)

85

Proof. (⇒) We first show that all 𝑑-localized system responses 𝚽 can be parame-
terized by a corresponding set of matrices {G𝑖}𝑁

𝑖=1. First, we note that since 𝚽 is
𝑑-localized, each 𝑑-localized subsystem impulse response [𝚽𝑖]in𝑖 (𝑑+1) is achievable
on the augmented 𝑑-localized subsystem 𝑖. Thus, from applying Corollary 3.1, we
have that there exists G𝑖 satisfying constraint (5.10a) such that

[𝚽𝑖]in𝑖 (𝑑) = 𝐻𝐿 ([x̃]in𝑖 (𝑑) , [ũ]in𝑖 (𝑑+1))G𝑖 .

Since𝚽 is 𝑑-localized, we have that G𝑖 satisfies both constraints (5.10b) and (5.10c),
concluding the proof in this direction.
(⇐) Now we show that if each G𝑖 satisfies the constraint (5.10) for all 𝑖 = 1, . . . , 𝑁 ,
then the resulting𝚽 is achievable and localized. Consider the augmented 𝑑-localized
subsystem 𝑖 and define

𝚿𝑖 = 𝐻𝐿 ([x̃]in𝑖 (𝑑) , [ũ]in𝑖 (𝑑+1))G𝑖 .

From Corollary 3.1, we have that 𝚿𝑖 is an achievable impulse response on the
augmented 𝑑-localized subsystem 𝑖. Moreover, by construction it satisfies the
sparsity condition in Lemma 15. Thus, constructing 𝚽 using 𝚿 as in equation (5.7)
we conclude that 𝚽 is an achievable and 𝑑-localized system response. □

Corollary 4.1. Consider a function 𝑔 : 𝚽→ R such that

𝑔(𝚽) =
𝑁∑︁
𝑖=1

𝑔𝑖 ([𝚽𝑖]in𝑖 (𝑑+1)).

Then, solving the optimization problem

min 𝑔(𝚽) 𝑠.𝑡. 𝑍𝐴𝐵𝚽 = 𝐼, 𝚽 ∈ L𝑑

is equivalent to solving

min
𝑁∑︁
𝑖=1

𝑔𝑖
(
𝐻𝐿

(
[x̃]in𝑖 (𝑑) , [ũ]in𝑖 (𝑑+1)

)
G𝑖

)
𝑠.𝑡. G𝑖 satisfies (5.10) for all 𝑖 = 1 . . . , 𝑁,

and then constructing the 𝑑-localized system response 𝚽 as per equation (5.9).

This result provides a data-driven approach in which locality constraints, as in
equation (2.4), can be seamlessly considered and imposed by means of an affine
subspace where only local information exchanges are necessary. Moreover, the

86

amount of data needed to parametrize the behavior of the system does not scale with
the size of the network but rather with 𝑑, the size of the localized region, which is
usually much smaller than 𝑛. To the best of our knowledge, this is the first such
result. As we show next, this will prove key in extending data-driven SLS to the
distributed setting.

5.5 Distributed AND Localized algorithm for Data-driven MPC
In this section we make use of the results on localized data-driven SLS from previous
sections and apply them to reformulate the MPC subproblem (2.3). We provide a
distributed and localized algorithmic solution that does not scale with the size of
the network. Lastly, we comment on the theoretical guarantees of this data-driven
DLMPC (D3LMPC) approach in terms of convergence, recursive feasibility and
asymptotic stability.

System Level Synthesis reformulation of data-driven MPC
In light of Theorem 4, we can write the MPC subproblem (2.3) in terms of the
variable G and localized Hankel matrices 𝐻𝐿 ([x̃]in𝑖 (𝑑+2) , [ũ]in𝑖 (𝑑+2)). To do this,
we proceed as in reformulation (2.12) and rely on the equivalence between standard
and data-driven SLS parametrizations, i.e.,𝚽 = 𝐻𝐿 (x̃, ũ)G⇔ 𝑍𝐴𝐵𝚽 = 𝐼. We make
use of Lemma 4 to recast the locality constraints (2.4) into local affine constraints.
Hence, we rewrite problem (2.3) as

minimize
𝚽,{G𝑖}𝑁

𝑖=1

𝑓 (𝚽𝑥0)

s.t.

𝑥0 = 𝑥(𝑡), 𝚽𝑥𝑥0 ∈ X, 𝚽𝑢𝑥0 ∈ U,
[𝚽𝑖]in𝑖 (𝑑) = 𝐻𝐿 ([x̃]in𝑖 (𝑑) , [ũ]in𝑖 (𝑑+1))G𝑖,

G𝑖 satisfies (5.10) ∀𝑖 = 1, . . . , 𝑁.

(5.11)

By introducing duplicate decision variables𝚽 and G, and rewriting the achievability
and localization constraints in terms of the variable G by means of equation (5.10),
the problem now enjoys a partially separable structure. In what follows, we make
such structure explicit and take advantage of it to distribute the problem across
different subsystems via ADMM.

A distributed subproblem solution via ADMM
To rewrite (5.11) and take advantage of the separability features in Assumption 1,
we introduce the concept of row-wise separability and column-wise separability:

87

Definition 12. Given the partition {𝔯1, ..., 𝔯𝑘 }, a functional/set is row-wise separable
if:

• for a functional, 𝑔(𝚽) = ∑𝑘
𝑖=1 𝑔𝑖

(
𝚽(𝔯𝑖, :)

)
for some functionals 𝑔𝑖 for 𝑖 =

1, ..., 𝑘 .

• for a set, 𝚽 ∈ P if and only if 𝚽(𝔯𝑖, :) ∈ P𝑖 ∀𝑖 for some sets P𝑖 for 𝑖 = 1, ..., 𝑘 .

An analogous definition exists for column-wise separable functionals and sets, where
the partition {𝔠1, ..., 𝔠𝑘 } entails the columns of 𝚽, i.e., 𝚽(:, 𝔠𝑖).

By Assumption 1 the objective function and the safety/saturation constraints in
equation (5.11) are row-separable in terms of 𝚽. At the same time, the achievability
and locality constraints (5.9), (5.10) are column-separable in terms of G. Hence,
the data-driven MPC subroutine becomes:

minimize
𝚽,𝚿,{G𝑖}𝑁

𝑖=1

𝑁∑︁
𝑖=1

𝑓 𝑖 ([𝚽]𝑖 [𝑥0]in𝑖 (𝑑))

s.t.

𝑥0 = 𝑥(𝑡), G𝑖 satisfies (5.10),

[𝚽𝑥]𝑖 [𝑥0]in𝑖 (𝑑) ∈ X𝑖, [𝚽𝑢]𝑖 [𝑥0]in𝑖 (𝑑) ∈ U𝑖,

[𝚿𝑖]in𝑖 (𝑑) = 𝐻𝐿 ([x̃]in𝑖 (𝑑) , [ũ]in𝑖 (𝑑+1))G𝑖

∀𝑖 = 1, . . . , 𝑁,

𝚽 = 𝚿.

(5.12)

Notice that the objective function and the constraints decompose across the 𝑑-
localized neighborhoods of each subsystem 𝑖. Given this structure, we can make use
of ADMM to decompose this problem into row-wise local subproblems in terms
of [𝚽]𝑖 and column-wise local subproblems in terms of G𝑖 and 𝚿𝑖, both of which
can also be parallelized across the subsystems. The ADMM subroutine iteratively
updates the variables as

88

[𝚽]{𝑘+1}
𝑖

=



argmin
[𝚽]𝑖

𝑓 𝑖 ([𝚽]𝑖 [𝑥0]in𝑖 (𝑑))+

𝜌

2

𝑔𝑖 (𝚽,𝚿{𝑘},𝚲{𝑘})

2

𝐹

𝑠.𝑡. [𝚽𝑥]𝑖 [𝑥0]in𝑖 (𝑑) ∈ X𝑖,
[𝚽𝑢]𝑖 [𝑥0]in𝑖 (𝑑) ∈ U𝑖, 𝑥0 = 𝑥(𝑡).


(5.13a)

[𝚿𝑖]{𝑘+1}in𝑖 (𝑑) =


argmin
[𝚿𝑖]in𝑖 (𝑑) ,G𝑖

∥𝑔in𝑖 (𝑑) ([𝚽𝑖]{𝑘+1}, [𝚿𝑖], [𝚲𝑖]{𝑘}
)
∥2𝐹

𝑠.𝑡. [𝚿𝑖]in𝑖 (𝑑) = [𝐻𝐿 (x̃, ũ)]in𝑖 (𝑑)G
𝑖,

G𝑖 satisfies (5.10).


(5.13b)

[𝚲]{𝑘+1}
𝑖

= 𝑔𝑖 (𝚽{𝑘+1},𝚿{𝑘+1},𝚲{𝑘}) (5.13c)

where we define
𝑔∗(𝚽,𝚿,𝚲) := [𝚽]∗ − [𝚿]∗ + [𝚲]∗

with ∗ denoting a subsystem or collection of subsystems, and

[𝐻𝐿 (x̃, ũ)]in𝑖 (𝑑) := 𝐻𝐿 ([x̃]in𝑖 (𝑑) , [ũ]in𝑖 (𝑑+1)).

We note that to solve this subroutine, and in particular optimization (5.13b), each
subsystem only needs to collect trajectory of states and control actions of subsystems
that are at most 𝑑 + 2 hops away. This subroutine thus constitutes a distributed and
localized solution. We also emphasize that the trajectory length only needs to scale
with the 𝑑-localized system size instead of the global system size. The full algorithm
is given in Algorithm 5.

Theoretical guarantees
It is worth noting that this reformulation is equivalent to the closed-loop DLMPC
also introduced in Chapter 2, with the achievability constraint 𝑍𝐴𝐵𝚽 = 𝐼 replaced
by the data-driven parametrization in terms of G and the Hankel matrix 𝐻𝐿 . For
this reason, guarantees derived for the DLMPC formulation (3.1) directly apply to
problem (5.11) when the constraint sets X andU are polytopes.

Convergence

Algorithm 5 relies on ADMM to separate both row, and column-wise computations,
in terms of 𝚽 and G, respectively. Each of these is then distributed into the
subsystems in the network, and a communication protocol is established to ensure
the ADMM steps are properly followed. Hence, one can guarantee the convergence

89

Algorithm 5 Subsystem’s 𝑖 implementation of D3LMPC
Input: tolerance parameters 𝜖𝑝, 𝜖𝑑 > 0, Hankel matrices [𝐻𝐿 (x̃, ũ)]in𝑖 (𝑑+1)
constructed from arbitrarily generated PE trajectories x̃in𝑖 (𝑑+1) , ũin𝑖 (𝑑+1) .

1: Measure local state [𝑥0]𝑖, 𝑘 ← 0.
2: Share measurement [𝑥0]𝑖 with out𝑖 (𝑑) and receive [𝑥0] 𝑗 from 𝑗 ∈ in𝑖 (𝑑).
3: Solve optimization problem (5.13a).
4: Share [𝚽]{𝑘+1}

𝑖
with out𝑖 (𝑑). Receive the corresponding [𝚽]{𝑘+1}

𝑗
from in𝑖 (𝑑)

and construct [𝚽𝑖]{𝑘+1}in𝑖 (𝑑) .
5: Perform update (5.13b).
6: Share [𝚿𝑖]{𝑘+1}in𝑖 (𝑑) with out𝑖 (𝑑). Receive the corresponding [𝚿 𝑗]{𝑘+1}in𝑖 (𝑑) from 𝑗 ∈

in𝑖 (𝑑) and construct [𝚿]{𝑘+1}
𝑖

.
7: Perform update (5.13c).
8: if

[𝚿]{𝑘+1}𝑖
− [𝚽]{𝑘+1}

𝑖

𝐹
≤ 𝜖𝑝

and

[[𝚽]{𝑘+1}𝑖

− [𝚽]{𝑘}
𝑖

𝐹
≤ 𝜖𝑑:

Apply computed control action:
[𝑢0]𝑖 = H𝐿 ([ũ]in𝑖 (𝑑))G𝑖 [𝑥0]in𝑖 (𝑑) , and return to step 1.

else:
Set 𝑘 ← +1 and return to step 3.

of the data-driven version of DLMPC in the same way that convergence of model-
based DLMPC is shown: by leveraging the convergence result of ADMM in [19].
For additional details see Lemma 6.

Recursive feasibility

Recursive feasibility for formulation (2.12) is guaranteed by means of a localized
maximally invariant terminal set X𝑇 . This set can be computed in a distributed
manner and with local information only as described in Chapter 3. In particular,
a closed-loop map 𝚽 for the unconstrained localized closed-loop system has to be
computed. In the model-based SLS problem with quadratic cost, a solution exists
for the infinite-horizon case [71], which can be done in a distributed manner and
with local information only. When no model is available, the same problem can
be solved using the localized data-driven SLS approach introduced in §IV with a
finite-horizon approximation, which also allows for a distributed synthesis with only
local data. The length of the time horizon chosen to solve the localized data-driven
SLS problem might slightly impact the conservativeness of the terminal set, but
since the conservatism in the FIR approach decays exponentially with the horizon
length, this harm in performance is not expected to be substantial for usual values of
the horizon. Once 𝚽 for the unconstrained localized closed-loop system has been

90

computed, Algorithm 2 can be used to synthesize this terminal set in a distributed
and localized manner. Therefore, a terminal set that guarantees recursive feasibility
for D3LMPC can be computed in a distributed manner offline using only local
information and without the need for a system model.

Asymptotic stability

Similar to recursive feasibility, asymptotic stability for the D3LMPC problem
(5.11) is directly inherited from the asymptotic stability guarantee for model-based
DLMPC. In particular, adding a terminal cost based on the terminal set previously
described is a sufficient condition to guarantee asymptotic stability of the DLMPC
problem (3.1). Moreover, such cost can be incorporated in the D3LMPC formula-
tion in the same way as in the model-based DLMPC problem, and the structure of
the resulting problem is analogous. This terminal cost introduces coupling among
subsystems, but the coupling can be dealt with by solving step 3 of Algorithm 5 via
local consensus. Notice that since step 3 of Algorithm 5 is written in terms of 𝚽,
Algorithm 3 can be directly used to handle this coupling.

5.6 Simulation Experiments
We demonstrate through experiments that the D3LMPC controller using only local
data performs as well as a model-based DLMPC controller. We also show that for
our algorithm, both runtime and the dimension of the data needed scale well with
the size of the network.

Setup
We evaluate the performance and scalablity of our algorithm on a system composed
of a chain of subsystems, i.e., that E = {(𝑖, 𝑖 + 1), (𝑖 + 1, 𝑖), 𝑖 = 1, ..., 𝑁 − 1}. Each
subsystem 𝑖 has a 2-dimensional state and takes a scalar control action 𝑢𝑖. We
consider the same dynamics as in previous chapters where each of the subsystems
follow linearized and discretized swing dynamics[

𝜃 (𝑡 + 1)
𝜔(𝑡 + 1)

]
𝑖

=
∑︁

𝑗∈in𝑖 (1)
[𝐴]𝑖 𝑗

[
𝜃 (𝑡)
𝜔(𝑡)

]
𝑗

+ [𝐵]𝑖 [𝑢]𝑖 + [𝑤]𝑖,

where [𝜃]𝑖, [¤𝜃]𝑖, [𝑢]𝑖 are the phase angle deviation, frequency deviation, and control
action of the controllable load of bus 𝑖. The dynamic matrices are

[𝐴]𝑖𝑖 =
[

1 Δ𝑡

− 𝑘𝑖
𝑚𝑖
Δ𝑡 1 − 𝑑𝑖

𝑚𝑖
Δ𝑡

]
, [𝐴]𝑖 𝑗 =

[
0 0

𝑘𝑖 𝑗
𝑚𝑖
Δ𝑡 0

]
, and [𝐵]𝑖𝑖 =

[
0 1

]⊺
for all 𝑖.

91

The parameters 𝑚𝑖, 𝑑𝑖, 𝑘𝑖 𝑗 are sampled uniformly at random from the intervals
[0, 2], [0.5, 1], [1, 1.5], respectively, and 𝑘𝑖 :=

∑
𝑗∈in𝑖 (1) 𝑘𝑖 𝑗 . Finally, the discretiza-

tion time is set to be Δ𝑡 = 0.2. The goal of the controller is to minimize the LQR
cost with 𝑄 = 𝐼, 𝑅 = 𝐼.

To show the optimality of our approach in Section 5.6, we consider a base system
with 64 subsystems. To demonstrate the scalability of our method, we consider
systems of varying sizes for our experiment in Section 5.6. Unless mentioned
otherwise, for all the experiments, we consider a locality region of size 𝑑 = 2, use a
planning horizon of 𝑇 = 5 steps and simulate the system forward for 30 steps.

Optimal performance

Figure 5.1: The trajectory generated by the model-based DLMPC algorithm (solid
orange line) vs. the trajectory generated by D3LMPC (green circles). We observe
that the two coincides.

We evaluate the performance of D3LMPC (Alg. 5) on the system described in
Section 5.6. First, we show that the trajectory given by the D3LMPC algorithm
matches the trajectory generated by a model-based DLMPC solved with a centralized
solver [60], [85]. Notice that the model-based DLMPC solves the optimization
problem (2.12) with perfect knowledge of the system dynamics, while the D3LMPC
algorithm (Alg. 5) only has access to local past trajectories. Due to space constraints,
we only show the state trajectory of the first subsystem (Figure 5.1). We observe
that the trajectory generated by our controller matches the trajectory of the optimal
controller with the same locality region size. Further, the optimal cost for both
schemes is the same up to numerical precision. This confirms that the D3LMPC
algorithm (Alg. 5) can synthesize optimal controllers using only local trajectory
data and no knowledge of the system dynamics.

92

Figure 5.2: Optimal cost evolution with increase of the locality region. (Green) The
cost achieved by the optimal controller versus the size of the locality region for the
system response. (Blue) The cost achieved by a centralized MPC controller, i.e.,
that it has no locality constraints. We observe that cost for the distributed controllers
decreases as the size of the locality region grows and approaches the cost of the
centralized controller.

Figure 5.3: The growth of necessary length of collected trajectory versus the size of
the locality region of system response. The trajectory length grows with the size of
the locality region.

93

We further highlight the relevance of locality region size on the optimality of the
solution. The size of the locality region 𝑑 can be seen as a design parameter in
Alg. 5 that allows one to tradeoff between computation complexity and performance
of the controller. In Figure 5.2, we show how the optimal cost varies with the
size of the locality region on the same system. As the size of the locality region
grows, the optimal cost decreases. This matches the intuition that by allowing each
subsystem to influence more subsystems, and as more information is made available
to each subsystem, controllers of better quality can be synthesized. We note that
the performance improvement by increasing the locality region size is the most
significant when the locality region is small. In Figure 5.3 we simultaneously show
how much the trajectory length needs to grow with the size of the locality region
to satisfy the persistence of excitation condition for applying Willem’s Fundamen-
tal Lemma. We note that the growth in the necessary trajectory length not only
means longer trajectory needs to be collected, but also means that the size of the
optimization problem grows, thus incurring higher computation complexity for each
optimization step. Hence, the choice of an optimal 𝑑 heavily depends on the specific
application considered.

Scalability
First, we show that the runtime of our method scales well with the size of the
global system. We consider systems composed of 9, 16, 36, 64, 81, 100, and
121 subsystems. For each system size, we randomly generate 10 different systems
and report the average computation time per MPC step.2 The result is shown in
Figure 5.4. We note that the runtime only increased 2× while the size of the system
has increased more than 12×. Further, the growth of the runtime flattens as the size
of the network grows, suggesting that our method scales well on sparsely connected
systems. This trend has previously been observed with ADMM schemes for MPC
[61].

2Runtime is measured after the first iteration to compute the runtime of the MPC algorithm after
warmstart. The optimization problems were solved using the Gurobi [85] optimizer on a personal
desktop computer with an 8-core Intel i7 processor.

94

Figure 5.4: The average per-step per-subsystem runtime of the MPC algorithm. The
solid line shows the average runtime over 10 randomly generated systems, and the
circles represent the runtime for each of the 10 randomly generated instances for
each system size.

Next, we show that the length of the trajectory that needs to be collected for the
D3LMPC controller grows much more slowly than that for a centralized data-driven
method that does not exploit the locality structure of the problem (equivalent to
solving the SLS problem with constraints (5.3) instead of (5.10)). The result is
shown in Figure 5.5. We note that our method requires less data (length of the
trajectory) to be collected in general. At the same time, the larger the system,
the more benefit one gets from using our method over a centralized data-driven
approach.

95

Figure 5.5: Length of necessary trajectory length versus network size. Note that
this is plotted on a semilog axis. Our distributed approach requires much shorter
trajectory over a centralized data-driven approach.

5.7 Conclusion
In this chapter we define and analyze a data-driven Distributed and Localized Model
Predictive Control (D3LMPC) scheme. This approach can synthesize optimal local-
ized control policies using only local communication and requires no knowledge of
the system model. We base our results on the data-driven SLS approach [46], and
extend this framework to allow for locality constraints. We then use these results
to provide an alternative data-driven synthesis for the DLMPC algorithm by ex-
ploiting the separability of the problem via ADMM. The resulting algorithm enjoys
the same scalability properties as model-based DLMPC and only need trajectory
data that scales with the size of the 𝑑-localized neighborhood. Moreover, recursive
feasibility and stability guarantees that exist for model-based DLMPC directly apply
to this framework.

The work presented here is, to the best of our knowledge, the first fully distributed
and localized data-driven MPC approach that achieves globally optimal performance
with local information collection and communication among subsystems. This,
when extended to the noisy settings, offers a promising avenue forward towards
localized and scalable learning and control with guarantees.

96

C h a p t e r 6

EXPLICIT SOLUTION AND GPU PARALLELIZATION

Abstract

In this paper, we explore opportunities to accelerate the computation of MPC.
Our contribution is two-fold. First, we provide an explicit solution for each of
the subproblems resulting from the DLMPC scheme. We show that given the
separability of the problem, the explicit solution is only divided into three regions
per state and input instances, making the point location problem very efficient.
Moreover, given the locality constraints, the subproblems are of much smaller
dimension than the full problem, which significantly reduces the computational
overhead of explicit solutions. Our method shows a large improvement in runtime
per MPC iteration as compared with the results of computing the optimization with
a solver online, and scales arbitrarily with the size of the network. Second, since
the explicit solution does not require an optimization solver, we can parallelize
the DLMPC routine in GPU. We exploit the locality constraints embedded in the
DLMPC formulation to reduce the hardware-intrinsic communication overheads.
Our parallel implementation achieves up to 50 times faster runtime than its CPU
counterparts under various parameters. Furthermore, we find that the locality-aware
GPU parallelization could halve the optimization runtime comparing to the naive
acceleration. Overall, our results demonstrate the performance gains brought by
software-hardware co-design with the information exchange structure in mind.

The content in this chapter has been published in [58] and [86].

97

6.1 Introduction
Model Predictive Control (MPC) has been shown to provide solutions for many
industrial applications, but its applicability was long limited to slow processes, since
solving an optimal control problem online imposes a large computational burden.
In recent years, multiple solutions have been proposed to accelerate MPC runtimes
[87]. One popular approach relies on providing computational enhancements to the
optimization solving algorithms, either by exploiting the sparsity in the matrices or
by finding initial points for the optimization [88]–[90]. In this realm, several works
propose an explicit MPC strategy, where most of the computational burden is moved
offline so the computational overhead of the online algorithms is greately reduced
[91]. The other direction is to take advantage of state-of-the-art hardware such as
multi-core processors (CPUs), many-core processors (GPUs) or field programmable
arrays (FPGA) to perform computations in parallel [92]–[97]. In some instances
these two approaches are combined, so efficient optimization algorithms are solved
using multiple threads via hardware-specific implementations.

Prior work

On the algorithmic and computational side, explicit MPC has proven to be a very
powerful technique. In explicit MPC approaches, the online computation reduces to
providing the evaluation of a piecewise function by relying on the principles of mul-
tiparametric programming [48]–[50]. Despite its profound success, two important
limitations restrict the applicability of MPC to large networks. On the one hand,
explicit MPC has a limitation that is inherited from the computational complex-
ity of multiparametric programming: finding a (piecewise) closed-form solution
to an optimization problem becomes intractable for even modestly sized problems.
On the other, even in the cases where the offline computation can be carried out,
the solution is typically too complex to be evaluated efficiently online, in terms of
both memory and runtime evaluation. These problems in applying MPC to large
networks relate to the fact that, in the worst case, complexity increases exponen-
tially with the number of constraints [98]. Efforts have been made to circumvent
these issues. First, the complexity of the offline computation has been addressed
by simplifying the MPC setup, using for example minimum-time formulations [99]
or model reduction [100], among others. Secondly, efforts have also been made to
tackle the online limitations, i.e., to facilitate efficient solutions to the point-location
problem [101]–[103]. Once again, however, these methods are limited to systems of
modest sizes and induce suboptimality in systems of large dimensions. Recent work

98

has involved first formulating the network control problem as a distributed MPC
problem, and then applying explicit MPC to the subproblems [4], [104]. Although
these approaches work well for the intended application, they rely on heuristics and
do not generalize well. Hence, the problem of how to make explicit MPC scalable,
optimal, and applicable to large network settings remains an open question. This
is especially relevant in distributed settings, where each subcontroller is typically
repeatedly solving an optimization problem at every time step.

On the hardware side, although recently proposed methods provide promising av-
enues, most of their efforts are centered around achieving efficient computations
by appropriately exploiting algorithmic features, and rely on hardware to sim-
ply parallelize mathematical operations. Hence, the hardware implementation of
the algorithms is completely decoupled from the original system formulation, and
therefore any hardware-intrinsic overhead can only be handled by using efficient
programming practices. Yet, some branches of MPC directly encoding paralleliza-
tion features in their formulation have received very little attention in this field. For
instance, the merits of distributed MPC have been overlooked in parallel settings
[87], despite the fact that distributed MPC formulations are very well-suited for
parallelization. Moreover, our DLMPC framework allows to incorporate informa-
tion exchange constraints among different subsystems. This feature is very relevant
for hardware implementations since these information exchange constraints resem-
ble the hardware-intrinsic communication limitations and overheads encountered
in MPC parallelization. Despite the great promise of these MPC frameworks to
deal with parallelization and hardware-intrinsic overheads in a principled manner
through the problem formulation, its full potential has not been realized in the
literature.

Contributions

In this chapter, we propose an explicit MPC solution that is applicable to large net-
works, and show how this enables a GPU pallelization of the DLMPC algorithm. We
first provide an explicit solutions to the optimization problem for each subcontroller
to solve. We show that the explicit solution requires just 3 partitions of the solution
space per system state/input instance, thus making the point-location problem trivial
when solving for each of the instances sequentially. Furthermore, we use this solu-
tion where algorithmic iterations result in basic arithmetic operations to provide a
principled parallel implementation and overhead analysis. We exploit the potential
for parallelization of the DLMPC scheme in a GPU, where the GPU is not used to

99

parallelize arithmetic computations but rather each computing thread is tasked with
computing the operations corresponding to a subsystem in the network. Moreover,
we show that the limitations in communication among the GPU computing threads
resemble the communication scheme in control systems for large-networks, and we
take advantage of the local communication constraints that are already included in
the DLMPC algorithm to explicitly deal with these hardware-intrinsic communi-
cation overheads in a principled manner. We demonstrate through simulations the
effectiveness of our method.

6.2 Problem Formulation
Given the dynamics (2.1) with topology G(𝐴,𝐵) as discussed in Chapter 2, consider
the following MPC subroutine at time 𝜏:

min
𝑥𝑡 ,𝑢𝑡 ,𝛾𝑡

𝑇∑︁
𝑡=0

𝑥T
𝑡 𝑄𝑡𝑥𝑡 + 𝑢T

𝑡 𝑅𝑡𝑢𝑡 (6.1)

s.t.

𝑥0 = 𝑥(𝜏), 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 ,
𝑥𝑚𝑖𝑛𝑡 ≤ 𝑥𝑡 ≤ 𝑥𝑚𝑎𝑥𝑡 , 𝑢𝑚𝑖𝑛𝑡 ≤ 𝑢𝑡 ≤ 𝑢𝑚𝑎𝑥𝑡 ,

[𝑢𝑡]𝑖 = 𝛾𝑖𝑡 ([𝑥0:𝑡] 𝑗 , [𝑢0:𝑡−1] 𝑗 , [𝐴] 𝑗 ,𝑘 , [𝐵] 𝑗 ,𝑘),
𝑡 = 0, ..., 𝑇, 𝑗 , 𝑘 ∈ in𝑖 (𝑑), 𝑖 = 1, ..., 𝑁,

where the matrices𝑄𝑡 and 𝑅𝑡 , and the upper and lower bounds 𝑥𝑚𝑖𝑛𝑡 , 𝑢𝑚𝑖𝑛𝑡 , 𝑥𝑚𝑎𝑥𝑡 , 𝑢𝑚𝑎𝑥𝑡

are chosen by design to not introduce coupling among subsystems for every 𝑡.

We recall Assumption 1, which adapted to the specific setting of problem (6.1)
results in:

Assumption 2. The cost function and constraints in formulation (6.1) are structured
such that 𝑥T

𝑡 𝑄𝑡𝑥𝑡 =
∑𝑁
𝑖=1 [𝑥𝑡]T𝑖 [𝑄𝑡]𝑖 [𝑥𝑡]𝑖, and 𝑢T

𝑡 𝑅𝑡𝑢𝑡 =
∑𝑁
𝑖=1 [𝑢𝑡]T𝑖 [𝑅𝑡]𝑖 [𝑢𝑡]𝑖; and

[𝑥𝑚𝑖𝑛𝑡]𝑖 ≤ [𝑥𝑡]𝑖 ≤ [𝑥𝑚𝑎𝑥𝑡]𝑖, and [𝑢𝑚𝑖𝑛𝑡]𝑖 ≤ [𝑢𝑡]𝑖 ≤ [𝑢𝑚𝑎𝑥𝑡]𝑖 for all 𝑖 = 1, . . . , 𝑁 , and
all 𝑡 = 1, . . . , 𝑇 .

Problem (6.1) can be solved via Algorithm 1 for feasible locality constraints as
defined by the locality parameter 𝑑. However, the need for an optimization solver
in step (3) degrades computational performance. Since all other steps in Algorithm
1 are solved in closed-form, an explicit analytical solution for step (3) is desirable
to enhance computational performance and enable to solve problem (6.1) with sim-
ple operations only. Moreover, although Algorithm 1 is amenable to distribution,

100

additional considerations are needed for a parallel implementation in real hard-
ware. Particularly, memory handling in GPU is often an important bottleneck for
performance. In this chapter, we explore these issues and provide an accelerated
solution for problem (6.1), both algorithmically as well as for parallel hardware
implementation.

6.3 An Explicit Solution for DLMPC
In this section, we derive an explicit solution for DLMPC. First, we use the results
from Chapter 2 to reformulate problem (6.1) via the SLS parametrization. Next, we
leverage the resulting optimization problem to provide an explicit analytic solution.

System Level Synthesis reformulation
By virtue of Chapter 2, the MPC subproblem (6.1) can equivalently be reformulated
as:

min
𝚽{0}

∥ [𝐶 𝐷]𝚽 {0} 𝑥0∥2𝐹
s.t. 𝑥0 = 𝑥(𝜏), 𝑍𝐴𝐵𝚽 {0} = 𝐼,[

x𝑚𝑖𝑛

u𝑚𝑖𝑛

]
≤ 𝚽 {0} 𝑥0 ≤

[
x𝑚𝑎𝑥

u𝑚𝑎𝑥

]
,

𝚽 {0} ∈ L𝑑 ,

(6.2)

where the matrices 𝐶 and 𝐷 are constructed by arranging 𝑄
1
2
𝑡 and 𝑅

1
2
𝑡 for all 𝑡 =

1, . . . , 𝑇 , respectively, in a block diagonal form. We are leveraging the result in
[105], by which the cost function in problem (6.2) encodes for the 𝐻2-norm of the
system responses. For the remainder of the chapter, we will once again overload
notation and write 𝚽 in place of 𝚽 {0}, given that no driving noise is present, only
the first block columns of the system responses need to be computed.

As shown in Chapter 2, problem (6.2) can be separated by virtue of Assumption
2, and distributed through ADMM [52]. The resulting distributed subroutine to be
solved by each subcontroller 𝑖 in the case of problem (6.1) becomes:

[𝚽]𝑘+1𝑖𝑟
=


argmin
[𝚽]𝑖𝑟

[�̂�]𝑖 [𝚽]𝑖𝑟 [𝑥0]𝑖𝑟

2
𝐹
+ 𝜌

2

[𝚽]𝑖𝑟 − [𝚿]𝑘𝑖𝑟 + [𝚲]𝑘𝑖𝑟

2

𝐹

s.t.

[
x𝑚𝑖𝑛

u𝑚𝑖𝑛

]
𝑖𝑟

≤ [𝚽]𝑖𝑟 [𝑥0]𝑖𝑟 ≤
[
x𝑚𝑎𝑥

u𝑚𝑎𝑥

]
𝑖𝑟

, [𝑥0]𝑖𝑟 = [𝑥(𝜏)]𝑖𝑟


(6.3a)

[𝚿]𝑘+1𝑖𝑐
=
(
[𝚽]𝑘+1𝑖𝑐

+ [𝚲]𝑘𝑖𝑐
)
+ [𝑍𝐴𝐵]†𝑖𝑐

(
[𝐼]𝑖𝑐 − [𝑍𝐴𝐵]𝑖𝑐

(
[𝚽]𝑘+1𝑖𝑐

+ [𝚲]𝑘𝑖𝑐
))
, (6.3b)

[𝚲]𝑘+1𝑖𝑟
= [𝚲]𝑘𝑖𝑟 + [𝚽]

𝑘+1
𝑖𝑟
− [𝚿]𝑘+1𝑖𝑟

, (6.3c)

101

where we define [�̂�]𝑖 := [[𝐶]𝑖 [𝐷]𝑖], and the partitions [𝚽]𝑖𝑟 and [𝚽]𝑖𝑐 are chosen
according to L𝑑 for the rows and the columns of 𝚽, respectively.

Notice that subroutine (6.3) can be solved via Algorithm 1, where the subproblems
solved by each subcontroller 𝑖 are of dimension 𝑑 ≪ 𝑁 . However, the step from
subproblem (6.3) (step 3 in Algorithm 1) requires solving an optimization problem
online, which is the bottleneck in terms of computational overhead. In the next
subsection, we illustrate how we can provide an explicit analytical solution for
subproblem (6.3).

Explicit solution
We start by introducing the following algebraic result:

Lemma 16. Let Φ and 𝑎 be row vectors, 𝑥0 column vector of compatible dimension,
and 𝑏1, 𝑏2 scalars. Then, the optimal solution to

min
Φ

|Φ𝑥0 | +
𝜌

2
∥Φ − 𝑎∥22

s.t. 𝑏2 ≤ Φ𝑥0 ≤ 𝑏1,
(6.4)

is
Φ★ =

(
𝜌𝑎 − 𝜆𝑥⊺0

)
𝑀, (6.5)

where

𝜆 =


𝜌𝑎𝑀𝑥0−𝑏1
𝑥
⊺
0 𝑀𝑥0

if 𝜌𝑎𝑀𝑥0 − 𝑏1 > 0
𝜌𝑎𝑀𝑥0−𝑏2
𝑥
⊺
0 𝑀𝑥0

if 𝜌𝑎𝑀𝑥0 − 𝑏2 < 0

0 otherwise

and 𝑀 :=
(
2𝑥0𝑥

⊺
0 + 𝜌𝐼

)−1
.

Proof. Apply the KKT conditions to optimization (6.4). In particular, the station-
arity condition is:

∇Φ
(��Φ★𝑥0

�� + 𝜌
2

Φ★ − 𝑎

2

2

)
+ 𝜆1∇Φ

(
Φ★𝑥0 − 𝑏1

)
+ 𝜆2∇Φ

(
−Φ★𝑥0 + 𝑏2

)
= 0,

where 𝜆1 and 𝜆2 represent two scalar Lagrange multipliers whose values are un-
known. This leads to the following result for the optimal Φ as a function of the
unknown 𝜆1 and 𝜆2:

Φ★ =
(
𝜌𝑎 − (𝜆1 − 𝜆2)𝑥⊺0

) (
2𝑥0𝑥

⊺
0 + 𝜌𝐼

)−1
. (6.6)

Notice that by Slater’s condition (Chapter 5 in [68]) strong duality holds for problem
(6.4) unless 𝑏1 = 𝑏2, in which case a closed form can be found directly with a

102

proximity operator (we omit this degenerated case in the following discussion).
Hence, we can make use of the dual problem to find the optimal solution. The dual
problem can be written as:

max
𝜆1,𝜆2≥0

��Φ★𝑥0
��+𝜌

2

Φ★ − 𝑎

2

2 − 𝜆1(𝑏1 −Φ★𝑥0) − 𝜆2(−𝑏2 +Φ★𝑥0).

After substituting Φ★ into the dual problem above, the cost function becomes a
quadratic function of 𝜆 := [𝜆1 𝜆2]⊺. In particular, after some algebraic manipu-
lations one can conclude that the dual problem is a quadratic program equivalent
to:

max
𝜆≥0

𝜆⊺𝑐2𝜆 + 𝑐1𝜆, (6.7)

where 𝑐2 = 1
2𝑥
⊺
0 𝑀𝑥0

[
−1 1
1 −1

]
and 𝑐1 = [𝜌𝑎𝑀𝑥0 − 𝑏1 − 𝜌𝑎𝑀𝑥0 + 𝑏2].

In order to compute the value of 𝜆, we exploit complementary slackness:

𝜆1(Φ𝑥0 − 𝑏1) = 0, and 𝜆2(−Φ𝑥0 + 𝑏2) = 0.

This condition makes evident that 𝜆1 and 𝜆2 cannot be both nonzero, since by
assumption 𝑏1 < 𝑏2. Hence, let us assume without loss of generality that 𝜆2 = 0.
The solution to problem (6.7) for 𝜆1 is as follows:

𝜆1 =

{
𝜌𝑎𝑀𝑥0−𝑏1
𝑥
⊺
0 𝑀𝑥0

if 𝜆1 > 0,

0 otherwise.

The form for 𝜆1 = 0 follows a similar structure. Notice that the matrix 𝑀 is by
definition positive definite. Hence, 𝑥⊺0 𝑀𝑥0 > 0 for all 𝑥0 ≠ 0 and the sign of 𝜆1 is
purely determined by the sign of 𝑎𝑀𝑥0 − 𝑏1. This allows us to define the closed
form solution for 𝜆, and therefore for Φ, in a piecewise manner depending on the
region. The criteria are specified in Table 6.1.

Recall that from optimization (6.4), the problem is only feasible if 𝑏1 < 𝑏2, hence
the regions defined in Table 6.1 are disjoint and well-defined. Leveraging the entries
of Table 6.1 and equation (6.6), one can find the explicit solution (6.5). □

Remark 9. Given the structure of the matrix 2𝑥0𝑥
⊺
0 + 𝜌𝐼, 𝑀 can be computed in a

very efficient manner using the Sherman–Morrison formula.

We now apply Lemma 16 to subproblem (6.3a). Given the separability properties
of the Frobenius norm and the constraints, this optimization problem can further be

103

Region in which 𝑥0 lies Corresponding solution for 𝜆
𝜌𝑎𝑀𝑥0 − 𝑏1 > 0 𝜆1 =

𝜌𝑎𝑀𝑥0−𝑏1
𝑥
⊺
0 𝑀𝑥0

, 𝜆2 = 0

−𝜌𝑎𝑀𝑥0 + 𝑏2 > 0 𝜆1 = 0, 𝜆2 =
−𝜌𝑎𝑀𝑥0+𝑏2
𝑥
⊺
0 𝑀𝑥0

𝜌𝑎𝑀𝑥0 − 𝑏1 < 0,
−𝜌𝑎𝑀𝑥0 + 𝑏2 < 0 𝜆1 = 0, 𝜆2 = 0

Table 6.1: Partition of the space of 𝑥0 into the different regions that lead to different
solutions for 𝜆.

separated into single rows of [𝚽]𝑖𝑟 and [𝚿]𝑘
𝑖𝑟
− [𝚲]𝑘

𝑖𝑟
. Notice that this is true for

the first term of the objective function as well, since [�̂�]𝑖 is a diagonal matrix by
Assumption 2, so its components can be treated as factors multiplying each of the
rows accordingly.

It is important to note that by definition of [𝚽]𝑖𝑟 , [x]𝑖 = [𝚽]𝑖𝑟 [𝑥0]𝑖𝑟 . Hence, each
row of [𝚽]𝑖𝑟 multiplied with [𝑥0]𝑟𝑖 precisely corresponds to a given component
of the a state or input instance, i.e., [𝑥𝑡]𝑖 or [𝑢𝑡]𝑖. We can now consider one of
the single-row subproblems resulting from this separation and rename its variables,
where Φ represents the given row of [𝚽]𝑖𝑟 , 𝑎 represents the corresponding row of
[𝚿]𝑘

𝑖𝑟
− [𝚲]𝑘

𝑖𝑟
and 𝑥0, 𝑏1 and 𝑏2 correspond to the elements of [𝑥0]𝔰𝔯𝔦 , [𝑥

𝑚𝑖𝑛
𝑡]𝑖/[𝑢𝑚𝑖𝑛𝑡]𝑖

and [𝑥𝑚𝑎𝑥𝑡]𝑖/[𝑢𝑚𝑎𝑥𝑡]𝑖, respectively. Without loss of generality we set each nonzero
component of [�̂�]𝑖 to be equal to 1. By noting that for the inner product Φ𝑥0, it
holds that ∥Φ𝑥0∥2𝐹 = |Φ𝑥0 |, and for any vector, the Frobenius norm is equivalent
to the 2-norm, i.e., ∥Φ − 𝑎∥2𝐹 = ∥Φ − 𝑎∥22, we can directly apply Lemma 16 to
each of the single-row subproblems in which the problem (6.3) can be separated.
Hence, by Lemma 16, an explicit solution exists for optimization (6.3a). Thus, step
3 in Algorithm 1 can be solved explicitly for problem (6.1). Notice that all other
computation steps in Algorithm 1 have closed-form solutions.

Computational complexity: In terms of complexity reduction, the solution pre-
sented in 16 consists of a point location problem followed by a matrix multiplication.
The complexity of solving for each row of [𝚽]𝑖𝑟 results in 𝑂 (𝑑2), since the point
location problem involves only 3 regions and the size of the matrices is 𝑂 (𝑑2).
Given that each subsystem performs this operation sequentially for each of the rows
in [𝚽]𝑖𝑟 , the complexity of subproblem (6.3a) is also 𝑂 (𝑑2𝑇). This is in contrast
with the general solution in Chapter 2, where step 3 consists of solving an optimal
problem with 𝑂 (𝑑2𝑇) optimization variables and 𝑂 (𝑑𝑇) constraints. The signifi-
cant overhead reduction given by the explicit solution (6.5) is due to the simplicity
of the point location problem since the space of the solution is partitioned into 3

104

regions per state/input instances independently of the size of the global system 𝑁 ,
the size of the locality region 𝑑 and the total number of constraints. Hence, the
complexity is only dominated by the matrix multiplication needed to compute the
explicit solution Φ★.

Differences with standard Explicit MPC: Contrary to Conventional explicit MPC
(where regions are computed offline and the online problem reduces to a point
location problem), our approach is to solve step 3 in Algorithm 1 explicitly. This
ensures that all the steps in the algorithm are solved in closed form or via an explicit
solution, hence we refer to our approach as explicit MPC. Another difference between
standard explicit MPC and our formulation is that, in our case, the regions are not
defined by polytopes of 𝑥0 [48]. In our case, 𝑀 depends on 𝑥0, thus, at each
MPC iteration, new regions are computed as an explicit function of 𝑥0, and for
the subsequent ADMM iterations (within each MPC iteration) the parameter of the
optimization problem is the corresponding row of [𝚿]𝑘

𝑖𝑟
− [𝚲]𝑘

𝑖𝑟
denoted as 𝑎 in

(6.5). The regions are indeed affine with respect to this parameter. Note that 𝑥0

remains fixed within each MPC iteration. This idea is illustrated in Figure 6.1,
where we illustrate the different regions involved in the computation of a given row
of [𝚽]𝑖𝑟 for two MPC iterations. In order to not overload notation, in this example
we denote a single row of matrices [𝚽]𝑖𝑟 and [𝚿]𝑘

𝑖𝑟
− [𝚲]𝑘

𝑖𝑟
with the same notation

as the whole matrices themselves, i.e., [𝚽]𝑖𝑟 and [𝚿]𝑘
𝑖𝑟
− [𝚲]𝑘

𝑖𝑟
denote a row of the

homonymous matrices.

t + 1
<latexit sha1_base64="mLxz/koAWvZP5dEolt4WvHd6gJ4=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSIIQkmqoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/nZXVtfWNzcJWcXtnd2+/dHDYNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqd+64lrI2L1iOOE+xEdKBEKRtFKD3ju9Uplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8NrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs1qxbuoVO8vy7WbPI4CHMMJnIEHV1CDO6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AG3041s</latexit>

([]ir
+ [⇤]ir

)
<latexit sha1_base64="0pZ2HmsKQgP+XbNURJ8N/uqC69Q=">AAACHnicbVDLSsNAFJ3UV62vqEs3wSJUhJJURZdFNy5cVLAPSEKYTCft0MkkzEyEEvIlbvwVNy4UEVzp3zhpA9XWAwOHc+69c+/xY0qENM1vrbS0vLK6Vl6vbGxube/ou3sdESUc4TaKaMR7PhSYEobbkkiKezHHMPQp7vqj69zvPmAuSMTu5TjGbggHjAQEQakkTz+v2U4I5dAPUqclSOZ6KfFSnmUnM/1WjevDmXVc8fSqWTcnMBaJVZAqKNDy9E+nH6EkxEwiCoWwLTOWbgq5JIjirOIkAscQjeAA24oyGGLhppPzMuNIKX0jiLh6TBoT9XdHCkMhxqGvKvOVxbyXi/95diKDSzclLE4kZmj6UZBQQ0ZGnpXRJxwjSceKQMSJ2tVAQ8ghkirRPARr/uRF0mnUrdN64+6s2rwq4iiDA3AIasACF6AJbkALtAECj+AZvII37Ul70d61j2lpSSt69sEfaF8/vzmjeg==</latexit>

First component of
- - - - --

-

-

-

- -

-

-

-

- - - - - -
([]ir

+ [⇤]ir
)

<latexit sha1_base64="0pZ2HmsKQgP+XbNURJ8N/uqC69Q=">AAACHnicbVDLSsNAFJ3UV62vqEs3wSJUhJJURZdFNy5cVLAPSEKYTCft0MkkzEyEEvIlbvwVNy4UEVzp3zhpA9XWAwOHc+69c+/xY0qENM1vrbS0vLK6Vl6vbGxube/ou3sdESUc4TaKaMR7PhSYEobbkkiKezHHMPQp7vqj69zvPmAuSMTu5TjGbggHjAQEQakkTz+v2U4I5dAPUqclSOZ6KfFSnmUnM/1WjevDmXVc8fSqWTcnMBaJVZAqKNDy9E+nH6EkxEwiCoWwLTOWbgq5JIjirOIkAscQjeAA24oyGGLhppPzMuNIKX0jiLh6TBoT9XdHCkMhxqGvKvOVxbyXi/95diKDSzclLE4kZmj6UZBQQ0ZGnpXRJxwjSceKQMSJ2tVAQ8ghkirRPARr/uRF0mnUrdN64+6s2rwq4iiDA3AIasACF6AJbkALtAECj+AZvII37Ul70d61j2lpSSt69sEfaF8/vzmjeg==</latexit>

First component of

([

] i
r

+
[⇤

] i
r
)

<latexit sha1_base64="0pZ2HmsKQgP+XbNURJ8N/uqC69Q=">AAACHnicbVDLSsNAFJ3UV62vqEs3wSJUhJJURZdFNy5cVLAPSEKYTCft0MkkzEyEEvIlbvwVNy4UEVzp3zhpA9XWAwOHc+69c+/xY0qENM1vrbS0vLK6Vl6vbGxube/ou3sdESUc4TaKaMR7PhSYEobbkkiKezHHMPQp7vqj69zvPmAuSMTu5TjGbggHjAQEQakkTz+v2U4I5dAPUqclSOZ6KfFSnmUnM/1WjevDmXVc8fSqWTcnMBaJVZAqKNDy9E+nH6EkxEwiCoWwLTOWbgq5JIjirOIkAscQjeAA24oyGGLhppPzMuNIKX0jiLh6TBoT9XdHCkMhxqGvKvOVxbyXi/95diKDSzclLE4kZmj6UZBQQ0ZGnpXRJxwjSceKQMSJ2tVAQ8ghkirRPARr/uRF0mnUrdN64+6s2rwq4iiDA3AIasACF6AJbkALtAECj+AZvII37Ul70d61j2lpSSt69sEfaF8/vzmjeg==</latexit>

Se
co

nd
 c

om
po

ne
nt

 o
f ([

] i
r

+
[⇤

] i
r
)

<latexit sha1_base64="0pZ2HmsKQgP+XbNURJ8N/uqC69Q=">AAACHnicbVDLSsNAFJ3UV62vqEs3wSJUhJJURZdFNy5cVLAPSEKYTCft0MkkzEyEEvIlbvwVNy4UEVzp3zhpA9XWAwOHc+69c+/xY0qENM1vrbS0vLK6Vl6vbGxube/ou3sdESUc4TaKaMR7PhSYEobbkkiKezHHMPQp7vqj69zvPmAuSMTu5TjGbggHjAQEQakkTz+v2U4I5dAPUqclSOZ6KfFSnmUnM/1WjevDmXVc8fSqWTcnMBaJVZAqKNDy9E+nH6EkxEwiCoWwLTOWbgq5JIjirOIkAscQjeAA24oyGGLhppPzMuNIKX0jiLh6TBoT9XdHCkMhxqGvKvOVxbyXi/95diKDSzclLE4kZmj6UZBQQ0ZGnpXRJxwjSceKQMSJ2tVAQ8ghkirRPARr/uRF0mnUrdN64+6s2rwq4iiDA3AIasACF6AJbkALtAECj+AZvII37Ul70d61j2lpSSt69sEfaF8/vzmjeg==</latexit>

Se
co

nd
 c

om
po

ne
nt

 o
f

at the ADMM iteration[]kir
+ [⇤]kir

<latexit sha1_base64="fLL1EchFre4w6fyjwJHSh46Zm4E=">AAACI3icbVDLSsNAFJ34rPUVdekmWARBKEkVFFdFNy5cVLAPSGKYTCbt0MmDmYlQhvyLG3/FjQuluHHhvzhpA9rWAwOHc+69c+/xU0q4MM0vbWl5ZXVtvbJR3dza3tnV9/Y7PMkYwm2U0IT1fMgxJTFuCyIo7qUMw8inuOsPbwq/+4QZJ0n8IEYpdiPYj0lIEBRK8vQr24mgGPihdFqc5K4niSdZnj/KYX76692piQGctT29ZtbNCYxFYpWkBkq0PH3sBAnKIhwLRCHntmWmwpWQCYIozqtOxnEK0RD2sa1oDCPMXTm5MTeOlRIYYcLUi4UxUf92SBhxPop8VVkszee9QvzPszMRXrqSxGkmcIymH4UZNURiFIEZAWEYCTpSBCJG1K4GGkAGkVCxVlUI1vzJi6TTqFtn9cb9ea15XcZRAYfgCJwAC1yAJrgFLdAGCDyDV/AOPrQX7U0ba5/T0iWt7DkAM9C+fwDD3qbT</latexit>

k = 0
<latexit sha1_base64="7Y5WECu9jn9tYKG34AbZ9RCrSbM=">AAAB63icdVDLSgNBEOz1GeMr6tHLYBA8LbtR1ByEoBePEcwDkiXMTmaTITOzy8ysEJb8ghcPinj1h7z5N84mEXwWNBRV3XR3hQln2njeu7OwuLS8slpYK65vbG5tl3Z2mzpOFaENEvNYtUOsKWeSNgwznLYTRbEIOW2Fo6vcb91RpVksb804oYHAA8kiRrDJpdGFV+yVyp5b9fzqqY9+E9/1pijDHPVe6a3bj0kqqDSEY607vpeYIMPKMMLppNhNNU0wGeEB7VgqsaA6yKa3TtChVfooipUtadBU/TqRYaH1WIS2U2Az1D+9XPzL66QmOg8yJpPUUElmi6KUIxOj/HHUZ4oSw8eWYKKYvRWRIVaYGBtPHsLnp+h/0qy4/rFbuTkp1y7ncRRgHw7gCHw4gxpcQx0aQGAI9/AIT45wHpxn52XWuuDMZ/bgG5zXD2nijdY=</latexit>

MPC region partition at iteration at time t
<latexit sha1_base64="btWuKJH9/rrCxCKL5tGKBdwWU5A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsN+3azSbsToQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEY3878hyeujYjVPU4S7kd0qEQoGEUrNbFfrrhVdw6ySrycVCBHo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NApObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYbXfiZUkiJXbLEoTCXBmMy+JgOhOUM5sYQyLeythI2opgxtNiUbgrf88ipp16reRbXWvKzUb/I4inACp3AOHlxBHe6gAS1gwOEZXuHNeXRenHfnY9FacPKZY/gD5/MH4XeM/A==</latexit>

MPC region partition at iteration at time

kth
<latexit sha1_base64="QkOQd5MwXxT9lzlZmzg+DqFodbA=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2ls12067dbMLuRCih/8GLB0W8+n+8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXFtRKzucZxwP6IDJULBKFqpOXrIcDjplcpuxZ2BLBMvJ2XIUe+Vvrr9mKURV8gkNabjuQn6GdUomOSTYjc1PKFsRAe8Y6miETd+Nrt2Qk6t0idhrG0pJDP190RGI2PGUWA7I4pDs+hNxf+8TorhlZ8JlaTIFZsvClNJMCbT10lfaM5Qji2hTAt7K2FDqilDG1DRhuAtvrxMmtWKd16p3l2Ua9d5HAU4hhM4Aw8uoQa3UIcGMHiEZ3iFNyd2Xpx352PeuuLkM0fwB87nD+avj1c=</latexit>

k = 0
<latexit sha1_base64="7Y5WECu9jn9tYKG34AbZ9RCrSbM=">AAAB63icdVDLSgNBEOz1GeMr6tHLYBA8LbtR1ByEoBePEcwDkiXMTmaTITOzy8ysEJb8ghcPinj1h7z5N84mEXwWNBRV3XR3hQln2njeu7OwuLS8slpYK65vbG5tl3Z2mzpOFaENEvNYtUOsKWeSNgwznLYTRbEIOW2Fo6vcb91RpVksb804oYHAA8kiRrDJpdGFV+yVyp5b9fzqqY9+E9/1pijDHPVe6a3bj0kqqDSEY607vpeYIMPKMMLppNhNNU0wGeEB7VgqsaA6yKa3TtChVfooipUtadBU/TqRYaH1WIS2U2Az1D+9XPzL66QmOg8yJpPUUElmi6KUIxOj/HHUZ4oSw8eWYKKYvRWRIVaYGBtPHsLnp+h/0qy4/rFbuTkp1y7ncRRgHw7gCHw4gxpcQx0aQGAI9/AIT45wHpxn52XWuuDMZ/bgG5zXD2nijdY=</latexit>

Figure 6.1: Illustration of the regions and parameter location over two MPC itera-
tions, and the necessary ADMM iterations until Convergence in each of the MPC
iterations. For simplicity in the representation, we consider the parameters in two
dimensions.

105

6.4 A GPU Parallelization for DLMPC
In this section, we provide a GPU implementation for the explicit solution to
DLMPC. We first discuss several important considerations of GPU hardware, and
then provide strategy to incrementally enhance the implementation of DLMPC.
We finish by discussing how locality constraints offer a unique advantage in GPU
implementation.

GPU parallelization overview
GPU differs from CPU in computation and memory, which have a profound impact
on programming and implementations. We elaborate on those differences below.

Computing threads: a thread is the smallest independent sequence of instructions
in a computing process. CPU is able to handle complex tasks using a limited
number of threads in the order of 𝑂 (10). In contrast, GPU has the capacity of
running thousands to millions of threads in parallel, but each is capable of simpler
operations. A GPU computing process is referred as kernel.

Sharing memory: comparing to single-thread tasks in CPU, memory access is much
more involved under a multi-thread scenario like GPU. When more than one thread
access a sharing memory location, a race condition can occur when they both attempt
to modify the content, and their access order determines the outcome. As a result,
the consistency and correctness of the results are not guaranteed without special
treatments. To avoid a race condition, we should either explicitly enforce some
order among the threads or avoid concurrent access to the same memory locations.
The former option is not preferred as it undermines the benefits of parallelism. On
the other hand, memory sharing restriction curbs inter-thread information exchange.
As a result, an algorithm needs to avoid information exchange among its parallel
components to achieve high performance on GPU.

Given the characteristics, although GPU has great potential to boost algorithms’
performance through parallelization, a GPU-parallelized algorithm is subject to two
kinds of communication overheads: (i) CPU-GPU and (ii) thread-to-thread. CPU-
GPU communication incurs an overhead on copying large volume of data between
the memory systems of CPU and GPU, and thread-to-thread communication imposes
an overhead on handling coupled memory accesses among parallel threads.

106

GPU memory offers a limited resource to mitigate these overheads. In GPU we
distinguish three types of memories:1

• Private memory. It is accessible to each of the individual single threads,
access is fast but capacity is limited and information stored here cannot be
shared with other threads

• Local memory. It is accessible to a local group of threads, and they can
coordinate to write and read from these shared memory locations.

• Global memory. It is accessible to all threads, but they do not coordinate of
reading and writing, so it cannot be used to share information among threads.
It is slower than the other two.

Local memory offers a great potential to overcome coordination issues among
threads, and the fact that communication is only local resembles the communication
scheme in control systems for large-networks. Although a single thread cannot
belong to two different groups (as opposed to a subsystem in a network structure,
where groups–incoming and outgoing sets–overlap) the parallelization capabilities
of GPU can be exploited to duplicate parts of the same subsystem and run them
simultaneously. We will show that the DLMPC algorithm is especially well-suited to
deal with them by virtue of its localized nature as it allows to take advantage of the
GPU parallelization capabilities while respecting the communication constraints.
Furthermore, we note how an explicit formulation to DLMPC is essential for such
parallelization, since each GPU thread is limited to very simple operations.

GPU parallelization strategy of DLMPC
In this subsection, we provide the implementation of the DLMPC algorithm in a
computer system equipped with both a CPU and a GPU. First, we take advantage
of the parallelization potential of the algorithm and perform a naive parallelization
of the ADMM steps in GPU. We then provide enhancements to reduce overheads,
such as reducing setup complexity by using longest-vector length, and reducing
CPU-GPU communication by setting combined kernels. Lastly, we present how the
locality constraints allow to effectively use local memory to deal with the thread-to-
thread coupling.

1We use OpenCL terminology. Although conceptually equivalent, terminology is slightly dif-
ferent from the one used in CUDA.

107

Throughout this subsection, we rely on graphical aids that capture the important
features of the DLMPC computations such as Fig. 6.2 and Algorithms 6 and 7 to
ease the exposition.

Precomputation MPC
subroutine

MPC
subroutine

... MPC
subroutine

Tsim

Pr
ec

om
pu

ta
tio

n ADMM

D
yn

am
ic

s
co

m
pu

ta
tio

nADMM iteration

Φ
-c

om
p

Ψ
-c

om
p

Λ
-c

om
p

C
on

v

ADMM iteration

Φ
-c

om
p

Ψ
-c

om
p

Λ
-c

om
p

C
on

v...

Figure 6.2: The DLMPC algorithm consists of different computation steps. A pre-
computation step is carried out to compute necessary matrices that stay constant
throughout all MPC iterations. Once this is completed, MPC iterations run sequen-
tially (one per time-step) for a given number 𝑇sim of time steps. Within a MPC
iteration, a precomputation step precedes the ADMM algorithm. Once converged,
we compute the next control input and the state according to the dynamics. Each
iteration of ADMM is composed by the steps detailed in Algorithm7.

Algorithm 6 Sketch of DLMPC implementation in GPU
1: Precompute necessities of closed-form solutions.
2: Initialize 𝑥(0).
3: for 𝑡 = 0 to simulation horizon (𝑇sim) do
4: Precompute the explicit solution with Table 6.1 using 𝑥0 := 𝑥(𝑡).
5: Perform ADMM per Alg. 7.
6: Compute 𝑢(𝑡) from 𝚽 and obtain 𝑥(𝑡 + 1).
7: end for

108

Algorithm 7 Sketch of ADMM computations for subsystem 𝑖

1: Conv← false.
2: while Conv is false do
3: 𝚽-comp: Compute rows of 𝚽 via the explicit solution in Lemma 16.
4: Share 𝚽 with its 𝑑-hop local neighbors.
5: 𝚿-comp: Compute columns of 𝚿 with step 5 in Alg. 1.
6: Share 𝚿 with its 𝑑-hop local neighbors.
7: 𝚲-comp: 𝚲← 𝚲 +𝚽 −𝚿.
8: Share 𝚲 𝑓 with its 𝑑-hop local neighbors.
9: Conv: Check the convergence criterion and save the result in conv.

10: end while

Naive Parallelization

We start with a naive parallelization of DLMPC algorithm by parallelizing ADMM
steps in 7. For each ADMM step, we assign each of the subproblems below a single
thread in GPU:

• For 𝚽-comp, each thread computes one row of 𝚽.

• For 𝚿-comp, each thread computes one column of 𝚿.

• For 𝚲-comp, each thread computes one element of 𝚲.

• For Conv, each thread evaluates the convergence criterion against one column.

Notice that each thread in GPU is tasked with performing all necessary arithmetic
operations leading to the assigned row/column/element. In this implementation we
are not parallelizing the arithmetic computations in GPU, but rather treating each
GPU thread as a subsystem of the distributed MPC framework. The reason for this
choice will become apparent in the next subsection, and the additional computational
overhead is small since computations are of small dimension because of the locality
constraints.

According to the ADMM algorithm, abundant information sharing is required after
each computation in order to perform the next computation. Due to the limitations
of GPU communication among threads, in this naive parallelization we perform the
information sharing in the form of memory accesses in CPU. Therefore, after each
parallelized computation we return to CPU to exchange results and set up the next
one. We illustrate this implementation in 6.3, where we represent the computing
threads with an arrow so one can distinguish the steps that are computed in CPU

109

(single thread) and the ones that are computed in GPU (multi-thread). Notice that
an additional setup step required to launch the GPU kernels is also represented.

This naive parallelization of the DLMPC algorithm suffers from several overheads.
First, the threads have different runtime due to the various lengths of the rows and
columns they compute. Such various lengths result in significant setup overhead
before computation. Second, there are several CPU-GPU switches per ADMM
iteration to exchange information across different threads for rows and columns.
This incurs CPU-GPU communication overhead. Those overheads imply that a
naive parallelization of a distributed and localized MPC scheme such as DLMPC is
not necessarily efficient, and additional considerations are needed to fully exploit the
GPU potential. In what follows, we analyze these overheads and provide effective
solutions based on hardware-specific considerations and the presence of locality
constraints. We build upon these solutions until an optimal GPU implementation of
the ADMM steps is presented.

Setup Precom. MPC
subroutine

MPC
subroutine

... MPC
subroutine

Precom. ADMM Dynam.
ADMM iteration

Φ-comp Ψ-comp Λ-comp Conv

...

Figure 6.3: Naive parallelization implementation. Boxed components represent the
same computation steps as in 6.2. An additional Setup step has been introduced at
the beginning of the implementation for GPU setup. Computing threads are denoted
with blue wavy arrows: A single arrow represents a single-thread computation, and
multiple arrows within a computation step represent a multi-thread computation.
The length of the different arrows in multi-thread processes represents runtime for
each of the threads.

Longest-vector length
Threads have different runtime in 6.3 since they process different sizes of input
vectors. Feeding each thread a different-sized input vector imposes a setup overhead–
we need to compute, store, and pass as parameters of the threads the sizes of each

110

input vector. Such an overhead was justifiable in a single thread CPU version like
[59] as we want to avoid unnecessary computations. In particular, only non-zero
elements are needed when computing on a single thread, and filtering out non-
zero elements pays off as fewer inputs imply faster computation under sequential
processing. The situation changes in GPU parallelization. Since the computation
time of parallelized threads is determined by the slowest one, and the kernel does
not return until all threads have finished the computations, it is no longer beneficial
to trim off zero elements unless they are processed by the slowest thread.

Accordingly, we can save the efforts of attaining exact different-sized input vectors
for parallelization. Instead, we only need to ensure the input vector is long enough
to cover the non-zero elements and find the minimum upper bound on the length,
which is the maximum number of non-zero elements in the rows and columns of 𝚽
and 𝚿, respectively, or the longest-vector length for short. We denote by 𝐷row and
𝐷col the longest-vector lengths of 𝚽 and 𝚿, respectively, and establish below that
by virtue of the locality constraints, 𝐷row, 𝐷col ≪ 𝑁 and the number of elements
that a thread solves for is much smaller than the size of the network.

Lemma 17. Let 𝑠 be the maximum number of states or control inputs per subsystem
in the network, and 𝑙 the maximum degree of nodes in G(𝐴,𝐵) . Suppose G(𝐴,𝐵) is
subject to 𝑑-locality constraints and the MPC time horizon is 𝑇 , then 𝐷row and 𝐷col

are bounded by

𝐷row ≤
𝑠(𝑙𝑑+1 − 1)
𝑙 − 1

, 𝐷col ≤
(2𝑇 − 1)𝑠(𝑙𝑑+1 − 1)

𝑙 − 1
.

Proof. Each row in 𝚽 represents a state/input in a subsystem, and hence 𝐷row is the
number of states that it can receive information from. We can establish a bound on
𝐷row by bounding the number of nodes within 𝑑-hops. By definition, we know that
there are at most 𝑙𝑘 nodes that are 𝑘-hops away from a node, so within 𝑑-hops, there
are at most

1 + 𝑙 + 𝑙2 + · · · + 𝑙𝑑 = 𝑙𝑑+1 − 1
𝑙 − 1

nodes, each has at most 𝑠 states, which shows the bound.

On the other hand, 𝐷col is the number of states and inputs, among all horizon 𝑇 , a
state can impact. Similarly, by 𝑑-locality constraints, we can use the bound on 𝐷row

as an estimate of the states/inputs a state would impact at each time. Since there are,
in total, 𝑇 states and 𝑇 − 1 inputs in 𝚿 per column, we can bound 𝐷col by (2𝑇 − 1)
times of the above bound on 𝐷row, which yields the desired result. □

111

Given a sparse system, the maximum degree 𝑙 is expected to be small, as is the
maximum number of subsystem states/inputs 𝑠. Given the assumption 𝑑 ≪ 𝑁 , the
above lemma suggests 𝐷row, 𝐷col ≪ 𝑁

ADMM
ADMM iteration

Φ-comp Ψ-comp Λ-comp Conv

...

Figure 6.4: Since the computation time of parallelized threads is dominated by the
slowest one, we could omit computing the exact input vector size for each thread
and feed all threads with same-sized (the longest-sized) input vectors, which results
in roughly the same runtime for all the threads. This simplifies both the setup and
per-thread computation and hence reduces the overhead.

Combined kernels
We then tackle the CPU-GPU communication overhead. In the naive paralleliza-
tion, CPU-GPU communication are necessary to properly exchange information in
between computations. The reason is that each computation occurs according to a
different distribution of the elements of 𝚽, 𝚿, 𝚲, i.e., row-wise, column-wise, and
element-wise. Although this particular distribution of elements might be the most
efficient for each of the computations isolated, the additional GPU-CPU overhead
steaming from the information sharing in between computations makes this option
is suboptimal.

To reduce the CPU-GPU communication overhead, we proposed the use of combined
kernels. In particular, the last three computation steps in the ADMM iteration can
be combined in the same kernel by parallelizing 𝚲-comp in a column-wise fashion
(as opposed to element-wise). By distributing the computations in this manner, each
of the threads has sufficient information to sequentially perform 𝚿-comp, 𝚲-comp,
and Conv without the need for communication among threads. This reduces the
CPU-GPU communication overhead since only one exchange between CPU and
GPU is necessary for each ADMM iteration (for the transformation from row-wise
to column-wise). However, the treatment herein slightly degrades the parallelization

112

benefits of 𝚲-comp, since by having only a thread per column, each thread now has
to loop over the elements in its column sequentially. This additional overhead is
very modest because due to the locality constraints, the number of relevant elements
per thread is 𝐷col, as opposed to a CPU-GPU memory-copying operation, where
the variables handled are of order 𝑁 .

ADMM
ADMM iteration

Φ-comp Ψ-comp Λ-comp Conv

...

Figure 6.5: To reduce CPU-GPU communication overhead, we remove the single-
thread computation in between computations (circled in yellow) by combining the
computations into per-column threads. This enhances the parallelization by com-
bining kernels. Such a combination does not apply to the information exchange
between 𝚽-comp and 𝚿-comp as we shift from per-row to per-column computa-
tion.

Local memory and column patch
The information exchange between 𝚽-comp and 𝚿-comp involves the transforma-
tion from row-wise to column-wise representation and hence is not easily com-
bined into one kernel. The key difficulty is that the row-wise results should be
passed down to per-column threads, which results in thread-to-thread communica-
tion/synchronization issues. We could realize synchronized thread-to-thread com-
munications through local memory. However, local memory is shallow–it would
not fit all the threads in–and it is exclusive–one thread can only belong to one group.
These properties make the bipartite information exchange pattern difficult to enforce:
The row-wise result might be required by multiple per-column threads, while each
thread may need multiple row-wise results. As a result, to leverage local memory
to save CPU-GPU communication overhead, we need to group the threads smartly.

Our approach is to group each per-column thread in 𝚿-comp with row-wise compu-
tation threads in 𝚽-comp, referred to as column patch. That is, for the 𝑖th column of
𝚿, we launch a column patch to solve for the 𝑗 th row where 𝑗 ∈ { 𝑗 : 𝚽(𝑗 , 𝑖) ≠ 0}.

113

Once this is done, the row-wise results are saved in local memory in GPU, and one
of those threads can proceed with the column-wise computations of 𝚿 and 𝚲 as
described in the previous subsection without returning to CPU.

Thanks to the locality constraints, each column patch only has 𝐷col 𝚽-comp threads
to include and fit their results in the shallow local memory. On the other hand, since
each row has several non-zero elements, we could potentially have multiple threads
in different column patches that compute the same row-wise result. But it is fine as
GPU has plenty of threads to launch, and using multiple threads to compute the same
result in parallel does not incur additional runtime overhead. Therefore, we ensure
synchronization without the need for information sharing across threads - since we
can repeat relevant computations in different local groups - or computing units -
since local synchronization is all is needed. This was only possible by exploiting
the GPU architecture together with the locality constraints directly encoded in the
DLMPC formulation.

We highlight the roles of the locality constraints in our enhancement techniques. Lo-
cality constraints can facilitate desirable trade-offs between computational resources
and information exchange across threads: Longest-vector length incurs additional
precomputation steps, and combined kernels sacrifice parallelization potential of
𝚲-comp. Those trade-offs are justified by the small dimensions derived from the
locality constraints 𝐷row, 𝐷col ≪ 𝑁 . Meanwhile, for the local memory and column
patch technique, locality constraints allow us to decouple the row-wise threads with-
out harming the runtime (in essence, locality allow us to pay in the spatial space to
decouple the row-wise threads without temporal performance degradation).

114

ADMM
ADMM iteration

Φ-comp Ψ-comp Λ-comp Conv

...

Figure 6.6: Conducting 𝚽-comp and 𝚿-comp consecutively in GPU requires the
per-row threads to exchange information with per-column threads, which results
in thread-to-thread communication. Using local memory, we can avoid such a
thread-to-thread communication by creating column patches, which duplicate row-
wise computation threads to decouple the per-column local memory groups and
synchronize results entirely within GPU.

6.5 Simulation Experiments
Through simulations, we study two aspects of the GPU-parallelized DLMPC. First,
we compare the scalability of our implementation with other methods. We then
analyze the overhead of the implementations for future enhancements.

Setup
We implement our GPU-parallelized DLMPC in Python and OpenCL. We compare
the scalability of the four proposed GPU implementations from the previous section
against two CPU variations–a Python replica of the single-threaded DLMPC version
in [59] and an optimization-based approach under the SLSpy framework [106] with
CVXPY [107] as the solver. The results are measured on a desktop with AMD Ryzen
7 3700X processor (16 logical cores), 32 GB DDR4 memory, and AMD Radeon
RX 550/550X GPU. For each evaluated scenario, we simulate 100 different initial
conditions and present the average and the standard deviation of the measurements.
The synthetic dynamics is chosen are a chain-like network with two-state nodes as
the subsystems. Each subsystem 𝑖 evolves according to

[𝑥(𝑡 + 1)]𝑖 = [𝐴]𝑖𝑖 [𝑥(𝑡)]𝑖 +
∑︁

𝑗∈in𝑖 (𝑑)
[𝐴]𝑖 𝑗 [𝑥(𝑡)] 𝑗 + [𝐵]𝑖𝑖 [𝑢(𝑡)]𝑖,

where in𝑖 (𝑑) contain the 𝑑-hop neighbors of node 𝑖 and

[𝐴]𝑖𝑖 =
[

1 0.1
−0.3 0.7

]
, [𝐴]𝑖 𝑗 =

[
0 0

0.1 0.1

]
, [𝐵]𝑖𝑖 = 𝐼 .

115

The state is subject to upper and lower bounds:

−0.2 ≤ [𝑥(𝑡)]𝑖,1 ≤ 1.2 for 𝑡 = 1, ..., 𝑇,

where [𝑥]𝑖,1 is the first state in the two-state subsystem 𝑖.

We perform the MPC with 𝑇sim = 20 subroutine iterations with the cost function

𝑓 (𝑥, 𝑢) =
𝑁∑︁
𝑖=1

𝑇−1∑︁
𝑡=1
∥ [𝑥(𝑡)]𝑖∥22 + ∥[𝑢(𝑡)]𝑖∥

2
2 + ∥[𝑥(𝑇)]𝑖∥

2
2.

Note that the number of states and inputs in this plant is 3𝑁 , since each of the 𝑁
subsystems has 2 states and 1 input.

Scalability
To evaluate the scalability of the methods, we run the simulations with varying
system size 𝑁 , MPC time horizon 𝑇 , and locality region size 𝑑. We measure the
average runtime per MPC iteration, i.e., the total runtime divided by the number of
MPC subroutine iterations 𝑇sim, and summarize the results in 6.7. We remark that
the runtime is measured for the whole simulation rather than merely the ADMM
portion of the algorithm.

In 6.7, the GPU implementations scale much better with the network size 𝑁 than
the CPU implementations. Moreover, the runtime differences grow from an order
of magnitude to several orders of magnitude as 𝑁 increases. This is as expected
since GPU implementations can parallelize the subsystem computations through
multi-threads whereas the CPU implementations cannot. Remarkably, the ADMM
implementation in CPU is consistently worse than when solved via CVXPY, which
emphasizes the need for a parallel implementation such as the one presented in this
paper to fully take advantage of the DLMPC algorithm. Among the GPU methods,
local memory has superior performance (50× faster than ADMM in CPU for 𝑁 = 25
and 35× for 𝑁 = 100), followed by combined kernels and longest-vector length (15×
faster than ADMM in CPU for 𝑁 = 25 and 25× for 𝑁 = 100). Naive parallelization
is 3× slower than local memory for small 𝑁 . In fact, a smaller 𝑁 leads to a bigger
performance difference among GPU implementations, which indicates that the CPU
overhead of the implementations outweighs the improvements made by GPU when
the network scales.

116

CPU: CVXPY

CPU: ADMM

GPU: Local memory

GPU: Longest-vector length

GPU: Combined kernels

GPU: Naive parallelization

5 25 50 75 100
10−2

10−1

100

101

102

Size of the system N

A
ve

ra
ge

ru
nt

im
e

pe
r

M
PC

ite
ra

tio
n

(s
)

T = 5, d = 3

5 10 15 20

10−1

100

101

Length of the FIR Horizon T

A
ve

ra
ge

ru
nt

im
e

pe
r

M
PC

ite
ra

tio
n

(s
)

N = 25, d = 3

5 10 15 20
10−1

100

101

Size of the locality region d

A
ve

ra
ge

ru
nt

im
e

pe
r

M
PC

ite
ra

tio
n

(s
)

N = 25, T = 5

Figure 6.7: Comparison of the runtimes obtained by different computing strategies
for different parameter regimes. The lines are the mean values and the shaded areas
show the values within one standard deviation. We observe that GPU computation
strategies scale much better with the size of the network than CPU implementations.
This trend also holds for ADMM CPU implementation over all time horizons and
locality region sizes, while GPU implementations only outperform CVXPY on small
locality regions and CVXPY seems to scale well over all simulated time horizons.

For time horizon 𝑇 and locality region size 𝑑, the runtime scales accordingly for
all the ADMM implementations. This can be seen from a simple analysis of the
optimization variables: Since larger 𝑇 and 𝑑 introduce more non-zero elements
in the matrix 𝚽, the corresponding decomposed row and column vectors become

117

N = 10 N = 100

Setup

CPU: SLSpy with CVXCPU: ADMMGPU: Naive parallelizationGPU: Fixed lengthGPU: Combined kernelsGPU: Local memory
10−6
10−4
10−2
100
102
104

Computation strategy

R
un

tim
e

(s
)

Precomputation

CPU: SLSpy with CVXCPU: ADMMGPU: Naive parallelizationGPU: Fixed lengthGPU: Combined kernelsGPU: Local memory
10−6
10−4
10−2
100
102
104

Computation strategy

R
un

tim
e

(s
)

Optimization

CPU: SLSpy with CVXCPU: ADMMGPU: Naive parallelizationGPU: Fixed lengthGPU: Combined kernelsGPU: Local memory
10−6
10−4
10−2
100
102
104

Computation strategy

R
un

tim
e

(s
)

Dynamics computation

CPU: CVXPY

CPU: ADM
M

GPU: Naiv
e

pa
ral

lel
iza

tio
n

GPU: Lon
ge

st-

ve
cto

r len
gth

GPU: Com
bin

ed

ke
rne

ls
GPU: Loc

al

mem
ory

10−6
10−4
10−2
100
102
104

Computation strategy

R
un

tim
e

(s
)

Figure 6.8: Runtime breakdown for the different computing phases: precompilation,
precomputation, optimization and dynamics computation for two different network
sizes 𝑁 = 10 and 𝑁 = 100. Colors for the different phases are the same as in
6.3. For CPU implementations, the optimization phase is the bottleneck, while the
bottleneck shifts to the precomputation for the GPU implementations.

longer and the runtime increases. However, this trend does not apply to the SLSpy-
based CPU implementation solved by CVXPY, where the runtime stays pretty
much the same or even decreases when 𝑇 and 𝑑 increases. Nevertheless, the
GPU implementations still outperform CVXPY by up to one order of magnitude for
𝑑 ≤ 10 and all simulated 𝑇 . In other words, the advantage of GPU parallelization
is significant when the locality region is small. Hence, in light of the results,
the ADMM implementation of DLMPC is best for large network consisting of
subsystems with relatively small local neighborhood.

118

Overhead analysis
To better understand how different methods scale in runtime with the network size,
we break down the runtime into four DLMPC phases as in 6.3, which are:

Setup refers to all the computational steps necessary to setup the GPU computa-
tions. It refers to the compilation of the kernels themselves, but also to all the
extra computations necessary to implement the different GPU schemes, such as the
computation of 𝐷row and 𝐷col, etc.

Precomputation refers to computing the necessary matrices and vectors that mul-
tiply the decision variables 𝚽, 𝚿, 𝚲. We note here that this phase appears twice
in the implementation: before starting any of the MPC computations, and before
starting each of the MPC subroutines.

Optimization refers to the computational steps necessary to solve the optimization
problem (6.3a). In this case, it refers to the steps taken by ADMM or CVXPY to
find a value for 𝚽.

Dynamics computation refers to the computation of the next state using the control
input given by MPC.

We measure the runtime breakdown for network size 𝑁 = 10 and 𝑁 = 100 and
present the results in 6.8. From 6.8, we can observe that the setup and dynamics
computation phases are relatively fast, and the runtime is dominated by the opti-
mization phase when 𝑁 = 10 and the precomputation phase when 𝑁 = 100. As we
adopt more sophisticated techniques described in this chapter to GPU implementa-
tions, the optimization phase speeds up significantly. However, the precomputation
phase does not benefit from the techniques and it becomes the bottleneck when
the network size scales. Since an increase in 𝑑 or 𝑇 mostly burdens the setup and
precomputation phases, the results also explain why the GPU implementations scale
poorer when 𝑑 or 𝑇 is large.

Another important takeway from 6.8 is that for CPU implementations, the optimiza-
tion phase is the bottleneck, while the bottleneck shifts to the precomputation for
the GPU implementations. This justifies our approaches in this paper to accelerate
the CPU optimization phase by GPU parallelization. Meanwhile, the results also
suggest that to further speed up the computation, future research should focus on
faster precomputation techniques.

119

6.6 Conclusion and Future work
We introduced an explicit solution to the MPC problem that can be applied to
large networked systems. Inspired by [48], our explicit solution partitions the space
into three regions per state/input instantiation, and with the assumptions that no
coupling between states is allowed, each subsystem can solve for each state (input)
instantiation sequentially or in parallel, which results in a fast computation runtime
per subsystem. Since each subsystem runs its own optimization problem in parallel,
this results in large runtime improvements. Computational experiments show that
the runtime of each MPC iteration per subsystem in the network scales with 𝑂 (1)
complexity as the size of the network increases.

We used these results develop effective GPU parallelized DLMPC for large-scale
distributed system control. Our results show that although a naive GPU imple-
mentation does improve the performance by 15 − 25×, we can still get up to 50×
performance improvement by taking into account the hardware-intrinsic limitations.
We overcome these limitations by taking advantage of the local communication con-
straints in the formulation, and developing longest-vector length, combined kernels
and local memory implementations. With extensive experiments, we demonstrate
that the DLMPC algorithm is suitable for GPU parallelization, and that its full
potential is only realized when the local communication constraints are taken into
account in the GPU implementation. We demonstrate the scalability of the method
for large network sizes, and noticed that most of the computational overhead in the
GPU computations was due to the precomputations being performed in CPU.

As discussed in the overhead analysis, precomputation becomes the new overhead
after our GPU parallelizations. Therefore, a future direction would be to effectively
parallelize the precomputation for higher performance. In addition, there are some
other parts of DLMPC that we can parallelize further, such as a better initial point
for ADMM to converge faster as well as a better parallelized dynamics computation.
Another future direction is to include more than one ADMM iteration into one kernel,
to avoid CPU-GPU data exchanges. One might also be interested in extending the
parallelization in this work to a fully distributed setting where the processing units
scatter over a network. As the distributed setting introduces new challenges such
as robustness to communication dropouts, synchronization, and delay, it would be
interesting to see how locality constraints could improve robustness or performance.

120

C h a p t e r 7

CONCLUSION

7.1 Challenge Addressed
Distributed control of large-scale systems presents significant challenges when re-
lying on a centralized controller. The computational demands of Model Predictive
Control (MPC) often make it impractical to implement a centralized approach.
However, adapting centralized MPC ideas to the distributed setting is a complex
task. Contemporary large-scale distributed systems like the Internet of Things ben-
efit from widespread sensing and communication capabilities but face local resource
constraints in power consumption, memory, and computational power. To transform
these systems from passive data collectors to active distributed control systems, it
is essential to develop algorithmic approaches that exploit the inherent advantages
while considering the network’s underlying resource limitations.

There have been substantial efforts in the literature towards a distributed MPC ap-
proach. However, addressing the challenges of distributed MPC requires more than
simply extending centralized approaches. With this thesis, we aim at establishing
a framework that leverages the inherent network and communication structure, en-
abling scalable algorithms that are independent of the global system’s size. Our goal
is to achieve this in a computationally efficient and non-conservative manner, making
DMPC applicable in real-world scenarios. To achieve this, additional considera-
tions are necessary to provide efficient and non-conservative theoretical guarantees,
while also thoroughly understanding the impact of local communication constraints
on performance. Furthermore, we believe that adopting a data-driven approach to
DMPC is crucial as it eliminates the need for costly system identification algorithms.
As we have shown, for such systems, collecting local trajectory data from a subset
of neighboring systems is a more feasible alternative to developing intricate system
models required by model-based control algorithms. At present, this thesis is–to the
best of our knowledge– the first comprehensive framework for DMPC that incorpo-
rates the underlying system structure and offers efficient, scalable, data-driven, and
non-conservative solutions with theoretical guarantees.

121

7.2 Main Contributions
The main contribution of this thesis is a novel optimal and robust control framework
based on MPC that is able to achieve stringent requirements with highly-scalable
communications and computing. We show how these results extend naturally to the
data-driven case where no models are available and control is based on past obser-
vations only. We also provide novel hardware implementations that exploit GPU
technology to further accelerate computations. In order to achieve this, we take ad-
vantage of the sparsity of the underlying systems by means of introducing a new type
of constraints in the formulation: locality constraints restrict each subsystem in the
network to only communicate and influence a small neighborhood of subsystems as
opposed to the entire network. This gives rise to a new set of algorithms, theoretical
results and architectures to optimally control distributed cyber-physical systems for
safety-critical applications. In what follows we detail our main contributions.

Distributed and localized synthesis and implementation of closed-loop model
predictive controllers (MPC)
We present a novel MPC algorithm designed for large-scale linear systems, offer-
ing both synthesis and implementation capabilities in a distributed and localized
manner, without relying on strong assumptions. Our algorithm, called Distributed
and Localized Model Predictive Control (DLMPC), enables the computation and
implementation of control actions by exchanging only local state and model informa-
tion between subsystems. Notably, the resulting distributed algorithms demonstrate
robustness against various types of additive disturbances, and their computational
scalability is independent of the network size for the first time. This significant
advancement makes our approach scalable for systems of arbitrary sizes.

Minimally conservative guarantees for asymptotic stability and recursive fea-
sibility
Previous works have faced challenges when introducing guarantees into their algo-
rithms due to the distributed nature of the problem. These guarantees often led to
excessive conservatism, compromising the solutions provided, or added computa-
tional burden while still introducing some level of conservatism. In this thesis, we
address these issues by presenting theoretical results and algorithms that compute
theoretical guarantees for stability and feasibility of MPC. Importantly, these com-
putations can be performed offline, prior to implementing the DLMPC algorithm,
which ensures they do not contribute to the computational burden. Moreover, we do

122

so while introducing minimal conservatism. Notably, due to the constraints imposed
by locality, these computations can now be performed in a distributed and localized
manner for the first time, resulting in highly scalable computations.

Globally optimal guarantees as compared with global MPC
We conduct a thorough analysis comparing the optimal performance of DLMP
with a MPC scheme that permits global communication. Our findings indicate
that when the system’s underlying topology is sparse, as is commonly observed
in large-scale networks, the inclusion of local communication constraints does not
lead to suboptimal solutions. These results emphasize the benefits of introducing
locality constraints. Despite not affecting global optimality in many scenarios,
these constraints offer a more scalable and efficient solution compared to the global
counterpart.

Data-driven extension
We extend these results to the purely data-driven scenario in the noiseless case,
eliminating the need for a system model. Remarkably, we demonstrate that all
the previous guarantees still hold, and the requirement for a model is entirely
replaced by past-trajectory data. Additionally, thanks to the locality constraints, the
resulting algorithm maintains a small sample complexity that remains independent
of the overall network size. This contribution is particularly valuable for real-world
systems, as they often possess large dimensions and extreme complexity, making
it infeasible to have an accurate model of the system. The data-driven version of
DLMPC brings the benefits of optimal control with guarantees within reach for
these systems, which are often missing in machine learning appraoches.

Efficient hardware implementation
Lastly, we develop an efficient GPU implementation of DLMPC by capitalizing on
the favorable structure of the DLMPC problem that aligns well with the capabilities
of GPU computations. This contribution highlights that the advantages of locality
constraints extend beyond distributed settings, proving valuable even in centralized
scenarios that demand parallelizable and efficient computations. The findings of this
work demonstrate an additional benefit of locality constraints, enabling the creation
of layered and efficient control architectures. By leveraging the power of GPUs, we
unlock new possibilities for enhancing the performance and scalability of DLMPC,
further highlighting the utility of locality constraints for control applications.

123

In summary, this thesis introduces a comprehensive framework for online distributed
control algorithms under constraints. The key contribution is the development of
DLMPC, an online distributed control algorithm that achieves robustness, scalabil-
ity, efficiency, and data-driven computations while maintaining theoretical guaran-
tees and supporting parallel hardware implementations. The framework emphasizes
the significance of considering locality constraints and opens up new possibilities
for the development of layered control systems empowered by these constraints.
The theoretical contributions of this work address several longstanding challenges
in the field of distributed control, providing solutions to complex theoretical prob-
lems. Furthermore, the extension to a data-driven approach enables the application
of these results to real-world distributed systems that lack a precise system model.
Additionally, the hardware implementation aspect offers the potential to leverage
the proposed approach even in centralized settings, significantly accelerating com-
putations. By combining these different frontiers, effective and scalable control
architectures can be created for complex and large-scale real-world systems. This
thesis showcases the achievement of such goals by harnessing the intrinsic and
widespread sparsity observed in technology and biological large-scale distributed
systems.

7.3 Future Research Directions
Besides the immediate research directions outlined at the end of each chapter, in
what follows we propose longer-term research directions that will expand the work
of this thesis.

Communication exchanges
Most algorithms in the DLMPC framework rely on multiple exchanges of informa-
tion between the subsystems. For this reason, a better analysis of how communi-
cation loss affects the closed-loop performance of the algorithm is an interesting
question. Although a formal analysis is in order, the work done in [62] suggests that
it would be possible to slightly modify the proposed ADMM-based scheme to make
it robust to unreliable communication links.

Furthermore, extending these results to information exchange topologies with spar-
sity and delays is an interesting research direction. While the SLS framework handles
delays in the implementation structure of a distributed controller, incorporating such
constraints into a distributed synthesis problem poses challenges. Developing algo-
rithms that consider delays in information exchange while preserving performance

124

and theoretical guarantees is a promising avenue for future research. Addressing
these challenges would enhance the applicability of distributed control algorithms
in real-world scenarios, contributing to the creation of robust control architectures
for large-scale systems.

Robust data-driven formulation
This thesis explores two types of noise distributions within the model-based ap-
proach. However, there is an open question regarding the exploration of these
results in the data-driven case and their implications for theoretical guarantees.
Furthermore, it would be valuable to investigate the efficient sample complexity
required to effectively solve the problem in this context. Along these lines, an
interesting research direction would be to explore different cost formulations and
objective functions that can mitigate the conservatism of the formulation. Such
investigations have the potential to enhance the overall performance by providing
more efficient and scalable solutions, enhancing the applicability of DLMPC to a
larger range of settings where only past trajectories are available and robustness to
disturbances is needed.

Layered MPC architectures
MPC, despite its online nature, is known to be slower compared to offline con-
trollers. However, its unique ability to handle constraints in real-time allows for
less conservative control by more effectively handling worst-case scenarios. To
effectively control complex large-scale systems, it has become evident that layering
control strategies holds promise (see the work in [108] for details). However, the
question of how to layer and interface different controllers remains open.

While DLMPC stands out for providing optimal and scalable algorithms with guar-
antees, its role within a layered architecture and the extent of control it should
handle in conjunction with other layers are not yet clear. Furthermore, the optimal
architecture and functions of these controllers in a layered setup are still uncertain.
Further exploration of these ideas is crucial to develop effective, optimal, efficient,
and scalable controllers for large-scale distributed systems.

125

References

[1] F. Borrelli, A. Bemporad, and M. Morari, Predictive Control for Linear
and Hybrid Systems. Cambridge University Press, 2017. doi: 10.1017/
9781139061759.

[2] D. Q. Mayne, M. M. Seron, and S. V. Rakovic, “Robust model predictive con-
trol of constrained linear systems with bounded disturbances,” Automatica,
vol. 41, pp. 219–224, 2005. doi: 10.1016/j.automatica.2004.08.019.

[3] A. Venkat, I. Hiskens, J. Rawlings, and S. Wright, “Distributed MPC strate-
gies with application to power system automatic generation control,” IEEE
Trans. Control Syst. Tech., vol. 16, no. 6, pp. 1192–1206, 2008. doi: 10.
1109/TCST.2008.919414.

[4] Y. Zheng, S. Li, and H. Qiu, “Networked coordination-based distributed
model predictive control for large-scale system,” IEEE Trans. Control Syst.
Tech., vol. 21, no. 3, pp. 991–998, 2013. doi: 10.1109/TCST.2012.
2196280.

[5] P. Giselsson, M. D. Doan, T. Keviczky, B. D. Schutter, and A. Rantzer,
“Accelerated gradient methods and dual decomposition in distributed model
predictive control,” Automatica, vol. 49, no. 3, pp. 829–833, 2013. doi:
10.1016/j.automatica.2013.01.009.

[6] C. Conte, C. N. Jones, M. Morari, and M. N. Zeilinger, “Distributed syn-
thesis and stability of cooperative distributed model predictive control for
linear systems,” Automatica, vol. 69, pp. 117–125, 2016. doi: 10.1016/j.
automatica.2016.02.009.

[7] R. E. Jalal and B. P. Rasmussen, “Limited-communication distributed model
predictive control for coupled and constrained subsystems,” IEEE Trans.
Control Syst. Tech., vol. 25, no. 5, pp. 1807–1815, 2017. doi: 10.1109/
TCST.2016.2615088.

[8] Z. Wang and C.-J. Ong, “Distributed MPC of constrained linear systems
with online decoupling of the terminal constraint,” in Proc. IEEE ACC,
2015, pp. 2942–2947. doi: 10.1109/ACC.2015.7171182.

[9] A. N. Venkat, J. B. Rawlings, and S. J. Wright, “Stability and optimality of
distributed model predictive control,” in Proc. IEEE CDC, 2005, pp. 6680–
6685. doi: 10.1109/CDC.2005.1583235.

[10] Y. R. Sturz, E. L. Zhu, U. Rosolia, K. H. Johansson, and F. Borrelli, “Dis-
tributed learning model predictive control for linear systems,” in Proc. IEEE
CDC, 2020, pp. 4366–4373. doi: 10.1109/CDC42340.2020.9303820.

[11] G. Grimm, M. J. Messina, S. E. Tuna, and A. R. Teel, “Examples when
nonlinear model predictive control is nonrobust,” Automatica, vol. 40, no. 10,
pp. 1729–1738, 2004. doi: 10.1016/j.automatica.2004.04.014.

126

[12] C. Conte, M. N. Zeilinger, M. Morari, and C. N. Jones, “Robust distributed
model predictive control of linear systems,” in Proc. IEEE ECC, 2013,
pp. 2764–2769. doi: 10.23919/ECC.2013.6669745.

[13] V. Blondel and J. N. Tsitsiklis, “NP-hardness of some linear control design
problems,” SIAM J. Control Optim., vol. 35, no. 6, pp. 2118–2127, 1997.
doi: 10.1137/S036301299427263.

[14] A. Richards and J. P. How, “Robust distributed model predictive control,”
Int. J. Control, vol. 80, no. 9, pp. 1517–1531, 2007. doi: 10.1016/j.
automatica.2021.110141.

[15] P. J. Goulart, E. C. Kerrigan, and J. M. Maciejowski, “Optimization over state
feedback policies for robust control with constraints,” Automatica, vol. 42,
no. 4, pp. 523–533, 2006. doi: 10.1016/j.automatica.2005.08.023.

[16] M. Rotkowitz and S. Lall, “A characterization of convex problems in decen-
tralized control,” IEEE Trans. Autom. Control, vol. 51, no. 2, pp. 274–286,
2006. doi: 10.1109/TAC.2005.860365.

[17] L. Furieri and M. Kamgarpour, “Robust control of constrained systems given
an information structure,” in Proc. IEEE CDC, Melbourne, Australia, 2017,
pp. 3481–3486. doi: 10.1109/CDC.2017.8264169.

[18] C. Langbort, C. R.S., and D. R., “Distributed control design for systems in-
terconnected over an arbitrary graph,” IEEE Trans. Autom. Control, vol. 49,
no. 9, pp. 1502–1519, 2004. doi: 10.1109/TAC.2004.834123.

[19] A. Jokic and M. Lazar, “On decentralized stabilization of discrete-time
nonlinear systems,” in Proc. IEEE ACC, 2009, pp. 5777–5782.

[20] A. I. Zecevic and D. D. Siljak, Control of Complex Systems. New York:
Commun. Control Eng., Springer, 1988. doi: 10.1016/C2015-0-02422-
4.

[21] B. T. Stewart, A. Venkat, J. Rawlings, S. Wright, and G. Pannocchia, “Co-
operative distributed model predictive control,” Syst. Control Lett., vol. 59,
no. 8, pp. 460–469, 2010. doi: 0.1016/j.sysconle.2010.06.005.

[22] J. M. Maestre, D. Muñoz de la Peña, E. F. Camacho, and T. Alamo, “Dis-
tributed model predictive control based on agent negotiation,” J. Process
Control, vol. 21, no. 5, pp. 685–697, 2011. doi: 10.1016/j.jprocont.
2010.12.006.

[23] P. A. Trodden and J. M. Maestre, “Distributed predictive control with min-
imization of mutual disturbances,” Automatica, vol. 77, pp. 31–43, 2017.
doi: 10.1016/j.automatica.2016.11.023.

[24] G. Darivianakis, A. Eichler, and J. Lygeros, “Distributed model predictive
control for linear systems with adaptive terminal sets,” IEEE Trans. Autom.
Control, vol. 65, no. 3, pp. 1044–1056, 2020. doi: 10.1109/TAC.2019.
2916774.

127

[25] A. Aboudonia, A. Eichler, and J. Lygeros, “Distributed model predictive
control with asymmetric adaptive terminal sets for the regulation of large-
scale systems,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 6899–6904, 2020,
21st IFAC World Congress. doi: 10.1016/j.ifacol.2020.12.356.

[26] S. Muntwiler, K. P. Wabersich, A. Carron, and M. N. Zeilinger, “Dis-
tributed model predictive safety certification for learning-based control,”
IFAC-PapersOnLine, vol. 53, no. 2, pp. 5258–5265, 2020. doi: 10.1016/
j.ifacol.2020.12.1205.

[27] Y. Wang and C. Manzie, “Robust distributed model predictive control of
linear systems: Analysis and synthesis,” Automatica, vol. 137, p. 110 141,
2022. doi: 10.1016/j.automatica.2021.110141.

[28] A. Gasparri and A. Marino, “A distributed framework for kk-hop control
strategies in large-scale networks based on local interactions,” IEEE Trans-
actions on Automatic Control, vol. 65, no. 5, pp. 1825–1840, 2020. doi:
10.1109/TAC.2019.2926595.

[29] L. Ballotta and V. Gupta, “Faster consensus via a sparser controller,” IEEE
Control Systems Letters, vol. 7, pp. 1459–1464, 2023. doi: 10 .1109 /
LCSYS.2023.3268005.

[30] J. Jiao, H. L. Trentelman, and M. K. Camlibel, “Distributed linear quadratic
optimal control: Compute locally and act globally,” IEEE Control Systems
Letters, vol. 4, no. 1, pp. 67–72, 2020. doi: 10.1109/LCSYS.2019.
2922189.

[31] S. Shin, Y. Lin, G. Qu, A. Wierman, and M. Anitescu, “Near-optimal dis-
tributed linear-quadratic regulator for networked systems,” arXiv preprint
arXiv:2204.05551, 2022. doi: 10.48550/ARXIV.2204.05551.

[32] H. K. Mousavi and N. Motee, “Explicit characterization of performance of
a class of networked linear control systems,” IEEE Transactions on Control
of Network Systems, vol. 7, no. 4, pp. 1688–1699, 2020. doi: 10.1109/
TCNS.2020.2995825.

[33] W. Tang and P. Daoutidis, “The role of community structures in sparse
feedback control,” in Proc. IEEE ACC, 2018, pp. 1790–1795. doi: 10.
23919/ACC.2018.8431002.

[34] J. S. Baras and P. Hovareshti, “Effects of topology in networked systems:
Stochastic methods and small worlds,” in Proc. IEEE CDC, 2008, pp. 2973–
2978. doi: 10.1109/CDC.2008.4738895.

[35] S. Lucia, M. Kögel, P. Zometa, D. Quevedo, and R. Findeisen, “Predictive
control in the era of networked control and communication - A perspective,”
IFAC-PapersOnLine, vol. 48, no. 23, pp. 322–331, 2015. doi: 10.1016/j.
ifacol.2015.11.302.

128

[36] A. Bemporad and D. Barcelli, “Decentralized model predictive control,” in
Networked Control Systems, A. Bemporad, M. Heemels, and M. Johansson,
Eds. London: Springer London, 2010, pp. 149–178. doi: 10.1007/978-
0-85729-033-5_5.

[37] H. Hjalmarsson, M. Gevers, S. Gunnarsson, and O. Lequin, “Iterative feed-
back tuning: Theory and applications,” IEEE Control Systems Magazine,
vol. 18, no. 4, pp. 26–41, 1998. doi: 10.1109/37.710876.

[38] M. Fazel, R. Ge, S. Kakade, and M. Mesbahi, “Global convergence of
policy gradient methods for the linear quadratic regulator,” in Int. Conf.
Mach. Learn., PMLR, 2018, pp. 1467–1476.

[39] H. Mohammadi, M. Soltanolkotabi, and M. R. Jovanović, “On the linear
convergence of random search for discrete-time LQR,” IEEE Control Syst.
Lett., vol. 5, no. 3, pp. 989–994, 2020. doi: 10.1109/LCSYS.2020.
3006256.

[40] S. Bradtke, B. Ydstie, and A. Barto, “Adaptive linear quadratic control using
policy iteration,” in Proceedings of 1994 American Control Conference -
ACC ’94, vol. 3, 1994, 3475–3479 vol.3. doi: 10.1109/ACC.1994.735224.

[41] C. De Persis and P. Tesi, “Formulas for data-driven control: Stabilization,
optimality, and robustness,” IEEE Trans. Autom. Control, vol. 65, no. 3,
pp. 909–924, 2019. doi: 10.1109/TAC.2019.2959924.

[42] H. L. Trentelman, H. J. van Waarde, and M. K. Camlibel, “An infor-
mativity approach to data-driven tracking and regulation,” arXiv preprint
arXiv:2009.01552, 2020. doi: 10.48550/ARXIV.2009.01552.

[43] F. Dörfler, J. Coulson, and I. Markovsky, “Bridging direct and indirect
data-driven control formulations via regularizations and relaxations,” IEEE
Transactions on Automatic Control, vol. 68, no. 2, pp. 883–897, 2023. doi:
10.1109/TAC.2022.3148374.

[44] J. Coulson, J. Lygeros, and F. Dörfler, “Distributionally robust chance con-
strained data-enabled predictive control,” IEEE Transactions on Automatic
Control, vol. 67, no. 7, pp. 3289–3304, 2022. doi: 10.1109/TAC.2021.
3097706.

[45] J. Berberich, J. Köhler, M. A. Müller, and F. Allgöwer, “Data-driven tracking
MPC for changing setpoints,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 6923–
6930, 2020. doi: 10.1016/j.ifacol.2020.12.389.

[46] A. Xue and N. Matni, “Data-driven system level synthesis,” in Proc. Mach.
Learn. Research, vol. 144, 2021, pp. 1–12.

[47] S. Alemzadeh, S. Talebi, and M. Mesbahi, “D3pi: Data-driven distributed
policy iteration for homogeneous interconnected systems,” arXiv preprint
arXiv:2103.11572, 2021. doi: 10.48550/ARXIV.2103.11572.

129

[48] A. Bemporad, M. Morari, V. Dua, and E. Pistikopoulos, “The explicit so-
lution of model predictive control via multiparametric quadratic program-
ming,” in Proceedings of the 2000 American Control Conference. ACC,
IEEE, 2000, 872–876 vol.2. doi: 10.1109/ACC.2000.876624.

[49] A. Bemporad, N. A. Bozinis, V. Dua, M. Morari, and E. N. Pistikopoulos,
“Model predictive control: A multi-parametric programming approach,” in
Computer Aided Chemical Engineering, vol. 8, Elsevier, 2000, pp. 301–306.
doi: 10.1016/S1570-7946(00)80052-8.

[50] E. N. Pistikopoulos, V. Dua, N. A. Bozinis, A. Bemporad, and M. Morari,
“On-line optimization via off-line parametric optimization tools,” Com-
puters and Chemical Engineering, p. 11, 2002. doi: 10.1016/S0098-
1354(01)00739-6.

[51] J. Anderson, J. C. Doyle, S. H. Low, and N. Matni, “System level synthe-
sis,” Annu. Rev. Control, vol. 47, pp. 364–393, 2019. doi: 10.1016/j.
arcontrol.2019.03.006.

[52] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed op-
timization and statistical learning via the alternating direction method of
multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, 2010.
doi: 10.1561/2200000016.

[53] C. Amo Alonso, J. S. Li, J. Anderson, and N. Matni, “Distributed and
localized model predictive control. Part I: Synthesis and implementation,”
IEEE Transactions on Control of Network Systems, pp. 1–12, 2022. doi:
10.1109/TCNS.2022.3219770,

[54] D. Limon Marruedo, T. Alamo, and E. F. Camacho, “Stability analysis
of systems with bounded additive uncertainties based on invariant sets:
Stability and feasibility of MPC,” in Proc. IEEE ACC, 2002, pp. 364–369.
doi: 10.1109/ACC.2002.1024831.

[55] J. Sieber, S. Bennani, and M. N. Zeilinger, “A system level approach to
tube-based model predictive control,” IEEE Control Systems Letters, vol. 6,
pp. 776–781, 2022. doi: 10.1109/LCSYS.2021.3086190.

[56] C. Amo Alonso and N. Matni, “Distributed and localized closed-loop model
predictive control via System Level Synthesis,” pp. 5598–5605, 2020. doi:
10.1109/CDC42340.2020.9303936,

[57] Y. Chen and J. Anderson, “System level synthesis with state and input
constraints,” in Proc. IEEE CDC, 2019, pp. 5258–5263. doi: 10.1109/
CDC40024.2019.9029745.

[58] C. Amo Alonso, N. Matni, and J. Anderson, “Explicit distributed and local-
ized model predictive control via System Level Synthesis,” pp. 5606–5613,
2020. doi: 10.1109/CDC42340.2020.9304349,

130

[59] J. S. Li, SLS-MATLAB: Matlab toolbox for system level synthesis, 2019.
[Online]. Available: https://github.com/sls-caltech/sls-code.

[60] M. Grant and S. Boyd, CVX: Matlab software for disciplined convex pro-
gramming, version 2.1, http://cvxr.com/cvx, 2014.

[61] C. Conte, T. Summers, M. N. Zeilinger, M. Morari, and C. N. Jones, “Com-
putational aspects of distributed optimization in model predictive control,”
in Proc. IEEE CDC, IEEE, 2012, pp. 6819–6824. doi: 10.1109/CDC.
2012.6426138.

[62] Q. Li, B. Kailkhura, R. Goldhahn, P. Ray, and P. K. Varshney, “Robust de-
centralized learning using admm with unreliable agents,” IEEE Transactions
on Signal Processing, vol. 70, pp. 2743–2757, 2022. doi: 10.1109/TSP.
2022.3178655.

[63] S. Sadraddini and R. Tedrake, “Linear encodings for polytope containment
problems,” in Proc. IEEE CDC, 2019, pp. 4367–4372. doi: 10.1109/
CDC40024.2019.9029363.

[64] C. Amo Alonso, J. S. Li, J. Anderson, and N. Matni, “Distributed and
localized model predictive control. Part II: Theoretical guarantees,” IEEE
Transactions on Control of Network Systems, pp. 1–11, 2022. doi: 10.1109/
TCNS.2023.3262650,

[65] F. Blanchini, “Set invariance in control,” Automatica, vol. 35, no. 11,
pp. 1747–1767, 1999. doi: 10.1016/S0005-1098(99)00113-2.

[66] D. Mayne, J. Rawlings, C. Rao, and P. Scokaert, “Constrained model predic-
tive control: Stability and optimality,” Automatica, vol. 36, no. 6, pp. 789–
814, 2000. doi: 10.1016/S0005-1098(99)00214-9.

[67] J. Löfberg, “Minimax approaches to robust modelpredictive control,” PhD
thesis, Department of ElectricalEngineering, Linköping University, Sweden,
2003.

[68] S. P. Boyd and L. Vandenberghe, Convex optimization, en. Cambridge, UK;
New York: Cambridge University Press, 2004, isbn: 978-0-521-83378-3.

[69] K. Rokade and R. K. Kalaimani, “Distributed ADMM over directed net-
works,” arXiv preprint arXiv:2010.10421, 2020. doi: 10.48550/arXiv.
2010.10421.

[70] C. Amo Alonso, D. Ho, and J.M. Maestre, “Distributed linear quadratic
regulator robust to communication dropouts,” IFAC-PapersOnLine, vol. 53,
no. 2, pp. 3072–3078, 2020, 21st IFAC World Congress. doi: 10.1016/j.
ifacol.2020.12.1012,

[71] J. Yu, Y.-S. Wang, and J. Anderson, “Localized and distributed H2 state
feedback control,” pp. 2732–2738, 2021. doi: 10.23919/ACC50511.2021.
9483301.

131

[72] E. Gilbert and K. Tan, “Linear systems with state and control constraints:
The theory and applications of maximal output admissible sets,” IEEE Trans.
Autom. Control, vol. 36, no. 9, pp. 1008–1020, 1991. doi: 10.1109/9.
83532.

[73] G. Costantini, R. Rostami, and D. Gorges, “Decomposition methods for
distributed quadratic programming with application to distributed model
predictive control,” in IEEE Proc. Annu. Allerton Conf. Commun., Control,
Comput., 2018, pp. 943–950. doi: 10.1109/ALLERTON.2018.8636067.

[74] J. S. Li and C. Amo Alonso, “Global performance guarantees for localized
model predictive control,” Submitted to IEEE Open Journal of Control
Systems, 2023. doi: 10.48550/arXiv.2303.11264,

[75] L. Ballotta, M. R. Jovanović, and L. Schenato, “Can decentralized control
outperform centralized? the role of communication latency,” IEEE Transac-
tions on Control of Network Systems, pp. 1–11, 2023. doi: 10.1109/TCNS.
2023.3237483.

[76] T. Summers and J. Ruths, “Performance bounds for optimal feedback control
in networks,” in Proc. IEEE ACC, 2018, pp. 203–209. doi: 10.23919/ACC.
2018.8431774.

[77] J. S. Li, C. Amo Alonso, and J. C. Doyle, “Frontiers in scalable distributed
control: SLS, MPC, and beyond,” in IEEE American Control Conference,
2021, pp. 2720–2725. doi: 10.23919/ACC50511.2021.9483130.

[78] I. R. Shafarevich and A. O. Remizov, Linear algebra and geometry. Springer
Science & Business Media, 2012. doi: 10.1201/9781466593480.

[79] H. Y. Cheung, T. C. Kwok, and L. C. Lau, “Fast matrix rank algorithms and
applications,” Journal of the ACM (JACM), vol. 60, no. 5, pp. 1–25, 2013.
doi: 10.1145/2528404.

[80] C. Amo Alonso*, F. Yang*, and N. Matni, “Data-driven distributed and
localized model predictive control,” IEEE Open Journal of Control Systems,
vol. 1, pp. 29–40, 2022. doi: 10.1109/OJCSYS.2022.3171787,

[81] I. Markovsky and F. Dörfler, “Behavioral systems theory in data-driven
analysis, signal processing, and control,” Annual Reviews in Control, vol. 52,
pp. 42–64, 2021. doi: 10.1016/j.arcontrol.2021.09.005.

[82] F. Dörfler, P. Tesi, and C. De Persis, “On the certainty-equivalence approach
to direct data-driven lqr design,” IEEE Transactions on Automatic Control,
pp. 1–8, 2023. doi: 10.1109/TAC.2023.3253787.

[83] S. Muntwiler, K. P. Wabersich, L. Hewing, and M. N. Zeilinger, “Data-driven
distributed stochastic model predictive control with closed-loop chance con-
straint satisfaction,” pp. 210–215, 2021. doi: 10.23919/ECC54610.2021.
9655214.

132

[84] J. Willems and J. Polderman, Introduction to Mathematical Systems Theory:
A Behavioral Approach, T. in Applied Mathematics, Ed. Springer, New York,
1997. doi: 10.1007/978-1-4757-2953-5.

[85] L. Gurobi Optimization, Gurobi optimizer reference manual, 2021. [Online].
Available: http://www.gurobi.com.

[86] C. Amo Alonso and S.-H. Tseng, “Effective GPU parallelization of dis-
tributed and localized model predictive control,” pp. 199–206, 2022. doi:
10.1109/ICCA54724.2022.9831839,

[87] K. M. Abughalieh and S. G. Alawneh, “A survey of parallel implementations
for model predictive control,” en, IEEE Access, vol. 7, pp. 34 348–34 360,
2019. doi: 10.1109/ACCESS.2019.2904240.

[88] H. Jonson and T. Glad, “A method for state and control constrained linear
quadratic control problems,” in Proc. 9th IFAC World Cong., Budapest,
Hungary, 2-6 July, 1984, pp. 229–233. doi: 10.1016/S1474-6670(17)
61202-3.

[89] S. Richter, C. N. Jones, and M. Morari, “Real-time input-constrained MPC
using fast gradient methods,” in Proc. IEEE CDC, 2009, pp. 7387–7393.
doi: 10.1109/CDC.2009.5400619.

[90] F. Ke, Z. Li, H. Xiao, and X. Zhang, “Visual servoing of constrained mobile
robots based on model predictive control,” IEEE Trans. on Syst., Man, and
Cybern.: Syst., vol. 47, no. 7, pp. 1428–1438, 2017. doi: 10.1109/TSMC.
2016.2616486.

[91] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit
linear quadratic regulator for constrained systems,” Automatica, vol. 38,
no. 1, pp. 3–20, 2002. doi: 10.1016/S0005-1098(01)00174-1.

[92] M. Kogel and R. Findeisen, “Parallel solution of model predictive control
using the alternating direction multiplier method,” in Proc. 4th IFAC Conf.
on Nonlinear Model Predictive Control, 2012, pp. 369–374. doi: 10.3182/
20120823-5-NL-3013.00081.

[93] D.-K. Phung, B. Herisse, J. Marzat, and S. Bertrand, “Model predictive
control for autonomous navigation using embedded graphics processing
unit,” in Proc. 20th IFAC World Cong., Toulouse, France, 9-14 July, 2017,
pp. 11 883–11 888. doi: 10.1016/j.ifacol.2017.08.1415.

[94] L. Yu, A. Goldsmith, and S. Di Cairano, “Efficient convex optimization
on GPUs for embedded model predictive control,” in Proc. General Pur-
pose GPUs, Austin, TX, USA, 2017, pp. 12–21. doi: 10.1145/3038228.
3038234.

133

[95] P. Hyatt, C. S. Williams, and M. D. Killpack, Parameterized and GPU-
parallelized real-time model predictive control for high degree of freedom
robots, 2020. [Online]. Available: https://arxiv.org/abs/2001.
04931.

[96] B. Plancher and S. Kuindersma, “Realtime model predictive control using
parallel DDP on a GPU,” in Proc. IEEE ICRA, Montreal, Canada, May
2019.

[97] K. Ling, B. Wu, and J. Maciejowski, “Embedded model predictive control
(MPC) using a FPGA,” in 17th IFAC World Cong., Seoul, Korea, 6-11 July,
2008, pp. 15 250–15 255. doi: 10.3182/20080706-5-KR-1001.02579.

[98] A. Alessio and A. Bemporad, “A Survey on Explicit Model Predictive
Control,” in Nonlinear Model Predictive Control, M. Morari, M. Thoma, L.
Magni, D. M. Raimondo, and F. Allgöwer, Eds., vol. 384, Springer Berlin
Heidelberg, 2009, pp. 345–369. doi: 10.1007/978-3-642-01094-1_29.

[99] P. Grieder, M. Kvasnica, M. BaotiÄ, and M. Morari, “Stabilizing low com-
plexity feedback control of constrained piecewise affine systems,” Auto-
matica, vol. 41, no. 10, pp. 1683–1694, Oct. 2005. doi: 10.1016/j.
automatica.2005.04.016.

[100] S. Hovland, J. T. Gravdahl, and K. E. Willcox, “Explicit model predictive
control for large-scale systems via model reduction,” Journal of Guidance,
Control, and Dynamics, vol. 31, no. 4, pp. 918–926, Jul. 2008. doi: 10.
2514/1.33079.

[101] G. Pannocchia, J. B. Rawlings, and S. J. Wright, “Fast, large-scale model pre-
dictive control by partial enumeration,” Automatica, vol. 43, no. 5, pp. 852–
860, May 2007. doi: 10.1016/j.automatica.2006.10.019.

[102] T. Geyer, F. D. Torrisi, and M. Morari, “Optimal complexity reduction of
polyhedral piecewise affine systems,” Automatica, vol. 44, no. 7, pp. 1728–
1740, Jul. 2008. doi: 10.1016/j.automatica.2007.11.027.

[103] J. Holaza, B. TakÃ¡cs, M. Kvasnica, and S. D. Cairano, “Nearly optimal
simple explicit MPC controllers with stability and feasibility guarantees,”
Optimal Control Applications and Methods, vol. 36, no. 5, pp. 667–684,
2015. doi: 10.1002/oca.2131.

[104] S. Koehler and F. Borrelli, “Building temperature distributed control via
explicit MPC and a Trim and Respond methods,” in 2013 European Con-
trol Conference (ECC), Zurich: IEEE, Jul. 2013, pp. 4334–4339. doi: 10.
23919/ECC.2013.6669781.

[105] Y. Wang, N. Matni, and J. C. Doyle, “Separable and localized system-level
synthesis for large-scale systems,” IEEE Trans. Autom. Control, vol. 63,
no. 12, pp. 4234–4249, 2018. doi: 10.1109/TAC.2018.2819246.

134

[106] S.-H. Tseng and J. S. Li, SLSpy: Python-based system-level controller syn-
thesis framework, 2020. [Online]. Available: http://arxiv.org/abs/
2004.12565.

[107] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling lan-
guage for convex optimization,” Journal of Machine Learning Research,
vol. 17, no. 83, pp. 1–5, 2016.

[108] J. S. Li, C. Amo Alonso, and J. C. Doyle, “Frontiers in scalable distributed
control: SLS, MPC, and beyond,” pp. 2720–2725, 2021. doi: 10.23919/
ACC50511.2021.9483130,

