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ABSTRACT 

A substantial fraction of atmospheric science research is motivated by uncertainties in the 

sources of urban particulate matter and greenhouse gases. Such a focus is justified, as 

particulate matter exposure is responsible for up to nine million annual premature deaths 

globally, while climate change is rapidly altering ecosystems across the world. 

Recognizing the urgency of these interrelated problems, regulatory agencies in the U.S. 

and elsewhere have sought to limit emissions contributing to air quality degradation and 

global warming.  

In this dissertation, we use a combination of ambient measurements, statistical models, and 

computational models to identify the sources of urban particulate matter and methane in 

multiple locations in California. In Los Angeles, we investigated the effects of reductions 

in mobile source pollutant emissions (i.e., on-road and off-road vehicles) on ambient 

aerosol concentrations. Mobile sources have historically accounted for the dominant 

fraction of urban particulate matter in Los Angeles, but despite notable reductions in their 

emissions over the last decade, ambient aerosol concentrations have not declined 

appreciably. Measurements using an Aerosol Mass Spectrometer demonstrate the complex 

interplay of direct (i.e., intended) and indirect effects of simultaneous reductions in organic 

aerosol (OA) precursor and nitrogen oxide emissions from these sources. Mobile sources 

are found to account for a modest and declining fraction of the total aerosol burden, while 

the contributions of non-traditional sources such as volatile chemical products (e.g., paints 

and coatings, cleaning products, adhesives and sealants) have increased. Simulations of 

organic and inorganic aerosol formation informed by in-situ measurements are developed 

to identify possible targets of future regulatory efforts. 

In the San Joaquin Valley, we used airborne measurements of methane fluxes to evaluate 

dairy emissions inventories used by state regulatory agencies for policy development. 

Dairy operations currently account for nearly half of the state’s methane emissions, and 

recent legislation has mandated a 40% reduction in emissions by 2030. Observed methane 

fluxes align well with emission inventory predictions and demonstrate the utility of 
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airborne flux measurements to track emission reduction progress in the future. Factor 

analysis of a combined dataset of greenhouse gas and volatile organic compound 

concentrations indicates dairy operations account for ~65% of total methane emissions in 

the southern San Joaquin Valley, with the remainder attributed to fugitive oil and gas 

emissions. 
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C h a p t e r  1  

INTRODUCTION 

1.1 Overview 

The work presented in this thesis investigates questions related to two distinct but important 

aspects of atmospheric science research – urban air quality and greenhouse gas emissions. 

Here, we provide a brief overview of the motivating literature related to each topic. 

1.2 Background and motivation – urban air quality 

Atmospheric aerosols are small, suspended liquid or solid particles that exert considerable 

effects on global climate (IPCC, 2021a) and negatively impact human health (Burnett et 

al., 2014; Cohen et al., 2017; Burnett et al., 2018). Aerosols range in size from a few 

nanometers to multiple micrometers and originate from a variety of natural (e.g., sea spray, 

dust, biogenic emissions) and anthropogenic (e.g., vehicular combustion, industrial 

emissions) organic and inorganic sources (Seinfeld and Pandis, 2016). These particles are 

typically classified as either primary, denoting direct emission in the particulate phase, or 

secondary, indicating formation in the atmosphere from gas-to-particle conversion.  

Aerosols influence climate both directly, by scattering incoming sunlight (direct effect) and 

indirectly, by acting as seeds for cloud droplet formation (i.e., cloud condensation nuclei 

(CCN)) (IPCC, 2021a). Changes in CCN concentrations can modulate both cloud 

reflectivity and cloud lifetime (indirect effect). The negative radiative forcing associated 

with increased global CCN from anthropogenic activities represents one of the least 

constrained aspects of global climate change (IPCC, 2021).  

Aerosols also influence human health by depositing in alveoli, inducing inflammation, and 

migrating into the bloodstream, causing increased rates of cerebrovascular disease, 

ischaemic heart disease, and lung cancer (Burnett et al., 2014). Outdoor aerosol pollution 

is the fifth largest global mortality risk factor (Cohen et al., 2017) and causes up to nine 
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million excess mortalities annually (Burnett et al., 2018), with particularly elevated health 

impacts in urban regions that could increase considerably over the next thirty years 

(Lelieveld et al., 2015). 

The Los Angeles Basin is famous for its historically poor air quality (Warneke et al., 2012; 

Pollack et al., 2013; SCAQMD, 2023). Aerosol concentrations are particularly pronounced 

in the region due to the presence of a dense urban population in a valley largely bounded 

by mountain ranges, leading to considerable aerosol precursor emissions and limited 

ventilation rates (Blumenthal et al., 1978; Schultz and Warner, 1982). The  impacts of the 

poor air quality, referred to as “smog” given its resemblance to a mixture of smoke and 

fog, were recognized by the early 1900s (Mitchell et al., 2016; SCAQMD, 2023; CARB, 

2023).  

In the 1940s, experiments led by Air Haagen-Smit at Caltech recognized the role of 

hydrocarbon precursors, otherwise known as reactive organic gases (ROG) or volatile 

organic compounds (VOC), and nitrogen oxides (NOx) in the formation of particulate 

matter and ozone, the major components of urban smog (Haagen-Smit, 1952). Industrial 

emissions were initially blamed for the smog, and concentrated regulatory efforts were 

implemented to limit emissions of both organic and inorganic gases from these sources 

(CARB, 2023). Since the implementation of industrial emission controls in the 1950s, 

exhaust and evaporative emissions from mobile sources (e.g., on-road and off-road 

vehicles and equipment) have accounted for the majority of local ROG and NOx 

contributing to regional smog formation (Pollack et al., 2013; Mitchell et al., 2016; 

CEPAM, 2019; SCAQMD, 2023).  

Mobile sources produce urban aerosol both directly, through emission of lubricating oil 

particles termed primary organic aerosol (POA), and indirectly through emissions of 

gaseous organic (e.g., ROG) and inorganic (e.g., NOx) species that form secondary organic 

aerosol (SOA) and inorganic aerosol (SIA) following atmospheric oxidation (Gentner et 

al., 2017). Recognition of the importance of mobile sources to local air pollution in the 

mid-1900s spawned numerous regulatory efforts aimed at limiting their emissions 

(SCAQMD, 2023; CARB, 2023). Since the 1960s, California has led the country in 
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imposing emissions standards on on-road and off-road mobile sources, with increasingly 

stringent limits for ROG, NOx, and POA emissions from vehicular exhaust, detailed 

specifications for fuel composition (e.g., limits on aromatic content), and requirements for 

installation of technological devices aimed at limiting evaporative emissions (CARB, 

2023). Federal legislative efforts, such as the Tier 0-3 programs and non-road source 

standards, have followed (EPA, 2023a). 

The suite of regulatory efforts aimed at reducing mobile source emissions have improved 

air quality considerably over the last seventy years (Warneke et al., 2012; Pollack et al., 

2013). Emission rates of ROG and NOx (i.e., emissions per mile driven) for new passenger 

vehicles have declined by 99% (Lu et al., 2018; EPA, 2023b). Off-road emissions have 

seen similar improvements as a result of the multitude of individual state and federal 

regulations targeting specific sources (e.g., the Federal Phase 1-3 program aimed at small 

off-road spark ignition engines) (EPA, 2023c). The effectiveness of these efforts is 

reflected in ambient concentrations of both primary pollutants, such as NOx and carbon 

monoxide (CO), which have declined by more than 80% since 1960, and secondary 

pollutants such as ozone and OA, which have seen similar declines (Warneke et al., 2012; 

Pollack et al., 2013; McDonald et al., 2012; 2015).  

Despite the clear progress made over the last few decades, however, average aerosol 

concentrations measured in Los Angeles have remained relatively constant since 2010 

(Figure 1.1a). The consistency is particularly notable given that mobile source emissions 

have continued to decline appreciably during this period, as is clearly seen in 

concentrations of primary pollutants emitted by mobile sources, such as CO (Figure 1.1a) 

(CEPAM, 2019). While global climate change is thought to have contributed to increasing 

wildfire frequency in California, aerosol emissions associated with wildfire events cannot 

account for the trend (Enhayati Ahanar, 2021).  
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Figure 1.1: Trends in aerosol concentrations in Los Angeles. (a) Annual average PM2.5 
concentrations measured using Federal Reference Methods at monitoring sites in Los Angeles 
County from 2000-2020, demonstrating minor changes since 2010. Annual average concentrations 
of CO and NOx measured in Pasadena, CA are also shown. (b) Annual average concentrations of 
organic carbon (OC) and nitrate (NO3) PM2.5 measured in Downtown Los Angeles and Rubidoux, 
CA demonstrating spatial variability in trends of speciated PM2.5.  

 

Multiple factors have been hypothesized to contribute to the lack of recent air quality 

progress. Due to the effective historical regulation of mobile source emissions, less 

controlled, non-traditional sources of ROG such as volatile chemical products (e.g., paints, 

cleaning products, personal care products, industrial solvents) (McDonald et al., 2018; 

Khare and Gentner, 2018; Seltzer et al., 2021a,b) and asphalt (Khare et al., 2020) have been 

recognized as potentially important contributors to OA formation. While prior regulatory 

efforts have focused on limiting emissions from individual classes of VCPs (e.g., paints, 

industrial solvents), existing policies have primarily focused on ozone-forming emissions 

rather than aerosol precursors specifically (Seltzer et al., 2021a). Asphalt use is widespread 

in the Los Angeles Basin because of the sprawling nature of the region’s development, and 
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emissions may now account for as much local OA formation as all mobile sources 

combined (Khare et al., 2020).  

In-basin OA formation rates may have also increased over the last decade as a result of the 

effective regulation of mobile-source NOx emissions (Warneke et al., 2013; Pollack et al., 

2013). In urban regions with dense NOx sources (e.g., heavy-duty diesel vehicles), 

concentrations of the hydroxyl radical (OH), the primary oxidant of anthropogenic SOA 

precursors, increase as NOx emissions decline (Seinfeld and Pandis, 2016). This 

phenomenon has historically been observed in the Los Angeles Basin on weekends, when 

NOx emissions decline due to reduced commercial heavy-duty diesel truck traffic, and has 

also been inferred from long-term ratios of NOx to the sum of NOx oxidation products 

(Pollack et al., 2013). Higher OH concentrations increase the rate of SOA production from 

emitted precursors, leading to higher SOA concentrations produced before air masses are 

advected out of the basin (Ortega et al., 2016).  

Finally, reductions in NOx emissions may have altered VOC oxidation chemistry and 

thereby increased SOA yields (defined as the amount of SOA formed per mass of precursor 

oxidized). Laboratory studies of both important individual anthropogenic SOA precursors 

(e.g., toluene and other aromatics) and directly emitted passenger vehicle exhaust have 

demonstrated that SOA yields increase substantially under low-NOx experimental 

conditions (Ng et al., 2007; Chan et al., 2009; Zhao et al., 2017). 

While the density of air quality measurements in the Los Angeles Basin is among the 

highest of any urban location in the U.S. (Pollack et al., 2013), identifying the mechanisms 

responsible for the aerosol trend using existing datasets remains difficult. Speciated aerosol 

concentrations have only been measured at two locations in the basin since 2010 

(Downtown Los Angeles and Rubidoux), and decadal trends in individual aerosol 

components differ notably between locations (Figure 1.1b). Gas-phase data provide 

evidence for decreasing mobile source emissions and shifts in ozone chemistry consistent 

with increasing OH concentrations, but quantifying the effect of these changes on SOA is 

complicated by the limited time resolution and chemical specificity of existing aerosol and 

ROG measurements (Pollack et al., 2013; Baidar et al., 2015). 
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While three-dimensional simulations of regional air quality could ideally be used to 

identify the drivers of historical trends, prior simulations of both OA (Lu et al., 2020; 

Pennington et al., 2021; Seltzer et al., 2021) and IA (Ensberg et al., 2013) in the basin have 

struggled to accurately reproduce ambient concentrations. Whether historical 

measurement-model disagreement is the result of inaccuracies in emissions, understanding 

of aerosol formation efficiencies, or errors in simulated meteorology/atmospheric transport 

patterns remains unclear (Lu et al., 2020; Seltzer et al., 2021).  

The Los Angeles Basin remains in non-attainment of the National Ambient Air Quality 

Standard (NAAQS) for ambient PM2.5, underscoring the need for identification of the 

underlying reasons for the PM2.5 trend and development of additional regulatory policies 

that can further improve local air quality. This need is particularly urgent given that the 

Environmental Protection Agency recently proposed further reduction of the PM2.5 

NAAQS to a value ~20% lower than the current standard (EPA, 2023d), suggesting the 

basin will remain in non-compliance without dedicated efforts to reduce aerosol-forming 

emissions. 

1.3 Background and motivation – methane emissions 

Methane emissions represent the second largest positive anthropogenic forcing on the 

climate system, leading to accelerated global warming and subsequent impacts on natural 

ecosystems, sea levels, and the frequency of extreme weather events (IPCC, 2021b). 

Methane is a much more powerful greenhouse gas than carbon dioxide, with a global 

warming potential that varies from 84 to 28 when evaluated over 20- or 100-year time 

horizons (IPCC, 2021b). Globally, methane emissions have doubled over the last two 

centuries, a trend that is clearly reflected in methane concentrations derived from in-situ 

measurements and ice core samples (IPCC, 2021b). Given the 20-year GWP, reducing 

methane emissions in the near-term represents a particularly effective potential method to 

limit global warming over the next century (Ripple et al., 2014).  

Livestock-related sources account for ~30% of global anthropogenic methane emissions 

and 5% of total anthropogenic greenhouse gas emissions (IPCC, 2021b). Current global 
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warming targets, such as those developed in the historic Paris Agreement, are therefore 

unlikely to be met without considerable reductions in emissions from livestock operations 

(Clark et al., 2020). Recent estimates suggest that on a global scale, livestock methane 

emissions need to be reduced by 11-30% by 2030 and 24-47% by 2050 to limit warming 

to 1.5oC (Arndt et al., 2022).  

Ruminant livestock, and dairy/beef cattle in particular, account for the dominant fraction 

of livestock-related methane emissions (Ripple et al., 2014; IPCC, 2021b). Ruminants 

produce methane both metabolically, through microbial fermentation of grains and starches 

in the rumen (enteric fermentation), and indirectly through the anaerobic decomposition of 

their manure (manure management) (Ripple et al., 2014; Owen and Silver, 2015). 

Emissions from manure management practices are particularly elevated in developed 

countries with dense dairy operations, where manure accumulation in large-scale storage 

systems produces prolonged anoxic conditions (Owen and Silver, 2015; Arndt et al., 2022). 

Combined, enteric fermentation and manure management practices emit ~109 Tg yr-1 of 

methane globally, an amount equivalent to all fossil-fuel related activities combined (IPCC, 

2021b).  

Livestock-related methane emissions are particularly substantial in California, which 

produces approximately 20% of the United States’ milk supply from 1.7 million dairy 

cows. Current inventories produced by the California Air Resources Board (CARB) 

suggest that enteric fermentation and manure management practices account for ~50% of 

the state’s total methane emissions (CARB, 2022a). Recognizing the urgent need to limit 

methane emissions, the California Senate recently passed Senate Bill 1383, which requires 

a 40% reduction in methane emissions from dairy manure management practices relative 

to 2013 levels by 2030 (SB 1383, 2016). 

Most manure management emissions in California originate from waste management 

ponds, typically referred to as anaerobic lagoons, which store manure until eventual field 

application (Marklein et al., 2021). Installation of anaerobic digestion systems, which 

capture and transport emitted methane to processing centers for conversion into pipeline-

quality natural gas, currently represents the primary planned mechanism to achieve 
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emission reduction goals (CARB, 2022b). The development of these anaerobic digester 

systems, the infrastructure required for effective conversion into natural gas, and the 

necessary public private partnerships has only recently begun in the state, but development 

is expected to accelerate with increased direct investment and incentives from federal and 

state agencies (CDFA, 2023; SoCalGas, 2019).  

Effective development and implementation of emission reduction plans requires detailed 

understanding of the current magnitude of dairy emissions and accurate monitoring as 

anaerobic digester systems are constructed. Dairy emissions inventories are developed 

using process-based models that calculate emissions from enteric fermentation and manure 

management separately based on animal energy intake (i.e., food consumption) and solid 

waste production, respectively (CARB, 2022a). The emission factors underlying these 

models are based on a limited number of direct measurements at dairy facilities, and only 

a modest amount of information about dairy-specific manure management practices exists 

(e.g., fraction of waste diverted to lagoons vs. stored using solid methods) (Marklein et al., 

2021). Considerable effort has therefore been devoted to evaluating the accuracy of 

emission inventories in California and elsewhere (Jeong et al., 2016; Cui et al., 2019; 

Marklein et al., 2021). 

Two primary top-down methods, inverse modeling of ambient methane concentrations and 

direct measurements of methane fluxes from individual dairy facilities, have historically 

been used to evaluate the accuracy of California dairy emission inventories. Inverse 

modeling studies primarily utilize data from the greenhouse gas monitoring network 

established by the CARB, which consists of eight locations in California with continuous 

methane measurements (Jeong et al., 2013; 2016; Cui et al., 2017; 2019). Briefly, in this 

method, bottom-up prior emissions inventories are combined with detailed atmospheric 

transport models to evaluate regional methane emissions using Bayesian modeling 

frameworks (Jeong et al., 2013; 2016; Cui et al., 2017; 2019). Depending on the detail of 

the prior inventories and the spatial density of measurements utilized, these methods can 

produce emissions estimates for individual regions and/or source sectors (e.g., 

dairy/livestock, natural gas, etc.) in the state (Jeong et al., 2016; Cui et al., 2019). Direct 
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measurements represent an alternative method to evaluate emission inventory accuracy, 

often using either stationary (Borhan et al., 2011; Arndt et al., 2018) or mobile 

measurements (Amini et al., 2022; Golston et al., 2020) to quantify emissions from an 

entire dairy or individual emission sources within an individual dairy operation (e.g., 

anaerobic lagoons, housing pens, etc.) (Arndt et al., 2018).  

In general, top-down estimates using inverse modeling techniques applied to both long-

term (Miller et al., 2013; Jeong et al., 2016) and short-term (Zhao et al., 2009; Cui et al., 

2017) measurements have suggested that methane emissions from dairy livestock may be 

twice as large as the California Air Resources Board (CARB) predicts. However, results 

of recent inventory comparisons are inconsistent, as long-term measurements at individual 

dairy facilities (Arndt et al., 2018), short-term surveys of multiple dairy facilities (Peischl 

et al., 2013; Amini et al., 2022; Golston et al., 2022) and short-term inverse modeling 

studies (Heerah et al., 2021) have supported the accuracy of CARB predictions.  

The underlying reasons for these differences remain unclear but could be the result of 

inaccuracies in the atmospheric transport models used in inverse modeling studies (e.g., 

simulated mixing heights) (Cui et al., 2019), errors in the spatial allocation of emissions 

within prior inventories (Marklein et al., 2021), or temporal variability in emissions 

(Heerah et al., 2021; Amini et al., 2022). Resolution of these inconsistencies is needed to 

establish confidence in emissions projections and ensure that emission reduction plans will 

be sufficient.  

1.4 Organization of thesis 

In Chapter 2, using a combination of atmospheric field measurements and computational 

modeling techniques, we quantify the complex effects of reductions in mobile source 

emissions on ambient aerosol concentrations in Los Angeles since 2010. We demonstrate 

that simultaneous reductions in mobile source emissions of SOA precursors and NOx has 

produced relatively consistent SOA concentrations, as increases in oxidant levels have 

offset the direct effects of reduced emissions of mobile source SOA precursors. However, 

the relative contribution of mobile sources to the local SOA burden has declined from as 
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much ~50% in 2010 to only ~25% in 2022. We further show that overnight nitrate 

aerosol production rates have likely declined by 60% or more over the last decade due to 

reduced NOx emissions. Our results demonstrate the declining relevance of mobile source 

emissions to the ambient aerosol burden in Los Angeles and highlight the need for 

increased regulatory focus on non-mobile, area, and stationary source emissions. 

In Chapter 3, we use airborne measurements of methane fluxes over the San Joaquin Valley 

(SJV) of California to quantify methane emission rates from dairy operations, which are 

estimated to account for approximately 50% of California’s methane budget. Our 

measurements suggest average emission rates of ~120 kg hr-1 for dairies in this region, 

corresponding to ~55 g dairy cow-1 hr-1. These values align with predictions from emissions 

inventories currently used by state agencies, supporting their validity and use in policy 

development. We further provide the first direct demonstration of the improved spatial 

accuracy of the recently developed VISTA-CA dairy emissions inventory relative to the 

prior EPA inventory used for methane emissions modeling in the southern SJV. Factor 

analysis of a combined greenhouse gas  and VOC dataset suggests that dairy operations 

account for ~65% of total methane emissions over the southern San Joaquin Valley, with 

the remainder likely associated with fugitive oil and gas emissions.  

Chapter 4  investigates the relationship between aerosol composition and cloud forming 

capacity over the N.E. Pacific Ocean, a region where local stratocumulus are thought to be 

particularly sensitive to variations in cloud condensation nuclei characteristics. Using 

airborne measurements of aerosol composition and cloud condensation nuclei 

concentrations, we demonstrate that the sensitivity of simulated cloud droplet number 

concentrations (CDNC) to aerosol composition is ~40% as large as the sensitivity to the 

geometric median diameter of size distribution. Model simulations demonstrate that CDNC 

sensitivity to aerosol hygroscopicity does not decrease monotonically with updraft speed 

when underlying aerosol size distributions are bimodal, as has been assumed previously. 
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C h a p t e r  2  

Insights into the complex effects of reduced mobile source emissions on 
submicron particulate matter concentrations in Los Angeles 

 
Schulze, B.C.; Kenseth, C.M.; Pennington, E.A.; Ward, R.X.; Seltzer, K.M.; Van Rooy, P.; Tasnia, 
A.; Morris, M.; Jensen, A.; Barletta, B.; Meinardi, S.; Huang, Y.; Parker, H.A.; Hasheminassab, S.; 
Crounse, J.D.; Day, D.; Campuzano-Jost, P.; de Gouw, J.; Jimenez, J.; Blake, D.R.; Barsanti, K.C.; 
Pye, H.O.T.; Wennberg, P.O.; Seinfeld, J.H. Environmental Science & Technology. In preparation. 
 
 
Abstract 
 

Despite considerable reductions in mobile source emissions, aerosol concentrations 

measured in Los Angeles using Federal Reference Methods have not appreciably declined 

over the last decade. Here, we use measurements and zero-dimensional modeling of aerosol 

formation in Pasadena, CA in 2010 and 2022 to quantify the impacts of these emissions 

reductions. Changes in secondary organic aerosol (SOA) concentrations expected from 

reduced mobile source emissions appear to have been offset by increases in hydroxyl 

radical concentrations, an indirect effect of reduced emissions of nitrogen oxides. As a 

result, while the contribution of mobile sources to the SOA burden has declined from ~50% 

in 2010 to only ~25% in 2022, concentrations of locally-formed SOA have remained 

effectively constant. In contrast to SOA, reductions in mobile source NOx emissions have 

considerably reduced overnight production of nitric acid and ammonium nitrate (AN) 

aerosol (~60%). We provide evidence that FRM measurements may have underrepresented 

the reduction in AN concentrations since 2010 due to evaporation of semi-volatile species 

prior to quantification. Given the effectiveness of regulatory efforts aimed at mobile 

sources, and on-road sources in particular, further reductions in aerosol concentrations in 

Los Angeles will likely require increased focus on abating emissions from non-road and 

area sources. 
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2.1  Introduction 

Exposure to ambient aerosol is associated with increased risk of cardiovascular and 

respiratory disease and is estimated to cause up to nine million premature deaths per year 

globally (Cohen et al., 2017; Burnett et al., 2019; Pye et al., 2021). In the U.S., mobile 

emission sources (i.e., on-road and non-road vehicles and equipment) have historically 

been responsible for a considerable fraction of organic aerosol (OA) and inorganic aerosol 

(IA) concentrations in urban areas (Watson et al., 1994; Schauer et al., 1996; Stone et al., 

2009; Hasheminassab et al., 2014; McDonald et al. 2015; Ortega et al., 2016; Gentner et 

al., 2017). Vehicle operation produces OA through both direct particulate emissions, 

termed primary OA (POA), and via exhaust and/or evaporative emissions of gas-phase fuel 

components, which undergo atmospheric oxidation to form secondary OA (SOA) (Gentner 

et al., 2017). Fuel combustion also leads to considerable nitrogen oxide (NOx) emissions. 

Atmospheric oxidation of NOx forms nitric acid (HNO3), which subsequently reacts with 

gas-phase ammonia to form ammonium nitrate (AN) aerosol (Ensberg et al., 2013; Schiferl 

et al., 2014).  

The Los Angeles Basin has historically experienced some of the highest aerosol 

concentrations in the country (Ensberg et al., 2013; Lawson et al., 1990; Docherty et al., 

2011; Hayes et al., 2013) and has failed to attain compliance with the 2012 National 

Ambient Air Quality Standard for fine particulate matter (PM2.5) concentrations (EPA, 

2012). While implementation of regulatory policies such as the California Low-Emission 

Vehicle (LEV) program have successfully reduced gaseous and aerosol pollutant 

concentrations over the last seventy years (McDonald et al., 2015; Warneke et al., 2012; 

Pollack et al., 2013), regulatory monitoring stations indicate that aerosol concentrations in 

Los Angeles have remained relatively constant during the last decade, despite considerable 

declines in mobile source emissions of organic and inorganic aerosol precursors (CEPAM, 

2019).  

Multiple factors may contribute to the recently observed trend in aerosol concentrations. 

The reduction of on-road aerosol precursor emissions (Hasheminassab et al., 2014; 

Altuwayjiri et al., 2021) has likely increased the relative importance of less-controlled, 

non-vehicular aerosol precursor sources such as volatile chemical products (VCPs) (Khare 
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and Gentner, 2018; McDonald et al., 2018; Khare et al., 2020; Seltzer et al., 2021a,b). 

Reductions in urban NOx emissions may have also increased local hydroxyl radical (OH) 

concentrations, increasing the rate of volatile organic compound (VOC) oxidation, and 

thereby increasing the fraction of SOA precursors oxidized in the basin (Warneke et al., 

2013; Kim et al., 2016; Van Rooy et al., 2021). Lower NOx emissions could have also 

altered photochemical oxidation pathways and in turn increased SOA yields (defined as 

the amount of OA formed per mass of precursor oxidized) (Ng et al., 2007; Chan et al., 

2009; Praske et al., 2018).  

Accurate determination of the relative contributions of changing aerosol sources, 

oxidant concentrations, and oxidative pathways to the recently observed invariance in 

aerosol mass loadings requires detailed modeling of local aerosol formation informed by 

speciated measurements of aerosol composition. While model representation of urban 

aerosol formation is improving, recent simulations of Los Angeles regional air quality 

using three-dimensional models have poorly captured concentrations of both organic 

(Jathar et al., 2017; Lu et al., 2020; Pennington et al., 2021; Seltzer et al., 2021a) and 

inorganic (Ensberg et al., 2013; Schiferl et al., 2014; Heald et al., 2012) aerosol. In the 

absence of accurate regional models, constrained zero-dimensional box models have been 

successfully used to provide insight into aerosol sources in Los Angeles (Hayes et al., 2015; 

Ma et al., 2017) and other urban environments (Dzepina et al., 2009). 

In this work, we compare measurements of ambient aerosol concentrations and 

composition obtained with a High-Resolution Time-of-Flight Aerosol-Mass-Spectrometer 

(HR-ToF-AMS) at the same location in Pasadena, CA in 2010 and 2022 to the results of 

detailed model simulations of organic and inorganic aerosol formation. We suggest that 

recent reductions in on-road vehicle emissions have had complex direct and indirect effects 

on both OA and IA production. Results further suggest that mobile source emissions now 

account for a modest and declining fraction of the total aerosol burden in Los Angeles. 
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2.2   Methods 

2.2.1 Field site description 

All measurement campaigns discussed here occurred on the campus of the California 

Institute of Technology (Caltech) in Pasadena, CA. Detailed descriptions of the CalNex-

2010 campaign (May 15th – June 15th, 2010) are provided in Hayes et al. (2013). In 2022, 

aerosol and trace gas measurements were made from the top of Caltech Hall (~40m 

altitude) from May 13th to June 23rd during the Los Angeles Air Quality Campaign 

(LAAQC-2022) and from July 4th to August 15th during the California Research at the 

Nexus of Air Quality and Climate Change-Two field study (CalNexT-2022). The Caltech 

campus is approximately 18 km northeast of downtown Los Angeles. Prevailing winds in 

Pasadena were typically from the southwest near midday, transporting air from the urban 

core of Los Angeles. Diurnal trends in major meteorological parameters during all three 

campaigns are shown in Figure 2.S1. Temperatures during LAAQC-2022 and CalNexT-

2022 were approximately 2oC and 6oC warmer than during CalNex-2010, respectively, and 

relative humidities were correspondingly lower. Given the considerable meteorological 

differences between CalNexT-2022 and the other campaigns, we focus our discussion 

below on comparisons between CalNex-2010 and LAAQC-2022. 

 

2.2.2 Instrumentation 

2.2.2.1 AMS sampling and analysis 

Ambient submicron, non-refractory PM (NR-PM1) was measured during all three 

campaigns using an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer 

(HR-ToF-AMS; hereafter “AMS”). A detailed description of AMS operation during 

CalNex-2010 is provided in Hayes et al. (2013). During LAAQC-2022, the AMS sampled 

ambient air through approximately 7m of 3/8” stainless steel line connected to a 2.5 μm 

Teflon-coated cyclone mounted on the roof of Caltech Hall. The sampling setup was 

similar during CalNexT-2022, but incoming air was first delivered to a valve system 

capable of alternatively sampling between ambient air and the output of an oxidation flow 

reactor (OFR). Ambient air was dried using a 24” Nafion dryer during both campaigns. 
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During CalNexT-2022, ambient data were collected for a five-minute period every ten 

minutes, with the remaining time spent sampling output from the OFR. Data collected 

during each campaign were measured using the “V-mode” ion flight path through the time-

of-flight chamber. Data were analyzed using the SQUIRREL v1.65C and PIKA v1.25C 

software packages. Standard methods were used to correct the data for gas-phase 

interferences and composition-dependent collection efficiencies (Middlebrook et al., 

2012). Elemental analysis of organic aerosol composition was performed using the 

“Improved-Ambient” method (Canagaratna et al., 2015). The ionization efficiency of 

nitrate and relative ionization efficiencies of ammonium and sulfate were calibrated using 

dry, 350-400 nm ammonium nitrate and ammonium sulfate particles approximately every 

week during each campaign. Time series of the calibrated IE values are shown in Figure 

2.S2. 

Mass loadings of organic and inorganic nitrates measured by the AMS were estimated 

using two methods. The NOx ratio method was used to analyze data collected during 

LAAQC-2022 and CalNexT-2022 (Farmer et al., 2010; Xu et al., 2015). Briefly, laboratory 

measurements have demonstrated that nitrate functionalities associated with organic and 

inorganic nitrates fragment to produce considerably different NO+/NO2+ ion ratios in the 

AMS, termed RON and RAN, respectively (Farmer et al., 2010). While the specific RON and 

RAN values vary between instruments, we used the procedure of Fry et al. (2013) and 

assumed that the RON/RAN value is instrument independent. Values of RAN were calculated 

from calibration data using pure AN particles. We used an RON/RAN value of 3.99 ± 0.25 

following Xu et al. (2015), which represents values observed for β-pinene organic nitrates 

in laboratory studies. Using an alternative RON/RAN value of 2.75, as suggested by Day et 

al. (2022), decreases the inferred inorganic nitrate concentrations in LAAQC-2022 and 

CalNexT-2022 by 12% and 25%, respectively, which has a negligible effect on our 

conclusions.  

Lacking IE calibration data from 2010, we also used the ionic balance method to 

estimate organic and inorganic nitrate concentrations during each campaign (Farmer et al., 

2010; Zaveri et al., 2020). This method assumes that any ammonium aerosol in excess of 

the amount required to fully neutralize measured sulfate and chloride (i.e., needed to form 
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(NH4)2SO4 and NH4Cl) is associated with inorganic nitrate (i.e., NH4NO3). Organic 

nitrates are then assumed to represent the difference between total measured nitrate aerosol 

concentrations and the inferred concentration of inorganic nitrates. Good agreement was 

observed between the two nitrate quantification methods during both LAAQC-2022 and 

CalNexT-2022 (Figure 2.S3).  

Positive Matrix Factorization (PMF) was applied to the OA mass spectral datasets 

collected during each campaign to gain insight into OA sources. PMF is a bilinear 

unmixing factor analysis model that deconvolves a time series of measured species into a 

set of compositionally static factors whose contributions to the input dataset vary in time 

(Paatero and Tapper, 1994; Paatero, 1997). PMF analysis of the 2010 dataset is discussed 

extensively in Hayes et al. (2013). During LAAQC-2022 and CalNexT-2022, datasets were 

prepared for PMF analysis following recommendations of Ulbrich et al. (2009). 

Specifically, “weak” ions were defined as those with a signal-to-noise ratios (SNR) of <2 

and down-weighted by a factor of 2. Ions with a SNR of <0.2 were removed from the 

dataset. Descriptions of PMF solution selection are provided in SI Section 2.S2.  

 

2.2.2.2 Volatile organic compound measurements 

Detailed descriptions of VOC measurements performed in 2010 are provided in Borbon 

et al. (2013) and de Gouw et al. (2017). Briefly, VOC were measured using a custom-built 

two-channel online gas chromatography-mass spectrometry system (GC-MS) with a time 

resolution of 30 minutes.  

During LAAQC-2022 and CalNexT-2022, ambient whole air samples (WAS) were 

collected using evacuated 2-liter electropolished stainless steel canisters three times per 

day. An automated canister sampler located on the roof of Caltech Hall was used to 

pressurize 32 individual canisters with ambient air to an internal pressure of 20 psi. 

Samples were collected in the early morning (5:30-6:30 PDT), mid-morning (9:00-10:00 

PDT), and in the afternoon during the typical urban plume arrival period (14:00-15:00 

PDT). WAS measurements were analyzed at the University of California, Irvine using a 

multi-detector gas chromatography (GC) system. A detailed description of the analytical 
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procedure used to quantify VOC concentrations is provided in Simpson et al. (2010) and 

Van Rooy et al. (2021). 

 

2.2.2.3 Additional aerosol and trace gas measurements 

Multiple additional aerosol and trace gas measurements were performed during CalNex-

2010, as described by Hayes et al. (2013) and SI Section 2.S1.  

Ambient PM2.5 measurements were made from the roof of Caltech Hall during both 

LAAQC-2022 and CalNexT-2022 using a Teledyne T640 PM2.5 analyzer housed in a 

weatherproof enclosure. The T640 is an optical aerosol spectrometer that uses scattered 

light to quantify particle size following Lorenz-Mie theory. Aerosols are dried to a 

maximum of 35% relative humidity prior to sampling by dynamically adjusting the 

temperature of the incoming sample stream. Data were reported at a time resolution of 1 

minute. The effective size range of the T640 is ~180nm to 2.5 μm. Comparisons of AMS 

mass concentrations with the T640 PM2.5 during LAAQC-2022 and CalNexT-2022 are 

shown in Figure 2.S6. 

During CalNexT-2022, a TSI Inc. scanning mobility particle sizer (SMPS) measured 

ambient particle number distributions from ~20-700 nm diameter. The SMPS used the 

same inlet line as the AMS, but the aerosol flow passed through an additional 2m of ¼” 

stainless steel line. The SMPS operated with an aerosol flow rate of 0.3 lpm and a sheath 

flow rate of 3 lpm, similarly to SMPS operation during CalNex-2010. Individual size 

distributions were measured every 2.5 minutes. Comparisons of inferred AMS volume 

concentrations during CalNexT-2022 with volume concentrations inferred from the SMPS 

are shown in Figure 2.S7. 

Ozone concentrations during the 2022 campaigns were measured using a Teledyne 

T400 UV absorption analyzer, NO and NOy concentrations were measured using 

chemiluminescence analyzer with a molybdenum NOy-NO converter located outside near 

the sampling inlet (Teledyne T200U), and NO2 concentrations were measured using Cavity 

Attenuated Phase Shift (CAPS) with a Teledyne T500U instrument. Concentrations of 

carbon monoxide were measured using IR spectroscopy with a Teledyne M300EU2 
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Meteorological data were obtained from measurements associated with the Total Carbon 

Column Observing Network (TCCON) on the roof of Linde Laboratory, approximately 

100m from Caltech Hall.  

 

2.2.3 Zero-dimensional modeling 

2.2.3.1 Urban OA box model 

We developed a zero-dimensional model of urban OA formation to quantify changes in 

local OA sources over the last decade in Los Angeles. The model framework is largely 

based on previously developed zero-dimensional models of OA formation in urban 

environments (Dzepina et al., 2009; Hayes et al., 2015; Ma et al., 2017). Individual 

simulations are performed for each hour of an average diurnal cycle during each campaign. 

Emissions of OA precursors are initialized in the model using measured background-

corrected concentrations of carbon monoxide (ΔCO) and inventory-based estimates of 

speciated OA precursor emissions from on-road, non-road, and area/stationary sources in 

Los Angeles County relative to total estimated CO emissions (Δprecursor / ΔCO). Total 

precursor emissions from each source are divided into a set of lumped model species based 

on volatility and composition, as described in SI Section 2.S4. Emitted precursors are 

oxidized until the photochemical age (i.e., OH exposure) of the simulated airmass reaches 

the measured photochemical age, estimated using VOC ratios (SI Section 2.S3). Precursor 

oxidation forms SOA following established parameterizations (Ma et al., 2017; Pennington 

et al., 2020). More detailed descriptions of model constraints and relevant 

parameterizations are provided in SI Section 2.S4. 

 

2.2.3.2 Overnight nitrate box model 

We developed a second zero-dimensional model to assess changes in overnight NOx 

chemistry and associated impacts on production of inorganic nitrate aerosol since 2010. 

Model simulations begin at 19:00 local time and simulate NOx and biogenic VOC (BVOC) 

emissions, gas-phase chemistry, formation and hydrolysis of N2O5, and gas-aerosol 

partitioning of HNO3 until 06:00 the following day. Initial simulations were used to tune 
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NOx emissions, aerosol uptake parameters, and BVOC emissions to achieve agreement 

with observations made during CalNex-2010. Following this process, NOx emissions were 

reduced to assess effects on overnight inorganic nitrate aerosol formation. A more detailed 

description of the model simulation procedure is included in SI Section 2.S8. 

 

2.3 Results and discussion 

2.3.1 Observed changes in concentrations of major NR-PM1 species, trace gases, 

and VOCs 

Figure 2.1 compares diurnal trends and average mass fractions of major classes of NR-

PM1 measured by the AMS during CalNex-2010 and LAAQC-2022. Results for CalNexT-

2022 are shown in Figure 2.S8. Observed concentrations of all species were reduced in the 

more recent campaigns relative to CalNex-2010, with much larger differences observed for 

inorganic species (~35% or more) than organics (~10-35% depending on campaign). In 

each campaign, OA accounted for the largest fraction of total NR-PM1 and displayed a 

clear afternoon maximum, as expected based on the timing of the arrival of processed 

emissions from the urban core of Los Angles (Blumenthal et al., 1978; Hayes et al., 2013). 

As explained in detail in SI Section 2.S2, PMF analysis was performed independently 

on each dataset. In general, four to five factors were resolved in each campaign, 

corresponding to less-oxidized oxygenated OA (LO-OOA) (locally-formed SOA), more-

oxidized OOA (MO-OOA) (regional/background SOA), hydrocarbon-like OA (HOA) 

(likely associated with primary OA sources), cooking-influenced OA (CIOA), and local 

OA (LOA, only observed during CalNex-2010). Detailed descriptions of these factors are 

provided in Hayes et al. (2013) and SI Section 2.S2 (Table 2.S2, 2.S3). 

The PMF results suggest that while the SOA fraction of the OA was relatively consistent 

between campaigns (~65%), the ratio of total LO-OOA to MO-OOA was larger in the 2022 

datasets due to lower average concentrations of MO-OOA. Reductions in MO-OOA 

concentrations accounted for most of the difference in measured OA between CalNex-2010 

and LAAQC-2022, which both occurred during May and June. In contrast, average LO-
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Figure 2.1: Overview of AMS measurements during CalNex-2010 and LAAQC-2022. (Top) 
Diurnal concentrations of major NR-PM1 species measured by the AMS (Middle) Average 
concentrations of NRPM1 species. (Bottom) Average mass fractions of individual PMF factors. 
Corresponding results for CalNexT-2022 are shown in Figure 2.S8. 

 

 Observed HOA concentrations were only slightly lower during LAAQC-2022 than 

CalNex-2010 (difference of ~13%), in contrast to the observed change in average 

background-corrected CO concentrations (ΔCO) (29%) and the predicted changes in on-

road POA emissions in LA County from the California Emissions Projections Analysis 

Model (CEPAM) (28%) (CEPAM, 2019). The observed change in ΔCO concentrations 

(29%) agreed well with predicted changes in CO emissions in LA County (32%) (CEPAM, 

2019). We estimated a background CO concentration of 80 ppbv in 2022 based on the 

relationship of CO to NOy (Figure 2.S11). A background of 105 ppbv was used for the 
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2010 dataset based on measurements off the coast of Los Angeles (Hayes et al., 2013). 

Changes in HOA and CIOA concentrations on weekends relative to weekdays in 2022 

aligned well with observations in 2010 (Hayes et al., 2013) (Figure 2.S12).  

Estimates of integrated airmass OH exposure (OHexp) (i.e., photochemical age) 

calculated midday (14:00-15:00) using VOC ratios (SI Section 2.S3) were 53% and 59% 

higher on average during LAAQC-2022 and CalNexT-2022, respectively, than during 

CalNex-2010, likely resulting from reduced NOx emissions (Figure 2.S13) and 

contributing to the consistency in LO-OOA concentrations, as explained further below. 

The estimated decline in NOx emissions since 2010 (~40-50%) (CEPAM, 2019) is 

comparable to the previously reported drop in NOx emissions on weekends in 2010 (34-

46%) (Warneke et al., 2013), and the change in average airmass (OHexp) is consistent with 

increases in OH concentrations observed on weekends during CalNex-2010 (Warneke et 

al., 2013; Griffith et al., 2016). 

While average ozone concentrations were relatively similar between campaigns 

(differences of ~1-6 ppbv), concentrations of NO, NO2, NOy, and NOz were all notably 

lower in 2022 than in 2010 (~40-60%), in reasonable agreement with long-term trends in 

NOx species in the Los Angeles Basin (Figure 2.S16, Table 2.S1) (Pollack et al., 2013). 

Ambient concentrations of anthropogenic SOA precursors such as benzene, toluene, 

xylenes, and C8-C10 alkanes were also ~50-60% lower during LAAQC-2022 and CalNexT-

2022 than during CalNex-2010 (Figure 2.S15, Table 2.S1). Average isoprene 

concentrations were relatively similar between CalNex-2010 and LAAQC-2022 

(difference of ~10%) but were considerably higher during CalNexT-2022 (+50%), when 

meteorological conditions were warmer. 

As shown in Figure 2.S1, average temperatures during LAAQC-2022 and CalNexT-

2022 were ~2oC and ~6oC higher, respectively, than during CalNex-2010. Previous 

measurements in Los Angeles have demonstrated that concentrations of both organic 

(Nussbaumer and Cohen, 2021) and inorganic (Hersey et al., 2011; Schiferl et al., 2014) 

aerosol species are heavily dependent on local meteorological conditions.  

Figure 2.S17 compares midday concentrations (11:00-17:00) of OA and IA species as 

a function of midday temperature. Trends in inorganic aerosol species measured during the 
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more recent campaigns were generally consistent when viewed in this meteorological 

context, with peak concentrations occurring around 25oC that were notably lower than 

those observed during CalNex-2010. Average OA concentrations, in contrast, displayed 

clearly different trends between 2022 campaigns. During LAAQC-2022 (May-June), 

concentrations increased consistently from 20-30oC and mirrored concentrations measured 

during CalNex-2010, while during CalNexT-2022 (July-August) concentrations were 

lower on average and consistent from ~25-35oC. These differences were primarily 

attributable to variability in the relationship between LO-OOA concentrations and 

temperature (Figure 2.S18).  

Hersey et al. (2011) observed similar variability in OA concentrations with season 

during the Pasadena Aerosol Characterization Observatory experiment (i.e., between 

Regime II and III in their study) and hypothesized that the differences were the result of 

increased amounts of aqueous processing during the late spring/early summer. Figure 

2.S19 demonstrates that on days with warm midday temperatures in 2022 (27-32oC), both 

OA and LO-OOA concentrations correlated more strongly with ambient ALW and NO3 

(R2 > 0.8) than ∆CO (R2 ≈ 0.55), supporting a role for inorganic species and possibly 

aqueous chemistry in local SOA formation. While the importance of aqueous chemistry in 

biogenic SOA formation is well established (e.g., Hennigan et al., 2009; Zhang et al., 

2012), an increasing body of evidence supports aqueous production of fossil-derived SOA 

in other urban areas, particularly in Asia, from small carbonyls (e.g., Gkatzelis, 2021; Xu 

et al., 2022). We note however, that direct measurements of water-soluble organic carbon 

partitioning during CalNex-2010 suggested a minor role for aerosol liquid water (Zhang et 

al., 2012). 

Here, we focus primarily on the long-term trend in aerosol concentrations/sources 

during similar meteorological periods. Future work will further investigate the apparent 

seasonal variability in OA and potential role of aqueous processing. We confirmed that 

airmass recirculation patterns were similar during meteorologically similar periods (based 

on temperature and humidity) in 2010 and 2022 by comparing ΔCO concentrations 

normalized by estimates of CO emissions in Los Angeles County (Figure 2.S20).   

 



 

 

30 
2.3.2 Declining contribution of traditional precursors to local SOA 

As shown in Figure 2.1, concentrations of LO-OOA (i.e., locally formed SOA) were 

consistent between CalNex-2010 and LAAQC-2022, despite the notable declines in 

ambient concentrations of anthropogenic SOA precursors due to reduced mobile source 

emissions (Table 2.S1) (CEPAM, 2019). In theory, if ambient SOA was entirely derived 

from traditional anthropogenic sources (i.e., mobile source emissions) distributed evenly 

throughout an urban region, and SOA yields were constant over time, changes in average 

SOA concentrations over extended periods should be reasonably well predicted by: 

∆𝑆𝑆𝑆𝑆𝑆𝑆 =  ∆(∆𝐶𝐶𝐶𝐶) ∗  ∆𝐸𝐸𝐸𝐸 ∗ ∆𝑂𝑂𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒 (1) 

Where Δ(ΔCO) represents the change in the ambient ΔCO concentrations, ΔER 

represents the change in the average emission ratio of traditional SOA precursors relative 

to CO, and ΔOHexp represents the change in the airmass OH exposure. During LAAQC-

2022, average ΔCO concentrations were 29% lower than during CalNex-2010, while the 

emission ratios of major traditional SOA precursors such as aromatic and alkane VOC 

(e.g., benzene, toluene, xylenes, C8-C10 alkanes) relative to CO, calculated using the 

methods described in Van Rooy et al. (2021), have declined by ~25-45% (Figure 2.S21), 

possibly reflecting a shifting in the relative distribution of on-road and non-road mobile 

sources (Van Rooy et al., 2021).  

The product of these values implies a 50-60% reduction in traditional mobile source 

SOA precursor emissions since 2010, likely resulting from a combination of improvements 

in emission control technologies (i.e., catalytic converters), increasing fuel efficiency of 

on-road and non-road vehicles, and efforts to limit evaporative emissions (Lu et al., 2018). 

The reduction calculated using Eq. 1 aligns with changes in afternoon concentrations of 

the same species once corrected for OHexp (to account for increasing OH since 2010) 

(Figure 2.S22). The inferred decline in emissions is slightly larger than the predicted 

reduction in mobile source emissions of reactive organic gases (ROG) in LA County since 

2010 (~45%) (CEPAM, 2023), in line with previous comparisons of measured and 

inventory-predicted declines in VOC emissions (Pollack et al., 2013).  
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Multiplying the change in ΔCO and traditional precursor ER by the observed change 

in OHexp, which accounts for increases in the rate of SOA production since 2010, predicts 

a decline in SOA concentrations of ~20-40%. While multiplying by photochemical age 

assumes that SOA production increases linearly with OH exposure, measurements from 

both CalNex-2010 (Hayes et al., 2013; Ortega et al., 2016) and the more recent campaigns 

support this assumption until airmass OHexp reaches ~7.5 x 1010 cm-3 s (0.6 photochemical 

days at an assumed OH concentration of 1.5 x 106 cm-3), which represents the upper limit 

of airmass ages observed in 2022 (Figure 2.S13). 

The difference between the observed and calculated changes in SOA concentrations 

suggests that either “non-traditional” urban SOA sources such as VCPs asphalt emissions 

or biogenics, which are largely excluded from this calculation, accounted for a substantial 

fraction of total SOA in 2010 and have increased in relative importance over time, or that 

SOA yields have increased substantially (~30-60%). Kinetic calculations suggest that RO2 

reaction with NO is still expected to be considerably faster than reaction with HO2 and 

notably faster than known alkane autooxidation process, though we note that the role of 

autoxidation in urban SOA formation remains poorly understood and will likely become 

increasingly relevant over time (SI Section 2.S4) (Praske et al., 2018). 

 
2.3.3 Evidence for a temperature-dependent SOA source 

Recent analyses of historical aerosol datasets have noted a strong relationship between 

OA concentrations and temperature in Los Angeles, thought to result from evaporative, 

non-combustion emission sources contributing to the local SOA burden (Nussbaumer and 

Cohen, 2021). During both CalNex-2010 and LAAQC-2022, midday OA concentrations 

increased considerably with temperature (Figure 2.S17). As shown in Figure 2.S18, this 

variability is primarily driven by increases in LO-OOA concentrations. Emissions from 

non-traditional urban SOA sources thought to be increasingly relevant in Los Angeles, 

such as VCPs and asphalt, may increase with temperature (Khare et al., 2020; Seltzer et 

al., 2021b). 
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Relating changes in LO-OOA concentrations to precursor emissions using 

meteorological variability requires accounting for simultaneous variability in basin 

ventilation rates and oxidant concentrations. During CalNex-2010, midday planetary 

boundary layer (PBL) heights decreased with ambient temperature, from ~1100 m at 20oC 

to only ~600 m at 29oC (Figure 2.S23). As midday wind speeds were effectively constant, 

the change in PBL heights produced a ~50% decline in effective ventilation rates from 20 

to 30oC (Figure 2.S23). This change is clearly reflected in ΔCO concentrations, which 

nearly doubled over the same temperature range (Figure 2.S20).  

However, Figure 2.2 demonstrates that the observed positive relationship between LO-

OOA concentrations and temperature remains after concentrations are normalized by ΔCO 

to account for varying ventilation rates (i.e., LO-OOA/ΔCO), increasing from ~90% from 

20oC to 30oC. Oxidant concentrations inferred from OHexp estimates also increased notably 

with temperature (Figure 2.S24), but further normalizing LO-OOA/ΔCO by afternoon 

OHexp does not fully remove the temperature trend (Figure 2.S24) (remaining increase of 

48% from 20oC to 30oC), suggesting a possible contribution of temperature-dependent (i.e., 

evaporative) emissions to local SOA. Interestingly, the temperature trend in LO-

OOA/ΔCO is similar during the May-June campaigns in both 2010 and 2022, suggesting 

at most modest changes in the relative contribution of temperature-dependent sources to 

the overall SOA burden over the last decade. 

Given the strong temperature trend observed, we assessed correlations between LO-

OOA/ΔCO and anthropogenic and biogenic VOC/ΔCO measured during each campaign. 

Anthropogenic VOC concentrations were corrected for measured airmass OHexp to remove 

the potentially confounding effects of temperature-dependent oxidant concentrations. As 

shown in Figure 2.2, correlations were strongest with the smallest and largest alkanes 

measured (i.e., butane and nonane/decane) and isoprene. Negligible correlations were 

observed between LO-OOA/ΔCO and aromatic VOC/ΔCO, as expected given that the 

aromatics likely originate from combustion processes (Borbon et al., 2013; Pollack et al., 

2013). The trend in LO-OOA/ΔCO with temperature therefore appears to more likely result 

from evaporative alkane/aromatic IVOC and/or biogenic emissions. While a lack of IVOC 
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measurements prevents direct assessment of correlations, naphthalene concentrations 

correlated strongly with temperature during CalNex-2010 (Hayes et al., 2015) and both 

VCPs and asphalt are known to be major evaporative sources of alkane/aromatic IVOC in 

the Los Angeles Basin (McDonald et al., 2018; Khare et al., 2020; Seltzer et al., 2021b). 

Asphalt emissions double over typical summertime in-use temperatures (from 40 oC to 

60oC) (Khare et al., 2020). The temperature dependence of VCP emissions remains 

uncertain given the variety of VCP sources and emission pathways, but temperature-driven 

increases in emissions from specific sectors (e.g., paints and coatings) may be substantial 

(Seltzer et al., 2021b). 

We note that the strengths of the correlations shown in Figure 2.2 are not necessarily 

indicative of the relative contribution of different emission sources to the SOA burden. As 

an example, of the VOCs measured during CalNex-2010, LO-OOA/ΔCO correlated most 

strongly with isoprene. Previous radiocarbon analyses have indicated that 68-74% of LO-

OOA measured during CalNex-2010 was derived from fossil (i.e., non-biogenic) carbon 

sources (Zotter et al., 2014) and bottom-up analyses suggest that isoprene contributes at 

most 5-25% of the total SOA burden (Hayes et al., 2015; Nussbaumer and Cohen, 2021). 

Despite our uncertainty regarding the specific drivers of the observed temperature trend in 

LO-OOA/ΔCO, our observations highlight a potentially important role for evaporative 

precursors. Additional highly time-resolved measurements of IVOC likely generated 

through such evaporative processes (e.g., C12+ alkanes and aromatics) would help further 

constrain SOA sources in Los Angeles. 
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Figure 2.2: (a) Relationship between midday (11:00-16:00) LO-OOA/∆CO concentrations and 
temperature during CalNex-2010 and LAAQC-2022. (b) Correlations between midday 
concentrations of LO-OOA/∆CO and VOC measured during each campaign. Concentrations of 
alkanes and aromatics were corrected for measured OHexp to account for temperature-dependent 
OH concentrations.  

 

 

2.3.4 Modeled impact of reduced mobile source emissions on SOA formation 

since 2010 

Given the uncertainties involved in the analyses described above, we developed a 

detailed box model of local SOA formation to quantify changes in the magnitude of 

individual SOA sources since 2010. The model incorporates emissions from on-road, non-
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road mobile, area, and stationary sources, and a description of the model framework, 

constraints, and SOA formation parameterizations is included in SI Section 2.S5.  

Figure 2.3 compares measured and modeled SOA concentrations during CalNex-2010 

and LAAQC-2022, which we focus on given their meteorological similarities (Figure 

2.S1). The model accurately reproduces average diurnal SOA concentrations measured 

during CalNex-2010 (bias of 3%) and slightly overpredicts concentrations during LAAQC-

2022 (bias of 17%).  

Emissions in the base model simulations are constrained using annual average emissions 

estimates for a variety of mobile and stationary/area sources for Los Angeles County (SI 

Section 2.S5) (CEPAM, 2019; McDonald et al., 2018; Khare et al., 2020; Seltzer et al., 

2021b). We modified gasoline emissions slightly to achieve agreement between modeled 

and measured alkane and aromatic VOC ER (e.g., benzene/ΔCO), as explained in SI 

Section 2.S7 (Figure 2.S26). Adjusting emissions to achieve ER agreement only modestly 

influences the differences between modeled and measured SOA concentrations (Figure 

2.3). We adjusted mobile source gasoline emissions as a group, rather than on-road or non-

road emissions specifically, given the similarity in emission profiles for on-road and non-

road gasoline sources (Lu et al., 2018; Zhao et al., 2022). The remaining bias in simulated 

SOA concentrations during the 2022 campaigns is likely either the result of uncertainties 

in the AMS measurements, emissions of lower volatility species, or simulated SOA yields.  

While we have limited measurements of less volatile SOA precursors, the model 

reproduces IVOC concentrations measured during CalNex-2010 with reasonable accuracy 

(bias of 9%) (Figure 2.S7) (Zhao et al., 2014). Simulated SOA composition also aligns well 

with 14C measurements made during CalNex-2010 (Zotter et al., 2014), with 80% of 

modeled SOA and 68-74% of measured SOA derived from fossil sources. SOA formed 

from biogenic VOC (13%) and cooking-related sources (7%) accounts for the non-fossil 

fraction in the model. 

Overall, the simulated contribution of mobile sources to the SOA burden has declined 

from ~50% in 2010 to only ~25% in 2022 (Figure 2.3). The relative importance of other, 

non-traditional SOA sources such as VCPs, cooking emissions, and asphalt are predicted 

to have increased accordingly, and VCPs are now estimated to contribute the largest 
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fraction of locally formed SOA (33%), which aligns with recent CMAQ predictions for 

Los Angeles (Seltzer et al., 2021a). As recently suggested by Khare et al. (2020), asphalt 

emissions now appear to account for nearly as much local SOA production as mobile 

sources. In terms of the mobile source distribution, we predict that non-road emissions 

formed considerably more SOA (16%) than on-road emissions (10%) during the campaigns 

in 2022.  

The relatively small contribution of on-road sources to locally formed SOA in the 2010 

simulation explains the inability of previous bottom-up calculations of vehicle SOA 

production to reproduce ambient SOA concentrations during CalNex-2010 (Ensberg et al., 

2014). The modest contribution of all mobile sources is also consistent with recent 

simulations of the CalNex-2010 field campaign using the Community Multiscale Air 

Quality (CMAQ) model (Jathar et al., 2017; Lu et al., 2020). Diesel emissions account for 

a particularly small fraction of local SOA in both years (<10%), in line with prior analyses 

of hydrocarbon SOA precursor sources during CalNex-2010 (Zhao et al., 2014; 2022). The 

mass closure (within uncertainty) produced by our model suggests that remaining 

uncertainties in emissions and/or speciation profiles are unlikely to alter the conclusion that 

mobile sources now contribute less than one-third of locally formed SOA, as this would 

require considerable bias in the magnitude of multiple other SOA sources treated in the 

model. 

Despite the ~45% reduction in mobile source emissions since 2010, average measured 

and simulated concentrations of SOA during LAAQC-2022 were comparable to those in 

CalNex-2010. Estimated emissions from other anthropogenic sources have either remained 

effectively constant (VCPs and asphalt) or only increased slightly (e.g., ~10% for cooking 

emissions) (Khare et al., 2018; Seltzer et al., 2021b; CEPAM, 2019). As modeled SOA 

yields were identical in each simulation, the consistency in modeled SOA concentrations 

is attributable to the increase in OH concentrations resulting from reduced mobile source 

NOx emissions (Figure 2.S13). As shown in Figure 2.3, if we assume OH concentrations 

have remained constant since 2010, the model predicts 31% less SOA than in the base 2022 

simulation. The direct effect of reduced mobile source SOA precursor emissions appears 
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to have therefore been offset by the increase in OH concentrations since 2010. We refer 

to this as the “indirect” effect of mobile source emissions reductions in the discussions 

below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.3: Diurnal concentrations of measured and modeled locally-formed SOA during (a) 
CalNex-2010 and (b) LAAQC-2022. Measured SOA represents the LO-OOA PMF factors resolved 
during each campaign. Inset bar charts show average measured and simulated concentrations. (c,d) 
Average contributions of individual precursor sources to modeled SOA during (c) CalNex-2010 
and (d) LAAQC-2022. 
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2.3.6 Notable reductions in overnight nitrate production from reduced NOx 

emissions 

In contrast to the relatively consistent SOA concentrations, we observed markedly lower 

nitrate concentrations during LAAQC-2022 (-55%) and CalNexT-2022 (-80%) than were 

measured during CalNex-2010. Reductions in inorganic nitrate (NO3,inorg.) concentrations 

account for the majority of the difference, suggesting larger changes in NO3,inorg. than 

organic nitrate (NO3,org.) production mechanisms (Figure 2.S3).  

The California Air Resources Board (CARB) predicts that NOx emissions have declined 

by ~40% in Los Angeles County since 2010, with virtually all of the reduction attributable 

to mobile sources (80% due to on-road vehicles specifically) (CEPAM, 2019). As noted 

above, these reductions have produced a 40-60% decline in ambient concentrations in NO, 

NO2, NOy, and NOz in Pasadena (Table 2.S1, Figure 2.S16). The observed relationship 

between NOz and NO3 concentrations was consistent between campaigns, with day-to-day 

differences in the NO3/NOz ratio likely driven by variations in local temperature/RH 

(Figure 2.S30). 

Linking changes in nitrate concentrations to changes in emissions is complicated by the 

dependence of inorganic nitrate partitioning on meteorology and other inorganic species 

(Seinfeld and Pandis, 2016; Guo et al., 2017) (Figure 2.S31). Given the differences in 

meteorology and sulfate concentrations between campaigns, and the lack of nitric acid 

measurements in 2022, we first used the ISORROPIA-II thermodynamic model 

(Fountoukis and Nenes, 2007) to assess whether changes in average NO3,inorg. aerosol 

concentrations represented reductions in concentrations of total nitrate (NO3,inorg. + HNO3), 

which would likely indicate changes in total nitrate production, or likely resulted from 

partitioning differences. These simulations are discussed in detail in SI Section 2.S8. 

Briefly, as shown in Figure 2.S32, comparison of the thermodynamic model simulations 

with aerosol observations suggests considerable reductions in total nitrate concentrations 

(gas + aerosol) at night during the 2022 campaigns relative to CalNex-2010 (>40%) but 

relatively consistent daytime concentrations.  

Analyses of daytime and nighttime nitrate production mechanisms support the changes 

inferred from the thermodynamic modeling. We calculated a proxy for daytime HNO3 
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production in each campaign using the product of ambient NO2 concentrations and 

afternoon airmass OHexp. During CalNex-2010, midday OHexp estimates correlated 

strongly with measured OH concentrations (Figure 2.S33), supporting their use in this 

calculation in the absence of OH measurements in 2022. As shown in Figure 2.4a, values 

of the HNO3 production proxy were largely similar between CalNex-2010 and the more 

recent campaigns on days with similar temperatures, with average differences of only 

~15%. Reductions in afternoon concentrations of NO2 therefore appear to have been 

largely “balanced” by increasing OH concentrations from the perspective of daytime nitric 

acid production.  

We then used the box model described in Section 2.3.2 to evaluate changes in overnight 

nitrate production since 2010 resulting from reduced NOx emissions. Figure 2.S34 shows 

that integrated overnight (19:00-06:00) production rates of the nitrate radical (P(NO3)), the 

precursor to N2O5, were ~25% higher during CalNex-2010 than LAAQC-2022. This trend 

is consistent across Los Angeles County (Figure 2.S35). The decrease since 2010 is 

attributable to the fact that nighttime NO2 concentrations have declined considerably, while 

ozone concentrations have only slightly increased, likely the result of simultaneous 

reductions in NOx emissions and anthropogenic VOC (i.e., OH reactivity) (Wang et al., 

2023). 

After tuning our box model to reproduce overnight concentrations of NO2, O3, HNO3, 

ClNO2, and NO3,inorg. measured during CalNex-2010 (Figure 2.S36) (Simulation #1), we 

performed additional simulations with altered trace gas and aerosol surface area 

concentrations to quantify changes in overnight NO3,inorg. production since 2010. We first 

reduced the initial NO2 and increased the initial O3 concentration to match observations 

made during LAAQC-2022, while also reducing overnight NOx emissions by 45% to align 

with CARB predictions (CEPAM, 2019). As shown in Figure 2.4, changes in trace gas 

concentrations since 2010 are predicted to have produced a ~60% (58%) reduction in 

overnight NO3,inorg. production in the absence of any changes in aerosol SA or 

meteorological differences (Simulation #2). 

The third simulation shown in Figure 2.4 incorporates the positive feedback of reduced 

AN formation on aerosol surface area (SA) available for N2O5 hydrolysis, while in the 
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fourth simulation we also reduced aerosol concentrations associated with non-nitrate 

related species. The effect of reduced SA available for N2O5 hydrolysis in these simulations 

is largely compensated by slight increases in aerosol pH, which enhances HNO3 

partitioning and leads to a similar overall reduction in overnight NO3,inorg. production 

(Figure 2.S38). We performed a final simulation identical to the fourth in terms of 

emissions and trace gas concentrations, with overnight temperature and relative humidity 

adjusted to match average values observed during LAAQC-2022. An additional ~20% 

reduction in overnight NO3,inorg. production is predicted in this scenario (82% reduction 

overall), resulting from notable reductions in ALW, leading to both reduced N2O5 

hydrolysis rates and higher aerosol pH, which shifts HNO3 partitioning to the gas phase 

(Figure 2.S38).  

The results of the final model simulation underpredict overnight NO3,inorg. production 

observed during LAAQC-2022. This could be the result of errors in the ALW 

concentrations predicted by the thermodynamic model or variability in parameters such as 

the N2O5 uptake coefficient or overnight OH concentrations since 2010, which were 

assumed constant in our simulations. We discuss these possibilities in SI Section 2.S9. 

While the remaining model-measurement discrepancy deserves further attention, it is 

nonetheless evident that reductions in mobile source NOx emissions have likely notably 

reduced overnight nitrate aerosol production over the last decade. 
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Figure 2.4: Observed and simulated changes in daytime and nighttime nitrate production rates. (a) 
Comparison of midday (14:00-15:00) estimates of HNO3 production rates calculated using the 
product of NO2 and airmass OHexp during CalNex-2010 and LAAQC-2022. (b) Comparison of 
measured overnight inorganic nitrate (NO3,inorg.) production during CalNex-2010 and LAAQC-
2022 with zero-dimensional model simulations described in Section 2.2.3.2 and SI Section 2.S8.  
 

2.4 Implications for urban air quality 

We demonstrate that the simultaneous mitigation of mobile source NOx and SOA 

precursor emissions has had complex effects on SOA and nitrate aerosol production in Los 

Angeles. While overnight nitrate aerosol production rates have declined considerably, 

increases in OH concentrations driven by reduced NOx emissions, an “indirect” effect of 

emission controls, appear to have offset expected “direct” changes in both SOA and 

daytime nitrate aerosol production. As a result, the relative contribution of OA to ambient 

PM1 and the fraction of OA attributable to non-mobile sources have both increased. 

Interestingly, the differences between average NR-PM1 concentrations measured during 

CalNex-2010 and LAAQC-2022 (~30%) were notably larger than long-term changes in 

PM2.5 inferred from gravimetric FRM measurements (Method Reference ID: RFPS-1006-

145) in Pasadena (~0-10%) (Figure 2.5). While this could be due to the short-term nature 
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of the campaigns or measurement uncertainties, the aerosol speciation measurements 

suggest that reduced AN accounts for a majority of the change in NR-PM1 since 2010, and 

previous analyses of FRM measurements have noted substantial evaporation of AN aerosol 

(75-100%) during spring/summer sampling in Los Angeles and elsewhere (Hering et al., 

1999; Zhang and McMurray, 1992; Ashbaugh and Eldred, 2004; Chow et al., 2005; Yu et 

al., 2005).  

As shown in Figure 2.5, comparisons of FRM PM2.5 measurements with both the AMS 

measurements and additional PM2.5 measurements made using beta attenuation monitors 

(BAM), a Federal Equivalent Method (FEM EQPM-1013-209), support this evaporative 

loss (e.g., FRM PM2.5 concentrations in Pasadena during CalNex-2010 were ~35% lower 

than AMS measurements) (SI Section 2.S10). Hourly AMS data agree particularly well 

with FEM PM2.5 measurements made in Glendora, CA during both campaigns (Figure 

2.S40). FRM measurements may have therefore underestimated the true decline in PM2.5 

concentrations over the last decade due to this evaporative artifact (Figure 2.5b). As 

discussed in more detail in SI Section 2.S10, these potential biases and their impacts on 

perceived trends in aerosol concentrations/sources, deserve further attention. In contrast to 

bulk gravimetric measurements, changes in speciated PM2.5 measured from 2010 to 2022 

in Los Angeles agreed relatively well with changes inferred from the AMS measurements 

(Figure 2.S43; 2.S44).  

Looking forward, our model results suggest that approximately 25% of local SOA is 

now attributed to sources that are either difficult to manage from a control perspective 

(biogenics) (~10-15%) or to on-road sources (~10%), whose emissions are expected to 

continue to decline quickly due to existing regulations (e.g., California LEV-III and LEV-

IV and national Tier 3 standards) and increasing adoption of electric vehicles (CARB, 

2023; EPA, 2023). The sources of the remaining ~75% of local SOA represent potential 

regulatory targets whose mitigation through product reformulation (VCPs, asphalt), 

increased implementation of emission control technologies such as catalytic converters 

and/or diesel particulate filters (non-road mobile sources), increased adoption of electric 

alternatives (e.g., lawn and gardening equipment), and improvement and increased usage 
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of catalytic oxidation devices (cooking emissions) would likely provide considerable 

further air quality benefits (McDonald et al., 2018; Seltzer et al., 2021a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.5: Analysis of historical trends in aerosol concentrations in Los Angeles. (a) Comparison 
of trend in aerosol concentrations inferred from AMS measurements in 2010 and 2022 with trends 
inferred from FRM (gravimetric) and FEM (beta-attenuation monitor) PM2.5 measurements during 
May and June in Pasadena and Glendora, respectively. White markers represent average NR-PM1 
concentrations measured by the AMS, while grey markers show adjusted concentrations if 75% of 
AN is removed to represent potential evaporative loss from FRM samples. Inset plot shows the 
declining difference between May-June FEM and FRM measurements over time at locations in the 
Los Angeles Basin with co-located FEM and FRM monitors. (b) Inferred trends in PM2.5 

concentrations measured at three locations in Los Angeles using either FRM or FEM 
measurements. 
 

While notable increases in OH concentrations are thought to have occurred over the last 

decade (>50%), comparisons of weekday and weekend OHexp in 2022 suggest that 

continued reductions in NOx emissions are unlikely to produce substantial additional 

increases in local oxidation concentrations (Figure 2.S13). Given that Los Angeles is 

approaching a NOx-limited photochemical regime (e.g., Baidar et al., 2015, Parker et al., 

2020), continued reductions in mobile source NOx emissions may be particularly important 

for local air quality improvement, as controlling NOx emissions would simultaneously 
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further reduce nitrate aerosol production, lower peak ozone concentrations, and reduce 

SOA production rates from non-mobile source emissions through changes in oxidant 

abundance and potentially NO3-related ALW concentrations (Figure 2.S19). We note, 

however, that lower ambient NOx concentrations may increase SOA yields (e.g., Ng et al., 

2007; Crounse et al., 2013; Praske et al., 2018), which could offset the OH- and ALW-

related effects on SOA production.  

Using a combination of SOA model simulations, analyses of inorganic aerosol precursor 

emissions inventories, and projected changes in local OH concentrations, we predict that 

only minor changes in local aerosol concentrations are likely in the near-term unless 

additional efforts to control emissions from non-road and area emission sources are 

undertaken (Figure 2.S48) (SI Section 2.S11). Simulated future SOA concentrations are 

heavily dependent on expected trends in SOA precursor emissions from non-traditional 

sources (e.g., VCPs) and future modifications to ambient SOA yields due to changing NOx 

concentrations, underscoring the importance of additional efforts to refine these 

predictions. The historical progress made in controlling emissions from mobile sources, 

and on-road sources in particular, suggests that similarly focused efforts aimed at non-road 

and area emission sources have the potential to considerably improve local air quality.  
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2.S1 Additional measurements during CalNex-2010 
2.S1.2 Ammonia (NH3) 
 

NH3 was measured during CalNex-2010 using a quantum cascade tunable infrared laser 

differential absorption spectrometer (QC-TILDAS). Detailed description of instrument 

design is provided by Ellis et al. (2010). The QC-TILDAS measures NH3 at the 967 cm-1 

absorption line using a thermoelectrically cooled pulsed quantum cascade (QC) laser. The 

inlet of the QC-TILDAS consisted of a 12m heated (40oC) and insulated 0.95 cm 

perfluoroalkoxy (PFA) line connected to a 10 cm custom-designed quartz inlet. Data were 

corrected using periodic zero-air measurements and calibrations performed throughout the 

campaign. Measured concentrations have an estimated uncertainty of ±10%.   

2.S1.2 Nitric acid (HNO3) 
 

HNO3 was measured during CalNex-2010 using a negative-ion proton-transfer chemical 

ionization mass spectrometer (NI-PT-CIMS). Detailed description of instrument design 

and operation is provided by Veres et al. (2008) and Guo et al. (2017). Acidic species are 

ionized in the instrument through proton transfer from acetate ions and subsequently 

detected using a quadrupole mass spectrometer. During CalNex-2010, the NI-PT-CIMS 

inlet consisted of a 1.3m heated (75oC) Teflon line. Data were corrected for instrument 

backgrounds quantified every 190 min. Measured HNO3 mixing ratios have an estimated 

uncertainty of ±35%.  

2.S1.3 Nitryl chloride  (ClNO2) 
 

ClNO2 was measured during CalNex-2010 using an iodide chemical ionization mass 

spectrometer (CIMS) described extensively in Mielke et al. (2013). ClNO2 was detected as 

the iodide cluster ions at m/z 208 and m/z 210 using a quadrupole mass spectrometer. 

During CalNex-2010, sample flow was drawn at a rate of 4 liters per minute through a 10 

m long, 1.58 cm outer diameter Kynar tube located approximately 10 m above ground 

level. A detailed description of the calibration procedure, which involved passing 

molecular chlorine over concentrated sodium nitrite solution, is provided in Mielke et al. 

(2013). Measured ClNO2 mixing ratios have an estimated uncertainty of ±30%. 

2.S1.4 Hydroxyl radical (OH) 
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OH mixing ratios were measured during CalNex-2010 using a laser-induced 

fluorescence assay by gas expansion (LIF-FAGE) technique with the Indiana University 

FAGE (IU-FAGE) instrument, as described in detail by Griffith et al. (2016). Briefly, the 

LIF-FAGE technique detects OH using laser-induced fluorescence following expansion of 

ambient air into a low-pressure chamber. The sampling cell was located approximately 10 

m above ground level, and ambient air was drawn into the detection region using a 0.6 mm 

inlet. Indirect HO2 measurements were made by intermittently introducing NO into the 

sampling cell and converting ambient HO2 into OH for subsequent detection. Calibrations 

of the IU-FAGE were performed every three days using the UV water photolysis method 

(Griffith et al., 2016). Measured OH mixing ratios have an estimated uncertainty of ±18%. 

The detection limit of the IU-FAGE OH measurement was 3.4 x 105 cm-3. 

2.S2 Analysis of HR-ToF-AMS organic aerosol data using Positive Matrix 

Factorization (PMF)  
 

The mass spectra, diurnal profiles, and time series of the four PMF factors resolved from 

the final LAAQC-2022 and CalNexT-2022 PMF solutions are shown in Figure 2.S4 and 

S5. Correlations of factor spectra with factors observed during CalNex-2010 are shown in 

Table S2 and S3, and correlations with measured trace gases and VOCs are shown in Tables 

S4 and S5. Here we briefly discuss the justification for selecting the four-factor solution in 

each campaign.  

During both campaigns, starting from a three-factor solution, the PMF model resolves 

factors that appear related to the MO-OOA, LO-OOA, and CIOA/HOA factors resolved in 

Hayes et al. (2013). The CIOA/HOA factor is difficult to definitively classify as either 

CIOA or HOA in the three-factor solution. Moving to a four-factor solution clearly 

separates the CIOA and HOA factors while having little influence on MO-OOA or LO-

OOA. In both datasets, the five-factor solution resolves an additional LO-OOA factor with 

a spectra that correlates somewhat with the limonene + NO3 spectra reported by Boyd et 

al. (2017) (R2 ~ 0.4-0.7) and displays a diurnal profile that increases slightly after sunset, 

suggesting a possible role for NO3 chemistry. However, there are no clear indicators for a 

specific source of this new LO-OOA factor, and correlations with ambient VOC are 
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inconclusive (e.g., highest R2 with alkanes, aromatics, and biogenics included in Tables 

S4 and S5 are 0.32, 0.25, and 0.05, respectively). In both campaigns, the new LO-OOA 

factor is also relatively well correlated with the other (i.e., original) LO-OOA factor (e.g., 

R > 0.7 during CalNexT-2022), and the most prominent feature in the diurnal profile is an 

increase midday. The factor may therefore result from splitting and/or mixing of existing 

factors, which is difficult to conclusively demonstrate (Hayes et al., 2013). Given the 

difficulty involved in assigning a specific source to the new LO-OOA factor, we conclude 

that the four-factor solution provides a clearer description of the dataset than the five-factor 

solution. 

Further increasing the number of factors leads to additional factor splitting/mixing, 

producing new factors that are difficult to classify. As an example, the six-factor solution 

in the LAAQC-2022 dataset contains two MO-OOA factors that vary in chemical 

characteristics (O:C of 0.64 and 1.2, respectively) but display little variability in their 

respective diurnal profiles and lack additional identifying chemical signatures. The 

presence of two MO-OOA factors also considerably complicates comparison with CalNex-

2010. As a result, we conclude that the four-factor solution optimally represents the OA 

datasets from each campaign and provides the clearest comparison with data collected 

during CalNex-2010. 

2.S3 Calculation of airmass OH exposure (OHexp) 
 
We calculated airmass OHexp during each campaign using the average of nine VOC ratios, 

as shown in Figure 2.S9 (Parrish et al., 2007; Hayes et al., 2013). Emission ratios of VOC 

relative to CO during LAAQC-2022 and CalNexT-2022 were calculated following the 

method described in Van Rooy et al. (2021). During LAAQC-2022 and CalNexT-2022, 

VOC measurements were only made at 5:30, 9:00, and 14:00. As such, we fit a diurnal 

profile to these OH exposure estimates based on the diurnal trend observed during CalNex-

2010. Estimated diurnal trends in OHexp using the average of all nine VOC ratios agree 

well with ratios calculated using the ratio of 1,2,4-trimethylbenzene to benzene, which has 

been used in previous work (e.g., Hayes et al., 2015) (Figure 2.S9). 
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The error in the calculated OHexp estimate in the more recent campaigns based on 

uncertainties in the measurements (10%) and the calculated emission ratios (~30%) is 

approximately 35%, which we incorporate into a Monte Carlo analysis of SOA model 

uncertainty (SI Section 2.S6). We convert OHexp into a photochemical aging timescale for 

use in the SOA model simulations described below by using an assumed daily-average OH 

concentration of 1.5 x 106 mol. cm-3. Comparisons of average afternoon (14:00-15:00) 

OHexp estimates from CalNex-2010 and LAAQC-2022 suggest an increase in OH 

concentrations of ~50-60% since 2010.  

We note that, as discussed by Parrish et al. (2007) and Hayes et al. (2013), the OHexp 

calculation assumes that the VOC measurements were performed at a remote receptor site. 

If emissions are continuously introduced into an airmass prior to measurement, the OHexp 

calculation will exhibit a low bias. This results from the fact that aged emissions within an 

air parcel will have less mathematical “weight” on the OHexp calculation than fresh 

emissions relative to their volume contribution within the parcel (Hayes et al., 2013). We 

use a slightly more detailed version of the model developed by Hayes et al. (2013) to 

estimate this potential error. We assume a hypothetical airmass measured at each diurnal 

hour is transported for 6 hours over a homogeneous emission source of 1,2,4-

trimethylbenzene and benzene prior to measurement. Each hour, emissions are introduced 

according to the emission ratios calculated during LAAQC-2022 (0.32 pptv ppbv-1 for 

1,2,4-TMB and 0.68 pptv ppbv-1 for benzene). Emissions introduced at each time step are 

continuously oxidized by ambient OH concentrations until arrival in Pasadena. We 

increase OH measurements from Griffith et al. (2016) by 55% to account for observed 

increases in OHexp observed in 2022 for this calculation, although a similar result is 

expected if the calculation is performed using 2010 emission ratios and OH concentrations. 

Our simplified model therefore accounts for variable oxidation rates as a function of time, 

rather than assuming both emissions and oxidation rates are constant during transport. The 

resulting OHexp error estimate is shown in Figure 2.S10. Ultimately, the effect on simulated 

diurnally-averaged SOA is minor <20% and the predicted contribution of mobile source 

emissions is unaffected. Given the minor influence on SOA and the uncertainty in multiple 



 

 

50 
aspects of the error calculation (e.g., constant six-hour travel time, homogeneous 

emissions during transport, etc.) we do not attempt to correct photochemical age estimates 

used in model simulations for this potential bias.  

2.S4   Analysis of ambient RO2 fate 
According to the CARB CEPAM inventory, NOx emissions in Los Angeles County have 

declined by ~45% since 2010 (CEPAM, 2019). Median ambient afternoon (12:00-16:00) 

NO mixing ratios were ~1.4 ppbv during LAAQC-2022. Using recommended rate 

constants for RO2 reactions with NO (8.6 x 10-12 cm3 molec.-1 s-1 at 296 K), HO2 (1.8 x 10-

11 cm3 molec.-1 s-1 at 296 K), and HO2 concentrations measured by Griffith et al. (2016) on 

weekends during CalNex-2010 (~4.5 x 108 molec. cm-3), we calculate that RO2 reaction 

rates with NO still exceed reaction rates with HO2 by a factor of ~40. However, estimated 

RO2 lifetimes at NO concentrations around ~1.4 ppbv are nearly 5s. Praske et al. (2018) 

have demonstrated that autooxidation rates of functionalized alkane RO2 (specifically RO2 

formed from 2-hexanol in their experiments) are competitive with NO reactions at RO2 

lifetimes of ~10s. Therefore, while the urban environment in the Los Angeles Basin is 

likely far from “low-NOx” conditions from the perspective of NO vs. HO2 reactivity, RO2 

lifetimes will likely soon be sufficiently long that reaction with NO should not be assumed 

to be the definitive fate of RO2 produced from functionalized alkanes, which form from 

the oxidation of a considerable fraction of anthropogenic SOA precursor emissions (i.e., 

non-functionalized alkanes). Furthermore, as NOx emissions continue to decline, it is 

plausible that RO2 reaction with HO2 will eventually become competitive with NO. 

 

2.S5 Model simulation of local SOA formation and the role of mobile source 

emissions 
 

2.S5.1 Overview of zero-dimensional model 
 

We developed a zero-dimensional model of SOA formation to quantify temporal changes 

in local SOA sources since 2010. The model design is largely based on previously 
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developed zero-dimensional models of OA formation in urban environments (Dzepina 

et al., 2009; Hayes et al., 2015; Ma et al., 2017). Total emissions of OA precursors from 

on-road, non-road, and area/stationary sources are estimated using the methods described 

in SI Section 2.S5.2 and are lumped into a smaller set of model species based on volatility 

and composition. Individual model simulations are performed for each hour of the diurnal 

cycle. In each simulation, emissions are initialized multiplying background-corrected 

concentrations of CO (ΔCO) in Pasadena with inventory estimates of lumped precursor 

emissions from each source relative to CO (Δprecursor / ΔCO) in LA County. Emitted 

precursors are then oxidized and form SOA according to established parameterizations (SI 

Section 2.S5.2). The total oxidation timescale of each simulation is dictated by the 

measured OHexp at the same diurnal hour quantified using VOC ratios (SI Section 2.S3).  

In the absence of highly time-resolved emissions data, annual emissions were scaled by 

total annual CO emissions to produce precursor-CO ratios (Δprecursor / ΔCO), which were 

converted from a mass basis (tons precursor / tons CO) to a molar ratio (pptv precursor / 

ppbv CO) for implementation into the model. CO is commonly used as a conserved 

atmospheric dilution tracer in OA source apportionment analyses as it has an atmospheric 

lifetime of ~1 month while OA formation occurs on timescales of <1 day (Hayes et al., 

2015). Scaling inventory-based precursor-CO ratios by measured ΔCO concentrations 

therefore allows estimation of the initial concentration of OA precursors in the simulated 

air parcel while accounting for airmass dilution that has occurred during transport (Hayes 

et al., 2015; Ma et al., 2017). We assumed background CO concentrations of 105 ppbv in 

2010 (Hayes et al., 2013) and 80 ppbv in 2022 (Figure 2.S11). Estimates of Los Angeles 

County emissions from all non-biogenic sources are reported in Table 2.S6. 

2.S5.2 Parameterization of emissions and OA formation from individual sources 
 

2.S5.2.1 Mobile sources 
 
 

Mobile source emissions of OA precursors (reactive organic gases (ROG)) and POA 

implemented in the zero-dimensional SOA model were estimated using scaled inventory 

data reported by the CARB for Los Angeles County. The EMissions FACtor 

(EMFAC2021) model is used for initial on-road emissions estimates, while data from the 
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California Emissions Projection Analysis Model (CEPAM) were used for non-road 

emissions sources (e.g., off-road equipment, recreational vehicles, commercial harbor 

craft, farm equipment, etc.) (CEPAM, 2021; EMFAC, 2021).  

We note that on-road and non-road mobile gasoline ROG emissions estimates in the South 

Coast Air Basin (SoCAB) produced by EMFAC (on-road) (54 Gg yr-1) and CEPAM (non-

road) (31 Gg yr-1) are 7% and 36% lower than estimates recently reported by McDonald et 

al. (2018) (58 Gg yr-1 from on-road; 52 Gg yr-1 from non-road). While we used emissions 

estimated for Los Angeles County to initialize the model, we assumed that on-road and 

non-road mobile emissions in Los Angeles County are also underpredicted by 7% and 36%, 

respectively, and we increased modeled emissions by these magnitudes. Diesel emissions 

were unadjusted from CARB inventory predictions, as the inventory predictions for on-

road and non-road emissions are 40% and 16% larger respectively than those estimated by 

McDonald et al. (2018) for the SoCAB in 2010. Reducing diesel emissions to obtain 

agreement with McDonald et al. (2018) in the SoCAB similarly to gasoline emissions 

would marginally reduce the contribution of on-road sources to SOA; however, as on-road 

diesel emissions are estimated to account for only 1% of total SOA in 2022, such an 

adjustment would have virtually no influence on our predicted importance of mobile source 

emissions.  

Volatility distributions of on-road and non-road mobile source OA precursor emissions 

were parameterized using recently measured, comprehensive volatility-based emission 

profiles for gasoline and diesel exhaust (Lu et al., 2018). The same volatility profile was 

used for on- and non-road emission sources burning the same fuel (e.g., gasoline), as 

measured exhaust volatility distributions are similar (Lu et al., 2018). We used the cold-

start gasoline profile reported by Lu et al. (2018) for on- and off-road gasoline sources and 

the non-diesel particulate filter (DPF) diesel profile for diesel emissions. EMFAC data for 

Los Angeles County in 2022 suggest that only 14% of total emissions from on-road 

gasoline vehicles occur after the after-treatment system (catalytic converter) has warmed 

up (designated “RUNEX” in EMFAC2021 and corresponding to “hot-start” conditions), 

while the remainder (86%) is emitted while driving without efficient after-treatment (31%), 

during running losses that bypass after-treatment devices (20%), from diurnal evaporative 
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emissions (25%), and immediately after a trip while the engine temperature remains 

elevated (9%). Using the “hot-start” profile, which is enriched in IVOCs relative to the 

“cold-start” profile, slightly increases SOA formation from gasoline exhaust, but is likely 

unrealistic given the magnitude of on-road emissions that bypass the catalytic converter, 

the fact that non-road engines are rarely equipped with exhaust after-treatment technology, 

and the notable contribution of evaporative emissions, which are expected to be depleted 

in IVOCs relative to exhaust, to total gasoline emissions. We used the same volatility 

profile for gasoline exhaust and evaporative emissions. Lu et al. (2018) have demonstrated 

that gasoline exhaust is considerably enriched in lower volatility species such as IVOCs 

relative to gasoline fuel, suggesting that the use of the same volatility profile for exhaust 

and evaporative emissions should produce a conservatively large estimate of the 

importance of mobile source emissions to the urban SOA budget.  

Following Lu et al. (2018), NMOG emissions were apportioned into individual VOC and 

IVOC volatility bins based on their relative abundance in the emission volatility profile, 

while POA emissions are apportioned into S/LVOC volatility bins. Initial model precursor 

concentrations of emissions from each volatility bin (in pptv) were calculated by 

multiplying precursor-CO ratios by measured background-corrected CO concentrations 

(ΔCO). Once emitted, VOCs, IVOCs, and S/LVOCs are oxidized and form OA using 

distinct parameterizations. Volatility bins representative of VOCs were assigned a 

“volatility analog” from the lumped VOC species simulated by Hayes et al. (2015) and Ma 

et al. (2017). The oxidation of all gas-phase emissions within a given VOC volatility bin 

was simulated using the same oxidation rate and product yields as the associated analog. 

Table 2.S7 lists these volatility bins, their associated lumped volatility analogs, and the 

mass yields of SVOC oxidation products used to simulate OA formation. The volatility 

analogs chosen for each volatility bin align well with the composition of each bin reported 

by Lu et al. (2018) (e.g., the gasoline log(C*) = 10 bin is predominately alkenes, the 

log(C*) = 9 bin is a mixture of alkanes and aromatics, etc.). The volatility analogs chosen 

produce alkane and aromatic mass fractions within gasoline exhaust of 45% and 26%, 

respectively, which agrees well with speciated measurements reported by Gentner et al. 

(2013) (42% alkanes, 26% aromatics). VOC oxidation was simulated using the wall-loss 
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corrected yields developed by Ma et al. (2017). As described in Ma et al. (2017) 

incorporation of an aging parameterization in addition to corrections for wall-losses leads 

to unphysically large SOA yields. Therefore, VOC oxidation products do not age in the 

base model simulation.  

IVOC oxidation and SOA formation was parameterized using the lumped species and 

SVOC product mass yields described in Lu et al. (2020). As noted by Ma et al. (2017), the 

rate of gas-wall partitioning of IVOC-derived oxidation products (SVOCs) is expected to 

be much slower than that for VOC-derived oxidation products given the generally lower 

volatility of IVOC-derived oxidation products (Ye et al., 2016). As a result of this slower 

partitioning, the model used by Ma et al. (2017) to correct VOC SOA yields by accounting 

for vapor wall loss was not able to reproduce SOA yield curves from IVOC oxidation, 

suggesting a smaller influence of wall losses in IVOC chamber experiments. This aligns 

with the minor corrections suggested by Zhang et al. (2014) for previously derived high-

NOx SOA yields for long-chain alkanes. We therefore did not implement any estimate of 

increased IVOC yields to account for vapor wall losses, but we note that this causes model 

parameterized IVOC yields to potentially represent underestimates. IVOC oxidation 

products and were aged at a rate of 4 x 10-11 cm3 mol-1 s-1, consistent with previous box- 

and regional-modeling studies (Murphy et al., 2017; Hayes et al., 2015). Each aging step 

reduces product volatility by one order of magnitude.  

We used vehicular PM2.5 composition measurements reported by May et al. (2014) to scale 

total mobile source PM2.5 emissions to POA emissions and to subsequently initialize 

modeled primary SVOC emissions. POA emissions were estimated to account for 60% and 

90% of total on-road and non-road gasoline PM2.5 emissions, respectively, while POA 

emissions are estimated to accounted for 30% of total on-road and non-road diesel-related 

PM2.5 (May et al., 2014). Following the recommendations of Lu et al. (2018), we increased 

inventory gasoline POA emissions by a factor of 1.4 to account for SVOC breakthrough 

during measurements of PM2.5 emissions from gasoline exhaust. Diesel POA emissions 

were scaled by a factor of 0.9, as adsorption of IVOCs on sampling filter media more than 

offsets SVOC breakthrough during recent characterization studies (Lu et al., 2018). SVOC 

emissions that condense onto the specified background aerosol loading prior to 



 

 

55 
photochemical aging were assumed to represent POA emissions, while aerosol formed 

from gas phase SVOC aging is classified as SOA. 

Effective SOA yields of gasoline and diesel emissions are shown in Figure 2.S27. The 

effective yield for gasoline emissions (15%) in the model is larger than the effective yield 

for Pre-LEV vehicles reported by Zhao et al. (2017) (5%) but lower than the effective yield 

for LEV vehicles (30%). The SOA yields that the authors report may have also been 

influenced by vapor wall losses, as the precursor concentrations were low (total OA 

formation of ~5 μg m-3) and the OH concentrations were moderate (~2 x 106 mol. cm-3 

based on reported photochemical age and experiment timescale) (Zhang et al., 2014). As 

noted by Zhao et al. (2017), observed yields in their experiments are highly dependent on 

the NOx emissions from the vehicles themselves, and therefore it is difficult to determine 

which effective yield is appropriate for comparison with the ambient atmosphere. Zhao et 

al. (2017) note that they predict a yield of ~10% for Pre-LEV and LEV gasoline vehicles 

based on composition and established SOA yields in high-NOx conditions, which agrees 

reasonably well with our estimate considering that the yields used by Zhao et al. (2017) are 

not adjusted for wall losses. We further note that the effective model yield also applies to 

evaporated gasoline emissions, as we use the same emission profile for exhaust and 

evaporative emissions. Jathar et al. (2013) report a ~3% SOA yield for evaporated gasoline 

at an OA mass loading of 10 μg m-3, but the relatively small seed aerosol (7-25 μg m-3) and 

total OA mass loadings (<15 μg m-3) used in their experiments suggest that vapor wall 

losses may have been considerable (Zhang et al., 2014; Matsunaga and Ziemann, 2010). 

As gasoline emissions account for the dominant fraction of on-road SOA produced by the 

model, any overestimation of the effective SOA yield of gasoline emissions in the model 

would increase the likelihood that the model overpredicts rather than underpredicts the 

relevance of on-road emissions to local OA. This would therefore be a conservative error 

from the perspective of our conclusions. 

2.S5.2.2 Volatile chemical products 
 
 

Volatile chemical product emissions used in the base model simulation were calculated 

using the average of estimates provided by the recently developed VCPy model (Seltzer et 

al., 2021) and McDonald et al. (2018). VCPy predicts individual compound emissions 
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using detailed product usage and compositional data, compound-specific 

physicochemical data to determine evaporation timescales, and estimates of product use 

timescales. Previous analyses of the VCPy model have confirmed its accuracy in Los 

Angeles (Seltzer et al., 2021). Detailed description of the datasets used to inform the VCPy 

model are provided in Seltzer et al. (2021). VCP emissions data for LA County were 

generated from VCPy directly, while emissions estimates from McDonald et al. (2018) for 

the SoCAB are scaled to LA County using the relative population in the SoCAB (~17 

million) and LA County (~10 million). Speciated VCP emissions were provided directly 

by VCPy and taken from Table S8 of McDonald et al. (2018). To ensure that the same 

species emitted by different OA precursor sources have identical oxidation and aerosol 

formation parameterizations, all alkane and aromatic VOC and IVOC VCP emissions were 

mapped to the same volatility bin used to simulate oxidation of combustion emissions 

(Table S7). Emissions of oxygenates and siloxanes are oxidized following the scheme 

developed by Pennington et al. (2021). We used an effective oxygenate SOA yield of 9.7% 

calculated from emission-weighted SOA yields of aerosol-forming oxygenates in Los 

Angeles County produced by VCPy. Terpenes are oxidized and form SOA using the wall-

loss corrected yields reported by Ma et al. (2017). The scaled inventory from McDonald et 

al. (2018) (scaled from the SoCAB to LA County based on population) predicts 

approximately 33% more VCP emissions than VCPy. As discussed by Seltzer et al. 

(2021b), differences in predicted emissions arise primarily from differences in predicted 

evaporation rather than differences in product usage. Mass fractions of individual lumped 

species in total VCP emissions predicted by McDonald et al. (2018) and by VCPy are 

shown in Figure 2.S29. We calculated emission ratios (ER) of each lumped species relative 

to CO from each inventory (e.g., ΔALK5/ΔCO) and used the average ER value for each 

lumped species as an input to the base model simulation. 

2.S5.2.3 Cooking emissions 
 
 

Cooking OA precursor emissions were incorporated into the model using PM2.5 emissions 

published by the CARB CEPAM inventory for cooking activities (commercial 

charbroiling, deep fat frying, and cooking – unspecified) in Los Angeles County (CEPAM, 

2021). All PM2.5 emissions were assumed to represent SVOC, and emissions were 



 

 

57 
apportioned into individual SVOC volatility bins using the average of published 

volatility profiles for unoxidized canola oil, olive oil, and beef tallow (Takhar et al., 2019), 

which are commonly used cooking oils in charbroiling and deep fat frying. Gas-phase 

SVOC were aged at a rate of 4 x 10-11 cm3 mol-1 s-1, similarly to SVOCs from mobile 

sources. Sensitivity simulations suggest that using any of the individual profiles or the 

Robinson et al. (2007) volatility profile used by previous modeling studies (Hayes et al., 

2015; Ma et al., 2017) modifies the diurnal average cooking OA mass loading by -11% to 

+20% depending on the specific profile used. Cooking-related ROG emissions were 

negligible (1 ton per day in 2022) in the CEPAM inventory compared to total emissions 

from other sources (total of 227 in 2020) and cooking PM2.5 emissions (7.7 tons per day in 

2020) and were therefore excluded from the base model. However, ROG emissions from 

cooking-activities used by the CARB inventory are based on a study conducted in 1998, 

and it is unclear whether these emission factors account for the presence of catalytic 

oxidizers (SCAQMD, 2021). The ROG emission factors listed in the CEPAM 

documentation are up to two orders of magnitude lower than more recent measurements 

conducted with a PTR-ToF-MS (Klein et al., 2016), depending on the type of cooking 

method used. Increasing inventory emissions using the ratio of emission factors for deep 

fat frying and commercial charbroiling published by Klein et al. (2016) to that used in the 

CEPAM inventory increases cooking-related daily ROG emissions from 1.3 tons to 33.7 

tons. Assuming a relatively large yield of 15%, this factor of 26 increase in cooking ROG 

emissions increases diurnally averaged cooking OA mass loadings in 2022 by 30% or 0.16 

μg m-3. Most of the increase is due to increased mass loadings midday when photochemical 

ages are longer than a few hours.  

2.S5.2.4 Asphalt Emissions 
 
 

Asphalt emissions in the South Coast Air Basin (SoCAB) were recently reported by Khare 

et al. (2020). Emissions in Los Angeles County were calculated by scaling SoCAB 

emissions by the relative amount of CO emitted in each location estimated by the CEPAM 

inventory. Scaling by other reasonable metrics such as total land area or population produce 

emission estimates 14% larger and 5% smaller, respectively, than scaling by CO 
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concentrations. These differences are well within the 50% uncertainty reported for 

asphalt emissions in the SoCAB (Khare et al., 2020). 

Emissions were apportioned into individual volatility bins using the speciated emission 

profile reported for road asphalt at 60oC (Khare et al., 2020). The EPI-SUITE program is 

used to determine pure liquid vapor pressures for calculation of compound saturation 

concentrations (C*). IVOCs, which account for 85% of total emissions, were mapped to 

the appropriate aromatic or alkane volatility bin developed by Lu et al. (2020). To avoid 

introducing additional uncertainty by varying the OA formation parameterization 

depending on the emission source, the aging processes and SVOC product yields associated 

with asphalt emissions in each volatility bin are identical to the parameterizations used for 

gasoline, diesel, and VCP emissions in the same bin. The alkane and aromatic fractions of 

asphalt emissions following this lumping procedure are 57% and 35% respectively, which 

agrees relatively well with measurements reported by Khare et al. (2020) (68% and 32%, 

respectively). The remainder of simulated asphalt emissions (8%) are unspeciated SVOCs 

(C* < 100 μg m-3). The effective SOA yield from asphalt emissions using this framework 

(~30% without accounting for IVOC oxidation product aging) (Figure 2.S28) is somewhat 

larger than the amount predicted when assuming a fixed SOA yield of 21% for asphalt 

emissions, a value estimated for primary road asphalt exposed to sunlight (Khare et al., 

2020). 

2.S5.2.5 Petrochemical facility emissions 
 
 

Emissions from petrochemical facilities in Los Angeles County were taken from the CARB 

CEPAM inventory (CEPAM, 2021). We included all emissions from “Petroleum 

Production and Marketing” except those from oil and gas production, to avoid double 

counting fugitive oil and gas emissions. The estimate of total emissions in the SoCAB in 

2010 (13.45 Gg) agrees relatively well with the value reported by McDonald et al. (2018) 

(12 Gg). Emissions were speciated using the average of nine EPA SPECIATE profiles for 

emissions from chemical/industrial plants and oil storage facilities (profiles 2456, 2457, 

2461, 2462, 2485, 2487, 2488, 2489, and 2490). Only a small fraction of petrochemical 

facility emissions (<20%) are predicted to be capable of forming SOA based on these 
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speciation profiles. SOA forming emissions were apportioned to the appropriate 

volatility bins used in simulation of SOA formation from other sources. 

2.S5.2.6 Fugitive oil and gas emissions 
 
 

Fugitive oil and gas emissions for Los Angeles County in 2010 were scaled from estimates 

for the SoCAB provided by McDonald et al. (2018). We scaled emissions to LA County 

using the ratio of fugitive natural gas emissions predicted in LA County relative to the 

SoCAB by the CEPAM inventory (94%). Emissions estimates reported by the CEPAM for 

the SoCAB in 2010 are approximately half as large as those estimated by McDonald et al. 

(2018). Oil and gas emissions were speciated using the average of 20 EPA SPECIATE 

profiles (95243, 95254, 95255, 95256, 95257, 95260, 95270, 95271, 95274, 95275, 95286, 

95287, 95288, 95290, 95291, 95292, 95297, 95298, 95303, 95315). Due to the dominant 

contribution of methane in fugitive oil and gas emissions (96.3% on average based on 

SPECIATE profiles), predicted normalized excess mixing ratios of OA precursors 

analyzed in Figure 2.S26 and simulated SOA mass loadings were unaffected by changes 

in the assumed emissions from fugitive oil and gas sources. As a result, we assumed 2022 

emissions were unchanged from 2010 values.  

2.S5.2.7 Biogenic emissions 
 
 

Given the short lifetime of isoprene midday (<1 hour), the fact that the spatial distribution 

of biogenic emissions and CO emissions may not be similar, and the fact that OHexp 

estimates quantified using aromatic species are likely not appropriate for modeling 

biogenic emissions, we used a distinct, simplified Lagrangian method to estimate biogenic 

SOA formation in LA County. Air mass backward trajectories ending at Pasadena were 

first calculated using the Hybrid Single-Particle Lagrangian Integrated Trajectory 

(HYSPLIT4) model (Stein et al., 2015) at 14:00 local time, the approximate time of urban 

plume arrival, every third day of each campaign. Meteorological data at a resolution of 12 

km x 12 km were obtained from the North American Mesoscale Forecast System (NAMS) 

archive and used to inform the HYSPLIT model. The travel time from the coast to Pasadena 

is then calculated for each trajectory using the combined dataset (i.e., 2010 and 2022), 

resulting in average midday transport times of 5.5±2.5 hr.  
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We used this data to calculate the integrated amount of SOA formed from isoprene and 

monoterpene oxidation for each hour of the diurnal cycle, assuming a 5 hr (base), 3 hr (low 

estimate), or 8 hr (high estimate) effective oxidation timescale. For simplicity, we assumed 

that measured isoprene and monoterpene (α-pinene, β-pinene, and limonene) 

concentrations are spatially homogeneous across the basin and identical to concentrations 

measured in Pasadena. During LAAQC-2022 and CalNexT-2022, α-pinene and β-pinene 

measurements were only performed from 5:30-6:30, 9:00-10:00 and 14:00-15:00. We 

calculated the average concentrations measured during each sampling period and assume 

that concentrations are consistent across the diurnal cycle. We assumed the ratio of 

limonene to β-pinene was the same in 2022 as in 2010. We used OH concentrations 

measured by Griffith et al. (2016) to simulate BVOC SOA production during CalNex-

2010, and 2010 concentrations were increased by 40% in simulations of LAAQC-2020 

conditions to account for the increase in afternoon OHexp estimates observed in 2022. 

Ozone concentrations measured during each campaign were also incorporated to simulate 

monoterpene SOA formation during transport. We assumed a 5% SOA yield for isoprene 

photooxidation and a 20% yield for terpene photooxidation and ozonolysis. These 

photooxidation yields align well with those calculated by Ma et al. (2017) accounting for 

vapor wall losses (3.5% for isoprene and 22.5% for terpenes at an ambient loading of 10 

μg m-3). A 20% yield for terpene ozonolysis at 10 μg m-3 is approximately double typical 

values observed in chambers experiments, but as discussed by Nah et al. (2016), yields 

from α-pinene ozonolysis in the absence of vapor wall losses are expected to be about twice 

as large as those historically observed experimentally.  

 

2.S6 Estimation of uncertainties in OA precursor emissions/sources 
 

Monte Carlo analysis was used to estimate uncertainty in the contribution of individual 

emissions sources to the SOA budget. Emission uncertainty was incorporated by 

multiplying the inventory-based emissions from each source (e.g., on-road gasoline) by a 

scalar value randomly sampled from a normal distribution with a mean of one and a 
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standard deviation representative of the estimated 1σ emissions uncertainty. A total of 

1,000 simulations were performed to derive distributions for uncertainty estimation. 

2.S6.1 Gasoline and diesel emissions 
 
 

Uncertainties in gasoline emissions are estimated by comparing emissions estimates 

published by McDonald et al. (2018) using a fuel-based method with those reported by 

CARB inventories for the SoCAB in 2010. McDonald et al. (2018) assume evaporative 

emissions represent 40 ± 20% of total gasoline-related emissions. To obtain individual 

estimates of on-road and non-road uncertainties, we scale emissions reported for on-road 

and non-road exhaust in Table S6 of McDonald et al. (2018) to include evaporative 

emissions (i.e., assume exhaust emissions are 60% of the total). Comparison of the EMFAC 

total on-road gasoline ROG emissions in the SoCAB (54.3 Gg yr-1) with the McDonald on-

road estimate (58.3 Gg yr-1) suggests a difference of ~7%. This value is considerably 

smaller than the propagated uncertainty obtained from the McDonald et al. (2018) estimate 

of on-road exhaust uncertainty and evaporative emissions uncertainty (~52%). We 

therefore assume a 2σ uncertainty of 52% (1σ = 26%) for total gasoline ROG emissions. 

Non-road gasoline emissions estimates from the CARB CEPAM inventory are 36% lower 

than those reported by McDonald et al. (2018). We use the McDonald et al. (2018) estimate 

in the model, as discussed in as discussed in SI Section 2.S5.2, and assume a 1σ uncertainty 

of 36%. For diesel emissions, we use the on-road and non-road uncertainty estimates 

published in Table S6 of McDonald et al. (2018) and assume that these represent 2σ 

uncertainties, leading to 1σ uncertainty estimates of 25% and 28% for on-road and non-

road emissions, respectively. 

2.S6.2 Volatile chemical product emissions 
 
 

Volatile chemical product emission uncertainties are derived by comparing estimates 

reported by the VCPy model (Seltzer et al., 2021b) and McDonald et al. (2018) for LA 

County. Estimated VCP emissions for the SoCAB from McDonald et al. (2018) are scaled 

to LA County using the relative population in the SoCAB (~17 million) and LA County 

(~10 million). For the base model simulation, we use the average (98.7 Gg yr-1) of the 

VCPy (78.1 Gg yr-1) and McDonald et al. (2018) estimates (119.3 Gg yr-1) estimates and 
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assume that the 1σ uncertainty can be approximated by the relative difference between 

the average value and the individual estimates (21%).  

2.S6.3 Asphalt emissions 
 
 

Khare et al. (2020) report asphalt I/SVOC emissions in the SoCAB of 4.3-12.6 Gg yr-1. We 

scale the midpoint of this range (8.45 Gg yr-1) by the ratio of CO emissions in LA County 

to those in the SoCAB to produce an estimate of LA County emissions (5.41 Gg yr-1) for 

use in the base model simulation. We assume that the 2σ uncertainty in asphalt emissions 

can be approximated by the difference between the midpoint and the bounds of the range 

reported by Khare et al. (2020) (51%) (1σ uncertainty of 25%). 

2.S6.4 Cooking emissions 
 
 

Given the lack of multiple independent estimates of cooking emissions in LA County or 

the SoCAB, and the noted variability in cooking emissions with type of food and/or oil, 

cooking temperature, and cooking style (Klein et al., 2016; Takhar et al., 2019), we 

conservatively assume that cooking PM2.5 emissions have a 2σ uncertainty of 80%. 

Additional uncertainty is introduced by the lack of SOA formation from cooking-related 

VOC emissions. As described above, incorporation of cooking-related SOA using recent 

estimates of cooking-related ROG emissions and reasonable SOA yields increases cooking 

aerosol mass loadings by ~21%, which is within the range of the emissions uncertainty 

estimated here. Further observational studies of cooking emissions from realistic sources 

(i.e., at the exhaust stack) are clearly needed to refine regional emissions estimates. 

2.S6.5 Fugitive oil and gas and petrochemical emissions 
 
 

The uncertainty in fugitive oil and gas emissions is taken directly from McDonald et al. 

(2018) (23% - 2σ). Given lack of available data, we conservatively assign an 80% 

uncertainty (2σ) to petrochemical emissions. In the base simulation, oil and gas and 

petrochemical emissions combined account for less than 2% of anthropogenic urban OA, 

and as such their uncertainty estimates have virtually no impact on model results.  

2.S6.6 Biogenic SOA 
 
 

In addition to uncertainties in biogenic SOA yields, major uncertainties in our estimate of 

biogenic SOA formation originate from our assumption of homogeneous terpene and 
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isoprene concentrations throughout the urban core and the assumption of a constant 

airmass transport timescale. Without spatially resolved measurements, the uncertainty 

introduced by the homogenous concentration assumption is difficult to quantify. However, 

Washenfelder et al. (2011) predicted that isoprene concentrations increased considerably 

during airmass transport from the coast to Pasadena, suggesting that our assumption of 

constant concentrations may introduce a positive bias in simulated biogenic SOA. In the 

absence of more spatially explicit data, we base our uncertainty estimate on the difference 

in calculated biogenic SOA formed when using the mean calculated afternoon transport 

time (5 hr) relative to the transport time scale associated with ±1 standard deviation from 

the calculated mean (3 hr or 8 hr). This results in a 2σ uncertainty estimate of 55%. A 

scenario in which actual average ambient isoprene and terpene concentrations throughout 

the urban core were only 50% of concentrations measured in Pasadena would therefore fall 

into this uncertainty range, provided our estimate of airmass transport time based on 

backward trajectory data is reasonable. 

2.S7 Assessing modeled SOA precursor emissions estimates through 

comparison of emission ratios (ER) of VOCs to CO 
 
 

We assessed the accuracy of precursor emissions estimates included in the model by 

comparing measured and predicted emission ratios (ER) of numerous alkane and aromatic 

VOCs to CO. To calculate modeled ER, we multiplied Los Angeles County emissions from 

each OA precursor source (i.e., on-road gasoline emissions) by the fractional abundance of 

individual species within the emissions and divide by county-wide CO emissions. The mass 

fraction of individual VOCs within gasoline and diesel exhaust were taken from 

measurements in the Caldecott Tunnel in Oakland, CA by Gentner et al. (2013) in July 

2010. These estimates agree well with estimates for on-road vehicles by May et al. (2014) 

(~82% of assessed compounds agree within reported standard deviations). The speciation 

of evaporative gasoline and diesel emissions is based on measurements reported by 

Gentner et al. (2013) for gasoline and diesel fuel. VCP ER values were calculated by 

multiplying the average VCP emissions in LA County predicted by VCPy and McDonald 

et al. (2018) with the average speciation of LA County VCP emissions predicted by VCPy 
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and McDonald et al. (2018). In cases where the mass fraction of a given species within 

total VCP emissions is not provided in Table S8 of McDonald et al. (2018), we use the 

value from VCPy. Petrochemical and oil and gas emissions were speciated using the EPA 

SPECIATE database, as described above. Asphalt emissions were predicted to contribute 

negligibly to emissions of the analyzed species, as the largest species analyzed were C10 

while asphalt emissions are predominately C12 to C20 (Khare et al., 2020). Results of the 

ER analysis are shown in Figure 2.S26 and demonstrate that the model reproduces 

measured values with relatively low bias in 2010 and 2022; however, increasing modeled 

gasoline SOA precursor emissions by ~30% in 2010 and reducing them by ~20% in 2022 

considerably improves the ER comparison. 

2.S8 ISOROPPIA-II simulations of nitrate partitioning 
Given the differences in meteorology and sulfate concentrations between campaigns, we 

first used the ISORROPIA-II thermodynamic model to assess whether changes in average 

NO3,inorg. aerosol concentrations represented reductions in concentrations of total nitrate 

(NO3,inorg. + HNO3), which would indicate changes in nitrate production, or could have 

simply resulted from partitioning differences. For these calculations, ISORROPIA-II was 

run in “forward” mode using average total aerosol- and gas-phase diurnal concentrations 

of SO4, NH3+NH4, NO3+HNO3, and Chl measured during CalNex-2010. Simulations were 

performed with meteorological parameters constrained to match those measured during 

either CalNex-2010, LAAQC-2022, or CalNexT-2022.  

We then compared the ratios of NO3,inorg. concentrations observed between the 2022 

campaigns and CalNex-2010 (i.e., NO3,inorg-2022/NO3,inorg-2010) with ratios predicted by 

ISORROPIA-II if only average meteorological parameters had changed (i.e., 

NO3,ISOROPPIA-2010 w/2022 met/NO3,ISOROPPIA-2010 w/2010 met) or if meteorological conditions and 

total concentrations (e.g., gas + aerosol) or nitrate and/or sulfate had changed. We 

compared ratios rather than absolute concentrations given that ISORROPIA-II 

overpredicts NO3,inorg aerosol measured at night during CalNex-2010 and underpredicts 

NO3,inorg midday (Guo et al., 2017). The reasons for these discrepancies remain poorly 
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understood but may be related to HNO3 uptake on coarse mode sea salt particles (Guo 

et al., 2017).  

As shown in Figure 2.S32, these calculations imply large reductions in nighttime 

concentrations of total nitrate during the 2022 campaigns relative to CalNex-2010 (i.e., 

predicted ratios are larger than observed ratios when total nitrate is assumed constant since 

2010) but only modest changes in daytime nitrate concentrations, assuming only 

meteorological parameters were different between the campaigns.  

However, given the dependence of AN partitioning on sulfate concentrations, we 

performed additional simulations that adjusted sulfate concentrations in line with our 

observations. On average, we measured approximately 35-50% less sulfate during 

LAAQC-2022 and CalNexT-2022 than was observed during CalNex-2010. This decline 

aligns with the predicted reduction in sulfur oxide emissions in Los Angeles County since 

2010 (~35%) and the likely effect of establishment of the North American Emission 

Control Area on regional shipping vessel emissions since 2010. Ensberg et al. (2013) 

estimated that long-range transport accounted for approximately 25-35% of ambient sulfate 

measured in Pasadena during CalNex-2010, suggesting changes in regional shipping 

emissions likely influence local concentrations. We assumed total ammonium 

concentrations were unchanged since 2010 based on CARB predictions of ammonia 

emissions in Los Angeles County (CEPAM, 2019). 

Figure 2.S32 demonstrates that when sulfate concentrations are reduced in line with 

measured aerosol concentrations, the ISORROPIA-predicted NO3,inorg. ratio aligns with 

measured ratios midday during LAAQC-2022 and underpredicts ratios measured midday 

during CalNexT-2022, even without any invoking any reductions in total nitrate 

concentrations, suggesting similar or larger concentrations of total nitrate during the 

daytime in 2022 than in 2010. In contrast, the nighttime ratios remain considerably 

different when sulfate concentrations are reduced, with larger inferred total nitrate 

concentrations at night during CalNex-2010 than in 2022.  

The reduction in daytime sulfate concentrations is therefore predicted to have shifted AN 

partitioning towards the gas phase, assuming ammonium concentrations have remained 

relatively constant. We hypothesize this shift results from the fact reducing midday sulfate 
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concentrations has only a small influence on the abundance of “free” ammonia (increase 

of ~15%) but considerably increases the AN equilibrium disassociation constant (Seinfeld 

and Pandis, 2016). 

We note that the thermodynamic model results, which suggest similar total nitrate 

concentrations midday during all three campaigns discussed here, disagree with the trend 

in NOz concentrations shown in Figure 2.S16, as a decline in NOz implies a decline in total 

nitrate unless the speciation of NOz has changed drastically. The reasons for this 

discrepancy remain unclear and warrant further investigation using direct nitric acid 

measurements/modeling. 

 

2.S9 Zero-dimensional modeling of overnight nitrate aerosol formation 
 
We developed a zero-dimensional model of overnight NOx chemistry to assess the impacts 

of reduced NOx emissions on production of both inorganic (NO3,inorg.) and organic (NO3,org.) 

nitrate aerosol. Model simulations begin at 19:00 local time and simulate NOx and BVOC 

emissions, gas-phase chemistry, formation and hydrolysis of N2O5, and aerosol partitioning 

of HNO3 until 06:00 the following day. The gas-phase reactions included in the model are 

listed in Table S10. As described below, we first constrained trace gas and BVOC 

concentrations measured in 2010 and performed simulations to estimate critical parameters 

related to NO3 aerosol formation (e.g., N2O5 uptake coefficient). Following model 

initialization, trace gas and BVOC concentrations were unconstrained, NOx and BVOC 

emissions were tuned to reproduce 2010 measurements, and NOx emissions were then 

reduced to assess the impact on NO3 aerosol formation. Five total simulations were 

performed. The first (base) simulation (Simulation #1 -Base, below) using unconstrained 

trace gases is described above and is meant to reproduce conditions observed during 

CalNex-2010. Comparisons of simulated overnight concentrations of trace gases, ClNO2, 

HNO3, NO3,inorg., and BVOC with measurements during CalNex-2010 are shown in Figure 

2.S36.  
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In the second simulation (Simulation #2 – LAAQC-2022 TG), we reduced overnight 

NOx emissions by 45% according to CARB emissions estimates for Los Angeles County 

(CEPAM, 2019), reduced initial NO2 concentrations (i.e., at 19:00) and increased initial 

O3 slightly to match observations made during LAAQC-2022. Total aerosol surface area 

concentrations were kept constant to assess the implications of changing gas-phase 

chemistry in the absence of any changes in meteorology or aerosol concentrations. In the 

third simulation (Simulation #3 – LAAQC-2022 TG & Adj. NH4NO3), we adjusted trace 

gases as in the second simulation while also allowing aerosol surface area to change 

according to changes in overnight production of NO3,inorg aerosol and associated ALW. The 

fourth simulation was further used to assess the effects of reductions in non-nitrate aerosol 

species and associated ALW on NO3,inorg. production through changes in aerosol surface 

area available for N2O5 hydrolysis. Finally, we performed a fifth simulation (Simulation 

#4 – Adj. TG, SA, Met.) similar to the fourth in terms of trace gases and aerosol surface 

area concentrations, in which meteorological parameters were also adjusted to match those 

measured during LAAQC-2022. 

For each simulation, prior to simulating overnight chemistry, the ISORROPIA-II 

thermodynamic model (Fountoukis and Nenes, 2007) was used to calculate mass loadings 

of inorganic aerosol liquid water (ALW) and aerosol-phase concentrations of H+ to enable 

parameterization of N2O5 hydrolysis (i.e., HNO3 formation) and HNO3 partitioning for 

various hypothetical total concentrations (i.e., gas + aerosol) of sulfate, ammonium, and 

nitrate. For Simulations #1-3, we assumed that total overnight concentrations of sulfate and 

ammonium were equivalent to those measured during CalNex-2010. We then created a 

lookup table of ALW and aqueous H+ concentrations by performing overnight 

ISORROPIA-II calculations while varying the total amount of nitrate from ~3 to 15 μg m-

3 and maintaining overnight sulfate and ammonium concentrations equivalent to those 

measured during CalNex-2010. As the zero-dimensional model simulation proceeds, the 

ALW and H+ concentrations calculated by ISORROPIA-II for the model-predicted amount 

of total nitrate and the current model time step (e.g., 23:05 with specific observed 

meteorological parameters) were used to update aerosol surface area and acidity values for 

the next model time step. For Simulation #4, the total overnight sulfate and OA 
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concentration was adjusted to match measurements during LAAQC-2022, while the 

total ammonia concentration (gas + aerosol) was assumed constant following CARB 

emission predictions for Los Angeles County (CEPAM, 2019). For Simulations #1-#4, 

average overnight meteorological conditions measured from Caltech Hall during CalNex-

2010 were used as inputs to the ISORROPIA-II model. In the final simulation, these 

meteorological parameters were adjusted to match values measured during LAAQC-2022.  

The additional contribution of organic species to aerosol liquid water was estimated using 

Eq. 5 in Guo et al. (2015). Organic species are assumed to have the median hygroscopicity 

(κ) observed in CalNex-2010 in all model simulations (Guo et al., 2017).  

Aerosol surface area concentrations measured during CalNex-2010 used in calculation of 

N2O5 hydrolysis rates were corrected to account for calculated ALW content 

uncharacterized by SMPS due to drying upstream of the instrument (Hayes et al., 2013). 

When adjusting NR-PM1 concentrations to match those measured during LAAQC-2022 

(Simulation #3 and Simulation #4), we modified the initial dry aerosol surface area 

concentration following the relationship between total AMS NR-PM1 mass and submicron 

aerosol surface area measured during CalNex-2010. This allowed us to estimate the 

average dry submicron aerosol surface area at 19:00 during LAAQC-2022 in the absence 

of direct SMPS measurements. 

Heterogeneous hydrolysis of N2O5 to form HNO3 is parameterized using a reactive uptake 

probability (γ) of 0.007 and a nitryl chloride yield (Φ) of 0.7 to reproduce total overnight 

NO3 formation and nitryl chloride (ClNO2) production measured during CalNex-2010 

(Figure 2.S36) when trace gas and BVOC concentrations are constrained. While the γΦ 

product (0.0049) used here is slightly smaller than the average value observed during 

CalNex-2010 reported by Mielke et al. (2013) (0.008), it is well within the range of values 

observed (0-0.4) and produces reasonable amounts of overnight gas-phase HNO3, nitrate 

aerosol, and nitryl chloride production in the constrained 2010 simulation (Figure 2.S36). 

We assume a constant γΦ product regardless of simulation, despite the likely dependence 

on aerosol composition, given the disagreement between established parameterizations and 

direct measurements of γΦ observed previously (Mielke et al., 2013). We note that an 

increasing contribution of OA to total NR-PM1 mass loadings over time may have caused 
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reductions in γΦ (Mielke et al., 2013). The lack of NH3 and HNO3 measurements in 

2022 prevents accurate assessment of aerosol acidity, which inhibits our ability to use 

overnight AN formation in 2020 to constrain changes in γΦ, as reduced AN formation 

could be the result of either reduced HNO3 production through N2O5 hydrolysis or reduced 

HNO3 partitioning due to increasingly acidic aerosol. Reductions in γΦ since 2010 would 

increase the predicted reduction of overnight NO3 formation and therefore would not 

influence our conclusions. 

Partitioning of HNO3 formed from N2O5 hydrolysis between the gas and particle phases is 

calculated using Eq. 7 in the Supplemental Information of Guo et al. (2017). The HNO3 

partitioning coefficient is calculated during model run using estimates of inorganic (ALW) 

and aerosol-phase H+ produced from the ISORROPIA-II model. We use an activity 

coefficient product for H+ and NO3- (γH+γNO3-) of 0.4. The γH+γNO3- product is held constant 

throughout the simulations given the agreement observed between calculated partitioning 

of HNO3 and the partitioning predicted by ISORROPIA-II. The resulting estimates of 

aerosol acidity and the particle phase fraction of NO3 in each simulation are shown in 

Figure 2.S38.  

The model directly simulates monoterpene emissions to predict organic NO3 aerosol 

formation and ensure accurate nitrate radical reactivity during simulations with reduced 

NOx emissions. Monoterpene emissions are estimated by minimizing the difference 

between measured and modeled monoterpene concentrations.  

Monoterpene emissions were assumed to follow the temperature dependence reported by 

Guenther et al. (1993) in all simulations. The model assumes that overnight isoprene 

emissions are negligible. Overnight concentrations of all simulated BVOC are shown in 

Figure 2.S37. We assumed a constant SOA yield for NO3 oxidation of all simulated 

monoterpenes of 25% (Fry et al., 2014), while the SOA yield from NO3 oxidation of 

isoprene is assumed to be negligible for simplicity. Applying an isoprene SOA yield of 10-

20% increases overnight organic NO3 aerosol formation by 0.07 to 0.15 μg m-3 and has no 

influence on our conclusions. 

We assumed an overnight OH concentration of 1 x 105 cm-3 in our base simulations. 

Overnight OH concentrations measured by Griffith et al. (2016) during CalNex-2010 were 
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frequently below the detection limit of the Fluorescence Assay by Gas Expansion 

instrument (4.4 x 105), and true overnight OH concentrations are therefore highly uncertain. 

However, increasing the estimated overnight OH concentration to 2 x 105 cm-3 has little 

influence on predicted overnight NO3,inorg. production assuming 1) OH concentrations and 

N2O5 uptake coefficients were constant between simulations and 2) N2O5 uptake 

coefficients are tuned to achieve model-measurement agreement in NO3,inorg. production in 

Simulation #1 (Figure 2.S39). 

As noted in the main text, the final model simulation (Simulation #5), which is meant to 

best represent conditions observed during LAAQC-2022 (e.g., trace gases, aerosol 

concentrations, and meteorology) underpredicts measured NO3,inorg. We evaluated whether 

this discrepancy could be due to changing overnight OH concentrations or changes in the 

N2O5 uptake coefficient. Briefly, Hansen et al. (2021) demonstrated that NO2 and CO 

accounted for at least one-third of overnight OH reactivity during CalNex-2010. If 

overnight OH production has not appreciably changed, which is reasonable given the 

similar meteorology (and as a result the inferred strength of local terpene emissions) and 

overnight ozone concentrations, the decline in OH reactivity may have led to an increase 

in overnight OH concentrations. Approximately half of OH reactivity was unaccounted for 

by measured species during CalNex-2010, and a portion of this reactivity may also be 

attributable to anthropogenic sources whose emissions have declined (Hansen et al., 2021). 

While Figure 2.S39 shows that we can produce the same overnight NO3,inorg production 

using constant OH concentrations of either 1x105 cm-3 or 2x105 cm-3 by tuning the N2O5 

uptake coefficient and assuming it is constant between simulations, if we instead assume 

that OH increased from 1x105 cm-3 in 2010 to 2x105 cm-3 in 2022, the predicted amount of 

NO3,inorg in Simulation #5 increases considerably and only underpredicts measured NO3,inorg 

by 20% (as opposed to 45% in the scenario with a constant overnight OH concentration of 

1x105 cm-3).  

2.S10 Comparison of AMS and PM2.5 measurements at stationary monitors in 

Los Angeles County 
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As noted in the main text, the average NR-PM1 concentration measured during LAAQC-

2022 (11.0 μg m-3) was approximately 30% lower than the average concentration measured 

during CalNex-2010 (15.7 μg m-3). This apparent decline stands in contrast to the 

consistency in gravimetric FRM PM2.5 concentrations measured at the Pasadena South 

Coast Air Quality Monitoring District (SCAQMD) site during each campaign (10.5 μg m-

3 during CalNex-2010 and 10.3 μg m-3 during LAAQC-2022) and the minor change in 

annual average PM2.5 concentrations from 2010 to 2022 (decline of 10%).  

However, while AMS NR-PM1 concentrations were only slightly higher than FRM PM2.5 

measurements made in Pasadena during LAAQC-2022, NR-PM1 concentrations measured 

during CalNex-2010 exceeded nearby FRM PM2.5 concentrations by ~35% on average 

(Figure 2.S41).  

Aerosol composition measurements suggest that reduced ammonium nitrate (AN) 

concentrations (~55% reduction between CalNex-2010 and LAAQC-2022) account for 

~50% (~2.5 μg m-3) of the total reduction in average NR-PM1 mass loadings observed 

between CalNex-2010 and LAAQC-2022. Changes in observed OA mass loadings were 

more modest (<1 μg m-3). Previous analyses of gravimetric aerosol measurements using 

FRM in Los Angeles and other cities in California have observed substantial evaporation 

of AN aerosol (80-90%) during spring/summer sampling (Hering et al., 1999; Zhang et al., 

1992; Ashbaugh and Eldred, 2004; Chow et al., 2005; Yu et al., 2005). If we assume that 

75-100% of AMS-measured AN evaporated from nearby PM2.5 filter samples prior to 

quantification and decrease AMS concentrations accordingly, agreement between the 

measurements improves considerably (Figure 2.5 in the main text). 

We further investigated the potential occurrence of AN evaporation by comparing PM2.5 

mass loadings measured in the Los Angeles Basin using the gravimetric FRM (Method 

Reference ID: 390 RFPS-1006-145) (24-hr integrated samples) with measurements 

performed using a beta attenuation monitor (BAM) (Federal Equivalent Method, FEM 

EQPM-1013-209) (BAM-1020; Met One Instruments). The BAM instrument measures 

PM2.5 mass loadings continuously by recording attenuation of emitted beta rays by the filter 

sample using a scintillation detector, resulting in a high time-resolution measurement (1 

hr) thought to be less influenced by evaporation artifacts than typical gravimetric FRMs, 
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as only modest meteorological changes typically occur during a single sampling period 

(Le et al., 2020).  

Figure 2.5 demonstrates that in contrast to the consistency in average FRM PM2.5 

concentrations measured in May and June in Pasadena since 2010, FEM PM2.5 

concentrations measured in Glendora, approximately 15 miles to the east, declined by 38% 

over the same period. As shown in Figure 2.S42, FEM PM2.5 measurements made during 

CalNex-2010 and LAAQC-2022 at four locations across the Los Angeles Basin show 

approximately the same relative decline from 2010 to 2022 as that inferred from the AMS 

measurements. Three of these locations have co-located FRM and FEM monitors that have 

been sampling continuously over the last decade (Downtown Los Angeles, Anaheim, and 

Rubidoux). As shown in Figure 2.5 in the main text, at each of these locations, the decline 

in PM2.5 concentrations measured by the FEM monitors since 2010 considerably exceeds 

the decline inferred from the FRM measurements. The absolute differences between FRM 

and FEM measurements observed during May and June sampling in 2010 (4-6 μg m-3) were 

also comparable to the differences observed between the AMS and FRM measurements in 

Pasadena during CalNex-2010 (~6 μg m-3). Furthermore, the differences between the FEM 

BAM and gravimetric FRM measurements have declined appreciably with time at each 

location (Figure 2.5), in agreement with the AMS-measured decline in the absolute mass 

loading and fractional contribution of AN in Pasadena. 

While the BAM-FRM comparison supports declining concentrations of evaporative 

aerosol components, previous comparisons of BAM and FRM measurements have found 

indirect evidence for positive artifacts in BAM measurements due to acid gas absorption 

on the glass fiber filters used in BAM instruments (e.g., HNO3) (Le et al., 2020; Liu et al., 

2013). Teflon filters used in FRM measurements, in contrast, are not thought to absorb 

acidic gases as efficiently (Le et al., 2020; Liu et al., 2013). While difficult to precisely 

quantify, we use relative differences in measured concentrations of inorganic species on 

Teflon and glass fiber filters by Liu et al. (2013) (e.g., 36% larger concentrations of NO3 

aerosol on glass fiber than Teflon filters) and AMS-measured NR-PM1 speciation in 

Pasadena to calculate an upper limit estimate of the positive artifact in the BAM 

measurements of ~1.5-2 μg m-3 in 2010. This represents only 20-30% of the difference 
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between BAM and FRM measurements in downtown Los Angeles in 2010. 

Furthermore, as HNO3 exists in equilibrium with AN, the declining difference between the 

BAM and FRM methods since 2010 supports reduced production of AN aerosol even if 

the HNO3 absorption bias in the BAM measurement has historically been substantial. Our 

analysis therefore suggests that AN mass loadings have declined considerably over the last 

decade, driven largely by reduced mobile source NOx emissions, but this decline may not 

have been fully captured by regulatory FRM monitors due to sampling artifacts (i.e., AN 

evaporation) (Hering et al., 1999; Chow et al., 2005).  

We note that this potential explanation for the AMS-FRM discrepancy does not explain 

the only modest reductions in NO3 PM2.5 concentrations measured in downtown Los 

Angeles using nylon filter samples coupled with ion chromatography. Nylon filters retain 

volatilized nitric acid with much greater efficiency than Teflon filters, and as such are 

thought to be associated with minimal negative artifacts (Yu et al., 2005). While the 

average inferred changes in spring/summer PM2.5 concentrations of organic carbon, sulfate, 

and ammonium measured downtown (23-45%, 26-35%, and 50-65%, respectively) (Figure 

2.S43) agree well with average differences observed between the CalNex-2010 and 

LAAQC-2022 AMS measurements (10%, 35%, and 55%, respectively), the measured 

change in nitrate aerosol downtown (21-38%) is somewhat smaller than the difference in 

the AMS measurements (55%).  

However, the decadal change in nitrate aerosol in Rubidoux (~50% as an annual average 

and as much as 68% for summertime periods) aligns well with the changes observed from 

the AMS measurements and exceeds the changes observed downtown, suggesting that 

temporal trends in individual aerosol components may exhibit considerable spatial 

variability (Figure 2.S44).  

The relatively minor change in nitrate PM2.5 concentrations measured downtown is also 

difficult to reconcile with the considerable simultaneous decline in ammonium aerosol 

concentrations (Figure 2.S43). We also observed considerably variable levels of agreement 

between daily average concentrations of inorganic aerosol species measured in Pasadena 

using the AMS and downtown using nylon filter samples during LAAQC-2022 and 

CalNexT-2022 (Figure 2.S45). Specifically, while AMS and PM2.5 measurements of 



 

 

74 
ammonium aerosol agree relatively well during both campaigns, PM2.5 concentrations 

of nitrate and sulfate aerosol measured in downtown Los Angeles were notably larger than 

PM1 concentrations measured in Pasadena.  

To investigate this further, we estimated trends in AN-associated nitrate PM2.5 

concentrations using an ion balance analysis. Specifically, we assumed that given the 

considerable measured concentrations of PM2.5 nitrate aerosol, all measured sulfate was 

likely fully neutralized by available ammonium (or other available cations such as sodium 

and magnesium), as particles would otherwise be highly acidic, shifting nitrate partitioning 

to the gas phase (Seinfeld and Pandis, 2016). As such, we first calculated ammonium 

sulfate (AS)-associated ammonium concentrations assuming that either (1) all “free” 

sodium and magnesium (i.e, not needed to balance measured chloride concentrations) was 

associated with nitrate anions or (2) 50% of “free” sodium and magnesium was associated 

with sulfate, with the remainder balanced by nitrate. In scenario 1, all measured sulfate is 

assumed to be ammonium sulfate, while some sulfate is associated with non-ammonium 

cations in scenario 2. All ammonium not associated with ammonium sulfate was assumed 

to be available to form AN. We then calculated the trend in AN-associated NO3 since 2010 

using the AN-associated ammonium concentrations. As shown in Figure 2.S46, this 

calculation suggests that the concentration of AN-associated NO3 has declined by ~70-

80% or more during spring/summer conditions in downtown Los Angeles and Rubidoux, 

CA since 2010.  

We then calculated the maximum possible nitrate concentration associated with other, non-

NH4 cations measured downtown (i.e., sodium, magnesium, and calcium) to determine 

whether measured nitrate concentrations could be fully accounted for with available 

cations. As shown in Figure 2.S47, the sum of NH4-associated NO3 (from the ammonium 

balance) and non-NH4-associated NO3 (i.e., NO3 from NaNO3, Mg(NO3)2, and Ca(NO3)2) 

reproduces both annual and seasonal trends in average measured total NO3 concentrations 

with reasonable accuracy in both locations. The closure of the nitrate budget supports the 

conclusion from Figure 2.S46 that the concentration of NH4-associated NO3 may have 

declined considerably since 2010, in agreement with the AMS measurements and the FRM-

BAM comparison discussed above. It may therefore be the case the relative fraction of 
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nitrate associated with other, non-NH4 cations has increased. Such a trend would likely 

be missed when comparing AMS measurements, given that other nitrate species are more 

likely than AN to be associated with super-micron particles not transmitted through the 

AMS aerodynamic lens (e.g., NaNO3) and/or not vaporize quickly enough to be detected 

(Hayes et al., 2013). Additional measurements and direct instrumental comparisons are 

clearly warranted to further investigate the potential evaporative artifact discussed above, 

the sources of nitrate PM2.5 aerosol, and the resulting implications on our interpretation of 

trends in aerosol production . 

2.S11 Estimated future trends in NR-PM1 concentrations in Los Angeles 
Figure 2.S48 displays predicted trends in average mass loadings of NR-PM1 components 

and OA subtypes for typical May-June conditions in 2025, 2030, and 2035. Simulations of 

future SOA concentrations use on-road and non-road gasoline and diesel emissions 

estimates from the CARB EMFAC and CEPAM inventories scaled similarly to the 2010 

and 2022 simulations described in SI Section 2.S5.1. VCP emissions are assumed to 

increase according to relative changes in population, and population projections are 

obtained from the California Department of Finance (California Department of Finance, 

2021). Cooking emissions are obtained from CEPAM model projections. Asphalt and 

biogenic emissions are assumed unchanged relative to the base simulation. Diurnal 

concentrations of ΔCO are reduced according to predicted changes in the sum of on-road 

and non-road CO emissions in Los Angeles County estimated by the CARB EMFAC and 

CEPAM inventories, respectively. Based on the analysis of weekend effects in afternoon 

OHexp estimates in 2020 as shown in Figure 2.S13, we assume that diurnal trends in airmass 

OH exposures and therefore model aging timescales are unchanged from 2020-2035. The 

CEPAM model predicts an 18% reduction in NOx emissions over the next 15 years, which 

is smaller than the average change in NO concentrations on weekends in 2022 (-48%), 

when average OHexps were similar to average weekday values (Figure 2.S13).  

SOA yields are unadjusted relative to the 2022 simulation given the modest predicted 

changes in NOx emissions; however, application of low-NOx SOA yields produces SOA 

concentrations approximately twice as large as those predicted using base SOA yields 
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(Figure 2.S48), underscoring the importance of improving understanding of future trends 

in RO2 fate. We assume that alkane and aromatic SOA yields in low-NOx conditions are 

increased by 0-100% and 200-300%, respectively, relative to high-NOx conditions, based 

on available laboratory data (Ng et al., 2007; Cappa et al., 2013; Zhang et al., 2014). 

Isoprene SOA yields are increased by a factor of two in low-NOx simulations following 

the Odum two-product model parameterizations presented in Carlton et al. (2009). 

Monoterpene SOA yields are also increased by a factor of two following results reported 

by Eddingsaas et al. (2012) for α-pinene photooxidation in the presence of ammonium 

sulfate seed. While experimental investigations of oxygenate SOA yields have been 

published recently, it remains unclear how SOA yields of various classes of oxygenated 

emissions, including oxygenated aromatics (Charan et al., 2020), glycol ethers (Li and 

Cocker et al., 2018), and siloxanes (Charan et al., 2021), vary as a function of NO 

concentration. As products of oxygenate emissions are predicted to account for <5% of 

AU-OA, reasonable adjustments of oxygenate yields (-50% to 300%) have a minor 

influence on the predicted contribution of SOA. 

The total concentration of MO-OOA is assumed unchanged from 2020-2035. CIOA and 

HOA concentrations are adjusted following predicted cooking emissions and mobile 

source PM2.5 emissions from the CARB CEPAM model, respectively. Concentrations of 

SO4, NO3, and NH4 aerosol are assumed to change proportionally with projected emissions 

of SO2, NOx, and NH3 emissions, respectively, in Los Angeles County reported by the 

CARB CEPAM inventory. While such direct scaling of concentrations based on emissions 

changes in clearly simplistic, it nevertheless demonstrates that only minor changes in 

aerosol concentrations are predicted unless 1) currently unaccounted for emissions 

reductions are implemented or 2) non-linear/synergistic effects on aerosol production are 

considerable. 
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Figure 2.S1: Diurnal profiles of (a) temperature and (b) relative humidity during 
CalNex-2010, LAAQC-2022, and CalNexT-2022. Data collected from both the ground-
site and the top of Caltech Hall during CalNex-2010 are shown. Meteorological data were 
measured in 2022 from the roof of Linde Robinson Laboratory during the 2022 
campaigns (approximately 100m from Caltech Hall). 
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Figure 2.S2: Time series of the HR-ToF-AMS ionization efficiency (IE) and the IE 
normalized to the instrumental airbeam (IE/AB) during (a) LAAQC-2022 and (b) 
CalNexT-2022. 
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Figure 2.S3: Diurnal profiles of organic (NO3,org.) and inorganic (NO3,inorg.) nitrate 
aerosol calculated during (a) CalNex-2010, (b) LAAQC-2022, and (c) CalNexT-2022 
using either the NOx ratio method or the ionic balance method. The NOx ratio method 
was not used to analyze CalNex-2010 data as ammonium nitrate calibration data were 
unavailable. 
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Figure 2.S4: (a) Mass spectra, (b) diurnal profiles, and (c) time series of PMF factors 
resolved from the LAAQC-2022 OA dataset. Median diurnal values are shown, and 
shaded regions represent the interquartile range of measurements. 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.S5: (a) Mass spectra, (b) diurnal profiles, and (c) time series of PMF factors 
resolved from the CalNexT-2022 OA dataset. Median diurnal values are shown, and 
shaded regions represent the interquartile range of measurements. 

a) b) c) 
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Figure 2.S6: Comparison of AMS NR-PM1 and Teledyne T640 PM2.5 concentrations 
measured during LAAQC-2022, and CalNexT-2022.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.S7: Comparison of AMS and SMPS PM1 volume measured during CalNexT-
2022. Mass loadings measured by the AMS were converted to volume concentrations by 
assuming organic and inorganic aerosol densities of 1.25 and 1.77 g cm-3, respectively.  
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Figure 2.S8: (a) Diurnal concentrations of NR-PM1 species measured by the AMS 
during CalNexT-2022. (b) Average concentrations of NR-PM1 species. (c) Average 
concentrations of PMF factors. 
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Figure 2.S9: Diurnal estimates of airmass OH exposure and inferred photochemical age 
during (a) CalNex-2010, (b) LAAQC-2022, and (c) CalNexT-2022. Photochemical age 
was calculated from OH exposure assuming an OH concentration of 1.5 x 106 cm-3. 
Diurnal fits were applied to measurements made at 5:30, 9:00, and 14:00 during 
LAAQC-2022 and CalNexT-2022. 
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Figure 2.S10: Estimated potential relative error in calculated OH exposure due to the 
assumption that VOC measurements were performed at a remote receptor site (SI Section 
2.S3).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.S11: Relationship between CO and NOy measured during LAAQC-2022 and 
CalNexT-2022. A three-term polynomial fit was used to determine the background CO 
concentration, which is taken as the intercept of the fit (i.e., concentration associated with 
negligible ambient NOy). 
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Figure 2.S12: Concentrations of (a) HOA and (b) CIOA on weekdays and Sundays 
during CalNex-2010, LAAQC-2022, and CalNexT-2022. Diamond markers represent 
averages. Box plots show the 10th, 25th, 50th, 75th, and 90th percentile values. 
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Figure 2.S13: (a) Observed relationship between inferred afternoon airmass OH 
exposure (OHexp) and ambient NO concentrations during CalNex-2010, LAAQC-2022, 
and CalNexT-2022. Filled circles denote weekday values, while open circles represent 
weekends. Diamond markers indicate average values measured during each campaign. 
(b) Comparison of average afternoon (11:00-17:00) NO concentrations on weekdays and 
weekends during each campaign. (c) Comparison of afternoon (14:00) OH exposure 
estimates on weekdays and weekends during each campaign. Error bars represent 
standard deviations. 
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Figure 2.S14: Time series of (a) temperature, (b) CO, and (c) NOx measured at the 
Pasadena and downtown (LA North Main) South Coast Air Quality Management District 
(SCAQMD) monitoring sites. CARB-estimated emissions of CO and NOx in Los Angeles 
County are also shown. 
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Figure 2.S15: Observed variability in midday (11:00-16:00) concentrations of (a) 
isoprene, (b) benzene, (c) toluene, (d) ethylbenzene, (e) xylenes, and (f) C8-C10 alkanes 
with temperature during CalNex-2010, LAAQC-2022, and CalNexT-2022. Larger 
makers denote average values binned by temperature. Error bars represent standard 
deviations. Averages calculated from 2022 data have been offset by 0.5oC to show 
standard deviations.  
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Figure 2.S16: Observed variability in midday (11:00-16:00) concentrations of (a) O3, (b) 
NO2, (c) NOy, and (d) NOz with temperature during CalNex-2010, LAAQC-2022, and 
CalNexT-2022. Larger makers denote average values binned by temperature. Error bars 
represent standard deviations. Averages calculated from 2022 data have been offset by 
0.5oC to show standard deviations 
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Figure 2.S17: Observed variability in midday (11:00-16:00) concentrations of (a) OA, 
(b) SO4, (c) NH4, and (d) NO3 with temperature during CalNex-2010, LAAQC-2022, and 
CalNexT-2022. 
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Figure 2.S18: Observed variability in midday (11:00-16:00) concentrations of (a) LO-
OOA, (b) MO-OOA, (c) HOA, and (d) CIOA with temperature during CalNex-2010, 
LAAQC-2022, and CalNexT-2022. 
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Figure 2.S19: Observed variability in midday (11:00-16:00) concentrations of (a) OA 
and (b) LO-OOA with temperature during both campaigns in 2022 (LAAQC-2022 and 
CalNexT-2022). Data points are colored by aerosol liquid water concentrations 
associated with inorganic NR-PM1 species calculated using ISORROPIA-II (Fountoukis 
and Nenes, 2007) and sized by ∆CO concentrations. Inset plots show correlations of OA 
and LO-OOA concentrations measured between 27 and 32oC with ALW, NO3, and ∆CO 
concentrations. 
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Figure 2.S20: Observed relationship between midday (11:00-16:00) concentrations of (a) 
ΔCO and (b) ΔCO divided by Los Angeles County CO emissions estimated by the 
CARB and temperature during CalNex-2010, LAAQC-2022, and CalNexT-2022. Larger 
makers denote average values binned by temperature. Error bars represent standard 
deviations. Averages calculated from 2022 data have been offset by 0.5oC to show 
standard deviations. Dotted lines shown in (b) are meant to guide the eye.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.S21: Ratios of ΔCO concentrations, emission ratios of measured traditional 
SOA precursors, midday (14:00-15:00) photochemical age (i.e., OH exposure), and SOA 
either calculated using Eq. 1 or measured during LAAQC-2022 relative to CalNex-2010. 
Measured SOA corresponds to the LO-OOA factor derived from PMF analysis. Estimates 
of airmass photochemical age were calculated using VOC ratios, as described in SI 
Section 2.S3. 
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Figure 2.S22: Ratios of OHexp-corrected afternoon (14:00-15:00) concentrations of 
aromatic and alkane species linked to mobile source emissions measured during 
LAAQC-2022 and CalNex-2010. The average ratio implies a ~60% reduction in 
emissions since 2010. Inset plot shows correlations of OHexp-corrected afternoon 
concentrations with ∆CO during both campaigns. 
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Figure 2.S23: Observed relationship between afternoon (11:00-16:00) (a) planetary 
boundary layer heights (PBLH), (b) wind speeds, and (c) inferred PBL ventilation rates 
with temperature during CalNex-2010. Larger makers denote average values binned by 
temperature. Error bars represent standard deviations. 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.S24: Observed relationship between midday (11:00-16:00) (a) airmass 
photochemical age (i.e., OH exposure) and OH concentrations and (b) LO-OOA 
normalized by ΔCO and photochemical age and temperature during CalNex-2010, 
LAAQC-2022, and CalNexT-2022. Larger makers denote average values binned by 
temperature. Error bars represent standard deviations. Averages calculated from 2020-
2022 data have been offset by 0.5oC to show standard deviations. 
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Figure 2.S25: Comparison of measured and modeled SOA during CalNexT-2022. 
Measured SOA refers to the measured LO-OOA PMF factor. 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.S26: Comparison of modeled and measured emission ratios (ER) of alkane and 
aromatic VOC for simulations of (a) CalNex-2010 and (b) LAAQC-2022. White markers 
denote final values once gasoline emissions are adjusted by +30% and -20% in 2010 and 
2022, respectively. NMB represents normalized mean bias. 
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Figure 2.S27: Comparison of measured and modeled concentrations of hydrocarbon 
IVOC during CalNex-2010. Results from both the base simulation and the simulation 
with adjusted gasoline emissions are shown. 
 

 
 
 

 
 
 
 
 
 
 
 
Figure 2.S28: (a) Modeled effective SOA yield (mass of SOA formed per total mass of 
reactant consumed) of gasoline, diesel, and asphalt emissions in the zero-dimensional 
model. Results are shown for high-NOx and low-NOx conditions, as well as when either 
including or excluding IVOC oxidation product aging. Yields are calculated after 12 
hours of photochemical aging at an OH concentration of 1.5 x 106 molec. cm-3 and a 
background OA mass loading of 10 μg m-3. VCPs are not included as the model does not 
simulate aging of the ~65% of VCP emissions not expected to form any SOA, which 
prevents an accurate assessment of effective yield. (b) Total amount of SOA mass formed 
per total mass of precursor emitted. The VCP value presented in (b) accounts for non-
SOA forming mass emitted. In both cases, markers indicate the values used in the base 
model simulations described in the main text. 

a) b) 
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Figure 2.S29: Emission profile of each major anthropogenic OA precursor source 
included in the zero-dimensional model. Emissions assumed to form no POA or SOA 
(e.g., small alkenes in gasoline emissions, small oxygenates in VCP emissions, etc.) are 
not shown. Petrochemical emissions are not shown given that they are expected to 
account for <2% of SOA. 
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Figure 2.S30: Relationship between afternoon (11:00-16:00) concentrations of NO3 and 
NOz during CalNex-2010, LAAQC-2022, and CalNexT-2022. 
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Figure 2.S31: (a) Observed relationship between midday (11:00-17:00) RH and 
temperature during CalNex-2010, LAAQC-2022, and CalNexT-2022. Large markers 
denote campaign averages. Dotted line is a linear fit to the data from all three campaigns. 
(b) Concentration of inorganic nitrate aerosol (NO3,inorg.) predicted by ISORROPIA-II as 
a function of midday temperature when run in “forward” mode using total concentrations 
of SO4, NH3 (NH4 (p) + NH3 (g), and NO3 (HNO3 (g) + NO3 (p)) measured at noon 
during CalNex-2010. Ambient RH values were scaled with temperature in the 
ISORROPIA-II simulations following the relationship shown in (a). The ISORROPIA-II 
results demonstrate that an average temperature difference of ~2-3oC is predicted to 
reduce ambient NO3,inorg. concentrations by over 50%. 
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Figure 2.S32: Comparison of measured ratios of inorganic nitrate (NO3,inorg.) between (a) 
LAAQC-2022 and CalNex-2010 and (c) CalNexT-2022 and CalNex-2010 with ratios 
calculated using ISORROPIA-II simulations assuming that either only meteorological 
parameters had changed between campaigns (base simulation) or that meteorological 
parameters and total concentrations (gas + aerosol) of nitrate and sulfate had shifted 
between campaigns by the noted relative amounts. Results demonstrate that measured 
nighttime NO3,inorg. ratios are only reproduced by ISORROPIA-II if total nitrate 
concentrations in 2022 are reduced considerably (>40%) relative to CalNex-2010. In 
contrast, daytime ratios are reproduced (LAAQC-2022) or even underpredicted 
(CalNexT-2022) if sulfate concentrations are changed but total nitrate concentrations are 
assumed constant. 
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Figure 2.S33: Correlation between midday (11:00-17:00) estimates of airmass OH 
exposure calculated using VOC ratios (OHexp) (SI Section 2.S3) and measured OH 
concentrations during CalNex-2010. 
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Figure 2.S34: Calculated overnight nitrate radical production rate and cumulative nitrate 
radical production during CalNex-2010 and LAAQC-2022. 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 2.S35: Diurnal nitrate radical production rates inferred from measurements at 
SCAQMD monitoring sites in (a) Pasadena, (b) downtown Los Angeles, and (c) West 
Hollywood during May-June 2010 and 2022. 
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Figure 2.S36: Comparison of overnight measured concentrations of (a) NO, (b) NO2, (c) 
ozone, (d) ClNO2, (e) HNO3, and (d) NO3,inorg. during CalNex-2010 with concentrations 
simulated in the base overnight model run (Simulation #1) described in SI Section 2.S9. 
Markers represent average values measured during CalNex-2010, while shaded areas 
denote standard deviations. 
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Figure 2.S37: Comparison of overnight measured concentrations of (a) monoterpenes 
and (b) isoprene during CalNex-2010 with concentrations simulated in the base overnight 
model run (Simulation #1) described in SI Section 2.S9. Markers represent average 
values measured during CalNex-2010. 
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Figure 2.S38: Modeled overnight (a) aerosol surface area concentrations, (b) aerosol 
liquid water concentrations, (c) aerosol pH, and (d) NO3 partitioning ratio (aerosol/gas + 
aerosol) for each of the simulations discussed in SI Section 2.S9. 
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Figure 2.S39: (a) Comparison of measured overnight NO3,inorg. formation with simulation 
results assuming either constant overnight OH concentrations of 1 x 105 cm-3 or 2 x 105 
cm-3 or variable OH concentrations, with OH increasing from 1 x 105 cm-3 in 2010 to 2 x 
105 cm-3 in 2022. In all cases, N2O5 uptake coefficients were tuned to achieve model-
measurement agreement in Simulation #1 and held constant throughout the simulations. 
Simulation #5 is meant to best represent both trace gas and aerosol conditions observed 
during LAAQC-2022. (b) Fraction of overnight NO3,inorg. production attributed to N2O5 
hydrolysis or OH + NO2 for each simulation. 
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Figure 2.S40: (a) Correlation between hourly NR-PM1 measurements during CalNex-
2010 and LAAQC-2022 with FEM PM2.5 measurements in Glendora. (b) Time series of 
total NR-PM1 and FEM PM2.5 during each campaign. 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 2.S41: Comparisons between daily average NR-PM1 concentrations measured by 
the AMS and PM2.5 concentrations measured by the Pasadena SCAQMD gravimetric 
FRM monitor during (a) CalNex-2010, (b) LAAQC-2022, and (c) CalNexT-2022. 
 

a) b) c) 
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Figure 2.S42: Comparison of AMS diurnal trends in Pasadena measured during CalNex-
2010 and LAAQC-2022 with FEM measurements at four additional sites in the Los 
Angeles Basin, demonstrating consistent reductions from 2010 to 2022.  
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Figure 2.S43: Trends in seasonally-averaged concentrations of (a) total PM2.5 measured 
using the FRM (gravimetric) method, (b) sum of speciated PM2.5 components also 
measured by the AMS (OM+SO4+NH4+NO3), (c) organic carbon (OC), (b) sulfate, (c) 
ammonium, and (d) nitrate aerosol measured at the downtown Los Angeles SCAQMD 
monitoring site. Relative changes in average concentrations since 2010 calculated from 
linear fits are shown. OM concentrations used in the sum in (b) were calculated assuming 
an OM:OC ratio of 1.8.  

c) d) 

e) f) 

a) b) 
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Figure 2.S44: Trends in seasonally-averaged concentrations of (a) total PM2.5 measured 
using the FRM (gravimetric) method, (b) sum of speciated PM2.5 components also 
measured by the AMS (OM+SO4+NH4+NO3), (c) organic carbon (OC), (b) sulfate, (c) 
ammonium, and (d) nitrate aerosol measured at the Rubidoux SCAQMD monitoring site. 
Relative changes in average concentrations since 2010 calculated from linear fits are 
shown. OM concentrations used in the sum in (b) were calculated assuming an OM:OC 
ratio of 1.8. 
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a) b) 



 

 

113 

4

3

2

1

0PM
2.

5 S
O

4 (
μg

 m
-3

) (
LA

 N
. M

ai
n)

43210
PM1 SO4 (μg m

-3
) (Pasadena)

 LAAQC-2022
        R2 = 0.80
        Slope = 1.5
        Avg. ratio = 1.4 
  CalNexT-2022
        R2 = 0.92
        Slope = 2.0
        Avg. ratio = 2.2

2022

5

4

3

2

1

0PM
2.

5 N
H

4 (
μg

 m
-3

) (
LA

 N
. M

ai
n)

543210
PM1 NH4 (μg m

-3
) (Pasadena)

2022

 LAAQC-2022
        R2 = 0.82
        Slope = 1.3
        Avg. ratio = 1.1 

 CalNexT-2022
        R2 = 0.89
        Slope = 1.0
        Avg. ratio = 1.0

8

6

4

2

0PM
2.

5 N
O

3 (
μg

 m
-3

) (
LA

 N
. M

ai
n)

86420
PM1 NO3 (μg m

-3
) (Pasadena)

 LAAQC-2022
        R2 = 0.69
        Slope = 2.5
        Avg. ratio = 3.1 

2022

 CalNexT-2022
        R2 = 0.70
        Slope = 2.2
        Avg. ratio = 3.3

6

5

4

3

2

1

0PM
2.

5 S
O

4 (
μg

 m
-3

) (
LA

 N
. M

ai
n)

6543210
PM1 SO4 (μg m

-3
) (Pasadena)

R2 = 0.99
Slope = 1.1
Avg. ratio = 1.1

CalNex-2010

5

4

3

2

1

0PM
2.

5 N
H

4 (
μg

 m
-3

) (
LA

 N
. M

ai
n)

543210
PM1 NH4 (μg m

-3
) (Pasadena)

R2 = 0.84
Slope = 1.0
Avg. ratio = 1.1

CalNex-2010

10

8

6

4

2

0PM
2.

5 N
O

3 (
μg

 m
-3

)  
(L

A 
N

. M
ai

n)

1086420
PM1 NO3 (μg m

-3
) (Pasadena)

R2 = 0.64
Slope = 0.6
Avg. ratio = 1.18

CalNex-2010

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.S45: Relationship between PM2.5 concentrations of (a-b) sulfate, (c-d) 
ammonium, and (e-f) nitrate aerosol measured in downtown Los Angeles with AMS NR-
PM1 concentrations measured during CalNex-2010 (a,c,e – left column), and 2022 
(LAAQC-2022 and CalNexT-2022) (b,d,f – left column). 
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Figure 2.S46: Trends in seasonal and annual concentrations of nitrate aerosol associated 
with NH4NO3 assuming NH4NO3 concentrations can be calculated from an ammonium 
balance (SI Section 2.S10). (a-b) Concentrations in downtown Los Angeles assuming that 
either (a) all free sodium and magnesium (i.e., not associated with chloride) represents 
sodium nitrate and magnesium nitrate and (b) assuming that 50% of free sodium and 
magnesium is sodium sulfate and magnesium sulfate, with the remaining free sodium and 
magnesium associated with nitrate. (c-d) Same as (a-b) for measurements in Rubidoux, 
CA. 
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Figure 2.S47: Trends in PM2.5 concentrations of total measured NO3, calculated NO3 
associated with ammonium nitrate (blue), and calculated NO3 associated with other 
cations (grey) in downtown Los Angeles (top row) and Rubidoux (bottom row). 
Calculations follow the method described in SI Section 2.S10 and assume that 50% of 
free sodium and magnesium is associated with sulfate, with the remainder associated with 
nitrate anions. Concentrations shown represent (a,d) annual, (b,e) spring, and (c,f) 
summertime averages. Inset plots show correlations of total calculated PM2.5 NO3 based 
on other cation and anion concentrations with measured NO3 concentrations. 
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Figure 2.S48: (a) Relative trend in emissions of OA and IA precursors in Los Angeles 
County from 2022-2035 predicted by the CARB CEPAM inventory (CEPAM, 2029). (b) 
Relative contributions of individual emission sources to 2022 NOx, SOx, NH3, and ROG 
emissions in Los Angeles County predicted by the CEPAM inventory. (c) Predicted trend 
in NR-PM1 components using emissions trends as explained in Section 4.S11. (d) Same 
as (c) for individual PMF factors. (e) Same as (c) for modeled SOA composition. 
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Tables 2.S1-2.S10 
 
 
Table 2.S1: Average (± standard deviation) concentrations of measured trace gases 
(ppbv) and VOCs (pptv) during CalNex-2010, LAAQC-2022, and CalNexT-2022 
Species CalNex-2010 LAAQC-2022 CalNexT-2022 

Trace gases    
O3 33.3 ± 18.2 39.9 ± 18.4 34.0 ± 21.5 
NO 2.4 ± 4.4 0.9 ± 1.7 1.7 ± 2.9 
NO2 12.6 ± 6.7 7.8 ± 4.2 10.3 ± 5.5 
NOy 20.9 ± 10.3 12.1 ± 6.4 15.2 ± 8.1 
NOz 7.1 ± 4.0 3.4 ± 2.1  3.2 ± 1.8 
CO 301 ± 88 221 ± 72 236 ± 69 
    

Alkanes    
n-Hexane 266 ± 178 112 ± 81 138 ± 108 
n-Heptane 147 ± 61 49 ± 26 57 ± 27 
n-Octane 59 ± 29 25 ± 12 28 ± 14 
n-Nonane 56 ± 18 17 ± 8 21 ± 9 
2-Methylhexane 94 ± 54 43 ± 24 55 ± 28 
3-Methylhexane 95 ± 53 45 ± 26 57 ± 29 
Cyclohexane 88 ± 48 37 ± 21  42 ± 19 
    

Aromatics    
Benzene 262 ± 108 133 ± 51 152 ± 85 
Toluene 579 ± 274 276 ± 147 312 ± 144 
Ethylbenzene 103 ± 47 35 ± 19 44 ± 21 
m,p-Xylene 286  ± 142 98 ± 62 129 ± 75 
o-Xylene 117  ± 53 38 ± 23 48 ± 26 
1,2,4-TMB 94  ± 50 20 ± 15 33 ± 2 
    

Biogenics    
Isoprene 325 ± 451 299 ± 344 499 ± 436 
α-Pinene 30 ± 28 49 ± 139 29 ± 21 
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Table 2.S2: Correlation (R2) of PMF factor spectra resolved from the four-factor PMF 
solution from the LAAQC-2022 dataset with spectra observed during CalNex-2010 in 
Pasadena, CA by Hayes et al. (2013)  
Factor LO-

OOA1 
MO-OOA2 HOA CIOA LOA 

LO-OOA 0.97 0.84 0.68 0.82 0.86 
MO-OOA 0.79 0.97 0.36 0.48 0.72 
HOA 0.82 0.48 0.84 0.91 0.74 
CIOA 0.84 0.52 0.92 0.97 0.77 

1Referred to as “SV-OOA” in Hayes et al. (2013). 2Referred to as “LV-OOA” in Hayes et 
al. (2013) 
 
 
 
 
 
 
Table 2.S3: Correlation (R2) of PMF factor spectra resolved from the five-factor PMF 
solution from the CalNexT-2022 dataset with spectra observed during CalNex-2010 in 
Pasadena, CA by Hayes et al. (2013)  
Factor LO-

OOA1 
MO-OOA2 HOA CIOA LOA 

LO-OOA 0.97 0.85 0.68 0.81 0.86 
MO-OOA 0.88 0.96 0.43 0.58 0.78 
HOA 0.67 0.31 0.84 0.85 0.61 
CIOA 0.85 0.55 0.92 0.95 0.79 

1Referred to as “SV-OOA” in Hayes et al. (2013). 2Referred to as “LV-OOA” in Hayes et 
al. (2013) 
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Table 2.S4: Correlation (R2) of PMF factors measured during LAAQC-2022 with 
VOCs and trace gases. 

Species LO-OOA MO-OOA HOA CIOA 
Trace gases     
O3 0.55 0.04 0.03 0.02 
NO 0.04 0.01 0.25 0.01 
NO2 0.04 0.01 0.38 0.14 
NOy 0.19 0.06 0.60 0.04 
CO 0.33 0.10 0.53 0.12 
     Alkanes     
n-Hexane 0.20 0.03 0.59 0.42 
n-Heptane 0.20 0.07 0.76 0.48 
n-Octane 0.12 0.07 0.70 0.51 
n-Nonane 0.13 0.09 0.75 0.49 
2,2-Dimethylbutane 0.48 0.02 0.73 0.38 
2-Methylpentane 0.28 0.04 0.78 0.45 
3-Methylpentane 0.19 0.03 0.75 0.48 
Cyclopentane 0.19 0.02 0.68 0.37 
     Aromatics     
Benzene 0.34 0.10 0.8 0.43 
Toluene 020 0.10 0.77 0.49 
Ethylbenzene 0.16 0.11 0.77 0.50 
m,p-Xylene 0.00 0.11 0.52 0.44 
o-Xylene 0.03 0.12 0.63 0.49 
1,2,4-TMB 0.01 0.06 0.39 0.43 
     
Biogenics     
Isoprene 0.46 0.01 0.18 0.08 
α-Pinene 0.00 0.01 0.00 0.00 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

120 
Table 2.S5: Correlation (R2) of PMF factors measured during CalNexT-2022 with 
VOCs and trace gases. 

Species LO-OOA MO-OOA HOA CIOA 
Trace gases     
O3 0.47 0.04 0.05 0.02 
NO 0.00 0.00 0.30 0.02 
NO2 0.00 0.03 0.52 0.02 
NOy 0.03 0.01 0.60 0.00 
CO 0.18 0.00 0.46 0.03 
     Alkanes     
n-Hexane 0.02 0.00 0.53 0.06 
n-Heptane 0.04 0.02 0.87 0.07 
n-Octane 0.01 0.02 0.77 0.07 
n-Nonane 0.01 0.03 0.67 0.05 
2,2-Dimethylbutane 0.29 0.03 0.65 0.10 
2-Methylpentane 0.14 0.02 0.77 0.10 
3-Methylpentane 0.05 0.02 0.77 0.07 
Cyclopentane 0.01 0.04 0.59 0.02 
     Aromatics     
Benzene 0.19 0.10 0.71 0.06 
Toluene 0.07 0.02 0.84 0.06 
Ethylbenzene 0.07 0.02 0.78 0.10 
m,p-Xylene 0.01 0.00 0.63 0.08 
o-Xylene 0.00 0.01 0.71 0.08 
1,2,4-TMB 0.07 0.00 0.32 0.06 
     
Biogenics     
Isoprene 0.31 0.00 0.01 0.00 
α-Pinene 0.0 0.00 0.30 0.13 
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Emission source Emissions (Gg yr-1) 

2010 2022 
On-road gasolinea 39.8 16.0 
Non-road gasolineb 27.4 19.5 
On-road diesel 2.2 0.4 
Non-road diesel 3.5 2.5 
Volatile chemical 
productsc 

91.2 83.0 

Asphalt 5.2 5.2 
Cooking 0.38 0.30 
Petrochemical facilities 10.9 4.1 
Oil & Gas production 32.9 32.9 

aOn-road gasoline emissions increased by 7% relative to base EMFAC estimates following comparison 
of EMFAC emissions with those reported in McDonald et al. (2018) 
bNon-road gasoline emissions increased by 56% relative to base CEPAM estimates following 
comparison of CEPAM emissions with those reported in McDonald et al. (2018) 
cValues represent the average of estimates reported by the VCPy model for Los Angeles County and 
scaled from the SoCAB to Los Angeles County from estimates reported by McDonald et al. (2018), as 
described in SI Appendix, S5 
 

Table 2.S6: Summary of annual Los Angeles County reactive organic 
gas (i.e., SOA precursor) emissions estimates in 2010 and 2022 used to 
inform the zero-dimensional SOA model. 
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Table 2.S7: Volatile organic compound (VOC) and intermediate VOC (IVOC) 
volatility bins, associated OH oxidation rates, and oxidation product mass yields used for 
combustion emissions, asphalt emissions, and alkane and aromatic species within VCP 
emissions in the zero dimensional model under high-NOx conditions. Species emitted in 
the volatility range C* = 107-1010 μg m-3 were assigned a lumped volatility analog from 
Ma et al. (2017), as shown. Species more volatile than C* = 1010 were assumed to 
produce no secondary organic aerosol following oxidation. IVOC volatility assignments 
and oxidation product yields follow Lu et al. (2020). Species less volatile than C* = 103 
directly undergo SVOC aging following emission as described in SI Appendix, S5.  
 

C* (μg m-3) MW 
kOH x 10-11 

(cm-3 
molec-1 s-1) 

Volatility 
Analog 

Oxidation product mass yields 

C* = 0.1 C* = 1 C* = 10 C* = 100 C* = 1000 

1010 61.7 3.64 OLE1 0 0.014 0 0.098 0.088 

109 110.0 0.74 ALK5 0 0.157 0 0 0 

108 – ARO1 103.4 0.51 ARO1 0 0.276 0.002 0.431 0.202 

108 – ALK1 110.0 0.74 ALK5 0 0.157 0 0 0 

107 116.2 2.59 ARO2 0 0.31 0 0.42 0.209 

106 – ARO 162.3 3.05 N/A 0.022 0.109 0.251 0.005 0 

105 – ARO 197.3 7.56 N/A 0.143 0.021 0.329 0.358 0 

106 – ALK 184.4 1.55 N/A 0.009 0.045 0.118 0.47 0 

105 – ALK 219.4 1.89 N/A 0.051 0.061 0.394 0.494 0 

104 – ALK 254.9 2.25 N/A 0.068 0.083 0.523 0.239 0 

103 - ALK 296.6 2.65 N/A 0.067 0.086 0.544 0.198 0 
1Mass associated with the C* = 108 volatility bin emitted from gasoline sources is evenly divided into the ARO1 and 
ALK5 lumped species to ensure that mass fractions of aromatic and alkane species within gasoline and diesel exhaust 
agree with measurements reported by Gentner et al. (2013).  
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Table 2.S8: Oxidation product mass yields and OH reaction rates for non-alkane or 
aromatic OA precursors simulated by the zero-dimensional model under high-NOx 
conditions. Mass yields for terpenes and isoprene are taken from Ma et al. (2017) and 
represent wall loss-corrected estimates in high-NOx conditions. Siloxanes are oxidized 
following the parameterization developed by Pennington et al. (2021). 
 

Compound 
class MW 

kOH x 10-11 

(cm-3 molec-1 s-

1) 

Oxidation product mass yields 

C* = 0.1 C* = 1 C* = 10 C* = 100 C* = 1000 

Oxy. IVOC 164.5 2.81 0.097 0 0 0 0 
SILOX 344.4 0.17 0.0 0.14a 0 0.82a 0 
TERP 136.2 16.0 0 0.210 0 0.348 0.297 
ISOP 68.1 10.0 0 0.034 0 0.005 0 

aFollowing Pennington et al. (2021), oxidation products of siloxanes have C* values of 0.95 and 484 rather 
than 1 and 100. Siloxanes are the only modeled compound class whose oxidation products do not occupy 
the standard volatility bins. 
 
 
 
Table 2.S9: Effective SOA yield of each major lumped SOA precursor species at a 
background OA mass loading of 10 μg m-3. Yields shown below for IVOCs do not 
account for oxidation product aging, which is included in the model as described in SI 
Appendix, S5 

Compound class Effective SOA yield at 10 μg m-3 
High-NOx Low-NOx 

OLE1 0.02 0.02 
ALK5 0.14 0.14-0.29 
ARO1 0.29 0.59-0.88 
ARO2 0.32 0.64-0.97 
IVOC6-Aro 0.25 0.49-0.74 
IVOC5-Aro 0.36 0.72-1.07 
IVOC6-Alk 0.15 0.15-0.30 
IVOC5-Alk 0.35 0.35-0.70 
IVOC4-Alk 0.43 0.43-0.85 
IVOC3-Alk 0.43 0.43-0.87 
Oxy. IVOC 0.10 0.10 
SILOX 0.14 0.14 
ISOP 0.03 0.06 
TERP 0.23 0.48 
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Table 2.S10: Gas-phase chemical reactions included in the zero-dimensional model 
of overnight nitrate aerosol formation. 

No. Reactants  Products Rate coefficient 
(cm3 molec.-1 s-1 unless 
stated otherwise) 

Source 

1 NO + O3  → NO2 + O2 1.4 x 10-12e(-1310/temp) MCMa 
2 NO2 + O3 → NO3 + O2 1.4 x 10-13e(-2470/temp) MCM 
3 NO3 + NO → 2NO2 1.8 x 10-11e(110/temp) MCM 
4 NO3 + NO2 → NO + NO2 4.5 x 10-14e(-1260/temp) MCM 
5 NO3 + NO2 → N2O5 (k0*k∞)*F/(k0 + k∞)c Atkinson et al. (2004)b 
6 N2O5 → NO3 + NO2 (k0*k∞)*F/(k0 + k∞)d 

(s-1) 
Atkinson et al. (2004) 

7 N2O5 → (2-Φ)HNO3 + 
ΦClNO2 

¼(γv)SA (s-1) Mielke et al. (2013) 

8 NO2 + OH → HNO3 k0*M/(1+(k0*M/k∞))*
0.6(1+log10(k0*M/k∞^2)^-1 

Seinfeld and Pandis 
(2016) 

9 NO3 + hv → NO2 + O j(NO3)e (s-1) MCM 
10 α-pinene + 

NO3 
→ RO2 1.20 x 10-12e(490/temp) MCM 

11 α-pinene + O3 → RO2 8.05 x 10-16e(-640/temp) MCM 
12 α-pinene + 

OH 
→ RO2 1.20 x 10-11e(440/temp) MCM 

13 β-pinene + 
NO3 

→ RO2 2.51 x 10-12 MCM 

14 β-pinene + O3 → RO2 1.35 x 10-15e(-1270/temp) MCM 
15 β-pinene + 

OH 
→ RO2 2.38 x 10-11e(357/temp) MCM 

16 Limonene + 
NO3 

→ RO2 1.22 x 10-11 MCM 

17 Limonene + 
O3 

→ RO2 2.80 x 10-15e(-770/temp) MCM 

18 Limonene + 
OH 

→ RO2 4.28 x 10-11e(401/temp) MCM 

19 Ocimene + 
NO3 

→ RO2 2.20 x 10-11 Atkinson et al. (1997) 

20 Ocimene + O3 → RO2 3.15 x 10-15e(-626/temp) Kim et al. (2011) 
21 Ocimene + 

OH 
→ RO2 4.35 x 10-11e(579/temp) Kim et al. (2011) 

22 Isoprene + 
NO3 

→ RO2 3.15 x 10-12e(-450/temp) MCM 

23 Isoprene + O3 → RO2 1.03 x 10-14e(-1995/temp) MCM 
24 Isoprene + OH → RO2 2.70 x 10-11e(390/temp) MCM 
25 NO3 +  RO2 → Products 2 x 10-12 Vaughan et al. (2006) 
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a”MCM” refers to the Master Chemical Mechanism v3.3.1 (http://mcm.york.ac.uk/home.htt). bIUPAC data accessed 
from https://iupac-aeris.ipsl.fr/. ck0 = 3.6x10-30*M*(temp/300)^-4.1, k∞ = 1.9x10-12*(temp/300)^0.2, KR = k0/k∞, NC = 
0.75-1.27*log10(0.35), F = 10(log10(0.35)/(1+log10(KR)/NC)^2), M = 2.42x1019. dk0 = 1.3x10-3*M*(temp/300)^-3.5, k∞ = 
9.7x1014*(temp/300)^0.1, KR = k0/k∞, NC = 0.75-1.27*log10(0.35), F = 10(log10(0.35)/(1+log10(KR)/NC)^2). ej(NO3) is 
represented by J5 and J6 in the MCM. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

26 NO3 + OH → HO2 + NO2 2 x 10-11 MCM 
27 NO3 + HO2 → OH + NO2 4 x 10-12 MCM 
28 RO2 +  RO2 → Products 2 x 10-12 Jenkin and Boyd (1998) 
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Estimates of methane emissions from dairy operations in California’s San 
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Benjamin C. Schulze, Ryan X. Ward, Eva Y. Pfannerstill, Qindan Zhu, Caleb Arata, Bryan Place, 
Clara Nussbaumer, Paul Wooldridge, Roy Woods, Anthony Bucholz, Ronald C. Cohen, Allen H. 
Goldstein, Paul O. Wennberg, John H. Seinfeld. Environmental Science & Technology. 
Submitted. 
 
Abstract 
 
State inventories indicate that dairy operations account for nearly half of California’s 

methane budget. Recent analyses suggest, however, that these emissions may be 

underestimated, complicating efforts to develop emission reduction strategies. Here, we 

report estimates of dairy methane emissions in the southern San Joaquin Valley (SJV) of 

California in June of 2021 using airborne flux measurements. We find average methane 

emission rates of 120 ± 35 kg dairy-1 hour-1 in this region, corresponding to 60 ± 18 g dairy 

cow-1 hr-1. These values are ~20% larger than annual average estimates from the recently-

developed VISTA-CA inventory. We observed notable increases in emissions with 

temperature. Our estimates align well with inventory predictions when parameterizations 

for the temperature dependence of emissions are applied. Our measurements further 

demonstrate that the VISTA-CA emission inventory is considerably more accurate than the 

EPA GHG-I inventory in this region. Source apportionment analyses confirm that dairy 

operations produce the majority of methane emissions in the southern SJV (~65%). 

Fugitive oil and gas (O&G) sources account for the remaining ~35%. Our results support 

the accuracy of the process-based models used to develop dairy emission inventories and 

highlight the need for additional investigation of the meteorological dependence of these 

emissions.  
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3.1 Introduction 

Considerable reductions in emissions of short-lived greenhouse gases are needed to 

prevent global temperatures from rising more than 1.5oC by the end of the century1. 

Methane emissions have been prioritized for near-term reduction as methane has a global 

warming potential (GWP) of 84 over a 20-year period and a lifetime of only 9-10 years2. 

In California, methane emissions represent ~10% of the total greenhouse gas budget, and 

inventories suggest dairy operations account for nearly 50% of the total3. Emissions from 

dairy operations are approximately equally divided between enteric fermentation and 

manure management practices3. California Senate Bill 1383 aims to reduce methane 

emissions from manure management at California’s dairies by 40% relative to 2013 levels 

by 20304. 

Effective implementation of emission reduction plans requires detailed understanding 

of the current magnitude of dairy emissions and accurate monitoring as control 

technologies are adopted. Despite their importance as an emission source, recent analyses 

have noted discrepancies between top-down estimates of dairy emissions and bottom-up 

inventory calculations. Estimates using inverse modeling techniques applied to both long-

term5,6 and short-term7,8 measurements suggest that methane emissions from dairy 

livestock may be twice as large as the California Air Resources Board (CARB) predicts. 

However long-term measurements at individual dairy facilities9, short-term surveys of 

multiple dairy facilities10,11, and short-term inverse modeling studies12 have supported the 

accuracy of CARB emission predictions.  

Efforts to verify bottom-up inventories with top-down measurements are often 

complicated by the need to assess long-term average estimates (e.g., annual inventory 

emissions estimates) using the results of short-term measurement campaigns. Emissions 

from dairies may vary on seasonal and daily timescales9,12,13 and may be highly 

intermittent, driven either by temporal variability in routine operations or spontaneous 

leaks in emission containment devices14. Given this complexity and the relative lack of 

coordinated observational emissions studies in California9,11,12,15, additional direct 

measurements of dairy emissions are needed to evaluate the accuracy of the state emission 

inventory. 
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In this study, we report estimates of methane emissions from dairy operations in the 

San Joaquin Valley (SJV) using airborne measurements of methane fluxes during the 2021 

Re-Evaluating the Chemistry of Air Pollutants in California (RECAP-CA) campaign. 

Approximately 90% of the state’s dairy cows reside in the SJV, and the region is predicted 

to have the largest methane emissions per cow in the state due to the specific manure 

management practices utilized3.  

A total of seven flights were conducted over the SJV in June of 2021, covering 

approximately 5000 km at an altitude of 400 m. Each of the seven flights intersected the 

region of dense dairy operations in Tulare and Kings Counties while also including legs 

upwind of most dairy operations, enabling both eddy-covariance (EC) and mass-balance 

(MB) based estimates of dairy methane fluxes.  

Our results support the validity of the process-based models used to develop dairy 

methane emission inventories. Our data further suggest that airborne EC measurements 

may represent a useful component of a future multi-tiered methane emission monitoring 

network in California. 

 

3.2 Methods 

3.2.1 Overview of RECAP-CA flights 

Sixteen total flights were conducted during RECAP-CA using a two-engine UV-18A 

Twin Otter research aircraft operated by the Naval Postgraduate School (NPS). Seven of 

these flights took place over California’s San Joaquin Valley (Figure 3.S1). Flights were 

based out of the Burbank, CA airport and lasted 4-5 hours during the middle of the day 

(~11:00 AM-4:00 PM local time).  

Ambient air was sampled into the Twin Otter using a 3-inch diameter isokinetic inlet 

extending above the nose of the aircraft. Vertical wind speeds used in eddy covariance 

(EC) flux calculations were measured using a five-hole radome probe at the nose of the 

aircraft. Detailed descriptions of the NPS Twin Otter can be found elsewhere16. 

San Joaquin Valley flight tracks were chosen to ensure coverage of a variety of potential 

emission sources including dairy operations in the Visalia/Tulare region, croplands, the 



 

 

141 
cities of Bakersfield and Fresno, CA, the I-99 highway, and the Kern River Oil Field. 

Flight tracks were optimized to minimize turns for EC flux calculations. 

 

3.2.2 Instrumentation  

Methane concentrations were measured using a Picarro G2401-m cavity ringdown 

spectrometer (CRDS) at a frequency of 0.5 Hz. Ambient air was drawn into the instrument 

from the primary aircraft inlet using a 2 m ¼” Teflon line. The Picarro G2401-m was 

located towards the rear of the aircraft, and the approximate lag time between the vertical 

wind sensor on the aircraft nose and the G2401-m measurement was ~8-10s. As discussed 

in SI Section 3.S1, we estimate a measurement precision of 1 ppbv based on in-flight 

measurements of standard gases and an accuracy of 2 ppbv based on ground-level 

calibrations performed following every flight (all uncertainties 1σ), in line with previous 

studies that utilized Picarro CRDS systems17,18. Methane concentrations are reported as dry 

air mole fractions. 

Concentrations of volatile organic compounds (VOC) used in the positive matrix 

factorization (PMF) analysis described below were measured using a Vocus proton transfer 

reaction time-of-flight mass spectrometer (PTR-ToF-MS). A detailed description of the 

operation of the PTR-ToF-MS is provided in Pfannerstill et al. (2023)19. Precision in 

individual VOC concentrations is estimated at <10%. 

 

3.2.3 Estimation of methane emissions using the mass balance method 

Methane emissions from dairy operations in the SJV were estimated using the mass 

balance (MB) technique, which has been used extensively for airborne quantification of 

emissions from area and point sources17,18,20,21. Briefly, following temporally invariant 

emissions from a point or area source, the flux of a conserved tracer through a sufficiently 

large two-dimensional plane can be assumed constant if the wind field throughout a survey 

region is stable. This allows flux quantification downwind using individual passes through 

the emission plume if a) emissions have mixed vertically and b) the mixing height is 

known. The inferred emission rate can be calculated using the following18: 
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−𝑦𝑦
𝑧𝑧
0 (1)   

Where vcos(𝛼𝛼) represents the component of the measured horizontal wind velocity 

normal to the flight track, z is the estimated mixing height, here assumed to be the altitude 

of the planetary boundary layer (PBL), y is the crosswind distance covered during the flight 

leg, and (X-Xbg) is the methane enhancement above the local estimated background 

concentration. 

We applied the MB method to three flight legs that largely encompassed the region of 

intensive dairy operations near Visalia, CA (Figure 3.S3, 3.S12). Local wind fields were 

inconsistent in the region on three of the seven flights, preventing MB calculations (Figure 

3.S3). Additional descriptions of associated uncertainties and estimates of emissions from 

non-dairy sources within the region are included in SI Section 3.S2 and SI Section 3.S3.  

 

3.2.4 Calculation of airborne EC fluxes using the continuous wavelet transform 

In addition to the MB method, we estimated methane emissions from dairies using 

measured EC fluxes. We quantified fluxes using the continuous wavelet transform (CWT), 

a technique being increasingly adopted for airborne flux measurements19,22-26. 

The CWT deconvolves contributions to time series variance along both time and 

frequency domains and does not require airmass stationarity. A more detailed description 

of the calculation procedure is provided in SI Section 3.S3.  

We used a disjunct method to quantify CWT fluxes from the Picarro G2401-m 

measurements, as described in further detail in SI Section 3.S4. Descriptions of uncertainty 

calculations are provided in SI Section 3.S4.1. As noted in SI Section 3.S4, we correct the 

CWT fluxes for high-frequency losses related to the time resolution (0.5 Hz) of the Picarro-

G2401-m measurements. Figure 3.S7 demonstrates that following these corrections, 

average H2O fluxes calculated from the non-continuous G2401-m data agree well with 

fluxes calculated from 10Hz measurements made with the fast, continuous, LICOR LI-

7500DS H2O analyzer. 

Flux footprints, defined as the surface region that encompasses emission sources 

capable of contributing to a given measured flux, were calculated following Metzger et al. 
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(2012)27, as explained in SI Section 3.S519,24. Calculated footprints were used to 

apportion measured fluxes to surface level latitude-longitude grid cells for comparisons 

with published emission inventories.  

 

3.2.5  Positive Matrix Factorization (PMF) of the combined GHG + VOC dataset 

We performed Positive Matrix Factorization (PMF) on a combined dataset consisting of 

greenhouse gas measurements collected by the Picarro G2401-m and VOC measurements 

made by the VOCUS PTR-ToF-MS to gain further insight into methane sources in the SJV. 

Briefly, PMF is a bilinear unmixing factor analysis model that deconvolves a time series 

of measured species into a set of compositionally static factors whose contributions to the 

input dataset vary in time28,29.  

For this study, greenhouse gases measured by the Picarro G2401-m (CH4, CO, and 

CO2) were combined with 38 VOCs measured by the VOCUS PTR-ToF-MS to form the 

input data matrix. Detailed descriptions of the data preparation, input error estimation, 

solution selection, and uncertainty quantification processes are provided in SI Section 3.S6. 

A five-factor solution was identified as optimally describing the input dataset.  

 

3.3 Results and discussion 

3.3.1 Overview of observed methane concentrations and eddy covariance fluxes 

Figure 3.1 shows average methane concentrations and inferred surface fluxes measured 

during seven flights over the SJV as part of RECAP-CA. Average concentrations within 

the region of intensive dairy operations near Visalia, CA were ~50-100 ppbv higher than 

in the urban regions surveyed, while the average flux (16.1 ± 6.8 mg m-2 hr-1 (1σ 

uncertainty)) was nearly three times as large as that observed over the urban areas (5.7 ± 

2.1 and 6.1 ± 2.2 mg m-2 hr-1 in Fresno and Bakersfield, respectively). Oil and gas 

production is virtually absent in the dairy region, and natural gas emissions from leaking 

transmission and distribution lines are expected to be much lower than in the urban areas 

(SI Section 3.S3)30. The only considerable point sources of methane emissions in the dairy 

region are three landfills and two power generating stations near the cities of Visalia, 
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Hanford, and Tulare31. As discussed in SI Section 3.S3, the total estimated emissions 

from these point sources represent a small fraction of the total dairy-related emissions. 

Spatial correlations between methane concentrations and dairy-related VOC tracers (e.g., 

methanol, ethanol, and acetaldehyde) were also considerably larger (R ≈ 0.7) than 

correlations with combustion tracers (e.g., CO and aromatics) (R = 0.1-0.5 depending on 

species) when averaged to 0.1o x 0.1o grid cells (Figure 3.S10)32,33,34.  

While all seven flights occurred within a single month, meteorological conditions varied 

considerably between flights, with median ambient temperatures at flight altitude ranging 

from ~15oC to 30oC. Observed methane fluxes varied considerably with temperature in 

each of the three major regions surveyed. In the dairy region specifically, fluxes increased 

by approximately ~70% from the lowest temperature tercile (inferred ground-level 

temperature of <23oC) (12 mg m-2 hr-1) to the highest tercile (>29oC) (22 mg m-2 hr-1) 

(Figure 3.S11). 

 

3.3.2 Estimates of methane emissions from dairy operations 

3.3.2.1 Mass-balance based estimates 

Figure 3.S12 shows methane concentrations measured on four flights during the three 

flight legs that largely encompassed the region of intensive dairy operations in the southern 

SJV. Observed winds were consistently from the north-northwest at ~3-4 m s-1, and 

methane concentrations were typically elevated by ~50-200 ppbv on the eastern legs near 

the southernmost dairy farms relative to the western legs. Wind fields were inconsistent 

within the region on RF2, RF11, and RF16 (Figure 3.S3), and as a result we used 

measurements from the four remaining SJV flights (RF5, RF6, RF10, and RF12) to 

estimate methane emissions using the mass balance method18,20 (Figure 3.S12). Table 3.S1 

provides an example of the parameters used to calculate the methane flux through each leg, 

the associated uncertainties, and the total calculated emissions within the region during 

RF5.  

Emissions from dairy operations in the MB region were estimated by subtracting 

emissions from local point sources and natural gas leakage from the total calculated using 
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Eq. 1, as detailed in SI Section 3.S3. Ultimately, the sum of estimated point source and 

natural gas leakage emissions accounted for less than 1% of the total emissions inferred 

from the mass balance calculations, while total cropland emissions may account for up to 

3% of total emissions.  

To calculate effective emissions per dairy, we divided the dairy-associated emissions 

by the number of dairies in the MB region (330 ± 50) according to VISTA-CA35. We 

assume a 15% uncertainty in the total number of dairies captured by our measurements 

given that emission plumes from dairies near the eastern flight leg may have been advected 

east of the flight track by the time they reached 400 m. Results are shown in Table 3.S2 

and suggest an average dairy emission rate of 113 ± 44 kg hr-1 during the sampling period. 

If results from RF12, which represents somewhat of an outlier, are excluded from the 

calculation, the average emission rate increases to 141 ± 53 kg hr-1. 

We analyzed satellite imagery to determine that an average dairy within the surveyed 

region has a physical area of ~0.25 km2 (Figure 3.S14), leading to an average effective 

flux of 450 ± 160 mg m-2 hr-1. Dividing the dairy-wide emissions by the average number 

of dairy cows within each dairy in Tulare and Kings counties (2005 ± 200) according to 

the 2017 USDA Census of Agriculture produces an effective emission factor (EF) of 56 ± 

22 g dairy cow-1 hr-1 36.  
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Figure 3.1: Maps of (a) average methane concentrations and (b) inferred surface fluxes 
measured during seven flights over the SJV during RECAP-CA. Potential methane 
emission sources, including dairies, oil and gas wells, landfills, developed areas, and 
highways are shown for reference. (c-d) Boxplots of (c) methane concentrations and (d) 
inferred surface fluxes in the spatial regions shown in a-b. Boxes denote the interquartile 
range of measurements, while bars represent the 10th and 90th percentiles. Diamond 
markers denote averages. 
 

3.3.2.2 Eddy covariance-based estimates 

We calculated a second estimate of dairy methane emission rates using EC fluxes. 

Flux footprints were first used to assign measured fluxes to 0.1o x 0.1o grid cells defined 

by the VISTA-CA methane emission inventory3, as shown in Figure 3.2. Given the 

considerable random errors in individual flux measurements, grid cells that were sampled 
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infrequently and had relatively small average fluxes had relative uncertainties that 

exceeded 100% (e.g., segment between Fresno and the Sierra Nevada Mountains) (Figure 

2b). However, uncertainties in individual grid cell estimates for regions with notable 

dairy presence were typically 30-60%.  

Figure 3.2c shows the total area of each 0.1o x 0.1o grid cell attributable to dairy 

operations. Dividing the average grid cell flux by the fractional area encompassed by 

dairies produces an estimated dairy-level flux for dairies within the grid cell. To develop 

an aggregate dairy flux estimate, we only averaged grid cells that 1) contain no obvious 

point sources and 2) contain a notable dairy presence (total area of dairies > 1 km2). The 

dairy area threshold is chosen to minimize the probability that flux footprints within a 

grid cell under-sampled dairies relative to their fractional area with the cell.  

The average dairy flux calculated using the EC flux method was 536 ± 160 mg m-2 hr-1 

(Figure 3.2), corresponding to an average emission rate of 134 ± 40 kg hr-1 assuming an 

average dairy size of 0.25 km2 (67 ± 20 g dairy cow-1 hr-1), which agrees with the MB-

based estimate within the respective uncertainties. Changing the dairy area threshold to 2 

km2 (i.e., eight average size dairies per grid cell) or reducing it to 0.5 km2 modifies the 

inferred emission rate by -14% and +5%, respectively. We note that dairies are larger on 

average in the southernmost SJV near Bakersfield than near Visalia (Figure 3.S13). 

However, accounting for this variability in our calculation only increases the inferred 

average dairy emission rate by 8%.  
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Figure 3.2: Maps of (a) inferred surface-level CH4 fluxes (mg m2 hr-1), (b) calculated relative 
errors in reported fluxes, (c) total calculated area of dairy of farms in each grid cell, and (d) 
inferred dairy fluxes for grid cells with a notable number of dairies (>1 km2 total area) and no 
other major CH4 sources (e.g., landfills, power plants, etc.) during RECAP-CA. 
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3.3.3 Comparison of inferred emissions with inventory estimates and 

observational studies 

3.3.3.1 Annual average estimates  

The two methods used to calculate dairy methane emissions (MB and EC fluxes) align 

well with one another and suggest an average emission rate of 123 ± 35 kg hr-1 or an EF of 

61 ±18 g dairy cow-1 hr-1 for an average-sized dairy in the southern SJV during the 

measurement period (Figure 3.3). Given an average area of 0.25 km2, this corresponds to 

a flux of 350-630 mg m-2 hr-1. We compare this observationally-derived emission rate with 

annual average dairy emissions estimates in the same region obtained from two inventories. 

Using CARB inventory methodology, we calculated an annual average emission rate of 94 

± 19 kg hr-1 for an average sized dairy in the SJV region surveyed by our flights (Figure 

3.3). A detailed description of this calculation is provided in SI Section 3.S7. Dairies in 

this region primarily use liquid storage systems for manure management3. Approximately 

60% of total predicted emissions are attributable to manure management, with the 

remainder produced by enteric fermentation (SI Section 3.S7). The inferred dairy emissions 

estimate based on our measurements is 31% larger than this annual inventory estimate (1σ 

uncertainty of -7 to +70%).  

We also calculated dairy emissions in the surveyed region using the VISTA-CA 

inventory3. Figure 3.3 shows that the average dairy emission rates calculated from VISTA-

CA data in either 1) the mass balance region specifically or 2) the entire region surveyed 

by our flux measurements agree well with one another and suggest an average dairy 

emission rate of ~100 kg hr-1. Our inferred emission rates are ~20% larger than these 

values. 
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Figure 3.3: Comparison of inferred average dairy methane emission rates and emissions per dairy 
cow with annual average estimates calculated from CARB emission factors and the VISTA-CA 
inventory3. Emissions per dairy cow were calculated assuming an average of 2005 dairy cows per 
dairy according to the 2017 USDA Census of Agriculture40 for counties in the surveyed region 
(Tulare, Kings, and Kern) (SI Section 3.S7). Results of sensitivity calculations are also shown. 

 
 

3.3.3.2 Temperature dependence of inferred emissions 

While the discussion above compares our measurements with annual average inventory 

estimates, observations suggest dairy methane emissions may vary considerably on 

seasonal timescales9,15,37. Such variability is likely driven by temperature and dissolved 

oxygen fluctuations and resulting impacts on microbial activity9,15. 

As shown in Figure 3.S16, average dairy emission rates inferred from our EC 

measurements increased from ~103 ± 40 kg hr-1 at ~18-23oC (lowest tercile of inferred 

ground-level temperatures) to ~220 ± 105 kg hr-1 at 29-33oC (highest tercile). We compared 

the measured temperature trend with predictions using CARB EF adjusted for observed 

temperature changes based on the parameterization developed by Maasakkers et al. 

(2016)37 for manure management emissions (SI Section 3.S8).  

As shown in Figure 3.S16, the predicted trend in emissions aligns with our 

measurements within uncertainty. We then used average monthly temperatures in Visalia, 

CA to calculate effective monthly average dairy emission rates by scaling CARB EF. 

Figure 3.S15 shows that when temperature effects are considered using the Maasakkers et 

al. (2016)37 parameterization, our measured fluxes are slightly lower than inferred average 

June emission rates according to the scaled CARB EF (-11%), though the values agree 
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within the uncertainty of our measurements. These calculations demonstrate that while 

emission rates inferred from our June measurements are larger than annual average 

inventory estimates, they agree well once likely temperature effects are considered.  

We further note that our measurements were only performed midday, which could also 

influence comparisons with annual average inventory estimates. Multiple recent studies 

have shown only minor differences between daytime and nighttime methane emissions 

from manure storage lagoons9,38, animal housing pens9,39,40, and overall dairy facilities41, 

even when observed seasonal variability was substantial9, while other measurements have 

suggested overnight emissions from housing pens may be 50% lower than those midday42. 

Additional investigation of the temperature dependence and diurnal variability of 

emissions is clearly warranted given the timing and limited number of flights performed in 

this study. 

3.3.3.3 Comparison with previous observational and inverse modeling studies 

Table 3.S3 compares the effective dairy cow methane EF inferred from our 

measurements with the results of multiple recent observational studies in California and 

Colorado9,11,41. All measurements were performed during summer months (June-August), 

and average diurnal ground-level temperatures varied from 24-30oC. Dairies sampled in 

the studies conducted in California used similar manure management practices (primarily 

liquid storage systems), and we suspect that the same is true for the Colorado dairies41 

based on satellite imagery. As shown in Table 3.S3, inferred EF agree well and suggest 

average values of 60 ± 16 g dairy cow hr-1 for these regions during the summer. We note 

that Arndt et al. (2018)9 report substantial differences in EF from the two Northern 

California dairies sampled in their study (92 vs. 64 g dairy cow hr-1), potentially due to 

subtle farm-to-farm differences in manure management practices. Our EF estimates agree 

particularly well with the results of Amini et al. (2022)11, which aggregated emissions from 

dozens of individual dairy facilities in California, similarly to our study.  

We then scaled our dairy cow EF to estimate total dairy methane emissions in the SJV 

(Table 3.S4). Briefly, our estimate of 97 ± 29 Mg hr-1 aligns well with that of Cui et al. 

(2017)8 for measurements in June 2010 in the southern SJV (105 ± 25 Mg hr-1). 
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Comparisons with annual average inverse-model estimates are more complicated given 

the likely temperature dependence of emissions, however, if we convert our June estimate 

into an annual average using the Maasakkers et al. (2016)37 parameterization for likely 

temperature effects (SI Section 3.S8), our inferred value (584 ± 172 Gg yr-1) is between the 

estimates of Cui et al. (2019)43 (440 ± 360 Gg yr-1) and Jeong et al. (2013)44 (1130 ± 420 

Gg yr-1).  

Despite the general agreement between our results, previously published summertime 

observational studies11,41, and inverse model predictions for May-June conditions8, 

considerable disagreement remains in the temperature dependence of dairy emissions. 

While we observe a substantial increase in emissions with temperature (Figure 3.S16), in 

line with Arndt et al. (2018)9 and the Maasakkers et al. (2016)37 parameterization, both 

observational studies11 and recent inverse models6,12 have suggested little to no variability 

between wintertime and summertime emissions. Higher wind speeds during cooler months 

have been suggested to account for the lack of seasonality in emissions11,12. During 

RECAP-CA, lower temperatures were not associated with considerably higher wind speeds 

(average of ~3.3 m s-1 in the lowest temperature tercile and 2.8 m s-1 in the highest), and 

therefore the seemingly contradictory results regarding emission temperature dependence 

may not be inconsistent. Assumptions regarding the seasonality/meteorological 

dependence of dairy methane emissions critically influence assessments of annual average 

inventory predictions using short-term measurements. Additional systematic study of this 

dependence is clearly warranted. 

3.3.3.4 Comparison with VISTA-CA and EPA-GHGI inventories 

We compared our gridded methane flux measurements to existing inventories that 

estimate dairy methane emissions at the state (VISTA-CA)3 and national levels (EPA-

GHGI)37 (Figure 3.4). While these inventories predict similar total emissions from dairy 

operations in California3, the spatial distributions of the published inventories vary 

considerably, especially in the southern SJV (Figure 3.S17), with implications for their use 

as model priors in inversion-based analyses of methane emission sources8,12,43.  
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Correlations between our measurements and the VISTA-CA dairy inventory (R = 

0.51) are considerably stronger than with the EPA 2016 livestock GHGI (R = 0.28) over 

the surveyed region (Figure 3.4). VISTA-CA uses detailed facility-level information (e.g., 

latitude-longitude) to spatially distribute dairy-related emissions in California3, and our 

measurements confirm that those efforts markedly improve the inventory’s spatial 

representativeness relative to the EPA 2016 GHGI, which assigned emissions using general 

livestock probability maps based on landtype37. The clear disagreement between our 

measurements and the EPA-GHGI (normalized mean bias of -81%) suggests that 

incorporation of the EPA inventory into hybridized inversion priors, as in Cui et al. 

(2019)43, will likely decrease the accuracy of inverse model predictions of methane sources 

in this region. 
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Figure 3.4: (Top) Differences between observed dairy methane fluxes during RECAP-CA and 
predictions from (a) the 2012 EPA-GHGI methane inventory for livestock operations17, and (b) 
the VISTA-CA inventory3. (Bottom) Correlations of grid-cell level flux estimates across the 
surveyed region. The EPA-GHGI values represent predicted emissions in June, while the VISTA-
CA inventory values are annual average estimates. 
 

While some of the disagreement between our measurements and the VISTA-CA 

inventory could be due to non-dairy methane sources in the EC region, these sources, such 

as fugitive natural gas emissions, are predicted to account for a small fraction of methane 

emissions in grid cells where dairies are abundant, as discussed in SI Section 3.3. It is 

therefore more likely that the observed disagreement between the measurements and 

VISTA-CA inventory represents a combination of 1) temporal variability in emissions, 2) 

uncertainty in the flux measurements, and/or 3) uncertainty in the attribution of measured 
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fluxes to grid cells using flux footprints. Additional airborne flux measurements that 

dedicate increased flight time to surveying this region and quantifying vertical flux 

divergence could be used to assess the accuracy of VISTA-CA at a more granular (i.e., grid 

cell) level. 

3.3.4 PMF analysis of the combined GHG + VOC dataset 

While the flux data allow quantification of dairy methane emissions in the Tulare and 

Kings counties, our combined GHG + VOC PMF analysis provides further insight into the 

contribution of dairy emissions to methane enhancements across the broader surveyed SJV 

region. Five distinct factors (i.e., emission source types) were resolved from the PMF 

analysis. These factors are classified as emissions from dairies and livestock (Factor 1), 

hot-running combustion + fugitive O&G sources (Factor 2), non-dairy agricultural sources 

(Factor 3), cold-start combustion processes (Factor 4), and power generation/refinery 

facilities (Factor 5). As shown in the factor source profiles (Figure 3.S18), the 

dairy/livestock and hot-running combustion + fugitive O&G factors accounted for virtually 

all of the observed methane enhancements over the SJV (>99%). We focus our discussion 

on these specific factors. Descriptions of factors 3-5 are provided in the SI. 

Factor 1 is classified as dairy/livestock emissions given the notable contribution of 

methane and VOCs previously associated with dairy emissions such as methanol, ethanol, 

acetaldehyde and acetic acid to the factor source profile (Figure 3.S18)32,33,34. Table 3.S5 

demonstrates the agreement between the relative contributions of methane, methanol, and 

ethanol in the dairy/livestock factor and emission ratios (ER) reported from previous VOC 

measurements at dairy facilities32,33,34. The spatial distribution of the factor magnitude 

provides further evidence for a dairy source (Figure 3.5), with clear enhancements over the 

region of intensive dairy operations in Tulare and Kings Counties.  

The chemical signature and spatial variability of Factor 2 suggest an association with 

combustion and fugitive O&G emissions. The chemical source profile contains 

considerable contributions from multiple combustion tracers, including CO, CO2, alkenes, 

and toluene. The CO/CO2 and toluene/CO ratios align well with predictions for on-road 
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gasoline vehicles from the CARB Emission Factor model (EMFAC) and with direct 

measurements (Table 3.S5)45,46.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3.5: (a-b) Maps of the total concentration of the (a) dairy and livestock PMF factor (Factor 
1) and (b) the combustion/fugitive oil and gas PMF factor (Factor 2) during RECAP-CA. (c-d) 
Contributions of factors shown in (a) and (b) to observed methane enhancements over the surveyed 
region. Enhancements represent the difference between ambient concentrations and the lowest 
concentration observed during the campaign (SI Section 3.S6). The average contribution of Factors 
1 and 2 to the total methane enhancement over the surveyed region is >99%. Locations of possible 
emission sources are noted. Markers denoting power plants and landfills are sized in proportion to 
annual emissions estimates. 
 

While many of the chemical tracers included in the source profile support a combustion 

source, the CH4/CO and CH4/CO2 ratios in Factor 2 are roughly two orders of magnitude 
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larger than those estimated for on-road vehicles by EMFAC45. Within the SJV region 

surveyed during this study, areas likely associated with considerable fugitive natural gas 

emissions (i.e., locations of increased production and dense natural gas distribution lines) 

also have elevated population densities (e.g., Fresno, Bakersfield, and the smaller cities), 

where vehicular emissions are expected to be elevated relative to the surrounding regions30. 

We hypothesize that this spatial co-location results in the blending of multiple emission 

sources into a single factor. Such factor mixing was previously reported for PMF results 

obtained from a GHG + VOC dataset collected in Bakersfield during CalNex-201047. 

On average, the dairy/livestock PMF factor accounted for 64 ± 10% (1σ) of the 

observed methane enhancements over the surveyed region, with the remainder (36 ± 9%) 

contributed by the combustion + fugitive O&G factor (Figure 3.5). As expected, the 

relative contribution from the dairy/livestock factor peaked near the cities of Visalia and 

Tulare, with values reacting 80-90% in individual grid cells with the largest dairy 

abundance. The magnitude (normalized concentration) of Factor 1 increased notably with 

temperature (Figure 3.S16), in line with the temperature dependence of inferred dairy 

emission rates. 

Recent inversion models have produced a variety of estimates for the fraction of SJV 

methane emissions attributable to dairy/livestock sources (Figure 3.S26). The considerable 

differences in the fraction of total emissions from dairies reported by Jeong et al. (2016)6 

(86%) and Cui et al. (2019)43 (47%) who used similar inverse modeling strategies to 

simulate emissions over similar time periods, highlights the difficulty involved in methane 

source apportionment using inverse modeling techniques in this measurement-limited 

region43. Notably, the average inferred fraction of methane emissions from dairies in the 

SJV from the five studies shown in Figure 3.S26 (70%) aligns well with our estimate (64 

± 10%).  

Guha et al. (2015)47 used a similar PMF method to determine that dairy and livestock 

emissions accounted for 60-70% of midday (12:00-16:00) average methane enhancements 

over the Bakersfield region during CalNex-2010, in line with our results. However, our 

conclusions regarding the source of the non-dairy-related methane emissions differ from 

Guha et al. (2015)47. We discuss these differences in SI Section 3.S6.  
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If we scale the relative PMF factor contributions to observed methane 

enhancements by the flux-derived estimate of dairy methane emissions in the SJV, we 

calculate methane emissions from the combustion/O&G factor of ~40 Mg hr-1. This value 

is notably larger than the recent inversion-based of estimates of SJV O&G emissions 

reported by Cui et al. (2017)8 (~21-27 Mg hr-1). We note, however, that conversion of our 

PMF results into emissions estimates involves considerable uncertainties that are difficult 

to precisely quantify. 

Dairies therefore accounted for the majority of inferred methane emissions in the 

surveyed region during our study, as expected. However, the inferred magnitude of a non-

dairy source likely linked to O&G emissions underscores the importance of further efforts 

to characterize the methane source distribution in the SJV. Future airborne campaigns that 

incorporate greenhouse gas and VOC measurements could provide further insight if more 

measurements of O&G-associated tracers such as small alkanes are performed10,48,49. 

 

3.4 Atmospheric implications 

We report direct airborne measurements of methane fluxes over the SJV, a region in 

California associated with particularly large methane emissions from dairy operations. We 

find midday methane emissions from an average-sized dairy in this region of 120 ± 35 kg 

hr-1, corresponding to an effective emission rate of ~60 g dairy cow-1 hr-1. These values are 

~20% larger than annual estimates from the VISTA-CA inventory but agree within our 

measurement uncertainties. Emissions are observed to increase by ~100% from ~20oC to 

~32oC, in reasonable agreement with existing parameterizations for the temperature 

dependence of dairy emissions in the SJV37. The results of our PMF analysis confirm that 

dairy emissions dominate the methane budget across the SJV (~65%), as expected based 

on previous studies6,8,43,44,47.  

Our results add to the growing body of observational evidence suggesting that the 

process-based models used to develop dairy methane emission inventories produce 

reasonably accurate emissions estimates9,11,41. While this conflicts with the results of 

multiple recent inverse modeling studies, inaccuracies in the spatial allocation of dairy 
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emission priors and a lack of constraining measurement sites often produce 

uncertainties in inverse model predictions of individual source contributions (e.g., dairy 

and livestock) that are either substantial (e.g., ±80%)43 or difficult to quantify6. Improved 

agreement between inventory predictions and inverse models has recently been observed 

when the number of measurement locations is increased and more spatially detailed dairy 

emissions inventories, such as the VISTA-CA inventory, are applied12. 

While our results suggest a strong dependence of dairy methane emissions on ambient 

temperature, the short-term nature of our campaign, the lack of nighttime observations, and 

the notable uncertainties in inferred emissions estimates underscore the need for further 

investigation of this relationship. Longer-term datasets collected across seasons may allow 

development of emission parameterizations that incorporate dependencies on temperature, 

anaerobic lagoon agitation (e.g., through surface winds and/or rainfall), and subtle 

differences in manure management practices9,11,15,38.  

Additional precise measurements of methane emissions in the southern SJV will likely 

be needed to assess statewide progress towards dairy methane emission reduction goals. 

While improvement and expansion of existing long-term measurements networks will be 

critical for such monitoring43, our results suggest that airborne flux measurements could 

provide a useful complement to the stationary monitoring network. Individual flight 

campaigns could be used to assess seasonal and inter-annual differences in regional 

emissions, while flight paths could be tailored to minimize both the systematic and random 

errors present in our study. Use of a methane analyzer capable of 10Hz measurements and 

increased characterization of vertical flux divergence could reduce uncertainties reported 

here by ~50%. Such error reduction would likely be necessary to accurately quantify 

emissions reductions on the scale expected from implementation of emission control 

technologies (i.e., anaerobic digesters). Short segments of individual flights could be 

dedicated to intensive sampling and/or comparison of emissions from individual dairies 

with/without anaerobic digesters using mass balance methods11. The airborne 

concentration data collected during such campaigns would also provide improved 

constraints for inverse models43. The insights gained from such multi-tiered measurement 
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networks would assist regulatory agencies in achieving California’s methane emission 

reduction targets.  
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Supporting information 

3.S1 Calibration of the Picarro G2401-m 
 

Prior to the campaign, we performed a two-point calibration of the Picarro G2401-m 

using an an above-ambient Airgas standard referenced to WMO scales at Scripps Institute 

of Oceanography (CH4 concentration 2.981 ± 0.0003 ppmv) and an Airgas Ultrazero Air 

standard. The initial difference between the measured concentration of the standard tank 

(based on the factory calibration) and the WMO-referenced concentration was 11 ppbv, 

and the measured concentration in the Ultrazero air tank was 0.6 ppbv (assumed to be 0 

ppbv for calibration purposes). Following application of the two-point calibration, prior to 

the first flight and following every subsequent flight we performed a one-point calibration 

using an ambient-level Airgas standard referenced to WMO scales at Scripps Institute of 

Oceanography (CH4 concentration 2.0187 ± 0.0005 ppmv). The bias in the measured 

concentration of the ambient-level standard tank was ~3 ppbv. Subsequent measurements 

of the standard ambient-level tank varied by less than 1 ppbv (Figure 3.S2). Corrections 

for post-flight calibrations were applied during data processing (i.e., the internal instrument 

calibration values were not adjusted during the campaign).  

Two additional calibration standards (CH4 concentrations of 4.117 ppmv and 1.020 

ppmv were used to assess in-flight precision and concentration drift. Given time 

constraints, we were not able to reference these standard concentrations to WMO scales, 

and as such we only use them to assess relative drift and precision in-flight. Specifically, 

each standard tank was measured at least once (twice for most flights) for three minutes in-

flight, and once again upon landing.  

Concentrations measured at altitude were corrected for the one-point calibration 

performed post-flight using the WMO-referenced standard tank and for differences 

between the in-flight and post-flight measurements of the in-flight standard tanks. 

Corrections for the one-point calibrations were typically ~3 ppbv (Figure 3.S2). 

Corrections based on differences in measurements of the in-flight calibration tanks at 

altitude and at ground-level were typically less than 1 ppbv. Based on these corrections and 
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the stability of measured concentrations of in-flight calibration standards (Figure 3.S2), 

we estimate an uncertainty (1σ) of 2 ppbv and a precision of 1 ppbv. 

3.S2 Uncertainties in mass balance emission calculations 
 

Methane emissions from dairy operations in the SJV were estimated using the mass 

balance (MB) technique, as described briefly in the main text. The flight legs used for MB 

calculations are shown in Figure 3.S3. Three of the seven flights were deemed unsuitable 

for MB calculations based on variability in measured wind directions (Figure S3). We used 

HYSPLIT backward trajectory modeling and ground-level measurements of local wind 

direction collected at Visalia, CA to confirm that wind fields were consistent for a few 

hours preceding the four flights deemed suitable for MB calculations based on wind 

direction measurements (Figure 3.S4).  

Planetary boundary layer heights used in calculation of methane emissions were 

estimated using vertical soundings conducted at the beginning and end of the portion of the 

flight in the SJV, as well as from soundings conducted prior to each racetrack sampling 

period, as described in Pfannerstill et al., 2023b. During racetrack sampling, multiple level 

legs were flown at various altitudes over the same location. Examples of vertical profiles 

of potential temperature and water vapor concentrations used to estimate PBL heights 

during two flights with MB calculations are shown in Figure 3.S5. As shown in Figure 

3.S5, the soundings were conducted near the legs used for MB calculations. The profiles 

demonstrate that methane concentrations were mixed uniformly throughout the PBL. 

We assume a 25% uncertainty in PBL height (1σ) that incorporates true uncertainty in 

the PBL height and uncertainty in the extent of vertical mixing of dairy methane plumes. 

The uncertainties (1σ) in the wind direction and wind speed are estimated to be 5o and 10%, 

respectively. Following Peischl et al. (2015), background methane concentrations are taken 

as the lowest concentration measured on upwind flight legs. Given the precision of the 

Picarro G2401-m and the presence of upwind flight legs, uncertainties related to the 

background methane concentration are minor. 

Figure 3.S9 shows example time series of methane concentrations measured on the 

upwind (western) and downwind (eastern) legs during RF5 and RF10. During three of the 
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four flights with consistent wind fields, in-flight calibrations occurred during the 

western (upwind) leg, adding uncertainty to the calculated flux into the dairy region. We 

interpolated concentrations during the calibrations using measurements immediately 

before and after the data gap. An additional 15% error is included in the emission 

calculations to account for uncertainty related to this interpolation.  

As described in SI Section 3.3, we subtracted estimated emissions from non-dairy 

sources within the encompassed mass balance region from the total calculated emissions 

to derive dairy-specific emissions estimates.  

3.S3 Estimation of point-source, natural gas, and cropland methane emissions 

within the mass balance region 
 

We estimate point source methane emissions within the mass balance region discussed 

in Section 3.2 using the EPA GHG database (EPA, 2022), while emissions from natural 

gas leakage are estimated by scaling pipeline leakage emissions in the South Coast Air 

Basin reported by Peischl et al. (2013) based on the relative population of the urban areas 

within the dairy region. Of the eight landfills in the region according to the VISTA-CA 

inventory (Hopkins, 2019), emissions are only reported for the largest two within the EPA 

inventory (the Visalia disposal site and the Hanford Sanitary Landfill). The remaining six 

landfills are inactive (CalRecycle, 2022) and considerably smaller than those with reported 

emissions. We estimate emissions from these inactive landfills by scaling emissions from 

the Visalia disposal site based on relative total landfill area. Recent aircraft measurements 

by Peischl et al. (2013) over the South Coast Air Basin suggest that inventory estimates for 

landfill methane emissions are reasonably accurate (±20%), while a recent survey of 

California landfills reported that the median ratio of the directly measured to EPA-

estimated methane emissions was 2.1 (Hanson et al., 2020). Overall, the estimated landfill 

emissions account for 0.3% of the total inferred emissions in the mass balance region. The 

four non-landfill point sources within the region all have EPA emissions estimates, which 

we use without adjustment and amount to <0.1% of total inferred emissions. 

Emissions from natural gas leakage within the towns of Hanford and Corcoran are 

estimated by scaling pipeline leakage emissions in the South Coast Air Basin reported by 
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Peischl et al. (2013) by the relative populations of the SoCAB and the smaller towns. 

Emissions from Hanford and Corcoran are estimated at ~0.6 and ~0.3 Gg yr-1 using this 

method. When converted to an hourly emission rate, this represents <0.1% of inferred 

emissions in the mass balance region. We also estimated natural gas emissions using 

estimates from Jeong et al. (2014) for the mass balance region (1-4 nmol m-2 s-1). For an 

estimated area of 1000 km2, this corresponds to total emissions of 50-200 kg hr-1, which 

represents less than 1% of the inferred emissions in the mass balance region. 

We assume no net methane emissions from local croplands in the mass balance 

calculation. While methane emissions from rice cultivation are considerable (e.g., Peischl 

et al., 2012), limited data exists on emissions from cropland typical of the SJV (e.g., 

almons, grapes, cherries, tomatoes, etc.). Hannun et al. (2022) recently reported methane 

emissions from cropland derived from EC measurements in the eastern U.S. Using the 

average estimate reported by Hannun et al. (2022) (~0.5-2 mg m-2 hr-1) and the estimated 

area of cropland in the mass balance region (~1000 km2), we predict total cropland 

emissions of 500-2000 kg hr-1. This represents 1-4% of our estimated total emissions within 

the mass balance region and is well within our estimated uncertainty.  

3.S4 Description of the disjunct eddy covariance flux calculation using the 

continuous wavelet transform (CWT) 
 

 

For a given scalar time series x(t), the continuous wavelet transform (CWT) proceeds 

by calculation of wavelet coefficients as a function of time and scale (i.e., frequency) 

through convolution of the time series with a wavelet function (ψ) 

𝑊𝑊𝑠𝑠(𝑎𝑎, 𝑏𝑏) =  � 𝑥𝑥(𝑡𝑡) 𝜓𝜓𝑎𝑎,𝑏𝑏(𝑡𝑡) 𝑑𝑑𝑑𝑑
∞

−∞

(3) 

Where the wavelet function is represented by, 

 𝜓𝜓𝑎𝑎,𝑏𝑏(𝑡𝑡) =  
1
√𝑎𝑎

 𝜓𝜓0 �
𝑡𝑡 − 𝑏𝑏
𝑎𝑎 �  (4) 

In the equations above,  𝜓𝜓𝑎𝑎,𝑏𝑏 represent a family of functions related to the “mother 

wavelet” 𝜓𝜓0, for which the specific shape (i.e., compression/expansion in frequency space) 
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and location in time are defined by the scale parameter, a, and the translation parameter, 

b. Specific mother wavelets used in CWT vary by application. Here, we use the Morlet 

wavelet, which is effectively a plane wave modulated by a Gaussian profile and is 

commonly used in airborne eddy covariance calculations (Torrence and Compo, 1998; 

Wolfe et al., 2018). Normalization of the mother wavelet by 1
√𝑎𝑎

 preserves wavelet energy 

at different scales. The CWT cospectrum, defined as the cross-wavelet power of Ww and 

Ws*, represents the instantaneous covariance (i.e., EC flux) of the vertical wind speed and 

scalar concentration when integrated across all scales (i.e., frequencies), providing spatially 

resolved flux information, in contrast to ensemble methods (Torrence and Compo, 1998).  

We used a disjunct method to quantify CWT fluxes from the Picarro G2401-m 

measurements. Specifically, while methane measurements are reported at a frequency of 

0.5Hz by the G2401-m, the true elapsed time during methane ringdowns within the Picarro 

cavity is ≤ 0.4s. The difference between the true measurement time (0.4s) and the reported 

data interval (2s) is attributable to time spent sampling other species within the cavity (e.g., 

CO2, CO, and H2O). Therefore, rather than using 0.5Hz averaged data, we assume that 

methane measurements were recorded in 0.4s and occurred at a frequency of 0.5Hz. Given 

that the sample residence time within the Picarro optical cell is only ~0.8s (500 sccm flow 

rate at 45oC and 165 hPa), measurements recorded once every 2s can be assumed distinct. 

Vertical wind speeds measured at 10Hz were subsequently averaged to a time resolution 

of 0.4s prior to flux calculations. Following reduction of the vertical wind speed time 

resolution, the methane time series was shifted to account for lag between the methane and 

wind speed measurements. Lag times were identified independently for each flight through 

inspection of lag-covariance plots, and typical lag times were around 8s. 

Individual flight segments were selected for flux calculations if a) the segment length 

was longer than 10 km, b) the aircraft roll and pitch was less than 8o, and c) the flight 

altitude was stable (±50 m) (Pfannerstill et al., 2023b).  

As discussed in Wolfe et al. (2018), wavelet coefficients calculated near the edge of a 

given flight leg can be considerably influenced by edge effects. The cone of influence 

(COI) defines the spectral region where these edge effects are prominent. Previous studies 
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have used a variety of techniques to filter data based on COI influence, and no 

individual method has been shown to be objectively preferable. Following Wolfe et al. 

(2018), we used a COI quality flag (qCOI), calculated as the fraction of total cospectral 

power within the COI, to determine whether fluxes are deemed valid or invalid. We used 

a qCOI of ≤ 0.75 in this study to maximize data coverage while removing data points most 

influenced by edge effects. Fluxes are therefore included unless the fraction of cospectral 

power within the COI is > 75%. Use of a qCOI of 0.5, as in Wolfe et al. (2018), reduces 

the number of valid datapoints by 20% and increases the campaign average mean methane 

flux by ~10%.  

3.S4.1 Uncertainties in calculated EC fluxes 
 

Airborne CWT calculations require rigorous attention to methodological uncertainties. 

In general, we follow the guidance of Wolfe et al. (2018) when calculating both 

systematic and random errors involved in EC flux calculations. These calculations are 

described briefly below. 

3.S4.2 Systematic uncertainties 
 

Systematic uncertainties in EC fluxes largely arise from 1) under sampling of low-

frequency (i.e., large) eddies, 2) under-sampling of high-frequency eddies due to limited 

instrument time response, and 3) uncertainties in scalar concentrations and vertical wind 

speed measurements. We used the upper limit estimate derived by Lenschow et al. (1994) 

to quantify systematic errors related to under sampling of low-frequency eddies. 

                                                      𝑆𝑆𝐸𝐸𝐿𝐿𝐿𝐿  ≤ 2.2(
𝑧𝑧
𝑧𝑧𝑖𝑖

)0.5 𝑧𝑧𝑖𝑖
𝐿𝐿

                                                                (5) 

Where z is the aircraft altitude above ground level, zi is the planetary boundary layer 

height, and L is the length of the flight leg. Given that the majority of flight legs were long 

(> 30 km), SELF was generally a minor contributor to total uncertainty, with an interquartile 

range of 2-11% of measured fluxes. 

We estimated systematic uncertainties related to the limited time response of the Picarro 

G2401-m by comparing the integrated cospectra of methane fluxes with the integrated 

cospectra from a 10Hz LI-COR LI-7500DS H2O analyzer included in the Twin Otter 
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payload (Figure 3.S6). The decay of methane flux intensity (i.e., cospectral power) with 

frequency relative to the fast water vapor flux can be accurately described by the transfer 

function (Horst, 1997): 

𝐻𝐻𝑠𝑠(𝑓𝑓) =  
𝐶𝐶𝑜𝑜𝑤𝑤,𝐶𝐶𝐻𝐻4(𝑓𝑓)
𝐶𝐶𝑜𝑜𝑤𝑤,𝐻𝐻2𝑂𝑂(𝑓𝑓) =  

1
1 + (2𝜋𝜋𝜏𝜏𝑅𝑅𝑓𝑓)2

(6) 

The effective response time (𝜏𝜏𝑅𝑅) calculated from a fit to aggregated cospectra from all 

SJV flight legs is 0.84s (Figure 3.S5), which aligns well with the sample cell residence 

time (~0.8s). We corrected all measured fluxes using the transfer function. This correction 

can increase or decrease measured instantaneous fluxes depending on the magnitude of the 

total fluxes in the frequency range of the corrections. The additional systematic error 

associated with this time-response correction (SETR) is ~5%. 

We further quantified the uncertainty associated with the fact that a fraction of the total 

methane flux is contributed by atmospheric eddies with frequencies (i.e., length scales) 

above the half-power frequency (fN = 1
2π𝜏𝜏𝑅𝑅

) of the Picarro G2401-m (~0.19 Hz for an 

instrument time response of 0.84s) (Aubinet et al., 2012). Using the ratio of the total LI-

COR fast water vapor cospectra to the fraction of the cospectra present beneath the Picarro 

G2401-m half-power frequency, we estimate that 14% of the total methane flux may be 

uncaptured by the G2401-m. We therefore increased all measured fluxes by 14% and 

assumed an associated systematic uncertainty (SEHF) of 14%. These corrections were also 

applied to the Picarro G2401-m H2O flux measurements. Figure 3.S7 demonstrates the 

agreement between the G2401-m and LICOR LI-7500DS fluxes once these corrections are 

applied. 

Similarly to Wolfe et al. (2018), we assumed that errors in the vertical wind speed and 

methane measurements added a 5% systematic uncertainty (SEacc) to methane fluxes. All 

systematic errors were assumed constant for a given flight leg, and the total systematic 

error (SEtot) was calculated from the root sum square of the individual components. The 

interquartile range of the combined systematic errors was 13-22%. Values of SEtot were 

averaged directly when aggregating measurements across a flight leg or within a given 

spatial location. 
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3.S4.3 Random errors 

 

Random errors in EC flux measurements generally arise from a combination of the 

stochastic nature of turbulence and instrument noise. Rather than estimate the magnitude 

of these effects separately, we calculated the total random flux error using the instantaneous 

variance of the covariance of methane and vertical wind speed, based on the framework 

developed by Finkelstein and Sims (2001) and adapted to CWT calculations by Wolfe et 

al. (2018), where: 

𝑅𝑅𝐸𝐸𝐸𝐸𝐶𝐶 =  � � �𝑠𝑠′𝑠𝑠𝑝𝑝′����� 𝑤𝑤′𝑤𝑤𝑝𝑝′������� + 𝑠𝑠′𝑤𝑤𝑝𝑝′������ 𝑤𝑤′𝑠𝑠𝑝𝑝′�������
𝑚𝑚

𝑝𝑝=−𝑚𝑚

(7) 

Where the 𝑠𝑠′𝑠𝑠𝑝𝑝′����� terms represent the auto-covariance or cross-covariance of wind speed 

and/or scalar concentration for a given lag p. We use a lag time of -10 to 10s following the 

recommendations of Mauder et al. (2013) and Wolfe et al. (2018), though we note that 

results are only slightly influenced by increasing the timescale to 20-30s. The instantaneous 

covariance between vertical wind speed and methane concentration for a given lag p was 

calculated using Eq. 13 in Wolfe et al. (2018). Instantaneous random errors for methane 

fluxes at the native 0.5Hz resolution are substantial (interquartile range of 205-670%) but 

are reduced considerably when averaging across an entire leg or within a specific spatial 

region (e.g., latitude-longitude grid cell), as random errors reduce as the mean of the root 

sum square of REEC. For example, a 300% random error is reduced to only 42% when 

aggregating 50 independent measurements.  

3.S4.4 Correction of EC fluxes for vertical flux divergence 
 

Linking airborne EC fluxes with true ground-level emissions requires accounting for 

potential flux divergence with altitude, which can be considerable. The underlying 

mechanisms leading to vertical flux divergence can be understood through the equation 

describing mass conservation of a scalar in the atmosphere: 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑈𝑈
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+  
𝑑𝑑𝐹𝐹𝐸𝐸𝐸𝐸
𝑑𝑑𝑑𝑑

= 𝑆𝑆 (8) 
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The terms on the left-hand side represent scalar storage (𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
), horizontal advection 

(𝑈𝑈 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

), and eddy flux divergence (𝑑𝑑𝐹𝐹𝐸𝐸𝐸𝐸
𝑑𝑑𝑑𝑑

), respectively. S is the net atmospheric source or 

sink of the scalar, which is negligible for methane. Theoretically, vertical flux divergence 

can be quantified by performing flight legs at multiple altitudes over a given homogeneous 

source region (Misztal et al., 2014; Wolfe et al., 2018). While such vertical racetrack 

patterns were flown approximately every other flight during RECAP-CA, with 3-4 altitude 

levels and 10-20 km of sampling per level, efforts to derive methane flux divergence 

relationships from the SJV datasets were inconclusive. We hypothesize that this is the 

result of 1) considerable random errors in flux calculations and 2) the highly variable 

composition of methane sources within flux footprints as aircraft altitude increased. 

Generally, the EC flux measured over the SJV in a specific location is highly dependent on 

whether a single dairy is located within the footprint, as dairies are intense point sources 

while the surrounding cropland likely emits negligible quantities of methane.  

Therefore, rather than use measurements from individual racetrack periods, we 

calculated a functional relationship between EC flux and aircraft altitude (z) relative to 

PBL height (zi) (Wolfe et al., 2018) using the compiled dataset from the entire campaign. 

Figure 3.S8 shows the vertical flux divergence correction function calculated from this 

process. For a typical z/zi of ~0.35-0.45, the correction increases measured EC fluxes by 

30-40%. We followed the procedures described by Wolfe et al. (2018) for calculating the 

VFD-associated random errors, which were ~30-45% based on the correction function and 

the typical altitude of flux measurements. Given the data aggregation described above, we 

treat the VFD-associated error as systematic and average individual error VFD-related 

estimates directly when calculating average flux estimates for a given region/flight leg. 

While we aggregated the entire dataset for the VFD correction, we also calculated VFD 

corrections as a function of temperature to ensure that corrections did not vary substantially 

and thereby bias temperature-based comparisons of inferred surface level fluxes (Figure 

3.S9). We note that additional flux measurements as a function of temperature are clearly 

warranted. 
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3.S5 Flux footprints 

 

The flux footprint is defined as the surface region that encompasses emission sources 

capable of contributing to a given measured flux. Following Metzger et al. (2012), we used 

a combination of the Kljun et al. (2004) crosswind integrated footprint model and a 

Gaussian crosswind distribution function (Kljun et al., 2015) to calculate flux footprints. 

The combined model produces a 2D surface probability distribution defining the source 

region. We opted to use the combined model rather than alternatives such as the 2D 

parameterization of Kljun et al. (2015) or the half-dome footprint algorithm used by Wolfe 

et al. (2018) and others after comparison of calculated flux footprints and known ground-

level sources with measured VOC fluxes (Pfannerstill et al., 2023).  

Calculated footprints were used to apportion measured fluxes to surface level latitude-

longitude grid cells for comparisons with published emission inventories. Grid cell-level 

fluxes were calculated using footprint-based probability weighted averages. We used a 

minimum probability threshold of 25% when allocating measured fluxes to surface grid 

cells. 

 

3.S6 Description of positive matrix factorization (PMF) analysis 

 
3.S6.1 Overview 

 

Mathematically, the PMF model is represented by the following (Paatero and Tapper, 

1994; Paatero, 1997): 

𝑋𝑋𝑖𝑖,𝑗𝑗 =  �𝑔𝑔𝑖𝑖,𝑘𝑘𝑓𝑓𝑘𝑘,𝑗𝑗 +  𝑒𝑒𝑖𝑖,𝑗𝑗

𝑝𝑝

𝑘𝑘=1

 

Where 𝑋𝑋𝑖𝑖,𝑗𝑗 represents the input data matrix with i measurements and j distinct species. 

The 𝑔𝑔𝑖𝑖,𝑘𝑘 matrix represents the magnitude or concentration of individual factors (k) at each 

point in time (i), while the 𝑓𝑓𝑘𝑘,𝑗𝑗 matrix describes the contributions of each species (j) to each 

factor (k). The residual matrix 𝑒𝑒𝑖𝑖,𝑗𝑗  represents the magnitude or concentration of each 

species that is unrepresented by the model at each point in time. PMF implements a non-

negativity constraint on both the factor profiles and magnitudes (e.g., time series and source 
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profiles must be positive), leading to physically realistic source factors. No a-priori 

information is needed about the specific values of the 𝑔𝑔𝑖𝑖,𝑘𝑘 or 𝑓𝑓𝑘𝑘,𝑗𝑗 matrices. A least squares 

algorithm is used to iteratively calculate the  𝑔𝑔𝑖𝑖,𝑘𝑘 and 𝑓𝑓𝑘𝑘,𝑗𝑗 matrices by minimizing a quality 

of fit parameter Q, which represents the sum of the squared ratios of species residuals to 

their estimated uncertainties: 

𝑄𝑄 =  ��(
𝑒𝑒𝑖𝑖,𝑗𝑗
𝑠𝑠𝑖𝑖,𝑗𝑗

)2
𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

 

3.S6.2 Data preparation 
 

As discussed in the main text, three greenhouse gases (GHG) (CH4, CO, and CO2) and 

38 VOCs were combined to create the PMF input data matrix. The PMF Evaluation Tool 

(PET v3.05A) (Ulbrich et al., 2009) and the PMF2 algorithm were used to perform PMF 

and analyze the results. We followed the procedures described by Guha et al. (2015) for 

data preparation and error quantification, which simplifies comparison with the results of 

their PMF study from the Bakersfield area during CalNex-2010. Specifically, rather than 

using absolute concentrations of greenhouse gases and VOCs as PMF inputs, we removed 

estimated background concentrations from each species and then normalized by the 

background-corrected 99th percentile concentration. Scaling the concentrations using this 

method aids visual analysis of factor profiles, as normalized concentrations of all species 

are ≤1 for most of the time series. The relative contributions of individual species to factor 

profiles are therefore relatively similar and not influenced by the substantially different 

magnitudes of ambient concentrations of GHG and VOC (e.g., when comparing ppm-level 

CO2 concentrations with ppb-level benzene concentrations). Background concentrations 

were defined as the minimum concentration measured during the entire campaign.  

VOC concentrations were assumed to have an analytical uncertainty (AU) of 10%. 

Detection limits varied as a function of specific VOC but were typically 1-2 pptv. The 

absolute uncertainty of each species was calculated by propagating the analytical 

uncertainty and detection limits as shown below: 

𝑠𝑠𝑖𝑖,𝑗𝑗 = ((𝐴𝐴𝐴𝐴 ∗ 𝑥𝑥𝑖𝑖,𝑗𝑗)2 + 𝐿𝐿𝐿𝐿𝐷𝐷2)0.5   𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥𝑖𝑖,𝑗𝑗 > 𝐿𝐿𝐿𝐿𝐿𝐿 

𝑠𝑠𝑖𝑖,𝑗𝑗 = 2 ∗ 𝐿𝐿𝐿𝐿𝐿𝐿   𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥𝑖𝑖,𝑗𝑗 < 𝐿𝐿𝐿𝐿𝐿𝐿 
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Given the much higher precision of the Picarro G2401-m than the VOCUS PTR-

ToF, we use the custom uncertainty calculation reported by Guha et al. (2015) for the 

greenhouse gases, as the resulting Q/Qexp values are reasonable (~2.8 for our final solution) 

and the GHG and VOC are not split into separate physically implausible factors. The 

uncertainty of each GHG species is calculated using the following: 

𝑠𝑠𝑖𝑖,𝑗𝑗 = 𝐴𝐴(𝑥𝑥𝑖𝑖,𝑗𝑗)0.5 

Where 𝑠𝑠𝑖𝑖,𝑗𝑗 represents the uncertainty for each normalized GHG, A is a scaling factor 

iteratively chosen to produce reasonable Q/Qexp, and 𝑥𝑥𝑖𝑖,𝑗𝑗 is the normalized concentration 

of the GHG at each time step. We used the same scaling factors as Guha et al. (2015) (A = 

1 for CH4, 0.25 for CO2, and 0.5 for CO). 

3.S6.3 Selection of PMF solution 
 

A five-factor PMF solution was found to optimally describe the combined GHG + VOC 

dataset. Here, we briefly discuss the solution selection process and provide descriptions of 

Factors 3-5.  

While the choice of a final PMF solution requires some subjective input from the 

analyst, a few quantitative metrics have been typically used to aid selection. The most 

commonly used of these metrics is the Q/Qexp ratio, where Q is the sum of the squared 

residuals from the PMF model and Qexp represents the theoretically expected Q value 

(Ulbrich et al., 2009; Paatero and Tapper, 1994). Values of Q/Qexp near 1 suggest that the 

billinear model is appropriate and that the input species have been fit to within their 

estimated error values (i.e., estimated errors are appropriate). Q/Qexp values are ~2, 

suggesting possible slight underestimation of input errors (Ulbrich et al., 2009). Relatively 

consistent reductions in Q/Qexp are observed from 3-7 factors (~11-15%), and as a result 

the Q/Qexp trend provides little insight into the ideal number of factors 

The four-factor solution resolves factors resembling the final dairy/livestock and hot-

running combustion + fugitive O&G factors, as well as factors linked to non-dairy 

agriculture emissions and an industrial/power plant emissions factor containing notable 

contributions from CO2 and benzene but very little CO or methane. Moving to a five-factor 

solution resolves an additional factor that appears to be linked to cold-start combustion 
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given the strong contribution from CO and other combustion tracers such as pentenes, 

toluene, and C8-aromatics but virtually no CO2, suggesting emissions before the catalytic 

converter has reached operating temperature (Kuwayama et al., 2019). None of the regional 

methane enhancement is associated with this factor, as expected. Solutions with more than 

five factors become increasingly difficult to interpret, but the six-factor solution warrants 

specific discussion. 

The six-factor solution resolves a new factor with strong contributions from methane 

and CO2, as well as other species such as butenes/butanol and CO (Figure 3.S20). The new 

factor does not appear to result from the direct splitting of either the dairy/livestock or the 

hot-running combustion/fugitive O&G/landfill factor, as both its source profile and time 

series are distinct from pre-existing factors. However, based on the analysis discussed 

below, we hypothesize that this new factor results from mixing of the dairy/livestock and 

hot-running combustion/fugitive O&G factors.  

Prior to the six-factor solution, the dairy/livestock factor accounts for 58-65% of the 

total regional methane enhancement, depending on the specific solution, while the 

combined hot-running combustion/fugitive O&G factor accounts for 35-42%; however, in 

the seven-factor solution, the new uncharacterized factor accounts for 28% of the total, 

causing the corresponding contributions from the other factors to drop to ~38% and ~34%, 

respectively. The relatively large CH4/CO2 ratio of this new factor (0.0279 mol/mol) 

suggests that it is not associated with point-source power plant, refinery, or petroleum and 

natural gas-related emissions (as defined by the EPA GHG inventory) as the EPA GHG 

point source database indicates that these sources in Tulare, Kings, Kern, and Fresno 

Counties have average CH4/CO2 ratios of ~5.3 x 10-5, 4.9 x 10-4, and 8.4 x 10-3 mol/mol, 

respectively. Methane emissions from these facilities would therefore need to be 

underestimated by multiple orders of magnitude for the ratios to align. Furthermore, the 

estimated total methane emissions from non-landfill point sources in these counties 

represents less than 1% of the estimated dairy-related emissions using our measurement-

based estimates of methane emissions per dairy cow and the USDA-estimated number of 

dairy cows in these counties. 
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A similar argument suggests that the factor is not predominately linked to landfill 

emissions. While the EPA-estimated landfill CH4/CO2 emission ratio is larger (0.8 

mol/mol), emissions from landfills in the surveyed counties represent only 2.5% of the 

estimated dairy emissions. A recent survey lead by investigators at California Polytechnic 

State University quantified methane emissions from 16 landfills across California (Hanson 

et al., 2020). Nine landfills have both an EPA annual methane emissions estimate and a 

direct measurement from the survey. The median ratio of the measured to EPA-estimated 

methane emissions was 2.1 (IQR = 0.7 – 4.9). Adjusting estimated landfill methane 

emissions based on these measurements therefore only increases the total to 5% of the total 

estimated dairy emissions.  

The last possible major source of the new factor, if it is not derived from mixing of pre-

existing factors, is fugitive natural gas emissions from transmission/distribution lines. 

However, the original hot-running combustion/fugitive O&G factor is still present, and it 

becomes difficult to justify distinct sources for these two factors based on their spectra. If 

the methane contributions from both factors (the existing combustion/fugitive O&G and 

new unknown factor) are linked to fugitive O&G emissions, the total contribution of 

fugitive O&G to the regional methane signal is 62%. To assess the likelihood of this 

possibility, we use a scaling analysis similarly to the calculations discussed in the mass 

balance section of the main text. Specifically, we assume that fugitive natural gas emissions 

will be predominately present in urban regions and will be approximately proportional to 

population. Scaling the SoCAB fugitive natural gas emissions reported by Peischl et al. 

(2013) (193 Gg yr-1) by the total population of Kern, Tulare, Kings, and Fresno Counties 

suggest total emissions of 29 Gg or 29,038 metric tons. This represents 7% of the estimated 

dairy-related emissions. For fugitive O&G emissions to exceed dairy/livestock emissions, 

either the fugitive methane emissions would have to be considerably underestimated (by 

more than a factor of 10) or the dairy-related emissions would have to be considerably 

overestimated.  

In the seven-factor solution, the new unknown factor produced in the six-factor solution 

is not present, and the methane contributions from the dairy/livestock and hot-running 

combustion/fugitive O&G factors return to the values produced in the 4-5 factor solutions 
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(~60% and 40%, respectively). While the seven-factor solution resolves what appears 

to be a biogenic factor which contains no methane signal, the remaining four factors are 

more difficult to interpret. As an example, the majority of the benzene signal is associated 

with the non-dairy agriculture factor in the seven-factor solution, which is difficult to 

justify. 

Given the arguments discussed above and the factor source profiles (Figure 3.S20), we 

hypothesize that the new methane-containing factor resolved in the six-factor solution 

results from the mixing of the dairy/livestock, hot-running combustion/fugitive O&G, and 

non-dairy agriculture factors. As the seven-factor solution produces multiple factors with 

ambiguous sources, to avoid overinterpretation of the PMF results we conclude that the 5-

factor solution provides an optimal description of the GHG + VOC dataset. Brief 

descriptions of Factors 3-5 are provided below 

3.S6.4 Factor descriptions 
 

Non-dairy agriculture 
 

Factor 3 is classified as non-dairy agriculture emissions given the considerable 

contributions from methanol and acetone (Goldstein and Schade, 2000; Fares et al., 2011), 

minimal contribution from methane, and prominence over croplands between Bakersfield 

and Fresno (Figure 3.S19). The molar ratio of acetone to methanol in Factor 3 (0.32 mol 

mol-1) agrees well with the agriculture and soil-management factor reported by Guha et al. 

(2015) (0.26 mol mol-1) and with emission ratios reported for a variety of crops typical of 

the SJV by Gentner et al. (2014) and Fares et al. (2011) (e.g., almonds (0.14), grapes (0.04), 

pistachios (0.5), oranges (0.5-0.57)). We attribute the CO associated with this factor to 

agricultural off-road engines, while the minor contribution of CO2 is likely the result of 

CO2 uptake by the same crops responsible for the acetone and methanol emissions. Guha 

et al. (2015) reported a notable contribution of CO2 to the agriculture and soil-management 

PMF factor resolved in Bakersfield, CA; however, the CO2 contribution was hypothesized 

to result from overnight plant respiration, which would likely not be detectable in our 

daytime measurements. The negligible contribution of methane to the factor source profile 

aligns with the agriculture and soil-management factor reported by Guha et al. (2015) and 
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with the assumption of minimal methane emissions from croplands in the mass balance 

calculations discussed in Section S2. 

Cold-start combustion 
 

Factor 4 is classified as cold-start combustion emissions given the prominence of 

combustion-related tracers in the factor source profile (e.g., CO, alkenes, toluene, C8- and 

C-10 aromatics), lack of contribution from CO2 (suggesting inefficient combustion), and 

prominence directly above and downwind of Fresno and Bakersfield (Figure 3.S19). 

Across the surveyed domain, 12% of the total CO and 32% of the total C8+ aromatic signal 

is associated with this factor. A similar cold-start combustion-related factor was observed 

by Kuwayama et al. (2019) in Los Angeles and exhibited many of the same chemical 

characteristics (e.g., considerable CO associated with very little CO2, combustion tracers, 

etc.). While the apparent minor contribution of CO to this factor in Figure 3.S18 suggests 

that evaporative emissions are a possible source, this perception is skewed by the 

concentration normalization performed prior to PMF analysis. The true ratios of 

toluene/CO and C10-aromatics/CO in this factor are only a factor of 2 and 5 larger than the 

corresponding ratios measured in hot-running combustion engines, respectively (Gentner 

et al., 2013). The CARB Emission Factor (EMFAC) model predicts that the total emission 

ratio of reactive organic gases (ROG) to CO from light-duty gasoline passenger vehicles 

before the catalytic converter has reached operating temperature is 6.6 times larger than 

that produced during hot-running periods, in reasonable agreement with the comparison 

above. Furthermore, the prominent contribution of C5H11, which likely corresponds to C5 

pentenes resulting from incomplete fuel combustion (Gentner et al., 2013) suggests a 

combustion-related source. This factor accounts for virtually none of the observed methane 

enhancement (<1%), in agreement with previous cold-start combustion factors (≤6% in 

Los Angeles) (Kuwayama et al., 2019). 

Power-generation/refineries 
 

Factor 5 is interpreted as emissions from power-generation and petroleum refining 

facilities. Approximately 39% of the domain-wide CO2 enhancement is contributed by this 

factor, while the CO/CO2 ratio (<1e-5 mmol/mol) is clearly lower than expected from 

gasoline (~7 mmol/mol) and diesel (~0.7 mmol/mol) mobile-source emissions (EMFAC, 
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2022), suggesting efficient combustion processes likely present at large-scale natural 

gas-fired power generation facilities. Figure 3.S19 indicates that the factor is prominent 

nearby and downwind of major power generation facilities near Fresno and Bakersfield, as 

well as near smaller facilities near the cities of Hanford and Tipton. We hypothesize that 

the presence of the factor within the Sierra Nevada foothills is the result of upslope winds 

that transport emissions from generation facilities. While there are relatively few other 

clearly prominent tracers within the factor profile, the factor accounts for 36% of the 

domain-wide benzene enhancement and 16% of the C8+-aromatic enhancement, 

suggesting possible emissions from leaking stock storage tanks at refining facilities. Near 

Bakersfield, major refining facilities such as Kern Oil Refining, which produces both 

gasoline and diesel fuel, are in close proximity to major natural gas fueled power-

generation facilities (e.g., the Kern River Cogen plant) (EPA, 2022). Such proximity may 

explain why species expected to be emitted from refining operations are included in a factor 

with chemical signatures indicating efficient combustion processes (e.g., low CO/CO2 

ratio). Virtually no methane is associated with this factor (<1%), and as a result, uncertainty 

in the source of this factor has effectively no influence on our conclusions regarding 

methane sources. 

3.S6.5 Quantification of factor uncertainties 
 

Uncertainty in the factor source profiles and time series are estimated using bootstrap 

analysis (Norris et al., 2008; Ulbrich et al., 2009). Following standard recommendations, 

100 bootstrap runs were performed by randomly resampling individual measurements from 

the original dataset with replacement (Norris et al., 2008). After the random resampling, 

measurements are sorted chronologically to maintain the general temporal structure of the 

dataset (i.e., data points collected at the end of the original time series will be forced toward 

the end of the resampled time series). The PET software automatically determines which 

factors in each bootstrap run correspond to the base run factors (Ulbrich et al., 2009). The 

standard deviations of the contributions of individual species to each factor are assumed to 

represent the 1σ uncertainty in factor source profiles. Similarly, the 1σ uncertainty in the 

time series of each factor is taken as the standard deviation of the time series from the 

aggregated bootstrap results.  
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Figure 3.S22 shows the results of the bootstrapping analysis for the dairy/livestock 

factor. The uncertainty in the methane contribution to the factor signal is 14% (1σ), while 

the uncertainty in the average abundance of the factor (i.e., total signal) is 17%. While the 

propagation of these uncertainties would suggest that the uncertainty in the total 

contribution of the factor to the methane enhancement is 22%, bootstrap simulations that 

produce a relative reduction in the methane contribution to the factor signal are associated 

with larger total factor signals. As such, when the bootstrap results are compiled, the 

standard deviation of the average contribution of the dairy/livestock factor to the domain-

wide methane enhancement is 9.9%, which we take as the 1σ uncertainty in the methane 

contribution. 

In addition to random uncertainties, PMF solutions are associated with inherent 

rotational ambiguity. Briefly, linear transformations or “rotations” of the factor time series 

and composition matrices are possible that generate slightly different factors while 

producing an identical fit to the input dataset (Ulbrich et al., 2009). As a result, resolved 

solutions are not unique from a mathematical perspective. Within the PET software, such 

rotations are generated by varying the FPEAK parameter. It is commonly recommended to 

evaluate solutions with rotations (i.e., varied FPEAKs) that increase Q/Qexp by up to ~10%, 

though the specific range is subjective (Ulbrich et al., 2009). We evaluated PMF solutions 

from an FPEAK of -4 to +4, producing Q/Qexp values that increased by up to ~15% (Figure 

3.S23). FPEAK values lower than -1 lead to mixing of the dairy/livestock and non-dairy 

agriculture factors (Figure 3.S24), while values larger than 2.5 produce a factor consisting 

of almost entirely CO and C3HO, a likely carbonyl fragment, and fail to resolve the 

combustion/fugitive O&G factor (Figure 3.S25). Within the range of reasonable PMF 

solutions (-1 ≤ FPEAK ≤ 2.5), the contribution of the dairy/livestock factor to the domain-

wide methane enhancement is ~60-65% (Figure 3.S23) and within the 1σ uncertainty range 

obtained from bootstrapping analysis of the FPEAK = 0 solution. We use the FPEAK = 0 

solution given a lack of justification for alternative solutions within the range of -1 ≤ 

FPEAK ≤ 2.5. 
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3.S6.6 Comparison of methane source distribution inferred from PMF with 

results of Guha et al. (2015) 

 
Guha et al. (2015) used a similar PMF method to determine that dairy and livestock 

emissions accounted for 60-70% of midday (12:00-16:00) average methane enhancements 

over the Bakersfield region during CalNex-2010, in line with our results. However, our 

conclusions regarding the source of the non-dairy-related methane emissions differ from 

Guha et al. (2015), as we attribute the majority of the remainder to fugitive O&G emissions, 

while their results suggest that a variety of sources, including motor vehicles, a 

miscellaneous urban source, and agriculture and soil management account for the 

remainder. While other sources such as landfill emissions or “miscellaneous urban 

sources” are likely “mixed” into our combustion + fugitive O&G factor, analysis of 

regional landfill emissions using the EPA GHG point source inventory34 suggests that the 

contribution from landfills is likely small (SI Section 3.S3), and it is unclear what other 

urban sources could account for such substantial quantities of methane. While we have 

limited data on direct agricultural methane emissions, calculations using flux 

measurements from Hannun et al. (2020) suggest that agricultural emissions should 

represent a small fraction of dairy-related emissions (SI Section 3.S3).  

3.S7 Calculation of effective average dairy methane emission rate in the SJV using 

CARB inventory emission factors  
 

The CARB GHG emission inventory uses a process-based model to estimate dairy 

emissions from enteric fermentation and manure management practices separately (CARB, 

2022). Here we describe calculation of an effective total methane emission rate from dairies 

in the southern SJV using CARB emission factors and SJV-specific manure management 

styles.  

Enteric fermentation emission rates vary considerably by cattle type (e.g., dairy cows 

vs. dairy calves vs. dairy replacements) (Marklein et al., 2021). Assuming dairies within 

the SJV have the same relative proportion of different cattle types as the statewide average, 
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the effective annual enteric fermentation emission rate is 91 kg cow-1 yr-1 using CARB 

emission factors. 

The specific manure management practices utilized also have a substantial influence on 

total methane emissions (Hristov et al., 2017; Marklein et al., 2021), and recent studies 

have used a variety of assumptions regarding manure management practices in the SJV. 

For example, Peischl et al. (2013) and Amini et al. (2022) assume that all dairy operations 

in the SJV use anaerobic lagoons as the primary manure management system, with an 

effective emission rate of 332 kg dairy cow-1 yr-1 according to CARB. A recent detailed 

review of permit information suggests that 30-70% of manure generated in SJV dairies is 

managed using anaerobic lagoons, depending on the presence/absence of freestalls, with 

the remainder managed using solid storage practices (Marklein et al., 2021). We assume 

that all dairies surveyed in our study utilized freestalls and therefore that 70% of manure 

was managed in anaerobic lagoons (Marklein et al., 2021), which is qualitatively consistent 

with our survey of 500 dairies in the southern SJV using Google Earth imagery, producing 

an annual effective dairy cow manure management emission factor of 237.8 kg dairy cow-

1 yr-1. Here, we note that manure management emissions are calculated based on the 

number of dairy cows and the corresponding emission factor, not the total number of cattle 

within a dairy. According to the statewide dairy cattle distribution, the total number of 

cattle on an average dairy is expected to exceed the number of dairy cows by approximately 

a factor of two (Amini et al., 2022). We further assume no substantial influence from 

anaerobic digesters, which our review of satellite imagery indicates are only present at ~5% 

of dairies in the SJV.  

Data from the 2017 USDA Census of Agriculture suggests that dairies within Tulare 

and Kings counties house ~2005 milk cows on average (USDA, 2017). Using the statewide 

distribution of cattle types, each dairy houses an additional ~1040 dairy calves and ~850 

dairy replacements (~250 aged 0-12 months and ~600 aged 12-24 months) on average. 

Applying the CARB enteric fermentation emission factors to each cattle type, the total 

enteric fermentation emission rate is 40.2 kg hr-1 for an average dairy in the SJV. 

Multiplying the number of dairy cows by the effective manure management emission factor 

described above suggests a total manure management emission rate of 54.4 kg hr-1 and a 
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resulting total emission rate of 94.6 kg hr-1. If we assume that all manure is managed 

using anaerobic lagoons, as in Peischl et al. (2013) and Amini et al. (2022), the total 

emission rate increases to 116.2 kg hr-1.  

3.S8 Calculation of the temperature dependence of dairy methane emission 

factors 
 

In Section 4.3.3 of the main text, we compared the temperature dependence of dairy 

methane emissions measured during our study with values calculated using CARB annual 

emission factors adjusted based on the parameterization for the temperature dependence of 

manure management emissions reported by Maasakkers et al. (2016). Here we describe 

those calculations in detail.  

Maasakkers et al. (2016) used a specific exponential relationship to parameterize the 

dependence of manure management emissions on temperature (Eq. 1 in their paper). We 

first used this parameterization to calculate effective monthly scaling factors for manure 

management emissions based on average temperatures measured in Visalia and Fresno 

(Figure 3.S15). We then calculated effective anaerobic lagoon and solid storage emission 

factors (i.e., emissions per dairy cow per year) based on these scaling factors while ensuring 

that the annual average dairy-wide emission rate is maintained at 94 kg hr-1 (SI Section 

3.S8). The scaling factors and the monthly estimated emission rates are shown in Figure 

3.S15. Based on the Maasakkers et al. (2016) parameterization, the ratio of manure 

management emissions to enteric fermentation emissions increases from ~0.4 in January 

to ~2.1 in July, which agrees well with observations reported by Arndt et al. (2018) for 

dairies in Northern California. Furthermore, as shown in Figure 3.S15b, the calculated 

emission rate for an average dairy in this region (2005 dairy cows per dairy) in June, when 

RECAP-CA was conducted, is 137 kg hr-1 using the manure management assumptions 

described in SI Section 3.S8. This value is only 11% larger than our estimate using the 

average of the MB and EC methods (123 kg hr-1).  

The calculation process described above produces estimated average dairy emission 

rates by month, while also allowing calculation of the inferred relationship between 

emission rates and temperature (by fitting the monthly average emission rate vs. 
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temperature relationship) (Figure 3.S15). We note that this inherently assumes that the 

average annual temperature in the southern SJV is similar to the annual average 

temperature across California when weighted by the relative fraction of dairy methane 

emissions in different regions (from the perspective of the statewide emission inventory). 

However, as a dominant fraction of dairy methane emissions are produced in the southern 

SJV (Marklein et al., 2021), this assumption should produce minimal error. Stated 

differently, given that most dairy methane emissions occur in the SJV, using temperatures 

in the SJV in the temperature-dependent parameterization of statewide, annual-average 

manure management emission factors is reasonable.  

We then calculated inferred average dairy emission rates from our EC measurements as 

function of temperature, as shown in Figure 3.S16a. We increased temperatures measured 

at flight altitude by 4oC to correct for the difference between temperatures at ground-level 

and 400 m. Using this method, flight-altitude temperatures of 16oC, corresponding to the 

lowest temperature tercile observed in our study, are associated ground-level temperatures 

of 20oC, which have a calculated average dairy emission rate of 96 kg hr-1, while flight 

temperatures of 29oC (33oC at ground-level) have an associated emission rate of 198 kg hr-

1. As shown in Figure 3.S16a, these values correspond well with emission rates inferred at 

each temperature from our EC measurements (111 kg hr-1 and 224 kg hr-1, respectively).  

Given the agreement between the dairy methane emission rate inferred from our June 

measurements and that calculated for June conditions using CARB EF scaled by the 

Maasakkers et al. (2016) parameterization, we estimated an effective annual emission rate 

in the entire SJV based on our measurements. For this calculation, we scaled our average 

estimate by the ratio of the calculated annual average dairy emission rate (94.6 kg hr-1) to 

the June emission rate (137 kg hr-1) using CARB EF and the Maasakkers et al. (2016) 

parameterization (0.69), converted the resulting annual average dairy emission rate to an 

effective dairy cow emission factor by dividing by 2005 dairy cows per dairy, and 

multiplied by the total number of dairy cows in counties within the SJV according to the 

USDA 2017 Census of Agriculture. The resulting value (584 Gg yr-1) is associated with 

considerable uncertainty given the uncertainty in the temperature dependence of dairy 



 

 

189 
methane emissions, but it is notable that our calculated value lies between the estimates 

of Cui et al. (2019) (440 ± 360 Gg yr-1) and Jeong et al. (2013) (1130 ± 420 Gg yr-1). 
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Figures 3.S1-3.S26 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.S1: Flight tracks of the seven flights performed over the San Joaquin Valley (SJV) as 
part of RECAP-CA 2021. 
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Figure 3.S2: (a) Measured concentration of the WMO-referenced Airgas standard tank after each 
flight. The true concentration of the standard is shown using the dashed line. Variability between 
subsequent measurements was ≤1 ppbv. Calibration corrections were applied during data 
processing. (b) Time series of measured concentrations in the high-span calibration standard from 
RF5 during three calibrations, two of which occurred in-flight. Calibrations demonstrate precision 
is ≤ 1 ppbv. (c) Same as (b) for measurements of the low-span calibration standard. 
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a) b) c) 
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Figure 3.S3: Maps of flight legs used for mass balance calculations from each flight during 
RECAP-CA. (a) RF2, (b) RF5, (c) RF6, (d) RF10, (e) RF11, (f) RF12, (g) RF16. Points are colored 
by wind direction. Circles note locations with inconsistent local wind fields (i.e., considerable 
deviations from the typical northwest origin) during RF2, RF11, and RF16. Orange markers denote 
local dairy operations. 
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Figure 3.S4: (a) Wind direction and speed measured at the Visalia weather station from 6:00-
14:00 on the days corresponding to flights with mass balance CH4 emissions estimates (RF5, 
RF6, RF10, and RF12) (Weather Underground, 2022). (b-e) Six-hour airmass backward 
trajectories ending at noon local time in the region of intensive dairy operations calculated using 
the HYSPLIT model for RF5, RF6, RF10, and RF12. Blue, green, and black stars denote the 
locations of the cities of Visalia, Hanford, and Tulare, respectively, which generally bound the 
mass balance region shown in Figure 3.2 in the main text. Trajectories demonstrate that wind 
fields were stable and airmasses generally crossed the region of intensive dairy operations within 
the 3-4 hours prior to measurement.  
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Figure 3.S5: Maps of aircraft latitude and longitude during racetrack sampling in (a) RF5 and (b) 
RF12 within the mass balance region. Blue points represent flight legs used for MB calculations, 
while red points denote other portions of the flight. Stars indicate locations of the vertical 
sounding and racetrack sampling periods. (c-d) Measured potential temperature, water vapor, and 
methane concentrations as a function of altitude during the sounding and racetrack sampling 
period. The estimated background methane concentration and PBL height are also shown. 
 
 

a) b) 

c) d) 



 

 

195 

12

10

8

6

4

2

0

-2H
2O

 fl
ux

 (m
m

ol
 m

-2
 s

-1
) (

Pi
ca

rro
 G

24
01

-m
)

12840
H2O flux (mmol m

-2 s-1
) (LICOR)

R2 = 0.89
Slope = 1.03

1.0

0.8

0.6

0.4

0.2

N
or

m
al

iz
ed

 c
o-

sp
ec

tru
m

0.001 0.01 0.1 1
Frequency (Hz)

 H2O (Licor)
 CO2 (Picarro)
 CH4 (Picarro)
 H2O (Picarro)

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0R
at

io
 o

f c
o-

sp
ec

tra
 (G

H
G

/H
2O

)

6 8
0.01

2 4 6 8
0.1

2 4 6 8
1

Frequency (Hz)

τCO2
 = 0.68 s

τCH4
 = 0.89 s

τH2O = 1.48 s

 H2O Ratio
 TF H2O
 CO2 Ratio
 TF CO2
 CH4 Ratio
 TF CH4

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.S6: (a) Normalized wavelet cospectrum of water vapor (H2O) measured by the LI-COR 
LI-7500DS (10Hz) and H2O, CH4, and CO2 measured by the Picarro G2401-m. (b) Ratio of GHG 
and H2O co-spectra showing transfer function fits and effective instrument response times. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.S7: Comparison of average water vapor fluxes measured on each level leg by the 
Picarro G2401-m and the LICOR LI-7500DS. The G2401-m data have been corrected for the 
instrument response time and the additional high frequency flux uncaptured by the instrument (SI 
Section 3.S4). 

a) b) 
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Figure S8: Measured methane flux as a function of aircraft altitude (z) relative to the planetary 
boundary layer height (zi). Gray dots represent individual 0.5Hz flux measurements. Black 
markers denote average fluxes within five z/zi bins containing 95% of the entire dataset. Error 
bars represent 1σ errors in average fluxes calculated from propagation of random and systematic 
errors in 0.5Hz fluxes. The thick dashed line represents the extrapolated vertical flux divergence 
(VFD) correction. Dotted lines denote the 1σ uncertainty in the VFD correction. 
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Figure 3.S9: Relationship between the measured methane flux and flight altitude normalized to 
the planetary boundary layer height (z/zi) for (a) the entire dataset, and (b-d) periods with 
temperatures (b) greater than 26oC, (c) between 20oC and 26oC, and (d) less than 20oC. The 
calculated vertical flux divergence relationship is shown for each dataset, demonstrating that 
notable flux divergence is predicted in each case. The calculated Cdiv values (Wolfe et al., 2018) 
are 1.36 ± 0.50, 1.31 ± 0.68, 1.76 ± 1.43, and 2.38 ± 3.95 for a typical z/zi of 0.4. Considerable 
uncertainty is associated with the calculated divergence correction for the lowest temperature bin 
due to a lack of data for z/zi > 0.5. Ground-level fluxes reported in the main text use the flux 
divergence correction obtained from the entire dataset. 
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Figure 3.S10: Spatial correlation between average concentrations of methane and various VOC 
and GHG tracer species in 0.1o x 0.1o grid cells measured during RECAP-CA. 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.S11: (a) Boxplots of methane concentrations measured as a function of inferred ground-
level temperatures across the entire surveyed region and the specific dairy region shown in Figure 
1. Boxes represent the interquartile range of measurements, while error bars denote the 10th and 
90th percentiles. Diamond markers represent averages. (b) Same as (a) for inferred surface level 
methane fluxes. Ground-level temperatures were estimated from temperatures at flight-altitude 
using the observed temperature lapse rate during racetrack sampling. 
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Figure 3.S12: Maps of the San Joaquin Valley region surveyed during flights with mass balance-
based methane emissions estimates. (a) RF5, (b) RF6, (c) RF10, and (d) RF12. Markers denoting 
flight tracks are colored and sized by measured methane mixing ratios.  
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Figure 3.S13: Time series of methane concentrations measured on the western and eastern legs 
of the mass balance region sampled during (a) RF5 and (b) RF10. Interpolated regions represent 
in-flight calibrations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.S14: (a) Distribution of dairy sizes in the sampled region of the SJV determined through 
a survey of Google Earth imagery. A lognormal fit approximately reproduces the distribution. 
Mean (0.25 km2) and median (0.16 km2) values are shown for reference. (b) Average dairy area 
as a function of latitude, demonstrating larger average dairies in the southernmost SJV near 
Bakersfield. 
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Figure 3.S15: (a) Relative scaling factor describing variation in annual average manure 
management emission factor with temperature according to the Maasakkers et al. (2016) 
parameterization. Scaling factors were adjusted equivalently (i.e., all monthly values were 
increased by a factor of 2.34) to ensure that the annual average calculated dairy emission rate was 
94 kg hr-1, as described in SI Section 7. (b) Calculated monthly average dairy emission rate using 
the scaling factors shown in (a) for a variety of assumptions regarding manure management 
practices. The blue trace reflects the assumption used in Amini et al. (2022) (all manure managed 
using anaerobic lagoons). The grey traces represent calculation using assumptions of the different 
models described in Marklein et al. (2021). Our annual estimate discussed in SI Section 7 uses the 
M3 model assumptions (70% of manure managed using anaerobic lagoons, with the remainder 
managed using solid storage). The gold marker represents our average inferred emissions 
estimate during RECAP-CA, which occurred in June, and demonstrates the agreement between 
the inventory predictions and our measurements once the temperature dependence of emissions is 
incorporated. (c) Predicted ratio of manure management (MM) emissions to enteric fermentation 
(EF) emissions in January and June based on the scaling factors shown in (a) when applied to 
annual average CARB EF. Blue bars denote values observed by Arndt et al. (2018) at two dairies 
in Northern California. 
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Figure 3.S16: (a) Comparison of observed and predicted average dairy emission rates with 
temperature during RECAP-CA. Detailed descriptions of the calculations are included in SI 
Section 8. (b) Variability in the magnitude of the dairy/livestock PMF factor with temperature. 
The magnitude is unitless due to the normalization procedure performed prior to PMF analysis, as 
described in SI Section 6. Values are shown for both the entire dataset and for the dairy region 
shown in Figure 3.1 specifically. 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.S17: (a) Measured methane fluxes during RECAP-CA. (b) Predicted livestock methane 
fluxes according to the EPA-GHGI inventory (Maasakkers et al., 2016). (c) Same as (b) for the 
VISTA-CA inventory (Marklein et al., 2021). Purple regions in (b) represent small but non-zero 
emissions estimates, while corresponding blank cells in (a) and (c) denote either a lack of 
measurements (a) or no predicted emissions (c). 
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Figure 3.S18: Source profiles of the PMF factors resolved from the combined GHG + VOC 
dataset collected over the SJV. Factors represent emissions from dairy/livestock, combustion and 
fugitive oil & gas, non-dairy agriculture, cold-start combustion, and power generation/refining 
facilities. Species used in factor identification are noted.  
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Figure 3.S19: Maps of the total concentration of the (a) non-dairy agriculture, (b) cold-start 
combustion, and (c) power-plant/refinery PMF factors.  
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Figure 3.S20: Source profiles of PMF factors resolved in the six-factor solution. Factor 
assignments are based on similarity to factors resolved in the five-factor solution. An additional 
factor linked to mixing of pre-existing factors is noted in purple.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.S21: Source profiles of PMF factors resolved in the seven-factor solution. Factors that 
likely represent dairy/livestock and combustion/fugitive O&G emissions are highlighted orange 
and black, respectively. 
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Figure 3.S22: (Top) Source profile of the dairy/livestock PMF factor derived from bootstrap 
analysis. Error bars represent the standard deviation of the contributions of individual species to 
the factor signal. (Bottom) Time series of the dairy/livestock factor signal during RF12. Shading 
indicates the calculated standard deviation of the factor signal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.S23: Q/Qexp as a function of the FPEAK parameter. Negative values of FPEAK tend to 
increase differences between factor time series while decreasing differences in factor spectra. 
Positive values of FPEAK increase differences in factor spectra. The value of Q/Qexp 
corresponding to a 10% increase above the value at FPEAK=0 is noted (Ulbrich et al., 2009). 
FPEAK values lower than -1, highlighted in blue, mix the dairy/livestock and non-dairy 
agriculture factors into two factors that are not clearly distinguishable.  
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Figure 3.S24: Source profiles of factors resolved from PMF analysis with FPEAK = -3. Factors 
highlighted in orange are likely formed from mixing of the original dairy/livestock and non-dairy 
agriculture factors given the considerable contributions from methane, methanol, and methanol. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.S25: Source profiles resolved from PMF analysis with FPEAK = 3. The factor 
highlighted in black is almost entirely comprised of CO and C3HO (~80%) and is difficult to 
attribute to a specific emission source. 
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Figure 3.S26: Fraction of methane emissions linked to dairy/livestock sources in the SJV 
resolved from PMF results reported in this study and other recent atmospheric inversion and PMF 
studies. Data from Guha et al. (2015) represent results from PMF analysis of combined GHG + 
VOC dataset in Bakersfield, CA. The remaining studies involve inversion results applicable to the 
broader SJV region. Error bars represent estimated 2σ uncertainties. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

209 
Tables S1-S6 

 
Table S1: Example of data used to calculate emissions from the region of intensive dairy 
operations during RF5. Negative fluxes represent transport into the mass balance region. 

 
 
 
 
 
 
 
Table S2: Inferred methane emissions within the region of intensive dairy operations shown in 
Figure 2 calculated using the mass balance method from data collected during RF5, RF6, RF10, 
and RF12. 

Research 
flight 

Flux from individual flight legs (103 kg hr-

1) Net 
emissions 

(103 kg hr-1) 

Dairies in 
region 

Emissions 
per dairy 
(kg hr-1) Eastern leg Northern leg Western leg 

RF5 57.0 -5.0 -9.2 43.0 ± 18.1  330 ± 50 130 ± 62 
RF6 52.6 -6.3 -9.8 36.5 ± 19.8  330 ± 50 110 ± 62 

RF10 96.1 -20.3 -15.4 60.4 ± 28.4  330 ± 50 183 ± 90 
RF12 52.3 -24.0 -18.9 9.4 ± 32.6  330 ± 50 28 ± 99 

       
Average    33.9 ± 12.1 330 ± 50 113 ± 44 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Transect PBL height (m) Wind Dir. (deg.) Wind Speed (m s-1) CH4 bkgd. (ppmv) CH4 flux (kg hr-1) 

Eastern leg 1212 ± 300 299 ± 12 3.4 ± 0.9 1.982 ± 0.018 57,010 ± 24,040 

Northern leg 1218 ± 300 294 ± 14 2.6 ± 1.1 1.982 ± 0.018 -4,950 ± 2,230 

Western leg 1222 ± 300 318 ± 25 3.2 ± 1.1 1.982 ± 0.018 -9,110 ± 3,650 
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Table 3.S3: Comparison of the effective dairy cow emission factor inferred in this study with 
results from recently published observational studies in California and Colorado. 

*MB = mass balance. EC = eddy covariance. Avg. = average of methods. Reported avg. temp. represents average value 
measured in Visalia, CA on flight days according to Weather Underground (wunderground.com). 2EF calculated by 
multiplying reported observed-to-estimated ratios for summertime vehicle sampling by calculated EF based on CARB 
inventory methodology (SI Section 7) assuming all manure management utilized anaerobic lagoons, as was assumed in 
Amini et al. (2022). 3EF calculated by dividing the reported facility-level emissions measured by the open path 
technique by the number of dairy cattle on each dairy farm. 4EF calculated by dividing total reported CH4 emissions 
from dairy operations for August by the total number of dairy cattle in the surveyed region. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source Location Month Avg. temp (oC) 
Effective EF 

(g CH4 dairy cow-1 hr-

1) 
This study – MB1 S. SJV June 24 56 ± 20 

This study – EC S. SJV June 24 67 ± 17 

This study – Avg. S. SJV June 24 61 ± 18 

Amini et al. (2022)2 S. SJV June-Aug. 30 62 ± 12 
Arndt et al. (2018)3 

(Dairy #1) N. SJV June 25 92 ± 5 

Arndt et al. (2018) 
(Dairy #2) 

N.E. 
Colorado June 27 64 ± 7 

Golston et al. (2020)4 N.E. 
Colorado August 25 70 ± 7 
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Table 3.S4: Comparison of total dairy methane emissions in the SJV estimated from our 
measurements with previous predictions from inverse modeling studies. 

Source Time period Extrapolated annual SJV dairy 
CH4 emissions (Gg yr-1) 

This study1 June 2021 848 ± 251 

This study – adjusted2 2021 584 ± 173 

Jeong et al. (2013) Sept-June 2010 1130 ± 420 

Cui et al. (2017)3 May-June 2010 963 ± 236 

Cui et al. (2019) 2014-2016 440 ± 360 
 

1Calculated by multiplying effective dairy cow EF (61 g dairy cow-1 hr-1) by the total number of dairy cows in eight 
counties in the SJV according to 2017 USDA Census of Agriculture. 2Adjusted for annual temperature variability in 
Visalia, CA using the parameterization for temperature dependence of manure management emissions from 
Maasakkers et al. (2016) (SI Section 8). 3Extrapolated from reported Mg hr-1 to Gg yr-1. 
 
 
Table 3.S5: Comparison of the methanol/CH4, ethanol/CH4, and methanol/ethanol emission 
ratios (ER) inferred from the dairy/livestock PMF factor resolved in this study with ER reported 
from previous measurements at dairy facilities. Uncertainty represents 1σ variability derived from 
bootstrap analysis. 

Source Methanol/CH4 
(mmol mol-1) 

Ethanol/CH4 
(mmol mol-1) 

Ethanol/Methanol 
(mmol mmol-1) 

Dairy/livestock factor 
(this study) 9.0 ± 3.0 13.8 ± 1.45 1.54 ± 0.45 

Guha et al., 2015a 15-47 9-32 0.66 

Shaw et al., 2007b 3.2 NA NA 

Gentner et al., 2014c 7-16 18 2.4 

Sun et al., 2008b 15-25 18-32 1.3 

Yuan et al., 2017d NA NA 2.3 

 
 
 
 
 
 
 

aFrom PMF factor linked to dairy and livestock emissions derived from measurements in Bakersfield, 
CA. bDirect measurements from environmentally controlled chambers at the University of California, 
Davis Animal Science Swine Research Facility. cCalculated from regression slopes fit to aircraft 
sampling of dairy plumes. dMeasurements of dairy plumes near Greeley, CO using a mobile laboratory 



 

 

212 
 
Table 3.S6: Comparison of the CO/CO2, CH4/CO2, and toluene/CO emission ratios (ER) inferred 
from the combustion/fugitive O&G PMF factor resolved in this study with ER reported from the 
CARB EMFAC model (EMFAC, 2022) and other observational studies. Uncertainty represents 
1σ variability derived from bootstrap analysis. 
 

Source CO / CO2 
(mmol mol-1) 

CH4 / CO2 
(mmol mol-1) 

Toluene / CO 
(mmol mol-1) 

Combustion + fugitive 
O&G factor (this study) 6.0 ± 1.5 21.7 ± 3.5 0.41 ± 0.23 

EMFAC – on-road 
gasoline 7.1 0.12 NA 

EMFAC – on-road 
diesel 0.6 0.01 NA 

Guha et al., 2015a NA NA 0.26 

Gentner et al., 2013 – 
on-road gasolineb NA NA 1.0 

Gentner at al., 2013 – 
on-road dieselb NA NA 0.04 

 
 
 
 
 

 

 

 

 

 

 

 

 

aFrom PMF factor linked to motor vehicle emissions derived from measurements in Bakersfield, CA. 
bDirect measurements of VOCs and CO in the Caldecott Tunnel in Oakland, CA during July 2010. 
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C h a p t e r  4  

Characterization of aerosol hygroscopicity over the Northeast Pacific Ocean: 
Impacts on prediction of CCN and stratocumulus cloud droplet number 

concentrations 
 
Schulze, B. C.; Charan, S. M.; Kenseth, C. M.; Kong, W.; Bates, K. H.; Williams, W.; Metcalf, 
A. R.; Jonsson, H. H.; Woods, R.; Sorooshian, A.; Flagan, R. C.; Seinfeld, J. H. Characterization 
of Aerosol Hygroscopicity Over the Northeast Pacific Ocean: Impacts on Prediction of CCN and 
Stratocumulus Cloud Droplet Number Concentrations. Earth and Space Science 2020, 7 (7), 
e2020EA001098. https://doi.org/10.1029/2020EA001098. 

 
Abstract: 
 

During the Marine Aerosol Cloud and Wildfire Study (MACAWS) in June and July of 

2018, aerosol composition and cloud condensation nuclei (CCN) properties were measured 

over the N.E. Pacific to characterize the influence of aerosol hygroscopicity on predictions 

of ambient CCN and stratocumulus cloud droplet number concentrations (CDNC). Three 

vertical regions were characterized, corresponding to the marine boundary layer (MBL), 

an above-cloud organic aerosol layer (AC-OAL), and the free troposphere (FT) above the 

AC-OAL. The aerosol hygroscopicity parameter (κ) was calculated from CCN 

measurements (κCCN) and bulk aerosol mass spectrometer (AMS) measurements (κAMS). 

Within the MBL, measured hygroscopicities varied between values typical of both 

continental environments (~0.2) and remote marine locations (~0.7). For most flights, CCN 

closure was achieved within 20% in the MBL. For five of the seven flights, assuming a 

constant aerosol size distribution produced similar or better CCN closure than assuming a 

constant “marine” hygroscopicity (κ = 0.72). An aerosol-cloud parcel model was used to 

characterize the sensitivity of predicted stratocumulus CDNC to aerosol hygroscopicity, 

size distribution properties, and updraft velocity. Average CDNC sensitivity to 

accumulation mode aerosol hygroscopicity is 39% as large as the sensitivity to the 

geometric median diameter in this environment. Simulations suggest CDNC sensitivity to 

hygroscopicity is largest in marine stratocumulus with low updraft velocities (<0.2 m s-1), 

where accumulation mode particles are most relevant to CDNC, and in marine 

https://doi.org/10.1029/2020EA001098
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stratocumulus or cumulus with large updraft velocities (>0.6 m s-1), where hygroscopic 

properties of the Aitken mode dominate hygroscopicity sensitivity.   

 
 

4.1 Introduction 

Marine stratocumulus (MSc) clouds, commonly observed off the Western coasts of 

North America, South America, Africa, and Australia, cover nearly one-fifth of the Earth’s 

surface and exert a large impact on its radiative balance (Wood, 2012). These cloud decks 

are particularly relevant to global climate due to their high albedo contrast with the 

underlying ocean and relatively low altitude, resulting in stronger shortwave reflectance 

than longwave absorption (Randall et al., 1984; Brenguier et al., 2000; Wood, 2012). 

Previous estimates suggest that a ~12% increase in the albedo of these clouds would 

produce a negative radiative forcing equivalent in magnitude to that of doubling 

atmospheric CO2 concentrations (Latham et al., 2008; Stevens and Brenguier, 2009). 

Remote sensing, parcel modeling, and large eddy simulation (LES) studies have all 

established that MSc exhibit substantial albedo susceptibility to variations in cloud droplet 

number concentrations (CDNC) (Platnick and Twomey, 1994; Oreopoulos and Platnick, 

2008; Chen et al., 2011; Berner et al., 2015; Sanchez et al., 2016). Understanding the 

sensitivity of MSc CDNC to aerosols acting as cloud condensation nuclei (CCN) is 

therefore a critical aspect of reducing uncertainty in climate change predictions (Seinfeld 

et al., 2016). 

The CDNC and albedo of MSc are substantially influenced by the abundance of below-

cloud CCN. A recent satellite analysis suggested that variability in below-cloud CCN 

concentration may be responsible for ~45% of the variability in the radiative effect of 

marine boundary layer clouds (Rosenfeld et al., 2019). This influence results from the fact 

that increased CCN abundance enhances cloud reflectivity at constant liquid water path 

(Twomey, 1977), and has the potential to reduce MSc precipitation rates, increasing cloud 

lifetime (Albrecht, 1989; Ackerman et al., 1993; Rosenfeld et al., 2006; Goren and 

Rosenfeld, 2012). As a result, a major component of the uncertainty in the estimated 

indirect aerosol forcing has been attributed to the prediction of below-cloud CCN 
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concentrations (Sotiropoulou et al., 2007; Rosenfeld et al., 2014). While the aerosol 

size distribution is generally thought to be the most important determinant of CCN activity 

(e.g., Dusek et al., 2006; McFiggans et al., 2006; Ervens et al., 2007; Reutter et al., 2009), 

particle composition has also been shown to exert a substantial influence (Quinn et al., 

2008; Jimenez et al., 2009; Liu and Wang, 2010; Mei et al., 2013; Sanchez et al., 2016).  

The propensity of a given aerosol particle to act as a CCN can be described using 

Köhler theory (Köhler, 1936; Seinfeld and Pandis, 2016), provided sufficient information 

is known regarding particle size and solute properties (e.g., molecular weight, solubility, 

density, and activity). A novel framework, κ-Köhler theory, condenses these solute 

characteristics into a single parameter κ (the aerosol hygroscopicity) that can be easily 

incorporated into large scale models (Petters and Kreidenweis, 2007). Substantial effort 

has, therefore, been devoted to quantifying κ values in a multitude of environments (Gunthe 

et al., 2009; Ervens et al., 2010; Pringle et al., 2010; Rose et al., 2010; Thalman et al., 

2017). While κ values characteristic of inorganic aerosol components are relatively well-

established, atmospheric organic aerosol is composed of numerous, highly diverse organic 

compounds, complicating representation of organic hygroscopicity using a single 

parameter (Kanakidou et al., 2005). Experimental studies have characterized κ values of 

secondary organic aerosol (SOA) (e.g., Duplissy et al., 2008; 2011; Asa-Awuku et al., 

2010; Massoli et al., 2010; Lambe et al., 2011; Frosch et al., 2013; Zhao et al., 2015), and 

field studies have characterized the typical range of organic κ values (κorg) observed in the 

atmosphere (Wang et al., 2008; Gunthe et al., 2009; Chang et al., 2010; Mei et al., 2013; 

Levin et al., 2014; Thalman et al., 2017). Generally, ambient κorg values are found to be 

0.1-0.2 for aged aerosol and primary marine organics, and ~0 for freshly emitted 

combustion aerosol (e.g., soot) (Kreidenweis and Asa-Awuku, 2014). A linear relationship 

has been noted between observed κorg values and organic aerosol oxygen-to-carbon (O:C) 

ratios in both the laboratory and the field (Chang et al., 2010; Lambe et al., 2011; Mei et 

al., 2013; Wang et al., 2019). 

Ambient particle hygroscopicity data have been combined with aerosol size 

distribution measurements in CCN closure studies to assess the extent to which Köhler 

theory can be used to predict ambient CCN concentrations (e.g., Van Reken et al., 2003; 
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McFiggans et al., 2006; Medina et al., 2007; Cubison et al., 2008; Asa-Awuku et al., 

2011; Moore et al., 2012; Almeida et al., 2014; Ren et al., 2018). Analyzing the accuracy 

of predicted CCN concentrations can provide insight into the influence of specific aerosol 

characteristics on CCN activity (Van Reken et al., 2003; Medina et al., 2007; Cubison et 

al., 2008; Wang et al., 2010; Bougiatioti et al., 2011). For instance, size-resolved 

compositional (i.e., hygroscopicity) data are often required to accurately reproduce 

observed CCN concentrations in locations dominated by organic aerosol (Medina et al., 

2007; Bhattu and Tripathi, 2015; Ren et al., 2018), while aerosol mixing state has been 

shown to strongly impact total CCN concentrations in urban environments (Cubison et al., 

2008; Quinn et al., 2008; Ervens et al., 2010). By analyzing data from five ambient 

measurement campaigns, Ervens et al. (2010) found that for aerosol measured farther than 

a few tens of kilometers from the emission source, CCN activity could be predicted within 

a factor of two independent of either aerosol mixing state (i.e., internal or external) or 

organic solubility (i.e., insoluble or slightly soluble). Wang et al. (2010) further 

demonstrated that CCN concentrations can often be reproduced within 20% assuming 

internal mixing of aerosol components if the overall κ of the aerosol population is > 0.1. 

The direct impact of variability in aerosol hygroscopicity on CCN concentrations is often 

assessed by assuming an invariant chemical composition, represented as a fixed κ, in CCN 

closure analyses. Field campaigns in continental environments ranging from polluted 

megacities to the pristine tropical rainforest have shown that CCN concentrations could be 

reproduced within 20% and 50% respectively assuming a constant κ = 0.3 (Gunthe et al., 

2009; Rose et al., 2010), a value representative of average continental conditions (Andreae 

and Rosenfeld, 2008; Pringle et al., 2010). However, in coastal regions, MBL aerosol can 

result from a mixture of distinct marine and continental emissions (e.g., Sorooshian et al., 

2009; Coggon et al., 2014; Modini et al., 2015; Mardi et al., 2019), which complicates 

aerosol representation using regional or global models. CCN closure analysis can provide 

insight into the uncertainties in CCN concentrations that may result from inaccurate model 

representation of aerosol composition in these environments. 

Due to the importance of the persistent stratocumulus cloud decks over the N.E. Pacific 

to global climate, aerosol characteristics in this region have received considerable attention. 
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However, the diverse range of particle sources, including shipping exhaust (Murphy et 

al., 2009; Coggon et al., 2012; Wonaschutz et al., 2013; Prabhakar et al., 2014), primary 

and secondary natural marine emissions (Sorooshian et al., 2009; Prabhakar et al., 2014; 

Modini et al., 2015), anthropogenic and biogenic continental emissions (Hegg et al., 2010; 

Moore et al., 2012; Coggon et al., 2014), wildfire plumes (Brioude et al., 2009; Mardi et 

al., 2018), and aged aerosol from the Asian continent (Roberts et al., 2006; 2010), 

combined with strong temporal and spatial variability due to variable meteorological 

conditions, has hindered determination of general characteristics of the marine atmosphere 

in this location. This complexity is reflected in the diversity of hygroscopicity 

measurements previously reported in the marine boundary layer (MBL) and free 

troposphere (FT). For instance, average κ values reported from MBL measurements have 

varied from ~0.2-0.3 (Roberts et al., 2010; Moore et al., 2012) to ~0.5-0.7 (Yakobi-

Hancock et al., 2014; Royalty et al., 2017). Measurements in the FT, while sparse, have 

been even more variable (κ ~0.05-1.0) (Roberts et al., 2006; 2010). While these 

measurements could largely be reconciled assuming various mixtures of continental 

(0.27±0.2) and marine (0.72±0.2) aerosol, determining the major emissions sources and 

meteorological patterns dictating these changes is important for improving model 

representation of the region (Pringle et al., 2010). CCN-based measurements of aerosol 

hygroscopicity and the resulting information about small particle composition can be 

especially useful in this regard, as knowledge of small particle composition can provide 

substantial insight into particle sources.  

While hygroscopicity and mixing state characterization are important components of 

understanding the CCN activity of ambient aerosol, the dynamic processes controlling 

supersaturation, droplet nucleation, and droplet growth within clouds lead to nonlinear 

relationships between aerosol properties and CDNC. As a result, aerosol-cloud parcel 

modeling is instrumental to fully understand the role of aerosol hygroscopicity and mixing 

state on CDNC. Reutter et al. (2009) used such a model to distinguish three regimes of 

aerosol activation, defined as the aerosol-limited, updraft-limited, and transitional regimes, 

based on the ratio of updraft velocity to aerosol number concentration at the cloud base. 

The dependence of CDNC on aerosol hygroscopicity, while limited relative to other 
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parameters such as particle number concentration and updraft velocity, was found to 

vary substantially between regimes. Additional modeling revealed that CDNC sensitivity 

to aerosol hygroscopicity is highly dependent on the below-cloud aerosol size distribution, 

with sensitivity increasing substantially with smaller median radii (Ward et al, 2010). 

Sanchez et al. (2016) concluded that modeled stratocumulus albedo is insensitive to the 

assumed hygroscopicity of the organic aerosol fraction; however, the sensitivity of CDNC 

to bulk hygroscopicity has yet to be fully evaluated in this environment.  

The present study uses measurements of aerosol composition and CCN activity 

collected during the Marine Aerosol Cloud and Wildfire Study (MACAWS), combined 

with an aerosol-cloud parcel model, to gain insight into near-coastal aerosol hygroscopicity 

and its influence on prediction of CCN and MSc CDNC. Hygroscopicity measurements 

are combined with airmass backward trajectories and meteorological parameters to 

attribute observed particle characteristics to distinct sources when possible. CCN closure 

analyses are performed to investigate the impact of compositional and mixing state 

assumptions on CCN predictions. Finally, aerosol-cloud parcel model simulations 

constrained with MSc microphysical measurements are used to directly investigate the 

sensitivity of stratocumulus CDNC to aerosol hygroscopicity, mixing state, and size 

distribution properties.   

  

4.2 Methodology 

4.2.1 MACAWS Field Mission 

The 2018 Marine Aerosol Cloud and Wildfire Study (MACAWS) consisted of 16 

research flights operated out of the Center for Interdisciplinary Remotely-Piloted Aircraft 

Studies (CIRPAS) in Marina, California during June and July. Measurements were 

performed on-board the CIRPAS Navy Twin Otter aircraft (Russell et al., 2013; Coggon 

et al., 2012; 2014; Wang et al., 2016; Sorooshian et al., 2019). The scientific objectives of 

individual flights included characterization of marine aerosols and clouds, sampling of 

shipping vessel exhaust plumes, and investigation of nearby wildfire emissions. The 

present study focuses on 7 research flights primarily aimed at characterization of the 
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relationship between marine aerosol and the overlying stratocumulus cloud deck. Paths 

of these 7 flights are depicted in Figure 4.1. Flight strategies typically involved a series of 

level legs at varying altitudes within the MBL and overlying FT. Slant or spiral soundings 

were generally performed before and after a series of level legs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.2 Twin Otter Instrumentation 

The navigational and meteorological instrumentation utilized by the Twin Otter aircraft 

is described in detail by Sorooshian et al. (2018). Ambient aerosol was sampled using a 

forward-facing sub-isokinetic inlet (Hegg et al., 2005). Aerosol and cloud droplet number 

concentrations were characterized using a variety of instruments, including multiple 

condensation particle counters (CPC, TSI 3010, Dp > 10 nm; ultrafine CPC, TSI UFCPC, 

Dp > 3 nm), a passive cavity aerosol spectrometer probe (PCASP, Dp ~0.11-3.4 µm), and 

forward scattering spectrometer probe (FSSP, Particle Measuring Systems (PMS), Dp ~1.6-

45 µm). Cloud liquid water content was measured using a PVM-100A probe (Gerber et al., 

Figure 4.1: a) Trajectories of the 7 MACAWS research flights analyzed in 
this study. b) Relative vertical locations of the marine boundary layer, the 
above-cloud organic-aerosol layer, and the free troposphere. 

 

b) a) 
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1994), and a threshold value of 0.02 g m-3 was used to distinguish in-cloud sampling 

(Dadashazar et al., 2018; MacDonald et al., 2018).  

Cloud condensation nuclei (CCN) number concentrations were measured at 4 

supersaturations (SS) (0.1%, 0.3%, 0.43%, 0.57%) using a Droplet Measurement 

Technologies (DMT) dual-column streamwise thermal-gradient cloud condensation nuclei 

counter (CCNC) (Roberts and Nenes, 2005; Lance et al., 2006). The CCNC operates by 

applying a linear temperature gradient to a cylindrical sampling tube with continuously 

wetted walls. As the thermal diffusivity of water vapor exceeds the diffusivity of air, 

supersaturated conditions are produced along the sampling column centerline. For this 

study, activated droplets grown to sizes larger than 0.75 µm diameter were counted and 

sized by an optical particle counter. The sheath and sample flows of each column were 

maintained at 0.45 and 0.05 L min-1, respectively. Instrument pressure was maintained at 

750 mb using a flow orifice and active pressure control system at the instrument inlet. Each 

column of the CCNC was calibrated using ammonium sulfate particles following standard 

methods as described in Rose et al. (2008). Calibrations were performed before and after 

the campaign, and observed deviations in applied SS for a given temperature gradient 

imply uncertainties of ~6%, similar to the 5% value typical of field campaigns, as reported 

by Rose et al. (2008). 

Aerosol size distributions and number concentrations for Dp between ~15 and 800 nm 

were measured with a custom-built scanning mobility particle sizer (SMPS) consisting of 

a differential mobility analyzer (DMA, TSI 3081) coupled to a condensation particle 

counter (TSI 3010). The DMA is operated in a closed-system configuration with a 

recirculating sheath and excess flow of 2.67 L min-1 and an aerosol flow of 0.515 L min-

1. The column voltage was scanned from 15 to 9850 V over a ~2-min interval.  

Aerosol chemical composition was measured using a high-resolution time-of-flight 

aerosol mass spectrometer (HR-ToF-AMS, Aerodyne Research Inc., hereafter referred to 

AMS) (DeCarlo et al., 2006). Incoming air enters the AMS through a 100 µm critical 

orifice, after which an aerodynamic lens produces a particle beam that is accelerated under 

high vacuum. The particle beam is flash-vaporized on a resistively heated surface (600oC), 
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and the resulting gases are ionized by electron impaction (70 eV). Individual ion 

identity is determined using a high-resolution time-of-flight mass spectrometer. Due to the 

limited amount of aerosol mass present over the MBL, data were collected in high-

sensitivity V-mode. The ionization efficiency (IE) of the AMS was calibrated using dry, 

350 nm ammonium nitrate particles before each flight. Data were averaged over 1 min 

intervals, and all data were analyzed using standard AMS software (SQUIRREL v1.57 and 

PIKA v1.16l) within Igor Pro 6.37. The collection efficiency (CE) was determined using 

the composition-dependent calculator within the SQUIRREL and PIKA software packages 

(Middlebrook et al., 2012). Elemental H:C and O:C ratios were calculated using the 

“Improved-Ambient” elemental analysis method for AMS mass spectra (Canagaratna et 

al., 2015). Positive matrix factorization (PMF) analysis (Paatero and Tapper, 1994) was 

performed on the high-resolution AMS mass spectra in order to distinguish major classes 

and transformation processes of measured OA. Three factors were extracted, two of which 

factors correspond to OA subtypes characteristic of the MBL and above-cloud organic 

aerosol layer (AC-OAL), respectively, and resemble low-volatility oxygenated organic 

aerosol (LV-OOA). The third factor, which was rarely observed, is likely a result of 

primary anthropogenic emissions and resembles hydrocarbon-like organic aerosol (HOA). 

Further discussion of PMF data preparation and factor interpretation is included in the 

Supplemental Information. 

 

4.2.3 Determination of aerosol hygroscopicity 

Aerosol hygroscopicity was calculated using two distinct methods based on 

measurements with the CCNC and AMS, respectively. Assuming a particle population is 

internally mixed, the critical activation diameter (Dp,c) (the diameter at which all larger 

particles will activate into cloud droplets) produced by a given SS can be determined by 

integrating the particle size distribution until the total CN concentration is equivalent to the 

measured CCN concentration: 

𝑁𝑁𝐶𝐶𝐶𝐶𝑁𝑁 =  ∫ 𝑛𝑛𝐶𝐶𝐶𝐶𝑑𝑑𝐷𝐷𝑝𝑝
∞
𝐷𝐷𝑝𝑝,𝑐𝑐

        Eq. 1 
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Knowledge of the critical diameter can then be used to calculate a single parameter 

representation of aerosol hygroscopicity from Köhler theory (Petters and Kreidenweis, 

2007): 

𝑠𝑠 =  𝐷𝐷𝑤𝑤𝑤𝑤𝑤𝑤
3 −𝐷𝐷𝑝𝑝,𝑐𝑐

3

𝐷𝐷𝑤𝑤𝑤𝑤𝑤𝑤
3 −𝐷𝐷𝑝𝑝,𝑐𝑐

3 (1−𝜅𝜅𝐶𝐶𝐶𝐶𝐶𝐶)
exp ( 4𝜎𝜎𝑀𝑀𝑤𝑤

𝑅𝑅𝑅𝑅𝜌𝜌𝑤𝑤𝐷𝐷𝑤𝑤𝑤𝑤𝑤𝑤
)                  Eq. 2 

where s is the equilibrium supersaturation, Dp,c is the critical activation diameter, Dwet is 

the droplet diameter, R is the universal gas constant, T is the absolute temperature, ρw is the 

molar density of water, Mw is the molecular weight of water, and σ is the surface tension 

of the droplet at the point of activation. Following Rose et al. (2010), κ was determined by 

applying the observed activation diameter and varying both Dwet and κ until s is equivalent 

to the applied supersaturation of the CCNC and the maximum of a Köhler curve of CCN 

activation. The droplet surface tension is assumed equal to that of water for comparison 

with other studies (Petters and Kreidenweis, 2007; Roberts et al., 2010; Yakobi-Hancock 

et al., 2014; Collins et al., 2013). Hygroscopicity values calculated using this method are 

referred to as “CCN-derived.” Since the likelihood of particle activation at a given SS tends 

to be a stronger function of size than composition (Dusek et al., 2006), κCCN values 

correspond to particles with diameters near the calculated critical diameter.  

A Monte Carlo approach was used to estimate the uncertainty in CCN-derived 

kappa values (Wang et al., 2019). A detailed description is provided in the Supplemental 

Information. For a given measurement of the aerosol size distribution and CCN number 

concentration, the distribution of possible κCCN values calculated by varying these input 

parameters (i.e., CCN number concentration and size distribution) within their respective 

uncertainties is lognormally distributed. As a result, uncertainties attributed to κCCN are not 

symmetric about the geometric mean values. In general, we estimate 1σ uncertainties of 

+55%/-40% for κCCN calculated at SS = 0.3%, ~+75%/-45% at SS = 0.43%, and +100%/-

50% to values calculated at SS = 0.57%. Due to the low CCN number concentrations 

observed at SS = 0.1% (<100 cm-3) and possibility of counting unactivated particles 

(expected to only be a few per cm-3), κCCN at SS = 0.1% are not reported, as small absolute 

deviations in particle number concentration measured by the CCNC and DMA due to 

differential inlet losses could strongly influence the resulting κCCN estimates.  
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Hygroscopicity estimates can also be made using component volume fractions 

measured by the HR-ToF-AMS using the following equation (Petters and Kreidenweis, 

2007): 

 𝜅𝜅𝐴𝐴𝑀𝑀𝑀𝑀 =  ∑ 𝜖𝜖𝑖𝑖𝜅𝜅𝑖𝑖𝑁𝑁
𝑖𝑖         Eq. 3 

where 𝜖𝜖𝑖𝑖 and 𝜅𝜅𝑖𝑖 represent the volume fraction and hygroscopicity of the ith NR-PM1 

component, respectively. While this calculation cannot capture the contribution of 

refractory components (sea salt, mineral dust, etc.), further analysis suggests their 

contribution is minor, as discussed in the Supplemental Information. Organic aerosol 

density was assumed to be 1.4 g cm-3 for volume fraction calculations given the remote 

nature of the environments sampled and the oxidized character of the measured organic 

aerosol (e.g., O:C ratios of MBL and AC-OAL PMF factors were 0.91 and 0.76 

respectively) (Roberts et al., 2010; Hallquist et al., 2009). The hygroscopicity of individual 

inorganic components is calculated using: 

                                   𝜅𝜅𝑖𝑖 = �𝑀𝑀𝑤𝑤
𝜌𝜌𝑤𝑤
� �𝜌𝜌𝑖𝑖

𝑀𝑀𝑖𝑖
� 𝑣𝑣𝑖𝑖             Eq. 4 

where Mw and ρw are the molar mass and density of water, respectively, and Mi, ρi, and vi 

are the molar mass, density, and van’t Hoff factor of the inorganic component. Inorganic 

aerosol was dominated by sulfate and ammonium. The relative abundances of ammonium 

sulfate, ammonium bisulfate, and sulfuric acid were calculated using the molar ratio of 

ammonium to sulfate (Nenes et al., 1998; Asa-Awuku et al., 2011). Ammonium sulfate 

and bisulfate were assigned van’t Hoff factors of 2.5, while sulfuric acid was assigned κ = 

0.9 to align with previous measurements (Petters and Kreidenweis et al., 2007). Modifying 

the van’t Hoff factors of ammonium sulfate and ammonium bisulfate and assumed κ of 

sulfuric acid within reasonable limits had a negligible influence on the presented results. 

Chloride measured by the AMS was assumed to represent sodium chloride and was 

assigned a hygroscopicity of 1.28 (Petters and Kreidenweis, 2007). AMS-measured nitrate 

aerosol was assumed to be ammonium nitrate with a hygroscopicity of 0.67 (Petters and 

Kreidenweis, 2007). The hygroscopicity of the organic component (κorg) was assumed to 

be either 0 (non-hygroscopic), 0.1 (slightly-hygroscopic), or a function OA composition 

using a parameterization based on bulk O:C ratios developed in the literature (Lambe et 
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al., 2011). Comparisons of κCCN and κAMS values, analysis of PMF factor composition, 

and evaluation of CCN-closure calculations are used to evaluate these different κorg 

estimates. 

 An uncertainty analysis similar to that described for κCCN values was performed for κAMS 

values and is described in detail in the Supplemental Information. For median conditions 

in the MBL and FT, the relative uncertainty in κAMS is estimated to be ~10-20%, due 

primarily to uncertainty in the estimated hygroscopicity of the organic component (κorg). 

In the AC-OAL, the dominant contribution of organic aerosol increases the relative 

uncertainty to ~50%; however, due to the low absolute κAMS values observed in the AC-

OAL, the absolute uncertainty is only ~0.1 or less.  

 

4.3 Aerosol-cloud parcel model 

The aerosol-cloud parcel model used in this study employs a user-specified updraft 

velocity to induce adiabatic cooling of an air parcel, leading to water vapor supersaturation. 

The predicted parcel supersaturation at each time step is determined by the relative rates of 

production through adiabatic cooling and loss through condensation of water vapor onto 

activated cloud droplets (Pruppacher and Klett, 1997; Seinfeld and Pandis, 2016). In the 

present study, meteorological parameters such as ambient pressure, temperature, and lapse 

rate are obtained from MACAWS aircraft measurements and are specified before model 

execution. The below-cloud dry size distribution is assumed to contain Aitken and 

accumulation modes, the characteristics of which (i.e., number concentration, geometric 

mean diameter, hygroscopicity) are set by the user. Particles within each mode can be 

specified as either internally or externally mixed. Each compositional class, 1 per size mode 

if internally mixed or 2 per size mode if externally mixed, contains 300 lognormally spaced 

bins ranging from 1 nm to 3 µm. Droplet activation is assumed to occur when the ambient 

supersaturation of the parcel exceeds the critical supersaturation of the particles in a given 

size bin, as determined from κ-Kohler theory (Petters and Kreidenweis, 2007). Following 

activation, the growth of individual cloud droplet bins due to water vapor diffusion is 

explicitly represented. Additional physical processes such as droplet coagulation, 
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coalescence, and deposition are not included, as previous parcel model studies have 

demonstrated that these processes have little influence on model predictions for typical 

marine stratocumulus conditions (Sanchez et al., 2016). Model execution proceeds until a 

user-specified liquid water content (0.4 g m-3 in this study) has been reached. Activated 

particle size bins larger than 1 µm are considered cloud droplets; however, using an 

alternative size threshold of 2 μm or 0.75 µm has a negligible influence on the results. 

 

4.4 Air mass backward trajectories 

Air mass backward trajectories (120 hr) were calculated in the MBL for each flight 

using the NOAA HYSPLIT v4.2 model with the global data assimilation system (GDAS) 

1o x 1o meteorological dataset (Draxler and Hess, 1997; 1998; Stein et al., 2015). The 

higher spatial resolution EDAS 40 km x 40 km meteorological dataset was not used due to 

its limited spatial range over the Pacific Ocean. The ending altitude of each trajectory was 

the approximate midpoint of the MBL during each flight.  

 

4.3. Results and Discussion 

4.3.1 Aerosol characteristics over the N. E. Pacific 

Results from the seven flights analyzed in this study are summarized in Figure 4.2 and 

Tables 4.1-4.3. In the subsequent analyses, “all flights” refers to these seven. Typical flight 

patterns included sampling within the MBL, FT, and when present, the above-cloud 

organic aerosol layer (AC-OAL). The AC-OAL is operationally defined as the narrow 

altitude band (generally <200 m) directly above the marine stratocumulus cloud decks 

where OA mass loadings were relatively large (>1.5 µg m-3) and a distinct AC-OAL PMF 

factor contributed >80% of total OA mass (Figure 4.S6). This region occupies a similar 

location as the commonly referenced entrainment interface layer (EIL) above cloud decks 

(Wood et al., 2012; Dadashazar et al., 2018), but is defined by the aerosol characteristics 

described above rather than by turbulence and buoyancy characteristics, as is common for 

the EIL (Carman et al., 2012). Median aerosol properties are reported in Tables 4.1-4.3 for 
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each of these three regions, while Figure 4.2 displays vertical profiles of aerosol and 

meteorological properties.  

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Average vertical profiles of (a) RH and LWC, (b) CCN and CN 
concentrations, and (c) non-refractory (NR) PM1 component mass loadings for the seven 
RFs in Figure 4.1. (d) Vertical contour plot of median size distributions measured during 
the 7 RFs. Horizontal bars represent measurement standard deviations. The dark grey 
region in panels a-c represents the average stratocumulus cloud depth (avg. cloud top 
height ≈ 570 m; avg. cloud bottom height ≈ 300 m). The lighter grey region represents 
the standard deviation of cloud top and bottom heights (e.g., avg. cloud top + cloud top 
height S.D. ≈ 680 m).  
 

 Distinct differences in particle properties were observed within each vertical region. 

Median aerosol number concentrations observed in the MBL (754 cm-3) exceeded those in 

the FT (333 cm-3), as expected. Observed particle concentrations were maximized within 

the AC-OAL (1662 cm-3), where intense actinic fluxes and elevated concentrations of the 

hydroxyl radical may drive new particle formation (Mauldin et al., 1999; Dadashazar et al., 

2018). For all measured SS > 0.1%, observed CCN concentrations were also largest within 

the AC-OAL, rather than the MBL or FT, underscoring the importance of understanding 

the hygroscopicity of above-cloud CCN-active particles (Sorooshian et al., 2007a,b; Wang 

et al., 2008; Coggon et al., 2014).  
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 Observed aerosol composition in the MBL was relatively evenly divided between 

organic aerosol (OA) (43%) and sulfate (SO4) (48%), with a minor contribution from 

ammonium (NH4) (~10%) and negligible nitrate (NO3) (≤1%). Prabhakar et al. (2014) have 

demonstrated that nitrate is preferentially distributed in super-micron particles in this 

marine environment, in agreement with the minor contribution observed with the AMS in 

this study. Using the “clean” versus “perturbed” threshold introduced by Coggon et al. 

(2012) for this region (where “clean” is defined by aerosol mass concentrations <1 µg m-

3), average MBL conditions were “perturbed” by shipping vessel emissions or other 

anthropogenic sources such as continental outflow. A distinct, highly oxidized MBL PMF 

factor was extracted from the dataset (Figure 4.S6). The oxidized nature of the MBL factor 

(O:C = 0.91) precludes the use of marker ions to distinguish individual sources; however, 

potential sources include shipping and biogenic emissions, as well as oxidized continental 

outflow aerosol (Sorooshian et al., 2009; Hegg et al., 2010; Coggon et al., 2012). In the 

AC-OAL, observed aerosol composition was dominated by organics (80%), as has been 

previously reported (Sorooshian et al., 2007a,b; Wang et al., 2008; Hersey et al., 2009; 

Coggon et al., 2014). A second, distinct factor displayed large mass loadings (up to 8 µg 

m-3) within the AC-OAL (Figure 4.S6) (O:C = 0.76), and the mass ratio of the AC-OAL to 

the MBL PMF factor is used as a tracer of AC-OAL entrainment into the MBL, as 

discussed in section 3.3.2. Possible aerosol production mechanisms in the AC-OAL include 

oxidation and transport of biogenic volatile organic compounds emitted by forested regions 

Table 4.1: Median aerosol number and cloud condensation nuclei (CCN) concentrations measured in the 
marine boundary layer (MBL), above-cloud organic aerosol layer (AC-OAL), and free troposphere (FT). 
Values in parenthesis represent the interquartile range. CCN concentrations are provided as a function of the 
instrument supersaturation (%). 
 

Location CN (cm-3) CCN: 0.1% (cm-3) CCN: 0.3% (cm-3) CCN: 0.43% (cm-3) CCN: 0.57% (cm-3) 

MBL 754 (509-978) 75 (33-106) 194 (146-285) 302 (187-410) 410 (229-522) 

AC-OAL 1662 (1303-1959) 58 (41-84) 363 (260-537) 574 (403-876) 781 (539-1051) 

FT 333 (296-555) 21 (14-35) 115 (89-145) 144 (102-194) 162 (118-240) 
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in the Northwest U.S., cloud droplet evaporation, and oxidation of sparingly soluble 

organics vented through the stratocumulus layer (Heald et al., 2005; Sorooshian et al., 

2007a; Coggon et al., 2014). While large eddy simulations (LES) have demonstrated that 

the altitude of the top of the stratocumulus cloud deck can undergo diurnal variations of 

10-100 m, providing a potential mechanism for AC-OAL aerosol production through 

droplet evaporation (Sorooshian et al., 2007a; Chen et al., 2011), the substantially larger 

mass fraction of organic aerosol in the AC-OAL than the MBL suggests that particle 

production is primarily a result of continental biogenic sources (Coggon et al., 2014). 

Observed aerosol mass loadings in the FT were the lowest sampled (1.5 µg m-3) but agree 

well with previous aircraft measurements by Wang et al. (2008) off the coast of Pt. Reyes, 

CA at a similar time of year (June-July). 

 

4.3.2 Overview of observed aerosol hygroscopicity   

 Figure 4.3 displays median aerosol number size distributions, κAMS, and κCCN values 

observed within the MBL, AC-OAL, and FT during each flight. For these comparisons, 

κAMS values are calculated assuming κorg = 0.1, as is typical for non-urban regions (Moore 

et al., 2011; 2012; Mei et al., 2013). However, we note that using the parameterization 

developed by Lambe et al. (2011), the calculated κorg values for the MBL and AC-OAL 

PMF factors are 0.19 and 0.17 respectively, due to their highly oxidized nature (Figure 

4.S6), suggesting the true κorg values for large particles may be greater than 0.1.  

Table 4.2: Median mass loadings of total non-refractory PM1 (NR-PM1), and organic (Org.), 
sulfate (SO4), ammonium (NH4), and nitrate (NO3) aerosol components in the marine boundary 
layer (MBL), above-cloud organic aerosol layer (AC-OAL), and free troposphere (FT). Values in 
parenthesis represent the interquartile range.  
 

Location NR-PM1 (μg m-3) Org. (μg m-3) SO4 (μg m-3) NH4 (μg m-3) NO3 (μg m-3) 

MBL 2.8 (2.3-2.5) 1.1 (0.8-1.4) 1.5 (0.9-2.0) 0.2 (0.2-0.3) 0.0 (0.0-0.1) 

AC-OAL 5.5 (4.5-7.5) 4.4 (3.2-6.1) 0.7 (0.6-1.1) 0.2 (0.2-0.3) 0.1 (0.0-0.1) 

FT 1.5 (1.2-2.1) 0.7 (0.5-1.0) 0.6 (0.4-0.7) 0.1 (0.1-0.2) 0.0 (0.0-0.0) 
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Within the MBL, observed hygroscopicity values appear to cluster into three relatively 

distinct groups that span the range of values previously observed in this environment 

(Roberts et al., 2010; Yakobi-Hancock et al., 2014; Royalty et al., 2017). The strong 

temporal variation observed in both particle number size distributions and hygroscopicities 

underscores the complexity involved in accurately modeling CCN in coastal environments 

influenced by continental and marine sources. This is further demonstrated in Table 4.3, 

which depicts estimated organic and inorganic volume fractions of Aitken mode particles 

derived from MBL κCCN values. Assuming inorganic aerosol is entirely ammonium sulfate 

for these calculations, estimated organic fractions vary from effectively zero, as median 

κCCN during RF13 are larger than that of ammonium sulfate (κ = 0.61) to as high as 84%. 

The low hygroscopicities and subsequently large estimated organic fractions observed 

during flights RF9 and RF15 are uncharacteristic of remote marine environments and imply 

a continental influence on particle characteristics. κAMS values calculated during these 

flights are ~50-100% larger than κCCN values, implying addition of particle mass during 

growth that is more hygroscopic than the Aitken mode particles. While the difference 

between κAMS and κCCN values during these flights are nearly within the uncertainty range 

of the κCCN calculation, these observations align with those in many continental locations, 

where addition of inorganic mass to organic rich Aitken mode particles growth is thought 

to lead to a positive relationship between particle hygroscopicity and size (Ervens et al., 

2010; Rose et al., 2011; Moore et al., 2012; Levin et al., 2014; Kawana et al., 2016). On 

Table 4.3: Median values of the AMS-derived (κAMS) and CCN-derived (κCCN) hygroscopicity 
factor measured in the marine boundary layer (MBL), above-cloud organic aerosol layer (AC-
OAL), and free troposphere (FT). Values in parenthesis represent the interquartile range. κCCN are 
provided as a function of the instrument supersaturation (%). 
 

Location κAMS κCCN: 0.3% κCCN: 0.43% κCCN: 0.57% 

MBL 0.45 (0.35-0.52) 0.39 (0.20-0.61) 0.35 (0.24-0.50) 0.40 (0.27-0.54) 

AC-OAL 0.19 (0.17-0.25) 0.13 (0.08-0.20) 0.19 (0.14-0.25) 0.17 (0.12-0.27) 

FT 0.37 (0.30-0.43) 0.32 (0.18-0.65) 0.50 (0.29-0.88) 0.37 (0.21-0.72) 
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the other hand, κAMS and κCCN are quite similar during the other five flights, with 

relative deviations on the order of ~25% or less, which is well within the uncertainty of the 

κCCN measurements. A compilation of data reported by Royalty et al. (2017) suggests that 

minor variation of particle hygroscopicity with size is a common feature of remote marine 

aerosol, which generally exhibits elevated Aitken mode hygroscopicity. Four individual 

flights (RF4, RF5, RF13, and RF15) provide specific insight into the combined roles of 

aerosol sources and meteorological processes in determining aerosol hygroscopicity in the 

MBL, and these are discussed in further detail in section 3.2.2.  

  Within the AC-OAL, observed aerosol hygroscopicity is remarkably similar from flight-

to-flight, and little difference is observed between κCCN and κAMS values. The combination 

of reduced hygroscopicity (i.e., κ ~0.2) and little variation with particle size suggests that 

within the AC-OAL, Aitken mode particles are organic-rich and grow through 

condensation of additional organic vapors, rather than addition of inorganic mass. Even 

under the assumption that the organic species in Aitken mode AC-OAL particles are 

entirely insoluble, total particle volume must be at least 66% organic to produce a 

hygroscopicity of 0.2 (assuming ammonium sulfate as the inorganic component). Chamber 

studies of monoterpene aerosol often observe κorg of ~0.1-0.15 for Aitken mode particles 

(Alfarra et al., 2013; Zhao et al., 2015), which increases the estimated organic volume 

fraction to 80-89%. While the peak in the AC-OAL size distribution varies considerably 

between flights, the presence of a dominant Aitken mode in three out of four observations 

suggests particle formation may have occurred recently.  

 

 

 

 

 

 

 

 

 



 

 

235 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Median aerosol size distributions (a-c) and hygroscopicities (κCCN and 
κAMS) (d-f) measured in the marine boundary layer (MBL), above-cloud organic 
aerosol layer (AC-OAL), and free troposphere (FT), during each flight. Vertical bars 
represent the interquartile range of hygroscopicity measurements. Previously 
observed values in the MBL are included for reference in d), as are typical values for 
continental and marine environments from Andreae and Rosenfeld (2008).  

 

Coggon et al. (2014) first demonstrated that expansive dry air masses originating 

over the Northwestern U.S. loft biogenic organic aerosol over the MBL and act as the main 

particle source to the AC-OAL. Our measurements support this conclusion, however an 

additional contribution from organic gases vented through the stratocumulus layer cannot 
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be ruled out. Comparing AC-OAL and MBL Aitken mode hygroscopicity suggests 

cloud droplet evaporation is at most a minor particle source to the AC-OAL, as during three 

of the four flights in which the AC-OAL was sampled, average MBL Aitken mode particles 

were substantially more hygroscopic than those in the AC-OAL (κMBL ~0.4; κAC-OAL ~0.2). 

As the most hygroscopic particles in an air mass are likely to activate into cloud droplets, 

and as addition of inorganic mass is common during cloud processing in marine 

environments (Faloona et al., 2009; Seinfeld and Pandis, 2016), it is unlikely that residual 

aerosol formed from evaporated cloud droplets would be less hygroscopic than the MBL 

aerosol population. Observations during RF15, discussed further in Section 3.2.2., suggest 

entrainment during precipitation events can lead to a major AC-OAL signature in the MBL, 

directly demonstrating the importance of understanding the source of these particles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: (Top) 120-hour backward trajectories calculated from the approximate 
midpoint of each flight path at an altitude representative of the marine boundary 
layer. For six of the seven flights, the starting altitude was 300 m, while the starting 
altitude for the RF13 trajectory was 150 m due to the shallow height of the boundary 
layer. (Bottom) Airmass altitude during the 120-hour transit to the measurement site.  
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Due to the low aerosol number concentrations in the FT, observed κCCN values vary 

widely between flights and exhibit large variability within individual flights. As a result, 

we hesitate to draw definitive conclusions based on these data. Other than RF13, average 

κAMS values from each flight are near or below 0.4, implying a substantial organic 

contribution to free tropospheric aerosol. In the absence of continental influence, 

observation of aerosols of such low hygroscopicity is unexpected, given that particle 

formation in the upper FT over tropical oceans is driven primarily by sulfuric acid 

nucleation and growth (Clarke, 1993; Clarke et al., 1998; 1999; 2013). Long range 

transport of organic aerosol layers from the Asian continent have been noted previously 

(Roberts et al., 2006; 2010), but estimates of aerosol hygroscopicity in such layers have 

varied dramatically. For instance, during the CIFEX experiments (Roberts et al., 2006), 

average κ attributed to aged aerosol layers were only ~0.04, whereas our measurements 

suggest a more moderate value of ~0.4, while observations by Roberts et al. (2010) 

indicated a value of 0.93 was more appropriate. While the substantial difference in particle 

concentrations in the MBL and FT observed during this campaign suggests FT aerosol 

plays a minor role in dictating MBL CCN activity on average, in remote marine 

environments entrainment from the FT is the dominant source of MBL particles (Raes et 

al., 1995; Clarke, 1993; Clarke et al., 1996; 1998; 2013), and as such further research into 

the variability of FT aerosol composition is warranted.  

 

4.3.3 Observation of distinct influences on MBL particle characteristics 

 Observations shown in Figure 4.3 indicate highly variable flight-averaged 

hygroscopicities in the MBL, suggesting that temporal variations in regional meteorology 

and/or particle source strengths can strongly influence CCN characteristics in this 

environment. Further analysis suggests that in four of the seven flights discussed in this 

study, specific meteorological patterns and emissions sources influencing particle 

characteristics can be identified. We discuss these observations to provide insight into the 

level of physicochemical detail (both in terms of emissions and atmospheric dynamics) 

required for atmospheric models to simulate MBL CCN concentrations with high fidelity. 
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4.3.3.1 Shipping emissions 

 Aerosol properties measured during RF4 and RF5 suggest a prominent influence of 

regional shipping emissions on particle characteristics and hygroscopicity in this 

environment. During these flights, the dominance of an Aitken mode near ~50-60 nm with 

much larger concentrations than in the FT suggests relatively recent formation from an 

MBL-based particle source. While such size distributions could hypothetically result from 

continental outflow (Moore et al., 2012), air mass backward trajectories remained over the 

ocean and near or within the MBL (<1000 m) for the previous five days (Figure 4.4). 

Furthermore, trajectories transited primarily within the major shipping corridor along the 

coast, as observed for flights “perturbed” by shipping vessel emissions by Coggon et al. 

(2012), rather than recently arriving from the remote ocean (e.g., RF13). Downward mixing 

of AC-OAL particles is also ruled out as an Aitken mode particle source during these flights 

due to the distinctly different hygroscopicities observed in the MBL and AC-OAL (Figure 

4.3). Finally, average wind speeds within the MBL were ~12 m s-1 and ~9 m s-1 during RF4 

and RF5 respectively. Modini et al. (2015) previously noted that primary sea spray 

Flight κCCN – SS = 0.43% 
Inorg. = (NH4)2SO4 Inorg. = H2SO4 
forg finorg forg finorg 

RF4 0.41 0.39 0.61 0.61 0.39 
RF5 0.46 0.29 0.71 0.55 0.45 
RF9 0.18 0.84 0.16 0.90 0.10 
RF12 0.50 0.22 0.78 0.50 0.50 
RF13 0.76 ~ ~ 0.18 0.82 
RF15 0.18 0.84 0.16 0.90 0.10 
RF16 0.28 0.65 0.35 0.78 0.22 

Table 4.4: Calculated Aitken mode organic (forg) and inorganic (finorg) volume 
fractions based on median κCCN values derived from CCN measurements at SS = 
0.43% for MBL measurements during each flight. Values of forg and finorg are 
calculated assuming the inorganic aerosol component is either ammonium sulfate 
((NH4)2SO4) or sulfuric acid (H2SO4). Note that the hygroscopicity measured 
during RF13 cannot be reproduced assuming the inorganic component is entirely 
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emissions produced particle concentrations of only 12 cm-3 during periods with similar 

windspeeds (12 m s-1) in the same marine environment (equivalent to ~2% of particle 

number concentrations in the MBL during RF4 and RF5).  

 Shipping emissions have been previously noted as major contributors to aerosol and 

cloud properties in the N.E. Pacific environment (Murphy et al., 2009; Lack et al., 2011; 

Coggon et al., 2012; Cappa et al., 2014). Coggon et al. (2012) demonstrated that 70% of 

cloud residual particles measured in the California shipping lanes were impacted by nearby 

shipping emissions. Available compositional data further suggests that shipping emissions 

could be expected to produce Aitken mode hygroscopicities observed during RF4 and RF5. 

For instance, Lack et al. (2011) observed an effective kappa parameter of 0.68-0.73 from 

exhaust produced by a large (96,500 ton) container vessel, while the smaller Research 

Vessel Atlantis sampled during the same study produced a value of ~0.2. Hygroscopic 

growth factor measurements of shipping exhaust emitted by another large (90,000 ton) 

container vessel by Murphy et al. (2009) suggest an effective κ = 0.1-0.5.  

 Direct measurements of a large container vessel exhaust plume during RF7 provide 

further support for the attribution of aerosol characteristics to shipping emissions in RF4 

and RF5. As shown in Figure 4.5, the strong Aitken mode peak in the size distribution 

measured directly within the plume aligns well with those measured in RF4 and RF5, while 

the total magnitude of the flight-median size distributions agree well with those measured 

in the diluted plume more than 20 km downwind. As the plume was relatively narrow 

directly behind the ship, κCCN values are not available, but κAMS measurements agree well 

with those in RF4 and RF5 (Figure 4.5c). However, given the variability in the measured 

κ values of particulate shipping exhaust just discussed, this agreement cannot be viewed as 

definitive. Ultimately, while the insights provided by the size distributions, backward 

trajectories, and κAMS values would not be definitive on their own, taken together they 

support a shipping emission signature on aerosol characteristics during these flights. This 

influence highlights the importance of accurate physicochemical representation of shipping 

vessel emissions within the California coastal zone. As an example, the implementation of 

recent regulations on the sulfur content of shipping fuel within coastal waters of the U.S. 

(up to 200 miles off the coast) should increase the organic:inorganic ratio of particulate 
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shipping emissions in major shipping lanes over time (Lack et al., 2011; Cappa et al., 

2014). Assuming, as a strictly upper limit estimate, that all Aitken mode particles observed 

during RF4 and RF5 are derived from shipping vessel emissions, changing the assumed 

hygroscopicity of these emissions from the value observed during ambient measurements 

in this study (~0.4-0.5) to a value of 0.1 (purely organic, partially hygroscopic), would 

change the CCN concentration at SS = 0.3% by 15-36%.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: (a) Map of the Twin Otter trajectory during repeated sampling of a 
shipping vessel plume during RF7. Points are colored by the particle concentration 
measured by the CPC and individual segments of the flight path are labeled. (b) 
Aerosol size distributions measured during the labeled segments in (a) compared to 
median distributions measured during RF4 and RF5.  

a) b) 

c) 
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4.3.3.2 Entrainment from the AC-OAL 

 The observation of a single, dominant Aitken mode with reduced hygroscopicity 

during RF15 suggests an influence of the AC-OAL on MBL particle properties. According 

to Figure 4.4, the air mass sampled during RF15 had not recently transited over the 

continent or within the FT, which has previously shown to occasionally contain distinct 

layers of reduced hygroscopicity aerosol (Roberts et al., 2006; 2010). Clear evidence of 

entrainment from the AC-OAL is provided in Figure 4.6, which contrasts size distributions 

and κAMS values observed during RF15 and RF4, another flight with a prominent Aitken 

particle mode and relatively similar backward trajectory. During RF15, the MBL and AC-

OAL size distributions are remarkably similar, exhibiting peak diameters at ~55 nm and 

lacking a larger accumulation mode. Liquid water contents measured within the MBL 

during RF15 demonstrate a fully developed stratocumulus layer encompassing roughly half 

of the MBL. κAMS values vary linearly with altitude from ~0.4 near the ocean surface to 

~0.15-0.2 at the top of the cloud layer, aligning with the hypothesis of downward mixing 

of AC-OAL particles into the MBL. These observations are in stark contrast to those from 

RF4, where the Aitken mode diameter of the MBL and AC-OAL aerosol differ by ~20-25 

nm, and importantly, the Aitken mode diameter in the MBL is smaller than the AC-OAL, 

suggesting a distinct particle source in each location. Finally, as the AC-OAL and MBL 

PMF factors are clearly distinguished in each flight where the AC-OAL layer was 

observed, the AC-OAL:MBL PMF factor mass ratio acts as a tracer for entrainment 

mixing. During RF15, the median AC-OAL:MBL PMF factor mass ratio was 0.81 in the 

MBL, in contrast to a value of 0.36 measured during RF4 and a median value of 0.42 in all 

flights other than RF15 where the AC-OAL was observed. The information obtained from 

the aerosol size distribution (no accumulation mode) and hygroscopicity (similar to the 

AC-OAL) in the MBL suggests that the distinct AC-OAL signature may result from 

entrainment following precipitation scavenging of the preexisting MBL aerosol. As typical 

AC-OAL particle concentrations are ~5 times as large as those in the overlying FT, failure 

to simulate this layer will result in underprediction of MBL particle concentrations during 

such distinct precipitation/entrainment events.  
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4.3.3.3 Transport from the remote Pacific Ocean 

 Hygroscopicity measurements made during RF13 are notably larger than those from 

the other six flights, indicating a lack of organic aerosol across the particle size distribution. 

As expected, back trajectories calculated within the MBL during this flight indicate recent 

arrival from the remote Pacific Ocean, rather than extended transport through the major 

shipping lanes along the coast. The boundary layer was substantially compressed (<300 m) 

and cloud-free during the flight, suggesting ongoing subsidence of free tropospheric air 

masses (Fig. 7a). As new particle formation through sulfuric acid nucleation is known to 

be a notable source of CCN throughout the marine boundary layer (Clarke, 1993; Clarke 

a) b) 

c) d) 

Figure 4.6: (Top) Median aerosol size distributions measured in the marine boundary 
layer (MBL) and above-cloud organic aerosol layer (AC-OAL) during RF4 (a) and 
RF15 (c).  (Bottom) Vertical profile of AMS-derived hygroscopicity (κAMS) and liquid 
water content (LWC) during each flight. Values of κAMS are colored by the organic 
volume fraction measured by the AMS to aid interpretation of the figure. 
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et al., 1998; 2013), downwelling and entrainment of such nucleated particles is a 

possible explanation for the elevated Aitken mode hygroscopicities observed. While low 

number concentrations in the FT make κCCN estimates less reliable, the values observed in 

RF13 are relatively similar to those in the MBL, supporting entrainment. While aerosol 

size distribution measurements in the FT suggest such entrainment was not responsible for 

increases in Aitken mode particles locally, as concentrations directly above the MBL are 

substantially lower than those in the MBL, the elevated aerosol concentrations at ~1000 m 

suggest entrainment may have produced MBL Aitken mode particles during transport 

(Figure 4.7b). Furthermore, the vertical profile of the aerosol size distribution in the FT is 

consistent with past observations of growth of nucleation-produced Aitken mode particles 

during large scale subsidence (Clarke et al., 1999). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Due to the compressed height of the MBL during RF13, the potential contribution of 

primary sea spray aerosol to MBL particle characteristics is also enhanced. However, using 

the size distribution fitting technique established by Modini et al. (2015), the calculated 

concentration of primary sea spray aerosol is only 18 cm-3 or ~4% of the average MBL 

particle concentration during the flight, suggesting sea spray provides at most a minor 

contribution. 

Figure 4.7: (a) Measured relative humidity vertical profile during each flight, demonstrating the 
reduced marine boundary layer (MBL) height during RF13. (b) Vertical profile of aerosol number 
size distributions during RF13. (c) Individual aerosol size distributions at different altitudes during 
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4.3.4 CCN closure analysis 

Figure 4.8 shows CCN closure results for the three sampled environments using six 

different assumptions regarding aerosol composition and mixing state. Three cases assume 

internally mixed aerosol components with composition determined by AMS 

measurements. These cases are differentiated by their assumptions regarding organic 

aerosol hygroscopicity, with κorg increasing from 0 (first-case), to 0.1 (second-case), and 

finally to values predicted from time-varying measured OA O:C ratios according to the 

relationship developed by Lambe et al. (2011) (third-case). The final three cases are similar 

to the internally mixed cases in their treatment of κorg, however, the organic and inorganic 

aerosol components are assumed to be externally mixed. Bulk aerosol mass loadings were 

too low to obtain robust estimates of size-resolved composition, precluding more detailed 

treatment of composition in CCN closure calculations. Closure was assessed in terms of 

the normalized mean bias (𝑁𝑁𝑁𝑁𝑁𝑁 = ∑(𝐶𝐶𝐶𝐶𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖 − 𝐶𝐶𝐶𝐶𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖)/∑𝐶𝐶𝐶𝐶𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚), similarly to 

Asa-Awuku et al. (2011), which provides a representation of the average CCN prediction 

error observed for each flight. Data for the MBL and FT are shown for individual flights, 

while data from the AC-OAL are aggregated from all flights where the layer was observed, 

as fewer size distributions were obtained from the AC-OAL during each flight (and the 

AC-OAL was not observed at all during three flights).   
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For the majority of analyzed flights (5 out of 7), closure is obtained within 20% using 

AMS-measured bulk composition and an assumption of either insoluble (κorg = 0) or 

slightly hygroscopic organics (κorg = 0.1). While the assumption of insoluble organics 

disagrees with observed O:C ratios (e.g., the O:C ratio of the MBL PMF factor is 0.85), 

CCN closure studies often find this assumption is ideal when assuming internal mixing 

(Chang et al., 2007; Wang et al., 2008; Lance et al., 2009; Moore et al., 2011). The lack of 

strong dependence on κorg suggests that in non-urban areas, regional models may be able 

to assign a single value to organic aerosol rather than attempt to dynamically model 

changes in organic aerosol hygroscopicity with aging (Wang et al., 2008). This is further 

highlighted by the fact that closure results assuming a constant κorg value (0.1) are generally 

more accurate than those produced by parameterizing κorg based on the observed O:C ratio 

Figure 4.8: Normalized mean bias resulting from CCN closure analysis performed 
on data from each flight. A value of 0.2 is equivalent to an average overprediction of 
20%. Int. indicates aerosol were assumed internally mixed, while Ext. indicates 
organic and inorganic aerosol were assumed to be externally mixed. κorg represents 
the assumed hygroscopicity of the organic aerosol component. 
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(Lambe et al., 2011). As larger aerosols are more likely to have undergone cloud-

processing, parameterizing organic hygroscopicity based on bulk measurements of the 

organic O:C ratio, which is biased by the largest particles, may also overpredict the 

oxidation state of particles near the critical diameter of CCN activation. Without size-

resolved compositional data, it is difficult to definitively conclude whether the 

overprediction observed when κorg  is parameterized based on the organic O:C ratio is due 

to such variability with size or is the result of a different relationship between O:C and κorg 

for organic aerosols in this environment. However, other published parameterizations 

between O:C and κorg in the literature either agree well with the Lambe parameterization 

(Chang et al., 2010; Massoli et al., 2010; Thalman et al., 2017) or predict more hygroscopic 

particles at the same O:C ratio (and as a result would lead to further overprediction if 

implemented in the CCN closure analysis) (Mei et al., 2013). The overprediction in CCN 

observed here when incorporating the Lambe parameterization therefore suggests that 

small particles near the critical activation diameter are less hygroscopic than larger 

particles that dominate the mass size distribution and thereby dictate AMS-measured 

composition. 

Overall, generally good closure is expected in a semi-remote environment such as the 

California coastal zone, as previous studies have noted that closure is likely to be achieved 

within 20% when the bulk aerosol κ exceeds 0.1 (Wang et al., 2010). Furthermore, it is 

expected that aerosol in this coastal environment can be modeled as internally mixed, 

regardless of its true mixing state, due to the substantial contribution of inorganic 

constituents and distance from emission sources (Ervens et al., 2010; Moore et al., 2013; 

Fierce et al., 2016). Fierce et al. (2016) have demonstrated that in semi-remote 

environments (i.e., non-urban locations), initially externally mixed aerosol becomes 

internally mixed on a time scale of about one day, while the conversion is even faster (on 

the order of hours) in urban environments, in agreement with the results of Wang et al. 

(2010). Notable underpredictions (i.e., >20%) of CCN concentrations are produced when 

assuming externally mixed aerosol with insoluble organics, in agreement with the aged 

nature of the aerosol in this environment, which should lead to both oxidized organic 

aerosol and an appreciable amount of internal mixing.  
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CCN are strongly overpredicted in the MBL during RF9 (37%) and RF15 (57%) when 

assuming an internal mixture with hygroscopic organics. Aerosol composition during these 

flights was dominated by organic species in the MBL (59% and 58% of AMS-derived 

aerosol mass, respectively), indicative of a continental influence on aerosol properties. 

AMS-derived hygroscopicities are substantially larger than those derived from CCN 

measurements (Figure 4.3), suggesting that size-dependent composition may lead to the 

observed overprediction of CCN concentrations when using bulk AMS measurements of 

aerosol composition. Comparison of CCN closure results when assuming internal versus 

external mixing suggests that organic and inorganic components are externally mixed, 

implying either distinct particle sources or a lack of significant aging prior to measurement. 

In the case of RF15, this external mixing aligns with the hypothesis of downward mixing 

from the organic-rich AC-OAL. Figure 4.S7 depicts the CCN closure normalized mean 

bias resulting from an assumption of internally mixed aerosols with hygroscopic organics 

Figure 4.9: Normalized mean bias resulting from additional CCN closure 
analyses performed on data from each flight. κCont and κMarine refer to analyses 
assuming a constant κ equivalent to values representative of continental (0.27) 
and marine (0.72) environments respectively (Pringle et al., 2010). The 
Constant S.D. case assumes a constant aerosol number size distribution 
equivalent to the median value observed in the MBL during the campaign. 
Blacked dashed lines indicate closure error of ±20%. Note the split in the y-
axis. 
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as a function of the CCN-derived hygroscopicity. In general, CCN closure error 

increases rapidly as κCCN decreases past ~0.25, suggesting that detailed mixing state and/or 

size resolved compositional information is critical for accurate CCN prediction in this 

coastal environment during periods of intense organic aerosol intrusion into the MBL. As 

the aerosol hygroscopicity calculation used in this study relies on an assumption of internal 

mixing of organic and inorganic aerosol components, it is difficult to determine whether 

CCN closure error when assuming internal mixing during this flights is a result of 

externally mixed organic and inorganic aerosol or a result of variable composition with 

size. Ultimately, as these atypical organic aerosol-dominated marine conditions are the 

least likely to be accurately reproduced by regional models, further investigation of their 

frequency, particle characteristics, and resulting impact on cloud properties is warranted.  

The analysis presented in Figure 4.8 implies that for typical conditions in the MBL (5 

out of 7 flights in this study), mixing state and organic hygroscopicity have relatively little 

influence on CCN number concentrations. Additional closure analyses were performed 

assuming a constant κ equivalent to values attributed to average continental (κ = 0.27) and 

marine (κ = 0.72) environments (Pringle et al., 2010) (Figure 4.9). These results highlight 

the fact that assuming coastal aerosols have a strictly marine character leads to substantial 

errors in CCN prediction (>20% for 8 out of 9 flights) even if size distribution parameters 

are well characterized. Furthermore, for five out of the seven analyzed flights (RF4, RF5, 

RF9, RF13, RF16), assuming a constant marine κ (0.72) results in CCN prediction error 

similar to or larger than the error produced by assuming a constant aerosol size distribution 

derived from the median value measured in the MBL during this study. This underscores 

the importance of capturing organic contributions to coastal MBL aerosol, whether due to 

continental outflow, downwelling from the AC-OAL, shipping emissions, or marine biota. 

 

4.3.5 Sensitivity of stratocumulus CDNC to below-cloud aerosol hygroscopicity  

In order to investigate directly the sensitivity of N.E. Pacific stratocumulus CDNC to 

below-cloud aerosol properties, droplet activation was simulated using an aerosol-cloud 

parcel model constrained with detailed below-cloud aerosol measurements obtained from 
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three cloud sampling passes performed during the campaign. While a number of 

previous cloud parcel modeling studies have assumed unimodal size distributions (Reutter 

et al., 2009; Ward et al., 2010; Chen et al., 2016), observed aerosol size distributions over 

the N.E. Pacific were frequently bimodal (Figure 4.3). As many current aerosol modules 

incorporated within global atmospheric chemistry models involve multiple aerosol size 

modes (Liu and Wang, 2010; Pringle et al., 2010; Rothenberg et al., 2018), we carried out 

parcel model runs to analyze CDNC sensitivity to properties of the Aitken and 

accumulation modes separately. Sensitivities were calculated following McFiggans et al. 

(2006), where S(Xi) = δlnNCDNC / δlnXi and Xi is the parameter under investigation. 

Standard linear regressions of lnNCDNC vs. lnXi were used to determine S(Xi) values, as is 

convention (Reutter et al., 2009; Ward et al., 2010; Sánchez-Gácita et al., 2017). Measured 

aerosol and meteorological properties utilized as model constraints are summarized in 

Table 4.4. Sensitivity to hygroscopicity was computed across the range of κ = 0.2-0.6. 

Initial results confirmed that for observed MSc updraft velocities (w = 0.15-0.3 m s-1), 

below-cloud particle number concentrations (~500-800 cm-3), and typical hygroscopicities 

(κ ~ 0.2-0.4), properties of the Aitken mode have a minor impact on stratocumulus 

properties (S(Xi)<0.05), as minimum simulated activation diameters exceed 100 nm. 

Therefore, Figure 4.10 depicts the sensitivity of stratocumulus CDNC to properties of the 

accumulation mode and the simulated updraft velocity.  



 

 

250 

 

The average sensitivity of CDNC to aerosol hygroscopicity (0.19), while smaller than 

the sensitivity to size distribution parameters, is 39% as large as the sensitivity to the 

geometric mean diameter of the accumulation mode. This agrees with the consensus that 

particle size distribution properties have a larger influence on CCN concentration than 

particle composition (Dusek et al., 2006; McFiggans et al., 2006; Reutter et al., 2009), but 

also suggests accurate hygroscopicity reproduction should be included in future model 

improvement efforts. Observed below-cloud particle number concentrations and updraft 

velocities suggest that CCN activation occurs in the transitional regime according to the 

designations defined by Reutter et al. (2009), and simulated sensitivity to hygroscopicity 

agrees well with those previously reported for the transition regime (0.17-0.2) (Reutter et 

al., 2009; Ward et al., 2010).  

Table 4.5: Below-cloud aerosol and meteorological data used as aerosol-cloud-
parcel model constraints for calculation of CDNC sensitivities depicted in 
Figure 4.10. 

Parameter RF5-1 RF5-2 RF16 
NCN, Aitken (cm-3) 296 301 128 
Dpg , Aitken (nm) 55 57 70 
σAitken   1.27 1.27 1.24 
κAitken 0.36 0.42 0.21 
NCN, Accum. (cm-3) 492 465 406 
Dpg, Accum. (nm) 104 109 124 
σAccum. 2.21 2.20 1.96 
κAccum. 0.37 0.34 0.28 
w (m s-1) 0.22 0.26 0.25 
w/NCN (m s-1 cm-

3) 
2.8x10-

4 3.4x10-4 4.7x10-4 

Activation 
Regime* Trans. Trans. Trans. 

  
*”Activation Regime” refers to the classifications of cloud droplet formation environments 
developed by Reutter et al. (2009). “Trans.” = transitional.  
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Aging processes during transport likely lead to internally rather than externally 

mixed aerosol in the MBL. The simulated error in predicted CDNC when assuming fully 

externally mixed components is only 7.6-8.7% for the three modeled cases. This aligns 

with the observation of similarly accurate CCN closure results for the MBL when assuming 

internally or externally mixed components and a κorg of 0.1 or larger. As the volume 

fraction of inorganic aerosol in the accumulation mode is likely to increase with increasing 

distance from the coast, this predicted mixing-state-related error may be an upper bound 

for marine conditions in general.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Previous aerosol-cloud parcel modeling studies have demonstrated that the sensitivity 

of predicted CDNC to aerosol hygroscopicity tends to decrease as bulk hygroscopicity 

increases, especially for the aerosol-limited and transitional aerosol activation regimes 

(Reutter et al., 2009; Sánchez-Gácita et al., 2017). If this is the case, accurate 

hygroscopicity characterization in marine regions subject to organic aerosol inputs, which 

contain aerosol with lower-than-average κ values, may be more important for global CDNC 

prediction accuracy than accurate hygroscopicity characterization in remote regions 

Figure 4.10: Sensitivity of calculated CDNC to accumulation mode aerosol 
hygroscopicity (κ), below-cloud aerosol particle number concentration (NCN), 
accumulation mode geometric mean diameter (Dpg), accumulation mode standard 
deviation (σ), and updraft velocity (w). Data obtained during three cloud sampling passes 
were used as model constraints and are listed in Table 4. Numbers above each group of 
symbols represent average values from simulations in this study. Green symbols 
correspond to values reported by Reutter et al. (2009) for the transitional activation 
regime. 
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subject to aerosol sources with different, but elevated, hygroscopicities (e.g., 

ammonium sulfate (κ = 0.61) vs. sodium chloride (κ = 1.28)). To investigate this 

possibility, we calculated local CDNC sensitivity to aerosol hygroscopicity for four 

hypothetical marine aerosol size distributions. Rather than performing a linear regression 

on data obtained from a broad range of hygroscopicities, as was done for the data shown 

in Figure 4.10, local sensitivities refer to calculations performed on incremental variations 

in κ (e.g., κ = 0.1 vs 0.2). Figure 4.11 displays the size distributions used as well as the 

sensitivity results. In order to span the likely range of size distributions observed in marine 

environments, the “Coastal” distribution is similar to median distributions observed during 

RF4 and RF5. A “Remote” distribution was generated using reported size distribution 

parameters from measurements over the remote subtropical N. Pacific by Ueda et al. 

(2016). Two additional size distributions were produced by interpolating between the 

“Coastal” and “Remote” distributions. Total particle concentrations in the simulations 

varied between 300 cm-3 and 800 cm-3 depending on the size distribution used. Five 

different updraft velocities were simulated (w = 0.1-0.5 m s-1), corresponding to the range 

typically observed within MSc over the Pacific (Zheng et al., 2016).  

 A few notable trends are evident in the results shown in Figure 4.11. As has been 

previously reported, CDNC sensitivity to aerosol hygroscopicity tends to decrease as 

hygroscopicity increases. However, even at low hygroscopicities, calculated sensitivities 

never exceed 0.3, suggesting that at a maximum, a 50% error in marine aerosol 

hygroscopicity should lead to an error of only 15% in predicted CDNC. Sensitivity slightly 

increases as the assumed particle concentration increases, and therefore hygroscopicity is 

slightly less important in remote marine environments than in more polluted, coastal 

locations, as expected. In typical remote marine conditions (κ ≈ 0.6) for instance, a 50% 

error in hygroscopicity is associated with only a ~2.5-7.5% error in predicted CDNC, while 

in coastal environments (κ ≈ 0.35) the error is estimated to be ~7.5-15%.  
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When simulating certain combinations of updraft velocity and aerosol size distribution, 

the sensitivity of predicted CDNC to aerosol hygroscopicity does not decrease 

monotonically as hygroscopicity increases. Furthermore, at a given hygroscopicity value 

shown in Figure 4.11, CDNC sensitivity is a non-monotonic function of updraft velocity. 

Here, we demonstrate that these phenomena are a result of activation of the distinct Aitken 

aerosol mode. Variation in CDNC sensitivity to hygroscopicity with increasing updraft 

velocity is shown in Figure 4.12 for κ = 0.6-0.8. Local CDNC sensitivity to hygroscopicity 

initially decreases with increasing updraft velocity before increasing again at updraft 

velocities >0.2-0.3 m s-1. This trend is consistent regardless of κ range analyzed; however, 

the shape of the curve becomes “stretched” horizontally as κ values decrease (Figure 4.12). 

Using a unimodal size distribution, Reutter et al. (2009) demonstrated that moving from 

the transitional to the aerosol-limited regime caused CDNC sensitivity to hygroscopicity 

to decline for all κ > 0.05. For the four marine size distributions simulated in this study, 

increasing the updraft velocity from 0.1 to 1.0 m s-1 shifts activation from the transitional 

regime to the aerosol-limited regime, implying CDNC sensitivity to hygroscopicity should 

subsequently decline. Our observation of the opposite phenomenon is due to the fact that 

Figure 4.11: (Left) Aerosol number size distributions used as aerosol-cloud-parcel 
model inputs and (right) local CDNC sensitivities to aerosol hygroscopicity calculated 
using five updraft velocities. NCN refers to the aerosol number concentration represented 
by each aerosol size distribution.  
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at low (w = 0.1 m s-1) and high (w = 1-1.5 m s-1) updraft velocities, critical diameters 

produced within the rising air parcel occur near the peak of the accumulation and Aitken 

aerosol modes, respectively (Figure 4.12b). As the size distribution is peaked at these 

locations, subtle changes in aerosol hygroscopicity that induce small changes in the critical 

diameter result in a relatively large change in computed CDNC - hence elevated sensitivity 

to hygroscopicity. In contrast, for moderate (w ~ 0.2-0.3 m s-1) updraft velocities, minimum 

critical diameters occur between the peaks of the Aitken and accumulation modes, and for 

very strong updraft velocities (w > 1.5-2 m s-1) minimum critical diameters occur at sizes 

smaller than the peak of the Aitken mode, leading to lowered sensitivity (Figure 4.12b). 

This implies that in aerosol-limited environments with bimodal aerosol size distributions, 

the sensitivity of CDNC to hygroscopicity cannot necessarily be assumed to be negligible 

based solely on the ratio of the updraft velocity to particle number concentration. 

Ultimately, our results suggest that the sensitivity of marine CDNC to hygroscopicity is 

maximized in weak updraft conditions occurring in MSc (w < 0.2 m s-1), where 

hygroscopicity of the accumulation, rather than the Aitken, mode is most relevant to 

accurate CDNC prediction, and in relatively strong updraft conditions (0.5 < w < 2 m s-1) 

in either MSc or marine cumulus (Clarke et al., 1996), where Aitken mode hygroscopicity 

has a larger influence on CDNC than that of the accumulation mode.   

  

 

 

 

 

 

 

 

 

 

 

4.4. Summary and Conclusions 

Figure 4.12: (a) Simulated local CDNC sensitivity to hygroscopicity in the range κ = 
0.6-0.8 and κ = 0.2-0.4 as a function of updraft velocity. (b) Critical diameter calculated 
at the maximum supersaturation predicted by the aerosol-cloud-parcel model for four 
different updraft velocities assuming κ = 0.6.  
 

a) b) 
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4.4 Summary and conclusions 

Measurements of aerosol properties obtained over the N. E. Pacific Ocean during the 

MACAWS campaign in June and July 2018 were combined with results from an aerosol-

cloud-parcel model to gain insight into aerosol hygroscopicity and its influence on CCN 

and MSc CDNC prediction in this environment. Three characteristic vertical regions were 

characterized, corresponding to the MBL, FT, and AC-OAL. Within the MBL, flight-

averaged hygroscopicities varied from values typical of continental environments (κ = 

0.27), to those representative of remote marine locations (κ = 0.72) (Pringle et al., 2010). 

In the AC-OAL, observed hygroscopicity suggests a dominant contribution of organic 

aerosol in both the Aitken and accumulation mode size ranges.  

For the majority of flights, measured CCN concentrations could be reproduced within 

20% using measurements of the aerosol size distribution, bulk hygroscopicity, and an 

assumption of either internally or externally mixed organic and inorganic components, in 

agreement with past results in non-urban locations (e.g., Ervens et al., 2010). Notably, for 

five of the seven flights, MBL CCN were better predicted when assuming a constant 

aerosol number size distribution derived from the median value measured in the MBL than 

when assuming a constant κ typical of remote marine locations (0.72).  

Results from an aerosol-cloud-parcel model confirm that the sensitivity of predicted 

CDNC to accumulation mode aerosol hygroscopicity (0.19) is substantially smaller than 

sensitivity to size distribution parameters, such as the accumulation mode geometric 

diameter (0.49) and standard deviation (-0.64). Simulations using a variety of possible 

MBL aerosol size distributions and hygroscopicities suggest that a 50% error in predicted 

hygroscopicity should rarely produce a CDNC error greater than 15%. However, model 

results further suggest that CDNC sensitivity to hygroscopicity does not monotonically 

decrease with increasing updraft velocity. Rather, sensitivity appears to decrease or remain 

constant with increasing updraft velocities from low to moderate values (e.g., 0.1-0.3 m s-

1) and then increase as updraft velocities increase further (>0.4 m s-1) due to activation of 

the distinct Aitken mode. This phenomenon is observed despite the fact that at large updraft 

velocities (>0.4-0.5 m s-1), marine conditions generally occupy the aerosol-limited regime 
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of cloud droplet activation. Ultimately, CDNC sensitivity to hygroscopicity is predicted 

to be maximized in weak updraft conditions occurring in MSc (<0.2 m s-1) and in strong 

updraft conditions (>0.5 m s-1) expected to occur in either MSc or marine cumulus.  
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4.6 Supporting Information  

4.6.1 Determination of uncertainties in reported hygroscopicity parameters 

4.6.1.1 CCN-derived hygroscopicity (κCCN) 

As calculation of κCCN requires the use of measured CCN concentrations and aerosol 

number size distributions, uncertainties in these values were first evaluated. To determine 

uncertainties in measured CCN concentrations due to uncertainties in instrument 

supersaturations (SS), hypothetical CCN concentrations were calculated from average 

size distributions measured in the MBL, AC-OAL, and FT, using the four “true” SS 

values in the CCNC (0.1%, 0.3%, 0.43%, and 0.57%), as well as SS values offset by the 

relative deviations observed in the calibrations (±6%) (e.g., 0.094-0.106%, 0.282-

0.318%, 0.404-0.456%, and 0.54-0.604%) for a range of possible κ values (0.1-0.8). This 

calculation suggests a conservative (i.e., upper estimate) relative error in CCN 

concentrations of 9% due to SS uncertainty. A contour plot demonstrating this error for 

calculations performed using the median MBL size distribution is shown in Figure 4.S1. 

Uncertainty in the magnitude of the size distribution from the differential mobility 

analyzer (DMA) was taken to be 15%, while uncertainty in the DMA bin assignments 

was ~5% from calibrations performed prior to the campaign. These uncertainties align 

well with those observed by Wiedensohler et al. (2012) during a comparison of multiple 

particle size spectrometers. While the authors note that uncertainties in the magnitude of 

the size distribution increase for particles larger than 200 nm (up to 30%), during this 

campaign these particles accounted for only ~12% of the total particle concentration in 

the MBL on average and even less in the AC-OAL (5%), suggesting that the 15% 

uncertainty used here is reasonable. A depiction of maximum possible uncertainties in 

critical diameters resulting from errors in CCN concentrations and size distribution 

parameters is shown in Figure 4.S2 for two SS (0.1% and 0.57%).  

Using these uncertainties, 100,000 hypothetical CCN-derived κ values were 

calculated using the median size distribution and CCN number concentrations in each of 

the three environments (MBL, AC-OAL, FT). Specifically, prior to calculating CCN-
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derived kappa, the average CCN concentration at each SS, aerosol number size 

distribution magnitude, and aerosol size distribution bin values were each modified by a 

factor randomly selected from a normal distribution with a mean value of one and 

standard deviation equivalent to the respective uncertainties (9%, 15%, and 5% 

respectively). The resulting histogram of CCN-derived kappa values was fit with a 

lognormal distribution, and the uncertainty is derived from the geometric standard 

deviation of the fit. An example histogram resulting from this analysis is shown in Figure 

4.S3. As the produced distribution is lognormal, uncertainties are not symmetric about 

the mean values. The numerical data produced by the fitting procedure and resulting 

uncertainties are displayed in Table S1. Uncertainties increase at larger supersaturations 

as smaller changes in critical diameter are required to produce equivalent changes in 

CCN-derived κ. Due to the small CCN concentrations measured at 0.1% SS, the 

estimated uncertainty at this SS is almost certainly too low, as small variations in 

absolute number concentration due to differential losses between the CCNC and DMA 

sampling lines could markedly affect CCN-derived κ. As we could not perform a 

thorough analysis of differential particle losses within the sampling lines during the 

campaign, we omit hygroscopicity data measured at a SS of 0.1% from the results.  

While the calculated uncertainty of ~+55%/-40% for SS = 0.3% and ~+75%/-45% for 

SS = 0.43% is substantial, accurate measurement of hygroscopicity on an aircraft 

platform is an analytically challenging task due to the need for rapid measurements. We 

note that we cannot quantitatively account for uncertainties introduced by the possibility 

of externally mixed insoluble particles present in the sampled environments. However, as 

we primarily focus on data from the MBL and AC-OAL, we expect the concentrations of 

such particles to be small. For instance, average refractory black carbon concentrations 

measured by a single particle soot photometer were less than 5 cm-3 in these 

environments.  

 

4.6.1.2 AMS-derived hygroscopicity (κAMS) 
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Inferred values of the hygroscopicity parameter from AMS measurements (κAMS) 

are dependent on the mass fractions of the measured aerosol components (e.g., organics, 

sulfate, etc.) (converted to volume fractions using known or assumed densities) and the 

assumed organic aerosol hygroscopicity. Quantification of aerosol component mass 

loadings requires knowledge of component collection efficiencies, relative ionization 

efficiencies, and measured ion count rates (Jimenez et al., 2003; Middlebrook et al., 

2012). If aerosol components are externally mixed, distinct collection efficiencies for 

different particle components could introduce uncertainty into measured mass fractions; 

however, for a semi-remote ambient environment such as the N.E. Pacific MBL, it is 

likely that observed aerosols are internally mixed. This assumption is supported by CCN 

closure analyses discussed in the main text as well as internal mixing timescales modeled 

by Fierce et al. (2016). As a result, uncertainties in the instrument collection efficiency 

should lead to uncertainties in absolute mass loadings rather than mass fractions. As 

discussed by Ovadnevaite et al. (2017), for an ambient dataset, the dominant remaining 

uncertainties in AMS-derived mass fractions result from uncertainty in the relative 

ionization efficiencies (RIE) of the various species. According to Bahreini et al. (2009), 

uncertainties in RIEs are 10%, 15%, and 20% for ammonium, sulfate, and organics, 

respectively. As the propagated uncertainty in κAMS will be dependent on the assumed 

“true” κAMS value (e.g., minor uncertainty would be expected in the case that aerosol was 

dominated by a single species), we calculated κAMS uncertainty as a function of the 

assumed “true” organic mass fraction (Figure 4.S4a). Specifically, for a given assumed 

organic mass fraction, all inorganic aerosol was assumed to be entirely ammonium 

sulfate, individual component mass loadings were modified within their respective 

uncertainties, the identity of the inorganic species was redetermined using the ammonium 

to sulfate molar ratio (RSO4), and the κAMS value was recalculated. Nitrate and chloride 

were not included due to their minor contributions to observed aerosol mass during the 

campaign. A histogram of 10,000 calculated κAMS values was produced for each value 

across a range of possible organic volume fractions (spanning 0.05 – 1), and a lognormal 

distribution was subsequently fit to each set of data. Uncertainties were determined from 

the parameters of the lognormal distribution, similarly to the κCCN uncertainty analysis. 
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As shown in Figure 4.S4a, for typical conditions observed during the campaign the 

estimated uncertainty in κAMS due to uncertainties in component mass fractions was 

~10%.  

However, an additional uncertainty is introduced by the need to assume the 

hygroscopicity of the organic fraction. While this uncertainty is difficult to quantify 

numerically (i.e., a percentage uncertainty in κorg), we define upper and lower limits as 

0.2 and 0 respectively. Figure 4.S4b demonstrates that at large organic volume fractions, 

the uncertainty in κorg can translate into a relative uncertainty in κAMS of 75%. However, 

because the absolute value of κAMS is low at high organic volume fractions, the maximum 

absolute uncertainty in κ is ~0.1.  

As demonstrated in Figure 4.S4, for organic volume fractions below ~0.4, the relative 

uncertainty in κAMS is dictated by the uncertainty in component volume fractions 

measured by the AMS, while for larger organic volume fractions, uncertainty in κAMS is 

dictated by the uncertainty in κorg. 

We note that this analysis omits possible uncertainties introduced by the inability of 

the AMS to accurately quantify refractory aerosol mass (e.g., sea salt, mineral dust, etc.). 

However, average wind speeds within the MBL (8.1 m s-1) were lower than those 

measured by Modini et al. (2015) during a period of low sea salt mass loadings (0.14 μg 

m-3), and measured aerosol number size distributions align with those measured by 

Modini et al. (2015) during the same period (i.e., no distinct aerosol size mode >500 nm, 

which would indicate substantial sea spray, was observed). Roberts et al. (2010) analyzed 

27 MBL particles in the same N.E. Pacific region with scanning transmission x-ray 

microscopy and noted that only two particles (7.4%), both of which were super-micron, 

were likely sea salt. As a result, we are confident that the error related to chloride 

quantification is minor. Furthermore, there was no indication of distinct aerosol dust 

layers within the FT, and as shown in Figure 4.S5, the flight-average integrated aerosol 

mass loadings measured by the differential mobility analyzer agree with those measured 

by the AMS within the uncertainty of the AMS measurement (40%). Ultimately, we are 

confident that the possible presence of refractory material did not cause substantially 

biased κAMS measurements for this campaign. 
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4.6.2 Positive matrix factorization of high-resolution organic aerosol mass 

spectra 

Positive matrix factorization (PMF) analysis (Paatero and Tapper, 1994) was 

performed on the high-resolution AMS mass spectra in order to distinguish major classes 

and transformation processes of measured OA. The PMF model de-convolves the time 

series of organic mass spectra measured into a number of temporally unvarying 

components. Each of these distinct components contributes a variable fraction of total 

OA mass at each measurement point. Numerous recent studies report use of PMF to 

describe coastal and marine OA, and often bulk OA can be separated into individual 

components from marine and anthropogenic sources (Hegg et al., 2008; Hildebrandt et 

al., 2011; Schmale et al., 2013; Huang et al., 2018). High resolution AMS data 

preparation, including minimum counting error and variable down-weighting, followed 

the recommendations of Ulbrich et al. (2009) and Zhang et al. (2011). Model execution 

was performed using the PMF Evaluation Tool (PET v2.08D) developed by Ulbrich et al. 

(2009). Examination of PMF results from the present dataset revealed an optimal 3 factor 

solution with a rotational fPeak parameter of 0 (Ulbrich et al., 2009). Two of these factors 

correspond to OA subtypes characteristic of the MBL and above-cloud organic aerosol 

layer (AC-OAL), respectively, and resemble low-volatility oxygenated organic aerosol 

(LV-OOA). LV-OOA is a commonly observed OA subtype characterized by a relatively 

large O:C ratio (>0.6), dominance of m/z 44 (CO2+) within the mass spectrum (an organic 

acid tracer), and a lack of reduced hydrocarbon fragments (Ng et al., 2010). The third 

factor is likely a result of primary anthropogenic emissions and resembles hydrocarbon-

like organic aerosol (HOA). HOA factors - characterized by a lack of oxygenated ion 

fragments and low O:C ratios (<0.2) - are typically the result of fossil fuel combustion 

(either gasoline, diesel, or lubricating oils) (Zhang et al., 2005; Aiken et al., 2008). In 

marine environments, HOA is often produced by shipping vessel emissions (Murphy et 

al., 2009; Coggon et al., 2012). Periods sampling biomass burning smoke were excluded 

from the PMF analysis, as they often contribute OA mass loadings an order of magnitude 

higher than typical conditions in the region (e.g., >40 µg m-3) and therefore exert a 
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disproportionately large influence on model output. Direct sampling of biomass 

burning plumes was identified in the data as DMA scans in the MBL or FT in which 

average CN concentrations exceeded 1000 cm-3 and average organic aerosol mass 

loadings exceeded 4 µg m-3. Further analysis was performed to ensure these increases 

were not the result of nearby shipping vessel emissions or sampling of the AC-OAL. 

Analysis of biomass burning plumes sampled during MACAWS will be the focus of 

future work.  

Figure 4.S6 displays a representative vertical profile of the MBL, AC-OAL, and 

HOA PMF factors measured during a representative flight (RF5), as well as factor mass 

spectra extracted from PMF analysis performed on the full dataset. Excluding periods 

measuring ship plumes, mass loadings of the HOA factor were typically low (<0.1 µg m-

3). In general, the MBL factor dominated OA mass below cloud-tops (~0.5-1 µg m-3) and 

displayed dramatic reductions in mass fraction above-cloud due to increases in AC-OAL 

factor mass loadings. Similarly to Coggon et al. (2014), we interpret the MBL factor as 

generally representative of MBL OA in the region. Laboratory and field studies have 

demonstrated that during oxidative processing, unique organic mass spectra from a 

variety of aerosol sources (biogenics, anthropogenic emissions, biomass burning, etc.) 

converge to a consistent, average spectrum typically classified as LV-OOA, as a variety 

of unique organic species with diverse functionality are converted into organic acids (Ng 

et al., 2010). The oxidized nature of the MBL factor, therefore, precludes the use of 

marker ions to distinguish individual sources of this factor, but potential sources include 

shipping and biogenic emissions, as well as oxidized continental outflow aerosol 

(Sorooshian et al., 2009; Hegg et al., 2010; Coggon et al., 2012). During the Eastern 

Pacific Emitted Aerosol Cloud Experiment (E-PEACE), Frossard et al. (2014) reported 

that ~40% of observed OA in this region could be attributed to a “ship-influenced” source 

type, while the remaining mass was relatively evenly divided among primary marine 

aerosol, carboxylic-acid enriched (i.e., aged) aerosol, and a mixture of the three. The 

MBL factor observed here is likely composed of a mixture of these individual source 

types. The O:C ratio of the MBL factor extracted from the compiled dataset (0.91) agrees 
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well with the average value observed by Hersey et al. (2009) (O:C = 0.92±0.33) in the 

same region.  

A second, distinct factor displayed large mass loadings (up to 8 µg m-3) within the 

AC-OAL. The vertical profile of this AC-OAL factor shown in Figure 4.S6 appears to 

align with the hypothesis that the presence of the cloud layer is related to production of 

the AC-OAL factor (e.g., observed increase in mass loading directly above location of 

LWC decline). During E-PEACE, Coggon et al. (2014) demonstrated that an above-cloud 

OA layer was linked to continental biogenic emissions from Northern California, 

suggesting that the AC-OAL factor may be produced by the same mechanism.Tthe 

substantially larger contribution of organic aerosol in the AC-OAL than the MBL or FT 

suggests that particle production is likely a result of continental biogenic sources 

(Coggon et al., 2014) and not upward or downward mixing from the MBL or FT 

respectively. 
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Figures 4.S1-4.S7 

Figure 4.S1: Contour plot of error in predicted cloud condensation nuclei (CCN) 
concentrations due to uncertainties in instrument supersaturation (±6%) for various 
possible assumed κ values and instrument supersaturations. The maximum calculated 
value of ~9% is used in analysis of κccn uncertainty. 
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Figure 4.S2: Depiction of possible error in calculated critical diameter at two 
measurement supersaturations (0.1% - red; 0.57% - blue) due to uncertainties 
in CCN concentrations (±9%), the magnitude of the size distribution (±15%), 
and the size distribution bin diameters (±5%). Blue and red highlighted 
regions represent the range of possible critical diameters calculated due to 
these uncertainties. Black and grey dashed lines signify possible shifts in the 
size distribution due to measurement uncertainties. 

Figure 4.S3: Histogram of 100,000 κCCN values calculated at SS = 0.3% while 
varying the observed CCN concentrations and size distribution parameters 
within their respective uncertainties. The solid vertical line represents the 
geometric mean (μg), while the area between the dashed lines encompasses 
~68% of the simulated data and has bounds of μg*σg and μg/σg. σg is the 
geometric standard deviation. 
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Figure 4.S4: Depiction of relative and absolute uncertainties in derived κAMS 
values due to (a) uncertainties in AMS-measured component mass fractions and 
(b) uncertainties in the assumed organic hygroscopicity parameter (κorg). 
Uncertainties shown in (b) are determined by comparing κAMS values calculated 
assuming κorg = 0.1 to values calculated for a hypothetical “true” κorg of 0.2. 
Colored points highlight the relative uncertainty expected for typical conditions in 
the marine boundary layer (MBL), above-cloud organic aerosol layer (AC-OAL), 
and free troposphere (FT).  
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Figure 4.S5: Flight-averaged aerosol mass loadings measured by the aerosol 
mass spectrometer (AMS) compared to those derived from integrating aerosol 
number size distribution measurements from the differential mobility analyzer 
(DMA). Two different densities are shown, both of which could result from 
varying contributions of organic (1-1.6 g cm-3) and inorganic species (~1.65-1.9 
g cm-3). Vertical error bars signify the uncertainty of the AMS mass 
measurement (35%) (Bahreini et al., 2009).  
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Figure 4.S6: Vertical profiles of (a) LWC and ultra-fine particle concentrations 
and (b) mass loadings of the extracted MBL, AC-OAL, and HOA factors during 
RF 5. (c) Individual factor mass spectra extracted from the compiled campaign 
dataset. 
 

Figure 4.S7: Normalized mean bias (NMB) of flight averaged CCN closure results 
assuming internal mixing and slightly hygroscopic organics (κorg = 0.1) plotted 
against κCCN measured at two supersaturations (0.43% and 0.57%). Power-fits are 
shown to aid interpretation and are not meant to be predictive. 
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SS (%) Lognormal 
mean 

Lognormal 
std. dev. 

Geometric 
mean 

Geometric 
std. dev. 

Estimated 
uncertainty 
(%) 

MBL      
0.1 -1.22 0.36 0.29 1.44 +44; -31 
0.3 -1.04 0.42 0.38 1.52 +52; -35 
0.43 -0.90 0.49 0.39 1.63 +63; -39 
0.57 -0.76 0.66 0.45 1.93 +93; -48 
      AC-OAL      
0.1 -1.66 0.28 0.19 1.32 +32; -24 
0.3 -1.52 0.30 0.21 1.35 +35; -26 
0.43 -1.42 0.55 0.23 1.73 +73; -42 
0.57 -1.26 0.82 0.26 2.27 +127; -56 
      FT      
0.1 -1.15 0.29 0.31 1.34 +34; -25 
0.3 -0.67 0.44 0.49 1.55 +55; -36 
0.43 -0.82 0.57 0.42 1.77 +77; -45 
0.57 -1.02 0.65 0.35 1.92 +92; -48 

Table 4.S1: Results of the κCCN uncertainty analysis for typical marine boundary 
layer (MBL), above-cloud organic aerosol layer (AC-OAL), and free tropospheric 
(FT) conditions. Lognormal mean and standard deviation (std. dev.) refer to 
parameters of a lognormal fit applied to a histogram of 100,000 κCCN values 
generated using the iterative procedure discussed in Section S1.1. These values 
are subsequently transformed to give the geometric mean and standard deviation. 
The asymmetric uncertainty is then calculated from the geometric standard 
deviation.  
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The formation of a suite of isoprene-derived hydroxy nitrate (IHN)
isomers during the OH-initiated oxidation of isoprene affects
both the concentration and distribution of nitrogen oxide free
radicals (NOx). Experiments performed in an atmospheric simu-
lation chamber suggest that the lifetime of the most abundant
isomer, 1,2-IHN, is shortened significantly by a water-mediated
process (leading to nitric acid formation), while the lifetime of
a similar isomer, 4,3-IHN, is not. Consistent with these chamber
studies, NMR kinetic experiments constrain the 1,2-IHN hydroly-
sis lifetime to less than 10 s in deuterium oxide (D2O) at 298 K,
whereas the 4,3-IHN isomer has been observed to hydrolyze much
less efficiently. These laboratory findings are used to interpret
observations of the IHN isomer distribution in ambient air. The
IHN isomer ratio (1,2-IHN to 4,3-IHN) in a high NOx environment
decreases rapidly in the afternoon, which is not explained using
known gas-phase chemistry. When simulated with an observa-
tionally constrained model, we find that an additional loss process
for the 1,2-IHN isomer with a time constant of about 6 h best
explains our atmospheric measurements. Using estimates for 1,2-
IHN Henry’s law constant and atmospheric liquid water volume,
we show that condensed-phase hydrolysis of 1,2-IHN can account
for this loss process. Simulations from a global chemistry trans-
port model show that the hydrolysis of 1,2-IHN accounts for a
substantial fraction of NOx lost (and HNO3 produced), resulting
in large impacts on oxidant formation, especially over forested
regions.

atmospheric chemistry | isoprene | hydrolysis | organic nitrates | NOx

The formation of organic nitrates during the oxidation of
volatile organic compounds (VOCs) serves to sequester

nitrogen oxides (NOx = NO + NO2; NOx, nitrogen oxide free
radicals). This chemistry is expected to become increasingly
important as NOx levels decline (1), as has been occurring in
the United States (2). Because the formation and subsequent
fate of organic nitrates alters the concentrations and distribu-
tions of NOx in the atmosphere, they, by extension, also signif-
icantly impact the production of tropospheric ozone and organic
aerosols (3–6), which have known impacts on the environment
and human health.

Due to the sheer abundance and reactivity of isoprene in the
boundary layer, organic nitrates created from its oxidation are
believed to greatly affect the atmospheric NOx lifetime (7–15).
Isoprene-derived hydroxy nitrates (IHNs) are formed primar-
ily during the OH oxidation of isoprene in the presence of
NO (16) (Scheme 1). Recent laboratory measurements sug-
gest the branching ratio for this pathway (α) is ∼13% (17),
which is higher than many previous estimates (18). While eight
IHN isomers can form (17), two of these isomers (1,2-IHN
and 4,3-IHN; Scheme 1) make up the majority of the total
IHN yield at atmospherically relevant conditions. Once formed,
current understanding suggests that IHNs are primarily lost
from the atmosphere through deposition and chemical oxidation
(3, 18, 19).

The relative importance of the IHN-loss pathways determines
the extent to which NOx is recycled back into the atmosphere.
For instance, deposition results in the permanent removal of
NOx, but the IHN lifetime against deposition under typical
atmospheric conditions is relatively long: τdep ≈ 24 h for vdep =

1.7 cm s−1 (20) and a boundary layer height of 1.5 km. On
the other hand, chemical oxidation by OH is more impor-
tant, providing a lifetime of 9.3 and 6.9 h (assuming [OH] =
1× 106 molecules cm−3) for 1,2-IHN and 4,3-IHN, respec-
tively (18). Although studies have shown that the nitrate moiety
typically remains attached to these molecules following this
chemistry (particularly for 4,3-IHN), subsequent photooxida-
tion of second-generation products can still contribute to signi-
ficant NOx recycling (21, 22).

Model simulations of field measurements tend to overestimate
daytime concentrations of IHN (19, 23–26). While this might be
partially due to assumptions made regarding the isomer distribu-
tion of isoprene peroxy radicals (RO2) and α, this discrepancy
has also been attributed to a missing IHN sink. Several possi-
ble sinks have been hypothesized. It has been suggested that
the tertiary nitrate group on 1,2-IHN allows this molecule to
hydrolyze rapidly in clouds or in aerosol (24, 27–30). This loss
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Scheme 1. IHNs are formed through a small, but important, pathway (α) present in the reaction of isoprene and OH (+O2) in the presence of NO. The
dominant pathway (1−α) forms NO2 and promotes ozone production. The formation of the two IHN isomers shown here (1,2-IHN and 4,3-IHN; dashed
boxes) represent more than 90% of the IHN produced at atmospherically relevant RO2 lifetimes (17). We note that the α to 1,2-IHN (14± 3%) is very similar
to the α to 4,3-IHN (13± 3%) (18). Once formed, 1,2-IHN and 4,3-IHN can undergo deposition, oxidation, or incorporation into aerosol, where they can
hydrolyze. The branching between IHN-loss pathways directly affects isoprene’s impact on NOx and oxidant levels. IHN-loss pathways that result in NOx

recycling are highlighted in blue, while those that result in the permanent loss of NOx are red.

pathway could contribute significantly to HNO3 formed over
continental regions (28, 31–35). Photolysis has also been pro-
posed (25). Unlike hydrolysis, photolysis of organic nitrates is
expected to release NO2 back into the atmosphere, contributing
to tropospheric ozone production downwind of sources (22, 35).

Here, we used newly developed instrumentation (36) to mon-
itor changes in the isomer distribution of IHN during a 2017
summer field study conducted in Pasadena, CA. These ambient
observations are interpreted using a combination of labora-
tory chamber experiments, aqueous hydrolysis experiments, and
observationally constrained model simulations. We focus our
analysis on the two most abundant isomers, 1,2-IHN and 4,3-
IHN. Since 1,2-IHN and 4,3-IHN are thought to undergo similar
atmospheric fates (Scheme 1), we use the ratio of their concen-
trations (1,2-IHN to 4,3-IHN; hereafter, referred to as “IHN
isomer ratio,” for simplicity) as a proxy for differences in their
nonphotochemical loss.

This dataset suggests the 1,2-IHN isomer is rapidly lost via
hydrolysis in the atmosphere at a rate competitive with other
oxidation and deposition pathways. In addition, global simula-
tions suggest that this loss pathway greatly impacts the global
concentration of NOx, ozone, and nitric acid.

Results and Discussion
Field Observations. Hourly measurements of the ambient concen-
trations of the IHN isomers were obtained between August 1 and
17, 2017 (37) using a gas chromatography–chemical ionization
mass spectrometer (GC-CIMS) deployed atop the main Caltech
library (44 m above ground level), which is located on the Califor-
nia Institute of Technology (Caltech) campus in Pasadena, CA:
[OH]avg, peak = 5× 106 molecules cm−3 (38); [NO]avg, daytime =
2.5 parts per billion by volume (ppbv). Details of the field site,
measurement technique and data processing are provided in
Materials and Methods and SI Appendix.

Daytime observations (1000 to 2000 hours local time) of 1,2-
IHN and 4,3-IHN from Caltech (Fig. 1) suggest an additional
IHN sink is present in the atmosphere that disproportionately
affects the 1,2-IHN isomer. We observed a daily, rapid decline
of the IHN isomer ratio starting in the midafternoon (around
1500 hours local time). Chromatograms collected at this site
(Fig. 2) (39) illustrate that this was caused by a drop in the
concentration of 1,2-IHN relative to 4,3-IHN. However, these
observations are not explained using known gas-phase chemistry
as the gas-phase lifetime of 1,2-IHN is expected to be longer than
4,3-IHN due to its slower reaction rate with OH (21). This is
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Fig. 1. (A) Time series of 1,2-IHN (red) and 4,3-IHN (blue) as measured by the GC-CIMS during the Caltech field study. Solid lines represent the hourly GC
measurements, and the shaded regions encompass the error of those measurements. (B) The observed daytime (1000 to 2000 hours local time) isomer ratio
of 1,2-IHN to 4,3-IHN during the Caltech field study.
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Fig. 2. Four chromatograms of IHN collected during the Caltech field study
on August 1, 2017 show that the peak area of 1,2-IHN declines more rapidly
than 4,3-IHN in the late afternoon.

verified in Fig. 3, where the IHN isomer ratio simulated with
a one-dimensional (1-D) atmospheric model (red) consistently
overpredicts the observed ratio (black), with the largest discrep-
ancies occurring in the evening. The model shows that when
considering only the gas-phase isoprene chemistry (18) and dry
deposition (20), the IHN isomer ratio should steadily increase
during this time in contrast with observations.

Laboratory Evidence for IHN Hydrolysis
Chamber Studies. Isoprene-oxidation experiments performed in
a 24-m3 chamber (SI Appendix, section 3) suggest that 1,2-IHN
is hydrolyzed much faster than 4,3-IHN, lending one possible
explanation to the observed trend of the ambient IHN isomer
ratio measured at Caltech. In the dark chamber, the lifetime
of the 1,2-IHN isomer decreased from 45 min at 50% relative
humidity (RH) to 15 min at 85% RH—whereas no change in
the 4,3-IHN lifetime was observed. In addition, chromatograms
obtained from these experiments (SI Appendix, Fig. S2) mirrored
those collected in the field (Fig. 2). Accompanying signals of IHN
hydrolysis products, such as the isoprene diol and a small yield of
1,4-IHN (17), were observed.

During these experiments, it is likely that IHN hydrolysis was
occurring within a condensed-phase reservoir formed by the
uptake of water at high RH by salts that had been previously
deposited on the chamber walls. Similar experiments with high
levels of added ammonium sulphate seed (up to 500 µg m−3)
did not measurably alter the decay rate. In contrast, gas-phase
experiments performed in a clean 1-m3 Teflon chamber bag did
not show any decay of 1,2-IHN at high RH (>80%) over a 12-h
period. Unfortunately, this complicates interpretation of the loss
rates observed in the 24-m3 chamber, as they are likely depen-
dent on the volume of liquid material on the walls, as well as the
mixing and transport processes.

1H NMR. As we were unable to provide a quantitative constraint
on the hydrolysis loss through the chamber experiments, we use
a newly developed synthetic route to 1,2-IHN (SI Appendix, sec-

tion 3) with 1H NMR to probe the kinetics of the 1,2-IHN
hydrolysis loss (31). For this experiment, a known volume of
synthesized 1,2-IHN was added to a known volume of deuter-
ated chloroform (CDCl3), rapidly mixed, and quickly analyzed
using 1H NMR (SI Appendix, Fig. S3). In a similar fashion,
1,2-IHN was added to deuterium oxide (D2O), mixed, and ana-
lyzed. No 1,2-IHN 1H NMR signals remained in the D2O sample
(elapsed time from mixing to completion of analysis, <1 min).
Based on the signal-to-noise ratio of the 1,2-IHN 1H NMR sig-
nals in the CD3Cl sample, we assign an upper limit of 10 s
for the aqueous hydrolysis lifetime of 1,2-IHN in D2O at 298
K (SI Appendix, section 3). For comparison, Jacobs et al. (40)
measured the 4,3-IHN hydrolysis lifetime to be approximately
17.5 h in D2O. The large difference in the hydrolysis lifetimes of
these two isomers is consistent with both our chamber and field
observations.

Model Simulations of IHN Hydrolysis. Based on laboratory evi-
dence, we incorporated condensed-phase hydrolysis into a 1-D
box model to test whether this loss is consistent with the observed
diurnal profile of the IHN isomer ratio observed at Caltech.
Details of this model are provided in Materials and Methods
and SI Appendix. Briefly, the model uses the recently developed
condensed isoprene mechanism (18) and K-theory (41) to sim-
ulate the formation, oxidation, and mixing of IHN isomers in
an atmospheric column representative of conditions observed
at the Calfiornia Nexus Los Angeles Ground Site (CalNex-LA)
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Fig. 3. Comparison of observed (black) and modeled (colored lines) diur-
nal profiles of the IHN isomer ratio from the Caltech field study. Each
black dot represents the median of the hourly IHN isomer ratios, while
the gray region encompasses the 25th and 75th percentile values, and the
error bars represent the error in the study-averaged results. The model
simulation that includes dry deposition and gas-phase chemistry only (red)
overpredicted the IHN ratio, particularly in the afternoon, when 4,3-IHN
loss should be faster than that of 1,2-IHN due to OH oxidation. Inclu-
sion of a temperature-dependent (SI Appendix, Fig. S6) condensed-phase
hydrolysis loss coefficient of 1,2-IHN (defined as, k∗

hydro, a product of
Henry’s law constant and aqueous hydrolysis rate [KH × k(aq)]) enables
the model to reproduce the observed IHN isomer ratio using k∗

hydro =

4× 105 M atm−1 s−1 (blue).
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(42), which took place on the Caltech campus in 2010. Aerosol
liquid water (ALW) concentrations used in the model were cal-
culated with ISORROPIA-II (43), using aerosol measurements
obtained from CalNex-LA. Our calculated ALW compares well
with results presented in Guo et al. (44). We assume that
IHN uptake into the particle is reversible and in instantaneous
equilibrium with gas-phase concentrations (45).

The Henry’s law coefficient (KH) of the 1,2-IHN is not known,
and, from our NMR study, we have only a lower limit to k(aq).
However, provided that k(aq) is less than a few 100 s−1, the hydrol-
ysis loss rate of 1,2-IHN on aerosol (referred to here as the
hydrolysis loss coefficient (49), k∗hydro) will occur as the product
of these two terms. Therefore, we can vary k∗hydro in our simula-
tions to find the best match to the observed diurnal profile of the
IHN isomer ratio.

Fig. 3 shows how modeled IHN isomer ratios compare to obser-
vations over a range of hydrolysis loss coefficients (46), with the
best agreement occurring when k∗hydro =4× 105 M atm−1 s−1

(blue). At this rate, the heterogenous lifetime of 1,2-IHN
against hydrolysis ranges between 4 and 7 h in the daytime driven
by changes in ALW (3.6 to 6 µg m−3). This loss contributes to
∼30% of the mid-day loss of the 1,2-IHN isomer, with that frac-
tion increasing to over 50% in the evening (after 1800 hours local
time), as a result of both the increased ALW concentrations and
lower OH.

We note that ALW is highly sensitive to both humidity and
aerosol composition, and so k∗hydro will be quite variable depend-
ing on local conditions. For example, during the Southern Oxi-
dant and Aerosol Study campaign, which took place in the
southeastern United States, ALW was typically 1 to 5 µg m−3

on most afternoons, and median mass concentrations exceeded
15 µg m−3 in the morning (0600 to 0900 hours local time) (47).
Furthermore, although not important at the Pasadena field site,
hydrolysis by boundary layer cloud processing will also be effi-
cient in many places. To the extent that this is important, our
simulations described below will underrepresent the importance
of IHN hydrolysis globally.

Our model results are relatively insensitive to additional
parameters such as the assumed IHN-deposition velocity, hor-
izontal advective loss, or vertical mixing rates (SI Appendix,
section 5). However, we find that the modeled ratio is quite
sensitive to our assumed ALW. The ALW in our model was
estimated from aerosol measurements collected in May to July,
which, on average, is a more humid time period than August.
In addition, the United States has experienced a steady decline
in SO2 emissions since 2010 (48), which has been repeatedly
linked to the reduction of sulphate in aerosols in the summer (49,
50). As sulfate affects the hygroscopicity of the particle, lower
humidity and sulfate concentrations would result in lower ALW
(51) than would be predicted using CalNex-LA ALW measure-
ments. If we have overestimated ALW, then the inferred k∗hydro is
too small.

Atmospheric Implications. We have implemented the inferred
k∗hydro of 1,2-IHN into the global chemical transport model,
GEOS-Chem, that has been recently updated to reflect the most
recent laboratory studies of isoprene photochemistry (52, 53).
Shown in Fig. 4 is the change in simulated NO and O3 when
we add 1,2-IHN hydrolysis with a rate similar to that of our 1-D
model (in this case, k∗hydro = 3× 105 M atm−1 s−1; SI Appendix,
section 6) to the standard GEOS-Chem model. Consistent with
the findings of Paulot et al. (11), we find that over forested
regions, the loss of NOx via the formation of IHN and its subse-
quent conversion to HNO3 through condensed-phase hydrolysis
(SI Appendix, Fig. S8) leads to large reductions in simulated
NO levels in the tropics (independent of seasonality; Fig. 4A)
and during the Northern Hemisphere summer (Fig. 4B). This

change, in turn, substantially reduces the calculated concentra-
tions of OH (SI Appendix, Fig. S9) and O3 (Fig. 4 C and D). Of
note, surface ozone in the southeastern United States is ∼5 parts
per billion (ppb) lower in the summer with the addition of 1,2-
IHN hydrolysis (Fig. 4D)—a change that brings the simulations
into agreement with ground-based observations. Previously, to
properly simulate surface ozone in GEOS-Chem, an ad hoc
reduction between 30 and 60% in NOx emissions had been
suggested (54).

Although our laboratory measurements are unable to quantify
the aqueous hydrolysis rate of 1,2-IHN, we find that the global
impact of this chemistry is largely insensitive to the assumed
hydrolysis loss coefficient, provided that k∗hydro is at least 3× 105

M atm−1 s−1 (SI Appendix, Fig. S7). The insensitivity of our sim-
ulations to k∗hydro above most of the world’s forests is a result
of the low calculated OH levels ([OH]avg < 5× 105 molecules
cm−3; SI Appendix, Fig. S10), different from the conditions of
the Caltech field site. With such low OH, the gas-phase lifetime
of IHN approaches 24 h, and, as a result, hydrolysis outcompetes
all other IHN loss processes.

In conclusion, we present a rare observational constraint on
the isomer-specific fate of IHN using both laboratory and field
measurements obtained using GC-CIMS. Our data suggest that
global atmospheric photochemistry is remarkably sensitive to
the hydrolysis of a single isoprene hydroxy nitrate isomer, 1,2-
IHN. Using GEOS-Chem, we simulate the effect a hydrolysis
rate of at least 3× 105 M atm−1 s−1 has on NO, O3, OH,
and HNO3 concentrations in the lower atmosphere. We find
that this added loss process represents the majority of the IHN
loss over forested regions, resulting in a substantial decrease of
simulated NO in the tropics (year-round) and in the Northern
Hemisphere during the summer. This drop in NO, in turn, results
in lower concentrations of simulated ozone—allowing for better
agreement between this model and ground-based observations,
especially in the southeastern United States. Lastly, 1,2-IHN
hydrolysis acts as a significant source of HNO3 that is on par with
OH + NO2.

Materials and Methods
Description of Field Site. Measurements described here were collected from
a field site located at the Caltech campus in Pasadena, CA, which is located in
the Los Angeles metropolitan area approximately 18 km northeast of down-
town Los Angeles (DTLA) and 7 km south of the San Gabriel Mountains. The
instrument was located on the southwest corner of the roof of the 44-m
tall Caltech library (lat 34.137; long −118.126) from August 1 to 17, 2017,
sampling into the daytime prevailing winds, which arrived predominantly
from the south. Because of its proximity to DTLA, the site experienced high
levels of anthropogenic pollution ([NO]avg, daytime = 2.5 ppbv). In addition,
local vegetation is made up of known isoprene emitters (55), allowing for
local biogenic emissions to influence the site.

In addition, a weather station was colocated with our main GC-CIMS
instrument to monitor relative humidity (%), air temperature (◦C), baro-
metric pressure (mbar), solar radiation (W/m2), wind speed (m/s), and wind
direction. Additional details regarding this field site are provided in SI
Appendix.

Isomer Measurements. The GC-CIMS instrumentation, and details of its field
operation, has been described previously in the literature (36). Briefly, ambi-
ent air was pulled at a high flow rate (∼2,000 standard liters per minute)
through a Teflon-coated glass inlet (3.8-cm inner diameter; 76.2 cm long).
A subsampled portion of this gas stream was then directed into the CIMS,
either directly or after analytes are separated on a 1-m GC column. Analyte
concentrations were quantified using a CF3O− reagent ion, which is sensi-
tive toward the detection of oxygenated multifunctional compounds such
as organic peroxides and nitrates (16, 56–58). In the field, the instrument
collected data in automated 1-h cycles, with GC separation occurring in the
latter half hour.

Laboratory experiments were performed on a prototype version of the
GC-CIMS field instrument. Analytes were trapped on a portion of a 1-m col-
umn that was submerged in an isopropanol bath chilled to approximately
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Fig. 4. The standard GEOS-Chem model was updated to include an 1,2-IHN hydrolysis rate of k∗
hydro = 3× 105 M atm−1 s−1. The impact of this loss on NO

and ozone was then assessed through both annual and summer (July 1 to 31) simulations conducted in the lowest 1 km of the atmosphere. The addition
of this IHN sink resulted in a ∼40% decrease in NO in the tropics throughout the year (A) and a lesser, but still substantial, decrease in the Northern
Hemisphere during the summer (B), with respect to the base model. Likewise, O3 concentrations also experienced the same spatial and seasonal decrease as
NO (C and D). Of note, surface ozone in the southeastern United States is 5 ppb lower in the summer (D), causing this updated model to better agree with
ground-based observations.

−20◦ C. The column was then heated within a Varian CP-3800 GC oven. The
column effluent was then directed into a CF3O− CIMS.

Measurement uncertainty from field data arose from low analyte sig-
nal, caused by a combination of low ambient concentrations and the high
instrument dilution needed to prevent simultaneous trapping of water
(36). Additional details regarding data processing and measurement
uncertainties can be found in SI Appendix.

1-D Atmospheric Model. A 1-D atmospheric model was used to interpret
ambient measurements collected during the Caltech field study. The model
simulates the emission, deposition, vertical transport, and photochemical
oxidation of 250 species in an atmospheric column tuned to replicate con-
ditions observed during the 2010 CalNex-LA campaign, which also took
place on the Caltech campus. The model combines the latest version
of the Regional Atmospheric Chemistry Mechanism (59) with the con-
densed isoprene-oxidation mechanisms described by Wennberg et al. (18)
and IHN deposition rates based on measurements made by Nguyen et
al. (20). Vertical transport is simulated in the model using K-theory (41),
and its implementation in the model is described in more detail in SI
Appendix.

Given the uncertainty in local isoprene emissions due to vegetation
heterogeneity in and around the Pasadena area, sensitivity tests were per-
formed to determine a reasonable emission rate that produced agreement

between measured and modeled isoprene concentrations. ALW concentra-
tions used to model IHN partitioning were calculated using ISORROPIA-II
(43) using inputs of temperature, RH, and inorganic aerosol components
measured during CalNex-LA. The calculated ALW agreed well with that
reported by Guo et al. (44).

Data Availability. Atmospheric trace gas measurements and model out-
put data have been deposited in the California Institute of Technology
Research Data Repository CaltechDATA. IHN isomer concentration data
used here are available online (http://doi.org/10.22002/D1.971) along with
the chromatograms collected at the field site (http://doi.org/10.22002/D1.
1671), the output results of the 1-D atmospheric model (http://doi.org/10.
22002/D1.1672), and the updated isoprene mechanism used in the global
chemical transport model (http://doi.org/10.22002/D1.247). GEOS-Chem is
available for public use at http://geos-chem.org/.
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Synergistic HNO3–H2SO4–NH3 upper 
tropospheric particle formation
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Hanna E. Manninen12, António Amorim13, Farnoush Ataei14, Pia Bogert4,  
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Kimmo Korhonen18, Jordan E. Krechmer19, Andreas Kürten5, Katrianne Lehtipalo6,20, 
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Roy L. Mauldin1,2,25, Bernhard Mentler10, Tatjana Müller5,26, Antti Onnela12, Tuukka Petäjä6, 
Maxim Philippov22, Ana A. Piedehierro20, Andrea Pozzer26, Ananth Ranjithkumar27, 
Meredith Schervish1,2, Siegfried Schobesberger18, Mario Simon5, Yuri Stozhkov22, 
António Tomé28, Nsikanabasi Silas Umo4, Franziska Vogel4, Robert Wagner4, 
Dongyu S. Wang3, Stefan K. Weber12, André Welti20, Yusheng Wu6, 
Marcel Zauner-Wieczorek5, Mikko Sipilä6, Paul M. Winkler17, Armin Hansel10,29, 
Urs Baltensperger3, Markku Kulmala6,15,30,31, Richard C. Flagan7, Joachim Curtius5, 
Ilona Riipinen9,32, Hamish Gordon1,11, Jos Lelieveld26,33, Imad El-Haddad3, 
Rainer Volkamer16, Douglas R. Worsnop6,19, Theodoros Christoudias33, Jasper Kirkby5,12, 
Ottmar Möhler4 & Neil M. Donahue1,2,11,34 ✉

New particle formation in the upper free troposphere is a major global source of cloud 
condensation nuclei (CCN)1–4. However, the precursor vapours that drive the process 
are not well understood. With experiments performed under upper tropospheric 
conditions in the CERN CLOUD chamber, we show that nitric acid, sulfuric acid and 
ammonia form particles synergistically, at rates that are orders of magnitude faster 
than those from any two of the three components. The importance of this mechanism 
depends on the availability of ammonia, which was previously thought to be 
efficiently scavenged by cloud droplets during convection. However, surprisingly 
high concentrations of ammonia and ammonium nitrate have recently been observed 
in the upper troposphere over the Asian monsoon region5,6. Once particles have 
formed, co-condensation of ammonia and abundant nitric acid alone is sufficient to 
drive rapid growth to CCN sizes with only trace sulfate. Moreover, our measurements 
show that these CCN are also highly efficient ice nucleating particles—comparable to 
desert dust. Our model simulations confirm that ammonia is efficiently convected 
aloft during the Asian monsoon, driving rapid, multi-acid HNO3–H2SO4–NH3 
nucleation in the upper troposphere and producing ice nucleating particles that 
spread across the mid-latitude Northern Hemisphere.

Intense particle formation has been observed by airborne measurements 
as a persistent, global-scale band in the upper troposphere over tropical 
convective regions1,2,4. Upper tropospheric nucleation is thought to 
provide at least one-third of global CCN3. Increased aerosols since the 
industrial revolution, and their interactions with clouds, have masked 
a large fraction of the global radiative forcing by greenhouse gases. 
Projections of aerosol radiative forcing resulting from future reductions 
of air pollution are highly uncertain7. Present-day nucleation involves 
sulfuric acid (H2SO4) over almost all the troposphere8. However, binary 
nucleation of H2SO4–H2O is slow and, so, ternary or multicomponent 

nucleation with extra vapours such as ammonia (NH3)9 and organics10,11 
is necessary to account for observed new-particle-formation rates3,8,12.

Ammonia stabilizes acid–base nucleation and strongly enhances 
particle formation rates9. However, ammonia is thought to be extremely 
scarce in the upper troposphere because its solubility in water and reac-
tivity with acids should lead to efficient removal in convective clouds. 
However, this assumption is not supported by observation. Ammonia 
vapour has been repeatedly detected in the Asian monsoon upper 
troposphere, with mixing ratios of up to 30 pptv (2.5 × 108 cm−3) for a 
three-month average5 and up to 1.4 ppbv (1.2 × 1010 cm−3) in hotspots6. 
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The release of dissolved ammonia from cloud droplets may occur dur-
ing glaciation13. Once released in the upper troposphere, ammonia can 
form particles with nitric acid, which is abundantly produced by light-
ning14,15. These particles will live longer and travel farther than ammonia 
vapour, with the potential to influence the entire upper troposphere 
and lower stratosphere of the Northern Hemisphere6.

Fundamental questions remain about the role and mechanisms of 
nitric acid and ammonia in upper tropospheric particle formation. 
Recent CLOUD (Cosmics Leaving Outdoor Droplets) experiments at 
CERN have shown that nitric acid and ammonia vapours below 278 K can 
condense onto newly formed particles as small as a few nanometres in 
diameter, driving rapid growth to CCN sizes16. At even lower tempera-
tures (below 258 K), nitric acid and ammonia can directly nucleate to 
form ammonium nitrate particles, although pure HNO3–NH3 nucleation 
is too slow to compete with H2SO4–NH3 nucleation under comparable 

conditions. However, the results we present here show that, when all 
three vapours are present, a synergistic interaction drives nuclea-
tion rates orders of magnitude faster than those from any two of the 
three components. Once nucleated through this multi-acid–ammonia 
mechanism, the particles can grow rapidly by co-condensation of NH3 
and HNO3 alone, both of which may be far more abundant than H2SO4 
in the upper troposphere.

Particle formation measurements in CLOUD
Here we report new-particle-formation experiments performed with 
mixtures of sulfuric acid, nitric acid and ammonia vapours in the 
CLOUD chamber9 at CERN between September and December 2019 
(CLOUD 14; see Methods for experimental details). To span ranges 
typical of the upper troposphere, we established quasi-steady-state 
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Fig. 1 | Example experiment showing nitric acid enhancement of H2SO4–NH3 
particle formation. a, Particle number concentrations versus time at mobility 
diameters >1.7 nm (magenta) and >2.5 nm (green). The solid magenta trace is 
measured by a PSM1.7 and the solid green trace is measured by a CPC2.5.  
The fixed experimental conditions are about 6.5 × 108 cm−3 NH3, 223 K and 25% 
relative humidity. A microphysical model reproduces the main features of the 
observed particle formation (dashed lines; see text for details). b, Particle 
formation rate versus time at 1.7 nm ( J1.7), measured by a PSM. c, Particle size 
distribution versus time, measured by an SMPS. d, Gas-phase nitric acid and 
sulfuric acid versus time, measured by an I− CIMS and a NO3

− CIMS, respectively. 
Sulfuric acid through SO2 oxidation started to appear soon after switching on 

the UV lights at time = 0 min, building up to a steady state of 2.3 × 106 cm−3 after 
a wall-loss-rate timescale of around 10 min. The subsequent H2SO4–NH3 
nucleation led to a relatively slow formation rate of 1.7-nm particles.  
The particles did not grow above 2.5 nm because of their slow growth rate and 
corresponding low survival probability against wall loss. Following injection of 
2.0 × 109 cm−3 nitric acid into the chamber after 115 min, while leaving the 
production rate of sulfuric acid and the injection rate of ammonia unchanged, 
we observed a sharp increase in particle formation rate (panel b), together with 
rapid particle growth of 40 nm h−1 (panel c). The overall systematic scale 
uncertainties of ±30% on particle formation rate, −33%/+50% on sulfuric acid 
concentration and ±25% on nitric acid concentration are not shown.
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vapour concentrations in the chamber of (0.26–4.6) × 106 cm−3 sulfuric 
acid (through photochemical oxidation of SO2), (0.23–4.0) × 109 cm−3 
nitric acid (through either photochemical oxidation of NO2 or injection 
from an evaporator) and (0.95–6.5) × 108 cm−3 ammonia (through injec-
tion from a gas bottle). In an extreme experiment to simulate hotspot 
conditions in the Asian monsoon anticyclone, we raised sulfuric acid, 
nitric acid and ammonia to maximum concentrations of 6.2 × 107 cm−3, 
3.8 × 109 cm−3 and 8.8 × 109 cm−3, respectively. The experiments were 
conducted at 223 K and 25% relative humidity, representative of upper 
tropospheric conditions.

Figure 1 shows the evolution of a representative new-particle- 
formation experiment in the presence of around 6.5 × 108 cm−3 ammo-
nia. The top three panels show particle number concentrations above 
1.7 nm and above 2.5 nm (Fig. 1a), particle formation rate at 1.7 nm ( J1.7) 
(Fig. 1b) and particle size distribution (Fig. 1c). The bottom panel shows 
HNO3 and H2SO4 vapour concentrations (Fig. 1d). We switched on the 

ultraviolet (UV) lights at t = 0 min to oxidize SO2 with OH radicals and 
form H2SO4. Sulfuric acid started to appear shortly thereafter and built 
up to a steady state of 2.3 × 106 cm−3 over the wall-loss timescale of about 
10 min. Under these conditions, the data show a modest formation 
rate of 1.7-nm particles from H2SO4–NH3 nucleation, consistent with 
previous CLOUD measurements8. These particles grew only slowly  
(about 0.5 nm h−1 at this H2SO4 and particle size17). No particles reached 
2.5 nm within 2 h, owing to their slow growth rate and low survival prob-
ability against wall loss.

At t = 115 min, we raised the nitric acid concentration to 2.0 × 109 cm−3, 
through direct injection instead of photochemical production, so that 
we could independently control the nitric acid and sulfuric acid con-
centrations. The particle number increased 30-fold and 1,300-fold for 
particles larger than 1.7 nm and 2.5 nm, respectively. In addition, these 
newly formed particles grew much more rapidly (40 nm h−1), reach-
ing 20 nm within 30 min. This experiment shows that nitric acid can 
substantially enhance particle formation and growth rates for fixed 
levels of sulfuric acid and ammonia.

We also conducted model calculations on the basis of known ther-
modynamics and microphysics (Methods). Our model results (dashed 
traces in Fig. 1a) consistently and quantitatively confirm the experimen-
tal data: sulfuric acid and ammonia nucleation produces only 1.7-nm 
particles, whereas addition of nitric acid strongly enhances the forma-
tion rates of both 1.7-nm and 2.5-nm particles.

We conducted two further experiments under conditions similar 
to Fig. 1 but holding the concentrations of a different pair of vapours 
constant while varying the third. For the experiment shown in Extended 
Data Fig. 1, we started by oxidizing NO2 to produce 1.6 × 109 cm−3 HNO3 
in the presence of about 6.5 × 108 cm−3 NH3 and then increased H2SO4 
from 0 to 4.9 × 106 cm−3 by oxidizing progressively more injected SO2. 
For the experiment shown in Extended Data Fig. 2, we first established 
4.6 × 106 cm−3 H2SO4 and 4.0 × 109 cm−3 HNO3, and then increased NH3 
from 0 to about 6.5 × 108 cm−3. We consistently observed relatively slow 
nucleation when only two of the three vapours are present, whereas 
addition of the third vapour increased nucleation rates by several orders 
of magnitude.

Figure 2 shows particle formation rates measured by CLOUD at 1.7-nm 
mobility diameter ( J1.7) versus ammonia concentration, at 223 K.  
The J1.7 data were all measured in the presence of ions from galactic 
cosmic rays (GCR) and — so — represent the sum of neutral and 
ion-induced channels. The black diamond shows the measured J1.7 of 
0.3 cm−3 s−1 for HNO3–NH3 nucleation with 1.5 × 109 cm−3 nitric acid, 
about 6.5 × 108 cm−3 ammonia and sulfuric acid below the detection 
limit of 5 × 104 cm−3 (this is the event shown in Extended Data Fig. 1). At 
this same ammonia concentration, we measured J1.7 = 6.1 cm−3 s−1 at 
2.3 × 106 cm−3 H2SO4, demonstrating the much faster rate of H2SO4–NH3 
nucleation (not shown). This measurement is consistent with models 
on the basis of previous CLOUD studies of H2SO4–NH3 nucleation18,19, 
as illustrated by the model simulations for 4.0 × 106 cm−3 sulfuric acid 
(red solid curve). The blue circles show our measurements of J1.7  
for HNO3–H2SO4–NH3 nucleation at 4.0 × 106 cm−3 sulfuric acid and 
(1.6–6.5) × 108 cm−3 ammonia, in the presence of 1.5 × 109 cm−3 nitric 
acid (the event shown in Extended Data Fig. 2). The blue dashed curve 
is a power law fit to the measurements, indicating a strong sensitivity 
to ammonia concentration J k( = [NH ] )1.7 3

3.7 .
The vertical grey dotted line in Fig. 2 separates ammonia concentra-

tions measured in different regions in the upper troposphere5; Asian 
monsoon conditions are to the right of this vertical line. Our results 
indicate that H2SO4–NH3 nucleation is probably responsible for new par-
ticle formation in regions with ammonia concentrations below around 
108 cm−3 (12 pptv), but that HNO3–H2SO4–NH3 nucleation probably 
dominates at higher ammonia levels in the Asian monsoon upper tropo-
sphere. Our nucleation rate measurements confirm that the stronger 
sulfuric acid is favoured by ammonia in the ammonia-limited regime, 
so nitric acid will evaporate from the clusters, as it may be displaced by 
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Fig. 2 | Particle formation rates at 1.7 nm ( J1.7) versus ammonia 
concentration at 223 K and 25% relative humidity. The chemical systems are 
HNO3–NH3 (black), H2SO4–NH3 (red) and HNO3–H2SO4–NH3 (blue). The black 
diamond shows the CLOUD measurement of HNO3–NH3 nucleation at 
1.5 × 109 cm−3 HNO3, 6.5 × 108 cm−3 NH3 and with H2SO4 below the detection limit 
of 5 × 104 cm−3. The red solid curve is J1.7 versus ammonia concentration at 
4.0 × 106 cm−3 sulfuric acid from a H2SO4–NH3 nucleation parameterization on 
the basis of previous CLOUD measurements18,19. The blue circles show the 
CLOUD measurements of HNO3–H2SO4–NH3 nucleation at 4.0 × 106 cm−3 H2SO4, 
1.5 × 109 cm−3 HNO3 and (1.6–6.5) × 108 cm−3 NH3. The data are fitted by a power 
law, J1.7 = k[NH3]3.7 (blue dashed curve). The vertical grey dotted line separates 
ammonia concentrations measured in different regions in the upper 
troposphere5; the region to the right indicates the Asian monsoon conditions. 
The horizontal grey solid lines show J1.7 upper limits for ion-induced nucleation 
resulting from the GCR ionization rate of around 2 ion pairs cm−3 s−1 at ground 
level and 35 ion pairs cm−3 s−1 in the upper troposphere. Among the three 
nucleation mechanisms, H2SO4–NH3 nucleation dominates in regions with low 
ammonia (below around 1.0 × 108 cm−3, or 12 pptv), whereas HNO3–H2SO4–NH3 
nucleation dominates at higher ammonia levels characteristic of the Asian 
monsoon upper troposphere. The bars indicate 30% estimated total error on 
the particle formation rates. The overall systematic scale uncertainties are 
−33%/+50% for sulfuric acid and ±25% for nitric acid concentrations.
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sulfuric acid. However, as ammonia increases from 1.6 to 6.5 × 108 cm−3, 
we observe sharp increases in J1.7 for HNO3–H2SO4–NH3 nucleation from 
10 to 400 cm−3 s−1 and in the ratio of particle formation rates (HNO3–
H2SO4–NH3:H2SO4–NH3) from 4 to 30. Our nucleation model (as in Fig. 1) 
yields slightly higher J1.7 than that observed, as shown in Extended Data 
Fig. 3, but the formation rate variation with ammonia, nonetheless, 
shows a similar slope.

CLOUD has previously shown that ions enhance nucleation for all 
but the strongest acid–base clusters; HNO3–H2SO4–NH3 is probably 
not an exception. However, the ion enhancement is limited by the GCR 
ion-pair production rate. We show with the horizontal grey solid lines 
in Fig. 2 the upper limits on J1.7 for ion-induced nucleation of about 
2 cm−3 s−1 at ground level and 35 cm−3 s−1 in the upper troposphere. Our 
experimental nucleation rates for HNO3–H2SO4–NH3 are mostly above 
upper tropospheric GCR ion production rates. This is confirmed by 
similar J1.7 measured during a neutral nucleation experiment, in which 
an electric field was used to rapidly sweep ions from the chamber. Thus, 
for this nucleation scheme, the neutral channel will often prevail over 
the ion-induced channel in the Asian monsoon upper troposphere. 
However, when ammonia is diluted away outside the Asian monsoon 
anticyclone, ions may enhance the nucleation rate up to the GCR limit 
near 35 cm−3 s−1.

In a formal sense, the new-particle-formation mechanism could be 
one of two types: formation of stable H2SO4–NH3 clusters, followed by 
nano-Köhler-type activation by nitric acid and ammonia16; or else true 
synergistic nucleation of nitric acid, sulfuric acid and ammonia9. In a 
practical sense, it makes little difference because coagulation loss is a 
major sink for all small clusters in the atmosphere20, so appearance of 
1.7-nm particles by means of any mechanism constitutes new particle 

formation. Regardless, we can distinguish between these two pos-
sibilities from our measurements of the molecular composition of 
negatively charged clusters using an atmospheric pressure interface 
time-of-flight (APi-TOF) mass spectrometer. In Fig. 3, we show cluster 
mass defect plots during H2SO4–NH3 and HNO3–H2SO4–NH3 nucleation 
events at 223 K. The marked difference between Fig. 3a, b indicates that 
nitric acid changes the composition of the nucleating clusters down to 
the smallest sizes; thus, the mechanism is almost certainly synergistic 
HNO3–H2SO4–NH3 nucleation.

In Fig. 3a, the predominant ions are one of several deprotonated 
sulfuric acid species, including HSO4

−, SO4
−, HSO5

−, SO5
− and so on, 

resulting in a group of points for clusters with similar molecular com-
position but different mass and mass defect. In the figure, we use the 
labels (m:n) to indicate the number of sulfuric acid and ammonia 
molecules in the (H2SO4)m–(NH3)n clusters, including both neutral and 
charged species. The mass defect plot closely resembles those previ-
ously measured for H2SO4–NH3 nucleation21. Negative-ion-induced 
nucleation proceeds with the known acid–base stabilization mecha-
nism, in which sulfuric acid dimers form as a first step (with HSO4

− 
serving as a conjugate base for the first H2SO4) and then clusters 
subsequently grow by 1:1 H2SO4–NH3 addition (that is, as ammo-
nium bisulfate)9. We use a grey line to illustrate the 1:1 addition path, 
beginning at (H2SO4)4–(NH3)0. Clusters larger than the sulfuric acid 
tetramers mostly contain several ammonia molecules and, so nearly 
all clusters in Fig. 3a lie above the grey line.

Figure 3b shows a pronounced change in the cluster APi-TOF signal 
during HNO3–H2SO4–NH3 nucleation. In addition to pure (H2SO4)m–
(NH3)n clusters, we observe clusters with one extra HNO3 molecule (or 
NO3

− ion), that is, (HNO3)1–(H2SO4)m–(NH3)n, and the pure nitric acid 
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Fig. 3 | Molecular composition of negatively charged clusters during 
H2SO4–NH3 and HNO3–H2SO4–NH3 nucleation events at 223 K and 25% 
relative humidity. Mass defect (difference from integer mass) versus mass/
charge (m/z) of negatively charged clusters measured with an APi-TOF mass 
spectrometer for 1.7 × 106 cm−3 sulfuric acid and 6.5 × 108 cm−3 ammonia (a) and 
2.0 × 107 cm−3 sulfuric acid, 3.2 × 109 cm−3 nitric acid and 7.9 × 109 cm−3 ammonia 
(b). The symbol colours indicate the molecular composition as shown. The 
symbol area is proportional to the logarithm of signal rate (counts per second). 
The labels (m:n) near the symbols indicate the number of sulfuric acid (H2SO4)m 
and ammonia (NH3)n molecules in the clusters, including both neutral and 
charged species. The grey dashed lines follow clusters that contain pure H2SO4 
molecules with an HSO4

− ion (or SO4 instead of H2SO4 and/or SO4
− instead of 

HSO4
− for pure H2SO4 clusters falling below this line in b). The grey solid lines 

follow the 1:1 H2SO4–NH3 addition starting at (H2SO4)4–(NH3)0. Nearly all 
clusters in panel a lie above this line, whereas nearly all clusters in panel b fall 
below it. Most clusters containing HNO3 lack NH3 by the time they are measured 
(they fall near the (m:0) grey dashed line), but the marked difference between  
a and b indicates that the nucleating clusters had distinctly different 
compositions, probably including relatively weakly bound HNO3–NH3 pairs in 
b. It is probable that nucleating clusters in the CLOUD chamber at 223 K contain 
HNO3–H2SO4–NH3 with a roughly 1:1 acid–base ratio. However, during the 
transmission from the chamber to the warm APi-TOF mass spectrometer at 
293 K, the clusters lose HNO3 and NH3, leaving a less volatile core of H2SO4 with 
depleted NH3. The evaporation of a single NH3 or HNO3 molecule from a cluster 
displaces it on the mass defect plot by a vector distance indicated by the black 
arrows in b.
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monomer and dimer. In sharp contrast with Fig. 3a, all these clusters are 
deficient in NH3, falling below the same grey line as in Fig. 3a. The most 
deficient contain up to nine bare acids, that is, (H2SO4)9 or (H2SO4)8–
(HNO3)1. Figure 3b almost certainly does not represent the true cluster 
composition in the chamber because binary nucleation of H2SO4 does 
not proceed under these exact conditions of H2SO4, NH3, temperature 
and relative humidity (as demonstrated by Fig. 3a). We can interpret 
Fig. 3b as follows. It is probable that clusters in the CLOUD chamber 
(223 K) contain HNO3–H2SO4–NH3 with a roughly 1:1 acid–base ratio, 
representing partial neutralization. However, during the transmis-
sion from the cold chamber to the warm APi-TOF mass spectrometer 
(about 293 K), the clusters lose relatively weakly bound HNO3 and NH3 
molecules but not the lower-volatility H2SO4 molecules. Regardless of 
the interpretation, however, the notable difference between Fig. 3a, b 
indicates that the sampled clusters had very different compositions 
and that nitric acid participated in the formation of clusters as small 
as a few molecules.

Ice nucleation measurements
Nitric acid and ammonia not only enhance the formation rate of new 
particles but also drive their rapid growth to sizes at which they may 
act as CCN or ice nucleating particles (INP), above around 50 nm. To 
assess their effect on cirrus clouds, we measured the ice nucleation 
ability of particles formed from HNO3–H2SO4–NH3 nucleation in the 
CLOUD chamber. Simulating ‘hotspot’ conditions, we first formed 
pure ammonium nitrate particles by means of HNO3–NH3 nucleation 
and then increased the H2SO4 fraction in the particles by oxidizing 
progressively more SO2. We measured their ice nucleation ability using 

the online continuous flow diffusion instrument, mINKA (Methods 
and Extended Data Fig. 4). As shown in Fig. 4a, pure ammonium nitrate 
particles (purple data points) nucleate ice only at high ice saturation 
ratios (Sice), characteristic of homogeneous nucleation (shown by a 
steep increase of ice activation above Sice = 1.60 at 215 K). This indicates 
that pure ammonium nitrate particles, formed by means of HNO3–NH3 
nucleation, are probably in a liquid state initially, albeit at a relative 
humidity below the deliquescence point22. However, addition of sul-
fate, with a particulate sulfate-to-nitrate molar ratio as small as 10−4, 
triggers crystallization of ammonium nitrate. For these particles, we 
observed a small heterogeneous ice nucleation mode at Sice of 1.54 
(blue data points), with other conditions and the particle size dis-
tribution held almost constant. Moreover, as the sulfate molar frac-
tion progressively rises to just 0.017 (still almost pure but now solid 
ammonium nitrate), an active surface site density (ns) of 1010 m−2 is 
reached at Sice as low as 1.26. This is consistent with previous findings, 
in which particles were generated through nebulization, with a much 
larger particle diameter and a much higher sulfate-to-nitrate ratio23. 
Our measurements show that HNO3–H2SO4–NH3 nucleation followed 
by rapid growth from nitric acid and ammonia condensation — which 
results in low sulfate-to-nitrate ratio — could provide an important 
source of INP that are comparable with typical desert dust particles 
at nucleating ice24.

Atmospheric implications
Our findings suggest that HNO3–H2SO4–NH3 nucleation may domi-
nate new particle formation in the Asian monsoon region of the upper 
troposphere, with a ‘flame’ of new particles in the outflow of convective 
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Fig. 4 | Ice nucleation properties and modelled regional contribution of 
upper tropospheric particles formed from HNO3–H2SO4–NH3 nucleation.  
a, Active surface site density versus ice saturation ratio, measured by the 
mINKA instrument at CLOUD, at 233 K and 25% relative humidity. Pure 
ammonium nitrate particles (purple points) show homogeneous freezing. 
However, addition of only small amounts of sulfate creates highly 
ice-nucleation-active particles. At around 1.7% sulfate fraction (red points), the 
ice nucleating efficiency is comparable with desert dust particles24.  

b, Simulation of particle formation in a global model (EMAC) with efficient 
vertical transport of ammonia into the upper troposphere during the Asian 
monsoon. Including multi-acid HNO3–H2SO4–NH3 nucleation (on the basis of 
the blue dashed curve in Fig. 2) enhances particle number concentrations 
(nucleation mode) over the Asian monsoon region by a factor of 3–5 compared 
with the same model with only H2SO4–NH3 nucleation (from Dunne et al.8, 
similar to the red solid curve in Fig. 2).
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clouds, in which up to 1010 cm−3 ammonia6 mixes with low (background) 
levels of sulfuric acid and nitric acid. Without this mechanism, particle 
formation through the traditional ternary H2SO4–NH3 nucleation would 
be much slower and most probably rate-limited by the scarce sulfuric 
acid. Furthermore, by co-condensing with nitric acid, the convected 
ammonia also drives the growth of the newly formed particles. Given 
typical acid-excess conditions in the upper troposphere, condensa-
tional growth is governed by the availability of ammonia. Consequently, 
particles will steadily (and rapidly) grow until ammonia is depleted after 
several e-folding times set by the particle condensation sink. On the 
basis of condensation sinks generally observed in the tropical upper 
troposphere4, this timescale will be several hours. Within this time 
interval, given the observed ammonia levels, newly formed particles 
will be able to grow to CCN sizes and even small admixtures of sulfuric 
acid will render these particles efficient INP.

Our laboratory measurements provide a mechanism that can 
account for recent observations of abundant ammonium nitrate 
particles in the Asian monsoon upper troposphere6. To evaluate its 
importance on a global scale, we first parameterized our experimen-
tally measured J1.7 for HNO3–H2SO4–NH3 nucleation as a function of 
sulfuric acid, nitric acid and ammonia concentrations (Methods). 
The parameterization is obtained using a power-law dependency 
for each vapour (Extended Data Fig. 5), given that the critical cluster 
composition is associated with the exponents according to the first 
nucleation theorem25. Then we implemented this parameterization 
in a global aerosol model (EMAC, see Methods for modelling details).  
The EMAC model predicts that HNO3–H2SO4–NH3 nucleation at 250 hPa 
(11 km, approximately 223 K) produces an annual average exceeding 
1,000 cm−3 new particles over an extensive area (Extended Data Fig. 6). 
This corresponds to an increase in particle number concentration 
(Fig. 4b) up to a factor of five higher than in a control simulation with 
only ternary H2SO4–NH3 nucleation8. The strongest increase occurs 
mostly over Asia, in which ammonia is ample because of deep convec-
tion from ground sources.

However, another global model (TOMCAT, see Methods) shows 
much lower ammonia mixing ratios in the upper troposphere than 
EMAC (<1 pptv compared with <100 pptv, respectively), although with 
a broadly similar spatial distribution (Extended Data Fig. 7a, b). This 
large variability of upper tropospheric ammonia is also indicated by 
recent field measurements on local6,26 and global5,27 scales. In view of 
its importance for both H2SO4–NH3 and HNO3–H2SO4–NH3 nucleation, 
there is an urgent need to improve upper tropospheric measurements 
of ammonia, as well as improve knowledge of its sources, transport 
and sinks.

We thus turned to a cloud-resolving model to estimate the ammo-
nia vapour fraction remaining after deep convection (see Methods). 
We show in Extended Data Fig. 8 that around 10% of the boundary 
layer ammonia can be transported into the upper troposphere and 
released as vapour by a base-case convective cloud. The sensitivity 
tests further illustrate that the key factor governing the fraction of 
ammonia remaining in the cloud outflow is the retention of ammonia 
molecules by ice particles (Extended Data Fig. 8e), whereas cloud water 
pH (Extended Data Fig. 8c) and cloud water content (Extended Data 
Fig. 8d) only play minor roles once glaciation occurs. Given that more 
than 10 ppbv of ammonia is often observed in the Asian boundary 
layer28, it is plausible that the observed 1.4 ppbv (1010 cm−3) ammonia 
in the upper troposphere6 is indeed efficiently transported by the 
convective systems.

Although the ammonium–nitrate–sulfate particles are formed 
locally, they can travel from Asia to North America in just three days 
by means of the subtropical jet stream, as the typical residence time 
of Aitken mode particles ranges from one week to one month in the 
upper troposphere29. As a result, these particles can persist as an inter-
continental band, covering more than half of the mid-latitude surface 
area of the Northern Hemisphere (Extended Data Fig. 6). In summary, 

synergistic nucleation of nitric acid, sulfuric acid and ammonia could 
provide an important source of new CCN and ice nuclei in the upper 
troposphere, especially over the Asian monsoon region, and is closely 
linked with anthropogenic ammonia emissions27.
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Methods

The CLOUD facility
We conducted our measurements at the CERN CLOUD facility, a 
26.1-m3, electropolished, stainless-steel CLOUD chamber that allows 
new-particle-formation experiments under the full range of tropo-
spheric conditions with scrupulous cleanliness and minimal contamina-
tion9,30. The CLOUD chamber is mounted in a thermal housing, capable 
of keeping the temperature constant in the range 208 K and 373 K with 
a precision of ±0.1 K (ref. 31). Photochemical processes are initiated 
by homogeneous illumination with a built-in UV fibre-optic system, 
including four 200-W Hamamatsu Hg-Xe lamps at wavelengths between 
250 and 450 nm and a 4-W KrF excimer UV laser at 248 nm with adjust-
able power. New particle formation under different ionization levels 
is simulated with and without the electric fields (±30 kV), which can 
artificially scavenge or preserve small ions produced from ground-level 
GCR. Uniform spatial mixing is achieved with magnetically coupled 
stainless-steel fans mounted at the top and bottom of the chamber. 
The characteristic gas mixing time in the chamber during experiments 
is a few minutes. The loss rate of condensable vapours and particles 
onto the chamber walls is comparable with the ambient condensation 
sink. To avoid contamination, the chamber is periodically cleaned 
by rinsing the walls with ultra-pure water and heating to 373 K for at 
least 24 h, ensuring extremely low contaminant levels of sulfuric acid 
<5 × 104 cm−3 and total organics <50 pptv (refs. 32,33). The CLOUD gas 
system is also built to the highest technical standards of cleanliness and 
performance. The dry air supply for the chamber is provided by boil-off 
oxygen (Messer, 99.999%) and boil-off nitrogen (Messer, 99.999%) 
mixed at the atmospheric ratio of 79:21. Highly pure water vapour, 
ozone and other trace gases such as nitric acid and ammonia can be 
precisely added at the pptv level from ultra-pure sources.

Instrumentation
Gas-phase sulfuric acid was measured using a nitrate chemical ioni-
zation APi-TOF (nitrate-CI-APi-TOF) mass spectrometer34,35 and an 
iodide chemical ionization time-of-flight mass spectrometer equipped 
with a Filter Inlet for Gases and Aerosols (I-FIGAERO-CIMS)36,37.  
The nitrate-CI-APi-TOF mass spectrometer is equipped with an elec-
trostatic filter in front of the inlet to remove ions and charged clusters 
formed in the chamber. A corona charger is used to ionize the reagent 
nitric acid vapour in a nitrogen flow38. Nitrate ions are then guided in 
an atmospheric pressure drift tube by an electric field to react with 
the analyte molecules in the sample flow. Sulfuric acid is quantified for 
the nitrate-CI-APi-TOF with a detection limit of about 5 × 104 cm−3, fol-
lowing the same calibration and loss correction procedures described 
previously9,32,39. FIGAERO is a manifold inlet for a CIMS with two oper-
ating modes. In the sampling mode, a coaxial core sampling is used 
to minimize the vapour wall loss in the sampling line. The total flow is 
maintained at 18.0 slpm and the core flow at 4.5 slpm; the CIMS sam-
ples at the centre of the core flow with a flow rate of 1.6 slpm. Analyte 
molecules are introduced into a 150-mbar ion-molecule reactor, chemi-
cally ionized by iodide ions that are formed in a Po-210 radioactive 
source and extracted into the mass spectrometer. The sulfuric acid 
calibration coefficient for the I-FIGAERO-CIMS is derived using the 
absolute sulfuric acid concentrations measured with the pre-calibrated 
nitrate-CI-APi-TOF.

Gas-phase nitric acid was also measured using the I-FIGAERO-CIMS. 
Nitric acid concentration was quantified by measuring HNO3/N2 mix-
tures with known nitric acid concentrations, following similar pro-
cedures described previously16. The HNO3/N2 mixture was sourced 
from flowing 2 slpm ultra-pure nitrogen through a portable nitric acid 
permeation tube, at constant 40 °C. The permeation rate of nitric acid 
was determined by passing the outflow of the permeation tube through 
an impinger containing deionized water and analysing the resulting 
nitric acid solution through spectrophotometry.

Gas-phase ammonia was either measured or calculated. We meas-
ured ammonia using a proton transfer reaction time-of-flight mass 
spectrometer (PTR3-TOF-MS, or PTR3 for short)40. As a carrier gas for 
the primary ions, we used argon (ultra-high purity 5.0) to ensure that 
ammonium ions could not be artificially formed in the region of the 
corona discharge. Although the theoretical detection limit from peak 
height and width would be even smaller, the lowest concentration 
we were able to measure during the first fully ammonia-free runs of 
the beginning of the campaign was 109 cm−3. An explanation for this is 
that, when concentrations of ammonia are low, effects of wall interac-
tion of the highly soluble ammonia become important and the decay 
of ammonia in the inlet line becomes very slow. To reduce inlet wall 
contacts, we used a core-sampling technique directly in front of the 
instrument to sample only the centre 2 slpm of the 10 slpm inlet flow, 
but owing to frequent necessary on-site calibrations of volatile organic 
compounds, a Teflon ball valve was placed within the sample line that 
probably influenced measurements during times of low ammonia con-
centrations. At concentrations above about 2 × 109 cm−3 ammonia, 
however, the response of the instrument was very fast, so that, for 
example, changes in the chamber ammonia flow rate were easily detect-
able. Off-site calibrations showed a humidity-independent calibration 
factor of 0.0017 ncps/ppb. Calibrated data from the PTR3 agree very 
well with the Picarro above 1010 cm−3 (detection limit of the Picarro). 
The PTR3 also provides information about the overall cleanliness of 
the volatile organic compounds in the chamber. The technique was 
extensively described previously40.

For ammonia concentrations below 109 cm−3, we calculated concen-
tration using the calibrated ammonia injection flow and an estimated 
first-order wall-loss rate. The wall-loss rate (kwall) for ammonia inside 
the CLOUD chamber is confirmed to be faster than for sulfuric acid41, 
and can be determined from the following expression42:
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in which A/V is the surface-to-volume ratio of the chamber, ke is the 
eddy diffusion constant (determined by the turbulent mixing intensity, 
not the transport properties of the gases) and Di is the diffusion coef-
ficient for each gas. Cwall is thus referred to as an empirical parameter 
of experiment conditions in the chamber. Here we first determine the 
kwall for sulfuric acid and nitric acid to be 1.7 × 10−3 and 1.9 × 10−3 s−3, 
respectively, by measuring their passive decay rates and subtracting 
the loss rate of chamber dilution for both (1.2 × 10−3 s−1), as well as the 
loss rate of dimer formation for sulfuric acid (around 1.6 × 10−3 s−1 for 
5 × 106 cm−3 H2SO4). The kwall for sulfuric acid agrees with our measure-
ments from previous campaigns43. We then derive the Cwall for sulfuric 
acid and nitric acid both to be 2.0 × 10−4 torr−0.5 cm−1 s−0.5, with DH SO2 4

 of 
74 torr cm2 s−1 and DHNO3

 of 87 torr cm2 s−1 (ref. 44). Finally, we calculate 
the kwall for ammonia to be 2.7 × 10−3 s−1, with DNH3

 of 176 torr cm2 s−1 
(ref. 44). Ammonia desorption from the chamber surface is a strong 
function of the temperature and is believed to be negligible at low 
temperatures30. Even after a long time exposure, ammonia desorption 
should be less than 1.6 × 106 cm−3, according to previous parameteriza-
tion of ammonia background contamination in the CLOUD chamber41.

The composition of negatively charged ions and clusters were 
determined using an APi-TOF mass spectrometer45. The APi-TOF 
mass spectrometer is connected to the CLOUD chamber by means of 
a 1-inch (21.7-mm inner diameter) sampling probe, with coaxial core 
sampling to minimize the wall losses in the sampling line. The total 
sample flow is maintained at 20 slpm and the core sample flow for 
the APi-TOF mass spectrometer at 0.8 slpm. Because this instrument 
only measures charged clusters, the measurements were made during 
GCR conditions. Owing to a large temperature difference between 
the cold chamber (223 K) and the warm APi-TOF mass spectrometer 
(around 293 K), HNO3–H2SO4–NH3 clusters probably lose relatively 



weakly bonded HNO3 and NH3 molecules. This resembles the chemical 
ionization process of detecting ammonia with the nitrate-CI-APi-TOF, 
in which HNO3 and NH3 molecules rapidly evaporate from the resulting 
ammonia nitrate cluster in the CI-APi-TOF vacuum regions46.

Gas monitors were used to measure ozone (O3, Thermo Environmen-
tal Instruments TEI 49C), sulfur dioxide (SO2, Thermo Fisher Scientific 
Inc. 42i-TLE) and nitric oxide (NO, ECO Physics, CLD 780TR). Nitro-
gen dioxide (NO2) was measured by a cavity attenuated phase shift 
nitrogen dioxide monitor (CAPS NO2, Aerodyne Research Inc.) and a 
home-made cavity enhanced differential optical absorption spectros-
copy (CE-DOAS) instrument. The relative humidity of the chamber was 
determined by dew point mirrors (EdgeTech).

Particle number concentrations were monitored by condensation 
particle counters (CPCs), including an Airmodus A11 nano Condensation 
Nucleus Counter (nCNC), consisting of a particle size magnifier (PSM) 
and a laminar-flow butanol-based CPC47, as well as a butanol TSI 3776 
CPC. Particle size distributions between 1.8 nm and 500 nm were meas-
ured by a nano-scanning electrical mobility spectrometer (nSEMS), a 
nano-scanning mobility particle sizer (nano-SMPS) and a long-SMPS. The 
nSEMS used a new, radial opposed migration ion and aerosol classifier 
(ROMIAC), which is less sensitive to diffusional resolution degradation 
than the DMAs48, and a soft X-ray charge conditioner. After leaving the 
classifier, particles were first activated in a fast-mixing diethylene glycol 
stage49 and then counted with a butanol-based CPC. The nSEMS trans-
fer function that was used to invert the data to obtain the particle size 
distribution was derived using 3D finite element modelling of the flows, 
electric field and particle trajectories50,51. The two commercial mobility 
particle size spectrometers, nano-SMPS and long-SMPS, have been fully 
characterized, calibrated and validated in several previous studies52–54.

Particle-phase chemical composition was quantified using a 
high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, 
Aerodyne Research). The working principles of the HR-ToF-AMS have 
been explained in detail previously55,56. In brief, particles are focused by 
an aerodynamic lens and flash-vaporized by impact onto a hot surface 
at 600 °C under a high vacuum. The vapours are then ionized by 70-eV 
electrons and the ions are detected with a ToF mass spectrometer. 
Ionization efficiency calibrations were conducted before and after 
the campaign and the variation is within 30%. The particle collection 
efficiency was considered constant during the experiments because 
temperature and relative humidity in the chamber were fixed and the 
particle composition was dominated by ammonium nitrate.

INP were measured in real time at 215 K, as a function of ice saturation 
ratio (Sice), by the mobile ice nucleation instrument of the Karlsruhe 
Institute of Technology (mINKA). mINKA is a continuous flow diffusion 
chamber with vertical cylindrical geometry57, on the basis of the design of 
INKA58,59. A detailed description of the continuous flow diffusion chamber 
working principle is presented elsewhere57. Here, predefined scans of the 
water vapour saturation ratios were performed in the diffusion chamber 
every 30 min. For each scan, Sice steadily increased from 1.2 to 1.8 while the 
temperature was kept constant. The errors associated to temperature 
and Sice inside the diffusion chamber were derived from the uncertainty 
of the thermocouples attached to the instrument walls (±0.5 K)59.

Determination of particle formation rate
The particle formation rate, J1.7, is determined at 1.7-nm mobility diameter 
(1.4-nm physical diameter), here using a PSM. At 1.7 nm, a particle is nor-
mally considered to be above its critical size and, therefore, thermody-
namically stable. J1.7 is calculated using the flux of the total concentration 
of particles growing past a specific diameter (here at 1.7 nm), as well as 
correction terms accounting for aerosol losses owing to dilution in the 
chamber, wall losses and coagulation. Details were described previously47.

Nucleation model
The nucleation model is on the basis of the thermodynamic model for 
H2SO4–NH3 nucleation described in detail previously18,19. It is developed 

from the general dynamic equations60, to calculate the production 
and losses for each cluster/particle size to determine the formation 
rates of the acid–base clusters. For HNO3–H2SO4–NH3 nucleation, we 
simplify the model simulations by extrapolating nano-Köhler-type 
activation by nitric acid and ammonia to clusters down to sulfuric acid 
trimers. Eighty size bins, ranging from one ammonium sulfate cluster 
to 300 nm, are used to capture the evolution of the size and composi-
tion of polydisperse particles.

In brief, we calculate the equimolar condensation flux of nitric acid 
and ammonia on the basis of the supersaturation of gas-phase nitric 
acid and ammonia over particle-phase ammonium nitrate39,60:

k C a CΦ = [ − ] (2)i
v

i
v

i ic
0

in which Φi
v is the net condensation flux of nitric acid or ammonia, with 

vapour concentration Ci
v and saturation concentration Ci

0. The term ai 
is the activity of species i at the condensed-phase surface of the parti-
cle and kc is the condensation sink for vapours resulting from interac-
tion with particles. The saturation concentrations of nitric acid and 
ammonia are estimated on the basis of the dissociation constant Kp 
(ref. 60). When the vapours are unsaturated, particle-phase ammonium 
nitrate will evaporate to nitric acid and ammonia to reach the  
equilibrium.

We also include the Kelvin term (Ki,p) in the simulation to account for 
the increased activity a a K( = ′ )i i i p,  of a small curved cluster/particle:

K = 10 (3)i p
d d

,
( / )K10 p

in which Ki,p scales with a ‘Kelvin diameter’ (dK10) for decadal change and 
dp is the diameter of the small cluster/particle. The Kelvin diameter for 
ammonium nitrate is estimated to be 5.3 nm by fitting the data from 
previous CLOUD experiments according to:

S = 10 (4)d d( / )K10 act

in which S is the saturation ratio, calculated by means of dividing the 
product of measured concentrations of nitric acid and ammonia by the 
dissociation constant Kp and dact is the activation diameter, at which 
the thermodynamic energy barrier for condensation is overcome and 
particles start to grow rapidly.

Determination of ice nucleation ability
During the experiments, aerosol particles were continuously sampled 
from the CLOUD chamber into the mINKA ice nucleation instrument, 
using an actively cooled sampling line for a consistent temperature 
profile. Particles were then subject to well-controlled ice supersatu-
rated conditions; the ones that nucleated ice were selectively detected 
and counted by an optical particle counter (custom-modified Climet 
CI-3100, lower detection limit of about 1 μm) located at the outlet of 
the instrument. Background ice crystals were quantified before each 
saturation scan (for 2 min) and subtracted from the total ice number 
concentration of the corresponding measurement. The fraction of INP 
(fice) was calculated as the ratio of ice crystals number concentration 
to the total number of particles larger than 10 nm in diameter. The ice 
nucleation active surface site density (ns)61 was calculated as the ratio 
of ice number concentration to the total surface area of particles larger 
than 10 nm in diameter. The overall uncertainty of ns is estimated to be 
±40% (ref. 24). Particle number and surface area concentrations were 
measured by the SMPS described in the ‘Instrumentation’ section.

In Extended Data Fig. 4, we provide a detailed summary of the meas-
urement data recorded during the ‘hotspot condition’ experiment 
shown in Fig. 4a, in which we investigated the heterogeneous crystal-
lization and ice nucleation ability of ammonium nitrate/sulfate parti-
cles produced directly from new particle formation. We first formed 
pure ammonium nitrate particles through nucleation of nitric acid and 
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ammonia vapours at 223 K and 15–30% relative humidity (over liquid 
water). When the evolution of the particle size distribution (Extended 
Data Fig. 4a) levelled off at a median diameter of around 100 nm, we 
turned on the UV lights and progressively injected SO2 at 03:33 to 
gradually increase sulfuric acid concentration (Extended Data Fig. 4b). 
Consequently, in Extended Data Fig. 4c, aerosol mass spectrometer 
measurements show that particle composition was dominated by 
ammonium nitrate over the course of the experiment, whereas sulfate 
appeared approximately 1 h after the injection of SO2. Finally, we show 
ice nucleation measurements in Extended Data Fig. 4d. Each vertical 
trajectory represents a saturation ratio scan in mINKA, colour-coded by 
the measured ice active fraction (fice). In each scan, we use a horizontal 
black dash to indicate an ice onset threshold corresponding to fice of 
10−3. Circles indicate the corresponding scans shown in Fig. 4a.

When the particulate sulfate-to-nitrate molar ratio is smaller than 
0.0001, the ice nucleation threshold is detected at an ice saturation 
ratio (Sice) of about 1.6, consistent with the homogeneous freezing 
threshold of aqueous solution droplets62. This finding shows that, if 
particles presented as absolutely pure ammonium nitrate (NH4NO3), 
they would exist as supercooled liquid droplets even at very low rela-
tive humidity, consistent with previous studies22,63. As the particulate 
sulfate-to-nitrate molar ratio gradually increases to about 0.017, the 
ice nucleation onset shifts to a lower Sice of 1.2, caused by heterogene-
ous ice nucleation on crystalline ammonium nitrate particles23. Crys-
talline salts are known to be efficient INP at low temperatures when 
their deliquescence occurs at higher relative humidity compared with 
the humidity range of their heterogeneous ice nucleation activity64. 
The fact that the addition of sulfate can promote the crystallization 
of ammonium nitrate has already been observed in previous studies 
with particles nebulized in large sizes (around 1 μm) from bulk solutions 
of ammonium nitrate/sulfate6,23,65. But it is evidenced here for the first 
time in an in situ particle nucleation and crystallization experiment 
representative of upper tropospheric conditions.

Particle formation rate parameterization
According to the first nucleation theorem for multicomponent sys-
tems25, we parameterize the particle formation rates ( J1.7) for the HNO3–
H2SO4–NH3 nucleation scheme with the empirical formula:

J k= [H SO ] [HNO ] [NH ] (5)a b c
1.7 2 4 3 3

in which vapour concentrations are in units of cm−3 and k, a, b and 
c are free parameters. This method has been validated by previous 
observations that the particle formation rates ( J1.7) vary as a product 
of power-law functions of nucleating vapours. For example, J1.7 for ter-
nary sulfuric acid, ammonia (and water) nucleation follows a cubic 
dependency on sulfuric acid8 and a linear8 or quadratic19 dependency on 
ammonia; J1.7 for multicomponent nucleation of sulfuric acid, biogenic 
oxidized organics and ammonia follows a quadratic dependency on 
sulfuric acid, a linear dependency on both organics66 and ammonia11. 
The prefactor k accounts for effects of external conditions, such as tem-
perature and relative humidity, thus differs in different environments.

To isolate variables, here we fit the power-law exponents for sulfuric 
acid, nitric acid and ammonia, respectively, to the dataset of experi-
ments in which only the corresponding vapour concentration was var-
ied. The red triangles, blue circles and yellow squares in Extended Data 
Fig. 5a–c (same experiments in Extended Data Fig. 1, Fig. 1 and Extended 
Data Fig. 2), respectively, show that J1.7 depends on [H2SO4]3 for sulfuric 
acid between 2.6 × 105 and 2.9 × 106 cm−3 (or 0.008 and 0.09 pptv), on 
[HNO3]2 for nitric acid between 2.3 × 108 and 1.7 × 109 cm−3 (or 7 and 
52 pptv) and on [NH3]4 for ammonia between 1.7 × 108 and 4.9 × 108 cm−3 
(or 5 and 15 pptv). The third power exponent for sulfuric acid is consist-
ent with previously reported parameterizations for ternary H2SO4–NH3 
nucleation8,19. The fourth power exponent for ammonia, however, is 
larger than those in ternary8,19 or multicomponent systems11, which 

emphasizes the critical role of ammonia and suggests further bonding 
between ammonia and nitric acid molecules in the nucleating clus-
ters. Next, we verify the exponents by refitting the product of [H2SO4]3, 
[HNO3]2 and [NH3]4 to the full dataset. Extended Data Fig. 5d shows 
good consistency (R2 = 0.9) of the parameterization among the three 
experiments, with a slope of 3.4 × 10−71 s−1 cm24 being the prefactor k:

J = 3.4 × 10 [H SO ] [HNO ] [NH ] (6)1.7
−71

2 4
3

3
2

3
4

This parameterization is representative of new particle formation 
in the Asian monsoon upper troposphere because our experimental 
conditions of 223 K and 25% relative humidity, as well as concentrations 
of sulfuric acid67,68 and nitric acid69,70, are within the upper tropospheric 
range, with ammonia5,6 typical of Asian monsoon regions. One caveat, 
however, is that the cosmic radiation was at the ground level in our 
chamber, as shown with grey dot-dashed horizontal line in Extended 
Data Fig. 5d. The ion-pair production rate can be up to ten times higher 
in the ambient upper troposphere71, potentially leading to further 
enhancement of J1.7 by ion-induced nucleation, although the neutral 
channel dominates in our experiments.

Estimated temperature dependence of the particle formation 
rate
We did not cover the full temperature range in the upper troposphere, 
instead focusing on 223 K. However, to make the parameterization in 
the previous section more applicable for model simulations while not 
overstating the role of this mechanism, we provide some constraints on 
the temperature dependence of J1.7 for HNO3–H2SO4–NH3 nucleation. 
Broadly, it is certain that particle formation involving HNO3 will have a 
strong temperature dependence, becoming much slower as T increases.

We first present the temperature dependence of J1.7 for pure HNO3–
NH3 nucleation with the expression:

J k T f= ( ) ([HNO ], [NH ]) (7)1.7 3 3

in which k(T) is an empirical temperature-dependent rate constant 
and has the Arrhenius form

( )k T( ) = e , (8)T
E
R− 1

in which T is the absolute temperature (in Kelvin), E is the activation 
energy and R is the universal gas constant. f([HNO3],[NH3]) is a func-
tion of the ammonia and nitric acid concentrations (including the 
pre-exponential factor and free-fitting parameters). This expression 
is then fitted to the dataset in Fig. 3c in our previous study16, in which J1.7 
were measured with only nitric acid, ammonia and water vapours added 
to the chamber, and the temperature was progressively decreased from 
258 K to 249 K. Because the ammonia and nitric acid concentrations 
were kept almost constant during the temperature transition, we treat 
the f([HNO3],[NH3]) term as a constant to reduce the degrees of free-
dom. This expression with its two free parameters leads to a good agree-
ment with the data, R2 = 0.96. And the fitted −E/R and f([HNO3],[NH3]) 
are 14,000 K and 3.2 × 10−26, respectively.

Next, we apply the same k(T) term to the HNO3–H2SO4–NH3 param-
eterization (equation (9)), assuming that the multicomponent nuclea-
tion follows a similar temperature dependence:







J = 2.9 × 10 e [H SO ] [HNO ] [NH ] (9)T

1.7
−98

14,000
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Although this temperature-dependent parameterization may not 
be the final description of this process, it tracks the trend of J1.7 well. 
In the event of 4 × 106 cm−3 H2SO4, 1.5 × 109 cm−3 HNO3 and 5 × 108 cm−3 
NH3, the multicomponent nucleation is quenched ( J1.7 < 0.01 cm−3 s−1) 
above 268 K. This is consistent with the observations that nitric acid 



and ammonia only contribute to the growth of ammonium sulfate 
particles at 278 K (ref. 16). At 223 K, the parameterized J1.7 is 306 cm−3 s−1, 
matching our measurement in Fig. 2. And for the temperature in the 
upper troposphere and lower stratosphere (198 K), the parameterized 
J1.7 is 8 × 105 cm−3 s−1, which is still much slower than its kinetic limit of 
about 109–1010 cm−3 s−1.

The EMAC global model
The ECHAM/MESSy Atmospheric Chemistry (EMAC) model is a numeri-
cal chemistry and climate simulation system that includes sub-models 
describing tropospheric and middle atmosphere processes and their 
interaction with oceans, land and human influences72. It uses the sec-
ond version of the Modular Earth Submodel System (MESSy2) to link 
multi-institutional computer codes. Atmospheric circulation is calcu-
lated by the 5th generation of the European Centre Hamburg general 
circulation model (ECHAM5 (ref. 73)) and atmospheric chemical kinet-
ics are solved for every model time step. For the present study, we 
applied EMAC (ECHAM5 version 5.3.02, MESSy version 2.54.0) in the 
T42L31ECMWF-resolution, for example, with a spherical truncation 
of T42 (corresponding to a quadratic Gaussian grid of approximately 
2.8° by 2.8° in latitude and longitude) with 31 vertical hybrid pressure 
levels up to 10 hPa. EMAC uses a modal representation of aerosols 
dynamics (GMXe) that describes the aerosol size distribution as seven 
interacting log-normal distributions, of which four modes are soluble 
and three modes are insoluble. New particles are added directly to the 
nucleation mode. The applied model setup comprises the sub-model 
New Aerosol Nucleation (NAN) that includes new parameterizations 
of aerosol particle formation rates published in recent years74. These 
parameterizations include ion-induced nucleation. The ion-pair pro-
duction rate, needed to calculate the ion-induced or ion-mediated 
nucleation, is described using the sub-model IONS, which provides 
ion-pair production rates74.

The TOMCAT global model
The TOMCAT model is a global 3D offline chemical transport model75,76. 
It is run at approximately 2.8° spatial resolution, such as EMAC on a 
T42 grid, driven by ECMWF ERA-Interim reanalysis meteorological 
fields for the year 2008. We also used 31 hybrid sigma-pressure levels 
from the surface to 10 hPa. The dissolved fraction of gases in cloud 
water is calculated by means of an equilibrium Henry’s law approach 
and set to zero for temperatures below −20 °C. The model includes 
GLOMAP aerosol microphysics77 with nitrate and ammonium from the 
HyDIS solver78 and the representation of new particle formation used 
by Gordon et al.3. The HyDIS solver adopts a sophisticated approach to 
the dissolution of nitric acid and ammonia into the aerosol phase that 
is a hybrid between a dynamic representation of the process, which 
accounts for the time needed for mass transport, and an equilibrium 
representation, which does not78. The main limitation of the solver 
is that it assumes all aerosol particles are liquid, which is probably a 
poor approximation in cold, dry conditions frequently found in the 
upper troposphere.

The cloud trajectories framework
We conducted a sensitivity study on ammonia transport processes and 
estimated the fraction remaining of ammonia vapour after convection 
from the boundary layer to the upper troposphere, using a cloud tra-
jectories framework described in detail in Bardakov et al.79,80. In brief, 
trajectories from a convective system simulated with the large-eddy 
simulation (LES) model MIMICA81 were extracted and a parcel repre-
senting the cloud outflow was selected for further analysis (Extended 
Data Fig. 8a). The meteorological profiles and clouds microphysics 
scheme used here were the same as in Bardakov et al.80, producing 
altitude-dependent distributions of water and ice hydrometeors 
depicted in Extended Data Fig. 8. Partitioning of gas between vapour 
and aqueous phase along the trajectory was calculated on the basis 

of Henry’s law constant adjusted to a cloud pH, H* = H × 1.7 × 10(9−pH) 
following the expression for ammonia from Seinfeld and Pandis60.

We then investigated the factors governing ammonia transport 
through the simulated convective system by varying: (1) the pH for 
the liquid water hydrometeors (Extended Data Fig. 8c); (2) the total 
amount of water in the system (Extended Data Fig. 8d); (3) the reten-
tion of ammonia molecules by the ice hydrometeors (Extended Data 
Fig. 8e). In our base-case simulation, the pH was assumed to have an 
altitude-dependent profile, reflecting the higher abundance of acids 
close to the surface and ranging from 4.5 to 5, in accordance with the 
representative pH values in the EMAC simulation. The base-case water 
content was as in Bardakov et al.80 and the ice retention coefficient 0.05 
in accordance with Ge et al.13, with no further uptake on ice.

Atmospheric interpretation
This work focuses on the Asian monsoon region in part because this 
region is fairly extensive, but also because ammonia concentrations 
measured in this region are by far the highest in the upper troposphere. 
Although we frame this synergistic HNO3–H2SO4–NH3 nucleation in a 
scenario that suits the Asian monsoon upper troposphere, the phys-
ics applies more broadly — the colder the conditions are, the more 
important this mechanism is likely to be. To explore the importance of 
this synergistic nucleation to the atmosphere, we combine our experi-
mental results, cloud resolving modelling and global-scale chemical 
transport modelling. On the basis of these constraints, the rate-limiting 
elements of new particle formation seem to be convective transport 
of ammonia and the production rate of particles in the mixing zone 
between convective outflow and the background upper free tropo-
sphere; however, confirmation of this will require extensive field and 
modelling studies.

Generally, nitric acid ranges between about 108 and 109 cm−3 (refs. 14,15) 
and sulfuric acid between about 105 and 106 cm−3 (refs. 82,83) in the tropi-
cal upper troposphere. The typical acid-excess conditions leave the 
principal uncertainty being ammonia levels, which are not yet well 
constrained. Although satellite-based ammonia measurements have 
provided a spatial distribution on a global scale, they are limited to 
cloud-free areas owing to blockage of the ammonia signal by optically 
thick clouds. However, deep convection followed by cloud glaciation 
may be a major source of upper tropospheric ammonia. This process 
may then not be captured by satellites as it occurs near clouds, with 
short time duration and high spatial heterogeneity. This may also 
explain why the in situ-measured ammonia concentrations are up to 
40 times higher than those from satellite measurements6.

Ammonia has no known chemical source in the atmosphere but is 
instead transported by cloud processes from the surface, whereas nitric 
acid and sulfuric acid vapours are formed primarily by out-of-cloud 
oxidation. Consequently, it is probable that this synergistic nucleation 
occurs initially in the outflow of convective clouds, in which the released 
ammonia mixes with pre-existing (background) nitric acid and sulfuric 
acid. Subsequently, as ammonia is titrated over several e-folding times 
(governed by the condensation sink in this mixing zone) and the outflow 
air fully mixes with the background air, nucleation conditions will shift 
from the ammonia-rich regime to the ammonia-limited regime. These 
highly dynamic processes are thus the key to constraining the climatic 
effects of this synergistic nucleation in Asian monsoon and potentially 
other convective regions. Nevertheless, current ambient measure-
ments confirm the presence of ample ammonia, as well as particles 
comprised largely of ammonium nitrate4, and our experiments show 
that synergistic HNO3–H2SO4–NH3 nucleation is a viable mechanism for 
new particle formation in the Asian monsoon upper troposphere. As 
global ammonia emissions continue to increase owing to agricultural 
growth and the warmer climate84,85, the importance of this particle 
formation mechanism will increase.

Further, as there is almost no in situ composition measurement of 
clusters or newly formed particles in the upper troposphere, we can 
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only infer the major particle formation pathway from indirect evi-
dence such as composition of precursor vapours or larger particles. 
Previously established mechanisms include binary and ternary sulfuric 
acid nucleation, which drive new particle formation over marine or 
anthropogenically influenced regions1,4,86,87, nucleation by oxygenated 
organics, which dominates over pristine vegetated areas such as the 
Amazon basin2,10,88, and nucleation by iodine oxidation products, which 
may be especially important in marine convection89,90. Over the Asian 
monsoon regions, however, mixed emissions of both inorganic and 
organic vapours may well complicate the particle formation mecha-
nism. However, it has been demonstrated that ammonium nitrate can 
often explain more than half of the particulate volume in the upper 
troposphere6. This means that the HNO3–NH3 concentration is prob-
ably higher than the sum of all other condensable vapours (that is, 
sulfuric acid and oxygenated organics). And given that HNO3–H2SO4–
NH3 nucleation is orders of magnitude faster than binary and ternary 
sulfuric acid nucleation at observed ammonia levels, we therefore 
infer that synergistic HNO3–H2SO4–NH3 nucleation is a major parti-
cle formation pathway in the Asian monsoon upper troposphere. It 
seems unlikely that this inorganic pathway and the organic pathways 
are antagonistic in growth, and without strong indications otherwise, 
it seems probable that they are more or less additive for nucleation 
itself. However, to further investigate interactions between different 
nucleation schemes, we would rely on further information on the source 
and identity of organic vapours that are present in the Asian monsoon 
upper troposphere.

Data availability
The full dataset shown in the figures is publicly available at https://doi.
org/10.5281/zenodo.5949440. Source data are provided with this paper.

Code availability
The EMAC (ECHAM/MESSy) model is continuously further devel-
oped and applied by a consortium of institutions. The use of MESSy 
and access to the source code is licensed to all affiliates of institu-
tions that are members of the MESSy Consortium. Institutions can 
become a member of the MESSy Consortium by signing the MESSy 
Memorandum of Understanding. More information can be found on 
the MESSy Consortium website (https://www.messy-interface.org). 
All code modifications presented in this paper will be included in the 
next version of MESSy. The TOMCAT model (http://homepages.see.
leeds.ac.uk/~lecmc/tomcat.html) is a UK community model. It is avail-
able to UK (or NERC-funded) researchers who normally access the 
model on common facilities or who are helped to install it on their local 
machines. As it is a complex research tool, new users will need help to 
use the model optimally. We do not have the resources to release and 
support the model in an open way. Any potential user interested in 
the model should contact Martyn Chipperfield. The model updates 
described in this paper are included in the standard model library. The 
cloud trajectories model is publicly available at https://doi.org/10.5281/
zenodo.5949440. Codes for conducting the analysis presented in this 
paper can be obtained by contacting the corresponding author, Neil 
M. Donahue (nmd@andrew.cmu.edu).
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | Enhancement of HNO3–NH3 particle formation by 
sulfuric acid. a, Particle number concentrations versus time at mobility 
diameters >1.7 nm (magenta) and >2.5 nm (green). The solid magenta trace is 
measured by a PSM1.7 and the solid green trace is measured by a CPC2.5.  
The fixed experimental conditions are about 6.5 × 108 cm−3 NH3, 223 K and 25% 
relative humidity. b, Particle formation rate versus time at 1.7 nm ( J1.7), 
measured by a PSM. c, Particle size distribution versus time, measured by an 
SMPS. d, Gas-phase nitric acid and sulfuric acid versus time, measured by an I− 
CIMS and a NO3

− CIMS, respectively. We started the experiment by oxidizing 
NO2 to produce 1.6 × 109 cm−3 HNO3 in the presence of about 6.5 × 108 cm−3 
ammonia. At time = 0 min, we turned off the high-voltage clearing field to allow 
the ion concentration to build up to a steady state between GCR production 

and wall deposition. The presence of ions (GCR condition) induces slow  
HNO3–NH3 nucleation, followed by relatively fast particle growth by nitric acid 
and ammonia condensation. We thus observe formation of both 1.7-nm and  
2.5-nm particles by about one order of magnitude in about 3.5 h, with a slower 
approach to steady state because of the longer wall deposition time constant 
for the larger particles. Then, we increased H2SO4 in the chamber from 0 to 
4.9 × 106 cm−3 by oxidizing progressively more injected SO2 after 211 min, with a 
fixed production rate of nitric acid and injection rate of ammonia. 
Subsequently, particle concentrations increase by three orders of magnitude 
within 30 min. The overall systematic scale uncertainties of ±30% on particle 
formation rate, −33%/+50% on sulfuric acid concentration and ±25% on nitric 
acid concentration are not shown.
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Extended Data Fig. 2 | See next page for caption.



Extended Data Fig. 2 | Enhancement of H2SO4–HNO3 nucleation by 
ammonia. a, Particle number concentrations versus time at mobility 
diameters >1.7 nm (magenta) and >2.5 nm (green). The solid magenta trace is 
measured by a PSM1.7 and the solid green trace is measured by a CPC2.5. The 
fixed experimental conditions are 223 K and 25% relative humidity. b, Particle 
formation rate versus time at 1.7 nm ( J1.7), measured by a PSM. c, Particle size 
distribution versus time, measured by an SMPS. d, Gas-phase nitric acid and 
sulfuric acid versus time, measured by an I− CIMS and a NO3

− CIMS, respectively; 
gas-phase ammonia versus time, calculated with a first-order wall-loss rate. 
Before the experiment, we cleaned the chamber by rinsing the walls with ultra-
pure water, followed by heating to 373 K and flushing at a high rate with 
humidified synthetic air for 48 h. We started with an almost perfectly clean 
chamber and only HNO3, SO2 and O3 vapours present at constant levels. Sulfuric 

acid starts to appear by means of SO2 oxidation soon after switching on the UV 
lights at time = 0 min, building up to a steady state of 5.0 × 106 cm−3 with the 
wall-loss timescale of about 10 min. Subsequently, we observe slow formation 
of 1.7-nm particles, yet they do not reach 2.5 nm during the course of a 2-h 
period with small growth rates and low survival probability. Then, owing to the 
injection of ammonia from 0 to around 6.5 × 108 cm−3 into the chamber after 
80 min, a sharp increase in the rate of particle formation is observed with a 
fixed production rate of sulfuric acid and injection rate of nitric acid. The 
sulfuric acid concentration decreases slightly afterwards, owing to 
accumulated condensation sink from fast particle growth. The overall 
systematic scale uncertainties of ±30% on particle formation rate, −33%/50% on 
sulfuric acid concentration and ±25% on nitric acid concentration are not 
shown.
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Extended Data Fig. 3 | Particle formation rates at 1.7 nm ( J1.7) versus 
ammonia concentration at 223 K and 25% relative humidity. Circles are the 
CLOUD measurements (the same as those in Fig. 2). The curve represents the 

model simulations on the basis of known thermodynamics and microphysics, 
including Kelvin effects, for nucleating clusters.



Extended Data Fig. 4 | Measurement of the ice nucleation ability of  
HNO3–H2SO4–NH3 particles versus sulfate-to-nitrate ratio. a, Particle size 
distribution versus time during the experiment, measured by an SMPS.  
b, Gas-phase sulfuric acid versus time, measured by a nitrate CIMS.  

c, Particle-phase chemical composition versus time, measured by an AMS.  
d, Fraction of INP at the nominal temperature of 215 K. The horizontal black 
dashes indicate the ice fraction threshold, fice = 10−3. The coloured circles 
correspond to the sulfate-to-nitrate ratios shown in Fig. 4a.
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Extended Data Fig. 5 | Parameterization of the HNO3–H2SO4–NH3 particle 
formation rate. a–c Particle formation rate ( J1.7) as a function of H2SO4, HNO3 
and NH3 vapour concentrations, respectively, at 223 K and 25% relative 
humidity. The red triangles, blue circles and yellow squares represent 
experiments while varying only the concentration of H2SO4 (Extended Data 
Fig. 1), HNO3 (Fig. 1) and NH3 (Extended Data Fig. 2), respectively. The H2SO4 
concentration was varied between 4.6 × 105 and 2.9 × 106 cm−3, HNO3 between 
2.3 × 108 and 1.7 × 109 cm−3 and NH3 between 1.8 × 108 and 5.1 × 108 cm−3. d, The 
multi-acid–ammonia parameterization (black line) on the basis of equation (6) 

with k = 3.4 × 10−71 s−1 cm24. The grey dashed horizontal line shows a maximum of 
about 2 cm−3 s−1 ion-induced nucleation in the CLOUD chamber under GCR 
conditions, limited by the ion-pair production rate from GCR plus 
beam-background muons. The bars indicate 30% estimated total error on the 
particle formation rates, although the overall systematic scale uncertainties of 
−33%/+50% on sulfuric acid concentration and ±25% on nitric acid 
concentration are not shown. e, Temperature dependence of J1.7 for HNO3–
H2SO4–NH3 nucleation (blue curve) on the basis of equation (9) with 
k = 2.9 × 10−98 e14,000/T s−1 cm24.



Extended Data Fig. 6 | Modelled contribution of HNO3–H2SO4–NH3 
nucleation to upper tropospheric particles. Number concentrations of 
multi-acid new particles (nucleation mode) at 250-hPa altitude simulated in a 
global model (EMAC) with efficient vertical transport of ammonia. The particle 
formation rate is on the basis of the blue dashed curve in Fig. 2 and 

parameterization shown in Extended Data Fig. 5. The extra particle number 
concentrations are shown, that is, relative to the same model without 
multi-acid nucleation. High annually averaged particle numbers are expected 
in the monsoon region (grey rectangle) and adjacent regions.
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a

b

Extended Data Fig. 7 | Modelled annual mean ammonia mixing ratios at 
250 hPa (11 km, about 223 K). a, The EMAC global model simulations are 
higher than the MIPAS satellite observations, although consistent with aircraft 

measurements5,6. b, The TOMCAT global model predicts much less ammonia 
(<1 pptv) in the upper troposphere.



Extended Data Fig. 8 | Modelled transport of ammonia to the upper 
troposphere in deep convective clouds. a, Trajectories of the simulated 
convective cloud event (grey) and a selected parcel representing a buoyant 
parcel reaching the upper troposphere (black). b, The simulated evolution of 
parcel A altitude (green dashed trace) and the total mass concentration and 

phase of the cloud hydrometeors (red and blue curves). c–e Sensitivity of the 
predicted ammonia concentrations within parcel A to cloud water pH, total 
water amount and retention coefficient (by ice particles) as compared with the 
base-case simulation (blue trace in all figures).
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ABSTRACT: Volatile organic compounds (VOCs) were measured in
the Los Angeles (LA) Basin from mid-April to mid-July 2020 during
the COVID-19 pandemic, as a part of the Los Angeles Air Quality
Campaign (LAAQC). VOCs were quantified in over 450 samples using
one- and two-dimensional gas chromatography with different
detectors; mixing ratios were determined for 150 compounds
associated with on- and off-road mobile, volatile chemical product,
and biogenic sources. During the sampling period, traffic counts
increased from ∼55% to ∼80% of pre-COVID levels. While the
average afternoon combustion-derived VOCs and carbon monoxide
(CO) mixing ratios did not change significantly between April−May
and June−July, there was a shift in the distribution to higher mixing
ratios in June−July, particularly for VOCs associated with gasoline evaporation. Compared to observations made in the last major air
quality campaign in the LA Basin (CalNex-2010), emission ratios for 40 compounds relative to acetylene (VOC/acetylene) have
remained similar, while emission ratios relative to CO (VOC/CO) have dropped to ∼60% of their 2010 values. This divergence in
trends suggests that whereas mobile sources are still the dominant source of the combustion-derived VOCs measured in the LA
Basin, there has been a shift in the mobile source sectors, with a growing contribution from sources that have lower CO/acetylene
emission ratios, including off-road equipment and vehicles. In addition to the observed shift in source sector contributions, estimated
OH exposure was 70−120% higher than in 2010.

KEYWORDS: VOCs, urban air quality, COVID-19, mobile source emissions, off-road emissions, VCPs

1. HISTORICAL CONTEXT FOR THE 2020
OBSERVATIONS

During the 1950s, the Los Angeles (LA) Basin became
infamous for its severely poor air quality. Since then, bans on
open burning, regulation of emissions from electric power
generation, and most notably, regulation of vehicle emissions
and fuels have led to dramatic improvements in air quality.1

Warneke et al.2 showed that between 1960 and 2010, carbon
monoxide (CO) and volatile organic compounds (VOCs)
decreased substantially: a factor of ∼100 between 1960 and
2010, at a rate of ∼7.5% per year.2 An exception to this
decrease was short-chain alkanes (ethane and propane)
associated with loss of processed natural gas and emissions
from oil and gas production. In separate analyses of VOCs
measured in the LA Basin during the 2010 California Research
at the Nexus of Air Quality and Climate Change (CalNex-
2010) campaign, Parrish et al.1 and Warneke et al.2 concluded
that even though significant reductions in on-road vehicle
emissions had been achieved, emissions from gasoline vehicles
remained the dominant source of VOCs.

Early modeling studies of secondary organic aerosol (SOA)
formation during CalNex-2010 demonstrated that oxidation of
VOCs alone was insufficient (15−53%) to explain the
observed SOA mass.3 Various parametrizations were tested
to consider the contribution of lower volatility emissions,
including intermediate VOCs (IVOCs). Depending on the
model variant, biogenic sources were predicted to account for
3−7% of observed SOA, diesel 16−27%, nonfossil (likely
cooking) 19−35%, and gasoline 36−81%. More recent
modeling studies of SOA formation during CalNex-2010
focused on the overall contribution of mobile source IVOCs
and VOCs using updated emissions profiles for those sources,
and the potential contribution of IVOCs from other sources.4
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Lu et al.4 reported that IVOCs from mobile sources increased
the predicted peak SOA mass by 70%, but the increase did not
represent observed ambient IVOCs or SOA mass, suggesting
IVOCs are an important, but inadequately represented, source
of SOA. An additional 12% of nonmobile gaseous organic
emissions was required to match observed IVOCs (mobile
IVOCs = 2.76 × 104 kg day−1, nonmobile IVOCs = 3.07 × 104

kg day−1), while an additional 14.8% of nonmobile gaseous
organic emissions (nonmobile IVOCs = 6.85 × 104 kg day−1)
was required to match observed SOA. Lu et al.4 noted that the
additional amounts were likely unrealistic, and thus better
constraints on sources and processes were still needed.
McDonald et al.5 highlighted the importance of non-

combustion source emissions in the LA Basin for atmospheric
composition and chemistry more broadly. The addition of
volatile chemical product (VCP) emissions was found to
improve agreement between measured and predicted VOCs
during CalNex-2010; particularly acetone, ethanol, and 1-
propanol. Using chemical production statistics and indoor and
outdoor measurements, they estimated that VCPs could
contribute ∼53% of VOC emissions, ∼55% of VOC reactivity,
and ∼61% of SOA formation in the LA Basin in 2010. They
also estimated that combustion source emissions contributed
∼32% of the VOC emissions, ∼37% of the VOC reactivity, and
∼37% of the SOA formation.
Historical trends suggest that atmospheric composition and

chemistry have changed since 2010. In the context of trace and
greenhouse gas emissions, between 2010 and 2020 new vehicle
emissions regulations have been implemented in California,6

fuel economy standards have been updated,6 and the on-road
vehicle fleet has shifted toward hybrid and electric vehicles.7

The influence of these changes on VOC and CO levels has not
been quantified. Further, levels of nitrogen oxides (NOx) have
dropped within the LA Basin by an average of 49% (Figure
S1), including in Pasadena, CA;8 the effects of the last ten
years of NOx emissions reductions and changing OH levels on
the VOC chemistry in the LA Basin are also poorly quantified.

2. THE LOS ANGELES AIR QUALITY CAMPAIGN
(LAAQC)

LAAQC was organized to document atmospheric composition
and diagnose the underlying emissions and photochemistry
during the unprecedented shift in human activity associated
with the COVID-19 pandemic and shelter-in-place restrictions.
Over 450 samples were collected from April to July 2020 at a
ground site in Pasadena, CA. The samples were analyzed for
VOCs using one-dimensional gas chromatography (GC) with
multiple detectors (including flame ionization (FID), electron
capture (ECD), and mass spectrometry (MSD)) and two-
dimensional gas chromatography with time-of-flight mass
spectrometry (GC/GC-TOF-MS). Changes in mobile source
patterns were well documented during LAAQC.9−12 Using
traffic counts obtained from Caltrans as one metric, travel
across the LA Basin during LAAQC began at only ∼55% of
pre-COVID levels and increased approximately linearly to
∼80% by the end of the campaign.13 Other changes in human
activity associated with urban emissions (e.g., ordering takeout,
using personal care and cleaning products, using motorized
landscaping equipment, etc.) are still being quantified.14−18

The data collected during LAAQC were analyzed to (1)
identify changes in VOC concentration and composition in the
LA Basin during the COVID-19 pandemic associated with
changes in human activity; and (2) quantify changes in VOC

concentration and composition in the LA Basin since 2010 to
better understand current composition and chemistry in this
urban atmosphere. Changes in VOC sources during LAAQC,
as well as changes in VOC sources and OH levels since 2010,
are discussed.

3. EXPERIMENTAL METHODS
3.1. LAAQC Sampling. LAAQC was conducted from April

17 to July 19, 2020 in the midst of the COVID-19 pandemic; a
state of emergency was issued on March 4, 2020 and shelter-in-
place restrictions were issued on March 19, 2020. Air samples
were collected from atop the Ronald and Maxine Linde
Laboratory for Global Environmental Science on the Caltech
campus in Pasadena, CA using canisters and adsorbent
cartridges and analyzed for VOCs using GC with FID, ECD,
and MSD (canisters) and GC/GC-TOF-MS (cartridges).
Continuous measurements of trace gases, including CO, were
collected using the Caltech air quality system (CITAQS).13

Meteorological data, including temperature, wind speed, and
wind direction, were collected at the Caltech Total Carbon
Column Observing Network (TCCON) weather station.19

Wind data were also obtained from the NOAA integrated
surface database (ISD) accessed through Visual Crossing20 to
facilitate comparison with 2010. Afternoon wind speed was, on
average, 3 m/s and wind direction was primarily from the west
and southwest; nighttime wind speed was typically below the
detection limit (<1.5 m/s) and wind direction was primarily
from the east and northeast. Wind speeds and directions were
relatively consistent throughout the measurement campaign
(Figures S2−S3). Comparisons between 2020 and 2010 wind
speeds and directions are shown in Figure S4 and calculated
weekly back trajectories for LAAQC are shown in Figure S5.

3.2. UCI Canisters. A total of 314 whole air samples
(WAS) were collected into evacuated 2-L electropolished
stainless steel canisters using an automated 32-canister sampler
(Atmospheric Technology Model 8001) capable of pressuriz-
ing the individual canisters to 20 psi. WAS canisters were
collected three times per day between April 17 and July 19,
2020 at 05:30−06:30 PDT (hereafter referred to as “nighttime
samples”), 09:00−10:00 PDT (hereafter referred to as
“morning samples”), and 14:00−15:00 PDT (hereafter
referred to as “afternoon samples”).
Samples were analyzed at the University of California, Irvine

(UCI) using a multi-column, multi-detector (FID, ECD, and
MSD) GC system. A detailed description of the analytical
techniques, including the use of standards and detection limits,
precision, and accuracy for each reported compound can be
found in Simpson et al.21 Briefly, samples were cryogenically
preconcentrated, vaporized, and split into five streams directed
to a multi-column, multi-detector (FID, ECD, and MSD) GC
system (Hewlett-Packard 6890 GC units). The various column
and detector combinations allowed the identification and
quantification of 92 VOCs across different classes of
compounds, including hydrocarbons (C2−C10), alkyl nitrates
(C2−C5), halogenated compounds, and sulfur compounds.
The hydrocarbons and alkyl nitrates were analyzed using GC-
FID, halogenated compounds using GC-ECD, and sulfur and
all other compounds using GC-MSD.21

3.3. UCR Cartridges. A total of 154 dual sorbent bed (100
mg Tenax TA 35/60 and 200 mg Carbograph 1 TD 60/80 in
series) cartridge samples were collected at a flow rate of ∼250
ccm, at the same location as the canister samples. Cartridges
were collected twice daily, 7 days per week, between April 17
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and June 21, 2020; between June 24 and July 19, 2020 samples
were collected twice daily on Wednesdays, Thursdays,
Saturdays, and Sundays. The first sample was collected from
05:30−06:30 PDT (nighttime samples) and the second was
collected from 14:00−15:00 PDT (afternoon samples). A glass
fiber filter coated in sodium thiosulfate was mounted directly
upstream of the cartridge to capture particles, and remove
ozone (O3) to prevent oxidation of compounds captured on
the cartridge.22,23 Samples were stored in a freezer on the
Caltech campus before being transported to the University of
California, Riverside (UCR) for analysis. Loading and travel
blanks were also collected to correct for background
contamination. Cartridges were analyzed at UCR using a
Turbomatrix 650 automated thermal desorption (ATD)
system (PerkinElmer, Waltham, MA) coupled to a Pegasus
4D GC/GC-TOF-MS (LECO Corp., St. Joseph MI). Details
of the VOC analysis can be found in Hatch et al.,24 in which
the same approach was applied to speciation of VOCs emitted
from biomass burning; errors in VOC mixing ratios were
estimated to be ±30%. Data were analyzed using proprietary
software from LECO (ChromaTOF) as well as in-house
algorithms. A total of 58 compounds were identified and
quantified across different compound classes including alkenes,
higher alkanes (C9−C14), aromatics, aldehydes, ketones,
terpenes, and halogenated compounds.
Nine compounds (octane, nonane, decane, 2-methylpen-

tane, 2,3-dimethylpentane, o-xylene, m+p-xylene, toluene, and
ethylbenzene) were quantified by both UCR and UCI in 130
paired samples, for a total of 1170 paired VOC measurements.
The agreement was within ±50% for 84% of the paired VOC
measurements and within ±25% for 58% of the paired
measurements (Figure S6). Figure 1 shows the overall

correlation between the two data sets; the slope was 0.93
with an r2-value of 0.88. This agreement is within the
uncertainty of the UCR GC/GC-TOF-MS data, and is in
the range reported by Hatch et al.23 for biomass burning
emissions (UCI vs UCR slope = 0.76 and r2 = 0.82 across all
samples, slope = 0.90 and r2 = 0.95 when peat data were
removed). Comparisons of individual compounds are shown in
Figures S7−S15. For all overlapping compounds, the UCI
WAS data were used in subsequent analysis due to the greater

number of samples and higher precision and accuracy of the
analytical methods.

3.4. Emission Ratio Calculations. Emission ratios (ERs),
as defined by Warneke et al.,25 were calculated for measured
VOCs relative to CO and relative to acetylene (ethyne). ERs
were calculated using the approach of de Gouw et al.26 to
account for reactive losses of VOCs with OH (OH-corrected
ERs), the details of which are presented in Sections S3 and S4.
First, the background CO level was calculated based on the
average CO intercept of linear fits with m+p-xylene, 1,3,5-
trimethylbenzene, and 1,2,4-trimethylbenzene (Figure S24). A
value of 90 ± 15 ppb was calculated using the LAAQC-2020
data, which represents an ∼14−22% decrease from back-
ground CO levels of ∼105 ppb3 and ∼115 ppb26 reported for
CalNex-2010. Next, the ratio of VOC to excess CO above
background (VOC/ΔCO) was calculated for each VOC and
plotted against the corresponding OH exposure (Figure S18).
The OH-corrected ER to ΔCO, when OH exposure is zero,
was then defined as the y-intercept. The error associated with
OH-corrected ERs was calculated using the high and low
values for background CO (105 and 75 ppb).
For OH-corrected ER to Δacetylene, the background

acetylene was calculated as described in Section S4; the OH-
corrected ER to Δacetylene was then defined as the y-intercept
of the ratio of VOC to excess acetylene above background
(VOC/Δacetylene) plotted against the corresponding OH
exposure. ERs were also calculated using linear regression (see
Section S4) from the nighttime data only (ERnight) for
comparison with Borbon et al.27 To account for reactive
losses of VOCs with O3 in the nighttime samples, O3-corrected
ERsnight were calculated analogously to OH-corrected ERs (see
Section S4) based on de Gouw et al.26 The OH-corrected ERs
to ΔCO and ERsnight to CO and acetylene are summarized in
Table 1, along with the ERs reported by Borbon et al.27 and de
Gouw et al.26 OH-corrected ERs to acetylene and O3-corrected
ERsnight to ΔCO and Δacetylene are reported in Table S1.
Following de Gouw et al.,26 OH-corrected ERs and O3-
corrected ERsnight are relative to background-corrected CO
(ΔCO) and to background-corrected acetylene (Δacetylene).
Following Borbon et al.,27 ERsnight are relative to total CO and
to acetylene (not background corrected). Since constant values
for background CO and acetylene were used in the ER
calculations (see Section S3), ERsnight would not change if
background corrections were applied.

3.5. OH Exposure Calculations. OH exposure ([OH]Δt)
is a measure of atmospheric aging and represents the
photochemical loss of reactive VOCs. In the derivation of
OH-corrected ERs, OH exposure was estimated based on de
Gouw et al.26 using the ratio of benzene/1,2,4-trimethylben-
zene (Figure S19) as an indicator of photochemical aging. The
change in OH exposure relative to the past decade was also
estimated based on Warneke et al.29 Warneke et al.29 used the
ratio of weekday to weekend ERs to quantify the increase in
OH exposure on weekends due to decreased NOx. Here, the
ratio of 2010 ER to 2020 ER was used to quantify the change
in OH exposure between 2010 and 2020.
With daytime winds predominantly from the southwest,

back trajectory analysis during CalNex-2010 showed air masses
being transported from LA to Pasadena with approximate
photochemical ages of up to 0.5 days.3 Similar daytime wind
direction and speeds were observed in 2020 (Figure S5). To
account for photochemical loses, the relationship between

Figure 1. Mixing ratios of compounds (decane, octane, nonane, 2-
methylpentane, 2,3-dimethylpentane, ethylbenzene, o-xylene, m+p-
xylene, and toluene) quantified by both UCR and UCI.
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Table 1. 2020 and 2010 Emission Ratios (ERs) to CO and Acetylene

OH-corrected ER
(ppt [ppb ΔCO]−1) ERnight (ppt [ppb CO]−1)

ERnight
(ppt [ppt acetylene]−1) r2 w/ CO r2 w/ acetylene

compound 2020 2010a 2020 2010b 2020 2010c 2020 2020

ethane 60.09 ± 8.02 16.5 58.34 18.4 18.22 4.16 0.76 0.72
ethene 6.80 ± 0.90 11.2 4.99 10.35 1.61 1.80 0.79 0.81
acetylened 2.91 ± 0.44 6.4 2.96 5.87 − − 0.90 −
1,2-propadiene 0.09 ± 0.01 − 0.07 − 0.02 − 0.79 0.73
propyne 0.10 ± 0.01 − 0.10 − 0.03 − 0.70 0.66
propaned 14.5 ± 3.33 − 14.45 11.2 4.71 2.05 0.74 0.80
propene 1.57 ± 0.22 4.1 1.07 3.74 0.34 − 0.77 0.76
i-butaned 2.67 ± 0.61 3.18 2.80 3.08 0.92 0.55 0.70 0.77
n-butaned 4.17 ± 0.96 4.94 4.44 4.42 1.47 0.78 0.70 0.75
1-butene 0.32 ± 0.04 0.39 0.17 0.34 0.06 0.05 0.67 0.67
i-butene 0.58 ± 0.08 0.9 0.27 − 0.08 − 0.35 0.33
trans-2-butene 0.06 ± 0.01 0.32 0.05 0.1 0.02 0.02 0.40 0.36
cis-2-butene 0.06 ± 0.01 0.28 0.04 0.09 0.01 0.02 0.42 0.37
i-pentane 4.62 ± 0.66 8.7 5.03 8.69 1.58 1.81 0.86 0.83
n-pentane 2.29 ± 0.31 3.4 2.42 3.26 0.76 0.65 0.83 0.81
1,3-butadiene 0.18 ± 0.02 0.4 0.10 0.35 0.03 0.06 0.55 0.56
1-pentene 0.14 ± 0.02 − 0.10 − 0.03 − 0.74 0.72
trans-2-pentene 0.06 ± 0.01 − 0.07 − 0.02 0.09 0.39 0.33
cis-2-pentene 0.03 ± 0.00 − 0.04 − 0.01 − 0.35 0.36
3-methyl-1-butene 0.05 ± 0.01 0.068 0.04 − 0.01 − 0.64 0.63
2-methyl-1-butene 0.12 ± 0.02 − 0.10 − 0.03 − 0.44 0.48
2-methyl-2-butene 0.07 ± 0.01 − 0.07 − 0.02 − 0.36 0.33
n-hexane 0.96 ± 0.12 1.39 1.10 1.13 0.34 0.21 0.48 0.44
n-heptane 0.45 ± 0.06 0.83 0.39 − 0.13 − 0.76 0.78
n-octane 0.22 ± 0.03 0.355 0.16 − 0.05 − 0.81 0.83
n-nonane 0.22 ± 0.03 0.326 0.16 0.22 0.05 0.04 0.73 0.74
n-decane 0.19 ± 0.03 0.3 0.10 0.18 0.03 0.04 0.56 0.64
2,2-dimethylbutane 0.14 ± 0.02 − 0.15 − 0.05 − 0.73 0.67
2,3-dimethylbutane 0.46 ± 0.06 − 0.45 − 0.14 − 0.88 0.83
2-methylpentane 1.17 ± 0.12 1.43 1.18 − 0.37 − 0.87 0.83
3-methylpentane 0.74 ± 0.02 1.39 0.78 − 0.24 − 0.78 0.74
2-methylhexane 0.45 ± 0.06 0.58 0.44 − 0.14 − 0.87 0.83
3-methylhexane 0.48 ± 0.07 0.58 0.47 − 0.15 − 0.87 0.84
2-methylheptane 0.17 ± 0.03 − 0.14 − 0.05 − 0.86 0.85
3-methylheptane 0.14 ± 0.02 − 0.12 − 0.04 − 0.89 0.87
2,4-dimethylpentane 0.37 ± 0.05 − 0.38 − 0.12 − 0.90 0.86
2,3-dimethylpentane 0.65 ± 0.09 − 0.64 − 0.20 − 0.89 0.85
2,2,4-trimethylpentane 1.01 ± 0.14 − 1.05 − 0.33 − 0.93 0.87
2,3,4-trimethylpentane 0.32 ± 0.04 − 0.33 − 0.10 − 0.94 0.89
cyclopentane 0.27 ± 0.04 − 0.24 − 0.08 − 0.77 0.75
methylcyclopentane 0.84 ± 0.04 1.34 0.81 − 0.25 − 0.76 0.72
cyclohexane 0.43 ± 0.06 0.53 0.35 − 0.11 − 0.79 0.81
methylcyclohexane 0.34 ± 0.05 0.43 0.29 − 0.09 − 0.79 0.83
benzened 0.64 ± 0.17 1.26 0.76 1.3 0.24 0.23 0.82 0.83
toluene 2.84 ± 0.38 3.4 2.56 3.18 0.83 0.61 0.82 0.84
ethylbenzene 0.35 ± 0.05 0.61 0.33 0.57 0.10 0.10 0.91 0.89
m- and p-xylene 1.37 ± 0.18 2.07 1.29 1.79 0.41 0.34 0.90 0.89
o-xylene 0.50 ± 0.07 0.77 0.44 0.67 0.14 0.12 0.91 0.89
styrene 0.15 ± 0.02 0.36 0.07 0.22 0.03 0.04 0.32 0.38
i-propylbenzene 0.03 ± 0.00 0.0305 0.02 0.03 0.01 0.01 0.56 0.52
n-propylbenzene 0.08 ± 0.01 0.103 0.06 0.11 0.02 0.02 0.79 0.78
3-ethyltoluene 0.33 ± 0.05 0.44 0.25 − 0.08 − 0.88 0.88
4-ethyltoluene 0.15 ± 0.02 0.44 0.11 − 0.04 − 0.79 0.77
2-ethyltoluene 0.11 ± 0.02 0.123 0.07 0.12 0.02 0.02 0.74 0.76
1,3,5-trimethylbenzene 0.14 ± 0.02 0.39 0.10 0.31 0.03 0.06 0.77 0.80
1,2,4-trimethylbenzene 0.45 ± 0.06 0.79 0.31 0.62 0.10 0.12 0.79 0.80

ade Gouw et al.26 bBorbon et al.27 cCalculated using CalNex ground site data.28 dRelatively unreactive compounds (kOH < 5 × 10−12 cm3

molecule−1 s−1) were background corrected (see Section S3); correction values were 110, 294, 49, 79, and 60 ppt for acetylene, propane, i-butane,
n-butane, and benzene, respectively.
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ERday and ERnight was approximated by a first-order loss
equation (eq 1):

eER ER k t
day night

OHOH≅ × [ ]Δ
(1)

where ERday was calculated using linear regression from the
daytime data only and kOH = −kVOC + kCO. Then, to estimate
the change in weekday OH exposure relative to 2010, the ratio
of 2010 weekday ERs to 2020 weekday ERs was calculated (eq
2):

e
e
e

ER ER

ER ER
k t

k t

k t t

day(2010) night(2020)

day(2020) night(2010)

( OH )

( OH )

(( OH ) ( OH ) )

OH 2010

OH 2020

OH 2020 2010

×
×

≅

=

[ ]

[ ]

− [ ]Δ − [ ]Δ (2)

This ratio was plotted against the rate constant (k) with OH
for a subset of compounds; a fit was applied to the data, giving
the change in weekday OH exposure between 2010 and 2020.
The same method was applied to calculate the change in
weekend OH exposure.

4. RESULTS AND DISCUSSION
4.1. Compounds, Sources, and Trends during LAAQC.

In Table S2, the average nighttime, morning, and afternoon
mixing ratios are summarized for the 92 compounds identified
and quantified using multi-column and multi-detector GC and
58 compounds using GC/GC-TOF-MS. Common sources for
each compound are summarized in Table S3. Combustion
source emissions include on- and off-road gasoline and diesel
exhaust. In addition, there are evaporative fuel emissions from
these sources which include contributions from light-duty cars
and trucks (“passenger” vehicles), heavy-duty trucks, ocean-
going vessels, recreational boats, construction equipment, farm
equipment, and landscaping equipment. Nonmobile source
emissions include VCPs and industrial cooking, with specific
contributions from pesticides, coatings, inks, adhesives,
cleaning agents and solvents, and personal care products.
While the broad changes in human activity during COVID-

19 are still being examined, the change in travel demand in the
LA Basin was striking. Between the beginning and end of the
campaign, traffic counts increased by approximately 30%; the
increase in average April−May traffic to average June−July
traffic was approximately 10%.13 Despite the increase in traffic,
the average afternoon concentrations of CO and VOCs did not
significantly increase; June−July mixing ratios were within one
standard deviation of the April−May values (Figure 2).
However, Figure 3 illustrates that the afternoon 25th percentile
(Q1) mixing ratio, calculated for 54 compounds, increased
substantially for some compounds. The Q1 mixing ratio of CO
increased 23%, and acetylene increased 47%. CO, long-lived in
the atmosphere, is a tracer of combustion sources; acetylene,
also long-lived in the atmosphere, is emitted from gasoline
exhaust and used to separate distinct sources of CO such as
traffic and biomass burning.30 Both CO and acetylene are
useful tracers for on- and off-road mobile sources.
For the combined data set, April−July, acetylene was found

to have the highest afternoon correlation with CO (r2 = 0.91);
the strength of relationship, defined by the r2-value, indicates
they were both primarily emitted from gasoline exhaust. Figure
3 illustrates that compounds with the greatest increase in

afternoon Q1 mixing ratios also have the strongest correlation
with CO. VOCs with Q1 mixing ratios that increased >60%
between April−May and June−July had an average r2 with CO
of 0.72, while VOCs with Q1 mixing ratios that increased or
decreased <40% had an average r2 with CO of only 0.35. This
is consistent with combustion source emissions increasing
between April−May and June−July while source emissions of
the other measured VOCs were not increasing.
A majority of the VOCs with Q1 mixing ratios that increased

>60% are emitted from both gasoline exhaust and gasoline
evaporation.5 The afternoon Q1 mixing ratio of n-pentane, a
major component of gasoline vapor, increased by 119%, and 3-
methylhexane, a component of both gasoline exhaust and
vapor,5 increased by 86%. While many of the compounds
overlap between the two sources, the relative contributions of
VOCs vary between gasoline exhaust and gasoline vapor
emissions. For example, n-pentane makes up 8.7% of gasoline
vapor and only 1.9% of gasoline exhaust.5 VOC speciation
profiles for gasoline exhaust and vapor were reported in
McDonald et al.5 To determine the extent to which the
increase in Q1 mixing ratios for compounds emitted from
mobile sources could be attributed to an increase in exhaust or
evaporation, the percent increase in Q1 VOC mixing ratio was
plotted against the corresponding ratio of gasoline vapor
weight % to gasoline exhaust weight % in Figure 4 (e.g., for n-
pentane, the vapor to exhaust ratio would be 8.7:1.9). Figure 4
illustrates that compounds with higher vapor to exhaust ratios
had greater increases in afternoon Q1 mixing ratios, suggesting
that evaporative emissions increased more than exhaust
emissions between April−May and June−July. VOCs with a
vapor to exhaust ratio of >1 increased, on average, 83%. The
Q1 mixing ratio of isoprene, a biogenic VOC that exhibited
strong positive correlation with temperature (r2 = 0.89),

Figure 2. Box and whisker plots of (a) CO, (b) acetylene, (c) n-
pentane, and (d) 3-methylhexane measured in April−May and June−
July. The shaded circles indicate the afternoon mixing ratios of
individual samples. The black dot indicates the mean mixing ratio.
The whiskers represent one standard deviation from the mean. The
black line represents the median, and the 25th and 75th percentiles
are represented by the edges of the black box.
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increased 84%. The Q1 temperature increased from 295.7 K in
April−May to 298.6 K in June−July. These observations

suggest that the increase in afternoon Q1 mixing ratios
between April−May and June−July was largely due to an
increase in temperature, and thus an increased contribution of
measured VOCs from evaporative emissions.
In addition to VOCs associated with anthropogenic sources,

a number of VOCs associated with biogenic sources were
quantified during LAAQC, particularly terpenes. Terpenes are
also emitted from anthropogenic sources; for example,
fragrances have been reported to contribute significantly to
terpene levels, especially limonene, in urban areas.31 However,
there was no clear evidence of a distinct contribution of
anthropogenic sources to the terpenes quantified during
LAAQC. Biogenic terpene emissions exhibit a light and
temperature response and thus trend strongly with temper-
ature.32 During LAAQC, afternoon mixing ratios of α-pinene,
camphene, and eucalyptol increased with temperature (Figure
S23). However, β-pinene, β-myrcene, and limonene exhibited
weaker temperature dependence, suggesting the primary driver
of these terpenes changed during the campaign. In Figure 5 it

can be seen that the ocimene, β-myrcene, and limonene mixing
ratios were elevated during the month of May. This trend is
likely a result of higher emission rates from citrus trees during
flowering.33

4.2. Changes in OH Exposure Since 2010. In 2010,
Warneke et al.29 reported that OH exposure ([OH]Δt) was
65−75% higher on weekends than on weekdays in Southern
California due to a 35−50% decrease in NOx levels on
weekends. The lower NOx levels on weekends have been
attributed to reduced truck traffic.34−37 Nussbaumer and
Cohen38 reported that NOx levels in the LA Basin decreased
up to ∼80% between 1994 and 2019, and remained lower on
weekends compared to weekdays. On the basis of data
obtained from a California Air Resources Board monitoring
site located in Pasadena,8 NOx levels averaged over the April−
July sampling period were an average of 50% lower than in
2020 than 2010; NOx levels in 2020 were an average of 45%
higher on weekdays compared to weekends (Table S4). The
calculated OH exposures were used to probe the effect of
changes in atmospheric composition, particularly NOx levels,
on OH exposure between 2010 and 2020.

Figure 3. Percent change in the afternoon 25th percentile mixing ratio
(Q1) from April−May to June−July for CO and a subset of VOCs
(blue bars, bottom axis), plotted with the campaign r2-value between
the VOC and CO (black dots, top axis).

Figure 4. Percent change in the 25th percentile (Q1) mixing ratio
from April−May to June−July plotted against the ratio of VOC
weight (%) in gasoline vapor to VOC weight (%) in gasoline exhaust.
VOCs are represented by blue dots, isoprene is represented by the
green ×, and CO is represented by the red ×.

Figure 5. Log of daily afternoon mixing ratio normalized to campaign
average afternoon mixing ratio for three terpenes (ocimene, β-
myrcene, and limonene). Bars for the three compounds correspond to
the left axis; values above zero indicate the daily summed
concentration for the three compounds is greater than the campaign
average summed concentration. The right axis corresponds to the
total concentration for the three terpenes (green dots).
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Figure 6 illustrates the ratio of the 2010 ER to the 2020 ER
for a subset of VOCs, plotted against their kOH, measured on

weekdays and weekends. Applying a linear fit to the data
yielded an increase in weekday and weekend peak (afternoon)
OH exposure by ∼2.2 × 1010 molecules cm−3 s and ∼6.6 ×
1010 molecules cm−3 s, respectively, since 2010. The average
peak OH exposure in 2010 was reported to be ∼3 × 1010

molecules cm−3 s;29 the weekly average change in OH
exposure between 2010 and 2020 was calculated to be ∼3.5
× 1010 molecules cm−3 s. Using the 2010 average peak OH
exposure and calculated increase in weekly average change in
peak exposure, the average peak OH exposure in 2020 was
calculated to be ∼6.5 × 1010 molecules cm−3 s. In comparison,
using the ratio of benzene to 1,2,4-trimethylbenzene to
estimate OH exposure (Section S4) resulted in an average
peak OH exposure of 5.2 × 1010 molecules cm−3 s. Based on
the similar wind speeds and directions (Figure S4), it can be
assumed that transport time has remained relatively constant
between 2010 and 2020, and thus the average peak OH
concentration can be estimated using the ratio of average peak
OH exposure in 2020 to 2010; by that approach, OH
concentration has increased by a factor of 2, from ∼4 × 106

molecules cm−3 in 2010 to ∼8 × 106 molecules cm−3 in 2020.
The extent to which the OH concentrations are wholly

representative of recent non-COVID periods, depends in part
on whether the yet unknown trends in human activities and
emissions significantly affected OH reactivity during the
LAAQC sampling period. To evaluate whether the 2020
VOC mixing ratios were anomalously low during the sampling
period, the average mixing ratios of three combustion-derived
compounds (CO, acetylene, and i-pentane) and total non-

methane hydrocarbons (NMHCs) measured during LAAQC-
2020 were compared with average mixing ratios measured over
the LA Basin during the NASA Student Airborne Research
Program (SARP) between 2015 and 2019. It is expected that
the mixing ratios of the shorter-lived compounds would be
lower in the samples collected aloft than those collected at the
Pasadena ground site. For all three individual compounds
(Figures S25−S27) and total NMHCs (Figure S28), the
median LAAQC values fall within the upper quartile of the
SARP values. This suggests that the decreasing trends in OH
are not an anomaly and more generally are expected based on
trends in NOx, and supports the use of the LAAQC-2020 data
for comparisons with CalNex-2010.

4.3. Changes in VOCs, Sources, and Emission Ratios
Since 2010. Coincident reductions in CO and VOCs over the
decades prior to 2010 resulted in roughly constant ERs relative
to CO and to acetylene.2 The reductions resulted from
improved vehicle emission control technologies and more
stringent emissions standards. Anomalies from the observed
trends, however, suggest the impact of other emissions sources.
For example, several smaller alkanes (C2−C5), abundant in
both processed and raw natural gas and associated gas (natural
gas that was produced by oil wells),39,40 did not follow the
∼7.5% decrease per year over that time period. Peischl et al.39

reported that nearly all ethane emissions measured in the LA
Basin in 2010 could be attributed to such sources, as well as
significant fractions of propane (∼90%) and n-butane (∼75%).
Evaporated gasoline was identified as the primary source of n-
pentane (∼33%) and i-pentane (∼50%) emissions; the
remainder of n- and i-pentane was attributed to other mobile
sources and natural gas.39 As the on-road mobile source
emissions of small alkanes decreased, other sources became
more important and their ERs relative to CO increased.
Using the California Emissions Projection Analysis Model

(CEPAM),41 the California Air Resources Board (CARB)
projected a reduction in emissions from on-road sources
between 2010 and 2020, due to retirement of old vehicles and
updates in regulations to on-road motor vehicles. Those
regulations were assumed to result in negligible changes in the
VOC composition of emissions, as supported by speciation
profiles and associated documentation.42,43 Figure 7 illustrates
the estimated change in VOC and CO emissions from on-road
motor vehicles, dominated by light-duty passenger vehicles and
light-duty trucks, as reported in the CEPAM, and other mobile
sources, dominated by off-road equipment. In 2010, on-road
motor vehicles were projected to be the dominant contributor
to mobile source CO (70%) and VOCs (65%) in the South
Coast Air Basin. In 2020, other/off-road combustion and
evaporative sources were projected to be the dominant
contributor to mobile source CO (55%), and an equal
contributor to VOC (50%) emissions. Thus, total VOCs
from off-road sources were projected to drop 30% between
2010 and 2020, while total CO was projected to drop only 2%.
In 2010, the most abundant off-road source of CO was riding
mowers, which was projected to increase from 4.6 × 104 kg
day−1 to 5.3 × 104 kg day−1 between 2010 and 2020. The most
abundant off-road source of VOCs was gasoline evaporation
from lawn mowers, which was projected to decrease from 7.8
× 103 kg day−1 to 4.3 × 103 kg day−1 between 2010 and 2020.
The projected shift from on-road to other/off-road sectors as
the dominant emitters of mobile source VOCs and CO likely
changed measured VOCs levels and calculated ERs for

Figure 6. Increase in OH exposure between 2010 and 2020: (a)
weekdays and (b) weekends. Each point represents a single VOC that
was measured in both years; 2010 ER values were reported by
Warneke et al.29

ACS Earth and Space Chemistry http://pubs.acs.org/journal/aesccq Article

https://doi.org/10.1021/acsearthspacechem.1c00248
ACS Earth Space Chem. 2021, 5, 3045−3055

3051

https://pubs.acs.org/doi/suppl/10.1021/acsearthspacechem.1c00248/suppl_file/sp1c00248_si_002.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsearthspacechem.1c00248/suppl_file/sp1c00248_si_002.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsearthspacechem.1c00248/suppl_file/sp1c00248_si_002.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsearthspacechem.1c00248/suppl_file/sp1c00248_si_002.pdf
https://pubs.acs.org/doi/10.1021/acsearthspacechem.1c00248?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsearthspacechem.1c00248?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsearthspacechem.1c00248?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsearthspacechem.1c00248?fig=fig6&ref=pdf
http://pubs.acs.org/journal/aesccq?ref=pdf
https://doi.org/10.1021/acsearthspacechem.1c00248?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


compounds that have been historically emitted primarily by
on-road mobile sources.
As illustrated in Figure 8, CO has dropped approximately

25% since 2010 while acetylene has dropped approximately
60%. Most VOCs followed acetylene, dropping ∼60% since
2010. As noted previously, the correlation between CO and
acetylene was strong in 2020, suggesting the dominant source
of CO remains gasoline exhaust. ERsnight relative to acetylene
remained constant between 2010 and 2020 (Figure 9, top),
while ERsnight relative to CO and OH-corrected ERs to ΔCO
dropped to ∼60% of the 2010 values reported by Borbon et
al.27 and de Gouw et al.26 (Figure 9, bottom). The divergence
of CO and VOCs indicates a change in combustion source
sectors, and is supported by the projected shift from on-road
motor vehicles to other mobile/off-road sectors as equal or
dominant contributors to mobile source CO and VOCs.
In Table S5, VOCs are classified as combustion, unknown,

and noncombustion based on the 2010 vs 2020 ERs plotted in
Figure 9. VOCs with ERsnight to acetylene within 25% of the
1:1 line and with ERsnight to CO and OH-corrected ERs to
ΔCO within 25% of the 0.6:1 line were classified as
combustion dominant (18 of 40 compounds). The majority
of VOCs with ERsnight to acetylene that fell within 25% of the
1:1 line, also had ERsnight and OH-corrected ERs that fell
within 25% of the 0.6:1 line; these VOCs likely were primarily
from gasoline combustion. VOCs with ERs outside the 25%
threshold were classified as noncombustion (15 of 40), and
include small alkanes, butenes, and toluene. Small alkanes like
ethane, propane, and butane are known to be emitted from
natural gas and petroleum extraction.39,40 The smaller change

Figure 7. Projected emissions of (a) CO, (b) VOCs, and (c) the ratio
of VOCs to CO from on-road motor vehicles and other/off-road
mobile sources in the LA Basin. The solid line in (c) represents the
2010 VOC to CO ratio for all mobile sources (on-road motor vehicles
+ other mobile sources); the dotted line represents the 2020 VOC to
CO ratio for all mobile sources. Projected emission values were
obtained using the California Emissions Projection Analysis Model.41

Figure 8. Percent change in VOC mixing ratios from 2010 to 2020 for
CO (red line) and 30 VOCs, including acetylene (blue line). Average
2010 mixing ratios were calculated during the same times of day as
samples collected during LAAQC using data in the CalNex-2010
database.28

Figure 9. Relationship between 2010 and 2020 VOC ERs relative to
acetylene (top) and CO (bottom). The solid burgundy line represents
a slope of 1; the dashed gray line represents a slope of 0.6. Shading
indicates ±25% from the line. 2010 VOC/CO emission ratios values
were reported in Borbon et al.27 2010 VOC/acetylene emission ratios
were calculated using CalNex-2010 VOC data.28
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in butenes (average ∼30%), may be due to the growing relative
importance of biogenic butene sources.44,45 Toluene was
identified in Seltzer et al.46 to be the fourth most abundant
VOC emitted by VCPs, with a predicted emission rate of 0.37
kg person−1 year−1. VOCs were classified as unknown (7 of
40) if only one or two of the three ERs (with acetylene, CO, or
ΔCO) fell within the 25% threshold. The calculated OH-
reactivity for VOCs classified as unknown was 0.06 s−1; the
calculated OH-reactivity for combustion and noncombustion
VOCs was roughly equal, 0.37 s−1 and 0.36 s−1, respectively.

5. CONCLUSIONS
As a part of the LAAQC, 150 VOCs were measured in the LA
Basin during shelter-in-place restrictions associated with the
COVID-19 pandemic (April 2020 to July 2020). Compounds
that were identified (alkanes, alkenes, aldehydes, ketones,
aromatics, etc.) are emitted from a variety of mobile,
nonmobile, and biogenic sources. While traffic counts
increased markedly during the measurement period, no
significant change was observed in the mean VOC
concentrations of combustion source emissions. Evaluation
of the increases from April−May to June−July in Q1 mixing
ratios of CO and acetylene (23% and 47%), as well as VOCs
present in gasoline exhaust and evaporative emissions, suggest
that the increase in traffic resulted in a relatively minor impact
on gasoline exhaust emissions compared to gasoline vapor
emissions.
A comparison of CO and VOC levels and ERs calculated

from data collected during the CalNex-2010 campaign
provided insight into the changing source contributions in
the LA Basin, as well as changes in chemical composition and
atmospheric reactivity. ERs relative to CO and ΔCO dropped
to approximately 60% of their 2010 values, while ERs relative
to acetylene remained constant. This suggests that sources with
higher CO to acetylene ratios are becoming more important.
Relative to 2010, the OH concentration increased 2-fold to
approximately ∼8 × 106 molecules cm−3. OH reactivity was
calculated for VOCs with ERs relative to acetylene that
remained constant since 2010 (combustion VOCs) and for
VOCs with ERs that did not remain constant (noncombustion
VOCs); VOCs attributed to combustion vs noncombustion
had roughly equal OH reactivity.
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Abstract. Particle size measurement in the low nanometer
regime is of great importance to the study of cloud conden-
sation nuclei formation and to better understand aerosol–
cloud interactions. Here we present the design, modeling,
and experimental characterization of the nano-scanning elec-
trical mobility spectrometer (nSEMS), a recently developed
instrument that probes particle physical properties in the
1.5–25 nm range. The nSEMS consists of a novel differen-
tial mobility analyzer and a two-stage condensation parti-
cle counter (CPC). The mobility analyzer, a radial opposed-
migration ion and aerosol classifier (ROMIAC), can classify
nanometer-sized particles with minimal degradation of its
resolution and diffusional losses. The ROMIAC operates on
a dual high-voltage supply with fast polarity-switching ca-
pability to minimize sensitivity to variations in the chemical
nature of the ions used to charge the aerosol. Particles trans-
mitted through the mobility analyzer are measured using a
two-stage CPC. They are first activated in a fast-mixing di-
ethylene glycol (DEG) stage before being counted by a sec-
ond detection stage, an ADI MAGIC™ water-based CPC.
The transfer function of the integrated instrument is derived
from both finite-element modeling and experimental charac-
terization. The nSEMS performance has been evaluated dur-
ing measurement of transient nucleation and growth events
in the CLOUD atmospheric chamber at CERN. We show
that the nSEMS can provide high-time- and size-resolution
measurement of nanoparticles and can capture the critical
aerosol dynamics of newly formed atmospheric particles. Us-

ing a soft x-ray bipolar ion source in a compact housing de-
signed to optimize both nanoparticle charging and transmis-
sion efficiency as a charge conditioner, the nSEMS has en-
abled measurement of the contributions of both neutral and
ion-mediated nucleation to new particle formation.

1 Introduction

Aerosol particles can either be emitted into the atmosphere
directly from primary sources or generated through the nu-
cleation of atmospheric condensable precursor vapors. At-
mospheric nucleation, or new particle formation (NPF), is
frequently observed across the globe under diverse envi-
ronmental conditions, ranging from populated urban cen-
ters (Dunn et al., 2004; Wang et al., 2017; Yao et al., 2018;
Wang et al., 2020) to remote areas such as forests or oceans
(O’Dowd et al., 2002; Bonn and Moortgat, 2003; Paasonen
et al., 2010; Dall’Osto et al., 2017), as well as in the free tro-
posphere (Kulmala et al., 2004; Kerminen et al., 2018; Lee
et al., 2019). Large-scale simulations and parameterizations
suggest that NPF may generate half of the global cloud con-
densation nuclei (CCN; Merikanto et al., 2009; Gordon et al.,
2017). In addition to their climate impact, ultrafine particles
formed by nucleation can also have disproportionate adverse
effects on human health (Brown et al., 2000).

To understand the formation and subsequent growth of
freshly nucleated particles in the atmosphere and to evalu-
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ate their impact on climate and human health requires mea-
surement techniques that can enable particle size distribu-
tion measurements in the low nanometer regime. Nanopar-
ticle sizing is often achieved using electrical mobility to sep-
arate charged particles according to the velocities with which
they migrate in an electric field. The differential mobility an-
alyzer (DMA) has long been the most widely used instrument
to measure the size distribution of submicrometer (< 1 µm)
aerosol particles (Knutson and Whitby, 1975; Flagan, 1998).
Most DMAs separate charged aerosol particles of different
electrical mobilities by applying an electric field between two
coaxial cylindrical electrodes that are parallel to a particle-
free sheath flow. Classified particles from the DMAs are
typically counted by a condensation particle counter (CPC)
that uses supersaturated vapors to grow particle seeds be-
fore detection (Quant et al., 1992). This integrated instru-
ment initially used stepwise variation in the voltage. By keep-
ing the voltage applied between the electrodes constant at
each step, particles are transmitted throughout the entire sys-
tem under a steady field profile before they are counted by
the CPC. This static-mode measurement system is referred
to as the differential mobility particle sizer (DMPS) (Fissan
et al., 1983). However, since the DMPS requires the system
to reach a steady state before a reliable measurement can be
made, the relatively long residence time of the particles in
the DMA makes it less ideal in capturing transient aerosol
activities. By continuously changing the voltage through an
exponential ramp, the scanning electrical mobility spectrom-
eter (SEMS; also known as the scanning mobility particle
sizer, SMPS) considerably accelerates the particle classifica-
tion using electrical mobility (Wang and Flagan, 1990).

While the traditional DMPS, SMPS, and SEMS systems
can only detect particles with mobility-equivalent diame-
ters above 10 nm, many efforts have focused on extending
the classification range to smaller aerosol particles. The first
major step in this direction was the Vienna short-column
DMA that measured nanoparticles down to 3.5 nm (Winkl-
mayr et al., 1991); the “nano-DMA”, modified from the tra-
ditional long-column DMA design, can measure particle size
distribution in the range of 3–50 nm (Chen et al., 1998). A
radial DMA (RDMA) that classifies particles in a radial flow
toward the center of parallel disk electrodes also demon-
strated a high detection efficiency for particles between 3 and
10 nm (Zhang et al., 1995). Both designs have been extended
to smaller sizes. Through meticulous aerodynamic design
and very large sheath flow rates of up to 1000 L min−1,
Rosell-Llompart et al. (1996) refined the Vienna DMA into
one instrument suitable for particle classification down to as
small as 1 nm. Brunelli et al. (2009) developed an RDMA
that could also classify 1 nm particles at much more mod-
est flow rates, albeit at lower resolution. An alternate mobil-
ity analyzer design, the opposed-migration aerosol classifier
(OMAC), uses a particle-free cross-flow instead of the par-
allel sheath flow in the DMAs to balance particle electrical
migration. Since the aerosol being classified fills the space

between the electrodes rather than occupying only a narrow
slice of that space as in a DMA, this changes the scaling for
where diffusion begins to degrade the resolution of the classi-
fier, thereby enabling classification at lower voltages or oper-
ation at higher resolution than is possible with conventional
DMAs (Flagan, 2004; Downard et al., 2011). A radial-flow
form of this instrument, the radial opposed-migration ion and
aerosol classifier (ROMIAC), has proven capable of mea-
suring particles or ions approaching 1 nm in size and even
separating peptide stereoisomers owing to its high resolving
power when operated in voltage-stepping mode like a DMPS
(Mui et al., 2013, 2017). The challenges with measuring par-
ticles in the low nanometer regime lie not only in classifica-
tion, but also in particle detection. Some single-stage CPCs
have been operated at sufficiently high supersaturation to ac-
tivate particles as small as 1 nm in diameter, but in the exper-
iment for which this instrument has been developed, wherein
measurements must be made in a high-radiation environ-
ment, this can lead to ion-induced nucleation within the CPC.
Therefore, we took a more conservative approach that has
proven robust and effective for sub-10 nm particle detection,
namely a two-stage CPC, in which the first stage employs a
high-surface-tension, relatively low-vapor-pressure working
fluid, typically diethylene glycol (DEG) in order to activate
small particles with minimal risk of homogeneous nucleation
(Iida et al., 2009; Jiang et al., 2011a), which was integrated
with a DMA to produce the first SMPS system to measure
size distributions approaching 1 nm (Jiang et al., 2011a) that
agree closely with mass spectrometric data in the overlap
region between the two methods (Jiang et al., 2011b). Ow-
ing to the low vapor pressure, the first stage does not grow
particles to optically detectable size, so a second “booster”
stage is used to grow the activated clusters and optically de-
tect them. The second stage is typically a conventional CPC.
The operation of two activation and growth systems in se-
ries compounds another challenge to SEMS and SMPS mea-
surements; the residence time within the CPC can distribute
counts of particles that exit the DMA over many time bins
(Russell et al., 1995; Collins et al., 2002), thereby degrad-
ing the resolution of the instrument. This effect becomes in-
creasingly important at scan rates that are fast relative to the
response time of the CPC. Therefore, CPCs with a narrow
distribution of residence times are preferred, particularly for
one SEMS that targets the low nanometer range, in which the
resolution is also compromised by Brownian diffusion.

In this work we show the development of a nano-scanning
electrical mobility spectrometer (nSEMS) that features a
fast-scanning OMAC and a two-stage CPC to acquire fast
and accurate particle size distributions in the range of 1.5–
25 nm. Here we describe the design and characterization of
the scanning OMAC in detail as that is the unique compo-
nent of the instrument which enables a sizing range that is not
possible with a constant-flow DMA. A radial-flow version of
the OMAC that is capable of classifying charged particles or
ions as small as 1 nm in diameter (Mui et al., 2013, 2017)
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is used in this instrument. The two-stage CPC includes a
fast-mixing activation stage using DEG as a working fluid,
followed by an eco-friendly, fast-response, water-based CPC
(Hering et al., 2019). Other CPCs, either two-stage ones like
the one we have employed or single-stage CPCs that are ca-
pable of counting particles as small as 1 nm, could be in-
tegrated into the nSEMS, so we limit our discussion of the
two-stage CPC to its essential features, its integration into
the nSEMS, and the resulting performance. The nSEMS an-
alyzes a charged aerosol, which can be naturally charged or
one that is processed through a charge conditioner (CC). The
present paper focuses on nanoparticle sizing and detection
downstream of the CC.

The integrated transfer function of the nSEMS system was
derived based on both experimental results and finite-element
modeling using COMSOL Multiphysics™. The nSEMS has
been intensively used in the Cosmics Leaving OUtdoor
Droplets (CLOUD) experiments at CERN, in which its size
resolution and fast response have made it possible to follow
very rapid growth of freshly nucleated nanoparticles and to
identify a new mechanism for new particle formation in a
highly polluted atmosphere (Wang et al., 2020). A compar-
ison of nSEMS data with measurements from other well-
calibrated particle sizing instruments at CLOUD confirms
its capacity to provide reliable size distribution in the low
nanometer size regime.

2 The nSEMS design and system features

The nSEMS was designed to capture critical aerosol dynam-
ics during atmospheric nucleation and subsequent nanoparti-
cle growth in both environmental chamber experiments and
in ambient measurements. To this end, its design and oper-
ating parameters have been optimized to provide size dis-
tribution measurements with relatively high size resolution
in the sub-25 nm range and with a fairly short duty cycle.
The nSEMS classifies particles of different sizes according
to their electrical mobilities, Zp, which is defined as the ratio
of particle migration velocity, vm, to the electric field strength
within the classifier, E:

Zp =
vm

E
=

φeCc

3πµdp
, (1)

where φ is the net number of elementary charges, e, on the
particle, Cc is the Cunningham slip correction factor that ac-
counts for the noncontinuum effects, µ is the dynamic vis-
cosity of air, and dp is the particle diameter. Figure 1 shows
a schematic of nSEMS main components. The aerosol enters
the nSEMS after passing through a soft x-ray CC at a rela-
tively high flow rate of 4.6 L min−1. A smaller, 1.2 L min−1

polydisperse aerosol sample flow from the core of the larger
flow is introduced into a ROMIAC, while the remainder is
exhausted. The high flow rate through the CC and the core
sampling flow spitter are designed to minimize losses of the

Table 1. Default nSEMS operating parameters optimized for mea-
surements of NPF events and nanoparticle growth. These settings
enable particle size distribution measurements in the range of 1.5–
25 nm, with a duty cycle of 1 min and a size classification resolution
of Rnom,nd = 10.

Parameter Notation Value

Instrument total sampling rate (L min−1) Qs 4.60a

ROMIAC polydisperse flow rate (L min−1) Qa 1.20
ROMIAC monodisperse flow rate (L min−1) Qc 1.20
ROMIAC incoming cross-flow flow rate (L min−1) Qx,in 12.0
ROMIAC outgoing cross-flow flow rate (L min−1) Qx,out 12.0
DEG feeding rate (L min−1) QDEG 0.30
CPC sampling rate (L min−1) QCPC 1.00b

Low electrode voltage (V) Vlow 20.0
High electrode voltage (V) Vhigh 10 000
CPC sample conditioner temperature (◦C) Tco 20c

CPC DEG saturator temperature (◦C) Tsat 70
CPC sample condenser temperature (◦C) Tcond 10
Voltage ramp time (s) tramp 50
Holding time at Vlow (s) tlow 4
Holding time at Vhigh (s) thigh 2
Scan duty cycle (s) ttotal 60
CPC data recording interval (s) tc 0.20

a All flow-rate measurements have an uncertainty of ±2 %.
b The MAGIC™ water-based CPC is a special, high-flow-rate, concise CPC.
c All temperature measurements have an uncertainty of ±0.1 ◦C.

highly diffusive nanoparticles. While the ROMIAC was orig-
inally designed to operate at constant voltage, the voltage is
continuously varied in an exponential ramp in the nSEMS.
Particles transmitted through the ROMIAC are counted us-
ing a two-stage CPC to capture the particle size distribution.
Detailed operating parameters and default settings are sum-
marized in Table 1.

The CC used in this study employs a soft x-ray source to
produce ion pairs from the gas molecules in order to bring the
aerosol to a steady-state Fuchs charge distribution that en-
ables estimation of the size distribution whose initial charge
state is uncertain. The soft x-ray source has two advantages:
(i) fewer regulatory hurdles than radio-isotope sources used
for the same purpose and (ii) the ability to turn off the ion
source in order to measure those particles in the sample that
carry charge due to gas ionization by galactic or simulated
cosmic rays. It was designed to minimize losses of the small-
est particles. Preliminary characterization of the CC and data
from numerous experiments, in which it has been applied to
conventional DMAs in parallel with other DMAs using con-
ventional CCs and to the nano-radial differential mobility an-
alyzer (Brunelli et al., 2009), yield results consistent with the
Wiedensohler (1988) approximation of the Fuchs charge dis-
tribution, with no apparent biases. Since mobility classified
and therefore charged particles are used to determine the in-
tegrated instrument transfer function that is reported here, the
key results from this paper are not affected by any minor de-
viations from the Fuchs charge distribution that is assumed
in inverting data from the nSEMS. Details of the design and
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Figure 1. Schematic of the nSEMS main components: a radial opposed-migration ion and aerosol classifier (ROMIAC) and a two-stage
condensation particle counter (CPC). The aerosol enters the nSEMS after passing through a soft x-ray CC at a high flow rate (4.6 L min−1).
Core sampling of that input sample flow is employed to minimize particle diffusional losses in the transport tubing and the CC. The ROMIAC
is operated on exponentially increasing voltage ramps between 20 and 10 000 V of both positive and negative polarity at 1.2 and 12 L min−1

aerosol and cross-flows (Table 1). After exiting the classifier, monodisperse aerosol particles are mixed with 0.3 L min−1 diethylene glycol
(DEG) vapor in the first stage of the CPC. This fast-mixing stage allows nanoparticles to grow through rapid vapor condensation before they
enter the second “booster” CPC stage, a modified Aerosol Dynamics Inc. (ADI) MAGIC™ water CPC operated at a flow rate of 1.0 L min−1,
in which particles grow further and are optically detected.

quantitative calibration of the soft x-ray CC will be presented
in a separate paper.

The charged nanoparticles transmitted through the afore-
mentioned core sampling flow splitter enter the ROMIAC at
a flow rate of 1.2 L min−1, tangentially into a flow distribu-
tion channel, and then enter the classification region through
a narrow slit. Unlike traditional DMAs, in which the particle-
free sheath flow is parallel to the electrodes, the ROMIAC
uses a 12 L min−1 recirculated, filtered cross-flow that enters
and exits the classification region through screen electrodes
(Flagan, 2004; Mui et al., 2013, 2017). For nondiffusive par-
ticles, the ideal resolving power of the classifier, Rnom,nd, is
the same as that of a traditional DMA operating at the same
flow-rate ratios, i.e.,

Rnom,nd =
1

β (1+ |δ|)
, (2)

for all of the designs, configurations, or flow-rate ratios (Fla-
gan, 1999, 2004). The two flow factors, the imbalance factor,
δ, and the aerosol-to-cross-flow ratio, β, are defined as

δ =
Qc−Qa

Qa+Qc
, β =

Qa+Qc

Qx,in+Qx,out
, (3)

where Qa is the incoming polydisperse aerosol flow rate, Qc
is that of the outgoing classified sample flow, and Qx,in and

Qx,out are the entering and exiting cross-flow rates. If the
incoming flows are balanced with the outgoing flows (Qa =

Qc;Qx,in =Qx,out), then the two factors can be simplified to
δ = 0 and β =R−1

nom,nd. A resolution of Rnom,nd = 10 is gen-
erally sufficient to capture the critical cluster-to-ion forma-
tion process under ambient conditions. In order to get a rea-
sonable size coverage to study the subsequent condensational
or coagulational growth of newly formed nanoparticles, volt-
age is exponentially ramped between 20 and 10 000 V with a
characteristic time,

τs =
tramp

ln
(
Vhigh/Vlow

) , (4)

of approximately 8 s. The mean residence time of the sample
flow in the classifier, τf, is

τf =
Vclass

Qclass
, (5)

with Vclass and Qclass = (Qa+Qc)/2 corresponding to the
volume and aerosol flow rates in the classification re-
gion. For the ROMIAC, Vclass = π(R

2
2 −R

2
1)b, where R1 =

0.24 cm and R2 = 1.61 cm are the inner and outer electrode
radii, and b = 1 cm is the gap between the high-voltage
and ground electrodes, resulting in a classification volume
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Vclass ' 8.0 cm3. The resulting mean gas residence time at
the nominal aerosol flow rate is τf ' 0.4 s. The mobility of
the particles that are transmitted through an ideal, constant-
voltage ROMIAC is

Z∗p,ideal =

(
Qx,in+Qx,out

)
b

2π
(
R2

2 −R
2
1
)
V ∗

, (6)

where Z∗p,ideal can be treated as the centroid particle electrical
mobility in scanning mode, assuming highly idealized flow
and electric fields, and corresponds to the peak of the transfer
functions (Zhang et al., 1995; Mui et al., 2017). V ∗ is the
corresponding voltage applied to the central electrode when
particles are detected by the CPC.

Most mobility-based particle sizing systems measure only
one polarity of charged particles (usually positive) by em-
ploying a single-polarity high-voltage supply, but bipolar
CCs such as the soft x-ray source used in this study produce
ion pairs to bring the aerosol to a steady-state, “neutralized”
state that contains both negatively and positively charged par-
ticles as they collide with ions of both polarities. Because ion
properties, such as mass, mobility, and concentration, as well
as experimental conditions, can all affect particle charging
efficiency, and the ions produced by the soft x-rays can vary
due to trace species in the gas, measuring only particles with
single polarity may lead to uncertainties and variabilities in
computing particle concentrations (Steiner et al., 2014; Chen
et al., 2018; Kangasluoma et al., 2013). To optimize instru-
ment performance and avoid potential variability in particle
charging, the ROMIAC operates on a custom-built dual high-
voltage supply with fast polarity-switching capability. In the
default operating mode of the nSEMS, the polarity of the
scanning voltage is switched at the start of every scan, but
the polarity can also be fixed as either positive or negative,
or it can be turned off to meet different scientific needs, i.e.,
to sample particles formed by ion-mediated nucleation. This
feature not only helps to better understand the performance
of bipolar diffusion charging, but it also enables measure-
ment of the charge state of the sampled aerosol particles by
deactivating the CC for some or all scans. This becomes an
important feature when studying atmospheric nucleation as
it enables discrimination between neutral and ion-mediated
nucleation (Kirkby et al., 2016; Wagner et al., 2017).

Classified particles transmitted through the ROMIAC are
subsequently detected by a two-stage CPC that enables parti-
cle counting approaching 1 nm in size (Iida et al., 2009; Jiang
et al., 2011a). The first stage employs a fast-mixing conden-
sational activation and growth reactor (Wang et al., 2002) that
uses DEG as the working fluid to activate the nanoparticles.
This activation stage is based upon the particle size magnifier
(PSM) (Kousaka et al., 1982; Okuyama et al., 1984; Gamero-
Castano and de la Mora, 2000; Sgro and de la Mora, 2004)
in which a cool aerosol sample flow undergoes rapid turbu-
lent mixing with a warm flow that is saturated with vapor to
produce the supersaturated state that will activate and grow

particles larger than a critical size. The detailed design incor-
porates modifications reported by Shah and Cocker (2005)
that reduce the size of the mixing volume while maintaining
the small growth tube, with a residence time of ∼ 10 ms. In
the first stage used in this study, supersaturation is produced
by turbulent mixing of a 0.3 L min−1 flow of hot (e.g., 70 ◦C)
DEG vapor with a 1.2 L min−1 cold (20 ◦C) particle-laden
flow. The downstream growth tube is cooled to 10 ◦C to ac-
celerate particle growth and remove excess vapor. In contrast
to the Airmodus particle size magnifier (PSM) and the CPC
of Sgro and de la Mora (2004), on which the PSM is based,
the mixing time in the activation stage of the present CPC has
been minimized (∼ 0.12 s) to speed up instrument response
compared with ∼ 0.7 s. The design and initial experiments
were performed with a TSI model 8210 CPC operating at a
flow rate of 1.5 L min−1 as the second detection stage. Ow-
ing to the slow response of that CPC, it was replaced with a
modified, water-based ADI MAGIC™ CPC that serves as the
second stage to grow particles sufficiently large for optical
detection (Hering et al., 2019). Particle counts are recorded
over the nSEMS size distribution scan at 5 Hz. The sample
flow rate of the CPC is 1.00 L min−1. Between the activation
and booster stages, the flow is split between the water CPC
and a smaller (0.5 L min−1) excess flow to minimize deposi-
tion of excessive DEG vapor in the intervening plumbing and
to match the flow to the water CPC.

While this CPC can detect particles as small as 1 nm in
diameter and the ROMIAC can classify particles of that
small size (Mui et al., 2013, 2017), Kangasluoma et al.
(2013) observed larger numbers of apparent particles smaller
than 1.5 nm in diameter than were present in the calibration
aerosol that they generated and attributed the excess particle
counts to the activation of gas ions within the CPC. Lacking
a definitive method for discriminating between gas ions and
particles in the sub-1.5 nm size range, we do not report size
distributions below 1.5 nm.

Data acquisition and instrument control for the nSEMS
are accomplished with a National Instruments™ sbRIO-9637
CompactRIO single-board controller coupled with a field-
programmable gate array (FPGA) module. The FPGA mod-
ule, which is programmable using LabVIEW 2018, is ca-
pable of operating at clock speeds up to 40 MHz with op-
timized hardware and memory settings. The FPGA is con-
trolled by a microprocessor that runs on a real-time Linux
operating system (OS), greatly reducing the overhead and
response lag associated with typical LabVIEW applications
running on other platforms. The real-time OS and FPGA en-
able independent time loops for precise control of the voltage
exponential ramp and recording of CPC concentrations. The
board controller is connected to a Windows PC via Ethernet,
enabling communication among different programs, visual-
ization of real-time data, and online monitoring of critical
parameters without compromising instrument timing.
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3 Characterization of the nSEMS

Compared to the DMPS, the SEMS accelerates mobility-
based size distribution measurements by classifying particles
in a time-varying electric field and eliminating the transition
time between measurement channels. Although the exponen-
tial voltage ramping allows investigation of rapidly evolv-
ing aerosol particles, it alters the particle trajectories in the
classifier such that the transfer function may differ signifi-
cantly from that expected for a DMPS. Numerical simula-
tions of particle trajectories in a scanning cylindrical DMA
have shown that the width of instrument transfer function for
fast scans can be significantly greater than that for a static
(constant-voltage) DMA (Collins et al., 2004; Mai and Fla-
gan, 2018; Mai et al., 2018). Similarly, voltage scanning of
the ROMIAC may distort the transfer functions from those
seen in static-mode operation.

3.1 Finite-element modeling of particle transmission

Both numerical simulations and derivations of analytical so-
lutions for idealized instruments have proven to be powerful
tools in the study of the transfer functions of DMAs operating
in scanning mode (Collins et al., 2004; Dubey and Dhaniyala,
2011). However, the ROMIAC geometry and particle trajec-
tories are more complicated than those in long-column cylin-
drical DMAs. In order to fully understand the flows, electric
field, and particle trajectories inside a scanning ROMIAC,
particle transmission has been examined with finite-element
simulations using COMSOL Multiphysics® (version 5.3).

We have solved Navier–Stokes and Maxwell equations for
the flow and electric fields, respectively, using the “Laminar”
and “Electrostatic” modules in COMSOL Multiphysics®.
The time-varying electric field, E(x,y,z, t), can be treated
as quasi-steady-state:

E(x,y,z, t)= E0(x,y,z)f (t), (7)

where E0(x,y,z) is the electric field in the beginning of the
voltage ramp at V (t = 0)= Vlow, and f (t) is the time vari-
ation factor depending on the characteristic ramping time τs
defined in Eq. (4).

f (t)=


1, 0≤ t < tlow

e
t−tlow
τs , tlow ≤ t < tlow+ tramp

Vhigh
Vlow

, tlow+ tramp ≤ t < tlow+ tramp+ thigh

(8)

Because the particles classified in the ROMIAC are suffi-
ciently small that inertial effects can be neglected, particle
motion is numerically simulated using the “Particle trajecto-
ries” module in COMSOL, with only the drag, electrostatic
forces, and Brownian motion being considered, as the par-
ticles are assumed to be massless. The scanning ROMIAC
transfer function for monodisperse particles can be written
as

�ROMIAC
(
Zp,β,δ, t

)
=
Nc(t)

Na
, (9)

where Na and Nc are the number of particles going in and
coming out of the ROMIAC during the simulation. In order
to determine the scanning ROMIAC transfer function with
adequate time resolution, 200 particles are injected into the
ROMIAC every 2.5 ms; simulations were performed for the
default flows and voltage ramp settings listed in Table 1. The
times at which particles enter and exit the scanning ROMIAC
were recorded. Figure 2 shows an example of the finite-
element solutions of the flow and electric fields for dp = 4 nm
particles. The modeled instrument response for particles with
13 different mobility diameters across the sizing range of
the instrument is shown with solid lines in Fig. 3. The peak
transmission ratio for particles larger than about 5 nm re-
mains flat at approximately 60 % and progressively drops at
smaller sizes. Simulation was also performed for different
ramp times in order to compare the transfer function distor-
tions that may result from fast voltage scanning (Fig. S1 in
the Supplement).

3.2 Laboratory characterization of the ROMIAC

Although particle trajectory simulations using COMSOL
Multiphysics® have proven very effective at retrieving parti-
cle transfer functions, they cannot fully capture the nonideal,
three-dimensional behavior of particles inside the classifier
due to the high computation cost (Mai and Flagan, 2018;
Amanatidis et al., 2020). As a result, experimental calibra-
tions are needed to closely examine the scanning ROMIAC
performance. Figure 4 shows the tandem differential mobil-
ity analyzer (TDMA; Rader and McMurry, 1986) calibra-
tion setup used; aerosols of a known size are selected with
a classifier (a constant-voltage ROMIAC or DMA for small,
1–20 nm, or large, 12–26.5 nm, respectively) before enter-
ing the nSEMS. Depending on the target size range, source
particles were generated from electrosprayed tetra-alkyl am-
monium solutions (Ude and de la Mora, 2005), a heated
Nichrome hot-wire source (Peineke et al., 2006), or atomized
sodium chloride solution. The polydisperse aerosols gener-
ated from the hot wire or the atomizer were size-selected
by a ROMIAC or a cylindrical DMA operating at constant
voltage to provide a narrow-mobility-distribution sample for
nSEMS calibration. In order for the size-selected source
particles to approximate a monodisperse aerosol, both the
cylindrical DMA and the classifying ROMIAC were run at
higher resolution than the nSEMS standard operating condi-
tion (Rnd ≥ 10 for both the classifying DMA and ROMIAC)
using open-loop controlled sheath flow or cross-flow, respec-
tively.

Due to perturbations of the electric field and imperfec-
tions in the instrument fabrication, particle transmission in
any mobility analyzer can deviate from the designed per-
formance. When the ROMIAC of the nSEMS is operated in
static mode, correction factors can be determined empirically
to account for any deviations from theoretical or numerical
performance. In terms of particle sizing, an empirical mo-

Atmos. Meas. Tech., 14, 5429–5445, 2021 https://doi.org/10.5194/amt-14-5429-2021



W. Kong et al.: The nano-scanning electrical mobility spectrometer (nSEMS) 5435

Figure 2. Example of finite-element simulations of the scanning
ROMIAC at an aerosol flow rate of Qa = 1.2 L min−1 and a cross-
flow rate of Qc = 12 L min−1, with particle diameter of dp =
4.0 nm. (a) Particle trajectories over a 50 s upscan at t ≈ 25 s. Cross-
sectional view of (b) the flow velocity and (c) electric field distri-
bution. The magnitude of the electric field corresponds to the max-
imum, 10 kV, electric potential. Particles enter the ROMIAC from
the entrance slit that is tangential to the classification region and
leave the ROMIAC from the slit perpendicular to the classification
region.

bility correction factor, fz, is calculated by comparing the
experimental transfer function with the expected Z∗p,ideal, as
defined in Eq. (6), using the TDMA calibration setup (Mui
et al., 2017). This correction factor, fz = Z∗p/Z

∗

p,ideal, is es-
timated to be 1.03 for the ROMIAC classifier used in the
nSEMS system.

3.3 Characterization of the two-stage CPC

In addition to the ROMIAC, nonideal performance of the
two-stage CPC may also affect the nSEMS data acquisition
and interpretation. Figure 5 shows the experimental setup
that was used to measure the size-dependent detection effi-
ciency of the two-stage CPC. The classifying ROMIAC was

operated in static mode with a resolving power of Rnd = 14.
The hot-wire particle generator was set at similar condi-
tions as shown in Fig. 4. Given that the hot-wire genera-
tor produces singly charged particles (Peineke et al., 2006),
an aerosol electrometer was placed between the ROMIAC
and the two-stage CPC to measure the total particle num-
ber concentrations coming out of the classifier. The plumb-
ing upstream of the CPC was kept the same as on the in-
tegrated nSEMS system so that the resulting plumbing de-
lays would be taken into account in this calibration. The
CPC counting efficiency relative to that of the aerosol elec-
trometer is shown in Fig. 6. The 50 % cutoff size is about
1.6 nm, and the counting efficiency reaches a plateau when
particle-mobility-equivalent diameter is larger than about
2.1 nm (dp ≥ 2.1nm). The empirically determined two-stage
CPC counting efficiency was fitted with a logistic function:

ηcpc =
ηmax

1+ e−k(dp−dp,0)
, (10)

where ηmax = 1.01, k = 6.30 nm−1, and dp,0 = 1.54 nm
based on the calibration results.

In addition to detection efficiency, the delay in CPC re-
sponse also complicates the transfer function of the system.
When the classifier is operated at scanning mode, the slow
response of the CPC may introduce a smearing effect and
broaden the particle transfer functions. To account for this
effect, the response of the two-stage CPC can be modeled as
a plug flow reactor (PFR) in series with a continuous stirred-
tank reactor (CSTR) to estimate its particle residence time
distribution, Ecp(t) (Russell et al., 1995; Collins et al., 2002;
Mai et al., 2018):

Ecp(t)= Ep(t) ?Ec(t)

=

∞∫
−∞

Ec(t
′)Ep(t − t

′)dt ′

=

{
0, t < τp

1
τc
e
−
t−τp
τc , t ≥ τp,

(11)

where τp and τc are the mean residence time of the PFR
and the CSTR, respectively, and ? is the symbol for the
convolution of two functions (Bracewell and Bracewell,
1986). The transfer function of the integrated nSEMS sys-
tem, �nSEMS(Zp,β,δ, t), can be written as

�nSEMS
(
Zp,β,δ, t

)
=�ROMIAC

(
Zp,β,δ, t

)
?Ecp(t). (12)

To explore the extent of this effect, the nSEMS was run with
different voltage ramp times (10–1400 s, corresponding to a
τs/τf value of 4–5600). At long voltage ramp times, e.g., at
1400 s, the nSEMS can be treated as operating in a quasi-
static mode, wherein the CPC response time has no impact
on the transfer functions. Figure 7 shows the experimen-
tally determined particle transfer functions of the nSEMS
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Figure 3. Simulated transfer function of the scanning ROMIAC with monodisperse input particles in the 1.3–25 nm size range. The transfer
function is calculated as the ratio of the particle number at the exit and the entrance of ROMIAC over a voltage scan (dashed black line) with
tramp = 50 s. Solid lines show the transfer function of the classifier (scanning ROMIAC) only; dashed lines show the simulated ROMIAC
transfer function coupled with the CPC residence time distribution (see Eq. 12). The integrated transfer function peaks (dashed lines) are
used to compute the inversion kernel for nSEMS data inversion.

at different tramp for dp = 18 nm particles. The results indi-
cate that the smearing effect is small when tramp is longer
than 30 s (τs ≥ 4.83 s). The residence time distribution is
computed by deconvoluting the quasi-static nSEMS transfer
function measured with tramp = 1400 s from that measured
with tramp = 50 s. The resulting characteristic times for the
CPC residence time distribution were τc = 0.20 s and τp =
0.70 s (Fig. S2). The dashed lines in Fig. 3 show the con-
voluted nSEMS transfer function, �nSEMS(Zp,β,δ, t), com-
bining the CPC residence time distribution in addition to the
scanning ROMIAC simulation.

3.4 Derivation of the integrated instrument transfer
function and data inversion

Data inversion is required to retrieve the particle size dis-
tribution of the source particles, n(logdp), from the particle
counts measured by the CPC, RnSEMS, which can be repre-
sented in matrix form as

RnSEMS = AnSEMSN , (13)

where AnSEMS is often referred to as the inversion kernel
for the instrument, and N is the vector of weights for the
discretized representation of the particle size distribution,
for which we use linear splines on x = log(dp) (Mai et al.,
2018). The time series instrument response can be written
as RnSEMS = [RnSEMS,1,RnSEMS,2, · · ·,RnSEMS,I ]

T. With the
default nSEMS voltage ramp time, tramp = 50 s, and the CPC
data recording frequency, tc = 0.2 s, the vector length for
one complete scan is I = 250. The particle number counts
recorded by the CPC in the ith time bin, RnSEMS,i , can be
represented as the integral of the total number of particles

transmitted over the time interval (i− 1)tc ≤ t < itc.

RnSEMS,i =Qa

itc∫
(i−1)tc

∞∫
−∞

n(x)
∑
φ

pcharge(x,φ)

× ηCPC(x,φ)�nSEMS(Zp(x,φ),β,δ, t) dx dt

=Qa

itc∫
(i−1)tc

∑
j

xj∫
xj−1

n(x)
∑
φ

pcharge(x,φ)

× ηCPC(x,φ)�nSEMS(Zp(x,φ),β,δ, t) dx dt (14)

The particle charging probability from the soft x-ray CC,
pcharge(x,φ), was assumed to be that of the Wiedensohler
(1988) approximation and is computed separately for scans
of negative and positive polarity. In order to obtain the instru-
ment transfer function, �nSEMS(Zp(x,φ),β,δ, t), for each
time bin, the simulated ROMIAC transfer functions were first
fitted as a Gaussian function.

�ROMIAC
(
Zp(x,φ),β,δ, t

)
= a exp

(
−
(t − b)2

2c2

)
(15)

The three fitting parameters, a, b, and c, were then inter-
polated over the entire time vector with 250 bins. By sub-
stituting the interpolated parameters back into Eq. (15), a
ROMIAC transfer function, �ROMIAC(Zp(x,φ),β,δ, t), was
generated for each time bin. The fitted transfer functions
were adjusted by the empirically determined mobility cor-
rection factor, fz. The nSEMS transfer function for each
time bin, �nSEMS(Zp(x,φ),β,δ, t), was then computed by
the convolution of the ROMIAC transfer function and the
CPC residence time distribution of Eq. (12). The inversion
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Figure 4. The experimental setup used for the nSEMS calibration and characterization in different particle size ranges. (a) < 3 nm size
range: tetra-alkyl ammonium ions produced by an electrospray were classified using static ROMIAC as a classifier (Rnom,nd ≈ 10) and an
aerosol electrometer as a reference for the upstream particle number. The electrospray was operated at 3000 V and 25 cm H2O pressure. The
tetra-alkyl ammonium solutions were prepared with 10–20 mg salt in 1.5 mL methanol. (b) 1.5–20 nm size range: a heated Nichrome wire
was employed as a hot-wire aerosol source, with a static ROMIAC as a classifier (Rnom,nd ≈ 10) and both an aerosol electrometer and ADI
MAGIC™ water CPC as upstream particle counters. The hot wire was operated in the range of 5.0–7.0 V and 4.5–6.5 A. (c) 12.0–26.5 nm
size range: atomized sodium chloride was employed as an aerosol source, with a cylindrical differential mobility analyzer (DMA) as a
classifier (Qa = 0.5 L min−1, Qsh = 5.8 L min−1, Rnom,nd ≈ 12) and an ADI MAGIC™ water CPC as an upstream particle counter. Both
(b) and (c) follow a TDMA calibration setup (Rader and McMurry, 1986), which uses a classifier at a constant voltage to select particles
within a narrow range of sizes.

kernel matrix for the ith time bin and j th particle size bin
thus becomes

AnSEMS,i,j =Qatc

logdp,j∫
logdp,j−1

n(x)
∑
φ

pcharge(x,φ)

× ηCPC(x,φ)�nSEMS(Zp(x,φ),β,δ, t) dx. (16)

We then applied a totally nonnegative least squares (TNNLS)
algorithm to retrieve the sample particle size distribution
from the inversion kernel and the particle number con-
centrations detected by the CPC, i.e., solving for N =
A−1

nSEMSRnSEMS (Merritt and Zhang, 2005; Mai et al., 2018).
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Figure 5. Experimental setup used to characterize the two-stage
CPC detection efficiency. A hot-wire aerosol generator was used to
provide aerosol samples. The ROMIAC was operated at static mode
to provide stable, monodisperse aerosol particles for both the two-
stage CPC and the aerosol electrometer. The ROMIAC aerosol and
cross-flow rates were Qa = 2.5 L min−1 and Qx = 35.5 L min−1.
The electrometer was pre-calibrated against a TSI 3760A butanol-
based CPC and an ADI MAGIC™ water-based CPC.

Figure 6. Detection efficiency of the two-stage CPC as a function
of dp, the mobility-equivalent particle diameter. The efficiency is
corrected for the dilution due to the vapor flow. The size-dependent
detection efficiency is fitted to a logistic function with fitting pa-
rameters ηmax = 1.01, k = 6.30 nm−1, and dp,0 = 1.54 nm. The fit
is used to approximate the CPC detection efficiency, ηcpc, in the
data inversion.

3.5 Calibration results

Figure 8 shows the nSEMS scanning response with size-
selected particles of different mobility-equivalent diameters
using the TDMA setup shown in Fig. 4b (dp ≤ 10.70 nm)
and Fig. 4c (dp ≥ 12.00 nm) with the default operating pa-
rameters listed in Table 1. The particles fed into the nSEMS
using the TDMA setup were not monodisperse, which may
have led to peak broadening and particle losses. In order to
compare the experimental result with the simulation, we de-
convoluted the CPC residence time distribution and the static
classifier transfer function from the instrument response as

Figure 7. Effect of voltage ramp time, tramp, on the nSEMS scan-
ning transfer function with dp = 18 nm input particles. The nSEMS
voltage is increased exponentially from 20 V to 10 kV over ramp
times within 10–1400 s, including the default tramp = 50 s. CPC
smearing of the transfer function increases with decreasing tramp
and becomes very pronounced at tramp < 20 s.

shown in Fig. 8 (Stolzenburg and McMurry, 2008):

�ROMIAC
(
Z̃p,β,δ, t

)
=


RnSEMS,i

Ecp�ROMIAC

(
Z̃p,β,δ,σ

) , dp < 12nm

RnSEMS,i

Ecp�DMA

(
Z̃p,β,δ,σ

) , dp ≥ 12nm,
(17)

where the dimensionless mobility, Z̃p, is defined as the ratio
of input particle electrical mobility and the ideal mobility,
Z∗p,ideal, as defined in Eq. (6),

Z̃p =
Zp

Z∗p,ideal
, (18)

and �ROMIAC(Z̃p,β,δ, σ̃ ) and �DMA(Z̃p,β,δ, σ̃ ) are the
diffusing Stolzenburg transfer functions for the ROMIAC
and long-column DMA operated at static mode, respectively:

�ROMIAC,DMA(Z̃p,β,δ, σ̃ )

=
σ̃

√
2β(1− δ)

[
ε

(
Z̃p− (1+β)
√

2σ̃

)
+ ε

(
Z̃p− (1−β)
√

2σ̃

)
− ε

(
Z̃p− (1+βδ)
√

2σ̃

)
− ε

(
Z̃p− (1−βδ)
√

2σ̃

)]
, (19)

where ε is

ε(x)= xerf(x)+
exp

(
−x2)
√
π

, (20)
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and erf(x) is the error function. The dimensionless diffusion
factor, σ̃ , is defined as

σ̃ 2
=
Gclass

Pemig
Z̃p. (21)

At ambient temperature, the migration Péclet number for
singly charged particles can be approximated as a function
of the static voltage:

Pemig =
φeV

kT
≈

V

0.0255[V ]
. (22)

The dimensionless geometry factor for classifiers, Gclass,
which is estimated to be GLDMA = 2.55 for the TSI 3081
LDMA at Rnd, DMA ≈ 12 and for the ROMIAC at
Rnd, ROMIAC ≈ 10, can be computed as

G=

8
3 , ξ = 0

4


4
15

[(
1− |ξ |5/2

)
− (1− |ξ |)5/2

]
+

1
3

(
ξ
α

)2 [(
1− |ξ |3/2

)
− (1− |ξ |)3/2

]
|ξ |(1−|ξ |) , 0< |ξ |< 1

2
[

4
3 +

(
1
α

)2
]
, |ξ | = 1,

(23)

where ξ = β−1(Z̃p− 1) and α = L/b = 0.015m/0.01m=
1.5 for the ROMIAC. The real resolution of the scanning
ROMIAC can then be computed using the full width at half-
maximum of the transfer function, �ROMIAC(Z̃p,β,δ, t),
(Flagan, 1999, 2004):

R=
Z∗p

1Zp,FWHM
. (24)

The transmission efficiency can be calculated as the area un-
der the transfer function normalized by the area of an ideal
transfer function, which in non-dimensionless form is equiv-
alent to the flow factor, β:

η =
1
β

∫
�ROMIAC

(
Z̃p,β,δ, t

)
dZ̃p =

1
β

∫
Nout(t)

Nin
dt. (25)

Figure 9 shows the comparison of ROMIAC resolution
and efficiency between the experiment, COMSOL simula-
tion, and the theoretical limit calculated for the DMA and
the OMAC operated in static mode (Flagan, 2004). The over-
all performance of the nSEMS shows convincing agreement
with the finite-element simulation results in Fig. 3, which
proves the feasibility of coupling laboratory calibrations with
numerical simulation to predict the instrument response of
a SEMS system. Compared to the simulation and theoreti-
cal calculation, the effect of diffusional degradation at low
voltages remains minimal for the scanning ROMIAC system
compared to other conventional nano-SMPS systems, as pre-
viously predicted for the static OMAC (Flagan, 2004; Dow-
nard et al., 2011). Figure 10 shows the nSEMS peak voltage

(V ∗) as a function of particle mobility when operated at a
cross-flow rate ofQc = 12 L min−1. The relatively high clas-
sification voltage (∼ 35 V at 1.47 nm) compared to DMAs
further reduces diffusional degradation of the resolution (Fla-
gan, 1999). In addition to the calibration results using the hot-
wire or atomized particle sources, it also includes the signa-
ture peak of tetra-heptyl ammonium bromide (THAB) ions
(see Fig. 4a for setup). Particle mobilities are calculated us-
ing Eq. (1) at given diameters, assuming that the particles are
singly charged. The experimentally determined voltages at
the transfer function peaks are in close agreement with those
predicted by the COMSOL simulation in Fig. 3. From the
laboratory characterization results, the method of using em-
pirical data to adjust the simulated particle transmission has
proven to be an efficient and effective way to derive SEMS or
SMPS system transfer function. In addition, the nSEMS, as
the first system that employs an opposed-migration classifier
with continuously varying voltage, has also demonstrated the
great potential of scanning OMAC systems for providing fast
and accurate particle size information in the low nanometer
regime without significant diffusional degradation.

4 Application to particle size distribution measurement

Atmospheric new particle formation and its subsequent
growth have a great impact on aerosol number concentra-
tions and the Earth’s total energy budget. In order to better
understand the climate significance of NPF, much research
has attempted to study the mechanisms of nucleation and
the growth rates of nanoparticles. For example, the CLOUD
experiments at CERN have extensively probed the roles of
sulfuric acid, ammonia, cosmic rays, and other atmospheric
components in nucleation (Kirkby et al., 2011, 2016). To de-
termine the particle formation and growth rates from atmo-
spheric chamber experiments, the particle size distribution
needs to be measured at high resolving power and with a
short duty cycle. In addition to being able to capture the tran-
sient aerosol dynamics during NPF events, since most of the
nucleation occurs in clean atmospheric conditions, the instru-
ment must be capable of taking measurements at relatively
low particle concentrations. The scan rate selected for this
initial implementation was therefore a compromise between
fast response and counting statistics.

The nSEMS was used with a 60 s scan for particle siz-
ing in both the CLOUD 13 and the CLOUD 14 campaigns.
Figure 11 shows a particle size distribution measured with
nSEMS during an ion-induced nucleation event that simu-
lated atmospheric nucleation and nanoparticle growth in an
urban environment in CLOUD 13. The experiment was con-
ducted in the presence of sulfuric acid, nitric acid, and am-
monia at−10 ◦C and 60 % RH. When particles reached dp ≈

4.6 nm, nitric acid and ammonia started condensing rapidly
onto the particles, resulting in a growth rate of 40 nm h−1.
This extremely fast growth from nitric acid and ammonia co-
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Figure 8. Experimental calibration of the nSEMS using the TDMA setup shown in Fig. 4. Particles entering the nSEMS were classified as
described; the reported mobility-equivalent diameters were calculated based on the upstream classifier operating parameters. The nSEMS
was operated at the default parameters listed in Table 1, with tramp = 50 s. The ratio of downstream to upstream particle counts of the nSEMS
is shown as a function of time over the voltage scan, with input particles in the 2.9–26.5 nm range. The applied voltage is indicated by the
dashed gray line. Only a fraction of the sizes used in the calibration are shown here for clarity; results from the complete size calibration
summary are presented in Fig. 10.

Figure 9. Comparison between experimental, simulated, and theoretical transfer functions. (a) The effect of operating voltage on classifier
resolution calculated as the actual resolution based on the full width at half-maximum (FWHM) (Eq. 24) over Rnd, the resolution at the non-
diffusive regime (> 5000 V). (b) Particle transmission efficiency as a function of operating voltage. Transmission efficiency, η, is calculated
as the ratio of the actual over the ideal area below the transfer function peak. The error bars represent 1 standard deviation of uncertainty
from multiple experiments at one size.

condensation can generally persist for only a few minutes
and activate only the largest of the initial small nuclei, be-
fore depleting the nitric acid supersaturation and turning off
additional nucleation. Those few nuclei that activate are of-
ten present only in low concentrations (Wang et al., 2020).
Consequently, the other conventional particle sizing instru-
ments that are connected to the CLOUD chamber were not
able to fully capture this rapid growth event; the concentra-
tions were too low to be detected by the nano-SMPS (Tröstl
et al., 2015). Moreover, the size of the particles evolved so

fast that a higher size resolution was required than could be
attained by the DMA train that measures six sizes in par-
allel with separate static DMAs (Stolzenburg et al., 2017).
In the region where multiple instruments can capture the
aerosol dynamics, the intercomparison between the results
of different instruments showed reasonably good agreement.
Combining these measurements also provided detailed par-
ticle growth information in rapidly evolving new particle
formation events that the other instruments could follow
(Wang et al., 2020). In addition to enabling high-resolving-
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Figure 10. The nSEMS voltage at the peak transmission (V ∗) as a
function of the input reference particle mobility, Z∗p . Symbols rep-
resent experimental results with tetra-heptyl ammonium bromide
(THAB), hot-wire, and atomized NaCl particles produced using the
setups shown in Fig. 4. The black dotted line demonstrates the volt-
age at peak transmission predicted by the finite-element simula-
tions. The top axis shows the corresponding particle diameter, dp,
at a given mobility, Z∗p , as defined in Eq. (1); the right axis shows
the corresponding time in the scan.

power measurements of size distributions during rapid parti-
cle growth events, the nSEMS also provides valuable infor-
mation on natural ion and charged particle concentrations in
the chamber when operated with the CC switched off. The
ability to measure the concentrations of positive and nega-
tive nanoparticles separately facilitates study of the role of
ions in atmospheric nucleation and growth.

5 Conclusions

The design and performance of a novel nanoparticle size-
classifying instrument, the nSEMS, have been evaluated. The
concept of OMAC was first proposed in order to overcome
the diffusional degradation at lower voltages of the DMA
(Flagan, 2004). The radial form of the OMAC, the RO-
MIAC, was then designed to classify nanoparticles in the low
nanometer regime with high resolving power in static mode
(Mui et al., 2013, 2017). According to the ideal model of
OMAC, particles are transmitted through the classification
region parallel to the porous electrodes, and voltage varia-
tions would lead to excessive particle losses. A key feature
of the ROMIAC design was to both introduce the sample and
extract the classified ions or particles on the ground-electrode
side of the classifier. The resulting trajectories, which can
be seen in COMSOL Multiphysics™ simulations shown in
Fig. S1, reduce losses associated with voltage scanning to
acceptable levels, thereby enabling measurement accelera-
tion by voltage scanning and operating as a SEMS. The abil-

Figure 11. Particle size distribution measured by the nSEMS
during a nucleation and growth event in the CLOUD 13 cam-
paign with anthropogenic trace gases. The experiment was con-
ducted at −10 ◦C and 60 % RH, with 24 pptv HNO3, 2131 pptv
NH3, 0.46 pptv H2SO4, and 0.28 pptv highly oxygenated or-
ganic molecules (HOMs). The nSEMS high-voltage polarity was
switched between scans to probe both positively and negatively
charged particles from the soft x-ray CC. A clear bimodal size
distribution was observed by the nSEMS due to the rapid co-
condensation of nitric acid and ammonia (Wang et al., 2020). The
activation diameter, dact, for nitric acid condensation is around
4.6 nm.

ity to classify particles at low voltage with minimal diffu-
sional degradation of the transfer function, combined with
a fast-response CPC that minimizes residence time distribu-
tion related to the smearing effect, made it possible for the
ROMIAC to be operated with fast exponential voltage ramp-
ing, greatly accelerating the measurement over that of static-
mode operation. The nSEMS system, which was used with a
soft x-ray CC in this study, combines a scanning ROMIAC
as a classifier and a two-stage CPC as a particle detector, and
it can provide highly resolved particle size distribution mea-
surements in the 1.5–25 nm size range in 1 min or less (we
did not push the bound on the scan rate in the initial applica-
tion of the nSEMS at CLOUD). The integrated instrument
transfer function, which can reproduce how particles are
transmitted inside the nSEMS within 10 % uncertainty, has
been derived by combining COMSOL finite-element anal-
ysis with empirical adjustments. The particle size distribu-
tions measured by the nSEMS employing the described data
inversion method agree reasonably well with other instru-
ments (Tröstl et al., 2015; Stolzenburg et al., 2017) used in
the CLOUD experiment (Wang et al., 2020). However, un-
certainties remain that are associated with particle charge
distribution. When combined with a soft x-ray CC that can
be switched off, the dual-polarity scanning feature of the
nSEMS makes it possible to observe the effects of charges
on the evolution of the size distribution as particles nucle-
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ate and grow. Its dual-polarity capability will also facilitate
characterization of the particle charge distribution in the low
nanometer regime, thereby improving the instrumental trans-
fer function and data inversion. Overall, this instrument is
able to provide robust particle sizing information in the sub-
25 nm region and is extremely powerful in examining atmo-
spheric nucleation and the subsequent growth of nanoparti-
cles.
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Abstract. Ambient aerosol size distributions obtained with
a compact scanning mobility analyzer, the “Spider” dif-
ferential mobility analyzer (DMA), are compared to those
obtained with a conventional mobility analyzer, with spe-
cific attention to the effect of mobility resolution on the
measured size distribution parameters. The Spider is a
12 cm diameter radial differential mobility analyzer that
spans the 10–500 nm size range with 30 s mobility scans.
It achieves its compact size by operating at a nominal mo-
bility resolution R = 3 (sheath flow= 0.9 L min−1; aerosol
flow= 0.3 L min−1) in place of the higher ratio of sheath flow
to aerosol flow commonly used. The question addressed here
is whether the lower resolution is sufficient to capture key
characteristics of ambient aerosol size distributions. The Spi-
der, operated at R = 3 with 30 s up- and downscans, was co-
located with a TSI 3081 long-column mobility analyzer, op-
erated at R = 10 with a 360 s sampling duty cycle. Ambient
aerosol data were collected over 26 consecutive days of con-
tinuous operation, in Pasadena, CA. Over the 17–500 nm size
range, the two instruments exhibit excellent correlation in
the total particle number concentrations and geometric mean
diameters, with regression slopes of 1.13 and 1.00, respec-
tively. Our results suggest that particle sizing at a lower res-
olution than typically employed may be sufficient to obtain
key properties of ambient size distributions, at least for these
two moments of the size distribution. Moreover, it enables
better counting statistics, as the wider transfer function for a
given aerosol flow rate results in a higher counting rate.

1 Introduction

Mobility measurements of atmospheric aerosols in the 10–
500 nm size range are important to atmospheric aerosol char-
acterization (McMurry, 2000). Measurements aloft are es-
pecially important to understand aerosols in remote regions
(Creamean et al., 2021; Herenz et al., 2018) and for mapping
three-dimensional profiles (Mamali et al., 2018; Ortega et al.,
2019; Zheng et al., 2021). Traditional mobility analyzers that
span this size range are large and not suitable for most un-
manned aerial vehicle (UAV) or tethered balloon payloads,
which increasingly serve as platforms for aerosol character-
ization aloft. Moreover, aircraft measurements also require
a fast scan time resolution to enable a good spatial resolu-
tion, as time is proportional to distance traveled in a moving
platform.

To that end, Amanatidis et al. (2020) developed the “Spi-
der DMA”, a compact, lightweight, and fast differential mo-
bility analyzer (DMA). The instrument was designed for 10–
500 nm sizing, with an aerosol flow rate of 0.3 L min−1 to
provide adequate counting statistics on ambient aerosol over
the time window appropriate for moving platforms. Its com-
pact size was achieved in part through reduction of mobility
resolution. Instead of the typical ratio of sheath-to-aerosol
flows of 10, the Spider DMA employs a flow ratio of 3. For
given sample flow rate, the most commonly used flow rate ra-
tio of 10 requires a larger sheath flow, which in turn requires
a larger mobility analyzer to reach the same maximum parti-
cle size.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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While high size resolution is important for specific ap-
plications, such as in laboratory calibrations that employ a
DMA as a calibration aerosol source, it may not be critical for
ambient size distribution measurements, wherein the particle
distribution spans a much wider size range than the transfer
function of the DMA. Lower DMA resolution has also been
successfully employed for reconstructing aerosol dynamics
process rates in chamber experiments (Ozon et al., 2021). In
addition to the smaller physical size of the instrument, op-
erating at lower resolution increases the particle count rate
owing to the wider DMA mobility window, thereby reduc-
ing measurement uncertainty. This can be an important fac-
tor for low-concentration measurements. Moreover, the re-
sulting lower sheath flow requirements enable the usage of
more compact and less power-demanding pumps, which fur-
ther facilitates the overall portability of the instrument.

The question explored in this paper is whether the
moderate-resolution mobility sizing of the Spider DMA is
sufficient to capture the important characteristics of atmo-
spheric aerosol size distributions. We begin with the deriva-
tion of the Spider DMA transfer function through a combina-
tion of finite-element simulations and laboratory calibrations.
We then present a field validation by comparison of ambient
aerosol data from the new instrument with that obtained from
a traditional long-column cylindrical DMA (LDMA) oper-
ated at a nominal resolution of R = 10 during nearly 1 month
of continuous operation of the two co-located instruments.

2 Methods

2.1 Spider DMA

The prototype Spider DMA sizing system consists of the Spi-
der DMA (Amanatidis et al., 2020) and the “MAGIC” (Mod-
erated Aerosol Growth with Internal water Cycling) particle
counter (Hering et al., 2014, 2019). The Spider is a compact
mobility analyzer designed for applications requiring high
portability and time resolution. It features a radial flow ge-
ometry and a sample inlet system that distributes the flow az-
imuthally through curved (spider-like) flow channels. The in-
strument was designed to operate at 0.3 L min−1 sample and
0.6–1.2 L min−1 sheath flow rates, offering size classification
in the 10–500 nm size range. Owing to its small classification
volume, the mean gas residence time in the classifier is on the
order of∼ 1 s, making it possible to complete its voltage scan
in times well below 60 s without significant smearing of its
transfer function.

The MAGIC particle counter is a laminar-flow water-
based condensation particle counter (CPC). It employs a par-
ticle growth tube chamber with three stages (cool, warm,
and cool), in which ultrafine particles grow by heterogeneous
water vapor condensation to > 1 µm and are subsequently
counted by an optical detector. The final stage of the MAGIC
CPC growth tube (moderator) recovers excess water vapor,

enabling long-term operation without the need of a reser-
voir or water refilling. The instrument operates at a sample
flow rate of 0.3 L min−1 and has a 50 % detection cut point
of ∼ 6 nm.

2.2 Transfer function determination by finite-element
modeling

Amanatidis et al. (2020) evaluated the Spider DMA trans-
fer function in static mode based on the Stolzenburg (1988)
transfer function model and its derivation for radial flow
classifiers (Zhang et al., 1995; Zhang and Flagan, 1996).
Here, we evaluate its transfer function in “scanning” mobil-
ity mode, wherein the electric field is varied continuously
in an exponential voltage ramp (Wang and Flagan, 1990).
The scanning transfer function was evaluated with 2D finite-
element COMSOL Multiphysics simulations of flows, quasi-
steady-state electric field, and particle trajectories. Simula-
tions were performed for 0.9 L min−1 sheath and 0.3 L min−1

aerosol flow rates, scanning voltage in the range 5–5000 V,
and 30 s exponential ramps for both up- and downscans. Par-
ticles were modeled with the “mathematical particle tracing”
module, in which particle mass was assumed to be negligi-
ble since the electric field varies slowly, on a timescale that is
long compared to the aerodynamic relaxation time of the par-
ticles being measured. Particle trajectories were calculated
by assigning particle velocity vector components equal to
the steady-state fluid field solution, combined with the ax-
ial velocity acquired from interaction with the time-varying
electrostatic field. Moreover, a Gaussian random walk was
employed in each time step of the solver to simulate parti-
cle Brownian motion, with a standard deviation proportional
to particle diffusivity, i.e., dσ =

√
2Ddt . Monodisperse par-

ticles were injected in regular intervals over the scan, vary-
ing from 0.025 s for large particles to 0.003 s for those in the
diffusing size range to capture in sufficient detail the Brow-
nian motion along the particle trajectories. Modeling was re-
peated for 10 discrete particle sizes, spanning the dynamic
range of the classifier. Details on the Spider DMA geometry
employed in the modeling, as well as an example with parti-
cle trajectories over the Spider voltage scan, are included in
the Supplement (Figs. S1 and S2).

2.3 Experimental

The two sizing instruments, the Spider DMA and the LDMA
system, were operated in parallel, sampling ambient air from
a roof top at the Caltech campus in Pasadena, CA. Measure-
ments were made between 16 May–11 June 2020 and were
done as part of a study of the impacts of the COVID-19 pan-
demic shutdown on air quality. The experimental setup used
is shown in Fig. 1. Ambient aerosol samples passed through
a soft X-ray charge conditioner and were subsequently split
between the two mobility sizing systems, thereby ensuring
that the charge status of the aerosols seen by the two instru-

Atmos. Meas. Tech., 14, 4507–4516, 2021 https://doi.org/10.5194/amt-14-4507-2021



S. Amanatidis et al.: Efficacy of the Spider DMA for ambient aerosol size distribution measurements 4509

Figure 1. Schematic of the experimental setup used to evalu-
ate the Spider DMA. The prototype instrument was operated at
0.9 L min−1 sheath and 0.3 L min−1 aerosol flow rates, with a scan-
ning voltage program consisting of a 30 s upscan followed by a 30 s
downscan. A TSI 3081 long-column DMA, operated at 3.0 L min−1

sheath and 0.3 L min−1 aerosol flows, with 240 s upscans, was used
for comparison. Both sizing systems used an ADI “MAGIC” CPC
as the particle detector.

ments was identical. The charge conditioner is a prototype
device that was developed recently at Caltech. It is based
upon a Hamamatsu soft X-ray source that directly ionizes
the air around the incoming aerosol flow. Both DMA sys-
tems were operated in scanning mode. Both used a MAGIC
water-based CPC as the detector. The size pre-cut stage in the
inlet of both CPCs was removed to avoid additional smearing
of the transfer functions.

The Spider DMA was operated at 0.9 L min−1 sheath and
0.3 L min−1 aerosol flow rates. A piezoelectric blower (Mu-
rata, MZB1001T02) was enclosed into a sealed housing to
serve as a recirculating pump for the Spider sheath flow. The
pump assembly weighs ∼ 60 g. Operating at a frequency
of 24–27 kHz, this pump produces only very small pressure
fluctuations that are effectively damped by the capacitance of
the downstream filter. With feedback control, the pump at-
tains a steady flow up to ∼ 1 L min−1 within about 1 s, mak-
ing it well suited to operating in an environment in which the
pressure varies slowly, as in UAV applications. The Spider
DMA scanning program included a 30 s upscan followed by
a 30 s downscan, during which the electrode voltage was ex-
ponentially varied between 5–5000 V. The voltage was held
steady for an additional 2 s at each end of the voltage ramp
to allow for incoming particles to transmit through the classi-
fier. Particle counts over the scan were recorded with a 5 Hz
rate.

The LDMA system was based on a TSI 3081 long-column
DMA operated at 3.0 L min−1 sheath and 0.3 L min−1

aerosol flow rates, offering classification in the 17–989 nm
size range. The scans consisted of an exponentially increas-

ing (upscan) voltage ramp between 25–9875 V with a 240 s
duration. As with the Spider DMA, the LDMA voltage was
held constant at the beginning and end of the ramp. Ow-
ing to its longer mean flow residence time, the LDMA volt-
age hold periods were set at 40 s, bringing its overall duty
cycle to 360 s. Particle counts for the LDMA system were
recorded with a 2 Hz sampling rate. Data acquisition and in-
strument control (flows, high voltage) was performed with
custom LabVIEW software for both systems.

2.4 DMA scanning conditions

Comparison of the scanning voltage conditions between the
two DMAs requires accounting for differences in geome-
try, flow rates, and voltage scanning rates. The appropriate
non-dimensional quantity that describes the DMA scanning
rate is given by θs =

τHV
tg

, the ratio of the exponential volt-
age ramp time constant, τHV, to the classifier mean gas res-
idence time, tg. At large θs values, typically θs > 10, the
rate at which the scanning voltage varies as particles trans-
mit through the classifier is slow, and the transfer function
approximates the “static” DMA transfer function. At small
θs values, the scanning voltage changes quickly relative to
the particle residence time, smearing the transfer function,
which becomes pronounced as θs approaches unity (Russell
et al., 1995; Collins et al., 2004). For the Spider DMA op-
erating conditions, τHV = 4.34 s and tg = 1.30 s, resulting in
θs = 3.35. For the LDMA, τHV = 40.14 s and tg = 7.52 s, re-
sulting in θs = 5.34. Here, even though τHV of the LDMA is
about 10 times larger (i.e., slower) than that of the Spider,
its dimensionless scanning rate (θs) is only about 1.6 times
smaller owing to its much longer flow residence time. In ab-
solute terms, the scanning rate employed in both DMAs is
moderate.

2.5 Data inversion and analysis

Particle size distributions were obtained by inverting the
raw particle counts recorded over each voltage scan. Raw
counts were smoothed prior to the inversion to minimize
inversion artifacts. Locally weighted scatterplot smoothing
(LOWESS) regression (Cleveland, 1979) was employed for
the Spider DMA data with a 10 % smoothing window (i.e.,
15 data points). The LDMA raw counts were smoothed
by applying a moving average filter with a span of 5 data
points. The smoothed data were then inverted by regular-
ized non-negative least-squares minimization. Tikhonov reg-
ularization was used for both systems, with λ= 0.140 and
λ= 0.015 regularization parameters for the Spider DMA and
LDMA data, respectively. Those values were found to pro-
vide stable solutions without over-constraining the inversion
results.

The inversion kernel for the Spider DMA system was
based on the scanning transfer function of the Spider DMA
obtained by finite-element modeling. In order to generate a
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dense kernel required for the inversion, the modeled trans-
fer function data were fitted to Gaussian distributions, whose
parameters were subsequently fitted to analytical expres-
sions that allowed generation of transfer functions at any in-
stant (i.e., time bin) over the voltage scan. The Spider trans-
fer functions were subsequently convoluted with a continu-
ous stirred-tank reactor (CSTR) model (Russell et al., 1995;
Collins et al., 2002; Mai et al., 2018) to take into account
the time response of the MAGIC CPC. A 0.35 s time con-
stant was used for the CSTR model in the Spider DMA
system (Hering et al., 2017). The resulting transfer func-
tion was combined with a size-dependent transmission ef-
ficiency model described by Amanatidis et al. (2020) to take
into account particle losses occurring at the Spider inlet, as
those are not evaluated in the 2D finite-element modeling.
Raw counts were shifted to earlier time bins to account for
the 1.50 s plumbing time delay between the Spider outlet
and the MAGIC CPC detector. Because the simulation en-
abled a strictly monodisperse “calibration” aerosol, the ratio
of the number exiting the DMA during a particular count-
ing time interval to the upstream particle number is the in-
strument transfer function. The kernel for the LDMA system
was based on the scanning transfer function model derived
recently by Huang et al. (2020). A CSTR model with a char-
acteristic time of 0.35 s and a plumbing delay time of 0.95 s
were used to incorporate the response of the MAGIC CPC
used in the LDMA system.

The Wiedensohler (1988) fit to the Hoppel and Frick
(1986) numerical evaluation of the Fuchs (1963) charge dis-
tribution has been used in the data inversion. Note that, since
both instruments took samples from the same soft X-ray
charge conditioner, any deviations from the assumed charge
distribution will not affect the comparison between the two
instruments.

3 Results

3.1 Spider scanning transfer function

Figure 2 shows the scanning transfer function of the Spider
DMA evaluated by finite-element modeling. Results are plot-
ted as a function of time in the scan for upscan and down-
scan voltage ramps. Each peak represents the ratio of parti-
cle number at the outlet to the inlet for a specific input par-
ticle size. Finite-element modeling data, shown with sym-
bols, have been fitted to Gaussian distributions, shown with
solid lines, which provide a close approximation to both up-
scan and downscan modeling data. As will be shown next,
the Gaussian fits are subsequently employed to generate the
transfer function at any time instance over the scan.

Comparison between upscan and downscan peaks reveals
a distinct difference; downscan peaks have a higher maxi-
mum number ratio. Moreover, they are somewhat narrower
than the upscan peaks. It should be noted that the transmis-

Figure 2. Finite-element modeling of the Spider DMA scan-
ning transfer function for (a) upscan and (b) downscan expo-
nential voltage ramps with 30 s duration and 0.9 L min−1 sheath
and 0.3 L min−1 aerosol flow rates. Symbols correspond to finite-
element modeling data (ratio of particle number at the outlet to the
inlet), solid lines show Gaussian distributions fitted to the model-
ing data, and dashed lines indicate the scanning voltage program
(values shown on right y axis).

sion efficiency through the classification zone of a DMA is
proportional to the area under the peak, rather than its max-
imum value. Hence, particle transmission over downscans is
not necessarily higher than that over upscans. Here, the area
of the Gaussian curves used to fit the transfer function mod-
eling data was on average ∼3.5 % larger for downscans than
upscans. This difference is likely due to the slightly asym-
metrical shape of the downscan transfer function, which can
be observed at the onset (i.e., lower left side) of each peak
in Fig. 2b where the fitted curves are somewhat wider than
the modeling data. A closer comparison between upscan and
downscan fitting parameters is provided in the Supplement
(Fig. S3). Diffusional broadening of the transfer function be-
comes important in the low-voltage region of each ramp,
increasing the transfer function width as voltage decreases,
though the broadening is less than would be seen with a
higher-resolution DMA (Flagan, 1999).

The differences in the transfer function between upscans
and downscans is the result of the scanning voltage oper-
ating mode and particle interaction with the boundary flow
layers near the DMA electrode walls. Owing to the lami-
nar flow profile, particles near the electrode walls acquire
lower velocities than those in the middle of the electrode gap.
Over downscans, a fraction of the incoming particles inter-
acts with the boundary layer adjacent to the wall that houses
the exit slit of the classifier. As voltage drops below a certain
threshold, those particles reach the exit of the classifier, albeit
with a time delay relative to particles of the same mobility
whose trajectories did not interact with the boundary layer.
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This results in a particle exit time reallocation, which alters
the shape of the downscan transfer function as the voltage
drop becomes more rapid. This condition is inhibited over
upscans, since the respective boundary layer is formed on
the wall opposite to the exit flow and is exhausted through
the excess flow.

Collins et al. (2004) and Mamakos et al. (2008) demon-
strated the impact of scanning voltage on the transfer func-
tion of the cylindrical DMA. Over downscans, the transfer
function deviates from the symmetric triangular or Gaus-
sian shape and becomes skewed. The effect becomes larger
for fast scans and is significant when the effective scan rate
θs < 2. This is also true for the Spider DMA, as shown in
Fig. 2b; however the shape distortion is relatively small given
the moderate Spider scan rate (θs = 3.4). Moreover, in con-
trast to the cylindrical DMA, the boundary layers in the ra-
dial DMA are symmetric, which reduces the downscan dis-
tortion compared to its cylindrical counterpart. Over upscans,
the width of the scanning transfer function broadens but re-
tains its symmetric shape. For this reason, downscan data are
often discarded in scanning DMA data analyses, as the more
irregular shape of the transfer function is more difficult to
parameterize. However, this strategy comes with a penalty
in sampling time resolution, owing to the “dead” time as-
sociated with the discarded downscan that is required after
each upscan. The dead time required depends on the classi-
fier mean gas residence time (typically > 2–3× tg) and the
capacitance of the DMA high-voltage supply. As the Spider
DMA scanning transfer function can be described with good
fidelity for both upscans and downscans, both are included in
the data analysis to maximize its time resolution.

Figure 3 shows the integrated transfer function of the Spi-
der DMA system for the same operating conditions as those
used in the experiments. The voltage program, shown in
Fig. 3a, consists of a 2 s hold time at 5 V, followed by a 30 s
upscan up to 5000 V, a 2 s hold time at 5000 V, and a 30 s
downscan to 5 V. The classified particle size follows roughly
the exponential increase and decrease of the voltage over the
scan. The peaks shown in Fig. 3b consist of the Gaussian ap-
proximation of the Spider transfer function shown in Fig. 2,
combined with the size and time response of the MAGIC
CPC, and the size-dependent transmission efficiency in the
Spider inlet (Amanatidis et al., 2020).

3.2 Data inversion example

Figure 4 demonstrates an inversion example for representa-
tive Spider DMA data. Particle raw counts recorded at each
time bin over the upscan and downscan are shown in Fig. 4a.
Smooth curves are fitted to the raw count data to minimize
artifacts in the inversion process. The resulting size distri-
butions, employing an inversion kernel based on the scan-
ning transfer function in Fig. 3b, are shown in Fig. 4b. Up-
and downscan distributions are almost identical in both shape
and magnitude. The mean of the two distributions, as shown

Figure 3. (a) Scanning voltage and classified particle size over the
Spider DMA scan. (b) Transfer function of the integrated Spider
DMA–MAGIC CPC system (ratio of particle number at the outlet
to the inlet), consisting of the Spider DMA scanning transfer func-
tion combined with its inlet transmission efficiency and the MAGIC
CPC response.

Figure 4. Example of Spider DMA data inversion. (a) Raw counts
per time bin (symbols) recorded over the voltage ramp (up- and
downscan). Solid lines indicate LOWESS smoothing to the raw
counts. (b) Resulting size distributions after data inversion. The
dashed line shows the mean of the up- and downscan distributions.

here, is used as the output of each scan. Overall, consid-
ering all measurement data collected in this work, upscan
raw count data inversion yielded distributions with consis-
tent but slightly higher (3.7 %± 2.3 %) total particle number
than downscans.

3.3 Instrument comparison

Figure 5 demonstrates the effect of sizing resolution on the
counting rate of the downstream particle detector. As both the
Spider DMA and the LDMA operated at the same aerosol
flow rate, one would expect a higher counting rate for the
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Figure 5. Sizing resolution effect on the particle count rate of the
Spider DMA (R = 3) and LDMA (R = 10) systems. Data shown
are the average of raw particle count rates during upscans over a
period of 18 min (corresponding to 3 LDMA upscans and 17 Spider
upscans) measured in the morning of 1 June 2020. Both systems
operated at 0.3 L min−1 aerosol flow rate.

Spider DMA system owing to its wider transfer function. In-
deed, as shown in Fig. 5, this was the case. The data pre-
sented here are the average of particle count rates during up-
scans over a period of 18 min (corresponding to 3 LDMA up-
scans and 17 Spider upscans). This example was selected as
a representative comparison case since the resulting particle
count distribution is centered near the middle of the overlap-
ping mobility range. The integral of the counting rate with
respect to scanning mobility for each instrument (i.e., area
below the data points in Fig. 5) was larger by a factor of
3.325 in the Spider measurement than the LDMA; this is al-
most exactly the same as the inverse of the sizing resolution
ratio (i.e., 10/3) of the two DMAs. In fact, this ratio was
rather consistent (within ±10 %) despite the size distribu-
tion variation over the course of the day, corroborating that,
for given aerosol flow rate, lower DMA resolution results in
higher counting rates and thus enables better counting statis-
tics.

Figure 6 illustrates an excerpt of the Spider and LDMA
size distribution measurements over a time period of 3 d. The
two instruments report similar diurnal variation in the par-
ticle size distribution, in both size and number concentra-
tion. Increased particle concentrations were recorded in the
early afternoon of each day, a regular occurrence as parti-
cles from morning traffic are transported by the sea breeze
from Los Angeles to Pasadena, where the measurements took
place. Concentrations begin to drop later in the afternoon
and through the evening, from about 15 000 cm−3 to below
5000 cm−3. The geometric mean diameter (GMD) of the size
distribution ranged between about 30–60 nm and was smaller
over the high-number-concentration events recorded in the
early afternoon.

Figure 7 shows the evolution of the size distribution over a
period of 2 h in the afternoon of 28 May 2020 (indicated with

Figure 6. Evolution of the particle size distribution over a period of
3 d measured by (a) the Spider DMA and (b) the LDMA system.
Corresponding total particle number and geometric mean diame-
ter, calculated over the 17–500 nm size range, are shown in pan-
els (c) and (d), respectively. Solid blue color in panel (b) (size range
< 17 nm) was used for no available data in the LDMA system. The
dashed box in panel (d) indicates the time period shown in Fig. 7.

a dashed box in Fig. 6d), measured with the Spider and the
LDMA system. Since the measurement duty cycle of the two
instruments was different (66 s for the Spider vs. 360 s for the
LDMA), we employed 30 min averaging of the recorded size
distributions. This corresponds to 5 scans for the LDMA and
about 27 up- and downscans for the Spider. The shaded ar-
eas of the averaged distributions represent the variation over
the averaging period. Starting from a mono-modal distribu-
tion with a peak at ∼ 45 nm (panel a), the size distribution
transitioned to a bi-modal one over a period of 60 min (pan-
els b, c) before transitioning back to a mono-modal distribu-
tion (panel d). As indicated by the shaded areas, there was
high variation in the aerosol concentration during this transi-
tion event. Overall, the measurement of the two instruments
was in good agreement in terms of both sizing and concentra-
tion, suggesting that the lower sizing resolution in the Spider
DMA was adequate in capturing the details of the size distri-
bution. An animation video with side-by-side comparison of
30 min averaged distributions for the entire testing period is
included in the video supplement (Amanatidis et al., 2021a).

Figure 8 compares the total number and geometric mean
diameter measured by the two instruments over the entire
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Figure 7. Evolution of the size distribution in the afternoon of
28 May 2020, as measured by the Spider and LDMA systems. Lines
represent the mean of size distributions measured over a period of
30 min. Shaded areas demonstrate the variation of the size distribu-
tion over the averaging period, indicating maximum and minimum
values.

testing period. Each data point corresponds to a 1 h aver-
age of the size distribution measured by each instrument,
calculated over the 17–500 nm size range where the two sys-
tems overlap. Overall, the comparison includes 550 h of mea-
surement data. In order to identify outliers in the data, we
employed the “RANSAC” (random sample consensus) algo-
rithm (Fischler and Bolles, 1981). In this, random samples of
the data are selected, analyzed, and classified as inliers and
outliers through an iterative routine. The outliers identified
are shown in Fig. 8 with open square symbols.

Next, a linear regression model (no intercept) was fitted to
the data (excluding outliers) to evaluate the correlation be-
tween the two instruments. Since both instruments include
measurement errors, we employed orthogonal distance re-
gression (Boggs et al., 1987), where errors on both the de-
pendent and independent variable are taken into account in
the least-squares minimization. The resulting regression lines
exhibit slopes of α = 1.13 and α = 1.00 for number concen-
tration and GMD, respectively, suggesting an overall excel-
lent agreement between the instruments. Moreover, Pearson
correlation coefficients of ρ = 0.98 and ρ = 0.93 indicate a
strong correlation for both metrics of the size distribution.

3.4 Operational observations

The prototype Spider DMA used in this study incorporated
an electrostatic-dissipative plastic that failed after several
months of continuous operation, causing arcing within the in-
strument at the highest voltages. The Spider DMA has been

Figure 8. Comparison of (a) total particle number and (b) geometric
mean diameter measured by the Spider and LDMA systems over a
period of 26 d of continuous testing. Each point represents 1 h aver-
aged data, calculated over the 17–500 nm size range where the two
instruments overlap. Square symbols show outliers excluded from
the regression analysis. Dashed lines represent a linear regression
model (no intercept) fitted to the data. ρ values denote the Pearson
correlation coefficient between the measurement data of the two in-
struments.

redesigned to eliminate this material and is currently being
tested. This new Spider DMA has relatively minor changes to
the classification region of the prototype presented here and
employs the same moderate-resolution approach to maintain
a compact size.

4 Summary and conclusions

We evaluated the performance of the Spider DMA, a highly
portable particle sizer, in measuring ambient size distribu-
tions against a co-located particle sizer based on a TSI 3081
long-column differential mobility analyzer (LDMA). Com-
parison measurements were performed at the Caltech campus
in Pasadena, CA, over a period of 26 d, between 16 May–
11 June 2020, as part of a field campaign examining the ef-
fects of the COVID-19 shutdown on air quality. The Spider
DMA system was operated at a lower nominal sizing resolu-
tion (0.9 L min−1 sheath and 0.3 L min−1 aerosol flow rates,
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R = 3) than the LDMA (3.0 L min−1 sheath and 0.3 L min−1

aerosol flow rates, R = 10) and at a higher time resolution
(30 s vs. 240 s scans).

The transfer function of the Spider DMA was obtained by
finite-element modeling at the conditions employed in the ex-
periment, which included both up- and downscan exponen-
tial voltage ramps with 30 s duration. Owing to the Spider
radial flow geometry and short gas flow residence time, dis-
tortion of the downscan transfer function shape is minimal at
the scan rates employed, enabling usage of both upscan and
downscan data, thereby increasing time resolution. Modeling
data were fitted to Gaussian distributions and were combined
with the experimentally determined transmission efficiency
of the Spider DMA and the MAGIC particle counter response
function to generate the inversion kernel of the combined
system. Data inversion of the LDMA system was based on
the semi-analytical model of the LDMA scanning transfer
function derived by Huang et al. (2020).

Regression analysis of 550 h of measurement data showed
an overall excellent correlation between the two instruments,
with slopes of α = 1.13 and α = 1.00 and Pearson correla-
tion coefficients of ρ = 0.98 and ρ = 0.93 in the reported
particle number and geometric mean diameter, respectively.
The present results suggest that two key characteristics of
ambient size distributions, geometric mean diameter and
number concentration, are sufficiently captured when operat-
ing the DMA at lower resolution than is typically employed.
Moreover, use of lower resolution, where appropriate, has
several distinct advantages. For the same aerosol flow rate
and range in particle mobilities, reducing the nominal res-
olution reduces the required sheath flow and hence reduces
the physical size of the DMA. In turn, this reduction in phys-
ical size at the same aerosol flow rate reduces the residence
time within the classification region, enabling faster scans.
Additionally, for the same aerosol flow, the wider mobility
window increases the particle count rate, thereby improv-
ing measurement statistics. While some applications may re-
quire higher resolution, this study demonstrates the efficacy
of lower-resolution measurements for ambient aerosol char-
acterization and illustrates the commensurate advantages of
faster measurements in a smaller package.
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