
Experimental study on the thermodynamic
interactions of phonons and magnetism in

Fe systems

Thesis by
Stefan P. Hägeli Lohaus

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2023
Defended May 5, 2023



ii

© 2023

Stefan P. Hägeli Lohaus

ORCID: 0000-0002-4430-3834

All rights reserved



iii

Acknowledgements

I want to start by thanking my advisor Brent Fultz. I’m grateful for all the
insightful conversations, the advice, and the scientific rigor, while keeping a
sense of lightness and calmness. Your precise balance of trust and intervention
guided me through my PhD journey and allowed me to grow into the scientist
I am today. I’m deeply thankful for that.

Special thanks to my thesis committee, Kathy Faber, Bill Johnson, Ercan
Alp, and Valerie Scott. I had the pleasure of interacting often with Bill and
Ercan in the past years, two incredibly passionate scientists who master the
art of combining scientific rigor with playfulness. I always walk out inspired
from our conversations. Kathy and Valerie, thank you for the discussions
and the encouragement throughout my thesis defense process. I also want
to acknowledge my previous mentors essential in my journey: Chiara Daraio,
who catapulted me into the academic life, and Sergio Pellegrino, who first
embraced me here at Caltech.

It’s hard to describe the kind of excitement, stress, and sleep deprivation
involved in the experimental beamtimes in national facilities. A special kind
of bond is created with the people who share this experience. I’m grateful
to my fellow members of the Fultz group who joined me in my experiments,
in particular Pedro Guzman and Camille Bernal. The beamline scientists at
the Advanced Photon Source were also essential during these times. I want
to thank the staff at HPCAT, in special Guoyin Shen, and all the members of
Sector 3: Jiyong Zhao, Barbara Lavina, Michael Hu, and Ercan.

I had the pleasure of sharing my years at Caltech with a handful of incredible
people. I’m so grateful for the support and love from my friends Lucia de
Rose, Claire Saunders, and Camille Bernal. Thank you for being with me and
believing in me even when I couldn’t myself.



iv

I left home a long time ago, and only made it through this point with the
help from my friends and family back home. To my Mom and Dad, Karla
and Volker, I’m deeply grateful for your love and for always supporting my
decisions, even when I choose to live across the world from you. To my incred-
ible brother Thomas, and his beautiful family, I feel so embraced, safe, and at
peace around you. Thank you.

I also don’t underestimate the support that my therapist provided during this
time in my life, particularly leading to compiling this thesis.

Lastly, none of this would be possible without funding. Basic science, so
essential for the future of our world, costs (a lot of) money and relies on
public investment. Resources from the National Science Foundation (NSF),
under grant no. 1904714, funded most of the work presented in this thesis.
The work presented in Chapter 3 was funded by the Department of Energy
(DOE), under the grant DE-FG02-03ER46055. Experiments were performed
at the Advanced Photon Source, a DOE Office of Science user facility operated
by the Argonne National Laboratory. Neutron scattering measurements used
the Spallation Neutron Source, yet another DOE user facility operated by the
Oak Ridge National Laboratory.



v

Abstract

The macroscopic thermophysical behavior of materials is governed by their
atomic level excitations and how they store heat. Most of the thermal en-
ergy excites oscillations of the atoms, quantized as phonons, but in magnetic
materials a considerable amount of heat is also absorbed by fluctuations of
the electronic spins. This thesis explores the thermodynamics of phonons and
magnetic spins in Fe-systems: we investigate the coupling between these ex-
citations in Fe, Fe-Ni, and Fe-C, quantify their size dependency in nanocrys-
talline in Ni3Fe, and assess their individual roles in the anomalous thermal
expansion of Fe-Ni Invar.

Most materials expand when heated due to enhanced atomic oscillations. How-
ever, in 1895 C.E. Guillaume combined Fe and Ni to discover a material with
near-zero thermal expansion, called Invar. This discovery was awarded the
1920 Physics Nobel Prize and sparked thousands of scientific investigations.
Since the anomalous Invar effect is associated with magnetism, nearly all stud-
ies have focused on the electronic and spin structure of Fe-Ni. But phonons
are needed to complete the picture, and to date, the anomalous Invar behav-
ior is not fully understood. Here, we explore a method for measuring thermal
expansion that is capable of isolating contributions from phonons and spins.
Since the thermal energy of materials is related to entropy, the thermal expan-
sion can be indirectly determined through individual entropic contributions by
using a Maxwell relation. The phonon and magnetic entropies were measured
by combining two nuclear resonant x-ray scattering techniques, with samples
under pressure in diamond-anvil cells. We show that the Invar behavior stems
from a competition between phonons and spins, that oppose each other for
near-zero thermal expansion. A spin-phonon coupling improves the precision
of this cancellation, extending the range of Invar behavior.
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Such a coupling of phonons and spin was also observed in pure Fe and Fe3C
cementite, as their phonon energies correlate to the change in magnetization.
This motivated us to develop a magnetic quasi-harmonic model for Fe and
Fe3C, which accounts well for the deviation of phonon energies from pure
volumetric effects of the conventional quasi-harmonic approximation.

The thermodynamics of materials is also affected by the size of their crys-
tallites. We determined the size effects on the heat absorption by phonons,
electrons, and spins in nanocrystalline Ni3Fe. All excitations become enhanced
in the nanomaterial. In particular, the redistribution of spectral weights am-
plifies the phonon entropy. This helps stabilize the nanostructure against the
enthalpy from its extra grain boundaries. However, the nanostructure is meta-
stable, and the grains will grow into their bulk counterpart when diffusion is
enabled at elevated temperatures.
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Chapter 1

Introduction

The development and discovery of materials go hand-in-hand with human de-
velopment. The naming of entire periods of time as ‘Stone Age’, ‘Bronze Age’,
‘Iron Age’, and the more recent ‘Steel Age’ are obvious reflections of that.
The actual study of materials was born from the development of ceramics and
metallurgy, however Materials Science did not become a rigorous inductive
science until the late 19th century with the emergence of thermodynamics
by Josiah Willard Gibbs. Together with James Clerk Maxwell and Ludwig
Boltzmann, he also developed the field of statistical mechanics, which con-
nected macroscopic picture of thermodynamics to the microscopic world. It
is incredible that this rigorous connection to the ‘micro’ appeared even before
the development of the atomic models, including J. J. Thomson’s ‘plum pud-
ding’, Rutherford’s, and Bohr’s models. Quantum mechanics revolutionized
the study of the atomic scale, creating theories and developing a language to
describe the different microscopic excitations from electrons, their spins, and
phonons, for example. The connection to the ‘macro’ still relies on the sta-
tistical models from the 19th century, but through quantum mechanics, the
‘micro’ gained a renewed physical significance.

The ability to look at different scales, from atomic to macroscopic properties,
makes Materials Science extremely powerful. It led to the development of
sophisticated alloys, nanomaterials, energy-storage materials, ceramics, com-
posite polymers, biomaterials, and in particular, the understanding of carbon
and silicon enabled semiconductor technology, having profound implications
on human civilization. We are now in the ‘Silicon Age’.

On the macroscopic side, engineered applications and designs rely on the
knowledge of the material properties (mechanical, electronic, magnetic, and
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optical). Take the thermal expansion, for example. It describes how the vol-
ume of material changes with temperature. It is an important property for de-
signing large metallic structures, for example, like bridges, railroads, pipelines,
and power lines, since those have to maintain their structural integrity at a
range of temperatures. It is also essential in medical and scientific instruments
that need to be precise at different temperatures. The temperature depen-
dence of the volume has everything to do with how the heat is absorbed in the
atomic scale in the material. When heated, the thermal energy is transferred
to a material in the form of vibrations of the atomic nuclei called phonons,
to excitations of electrons, and their magnetic spins. And the exact amount
of energy that goes into each of those different excitations dictates the overall
thermal expansion. A fundamental microscopic understanding of materials al-
lows to tune their properties for different applications. Most materials expand
when heated, however some can also contract, or by mixing different types
of atoms at specific proportions, materials with no thermal expansion can be
created.

While all scales of Materials Science, from quantum to practical engineer-
ing applications, are essential, I am particularly interested in the bridge from
the micro to the macro scale. Observing the quantum world of phonons and
magnetic spins, and translating them into the macroscopic language of ther-
modynamics is fascinating. It also reflects the reverse course of my personal
academic path, from a mechanical engineer into a materials physicist. This
thesis is a snapshot of my personal understanding and contribution to the
field of Materials Science, through an experimental study of phonons and their
interactions with magnetism in transition metals, explaining thermophysical
properties via a thermodynamic lens.

This thesis studies different magnetic transition metals. In these materials,
thermal energy is absorbed and stored mainly in three forms: as lattice vibra-
tions (or phonons), as electronic excitations, and as excitations of magnetic
spins. We first look at nanocrystalline Ni3Fe (Chapter 3), to study how these
three different excitations contribute to the free energy and the thermody-
namic stability, and how they are dependent on the size of the crystalline
structure. We then explore iron and cementite (Fe3C) in Chapter 4, to see
how the excitations from lattice vibrations and magnetic spins can be coupled
and dependent on each other. Such interactions of spins with phonons can re-
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sult in an anomalously low thermal expansion, know as the Invar effect. The
main part of this thesis (Chapter 5) looks into the Invar effect, and how the
thermal expansion in Fe65Ni35 is affected by vibrational and magnetic degrees
of freedom, as well as their coupling.

But first, we continue this introductory chapter with the ‘micro’, looking at
the bonding between atoms in transition metals, and the different excitations
that exist at a quantum-mechanical level. We then focus on phonons and
magnetism and move from the atomistic behavior into a thermodynamic de-
scription. The thermal expansion is explored at a qualitative level, by looking
at the individual contributions to the entropy from phonons, electrons and
spin. This chapter is concluded with a discussion of the phase diagram of iron,
which offers a great example of effects from lattice vibrations, magnetism, and
their coupling to the phase stability of materials.

1.1 Metallic bonding and structure

Atoms are comprised by a small nucleus with most of the atomic mass, and
an essentially massless electronic cloud around them. When different atoms
are brought together in a condensed matter system, they exert forces on each
other through the electrons. It is usually energetically favorable for atoms
to stick together, so they end up forming molecules and materials. Metallic
atoms usually form large periodic crystals, and prefer a tight packing of atoms.
Since the forces between atoms are dictated by electrons, to understand the
bonding in metals, we need to look into their electronic structure.

Quantum mechanics provides analytical solutions for the distribution of elec-
trons (or wavefunctions) for isolated atoms. In condensed matter systems,
the electronic distribution is different, but a lot can be understood from the
wavefunctions of free atoms. Transition metals are known for having d orbitals
that are only partially filled by electrons. Take nickel, for example, with the
valence electronic structure: 4s2 3d8. The s orbital is full, but only 8 out of 10
possible electrons occupy the d orbital. The wavefunction ψ(r, θ) describing its
distribution of electrons, can be separated in radial and angular components
ψ(r, θ) = R(r) · Y (θ). The former describes the amplitude of the distribution
as we move away from the nucleus, and the latter the shape of the orbitals.
Both are shown in Fig. 1.1.
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Figure 1.1: Electronic wavefunction of fcc transition metals. (a) Radial distribution of the
3dzz and 4s wavefunctions of an isolated Ni atom [1]. The electronic configuration of the va-
lence shell of Ni has two unpaired electrons in the d shell. Arrows mark the half-distances
to the first, second and third nearest neighbors (r1, r2 and r3) [1]. (b) Spherical harmonics
of the t2g and eg orbitals of d electrons. They are overlaid at the atomic positions of an fcc
crystal structure, showing their bonding directions [2].

The amplitude of the 4s orbital in (Fig. 1.1 a) is large close to the nucleus near
r = 0, but a second node extends far into the material, at least up to the
3rd nearest neighbor. This results in a substantial overlap of wavefunctions of
neighboring atoms, reducing their energies compared to isolated atoms. The
s orbital takes, therefore, an important role in the bonding energy [3]. On the
other hand, the 3d orbitals are more localized, they only have a single node and
are concentrated relatively close to the nucleus. These orbitals are less affected
when the atom is placed in a solid. Since they are only partially occupied, the
unpaired electrons in the 3d orbitals result in a net magnetic moment and are
the source of magnetism in transition metals (see the electronic configuration
of Ni in Fig. 1.1 a with two unpaired ‘spin-up’ electrons).

The 3d electrons have a smaller contribution to the bonding energy, but un-
like the radially symmetric 4s orbitals, d orbitals are directional as shown in
Fig. 1.1 b. They form a covalent-like framework that dictates the structure of
transition metals. Nickel, for example, is stable in a face-centred cubic (fcc)
structure. This arrangement of atoms directly reflects the directions of the
orbital lobes of the 3d shell, which becomes clear when overlaying t2g orbitals
on the fcc structure, for example. These orbitals point towards each other and
overlap, which reduces their energy to form ddσ bonds between the atoms.
The eg orbitals have a different orientation, forming ddπ bonds.
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Similar geometric arguments can result in another common structure of tran-
sition metals, the body-centered cubic (bcc) crystal. The electronic orbitals
need somewhat more space in the bcc structure, resulting is larger local vol-
umes compared to fcc. Metallic bonding usually favours the closest possible
spherical packing of atoms [4], since it results in larger overlaps of the wave-
functions and stronger bonding (especially because of the radially symmetric
s orbitals responsible for most of the bonding energy). The fcc configuration
is therefore often preferred, but as discussed below, phonons and magnetism
also interfere with the bonding energy, and can cause the bcc phase to become
stable.

1.2 Elementary excitations

The microscopic excitations in condensed matter systems can be studied by
shooting a probing particle with different energies on a material and observ-
ing which energies are absorbed. Absorption implies that energy is being
transferred into internal excitations in the material. In experiments, x-rays
(photons) or neutrons are usually used as probing particles. Figure 1.2 shows
the energy range of the most important excitations in materials.

Starting at zero energy transfer in Fig. 1.2, the material does not exchange
energy with the probing particle (elastic interaction). However, the specific

Figure 1.2: Approximate energy scales (on a logarithmic axis) of different elementary ex-
citations in condensed matter systems. Adapted with permission from [5].
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arrangement of atoms in the material can scatter the incoming radiation into
different angles. Elastic diffraction gives, therefore, information about the
atomic arrangement and the crystal structure of the sample.

Away from zero energy transfer, energy is actually absorbed by the material
(inelastic scattering). In the meV range, it is absorbed in the form of os-
cillations of the atoms. These are called lattice vibrations, or phonons. In
fact, most of the thermal energy in materials, E = kBT , is stored as phonons.
Room temperature corresponds to roughly E=25meV exactly at a the absorp-
tion range of phonon excitations. As discussed further below, about 80-90% of
the thermal energy at room temperature goes into lattice vibrations. Phonons
have absorption lines at both positive and negative energy transfers, since they
can be excited by the probe, but also annihilated by losing energy to the prob-
ing particle. Since phonons need to already exist in the material for the latter
to happen, phonon annihilation is less likely than the creation of a phonon,
resulting in a lower intensity in the negative side of Fig. 1.2.

By increasing the energy transfer to around the 0.1 eV range, the electronic
spins can be excited in the form of spin-waves, called magnons. Around 1 eV
the electrons themselves can get excited into higher energy levels within the
atoms. And several other types of excitations are possible at larger energies,
like plasmons or completely knocking electrons out of the atoms (Compton
scattering).

At even higher energies, in the keV range, we reach the nuclear excitations (de-
picted for iron at 14.41 keV). Nuclear states are very narrow in energy resulting
in sharp absorption lines. While nuclear transitions are usually not important
for the thermodynamics, they are relevant to the experimental techniques used
in this thesis, as discussed in Chapter 2.

Lattice vibrations are the main focus of this work. Essentially all the mass
of an atoms is focused in the point-like nucleus. The electronic cloud is over
three orders of magnitude lighter, and therefore, move much faster than the
nuclei. In the Born-Oppenheimer approximation, inter-atomic forces are as-
sumed to respond instantaneously to nuclear displacements. This allows us to
treat electronic excitations and nuclear vibrations independently. As we will
see, however, they are not truly independent, and their interactions can have
significant thermodynamic effects. For instance the energy between electronic
spins depend on the local volumes through exchange interactions. Atomic dis-
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placements of phonons cause the volume to fluctuate, which in turn affects the
exchange energies of spins, and vice-versa.

In the remainder of this chapter we will look into phonon excitations, start-
ing from from their quantum mechanical character up to their macroscopic
average. We then turn to the electronic spins and their magnetic effects in
materials, from micro to macro. Thermodynamics binds both these excita-
tions into a theory that can predict macroscopic thermophysical properties,
such as thermal expansion.

1.3 Phonons

Atoms are not static, they vibrate around their equilibrium positions in the
lattice. This is pictured in Fig. 1.3 a with the electronic forces between nu-
clei represented by springs. In quantum mechanics, the lattice vibrations are
quantized as ‘phonons’ of energy ε = ℏω, where ω is the angular frequency of
the oscillation and ℏ the Planck constant. The stronger the atoms vibrate, cor-
responding to larger amplitudes in the classical world, the more phonons are
excited in the quantum picture. What is completely new with respect to clas-
sical world is that even at 0K, phonons still exist in materials, corresponding
to a zero-point energy [6] (E0 = ℏω/2 for a harmonic oscillator).

The nuclei do not vibrate isolated from their neighbors, the forces in between
them cause oscillatory waves to propagate in the material (see Fig. 1.3 b).

Figure 1.3: Phonon vibrations of a lattice. (a) Representation of atomic displacements from
their equilibrium positions on a square lattice. Springs correspond to the forces between
nuclei. (b) Collective oscillation of nuclei propagating as phonon waves in the lattice with
wavelength λ.
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Phonon constitute therefore a collective motion of the nuclei, and are clas-
sified as ‘quasi-particles’, as opposed to particles that can exist isolated. They
are bosons because there is no limit on the amount of phonons that can exist
at the same energy. In fact, most phonons in a material occur at low energies.
The statistical Planck distribution n(ε, T ) (plotted further below in Fig. 1.5)
represents the probability of a phonon of energy ε being excited at a certain
temperature T . It is more probable to excite a lower energy phonon, but as
the temperature is increased, higher vibrational frequencies can be reached,
changing the energy distribution of phonons.

Harmonic model

The phonon waves can be modeled by a Born-von Kármán model [7], assum-
ing nuclear masses that are connected by massless electronic ‘springs’ as in
Fig. 1.3 a. Within the Born-Oppenheimer approximation, the nuclear motion
is independent from the electrons. The Hamiltonian for the nuclei in a lattice
with l atoms becomes [7, 8]:

H = −
∑
l

p2
l

2ml

+ V (1.1)

where the first term is the kinetic energy of an atom of massml and momentum
pl. Transition metals form periodic crystals, so the equilibrium coordinates of
all the atoms are multiples of the basis vectors, that describe the location the
primitive unit cells:

l = l1a1 + l2a2 + l3a3 . (1.2)

Phonons describe the oscillations of nuclei out of their equilibria, so the actual
atomic positions are

rl = l+ u(l) , (1.3)

and u(l) describes the deviation from the equilibrium position of the lth atom.
Here we assumed one atom per unit cell (as is the case for pure metals or
random solid solutions in a cubic structure). If there were more than one
atom, Eq. 1.3 could be expanded to rlm = l+m+ u(lm) , where m describes
the coordinate of the mth atom in the unit cell.

The kinetic energy can be rewritten as:

1

2

∑
α,l

ml

(
∂uα(l)

∂t

)2

(1.4)
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where the spacial coordinates are given by α = x, y, z.

The displacements out of equilibrium are small, so the potential energy V can
be expanded in a Taylor series as

V = V0 +
∑
α,l

Φα(l)uα(l) +
∑
α,l

∑
β,l′

Φαβ(l, l
′)uα(l)uβ(l

′) + ... , (1.5)

with

Φα(l) =
∂V

∂uα(l)

∣∣∣∣∣
0

, (1.6)

Φαβ(l, l
′) =

∂2V

∂uα(l)∂uβ(l′)

∣∣∣∣∣
0

. (1.7)

We set V0 = 0 for the equilibrium conditions. The potential needs to be
symmetric, otherwise the forces do not disappear at the equilibrium and the
atoms would move. So the first derivative also vanishes: Φα(l) = 0.

If the nuclei displacements are small, we can approximate the bottom of their
potential wells with parabolic potentials, and ignore higher order terms (∼ O3)
of the Taylor expansion. This gives the harmonic model. Atomic nuclei are
treated like oscillators with harmonic springs in between them, with spring
forces that are proportional to the atomic displacements. In the harmonic ap-
proximation, Newton’s law leads to a set of second-order differential equations.
For the lth atom they are

ml
∂2uα(l)

∂t2
= −

∑
β,l′

Φαβ(l, l
′)uβ(l

′) . (1.8)

Solutions have the form of plane waves with j normal modes. Each vibrational
mode has angular frequency ωj and propagates with a wavevector k. The
displacement of a nucleus in the lattice with N atoms is given by

uα(l) =
∑
k,j

√
2ℏ

Nmlωj(k)
ũα(kj)e

i[k·l−ωj(k)t] . (1.9)

The displacements of the nuclei result, therefore, in a collective motion of all
atoms in the lattice that propagates as waves. For materials with one atom
per unit cell, there are three phonon modes (j = 1, 2, 3). In normal coordi-
nates the polarization of the atomic oscillations ũ(kj) are either transverse to
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the wave propagation direction k (there are two such transverse modes), or
along the propagation direction, corresponding to a longitudinal mode. These
correspond to shear and compression waves, or sound waves that propagate in
the material, and are therefore referred to as acoustic phonon modes. They
have different sound velocities, as compression waves propagate faster than
shear ones.

Additional coordinates exist if there are more than one atom per unit cell.
With m atoms per cell, the number of modes scales as 3m, and three additional
optical modes exists in systems with two atoms per cell, for example.

By ignoring higher order terms of the potential, the harmonic models assumes
that different modes do not interact with each other. In a quantum picture this
means that phonons are independent and cannot exchange energy with each
other through scattering. The vibrational frequencies ωj remain unchanged
(even with increasing temperature) and phonons have infinite lifetimes. This is
a good first-order approximation and allows an analytical theoretical treatment
of phonons as independent modes. Real materials however, do not behave like
this. Phonons energies change with temperature. They scatter on defects,
interact with each other, and exchange energy with electrons and electronic
spins. These can often be treated as small perturbations. As we will see
further below, however, interactions of phonons with other excitations can
have significant effects.

Phonon dispersion and density of states

Phonon waves have dispersion relations, since the vibrational energies depend
on the propagation direction. This can be visualized by plotting the phonon
energy (or frequency) as a function of their momentum Q. For simplicity these
are usually plotted only in specific high symmetry directions of the crystal
structure. Fig. 1.4 b shows such a dispersion of phonons in Fe-Ni Invar. Three
different branches, corresponding to the two transverse and the longitudinal
modes can be seen. Longitudinal phonons reach larger energies and propagate
faster (larger slopes near Γ) than transverse phonons.

Inelastic neutron scattering experiments can measure dispersion relations (over-
laid in Fig. 1.4 b as markers). These experiments are performed by shooting
neutrons in specific directions of single crystalline samples and detecting the
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Figure 1.4: Phonon spectrum of Fe65Ni35 (Invar). (a) Phonon density of states (DOS) at am-
bient conditions. Black curve was experimentally determined through NRIXS (see Chapter
2), and green curve by integrating the calculated phonon dispersion of panel b over all
momenta. (b) Phonon dispersion of along a few high symmetry momentum directions of
the Brillouin zone. Solid line is from TDEP calculations (see Chapter 5). Markers are exper-
imental data from inelastic neutron scattering (black markers from [9], and magenta are
measurements on Fe70Ni30 [10]). Three phonon branches are seen. The maximum of each
branch corresponds to large numbers of phonon states in a narrow energy range, resulting
in peaks of the DOS (panel a).

energy and momentum transfer to the material as a function of the crystal
orientation [11].

The energy spectrum of phonons, can be computed by integrating the phonon
dispersions over all momenta (see Fig. 1.4 a). It gives the energy distribution
of the lattice vibrations, or the relative number of phonon states available at
a certain energy. It is therefore called the phonon density of states (DOS).
By looking closely at Fig. 1.4 a some features of the different modes can be
observed in the DOS. No phonons exist at zero energy, and they scale as ε2

at low energies. Where the dispersion of the low transverse modes reach their
maximum (around 4 THz at the L point), several phonon states are available,
corresponding to the first ‘peak’ in the DOS (a Van Hove singularity). It
is followed by a peak from the high transverse modes around 6THz and a
pronounce peak from the longitudinal vibrations around 8 THz. No phonons
exist above approximately 9THz or 37meV.
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Phonon statistics and Boltzmann entropy

The macroscopic behavior is the average of the atomistic excitations over large
length scales and long time scales, and statistical mechanics offers tools for
bridging over the scales. The key is Boltzmann’s entropy relation:

S = kB lnΩ, (1.10)

which relates number of microstates Ω to the entropy S (kB is the Boltzmann
constant). This relation is of astounding generality as it is simply a statistical
model and works for any kind of microscopic excitation. All we need to figure
out is the number of microstates or the number of ways that the internal coor-
dinates can be arranged to give a thermodynamically equivalent macrostate.
The entropy is a thermodynamic function that is often described as a measure
of disorder, since it scales as (the logarithm of) the number of internal degrees
of freedom. A state with larger entropy is more probable to occur, since there
are more microscopic configurations that lead to that state.

For phonon excitations, we need to count the number of ways that phonons can
be arranged into the different vibrational modes at a certain energy. For such
a combinatoric treatment of phonons, we need to assume that each phonon
is independent and does not interact with other modes, i.e., we assume a
harmonic model. Let us say that there are N different modes (or oscillators)
at a certain energy, and m phonons are excited into these different oscillators.
Phonons are bosons so several phonons are able to occupy the same oscillator.
Combinatorically, this raises the number of possible sites from N to N + m

(see [7]), and Ω becomes the number of ways to distribute m indistinguishable
phonons into N +m sites:

Ω =

(
N +m

m

)
=

(N +m)!

N !m!
. (1.11)

Using Stirling’s approximation (lnx! ≈ x lnx − x) we obtain the entropy for
all oscillators at a certain energy:

Sosc = kB [(N +m) ln(N +m)−N lnN −m lnm] . (1.12)

The occupancy of each oscillator is the number phonons per number of oscil-
lators n = m/N , so the entropy for each oscillator becomes

Sosc

N
= kB [(1 + n) ln(1 + n)− n lnn] . (1.13)
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Figure 1.5: Phonon spectrum and occupation. left axis: phonon density of states g(ε)
measured for Fe65Ni35 at 300 K (shaded), and same DOS after weighting by the Planck
distribution at 300 K (dark gray curve), corresponding to the integrand of Eq. 1.14. right
axis: Planck distribution n(ε, T ) describing the occupation of phonon modes as a function
of energy for different temperatures. Since more phonons exist at low energies (larger
Planck distribution), the low energy portion of the phonon DOS has a larger weight when
computing the entropy.

As discussed in the previous section, the energy distribution of phonons is
given by the density of states, g(ε), so the total phonon entropy of a material
can be computed as [7, 12]

Sph = 3kB

∫ ∞

0

g(ε) [(1 + nT (ε)) ln(1 + nT (ε))− nT (ε) lnnT (ε)] dε , (1.14)

where g(ε) is normalized to 1, and the factor of 3 comes from the three spacial
dimensions or polarization of the oscillations. The occupation of the phonon
modes is given by the Planck distribution nT (ε), where the subscript T means
that it is evaluated at a certain temperature. Even though Eq. 1.14 was derived
from the harmonic model, when using experimentally determined g(ε), it also
includes nonharmonic effects to first order [12].

Since phonons are boson semi-particles, it is energetically favorable to excite
low-energy phonons, and the Planck distribution is larger at lower energies as
shown in Fig. 1.5 (right axis). As the temperature is increased, more phonons
with higher energies can get excited, causing a shift of the Planck distribution.
Figure 1.5 also visualizes the different pieces of Eq. 1.14: when phonon DOS
(shaded, left axis) is weighted by the Planck distribution at 300K it results
in the gray solid curve. This weighted DOS corresponds to the function that
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is integrated in Eq. 1.14 to compute the entropy. The takeaways is that since
more phonons exist at lower energies (larger Planck distribution), the low
energy portion of the DOS has a larger weight and a larger contribution to the
entropy.

Physical interpretation of the phonon entropy

In context of atomic vibrations, the number of microstates of the Boltzmann
entropy can be interpreted as the space explored by the nuclei while vibrating.
The stronger the oscillations, the larger is the volume explored by the atoms
and the greater the number of ways of finding the system [7]. The explored
volume consists of a multi-dimensional hyperspace, with a spatial but also a
momentum component.

Take a harmonic spring with an oscillator of mass m. The force F is propor-
tional to the displacement u of the oscillator (F = k u, where k is the spring
constant). The equation of motion becomes

mü+ ku = 0 → ω =

√
k

m
, (1.15)

where ω is the resonant angular frequency of the oscillator. The potential
energy can be calculated as Ep = 1/2 ku2. Now lets compare two different
oscillators with the same potential energy,

k1u
2
1 = k2u

2
2

u2
u1

=

√
k1
k2

=
ω1

ω2

√
m1√
m2

. (1.16)

There are three ways to control the displacement amplitudes (as pictured in
Fig. 1.6). Weak spings with small spring constants (or weak interatomic force
constants in a lattice), small masses, and low vibrational frequencies all result
in a larger oscillation amplitudes. Similar arguments, through the kinetic
energy, result in the same dependencies for the momentum (see [7]). The
difference in vibrational entropy between the two oscillators, taken at the high
temperature limit for simplicity, is [7]

S2 − S1 = kB ln

(
ω1

ω2

)
. (1.17)

The entropy difference scales inversely with the frequency.
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Figure 1.6: Two harmonic oscillators with different amplitudes u. Larger amplitudes corre-
spond to lower vibrational frequencies ω, and can result from a lager mass m or a weaker
spring constant k. Enhanced amplitudes are also correlated to larger vibrational entropies:
the mass explores more space/momentum, which corresponds to a larger number mi-
crostates in Boltzmann’s entropy (Eq. 1.10)

The masses are constants for a specific material, but the vibrational frequencies
and the interatomic force constants are not. This gives us a physical picture
of why low energy vibrations (low frequencies) result in larger entropy contri-
butions compared to high energy modes. In Eq. 1.14 this was accomplished by
weighting the phonon DOS with the Planck distribution. The simple picture
of Fig. 1.6 also gives an intuition for the temperature and pressure dependence
of the phonon entropy. As temperature is increased, the frequency of phonon
modes tend to decrease because the forces between atoms decrease (weaker
springs), resulting in larger oscillatory amplitudes and larger entropies. The
opposite happens as materials are placed under high pressures, which increases
their vibrational frequencies causing an entropy reduction.

In reality, phonons are quantum mechanical excitations. The nuclei have zero-
point motion, and explore the space and momentum hyperspace in ways that
a harmonic classical spring can not capture. The vibrational entropy can, for
example, increase without a increase of vibrational amplitudes (see negative
thermal expansion materials [6]). What seems to be always true, at least up to
first order, is that the entropy depends inversely on the vibrational frequency.
The lower the frequency, the larger the vibrational entropy.

1.4 Magnetism

Electrons are charged particles that move around the nucleus, so they create
a magnetic field. In quantum mechanics, electrons have quantized orbital
momenta ℏl, corresponding to their motion around the nuclei, and spin-orbital
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momenta ℏs, representing their internal rotational degree of freedom around
their own axes. For an atom as a whole, the total magnetic moment arises from
the sum of the momenta from individual electrons: M = µB(L+ µgS), where
capital variables represent sums, µB = eℏ/2mc is the Bohr magneton, and
µg ≈ 2 the g-factor of electrons. When all orbitals of an atom are fully occupied
by electrons, the individual momenta cancel each other out and L = S = 0.
This is not the case for the d orbitals of transition metals, however, resulting
in a net magnetization.

When atoms are condensed into a solid, their magnetic fields of neighboring
atoms have an effect on each other’s magnetic moments through the ‘exchange
interaction’. Pauli’s exclusion principle states that two electrons cannot oc-
cupy the same quantum state, so electrons in d orbitals with parallel spins
have to avoid each other. These interactions between the magnetic spins of
different atoms give rise to interesting magnetic effect in transition metals.

Heisenberg localized magnetism

The partially filled 3d orbitals are strongly bound to the nucleus as shown
previously for the case of nickel in Fig. 1.1. This localized picture of unpaired
electrons led to a model of local magnetic moments at each atom, know as the
Heisenberg model.

Placing atoms in a solid creates an electric field in the crystal. This field and
the partial covalency of neighboring d orbitals result in a net quenching of the
orbital momenta L. So the magnetic exchange interaction between neighboring
atoms i and j is assumed to depend solely on the dot product of their spins
[3]:

Hexch = −
∑
i,j

Jij(Si · Sj), (1.18)

where Jij is the interatomic exchange constant. Jij can in theory be com-
puted from the overlap integral between orbitals, having a positive sign for
ferromagnetic interactions and a negative sign for anti-ferromagnetism. This
local model with magnetic spins localized at each atom can be pictured as is
Fig.1.7 a. As temperature is increased, the local spins become progressively
disordered and their dot products smaller. This disorder between pairs of
spins then alters the interactions with other neighboring atoms, making spin
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Figure 1.7: Models for magnetism in solid-state systems and their temperature depen-
dence, where M denotes the net magnetization [4]. (a) Localized Heisenberg model. (b)
Delocalized itinerant electron model. (c) Spin fluctuation model combining both local and
itinerant pictures.

disorder a many-body effect. As a result, the net magnetization decreases up
to the Curie temperature TC.

It is too complicated and computationally expansive, however, to calculate
the exchange energy by dot products between all individual atoms. A Weiss
molecular field model can be introduced, where each spin interacts with a
mean magnetic field produced collectivelly by all spins [13]:

Hexch = −2J
∑
i

Si ·BMF , (1.19)

where the mean magnetic field BMF = λM, is proportional to the mean mag-
netization, and J is the mean exchange constant. This model is able to calcu-
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late the temperature dependence of the magnetization, the Curie temperature,
and magnetic susceptibility, for example.

Calculating the magnitude and sign of J for ferromagnetic transition metals is
very challenging computationally. Additionally, perfectly localized moments
would result in whole numbered magnetic moments, as is the case for isolated
atoms. This is not observed for transition metals with magnetic moments
of 2.2µB, 1.7µB and 0.6µB for Fe, Co, and Ni, respectively. The Heiseng-
berg model is justified for well-defined local moments, which can be valid for
magnetic insulators and many rare-earth metals. It cannot provide an accu-
rate microscopic description of the collective magnetic behavior of transition
metals, with d orbitals that overlap with their neighbors. Nonetheless, the
Heisenberg model as a phenomenological magnetic model has been extremely
important for understanding the magnetic properties of materials. Variations
of it will be used further below in this thesis.

Itinerant electron magnetism

The electronic behavior in transition metals is better described by a model in
which the electrons are not closely bound to a single nucleus. They can be
transferred from atom to atom, known as an itinerant behavior. The concept
of an atomic magnetic spin is no longer well defined in this picture.

When individual atoms are brought together into a crystal, their electronic
energy levels broaden and become bands of energy. This results in a contin-
uous density of states (DOS) for the electrons. Band theories usually use a
tight binding model, which is appropriate for describing the fairly localized
d orbitals of transition metals. The energy of s electrons broaden more than
d electrons, as depicted in Fig. 1.8 a, resulting in distinct properties of transi-
tion metals. For instance, the d electrons provide a large number of electronic
states near the Fermi energy, EF. It is therefore easy for an electron to be ex-
cited into an unoccupied state above EF. This electron can then move between
atoms (itinerant behavior) and contributes to the large electrical conductivity
of transition metals.

The electronic bands can be split into two sub-bands representing two pos-
sible spin orientations, ‘spin-up’ and ‘spin-down’ (this model ca not support
noncollinear spins). It can be visualized by plotting the electronic DOS in two
separate spin-polarized bands as in Fig. 1.8. If a material is ferromagnetic,
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Figure 1.8: Spin-polarized electronic density of states (DOS). (a) Schematic representation
of the DOS showing the energy distribution of the s and d electrons, for the spin-up (↑)
and spin-down (↓) bands. Dashed lines represent the states occupied by electrons up to
the Fermi energy EF. In Stoner magnetism the bands are split by ∆E and more states are
occupied by ↑-electrons than ↓-electrons resulting in a net magnetization. (b) Calculated
eDOS of ferromagnetic nickel, with an exchange splitting of ∆E = 0.6 eV [1].

there are more electrons with ‘spin-up’, and the ‘spin-down’ bands are less oc-
cupied. This is represented by a splitting of the sub-bands by an amount ∆E,
know as the exchange splitting. It creates a net magnetic field in the material
and electrons with ‘spin-up’ and ‘spin-down’ experience different forces within
the crystal.

Electrons, due to their charges and irrespective of their spins, experience re-
pulsive forces between each other (Coulomb repulsion). If they have parallel
spins they have to avoid each other due to the Pauli exclusion principle, which
keeps them at larger distances and in turn reduces their Coulomb repulsion.
However, electrons are fermions, so by having the same spins, they also have to
progressively occupy higher energetic states, which raises their kinetic energy.
If more electrons have ‘spin-up’, the overall Coulomb repulsion is lower, but
the kinetic energy is larger. Therefore a balance between a reduced Coulomb
repulsion and an increased kinetic energy determines if it is energetically favor-
able for the bands to split, and for the material to become ferromagnetic. This
is known as the Stoner criterion for ferromagnetism. For the case of nickel,
shown in Fig. 1.8 b, the overall energy is reduced by splitting the bands by ∆E

= 0.6 eV, making it ferromagnetic.
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The itinerant band model provides a completely different picture of ferro-
magnetism than the Heisenberg model. It describes accurately the ground
state of ferromagnets and can also be modified to handle anti-ferromagnetism
and other complex magnetic structures. Even though the moments are not
localized at the atoms, their temperature dependence can be pictured as in
Fig.1.7 b. The moments preserve their parallel alignment (in each of the sub-
bands), however their magnitude progressively decreases up to the Curie tem-
perature. The decreasing magnitudes can be thought of as thermal spin-flip
excitations of electrons across the Fermi surface, which changes the occupancy
of the sub-bands.

Spin waves and spin fluctuations

Magnetic spins interact with each other, and fluctuations of the spins with
increasing temperatures can cause a collective excitation at long-range scales.
At low temperatures, the gradual disruption of the magnetic alignment is well
described by spin fluctuations that travel coherently as waves in the crystal.
This spin-waves, or magnons (in analogy to phonons) are depicted in Fig. 1.9
for γ-Fe. The temperature dependence of the magnetization due to magnons
obeys Block’s law:

M0 −M(T )

M0

= AT 3/2. (1.20)

For iron A = 3.4 × 10−6K3/2, and the magnons holds up to about 200K
[4]. At higher temperatures, there are too many interactions and scattering
between spins and phonons, which disrupts the propagation of such coherent
spin-waves.

In reality, both localized and itinerant behaviors happen simultaneously. Sev-
eral attempts have been made to merge both models [3, 4]. The spin fluctuation
model divides the electronic correlations into two time scales: quantum fluctu-
ations at small time scales (∼ 10−15s) cause electrons to hop between nearby
orbitals in the lattice, affecting the correlation of nearby spins and creating
local magnetic effects. Over a longer time-scale (∼ 10−13s) the short-range
magnetization is averaged, and slower fluctuations can travel in the lattice in
the form of spin-waves, creating long-range delocalized magnetic effects.

There is no contradiction between local and itinerant behaviors in the spin
fluctuation model (Fig.1.7 c). The ground state is given by the band theory.
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Figure 1.9: Schematic representation of the periodic lattice distortion and the propagation
of a spin wave in anti-ferromagnetic γ-Fe particles. The magnon wavelength is 11.2 nm
extending over tens of atoms in the lattice [4].

Figure 1.10: Temperature dependence of magnetization in Ni and Invar materials (Fe65Ni35
and Fe72Pt28) [14].

As temperature is increased, directional fluctuations of the moments occur up
to TC, and at the same time electronic spin-flip transitions allow the magnitude
of the moments to decrease. Long-range order is lost above TC, with a zero
average magnetization, but local spin correlations can result in a lingering
short-range magnetic order.
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Magnetization

The individual magnetic moments result in a net macroscopically measurable
magnetization. The temperature dependence of the magnetization, M(T ),is
shown in Fig. 1.10 for Ni and two Invar alloys. At low temperatures, the de-
magnetization of pure nickel (and similarly of pure iron) has a T 3/2 dependence.
As temperature increases, magnetic moments start interacting with each other
and the wave-like propagation of spin fluctuations is disrupted. Near the Curie
temperature they collectively collapse, resulting in a rapid decrease of M(T ).
Invar alloys (Fe65Ni35 and Fe72Pt28) seem to behave differently. The spins start
disordering earlier, resulting in a lower M(T ) at low temperatures, especially
in Fe65Ni35. They also have a tail above the Curie transition, corresponding
to short-range ordering of the spins.

Spin statistics

As for phonons, we want to correlate the microscopic arrangement of spin to a
macroscopic thermodynamic quantity, such as the entropy. We use a simplified
version of the local Heisenberg model for describing ferromagnetism, called the
Ising model, where spins can either be ‘up’ (σ = +1) or ‘down’ (σ = −1). At
low temperatures, the spins are perfectly aligned, as shown in the left panel
of Fig. 1.11, and become progressively disordered with increasing temperature
through local spin flips.

The number of microstates Ω of the Boltzmann entropy, S = kB lnΩ, are the
number of ways that N↑ spin-up atoms can be arranged on N lattice sites (or
equivalently how to arrange N↓ = N − N↑ spin-down atoms in the lattice).

Figure 1.11: Mean-field Ising model of a magnetic lattice.
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Using a binomial distribution:

S = kB ln

(
N

N↑

)
= kB ln

(
N !

N↑! (N −N↑)!

)
. (1.21)

The total magnetic moment is simply the number N↑ of up spin, minus the
number N↓ of spin downs. And a mean-field order parameter, M , is defined
as the average magnetization per atom [3, 15]:

M =
N↑ −N↓

N
=
N↑ − (N −N↑)

N
. (1.22)

Using Stirling’s approximation (lnx! ≈ x lnx− x) and N↑ = N(1+M)/2, the
Boltzmann entropy becomes:

S = −NkB
2

[
(1 +M) ln

1 +M

2
+ (1−M) ln

1−M

2

]
. (1.23)

This is often called the entropy of mixing or configurational entropy, as it can
also describe the entropy of mixing two types of atoms in a lattice (instead of
two ‘types’ of spins). It ranges from S = 0, when all spins are aligned with
M = 1 (left panel in Fig. 1.11), up to S = NkB ln 2 = 0.69kB/atom, when half
of the spins point in each direction (right panel). The latter is the maximum
disorder captured by the Ising model, and corresponds to the total loss of long-
range magnetic order at the Curie transition. Mean-field models can, therefore,
not account for local effects of short-range order. They are still useful since
most of the magnetization below the Curie transition arises from long-range
order [7]. This simple Ising model allows us to compute the entropy associated
with the magnetic disordering from a measured magnetization curve, M(T ),
as those of Fig. 1.10.

In such a local moment model, the magnetic entropy can be understood as a
measure of spin disorder. When spins are perfectly ordered, in a ferromagnetic
state, there is no entropy. In contrast, when the spins are fully disordered in
a paramagnetic state, there are several equivalent configurations for arranging
the spins on the lattice with M=0, corresponding to a large magnetic entropy.

1.5 Thermodynamics

One of the most fundamental ways that nature operates is through the prin-
ciple of energy minimization, or equivalently, of entropy maximization. It is
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based on the universal experience that heat (or thermal energy) always flows
spontaneously from hotter objects (high energy state) to colder objects (low
energy state) unless external energy is supplied to reverse the heat flow. This
leads to the first law of thermodynamics where the change in the internal en-
ergy U of a system is given by the change of the thermal energy Q plus the
external work W [16]:

dU = δQ+ δW . (1.24)

For a closed system with a fixed number of particles, the external work results
from the change of the volume of the system, δW = −PdV , and the thermal
energy originates from a change in entropy as δQ = TdS, so

dU = TdS − PdV . (1.25)

Entropy is associated with thermal energy, which originates from microscopic
excitations of phonons, electrons, and spins. For a closed system in equilib-
rium, the internal energy is at a minimum and dU = 0.

Materials, however, are rarely isolated in a true closed system. They exist
in equilibrium with their environment at a certain temperature and pressure.
There is an exchange of energy with the environment and the principle of
energy minimization needs to be reformulated. The equilibrium of a system
in contact with a temperature and pressure reservoir minimizes, instead, the
Gibbs free energy [16]:

G = U − TS + PV

= H − TS , (1.26)

where H = U + PV is the enthalpy. Most of the enthalpy of materials origi-
nates from the bonding energy of the electronic orbitals between atoms. In the
ground state at T=0K, it constitutes the entire Gibbs free energy. As temper-
ature is increased, however, the entropy term becomes important. Because of
the minus sign of Eq. 1.26, high entropy states help to reduce the free energy
at high temperatures, stabilizing the material.

Entropy is also the variable that connects the macroscopic thermodynamic
behaviour to the microscopic excitations through the Boltzmann relation S =

kB lnΩ (Eq. 1.10). More phonons and larger spin disorder increase the number
of microstates, and hence the entropy. High entropy states have a larger
probability to occur, since there are several microscopic configurations that
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result in that same macroscopic state. The principle of entropy maximization
is a statistical statement, that a system will take the most likely configuration
with the highest number of microstates.

Entropy contributions

Most of the entropy in materials comes from phonons. As the temperature is
raised, more phonons are excited, which increases the entropy and decreases
the free energy. At room temperature, lattice vibrations account for about
80-90% of the total entropy in Fe-Ni alloys, for example.

As previously discussed, thermal energy can also be absorbed by disordering
the magnetic spins. As temperature is increased, the alignment of spins gets
disrupted, which contributes to a magnetic entropy. Therefore a disordered
spin state is usually more stable at high temperatures than a state with mag-
netic order.

Electrons can also get thermally excited to higher energetic states. The elec-
tronic entropy is associated with the occupation of electronic states near the
Fermi energy EF. As previously discussed, the d orbitals of transition metals
result in a large density of states at EF, and there is no energy gap between the
highest occupied electronic state and the lowest unoccupied state. Broadening
of the Fermi-Dirac distribution with increasing temperatures, allows a larger
number states to be populated by electrons just above EF. It increases the
number of microstates available for electron, and therefore, contributes as an
electronic entropy.

The last piece of entropy is configurational. When combining different types of
atoms into a material (as in an alloy) there are different ways to arrange those
atoms on the lattice. Analogously to the magnetic entropy, it can be viewed as
a measure of the disorder of atomic configurations, or the entropy of mixing.
Some materials experience order-disorder transitions as a function of tempera-
ture due to the configurational entropy [7]. All materials studied in this thesis,
however, are random solid solutions of atoms in the lattice. In theory, they
have a configurational entropy, but it is constant as the atomic configurations
cannot be further randomized. The atomic configurations, therefore, do not
change in the temperature range of this study and do not contribute to change
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the entropy. The total entropy change can be described by

dS = ∂Sph + ∂Smag + ∂Sel . (1.27)

Thermal expansion

The thermal expansion is a measure of the volumetric change of a material
when heated. The coefficient of thermal expansion, β, is the fractional change
of volume with temperature:

β =
1

V

(
∂V

∂T

)
P

. (1.28)

Metals usually expand their volumes when heated. This happens because
their thermal energy is mostly stored as atomic vibrations. As the tempera-
ture is increased, the bonds between atoms soften, lowering their vibrational
frequencies, and allowing the nuclei to explore a larger volume in space and
momentum. As the nuclei vibrate more strongly, they can be found in a larger
range of locations and momenta. This increases the entropy as previously
discussed with Fig. 1.6), and is usually associated with a lattice expansion.
Thermal expansion is, therefore, directly linked to the phonon entropy. This
vibrational contribution to the thermal expansion is qualitatively depicted in
Fig. 1.12 a, for the case of a material with positive thermal expansion.

Figure 1.12 a is intended to provide an intuitive connection between vibrational
entropy and thermal expansion. But is might also be a little misleading, since
such a classical picture cannot capture the full quantum mechanical nature of
phonons. While it is always true that the entropy increases with temperature
(since that is the role of entropy in minimizing the Gibbs free energy with
temperature), it does not always lead to an expansion of the lattice. Phonons
can be enhanced without requiring a larger net volume. Accordingly, materials
with negative thermal expansion are known [6, 17–19]. These are further
discussed in Chapter 5.

A softening of the bonding forces and vibrational energies with temperature
is out the scope of the harmonic model. Since it assumes non-interacting
modes of constant energies, the harmonic model cannot account for thermal
expansion. A simple fix (and somewhat limited one [6, 17]) is achieved by
extending the model to allow vibrational modes to shift in frequency. The
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Figure 1.12: Qualitative connection between entropy and thermal expansion on a 2-
dimensional lattice. (a) Schematic representation of phonon displacements on a lattice
for a material with positive thermal expansion. As the temperature is increased (or pres-
sure is decreased), the interatomic forces soften, lowering the vibrational energies, and
causing an increase of the phonon entropy. As the nuclei vibrate more strongly, they ex-
plore a larger volume in space and momentum which usually causes an expansion of the
lattice. (b) Representation of the d orbitals and spin configurations on a lattice. As the
temperature (or pressure) is increased, the electronic orbitals overlap more. This disrupts
the magnetic ordering due to the Pauli exclusion principle and increases the magnetic en-
tropy. The increase of magnetic entropy is tied to a volume contraction.



28

quasiharmonic approximation (QHA) includes the temperature dependence of
the phonon energies, but only implicitly through the volume: ω = ω(V (T )).
For a harmonic spring (see Eqs. 1.15 and 1.16) there is a linear relationship
between the oscillation amplitude and frequency. In the QHA, the change
in vibrational frequency is also assumed to be linear with volume. A con-
stant Grüneisen parameter, γ, is typically defined for describing the fractional
change in frequency of mode i per fractional change in volume V

γ = −V0
ω

∂ω

∂V
, (1.29)

where V0 is an initial volume. The volume dependency of the energies become:

ω(V ) = ω(V0 +∆V ) = ω0 (1− γ∆V/V0) . (1.30)

The QHA can often describe the thermal expansion of real materials, but does
not include true anharmonic effects. The different modes still do not interact
with each other resulting in infinite phonon lifetimes, as in the harmonic model.
And as discussed in Chapter 5, thermal expansion is inherently an anharmonic
effect. This model will be also further explored in Chapter 4, where we apply
the QHA to the phonon behavior of iron and cementite. There we extend it to
include the dependence of phonons energies on the magnetization, a magnetic
QHA.

The magnetic structure is also linked to the entropy, and also affects the ther-
mal expansion. However, temperature effects of magnetism on volume tend
to be opposite of those from phonons. Increasing temperatures affects the
electronic structure. In a band (itinerant) model, temperature causes spin-flip
transitions from the majority (spin-up) to the minority (spin-down) band, re-
sulting in a decrease of the net magnetization through the Stoner criterion.
In a localized moment model, the magnetic spins become progressively disor-
dered with increasing temperatures. Changing the electronic structure has an
effect on the lattice parameter. Such a connection between temperature and
volume due to magnetic interactions can be gained from the Pauli exclusion
principle. In a ferromagnetic material, the unpaired electrons in the d orbitals
of different atoms have aligned spins. Their wave-functions, therefore, are not
allowed to overlap due to the Pauli repulsion (upper panel in Fig. 1.12 b). As
the temperature is increased, the spins progressively lose their ferromagnetic
alignment, allowing the electronic orbitals of neighboring atoms to overlap,



29

which enables a contraction of the volume as pictured in the lower case of
Fig. 1.12 b.

The increase of magnetic entropy through the disorder of the spins is linked to a
decrease in volume, while the increase of vibrational entropy with temperature
usually causes a thermal expansion. In both cases temperature increases the
entropy. Figure 1.12 also offers a connection of the phonon and magnetic
entropies to the pressure, as it directly controls the volume. For phonons,
increasing the pressure constricts the vibrational amplitudes and reduces the
entropy. And for the magnetism, increasing the pressure makes the electronic
orbitals overlap, which causes an increase in entropy through the spin disorder.
A balance of the effect of phonon and magnetism (and electrons) give the net
volumetric dependence of magnetic materials on the temperature and pressure.

Thermal expansion and entropy

We can explicitly relate the entropy to the thermal expansion by looking at
derivatives of the Gibbs free energy (dG = V dP − SdT + µdN):

∂G

∂P
= V

∂2G

∂T∂P
=
∂V

∂T

∂G

∂T
= −S

∂2G

∂P∂T
= −∂S

∂P
.

(1.31)

Since the mixed derivatives have to be equal, we obtain the Maxwell relation:(
∂V

∂T

)
P

= −
(
∂S

∂P

)
T

. (1.32)

This holds true when the material is in thermodynamic equilibrium, which is
the case since equilibration between phonons, electrons and spins is much faster
than the times of macroscopic measurements of β. The thermal expansion of
Eq. 1.28 can therefore be expressed as:

β = − 1

V

(
∂S

∂P

)
T

. (1.33)

Phonons, spins and electrons contribute simultaneously to the change of en-
tropy as Sph, Smag, Sel, so the thermal expansion can be broken down into
these individual components:

β = − 1

V

[(
∂Sph

∂P

)
T

+

(
∂Smag

∂P

)
T

+

(
∂Sel

∂P

)
T

]
. (1.34)
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Note that by using a Maxwell relation we move from a temperature to a pres-
sure dependence. As described previously with Fig. 1.12, temperature causes
both the phonon and magnetic entropies to increase. Pressure, however, in-
creases the magnetic entropy and decreases the phonon entropy, so they have
opposing effects on the thermal expansion through Eq. 1.34.

1.6 Phase stability of iron

We conclude this chapter with an example of how phonons and magnetism can
have consequences on the morphology of materials. The following excursion
into the stability of the different phases of iron gives a glimpse into the ther-
modynamics of magnetic materials. It reiterates the content of this chapter,
and serves in and serves as a building block for the following chapters of this
thesis.

Iron is usually described as a ferromagnetic (FM) metal, which might un-
derstates the complexity and richness of its different magnetic phases. At
ambient conditions it is indeed FM in the body-centered cubic (bcc) struc-
ture. However at different conditions, when alloyed to other elements, or in
the face-centered cubic (fcc) crystal structure, for example, it can present anti-
ferromagnetic (AF), non-collinear, partially disordered, spin-spiral, spin-glass
like, and nonmagnetic states (NM) [20]. The existence of several competing
magnetic states, results in the polymorphism of iron, and its rich phase dia-
gram of Fig. 1.13 a. The strong magnetic interactions in iron also offers a good
system to study couplings between phonons and spins. From an experimental
perspective, iron has the advantage of having an isotope, 57Fe, suitable for
Mössbauer spectroscopy, a powerful technique to study magnetism.

As discussed in section 1.1, the delocalized and symmetric s orbitals in tran-
sition metals favor the closest possible spherical packing of atoms [4]. The d
orbitals provide a covalent-like framework and the close-packed fcc configura-
tion is often preferred as the ground state by minimizing the enthalpy. How-
ever, iron atoms have four unpaired electrons in the d shell, leading to fairly
strong local moments. These magnetic moments exert forces on each other
through exchange interactions, resulting in an additional contribution to the
enthalpy. The Pauli repulsion between spins in a ferromagnetic alignment, for
example, leads to an internal pressure that would require larger volumes, and
could result in a more open atomic configuration such as in the bcc structure.
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Figure 1.13: Phase stability of Fe. (a) Structural phase diagram of iron showing its different
crystal structures as a function of temperature and pressure. (b) Total energy and magnetic
moments as a function of volume at T=0 K calculated for Fe in the bcc, fcc and hcp crystal
structures [21].

The enthalphy (or energy) and magnetic moments of iron in different crystal
structures (fcc, bcc, and hexagonal closed-packed hcp) were computed by first-
principles band calculations at 0K (no entropic effects) [21]. As shown in
Fig. 1.13 b, the (FM) bcc structure provides the lowest ground state energy for
iron. This means that the exchange interactions between spins in Fe, overcome
the tendency of a close-packed structure from the electronic bonding. Indeed,
the atomic volume of the bcc structure is larger than those from the fcc (AF)
and hcp (NM) ones. This is not always the case for FM metals, however. The
lower magnetization of FM nickel for example (0.6µB), favors the low-volume
fcc structure up to the melting temperature.

As pressure is increased, the atoms are forced into smaller volumes and the
electronic orbitals start to overlap. The Pauli repulsion forces intensify and
a ferromagnetic alignment of spins is no longer energetically favorable. With
the loss of ferromagnetism, the exchange interactions can not stabilize the bcc
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Figure 1.14: Nonharmonic phonon entropy (∆Snh = Stot − SQHA) from measured phonon
DOS spectra, compared to the magnetization of bcc Fe (right axis), and its magnetic entropy
[24]. Vertical line marks the Curie transition at 1044 K.

phase. At a pressure of about 14GPa in the phase diagram, or a volume of
70 (a.u.)3 in Fig. 1.13 b, the nonmagnetic hcp structure becomes stable. The
transition into the high-pressure ϵ phase does not seem to have substantial
phonon contributions. It is rather an effect of pressure on the magnetism than
a dynamic instability of phonons [22].

As the temperature is increased, spin fluctuations progressively disrupt the
magnetic order. This gives rise to a magnetic entropy that helps reducing the
free energy (Eq. 1.26) to stabilize the bcc structure. Above the Curie tem-
perature, the bcc phase is no longer stabilized by magnetism and transforms
martensitically into a paramagnetic fcc phase.

Although the fcc phase of iron is anti-ferromagnetic (see Fig. 1.13 b) its Néel
transition happens at around 67K, so it becomes paramagnetic by the temper-
ature at which the fcc becomes stable. The other (meta-stable) ferromagnetic
fcc phases of iron, HS and LS, are essential to understanding the Invar effect
and will be discussed in detail in Chapter 5.

As the temperature is increased further, the entropy becomes even more rele-
vant for reducing the free energy. And phonons, as the largest entropy contrib-
utors, take the main role. By having a lower packing density, the bcc structure
allows for larger oscillations of the nuclei, which results in a larger phonon en-
tropies. Above 1667 K, this vibrational entropy is responsive for stabilizing
the nonmagnetic bcc phase [23]. At 1811K the bond between atoms become
to soft to sustain thermal fluctuations and iron melts.
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The stability of the lower temperature bcc phase (α-Fe) is generally attributed
to the magnetic entropy as described above. Phonons, however, are also essen-
tial. Magnetism alone cannot explain how the bcc phase is stable even beyond
the Curie transition (shaded area in Fig. 1.13 a). Measurements of both the
phonon dispersions [25] and the phonon DOS [24] in α-Fe show strong soften-
ing of the vibrational energies, especially those from transverse modes (we will
later discuss this in Fig. 4.1). It results in a large contribution to the entropy,
that departs from the quasi-harmonic model as shown in Fig. 1.14. In fact,
this excess (nonharmonic) phonon entropy is of the same order as the mag-
netic entropy. This excessive phonon amplitudes are a result of a coupling with
magnetism, as described in [26]. The increase of magnetic disorder interacts
with the lattice to soften the phonon vibrations. It is, therefore, not surpris-
ing that the nonharmonic vibrational entropy has a very similar shape to the
magnetic entropy. This interaction of phonons and spins holds even beyond
the loss of magnetic long-range order at the Curie temperature of 1044K. The
coupling with short-range magnetism continues to raise the phonon entropy,
stabilizing the bcc phase up to 1185 K. Prior to the discovery of coupled in-
teractions of phonons and magnetism, the stability of the bcc phase above its
Curie transition could not be explained.

The coupling between the vibrational and magnetic degrees of freedom is cen-
tral in this thesis. It will be further explored in the case of in α-Fe in Chapter
4, where the nonharmonic contributions of Fig. 1.14 are modeled by a magnetic
quasi-harmonic approximation. Chapter 5 explains how such a spin-phonon
coupling can result in anomalous thermal behaviour of Invar, with near-zero
thermal expansion. The size of the crystalline structure of a material is also es-
sential, as it influences all kinds of thermal excitations. Chapter 3 explores the
size dependence of phonons, spins and electrons in nanocrystalline Ni3Fe, and
their effects on its thermodynamic stability. But first, in the coming chapter,
we discuss some of the critical experimental methods used in these studies.
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Chapter 2

Experimental methods

Here I review the most relevant experimental techniques and their data analy-
ses. All data presented in this chapter were collected for Fe-Ni Invar (Fe65Ni35),
and relates to Chapter 5 where the Invar effect is discussed.

2.1 High pressures in diamond-anvil cells

Pressure is an important thermodynamic variable, describing the volume de-
pendence of the internal energy U , and Helmoltz free energy F (F = U−TS):

P = −
(
∂U

∂V

)
S

= −
(
∂F

∂V

)
T

. (2.1)

Being able to experimentally control the pressure enables us to better under-
stand the interactomic interactions. Pressure alters all chemical, structural,
mechanical, electronic, magnetic and phonon properties. Studying geological
conditions at planetary core conditions requires extreme pressures up to hun-
dreds of GPa, for example (100GPa ≈ 106 atmospheres). Pressure can even
be used to look at temperature dependencies, such as the thermal expansion,
through the Maxwell relation described in section 1.5 (Eq. 1.32):(

∂V

∂T

)
P

= −
(
∂S

∂P

)
T

.

Diamond-anvil cells (DACs) provide a well establish technique for in-situ pres-
sure control. DACs are able to pressurize materials to pressures as low as
∼ 0.1GPa and up to 750GPa [1], about twice the pressure of the Earth’s core.
An excellent review of diamond-anvil cell techniques is provided in [2].

The operation of a symmetric piston-cylinder DAC is depicted in Fig. 2.1. The
sample is placed in between two opposing diamond anvils, within a chamber
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Figure 2.1: Operation of a diamond-anvil cell (DAC). (a) Schematic of a symmetric-type DAC
[2]. (b) Detailed view of diamond culets indenting the gasket and pressurizing the sample
chamber, which is filled with a pressure transmitting medium. The fluorescence spectrum
of ruby spheres is used to determine the pressure. (c) Photo of diamond anvils pressing on
a beryllium gasket. Beryllium is used for phonon measurements, because it is transparent
to x-rays allowing the collection of the inelastic incoherent signal from the sides of the
DAC. (d) Close-up view of the diamond-anvils showing the precise alignment of the culets.
(e) Top view (through the diamonds) of the culets touching each other. If these Newton
fringes are seen, the culets are not precisely parallel.

drilled in a gasket material. By pressing the piston against the cylinder (using
screws or a pressurised bladder), high pressures are achieved at the sample
environment. Diamonds are mostly transparent to x-rays, so the incident
beam goes through a hole in the piston side, diffracts at the sample, continues
through an opening in the cylinder and into the detectors. The diamonds do
not press directly on the sample, but on the gasket, indenting the material and
reducing the gasket hole (see Fig. 2.2 e and f). A pressure medium is used to
fill the chamber and transmit hydrostatic pressure to the sample. The pres-
sure is monitored by placing a reference material inside the pressure chamber.
Measuring the x-ray diffraction of gold, or the fluorescence spectrum of ruby
with a Raman spectrometer are typical methods to measure the pressure.
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The tip of the diamonds are cut into a culet to provide a flat surface where
the experiment can be built. Typical culet sizes range between 50 and 800 um,
depending on the desired pressure. In any case, they are small, requiring
small samples. Diamond-anvil cells are therefore ideal for experiments in syn-
chrotrons, with small x-ray beam sizes, or with lasers such as Raman spec-
troscopy. The culets must be extremely well aligned (see Fig. 2.1 d), otherwise
pressure concentrations will crack the diamonds. A technique to check if they
are parallel to each other, is touching the culets and looking for Newton inter-
ference rings (shown in Fig. 2.1 e). Their appearance indicates that the light
path length is not the same everywhere and that the culets are not precisely
parallel.

Desirable materials for the gaskets are strong and stiff, able to withstand high
pressures without cracking. Rhenium is a favorite. Our diffraction measure-
ments used them as gaskets. To collect the incoherent inelastic spectrum for
measuring phonons (described below), detectors are placed around the sides of
the DACs, very close to the sample. Panoramic DACs with large side openings,
as shown in Fig. 2.2 a and b, are used for these experiments. The diffracted
signal has to travel sideways through the gasket to reach the detectors, so the
gasket material has to be chosen carefully. Beryllium has a low x-ray absorp-
tion down to 5 keV, and has been used as high pressure gaskets up to 153GPa
[3]. We used beryllium for our inelastic phonon experiments. Beryllium is
toxic, however, especially as fine powders or fumes. Indenting the gaskets and
drilling the sample chamber hole needs to be done with care. We used the
laser micro-machining system at the Advanced Photon Source (APS) [4].

Different pressure media can be used in DACs. Solids such as aluminum or
magnesium oxides have been used [5]. They do not provide isotropic pressures
at the sample, however, so liquid and gas media are preferred. A mixture
of methanol–ethanol (4:1 ratio) is commonly used as a fluid medium, but its
strength rises sharply above 10GPa [6]. Gas media are preferred, especially
inert gases that produce quasi-hydrostatic conditions up to 8 GPa in argon, 20
GPa in neon, and over 100 GPa in helium [2]. At high pressures, these gases
transition into supercritical states, and even solidify. The hydrostatic limit
and its distribution within a DAC were reviewed for 11 pressure media in [6].
Helium provides the best pressure transmission medium, even in its solid state
above 12.1GPa at 300 K. We therefore used helium in our experiments.
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Figure 2.2: Diamond-anvil cells (DACs) used in this thesis. (a) Mini panoramic DAC for
low-temperature NRIXS and NFS experiments, designed to fit inside the cold finger of a
cryostat [7]. (b) Panoramic DAC for NRIXS and NSF. Large openings around the gasket allow
APD detectors to get very close to the sample for collecting the weak inelastic signal. (c)
Symmetric-type DAC for XRD experiments. (d) Close-up view of the diamond anvils (without
gasket), showing the sample and rubies holding onto the diamonds by electrostatic forces.
(e) Top microscope view of DAC. The sample and ruby spheres are placed inside the gasket
hole, filled with helium gas for transmitting the pressure isotropically. When the pressure is
increased, the diamonds compress the gasket and reduce the sample chamber volume. (f)
Final state of a gasket with a shrunken chamber after achieving high pressures (∼ 20GPa).
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To load the DACs for the experiments, we first indent the gaskets with the
diamond culets. This ensures a well-sealed sample chamber. The gasket is
then drilled by EDM or using a laser drilling system [4]. The small sizes of
the diamonds limit the size of the samples, which were cut into squares of
approximately 50µm across. We then carefully placed the sample and the
ruby spheres on the diamond culets (see Fig. 2.2 d) using tungsten needles
under a microscope. The gasket is then placed on the anvil and the DAC is
closed, such that the diamonds lightly touch the gaskets from both sides. The
helium pressure medium must be loaded into the DACs at a high pressure
(around 25,000 psi), otherwise the gasket hole will shrink too much to achieve
high pressures. Our cells were gas-loaded with the help of beamline scientists
at Argonne National Laboratory. The gas it trapped in the sample chamber
medium by engaging the DAC screws which seals the gasket by the diamonds.

Simultaneous P & T control

The temperature of the sample can be controlled by heating or cooling the
DACs. This is not straightforward, however. DACs are made out of dif-
ferent components with different thermal expansions. At high temperatures
the stress bearing components, including the gasket, the seats for diamaond
anvils, and the diamond anvil itself, limit the maximum attainable tempera-
ture and pressure [2]. There is also an intrinsic temperature limit from the
rapid graphitization of diamonds above 1900K, even in vacuum.

External furnaces provide precise and well-controlled temperature conditions.
An example of a heating block design that encloses the entire DAC is shown
in Fig. 2.3 a. These can be used to heat the DACs up to 700 K [2], and was
used for our diffraction experiments of Chapter 5. For higher temperatures, a
smaller resistive heater around the diamonds can offer a localized heat source
[8]. Temperatures up to 1200K have been achieved with this method. This
works well for diffraction experiments where the diffracted beam is detected
in the forward direction. For measuring the inelastic spectrum, however, the
detectors need to have access to the sides of the DACs. Heating blocks and
resistive heaters are not yet available for measuring phonons.

A cooling system designed for inelastic phonon experiments is shown in Fig. 2.3 b.
[7]. The specially designed mini-DAC (Fig. 2.2 a) fits into a compact liquid he-
lium flow cryostat system. Temperatures down to 9K are achieved by flowing
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Figure 2.3: Controlling the temperature of DACs. (a) Heating block used at beamline 16 BM-
D of the APS for diffraction experiments. The symmetric-type DAC (Fig. 2.2 c) is not visible
inside the heat shield, and its pressure is controlled by a bladder membrane system. (b)
Liquid helium flow-cryostat for cooling mini-DAC (Fig. 2.2 a) at beamline 3 ID-D of the APS
[7]. The pressure is controlled remotely by a membrane system. A thermocouple monitors
the temperature at the DAC, which is shielded inside a vacuum chamber (shielding and
vacuum shroud not shown). (c) Internal resistive heating setup (gasket and sample are
shown). Platinum electrical leads touch the iron sample to create an electrical circuit. The
sample is notched to increase the local resistance and ensure localized heating. Leads are
insulated from the beryllium gasket by kapton tapes and by using a boron insert in the
center of the gasket (not visible). Aluminum oxide was used as the pressure medium. (d)
View of the closed DAC with notched sample and partially transparent boron-insert.

helium through the DAC holder, which is shielded inside a vacuum chamber.
A gas membrane system enables in situ tuning of the pressure without direct
access to the DAC screws. Side windows allow detectors to get close to the
diamond anvils from both sides.

Laser heating can provide very localized sample temperatures up to 7000K [2],
and has been used for inelastic techniques [9]. The temperature measurements
are usually limited to above 1000K, however [2]. For temperatures in the range
of 300-1000K an alternative internal resisitive heating method that heats the
sample inside the pressure chamber of a DAC is possible [10, 11]. The sample
itself can used as the conductive heating element and heating is controlled
by the applied voltage through electrical leads in contact with the sample.
Placing heating components in the 100 µm size DAC sample chambers has
proven extremely challenging however [2]. I tried reproducing the heating
setup described in [5], as shown in Fig. 2.3 c. Platinum leads touching the iron
sample provide the electrical current from a power supply. They are insulated
from the beryllium gasket by kapton tape and by using a boron insert for the
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indented portion of the gasket (not visible). Additional electrical and heat
insulation is provided by the aluminum oxide pressure medium. The sample
has a notch to increase its resistance, ensuring a localized heat, and minimizing
the heat flow into the beryllium gasket. Figure 2.3 d shows the closed DAC
with the notched sample. It was extremely challenging to prepare this setup,
and even after several attempts the electrical contact between the lead and
the sample was lost. This happened either because the leads move or become
damaged upon closing the DAC and pressurizing the diamonds. I strongly
recommend an alternative heating design for anyone who might attempt this.

2.2 Inelastic neutron scattering (INS)

INS is a powerful and well established technique to measures the phonon dis-
persion of materials [12, 13]. Neutrons are heavy particles, able to transfer
both a wide range of energy and momentum to the sample. Since neutrons
do not have an electric charge, they do not interact with electrons, but can
“hit” the nuclei and excite phonons. (They do posses a spin, making them also
suitable for measuring the magnetic states of materials.)

By interacting with the lattice, neutrons can lose or gain energy depending
on the frequency, ω, of the phonons created or annihilated by the incoming
neutron (the energy of a phonon is given by E = ℏω). Neutrons also exchange
momentum with the sample depending on the orientation and wavelength of
the phonon waves (the momentum of a phonon is p = ℏk, where |k| = 2π/λ

is its wavevector of wavelength λ). One neutron can sometimes create (or
annihilate) more than one phonon, referred to as multi-phonon scattering.

We measured the phonon dispersions with the time-of-flight Wide Angular-
Range Chopper Spectrometer, ARCS, at the Spallation Neutron Source (SNS)
at Oak Ridge National Laboratory [14]. The wide angle of the detector bank at
ARCS, ranging from -28° to 135° with respect to the incident beam, allows the
collection of radiation with a large range of momentum transfers. At the SNS,
neutrons are created through a spallation reaction, where a high-energy proton
beam hits a liquid mercury target creating neutrons. The created neutrons
are then slowed down by scattering in a water moderator, which reduces their
energies to the thermal range. At ARCS, the energy is monochromated by
passing the neutron beam through two Fermi choppers. These are cylinders
with vertical slits, that rotate at certain frequencies, letting only a burst of
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Figure 2.4: Phonon spectrum of polycrystalline Fe-36%Ni (Invar) measured by inelas-
tic neutron scattering at ambient conditions. (a) Dispersion map showing the energy of
phonons as a function of their momenta. (b) Energy spectrum of phonons, computed by
integrating their dispersion intensities (of panel a) over the momentum axis.

neutrons of a certain energy pass through. The inelastic spectrum, i.e., the
amount of energy transferred between neutrons and phonons, is measured
by timing. Neutrons are heavy particles and their energy can be classically
determined from their velocity (E = 1/2mv2) [13]. The inelastic interaction
with the sample are therefore determined by their speed, which is measured
by the time it takes for a neutron to travel from the choppers, through the
sample, and into the detectors.

The resulting data form a dispersion map, S(Q,E), with momentum transfer,
Q, on the horizontal axis and the energy transfer, E, on the vertical axis,
as shown in Fig. 2.4 a for the case of Fe-Ni Invar. For these experiments we
monochromated the incoming neutron beam to 60meV, which sets the limit of
the measured phonon energy and also the energy resolution of the experiment.
The data cutoffs (white portions of the plot) correspond to the kinematic lim-
its of the ARCS instrument. At zero energy transfer, E=0, we measure the
elastic scattering, giving Bragg peaks from neutrons diffracted off the nuclei at
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their equilibrium positions (analogous to x-ray diffraction). The inelastic spec-
trum (E ̸= 0) follows specific directions in momentum space, corresponding to
specific propagation directions of phonons in the material. Our measurements
on a polycrystalline Invar plate capture the average of phonons propagating in
all direction, as opposed to sharp dispersions of single crystals. This results in
the superposition of modes and ‘blurred’ dispersions are seen in Fig.2.4. Nev-
ertheless different branches from low- and high-transverse, and longitudinal
modes are visible.

The intensities of the S(Q,E) dispersion can be integrated over all momenta
to give the energy spectrum of the atomic vibrations, the phonon density of
states (DOS). The DOS gives the total number of states, or oscillator modes,
available for phonons at a certain energy. It can therefore only consist of single
phonon events, where one neutron interacts with one phonon. Corrections for
multi-phonon and multiple scattering of phonons were performed using Mantid
and the Multiphonon package [15, 16].

If the sample is placed inside a container, the scattering from the container
has to be separately measured and subtracted as a background. The data
are normalized by the proton current on target, and bad detector pixels are
identified and masked. Corrections for detector efficiency are carried out using
measurements from an incoherent scatterer (independent from momentum),
such as vanadium. The resulting phonon DOS of Fe65Ni35 is shown in Fig. 2.4 b.

Inelastic neutron scattering requires large samples, because of the limited neu-
tron flux and its large dimensions (about 5 cm x 5 cm at ARCS), compared to
x-rays. The viability of experiments at high pressures, which usually requires
small samples, is therefore also limited. High pressure neutron-diffraction mea-
surements have traditionally used large sample volumes of at least ∼ 25mm3

[17]. Correspondingly, large pressure Paris-Edinburgh cells, weighting about
200 tons, have been used with toroidal anvils reaching up to 10-20GPa [18].
The high fluxes at the Spallation Neutron Source combined with newly de-
veloped methods to collimate and focus the beam into into small sizes, have
allowed for neutron diffraction up to 94GPa [17] and 115 GPa [19].

For measuring the inelastic spectrum, however, large samples are still required.
Additionally, the pressure cell needs to allow for scattering at large angles to
include a wide range of momentum transfers of phonons. Some preliminary
experiments have been performed at ARCS with Paris-Edinburgh cells, how-
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ever accounting for the background of neutrons scattering at the cell remains a
challenge. We opt for well-established nuclear resonant x-ray scattering tech-
niques described below.

2.3 Mössbauer spectroscopy

Mössbauer spectroscopy is a powerful resonant scattering technique to study
the local environment of a resonant nucleus, giving information about its elec-
tronic, magnetic and structural properties [20]. Being resonant to the nuclear
energies and sensitive to fluctuations in the nuclear environment, Mössbauer
spectroscopy provides a view from the inside out of a material.

A Mössbauer spectrum shows the absorption energies of γ-rays by a resonant
nucleus, such as 57Fe, 191Ir, 119Sn, or 151Eu. These absorption lines correspond
to the transitions between different nuclear energy levels as shown in Fig. 2.5.
An isolated 57Fe nucleus has its first excited state (I = 3/2) at 14.41 keV from
the ground state (I = 1/2). Interactions between the nucleus and its electronic
environment, called hyperfine interactions, cause shifts and splittings of the
nuclear energy spectrum.

The characteristic lifetime of the excited state of an 57Fe atom is 141 ns, a
relatively long time, especially compared to electronic transitions on the order
of pico-seconds. According to the uncertainty principle, ∆E ∼ ℏ/∆t, these
long lived states are extremely narrow in energy with ∆E = 4.7 × 10−9 eV
(see energy scale of Fig. 2.5 b). This unprecedented precision can be used with
hyperfine interactions to quantify small changes in the environment of the
resonant nuclei.

The probability density of s-electrons, and some relativistic p-electrons, is non-
zero at the nucleus (revisit Fig. 1.1 a). Coulomb interactions of these electrons
inside the volume of the nucleus with the nuclear charge give rise to an isomer
shift of the nuclear energies. When the nuclear volume is known, the strength
of isomer shift provides direct information about the electron density at the
nucleus, and is useful to extract information about the electronic structure [21,
22]

The nuclear states have spins, associated with their magnetic dipole moments.
When the nucleus experiences a magnetic field, such as in a ferromagnetic
material, the energy of the nuclear states depends on orientation of the spins
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Figure 2.5: Mössbauer spectrum of Fe-Ni Invar. (a) Shifts of the nuclear energy levels of
57Fe (with principal quantum number I) by an isomer shift and by the presence of a mag-
netic hyperfine field. States with different spins mI with respect to the magnetic field shift
by different amounts, resulting in a splitting of the energy levels. (b) Mössbauer spectrum
of ferromagnetic 57Fe65Ni35 at ambient conditions measured with a conventional Doppler
drive (velocity of the drive is the lower axis). It has the six absorption lines corresponding
to the different nuclear transitions of panel a. The isomer shift is seen as a shift of the
entire spectrum from zero energy shift (only a very weak effect for Fe65Ni35)

with respect to the magnetic field. Analogously to the Zeeman splitting of
electrons, a magnetic field raises the spin degeneracy, and the nuclear states
with different spins are split. For 57Fe, there are six possible transition be-
tween the ground and the first excited states, as shown in Fig. 2.5. Since the
splitting of the spectral lines is directly proportional to the magnetic field expe-
rienced by the nucleus, called the hyperfine magnetic field (HMF), Mössbauer
spectroscopy is an effective method to measure this field [22].

Figure 2.6 a shows the effect of ferromagnetism on the Mössbauer spectrum
of Fe-Ni Invar in different conditions. As the magnetization of the material
decreases from a fully ferromagnetic state at 20K, to ambient conditions, the
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strength of the HMF decreases and the absorption lines are closer together. At
21GPa, with the magnetism squeezed out by the high pressures, the material
is paramagnetic and there is only a single absorption line.

In 57Fe, the magnetic field experienced at the nucleus originates from unpaired
d-electrons. The spin density of these outer unpaired electrons, polarize the
core electrons, resulting in a net magnetic field at the nucleus [23–25]. The
effective field at the nucleus is negative, or opposite to the direction of mag-
netization. Its intensity, however, is proportional to the bulk magnetization
[26], so measurements of the hyperfine field can be used to determine the net
magnetization of a material.

Mössbauer spectra can be fit to models of the hyperfine interactions, to extract
hyperfine parameters such as isomer shifts, and strength of the HMF. We fitted
our measurements using the CONUSS software package [27, 28]. The distri-
bution of the HMF, P (Bhf ), was approximated by two assymmetric Gaussian
distributions, giving the field distributions of Fig. 2.6 b. At 20K, the mean of
the distribution is 33.7Tesla (26.2T at ambient conditions). This is a remark-
ably strong field; much stronger the field produced by an MRI magnet of about
1.5-3T, and comparable to the 45T field of the strongest (superconducting)
magnet ever build.

In this thesis we use Mössbauer experiments to determine the magnetic state
and the strength of the magnetic field of our materials. It can, however, be
used to extract other parameters such as recoil-free fractions, isomer shifts and
quadrupole splitting (which occurs in the presence of an electric field gradient)
[21, 22]. These are sensitive to the chemical environments and can be used
for quantitative phase analyses and determinations of the concentrations of
resonant element in different phases, even for amorphous or nanostructured
materials [20].

Experimental observation of nuclear resonance

In a conventional Mössbauer experiment, the resonant nuclei in the sample are
excited by γ-radiation emitted from a source. For exciting 57Fe nuclei, a 57Co
radioisotope embedded in a Rh matrix is typically used as a radiation source.
The unstable 57Co nucleus absorbs an inner-shell electron, and decays into
a 57Fe nucleus while emitting a 122 keV γ-ray [20]. The new 57Fe nucleus is
formed in the excited state (I = 3/2), and decays to the ground state emitting
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Figure 2.6: Dependence of Mössbauer spectra and hyperfine magnetic field of 57Fe65Ni35
on temperature and pressure. (a) Energy spectra at different conditions. At 20 K the ma-
terial is strongly ferromagnetic, with well defined nuclear absorption lines. The magne-
tization is reduced at ambient conditions, so the nuclear energies are less split. At high
pressures (21 GPa) well above the Curie transition, the material is paramagnetic with a sin-
gle nuclear transition energy. (b) Distribution of the hyperfine magnetic field, showing the
strength of the field experienced by the 57Fe nuclei. They were computed from the spectra
of panel a using CONUSS [27, 28].

another γ-ray of 14.41 keV. This is the useful emission which can be resonantly
absorbed by the 57Fe in the sample.

Experiments are usually performed in a transmission geometry, as depicted in
Fig. 2.7, with the radiation from the source going through thin samples and
into detectors. When the sample resonantly absorbs the γ-ray from the source,
it re-emits radiation in all directions, removing intensity from the forward
direction and lowering the count rate. We can correlate the measured count
rate with the velocity of the Doppler drive to get the Mössbauer spectrum of
Fig. 2.5.

As mentioned previously, these nuclear energies are extremely narrow with
∆E ∼ 5 neV. Any disturbance in the nuclear environments of either the source
of the sample would cause a mismatch and hinder the resonant absorption
of the γ-rays, even the recoil of a nucleus when emitting or absorbing the
radiation. Therefore recoilless emission by the source and absorption by the
sample are necessary. An isolated nucleus cannot be in resonance because it
recoils. If embedded in a solid, the recoil energy can be transferred to the
entire lattice and resonance becomes possible.
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Figure 2.7: Schematic of Mössbauer experiment. (a) Conventional experimental setup in
transmission geometry. γ-radiation is produced by a 57Co source, placed on a Doppler drive
to provide an energy scan. The radiation is partially absorbed by the sample, whenever
the energy matches precisely an absorption line of the 57Fe nuclei. The absorbed radiation
is re-emitted in all directions through different channels (see panel b for details). This
reduces the intensity of the radiation reaching the detectors, causing a dip in the count
rate and resulting in the spectrum of Fig. 2.5. (b) Resonant absorption at the 57Fe nuclei and
re-emission through different channels. Only part of the radiation is emitted as 14.4 keV
γ-rays. Most of it decays through the internal conversion channels interacting with the
inner electronic shells (see text). Adapted with permission from [29].
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Such a recoil-free resonance of γ-radiation was first observed in 1957 at the
Max Planck Institute in Heidelberg, Germany. Its discoverer, a 29 year old
PhD student named Rudolf Mössbauer, was quickly awarded the 1961 Nobel
Prize in physics. Shortly after hearing the news about the resonant γ-ray
absorption in 191Ir, Richard Feynman invited Mössbauer to come work in
California. Mössbauer was a researcher at Caltech when the Nobel Prize was
announced, and after an emergency faculty meeting, he was promoted to full
professor in early 1962, the fastest promotion case in Caltech history.

In order to see such a recoil-free absorption we need to scan the incident energy
around 14.413 keV. An energy scan in the sub µeV range is achieved by placing
the 57Co source on a electromagnetic Doppler drive. It shifts the energy of the
emitted radiation depending on the relative speed of the source to the sample
by ∆E = (v/c) · 14.41 keV. The velocity of the oscillating drive is typically
plotted as the horizontal axis in a Mössbauer spectrum.

After resonantly absorbing γ-rays, only 10.9% of the energy is re-emitted by
the 57Fe nuclei as γ-rays [20, 29]. Most of it is transferred to the electrons
through internal conversion processes, where an electron is ejected from the
atom and a lower energy x-ray is emitted. Figure 2.7 b shows more details of
these different decay channels. Gas-filled proportional counters or solid-state
detectors are used for detecting such electrons and x-rays. A backstatter (re-
flection) geometry is also possible, where electrons emitted from the sample
surface are counted by detectors. This is especially useful when thin samples
are difficult to prepare. Backscatter geometry was also used for the minia-
ture Mössbauer spectrometers that are on board the Mars Exploration Rovers
(Spirit and Opportunity), to probe the landscape of and provide evidence of
water on the surface of Mars [30, 31].

Mössbauer experiments are solely sensitive to the resonant isotopes. There is
no background from other materials placed in the experimental setup, although
an uniform and constant background occurs from other x-ray processes and
detector noise. The samples, however, have to be prepared with such isotopes.
The natural abundance of 57Fe is 2.2%, so samples are often made with 95-99%
enriched 57Fe to shorten the collection time.

With due care and the use of point-sources, it is possible to perform Mössbauer
spectroscopy at high pressures, with samples in diamond-anvil cells. Due to
the small sample sizes, however, long acquisition times are necessary resulting
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Figure 2.8: Advanced Photon Source (APS) at the Argonne National Laboratory. (a) Aerial
view of the APS. (b) Electromagnets used to keep the electrons in a narrow beam while
traveling around the storage ring. (c) Cross-sectional view of a sextupole electromagnet,
showing the vacuum tubes in which the electrons travel close to the speed of light. (d) Un-
dulator insertion device. The series of magnets with alternating polarity make the electrons
wiggle along their path, creating a coherent beam of x-rays in the propagation direction.

in lower signal-to-noise ratios. The strong and narrow x-ray beam produced
at synchrotron provides a better alternative.

2.4 Synchrotron radiation - Advanced Photon Source

X-ray creation

High energy x-rays are created from high speed electrons at synchrotrons. At
the Advanced Photon Source (APS) of the Argonne National Laboratory (see
Fig. 2.8 a), the electrons are first emitted from a hot cathode and accelerated
by a high-voltage in the linear accelerator (linac). The electrons are injected
into an accumulator ring which compresses the electron bunches into short
pulses of less than 1 ns. The booster synchrotron then accelerates these pulses
using electromagnets up to 7GeV, with electrons traveling at >99.999999% of
the speed of light.
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The high-energy electron bunches are injected into a 1104m circumference
storage ring [32]. They are kept in vacuum into a narrow beam by electro-
magnets (shown in Fig. 2.8 b and c). The storage ring is not a perfect circle,
but a consists of 40 straight sections. Between each of these sections, the
beam is bent by bending magnets. When electrons undergo such accelerations
to change path directions, they emit radiation. X-rays with a wide range of
energies are created (white beam) [33, 34], which can be monochromated de-
pending on the specific use. The x-ray diffraction measurements presented in
Chapter 5 used 27 keV x-rays produced by such a bending magnet (BM) at
beamline 16 BM-D.

An alternative way to create x-rays in the storage ring uses undulators (see
Fig. 2.8 d). A sequence of magnets with alternating polarity makes electrons
oscillate along their path. At each oscillation, x-rays are created and interfere
coherently in the beam direction. The x-rays interfere constructively at specific
energies depending on the spacing of the magnets [32, 33]. Such an undulat-
ing insertion devices were used for nuclear resonant scattering experiments at
beamlines 3 ID-D and 16 ID-D of the APS.

Beamlines for nuclear resonant spectroscopy

For nuclear resonant absorption, the x-rays must be monocromated. At beam-
lines 3 ID-D and 16 ID-D of the APS, this is performed by a series of two
monochrometors [32, 35–37]. The x-ray created at the undulator is reflected
by two single crystal of silicon mirrors, as depicted in Fig. 2.9 a. Only the (111)
Bragg reflection is selected by the second mirror, so only a narrow energy width
of about 1.5 eV proceeds. These mirrors must be actively cooled, since they
absorb most of the high energy beam. The x-rays are then sent into a second
monochromator consisting of four sillicon crystals. Here, higher order Bragg
reflections are selected, resulting in an even narrower energy width of about
1meV. Selecting such a monochromated beam out of a high energy 14.41 keV
x-ray is a remarkable feat. It corresponds to a precision of 2 · 10−5 % of the
incident energy.

After being monochromated, the beam is focused by Kirkpatrick–Baez (KB)
mirrors into the diamond-anvil cell (DAC) and irradiates the sample. Avalanche
photon diode (APD) detectors in the forward direction record the nuclear ab-
sorption spectrum, while three APD detectors placed around the DAC collect
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Figure 2.9: Experimental setup for nuclear resonant experiments at beamlines 3 ID-D and
16 ID-D of the APS. (a) From right to left: the electrons pass through undulators and create x-
ray around 14.41 keV. The beam passes first through a high heat monochromator and then
through a high-resolution monochromator for an energy resolution of about 1 meV. The
beam is then focused into the sample with KB mirrors. Side APD detectors collect the NRIXS
spectrum, with the forward detector measures the NFS. (b) Photo of the experimental hutch
of beamline 3 ID-D. Three APD detectors are placed around the opening of a panoramic DAC
(Fig. 2.2 b). The forward detector is not shown. A camera with a microscope and a Raman
spectrometer can be moved in and out of the beam. They are used to monitor the sample
and determine the pressure inside the DAC through the fluorescence spectrum of a ruby
reference (see Fig. 2.2 e). (c) Timing of the x-ray radiation hitting the sample, created by
electronic bunches separated by 153 ns.
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the inelastic spectrum (discussed below). APD detectors are nearly ideal for
time-resolved x-ray measurements. They have a large dynamic range, sensitive
to x-rays in the 5-20 keV range, and importantly, have a good time resolution
(< 1 ns) with low noise [38].

The timed nature of the synchrotron radiation, with x-ray bunches hitting the
sample every 153 ns at the APS [39], is essential for the nuclear resonant ex-
periments. X-rays excite all sort of electronic transitions in the material along
with nuclear excitations, and detectors cannot discern between their energies.
However, while the electrons decay back to their ground states quickly, on
the order of pico-seconds, the nuclear states have a much longer lifetime, as
depicted in Fig. 2.9 c. Their narrow energy width of ∆E = 4.7 × 10−9 eV for
57Fe, corresponds to characteristic lifetimes of 141 ns. Since the detectors have
good time resolution, we can wait for the electronic transitions to decay to
start collecting data1.

2.5 Synchrotron Mössbauer spectroscopy

In conventional Mössbauer spectroscopy, the absorption lines of a resonant
nucleus are measured as a function of energy, as previously discussed in detail.
While high-resolution monochromators at synchrotrons have an impressive
energy precision of ∼1meV, they are off by three orders of magnitude for
Mössbauer experiments, which require a sub-µeV energy scan.

By keeping the incoming energy fixed and oscillating the sample position (anal-
ogous to using a Doppler drive for the γ-ray source), Gerdau et al. [40] were
able to observe nuclear absorption at a synchrotron for the first time in 1985.
While this was exciting, the energy resolution at synchrotrons is inherently
too low for quantitative analyses of Mössbauer spectra in energy domain.

A more suitable technique used the timed nature of synchrotron radiation,
with short x-ray pulses every 153 ns, to circumvent the need of energy scans
altogether [39]. The nuclear decay can be measured as a function of time
instead of Doppler-shifting the energy. The synchrotron radiation excites all

1The Advanced Photon Source is about to be upgraded (starting in April 2023). To
increase the brightness of the x-rays by up to 500 times, the number of electron bunches
in the storage ring will be doubled from 24 to 48. While a stronger beam is favorable for
most experiments, the upgrade will reduce the time window available to measure the nuclear
decay by half [34].
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Figure 2.10: Mössbauer spectroscopy in time domain. (a) Splitting of nuclear energies of
57Fe due to a magnetic field (from Fig. 2.5). (b) The sum of two sinusoidal waves with slight
different frequencies results in a wave with intensity modulations, or “beats”. (c) Measured
NFS spectra showing the intensity modulation due to interference of the six energy lines of
57Fe (panel a). The period of the modulations is used to infer the strength of the hyperfine
magnetic field. Solid lines are fits to data using CONUSS [27, 28]. At low temperatures, the
sample is strongly ferromagnetic resulting in NFS spectra with well defined beats of short
periods. With increasing temperatures (or pressures) the magnetic beats are broadened in
time. At 4.4 GPa, close to the Curie transition, the NFS spectrum is almost an exponential
decay at a single energy.

nuclear states at once, and the interference of the six energy transitions of 57Fe
is observed in time. Unlike the insufficient energy resolution of the monochro-
mators, the APD detectors have an excellent time response [36].

When two sinusoidal waves with slight different frequencies are added together,
as shown in Fig. 2.10 b, they result in a wave with intensity modulations, or
“beats”. You may have heard such binaural beats to relax, or to enter a
meditative state, where the intensity modulation is perceived as a ringing
of the volume. What is important here is that by measuring the period of the
modulation, the difference in frequency of the two waves can be quantified.

For the nuclear decay of 57Fe, waves with six slight different energies interfere
with each other coherently [39, 41]. This results in complicated interference
beats, but the idea is the same: we can determine the magnetic Zeeman split-
ting by measuring the modulation period. The shorter the beat period, the
larger the energy separation between the states, and the stronger the mag-



56

netic field. Examples of such intensity modulations of the nuclear transition
are shown in Fig. 2.10 c. At 20K the material is ferromagnetic with a strong
field, so the beats have short periods (this time spectrum corresponds to the
energy-Mössbauer spectrum of Fig. 2.6 a). At ambient conditions, the material
is less magnetic and the beats are slightly broader in time. The Curie transi-
tion in Fe65Ni35 happens near 4.4GPa, giving a nearly exponential decay from
a single nuclear transition (straight line in the logarithmic plot). This corre-
sponds to a absorption line of a paramagnetic material, without any magnetic
Zeeman splitting.

The same information can be extracted from Mössbauer measurements in ei-
ther the time or energy domains. One is simply the Fourier transform of the
other. We used the CONUSS [27, 28] software package to fit these time spec-
tra and extract the distribution of the the hyperfine magnetic field (as those
shown in Fig. 2.6 b). The fits are included as solid lines in Fig. 2.10 c.

The coherent time interference is measured in a transmission geometry at the
synchrotron, with an APD detector placed in the forward direction. The time-
domain synchrotron Mössbauer technique is, therefore, also known as nuclear
forward scattering (NFS).

2.6 Nuclear resonant inelastic x-ray scattering (NRIXS)

NRIXS is a technique that exploits the narrow resonant nuclear absorption by
a Mössbauer active isotope to measure the inelastic spectrum of phonons [39,
41]. By scanning incoming x-ray energy around the nuclear absorption energy,
the full phonon spectrum of the resonant nucleus can be observed, as shown in
Fig. 2.11. X-rays can be focused into very small beams, making this technique
ideal for high pressure experiments, with materials inside DACs.

Being a resonant technique, only the active isotope is excited and there is no
background signal. Figure 2.11 therefore, arises from the partial phonon DOS
of 57Fe in the Fe-Ni lattice. This resonant selection can be extremely useful. It
enables, for example, the probe of a single atom at the active site of a complex
biomolecule, while avoiding interference from thousands of other atoms [42].
It can also be a nuisance, when computing bulk thermodynamic quantities, for
example. For our Fe-Ni alloys, this turn out not to be a problem. Since both Fe
and Ni have very similar masses and similar vibrational properties, the partial
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Figure 2.11: NRIXS spectrum of 57Fe65Ni35 at ambient conditions. The resonant absorption
of the 57Fe through the Mössbauer effect gives the strong elastic line at E=0. The inelastic
phonons spectrum of 57Fe is prominent up to about ± 40 meV. Beyond this, the spectrum
is dominated by multi-phonon scattering (discussed below).

DOS of 57Fe is representative of the full phonon DOS [43]. We confirmed this
for our materials by preforming inelastic neutron scattering (results shown in
Chapter 5). This is not universal. Fe and V, for example, have very different
partial vibrational spectra [44].

Development of NRIXS

The idea of using the resonant absorption to measure the inelastic phonon
spectrum is not new. In fact, it was proposed immediately after Mössbauer was
able to collect the first nuclear resonant spectrum [45]. Resonant absorption
has such a narrow width (∼ neV), that it would offer an ideal resolution to
measure the inelastic spectrum. We “only” need to provide an energy scan
around the resonant energy for collecting the phonon spectrum. A Doppler
drive, typically used in Mössbauer experiments, would have to reach velocities
in the order of 1 km/s to scan an energy range of about ± 5meV. Such a
setup has been attempted by using high speed centrifuges [46]. However,
there is another inherent problem. Since the nuclear spectrum is so narrow,
the probability of an inelastic excitation at that precise energy is very low
[39]. It requires, therefore, a strong radiation with 106-107 photons/s to be
measurable [47].
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Fortunately, both problems have been solved. Very intense radiation is avail-
able at third generation synchrotrons. The APS, for example, is able to provide
109 photons/s at 14 keV [48]. The energy scanning problem was solved by de-
veloping high-resolution monochromators with ∆E ∼1meV [35–37, 49]. The
monochromator crystals can be slowly rotated to provide the energy scan. The
first inelastic spectra using nuclear resonant absorption at a synchrotron were
observed in Japan [50, 51]. Sturhan et al. [51] recognized the incoherent na-
ture of the inelastic interactions, and placed the detectors next to the sample,
perpendicular to the incident beam, as it is done nowadays (see Fig. 2.9).

When a photon is scattered inelastically by the sample, as is the case for
NRIXS, it acquires a certain phase shift and loses coherence with the inci-
dent radiation [39, 41]. If the phase shift is random for different nuclei it also
becomes specially incoherent, and the signal has no phase information (in con-
trast to the phonon dispersions measured by inelastic neutron scattering). The
data can therefore be collected from any solid angle. In the forward direction,
for time-domain Mössbauer, the elastically scattered beam is coherent. The
detector is placed far away from the sample, so the path lengths of waves emit-
ted from different nuclei are indistinguishable and they have the same phase
(spatially coherent). Without coherence, no interference would take place and
the intensity modulations of Fig. 2.10 c would not be seen.

The NRIXS spectrum & data analysis

To collect the inelastic spectrum, the crystals of the high-resolution monochro-
mator are slowly rotated, shifting the energy of the incoming x-ray beam. Since
the nuclear absorption is very narrow, resonance with the 57Fe is lost. The
only way to detect a signal is if phonons are created or annihilated in the
material by interactions with the x-rays. For example, an incoming photon
with energy of E0 + 25meV, can excite both the nucleus and a phonon of
25meV. By performing an energy scan around resonance, we can collect the
full phonon spectrum. Figure 2.12 shows representative NRIXS spectra of
57Fe65Ni35 under pressure in a diamond-anvil cell at room temperature and
30K.

At positive energy transfer, phonons are created in the material, while neg-
ative energies correspond to annihilation of phonons. In order to annihilate
a phonon, it has to exist in the material. At 30K, practically no phonons
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Figure 2.12: NRIXS spectra of 57Fe65Ni35. (a) Representative raw NRIXS data showing the
inelastic spectrum at different conditions (full elastic peak not shown). Positive energies
represent the creation of phonons by x-rays, and negative energies their annihilation. The
probabilities of these events follow the Boltzmann factor of Eq. 2.2. At 30 K practically no
phonons exist to be annihilated. The resolution function has a full-with half-maximum
of 1.1 meV. (b) NRIXS spectrum in a logarithmic scale showing excitations of 1, 2, and 3-
phonons (multi-phonon scattering). Only 1-phonon events are useful for computing the
density of states.

exist above ∼ 3meV, so the inelastic spectrum consists only of the creation of
phonons at positive energies. The creation and annihilation processes follow
detail balance; they are analogous to Stokes and anti-Stokes lines in Raman
spectroscopy. Their scattering probabilities S(±E) are balanced by the Boltz-
mann factor as [39]:

S(+E) = eE/kBT S(−E) . (2.2)

The measured spectrum has an elastic and an inelastic component S ′(E). They
can be separated as [51, 52]:

S(E) = fLM [δ(0) + S ′(E)] , (2.3)

where δ(E = 0) is a delta-function describing the resonant absorption and
fLM is the Lamb-Mössbauer factor, or the probability of a recoil-free resonant
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absorption. For 57Fe65Ni35 at ambient conditions, fLM = 0.69. This elastic
line, δ(0), is broadened by the instrument resolution, with a full-width half-
maximum (fwhm) of 1.1meV in our experiments. For further analysis of the
inelastic spectrum, the elastic peak is removed by fitting the resolution function
to the measured spectrum S(E), as shown in Fig. 2.12 b.

The inelastic spectrum S ′(E) consists of mostly one-phonon processes, where
an incoming photon interacts with a single phonon. However some photons can
excite multiple phonons, giving rise to a non-zero signal above the vibrational
cutoff energy of about ± 40meV. The total inelastic spectrum consist of one-
phonon and multi-phonon contributions:

S ′(E) = S ′
1(E) + S ′

2(E) + S ′
3(E) + ... (2.4)

In the harmonic approximation, the higher order terms can be expanded in
terms of the one phonon contribution as [27, 39, 41, 52]:

S ′
n(E) =

1

n

∫ +∞

−∞
S ′
1(E

′)S ′
n−1(E − E ′)dE ′ . (2.5)

The one-phonon contribution is extracted from the measured NRIXS spectrum
through a Fourier-log method described in [27]. This was performed using
the PHOENIX software [28] after removal of the elastic line. The resulting
1, 2, and 3-phonon contributions to the NRIXS spectrum are presented in
Fig. 2.12 b. The 2-phonon processes become prominent above 40meV, while
the 3-phonon contribution dominates the spectrum above 70meV.

Phonon DOS and entropy

The phonon density of states, g(E), is computed from the 1-phonon contribu-
tion as [27, 39, 41, 52]:

g(E) =
E

ER

S ′
1(E)(1− e−E/kBT ) , (2.6)

with ER being the recoil energy of the free nucleus (1.956meV for 57Fe). The
resulting phonon DOS of Fe-Ni Invar at 5.7GPa is shown in Fig. 2.13. A
constant background is subtracted from the NRIXS signal, such that the noise
of the DOS above a cutoff energy has a zero mean (details in the appendix of
Chapter 5).



61

0 10 20 30 40 50 60 70 80
Energy (meV)

0.00

0.02

0.04

0.06

DO
S 

(1
/m

eV
)

300 K
5.7 GPa

Figure 2.13: Phonon density of states (DOS) of 57Fe65Ni35 at 5.7 GPa and room temperature.
It was computed using PHOENIX [27] from the one-phonon NRIXS spectrum of Fig. 2.12 b, af-
ter a background subtraction. The error bars were propagated from the standard deviation
of Fig. 2.12 a, with a Monte-Carlo method. (Details about background subtraction and error
propagation are found in the appendix of Chapter 5).

To compute the phonon entropy, we integrate the phonon DOS with a weight-
ing factor of the energy distribution of phonons (as discussed in section 1.3).
Within the harmonic model, the entropy is (Eq. 1.14):

Sph = 3kB

∫ ∞

0

g(ε) [(1 + nT (ε)) ln(1 + nT (ε))− nT (ε) lnnT (ε)] dε . (2.7)

However, experimental data are not harmonic. The measured phonon energies
depend on the temperature and pressure of the sample. Fortunately Eq. 2.7
for the phonon entropy includes non-harmonic effects to first order if g(ε) is
the experimental DOS at finite temperatures and pressures [53].

Since the entropy is an integrated quantity (a weighted average of the DOS) the
statistical errors are reduced upon integration. For the spectrum of Fig. 2.13
at 5.7GPa, the entropy and its standard deviation are 3.32 ± 0.01 kB/atom.
The appendix of Chapter 5 discusses the error propagation and background
subtraction in more detail.
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Chapter 3

Thermodynamic stability and heat absorption of
nanocrystalline Ni3Fe

This chapter is based of the following published article:

S. H. Lohaus, M. B. Johnson, P. F. Ahnn, C. N. Saunders, H. L. Smith, M. A.

White, B. Fultz. Thermodynamic stability and contributions to the Gibbs

free energy of nanocrystalline Ni3Fe. Physical Review Materials 4 (2020).

Thermodynamic quantities, and hence the properties of materials, depend
on their structure. It is important to know how the individual atoms are
consolidated into a material, because the excitations on the atomic scale from
phonons, electrons, and their spins, dictate how the material behaves on a
macroscopic scale. From a thermodynamic perspective, we aim to understand
how the structure affects the free energy through the enthalpy and entropy.
Here, the size of the crystalline structure matters.

Bulk metals usually form large periodic crystals, with grain boundaries in
between the individual crystallites. Having different crystals, as opposed to
a single crystalline lattice, raises the configurational degrees of freedom and
hence the entropy. This extra entropy helps to lower the Gibbs free energy
at finite temperatures and helps stabilizing a structure with several individual
crystallites. Each crystal is usually several hundreds of atoms across, so for
an atom sitting in the middle of the crystal, the lattice seems infinite. For the
atoms at the edge of the crystallite, near a grain boundary, their neighbors
appear at unusual positions or coordinations. This leads to a weaker bond-
ing between them and a larger enthalpy. Having several crystallites raises,
therefore, both the entropy and enthalphy. The stability of such a material

https://link.aps.org/doi/10.1103/PhysRevMaterials.4.086002
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Figure 3.1: Two dimensional atomic structure of a nanocrystalline material, computed
using a Morse potential. Black atoms are at grain boundaries, at sites which deviate by
over 10% from the corresponding lattice sites at regular coordinations (white atoms) [1].
Additional orientational disorder between the grains is expected in real three dimensional
materials.

becomes a balance between lowering the free energy through the extra entropy
and raising it as a result of the extra enthalphy.

What happens to the thermodynamic stability if we reduce the size of the
individual crystallites from hundreds to tens of atoms? The nanoscale is often a
bridge between atomistic behavior and continuum properties, so what happens
to the individual quantum excitations (phonons, electrons, magnons) when
the crystallites themselves are on the nanoscale? In this chapter we study the
thermodynamic stability of nanocrystalline Ni3Fe, synthesized by high-energy
ball milling. We determine the individual contributions to the heat capacity
from phonons, electrons and magnetism, and see how their behavior is altered
when they are spatially confined to a nanostructure.

For thermodynamic purposes, nanostructured materials can be defined as ma-
terials with structural features on the order of 10 nm or smaller, some tens
of atoms across. The limited size confines phonons, electrons, and defects,
affecting their energies and thermodynamics. The small crystalline regions in
a nanocrystalline material are separated by grain boundaries as depicted in
Fig. 3.1. A large number of atoms (black atoms in the figure) located near
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these grain boundaries are forced into irregular local environments, raising
their internal energy (and enthalpy) compared to bulk materials with larger
grains. Extra contributions to the enthalpy from elastic fields and internal de-
fects are also expected in many as-synthesized nanomaterials. Because smaller
particles have larger surface-to-volume ratios and higher internal energy per
atom, adding an atom to a small particle is less favorable than adding it to a
large one. This “Gibbs-Thomson effect” raises the chemical potential of atoms
in small particles. When a nanocrystalline material is heated and diffusion en-
ables atoms to move, these differences in chemical potential cause the grains to
grow and defects to be annihilated. The nanomaterial releases energy during
this process and transforms into a material with larger crystallites and lower
energy. The excess enthalpy of nanomaterials can therefore be measured by
heating in a calorimeter to high temperatures [2–4].

Entropy, Sp, completes the thermodynamic picture. It opposes the enthalpy,
Hp, by reducing the Gibbs free energy, G, as:

G(T ) = Hp(T )− TSp(T ) , (3.1)

where the subscript p denotes a constant (ambient) pressure. The spatial con-
finement of phonons and electrons alters their energy, affecting the entropy of
nanocrystals. Most of the entropy in nanostructured materials is vibrational
in origin [5], so important thermodynamic questions include how atomic vibra-
tions become heat, and how this affects the Gibbs free energy and the stability
of a nanomaterial. How stable or unstable do nanostructures become at finite
temperatures? To date the Gibbs free energy of nanostructured materials is
poorly understood, even though it underlies their stability, and their suitability
for applications in engineered devices.

Here we report new thermodynamic results from cryogenic calorimetry mea-
surements on a nanocrystalline material and its bulk counterpart with larger
crystallites. The results are analyzed to obtain the enthalpy, entropy, and
Gibbs free energies, and their difference for the two materials. Additional
inelastic neutron scattering measurements allow us to quantify the effect of
nanocrystallinity on the vibrational entropy and the phonon contribution to
the thermodynamics of Eq. 3.1. The neutron scattering experiments measured
the phonon density of states of control and nanocrystalline materials, showing
that the difference in entropy of nanocrystalline and bulk Ni3Fe is dominated
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by vibrational entropy. We also assess the electronic and magnetic contribu-
tions to the free energy of Ni3Fe, and how these are changed by nanocrys-
tallinity. We show an excess entropy of the nanocrystalline Ni3Fe that lowers
its Gibbs free energy, but this entropic stabilization is opposed by the excess
enthalpy from grain boundaries and defects. Altogether, the nanocrystalline
material has a larger Gibbs free energy than the bulk control material at 300K,
making it thermodynamically unstable at ambient conditions.

3.1 Thermodynamics of nanoparticles

Both the enthalpy and entropy of Eq. 3.1 can be determined from the heat
capacity, Cp, with the relationships:

Hp(T ) = H0 +

∫ T

0

Cp(T
′)dT ′ , (3.2)

Sp(T ) = S0 +

∫ T

0

Cp(T
′)

T ′ dT ′ . (3.3)

The thermodynamic stability of a nanomaterial with respect to a bulk control
material is determined by the difference ∆Gn−c (a positive ∆Gn−c makes the
nanomaterial unstable with respect to the control material):

∆Gn−c(T ) = Gn(T )−Gc(T )

= ∆Hn−c
p (T )− T∆Sn−c

p (T ) , (3.4)

∆Hn−c
p (T ) = ∆Hn−c

0 +

∫ T

0

∆Cn−c
p (T ′)dT ′ , (3.5)

∆Sn−c
p (T ) = ∆Sn−c

0 +

∫ T

0

∆Cn−c
p (T ′)

T ′ dT ′ , (3.6)

where a notation such as ∆Cn−c
p denotes the difference in heat capacity of the

nanocrystalline material and the control bulk material at constant pressure.

The largerH0 of the nanocrystalline material originates from grain boundaries,
internal stresses, and defects. Grain boundaries force atoms into irregular local
coordinations, increasing their internal energies (the black atoms of Fig. 3.1).
The weaker bonding of atoms near these grain boundaries has other macro-
scopic consequences, such as lowering their melting temperature [1]. Metals
with stronger bonding and higher melting temperatures are also expected to
have grain boundaries with higher energies. From work on a number of grain
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boundary structures in fcc metals, the grain boundary energy varies from ap-
proximately 0.4 to 1.2 J/m2 in the sequence Au, Ag, Al, Pd, Cu, Co, Ni, Pt [6,
7]. For fcc Ni metal, however, grain boundaries between crystals with various
orientations have energies that span much of this entire range [8]. We measured
this enthalphy in nanocrystalline Ni3Fe by heating it up in calorimeter, and
measuring the heat released while the grains grow and defects are recovered.

Sources of entropy

Entropy counteracts the enthalpy to lower the Gibbs free energy, and has
configurational, magnetic, electronic and vibrational contributions. The large
number of individual crystallites at different relative orientations give nanocrys-
talline materials additional structural degrees of freedom. This results in a
somewhat larger configurational entropy compared to materials with large
grains. As derived in [5] however, this extra configurational entropy falls off ex-
tremely fast with increasing grain size. For nanocrystals with 20 atoms across
(which corresponds approximately to our materials), the configurational en-
tropy should be lower than 0.01 kB/atoms, or about 0.3% of the total entropy
at 300K. On top of that, during our cryogenic calorimetric measurements,
atom mobilities are suppressed. So we expect no changes in the atomic con-
figurations, and therefore do not measure differences in the configurational
entropy between the nanostructured material and the control samples.

As the temperature approaches absolute zero, all excitations are suppressed,
but the structural disorder remains. Does this mean that nanostructured mate-
rials have a residual configurational entropy (S0 in Eq. 3.6). The answer is not
necessarily clear, and has been the topic of heated debate in the case of amor-
phous materials, which are also metastable with a large number of structural
degrees of freedom [9–16]. From a thermodynamic perspective, what matters
is if a materials is able to access and change its configuration. When the
nanomaterial is cooled down, its atomic mobility is impaired and it becomes
kinetically trapped in a specific configuration. This metastable nanomaterial
cannot access all its degenerate configurational microstates as T → 0 [12, 15,
16]. According to Boltzmann’s entropy, S = kB lnΩ, the number of accessible
microstates (or configurations) becomes Ω = 1, and the entropy vanishes at
0K. We therefore adopt ∆Sn−c

0 = 0.
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Most of the entropy in materials stem from atomic vibrations. Nanocrys-
tallinity changes the dynamical degrees of freedom, which affects the phonon
spectrum. Vibrations of nanoparticles have been studied for some time, and
the large literature on this subject is reviewed in the next section. The addi-
tional degrees of freedom from individual nanocrystallites causes their phonon
spectrum to have more low-energy vibrations than its bulk counterpart. This
results in larger oscillatory amplitudes of atoms in the nanomaterial, and there-
fore larger vibrational entropies. The Gibbs free energy of nanomaterials is
lowered by this additional entropy, helping to stabilize against their extra en-
thalpy from grain boundaries. Quantifying the thermodynamic consequences
remains a challenge, however, and is the main goal of this study.

The spatial confinement also alters the bonding between atoms, and hence
the electronic structure. Our low temperature heat capacity data show an
enhancement of the heat absorbed by electrons in nanostructured materials
by about 40%, which is reflected in a larger electronic entropy.

Lastly, the structural disorder in nanocrystalline materials also affects the
magnetic ordering of spins. The magnetization of consolidated nanocrystals
seem to become weaker with decreasing grain sizes in Fe and Ni [17–19] (see
Fig. 3.2 a), and also in Ni3Fe [2, 20]. This makes sense since magnetic ordering
depends on exchange interactions between neighboring atoms, which can be
disrupted at the grain boundaries. Additionally, the individual grains can act
as different magnetic domains and reduce the net magnetization.

More importantly for the thermodynamics, the irregular local environments
of atoms near grain boundaries cause their spins to be more susceptible to
thermal excitations. This leads to a stronger dependence of the magnetism on
temperature as shown in Fig. 3.2 b for iron nanoparticle [17]. This is reflected in
the lower Curie temperatures observed in nanostructured materials. For Ni3Fe,
nanocrystallinity can reduce the Curie temperature from 871K, [21] down to
728K [22]. In thin films of Ni, with two monolayers, the Curie transition can
be suppressed down 325K [23].

Most of the magnetic disorder, and hence most of the magnetic entropy, in-
creases near the Curie transition. Only a small amount of magnetic entropy is
expected below 300K, where our cryogenic heat capacity measurements were
carried out. Nonetheless, due the stronger temperature dependence of the
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Figure 3.2: Size effects on magnetization. (a) Size dependence of the satruration magne-
tization, Ms, of ferromagnetic nanoparticles [18]. (b) Size and temperature dependence of
Ms for iron crystallites (coated in Mg) [17].

magnetic spins in nanocrystalls, we do expect them to have a larger magnetic
entropy than our control samples.

3.2 Prior work on vibrations in nanomaterials

From prior work, we know that the phonon density of states (DOS), g(ε), of
a nanocrystalline material differs from that of bulk materials in three ways.
These three features have been found for isolated nanoparticles, and for con-
solidated nanoparticles with grain boundaries between them. They are found
in metals, semiconductors, and insulators, and all three are shown in Fig. 3.3 a.
These features are:

1. An enhancement of g(ε) at low energies (below 15meV in Fig. 3.3 a).

2. A general broadening of sharp features in g(ε) (e.g., at 24 and 33meV).

3. A longer tail in g(ε) that extends to high energies above the usual cutoff
frequency of longitudinal phonon modes (above 36meV).

Feature 1 is understood best. An enhancement of g(ε) at low energies is ex-
pected from the degrees of freedom of a nanostructure, as depicted in Fig. 3.3 b.
Nanostructures have additional vibrational modes from nanocrystals oscillat-
ing against each other, from their relative rotations, and also from the partial
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Figure 3.3: Size effects on phonons. (a) Phonon DOS from a polycrystalline powder of an
fcc Ni-Fe alloy. Compared to the DOS from the material with the larger 20 nm crystallite
size, the 6 nm DOS shows three features: (1) enhancement of the intensity below 15 meV,
(2) broadening of all features, (3) a tail of spectral weight above 36 meV. (b) Representative
vibrational modes of the nanocrystalline microstructure, with energies of order 1 meV and
wavelengths of 10 nm. (c) Continuum behavior at long wavelengths.

confinement of vibrational waves to boundary regions, similar to Rayleigh
waves at surfaces with elastic discontinuities. At very low energies, this en-
hancement disappears. The wavelengths become longer than the nanostruc-
tural features (Fig. 3.3 c), and they can not excite modes within individual
nanocrystals. At this point the material moves as a continuum with altered
elastic constants [24–29]. The enhanced number of modes at low energies
have been observed both in calculations and measurements on either isolated
nanocrystals or nanocrystals with rigid constraints [13–42].

This low-energy regime can be indicative of a change in the dimensionality of
the vibrational modes. For three-dimensional bulk crystalline materials the
g(ε) scales as ε2 at low energies. Fitting the DOS of nanocrystals to εn has
given n < 2 at these low energies [30, 31], and even n ≈ 1 in some cases, which
corresponds to two-dimensional vibrations [32–34]. This is not universally true,
however, and n is often found to be close to 2 in consolidated nanocrystals [35,
36]. What is universally accepted, is that nanostructured materials have more
vibrational modes at low energies, up to a factor of five compared to bulk
materials [31, 33, 35–43].
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Transferring phonon spectral weight from higher energies to lower energies
can have a significant effect on the vibrational entropy. Phonons are bosonic
quasi-particles, so more of them occupy the lowest energy modes (as shown
previously in Fig. 1.5). The enhanced phonon DOS of nanoparticles at low
energies enhances the number of phonons that are able to be excited, resulting
in larger vibrational amplitudes and larger entropies.

Feature 2, the broadening of features in the g(ε) of nanomaterials, is less un-
derstood. This broadening has been attributed to the shortening of phonon
lifetimes, which could explain both features 2 and 3 [39]. As oscillatory waves
propagate within a nanostructured material, they often encounter a surface
or grain boundary and can be (anharmonically) scattered. In a 10 nm crys-
tal, a phonon propagates only tens of atomic distances before it hits a grain
boundary, so its lifetime may only be tens of vibrational periods or less. Such
a shortened lifetime results in an energy broadening according to the energy-
time uncertainty principle (∆E∆t ≥ ℏ/2). The broadening of spectral features
in the phonon DOS can often be captured by simple models like damped har-
monic oscillators, which have an asymmetrical broadening about their central
frequency [33, 35, 39, 41, 44–49].

Feature 3 may be attributable to the same phonon lifetime broadening, but
other explanations have been proposed. Some prior work indicated that these
tails in g(ε) may originate from harmonic modes at high frequencies caused by
surface oxides or impurities [33, 42, 43, 50]. High energy tails of the phonon
DOS have also been reported in a number of molecular dynamics simulations
on materials without any impurities [30, 43, 51], and were attributed to higher
frequency harmonic vibrations of atoms at surfaces of nanoparticles.

3.3 Materials

We chose a magnetic Fe-Ni alloy for this study, with 75 atomic% nickel and
25 atomic% iron, Ni3Fe. As seen from the phase diagram of Fig. 3.4, the Ni-
rich alloys are fcc solid solutions at most temperatures. However below 773 K,
Ni3Fe can become chemically long-range-ordered with the L12 structure (where
Fe atoms occupy the corners, and the Ni atoms the faces, of the standard fcc
cube) [53]. The L12 order develops sluggishly by a first-order phase transition
[21, 54]. Heat treatments of over two months of annealing time have been
reported for transforming into the L12 phase [53], so usually Ni3Fe retains
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Figure 3.4: Phase diagram of Ni-Fe compounds. Adapted with permission from [52].

the randomized arrangement of Fe and Ni atoms in the fcc structure at room
temperature and below (no configurational contributions to the entropy).

Fcc solid solutions of Ni3Fe have advantages for studying the thermodynamics
of nanocrystals. Some of the smallest nanocrystalline sizes in metals, around
6-7 nm, can be obtained in Ni3Fe prepared by high energy ball milling [55]. Ball
milling of Ni3Fe has been shown to produce disordered fcc structure [20], and
no signs of L12 ordering was observed in our samples. These alloys also collect
less oxygen and hydrogen than other materials, which could be introduced
during ball milling, and impair inelastic neutron scattering measurements.

Ball milling and nanostructure

One way to produce nanocrystals is by breaking down the (bulk) crystallites
of a material through mechanical plastic deformation. In high-energy ball
milling, powder of the material is shaken together with steel balls inside a vial
for several hours (see Fig. 3.5). This method is able to produce the relatively
large quantities of nanocrystalline powder required for neutron scattering ex-
periments. The nanocrystals are consolidated into larger particles of powder,
lowering their surface area, and making them less susceptible to adsorbing
gases and water, which would impede neutron scattering measurements.
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Figure 3.5: Ball milling vial prior to milling, with steel balls, sample powders, and stearic
acid (white powder).

The large strains introduced during ball milling create microstructural features
and defects that contribute to the internal energy, and consequently increase
the enthalpy of nanomaterials. Point defects such as vacancies are likely, al-
though they have not been reported. Impurities such as interstitial atoms are
introduced during ball milling, and line defects such as dislocations are re-
sponsible for some of themlow-angle boundaries between crystallites, although
their density within the crystals may be low [2, 3]. Twin boundaries are also
possible [4]. Microstructural features give a distribution of internal energies to
the different crystallites of both bcc and fcc phases of Ni-Fe alloys [56]. These
microstructural sources of internal energy contribute to H0 of Eq. 3.2.

To prepare the nanocrystalline Ni3Fe samples, powders of Ni (75 atomic%) and
Fe (25 atomic%) were mixed with 5wt.% stearic acid or ethanol and sealed in
a steel vial. Ball milling was performed with a Fritsch Planetary Mono Mill
for 20 h at 650 rpm using steel ball-to-powder weight ratios between 20:1 and
40:1. After milling, the material was sonicated in isopropyl alcohol and cen-
trifuged to remove the stearic acid. In what follows, we call the nanomaterials
prepared by high energy ball milling “as-milled” samples. Control samples of
bulk material with larger crystallites can be prepared by milling the powder
for shorter times, by milling with a lower ball-to-powder ratio or by annealing
the as-milled material inside sealed quartz ampoules under vacuum.

In previous work, nanocrystalline Ni3Fe samples prepared by a similar method
were well characterized by inelastic neutron scattering, small-angle neutron
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Figure 3.6: Transmission electron microscopy images of the as-milled Ni3Fe. The dark-
field (DF) and bright-field (BF) images were obtained from the (111) fcc diffraction. (a) DF
and (b) BF images of the as-milled sample, compared to (c) DF image from previous work,
with crystallites of 6 nm [35]. (d) Electron diffraction pattern.

scattering, transmission electron microscopy, x-ray diffractometry, Mössbauer
spectrometry, and magnetization [2, 35, 44].

The nanocrystals of our materials were imaged through transmission electron
microscopy (TEM). Figure 3.6 shows the dark-field and bright-field images of
the as-milled samples collected from the (111) diffraction. The high contrast
speckles represent the individual crystalline grains and are direct evidence
of their nanocrystallinity. The TEM analysis from previous work (Fig. 3.6 c)
determined a mean crystallite size of 6 nm [35], and as shown below, those are
comparable to the grain sizes of our as-milled material. The five diffraction
rings of Fig. 3.6 d show the characteristic diffraction pattern of an FCC crystal
structure.
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3.4 X-ray diffraction

The diffraction patterns were also collected through x-ray diffraction (XRD)
using Cu Kα radiation in a x-ray powder diffractometer (PANalytical X’Pert
Pro). Figure 3.7 shows the XRD data obtained from a sample in the as-
milled (nano) state, and from the same sample with larger grains (control)
after annealing at 873K for 1 h. Both diffraction patterns show the main
peaks from an fcc solid solution. There is evidence for some L12 chemical
order in a few of the annealed control samples, seen as very weak superlattice
peaks in the XRD pattern (e.g., at 2θ = 36°,62°). Such a low content of L12
ordering, however, does not alter the phonon DOS significantly [53, 57, 58],
and therefore does not affect our study. Other control samples did not show
this L12 chemical order and all control samples gave very similar heat capacity
measurements, as shown below.

The diffraction peaks from the nanocrystalline material are broadened. Due
to their nanostructured nature, only tens of atomic layers contribute coher-
ently to the interference pattern measured in x-ray diffraction. This results
in a reduction of constructive interference, and a loss of sharpness in their
diffraction peaks. As described in detail in the appendix, the width of the
diffraction peaks are inversely proportional to their grain sizes. By comparing
to previous work, we determined that our nanomaterials and control samples
have grain sizes of 6-7 nm and 25-35 nm, respectively.

Since nanomaterials have more grain boundaries and many atoms at unusual
coordinations, their lattice parameter is larger than those of bulk materials.
The lattice parameters depend inversely on the grain sizes of the material as
shown in Fig.A.1 of the appendix. Our lattice parameters were determined
from the x-ray diffraction using Nelson-Riley method (see appendix). The
as-milled samples have lattice parameters between 3.587 – 3.604Å, in good
agreement with values reported for ball-milled Ni3Fe (3.590Å [20] and 3.600Å
[59]). The annealed control samples have a lattice parameter of 3.5599Å,
slightly larger than the lattice parameter of 3.5533Å reported for a Ni3Fe
single crystal [60].

Nanomaterials also have larger internal strains than their bulk counterparts.
Strains result both from the large number of grain boundaries and from defects
introduced during ball milling. These internal strains also affect the XRD
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Figure 3.7: X-ray diffraction patterns of the as-milled material and of the bulk control
sample after annealing at 873 K for 1 h.

patterns by broadening the diffraction peaks. Luckily, these effects can be
separated from grain size broadening since they have different 2θ dependencies.
The Williamson-Hall method is derived in the appendix, to show the effects
of grain sizes and strains in our materials (Figs. A.4 and A.5).

Grain growth and defect recovery

Ball-milling produces metastable nanostructured crystals, with atoms that are
kinetically trapped into a certain configuration at low temperatures. Due to
the extra enthalphy from grain boundaries, their free energy is larger, and they
are less stable than bulk materials. When the material is heated, enabling
atoms to move by diffusion, the grains grow and the grain boundaries are
gradually broken down. This process returns the material to its more stable
configuration with larger grains and lower free energy.

We can observe the grain growth by annealing the nanocrystalline material
to different temperatures. Their XRD patterns show progressively narrower
peaks as the temperature is increased, corresponding to larger grains (see
Fig.A.2 of the appendix). To avoid oxidation, these materials were sealed
inside quartz tubes under vacuum to be heated in a furnace.
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Figure 3.8: Heat flow measured by DSC while heating the nanocrystalline sample at
20 K/min. Positive values correspond to endothermic heat flows. The release of internal
energy from defects and grain growth is highlighted and its enthalpy of Hn−c

0 = 2.3 kJ/mol
was calculated using a linear baseline (dashed line). The labeled grain sizes were deter-
mined from measured XRD patterns of Fig. A.2.

For thermodynamics, we are more interested in the energy released by the
nanomaterial as the grains grow. Calorimetry experiments enable us to mea-
sured this energy. At the same time as the grain growth happens, other ki-
netically assisted processes such as defect recovery, and stress release, are also
enabled at high temperatures. All these make up the excess enthalpy, ∆Hn−c

0 ,
of the nano with respect to the bulk material of Eq. 3.5.

Differential Scanning Calorimetry (DSC) was performed using a Perkin Elmer
DSC 7. The as-milled nanomaterial with grain sizes of 7 nm was placed in the
DSC sample holder inside alumina crucibles. We used a N2 purge gas flowing
at 20 − 30ml/min to reduced oxidation and to enhance heat transfer. The
differential heat flow to the sample was measured while heating it from 320K to
800K at 20K/min. The heat evolution of the nanomaterial measured by DSC
is shown in Fig. 3.8. The instrument has a baseline, which varies somewhat
for every measurement, so the overall negative slope of the heat flow should
not lead to any quantitative interpretations. We also did not use a reference
material, since we do not need absolute values of the heat capacity.
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A distinct deviation from the baseline is observed between 580 and 800 K
(highlighted in the figure). This corresponds to an a exothermic heat flow as
the energy is released from the sample. It corresponds to the excess enthalpy
of the nanocrystalline material, released during annealing. The defect recovery
and grain growth are exothermic and irreversible processes, so subsequent DSC
runs on the same sample lack this exothermic peak, indicating that the entire
defect recovery occurred during the first run. The grain sizes obtained from
the XRD analysis of Fig.A.2 (in appendix), are included in Fig. 3.8. They
confirm that most of the grain growth takes place indeed between 580 and
800K, corresponding to the heat release.

To quantify the internal enthalpy difference ∆Hn−c
0 of Eq. 3.5 associated with

defects and grain boundaries, the heat flow, Q̇, can be integrated as

∆Hn−c
0 =

∫ Tf

Ti

Q̇−B

c
dT (3.7)

where c is the heating rate of 20K/min and B is the instrument baseline.
For a linear baseline (dashed line in Fig. 3.8) we obtain ∆Hn−c

0 = 2.3 kJ/mol.
This result is in very good agreement with the re-crystallization enthalpy of
2.2 kJ/mol of ball-milled Ni3Fe reported in [61].

It should be noted that the Curie transition of nanocrystalline Ni0.7Fe0.3 was
reported to occur at 728K [22]. Even though we did not measure the ther-
mal evolution of the magnetism in our samples, some endothermic signal seen
around 720 K could correspond to the ferromagnetic transition. The Curie
temperature of nanocrystalline materials, however, is sensitive to the exact
grain size [62], and it might be different in our materials. If part of the high-
lighted signal of Fig. 3.8 includes the magnetic transition, our calculation of
∆Hn−c

0 would be affected. To estimate this possible error, we calculated the
enthalpy of the magnetic transition by integrating the heat capacity mea-
surement of Ni3Fe by Kollie, et al. [53]. The resulting magnetic enthalpy is
0.12 kJ/mol, or 5% of ∆Hn−c

0 .

3.5 Heat capacity

We now turn to the remaining contributions to the enthalphy and entropy of
Eqs. 3.2 and 3.3, determined from heat capacity measurements at cryogenic
temperatures up to ambient conditions. Heat capacity measures the total
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enthalphy and entropy of the material, associated with phonons, electrons,
and electronic spins (magnetism). Further below, we will break it down into
the individual contributions from each of those excitations.

Specific heat measurements were carried out by collaborators M. B. John-
son1 and M. A. White1,2. These measurements were made by relaxation mi-
crocalorimetry using a commercial instrument (a PPMS from Quantum De-
sign). Measurements were conducted in the temperature range between 0.4
and 300K over which accuracy, with due care, can be within 1% from 5K
to 300K, and 5% from 0.4 K to 5 K [63]. Measurements were taken in two
modes: 4He cooling for the 2−300K temperature interval and 3He cooling for
the interval from 0.5−10K. To enhance the thermal contact between the sam-
ple and the microcalorimeter, a thin layer of grease was applied to the sample
stage and its contribution to the specific heat was quantified prior to each
sample measurement. All measurements were conducted under high vacuum
(10−5 Torr) to minimize convective heat losses. For the relaxation calorimetry
measurements, the as-milled powder samples were consolidated into pellets by
pressing them in a die with a pressure of approximately 0.44GPa. The con-
solidated samples had better thermal contact and heat transfer. The sample
masses ranged from 10 to 27mg.

Several heat capacity measurements were performed on nanocrystalline (as-
milled) and control samples (less milled or annealed). The results are shown
in Fig. 3.9. There are some variations between samples of each type, but in all
cases the heat capacity curves for the nanocrystalline material exceeded the
heat capacity of the control samples. This difference is most evident at low
temperatures, as expected owing to the enhanced phonon DOS of nanocrystals
at low energies.

The heat capacity of the as-milled nanocrystalline material was also enhanced
at temperatures above 200 K. We were concerned that this could be from
interstitial impurities, carbon and oxygen, that can be introduced into the
material by milling. This motivated the preparation of control samples by
annealing the as-milled material at 873K to increase the crystallite size and
eliminate defects, resulting in a bulk control sample with the same amount

1Clean Technologies Research Institute, Dalhousie University, Halifax, Nova Scotia,
Canada B3H 4R2

2Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada B3H
4R2
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Figure 3.9: Heat capacity of Ni3Fe measured by calorimetry for the as-milled materials
(+) and large-grained control samples (•), normalized by the number of moles of atoms.
Different colors represent results from different samples. (a) Full data set. The solid black
curve is from the annealed control material (see text). (b) Low-temperature data.

of interstitial atoms as the nanomaterial. The concentration of impurities in
both the as-milled and annealed samples were indeed the same as measured
by an instrumental gas analysis (IGA) performed by a commercial laboratory
(the results are shown in table 3.1). The heat capacity of this annealed control
sample, shown in Fig. 3.9 as a solid line, is similar to that of the other samples of
Ni3Fe with large crystals, however, indicating that the enhanced heat capacity
above 200 K does not originate from interstitial impurities, but from its the
noncrystalline nature.

Figure 3.10 compares our heat capacities with those found in the literature.
Our measured heat capacity for the control sample is similar to the heat ca-
pacity measured on fcc Ni [64] and in good agreement with the heat capacity
of 25.5 J/(mol K) measured for Ni3Fe at 300K [53]. Low temperature mea-
surements on disordered Ni3Fe [65] are in excellent agreement with the heat
capacity of our control sample.
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Element Nanomaterial (wt%) Control (wt%)

O 2.8 2.4

C 1.7 1.6

N 0.0064 0.0063

S 0.0018 0.0034

Table 3.1: IGA measurements on the as-milled nanomaterial, and the control sample pre-
pared by annealing the as-milled material, showing their concentration of impurities.

Figure 3.10: Mean heat capacities of the as-milled nanomaterial and control bulk sample
compared to literature. The heat capacity of bulk disordered Ni3Fe reported by Kollie and
Brooks [53] is shown at 300 K (♦). Data compiled by Desai for fcc Ni are shown as small
markers, and the recommended curve as a thin solid line [64]. The insert compares our
low temperature data (< 5 K) with the fit reported by Kollie, et al. [65]
.
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A complete L12 ordering transition in this material would reduce the heat
capacity by approximately 0.1 kB/atom (0.8 J/mol K) at 300K [53], with most
of this from phonons [58]. However, the L12 ordering in Ni3Fe is very sluggish.
It is a first-order transition, so with partial order, the change in heat capacity
would be reduced proportionately. We therefore neglect the effects of partial
chemical ordering on the heat capacity of our samples.

3.6 Contributions at low temperatures

Phonons, electrons, and magnetism all contribute to the heat capacity in the
low temperature region around 0.4− 10K as

Cp(T ) = Cp,el + Cp,mag + Cp,ph

= γT + αT 3/2 + βT 3 , (3.8)

where the heat of the magnetic disorder is assumed to contribute as spin-waves
(∼ T 3/2) following Block’s law of Eq. 1.20. At low temperatures, phonons are
accurately described by Debye’s law, where the phonon DOS, g(ε), scales as
ε2 resulting in a T 3 dependency for the heat capacity [5].

The linear temperature dependence from electrons can be directly observed in
our data plotted in Fig. 3.11 a. Below 3K, the data is well described by linear
fits. Above 3K the T 3 dependency from phonons takes over and the data
deviates from a linear behavior. Below 1K the T 3/2 effects from magnons also
become visible as slight (upward) deviations from the linear fits in Fig. 3.11 a.

By the plotting the data as Cp/T vs. T 2, we can visualize each contribution
more clearly and improve the fitting accuracy to determine the parameters
γ, α, and β of Eq. 3.8. Figure 3.11b shows vertical offsets from conduction
electrons, with linear behaviors from phonons. The contribution from magnons
becomes pronounced only at very low temperatures below 1K [65] (seen as
downward curvatures in the plots). Nonetheless, including the spin wave term,
αT 3/2, in fits to Eq. 3.8 reduces the overall RMS errors of the fits by 20%
for the bulk material, and 15% for the nanocrystalline material. The fitted
parameters are presented in table 3.2. The nanocrystalline material has clearly
larger parameters for all three contributions from electrons, magnons, and
phonons, compared to the control samples. In particular, the enhanced degrees
of freedom of the nanomaterial at low vibrational energies are manifested as
larger β parameters and hence a larger slope in Fig. 3.11 b.
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Figure 3.11: Low temperature heat capacities of the nanocrystalline (red) and control ma-
terials (blue) plotted as (a) Cp vs. T and (b) Cp/T vs. T 2. Solid curves are fits to the data
using Eq. 3.8.

3.7 Phonon contributions

We quantified the phonons density of states (DOS), through inelastic neutron
scattering (INS). The measurement we performed on powder samples with
the time-of-flight Wide Angular-Range Chopper Spectrometer, ARCS, at the
Spallation Neutron Source at Oak Ridge National Laboratory (see methods in
Section 2.2). Neutrons used for this experiment were monochromated to an in-
cident energy of 70meV, setting the highest energy of phonon excitations. The
powder samples, both as-milled (nano) and annealed (control), were placed in
aluminum cans with a cylindrical insert to create an annulus of sample 1mm
in thickness, with 30 mm of outer diameter and 50mm of height. Measure-
ments were performed in a low-background closed cycle refrigerator (CCR 16)
between 190 K and 300K. The data were normalized by the proton current on
target, and corrected for detector efficiency using a measurement from vana-
dium. The phonon DOS were obtained after subtraction of the signal from an
empty aluminum can and corrections for multiphonon and multiple scattering
(using the Multiphonon package in Mantid [67, 68]).
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γ β α RMS error

(mJ/mol K2) (10−2 mJ/mol K4) (mJ/mol K5/2) (10−4 J/mol K)

γT + βT 3

control 4.2 2.71 - 1.90

nano 5.9 5.14 - 3.56

Kollie et al. [65] 4.18 2.43 - -

(bulk Ni3Fe)

γT + αT 3/2 + βT 3

control 3.96 2.51 0.16 1.59

nano 5.55 4.81 0.27 3.11

Kollie et al. [65] 4.05 1.89 0.10 -

(bulk Ni3Fe)

Dixon et al. [66] 3.90 1.87 0.12 -

(bulk 68.7% Ni)

Table 3.2: Low temperature fits the heat capacity data of in Fig. 3.11 b to Eq. 3.8, including
and excluding the contributions from magnons α. These are compared to fitting parame-
ters from the literature.

The resulting phonon DOS at 300K from nanocrystals and bulk control sam-
ples are presented in Fig. 3.12 a as solid curves. As expected, the nanomaterial
(red curve) has a phonons DOS with broadened features and enhanced inten-
sities at low and high energies compared to the control sample.

The data is overlaid with measurements from prior work as markers and a grey
solid curve calculated with a Born–von Kármán model [35]. These spectra were
obtained by neutron scattering on a triple axis spectrometer, at only two values
of momentum Q (3.54 and 4.60Å−1). This resulted in an underestimation of
the DOS at low energies especially for the large grained materials, due to the
sharper features in their spectra. Both spectra obtained for the nanocrystalline
material (‘nano’ and ‘6 nm’) are in good agreement.

The vibrational contribution from phonons to the entropy, Svib, and heat ca-
pacity Cp,vib can both be determined from the phonon DOS, g(ε), as [5, 69]

Svib(T ) = 3kB

∫ ∞

0

g(ε)
[
(1 + nε,T ) ln(1 + nε,T )− nε,T lnnε,T

]
dε , (3.9)



87

Figure 3.12: Phonon energy spectrum and entropy. (a) Phonon DOS curves measured by
inelastic neutron scattering at 300 K. Solid curves correspond to the new measurements
performed at ARCS, while the markers are measurements from previous work [35]. The solid
light curve (Calc), also from previous work, was calculated with a Born–von Kármán model
using force constants from [57], and broadened by instrument resolution. (b) Phonon en-
tropies calculated with the curves of panel a, using Eq. 3.9.

Cp,vib(T ) = 3N kB

∫ ∞

0

g(ε)

(
ε

kBT

)2
eε/kBT

(eε/kBT − 1)
2 dε , (3.10)

where ε is the phonon energy and nε,T = (exp(ε/kBT ) − 1)−1 the Planck
distribution of phonon occupancy. The phonon DOS, g(ε), is normalized to 1,
and N is the number of atoms in the sample.

Figure 3.12 b shows the resulting vibrational entropies, which as expected,
are enhanced with increasing nanocrystallinity due to their extra degrees of
freedom. The entropy obtained for our control sample is larger than that from
previous work (‘50 nm’). The previous underestimation of the DOS at low
energies causes a reduction of the vibrational entropy as calculated by Eq. 3.9,
because the Planck factor, nε,T , is largest at low ε.
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Figure 3.13: Heat capacities of nanomaterial (+) and control samples (•) from calorimetry
shown in Fig. 3.10, superposed with phonon heat capacities calculated from the phonon
DOS using Eq. 3.10 (solid lines) and with vibrational plus electronic heat capacities (dashed
lines).

3.8 Contributions to the heat capacity at higher tempera-
tures

Phonons & electrons

The phonon contribution to the heat capacity was calculated from the phonon
DOS measured at 300K by inelastic neutron scattering using Eq. 3.10. The re-
sulting vibrational heat capacities for the nanocrystalline and control samples
are compared in Fig. 3.13 to the total heat capacities measured by calorime-
try. About 90% of the heat capacity originates from phonons for the control
material approximately and 80% for the nanomaterial. The increase of heat
capacity above the classical limit of 3 kB/atom at high temperatures requires
more than harmonic or quasiharmonic phonons as calculated by Eq. 3.10, as
discussed further below.

Adding the contributions from electrons and spins to the phonon contribution
brings the heat capacity closer to the results from calorimetry. The electronic
contribution to the heat capacity is estimated by extrapolating the low temper-
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ature electronic contribution (Cp,el = γT ) to higher temperatures. The results
for both the nanocrystalline and control materials are included in Fig. 3.13.
At 300K, the electronic heat capacities for the nanocrystalline and control
samples are 0.20 kB/atom and 0.14 kB/atom, respectively.

Magnetism

The spin-wave model of magnetic fluctuations does not hold at elevated tem-
peratures, so estimating the magnetic contribution at 300 K is not straightfor-
ward. For instance the energy to create a magnon becomes dependent on the
number of magnons already present in the material. This many-body aspect
of spin waves, makes the concept of individual and independent magnons in-
applicable at 300K. Elevated temperatures can also enhances other scattering
events with phonon for example. Since spin-waves can not propagate coher-
ently at elevated temperatures, a magnetic contribution as Cp,mag = αT 3/2 is
not applicable at elevated temperatures.

Most of the change in magnetization occurs near the Curie temperature, so
the magnetic thermal disorder is small at 300K. For disordered bulk Ni3Fe the
ferromagnetic transition occurs at 871K [21]. Measurements show a decrease
of only 5% in the spontaneous magnetization between 0K and 300K [70], so
the magnetic contribution to the entropy at room temperature is small.

Nanostructured materials, however, have lower Curie temperatures [19] and
a stronger temperature dependence of the magnetization [17], so we expect
a larger entropy. Ball-milled nanocrystals have a lower magnetization than
their bulk counterpart as measured by Mössbauer experiments [55]. Previous
measurements on our nanocrystalline samples at 300K showed that the mag-
netization is 7% lower than that of the control samples [2]. In other work, at
4K, the magnetization of a nanocrystalline sample (12.5 nm) was found to be
2% lower than that of a sample with larger grain sizes [71]. The Curie temper-
ature reported for nanocrystalline Ni3Fe, ranges between 728K [22] and 848K
[71]. Nanomaterials have, therefore, a larger contribution from magnetism to
the heat capacity and entropy, even at 300K and below.

The disordering the spins requires heat and contributes to the heat capacity
as an endothermic signal. The total entropy associated with the disordering
of spins can be quantified by from the magnetic heat capacity as Stot

mag =∫
CP,mag/T dT . The magnetic heat capacity is reported in [72] up to 1400 K
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for bulk Ni3Fe, giving Stot
mag = 0.61 kB/atom. At 300K and below, the magnetic

entropy is only a fraction of this total. To estimate this fraction we use the
mean-field model derived previously in Eq. 1.23, giving the entropy of ‘mixing’
spin-up and spin-down atoms on an Ising lattice:

Smix = −NkB
2

[
(1 +M) ln

1 +M

2
+ (1−M) ln

1−M

2

]
.

The maximum entropy in this model is NkB ln 2 = 0.69kB/atom (when M=0).
For Ni3Fe this has to be equivalent to the total measured magnetic entropy of
0.61 kB/atom. For partial magnetization, the magnetic entropy becomes:

Smag(M) =
Smix

NkB ln 2
Stot
mag

= −
Stot
mag

2 ln 2

[
(M + 1) ln

M + 1

2
+ (1−M) ln

1−M

2

]
. (3.11)

The magnetization M(T ) has been measured for bulk Ni3Fe [70], so we can
compute the magnetic entropy from 0−300K. At 300K it is Sc

mag = 0.09 kB/atom.We
can also compute the magnetic contribution to the heat capacity, as plotted in
Fig. 3.14 a together with the other contributions for the control samples. The
magnetic contribution at 300K (0.12 kB/atom) is in good agreement with the
magnetic heat capacity of Ni3Fe reported by Kollie (0.14 kB/atom) [72] and
the magnetic contribution calculated by Körmann et al. for Ni (0.11 kB/atom)
[73]. As seen from the small residual of Fig. 3.14 a, the sum of magnetic, elec-
tronic and phononic contributions agrees well with the total heat capacity
measured by calorimetry.

Magnetization data were available for the nanomaterial only at 4K [71] and
300K [2]. At 300K Eq. 3.11 gives Sn

mag = 0.15 kB/atom. By assuming that
it follows the same temperature dependence as the control material, we can
estimate its magnetic heat capacity between 0− 300K (shown Fig. 3.14 b). As
suggested by the larger residual heat capacity at 300K, the nanocrystalline
material has additional contributions, besides the electronic, magnetic and vi-
brational heat capacities. This residual heat capacity is 0.22 kB/atom at 300K,
corresponding to a residual entropy of 0.14 kB/atom. Its origin is discussed be-
low.
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Figure 3.14: Individual contributions to the heat capacity of (a) the control and (b)
nanocrystalline samples. The residual is the difference between the sum of the labeled
contributions and the total heat capacity measured by calorimetry.

Anharmonic contributions

The vibrational contribution to the heat capacity was computed from the
phonon DOS measured at 300K using Eq. 3.10, based on a harmonic model.
In reality, phonons are not harmonic: their vibration frequencies vary with
temperature and their propagation has a finite lifetime. Here we discuss the
effects of these two types of anharmonicity.

A general trend is the softening of phonons (lowering of the vibrational fre-
quencies) with increasing temperature. This increases the phonon entropy and
is often related an expansion of the lattice volume. Magnetism and electrons
can also affect the volume, as will be explored in more depth in Chapter 5.
Their contributions and variations with temperature are usually much less im-
portant than those from phonons, however. It is straightforward to estimate
the contribution from thermal expansion to the heat capacity [5]:

∆Cth(T ) = Cp(T )− Cv(T ) = Bvβ2T . (3.12)
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Using a bulk modulus of 179GPa, molar volume of 6.75 cm3/mol, volume ther-
mal expansion of 3.3·10−5K−1 (values for Ni3Fe at 300K taken from [60]), gives
∆Cth=0.05 kB/atom, about 1% of the total heat capacity at 300K and about
20% of the residual heat capacity of the nanomaterial. Thermal expansion
alone can not account for the excess residual heat capacity of Fig. 3.14 b.

Another possible contribution comes from the reduced lifetimes of phonons,
resulting from their scattering at grain boundaries or other defects of nano-
materials. Reduced lifetimes are compatible with the broadening the features
of the DOS as shown in Fig. 3.12 a. According to the energy-time uncertainty
principle (∆E∆t ≥ ℏ/2), when the lifetime is reduced, the energy uncertainty
has to increase. Lifetime broadening can be modeled by damped harmonic
oscillators. Introducing damping causes a shift of the vibrational spectrum to
higher energies, giving an apparent reduction in the entropy when calculated
with Eq. 3.9. A correction for this effect, given in [74], predicts an increase of
the phonon entropy by 0.15 kB/atom for a damped harmonic oscillator with a
damping factor of Q = 6, which is consistent with the broadened phonon DOS
of the nanocrystalline material. An anharmonic contribution of a fraction of
one kB/atom is typical for metals at high temperatures [69]. Shortened phonon
lifetimes are consistent with the larger amount of grain boundaries and defects
of the nanomaterial, and account well for its residual entropy of 0.14 kB/atom
at 300K.

3.9 Free energy and thermodynamic stability

Now we turn to the stability of the nanocrystals with respect to the bulk
material. Nanostructured materials have both a larger enthalpy and entropy
contributions to the free energy of Eq. 3.1, which can be computed from the
measured heat capacity.

The H0 term in Eq. 3.2 is an important contribution to the enthalpy of the
nanocrystalline material. It arises from their extra grain boundaries and
defects compared to bulk materials, and was determined to be ∆Hn−c

0 =
2.3 kJ/mol by heating the nanocrystals in a calorimeter to 800K (Fig. 3.8).
The remaining enthalpy, Hp(T ), is temperature dependent and was determined
from measurements of the heat capacity with Eq. 3.2. As shown in Fig. 3.15 a,
the difference of enthalphy between the nanocrystalline and control material
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Figure 3.15: Total enthalpy (a) and entropy (b) of nanocrystalline material and control
sample computed from calorimetry measurements of the heat capacity using Eq. 3.2 and
3.3. The grain boundary enthalpy H0 is not included.

increases with temperature, making the nanomaterial more energetically un-
favorable at higher temperatures

On the other hand, the entropy of formation of a grain boundary is positive,
helping to stabilize nanomaterials at finite temperatures. The excess entropy of
the nanomaterial with respect to the control sample can be seen in Fig. 3.15 b.
At 300K it is 0.37 kB/atom (3.0 J/mol K). An early report gave a larger excess
entropy for nanocrystalline Pd [24], and isolated iron nanoparticles showed an
increase of phonon entropy of 0.5 kB/atom [4]. Our measured excess entropy
contributes to the Gibbs free energy with −T∆Sn−c = −0.9 kJ/mol at 300K.
The excess entropy increases with temperature, so its contribution to the Gibbs
free energy should be larger at 600K where the grain growth starts.

Figure 3.16 shows the resulting Gibbs free energy as a function of temperature
for both the nanomaterial and control samples. The excess free energy of the
nanocrystalline samples ∆Gn−c(T ) (labeled “difference”) is positive at all tem-
peratures, meaning that is it less stable then the bulk material. It has a larger
entropy that helps to reduce the ∆Gn−c(T ) with temperature somewhat, but
not enough to overcome the enthalpy H0 from grain boundaries and defects
in the nanocrystalline material. By extrapolating the measured Gibbs free
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Figure 3.16: Gibbs free energies of as-milled nanocrystalline Ni3Fe and control sample,
using enthalpies and entropies of Fig. 3.15, and ∆Hn−c

0 = 2.3 kJ/mol.

energies to 600K, we predict that the nanomaterial would still be thermody-
namically unstable. Its larger excess entropy at 600K would be insufficient
to overcome the enthalpy of its grain boundaries (2.3 kJ/mol). Since diffusion
is thermally activated, the grains start to grow at 600K, transforming the
metastable nanomaterial into its stable counterpart with larger crystallites.

3.10 Conclusions

The heat capacities of nanocrystalline and large-grained fcc Ni3Fe alloys were
measured between 0.4 − 300K. The heat capacity of the nanocrystalline ma-
terial was consistently larger, especially at temperatures below 100K. This
difference originates from its larger phonon density of states (DOS) at energies
below 15meV, as shown inelastic neutron scattering measurements. Phonons
accounted for most of the heat capacities of the Ni3Fe samples, and for most
of the difference between the nanocrystalline and control samples. The re-
maining heat capacity of the control sample was accounted for by electronic
and magnetic contributions. Adding all components of the nanocrystalline
material (phonons, electrons and magnetism) gave a result that was about
7% lower than the total measured by calorimetry at 300K. This difference is
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attributed to a larger phonon anharmonicity in the nanocrystalline material,
which could also cause the observed broadening of features in its measured
phonon spectrum. The larger entropy of the nanocrystalline material with
respect to the control sample is counteracted by its larger enthalpy, so the dif-
ference in Gibbs free energy between the nanocrystalline and control sample
decreases only modestly with temperature. The nanocrystalline material is
thermodynamically unstable at temperatures to 300K, and is probably unsta-
ble to higher temperatures where grain growth occurs.
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Chapter 4

Magnetic quasi-harmonic model for Fe and Fe3C

This chapter is based of the following published article:

S. H. Lohaus*, L. Mauger*, and B. Fultz. The temperature dependence of nu-

clear resonant x-ray spectra of magnetic iron and cementite. Hyperfine In-

teractions 243, 1 (2022).

Magnetism plays an essential role in the thermodynamics of materials. It in-
fluences their phase stability, the electronic, and mechanical properties. Mag-
netic spins can couple to phonons and affect their energy, resulting in ther-
modynamic relevant effects. Magnetism is especially prominent in transition
metals. Their electronic d-orbitals are partially filled and unpaired, so the
local magnetic moments add up to a net magnetization.

As previously discussed in sections 1.4 and 1.5, the magnetic moments are
strongly correlated to the local environments at the atoms, in particularly the
volume through the Pauli exclusion principle. Parallel spins in ferromagnetic
materials create strong Pauli repulsion forces requiring a larger local volume, as
shown in Fig. 1.12. These larger volumes, however, result in lower electrostatic
repulsion forces between electrons, which can lower the enthalpy and help
stabilizing the ferromagnetic ordering of the spins. A careful balance between
Pauli exchange interactions and electrostatic forces between electrons define
the enthalpy of magnetic materials. As temperature is increased, thermal
fluctuations lead to a progressive reduction of the spin ordering and an increase
in the magnetic entropy. Magnetism is therefore essential for thermodynamics
and phase stability of materials. This was showcased for iron in section 1.6,
where magnetism helps stabilizing its bcc-α phase at low temperatures and
pressures.

https://doi.org/10.1007/s10751-021-01750-6
https://doi.org/10.1007/s10751-021-01750-6
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The effect of the local environments on the magnetic spins was also explored
in Chapter 3. In nanostructured materials, a large number of atoms are at
grain boundaries with irregular coordinations. This results in a weaker mag-
netization, with lower Curie transitions, and magnetic spins that are more
susceptible to thermal excitations.

Since the ordering of magnetic spins depends strongly on the local environ-
ment, it is hard to imagine that they behave independently from atomic vibra-
tions. Phonons cause volume fluctuations that can alter the exchange interac-
tions between spins, and vice-versa. As temperature (or pressure) is increased,
more interactions between phonons are induced, as well as between magnons.
So the coupling between phonons and spins might also be enhanced by in-
creasing the temperature. The remainder of this thesis explores the coupling
between the vibrational and magnetic degrees of freedom in magnetic materi-
als.

In this chapter, our window is through phonons, which are measured by nu-
clear resonant inelastic x-ray scattering (NRIXS). We look into two magnetic
materials: pure iron and an alloy of iron with carbon, Fe3C, called cementite,
which is extensively used in metallurgy. In section 1.6 we discussed how a cou-
pling between magnetism and phonons stabilizes the bcc phase of iron even
above the Curie transition. This chapter focuses on modeling this coupling
through a magnetic quasiharmonic model for the phonons.

The measurements shown in this chapter we performed previously by Lisa
Mauger [1–3]. See Chapter 2 for details on the experimental methods. Lisa
analyzed the phonon data and fitted the shifts of phonon energies by the
conventional QHA shown in Figs. 4.1 and 4.2. However, as discussed below,
these fits cannot capture the full behavior of phonons. I take over from there,
recognizing that the deviation from the QHA is correlated to magnetism. This
led us to develop a magnetic QHA, that accounts well for the deviation of
phonons from pure volumetric effects included in the conventional QHA.

4.1 Experiments

The phonon density of states (DOS) of iron in the bcc phase have been pre-
viously measured at temperatures between 30-1180K at beamline 16 ID-D of
the Advanced Photon Source [1]. Pure iron has one atom in its primitive unit
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Figure 4.1: Phonon energies of bcc Fe. (a) Phonon densities of states (DOS) of 57Fe from
30 K to 1180 K. (b) Mean phonon energies for the three vibrational modes of Fe, found by
fitting three Lorentzians to the phonon DOS peaks of panel (a). The dashed curves show
the QHA, and the vertical dotted line the Curie transition temperature.

cell, so there are 3 possible phonon branches, two transverse acoustic modes
and one longitudinal acoustic mode. They can be identified in Fig. 4.1 a as
three distinct peaks in the phonon DOS. The distinct modes were fitted by
three Lorentzians, giving the energy shifts of the vibrational modes with tem-
perature, as shown in Fig. 4.1 b. All three phonon modes of iron shift to lower
energies with increasing temperature.

A quasiharmonic approximation (QHA), briefly described in section 1.5, ac-
counts for phonon shifts due to volumetric changes. Since the volume is af-
fected by temperature, it also indirectly includes thermal shifts of phonon
energies ω(V (T )). However, as shown by the dashed curves of Fig. 4.1 b, the
QHA is not able to fully capture the phonon behavior, particularly as the
temperature approaches the Curie transition. This means that besides the
volumetric shifts, the phonon energies are affected by another thermal ex-
citation. This effect cannot explained by anharmonic phonon effects alone,
because many-body theory for 3- and 4-phonon processes predicts thermal
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shifts of phonon energies that are linear in T [4, 5]. As shown later in Fig. 4.4,
the deviations from the QHA seem to track the change in magnetization with
temperature, M(T ). We therefore attribute this anharmonic effect of phonons
to a coupling of vibrational motion with the magnetic spins [1, 6]. This chapter
develops a QHA for magnetism, where the deviations of the phonon energies
from the volumetric QHA are attributed to the disordering of the spins with
temperature, through a spin-phonon coupling.

For a comparison to iron and a further validation of the model presented
below, we also quantified the temperature dependence of the phonon modes in
cementite, Fe3C. Cementite has an orthorhombic crystal structure, containing
12 Fe and 4 C atoms per unit cell. The Fe atoms occupy two distinct sites in the
lattice with different local environments and bond lengths with their neighbors.
Partial phonon densities of states of 57Fe in cementite, 57Fe3C, were obtained
by Mauger et al. from cryogenic temperatures through the Curie transition
at 460K by NRIXS [2, 3]. The low temperature DOS at 14K is compared to
the one at 463K in Fig. 4.2 a. The rich crystal structure of cementite results
in complex phonon dispersions containing 48 different phonon modes. Unlike
iron, we cannot observe distinct peaks from individual modes in the phonon
DOS cementite. It rather represents the average energy distribution of all
vibrational modes.

The thermal behaviour of phonons in cementite is more subtle than in iron
and the phonon modes do not shift much up to the Curie transition. The
frequencies of a few phonon branches, notably the acoustic modes of energies
below 12 meV, increase with temperature (see insert of Fig. 4.2 a). The energies
of most phonons, however, decreased with temperature. The resulting overall
mean phonon energy of cementite remains largely constant with temperature
below TC, as shown in Fig. 4.2 b. This behavior is not captured by the QHA,
which predicts a stronger thermal softening of phonon frequencies.

The evolution of the magnetic state of 57Fe3C with temperature was measured
by nuclear forward scattering (NFS), shown in Fig. 4.3. As the temperature
is increased, the intensity modulation of the NFS spectra become broader,
corresponding to lower sample magnetizations (see section 2.5). Above 463K
the sample is paramagnetic, the hyperfine levels are no longer split, and the
spectrum is close to an exponential decay.
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Figure 4.2: Phonon energies of orthorhombic Fe3C (cementite). (a) Partial phonon densi-
ties of states of 57Fe in 57Fe3C obtained through NRIXS at 14 K and 463 K. (b) Mean phonon
energies vibrational modes of Fe3C. The dashed curve shows the QHA, and the vertical dot-
ted line the Curie transition temperature.

I fitted the NFS spectra using the CONUSS software package [7, 8]. The
distribution of the hyperfine magnetic field (HMF) around the 57Fe atoms was
approximated by two Gaussian distributions, corresponding to the two distinct
Fe sites in the Fe3C crystal. Fits are shown as solid curves in Fig. 4.3 a. The
mean of these fitted HMF distributions, Bhf , are plotted in Fig. 4.3 b below the
Curie transition, compared to data from the literature. The HMF, Bhf(T ), is
proportional to the magnetization, M(T ), of the Fe atoms in the material [9].
At room temperature we find a mean HMF of Bhf =20.8T, in good agreement
with [10] and [11]. A mean-field model was used to extrapolate the decreasing
magnetic field and determine a Curie transition temperature of fTC = 460K.
It agrees with [12] and is about 20K lower than [10].

4.2 Standard phonon quasiharmonic approximation

The simplest model for describing vibrations of atoms in materials is the
harmonic model. The nuclei are assumed to be bound together by har-
monic springs, and oscillate around their equilibria in parabolic potentials
(see Fig. 1.3). Phonons are treated as independent harmonic oscillators, at
fixed energies, and without any damping. The partition function for a single
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Figure 4.3: Temperature dependence of magnetism in Fe3C (cementite). (a) Nuclear for-
ward scattering (NFS) spectra of Fe3C at several temperatures. The spectra were fitted using
CONUSS, displayed on a log scale, and are offset for clarity. (b) Mean hyperfine magnetic
fields Bhf , from fitted NFS curves of panel a compared to measurements by Le Caër, et al.
[10], and Xiao, et al. [11]. Solid orange curve is a power law fit, and dashed orange curve is
the extrapolation to low temperatures using [10].

harmonic oscillator of energy εi = ℏωi can be written as [13]

Zi =
∞∑
n=0

e
−(n+1/2)

εi
kBT , (4.1)

where n is the occupancy of the oscillator. Expanding the sum as a geometric
series gives

Zi =
e−εi/2kBT

1− e−εi/kBT
. (4.2)

The assumption that phonons oscillate at fix energies would result in an un-
changing phonon DOS. A quick look at Fig. 4.1 a is enough to realize that
the phonon modes of iron do shift considerably with temperature to lower
energies. The quasiharmonic approximation (QHA) relaxes this assumption,
allowing the phonon energies to shift as function of the unit cell volume. The
temperature dependence is included only implicitly through the volume, i.e.,
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ω = ω(V (T )), but this is often enough to capture important thermophysical
properties of materials, such as thermal expansion.

In the QHA, a Grüneisen parameter, γi, is typically used for describing the
fractional change in frequency of mode i per fractional change in volume V

γi = −V0
ωi

∂ωi

∂V
, (4.3)

where V0 is an initial volume. If we simplify the problem by using an average
γ for all modes,

ω(V ) = ω(V0 +∆V ) = ω0 (1− γ∆V/V0) . (4.4)

A linear dependence between the phonon energy and volume is typically as-
sumed in the QHA, giving a constant Grüneisen parameter.

The harmonic phonon free energy1, F , can be obtained from the partition
function of Eq. 4.2 as F = −kBT lnZ [13]. For a 3D material with N atoms it
becomes

F (T ) =

∫ ∞

0

ℏω
2
3Ng(ω) dω + kBT

∫ ∞

0

ln
(
1− e

− ℏω
kBT

)
3Ng(ω) dω , (4.5)

where the phonon DOS, g(ω), is normalized to 1. In the high T limit, this is
simplified to

F0(T ) = 3NkBT

∫ ∞

0

ln

(
ℏω
kBT

)
g(ω) dω . (4.6)

For the QHA we use ω(V ) from Eq. 4.4, and then expand the logarithm to its
leading term, giving

F (T ) = 3NkBT

∫ ∞

0

ln

(
ℏω0 (1− γ∆V/V0)

kBT

)
g(ω) dω , (4.7)

F (T ) = F0(T )− 3NkBT

∫ ∞

0

γ∆V/V0 g(ω) dω , (4.8)

F (T ) = F0(T )− 3NγkBT ∆V/V0 , (4.9)

where F0(T ) is given by Eq. 4.6 and the last line used the normalization of
g(ω) and an average γ for all modes. Since we are relying on the formalism
of the harmonic model (Eq. 4.2), phonons in the QHA are still non-interacting

1We refer to the free energy with an F here to be consistent with our publication [14].
It is, however, equivalent to the Gibbs free energy G used elsewhere in this thesis.
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and there are no 3-phonon processes that give rise to finite phonon life-times
and broadening of phonon modes. There are also no anharmonic effects that
arise from a direct temperature dependence, and no coupling between different
excitations.

Thermal expansion is efficiently predicted with methods of density functional
theory that implement the QHA [15]. But the reliability of the QHA is uncer-
tain because with true anharmonicity, phonon frequencies have an explicit de-
pendence on T and V as ω(V, T ) [4, 5, 16], which differs from the ω(V (T )) used
in the QHA [17, 18]. With a volume coefficient of thermal expansion β and a
change of temperature ∆T , the crystal expands by the amount ∆V = β∆TV0.
For computing thermal expansion, the total free energy will include an addi-
tional term for the elastic energy as

F (T +∆T ) = F0(T )− 3NkBTγ β∆T +
1

2
B (β∆TV0)

2 , (4.10)

where B is the bulk modulus. In a typical case with γ ≃ +2, F is reduced
by expanding the crystal as the decreasing phonon free energy (2nd term)
competes with the increasing elastic energy (3rd term). Minimizing Eq. 4.10
gives an equilibrium value of thermal expansion β = γ3NkB/B. With cV =

3NkB/atom in the classical limit, we obtain the widely-stated result

β =
γcV
B

. (4.11)

Equation 4.11 has been previously used to define a “magnetic Grüneisen pa-
rameter” when β and cV are attributed to magnetism (early examples are [19,
20]).

As shown in Fig. 4.1 b, the QHA describes well the shift of phonon modes be-
low 500K for iron. As we approach the Curie transition at 1044K, however,
the actual shift of the phonon energies is much larger than predicted by the
QHA, suggesting an additional contribution to the thermal shifts. Temper-
ature causes more interactions between phonons (anhamonicity), as well as
between spins. Additionally, atomic displacements due to phonons can affect
the exchange interactions between spins, and vice-versa. Such a spin-lattice
coupling could be the cause of the deviation from the QHA as the spins dis-
order as the Curie transition is approached.
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Figure 4.4: Fractional deviation of the phonon energy from the QHA (∆ω/ω0) vs. fractional
change of the magnetization (∆M/M0) for (a) Fe and (b) Fe3C. Magnetization data for Fe
are from [21]. Dashed lines and labeled values are results of linear fits to the data, corre-
sponding to magnetic Grüneisen parameters γm of Eq. 4.12.

4.3 Magnetic quasiharmonic approximation

Now we look further into the deviation between the phonon QHA and the
measured phonon energy shifts of Fig. 4.1 b and 4.2 b. There is a direct corre-
lation between the deviation, ∆ω, and the change in magnetization, ∆M , for
both iron and cementite as shown in Fig. 4.4. The linear relationship between
∆ω and ∆M suggests a coupling between phonon and spins, and motivates
the development of a magnetic QHA. We describe the shift of vibrational en-
ergies with magnetization using a new magnetic Grüneisen parameter, γm. In
analogy to the standard QHA for phonons, γm gives the fractional change in
frequency per fractional change in magnetization,

γm = +
M0

ω0

∂ω

∂M
, (4.12)

which can be compared to Eq. 4.3. This gives a magnetization dependence to
the phonon energy ω

ω(M0 +∆M) = ω0 (1 + γm ∆M/M0) . (4.13)

To develop a magnetic QHA for F (T ), we need the temperature-dependent
magnetization M(T ). For ferromagnets the general behavior is well known,
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and ∂M/∂T has a negative sign. This ∂M/∂T is largest near the Curie tem-
perature, as measured by NFS and shown in Fig. 4.3 for the case of cementite.
The magnetization of iron is well know, and follows the same behavior [21].
Using ω(M) of Eq. 4.13 and following the analysis of the previous section for
the standard QHA, the dependence of the free energy on the magnetization is

F (M0 +∆M) = F (M0) + 3NγmkBT ∆M/M0 . (4.14)

For a change in temperature of ∆T

F (T +∆T ) = F0(T ) + 3NγmkBT
1

M0

∂M

∂T
∆T . (4.15)

If γm is independent of temperature, as we assume, Eq. 4.15 can be integrated
from T ′ = 0 to T ′ = T

F (T ) = F0(T ) + 3NγmkBT
M(T )−M0

M0

, (4.16)

so the interaction term in Eq. 4.16 is zero at T = 0, and causes F to decrease
until the Curie temperature. For a more complete free energy, we expect a
contribution from magnetic short-range order above the Curie temperature,
even though the long-range order is zero.

In the classical thermodynamic limit of this magnetic QHA, the effect of mag-
netism on the phonon free energy, F = E−TS, is entirely through the phonon
entropy S. Here the phonon energy E remains as kBT per mode, and is un-
changed by magnetism. These are the same roles played by E and S in the
standard QHA, but in the magnetic QHA it is M instead of V that alters the
phonon entropy and free energy.

4.4 Magnetic QHA for Fe and Fe3C

The linear dependence between ∆ω and ∆M for both iron and cementite
shown in Fig. 4.4, suggests that a constant magnetic Grüneisen parameter γm
captures the phonon behavior for the entire temperature range up to the Curie
transition, and a magnetic QHA seems promising. The dashed lines are linear
fits that give values of γm for each mode of iron and for cementite. Such
a temperature independent correlation between the demagnetization and the
shift of phonon energies, with a constant γm, is essential for the QHA and was
assumed in Eq. 4.16.
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Figure 4.5: Deviation of the phonon free energy from the QHA (∆F , left axes) and evo-
lution of the magnetization (M/M0, right axes) with temperature for (a) Fe and (b) Fe3C.
Magnetization data for Fe are from [21], and magnetization of Fe3C is the reduced mean hy-
perfine magnetic field Bhf of Fig. 4.3. Solid dark curves are fits of the magnetic QHA (Eq. 4.16)
to ∆F from NRIXS data, resulting in γm,Fe = 0.15 and γm,Fe3C = −0.028.

To further test the magnetic QHA, magnetic Grüneisen parameters were ob-
tained by fitting Eq. 4.16 to the phonon free energy differences for iron and
cementite. In the classical limit, this phonon free energy difference is sim-
ply ∆F = −T ∆S, where ∆S is the difference of the experimental phonon
entropy from NRIXS and the quasiharmonic phonon entropy. The difference
∆S for iron and cementite are reported in [1] and [2], respectively. Figure
4.5 shows ∆F and the fits of the magnetic QHA, together with magnetization
curves M(T ). For iron, the magnetic quasiharmonic model (solid dark gray
curves) generally captures the behavior of the free energy. Its temperature
dependence is proportional to T (M(T ) −M0), as predicted by Eq. 4.16. The
fit is less reliable for cementite because the difference between the phonon free
energy from QHA calculations and NRIXS measurements (∆F ) is small and
hard to measure (see scatter in Figs. 4.2 b and 4.5 b). Nonetheless, cementite
shows a magnetic Grüneisen parameter of the opposite sign than iron, where
the measured phonon energies from NRIXS are larger than from QHA pre-
dictions. As seen from the fit of Fig. 4.5 b, the behavior of cementite is also
captured adequately by the magnetic QHA approximation, using a small and
negative value of γm.
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Standard QHA Magnetic QHA

V (T ), ω(V ), γ M(T ), ω(M), γm

Fig. 4.4 (Eq. 4.12) Fig. 4.5 (Eq. 4.16)

Fe γ = 2.18 γm,LT = 0.22 γm = 0.15

γm,HT = 0.07

γm,L = 0.07

⟨γm⟩ = 0.13∗

Fe3C γ = 2.24 γm = −0.029 γm = −0.028

Table 4.1: Grüneisen parameters in the QHA and magnetic QHA. The quantities for the
standard QHA are from [3]. The magnetic γm were determined from fits of the phonon
energy shifts with magnetization (Fig. 4.4, Eq. 4.12) and from fits of the phonon free to the
magnetic QHA (Fig. 4.5, Eq. 4.16).
∗ This is the weighted average of the three iron modes in the phonon DOS.

The values of γm determined by fitting the phonon energy shifts with magne-
tization (Fig. 4.4), and the γm from fitting the phonon free to the magnetic
QHA of Eq. 4.16 (Fig. 4.5) are very similar, both for iron and for cementite.
These values are listed in Table 4.1, along with the standard phonon Grüneisen
parameters.

Origin of magnon-phonon interactions

Why a phonon frequency would depend on magnetization has been a topic
of interest for many years. With many-body theory, in 1969 Silberglitt [22]
considered the creation of magnons from phonons, and commented that a
spin zero phonon would create two magnons of opposite spin, in addition to
satisfying kinematical requirements of energy and momentum conservation for
the interaction. For band magnetism, in 1989 Kim [23] considered how the
electron-phonon interaction involving free electrons would affect magnetism,
and vice-versa.

For ferromagnetic iron, the band structure is polarized, with more electrons
in the ↑-band than the ↓-band. A transfer of electrons with temperature from
the ↑-band to the ↓-band leads to changes in the density of electron states at
the Fermi level. Such changes alter the number of electrons that are available
to screen the ion displacements in atom vibrations, altering the interatomic
forces. Changes of phonon frequencies with electron density at the Fermi level
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are well-known [13]. A net gain of electron density at the Fermi level can
occur as magnetization is lost near the Curie transition of a ferromagnet. In
other words, the electron-phonon interaction will tend to soften the interatomic
forces and reduce phonon energies as magnetism is lost. This increases the
phonon entropy and reduces the free energy.

The large difference of γm between iron and cementite is not readily explained
with the simple electronic DOS at the Fermi level – the polarized electronic
DOS curves are similar for both, and of course the difference in γm for the
different phonon branches in iron cannot be explained with this simple ap-
proach. More subtle effects of the magnetization on phonons are needed to
explain the difference in the γm of bcc iron and cementite. Different phonon
branches often have very different changes with temperature. In the standard
QHA there is a substantial cancellation of phonon effects from the different
mode Grüneisen parameters {γi}, with their different signs and magnitudes.
This may be true for the different phonon responses to magnetism, requiring
individual mode magnetic Grüneisen parameters γm,i. Finally, from work with
mode Grüneisen parameters in non-magnetic materials, it is known that when
the γi take large values of 10 or so, or have negative signs, the QHA is generally
unreliable and many-body theory of anharmonicity is needed for quantitative
explanations [13, 17, 18, 24]. Many-body theory may also be necessary for the
interactions of phonons with magnetic spins. Nevertheless, the magnetic QHA
does predict approximately the shape of the phonon free energy curves beyond
the standard QHA for phonons. It is easy to use, and makes a good case that
phonons in iron and cementite depart from the standard phonon QHA owing
to magnon-phonon interactions.

4.5 Conclusions

NRIXS measurements show that both bcc iron and cementite have phonon free
energies that deviate from the standard QHA for phonons, with deviations be-
ing largest near the Curie temperature. In the case of iron this extra free
energy makes a substantial contribution to stabilizing the bcc phase near the
Curie temperature and slightly above [3]. We propose a magnetic quasihar-
monic theory, analogous to the QHA for phonons, using a magnetic Grüneisen
parameter, γm, that is the fractional change in phonon frequency per fractional
change in magnetization. This formalism redicts a deviation from the QHA
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in proportion to T (M(T ) −M0). It accounts for the thermal trends of the
phonon free energy beyond the QHA for iron and cementite. It helps to iden-
tify the presence of magnon-phonon interactions. In practice, it requires only
data from NFS and NRIXS, and a comparison of their trends. The physical
origins of their different γm remain a challenge to explain, however.
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Chapter 5

Thermodynamic origin of the Invar effect

This chapter is based of the following article:

S. H. Lohaus, M. Heine, P. Guzman, C. M. Bernal-Choban, C. N. Saunders, G.

Shen, O. Hellman, D. Broido, B. Fultz. A thermodynamic explanation of the

Invar effect. Accepted for publication in Nature Physics (2023).

Invar is a magnetic alloy of iron and nickel with an anomalous near-zero ther-
mal expansion at ambient conditions. Since its discovery in 1985, it has been
used in precision instrumentation and mechanical devices that require dimen-
sional stability against changes in temperature [1]. However, the microscopic
origins of the Invar effect of anomalously low thermal expansion are still not
fully understood. Its electronic and magnetic structures have been extensively
studied, but the role of phonons is missing in the picture. Without phonons,
the thermal expansion cannot be quantitatively understood.

Until now, we looked into how thermal energy is stored in matter. When
increasing the temperature of a material, thermal energy causes vibrations of
atomic nuclei, interacts with the electronic structure, and excites their spins.
Most of the entropy is associated with thermal vibrations of the lattice. The
more strongly the atoms vibrate, the larger the phonon entropy. As a result,
increasing the temperature usually causes materials to expand as discussed in
the introduction (Fig. 1.12).

Here, we look at thermal expansion in more depth. In Invar, phonons alone
cannot explain anomalous thermal expansion behavior, so we need to in-
clude the contributions from all individual excitations. Interactions between
phonons and magnetic spins explain the anomalous Invar effect, and the meth-
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Figure 5.1: Lennard-Jones potential as an example of an anharmonic potential. As the
temperature is increased, the atoms explore larger amplitudes, resulting in a larger atomic
separations due to the skewness of the potential. The potential itself changes with tem-
perature, so for computing the thermal expansion, the volume that minimizes the total
Gibbs free energy needs to be found.

ods proposed here can be extended to understand thermophysical behaviors
in other magnetic materials as well.

5.1 Anomalous thermal expansion

Metals usually have a pronounced thermal expansion. Especially those with
lower bonding energies and melting points. The thermal expansion of glasses
tends to be larger than of crystals, and liquids expand slightly more than
solids. The conventional textbook description starts from the potential be-
tween atoms, like atoms connected by springs. The potential in not symmetric
and harmonic, however. Pauli exclusion principle prevents atoms from coming
very close to each other, so the energy raises sharply at low atomic separations.
Think of a Lennard-Jones potential, for example (shown in Fig. 5.1). When
temperatures increase, most of the thermal energy goes into atomic vibrations,
so the atoms explore larger amplitudes in their potential energy. Due to the
skewed potential, the atomic separation tend to increase a little, causing the
thermal expansion. Thermal expansion is inherently an anharmonic effect.
For actual computations of thermal expansion, the free energy G(V, T ) must
be minimized, giving an equilibrium volume V (T ).
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Negative thermal expansion

Thermal contraction is fairly rare, but we are all familiar with an example:
water. Ice floats on liquid water, because it is less dense (has a larger volume)
than the warmer liquid. The volume of water therefore contracts when it
melts. You should not forget a beer can in the freezer because the expansion
of the freezing water might cause the can to explode and make a mess.

Negative thermal expansion (NTE) is found in several oxides, such as Si02 [2],
ZrW2O8 [3], and many perovskites [4–6]. Geometric arguments are often used
to explain the anomalous NTE. Transverse vibrations of the central atom in a
linear chain like O-S-O (in SiO2 or CO2 [2]) can decrease the distance between
the outer O atoms (as in a vibrating guitar string). Rigid unit modes of
tetrahedra in SiO4 [7], and octahedra in ZrW2O8 [3] or layered perovskites [6],
can distort the lattice causing NTE.

Geometric explanations sound appealing and may be intuitive, but they usu-
ally focus on specific modes. The entire phonon spectrum has to be accounted
for to quantify the thermal expansion, however. Cuprite, Cu2O, contracts
when heated up to about 500K. While the O atoms soften and oscillate more
strongly, the phonon energies of the Cu increase with temperature, and they
vibrate less. Details require anharmonic interactions between phonons, but
the net effect is a thermal contraction [8]. Pure silicon also contracts at low
temperatures. A full anharmonic picture, that includes the zero point motion
of phonons, is necessary for understanding this anomalous thermal expansion
behavior [9].

Invar behavior

Invar is a face-centered cubic (fcc) random solid solution of Fe and Ni, with
65 atomic% Fe and 35 atomic % Ni. Geometric and symmetry explanations
have no chance of success for explaining its anomalous thermal expansion.
Pure Fe and Ni both have a well behaved positive thermal expansion. When
alloyed, both show a similar phonon spectra [10]. But in a narrow range near
a composition of 65% Fe, Invar shows an anomalously low thermal expansion
(see Fig. 5.2). Why does this happen? Phonons alone cannot explain it, we
need to bring other excitations into the picture.
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Figure 5.2: Linear thermal expansion coefficient α of Fe-Ni alloys measured by Guillaume.
The minimum, close to α = 0, corresponds to the Invar composition [11].

Fe-Ni Invar was discovered in 1895 by the Swiss physicist C.E. Guillaume. It
was named Invar due to the invariance of its volume with temperature. Al-
though the Invar effect of anomalously low thermal expansion was discovered
in Fe65Ni35, it has since been found in Fe-Pd, Fe-Pt, Fe-Mn, Ni-Mn, Co-Mn,
Fe-Cr and several other crystalline and amorphous alloys of iron with transi-
tion metals [1, 12]. Such a property can be exploited in numerous in engineered
devices to have structural stability against temperature, and allow for tight
tolerances [1]. Large structures such as pipelines or tanks that require cryo-
genic cooling use Invar alloys. Invar has been used in composite molds in the
aerospace industry to achieve tight dimensional tolerances in curing processes.
Invar is used for structural components in precision instrumentation, such as
laser and optical measuring systems. Invar materials appear in microscopes,
in support systems for mirrors in telescopes, and in orbiting satellites [13].

Guillaume himself presented applications for Invar and Fe-Ni alloys [11]. He
demonstrated how Invar can be used for precision measurements of length in
the late 1800s. By using a long Invar wire, he tracked the vertical motion of
the Eiffel Tower, while it expands and contracts in the course of a day. He
attached a wire from the ground up to the second platform of the tower and
recorded its height variation as the iron structure, but not the Invar wire,
expands and contracts with the changing temperature. Invar-like alloys also
allow for precise measurement of time. A material with thermally-invariable
elasticity modulus, named Elinvar, is achieved when the Ni content is changed
to about 45%. Guillaume designed compensating springs for watches using
Elinvar, reducing their error by five times. By 1927, over 100 million watches
were made with Elinvar springs.
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The discovery of Invar was so important that Guillaume was awarded the
physics Nobel Prize in 1920 “in recognition of the service he has rendered to
precision measurements in Physics by his discovery of anomalies in nickel steel
alloy”. Because of Guillaume, Albert Einstein had to wait another year for his
Nobel, awarded in 1921.

So why is the volume of Invar not affected by temperature? Guillaume knew it
had something to do with the magnetic nature of Fe-Ni alloys. The Invar effect
disappears when heating above the Curie transition. This is seen in Fig. 5.3,
where the coefficient of thermal expansion, α, is plotted against temperature.
For the classic Invar composition of 65% Fe, the thermal expansion is close
to zero up to about 450K (roughly 0.25/Tm). This is in striking contrast to
the expected thermal expansion of the ‘lattice’ from the thermally enhanced
phonon vibrations in an anharmonic potential. Above the Curie temperature,
TC = 515K, the Invar behavior vanishes, and the measured thermal expansion
matches that from the ‘lattice’.

The term Invar has since been generalized for all alloys that present a lower
thermal expansion than expected from phonons. At 70% Fe the Invar be-
havior is also observed at low temperatures, but above its Curie transition,
the thermal expansion is larger than ‘normal’. This excessive thermal expan-
sion became know as the anti-Invar effect. It is observed at all compositions
above 70% Fe. It seems like the thermal expansion behaviour can be tuned
by the alloy composition. At large Fe content, the plot is cut off at the Curie
temperature because the magnetic transition is accompanied by a martensite
transformation into the bcc phase.

The anomalous properties of Invar are by no means limited to the anomalous
thermal expansion [1]. They include an anomalous softening of the elastic
constants, affecting both the bulk and shear moduli. Invar has a strong tem-
perature dependence of the magnetization, and an anomalous specific heat,
with excessive magnetic contributions even well below the Curie transition.
And a Curie temperature that collapses near the Invar composition.

5.2 Alloying iron and nickel

Iron has a complex magnetic structure, with spin configurations ranging from
ferromagnetic (FM), to anti-ferromagnetic (AF), and non-collinear partially



120

Figure 5.3: Anomalous thermal expansion of Fe-Ni alloys, compared to the expected ther-
mal expansion from anharmonic phonons, labeled ‘lattice’ [14]. Both axes are scaled by
the melting temperature Tm.

disordered states [15]. This gives rise to a rich phase diagram as previously
described in section 1.6. The stable bcc (FM) phase has a magnetic moment
of 2.2µB/atom at 0K. Nickel, on the other hand, is FM with a much lower
moment of 0.6µB/atom. Its weaker magnetism allows nickel to have a closed-
packed fcc structure up until melting. It is not surprising that the magnetic
properties and magneto-volume effects of Fe-Ni alloys stem mostly from the
iron atoms.

The phase diagram of Fe-Ni alloys is shown in Fig. 5.4. Below 70% Fe content
it has a fcc (γ) structure. The Invar region (∼ 50 - 70% Fe) is marked by
a sharp collapse of the both the magnetic moments M and the Curie tem-
perature TC. This region also exhibits strong magneto-volume effects, being
strongest at 65% Fe. Above 70% Fe, the fcc structure transforms into bcc (α),
and the Invar effect is no longer observed. However, as the temperature is in-
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Figure 5.4: Fe-Ni phase diagram, as a function of the atomic % of Fe [16]. The γ (fcc) phase
is stable up to 70% Fe, above which the α (bcc) becomes favorable. The shaded area shows
the region of Invar behavior. The dashed area at low-temperatures represents spin-glass
states [17]. Left axis: concentration dependence of the Curie temperature (TC) and the Néel
temperature (TN) in the γ phase. Martensite transformation temperatures (start and finish)
into the austenite γ phase, As and Af , and back into the martensite α phase, Ms and Mf ,
are also included. Right axis: Concentration dependence of the magnetic moments in both
the γ and α phases (Mγ and Mα).

creased, a martensite transformation back into the γ phase (called austenite)
is observed. This transformation happens between temperatures As and Af

(Austenite start and finish temperatures). The anti-Invar effect is observed
at this high temperature γ phase. The transformation back into the α phase,
called martensite, has a hysteresis and occurs at a lower temperature between
Ms and Mf .

5.3 Interpretations and theories of the Invar effect

The wide applicability of Invar and the curiosity about the role of magnetism
in its anomalous thermal expansion, have stimulated thousands of scientific
studies of the Invar effect. Here we review the key theories that led to our
current interpretation of its anomalous behavior. Because of the complex and
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Figure 5.5: States of fcc γ-Fe. (a) Hyperfine field of fcc Fe as a function of volume from
Mössbauer spectroscopy, giving the strength of magnetic moments. These were measured
on γ-Fe precipitates and samples on Cu and Cu-Au substrates to force Fe into the fcc phase
[20]. (b) Bonding energy as a function of volume at T=0 K of pure Fe in the bcc, fcc and hcp
crystal structures [14].

important role of magnetism, most theories focused on the electronic structure
of Fe-Ni alloys. Phonons are rarely part of the picture.

γ phases of iron

Pure iron is stable in the FM bcc phase. Its meta-stable fcc (γ) phase, however,
has very interesting magnetic properties, and becomes stable when alloyed with
nickel, palladium, or platinum, for example. Understanding the γ phase of iron
is key to understanding earlier models of the Invar effect.

Fcc Fe is anti-ferromagnetic (AF) at low temperatures. The AF spin ordering
results is fairly low magnetic moments, so it often called a ‘low-spin’ phase. It
also has a ‘high-spin’ ferromagnetic (FM) phase, close by in energy and stable
at larger volumes. These phases, shown in Fig. 5.5, have been observed both
by ab initio calculations [18, 19] and by Mössbauer spectroscopy at 4.2K [20].

The Pauli exclusion principle provides a qualitative connection between atomic
volumes and the magnetic ordering. When neighboring atoms have parallel
spins, wave-functions have less overlap, requiring a larger volumes. Whereas
AF coordinations, allow overlapping orbitals and hence, lower volumes.
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The FM phase does not always have a large moment, however. Both high-
spin (HS) and low-spin (LS) phases have been calculated for FM γ-Fe [21]
(and for FM Fe-Ni alloys [16, 22]). Fig. 5.5 b shows, accordingly, a double
well for the FM phase. There are hence two different low-spin states in γ-Fe,
a FM and a AF one. They both appear nearby in energy and volume, and
are interchangeably referred to as the low-spin (or low-moment) state in the
literature.

Two-state model

The first widely used model to explain the Invar effect was proposed in 1963
by J. Weiss [23]. It is based on the observation of Fig. 5.5 that γ-Fe has two
distinct phases, a high-spin-high-volume, and a low-spin-low-volume phase.
Unlike Fe, Fe-Ni Invar is stable in the HS phase at 0 K (with a magnetic
moment of about 2.8µB/atom). The LS phase has a lower equilibrium volume
(about 8% lower), lower magnetization (about 0.5µB/atom), and is separated
in energy from the HS phase by only about 2.6mRy according to Weiss.

As temperature is increased, electrons can be thermally excited from the HS
into the LS state. Besides the reduction in magnetization, this transition
results in a volumetric contraction. It counteracts the expansion from anhar-
monic phonons and can yield an apparent near-zero expansion.

The simplicity of this model and its capability of fitting experimental obser-
vations (e.g., in [24]), made this model very popular and it is still widely used.
But it is a purely phenomenological statistical model, and the co-existence of
these two states has never been experimentally verified [22].

Electronic band-structure

Similarly to γ-Fe, ab initio calculations on ordered and disordered Fe-Ni found
an energy landscape with two minima [14, 16, 22, 25]. These are shown in
Fig. 5.6 a for Fe3Ni. Unlike γ-Fe however, the state at larger volumes and
higher magnetic moments (HM) is the stable one, whereas the low magnetic
moment (LM) state is meta-stable at lower volumes.

These calculations laid out important microscopic mechanisms to explain the
Invar effect. Their spin-polarized electronic density of states is shown in
Fig. 5.6 b. In the HM state (upper panel), electrons occupy the orbitals asym-



124

Figure 5.6: Electronic structure of Fe-Ni Invar. (a) Energy landscape of Fe3Ni from ab
initio band structure calculations (data from [25]). The two minima correspond to the
low-moment (LM) and high-moment (HM) states. Right axis shows the strength of their
magnetic moments. (b) Spin-polarized electronic density of states, with majority (spin-
up) and minority (spin-down) bands [16, 22]. Upper plot shows the high-moment (HM)
and lower plot the low-moment (LM) state. The thermal spin-flip transition from t2g to eg

orbitals is marked by an arrow. (c) t2g and eg orbitals on a fcc crystal. The charge densities
in the t2g configuration point towards each other forming ddσ bonds. For FM ordering, they
require a larger volume than ddπ bonds of eg orbitals [22].
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metrically, filling mostly the spin-up bands, and resulting in a ferromagnetic
material. The mean magnetization of Fe60Ni40 was reported as 1.6µB/atom
(1.9µB per Fe atom and 0.6µB per Ni atom) [16]. A much lower magnetization
of 0.25µB/atom was obtained for the LM state of Fe3Ni [22] (lower panel), as
a result from the more symmetric occupation of the bands.

The Invar effect was attributed to the thermal excitation of electrons from
the spin-up band just below the Fermi energy (with mostly t2g orbitals) into
the spin-down band (mostly eg orbitals). This is illustrated by an arrow in
Fig. 5.6 b. The spin-flip excitations reduce the mean magnetization, and cause
a volume contraction. For FM ordering, the eg orbitals require a lower volume
than t2g orbitals, because their their lobes are not directed towards their near-
est neighbour in an fcc lattice (see Fig. 5.6 c). As temperatures are increased,
fluctuation theories predict that the equilibrium volumes of the HM and LM
states gradually merge into a single minimum [16].

This picture of a double well potential, with thermal excitation of electrons,
might resemble the two-state model, and has been used extensively to corrobo-
rate Weiss’ phenomenological two-state model. Schröter, Entel et al. disagree
and think it “differs greatly from Weiss”. It considers the state of the entire sys-
tem, with an itinerant electron model, in contrast to the local theory of Weiss,
that implies a co-existence of two kinds of Fe atoms, a high-spin-high-volume
and a low-spin-low-volume variety [16].

Anti-Invar and martensite transformation

There seems to be a connection between Invar, anti-Invar, and the martensite
transformation [16, 25, 26]. The relative stability of the HM and LM states
is controlled by the alloy composition, and increasing the concentration of Fe
favors gradually the LM state. Figure 5.7 shows the energy surface with lattice
parameter vs. magnetic moment for 60% (a) and 70% Fe (b). At 60% Fe, the
Invar effect is seen: the HM is more stable, and spin-flip transitions to the
LM phase cause a volume contraction. Above 70% Fe content, the stability
of the HM and LM phases switch. Now, electrons are excited from the LM
to the HM phase (from eg to t2g orbitals). This causes an increase of the net
magnetization as well as an excessive volume expansion: the anti-Invar effect.

Beyond 70% Fe, however, the bcc structure is more energetically favorable, as
show in Fig. 5.7 c. Instead of the anti-Invar effect, there is a transformation into
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Figure 5.7: Energy surfaces with magnetic moment vs. lattice parameter in the (a) Invar
and (b) anti-Invar regions [16]. (c) Energy surfaces with height-to-width ratio of the unit
cell (c/a) vs. normalized cell volume. The martensite transformation happens in two parts:
from the LM minimum to the HM saddle point (anti-Invar effect), and then through a Bain
distortion into a bcc phase. [16]. (d) Highlight: body-centered tetragonal coordination
within the fcc structure. By changing the c/a ratio (Bain distortion) it can be transformed
into a bcc structure.

the bcc phase. It is a martensite transformation mediated by a Bain distortion
of the structure [26, 27]. The most efficient path for this transformation is
through a saddle point as marked by arrows in the figure. The anti-invar
transition, from the LM minimum into the HM saddle point, seems to be the
precursor of the martensite transformation. (The structural details of the Bain
distortion are shown in panel d).

The anti-Invar effect is only observed at high temperatures, once the structure
transforms into the fcc γ phase (revisit Fig. 5.4). At these high temperatures,
the LM phase is stable, and the anti-Invar effect can occur. Polarized neutron
scattering measurements have indeed observed an increase of the magnetic
moments as the temperature was increased from 700 to 1000K for Fe-Ni at
85% and 90% Fe content [28].
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This same behavior with Invar and anti-Invar regions being separated by a
martensite transformation has been observed in Fe-Pd and Fe-Pt. It might be
a general feature of Invar materials.

Multiple states & continuous transition

Even though band-structure calculations laid out microscopic mechanisms to
explain the Invar effect, they were not able to quantify the thermal expansion.

For several fcc alloys (including Fe-Ni, Fe-Pt, Fe-Pd, Co-Mn, and others) there
is an unambiguous relation between the d-electron concentration per atom
(e/a) and the magnetic ordering: above ∼ 8.4 e/a the ordering is FM, below it
is AF, and in between, spin-glass behavior is observed [25]. Interestingly, the
Invar behavior (and anti-Invar) happens only near this region, where there is
no strong preference for FM ordering over AF.

The Invar behaviour might be governed by non-collinear spins with partial
AF exchange, which can lead to frustrated Fe-Fe bonds. Spin-glass states
have indeed been measured in Fe-Ni between 55-70% Fe [17]. Competing FM
and AF interactions freeze into a frustrated spin-state below a glass transition
temperature of around 30K. Partial AF ordering has been shown in Mössbauer
measurements at 4.2K [29], with a gradual transition from a FM state into
partial AF order with pressure. Another Mössbauer study concludes that the
reduction in magnetization occurs mostly due to a loss of the spin orientation,
rather then a decrease of their magnitudes [30]. Non-collinearity of spins in
Invar has been observed by XMCD measurements [31], although this is not
universally accepted [32].

Advances in ab initio methods enabled calculations with non-collinear spin
configurations, beyond the itinerant model. Abrikosov et al. predicted a fam-
ily of magnetic states in Fe-Ni Invar which are close in energy to each other.
They include ferromagnetic, ferrimagnetic, anti-ferromagnetic, disordered non-
collinear spins, and spin spiral states [15]. The Invar effect has been attributed
to the non-collinearity of spins by Schilfgaarde et al. [33], a view that was re-
cently supported by Ehn et al. [34]. As the volume is decreased, they observe
first a spin-flip into local AF order with slightly reduced local moments. This
catalyses a gradual transition to a non-collinear spin configuration as the vol-
ume is further decreased (see Fig. 5.8).
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Figure 5.8: Noncollinear magnetism in Fe-Ni Invar. (a) Noncollinear spin configurations of
Fe (orange) and Ni (blue) atoms in the Invar lattice [33]. As the volume decreases the spins
become progressively disordered, especially those at Fe atoms. (b) Magnitude of induvidial
magnetic moments as a function of volume [34]. Ni atoms have a much lower moment, less
dependent on volume. (c) Angular correlation between Fe atoms and Ni atoms [34]. While
Fe becomes non-collinear with decreasing volumes, the Ni moments remain mostly FM.

These new studies uncover important interactions between spins. They con-
firm that Fe atoms are responsible for most of the magnetic behavior. The
magnetism decreases both because of orientational disorder and magnitude
of the moments. Nickel atoms, with much weaker magnetic moments, remain
mostly ferromagnetically aligned. The details are described in Fig. 5.8 showing
(a) the increasing non-collinearity with decreasing volumes, (b) the magnitudes
of the individual moments, and (c) the angular correlation between spins in
Fe and Ni.

However, the calculated volume contraction due to magnetism is much larger
than the lattice expansion expected from phonons. These calculations cannot
quantify the Invar effect accurately. The magnetic component of the thermal
expansion of Invar is not the only unknown. The thermal expansion from
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phonons themselves have not been quantified in the literature. Without ac-
counting for phonons, the near-zero thermal expansion of Invar cannot be
explained.

Phonons in Invar theories

Early models of Invar recognized how electrons and their spin can be coupled
to phonons to affect their vibrational modes [35]. Anomalous softening of
the lattice near the Invar composition has been observed. They appeared
as low Debye temperatures determined from specific heats of Invar alloys, for
example [1]. The softening of phonons was later observed in the [110] direction
by inelastic neutron scattering [36, 37] and ab initio calculations [38–40]. This
low-energy transverse mode appears at lower energies than expected, resulting
in a positive curvature of the phonon dispersion, called a Kohn anomaly.

Phonons are believed to assist the electronic spin-flip transitions between the
eg and t2g orbitals that lead to the Invar effect. The band gap has a momentum
mismatch in the [110] direction [38], the same region where a Kohn anomaly is
observed. The phonon softening seems to be caused by thermal fluctuations of
the magnetic moments through magnon-phonon interactions [39]. Instabilities
of this transverse mode could also lead to the martensite transformation [38–
40].

Phonons are the main drivers of thermal expansion in materials. How do
these couplings of phonons with magnetic spins affect the volume and thermal
expansion? Can they be responsible for the anomalous thermal behavior of the
volume in Invar? The observation of soft phonons in Invar does not explain
the Invar effect. We need to determine the consequences of the vibrations on
the anomalous volume behaviour.



130

5.4 Thermal expansion from the entropy

Our goal is to quantify the individual contributions to the thermal expansion
from phonon, electrons, and magnetism, and give a complete thermodynamic
picture of the Invar effect.

These individual quantities are not accessible by directly measuring how the
volume changes with temperature. We need techniques that are only sensitive
to each specific excitation. Spectroscopy at different energy ranges is a solu-
tion, however it does not measure volume. It can give us the entropy, and we
can extract the volume through the Maxwell relation derived in section 1.5,
(∂V/∂T )P = −(∂S/∂P )T .

Assuming thermodynamic equilibrium, the thermal expansion can be broken
down into its individual entropy contributions:

βInvar = − 1

V

[(
∂Sph

∂P

)
T

+

(
∂Smag

∂P

)
T

+

(
∂Sel

∂P

)
T

]
≈ 0 . (5.1)

For Invar, with a near-zero thermal expansion, the different contributions must
add up to zero. Note that by using the Maxwell relation, we change from a
temperature to a pressure dependence. This approach allows us to determine
the entropies with experiments using diamond anvil cells (see Chapter 2 for
the experimental techniques). The disadvantage is that we do not know the
range of Invar behavior in pressure yet. The thermal expansion has been
extensively measured as a function of temperature (Fig. 5.3), but not as a
function pressure.

First principles calculations, which explicitly include thermally disordered vi-
brational and spin degrees of freedom, and spin-lattice coupling, were per-
formed to support the experiments and complete the analysis of Eq. 1.34. The
computational methods are described in the appendix, for more details see [41,
42]. These calculations were important to investigate the effects of magnetism
on the lattice vibrations, as they can artificially turn off the magnetic effects on
phonons. The calculations also concluded that the contribution from electrons
is small, and their entropy does not vary much over range of Invar behavior.

For zero thermal expansion, the changes of magnetic entropy with pressure
need to be opposed by those from phonons by Eq. 5.1. Both pieces are essential.
None of them have been previously quantified.
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5.5 X-ray diffraction

First, to determine the range of Invar behavior, we performed x-ray diffraction
(XRD) experiments under pressure. By measuring the lattice volume at two
different temperatures we can determine the volumetric expansion, i.e., the
thermal expansion. A temperature difference of about 100K was chosen, which
was large enough to reliably detect the small effects of temperature on the
lattice parameter.

We prepared samples of fcc Fe65Ni35 through arc-melting, and rolled the mate-
rial into thin films of 10-20µm. Details of the sample preparation are included
in the appendix of this chapter. High pressure experiments with diamond-
anvil cells (DACs) require small samples, on the order of 50µm (high pressure
techniques were described in Chapter 2). For such small samples, the highly
collimated x-ray beams provided by synchrotrons are necessary. The exper-
imental setup for our diffraction measurements at beamline 16BM-D of the
Advanced Photon Source (APS) is described in Fig. 5.9.

The measured signal of Fig. 5.9 c has five diffracted rings corresponding to the
fcc structure. The intensity of the rings is not fully homogeneous, showing
some texture of preferred orientations of the crystals within the sample. Af-
ter masking spots from x-rays diffracted from the diamonds and the DAC,
we integrate intensities around the rings to obtain diffraction patterns. The
diffraction peaks were then fitted by Gaussians, to accurately determine their
diffraction angles.

Figure 5.10 shows the resulting lattice parameters calculated with Bragg’s
law. At ambient pressure we know that thermal expansion of Invar is zero
from Fig. 5.3, so we set the lattice parameters at both temperatures to be the
same (this calibration was necessary because of a small offset in the data, likely
due to pressure uncertainties between the DACs used for the two different tem-
peratures). Below 3GPa the lattice parameter is unchanged by temperature,
so there is no thermal expansion. The insert shows the volumetric thermal
expansion coefficient, β, calculated from the volume difference between 295 K
and 395K. As the pressure approaches the Curie transition, the volume starts
to increase with temperature, and the Invar effect is no longer observed. At
8GPa the thermal expansion coefficient becomes β = 3.4 ·10−5 K−1, typical of
transition metals (Fe has a thermal expansion of 3.5·10−5 K−1 at room temper-
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Figure 5.9: Diffraction experimental setup at beamline 16 BM-D at the APS. (a) Beamline
schematic [43]. The x-ray beam was monochromated to 27 keV by Si mirrors with a resolu-
tion of about 1 eV. It was focused on the sample by KB mirrors with a beam size of ∼ 4µm x
4µm. (b) Our experimental setup. The x-ray beam comes out from the pinhole, is diffracted
by the sample (inside the DAC) onto the area detector (we used a MAR345 detector, the one
in the photo is the newer PILATUS 1M). The symmetric-type DAC is enclosed by a heating
block, and sits on a rotating stage. A camera and a Raman spectrometer, that can move
in and out of the beam path, were used to measure the pressure inside the DACS (by the
fluorescence spectrum of Ruby spheres). The temperature was determined by thermocou-
ples inside the heating-block. (c) Raw diffraction data of the area detector, showing five
diffraction rings of fcc Fe65Ni35, along with some spots diffracted from the diamond and
DAC. The downstream diamond-seat blocked part of the signal, resulting in a vertical strip
of data. A beamstop blocked the forward beam to avoid saturation of the detector.
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Figure 5.10: Lattice parameter vs. pressure measured by synchrotron x-ray diffraction at
two temperatures. The insert shows the volumetric thermal expansion coefficient β from
these data. Solid lines are polynomial fits. Fe65Ni35

ature and Ni 3.9 ·10−5 K−1). Note that the pressure dependence of the thermal
expansion has a very similar behavior than its temperature dependence shown
in Fig. 5.3.

We conclude that the Invar effect can be observed as a function of pressure up
to about 3GPa. In this range, the contributions from phonons and magnetism
to the thermal expansion should cancel each other according to Eq. 5.1.

5.6 Magnetism

Invar materials have anomalous magnetic behavior. They do not have a strong
preference for FM order over AF [25]. This might make the spins more suscep-
tible to thermal fluctuations, and its magnetization has a stronger temperature
dependence than other transition metals [1]. It results in a large magnetic heat
capacity, even well below the Curie transition [12].
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To quantify the precise balance between magnetism and phonons we perform
our own pressure dependent measurement of the magnetization. As detailed
in Chapter 2, our setup allows for measurements of both the lattice vibrations
and spin dynamics in the same experimental conditions (see Fig. 2.9). This
is especially important for Invar compositions, where the magnetization and
Curie temperature are very sensitive to the composition and environmental
conditions.

Mössbauer spectroscopy gives us the pressure dependence of the magnetiza-
tion. For a quantitative analysis of magnetic entropy, however, we need to
obtain absolute values separately. We calibrate the Mössbauer experiments by
the total magnetic entropy measured by calorimetry.

Calorimetry

Calorimetry offers a fairly straightforward method to quantify the thermo-
dynamic effects from magnetism. The disordering of spins through thermal
excitations requires energy, which can be measured in a calorimeter.

We used differential scanning calorimetry (DSC) to measure the heat capacity
of Invar, with a Perkin Elmer DSC 7. DSC measures the heat flow to the
sample as its temperature is linearly increased. It can be compared to the heat
flow measured on a reference material, with a known heat capacity, to quantify
the heat capacity of the sample. Both our samples and sapphire references were
heated inside aluminum crucibles, at a rate of 20K/min from 340K up to 873K
under a flow of nitrogen to enhance heat transfer and minimize oxidation.

Figure 5.11 a shows the resulting heat capacity, CP , as a function of tempera-
ture (black curve). It is the total heat capacity, resulting from all excitations in
the material. A good calibration and knowledge of the instrument baseline are
essential for determining accurate values of CP . To minimize baseline effects,
we measured the heat capacity with empty crucibles before and after each
heating run. We also repeated the measurement on samples four times. The
error bars of Fig. 5.11 a reflect the standard deviation between these different
runs.

The measured heat capacity has a peak at 515K, typical of the heat released
during a magnetic transition. Other materials, such as pure Fe or Ni have a
much sharper peaks, however. Most of their ‘magnetic heat’ is released very
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Figure 5.11: Heat capacity of Invar and its contributions. (a) Total heat capacity measured
by DSC, compared the phonon contribution and fitted electronic heat capacity. Gray error
bars show the uncertainty of four sequential measurements on two different samples. The
black dotted curve is the extrapolation of CP to room temperature. Data found in the
literature is plotted for comparison [44, 45] (b) Change in magnetic entropy above 300 K
computed from the magnetic heat capacity of panel a.
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close to the Curie temperature. Invar is anomalous. The spins start disordering
much earlier, and the magnetic heat capacity increases almost linearly with
temperature, resulting in a broad magnetic peak [12]. The magnetic heat
capacity also does not disappear abruptly at TC, and there is some contribution
from short-range ordering of spins up to about 640K.

To isolate the magnetic contribution from the total heat capacity, we need to
subtract the vibrational and electronic pieces. The contribution from phonons,
Cph

P , can be computed from measurements of the phonons DOS, g(ε), as [27]:

Cph
P (T ) = 3N kB

∫ ∞

0

g(ε)

(
ε

kBT

)2
eε/kBT

(eε/kBT − 1)
2 dε . (5.2)

The resulting phonon contribution is included in Fig. 5.11 a (and the NRIXS
measurements are discussed further below).

At high temperatures above 640 K, where the magnetic contribution has com-
pletely died off, the heat capacity consist of only phonons and electrons. A
typical linear electronic contribution (Cel

P = γ · T ) is determined by fitting
the total heat capacity at these high temperatures to the sum of phonon and
electronic heat capacities (orange dashed curve in Fig. 5.11 a). This gave a
coefficient of γ = 0.0012 kB/atom/K, in agreement with [46]. The remainder
corresponds to the magnetic heat capacity.

The magnetic entropy can be computed from the magnetic heat capacity. Fig-
ure 5.11 b shows the resulting magnetic entropy calculated from the magnetic
heat capacity. Up to the Curie transition it is:

∆STC
mag =

∫ TC

300K

Cmag
P

T
dT = 0.11 kB/atom . (5.3)

The Curie temperature is an inflection point in Smag, and the entropy gained
above TC originates from the magnetic short-range order (about 0.02 kB/atom).
We use magnetic entropy change up to TC (Eq. 5.3) to calibrate the pressure
dependent magnetic entropy obtained from Mössbauer spectroscopy.

Synchrotron Mössbauer spectroscopy

Mössbauer spectroscopy is a technique that measures the local hyperfine mag-
netic field (HMF) at the 57Fe nuclei. We prepared samples of Invar with this
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isotope as 57Fe65Ni35. Since the HMF 57Fe is proportional to the bulk magneti-
zation [47], we used Mössbauer to obtain the pressure dependent magnetization
of Invar.

Mössbauer is a resonant technique and only measures the field at 57Fe nuclei.
Adding Ni to the material lowers its net magnetization, but this is only indi-
rectly measured through its effect on the Fe atoms. Fortunately, Ni plays only
a minor role on the magnetization of Invar. As previously discussed, the mag-
netic moments of Ni atoms are much smaller than those of Fe [15, 33, 34, 48].
More importantly, both experiments [31] and calculations [33, 34] have shown
that the orientation of the magnetic moments of Ni is less affected by pres-
sure, remaining mostly ferromagnetic throughout the Invar transition (revisit
Fig.5.8). Therefore, the magnetic entropy caused by spin disorder is mostly
due to the Fe spins. A resonant technique, such as Mössbauer, is therefore
suitable for quantifying the change of magnetization of Invar with pressure.

For high pressure experiments with samples inside DACs, we use synchrotron
radiation monochromated to about 1meV around the nuclear resonance of iron
(14.413 keV). The experiments were performed at beamline 3 ID-D of the APS.
At synchrotrons, the Mössbauer spectrum is obtained in time domain, and is
called nuclear forward scattering (NFS). Magnetism splits the nuclear states of
57Fe, and the interferences between these states create intensity modulations,
or beats, in the signal (see Chapter 2 for details). These ‘magnetic beats’ are
seen in the NFS spectra of Invar, shown Fig. 5.12 a, We measured the NFS
signal between 0 and 21.3GPa at room temperature. The figure also includes
a measurement at 20 K and 0.3 GPa, corresponding to a fully ferromagnetic
material.

As pressure is increased, the magnetic beats become progressively broader in
time, with longer periods, showing a decline of the magnetization. At 4.4GPa,
the beats almost disappear and the signal is nearly an exponential decay. This
is very close to the Curie transition, where the material becomes paramagnetic
and the nuclear states are no longer split (no interference).

At highers pressures we observe very long modulation periods. These do not
vary much with pressure up to 21.3GPa. They could originate from a weak
lingering magnetic field (magnetic short-range order would not persists to such
high pressures above the Curie transition). They might also be an artifact from
a finite sample thickness, or a ‘thickness distortion’. If the sample is thick, x-
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Figure 5.12: Pressure dependent hyperfine magnetic field (HMF) of 57Fe65Ni35. (a) NFS
spectra of Invar at labeled pressures. Solid lines are the fits used to extract the hyperfine
parameters. (b) HMF distributions, P(Bhf), found by fitting the NFS spectra of panel a.
Vertical lines mark the mean of each distribution.
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rays are absorbed by nuclei at different depths of the sample, and the radiation
emitted coherently from these different nuclei can interfere with each other.
It would also result in intensity modulations of the spectrum, or dynamical
beats. The high pressure beats are either a result of such thickness distortions
or they measure a real low magnetic field. We discuss these possibilities further
below, however our NFS experiments can not discriminate between them.

Hyperfine magnetic field (HMF)

We can fit the Mössbauer (NFS) spectra to a model of the hyperfine inter-
actions, to obtain recoil-free fractions, isomer shifts, quadrupole splitting,
strength of the hyperfine magnetic field (HMF), along with other hyperfine
parameters. We used the CONUSS software for fitting our data [49, 50]. Fits
are shown as solid curves in Fig. 5.12 a. The distributions of the HMF, Bhf ,
were approximated by two asymmetric Gaussians as shown in Fig. 5.12 b.

At ambient conditions, the mean of the distribution is 26.2 Tesla, in agreement
with the literature [51–54]. At 20K it is stronger, 33.7T, consistent with [29].
This shows a considerable loss of magnetization already at ambient conditions.
As the pressure is increased, the distributions are broadened and progressively
shift towards lower fields. Above 4.4GPa, we attributed the beats of the
NFS spectra to a thickness distortion effect. Their fits were obtained by the
superposition of two nonmagnetic emissions (single absorption lines) from two
different sample thicknesses, simulating a thickness distribution of the sample.
This results in broadened HMF distributions around 0T.

Conventional Mössbauer experiments at room temperature seem to confirm
that no magnetism is left at 7GPa [55]. This is not an unanimous result
however. A low magnetic field up to about 12GPa has been observed by x-ray
circular magnetic dichroism (XMCD), owning to a possible low-spin state [56].
No field was measured above 15GPa, however. Another Mössbauer study at
4.2K also observed a low-field component around 3 T at 7GPa [29]. It was
attributed to an AF order, due its similarities with the AF field measured for
fcc Fe [20] (revisit Fig. 5.5 a).

The intensity modulation of our NFS spectra at high pressures could corre-
spond to such a low field. We therefore also fitted our spectra to a HMF
distribution. Figure 5.13 show the results at 8.1GPa (other pressures have
very similar fields). Both fits, with a thickness distortion and with a weak
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Figure 5.13: Hyperfine field of 57Fe65Ni35 at high pressures. (a) NFS spectrum at 8.1 GPa
fitted by a thickness distortion with Bhf = 0 and by a weak hyperfine magnetic field (HMF).
(b) Distribution of the HMF for the non-magnetic case, broadened by a thickness distor-
tion, and for the material with a weak magnetization. Vertical lines show the mean of the
distributions.

HMF, are comparable. The HMF distribution has a mean at 6T and a promi-
nent peak at 3.5 T, consistent with AF order [20, 29]. Longer measurement
windows to measure the intensity modulations over longer periods might be
able to discern between the two explanations, but our current measurements
can not.

A low-spin state at high pressures has little effect on the magnetic entropy.
Our model includes only long-range order (below Curie transition), and is
calibrated by calorimetry measurements. A remaining field would affect the
entropy by only 0.007 kB/atom or about 6% of the total magnetic entropy from
long-range order.

Magnetization

Since magnetization of 57Fe is proportional to its HMF [47], we computed
the magnetization of Invar from the mean of its HMF distributions. Figure
5.14 a shows the resulting M(P ), normalized to ambient conditions. Starting
at a near-ferromagnetic spin arrangement, the magnetization decreases with
pressure. A mean-field model extrapolates the data to determine the Curie
transition at 4.6GPa. We assume a zero-field at higher pressure, although a
residual low field has been reported [56]. The data scatter from the literature
might reflect the sensitivity of magnetism in Invar, highly dependent on the
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Figure 5.14: Magnetization of Fe-Ni Invar. (a) Exp: normalized 57Fe hyperfine magnetic
field (HMF) vs. P from NFS experiments, with Model fit. Error bars show the uncertainties
in pressure. Calc: M(P ) calculated by our theory collaborator [41]. Gray symbols: literature
data from different M(P ) measurements – Hayashi (pickup coil around piston-cell) [57],
Rueff (XMCD) [56], Matsumoto (XMCD) [31], Kamarád (SQUID saturation magnetization) [58],
Rhieger (Mössbauer spectroscopy) [55] (b) Calculated spin configurations at the Fe (orange)
and Ni (blue) atoms for the fully ordered ferromagnetic, ambient and paramagnetic states.
Arrow sizes are proportional to the calculated magnetic moments.

composition, the experimental conditions, and accuracy of pressure determi-
nation.

We also include the calculated magnetization curve from a local spin density
model in the figure (details in Appendix). It has a slight stronger pressure
dependence at low pressures than the experimental results. Figure 5.14 b shows
some of the calculated spin configurations for the fully ordered (0 K), ambient,
and fully disordered conditions. In agreement with the literature [15, 33, 34,
48], the magnitude of the Fe spins (orange) are much larger than those of Ni
spins (blue). The orientation of Ni spins is also less affected by pressure [31,
33, 34].
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At ambient conditions, there is already considerable spin disorder. The mag-
netization of Fig. 5.14 a was normalized to ambient conditions for comparison
with the literature values. However, when compared to the measurements
at 20K it is M=0.75, in agreement with [59]. As a comparison, the magne-
tization of fcc Ni at ambient conditions is about 0.95 [59]. This shows the
anomalous magnetic behavior of Invar, with spins disordering already at much
lower temperatures then other transition metals.

Magnetic entropy

Magnetic entropy is a measure of spin disorder. An aligned ferromagnetic state
has low entropy, whereas many equivalent configurations exist in a disordered
state, corresponding to a high entropy.

To compute the magnetic entropy from the measured magnetization, we use
a mean-field Ising model (Eq. 1.23) derived in Chapter 5. It gives the entropy
to first order. We obtained the pressure dependence from measurements of
M(P ), while absolute values were determined by calorimetry. In a mean-field
model, the total change in entropy from ambient conditions up to the Curie
temperature, S∆TC

mag , must be the same as the change in entropy due to pressure
up to the Curie transition. This allows us to calibrate the Ising model with
the calorimetry results, giving:

Smag(P ) = −
S∆TC
mag

S∆PC
Ising

1

2

[
(M(P ) + 1) ln

M(P ) + 1

2
+ (1−M(P )) ln

1−M(P )

2

]
.(5.4)

The resulting pressure dependence of Smag is plotted in Fig. 5.15, compared to
the temperature dependent magnetic entropy from calorimetry. As expected,
the entropy rises with the pressure induced spin disorder up to the Curie
transition. Since the mean-field model accounts only for long-range order, the
entropy remains constant beyond the Curie transition.

5.7 Phonons

Phonons complete the picture. Their contributions to thermal expansion and
entropy oppose those from magnetism. However, a careful quantification of
their role in the Invar effect is missing in the literature. Here, we show mea-
surements of the phonon spectrum and their dependence on pressure. These
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Figure 5.15: Magnetic entropy of Invar. Bottom axis: Pressure dependence of magnetic en-
tropy calculated from the measured M(P ) with Eq. 5.4. Top axis: Temperature dependence
of Smag measured by calorimetry (Fig. 5.11).

enable us to quantify the contribution of phonon to the thermal expansion,
and complete the thermodynamic explanation of the Invar effect.

Phonon DOS

The vibrational spectra of Invar were measured at pressures up to 21.3GPa
by nuclear resonant inelastic x-ray scattering (NRIXS). The phonon DOS can
be computed from the NRIXS measurements after removing the elastic peak,
separating the one-phonon from the multi-phonon contributions, and remov-
ing background noise. The details along with the full NRIXS spectra, and
the multi-phonon contributions are found in the appendix. The experimental
details and data analysis are described in Chapter 2.

Figure 5.16 compares the resulting phonon DOS of Invar at ambient condi-
tions to those from (fcc) Ni. Van Hove singularities from two transverse phonon
branches at around 16 and 23 meV result in a broad low energy peak in the
phonon DOS of Invar. Another peak around 33meV arises from the longitu-
dinal branch. We confirm observations from the literature that the phonon
DOS of Invar has anomalously soft modes at low energies. Both transverse
phonon modes below 30meV appear at lower energies than those measured for
fcc Ni [10]. This observation alone does not explain the Invar effect, however.
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Figure 5.16: Phonon DOS of Fe-Ni Invar (57Fe65Ni35) measured by NRIXS at ambient con-
ditions, compared to the phonon DOS of fcc Ni [10]. A strong softening of the low-energy
transverse phonons below 30 meV is observed in Invar.

We need to study how the phonon behavior is altered as the magnetization
changes. We do this by varying the pressure.

The resulting pressure dependence of the phonon spectrum of Invar is pre-
sented in Fig. 5.17. The error bars were calculated from the standard devia-
tion of sequential NRIXS measurements using a Monte-Carlo error propagation
algorithm. As pressure is increased, the overall phonon energies increase, stiff-
ening the material. However, not all phonon modes behave the same. The
high energy peak from longitudinal modes remains constant with pressure up
to 4GPa. This is important for the Invar behavior and is discussed further
below.

NRIXS is a resonant technique that measures only the partial DOS of the 57Fe
nuclei in the material. To investigate the effects of Ni, we also measured the
vibrational spectrum of Invar with inelastic neutron scattering (INS), where
Ni has a 50% larger cross-section than Fe. As shown in Fig. 5.17, the DOS
measured by INS and by NRIXS at ambient conditions are almost the same.
This shows that Fe and Ni have similar DOS curves, so the partial vibration
of 57Fe is representative of the full phonon spectrum of 57Fe65Ni35. The same
result has been previously observed for other Fe-Ni alloys [10]. This is not
necessarily surprising, given how close Fe and Ni are on the periodic table,
and how similar their masses are.
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Figure 5.17: Phonon DOS of Fe-Ni Invar, 57Fe65Ni35, at different pressures as labeled. Ex-
perimental partial DOS curves measured by NRIXS (black curves) are compared to the cal-
culated DOS (orange curves). Error bars show the standard deviation of sequential NRIXS
scans. At ambient conditions the NRIXS measurement is in excellent agreement with the
total phonon DOS measured by INS (blue markers).
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The NRIXS measurements are also in excellent agreement with the ab initio
calculations. This is especially seen by the agreement in the energies of their
Van Hove singularities (the position of the peaks from the three branches of
phonon polarization). Measurements and calculation also agree well at low
energies, below 15meV. This region is an important contributor to the phonon
entropy, since there are more phonons occupying the low-energy modes. Cal-
culations do have sharper features, partially due to broadening from the finite
instrument resolution. However, both have nearly equal integrated areas un-
der each of the vibrational modes. To show this, we plot the integrated (cu-
mulative) DOS with increasing energies in Fig. 5.18 a for three representative
pressures. Even though the calculated curves rise faster with the transverse
modes around 20meV, the measured DOS catches up around 30meV. The
same happens for the higher energy longitudinal vibrations between 30 and
40meV.

To decompose the phonon DOS into contributions from the individual modes,
we fitted the measured spectra to three asymmetric Lorentzians. These are
able to to capture well the main features of the DOS as seen in Fig. 5.18 b. The
area of the DOS is equally distributed between the three fitted distributions
(as labeled in the figure). The mean energy of each of the Lorentzian (vertical
lines) is plotted against pressure in Fig. 5.18 c. While the energies of both
transverse branches increase monotonically with pressure, the longitudinal one
remains fairly constant up to about 4GPa, and increases above the Curie
transition. This behavior is more evident in the calculations. A change in
the vibrational behaviour near the magnetic transition indicates that phonons
might be coupled to magnetism. The presence of ferromagnetic order in the
spins affects the atomic vibrations and fixes the energies of the longitudinal
modes at low pressures.

To confirm this claim, we turn to the calculations by our collaborators [41].
Full calculations include magnetism and spin-phonon coupling. They result in
phonon DOS with unchanging longitudinal modes below the Curie transition,
in agreement with experiments. This is especially evident when overlaying
the phonon spectra as shown in Fig. 5.18 d. Calculations can also turn off the
effects of magnetism, by artificially fixing the strength of the magnetization to
its ambient values. The results of these calculations are different: the entire
phonon DOS increases with pressure. The pressure-dependent behavior of
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Figure 5.18: Phonon energies of Invar. (a) Cumulative phonon DOS of three representative
NRIXS measurements and calculations. (b) Measured phonon DOS fitted by three asym-
metric Lorentzians. Colored distributions show the individual fitted modes, and their mean
energy is marked by vertical lines. The ratio of the areas of the distributions is labeled.
(c) Mean energy of each phonon mode (from panel b) as a function of pressure. Calcula-
tions of the longitudinal branch show no energy changes up to about 4 GPa. (d) Calculated
phonon DOS. Full calculations show little changes of the high-energy phonon peak around
34 meV below the Curie transition. This behavior is not seen when calculations turn off the
effects of magnetism (fixed M ), confirming that it arises from a spin-phonon coupling.
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phonons has contributions from purely volumetric changes (calculations with
fix M), but also from pressure-induced changes in magnetization through a
spin-phonon coupling. Magnetism lowers the energy of the longitudinal modes
with pressure, counteracting their energy stiffening due to volumetric changes.
The net effect is a suppressed mode that remains at a fixed energy up to about
4GPa.

Phonon entropy

The phonon entropy can be determined from the measured phonon DOS, g(ε),
as (Eq. 1.14):

Sph = 3kB

∫ ∞

0

g(ε) [(1 + nT (ε)) ln(1 + nT (ε))− nT (ε) lnnT (ε)] dε ,

where ε is the phonon energy, and nε,T = (exp(ε/kBT ) − 1)−1 is a Planck
distribution for the phonon occupancy. The resulting phonon entropy is shown
in Fig. 5.19 as a function of pressure. Calculations that incorporate the spin
disorder agree very well with experiments (orange curve).

As pressure in increased, the atomic vibrations become confined to smaller
volumes. The phonon energies increase (stiffen), which decreases the occupa-
tion of the vibrational modes, resulting in an overall reduction of the phonon
entropy. Magnetism also play a role through the spin-phonon coupling, caus-
ing a change in behavior at the Curie transition. Below 4.6GPa, the entropy
has a concave-down curvature with a dip near the magnetic transition. Above
4.6GPa, the entropy decreases almost linearly with pressure, corresponding to
a quasi-harmonic behavior, where the phonon energies scale linearly with the
decreasing volume.

Calculations with fixed magnetization give different results (teal curve). The
dip near the Curie transition disappears, and the slope near ambient condi-
tions decreases by about 30%. The presence of magnetism, therefore, sup-
presses the change in phonon entropy at low pressures. It is a reflection of the
fixed energies of the longitudinal modes discussed before. As the magnetiza-
tion decreases rapidly near the Curie transition, the vibrational entropy also
changes faster above 3GPa, resulting in the concave-down shape. This effect
on phonons from their interactions with spins is at the core of the Invar effect,
as discussed below.
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Figure 5.19: Phonon entropy vs. pressure calculated from experimental (Exp) and cal-
culated (Calc) phonon density of states. Calc: full calculation including magnetic effects
and spin-phonon coupling. Calc (fixed M ): magnetization artificially fixed at the ambi-
ent value. (Calculated curves are shifted so their volumes coincide with the experimental
ambient volume). Experimental errors were calculated by propagating the DOS errors of
Fig. 5.17 using a Monte-Carlo method.

5.8 Electronic contribution

Electrons also absorb heat, and also contribute to the entropy. If the electronic
states at the Fermi energy change with pressure, more or less states can become
available for electronic excitations, affecting the electronic entropy. Within the
Invar range, however, this effect does not contribute substantially to the total
entropy.

Our collaborators computed the electronic entropy by ab initio calculations.
At ambient conditions, a small value of 0.11 kB/atom was obtained. More
importantly, over the range of Invar behavior, the change in electronic entropy
with pressure is 0.01 kB/atom, about an order of magnitude smaller than
changes in the phonon and magnetic entropies. Electronic entropy does not
play a major role in the thermodynamics of the Invar effect.
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5.9 Thermal expansion & Invar effect

The essence of the near-zero thermal expansion of Invar is the near-cancellation
of contributions from phonons and magnetism in Eq. 5.1. Figure 5.20 a quan-
tifies this cancellation as a function of pressure. As pressures are increased,
the magnetic spins progressively lose their ferromagnetic order, increasing the
magnetic entropy. Meanwhile, the lattice vibrations stiffen, causing a decrease
in the phonon entropy. The opposing changes of phonon and magnetic contri-
butions give a nearly pressure-independent entropy sum below at least 3 GPa
as shown in Fig. 5.20 b. The spin-phonon coupling is essential. It alters the
shape of the phonon entropy, improving the precision and extending the range
at which phonons cancel the magnetic entropy. Above the Curie transition,
the cancellation is lost and the total entropy decreases due to the stiffening of
phonons.

Figure 5.20 c shows the thermal expansion measured by x-ray diffraction (or-
ange markers) with a near-zero coefficient up to around 3GPa. The individual
contributions to the thermal expansion can be computed from their entropies
by Eq. 1.33 (β = −1/V (∂S/∂P )T ). The resulting thermal expansion from the
phonon and magnetic entropies, and from their sum is compared to the mea-
sured thermal expansion by x-ray diffraction in Fig. 5.20 c (electrons are not
included here). The total thermal expansion computed from the entropy sum
is indeed close to zero up to about 3GPa, in agreement with the XRD mea-
surements. The individual contributions from spins and phonons, however,
are not at all close to zero or constant in pressure. Both approximately dou-
ble in magnitude from 0 to 3GPa, but in opposite directions, cancelling each
other out. The phonon contribution seems to spike near the Curie transition,
likely an artifact of our pressure resolution. A study with smaller pressure
steps might uncover interesting details about the Curie transition behavior,
where the magnetization changes rapidly, and where effects from spin-phonon
coupling are likely to be strongest.

At pressures above 3 GPa, the accurate cancellation is lost, and so it the Invar
effect. The sum of entropies begins to change with pressure, and β gradually
becomes positive, even below the Curie transition at 4.6GPa. At pressures
above the Curie transition the thermal expansion computed from the entropies
is in agreement with the value of 3.4× 10−5 K−1 measured by XRD, a typical
value for transition metals.
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Figure 5.20: Contributions to the entropy and thermal expansion. (a) Experimental
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5.10 Conclusion

We measured the individual contributions to the entropy from phonons and
magnetism in the classic Fe65Ni35 Invar, by combining two complementary
experimental techniques suitable for experiments in diamond-anvil cells. With
increasing pressure, the changes in the phonon entropy counteracts the change
of entropy from the spin disordering. We observe a precise cancellation of
the phonon and magnetic contributions to the thermal expansion, leading to
near-zero thermal expansion know as the Invar effect.

Electronic excitations contribute only with a minor entropy, and do not play
an important role. Spin configurations, however, are key for understanding
the Invar anomaly. This was recognized by thousands of studies. The Invar
literature consists of almost exclusively electronic and magnetic explanations.
The electronic structure of Invar might resemble that of γ-Fe, but is far more
complex. Invar does not have a strong preference of FM over AF order, leading
to several competing magnetic configurations close in energy. Non-collinear
spins seem to be necessary to compute the magnetic states of Invar, however
calculations are still unable to quantify the resulting effects on the lattice
volume, and hence the anomalous thermal expansion. The calculations by
our collaborators are therefore not fully ab initio, but take into account the
measured magnetization curves to compute the spin configurations (see details
in appendix).

Phonons are necessary to complete the thermodynamic picture. For the zero
thermal expansion of Invar, phonons need to oppose the thermal contraction
from magnetism. We provide the full thermodynamic picture, looking at all the
individual excitations, and the first comprehensive study of the role of phonons
in the Invar effect. While phonons have been previously measured in Invar
materials [36, 37, 60, 61], their effects on the anomalous thermal expansion
were not previously quantified or appreciated. Additionally, together with our
theory collaborators, we see a spin-phonon coupling in Invar. It increases the
precision of the cancellation of phonon and magnetic degrees of freedom, and
is essential for the near-zero thermal expansion.

Apart from the anomalous thermal expansion, Invar materials also have an
unusual temperature dependence of the magnetization [1]. The magnetic mo-
ments disorder much faster than expected from a Brillouin function (or than



153

observed for pure Ni or Fe). More energy than expected is absorbed by the
spins at low temperatures. This is confirmed by the relatively large magnetic
heat capacity of Fig. 5.11 even well below the Curie temperature. This ex-
cessive contribution to the magnetization has been previously attributed to
‘hidden excitations’ (because they were not detected by neutrons) [62], and
by an anomalous spin-wave damping [63, 64]. Our experiments show that
such a damping could be a result from scattering with phonons, through a
spin-phonon coupling. While the magnetization has an anomalously large de-
crease, the phonon energy (especially from longitudinal modes) changes slower
than expected. Even though we see this as a function of pressure, temperature-
dependent phonon measurements [60, 61] seem to observe the same behavior.
The coupling of phonons and spins could be responsible for transferring en-
ergy from lattice vibrations into the magnetic disordering, although further
investigation is necessary.

As showcased for Invar, the interactions between phonons and magnetic spins
can have significant thermodynamic effects, and result in macroscopic prop-
erties of magnetic materials. Including all relevant excitations is often not
possible in theoretical treatments, so experiments become essential. We pro-
posed an experimental methodology that captures effects from both phonons
and spins, and it can be extended to other materials to understand their ther-
mophysical properties. The concluding chapter of this thesis includes possible
extensions of this work.
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Chapter 6

Conclusion and future directions

This thesis studied how the different atomic excitations affect the thermody-
namics of magnetic materials. As seen for Fe-Ni alloys, most of the thermal
energy is stored as vibrations of the nuclei, but electrons and magnetic ex-
citations also play an important role. We explained macroscopic properties,
such as the anomalous thermal expansion in Invar, by carefully quantifying
the microscopic interactions of atomic vibrations, electrons, and their spins.

Our study started by quantifying the size effects of the crystalline structure
on the heat absorption of nanocrystalline Ni3Fe. All the excitations become
enhanced and capable of storing more heat in nanostructured materials. In
particular, the redistribution of spectral weights amplifies the heat capacity
of phonons and increases the vibrational entropy. This increase in entropy
is not sufficient to overcome the larger enthalpy from the extra grain bound-
aries of the nanostructure. Nanocrystalline Ni3Fe is therefore in a metastable
equilibrium compared to its bulk counterpart with larger grains.

We also examined the interactions between phonons and magnetic spins. Even
though phonons have a larger absolute contribution to the free energy, changes
due to magnetic disordering can be comparable to those from phonons. Since
the magnetic order depends on the local environment (through the Pauli ex-
clusion principle), magnetism is coupled to fluctuations of the lattice volume
caused by phonons. Iron provides a good system to study such interactions. It
has rich magnetic phase diagram, with spins excitations that can be coupled
to changes in phonon energies. This observation led to the development of a
magnetic quasi-harmonic model for Fe and Fe3C, which accounts well for the
deviation of phonon energies from pure volumetric effects of the conventional
quasi-harmonic approximation.
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Our studies of the interactions between phonons and magnetism also resulted
in a thermodynamic explanation of the Invar effect. The anomalously low
thermal expansion of fcc Fe65Ni35 has long been investigated since its discov-
ery in 1985. Most studies focused on the complex magnetic nature of Fe in
Invar, however thermal expansion cannot not be explained without includ-
ing phonons. By combining different nuclear resonant scattering techniques,
we quantified the changes in entropy from both phonons and magnetism as
a function of pressure. They have opposite effects on the thermal expansion
and cancel each other precisely in the range of Invar behavior. The precision
of this cancellation is enhanced by the coupled behavior of phonons and the
spins, leading to the Invar effect in a wide range of temperatures and pressures
in Fe-Ni.

Future directions

The complex magnetic structure of Fe gives rise to several anomalous proper-
ties. They are not limited to the Invar (and anti-Invar) effect, and definitely
not restricted to Fe-Ni materials.

Magnetic complexity often coincides with interesting anomalous themophysi-
cal behavior, and computational methods struggle particularly in those situa-
tions. Improvements in ab initio methods allow for increasingly complicated
magnetic structures [1–4], but they are still unable to quantify accurately the
thermophysical behavior because too many degrees of freedom need to be in-
cluded in minimizing the free energy. For instance, to be able to describe
the Invar behavior, our theory collaborators used experimental inputs for the
volume dependence of the magnetization.

Experiments are especially valuable in these cases where the theory still needs
to be developed. And even if the theory exists, computational methods often
encounter limitations due to computing power. In real materials, the number
of degrees of freedom grows quickly. Those arise from chemical configurations,
defects, electronic structure, magnetic spins, phonons, but also interactions
between all these excitations. Additionally, for thermophysical behavior, we
need to understand how these are affected by finite temperatures and pressures.
Calculations require large super-cells and become expensive, even for super-
computers. Experiments measure the net effect from all of these, although
isolating specific degrees of freedom remains a challenge.
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The successful experimental assessment of entropy contributions to explain
the size dependence and thermal expansion of materials can be harnessed in a
number of different directions. I conclude by exploring some possibilities for
extending our experimental work.

Anomalous thermal expansion of transition metals

An obvious next step is to look at similar abnormal behaviour in transition
metals. And there are plenty to look at. Anomalous thermal behavior tend
to appear near compositions where spins do not have a strong preference be-
tween FM and AF exchange interactions, causing complicated non-collinear
structures, with partially frustrated Fe-Fe correlations [5–8]. The resulting
anomalies are not restricted to the thermal expansion. They are usually ac-
companied by anomalous Curie and Néel temperatures, anomalous temper-
ature dependence of the magnetization and electrical resistivity, anomalous
heat capacity, anomalous elastic constants in both longitudinal and transverse
directions, and anomalous Young’s and Bulk moduli [9].

Figure 6.1 shows a few examples of abnormal thermal expansion for Fe-bearing
transition metals with different crystal structures. These include Fe-Pt, Fe-
Pd, Fe-Ti, Fe-C, Fe-Mn, and Fe-Co (the specific compositions are labeled).
Similarly to Fe-Ni, I expect the departure from the expected behavior can be
understood as a competition between a volume expansion from phonons and
a volume contraction from magnetic disordering.

Fe-32%Pd and Fe-28%Pt are ferromagnetic (FM) Invar materials (Fig. 6.1 a)
[10, 13]. Near their respective Curie transitions, where the spin disordering
is largest, the thermal expansion is suppressed. In Fe-Pt this effect is so pro-
nounced that a very large negative thermal expansion coefficient is observed
around room temperature. Compared to Fe-Pd and Fe-Pt, near-zero thermal
expansion of Fe-Ni Invar extends for a wide range of temperatures. This is
due to the spin-phonon coupling discussed in Chapter 5, that maintains the
cancellation of phonon and magnetic excitations almost up to the Curie tran-
sition. Cementite, Fe3C (Fig. 6.1 b), has an orthorhombic crystal structure,
and is also an Invar material with a similar behavior as Fe-Pd [11, 13]. The
anti-ferromagnetic (AF) Invar effect is observed in Fe-35%Ti, with Laves phase
C14 hexagonal structure. It has a considerable volumetric contraction up to
its Néel temperature [11]. Fe-30%Mn (Fig. 6.1 c), also AF, has an interesting
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Figure 6.1: Anomalous thermal expansion behavior of different transition metals. (a) Fe-
35%Ni, Fe-32%Pd, Fe-28%Pt [10]. (b) Fe-35%Ni, Fe-35%Ti, Fe3C [11]. (c) Fe-30%Mn [12]. (d)
Fe-17%Co [13].



161

thermal behavior which switches from a suppressed thermal expansion (Invar)
to an excessive expansion (anti-Invar) at the Néel transition [12]. Fe-17%Co is
FM with a bcc cystal structure (Fig. 6.1 d). Its thermal expansion has a very
similar trend as Fe-30%Mn, however the transition from Invar to anti-Invar
behavior at the Curie transition is accompanied by a structural transforma-
tion from bcc into the fcc structure [13]. Even pure Fe by itself has a dip in
the thermal expansion near its Curie transition, due to the rapid decrease in
magnetization (not shown) [13].

Understanding the Invar effect in Fe-Ni can give us clues on how to interpret
the anomalous thermal behavior of other transition metals. It seems that the
Fe-Fe correlations are the key. Even for non-crystalline solids; the Invar effect
observed in metallic glasses is also correlated to Fe-Fe distances [14]. Further
investigation is needed for tying these anomalies together, however. Mössbauer
combined with NRIXS could be a good start to probe the importance of Fe in
these anomalous behaviors.

Thermal behavior of Fe-Perovskites

There is growing interest in controlling the volume expansion of perovskites
for their technical applications. This remains a challenge, given that nega-
tive thermal expansion (NTE) is rarely seen in these materials [15]. In the
past years, however, anomalous NTE has been found in different types of per-
ovskites, such as in LaCu3Fe4O12 [16], or in BiNiO3 [17] and PbTiO3 [15].
These have been associated with charge transfers and ferroelectric transitions.

What is more interesting is that doping these compounds with different amounts
of Fe controls the thermal expansion. In general, larger amounts of Fe tend
to enhance the NTE. Substituting Mn for Fe in SrCu3Fe4−xMnxO12 system-
atically changes the thermal expansion from positive (x > 1.75), to near-zero
(x = 1.5), to negative (x < 1.25) [18]. In MgSiO3, a major components
the Earth’s lower mantle, partially replacing Mg by Fe lowers the (positive)
thermal expansion [19]. In PbTiO3, a prototype ferroelectric, the NTE is sig-
nificantly enhanced in a wide range of temperatures when partially substituted
by BiFeO3 [15, 20]. On the other hand, when Fe is replaced by Zn and Ti,
the NTE weakens, enabling near-zero thermal expansion. BiFeO3 itself has
attracted attention because it might be the only multiferroic material at room
temperature with both ferroelectric properties and magnetic order [21]. Their
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properties can be tailored by decreasing the particle size [22], with a sponta-
neous polarization that is enhanced by almost an order of magnitude in thin
films [23].

Explanations of the thermal expansion behavior in perovkistes are still lacking.
Fe-Fe correlations are not the source of the anomalous behaviour here, since
the Fe atoms are usually isolated at the center of the octahedra. The magnetic
states of Fe, however, affect the octahedral tilts [19, 24] and the tetragonality
[15], which distorts the lattice and has been related to NTE. Such geometric
arguments can fall short for explaining a dynamic behavior such as NTE, and
here again, phonons have rarely been considered in the explanations. Dis-
tortions of the lattice with different valence and spin sates of Fe do indicate
a coupling of magnetism with vibrations the lattice [24]. Additionally, the
crystalline size influences the thermal behavior of perovskites. Reducing the
particle size of PbTiO3-BiFeO3 shifts the strong NTE into positive expansion
of the lattice [25]. This is likely related to the enhanced the phonon vibrations
and magnetic fluctuations of small-sized crystals studied in Chapter 3.

The experimental methods described in this thesis could help shed light on
the anomalous thermal behavior, and their size dependencies. For perovskites,
Mössbauer and NRIXS cannot give a full thermodynamic description, because
of their resonant nature. But these techniques are ideal for targeting the Fe
atoms and studying how they contribute to abnormal behavior. In particular,
Mössbauer spectrometry is sensitive to the local chemical environment of Fe. It
can discern between distinct Fe site occupations and their spin states. NRIXS
could complements this with local vibrational information, related to the forces
of the octahedral cage on the Fe atoms.

Magnetocaloric effect

Precise knowledge of the individual entropy contributions opens possibilities
for understanding other thermophysical properties. In magnetocaloric mate-
rials, a change in entropy is tied to a variation of the temperature.

When such a material is exposed to an external magnetic field, its spins are
aligned, lowering the magnetic entropy. When the field is reduced under adia-
batic conditions (adiabatic demagnetization), the magnetic entropy increases,
while the phonon entropy decreases to maintain a constant total entropy. The
spin disordering hence lowers the atomic vibrations, resulting in a cooling ef-
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fect. When coupled to a heat sink, this effect can be exploited for magnetic
refrigeration. It is used to cool materials down to the milli-Kelvin range [26],
but has recently gained attention due to the realistic perspective for room
temperature refrigeration [27, 28]. Cooling through the magnetocaloric effect
can have a superior efficiency compared to conventional vapor-compression re-
frigeration, which could help minimizing the climate impact of our growing
demands on cooling devices [29].

Similarly to the Invar effect, the magnetocaloric effect relies on a interactions
between magnetism and phonons, and precise knowledge of their entropy be-
havior is key. A material with a large changes in magnetic entropy, and strong
couplings of spins with phonons is desired, ideally with a small thermal hys-
teresis for practical implementations. Apart from the classic Gd5Si2Ge2 [30],
the most promising candidates are Fe2P and La(Fe,Si)13 [28, 29, 31, 32], but
FeRh [33, 34] also shows large magnetocaloric effects. Iron-containing materi-
als are again at the spotlight.

The maximum attainable temperature reduction in an adiabatic demagneti-
zation process is limited by the maximum isothermal entropy change [29]:

|∆Tmax
ad | = |∆Smax

T |T/CP .

Usually, only the magnetic entropy is affected by an external field, as is the case
for Gd based materials. However, the magnetocaloric effect can be enhanced
if other excitations also contribute [29]. This requires a coupling between
the magnetic disordering and other excitations. Spin-phonon coupling has
been accordingly observed in all of the promising Fe-containing magnetocaloric
materials: FeRh [33], Fe2P [35], and La(Fe,Si)13 [29, 31].

Micro-structural size also matters here. Reducing the structure to thin-films
affects the magnetic entropy in (Mn,Fe)2(P,Si) [32], as well as the lattice dy-
namics [33] and the thermal hysteresis [34] in FeRh.

By tuning the individual entropies, exotic effects can be observed. In Ni-Mn-
Sn alloys, the change of magnetic entropy has the opposite sign, resulting in
a inverse magnetocaloric effect, or magnetic heating [36], analogous to the
anti-Invar effect.

La(Fe,Si)13 is an interesting material. Its magnetic transition from ferromag-
netic to paramagnetic is accompanied by a significant drop in the volume of
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1%. The phonons undergo an anomalous softening through the transition de-
spite the volume decrease, adding to the entropy change and enhancing the
magnetocaloric effect [29]. The volume of La(Fe,Si)13 depends on the occupa-
tion of Fe in two inequivalent sites with different magnetic states [29], strikingly
similar to Invar materials. As a result, thermal expansion anomalies are also
observed in La(Fe,Si)13, with a suppressed volume change in the FM phase
[31]. Here again, the thermal expansion can be tuned by varying the amount
of Fe, and a near-zero thermal expansion was achieved for LaFe13−2.4Si2.4 [37].

In LaFe13, the FeI is surrounded by an icosahedron cage of 12 FeII atoms.
Their precise distance is changed by doping with Si, which affects the mag-
netic exchange interactions and structural properties. Mössbauer spectrome-
try is ideal to probe such local changes, and can give the magnetic entropy
associated with the Fe atoms. Since spin-phonon coupling is important for
the magnetocaloric effect, complementary information of the Fe vibrational
spectrum through NRIXS could help complete the thermodynamic picture.

The knowledge of the individual contributions from phonons and spins are
important for building thermodynamic models of thermophysical behavior,
particularly in iron-containing materials with complex magnetic properties.
We showed how the stability of nanocrystals and the Invar effect can be ex-
plained in terms of their underlying microscopic excitations. There is still a
lot to be uncovered.
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Appendix A

Nanocrystalline Ni3Fe - x-ray diffraction analysis

A.1 Lattice parameters

In principle, the lattice parameter, a0, can be determined from the diffraction
angles, θ, using Bragg’s law:

2d sin θ = λ, (A.1)

where d is the spacing between the diffracting planes and is related to the
lattice parameter for each (hkl) diffraction peak through

dhkl =
a0√

h2 + k2 + l2
. (A.2)

In practice however, the accuracy of the lattice parameter calculated using
Bragg’s law may suffer due to experimental errors. These include misalignment
caused by the sample positioning, or by irregularities of the sample surface,
which lead to the center of diffraction not being at the center of the diffrac-
tometer’s goniometer. Nelson and Riley proposed a correction based partially
on empirical observations (see [1]). According to the Nelson-Riley method, the
error in the lattice parameter, ∆a0, has the following angle dependence:

∆a0
a0

∝ cos2 θ

sin θ
+

cos2 θ

θ
. (A.3)

A.2 Grain growth

We observed the grain growth of the nanocrystalline material by annealing it
to different temperatures. To avoid oxidation, the materials were sealed inside
quartz tubes under vacuum to be heated. x-ray diffraction was collected for
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Figure A.1: Grain sizes vs. lattice parameters. The fitted curve shows an inverse grain size
dependency of the lattice parameters in our Ni3Fe samples.

all annealed samples and the results are shown in Fig.A.2. As the annealing
temperature is increased, the diffraction peaks become narrower and sharper.
This is indicative of increasing grain sizes (which are labeled in the figure).

The broadening of the peaks is dependent on the number of atomic planes,
at a distance d from each other, are contributing to the diffraction. In a
bulk material with large crystals, a large number of planes are diffracting, and
constructive interference of the diffracted waves from each plane occurs only
at very specific angles, given by Bragg’s law (Eq.A.2). These result in sharp
diffraction peaks. On the other hand, if only a few planes are diffracting at
each nanocrystallite, partially-constructive wave interference can occur even
for relatively large deviations of θ from the Bragg angles.
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Figure A.2: X-ray diffraction patterns of the as-milled nanomaterial before and after an-
nealing to different temperatures. The annealing temperatures and the calculated grain
sizes are labeled.

Shape factor and grain size

To understand this effect, we explicitly write the equation for a scattered wave
ψ as a function of the diffracted wavevector ∆k as [1]:

ψ(∆k) = S(∆k)F(∆k)

=
lattice∑
rg

F(∆k)e−i2π∆k·rg , (A.4)

where the sum is over all the unit cells at positions rg in the lattice. The
structure factor F(∆k) gives the position of the atoms within each unit cell
and hence the type of crystal structure. In the case of Ni3Fe, the crystal takes
on a fcc structure, and F(∆k) gives the allowed diffraction angles for such a
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Figure A.3: Effect of the number of diffracting planes, N , on the width of diffraction peaks
[1].

structure, resulting in the 2θ diffraction angles seen in Fig.A.2. The shape
factor, S(∆k), does not affect the diffraction angles, but gives the number of
unit cells (or planes) that contribute to the diffraction. It therefore describes
the overall shape and size of the crystal, and the resulting broadening of the
diffraction peaks. The diffracted intensities, as those plotted in a diffraction
pattern of Fig.A.2, are given by

I(∆k) = ψ(∆k)∗ψ(∆k). (A.5)

If we assume a cubic lattice (as in a FCC crystal), the shape factor can be
expanded in a geometric series and simplified. For the x direction (and equiv-
alently in y and z) it contributes to the intensities as

S(∆kx)∗S(∆kx) =
sin2(π∆kxaxNx)

sin2(π∆kxax)
≈ sin2(π∆kxaxNx)

(π∆kxax)2
. (A.6)

The resulting effect of the number of diffracting planes, N , on the shape factor
and consequently on the shape of the diffraction peaks is illustrated in Fig.A.3.

Grain size and strain broadening

Equation A.6 can be modified and simplified to a more appropriate form for
analysing experimental data [1]. The resulting Scherrer equation

βL =
Kλ

L cos θ
, (A.7)
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explicitly relates the full width half maximum (FWHM), βL, of the diffraction
peaks to a mean grain size, L (= aN). The constant λ is the wavelength of the
radiation used for the diffraction experiment, and K is a constant that depends
on the specific crystal shape (for a flat crystallite with constant thickness it is
equal to 0.89, for example).

The size of the grains is not the only cause of broadening, however. Strains
can also broaden the diffraction peaks, and are definitely present in ball-milled
samples that were severely plastically deformed. Fortunately, these have dif-
ferent θ angle dependencies and can therefore be separated. Following the
Williamson-Hall method [2] and assuming Lorentzian profiles, the broadening
due to small grain sizes (βL) and due to strains (βε) add linearly [1]:

βtot = βL + βε

=
Kλ

L cos θ
+ 4ε tan θ .

Multiplying both sides by cos θ gives the Williamson-Hall equation:

βtot cos θ =
Kλ

L
+ 4ε sin θ , (A.8)

where ε represents an an isotropic strain field within the sample. Our samples
do not have such an isotropic behavior, so we modified the Williamson-Hall
method to include elastic anisotropy. Using the Young’s moduli measured
along different directions in a Ni3Fe single crystal [3], we rewrite the strain
as εhkl = σ/Ehkl. Assuming an isotropic stress field, σ, the Williamson-Hall
equation becomes

βtot cos θ =
Kλ

L
+

4σ

Ehkl

sin θ . (A.9)

By plotting βtot cos θ vs. 4 sin θ/Ehkl a linear dependency can be seen, where
the slope corresponds to the contribution from stress (or strains) and the
vertical offset represents the grain size broadening.

Fig.A.4 shows the Williamson-Hall plot of our samples, as-milled and an-
nealed, together with linear fits. The colors match those from from Fig.A.2
and the gray lines are measurements on additional samples as comparison. As
expected, the nanocrystalline as-milled samples show larger grain size broad-
ening (larger vertical offset) and also larger slopes due to strains compared
to the annealed samples. While the as-milled samples show a distribution of
grain sizes and strains, the bulk control samples are very similar to each other.
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Figure A.4: Williamson-Hall plot of the XRD data (+) and linear fits to the data (solid
lines). Colored lines represent samples annealed at increasing temperatures (see Fig. A.2),
from as-milled nanocrystalline samples (blue) to bulk control samples (red). Gray lines
correspond additional as-milled and bulk samples as comparison.

Absolute values of the grain sizes were determined by comparing the broaden-
ing of our samples with those from previous work with crystallites of 6 nm [4]
using the Scherrer Equation. The resulting grain sizes and RMS strains are
shown in Fig.A.5 as a function of the annealing temperature. The resulting
RMS strain of the as-milled nanocrystalline sample is 0.77%, very similar to
the 0.75% strain reported in [5].



173

Figure A.5: Grain sizes (•) and RMS strains (+) as functions of the annealing temperature,
determined by the anisotropic Williamson-Hall method.
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Appendix B

Thermodynamic origin of the Invar effect

Sample and DAC preparation

The 57Fe65Ni35 Invar materials (in atomic %) were prepared by arc-melting
iron and high-purity nickel (99.99 %). Arc-melting was performed under an
argon atmosphere with a titanium getter to avoid oxidation of the samples.
The experimental techniques used, NRIXS and NFS, are only sensitive to the
57Fe isotope of iron, which has a natural abundance of 2.2%. To enhance the
measured signal, the alloys were prepared with 57Fe enriched by 95.73 % (from
Isoflex).

The arc-melted ingots were then rolled to thin foils of material, as required by
the experimental techniques. For x-rays of 14.41 keV (energy used for NRIXS
and NFS) the attenuation length is about 20µm for Fe and 15µm for Ni. This
is the depth at which the x-ray intensity falls to 1/e, still strong enough to be
detected. An intensity of ∼ 1/e also implies that enough energy was absorbed
by the sample to excite the inelastic spectrum of phonons. The attenuation
length therefore represents a good sample thickness for NRIXS experiments.

To achieve samples thicknesses between 10-20µm, the material had to be rolled
in a rolling mill several times. Rolling, however, introduces internal stresses,
which stiffen the material and impede further thickness reduction. To reduce
the thickness further, the stresses need to be released through a heat treatment.
Samples were annealed at 600◦C for a few hours inside vacuum-sealed quartz
tubes (to avoid oxidation). This process of rolling and annealing was repeated
until the desired sample thickness was achieved. A final annealing for about
15 h after is important, so that the experiments are performed on relaxed
samples. It also reduces texturing of diffraction patterns, which occurs when
crystals within the sample have a preferred orientation.
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NRIXS data anaylisys

To acquire an NRIXS spectra, we scan the energy of the incoming x-ray beam
to excite the phonons. An average of 6 scans were performed from – 60 to
80meV, with 561 points and 3 s acquisition time per point. A larger number
of scan is typically needed as the pressure is increased. The raw NRIXS data,
with the added counts for all scans, is shown in Fig. B.1. The error bars
correspond to the standard deviation between the different scans. The data at
21.3GPa was collected at the last remaining hours of a beamtime (4 scans),
so the statistical quality is impaired.

Due to the resonant nature of the NRIXS technique, there is no background
signal (except for a constant background from detector noise). This results
in very low intensities at low and high energies. The weak signal seen at
energies beyond ±40meV stem mostly from multi-phonon contributions, where
an incoming x-ray excites more than one phonon.

The process of computing the phonon DOS from the NRIXS spectrum is ex-
plained in Chapter 2. First, we remove the elastic peak by fitting the resolution
function of the instrument to the NRIXS signal. Then, a constant background
from detector noise is subtracted from the signal. We define a cutoff energy
and integrate the resulting DOS above the cutoff. A background that mini-
mizes the integral above the cutoff is chosen through an automated iterative
process. We then use the PHOENIX software [6, 7] to separate the one-phonon
from the multi-phonon contributions. These are shown in Fig. B.2.

The error bars of the computed phonon DOS (shown in Fig. 5.17) were prop-
agated from the standard deviation of sequential NRIXS scans. PHOENIX
defines, by default, an error for the NRIXS data that follows a Gaussian dis-
tribution with an uncertainty of

√
N , where N is the number of counts. It

propagates this error into the computed phonon DOS and entropy. We find
that this Gaussian error underestimated the errors calculated by the standard
deviation of our NRIXS scans. Moreover, PHOENIX does not allow us to
define a cutoff energy for the entropy calculation. We therefore propagated
the standard deviation errors of the NRIXS scans to the phonon DOS and the
entropy by a Monte-Carlo method.

For calculating the entropy with Eq. 1.14, we need to truncate the energy
integral and define a cutoff energy. We could integrate the entire measured
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Figure B.1: Raw NRIXS spectra of 57Fe65Ni35, showing the inelastic spectrum of phonons in
Invar. The data were collected at beamline 3 ID-D of the APS with samples inside diamond-
anvil cells. The strong elastic peak at E = 0 is about two orders-of-magnitude larger than
the inelastic signal.
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Figure B.2: Contributions from one-phonon and multi-phonon scattering events to inelas-
tic spectrum of 57Fe65Ni35. Lighter tints correspond to higher pressures. The one-phonon
contribution (with removed elastic peak) has a clear cutoff at about 40 meV. Multi-phonon
contributions, where an x-ray excites more than one phonon, become more prominent at
higher energies.

DOS (up to 80meV), however the spectrum at high energy contains only noise
without phonon information. The distribution of phonon occupancy is not
flat with energy; it is much larger at low energies due to the bosonic nature of
phonons. When computing the entropy, we calculate a weighted integral of the
DOS with the phonon occupancy factor, and even a zero-mean noise can have a
non-zero contribution. To choose a cutoff energy consistently for all pressures,
we defined a cutoff at 10meV above the energy of the longitudinal mode. The
positions of this mode were found by fitting the DOS to three asymmetric
Lorentzians (see Fig. 5.18). This same cutoff was used for determining the
constant background discussed above. Other cutoff criteria were tested, but
they all gave similar results. Some shifted the entire phonon entropy by a
little amount, in the order of 0.01 kB/atoms at most (less than the error bars
reported in Fig. 5.19). For determining the thermal expansion and the Invar
effect we need to compute accurate entropy shifts. This requires a precise
entropy and not necessarily highly accurate absolute values.
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Figure B.3: Examples of snapshots used in the TDEP calculations at 300 K. These include
chemical disorder of the Fe and Ni atoms, temperature and pressure induced vibrational
disorder (displacements of nuclei in the supercell) and magnetic disorder (randomness of
the non-collinear spins).

Measurement guided ab initio calculations

The calculations described here were performed by Matthew Heine1 under the
supervision of David Broido1 and Olle Hellman2. The methods are described
in more depth in [8, 9].

As reviewed in section 5.3, Invar has a complex magnetic phase, with multiple
sates close by in energy that compete with each other. As a result, there is still
no fully accepted theory to describe magnetism in Invar systems. To circum-
vent this problem, no specific physical mechanism for the magnetic interactions
is assumed. A hybrid approach is adopted that integrates the measured mag-
netization data into the calculations, and computes the phonons from first
principles.

The calculations were performed at room temperature within the framework
of the Temperature Dependent Effective Potential (TDEP) approach [9–11].
This method incorporates the renormalization of phonon modes by chemical
disorder (i.e., alloys), temperature and pressure-induced vibrational and mag-
netic disorder, spin-lattice coupling, and local environment effects. Fully non-
collinear magnetism with spin-orbit coupling was included. Magnetism adds
several new coordinates to the phonon calculations in TDEP. They become
therefore expensive requiring large computing power.

1Dept. of Physics, Boston College, Chestnut Hill, MA 02467, USA
2Dept. of Molecular Chemistry and Materials Science, Weizmann Institute of Science,

Rehovoth 76100, Israel
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In short, several snapshots atomic configurations are generated for each pres-
sure/volume as exemplified in Fig. B.3. The atomic displacements from their
equilibria is consistent with the thermal disorder of phonons. Only snapshots
with spin configurations that are consistent with the measured magnetization
at that volume are used. This ensures that all snapshots represent thermody-
namically relevant microstates, without relying on a specific magnetic model.
The macrostate of the material is then computed by the an ensemble aver-
age of those. For each snapshot, ab initio calculations of the forces on the
atoms are performed using DFT (VASP). Phonon modes can be computed
from the interatomic force constants (IFCs) by diagonalizing the dynamical
matrix. These phonon modes are then used to generate a new set of snapshots,
and the procedure is repeated until self-consistency is achieved. Spin-lattice
effects are captured implicitly in the effective IFCs, since these are fitted to
reproduce all effects present in the DFT calculations.

Calculations were very important to study the effects of magnetism on the
lattice vibrations. By artificially fixing the spin orientations and magnitudes,
for example, we were able study how the lattice would behave without magnetic
effects. It gave us direct evidence of a spin-lattice coupling in Fe65Ni35, which
is at the core of the Invar effect.
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Appendix C

Invar effect at low temperatures

In addition to the room temperature analysis of Chapter 5, we also conducted
experiments on 57Fe65Ni35 Invar at 30K with samples inside a mini-panoramic
DAC that can be cooled (see Chapter 2 for methods). The Curie transition
happens at higher pressures at 30K, allowing us to study whether the Invar
region of near-zero thermal expansion is also extended in pressure.

The phonon density of states (DOS) computed from the NRIXS spectra are
shown in Fig. C.1 a. The count rate of cryogenic experiments is lower than
those at room temperature. Only two detectors (instead of three) can be used
due to the geometric constraints of the cryogenic setup. The DAC also has
to be insulated inside a shroud, with windows that attenuate the signal. This
results in noisier data with larger error bars than at room temperature.

At 30K, phonons are mostly excited at very low energies below 3meV. The
Planck distribution describing the phonon occupancy is accordingly only large
at low energies as shown in Fig. 1.5. When calculating the phonon entropy,
the DOS is weighted by the Planck distribution in Eq. 1.14, so the low energy
region of the DOS is crucial to compute the entropy at 30 K. The subtraction
of the elastic peak of the NRIXS spectrum, which extends to about 4meV
(see Fig. B.1), becomes the critical step in the data analysis. We therefore,
subtracted the elastic peaks with two alternative methods: (1) by fitting the
resolution function of the instrument to the elastic line using the PHOENIX
software [6, 7], and (2) by choosing an energy range to replace the elastic
peak by an interpolated baseline function using the SciPhon software packed
[12]. SciPhon gives slightly smoother phonon DOS below 7meV. The phonon
entropies calculated with both methods are consistent, with nearly the same
pressure dependence, with SciPhon resulting in entropies that are offset by
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Figure C.1: Nuclear resonant measurements on Invar at 30 K. (a) Partial phonon DOS of 57Fe
at increasing pressures computed from NRIXS measurements using the PHOENIX software
package. (b) Time interference of nuclear states due to magnetic splitting measured by NFS.
The intensity modulations disappear around 11 GPa corresponding to the Curie transition.

about 0.01 kB/atom with respect to the PHOENIX analysis. For studying the
thermal expansion and the Invar effect, only the pressure dependence matters,
so for consistency with the data set at room temperature, we present the data
analysis using PHOENIX. The resulting entropy as a function of pressure is
shown in Fig. C.2 b. The change in phonon entropy between 0.3 and 7.1GPa
is approximately 0.08 kB/atom, about half of the entropy change in the Invar
region at room temperature.
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To complement the phonon analysis we also measured the magnetic state of
the material through synchrotron Mössbauer experiments. The intensity mod-
ulations of the time-domain Mössbauer spectra of Invar at 30K are presented
in Fig. C.1 b. The magnetic beat patterns extend to approximately 10 GPa.
Above 11.5GPa the material is paramagnetic. Fits of the Mössbauer spectra
using the CONUSS software package [6, 7] are shown as solid lines in Fig. C.1 b.
These fits allow us to compute the distribution of the hyperfine magnetic field
(HMF) around the 57Fe nuclei. The mean of these distributions, proportional
to the magnetization of the iron atoms, are shown in Fig. C.2 a. A mean-field
model fit gives Curie transition at approximately 11GPa. The fits of the HMF
of Fig. C.1 b can be further optimized, especially those at 7.1 and 8.1GPa, but
this would not have a significant effect on the mean of the HMF distributions
of Fig. C.2 a.

The magnetic entropy was computed from the normalized hyperfine magnetic
fields of Fig. C.2 a using Eq. 5.4. As for the analysis at room temperature, we
calibrate the total magnetic entropy at the Curie transition by heat capacity
measurements. We extrapolated the heat capacity of Fig. 5.11 to 0K giving
a total entropy change of 0.15 kB/atom between 0K and the Curie transition.
The resulting magnetic entropy as a function of pressure is shown in Fig. C.2 b.
It opposes the decreasing phonon entropy with pressure.

The sum of both contributions from phonons and spins gives a nearly unchang-
ing entropy up to approximately 7GPa (black curve in Fig. C.2 b). Electrons
should have only a small contribution to the entropy, as is the case at room
temperature. The nearly unchanging total entropy below 7GPa should result
in a near-zero thermal expansion by Eq. 5.1, i.e. the Invar effect. Curiously,
in contrast to the analysis at room temperature, the entropy increases above
the region of Invar behavior. This is due to the increase of the magnetic en-
tropy up to the Curie transition, which overcomes the decrease of the phonon
entropy. Above the Curie transition, the behavior is dominated by phonons
and the total entropy decreases accordingly.

The data analysis presented here is preliminary and requires further refine-
ment. In particular, the phonon entropy is very sensitive to the noise in the
data at low energies as discussed above. Additional x-ray diffraction experi-
ments that can explicitly measure the thermal expansion would be helpful for
the analysis of the Invar behavior at 30K. However, our analysis of the entropy
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Figure C.2: Magnetism and entropies of Invar at 30 K (a) Mean hyperfine magnetic field,
Bhf , obtained by fitting the data of Fig. C.1 b. (b) Phonon entropy, Sph, computed from the
phonon DOS of Fig. C.1 a, compared to magnetic entropy, Smag, calculated from the normal-
ized hyperfine magnetic field of panel a and calibrated by heat capacity measurements.
The sum of both entropies remains mostly unchanged up to about 7 GPa, the region where
the Invar effect is expected to be observed.
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contributions from phonons and spin 30K is consistent with the analysis of
Invar behavior at room temperature. It seems like the Invar effect in Fe65Ni35
is extended up to 7 GPa at these low temperatures.
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