TOTAL SYNTHESIS OF LUPIN ALKALOIDS, DITERPENOID ALKALOIDS, AND PROGRESS TOWARDS THE MYRSINANE DITERPENES.

Thesis by
Jeff K. Kerkovius

In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy
 Caltech

CALIFORNIA INSTITUTE OF TECHNOLOGY
 Pasadena, California

2023
(Defended May 31, 2023)

Jeffrey Kevan Kerkovius

ORCID: 0000-0001-5692-0285

All Rights Reserved

To Miranda, Aelin, Kevan, Jenny, Mike, and Sushi

ACKNOWLEDGEMENTS

First and foremost, I want to thank my family for their unwavering support during my degree. Miranda, you are the support structure in my life. You have been there through all my ups and downs and have helped me through it all. You are the best. I love our family with Aelin and I look forward to what the future will bring! Aelin, you can't talk yet, but you are so darn cute. I know you will grow up to be an awesome human one day! Just don't forget about your old man! Mom and Dad, thank you so much for providing me with advice, money, and food over the years. The help you have provided has been instrumental in my success to date. Mike, you have been a great younger brother and whether you liked it or not. It's always fun to try out food stuff and play video games together.

To the Reisman lab, you all are an awesome bunch and I have enjoyed hanging out with all of you at various times. I may have made my passion for sushi well known, and I hoped that I can pass that onto other members of the Reisman Lab. I starting in the early days of the lab with Sean Feng where we would travel around Pasadena testing the various sushi places then rating them on a graph of price versus quality (the answer is always sushi gen). Karaoke has been a really fun pastime in the Reisman lab where it's a blast to sing your heart out to random songs, what a good time (go to Pharoah Karaoke Lounge in Korea town). I have also loved going on hiking trips into the san Gabriel mountains, which has been a blast. The wilderness has tons of exploration, discovery, and tranquility to offer and is a really nice escape from the busy life of graduate school.

I also want to thank the PI's I have had over the years. Fred Menard was instrumental in starting my research journey, teaching me how to operate as an
independent scientist. Mike Kerr helped to fine tune my abilities as a scientist, and I am super grateful for his guidance during my master's degree. Sarah Reisman has helped me to become a highly rigorous scientist, which has helped me to solve really challenging synthetic problems that I am proud of. I look forward to where my next steps will bring me and what I can learn!

Abstract

The interplay between total synthesis and methodology is a driver of innovation in organic synthesis. Challenging bond formations in complex systems necessitate the development ever more robust new reactions, which intern can enable more efficient syntheses. The need for powerful synthetic organic chemistry can't be understated because of its utility in applications such as medicine, petrochemicals, plastics, and agrichemicals.

Herein, we present how total synthesis drives innovation in organic chemistry. First, a novel cyclization reaction between pyridine and glutaryl chloride is discussed, which has enabled the synthesis of seven lupin alkaloids. Next, the development of a convergent fragment coupling tactic based upon the semi-pinacol rearrangement is evaluated for its generality inspired by the total synthesis of several C19 diterpenoid alkaloids. Lastly, a convergent fragment coupling approach is applied to the total synthesis of falcatin A based upon a Mukaiyama Michael tandem Mukaiyama aldol reaction.

PUBLISHED CONTENT AND CONTRIBUTIONS

Portions of the work described herein were disclosed in the following publications:

1. Wong, A. R.; Fastuca, N. J.; Mak, V. W.; Kerkovius, J. K.; Stevenson, S. M.; Reisman, S. E. Total Synthesis of the C19 Diterpenoid Alkaloids (-)-Talatisamine, (-)Liljestrandisine, and (-)-Liljestrandinine by a Fragment Coupling Approach. ACS. Cent. Sci. 2021, 7, 1311-1316.

DOI: 10.1021/acscentsci.1c00540

J. K. K. contributed to route optimization of the bicyclo[3.2.1]octane and scale up efforts.
2. Kerkovius, J. K.; Stegner, A.; Turlik, A.; Lam, P. H.; Houk, K. N.; Reisman, S. E. A Pyridine Dearomatization Approach to the Matrine-Type Lupin Alkaloids. J. Am. Chem. Soc. 2022, 144, 15938-15943.

DOI: 10.1021/jacs.2c06584
J. K. K. conceived the synthetic strategy, conducted experiments, and participated in preparation of the supporting data and writing of the manuscript.
3. Kerkovius, J. K.; Wong, A. R.; Mak, V. W.; Reisman, S. E. A convergent fragment coupling strategy to access quaternary stereogenic centers. Chem. Sci. 2023, Accepted. DOI: 10.1039/D2SC07023E
J. K. K. conducted experiments and participated in preparation of the supporting data and writing of the manuscript.

TABLE OF CONTENTS

CHAPTER 1 1
Total Synthesis as a Driver of Innovation
1.1 INTRODUCTION 1
1.2 TOTAL SYNTHESIS AND INNOVATION 2
1.2.1 The Nozaki-Hiyama-Kishi Reaction 2
1.2.2 Palau'chlor 2
1.2.3 Biomimetic Synthesis. 3
1.2.3 Summary 5
1.3 THESIS OUTLINE 6
1.3.1 Total Synthesis of Lupin Alkaloids 6
1.3.2 Convergent Fragment Coupling via the Semi-Pinacol Rearrangement 7
1.3.1 Progress Towards the Total Synthesis of Falcatin A 8
1.4 CONCLUDING REMARKS 9
1.5 NOTES AND REFERENCES 10
CHAPTER 2 13
A Pyridine Dearomatization Approach to the Matrine-type Lupin Alkaloids
2.1 INTRODUCTION 13
2.2 MATRINE TYPE LUPIN ALKALOIDS 14
2.2.1 Biosynthesis and Bioinspired Synthesis 14
2.2.2 Previous Syntheses 16
2.3 KEY CYCLIZATION STEP 17
2.3.1 Initial Reaction Hit 17
2.3.2 Mechanistic Investigation of the Cyclization Cascade 18
2.3.3 Attempted Enantioselective Cyclization 21
2.3.4 Cyclization of Pyridine Derivatives 22
2.4 COMPLETION OF THE SYNTHESIS 24
2.4.1 Global Reduction 24
2.4.2 Isomatridine as a Ligand 26
2.4.3 C15 Selective Oxidation. 27
2.4.4 Isomatrine Isomerization 31
2.5 SPARTEINE AND LUPININE 33
2.5.1 Total Synthesis of Lupinine 33
2.5.1 Total Synthesis of Sparteine. 33
2.6 CONCLUDING REMARKS 34
2.7 EXPERIMENTAL SECTION 35
2.8 X-RAY CRYSTALLOGRAPHY REPORTS 151
2.9 COMPUTATIONAL METHODS 189
2.10 NOTES AND REFERENCES 231

APPENDIX $1 \quad 236$
Spectra Relevant to Chapter 2

CHAPTER 3 311
A Convergent Fragment Coupling Strategy to Access Quaternary Stereogenic Centers
\qquad
3.2 CONVERGENT FRAGMENT COUPLING USING A 1,2-ADDITION SEMIPINACOL REARRANGEMENT SEQUENCE ... 312
3.2.1 Challenges with Quaternary Stereocenter Formation .. 312
3.2.2 Reaction Optimization.. 313
3.2.3 Substrate Scope .. 315
3.2.4 Product Derivatization... 318
3.3 CONCLUDING REMARKS .. 319
3.4 EXPERIMENTAL SECTION ... 320
3.5 NOTES AND REFERENCES .. 388

APPENDIX 2393
Spectra Relevant to Chapter 3

CHAPTER 4 482
Progress Towards the Total Synthesis of Falcatin A
4.1 INTRODUCTION... 482
4.2 MYRSINANE DITERPENES AND FALCATIN A.. 483
4.2.1 Prior Efforts Towards Falcatin A ... 483
4.2.2 A Palladium Catalyzed Cascade Approach to Falcatin A 485
4.2.3 A Nozaki-Hiyama-Kishi Approach to Falcatin A. 486
4.3 CURRENT EFFORTS TOWARDS FALCATIN A 487
4.3.1 A Three Component Coupling Strategy 487
4.3.2 Fluoride Mediated Mukaiyama Michael Addition Discovery 488
4.3.3 A Tandem Mukaiyama Michael Mukaiyama Aldol Addition 490
4.3.3 Attempted Seven Membered Ring Closure. 491
4.5 CONCLUDING REMARKS 492
4.6 EXPERIMENTAL SECTION 493
4.7 NOTES AND REFERENCES 510
APPENDIX 3 513
Spectra Relevant to Chapter 4
ABOUT THE AUTHOR 526

LIST OF ABBREVIATIONS

[list the abbreviations used in your thesis, in alphabetical order, examples below]

$[\alpha]_{\mathrm{D}}$	angle of optical rotation of plane-polarized light
Å	angstrom(s)
Ac	acetyl
acac	acetylacetonate
alk	alkyl
aq	aqueous
Ar	aryl
atm	atmosphere(s)
Bn	benzyl
Boc	tert-butoxycarbonyl
bp	boiling point
br	broad
Bu	butyl
${ }^{i} \mathrm{Bu}$	iso-butyl
${ }^{n} \mathrm{Bu}$	butyl or norm-butyl
${ }^{s} \mathrm{Bu}$	sec-butyl
${ }^{t} \mathrm{Bu}$	tert-butyl
Bz	benzoyl
c	concentration of sample for measurement of optical rotation
${ }^{13} \mathrm{C}$	carbon-13 isotope

${ }^{\circ} \mathrm{C}$	degrees Celsius
$c a$.	circa
calc'd	calculated
CAM	cerium ammonium molybdate
cat.	catalyst
Cbz	benzyloxycarbonyl
cis	on the same side
cm^{-1}	wavenumber(s)
cod	1,5-cyclooctadiene
conc.	concentrated
conv.	conversion
Cp	cyclopentadienyl
Cy	cyclohexyl
Cyp	cyclopentyl
Δ	heat or difference
δ	chemical shift in ppm
d	doublet
d	deutero or dextrorotatory
D	deuterium
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCE	1,2-dichloroethane
DIPEA	N, N-diisopropylethylamine; Hunig's base
DIBAL	diisobutylaluminum hydride

DFT	density functional theory
DMAP	4-(dimethylamino)pyridine
DME	1,2-dimethoxyethane
DMF	N, N-dimethylformamide
DMPU	N, N-dimethylpropylene urea
DMSO	dimethylsulfoxide
dr	diastereomeric ratio
dtbpy	4,4'-di-tert-butyl-2,2'-bipyridine
E	methyl carboxylate ($\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$
E^{+}	electrophile
E	trans (entgegen) olefin geometry
ee	enantiomeric excess
e.g.	for example (Latin: exempli gratia)
EI	electron impact
epi	epimeric
equiv	equivalent(s)
ESI	electrospray ionization
Et	ethyl
et al.	and others (Latin: et alii)
FAB	fast atom bombardment
g	gram(s)
GC	gas chromatography
h	hour(s)

${ }^{1} \mathrm{H}$	proton
[H]	reduction
HAT	hydrogen atom transfer
hex	hexyl
HMDS	hexamethyldisilazane
$h v$	light
HPLC	high performance liquid chromatography
HRMS	high resolution mass spectrometry
Hz	hertz
IC_{50}	half maximal inhibitory concentration (50\%)
i.e.	that is (Latin: id est)
in situ	in the reaction mixture
IPA	isopropanol
IR	infrared spectroscopy
J	coupling constant
k	rate constant
kcal	kilocalorie(s)
kg	kilogram(s)
L	liter or neutral ligand
l	levorotatory
LA	Lewis acid
LC/MS	liquid chromatography-mass spectrometry
LDA	lithium diisopropylamide

LED	light-emitting diode
m	multiplet or meter(s)
M	molar or molecular ion
m	meta
μ	micro
m-CPBA	meta-chloroperbenzoic acid
Me	methyl
mg	milligram(s)
MHz	megahertz
\min	minute(s)
mL	milliliter(s)
mol	mole(s)
MOM	methoxymethyl
mp	melting point
Ms	methanesulfonyl (mesyl)
MS	molecular sieves or mass spectrometry
m / z	mass-to-charge ratio
NBS	N -bromosuccinimide
ND	not determined
NHC	N -heterocyclic carbene
NHK	Nozaki-Hiyama-Kishi
NHP	N-hydroxyphthalimide
nm	nanometer(s)

NMP	N -methyl-2-pyrrolidone
NMR	nuclear magnetic resonance
o	ortho
[O]	oxidation
p	para
Ph	phenyl
pH	hydrogen ion concentration in aqueous solution
Piv	pivaloyl
$\mathrm{p} K_{a}$	acid dissociation constant
Pr	propyl
${ }^{i} \mathrm{Pr}$	isopropyl
${ }^{n} \mathrm{Pr}$	propyl or norm-propyl
py	pyridine
q	quartet
quant.	quantitative
R	alkyl group
R_{L}	large group
R	rectus
RCM	ring-closing metathesis
recry.	recrystallization
ref	reference
R_{f}	retention factor
rt	room temperature

S	singlet or seconds
S	sinister
sat.	saturated
SET	single-electron transfer
SFC	supercritical fluid chromatography
SM	starting material
t	triplet
TBAF	tetra- n-butylammonium fluoride
TBS	tert-butyldimethylsilyl
Tf	trifluoromethanesulfonyl
TFA	trifluoroacetic acid
temp	temperature
THF	tetrahydrofuran
TIPS	triisopropylsilyl
TLC	thin layer chromatography
TMEDA	N, N, N ', N '-tetramethylethylenediamine
TMS	trimethylsilyl
TOF	time-of-flight
tol	toluene
trans	on the opposite side
Ts	para-toluenesulfonyl (tosyl)
UV	ultraviolet
vide infra	see below

v/v	volume per volume
w/v	weight per volume
X	halide
xs	excess
Z	cis (zusammen) olefin geometry

Chapter 1

Total Synthesis as a Driver of Innovation ${ }^{\dagger}$

1.1 INTRODUCTION

Total synthesis has been an important and impactful field of organic chemistry ever since its conception in the mid-1800s, where Wohler's synthesis of urea and Kolbe's synthesis of acetic led to the downfall of vitalism. ${ }^{1-3}$ Often the targets of total synthesis are natural products, which frequently have potent biological activity. Structure activity relationship (SAR) studies of natural products can be enabled through total synthesis because it might not be possible to modify the natural product directly. ${ }^{4}$ In addition, total synthesis can be used to help validate biosynthetic hypotheses, which often results in a concise and elegant approach towards a natural product. ${ }^{5}$ As a core area of organic chemistry, total synthesis acts as a driver of innovation where it inspires the development of new reactions and reagents. ${ }^{6}$ Highlighted in this chapter are examples of the innovation that total synthesis

[^0]has inspired and how it relates to the work presented in this thesis.

1.2 TOTAL SYNTHESIS AND INNOVATION

1.2.1 The Nozaki-Hiyama-Kishi Reaction

Kishi encountered difficulty in the total synthesis of palytoxin when attempts to couple 1 to 2 using traditional methodologies failed. ${ }^{7}$ Inspiration for solving the problem was derived from a paper that reported alkenyl chromium species could undergo 1,2-addition into aldehydes. ${ }^{8}$ However, the batch of chromium (II) chloride greatly influenced the yield of the reaction, what Kishi referred to as a technical difficulty. It was eventually found that traces of other metals in the chromium (II) chloride were required for success. Through the addition of nickel or palladium salts the reproducibility issues were solved and the reaction was rendered reproducible (Scheme 1.1). ${ }^{9}$ This reaction is now known as the Nozaki-Hiyama-Kishi (NHK) reaction and is a powerful tool regularly utilized in natural product synthesis. ${ }^{10}$

Scheme 1.1. Application of NHK reaction to the synthesis of palytoxin.

1.2.2 Palau'chlor

The development of new reagents can also be inspired by total synthesis efforts. During a mechanistic investigation of the chlorospirocyclization of $\mathbf{4}$ to $\mathbf{6}$ in the total synthesis of
axinellamines, Baran hypothesized that N-chloroguanidine formation could be key for the success of the reaction (Scheme 1.2A). ${ }^{11}$ Inspired by this hypothesis, Baran synthesized N chlorobis(Boc)guanidine and found that it was a highly effective chlorinating reagent in the chlorospirocyclization of a model substrate. Optimization of this novel guanidinium based chlorinating agent led to the discovery of Palau'chlor (9), which is a bench-stable, commercially available chlorinating agent that showed improved yields when compared to other known chlorinating agents. For example, imidazopyridine 7 underwent chlorination in 5% yield with NCS while Palau'Chlor formed $\mathbf{8}$ in 90% yield under identical conditions (Scheme 1.2B). In addition, the chlorination of arenes such as anisole (10) by Palau'chlor was found to be high yielding and regioselective for para-chlorination (Scheme 1.2C). ${ }^{12}$

Scheme 1.2. Development of Palau'chlor during the total synthesis of the axinellamine alkaloids.

1.2.3 Biomimetic Synthesis

While total synthesis can inspire the development of novel methods and reagents,
total synthesis strategies can alternatively be inspired by biosynthetic hypotheses. Bioinspired or biomimetic total synthesis can be used to validate biosynthetic hypotheses, providing evidence that specific transformations can occur in biological systems. Bioinspired syntheses can be highly efficient due to following the innate reactivity of a natural product. A highlighted example of total synthesis being used to validate a biosynthetic hypothesis is in the synthesis of the endiandric acids by Nicolaou (Scheme $1.3 \mathrm{~B})^{13}$. Endiandric acid (15) is a potent antimicrobial compound that is formed as a racemate. ${ }^{14}$ It was hypothesized that instead of an enzymatic cyclization, polyene $\mathbf{1 2}$ could first undergo an 8π conrotatory electrocyclic cyclization to yield $\mathbf{1 3}$, which could undergo a 6π disrotatory electrocyclic cyclization to form $\mathbf{1 4}$, followed by a [4+2] cycloaddition to reach endiandric acid C (15) (Scheme 1.3A) ${ }^{15}$. Nicolaou synthesized ene-yne 16, and performed a partial hydrogenation using Lindlar's catalyst. ${ }^{13}$ Presumably polyene 17 was produced from the hydrogenation, which spontaneously underwent an 8π conrotatory and 6π disrotatory cyclization cascade to yield diene 18 . While diene $\mathbf{1 8}$ could be isolated, direct heating of the reaction mixture promoted the $[4+2]$ cycloaddition to yield a mixture of endiandric acid methyl esters $\mathrm{B}(\mathbf{1 9)}$ and $\mathrm{C}(\mathbf{2 0})$ in a $4.5: 1$ ratio in 28% yield. The production of a natural product scaffold from a linear precursor (16) in a single step is an elegant approach towards these natural products and helped to validate the biosynthetic hypothesis for their formation.

Scheme 1.3. Bio- and total synthesis of the endiandric acids.

1.2.4 Summary

As highlighted in the previous examples, the innovation that total synthesis inspires is a central theme in organic chemistry and to the work presented in this thesis. The biosynthesis of the lupin alkaloids inspired our retrosynthetic analysis, which led to the discovery of a novel cascade cyclization reaction between pyridine and glutaryl chloride to form the entire carbocyclic scaffold of the natural products in a single step. We developed a 1,2-addition semi-pinacol rearrangement sequence to form quaternary stereocenters via a convergent fragment coupling approach motivated by our total synthesis of the C19 diterpenoid alkaloids. Progress towards the total synthesis of falcatin A has been
enabled by methodologies such as the TASF(Me) mediated Mukaiyama-Michael addition, and NHK reaction, showcasing that innovative methods and reagents can help to produce innovative syntheses.

1.3 THESIS OUTLINE

1.3.1 Total Synthesis of Lupin Alkaloids

The second chapter of this thesis is focused on the total synthesis of the matrine-type lupin alkaloids (25-29) (Scheme 1.4). ${ }^{16}$ Select members from this family of alkaloids have been shown to possess anti-cancer activity (matrine (26), sophoridine (28)), , ${ }^{17-19}$ while other members of these alkaloids (isomatrine (25), isosophoridine (29)) have not yet had their biological activity evaluated because they are not readily available from natural sources. The lack of availability of all the matrine-type lupin alkaloids motivated us to synthesize previously inaccessible members of this family of natural products. ${ }^{17,18}$

Our proposed synthesis was inspired by the biosynthesis of the lupin alkaloids leading us to design a cascade cyclization between glutaryl chloride (22) and pyridine (21). We found that this cyclization occurred in good yields to produce the entire carbon scaffold of isomatrine (23), including three of the four stereocenters present in the natural product. We were able to synthesize isomatrine (25) with this route, and isomerize isomatrine into an additional five alkaloids, four of which are known natural products. In summary, the biosynthesis of the matrine type-lupin alkaloids inspired us to develop novel chemistry to access this family of natural products, including isomatrine (25) and sophoridine (28), which have not yet been synthesized to date.

Scheme 1.4. Total synthesis of matrine-type lupin alkaloids.

1.3.2 Convergent Fragment Coupling via the Semi-Pinacol

Rearrangement

The third chapter of this thesis focuses on the development of the semi-pinacol reaction in the context of our C19 diterpenoid alkaloid syntheses (Scheme 1.5). ${ }^{20}$ In our key strategic disconnection, we coupled $\mathbf{3 1}$ and $\mathbf{3 2}$ by a 1,2-addition semi-pinacol rearrangement sequence to convergently form a quaternary stereocenter (33) in high yield. Our total synthesis inspired us to investigate the generality of this transformation towards forming quaternary stereocenters in polycyclic systems. ${ }^{21}$ We found that the reaction could tolerate a variety of functional groups including enol ethers, allylic silyl ethers, alkenyl and aryl bromides, esters, and aryl triflates. The yields for the semi-pinacol rearrangement were uniformly high and this strategy is currently being leveraged for the total synthesis of additional diterpenoid alkaloids in our lab.

Scheme 1.5. Convergent fragment coupling approach to quaternary stereocenters.

31
31

32
 33a

talatisamine (34)

1.3.3 Progress Towards the Total Synthesis of Falcatin A.

The fourth chapter of this thesis focuses on work towards the total synthesis of falcatin A (43), a highly oxygenated myrsinane diterpene (Scheme 1.6B). ${ }^{22}$ The central sevenmembered ring was a key strategic challenge and major focus for our proposed synthesis. We found that a three-component coupling between enone 37, silyl enol ether 38, and aldehyde 39 could rapidly incorporate all the required carbons for the natural product. These precursor building blocks are all readily accessible in two steps or less from commercial materials allowing us to rapidly generate molecular complexity. Focus has now shifted towards the formation of the central seven membered ring through an NHK reaction or lithiation 1,2-addition. Enabling methodologies such as the NHK reaction and Mukaiyama aldol addition are helping to create an efficient synthesis of falcatin A, which showcases the importance that new methodologies hold in synthesis.

Figure 1.6. Progress towards the total synthesis of falcatin A.

1.4 CONCLUDING REMARKS

The desire to synthesize complex molecules ever more efficiently has driven innovation in organic chemistry. The NHK reaction was borne out of a need to perform a 1,2-addition into a complex aldehyde in the synthesis of palytoxin when standard reactions failed. ${ }^{7}$ Since the NHK reaction was first showcased as a high yielding and selective reaction in complex molecules, it has found use in total synthesis, especially in the synthesis of medium-sized rings. ${ }^{23}$ A mechanistic investigation of a key step in the total synthesis of axinellamines led to the discovery of Palau'Chlor, which is a first in class guanidiniumbased chlorinating reagent. ${ }^{12}$ Palau'Chlor has been shown to chlorinate arenes selectively in high yields, and has been used in the total synthesis of natural products. ${ }^{24}$ Innovative syntheses have also been driven by biosynthetic hypotheses. The total synthesis of
endiandric acids represent a landmark accomplishment where an entire natural product could be synthesized concisely from an acyclic precursor. ${ }^{13}$ The unique $8 \pi, 6 \pi$, [4+2] cyclization cascade helped to validate the biosynthetic hypothesis as well as provide strong support for the Woodward-Hoffman rules.

The theme of total synthesis driving innovation in organic chemistry underlies the topics presented in this thesis. The need for a concise route to the lupin alkaloids led to the development of a novel cyclization cascade between pyridine and glutaryl chloride to efficiently construct the carbon scaffold of these natural products in a single step. The cyclization product was then concisely transformed into five alkaloids in five steps or less. The total synthesis of the C19 diterpenoid alkaloids motivated the development of a convergent fragment coupling methodology to form quaternary centers. It was found that this strategy could form a variety of hindered quaternary stereocenters selectively in complex substrates while tolerating a variety of different functional groups. The development of more efficient synthetic methods has proven useful on route towards the total synthesis of falcatin A. The NHK reaction and Mukaiyama-Michael addition are examples of where practical robust methods help to create more efficient syntheses. In summary, total synthesis is a driver of innovation and a critical aspect of modern organic chemistry where it inspires reaction development, reagent invention, and can prove as a testing ground for biosynthetic hypotheses.

1.5 NOTES AND REFERENCES

(1) Newton's Apple and Other Myths about Science; Harvard University Press, 2015.
(2) Ramberg, P. J. The Death of Vitalism and The Birth of Organic Chemistry: Wohler's Urea Synthesis and the Disciplinary Identity of Organic Chemistry. Ambix 2000, 47, 170-195.
(3) Wöhler, F. Ueber Künstliche Bildung Des Harnstoffs. Ann. Phys. Chem. 1828, 88, 253-256.
(4) Truax, N. J.; Romo, D. Bridging the Gap between Natural Product Synthesis and Drug Discovery. Nat. Prod. Rep. 2020, 37, 1436-1453.
(5) Bulger, P. G.; Bagal, S. K.; Marquez, R. Recent Advances in Biomimetic Natural Product Synthesis. Nat. Prod. Rep. 2008, 25, 254-297.
(6) Armaly, A. M.; DePorre, Y. C.; Groso, E. J.; Riehl, P. S.; Schindler, C. S. Discovery of Novel Synthetic Methodologies and Reagents during Natural Product Synthesis in the Post-Palytoxin Era. Chem. Rev. 2015, 115, 9232-9276.
(7) Kishi, Y. Natural Products Synthesis: Palytoxin. Pure Appl. Chem. 1989, 61, 313324.
(8) Takai, K.; Kimura, K.; Kuroda, T.; Hiyama, T.; Nozaki, H. Selective GrignardType Carbonyl Addition of Alkenyl Halides Mediated by Chromium(II) Chloride. Tetrahedron Lett. 1983, 24, 5281-5284.
(9) Jin, Haolun.; Uenishi, Junichi.; Christ, W. J.; Kishi, Yoshito. Catalytic Effect of Nickel(II) Chloride and Palladium(II) Acetate on Chromium(II)-Mediated Coupling Reaction of Iodo Olefins with Aldehydes. J. Am. Chem. Soc. 1986, 108, 5644-5646.
(10) Hargaden, G. C.; Guiry, P. J. The Development of the Asymmetric Nozaki-Hiyama-Kishi Reaction. Adv. Synth. Catal. 2007, 349, 2407-2424.
(11) Su, S.; Rodriguez, R. A.; Baran, P. S. Scalable, Stereocontrolled Total Syntheses of (\pm)-Axinellamines A and B. J. Am. Chem. Soc. 2011, 133, 13922-13925.
(12) Rodriguez, R. A.; Pan, C.-M.; Yabe, Y.; Kawamata, Y.; Eastgate, M. D.; Baran, P. S. Palau'chlor: A Practical and Reactive Chlorinating Reagent. J. Am. Chem. Soc. 2014, 136, 6908-6911.
(13) Nicolaou, K. C.; Petasis, N. A.; Zipkin, R. E. The Endiandric Acid Cascade. Electrocyclizations in Organic Synthesis. 4. Biomimetic Approach to Endiandric Acids A-G. Total Synthesis and Thermal Studies. J. Am. Chem. Soc. 1982, 104, 5560-5562.
(14) Lenta, B. N.; Chouna, J. R.; Nkeng-Efouet, P. A.; Sewald, N. Endiandric Acid Derivatives and Other Constituents of Plants from the Genera Beilschmiedia and Endiandra (Lauraceae). Biomolecules 2015, 5, 910-942.
(15) Bandaranayake, W. M.; Banfield, J. E.; Black, D. S. C. Postulated Electrocyclic Reactions Leading to Endiandric Acid and Related Natural Products. J. Chem. Soc. Chem. Commun. 1980, No. 19, 902-903.
(16) Kerkovius, J. K.; Stegner, A.; Turlik, A.; Lam, P. H.; Houk, K. N.; Reisman, S. E. A Pyridine Dearomatization Approach to the Matrine-Type Lupin Alkaloids. J. Am. Chem. Soc. 2022, 144, 15938-15943.
(17) Zhang, H.; Chen, L.; Sun, X.; Yang, Q.; Wan, L.; Guo, C. Matrine: A Promising Natural Product With Various Pharmacological Activities. Front. Pharmacol. 2020, 11 .
(18) You, L.; Yang, C.; Du, Y.; Wang, W.; Sun, M.; Liu, J.; Ma, B.; Pang, L.; Zeng, Y.; Zhang, Z.; Dong, X.; Yin, X.; Ni, J. A Systematic Review of the Pharmacology, Toxicology and Pharmacokinetics of Matrine. Front. Pharmacol. 2020, 11.
(19) Wang, Q.; Li, Y.; Li, K.-W.; Zhou, C.-Z. Sophoridine: A Review of Its Pharmacology, Pharmacokinetics and Toxicity. Phytomedicine 2022, 95, 153756.
(20) Wong, A. R.; Fastuca, N. J.; Mak, V. W.; Kerkovius, J. K.; Stevenson, S. M.; Reisman, S. E. Total Syntheses of the C19 Diterpenoid Alkaloids (-)-Talatisamine, $(-)$-Liljestrandisine, and (-)-Liljestrandinine by a Fragment Coupling Approach. ACS Cent. Sci. 2021, 7, 1311-1316.
(21) Kerkovius, J.; Wong, A.; Mak, V.; Reisman, S. E. A Convergent Fragment Coupling Strategy to Access Quaternary Stereogenic Centers. Chem. Sci. 2023.
(22) Vasas, A.; Forgo, P.; Orvos, P.; Tálosi, L.; Csorba, A.; Pinke, G.; Hohmann, J. Myrsinane, Premyrsinane, and Cyclomyrsinane Diterpenes from Euphorbia Falcata as Potassium Ion Channel Inhibitors with Selective G Protein-Activated Inwardly Rectifying Ion Channel (GIRK) Blocking Effects. J. Nat. Prod. 2016, 79, 19902004.
(23) MacMillan, D. W. C.; Overman, L. E. Enantioselective Total Synthesis of (-)-7Deacetoxyalcyonin Acetate. First Synthesis of a Eunicellin Diterpene. J. Am. Chem. Soc. 1995, 117, 10391-10392.
(24) Nicolaou, K. C.; Yu, R.; Lu, Z.; Alvarez, F. G. Total Synthesis of Gukulenin B via Sequential Tropolone Functionalizations. J. Am. Chem. Soc. 2022, 144, 51905196.

Chapter 2

A Pyridine Dearomatization Approach to the Matrine-type Lupin
Alkaloids ${ }^{1}$

2.1 INTRODUCTION

$(+)$-Matrine and $(+)$-isomatrine are tetracyclic alkaloids isolated from the plant Sophora flavescens, the roots of which are used in traditional Chinese medicine. Biosynthetically, these alkaloids are proposed to derive from three molecules of (-)-lysine via the intermediacy of the unstable cyclic imine Δ^{1}-piperidine. Inspired by the

Portions of this chapter have been reproduced from a published manuscript. ${ }^{1}$ J. K. K was supported by an NSERC PGS-D fellowship (PGSD3-532535-2019). A. R. W and V. W. M were supported by an NSF Graduate Research Fellowship (DGE-1144469). S. E. R. acknowledges financial support from the NIH (R35GM118191).
biosynthesis, a new dearomative annulation reaction has been developed that leverages pyridine as a stable surrogate for Δ^{1}-piperidine. In this key transformation, two molecules of pyridine are joined with a molecule of glutaryl chloride to give the complete tetracyclic framework of the matrine alkaloids in a single step. Using this dearomative annulation, isomatrine is synthesized in four steps from inexpensive commercially available chemicals. Isomatrine then serves as the precursor to additional lupin alkaloids, including matrine, allomatrine, isosophoridine, and sophoridine.

2.2 MATRINE TYPE LUPIN ALKALOIDS

2.2.1 Biosynthesis and Bioinspired Synthesis

The lupin alkaloids are a structurally diverse class of quinolizidine-containing natural products isolated from plants in the Lupinus genus (Figure 2.1A). ${ }^{2}(+)$-Matrine (26), the primary component of Chinese Kushen injection, inhibits proliferation in metastatic cancer cell lines and has also been investigated as a therapeutic agent against encephalomyelitis, asthma, arthritis, and osteoporosis. ${ }^{3,4}$ (-)-Sophoridine (28) is an approved chemotherapeutic in China, which has also demonstrated antibiotic activity. ${ }^{5}$ Little is known about the pharmacological properties of (+)-isomatrine (25) and (+)isosophoridine (29), which likely reflects their limited accessibility from commercial vendors. ${ }^{5}$ Although the detailed enzymatic pathway has not been fully annotated, the biosynthesis of matrine is proposed to initiate with the enzymatic conversion of (-)-lysine (60) to Δ^{1}-piperidine (61) (Figure 2.1B)..6,7 Subsequent dimerization of 61 followed by oxidation and isomerization is proposed to yield quinolizidine 62, a shared biosynthetic precursor to several lupin alkaloids. ${ }^{8,9}$ Mannich addition of $\mathbf{6 2}$ to a third equivalent of $\mathbf{6 1}$
and cyclization with the pendant aldehyde is proposed to generate the oxidized tetracycle 63, which upon reduction gives (+)-matridine (64). Seminal studies by Abdusalamov demonstrated that feeding ${ }^{14} \mathrm{C}$-labeled (+)-64 to Goebelia Pachycarpa resulted in the isolation of radio-labelled (+)-26, suggesting that the final step in the biosynthesis of $\mathbf{2 6}$ is a site-selective C-H oxidation. ${ }^{10,11}$

Figure 2.1. (A) Chemical structures of matrine-type lupin alkaloids. (B) Proposed biosynthesis of matrine (C) Retrosynthetic analysis of isomatrine.

We sought to devise a unified synthesis that could provide access to the series of matrine-type alkaloids shown in Figure 2.1A. Inspired by the proposed biosynthesis, it was envisioned that pyridine (21) could serve as a stable, inexpensive synthon for Δ^{1}-piperidine
(61), and the remaining five carbons of the tetracyclic matrine framework could derive from glutaryl chloride (22, Figure 2.1C). In the key step, we proposed a dearomative annulation via bis-acyl pyridinium salt 65 to form tetracycle 23 , a molecule that contains all the carbon and nitrogen atoms of $\mathbf{2 5} .{ }^{12}$ Tetracycle $\mathbf{2 3}$ could be elaborated to $\mathbf{2 5}$ by global reduction followed by a site-selective oxidation of isomatridine (24) reminiscent of the proposed biosynthesis of matrine (26). Isomatrine (25) is the least thermodynamically stable lupin alkaloid and its isomerization to both 26 and 27 has been previously reported. ${ }^{13}$ We therefore anticipated that access to $\mathbf{2 5}$ could enable the synthesis of additional lupin alkaloids. ${ }^{14}$ This type of late-stage isomerization strategy was also deployed in the 2022 Sherburn synthesis of several matrine alkaloids. ${ }^{15}$

2.2.2 Previous Syntheses

Synthetically, most of the work prior to 2022 had focused on matrine (26), with four reported total syntheses (Figure 2.2). The first total synthesis of matinre was accomplished by Mandell in 1963 utilizing a key dual reductive amination approach of $\mathbf{6 6}$ to access both the A and B rings of matrine stereoselectively in a single step. ${ }^{16,17}$ Subsequently, Tsuda published a lengthy route to the matrine alkaloids dependant upon hydrogenation of pyridine 67 and classical resolution. ${ }^{18}$ In 1986 Chen demonstrated that a biomimetic intramolecular Mannich approach of $\mathbf{6 8}$ to forge the C ring of matrine was a viable strategy. ${ }^{19}$ Zard designed an intriguing radical cascade cyclization between enamide 69 and xanthate 70 to forge both the A and C rings of matrine simultaneously. ${ }^{20}$ While these syntheses all targeted matrine, synthetic access to the minor congeners is far more limited with only two syntheses of allomatrine appearing, until a recent report by Sherburn and coworkers, which outlined a diene-transmissive Diels-Alder based approach to the
lupin alkaloids. ${ }^{15,17-20}$ In addition, there was a single total synthesis each of allomatrine (27) and isosophoridine (29), and no reported total syntheses of isomatrine (25) or sophoridine (28). ${ }^{21,22}$

Figure 2.2. Previous total syntheses of the matrine-type lupin alkaloids.

2.3 KEY CYCLIZATION STEP

2.3.1 Initial Reaction Hit

Our studies commenced with the investigation of the dearomative annulation (Scheme 2.1). Addition of glutaryl chloride (22) to pyridine (21) in dichloromethane at $50{ }^{\circ} \mathrm{C}$ followed by warming to $20^{\circ} \mathrm{C}$ resulted in clean formation of (\pm)-tetracycle 23 in
62% yield (10 g scale). The reaction was highly robust and could be carried out on one mole scale to produce over 160 grams (67% yield) of (\pm)-tetracycle 23 in a single batch.

Scheme 2.1. Cyclization of pyridine and glutaryl chloride.

The product was isolated by precipitation from the crude reaction mixture, alleviating the need for a workup or column chromatography. Given the cost of pyridine (\$7/mol, Millipore-Sigma, 2022), glutaryl chloride (\$211/mol, Oakwood Chemical, 2022), and all solvents ($\$ 31 / \mathrm{mol}$, Fischer Scientific, 2022), the raw materials cost $\$ 398 / \mathrm{mol}$ of product formed. Recrystallization of $(\pm) \mathbf{- 2 3}$ enabled single crystal X-ray diffraction, which confirmed the syn-syn relative stereochemistry.

2.3.2 Mechanistic Investigation of the Cyclization Cascade

To elucidate the reaction pathway, mechanistic and computational studies were undertaken. Monitoring the reaction between 21 and 22 by ${ }^{1} \mathrm{H}$ NMR determined that the initially formed species at $-40^{\circ} \mathrm{C}$ was bis-acyl pyridinium salt 72 (Scheme 2.2). After warming to $25{ }^{\circ} \mathrm{C}$, acid chloride 73 resulting from mono-cyclization was observed. Presumably the acyl pyridinium salt Int1a and acyl chloride $\mathbf{7 3}$ are in equilibrium, but the acyl chloride is the major species at $25^{\circ} \mathrm{C}$. A second, minor species assigned as the acid chloride resulting from Int1b (vide infra, same as Int1a with trans stereochemistry) was also observed; this species was consumed as the reaction progressed to full conversion.

Although deprotonation and elimination of acyl pyridinium salts or acyl chlorides can give rise to ketene intermediates, ${ }^{23}$ no such species was detected by ${ }^{1} \mathrm{H}$ NMR or by reactIR. Attempts to calculate a pathway involving ketene intermediates failed to locate a transition state (TS) for a concerted [2+2] cycloaddition. Similarly, no TS for the concerted [4+2] cycloaddition of bis-acyl pyridinium salt 65 could be located.

Scheme 2.2. Mechanistic proposal for the cyclization of pyridine and glutaryl chloride.

Investigation of a stepwise pathway determined that the lowest-energy TS for the first cyclization involves a boat-like conformation to form the syn product $\left(\mathbf{T S 1 a}, \Delta \mathrm{G}_{\mathrm{TS}}=\right.$ $7.3 \mathrm{kcal} / \mathrm{mol}$) (Figure 2.3). Attempts to find the analogous chair-like TS were unsuccessful and led instead to conversion to the boat-like TS. The pathways leading to the anti monocyclization product (Int1b) are higher in energy (see TS1b and TS1c). The preference for the syn boat compared to the anti boat TS is likely due to favorable dispersive interactions between the heteroaryl ring and the oxygen-bearing carbon of the enolate, as well as minimization of the dipole moment in the syn TS. In order to test the importance of
dispersive interactions in these TSs, the TSs were recomputed with B3LYP, a functional known to lack dispersion. Indeed, with this functional, the difference between the two transition states was only $0.1 \mathrm{kcal} / \mathrm{mol}$, insufficient to account for the observed selectivity. Inclusion of dispersion with Grimme's D3 correction restored the energy difference to $1.4 \mathrm{kcal} / \mathrm{mol}$ in favor of the syn boat transition state. ${ }^{24}$ These TSs lead to two intermediates: syn intermediate Int1a ($-12.6 \mathrm{kcal} / \mathrm{mol}$) and anti intermediate Int1b (-10.7 $\mathrm{kcal} / \mathrm{mol}$). The TS for the second C-C bond formation (TS2a) is most favorable for the syn-syn intermediate (Int2a), with a barrier of $20.2 \mathrm{kcal} / \mathrm{mol}$. The second lowest-energy pathway proceeds via TS2b leading to Int2b, which gives rise to the anti-syn-anti configuration at the ring fusions. The transition states leading to the other four potential diastereomers are higher in energy. Formation of Int2a and Int2b is followed by deprotonation by pyridine. While Int2b is lower in energy than Int2a, the deprotonation of Int2a to give syn-syn (\pm)-23 follows the lowest-energy pathway. Thus, the selectivitydetermining step is the final deprotonation (TS3a) and syn-syn (\pm)-23 is favored, even though it is thermodynamically less stable than anti-anti 74. These results are consistent with the experimentally observed formation of product (\pm)-23 as a single diastereomer, despite the initial mixture of monocyclization products.

Figure 2.3. Computational investigation of the cyclization of pyridine and glutaryl chloride.

2.3.3 Attempted Enantioselective Cyclization

Attempts to render the cyclization reaction between pyridine and glutaryl chloride enantioselective were met without success. Various additives for the cyclization reaction including PyBOX ligands, chiral bases, and anion binding catalysts all exerted no effect. Interestingly, when enantiopure (R)-2-methylpentandioyl chloride was employed, C3methyl tetracycle (+)-76 was obtained in 66% yield as a single diastereomer and in $>99 \%$ ee (Figure 2.4). This stereochemical outcome is consistent with the calculations, where the pathway initiating with a syn boat transition state bearing the methyl group in a pseudo-
equatorial position is favored. When (S)-2-phthaloyl glutaryl chloride was employed, product was formed in a 27% yield; however, significant erosion of the enantiomeric excess occurred. Attempts to use methoxyprolinol to ring open glutaric anhydride (80) in situ followed by amide and carboxylic acid activation with triflic anhydride allowed the cyclization to occur in 94% ee, but extensive optimization efforts were never able to help improve the yield of $\mathbf{8 1}$ above 12%. The 24% material recovery from the resolution of isomatridine (24) led us to favor the classical resolution approach.

Figure 2.4. Attempted enantioselective cyclizations.

2.3.4 Cyclization of Pyridine Derivatives

Several pyridine analogues were tested in the cyclization reaction with limited success. The cyclization of 3-methylpyridine gave $\mathbf{8 3}$ in a modest 18% yield and was isolated as a single isomer (Figure 2.5). 4-Methylpyridine produced a mixture of isomers, which were unstable and inseparable. DMAP failed to provide any products in the reaction, and 4-methoxypyridine yielded a product that was too unstable to isolate. With 3dimethylaminopyridine (84), monocycle $\mathbf{8 5}$ was produced in 89% yield. It is suspected that the first cyclization takes place, then the dimethylamino group is acylated by the adjacent carboxy group, and lastly demethylation takes place to yield 85. It was found that the cyclization could be interrupted with 4-methoxypyridine to produce the mixed cyclization product 86. Interestingly, the mixed pyridine cyclization was quite high yielding. It is hypothesized that pyridine substituents interefere with the first cyclization, but not the second cyclization explaining the significantly higher yield in the mixed cyclization example.

Figure 2.5. Pyridine derivative cyclizations.

2.4 COMPLETION OF THE SYNTHESIS

2.4.1 Global Reduction

At this stage, attention turned to elaborating (\pm)-23 to isomatrine (25). Hydrogenation of tetraene $\mathbf{2 3}$ proceeded smoothly to yield bis-amide 87 (Figure 2.6). Initial attempts to perform the reduction of $\mathbf{8 7}$ with lithium aluminum hydride led to partial reduction to yield monoamide 88. Refluxing the reaction in LAH provided isomatridine (24) in a modest yield. Switching to aluminum hydride gave isomatridine (24) in 68% yield, or in a 60% yield over two steps alleviating the need to purify the intermediate bis-amide 87. Purification of isomatridine (24) was readily accomplished by generating its hydrogen
oxalate salt followed by trituration in acetone, obviating the need for column chromatography. Small quantities of hemi-aminal $\mathbf{8 9}$ were also produced during the alane reduction of bis-amide 87 . At this stage, resolution of isomatridine $(\pm)-24$ can be achieved by recrystallization of the di-p-toluoyl tartaric acid salt to give 24% recovery (46% theoretical yield) of (+)-isomatridine 24 in 90% ee.

Figure 2.6. Reduction of tetracycle $\mathbf{2 3}$ to isomatridine (24).

Hemi-aminal 89 could be reduced with sodium borohydride in acetic acid to quantitatively yield diamine 91, which contains the stereochemistry of tetrahydroneosoporamine (92) (THNS) (Scheme 2.2). Current efforts in collaboration with the Narayan lab are underway to oxidize diamine 91 into THNS (92), the final lupin alkaloid that has not yet been synthesized. Hemi-aminal $\mathbf{8 9}$ could also be transformed into
α-cyanoamine $\mathbf{9 0}$ in 94% yield by treatment with a mixture of potassium cyanide and trifluoroacetic acid in methanol.

Scheme 2.2. Access to other diamine diastereomers.

2.4.2 Isomatridine as a Ligand

It was hypothesized that isomatridine (24) could act as a novel bidendate ligand if the scaffold could access a conformation in which both nitrogen atoms were pointed into the concave face of the molecule. Gratifyingly, it was found that treatment of isomatridine with anhydrous copper (II) chloride yielded the copper complex in 72% yield (Scheme 2.3). It was hypothesized that this novel complex might possess catalytic activity; to that end it was screened in the Henry reaction between benzaldehyde and nitromethane (Table 2.1). ${ }^{25}$ Modest yields and conversions were observed, likely due to the low solubility of copper complex 93 in methanol. Future efforts will be directed towards studying the reaction using enantiopure copper complex $\mathbf{9 3}$ and optimizing the reaction for both yield and ee.

Scheme 2.3. Synthesis of the copper (II) chloride complex of isomatridine.

Table 2.1. Catalytic activity of copper complex 93.

2.4.3 C15 Selective Oxidation

Inspired by the proposed biosynthesis, ${ }^{26}$ we initially investigated the enzymatic oxidation of (+)-24 to give (+)-25. Unfortunately, a screen of >180 bacterially derived P450 enzymes (both wild type and mutants) failed to produce any promising leads. As a result, our focus turned towards non-enzymatic methods for the selective oxidation of C15. It was hypothesized that the oxidation of isomatridine (24) may be an aerobic oxidation, and not an enzymatic process. Treatment of $\mathbf{2 4}$ with singlet oxygen in the presence of trimethylsilyl cyanide led to α-aminonitrile 95 in 20% yield (Scheme 2.4). ${ }^{27}$ Analysis of the X-ray structure of $\mathbf{2 4}$ revealed that N1 points into the cavity of the molecule while the N 2 lone pair points outwards. Photoredox conditions were attempted to oxidize the less hindered lone pair, but led instead to epimerization of the stereocenters adjacent to the nitrogen atoms to produce 96 and $97 .{ }^{28}$ An attempt at a direct oxidation of isomatridine with molecular iodine under basic conditions produced conjugated iminium ion 98 in 29% yield. ${ }^{29}$ Recently reported conditions for the cleavage of $\mathrm{C}-\mathrm{N}$ bonds was found to be unselective and low yielding, producing an inseparable mixture of $\mathbf{9 9}$ and $\mathbf{1 0 0} .{ }^{30}$

Scheme 2.4. C15 oxidation attempts on isomatridine.

Utilizing peracetic acid, the selective oxidation of N_{2} was achieved to yield the expected N-oxide 101 in a 54% yield (Scheme 2.5). However, attempts to advance $\mathbf{1 0 1}$ via Polonovski reaction (acetic anhydride/di-tert-butyl-4-methyl pyridine (DTBMP)) led to formation of the undesired enamine $\mathbf{1 0 2} \cdot{ }^{31}$ In addition, the application of recently reported conditions for a syn-Polonovski reaction also provided undesired enamine 102. ${ }^{32}$ Analysis of the X-ray structure of $\mathbf{1 0 1}$ confirmed that antiperiplanar alignment of H 17 with the N O bond is ideally suited to regioselectively form the undesired elimination product 102.

Scheme 2.5. Attempted Polonovski oxidation of isomatridine.

We became interested in a report by Kessar and coworkers demonstrating that amine $-\mathrm{BF}_{3}$ adducts could undergo deprotonation using mixtures of tert-butyl lithium (t $\mathrm{BuLi})$ and potassium tert-butoxide $(t-\mathrm{BuOK}) .{ }^{33}$ Consistent with the selectivity in the N oxide formation, treatment of diamine (+)-24 with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ quantitatively formed the Lewis acid-base complex. Deprotonation of the BF_{3} complex of (+)-24 with a mixture of t-BuLi and t-BuOK in N, N, N, N-tetramethylethylenediamine (TMEDA) occurred with good selectivity for the less sterically encumbered C15 over C17 (10:1), as determined by trapping with deuterated methanol (103, Scheme 2.6). ${ }^{28}$ Unfortunately, trapping of this anion with other electrophiles proved challenging. For example, deprotonation followed by quenching with TMSCl provided silylated diamine 104 in only 35% yield, while trapping with methyl benzoate gave unstable phenyl ketone 106 in 27% yield. The best yield of C15-functionalized product was obtained when 24 was deprotonated and then
trapped with trimethyl borate; oxidation with hydrogen peroxide and trapping of the resultant enamine with HCN to give aminonitrile 105 in 55% yield.

Scheme 2.6. C15 selective functionalization.

*qNMR Yield

$\mathrm{D}_{2} \mathrm{O}$
103
80% yield*

TMSCI
104
35% yield*

$\mathrm{B}(\mathrm{OMe})_{3}$
then $\mathrm{H}_{2} \mathrm{O}_{2}$ then HCN
105
55% yield

MeOBz

Aerobic oxidation of $\mathbf{1 0 5}$ provided isomatrine in $\mathbf{4 6 \%}$ yield (25% yield over three steps from $\mathbf{2 4}$, Scheme 2.7). ${ }^{34}$ Alternatively, deprotonation of (+)-24, trapping with methyl benzoate, and aerobic oxidation could be carried out in a single reaction flask to give (+)25 directly in $18-26 \%$ yield, depending on the scale (Scheme 2.8). ${ }^{35}$ This route provides access to (\pm)-isomatrine in four steps, and (+)-isomatrine can be easily accessed by incorporating the resolution of diamine 24. To date, >1 gram of (+)-isomatrine has been prepared via this route.

Scheme 2.7. Conversion of isomatridine into isomatrine via α-aminonitrile 105.

Scheme 2.8. Completion of the synthesis of isomatrine.

2.4.4 Isomatrine Isomerization

Initial attempts to reproduce Okuda's Pt-catalyzed isomerization of (+)-isomatrine failed to provide the reported yields of (+)-matrine (26) and (+)-allomatrine (27), and instead produced a mixture of five compounds in our hands. ${ }^{13}$ To improve the yield of $\mathbf{2 6}$ and 27, while also broadening the synthetic access to other congeners, an investigation of several isomerization catalysts was carried out. Use of Rh / C provided the best yields of $(+)-\mathbf{2 6}$ (32% yield, Figure 2.6), while (+)-27 could be obtained in 83% yield when Pd/C was used. Isomerization with Pt / C provided (+)-isosophoridine (29) in 55\% yield. Finally, use of PtO_{2} at $98^{\circ} \mathrm{C}$ for 15 minutes furnished (-)-sophoridine (28) in 10% yield, together with the other isomers. ${ }^{36}$ When the reaction with PtO_{2} was conducted at $80^{\circ} \mathrm{C}$ for 24 hours, (-)-isomer $\mathbf{3 0}$ was isolated in 40% yield. To our knowledge, $\mathbf{3 0}$ has not yet been isolated from natural sources.

The hypothesized mechanism is thought to occur via a series of metal mediated dehydrogenations, and hydrogenations guided by the relative thermodynamic stabilities of the natural products. ${ }^{14}$ First (+)-isomatrine can coordinate to the metal (Int4) followed by dehydrogenation to yield iminium ion Int5, hydrogenation of which can yield (-)-unnatural product 30. Isomerization if iminium ion Int5 can yield enamine Int6, hydrogenation of
which provides (-)-sophoridine (28). A subsequent dehydrogenation and isomerization give rise to enamine Int7, which depending upon the face of hydrogenation can provide either (+)-isosophoridine (29) or (+)-matrine (26). A final dehydrogenation can provide Int8, which upon hydrogenation gives the thermodynamically most stable diastereomer (+)-allomatrine (27).

Figure 2.6. Isomerization of isomatrine into other matrine-type lupin alkaloids.

2.5 SPARTEINE AND LUPININE

2.5.1 Total Synthesis of Lupinine

The cyclization reaction between pyridine and glutaryl chloride goes through intermediate monocyclized acid chloride 73, which we envisioned could be intercepted and utilized to access additional lupin alkaloids. Methanol reacted with intermediate acid chloride 73 to form the methyl ester, which had the enamide bond reduced with TFA and triethylsilane allowing for the isolation of $\mathbf{1 0 7}$ (Scheme 2.9). Hydrogenation of $\mathbf{1 0 7}$ produced 108, which was reduced with LiAlH_{4} to provide the natural product lupinine (109) in a total of three steps in a 35% overall yield from glutaryl chloride. ${ }^{37}$

Scheme 2.9. Total synthesis of lupinine (109).

2.5.2 Total Synthesis of Sparteine

We reasoned that it could be possible to access sparteine (115) by taking advantage of monocyclized compound 107 . Epimerization of $\mathbf{1 0 7}$ was accomplished with potassium t-butoxide to provide $\mathbf{1 1 0}$ as a 10:1 mixture of diastereomers, which was carried forward as a mixture. Hydrogenation proceeded smoothly to yield $\mathbf{1 1 1}$ in 55% yield over 2 steps. L-selectride was found to selectively reduce the methyl ester, which was trapped with tosyl chloride to yield alkyl tosylate $\mathbf{1 1 2}$. An $\mathrm{S}_{\mathrm{N}} 2$ reaction between tosylate $\mathbf{1 1 2}$ and glutarimide occurred in high yields to produce 113. An intramolecular cyclization was accomplished
by treatment of $\mathbf{1 1 3}$ with LDA to yield the carbon scaffold of sparteine. ${ }^{38}$ Lastly, LiAlH_{4} reduction of $\mathbf{1 1 4}$ yielded sparteine in 30% yield.

Scheme 2.10. Total synthesis of sparteine.

2.6 CONCLUDING REMARKS

The bioinspired dearomative annulation between pyridine and glutaryl chloride developed here has enabled the first total synthesis of the lupin alkaloid (-)-sophoridine, and the shortest syntheses of (+)-isomatrine, (+)-matrine, (+)-allomatrine, and (+)isosophoridine reported to date. The power of the pyridine dearomative cascade reaction allows these syntheses to be highly concise due to forming the carbocyclic scaffold of these natural products in a single step. The initially formed heterocycle can be hydrogenated and reduced with alane to yield isomatridine, which has found use as a novel ligand and can be prepared on gram scale. Efforts towards the discovery of the C15 selective oxidation have led to the development of reactions that can functionalize a variety of positions on isomatridine, which could be useful towards potential SAR studies that were not previously possible starting from the natural product. The selective deprotonation, electrophile
trapping, oxidation cascade sequence to synthesize isomatrine enabled its total synthesis in a total of four steps from pyridine and has allowed us to prepare over a gram of isomatrine to date.

The total syntheses of lupinine and sparteine have also been achieved using this route. Based upon a mechanistic investigation of the cyclization reaction, it was discovered that the dearomative pyridine cyclization proceeds through two distinct stages at substantially different rates. The first product of the cyclization can be selectively accessed by quenching the reaction before the second cyclization takes place with methanol. Global reduction of the obtained quinolizidine has resulted in the preparation of lupinine in a total of three steps and 35% overall yield. The five-step transformation of the obtained quinolizidine 107 into sparteine has been realized on gram scale, providing a supply of this challenging to source natural product. The diversity of lupin alkaloids and related structures prepared from commodity chemicals is anticipated to support future pharmacological investigations.

2.7 EXPERIMENTAL SECTION

Unless otherwise stated, reactions were performed under an inert atmosphere (dry N_{2}) using freshly dried solvents and standard Schlenk techniques. Glassware was ovendried at $120^{\circ} \mathrm{C}$ for a minimum of four hours. Tetrahydrofuran (THF), methylene chloride (DCM), acetonitrile (ACN), methanol (MeOH), benzene (PhH), and toluene (PhMe) were dried by passing through activated alumina columns. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (D150-4), benzene (PhH , OmniSolv, BX0212-1), acetonitrile (A998-4), pentane (P399-4), acetone (A18-20), hexanes (H292-20), and n-butanol (A399-4) were purchased from Fisher and used as
received. Anhydrous N, N-dimethylformamide (DMF) was purchased from VWR (EM-DX1727-6) and used as received. All reactions were monitored by thin-layer chromatography using EMD/Merck silica gel 60 F254 pre-coated plates (0.25 mm) and were visualized by UV or by staining with p-anisaldehyde or potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$. Flash column chromatography was performed as described by Still et al. ${ }^{39}$ using silica gel (particle size $0.032-0.063$) purchased from MilliporeSigma. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance III HD with Prodigy cryoprobe (at 400 MHz and 101 MHz , respectively), a Varian Inova 500 (at 500 MHz and 126 MHz , respectively), a Bruker 400 MHz Spectrometer with broadband iProbe, or a Varian Inova 600 (at 600 MHz and 150 MHz , respectively), and are reported relative to internal $\mathrm{CDCl}_{3}\left({ }^{1} \mathrm{H}, \delta=7.26\right.$; ${ }^{13} \mathrm{C}, \delta=77.16$) or $\mathrm{CD}_{2} \mathrm{Cl}_{2}{ }^{1} \mathrm{H}, \delta=5.32 ;{ }^{13} \mathrm{C}, \delta=53.84$). CDCl_{3} was stored over anhydrous potassium carbonate $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$. Data for ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift ($\delta \mathrm{ppm}$) (multiplicity, coupling constant (Hz), integration). Multiplicity and qualifier abbreviations are as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, br $=$ broad. IR spectra were recorded on a Perkin Elmer Paragon 1000 spectrometer and are reported in frequency of absorption $\left(\mathrm{cm}^{-1}\right)$. HRMS data were acquired using an Agilent 6230 Series time-of-flight (TOF) mass spectrometer with an Agilent G1978A ion trap or by LC-MS using a Waters LCT Premier XE Electrospray TOF mass spectrometer interfaced with Waters UPLC chromatography, or by GC-MS interfaced with a JEOL JMST2000 GC AccuTOF GC-Alpha with Field Ionization. Molecular formulas of the compounds [M] are given, with the observed ion fragment in brackets, e.g. $[\mathrm{M}+\mathrm{H}]^{+}$. Optical rotations were measured on a Jasco P-2000 polarimeter using a 100 mm path-length cell at 589 nm . Melting points were determined using a Büchi B-545 capillary melting
point apparatus, and the values reported are uncorrected. Photochemical experiments were performed using a 34 W Kessil H150 Blue LED light. Unless otherwise stated, chemicals and reagents were used as received. Reagents were purchased from commercial vendors as follows: Solid potassium tert-butoxide was purchased from STREM Chemicals Inc., stored in a glovebox, and used as received. TMEDA and trimethylborate were purchased from MilliporeSigma and were distilled over CaH_{2} under N_{2} prior to use. Glutaryl chloride was purchased from Oakwood Chemicals Inc. and was used as received. Anhydrous pyridine, rhodium on carbon (5\%), palladium on carbon (10\%), platinum dioxide, platinum on carbon (5\%), trimethylsilyl cyanide, lithium aluminum hydride, aluminum trichloride, tertbutyl lithium solution in pentanes, rose bengal, peracetic acid, hydrogen peroxide, oxalyl chloride, $\quad \mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3}(\mathrm{CO})(\mathrm{H})$, sodium borohydride, $\quad\left[\operatorname{Ir}(\mathrm{dF}(\mathrm{Me}) \mathrm{ppy})_{2}(\mathrm{dtbbpy})\right] \mathrm{PF}_{6}$, triisopropylsilanethiol, (fluorodibromo)trimethylsilane, and N-phthaloyl-L-glutamic acid were purchased from MilliporeSigma and were used as received. Di-p-toluoyl-L-tartaric acid was purchased from Ambeed Inc. and was used as received. (R)-2-methylglutaric acid and racemic 2-methylglutaric acid were purchased from Combi-Blocks Inc. and used as received. ${ }^{1} \mathrm{H}$ qNMR standards trimethylphenyl silane (99% purity) and pyrazine ($\geq 99 \%$ purity) were purchased from MilliporeSigma and used as received.

Table 2.2. Deprotonation - solvent screen.

Table 2.3. Deprotonation - optimization in TMEDA.

Table 2.4. Deprotonation - optimization of base and equivalents.

Entry	Base 1 (equiv)	Base 2 (equiv)	Concentration	Ratio $103: 117$	$\%$	Yield 103	$\%$
1	n-BuLi (12 equiv)	t-BuOK (12 equiv)	0.06 M	$0.2: 107$	Total Conversion		
2	t-BuLi (6 equiv)	t-BuOK (12 equiv)	0.06 M	$10.0: 1.0$	80%	55%	67%
3	t-BuLi (12 equiv)	t-BuOK (24 equiv)	0.06 M	$3.7: 1.0$	70%	19%	88%
4	t-BuLi (12 equiv)	t-PeOK (24 equiv)	0.06 M	$3.2: 1.0$	64%	20%	89%
5	t-BuLi (2 equiv)	t-BuOK (4 equiv)	0.06 M	$>20.0: 1.0$	62%	1%	84%
6	t-BuLi (3 equiv)	t-BuOK (4 equiv)	0.06 M	$11.0: 1.0$	72%	7%	79%
7	t-BuLi (3 equiv)	t-BuOK (5 equiv)	0.06 M	$8.8: 1.0$	73%	8%	81%
8	t-BuLi (3 equiv)	t-BuOK (6 equiv)	0.06 M	$7.1: 1.0$	73%	10%	83%
9	t-BuLi (3 equiv)	t-BuOK (9 equiv)	0.06 M	$>20.0: 1.0$	71%	2%	73%
10	t-BuLi (4 equiv)	t-BuOK (8 equiv)	0.06 M	$5.8: 1.0$	60%	10%	70%
11	t-BuLi (3 equiv)	t-BuOK (6 equiv)	0.1 M	$7.7: 1.0$	72%	9%	81%
12	t-BuLi (3 equiv)	t-BuOK (6 equiv)	0.2 M	$11.6: 1.0$	76%	7%	83%
13	t-BuLi (3 equiv)	t-BuOK (6 equiv)	0.3 M	$5.9: 1.0$	74%	12%	86%
14	t-BuLi (3 equiv)	t-BuOK (6 equiv)	0.4 M	$18.5: 1.0$	69%	4%	73%

Table 2.5. Deprotonation - optimization of time.

Entry	Deprotonation Time t-BuLi Addn. Time	Ratio $103: 117$	$\%$	Yield 103	$\%$	Yield 117
1	0.5 h	60 s	$4.9: 1.0$	73%	15%	Total Conversion
2	0.5 h	10 s	$6.2: 1.0$	74%	12%	88%
3	1 h	60 s	$9.5: 1.0$	69%	7%	76%
4	2 h	60 s	$11.6: 1.0$	76%	7%	83%
5	3 h	60 s	$10.3: 1.0$	78%	8%	86%
6	4 h	60 s	$4.2: 1.0$	69%	17%	86%

Figure 2.7. Deprotonation - electrophile trapping - oxidation screen.

0% yield
$\mathrm{O}=\mathrm{C}=\mathrm{O}$
0% yield

0\% yield

6% yield

8% yield

0% yield

7% yield

11% yield

0% yield

3% yield
3% yield

16% yield
19% yield
23% yield

Table 2.6. Deprotonation - methyl benzoate trapping - oxidation screen.

Entry	MeOBz Equiv	Solvent	\% Yield
1	25	TMEDA	15
2	4	Hexanes	26
3	4	$\mathrm{Et}_{2} \mathrm{O}$	26
4	4	PhMe	29
5	4	CPME	28
6	8	CPME	32
7	12	CPME	28

Table 2.7. Unsuccesful oxidation reactions.

Entry	Conditions	Result
1	2 Equiv. $\mathrm{KMnO}_{4}, \mathrm{H}_{2} \mathrm{O}, 90^{\circ} \mathrm{C}, 5 \mathrm{~min}$	Recovered SM
2	30 Equiv. $\mathrm{KMnO}_{4}, \mathrm{H}_{2} \mathrm{O}, 90^{\circ} \mathrm{C}, 30 \mathrm{~min}$	Complex Mixture
3	PhIO, $\mathrm{H}_{2} \mathrm{O}, 21^{\circ} \mathrm{C}, 24 \mathrm{~h}$	Recovered SM
4	IBX, $\mathrm{H}_{2} \mathrm{O}, 21^{\circ} \mathrm{C}, 24 \mathrm{~h}$	Recovered SM
5	$\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, 2-picolinic acid, $\mathrm{PhCO}_{3} t$ - $\mathrm{Bu}, \mathrm{H}_{2} \mathrm{O}$, Pyridine, $70{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$	Recovered SM
6	$\mathrm{AgCN}\left(2.1\right.$ equiv), $\mathrm{ACN}, 80^{\circ} \mathrm{C}, 48 \mathrm{~h}$	Recovered SM
7	Ru(bpy)3(PF6)2 (2 mol \%), TMSCN, DMF, $20{ }^{\circ} \mathrm{C}$, Blue LEDs, 22 h	Recovered SM
8	$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{PF}_{6}$, ABNO, NMI, 4,4'-dimethoxy-2,2'-bpy, O_{2} (1 atm)	Recovered SM

Figure 2.8. Unsuccesful oxidation reactions.

Figure 2.9. Unsuccesful oxidation reactions.

Table 2.8. Resolution crystallization optimization initial screening.

	 racemic 24		
	 (R)-Mandelic Acid 121 (2 equiv)	 (R)-Moshers Acid 122 (2 equiv)	 Acetyl L-lucine 123 (2 equiv)
$i-\mathrm{PrOH}$	No Crystals	No Crystals	No Crystals
$2-\mathrm{BuOH}$	No Crystals	No Crystals	No Crystals
Acetone	No Crystals	No Crystals	No Crystals

Table 2.9. Resolution crystallization optimization tartrate hit.

Table 2.10. Optimization of a tartrate resolution.

Table 2.11. Optimization of tartrate equivalents for the resolution.

Table 2.12. Optimization of solvent for the tartrate resolution.

	 126 di- p-toluoyl tartaric acid (1 equiv)
$i-\mathrm{PrOH}$	$\begin{gathered} 56 \% \text { recovery } \\ 65 \% \text { ee } \end{gathered}$
s-BuOH	$\begin{gathered} \text { 52\% recovery } \\ 77 \% \text { ee } \end{gathered}$
Acetone	72% recovery -15% ee $-15 \% \text { ee }$
CPME	No Crystals
DCE	No Crystals
t-AmylOH	No Crystals

Table 2.12. Optimization of solvent and concentration for the resolution.

		 126 0.15 M		$\begin{gathered} 126 \\ 0.05 \mathrm{M} \end{gathered}$
$i-\mathrm{PrOH}$	59\% recovery 63\% ee	55% recovery 68\% ee	49\% recovery 74% ee	49\% recovery 49\% ee
$2-\mathrm{BuOH}$	68\% recovery 47% ee	51\% recovery 72\% ee	37% recovery 91\% ee	3\% recovery 63\% ee
2-pentanol	59\% recovery 64\% ee	59\% recovery 56% ee	54\% recovery 70\% ee	19\% recovery 89\% ee
2-hexanol	39% recovery 72% ee	37% recovery 76 \% ee	27% recovery 76\% ee	No Crystals
3-pentanol	53% recovery 67\% ee	55\% recovery 62\% ee	$\begin{gathered} 39 \% \text { recovery } \\ 79 \% \text { ee } \end{gathered}$	$\begin{gathered} \text { 2\% recovery } \\ 76 \% \text { ee } \end{gathered}$

Preparation of (\pm)-tetracycle 23:

Large-Scale Procedure:

A 12 L oven-dried, N_{2}-flushed 3-neck flask equipped with an overhead stirrer, thermocouple, and rubber septum was charged with anhydrous DCM ($8.0 \mathrm{~L}, 0.12 \mathrm{M}$) followed by glutaryl chloride (22) ($126 \mathrm{~mL}, 980 \mathrm{mmol}, 1.0$ equiv). The solution was cooled to $-50{ }^{\circ} \mathrm{C}$ on an acetone/dry ice bath. Pyridine (21) (396 mL, $4.90 \mathrm{~mol}, 5.0$ equiv) was added via cannula at such a rate as to prevent the temperature from rising above $-40{ }^{\circ} \mathrm{C}$ (ca. 1 hour). Following pyridine addition, the reaction was stirred at $-50^{\circ} \mathrm{C}$ for 15 minutes and then at $21{ }^{\circ} \mathrm{C}$ until complete, as judged by ${ }^{1} \mathrm{H}$ NMR in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (ca. 24-36 hours). Upon completion, the reaction was concentrated under reduced pressure to yield a brown solid which was suspended in $\mathrm{MeOH}(800 \mathrm{~mL})$. The solids were isolated via suction filtration, washed with $\mathrm{MeOH}(3 \times 150 \mathrm{~mL}$), and dried in vacuo to yield (\pm)-tetracycle 23 as a tan crystalline solid ($165.9 \mathrm{~g}, 67 \%$ yield).

Medium-Scale Procedure:

A 3 L oven-dried, N_{2}-flushed 3-neck flask equipped with an overhead stirrer, thermocouple, and rubber septum was charged with anhydrous DCM (1.8 L, 0.1 M) followed by glutaryl chloride (22) ($23 \mathrm{~mL}, 179 \mathrm{mmol}, 1.0$ equiv). The solution was cooled to $-50^{\circ} \mathrm{C}$ on an acetone/dry ice bath. Pyridine (21) ($72 \mathrm{~mL}, 895 \mathrm{mmol}, 5.0$ equiv) was added via cannula at such a rate as to prevent the temperature from rising above $-40{ }^{\circ} \mathrm{C}$
(ca. 30 minutes). Following pyridine addition, the reaction was stirred at $-50^{\circ} \mathrm{C}$ for 15 minutes then at $21^{\circ} \mathrm{C}$ until complete, as judged by ${ }^{1} \mathrm{H}$ NMR in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (ca. 24-36 hours). Upon completion, the reaction was concentrated under reduced pressure to yield a brown solid which was suspended in $\mathrm{MeOH}(200 \mathrm{~mL})$. The solids were isolated via suction filtration, washed with MeOH ($3 \times 100 \mathrm{~mL}$), and dried in vacuo to yield (\pm)-tetracycle 23 as a tan crystalline solid ($31.1 \mathrm{~g}, 68 \%$ yield $)$.

Small-Scale Procedure:

A 1 L oven-dried, N_{2}-flushed flask with a $36 \mathrm{~mm} \times 18 \mathrm{~mm} \times 18 \mathrm{~mm}$ egg-shaped stir bar was charged with anhydrous DCM ($296 \mathrm{~mL}, 0.1 \mathrm{M}$) followed by glutaryl chloride (22) ($3.78 \mathrm{~mL}, 29.6 \mathrm{mmol}, 1.0$ equiv). The solution was cooled to $-50^{\circ} \mathrm{C}$ on an acetone/dry ice bath. Pyridine (21) ($12 \mathrm{~mL}, 148 \mathrm{mmol}, 5.0$ equiv) was added dropwise via syringe over the course of 10 minutes. Following pyridine addition, the reaction was stirred at $-50{ }^{\circ} \mathrm{C}$ for 15 minutes then at $21^{\circ} \mathrm{C}$ until complete, as judged by ${ }^{1} \mathrm{H}$ NMR in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (ca. 24-36 hours). Upon completion, the reaction was concentrated under reduced pressure to yield a brown solid which was suspended in $\mathrm{MeOH}(40 \mathrm{~mL})$. The solids were isolated via suction filtration, washed with MeOH ($3 \times 50 \mathrm{~mL}$), and dried in vacuo to yield (\pm)-tetracycle 23 as a tan crystalline solid $(4.67 \mathrm{~g}, 62 \%$ yield $)$.
(\pm)-Tetracycle 23:
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.15(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dq}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.00(\mathrm{dddd}, J=10.1,5.8,2.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{dddd}, J=5.0,2.4,1.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.67$ (dd, $J=7.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{ddt}, J=10.1,3.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, 5.15 (ddd, $J=8.0,5.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.72-4.66(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{ddd}, J=18.7,13.3,6.0 \mathrm{~Hz}$,
$1 \mathrm{H}), 2.86(\mathrm{dt}, J=6.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{ddt}, J=13.7,5.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dddd}, J=$ $18.1,5.3,2.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.00$ (dddt, $J=18.5,13.4,9.9,5.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 168.2,168.0,130.8,126.1,123.3,122.4,121.2,118.0$, 109.7, 102.8, 53.7, 53.2, 36.9, 28.6, 19.5.

FTIR (NaCl, thin film): 3087, 2960, 2365, 1668, 1655, 1583, 1407, 1287, 1266, 1244, $1184,733 \mathrm{~cm}^{-1}$.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}\left[\mathrm{M}^{\bullet}\right]^{+} 254.1050$, found 254.1038.

TLC $(10 \% \mathrm{MeOH} / 90 \% \mathrm{PhH}), \mathbf{R}_{f}: 0.32\left(\mathrm{KMnO}_{4}\right)$.
M.P. $184.2^{\circ} \mathrm{C}-186.9^{\circ} \mathrm{C}$.

Figure 2.10. X-Ray structure of (\pm)-23. CCDC number: 2159766

Preparation of (\pm)-bis-amide 87:

A Parr Instrument Company pressure vessel (600 mL volume, model 4760) containing a $50 \mathrm{~mm} \times 6 \mathrm{~mm} \times 6 \mathrm{~mm}$ rectangular stir bar was charged with (\pm)-tetracycle 23, ($22.0 \mathrm{~g}, 39.7 \mathrm{mmol}, 1.0$ equiv), 5% rhodium on carbon ($817 \mathrm{mg}, 0.397 \mathrm{mmol}, 1 \mathrm{~mol} \%$), and EtOH ($200 \mathrm{~mL}, 0.4 \mathrm{M}$). The vessel was flushed with argon then pressurized and vented with $\mathrm{H}_{2}(3 \times 7 \mathrm{~atm})$. The vessel was pressurized with H_{2} to 60 atm and stirred at 1200 rpm at $21^{\circ} \mathrm{C}$ for 20 hours. Upon completion, the reaction was carefully depressurized and filtered through celite that was subsequently washed with DCM. The solution was concentrated under reduced pressure to yield a yellow oil that solidified slowly on standing. (\pm)-Bis-amide $\mathbf{S 1}$ was obtained as a pale yellow, crystalline solid and was used directly in the next step without additional purification. Purity was measured via ${ }^{1} \mathrm{H}$ qNMR against pyrazine as an internal standard. An analytically pure sample was prepared via SiO_{2} column chromatography [1 g of crude material, $120 \mathrm{~g} \mathrm{SiO}_{2}, 50 \mathrm{~mm}$ column diameter, 10% $\mathrm{MeOH} / 90 \% \mathrm{ACN}]$ to yield (\pm)-bis-amide 87 as a white crystalline solid.
(\pm)-Enamide 133 was produced in 4% qNMR yield (against pyrazine) during the reaction and an analytically pure sample was obtained via SiO_{2} column chromatography of the crude reaction mixture [1 g of crude material, $120 \mathrm{~g} \mathrm{SiO}_{2}, 50 \mathrm{~mm}$ column diameter, $10 \% \mathrm{MeOH} / 90 \% \mathrm{ACN}]$ to yield (\pm)-enamide 133 as a white crystalline solid.

(\pm)-Bis-amide 87:

${ }^{1} \mathbf{H}$ NMR ($500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 4.81$ (ddt, $\left.J=12.8,4.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.71(\mathrm{dq}, J=12.3$, $2.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=7.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{ddd}, J=12.5,6.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.83$ (qt, $J=4.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{ddt}, J=13.1,5.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{td}, J=11.9,3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.42(\mathrm{td}, J=12.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{ddd}, J=17.8,14.2,4.6 \mathrm{~Hz}$,
$1 \mathrm{H}), 1.92(\mathrm{ddt}, J=15.1,5.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.73-1.59(\mathrm{~m}, 3 \mathrm{H}), 1.42$ (qt, $J=12.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}$), $1.37-1.25$.
${ }^{13} \mathbf{C}$ NMR (125 MHz, $\mathbf{C D C l}_{3}$): $\delta 169.7,167.2,61.5,56.8,45.6,42.1,38.1,34.0,32.1,29.9$, 26.1, 25.9, 25.1, 22.3, 21.6.

FTIR (NaCl, thin film): 2932, 2855, 1636, 1472, $750 \mathrm{~cm}^{-1}$.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 285.1573$, found 285.1573
TLC $(15 \% \mathrm{MeOH} / 85 \% \mathrm{ACN}), \mathbf{R}_{f}: 0.26\left(\mathrm{KMnO}_{4}\right)$.
M.P. $147.1^{\circ} \mathrm{C}-150.5^{\circ} \mathrm{C}$.

Figure 2.11. X-Ray structure of $(\pm)-87 . C C D C$ number:not publication quality.

(\pm)-Enamide 133:

${ }^{1} \mathbf{H}$ NMR (400 MHz, CDC1 \mathbf{H}_{3}): $\delta 4.93$ (td, $\left.J=4.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.76$ (ddt, $J=13.3,4.9,1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.34-4.25(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=6.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dddd}, J=13.1,10.5$, $3.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{qd}, J=5.2,4.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dh}, J=5.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.57$ (dddd, $J=13.1,5.4,3.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{td}, J=13.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{ddtd}, J=17.5$, $4.2,2.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{ddd}, J=16.9,5.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=13.9,4.9 \mathrm{~Hz}, 1 \mathrm{H})$,
2.11 (dddd, $J=9.5,7.1,6.1,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.53$ (dq, $J=13.3,3.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 170.2,166.8,133.1,106.8,57.0,42.3,41.0,39.8,36.5$, 29.4, 25.9, 22.6, 22.6, 21.6, 20.1.

FTIR (NaCl, thin film): 3052, 2985, 2974, 2954, 2874, 1633, 1414, $1264 \mathrm{~cm}^{-1}$.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 261.1603$, found 261.1593 .

TLC $(15 \% \mathrm{MeOH} / 85 \% \mathrm{ACN}), \mathbf{R}_{f}: 0.37\left(\mathrm{KMnO}_{4}\right)$.
M.P. $76.6^{\circ} \mathrm{C}-83.1^{\circ} \mathrm{C}$.

Figure 2.12. X-Ray structure of (\pm)-133. CCDC number: not publication quality.

Preparation of (\pm)-diamine 24:

A 3 L oven-dried, N_{2}-flushed flask equipped with a thermocouple and a mechanical stirrer was charged with THF ($856 \mathrm{~mL}, 0.1 \mathrm{M}$). The THF was cooled to $0^{\circ} \mathrm{C}$ on an ice bath,
then $\mathrm{AlCl}_{3}(29.7 \mathrm{~g}, 223 \mathrm{mmol}, 2.6$ equiv) was added in a single portion, causing the solution to heat up to $30^{\circ} \mathrm{C}$. Upon dissolution of AlCl_{3}, lithium aluminum hydride (25.6 g , 642 mmol, 7.5 equiv) was added in portions at such a rate as to keep the internal temperature below $21^{\circ} \mathrm{C}$. Upon completion of the addition ($c a .10$ minutes), the reaction was allowed to stir for 30 minutes while cooling to $0^{\circ} \mathrm{C}$ on an ice bath. A solution of unpurified (\pm)-bis-amide 87 (ca. $22.5 \mathrm{~g}, 85.6 \mathrm{mmol}, 1.0$ equiv) in THF ($449 \mathrm{~mL}, 0.2$ M) was added via cannula into the reaction flask at such a rate as to keep the internal temperature below $10^{\circ} \mathrm{C}$ (ca. 30 minutes). Upon completion, the reaction was stirred for 1 hour at $0{ }^{\circ} \mathrm{C}$. A 6 L Erlenmeyer flask in an ice bath was equipped with a mechanical stirrer and charged with ice $(1500 \mathrm{~g})$, water (500 mL), and Rochelle's salt (200 g). The reaction was quenched by addition via cannula into the ice slurry (ca. 10 minutes). Liquid nitrogen was periodically added to purge hydrogen gas from the Erlenmeyer flask. Upon completion of the quench, $3 \mathrm{M} \mathrm{NaOH}(1 \mathrm{~L})$ was added to the reaction mixture, which was then stirred at $21^{\circ} \mathrm{C}$ until the aluminum salts transformed from a grey sediment into a white slurry (ca. 30 minutes). The organic layer was separated, and the aqueous layer was extracted with DCM ($5 \times 400 \mathrm{~mL}$). The combined organic layers were concentrated under reduced pressure without drying. To the crude residue was added enough 12 M HCl (ca. 20-30 mL) to make the mixture acidic followed by enough $3 \mathrm{M} \mathrm{NaOH}(c a .200 \mathrm{~mL}$) to make the mixture basic. The resulting milky white suspension was extracted with DCM (5 x 120 mL). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was dissolved in $\mathrm{Et}_{2} \mathrm{O}(400 \mathrm{~mL})$ and was concentrated under reduced pressure until crystallization of (\pm)-hemi-aminal 89 began. The mixture was diluted in $\mathrm{Et}_{2} \mathrm{O}$ (total volume $c a .200-300 \mathrm{~mL}$), and the solids
were isolated via suction filtration. The solids were washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$ to yield (\pm)-hemi-aminal 89 as a white crystalline solid $(2.49 \mathrm{~g}, 12 \%$ yield). The filtrate was concentrated under reduced pressure to yield crude (\pm)-diamine 24 as a yellow oil, which was allowed to crystallize under vacuum (0.3 torr) on a Schlenk line (13.55 g). To crude (\pm)-diamine 24 was added anhydrous oxalic acid $(6.76 \mathrm{~g}, 75.1 \mathrm{mmol}, 1.0$ equiv based on the mass of the obtained crude diamine) and $\mathrm{MeOH}(214 \mathrm{~mL}, 0.4 \mathrm{M})$. The mixture was heated to boiling, cooled to $21^{\circ} \mathrm{C}$, and concentrated under reduced pressure. The obtained solids were concentrated under reduced pressure from acetone ($2 \times 100 \mathrm{~mL}$) and dried under vacuum (0.3 torr) on a Schlenk line on a warm water bath $\left(40^{\circ} \mathrm{C}\right)$. The solids were suspended in acetone with the aid of sonication and isolated by suction filtration. The solids were washed with acetone ($3 \times 60 \mathrm{~mL}$) and dried by pulling air through. The obtained crystals were dissolved in water (100 mL) and made basic with $3 \mathrm{M} \mathrm{NaOH}(c a .50 \mathrm{~mL})$, and the aqueous layer was extracted with $\operatorname{DCM}(5 \times 100 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The resulting oil was concentrated under reduced pressure from $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$ and suction filtered to remove precipitates. The obtained solution was concentrated under reduced pressure and allowed to crystallize under vacuum (0.3 torr) on a Schlenk line to yield $(\pm$)diamine $\mathbf{2 4}$ as a white crystalline solid (11.97 g, 60\%).

Resolution of (+)-diamine 24

A 500 mL flask equipped with a $40 \mathrm{~mm} \times 15 \mathrm{~mm} \times 15 \mathrm{~mm}$ egg-shaped stir bar was charged with (\pm)-diamine $24\left(11.97 \mathrm{~g}, 51.1 \mathrm{mmol}, 1.0\right.$ equiv), (-)-di- $O, O^{\prime}-p$-toluyl-Ltartaric acid (126) (19.7 g, $51.1 \mathrm{mmol}, 1.0$ equiv), and $s-\mathrm{BuOH}(341 \mathrm{~mL}, 0.15 \mathrm{M})$. The mixture was heated, with stirring, under N_{2} until a homogenous solution was obtained. The mixture was cooled to $21^{\circ} \mathrm{C}$ and stirred at 300 rpm . Crystallization progress was monitored by ${ }^{1} \mathrm{H}$ NMR. Aliquots of the supernatant $(250 \mu \mathrm{~L})$, obtained by stopping stirring and allowing the solids to settle out of solution ($c a .10$ minutes), were concentrated under vacuum (0.3 torr) on a Schlenk line and then dissolved in CDCl_{3}. Crystallization was allowed to progress until 45% of diamine 24 had crystallized (ca. 25-45 hours), as measured relative to an aliquot taken before crystallization had begun. The crystals were isolated via suction filtration and washed with s - $\mathrm{BuOH}(3 \times 20 \mathrm{~mL}$) then acetone (1×20 mL). The obtained crystalline solid was transferred into a separatory funnel with water $(500 \mathrm{~mL})$ and $\mathrm{DCM}(100 \mathrm{~mL})$. The suspension was made basic with 3 M NaOH (ca. 50 mL) and then the aqueous layer was extracted with DCM (4 x 150 mL$)$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was concentrated under reduced pressure from $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$, suction filtered, and concentrated under reduced pressure. The resolution procedure was repeated a second time on the obtained diamine $24(c a .50-70 \%$ ee) to yield enantioenriched
$(+)$-diamine $24(2.82 \mathrm{~g}, 46 \%$ recovery of (+)-24, $>90 \%$ ee) as a white to pale yellow crystalline solid. The optical activity of (+)-diamine 24 was assessed via ${ }^{1} \mathrm{H}$ NMR of its mono-(-)-di- $O, O^{\prime}-p$-toluyl-L-tartaric acid salt (prepared in MeOH followed by concentration under vacuum (0.3 torr) on a Schlenk line for 30 minutes) in CDCl_{3}.

(+)-Diamine 24:

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 3.40(\mathrm{t}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.83(\mathrm{ddd}$, $J=12.4,5.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{qd}, J=13.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{dd}, J$ $=11.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.78(\mathrm{~m}, 6 \mathrm{H}), 1.78-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.65-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.44-$ $1.31(\mathrm{~m}, 4 \mathrm{H}), 1.11(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 63.1,61.1,58.0,57.7,55.5,46.1,38.6,36.9,29.0,27.0$, 26.3, 24.3, 23.0, 22.4, 19.2.

FTIR (NaCl, thin film): 2922, 2848, 2806, 2765, 2745, 2693, 2674, 2612, 2550, 2442, $1441,1353,1165,1122,1091,1054 \mathrm{~cm}^{-1}$.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$235.2169, found 235.2164.

TLC (40\% $2 \mathrm{M} \mathrm{NH}_{3}$ in $\left.\mathrm{MeOH} / 60 \% \mathrm{ACN}\right), \mathbf{R}_{f}: 0.37\left(\mathrm{KMnO}_{4}\right)$.
M.P. $64.1^{\circ} \mathrm{C}-66.7^{\circ} \mathrm{C}$.

Specific Optical Rotation: $[\alpha] \frac{21}{D}=+22.3\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$.

Figure 2.13. X-Ray structure of (+)-24. CCDC number: 2159767.

(\pm)-Hemi-aminal 89:

${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl $\left.\mathbf{H}_{3}\right): \delta 4.83(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.01$ $(\mathrm{dd}, J=11.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-2.85(\mathrm{~m}, 3 \mathrm{H}), 2.66(\mathrm{dd}, J=11.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dt}, J$ $=10.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{dq}, J=13.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{dt}, J=10.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.99$ $(\mathrm{s}, 1 \mathrm{H}), 1.87(\mathrm{tdd}, J=11.9,8.9,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.36(\mathrm{~m}, 11 \mathrm{H}), 1.35-1.21(\mathrm{~m}, 2 \mathrm{H})$, $1.14(\operatorname{tdd}, J=13.2,11.5,4.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$): δ 92.8, 63.2, 60.8, 54.2, 52.9, 45.9, 40.8, 33.9, 29.8, 29.1, 26.1, 25.0, 25.0, 19.8, 18.8.

FTIR (NaCl, thin film): 2941, 2861, 2832, 1456, 1436, 1118, $1032 \mathrm{~cm}^{-1}$.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$251.2123, found 251.2122.

TLC $\left(40 \% 2 \mathrm{M} \mathrm{NH}_{3}\right.$ in $\left.\mathrm{MeOH} / 60 \% \mathrm{ACN}\right), \mathbf{R}_{f}: 0.35\left(\mathrm{KMnO}_{4}\right)$.
M.P. $149.5^{\circ} \mathrm{C}-151.1^{\circ} \mathrm{C}$.

Figure 2.14. X-Ray structure of (\pm)-89. CCDC number: 2159770.

Figure 2.15. ${ }^{1} \mathrm{H}$ NMR assay for determining enantiomeric excess.

Figure 2.16. ${ }^{1} \mathrm{H}$ NMR assay for determining enantiomeric excess close up.
(\pm)-diamine 24 - mono
di- $O, O^{\prime}-p$-toluoyl
tartaric acid salt in
CDCl_{3} - peaks used for
ee measurement

$(+)$-diamine $\mathbf{2 4}-$ mono
di- O, O^{\prime} - p-toluoyl
tartaric acid salt in
$\mathrm{CDCl}_{3}(90 \%$ ee $)-$
peaks used for ee
measurement

A (d)
2.64

B (d)
2.55

Preparation of (\pm)-isomatrine (25) and (+)-isomatrine (25):

Small scale racemic procedure:

A 250 mL oven-dried flask equipped with a $40 \mathrm{~mm} \times 15 \mathrm{~mm} \times 15 \mathrm{~mm}$ egg-shaped stir bar was charged with (\pm)-diamine $24(600 \mathrm{mg}, 2.56 \mathrm{mmol}, 1.0$ equiv), then the flask was evacuated and backfilled three times with N_{2}. Diethyl ether ($2.6 \mathrm{~mL}, 1 \mathrm{M}$) was added, resulting in a clear, colorless solution. To the solution at $21^{\circ} \mathrm{C}$ was added boron trifluoride diethyl etherate ($319 \mathrm{uL}, 2.59 \mathrm{mmol}, 1.01$ equiv). The resulting white slurry was stirred at $21^{\circ} \mathrm{C}$ for five minutes followed by removal of the diethyl ether under vacuum (0.3 torr) on a Schlenk line; the solids were allowed to dry for an additional 30 minutes. After backfilling the flask with N_{2}, a thermocouple was introduced into the flask through the rubber septum. The flask was cooled to $-60^{\circ} \mathrm{C}$ and maintained at this temperature using an acetone/dry ice bath. A solution of potassium tert-butoxide ($1.72 \mathrm{~g}, 15.4 \mathrm{mmol}, 6.0$ equiv) in tetramethylethylenediamine (TMEDA) ($12.8 \mathrm{~mL}, 0.2 \mathrm{M}$), prepared by dissolving potassium tert-butoxide in TMEDA in an inert atmosphere followed by clarification of the suspension via syringe filtration, was added via syringe, allowing the solution to flow down the side of the flask to pre-cool it before it encountered the solids. To the resulting suspension between $-55^{\circ} \mathrm{C}$ to $-60^{\circ} \mathrm{C}$ was added tert-butyl lithium (1.6 M in pentane, 4.8 $\mathrm{mL}, 7.68 \mathrm{mmol}, 3.0$ equiv) via syringe at such a rate as to prevent the internal reaction temperature from increasing above $-40^{\circ} \mathrm{C}(c a .2$ to 4 minutes $)$. Once the addition was
complete, the reaction was stirred for 30 minutes at $-55^{\circ} \mathrm{C}$ to $-60^{\circ} \mathrm{C}$. Subsequently, a solution of methyl benzoate ($2.56 \mathrm{~mL}, 20.5 \mathrm{mmol}, 8.0$ equiv) in cyclopentyl methyl ether $(10.2 \mathrm{~mL}, 0.25 \mathrm{M})$ was added at such a rate as to prevent the internal reaction temperature from increasing above $-40^{\circ} \mathrm{C}$ (ca. 4 to 8 minutes). Once the addition was complete, the reaction was allowed to stir at $-55^{\circ} \mathrm{C}$ to $-60^{\circ} \mathrm{C}$ for 30 minutes, then methanol (311 uL , $7.68 \mathrm{mmol}, 3.0$ equiv) was added. The thermocouple was removed, and the rubber septum was replaced with a new rubber septum. Caution! Traces of solid tert-butyl lithium tend to get stuck on the inside of the rubber septum, and it should be replaced before oxygen is introduced into the flask. The flask was purged with O_{2} (balloon) at $-55^{\circ} \mathrm{C}$ and then allowed to warm to $21^{\circ} \mathrm{C}$. The resulting orange suspension was stirred vigorously (1500 $\mathrm{rpm})$ for 2 hours. Upon completion, the yellow suspension was diluted in water (50 mL) and treated with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(15 \mathrm{~mL})$ and $3 \mathrm{M} \mathrm{NaOH}(15 \mathrm{~mL})$. The reaction mixture was extracted with DCM (4 x 50 mL). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified via SiO_{2} column chromatography $\left(30 \mathrm{~g} \mathrm{SiO}_{2}, 30 \mathrm{~mm}\right.$ column diameter, $3 \% 2$ M NH 33 in $\mathrm{MeOH} / 97 \% \mathrm{CHCl}_{3}$ containing $0.75 \% \mathrm{EtOH}$ as a stabilizer). The obtained product underwent a final purification by crystallization from boiling hexanes ($c a .5 \mathrm{~mL}$). After dissolution in boiling hexanes, the solution was allowed to slowly cool to $21^{\circ} \mathrm{C}$ then $-20^{\circ} \mathrm{C}$. The supernatant was decanted and the crystals washed with cold hexanes (3×1 mL). The obtained crystals were dried in vacuo to yield (\pm)-isomatrine (25) as white crystalline needles ($167 \mathrm{mg}, 26 \%$ yield).

Large Scale Enantiopure Procedure:

A 1 L oven-dried, N_{2}-flushed flask equipped with a $40 \mathrm{~mm} \times 15 \mathrm{~mm} \times 15 \mathrm{~mm}$ eggshaped stir bar was charged with (+)-diamine $24(3.12 \mathrm{~g}, 13.3 \mathrm{mmol}, 1.0$ equiv), then the flask was evacuated and backfilled three times with N_{2}. Diethyl ether ($14 \mathrm{~mL}, 1 \mathrm{M}$) was added, which created a clear pale yellow solution. To the solution at $21^{\circ} \mathrm{C}$ was added boron trifluoride diethyl etherate ($1.66 \mathrm{~mL}, 13.4 \mathrm{mmol}, 1.01$ equiv). The resulting white slurry was stirred at $21^{\circ} \mathrm{C}$ for five minutes followed by removal of the diethyl ether under vacuum (0.3 torr) on a Schlenk line; the solids were allowed to dry for an additional 30 minutes. After backfilling the flask with N_{2}, a thermocouple was introduced into the flask through the rubber septum. The flask was cooled to $-60^{\circ} \mathrm{C}$ and maintained at this temperature using an acetone/dry ice bath. A solution of potassium tert-butoxide $(8.96 \mathrm{~g}, 79.9 \mathrm{mmol}, 6.0$ equiv) in TMEDA ($67 \mathrm{~mL}, 0.2 \mathrm{M}$), prepared by dissolving potassium tert-butoxide in TMEDA in an inert atmosphere followed by clarification of the suspension via syringe filtration, was added via syringe, allowing the solution to flow down the side of the flask to pre-cool it before it encountered the solids. To the resulting suspension at $-55^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ was added tert-butyl lithium (1.6 M in pentane, $25 \mathrm{~mL}, 39.9 \mathrm{mmol}, 3.0$ equiv) via cannula at such a rate as to prevent the reaction temperature from increasing above $-40^{\circ} \mathrm{C}$ (ca. 5 to 10 minutes). Once the addition was complete, the reaction was stirred for 30 minutes at $-55^{\circ} \mathrm{C}$ to $-60^{\circ} \mathrm{C}$. Subsequently, a solution of methyl benzoate $(13.3 \mathrm{~mL}, 106$ mmol, 8.0 equiv) in cyclopentyl methyl ether ($53 \mathrm{~mL}, 0.25 \mathrm{M}$) was added at such a rate as to prevent the reaction temperature from increasing above $-40^{\circ} \mathrm{C}$ ($c a .5$ to 12 minutes). Once the addition was complete, the reaction was allowed to stir at $-55^{\circ} \mathrm{C}$ for 30 minutes, then methanol ($1.62 \mathrm{~mL}, 39.9 \mathrm{mmol}, 3.0$ equiv) was added. The thermocouple was removed, and the rubber septum was replaced with a new rubber septum. Caution! Traces
of solid tert-butyl lithium tend to get stuck on the inside of the rubber septum, and it should be replaced before oxygen is introduced. The flask was purged with O_{2} (balloon) at $-55^{\circ} \mathrm{C}$ then was allowed to warm to $21^{\circ} \mathrm{C}$. The resulting orange suspension was stirred vigorously (1500 rpm) for 2 hours. Upon completion, the yellow suspension was diluted in water (150 $\mathrm{mL})$ and treated with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(50 \mathrm{~mL})$ and $3 \mathrm{M} \mathrm{NaOH}(50 \mathrm{~mL})$. The reaction mixture was extracted with DCM ($4 \times 150 \mathrm{~mL}$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified via SiO_{2} column chromatography ($120 \mathrm{~g} \mathrm{SiO}_{2}, 50 \mathrm{~mm}$ column diameter, eluting with $3 \% 2 \mathrm{M} \mathrm{NH}_{3}$ in $\mathrm{MeOH} / 97 \% \mathrm{CHCl}_{3}$ containing $0.75 \% \mathrm{EtOH}$ as a stabilizer). The product underwent a final purification by crystallization from boiling hexanes (ca. 15 mL). After dissolution in boiling hexanes, the solution was allowed to slowly cool to $21^{\circ} \mathrm{C}$ then to $-20^{\circ} \mathrm{C}$. The supernatant was decanted and the crystals washed with cold hexanes ($3 \times 2 \mathrm{~mL}$). The obtained crystals were dried in vacuo to yield (+)isomatrine (25) as white crystalline needles ($589 \mathrm{mg}, 18 \%$ yield, $>99 \%$ ee). An X-ray structure was acquired directly from the obtained crystals.

(+)-Isomatrine (25):

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 3.77(\mathrm{p}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{t}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.52$ $(\mathrm{dd}, J=12.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{td}, J=11.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-$ $2.39(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{dt}, J=11.5,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.99-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.59(\mathrm{~m}, 5 \mathrm{H}), 1.56(\mathrm{dt}, J=13.4,5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.53-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.36(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right): ~ \delta 170.5,61.3,55.9,52.8,52.1,43.2,39.3,32.8,30.8,27.4$, 26.8, 21.6, 21.4, 20.3, 18.2.

FTIR (NaCl, thin film): 2983, 2952, 2887, 2795, 2684, 1618, 1421, 1276, 1265, $1170 \mathrm{~cm}^{-}$ ${ }^{1}$.

HRMS: (FI-TOF) calc'd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}]^{+} 248.1883$, found 248.1886.

TLC $\left(10 \% 2 \mathrm{M} \mathrm{NH}_{3}\right.$ in $\mathrm{MeOH} / 90 \% \mathrm{CHCl}_{3}$ with $0.75 \% \mathrm{EtOH}$ stabilizer), $\mathbf{R}_{f}: 0.36$ $\left(\mathrm{KMnO}_{4}\right)$.
M.P. $99.1^{\circ} \mathrm{C}-100.3^{\circ} \mathrm{C}$.

Specific Optical Rotation: $[\alpha] \frac{21}{D}=+35.5\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$.

Literature Specific Optical Rotation: $[\alpha] \frac{21}{D}=+44\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) .{ }^{14}$

Chiral SFC: (OB-H, $2.5 \mathrm{~mL} / \mathrm{min}, 15 \% \mathrm{IPA}$ in $\left.\mathrm{CO}_{2}, \lambda=210 \mathrm{~nm}\right): \mathrm{t}_{\mathrm{R}}$ (major) $=3.388 \mathrm{~min}$, $t_{R}($ minor $)=4.523 \mathrm{~min}$.

Figure 2.17. SFC trace of racemic isomatrine.


```
Signal 1: DAD1 A, Sig=210,16 Ref=370,60
```

Peak \#	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	3.388	BV	0.3695	5387.90967	195.53056	47.3900
2	4.523	VB	0.4174	5981.39648	190.98810	52.6100

Figure 2.18. SFC trace of enantiopure isomatrine.

Figure 2.19. X-Ray structure of (+)-isomatrine ((+)-25). CCDC number: 2159771.

Table 2.13. ${ }^{1} H$ NMR data for authentic vs synthetic (+)-isomatrine.

The X-ray structure of (+)-isomatrine has been previously published. ${ }^{13}$

Isomatrine Literature ${ }^{1} \mathrm{H} \delta \mathrm{ppm}\left(220 \mathrm{MHz}, \mathrm{CDCl}_{3}\right){ }^{13}$	Isomatrine Recorded ${ }^{1} \mathrm{H} \delta \mathrm{ppm}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
3.78 (m, 1H)	3.77 , (p, J = 4.4 Hz, 1H)
3.63 (dd, $J=13.5,12.8 \mathrm{~Hz}, 1 \mathrm{H})$	$3.62(\mathrm{t}, \mathrm{J}=13.0 \mathrm{~Hz}, 1 \mathrm{H})$
3.51 (dd, 13.5, 4.6 Hz, 1H)	3.52 (dd, $J=12.8,4.1 \mathrm{~Hz}, 1 \mathrm{H})$
2.93-2.64 (m, 2H)	2.71 (d, J = 9.2 Hz, 1H)
	2.67 (td, $J=11.2,2.6 \mathrm{~Hz}, 1 \mathrm{H})$
2.50-1.30 (m, 19H)	2.45-2.39 (m, 1H)
	2.35-2.26 (m, 2H)
	2.22-2.15 (m, 1H)
	2.05 (dt, $J=11.5,8.0 \mathrm{~Hz}, 1 \mathrm{H})$
	1.99-1.90 (m, 2H)
	1.90-1.81 (m, 2H)
	1.75-1.59 (m, 5H)
	1.56 (dt, $J=13.4,5.4 \mathrm{~Hz}, 1 \mathrm{H})$
	$1.53-1.45$ (m, 1H)
	$1.45-1.36(\mathrm{~m}, 3 \mathrm{H})$

Table 2.14. ${ }^{13} \mathrm{C}$ NMR data for authentic vs synthetic (+)-isomatrine.

Carbon No. isomatrine	Isomatrine Literature ${ }^{13} \mathrm{C} \delta \mathrm{ppm} 75$ $\mathrm{MHz}, \mathrm{CDCl} 3)^{13}$	Isomatrine Recorded ${ }^{13} \mathrm{C} \delta \mathrm{ppm}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	$\Delta \delta$
2	55.7	55.9	0.2
3	21.2	21.4	0.2
4	21.2	21.6	0.3
5	30.6	30.8	0.2
6	61.0	61.3	0.3
7	39.1	39.3	0.2
8	26.7	26.8	0.1
9	20.2	20.3	0.1
10	51.9	52.1	0.2
11	52.6	27.4	0.2
12	27.1	18.2	0.3
13	18.2	32.8	0.0
14	32.6	170.6	0.2
15	170.4	43.2	0.2
17	43.1		0.1

Preparation of (\pm)-aminonitrile 105:

A 50 mL flask was charged with (\pm)-diamine 24 ($200 \mathrm{mg}, 0.66 \mathrm{mmol}, 1.0$ equiv). The flask was evacuated and backfilled three times with N_{2}. Diethyl ether ($0.9 \mathrm{~mL}, 1 \mathrm{M}$) was added, resulting in a clear, colorless solution. To the solution at $21^{\circ} \mathrm{C}$ was added boron trifluoride diethyl etherate ($106 \mathrm{uL}, 0.86 \mathrm{mmol}, 1.01$ equiv). The resulting white suspension was stirred at $21^{\circ} \mathrm{C}$ for five minutes followed by removal of the diethyl ether under vacuum (0.3 torr) on a Schlenk line; the solids were allowed to dry for an additional 30 minutes. The flask was backfilled with N_{2}, and a thermocouple was introduced into the flask through the septum. The flask was cooled to $-60^{\circ} \mathrm{C}$ and maintained at this temperature using an acetone/dry ice bath. A solution of potassium tert-butoxide ($446 \mathrm{mg}, 3.97 \mathrm{mmol}, 6.0$ equiv) in TMEDA ($3.3 \mathrm{~mL}, 0.2 \mathrm{M}$), prepared by dissolving potassium tert-butoxide in TMEDA in an inert atmosphere followed by clarification of the suspension via syringe filtration, was added via syringe by allowing the solution to flow down the side of the flask to precool it before it encountered the solids. To the resulting suspension at $-55^{\circ} \mathrm{C}$ to $-60{ }^{\circ} \mathrm{C}$ was added tert-butyl lithium (1.6 M in pentane, $1.24 \mathrm{~mL}, 1.99 \mathrm{mmol}, 3.0$ equiv) via syringe at such a rate as to prevent the reaction temperature from increasing above $-40^{\circ} \mathrm{C}(c a .1$ to 2 minutes). Once the addition was complete, the reaction was stirred for 30 minutes at $55^{\circ} \mathrm{C}$ to $-60^{\circ} \mathrm{C}$. After 30 minutes, trimethylborate ($0.59 \mathrm{~mL}, 5.29 \mathrm{mmol}, 8.0$ equiv) was added at such a rate as to prevent the reaction temperature from increasing above $-40^{\circ} \mathrm{C}$
(ca. 5 to 8 minutes). Once the addition was complete, the reaction was allowed to stir at $55^{\circ} \mathrm{C}$ for 30 minutes. Subsequently, 30% aqueous hydrogen peroxide $(0.68 \mathrm{~mL}, 6.62 \mathrm{mmol}$, 10.0 equiv) was added at $-55^{\circ} \mathrm{C}$, then the reaction was allowed to warm to $21^{\circ} \mathrm{C}$ and stir for one hour. After one hour, the reaction was treated with $3 \mathrm{M} \mathrm{NaOH}(10 \mathrm{~mL})$ and sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{DCM}(3 \times 25 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to yield a yellow oil. A 25 mL flask was charged with the crude reaction mixture, potassium cyanide ($302 \mathrm{mg}, 4.63 \mathrm{mmol}, 7.0$ equiv), and methanol ($6.6 \mathrm{~mL}, 0.1 \mathrm{M}$). The flask was capped with a rubber septum, and trifluoroacetic acid $(1.0 \mathrm{~mL}, 13.2 \mathrm{mmol}, 20.0$ equiv) was added (Caution! HCN vapors are produced!) The reaction was stirred until complete consumption of the starting material, as judged by TLC (ca. 2 hours). Upon completion, the reaction was quenched with $3 \mathrm{M} \mathrm{NaOH}(50 \mathrm{~mL})$. The aqueous layer was extracted with DCM ($3 \times 25 \mathrm{~mL}$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude reaction was purified via SiO_{2} column chromatography ($20 \mathrm{~g} \mathrm{SiO}_{2}, 20 \mathrm{~mm}$ column diameter, $4 \% 2 \mathrm{M} \mathrm{NH}_{3}$ in $\mathrm{MeOH} / 96 \% \mathrm{CHCl}_{3}$ containing $\left.0.75 \% \mathrm{EtOH}\right)$ to yield (\pm)-aminonitrile 105 as a white crystalline solid ($94.5 \mathrm{mg}, 55 \%$ yield). X-ray-quality crystals were grown by allowing a solution of (\pm)-aminonitrile 105 in diethyl ether to slowly evaporate at $21^{\circ} \mathrm{C}$.

(\pm)-Aminonitrile 105:

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 3.93(\mathrm{dt}, J=3.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=11.9,10.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.19$ (ddd, $J=12.5,5.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.73$ (ddd, $J=9.3,7.4,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{qd}, J$ $=13.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{dd}, J=10.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{dt}, J=13.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-$
$1.90(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.71(\mathrm{~m}, 3 \mathrm{H}), 1.70-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.53(\mathrm{dt}, J=$ $12.9,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.49(\mathrm{~h}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.48-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.38(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 120.0,62.8,57.8,57.6,57.1,54.7,46.9,38.0,36.4,28.6$,
26.7, 23.5, 22.9, 22.3, 22.2, 21.8.

FTIR (NaCl, thin film): 2928, 2858, 2804, 2762, 2676, 2240, 1462, 1359, $1123 \mathrm{~cm}^{-1}$.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$260.2121, found 260.2122.
TLC $\left(10 \% 2 \mathrm{M} \mathrm{NH}_{3}\right.$ in $\mathrm{MeOH} / 90 \% \mathrm{CHCl}_{3}$ containing $\left.0.75 \% \mathrm{EtOH}\right), \mathbf{R}_{f}: 0.42\left(\mathrm{KMnO}_{4}\right)$.
M.P. $134.5-138.3^{\circ} \mathrm{C}$.

Table 2.20. X-Ray structure of (\pm)-105. CCDC number: 2159774.

Preparation of (\pm)-isomatrine (25) from (\pm)-aminonitrile 105:

An oven-dried, N_{2}-flushed 10 mL flask was charged with (\pm)-aminonitrile 105 (20 $\mathrm{mg}, 77 \mu \mathrm{~mol}, 1.0$ equiv), and THF $(0.77 \mathrm{~mL}, 0.1 \mathrm{M})$. The solution was cooled to $-78{ }^{\circ} \mathrm{C}$,
then potassium hexamethyldisilazide (0.5 M in $\mathrm{PhMe}, 278 \mu \mathrm{~L}, 139 \mu \mathrm{~mol}, 1.8$ equiv) was added dropwise. The yellow solution was stirred at $-78^{\circ} \mathrm{C}$ for 30 minutes, then the flask was purged with dry O_{2} (balloon) at $-78^{\circ} \mathrm{C}$. The solution was stirred vigorously (1500 rpm) and was allowed to warm to $21^{\circ} \mathrm{C}$ then stirred for an additional 30 minutes. Upon completion, the reaction was treated with $3 \mathrm{M} \mathrm{NaOH}(10 \mathrm{~mL})$ and sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10$ $\mathrm{mL})$. The aqueous phase was extracted with DCM ($3 \times 15 \mathrm{~mL}$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The yield of (\pm)-isomatrine (25) was measured by ${ }^{1} \mathrm{H}$ qNMR (46% yield, pyazine internal standard).

Preparation of (+)-matrine (26):

A 50 mL flask with a $20 \mathrm{~mm} \times 8 \mathrm{~mm} \times 8 \mathrm{~mm}$ egg-shaped stir bar was charged with $(+$)-isomatrine ($50.0 \mathrm{mg}, 201 \mu \mathrm{~mol}, 1.0$ equiv), 5% rhodium on carbon ($41.4 \mathrm{mg}, 20.1 \mu \mathrm{~mol}$, $10 \mathrm{~mol} \%$), and water ($5 \mathrm{~mL}, 0.04 \mathrm{M}$). The reaction was purged with N_{2} (balloon) followed by H_{2} (balloon). The reaction was not stirred during the gas purge. Once the flask was under an atmosphere of H_{2}, it was placed into a preheated oil bath at $98^{\circ} \mathrm{C}$, and the mixture was stirred at 1500 rpm for 1 hour. Upon completion, the flask was removed from the oil bath and cooled to $21^{\circ} \mathrm{C}$. The catalyst was removed via filtration through a syringe filter, then the filter was washed with water ($3 \times 5 \mathrm{~mL}$). The obtained aqueous solution was concentrated under reduced pressure. The crude product was purified by SiO_{2} column
chromatography ($20 \mathrm{~g} \mathrm{SiO}_{2}, 20 \mathrm{~mm}$ column diameter, $3 \% 2 \mathrm{M} \mathrm{NH}_{3}$ in $\mathrm{MeOH} / 97 \% \mathrm{CHCl}_{3}$ containing $0.75 \% \mathrm{EtOH}$ as a stabilizer) to yield (+)-matrine (26) as a white crystalline solid ($16.1 \mathrm{mg}, 32 \%$ yield) along with (+)-allomatrine (27) as a white crystalline solid (29.8 mg , 60\% yield).
(+)-Matrine (26):
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 4.40(\mathrm{dd}, J=12.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{td}, J=9.8,5.8 \mathrm{~Hz}$, 1H), $3.04(\mathrm{t}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{ddt}, J=11.4,4.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dp}, J=11.6,2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.42(\mathrm{dtd}, J=17.1,4.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{ddd}, J=16.9,11.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.12$ - $2.04(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{dt}, J=14.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.77(\mathrm{~m}, 1 \mathrm{H})$, $1.77-1.55(\mathrm{~m}, 5 \mathrm{H}), 1.51(\mathrm{tt}, J=13.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.47-1.34(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$): $\delta 4.76(\mathrm{dd}, J=12.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{q}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.05(\mathrm{t}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dtd}, J$ $=16.8,4.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{ddd}, J=16.6,10.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.61(\mathrm{~m}, 3 \mathrm{H}), 1.61$ $-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.45-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.19(\mathrm{~m}, 2 \mathrm{H}), 1.18-0.97(\mathrm{~m}, 5 \mathrm{H}), 0.88(\mathrm{q}, J=$ $11.6 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 169.5,63.9,57.5,57.4,53.3,43.4,41.6,35.5,33.0,27.9$, 27.3, 26.6, 21.3, 20.9, 19.2.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$): $\delta 168.0,63.9,57.5,57.553 .0,43.5,41.6,35.9,33.3,28.2$, 27.3, 26.7, 21.5, 21.0, 19.3.

FTIR (NaCl, thin film): 2985, 2944, 2683, 1624, 1464, 1420, 1263, $1168 \mathrm{~cm}^{-1}$.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$249.1961, found 249.1961.

TLC $\left(10 \% 2 \mathrm{M} \mathrm{NH}_{3}\right.$ in $\mathrm{MeOH} / 90 \% \mathrm{CHCl}_{3}$ with $0.75 \% \mathrm{EtOH}$ stabilizer), $\mathbf{R}_{\mathbf{f}}: 0.46$ $\left(\mathrm{KMnO}_{4}\right)$.
M.P. $69.6-71.4^{\circ} \mathrm{C}$.

Specific Optical Rotation: $[\alpha] \frac{21}{D}=+42.8\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$.
Literature Specific Optical Rotation: $[\alpha] \frac{21}{D}=+38\left(\mathrm{c} 1.0, \mathrm{H}_{2} \mathrm{O}\right) .{ }^{14}$
Figure 2.21. X-Ray structure of the monohydrate of (+)-matrine ((+)-26). CCDC number: not publication quality.

Table 2.15. ${ }^{1} H$ NMR data for authentic vs synthetic (+)-matrine.

The X-ray structure of matrine has been previously published (CCDC: 1209643). ${ }^{40}$

Matrine Literature ${ }^{1} \mathrm{H} \delta \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{41}$	Matrine Recorded ${ }^{1} \mathrm{H} \delta \mathrm{ppm}(600 \mathrm{MHz} \mathrm{CDCl} 3)$
4.40 (dd, $J=12.7,4.3 \mathrm{~Hz}, 1 \mathrm{H})$	4.40 (dd, $J=12.8,4.4 \mathrm{~Hz}, 1 \mathrm{H})$
3.82 (dt, $J=10.1,7.7 \mathrm{~Hz}, 1 \mathrm{H})$	3.81 (td, $J=9.8,5.8 \mathrm{~Hz}, 1 \mathrm{H})$
3.05 (t, $J=12.7 \mathrm{~Hz}, 1 \mathrm{H})$	3.04 (t, $J=12.7 \mathrm{~Hz}, 1 \mathrm{H})$
2.80 (m, 2H)	2.83 (ddt, $J=11.4,4.3,2.2 \mathrm{~Hz}, 1 \mathrm{H})$
	2.78 (dp, $J=11.6,2.1 \mathrm{~Hz})$
2.43 (m, 1H)	2.42 (dtd, $J=17.1,4.7,1.8 \mathrm{~Hz}, 1 \mathrm{H})$
2.25 (m, 1H)	2.24 (ddd, $J=16.9,11.0,5.5 \mathrm{~Hz}, 1 \mathrm{H})$
2.09 (m, 3H)	$2.12-2.04$ (m, 2H)
	$1.99-1.91$ (m, 2H)
1.94 (m, 4H)	1.89 (dt, $J=17.1,4.7,1.8 \mathrm{~Hz}, 1 \mathrm{H})$
1.87 (m, 1H)	$1.84-1.77$ (m, 1H)
$1.85-1.50$ (m, 9H)	$1.77-1.55$ (m, 5 H)
	$1.51(\mathrm{tt}, J=13.6,4.9 \mathrm{~Hz}, 1 \mathrm{H})$
	$1.47-1.34$ (m, 5H)

Table 2.16. ${ }^{13}$ C NMR data for authentic vs synthetic (+)-matrine.

Carbon No. matrine	Matrine Literature ${ }^{13} \mathrm{C} \delta \mathrm{ppm}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	Matrine Recorded ${ }^{13} \mathrm{C} \delta \mathrm{ppm}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	$\Delta \delta$
2	57.6	57.5	-0.1
3	21.4	21.3	-0.1
4	27.9	27.9	0.0
5	35.6	35.5	-0.1
6	64.0	63.9	-0.1
7	43.4	43.4	0.0
8	26.6	26.6	0.0
9	57.4	57.4	-0.1
10	53.4	53.3	0.0
11	27.4	27.3	-0.1
12	19.2	19.2	-0.1
13	33.0	33.0	0.0
14	169.7	169.5	0.0
15	41.7	41.6	-0.2
17	21.7		

Table 2.17. ${ }^{1} H$ NMR data for authentic vs synthetic (+)-matrine in $C_{6} D_{6}$.

Matrine Literature ${ }^{1} \mathrm{H} \delta \mathrm{ppm}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)^{42^{*}}$	Matrine Recorded ${ }^{1} \mathrm{H} \delta \mathrm{ppm}\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$
4.73 (dd, $J=12.6,4.4 \mathrm{~Hz}, 1 \mathrm{H})$	4.76 (dd, $J=12.5,4.4 \mathrm{~Hz}, 1 \mathrm{H})$
3.57 (ddd, $J=9.5,9.2,5.8 \mathrm{~Hz}, 1 \mathrm{H})$	3.57 (q, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$
3.03 (dd, $J=12.6,12.4 \mathrm{~Hz}, 1 \mathrm{H})$	3.05 (t, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H})$
2.57 (ddd, $J=11.1,4.2,2.1 \mathrm{~Hz}, 1 \mathrm{H})$	2.58 (d, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H})$
2.52 (dd, $J=11.0,4.0,2.1 \mathrm{~Hz}, 1 \mathrm{H})$	2.52 (d, $J=11.3 \mathrm{~Hz}, 1 \mathrm{H})$
2.38 (ddd, $J=17.0,4.8,2.0 \mathrm{~Hz}, 1 \mathrm{H})$	2.39 (dtd, $J=16.8,4.7,1.9 \mathrm{~Hz}, 1 \mathrm{H})$
2.08 (dd, $J=17.0,10.7,5.5 \mathrm{~Hz}, 1 \mathrm{H})$	2.09 (ddd, $J=16.6,10.9,5.5 \mathrm{~Hz}, 1 \mathrm{H})$
1.71 (m, 1H)	
1.70 (ddd, $J=11.9,11.1,2.8,1 \mathrm{H})$	
1.67 (ddd, $J=12.9,11.0,2.8 \mathrm{~Hz}, 1 \mathrm{H})$	$1.74-1.61$ (m, 3H)
1.55 (dddt, $J=13.6,13.3,12.9,4.04 .0 \mathrm{~Hz}, 1 \mathrm{H})$	$1.61-1.45$ (m, 4H)
1.50 (d, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H})$	
1.49 (ddd, $J=12.4,4.9,4.4 \mathrm{~Hz}, 1 \mathrm{H})$	
1.49 (m, 1H)	
1.42 (d, $J=13.7 \mathrm{~Hz}, 1 \mathrm{H})$	$1.45-1.31(\mathrm{~m}, 2 \mathrm{H})$
1.36 (dtt, $J=12.7,11.9,4.3,4.2 \mathrm{~Hz}, 1 \mathrm{H})$	
1.28 (d, $J=12.7 \mathrm{~Hz}, 1 \mathrm{H})$	$1.33-1.19$ (m, 2H)
1.22 (dddd, $J=13.7,13.6,4.9,4.7 \mathrm{~Hz}, 1 \mathrm{H})$	

$1.13($ ddddd, $J=13.4,12.7,10.7,4.8,3.0 \mathrm{~Hz}, 1 \mathrm{H})$	
$1.09(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H})$	
$1.07(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H})$	
$1.02(\mathrm{~m}, 1 \mathrm{H})$	
$1.02(\mathrm{~m}, 1 \mathrm{H})$	
$0.88(\mathrm{dddd}, J=13.4,11.4,9.2,3.2 \mathrm{~Hz}, 1 \mathrm{H})$	

*The literature report of the ${ }^{1} \mathrm{H}$ NMR of matrine in $\mathrm{C}_{6} \mathrm{D}_{6}$ utilized HMQC, HMQC-
TOCSY, and MAXY to measure the coupling constants of overlapping multiplets.

Table 2.18. ${ }^{13} \mathrm{C}$ NMR data for authentic vs synthetic (+)-matrine in $C_{6} D_{6}$.

Carbon No. matrine	Matrine Literature ${ }^{13} \mathrm{C} \delta \mathrm{ppm}\left(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	Matrine Recorded ${ }^{13} \mathrm{C} \delta \mathrm{ppm}\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	$\Delta \delta$
2	57.0	57.5	0.5
3	21.0	21.5	0.5
4	27.7	28.2	0.5
5	35.4	35.9	0.5
6	63.4	63.9	0.5
7	43.0	43.5	0.5
8	26.2	26.7	0.5
9	20.5	21.0	0.5
10	57.0	53.5	0.5
11	26.5	26.7	0.5
12	18.8	19.3	0.0
13	32.8	33.3	0.5
14	167.6	168.0	0.5
15	41.1	41.6	0.4
17			0.5

Preparation of (+)-allomatrine (27):

A 50 mL flask with a $20 \mathrm{~mm} \times 8 \mathrm{~mm} \times 8 \mathrm{~mm}$ egg-shaped stir bar was charged with $(+)$-isomatrine ($50.0 \mathrm{mg}, 201 \mu \mathrm{~mol}, 1.0$ equiv), 10% palladium on carbon ($21.4 \mathrm{mg}, 20.1$ $\mu \mathrm{mol}, 10 \mathrm{~mol} \%$), and water ($5 \mathrm{~mL}, 0.04 \mathrm{M}$). The reaction was purged with N_{2} (balloon) followed by H_{2} (balloon). The reaction was not stirred during the gas purge. Once the flask was under an atmosphere of H_{2}, it was placed into a preheated oil bath at $98^{\circ} \mathrm{C}$, and the mixture was stirred at 1500 rpm for 2 hours. Upon completion, the flask was removed from the oil bath and cooled to $21^{\circ} \mathrm{C}$. The catalyst was removed via filtration through a syringe filter, then the filter was washed with water ($3 \times 5 \mathrm{~mL}$). The obtained aqueous solution was concentrated under reduced pressure. The crude product was purified by SiO_{2} column chromatography ($20 \mathrm{~g} \mathrm{SiO}_{2}, 20 \mathrm{~mm}$ column diameter, $3 \% 2 \mathrm{M} \mathrm{NH}_{3}$ in $\mathrm{MeOH} / 97 \% \mathrm{CHCl}_{3}$ containing $0.75 \% \mathrm{EtOH}$ as a stabilizer) to yield (+)-allomatrine (27) as a white crystalline solid ($41.5 \mathrm{mg}, 83 \%$ yield) along with (+)-matrine (26) as a white crystalline solid (7.3 mg , 15% yield).

(+)-Allomatrine (27):

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 4.68(\mathrm{dd}, J=13.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{td}, J=9.5,5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.87-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{dtd}, J=17.3,4.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{ddd}, J=17.1,11.3$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{dtt}, J=13.6,5.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.90(\mathrm{~m}$,
$2 \mathrm{H}), 1.86-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.61(\mathrm{~m}, 5 \mathrm{H}), 1.57$ (dddd, $J=23.5,11.9,4.8,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.49-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.27-1.19(\mathrm{~m}, 1 \mathrm{H})$, $0.98-0.82(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathbf{C D C l}_{3}$): 169.3, 70.8, 60.3, 56.6, 55.9, 46.3, 46.2, 39.1, 32.9, 28.4, $27.5,26.9,24.8,24.8,19.4$.

FTIR (NaCl, thin film): 2986, 1628, 1422, $1260 \mathrm{~cm}^{-1}$.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$249.1961, found 249.1961.

TLC $\left(10 \% 2 \mathrm{M} \mathrm{NH}_{3}\right.$ in $\mathrm{MeOH} / 90 \% \mathrm{CHCl}_{3}$ with $0.75 \% \mathrm{EtOH}$ stabilizer), $\mathbf{R}_{f}: 0.34$ $\left(\mathrm{KMnO}_{4}\right)$.
M.P. $88.5-94.8^{\circ} \mathrm{C}$.

Specific Optical Rotation: $[\alpha] \frac{21}{D}=+40.5\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$.

Literature Specific Optical Rotation: $[\alpha] \frac{21}{D}=+51.2\left(\mathrm{c} 1.07, \mathrm{CHCl}_{3}\right) .{ }^{21}$

Figure 2.22. X-Ray structure of (+)-allomatrine ((+)-27). CCDC number: 2159773.

Table 2.19. ${ }^{1} H$ NMR data for authentic vs synthetic (+)-allomatrine.

The X-ray structure of allomatrine has been previously published (CCDC: 1102291). ${ }^{43}$

Allomatrine Literature ${ }^{1} \mathrm{H} \delta \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{43}$	Allomatrine Recorded ${ }^{1} \mathrm{H} \delta \mathrm{ppm}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
4.69 (dd, $J=12.9,3.9 \mathrm{~Hz}, 1 \mathrm{H})$	4.68 (dd, $J=13.3,3.9 \mathrm{~Hz}, 1 \mathrm{H})$
3.00 (td, $J=9.4,5.4 \mathrm{~Hz}, 1 \mathrm{H})$	2.98 (td, $J=9.5,5.4 \mathrm{~Hz}, 1 \mathrm{H})$
2.85 (m, 2H)	$2.87-2.77$ (m, 2H)
2.42 (m, 1H)	2.40 (dtd, $J=17.3,4.6,1.9 \mathrm{~Hz}, 1 \mathrm{H})$
2.27 (ddd, $J=17.0,11.1,5.5 \mathrm{~Hz}, 1 \mathrm{H})$	2.26 (ddd, $J=17.1,11.3,5.6 \mathrm{~Hz}, 1 \mathrm{H})$
2.17 (t, $J=12.9 \mathrm{~Hz}, 1 \mathrm{H})$	2.15 (t, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$
$2.11-1.92$ (m, 3H)	2.06 (dtt, $J=13.6,5.4,2.5 \mathrm{~Hz}, 1 \mathrm{H})$
	$2.00-1.90$ (m, 2H)
$1.89-1.78$ (m, 2H)	$1.86-1.77$ (m, 2H)
$1.75-1.58$ (m, 5H)	$1.73-1.61$ (m, 5H)
1.58 (m, 1H)	1.57 (dddd, $J=23.5,11.9,4.8,2.8 \mathrm{~Hz}, 1 \mathrm{H})$
$1.52-1.39$ (m, 2H)	$1.49-1.37$ (m, 2H)
1.35 (t, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H})$	1.32 (t, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H})$
1.27 (m, 1H)	$1.27-1.19$ (m, 1H)
$1.03-0.83$ (m, 2H)	0.98-0.82 (m, 2H)

Table 2.20. ${ }^{13} \mathrm{C}$ NMR data for authentic vs synthetic (+)-allomatrine.

Carbon No. allomatrine	Allomatrine Literature ${ }^{13} \mathrm{C} \delta \mathrm{ppm}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{43}$	Allomatrine Recorded ${ }^{13} \mathrm{C} \delta \mathrm{ppm}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	$\Delta \delta$
2	55.8	55.9	0.1
3	24.5	24.8	0.3
4	27.4	27.6	0.2
5	38.9	39.1	0.2
6	70.7	70.9	0.2
7	46.0	46.3	0.3
8	26.7	26.9	0.2
9	24.5	24.8	0.3
10	56.4	56.6	0.2
11	28.1	60.3	0.2
12	19.3	28.4	0.2
13	32.7	16.5	0.2
14	46.1	32.9	0.2
15	169.3	0.2	
17		46.3	0.2

Preparation of (-)-sophoridine (28):

A 50 mL flask with a $20 \mathrm{~mm} \times 8 \mathrm{~mm} \times 8 \mathrm{~mm}$ egg-shaped stir bar was charged with (+)-isomatrine ($50.0 \mathrm{mg}, 201 \mu \mathrm{~mol}, 1.0$ equiv), $\mathrm{PtO}_{2}(4.6 \mathrm{mg}, 20.1 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$) and water $(5 \mathrm{~mL}, 0.04 \mathrm{M})$. The reaction was purged with N_{2} (balloon) followed by H_{2} (balloon). The reaction was not stirred during the gas purge. Once the flask was under an atmosphere of H_{2}, it was put into a preheated oil bath at $98^{\circ} \mathrm{C}$, and the mixture was stirred at 1500 rpm for 15 minutes. Upon completion, the flask was removed from the oil bath and cooled to $21{ }^{\circ} \mathrm{C}$. The catalyst was removed via filtration through a syringe filter, then the filter was washed with water ($3 \times 5 \mathrm{~mL}$). The obtained aqueous solution was concentrated under reduced pressure. The crude product was purified by SiO_{2} column chromatography (20 g $\mathrm{SiO}_{2}, 20 \mathrm{~mm}$ column diameter, $3 \% 2 \mathrm{M} \mathrm{NH}_{3}$ in $\mathrm{MeOH} / 97 \% \mathrm{CHCl}_{3}$ containing 0.75% EtOH as a stabilizer to $15 \% 2 \mathrm{M} \mathrm{NH}_{3}$ in $\mathrm{MeOH} / 85 \% \mathrm{CHCl}_{3}$ containing $0.75 \% \mathrm{EtOH}$ as a stabilizer in 2% increments) to yield (-)-sophoridine (28) as a white crystalline solid (5.0 $\mathrm{mg}, 10 \%$ yield), (+)-isosophoridine (29) as a white crystalline solid ($14.6 \mathrm{mg}, 29 \%$ yield); a mixture of $(+)$-allomatrine (27) and (-)-unnatural product 30 in a 40:60 ratio (12.1 mg, 24% combined yield) as a clear, colorless oil; and a mixture of $(+)$-isomatrine (25) and (+)matrine (26) in a $80: 20$ ratio ($15.5 \mathrm{mg}, 31 \%$ combined yield) as a white crystalline solid.

(-)-Sophoridine (28):

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 3.42(\mathrm{t}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.26$ $(\mathrm{t}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dt}, J=17.6$,
$5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{ddd}, J=17.5,9.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.09(\mathrm{~m}, 2 \mathrm{H}), 2.08-1.37(\mathrm{~m}$, $14 \mathrm{H}), 1.05(\mathrm{qd}, J=12.8,3.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 170.1,63.5,56.0,55.8,50.4,47.7,41.1,32.6,30.9,30.3$, 28.2, 23.8, 21.9, 21.6, 19.0.

FTIR (NaCl, thin film): 2986, 2938, 1622, 1420, 1272, $1263 \mathrm{~cm}^{-1}$.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$249.1961, found 249.1960.

TLC $\left(10 \% 2 \mathrm{M} \mathrm{NH}_{3}\right.$ in $\mathrm{MeOH} / 90 \% \mathrm{CHCl}_{3}$ with $0.75 \% \mathrm{EtOH}$ stabilizer), $\mathbf{R}_{f}: 0.24$ $\left(\mathrm{KMnO}_{4}\right)$.
M.P. $61.2-64.2^{\circ} \mathrm{C}$.

Specific Optical Rotation: $[\alpha] \frac{21}{D}=-57.3\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$.

Specific Optical Rotation: $[\alpha] \frac{21}{D}=-60.9\left(\mathrm{c} 1.0, \mathrm{H}_{2} \mathrm{O}\right)$.

Literature Specific Optical Rotation: $[\alpha] \frac{21}{D}=-64\left(\mathrm{c} 1.0, \mathrm{H}_{2} \mathrm{O}\right) .{ }^{14}$

Table 2.21. ${ }^{1} H$ NMR data for authentic vs synthetic (+)-sophoridine.
The X-ray structure of sophoridine has been previously published (CCDC: 1261174). ${ }^{36}$

Sophoridine Literature ${ }^{1} \mathrm{H} \delta \mathrm{ppm}$	Sophoridine Recorded ${ }^{1} \mathrm{H} \delta \mathrm{ppm}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
unpublished	3.42 (dd, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H})$
	3.34 (br t, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$
	3.26 (t, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H})$
	2.86 (d, $J=12.1 \mathrm{~Hz}, 1 \mathrm{H})$
	2.76 (t, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$
	2.39 (dt, $J=17.6,5.6 \mathrm{~Hz}, 1 \mathrm{H})$
	2.31 (ddd, $J=17.5,9.2,5.7 \mathrm{~Hz}, 1 \mathrm{H})$
	2.25-2.09 (m, 2H)
	2.08-1.37 (m, 14H)
	1.05 (qd, $J=12.8,3.8 \mathrm{~Hz}, 1 \mathrm{H})$

Table 2.22. ${ }^{13} \mathrm{C}$ NMR data for authentic vs synthetic (+)-sophoridine.

Carbon No. sohporidine	Sophoridine Literature ${ }^{13} \mathrm{C} \delta \mathrm{ppm}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{44}$	Sophoridine Recorded ${ }^{13} \mathrm{C} \delta \mathrm{ppm}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	$\Delta \delta$
2	50.2	50.4	0.2
3	21.6	21.9	0.3
4	23.5	23.8	0.3
5	30.6	31.0	0.4
6	63.2	63.5	0.3
7	40.8	41.1	0.3
8	30.1	30.3	0.2
9	21.5	21.6	0.1
10	55.8	56.0	0.2
11	55.7	28.8	0.1
12	18.8	19.0	0.2
13	32.5	32.6	0.2
14	169.9	170.1	0.1
15	47.4	47.7	0.2
17	28.0		0.3

Preparation of (+)-isosophoridine (29):

(+)-isomatrine 25

(+)-isosophoridine

(+)-allomatrine

(-)-unnatural product
19\% yield

A 50 mL flask with a $20 \mathrm{~mm} \times 8 \mathrm{~mm} \times 8 \mathrm{~mm}$ egg-shaped stir bar was charged with (+)-isomatrine ($50.0 \mathrm{mg}, 201 \mu \mathrm{~mol}, 1.0$ equiv), 10% platinum on carbon ($78.5 \mathrm{mg}, 20.1$ $\mu \mathrm{mol}, 10 \mathrm{~mol} \%$), and water ($5 \mathrm{~mL}, 0.04 \mathrm{M}$). The reaction was purged with N_{2} (balloon) followed by H_{2} (balloon). The reaction was not stirred during the gas purge. Once the flask was under an atmosphere of H_{2}, it was put into a preheated oil bath at $98^{\circ} \mathrm{C}$, and the mixture was stirred at 1500 rpm for 15 minutes. Upon completion, the flask was removed from the oil bath and cooled to $21{ }^{\circ} \mathrm{C}$. The catalyst was removed via filtration through a syringe filter, then the filter was washed with water ($3 \times 5 \mathrm{~mL}$). The obtained aqueous solution was concentrated under reduced pressure. The crude product was purified by SiO_{2} column chromatography ($20 \mathrm{~g} \mathrm{SiO}_{2}$, 20 mm column diameter, $3 \% 2 \mathrm{M} \mathrm{NH}_{3}$ in $\mathrm{MeOH} / 97 \% \mathrm{CHCl}_{3}$ with $0.75 \% \mathrm{EtOH}$ stabilizer to $15 \% 2 \mathrm{M} \mathrm{NH}_{3}$ in $\mathrm{MeOH} / 85 \% \mathrm{CHCl}_{3}$ with $0.75 \% \mathrm{EtOH}$ stabilizer as a gradient in 2% increments) to yield (+)-isosophoridine (29) as a white crystalline solid (27.5 mg, 55\% yield) along with a mixture of (+)-allomatrine (27) and (-)unnatural product 30 in a $36: 64$ ratio ($14.9 \mathrm{mg}, 30 \%$ combined yield).
(+)-Isosophoridine (29):
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 4.67(\mathrm{dd}, J=13.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-2.82(\mathrm{~m}, 4 \mathrm{H}), 2.75$ (dd, $J=10.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=13.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dt}, J=11.6,3.6 \mathrm{~Hz}, 1 \mathrm{H})$,
$2.40(\mathrm{dtd}, J=17.3,5.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{ddd}, J=17.2,9.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.95(\mathrm{~m}$, $1 \mathrm{H}), 1.93-1.70(\mathrm{~m}, 5 \mathrm{H}), 1.86-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.73(\mathrm{ddt}, J=15.9,6.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.66-$ $1.55(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{qd}, J=12.7,4.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 169.9,62.4,60.1,54.2,46.9,45.2,36.1,33.4,33.0,28.1$, 26.7, 26.0, 23.1, 19.3, 19.2.

FTIR (NaCl, thin film): 2934, 2856, 1632, 1265, $1168 \mathrm{~cm}^{-1}$.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$249.1961, found 249.1963.

TLC $\left(10 \% 2 \mathrm{M} \mathrm{NH}_{3}\right.$ in $\mathrm{MeOH} / 90 \% \mathrm{CHCl}_{3}$ with $0.75 \% \mathrm{EtOH}$ stabilizer), $\mathbf{R}_{f}: 0.24$ $\left(\mathrm{KMnO}_{4}\right)$.
M.P. $111.0-114.1^{\circ} \mathrm{C}$.

Specific Optical Rotation: $[\alpha] \frac{21}{D}=+94.0\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$.

Specific Optical Rotation: $[\alpha] \frac{21}{D}=+98.7$ (c 1.0, EtOH).
Literature Specific Optical Rotation: $[\alpha] \frac{21}{D}=+101$ (c 1.0, EtOH). ${ }^{14}$

Figure 2.23. X-Ray structure of (\pm)-isosophoridine ((土)-29). CCDC number 2159772.

Table 2.23. ${ }^{1} H$ NMR data for authentic vs synthetic (+)-isosophoridine.

The X-ray structure of isosophoridine has been previously published (CCDC: 1180978 and 1180979). ${ }^{45,46}$

Isosophoridine Literature ${ }^{1} \mathrm{H} \delta \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)^{22}$	Isosophoridine Recorded ${ }^{1} \mathrm{H} \delta \mathrm{ppm}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$4.69(\mathrm{dd}, J=13.4,1.9 \mathrm{~Hz}, 1 \mathrm{H})$	$4.67(\mathrm{dd}, J=13.3,1.9 \mathrm{~Hz}, 1 \mathrm{H})$
$3.02-2.85(\mathrm{~m}, 4 \mathrm{H})$	$3.00-2.82(\mathrm{~m}, 4 \mathrm{H})$
$2.77(\mathrm{dd}, J=10.6,4.7, \mathrm{~Hz}, 1 \mathrm{H})$	$2.75,(\mathrm{dd}, J=10.8,4.7 \mathrm{~Hz}, 1 \mathrm{H})$
$2.65(\mathrm{dd}, J=13.4,3.5 \mathrm{~Hz}, 1 \mathrm{H})$	$2.63(\mathrm{dd}, J=13.4,3.6 \mathrm{~Hz}, 1 \mathrm{H})$
$2.52-2.37(\mathrm{~m}, 2 \mathrm{H})$	$2.46(\mathrm{dt}, J=11.6,3.6 \mathrm{~Hz}, 1 \mathrm{H})$
	$2.40(\mathrm{dtd}, J=17.3,5.2,1.7 \mathrm{~Hz}, 1 \mathrm{H})$
$2.35-2.24(\mathrm{~m}, 1 \mathrm{H})$	$2.28(\mathrm{ddd}, J=17.2,9.8,5.4 \mathrm{~Hz}, 1 \mathrm{H})$
$2.09-1.99(\mathrm{~m}, 1 \mathrm{H})$	$2.07-1.95(\mathrm{~m}, 1 \mathrm{H})$
$1.95-1.71(\mathrm{~m}, 5 \mathrm{H})$	$1.93-1.70(\mathrm{~m}, 6 \mathrm{H})$
$1.71-1.49(\mathrm{~m}, 4 \mathrm{H})$	$1.66-1.47(\mathrm{~m}, 4 \mathrm{H})$
$1.41-1.23(\mathrm{~m}, 3 \mathrm{H})$	$1.38-1.29(\mathrm{~m}, 2 \mathrm{H})$
$1.05(\mathrm{qd}, J=12.4,4.2 \mathrm{~Hz}, 1 \mathrm{H})$	$1.04(\mathrm{qd}, J=12.7,4.2 \mathrm{~Hz}, 1 \mathrm{H})$

Table 2.24. ${ }^{13} \mathrm{C}$ NMR data for authentic vs synthetic (+)-isosophoridine.

Carbon No. isosohporidine	Isosophoridine Literature ${ }^{13} \mathrm{C} \delta \mathrm{ppm}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)^{22}$	Isosophoridine Recorded ${ }^{13} \mathrm{C} \delta \mathrm{ppm}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	$\Delta \delta$
2	45.0	45.2	0.2
3	25.6	26.0	0.4
4	22.7	23.1	0.4
5	35.8	36.1	0.3
6	62.1	62.4	0.3
7	33.3	33.4	0.1
8	26.6	26.7	0.1
10	19.0	19.3	0.3
11	53.9	64.2	0.3
12	27.9	28.1	0.3
13	18.9	19.2	0.3
14	32.8	33.0	0.3
15	169.9	169.9	0.2
17	46.6	46.9	0.0
2		0.3	

Preparation of (-)-unnatural product 30:

(+)-isomatrine 25

(-)-unnatural product
40% yield

(+)-allomatrine
27

(+)-isosophoridine
29

A 50 mL flask with a $20 \mathrm{~mm} \times 8 \mathrm{~mm} \times 8 \mathrm{~mm}$ egg-shaped stir bar was charged with (+)-isomatrine ($30.0 \mathrm{mg}, 121 \mu \mathrm{~mol}, 1.0$ equiv.), $\mathrm{PtO}_{2}(30.2 \mathrm{mg}, 133 \mu \mathrm{~mol}, 110 \mathrm{~mol} \%$), and water ($3 \mathrm{~mL}, 0.04 \mathrm{M}$). The reaction was purged with N_{2} (balloon) followed by H_{2} (balloon). The reaction was not stirred during the gas purge. Once the flask was under an atmosphere of H_{2}, it was put into a preheated oil bath at $80^{\circ} \mathrm{C}$, and the mixture was stirred at 1500 rpm for 24 hours. Upon completion, the flask was removed from the oil bath and cooled to $21{ }^{\circ} \mathrm{C}$. The catalyst was removed via filtration through a syringe filter, then the filter was washed with water ($3 \times 5 \mathrm{~mL}$). The obtained aqueous solution was concentrated under reduced pressure. The crude product was purified by SiO_{2} column chromatography (5 g $\mathrm{SiO}_{2}, 10 \mathrm{~mm}$ column diameter, $5 \% 2 \mathrm{M} \mathrm{NH}_{3}$ in $\mathrm{MeOH} / 95 \% \mathrm{CHCl}_{3}$ containing 0.75% EtOH to $10 \% 2 \mathrm{M} \mathrm{NH}_{3}$ in $\mathrm{MeOH} / 90 \% \mathrm{CHCl}_{3}$ containing $0.75 \% \mathrm{EtOH}$ as a gradient in 1% increments) to yield (+)-isosophoridine (29) as a white crystalline solid ($9.9 \mathrm{mg}, 33 \%$ yield) along with a mixture of (+)-allomatrine (3) and (-)-unnatural product 30. The separation of the (-)-unnatural product was carried out via HPLC reverse phase chromatography (Eclipse XDB-C8 - $9.4 \mathrm{~mm} \times 250 \mathrm{~mm}$ column, $8 \% \mathrm{ACN} / 92 \% \mathrm{H}_{2} \mathrm{O}$ with $0.2 \% \mathrm{TFA}$, flow rate: $5 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{r}}((-)$-unnatural product 30 $)=5.06 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}((+)$-allomatrine $(\mathbf{2 7}))=6.29$ min) to yield (-)-unnatural product $\mathbf{3 0}$ as a white crystalline solid ($12.0 \mathrm{mg}, 40 \%$ yield) along with (+)-allomatrine (27) as a white crystalline solid (5.4 mg, 18\% yield). X-ray-
quality crystals of (-)-unnatural product $\mathbf{3 0}$ were prepared via slow evaporation of a hexanes solution at $-20^{\circ} \mathrm{C}$ open to air.
(-)-Unnatural Product 30:
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 3.75(\mathrm{ddd}, J=9.5,8.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=13.5$, $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=13.6,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.45-2.24(\mathrm{~m}$, $2 \mathrm{H}), 2.10-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.52(\mathrm{~m}, 11 \mathrm{H}), 1.38(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{dd}, J=$ $12.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{dd}, J=12.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.13-0.98(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 172.7,65.4,56.1,55.9,54.5,46.7,42.4,35.8,32.1,30.3$, 27.3, 25.8, 24.8, 24.4, 19.3.

FTIR (NaCl, thin film): 2922, 2798, 2740, 1638, 1179, 1142, $1126 \mathrm{~cm}^{-1}$.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$249.1961, found 249.1960.

TLC $\left(10 \% 2 \mathrm{M} \mathrm{NH}_{3}\right.$ in $\mathrm{MeOH} / 90 \% \mathrm{CHCl}_{3}$ with $0.75 \% \mathrm{EtOH}$ stabilizer), $\mathbf{R}_{f}: 0.34$ $\left(\mathrm{KMnO}_{4}\right)$.
M.P. $63.2-66.5^{\circ} \mathrm{C}$.

Specific Optical Rotation: $[\alpha] \frac{21}{D}=-53.0\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$.

Figure 2.24. X-Ray structure of (-)-unnatural product ((-)-30). CCDC number: 2163777.

Table 2.25. Isomatrine isomerization optimization.

(+)-allomatrine

(+)-isomatrine
27
(+)-isosophoridine 29

(+)-matrine 26
(-)-sophoridine

reported yields are qNMR yields against a pyrazine internal standard

Table 2.26. Isomatrine isomerization optimization with $R h / C$.

(+)-isomatrine 25

(+)-matrine 26

$(+)$-allomatrine

(+)-isosophoridine

Entry	Time	Recovered SM	allomatrine	isosophoridine	matrine	unnatural product	sophoridine
1	0.5 h	35	30%	5%	26%	2%	1%
2	0.75 h	39	23%	10%	28%	0%	0%
3	1 h	18	30%	10%	42%	0%	0%
4	1.5 h	8	35%	9%	48%	0%	0%
5	2 h	0	57%	0%	42%	0%	0%
6	6 h	0	70%	0%	30%	0%	0%
7	24 h	0	76%	0%	24%	0%	0%

all yields are qNMR yields against pyrazine internal standard

Table 2.27. Isomatrine isomerization optimization with Pd/C.

Entry	Time	Recovered SM allomatrine	isosophoridine	matrine	unnatural product	sophoridine	
1	0.25 h	10	42%	6%	28%	0%	2%
2	0.75 h	0	64%	6%	36%	0%	2%
3	1 h	0	87%	0%	13%	0%	0%
4	1.5 h	0	78%	0%	22%	0%	0%
5	2 h	0	82%	0%	18%	0%	0%
6	6 h	0	92%	0%	8%	0%	0%
7	24 h	0	88%	0%	12%	0%	0%

all yields are qNMR yields against pyrazine internal standard

Preparation of (\pm)- N-oxide 101:

A 1 L flask was charged with (\pm)-diamine $24(2.50 \mathrm{~g}, 10.7 \mathrm{mmol}, 1.0$ equiv) and methanol ($323 \mathrm{~mL}, 0.033 \mathrm{M}$). The solution was cooled to $0^{\circ} \mathrm{C}$, then peracetic acid $(32 \%$ wt. \% in dilute acetic acid, $2.42 \mathrm{~mL}, 11.7 \mathrm{mmol}, 1.1$ equiv) was added dropwise. The reaction was stirred for 15 minutes at $0{ }^{\circ} \mathrm{C}$ followed by removal of the solvent under reduced pressure. The residue was diluted in DCM $(200 \mathrm{~mL})$ and the organic layer washed with $3 \mathrm{M} \mathrm{NaOH}(50 \mathrm{~mL})$. The aqueous layer was extracted with DCM ($3 \times 100 \mathrm{~mL}$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by crystallization from boiling hexanes (15 mL) and enough chloroform to ensure complete dissolution. The solution was allowed to cool to $21^{\circ} \mathrm{C}$ then to $-20^{\circ} \mathrm{C}$. The solution was decanted from the crystals, and the crystals were washed with a 5:1 mixture of hexanes/chloroform followed by drying in vacuo to yield (\pm)- N-oxide 101 as a white crystalline solid ($1.44 \mathrm{~g}, 54 \%$ yield). (\pm)- N -oxide 101:
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 3.87(\mathrm{dd}, J=12.7,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.47$ (ddtd, $J=13.2,4.0$, $2.3,0.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{td}, J=13.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dtd}, J=7.8,6.0,4.9,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.14-3.06(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{dddd}, J=13.2,5.4,3.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.40$ - $2.26(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{t}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.32(\mathrm{~m}, 15 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 77.0,72.2,61.0,57.6,57.5,57.4,31.1,29.2,29.1,27.3$, 25.5, 23.8, 23.1, 22.6, 22.2.

FTIR (NaCl, thin film): 2985, 1420, $1268 \mathrm{~cm}^{-1}$.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 251.2118$, found 251.2116 .

TLC $\left(40 \% 2 \mathrm{M} \mathrm{NH}_{3}\right.$ in $\left.\mathrm{MeOH} / 60 \% \mathrm{ACN}\right), \mathbf{R}_{f}: 0.31\left(\mathrm{KMnO}_{4}\right)$.
M.P. $202.9-208.1^{\circ} \mathrm{C}$.

Figure 2.25. X-Ray structure of the mono-chloroform adduct of (\pm)-101. CCDC number 2159764.

Preparation of (\pm)-diamine 91

N-oxide elimination:

A 25 mL oven-dried, N_{2}-flushed flask was charged with (\pm)- N-oxide $101(100 \mathrm{mg}$, $0.399 \mathrm{mmol}, 1.0$ equiv), 2,6-di-tert-butyl-4-methylpyridine ($147 \mathrm{mg}, 0.718 \mathrm{mmol}, 1.8$
equiv), DCM ($10 \mathrm{~mL}, 0.04 \mathrm{M}$), and acetic anhydride ($0.38 \mathrm{~mL}, 3.99 \mathrm{mmol}, 10.0$ equiv). The reaction was stirred at $35^{\circ} \mathrm{C}$ until complete consumption of the starting material, as judged by TLC (ca. 24 hours). The reaction was concentrated under reduced pressure and then the crude product was partially purified via SiO_{2} column chromatography ($20 \mathrm{~g} \mathrm{SiO}_{2}$, 20 mm column diameter, $40 \% 2 \mathrm{M} \mathrm{NH}_{3}$ in $\mathrm{MeOH} / 60 \%$ can) to yield (\pm)-enamine 102 as a brown oil ($18.4 \mathrm{mg}, 20 \%$ yield) which was unstable to storage and was immediately subjected to reduction.

Sodium borohydride reduction:

A 25 mL flask was charged with partially purified (\pm)-enamine $\mathbf{1 0 2}$ ($107 \mathrm{mg}, 0.46$ mmol, 1.0 equiv), sodium borohydride ($34.8 \mathrm{mg}, 0.92 \mathrm{mmol}, 2.0$ equiv), and acetic acid $(4.6 \mathrm{~mL}, 0.1 \mathrm{M})$. The reaction stirred at $21^{\circ} \mathrm{C}$ until complete consumption of the starting material, as judged by TLC (ca. 20 minutes). Upon completion, the reaction was diluted in DCM (50 mL) and was neutralized with $3 \mathrm{M} \mathrm{NaOH}(50 \mathrm{~mL})$. The aqueous layer was extracted with DCM (3 x 30 mL). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified via SiO_{2} column chromatography ($20 \mathrm{~g} \mathrm{SiO}_{2}$, 20 mm column diameter, $40 \% 2 \mathrm{M} \mathrm{NH}_{3}$ in $\mathrm{MeOH} / 60 \%$ can) to yield (\pm)-diamine 91 as a white crystalline solid ($88.3 \mathrm{mg}, 82 \%$ yield). X-ray-quality crystals were grown by allowing a solution of $\mathbf{9 1}$ in acetonitrile to slowly evaporate at $21^{\circ} \mathrm{C}$.

Sodium borohydride reduction of hemi-aminal 89:

To a 250 mL flask was added the hemi-aminal $\mathbf{8 9}(500 \mathrm{mg}, 2.00 \mathrm{mmol}, 1.0$ equiv), sodium borohydride ($151 \mathrm{mg}, 3.99 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{AcOH}(10 \mathrm{~mL}, 0.2$ $\mathrm{M})$ at $21^{\circ} \mathrm{C}$. The reaction was stirred for 24 hours at $21^{\circ} \mathrm{C}$ and was quenched with 3 M NaOH until basic by pH paper. The crude reaction mixture was extracted with DCM (3 x 50 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was allowed to crystallize under vacuum on a Schlenk line (0.3 torr, 30 minutes). The solids were dissolved in Et2O $(30 \mathrm{~mL})$ and the cloudy suspension was vacuum filtered. The clear colorless solution was concentrated under reduced pressure to yield the product diamine 91 as a white crystalline solid ($468 \mathrm{mg}, 99 \%$ yield) which did not require additional purification.

(\pm)-Diamine 91:

${ }^{1} \mathbf{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 2.99-2.91(\mathrm{~m}, 3 \mathrm{H}), 2.83(\mathrm{ddt}, J=11.5,4.2,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.61(\mathrm{dd}, J=11.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=11.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dddd}, J=11.3,4.0$, $2.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{qt}, J=11.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.79(\mathrm{~m}, 3 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 2 \mathrm{H})$, $1.70-1.53(\mathrm{~m}, 5 \mathrm{H}), 1.54-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.37(\mathrm{ddq}, J=13.0,5.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.27-1.17$ (m, 2H), $1.05(\mathrm{tdd}, J=13.0,11.7,4.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 66.2,64.0,63.3,57.2,54.7,45.8,41.2,30.2,29.7,26.3$, 26.2, 26.0, 24.8, 20.1, 19.1.

FTIR (NaCI, thin film): 2927, 2850, 2750, 1440, 1131, $1110 \mathrm{~cm}^{-1}$.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{15} \mathrm{H}_{2} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$235.2169, found 235.2167.

TLC ($40 \% 2 \mathrm{M} \mathrm{NH}_{3}$ in $\left.\mathrm{MeOH} / 60 \% \mathrm{ACN}\right), \mathbf{R}_{f}: 0.32\left(\mathrm{KMnO}_{4}\right)$.
M.P. $82.3-83.3^{\circ} \mathrm{C}$.

Figure 2.26. X-Ray structure of (\pm)-91.CCDC number: 2159765.

Preparation of (+)-3-methyltetracycle 76:

A 25 mL oven-dried, N_{2} flushed flask was charged with (R)-2-methyl glutaric acid $(1.00 \mathrm{~g}, 6.84 \mathrm{mmol}, 1.0$ equiv) and thionyl chloride ($4.0 \mathrm{~mL}, 54.7 \mathrm{mmol}, 8.0$ equiv). The suspension was stirred for 24 hours at $21^{\circ} \mathrm{C}$ under N_{2}, after which point it became a homogenous solution. The thionyl chloride was removed under vacuum (0.3 torr) on a

Schlenk line at $21^{\circ} \mathrm{C}$ to yield (R)-2-methylglutaryl chloride (77) as a clear, colorless liquid, which was used directly in the subsequent cyclization reaction.

A 100 mL oven-dried, N_{2}-flushed flask with a $36 \mathrm{~mm} x 18 \mathrm{~mm} \mathrm{x} 18 \mathrm{~mm}$ egg-shaped stir bar was charged with $\operatorname{DCM}(26.4 \mathrm{~mL}, 0.125 \mathrm{M})$ and (R)-2-methylglutaryl chloride (605 $\mathrm{mg}, 3.31 \mathrm{mmol}, 1.0$ equiv). The solution was cooled to $-50^{\circ} \mathrm{C}$, then pyridine (1.34 mL , $16.5 \mathrm{mmol}, 5.0$ equiv) was added dropwise over the course of 5 minutes. The reaction was allowed to warm to $21{ }^{\circ} \mathrm{C}$ and stirred for 24 hours. The reaction was concentrated under reduced pressure and diluted in $\mathrm{MeOH}(20 \mathrm{~mL})$. The solids were isolated by suction filtration, washed with $\mathrm{MeOH}(2 \mathrm{x} 10 \mathrm{~mL}$), and dried in vacuo to yield (+)-3methyltetracycle 76 as a light orange crystalline solid ($0.589 \mathrm{~g}, 66 \%$ yield $)$.

(+)-3-methyltetracycle 76:

${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl \mathbf{H}_{3}): $\delta 7.17(\mathrm{dt}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dq}, J=8.1,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.04$ (dddd, $J=10.1,5.8,2.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{ddt}, J=5.8,2.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.50$ (ddt, $J=10.1,3.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=7.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{ddd}, J=8.1,5.7,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.09(\mathrm{t}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{ddt}, J=9.5,2.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{q}, J=9.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.31-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{dt}, J=9.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{td}, J=13.8,9.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.29(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 173.9,168.9,129.6,124.4,123.7,122.2,120.9,117.9$, 103.7, 102.7, 54.0, 51.9, 41.5, 34.8, 25.5, 15.4.

FTIR (NaCl, thin film): 2946, 2835, 1652, 1456, 1113, $1033 \mathrm{~cm}^{-1}$.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 269.1290$, found 269.1278 .

TLC $(50 \% \mathrm{EtOAc} / 50 \%$ hexanes $), \mathbf{R}_{f}: 0.37\left(\mathrm{KMnO}_{4}\right)$.
М.P. $192.5-196.4^{\circ} \mathrm{C}$.

Specific Optical Rotation: $[\alpha] \frac{21}{D}=-1115\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$.

Figure 2.27. X-Ray structure of (\pm)-76. CCDC number: 2159768.

Chiral SFC: (IC, $2.5 \mathrm{~mL} / \mathrm{min}, 45 \%$ IPA in $\left.\mathrm{CO}_{2}, \lambda=210 \mathrm{~nm}\right): \mathrm{t}_{\mathrm{R}}($ major $)=7.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ $(\operatorname{minor})=12.5 \mathrm{~min}$.

Figure 2.28. SFC trace of racemic 76

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

| Peak
 $\#$ | RetTime Type | Width | Area | Height | Area |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [min] | [min] | [mAU*s] | [mAU] | $\% \%$ | |

Figure 2.29. SFC trace of enantiopure 76.

Signal 1: DAD1 A, Sig=210,16 $\operatorname{Ref}=370,60$

Preparation of tetracycle (-)-81:

To a 100 mL flask in a glovebox was added the glutaric anhydride ($100 \mathrm{mg}, 876$ umol, 1.0 equiv), pyridine ($496 \mathrm{uL}, 6.13 \mathrm{mmol}, 7.0$ equiv), $\mathrm{DCM}(8.76 \mathrm{~mL}, 0.1 \mathrm{M})$, and (S)-(+)-2-(methoxymethyl)pyrrolidine ($108 \mathrm{uL}, 876 \mathrm{umol}, 1.0$ equiv). The reaction was stirred for 30 minutes at $21^{\circ} \mathrm{C}$ then cooled to $-78^{\circ} \mathrm{C}$. To the solution was added trifluoromethanesulfonic anhydride ($302 \mathrm{uL}, 1.80 \mathrm{mmol}, 2.05$ equiv). The reaction was then allowed to warm to $21^{\circ} \mathrm{C}$, and stirred for 4 hours. Then, the $\mathrm{MeOH}(8.76 \mathrm{~mL}$, 0.1 M) was added and the solution cooled to $0^{\circ} \mathrm{C}$. The sodium borohydride (497 mg , $13.1 \mathrm{mmol}, 15$ equiv) was added next in portions. Once the addition was finished, the
reaction was warmed to $21{ }^{\circ} \mathrm{C}$ and stirred for 30 minutes. The crude reaction mixture was concentrated under reduced pressure, made basic with sat. $\mathrm{Na}_{2} \mathrm{CO}_{3}(20 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$. The reaction mixture was extracted with DCM ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. In a glovebox the crude material was treated with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$, which caused the product to crash out as an tan solid. The product was isolated via suction filtration in the glovebox to yield the product (-)-81 as a light tan crystalline solid (25.5 $\mathrm{mg}, 12 \%$ yield, 96% ee).

(+)-tetracycle 81:

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.11(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{ddt}, J=10.5,5.7$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{dddd}, J=10.0,5.7,2.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{dtd}, J=10.2,2.9,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.50(\mathrm{ddt}, J=10.0,3.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{ddd}, J=7.9,5.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{dt}, J$ $=5.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=15.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{ddt}, J=11.1,3.8,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.83(\mathrm{dd}, J=8.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dtd}, J=8.6,4.5,4.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{ddt}, J=$ $15.9,3.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dtd}, J=12.6,4.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{q}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.24$ $-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.45(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 170.8,128.5,123.7,123.4,122.3,121.3,101.8,58.1$, 56.8, 55.7, 52.3, 41.0, 39.7, 24.2, 21.4.

FTIR (NaCl, thin film): 3054, 2986, 2339, 1675, 1655, 1420, 1265, 896, $738 \mathrm{~cm}^{-1}$.
HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$243.1497, found 243.1509.

TLC $\left(3 \% \mathrm{MeOH} / 97 \% \mathrm{CHCl}_{3}\right.$ with $0.75 \% \mathrm{EtOH}$ stabilizer), $\mathbf{R}_{f}: 0.27\left(\mathrm{KMnO}_{4}\right)$.
M.P. $175.7^{\circ} \mathrm{C}-178.1^{\circ} \mathrm{C}$.

Specific Optical Rotation: $[\alpha] \frac{21}{D}=-94.0\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$.
Figure 2.30. X-Ray structure of (+)-81. CCDC number: not publication quality.

Chiral SFC: (IC, $2.5 \mathrm{~mL} / \mathrm{min}, 30 \% \mathrm{IPA}$ in $\left.\mathrm{CO}_{2}, \lambda=280 \mathrm{~nm}\right): \mathrm{t}_{\mathrm{R}}($ major $)=8.829 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ $(\operatorname{minor})=9.437 \mathrm{~min}$.

Figure 2.31. SFC trace of racemic 81.

Peak \#	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~S}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	8.829	BV	0.2651	1182.97705	65.99975	51.8590
2	9.437	VB	0.2855	1098.16357	55.83330	48.1410

Figure 2.32. SFC trace of enantioenriched $\mathbf{8 1}$.

Preparation of 8-phthaloyltetracycle 79:

A 500 mL oven dried flask was charged with N-phthaloyl-L-glutamic acid (5.00 $\mathrm{g}, 18.0 \mathrm{mmol}, 1.0$ equiv), $\operatorname{DMF}(70 \mu \mathrm{~L}, 0.90 \mathrm{mmol}, 5 \mathrm{~mol} \%$), and $\mathrm{DCM}(18 \mathrm{~mL}, 1 \mathrm{M})$. The flask was equipped with a scrubber to remove HCl vapors, and to the suspension in the flask was added oxalyl chloride ($3.36 \mathrm{~mL}, 39.7 \mathrm{mmol}, 2.2$ equiv). The reaction was stirred at ambient temperature for 5 hours which resulted in the formation of a clear colorless solution, and progress of the reaction was monitored by NMR aliquots. The solution was diluted in $\mathrm{DCM}(180 \mathrm{~mL}, 0.1 \mathrm{M})$ and was cooled to $-50^{\circ} \mathrm{C}$. To the solution was added pyridine ($7.29 \mathrm{~mL}, 90.2 \mathrm{mmol}, 5$ equiv) over the course of 5 minutes. The
slurry was stirred at $-50^{\circ} \mathrm{C}$ for 15 minutes then at ambient temperature for 15 hours. The reaction was concentrated under reduced pressure and suspended in $\mathrm{MeOH}(50 \mathrm{~mL})$. The solids were isolated by suction filtration and dried in vacuo to yield the product as a brown powder ($2.72 \mathrm{~g}, 38 \%$ yield). Using enantiopure N-phthaloyl-L-glutamic acid provided the product 79 with 16% ee.

8-phthaloyltetracycle 79:

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.89-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=$
$7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.01$ (dt, $J=7.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.06$ (dddd, $J=10.0,5.8,2.2,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.83(\mathrm{ddt}, J=5.7,2.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{ddt}, J=10.1,3.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{dd}, J=$ $7.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dd}, J=8.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{dd}, J=9.9$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{dd}, J=13.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{td}, J=13.7,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{q}, J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.33$ (ddd, $J=13.8,9.1,4.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 167.7,166.9,134.4,134.0,131.7,129.3,124.0,123.7$, $123.6,122.2,120.6,117.5,105.0,102.8,53.7,51.6,48.8,40.3,22.0$.

FTIR (NaCl, thin film): 3053, 2986, 1720, 1672, 1610, 1421, 1390, $1266 \mathrm{~cm}^{-1}$.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 400.1297$, found 400.1292

TLC ($60 \% \mathrm{EtOAc} / 40 \% \mathrm{ACN}), \mathbf{R}_{f}: 0.50\left(\mathrm{KMnO}_{4}\right)$.
M.P. decomposed at $180^{\circ} \mathrm{C}$.

Figure 2.33. X-Ray structure of (+)-79. CCDC 2159769.

Chiral SFC: (AD-H, $2.5 \mathrm{~mL} / \mathrm{min}, 45 \% \mathrm{IPA}$ in $\mathrm{CO} 2, \lambda=210 \mathrm{~nm}): \mathrm{tR}($ major $)=7.8 \mathrm{~min}$, $\mathrm{tR}($ minor $)=8.7 \mathrm{~min}$.

Figure 2.34. SFC trace of racemic 79.

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	7.759	BB	0.2153	1390.96790	101.88776	50.9158
2	8.670	BB	0.2316	1340.93018	91.18265	49.0842

Figure 2.35. SFC trace of scalemic 79.

Signal 1: DAD1 A, Sig=210,16 Ref=370,60

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area \%
1	7.812	BB	0.2122	2275.86987	165.71790	57.3807
2	8.750	BB	0.2364	1690.39539	111.81298	42.6193

Preparation of mono-amide 88:

A $100 \mathrm{~mL} \mathrm{~N}_{2}$ flushed flask was charged with bis-amide 87 ($498 \mathrm{mg}, 1.90 \mathrm{mmol}$, 1.0 equiv.), and THF ($9.5 \mathrm{~mL}, 0.2 \mathrm{M}$). The solution was cooled to $0^{\circ} \mathrm{C}$, then $\mathrm{LiAlH}_{4}(144$ $\mathrm{mg}, 3.80 \mathrm{mmol}, 2.0$ equiv) was added to the flask in a single portion. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 5 minutes, then at ambient temperature until complete by TLC (ca. 18 hours). Upon completion the reaction was quenched with sat. Rochelles salt (20 mL). The reaction mixture was extracted with $\operatorname{DCM}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified via SiO_{2} column chromatography [40 $\mathrm{g} \mathrm{SiO}_{2}, 30 \mathrm{~mm}$
column diameter, and eluted with $20 \% \mathrm{MeOH} / 80 \% \mathrm{ACN}]$ to yield mono amide $\mathbf{8 8}$ as a white crystalline solid ($171 \mathrm{mg}, 36 \%$ yield).
mono-amide 88:
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 4.81(\mathrm{ddq}, J=12.7,3.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{ddd}, J=$ $11.3,7.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{ddt}, J=13.1,4.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-$ $2.29(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{qd}, J=12.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.88(\mathrm{~m}, 3 \mathrm{H})$, $1.81-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.62-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.35(\mathrm{~m}, 5 \mathrm{H}), 1.20(\mathrm{dddd}, J=19.9,8.1$, $6.6,3.6 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 168.9,63.4,62.5,57.5,57.0,45.2,40.8,34.9,33.1$, 26.5, 25.9, 25.8, 25.7, 22.9, 22.6.

FTIR (NaCl, thin film): 2921, 2854, 2762, 2805, 1634, 1434, 1243, $1134 \mathrm{~cm}^{-1}$.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 249.1961$, found 249.1958 .

TLC $\left(10 \% 2 \mathrm{M} \mathrm{NH}_{3}\right.$ in $\mathrm{MeOH} / 90 \% \mathrm{CHCl}_{3}$ with $0.75 \% \mathrm{EtOH}$ stabilizer), $\mathbf{R}_{f}: 0.42$ $\left(\mathrm{KMnO}_{4}\right)$.
M.P. $97.6-103.3^{\circ} \mathrm{C}$.

Figure 2.36. X-Ray structure of $(\pm)-\mathbf{8 8}$. CCDC number: not publication quality.

Preparation of conjugated iminium ion 98:

A 100 mL flask was charged with diamine 24 ($200 \mathrm{mg}, 0.85 \mathrm{mmol}, 1$ equiv), sodium bicarbonate ($717 \mathrm{mg}, 8.53 \mathrm{mmol}, 10$ equiv), THF ($24 \mathrm{~mL}, 0.025 \mathrm{M}$), water (10 $\mathrm{mL}, 0.025 \mathrm{M})$, and iodine ($1.62 \mathrm{~g}, 6.40 \mathrm{mmol}, 7.5$ equiv) and was stirred at ambient temperature for 20 hours. Upon completion the reaction was diluted in water (200 mL), and the reaction mixture was extracted with $\mathrm{DCM}(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. A QNMR of the crude reaction revealed a 29% yield of iminium ion 98 . An analytically pure sample was prepared by purification of the crude reaction mixture by SiO_{2} column chromatography $\left[20 \mathrm{~g} \mathrm{SiO}_{2}, 20 \mathrm{~mm}\right.$ column diameter, $10 \% 2 \mathrm{M} \mathrm{NH}_{3}$ in $\mathrm{MeOH} / 90 \% \mathrm{CHCl}_{3}$ containing $0.75 \% \mathrm{EtOH}$ as a stabilizer to $20 \% 2 \mathrm{M} \mathrm{NH}_{3}$ in $\mathrm{MeOH} / 90 \% \mathrm{CHCl}_{3}$ containing $0.75 \% \mathrm{EtOH}$ in 2% increments] to yield a yellow oil. Trituration of the yellow oil from acetone yielded the iminium ion $\mathbf{9 8}$ as a pale yellow crystalline solid ($18.7 \mathrm{mg}, 9 \%$ yield). X-ray quality crystals were grown by slow evaporation from acetone under an atmosphere of N_{2}.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl 3): $\delta 4.85(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{dt}, J=13.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=$ $14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.34(\mathrm{~m}, 5 \mathrm{H}), 3.24(\mathrm{ddd}, J=13.4,6.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dt}, J=$ $18.8,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.39(\mathrm{~m}, 3 \mathrm{H}), 2.27-1.70(\mathrm{~m}, 9 \mathrm{H}), 1.51(\mathrm{td}, J=13.6,3.9 \mathrm{~Hz}$, $1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 165.4,157.3,95.5,63.7,60.1,52.2,51.3,50.5,29.1$, 28.0, 21.8, 21.1, 20.4, 18.5, 17.2.

FTIR (NaCl, thin film): $3053,2986,2685,1605,1554,1422,1273,1261 \mathrm{~cm}^{-1}$.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}]^{+}$247.1805, found 247.1805.

TLC $\left(10 \% 2 \mathrm{M} \mathrm{NH}_{3}\right.$ in $\mathrm{MeOH} / 90 \% \mathrm{CHCl}_{3}$ with $0.75 \% \mathrm{EtOH}$ stabilizer), $\mathbf{R}_{f}: 0.19$ $\left(\mathrm{KMnO}_{4}\right)$.
M.P. $178.9-181.6^{\circ} \mathrm{C}$.

Figure 2.37. X-Ray structure of (\pm)-98. CCDC number: not publication quality.

Preparation of $\boldsymbol{\alpha}$-aminonitrile 24:

To a 4 mL vial was added the diamine $24(50.5 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.0$ equiv), rose bengal ($6.58 \mathrm{mg}, 6.46 \mu \mathrm{~mol}, 3 \mathrm{~mol} \%$), trimethylsilyl cyanide $98 \%(108 \mathrm{uL}, 0.86 \mathrm{mmol}$, 4.0 equiv), and acetonitrile ($2.15 \mathrm{~mL}, 0.1 \mathrm{M}$) The reaction was stirred vigorously under
dry air while being The reaction was irradiated with a 34 W Kessil H150 Blue LED setup for 3 hours. Once the reaction was complete, $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added, and the reaction was stirred for 10 minutes. The crude product was purified via SiO_{2} column chromatography [$5 \mathrm{~g} \mathrm{SiO}_{2}, 10 \mathrm{~mm}$ column, $18 \% 2 \mathrm{M} \mathrm{NH}_{3}$ in MeOH acetonitrile] to yield 95 as a light pink oil (11.0 mg, 20\% yield).
α-aminonitrile 24:
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 3.10(\mathrm{t}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-2.91(\mathrm{~m}, 3 \mathrm{H}), 2.67$ (ddd, $J=12.2,5.2,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.49-2.34(\mathrm{~m}, 3 \mathrm{H}), 2.15(\mathrm{qd}, J=13.2,3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.97(\mathrm{ddd}, J=12.5,5.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{dt}, J=11.8,3.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.76-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{tt}, J=12.7,3.7 \mathrm{~Hz}$, 1H), $1.32-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 117.4,64.2,60.8,54.9,52.1,51.5,49.0,45.5,43.3$, $25.5,25.0,25.0,24.9,24.5,20.3,20.0$.

FTIR (NaCl, thin film): 2984, 2930, 2852, 2304, 1459, 1441, 1421, $1266 \mathrm{~cm}^{-1}$.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$260.2121, found 260.2120 .

TLC ($40 \% 2 \mathrm{M} \mathrm{NH}_{3}$ in $\left.\mathrm{MeOH} / 60 \% \mathrm{ACN}\right)$, $\mathbf{R}_{\boldsymbol{f}}: 0.20\left(\mathrm{KMnO}_{4}\right)$.
M.P. $66.8-67.9^{\circ} \mathrm{C}$.

Figure 2.38. X-Ray structure of the dihydrate of (\pm)-95. CCDC number: not publication quality.

Preparation of diamine 96 and diamine 97:

A one dram vial was charged with $\left[\operatorname{Ir}(\mathrm{dF}(\mathrm{Me}) \text { ppy })_{2}(\mathrm{dtbbpy})\right] \mathrm{PF}_{6}(8.7 \mathrm{mg}, 8.53$ $\mu \mathrm{mol}, 2 \mathrm{~mol} \%$), diamine 24 ($100 \mathrm{mg}, 427 \mu \mathrm{~mol}$, 1 equiv), NMP ($1.7 \mathrm{~mL}, 0.25 \mathrm{M}$), triisopropylsilanethiol ($27.5 \mu \mathrm{~L}, 128 \mu \mathrm{~mol}, 30 \mathrm{~mol} \%$), and water ($77 \mu \mathrm{~L}, 50$ equiv) sequentially, then the vial was sparged with N_{2} for 20 minutes. The reaction was irradiated with a 34 W Kessil H150 Blue LED setup for 24 hours. The reaction mixture was passed through a SiO_{2} plug with DCM to elute the NMP then $2 \mathrm{M} \mathrm{NH}_{3}$ in MeOH to elute the products. The crude product mixture was purified via SiO_{2} column chromatography [5 g SiO $2,10 \mathrm{~mm}$ column, eluted with $40 \% 2 \mathrm{M} \mathrm{NH}_{3}$ in $\mathrm{MeOH} / 60 \%$ ACN] to yield the diamine 96 as a white crystalline solid ($58.6 \mathrm{mg}, 59 \%$ yield) and
diamine 97 as a white crystalline solid ($26.2 \mathrm{mg}, 26 \%$ yield). X-Ray quality crystals were grown from slow evaporation of a solution of each diamine in ACN.

Diamine 96:

${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 3.06-2.73(\mathrm{~m}, 6 \mathrm{H}), 2.38(\mathrm{dd}, J=11.4,3.9 \mathrm{~Hz}, 1 \mathrm{H})$,
$1.99(\mathrm{td}, J=11.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.52(\mathrm{~m}$, $9 \mathrm{H}), 1.51-1.32(\mathrm{~m}, 3 \mathrm{H}), 1.27-1.18(\mathrm{~m}, 1 \mathrm{H}), 1.17-1.07(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{qd}, J=12.9$, $4.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 65.7,60.6,56.8,56.5,54.8,51.0,43.2,41.3,29.0,27.7$, 26.0, 25.5, 25.2, 19.2, 18.8.

FTIR (NaCl, thin film): 2930, 2856, 2802, 2750, $1265 \mathrm{~cm}^{-1}$.

HRMS: (FI-TOF) calc'd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2}[\mathrm{M}]^{+}$234.20905, found 234.20943.

TLC ($40 \% 2 \mathrm{M} \mathrm{NH}_{3}$ in $\left.\mathrm{MeOH} / 60 \% \mathrm{ACN}\right)$, $\mathbf{R}_{f}: 0.11\left(\mathrm{KMnO}_{4}\right)$.
M.P. $57.1-58.8^{\circ} \mathrm{C}$.

Figure 2.39. X-Ray structure of (\pm)-96. CCDC number: not publication quality.

Diamine 97:

${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 2.89-2.75(\mathrm{~m}, 3 \mathrm{H}), 2.68(\mathrm{dd}, J=11.3,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.02-1.89(\mathrm{~m}, 3 \mathrm{H}), 1.90-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.54(\mathrm{~m}, 6 \mathrm{H}), 1.51(\mathrm{td}, J=10.1,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.23-1.04(\mathrm{~m}, 5 \mathrm{H}), 0.94(\mathrm{qd}, J=12.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.88-0.74(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 71.3,66.7,61.8,56.8,56.6,56.2,44.6,39.3,29.9,29.5$, 29.1, 27.0, 25.7, 25.1, 24.6.

FTIR (NaCl, thin film): 2935, 2854, 2802, 2754, $1264 \mathrm{~cm}^{-1}$.

HRMS: (FI-TOF) calc'd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2}[\mathrm{M}]^{+}$234.20905, found 234.20976.

TLC (40\% $2 \mathrm{M} \mathrm{NH}_{3}$ in $\left.\mathrm{MeOH} / 60 \% \mathrm{ACN}\right)$, $\mathbf{R}_{f}: 0.32\left(\mathrm{KMnO}_{4}\right)$.
M.P. $46.8-49.1^{\circ} \mathrm{C}$.

Figure 2.40. X-Ray structure of $(\pm)-97$. CCDC number: not publication quality.

Preparation of alkyl bromides 99 and 100:

A 1-dram vial in a glovebox was charged with diamine $24(46.9 \mathrm{mg}, 200 \mu \mathrm{~mol}, 1$ equiv), ammonium acetate ($61.7 \mathrm{mg}, 800 \mu \mathrm{~mol}, 4$ equiv), dichloroethane ($0.5 \mathrm{~mL}, 0.4$ M), and lastly (bromodifluoromethyl)trimethylsilane ($124 \mu \mathrm{~L}, 800 \mu \mathrm{~mol}, 4$ equiv). The reaction was sealed and stirred at $60^{\circ} \mathrm{C}$ for 12 hours. Upon completion the mixture was filtered through a pad of celite which was washed with EtOAc ($3 \times 10 \mathrm{~mL}$). The solution was concentrated under reduced pressure and purified via SiO_{2} column chromatography on $\mathrm{SiO}_{2}\left[5 \mathrm{~g} \mathrm{SiO}_{2}, 10 \mathrm{~mm}\right.$ column diameter, eluted with $5 \% 2 \mathrm{M} \mathrm{NH}_{3}$ in $\mathrm{MeOH} / 95 \%$ CHCl_{3} containing $\left.0.75 \% \mathrm{EtOH}\right]$ to yield the mixture of products $\mathbf{9 9}$ and $\mathbf{1 0 0}$ as a clear colorless oil (11.8 mg, 13\% yield).

alkyl bromides 99 and 100:

${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $\delta 8.07(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{dt}, J=12.3,5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.90(\mathrm{dd}, J=12.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{t}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.31(\mathrm{~m}, 6 \mathrm{H}), 2.98$ - 2.89 (m, 2H), $2.81-2.73(\mathrm{~m}, 5 \mathrm{H}), 2.37(\mathrm{dtd}, J=13.6,11.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.29$ (dddd, J $=13.8,12.5,10.2,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{q}, J=3.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.01-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.79$ $(\mathrm{m}, 10 \mathrm{H}), 1.76(\mathrm{ddt}, J=14.5,11.4,3.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.72-1.58(\mathrm{~m}, 10 \mathrm{H}), 1.58-1.49(\mathrm{~m}$, 3H), 1.45 (dddd, $J=13.1,9.9,5.1,2.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.41-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.23(\mathrm{~m}, 2 \mathrm{H})$, $1.23-1.14(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 161.2,160.8,63.9,63.8,59.3,57.7,57.6,57.5,57.5$, 51.6, 42.3, 39.1, 37.8, 37.2, 35.9, 35.8, 34.1, 33.6, 32.7, 32.7, 30.2, 30.0, 28.1, 28.1, 26.6, 26.5, 25.9, 25.3, 22.7, 22.6, 21.7, 21.6.

Preparation of copper complex 93:

A 1-dram vial in a glovebox was charged anhydrous copper (II) chloride (57.7 $\mathrm{mg}, 429$ umol, 1.0 equiv) and anhydrous $\mathrm{MeOH}(0.85 \mathrm{~mL}, 0.5 \mathrm{M})$ and was stirred until a homogenous solution was obtained. A separate 2-dram vial in a glovebox was charged with isomatridine (24) and $\mathrm{MeOH}(0.85 \mathrm{~mL}, 0.5 \mathrm{M})$ and was stirred until a homogenous solution was obtained. The two solutions were mixed, which initially produced a mixed blue/yellow precipitate. The mixture was heated to reflux for one minute, and then cooled to $21^{\circ} \mathrm{C}$ at which point green crystals formed in a cloudy suspension. The supernatant was decanted, and the crystals were washed with $\mathrm{MeOH}(2 \times 0.3 \mathrm{~mL})$ and dried under vacuum (0.3 torr, 30 minutes) to yield the product 93 as a bright green crystalline solid ($114 \mathrm{mg}, 72 \%$ yield). The copper complex was found to be air stable but decomposed in aqueous solution. The copper complex could also be reduced to a copper (I) complex with zinc dust. The obtained crystals were directly used to obtain an X-ray structure.

Figure 2.41. X-Ray structure of $(\pm)-93$. CCDC number: not publication quality.

Preparation of $\boldsymbol{\alpha}$-aminonitrile 90:

A 10 mL flask was charged with potassium cyanide $(91.0 \mathrm{mg}, 1.40 \mathrm{mmol}, 7.0$ equiv), hemi-aminal 89 ($50.0 \mathrm{mg}, 200$ umol, 1.0 equiv), and MeOH ($2.00 \mathrm{~mL}, 0.1 \mathrm{M}$). The flask was capped with a septa, then trifluoroacetic acid ($153 \mathrm{uL}, 2.00 \mathrm{mmol}, 10$ equiv) was added. The reaction was stirred while sealed at $21^{\circ} \mathrm{C}$ for 1 hour. Upon completion the reaction was made basic with 3 M NaOH . The reaction mixture was extracted with $\mathrm{DCM}(3 \times 20 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The product $\mathbf{9 0}$ was obtained as a white crystalline solid ($48.7 \mathrm{mg}, 94 \%$ yield) and did not require additional purification.

α-aminonitrile 90:

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 3.60(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-2.91(\mathrm{~m}, 3 \mathrm{H}), 2.89(\mathrm{td}, J$ $=12.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.40(\mathrm{~m}, 3 \mathrm{H}), 2.38(\mathrm{tt}, J=11.9,4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 1.88(\mathrm{qt}, J=13.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.57(\mathrm{~m}, 7 \mathrm{H}), 1.57-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.35$
(qd, $J=13.9,13.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.31-1.21(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 115.9,62.5,59.8,59.1,54.3,54.2,45.6,40.3,29.3$, 28.7, 27.7, 25.9, 25.8, 24.0, 19.8, 18.4.

FTIR (NaCl, thin film): 3052, 2984, 2941, 2304, 1420, 1268, $895 \mathrm{~cm}^{-1}$.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 260.2121$, found 260.2120 .
TLC $\left(10 \% 2 \mathrm{M} \mathrm{NH}_{3}\right.$ in $\mathrm{MeOH} / 90 \% \mathrm{CHCl}_{3}$ stabilized with $\left.0.75 \% \mathrm{EtOH}\right), \mathbf{R}_{\boldsymbol{f}}: 0.35$ $\left(\mathrm{KMnO}_{4}\right)$.
M.P. $180.2{ }^{\circ} \mathrm{C}-181.1^{\circ} \mathrm{C}$

Figure 2.42. X-Ray structure of (\pm)-90. CCDC number: not publication quality.

Preparation of monocycle 85:

A 50 mL flask under N_{2} was charged with glutaryl chloride $(0.21 \mathrm{~mL}, 1.64 \mathrm{mmol}$, 1.0 equiv) and $\mathrm{DCM}(16.4 \mathrm{~mL}, 0.1 \mathrm{M})$. The solution was cooled to $-78^{\circ} \mathrm{C}$ then 3dimethylaminopyridine (84) (1.00 g, $8.19 \mathrm{mmol}, 5.0$ equiv) was added dropwise. The mixture was stirred for 5 minutes after which it was warmed to $21^{\circ} \mathrm{C}$ and stirred for 2 hours at this temperature. The reaction was then quenched with TFA (1 mL) and washed with water $(30 \mathrm{~mL})$. The organic layer was then washed with sat. NaHCO_{3}, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The product was obtained as an orange crystalline solid ($289 \mathrm{mg}, 89 \%$ yield). The product $\mathbf{8 5}$ formed Xray quality crystals directly, and the product did not need any additional purification. The product was found to undergo slow aerobic oxidation in solution.
monocycle 85:
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{dd}, J=7.5,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.34(\mathrm{dd}, J=5.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dd}, J=9.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~s}, 4 \mathrm{H}), 2.64(\mathrm{dt}, J=$ 16.3, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.32(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.57(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 174.8,168.4,135.8,121.2,111.5,94.6,52.1,40.0,32.1$, 26.8, 20.3.

FTIR (NaCl, thin film): 3054, 2985, 2305, 1730, 1718, 1660, 1420, 1273, 1264, $896 \mathrm{~cm}^{-}$ ${ }^{1}$.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$205.0977, found 205.0977

TLC $(90 \%$ EtOAc $/ 10 \%$ Hexanes $), \mathbf{R}_{f}: 0.23\left(\mathrm{KMnO}_{4}\right)$.
M.P. $133.4^{\circ} \mathrm{C}-135.2^{\circ} \mathrm{C}$.

Figure 2.43. X-Ray structure of $(\pm)-85$. CCDC number: not publication quality.

Preparation of dimethyltetracycle 83:

A 500 mL flask under N 2 was charged with glutaryl chloride $(1.37 \mathrm{~mL}, 10.7$ mmol, 1.0 equiv), and $\mathrm{DCM}(107 \mathrm{~mL}, 0.1 \mathrm{M})$. The solution was cooled to $-78^{\circ} \mathrm{C}$ then 3methylpyridine ($\mathbf{8 2}$) ($5.22 \mathrm{~mL}, 53.7 \mathrm{mmol}, 5.0$ equiv) was added. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 30 minutes and then was allowed to warm to $21^{\circ} \mathrm{C}$ and stir for 24 hours. Upon completion, the reaction was concentrated under reduced pressure, and then under vacuum on a Schlenk line (0.3 torr, 30 minutes). The residue was suspended in MeOH $(30 \mathrm{~mL})$ and is collected by suction filtration. The product was washed with $\mathrm{MeOH}(2 \mathrm{x}$ $10 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The obtained solids were dried under vacuum to yield the
product $\mathbf{8 3}$ as a tan crystalline solid ($552 \mathrm{mg}, 18 \%$ yield). The product underwent aerobic oxidation in solution in air.

dimethyltetracycle 83:

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 6.93-6.83(\mathrm{~m}, 2 \mathrm{H}), 5.84(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J$ $=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.15-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.68(\mathrm{dd}, J=7.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.05-2.92(\mathrm{~m}, 2 \mathrm{H})$, $2.59(\mathrm{ddt}, J=13.6,5.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=17.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{tt}, J=13.4$, $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 168.2,167.9,129.1,126.4,123.6,121.0,120.9,119.9$, $118.6,102.9,57.6,53.2,37.1,28.5,21.2,19.4,18.1$.

FTIR (NaCl, thin film): 3053, 2986, 1712, 1420, 1266, $896 \mathrm{~cm}^{-1}$.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$283.1447, found 283.1434

TLC $(60 \%$ EtOAc $/ 40 \%$ Hexanes $), \mathbf{R}_{f}: 0.20\left(\mathrm{KMnO}_{4}\right)$.
M.P. $197.8{ }^{\circ} \mathrm{C}-201.7^{\circ} \mathrm{C}$.

Figure 2.44. X-Ray structure of $(\pm)-\mathbf{8 3}$. CCDC number: not publication quality.

Preparation of enol ether 86:

A 500 mL flask under N_{2} was charged with glutaryl chloride ($3.78 \mathrm{~mL}, 29.6$ mmol, 1.0 equiv) and $\mathrm{DCM}(296 \mathrm{~mL}, 0.1 \mathrm{M})$. The solution was cooled to $-78^{\circ} \mathrm{C}$ then pyridine ($12.0 \mathrm{~mL}, 148 \mathrm{mmol}, 5.0$ equiv) was added over the course of one minute. The slurry was stirred at $-78^{\circ} \mathrm{C}$ for 15 minutes after which it was allowed to warm to $21^{\circ} \mathrm{C}$ and stir until the mixture became homogenous. Upon reaching homogeneity the 4methoxypyridine ($15.0 \mathrm{~mL}, 29.6 \mathrm{mmol}, 5.0$ equiv) was added immediately all at once. The reaction was then stirred at $21^{\circ} \mathrm{C}$ for 24 hours. Upon completion, the reaction was concentrated under reduced pressure, and then under vacuum on a Schlenk line (0.3 torr, 30 minutes). The residue was suspended in $\mathrm{MeOH}(10 \mathrm{~mL})$, and the solids were isolated by suction filtration. The solids were washed with $\mathrm{MeOH}(2 \times 5 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(2 \times 15$ mL). The solids were dried under vacuum (0.3 torr, 30 minutes) to yield the product $\mathbf{8 6}$ as a tan crystalline solid.
enol ether 86:
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.29(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dq}, J=7.9,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.03 (ddt, $J=10.2,3.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{dddd}, J=10.2,5.7,2.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{ddt}, J=7.6,5.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{ddd}, J=18.6,13.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dt}, J=7.2,3.6 \mathrm{~Hz}$, 1H), 2.59 (dddd, $J=13.7,6.0,3.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dddd}, J=18.3,5.3,2.5,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.94$ (dddd, $J=13.8,13.1,5.3,4.3 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 168.3,167.9,149.1,129.8,122.4,121.5,118.2,109.0$, $106.8,103.5,58.5,54.4,53.4,36.9,28.7,19.9$.

FTIR (NaCl, thin film): 3053, 2986, 2932, 1831, 2300, 1674, 1653, 1591, 1414, 1266, $1166 \mathrm{~cm}^{-1}$.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$285.1239, found 285.1231.

TLC (4\% MeOH /96\% DCM), $\mathbf{R}_{f}: 0.39\left(\mathrm{KMnO}_{4}\right)$.
M.P. $182.0^{\circ} \mathrm{C}-184.3^{\circ} \mathrm{C}$.

Cyclization NMR Study:

In a glovebox, an NMR tube was charged with $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.75 \mathrm{~mL}, 0.045 \mathrm{M})$, pyridine ($34 \mu \mathrm{~L}, 0.42 \mathrm{mmol}, 12.0$ equiv), and $\mathrm{PhSiMe}_{3}(5.1 \mathrm{mg}, 0.034 \mathrm{mmol}, 0.97$ equiv). The solution was cooled in the glovebox freezer $\left(-25^{\circ} \mathrm{C}\right)$ for 15 minutes. To the cold solution was rapidly added glutaryl chloride ($4.5 \mu \mathrm{~L}, 0.035 \mathrm{mmol}, 1.0$ equiv). The tube was capped and inverted to mix. Initially, a precipitate formed which dissolved after one minute of mixing. The reaction was then monitored by ${ }^{1} \mathrm{H}$ qNMR over the course of 24 hours (PhSiMe_{3} internal standard).

Figure 2.45. Cyclization of glutaryl chloride and pyridine ${ }^{1} H$ NMR time-course study.

(\pm)-Acid chloride 73:
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.08(\mathrm{dt}, J=8.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{dddd}, J=9.7,5.6,2.6$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{ddt}, J=9.7,2.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{ddd}, J=7.7,4.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.85$ $(\mathrm{dt}, J=5.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dt}, J=6.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{td}, J=7.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.55$ (dt, $J=17.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dt}, J=17.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.19(\mathrm{~m}, 1 \mathrm{H})$.

Figure 2.46. Cyclization of glutaryl chloride and pyridine ${ }^{1} H$ NMR time-course study trans isomer inset.

14	
10	on
10	1

Preparation of alkenyl ester 107:

A 500 mL oven dried N_{2} flushed flask was charged with glutaryl chloride (0.76 $\mathrm{mL}, 5.92 \mathrm{mmol}, 1$ equiv) and $\mathrm{DCM}(59 \mathrm{~mL}, 0.1 \mathrm{M})$. The solution was cooled to $-50^{\circ} \mathrm{C}$, then pyridine ($2.4 \mathrm{~mL}, 29.6 \mathrm{mmol}, 5$ equiv) was added dropwise. The thick slurry was stirred at $-50^{\circ} \mathrm{C}$ for 15 minutes and then allowed to warm to ambient temperature. Once the reaction become homogenous (ca. 30-60 minutes) the methanol ($0.48 \mathrm{~mL}, 11.8 \mathrm{mmol}$, 2 equiv) was added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ then triethylsilane $(14.2 \mathrm{~mL}, 88.8$ mmol, 15 equiv) was added followed by a dropwise addition trifluoroacetic acid (6.8 mL , $88.8 \mathrm{mmol}, 15$ equiv). The reaction was allowed to warm to ambient temperature and stirred for 18 hours. Once complete, the reaction was made basic with sat. $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and the aqueous layer was extracted with $\mathrm{DCM}(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified via SiO_{2} column chromatography [160 g SiO $2,55 \mathrm{~mm}$ diameter column, eluted with 60% Acetone $/ 40 \%$ Hexanes] to yield the alkenyl methyl ester 107 as a pale yellow crystalline solid ($895 \mathrm{mg}, 72 \%$ yield).

Alkenyl Ester 107:

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 6.04-5.89(\mathrm{~m}, 1 \mathrm{H}), 5.50(\mathrm{ddt}, J=10.1,2.9,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.76(\mathrm{ddt}, J=12.8,5.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{ddt}, J=6.9,4.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}$, $3 \mathrm{H}), 3.01(\mathrm{dt}, J=6.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{td}, J=12.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{ddd}, J=17.7$, $7.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dt}, J=17.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{ddtd}, J=20.3,11.9,6.0,2.5 \mathrm{~Hz}$, 1H), $2.10-1.96(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 172.0,169.1,129.1,125.9,55.8,52.0,43.1,39.8,30.4$, 24.7, 21.6.

FTIR (NaCl, thin film): 3031, 2951, 2841, 1736, 1642, 1459, 1436, 1417, 1280, 1263, $1233,1193,1163,1014,988,917 \mathrm{~cm}^{-1}$.

HRMS: (FI-TOF) calc'd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3}[\mathrm{M}]^{+}$209.10464, found 209.10482.

TLC (50% acetone $/ 50 \%$ hexanes), $\mathbf{R}_{f}: 0.23\left(\mathrm{KMnO}_{4}\right)$.
M.P. $38.4-40.6^{\circ} \mathrm{C}$.

Preparation of methyl ester 108:

A 25 mL flask was charged with alkenyl methyl ester $107(100 \mathrm{mg}, 0.478 \mathrm{mmol}$, 1 equiv), 10% palladium on carbon ($25.4 \mathrm{mg}, 23.9 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$) and methanol (4.78 $\mathrm{mL}, 0.1 \mathrm{M}$). The flask was purged with N_{2} (balloon) then with H_{2} (balloon). The reaction was stirred vigorously (1500 rpm) until complete consumption of the starting material was observed by TLC (ca. 3 hours). Upon completion the reaction was filtered over celite, concentrated under reduced pressure, and purified via SiO_{2} column chromatography [$20 \mathrm{~g} \mathrm{SiO}_{2}, 20 \mathrm{~mm}$ column diameter, eluted with 25% acetone/75\% hexanes] to yield the methyl ester $\mathbf{1 0 8}$ as a white crystalline solid ($72.2 \mathrm{mg}, 71 \%$ yield).

Methyl Ester 108:

${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl ${ }_{3}$): $\delta 4.76(\mathrm{ddt}, J=12.8,4.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.74$ $3.67(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{dt}, J=11.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.28(\mathrm{~m}, 1 \mathrm{H})$, $2.09-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{ddd}, J=10.7,8.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.60$ $-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.36(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 172.2,167.9,58.1,52.2,44.7,43.5,31.5,28.4,25.5$, 25.0, 19.6.

FTIR (NaCl, thin film): 2985, 2952, 1738, 1635, 1439, 1420, 1275, 1262, $1168 \mathrm{~cm}^{-1}$.

HRMS: (FI-TOF) calc'd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{3}[\mathrm{M}]^{+} 211.12029$, found 211.12066.

TLC (25% acetone $/ 75 \%$ hexanes), $\mathbf{R}_{f}: 0.22\left(\mathrm{KMnO}_{4}\right)$.
M.P. $74.6-75.9^{\circ} \mathrm{C}$.

Preparation of lupinine (109):

An oven dried N_{2} flushed 25 mL flask was charged with methyl ester 108 (50.0 $\mathrm{mg}, 237 \mu \mathrm{~mol}, 1$ equiv) and THF ($2.4 \mathrm{~mL}, 0.1 \mathrm{M}$) after which the flask was equipped with a reflux condenser which had been purged with N_{2}. The solution was heated to reflux, then lithium aluminum hydride (1.0 M in THF, $1.32 \mathrm{~mL}, 1.32 \mathrm{mmol}, 5.6$ equiv) was added dropwise. The solution was refluxed for 3 hours under N_{2}. Upon completion, the reaction was cooled to ambient temperature, and was quenched by a dropwise addition of a saturated solution of rochelles salt $(10 \mathrm{~mL})$. The reaction mixture was extracted with DCM (5x20 mL). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified via SiO_{2} column chromatography $\left[20 \mathrm{~g} \mathrm{SiO}_{2}, 20 \mathrm{~mm}\right.$ column diameter, eluted with $35 \% 2 \mathrm{M} \mathrm{NH}_{3}$ in $\mathrm{MeOH} / 65 \% \mathrm{ACN}$] to yield lupinine as a white crystalline solid ($26.9 \mathrm{mg}, 67 \%$ yield).

Lupinine (109):

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 5.43(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{ddd}, J=10.7,4.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.69$ $(\mathrm{d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{td}, J=12.8,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.90-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.65-1.49(\mathrm{~m}, 6 \mathrm{H}), 1.26(\mathrm{qt}, J=13.5,4.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 66.2,65.2,57.3,57.2,38.2,31.6,29.9,25.8,24.8,23.1$.
FTIR (NaCl, thin film): 2985, 2941, 2859, 1466, 1445, 1421, 1268, $1262 \mathrm{~cm}^{-1}$.

HRMS: (FI-TOF) calc'd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}]^{+}$169.14612, found 169.14620.

TLC (35\% $2 \mathrm{M} \mathrm{NH}_{3}$ in $\left.\mathrm{MeOH} / 65 \% \mathrm{ACN}\right)$, $\mathbf{R}_{f}: 0.39\left(\mathrm{KMnO}_{4}\right)$.
M.P. $47.9-51.1^{\circ} \mathrm{C}$.

Table 2.28. ${ }^{1} H$ NMR data for authentic vs synthetic (\pm)-lupinine.

Lupinine literature δ $\mathrm{ppm}^{47}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$	Lupinine recorded $\delta \mathrm{ppm}(500$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$)
4.75 (br s, 1H)	5.43 (br s, 1H)
4.09-4.14, (m, 1H)	$4.16(\mathrm{ddd}, J=10.7,4.7,1.7 \mathrm{~Hz}$, 1H)
$\begin{gathered} 3.67(\mathrm{~d}, J=10.8 \mathrm{~Hz}, \\ 1 \mathrm{H}) \end{gathered}$	3.69 (d, $J=10.7,1 \mathrm{H})$
2.81-2.77 (m, 2H)	2.86-2.78 (m, 2H)
2.14-1.99 (m, 3H)	2.23-2.08 (m, 2H)
-	2.01 (td, $J=12.8,3.0 \mathrm{~Hz}, 1 \mathrm{H})$
1.74-1.80 (m, 4H)	1.90-1.69 (m, 4H)
1.58-1.52 (m, 6H)	1.65-1.49 (m, 6H)
1.30-1.15 (m, 1H)	1.26 (qt, $J=13.5,4.5 \mathrm{~Hz}, 1 \mathrm{H})$

Table 2.29. ${ }^{13} \mathrm{C}$ NMR data for authentic vs synthetic (\pm)-lupinine.

Carbon No. lupinine	Lupinine literature δ ppm (75 MHz, $\left.\mathrm{CDCl}_{3}\right)$	Lupinine recorded δ ppm (101 MHz, $\left.\mathrm{CDCl}_{3}\right)$	$\Delta \delta$
1	38.3	38.2	-0.1
2	31.3	31.6	0.3
3	23.0	23.1	0.1
4	57.0	57.2	0.2
5	57.2	57.3	0.1
6	24.5	24.8	0.3
7	25.7	25.8	0.1
8	29.8	29.9	0.1
9	65.0	65.2	0.2
10	65.9		0.3

Preparation of trans methyl ester 110:

A $1 \mathrm{~L} \mathrm{~N}_{2}$-flushed flask was charged with $107(21.6 \mathrm{~g}, 103 \mathrm{mmol}, 1.0$ equiv) and t-BuOH (413 mL, 0.25 M). Next, potassium t-BuOK ($4.63 \mathrm{~g}, 41.3 \mathrm{mmol}, 0.4$ equiv) was added in a single portion, and the solution was stirred at $21^{\circ} \mathrm{C}$ until a $10: 1$ ratio of 110:107 was reached as judged by ${ }^{1} \mathrm{H}$ NMR aliquots (ca. 4 hours). Upon completion, the reaction was quenched with acetic acid ($2.36 \mathrm{~mL}, 41.3 \mathrm{mmol}, 0.4$ equiv). The reaction was concentrated under reduced pressure. The residue was diluted with sat. aq. NaHCO_{3} and was extracted with DCM ($3 \times 100 \mathrm{~mL}$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was used directly in the next step without additional purification. An analytically pure sample was obtained by SiO_{2} column chromatography ($20 \mathrm{~g} \mathrm{SiO}_{2}, 20 \mathrm{~mm}$ column, 40% Acetone/60\% Hexanes) to provide 110 as a white crystalline solid.
(\pm)-methyl ester epimer 110:
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl \mathbf{H}_{3}): $\delta 5.94-5.90(\mathrm{~m}, 1 \mathrm{H}), \delta 5.56-5.50(\mathrm{~m}, 1 \mathrm{H}), 4.83(\mathrm{ddt}, J=$ $12.9,5.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dq}, J=10.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{td}, J=12.4,4.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.56(\mathrm{ddd}, J=17.7,5.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{ddd}, J=12.3,10.6,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.40(\mathrm{ddd}, J=18.1,12.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dddq}, J=17.7,11.9,5.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-$ $2.00(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{qd}, J=12.6,5.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 173.6,168.1,127.9,127.1,56.6,52.7,46.4,39.0,31.8$, 25.3, 24.2

FTIR (NaCl, thin film): 3052, 2953, 1728, 1639, $1434 \mathrm{~cm}^{-1}$.

HMRS: (ESI-TOF) calc'd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$210.1124, found 210.1124.

TLC: 50% acetone in 50% hexane, $\mathbf{R}_{\mathbf{f}}=0.44\left(\mathrm{KMnO}_{4}\right)$.

Preparation of methyl ester 111:

A 1 L flask was charged with all the trans methyl ester $\mathbf{1 1 0}$ from the previous step (ca. $21.6 \mathrm{~g}, 103 \mathrm{mmol}, 1.0$ equiv), 10% palladium on carbon ($971 \mathrm{mg}, 0.91 \mathrm{mmol}, 1$ $\mathrm{mol} \%$), and $\mathrm{MeOH}(456 \mathrm{~mL}, 0.2 \mathrm{M})$. The flask was purged with N_{2} followed by H_{2}, then the reaction was stirred at 1500 RPM at $21^{\circ} \mathrm{C}$ until full consumption of the starting material was observed by TLC (ca. 2 hours). Upon completion, the solution was then filtered through celite with DCM, concentrated under reduced pressure, and purified via SiO_{2} column chromatography ($1900 \mathrm{~g} \mathrm{SiO}_{2}, 120 \mathrm{~mm}$ column, 40:60 acetone/hexane) to provide 111 as a white crystalline solid ($10.6 \mathrm{~g}, 55 \%$ yield $)$.

(\pm)-methyl ester 111:

${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl \mathbf{H}_{3} : $\delta 4.80(\mathrm{ddt}, J=13.2,4.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.58$ (ddd, $J=11.0,8.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.40(\mathrm{~m}, 3 \mathrm{H}), 2.34(\mathrm{ddd}, J=17.2,11.1,5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.05-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{dtd}, J=13.2,11.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.69$
(ddq, $J=13.4,4.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{qt}, J=12.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.43-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.25$ $(\operatorname{tdd}, J=13.1,11.3,3.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 174.0,168.4,58.4,52.7,47.1,43.1,33.8,31.8,25.5$,
24.7, 23.5

FTIR (NaCl, thin film): $3050,2856,1732,1645,1454 \mathrm{~cm}^{-1}$.

HMRS: (ESI-TOF) calc'd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$212.1281, found 212.1281.

TLC: 50% acetone in 50% hexane, $\mathbf{R}_{\mathbf{f}}=0.48$ (Seebach's "Magic" Stain)

Preparation of (\pm)-tosylate 112:

A $1 \mathrm{~L} \mathrm{~N}_{2}$ flushed flask was charged with 111 ($10.6 \mathrm{~g}, 50.2 \mathrm{mmol}, 1.0$ equiv) and THF ($201 \mathrm{~mL}, 0.25 \mathrm{M}$). The solution was cooled to $0^{\circ} \mathrm{C}$ then L-Selectride (1 M in THF, $105 \mathrm{~mL}, 105 \mathrm{mmol}, 2.1$ equiv) was added over the course of 5 minutes. The reaction was allowed to stir for 10 mins at $0^{\circ} \mathrm{C}$ after which p-toluenesulfonyl chloride ($16.3 \mathrm{~g}, 85.3$ mmol, 1.7 equiv) as a solution in THF ($25 \mathrm{~mL}, 1 \mathrm{M}$) was added at such a rate as to prevent the temperature from increasing above $10^{\circ} \mathrm{C}(c a .10$ minutes $)$. The clear solution was stirred for 15 minutes, after which it was quenched by the dropwise addition of a mixture of hydrogen peroxide (30% in water, $9.2 \mathrm{~mL}, 90.1 \mathrm{mmol}, 1.8$ equiv) and sodium hydroxide ($4.0 \mathrm{~g}, 100 \mathrm{mmol}, 2.0$ equiv). The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 hour. Upon the completion, the reaction mixture was concentrated under reduced pressure, diluted with sat. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$, and extracted with $\mathrm{DCM}(3 \times 75 \mathrm{~mL})$. The
combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified via column chromatography ($1500 \mathrm{~g} \mathrm{SiO}_{2}, 120 \mathrm{~mm}$ column, $40: 60$ Acetone/Hexane) to yield $\mathbf{1 1 2}$ in a white crystalline solid ($12.4 \mathrm{~g}, 73 \%$ yield).
(\pm)-tosylate 112:
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl 3) : $\delta 7.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.75$
(ddt, $J=13.1,4.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.04(\mathrm{ddd}, J=11.5,7.3,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) 2.24(\mathrm{ddd}, J=17.4,10.3,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{ddd}, J=17.4,10.3,5.4 \mathrm{~Hz}$, 1H), $1.88-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.61(\mathrm{dddd}, J=20.4,15.2,10.2,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.46-1.30(\mathrm{~m}$, $2 H), 1.27-1.16(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 168.6,145.7,133.0,130.5,128.4,71.1,58.3,43.5,40.0$, 33.5, 31.1, 25.5, 24.9, 22.1.

FTIR (NaCl, thin film): 3053, 2942, 1633, 1362, $1265 \mathrm{~cm}^{-1}$.

HMRS: (ESI-TOF) calc'd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{SO}_{4} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 338.1424$, found 338.1421 .

TLC: 50% acetone in 50% hexane, $\mathbf{R}_{\mathbf{f}}=0.36\left(\mathrm{KMnO}_{4}\right)$.

Preparation of (\pm)-imide 113:

An oven dried N_{2} flushed 250 mL flask was charged with glutarimide $(9.56 \mathrm{~g}$, $84.5 \mathrm{mmol}, 2.3$ equiv) and DMF ($184 \mathrm{~mL}, 0.2 \mathrm{M}$). To the solution was added t-BuOK
$(5.77 \mathrm{~g}, 51.4 \mathrm{mmol}, 1.4$ equiv) after which the mixture was allowed to stir for 15 minutes. A separate oven dried N_{2} flushed 500 mL flask was charged with tosylate $\mathbf{1 1 2}$ (12.4 g, $36.7 \mathrm{mmol}, 1.0$ equiv) and DMF ($92 \mathrm{~mL}, 0.4 \mathrm{M}$). The glutarimide solution was cannulated into the tosylate solution over the course of 5 minutes. The reaction mixture was then heated at $100^{\circ} \mathrm{C}$ until complete consumption of the starting material was observed by TLC (ca. 3 hours). Upon completion, the reaction mixture was cooled to $21{ }^{\circ} \mathrm{C}$. The flask was equipped with a shortpath distillation head, and the majority of the DMF was removed by distillation ($35^{\circ} \mathrm{C}, 0.3$ torr). The residue was diluted in sat. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and was extracted with DCM (3x75 mL). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by SiO_{2} column chromatography ($500 \mathrm{~g} \mathrm{SiO}_{2}$, 80 mm column, 50% Acetone $/ 50 \%$ Hexanes) to yield the product 113 as a white crystalline solid ($9.50 \mathrm{~g}, 93 \%$ yield).

(土)-glutarimide 113:

${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 4.81(\mathrm{ddt}, J=13.2,4.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-3.55(\mathrm{~m}$, $2 \mathrm{H}), 3.00(\mathrm{ddd}, J=10.5,7.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{t}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.48(\mathrm{dt}, J=17.3,5.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.38(\mathrm{td}, J=12.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{ddd}, J=16.8,10.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-$ $1.92(\mathrm{~m}, 3 \mathrm{H}), 1.90-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{ddt}, J=13.7,9.3,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.55-1.34(\mathrm{~m}$, $3 \mathrm{H}), 1.29(\mathrm{qd}, J=12.7,3.6 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 173.2,169.1,60.9,43.5,42.3,39.4,33.8,33.6,31.5$, 25.7, 25.2, 23.2, 17.6.

FTIR (NaCl, thin film): 3053, 2943, 1679, 1631, $1264 \mathrm{~cm}^{-1}$.

HMRS: (ESI-TOF) calc'd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+} 279.1705$, found 279.1703.

TLC: 50% acetone in 50% hexane, $\mathbf{R}_{\mathbf{f}}=0.48$ (Seebach's "Magic" Stain).

Preparation of (\pm)-tetracycle 114:

A 250 mL oven dried N_{2} flushed flask was charged with diisopropylamine (8.61 $\mathrm{mL}, 61.4 \mathrm{mmol}, 1.8$ equiv) and THF ($68 \mathrm{~mL}, 1.0 \mathrm{M}$). The solution was cooled to $0^{\circ} \mathrm{C}$ then n-buthyllithium (2.5 M in hexanes, $24.6 \mathrm{~mL}, 61.4 \mathrm{mmol}, 1.8$ equiv) was added dropwise after which the reaction was allowed to stir for 15 minutes at $0^{\circ} \mathrm{C}$. A separate 500 mL oven dried N_{2} flushed flask was charged with glutarimide $113(9.50 \mathrm{~g}, 34.1$ mmol, 1.0 equiv) and THF ($341 \mathrm{~mL}, 0.1 \mathrm{M}$) and was then cooled to $-78^{\circ} \mathrm{C}$. The LDA solution was cannulated into the glutarimide solution at $-78^{\circ} \mathrm{C}$ rapidly over the course of 2 minutes. The reaction was stirred for an additional 2 minutes at $-78^{\circ} \mathrm{C}$ and then quenched with acetic acid ($9.8 \mathrm{~mL}, 171 \mathrm{mmol}, 5.0$ equiv) at $-78^{\circ} \mathrm{C}$. The reaction mixture was removed from the cooling bath and concentrated under reduced pressure. The crude reaction mixture was diluted in sat. $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ and extracted with DCM (3 x 75 mL). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified via SiO_{2} column chromatography ($500 \mathrm{~g} \mathrm{SiO}_{2}, 80 \mathrm{~mm}$ column, $15 \% \mathrm{MeOH} / 85 \% \mathrm{EtOAc}$) to yield the product 114 as a white crystalline solid ($5.30 \mathrm{~g}, 56 \%$ yield).

(土)-tetracycle 17:

${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{C l}_{3}$: $\delta 4.93(\mathrm{dd}, J=14.2,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.74$ (ddt, $J=13.1,4.2$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 1 \mathrm{H}), 3.02-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{dt}, J=4.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.46$ (m, 3H), 2.33 (ddd, $J=17.6,12.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{pq}, J=9.2,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-$ $1.90(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.51(\mathrm{~m}, 3 \mathrm{H}), 1.48-1.36$ ($\mathrm{m}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 170.8,168.9,84.6,62.9,49.1,44.4,38.7,38.5,32.3$, 31.8, 31.2, 26.1, 25.2, 20.4, 16.4.

FTIR (NaCl, thin film): $3053,1641,1615,1269,1407 \mathrm{~cm}^{-1}$.

HMRS: (ESI-TOF) calc'd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+} 212.1705$, found 212.1703 .

TLC: 15% methanol in 85% ethyl acetate, $\mathbf{R}_{\mathbf{f}}=0.26$ (Seebach's "Magic" Stain)

Preparation of sparteine (115):

An N_{2} flushed oven dried 1L round bottom flask was charged with bis-amide 114 $\left(5.00 \mathrm{~g}, 18.0 \mathrm{mmol}, 1.0\right.$ equiv) and THF ($180 \mathrm{~mL}, 0.1 \mathrm{M}$). To the solution at $21^{\circ} \mathrm{C}$ was added LiAlH_{4} (1.0 M solution in THF, 341 mL , 341 mmol , 19 equiv). The solution was heated to reflux for 16 hours. Upon completion, the solution was cooled to $21^{\circ} \mathrm{C}$ then poured into a solution of sat. aq. Rochelles salt (500 mL) and ice (500 g). After quenching, $3 \mathrm{M} \mathrm{NaOH}(100 \mathrm{~mL})$ was added, and the mixture was stirred for 15 minutes to break apart the aluminum solids into a white slurry. The mixture was concentrated
under reduced pressure to remove the THF. Subsequently the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with brine (100 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude residue was purified via distillation under reduced pressure ($300 \mathrm{mTorr}, 80.0^{\circ} \mathrm{C}-$ $82.1^{\circ} \mathrm{C}, 120^{\circ} \mathrm{C}$ oil bath temperature $)\left(2.30 \mathrm{~g}, 80 \%\right.$ purity by $q N M R$ in CDCl_{3}, pyrazine standard). The obtained pale-yellow oil was treated with $2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(8 \mathrm{~mL}, 16 \mathrm{mmol}, 2.1$ equiv) followed by freezing and water removal through lyophilization. The obtained solids were dissolved in boiling EtOH, cooled to $0^{\circ} \mathrm{C}$, and the crystals were isolated by vacuum filtration to provide sparteine bis-sulfate pentahydrate as a white crystalline solid ($2.50 \mathrm{~g}, 30 \%$ yield).
(\pm)-sparteine (115):
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 4.93(\mathrm{dd}, J=14.2,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.74$ (ddt, $J=13.1,4.2$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 1 \mathrm{H}), 3.02-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{dt}, J=4.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.46$ $(\mathrm{m}, 3 \mathrm{H}), 2.33(\mathrm{ddd}, J=17.6,12.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{pq}, J=9.2,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-$ $1.90(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.51(\mathrm{~m}, 3 \mathrm{H}), 1.48-1.36$ ($\mathrm{m}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 170.8,168.9,84.6,62.9,49.1,44.4,38.7,38.5,32.3$, 31.8, 31.2, 26.1, 25.2, 20.4, 16.4.

FTIR (NaCl, thin film): 2985, 2933, 1421, $1268 \mathrm{~cm}^{-1}$.

HMRS: (ESI-TOF) calc'd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$235.2169, found 235.2177.

TLC: 15% methanol in 85% ethyl acetate, $\mathbf{R}_{\mathbf{f}}=0.26$ (Seebach's "Magic" Stain)

Table 2.30. ${ }^{1} H$ NMR data for authentic vs synthetic (\pm)-sparteine bis-sulfate $\left(\mathrm{D}_{2} \mathrm{O}\right)$.

Sparteine literature δ ppm (400 MHz , $\left.\mathrm{D}_{2} \mathrm{O}\right)^{48}$	Sparteine recorded δ ppm (600 $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$
$\begin{gathered} 3.59(\mathrm{br} \mathrm{t}, J=13.0 \\ \mathrm{Hz}, 1 \mathrm{H}) \end{gathered}$	3.66 (dd, $J=14.5,11.3 \mathrm{~Hz}, 1 \mathrm{H})$
3.48-3.31 (m, 4H)	$3.52-3.45$ (m, 3H)
-	3.41 (dt, $J=12.1,3.3 \mathrm{~Hz}, 1 \mathrm{H})$
$\begin{gathered} 3.24(\mathrm{br} \mathrm{~d}, J=11.0 \\ \mathrm{Hz}, 1 \mathrm{H}) \end{gathered}$	3.31 (dd, $J=11.9,2.5 \mathrm{~Hz}, 1 \mathrm{H})$
3.17-2.96 (m, 4H)	$3.20-3.14$ (m, 2H)
-	3.11 (td, $J=12.7,3.5 \mathrm{~Hz}, 2 \mathrm{H})$
$\begin{gathered} 2.55(\mathrm{br} \mathrm{~d}, J=10.0 \\ \mathrm{Hz}, 1 \mathrm{H}) \end{gathered}$	2.62 (d, $J=11.3 \mathrm{~Hz}, 1 \mathrm{H})$
2.22 (br s, 1H)	2.30 (s, 1H)
-	2.15 (dq, $J=15.3,4.1 \mathrm{~Hz}, 1 \mathrm{H})$
$\begin{gathered} 2.08(\mathrm{br} \mathrm{~d}, J=15.0 \\ \mathrm{Hz}, 1 \mathrm{H}) \end{gathered}$	2.04 (d, $J=14.7 \mathrm{~Hz}, 1 \mathrm{H})$
$2.01-1.44(\mathrm{~m}, 13 \mathrm{H})$	$1.98-1.86$ (m, 6H)
-	$1.86-1.71(\mathrm{~m}, 3 \mathrm{H})$
-	$1.71-1.56$ (m, 3H)

Table 2.31. ${ }^{13} \mathrm{C}$ NMR data for authentic vs synthetic (\pm)-sparteine bis-sulfate ($\mathrm{D}_{2} \mathrm{O}$).

Carbon Number	$\begin{gathered} \text { Sparteine literature } \delta \\ \text { ppm (101 MHz, } \\ \left.\mathrm{D}_{2} \mathrm{O}\right) \end{gathered}$	Sparteine literature δ ppm (101 $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$	$\Delta \delta$
6	66.5	66.5	0.0
11	63.2	63.2	0.0
10	57.2	57.1	-0.1
2	56.5	56.5	0.0
15	55.0	55.0	0.0
17	49.0	48.9	-0.1
9	32.0	32.0	0.0
12	31.3	31.3	0.0
7	29.1	29.1	0.0
5	26.8	26.8	0.0
3	22.7	22.7	0.0
4	22.5	22.5	0.0
14	22.4	22.4	0.0
8	21.9	21.9	0.0
13	21.5	21.5	0.0

2.8 X-RAY CRYSTALLOGRAPHY REPORTS

Low-temperature diffraction data (φ - and ω-scans) were collected on a Bruker AXS D8 VENTURE KAPPA diffractometer coupled to either a PHOTON 100 CMOS detector with Mo-K α radiation $(\lambda=0.71073 \AA)$ or a PHOTON II CPAD detector with either Mo$\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA)$ or $\mathrm{Cu}-\mathrm{K} \alpha$ radiation $(\lambda=1.54178 \AA)$ from a fine-focus sealed X-ray tube. All diffractometer manipulations, including data collection integration and scaling, were carried out using the Bruker APEXII software. ${ }^{49}$ Absorption corrections were applied using SADABS. ${ }^{50}$ The structure was solved by intrinsic phasing using SHELXT ${ }^{51}$ and refined against F2 on all data by full-matrix least squares with SHELXL-2014 ${ }^{52}$ using established refinement techniques. ${ }^{53}$ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms they are linked to (1.5 times for methyl and hydroxyl groups). Absolute configuration was determined by anomalous dispersion ${ }^{54}$ and confirmed by Bayesian statistical analysis using the program PLATON. ${ }^{55}$ Graphical representation of the structure with 50% probability thermal ellipsoids was generated using Mercury visualization software. ${ }^{56}$

Crystallographic Analysis of (\pm)-105.

Special Refinement Details

Compound (\pm)-105 crystallizes in the triclinic space group P-1 with two molecules in the asymmetric unit. CCDC number: 2159774.

Table 2.32. Crystal data and structure refinement for (\pm)-105.

Identification code	V 22048
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{3}$
Formula weight	259.39
Temperature $/ \mathrm{K}$	200.0
Crystal system	triclinic
Space group	$\mathrm{P}-1$
a / \AA	$10.3418(10)$
b / \AA	$11.0488(9)$
c / \AA	$13.5340(12)$
$\alpha /{ }^{\circ}$	$71.002(5)$
$\beta /{ }^{\circ}$	$75.301(7)$
$\gamma /{ }^{\circ}$	$89.676(5)$
$\mathrm{Volume} / \AA^{3}$	$1409.4(2)$
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.222
μ / mm^{-1}	0.560

F(000)
Crystal size $/ \mathrm{mm}^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ} 7.166$ to 150.084
Index ranges $-12 \leq \mathrm{h} \leq 12,-13 \leq \mathrm{k} \leq 13,-16 \leq 1 \leq 16$
Reflections collected 32777

Independent reflections $\quad 5743\left[\mathrm{R}_{\text {int }}=0.0603, \mathrm{R}_{\text {sigma }}=0.03971\right.$
Data/restraints/parameters 5743/0/343
Goodness-of-fit on F^{2}
1.051

Final R indexes $\lceil I>=2 \sigma(\mathrm{I})\rceil \quad \mathrm{R}_{1}=0.0497, \mathrm{wR}_{2}=0.1416$
Final R indexes โall data] $\quad \mathrm{R}_{1}=0.0579, \mathrm{wR}_{2}=0.1522$
Largest diff. peak/hole / e $\AA^{-3} 0.34 /-0.22$

Crystallographic Analysis of (-)-30 monohydrate.

Special Refinement Details

Compound (-)-30 monohydrate crystallizes in the monoclinic space group $\mathrm{P} 2_{1}$ with one molecule in the asymmetric unit. Absolute configuration was determined by anomalous dispersion (Flack $=0.09(15)$. Bayesian statistics further confirm the absolute stereochemistry: P 2 (true) $=1.000, \mathrm{P} 3($ true $)=0.992, \mathrm{P} 3($ rac-twin $)=0.008$, and P 3 (false) $=0.1 \times 10^{-10}$. CCDC number: 2163777.

Table 2.33. Crystal data and structure refinement for (-)-30 monohydrate.

Identification code	V22047
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}$
Formula weight	266.38
Temperature/K	100.0
Crystal system	monoclinic
Space group	P2 ${ }_{1}$
a/Å	6.5987(12)
b / \AA	14.549(5)
c/Å	7.3792(15)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	99.85(2)
$\gamma /{ }^{\circ}$	90
Volume/ ${ }^{3}$	698.0(3)
Z	2
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.267
μ / mm^{-1}	0.665
F(000)	292.0
Crystal size/ mm^{3}	$0.15 \times 0.1 \times 0.05$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection/ ${ }^{\circ}$	12.166 to 148.87
Index ranges	$-7 \leq h \leq 8,-18 \leq \mathrm{k} \leq 17,-9 \leq 1 \leq 9$
Reflections collected	10516
Independent reflections	$2832\left[\mathrm{R}_{\text {int }}=0.0508, \mathrm{R}_{\text {sigma }}=0.0415\right]$
Data/restraints/parameters	2832/1/175
Goodness-of-fit on F^{2}	0.895
Final R indexes [$\mathrm{I}>=2 \sigma$ (I]	$\mathrm{R}_{1}=0.0357, \mathrm{wR}_{2}=0.1073$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0396, \mathrm{wR}_{2}=0.1131$
Largest diff. peak/hole / e \AA^{-3}	0.22/-0.18
Flack parameter	0.09(15)

Crystallographic Analysis of (+)-27.

Special Refinement Details

Compound (+)-27 crystallizes in the monoclinic space group $\mathrm{P} 2{ }_{1}$ with one molecule in the asymmetric unit. Absolute configuration was determined by anomalous dispersion $($ Flack $=-0.16(18)$. Bayesian statistics further confirm the absolute stereochemistry: $\mathrm{P} 2($ true $)=1.000, \mathrm{P} 3($ true $)=0.988, \mathrm{P} 3($ rac-twin $)=0.012$, and $\mathrm{P} 3($ false $)$ $=0.2 \times 10^{-8} . \mathrm{CCDC}$ number: 2159773.

Table 2.34. Crystal data and structure refinement for (+)-27.

Identification code	V 22044
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$
Formula weight	248.36
Temperature/K	100.0
Crystal system	monoclinic
Space group	$\mathrm{P} 2{ }_{1}$
a / \AA	$6.6233(8)$
b / \AA	$8.0886(11)$
c / \AA	$12.9022(19)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$103.235(9)$
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$672.85(16)$
Z	2

$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.226
μ / mm^{-1}	0.599
$\mathrm{~F}(000)$	272.0
Crystal size $/ \mathrm{mm}^{3}$	$0.3 \times 0.15 \times 0.15$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection $/{ }^{\circ}$	7.038 to 159.11
Index ranges	$-8 \leq \mathrm{h} \leq 8,-10 \leq \mathrm{k} \leq 10,-16 \leq 1 \leq 14$
Reflections collected	11330
Independent reflections	$2847\left[\mathrm{R}_{\text {int }}=0.0738, \mathrm{R}_{\text {sigma }}=0.0617\right]$
Data/restraints/parameters	$2847 / 1 / 163$
Goodness-of-fit on F^{2}	1.056
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0485, \mathrm{wR}_{2}=0.1361$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0527, \mathrm{wR}_{2}=0.1420$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$0.36 /-0.25$
Flack parameter	$-0.16(18)$

Crystallographic Analysis of (\pm)-29.

Special Refinement Details

Compound (\pm)-29 crystallizes in the monoclinic space group $\mathrm{P} 2_{1} / \mathrm{n}$ with one molecule in the asymmetric unit. CCDC number: 2159772.

Table 2.35. Crystal data and structure refinement for (\pm)-29.

Identification code	V22037
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$
Formula weight	248.36
Temperature/K	100.0
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{n}$
a / \AA	7.700(3)
b/Å	22.520(9)
c/ \AA	8.384(2)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	116.574(15)
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	1300.4(8)
Z	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.269
μ / mm^{-1}	0.620
F(000)	544.0
Crystal size/mm ${ }^{3}$	$0.3 \times 0.2 \times 0.1$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection/ ${ }^{\circ}$	7.852 to 148.692
Index ranges	$-8 \leq \mathrm{h} \leq 9,-22 \leq \mathrm{k} \leq 27,-8 \leq 1 \leq 10$
Reflections collected	9620
Independent reflections	$2589\left[\mathrm{R}_{\text {int }}=0.0383, \mathrm{R}_{\text {sigma }}=0.0318\right]$
Data/restraints/parameters	2589/0/163
Goodness-of-fit on F^{2}	0.971
Final R indexes [$\mathrm{l}>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0368, \mathrm{wR}_{2}=0.1194$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0462, \mathrm{wR}_{2}=0.1291$
Largest diff. peak/hole / e \AA^{-3}	0.25/-0.18

Crystallographic Analysis of (+)-25.

Special Refinement Details

Compound (+)-25 crystallizes in the orthorhombic space group $\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$ with one molecule in the asymmetric unit. Absolute configuration was determined by anomalous dispersion $($ Flack $=-0.11(11)$. Bayesian statistics further confirm the absolute stereochemistry: $\mathrm{P} 2($ true $)=1.000, \mathrm{P} 3($ true $)=1.000, \mathrm{P} 3($ rac-twin $)=0.1 \times 10^{-8}$, and $P 3($ false $)=0.4 \times 10^{-30}$. CCDC number: 2159771.

Table 2.36. Crystal data and structure refinement for (+)-25.

Identification code	V 22027
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$
Formula weight	248.36
Temperature/K	100.0
Crystal system	orthorhombic
Space group	$\mathrm{P} 22_{12} 2_{1}$
a / \AA	$7.4690(6)$
b / \AA	$11.4564(13)$
c / \AA	$15.6304(13)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$1337.5(2)$
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.233
μ / mm^{-1}	0.602

F(000)
Crystal size/mm ${ }^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [I $>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
Flack parameter
544.0
$0.4 \times 0.15 \times 0.15$
$\mathrm{CuK} \alpha(\lambda=1.54178)$
9.572 to 149.208
$-8 \leq \mathrm{h} \leq 9,-14 \leq \mathrm{k} \leq 13,-19 \leq 1 \leq 19$
19281
$2724\left[\mathrm{R}_{\text {int }}=0.0440, \mathrm{R}_{\text {sigma }}=0.0240\right]$
2724/0/163
0.973
$\mathrm{R}_{1}=0.0341, \mathrm{wR}_{2}=0.1044$
$\mathrm{R}_{1}=0.0346, \mathrm{wR}_{2}=0.1052$
0.18/-0.24
-0.11(11)

Crystallographic Analysis of (\pm)-89.

Special Refinement Details

Compound $(\pm)-\mathbf{8 9}$ crystallizes in the triclinic space group P-1 with two molecules in the asymmetric unit. CCDC number: 2159770.

Table 2.37. Crystal data and structure refinement for (\pm)-89.

Identification code	V21098
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}$
Formula weight	250.38
Temperature/K	100.0
Crystal system	triclinic
Space group	P-1
a / \AA	10.6426(13)
b/Å	10.6776(12)
c/ \AA	13.7940(13)
$\alpha /{ }^{\circ}$	107.937(7)
$\beta /{ }^{\circ}$	108.100(5)
$\gamma /{ }^{\circ}$	101.232(6)
Volume/ \AA^{3}	1342.4(3)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.239
μ / mm^{-1}	0.601
$\mathrm{F}(000)$	552.0
Crystal size/mm ${ }^{3}$	$0.2 \times 0.15 \times 0.15$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection/ ${ }^{\circ} 7.34$ to 149.188	
Index ranges	$-12 \leq \mathrm{h} \leq 13,-13 \leq \mathrm{k} \leq 13,-17 \leq 1 \leq 17$
Reflections collected	14327
Independent reflections	$5244\left\lceil_{\text {int }}=0.0274, \mathrm{R}_{\text {sigma }}=0.0317\right\rceil$
Data/restraints/parameters	5244/0/327
Goodness-of-fit on F^{2}	1.057
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})\rceil$	$\mathrm{R}_{1}=0.0379, \mathrm{wR}_{2}=0.1033$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0395, \mathrm{wR}_{2}=0.1047$
Largest diff. peak/hole / e \AA	${ }^{-3} 0.26 /-0.26$

Crystallographic Analysis of (+)-76.

Special Refinement Details

Compound (+)-76 crystallizes in the orthorhombic space group $\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$ with one molecule in the asymmetric unit. Absolute configuration was determined by anomalous dispersion $($ Flack $=0.13(8)$. Bayesian statistics further confirm the absolute stereochemistry: $\mathrm{P} 2($ true $)=1.000, \mathrm{P} 3($ true $)=1.000, \mathrm{P} 3($ rac-twin $)=0.7 \times 10^{-5}$, and $\mathrm{P} 3($ false $)=0.4 \times 10^{-34} . \mathrm{CCDC}$ number: 2159768.

Table 2.38. Crystal data and structure refinement for (+)-76.

Identification code	V 19453
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$
Formula weight	268.31
Temperature/K	100.0
Crystal system	orthorhombic
Space group	$\mathrm{P} 2_{1} 2_{1} 2_{1}$
a / \AA	$8.8059(15)$
b / \AA	$11.451(2)$
c / \AA	$12.474(3)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$1257.9(4)$
Z	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.417
μ / mm^{-1}	0.764

F(000)
Crystal size $/ \mathrm{mm}^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
Flack parameter
568.0
? \times ? \times ?
$\mathrm{CuK} \alpha(\lambda=1.54178)$
12.302 to 149.394
$-11 \leq \mathrm{h} \leq 10,-14 \leq \mathrm{k} \leq 14,-15 \leq 1 \leq 15$ 23931
$2557\left[\mathrm{R}_{\text {int }}=0.0554, \mathrm{R}_{\text {sigma }}=0.0245\right]$
2557/0/182
1.027
$\mathrm{R}_{1}=0.0329, \mathrm{wR}_{2}=0.1071$
$\mathrm{R}_{1}=0.0339, \mathrm{wR}_{2}=0.1113$
0.17/-0.20
0.13(8)

Crystallographic Analysis of (\pm)-24.

Special Refinement Details

Compound (\pm)-24 crystallizes in the monoclinic space group $\mathrm{P} 2_{1} / \mathrm{c}$ with two molecules in the asymmetric unit. CCDC number: 2159767.

Table. 2.39. Crystal data and structure refinement for (\pm)-24.

Identification code	V19355
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2}$
Formula weight	234.38
Temperature/K	100
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
a / \AA	10.738(2)
b/A	17.591(4)
c / \AA	14.316(3)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	103.629(10)
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	2627.8(9)
Z	8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.185
μ / mm^{-1}	0.521
F(000)	1040.0
Crystal size/ mm^{3}	$0.22 \times 0.08 \times 0.03$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection/ ${ }^{\circ} 8.102$ to 161.38	
Index ranges	$-13 \leq \mathrm{h} \leq 12,-21 \leq \mathrm{k} \leq 22,-17 \leq 1 \leq 17$
Reflections collected	38183
Independent reflections	$5498\left[\mathrm{R}_{\text {int }}=0.0594, \mathrm{R}_{\text {sigma }}=0.02961\right.$
Data/restraints/parameters	5498/0/307
Goodness-of-fit on F^{2}	1.029
Final R indexes $\lceil\mathrm{I}>=2 \sigma(\mathrm{I})\rceil$	$\mathrm{R}_{1}=0.0455, \mathrm{wR}_{2}=0.1109$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0542, \mathrm{wR}_{2}=0.1175$
Largest diff. peak/hole / e $\AA^{-3} 0.27 /-0.26$	

Crystallographic Analysis of (\pm)-23.

Special Refinement Details

Compound (\pm)-23 crystallizes in the monoclinic space group $\mathrm{P} 2_{1} / \mathrm{c}$ with two molecules in the asymmetric unit. CCDC number: 2159766.

Table 2.40. Crystal data and structure refinement for (\pm)-23.

Identification code	V 18405 a
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$
Formula weight	254.24
Temperature $/ \mathrm{K}$	99.97
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{c}$
a / \AA	$7.0167(3)$
b / \AA	$15.8509(6)$
c / \AA	$20.6888(9)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$91.261(2)$
$\gamma /{ }^{\circ}$	90
$\mathrm{Volume} / \AA^{3}$	$2300.47(17)$
Z	46
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.468
μ / mm^{-1}	0.099
$\mathrm{~F}(000)$	1072.5
Crystal size $/ \mathrm{mm}^{3}$	$0.51 \times 0.41 \times 0.32$

Radiation
Mo K $\alpha(\lambda=0.71073)$
2Θ range for data collection $/{ }^{\circ} 4.7$ to 55.02
Index ranges
$-9 \leq \mathrm{h} \leq 9,-20 \leq \mathrm{k} \leq 20,-26 \leq 1 \leq 26$
Reflections collected 40432

Independent reflections
$5233 \Gamma^{\text {int }}=0.0603, \mathrm{R}_{\text {sigma }}=0.03481$
Data/restraints/parameters
5233/0/343
Goodness-of-fit on F^{2}
1.049

Final R indexes $\lceil\mathrm{I}>=2 \sigma(\mathrm{I})\rceil \quad \mathrm{R}_{1}=0.0463, \mathrm{wR}_{2}=0.0897$
Final R indexes 「all dataך $\quad \mathrm{R}_{1}=0.0608, \mathrm{wR}_{2}=0.0929$
Largest diff. peak/hole / e $\AA^{-3} 0.48 /-0.51$

Crystallographic Analysis of (\pm)-91.

Special Refinement Details

Compound (\pm)-91 crystallizes in the triclinic space group P-1 with one molecule in the asymmetric unit. CCDC number: 2159765.

Table 2.41. Crystal data and structure refinement for (\pm)-91.

Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2}$
Formula weight	234.38
Temperature/K	100
Crystal system	triclinic
Space group	P-1
a/Å	5.129(5)
b/Å	9.175(10)
c / \AA	14.500(7)
$\alpha /{ }^{\circ}$	106.65(3)
$\beta /{ }^{\circ}$	93.82(3)
$\gamma /{ }^{\circ}$	92.81(6)
Volume/ \AA^{3}	650.7(10)
Z	2
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.196
μ / mm^{-1}	0.070
F(000)	260.0
Crystal size/ $/ \mathrm{mm}^{3}$	$0.47 \times 0.18 \times 0.05$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	2.942 to 74.252
Index ranges	$-8 \leq \mathrm{h} \leq 8,-15 \leq \mathrm{k} \leq 15,-24 \leq 1 \leq 24$
Reflections collected	41718
Independent reflections	$6408\left[\mathrm{R}_{\text {int }}=0.0428, \mathrm{R}_{\text {sigma }}=0.0339\right]$
Data/restraints/parameters	6408/0/155
Goodness-of-fit on F^{2}	1.034
Final R indexes [$\mathrm{I}>=2 \sigma$ (I]	$\mathrm{R}_{1}=0.0465, \mathrm{wR}_{2}=0.1095$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0753, \mathrm{wR}_{2}=0.1238$
Largest diff. peak/hole / e \AA^{-3}	0.41/-0.24

Crystallographic Analysis of (\pm)-101 mono-chloroform adduct.

Special Refinement Details

Compound (\pm)-101 mono-chloroform adduct crystallizes in the monoclinic space group $\mathrm{P} 2_{1} / \mathrm{n}$ with one molecule in the asymmetric unit. CCDC number: 2159764.

Table 2.42. Crystal data and structure refinement for (\pm)-101 mono-chloroform adduct.

Identification code	D 20014
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}$
Formula weight	369.74
Temperature $/ \mathrm{K}$	100
Crystal system	monoclinic
Space group	$\mathrm{P} 2{ }_{1} / \mathrm{n}$
a / \AA	$5.771(4)$
b / \AA	$13.008(10)$
c / \AA	$23.438(6)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$96.271(16)$
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$1748.9(17)$
Z	4
$\rho_{\text {calcg } / \mathrm{cm}^{3}}{ }^{3}$	1.404
μ / mm^{-1}	0.528
$\mathrm{~F}(000)$	784.0
Crystal size $/ \mathrm{mm}^{3}$	$0.45 \times 0.4 \times 0.32$
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$

2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[I>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
3.496 to 79.03
$-10 \leq \mathrm{h} \leq 10,-23 \leq \mathrm{k} \leq 23,-39 \leq 1 \leq 41$
113231
$10352\left[\mathrm{R}_{\text {int }}=0.0335, \mathrm{R}_{\text {sigma }}=0.0183\right]$
10352/0/199
1.042
$\mathrm{R}_{1}=0.0342, \mathrm{wR}_{2}=0.0843$
$\mathrm{R}_{1}=0.0442, \mathrm{wR}_{2}=0.0886$
0.95/-0.85

Crystallographic Analysis of (\pm)-90.

Special Refinement Details

Compound (\pm)-90 mono-chloroform adduct crystallizes in the triclinic space group P-1 with one molecule in the asymmetric unit. CCDC number: not publication quality.

Table 2.43. Crystal data and structure refinement for (\pm)-90.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group

V22045
$\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{3}$
259.39
100.0
triclinic
P-1

a / \AA	5.0835(7)
b / \AA	11.3220(13)
c/Å	12.058(2)
$\alpha /{ }^{\circ}$	94.182(7)
$\beta /{ }^{\circ}$	94.487(11)
$\gamma /{ }^{\circ}$	95.227(12)
Volume/ \AA^{3}	686.75(18)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.254
μ / mm^{-1}	0.575
F(000)	284.0
Crystal size/ mm^{3}	$0.4 \times 0.1 \times 0.1$
Radiation	$\operatorname{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection/ ${ }^{\circ}$	7.866 to 99.416
Index ranges	$-4 \leq \mathrm{h} \leq 2,-4 \leq \mathrm{k} \leq 10,-2 \leq 1 \leq 11$
Reflections collected	475
Independent reflections	$474\left[\mathrm{R}_{\text {int }}=0.0376, \mathrm{R}_{\text {sigma }}=0.0211\right]$
Data/restraints/parameters	474/0/77
Goodness-of-fit on F^{2}	1.113
Final R indexes [$\mathrm{I}>=2 \sigma$ (I$)]$	$\mathrm{R}_{1}=0.0377, \mathrm{wR}_{2}=0.1220$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0488, \mathrm{wR}_{2}=0.1389$
Largest diff. peak/hole / e \AA^{-3}	0.07/-0.08

Crystallographic Analysis of (-)-81.

Special Refinement Details

Compound (-)-81 crystallizes in the monoclinic space group Cc with one molecule in the asymmetric unit. Absolute configuration was determined by anomalous dispersion (Flack $=-2.3(10)$. Bayesian statistics further supports the absolute stereochemistry: $\mathrm{P} 2($ true $)=-$ $0.630, \mathrm{P} 3($ true $)=0.422, \mathrm{P} 3($ rac-twin $)=0.330$, and $\mathrm{P} 3($ false $)=0.248$. CCDC number: not publication quality.

Table 2.44. Crystal data and structure refinement for (-)-81.

Identification code	D 21063
Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}$
Formula weight	281.35
Temperature/K	296.15
Crystal system	monoclinic
Space group	Cc
a / \AA	$5.201(3)$
b / \AA	$14.167(7)$
c / \AA	$16.404(18)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$98.21(3)$
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$1196.4(16)$
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}{ }^{3}$	1.562
μ / mm^{-1}	0.100

F(000)
Crystal size $/ \mathrm{mm}^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [$\mathrm{I}>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
Flack parameter
600.0
$0.4 \times 0.25 \times 0.1$
$\operatorname{MoK} \alpha(\lambda=0.71073)$
5.018 to 53.262
$-5 \leq h \leq 5,-15 \leq k \leq 15,-19 \leq 1 \leq 19$
3029
$1770\left[\mathrm{R}_{\text {int }}=0.0862, \mathrm{R}_{\text {sigma }}=0.1507\right]$
1770/2/163
0.978
$\mathrm{R}_{1}=0.0563, \mathrm{wR}_{2}=0.0893$
$\mathrm{R}_{1}=0.1330, \mathrm{wR}_{2}=0.1092$
0.22/-0.26
-2.3(10)

Crystallographic Analysis of (\pm)-85.

Special Refinement Details

Compound $(\pm)-\mathbf{8 5}$ crystallizes in the orthorhombic space group Pbca with one molecule in the asymmetric unit. CCDC number: not publication quality.

Table 2.45. Crystal data and structure refinement for (\pm)-85.

Identification code
V21213
Empirical formula
$\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$

Formula weight	344.413
Temperature/K	100.0
Crystal system	orthorhombic
Space group	Pbca
a / \AA	13.504(4)
b/Å	9.889(2)
c/Å	14.150(7)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma{ }^{\circ}$	90
Volume/ \AA^{3}	1889.5(11)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.211
μ / mm^{-1}	0.085
F(000)	736.4
Crystal size/ $/ \mathrm{mm}^{3}$	$0.4 \times 0.35 \times 0.35$
Radiation	Mo K $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	5.76 to 71.94
Index ranges	$-18 \leq \mathrm{h} \leq 16,-12 \leq \mathrm{k} \leq 13,-18 \leq 1 \leq 22$
Reflections collected	12367
Independent reflections	$2452\left[\mathrm{R}_{\text {int }}=0.0700, \mathrm{R}_{\text {sigma }}=0.0588\right]$
Data/restraints/parameters	2452/0/62
Goodness-of-fit on F^{2}	1.049
Final R indexes [I $>=2 \sigma$ (I$)]$	$\mathrm{R}_{1}=0.0675, \mathrm{wR}_{2}=0.1607$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1149, \mathrm{wR}_{2}=0.1894$
Largest diff. peak/hole / e \AA^{-3}	0.72/-0.74

Crystallographic Analysis of (\pm)-83.

Special Refinement Details

Compound (\pm)-83 crystallizes in the monoclinic space group C2/c with one molecule in the asymmetric unit. CCDC number: not publication quality.

Table 2.46. Crystal data and structure refinement for (\pm)-83.

Identification code	V 21215
Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$
Formula weight	282.345
Temperature/K	100.0
Crystal system	monoclinic
Space group	$\mathrm{C} 2 / \mathrm{c}$
a / \AA	$23.208(15)$
b / \AA	$9.265(3)$
c / \AA	$16.238(16)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$127.920(18)$
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$2754(3)$
Z	8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}{ }^{3}$	1.362
μ / mm^{-1}	0.090
$\mathrm{~F}(000)$	1200.5
Crystal size $/ \mathrm{mm}^{3}$	$0.38 \times 0.32 \times 0.185$
Radiation	$\mathrm{Mo} \mathrm{K} \alpha(\lambda=0.71073)$
2Θ range for data collection $/{ }^{\circ}$	4.44 to 59.14
Index ranges	$-27 \leq \mathrm{h} \leq 29,-10 \leq \mathrm{k} \leq 12,-22 \leq 1 \leq 22$

Reflections collected	9241
Independent reflections	$3236\left[\mathrm{R}_{\text {int }}=0.1607, \mathrm{R}_{\text {sigma }}=0.2114\right]$
Data/restraints/parameters	$3236 / 0 / 192$
Goodness-of-fit on F^{2}	0.958
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0770, \mathrm{wR}_{2}=0.1696$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1798, \mathrm{wR}_{2}=0.2363$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$1.00 /-0.95$

Crystallographic Analysis of (\pm)-88.

Special Refinement Details

Compound (\pm)-88 crystallizes in the monoclinic space group $\mathrm{P} 2{ }_{1} / \mathrm{n}$ with one molecule in the asymmetric unit. CCDC number: not publication quality.

Table 2.47. Crystal data and structure refinement for (\pm)-88.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group

V20006
$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}$
246.36
99.99
monoclinic
P2 ${ }_{1} / n$

a / \AA	$5.4330(11)$
b / \AA	$13.383(4)$
c / \AA	$18.052(2)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$90.171(11)$
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$1312.6(5)$
Z	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.247
μ / mm^{-1}	0.077
$\mathrm{~F}(000)$	540.0
Crystal size/mm ${ }^{3}$	$? \times ? \times ?$
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection ${ }^{\circ}$	5.444 to 72.732
Index ranges	$-9 \leq \mathrm{h} \leq 9,-22 \leq \mathrm{k} \leq 22,-30 \leq 1 \leq 30$
Reflections collected	34154
Independent reflections	$6337\left[\mathrm{R}_{\text {int }}=0.0685, \mathrm{R}_{\text {sigma }}=0.0544\right]$
Data/restraints/parameters	$6337 / 0 / 163$
Goodness-of-fit on F^{2}	1.123
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.2513, \mathrm{wR}_{2}=0.5841$
Final R indexes [all data]	$\mathrm{R}_{1}=0.2577, \mathrm{wR}_{2}=0.5904$
Largest diff. peak/hole $/ \mathrm{e} \AA \AA^{-3}$	$1.01 /-1.12$

Crystallographic Analysis of (\pm)-93.

Special Refinement Details

Compound (\pm)-93 crystallizes in the monoclinic space group $\mathrm{P} 2{ }_{1} / \mathrm{n}$ with one molecule in the asymmetric unit. CCDC number: not publication quality.

Table 2.48. Crystal data and structure refinement for (\pm)-93.

Identification code	d 19147
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{CuN}_{2}$
Formula weight	368.82
Temperature $/ \mathrm{K}$	99.98
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{n}$
a / \AA	$8.918(4)$
b / \AA	$13.094(9)$
c / \AA	$13.774(9)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$105.34(5)$
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$1551.1(17)$
Z	4
$\rho_{\text {calc }} / \mathrm{g} / \mathrm{cm}^{3}$	1.579
μ / mm^{-1}	1.744
$\mathrm{~F}(000)$	772.0
Crystal size $/ \mathrm{mm}^{3}$	$0.44 \times 0.2 \times 0.08$
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection $/{ }^{\circ}$	4.368 to 75.22
Index ranges	$-15 \leq \mathrm{h} \leq 15,-22 \leq \mathrm{k} \leq 22,-23 \leq 1 \leq 23$

Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [I $>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

69103
$7997\left[\mathrm{R}_{\text {int }}=0.0372, \mathrm{R}_{\text {sigma }}=0.0240\right]$
7997/0/182
1.013
$\mathrm{R}_{1}=0.0244, \mathrm{wR}_{2}=0.0512$
$\mathrm{R}_{1}=0.0361, \mathrm{wR}_{2}=0.0543$
0.49/-0.49

Crystallographic Analysis of (土)-98.

Special Refinement Details

Compound (\pm)-98 crystallizes in the monoclinic space group $\mathrm{P} 2{ }_{1} / \mathrm{n}$ with one molecule in the asymmetric unit. CCDC number: not publication quality.

Table 2.49. Crystal data and structure refinement for (\pm)-98.

Identification code
V22009
Empirical formula
$\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{OI}$
Formula weight
280.42

Temperature/K
100.0

Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{n}$
a / \AA	12.8228(19)
b / \AA	8.3093(12)
c/Å	14.078(2)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	95.136(13)
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	1494.0(4)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.247
μ / mm^{-1}	1.870
F(000)	608.0
Crystal size/mm ${ }^{3}$	$? \times ? \times 0.15$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection/ ${ }^{\circ}$	8.938 to 148.562
Index ranges	$-14 \leq \mathrm{h} \leq 14,-10 \leq \mathrm{k} \leq 9,-15 \leq 1 \leq 8$
Reflections collected	4460
Independent reflections	1887 [$\left.\mathrm{R}_{\text {int }}=0.0649, \mathrm{R}_{\text {sigma }}=0.0726\right]$
Data/restraints/parameters	1887/0/78
Goodness-of-fit on F^{2}	1.075
Final R indexes [I $>=2 \sigma$ (I$)]$	$\mathrm{R}_{1}=0.0738, \mathrm{wR}_{2}=0.2057$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0886, \mathrm{wR}_{2}=0.2214$
Largest diff. peak/hole / e \AA^{-3}	3.40/-4.19

Crystallographic Analysis of (\pm)-97.

Special Refinement Details

Compound $(\pm)-97$ crystallizes in the triclinic space group P1 with two molecules in the asymmetric unit. CCDC number: not publication quality.

Table 2.50. Crystal data and structure refinement for (\pm)-97.

Identification code	V 20119
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2}$
Formula weight	234.38
Temperature/K	100.0
Crystal system	triclinic
Space group	P 1
a / \AA	$4.6048(5)$
b / \AA	$10.8544(11)$
c / \AA	$13.5496(16)$
$\alpha /{ }^{\circ}$	$91.728(14)$
$\beta /{ }^{\circ}$	$90.179(10)$
$\gamma /{ }^{\circ}$	$102.239(8)$
Volume $/ \AA^{3}$	$661.52(13)$
Z	2
$\rho_{\text {calcg }} / \mathrm{cm}{ }^{3}$	
μ / mm^{-1}	1.177
$\mathrm{~F}(000)$	0.517
Crystal size $/ \mathrm{mm}^{3}$	260.0
Radiation	$0.2 \times 0.08 \times 0.07$
2Θ range for data collection $/{ }^{\circ}$	$\mathrm{CuK} \alpha(\lambda=1.54178)$
Index ranges	6.526 to 159.182
	$-5 \leq \mathrm{h} \leq 5,-13 \leq \mathrm{k} \leq 13,-16 \leq 1 \leq 16$

Reflections collected	14702
Independent reflections	$4817\left[\mathrm{R}_{\text {int }}=0.0688, \mathrm{R}_{\text {sigma }}=0.0680\right]$
Data/restraints/parameters	$4817 / 3 / 134$
Goodness-of-fit on F^{2}	3.790
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.2362, \mathrm{wR}_{2}=0.5409$
Final R indexes [all data]	$\mathrm{R}_{1}=0.2639, \mathrm{wR}_{2}=0.5655$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$2.67 /-0.95$
Flack parameter	$0.4(4)$

Crystallographic Analysis of (\pm)-96 dihydrate.

Special Refinement Details

Compound (\pm)-96 dihydrate crystallizes in the orthorhombic space group Pben with one molecule in the asymmetric unit. CCDC number: not publication quality.

Table 2.51. Crystal data and structure refinement for (\pm)-96 dihydrate.

Identification code
v20120
Empirical formula
$\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{0.13}$
Formula weight
236.38

Temperature/K
100.0

Crystal system orthorhombic

Space group	Pbcn
a / \AA	$22.990(9)$
b / \AA	$6.991(2)$
c / \AA	$19.007(6)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$3054.8(18)$
Z	8
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.028
μ / mm^{-1}	0.458
$\mathrm{~F}(000)$	1048.0
Crystal size $/ \mathrm{mm}^{3}$	$? \times ? \times ?$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection $/{ }^{\circ}$	9.306 to 99.616
Index ranges	$-14 \leq \mathrm{h} \leq 22,-2 \leq \mathrm{k} \leq 6,-18 \leq 1 \leq 12$
Reflections collected	3454
Independent reflections	$1343\left[\mathrm{R}_{\text {int }}=0.0459, \mathrm{R}_{\text {sigma }}=0.0553\right]$
Data/restraints/parameters	$1343 / 0 / 178$
Goodness-of-fit on F^{2}	1.239
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.1127, \mathrm{wR}_{2}=0.2674$
Final R indexes $[$ all data $]$	$\mathrm{R}_{1}=0.1385, \mathrm{wR}_{2}=0.2786$
Largest diff. peak/hole $/ \mathrm{e} \AA \AA^{-3}$	$0.33 /-0.28$

Crystallographic Analysis of (\pm)-133.

Special Refinement Details

Compound (\pm)- $\mathbf{1 3 3}$ crystallizes in the monoclinic space group $\mathrm{P} 2_{1} / \mathrm{n}$ with one molecule in the asymmetric unit. CCDC number: not publication quality.

Table 2.52. Crystal data and structure refinement for (\pm)-133.

Identification code	V 21317
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}$
Formula weight	274.34
Temperature $/ \mathrm{K}$	100.0
Crystal system	monoclinic
Space group	$\mathrm{P} 2{ }_{1} / \mathrm{n}$
a / \AA	$12.249(11)$
b / \AA	$8.778(6)$
c / \AA	$12.919(13)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$98.75(3)$
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$1373(2)$
Z	4
$\rho_{\text {calcg } / \mathrm{cm}^{3}}{ }^{3}$	1.327
μ / mm^{-1}	0.090
$\mathrm{~F}(000)$	588.0
Crystal size $/ \mathrm{mm}^{3}$	$0.2 \times 0.15 \times 0.1$
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$

2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
4.976 to 72.256
$-13 \leq \mathrm{h} \leq 16,-11 \leq \mathrm{k} \leq 14,-18 \leq 1 \leq 15$ 9867
$3365\left[\mathrm{R}_{\text {int }}=0.1918, \mathrm{R}_{\text {sigma }}=0.2293\right]$
3365/0/176
1.682
$\mathrm{R}_{1}=0.2035, \mathrm{wR}_{2}=0.5010$
$\mathrm{R}_{1}=0.3340, \mathrm{wR}_{2}=0.5603$
4.93/-0.56

Crystallographic Analysis of (\pm)-87.

Special Refinement Details

Compound (\pm) - $\mathbf{8 7}$ crystallizes in the monoclinic space group $\mathrm{P} 2{ }_{1} / \mathrm{c}$ with one molecule in the asymmetric unit. CCDC number: not publication quality.

Table 2.53. Crystal data and structure refinement for (\pm)-87.

Identification code
V19018
Empirical formula
Formula weight
Temperature/K
$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$
262.34
99.99

Crystal system	monoclinic
Space group	P2 ${ }_{1} / \mathrm{c}$
a / \AA	13.8942(11)
b/A	9.0952(9)
c/Å	10.4946(9)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	105.846(4)
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	1275.8(2)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.366
μ / mm^{-1}	0.726
F(000)	568.0
Crystal size/mm ${ }^{3}$	$? \times ? \times$?
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection/ ${ }^{\circ}$	6.612 to 148.632
Index ranges	$-13 \leq \mathrm{h} \leq 15,-10 \leq \mathrm{k} \leq 11,-10 \leq 1 \leq 12$
Reflections collected	4850
Independent reflections	$2197\left[\mathrm{R}_{\text {int }}=0.0557, \mathrm{R}_{\text {sigma }}=0.0566\right]$
Data/restraints/parameters	2197/0/77
Goodness-of-fit on F^{2}	1.054
Final R indexes [I $>=2 \sigma$ (I$)]$	$\mathrm{R}_{1}=0.0745, \mathrm{wR}_{2}=0.1975$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0771, \mathrm{wR}_{2}=0.2008$
Largest diff. peak/hole / e \AA^{-3}	0.51/-0.67

Crystallographic Analysis of (\pm)-26 monohydrate.

Special Refinement Details

Compound (\pm)-26 monohydrate crystallizes in the tetragonal space group $\mathrm{P} 4_{3} 2_{1} 2$ with one molecule in the asymmetric unit. CCDC number: not publication quality.

Table 2.54. Crystal data and structure refinement for (\pm)-26 monohydrate.

Identification code	V 22034
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$
Formula weight	248.36
Temperature $/ \mathrm{K}$	100.0
Crystal system	tetragonal
Space group	$\mathrm{P} 4_{3} 2.2$
a / \AA	$11.6747(9)$
b / \AA	$11.6747(9)$
c / \AA	$21.878(5)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$2981.9(8)$
Z	8
$\rho_{\text {calc }} / \mathrm{cm}^{3}$	1.106
μ / mm^{-1}	0.540
$\mathrm{~F}(000)$	1088.0
Crystal size $/ \mathrm{mm}^{3}$	$0.45 \times 0.4 \times 0.3$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$

2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
Flack parameter
8.584 to 148.596
$-10 \leq h \leq 8,-7 \leq \mathrm{k} \leq 13,-23 \leq 1 \leq 14$ 7045
$2250\left[\mathrm{R}_{\text {int }}=0.0371, \mathrm{R}_{\text {sigma }}=0.0286\right]$
2250/0/175
2.458
$\mathrm{R}_{1}=0.0896, \mathrm{wR}_{2}=0.2715$
$\mathrm{R}_{1}=0.0939, \mathrm{wR}_{2}=0.2742$
2.50/-0.40
0.10 (15)

Crystallographic Analysis of (\pm)-95 dihydrate.

Special Refinement Details

Compound (\pm)-95 dihydrate crystallizes in the monoclinic space group $\mathrm{C} 2 / \mathrm{c}$ with one molecule in the asymmetric unit. CCDC number: not publication quality.

Table 2.55. Crystal data and structure refinement for (\pm)-95 dihydrate.

Identification code
Empirical formula
Formula weight

V21361
$\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{0.13}$
261.39

Crystallographic Analysis of (\pm)-79.

Special Refinement Details

Compound (\pm)-79 crystallizes in the monoclinic space group $\mathrm{P} 2{ }_{1}$ with one molecule in the asymmetric unit. CCDC number: 2159769.

Table 2.56. Crystal data and structure refinement for (\pm)-79.

Identification code	V 19479
Empirical formula	$\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}$
Formula weight	399.39
Temperature $/ \mathrm{K}$	99.99
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1}$
a / \AA	$5.1166(7)$
b / \AA	$15.6750(16)$
c / \AA	$11.2761(15)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$102.567(9)$
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$882.71(19)$
Z	2
$\rho_{\text {calcg } / \mathrm{cm}^{3}}{ }^{3}$	1.503
μ / mm^{-1}	0.864
$\mathrm{~F}(000)$	416.0
Crystal size $/ \mathrm{mm}^{3}$	$0.15 \times 0.1 \times 0.05$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$

2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [$\mathrm{I}>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
Flack parameter
8.032 to 149.378
$-6 \leq h \leq 6,-19 \leq k \leq 19,-14 \leq 1 \leq 14$ 9371
$3529\left[\mathrm{R}_{\text {int }}=0.0436, \mathrm{R}_{\text {sigma }}=0.0431\right]$
3529/1/271
1.032
$\mathrm{R}_{1}=0.0325, \mathrm{wR}_{2}=0.0787$
$\mathrm{R}_{1}=0.0355, \mathrm{wR}_{2}=0.0804$
0.20/-0.17
0.23(11)

2.9 COMPUTATIONAL METHODS

Density functional theory (DFT) calculations were performed with Gaussian 16. ${ }^{57}$ A comprehensive conformer search was performed for each intermediate and transition state using the CREST program. ${ }^{24}$ Geometry optimizations, frequency calculations, and energy calculations were performed using the ω B97XD ${ }^{58}$ functional and def2-TZVP basis set. ${ }^{59,60}$ Dichloromethane solvation was modeled using the SMD solvation model. ${ }^{61} \mathrm{~A}$ chloride anion was included when necessary to create a neutral species. Frequency calculations confirmed the optimized structures as minima (zero imaginary frequencies) or transition state structures (one imaginary frequency) on the potential energy surface. A quasi-harmonic correction was applied using the GoodVibes program. ${ }^{62}$ PyMOL was used to render visualizations of structures. ${ }^{63}$ Initial structures were made using GaussView. ${ }^{64}$ For calculations analyzing the effects of dispersion on the transition states, the B3LYP-D3/def2-TZVP/SMD(DCM) and B3LYP/def2-TZVP/SMD(DCM) levels of theory were used.

Figure 2.47. Second C-C Bond Formation Energies.

Figure 2.48. Deprotonation of Int2a with Pyridine Energies.

Figure 2.49. Initial C-C Bond Formation with an acyl-Cl/acyl-pyridinium Starting Material.

Figure 2.50. C-C Bond Formation with a Ketene Starting Material Resulting in the Formation of a Cyclobutanone Intermediate.

Figure 2.51. Relative Energy of Starting Material Species.

Table 2.57. Summary of Energies.

Structure	$\begin{gathered} \mathrm{E} \\ \text { (au) } \end{gathered}$	$\begin{gathered} \text { qh-H } \\ \text { (au) } \end{gathered}$	$\begin{aligned} & \text { qh-S } \\ & \text { (au) } \end{aligned}$	$\begin{gathered} \text { qh-G(T) } \\ \text { (au) } \end{gathered}$	$\begin{gathered} \text { qh-G(T) } \\ \text { (kcal/mol) } \end{gathered}$	$\begin{aligned} & \Delta \mathrm{G} \text { relative } \\ & \text { to } \mathrm{SM} \\ & (\mathrm{kcal} / \mathrm{mol}) \end{aligned}$
Figure 2.						
1.65	-1300.829	-1300.542	0.064877	-1300.606	-816142.2	0.0
2. TS1a	-1300.820	-1300.532	0.062761	-1300.595	-816134.9	7.3
3. TS1b	-1300.816	-1300.529	0.063230	-1300.592	-816133.4	8.8
4. TS1c	-1300.809	-1300.519	0.066721	-1300.586	-816129.2	13.0
5. Int1a	-1300.853	-1300.563	0.062907	-1300.626	-816154.8	-12.6
6. Int1b	-1300.849	-1300.560	0.063824	-1300.623	-816152.9	-10.7
7. TS2a	-1300.823	-1300.534	0.060381	-1300.594	-816134.6	7.6
8. TS2b	-1300.820	-1300.530	0.058511	-1300.589	-816131.1	11.1
9. Int2a	-1300.851	-1300.553	0.057899	-1300.610	-816144.7	-2.5
10. Int2b	-1300.859	-1300.567	0.058893	-1300.626	-816154.2	-12.0
11. TS3a	-1549.130	-1548.752	0.073312	-1548.825	-971901.5	10.1
12. TS3b	-1549.125	-1548.746	0.073075	-1548.819	-971897.9	13.7
13. Int3a	-840.012	-839.736	0.055476	-839.791	-526976.5	-20.6
14. Int3b	-840.020	-839.743	0.055101	-839.798	-526981.1	-25.2
15. Pyr	-248.294	-248.202	0.032670	-248.235	-155769.4	
16. Pyr-HCl	-709.151	-709.044	0.039009	-709.083	-444955.7	
SI						
17. SM-acylCl	-1052.506	-1052.313	0.053085	-1052.366	-660369.2	0.0
18. TS1Cl-a	-1052.502	-1052.310	0.051096	-1052.361	-660365.8	3.4
19. TS1Cl-b	-1052.501	-1052.309	0.051295	-1052.360	-660365.5	3.7
20. TS1Cl-c	-1052.492	-1052.301	0.051695	-1052.352	-660360.6	8.6
21. SM-ketene	-1052.514	-1052.321	0.056199	-1052.378	-660376.4	0.0

22. TS1k	-1052.491	-1052.300	0.052884	-1052.352	-660360.7	15.8
23. Int1k	-1052.499	-1052.307	0.053175	-1052.360	-660365.5	10.9
24. TS2k	-1052.485	-1052.294	0.052200	-1052.346	-660356.6	19.8
25. Int2k	-1052.537	-1052.341	0.049466	-1052.390	-660384.4	-8.0
SM species						
26. di-acylPyr	-2009.980	-2009.586	0.084118	-2009.670	-1261086.0	6.4
27. acylCl/acylPyr	-2009.971	-2009.579	0.085215	-2009.664	-1261082.1	10.3
28. ketene	-2009.984	-2009.592	0.087969	-2009.680	-1261092.4	0.0

Table 2.58. Coordinates.

1			
C	4.241804	-0.634410	0.109065
C	3.688490	-1.777624	-0.447706
C	2.395767	-1.735813	-0.913047
N	1.679201	-0.606082	-0.849794
C	2.187084	0.505890	-0.299249
C	3.475550	0.516688	0.186345
H	3.855962	1.425019	0.631595
H	1.539952	1.375440	-0.225545
C	0.246192	-0.667665	-1.377307
C	-0.198668	0.478885	-1.948167
C	-1.602848	0.566770	-2.450576
H	-1.673252	1.340472	-3.215910
H	-1.910565	-0.374284	-2.914120
C	-2.674652	0.939926	-1.385415
C	-2.930778	-0.180457	-0.436496
O	-3.799951	-0.987369	-0.550315

N	-2.016018	-0.344090	0.728848
C	-1.133729	0.605773	1.086228
C	-0.277851	0.395257	2.143310
C	-0.331500	-0.801107	2.833221
C	-1.255398	-1.768014	2.451870
C	-2.083311	-1.516970	1.393619
H	-2.811344	-2.222896	1.026827
H	-1.326928	-2.716355	2.963574
H	0.336807	-0.984056	3.664458
H	0.411799	1.187375	2.397192
H	-1.103624	1.538158	0.542790
Cl	0.564792	3.540088	0.616096
H	-2.389871	1.858833	-0.877126
H	-3.627096	1.109665	-1.885869
H	0.431524	1.351535	-2.021092
O	-0.305276	-1.769418	-1.200954
H	1.883731	-2.583965	-1.342729
H	4.248509	-2.698586	-0.522547
H	5.255553	-0.645123	0.487474

2
$\begin{array}{llll}\text { C } & 4.267561 & -0.697170 & 0.058179\end{array}$
$\begin{array}{llll}C & 3.568186 & 0.491891 & 0.179673\end{array}$
C
$2.274329 \quad 0.569424-0.279421$

N

C
$1.685644-0.498367-0.845175$
$2.346432-1.661597-0.962186$
$\begin{array}{llll}\mathrm{C} & 3.640909 & -1.788773 & -0.522173\end{array}$
$\begin{array}{llll}\text { C } & 0.251226 & -0.489595 & -1.355875\end{array}$
$\begin{array}{llll}\mathrm{C} & -0.424308 & 0.720658 & -1.285486\end{array}$
$\begin{array}{llll}\text { C } & -1.110646 & 0.461671 & 0.866266\end{array}$
$\begin{array}{llll}\mathrm{C} & -0.073093 & 0.149509 & 1.777280\end{array}$
$\begin{array}{llll}\mathrm{C} & -1.751713 & 0.827168 & -1.978595\end{array}$
$\begin{array}{llll}\text { C } & -2.997817 & 1.018098 & -1.069379\end{array}$
C
$-3.210914 \quad-0.161917 \quad-0.185934$
N
C
$-2.113019 \quad-0.456669 \quad 0.693185$
$-2.023818 \quad-1.716474 \quad 1.232741$
$-0.990557 \quad-2.058491 \quad 2.028902$
$0.002656-1.089550 \quad 2.327196$
$-4.156391-0.902702 \quad-0.216378$
$-0.168008-1.582892-1.708201$
$5.286523-0.773905 \quad 0.414137$
$4.008670 \quad 1.368130 \quad 0.633325$
$1.703333 \quad 1.485636-0.169012$
$1.785195 \quad-2.461989 \quad-1.419214$

H
$4.145154-2.737292-0.636660$
$0.097654 \quad 1.644379-1.090643$
$-1.348426 \quad 1.500150 \quad 0.713311$
$0.625436 \quad 0.939396 \quad 2.013768$
$-1.735420 \quad 1.690928 \quad-2.644661$
$\begin{array}{lll}-1.920081 & -0.057705 & -2.593480\end{array}$
$-3.887324 \quad 1.117447 \quad-1.686940$
$-2.894426 \quad 1.930635 \quad-0.479691$
$\begin{array}{lll}-2.828592 & -2.383756 & 0.966917\end{array}$
$-0.943717 \quad-3.055128 \quad 2.441984$
$0.797220 \quad-1.331050 \quad 3.021434$
Cl
$\begin{array}{lll}0.710884 & 3.543824 & 0.705226\end{array}$

3
C
$\begin{array}{llll}\text { C } & 4.056378 & -0.902940 & -0.942663\end{array}$
C
$2.903867-1.503525-0.500635$
N
C
$2.015849-0.829208 \quad 0.248533$
$2.239670 \quad 0.448457 \quad 0.597732$
$3.379996 \quad 1.094547 \quad 0.178126$
$0.759246-1.590272 \quad 0.649824$
$-0.332857 \quad-0.811317 \quad 0.996101$
$-1.048406-0.494707 \quad-1.159738$
$-0.143437 \quad 0.318341 \quad-1.874353$
$-1.536193 \quad-1.486154 \quad 1.589505$
$-2.645547 \quad-1.934500 \quad 0.595469$
$\begin{array}{llll}\text { C } & -3.233296 & -0.770273 & -0.121882\end{array}$
N

C

C
$-2.276064 \quad 0.024923-0.852232$
$-2.546957 \quad 1.356006 \quad-1.031904$
$-1.646907 \quad 2.173958 \quad-1.620294$
C
$-0.422485 \quad 1.633784 \quad-2.077346$
$-4.372583-0.399635-0.059350$
0.832172 -2.803807 0.505707
$5.204394 \quad 0.913303-0.938503$
$4.749049-1.470781-1.546793$
H
$2.639366-2.527817 \quad-0.714284$
H
$1.507840 \quad 0.961247 \quad 1.215295$
H
$3.529611 \quad 2.122346 \quad 0.476766$

H
$-0.228453 \quad 0.248654 \quad 1.176443$
$-0.989427-1.566909-1.250131$

H	0.770908	-0.130938	-2.235064
H	-1.232341	-2.389812	2.119761
H	-1.993933	-0.817563	2.320008
H	-3.455085	-2.416124	1.138818
H	-2.238525	-2.660116	-0.110635
H	-3.509619	1.681147	-0.669379
H	-1.878923	3.221213	-1.742754
H	0.281270	2.266384	-2.602271
Cl	0.145562	2.713079	2.115411

4
$\begin{array}{llll}\text { C } & -4.205066 & -1.070480 & 0.044850\end{array}$
C
C

N

C
$-2.969470 \quad-1.504960 \quad 0.494098$
$-1.925442 \quad-0.613877 \quad 0.582838$
$-2.096472 \quad 0.674570 \quad 0.239034$
-3.287750 $1.111669-0.200170$
$-4.361273 \quad 0.261652-0.304878$
$-0.975128 \quad 1.710350 \quad 0.277398$
$0.245454 \quad 1.257766 \quad 0.737967$
$1.012873 \quad 0.576880-1.268333$
C
$0.062071-0.105233-2.059039$
$1.373269 \quad 2.233396 \quad 0.906695$
$\begin{array}{llll}\mathrm{C} & 2.747434 & 1.561086 & 0.935995\end{array}$
C
$3.148278 \quad 0.527943-0.083422$
N
$2.106400-0.128466-0.846344$
C
2.195901 -1.482296 -1.009507

C
$\begin{array}{lll}1.245119 & -2.164876 & -1.687703\end{array}$
$\begin{array}{llll}\text { C } & 0.159566 & -1.450486 & -2.241231\end{array}$

O	4.271081	0.135751	-0.211430
O	-1.271578	2.793599	-0.213295
H	-5.036054	-1.759529	-0.030652
H	-2.796732	-2.531931	0.782802
H	-0.956259	-0.935435	0.948737
H	-3.322773	2.159245	-0.457047
H	-5.306513	0.648031	-0.657511
H	0.334449	0.324518	1.278095
H	1.153856	1.638272	-1.405160
H	-0.738838	0.471757	-2.499029
H	1.337737	2.992939	0.122022
H	1.275718	2.779283	1.849846
H	3.542024	2.306907	0.947791
H	2.846176	0.999182	1.873213
H	3.061487	-1.946197	-0.563146
H	1.333623	-3.234796	-1.799824
H	-0.583116	-1.972684	-2.830734
Cl	0.764392	-2.016958	2.313895
5			
C	-3.745491	-1.648673	0.203284
C	-3.537248	-0.299075	-0.023961
C	-2.330493	0.265979	0.311767
N	-1.370984	-0.490876	0.875609
C	-1.557791	-1.803463	1.122063
C	-2.738064	-2.408771	0.783847
H	-2.862686	-3.464660	0.974027
H	-0.731012	-2.326016	1.578154

C	-0.045302	0.075192	1.243725

C	0.515801	1.118199	0.328335

$1.677239 \quad 1.8783520 .991240$
$1.527949 \quad 2.944501 \quad 0.827807$
$1.663989 \quad 1.709363 \quad 2.066148$
$3.056776 \quad 1.483141 \quad 0.434746$

C
3.1828490 .012141
0.147739

O
4.107595 -0.681144 0.522706
$2.129990-0.496870 \quad-0.589330$

C
$2.024542-1.867909-0.791571$
C
$\begin{array}{lll}1.013510 & -2.410171 & -1.474451\end{array}$
$\begin{array}{llll}\text { C } & -0.003651 & -1.548150 & -2.053937\end{array}$
C
$0.011758-0.237387-1.825036$
$\begin{array}{llll}\mathrm{C} & 1.049293 & 0.422651 & -0.967662\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.473728 & 1.246080 & -1.547119\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.723988 & 0.428264 & -2.258602\end{array}$
$\begin{array}{lllll}\mathrm{H} & -0.768108 & -1.982354 & -2.686281\end{array}$

H
$\begin{array}{lll}0.972384 & -3.481010 & -1.610105\end{array}$
H
$\begin{array}{lll}2.826402 & -2.441047 & -0.350725\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.848808 & 1.761589 & 1.125356\end{array}$
H
$3.239415 \quad 2.014629-0.504193$
H
$-0.262435 \quad 1.820736 \quad 0.017201$
$-2.127784 \quad 1.322645 \quad 0.138490$
$-4.297800 \quad 0.328638 \quad-0.465231$
H
$-4.685970-2.109648 \quad-0.068612$
Cl
$-1.922507 \quad 3.510219-0.675623$

6
$\begin{array}{llll}\text { C } & -4.857986 & 0.466590 & -0.175803\end{array}$
C
C
$-4.677088 \quad-0.894401 \quad 0.036356$
-3.410199 $-1.378132 \quad 0.218048$
N
C
$-2.347791 \quad-0.546190 \quad 0.184096$
$-2.499041 \quad 0.777098 \quad-0.021578$
$-3.755602 \quad 1.303363-0.200653$

C
-1.003206 -1.161691 0.393207
$0.164845-0.358346-0.071714$
$1.485961-0.991582 \quad 0.422116$
$1.635276-0.881643 \quad 1.913493$
C

C
$0.129001 \quad-0.250659-1.624452$
$1.341110 \quad-0.933881 \quad-2.256311$
C
$\begin{array}{lll}2.612722 & -0.389519 & -1.667093\end{array}$
N
C
C
C

O

O

H

H

H

H

H
H

0.112977	0.653788	0.341556
1.469758	-2.052890	0.155124
0.856748	-1.352071	2.499792

H	-0.778636	-0.692828	-2.036127
H	0.121315	0.806517	-1.889706
H	1.364021	-0.764484	-3.330263
H	1.300513	-2.014027	-2.086686
H	4.383909	0.722423	-0.277663
H	4.522585	0.877199	2.182532
H	2.704983	-0.203251	3.580114
Cl	-0.080278	3.141767	0.256717

7

C $\quad-3.767925 \quad-0.993200 \quad-0.038669$
$\begin{array}{llll}\text { C } & -3.095201 & -1.945482 & 0.788089\end{array}$
$\begin{array}{llll}\text { C } & -1.896272 & -1.637303 & 1.316089\end{array}$
N
$\begin{array}{llll}\text { C } & -1.795519 & 0.399564 & 0.050407\end{array}$
C
-3.142264 0.148615 -0.383756
$\begin{array}{lll}0.001519 & -0.172682 & 1.569234\end{array}$
$0.761564 \quad 0.892602 \quad 0.828566$
$0.857915 \quad 0.510899-0.684578$
$-0.459273 \quad 0.283766-1.409477$
$2.165855 \quad 1.128569 \quad 1.404634$
$3.291355 \quad 0.800310 \quad 0.412381$
$3.066263-0.513571 \quad-0.268541$
$1.762850-0.648182-0.790847$
$\begin{array}{llll}\text { C } & 1.344626 & -1.851310 & -1.235161\end{array}$
$\begin{array}{llll}\text { C } & 0.118115 & -2.051152 & -1.795948\end{array}$
$\begin{array}{llll}\text { C } & -0.722029 & -0.947582 & -1.982540\end{array}$
$\begin{array}{llll}\text { O } & 3.872459 & -1.405378 & -0.362075\end{array}$

O	0.423677	-0.843280	2.475012
H	-4.781225	-1.188820	-0.364528
H	-3.552746	-2.893554	1.030073
H	-1.345348	-2.283221	1.982063
H	-1.531849	1.452399	0.132670
H	-3.611258	0.905955	-0.996454
H	0.192859	1.825624	0.853399
H	1.343536	1.360672	-1.161199
H	-0.856697	1.168183	-1.893668
H	2.263392	2.170562	1.703318
H	2.294342	0.518585	2.297214
H	4.255898	0.761609	0.912309
H	3.350467	1.571577	-0.361587
H	2.071575	-2.646085	-1.134409
H	-0.152420	-3.035417	-2.146030
H	-1.625855	-1.059561	-2.569625
Cl	-0.963130	3.682556	-0.490044

8
$\begin{array}{llll}\text { C } & -3.964636 & -1.480477 & 0.080184\end{array}$
C
$-4.417582 \quad-0.109300 \quad-0.026496$
$-3.543100 \quad 0.890485 \quad 0.113174$
$-2.1893320 .6586890 .355252$
$\begin{array}{llll}\text { C } & -1.673254 & -0.676493 & 0.390688\end{array}$
$\begin{array}{llll}\text { C } & -2.670835 & -1.738853 & 0.294007\end{array}$
$\begin{array}{llll}\text { C } & -1.312723 & 1.731762 & 0.281415\end{array}$
$\begin{array}{llll}\mathrm{C} & 0.145805 & 1.350110 & 0.303601\end{array}$
$\begin{array}{llll}\mathrm{C} & 0.546923 & 0.410920 & -0.875055\end{array}$

C	-0.438959	-0.689620	-1.194519
C	1.085299	2.557552	0.323561
C	2.403541	2.284102	-0.423033
C	2.873033	0.859244	-0.299474
N	1.897315	-0.078645	-0.569206
C	2.171996	-1.429765	-0.284959
C	1.289948	-2.397669	-0.970360
C	0.087190	-2.030708	-1.403513
O	4.003782	0.542605	0.013267
O	-1.713923	2.874548	0.180973
H	-4.683312	-2.286559	0.005506
H	-5.458755	0.116439	-0.206394
H	-3.808964	1.933875	0.047978
H	-0.942383	-0.836028	1.177764
H	-2.302908	-2.750762	0.403236
H	0.302599	0.757476	1.207910
H	0.629604	1.035212	-1.766997
H	-1.161235	-0.377820	-1.942490
H	0.591113	3.411936	-0.135947
H	1.299460	2.828645	1.356971
H	3.200574	2.930703	-0.064576
H	2.271944	2.490451	-1.489080
H	3.228154	-1.623682	-0.426014
H	1.657849	-3.410008	-1.066425
H	-0.555686	-2.750753	-1.895700
Cl	1.997725	-1.767905	1.581335

C	2.735216	1.173874	1.868249
C	3.889893	0.833559	1.046585
C	3.702411	0.286072	-0.163828
N	2.392512	0.191710	-0.651262
C	1.510357	1.263082	-0.202598
C	1.532765	1.312371	1.300689
C	1.933704	-0.975721	-1.201786
C	0.483306	-1.342783	-0.924969
C	-0.528429	-0.177539	-0.865556
C	0.179150	1.177575	-0.940268
C	0.546327	-2.144040	0.384243
C	-0.846738	-2.543611	0.811026
C	-1.733986	-1.356080	1.029402
N	-1.452528	-0.228636	0.285003
C	-2.408889	0.814394	0.357231
C	-1.893266	2.153746	-0.011870
C	-0.705902	2.320017	-0.568984
O	-2.656075	-1.376654	1.822428
O	2.680868	-1.771956	-1.736397
H	2.867069	1.255645	2.940292
H	4.890488	0.912461	1.448627
H	4.485318	-0.160779	-0.759525
H	1.982841	2.190928	-0.557212
H	0.629610	1.501586	1.866882
H	0.183832	-2.027045	-1.717233
H	-1.154404	-0.244579	-1.758611
H	0.438802	1.304280	-1.996736
H	1.165802	-3.026588	0.230210

H	1.014483	-1.543199	1.168351
H	-0.840279	-3.120535	1.734324
H	-1.319908	-3.162062	0.041053
H	-2.872329	0.806888	1.336169
H	-2.540007	2.990916	0.216200
H	-0.336735	3.317532	-0.780126
Cl	-3.867548	0.451907	-0.767205

10
$\begin{array}{llll}\text { C } & 3.985624 & -1.682300 & -0.428108\end{array}$
C

C

N

C

C
$4.485129-0.543943 \quad 0.324597$
$3.694954 \quad 0.5130430 .511481$
$2.391699 \quad 0.562189 \quad 0.024629$
$1.758583-0.585430-0.656919$

C
$2.736605-1.699799-0.885836$
$1.602439 \quad 1.6445950 .328628$
C

C

C
C

C
N
C
$-2.361064-1.245989 \quad-0.274902$
$\begin{array}{llll}\text { C } & -1.431850 & -2.388472 & -0.423317\end{array}$
$\begin{array}{llll}\text { C } & -0.127143 & -2.258006 & -0.255520\end{array}$
$\begin{array}{llll}\text { O } & -3.687742 & 0.886268 & -1.096968\end{array}$
$\begin{array}{llll}\mathrm{O} & 2.008661 & 2.615475 & 0.937638\end{array}$

H	4.651294	-2.511434	-0.633779
H	5.490948	-0.538917	0.718475
H	3.995853	1.399279	1.049539
H	1.399774	-0.258489	-1.639165
H	2.378649	-2.527567	-1.483286
H	0.273425	1.407435	-1.271516
H	-0.648700	0.338807	1.406018
H	0.927959	-1.193410	1.186062
H	-0.915667	2.712127	1.197599
H	-0.238378	3.614887	-0.149764
H	-1.831616	2.757730	-1.712262
H	-2.800250	3.122037	-0.301126
H	-3.176835	-1.277332	-0.985879
H	-1.881751	-3.342252	-0.666496
H	0.511681	-3.124295	-0.375629
Cl	-3.258253	-1.467010	1.359076

11
C
C
$0.237787 \quad 4.103224 \quad-0.394699$
$1.687977 \quad 4.156135-0.313066$

C
$2.399864 \quad 3.037553-0.466354$
N
C
$1.804567 \quad 1.803378 \quad-0.699750$
$0.337947 \quad 1.634775-0.669749$

C
$-0.387456 \quad 2.941213-0.562230$
$\begin{array}{llll}\text { C } & 2.585544 & 0.668449 & -0.729341\end{array}$
$\begin{array}{llll}\text { C } & 1.802730 & -0.621869 & -0.848866\end{array}$
$\begin{array}{llll}\mathrm{C} & 0.618322 & -0.718386 & 0.150590\end{array}$
$\begin{array}{llll}\mathrm{C} & 0.014561 & 0.654064 & 0.462143\end{array}$
$\begin{array}{llll}\text { C } & 2.697691 & -1.858592 & -0.780381\end{array}$
$\begin{array}{llll}\text { C } & 1.943165 & -3.053093 & -0.193673\end{array}$
$\begin{array}{llll}\mathrm{C} & 1.567020 & -2.748346 & 1.218913\end{array}$
$\begin{array}{llll}\mathrm{N} & 1.010574 & -1.446467 & 1.376777\end{array}$
$\begin{array}{llll}\text { C } & 0.840563 & -0.953164 & 2.602342\end{array}$
C
$0.363512 \quad 0.311547 \quad 2.858123$
$0.073283 \quad 1.130817 \quad 1.780673$
$\begin{array}{lll}1.735386 & -3.464415 & 2.170891\end{array}$
$\begin{array}{llll}\text { O } & 3.799445 & 0.715490 & -0.673053\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.328696 & 5.023953 & -0.330043\end{array}$
H
H

H

H
H

H

H

H
$3.055436-2.112072-1.776696$
$3.575768-1.646626-0.169260$
$2.548814-3.956168 \quad-0.191955$
H
$1.036674-3.243993-0.779595$

H

H

H

C

C
$-4.516300 \quad-0.787218 \quad-0.880302$
$\begin{array}{llll}\text { C } & -3.152429 & -0.576855 & -0.784785\end{array}$
C
$-3.431435 \quad 0.727773 \quad 1.104121$

C	-4.801855	0.563752	1.075526
H	-6.422048	-0.358515	0.010046
H	-4.909013	-1.396887	-1.682377
H	-2.446595	-1.010802	-1.490538
H	-2.938228	1.320260	1.867899
H	-5.420817	1.030587	1.829099
N	-2.641235	0.167592	0.193868
Cl	-0.696331	-2.212946	-2.831124

12
C

C

$$
\begin{array}{lll}
-0.141646 & 1.610143 & 0.662680
\end{array}
$$

$$
\begin{array}{lll}
-1.326719 & 2.046049 & 1.474118
\end{array}
$$

$$
\begin{array}{lll}
0.702195 & 1.618031 & -1.648523
\end{array}
$$

C
$1.740952 \quad 0.694696-1.044185$
C
$\begin{array}{lll}0.941504 & -0.448727 & -0.388729\end{array}$
$\begin{array}{lll}0.145156 & 0.099147 & 0.797834\end{array}$

C
$2.772127 \quad 0.179180-2.049340$

C
$\begin{array}{lll}2.619263 & -1.320402 & -2.313389\end{array}$
$\begin{array}{llll}\text { C } & 2.659457 & -2.096753 & -1.032212\end{array}$
N
$\begin{array}{llll}\mathrm{C} & 1.851486 & -2.100868 & 1.209888\end{array}$
$\begin{array}{llll}\mathrm{C} & 1.156436 & -1.587239 & 2.258188\end{array}$
$\begin{array}{llll}\text { C } & 0.443199 & -0.396651 & 2.066046\end{array}$
$\begin{array}{llll}\text { O } & 3.328820 & -3.081695 & -0.835796\end{array}$

O	0.695799	1.966091	-2.813442
H	-3.160482	3.048694	1.613400
H	-3.162865	3.720415	-0.832057
H	-1.300370	2.988760	-2.272668
H	0.749882	2.111016	1.061238
H	-1.300674	1.785748	2.524097
H	2.246023	1.231937	-0.235031
H	0.241480	-0.847896	-1.130518
H	-1.024553	-0.463965	0.643985
H	2.670446	0.720812	-2.988007
H	3.774389	0.367976	-1.665991
H	3.410184	-1.696445	-2.957924
H	1.662748	-1.522486	-2.806082
H	2.499742	-2.960686	1.312230
H	1.250121	-2.034679	3.235077
H	0.032133	0.103238	2.933794
C	-4.616293	-2.264282	-0.363869
C	-4.192267	-1.151898	-1.074970
C	-2.984989	-0.572162	-0.737623
C	-2.630001	-2.123614	0.936776
C	-3.824206	-2.760321	0.660186
H	-5.557862	-2.740757	-0.605235
H	-4.784989	-0.736065	-1.877775
H	-2.603823	0.302561	-1.250107
H	-1.966655	-2.458503	1.725646
H	-4.122951	-3.624756	1.236571
N	-2.233258	-1.059124	0.245970
Cl	2.791281	1.638418	2.523597

13		.com	
C	3.245896	1.162020	1.416122
C	4.002511	0.299044	0.522034
C	3.345878	-0.470762	-0.354889
N	1.955542	-0.341393	-0.477247
C	1.465081	1.017483	-0.232777
C	1.984460	1.471837	1.112970
C	1.201169	-1.441175	-0.763603
C	-0.295485	-1.346014	-0.575665
C	-0.885101	0.028107	-0.858560
C	-0.012130	1.186347	-0.442601
C	-0.646216	-1.815884	0.836925
C	-2.154355	-1.944267	0.932187
C	-2.885563	-0.689230	0.538058
N	-2.213669	0.207357	-0.254430
C	-2.796639	1.455794	-0.505714
C	-2.009516	2.529373	-0.634643
C	-0.582300	2.394204	-0.413026
O	-4.021193	-0.462403	0.918480
O	1.714267	-2.504294	-1.066836
H	3.704088	1.497633	2.338372
H	5.073707	0.198068	0.626747
H	3.807573	-1.248945	-0.944126
H	1.966467	1.638719	-0.990449
H	1.345555	2.061087	1.757810
H	-0.721515	-2.063201	-1.278250
H	-1.031824	0.109228	-1.944615

H	-0.172947	-2.776642	1.037392
H	-0.273624	-1.098633	1.573702
H	-2.479041	-2.191829	1.942153
H	-2.504464	-2.746822	0.275759
H	-3.875667	1.488378	-0.516594
H	-2.445507	3.500363	-0.822808
H	0.003360	3.283156	-0.207416

$3.897890 \quad 1.166846-0.302606$
$1.871051-0.744959-0.038341$
$1.523341 \quad 0.533750-0.707613$
$2.692388 \quad 1.472685 \quad-0.771374$
$-0.731850 \quad 0.098022 \quad 0.377582$
$0.289152 \quad 1.121069 \quad-0.060971$
$-1.592995 \quad-2.209430 \quad 0.018876$
$-2.899588 \quad-1.641712 \quad-0.514035$
$-3.161663-0.188934-0.191889$
$-2.087709 \quad 0.6011710 .149994$

C	-2.309965	1.921362	0.551291

C	-1.299706	2.795305	0.611964

C	0.018438	2.410479	0.131195

O
$-4.284210 \quad 0.277686-0.262938$

O	1.118447	-2.807928	0.564539

H	4.710573	1.877310	-0.389742
H	5.129928	-0.371262	0.698821
H	3.271745	-1.983527	0.872294
H	1.243470	0.290312	-1.742723
H	2.506295	2.419136	-1.261397
H	-0.463057	-1.071476	-1.396878
H	-0.618444	-0.059342	1.461686
H	-1.400733	-3.186142	-0.422937
H	-1.647650	-2.347383	1.101284
H	-3.761104	-2.200493	-0.150066
H	-2.920400	-1.711810	-1.606345
H	-3.336701	2.173128	0.769923
H	-1.490275	3.809982	0.931493
H	0.728735	3.189337	-0.115226

C	1.404367	0.000028	0.000000
C	0.711314	1.202450	-0.000003
C	-0.662196	1.177712	-0.000002
C	-0.662147	-1.177737	0.000002
C	0.711370	-1.202419	0.000002
H	2.486537	0.000057	-0.000001
H	1.226688	2.151364	-0.000005
H	-1.282237	2.061832	-0.000004
H	-1.282142	-2.061889	0.000004
H	1.226776	-2.151315	0.000004
N	-1.297291	-0.000030	0.000001
H	-2.310834	-0.000050	0.000001

16
C

C

C

C

-1.927674	-1.201022	0.000012

$-3.704419 \quad 0.000163 \quad-0.000033$

-2.442262	2.150711	-0.000021

$0.069207 \quad 2.054928 \quad 0.000012$
$0.068971-2.055060 \quad 0.000004$
$-2.442525 \quad-2.150573-0.000020$
$0.088106-0.000065-0.000074$
$1.155017-0.000189-0.000300$
Cl
$3.068504-0.000001 \quad 0.000029$

17
C
$1.524973 \quad 0.672122-0.548227$
C
$1.376658 \quad 1.567821 \quad 0.461239$
$0.293776 \quad 2.598766 \quad 0.361342$
$0.556647 \quad 3.468347 \quad 0.965870$
$0.185253 \quad 2.950529-0.668083$
$-1.127189 \quad 2.177768 \quad 0.849798$
C
$-1.743979 \quad 1.143180 \quad-0.025880$

O
$-2.513813 \quad 1.358740 \quad-0.909364$
$-1.342838 \quad-0.277776 \quad 0.181864$
$-0.607787 \quad-0.664227 \quad 1.241045$
C
$-0.214788 \quad-1.975703 \quad 1.374361$
$\begin{array}{llll}C & -0.579096 & -2.892808 & 0.406870\end{array}$

C	-1.345105	-2.476953	-0.676676
C	-1.709201	-1.163184	-0.769155
H	-2.282711	-0.760379	-1.588762
H	-1.645526	-3.163504	-1.454123
H	-0.272256	-3.926860	0.492171
H	0.374982	-2.259314	2.233279
H	-0.360685	0.078922	1.976657
H	-1.091626	1.862790	1.891136
H	-1.791136	3.038683	0.783846
H	2.028817	1.545243	1.319297
O	0.936019	0.447174	-1.587458
Cl	3.006523	-0.544590	-0.194004

18
$\begin{array}{llll}\text { C } & -1.349532 & -0.985439 & -0.605617\end{array}$

C
$-0.647112 \quad-1.571458 \quad 0.434124$
$0.310441 \quad 0.507842 \quad 1.155634$
-0.641851 1.5314691 .285877
$\begin{array}{lll}0.624901 & -2.305987 & 0.130060\end{array}$
$\begin{array}{lll}1.947667 & -1.699350 & 0.690218\end{array}$
C
$2.274523-0.402402 \quad 0.038070$
N
C
$1.287556 \quad 0.637450 \quad 0.212669$
$1.283617 \quad 1.682686-0.673932$
C
$0.344226 \quad 2.650356-0.598303$
$\begin{array}{llll}\mathrm{C} & -0.641701 & 2.576256 & 0.411960\end{array}$
O
$3.217187-0.193737-0.675302$
$\begin{array}{llll}\text { O } & -1.063991 & -0.719346 & -1.745583\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.170997 & -1.789458 & 1.351968\end{array}$

H	0.509158	-0.150440	1.979346
H	-1.363052	1.457744	2.085924
H	0.570681	-3.313667	0.546230
H	0.743698	-2.414039	-0.949431
H	2.773898	-2.372669	0.473242
H	1.882286	-1.590591	1.774036
H	2.067873	1.657372	-1.414107
H	0.359517	3.464149	-1.307967
H	-1.379055	3.363050	0.503264
Cl	-3.074325	-0.433693	-0.045451

$0.948504-0.760497 \quad 0.786676$
$-0.378466 \quad 0.476404 \quad-0.796527$
$0.007691 \quad 1.825594 \quad-0.823910$

$$
\begin{array}{lll}
0.131441 & -2.021063 & 0.824277
\end{array}
$$

$-0.920008 \quad-2.223962-0.309268$
$-2.017918 \quad-1.228441 \quad-0.203862$
$-1.586900 \quad 0.153221 \quad-0.257484$
$-2.335148 \quad 1.083440 \quad 0.409668$

-1.935626	2.374813	0.474856

-3.170752	-1.463012	0.029468

$$
\begin{array}{lll}
2.473412 & -1.427378 & -0.905307
\end{array}
$$

$$
\begin{array}{llll}
\mathrm{H} & 0.852139 & -0.044839 & 1.587601
\end{array}
$$

$0.050594 \quad-0.225331-1.490335$

H	0.914020	2.086084	-1.349142

H	0.784102	-2.894633	0.765358
H	-0.392590	-2.082951	1.779561
H	-1.376041	-3.206993	-0.215483
H	-0.427364	-2.175750	-1.281296
H	-3.240262	0.708184	0.861535
H	-2.541033	3.092515	1.008495
H	-0.444926	3.800005	-0.181418
Cl	3.146837	0.801950	0.368813

20
$\begin{array}{llll}\text { C } & -2.067551 & -0.824881 & 0.121624\end{array}$
$\begin{array}{llll}\text { C } & -0.862228 & -1.119170 & -0.475966\end{array}$

C	0.400263	0.345183	0.893386

C	-0.215854	1.590109	1.094253

C	-0.051268	-2.286253	0.016728

C	1.439623	-2.189664	-0.315909

C	2.251049	-0.953336	-0.036332

$1.549949 \quad 0.304780 \quad 0.166783$
$2.012986 \quad 1.399474-0.503081$
$1.374489 \quad 2.590381 \quad-0.404391$
$\begin{array}{llll}\mathrm{C} & 0.244526 & 2.690805 & 0.433863\end{array}$
$\begin{array}{llll}\mathrm{O} & 3.444150 & -0.921522 & -0.096522\end{array}$
$\begin{array}{llll}\text { O } & -2.608656 & -1.187993 & 1.137068\end{array}$
$\mathrm{H} \quad-0.641943 \quad-0.697100 \quad-1.445447$
$\begin{array}{llll}\mathrm{H} & 0.232286 & -0.467979 & 1.580543\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.066252 & 1.637765 & 1.758119\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.185489 & -2.406849 & 1.095090\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.394640 & -3.227367 & -0.424958\end{array}$

H	1.986956	-3.018970	0.132401
H	1.567235	-2.300925	-1.400445
H	2.900723	1.241905	-1.096593
H	1.752241	3.444538	-0.946289
H	-0.245111	3.647103	0.563974
Cl	-2.976225	0.554979	-0.838429

C	3.429695	-1.032600	0.374830
O	3.271354	-2.123448	0.744326
C	3.604092	0.187344	-0.052530
C	2.600179	1.306749	0.098455
C	1.205195	0.864498	0.511055
C	0.467220	0.168492	-0.585557
O	0.790421	0.089619	-1.725257
N	-0.807804	-0.500997	-0.196529
C	-1.420558	-0.224377	0.968618
C	-2.602198	-0.845006	1.293223
C	-3.161959	-1.744032	0.402382
C	-2.521269	-2.004176	-0.802395
C	-1.343845	-1.364905	-1.081169
H	-0.788560	-1.510491	-1.994331
H	-2.929205	-2.697341	-1.523132
H	-4.093616	-2.239864	0.641308
H	-3.077656	-0.605997	2.232879
H	-0.958617	0.501104	1.614620
H	1.227308	0.231735	1.402102
H	0.593414	1.742179	0.755138

H	2.956998	2.014369	0.849443
H	2.542010	1.853952	-0.843315
H	4.560271	0.378632	-0.525490
Cl	-1.671249	2.837494	-0.008679

C	-0.209404	-1.381284	1.723882

$-0.879176-0.438611 \quad 1.036751$
$0.091812-0.306925-0.642725$
$0.605525-1.576906-1.091817$
$-0.957098 \quad 0.984337 \quad 1.576920$
$-0.810005 \quad 2.028171 \quad 0.453134$
$0.581285 \quad 2.004585 \quad-0.097981$
$1.028899 \quad 0.704349-0.463399$
$2.380571 \quad 0.427870-0.403915$
$2.848852-0.800479-0.679549$
$\begin{array}{llll}\text { C } & 1.930636 & -1.821603 & -1.080567\end{array}$
$\begin{array}{llll}\mathrm{O} & 1.334909 & 2.939331 & -0.142887\end{array}$
$\begin{array}{llll}\text { O } & 0.435065 & -2.209520 & 2.161695\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.817063 & -0.824170 & 0.599356\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.845103 & 0.002668 & -1.099304\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.116545 & -2.313942 & -1.414997\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.929337 & 1.120260 & 2.046863\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.191608 & 1.150507 & 2.334591\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.989093 & 3.024289 & 0.850068\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.547690 & 1.833919 & -0.329947\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.002854 & 1.266916 & -0.132373\end{array}$
$\begin{array}{llll}\mathrm{H} & 3.909849 & -0.994089 & -0.627139\end{array}$

H	2.310177	-2.781358	-1.406677
Cl	-3.332147	-0.409933	-1.087759

23
$\begin{array}{llll}\text { C } & 0.744234 & -0.731256 & -1.648078\end{array}$
$\begin{array}{llll}C & 0.888986 & 0.116748 & -0.561922\end{array}$
$\begin{array}{llll}\mathrm{C} & -0.081457 & -0.291140 & 0.622289\end{array}$
$\begin{array}{llll}\text { C } & -0.151570 & -1.765311 & 0.857712\end{array}$
$\begin{array}{llll}\mathrm{C} & 0.768852 & 1.621000 & -0.927407\end{array}$

C
$-0.091177 \quad 2.342794 \quad 0.115840$
$-1.443948 \quad 1.694271 \quad 0.237139$
$-1.385768 \quad 0.321004 \quad 0.418690$
$\begin{array}{llll}\text { C } & -2.528884 & -0.449242 & 0.222153\end{array}$
C
$-2.514321 \quad-1.778550 \quad 0.332866$
$\begin{array}{llll}\text { C } & -1.282330 & -2.451167 & 0.702641\end{array}$
$\begin{array}{llll}\mathrm{O} & -2.495330 & 2.285767 & 0.122532\end{array}$
$\begin{array}{llll}\text { O } & 0.658790 & -1.452860 & -2.503643\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.958470 & -0.090569 & -0.156671\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.413440 & 0.178025 & 1.474662\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.775075 & -2.236558 & 1.159248\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.770128 & 2.045232 & -0.947126\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.323786 & 1.747642 & -1.913131\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.236903 & 3.378396 & -0.180850\end{array}$
H
$0.411326 \quad 2.338454 \quad 1.086238$
$\begin{array}{llll}\mathrm{H} & -3.408413 & 0.124397 & -0.028310\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.421145 & -2.340570 & 0.165529\end{array}$
H
$\begin{array}{lll}-1.295951 & -3.519591 & 0.877049\end{array}$
$\begin{array}{llll}\mathrm{Cl} & 3.603093 & -0.022589 & 0.874237\end{array}$
$0.698443 \quad 0.931322 \quad 1.384832$
0.864082 -0.185122 0.482605
$-0.063852 \quad 0.225710 \quad-0.659648$

C	-0.026111	1.723888	-0.538844

0.617272 -1.575265 1.093476
$-0.248204 \quad-2.368003 \quad 0.111539$

C	-1.553782	-1.661121	-0.144125

$-2.528220 \quad 0.501507 \quad-0.514004$
$-2.444325 \quad 1.840501 \quad-0.549269$
$-1.150166 \quad 2.461777-0.483146$

$$
\begin{array}{lll}
-2.639489 & -2.191710 & -0.072436
\end{array}
$$

$0.740531 \quad 1.572934 \quad 2.311001$
$1.931723-0.076896 \quad 0.106296$
$\begin{array}{lll}0.326957 & -0.140590 & -1.611118\end{array}$

H	0.951200	2.182825	-0.648739

H	1.572422	-2.072196	1.247213

0.112838	-1.502484	2.056555

$-0.470609 \quad-3.356644 \quad 0.505073$

H	0.284047	-2.492014	-0.836375

$-3.467316-0.032606-0.506804$
$-3.343177 \quad 2.436359-0.590790$

H	-1.080796	3.537810	-0.381667

Cl	3.722000	-0.162372	-0.906443

25
$\begin{array}{llll}\text { C } & 2.129317 & -1.089080 & 0.022144\end{array}$

C	1.924846	0.226309	0.763776
C	0.442847	-0.197033	0.946111
C	0.795639	-1.645535	0.543480
C	2.177341	1.549615	0.055260
C	0.940588	2.433784	0.205008
C	-0.289169	1.764668	-0.354091
N	-0.405661	0.424792	-0.058814
C	-1.510081	-0.298726	-0.565025
C	-1.220403	-1.733394	-0.841899
C	-0.143113	-2.343408	-0.369704
O	-1.106653	2.344183	-1.042178
O	2.943698	-1.481887	-0.757396
H	2.431720	0.168938	1.729136
H	0.024309	-0.068889	1.943163
H	1.002296	-2.245234	1.433786
H	3.049868	2.054447	0.466487
H	2.373540	1.377082	-1.005083
H	1.057210	3.384264	-0.311418
H	0.760471	2.648018	1.263351
H	-1.892412	0.213765	-1.440554
H	-1.936292	-2.247582	-1.469896
Cl	0.065555	-3.374151	-0.628874
H	-2.957640	-0.222692	0.611637

26
$\begin{array}{llll}\mathrm{C} & 0.167617 & 0.622901 & 0.074598\end{array}$
$\begin{array}{llll}\mathrm{C} & -0.564210 & 1.686746 & 0.377092\end{array}$
$\begin{array}{llll}\text { C } & -2.962518 & -0.388146 & 0.840838\end{array}$
$\begin{array}{llll}\text { C } & -2.839966 & -1.519425 & 1.611049\end{array}$
$\begin{array}{llll}\mathrm{C} & -1.323759 & 2.459308 & -0.653236\end{array}$
$\begin{array}{llll}\text { C } & -2.822020 & 2.094261 & -0.752868\end{array}$
$\begin{array}{llll}\text { C } & -3.016211 & 0.745063 & -1.370030\end{array}$
$\mathrm{N} \quad-2.857487$-0.461258 $\quad-0.496847$
$\begin{array}{llll}\text { C } & -2.653269 & -1.638709 & -1.115508\end{array}$
$\begin{array}{llll}\text { C } & -2.533811 & -2.795801 & -0.391962\end{array}$
$\begin{array}{llll}\mathrm{C} & -2.630408 & -2.739303 & 0.991944\end{array}$
$\begin{array}{llll}\mathrm{O} & -3.175618 & 0.541377 & -2.529645\end{array}$
$\begin{array}{llll}\mathrm{O} & 0.240472 & 0.030387 & -1.107880\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.626953 & 1.997686 & 1.411421\end{array}$
H
H
$-2.932003 \quad-1.434254 \quad 2.683576$
$\begin{array}{llll}\mathrm{H} & -1.278273 & 3.519130 & -0.401360\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.860626 & 2.336946 & -1.633037\end{array}$
H
H
H

H

H

Cl
$3.049711 \quad 3.549372 \quad 0.720273$
H
$1.217259-0.240546-1.318082$
C
$\begin{array}{lll}0.794295 & -1.386279 & 1.252011\end{array}$
$\begin{array}{llll}\text { C } & 1.477170 & -2.056282 & 2.231357\end{array}$
C
$\begin{array}{lll}2.313450 & -1.342511 & 3.082013\end{array}$
$\begin{array}{llll}\text { C } & 2.449173 & 0.023473 & 2.914654\end{array}$
$\begin{array}{llll}\mathrm{C} & 1.746376 & 0.657952 & 1.914593\end{array}$
N

0.927128	-0.051126	1.120838

H	2.862895	-1.855212	3.860413
H	0.132089	-1.870321	0.550010
H	1.352216	-3.125043	2.326095
H	3.110959	0.609443	3.535824
H	1.866957	1.713976	1.677877
Cl	-5.899091	0.602838	0.085231
C	3.161715	-1.760615	-1.962456
C	4.503002	-2.077993	-2.064980
C	5.439179	-1.138442	-1.659976
C	4.999652	0.080477	-1.170512
C	3.638195	0.317839	-1.103784
N	2.738805	-0.587750	-1.491654
H	6.497979	-1.355350	-1.725845
H	2.393836	-2.462682	-2.266086
H	4.803819	-3.041051	-2.454398
H	5.692904	0.843104	-0.842728
H	3.256391	1.261285	-0.719760

27
$\begin{array}{llll}\mathrm{C} & -1.859240 & 2.417850 & 0.492574\end{array}$

C
$-0.779964 \quad 3.174522 \quad 0.652239$
C

C
$0.464757 \quad 0.486030 \quad-0.814784$
0.167585 -0.197703 -1.970496

C
$0.155453 \quad 3.000353 \quad 1.812601$
$\begin{array}{llll}\mathrm{C} & 1.272165 & 1.952416 & 1.590613\end{array}$
$\begin{array}{llll}\mathrm{C} & 0.747041 & 0.555534 & 1.655174\end{array}$
N
$\begin{array}{llll}\text { C } & 0.151778 & -1.464110 & 0.452498\end{array}$

C $\quad-0.123916 \quad-2.188511 \quad-0.674150$
$\begin{array}{llll}\text { C } & -0.128640 & -1.546764 & -1.906918\end{array}$
O
$0.524949-0.047184 \quad 2.656434$
$\begin{array}{llll}\mathrm{O} & -2.271686 & 1.491179 & 1.340179\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.553093 & 3.924051 & -0.091651\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.770720 & 1.523836 & -0.848630\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.197293 & 0.338214 & -2.907746\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.660019 & 3.947590 & 2.001633\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.393664 & 2.739155 & 2.718757\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.975528 & 2.015652 & 2.420437\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.817082 & 2.160974 & 0.670168\end{array}$
H
$\begin{array}{lll}0.164079 & -1.887552 & 1.444356\end{array}$
$-0.339386-3.242806-0.583602$

H
$-0.352652-2.101182 \quad-2.808765$
$-2.893123 \quad 2.646461 \quad-0.920406$
$\begin{array}{lll}-2.675892 & 0.678988 & 0.881759\end{array}$
-3.136918 $-1.772459 \quad 1.201979$
$\begin{array}{lll}-3.410502 & -3.083022 & 0.854408\end{array}$
$-3.718513-3.366736-0.466661$
$-3.743653-2.330690-1.386215$
$-3.459011 \quad-1.049024-0.948808$
-3.159310 $-0.774312 \quad 0.318801$
$-3.937129 \quad-4.381430 \quad-0.774703$
$-2.886005 \quad-1.505438 \quad 2.222345$
-3.381989 -3.8599031 .606363
$\begin{array}{lll}-3.981324 & -2.506181 & -2.426632\end{array}$
$-3.466177 \quad-0.210133-1.634670$
$2.4597443 .019986-1.791850$

C	3.659557	-0.335074	-0.376381
C	4.079398	-1.349131	-1.223890
C	4.253755	-2.620916	-0.702835
C	4.004312	-2.827686	0.644875
C	3.584476	-1.752134	1.411154
N	3.408880	-0.527588	0.918395
H	4.579819	-3.437404	-1.335409
H	3.500353	0.671643	-0.757263
H	4.262655	-1.137769	-2.269217
H	4.130271	-3.802372	1.097798
H	3.372675	-1.880014	2.467977

$\begin{array}{llll}\text { C } & 5.604905 & -1.261563 & -0.255488\end{array}$

O
$6.186759-2.201250-0.607473$

C
$4.963611 \quad-0.195110 \quad 0.139634$

C

H
C
$\begin{array}{llll}\text { C } & 2.035538 & -1.339720 & -0.161871\end{array}$

O
$2.646751-2.193368 \quad-0.717346$
N
$\begin{array}{lll}0.701592 & -1.720829 & 0.390618\end{array}$
$\begin{array}{llll}\text { C } & 0.103616 & -2.797067 & -0.151099\end{array}$
$\begin{array}{llll}\text { C } & -1.116657 & -3.217856 & 0.309324\end{array}$
$\begin{array}{llll}\mathrm{C} & -1.727310 & -2.519881 & 1.340768\end{array}$
$\begin{array}{llll}\text { C } & -1.096951 & -1.410045 & 1.879066\end{array}$
$\begin{array}{llll}\text { C } & 0.121612 & -1.020749 & 1.381164\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.647308 & -0.161587 & 1.782339\end{array}$

H	-1.539497	-0.837027	2.680594
H	-2.692686	-2.834050	1.715151

-1.584283	-4.077621	-0.147066
0.638094	-3.281797	-0.952821

$0.085672-0.163617-2.555358$
$1.648768 \quad 0.679404-0.414005$

H	2.466989	0.319752	1.104559

$3.902368 \quad 1.473368-0.633800$
$5.294584 \quad 0.237539 \quad 1.076351$
$1.272091 \quad 1.810659 \quad 3.133342$
$0.425961 \quad 2.521796 \quad 1.489201$
$-0.004001 \quad 2.879362 \quad 0.596469$

-1.296357	2.641927	0.364939
-1.878907	3.100668	-0.794053

$-1.099084 \quad 3.796392-1.704871$

0.243930	4.022164	-1.436764

$0.772732 \quad 3.547825-0.259973$
$1.805015 \quad 3.678826 \quad 0.031929$
$0.876403 \quad 4.555324-2.131261$
$-1.534951 \quad 4.157684 \quad-2.626944$
$-2.924089 \quad 2.898932 \quad-0.977146$

-1.834430	2.076564	1.112829

-4.716529	-0.267095	0.940064

-3.668906 0.3108210 .353852
$-3.205506-0.240180-0.767210$

| C | -3.763785 | -1.370346 | -1.345032 |
| :--- | :--- | :--- | :--- | :--- |

C	-4.852921	-1.962646	-0.728413

C	-5.338900	-1.401060	0.442519

H	-6.186740	-1.828088	0.962070
H	-5.314802	-2.847038	-1.149885
H	-3.339176	-1.772766	-2.255393
H	-2.334320	0.221170	-1.223954
H	-5.076232	0.198394	1.852077

2.10 NOTES AND REFERENCES

(1) Kerkovius, J. K.; Stegner, A.; Turlik, A.; Lam, P. H.; Houk, K. N.; Reisman, S. E. A Pyridine Dearomatization Approach to the Matrine-Type Lupin Alkaloids. J. Am. Chem. Soc. 2022, 144 (35), 15938-15943.
(2) Ohmiya, S.; Saito, K.; Murakoshi, I. Chapter 1 Lupine Alkaloids. In The Alkaloids: Chemistry and Pharmacology., Cordell, G. A., Ed.; Academic Press, 1995.
(3) Zhang, H.; Chen, L.; Sun, X.; Yang, Q.; Wan, L.; Guo, C. Matrine: A Promising Natural Product With Various Pharmacological Activities. Front. Pharmacol. 2020, 11 .
(4) You, L.; Yang, C.; Du, Y.; Wang, W.; Sun, M.; Liu, J.; Ma, B.; Pang, L.; Zeng, Y.; Zhang, Z.; Dong, X.; Yin, X.; Ni, J. A Systematic Review of the Pharmacology, Toxicology and Pharmacokinetics of Matrine. Front. Pharmacol. 2020, 11.
(5) Wang, Q.; Li, Y.; Li, K.-W.; Zhou, C.-Z. Sophoridine: A Review of Its Pharmacology, Pharmacokinetics and Toxicity. Phytomedicine 2022, 95, 153756.
(6) Bunsupa, S.; Katayama, K.; Ikeura, E.; Oikawa, A.; Toyooka, K.; Saito, K.; Yamazaki, M. Lysine Decarboxylase Catalyzes the First Step of Quinolizidine Alkaloid Biosynthesis and Coevolved with Alkaloid Production in Leguminosae. Plant Cell 2012, 24 (3), 1202-1216.
(7) Yang, T.; Nagy, I.; Mancinotti, D.; Otterbach, S. L.; Andersen, T. B.; Motawia, M. S.; Asp, T.; Geu-Flores, F. Transcript Profiling of a Bitter Variety of NarrowLeafed Lupin to Discover Alkaloid Biosynthetic Genes. J. Exp. Bot. 2017, 68 (20), 5527-5537.
(8) Golebiewski, W. M.; Spenser, I. D. Biosynthesis of the Lupine Alkaloids. II. Sparteine and Lupanine. Can. J. Chem. 1988, 66 (7), 1734-1748.
(9) Mancinotti, D.; Frick, K. M.; Geu-Flores, F. Biosynthesis of Quinolizidine Alkaloids in Lupins: Mechanistic Considerations and Prospects for Pathway Elucidation. Nat. Prod. Rep. 2022, 39 (7), 1423-1437.
(10) Abdusalamov, B. A. Biosynthesis and Metabolism of Some Matrine Alkaloids InGoebelia Pachycarpa. Chem. Nat. Compd. 1984, 20 (1), 1-9.
(11) Leeper, F. J.; Grue-Sørensen, G.; Spenser, I. D. Biosynthesis of the Quinolizidine Alkaloids. Incorporation of $\Delta 1$-Piperideine into Matrine. Can. J. Chem. 1981, 59 (1), 106-115.
(12) Warneke, J.; Plaumann, M.; Wang, Z.; Böhler, E.; Kemken, D.; Kelm, S.; Leibfritz, D.; Azov, V. A. New Insights into the Old Reaction between Acryloyl Chlorides and Pyridine. Tetrahedron Lett. 2015, 56 (9), 1124-1127.
(13) Ueno, A.; Morinaga, K.; Fukushima, S.; Iitaka, Y.; Koiso, Y.; Okuda, S. Studies on Lupin Alkaloids. VI. Isolation and Structure of (+)-Isomatrine. Chem. Pharm. Bull. (Tokyo) 1975, 23 (11), 2560-2566.
(14) Galasso, V.; Asaro, F.; Berti, F.; Pergolese, B.; Kovač, B.; Pichierri, F. On the Molecular and Electronic Structure of Matrine-Type Alkaloids. Chem. Phys. 2006, 330 (3), 457-468.
(15) Magann, N. L.; Westley, E.; Sowden, M. J.; Gardiner, M. G.; Sherburn, M. S. Total Synthesis of Matrine Alkaloids. J. Am. Chem. Soc. 2022, 144 (43), 1969519699.
(16) Mandell, Leon.; Singh, K. P.; Gresham, J. T.; Freeman, Walter. Total Synthesis of d,l-Matrine. J. Am. Chem. Soc. 1963, 85 (17), 2682-2683.
(17) Mandell, L.; Singh, K. P.; Gresham, J. T.; Freeman, W. J. The Total Syntheses of d,l-Matrine and d,l-Leontine1. J. Am. Chem. Soc. 1965, 87 (22), 5234-5236.
(18) Okuda, S.; Yoshimoto, M.; Tsuda, K. Studies on Lupin Alkaloids. IV. Total Syntheses of Optically Active Matrine and Allomatrine. Chem. Pharm. Bull. (Tokyo) 1966, 14 (3), 275-279.
(19) Chen, J.; Browne, L. J.; Gonnela, N. C. Total Synthesis of (\pm)-Matrine. J. Chem. Soc. Chem. Commun. 1986, No. 12, 905-907.
(20) Boiteau, L.; Boivin, J.; Liard, A.; Quiclet-Sire, B.; Zard, S. Z. A Short Synthesis of (\pm)-Matrine. Angew. Chem. Int. Ed. 1998, 37 (8), 1128-1131.
(21) Watkin, S. V.; Camp, N. P.; Brown, R. C. D. Total Synthesis of the Tetracyclic Lupin Alkaloid (+)-Allomatrine. Org. Lett. 2013, 15 (17), 4596-4599.
(22) Lyu, X. Stereoselective Total Synthesis of Lupin Alkaloids. phd, University of Southampton, 2018. https://eprints.soton.ac.uk/429608/ (accessed 2023-03-16).
(23) Paull, D. H.; Weatherwax, A.; Lectka, T. Catalytic, Asymmetric Reactions of Ketenes and Ketene Enolates. Tetrahedron 2009, 65 (34), 6771-6803.
(24) Pracht, P.; Bohle, F.; Grimme, S. Automated Exploration of the Low-Energy Chemical Space with Fast Quantum Chemical Methods. Phys. Chem. Chem. Phys. 2020, 22 (14), 7169-7192.
(25) Maheswaran, H.; Prasanth, K. L.; Krishna, G. G.; Ravikumar, K.; Sridhar, B.; Kantam, M. L. Enantioselective Nitroaldol (Henry) Reaction Using Copper(II) Complexes of (-)-Sparteine. Chem. Commun. 2006, No. 39, 4066-4068.
(26) Wink, M.; Hartmann, T.; Witte, L. Enzymatic Synthesis of Quinolizidine Alkaloids in Lupin Chloroplasts. Z. Für Naturforschung C 1980, 35 (1-2), 93-97.
(27) Jiang, G.; Chen, J.; Huang, J.-S.; Che, C.-M. Highly Efficient Oxidation of Amines to Imines by Singlet Oxygen and Its Application in Ugi-Type Reactions. Org. Lett. 2009, 11 (20), 4568-4571.
(28) Loh, Y. Y.; Nagao, K.; Hoover, A. J.; Hesk, D.; Rivera, N. R.; Colletti, S. L.; Davies, I. W.; MacMillan, D. W. C. Photoredox-Catalyzed Deuteration and Tritiation of Pharmaceutical Compounds. Science 2017, 358 (6367), 1182-1187.
(29) Griffiths, R. J.; Burley, G. A.; Talbot, E. P. A. Transition-Metal-Free Amine Oxidation: A Chemoselective Strategy for the Late-Stage Formation of Lactams. Org. Lett. 2017, 19 (4), 870-873.
(30) Su, J.; Ma, X.; Ou, Z.; Song, Q. Deconstructive Functionalizations of Unstrained Carbon-Nitrogen Cleavage Enabled by Difluorocarbene. ACS Cent. Sci. 2020, 6 (10), 1819-1826.
(31) Grierson, D. The Polonovski Reaction. In Organic Reactions; John Wiley \& Sons, Ltd, 2004; pp 85-295.
(32) Lee, S.; Kang, G.; Chung, G.; Kim, D.; Lee, H.-Y.; Han, S. Biosynthetically Inspired Syntheses of Secu'amamine A and Fluvirosaones A and B. Angew. Chem. Int. Ed. 2020, 59 (17), 6894-6901.
(33) Kessar, S. V.; Singh, P.; Singh, K. N.; Singh, S. K. Facile α-DeprotonationElectrophilic Substitution of Quinuclidine and DABCO. Chem. Commun. 1999, No. 19, 1927-1928.
(34) Chuang, T.-H.; Yang, C.-C.; Chang, C.-J.; Fang, J.-M. Base-Catalyzed Autoxidation of α-Aminonitriles. An Efficient Method for Conversion of Aldehydes to Amides and 2-Amino-2-Sulfenylacetonitrile to Carbamates. Synlett 1990, 1990 (12), 733-734.
(35) García-Valverde, M.; Pedrosa, R.; Vicente, M. A Novel and Efficient Oxidation of 1,2-Amino Alcohols to Dialkylamides. Synlett 2002, 2002 (12), 2092-2094.
(36) Ibragimov, B. T.; Tishchenko, G. N.; Kushmuradov, Yu. K.; Aripov, T. F.; Sadykov, A. S. Molecular and Crystal Structure of Sophoridine. Chem. Nat. Compd. 1979, 15 (3), 308-314.
(37) Wink, M.; Meißner, C.; Witte, L. Patterns of Quinolizidine Alkaloids in 56 Species of the Genus Lupinus. Phytochemistry 1995, 38 (1), 139-153.
(38) Gray, D.; Gallagher, T. A Flexible Strategy for the Synthesis of Tri- and Tetracyclic Lupin Alkaloids: Synthesis of (+)-Cytisine, (\pm)-Anagyrine, and (\pm)Thermopsine. Angew. Chem. Int. Ed. 2006, 45 (15), 2419-2423.
(39) Still, W. C.; Kahn, M.; Mitra, A. Rapid Chromatographic Technique for Preparative Separations with Moderate Resolution. J. Org. Chem. 1978, 43 (14), 2923-2925.
(40) Ibragimov, B. T.; Talipov, S. A.; Tischenko, G. N.; Kushmuradov, Y. K.; Aripov, T. F. Molecular and Crystal-Structure of Matrine. Kristallografiva 1978, 23, 11891195.
(41) Ling, J. Y.; Zhang, G. Y.; Cui, Z. J.; Zhang, C. K. Supercritical Fluid Extraction of Quinolizidine Alkaloids from Sophora Flavescens Ait. and Purification by High-

Speed Counter-Current Chromatography. J. Chromatogr. A 2007, 1145 (1), 123127.
(42) Bai, G.-Y.; Wang, D.-Q.; Ye, C.-H.; Liu, M.-L. 1H And13C Chemical Shift Assignments and Stereochemistry of Matrine and Oxymatrine. Appl. Magn. Reson. 2002, 23 (2), 113-121.
(43) Ibragimov, B. T.; Tishchenko, G. N.; Kushmuradov, Yu. K.; Aripov, T. F.; Sadykov, A. S. X-Ray Structural Investigation of Allomatrine and Its N-Oxide. Chem. Nat. Compd. 1979, 15 (3), 368-369.
(44) Qiao, L.; Huang, L.; Gao, C.; Zhao, Y.; Yang, X.; Zhang, L. NMR Studies of the Matrine Alkaloids. J Peking Univ Health Sci 1994, 26, 485-486.
(45) Ibragimov, B. T.; Tishchenko, G. N.; Talipov, S. A.; Kushmuradov, Y. K.; Aripov, T. F. Structure of Isosophoridine. Khimiia Prir. Soedin. 1981, 460-465.
(46) Ibragimov, B. T.; Talipov, S. A.; Tishchenko, G. N.; Kushmuradov, Y. K.; Aripov, T. F. Molecular and Crystal Structure of Isosophoridine. Khimiia Prir. Soedin. 1979, 586-588.
(47) Santos, L. S.; Mirabal-Gallardo, Y.; Shankaraiah, N.; Simirgiotis, M. J. Short Total Synthesis of (-)-Lupinine and (-)-Epiquinamide by Double Mitsunobu Reaction. Synthesis 2011, 2011 (1), 51-56.
(48) Firth, J. D.; Canipa, S. J.; Ferris, L.; O'Brien, P. Gram-Scale Synthesis of the (-)Sparteine Surrogate and (-)-Sparteine. Angew. Chem. Int. Ed. 2018, 57 (1), 223226.
(49) APEX2, Version 2 User Manual, M86-E01078, Bruker Analytical X-Ray Systems, Madison, WI, 2006.
(50) Sheldrick, G.M. SADABS (Version 2008/1): Program for Absorption Correction for Data from Area Detector Frames, University of Göttingen, 2008.
(51) Sheldrick, G. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112.
(52) Sheldrick, G. M. Acta Crystallogr., Sect. C: Struct. Chem. 2015, C71, 3.
(53) Müller, P. Crystallogr. Rev. 2009, 15, 57.
(54) Parsons, S.; Flack, H. D.; Wagner, T. Use of Intensity Quotients and Differences in Absolute Structure Refinement. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2013, 69 (3), 249-259.
(55) Van Der Sluis, P.; Spek, A. L. BYPASS: An Effective Method for the Refinement of Crystal Structures Containing Disordered Solvent Regions. Acta Crystallogr. Sect. A 1990, 46 (3), 194-201.
(56) Macrae, C. F.; Sovago, I.; Cottrell, S. J.; Galek, P. T. A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G. P.; Stevens, J. S.; Towler, M.; Wood, P. A. Mercury 4.0: From Visualization to Analysis, Design and Prediction. J. Appl. Crystallogr. 2020, 53 (1), 226-235.
(57) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, Jr, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. A.03, 2016.
(58) Chai, J.-D.; Head-Gordon, M. Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10 (44), 6615-6620.
(59) Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7 (18), 3297-3305.
(60) Weigend, F. Accurate Coulomb-Fitting Basis Sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8 (9), 1057-1065.
(61) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113 (18), 6378-6396.
(62) Luchini, G.; Alegre-Requena, J. V.; Funes-Ardoiz, I.; Paton, R. S. GoodVibes: Automated Thermochemistry for Heterogeneous Computational Chemistry Data. F1000Research April 24, 2020.
(63) The PyMOL Molecular Graphics System.
(64) Dennington, R.; Keith, T. A.; Millam, J. M. GaussView, 2016.

Appendix 1

Spectra Relevant to Chapter 2:
A Pyridine Dearomatization Approach to the Matrine-Type Lupin
Alkaloids

PHL2-069-C-Carbon.3.fid
Parameter
Data File Name

Chapter 3

A Convergent Fragment Coupling Strategy to Access Quaternary

Stereogenic Centers ${ }^{\dagger}$

3.1 INTRODUCTION

The formation of quaternary stereogenic centers via convergent fragment coupling is a longstanding challenge in organic synthesis. ${ }^{2}$ Here, we report a strategy for the formation of quaternary stereogenic centers in polycyclic systems based upon the semipinacol reaction. In the key transformation, two fragments of a similar size and complexity are joined by a 1,2-addition of an alkenyl lithium to an epoxy ketone, and the resulting epoxy silyl ether undergoes a semi-pinacol rearrangement catalyzed by N (trimethylsilyl)bis(trifluoromethanesulfonyl)imide $\left(\mathrm{TMSNTf}_{2}\right)$ or trimethylsilyl

[^1]trifluoromethanesulfonate (TMSOTf). Polycyclic scaffolds were generated in high yields and the reaction conditions tolerated a variety of functional groups including esters, silyl ethers, enol ethers, and aryl triflates. This method provides a useful strategy for the synthesis of complex polycyclic natural product-like scaffolds with quaternary stereogenic centers from simplified fragments.

3.2 CONVERGENT FRAGMENT COUPLING USING A 1,2-

ADDITION SEMI-PINACOL REARRANGEMENT SEQUENCE

3.2.1 Challenges with Quaternary Stereocenter Formation

Convergent fragment coupling is a strategic approach that can rapidly generate complex molecules by joining fragments of a similar size and complexity. ${ }^{3-5}$ The independent synthesis of each fragment can be completed in parallel and this approach reduces the potential for competitive functional group reactivity. Many elegant syntheses have been developed utilizing a fragment coupling as a key strategic disconnection, often employing well established chemistry such as the Michael addition, the Diels-Alder reaction, transition metal-catalyzed cross-coupling, and 1,2-nucleophilic addition. ${ }^{6,7} \mathrm{~A}$ major limitation to these approaches is the challenge of accessing stereogenic quaternary carbons, which are common motifs in natural products. ${ }^{2}$ Stereocontrol at attached-ring quaternary centers represents an especially difficult task due to the lack of well-defined stereocontrol elements, in contrast to the more rigid ring topologies of bridging, spirocyclic, and fused ring systems. ${ }^{8,9}$

A powerful method to form quaternary stereogenic centers is the semi-pinacol rearrangement, a stereospecific reaction that can convert epoxy alcohols to α-quaternary
ketones (Figure 3.1A). ${ }^{10-32}$ The strategic application of the semi-pinacol rearrangement in total synthesis has predominately focused on skeletal rearrangement (for example, Figure 3.1B) rather than as part of a fragment coupling tactic. ${ }^{33-38}$ There have been relatively few applications of the semi-pinacol rearrangement as fragment coupling strategies in total synthesis, ${ }^{39,40}$ which motivated us to develop a general set of conditions based upon our work towards the C19 diterpenoid alkaloids (Figure 3.1C). ${ }^{40}$

Figure 3.1. Synthetic Strategies Using the Semi-Pinacol Rearrangement.

3.2.2 Reaction Optimization

Our initial studies began with the investigation of the semi-pinacol rearrangement of epoxide $\mathbf{1 6 4 a - O H}$, an intermediate in our synthesis of the diterpenoid alkaloid (-)talatisamine (34). ${ }^{40}$ Treatment alcohol $\mathbf{1 6 4 a - O H}$ with 1.2 equiv of TMSOTf at $-10{ }^{\circ} \mathrm{C}$
resulted only in silylation of the tertiary alcohol to give 164a in 97% isolated yield (Table 3.1 A , entry 1). However, performing the reaction with 1.5 equiv of TMSOTf at $21^{\circ} \mathrm{C}$ provided β-silyoxyketone 33a in 33% yield along with several other side products (entry 2). Although the yield of $\mathbf{3 3} \mathbf{a}$ was low, this result did confirm the feasibility of migrating the bicyclic fragment. Since migration occurred after silyl ether formation when excess TMSOTf was used, we posited that use of $\mathbf{1 6 4 a}$ as a substrate in conjunction with a stronger Lewis acid could allow the reaction to be conducted at low temperature, and could potentially improve the yield of $\mathbf{3 3 a}$ (Table 3.1B). ${ }^{41}$ When $\mathbf{1 6 4 a}$ was treated with 1.0 equiv of TMSNTf_{2} at $-78^{\circ} \mathrm{C}$ for 45 minutes, starting material was consumed, but low yields of 33a were again observed (entry 1). Close monitoring of the reaction at early timepoints revealed that the reaction was very fast; indeed, stopping the reaction after 60 seconds improved the yield to 50% (entry 2). Further improvement was obtained by lowering the reaction temperature to $-94^{\circ} \mathrm{C}$ and quenching 10 seconds after addition of TMSNTf_{2} (entry 3). Although we were pleased with this discovery, it was not well suited for up-scaling.

Table 3.1. Synthetic Strategies Using the Semi-Pinacol Rearrangement.
a

b

Entry	Equiv LA	Temperature	Time	Yield (\%)
1	1.0	$-78^{\circ} \mathrm{C}$	45 min	25
2	1.0	$-78^{\circ} \mathrm{C}$	60 sec	50
3	1.0	$-94^{\circ} \mathrm{C}$	10 sec	90
4^{a}	0.1	$-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$	2.5 h	99
5^{b}	0.1	$-78^{\circ} \mathrm{C}$	15 min	97

a $110 \mathrm{~mol} \%$ of $2,6-(t-\mathrm{Bu})_{2}-4-\mathrm{MePyr} .^{\mathrm{b}} 110 \mathrm{~mol} \%$ of $2,6-(t-\mathrm{Bu})_{2}-4-\mathrm{MePyr}$ on 4.3 g scale
Given that the use of silyl ether 164a negated the need for stoichiometric TMSNTf ${ }_{2}$, we evaluated using this Lewis acid catalytically. Gratifyingly, treatment of 164a with 10 mol $\%$ TMSNTf $_{2}$ at $-78{ }^{\circ} \mathrm{C}$ and then warming to $0^{\circ} \mathrm{C}$ over 2.5 hours gave $\mathbf{3 3 a}$ in 99% yield (entry 4). The optimal conditions for gram scale were treatment of $\mathbf{1 6 4 a}$ with 10 mol $\% \mathrm{TMSNTf}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ for 15 minutes without warming, which provided semi-pinacol product 33a in a 97% yield (entry 5). To our knowledge, TMSNTf $_{2}$ has not previously been used as a catalyst for the semi-pinacol reaction.

3.2.3 Substrate Scope

Figure 3.2. Scope of the Migrating Group.

33j
60% yield $\mathrm{OH}^{\text {d }}$ 94% yield ${ }^{\text {e }}$
(c) Bicyclic Substrates

33k
82\% yield 82\% yield
93% yield

331 42\% yield 88\% yield

(d) Aromatic Substrates

330 83\% yield 82% yield

33p
59% yield

99\% yield

$33 q$
55% yield
93\% yield ${ }^{9}$
Isolated yields of 1,2-addition product in purple, isolated yield of silylation (if separate step) in teal, isolated yields of semipinacol product in blue. ${ }^{\text {a }}$ Yield of 1,2 -addition from Grignard reagent without TMSCI trapping. ${ }^{\text {b }}$ Yield of TMS protection. ${ }^{\mathrm{C}} 50 \mathrm{~mol} \% \mathrm{TMSNTf}_{2}, 110 \mathrm{~mol} \% 2,6-(t-\mathrm{Bu})_{2}-4-\mathrm{MePyr},-78{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}$. ${ }^{d}$ Yield of 1,2-addition from alkenyl lithium without TMSCI trapping. ${ }^{e}$ TMSOTf (5 equiv), $\mathrm{Et}_{3} \mathrm{~N}$ (6 equiv), $0{ }^{\circ} \mathrm{C}$ to $21^{\circ} \mathrm{C}, 1 \mathrm{~h}$.
${ }^{f} 50 \mathrm{~mol} \% \mathrm{TMSNTf}_{2}, 110 \mathrm{~mol} \% 2,6-(t-\mathrm{Bu})_{2}-4-\mathrm{MePyr}, 0^{\circ} \mathrm{C}, 0.5 \mathrm{~h} .{ }^{\mathrm{g}} 30 \mathrm{~mol} \% \mathrm{TMSNTf}_{2}, 100 \mathrm{~mol} \% 2,6-(t-\mathrm{Bu})_{2}-4-\mathrm{MePyr},-78{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}$.
With optimized conditions in hand, we examined the scope of the convergent fragment coupling strategy (Figure 3.2). Although the yields of the alkenyl lithium 1,2addition were substrate dependent, the semi-pinacol rearrangement gave consistently high yields. Simple linear alkenes, including an allylic silane and enol ether, migrated with high yields (33c, 33d). Cyclic and bicyclic alkenyl substrates also provided the rearrangement products ($\mathbf{3 3 e}-\mathbf{3 3 1}$) in excellent yields, showcasing the ability for this reaction to form attached-ring motifs bearing hindered quaternary centers. The fragment coupling tolerated substrates bearing TIPS- and PMB-protected alcohols (33g, 33i), functional groups that
could be useful in natural product synthesis applications. Aromatic substrates were also found to be viable in this reaction, with products $\mathbf{3 3 m} \mathbf{- 3 3 o}$ obtained in high yields. In addition to the gram scale synthesis of 33a, the semi-pinacol rearrangement to yield aryl bromide $\mathbf{3 3 n}$ was carried out on gram scale in 73% yield. We were able to effect the migration of large polycyclic alkenes (33p-33q) in yields greater than 90%. Notably, these conditions are relatively mild and tolerated allyl ethers and enol ethers (33d, 33g, 33i), which are often reactive under common semi-pinacol rearrangement conditions. ${ }^{12}$ A small additive screen found that the reaction tolerates acetal (Table 3.2, entry 2) and ester (entry 3) functional groups, while an N-t-butyl-carboxylate-protected amine (entry 4) inhibited product formation.

Table 3.2. Protecting Group Compatibility Additive Screen.

(\pm)-165a'

Entry	Additive	Reaction Yield	Recovered 165a'	Mass Balance	Additive Recovery
1	none	93%	0%	93%	N/A
2	A	86%	0%	86%	76% recovery
3	B	92%	0%	92%	93% recovery
4	C	20%	71%	91%	87% recovery

all yields in table are qNMR yields with pyrazine internal standard in CDCl_{3}

We also investigated simpler monocyclic ketones for their ability to rearrange using TMSNTf $_{2}$ as the Lewis acid (Figure 3.3). Using $10 \mathrm{~mol} \% \mathrm{TMSNTf}_{2}$, cyclopentanone ($\mathbf{\pm}$)-

166a was prepared in 93\% yield. Although the cyclohexyl substrate was less reactive, by increasing the catalyst loading to $50 \mathrm{~mol} \%$, the semi-pinacol product $(\mathbf{\pm} \mathbf{)} \mathbf{- 1 6 6 b}$ was obtained in 79% yield.

Figure 3.3. Substrates Derived from Monocyclic Epoxyketones.

Isolated yields of 1,2-addition product in purple, isolated yield of silylation (if separate step) in teal,
isolated yields of semi-pinacol product in blue.

3.2.4 Product Derivatization

Several of the products prepared by this method contained alkenyl or aryl bromide substituents (e.g. 33h, 33i, 33n, and 330), which can allow for further functionalization of the product. For example, treatment of ketone 33n with DavePhos-Pd-G3 in the presence of $\mathrm{K}_{3} \mathrm{PO}_{4}$ at $80^{\circ} \mathrm{C}$ resulted in clean enolate arylation to give tetracycle $\mathbf{1 6 7}$ (Scheme 3.1). ${ }^{42}$ We anticipate that tetracycle $\mathbf{1 6 7}$ could serve as an intermediate for the synthesis of the denudatine-type diterpenoid alkaloids such as cochlearnine (168). ${ }^{43,44}$

Scheme 3.1. Intramolecular Enolate Arylation of 33n.

3.3 CONCLUDING REMARKS

The method disclosed in this chapter was inspired by work on the total synthesis of the C19 diterpenoid alkaloids. ${ }^{40}$ Strategically it was envisioned in the total synthesis of talatisamine that two fragments of a similar size and complexity could be joined via the central B ring of the natural product. This strategy was successfully accomplished by performing a 1,2-addition semi-pinacol rearrangement sequence to join two fragments, which created an all-carbon quaternary center stereospecifically. It was envisioned that this innovative strategy could be applicable to the synthesis of additional natural products, which motivated us to explore the generality of this approach. It was found that a variety of different functional groups were tolerated in this transformation sequence including enol ethers, allylic silyl ethers, esters, allyl silanes, aryl triflates, and sterically congested terpenes. N-Boc pyrrolidine was found to inhibit the semi-pinacol rearrangement, and some degradation of acetals was also observed. The resulting semi-pinacol products could be transformed into tetracyclic precursors to additional diterpenoid alkaloids, the total synthesis of which are currently under investigation in our lab. In addition, this sequence also works on simpler epoxyketone substrates demonstrating the applicability of this
approach to form a variety of different quaternary stereocenters. In summary, we have developed a convergent fragment coupling approach to access a variety of quaternary centers in polycyclic systems in high yields with potential applications in natural product total synthesis.

3.4 EXPERIMENTAL SECTION

Unless otherwise stated, reactions were performed under an inert atmosphere (dry N_{2}) using freshly dried solvents and standard Schlenk techniques. Glassware was ovendried at $120^{\circ} \mathrm{C}$ for a minimum of four hours. Tetrahydrofuran (THF), methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, acetonitrile (ACN), methanol (MeOH), benzene (PhH), and toluene (PhMe) were dried by passing through activated alumina columns. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (D150-4), benzene (PhH, OmniSolv, BX0212-1), acetonitrile (A998-4), pentane (P399-4), acetone (A18-20), hexanes (H292-20), and n-butanol (A399-4) were purchased from Fisher and used as received. Anhydrous N, N-dimethylformamide (DMF) was purchased from VWR (EM-DX1727-6) and used as received. All reactions were monitored by thin-layer chromatography using EMD/Merck silica gel 60 F254 pre-coated plates (0.25 mm) and were visualized by UV or by staining with p -anisaldehyde or potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$. Flash column chromatography was performed as described by Still et al. ${ }^{45}$ using silica gel (particle size $0.032-0.063$) purchased from MilliporeSigma. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance III HD with Prodigy cryoprobe (at 400 MHz and 101 MHz , respectively), a Varian Inova 500 (at 500 MHz and 126 MHz , respectively), a Bruker 400 MHz Spectrometer with broadband iProbe, or a Varian Inova 600 (at 600 MHz and 150 MHz , respectively), and are reported relative to internal $\mathrm{CDCl}_{3}(1 \mathrm{H}, \delta=$ 7.26; 13C,$\delta=77.16), \mathrm{CD}_{2} \mathrm{Cl}_{2}\left({ }^{1} \mathrm{H}, \delta=5.32 ;{ }^{13} \mathrm{C}, \delta=53.84\right)$ or $\mathrm{CD}_{3} \mathrm{CN}\left({ }^{1} \mathrm{H}, \delta=1.94 ;{ }^{13} \mathrm{C}\right.$,
$\delta=118.3) . \mathrm{CDCl}_{3}$ was stored over anhydrous potassium carbonate $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$. Data for ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift ($\delta \mathrm{ppm}$) (multiplicity, coupling constant (Hz), integration). Multiplicity and qualifier abbreviations are as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. IR spectra were recorded on a Perkin Elmer Paragon 1000 spectrometer and are reported in frequency of absorption $\left(\mathrm{cm}^{-1}\right)$. HRMS data were acquired using an Agilent 6230 Series time-of-flight (TOF) mass spectrometer with an Agilent G1978A ion trap or by LC-MS using a Waters LCT Premier XE Electrospray TOF mass spectrometer interfaced with Waters UPLC chromatography, or by GC-MS interfaced with a JEOL JMS-T2000 GC AccuTOF GCAlpha with Field Ionization. Molecular formulas of the compounds [M] are given, with the observed ion fragment in brackets, e.g. $[\mathrm{M}+\mathrm{H}]^{+}$. Optical rotations were measured on a Jasco P-2000 polarimeter using a 100 mm path-length cell at 589 nm . Melting points were determined using a Büchi B-545 capillary melting point apparatus, and the values reported are uncorrected. Unless otherwise stated, chemicals and reagents were used as received. Stereochemistry of products was assigned analogous to compounds $\mathbf{1 6 4 a - O H}$ (CCDC \# 2083859) and $\mathbf{1 6 7}$ (CCDC \# 2224814), both of which have had their absolute configuration confirmed via X-ray crystallography. The X-ray structure of $\mathbf{1 6 4 a - O H}$ has been previously reported by Reisman and appears as $\mathbf{S 1 1}$ in their SI. ${ }^{40}$

Centers

Scheme 3.2. Preparation of enantiopure epoxyketone (+)-31.

31 was prepared according to a six step procedure reported by Reisman, and ${ }^{1} \mathrm{H}$ NMR data matched their report. ${ }^{40}$

Centers

Figure 3.4. Preparation of alkenyl halides for 1,2-additions.

32

181

Sigma

182

179

183

187

191
Commercial
Sigma

180

184

188

$$
\begin{aligned}
& 189 \\
& \text { ommercial: } \\
& \text { Sigma }
\end{aligned}
$$

$$
\begin{gathered}
190 \\
\text { Commercial: }
\end{gathered}
$$ Ambeed

165a

165b

Preparation of 32:

Alkenyl triflate 194 was prepared in 11 steps according to a procedure reported by Reisman, ${ }^{40}$ and ${ }^{1} \mathrm{H}$ NMR characterization data matched their report.

Alkenyl bromide $\mathbf{3 2}$ were prepared according to a procedure reported by
Reisman, ${ }^{40}$ and ${ }^{1} \mathrm{H}$ NMR characterization data matched their report.

Preparation of 179:

Allyl bromide 179 was prepared according to a procedure reported by Okamoto. ${ }^{46}$ ${ }^{1} \mathrm{H}$ NMR characterization data matched a report by Clayden. ${ }^{47}$

Preparation of 180:

Bromoethoxy ethene $\mathbf{1 8 0}$ was prepared according a procedure reported by Valentí. ${ }^{48}{ }^{1} \mathrm{H}$ NMR characterization data matched a report by Stalick. ${ }^{49}$

Preparation of alkenyl bromide 181:

A 500 mL round bottom flask was charged with triphenyl phosphite $(27.6 \mathrm{~mL}, 105$ mmol, 1.1 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$, and was cooled to $-60^{\circ} \mathrm{C} . \mathrm{Br}_{2}(5.9 \mathrm{~mL}, 115.5 \mathrm{mmol}$, 1.2 equiv) was added followed by $\mathrm{Et}_{3} \mathrm{~N}(17.6 \mathrm{~mL}, 126 \mathrm{mmol}, 1.3$ equiv). Cyclopentanone (198, $8.53 \mathrm{~mL}, 96 \mathrm{mmol}, 1.0$ equiv) was added and the reaction was allowed to warm to ambient temperature. The reaction mixture was stirred until complete consumption of the starting material was observed by TLC (100% hexanes, KMnO_{4} stain, $c a .6$ hours). Upon
completion, the flask was equipped with a reflux condenser and the reaction mixture was heated to reflux until complete consumption of the starting material was observed by TLC (100% hexanes, KMnO_{4} stain, $c a$. 1 hour). The reaction was cooled to ambient temperature and the mixture was transferred to a separatory funnel. The organic layer was washed with aqueous $2 \mathrm{M} \mathrm{HCl}(2 \times 300 \mathrm{~mL})$, and the combined aqueous washes were extracted with pentane ($2 \times 150 \mathrm{~mL}$). The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure on an ice bath due to the volatility of the product. Purification of the crude residue by column chromatography (silica, 100\% pentane) provided alkenyl bromide $181(10 \mathrm{~g}, 67.2 \mathrm{mmol}, 70 \%$ yield $)$ as a clear oil contaminated with some residual pentane.
${ }^{1} \mathrm{H}$ NMR data agrees with characterization data reported by Hayashi. ${ }^{50}$ This procedure was adapted from a procedure reported by Liang. ${ }^{51}$

Preparation of cyclohexenyl iodide 182:

Cyclohexenyl iodide $\mathbf{1 8 2}$ was prepared according to a procedure by Wiemer. ${ }^{52}{ }^{1} \mathrm{H}$ NMR data agrees with characterization data reported by Prabhu. ${ }^{53}$

Preparation of allylic alcohol 201:

198

${ }^{\circ} \mathrm{C}$ to $21^{\circ} \mathrm{C}$

38

50% yield over 2 steps

201

A 1 L round bottom flask was charged with DMF ($14.0 \mathrm{~mL}, 181 \mathrm{mmol}, 3.2$ equiv) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$. The solution was cooled to $0^{\circ} \mathrm{C}$, then $\mathrm{PBr}_{3}(14.3 \mathrm{~mL}, 153 \mathrm{mmol}, 2.7$ equiv) was added dropwise via syringe. The reaction mixture was allowed to stir for 1 hour at $0^{\circ} \mathrm{C}$. A solution of cyclopentanone (198, $5.0 \mathrm{~mL}, 56.5 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 mL) was added dropwise via syringe. The reaction was allowed to warm to $21^{\circ} \mathrm{C}$ and was stirred for an additional 21 h . The reaction was cooled to $0^{\circ} \mathrm{C}$ and quenched carefully with sat. $\mathrm{NaHCO}_{3}(500 \mathrm{~mL})$. Solid NaHCO_{3} was added periodically as needed until bubbling ceased and the aqueous layer tested to be slightly basic with pH paper. The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 250 \mathrm{~mL})$, and the combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 500 \mathrm{~mL})$ then brine $(500 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude residue was purified by column chromatography (silica, 15% EtOAc: 85% hexanes) to afford bromoenal 38 (ca. 5.8 g), which was used in the next step without rigorous removal of solvent. Spectroscopic data for bromoenal $\mathbf{3 8}$ matched that reported in the literature. ${ }^{54}$

A 500 mL round bottom flask was charged with bromoenal $\mathbf{3 8}(c a .5 .8 \mathrm{~g})$ and EtOH $(33 \mathrm{~mL})$ followed by cooling the reaction to $0{ }^{\circ} \mathrm{C} . \mathrm{NaBH}_{4}(1.5 \mathrm{~g}, 39.8 \mathrm{mmol}, 1.2$ equiv) was added and the reaction was stirred for 1 hour at $0{ }^{\circ} \mathrm{C}$. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ and the mixture was partially concentrated under reduced pressure to remove ethanol. The resulting aqueous solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 200 \mathrm{~mL})$, and the combined organic extracts were washed with brine (200 mL), dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. Purification by column chromatography (silica, 15\% EtOAc in hexanes) afforded allylic alcohol 201 (5.05 g, 28.5
mmol, 50% yield over two steps) as a clear colorless oil. Allylic alcohol 201 matched characterization reported in the literature. ${ }^{55}$

Caution: Bromoenal 38 was found to decompose exothermically upon standing for several hours at $21^{\circ} \mathrm{C}$, or several days at $-20^{\circ} \mathrm{C}$. It was found to be stable to storage at $-78^{\circ} \mathrm{C}$ at which temperature it solidifies into a crystalline solid. It was also found to be stable to storage as a 10% solution in diethyl ether at $-20^{\circ} \mathrm{C}$ for months.

Preparation of TIPS ether 183:

A 200 mL round bottom flask was charged with allylic alcohol $201(5.05 \mathrm{~g}, 28.5$ mmol, 1.0 equiv), imidazole ($4.66 \mathrm{~g}, 68.5 \mathrm{mmol}, 2.4$ equiv), DMF (57 mL), and TIPSCl ($7.32 \mathrm{~mL}, 34.2 \mathrm{mmol}, 1.2$ equiv) sequentially. The reaction was stirred at $21^{\circ} \mathrm{C}$ until complete consumption of the starting material was observed by TLC ($c a .12$ hours). The reaction was quenched with sat. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ then the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 200 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$, brine (200 mL), dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The crude oil was purified by column chromatography (5\% EtOAc:95\% hexanes) to afford TIPS ether $\mathbf{1 8 3}$ ($7.27 \mathrm{~g}, 21.8 \mathrm{mmol}$, 76% yield) as a colorless oil.
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 4.35(\mathrm{tq}, J=1.7,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.68-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.52$ $2.45(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.18-1.10(\mathrm{~m}, 3 \mathrm{H}), 1.10-1.04(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\mathbf{C D C l}_{3}$): $\delta 140.7$, 115.2, 61.4, 40.2, 32.3, 21.5, 18.0, 12.0.

FTIR (NaCl, thin film): 2960, 2941, 2892, 2866, 1657, 1463, 1383, 1369, 1104, $1066 \mathrm{~cm}^{-}$ ${ }^{1}$.

HRMS: (FAB) calc'd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{BrOSi}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2}\right]^{+}$331.1093, found 331.1089.
TLC (10\% EtOAc:90\% Hexanes), $\mathbf{R}_{f}: 0.77\left(\mathrm{KMnO}_{4}\right.$ stain).

Preparation of 184:

Cyclopentenyl dibromide 184 was prepared according to a procedure reported by Feringa. ${ }^{56}{ }^{1} \mathrm{H}$ NMR data agrees with characterization data in their report.

Preparation of 202:

Ketone $\mathbf{2 0 2}$ was prepared according to a five step procedure reported by Reisman, and ${ }^{1} \mathrm{H}$ NMR data matched their report. ${ }^{57}$ Alcohol 203 was prepared via a Luche reduction.

A 100 mL flask was charged with ketone $202(0.517 \mathrm{~g}, 1.57 \mathrm{mmol}, 1.0$ equiv), $\mathrm{MeOH}(15.7 \mathrm{~mL})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15.7 \mathrm{~mL})$. The solution was cooled to $-10{ }^{\circ} \mathrm{C}$ and then cerium chloride heptahydrate ($1.76 \mathrm{~g}, 4.71 \mathrm{mmol}, 3.0$ equiv) was added, followed by NaBH_{4} ($89.2 \mathrm{mg}, 2.36 \mathrm{mmol}, 2.0$ equiv). The mixture was stirred at $-10^{\circ} \mathrm{C}$ until complete consumption of the starting material was observed by TLC (ca. 30 minutes). The reaction was quenched with $1 \mathrm{M} \mathrm{NaOH}(30 \mathrm{~mL})$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$, and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined
organic extracts were washed with brine ($1 \times 30 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Purification of the crude product by column chromatography (silica, $10-20 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes gradient) afforded the product as a pale yellow crystalline solid $\left(0.515 \mathrm{~g}, 99 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR characterization data matched the data in Reisman's report with the exception that alcohol 203 had the opposite optical rotation sign. $[\boldsymbol{\alpha}]_{\mathrm{D}}^{25}=+3.4^{\circ}\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$.

Preparation of 185:

PMB ether $\mathbf{1 8 5}$ was prepared via a procedure reported by Reisman. ${ }^{57}$ A 25 mL flask in a glovebox was charged with NaH (dry $95 \%, 71.4 \mathrm{mg}, 2.83 \mathrm{mmol}, 2.0$ equiv) and DMF (3.54 mL) (Note 1). The flask was sealed with a rubber septum removed from the glovebox, put under N_{2} on a Schlenk line, and cooled to $0^{\circ} \mathrm{C}$. A solution of alcohol 203 ($468 \mathrm{mg}, 1.41 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{THF}(3.54 \mathrm{~mL})$ was cannulated into the NaH suspension. The reaction was stirred for 45 minutes, then 4-methoxybenzyl chloride (249 $u L, 1.84 \mathrm{mmol}, 1.3$ equiv) was added dropwise. The reaction was warmed to $21^{\circ} \mathrm{C}$, then tetrabutylammonium iodide ($157 \mathrm{mg}, 0.42 \mathrm{mmol}, 0.30$ equiv) was added in a single portion. The reaction was stirred at $21^{\circ} \mathrm{C}$ until complete consumption of the starting material was observed by TLC (ca. 16 hours). The reaction was quenched by a dropwise addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was diluted in $\mathrm{Et}_{2} \mathrm{O}(20$ $\mathrm{mL})$, and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20$ $\mathrm{mL})$. The combined organic extracts were washed with water (1 x 20 mL), brine (1×20
mL), dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure.
Purification of the crude product by column chromatography (silica, $50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}: 50 \%$ hexanes followed by a second column using a 7.5% EtOAc in hexanes to $15 \% \mathrm{EtOAc}$ in hexanes gradient) afforded the product as a clear colorless oil ($0.368 \mathrm{~g}, 58 \%$ yield). ${ }^{1} \mathrm{H}$ NMR characterization data matched the data in Reisman's report with the exception that PMB ether 185 had the opposite optical rotation sign. $[\boldsymbol{\alpha}]_{\mathrm{D}}^{25}=+20.4^{\circ}\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$. Note 1. Hazards have been found with the use of NaH in DMF. ${ }^{58}$ Scaling up the reaction is strongly not recommended for this reason.

Preparation of 186:

205 was prepared from (+)-nopinone (204) according to a procedure reported by Fallis, ${ }^{59}{ }^{1} \mathrm{H}$ NMR characterization data matched their report.
$\mathbf{1 8 6}$ was prepared via a procedure adapted from Reisman. ${ }^{60}$ A 25 mL flask equipped with a stir bar was brought into a glovebox. The flask was charged with nickel (II) acetate tetrahydrate ($8.98 \mathrm{mg}, 0.036 \mathrm{mmol}, 0.05$ equiv), 4-dimethylaminopyridine $(8.81 \mathrm{mg}, 0.072$ mmol, 0.10 equiv), and lithium bromide ($94.0 \mathrm{mg}, 1.08 \mathrm{mmol}, 1.5$ equiv). Anhydrous THF $(2.2 \mathrm{~mL})$, and DMA $(0.7 \mathrm{~mL})$ were added. The alkenyl triflate $205(250 \mathrm{mg}$ of a 78% solution in $\mathrm{PhMe}, 0.72 \mathrm{mmol}, 1.0$ equiv) was added. The flask was stirred at 600 RPM for 16 hours at $21^{\circ} \mathrm{C}$. The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, and water (10 $\mathrm{mL})$. The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 25$ mL). The combined organic layers were washed with brine ($1 \times 30 \mathrm{~mL}$), dried over
anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure (Caution! The product is volatile!). The crude product was purified by column chromatography (silica, 100% pentane) to yield 186 as a clear colorless oil ($145 \mathrm{mg}, 94 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d): $\delta 5.83(\mathrm{tdd}, J=3.2,1.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dt}, J=$ $8.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{td}, J=5.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dt}, J=17.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dt}, J$ $=17.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{ttd}, J=5.7,2.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~s}$, $3 \mathrm{H}), 0.96$ (s, 3H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl 3): $\delta 126.7$, 123.5, 52.7, 40.2, 33.3, 32.8, 26.1, 20.8.
FTIR (NaCl, thin film): 3036, 2924, 2930, 2341, 2357, 1627, 1471, 1308, 1048, 1048, $971,881 \mathrm{~cm}^{-1}$.

HRMS: (FI-TOF) calc'd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{Br}[\mathrm{M}]^{+}$200.0195, found 200.0199.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}=+53.9\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
TLC ($\mathbf{1 0 0 \%}$ Hexanes), $\mathbf{R}_{f}: 0.77$, $\left(\mathrm{KMnO}_{4}\right.$ stain $)$.

Preparation of 187:

Preparation of enol triflate 207:

A 500 mL oven dried N_{2} flushed flask was charged with (+)-camphor (206) (4.58 g, $30 \mathrm{mmol}, 1.0$ equiv) and THF (250 mL). The solution was cooled to $-78^{\circ} \mathrm{C}$ and then KHMDS ($63 \mathrm{~mL}, 0.5 \mathrm{M}$ in toluene, $31.5 \mathrm{mmol}, 1.05$ equiv) was added dropwise. The reaction was stirred for 45 minutes at $-78^{\circ} \mathrm{C}$. A 100 mL oven dried N_{2} flushed flask was charged with $\operatorname{PhNTf}_{2}\left(11.25 \mathrm{~g}, 31.5 \mathrm{mmol}, 1.05\right.$ equiv) and THF (50 mL). The PhNTf_{2}
solution was transferred via cannula into the enolate solution over the course of 30 minutes. The resulting mixture was allowed to warm to $21^{\circ} \mathrm{C}$ and allowed to react until complete consumption of the starting material was observed by TLC (ca. 12 hours). The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$. The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 200 mL), then the combined organic extracts were washed with aqueous $1 \mathrm{M} \mathrm{NaOH}(4$ x 100 mL), brine ($1 \times 100 \mathrm{~mL}$), dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. Purification of the crude product by filtration through silica gel (eluting with hexanes) afforded alkenyl triflate $207(6.20 \mathrm{~g}, 21.9 \mathrm{mmol}, 73 \%$ yield) as a clear colorless oil. ${ }^{1} \mathrm{H}$ NMR data matches a report by Fallis. ${ }^{61}$

Preparation of alkenyl iodide 187:

A 100 mL flask in a glovebox was charged with alkenyl triflate $207(1.00 \mathrm{~g}, 3.52$ mmol, 1.0 equiv), $\mathrm{LiCl}\left(447 \mathrm{mg}, 10.55 \mathrm{mmol}, 3.0\right.$ equiv), and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(163 \mathrm{mg}, 0.141$ mmol, 0.04 equiv). THF (35 mL) was added, and once the contents dissolved $\mathrm{Me}_{6} \mathrm{Sn}_{2}$ (1.15 $\mathrm{g}, 3.52 \mathrm{mmol}, 1.0$ equiv) was added. The flask was sealed with a reflux condenser containing a septum, brought out of the glovebox, put under N_{2} on a Schlenk line, and was heated to reflux (bath temperature set to $70^{\circ} \mathrm{C}$) with vigorous stirring for 3 h . The reaction mixture was cooled to $21^{\circ} \mathrm{C}$ then was diluted with hexanes $(75 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$. The reaction mixture was extracted with hexanes ($3 \times 75 \mathrm{~mL}$). The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL}), 10 \% \mathrm{NH}_{4} \mathrm{OH}(25 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure.

A 100 mL oven dried N_{2} flushed flask was charged with the crude alkenyl stannane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$, then the solution was cooled to $0{ }^{\circ} \mathrm{C}$. To the stannane was cannulated a solution of $\mathrm{I}_{2}\left(0.938 \mathrm{~g}, 3.70 \mathrm{mmol}, 1.05\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. After stirring for 30
\min at $0{ }^{\circ} \mathrm{C}$ the reaction was quenched with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(50 \mathrm{~mL})$ and diluted with $\mathrm{H}_{2} \mathrm{O}$ (25 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$. The layers were separated, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 75 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Purification of the crude residue via filtration through silica gel (eluting with hexanes) provided alkenyl iodide 187 ($800 \mathrm{mg}, 3.06 \mathrm{mmol}, 87 \%$ yield) as a clear oil. Note: alkenyl iodide 187 is slightly volatile, and it should not be left under vacuum for extended periods of time. ${ }^{1}$ H NMR data matched a report by Kollàr. ${ }^{62}$

Preparation of 211:

211 was prepared according to a procedure reported by Paquette, ${ }^{63}{ }^{1} \mathrm{H}$ NMR characterization data matched their report.

Preparation of 188:

$\mathbf{1 8 8}$ was prepared from 211 according to a procedure reported by Takeuchi, ${ }^{64}{ }^{1} \mathrm{H}$ NMR characterization data matched their report.

Preparation of 192:

Alkenyl triflate 214 was prepared according to a procedure reported by Wang, ${ }^{65}$ and ${ }^{1} \mathrm{H}$ NMR characterization data matched their report.

Alkenyl bromide 192 was prepared according to a procedure reported by Reisman, ${ }^{60}$ and ${ }^{1} \mathrm{H}$ NMR characterization data matched their report.

Preparation of 193:

Ketone 216 was prepared according to a procedure reported by Barker, ${ }^{66}$ and ${ }^{1} \mathrm{H}$ NMR characterization data matched their report.

Alkenyl triflate 217 and alkenyl iodide $\mathbf{1 9 3}$ were prepared according to a procedure reported by Reisman,,60 and ${ }^{1} \mathrm{H}$ NMR characterization data matched their report.

Preparation of 165a:

Epoxide 165a was prepared according to a literature procedure by Berthold. ${ }^{67}$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C h l o r o f o r m - d) : ~} \delta 3.77$ (dt, $J=1.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.35 (dddd, $J=17.1$, $9.0,7.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.44$ (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\boldsymbol{\delta} 211.0,64.2,61.1,31.3,22.4,10.1$.
FTIR (NaCl, thin film): 2973, 2936, 1746, 1446, 1072, $844 \mathrm{~cm}^{-1}$.
HRMS: (FI-TOF) calc'd for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{2}[\mathrm{M}]^{+}$112.0519, found 112.0519.
TLC (20\% EtOAc:80\% Hexanes), $\mathbf{R}_{f}: 0.33\left(\mathrm{KMnO}_{4}\right.$ stain).

Preparation of 4b:

Enone 220 was prepared according to a literature report by Maddaluno, ${ }^{68}$ and ${ }^{1} \mathrm{H}$ NMR characterization data matched their report.

Epoxide 165b was prepared according to a literature report by Berthold, ${ }^{67}$ and ${ }^{1} \mathrm{H}$ NMR characterization data matched their report.

Preparative procedures for 1,2-additions followed by TMS trapping:

General Procedure A (Regular Addition)

A 50 mL round bottom flask was charged with epoxyketone $\mathbf{3 1}(0.30 \mathrm{mmol})$ and was dried via azeotropic removal of trace water by concentration under reduced pressure from anhydrous toluene ($3 \times 5 \mathrm{~mL}$ at $45{ }^{\circ} \mathrm{C}$ water bath temperature, 30 mbar pressure), followed by drying under vacuum on a Schlenk line (0.3 mbar) for 30 minutes. An oven
dried 10 mL flask under N_{2}, sealed with a rubber septum, was charged with the alkenyl or aryl halide (0.36 mmol , 1.2 equiv) via syringe followed by THF (0.12 M). The alkenyl or aryl halide solution was cooled to $-78{ }^{\circ} \mathrm{C}$ followed by a rapid addition of $t-\mathrm{BuLi}(1.7 \mathrm{M}$ in pentane, 2.4-2.7 equiv) and was stirred for 20 minutes at this temperature. Epoxyketone 31 was dissolved in THF (0.05 M) and was cooled to $-94{ }^{\circ} \mathrm{C}$ in an acetone/liq. N_{2} bath. The alkenyl or aryl lithium solution was added via cannula to the epoxyketone solution over the course of 5 minutes then the solution was stirred at $-94{ }^{\circ} \mathrm{C}$ for 20 minutes. The reaction was warmed to $-78{ }^{\circ} \mathrm{C}$ on an acetone $/ \mathrm{CO}_{2}$ bath for 5 minutes, then $\mathrm{TMSCl}(2.4$ equiv) was added. The cooling bath was removed, and the reaction was warmed to $21^{\circ} \mathrm{C}$. Upon reaching $21{ }^{\circ} \mathrm{C}$ the flask was stirred for an additional 10 minutes then the reaction was concentrated under reduced pressure and purified immediately by SiO_{2} column chromatography.

General Procedure B (Inverse Addition)

A 25 mL round bottom flask was charged with epoxyketone $\mathbf{3 1}(0.30 \mathrm{mmol})$ and dried via azeotropic removal of trace water by concentration under reduced pressure from anhydrous toluene ($3 \times 5 \mathrm{~mL}$ at $45^{\circ} \mathrm{C}$ water bath temperature, 30 mbar pressure) followed by drying on a Schlenk line (0.3 mbar) for 30 minutes. An oven dried 10 mL flask under N_{2}, sealed with a rubber septum, was charged with the alkenyl or aryl halide (0.36 mmol , 1.2 equiv) via syringe followed by THF (0.12 M). The alkenyl or aryl halide solution was cooled to $-78^{\circ} \mathrm{C}$ followed by a rapid addition of t - BuLi (1.7 M in pentane, 2.4-2.7 equiv) and stirred for 20 minutes at this temperature. The alkenyl or aryl lithium solution was cooled to $-94^{\circ} \mathrm{C}$ in an acetone/liq. N_{2} bath. Epoxyketone 31 was dissolved in THF (6 mL , 0.05 M) and cannulated into the alkenyl or aryl lithium solution over the course of 5
minutes. The flask was rinsed with THF ($2 \times 1 \mathrm{~mL}$), then the solution was stirred at this temperature for 20 minutes. The reaction was warmed to $-78{ }^{\circ} \mathrm{C}$ on an acetone $/ \mathrm{CO}_{2}$ bath for 5 minutes, then TMSCl (2.4 equiv) was added. The cooling bath was removed, and the reaction was warmed to $21^{\circ} \mathrm{C}$. Upon reaching $21^{\circ} \mathrm{C}$ the flask was stirred for an additional 10 minutes, and then the reaction was concentrated under reduced pressure and purified immediately by SiO_{2} column chromatography.

Procedure C (LDA Lithiation of furan)

A 25 mL round bottom flask was charged with epoxyketone $\mathbf{3 1}(0.30 \mathrm{mmol})$ and dried via azeotropic removal of trace water by concentration under reduced pressure from anhydrous toluene ($3 \times 5 \mathrm{~mL}$ at $45^{\circ} \mathrm{C}$ water bath temperature, 30 mbar pressure) followed by drying on a Schlenk line (0.3 mbar) for 30 minutes. A 50 mL flask under N_{2} was charged with $i-\operatorname{Pr}_{2} \mathrm{NH}$ (1.25 equiv) and THF (0.13 M). The solution was cooled to $-78^{\circ} \mathrm{C}$, followed by the addition of $n-\mathrm{BuLi}$ (1.25 equiv). The solution was stirred at $-78^{\circ} \mathrm{C}$ for 30 minutes. A 25 mL oven dried N_{2} flushed round bottom flask was charged with 3-bromofuran (191) (1.2 equiv) and THF (0.21 M). The bromofuran solution was cannulated into the LDA solution over the course of 5 minutes. The flask containing the bromofuran solution was rinsed into the reaction flask with THF ($2 \times 1 \mathrm{~mL}$) to ensure quantitative reagent transfer. The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 30 minutes followed by cooling the solution to $-94{ }^{\circ} \mathrm{C}$. Epoxyketone 31 was dissolved in THF $(0.075 \mathrm{M})$ and was cannulated into the furan solution over the course of 5 minutes. The flask containing the epoxy ketone solution was rinsed into the reaction flask with THF ($2 \times 1 \mathrm{~mL}$) to ensure quantitative reagent transfer. Once the addition was complete, the reaction was stirred at $-94^{\circ} \mathrm{C}$ for 20 minutes
followed by warming the reaction to $-78{ }^{\circ} \mathrm{C}$ with an acetone $/ \mathrm{CO}_{2}$ bath. The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 minutes, followed by adding TMSCl (2.4 equiv). The reaction was allowed to warm to $21^{\circ} \mathrm{C}$ and was stirred for 15 minutes. The reaction was concentrated under reduced pressure and purified immediately by SiO_{2} chromatography.

Procedure D (Grignard Addition)

A 50 mL round bottom flask was charged with epoxyketone $\mathbf{3 1}(0.30 \mathrm{mmol})$ and dried via azeotropic removal of trace water by concentration under reduced pressure from anhydrous toluene ($3 \times 5 \mathrm{~mL}$ at $45^{\circ} \mathrm{C}$ water bath temperature, 30 mbar pressure) followed by drying on a Schlenk line (0.3 mbar) for 30 minutes. The epoxyketone was dissolved in THF (0.075 M) and was cooled to $-94{ }^{\circ} \mathrm{C}$. To the epoxyketone solution was added a solution of the Grignard reagent (1.2 equiv) dropwise over the course of 5 minutes. The reaction was stirred at $-94^{\circ} \mathrm{C}$ for 20 minutes then $-78^{\circ} \mathrm{C}$ for 5 minutes. The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ at $-78^{\circ} \mathrm{C}$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The reaction was purified immediately by SiO_{2} chromatography.

Notes

1. It is extremely important for this reaction to be rigorously dry. Trace water significantly diminishes the yield.
2. Before use, the alkenyl halides were dried by eluting them through a SiO_{2} plug with pentane followed by concentration under reduced pressure. The purity of the alkenyl halides was quantified using qNMR (pyrazine internal standard).
3. It is important to run an SiO_{2} column immediately following the concentration of the reaction because the product is unstable in the crude reaction mixture.
4. Scales larger than 0.30 mmol were quenched with sat. NaHCO_{3}, and an aqueous workup was performed. Specific details can be found in their respective procedures.

Preparation of 1,2-addition product 164a:

Prepared from 1 ($2.13 \mathrm{~g}, 7.93 \mathrm{mmol}, 1.3$ equiv), and alkenyl bromide $\mathbf{S 1 1}$ (2.18 g , $6.10 \mathrm{mmol}, 1.0$ equiv) according to method reported by Reisman, and ${ }^{1} \mathrm{H}$ NMR characterization data matched their report. ${ }^{40}$

Preparation of 1,2 -addition product $164 b-O H$:

Prepared via General Procedure D, 76\% yield.

Prepared from 31 ($81.2 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv), and vinylmagnesium bromide (1.0 M in THF, $0.36 \mathrm{~mL}, 0.36 \mathrm{mmol}, 1.2$ equiv) according to method \mathbf{D}. The crude
reaction was purified by column chromatography (silica, 40\% EtOAc:60\% Hexanes) to yield 164b-OH ($68.6 \mathrm{mg}, 76 \%$ yield) as a clear colorless oil.
${ }^{1}$ H NMR (500 MHz, Chloroform-d): $\delta 5.89$ (dd, $\left.J=17.1,10.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.34(\mathrm{dd}, J=$ $17.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dd}, J=10.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=10.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 1 \mathrm{H}), 2.51-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.27$ $(\mathrm{m}, 2 \mathrm{H}), 2.09-1.90(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.50(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 172.0,170.4,140.2,113.7,75.8,72.1,56.4,55.2,53.1$, 52.3, 44.0, 38.5, 29.5, 23.6, 21.7.

FTIR (NaCl, thin film): 3508, 3092, 2998, 2953, 1731, 1433, 1243, 1213, $1060 \mathrm{~cm}^{-1}$.
HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}, 297.1333$ found 297.1327.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}=+21.4^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
TLC (40\% EtOAc:60\% Hexanes), $\mathbf{R}_{\boldsymbol{f}}: 0.39$, (dark blue in p-anisaldehyde stain).

Preparation of silyl ether 164b:

A 25 mL oven dried N_{2} flushed round bottom flask was charged with alcohol 164b$\mathbf{O H}\left(68.6 \mathrm{mg}, 0.23 \mathrm{mmol}, 1.0\right.$ equiv) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL}, 0.04 \mathrm{M})$. The solution was cooled to $-10{ }^{\circ} \mathrm{C}$ then triethylamine ($120 \mu \mathrm{~L}, 0.87 \mathrm{mmol}, 3.8$ equiv) was added followed by $\operatorname{TMSOTf}\left(50 \mu \mathrm{~L}, 0.28 \mathrm{mmol}, 1.2\right.$ equiv). The reaction was stirred for 15 minutes at $-10{ }^{\circ} \mathrm{C}$ followed by a quench with sat. NaHCO_{3}. The layers were separated, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried over
anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography (silica, 15\% EtOAc:85\% Hexanes) to yield the product $\mathbf{1 6 4 b}$ ($78.2 \mathrm{mg}, 92 \%$ yield) as a clear colorless oil.
${ }^{1}$ H NMR (500 MHz , Chloroform-d): $\delta 5.93$ (ddd, $J=17.2,10.6,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.28 (dd, J $=17.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dd}, J=10.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~d}, J=$ $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dddd}, J=12.8,10.7,9.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-$ $2.24(\mathrm{~m}, 2 \mathrm{H}), 2.16-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.44(\mathrm{~m}, 1 \mathrm{H}), 0.08(\mathrm{~s}, 8 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 172.3,170.6,141.9,113.7,78.9,71.0,55.2,53.7,52.9$, 52.2, 42.3, 35.7, 29.9, 22.5, 21.5, 2.4.

FTIR (NaCl, thin film): 3084, 2952, 1734, 1639, 1451, 1434, 1249, 1059, $842 \mathrm{~cm}^{-1}$.
HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}, 391.1547$ found 391.1547.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}=+17.5^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
TLC (15\% EtOAc:85\% Hexanes), $\mathbf{R}_{\boldsymbol{f}}: 0.33$, (turquoise in p-anisaldehyde stain).

Preparation of 1,2-addition product 164:

Prepared via General Procedure B, 68\% yield.

Prepared from 31 ($80.9,0.30 \mathrm{mmol}, 1.0$ equiv), $179(77.2 \mathrm{mg}, 0.36 \mathrm{mmol}, 1.2$ equiv), t - $\operatorname{BuLi}(1.7 \mathrm{M}$ in pentane, $0.45 \mathrm{~mL}, 0.74 \mathrm{mmol}$, 2.4 equiv), and $\mathrm{TMSCl}(90 \mu \mathrm{~L}$, $0.71 \mathrm{mmol}, 2.4$ equiv) according to method \mathbf{B}. The reaction was directly subjected to
column chromatography (silica, 10\% Acetone:90\% Hexanes) to yield $\mathbf{1 6 4 c}(92.6 \mathrm{mg}$, 68% yield) as a white crystalline solid.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C h l o r o f o r m - \boldsymbol { d }) : ~} \delta 5.67(\mathrm{dt}, J=15.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{dq}, J=15.5$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{dd}, J=3.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=9.8,9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.59(\mathrm{dddd}, J=13.0,11.2,9.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{ddd}, J=$ $12.8,8.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.81$ (dddd, $J=13.0,9.9$, $8.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{dd}, J=8.2,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.49-1.41(\mathrm{~m}, 1 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}$, 9H).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 172.4,170.6,132.0,127.0,78.3,71.3,55.2,53.6,52.8$, 52.2, 41.8, 35.6, 30.2, 23.0, 22.0, 21.6, 2.4, -1.7.

FTIR (NaCl, thin film): 2993, 2952, 2898, 1734, 1654, 1450, 1434, 1248, 888, 857, 841 cm^{-1}.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 477.2099$ found 477.2098.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}=+36.7^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
TLC (10\% Acetone:90\% Hexanes), $\mathbf{R}_{f}: 0.30$, (blue in p-anisaldehyde stain).

Preparation of 1,2 -addition product 164 d :

Prepared via General Procedure B, 63\% yield.

Prepared from $31(81.0 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv), $\mathbf{1 8 0}(54.4 \mathrm{mg}, 0.36 \mathrm{mmol}, 1.2$ equiv), $t-\mathrm{BuLi}(1.7 \mathrm{M}$ in pentane, $0.48 \mathrm{~mL}, 0.82 \mathrm{mmol}, 2.7$ equiv), and $\mathrm{TMSCl}(90 \mu \mathrm{~L}$, $0.71 \mathrm{mmol}, 2.4$ equiv) according to method \mathbf{B}. The reaction was directly subjected to column chromatography (silica, 20\% EtOAc: 80% Hexanes) to yield $\mathbf{1 6 4 d}$ ($79.0 \mathrm{mg}, 63 \%$ yield) as a clear colorless oil.
${ }^{1}$ H NMR (500 MHz , Chloroform-d): $\delta 5.90(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=7.1,0.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.82(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}$, $J=9.9,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dddd}, J=12.6,10.4,8.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.12$ $(\mathrm{ddd}, J=12.1,8.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.80(\mathrm{~m}$, $1 \mathrm{H}), 1.57-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 172.5,170.7,146.0,109.6,76.7,70.9,68.6,55.3,55.2$, 52.6, 51.9, 42.1, 38.5, 29.8, 21.6, 21.5, 15.4, 2.3.

FTIR (NaCl, thin film): 2952, 1733, 1659, 1433, 1248, 1101, $841 \mathrm{~cm}^{-1}$.
HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{O}_{7} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 413.1990$, found 413.2000.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}=+57.5^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
TLC (20\% EtOAc:80\% Hexanes), $\mathbf{R}_{f}: 0.30$, (pink in p-anisaldehyde stain).

Preparation of 1,2-addition product 164e:

Prepared via General Procedure A, 67\% yield.

Prepared from $31(81.3 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv), $t-\mathrm{BuLi}(1.7 \mathrm{M}$ in pentane, $0.44 \mathrm{~mL}, 0.74 \mathrm{mmol}, 2.5$ equiv), $\mathrm{TMSCl}(90 \mu \mathrm{~L}, 0.63 \mathrm{mmol}, 2.4$ equiv), and 181 (51.9 $\mathrm{mg}, 0.36 \mathrm{mmol}, 1.2$ equiv) according to method \mathbf{A}. The reaction was directly subjected to column chromatography (silica, 10% EtOAc: 90% Hexanes) to yield $\mathbf{1 6 4 e}(82.8 \mathrm{mg}, 67 \%$ yield) as a white crystalline solid.
${ }^{1} \mathbf{H}$ NMR (500 MHz, Chloroform-d): $\delta 5.67(\mathrm{p}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H})$, $3.28(\mathrm{dd}, J=3.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.18(\mathrm{~m}, 7 \mathrm{H}), 2.04-1.79(\mathrm{~m}$, $5 \mathrm{H}), 1.54-1.44(\mathrm{~m}, 1 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 172.3,170.4,146.1,126.4,77.5,70.3,55.0,54.3,52.7$, 52.0, 41.7, 35.3, 32.4, 31.3, 29.8, 23.2, 22.0, 21.2, 1.9.

FTIR (NaCl, thin film): 2952, 2847, 1733, 1449, 1433, 1248, $840 \mathrm{~cm}^{-1}$.
HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{O}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 409.2041$, found 409.2059 .
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}=+32.7^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
TLC (10\% EtOAc:90\% Hexanes), $\mathbf{R}_{f}:$ 0.12, (navy blue in p-anisaldehyde stain).

Preparation of 1,2-addition product 164f:

Prepared via General Procedure A, 55\% yield.

Prepared from 31 ($80.5 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv), 182 ($77.3 \mathrm{mg}, 0.36 \mathrm{mmol}, 1.2$ equiv), $t-\mathrm{BuLi}(1.7 \mathrm{M}$ in pentane, $0.47 \mathrm{~mL}, 0.80 \mathrm{mmol}, 2.7$ equiv $)$, and $\mathrm{TMSCl}(90 \mu \mathrm{~L}$,
$0.71 \mathrm{mmol}, 2.4$ equiv) according to method \mathbf{A}. The reaction was directly subjected to column chromatography (silica, 10\% EtOAc: 90% Hexanes) to yield $\mathbf{1 6 4 f}$ ($70.1 \mathrm{mg}, 55 \%$ yield) as a clear colorless oil.
${ }^{1}$ H NMR (500 MHz, Chloroform-d): $\delta 5.76-5.73(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H})$, $3.31(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=9.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dddd}, J=12.7,10.5,8.2,3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.37-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{ddd}, J=12.7,8.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.00(\mathrm{~m}, 3 \mathrm{H})$, $1.98-1.85(\mathrm{~m}, 3 \mathrm{H}), 1.82-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.59-$ $1.45(\mathrm{~m}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 172.3,170.5,138.1,122.5,80.5,70.3,55.1,55.0,52.7$, 52.0, 41.7, 34.1, 29.8, 25.3, 24.0, 22.8, 22.2, 21.9, 21.2, 2.0.

FTIR (NaCl, thin film): 2950, 2859, 1733, 1449, 1434, 1248, $841 \mathrm{~cm}^{-1}$.
HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 423.2197$, found 423.2189 .
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}=+11.1^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
TLC (10\% EtOAc:90\% Hexanes), $\mathbf{R}_{f}:$ 0.40, (navy blue in p-anisaldehyde stain).

Preparation of 1,2-addition product 164g:

Prepared via General Procedure A, 78\% yield.

Prepared from 31 ($80.5 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv), $\mathbf{1 8 3}$ ($141.0 \mathrm{mg}, 0.36 \mathrm{mmol}$,
1.2 equiv), $t-\operatorname{BuLi}(1.7 \mathrm{M}$ in pentane, $0.48 \mathrm{~mL}, 0.82 \mathrm{mmol}, 2.7$ equiv), and $\mathrm{TMSCl}(90$
$\mu \mathrm{L}, 0.71 \mathrm{mmol}, 2.4$ equiv) according to Method \mathbf{A}. The reaction was directly subjected to column chromatography (silica, 10\% EtOAc:90\% Hexanes) to yield $\mathbf{1 6 4 g}$ (140.1 mg , 78% yield) as a clear colorless oil.
${ }^{1}$ H NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}): $\delta 4.58(\mathrm{dt}, J=13.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{dt}, J=13.9$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=10.4,8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.58-2.46(\mathrm{~m}, 4 \mathrm{H}), 2.46-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.26(\mathrm{~m}, 1 \mathrm{H})$, $2.18(\mathrm{ddd}, J=13.2,8.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{ddd}, J=13.3,10.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.85$ (m, 2H), 1.77 (p, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.50(\mathrm{ddd}, J=13.3,10.3,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.10-1.05(\mathrm{~m}$, $21 \mathrm{H}), 0.07(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 172.2,170.4,140.3,137.6,79.3,71.2,61.3,55.2,55.1$, $52.8,52.1,43.7,38.0,35.5,35.1,29.6,23.1,21.8,21.4,18.1,12.0,2.2$.

FTIR (NaCl, thin film): 2949, 2866, 1738, 1463, 1434, 1248, 1219, 881, $841 \mathrm{~cm}^{-1}$.
HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{31} \mathrm{H}_{58} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{~N}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 612.3746$, found 612.3751 .
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}=+17.8^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
TLC (10\% EtOAc:90\% Hexanes), $\mathbf{R}_{f}:$ 0.30, (navy blue in p-anisaldehyde stain).

Preparation of 1,2 -addition product 164 h :

Prepared via General Procedure A, 86\% yield.

Prepared from 31 ($80.1 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv), 184 ($81.3 \mathrm{mg}, 0.36 \mathrm{mmol}, 1.2$ equiv), $t-\operatorname{BuLi}(1.7 \mathrm{M}$ in pentane, $0.44 \mathrm{~mL}, 0.74 \mathrm{mmol}, 2.5$ equiv $)$, and $\operatorname{TMSCl}(90 \mu \mathrm{~L}$, $0.63 \mathrm{mmol}, 2.4$ equiv) according to method \mathbf{A}. The reaction was directly subjected to column chromatography (silica, 20\% EtOAc: 80% Hexanes) to yield $\mathbf{1 6 4 h}(125.5 \mathrm{mg}$, 86% yield) as a clear colorless oil.
${ }^{1} \mathbf{H}$ NMR (500 MHz, Chloroform- \boldsymbol{d}): $\delta 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.82(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.39(\mathrm{~m}, 4 \mathrm{H}), 2.36-2.26(\mathrm{~m}, 2 \mathrm{H})$, $2.04-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.83(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 1 \mathrm{H}), 0.08(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 172.2,170.5,141.1,115.3,78.9,70.1,56.5,55.2,52.8$, 52.0, 43.3, 42.9, 36.8, 34.3, 29.4, 22.4, 21.5, 21.3, 2.0.

FTIR (NaCl, thin film): 2952, 2851, 1733, 1448, 1433, 1248, $840 \mathrm{~cm}^{-1}$.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{SiBr}[\mathrm{M}+\mathrm{H}]^{+} 487.1146$, found 487.1145 .
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{25}=+52.6^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
TLC (15\% EtOAc:85\% Hexanes), $\mathbf{R}_{f}: ~ 0.17$, (dark blue in p-anisaldehyde stain).

Preparation of 1,2-addition product 164i:

Prepared via General Procedure B, 47\% yield.

Prepared from 31 ($81.1 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv), $\mathbf{1 8 5}$ ($164.0 \mathrm{mg}, 0.36 \mathrm{mmol}$,
1.2 equiv), $n-\operatorname{BuLi}(2.6 \mathrm{M}$ in hexanes, $0.45 \mathrm{~mL}, 0.38 \mathrm{mmol}, 1.3$ equiv), and TMSCl (90
$\mu \mathrm{L}, 0.71 \mathrm{mmol}, 2.4$ equiv) according to method \mathbf{B}. The reaction was directly subjected to column chromatography (silica, 15\% EtOAc:85\% Hexanes) to yield $\mathbf{1 6 4 i}(95.1 \mathrm{mg}, 47 \%$ yield) as a clear colorless oil.
${ }^{1}$ H NMR (500 MHz, Chloroform-d): $\delta 7.27$ - $7.22(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.84(\mathrm{~m}, 2 \mathrm{H}), 4.79(\mathrm{~d}$, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{dd}, J=5.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $3.76(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=12.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.73$ (ddd, $J=16.0,9.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=15.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.19(\mathrm{~m}, 4 \mathrm{H}), 2.11$ - $1.92(\mathrm{~m}, 4 \mathrm{H}), 1.77-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, 0.12 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 172.3,170.8,159.2,146.7,131.3,129.3,121.2,113.9$, $84.5,81.1,72.7,71.1,58.6,55.4,52.9,52.3,51.2,46.6,46.1,43.8,28.6,26.9,25.3,22.1$, 22.0, 21.3, 2.9.

FTIR (NaCl, thin film): 2954, 2867, 1732, 1614, 1514, 1248, 835, 758, $752 \mathrm{~cm}^{-1}$.
HRMS: (ESI-TOF) calc' ${ }^{\prime}$ for $\mathrm{C}_{32} \mathrm{H}_{49} \mathrm{O}_{8} \mathrm{SiBrN}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 682.2405$ found 682.2385 . $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}=+63.9^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$.

TLC (15\% EtOAc:85\% Hexanes), $\mathbf{R}_{\boldsymbol{f}}: 0.32$, (forest green in p-anisaldehyde stain).

Preparation of $\mathbf{1 , 2}$-addition product $164 \mathrm{j}-\mathrm{OH}$:

Prepared via General Procedure A, 60\% yield.

Prepared from 31 ($80.5 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv), $\mathbf{1 8 6}$ ($79.7 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.3$ equiv), $t-\mathrm{BuLi}(1.7 \mathrm{M}$ in pentane, $0.44 \mathrm{~mL}, 0.72 \mathrm{mmol}, 2.4$ equiv) according to method A. The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and was allowed to warm to $21^{\circ} \mathrm{C}$. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography (silica, 30% EtOAc:70\% Hexanes) to yield $\mathbf{1 6 4 j} \mathbf{- O H}(70.0 \mathrm{mg}, 60 \%$ yield) as a clear colorless oil.
${ }^{1} \mathbf{H}$ NMR (500 MHz, Chloroform- \boldsymbol{d}): $\delta 5.51(\mathrm{tt}, J=3.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.71$ (s, 3H), $3.38(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=10.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.30(\mathrm{~m}, 7 \mathrm{H}), 2.26$ $(\mathrm{dt}, J=17.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{ttd}, J=5.6,2.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.90$ (dtd, $J=12.4,7.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{ddd}, J=13.4,9.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.64-1.51(\mathrm{~m}, 1 \mathrm{H})$, $1.30(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 172.1,170.5,148.7,117.3,77.2,71.1,56.8,55.3,53.0$, $52.2,44.8,42.9,40.9,37.8,37.3,31.9,31.4,29.6,26.4,23.2,21.6,21.6$.

FTIR (NaCl, thin film): 3504, 2949, 2917, 1734, 1458, 1450, 1432, 1239, 1220, $1174 \mathrm{~cm}^{-}$ ${ }^{1}$.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}, 391.2115$ found 391.2113 .
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}=+29.4^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
TLC (30\% EtOAc:70\% Hexanes), $\mathbf{R}_{f}: 0.37$, (purple in p-anisaldehyde stain).

Preparation of 1,2-addition product 164 k :

Prepared via General Procedure B, 82\% yield.

Prepared from 31 ($81.1 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv), $\mathbf{1 8 7}$ ($94.6 \mathrm{mg}, 0.36 \mathrm{mmol}, 1.2$ equiv), $t-\mathrm{BuLi}(1.7 \mathrm{M}$ in pentane, $0.45 \mathrm{~mL}, 0.74 \mathrm{mmol}, 2.5$ equiv $)$, and $\mathrm{TMSCl}(90 \mu \mathrm{~L}$, $0.63 \mathrm{mmol}, 2.4$ equiv) according to method \mathbf{B}. The crude reaction mixture was purified by column chromatography (silica, 10\% EtOAc:90\% Hexanes) to yield 164k (118.7 mg, 82% yield) as a clear colorless oil.
${ }^{1}$ H NMR (500 MHz , Chloroform-d): $\delta 5.71$ (d, $J=3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.75 (s, 3H), 3.68 (s, 3H), $3.34(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dddd}, J=12.8,10.8,9.0,4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.41-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{t}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{ddd}, J=13.0,8.6,4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.05-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{ddd}, J=12.2,9.2,3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{ddd}, J=11.6,9.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.77(\mathrm{~s}, 3 \mathrm{H}), 0.74(\mathrm{~s}, 3 \mathrm{H}), 0.06$ (s, 9H).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 172.2,170.6,150.0,128.7,79.3,70.1,57.1,55.3,55.2$, 55.0, 52.7, 51.9, 51.2, 42.4, 36.1, 32.9, 29.8, 25.4, 22.7, 21.2, 19.7, 19.5, 13.5, 2.4.

FTIR (NaCl, thin film): 2952, 2873, 1734, 1450, 1434, 1247, $839,887 \mathrm{~cm}^{-1}$.
HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{26} \mathrm{H}_{41} \mathrm{O}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 477.2667$, found 477.2673 .
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{25}=-11.8^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
TLC (10\% EtOAc:90\% Hexanes), $\mathbf{R}_{f}:$ 0.29, (navy blue in p-anisaldehyde stain).

Preparation of 1,2-addition product 1641:

Prepared via General Procedure A, 42\% yield.
Prepared from 31 ($80.8,0.30 \mathrm{mmol}, 1.0$ equiv), $188(67.6 \mathrm{mg}, 0.36 \mathrm{mmol}, 1.2$ equiv), $t-\mathrm{BuLi}(1.7 \mathrm{M}$ in pentane, $0.45 \mathrm{~mL}, 0.74 \mathrm{mmol}, 2.4$ equiv $)$, and $\mathrm{TMSCl}(90 \mu \mathrm{~L}$, $0.71 \mathrm{mmol}, 2.4$ equiv) according to method \mathbf{A}. The reaction was directly subjected to column chromatography (silica, 15\% EtOAc:85\% Hexanes) to yield 1641 ($56.5 \mathrm{mg}, 42 \%$ yield) as a clear colorless oil.
${ }^{1}$ H NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, Chloroform-d): $\delta 6.14(\mathrm{dd}, J=6.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.68$ (s, 3H), $3.36(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.67(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.53(\mathrm{~m}$, $2 \mathrm{H}), 2.39-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{ddd}, J=12.6,8.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{ddd}, J=12.7,10.9$, $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.22$ (m, 3H), $1.10(\mathrm{ddt}, J=14.4,8.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 172.4,170.7,147.5,127.2,79.6,70.4,55.2,54.6,52.9$, 52.1, 42.3, 34.3, 30.6, 30.3, 30.0, 26.9, 26.4, 26.4, 26.1, 22.5, 21.5, 2.3.

FTIR (NaCl, thin film): 2945, 2862, 1734, 1450, 1433, 1247, $841 \mathrm{~cm}^{-1}$.
HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{SiK}[\mathrm{M}+\mathrm{K}]^{+}, 487.1913$ found 487.1921.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}=+16.8^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
TLC (15\% EtOAc:85\% Hexanes), $\mathbf{R}_{\boldsymbol{f}}: 0.54$, (purple in p-anisaldehyde stain).

Preparation of $\mathbf{1 , 2}$-addition product 164 m :

Prepared via General Procedure A, 70\% yield.
Prepared from 31 ($81.2 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv), $\mathbf{1 8 9}$ ($67.3 \mathrm{mg}, 0.36 \mathrm{mmol}, 1.2$ equiv), $t-\operatorname{BuLi}(1.7 \mathrm{M}$ in pentane, $0.48 \mathrm{~mL}, 0.82 \mathrm{mmol}, 2.7$ equiv), and $\mathrm{TMSCl}(90 \mu \mathrm{~L}$, $0.71 \mathrm{mmol}, 2.4$ equiv) according to method \mathbf{A}. The reaction was directly subjected to column chromatography (silica, 20\% EtOAc:80\% Hexanes) to yield 164m (95.6 mg , 70% yield) as a clear colorless oil.
${ }^{1}$ H NMR (500 MHz , Chloroform-d): $\delta 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.85(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}$, $3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.73$ (dddd, $J=13.1,11.0,8.7,3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=9.9,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.46$ (ddd, $J=13.0,8.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.33$ (dddd, $J=15.4,10.2,8.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{ddd}, J=$ $13.3,10.3,8.5 \mathrm{~Hz}, 1 \mathrm{H}),-0.08(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 172.1,170.4,158.9,136.7,127.2,113.6,79.4,72.2,55.2$, $55.0,54.8,52.7,52.1,41.7,36.4,29.6,22.2,21.3,1.9$.

FTIR (NaCl, thin film): 2998, 2952, 2838, 1732, 1609, 1511, 1250, $887,841 \mathrm{~cm}^{-1}$.
HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{O}_{7} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 449.1990$, found 449.1998 .
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}=+37.5^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
TLC ($\mathbf{2 0 \%}$ EtOAc:80\% Hexanes), $\mathbf{R}_{\boldsymbol{f}}: \mathbf{0 . 2 4}$, (dark blue in p-anisaldehyde stain).

Preparation of epoxy-alcohol 164n-OH:

A 250 mL round bottom flask was charged with aryl iodide $\mathbf{1 9 0}(4.85 \mathrm{~g}, 15.49$ mmol, 1.7 equiv), $\mathrm{PhMe}(27 \mathrm{~mL}, 0.54 \mathrm{M})$, and was cooled to $0^{\circ} \mathrm{C}$. To the solution was added $i-\mathrm{PrMgCl} \cdot 2 \mathrm{LiCl}(1.3 \mathrm{M}$ in THF, $11.9 \mathrm{~mL}, 15.49 \mathrm{mmol}, 1.7$ equiv) dropwise via syringe, which was then allowed to stir at $0^{\circ} \mathrm{C}$ for 1 hour. A separate 100 mL flask was charged with epoxyketone $\mathbf{3 1}(2.54 \mathrm{~g}, 9.45 \mathrm{mmol}$, 1 equiv) and $\mathrm{PhMe}(48 \mathrm{~mL}, 0.2 \mathrm{M})$ under N_{2} (to get the epoxyketone to dissolve, the PhMe solution was heated slightly in a warm water bath). To the aryl Grignard solution at $0{ }^{\circ} \mathrm{C}$ was added the epoxyketone solution dropwise via cannula. The epoxyketone flask was rinsed with $\mathrm{PhMe}(1 \times 20 \mathrm{~mL})$ to ensure quantitative transfer then the reaction was stirred for 30 minutes at $0^{\circ} \mathrm{C}$. Caution: the epoxyketone may crash out of solution, gentle heating will re-dissolve the epoxyketone. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and the reaction mixture was allowed to warm to $21{ }^{\circ} \mathrm{C}$. The biphasic mixture was transferred to a 1 L Erlenmeyer flask, and aqueous sat. Rochelle's salt solution $(150 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}$ were added $(150 \mathrm{~mL})$. The biphasic mixture was allowed to vigorously stir for 30 minutes. The mixture was transferred to a separatory funnel, and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 150 \mathrm{~mL})$. The combined organic extracts were washed with brine ($2 \times 100 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude residue was purified by column chromatography (silica, 30\% Ethyl
acetate: 70% Hexanes) to yield epoxy alcohol $\mathbf{1 6 4 n - O H}(3.95 \mathrm{~g}, 8.70 \mathrm{mmol}, 92 \%$ yield) as a white solid.
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, Chloroform-d): $\delta 7.74(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.83(\mathrm{dd}, J=8.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{dd}, J=12.8,6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.25-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.30(\mathrm{~m}, 2 \mathrm{H})$, $2.25(\mathrm{dtd}, J=15.7,8.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.00(\mathrm{~m}, 3 \mathrm{H}), 1.78(\mathrm{dt}, J=13.4,8.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 172.0,170.8,159.1,134.1,129.9,120.5,119.7,112.7$,
$78.1,72.8,61.1,55.5,55.2,52.9,52.0,45.7,40.1,28.2,25.7,21.7$.
FTIR (NaCl, thin film): 3491, 2995, 2952, 2838, 2255, 1731, 1602, 1487, 1291, 1234, 1031, $917,731 \mathrm{~cm}^{-1}$.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{8} \mathrm{Br}\left[\mathrm{M}+\mathrm{H}_{2} \mathrm{O}\right]^{+} 472.0727$, found 472.0750.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}=+58.1^{\circ}\left(c=1.35, \mathrm{CHCl}_{3}\right)$.
TLC (30\% EtOAc:70\% Hexanes), $\mathbf{R}_{\boldsymbol{f}}: 0.40$ (blue in p-anisaldehyde)

Preparation of silyl ether 164n:

$164 n-O H$

164n

A 500 mL round bottom flask was charged with epoxy alcohol 164n-OH (3.95 g , $8.67 \mathrm{mmol}, 1.0$ equiv) and was dried via azeotropic removal of trace water by concentration under reduced pressure from anhydrous toluene $\left(3 \mathrm{x} 10 \mathrm{~mL}\right.$ at $45{ }^{\circ} \mathrm{C}$ water bath temperature) followed by drying under vacuum on a Schlenk line (0.2 torr) for 30 minutes. The epoxy alcohol was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(87 \mathrm{~mL}, 0.1 \mathrm{M})$ and was cooled to $-20^{\circ} \mathrm{C}$ on
an acetone/dry ice bath. $\mathrm{Et}_{3} \mathrm{~N}(3.63 \mathrm{~mL}, 26.0 \mathrm{mmol}, 3.0$ equiv) was added followed by TMSOTf ($1.49 \mathrm{~mL}, 10.4 \mathrm{mmol}, 1.2$ equiv). The reaction was stirred for 30 minutes then was warmed to $0^{\circ} \mathrm{C}$ on an ice bath. An additional portion of TMSOTf was added if needed ($0.63 \mathrm{~mL}, 3.47 \mathrm{mmol}, 0.4$ equiv) to ensure complete consumption of starting material by TLC. The reaction was quenched with sat. $\mathrm{NaHCO}_{3}(150 \mathrm{~mL})$ and was allowed to warm to $21{ }^{\circ} \mathrm{C}$. The biphasic mixture was transferred to a separatory funnel, and the layers were separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 200 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography (silica, 10\% to 15% to 20% ethyl acetate in hexanes) to afford silyl ether $\mathbf{1 6 4 n}(4.52 \mathrm{~g}, 8.59 \mathrm{mmol}, 99 \%$ yield) as a white solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d): $\delta 7.30(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.79(\mathrm{dd}, J=8.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~d}, J=3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.93(\mathrm{dd}, J=10.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.27(\mathrm{~m}, 4 \mathrm{H}), 2.14-2.07$ $(\mathrm{m}, 1 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.53(\mathrm{~m}, 1 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 172.1,170.4,158.8,135.7,128.1,122.7,121.0,112.3$, 82.1, 70.6, 56.7, 55.5, 55.2, 52.8, 52.1, 43.8, 40.3, 29.2, 24.1, 21.4, 2.4.

FTIR (NaCl, thin film): 2952, 2389, 1731, 1601, 1488, 1434, 1239, 1032, 883, 842, 734 cm^{-1}.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{O}_{7} \mathrm{BrN}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$544.1361, found 544.1359.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}=+34.4^{\circ}\left(c=1.30, \mathrm{CHCl}_{3}\right)$.
TLC (20\% EtOAc:80\% Hexanes), $\mathbf{R}_{\boldsymbol{f}}: 0.40$ (blue in p-anisaldehyde)

Preparation of 1,2-addition product 1640:

Prepared via General Procedure C, 83\% yield.
Prepared from $31(81.2 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv), $n-\mathrm{BuLi}(2.6 \mathrm{M}$ in hexanes, $140 \mu \mathrm{~L}, 0.36 \mathrm{mmol}, 1.3$ equiv), $i-\operatorname{Pr}_{2} \mathrm{NH}(60 \mu \mathrm{~L}, 0.43 \mathrm{mmol}, 1.4$ equiv), 191 (52.9 mg , $0.36 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{TMSCl}(90 \mu \mathrm{~L}, 0.87 \mathrm{mmol}, 2.4$ equiv $)$ according to method \mathbf{C}. The reaction was directly subjected to column chromatography (silica, 15\% EtOAc:85\% Hexanes) to yield $\mathbf{1 6 4 0}$ ($122.0 \mathrm{mg}, 83 \%$ yield) as a pale yellow crystalline solid.
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- \boldsymbol{d}): $\delta 7.34(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.76(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{ddd}, J=12.3,8.2,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.65 (dddd, $J=12.4,10.1,7.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=10.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.25$ $(\mathrm{m}, 2 \mathrm{H}), 2.13-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.45(\mathrm{~m}$, $1 \mathrm{H}),-0.05(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 172.1,170.4,150.9,141.6,116.0,97.3,76.6,70.0,56.2$, 55.1, 52.7, 52.1, 41.4, 35.1, 29.7, 21.3, 21.1, 1.1.

FTIR (NaCl, thin film): 3151, 2993, 2952, 2847, 1733, 1567, 1432, 1250, $873,843 \mathrm{~cm}^{-1}$.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{7} \mathrm{SiBr}[\mathrm{M}+\mathrm{H}]^{+} 487.0782$, found 487.0780 .
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{25}=+57.4^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
TLC (15\% EtOAc:85\% Hexanes), $\mathbf{R}_{f}: 0.29$, (light brown in p-anisaldehyde stain).

Preparation of 1,2-addition product 164p:

Prepared via General Procedure B, 59\% yield.
Prepared from 31 ($80.5 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv), 192 ($187.0 \mathrm{mg}, 0.36 \mathrm{mmol}$, 1.2 equiv), $t-\mathrm{BuLi}$ (1.7 M in pentane, $0.46 \mathrm{~mL}, 0.75 \mathrm{mmol}$, 2.4 equiv), and TMSCl (90 $\mu \mathrm{L}, 0.71 \mathrm{mmol}, 2.4$ equiv) according to method \mathbf{B}. The reaction was directly subjected to repeated column chromatography (silica, 10% EtOAc: 90% Hexanes) to yield 164p ($131.0 \mathrm{mg}, 59 \%$ yield) as a white foam.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, Chloroform-d): $\delta 7.31(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=8.6,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.97(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{dd}, J=3.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H})$, $3.36(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.83(\mathrm{dd}, J=10.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.59$ (dddd, $J=13.1,11.2,8.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.18(\mathrm{~m}, 6 \mathrm{H}), 2.18-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.04-1.92(\mathrm{~m}$, $3 \mathrm{H}), 1.87(\mathrm{ddt}, J=13.1,10.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.38(\mathrm{~m}, 6 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathbf{C D C l}_{3}$): δ 172.4, 170.8, 158.0, 147.6, 141.4, 139.7, 127.0, 125.8, $121.3,120.2,118.2,117.7,80.3,70.9,57.2,55.8,55.5,52.9,52.1,48.0,44.3,41.9,37.5$, $36.8,36.6,31.1,30.0,29.6,27.3,26.6,22.5,21.3,17.9,2.7$.
*Note: The peaks at 120.2 ppm , and 118.2 ppm are split due to $\mathrm{C}-\mathrm{F}$ coupling. ${ }^{1} \mathrm{~J}=320.8 \mathrm{~Hz}$. ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 73.0$.

FTIR (NaCl, thin film): 2949, 2850, 1734, 1420, 1249, 1214, 1143, 919, 882, 839, 758 cm^{-1}.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{~F}_{3} \mathrm{O}_{9} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]^{+}, 727.2578$ found 727.2582 .
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}=+22.5^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
TLC ($\mathbf{1 0 \%}$ EtOAc:90\% Hexanes), $\mathbf{R}_{f}: 0.46$, (turquoise in p-anisaldehyde stain).

Preparation of $\mathbf{1 , 2}$-addition product 164 q :

Prepared via General Procedure B, 55\% yield.

Prepared from 31 ($80.5 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv), 193 ($127.0 \mathrm{mg}, 0.36 \mathrm{mmol}$, 1.2 equiv), $t-\mathrm{BuLi}$ (1.7 M in pentane, $0.45 \mathrm{~mL}, 0.74 \mathrm{mmol}$, 2.4 equiv), and $\mathrm{TMSCl}(90$ $\mu \mathrm{L}, 0.71 \mathrm{mmol}, 2.4$ equiv) according to method \mathbf{B}. The reaction was directly subjected to column chromatography (silica, 100% Pentane) to yield $\mathbf{1 6 4 q}(88.5 \mathrm{mg}, 55 \%$ yield $)$ as a white foam.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C h l o r o f o r m - d}$): $\delta 5.67$ (ddd, $\left.J=8.9,4.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.75(\mathrm{~s}, 3 \mathrm{H})$, $3.69(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=10.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.29(\mathrm{~m}, 4 \mathrm{H})$, $2.20-1.94(\mathrm{~m}, 7 \mathrm{H}), 1.94-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{tt}, J=12.0,9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{td}, J=10.2,9.5,6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 0.52(\mathrm{dd}, J=11.4,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 172.4,170.6,145.6,123.1,83.9,72.3,56.6,55.3,52.8$, 52.1, 46.4, 45.1, 42.8, 41.1, 33.1, 32.9, 32.3, 29.8, 28.6, 26.8, 25.4, 24.1, 23.0, 21.7, 18.8, 18.6, 15.4, 2.4.

FTIR (NaCl, thin film): 2951, 2868, 1734, 1456, 1433, 1247, 1221, 838, $758 \mathrm{~cm}^{-1}$.
HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{6} \mathrm{SiN}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 548.3402$ found 548.3398.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}=-40.0^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
TLC (10\% EtOAc:90\% Hexanes), $\mathbf{R}_{\boldsymbol{f}}: 0.54$, (blue in p-anisaldehyde stain).

Preparation of 1,2-addition product 165a':

Prepared via General Procedure A, 85\% yield.

Prepared from 165a ($235 \mathrm{mg}, 1.97 \mathrm{mmol}, 1.0$ equiv), 183 ($788 \mathrm{mg}, 2.36 \mathrm{mmol}$, 1.2 equiv), t - BuLi (1.7 M in pentane, $2.84 \mathrm{~mL}, 4.83 \mathrm{mmol}, 2.45$ equiv) and $\mathrm{TMSCl}(0.60$ $\mathrm{mL}, 2.4$ equiv) according to method \mathbf{A}. The reaction was quenched with sat. NaHCO_{3}, and the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography (silica, 1\% EtOAc: $\mathbf{9 9 \%}$ Hexanes) to yield the product $\mathbf{1 6 5 a}^{\boldsymbol{\prime}}$ ($737.4 \mathrm{mg}, 85 \%$ yield) as a white crystalline solid.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}): $\delta 4.80(\mathrm{dt}, J=14.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{dt}, J=13.9$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 1 \mathrm{H}), 2.71-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{dddt}, J=15.3$, 8.8, 6.7, 2.2 Hz, 1H), 2.19 (dddd, $J=16.6,9.0,4.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{td}, J=10.1,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.85-1.65(\mathrm{~m}, 5 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.21-1.00(\mathrm{~m}, 21 \mathrm{H}), 0.19(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\mathbf{C D C l}_{3}$): $\delta 139.3,136.0,86.1,67.4,63.7,61.7,35.1,34.9,34.4,26.5$, 22.1, 18.3, 18.3, 13.4, 12.2, 2.4.

FTIR (NaCl, thin film): 2934, 2866, 1652, 1463, 1248, 1098, 1056, $989,839 \mathrm{~cm}^{-1}$.
HRMS: (FI-TOF) calc'd for $\mathrm{C}_{24} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{Si}_{2}[\mathrm{M}]^{+} 438.2980$, found 438.2985.
TLC (10\% EtOAc:90\% Hexanes), $\mathbf{R}_{f}: 0.67$ (grey in p-anisaldehyde)

Preparation of $\mathbf{1 , 2}$-addition product $\mathbf{1 6 5 b} \mathbf{\prime} \mathbf{- O H}$:

Prepared via General Procedure A, 54\% yield.

Prepared from 165b ($229 \mathrm{mg}, 1.82 \mathrm{mmol}, 1.0$ equiv), 183 ($726 \mathrm{mg}, 2.18 \mathrm{mmol}$, 1.2 equiv), $t-\operatorname{BuLi}$ (1.7 M in pentane, $2.62 \mathrm{~mL}, 4.45 \mathrm{mmol}, 2.45$ equiv) according to method \mathbf{A}. The reaction was quenched with $\mathrm{MeOH}(1 \mathrm{~mL})$ and sat. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ at -78 ${ }^{\circ} \mathrm{C}$. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography (silica, 15\%

EtOAc: 85% Hexanes) then a second column (silica, $1 \%-5 \%$ gradient of $\mathrm{Et}_{2} \mathrm{O}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to yield the product $\mathbf{1 6 5 b} \mathbf{-} \mathbf{- O H}(372.8 \mathrm{mg}, 54 \%$ yield $)$ as a clear colorless oil.
${ }^{1} \mathbf{H}$ NMR (500 MHz, Chloroform-d): $\delta 4.49(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=12.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.24(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~s}, 1 \mathrm{H}), 2.62-2.38(\mathrm{~m}, 4 \mathrm{H}), 2.02(\mathrm{dt}, J=13.0,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.89-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.17-$ $1.05(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\mathbf{C D C l}_{3}$): $\delta 139.4,137.5,74.9,64.0,63.0,61.2,36.2,36.0,30.4,23.9$, $22.3,19.2,18.2,16.4,12.1$.

FTIR (NaCl, thin film): 3485, 2940, 2893, 2965, 1463, 1381, 1086, 996, $882 \mathrm{~cm}^{-1}$.
HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{22} \mathrm{H}_{41} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 381.2825$, found 381.2808 .
TLC (5\% Et $\mathbf{t}_{2} \mathbf{O}: \mathbf{9 5 \%} \mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{2}$), $\mathbf{R}_{\boldsymbol{f}}: 0.47$ (purple in p-anisaldehyde)

Preparation of silyl ether $165{ }^{\prime}$ ':

A 25 mL oven dried N_{2} flushed flask was charged with epoxy alcohol $\mathbf{1 6 5 b}{ }^{\mathbf{\prime}} \mathbf{- O H}$ ($100 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.0$ equiv) and THF (2.6 mL). The solution was cooled to $-78{ }^{\circ} \mathrm{C}$ then $n-\operatorname{BuLi}(2.5 \mathrm{M}$ in hexanes, $0.13 \mathrm{~mL}, 0.32 \mathrm{mmol}, 1.2$ equiv) was added and the reaction stirred for 20 minutes. Next, to the solution was added trimethylsilyl chloride ($67 \mu \mathrm{~L}, 0.53$ mmol, 2.0 equiv). The reaction was allowed to warm to $21^{\circ} \mathrm{C}$ and stir at this temperature for 15 minutes. The reaction was quenched with sat. NaHCO_{3}, and the reaction mixture
was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography (silica, 2\% EtOAc:98\% Hexanes) to yield the product $\mathbf{1 6 5 b}$ ' $(117.5 \mathrm{mg}, 99 \%$ yield $)$ as a clear colorless oil.
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, Chloroform-d): $\delta 4.54(\mathrm{dt}, J=12.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{ddd}, J=12.6$, $2.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.34(\mathrm{~m}, 3 \mathrm{H}), 1.95$ $-1.59(\mathrm{~m}, 5 \mathrm{H}), 1.50(\mathrm{dt}, J=11.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.47-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{dq}, J=10.5,2.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.18-1.00(\mathrm{~m}, 21 \mathrm{H}), 0.17(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 139.1,137.6,80.1,63.8,62.5,61.4,36.7,35.9,32.9,22.7$, $21.8,18.8,18.5,18.2,12.2,2.8$.

FTIR (NaCl, thin film): 2934, 2863, 1463, 1378, 1250, 1100, 1013, $964,883,840 \mathrm{~cm}^{-1}$.
HRMS: (FI-TOF) calc'd for $\mathrm{C}_{25} \mathrm{H}_{48} \mathrm{O}_{3} \mathrm{Si}_{2}[\mathrm{M}]^{+} 452.3137$, found 452.3143 .
TLC ($\mathbf{1 0 \%}$ EtOAc:90\% Hexanes), $\mathbf{R}_{f}: 0.72$ (dark purple in p-anisaldehyde)

Preparative procedures for semi-pinacol rearrangements:

General Procedure A:

A 25 mL round bottom flask was charged with the epoxide (1.0 equiv) and 2,6-di-tert-butyl-4-methylpyridine (0.40 equiv). The mixture was dried via azeotropic removal of trace water by concentration under reduced pressure from anhydrous toluene ($3 \times 5 \mathrm{~mL}, 45$ ${ }^{\circ} \mathrm{C}$ water bath temperature) followed by drying under vacuum on a Schlenk line (0.3 torr) for 30 minutes. The flask was backfilled with N_{2} and was charged $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.04 \mathrm{M})$. The resulting solution was cooled to $-78 \quad{ }^{\circ} \mathrm{C}$ then N -
(Trimethylsilyl)bis(trifluoromethanesulfonyl)imide (TMSNTf ${ }_{2}$) (0.10 equiv) was added, which was weighed out in a glovebox in a $25 \mu \mathrm{~L}$ syringe. The reaction was stirred for 30 minutes at $-78^{\circ} \mathrm{C}$ and was then quenched with $\mathrm{MeOH}(0.1 \mathrm{~mL})$ at this temperature. The reaction was warmed to $21^{\circ} \mathrm{C}$ then the reaction concentrated under reduced pressure. The crude product was purified directly by SiO_{2} column chromatography.

General Procedure B:

A 25 mL round bottom flask was charged with the epoxide (1.0 equiv) and 2,6-di-tert-butyl-4-methylpyridine (1.1 equiv). The mixture was dried via azeotropic removal of trace water by concentration under reduced pressure from anhydrous toluene ($3 \times 5 \mathrm{~mL}, 45$ ${ }^{\circ} \mathrm{C}$ water bath temperature) followed by drying under vacuum on a Schlenk line (0.3 torr) for 30 minutes. The flask was backfilled with N_{2} and was charged $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.04 \mathrm{M})$. The resulting solution was cooled to $-78 \quad{ }^{\circ} \mathrm{C}$ and then N (Trimethylsilyl)bis(trifluoromethanesulfonyl)imide (TMSNTf ${ }_{2}$) (0.50 equiv) was added, which was weighed out in a glovebox in a $25 \mu \mathrm{~L}$ syringe. The reaction was stirred for 4 hours at $-78{ }^{\circ} \mathrm{C}$ and was then quenched with $\mathrm{MeOH}(0.1 \mathrm{~mL})$ at this temperature. The reaction was warmed to $21^{\circ} \mathrm{C}$ then the reaction was concentrated under reduced pressure. The crude product was purified directly by SiO_{2} column chromatography.

General Procedure C

A 25 mL round bottom flask was charged with the epoxide (1.0 equiv) and 2,6-di-tert-butyl-4-methylpyridine (1.0 equiv). The mixture was dried via azeotropic removal of trace water by concentration under reduced pressure from anhydrous toluene ($3 \times 5 \mathrm{~mL}, 45$ ${ }^{\circ} \mathrm{C}$ water bath temperature) followed by drying under vacuum on a Schlenk line (0.3 torr) for 30 minutes. The flask was backfilled with N_{2} and charged with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.04 \mathrm{M})$. The resulting solution was cooled to $-78 \quad{ }^{\circ} \mathrm{C}$, then N (Trimethylsilyl)bis(trifluoromethanesulfonyl)imide (TMSNTf 2) (0.30 equiv) was added, which was weighed out in a glovebox in a $25 \mu \mathrm{~L}$ syringe. The reaction was stirred for 4 hours at $-78{ }^{\circ} \mathrm{C}$ and was then quenched with $\mathrm{MeOH}(0.1 \mathrm{~mL})$ at this temperature. The reaction was warmed to $21^{\circ} \mathrm{C}$ then the reaction was concentrated under reduced pressure. The crude product was purified directly by SiO_{2} column chromatography.

General Procedure D:

A 25 mL round bottom flask was charged with the epoxy alcohol (1.0 equiv), triethylamine (6.0 equiv), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M})$. The solution was cooled to $0^{\circ} \mathrm{C}$ then TMSOTf (5.0 equiv) was added, and the reaction was stirred for 1 hour at this temperature. The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$, and $1 \mathrm{M} \mathrm{HCl}(1 \mathrm{~mL})$ and was stirred vigorously for 1 hour at $21^{\circ} \mathrm{C}$. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by SiO_{2} column chromatography.

Preparation of semi-pinacol product 33a:

Prepared from $164 \mathbf{a}(4.27 \mathrm{~g}, 7.93 \mathrm{mmol}, 1.0$ equiv), according to method reported by Reisman, and ${ }^{1} \mathrm{H}$ NMR characterization data matched their report. ${ }^{40}$

Preparation of semi-pinacol product 33b:

Prepared via General Procedure A, 80\% yield.

Prepared from 164b ($79.1 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.0$ equiv), 2,6-di-tert-butyl-4methylpyridine ($17.6 \mathrm{mg}, 0.086 \mathrm{mmol}, 0.4$ equiv), and TMSNTf $2(7.6 \mathrm{mg}, 0.022 \mathrm{mmol}$, 0.1 equiv) at $-78^{\circ} \mathrm{C}$ for 30 minutes according to method \mathbf{A}. The reaction was purified by column chromatography (silica, 15\% Acetone:85\% Hexanes) to yield 33b ($63.5 \mathrm{mg}, 80 \%$ yield) as a clear colorless oil.
${ }^{1}$ H NMR (500 MHz, Chloroform-d): $\delta 5.66$ (dd, $\left.J=17.8,11.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.21(\mathrm{dd}, J=$ $11.2,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dt}, J=17.8,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{t}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$, $3.69(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{dd}, J=12.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{td}, J=13.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.28$ $(\mathrm{m}, 1 \mathrm{H}), 2.23-2.07(\mathrm{~m}, 3 \mathrm{H}), 1.78-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.50(\mathrm{~m}, 2 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\mathbf{C D C l}_{3}$): $\delta 218.2,171.0,170.9,138.7,116.1,70.5,58.1,56.3,52.8$, $52.8,45.6,38.6,27.0,23.6,19.4,0.1$.

FTIR (NaCl, thin film): 3086, 2954, 1738, 1681, 1434, 1253, 1172, $842 \mathrm{~cm}^{-1}$.
HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$391.1547, found 391.1553.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{25}=+143.8^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
TLC (15\% Acetone:85\% Hexanes), $\mathbf{R}_{f}: 0.34$ (turquoise in p-anisaldehyde).

Preparation of semi-pinacol product 33c:

Prepared via General Procedure A, 87\% yield.

Prepared from $\mathbf{1 6 4 c}(92.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv), 2,6-di-tert-butyl-4methylpyridine ($16.7 \mathrm{mg}, 0.082 \mathrm{mmol}, 0.4$ equiv), and $\mathrm{TMSNTf}_{2}(7.2 \mathrm{mg}, 0.020 \mathrm{mmol}$, 0.1 equiv) at $-78^{\circ} \mathrm{C}$ for 30 minutes according to method \mathbf{A}. The reaction was purified by column chromatography (silica, 10\% Acetone: 90% Hexanes) to yield $\mathbf{3 3 c}$ ($80.2 \mathrm{mg}, 87 \%$ yield) as a clear colorless oil.
${ }^{1} \mathbf{H}$ NMR (500 MHz, Chloroform- \boldsymbol{d}): $\delta 5.59(\mathrm{dt}, J=16.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{dt}, J=15.9$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{dd}, J=12.5,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.51-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.03(\mathrm{~m}, 3 \mathrm{H}), 1.73-1.65(\mathrm{~m}, 1 \mathrm{H})$, $1.59-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.42(\mathrm{~m}, 2 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H}),-0.01(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 218.6,171.1,129.2,128.3,72.4,57.4,56.5,52.8,52.7$, $45.6,38.5,26.9,23.8,23.6,19.4,0.1,-1.7$.

FTIR (NaCl, thin film): 2953, 1741, 1434, 1404, 1251, 1170, $844 \mathrm{~cm}^{-1}$.
HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 477.2099$, found 477.2098.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{25}=+130.6^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
TLC (15\% Acetone:85\% Hexanes), $\mathbf{R}_{f}: 0.40$ (navy blue in p-anisaldehyde).

Preparation of semi-pinacol product 33d:

Prepared via General Procedure A, 89\% yield.

Prepared from 164d ($67.4 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.0$ equiv), 2,6-di-tert-butyl-4methylpyridine ($13.4 \mathrm{mg}, 0.065 \mathrm{mmol}, 0.4$ equiv), and TMSNTf $_{2}(6.0 \mathrm{mg}, 0.016 \mathrm{mmol}$, 0.1 equiv) at $-78^{\circ} \mathrm{C}$ for 30 minutes according to method \mathbf{A}. The reaction was purified by column chromatography (silica, 15% Acetone: 85% Hexanes) to yield 33d ($60.9 \mathrm{mg}, 89 \%$ yield) as a clear colorless oil.
${ }^{1}$ H NMR (500 MHz, Chloroform- $\left.\boldsymbol{d}\right): \delta 5.92(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.93(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dq}, J=9.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.67(\mathrm{~m}, 1 \mathrm{H})$, $3.68(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{dd}, J=13.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{td}, J=13.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.28$ (m, 1H), 2.26 (ddd, $J=18.4,8.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.79$ (dddd, $J=11.4$,
8.6, 7.0, 1.3 Hz, 1H), 1.67 (dddd, $J=14.4,13.6,3.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{dq}, J=14.4,3.7$ $\mathrm{Hz}, 1 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\mathbf{C D C l}_{3}$): $\delta 220.6,171.3,145.1,107.2,72.1,68.0,56.2,54.8,52.7$, $52.5,43.7,38.4,26.6,24.0,19.4,15.3,0.1$.

FTIR (NaCl, thin film): 2954, 2898, 1742, 1659, 1435, 1252, $842 \mathrm{~cm}^{-1}$.
HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{7} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 435.1810$, found 435.1818 .
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}=+89.9^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
TLC ($\mathbf{1 5 \%}$ Acetone:85\% Hexanes), $\mathbf{R}_{\boldsymbol{f}}$: 0.23 (brown in p-anisaldehyde).

Preparation of semi-pinacol product 33e:

164e

33e

Prepared via General Procedure A, 96\% yield.

Prepared from 164 e ($77.9 \mathrm{mg}, 0.19 \mathrm{mmol}, 1.0$ equiv), 2,6-di-tert-butyl-4methylpyridine ($15.7 \mathrm{mg}, 0.076 \mathrm{mmol}, 0.4$ equiv), and TMSNTf $2(6.7 \mathrm{mg}, 0.019 \mathrm{mmol}$, 0.1 equiv) at $-78^{\circ} \mathrm{C}$ for 30 minutes according to method \mathbf{A}. The reaction was purified by column chromatography (silica, 15\% Acetone: 85% Hexanes) to yield $\mathbf{3 3 e}$ ($74.4 \mathrm{mg}, 96 \%$ yield) as a clear colorless oil.
${ }^{1}$ H NMR (500 MHz , Chloroform- \boldsymbol{d}): $\delta 5.38(\mathrm{p}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{t}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.74(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{dd}, J=12.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dddd}, J=16.9,9.6,4.7$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{td}, J=13.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.24(\mathrm{~m}, 3 \mathrm{H}), 2.24-2.07(\mathrm{~m}, 3 \mathrm{H}), 1.98$
$-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{dq}, J=14.3,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $0.06(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 219.4,171.0,170.7,143.1,127.5,70.5,58.0,56.3,52.7$, $42.1,39.3,33.1,32.9,28.0,23.7,23.0,19.7,0.1$.

FTIR (NaCl, thin film): 2953, 2849, 1741, 1434, 1252, 1169, $842 \mathrm{~cm}^{-1}$.
HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 431.1860$, found 431.1861 .
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}=+100.5^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
TLC (15\% Acetone:85\% Hexanes), $\mathbf{R}_{f}: 0.33$ (dark green in p-anisaldehyde).

Preparation of semi-pinacol product 33f:

Prepared via General Procedure A, 94\% yield.

Prepared from 164 f ($54.1 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.0$ equiv), 2,6-di-tert-butyl-4methylpyridine ($10.5 \mathrm{mg}, 0.051 \mathrm{mmol}, 0.4$ equiv), and $\mathrm{TMSNTf}_{2}(4.5 \mathrm{mg}, 0.013 \mathrm{mmol}$, 0.1 equiv) at $-78^{\circ} \mathrm{C}$ for 30 minutes according to method \mathbf{A}. The reaction was purified by column chromatography (silica, 15\% Acetone: 85% Hexanes) to yield $\mathbf{3 3 f}$ ($50.9 \mathrm{mg}, 94 \%$ yield) as a clear colorless oil.
${ }^{1} \mathbf{H}$ NMR (500 MHz, Chloroform-d): $\delta 5.32$ (t, $J=3.8 \mathrm{~Hz}, 1 \mathrm{H}$), $4.34(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, $3.68(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{dd}, J=12.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{td}, J=13.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{dd}, J=$
$17.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.03(\mathrm{~m}, 5 \mathrm{H}), 2.03-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.69-$ $1.54(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.42(\mathrm{~m}, 2 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\mathbf{C D C l}_{3}$): $\delta 220.5,171.0,170.7,136.4,124.3,69.9,60.6,56.3,52.8$, 41.4, 39.9, 28.2, 26.9, 25.7, 23.6, 23.0, 22.1, 19.7, 0.2.

FTIR (NaCl, thin film): 2950, 2933, 2858, 2839, 1740, 1682, 1434, 1251, 1060, 1020, $842 \mathrm{~cm}^{-1}$.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 445.2017$, found 445.2023.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}=+102.6^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
TLC (15\% Acetone:85\% Hexanes), $\mathbf{R}_{\boldsymbol{f}}: 0.37$ (pistachio in p-anisaldehyde).

Preparation of semi-pinacol product 33g:

Prepared via General Procedure A, 99\% yield.

Prepared from $\mathbf{1 6 4 g}$ ($132.0 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.0$ equiv), 2,6-di-tert-butyl-4methylpyridine ($18.2 \mathrm{mg}, 0.89 \mathrm{mmol}, 0.4$ equiv), and $\mathrm{TMSNTf}_{2}(7.8 \mathrm{mg}, 0.022 \mathrm{mmol}$, 0.1 equiv) at $-78^{\circ} \mathrm{C}$ for 30 minutes according to method \mathbf{A}. The reaction was purified by column chromatography (silica, 15% Acetone: 85% Hexanes) to yield $\mathbf{3 3 g}$ (130.0 mg , 99% yield) as a clear colorless oil.
${ }^{1} \mathbf{H}$ NMR (400 MHz, Acetonitrile- \boldsymbol{d}_{3}): $\delta 4.27(\mathrm{t}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=12.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.05(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{dd}, J=12.6,7.5 \mathrm{~Hz}, 1 \mathrm{H})$,
$2.63-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.16(\mathrm{~m}, 3 \mathrm{H}), 2.15-$ $2.03(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.20-1.04(\mathrm{~m}, 21 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D}_{3} \mathbf{C N}$): $\delta 218.6,170.8,170.7,138.4,136.0,70.5,61.6,57.5,56.4$, $52.0,51.9,45.2,38.5,36.5,34.8,28.2,23.3,21.4,19.2,17.4,11.9,-1.1$.

FTIR (NaCl, thin film): 2948, 2865, 1743, 1447, 1252, $842 \mathrm{~cm}^{-1}$.
HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{31} \mathrm{H}_{54} \mathrm{O}_{7} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 617.3300$, found 617.3309 .
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}=+26.9^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
TLC ($\mathbf{1 5 \%}$ Acetone:85\% Hexanes), $\mathbf{R}_{\boldsymbol{f}}: 0.49$ (dark purple in p-anisaldehyde).

Preparation of semi-pinacol product 33h:

Prepared via General Procedure A, 98\% yield.

Prepared from 164h ($82.0 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.0$ equiv), 2,6-di-tert-butyl-4methylpyridine ($13.8 \mathrm{mg}, 0.067 \mathrm{mmol}, 0.4$ equiv), and $\mathrm{TMSNTf}_{2}(5.9 \mathrm{mg}, 0.017 \mathrm{mmol}$, 0.1 equiv) at $-78^{\circ} \mathrm{C}$ for 30 minutes according to method \mathbf{A}. The reaction was purified by column chromatography (silica, 15% Acetone: 85% Hexanes) to yield 33h ($80.1 \mathrm{mg}, 98 \%$ yield) as a clear colorless oil.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CD $\left.\mathbf{D}_{3} \mathrm{CN}\right): \delta 4.23(\mathrm{~s}, 1 \mathrm{H}), 3.84-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}$, $3 \mathrm{H}), 2.62$ (dddd, $J=11.7,7.8,5.1,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.52-2.32(\mathrm{~m}, 3 \mathrm{H}), 2.25(\mathrm{dddd}, J=18.6$,
$9.2,1.3,0.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.13-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.76-1.61(\mathrm{~m}, 2 \mathrm{H}), 0.03$ (s, 9H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, CD $\left.\mathbf{B N}_{3} \mathbf{C N}\right): ~ \delta 217.3,171.0,170.7,140.1,116.8,70.2,57.2,56.5,52.1$, $52.0,42.2,41.5,39.3,35.0,28.2,23.6,21.7,19.2,-1.0 .{ }^{*}$ run at $70{ }^{\circ} \mathrm{C}$ to converge atropisomers.

FTIR (NaCl, thin film): 2952, 2911, 2858, 1740, 1622, 1433, 1252, $842 \mathrm{~cm}^{-1}$.
HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}_{6} \mathrm{SiBrNa}[\mathrm{M}+\mathrm{Na}]^{+}$509.0965, found 509.0950.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}=+20.0^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
TLC (15\% Acetone:85\% Hexanes), $\mathbf{R}_{\boldsymbol{f}}: 0.31$ (dark pistachio in p-anisaldehyde).

Preparation of semi-pinacol product 33i:

164i

$33 i$

Prepared via General Procedure B, 89\% yield.

Prepared from 164i ($78.2 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.0$ equiv), 2,6-di-tert-butyl-4methylpyridine ($26.5 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.1$ equiv), and TMSNTf $_{2}(20.8 \mathrm{mg}, 0.059 \mathrm{mmol}$, 0.5 equiv) at $-78^{\circ} \mathrm{C}$ for 4 hours according to method \mathbf{B}. The reaction was purified by column chromatography (silica, 10 to 20% EtOAc gradient in hexanes) to yield $\mathbf{3 3 i}$ (69.4 $\mathrm{mg}, 89 \%$ yield) as a white foam.
${ }^{1}$ H NMR (600 MHz, Chloroform-d): $\delta 7.40-7.32(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.80(\mathrm{~m}, 2 \mathrm{H}), 5.17(\mathrm{~d}$, $J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.78-4.72(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.78(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{ddd}, J=18.6,10.8$, $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{ddd}, J=14.0,12.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{ddt}, J=18.5,9.3,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.13(\mathrm{tdd}, J=12.5,10.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.83$ (dddd, $J=11.9,9.5,7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=$ 6.0 Hz, 3H), $-0.06(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 218.8,171.4,171.0,159.0,140.8,131.5,129.5,125.6$, $113.7,81.9,67.9,66.0,57.5,56.7,55.4,52.8,52.7,50.3,46.1,43.1,39.7,29.1,27.7,24.1$, 22.1, 21.7, 19.1, 0.2.

FTIR (NaCl, thin film): 2954, 1738, 1614, 1514, 1251, 1172, 1059, $866,840 \mathrm{~cm}^{-1}$.
HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{32} \mathrm{H}_{49} \mathrm{O}_{8} \mathrm{SiBrN}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$682.2405, found 682.2403.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}=+12.3^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
TLC (20\% EtOAc:80\% Hexanes), $\mathbf{R}_{f}: 0.42$ (dark blue in p-anisaldehyde).

Preparation of semi-pinacol product 33j:

Prepared via General Procedure D, 94\% yield.

Prepared from 164j-OH ($60.0 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0$ equiv), triethylamine ($129 \mu \mathrm{~L}$, $0.92 \mathrm{mmol}, 6.0$ equiv), and TMSOTf ($139 \mu \mathrm{~L}, 0.77 \mathrm{mmol}, 5.0$ equiv) at $0^{\circ} \mathrm{C}$ for 1 hour according to method \mathbf{D}. The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$, and 1 M $\mathrm{HCl}(1 \mathrm{~mL})$ and was stirred vigorously for 1 hour. The layers were separated, and the
aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure.

The crude product was purified by column chromatography (silica, $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to 10%
$\mathrm{Et}_{2} \mathrm{O}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gradient) to yield $\mathbf{3 3 j}$ ($66.9 \mathrm{mg}, 94 \%$ yield) as a pale-yellow oil.
${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- $\left.\boldsymbol{d}\right): \delta 5.18(\mathrm{dq}, J=3.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{t}, J=2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{dd}, J=11.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{td}, J=13.9,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.39(\mathrm{dt}, J=8.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.14(\mathrm{~m}, 4 \mathrm{H}), 2.12-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{dtd}, J$ $=5.6,2.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{td}, J=5.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{dq}, J=$ $14.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 217.8,171.1,170.7,145.8,119.7,69.8,60.0,56.5,53.0$, $52.7,45.8,41.9,40.3,39.7,38.7,32.3,31.4,28.4,26.7,24.0,21.2,19.4,0.2$.

FTIR (NaCl, thin film): 2952, 2916, 2930, 1742, 1459, 1432, 1250, 1169, 1057, $844 \mathrm{~cm}^{-}$ ${ }^{1}$.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{O}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 463.2510$, found 463.2527 .
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}=+69.8^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
TLC ($\mathbf{1 0 0 \%} \mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$), $\mathbf{R}_{f}: 0.54$ (dark blue in p-anisaldehyde).

Preparation of semi-pinacol product 33 k :

Prepared via General Procedure A, 93\% yield.

Prepared from 164k ($82.9 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.0$ equiv), 2,6-di-tert-butyl-4-
methylpyridine ($14.3 \mathrm{mg}, 0.070 \mathrm{mmol}, 0.4$ equiv), and $\mathrm{TMSNTf}_{2}(6.1 \mathrm{mg}, 0.017 \mathrm{mmol}$, 0.1 equiv) at $-78^{\circ} \mathrm{C}$ for 30 minutes according to method \mathbf{A}. The reaction was purified by column chromatography (silica, 6% Acetone: 94% Hexanes) to yield 33k (77.2 mg, 93% yield) as a white crystalline solid.
${ }^{1} \mathbf{H}$ NMR (500 MHz, Chloroform-d): $\delta 5.70(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$, $3.63(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{dd}, J=11.8,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{td}, J=13.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.19$ $(\mathrm{m}, 2 \mathrm{H}), 2.17(\mathrm{t}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{dt}, J=14.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.91(\mathrm{~m}, 3 \mathrm{H}), 1.78$ (ddt, $J=11.6,9.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{dq}, J=14.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{ddd}, J=12.1,9.2$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{ddd}, J=11.9,8.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.71(\mathrm{~s}, 3 \mathrm{H})$, 0.05 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 219.9,171.3,170.7,146.9,133.4,71.1,59.0,57.2,56.5$, 55.7, 52.7, 52.7, 51.5, 42.1, 38.9, 31.6, 28.5, 25.2, 24.6, 20.1, 19.9, 19.5, 14.3, 0.2 .

FTIR (NaCI, thin film): 3062, 2951, 2874, 1742, 1434, 1250, $842 \mathrm{~cm}^{-1}$.
HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{O}_{6} \mathrm{SiK}[\mathrm{M}+\mathrm{K}]^{+}$515.2226, found 515.2231.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}=+1.8^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
TLC (15\% Acetone:85\% Hexanes), $\mathbf{R}_{\boldsymbol{f}}: 0.41$ (vibrant purple in p-anisaldehyde).

Preparation of semi-pinacol product 331:

1641

331

Prepared via General Procedure A, 88\% yield.

Prepared from 1641 ($53.0 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.0$ equiv), 2,6-di-tert-butyl-4methylpyridine ($9.7 \mathrm{mg}, 0.047 \mathrm{mmol}, 0.4$ equiv), and TMSNTf_{2} ($4.2 \mathrm{mg}, 0.012 \mathrm{mmol}$, 0.1 equiv) at $-78^{\circ} \mathrm{C}$ for 30 minutes according to method \mathbf{A}. The reaction was purified by column chromatography (silica, 10\% Acetone:90\% Hexanes) to yield 331 ($50.7 \mathrm{mg}, 88 \%$ yield) as a clear colorless oil.
${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform-d$): \delta 5.85(\mathrm{dd}, J=7.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{t}, J=2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{dd}, J=12.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.29$ $(\mathrm{dd}, J=17.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.01(\mathrm{~m}, 4 \mathrm{H}), 1.88-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.66(\mathrm{~m}, 3 \mathrm{H})$, $1.55-1.24(\mathrm{~m}, 6 \mathrm{H}), 1.18$ (dddd, $J=11.8,9.1,5.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 218.7,171.2,170.6,143.8,129.7,69.9,59.8,56.5,52.8$, 52.7, 42.7, 39.5, 33.8, 30.7, 28.5, 27.4, 26.8, 26.4, 25.1, 24.1, 19.4, 0.2.

FTIR (NaCl, thin film): 2948, 2863, 1732, 1434, 1252, 860, $844 \mathrm{~cm}^{-1}$.
HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 471.2173$, found 471.2155 .
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}=+35.6^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
TLC (10\% Acetone:90\% Hexanes), $\mathbf{R}_{f}: 0.29$ (bright red in p-anisaldehyde).

Preparation of semi-pinacol product 33m:

Prepared via General Procedure A, 99\% yield.

Prepared from 164 m ($95.4 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.0$ equiv), 2,6-di-tert-butyl-4-
methylpyridine ($17.5 \mathrm{mg}, 0.085 \mathrm{mmol}, 0.4$ equiv), and TMSNTf $_{2}(7.5 \mathrm{mg}, 0.021 \mathrm{mmol}$, 0.1 equiv) at $-78^{\circ} \mathrm{C}$ for 30 minutes according to method \mathbf{A}. The reaction was purified by column chromatography (silica, 15\% Acetone: 85% Hexanes) to yield $33 \mathrm{~m}(94.5 \mathrm{mg}$, 99% yield) as a clear colorless oil.
${ }^{1} \mathbf{H}$ NMR (500 MHz, Chloroform-d): $\delta 6.99-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.79(\mathrm{~m}, 2 \mathrm{H}), 4.64(\mathrm{t}$, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{dd}, J=12.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H})$, $2.54-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{dtd}, J=13.8,3.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\operatorname{tdd}, J$ $=13.9,3.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{dq}, J=14.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.09(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 220.7,170.9,170.2,158.0,134.2,128.9,113.7,69.4$, 58.8, 56.1, 55.4, 52.8, 52.3, 48.1, 39.6, 28.2, 23.7, 19.4, 0.1 .

FTIR (NaCl, thin film): 2952, 2901, 2836, 2794, 1742, 1611, 1514, 1253, 1172, $842 \mathrm{~cm}^{-}$ ${ }^{1}$.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{7} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 471.1810$, found 471.1811 . $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}=+72.7^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$.

TLC (15\% Acetone:85\% Hexanes), $\mathbf{R}_{f}: 0.15$ (yellow in p-anisaldehyde).

Preparation of rearrangement product 33n:

164n

A 500 mL flask was charged with silyl ether $\mathbf{1 6 4 n}(4.52 \mathrm{~g}, 8.59 \mathrm{mmol}, 1.0$ equiv), 2,6-di-tert-butyl-4-methylpyridine ($1.94 \mathrm{~g}, 9.45 \mathrm{mmol}, 1.1$ equiv) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(172 \mathrm{~mL}$,
$0.05 \mathrm{M})$, and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. To the flask was added N (Trimethylsilyl)bis(trifluoromethanesulfonyl)imide (TMSNTf 2) ($1.52,4.30 \mathrm{mmol}, 0.50$ equiv) which had being weighed out in a glovebox in a 1 mL syringe. After stirring for an additional 30 minutes at $0{ }^{\circ} \mathrm{C}$ the reaction was quenched with sat. $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$ and the solution was allowed to warm to $21^{\circ} \mathrm{C}$. The biphasic mixture was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 200 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography (silica, 10% to 12.5% to 15% acetone in hexanes gradient) to afford ketone $\mathbf{3 3 n}(3.32 \mathrm{~g}, 6.27 \mathrm{mmol}, 73 \%$ yield) as a white solid.
${ }^{1}$ H NMR (400 MHz , Chloroform-d): $\delta 7.17(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.77(\mathrm{dd}, J=8.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.53(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=12.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75$ (s, 3H), $3.71(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{dt}, J=18.1,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{td}, J=13.8,3.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.41-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{dq}, J=14.6$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.08(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 219.3,170.7,170.3,158.3,132.5,130.1,123.7,120.6$, $112.4,70.6,58.5,56.1,55.5,52.7,52.2,41.7,39.3,28.4,23.6,19.1,-0.1$.

FTIR (NaCl, thin film): 3470, 3083, 2254, 1745, 1732, 1602, 1493, 1456, 1253, 1213, $1173,1047,1026,869,840,731 \mathrm{~cm}^{-1}$.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{7} \mathrm{SiBr}[\mathrm{M}+\mathrm{H}]^{+}$527.1095, found 527.1093.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}=+52.6^{\circ}\left(c=1.40, \mathrm{CHCl}_{3}\right)$.
TLC (20\% EtOAc:80\% Hexanes), $\mathbf{R}_{f}: 0.35$ (yellow in p-anisaldehyde).

Preparation of semi-pinacol product 330:

1640

330

Prepared via General Procedure A, 82\% yield.
Prepared from 1640 ($84.9 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.0$ equiv), 2,6-di-tert-butyl-4methylpyridine ($14.3 \mathrm{mg}, 0.070 \mathrm{mmol}, 0.4$ equiv), and TMSNTf $_{2}(6.2 \mathrm{mg}, 0.017 \mathrm{mmol}$, 0.1 equiv) at $-78^{\circ} \mathrm{C}$ for 30 minutes according to method \mathbf{A}. The reaction was purified by column chromatography (silica, 15\% Acetone:85\% Hexanes) to yield $\mathbf{3 3 0}$ ($69.2 \mathrm{mg}, 82 \%$ yield) as a clear colorless oil.
${ }^{1}$ H NMR (400 MHz, Chloroform- $\left.\boldsymbol{d}\right): \delta 7.24(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.65(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{dd}, J=12.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.62-$ $2.35(\mathrm{~m}, 4 \mathrm{H}), 2.32-2.11(\mathrm{~m}, 3 \mathrm{H}), 1.98(\mathrm{tdd}, J=14.4,3.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.74(\mathrm{~m}$, $2 \mathrm{H}), 0.07$ (s, 9H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 215.5,170.8,170.7,150.6,141.1,115.1,96.4,68.9,56.3$, 56.2, 53.1, 52.8, 43.4, 39.0, 28.6, 23.8, 19.4, 0.1.

FTIR (NaCl, thin film): $3126,2954,1748,1572,1434,1253,1059,842 \mathrm{~cm}^{-1}$.
HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{7} \mathrm{SiBr}[\mathrm{M}+\mathrm{H}]^{+} 487.0782$, found 487.0798 .
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{25}=+16.7^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
TLC (15\% Acetone:85\% Hexanes), $\mathbf{R}_{\boldsymbol{f}}: 0.27$ (purple in p-anisaldehyde).

Preparation of semi-pinacol product 33p:

Prepared via General Procedure B, 92\% yield.

Prepared from 164p ($66.3 \mathrm{mg}, 0.091 \mathrm{mmol}, 1.0$ equiv), 2,6-di-tert-butyl-4methylpyridine ($20.6 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.1$ equiv), and TMSNTf $_{2}(16.1 \mathrm{mg}, 0.046 \mathrm{mmol}$, 0.5 equiv) at $-78^{\circ} \mathrm{C}$ for 4 hours according to method \mathbf{B}. The reaction was purified by column chromatography (silica, 15% EtOAc: 85% Hexanes) to yield 33p ($60.8 \mathrm{mg}, 92 \%$ yield) as a white foam.
${ }^{1}$ H NMR (500 MHz, Chloroform-d): $\delta 7.27(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=8.6,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.96(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{dd}, J=3.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, $3.62(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.29$ $(\mathrm{m}, 2 \mathrm{H}), 2.29-2.18(\mathrm{~m}, 3 \mathrm{H}), 2.18-2.03(\mathrm{~m}, 4 \mathrm{H}), 1.99-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~d}, J=10.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.74-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 0.07$ (s, 9H).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 219.8,171.3,171.0,154.1,147.7,141.2,139.7,129.4$, $126.9,121.3,118.2,70.6,58.7,56.5,56.3,52.6,52.5,48.5,43.8,43.7,39.0,36.8,36.2$, 31.2, 29.6, 28.1, 27.1, 26.5, 24.5, 20.0, 17.9, 0.2.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 73.0$.
FTIR (NaCl, thin film): 2952, 1741, 1605, 1490, 1423, 1250, 1211, 1143, 919, 843, 756 cm^{-1}.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{~F}_{3} \mathrm{O}_{9} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]^{+} 727.2578$, found 727.2581 .
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}=+51.4^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
TLC (15\% EtOAc:85\% Hexanes), $\mathbf{R}_{f}: 0.31$ (dark blue in p-anisaldehyde).

Preparation of semi-pinacol product 33q:

Prepared via General Procedure C, $\mathbf{9 3 \%}$ yield.

Prepared from $\mathbf{1 6 4 q}(62.4 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.0$ equiv), 2,6-di-tert-butyl-4methylpyridine ($24.1 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.0$ equiv), and TMSNTf $_{2}(12.5 \mathrm{mg}, 0.035 \mathrm{mmol}$, 0.3 equiv) at $-78^{\circ} \mathrm{C}$ for 4 hours according to method \mathbf{C}. The reaction was directly subjected to column chromatography (silica, $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to yield $\mathbf{3 3 q}$ ($58.2 \mathrm{mg}, 93 \%$ yield) as a white foam.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}): $\delta 5.35(\mathrm{dt}, J=9.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~s}, 1 \mathrm{H}), 3.72$ $(\mathrm{s}, 3 \mathrm{H}), 3.72(\mathrm{dd}, J=12.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.55-2.45(\mathrm{~m}, 0 \mathrm{H}), 2.43-2.08(\mathrm{~m}$, $6 \mathrm{H}), 2.07-1.96(\mathrm{~m}, 3 \mathrm{H}), 1.93-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.73(\mathrm{dq}, J=14.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.65$ $(\mathrm{m}, 1 \mathrm{H}), 1.61(\mathrm{dt}, J=11.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, 0.63 (dd, $J=11.5,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\mathbf{C D C l}_{3}$): $\delta 219.8,171.2,170.6,141.9,127.1,72.2,61.2,56.1,52.8$, $52.5,49.7,42.8,42.5,39.3,33.8,33.5,33.2,30.0,28.4,27.5,26.2,24.2,23.2,19.4,19.0$, 18.4, 15.5, 0.3.

FTIR (NaCl, thin film): 2952, 2870, 1736, 1457, 1251, 1056, 836, $750 \mathrm{~cm}^{-1}$.
HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 553.2956$, found 553.2948 .
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{25}=-43.1^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$.
TLC (10\% EtOAc:90\% Hexanes), $\mathbf{R}_{f}: 0.31$ (navy blue in p-anisaldehyde).

Preparation of semi-pinacol product 166a:

Prepared via General Procedure A, 93\% yield.
Prepared from 165a' ($52.7 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.0$ equiv), 2,6-di-tert-butyl-4methylpyridine ($9.9 \mathrm{mg}, 0.048 \mathrm{mmol}, 0.4$ equiv), and TMSNTf 2 ($4.2 \mathrm{mg}, 0.012 \mathrm{mmol}$, 0.1 equiv) at $0^{\circ} \mathrm{C}$ for 30 minutes according to method \mathbf{A}. The reaction was purified by column chromatography (silica, 1.5\% Acetone:98.5\% Hexanes) to yield 166 (48.8 mg , 93% yield) as a clear colorless oil.
${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform-d): $\delta 4.32(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.07(\mathrm{~m}, 2 \mathrm{H}), 2.64$ $-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.21(\mathrm{~m}, 5 \mathrm{H}), 2.04(\mathrm{dddd}, J=13.0,9.4,6.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.67$ $(\mathrm{m}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.09-1.02(\mathrm{~m}, 21 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 219.6,138.3,136.1,78.4,60.8,56.4,36.2,35.5,35.1$, 28.6, 21.4, 18.2, 15.6, 12.1, 0.1 .

FTIR (NaCl, thin film): 2939, 2865, 1746, 1652, 1462, 1251, 1094, 1064, 880, 848, 842 cm^{-1}.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{24} \mathrm{H}_{47} \mathrm{O}_{3} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 439.3064$, found 439.3079.
TLC (10\% EtOAc:90\% Hexanes), $\mathbf{R}_{f}: 0.58$ (dark blue in p-anisaldehyde).

Preparation of semi-pinacol product 166b:

Prepared via General Procedure B, 79\% yield.
Prepared from 165b’ (57.2 mg, $0.125 \mathrm{mmol}, 1.0$ equiv), 2,6-di-tert-butyl-4methylpyridine ($28.2 \mathrm{mg}, 0.138 \mathrm{mmol}, 1.1$ equiv), and TMSNTf $_{2}$ ($22.1 \mathrm{mg}, 0.0625$ mmol, 0.5 equiv) at $0{ }^{\circ} \mathrm{C}$ for 30 minutes according to method \mathbf{B}. The reaction was purified by column chromatography (silica, 1.5% Acetone: 98.5% Hexanes) to yield 166b ($44.7 \mathrm{mg}, 79 \%$ yield) as a clear colorless oil.
${ }^{1}$ H NMR (400 MHz, Chloroform-d): $\delta 4.17(\mathrm{dt}, J=4.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dt}, J=12.6$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{ddd}, J=12.5,2.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{ddd}, J=13.4,12.0,6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.61-2.31(\mathrm{~m}, 4 \mathrm{H}), 2.26$ (dddd, $J=13.4,4.9,3.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.04$ (ddt, $J=24.1,11.9$, $4.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{tdd}, J=12.1,4.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{dtt}, J=$ $13.5,5.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.06-0.99(\mathrm{~m}, 21 \mathrm{H}), 0.19-0.11(\mathrm{~m}, 1 \mathrm{H}), 0.06(\mathrm{~s}$, 9H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 214.5,138.1,137.3,77.9,60.0,57.5,39.3,35.4,34.9$, 29.9, 21.6, 21.4, 19.4, 18.1, 12.1, 0.2.

FTIR (NaCl, thin film): 2943, 2893, 2867, 1714, 1660, 1463, 1251, 1103, 1079, 1067, $986,840 \mathrm{~cm}^{-1}$.

HRMS: (FI-TOF) calc'd for $\mathrm{C}_{25} \mathrm{H}_{48} \mathrm{O}_{3} \mathrm{Si}_{2}[\mathrm{M}]^{+} 452.3137$, found 452.3137 .
TLC (10\% EtOAc:90\% Hexanes), $\mathbf{R}_{f}: 0.58$ (dark pink in p-anisaldehyde).

Preparation of aromatic intermediate 167:

A 40 mL vial was charged with aryl bromide $\mathbf{3 3 n}$ ($480 \mathrm{mg}, 0.910 \mathrm{mmol}, 1.0$ equiv) and was brought into a glovebox. The vial was charged with $\mathrm{K}_{3} \mathrm{PO}_{4}(882 \mathrm{mg}, 3.64 \mathrm{mmol}$, 4.0 equiv), DavePhos-Pd-G3 ($69.5 \mathrm{mg}, 0.091 \mathrm{mmol}, 10 \mathrm{~mol} \%$), and lastly PhMe (23 mL , $0.04 \mathrm{M})$. The vial was sealed, brought out of the glovebox, and placed inside an $80^{\circ} \mathrm{C}$ oil bath. The reaction was allowed to stir for 15 hours. Note: it is extremely important to maintain vigorous stirring. A cross-shaped stir bar was used in this reaction. When the stirring was not vigorous incomplete conversion was observed. The reaction was cooled to $21^{\circ} \mathrm{C}$ and filtered through a plug of silica gel that had pre-saturated with $\mathrm{Et}_{2} \mathrm{O}$. The crude product was purified by column chromatography (silica, 15% to 18% to $20 \% \mathrm{EtOAc}$ in hexanes gradient) to afford 167 ($264 \mathrm{mg}, 0.592 \mathrm{mmol}, 65 \%$ yield $)$ as a white solid.

The material was recrystallized from $\mathrm{Et}_{2} \mathrm{O}$ to afford crystals suitable for X-ray diffraction analysis.

Note: This reaction was initially developed and performed on racemic material and the Xray structure was obtained was on racemic material. The route was repeated and fully characterized using enantiopure epoxyketone 31.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}): $\boldsymbol{\delta} 7.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.79(\mathrm{dd}, J=8.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=10.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, $3.67(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dt}, J=12.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.34(\mathrm{~m}, 1 \mathrm{H})$, $2.05-1.89(\mathrm{~m}, 4 \mathrm{H}), 1.53(\mathrm{dd}, J=12.4,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.11(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 199.5,171.8,170.4,158.8,142.4,133.5,121.5,112.3$, 107.1, 67.9, 56.8, 55.4 (two ${ }^{13} \mathrm{C}$ signals), 52.7, 52.3, 49.0, 43.1, 30.3, 28.7, 28.5, 0.7 .

FTIR (NaCl, thin film): 2954, 1790, 1779, 1738, 1732, 1609, 1484, 1455, 1251, 1121, $1043,908,875,842,732 \mathrm{~cm}^{-1}$.

HRMS: (ESI-TOF) calc'd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{O}_{7} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 447.1834$, found 447.1824 .
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 5}}=+51.7^{\circ}\left(c=0.78, \mathrm{CHCl}_{3}\right)$.
TLC ($\mathbf{2 0 \%}$ EtOAc:80\% Hexanes), $\mathbf{R}_{\boldsymbol{f}}: 0.35$ (UV, brown in I_{2} stain) Note: does not appear in p-anisaldehyde or CAM.

X-Ray Crystallographic Data

Low-temperature diffraction data (ϕ - and ω-scans) were collected on a Bruker AXS D8 VENTURE KAPPA diffractometer coupled to either a PHOTON 100 CMOS detector with Mo-K α radiation $(\lambda=0.71073 \AA$) or a PHOTON II CPAD detector with either $\mathrm{Mo}-K \alpha$ radiation $(\lambda=0.71073 \AA$) or $\mathrm{Cu}-K \alpha$ radiation $(\lambda=1.54178 \AA$) from a finefocus sealed X-ray tube. All diffractometer manipulations, including data collection integration, and scaling were carried out using the Bruker APEXII software. ${ }^{69}$ Absorption
corrections were applied using SADABS. ${ }^{70}$ The structure was solved by intrinsic phasing using SHELXT ${ }^{71}$ and refined against F^{2} on all data by full-matrix least squares with SHELXL-2014 ${ }^{72}$ using established refinement techniques. ${ }^{73}$ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms they are linked to (1.5 times for methyl and hydroxyl groups). Absolute configuration was determined by anomalous dispersion ${ }^{74}$ and confirmed by Bayesian statistical analysis using the program PLATON. ${ }^{75}$ Graphical representation of the structure with 50% probability thermal ellipsoids was generated using Mercury visualization software.

CRYSTALLOGRAPHIC ANALYSIS OF 167

Special Refinement Details

Rendering of 167.
Figure 3.4. X-Ray structure of 167.

Compound $\mathbf{1 6 7}$ crystallizes in the orthorhombic space group Pbca with one molecule in the asymmetric unit. CCDC 2224814.

Table 3.3. Crystal data and structure refinement for 167.

Identification code	P16149
Empirical formula	$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{7} \mathrm{Si}$
Formula weight	446.56
Temperature	100 K
Wavelength	0.71073 A
Crystal system	Orthorhombic
Space group	Pbca
Unit cell dimensions	$a=18.2041(15) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=12.7693(13) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=19.5076(18) \AA \quad \gamma=90^{\circ}$.
Volume	4534.6(7) \AA^{3}
Z	8
Density (calculated)	$1.308 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.145 \mathrm{~mm}^{-1}$
F(000)	1904
Crystal size	$0.188 \times 0.151 \times 0.05 \mathrm{~mm}^{3}$
Theta range for data collection	2.210 to 32.037°.
Index ranges	$-27<=\mathrm{h}<=27,-17<=\mathrm{k}<=18,-29<=\mathrm{l}<=26$
Reflections collected	135898
Independent reflections	$7877[\mathrm{R}(\mathrm{int})=0.0810]$
Completeness to theta $=26.000^{\circ}$	99.8 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7468 and 0.6970
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	7877 / 0 / 287
Goodness-of-fit on F^{2}	1.090
Final R indices [$\mathrm{l}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0443, \mathrm{wR} 2=0.0997$
R indices (all data)	$\mathrm{R} 1=0.0621, \mathrm{wR} 2=0.1053$
Extinction coefficient	0.0014(3)
Largest diff. peak and hole	0.412 and -0.287 e. \AA^{-3}

3.5 NOTES AND REFERENCES

(1) Kerkovius, J.; Wong, A.; Mak, V.; Reisman, S. E. A Convergent Fragment Coupling Strategy to Access Quaternary Stereogenic Centers. Chem. Sci. 2023.
(2) Peterson, E. A.; Overman, L. E. Contiguous Stereogenic Quaternary Carbons: A Daunting Challenge in Natural Products Synthesis. Proc. Natl. Acad. Sci. 2004, 101, 11943-11948.
(3) Hendrickson, J. B. Systematic Synthesis Design. 6. Yield Analysis and Convergency. J. Am. Chem. Soc. 1977, 99, 5439-5450.
(4) Bertz, S. H. Convergence, Molecular Complexity, and Synthetic Analysis. J. Am. Chem. Soc. 1982, 104, 5801-5803.
(5) Velluz, L.; Valls, J.; Nominé, G. Recent Advances in the Total Synthesis of Steroids. Angew. Chem. Int. Ed. Engl. 1965, 4, 181-200.
(6) Urabe, D.; Asaba, T.; Inoue, M. Convergent Strategies in Total Syntheses of Complex Terpenoids. Chem. Rev. 2015, 115, 9207-9231.
(7) Tomanik, M.; Hsu, I. T.; Herzon, S. B. Fragment Coupling Reactions in Total Synthesis That Form Carbon-Carbon Bonds via Carbanionic or Free Radical Intermediates. Angew. Chem. Int. Ed. 2021, 60, 1116-1150.
(8) Huffman, B. J.; Chu, T.; Hanaki, Y.; Wong, J. J.; Chen, S.; Houk, K. N.; Shenvi, R. A. Stereodivergent Attached-Ring Synthesis via Non-Covalent Interactions: A Short Formal Synthesis of Merrilactone A. Angew. Chem. Int. Ed. 2022, 61, e202114514.
(9) E. J. Corey, X.-M. C. The Logic of Chemical Synthesis; Wiley: New York, 1995.
(10) Li, D. R.; Xia, W. J.; Tu, Y. Q.; Zhang, F. M.; Shi, L. A Novel AlEt3-Promoted Tandem Reductive Rearrangement of 1-Benzyloxy-2,3-Epoxides: New Route to 2Quaternary 1,3-Diol Units. Chem. Commun. 2003, No. 6, 798-799.
(11) Lee, S.; Kim, K.; Cha, J. A Semi-Pinacol Rearrangement Approach to Bicyclo[3.2.1]Octan-2-Ones and Bicyclo[3.2.1]Octan-3-Ones. Synlett 2008, 2008, 2155-2157.
(12) Hu, X.-D.; Fan, C.-A.; Zhang, F.-M.; Tu, Y. Q. A Tandem Semipinacol Rearrangement/Alkylation of α-Epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols. Angew. Chem. Int. Ed. 2004, 43, 17021705.
(13) Liu, Y.; Tse, Y.-L. S.; Kwong, F. Y.; Yeung, Y.-Y. Accessing Axially Chiral Biaryls via Organocatalytic Enantioselective Dynamic-Kinetic ResolutionSemipinacol Rearrangement. ACS Catal. 2017, 7, 4435-4440.
(14) Li, X.; Wu, B.; Zhao, X. Z.; Jia, Y. X.; Tu, Y. Q.; Li, D. R. An Interesting AlEt3Promoted Stereoselective Tandem Rearrangement/Reduction of α-Hydroxy (or Amino) Heterocyclopropane. Synlett 2003, 2003, 623-626.
(15) Snape, T. J. Application of the Semi-Pinacol Rearrangement towards the Generation of Alkenyl-Substituted Quaternary Carbon Centres. Org. Biomol. Chem. 2006, 4, 4144-4148.
(16) Wu, H.; Wang, Q.; Zhu, J. Catalytic Enantioselective Pinacol and Meinwald Rearrangements for the Construction of Quaternary Stereocenters. J. Am. Chem. Soc. 2019, 141, 11372-11377.
(17) Marson, C. M.; Khan, A.; Porter, R. A.; Cobb, A. J. A. Construction of Functionalised Medium Rings by Stereospecific Expansions of 2,3-Epoxy Alcohols under Mild Conditions. Tetrahedron Lett. 2002, 43, 6637-6640.
(18) Liu, M.; Huang, H.; Chen, Y. Cyclic Iodine Reagents Enable Allylic Alcohols for Alkyl Boronate Addition/Rearrangement by Photoredox Catalysis. Chin. J. Chem. 2018, 36, 1209-1212.
(19) Chen, C.; Kang, J.-C.; Mao, C.; Dong, J.-W.; Xie, Y.-Y.; Ding, T.-M.; Tu, Y.-Q.; Chen, Z.-M.; Zhang, S.-Y. Electrochemical Halogenation/Semi-Pinacol Rearrangement of Allylic Alcohols Using Inorganic Halide Salt: An Eco-Friendly Route to the Synthesis of β-Halocarbonyls. Green Chem. 2019, 21, 4014-4019.
(20) Lukamto, D. H.; Gaunt, M. J. Enantioselective Copper-Catalyzed Arylation-Driven Semipinacol Rearrangement of Tertiary Allylic Alcohols with Diaryliodonium Salts. J. Am. Chem. Soc. 2017, 139, 9160-9163.
(21) Romanov-Michailidis, F.; Pupier, M.; Guénée, L.; Alexakis, A. Enantioselective Halogenative Semi-Pinacol Rearrangement: A Stereodivergent Reaction on a Racemic Mixture. Chem. Commun. 2014, 50, 13461-13464.
(22) Namba, K.; Kanaki, M.; Suto, H.; Nishizawa, M.; Tanino, K. Hg(OTf)2-Catalyzed Vinylogous Semi-Pinacol Rearrangement Leading to 1,4-Dihydroquinolines. Org. Lett. 2012, 14, 1222-1225.
(23) Wang, B. M.; Song, Z. L.; Fan, C. A.; Tu, Y. Q.; Shi, Y. Lewis Acid Promoted Highly Stereoselective Rearrangement of 2,3-Aziridino Alcohols: A New Efficient Approach to β-Amino Carbonyl Compounds. Org. Lett. 2002, 4, 363-366.
(24) Shimazaki, M.; Hara, H.; Suzuki, K.; Tsuchihashi, G. On the Use of Epoxy Alcohol-Aldol Rearrangement for Stereoselective Construction of Quarternary Carbon Centers. Tetrahedron Lett. 1987, 28, 5891-5894.
(25) Yao, S.; Zhang, K.; Zhou, Q.-Q.; Zhao, Y.; Shi, D.-Q.; Xiao, W.-J. PhotoredoxPromoted Alkyl Radical Addition/Semipinacol Rearrangement Sequences of Alkenylcyclobutanols: Rapid Access to Cyclic Ketones. Chem. Commun. 2018, 54, 8096-8099.
(26) Fan, C.-A.; Hu, X.-D.; Tu, Y.-Q.; Wang, B.-M.; Song, Z.-L. Progressive Studies on the Novel Samarium-Catalyzed Diastereoselective Tandem Semipinacol Rearrangement/Tishchenko Reduction of Secondary α-Hydroxy Epoxides. Chem. - Eur. J. 2003, 9, 4301-4310.
(27) Cheer, C. J.; Johnson, C. R. Stereoselective Rearrangements of Conformationally Mobile Epoxides. J. Am. Chem. Soc. 1968, 90, 178-183.
(28) Tu, Y. Q.; Sun, L. D.; Wang, P. Z. Stereoselective Reductive Rearrangement of $\alpha-$ Hydroxy Epoxides: A New Method for Synthesis of 1,3-Diols1. J. Org. Chem. 1999, 64, 629-633.
(29) Hirama, N.; Sakamoto, R.; Maruoka, K. Synthesis of α-Quaternary Aldehydes via a Stereoselective Semi-Pinacol Rearrangement of Optically Active Epoxy Alcohols. Asian J. Org. Chem. 2019, 8, 1390-1393.
(30) Gu, P.; Zhao, Y.-M.; Tu, Y. Q.; Ma, Y.; Zhang, F. Tandem Semipinacol/Schmidt Reaction Leading to a Versatile and Efficient Approach to Azaquaternary Alkaloid Skeletons. Org. Lett. 2006, 8, 5271-5273.
(31) Tu, Y. Q.; Fan, C. A.; Ren, S. K.; Chan, A. S. C. Zinc Bromide as Catalyst for the Stereoselective Construction of Quaternary Carbon: Improved Synthesis of Diastereomerically Enriched Spirocyclic Diols. J. Chem. Soc. Perkin 1 2000, No. 22, 3791-3794.
(32) Yang, M.; Wang, L.; He, Z.-H.; Wang, S.-H.; Zhang, S.-Y.; Tu, Y.-Q.; Zhang, F.M. Tandem Semipinacol-Type 1,2-Carbon Migration/Aldol Reaction toward the Construction of [5-6-7] All-Carbon Tricyclic Core of Calyciphylline A-Type Alkaloids. Org. Lett. 2012, 14, 5114-5117.
(33) Tanino, K.; Onuki, K.; Asano, K.; Miyashita, M.; Nakamura, T.; Takahashi, Y.; Kuwajima, I. Total Synthesis of Ingenol. J. Am. Chem. Soc. 2003, 125, 1498-1500.
(34) J. Snape, T. Recent Advances in the Semi-Pinacol Rearrangement of α-Hydroxy Epoxides and Related Compounds. Chem. Soc. Rev. 2007, 36, 1823-1842.
(35) Wang, B.; Tu, Y. Q. Stereoselective Construction of Quaternary Carbon Stereocenters via a Semipinacol Rearrangement Strategy. Acc. Chem. Res. 2011, 44, 1207-1222.
(36) Song, Z.-L.; Fan, C.-A.; Tu, Y.-Q. Semipinacol Rearrangement in Natural Product Synthesis. Chem. Rev. 2011, 111, 7523-7556.
(37) Zhang, X.-M.; Tu, Y.-Q.; Zhang, F.-M.; Chen, Z.-H.; Wang, S.-H. Recent Applications of the 1,2-Carbon Atom Migration Strategy in Complex Natural Product Total Synthesis. Chem. Soc. Rev. 2017, 46, 2272-2305.
(38) Zhang, X.-M.; Li, B.-S.; Wang, S.-H.; Zhang, K.; Zhang, F.-M.; Tu, Y.-Q. Recent Development and Applications of Semipinacol Rearrangement Reactions. Chem. Sci. 2021, 12, 9262-9274.
(39) Cernijenko, A.; Risgaard, R.; Baran, P. S. 11-Step Total Synthesis of (-)Maoecrystal V. J. Am. Chem. Soc. 2016, 138, 9425-9428.
(40) Wong, A. R.; Fastuca, N. J.; Mak, V. W.; Kerkovius, J. K.; Stevenson, S. M.; Reisman, S. E. Total Syntheses of the C19 Diterpenoid Alkaloids (-)-Talatisamine, $(-)$-Liljestrandisine, and (-)-Liljestrandinine by a Fragment Coupling Approach. ACS Cent. Sci. 2021, 7, 1311-1316.
(41) Mathieu, B.; Ghosez, L. Trimethylsilyl Bis(Trifluoromethanesulfonyl)Imide as a Tolerant and Environmentally Benign Lewis Acid Catalyst of the Diels-Alder Reaction. Tetrahedron 2002, 58, 8219-8226.
(42) Fox, J. M.; Huang, X.; Chieffi, A.; Buchwald, S. L. Highly Active and Selective Catalysts for the Formation of α-Aryl Ketones. J. Am. Chem. Soc. 2000, 122, 1360-1370.
(43) Dank, C.; Sanichar, R.; Choo, K.-L.; Olsen, M.; Lautens, M. Recent Advances Towards Syntheses of Diterpenoid Alkaloids. Synthesis 2019, 51, 3915-3946.
(44) Kou, K. G. M.; Li, B. X.; Lee, J. C.; Gallego, G. M.; Lebold, T. P.; DiPasquale, A. G.; Sarpong, R. Syntheses of Denudatine Diterpenoid Alkaloids: Cochlearenine, N-Ethyl-1 α-Hydroxy-17-Veratroyldictyzine, and Paniculamine. J. Am. Chem. Soc. 2016, 138, 10830-10833.
(45) Still, W. C.; Kahn, M.; Mitra, A. Rapid Chromatographic Technique for Preparative Separations with Moderate Resolution. J. Org. Chem. 1978, 43, 29232925.
(46) Kamachi, T.; Kuno, A.; Matsuno, C.; Okamoto, S. Cobalt-Catalyzed MonoCoupling of R3SiCH2MgCl with 1,2-Dihalogenoethylene: A General Route to γ Substituted (E)-Allylsilanes. Tetrahedron Lett. 2004, 45, 4677-4679.
(47) Amer, M. M.; Olaizola, O.; Carter, J.; Abas, H.; Clayden, J. An Aliphatic Bischler-Napieralski Reaction: Dihydropyridones by Cyclocarbonylation of 3-Allylimidazolidin-4-Ones. Org. Lett. 2020, 22, 253-256.
(48) Pericàs, M. A.; Serratosa, F.; Valentí, E. An Efficient Synthesis of TertAlkoxyethynes. Tetrahedron 1987, 43, 2311-2316.
(49) Stalick, W. M.; Khorrami, A.; Hatton, K. S. Dehydrobromination of 1,2Dibromoethyoxyethane Using Various Amine Bases. J. Org. Chem. 1986, 51, 3577-3581.
(50) Shirakawa, E.; Imazaki, Y.; Hayashi, T. Ruthenium-Catalyzed Transformation of Alkenyl Triflates to Alkenyl Halides. Chem. Commun. 2009, No. 34, 5088.
(51) Zhan, F.; Liang, G. Formation of Enehydrazine Intermediates through Coupling of Phenylhydrazines with Vinyl Halides: Entry into the Fischer Indole Synthesis. Angew. Chem. Int. Ed. 2013, 52, 1266-1269.
(52) Lee, K.; Wiemer, D. F. The Reaction of Vinyl Phosphates with Iodotrimethylsilane: Synthesis of Vinyl Iodides from Ketones. Tetrahedron Lett. 1993, 34, 2433-2436.
(53) Ojha, D. P.; Prabhu, K. R. Regioselective Synthesis of Vinyl Halides, Vinyl Sulfones, and Alkynes: A Tandem Intermolecular Nucleophilic and Electrophilic Vinylation of Tosylhydrazones. Org. Lett. 2015, 17, 18-21.
(54) Despotopoulou, C.; Bauer, R. C.; Krasovskiy, A.; Mayer, P.; Stryker, J. M.; Knochel, P. Selective Mono- and 1,2-Difunctionalisation of Cyclopentene Derivatives via Mg and Cu Intermediates. Chem. - Eur. J. 2008, 14, 2499-2506.
(55) Harrowven, D. C.; Pascoe, D. D.; Guy, I. L. Thermally Induced Cyclobutenone Rearrangements and Domino Reactions. Angew. Chem. Int. Ed. 2007, 46, 425428.
(56) Pijper, T. C.; Kudernac, T.; Browne, W. R.; Feringa, B. L. Effect of Immobilization on Gold on the Temperature Dependence of Photochromic Switching of Dithienylethenes. J. Phys. Chem. C 2013, 117, 17623-17632.
(57) Han, A.; Tao, Y.; Reisman, S. E. A 16-Step Synthesis of the Isoryanodane Diterpene (+)-Perseanol. Nature 2019, 573, 563-567.
(58) Yang, Q.; Sheng, M.; Henkelis, J. J.; Tu, S.; Wiensch, E.; Zhang, H.; Zhang, Y.; Tucker, C.; Ejeh, D. E. Explosion Hazards of Sodium Hydride in Dimethyl Sulfoxide, N,N-Dimethylformamide, and N,N-Dimethylacetamide. Org. Process Res. Dev. 2019, 23, 2210-2217.
(59) Tessier, P. E.; Nguyen, N.; Clay, M. D.; Fallis, A. G. Aryl Annulation of Cyclic Ketones via a Magnesium Carbometalation-6- π - Electrocyclization Protocol. Org. Lett. 2005, 7, 767-770.
(60) Hofstra, J. L.; Poremba, K. E.; Shimozono, A. M.; Reisman, S. E. NickelCatalyzed Conversion of Enol Triflates into Alkenyl Halides. Angew. Chem. Int. Ed. 2019, 58, 14901-14905.
(61) Tessier, P. E.; Nguyen, N.; Clay, M. D.; Fallis, A. G. Aryl Annulation of Cyclic Ketones via a Magnesium Carbometalation-6- π - Electrocyclization Protocol. Org. Lett. 2005, 7, 767-770.
(62) Mikle, G.; Boros, B.; Kollár, L. Synthesis of Bornene-2,2'-Diamino-1,1'Binaphthalene Conjugates in Palladium-Catalysed Aminocarbonylations. Tetrahedron Asymmetry 2016, 27, 377-383.
(63) Carr, R. V. C.; Williams, R. V.; Paquette, L. A. Dienophilic Properties of Phenyl Vinyl Sulfone and Trans-1-(Phenylsulfonyl)-2-(Trimethylsilyl)Ethylene. Their Utilization as Synthons for Ethylene, 1-Alkenes, Acetylene, and Monosubstituted Alkynes in the Construction of Functionalized Six-Membered Rings via [4 + 2] .Pi. Cycloaddition Methodology. J. Org. Chem. 1983, 48, 4976-4986.
(64) Komatsu, K.; Aonuma, S.; Jinbu, Y.; Tsuji, R.; Hirosawa, C.; Takeuchi, K. Generation and Oligomerization of Bicyclo[2.2.2]Octyne and Properties of Tris(Bicyclo[2.2.2]Octeno)Benzene Obtained from the Linear Trimer. J. Org. Chem. 1991, 56, 195-203.
(65) Sun, Q.; Jiang, C.; Xu, H.; Zhang, Z.; Liu, L.; Wang, C. Pd(PPh3)4/AgOAcCatalyzed Coupling of 17-Steroidal Triflates and Alkynes: Highly Efficient Synthesis of D-Ring Unsaturated 17-Alkynylsteroids. Steroids 2010, 75, 936-943.
(66) Duhamel, N.; Martin, D.; Larcher, R.; Fedrizzi, B.; Barker, D. Convenient Synthesis of Deuterium Labelled Sesquiterpenes. Tetrahedron Lett. 2016, 57, 4496-4499.
(67) Kraft, P.; Berthold, C. (4E,8Z)-12-Methyloxacyclotetradeca-4,8-Dien-2-One and Its 7a-Homologue: Conformationally Constrained Double-Unsaturated Macrocyclic Musks by Ring-Closing Alkyne Metathesis. Synthesis 2008, 2008, 543-550.
(68) Lhermet, R.; Durandetti, M.; Maddaluno, J. Intramolecular Carbonickelation of Alkenes. Beilstein J. Org. Chem. 2013, 9, 710-716.
(69) APEX2, Version 2 User Manual, M86-E01078, Bruker Analytical X-Ray Systems, Madison, WI, 2006.
(70) Sheldrick, G.M. SADABS (Version 2008/1): Program for Absorption Correction for Data from Area Detector Frames, University of Göttingen, 2008.
(71) Sheldrick, G. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112.
(72) Sheldrick, G. M. Acta Crystallogr., Sect. C: Struct. Chem. 2015, C71, 3.
(73) Müller, P. Crystallogr. Rev. 2009, 15, 57.
(74) Parsons, S.; Flack, H. D.; Wagner, T. Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater. 2013, B69, 249.
(75) Spek, A. L. Acta Crystallogr., Sect. D: Struct. Biol. 2009, D65, 148.

Appendix 2

Spectra Relevant to Chapter 3:
A convergent fragment coupling strategy to access quaternary stereogenic centers

Br

Cll)
08 ZL —
ャז 8 CL

$29.0<-$

50：28－

9でてIt－

80.82π－

ס্ল্ল
$9 \mathbf{F}^{\circ} 0 \mathrm{~L}$ —

[This chapter is temporarily embargoed.]

ABOUT THE AUTHOR

Jeffrey Kevan Kerkovius was born on June $14^{\text {th }}, 1992$ to Kevan Springford and Jenny Kerkovius in Kelowna, BC, Canada. He grew up on the outskirts of West Kelowna, graduating from Mount Boucherie high school in 2010. Jeff had an innate passion for chemistry, going as far as setting up a lab in his parent's workshop, which included a fully functioning fumehood and Schlenk line. Jeff then attended the University of British Columbia Okanagan (UBCO) in Kelowna to pursue his undergraduate studies. Jeff took a year off university after his first year to pursue cross country skiing professionally, where he achieved a personal best $2^{\text {nd }}$ place finish at the Canadian national championships. Jeff then returned to UBCO to complete his undergraduate studies where he performed undergraduate research under the supervision of Prof. Fred Menard working on the synthesis of fluorescent labelled voltage gated calcium channel probes. After receiving his B.Sc. in chemistry, he then moved to London, Ontario, Canada to pursue his M.Sc. in chemistry under the supervision of Prof. Michael Kerr. He successfully completed the total synthesis of three indole alkaloids via a divergent synthetic route. Upon graduating with his M.Sc. Jeff moved to Pasadena, CA, USA to pursue his Ph.D. with Prof. Sarah Reisman. In her laboratory Jeff worked on the total synthesis of several alkaloids and diterpenes and developed methods inspired by the total synthesis work. Upon completion of his Ph.D. Jeff will move to Neurocrine Biosciences as a medicinal chemist.

[^0]: J. K. K. was supported by an NSERC PGS-D fellowship (PGSD3-532535-2019).

[^1]: ${ }^{\dagger}$ This chapter has been reproduced from a published manuscript. ${ }^{1}$ J. K. K was supported by an NSERC PGS-D fellowship (PGSD3-532535-2019). A. R. W and V. W. M were supported by an NSF Graduate Research Fellowship (DGE-1144469). S. E. R. acknowledges financial support from the NIH (R35GM118191).

