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ABSTRACT 

Remote sensing is a powerful tool that is used to diagnose sources, sinks, and fluxes of 

trace gases across different spatial and temporal scales. Ground-based remote sensing 

measurements of column-averaged dry mole fractions (DMF) of gases such as carbon 

dioxide (CO2) and carbon monoxide (CO) made by the Total Carbon Column Observing 

Network (TCCON) are used to validate space-based measurements and better understand 

the carbon cycle. Surface signals of gas exchange can be masked in the total column values, 

however, limiting their use in assessment of local surface fluxes. Retrievals of the vertical 

distribution of trace gases can be used to obtain gas exchange information that is more 

directly related to changes at the surface but require high precision measurements with less 

temporal resolution than the TCCON total column measurements. In this thesis, I develop 

an algorithm, the Temporal Atmospheric Retrieval Determining Information from 

Secondary Scaling (TARDISS), that infers vertical information, or ‘partial columns’, from 

existing, quality-controlled total column data. The TARDISS algorithm does not fit the 

solar spectra but rather begins with trace gas column retrievals obtained from different 

spectral bands using the standard TCCON retrievals. TARDISS takes advantage of the fact 

that different bands have different sensitivities to the same trace gas as a function of altitude 

and solar zenith angle. We use the TARDISS partial column data to examine estimated 

surface fluxes in the North American boreal forest and compare them to surface fluxes 

estimated from tall tower in situ measurements. We also outline changes in air quality from 

the sudden change in traffic behavior from the COVID-19 lockdown which serves as 

motivation for the use of the TARDISS-derived lower partial column CO data to examine 

recent changes in air quality in the South Coast Air Basin. 
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C h a p t e r  1  

INTRODUCTION 

Remote sensing is a powerful tool for measuring atmospheric species. Species related to 

climate and air quality such as carbon dioxide (CO2) and carbon monoxide (CO) are 

remotely measured both from the ground and from space to better understand 

anthropogenic and biogenic climate drivers and enhance our ability to model the world 

around us (Crisp et al., 2017; Eldering et al., 2019; Wiacek et al., 2007; Wunch et al., 

2011). Measurements made by ground-based Fourier transform spectrometers (FTSs) as a 

part of the Total Carbon Column Observation Network (TCCON) are used to validate 

measurements from space-based instruments as well as expand our knowledge of the 

carbon cycle (Wunch et al., 2011). TCCON reports total column (defined as the surface to 

the top of the atmosphere) dry mole fraction (DMF) values for an array of atmospheric 

species that are then calibrated to the World Meteorological Organization (WMO) standard 

by comparison with in situ vertical profile measurements.   

 

TCCON uses a nonlinear, least-squares algorithm, called GFIT, to minimize the errors in 

the difference between a spectrum derived from a forward radiative transfer model and a 

spectrum of sunlight measured by the FTS. Each spectrum is split into spectral regions 

(also called windows) to isolate absorption features from a particular atmospheric species 

of interest. The GFIT algorithm retrieves a single scaling factor which it applies to an a 

priori vertical profile for each species. The a priori profiles are then vertically integrated 

and scaled by the retrieved scaling factor to get the a posteriori total column values. These 

values are converted to DMF by dividing by the column of dry air computed from the total 

column value of O2 retrieved from the same spectra. Under optimal conditions, retrieved 

total column DMF values are reported roughly every three minutes during the day.  

 

Retrievals obtained from different spectral windows have different sensitivities to different 

parts of the atmosphere. These sensitivities are referred to as averaging kernels and are 
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solar zenith angle dependent column vectors for the scaled priors retrieved by TCCON. 

The sensitivity, or lack thereof, to changes at different altitudes is the result of the spectral 

properties of the window. For example, since information about the stratosphere comes 

from the near the center of a spectral absorption line as a result of diminished collisional 

broadening, optically thin windows tend to be more sensitive to changes in the upper 

troposphere and stratosphere. If the absorption line center is saturated due to absorption in 

the lower atmosphere, the spectrum will not have much information from the stratosphere 

and will be less sensitive to stratospheric changes.  

 

Profile retrievals have been explored using TCCON spectra in individual windows, but a 

method to combine the information from different spectral windows has yet to be 

developed (Connor et al., 2016; Kuai et al., 2012; Roche et al., 2021). Profile retrievals 

from TCCON spectra have been shown to theoretically have roughly three degrees of 

freedom meaning three pieces of vertical information could be retrieved from a spectrum 

but the retrievals are subject to nonphysical results and oscillation due to errors in 

spectroscopy and a priori meteorology, particularly temperature (Connor et al., 2016; 

Roche et al., 2021). 

 

In Chapter 3, we describe a new algorithm, the Temporal Atmospheric Retrieval 

Determining Information from Secondary Scaling, or TARDISS, that enables retrieval of 

vertical information about the distribution of trace gases from TCCON data. Instead of 

fitting the spectra directly, we fit the differences in the total column DMF values obtained 

from different spectral bands with different vertical sensitivities by performing a secondary 

scaling of two partial columns of the atmosphere. This algorithm takes advantage of 

previous efforts to carefully calibrate the total column retrievals against WMO-scale in situ 

observations.  

 

Similar to the spectral fitting, we use the maximum a posteriori (MAP) method described 

in Rodgers, 2008, that returns a scaling factor that maximizes the posterior probability 

distribution. In the spectral fitting performed by GFIT, this returns the optimal scaling 
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factor of the prior profile that minimizes the errors between the measured and modeled 

spectrum. In our new algorithm, this returns the optimal scaling factors for a partial column 

near the surface (0-2 km) and one above (2-70 km) that minimizes the differences between 

the total column DMF values retrieved from different spectral windows and a new total 

column DMF calculated by scaled partial columns. This eliminates the need to fit spectra 

directly by utilizing the information already retrieved by GFIT. This method also allows 

us to use a priori information to further inform the secondary scaling.  

 

Aside from not directly fitting the spectra directly, the key component of the TARDISS 

algorithm is that it simultaneously fits data obtained over an entire day of measurement 

instead of one spectrum at a time. Utilizing the temporal dimension takes advantage of 

improving the signal-to-noise by joint retrieval of many observations compared to 

traditional profile retrievals obtained from each spectra. It also, and possibly more 

importantly, allows for the use of temporal a priori information meaning that we can 

constrain the retrieval based on our understanding and expectation of the behavior of the 

atmosphere over the day. This aspect of the algorithm has the greatest potential for further 

study and could be useful in improving the algorithm in the future.  

 

This algorithm provides new information about surface mixing ratios of CO2 and CO from 

TCCON stations around the world. The InGaAs detector measures the spectral windows 

used for the retrieval of CO2 partial columns. These detectors are standard to the 

instrumentation so that ~30 sites worldwide can retrieve partial column CO2 values. The 

InSb detector is critical for retrieval of CO partial columns as it provides access to spectral 

windows with sensitivity peaked near the surface; however, this detector requires liquid 

nitrogen cooling and is only being used in a smaller subset of TCCON sites. Overall, this 

means that there are decades of data to process with TARDISS providing many new 

avenues of scientific study. This new approach and data could be useful for finding ways 

to improve the total column retrievals, finding ways to improve the TARDISS algorithm, 

performing new carbon cycle studies, or even reexamining previous studies with partial 

column data.  
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In Chapter 4, we use the partial column CO2 data retrieved by TARDISS to examine the 

surface fluxes at the Park Falls, Wisconsin TCCON site using methodology adapted from 

a study that used total column measurements (Keppel-Aleks et al., 2012). Estimations of 

carbon fluxes are used to understand the influence of the biosphere on the climate and to 

inform climate models. For these reasons, having remote estimations of surface fluxes that 

are more directly sensitive to the surface would be ideal. It is difficult to make estimations 

of fluxes of CO2 using remote sensing measurements (Keppel-Aleks et al., 2012; Torres et 

al., 2019). Changes in CO2 due to surface fluxes can be small compared to synoptic and 

seasonal variability. Furthermore, total column measurements can be less sensitive to the 

surface as influences from the surface are integrated in the column. Our goal is to better 

understand the influences of the biosphere on the uptake of carbon and to understand 

influences and biases on TARDISS-derived flux estimations.  

 

Chapter 2 focuses on in situ air quality measurements with support from remotely sensed 

measurements of formaldehyde. The South Coast Air Basin (SoCAB) in Southern 

California is known for having poor air quality, due to the combination of emissions and 

unique meteorological conditions, that has been improving over the past 70 years  (Parrish 

et al., 2016; Pollack et al., 2013). Reducing vehicular emissions through local and state 

legislature has been the primary method to improve air quality and the reduction of 

vehicular travel during the COVID-19 lockdown resulted in an unintentional natural 

experiment of the effects of a step change in vehicular emissions. Overall, we found that 

the long-term assumptions of photooxidation in SoCAB will change and need to be 

reexamined as there are further decreases in vehicular emissions and the proportional 

influence of other emission sources grows.  

 

CO is a useful tool for understanding air quality since it is long-lived (compared to some 

other pollutants) and is related to both vehicular emissions and the oxidation of volatile 

organic compounds (VOCs). The exploration of the change in emissions in Chapter 2 offers 

motivation for the use of the TARDISS-retrieved partial column CO values using the 
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TCCON measurements made in Pasadena, CA to examine changes in air quality over the 

past six years.   

 

The chapters of this work are presented in the order they were written. Chapter 2 serves as 

the motivation for future uses of the TARDISS lower partial column CO data, particularly 

from urban sites like the Pasadena, CA TCCON site. Chapter 3 describes the methodology 

and validation of the TARDISS algorithm. Chapter 4 explores the use of the TARDISS 

partial column CO2 data to estimate surface fluxes. Finally, Chapter 5 outlines directions 

for future research related to improving the TARDISS retrievals and possible uses of the 

new partial column data for scientific study. The supplemental information for Chapters 2, 

3, and 4 can be found in Appendix A, B, and C, respectively.  
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C h a p t e r  2  

IMPACTS OF TRAFFIC REDUCTIONS ASSOCIATED WITH COVID-19 ON 
SOUTHERN CALIFORNIA AIR QUALITY 

Parker, H. A., Hasheminassab, S., Crounse, J. D., Roehl, C. M., and Wennberg, P. O.: 
Impacts of Traffic Reductions Associated With COVID‐19 on Southern California Air 
Quality, Geophysical Research Letters, 47, https://doi.org/10.1029/2020GL090164, 
2020. 

 

Abstract  
 
On 19 March 2020, California put in place Stay-At-Home orders to reduce the spread of 

SARS-CoV-2. As a result, decreases up to 50% in traffic occurred across the South Coast 

Air Basin (SoCAB). We report that, compared to the 19 March to 30 June period of the 

last five years, the 2020 concentrations of PM2.5 and NOx showed an overall reduction 

across the basin. O3 concentrations decreased in the western part of the basin and 

generally increased in the downwind areas. The NOx decline in 2020 (approximately 27% 

basin-wide) is in addition to ongoing declines over the last two decades (on average 4% 

less than the -6.8% per year afternoon NO2 concentration decrease) and provides insight 

into how air quality may respond over the next few years of continued vehicular 

reductions. The modest changes in O3 suggests additional mitigation will be necessary to 

comply with air quality standards. 

 

Plain Language Summary  
 
On 19 March 2020, California put in place Stay-At-Home orders to reduce the spread of 

SARS-CoV-2. As a result, there was much less traffic in Southern California. Reduced 

traffic along with a month-long stretch of unusually rainy weather at the beginning of the 

lockdown led to significant reductions in PM2.5 and NOx levels across the basin. 

Concentrations of O3, on the other hand, showed inconsistent changes across the basin. 

The response of O3 to these large changes in nitrogen oxide concentrations suggests 
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mitigation efforts beyond those associated with continuing vehicle emission reductions 

will be important to meet clean air goals.  

 

2.1 Introduction  
 
As restrictions were enacted to slow the spread of SARS-CoV-2, the virus that causes 

COVID-19, the decrease in human activity (traffic, industry, etc) in major cities worldwide 

resulted in significant changes in air quality. Cities in China, Italy, Germany, and the 

United States have shown decreases in atmospheric nitrogen dioxide (NO2) concentrations 

(Bauwens et al., 2020; Goldberg et al., 2020; Naeger & Murphy, 2020). In Pittsburgh, 

Pennsylvania, for example, significant decreases in concentrations of NO2, carbon 

monoxide (CO) and fine particulate matter (PM2.5) have been observed (TanzerGruener et 

al., 2020). Los Angeles (LA), known for its car culture and multidecadal fight with air 

pollution (Parrish et al., 2016; Pollack et al., 2013), was reported to have some of the 

cleanest air in its history as a result of the sudden drop in traffic emissions (https:// 

www.latimes.com/opinion/story/2020-04-22/coronavirus-is-making-it-clear-that-car-

culture-is-its-own-kind-of-plague). For LA and the broader South Coast Air Basin 

(SoCAB), however, the COVID-19 restrictions coincided with precipitation at least three 

times the historical average (Figure A.1). As the anomalously rainy period ended in the 

SoCAB, the levels of the secondary pollutant ozone (O3) returned to values comparable or 

exceeding those of previous years despite the sustained decrease in traffic flow (more than 

20% below the values in January and February).  

 

The influence of nitrogen oxide (NOx) pollution in the SoCAB on air quality has been the 

subject of a decades-long study. Since the mid-20th century, NOx in the SoCAB has been 

decreasing by roughly 3% per year on average (Parrish et al., 2016; Pollack et al., 2013). 

In the last decade, regulations of NOx have been focused on reducing the emissions from 

heavy duty diesel vehicles (Final 2016 Air Quality Management Plan, 2016). Historically, 

reductions in weekend NOx emissions have led to higher weekend O3 levels. Higher 

weekend O3 levels are the result of the combination of increased photochemical production 
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of oxidant (Ox = NO2 + O3) from elevated OH levels due to the reduced loss of OH via its 

reaction with NO2 and an increased fraction of Ox present as O3 due to the reduced 

conversion to NO2 via reaction with NO. This phenomenon is known as the ’weekend 

effect’. The weekend effect has been used to predict the effects of future NOx emission 

reductions on air quality (Baidar et al., 2015). Changes in VOC emissions do not generally 

scale with NOx because these emissions are associated with many sectors (and include 

biogenic emissions). On-road vehicle VOC emissions are now thought to account for only 

about one fourth of the total emissions (CEPAM: 2016 SIP - Standard Emission Tool, n.d.).  

Both the weekend effect and the especially large reductions in vehicular emissions in 2020 

provide evidence for the continuing efficacy of mobile fleet emissions reductions on air 

quality. Given the long-term trends in such emissions, the experience of spring 2020 

provides a glimpse of what the air quality will look like approximately five years into the 

future of vehicle targeted emission reductions.  

2.2 Methods and Data 
 
Basin-wide air pollutant data (O3, NO2, NOx, and PM2.5) were obtained from the California 

Air Resources Board (CARB) Air Quality Data Query Tool 

(https://www.arb.ca.gov/aqmis2/aqdselect.php)(Figure 2.1). The 2020 air quality data are 

preliminary, unvalidated, and subject to change. Continuous measurements of PM2.5 along 

with trace-gas measurements of CO, SO2, O3, NO, NO2, and NOy were conducted at the 

Caltech campus by the Caltech air quality system (CITAQS) using Teledyne 

instrumentation (Text A.1). While the regulatory NO2 chemiluminescence measurements 

are known to include contributions from other nitrogen-containing species due to the non-

selectivity of the molybdenum converter (Villena et al., 2012), the chemiluminescence data 

from the South Coast Air Quality Management District (South Coast AQMD) station in 

Pasadena (located approximately 400 m south of the CITAQS) agree within a few tenths 

of a ppb with the optical NO2 measurements from the CITAQS. Remotely sensed CH2O 

total column abundances are provided by the Total Carbon Column Observing Network 

(TCCON) site in Pasadena (Wunch et al., 2011). Temperature and precipitation data are 
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taken from meteorological sensors located alongside the CH2O measurement (tccon-

weather.caltech.edu). Historical observations of temperature, relative humidity and wind 

speed data across the basin were obtained from CARB’s Meteorology Data Query Tool 

and precipitation data were acquired from the National Oceanic and Atmospheric 

Administration (NOAA). The CITAQS, TCCON site, and meteorological station are all 

located in or on the Linde Laboratory on the southwest corner of the Caltech campus 

roughly half a kilometer north of a regulatory air monitoring station in Pasadena, operated 

by the South Coast AQMD. Our analysis also makes use of O3, NO2, CH2O, PM2.5, and 

weather data from the 2010 CalNex campaign ground site also located on the Caltech 

campus (https://www.esrl.noaa.gov/csl/projects/calnex/). Basin wide daily traffic counts 

were obtained from the Caltrans PeMS website (http://pems.dot.ca.gov/). TROPOMI 

tropospheric NO2 columns are used for illustrative purposes in Figure 2.2 and follow 

suggested data quality guidelines (Veefkind et al., 2012). 

In our analysis, we use the sum of NO2 and O3, also referred to as oxidant (Ox), CH2O, and 

PM2.5 as metrics of air quality. Ox is conserved with respect to the cycling of NO2 

photolysis to O3 and NO, and O3 reacting with NO to reform NO2. This makes Ox 

measurements useful as a diagnostic of air chemistry since it is less sensitive to local effects 

on photochemistry (e.g., local NO emissions reacting with O3 to form NO2, or clouds 

changing the photolysis frequency of NO2) and is instead driven by overall emissions, 

losses, and net photochemical Ox production. CH2O is often used as a proxy for VOC 

reactivity, especially for the oxidation of small alkenes from both anthropogenic and 

biogenic sources (Pollack et al., 2012; Zhu et al., 2014; Wolfe et al., 2016). PM2.5 is both 

directly emitted and produced within the atmosphere (secondary), with the latter generally 

being dominant in the SoCAB. Secondary production of PM2.5 arises from NH4, NO3, and 

sulfate chemistry and the oxidation of gas-phase VOCs and is the main culprit for low 

visibility during smog events (Schiferl et al., 2014). 

In sections 2.3.1 and 2.3.4, we only consider the air monitoring sites that were active 

through the entire 2015 to 2020 period. For NOx and O3, we consider sites that measure 
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both of these parameters, while for PM2.5 we consider data from all the sites with PM2.5 

measurements (Figure A.2). In these sections, we report 24-hr PM2.5, 8-hr daily maximum 

(DM) O3, and 1-hr DM NOx that have regulatory relevance. 

In section 2.3.2, we use data from 13 sites in the basin that have measurements of both NO2 

and O3 for the 2000 to 2020 period. In section 2.3.3, we focus on data from Pasadena only. 

In the above-mentioned sections, we focus on data collected during the afternoon hours 

(12pm to 4pm local) since the afternoons are often the times with maximum values of O3 

or Ox and are therefore the most influential in terms of air quality reporting, such as O3 

exceedances (Figure A.3). For an accurate comparison from year to year, we define the 19 

March to 30 June window as the COVID-19 (or simply COVID) period for all 

comparisons. 

2.3 Results and Discussion  

2.3.1 The Confluence of Anomalous Weather and COVID-19 Restrictions 

On 19 March 2020, the state of California enacted Stay-At-Home orders restricting all non-

essential work in order to reduce the spread of COVID-19 (https://www.gov .ca.gov/wp-

content/uploads/2020/03/3.19.20-attested-EO-N-33-20-COVID-19-

HEALTHORDER.pdf). Eleven days before this order, on 8 March 2020, mobility and 

traffic started decreasing everywhere in the SoCAB (Figure 2.1, c). By April, SoCAB 

traffic and mobility dropped to about 50% of the pre-COVID-19 period (January and 

February, 2020). SoCAB traffic counts slowly recovered from late April through early June 

and stabilized at about 80% of pre-COVID-19 levels by the end of June (Figure 2.1, c) 

despite different phases of restrictions. While the traffic flow decreased in all areas of the 

basin, the average differences varied in different parts of the basin as the western and 

eastern areas have returned close to pre-COVID-19 values (Figure 2.1, c, right panel). 

Concurrently, the air quality index (AQI) in the second half of March and beginning of 

April were consistently ‘green’ and SoCAB citizens enjoyed clean air with high visibility 

(Figure A.4-A.7). Naturally, this led to the association of the decrease in traffic with clean 



 

 

12 
air and the condemnation of LA car culture as the culprit for bad air quality 

(https://www.latimes.com/opinion/story/2020-04-22/coronavirus-is-making-it-clear-that-

car-culture -is-its-own-kind-of-plague). 

The decrease in traffic and improvement in air quality was also coincident with frequent 

stormy conditions and above-normal amounts of rainfall. The rainfall in the basin in 2020 

was well above that of the past decade with precipitation in March and April over three 

and five times the average values, respectively (Figure A.1). Rainfall affects air quality by 

removing pollutants such as nitric acid and PM2.5 from the air through wet deposition 

(Seinfeld & Pandis, 2006). In addition, rainy periods are associated with higher basin 

ventilation rates, decreasing pollution buildup in the basin. Figure 2.1b shows the basin-

maximum concentrations of 8-hr DM O3, 1-hr DM NOx, and 24-hr PM2.5 for the pre- and 

post-COVID-19 period in 2020 along with the average values for 2015 to 2019 with the 

2020 rainy days shaded in blue. During the rainy period in March and early April, 

temperatures dropped below the range observed over the previous five years (Figure A.1). 

During this drop in temperature, the 1-hr DM NOx and 24-hr PM2.5 were consistently lower 

than the lower limits of the 2015 to 2019 range. The 8-hr DM O3 concentrations were 

consistently at the lower end of the 2015 to 2019 range. After the rainy period, temperatures 

in late April and early May rose above historical values (Figure A.1) and 8-hr DM 

concentrations of O3 were highly elevated. In fact, in May 2020, SoCAB experienced 18 

days of O3 exceedance from the federal standard of 70 ppb more than any other year from 

2015 to 2019. The spike in O3 concentrations outside the range of the 2015 to 2019 values 

in late April and early May is coincident with, and likely partially due to, a similar pattern 

of higher temperatures and lower wind speeds in the basin (Figure 2.1 and A.1). This return 

to higher O3 levels occurred although traffic remained at least 30% lower than pre-COVID 

levels. After May, however, the temperatures, wind speeds, and O3 concentrations in the 

basin returned to values within the range of values observed in 2015-2019. NOx 

concentrations remained equal to or lower than the previous five years, and, in June, PM2.5 

concentrations dropped lower than the lower end of the range of values from the past five 

years. To assess the impact of rainy days on the observed trends, a sensitivity test was 
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carried out. When the rainy days are excluded from the analysis, the basin-maximum levels 

are comparable to the values for the entire window with only a 2.76%, 2.11%, and 0.64% 

difference between including rainy days and not for 24-hr PM2.5, 8-hr DM O3, and 1-hr 

DM NOx respectively (Figure A.8). 

The changes in 8-hr DM O3 concentrations in 2020 were not consistent across the basin 

(Figure A.9). Compared to the same months in 2015-2019, sites in the western part of the 

basin generally experienced lower 8-hr DM O3 concentrations (up to 9 ppb or 22% 

reduction) while most of downwind areas experienced an overall increase (up to 8 ppb or 

15% increase). 24-hr PM2.5 and 1-hr DM NOx showed an overall decrease across the basin 

(10%-45% and 13%-40% reduction, respectively) (Figure A.10-A.11). As discussed 

above, while the COVID-19 countermeasures altered pollutant concentrations in Los 

Angeles, the anomalous weather significantly contributed to the clean air observed in late 

March and early April. 
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Figure 2.1: a) Box plot of the basin-maximum 24-hr PM2.5, 8-hr daily maximum O3, and 
1-hr daily maximum NOx during the COVID-19 period (19 March to 30 June) in 2020 and 
in the past five years (2015-2019) in the South Coast Air Basin. Horizontal lines inside 
boxes denote median values, edges of box denote the 25th and 75th percentiles, and the 
whiskers denote ±1.5×IQR. Dots are data points > 1.5×IQR. The confidence diamond in 
each box contains the mean and the upper and lower 95% of the mean. The means are 
reported to the right of the box plots with the standard deviation in parenthesis. b) 7-day 
moving average of basin-maximum 24-hr PM2.5, 8-hr daily maximum O3, and 1-hr daily 
maximum NOx in 2020 and in the past five years in the South Coast Air Basin. c) (Left) 
Basin-wide daily average traffic flow deviation from January to February in percent is 
plotted with the 7-day moving average represented by the red line. (Right) Average 
difference from January to February traffic levels for 19 March to 30 June period separated 
by the source/receptor area for the South Coast Air Basin. 

2.3.2 Twenty Years of Reductions and COVID-19 

In the context of the trends in air quality in the SoCAB over the past decade, the diverse 

response of secondary pollutants to the large drops in vehicular emissions during the 

COVID-19 period is not surprising. Over the past 20 years, vehicular emissions, 

particularly heavy-duty diesel trucks, have been targeted by regulation and atmospheric 

concentrations of NOx have decreased substantially (Final 2016 Air Quality Management 

Plan, 2016). Figure 2.2 shows the changes in afternoon concentrations of NO2, O3, and Ox 

in sites across the basin since 2000 around a map of tropospheric NO2 column 

concentrations for COVID-19 period in 2020 from the TROPOMI instrument. While the 

1-hr DM NOx and 8-hr DM O3 concentrations have regulatory relevance, the afternoon 

(i.e., 12:00 to 16:00) values of air pollutants used below are more closely related to the 

photochemical interactions occurring at peak Ox values. 

Over the 2000 to 2019 period, the afternoon NO2 concentrations have been decreasing at 

rates between 4.90% and 9.08% per year across the basin (Table A.1). The trends reported 

here are larger than described elsewhere due to the use of afternoon values instead of the 

data from the entire day (Pollack et al., 2013; Parrish et al., 2016; Jiang et al., 2018). In 

terms of Ox, the decreases in NO2 concentrations have been partially offset by increases in 

O3 concentrations due to the nonlinear relationship between NO2 and O3 (Fujita et al., 
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2016). The trends in afternoon O3 concentrations vary in different parts of the basin, from 

decreases of 0.87% to increases of 0.64% per year, while afternoon Ox concentrations have 

decreased by between 0.39% and 1.53% per year across the basin. 

COVID-19 traffic reductions led to an overall drop in atmospheric NO2 concentrations in 

Los Angeles similar to those seen in other major cities around the world (Bauwens et al., 

2020; Goldberg et al., 2020; Le et al., 2020; Naeger & Murphy, 2020; Tanzer-Gruener et 

al., 2020). Depending on the location in the basin, afternoon NO2 concentrations for 2020 

were up to 33% lower than those expected using the trend between 2000 and 2019; in 

several remote locations, NO2 levels were actually larger than expected in 2020 (Table 

A.1). For example, COVID period afternoon NO2 values in Reseda in 2020 were even 

lower than the expected 5.7% yearly decrease by 33% or 1.3 ppb. Changes in afternoon O3 

are modest and of both signs (decreases of up to 13% or 6.5 ppb and increases as large as 

16% or 8.6 pbb). Half of the sites (West LA, Pasadena, Azusa, Glendora, Pomona, 

Banning, and San Bernardino) have anomalies of opposite sign (a positive NO2 anomaly 

and a negative O3 anomaly or vice versa) as is expected in a NOx -saturated atmosphere. 

The other half of the sites (Reseda, Central LA, La Habra, Upland, Fontana, and Lake 

Elsinore) show little O3 anomaly at all or have O3 and NO2 anomalies with the same sign 

suggesting that they may be in NOx -insensitive or even NOx-limited photochemical 

regimes in 2020. Each site in the SoCAB is influenced by accumulation and photochemical 

processing of the upwind pollutants, local emissions, and average meteorology (Wagner et 

al., 2012; Baidar et al., 2015). The combination of these factors has led to historically larger 

O3, and often lower NO2, concentrations in the northeast parts of the basin. It is no surprise 

then that the sites exhibiting NOx -insensitive or NOx -limited behavior are downwind or 

outside the most heavily NOx polluted areas of the basin (Figure 2.2). The Central LA site 

is an exception with negative 2020 anomalies in both NO2 and O3 despite being close to 

the maximum in tropospheric NO2 columns, but also experienced one of the largest NO2 

anomalies, possibly triggering this NOx -limited response. 
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Figure 2.2: Middle panel: Map of the tropospheric NO2 column as measured by the 
TROPOMI instrument for the 19 March to 30 June, 2020 period with color indicated by 
the bar to the right of the map. The locations of each air quality monitoring site are denoted 
by circles color-coded (excluding the West LA site) by the difference between the 2020 
afternoon NO2 values and the value expected by the 2000 to 2019 trend in afternoon NO2 
in percent. Surrounding Panels: Time series plots of NO2, O3, and Ox in ppb for each site 
for the 19 March to 30 June period from 2000 to 2020. The dotted lines show the 
exponential fit for each species. The grey dotted lines represent the standard deviation of 
the residuals between the measured values of NO2 and the fit. Values for 2020 are 
represented by asterisks. The difference between the average afternoon values of NO2, O3, 
and Ox in our analysis period in 2020 and the long-term trend is noted within each 
individual plot in percent. 

The measurement site in West LA shows significantly larger afternoon NO2 values in 2020 

compared to the fit (95% or 2.5 ppb increase), but the decreases in 1-hr DM NOx from the 

2015-2019 to the 2020 COVID period shown in Figure A.10 suggests that there may be a 

significant shift in time-of-day emission patterns near this site. The variations in NO2 in 

the basin are independent of the analysis period. For example, when using the period after 

the anomalous rain in 2020 (19 April to 30 June), the range of deviations in afternoon NO2 
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concentrations is between -34% and 176% (-1.9 and 3.7 ppb) with the West LA site 

responsible for the upper value of this range (Table A.1). 

At this time, we have fewer constraints on how VOC emissions have changed in 2020. 

Formaldehyde columns measured in Pasadena, however, provide some clues. CH2O is 

formed within the atmosphere from the photo-oxidative degradation of hydrocarbons. 

Major CH2O loss pathways are photolysis and reaction with OH radical. Assuming daytime 

[OH] = 4 × 106 molec cm−3 (Griffith et al., 2016), and jCH2O = 5.3 × 10−5 s −1 (noontime 

values scaled by 0.7), we estimate a daytime photochemical lifetime of 3.2 hours for CH2O, 

with photolysis accounting for about 60% of the loss. Thus, we expect the abundance of 

CH2O to be quite sensitive to the oxidation rate of VOC. Afternoon column CH2O 

measurements in Pasadena exhibited a 10% decrease in the COVID-19 period in 2020 

(1.25±0.53×1016 molec cm−2) from the COVID-19 period between 2015 and 2019 

(1.37±0.35×1016 molec cm−2 ) (Figure A.12). The changes in CH2O column abundance are 

consistent with what would be expected from the 30% decline in vehicular emissions 

assuming such emissions account for 14 of the total. Since Pasadena exhibited NOx -

saturated behavior, the increase in O3 in 2020 from the reduction of NO2 may have been 

muted by the observed 10% decrease, so far as CH2O is effective as a proxy of VOC 

emissions. Changes in VOCs around the basin may have similar corresponding effects on 

the local chemistry shown in Figure 2.2 and Table A.1. 

2.3.3 The Correlation of Air Quality and Temperature 

There is a strong correlation between air pollution levels and temperature in Los Angeles 

(Figure 2.3). Such correlations are well documented and have been used to analyze changes 

in emissions and photochemical regimes elsewhere (Geddes et al., 2009; Pusede et al., 

2014, 2015; Baidar et al., 2015). In the SoCAB, hot, sunny days result in faster rates of 

photochemistry from the combination of increases in sunlight, increased biogenic and 

evaporative emissions, increases in many temperature-dependent rate coefficients, and 

metrological differences due to a shallower mixed layer that traps pollutants closer to the 

surface. While NOx emissions have been shown to be largely independent of temperature, 
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VOC emissions are known to increase with temperature due to enhanced evaporation and 

increased biogenic emissions (Pusede et al., 2015; McDonald et al., 2018; Final 2016 Air 

Quality Management Plan, 2016). Here, we illustrate the correlation of air quality with 

temperature using measurements in Pasadena made in 2010 and 2020. 

Figure 2.3: Left: Hourly afternoon COVID period Ox concentrations are plotted against 
temperature and color coded by NO2, all in ppb. The grey boxes are CalNex Ox 
concentrations in ppb. Middle: Hourly afternoon COVID period CH2O column 
abundances, in molecules per square centimeter, are plotted against temperature and color 
coded by O3. The grey boxes are CalNex CH2O concentrations in ppb and follow the right 
y-axis. Right: Afternoon COVID period PM2.5 concentrations are plotted against 
temperature and are color coded by NOz. The grey boxes are PM1 concentrations from 
CalNex measurements. All data shown here is from Pasadena. In the left and middle panels, 
the upper and lower black lines are the 10% and 90% quantile values for the COVID period 
from 2015 to 2019 values, respectively. 

Figure 2.3 shows afternoon values of Ox, CH2O, and PM2.5 plotted against temperature 

during CalNex in 2010 (May through July 2010) and for data from the 19 March to 30 June 

period from the South Coast AQMD station in Pasadena, CITAQS, or the Caltech TCCON 

instrument. Afternoon temperatures in Pasadena were slightly cooler in 2020 (by 0.22 C 

on average) than in the 2015 -2019 COVID periods (Figure A.13). There is little change in 

the values of Ox or its relationship to temperature. Likewise, the relationship of O3 to 

temperature is consistent over the same period (Figure A.14). PM2.5 has, however, 

decreased. Although the overall concentration of Ox is decreasing, it is doing so slowly and 

following the same relationship with respect to temperature as observed over the last 5 to 
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10 years so that it is not readily apparent in Figure 2.3. CH2O column amounts have been 

consistent over the past five years with a clear dependence on temperature that remains in 

2020 despite lower observed values. While the mechanisms leading to the formation of 

PM2.5 are more complicated than the reactions that lead to the formation of NO2, O3, and 

CH2O, Figure 2.3 shows that PM2.5 is correlated to temperature, particularly for 

temperatures comparable with the CalNex measurements (10-30 C), and that variations in 

PM2.5 across the temperature range are correlated with variations in NOx oxidation products 

(NOz). By definition PM1 concentrations are at most equal to PM2.5 values so that Figure 

2.3 shows PM2.5 concentrations have decreased since CalNex measurements of PM1 in 

2010. 

As NOx decreases in a NOx -saturated photochemical regime, OH concentrations increase 

and therefore the rate at which VOCs are oxidized also will increase. Thus, even if VOC 

emissions decrease the net photochemistry will not necessarily change. CH2O 

concentrations can provide a measure of this net VOC photochemistry. In Pasadena, the 

increase of O3 and decrease in CH2O compared to the last 5 years suggests, therefore, that 

NOx reductions have not yet reached the point where the net photochemistry has slowed 

significantly outside of temperature driven variations. The continued temperature 

dependence over the past decade in Pasadena suggests that the Ox in similarly NOx - 

saturated areas of the basin will continue to be driven by meteorology along with changes 

in emissions and that the reductions in NOx concentrations from COVID-19 

countermeasures have not outpaced the effects of meteorology on the production of Ox . It 

should be noted that the CH2O measurements from CalNex shown in Figure 2.3 were in 

situ and therefore are not directly comparable to the column CH2O observations but still 

demonstrate the same temperature dependence. 

In summary, while absolute concentrations of Ox have slightly decreased over the last 

decade, the temperature dependences of Ox , CH2O, and PM2.5 have remained similar over 

the past 5 years and when compared to temperatures seen during CalNex measurements 

despite substantial reductions in NOx emissions (Final 2016 Air Quality Management Plan, 
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2016). The consistency of pollutant concentrations and patterns with respect to temperature 

in 2020 despite significant reductions in vehicular emissions during COVID-19 

countermeasures emphasizes the influence of weather on air quality (especially during 

years with consistently record-breaking temperatures) and the need for other, concurrent 

approaches to reducing Ox in combination with vehicular emissions reductions. 

2.3.4 2020 Air Quality as a glimpse of the future 

In the same way that changes in air quality between the weekend and weekdays have 

provided insight into the role of truck emissions (Baidar et al., 2015), the broader traffic 

reductions associated with COVID-19 provide insight into expected air quality changes 

over the next five years, assuming the continuation of the long-term trends of reductions in 

vehicular emissions. On most weekends in the SoCAB, the reduction in NOx emissions 

from heavy duty diesel trucks reduces morning O3 titration and increases O3 production 

efficiency, leading to an overall increase in O3 concentrations (the so-called NOx 

disbenefit). While the magnitude of the weekend reduction in 1-hr DM NOx varies from 

site to site, most of the sites across the basin showed a larger percentage reduction (5- 30%) 

of 1-hr DM NOx from the weekends to the weekdays between the 2015 to 2019 and 2020 

COVID-19 period which would theoretically enhance the O3 weekend effect (Figure A.15). 

However, the weekend to weekday differences in 8-hr DM O3 have decreased across the 

basin (Figure A.16). In fact, some of the sites (mostly located in downwind areas of the 

basin such as Pasadena, Mira Loma, and Rubidoux) show lower 8-hr DM O3 on weekends 

compared to weekdays during the 2020 COVID period, suggesting that in some areas of 

the basin we may finally be approaching NOx emission levels that slow photochemistry. 

On the other hand, the consistency of Ox values despite the substantial NOx reduction 

suggests that the western portion of the basin is still NOx -saturated (Pollack et al., 2012; 

Wolff et al., 2013; Baidar et al., 2015; Fujita et al., 2016). 

The lack of improvement in Ox levels in 2020 is consistent with the pattern observed over 

the past decade in the basin (Figure 2.3). Only under exceptionally low vehicular emissions 

(e.g. weekends during April and May 2020), are there now glimmers of hope that oxidant 
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levels will begin to decline. Thus, these data suggest that a broader focus on reducing VOC 

emissions (in combination with the current focus on NOx reductions) will be needed to 

attain air quality standards basin-wide. As VOC emissions from light duty vehicles are now 

thought to be a minority of the total VOC emissions (McDonald et al., 2018), reductions 

in VOC emissions will need to come primarily from area and non-mobile sources such as 

solvent use, paints, cleaners, gardening equipment, and the oil/gas sector. To the extent that 

biogenic emissions are important, replacing high-VOC emitting trees species would also 

be helpful. 
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C h a p t e r  3  

INFERRING THE VERTICAL DISTRIBUTION OF CO AND CO2 FROM TCCON 
TOTAL COLUMN VALUES USING THE TARDISS ALGORITHM 

 Parker, H. A., Laughner, J. L., Toon, G. C., Wunch, D., Roehl, C. M., Iraci, L. T., 
Podolske, J. R., McKain, K., Baier, B., and Wennberg, P. O.: Inferring the vertical 
distribution of CO and CO 2 from TCCON total column values using the TARDISS 
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https://doi.org/10.5194/amt-2022-322, 2022.  

Abstract  
 
We describe an approach for determining limited information about the vertical distribution 

of carbon monoxide (CO) and carbon dioxide (CO2) from total column, ground-based 

TCCON observations. For CO and CO2, it has been difficult to retrieve information about 

their vertical distribution from spectral line shapes because of the errors in the spectroscopy 

and the atmospheric temperature profile that mask the effects of variations in their mixing 

ratio with altitude. For CO2 the challenge is especially difficult given that these variations 

are typically 2% or less. Nevertheless, if sufficient accuracy can be obtained, such 

information would be highly valuable for evaluation of retrievals from satellites and more 

generally for improving the estimate of surface sources and sinks of these trace gases.  

 

We present here the Temporal Atmospheric Retrieval Determining Information from 

Secondary Scaling (TARDISS) retrieval algorithm. TARDISS uses several, 

simultaneously-obtained total column observations of the same gas from different 

absorption bands with distinctly different vertical averaging kernels. The different total 

column retrievals are combined in TARDISS using a Bayesian approach where the weights 

and temporal covariance applied to the different retrievals include additional constraints 

on the diurnal variation in the vertical distribution for these gases. We assume that the near-

surface part of the column varies rapidly over the course of a day (from surface sources 
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and sinks, for example) and the upper part of the column has a larger temporal covariance 

over the course of a day.  

 

Using measurements from the five North American TCCON sites, we find that the 

retrieved lower partial column (between the surface and ~800 hPa) of the CO and CO2 dry 

mole fractions (DMF) have slopes of 0.999 ±0.002 and 1.001±0.003 with respect to lower 

column DMF from integrated in situ data measured directly from aircraft and in AirCores. 

The average error for our lower column CO retrieval is 1.51 ppb (~2%) while the average 

error for our CO2 retrieval is 5.09 ppm (~1.25%). Compared with classical line-shape-

derived vertical profile retrievals, our algorithm reduces the influence of forward model 

errors such as imprecision in spectroscopy (line shapes and intensities) and in the 

instrument line shape. In addition, because TARDISS uses the existing retrieved column 

abundances from TCCON (which themselves are computationally much less intensive than 

profile retrieval algorithms), it is very fast and processes years of data in minutes. We 

anticipate that this approach will find broad application for use in carbon cycle science.  

3.1 Introduction  
 

Remote sensing retrievals of atmospheric gas abundances are used to diagnose the sources, 

sinks, and fluxes at the local, regional, and global scales (Connor et al., 2008, p.2; Deeter, 

2004; Kerzenmacher et al., 2012; Wunch et al., 2011). Compared with in situ 

measurements, these retrievals, which are used in carbon cycle science investigations, are 

less influenced by nearby point sources or sinks and rapidly changing meteorological 

conditions that would lead to erroneous flux calculations (Keppel-Aleks et al., 2012). 

Because the column represents the integral of a gas from the surface to the top of the 

atmosphere, flux estimates from column amounts are less sensitive to errors in the assumed 

vertical transport than those using surface measurements (Keppel-Aleks et al., 2011, 2012). 

In contrast, since signals of CO2 and CO fluxes at the surface are muted in the total column 

(due to the dilution of signals from the surface being integrated throughout an entire 

column), they are less useful in diagnosing local emissions than in situ measurements. For 
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CO2, the total columns are strongly influenced by synoptic scale transport in the 

troposphere making it even more difficult to discern the influences of surface fluxes 

(Keppel-Aleks et al., 2011, 2012). For CO, its several-week lifetime in the free troposphere 

results in regional transport influences that can dampen the surface signals in the total 

column values (Deeter, 2004; Zhou et al., 2019). These issues limit the effectiveness of 

total column measurements in surface flux analysis — particularly for local sources.  

 

Profile retrievals can, in principle, ameliorate these issues and thereby enable more direct 

information on surface processes. Theoretical analysis shows that two to three vertical 

degrees of freedom (DoF) can be achieved in CO2 retrievals from near-IR (NIR) and mid-

IR (MIR) spectra from high-resolution Fourier transform spectrometers (Connor et al., 

2016; Kuai et al., 2012; Roche et al., 2021; Shan et al., 2021). In practice, however, Connor 

et al. (2016) and Roche et al. (2021) showed that the precision of retrieved CO2 profiles 

using spectral windows in the NIR was much lower than the theoretical estimate due to 

uncertainty in the temperature profile and in the forward radiative transfer model. 

Likewise, Shan et al. (2021) retrieve CO2 profiles using spectral windows in the MIR. They 

use an a posteriori optimization method to improve the tropospheric CO2 signal and they 

report errors near 2%. Although both of these methods retrieve profiles with sufficient 

degrees of freedom to observe some signals of the variation in the vertical distribution, they 

report errors sufficiently large enough to encourage the exploration of other methods for 

use for carbon cycle studies.  

 

Several operational CO profile retrievals exist, but these products still face the issues of 

column dilution or larger sensitivity to the free troposphere compared to the surface. The 

Network for the Detection of Atmospheric Composition Change (NDACC) retrieves 

profiles of CO in the atmosphere (Buchholz et al., 2017) with ~2 degrees of freedom for 

the signal providing information of a lower (surface-8km) layer sensitive to the boundary 

layer and an upper (8-20 km) layer with ~1-3% uncertainty in the total column (Zhou et 

al., 2018, 2019). These ground-based measurements require higher spectral resolution than 

those typically available in the TCCON interferometers. The higher resolution also requires 
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longer measurement time, resulting in fewer observations per day. This limits their ability 

to capture diurnal changes and makes the measurements more susceptible to variations in 

solar viewing during acquisition of the interferograms. These measurements also require 

highly accurate knowledge of the spectral line widths, their temperature dependence, the 

instrument line shape (ILS), and the solar spectrum. These limitations motivate our work 

to develop a new product with better sensitivity to surface processes and higher temporal 

resolution from the existing TCCON retrievals. 

 

In our approach, we do not retrieve profile information directly from the spectra. Instead, 

we utilize the vertical and temporal domains to infer partial column dry mole fraction 

(DMF) values. We fit partial column scalar values to match TCCON retrieved total column 

DMF that are 1) quality controlled and 2) individually tied to World Meteorological 

Organization (WMO) trace gas standard scales which mitigates a number of errors in the 

forward radiative transfer model, including those arising from errors in the spectroscopy. 

We use the extant multiple total column measurements from spectral windows with 

different line intensities and hence different shapes of the column averaging kernel. We 

extract the vertical information from the diurnally-varying differences in these total column 

values and additional a priori information about the expected temporal covariance in the 

different partial columns based on known atmospheric behavior. This method allows us to 

extract information focused on the lower atmosphere where the trace gas DMF are most 

sensitive to surface exchange.  

 

The uncertainty of this new method for retrieving partial column values is evaluated using 

comparisons with in situ vertical profile measurements. Section 3.2 describes the theory 

and parameters chosen for our retrieval, and the data used for the retrieval, validation, and 

comparison. Sections 3.3.1 through 3.3.3 present our validation data and a sensitivity study 

of the retrieval parameters. Section 3.3.4 presents an error and information content 

analysis. Finally, Sect. 3.3.5 gives examples of the data retrieved using this approach.   
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3.2 Methods 
 
3.2.1 Total Carbon Column Observing Network 
 

The Total Carbon Column Observing Network (TCCON) is a ground-based network of 

solar viewing Fourier transform spectrometers equipped with InGaAs and Si detectors that 

gather spectra for the 3900 to 15500 cm-1 spectral region (Wunch et al., 2011). Importantly 

for our work here on CO, some sites are now equipped with an InSb detector that 

simultaneously allows spectral measurement down to 2000 cm-1 at the expense of 

simultaneous observations using the Si detector. CO2 and CO are retrieved simultaneously 

over several spectral windows (independent spectral bands). These windows are chosen to 

provide high sensitivity to the gas of interest while limiting interference from other 

atmospheric absorbers.  

 

Column abundances of atmospheric species are computed from the measured spectra using 

a nonlinear least-squares fitting algorithm, GFIT, which minimizes the residuals between 

a measured spectrum and one calculated by uniformly scaling a priori vertical profiles for 

the fitted atmospheric species, yielding the optimal VMR (volume mixing ratio) scaling 

factors (VSF) of the fitted gases. The a priori profiles scaled by the VSF are integrated to 

calculate the total column abundance of a species. The retrieved scaled column abundances 

are converted to column dry mole fraction (DMF) by multiplying by 0.2095 and dividing 

by the column of O2, retrieved from a different spectral window of the same spectrum. 

These retrievals are then quality-controlled and scaled to minimize both airmass 

dependence and the difference with simultaneously measured in situ profiles.  

 

For each window and for each spectrum fit by GFIT, an associated column averaging 

kernel is computed that describes the sensitivity of the total column to changes in species 

abundance at each altitude (shown in Fig. 3.1). A perfect column averaging kernel would 

have values of one for all altitudes. More commonly, the kernels will vary slowly with 

altitude with a pressure weighted average value close to one. Values higher (lower) than 1 

mean that the retrieval is more (less) sensitive to trace gas changes at that altitude. These 



 

 

32 
sensitivities vary with solar zenith angle (SZA) as the spectral absorption deepens at higher 

SZA. The vertical sensitivity of each window is a result of its spectral properties. Optically 

thin spectral regions (windows) tend to be more sensitive to the upper troposphere and the 

stratosphere while optically thick windows tend to be more sensitive to the lower 

troposphere. Since information about the stratosphere comes only from near the line center 

as a result of diminished collisional broadening, if the absorption at the line center is 

saturated (nearly zero transmission), the spectrum will contain little information about the 

stratosphere and hence the kernel will be low there. The differences in column averaging 

kernel shapes are the main source of information used in the TARDISS algorithm. The 

outputs of the VSF values, a priori profiles, total column DMF values, and vertical 

averaging kernels from standard TCCON processing are used as input for the TARDISS 

algorithm. 

 

We will refer to the spectral retrievals as being the TCCON retrievals and the temporal 

partial column retrievals as the TARDISS fit. We also use the terms retrieval and fit 

interchangeably to refer to the TCCON or TARDISS methodology. 
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Figure 3.1: Vertical sensitivities of the total column retrievals from GFIT used in our 
algorithm for both CO2 (left column) and CO (right column) plotted against pressure 
normalized to the surface and color coded by the solar zenith angle (SZA). A column 
averaging kernel greater than 1 means that the total column is more sensitive to molecules 
at this pressure level than the average sensitivity. For example, if we move some of the 
CO2 molecules from 200 hPa to the surface in our a priori profile, the retrieved total column 
and scale factor (VSF) will decrease for the 6073 cm-1 window and increase for the 4852 
cm-1 window while the true and a priori total columns remain unchanged. The 6220 and 
6339 cm-1 CO2 and 2160 and 2111 cm-1 CO windows have near-identical kernels due to 
the CO2 bands being almost identical in their line strengths, separations, widths, and 
temperature dependences. The 6339 cm-1 CO2 is represented by black dashed lines behind 
the dotted lines representing the 6220 cm-1 sensitivities and the 2111 cm-1 CO is 
represented by black dashed lines behind the dotted lines representing the 2160 cm-1 
sensitivities.  
 
3.2.2 The TARDISS Algorithm 

Traditional profile retrievals fit spectra by adjusting the abundance of the trace gases at 

multiple vertical levels to determine the vertical distribution of a specific atmospheric 

species (Pougatchev et al., 1995; Roche et al., 2021). Here, we describe the Temporal 

Atmospheric Retrieval Determining Information from Secondary Scaling (TARDISS) 

algorithm that optimizes the scaling of the profile of our target gas separated into two 

layers, one near the surface and the other at and above the typical well-mixed surface 

boundary layer. This is illustrated by the flowchart in Fig. 3.2. The algorithm minimizes 

the cost function (Equation 3.1) by finding the maximum a posteriori solution for a state 

vector containing upper and lower column scale factors for all TCCON observations in a 

given day. That is, if a day has 𝑛! observations, the state vector will have 𝑛! lower column 

scale factors and 𝑛! upper column scale factors, for 2𝑛! elements total. These are 

constrained by TCCON column average mole fractions and an assumed temporal 

covariance. The Jacobian matrix for TARDISS combines the TCCON averaging kernels 

and the TCCON assumed vertical CO or CO2 profiles in an operator which maps the upper 

and lower scale factors back to column average mole fractions. We define our cost function 

as:  
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𝜒" = $𝒚 − 𝑲(𝒙*# − 𝒙$,#),

&𝑺'()$𝒚 − 𝑲(𝒙*# − 𝒙$,#), + $𝒙*# − 𝒙$,#,𝑺*()$𝒙*# − 𝒙$,#,,  (3.1) 

where y is the measurement vector, K is the Jacobian matrix, 𝒙*# is the retrieved state vector, 

𝒙$,# is the a priori state vector, 𝑺𝝐 is the model covariance matrix, and 𝑺* is the prior 

covariance matrix. In the following sections, we will derive the necessary equations for the 

construction of the components of the cost function in detail. Table B.1 lists all the variable 

names in this work and their descriptions. 

 

 

Figure 3.2:  Flowchart illustrating the steps performed by of the TARDISS retrieval. The 
input to the TARDISS retrieval is the output of the spectral fitting done by the GGG2020 
software suite represented by the green row. The setup of the components of the TARDISS 
algorithm from the output of the TCCON spectral fits is shown in Equations 3.11 through 
3.14 and in the middle row. The TARDISS retrieval is performed using Equation 3.16, the 
output partial column DMF values are calculated using Equation 3.17, and the information 
content is calculated by Equation 3.18 and 3.19 as shown in the bottom row.  
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3.2.2.1 Derivation of the TARDISS Jacobian Matrix Components 
 

We use the notation and concepts of Rodgers and Connor (2003) with vectors represented 

with bolded lower-case letters and matrices represented with bolded upper-case letters. We 

start in the vertical domain where Equations 3.3 through 3.9 are used for each spectral 

window, each TCCON measurement, and each species retrieved (CO and CO2 in this work) 

in the TCCON fit. These equations are used to calculate the weights in the Jacobian matrix 

and values in the measurement vector for the temporal calculations in Equation 3.10 and 

beyond (represented by the middle and bottom row of Fig. 3.2). We will therefore keep 

Equations 3.3 through 3.9 agnostic of species and window for this description.  

 

To derive the values used in the Jacobian matrix, K, we start by relating the atmospheric 

profile of CO or CO2 to the column average mole fractions observed by TCCON. For 

TARDISS, we assume that the a posteriori atmospheric profile can be described as the 

profile output by the TCCON retrieval with the bottom q levels scaled separately from the 

top nl – q levels, where q is a chosen level index and nl is the number of vertical levels in 

the profile: 

 

𝐱,$-. =

⎣
⎢
⎢
⎢
⎢
⎡
𝛾/ ∙ 𝑥*,&0012,)

⋮
𝛾/ ∙ 𝑥*,&0012,3
𝛾4 ∙ 𝑥*,&0012,35)

⋮
𝛾4 ∙ 𝑥*,&0012,6! ⎦

⎥
⎥
⎥
⎥
⎤

 .                                                (3.2) 

 

Here, xa,TCCON is the TCCON a priori profile scaled by the median TCCON retrieved VSF 

across all the TCCON spectral windows for this gas, and the gL and gU values are the lower 

and upper column scale factors, respectively, which our algorithm retrieves. We relate this 

to the TCCON total column value using the standard equation from Rodgers and Connor 

(2003): 
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𝑧&0012 = 𝑧*,&0012 +	𝒂&0012

𝝃𝑻 	(𝒙9*:; − 𝒙*,&0012) ,                             (3.3) 
 
 
where 𝑧&0012 is the total column DMF output of a chosen species in a particular window 

from the TCCON fit, za,TCCON is the original vertical column DMF calculated from the a 

priori profile scaled by the median VSF of the windows used, and 𝒂&0012
𝝃  is the vector of 

column averaging kernel values output from the TCCON processing weighted by the 

pressure thickness of each atmospheric layer. All components in Equation 3.3 are dry mole 

fractions except for the averaging kernel which is unitless. Equation 3.3 tells us how the 

retrieved DMF would change if the profile constructed from the two partial columns 

differed from xa,TCCON. 

 

The next step is to rearrange this equation so that our observed quantity is on the left-hand 

side, and the right-hand side is a linear combination of the two scaling factors. Subtracting 

Za,TCCON from both sides and focusing on the rightmost term of Equation 3.3, the averaging 

kernel is multiplied by the difference of the a priori and scaled DMF profiles summed for 

each of the nl levels of the atmosphere.  

 

𝑧"##$% − z&,())*+ 	= 𝐚())*+
𝛏( 	'𝐱-&./ − 𝐱&,())*+) = ∑ a())*+,0(

1!
023 x-&./,0 − x&,())*+,0).           (3.4) 

 
Here, we assign 𝒙9*:; to be the TCCON a priori profile scaled by two independent values, 

one for the lower partial column and one for the upper partial column. To designate the 

partial columns, our method splits the total column at a specified altitude level index, q, 

and scales the a priori profile below and above the level q independently by the scalar 

values 𝛾/ and 𝛾4 such that:  

 
𝑧!""#$ − 𝑧%,!""#$ = ∑ 𝑎!""#$,'(

(
')* 𝛾+𝑥%,!""#$,' − 𝑥%,!""#$,') + ∑ 𝑎!""#$,'(

,!
')(-* 𝛾.𝑥%,!""#$,' − 𝑥%,!""#$,')  .           (3.5) 

 
Since Equation 3.5 is linear, we then group terms reducing the right side of Equation 3.5 

to: 
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	𝑧!""#$ − 𝑧%,!""#$ 	= (𝛾' − 1)∑ 𝑎!""#$,(

)
(*+ 𝑥%,!""#$,( + (𝛾, − 1)∑ 𝑎!""#$,(

-!
(*).+ 𝑥%,!""#$,( .            (3.6) 

 
Defining two new variables, 𝑘/ and	𝑘4, we can write this as: 

 
𝑧&0012 − 𝑧*,&0012 	= (𝛾/ − 1)	𝑘/ + (𝛾4 − 1)	𝑘4,                             (3.7) 
 
where 

 
𝑘/ = ∑ 𝑎&0012,<

3
<=) 𝑥*,&0012,<                                               (3.8) 

 
and  
 
𝑘4 = ∑ 𝑎&0012,<6

<=35) 𝑥*,&0012,<                                             (3.9) 
 
and 𝑘/	and 𝑘4 are both scalar values.  

 

Equation 3.7 is applicable to all spectral windows for each spectrum measured. For 

example, for our CO2 retrieval, we use four separate spectral windows per measured 

spectrum and often have a few hundred spectra measured per day. In the case of the CO2 

retrieval, the left-hand side of Equation 3.7 and the 𝑘/ and 𝑘4 values will be calculated for 

each of the four spectral windows used for each spectrum fit by TCCON. These values are 

aggregated into the vectors and matrices described by Equations 3.10 – 3.14 in order to fit 

the spectra measured over an entire day at one time.   

 
3.2.2.2 Deriving the Maximum A Posteriori Equation and Solution 
 

While Equation 3.7 can be set up and solved for each spectrum using the total column value 

from each spectral window used in the TCCON fit, the TARDISS retrieval uses an entire 

day’s worth of TCCON retrievals in order to increase the signal-to-noise and to utilize the 

information from the temporal variation in the kernels. Fitting over an entire day of 

TCCON retrievals reduces the retrieved partial column error values compared to fitting 

individual measurements using Equation 3.7. Section B.1 shows the influence of including 

multiple observations on the retrieved partial column errors. Let nw denote the number of 
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windows and ns the number of spectra over a day and wi and si denote the ith window and 

spectrum. We combine the above equations into a matrix form: 

 
𝒚 = 𝑲(𝒙> − 𝒙$,#) + 𝝐 ,                                                   (3.10) 
 
where y is the measurement vector composed of values from the left side of Equation 3.7,  

 

𝒚 =

⎣
⎢
⎢
⎢
⎡
𝑧&0012,),) − 𝑧*,&0012,)

⋮
𝑧&0012,?4,!4 − 𝑧*,&0012,!4

⋮
𝑧&0012,65,66 − 𝑧*,&0012,66⎦

⎥
⎥
⎥
⎤

 ,                                          (3.11) 

 
where K is the Jacobian matrix of the 𝑘/ and 𝑘4 values over a day,  

 

𝑲 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑘/,),) 0 𝑘4,),) 0

⋱ ⋱
0 𝑘/,),66 0 𝑘4,),66
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑘/,65,) 0 𝑘4,65,) 0
⋱ ⋱

0 𝑘/,65,66 0 𝑘4,65,66⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  ,                        (3.12) 

 
where 𝒙> is our state vector of partial column scalars which are the same for all windows 

in each measured spectrum,  

 

𝒙𝛄 =	

⎣
⎢
⎢
⎢
⎢
⎡
(𝛾/ − 1))

⋮
(𝛾/ − 1)66
(𝛾4 − 1))

⋮
(𝛾4 − 1)66⎦

⎥
⎥
⎥
⎥
⎤

  ,                                                    (3.13) 

 
and 𝒙$,# is our vector of a priori partial column scalars, 
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𝒙$,# =	

⎣
⎢
⎢
⎢
⎢
⎢
⎡
(𝛾*,/ − 1))

⋮
(𝛾*,/ − 1)66
(𝛾*,4 − 1))

⋮
(𝛾*,4 − 1)66⎦

⎥
⎥
⎥
⎥
⎥
⎤

  .                                                  (3.14) 

 
With ns measurements made in a day, nw spectral windows, and two partial columns, the y 

vector is of the size 1 by nwns, the K matrix is of the size nwns by 2ns and the 𝒙> and 𝒙$,# 

vectors are of the size 2ns by 1. So, for each spectrum, there is one 𝛾/value and one 𝛾4 

value, representing the partial column scale factors aggregated over the windows. 

 

Since Equation 3.10 is linear, we can apply a basic linear least-squares method to solve for 

the partial column scalars:   

 

𝒙/" = 𝒙$,# + (𝑲&𝑲)()𝑲&𝒚,                                               (3.15) 

 

While the linear least-squares method provides a useable solution to our retrieval, it also 

has partial column error values on the order of 10 ppm, due to the strong anti-correlation 

of the lower and upper partial columns, which render the solutions unsuitable for carbon 

cycle science. Including constraints through a Bayesian approach reduces the retrieved 

partial column error values as shown in Fig. B.1. In addition, the least-squares method does 

not allow us to utilize additional a priori information in the covariance of the partial 

columns. 

 

We use the maximum a posteriori (MAP) approach (Rodgers, 2008) to calculate the most 

probable state vector from the given models and a priori information. In line with the 

assumptions of the MAP approach, we assume our problem is linear and follows a gaussian 

distribution.  The MAP solution can take a few equivalent forms. In this work we use: 

 
𝒙*> = 𝒙*,> + 𝑺*𝑲&(𝑲𝑺*𝑲& + 𝑺')()(𝒚 − 𝑲𝒙*,>),                             (3.16) 
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where 𝒙*,> is the a priori partial column scalar values, 𝑺* is the a priori covariance matrix, 

K is the Jacobian matrix, 𝑺𝝐 is the model covariance matrix, y is the measurement vector, 

and 𝒙*> is the output solution vector. The input components (xa,y, Sa, and 𝑺𝝐) are described 

in Sect. 3.2.3.2.  

 

Once we have calculated the most likely solution for the partial column scalars as a vector 

in temporal space, 𝒙*>, we reconstruct the partial column DMF values for the day for the 

lower and upper partial columns as: 

 

𝒛A0 =

⎣
⎢
⎢
⎢
⎢
⎡
𝑧A0,/,)
⋮

𝑧A0,/,66
𝑧A0,4,)
⋮

𝑧A0,4,66⎦
⎥
⎥
⎥
⎥
⎤
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⎣
⎢
⎢
⎢
⎢
⎢
⎡
(𝑥E>/,) + 1) ∙ 𝑧*,/,&0012,)

⋮
(𝑥E>/,66 + 1) ∙ 𝑧*,/,&0012,66
(𝑥E>4,) + 1) ∙ 𝑧*,4,&0012,)

⋮
(𝑥E>4,66 + 1) ∙ 𝑧*,4,&0012,66⎦

⎥
⎥
⎥
⎥
⎥
⎤

                              (3.17) 

 
where 𝑧*,/,&0012 and 𝑧*,4,&0012 are the values of the a priori partial column DMFs 

calculated by integrating the median TCCON a posteriori profiles for the measurements in 

a day using the same method as the standard TCCON full column retrievals (Wunch et al., 

2011).  

 
3.2.2.3 Calculating Informational Content 
 

The MAP retrieval allows us to calculate the information content of the retrieval. In 

particular, we compare the degrees of freedom for our retrieval calculated by taking the 

trace of the averaging kernel of the fit, calculated as the following: 

 
𝐷𝑜𝐹 = 𝑡𝑟(𝑨) = 𝑡𝑟((𝑲&𝑺'()𝑲+ 𝑺*())()𝑲&𝑺'()𝑲),                            (3.18) 
 
as well as the Shannon information content derived from the natural log of the determinant 

of the difference between the averaging kernel and an identity matrix:  

 
𝐻 = − )

"
ln	(|𝑰 − 𝑨|).                                                     (3.19) 
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Generally, profile retrieval averaging kernels represent the sensitivity of a specific level of 

a profile to the rest of the levels in the profile. The averaging kernel for the TARDISS 

inversion is a temporal averaging kernel relating how each partial column calculation 

relates to every other measurement during a day. The DoF value for a day of the retrieval 

represents how many individual pieces of partial column information we can infer over the 

day of measurements. We either report the number of degrees of freedom from the fit over 

a day or normalize the degrees of freedom by the number of measurements in each day for 

a more comparative understanding of the TARDISS degrees of freedom with respect to a 

traditional profile retrieval as well as between days with a large variation in the number of 

measurements. 

 
3.2.2.4 In Situ Comparison Calculations 
 

To evaluate the accuracy of our partial column retrieval, we use the smoothing calculation 

shown in Equation 3 of Wunch et al. (2010), altered to use the terminology of this work, 

to determine the value of the partial columns of the TCCON total columns used as input: 

 
�̂�! = 𝑧*,&0012 + 𝒂&0012

B& $𝒙;:CD − 𝒙*,&0012, ,                                 (3.20) 
 
where �̂�! is the smoothed column averaged DMF, 𝑧*,&0012 is the column averaged DMF 

of the scaled a priori profile, 𝒂&0012
B  is the vertical averaging kernel for the specific spectral 

window dotted with an integration operator,	𝒙;:CD is the measured, in situ profile in DMF, 

and 𝒙*,&0012 is the scaled a priori profile. We use this equation to create the smoothed 

partial column TCCON DMF values by integrating to the same split point, q, as in Equation 

3.5. These values serve as a sort of null hypothesis to compare to the TARDISS retrieval 

to determine if the fits are effective in inferring partial column information. 

 

In order to compare the partial column retrievals to in situ profiles for validation purposes, 

we calculate the vertical sensitivities of the TARDISS fit (shown in Fig. 3.8) using the gain 
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matrix, G, from the TARDISS inversion and the averaging kernel profiles from the 

TCCON measurement windows as: 

 
𝑮 = (𝑲&𝑺'()𝑲+ 𝑺*())()𝑲&𝑺'()	 .                                          (3.21) 
 
𝑨ED:; = 𝑮	𝚵&0012,                                                       (3.22) 
 
where 

𝚵&0012 =

⎣
⎢
⎢
⎢
⎢
⎡
𝒂&0012,),)

⋮
𝒂&0012,),66
𝒂&0012,65,)

⋮
𝒂&0012,65,66⎦

⎥
⎥
⎥
⎥
⎤

  ,                                               (3.23) 

  
and 𝒂&0012 is the same vector of column averaging kernels from Equation 3.3 without the 

integration operator for each window used and 𝑨ED:; is the vertical sensitivity of the partial 

column related to the profile. G has dimensions of 2ns by nwns, 𝚵&0012 has dimensions of 

nwns by 51, and 𝑨ED:; has dimensions of 2ns by 51. The gain matrix relates each 

measurement in a day to the upper and lower partial column calculation which is useful to 

calculate the temporal DoF but is not directly comparable to in situ vertical profiles. The 

𝑨ED:; term converts the temporal sensitivities of the gain matrix to vertical sensitivities 

using the TCCON vertical averaging kernel allowing us to compare with the in situ 

validation profiles. We apply the average vertical sensitivities for the measurements used 

in comparison with in situ profile measurements. 

 
Since 𝒂&0012	represents the change in TCCON total column DMF (also called Xgas) per 

change in true DMF at each level (𝜹𝑿𝒈𝒂𝒔,𝑻𝑪𝑪𝑶𝑵
𝜹𝒙𝒕𝒓𝒖𝒆

) and the gain matrix represents the change in 

partial column scalar per change in TCCON total column DMF ( 𝜹𝜸
𝜹𝑿𝒈𝒂𝒔,𝑻𝑪𝑪𝑶𝑵

), 𝑨𝒗𝒆𝒓𝒕 has 

units of change in partial column scalar per change in level DMF value ( 𝜹𝜸
𝜹𝒙𝒕𝒓𝒖𝒆

) and relies 

on the difference between a ‘true’ in situ profile and the a priori profile used in the 

inversion.  
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For our TARDISS comparisons, we use an adjusted version of Equation 3.20 to determine 

the value the inversion would return if it were using the true profile instead of the scaled 

TCCON priors:  

 
�̂�! = 𝑧*,&0012 + 𝑨ED:;$𝒙;:CD − 𝒙*,&0012,,                                   (3.24) 

 
where 𝒙*,&0012 is the a priori profile used in Equation 3.3 and 𝒙;:CD is the measured in situ 

profile in DMF. The in situ profile is interpolated to the same vertical levels as the TCCON 

a priori profile as shown in Fig. 3.4. After calculating the smoothed in situ profile, we 

integrate the profile from the surface to the vertical level at which the partial columns are 

separated, q in Equation 3.5, for the lower column. For the upper partial column, we 

integrate from the level q+1 to the top of the atmosphere for the upper column using the 

method outlined in Wunch et al. (2010). We then compare the integrated, smoothed, in situ 

partial column DMFs directly with the reconstructed lower and upper partial columns 

calculated by Equation 3.17.  

 
3.2.2.5 Error Calculations  
 

Finally, the error for the retrieval is made up of model parameter error, smoothing error, 

and retrieval noise (Rodgers, 2008).  There are no model parameters in the state vector of 

the TARDISS retrieval, so the model parameter error is zero. The smoothing error is the 

square root of the diagonal of the following matrix:  

 
𝑺! = (𝑲&𝑺'()𝑲+ 𝑺*())()𝑺*()(𝑲&𝑺'()𝑲+ 𝑺*())(),                            (3.25) 

 
and the retrieval noise is the square root of the diagonal of the matrix calculated by: 

 
𝑺: = (𝑲&𝑺'()𝑲+ 𝑺*())()𝑲&𝑺'()𝑲(𝑲&𝑺'()𝑲+ 𝑺*())(),                        (3.26) 
 
 and the sum of the two are the total error for the fit.  
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In order to report an error for our retrieval that reflects the performance of the retrieval in 

the validation comparisons in Section 3.3.1, the retrieval output errors are multiplied by a 

scalar calculated from the 1-to-1 comparisons. Using the multiplier ensures that we are 

reporting a conservative estimate of the error in the retrieval. We use the 1-to-1 

comparisons to scale our error values to the point where at least 50% of the comparison 

points are within the one standard deviation error range of the 1-to-1 line. We calculate the 

scalar values as: 

 

𝑉𝐸𝑀 = 	𝑀𝑒𝑑𝑖𝑎𝑛(N𝒛PBCDE(	𝒛P6N
𝝈

),                                             (3.27) 
 
where 𝒛ESTU9 is the comparison partial column values, 𝒛E!	is the integrated, smoothed, in 

situ partial column values, 𝝈 is the output retrieval errors, and VEM is the calculated 

validation error multiplier that is unitless. The VEM is calculated and applied to all 

retrieved errors for each site so that the retrieved dataset for a site reflects the best 

representative error values. If a calculated VEM is less than one, we use a VEM of one 

instead to avoid spuriously reducing error values. A complete discussion of the retrieval 

error is in Section 3.3.4.2.  

 
3.2.3 Algorithm Setup and Choices 
 
3.2.3.1 Pre-processing of the TCCON Data 
 

We begin by preprocessing the TCCON fits. We take the TCCON a priori profile and scale 

it by the median value of the TCCON output scalar values for each spectrum from the 

windows used so that our TARDISS fit is centered around the median TCCON a posteriori 

profile for each measurement point. The a posteriori errors from each window are not 

included in this calculation but are included in the formation of the measurement 

covariance matrix. This assumes that the true column-averaged VMR of a species is some 

linear combination of the VMRs calculated from the windows used in the TARDISS fit. 

Then, we calculate the a priori partial columns by integrating the scaled a priori profiles 
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over the respective pressure levels for the upper and lower partial column. Finally, we 

assemble the necessary matrices for the fit described by Equation 3.16. 

 
3.2.3.2 Maximum a Posteriori Components 

 
The different components of Equation 3.16 reflect where a priori information can be used 

in the algorithm and several additional choices can be made to improve the fit. The 

following describes our standard input for these components. We present tests of the 

retrieval’s sensitivity to these choices in Sect. 3.3.2. 

 

For the a priori covariance matrix, Sa, we use an identity matrix for the lower partial column 

scalar portion of the covariance matrix, and we use an exponential decay over the day of 

measurements from the diagonal for the upper partial column scalar portion of the 

covariance matrix. This requires that upper column scalar values shift in relation to one 

another and prevents the upper partial column scalars changing too rapidly in time. The 

off-diagonal values of the upper partial column portion of the a priori covariance matrix 

decay with respect to the measurements made before and after them over the course of one-

third of a day of measurement. We assume no correlation between the upper and lower 

partial columns, although this is a place for future study. Since the a priori covariance 

matrix is inverted in the calculations, decreasing the magnitude of the a priori covariance 

matrix scalar increases the constraints imposed during the calculations so that a scalar of 

10-5 is a stricter constraint than a scalar of 10-4. A discussion of the influence of the temporal 

covariance is in Sect. 3.3.4.1.  
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Figure 3.3: Example of an a priori covariance matrix color coded by the magnitude of the 
value. The axes represent the relationship of the contribution of each measurement to each 
partial column and each other measurement. The upper right and lower left quadrants are 
dark blue and represents zero assumed correlation between the upper and lower partial 
columns over a day of measurements. The diagonal is scaled to constrain the fit and the 
lower right quadrant shows the assumed correlation between upper partial column scalar 
values over a day of measurement. The lower partial column has an a priori covariance that 
is a scaled identity matrix, the upper partial column has an a priori covariance that decays 
over one third of the measurement day, and the cross covariances between the upper and 
lower partial columns are assumed to be zero.  
 

The measurement error covariance matrix, 𝑺', is a diagonal matrix composed of the squares 

of the TCCON errors for each spectral window so that measurements with smaller errors 

are weighted more heavily than those with larger errors.  

 

CO2 and CO use different values for the a priori TARDISS scale factors (xa,g). For CO, we 

assume a uniform a priori scale factors of one for all observations. For CO2 we use the 

solution to the least-squares method, xL2 from Equation 3.15 as xa,g in Equation 3.16. We 
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adopted different approaches for these two gases since using a static a priori partial column 

scalar of one for the CO2 retrievals worsened the comparison to in situ data but improved 

the validation comparison for the CO retrievals (shown in Sect. 3.3.2).     

 
3.2.3.3 Choosing Spectral Windows for the TARDISS Fit 

 
The primary information content used in our algorithm is derived from the fact that the 

total column abundances retrieved from different spectral windows of the same species 

will differ due to differences in their kernels unless the shape of the a priori profile is 

perfect. Accordingly, for this method to have sufficient information, windows with 

different vertical averaging kernels are needed, such as those shown in Fig. 3.1. Preferably, 

the TARDISS retrieval would use a window that is more sensitive to the lower atmosphere 

and a window that is more sensitive to the upper atmosphere so that a larger amount of 

information is contained between them. While it is imperative to use windows that have 

differing averaging kernel profiles, it is also necessary to use windows that have 

sufficiently low error in the TCCON fit.  

 

For the partial column CO2 calculations, we use four spectral windows in the TCCON 

process centered at 6339, 6220, 4852, and 6073 cm-1 which were suggested for profile 

retrieval exploration by Connor et al. (2016). The 6339 cm-1 and 6220 cm-1 windows are 

spectroscopically similar and have column averaging kernel profiles that vary with solar 

zenith angle providing some vertical information over the course of a day (see Fig. 3.1). 

The 4852 cm-1 window has an averaging kernel profile that is largest at the surface and 

smallest at the upper troposphere and lower stratosphere and the 6073 cm-1 window has an 

averaging kernel profile that is effectively the opposite of the 4852 cm-1 window. Both the 

4852 cm-1 and 6073 cm-1 window averaging kernels are largely independent of solar zenith 

angle with the exception of the highest levels in the 6073 cm-1 window profile.  

 

For the partial column CO calculations, we use three spectral windows fit during the 

TCCON process. There is one window in the NIR region centered at 4233 cm-1 and two 
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windows in the MIR region centered at 2111 and 2160 cm-1. The two MIR windows have 

similar averaging kernel profiles that maximize at the surface and drop to nearly zero at 

upper levels. The NIR window averaging kernel profile has a minimum at the surface and 

a maximum at the upper levels.  

 

Unlike the CO2 windows that are all observed by the InGaAs detector, the MIR CO 

windows are measured by a liquid nitrogen cooled InSb detector. For this reason, we only 

have results of the CO partial column fits at the Caltech, Lamont, and East Trout Lake 

TCCON sites and, due to the lack of in situ profiling data in Pasadena, we only have direct 

vertical profile comparison results from the Lamont and East Trout Lake TCCON site.  

 

Other windows output by TCCON retrievals were considered for the partial column 

calculations for both species. However, they had high levels of error in the TCCON fit or 

had fits that were particularly sensitive to changes in temperature.  

 
3.2.3.4 Choice of Partial Column Height 
 

We chose the lower partial column to integrate from the surface through the first five 

vertical layers of the GEOS meteorological fields. Using this criterion, a site at sea level 

has a lower partial column from sea level to 2 km and the upper partial column from 2 to 

70 km. While somewhat arbitrary, the choice of 2 km was made to have the lower partial 

column encompass the surface mixed layer at most locations while minimizing the dilution 

of surface exchange signals that would result from integrating over a larger partial column. 

If there are known significant enhancements species enhancement near the 2 km level (such 

as CO during wildfire events), the retrieval performance may be degraded, and a different 

partial column height may be a more appropriate choice.   

 
3.2.4 Sites Used in this Work 
 

In this study, we use data from the five TCCON sites located across North America. The 

data record extends from as early as 2011 to as recent as 2021 (Table 3.1). These sites are 
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located at Park Falls, Wisconsin; NASA Armstrong, Edwards Air Force Base, California; 

Lamont, Oklahoma (the Department of Energy Southern Great Plains Atmospheric 

Radiation Measurement site), the California Institute of Technology (Caltech), in 

Pasadena, California, and East Trout Lake, Saskatchewan.  

 

Park Falls, WI hosts the first operational TCCON site (July 2004-present). The site is in a 

rural, heavily forested area and generally far from anthropogenic influence. The FTS does 

not have an InSb detector, so we are able to only retrieve partial column values for CO2. 

We focus on data obtained since 2012, when the alignment of the instrument has been more 

consistent. The increased variance of the TARDISS retrieval for data before 2012 likely 

reflects the inconsistent alignment of the FTS. 

 

We use similar data from the TCCON site located at NASA’s Armstrong Flight Research 

Center (formerly the Dryden Flight Research Center) in California which has been 

operational since July 2013. We report CO2 partial column values for the 2013 to 2021 

time period. The Armstrong site is on the northwest edge of Rogers Dry Lake within the 

Edwards Air Force Base in the Mojave Desert. 

 

The Lamont, OK TCCON site is surrounded by farmland. It has been operational since 

July 2008, and an InSb detector was installed in October 2016. We focus on data from 

Lamont obtained after 2011 after an issue with the instrument laser was resolved. We report 

CO2 partial column values from 2011 to 2021 and CO partial column values from 2017 to 

2021. 

 

The TCCON site on the Caltech campus in Pasadena, CA has been operational since July 

2012 with an InSb detector measuring since October 2016. We report CO2 partial column 

values from 2012 to 2021 and CO partial column values from 2017 to 2021. 

 

The East Trout Lake, SK, TCCON site is located in a remote, heavily forested area in the 

middle of the Saskatchewan Province. The instrument uses an InSb detector allowing us to 
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retrieve partial column CO values. It has been operational since October 2016, and we 

report partial column values for CO and CO2 from 2017 to 2021.  

 
 

Site Location 
Dates of 

Measurements 
Used 

Data DOI 

Park Falls, WI 45.945N, 
90.273W 

CO2: 2012 - 2021 10.14291/tccon.ggg2020.parkfalls01.R0 
 

NASA 
Armstrong, 
Edwards Air 
Force Base, 

CA 

34.958N, 
117.882W 

CO2: 2013 - 2021 10.14291/tccon.ggg2020.edwards01.R0 

Lamont, OK 36.604N, 
97.486W 

CO2: 2011 - 2021 
CO: 2017- 2021 

10.14291/tccon.ggg2020.lamont01.R0 
 

Caltech, 
Pasadena, CA 

34.1362N, 
118.126W 

CO2: 2012 - 2021 
CO: 2017 - 2021 

10.14291/tccon.ggg2020.pasadena01.R0 
 

East Trout 
Lake, SK 

54.354 N, 
104.987W 

CO2: 2017 – 2021 
CO: 2017 – 2021 

10.14291/tccon.ggg2020.easttroutlake01.R0 
 

 
Table 3.1: Location, dates of measurement, and DOIs of the TCCON sites used in this 
work. CO measurements require an InSb detector to cover the 2160 and 2111 cm-1 
windows, which has only been available since 2017 at Caltech, Lamont, and East Trout 
Lake. 
 
3.2.5 Comparison Data 
 

We use in situ data from multiple aircraft programs and AirCore flights between 2008 and 

2020 (Cooperative Global Atmospheric Data Integration Project; (2019), Baier et al., 2021) 

to evaluate our partial column retrieval.  
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The aircraft CO2 measurements are from the NASA Studies of Emissions and Atmospheric 

Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign 

(Toon et al., 2016) using an AVOCET instrument, from the 2016 Atmospheric 

Tomography Mission (ATom) (Wofsy et al., 2021; Thompson et al., 2022) using a Picarro 

cavity ringdown spectroscopy (CRDS) trace gas analyzer (Crosson, 2008), from the Korea-

United States Air Quality Study (KORUS-AQ) campaign using a non-dispersive IR 

spectrometer, and from measurements made by the Goddard Space Flight Center using a 

Picarro CRDS trace gas analyzer.  

 

We use AirCore profiles from July and August of 2018 at the Armstrong, Lamont, and 

Park Falls sites (Baier et al., 2021). The AirCore sampling system is composed of coiled 

stainless-steel tubing that is open on one end while ascending on balloon to ~ 30 km, and 

passively samples ambient air as it descends to the ground on a parachute. This sample is 

then analyzed for CO2, CH4, and CO using a Picarro CRDS trace gas analyzer, and a fill 

dynamics model accounts for the effect of longitudinal mixing due to diffusion on vertical 

resolution (Karion et al., 2010; Tans, 2009; Tans, 2022).  

 

Finally, we use CO and CO2 data measured at the Lamont site (site code SGP) and at the 

East Trout Lake site (site code ETL) as a part of the NOAA Global Greenhouse Gas 

Reference Network (GGGRN) aircraft network in North America (Sweeney et al., 2015). 

Since these datasets do not include much data within the upper partial column, we compare 

with these measurements only to our retrieved lower partial column values and exclude 

them from the validation discussion in Section 3.3.2. Table B.2 provides a summary of the 

in situ data used in this work.  
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Figure 3.4: An example of the profiles used in the direct comparison calculations using 
data from the Park Falls site on July 27, 2018. The profile above 10 km is not shown. The 
solid black line is the TCCON a priori profile scaled by the median of the vertical scaling 
factors from the spectral windows used. The green dot-dashed line is the measured AirCore 
mole fraction. The red, dashed line is the AirCore measurements interpolated to the vertical 
spacing of the TCCON prior, and the blue, dotted line with circles is the smoothed, vertical 
sensitivity weighted profile that is integrated to calculate the partial column that the 
TARDISS retrieval would calculate if it had a ‘true,’ AirCore profile. The black dots within 
the blue circles represent the points of the profile that make up the lower partial column.  

3.3 Results and Discussion  
 

The TARDISS algorithm is very quick — taking only a minute of processing time per year 

of data for each species — because it does not repeat the spectral fitting. This speed enables 

the validation comparisons to be performed using many different model choices. Thus, we 
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evaluated the sensitivity of the TARDISS inversion by varying different forward model 

choices. The set of choices that we have designated as the operational setup for CO2 

inversion are:  

• The covariance matrix, Sa, is scaled by 10-5 to better constrain the fit  

• The value of the a priori scalar for the lower and upper partial column scalar 

(𝒙*,> in Equation 3.16) is the least squares solution for the respective 

column (𝒙/" in Equation 3.15). 

 

For the CO inversion, the operational setup parameters are:  

• A covariance matrix, Sa, scaled by 10-4  

• An ideal a priori partial column scalar (𝒙*,>)	of one. 

 

We vary two aspects of the algorithm and observe the differences in the validation 

comparisons. The results of these tests are discussed in Sect. 3.3.2 and represented in Table 

3.2 and Table 3.3. 

 

3.3.1 Validation Comparisons 

 

We compare retrieved partial column values from three of the five sites presented in this 

work using measurements from the same set of in situ data used to evaluate and derive the 

‘in situ scaling factor’ of the TCCON retrievals (Wunch et al., 2011). For CO2, there are 

twenty-four points of comparison obtained between 2013 to 2018. Twelve of those 

comparisons are from the Armstrong TCCON site, four profiles are available above the 

Park Falls TCCON site, and the remaining eight profiles are from the Lamont TCCON site. 

As the Lamont site is the only site in this work with an InSb detector and overlapping in 

situ measurements, the eight profiles measured at the Lamont site serve as the totality of 

the CO comparison dataset.  
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We also compare the partial columns calculated from the TCCON individual windows to 

further contextualize the performance of the TARDISS algorithm in Sect 3.3.3.1 and 

summarized in Table 3.4. The comparisons of the TCCON individual windows are 

performed in the same way as the TARDISS comparisons using Equation 3.20 to calculate 

the smoothed, in situ partial columns.  

 

The comparison profiles were measured by aircraft-based instruments or AirCore 

measurements as described in Sect. 3.2.5 and Table B.2. We revert to the TCCON priors 

for parts of the profile not measured by in situ methods. For the errors associated with the 

aircraft measurements, we use the reported measurement error for the measured parts of 

the profile, and, for the unmeasured parts of the profile, we use the average reported 

measurement error and, to account for the errors involved with estimating the parts of the 

profiles not measured by in situ methods, we add in quadrature twice the standard deviation 

of the measured profile in the respective partial column. For the errors associated with the 

AirCore measurements, we use the same approach as for the aircraft measurement and 

include an extra error term to conservatively account for atmospheric variability as 

captured by duplicate AirCores launched at approximately the same time. The error for 

AirCore from atmospheric variability is 0.6 ppm for CO2 and 8 ppb for CO compared to 

the analyzer error of 0.05 ppm and 3 ppb. The partial column error values are calculated 

by integrating a profile shifted by the error values and subtracting it from the integration 

of the original smoothed profile. The difference between these two integrated, smoothed 

partial columns provides a conservative error value that represents the unlikely occurrence 

that the profile at every altitude has 100% error.    

 

We compare the TARDISS retrievals from spectra obtained within one hour of the in situ 

profile to the integrated, smoothed, in situ partial columns calculated using Equation 3.24. 

We report linear fits between the partial column retrievals and the integrated, smoothed, in 

situ partial columns. Since our retrieval is designed to be linear, we use fits with y-

intercepts forced through zero. As there are only scaling values in our retrieval, a non-zero 

y-intercept would introduce spurious error into our analysis. Since the reported coefficient 
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of determination for this linear fit would be spuriously high, we take the ratio of our 

retrieved partial column to the integrated, smoothed, in situ measurement and subtract one 

to quantify how much they deviate from each other. We report the mean of the absolute 

value of the ratio as it deviates from one as the mean ratio deviation. For example, a one 

percent difference in values would give a mean ratio deviation of 0.01. This mean ratio 

deviation value gives a more direct understanding of how the partial column values 

compare.  

 

We use these validation comparisons to perform sensitivity tests of our algorithm 

parameters and determine an operational set of parameters. We then use these optimal 

parameters for the CO2 and CO retrievals to quantify the total error of our retrieval by 

calculating a validation error multiplier for each site. Validation error multipliers for each 

site and partial column are shown in Table 3.6.  

 

3.3.2 Choice of Operational Parameters from Validation Comparison 

  

Several terms in our retrieval do not have unambiguously correct values. To evaluate the 

sensitivity our retrieval to the choices made for these parameters, we have run our retrieval 

with alternate values and report the degrees of freedom and comparison to in situ data 

(specifically, the retrieval comparison error, slope of the zero-forced linear fit, and the 

mean ratio deviation value of the linear fit) for each test. We tested changes to two terms: 

the TARDISS a priori scale factors and the a priori covariance matrix scaling. 

 

To test the sensitivity of the retrieval to the partial column scalar prior, we compare the 

changes in the validation when using 𝒙/" from Equation 3.15 as the a priori partial column 

scalar (our operational choice for CO2), the daily median of 𝒙/", as well as the idealized 

scalar of unity (our operational choice for CO) to each other. In Tables 3.2 and 3.3, these 

are identified as “𝒙/",” “𝒙/" daily median,” and “static ideal prior,” respectively. 
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We also test the sensitivity of the retrieval to how the a priori covariance matrix is scaled. 

This term changes how strongly the retrieval is constrained to the prior. In Table 3.2 (CO2) 

and Table 3.3 (CO), we illustrate the influence of choosing 1x10-4, 5x10-5, and 1x10-5 as 

an a priori covariance matrix scalar. While other scaling values were tested, the resulting 

errors were large enough or the resulting degrees of freedom were small enough that the 

values were disregarded from further study.  

 

TARDI
SS a 
priori 

Choice 

A priori 
Covaria

nce 
Matrix 
Scaling 

DoF per 
measurem

ent 
(overall) 

Lowe
r 

Colu
mn 

Error 
(ppm) 

Lower 
Column 
Validati

on 
Slope 

Lower 
Colum
n Mean 
Ratio 

Deviati
on 

Upper 
Colu
mn 

Error 
(ppm) 

Upper 
Column 
Validati

on 
Slope 

Upper 
Colum
n Mean 
Ratio 

Deviati
on 

 

 10-5 0.046 
(2.12) 

1.146 1.004 0.008 0.497 0.999 0.003  

𝒙/" 
daily 

median 
10-4 

0.311 
(15.1) 3.063 1.006 0.010 1.033 0.999 0.003  

 5x10-5 
0.183 
(8.48) 2.378 1.005 0.010 0.658 0.999 0.003  

 10-5* 0.046 
(2.12) 

1.146 1.001 0.011 0.497 0.999 0.002  

𝒙/" 10-4 0.311 
(15.1) 

3.063 1.004 0.011 1.033 1.000 0.002  

 5x10-5 
0.183 
(8.48) 2.378 1.003 0.009 0.658 1.000 0.002  

 10-5 
0.046 
(2.12) 

1.146 1.012 0.014 0.497 0.997 0.003  

Static 
ideal 
prior 

10-4 
0.311 
(15.1) 3.063 1.013 0.010 1.033 0.997 0.003  

 5x10-5 
0.183 
(8.48) 2.378 1.013 0.013 0.658 0.997 0.003  

 
Table 3.2: Variations in CO2 retrieval upper and lower column validation slopes, upper and 
lower column mean ratio deviations, upper and lower column comparison errors, and DoF 
for different TARDISS a priori choices and a priori covariance matrix scaling values. The 
asterisk in the fourth row indicates that this is the operational set of parameter choices for 
the CO2 retrieval.  
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The agreement between the in situ and TARDISS retrievals for CO and CO2 change with 

both the a priori covariance matrix scaling and the a priori scalar choice. As we are trying 

to determine the parameters that give the best comparison results between the in situ and 

lower partial column retrieval data specifically, we chose the parameters that resulted in 

the validation slope closest to one for the lower partial column. For the lower partial column 

CO2, the best result (slope of 1.001) comes from using the 𝒙/" values as an a priori scalar 

and scaling the a priori covariance matrix by 10-5. The validation slope for the upper 

column comparison with these parameters (0.999) is similar to values from other parameter 

choices. For the lower partial column CO, the best result for the lower column (slope of 

0.999) results from the retrieval using a static a priori scalar of one and scaling the a priori 

covariance matrix by 10-4. Over the two hours of the comparison, the degrees of freedom 

are about 2.12 for CO2 and 3.51 for CO — consistent with between one and two DoF per 

hour of measurements. Since the largest variation in validation slopes in either partial 

column and either species is driven by the change in the a priori partial column scalar, we 

posit that the a priori partial column scalar choice is the most significant parameter in the 

retrieval for determining validation slopes while the a priori covariance matrix scaling is 

the most significant parameter for determining the degrees of freedom of the fit and the 

retrieval errors.  

 

TARDI
SS A 
priori 

Choice 

A priori 
Covarian

ce 
Matrix 
Scaling 

DoF per 
measurem

ent 
(overall) 

Lower 
Colu
mn 

Error 
(ppb) 

Lower 
Column 
Validati

on 
Slope 

Lower 
Column 
Mean 
Ratio 

Deviati
on 

Upper 
Colu
mn 

Error 
(ppb) 

Upper 
Column 
Validati

on 
Slope 

Upper 
Column 
Mean 
Ratio 

Deviati
on 

 10-5 0.010 
(0.402) 0.440 0.935 0.055 0.182 1.099 0.100 

𝒙/" 
daily 

median 
10-4 

0.088 
(3.51) 1.334 0.938 0.052 0.370 1.122 0.128 

 5x10-5 
0.047 
(1.88) 0.965 0.937 0.053 0.303 1.116 0.120 

 10-5 
0.010 

(0.402) 0.440 0.918 0.076 0.182 1.113 0.115 

𝒙/" 10-4 0.088 
(3.51) 

1.334 0.921 0.074 0.370 1.133 0.142 
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 5x10-5 0.047 

(1.88) 
0.965 0.920 0.075 0.303 1.128 0.134 

 10-5 0.010 
(0.402) 

0.440 0.996 0.003 0.182 1.048 0.050 

Static 
ideal 
prior 

10-4* 0.088 
(3.51) 

1.334 0.999 0.005 0.370 1.081 0.081 

 5x10-5 0.047 
(1.88) 

0.965 0.998 0.004 0.303 1.073 0.075 

 
Table 3.3: Variations in CO retrieval upper and lower column validation slopes, upper and 
lower column mean ratio values, upper and lower column comparison errors, and DoF for 
different TARDISS a priori choices and a priori covariance matrix scaling values. The 
asterisk in the second to last row indicates that this is the operational set of parameter 
choices for the CO retrieval.      
 
3.3.3 TARDISS Performance Using Operational Parameters 
 
3.3.3.1 Comparisons with Calculated TCCON Partial Columns 

 
We compare the validation performance of the TARDISS partial column retrievals to the 

partial column validations of the TCCON individual windows used in the retrieval to 

demonstrate that TARDISS provides addition information about vertical distribution 

compared to the TCCON retrieval. We compute a partial column from the TCCON output 

by integrating the posterior TCCON CO or CO2 profile (i.e. the prior profile times the 

retrieved TCCON VSF) over the same pressure levels as the partial columns are calculated 

over for TARDISS. We compare the TCCON partial columns to the integrated, averaging 

kernel-smoothed, in situ partial columns calculated using Equation 3.20. The comparisons 

are shown in Table 3.4 and the slopes of the TCCON window partial column comparisons 

are shown as dotted lines in Fig. 3.5.  

 

The comparisons show that the TARDISS retrieved partial columns for CO2 have lower 

and upper partial columns slopes closer to one than the TCCON input windows. The mean 

ratio deviation for the lower column CO2 is slightly larger than the mean ratio deviation 

for the TCCON input windows (0.011 compared to a TCCON average of 0.007) which is 

reflected in the error of the lower partial column CO2 retrieval. The retrieved lower partial 



 

 

60 
column for CO has a slope much closer to one than the slopes of the TCCON input and 

with a much smaller mean ratio deviation (0.002 compared to a TCCON average of 0.024). 

The retrieved upper partial column CO has a slope that is between the slopes of the TCCON 

input windows but still has a smaller mean ratio deviation suggesting increased precision.  

 

These comparisons suggest that, for CO, the TARDISS algorithm is very effective at 

separately inferring the lower partial column CO values since the validation slope is closer 

to one and the mean ratio deviation is smaller than the individual windows. The algorithm 

is limited in its retrieval of the upper partial column CO which is shown by its direct 

comparisons and mean ratio deviation being similar to the TCCON input window partial 

column. The performance of the algorithm suggests that the large variations in the CO 

vertical profile shapes benefit from the increased flexibility in the lower column but that 

there might be some spectroscopic biases to correct, particularly in the mid infrared 

windows.  

 

For CO2, the comparisons show that the algorithm can effectively infer upper partial 

column values but is less effective at retrieving the lower partial column CO2 values. The 

lower partial columns benefit from the secondary scaling as they have less bias (a slope 

closer to one) than the individual windows but the slight increase in mean ratio deviation 

suggests that the retrieval cannot be as precise at adjusting for the surface errors in the a 

priori profile shape. The a priori profiles for CO2 intentionally do not include variations of 

local sources or sinks at the surface but are quite accurate in the middle and upper 

troposphere. Accordingly, the secondary scaling of the upper partial column has improved 

accuracy and precision compared to the individual windows.   

 

Finally, we compare the performance of the total column values calculated from the 

TARDISS scaled partial columns to the total column validations of the TCCON individual 

windows. The comparisons are shown in Fig. B.3 and summarized in Table B.3. The total 

column comparisons show similar trends as the upper column comparisons. This is likely 
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due to the upper partial column vertical sensitivity being much larger than the lower partial 

column sensitivities as is discussed in Sect. 3.3.4.1.  

 

 
Figure 3.5: The direct comparisons between the partial column DMF values retrieved from 
the TARDISS fit and the integrated, smoothed in situ partial columns for CO2 (a,b) and the 
CO (c,d) for the lower (a,c) and upper (b,d) columns. The CO2 comparisons are color coded 
by site and the CO comparisons are solely from the Lamont site. The error bars in the x-
direction are the reported errors from the aircraft data smoothed the same way as the in situ 
measurements and the error bars in the y-direction are the output errors from the TARDISS 
fit scaled by the VEM values. The black solid line is the 1-1 line and the blue dot-dash line 
is the linear fit of the data with the y-intercept forced through zero. The blue dot-dash line 
for the lower partial column CO fit is overlapping with the solid black line. The slopes of 
the partial column validation of the TCCON spectral windows used in the retrieval are 
represented by dashed lines.  
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TCCON 
Window 

(cm-1) 

Lower 
Column 

Validation 
Slope 

Lower 
Column 

Validation 
Slope Error 

Lower 
Column 

Mean Ratio 
Deviation 

Upper 
Column 

Validation 
Slope 

Upper 
Column 

Validation 
Slope Error 

Upper 
Column 

Mean Ratio 
Deviation 

CO2       

6220 1.016 0.004 0.007 1.004 0.0010 0.003 

6339 1.013 0.004 0.005 1.001 0.0009 0.003 

6073 1.014 0.004 0.009 1.003 0.0011 0.003 

4852 1.020 0.006 0.007 1.002 0.0011 0.004 

TARDISS 
CO2 

1.001 0.003 0.011 0.999 0.0008 0.002 

CO       

4290 0.990 0.034 0.041 1.058 0.077 0.106 

2160 1.031 0.019 0.052 1.077 0.024 0.095 

2111 1.059 0.020 0.061 1.092 0.023 0.108 

TARDISS 
CO 

0.999 0.002 0.005 1.081 0.012 0.081 

 
Table 3.4: Comparisons of the TARDISS partial column retrieval to the partial column 
comparisons of the fits of the TCCON spectral windows from TCCON used as input for the 
TARDISS algorithm. The data in the TARDISS row uses the operational parameters for the 
fit that are identified in Table 3.2 and 3.3 by an asterisk.   
 
3.3.3.2 Comparisons with Low Altitude In Situ Profiles 
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Figure 3.6: East Trout Lake site direct comparisons between the partial column 

DMF values retrieved from the TARDISS fit and the integrated, smoothed aircraft partial 
columns for lower column CO2 and CO. The error bars in the x-direction are the integrated 
partial columns of the profile shifted by the error values and then subtracted from the 
original partial column integration. The error bars in the y-direction are the output errors 
from the TARDISS fit scaled by the VEM value for the site. The black solid line is the 1-
1 line and the blue dot-dash line is the linear fit of the data with the y-intercept forced 
through zero. The slope for the fit is 1.001±0.002 for CO2 and is 0.945±0.012 for CO. 

 
In addition to the aircraft and AirCore validation data that include profile measurements at 

altitudes in the upper troposphere and lower stratosphere, we compare to aircraft data 

obtained as part of the NOAA GGGRN aircraft program at the Lamont and East Trout 

Lake sites. These measurements were made more frequently but do not include enough 

high-altitude measurements to compare with our retrieved upper partial column values, so 

we use them as an independent comparison to our validation data for our lower column 

CO2 and CO retrievals. We use data obtained between the surface and 7 km from 26 of the 

40 flights made between 2017 and 2020 at East Trout Lake. We also use data obtained 

between the surface and 6 km from 267 of the 399 flights performed at the Lamont site 

over the period of 2008 to 2018 and all 34 flights for CO made between 2017 and 2021. 
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Figure 3.6 (East Trout Lake) and Fig. 3.7 (Lamont) show the retrieved lower partial column 

DMF plotted against the integrated, smoothed, in situ columns similar to Fig. 3.5.  

 

Similar to the validation comparison, we revert to the a priori profile for altitudes not 

measured by in situ methods. To account for the errors in using the a priori profile, we add 

twice the standard deviation of the partial column that is measured to the average 

measurement error in quadrature. Given the lower altitudes measured by the GGGRN 

program, the errors associated with the parts of the profile that use the a priori profile are 

higher and, therefore, the errors in the long-term comparative measurements tend to be 

much higher than the validation measurements as shown in the CO comparisons in Fig 3.6.     

 

Despite the larger error values, the consistency of the statistical parameters (summarized 

in Table B.4) using the larger number of measurements in the long-term comparisons 

further motivates the use of the extended validation dataset. Some of the in situ profile 

comparisons occur during times with larger CO DMFs that suggest influences from sources 

not accounted for by the TCCON a priori profiles such as those from wildfires which likely 

resulted in the large VEM for the long-term CO comparisons. Although the comparisons 

with the long-term data are not used for validation, the long-term comparisons show that 

the validation comparisons are generally representative of the performance of the 

TARDISS algorithm overall.  
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Figure 3.7: Lamont site direct comparisons between the partial column DMF values 

retrieved from the TARDISS fit and the integrated, smoothed airborne partial columns for 
lower column CO2 and CO. The error bars in the x-direction are the integrated partial 
columns of the profile shifted by the error values and then subtracted from the original 
partial column integration. The error bars in the y-direction are the output errors from the 
TARDISS fit scaled by the VEM value for the site. The black solid line is the 1-1 line and 
the blue line is the linear fit of the data with the y-intercept forced through zero. The slope 
for the fit is 1.002±0.001 for CO2 and is 1.000±0.002 for CO. 

 
3.3.4 Retrieval Characterization 
 
3.3.4.1 TARDISS Vertical Sensitivity and Temporal Covariance 
 

TARDISS uses an a priori covariance matrix with temporal covariance between upper 

partial column scalars over the course of a day of measurement, as shown in Fig. 3.3. To 

determine how this constraint influences the retrievals, we compare the data above to the 

validation comparison from a CO2 retrieval not constrained by a temporal covariance. The 

a priori covariance matrix without the temporal covariance is simply a diagonal matrix of 

the 10-5 scalar value. Table 3.5 shows that the retrievals without temporal constraints have 

a slightly poorer validation comparison overall, including larger errors and fewer degrees 

of freedom. However, the site-by-site differences in validation data show that the upper 
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column VEM values are smaller when using a temporally unconstrained fit, whereas the 

lower column VEM values are improved when implementing the temporal constraints. 

While the purpose of this study is to create a universally-applicable operational algorithm, 

local differences in the sources and meteorology may alter the effects of the a priori 

covariance matrix choice on the site VEMs. This suggests that site-by-site parameter 

choices may enable smaller errors and increased precision.  

 

 Statistics 
Temporally Constrained 

Upper Column 

Temporally 
Unconstrained 
Upper Column 

Validation DoF 
(Overall) 

 0.0462 (2.12) 0.0352 (1.59) 

Lower Column CO2    
 Error (ppm) 1.15 1.15 
 Validation Slope 1.001 1.002 

 Mean Ratio Deviation 0.011 0.009 

 Park Falls VEM 3.25 3.75 
 Armstrong VEM 2.98 4.42 

 Lamont VEM 1.35 2.50 
Upper column CO2    

 Error (ppm) 0.497 0.956 
 Validation Slope 0.999 0.998 

 Mean Ratio Deviation 0.002 0.003 

 Park Falls VEM 3.61 1.92 
 Armstrong VEM 4.63 1.66 
 Lamont VEM 2.70 1 

 
Table 3.5: Validation comparison DoF, error, validation slope and mean ratio deviation 
and site VEM values for lower and upper column CO2 for retrievals using a temporally 
constrained upper column and a temporally unconstrained upper column. The retrievals are 
performed with the operational parameters denoted by asterisks in Table 3.2.      
 

The temporal covariance impacts our validation comparison through the partial column 

vertical sensitivities described in Equation 3.22 via the gain matrix (Equation 3.21). To 

assess the importance of the choice of a priori covariance matrix, we compare the vertical 
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sensitivities for a temporally constrained upper column and a temporally unconstrained 

upper column (shown in Fig. 3.8) for a representative day (July 27th, 2018, at the Lamont 

site).  

 

Without the temporal constraint, the upper column sensitivities are on the same order as 

the lower column sensitivities with values between -0.05 and 0.18. The upper column 

sensitivity peaks around the 15 km level at low solar zenith angles and the peak moves 

toward the surface at higher solar zenith angles consistent with the changing kernel of the 

6220 and 6339 cm-1 bands. The lower column sensitivities always peak near the surface 

(~2 km or below) and the sensitivity increases at higher solar zenith angles.  

 

With the temporal constraint, the altitude of the maximum sensitivities with respect to SZA 

remains similar but the upper column sensitivities are roughly twice the value and the lower 

column sensitivities are half the value as the temporally unconstrained values. The imposed 

temporal covariance constrains the upper column to vary slowly over the span of a 

measurement day so that a change in the column at one measurement point induces changes 

at other measurement points, thereby increasing the vertical sensitivities in the upper 

column over the entire day. This constraint is also stringent enough that it propagates into 

the sensitivity of the lower column scalar. Since our goal is to retrieve a lower partial 

column, it seems counterintuitive that using sensitivities with an order of magnitude 

difference provides a better validation comparison. However, for this method we assume 

that we know the shape and behavior of the upper column fairly well and that most of the 

change occurs near the surface. Given these assumptions, constraining the upper column 

more heavily by introducing expected daily patterns through the a priori covariance matrix 

allows for the lower column retrieval to have improved comparisons with in situ data 

despite the decreased vertical sensitivities.  

 

While we test retrievals simply with and without temporal covariance, the possible choice 

of a priori covariance matrix shape could be much more complex. Future study could 

include using model generated or back trajectory based temporal covariances to include 
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outside information in the retrieval dynamically. For an operational retrieval product, we 

will include the temporal covariance in the a priori covariance matrix as an operational 

parameter. 

 

 
Figure 3.8: Vertical sensitivities of the lower partial column (left column) and upper partial 
column (right column) scalars color coded by solar zenith angle in degrees. The 
sensitivities calculated when using a temporally covariant a priori covariance matrix are 
shown in the top row and when using a non-temporally covariant a priori covariance matrix 
are shown in the bottom row.  

 
3.3.4.2 Error Analysis 
 

Using the information from the validation comparison, we can evaluate the errors of the 

entire dataset from each of the five sites. The output of the retrieval is the partial column 

scalar and the error retrieved is the standard deviation of the partial column scalar 

calculated from the retrieval variance and represented as another scalar value. To convert 

our partial column scalar error to a dry air mole fraction, we multiply the error scalar value 

by the a priori partial column mixing ratio (𝑧*,&0012 in Equation 3.17). Error varies from 
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site to site due to variations in the TCCON total column errors that are input to the 

measurement covariance matrix and due to how well the a priori partial column DMF 

matches the (generally unknown) actual partial column DMF. We report the total retrieval 

error, retrieval error components, and the error contribution from the validation comparison 

measurements in Table 3.6.  

 

The retrieval error values range from 1.16 ppm to 1.41 ppm for lower column CO2 and 

from 0.26 ppm to 1.33 ppm for the upper column CO2. For CO retrievals, the average total 

retrieval error ranges from 0.48 ppb to 14.0 ppb for the lower column and 0.032 ppb to 

2.23 ppb for the upper column. In general, the errors vary minimally over the record, but 

there is a distinct seasonality for both lower column CO and CO2 retrievals with the highest 

errors during the summer perhaps as a result of errors in the near surface a priori profiles 

(Fig. B.4). The absolute errors for CO2 generally increase over time since simply because 

CO2 is increasing due to anthropogenic emissions. Fractionally, the errors remain similar 

across the dataset for both CO and CO2 (Fig. B.5).  

 

Because the model parameter error goes to zero in our implementation, the current total 

retrieval error is the square root of the sum of the smoothing error (Equation 3.25) and the 

retrieval noise (Equation 3.26). The smoothing error is 94.0% to 96.5% of the total retrieval 

error on average for CO2 and 81.6% to 87.8% of the total retrieval error on average for CO 

depending on the site and is directly related to the scaling of the a priori covariance matrix. 

While using a more constrained a priori covariance matrix increases the smoothing error, 

it also results in a reduction to the total retrieval error. Furthermore, the fit of the lower 

partial column CO2 benefits from a stronger constraint since the slope of the lower partial 

column CO2 validation is closest to one when using the tightest covariance matrix as shown 

in Table 3.2. The retrieval noise is 3.5% to 6.0% of the total retrieval error on average for 

CO2 and 18.4% to 12.2% of the total retrieval error on average for CO depending on the 

site and has the opposite relationship to the scaling of the a priori covariance matrix. The 

retrieval noise reflects the effect of the model covariance matrix that is composed of the 
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TCCON total column measurement errors and therefore reducing these errors would also 

reduce the retrieval noise.  

 

Using the operational setup for our TARDISS fit, we calculate the site specific VEM values 

using Equation 3.27 (Tables 3.5 and 3.6). These values are used to scale the error of the 

TARDISS fit for all the comparisons in this work. The VEM scaled errors serve as a 

conservative estimate for the retrieval errors and should be reevaluated with additional in 

situ profile measurements as they become available. For CO2 at Park Falls, the lower and 

upper column VEM are 3.61 and 3.25, at Armstrong, the lower and upper column values 

are 4.63 and 2.98, and at Lamont the values are 2.70 and 1.35 for the lower and upper 

column, respectively. Since Caltech and East Trout Lake do not have comparison data, we 

apply error multiplier values of 4.63 and 3.25 as they are the largest multiplier values from 

among the other sites. For CO, the Lamont site multiplier values are 1.00 and 15.4, which 

we use for the Caltech and East Trout Lake site CO retrieval data as well.  

 

Since the TARDISS retrieval cannot fully optimize the shape of the partial profile, the site-

to-site differences in VEM are likely due to the variation in the accuracy of the TCCON 

priors which by design do not capture the local source, sink, and transport complexities. 

For CO2, the upper column VEM and retrieval error values are consistently smaller than 

the associated lower column values suggesting that these data support the assumption that 

the shape of the profile of the upper partial column is generally much more accurately 

captured by the TCCON priors. 

 

The total error for each site is determined by multiplying the retrieved errors by the site 

and partial column respective VEM values. After implementing the VEMs, the errors for 

the lower partial column CO2 retrieval range from 3.38 ppm to 5.88 ppm and from 1.22 

ppb to 1.96 ppb for CO across all sites and data. As the Caltech and East Trout Lake sites 

have no validation comparisons, we use the largest validation error multiplier (that of the 

lower column Armstrong and upper column Park Falls comparison) as a higher bound.  
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Since the overall biases are small with validation slopes close to one, the errors are 

sufficiently small that the TARDISS retrievals have skill in evaluating CO2 fluxes at 

TCCON sites. The error compared to the overall lower partial column DMF is small, 1.25% 

on average across the five sites for CO2.  

 

Site 
Retrieval 
Noise (% 
of total) 

Smoothing 
Error (% of 

total) 

Mean 
Lower/Upper 

Column 
Retrieval 

Error (ppm 
for CO2; ppb 

for CO) 

Lower/Upper 
Column 

Validation 
Error 

Multiplier 
(unitless) 

Mean Total 
Lower/Upper 
Column Error 
(ppm for CO2; 
ppb for CO) 

CO2 
Retrievals      

Park Falls 3.5 96.5 1.257/0.655 3.61/3.25 4.54/2.13 
Armstrong 6.0 94.0 1.253/0.500 4.63/2.98 5.80/1.49 

Lamont 4.5 95.5 1.252/0.582 2.70/1.35 3.38/0.786 
Caltech 4.5 95.5 1.271/0.568 4.63/3.25 5.88/1.85 

East Trout 
Lake 5.4 94.6 1.268/0.514 4.63/3.25 5.87/1.67 

CO 
Retrievals      

Lamont 12.2 87.8 1.34/0.447 1.00/15.4 1.34/6.88 
Caltech 18.4 81.6 1.96/0.318 1.00/15.4 1.96/4.90 

East Trout 
Lake 15.7 84.3 1.22/0.355 1.00/15.4 1.22/5.47 

 
Table 3.6: Errors in the CO and CO2 lower partial column retrievals of each site shown as 
the average of the entire data time series and broken down into total retrieval error, retrieval 
noise, smoothing error, validation error multiplier, and total error. The values for total 
retrieval error and total error represent one standard deviation.  
 
3.3.4.3 Information Content Analysis 
 

The information content of the retrieval is determined by the DoF and Shannon information 

content (H) of the retrieval, each calculated from the averaging kernel. The DoF represent 
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the independent pieces of information that can be retrieved from a measurement. We report 

our DoF values both normalized by the number of measurements made in a day, as well as 

the daily overall DoF. Since the DoF are calculated as the trace of the averaging kernel, we 

isolate and report the DoF from the upper and lower column separately along with the total. 

The Shannon information content is a single value to represent the effectiveness of the 

retrieval to recover information from the model with respect to the variance in the data. 

Higher Shannon information content values correspond to a retrieval with a higher possible 

effectiveness.   

 

The information content is summarized for each site in Table 3.7. The overall average 

lower column DoF per measurement across all sites and collected data is 0.047 for CO2 

and 0.15 for CO. The lowest DoF average value of 0.034 is in Park Falls and the highest 

DoF average value of 0.061 is in Armstrong for CO2 and, between the three sites with CO 

retrievals, Caltech has the highest average lower column DoF of 0.18 compared to 0.12 for 

Lamont and 0.15 for East Trout Lake. The retrievals of CO have much larger DoF 

compared to CO2 primarily since the CO2 requires a stronger scaling constraint of the a 

priori covariance matrix limiting the amount of information that can be inferred.  

 

Ideally, DoF values greater than one are desired for traditional profile retrievals. However, 

the temporal aspect of our retrieval complicates the discussion. If we consider the CO2 

retrievals, the five sites used in this work made an average of 172 measurements per day 

so that the DoF value average of 0.0470 per measurement yields 8.08 independent pieces 

of information about the lower partial column per day which provides significant 

information on the diurnal variation and the fluxes into and out of the lower column.  

 

The information content shown in the DoF are mirrored in the Shannon information 

content. Similar to the DoF, Park Falls has the lowest and Armstrong has the highest 

Shannon information content on average for CO2. These differences are likely driven by 

the combination of the TCCON retrieval errors and how well the a priori covariance matrix 

matches the temporal aspects of local meteorology, such as cloud cover or upper 
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tropospheric transport, or the magnitude and time scales of the local carbon fluxes in the 

boreal forest versus the lack of such fluxes in the Mojave Desert. For CO, the Caltech 

retrieval has the highest DoF and Shannon information content of the three sites. While the 

differences in Shannon information content and DoF between sites are not necessarily 

directly comparable, these differences also might be due to the TCCON retrieval errors and 

how well the chosen a priori covariance matrix constrains the solution.   

 
 

Site 

Total 
Degrees of 

Freedom per 
Measurement 

(per day) 

Lower 
Column DoF 

per 
Measurement 

(per day) 

Upper 
Column DoF 

per 
Measurement 

(per day) 

Average 
Measurements 

per day 

Shannon 
Information 
Content per 

day 

CO2 
Retrievals      

Park Falls 0.151 (14.0) 0.0338 (4.30) 0.117 (9.72) 116 9.96 

Armstrong 0.165 (33.2) 0.0613 (14.3) 0.104 (18.9) 227 24.7 

Lamont 0.163 (20.6) 0.0444 (7.22) 0.119 (13.4) 155 15.0 

Caltech 0.156 (23.1) 0.0452 (8.45) 0.111 (14.7) 180 17.0 
East Trout 

Lake 0.181 (25.5) 0.0503 (10.2) 0.131 (15.3) 181 19.0 

Overall 0.163 (23.2) 0.0470 (8.89) 0.116 (14.4) 172 17.1 
CO 

Retrievals       

Lamont 0.236 (26.1) 0.123 (15.7) 0.113 (10.4) 120 17.5 
Caltech 0.227 (43.6) 0.184 (36.9) 0.0431 (6.76) 194 26.8 

East Trout 
Lake 0.263 (43.4) 0.146 (29.5) 0.113 (13.8) 178 26.2 

Overall 0.242 (37.7) 0.151 (27.4) 0.0910 (10.3) 164 23.5 
 

Table 3.7: Degrees of freedom per measurement (and per day) for the lower column, upper 
column, and total retrieval, in addition to the Shannon information content separated by 
site for the CO and CO2 retrievals.  
 



 

 

74 
The informational content of the retrieval assists in evaluating the TARDISS algorithm, 

but also serves as a diagnostic of the effectiveness of the retrieval for each day of 

measurement. Figure 3.9 shows the long-term comparisons between the retrieved lower 

partial column and the smoothed, integrated, in situ data at the Lamont site color-coded by 

the DoF per measurement for each point. The comparisons with higher DoF per 

measurement generally sit closer to the 1-to-1 line as expected and suggest that days with 

higher DoF per measurement have lower associated VEM. Figure B.7 shows the VEM 

calculated after removing days that have DoF per measurement values below a specific 

threshold. The VEM calculated for the long-term comparison data decreases consistently 

with increasing DoF filters until it reaches one at ~0.07 DoF per measurement. This, 

however, excludes roughly 90% of the data. As a first step, the data could be filtered for 

low DoF or low Shannon information content. In the future, the information content could 

be used to create more dynamic VEM values for our datasets and provide more precise 

error values than the conservative, static VEM per site reported in Table 3.6.  
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Figure 3.9: The same comparison shown in Fig. 3.7 is shown here without error 

bars and color coded by the DoF per measurement for the comparison day retrieval. The 
blue dot-dash line above the black 1-to-1 line is the linear fit of the data with the y-intercept 
forced through zero with a slope of 1.002±0.001. 
 
3.3.5 Time Series of the TARDISS Retrieval 
 

The TARDISS algorithm is applicable to any spectra reported as TCCON data with the 

correct detector requirements (InGaAs for CO2 and both InGaAs and InSb for CO). 

Overall, there are at least nine years of CO2 data at each site in this work and approximately 

five years of CO data at the East Trout Lake, Lamont, and Caltech sites.  

 

Figure 3.10 shows the monthly mean lower and upper partial column data retrieved from 

spectra obtained over the last decade at the North American TCCON sites. These upper 

columns reflect the global seasonal patterns in CO2. The lower column at Park Falls and 

East Trout Lake reflect the local influences on CO2 in the sharp decline in surface CO2 

when the surrounding forest is most photosynthetically active. In contrast, the lower 

column Caltech trace shows a consistent urban enhancement over the global trends of ~5 

ppm. All five upper column traces are generally consistent with one another and have a ~6 

ppm seasonal fluctuation.  

 

Figure 3.11 shows the monthly median retrieved lower and upper partial column CO data 

from the East Trout Lake, Lamont, and Caltech site. We observe a slight seasonality at 

each site with maximums in the winter months and minimums in the summer months. The 

CO lower partial column data from the Caltech site tends to be larger than those from the 

Lamont site due to the urban enhancement despite the recent decreasing trend. An example 

of effect of the urban enhancement on total and partial column values is shown in Fig. B.8.   
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Figure 3.10: Time series plot of the monthly median lower (top) and upper (bottom) partial 
column values of CO2 in ppm for the five sites used in the work from 2012 (or the start of 
measurement) to the end of 2021. Data from before 2012 measured in Park Falls and 2011 
in Lamont are not used due to instrument alignment issues and laser issues.  

 
 

 
Figure 3.11: Time series plot of the monthly median lower (top) and upper (bottom) partial 
column values of CO in ppb for the three sites used in the work that have the InSb detector 
from 2017 to the end of 2021. CO has been declining in most of the US cities due to 
emissions control technologies.   
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3.4 Conclusions 
 

The TARDISS retrieval algorithm enables partial column information to be derived from 

the TCCON total column observations of CO2 and CO derived from different absorption 

bands with different vertical averaging kernels. Compared to traditional vertical retrieval 

approaches, the algorithm relaxes the requirement of very accurate meteorology 

knowledge, is less biased by spectroscopic errors, and is computationally inexpensive to 

run since it does fit spectra directly. By inferring information from the differences between 

total column DMF values from spectral windows that are quality controlled, the retrieval 

is restricted to imposing small changes to the partial and total columns. This effectively 

limits the amount of informational content that can be retrieved but also mitigates the issues 

of oscillation or large deviations in the retrieved vertical profile, partial columns in this 

case. Finally, this algorithm takes advantage of the temporal dimension by fitting over an 

entire day of measurements to retrieve enough information to infer temporal changes in the 

lower (surface to ~2 km) and upper (2 to 70 km) partial columns which also allows for the 

input of external, a priori, temporal information that is shown to improve the information 

content in the lower partial column fit. 

 

Using measurements from the five North American TCCON sites, we compare our 

retrieved partial columns of CO and CO2 DMF to the partial columns calculated from 

integrated, smoothed in situ data measured by aircraft and AirCore. We report slopes of 

1.001±0.003 and 0.999±0.001 for the lower and upper partial column CO2 comparisons, 

respectively, and slopes of 0.999±0.002 and 1.081±0.012 for the lower and upper partial 

column CO comparisons, respectively. The retrieved partial columns have improved direct 

comparisons and precision compared to the partial columns calculated from the original 

TCCON spectral windows.  

 

We use the comparison data to calculate validation error multiplier (VEM) values to scale 

retrieved errors to be representative of the in situ comparisons. The average VEM scaled 
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errors for the lower partial column CO and CO2 retrievals are 1.51 ppb (~2%) and 5.09 

ppm (~1.25%), respectively. The magnitudes of these error values suggest that the 

TARDISS retrieval will be useful in its current state for understanding surface fluxes of 

CO and will have some power for evaluating surface fluxes of CO2.  

 

The Bayesian TARDISS algorithm enables the informational content of the retrieval to be 

estimated. The average DoF for the lower partial column retrievals are 8.89 and 27.4 

degrees of freedom so that ~9 and ~27 lower partial column values can be retrieved over a 

day of measurement for CO2 and CO, respectively. The information content is affected by 

the parameters of the retrieval so that there is a tradeoff between retrieved error and the 

DoF of the retrieval. Furthermore, the daily DoF normalized by the number of 

measurements made in a day could serve as a quality control variable.  

 

Future implementations of the retrieval could use the DoF values to create dynamic VEM 

to provide error values that are more precise than the static VEM. Similarly, future work 

could improve the effectiveness of the retrieval of lower partial column CO2 using the 

TARDISS algorithm with the input of external information through the a priori covariance 

matrix, a priori partial column scalar, or the inclusion of the other parameters in the state 

vector.   
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C h a p t e r  4  

ASSESSING SURFACE FLUXES OF CARBON DIOXIDE USING A NOVEL 
REMOTE-SENSING DATASET 

 Abstract.  
 

We describe the use of novel Temporal Atmospheric Retrieval Determining Information 

from Secondary Scaling (TARDISS) retrieved lower partial column CO2 (0-2km), 

<CO2>LPC, to estimate surface fluxes at Park Falls, WI. We compare these estimates with 

surface flux estimates obtained from in situ observations made on the WLEF tall tower by 

the Chequamegon Ecosystem-Atmosphere Study (ChEAS). We show that the TARDISS 

upper (free troposphere / stratosphere) CO2 partial columns are well correlated with free 

troposphere meteorological tracers while showing little correlation with the diurnally 

varying fluxes in the lower partial column. Monthly aggregated Net Ecosystem Exchange 

(NEE) calculated from the diurnal variation in <CO2>LPC compare well to NEE values 

estimated at Park Falls from in situ observations with a fit slope of 1.05 ± 0.11 and an offset 

of -3.3 ± 0.6 μmol m-2 s-1. The <CO2>LPC has high day-to-day variance similar in 

magnitude to the variation in the total column CO2 suggesting common influences on both 

total and partial column fluxes. Likewise, we find that surface fluxes calculated from 

<CO2>LPC in the Mojave Desert have large enough day-to-day variations to suggest that 

temporally aggregating <CO2>LPC derived NEE fluxes is beneficial regardless of site 

location. Future <CO2>LPC retrievals can incorporate in situ information to better constrain 

the calculations of surface fluxes.  

4.1 Introduction 

 

Accurate knowledge of atmospheric carbon fluxes is required to predict future climate, to 

inform climate policy, and to understand anthropogenic influences on climate and the 

biosphere. Carbon fluxes are estimated from total column CO2 dry mole fractions (DMF), 
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denoted as <CO2>TC, from space and ground-based measurements with varying degrees of 

success depending on location and the available observation density (Basu et al., 2018; 

Keppel-Aleks et al., 2012; Torres et al., 2019; Feldman et al., 2023; Schwandner et al., 

2017; Wu et al., 2020b; Wunch et al., 2013). For example, column measurements from the 

North American boreal forest deal with issues of retrieval errors and seasonally varying 

sensitivities that can obscure the surface fluxes and lead to unrepresentative flux 

calculations (Byrne et al., 2017; Mitchell et al., 2023). As these remote measurements use 

model derived a priori values that include influences of surface sources and sinks of carbon 

informed from remote measurements, comparisons with local, in situ measurements of 

surface fluxes are crucial to ensure accurate representation of fluxes across different scales 

of analysis.  

 

TCCON <CO2>TC measurements have been used to estimate surface fluxes but still face 

issues from influences of non-local sources. Even in heavily forested regions, transport by 

synoptic weather systems generates variations in <CO2>TC that are the same magnitude or 

larger than those produced by more local biosphere-driven surface fluxes. The influence of 

the large-scale gradients can be partially mitigated against with use of meteorological 

tracers that are used to determine the latitudinal origin of an air mass. Furthermore, intraday 

variability of <CO2>TC driven by small-scale weather activity can also have a significant 

effect on calculated fluxes that is not directly correlated to the meteorological tracers 

(Keppel-Aleks et al., 2011, 2012; Torres et al., 2019). The imprint of the large and small 

gradients, primarily in the free troposphere of the total column, limits the effectiveness of 

the subsequently calculated fluxes.  

 

In this study, we use lower partial column CO2 data retrieved by the TARDISS algorithm 

(Parker et al., 2022) applied to TCCON total column data to calculate surface carbon fluxes 

and compare these to fluxes derived from in situ data obtained from the WLEF tall tower 

site in Park Falls, WI (Berger et al., 2001; Desai et al., 2015). Since the partial column data 

represent the mean CO2 dry volume mixing ratio between 1) the surface and 2 km and 2) 

between 2 km and the top of the atmosphere, the effects of free tropospheric variations in 
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CO2 should be more isolated from the variations in the lower partial column. We compare 

the fluxes calculated from the lower partial column data to various reported fluxes from 

different vertical positions on the tower to further understand what influences the partial 

column fluxes and what biases may exist. We also use fluxes calculated from another 

TCCON site in the Mojave Desert, where biogenic surface fluxes are minimal, to 

understand the limitations of the method. 

4.2 Methodology and Data 

4.2.1 TARDISS Lower Partial Column Data 

 

We use lower partial column CO2 DMF data, denoted as <CO2>LPC, retrieved using the 

TARDISS algorithm from TCCON <CO2>TC observations (Wunch et al., 2011) made at 

TCCON sites located in Park Falls, WI and at the NASA Armstrong, Edwards Air Force 

Base in California. The TARDISS algorithm uses the differences in the quality controlled, 

World Meteorological Organization (WMO) calibrated TCCON total column DMF values 

retrieved from spectral windows with differing vertical sensitivities to infer the <CO2>LPC 

values. The <CO2>LPC values are the average DMF of CO2 for the column of the 

atmosphere from the surface to 2 km altitude (~800 hPa) with errors that are scaled on a 

site-by-site basis from validation comparisons to in situ profile measurements. For hours 

with a minimum of 20 min of observations, we bin the measurements to produce hourly 

averages of <CO2>LPC. This filtering retains 62% to 84% of the data for the Park Falls and 

Armstrong site, respectively.  

 

Since the partial columns are split at 2 km altitude, the <CO2>LPC values are more isolated 

from the CO2 variations in the free troposphere and are more strongly influenced by surface 

CO2 fluxes. <CO2>TC values are significantly influenced by synoptic scale changes due to 

advection of air masses across latitudinal CO2 gradients (Keppel-Aleks et al., 2011, 2012; 

Torres et al., 2019; Geels et al., 2004). These temporal gradients are strongly tied to the 

advection of free tropospheric gradients and are diagnosed by changes in the potential 

temperature (𝛳). 𝛳 is a good dynamical tracer of the latitudinal origin of measured air 
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masses and the influence of these advective fluxes on changes in the total column values 

(Keppel-Aleks et al., 2011, 2012). Figure 4.1 shows the free tropospheric potential 

temperature and the upper and lower partial column DMF values (<CO2>UPC, <CO2>LPC) 

that have been detrended by subtracting a thirty-day running mean. The partial column data 

allows us to separate some of the influences of variation in the free troposphere and above 

from those at the surface particularly during the growing season (June through August) as 

shown by the comparisons in Fig. C.1-C.3.  

 

Figure 4.1: Selected time series of daily average TARDISS upper (top panel) and lower 
(bottom panel) partial column CO2 (left axis, blue circles) and the free tropospheric 
temperature (right axis, black squares) at the Park Falls, WI, TCCON detrended using a 
30-day moving mean.  

4.2.2 Estimating Net Ecosystem Exchange from Lower Partial Column Data 

 

We use the method outlined in Keppel-Aleks et al., 2012 altered for partial columns to 

estimate the net flux of CO2 (in Park Falls, this is dominated by ecosystem exchange 

(NEE)). We define the mass of the partial column of a gas as the DMF of that gas multiplied 

by the dry mass of the atmosphere in the partial column: 

 

CV = 〈G〉WXY ∙ C$Z- ≈ 〈G〉WXY ∙
XF,GHI(XJ,GHI

[∙]KLM
 ,                                  (4.1) 
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where <G>LPC is the lower partial column DMF of the species of interest, Cair is the lower 

partial column of dry air, g is the gravitational constant, and Mair is the molecular mass of 

dry air. Ps,LPC is the pressure contribution of the lower partial column calculated as: 

 

P̂ ,WXY = P̂ ∙ 〈`N〉GHI
〈`N〉OI

,                                                     (4.2) 

 

where Ps is the surface pressure measured at the TCCON station which is multiplied by the 

ratio of the lower partial column O2 to the total partial column O2 retrieved from the 

TCCON measurements. Since the proportion of O2 should be independent of altitude, this 

ratio provides a reasonable ratio of the mass relating to the lower partial column.   

 

Pq,LPC is the pressure contribution of the lower partial column water values calculated as: 

 

Pb,WXY = 〈H"O〉WXY ∙
XF,GHI

cdPNQ,GHI
,                                            (4.3) 

 

where <H2O>LPC is the lower partial column DMF of water retrieved from TCCON and 

AKH2O,LPC is the mean value of the averaging kernel for the lower partial column of the 

water retrieval. We divide by the averaging kernel since the lower partial column water 

values are calculated from the total column values, not rescaled by the TARDISS 

algorithm, and the total column retrieval has different sensitivities to different parts of the 

atmosphere. The TARDISS retrieved lower partial column values are assumed to have 

averaging kernel values of one for this application. We differentiate Eq. (4.1) to get the 

change in the lower partial column mass of CO2 over the day. Assuming this change is due 

to uptake and release of carbon from the biosphere, it is equivalent to NEE: 

 

Fluxefg =
	hYIQN
h.

= ∆〈Y`N〉GHI
∆.

∙ XF,GHI(XJ,GHI
[∙]KLM

 .                                  (4.4) 
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We calculate Δ<CO2>LPC as the difference between the averages before and after solar 

noon (roughly 1pm local) and Cair is the daily average partial column mass. We propagate 

the errors from the <CO2>LPC and the hourly, daily, and monthly averages as necessary to 

calculate the errors for the FluxFTS calculations, also referred to as TARDISS fluxes going 

forward. We filter out measurement days where the degrees of freedom of signal per 

measurement for the TARDISS retrieval are below 0.02 and 0.06 for the lower partial 

column and upper partial column retrievals, respectively. We also filter out measurement 

days that have less than three hours of measurement in either the morning or afternoon. 

Finally, we require that measurement days have a similar number (no more than two hours 

difference) of measurements in the morning and afternoon and that monthly aggregations 

have more than three days of data. These filters leave ~37% of the measurement days for 

comparison.   
 

4.2.3 Tall Tower Net Ecosystem Exchange  

 

We compare our calculations to coincident hourly flux estimates obtained from in situ 

observations made from the WLEF tall tower (447 m) in Park Falls, WI (Desai et al., 

2015). At multiple altitudes on the tower, the concentrations and eddy covariation fluxes 

of CO2 and water are obtained using infrared gas analyzers (Li-COR Inc., Lincoln, 

Nebraska model Li-6262 and Li-7000) and wind speed and temperature measured using a 

sonic anemometer (Applied Technologies Inc., Boulder, Colorado, model K).  

 

The Park Falls installation is a component of the Chequamegon Ecosystem-Atmosphere 

Study (ChEAS) research cooperative and Ameriflux network (Ankur Desai, 2023; Novick 

et al., 2018). The fluxes are calculated from the sum of the storage fluxes and eddy 

covariance fluxes reported at 30m, 120m, and 396m levels on the tower (Desai et al., 2015; 

Site Info for US-PFa, 2023). Storage fluxes are calculated as the integrated change in time 

of the interpolated vertical profile of tower CO2 measurements and accounts for the change 

in carbon below the eddy covariance measurement level on the tower. Eddy covariance 

fluxes are calculated from the covariant fluctuations of CO2 measurements and 
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measurements of vertical wind speeds. With meteorological conditions that are sufficiently 

turbulent, the eddy covariance fluxes measure the instantaneous vertical carbon fluxes. The 

full details of the calculations and discussions of the regional representation of the tower 

flux measurements are found in other work (Berger et al., 2001; Chu et al., 2021; Desai et 

al., 2015; Novick et al., 2018; Papale et al., 2006; Xu et al., 2019). For these calculations, 

influences of horizontal advection on the fluxes are assumed to be zero over daily or longer 

time scales (Xu et al., 2019; Yi et al., 2000) and the ‘preferred’ NEE values are calculated 

using an algorithm developed by Davis et al., 2003 that uses measurements of turbulence 

and atmospheric conditions to determine the contributions from the available measurement 

levels on the tower. We compare our calculated fluxes to the daily averages of the 

‘preferred’, quality controlled, gap-filled, spatially-aggregated NEE values. We also 

compare our estimates with the individual storage eddy covariance, and NEE fluxes at 

different levels of the tower. 

 

We use coincident hourly measurements between the tower and TARDISS measurements 

from the Park Falls site between 2011 and 2020. For discussions involving the Armstrong 

site, we use TARDISS measurements between 2013 and 2021.  

4.3 Results and Discussion 

4.3.1 Comparing Surface Fluxes Derived from In Situ and Partial Column Data  

 

The diurnal changes in the TARDISS lower partial column behave similarly to those seen 

in the total column calculations described in Keppel-Aleks et al., 2012. Our comparison of 

FluxFTS estimated from the change in the <CO2>LPC with the daily average tower NEE 

derived from the in situ data has high variance which decreases with monthly aggregation. 

As discussed in Keppel-Aleks et al., 2012, influences from intraday mesoscale variability 

in the free tropospheric CO2 impact surface exchange estimates for individual days but tend 

to average away at monthly averages. For the TARDISS data, the variance in the <CO2>LPC 

driven by transport may be muted but nevertheless adds noise to the estimate of the 

decrease in CO2 driven by surface exchange, particularly during colder months (November 
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– April) when changes in <CO2>LPC are correlated with changes in 𝛳 (Fig. C.2). Influences 

on the flux calculations from variation of CO2 in the free troposphere as described by 

Keppel-Aleks et al., 2012 should theoretically be reduced in the partial columns so that the 

change in the free tropospheric CO2 concentrations do not influence flux calculations made 

with lower partial column data. These influences also exist independently in the lower 

partial column, however, errors from the upper partial column could also affect the lower 

partial column due to a small, but non-zero, covariance between the upper and lower partial 

columns. There also likely exist errors in the prior profile shape used in the TCCON, and 

therefore TARDISS retrievals, between the surface and 2 km height that could also 

contribute to day-to-day variation in compared flux values.  

 

On a monthly aggregated scale, the TARDISS Flux calculations compare well with the 

tower NEE values as shown in Fig. 4.2. The in situ estimated NEE explains more than half 

of the variation in the estimated <CO2>LPC variations calculated in the TARDISS data with 

a correlation coefficient of 0.61 using data from all seasons. While the NEE estimated from 

the total column data are larger than the NEE calculated from the in situ data (slope = 1.5 

± 0.2 and bias of -4.3 ± 0.7 μmol m-2 s-1), fluxes estimated from the TARDISS data are 

more similar and have a smaller root mean square (slope = 1.05 ± 0.11 and bias of -3.3 ± 

0.6 μmol m-2 s-1).  This comparison suggests that <CO2>LPC is more effective than the total 

column at capturing the signals of surface carbon fluxes. The bias in the comparison 

between the TARDISS flux and that estimated from the total column changes is similar, 

suggesting a common source of error in either the in situ or FTS estimates of the surface 

exchange. 

 

The differences between the TARDISS fluxes and in situ NEE estimates may reflect a 

larger horizontal footprint for the FTS data than the in situ data (Belikov et al., 2017; Chu 

et al., 2021; Kljun et al., 2015). The related influence of advection in the mixed layer is 

assumed to be negligible in the in situ measurements (Xu et al., 2019; Yi et al., 2000) which 

may lead to an overall offset in the calculations from the remotely-sensed 

values. Nevertheless, we find that the daily and monthly differences are not significantly 
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correlated with wind speed, wind direction, temperature, daily temperature change, 

atmospheric friction, or other meteorological measurements made by the tower or at the 

TCCON site.  

 

Figure 4.2: Monthly aggregated estimates of FluxFTS and the NEE calculated from in situ 
measurements (Tower NEE) color-coded by the lower partial column water column and 
sized by the number of days measured in each month. The blue dashed line represents the 
linear fit between the two measurements of NEE. The grey ellipses represent the errors in 
the x- and y-direction to one standard deviation. The solid diagonal black line is the 1-1 
comparison line, and the solid vertical and horizontal lines are at the values of zero for the 
tower and FTS NEE, respectively.  

4.3.2 Comparing with Components of the NEE Fluxes derived from the In Situ Data  

 

We also compare the NEE estimated from the TARDISS data to the storage, eddy 

covariance, and total NEE fluxes at each level of the tower. The ‘preferred’ NEE values at 

a tower site are calculated using an algorithm that uses measurements of atmospheric 

conditions to determine the tower level that is most representative of the fluxes (Davis et 
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al., 2003). In Fig. 4.2, we use the preferred NEE values for the overall flux comparisons, 

but here we study the component fluxes of NEE derived from the in situ data. The 

TARDISS fluxes are most tightly correlated with the storage fluxes (the diurnally estimated 

change in the CO2 below the top level of the tower). Regardless of which level of the tower 

they were measured at, the correlation between the TARDISS fluxes and the eddy 

covariance fluxes is quite weak.  
 

 
Figure 4.3: Direct comparison of the monthly aggregations of the TARDISS derived 
FluxFTS and the storage fluxes (left panel), eddy covariance fluxes (right panel), and total 
NEE fluxes (middle panel) reported from the 396m level of the tall tower color-coded by 
the lower partial column water column and sized by the number of days measured in each 
month. The blue dashed lines represent the linear fit between the data. The grey ellipses 
represent the errors in the x- and y-direction to one standard deviation. The solid diagonal 
black line is the 1-1 comparison line, and the solid vertical and horizontal lines are at the 
values of zero for the tower and FTS fluxes, respectively. 

The strong correlation between the storage fluxes, which represent the changes in the 

amount of CO2 below the height of the tower, and the TARDISS estimated NEE likely 

reflects the similarity in the observational approach. Likewise, comparisons of TARDISS 

fluxes with tower storage fluxes consistently have a smaller offset and a larger fit slope 

than comparisons to eddy covariance fluxes as shown in Fig. 4.3, Fig. C.4-C.5, and Table 

C.1. The storage fluxes estimated at the 396 m level are expected to measure carbon fluxes 
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from a portion of the atmospheric boundary layer. The slope of 1.9 ± 0.20 between the 

tower-derived and TARDISS-derived fluxes suggests that the change in the CO2 below 396 

m accounts for about 50% of the total decrease in CO2 in the lower column — a reasonable 

fraction given the mean height of the mixed layer during the day.  

 

The eddy covariance fluxes represent the instantaneous fluxes of CO2 at the measurement 

level of the tower given an effectively turbulent atmosphere and large enough eddies. Since 

the canopy level is generally near the lowest level of measurement on the tower, the eddy 

covariance fluxes measure the instantaneous vertical carbon fluxes through the level but to 

estimate the total flux at the surface, an additional term representing the change in the 

amount of CO2 in the atmosphere below the tower (the storage flux) is required. The 

TARDISS estimated total change in CO2 in the lower atmosphere are somewhat 

uncorrelated with the eddy covariance fluxes from the 396m level (Fig. 4.3). The nominal 

slope of the fit is 0.98 ± 0.20 but with a large offset (-8.41 ± 0.63 μmol m-2 s-1).  The 

TARDISS data have similar correlation (or lack thereof) for the in situ estimates of flux 

type at all vertical measurement levels on the tower (Fig. C.4-C.5 and Table C.1). As the 

NEE fluxes are the sum of the storage and eddy covariance fluxes, the comparison with the 

TARDISS fluxes have comparable statistics which reinforces our choice to use the gap-

filled, quality-controlled NEE flux measurements for comparison.  
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4.3.3 Investigating Fluxes from Another TCCON Site  

 
Figure 4.4: Histogram of the daily FluxFTS values measured at the Park Falls and 
Armstrong TCCON sites. 

As a check on our method of using the TARDISS retrievals to evaluate diurnal changes in 

the lower column CO2, we used the retrievals to estimate the diurnal fluxes at the 

Armstrong TCCON site in the Mojave Desert which is much less influenced by biospheric 

carbon fluxes than the Park Falls site. The statistics of the overall FluxFTS values from the 

Armstrong and Park Falls sites are summarized in Table C.2. Figure 4.4 shows the 

histograms of the daily FluxFTS values for each site and illustrates the influence of the 

biosphere on the fluxes calculated at the Park Falls site. The distribution of the fluxes 

calculated at the Armstrong site is mostly symmetric with the average yearly fluxes near 

zero (-0.635 µ mol m-2 s-1) and a fairly large standard deviation (4.95 µ mol m-2 s-1).  

 

The mean Armstrong FluxFTS values shift from 1.14 μmol m-2 s-1 in the summer to -3.39 

μmol m-2 s-1 in the winter (Fig. C.6) while the Park Falls FluxFTS data have a much larger 
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range between seasons as expected from the influence of the carbon uptake of the boreal 

forest. Notably the standard deviation of the daily Armstrong FluxFTS values does not 

change much from season to season suggesting that the local fluxes are similar all year 

round. The seasonal shift in mean flux values may be influenced by the seasonal changes 

in CO2 concentrations as they occur on the daily timescale. As the seasonal standard 

deviations of the daily FluxFTS values are generally larger than the seasonal shifts in the 

mean, the variance in Armstrong FluxFTS values may represent the limit for estimating 

fluxes from TARDISS <CO2>LPC at this point.  In summary, the flux estimates from the 

<CO2>LPC TARDISS retrievals are generally representative of the expected surface fluxes 

but with moderate variability that requires temporal aggregation.  

4.4 Conclusions and Future Work 
 

In this work, we compare NEE fluxes from the WLEF tall tower site with NEE flux 

calculations retrieved by the TARDISS algorithm from TCCON total column data from 

the collocated Park Falls, WI TCCON site. We use the methodology of total column flux 

calculation from Keppel-Aleks et al., 2012 adapted for the partial column data and compare 

it to the quality controlled, gap-filled, spatially-aggregated NEE values and the NEE, 

storage, and eddy covariance flux values at different levels on the tower.  

 

Overall, the surface exchange estimated from the TARDISS and total column-derived data 

are similar, reflecting the challenge in observing the small change in CO2 in the face of 

high synoptic variability.  The monthly aggregated comparisons are, however, quite 

consistent with the surface exchange estimated from in situ data measured in Park Falls.  

The upper partial column follows meteorological tracers consistent with much of the 

variation in the <CO2>UPC resulting from advection of CO2 in free troposphere. The lower 

partial column is influenced by this advection, but also is strongly influenced by surface 

fluxes. The TARDISS estimated exchange is well correlated with the so-called ‘storage 

flux’ representing the change in CO2 between the surface and 396 m. There is little 
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correlation between the TARDISS estimated exchange and the measured fluxes on the 

tower (eddy covariance).   

 

Future work will focus on the TARDISS retrieval and integrating additional data to better 

understand the surface carbon fluxes. The advective signals present in the TARDISS 

retrievals could use data from back trajectory models and the relationship of the free 

tropospheric temperature to the upper column CO2 (Fig. C.3) as prior information to further 

inform how to diagnose changes in <CO2>LPC. Other TCCON sites are collocated with 

tower measurements and could be used to further understand the site-by-site variances in 

TARDISS calculated surface CO2 fluxes and the associated local influences. These surface 

flux calculations can be compared to and used to inform model simulation estimates of net 

ecosystem exchange. Finally, we suggest joint study of the CO2 and water exchange to 

understand whether the water use efficiency could be diagnosed from the TARDISS data.   
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C h a p t e r  5  

OUTLOOK 

This thesis described a new method (the TARDISS algorithm) for retrieving partial column 

profile information from TCCON total column measurements, as well as an example of its 

data in use and motivation for future applications. As with any new approach, there are 

many avenues for future development and use of the TARDISS algorithm, and, since the 

algorithm can retrieve partial column data for both CO and CO2, the applications span the 

topics of air quality and climate research.  

 

The TARDISS algorithm is a useful tool and opens up a new approach to obtaining 

remotely-sensed profile information for atmospheric species through secondary 

processing, but it is still in its infancy and there are many possible ways that may improve 

the method that should be explored. Currently, the TARDISS algorithm uses a simple a 

priori covariance matrix that utilizes the temporal domain to constrain the partial column 

retrievals. Future implementations of the retrieval should explore the use of back trajectory 

models to inform the a priori covariance matrix (Wu et al., 2018). By better matching the 

constraints of the retrieval to the known or expected changes in the atmosphere, the partial 

column errors could be reduced, or the information retrieved could be improved.  

 

In addition to exploring different a priori information applications, data from other TCCON 

sites around the world should be explored. The experiments in this work use data from five 

different TCCON sites all located in North America. Retrievals from sites in the southern 

hemisphere may have different information content since the CO2 column has fluxes in the 

free troposphere that are largely influenced by the emissions in the northern hemisphere. 

Furthermore, sites worldwide located near metropolitan areas could use the partial column 

CO to explore emissions related to air quality.  
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The TARDISS algorithm focuses on retrieving information from near the surface (0-2 km), 

however the retrieved upper partial column is quite large (2-70 km) and further splitting it 

into other partial columns should be explored, particularly for CO2. Similar to Saad et al., 

2014, the connection between HF and CO2 could be used to attempt to estimate the partial 

column amounts of CO2 in the free troposphere and in the stratosphere. Isolating free 

tropospheric and stratospheric fluxes could further inform the use of remote sensing data 

to calculate carbon fluxes. 

 

In Chapter 4, we use the TARDISS lower partial column CO2 values to estimate the surface 

carbon fluxes at the heavily forested Park Falls, WI TCCON site. Our monthly aggregated 

flux estimates compare well to monthly averages of the ‘preferred’ net ecosystem exchange 

(NEE) fluxes estimated from collocated tall tower measurements of CO2 and eddy 

covariance fluxes obtained as a part of the Chequamegon Ecosystem-Atmosphere Study 

(ChEAS) research cooperative and Ameriflux network (Ankur Desai, 2023; Novick et al., 

2018). Again, these comparisons offer many possibilities for further exploration of the use 

of the partial column data. 

 

The surface carbon fluxes in Park Falls have large influences from the biosphere that 

should also be correlated with measurements of photosynthetically active radiation (PAR) 

measured on the collocated tower and solar induced fluorescence (SIF) measured by 

satellite (Zhang et al., 2018). Coupling the analysis of the TARDISS derived surface flux 

estimates with the biospheric tracers of PAR and SIF could help us understand the 

influences of local uptake and mesoscale variability on flux estimates and their comparison 

to in situ estimates (Wu et al., 2020a).  

 

This analysis method will also be useful at other TCCON sites with collocated in situ 

measurements. The TCCON sites in Lamont, Oklahoma, and East Trout Lake, 

Saskatchewan used in Chapter 3 both have collocated in situ measurements that could be 

used for comparison. East Trout Lake is similarly forested as Park Falls and would offer 

further insight into carbon uptake by the boreal forest and the Lamont TCCON site is 
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influenced by surrounding farmland and local oil and gas activity (Tribby et al., 2022) that 

could be explored. Similar applicable in situ measurements are made at TCCON sites 

worldwide and could be used for comparison with partial column data outside of flux 

estimates.  

 

Chapter 2 offers a look at the changes in air quality in the South Coast Air Basin (SoCAB) 

from changes in traffic amounts due to the COVID-19 stay-at-home orders. The large shift 

in vehicular behavior led to an overall improvement in air quality with some places in the 

basin exhibiting signs of being NOx-limited. CO is both directly emitted in the atmosphere, 

is a result of the oxidation of volatile organic compounds (VOCs), and has a long lifetime 

compared to other pollutants, and is therefore a useful metric for understanding air quality. 

In SoCAB in particular, measured amounts of CO have been declining by roughly 6-8% 

per year (Pollack et al., 2013, Parrish et al., 2016).  

 

As the influence of vehicular emissions on air quality is expected to continue to decrease, 

the importance of other emission sources will only increase as has been shown by 

McDonald et al., 2018. TARDISS retrievals of lower partial column CO from the TCCON 

site in Pasadena, CA could be coupled with local air quality measurements of particulate 

matter (PM), aerosol optical depth (AOD), and other VOC measurements to examine the 

changes in atmospheric photochemistry of SoCAB since 2016.   

 

Further, the partial column CO and CO2 data could be used to estimate emissions in SoCAB 

to compare with bottom-up estimates made by local governmental agencies. These 

estimates have been calculated using total column values (Wunch et al., 2009) but the use 

of the partial column data may reveal more insights into emission sources due to enhanced 

sensitivity to changes at the surface.  

 

Overall, there is much work to be done with the TARDISS algorithm and the data derived 

from it. The TARDISS algorithm applied to existing TCCON data creates decades of new 

data to be used for comparison in both existing and novel approaches. Improvements in the 
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methodology would provide novel, interesting datasets that would help fill in the gaps of 

understanding between in situ and remote sensing methods.  
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A p p e n d i x  A  

SUPPLEMENTAL INFORMATION FOR IMPACTS OF TRAFFIC REDUCTIONS 
ASSOCIATED WITH COVID-19 ON SOUTHERN CALIFORNIA AIR QUALITY 

 
  
A.1 Caltech Air Quality Station (CITAQS) 
The Caltech Air Quality Station (CITAQS) contains a set of high sensitivity Teledyne air 

quality sensors including continuous measurements of PM10 and PM2.5 (Teledyne T640); 

trace gas measurements of NO and NOy (Teledyne T200U), CO (Teledyne M300EU2), 

SO2 (Teledyne T100U); and optical trace gas measurements of O3 (Teledyne T400) and 

NO2 (Teledyne T500U) that reports at a one-minute temporal resolution. The CITAQS was 

deployed outside the Linde Robinson Building on Caltech campus in Pasadena, CA on 

March 20,2020 to continue measuring indefinitely. 

 

 

Figure A.1: Left: 7-day moving average temperature (top), relative humidity (middle), and 
wind speed (bottom) in 2020 and 2015 to 2019 in the South Coast Air Basin. For 2020, 
measurements before 19 March are in green and after 19 March are in red. The averages 
of the measurements for 2015 to 2019 are in black with the associated range as grey 
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shading. Right: Monthly average precipitation in the South Coast Air Basin in 2020 
and 2015 to 2019 in centimeters per month.  

	

Figure A.2: Left: Breakdown of monitoring sites and the measurements included in the 
analysis. Right: Map of the locations of the sites described in the table on the left.  

 

Table A.1: 2000 to 2019 trends and 2020 anomalies in afternoon (12:00 - 16:00 local) NO2, 
O3, and Ox concentrations for sites in the basin that have measurements of both NO2 and 
O3 for the 2000 to 2020 period. Anomalies represent the difference between values 
observed during 2020 COVID period afternoons and the values expected from a 2000-2019 
fit of COVID period afternoons. Values in parentheses represent the anomaly values for 
the 19 April to 30 June period instead of the 19 March to 30 June period.  

Air Monitoring Site O3 NOx PM2.5
Anaheim ü ü ü
Azusa ü ü û
Banning Airport ü ü ü
Compton ü ü û
Central LA ü ü ü
Crestline û û ü
Fontana ü ü û
Glendora ü ü ü
La Habra ü ü û
Lake Elsinore ü ü ü
LAX ü ü û
Mira Loma ü ü ü
Pasadena ü ü û
Pico Rivera ü ü û
Pomona ü ü û
Reseda ü ü ü
Rubidoux ü ü ü
San Bernardino ü ü û
Santa Clarita ü ü ü
South Long Beach û û ü
Upland ü ü ü
West LA ü ü û
Temecula û û ü

Location of air monitoring sites
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Figure A.3: Plots of mean O3 concentrations by hour of day and day of week in Pasadena 
for our analysis period in 2020 and the average of 2015 to 2019. Vertical lines mark 12pm 
and 4pm respectively in each plot.  
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Figure A.4: Air quality index time series for daily AQI values for LA county for 2010 to 
2020 generated on the EPA website (https://www.epa.gov/outdoor-air-quality-data/air-
data -multiyear-tile-plot).  
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Figure A.5: Air quality index time series for daily AQI values for San Bernardino County 
for 2010 to 2020 generated on the EPA website (https://www.epa.gov/outdoor-air-quality-
data/ air-data-multiyear-tile-plot).  
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Figure A.6: Air quality index time series for daily AQI values for Riverside County for 
2010 to 2020 generated on the EPA website (https://www.epa.gov/outdoor-air-quality-
data/ air-data-multiyear-tile-plot).  
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Figure A.7: Air quality index time series for daily AQI values for Orange County for 2010 
to 2020 generated on the EPA website (https://www.epa.gov/outdoor-air-quality-data/ air-
data-multiyear-tile-plot).  
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Figure A.8: Sensitivity test by excluding the rainy days from the analysis (right, in red) in 
comparison to including all the days (left, in black). The means are reported to the right of 
the box plots with the standard deviation in parenthesis.	 

 
 

Basin Average Basin Maximum
All days included All days included Rainy days excludedRainy days excluded
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Figure A.9: Left: Box plots of 8-hr DM O3 values during the 2015 to 2019 COVID period 
and 2020 COVID period. Right: Map of the difference between the 2015 to 2019 COVID 
period and 2020 COVID period in parts per billion (top) and percentage (bottom).	 

 
 

	
Figure A.10: Left: Box plots for 1-hr daily maximum NOx values during the 2015 to 2019 

Change of 8-hr DM O3 per site

COVID Period (2020) – COVID Period (2015-2019)

Change of 1-hr DM NOx per site

COVID Period (2020) – COVID Period (2015-2019)
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COVID period and 2020 COVID period. Right: Map of the difference between the 
2015 to 2019 COVID period and 2020 COVID period in parts per billion (top) and 
percentage (bottom).	 

 

	
Figure A.11: Left: Box plots for 24-hr PM2.5 values during the 2015 to 2019 COVID 
period and 2020 COVID period. Right: Map of the difference between the 2015 to 2019 
COVID period and 2020 COVID period in μg m−3 (top) and percentage (bottom).	 

Change of 24-hr PM2.5 per site

COVID Period (2020) – COVID Period (2015-2019)
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Figure A.12: Left: Box plots for the column CH2O concentrations for the COVID period 
for 2015 to 2019 and for 2020. Right: Time series of the yearly COVID period CH2O 
concentrations. Error bars represent the standard error in the mean.	 

 

	
Figure A.13: Left: Box plots for the Pasadena temperature measurements for the COVID 
period for 2015 to 2019 and for 2020. Right: Time series of the yearly COVID period 
temperature measurements. Error bars represent the standard error in the mean.	 
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Figure A.14: Hourly afternoon O3 concentrations are plotted against temperature and 
color coded by NO2, all in ppb. The grey boxes are CalNex O3 concentrations in ppb. All 
data shown here is from Pasadena. In the left and middle panels, the upper and lower 
black lines are the 10% and 90% quantile values for the 2015 to 2019 values, 
respectively.	 
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Figure A.15: Left: Box plots for weekend(red) and weekday(blue) 1-hr daily maximum 
NOx for the COVID period in 2020 and 2015 to 2019. Right: Difference between 
weekend and weekday 1- hr daily maximum NOx for the COVID period in 2020 and 
2015 to 2019 in parts per billion(top) and percent(bottom). Error bars represent the 
standard error in the mean.	 

	
Figure A.16: Left: Box plots for weekend(red) and weekday(blue) 8-hr daily maximum 
O3 for the COVID period in 2020 and 2015 to 2019. Right: Difference between weekend 
and weekday 8-hr daily maximum O3 for the COVID period in 2020 and 2015 to 2019 in 

Weekday/weekend 1-hr DM NOx comparison

Sites are ordered by longitude (from west to east)

WD: Weekday
WE: Weekend

Weekday/weekend 8-hr DM O3 comparison

Sites are ordered by longitude (from west to east)

WD: Weekday
WE: Weekend
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parts per billion(top) and percent(bottom). Error bars represent the standard error in 
the mean.	 
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A p p e n d i x  B  

SUPPLEMENTAL INFORMATION FOR INFERRING THE VERTICAL 
DISTRIBUTION OF CO AND CO2 FROM TCCON TOTAL COLUMN VALUES 

USING THE TARDISS ALGORITHM 
  
 

Variable 
Name Variable Description Defining Equation 

A TARDISS temporal averaging kernel ~ 

Avert TARDISS sensitivity as it relates to the vertical profile 3.22 

𝒂&0012
𝝃  

TCCON column averaging kernel vector dotted with an 
integration operator ~ 

𝒂fYY`j TCCON column averaging kernel vector ~ 

𝜒 Cost of retrieval 3.1 

G Gain matrix of temporal retrieval 3.21 

DoF Degrees of Freedom of signal 3.18 

𝛾/  Lower partial column scalar ~ 

𝛾4 Upper partial column scalar ~ 

𝛾*,/  A priori lower partial column scalar ~ 

𝛾𝑎,𝑈 A priori upper partial column scalar ~ 

H Shannon information content 3.19 

I Identity matrix ~ 

i Index value  ~ 

𝑲 TARDISS Jacobian matrix 3.12 

𝑘/  
Lower partial column TARDISS Jacobian element for one 
window for one spectrum 

3.8 

𝑘4  
Upper partial column TARDISS Jacobian element for one 
window for one spectrum 

3.9 

nl Number of levels in a vertical profile ~ 

ns Number of TCCON spectral measurements in a day ~ 

nw 
Number of TCCON windows used in the TARDISS 
retrieval 

~ 



 

 

123 

123 

q 
Index of the top of the lower partial column part of the 
profile 

~ 

𝑺*  A priori covariance matrix ~ 

𝑺𝝐 Model covariance matrix  ~ 

𝑺:  Retrieval noise matrix 3.26 

𝑺!  Smoothing error matrix 3.25 

𝝈 TARDISS retrieval errors ~ 

𝑉𝐸𝑀 Validation Error Multiplier 3.27 

𝒙$,# Vector of a priori partial column scalar values 3.14 

xa,TCCON 
TCCON a priori profile times median of TCCON VSFs for 
one measurement ~ 

𝒙*# Retrieved state vector of partial column scalar values 3.16 

𝑥E>/  Lower partial column element of the retrieved state vector ~ 

𝑥E>4 Upper partial column element of the retrieved state vector ~ 

𝒙# Theoretical state vector of partial column scalar values  3.13 

𝒙/" Vector of partial column scalar values calculated via the 
least squares method  3.15 

𝐱,$-. A posteriori profile  3.2 

𝒙;:CD  In situ measured profile ~ 

𝒚 
Measurement vector with elements defined by  

z())*+ −	z&,())*+ 3.10, 3.11 

𝚵&0012 Matrix of TCCON column averaging kernels for each 
window and each spectrum within a day 3.23 

𝑧&0012  
TCCON column average mole fraction value for one 
window and one specturm 

3.3 

𝑧*,&0012 TCCON a priori column average mole fraction times the 
median VSF of the windows used 

~ 

𝑧*,/,&0012 Lower partial column of TCCON a priori column average 
mole fraction times the median VSF of the windows used ~ 

𝑧*,4,&0012 Upper partial column of TCCON a priori column average 
mole fraction times the median VSF of the windows used 

~ 

𝒛ESTU9 Vector of partial column mole fractions used for comparison 
to the smoothed column averaged in situ mole fraction 

~ 

𝒛A0  Vector of reconstructed partial column mole fraction values 
for a day of measurement 3.17 

𝑧A0,/ Lower partial column element of the reconstructed partial 
column mole fraction vector ~ 

𝑧A0,4 Upper partial column element of the reconstructed partial 
column mole fraction vector 

~ 
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�̂�! Smoothed column or partial column averaged in situ mole 
fraction 

3.20, 3.24 

 
Table B.1: Table of variable names, descriptions, and defining equation for all the variables 
used in the work.  
 
B.1 Temporal Assimilation 
  
To test the influence of the number of observations included in each TARDISS retrieval, 

we compare the retrieved error value for each individual retrieval and with an increasing 

number of observations until we use the full day of observations. In this test, we take the 

midday observation from the Park Falls site on July 18, 2018 and retrieve the partial column 

error values using the least squares method and the maximum a posteriori method (using a 

static ideal a priori scalar to avoid influences from the least squares approach). These values 

are represented by the points that correspond with zero on the x axis of Fig. B.1 for both 

the lower and upper partial column errors. We then retrieve the errors of the midday 

measurement again including the observation before and after it which is represented by 

the points that correspond with 2 on the x axis of Fig. B.1. We repeat this method, 

expanding the number of observations included until we use the entire day of observations.  

  

The left-hand plot of Fig. B.1 shows the decrease of the retrieved upper and lower partial 

column error of the midday point as the number of observations included in the retrieval 

increases. The upper partial column errors decrease more than the lower partial column 

errors partially due to the temporal constraints of the a priori covariance matrix. In contrast, 

the right-hand plot of Fig. B.1 shows that the inclusion of more observations in the least 

squares fit does not change the retrieved partial column errors of the midday measurement. 

Moreover, the partial column errors retrieved using the least squares method are at least 

eight times larger than the partial column errors retrieved using the MAP method. This is 

due to the use of the a priori covariance matrix in the MAP method that can improve upon 

the best estimate retrieval of the least squares method.  
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To understand the influence of the a priori covariance matrix (overall scaling and 

temporal constraints), we compare the error values of the least squares method with the 

MAP method with an entirely uninformed a priori covariance matrix. Shown in Fig. B.2, 

the uninformed MAP approach returns errors of similar magnitude to the least squares 

method. This suggests that a main value of the MAP approach is the use of constraints and 

external information to improve and inform the retrieval.  

 
Figure B.1: Errors in the retrieval of CO2 from the midday total column measurement at 
the Park Falls site on July 18, 2018 using the MAP method outlined by Equation 3.13 and 
the least squares method outlined by Equation 3.12. The blue circles represent the error in 
the lower partial column and the orange asterisks represent the error in the upper partial 
column. Note the difference in the range of the y axis in the left and right plots both of 
which are in parts per million. The x axis indicates the number of points included in the 
overall fit with zero additional points representing the retrieval of a single spectrum.   
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Figure B.2: Same as Fig. B.1, except the a priori covariance is removed from the MAP 
retrieval.   
 

 

Site Type Species Campaign/ 
Program 

Data 
Availability 

Dates Altitudes 

Park Falls Aircr
aft CO2 ATom 

https://doi.o
rg/10.3334/
ORNLDAA

C/1925 

20160822 0.79 - 12 
km 

 AirC
ore 

CO2 
NOAA 
AirCore 

https://doi.o
rg/10.15138

/6AV0-
MY81 

20180730 Surf. – 
21km 

     20180731  

Armstrong Aircr
aft CO2 SEAC4RS 

https://doi.o
rg/10.3334/
ORNLDAA

C/1925 

20130923 1.5 - 19 
km 

Armstrong Aircr
aft CO2 ATom https://doi.o

rg/10.3334/ 20140820 0.79 - 12 
km 
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ORNLDAA
C/1925 

Armstrong Aircr
aft CO2 GSFC 

https://doi.o
rg/10.25925
/20190319 

20140820 0.6 - 13 
km 

     20140822  
     20151002  
     20160210  

Armstrong Aircr
aft CO2 KORUS-AQ 

https://doi.o
rg/10.1525/e
lementa.202

0.00163 

20160618 0.68 - 12 
km 

Armstrong AirC
ore CO2 

NOAA 
AirCore 

https://doi.o
rg/10.15138

/6AV0-
MY81 

20180716 Surf. – 21 
km 

     20180717  
     20180718  

Lamont AirC
ore 

CO2, 
CO 

NOAA 
AirCore 

https://doi.o
rg/10.15138

/6AV0-
MY81 

20180723 Surf. – 21 
km 

     20180725 Surf. – 17 
km 

     20180727  

Lamont Aircr
aft 

CO2, 
CO 

NOAA 
GGGRN 
aircraft 

program 

https://doi.o
rg/10.1002/
2014JD022
591, 2015. 

2008 - 
2018 

0.17 - 6 
km 

East Trout 
Lake 

Aircr
aft 

CO2, 
CO 

NOAA 
GGGRN 
aircraft 

program 

https://doi.o
rg/10.1002/
2014JD022
591, 2015. 

2017 - 
2020 

0.17 - 7 
km 

 
Table B.2: Site, measurement type, species, campaign or program, citation, and dates of 
the in situ profile data used in this work.  
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TCCON Window 
(cm-1) 

Total Column 
Validation Slope 

Total Column 
Validation Slope Error 

Total Column Mean 
Ratio Deviation 

CO2    
6220 1.007 0.001 0.001 
6339 1.004 0.001 0.002 
6073 1.006 0.001 0.001 
4852 1.006 0.001 0.003 

TARDISS CO2 1.000 0.0004 0.001 

CO    
4290 1.009 0.055 0.056 
2160 1.033 0.020 0.041 
2111 1.053 0.020 0.052 

TARDISS CO 1.047 0.019 0.052 
Table B.3: Comparisons of the TARDISS total column retrieval to the total column 
comparisons of the fits of the TCCON spectral windows used as input for the TARDISS 
algorithm. The data in the TARDISS row uses the operational parameters for the fit that 
are identified in Table 3.2 and 3.3 by an asterisk. 
 

 
 
Figure B.3: The direct comparisons between the total column DMF values retrieved from 
the TARDISS fit and the integrated, smoothed in situ partial columns for CO2 (left) and 
the CO (right). The black solid line is the 1-1 line and the blue dot-dash line is the linear 
fit of the data with the y-intercept forced through zero. The slopes of the partial column 
validation of the TCCON spectral windows used in the retrieval are represented by dashed 
lines. 
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Site 

Long Term Total 
Degrees of 

Freedom per 
Measurement 

Long Term 
Comparison 

Slope 

Lower partial 
column VEM 
from long-
term data 

Long term VEM 
total lower 

partial column 
error (ppm for 
CO2; ppb for 

CO) 
CO2     

Lamont 0.0473 1.002 1.00 1.23 
East Trout 

Lake 
0.0543 1.001 1.30 1.64 

CO     
Lamont 0.144 1.000 1.00 1.18 

East Trout 
Lake 

0.155 0.945 6.97 8.14 

 
Table B.4: DoF, comparison slopes, VEM, and total errors in the CO and CO2 lower partial 
column retrievals for the long term comparisons performed at the Lamont and East Trout 
Lake sites. The values for total retrieval error and total error represent one standard 
deviation.  
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Figure B.4: Monthly mean lower partial column scalar errors plotted for CO2 (top) and 
CO (bottom).  

 

 
Figure B.5: Monthly mean lower partial column errors plotted for CO2 in ppm (top) and 
CO in ppb (bottom).  
 

 

 
Figure B.6: Monthly mean upper partial column errors plotted for CO2 in ppm (top) and 
CO in ppb (bottom).  
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Figure B.7: Comparison Validation Error Multiplier (VEM) and number of comparison 
days plotted by the minimum DoF per measurement filter applied to the comparison data. 
The retrieved data is in comparison with in situ data measured as a part of the NOAA 
GGGRN (Global Greenhouse Gas Reference Network) Aircraft sites from 2008 -2018 at 
the Lamont measurement site.  
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Figure B.8: Example of one day of TCCON retrievals of total column CO (top) from two 
different spectral windows (4233 in blue and 2160 in orange) above the TARDISS partial 
column retrievals for CO (lower partial column in red dots, upper partial column in black 
dots) for the same day (bottom).   
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A p p e n d i x  C  

SUPPLEMENTAL INFORMATION FOR ASSESSING SURFACE FLUXES OF 
CARBON DIOXIDE USING A NOVEL REMOTE-SENSING DATASET 

  
 

 
Figure C.1: Monthly comparisons of daily average TARDISS upper partial column CO2 
(y-axis) and the free tropospheric temperature (x-axis) at the Park Falls, WI, TCCON 
detrended using a 30-day moving mean. The dashed blue line is the linear fit of the data. 
The solid black line is the same slope between each panel as a visual aid. Panel titles 
represent the month of the year with “1” representing January and “12” representing 
December.  
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Figure C.2: Same as Fig. C.1 for the lower partial column values. 

 
Figure C.3: Selected time series of hourly average TARDISS upper (top panel) and lower 
(bottom panel) partial column CO2 (left axis, blue circles) and the reported three-hourly 
values of free tropospheric temperature (right axis, black squares) at the Park Falls, WI, 
TCCON detrended using a 30-day moving mean. 
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Figure C.4: Same as Fig. 4.3 for the 120m measurement level on the tower.  

 
Figure C.5: Same as Fig.4.3 for the 30m measurement level on the tower. 
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Figure C.6: Histogram of the daily FluxFTS values measured at the Armstrong TCCON site 
during the Winter (DJF) and Summer (JJA). 
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Table C.1: Comparison statistics of the monthly values of the TARDISS-derived surface 
fluxes and in situ, tower estimated NEE, storage, and eddy covariance fluxes at 30, 120, 
and 396 meters.  

 
 

Measurement 
Height Flux Type Comparison 

Slope 
Slope 
Error 

Offset 

(µ mol 
m-2 s-1) 

Offset 
Error 

(µ mol 
m-2 s-1) 

R2 

396m Combined 
NEE 0.651 0.117 -6.22 0.578 0.46 

 Storage 
Fluxes 1.91 0.204 -1.32 0.735 0.62 

 
Eddy 

Covariance 
Fluxes 

0.98 0.202 -8.41 0.631 0.40 

120m Combined 
NEE 0.790 0.097 -3.05 0.660 0.55 

 Storage 
Fluxes 2.91 0.301 -1.44 0.704 0.63 

 
Eddy 

Covariance 
Fluxes 

0.923 0.139 -4.14 0.653 0.45 

30m Combined 
NEE 1.63 0.240 -3.91 0.688 0.47 

 Storage 
Fluxes 9.97 1.09 -1.69 0.720 0.60 

 
Eddy 

Covariance 
Fluxes 

1.66 0.286 -4.77 0.671 0.39 
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Table C.2: Statistics of the TARDISS-derived surface fluxes for the Armstrong and Park 
Falls TCCON sites for overall yearly, summer, and winter data.   

 Armstrong NEE 
(µ mol m-2 s-1)  

Park Falls 
NEE 

(µ mol m-2 s-1) 
 

 Mean Standard 
Deviation Mean Standard 

Deviation 
Total Year -0.635 4.95 -5.14 8.58 

Summer (JJA) 1.14 4.48 -10.7 9.43 
Winter (DJF) -3.39 4.56 -1.89 5.71 
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