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ABSTRACT

Emerging Internet of Things, machine-type communication, and ultra-reliable
low-latency communication in 5G demand codes that operate at short block-
lengths, have low error probability and low energy consumption, and can han-
dle the random activity of a large number of communicating devices. Since
many of the applications have a single central device, e.g., a base station, that
resolves the communication and a varying number of users, these requirements
on the code design motivate interest in the non-asymptotic analysis of codes in
a variety of single-receiver channels. This thesis investigates three channel cod-
ing problems with the goals of understanding the fundamental limits of channel
coding under stringent requirements on reliability, delay, and power, and pro-
poses novel coding architectures that employ constrained feedback to attain
those limits. In the first part, we consider point-to-point channels without
feedback, and analyze the non-asymptotic limits in the moderate deviations
regime in probability theory. The moderate deviations regime is suitable for
accurately approximating the maximum achievable coding rate in the oper-
ational regimes of practical interest because it simultaneously considers high
rates and low error probabilities. We propose a new quantity, channel skew-
ness, which governs the fundamental limit at short blocklengths and low error
probabilities. Our approximation is the tightest among the state-of-the-art
approximations for most error probability and latency constraints of inter-
est. In the second part, we investigate rateless channel coding with limited
feedback. Here, rateless means that decoding can occur at multiple decoding
times. In our code design, feedback is limited both in frequency and content;
it is sparse, meaning that it is available only at a few instants throughout the
communication epoch; and it is stop-feedback, meaning that the receiver in-
forms the transmitters only about whether decoding has occurred rather than
what symbols it has received. Our results demonstrate that sporadically send-
ing a few bits is almost as efficient as sending feedback at every time instant.
In the third part, we focus on rateless random access channel codes, where
the number of active transmitters is unknown to both the transmitters and
the receiver. Our rateless code design that reserves a decoding time for each
possible number of active transmitters achieves the same first two terms in the
asymptotic expansion of the achievable rate as codes where the transmitter ac-
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tivity is known a priori. This means that, remarkably, the random transmitter
activity has almost no effect on achievable rates.

To obtain tight channel coding bounds, we analyze some non-asymptotic and
asymptotic state-of-the-art bounds on the probability of the sum of indepen-
dent and identical random variables, whose applications extend to source cod-
ing, hypothesis testing, and many others. In the scenarios where these tools
are not directly applicable such as for the Gaussian channel, we propose new
techniques to overcome that difficulty.
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C h a p t e r 1

INTRODUCTION

1.1 Non-asymptotic Fundamental Limits in Channel Coding

In channel coding, a transmitter wants to communicate an equiprobable mes-
sage W on the set {1, . . . ,M} to a receiver over n channel uses. A channel,
which is an abstraction of the noisy communication medium, is defined as a
transition probability kernel PY n|Xn from the channel inputs Xn to channel
outputs Y n. It expresses the probability of receiving an output sequence yn

given that an input sequence xn is sent. A channel code, which determines the
operations done by the transmitter and the receiver, consists of two mappings,
an encoder f from {1, . . . ,M} to the set of channel inputs X n, and a decoder
g from the set of channel outputs Yn to {1, . . . ,M}. The image of the encoder
f is called the codebook.

An (n,M, ϵ)-code is defined as the encoder-decoder pair (f, g) with blocklength
n, codebook size M (the number of messages), where the average error prob-
ability induced by the (f, g) pair is bounded by ϵ, i.e.,

P [g(f(W )) ̸= W ] ≤ ϵ (1.1)

The fundamental limit of (block) channel coding is defined as

M∗(n, ϵ) ≜ {maxM :∃ an (n,M, ϵ)-code}, (1.2)

which is the maximum achievable codebook size compatible with blocklength
n and error probability ϵ. For a given application with an (n, ϵ) pair, the
objective is to compute M∗(n, ϵ) and to determine which (f, g) pairs achieve
it. The problem of finding M∗(n, ϵ) that gave birth to the field of information
theory after Shannon’s pioneering work [1] is still relevant today. This is
because determining the optimal encoder f is intractable since the number
of possible mappings grows doubly exponential with n [2]. Therefore, a more
tractable approach to the channel coding problem is to try to derive tight lower
and upper bounds on M∗(n, ϵ) for any given (n, ϵ). This approach has become
popular with [3] and later with [4] and [5]. However, the evaluation of the non-
asymptotic bounds is difficult unless the channel has some certain symmetries
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such as in the binary symmetric channel (BSC) and in the Gaussian channel
[5], [6]. Even if the exact computation of the bounds is possible for some
channels, numerical evaluations lack insights about the fundamental limits.
For example, we cannot easily say something about M∗(n, ϵ) as a function of
(n, ϵ) by only looking at the bounds computed for several (n, ϵ) pairs.

Encoder DecoderXn Y n

Channel
{1, . . . ,M} {1, . . . ,M}

Figure 1.1: Channel coding setup

Towards the goal of analyzing M∗(n, ϵ) and understanding its behavior in a
setting as general as possible, the literature investigates M∗(n, ϵ) in the asymp-
totic regime that n → ∞. Of course, for such an analysis, one should also
determine the asymptotic relationship between ϵ and n. The most common
error probability regimes studied in the literature are the central limit theorem
(CLT) and the large deviations (LD) regimes. The capacity of the channel,
defined as

C ≜ lim
ϵ→0

lim inf
n→∞

logM∗(n, ϵ)

n
, (1.3)

is the first-order term in the asymptotic expansion of the achievable rate, and
is given by [1]

C = max
PX

I(X;Y ), (1.4)

where I(X;Y ) is the mutual information between X and Y , and the maxi-
mization is over the input distribution PX .

Channel coding analyses in the CLT regime fix a target error probability
ϵ ∈ (0, 1) and approximate logM∗(n, ϵ) as the blocklength n approaches infin-
ity. Examples of such results include Strassen’s expansion [7] for discrete mem-
oryless point-to-point channels (DM-PPCs) under the maximal error proba-
bility constraint, showing

logM∗(n, ϵ) = nC −
√
nV Q−1(ϵ) +O(log n). (1.5)

Here, the function Q−1(·) is the inverse of the complementary standard Gaus-
sian cumulative distribution function, and V is called the channel dispersion,
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and is defined as [5, Sec. IV]

V ≜ lim
ϵ→∞

lim sup
n→∞

(
nC − logM∗(n, ϵ)

Q−1(ϵ)

)2

, (1.6)

Channel dispersion characterizes how fast the maximum achievable rate ap-
proaches the capacity as n grows to infinity.

Strassen’s result shows that

V = min
PX :I(X;Y )=C

Var [ı(X;Y )] , (1.7)

where ı(x; y) is the information density

ı(X;Y ) = log
PY |X(Y |X)

PY (Y )
. (1.8)

The capacity C and the dispersion V are respectively the expected value and
the variance of ı(X;Y ) under the capacity-achieving input distribution. An-
alyzing the information density, e.g., computing its tail probability, is key in
almost all asymptotic expansions derived in channel coding.

Hayashi [4] and Polyanskiy et al. [5] and revisit Strassen’s result (1.5), showing
that the same asymptotic expansion holds for the average error probability
constraint1, deriving lower and upper bounds on the coefficient of the O(log n)
term, and extending the result to Gaussian channels with maximal and average
power constraints.

For channel coding in the LD regime, one fixes a rate R = logM
n

strictly below
the channel capacity, and seeks to characterize the minimum achievable error
probability ϵ∗(n,R) as the blocklength n approaches infinity. In this regime,
ϵ∗(n,R) decays exponentially with n. For R above the critical rate, [8, Ch. 5]
derives the error exponent E(R), i.e.,

ϵ∗(n,R) = e−n(E(R)+o(1)). (1.9)

The function E(R) is called the error exponent (or the reliability function),
and is the analog of dispersion V in (1.5) since it tells us how fast the minimum
achievable error probability decays to zero at a fixed rate R. The capacity C
is the zero of the error exponent function E(·). The error exponent and the

1The thesis mainly focuses on the average error probability.
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dispersion are the second-order characteristics of the channel in the CLT and
LD regimes, respectively.

Naturally, both the CLT- and LD-type asymptotic approximations become less
accurate as the (n, ϵ) pair gets farther away from the regime that is considered.
Namely, for a fixed n, CLT approximations fall short if ϵ is small, (or, equiva-
lently, the rate gets much smaller than the capacity), and LD approximations
fall short if ϵ is large, (or, equivalently, the rate gets closer to the capacity).
Since the remainder terms O

(
logn
n

)
for the rate logM

n
in (1.5) and o(1) for the

error exponent E(R) in (1.9) decrease with n, the accuracy of both approx-
imations deteriorates at shorter blocklengths. Motivated by the inability of
CLT and LD regimes to provide accurate approximations for a wide range of
(n, ϵ) pairs and the hope of deriving more accurate and computable approxima-
tions to the finite blocklength rate, we consider the moderate deviations (MD)
regime. In the MD regime, the error probability ϵn decays sub-exponentially
to zero, i.e., ϵn → 0 and − 1

n
log ϵn → 0, and the rate approaches the capacity

with a gap of order strictly greater than 1√
n
. This regime is practically relevant

since it simultaneously considers low error probabilities and high achievable
rates.

Before presenting the results of the thesis, in Chapter 2, we present the refined
non-asymptotic and asymptotic bounds from the probability theory literature
in the CLT, MD, and LD regimes. These are the main tools that are used to
analyze the non-asymptotic bounds and to derive asymptotic lower and upper
bounds on logM∗(n, ϵ) in many channel coding problems. The scope of their
applications in information theory is beyond channel coding problems. Other
examples include source coding [9], [10], hypothesis testing [5], and group
testing [11].

In Chapter 3, we refine the third-order term O(log n) in the asymptotic ex-
pansion in (1.5) in the MD regime. The form of this term depends on whether
the channel is singular. Singular channels are channels for which the channel
transition probability from x to y is the same for every compatible (x, y) pair,
while nonsingular channels are channels that do not satisfy this property (see
Section 3.2.4 for formal definitions). We show that for nonsingular channels,
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given an MD sequence {ϵn}n≥0, it holds that

logM∗(n, ϵn) ⪆ nC −
√
nV Q−1(ϵn) +

1

2
log n+ SQ−1(ϵn)

2 (1.10)

logM∗(n, ϵn) ⪅ nC −
√
nV Q−1(ϵn) +

1

2
log n+ SQ−1(ϵn)

2, (1.11)

where S and S are the lower and upper bounds on the fundamental quantity S
that governs the third-order behavior in channel coding. We term this quantity
the channel skewness. For symmetric channels such as the BSC and the Gaus-
sian channel with maximal power constraint, S is determined exactly. For the
BSC and most practically important (n, ϵ) pairs, including n ∈ [100, 500] and
ϵ ∈ [10−10, 10−1], an approximation up to the channel skewness is the most ac-
curate among state-of-the-art CLT and LD approximations in the literature.
We also derive the third-order term in the type-II error exponent of binary
hypothesis testing in the MD regime; the resulting third-order term is similar
to the channel skewness.

1.2 Channel Coding with Limited Feedback

In channel coding with feedback, the channel input at time i for message
m, Xi(m), is a function of the message m and the received signal until time
i−1, Y i−1. From this definition, obviously, feedback cannot decrease M∗(n, ϵ).
Perhaps surprisingly, feedback does not increase the capacity of DM-PPCs
[12]. However, feedback simplifies coding schemes and improves the speed
of approach to capacity with coding delay. Examples that demonstrate this
effect include Horstein’s scheme for the BSC [13] and Schalkwijk and Kailath’s
scheme for the Gaussian channel [14].

Encoder DecoderChannel
{1, . . . ,M} {1, . . . ,M}

Y i−1

Xi Yi

Figure 1.2: Feedback channel.

In practice, implementing a code with the feedback scheme as described above,
i.e., after every symbol, the receiver feeds back all of the received output
symbols until that time, can be infeasible due to limited capabilities of the
transmitter and the receiver. For example, codes with feedback after every
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symbol can be infeasible for scenarios with half-duplex devices, where the
transmitter cannot listen to the feedback signal and transmit its symbol at
the same time. Similarly, in scenarios where the power consumption of the
receiver is limited, the assumption that the receiver feeds back the output
sequence Y i−1 to the transmitter noiselessly, can be unreasonable.

An interesting question to ask is how much feedback is needed to still benefit
from the improved achievable rate. We consider the frequency and content
limitations on the feedback, addressing the scenarios described above in order.

• Sparse feedback (feedback frequency limitation): the receiver is allowed
to send a feedback signal to the transmitter only at L times, where L is
much smaller than the blocklength n.

• Coarse feedback (feedback content limitation): at every instance of feed-
back, only a small number of bits, Rfb ≪ n log2|Y|, are fed back, where
Y denotes the output alphabet.

If there is no frequency constraint, i.e., feedback can be sent at each time
instant, we call it dense feedback. If there is no content constraint, i.e., the
receiver can send all received symbols that it has received until that time, we
call it full feedback.

It turns out that there are examples of both sparse and coarse feedback codes,
where the performance of the code with limited feedback is similar to that of
dense and/or full feedback. For an example of sparse feedback, in [15], Wag-
ner et al. show that even a single instance of feedback at time n

2
improves the

second-order rate for channels with multiple capacity-achieving input distri-
butions giving distinct dispersions.

To find an example of coarse feedback codes with good performance, we turn
our attention to variable-length (or, rateless) codes, where decoding can oc-
cur at multiple times rather than a single time n. In these codes, whenever
feedback is available, the decoder has an opportunity to decode and stop the
transmission. First, we need to re-define the rate since there are multiple
decoding times. Let n1, . . . , nL be L pre-determined decoding times of the
variable-length code. Similar to most prior work [16]–[18], we define the rate
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as

R ≜
logM

E [τ ]
, (1.12)

where τ ∈ {n1, . . . , nL} is the random decoding time, that is, we impose an
average decoding time constraint on the code as

E [τ ] ≤ N. (1.13)

One of the earliest works on variable-length feedback (VLF) codes is by Bur-
nashev [16] who derives the error exponent of VLF codes, which is greater
than the error exponent E(R) in (1.9) achieved for fixed-length codes without
feedback. Within VLF codes, we consider the most coarse feedback possible,
that is, Rfb = 1 bit, and in addition, that one-bit feedback can only be used
to tell the transmitter whether decoding is successful. If decoding occurs at
a decoding time, then the receiver feeds back a “stop” symbol indicating that
transmission should stop; if decoding does not occur, then the receiver feeds
back a “continue” symbol indicating that transmission should continue. This
type of feedback is called stop-feedback, and the VLF codes that employ stop-
feedback are called variable-length stop-feedback (VLSF) codes. Polyanskiy
et al. [18] show that in the CLT regime, logM∗(N, ϵ), is sandwiched as

NC

1− ϵ
− logN +O(1) ≤ logM∗(N, ϵ) ≤ NC

1− ϵ
+O(1) (1.14)

for dense VLSF codes, i.e., L = ∞ and nℓ = ℓ for all ℓ ∈ Z+. First, compared
to Strassen’s expansion (1.5), the first-order term improves by a factor of
1

1−ϵ
. Second, the convergence to the first-order term is faster than of (1.5)

(O(logN) rather than O(
√
N)). Second, the upper bound in (1.14) holds for

any dense VLF code, meaning that within dense VLF codes, the performance
gap between the most coarse and the least coarse feedback codes is small, i.e.,
at most logN +O(1) in logM∗(n, ϵ). This fact motivates the study of sparsity
of the feedback for VLF codes rather than the coarseness.

In Chapter 4, we consider VLSF codes that are also sparse, and derive a
second-order achievability bound as a function of the average error probability
ϵ, the average decoding time N , and the number of available decoding times
L, while optimizing the values of L available decoding times n1, . . . , nL. The
result shows that our sparse VLSF codes with only a small number of decoding
times achieve rates close to that achieved by Polyanskiy et al.’s VLSF code
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Feedback
frequency

Feedback
contentstop

feedback
coarse

feedback
full

feedback

sparse
feedback

dense
feedback

Chapter 4

Polyanskiy et
al. (2011

Burnashev
(1976)

Open

Figure 1.3: Feedback limitations in VLF codes.

with L = ∞, highlighting the efficiency of sparse VLSF coding schemes. For
example, over the BSC with cross-over probability 0.11, our VLSF achievability
bound with only L = 4 decoding times achieves 95.2% of the rate achieved
by the VLSF code with L = ∞. Our analysis also shows the importance
of the optimization of the values of L decoding times for attaining the best
second-order term. In Chapter 5, we extend our result on sparse VLSF codes
to the discrete-memoryless multiple access channel (DM-MAC), where there
are a fixed K number of transmitters communicating to a single receiver,
and the feedback signal is sent to all transmitters simultaneously whenever
it is available. A summary of feedback limitations in VLF codes is given in
Fig. 1.3.

1.3 Random Access Communication

Random access in general is defined as multi-transmitter, single-receiver com-
munication, where the number and the identities of active transmitters are
unknown to both the transmitters and the receiver.

Emerging communication systems such as Internet of Things and machine-
type-communication systems impose four requirements on the code design:
high reliability, low latency, low energy consumption, and random activity in
a large number of communicating devices. These practical requirements on the
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Encoder

Decoder
Encoder

Encoder

Stop-feedback 

unknown to other transmitters
and the receiver

after each

Figure 1.4: Our RAC scheme.

code make the study of the random access problem in the CLT regime very
appealing. Keeping the low energy constraint and the benefits of little feedback
in mind, in Chapter 6, we extend the sparse rateless code that employs stop-
feedback to random access channels (RACs), where the maximal number of
transmitters is K, the decoding times are n0 < n1 < · · · < nK , and each ni

is the decoding time used if the transmitter believes that i transmitters are
active. Stop-feedback synchronizes the transmitters and the receiver so that
all parties are aware of the state of the communication epoch at all times.
In our model, the transmitters must listen to the feedback signal only at a
sparse collection of times. Fig. 1.4 illustrates our RAC scheme, where the
decoder attempts to decode k ≤ K messages, and K is the maximal number
of transmitters.

Unlike VLSF codes for DM-PPCs, no average decoding time constraint is im-
posed since a single decoding time ni is dedicated to decoding of i transmitters.
In fact, our RAC code stops the transmission at time nk with high probabil-
ity if k is the number of active transmitters. Employing the same encoding
function f for all transmitters, the rate for k ∈ [K] active transmitters is

Rk =
logM

nk

, (1.15)

where M is the codebook size. Our central result in Chapter 6 demonstrates
the achievability on a RAC of performance that is first-order optimal for the
MAC in operation during each coding epoch. Our proposed code also performs
as well in its dispersion term as the best-known code for a MAC with the
transmitter activity known a priori [19]–[22]. This means that the random



10

activity of transmitters does not cause a penalty in the dispersion term.2

Lastly, in Chapter 6, we extend VLSF codes introduced in Chapter 4 to RACs
by combining the VLSF code strategy with the RAC code strategy described
above. In VLSF codes for the RAC, the decoder can decode at one of the avail-
able times nk,1, nk,2, . . . , nk,L if it believes that the number of active transmit-
ters is k, and an average decoding time constraint is imposed for each number
of active transmitters

E [τk] ≤ Nk, (1.16)

where τk is the random decoding time given that k transmitters are active,
taking values in {nk,ℓ: k ∈ {0, . . . , K}, ℓ ∈ {1, . . . , L}}. We show a second-
order achievability bound for this setting.

Although our achievability bound in Chapter 6 that employs independent and
identically distributed (i.i.d.) codewords (across time) applies to the Gaussian
RAC as well, using i.i.d. codewords for the Gaussian channel is sup-optimal
in the dispersion term [24]. In Chapter 7, we present third-order asymptotic
expansions in the CLT regime for the maximum achievable message set size
for the Gaussian MAC under average error and maximal power constraints.
Here, the maximal power constraint refers to

∥f(m)nk∥22 ≤ nkP (1.17)

for all messages m ∈ [M ] and decoding times nk, k ∈ [K], and P > 0 is the
available power.

Using random codewords uniformly distributed on a sphere and a maximum
likelihood decoder, the derived MAC bound on each transmitter’s rate matches
the bound in [24] in its first- and second-order terms, and improves the third-
order term achieved. The result then extends to the RAC model described in
Chapter 6. In the Gaussian RAC code, random codewords are designed by
concatenating K partial codewords of blocklengths n1, n2−n1, . . . , nK−nK−1,
each drawn from a uniform distribution on a sphere of radius

√
(ni − ni−1)P .

When k transmitters are active, the resulting codewords are uniformly dis-
tributed on a restricted subset of the sphere of radius

√
nkP . For the RAC

2We are only comparing two achievability bounds, not the true value of maximum achiev-
able message set size. Showing whether this dispersion term is tight for the MAC is an open
problem [23].
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model, the proposed code achieves the same first-, second- and third-order
performance as the best known result for the Gaussian MAC in operation.

In the remainder of the chapter, we define notation used in this thesis.

1.4 Notation

1.4.1 Sets

For any k, ℓ ∈ N, we denote [k] ≜ {1, . . . , k} and [k : ℓ] ≜ {k, . . . , ℓ}, where
[k : ℓ] = ∅ when k > ℓ. The sets of integers, real numbers, and complex
numbers are denoted by Z, R, and C, respectively. The non-negative integers
and reals are denoted by Z+ and R+. We use calligraphic letters (e.g., X ) to
denote alphabets and sets. For any set A and integer k ≤ |A|,

(A
k

)
= {B:B ⊆

A, |B|= k}. The collection of non-empty strict subsets of a set A is denoted
by P(A) ≜ {B:B ⊆ A, 0 < |B|< |A|}, and the non-empty subsets are denoted
by P(A) ≜ {B:B ⊆ A,B ̸= ∅}.

1.4.2 Vectors

We use boldface letters (e.g., x) to denote vectors if the dimension of the vector
is clear from context; otherwise, we use xn ≜ (x1, . . . , xn) to indicate that it
is an n-dimensional vector. For a ≤ b ≤ n, x[a:b] ≜ (xa, xa+1, . . . , xb) denotes
a sub-vector of xn. The collection of length-n vectors from the index set A is
denoted by xnA ≜ (xna : a ∈ A), and xn⟨A⟩ ≜

∑
a∈A x

n
a .

For collection of vectors xnA and index i ∈ [n], xA,i denotes the collection of
scalars obtained by taking i-th coordinate from each vector in xnA. We use sans
serif font (e.g., A) to denote matrices. The i-th entry of a vector x is denoted
by xi, and (i, j)-th entry of a matrix A is denoted by Ai,j.

All-zero and all-one vectors are denoted by 0 and 1, respectively. A vector
inequality x ≤ y for x,y ∈ Rn is understood element-wise, i.e., xi ≤ yi for all
i ∈ [n]. We denote the inner product

∑n
i=1 xiyi by ⟨x,y⟩. We use ∥·∥∞ and

∥·∥2 to denote the ℓ∞ and ℓ2 norms, i.e., ∥x∥∞≜ max
i∈[d]

|xi| and ∥x∥2 ≜
√

⟨x,x⟩.

We write x
π
= x if there exists a permutation π of x such that π(x) = y, and

x
π

̸= y if such a permutation does not exist.

1.4.3 Random Variables

We denote random variables by capital letters (e.g., X) and individual real-
izations of random variables by lowercase letters (e.g., x). The set of all dis-
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tributions on the channel input alphabet X (respectively the channel output
alphabet Y) is denoted by P (respectively Q). We write X ∼ PX to indicate
that X is distributed according to PX ∈ P . Given a distribution PX ∈ P and a
transition probability kernel PY |X from X to Y , we write PX ×PY |X to denote
the joint distribution of (X, Y ), and PY to denote the marginal distribution
of Y , i.e., PY (y) =

∑
x∈X PX(x)PY |X(y|x) for all y ∈ Y . Given a conditional

distribution PY |X , the distribution of Y given X = x is denoted by PY |X=x.
The skewness of a random variable X is denoted by

Sk(X) ≜
E [(X − E [X])3]

Var [X]3/2
. (1.18)

For a sequence x = (x1, . . . , xn), the empirical distribution (or type) of x is
denoted by

P̂x(x) =
1

n

n∑
i=1

1{xi = x}, ∀x ∈ X . (1.19)

A lattice random variable is a random variable taking values in {a+kd: k ∈ Z},
where d ∈ R+ is the span of the lattice. The special case that a = 0 is called
arithmetic. We say that a random vector X = (X1, . . . , Xn) is non-lattice if
each of Xi, i ∈ [n] is non-lattice, and is lattice if each of Xi, i ∈ [n] is lattice.3

We denote X+ ≜ max{0, X} and X− ≜ −min{0, X} for any random variable
X.

The Gaussian distribution with mean µ and covariance matrix V is denoted by
N (µ,V). We use Q(·) to represent the complementary Gaussian cumulative
distribution function (cdf)

Q(x) ≜
1√
2π

∫ ∞

x

exp

{
−t

2

2

}
dt, (1.20)

and Q−1(·) to represent its functional inverse.

We denote the Radon-Nikodym derivative between distributions P and Q by
dP
dQ

. We denote the relative entropy and relative entropy variance between

P and Q by D(P∥Q) = E
[
log dP

dQ
(X)

]
and by V (P∥Q) = Var

[
log dP

dQ
(X)

]
,

respectively, where X ∼ P .
3The case where some of the coordinates of X are lattice and the rest of the coordinates

are non-lattice is excluded.
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1.4.4 Constants and Functions

Unless noted otherwise, we measure information in nats, and logarithms and
exponents have base e. We define the nested logarithm function as

log(L)(x) ≜

log(x) if L = 1, x > 0

log(log(L−1)(x)) if L ≥ 2, log(L−1)(x) > 0,
(1.21)

where log(L)(x) is undefined for all other (L, x) pairs.

The n× n identity matrix is denoted by In. The indicator function is denoted
by 1 {·}. For any scalar function f(·) and any vector x ∈ Rn, we form the
vector of function values f(x) = (f(xi): i ∈ [n]). For a set D ⊆ Rn, a vector
c ∈ Rn, and a scalar a, aD+c ≜ {ax+c : x ∈ D}. The sphere with dimension
n, radius r, and center at the origin is denoted by Sn(r) ≜ {x ∈ Rn : ∥x∥ = r}.

1.4.5 Big-O and Small-o

The standard O(·), o(·), and Ω(·) notations are defined as f(n) = O(g(n))

if lim supn→∞|f(n)/g(n)|< ∞, f(n) = o(g(n)) if limn→∞|f(n)/g(n)|= 0, and
f(n) = Ω(g(n)) if limn→∞|f(n)/g(n)|> 0.

Table 1.1: Vector Notation Summary

Notation Description

xns = xs = (xs,1, . . . , xs,n)
The length-n vector that is a member
of a collection indexed by s ∈ S

xnS = (xns : s ∈ S) The size-|S| ordered collection of
length-n vectors

xNS = ((xs,t: t ∈ N ): s ∈ S)
The size-|S| ordered collection of
length-|N | vectors with time indices in
N ⊆ [n]

xn⟨S⟩ =
∑

s∈S x
n
s

Summation of length-n vectors from
the collection S
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C h a p t e r 2

REFINED CLT, MD, AND LD THEOREMS IN PROBABILITY
THEORY

2.1 Introduction

This chapter reviews the refined bounds and asymptotic equalities from the
probability theory literature in the CLT, MD, and LD regimes.

Let X1, . . . , Xn i.i.d. random variables with zero mean and variance µ2, and
let Sn denote their normalized sum

Sn ≜
1

√
nµ2

n∑
i=1

Xi. (2.1)

We are interested in the tail probability of Sn, i.e., the cumulative distribution
function

Fn(x) ≜ P [Sn ≤ x] . (2.2)

The asymptotic behavior of Fn(x) is characterized by which of the following
regimes x falls in

• CLT regime: x = O(1),

• MD regime: x = o(
√
n) and lim

n→∞
|x| = ∞,

• LD regime: x = Ω(
√
n).

The following section gives the preliminary definitions to present the theorems
in each regime.

2.2 Moment and Cumulant Generating Functions

Below, we dedicate the letters s and t to real scalars and z to complex scalars.
The moment generating function (mgf) of X is defined as

ϕ(z) ≜ E [exp{zX}] , z ∈ C. (2.3)

At z = it, where i is the imaginary unit, this function is called the characteristic
function. The j-th central moment is denoted by

µj ≜ E
[
(X − E [X])j

]
. (2.4)
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The cumulant generating function (cgf) of X is defined as

κ(z) ≜ log ϕ(z) =
∞∑
j=1

κj
zj

j!
, (2.5)

where κj is called the j-th cumulant of X, and there exists a one-to-one rela-
tionship between κj and the central moments up to the order j. For example,

κ1 = E [X] (2.6)

κ2 = µ2 (2.7)

κ3 = µ3 (2.8)

κ4 = µ4 − 3µ2
2. (2.9)

Skewness of a random variable X is defined as

S(X) ≜
κ3

κ
3/2
2

. (2.10)

We use ϕ(X)(·) and κ(X)(·) to denote the mgf and cgf of X when the random
variable is not clear from context. It is straightforward to see that the j-th
cumulant of cX is given by κ

(cX)
j = cjκ

(X)
j , and the cgf of X + Y , where X

and Y are independent, is

κ(X+Y )(z) = κ(X)(z) + κ(Y )(z). (2.11)

The mgf and cgf are naturally extended to d-dimensional random vectors. Let
S be a d-dimensional random vector. The mgf and cgf of S are denoted by

ϕ(z) ≜ E [exp{⟨z,S⟩}] , z ∈ Cd, (2.12)

κ(z) ≜ log ϕ(z). (2.13)

2.3 CLT Theorems

Central Limit Theorem states that if µ2 <∞, then

Sn → N (0, 1) in distribution. (2.14)

Therefore, Fn(x) = Q(−x)(1+o(1)). The following theorem is a non-asymptotic
refinement to this result.
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Theorem 2.3.1 (Berry-Esseen theorem [25, Ch. XVI.5, Th.2]). Fix a positive
integer n. Let X1, . . . , Xn be n independent zero-mean random variables. Let
µ2 ≜ 1

n

∑n
i=1Var [Xi] <∞. Define

Sn =
1

√
nµ2

n∑
i=1

Xi (2.15)

Fn = P [Sn ≤ x] . (2.16)

Then, for any x ∈ R,

|Fn(x)−Q(−x)| ≤ B√
n
, (2.17)

where

T =
1

n

n∑
i=1

E
[
|Xi|3

]
(2.18)

B =
c0T

µ
3/2
2

. (2.19)

and 0.4097 ≤ c0 ≤ 0.5583; in the i.i.d. case, the upper bound improves to
c0 ≤ 0.4690 [26].

The following theorem is an asymptotic equality that refines the constant B
in (2.17) in the i.i.d. case.

Theorem 2.3.2 (Edgeworth Expansion [25, Ch. XVI.4, Th. 3]). Let X1, . . . , Xn

be n zero-mean i.i.d. random variables. Let Fn(·) be as defined in (2.16). As-
sume that E|X1|s+2 <∞, and

lim sup
|t|→∞

|ϕ(it)|< 1. (2.20)

Then

Fn(x) = Q(−x)− ϕ(x)

(
s∑

j=1

n− j
2pj(x)

)
+ o(n− s

2 ), (2.21)

where pj(x) is a real polynomial depending only on µ1, . . . , µj+2, and ϕ(x) ≜
1√
2π
e−

x2

2 is the standard Gaussian density. The first two polynomials are given
by

p1(x) =
κ3

6κ
3/2
2

(x2 − 1) (2.22)

p2(x) =
κ23
72κ32

(x5 − 10x3 + 15x) +
κ4

24κ22
(x3 − 3x), (2.23)
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where κj’s are the cumulants defined in (2.5). The condition (2.20) is known
as Cramér’s characteristic function condition. It is satisfied for any random
variable with absolutely continuous component and is not satisfied for any
purely discrete random variable. For s = 1, that condition reduces to non-
latticeness. Thus, Theorem 2.3.2 with s = 1 applies to discrete non-lattice
random variables [27].

Since the cdf of lattice random variables is piece-wise constant, an approxi-
mation such as in (2.21) cannot be accurate for the entire real line. For the
lattice case, the following theorem gives a corrected Edgeworth expansion that
is accurate at the midpoints of the lattice.

Theorem 2.3.3 (Continuity Corrected Edgeworth Expansion [27, Ch. 3.16]).
Let X1, . . . , Xn be zero-mean i.i.d. lattice random variables with span h > 0,
and let Fn be as defined in (2.16). Define the adjusted cumulants

λnj ≜ κj −
(

h
√
µ2

)j
Bj

j

1

n
, (2.24)

where Bj is the j-th Bernoulli number.1 Denote the infinite-length cumulant
and adjusted cumulant vectors by κ = (κ1, κ2, . . . ) and λ = (0, λn2 , λ

n
3 , . . . ).

Let

Es(x,κ) = Q(−x)− ϕ(x)
s∑

j=1

n− j
2pj(x) (2.25)

be the Edgeworth expansion using the cumulants κ. Then, it holds that

Fn(x
+) = Es(x

+,λ) + o(n− s
2 ), (2.26)

where x+ is a midpoint on the lattice that Sn is confined to, i.e., x+ = x+ h
2
√
nµ2

for some x ∈ R such that P [Sn = x] > 0.

We refer the reader to [25, Ch. XV-XVI] and [27, Ch. 2-3] for a more detailed
review of the theorems in the CLT regime.

2.4 MD Theorems

Although Theorem 2.3.1 applies to any real x, if x is in the MD regime (e.g.,
x = log n), then, the remainder B√

n
in (2.17) becomes comparable to the

Gaussian term, Q(−x), making Theorem 2.3.1 loose in this regime.
1Bj = 0 for odd j; B2 = 1

6 , B4 = − 1
30 , B6 = 1

42 .
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The following theorem by Petrov gives a tight asymptotic expansion in the
MD regime.

Theorem 2.4.1 (Petrov Expansion [28, Ch. 8, Th. 4]). Let X1, . . . , Xn be in-
dependent random variables. Let E [Xi] = 0 for i = 1, . . . , n, κj = 1

n

∑n
i=1 κ

(Xi)
j

for j ≥ 2, and Sk = κ3

κ
3/2
2

. Define

Sn ≜
1

√
nκ2

n∑
i=1

Xi (2.27)

Fn(x) ≜ P [Sn ≤ x] . (2.28)

Suppose that there exist some positive constants t0 and H such that the mgf
satisfies

ϕ(Xi)(t) < H (2.29)

for all |t|≤ t0 and i = 1, . . . , n. This condition is called Cramér’s condition.
Let x > 0 and x = o(

√
n). Then, it holds that

1− Fn(x) = Q(x) exp

{
x3√
n
λn

(
x√
n

)}(
1 +O

(
1 + x√
n

))
(2.30)

Fn(−x) = Q(x) exp

{
−x3√
n
λn

(
−x√
n

)}(
1 +O

(
1 + x√
n

))
, (2.31)

where

λn(x) ≜
∞∑
i=0

aix
i (2.32)

is Cramér’s series whose first two coefficients are

a0 =
Sk

6
(2.33)

a1 =
κ4κ2 − 3κ23

24κ32
. (2.34)

Inverting Theorem 2.4.1, namely, obtaining an expansion for x in terms y
where Fn(−x) = Q(y), is advantageous in many applications. For Q(y) = ϵn,
where {ϵn}∞n=1 is an MD sequence of probabilities (3.11), Lemma 2.4.1, below,
gives the corresponding sequence of quantiles. In the CLT regime, in which
Fn(−x) ∈ (0, 1) is equal to a value independent of n, that expansion is known
as the Corner-Fisher theorem [29], which inverts the Edgeworth expansion
(Theorem 2.3.2).
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Lemma 2.4.1. Let X1, . . . , Xn satisfy the conditions in Theorem 2.4.1. Let
y ≜ Q−1(ϵn) = o(

√
n). Suppose that Fn(−x) = Q(y) = ϵn, then

x = y − b0y
2

√
n

+
b1y

3

n
+O

(
y4

n3/2

)
+O

(
1√
n

)
, (2.35)

where

b0 ≜
Sk

6
(2.36)

b1 ≜
3κ4κ2 − 4κ23

72κ32
. (2.37)

Proof: See Appendix A.1.

A weaker version of Lemma 2.4.1 with only the first two terms in (2.35), and
with ϵn decaying polynomially with n is proved in [10, Lemma 7]. Although the
MD approximation to the cdf of the normalized sum in Theorem 2.4.1 is seem-
ingly different than the CLT approximation to the same cdf (the Edgeworth
expansion), their inverted theorems, i.e., Lemma 2.4.1 and the Cornish-Fisher
theorem [29], respectively, have similar forms; for the continuous random vari-
ables, the Cornish-Fisher theorem admits the formula in (2.35), where O

(
1√
n

)
is replaced by b0√

n
+ O

(
1
n

)
. This is the main reason why the channel skew-

ness bounds computed in the CLT regime extend to the MD regime without
change. We refer the reader to [28] for further review of the MD regime.

2.5 LD Theorems

2.5.1 Chernoff Bound and Exponential Tilting

Theorem 2.5.1 (Chernoff Bound). Let X1, . . . , Xn be zero-mean i.i.d. ran-
dom variables. Let Sn ≜

∑n
i=1Xi. Then, for any a ∈ R, it holds that

P [Sn ≥ na] ≤ exp

{
−n sup

t≥0
{ta− κ(t)}

}
. (2.38)

Proof: The proof follows by Markov’s inequality after taking the exponent of
Sn and na.

Chernoff bound tells that probabilities in LD regime decay exponentially with
n unless X has a heavy-tailed distribution, i.e., κ(t) = ∞ for all t ̸= 0. For
discrete X, (2.38) decays exponentially. In the following section, we will see
that the exponent on the right-hand side of (2.38) is tight for many cases
including all discrete random variables.
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The operation that is applied in the proof of Chernoff’s bound is called expo-
nential tilting (or Esscher’s transform [30]). The t-tilted X, denoted by X̃t is
defined by the Radon-Nikodym derivative

dPX̃t

dPX

(x) = exp{tx− κ(t)}, ∀x ∈ R. (2.39)

Expressing a probability in terms of an expectation under a different measure
is called change of measure, that is,

P [X ∈ A] =

∫
1{x ∈ A}dP =

∫ (
dQ

dP
(x)

)−1

1{x ∈ A}dQ. (2.40)

The general approach in the proofs of LD theorems is to change the measure
to the tilted distribution with an appropriate t.

2.5.2 Strong Large Deviations Asymptotics

For the results in this section, we consider a sequence of d-dimensional random
vectors Sn = (Sn,1, . . . , Sn,d), n = 1, 2, . . . . Let ϕn(·) denote the mgf of Sn,
and let κn(·) be the normalized cgf of Sn denoted by

ϕn(z) ≜ ϕ(Sn)(z) (2.41)

κn(z) ≜
1

n
log ϕn(z). (2.42)

The Fenchel-Legendre transform of κn(·) is given by

Λn(x) ≜ sup
t∈Rd

{⟨t,x⟩ − κn(t)} , (2.43)

where x ∈ Rd. The quantity (2.43) is commonly known as the rate function
in the large deviations literature [31, Ch. 2.2].

Theorem 2.5.2, below, is a strong large deviations result for an arbitrary se-
quence of random vectors Sn in Rd; here, strong refers to characterizing the
exact prefactor in front of the LD exponent.

Theorem 2.5.2 (Chaganty and Sethuraman [32, Th. 3.4]). Let {an}∞n=1 be a
bounded sequence of d-dimensional vectors. Assume that

(S) κn(z) is bounded below and above, and is analytic in Dd, where D ≜ {z ∈
C: |z|< c} and c is a finite constant;
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(ND) there exist a real sequence {sn}∞n=1 and constants c0 and c1 that satisfy

∇κn(sn) = an (2.44)

0 < c0 < sn,j < c1 < c for all j ∈ [d] and n ≥ 1, (2.45)

where c is the constant given in condition (S), and the Hessian matrix
∇2κn(sn), which is a covariance matrix of a tilted distribution obtained
from Sn, is positive definite with a minimum eigenvalue bounded away
from zero for all n;

(NL) there exists δ0 > 0 such that for any given δ1 and δ2 such that 0 < δ1 <

δ0 < δ2

sup
t:δ1<∥t∥∞≤δ2

∣∣∣∣ϕn(sn + it)

ϕn(sn)

∣∣∣∣ = o
(
n−d/2

)
, (2.46)

where i =
√
−1 is the imaginary unit.

Then,

P [Sn ≥ nan] =
ENL

nd/2
exp{−nΛn(an)}(1 + o(1)), (2.47)

where

ENL ≜
1

(2π)d/2

(
d∏

j=1

sn,j

)√
det(∇2κn(sn))

. (2.48)

Condition (S) of Theorem 2.5.2 is a smoothness assumption for the cgf κn,
which is a generalization of Cramér’s condition that appears in the large devi-
ations theorem for the sum of i.i.d. random vectors [31, Th. 2.2.30]. Condition
(S) implies that all moments of the tilted distribution obtained from Sn are
finite. Condition (ND) is used to ensure that Sn is a non-degenerate random
vector, meaning that it does not converge in distribution to a random vector
with ℓ < d dimensions, and that the rate function Λn(an) is bounded and
does not decay to zero. The latter follows from the boundedness condition in
(2.45), and implies that the probability of interest is in the LD regime. The
ratio ϕn(sn+it)

ϕn(sn)
in (2.46) is equal to the characteristic function of a random vec-

tor that is obtained by tilting Sn by sn [32]. A random variable is non-lattice
if and only if its characteristic function satisfies |ϕ(it)|< 1 for all real t ̸= 0
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[25, Ch. XV, Sec. 1, Lemma 4]. Therefore, since tilting does not affect the
support of a distribution, the condition (NL) requires Sn to be a non-lattice
random vector. Condition (NL) is used to guarantee that the absolute value
of that characteristic function decays to zero fast enough outside a neighbor-
hood of the origin, which makes the random vector Sn behave like a sum of n
non-lattice random vectors.

When applied to the sum of n i.i.d. random variables Sn =
∑n

i=1 Ai, κn in
(2.42) reduces to the cgf of A1 as

κ(z) = logE [exp{⟨z,A1⟩}] . (2.49)

In the case that A1 has a finite support, the expectation in (2.49) is bounded,
and all moments of A1 are finite; therefore, condition (S) of Theorem 2.5.2 is
satisfied. Further, the characteristic function of the sum of n i.i.d. random
vectors is equal to n-th power of the characteristic function of one of the
summands. Therefore, the left-hand side of (2.46) decays to zero exponentially
fast for the sum of i.i.d. non-lattice random vectors, satisfying condition (NL)
of Theorem 2.5.2 with room to spare.

The following theorem is a strong large deviations theorem for lattice random
vectors.

Theorem 2.5.3. Suppose that Sn = (Sn,1, . . . , Sn,d), and Sn,j is a lattice ran-
dom variable with span hn,j, i.e., P [Sn,j ∈ {bn,j + khn,j: k ∈ Z}] = 1 for some
bn,j, such that there exist positive constants hj and hj satisfying hj < hn,j < hj

for all j ∈ [d], n ≥ 1. Assume that conditions (S) and (ND) in Theorem 2.5.2
hold, and replace condition (NL) by

(L) there exists \λ > \0 such that for any given \δ satisfying \0 < \δ < \λ,

sup
t:δj<|tj |≤ π

hn,j
for j∈[d]

∣∣∣∣ϕn(sn + it)

ϕn(sn)

∣∣∣∣ = o
(
n−d/2

)
. (2.50)

Assume that nan is in the range of the random vector Sn. Then,

P [Sn ≥ nan] =
EL

nd/2
exp{−nΛn(an)}(1 + o(1)), (2.51)

where

EL ≜
1

(2π)d/2
√

det(∇2κn(sn))

(
d∏

j=1

hn,j
1− exp{−sn,jhn,j}

)
. (2.52)
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Proof: The one-dimensional lattice case, i.e., d = 1, is proved in [30, Th. 3.5].
The proof of the d-dimensional lattice case follows by inspecting the proofs
for the d-dimensional non-lattice random vectors in [32, Th. 3.4] and the one-
dimensional lattice random variables in [30, Th. 3.5]. Specifically, in the proof
of [32, Th. 3.4], we replace [32, Th. 2.4] by [30, Th. 2.10]. The auxiliary result
[30, Th. 2.10] gives the asymptotics of an expectation of a lattice random
variable. The modification in the proof yields Theorem 2.5.3.

If Sn = (Sn,1, . . . , Sn,d) is a sum of n i.i.d. random vectors, where

Sn,j =
n∑

i=1

Ai,j, j ∈ [d], (2.53)

and A1,j is a lattice random variable with span hj for j ∈ [d], then it holds
that

sup
δj<|tj |≤ π

hj

∣∣∣∣ϕ(X1,j)(sj + itj)

ϕ(X1,j)(sj)

∣∣∣∣ < 1, j ∈ [d]. (2.54)

The bound (2.54) follows from [25, Ch. 15, Sec. 1, Lemma 4] since ϕ(A1,j)(sj+itj)

ϕ(A1,j)(sj)

is a characteristic function of a lattice random variable with span hj. The
condition in (2.50) modifies the condition in (2.46) for lattice random vectors
by considering a single period of that characteristic function. If Sn is an i.i.d.
sum, the left-hand side of (2.50) decays exponentially with n, and condition
(L), lattice, is satisfied. Note that if hn,j → 0 for all (n, j) pairs, then Sn

converges to a non-lattice random vector, and the prefactor EL converges to
the prefactor for the non-lattice random vectors, ENL.

Altuğ and Wagner derive a large deviations bound in [33, Lemma 3] that
applies to the sum of n i.i.d. 2-dimensional random vectors, where each sum-
mand can be either non-lattice or lattice. However, their prefactor is worse
than both ENL and EL. We refer the reader to [31], [34] for further review of
the LD regime.

2.5.3 An LD Theorem as an Expectation

The following lemma by Polyanskiy et al. [5] is a non-asymptotic bound on
an expectation involving n independent random variables.

Lemma 2.5.1 ([5, Lemma 47]). Let X1, . . . , Xn be independent random vari-
ables, and Sn =

∑n
i=1Xi. Let σ2 =

∑n
i=1Var [Xi] > 0, and
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T =
∑n

i=1 E [|Xi − E [Xi] |3] <∞. Then for every γ, it holds that

E [exp{−Sn}1{Sn > A}] ≤ 2

(
log 2√
2π

+
2c0T

σ2

)
1

σ
exp{−A}, (2.55)

where c0 ≤ 0.56 is given in (2.19).

Lemma 2.5.1 becomes asymptotically tight when applied to the information
density ı(X;Y ), where (X,Y ) ∼ PX × PY . In this case, (2.55) becomes the
expectation in change of measure given in (2.40) from PX ×PY to PX ×PY |X ,
making Lemma 2.5.1 a very useful tool in channel coding analyses.

2.6 Usage of CLT, MD, and LD Theorems in Channel Coding

On high level analysis of channel coding, an error occurs if at least one of the
following events happens

• the true message produces a small information density,

• at least one of the remaining M − 1 (wrong) messages produces a large
information density.

In Table 2.6, below, we summarize how the probabilities of these events that
contribute to the error probability are bounded in various error probability
regimes and coding problems.

Table 2.1: The probability theorems that are used in this thesis and in several
works from the literature are summarized. No fb. and sf stand for no-feedback
and stop-feedback. Error column specifies what error probability regime is
considered in the asymptotic expansion.

Work Error Coding problem Probability theorem
True mes. Wrong mes.

[5] CLT PPC, no fb. Th. 2.3.1 Lem. 2.5.1
[35] CLT PPC, no fb. Th. 2.3.2 Th. 2.5.2–2.5.3
[33] LD PPC, no fb. Th. 2.5.2–2.5.3 Th. 2.5.2–2.5.3

Ch. 3 MD PPC, no fb. Th. 2.4.1 Th. 2.5.2–2.5.3
Ch. 4–5 CLT PPC-MAC, sf Th. 2.4.1 Lem. 2.5.1

[36] Numerical PPC, sf Th. 2.3.2–2.3.3 Lem. 2.5.1
Ch. 6 CLT RAC, sf Th. 2.3.1 Lem. 2.5.1
Ch. 7 CLT Gaussian MAC (no fb.)

Gaussian RAC (sf) Th. 2.3.1 Lem. 2.5.1
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C h a p t e r 3

MODERATE DEVIATIONS ANALYSIS OF CHANNEL
CODING

3.1 Introduction

The fundamental limit of channel coding is the maximum achievable mes-
sage set size M∗(n, ϵ) given a channel PY |X , a blocklength n, and an average
error probability ϵ. Since determining M∗(n, ϵ) exactly is difficult for arbi-
trary triples (PY |X , n, ϵ), the literature investigating the behavior of M∗(n, ϵ)

studies three asymptotic regimes: the CLT regime, also called the finite block-
length regime, where the error probability bound is kept constant and analyses
bound the convergence of rate to capacity as n grows, the large deviations (LD)
regime, also called the error exponent regime, where the rate is kept constant
and analyses bound the convergence of error probability to zero as n grows,
and the MD regime, where the error probability decays sub-exponentially to
zero, and the rate approaches the capacity slower than O(1/

√
n). Provided

more resources (in this case the blocklength), we would typically expect to see
improvements in both the achievable rate and the error probability. There-
fore, asymptotics that fix either rate or error probability are not practically
relevant for many applications. Emerging applications in ultra-reliable low-
latency communication such as tele-surgery and tactile internet have delay
constraint as small as 1 ms and error probability constraint as small as 10−9

[37]. The fact that the accuracy of asymptotic expansions deteriorates at short
blocklengths further motivates interest in refining the asymptotic expansions
of the maximum achievable channel coding rate.

3.1.1 Literature Review

Channel coding analyses in the CLT regime fix a target error probability
ϵ ∈ (0, 1) and approximate logM∗(n, ϵ) as the blocklength n approaches in-
finity. Examples of such results include Strassen’s expansion [7] for discrete
memoryless channels (DM-PPCs) with capacity C, positive ϵ-dispersion Vϵ [5,
Sec. IV], and maximal error probability constraint ϵ, showing

logM∗(n, ϵ) = nC −
√
nVϵQ

−1(ϵ) +O(log n). (3.1)
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Polyanskiy et al. [5] and Hayashi [4] revisit Strassen’s result [7], showing
that the same asymptotic expansion holds for the average error probability
constraint, deriving lower and upper bounds on the coefficient of the log n

term, and extending the result to Gaussian channels with maximal and average
power constraints. In all asymptotic expansions other than Strassen’s and
throughout the paper, the average (over the codebook and channel statistics)
error probability criterion is employed.

For channel coding in the LD regime, one fixes a rate R = logM
n

strictly below
the channel capacity and seeks to characterize the minimum achievable error
probability ϵ∗(n,R) as the blocklength n approaches infinity. In this regime,
ϵ∗(n,R) decays exponentially with n. For R above the critical rate, [8, Ch. 5]
derives the error exponent E(R), i.e.,

ϵ∗(n,R) = e−nE(R)+o(n). (3.2)

Bounds on the o(n) term in (3.2) appear in [33], [38]–[40]. For the Gaussian
channel with a maximal power constraint, in the LD regime, Shannon [6]
derives achievability and converse bounds where the o(n) term is tight up to an
O(1) gap. Erseghe [41] gives an alternative proof of these LD approximations
using Laplace integration method.

The CLT and LD asymptotic approximations in (3.1) and (3.2), respectively,
become less accurate as the (n, ϵ) pair gets farther away from the regime that
is considered. Namely, the CLT approximation falls short if ϵ is small since
there is a hidden Q−1(ϵ)2 term inside the O(log n) term, which approaches ∞
as ϵ approaches 0. The LD approximation falls short if the rate R is large since
the second-order term o(n) in the error exponent gets arbitrarily large as the
rate approaches the capacity. The inability of CLT and LD regimes to provide
accurate approximations for a wide range of (n, ϵ) pairs and the hope of de-
riving more accurate and computable approximations to the finite blocklength
rate motivate a study of the non-Gaussianity in the moderate deviations (MD)
regime. In the MD regime, the error probability ϵn decays sub-exponentially to
zero, i.e., ϵn → 0 and − 1

n
log ϵn → 0, and the rate approaches the capacity with

a gap of order strictly greater than 1√
n
. This regime is practically relevant since

it simultaneously considers low error probabilities and high achievable rates.
For DM-PPCs with positive dispersion V and a sequence of sub-exponentially
decaying ϵn, Altuğ and Wagner [42] show that

logM∗(n, ϵn) = nC −
√
nVϵnQ

−1(ϵn) + o(
√
nQ−1(ϵn)). (3.3)
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This result implies that the CLT approximation to the maximum achievable
message set size logM∗(n, ϵn) ≈ nC −

√
nV Q−1(ϵn) as in (3.1), is still valid

in the MD regime, leaving open the rate of convergence to that bound. Note
that showing (3.9) with the knowledge of the CLT approximation (3.1) is not
straightforward since, for instance, the Berry-Esseen theorem used in the CLT
approximation becomes loose in the MD regime.

To discuss the accuracy of the CLT approximation (3.1), for any given channel,
fix an average error probability ϵ and blocklength n. We define the channel’s
non-Gaussianity as

ζ(n, ϵ) ≜ logM∗(n, ϵ)− (nC −
√
nVϵQ

−1(ϵ)), (3.4)

which captures the third-order term in the expansion of logM∗(n, ϵ) around
nC.

According to Strassen’s expansion (3.1), ζ(n, ϵ) = O(log n), and several re-
finements to that result have since been obtained. For a DM-PPC with finite
input alphabet X and output alphabet Y , the results of [5] imply that the
non-Gaussianity is bounded as

O(1) ≤ ζ(n, ϵ) ≤
(
|X |−1

2

)
log n+O(1). (3.5)

Further, improvements to (3.5) are enabled by considering additional charac-
teristics of the channel. We next briefly define several channel characteristics
and the corresponding refinements. Each definition relies on the channel tran-
sition probability kernel [PY |X(y|x)] from x to y, with rows corresponding
to channel inputs and columns corresponding to channel outputs. See Sec-
tion 3.2.4 for formal definitions. Singular channels are channels for which all
entries in each column of the transition matrix are 0 or p for some constant
p ∈ (0, 1], while nonsingular channels are channels that do not satisfy this prop-
erty. Gallager-symmetric channels are channels for which the output alphabet
can be partitioned into subsets so that for each subset of the transition prob-
ability kernel that uses inputs as rows and outputs of the subset as columns
has the property that each row (respectively, column) is a permutation of each
other row (respectively, column) [8, p. 94]. For Gallager-symmetric, singular
channels, ζ(n, ϵ) = O(1) [38]. For nonsingular channels, the random coding
union (RCU) bound improves the lower bound in (3.5) to 1

2
log n + O(1) [2,

Cor. 54]. For DM-PPCs with positive ϵ-dispersion, Tomamichel and Tan [43]
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improve the upper bound to 1
2
log n + O(1). A random variable is called lat-

tice if it takes values on a lattice with probability 1, and is called non-lattice
otherwise. For nonsingular channels with positive ϵ-dispersion and non-lattice
information density, Moulin [35] shows1

ζ(n, ϵ) ≥ 1

2
log n+ SkQ−1(ϵ)2 +B + o(1) (3.6)

ζ(n, ϵ) ≤ 1

2
log n+ SkQ−1(ϵ)2 +B + o(1), (3.7)

where Sk, Sk. B, and B are constants depending on the channel parame-
ters. For the Gaussian channel with a maximal power constraint P , meaning
that every codeword has power less than or equal to nP , in the CLT regime,
Polyanskiy et al. [5] show that for the maximal power constraint P , the non-
Gaussianity ζ(n, ϵ, P ) is bounded as

O(1) ≤ ζ(n, ϵ, P ) ≤ 1

2
log n+O(1). (3.8)

Tan and Tomamichel [44] improve (3.8) to ζ(n, ϵ, P ) = 1
2
log n + O(1), which

means that in the CLT regime, the non-Gaussianity of the Gaussian channel
is the same as that of nonsingular DM-PPCs with positive ϵ-dispersion.

The MD result in (3.3) can be expressed as

ζ(n, ϵn) = o(
√
nQ−1(ϵn)). (3.9)

Polyanskiy and Verdú [45] give an alternative proof of (3.9), and extend the
result to the Gaussian channel with a maximal power constraint. In [46],
Chubb et al. extend the second-order MD expansion in (3.9) to quantum
channels. In [10, Lemma 3], Sakai et al. derive a third-order asymptotic
expansion for the minimum achievable rate of lossless source coding, where ϵn
decays polynomially with n, which can be extended to all MD sequences using
the tools presented here. A second-order MD analysis of lossy source coding
appears in [47].

Since binary hypothesis testing (BHT) is closely related to several information-
theoretic problems, and admits a CLT approximation that is similar to that

1There is a sign error in [35, eq. (3.1)-(3.2)], which then propagates through the rest of
the paper. The sign of the terms with Sk(P ∗

X) should be positive rather than negative in
both equations. The error in the achievability result originates in [35, eq. (7.15) and (7.19)],
where it is missed that Sk(−X) = −Sk(X) for any random variable X. The error in the
converse result also stems from the sign error in [35, eq. (6.8)].
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of channel coding [5], BHT is a topic of some interest in this work. Refined
asymptotics of BHT receive significant attention from the information theory
community. When the type-I error probability is a constant 1 − α ∈ (0, 1)

independent of the number of samples n (i.e., in the Stein regime), the min-
imum achievable type-II error probability β is a function of α and n, and
a CLT approximation to the type-II error exponent, − log βα, appears in [5,
Lemma 58]. In [35, Th. 18], Moulin refines [5, Lemma 58] by deriving the O(1)
term in the type-II error exponent.2 In the LD (or Chernoff) regime, where
both error probabilities decay exponentially, the type-I and type-II error ex-
ponents appear in e.g.,[48, eq. (11.196)-(11.197)]. A second-order MD analysis
of BHT appears in [49]. In [50, Th. 11], Chen et al. derive the third-order
asymptotic expansion of the type-II error probability region in the CLT regime
for composite hypothesis testing that considers a single null hypothesis and
k alternative hypotheses. The second-order term in their result includes an
extension of the Q−1(·) function to k-dimensional Gaussian random vectors.

Casting optimal coding problems in terms of hypothesis testing elucidates the
fundamental limits of coding. Blahut [51] derives a lower bound on the error
exponent in channel coding in terms of the asymptotics of BHT in the LD
regime. Polyanskiy et al. derive a converse result [5, Th. 27] in channel coding
using the minimax of the type-II error probability of BHT, the βα function;
they term this converse as the meta-converse bound. Kostina and Verdú prove
a converse result [52, Th. 8] for fixed-length lossy compression of stationary
memoryless sources using the βα function. This result is extended to lossless
joint source-channel coding in [53]. For lossless data compression, Kostina and
Verdú give lower and upper bounds [52, eq. (64)] on the minimum achievable
codebook size in terms of βα. For lossless multiple access source coding, also
known as Slepian-Wolf coding, Chen et al. derive a converse result [50, Th. 19]
in terms of the composite hypothesis testing version of the βα function. The
works in [5], [50], [52], [53] derive second- or third-order asymptotic expansions
for their respective problems by using the asymptotics of the βα function.

3.1.2 Contributions of This Chapter

The accuracy of Strassen’s CLT approximation (3.1), giving ζ(n, ϵ) = O(log n),
significantly decreases for a small blocklength n and a small error probability

2There is a typo in [35, eq. (6.8)]. The sign of the third term in [35, eq. (6.8)] should
be plus rather than minus.
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ϵ. This problem arises because there is a hidden Q−1(ϵ)2 term inside the non-
Gaussianity [35]. Note that Q−1(ϵ)2 approaches 2 log 1

ϵ
, which in turn grows

without bound as ϵ → 0. Therefore, Q−1(ϵ)2 can dominate the O(log n) term
if ϵ is small enough. To capture this phenomenon, we define the channel
skewness operationally as

Sk ≜ lim
ϵ→0

lim inf
n→∞

ζ(n, ϵ)− 1
2
log n

Q−1(ϵ)2
. (3.10)

The channel skewness serves as the third-order fundamental channel charac-
teristic after channel capacity and dispersion [5, Sec. IV]. The skewness of the
information density (see (1.18), below) plays a critical role in characterizing
the channel skewness. Throughout the paper, we use S and S to represent
upper and lower bounds on the channel skewness S.

Our contributions in this chapter are summarized as follows.

• We show that for nonsingular DMCs with positive dispersion, in the MD
regime, the lower and upper bounds on the non-Gaussianity in (3.6)–
(3.7) hold up to the skewness term; this result justifies why the skewness
approximations remain accurate even for error probabilities as small as
10−10 and blocklengths as short as n ≤ 500.

• For Cover-Thomas symmetric channels [48, p. 190], in which all rows
(and respectively columns) of the transition probability kernel are permu-
tations of each other, the lower and upper bounds in (3.6)–(3.7) match,
and we derive the term that is one order higher than the channel skew-
ness.

• We compute the channel skewness of the Gaussian channel with a maxi-
mal power constraint by deriving refined bounds in the CLT regime; the
resulting approximations have an accuracy similar to that of Shannon’s
LD approximations from [6].

• We derive tight bounds on the minimum achievable type-II error proba-
bility for BHT in the MD regime; our bounds yield a fourth-order asymp-
totic expansion that includes the third and fourth central moments of the
log-likelihood ratio. The converse in our refined result for Cover-Thomas
channels (second described above in the bullet) is a direct application of
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this expansion. Our expansion is also potentially useful in other applica-
tions, such as extending the results in [50]–[53], which rely on the BHT
asymptotics, to the MD regime.

We proceed to detail each of these contributions.

A sequence of error probabilities {ϵn}∞n=1 is said to be a small-to-moderate
(SMD) sequence if for all c > 0, there exists a positive integer n0(c) such that

exp{−cn} ≤ ϵn ≤ 1− exp{−cn} (3.11)

for all n ≥ n0(c), or, equivalently, Q−1(ϵn) = o(
√
n). This definition includes

all error probability sequences except the LD sequences, i.e., the sequences
that approach 0 or 1 exponentially fast. It therefore extends the family of
MD error probability sequences to include, for example, the sequences that
sub-exponentially approach 1, the sequences in the CLT regime, (where ϵn =

ϵ ∈ (0, 1), a constant independent of n) and sequences that do not converge.
We show in Theorems 3.3.1–3.3.2 in Section 3.3.1 below that for nonsingular
channels with positive dispersion and an SMD sequence ϵn (3.11), ζ(n, ϵn) in
(3.9) is bounded as

ζ(n, ϵn) ≥
1

2
log n+ SkQ−1(ϵn)

2

+O

(
Q−1(ϵn)

3

√
n

)
+O(1) (3.12)

ζ(n, ϵn) ≤
1

2
log n+ SkQ−1(ϵn)

2

+O

(
Q−1(ϵn)

3

√
n

)
+O(1), (3.13)

where the constants Sk and Sk are the same ones as in (3.6)–(3.7). The bounds
(3.12)–(3.13) generalize (3.6)–(3.7) to non-constant error probabilities ϵn at the
expense of not bounding the constant term; additionally (3.12)–(3.13) do not
require the non-latticeness condition used in [35]. The non-Gaussianity ζ(n, ϵ)
gets arbitrarily close to O(

√
n) as ϵn approaches an exponential decay, rivaling

the dispersion term in (3.1). Thus, refining the third-order term as we do
in (3.12)–(3.13) is especially significant in the MD regime. The achievability
bound (3.12) analyzes the RCU bound in [5, Th. 16]; the converse bound (3.13)
uses the non-asymptotic converse bound in [43, Prop. 6] and the saddlepoint
result in [35, Lemma 14]. For ϵn in the MD regime (i.e., (3.11) holds with
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either ϵn → 0 or ϵn → 1), neither the Berry-Esseen theorem used in [5] nor the
refined Edgeworth expansion used in [35] to treat the constant ϵ case is sharp
enough for the precision in (3.12)–(3.13). We replace these tools with the MD
bounds found in [28, Ch. 8].

The constant terms B and B in (3.6)–(3.7) depend on whether the information
density ı(X;Y ) is a lattice or non-lattice random variable because both the
Edgeworth expansion and the large deviation result used in [35] take distinct
forms for lattice and non-lattice random variables. In [35], Moulin considers
the channels with non-lattice information densities and the BSC as the only
example with a lattice information density, which he analyzes separately in [35,
Th. 7]. Our analysis shows that a single proof holds for lattice and non-lattice
cases if we do not attempt to bound the O(1) term as in this paper.

For Cover-Thomas symmetric channels, S = S = S, and we refine (3.12)–
(3.13) in Theorem 3.3.3 in Section 3.3.3 below by deriving the coefficient of the
O
(

Q−1(ϵn)3√
n

)
term. For the binary symmetric channel (BSC) and a wide range

of (n, ϵ) pairs, our asymptotic approximation for the maximum achievable rate
using terms up to the channel skewness, i.e., ζ(n, ϵ) ≈ 1

2
log n + SkQ−1(ϵ)2 is

more accurate than both of Moulin’s bounds with B and B in (3.6) and (3.7);
the accuracy of our approximation is similar to that of the saddlepoint ap-
proximations in [39], [40]. Moreover, for the BSC with an (n, ϵ) pair satisfying
ϵ ∈ [10−10, 10−1] and n ∈ [100, 500], including the O

(
Q−1(ϵn)3√

n

)
term from The-

orem 3.3.3 in our approximation yields a less accurate approximation than is
obtained by stopping at the channel skewness. This highlights the importance
of channel skewness relative to the higher-order terms in characterizing the
channel.

Theorem 3.3.4, in Section 3.3.4 below, derives lower and upper bounds on the
non-Gaussianity of the Gaussian channel with a maximal power constraint in
the CLT regime. Our bounds yield the channel skewness term exactly; the gap
between the bounds is only 1+ 1

2
log(1+P ) nats for maximal power constraint

P . Our bounds analyze Shannon’s random coding and sphere-packing bounds
[6] in the CLT regime, and use a tight approximation to the quantile of the
noncentral t-distribution. It appears that Shannon’s bounds are the tightest
so far for the Gaussian channel, and the prior techniques from [5, Th. 54] and
[44] are not sharp enough to derive the channel skewness.

Using the MD results in [28, Ch. 8] and the strong large deviations results
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in [32], in Theorem 3.3.5 in Section 3.3.5 below, we derive the asymptotics of
BHT in the MD regime, characterizing the minimum achievable type-II error
of a hypothesis test that chooses between two product distributions given that
type-I error is an SMD sequence (3.11). Our result refines [49] to the third-
order term.

3.1.3 Chapter Organization

The chapter is organized as follows. We define notation and give preliminar-
ies to present our results in Section 3.2. Section 3.3 presents and discusses
the main results. Proofs of the main results appear in Section 3.4 and in
Appendix B.

3.2 Preliminaries

3.2.1 Definitions Related to Information Density

The relative entropy between distributions P and Q on a common alphabet,
second and third central moments of the log-likelihood ratio, and the skewness
of the log-likelihood ratio are denoted by

D(P∥Q) ≜ E
[
log

P (X)

Q(X)

]
(3.14)

V (P∥Q) ≜ Var

[
log

P (X)

Q(X)

]
(3.15)

T (P∥Q) ≜ E

[(
log

P (X)

Q(X)
−D(P∥Q)

)3
]

(3.16)

S(P∥Q) ≜ T (P∥Q)
V (P∥Q)3/2

, (3.17)

where X ∼ P . Let PX ∈ P , QY ∈ Q, and PY |X be a conditional distribution
from X to Y . The conditional versions of those quantities are denoted by

D(PY |X∥QY |PX) ≜
∑
x∈X

PX(x)D(PY |X=x∥QY ) (3.18)

V (PY |X∥QY |PX) ≜
∑
x∈X

PX(x)V (PY |X=x∥QY ) (3.19)

T (PY |X∥QY |PX) ≜
∑
x∈X

PX(x)T (PY |X=x∥QY ) (3.20)

Sk(PY |X∥QY |PX) ≜
T (PY |X∥QY |PX)

V (PY |X∥QY |PX)3/2
. (3.21)
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Let (X, Y ) ∼ PX × PY |X . The information density is defined as

ı(x; y) ≜ log
PY |X(y|x)
PY (y)

, ∀x ∈ X , y ∈ Y . (3.22)

We define the following moments of the random variable ı(X;Y ).

• The mutual information

I(PX , PY |X) ≜ E [ı(X;Y )] = D(PY |X∥PY |PX), (3.23)

• the unconditional information variance

Vu(PX , PY |X) ≜ V (PX × PY |X∥PX × PY )

= Var [ı(X;Y )] , (3.24)

• the unconditional information third central moment

Tu(PX , PY |X) ≜ T (PX × PY |X∥PX × PY ) (3.25)

= E
[
(ı(X;Y )− I(PX , PY |X))

3
]
, (3.26)

• the unconditional information skewness

Sku(PX , PY |X) ≜ Sk(ı(X;Y )) =
Tu(PX , PY |X)

Vu(PX , PY |X)3/2
, (3.27)

• the conditional information variance

V (PX , PY |X) ≜ V (PY |X∥PY |PX)

= E [Var [ı(X;Y )|X]] , (3.28)

• the conditional information third central moment

T (PX , PY |X) ≜ T (PY |X∥PY |PX), (3.29)

• the conditional information skewness

Sk(PX , PY |X) ≜
T (PY |X∥PY |PX)

V (PY |X∥PY |PX)3/2
, (3.30)

• the reverse dispersion [2, Sec. 3.4.5]

Vr(PX , PY |X) ≜ E [Var [ı(X;Y )|Y ]] . (3.31)
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3.2.2 Discrete Memoryless Channel

A DMC is characterized by a finite input alphabet X , a finite output alphabet
Y , and a transition probability kernel PY |X , where PY |X(y|x) is the probability
that the output of the channel is y ∈ Y given that the input to the channel is
x ∈ X . The n-letter input-output relation of a DMC is

P n
Y |X(y|x) =

n∏
i=1

PY |X(yi|xi). (3.32)

We proceed to define the channel code.

Definition 3.2.1. An (n,M, ϵ)-code for a DMC PY |X comprises an encoding
function

f: [M ] → X n, (3.33)

and a decoding function

g:Yn → [M ], (3.34)

that satisfy an average error probability constraint

1− 1

M

M∑
m=1

P n
Y |X(g

−1(m)|f(m)) ≤ ϵ. (3.35)

The maximum achievable message set size M∗(n, ϵ) under the average error
probability criterion is defined as

M∗(n, ϵ) ≜ max{M :∃ an (n,M, ϵ)-code}. (3.36)

3.2.3 Definitions Related to the Optimal Input Distribution

The capacity of a DMC PY |X is

C(PY |X) ≜ max
PX∈P

I(PX , PY |X). (3.37)

We denote the set of capacity-achieving input distributions by

P† ≜ {PX ∈ P : I(PX , PY |X) = C(PY |X)}. (3.38)

Even if the capacity-achieving input distributions are multiple (|P†|> 1),
the capacity-achieving output distribution is unique (PX , P

′
X ∈ P† implies
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x∈X PX(x)PY |X(y|x) =

∑
x∈X P

′
X(x)PY |X(y|x) for all y ∈ Y) [8, Cor. 2 to

Th. 4.5.2]. We denote this unique capacity-achieving output distribution by
Q∗

Y ∈ Q; Q∗
Y satisfies Q∗

Y (y) > 0 for all y ∈ Y for which there exists an x ∈ X
with PY |X(y|x) > 0 [8, Cor. 1 to Th. 4.5.2]. For any P †

X ∈ P†, it holds that
V (P †

X , PY |X) = Vu(P
†
X , PY |X) [5, Lemma 62].

Define Vmin ≜ minP †
X∈P† V (P †

X , PY |X) and Vmax ≜ maxP †
X∈P† V (P †

X , PY |X). The
ϵ-dispersion [5] of a channel is defined as

Vϵ ≜

Vmin if ϵ < 1
2

Vmax if ϵ ≥ 1
2
.

(3.39)

The set of dispersion-achieving input distributions is defined as

P∗ ≜
{
P †
X ∈ P†:V (P †

X , PY |X) = Vϵ

}
. (3.40)

Any P †
X ∈ P† satisfies D(PY |X=x∥Q∗

Y ) = C for any x ∈ X with P †
X(x) > 0,

and D(PY |X=x∥Q∗
Y ) ≤ C for all x ∈ X [8, Th. 4.5.1]. Hence, the support of

any capacity-achieving input distribution is a subset of

X † = {x ∈ X :D(PY |X=x∥Q∗
Y ) = C}. (3.41)

The support of any dispersion-achieving input distribution is a subset of

X ∗ ≜
⋃

P ∗
X∈P∗

supp(P ∗
X) ⊆ X †. (3.42)

The quantities below are used to describe the input distribution that achieves
our lower bound S on the channel skewness S in (3.10). The gradient and the
Hessian of the mutual information I(PX , PY |X) with respect to PX are given
by [35]

∇I(PX , PY |X)x = D(PY |X=x∥PY )− 1 (3.43)

∇2I(PX , PY |X)x,x′ = −
∑
y∈Y

PY |X(y|x)PY |X(y|x′)
PY (y)

(3.44)

for (x, x′) ∈ X 2. The matrix −∇2I(P †
X , PY |X) is the same for all P †

X ∈ P†,
and is positive semidefinite. See [35, Sec. II-D and II-E] for other properties
of −∇2I(P †

X , PY |X). Define the |X |×|X | matrix J via its entries as

Jx,x′ ≜

−∇2I(P †
X , PY |X)x,x′ if x, x′ ∈ X †,

0 otherwise.
(3.45)
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Define the set of vectors

L ≜ {h ∈ R|X |:
∑
x∈X

hx = 0, hx′ = 0 for x′ /∈ X †,

hx′′ ≥ 0 for x′′ ∈ X † \ X ∗}. (3.46)

The following convex optimization problem arises in the optimization of the
input distribution achieving the lower bound S

sup
h∈L∩row(J)

(
g⊤h− 1

2
h⊤Jh

)
, (3.47)

where row(·) denotes the row space of a matrix. For the channels with X ∗ = X †

that are the focus in this paper, h that achieves (3.47) is given by [35, Lemma
1]

h = J̃g, (3.48)

where

J̃ = J+ − 1

1⊤J+1
(J+1)(J+1)⊤, (3.49)

J+ denotes the Moore-Penrose pseudo-inverse3 of J, and the optimal value of
the quadratic form in (3.47) is given by 1

2
g⊤J̃g. The following notation is used

in our results in Section 3.3.1.

v(PX)x ≜ ∇V (PX , PY |X)x, (3.50)

ṽx ≜ V (PY |X=x∥Q∗
Y ), (3.51)

v(PX)x ≜
∑
x′∈X

PX(x
′)
∂V (PY |X=x′∥PY )

∂PX(x)
(3.52)

for x ∈ X , and

A0(PX) ≜
1

8Vϵ
v(PX)

⊤J̃v(PX), (3.53)

A1(PX) ≜
1

8Vϵ
v(PX)

⊤J̃v(PX). (3.54)

See [35, Lemma 2] for properties of these quantities.
3Given that A = UΣV⊤ is the singular value decomposition of A, A+ ≜ VΣ−1U⊤.
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3.2.4 Singularity of a DMC

The following definition divides DMCs into two groups, for which the non-
Gaussianity behaves differently. An input distribution-channel pair (PX , PY |X)

is singular [33, Def. 1] if for all (x, x, y) ∈ X × X × Y such that PX ×
PY |X(x, y) > 0 and PX × PY |X(x, y) > 0, it holds that

PY |X(y|x) = PY |X(y|x). (3.55)

We define the singularity parameter [35, eq. (2.25)]

η(PX , PY |X) ≜ 1−
Vr(PX , PY |X)

Vu(PX , PY |X)
, (3.56)

which is a constant in [0, 1]. The pair (PX , PY |X) is singular if and only if
η(PX , PY |X) = 1 [54, Remark 1]. A channel PY |X is singular if and only if
η(P ∗

X , PY |X) = 1 for all P ∗
X ∈ P∗, and nonsingular otherwise. An example of a

singular channel is the binary erasure channel. Our focus in this paper is on
nonsingular channels.

For brevity, if the channel is clear from the context, we drop PY |X in the
notation for capacity, dispersion, skewness, and singularity parameter of the
channel.

3.3 Main Results

Our first result is third-order asymptotic expansions for the lower and upper
bounds on the non-Gaussianity of nonsingular channels in the SMD regime,
refining the expansion in (3.9). For symmetric channels, we further refine
these bounds up to the O

(
Q−1(ϵ)3√

n

)
term. We then derive tight lower and up-

per bounds for the non-Gaussianity of the Gaussian channel with a maximal
power constraint in the CLT regime, giving the exact expression for the chan-
nel skewness for that channel. Our last result is a fourth-order asymptotic
expansion (i.e., up to the O

(
Q−1(ϵ)3√

n

)
term) for the logarithm of the minimum

achievable type-II error probability of binary hypothesis tests between two
product distributions in the SMD regime.

3.3.1 Nonsingular Channels

Theorems 3.3.1 and 3.3.2 are our achievability and converse results, respec-
tively.
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Theorem 3.3.1. Suppose that ϵn is an SMD sequence (3.11) and that PY |X

is a nonsingular DMC with Vmin > 0, and X † = X ∗. It holds that

ζ(n, ϵn) ≥
1

2
log n+ SQ−1(ϵn)

2 +O

(
Q−1(ϵn)

3

√
n

)
+O(1), (3.57)

where

S ≜ max
P ∗
X∈P∗

(
Sku(P

∗
X)
√
Vϵn

6
+ A0(P

∗
X) +

1− η(P ∗
X)

2(1 + η(P ∗
X))

)
. (3.58)

Proof: The proof consists of two parts and extends the argument in [35] to
include ϵn that decreases to 0 or increases to 1 as permitted by (3.11). The
first part analyzes a particular relaxation [2, Th. 53] of the RCU bound [5,
Th. 16] for an arbitrary distribution PX ∈ P . This approach is used in the
CLT regime for a third-order analysis in [2, Th. 53] and a fourth-order analysis
in [35]; a slightly different relaxation of the RCU bound also comes up in the
LD regime [33]. To bound the probability P [ı(X;Y) ≤ τ ], we replace the
Edgeworth expansion in [35, eq. (5.30)], which gives the refined asymptotics
of the Berry-Esseen theorem, with its MD version from [28, Ch. 8, Th. 2].
Note that the Edgeworth expansion yields an additive remainder term O

(
1√
n

)
to the Gaussian term. This remainder is too large for ϵn ≤ 1√

n
in (3.11) since it

would dominate the Gaussian term in the Edgeworth expansion. Therefore, a
moderate deviation result that yields a multiplicative remainder term (1+o(1))

is desired. We apply the large deviations result in [32, Th. 3.4] to bound
the probability P

[
ı(X;Y) ≥ ı(X;Y) ≥ τ

]
that appears in the relaxed RCU

bound, where X and X denote the transmitted random codeword and an
independent codeword drawn from the same distribution, respectively. This
bound replaces the bounds in [35, eq. (7.25)-(7.27)] and refines the large
deviations bound [5, Lemma 47] used in [2, Th. 53]. We show an achievability
result as a function of I(PX), Vu(PX), and Sku(PX). If PX = P ∗

X ∈ P∗, the
resulting bound is (3.57) with A0(P

∗
X) replaced by zero. We then optimize

the bound over PX using the second-, first- and zeroth-order Taylor series
expansions around P ∗

X ∈ P∗ of I(PX), Vu(PX), and Sku(PX), respectively.
Interestingly, the right-hand side of (3.57) is achieved using

PX = P ∗
X − Q−1(ϵn)

2
√
nVϵn

J̃v(P ∗
X) ∈ P (3.59)

instead of a dispersion-achieving input distribution P ∗
X ∈ P∗ to generate

i.i.d. random codewords. Note that despite being in the neighborhood of
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a dispersion-achieving P ∗
X , PX in (3.59), itself, might not belong to P∗. See

Section 3.4.1 for the details of the proof.

In the second-order MD result in [42], Altuğ and Wagner apply the non-
asymptotic bound in [8, Cor. 2 on p. 140], which turns out to be insufficiently
sharp for the derivation of the third-order term.

Recall from (3.39) that Vϵn can be either Vmin or Vmax. We require the condition
Vmin > 0 in Theorem 3.3.1, which is equivalent to Vϵn > 0 for all sufficiently
large n,4 since the moderate (Theorem 2.4.1) and large (Theorems 2.5.2 and
2.5.3) deviations results apply only to the random variables with positive vari-
ance. In the CLT regime, [5, Th. 45 and 48] and [43, Prop. 9-10] derive bounds
on the non-Gaussianity for DMCs with Vϵn = 0. If Vϵn = 0, the scaling of the
non-Gaussianity changes according to whether the DMC is exotic [5, p. 2331],
which most DMCs do not satisfy, and whether ϵn is less than, equal to, or
greater than 1

2
. A summary of the non-Gaussianity terms under these cases

appears in [43, Fig. 1].

The condition X † = X ∗ is a technical one that yields a closed-form solution
(3.59) for the input distribution achieving the lower bound S. If that condition
is not satisfied, then the second term in (3.59) is replaced by the solution to
the convex optimization problem (3.47), and A0(P

∗
X) in (3.58) is replaced by

the optimal value of (3.47).

Theorem 3.3.2. Under the conditions of Theorem 3.3.1,

ζ(n, ϵn) ≤
1

2
log n+ SQ−1(ϵn)

2 +O

(
Q−1(ϵn)

3

√
n

)
+O(1), (3.60)

where

S ≜ max
P ∗
X∈P∗

(
Sku(P

∗
X)
√
Vϵn

6
+

1

2
+ A0(P

∗
X)− A1(P

∗
X)

)
. (3.61)

Proof: The proof of Theorem 3.3.2 combines the converse bound from [43,
Prop. 6], which relaxes the meta-converse bound [5, Th. 27], with a saddlepoint
result in [35, Lemma 14]. Combining these results and not deriving the O(1)
term in (3.60) yield a much simpler proof than that in [35]. While [35, proof
of Th. 4] relies on the asymptotic expansion of the β1−ϵ function, the use

4Note that Vmax > Vmin = 0 is not possible due to the uniqueness of the capacity-
achieving output distribution Q∗

Y .
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of [43, Prop. 6] allows us to bypass this part. After carefully choosing the
parameter δ in [43, Prop. 6], the problem reduces to a single-letter minimax
problem involving the quantitiesD(PY |X∥QY |PX) and V (PY |X∥QY |PX), where
the maximization is over PX ∈ P and the minimization is over QY ∈ Q.
Then, similar to the steps in [35, eq. (8.22)], for the maximization over PX ,
we separate the cases where ∥PX − P ∗

X∥∞≤ c0
Q−1(ϵn)√

n
or not, where P ∗

X ∈ P∗,
and c0 > 0 is a constant, and then apply [35, Lemmas 14 and 9-iii]. See
Section 3.4.2 for the details.

3.3.2 The Tightness of Theorems 3.3.1 and 3.3.2

If the channel satisfies |P∗|= 1, implying that Vϵn = Vmin = Vmax, A0(P
∗
X) =

A1(P
∗
X) = 0, and η(P ∗

X) = 0, then achievability (3.57) and converse (3.60)
bounds yield the channel skewness (3.10)

S =
Sku(P

∗
X)

√
Vmin

6
+

1

2
. (3.62)

Cover-Thomas symmetric channels [48, p. 190] satisfy all conditions;5 the BSC
is an example. Further, if ϵn satisfies Q−1(ϵn) = O(n1/6), then the O

(
Q−1(ϵn)3√

n

)
in (3.57) and (3.60) is dominated by the O(1) term, giving that for Cover-
Thomas symmetric channels,

ζ(n, ϵn) =
1

2
log n+ SkQ−1(ϵn)

2 +O(1). (3.63)

For the BSC with crossover probability 0.11, Fig. 3.1 compares asymptotic
expansions for the maximum achievable rate, log2 M

∗(n,ϵn)
n

, dropping o(·) and
O(·) terms except where noted otherwise. The curves plotted in Fig. 3.1 in-
clude Theorems 3.3.1 and 3.3.2 both with and without the leading term of
O
(

Q−1(ϵn)3√
n

)
computed, various other asymptotic expansions in the CLT and

LD regimes, and the non-asymptotic bounds from [5, Th. 33 and 35]. The
leading term of O

(
Q−1(ϵn)3√

n

)
in Theorems 3.3.1 and 3.3.2 is given in Theo-

rem 3.3.3, below. Among these asymptotic expansions, Theorems 3.3.1 and
3.3.2 ignoring the O(·) are the closest to the non-asymptotic bounds for most
(n, ϵ) pairs shown, which highlights the significance of the channel skewness
in obtaining accurate approximations to the finite blocklength coding rate in
the medium n, small ϵ regime.

5Channels that are (i) Cover-Thomas weakly symmetric, have (ii) |X |= |Y| and (iii) a
positive definite J satisfy the same conditions [35, Prop. 6].
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Figure 3.1: The expansion from Theorems 3.3.1 and 3.3.3, excluding the
O(·) terms, are shown for the BSC(0.11) with ϵ ∈ [10−10, 10−1] and n =
{100, 250, 500}. The upper and lower boundaries of the shaded region cor-
respond to the non-asymptotic bounds in [5, Th. 33 and 35]; the CLT approx-
imation that takes ζ(n, ϵ) = 1

2
log n, is from [2, Th. 53]; Moulin’s results are

(3.6)–(3.7); the saddlepoint approximation is from [39, Th. 1] and [40, Sec.
III-D].

In [38], Altuğ and Wagner show that in the LD regime, for Gallager-symmetric
channels, the prefactors in the lower and upper bounds on the exponentially
decaying error probability have the same order; that order depends on whether
the channel is singular or nonsingular. Extending the analysis in [35, Sec.
III-C-2)] to any Gallager-symmetric channel shows that Gallager-symmetric
channels satisfy A0(P

∗
X) = A1(P

∗
X) = 0, but η(P ∗

X) is not necessarily zero (see
[35, Sec. III-C-2)] for a counterexample), which means that (3.57) and (3.60)
are not tight up to the O(1) term for some Gallager-symmetric channels. The
findings in [38] suggest that Theorem 3.3.1 or Theorem 3.3.2 or both could be
improved for some channels. The main difference between the achievability
bounds in [33], [38] and ours is that [33] bounds the error probability as

ϵ ≤ P [D] + (M − 1)P
[
Dc ∩ {ı(X;Y) ≥ ı(X;Y)}

]
, (3.64)
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where

D ≜

{
log

P n
Y |X(Y|X)

Qn
Y (Y)

< τ

}
(3.65)

QY (y) ≜ c

(∑
x∈X

PX(x)PY |X(y|x)1/1+ρ

)1+ρ

, y ∈ Y . (3.66)

Here QY is the tilted output distribution, and ρ ∈ [0, 1], τ , and c are some
constants. Our achievability bound uses a special case of (3.66) with ρ = 0,
givingQY = PY . Whether the more general bound in (3.66) yields an improved
bound in the MD regime is a question for future work.

3.3.3 Refined Results for Symmetric Channels

Theorem 3.3.3 below, refines the achievability and converse results in Theorems
3.3.1–3.3.2 for Cover-Thomas symmetric channels.

Theorem 3.3.3. Let PY |X be a Cover-Thomas symmetric channel, V > 0,
and {ϵn}∞n=1 be an SMD sequence (3.11). Then,

ζ(n, ϵn) =
1

2
log n+ SQ−1(ϵn)

2 − 3(µ4 − 3V 2)V − 4µ2
3

72V 5/2

Q−1(ϵn)
3

√
n

+O

(
Q−1(ϵn)

4

n

)
+O (1) , (3.67)

where V and S are the ϵ-dispersion (3.39) and skewness (3.62) under the
uniform input distribution P ∗

X , and µk = E
[
(ı(X;Y )− C)k

]
is the k-th central

moment of the information density under X ∼ P ∗
X .

Proof: See Appendix B.5.

3.3.4 Gaussian Channel

The output of the memoryless Gaussian channel in response to the input X ∈
Rn is

Y = X+ Z, (3.68)

where the entries of Z are drawn i.i.d. from N (0, 1), independent of X. The
capacity and dispersion of the Gaussian channel are given by

C(P ) ≜
1

2
log(1 + P ) (3.69)

V (P ) ≜
P (P + 2)

2(1 + P )2
. (3.70)
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In addition to the average error probability constraint (3.35), an (n,M, ϵ, P )

code for the Gaussian channel with a maximal power constraint requires that
each codeword has power nP exactly, i.e.,

∥f(m)∥22 ≤ nP, ∀m ∈ [M ]. (3.71)

The maximum achievable message set size M∗(n, ϵ, P ) is defined similarly to
(3.36); the corresponding non-Gaussianity is defined as

ζ(n, ϵ, P ) ≜ logM∗(n, ϵ, P )− (nC(P )−
√
nV (P )Q−1(ϵ)). (3.72)

Theorem 3.3.4, below, gives lower and upper bounds on the non-Gaussianity
ζ(n, ϵ, P ) in the CLT regime.

Theorem 3.3.4. Fix ϵ ∈ (0, 1) and P > 0. Then,

ζ(n, ϵ, P ) ≥ 1

2
log n+ S(P )Q−1(ϵ)2 +B(P ) +O

(
1√
n

)
(3.73)

ζ(n, ϵ, P ) ≤ 1

2
log n+ S(P )Q−1(ϵ)2 +B(P ) +O

(
1√
n

)
, (3.74)

where

S(P ) =
6 + 6P + 4P 2 + P 3

6(1 + P )2(2 + P )
(3.75)

B(P ) =
9P + 14P 2 + 5P 3

6(1 + P )2(2 + P )
+

1

2
log

(
2πP

1 + P

)
(3.76)

B(P ) = B(P )− 1− C(P ) (3.77)

Proof: See Appendix B.6.

In Fig. 3.2, the skewness approximations in Theorem 3.3.4 are compared with
the non-asymptotic bounds and LD approximations from [6], and the CLT
approximation from [44]. For the shown (n, ϵ, P ) triples, our skewness ap-
proximation (3.74) is the closest to the non-asymptotic converse bound; our
skewness approximation (3.73) is the closest to the non-asymptotic achiev-
ability bound for ϵ ⪆ 10−4 while for ϵ ⪅ 10−4, Shannon’s LD approximation
becomes the closest.

Some remarks on Theorem 3.3.4 are given in order.

1. Although the bounds in Theorem 3.3.4 are only for the CLT regime but
not the MD regime, they yield the channel skewness of the Gaussian
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Figure 3.2: The expansions from Theorem 3.3.4, excluding the O(·) term, are
shown for the Gaussian channel with P = 10, n = 400, and ϵ ∈ [10−5, 10−3].
The upper and lower ends of the shaded region correspond to the non-
asymptotic bounds from [6, eq. (20)]. Shannon’s LD approximations are from
[6, eq. (4)-(5)]; the CLT approximation that takes ζ(n, ϵ, P ) = 1

2
log n is from

[44].

channel as S(P ) since the channel skewness (3.10) is defined as the co-
efficient of the Q−1(ϵ)2 term in the non-Gaussianity as ϵ→ 0, and since
the lower and upper bounds on the Q−1(ϵ)2 term in (3.73)–(3.74) match.

2. The lower bound is derived by analyzing Shannon’s random coding bound
[6, eq. 5] in the CLT regime, which draws codewords uniformly over the
sphere of radius

√
nP and employs maximum likelihood decoder. The

proof technique is slightly different than the bound (3.64) that we use
for DMCs; we replace the auxiliary event D in (3.65) with QY = PY by
the event

D = {⟨X,Y⟩ < τn}. (3.78)

In the prior tightest CLT approximation for the Gaussian channel, Tan
and Tomamichel [44] use (3.65) to show that ζ(n, ϵ, P ) ≥ 1

2
log n+O(1).

It turns out that changing (3.65) to (3.78) is crucial in deriving the tight
lower bound on the channel skewness for the Gaussian channel.
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3. The converse bound (3.74) analyzes Shannon’s sphere-packing bound
[6, eq. 15], which is quite different than our method in Theorem 3.3.2
for DMCs. Shannon’s sphere-packing converse turns out to be Polyan-
skiy’s meta-converse [5, Th. 28] applied with the optimal auxiliary out-
put distribution [55, Sec. VI-F], that is, after transforming the channel
output Y to Y/∥Y∥2, the uniform distribution over the n-dimensional
unit sphere achieves the minimax in [5, Th. 28], and Shannon’s converse
bound is equal to that minimax bound. The prior tightest CLT approx-
imation in the converse direction applies the meta-converse bound with
the auxiliary output distribution Q

(n)
Y = N (0, (1 + P )In), and derives

ζ(n, ϵ, P ) ≤ 1
2
log n+O(1). This technique turns out to be insufficiently

sharp to derive the sharp bound on the channel skewness.

4. In both of achievability and converse bounds, the quantile function of a
noncentral t-distribution is needed. Since the noncentral t-distribution is
not a sum of independent random variables, Theorem 2.4.1 below, which
is for the MD regime, does not apply.6 Instead, we use the Cornish-Fisher
expansion of that distribution, which is available in the CLT regime.
Based on the fact that the Cornish-Fisher expansions in general have
the same skewness term for the CLT and MD regimes (see Lemma 2.4.1,
below), we conjecture that the bounds in Theorem 3.3.4 hold in the MD
regime up to the S(P )Q−1(ϵ)2 term. The question that whether this is
true is left to future work.

5. The converse proof first considers the codes such that all codewords have
the same power, nP , and then uses the relationship [5, Lemma 39]

M(n, ϵ, P )eq ≤M(n, ϵ, P ) ≤M(n+ 1, ϵ, P )eq, (3.79)

where M(n, ϵ, P )eq is the maximum achievable message set size, where
all codewords have equal powers. The bound in (3.79) is also shown by
Shannon [6]. Let

B(P )eq ≜ B(P )− C(P ) (3.80)

B(P )eq ≜ B(P ), (3.81)

6The proof of Theorem 2.4.1 relies on the fact that all moments of the random variable
are finite; however, the n-th and higher order moments of the noncentral t-distribution with
n degrees of freedom are undefined. Therefore, one needs to find another method to derive
the asymptotic expansion of the cdf of the noncentral t-distribution in the MD regime.
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giving B(P )eq − B(P )eq = 1. For codes with equal power codewords,
Theorem 3.3.4 holds with B and B are replaced by the corresponding
constants in (3.80)–(3.81). This extends the observation of Moulin [35]
applicable to a class of symmetric DMCs with non-lattice information
density, to the Gaussian channel with equal power constraint; the gap
between the constant terms in the lower and upper bounds on the non-
Gaussianity is also 1 nat.

3.3.5 Refined Asymptotics of BHT

We introduce binary hypothesis tests, which play a fundamental role in many
coding theorems in the literature.

Let P and Q be two distributions on a common alphabet X . Consider the
binary hypothesis test

H0:X ∼ P (3.82)

H1:X ∼ Q. (3.83)

A randomized test between those two distributions is defined by a probability
transition kernel PW |X :X → {0, 1}, where 0 indicates that the test chooses
H0, i.e., P , and 1 indicates that the test chooses H1, i.e., Q. We define the
minimum achievable type-II error compatible with the type-I error bounded
by 1− α as [5, eq. (100)]

βα(P,Q) ≜ min
PW |X :P[W=0|H0]≥α

P [W = 0|H1] . (3.84)

The minimum in (3.84) is achieved by test given in the Neyman-Pearson
Lemma (e.g., [5, Lemma 57]), i.e.,

PW |X(0|x) =


1 if zx > γ

τ if zx = γ

0 if zx < γ

, (3.85)

where zx ≜ log dP
dQ

(x) is the log-likelihood ratio, dP
dQ

denotes the Radon-Nikodym
derivative, and τ and γ are chosen so that α = P [W = 0|H0].

Let P (n) =
∏n

i=1 Pi and Q(n) =
∏n

i=1Qi, where Pi and Qi are distributions
on a common alphabet X . Theorem 3.3.5, below, gives refined asymptotics of
βα(P

(n), Q(n)) in the SMD regime.
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Define Zi ≜ log dPi

dQi
(Xi), where Xi ∼ Pi for i ∈ [n], and

Di ≜ E [Zi] = D(Pi∥Qi) (3.86)

Vi ≜ Var [Zi] = V (Pi∥Qi) (3.87)

µk,i ≜ E
[
(Zi −Di)

k
]
, k ≥ 3 (3.88)

Ski ≜ Sk(Pi∥Qi) =
µ3,i

V
3/2
i

(3.89)

for i ∈ [n]. Define Zi ≜ log dPi

dQi
(X i), where X i ∼ Qi for i ∈ [n], and the

cumulant generating function of Zi

κi(s) ≜ logE
[
exp{sZi}

]
, i ∈ [n]. (3.90)

Let

D ≜
1

n

n∑
i=1

Di V ≜
1

n

n∑
i=1

Vi (3.91)

Sk ≜
1

n

n∑
i=1

Ski µk ≜
1

n

n∑
i=1

µk,i, k ≥ 3, (3.92)

κ(s) ≜
1

n

n∑
i=1

κi(s). (3.93)

Theorem 3.3.5. Let Pi, Qi be distributions on a common alphabet X , and let
Pi be absolutely continuous with respect to Qi for i ∈ [n]. Let {ϵn}∞n=1 be an
SMD sequence (3.11). Assume that

(A) Zi satisfies Cramér’s condition for i ∈ [n], i.e., E [exp{sZi}] < ∞ for
s ∈ R in the neighborhood of 0;

(B) V > 0;

(C) there exist positive constants β0, β1, and c > 1 such that β0 < |κ(s)|< β1

for all s ∈ D ≜ {s′ ∈ R: |s′|< c}, and that κ(s) is analytic in D;

(D) if the sum
∑n

i=1 Zi is non-lattice, then there exist a finite integer ℓ, a
sequence {wn}∞n=1 satisfying wn

logn
→ ∞, and non-overlapping index sets

I1, I2, . . . , Iwn ⊂ [n], each having size ℓ, such that∑
i∈Ij

Zi is non-lattice for j ∈ [wn]. (3.94)
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Then, it holds that

− log β1−ϵn(P
(n), Q(n))

= nD −
√
nV Q−1(ϵn) +

1

2
log n+

(
Sk

√
V

6
+

1

2

)
Q−1(ϵn)

2

− 3(µ4 − 3V 2)V − 4µ2
3

72V 5/2

Q−1(ϵn)
3

√
n

+O

(
Q−1(ϵn)

4

n

)
+O (1) . (3.95)

Proof: See Appendix B.4.

In Fig. 3.3 below, we compare the asymptotic expansion in Theorem 3.3.5 with
the true values from the Neyman-Pearson lemma, the CLT approximation from
[5], and the LD approximation from [48] for BHT between two i.i.d. Bernoulli
distributions. The first three terms on the right-hand side of (3.95) constitute
the CLT approximation of BHT, and are shown in [5, Lemma 58] in the CLT
regime. The coefficient of Q−1(ϵn)

2 in the fourth term of (3.95) is the skewness
for BHT. The fifth term in (3.95) gives the fourth-order characteristic of BHT.
A direct application of Theorem 3.3.5 to the meta-converse bound [5, Th. 27]
shows the converse part of Theorem 3.3.3. Together with the achievability part
of Theorem 3.3.3, this implies that the fourth-order characteristic of Cover-
Thomas channels and BHT are the same in the sense that C, V, S, and µ4 in
Theorem 3.3.3 are the same as D, V, Sk

√
V

6
+ 1

2
, and µ4 in (3.95) evaluated at

P (n) = P n
Y |X=x and Q(n) = (Q∗

Y )
n, where x ∈ X is arbitrary, and Q∗

Y is the
capacity-achieving output distribution.

In Theorem 3.3.5, conditions (A) and (B) are used to apply the MD result
Lemma 2.4.1 to the sum

∑n
i=1 Zi; conditions (C) and (D) are used to satisfy

the conditions of the large deviations results (Theorems 2.5.2 and 2.5.3) for
the random variable

∑n
i=1 Zi. Note that if

∑n
i=1 Zi is lattice, then each of the

random variables Zi, i ∈ [n] is lattice. In the non-lattice case, the sum
∑n

i=1 Zi

can be non-lattice even if one of more of the Zi is lattice. Condition (D) of
Theorem 3.3.5 requires that there are wn ≫ log n non-overlapping, non-lattice
partial sums of Zn, where each partial sum is a sum of ℓ random variables. A
condition similar to condition (D) with ℓ ≤ 2 is introduced in [35, Def. 15] for
the same purpose.
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Figure 3.3: The expansion from Theorem 3.3.5, excluding the O(·) terms, is
shown for Pi = Bern(0.6), Qi = Bern(0.2), i = 1, . . . , n, n ∈ {100, 250, 500}.
Our skewness approximation is compared with the true values obtained by the
Neyman-Pearson lemma, the CLT approximation from [5, Lemma 58], which
consists of the terms up to 1

2
log n, and the first-order LD approximation from

[48, Th. 11.7.1].

3.4 Proofs of Theorems 3.3.1 and 3.3.2

3.4.1 Proof of Theorem 3.3.1

The proof consists of two parts, and follows steps similar to the achievability
proof in [35]. First, we derive a refined asymptotic achievability bound for an
arbitrary input distribution PX ∈ P . Then, we optimize that achievability
bound over all PX ∈ P .

Lemma 3.4.1. Suppose that ϵn is an SMD sequence (3.11). Fix some PX ∈ P
such that (PX , PY |X) is a nonsingular pair and Vu(PX) > 0 for all n. It holds
that

logM∗(n, ϵn) ≥ nI(PX)−
√
nVu(PX)Q

−1(ϵn) +
1

2
log n

+Q−1(ϵn)
2

(
Sku(PX)

√
Vu(PX)

6
+

1− η(PX)

2(1 + η(PX))

)
+O

(
Q−1(ϵn)

3

√
n

)
+O(1). (3.96)

We require Vu(PX) > 0 in order to apply Theorems 2.4.1–2.5.3.
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Proof of Lemma 3.4.1: We generate M i.i.d. codeword according to the input
distribution P n

X , and employ a maximum likelihood decoder. Let W be the
transmitted message that is equiprobably distributed on [M ], and let Ŵ be
the decoder output. Define the random variables

Z ≜ ı(X;Y) (3.97)

Z ≜ ı(X;Y), (3.98)

where (X,X,Y) is distributed according to

PX,X,Y(x,x,y) = P n
X(x

n)P n
X(x)P

n
Y |X(y|x). (3.99)

The random variable Z corresponds to the information density obtained from a
sample from the random codebook, independent from both X and the received
vector Y.

Error analysis

Fix a threshold value τn

τn ≜ nI(PX)−
√
nVu(PX)tn, (3.100)

where tn will be specified in (3.107), below. Define the event

D ≜ {Z < τn}. (3.101)

We weaken the RCU bound from [5, Th. 16] and bound the average error
probability as

P
[
Ŵ ̸= W

]
≤ E

[
min

{
1,M − 1P

[
Z ≥ Z|X,Y

]}]
(3.102)

≤ P [D] + (M − 1)P
[
Z ≥ Z ≥ τn

]
. (3.103)

Define the function

h(x) ≜
1√
2π

exp

{
−Q

−1(x)2

2

}
(3.104)

and the sequences

hn ≜
1√

nVu(PX)
h(ϵn) (3.105)

ϵ̃n ≜ ϵn − hn. (3.106)
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Below, we show that the first and second terms in (3.103) are bounded by ϵ̃n
and hn, respectively. Here, hn is chosen so that logM is maximized up to the
O(Q−1(ϵn)

2) term given that the right-hand side of (3.103) is equal to ϵn.

We set tn in (3.100) as

P [D] = P

[
Z − nI(PX)√
nVu(PX)

≤ −tn

]
= ϵ̃n. (3.107)

Since the channel is a DMC, the random variable ı(X;Y ) has a finite support
and is bounded. Therefore, Cramér’s condition in Theorem 2.4.1 is satisfied.
Applying the MD result in Lemma 2.4.1 to (3.107), we get

tn = Q−1(ϵ̃n)−
Sku(PX)Q

−1(ϵ̃n)
2

6
√
n

+O

(
Q−1(ϵ̃n)

3

n

)
+O

(
1√
n

)
. (3.108)

We compute the first two derivatives of the Q−1(x) function as

(Q−1)′(x) =
1

Q′(Q−1(x))
=

−1

h(x)
(3.109)

(Q−1)′′(x) = −Q
−1(x)

h(x)2
. (3.110)

By taking the Taylor series expansion of Q−1(·) around ϵn and using (3.108)–
(3.110), we get

tn = Q−1(ϵn)−
Sku(PX)Q

−1(ϵn)
2

6
√
n

+O

(
Q−1(ϵn)

3

n

)
+O

(
1√
n

)
. (3.111)

Next, we bound the probability P
[
Z ≥ Z ≥ τn

]
. Define the random vector

U ≜ (U1, U2) = (Z,Z − Z). and the sequence

an = (an,1, an,2) =
(τn
n
, 0
)
. (3.112)

Applying Theorems 2.5.2 or 2.5.3 depending on whether ı(X;Y ) is non-lattice
or lattice, we get

P
[
Z ≥ Z ≥ τn

]
= P [U ≥ nan] (3.113)

≤ E

n
exp{−nΛ(an)}(1 + o(1)), (3.114)
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where

E =

ENL if ı(X;Y ) is non-lattice

EL if ı(X;Y ) is lattice.
(3.115)

Λ(an) = sup
sn∈R2

{⟨an, sn⟩ − κ(sn)} (3.116)

κ(sn) =
1

n
logE [exp{⟨sn,U⟩}] . (3.117)

Note that the functions κ(·) and Λ(·) do not depend on n since U is an i.i.d.
sum. The rate function Λ(an) has the Taylor series expansion

Λ(an) = I(PX) + (an,1 − I(PX)) +
(an,1 − I(PX))

2

(1 + η(PX))Vu(PX)

+O(|an,1 − I(PX)|3) (3.118)

= an,1 +
1

n

Q−1(ϵn)
2

1 + η(PX)
+O

(
Q−1(ϵn)

3

n3/2

)
+O

(
1

n

)
. (3.119)

In the application of Theorems 2.5.2 and 2.5.3, conditions (S), (NL), and (L)
are already satisfied since U1 and U2 have finite supports. The verification of
condition (ND) and the derivation of (3.119) appear in Appendix B.1.

We set

logM = nI(PX)−
√
nVu(PX)Q

−1(ϵn) +
1

2
log n

+Q−1(ϵn)
2

(
Sku(PX)

√
Vu(PX)

6
+

1− η(PX)

2(1 + η(PX))

)
+O

(
Q−1(ϵn)

3

√
n

)
+O(1). (3.120)

We put (3.100) into (3.111), and then (3.112) into (3.114) to bound the prob-
ability P

[
Z ≥ Z ≥ τn

]
. Then, from the expansion (3.119), we get

MP
[
Z ≥ Z ≥ τn

]
≤ hn, (3.121)

where hn is defined in (3.105). Combining (3.103), (3.107), and (3.121) com-
pletes the proof of Lemma 3.4.1.

To complete the proof of Theorem 3.3.1, it only remains to maximize the right-
hand side of (3.96) over PX ∈ P . The following arguments extend the proof
of [35, Lemma 9] to the MD regime. Define

G(PX) ≜ −
√
Vu(PX)Q

−1(ϵn). (3.122)
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Let g be a vector whose components approach zero with a rate O
(

Q−1(ϵn)√
n

)
satisfying g⊤\1 = 0, and f(g) be the right-hand side of (3.96) evaluated at
PX = P ∗

X + g ∈ P for some P ∗
X ∈ P∗. We apply the Taylor series expansion

to f(g) and get

f(g) ≜ nI(P ∗
X) + ng⊤∇I(P ∗

X) +
n

2
g⊤∇2I(P ∗

X)g

+O(n∥g∥3∞) +
√
nG(P ∗

X) +
√
ng⊤∇G(P ∗

X)

+
√
nO(∥g∥2∞) +

1

2
log n

+Q−1(ϵn)
2

(
Sku(P

∗
X)
√
Vu(P ∗

X)

6
+

1− η(P ∗
X)

2(1 + η(P ∗
X))

)
+O

(
Q−1(ϵn)

3

√
n

)
+O(1) (3.123)

= ng⊤∇I(P ∗
X) +

n

2
g⊤∇2I(P ∗

X)g

+
√
ng⊤∇G(P ∗

X) + b, (3.124)

where b is the right-hand side of (3.96), which is independent of g. From
(3.43) and [8, Th. 4.5.1], for every g such that P ∗

X + g is a valid probability
distribution and n large enough, it holds

f(g) ≤ sup
g′∈L

{
− n

2
g′⊤Jg′ +

√
ng′⊤∇G(P ∗

X) + b

}
, (3.125)

where J and L are defined in (3.45)–(3.46); and the right-hand side of (3.125) is
achieved by some g with gx = 0 for x /∈ X †. Since P ∗

X is dispersion-achieving,
g⊤∇G(P ∗

X) = 0 for any g in the kernel of J. Therefore, the problem (3.125)
reduces to

sup
g∈L

g⊤h− 1

2
g⊤Jg, (3.126)

where h is the orthogonal projection of ∇G(P ∗
X)√

n
onto the row space of J. Under

the assumption X † = X ∗, the supremum in (3.126) is achieved by

g∗ = J̃h, (3.127)

where J̃ is given in (3.49), and the value of supremum in (3.126) isA0(P
∗
X)Q

−1(ϵn)
2.

See Appendix B.2 for the details. Combining the values of b and the value of
(3.126) gives the maximum of (3.96) over all input distributions PX ∈ P and
completes the proof of Theorem 3.3.1.
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3.4.2 Proof of Theorem 3.3.2

The proof analyzes Tomamichel and Tan’s non-asymptotic converse bound in
[43, Prop. 6] using some techniques from [35, Lemmas 9 and 14].

The main difference between our proof and Moulin’s proof in [35] is that while
Moulin analyzes the meta-converse bound [5, Th. 27], we analyze a relaxation
of the meta-converse, given in Lemma 3.4.3, below. In general, the analy-
sis of the meta-converse is more involved since it requires to split the code
into subcodes according to the types of the codewords, and then to carefully
combine the bounds for each subcode. The advantage of Lemma 3.4.3 over
the meta-converse bound is that the optimization problem in Lemma 3.4.3
can be converted into a simpler single-letter minimax problem as we show in
Lemma 3.4.2, and the type-splitting step is avoided. A similar simplification
to a single-letter problem using the meta-converse is possible (i) under the
average error probability criterion for channels that satisfy certain symmetry
conditions [5, Th. 28] (e.g., Cover-Thomas symmetric channels satisfy these
symmetry conditions) and (ii) under the maximal error probability criterion
for arbitrary DMCs [5, Th. 31]. While both approaches yield the same upper
bound S on the skewness (in the CLT regime in Moulin’s work and in the MD
regime in our work), we note that Lemma 3.4.3 is not tight enough to obtain
the tightest O(1) term in the converse (3.60), which we do not focus on here.

We define the divergence spectrum [56, Ch. 4], [43], which gives a lower
bound on the minimum type-II error probability of the binary hypothesis test,
β1−ϵ(P,Q),

Dϵ
s(P∥Q) ≜ sup

{
γ ∈ R:P

[
log

P (X)

Q(X)
≤ γ

]
≤ ϵ

}
, (3.128)

where ϵ ∈ (0, 1), P,Q ∈ P , and X ∼ P .

The main tools to prove Theorem 3.3.2, presented below, are an asymptotic
expansion of the divergence spectrum in the MD regime, Lemma 3.4.2, and a
channel coding converse based on the divergence spectrum, Lemma 3.4.3.

Lemma 3.4.2. Fix some x ∈ X n and QY ∈ Q. Assume that {ϵn}∞n=1 is an
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ξϵn(P
(i)
X , P

(o)
X ) ≜ nD(PY |X∥P (o)

Y |P (i)
X )−

√
nV (PY |X∥P (o)

Y |P (i)
X )Q−1(ϵn)

+
Sk(PY |X∥P (o)

Y |P (i)
X )
√
V (PY |X∥P (o)

Y |P (i)
X )

6
Q−1(ϵn)

2 (3.134)

SMD sequence (3.11). It holds that

Dϵn
s (PY|X=x∥Qn

Y )

= nDx −
√
nVxQ

−1(ϵn) +
Sx

√
Vx

6
Q−1(ϵn)

2

+O

(
Q−1(ϵn)

3

√
n

)
+O(1), (3.129)

where

Dx ≜ D(PY |X∥QY |P̂x) (3.130)

Vx ≜ V (PY |X∥QY |P̂x) (3.131)

Sx ≜ S(PY |X∥QY |P̂x). (3.132)

Proof: See Appendix B.3.

Lemma 3.4.3 ([43, Prop. 6]). Let ϵn be any sequence in (0, 1) and PY |X be a
DMC. Then, for any δn ∈ (0, 1− ϵn), we have

logM∗(n, ϵn) ≤ min
Q

(n)
Y ∈Qn

max
x∈Xn

Dϵn+δn
s (PY|X=x∥Q(n)

Y )− log δn, (3.133)

where PY|X=x =
∏n

i=1 PY |X=xi
.

In the application of Lemma 3.4.3, we need to find the minimax ofDϵn
s (PY|X=x∥Qn

Y )

in (3.129). Towards this goal, we define the asymptotic expansion ξ:P×P → R
in (3.134) at the top of the next page, where P (o)

Y (y) =
∑

x∈X P
(o)
X (x)PY |X(y|x)

is the output distribution induced by P (o)
X . From Lemma 3.4.2 and Lemma 3.4.3,

we get

logM∗(n, ϵ) ≤ min
P

(o)
X ∈P

max
P

(i)
X ∈P

ξϵn+δn(P
(i)
X , P

(o)
X )− log δn

+O

(
Q−1(ϵn)

3

√
n

)
+O(1). (3.135)
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The minimax of the first term nD(PY |X∥P (o)
Y |P (i)

X ) in (3.134) satisfies the sad-
dlepoint property (e.g., [57, Cor. 4.2])

D(PY |X∥Q∗
Y |PX) ≤ D(PY |X∥Q∗

Y |P
†
X) ≤ D(PY |X∥QY |P †

X) (3.136)

for all PX ∈ P , QY ∈ Q, where P †
X ∈ P† is a capacity-achieving input dis-

tribution, and Q∗
Y is the capacity-achieving output distribution; the minimax

solution for the first term only is P (i)
X = P

(o)
X = P †

X ; and the saddlepoint
value is D(PY |X∥Q∗

Y |P †) = C. Since the higher-order terms in (3.134) are
dominated by the first term nD(PY |X∥P (o)

Y |P (i)
X ), and since the second term

in (3.134) is maximized at a dispersion-achieving P ∗
X among the capacity-

achieving P (i)
X , P

(o)
X ∈ P†, asymptotically, the minimax

min
P

(o)
X ∈P

max
P

(i)
X ∈P

ξϵn(P
(i)
X , P

(o)
X ) (3.137)

is achieved when both P (i)
X and P (o)

X are in the neighborhood of some dispersion-
achieving input distribution P ∗

X ∈ P∗. Therefore, we fix a P ∗
X ∈ P∗, and we

consider the problem

min
P

(o)
X :

∥∥∥P (o)
X −P ∗

X

∥∥∥
∞
≤ρn

max
P

(i)
X :

∥∥∥P (i)
X −P ∗

X

∥∥∥
∞
≤ρn

ξϵn(P
(i)
X , P

(o)
X ), (3.138)

where ρn → 0.

After taking the Taylor series expansion of ξϵn(P (i)
X , P

(o)
X ) around (P

(i)
X , P

(o)
X ) =

(P ∗
X , P

∗
X), Moulin derives the asymptotic saddlepoint solution to the problem

(3.138), which is given by [35, Lemma 14]

P
(i)
X

′
= P ∗

X − Q−1(ϵn)

2
√
nVϵn

J̃v(P ∗
X) (3.139)

P
(o)
X

′
= P ∗

X − Q−1(ϵn)

2
√
nVϵn

J̃ṽ, (3.140)

where v(P ∗
X) and ṽ are defined in (3.50)–(3.51), and the value of the saddle-

point is

ξϵn∗(P ∗
X) = nC −

√
nVϵnQ

−1(ϵn)

+Q−1(ϵn)
2

(
Sku(P

∗
X)
√
Vϵn

6
+ A0(P

∗
X)− A1(P

∗
X)

)
+O

(
Q−1(ϵn)

3

√
n

)
+O(1). (3.141)
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We then turn our attention to (3.137). We upper bound the minimax sep-
arately for P (i)

X close to P ∗
X and far away from P ∗

X . Define the set of input
distributions

A ≜ {PX ∈ P : ∥PX − P ∗
X∥∞ ≤ ρn for some P ∗

X ∈ P∗} , (3.142)

where

ρn ≜
c0Q

−1(ϵn)√
n

, (3.143)

and c0 > 0 is a constant to be determined later. We further bound (3.137) by
setting P (o)

X = P
(o)
X

′
and P

(o)
X = P ∗

X for some P ∗
X ∈ P∗ for the cases P (i)

X ∈ A
and P (i)

X ∈ Ac, respectively, and get

min
P

(o)
X ∈P

max
P

(i)
X ∈P

ξϵn(P
(i)
X , P

(o)
X )

≤ max

{
max
P

(i)
X ∈A

ξϵn(P
(i)
X , P

(o)
X

′
), max

P
(i)
X ∈Ac

ξϵn(P
(i)
X , P ∗

X)

}
. (3.144)

We bound the cases P (i)
X ∈ A and P (i)

X ∈ Ac, separately.

Considering each of the dispersion-achieving input distributions P ∗
X ∈ P∗ and

taking the Taylor series expansion of ξϵn(P (i)
X , P

(o)
X

′
) around P (i)

X = P
(i)
X

′
give

max
P

(i)
X ∈A

ξϵn(P
(i)
X , P

(o)
X

′
) = max

P ∗
X∈P∗

ξϵn∗(P ∗
X) +O

(
Q−1(ϵn)

3

√
n

)
. (3.145)

To bound max
P

(i)
X ∈Ac

ξϵn(P
(i)
X , P ∗

X), we modify [35, Lemma 9 (iii)] for an SMD se-

quence. The result in [35] considers constant Q−1(ϵ). In [35, eq. (4.7)], the
third term is given as −c1

√
nρn, where Q−1(ϵ) is absorbed in c1. If we consider

Q−1(ϵn) → ∞ and carry out the same steps as [35, Lemma 9 (iii)], we see that
the third term in our case becomes −c1

√
nρnQ

−1(ϵn), giving

max
P

(i)
X ∈Ac

ξϵn(P
(i)
X , P ∗

X)

≤ nC −
√
nVϵnQ

−1(ϵn)− c1
√
nρnQ

−1(ϵn)(1 + o(1)), (3.146)

where c1 > 0 is a constant depending only on the channel parameters. We set
the parameter c0 so that

−c0c1 < max
P ∗
X∈P∗

Sku(P
∗
X)
√
Vϵn

6
+ A0(P

∗
X)− A1(P

∗
X). (3.147)
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Substituting (3.141) and (3.145)–(3.146) into (3.144), we get

min
P

(o)
X ∈P

max
P

(i)
X ∈P

ξϵn(P
(i)
X , P

(o)
X ) ≤ nC −

√
nVϵnQ

−1(ϵn)

+Q−1(ϵn)
2 max
P ∗
X∈P∗

(
Sku(P

∗
X)
√
Vϵn

6
+ A0(P

∗
X)− A1(P

∗
X)

)
+O

(
Q−1(ϵn)

3

√
n

)
+O(1). (3.148)

We set the parameter δn in (3.133) so that

log δn = −Q
−1(ϵn)

2

2
− 1

2
log n. (3.149)

Finally, we put (3.148) in (3.135) with ϵn replaced by ϵn + δn. Expanding the
Taylor series of Q−1(·) around ϵn completes the proof of Theorem 3.3.2.

3.5 Summary

This chapter investigates the third-order characteristic of nonsingular DM-
PPCs, the Gaussian channel with maximal power constraint, and the binary
hypothesis tests, defining a new term, the channel skewness for this purpose.
Since the channel skewness is multiplied by Q−1(ϵ)2 in the asymptotic expan-
sion of logarithm of the maximum achievable message set size, including the
channel skewness term in the approximation is particularly important to accu-
rately approximate the non-asymptotic bounds in the small ϵ regime. In most
of the chapter except the Gaussian channel extension, we derive tight bounds
on the non-Gaussianity (3.4) in the MD regime. We show that Moulin’s CLT
approximations in (3.6)–(3.7) up to the skewness terms remain valid when the
constant ϵ is replaced by an MD sequence ϵn. For the BSC, for most pairs (n, ϵ)
pairs satisfying ϵ ∈ [10−10, 10−1], n ∈ [100, 500], we observe that our skewness
approximation from Theorems 3.3.1-3.3.2 is the most accurate among the CLT
approximation from [5] and the state-of-the-art LD approximations from [39],
[40]. While the prefactor in those LD approximations requires to solve a differ-
ent optimization problem for each (n, ϵ) pair, and arguably is less informative
on the channel behavior, our skewness approximations are easily computable,
and the skewness term informs us about the accuracy of the CLT approxima-
tion for a particular channel. By analyzing Shannon’s bounds [6] in the CLT
regime, we exactly compute the channel skewness for the Gaussian channel
with maximal power constraint, and the gap between our lower and upper
bounds on logM∗(n, ϵ, P ) is only 1+C(P ) nats. We leave the MD analysis for
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the Gaussian channel to future work due to lack of tools to bound the prob-
abilities of non-i.i.d. random variables. Our techniques also apply to BHT in
the MD regime, where the third-order term in the type-II error probability
exponent has a similar characteristic as the channel skewness, i.e., the relative
entropy skewness plays the role of information skewness in channel coding.
Using our new MD approximations to BHT, many information-theoretic re-
sults that rely on BHT asymptotics such as [50], [52], [53] can be extended to
the MD regime.



61

C h a p t e r 4

VARIABLE-LENGTH SPARSE FEEDBACK CODES FOR
PPCS

4.1 Introduction

Although feedback does not increase the capacity of memoryless, point-to-
point channels (PPCs) [12], feedback can simplify coding schemes and im-
prove the speed of approach to capacity with coding delay. Examples that
demonstrate this effect include Horstein’s scheme for the binary symmetric
channel (BSC) [13] and Schalkwijk and Kailath’s scheme for the Gaussian
channel [14], both of which leverage full channel feedback to simplify coding
in the fixed-length regime. Wagner et al. [15] show that feedback improves the
second-order term in the achievable rate as a function of blocklength for fixed-
rate coding over discrete, memoryless, point-to-point channels (DM-PPCs)
that have multiple capacity-achieving input distributions giving distinct dis-
persions.

The benefits of feedback increase for codes with multiple decoding times (called
variable-length or rateless codes). In [16], Burnashev shows that feedback sig-
nificantly improves the optimal error exponent of variable-length codes for
DM-PPCs. In [18], Polyanskiy et al. extend the work of Burnashev to
the finite-length regime with non-vanishing error probabilities, introducing
variable-length feedback (VLF) codes, and deriving achievability and con-
verse bounds on their performance. Tchamkerten and Telatar [58] show that
Burnahsev’s optimal error exponent is achieved for a family of BSCs and Z

channels, where the cross-over probability of the channel is unknown. For the
BSC, Naghshvar et al. [59] propose a VLF coding scheme with a novel encoder
called the small-enough-difference (SED) encoder and derive a non-asymptotic
achievability bound by analyzing their scheme. Their scheme is an alternative
to Burnashev’s scheme to achieve the optimal error exponent. Yang et al. [60]
extend the SED encoder to the binary asymmetric channel, of which the BSC
is a special case, and derive refined non-asymptotic achievability bounds for
the binary asymmetric channel. Guo and Kostina [61] propose an instanta-
neous SED code for a source whose symbols progressively arrive at the encoder
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in real time.

The feedback in VLF codes can be limited in two dimensions: amount and
frequency. Here, the amount refers to how much feedback is sent from the
receiver at each time feedback is available; the frequency refers to how many
times feedback is available throughout the communication epoch. The extreme
cases in the frequency are no feedback and feedback after every channel use.
The extreme cases in the amount are full feedback and stop feedback. In full
feedback, at time ni, the receiver sends all symbols received until that time,
Y ni , which can be used by the transmitter to encode the ni+1−th symbol.
In stop feedback, the receiver sends a single bit of feedback to inform the
transmitter whether to stop transmitting. Unlike full-feedback codes, variable-
length stop-feedback (VLSF) codes employ codewords that are fixed when the
code is designed; that is, feedback affects how much of a codeword is sent
but does not affect the codeword’s value. VLSF codes with feedback after
every channel use are defined by Polyanskiy et al. in [18]. The result in [18,
Th. 2] shows that variable-length coding improves the first-order term in the
asymptotic expansion of the maximum achievable message set size from NC

to NC
1−ϵ

, where C is the capacity of the DM-PPC, N is the average decoding
time, and ϵ is the average error probability. The second-order term achievable
for VLF codes is O(logN), which means that VLF codes have zero dispersion
and that the convergence to the capacity is much faster than that achieved by
the fixed-length codes [5], [62]. In [63], Altuğ et al. modify the VLSF coding
paradigm by replacing the average decoding time constraint with a constraint
on the probability that the decoding time exceeds a target value; the benefit in
the first-order term does not appear under this probabilistic delay constraint,
and the dispersion is no longer zero. A VLSF scenario where the feedback is
noisy and the largest available decoding time is finite is studied in [64]. For
VLSF codes, Forney [17] shows an achievable error exponent that is strictly
better than that of fixed-length, no-feedback codes and is strictly worse than
Burnashev’s error exponent for variable-length full-feedback codes. Ginzach
et al. [65] derive the exact error exponent of VLSF codes for the BSC.

Decoding of VLSF codes can be viewed through the lens of a number of se-
quential hypothesis tests (SHTs) equal to the number of possible messages.
Each SHT, at increasingly larger stopping times, compares a hypothesis H0

corresponding to a particular transmitted message to the hypothesis H1 cor-
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responding to the marginal distribution of the channel output. In [66], Berlin
et al. derive a bound on the average stopping time of an SHT. They then use
this bound to derive a non-asymptotic converse bound for VLF codes. This
result is an alternative proof for the converse of Burnashev’s error exponent
[16]. Polyanskiy et al. [18] point out that the exact asymptotics of Wald’s
SHT framework in [67] can be used to improve the converse bound on the
performance of VLF codes.

In the scenario where a decoding decision can be made at any time, Wald’s
sequential probability ratio test (SPRT) achieves the minimum average stop-
ping time subject to type-I and type-II error probability constraints [67]. The
SPRT takes new samples as long as the log-likelihood ratio stays between two
thresholds. By analyzing SPRTs, Li and Tan [68] derive the second-order term
in the achievable type-I and type-II error exponents, where both error proba-
bilities decay exponentially with the average stopping time N . Pan et al. [69]
study the second-order asymptotics of a composite SHT under a probabilistic
constraint on the stopping time. Lalitha and Javidi [70] study the achiev-
able error exponents in a scenario with only 2 available stopping times and a
probabilistic stopping time constraint.

We use the number of potential decoding times, L, to classify the feedback
frequency and assume that feedback is sent only at those potential decoding
times. While high rates of feedback are impractical for many applications —
especially wireless applications on half-duplex devices — most prior work on
VLSF codes [18], [63], [71]–[75] considers the densest feedback possible, i.e.,
L = ∞ and any decoding time ni = i−1, i ∈ Z+ is available for decoding. No-
table exceptions are [76] where Kim et al. choose the decoding time from the
set {d, 2d, . . . , Ld} for some d ∈ Z+ and L <∞ and [77] where Vakilinia et al.
introduce a sequential differential optimization (SDO) algorithm to optimize
the choices of the L potential decoding times n1, . . . , nL, approximating the
distribution of the random decoding time τ by a Gaussian random variable.
They apply the SDO algorithm to non-binary low-density parity-check codes
over binary-input, additive white Gaussian channels; the mean and variance
of τ are determined through simulation. Extensions of [77] include [78], which
uses a new Viterbi algorithm at the decoder, and [79], which extends [77] to
account for the feedback rate and applies the SDO algorithm to random lin-
ear codes over the binary erasure channel. Lalitha and Javidi [80] consider
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variable-length full-feedback codes with delay constraints, where they show
that Burnashev’s optimal error exponent can be achieved by only L = 3 de-
coding times by truncating the Yamamoto-Itoh scheme [81]. Building upon an
earlier version of the present chapter [82], Yang et al. [36] construct an integer
program to minimize the upper bound on the average blocklength subject to
constraints on the average error probability and the minimum gap between
consecutive decoding times. By employing a combination of the Edgeworth
expansion [25, Sec. XVI.4] and the Petrov expansion (Theorem 2.4.1), that
paper develops an approximation to the cumulative distribution function of
the information density random variable ı(Xn;Y n); the numerical compari-
son of their approximation and the empirical cumulant distribution function
shows that the approximation is tight even for small values of n. Their analy-
sis uses this tight approximation to numerically evaluate the non-asymptotic
achievability bound (Theorem 4.3.2, below) for the BSC, binary erasure chan-
nel, and binary-input Gaussian PPC for all L ≤ 32. The resulting numerical
results show performance that closely approaches Polyanskiy’s VLSF achiev-
ability bound [18] with a relatively small L. For the binary erasure channel,
[36] also proposes a new zero-error code that employs systematic transmission
followed by random linear fountain coding; the proposed code outperforms
Polyanskiy’s achievability bound.

Like [77]–[79], this chapter studies VLSF codes under a finite constraint L
on the number of decoding times. While [77]–[79] focus on practical coding
and performance, our goal is new achievability bounds on the asymptotic rate
achievable by VLSF codes between L = 1 (the fixed-length regime analyzed
in [5], [44]) and L = ∞ (the classical variable-length regime defined in [18,
Def. 1], where all decoding times 0, 1, 2, . . . are available). In this chap-
ter, we study VLSF codes over DM-PPCs. In our analysis, we consider the
asymptotic regime where the number of decoding times L is fixed while the
average decoding time N grows to infinity, i.e., L = O(1) with respect to N .
We also extend our PPC result to the Gaussian PPC, where a maximal power
constraint is employed for each of L decoding times.

For the PPC, the feedback rate of our code is ℓ
nℓ

if the decoding time is nℓ. In
contrast, VLSF codes like in [17], [18] use feedback rate 1 bit per channel use.
Throughout the chapter, we employ the average error and average decoding
time criteria. Our main result shows that for VLSF codes with L = O(1) ≥ 2
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decoding times over a DM-PPC, message set size M satisfying

logM ≈ NC

1− ϵ
−
√
N log(L−1)(N)

V

1− ϵ
(4.1)

is achievable. Here log(L)(·) denotes the L-fold nested logarithm, N is the
average decoding time, and C and V are the capacity and dispersion of the DM-
PPC, respectively. The speed of convergence to C

1−ϵ
depends on L. It is slower

than the convergence to C in the fixed-length scenario, which has second-order
term O(

√
N) [5]. The L = 2 case in (4.1) recovers the rate of convergence for

the variable-length scenario without feedback, which has second-order term
O(

√
N logN) [18, Proof of Th. 1]; that rate is achieved with n1 = 0. We use the

SDO algorithm introduced in [77] (see Appendix C.7) to optimize the decoding
times n1, . . . , nL and achieve (4.1). Despite the order-wise dependence on L,
(4.1) grows so slowly with L that it suggests little benefit to choosing a large L.
For example, when L = 4,

√
N log(L−1)(N) behaves very similarly to O(

√
N)

for practical values of N (e.g., N ∈ [103, 105]). Notice, however, that the
given achievability result provides a lower bound on the benefit of increasing
L; bounding the benefit from above requires a converse result. The numerical
results in [36] support our conclusion from the asymptotic achievability bound
(4.1) that indicates diminishing performance increment as L increases.

Linking the error probability of any given VLSF code to that of an SHT, in
this chapter, we extend the meta-converse bound [5, Th. 27], which applies to
fixed-length, no-feedback codes, to VLSF codes. Analyzing the new bound,
we prove a converse for VLSF codes with infinitely many uniformly-spaced
decoding times. The converse shows that in order to achieve (4.1) with evenly

spaced decoding times, one needs at least L = Ω

(√
N

log(L−1)(N)

)
decoding

times. In contrast, our optimized codes achieve (4.1) with a finite L that does
not grow with the average decoding time N .

Sections 4.2–4.4 introduce variable-length sparse stop-feedback codes for the
DM-PPC and Gaussian PPC, respectively, and present our main theorems for
those channel models; Section 3.5 concludes the chapter. The proofs appear
in the Chapter C.

4.2 VLSF Codes with L Decoding Times

Recall the capacity and dispersion from (1.4) and (1.7)

C = max
PX∈P

I(X;Y ) (4.2)
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V = min
PX∈P:I(X;Y )=C

Var [ı(X;Y )] . (4.3)

We consider VLSF codes with a finite number of potential decoding times n1 <

n2 < · · · < nL over a DM-PPC. The receiver chooses to end the transmission
at the first time nℓ ∈ {n1, . . . , nL} that it is ready to decode. The transmitter
learns of the receiver’s decision via a single bit of feedback at each of times
n1, . . . , nℓ. Feedback bit “0” at time ni means that the receiver is not yet
ready to decode, and transmission should continue; feedback bit “1” means
that the receiver can decode at time ni, which signals the transmitter to stop.
We employ average decoding time and average error probability constraints.
Definition 4.2.1, below, formalizes our code description.

Definition 4.2.1. Fix ϵ ∈ (0, 1), positive integers L and M , and a positive
scalar N . An (N,L,M, ϵ) VLSF code for the DM-PPC comprises

1. integer-valued decoding times 0 ≤ n1 < . . . < nL,

2. a finite alphabet U and a probability distribution PU on U defining a com-
mon randomness random variable U that is revealed to both the trans-
mitter and the receiver before the start of the transmission,1

3. an encoding function fn:U × [M ] → X , for each n = 1, . . . , nL, that
assigns a codeword

f(u,m)nL ≜ (f1(u,m), . . . , fnL
(u,m)) (4.4)

to each message m ∈ [M ] and common randomness instance u ∈ U ,

4. a non-negative integer-valued random stopping time τ ∈ {n1, . . . , nL} for
the filtration generated by {U, Y ni}Li=1 that satisfies an average decoding
time constraint

E [τ ] ≤ N, (4.5)

5. and a decoding function gnℓ
:U ×Ynℓ → [M ]∪{e} for each ℓ ∈ [L] (where

e is the erasure symbol used to indicate that the receiver is not ready to
decode), satisfying an average error probability constraint

P [gτ (U, Y
τ ) ̸= W ] ≤ ϵ, (4.6)

1The realization u of U specifies the codebook.
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where the message W is equiprobably distributed on the set [M ], and
Xτ = f(U,W )τ .

As in [18], [73], we here need common randomness because the traditional
random-coding argument does not prove the existence of a single (determin-
istic) code that simultaneously satisfies two conditions on the code (4.5) and
(4.6). Therefore, randomized codes are necessary for our achievability argu-
ment; here, |U|≤ 2 suffices (see Appendix E.4).

We define the maximum achievable message set size M∗(N,L, ϵ) with L de-
coding times, average decoding time N , and average error probability ϵ as

M∗(N,L, ϵ) ≜ max{M : an (N,L,M, ϵ)

VLSF code exists}. (4.7)

The maximum achievable message set size for VLSF codes with L decoding
times n1, . . . , nL that are restricted to belong to a subset N ⊆ Z+ is denoted
by M∗(N,L, ϵ,N ).

4.2.1 Related Work

The following discussion summarizes prior asymptotic expansions of the max-
imum achievable message set size for the DM-PPC.

a) M∗(N, 1, ϵ): For L = 1 and ϵ ∈ (0, 1/2), Polyanskiy et al. [5, Th. 49] show
that

logM∗(N, 1, ϵ) = NC −
√
NV Q−1(ϵ) +O(logN). (4.8)

For ϵ ∈ [1/2, 1), the dispersion V in (4.3) is replaced by the maximum dis-
persion Vmax ≜ max

PX :ı(X;Y )=C
V (X;Y ). The O(logN) term is lower bounded

by O(1) and upper bounded by 1
2
logN+O(1). For nonsingular DM-PPCs,

i.e., the channels that satisfy E [Var [ı(X;Y )|Y ]] > 0 for the distributions
that achieve the capacity C and the dispersion V , the O(logN) term is
equal to 1

2
logN + O(1) [43]. Moulin [35] derives lower and upper bounds

on the O(1) term in the asymptotic expansion when the channel is nonsin-
gular with non-lattice information density.

b) M∗(N,∞, ϵ): For VLSF codes with L = ∞ and ni = i− 1, i ∈ Z+, Polyan-
skiy et al. [18, Th. 2] show that for ϵ ∈ (0, 1),

logM∗(N,∞, ϵ) ≥ NC

1− ϵ
− logN +O(1) (4.9)
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logM∗(N,∞, ϵ) ≤ NC

1− ϵ
+
hb(ϵ)

1− ϵ
, (4.10)

where hb(ϵ) ≜ −ϵ log ϵ − (1 − ϵ) log(1 − ϵ) is the binary entropy function
(in nats). The bounds in (4.9)–(4.10) indicate that the ϵ-capacity (the
first-order achievable term) is

lim inf
N→∞

1

N
logM∗(N,∞, ϵ) =

C

1− ϵ
. (4.11)

The achievable dispersion term is zero, i.e., the second-order term in the
fundamental limit in (4.9)–(4.10) is o(

√
N).

4.3 Achievability Bounds for DM-PPCs

Our main result is a second-order achievability bound for VLSF codes with
L = O(1) decoding times on the DM-PPC.

Theorem 4.3.1. Fix an integer L = O(1) ≥ 2 and real numbers N > 0 and
ϵ ∈ (0, 1). For the DM-PPC with V > 0, the maximum message set size (4.7)
achievable by (N,L,M, ϵ) VLSF codes satisfies

logM∗ (N,L, ϵ) ≥ NC

1− ϵ
−
√
N log(L−1)(N)

V

1− ϵ

+O

(√
N

log(L−1)(N)

)
. (4.12)

The decoding times {n1, . . . , nL} that achieve (4.12) satisfy the equations

logM = nℓC −
√
nℓ log(L−ℓ+1)(nℓ)V − log nℓ +O(1) (4.13)

for ℓ ∈ {2, . . . , L}, and n1 = 0.

Proof sketch: Polyanskiy et al. [5] interpret the information-density thresh-
old test for a fixed-length code as a collection of hypothesis tests aimed at
determining whether the channel output is (H0) or is not (H1) dependent on
a given codeword. In our coding scheme, we use SHTs in a similar way. The
coding scheme in the proof of Theorem 4.3.1 is inspired by that in [18] for
DM-PPCs with L = ∞. A similar coding scheme is used in the achievability
bounds in [71], [72]. The strategy is as follows.

The VLSF decoder at each time n1, . . . , nL runs M SHTs between a hypothesis
H0 that the channel output results from transmission of the m-th codeword,
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m ∈ [M ], and the hypothesis H1 that the channel output was drawn from
the unconditional channel output distribution. Transmission stops at the first
time ni that H0 is decided for some message m or the first time ni that H1

is decided for all m. The former marks a decoding event for message m. The
latter is a failure to decode since deciding H1 for some m′ indicates a decision
that m′ cannot explain the observed channel output. When decoding fails, an
error is declared. Transmission continues as long as one or more SHTs has not
decided either H0 or H1. For simplicity of the analysis, we employ sub-optimal
SHTs. Namely, we set the smallest decoding time to n1 = 0. At time n1, with
probability p, all M SHTs simultaneously decide H1; with probability 1 − p,
all M SHTs pass n1 without deciding. An information density threshold test
is employed for the remaining L− 1 decoding times {n2, . . . , nL}.

Let ϵ′N and N ′ be the average error probability and average decoding time
conditioned on the event that the transmission has not stopped at time n1.
We set the parameters

ϵ′N =
1√

N ′ logN ′ (4.14)

p =
ϵ− ϵ′N
1− ϵ′N

= ϵ−O(ϵ′N). (4.15)

The error probability of the resulting code is bounded by ϵ, and the average
decoding time is

N = N ′(1− p) = N ′(1− ϵ) +O

(√
N ′

logN ′

)
. (4.16)

The choice of decoding times n2, . . . , nL chosen in (4.13) achieves the maxi-
mum codebook size M among all possible choices while guaranteeing the error
probability ϵ′N in the non-asymptotic achievability bound (Theorem 4.3.2, be-
low). Since the probabilities in (4.17)–(4.18), below, decay sub-exponentially
to zero (e.g., the threshold γ and nL are set so that P [ı(XnL ;Y nL) < γ] =

ϵ′N(1− o(1))), we use a moderate deviations result from [28, Ch. 8] to bound
those probabilities. We apply Karush-Kuhn-Tucker conditions to show that
the decoding times in (4.13) yield a logM that is maximal achievable by the

non-asymptotic bound up to terms of order O
(√

N
log(L−1)(N)

)
. The details of

the proof appear in Appendix C.3. The achievability bounds for L ∈ [4] and
the converse bound (4.10) are illustrated for the BSC in Fig. 4.1.
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Figure 4.1: The achievability (Theorem 4.3.1) and converse (4.10) bounds for
the maximum achievable rate logM∗(N,L,ϵ)

N
are shown for the BSC with crossover

probability 0.11, L ≤ 4, and ϵ = 10−3. The O(·) term in (4.12) is ignored.
The curve that L = ∞ is Polyanskiy et al.’s achievability bound in (4.10).

Replacing that sub-optimal SHT in the proof sketch with the optimal SHT
would improve the performance achieved on the right-hand side of (4.12) only
by O(1).

Since any (N,L,M, ϵ) VLSF code is also an (N,∞,M, ϵ) VLSF code, (4.10)
provides an upper bound on logM∗(N,L, ϵ) for an arbitrary L. The order
of the second-order term, −

√
N log(L−1)(N) V

1−ϵ
, depends on the number of

decoding times L. The larger L, the faster the achievable rate converges to
the capacity. However, the dependence on L is weak since log(L−1)(N) grows
very slowly in N even if L is small. For example, for L = 4 and N = 1000,
log(L−1)(N) ≈ 0.659. For a finite L, this bound falls short of the − logN

achievability bound in (4.10) achievable with L = ∞. Whether the second-
order term achieved in Theorem 4.3.1 is tight remains an open problem.

Theorem 4.3.1 follows from an application of the non-asymptotic achievability
bound in Theorem 4.3.2, below.

Theorem 4.3.2. Fix a constant γ, decoding times n1 < · · · < nL, and a
positive integer M . For any positive number N and ϵ ∈ (0, 1), there exists an
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(N,L,M, ϵ) VLSF code for the DM-PPC (X , PY |X ,Y) with

ϵ ≤ P [ı(XnL ;Y nL) < γ] + (M − 1) exp{−γ}, (4.17)

N ≤ n1 +
L−1∑
ℓ=1

(nℓ+1 − nℓ)P [ı(Xnℓ ;Y nℓ) < γ] , (4.18)

where PXnL is a product of distributions of L sub-vectors of lengths nj − nj−1,
j ∈ [L], i.e.,

PXnL (xnL) =
L∏

j=1

PXnj−1+1:nj (x
nj−1+1:nj), (4.19)

where n0 = 0.

Proof sketch: Theorem 4.3.2 analyzes the error probability and the average
decoding time of the sub-optimal SHT-based decoder that is used at times
n2, . . . , nL in the proof sketch of Theorem 4.3.1. It employs a fixed informa-
tion density threshold rule, and extends the achievability bound in [18, Th. 3]
that considers L = ∞ to the scenario where only a finite number of decoding
times is allowed. The bound on the average decoding time (4.18) is obtained
by expressing the bound on the average decoding time in [18, eq. (27)] using
the fact that the stopping time τ is in {n1, . . . , nL}. When we compare The-
orem 4.3.2 with [18, Th. 3], we see that the error probability bound in (4.17)
has an extra term P [ı(XnL ;Y nL) < γ]. This term appears since transmission
always stops at or before time nL. See Appendix C.2 for the proof details.

Theorem 4.3.2 is related to [76, Lemma 1], which similarly treats L < ∞ but
requires nℓ+1 − nℓ = d for some constant d ≥ 1, and [78, Cor. 2], where the
transmitter retransmits the message if decoding attempts at times n1, . . . , nL

are unsuccessful.

The following theorem gives achievability and converse bounds for VLSF codes
with decoding times uniformly spaced as {0, dN , 2dN , . . . }.

Theorem 4.3.3. Fix ϵ ∈ (0, 1). Let dN = o(N), and let PY |X be any DM-
PPC. Then, it holds that

logM∗(N,∞, ϵ, dNZ+) ≥
NC

1− ϵ
− dNC

2
− logN + o(dN). (4.20)

If the DM-PPC PY |X is a Cover-Thomas symmetric DM-PPC [48, p. 190]
i.e., the rows (and resp. the columns) of the transition probability matrix are



72

permutations of each other, then

logM∗(N,∞, ϵ, dNZ+) ≤
NC

1− ϵ
− dNC

2
+ o(dN). (4.21)

Proof: The achievability bound (4.20) employs the sub-optimal SHT in the
proof sketch of Theorem 4.3.1. To prove the converse in (4.21), we first derive
in Theorem C.4.1, in Appendix C.4 below, the meta-converse bound for VLSF
codes. The meta-converse bound in Theorem C.4.1 bounds the error proba-
bility of any given VLSF code from below by the minimum achievable type-II
error probability of the corresponding SHT; it is an extension and a tightening
of Polyanskiy et al.’s converse in (4.10) since for dN = 1, weakening it by ap-
plying a loose bound on the performance of SHTs from [83, Th. 3.2.2] recovers
(4.10). The Cover-Thomas symmetry assumption allows us to circumvent the
maximization of that minimum type-II error probability over codes since the
log-likelihood ratio log

PY |X(Y |x)
PY (Y )

is the same regardless of the channel input x
for that channel class. In both bounds in (4.20)–(4.21), we use the expan-
sions for the average stopping time and the type-II error probability from [83,
Ch. 2-3]. See Appendix C.4 for details.

Theorem 4.3.3 establishes that when dN
logN

→ ∞, the second-order term of the
logarithm of maximum achievable message set size among VLSF codes with
uniformly spaced decoding times is −dNC

2
. Theorem 4.3.3 implies that in order

to achieve the same performance as achieved in Theorem 4.3.1 (4.12) with

L decoding times, one needs on average Ω

(√
N

log(L−1)(N)

)
uniformly spaced

stop-feedback instances, suggesting that the optimization of available decoding
times considered in Theorem 4.3.1 is crucial for attaining the second-order term
in (4.12).

The case where dN = Ω(N) is not as interesting as dN = o(N) since analyzing
Theorem C.4.1 using Chernoff bound would yield that the probability that
the optimal SHT makes a decision at times other than n1 = 0 and N

1−ϵ
(1 +

o(1)) decays exponentially with N , making the scenario with L = ∞ and
dN = Ω(N) asymptotically equivalent to L = 2. For example, for dN =
1
ℓ

N
1−ϵ

(
1 +O

(
1√

N logN

))
for some ℓ ∈ Z+, the right-hand side of (4.12) is tight

up to the second-order term.



73

4.4 VLSF Codes for the Gaussian PPC with Maximal Power Con-
straints

Recall the Gaussian channel, its capacity C(P ), and dispersion V (P ) from
(3.68)–(3.70).

We first introduce the maximal and average power constraints on VLSF codes
for the PPC. Given a VLSF code with L decoding times n1, . . . , nL, the max-
imal power constraint requires that the length-n prefixes, n ∈ {n1, . . . , nL}, of
each codeword all satisfy a power constraint P , i.e.,

∥f(u,m)nℓ∥22 ≤ nℓP for all m ∈ [M ], u ∈ U , ℓ ∈ [L]. . (4.22)

The average power constraint on the length-nL codewords, as defined by [72,
Def. 1], is

E
[
∥f(U,W )nL∥22

]
≤ NP. (4.23)

The definitions of (N,L,M, ϵ, P )max and (N,L,M, ϵ, P )ave VLSF codes for the
Gaussian PPC are similar to 4.2.1 with the addition of maximal (4.22) and av-
erage (4.23) power constraints, respectively. Similar to (4.7), M∗(N,L, ϵ, P )max

(resp. M∗(N,L, ϵ, P )ave) denotes the maximum achievable message set size
with L decoding times, average decoding time N , average error probability ϵ,
and maximal (resp. average) power constraint P .

In the following, we discuss prior asymptotic expansions of M∗(N,L, ϵ, P )max

and M∗(N,L, ϵ, P )ave for the Gaussian PPC, where L ∈ {1,∞}.

a) M∗(N, 1, ϵ, P )max: For L = 1, P > 0, and ϵ ∈ (0, 1), Tan and Tomamichel
[44, Th. 1] and Polyanskiy et al. [5, Th. 54] show that

logM∗(N, 1, ϵ, P )max

= NC(P )−
√
NV (P )Q−1(ϵ) +

1

2
logN +O(1). (4.24)

The converse for (4.24) is derived in [5, Th. 54] and the achievability for
(4.24) in [44, Th. 1]. The achievability scheme in [44, Th. 1] generates
i.i.d. codewords uniformly distributed on the n-dimensional sphere with
radius

√
nP , and applies maximum likelihood (ML) decoding. These results

imply that random codewords uniformly distributed on a sphere and ML
decoding are, together, third-order optimal, meaning that the gap between
the achievability and converse bounds in (4.24) is O(1).
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b) M∗(N, 1, ϵ, P )ave: For L = 1 with an average-power-constraint, Yang et al.
show in [84] that

logM∗(N, 1, ϵ, P )ave = N C

(
P

1− ϵ

)
−

−

√
N logN V

(
P

1− ϵ

)
+O(

√
N). (4.25)

Yang et al. use a power control argument to show the achievability of
(4.25). They divide the messages into disjoint sets A and [M ] \ A, where
|A|=M(1− ϵ)(1− o(1)). For the messages in A, they use an(
N, 1, |A|, 2√

N logN
, P
1−ϵ

(1− o(1))
)

VLSF code with a single decoding time
N . The codewords are generated i.i.d. uniformly on the sphere with center
at 0 and radius

√
N P

1−ϵ
(1− o(1)). The messages in [M ] \ A are assigned

the all-zero codeword. The converse for (4.25) follows from an application
of the meta-converse [5, Th. 26].

c) M∗(N,∞, ϵ, P )ave: For VLSF codes with L = ∞, ni = i − 1 for i ∈ Z+,
and average power constraint (4.23), Truong and Tan show in [71, Th. 1]
that for ϵ ∈ (0, 1) and P > 0,

logM∗(N,∞, ϵ, P )ave ≥
NC(P )

1− ϵ
− logN +O(1) (4.26)

logM∗(N,∞, ϵ, P )ave ≤
NC(P )

1− ϵ
+
hb(ϵ)

1− ϵ
, (4.27)

where hb is the binary entropy function. The results in (4.26)–(4.27) are
analogous to the fundamental limits for DM-PPCs (4.9)–(4.10) and follow
from arguments similar to those in [18]. Since the information density
ı(X;Y ) for the Gaussian channel is unbounded, bounding the expected
value of the decoding time in the proof of [71, Th. 1] requires different
techniques from those applicable to DM-PPCs [18].

4.4.1 Main Result

The theorem below is our main result for the Gaussian PPC under the maximal
power constraint (4.22).

Theorem 4.4.1. Fix an integer L = O(1) ≥ 2 and real numbers P > 0 and
ϵ ∈ (0, 1). For the Gaussian channel with maximal power constraint (4.22), the
maximum message set size achievable by (N,L,M, ϵ, P ) VLSF codes satisfies

logM∗ (N,L, ϵ, P )max ≥
NC(P )

1− ϵ
−
√
N log(L−1)(N)

V (P )

1− ϵ
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+O

(√
N

log(L−1)(N)

)
. (4.28)

The decoding times that achieve (4.28) satisfy the equations

logM∗ (N,L, ϵ, P )max = nℓC(P )−
√
nℓ log(L−ℓ+1)(nℓ)V (P )− log nℓ +O(1)

(4.29)

for ℓ ∈ {2, . . . , L}, and n1 = 0.

Proof: See Appendix C.6.

4.5 Summary

This chapter investigates the maximum achievable message set size for sparse
VLSF codes over the DM-PPC (Theorem 4.3.1), DM-MAC (Theorem 5.3.1),
DM-RAC (Theorem 6.6.1), and Gaussian PPC (Theorem 3.3.4) in the asymp-
totic regime where the number of decoding times L is constant as the average
decoding time N grows without bound. Under our second-order achievabil-
ity bounds, the performance improvement due to adding more decoding time
opportunities to our code quickly diminishes as L increases. For example, for
the BSC with crossover probability 0.11, at average decoding time N = 1000,
our VLSF coding bound with only L = 4 decoding times achieves 95.2% of
the rate of Polyanskiy et al.’s VLSF coding bound for L = ∞. Incremental
redundancy automatic repeat request codes, which are some of the most com-
mon feedback codes, employ only a small number of decoding times and stop
feedback. Our analysis shows that such a code design is not only practical but
also has performance competitive with the best known dense feedback codes.

In all channel types considered, the first-order term in our achievability bounds
is NC

1−ϵ
, where N is the average decoding time, ϵ is the error probability, and C

is the capacity (or the sum-rate capacity in the multi-transmitter case), and
the second-order term is O

(
−
√
N log(L−1)(N)

)
. For DM-PPCs, there is a

mismatch between the second-order term of our achievability bound for VLSF
codes with L = O(1) decoding times (Theorem 4.3.1) and the second-order
term of the best known converse bound (4.10); the latter applies to L = ∞,
and therefore to any L. Towards closing the gap between the achievability and
converse bounds, in Theorem C.4.1 in Appendix C.4, below, we derive a non-
asymptotic converse bound that links the error probability of a VLSF code
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with the minimum achievable type-II error probability of an SHT. However,
since the threshold values of the optimal SHT with L decoding times do not
have a closed-form expression [83, pp. 153-154], analyzing the non-asymptotic
converse bound in Theorem C.4.1 is a difficult task. We leave whether the
second-order term in Theorem 4.3.1 is optimal to future work.

In sparse VLSF codes, optimizing the values of L available decoding times
is important since to achieve the same performance as L = O(1) optimized

decoding times (Theorem 4.3.1), one needs Ω
(√

N
log(L−1)(N)

)
uniformly spaced

decoding times (Theorem 4.3.3).
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C h a p t e r 5

VARIABLE-LENGTH SPARSE FEEDBACK CODES FOR
MACS

5.1 Introduction

This chapter extends VLSF codes introduced in Chapter 4 to DM-MACs.
Some prior work on VLF codes over MACs are as follows. Truong and Tan
[72] extend the results in [18] to the Gaussian MAC under an average power
constraint. Trillingsgaard et al. [73] study the VLSF scenario where a com-
mon message is transmitted across a K-user discrete memoryless broadcast
channel. Heidari et al. [74] extend Burnashev’s work to the DM-MAC and
derive lower and upper bounds on the error exponents of VLF codes for the
DM-MAC. Bounds on the performance of VLSF codes for the DM-MAC with
an unbounded number of decoding times appear in [75]. The K-transmitter
MAC achievability bounds from [72] and [75] employ 2K − 1 simultaneous
information density threshold rules.

5.2 Definitions for MACs

We begin by introducing the definitions used for the multi-transmitter setting.
A K-transmitter DM-MAC is defined by a triple

(∏K
k=1 Xk, PYK |X[K]

,YK

)
,

where Xk is the finite input alphabet for transmitter k ∈ [K], YK is the
finite output alphabet of the channel, and PYK |X[K]

is the channel transition
probability.

Let PYK
denote the marginal output distribution induced by the input dis-

tribution PX[K]
. The unconditional and conditional information densities are

defined for each non-empty A ⊆ [K] as

ıK(xA; y) ≜ ln
PYK |XA(y|xA)

PYK
(y)

(5.1)

ıK(xA; y|xAc) ≜ ln
PYK |X[K]

(y|x[K])

PYK |XAc (y|xAc)
, (5.2)

where Ac = [K] \ A. Note that in (5.1)–(5.2), the information density func-
tions depend on the transmitter set A unless further symmetry conditions are
assumed (e.g., in some cases we assume that the components of PX[K]

are i.i.d.,
and PYK |X[K]

is invariant to permutations of the inputs X[K]).



78

The corresponding mutual informations under the input distribution PX[K]
and

the channel transition probability PYK |X[K]
are defined as

IK(XA;YK) ≜ E [ıK(XA;YK)] (5.3)

IK(XA;YK |XAc) ≜ E [ıK(XA;YK |XAc)] . (5.4)

The dispersions are defined as

VK(XA;YK) ≜ Var [ıK(XA;YK)] (5.5)

VK(XA;YK |XAc) ≜ Var [ıK(XA;YK |XAc)] . (5.6)

For brevity, we define

IK ≜ Ik(X[K];YK) (5.7)

VK ≜ Var
[
ıK(X[K];YK)

]
. (5.8)

A VLSF code for the MAC with K transmitters is defined similarly to the
VLSF code for the PPC.

Definition 5.2.1. Fix ϵ ∈ (0, 1), N ∈ (0,∞), and positive integers Mk, k ∈
[K]. An (N,L,M[K], ϵ) VLSF code for the MAC comprises

1. integer-valued decoding 0 ≤ n1 < · · · < nL,

2. K finite alphabets Uk, k ∈ [K], defining common randomness random
variables U1, . . . , UK,

3. K sequences of encoding functions f
(k)
n :Uk × [Mk] → Xk, k ∈ [K],

4. a stopping time τ ∈ {n1, . . . , nL} for the filtration generated by
{U1, . . . , UK , Y

nℓ
K }Lℓ=1, satisfying an average decoding time constraint (4.5),

and

5. L decoding functions gnℓ
:U[K]×Ynℓ

K →
K∏
k=1

[Mk]∪{e} for ℓ ∈ [L], satisfying

an average error probability constraint

P
[
gτ (U[K], Y

τ
K) ̸= W[K]

]
≤ ϵ, (5.9)

where the independent messages W1, . . . ,WK are uniformly distributed
on the sets [M1], . . . , [MK ], respectively.



79

5.3 Achievability Bounds

Our main results are second-order achievability bounds for the rates approach-
ing a point on the sum-rate boundary of the MAC achievable region increased
by a factor of 1

1−ϵ
. Theorem 5.3.1, below, is an achievability bound for the

asymptotic regime L = O(1).

Theorem 5.3.1. Fix ϵ ∈ (0, 1), an integer L = O(1) ≥ 2, and distributions
PXk

, k ∈ [K], and arbitrary constants a(A) ∈ (0, IK(XA;YK |XAc)) for A ∈
P([K]). For any K-transmitter DM-MAC (

∏K
k=1Xk, PYK |X[K]

,YK), there ex-
ists an (N,L,M[K], ϵ) VLSF code with

∑
k∈[K]

lnMk ≤
NIK
1− ϵ

−
√
N ln(L−1)(N)

VK
1− ϵ

+O

(√
N

ln(L−1)(N)

)
, (5.10)

∑
k∈A

lnMk ≤
N(IK(XA;YK |XAc)− a(A))

1− ϵ
+ o(N) (5.11)

for all A ∈ P([K]).

Theorem 5.3.1 follows from an application of the non-asymptotic achievability
bound, Theorem 5.3.2, below.

Theorem 5.3.2. Fix constants ϵ ∈ (0, 1), γ, λ(A) > 0 for A ∈ P([K]), integers
0 ≤ n1 < · · · < nL, and distributions PXk

, k ∈ [K]. For any DM-MAC with
K transmitters (

∏K
k=1 Xk, PYK |X[K]

,YK), there exists an (N,L,M[K], ϵ) VLSF
code with

ϵ ≤ P
[
ıK(X

nL

[K];Y
nL
K ) < γ

]
(5.12)

+
K∏
k=1

(Mk − 1) exp{−γ} (5.13)

+
L∑

ℓ=1

∑
A∈P([K])

P
[
ıK(X

nℓ
A ;Y nℓ

K ) > N(IK(XA;Y ) + λ(A))
]

(5.14)

+
∑

A∈P([K])

(∏
k∈Ac

(Mk − 1)

)
exp{−γ +NIK(XA;YK) +Nλ(A)} (5.15)

N ≤ n1 +
L−1∑
ℓ=1

(nℓ+1 − nℓ)P
[
ıK(X

nℓ

[K];Y
nℓ
K ) < γ

]
. (5.16)
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Proof sketch: The proof of Theorem 5.3.2 uses a random coding argument that
employs K i.i.d. codebook ensembles with distributions PXk

, k ∈ [K]. The
receiver employs L decoders that operate by comparing an information density
ıK(x[K]n ; y

n) for each possible transmitted codeword set to a threshold. At
time nℓ, decoder gnℓ

computes the information densities ıK(Xnℓ

[K](m[K]);Y
nℓ
K );

if there exists a message vector m̂[K satisfying ıK(Xnℓ

[K](m̂[K]);Y
nℓ
K ) > γ, then

the receiver decodes to the message vector m̂[K]. Otherwise, the decoder emits
output e, and the receiver passes the decoding time nℓ without decoding.
If nℓ < nL, the transmission continues until the next decoding time. The
term (5.12) bounds the probability that the information density corresponding
to the true messages is below the threshold for all decoding times; (5.13)
bounds the probability that all messages are decoded incorrectly; and (5.14)-
(5.15) bound the probability that the messages from the transmitter index set
A ⊆ [K] are decoded incorrectly, and the messages from the index set Ac are
decoded correctly.

In the application of Theorem 5.3.2 to prove Theorem 5.3.1, we choose the
parameters λ(A) and γ so that the terms in (5.14)-(5.15) decay exponentially
with N , which become negligible compared to (5.12) and (5.13). Between
(5.12) and (5.13), the term (5.12) is dominant when L does not grow with N ,
and (5.13) is dominant when L grows linearly with N .

Like the single-threshold rule from [85] for the RAC, the single-threshold rule
employed in the proof of Theorem 5.3.2 differs from the decoding rules em-
ployed in [72] for VLSF codes over the Gaussian MAC with expected power
constraints and in [75] for the DM-MAC. In both [72] and [75], L = ∞,
and the decoder employs 2K − 1 simultaneous threshold rules for each of the
boundaries that define the achievable region of the MAC with K transmitters.
Those rules fix thresholds γ(A), A ∈ P([K]), and decode messages m[K] if for
all A ∈ P([K]), the codeword for m[K] satisfies

ıK(X
nℓ
A (mA);Y

nℓ
K |Xnℓ

Ac(mAc)) > γ(A), (5.17)

for some γ(A), A ∈ P([K]). Our decoder can be viewed as a special case of
(5.17) obtained by setting γ(A) = −∞ for A ≠ [K].

Analyzing Theorem 5.3.2 in the asymptotic regime L = Ω(N), we determine
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that there exists an (N,∞,M[K], ϵ) VLSF code if (5.11) holds and∑
k∈[K]

lnMk ≤
NIK
1− ϵ

− lnN +O(1). (5.18)

Here, the asymptotic regime between L and N (e.g., L = Ω(N) or L = O(1))
is important rather than whether L < ∞ or L = ∞. This is because if we
truncate an infinite-length code at time n = 2N , by Chernoff bound, the
resulting penalty term added to the error probability decays exponentially
with N , whose effect in (5.18) is o(1). Therefore, for any VLSF code, L = ∞
case can be treated as L = Ω(N) regardless of the number of transmitters.
See Appendix D.2.1 for the proof of (5.18).

For L = ∞, Trillingsgaard et al. [75] numerically evaluate their non-asymptotic
achievability bound for a DM-MAC while Truong and Tan [72] provide an
achievability bound with second-order term −O(

√
N) for the Gaussian MAC

with average power constraints. Applying our single-threshold rule and analy-
sis to the Gaussian MAC with average power constraints improves the second-
order term in [72] from −O(

√
N) to − lnN +O(1) for all non-corner points in

the achievable region. The main challenge in [72] is to derive a tight bound on
the expected value of the maximum over A ⊆ [K] of stopping times τ (A) for
the corresponding threshold rules in (5.17). In our analysis, we avoid that chal-
lenge by employing a single-threshold decoder whose average decoding time is
bounded by E

[
τ ([K])

]
.

Under the same model and assumptions on L, to achieve non-corner rate points
that do not lie on the sum-rate boundary, which corresponds to a(A) = 0 in
(5.11) for one or more A ∈ P([K]), we modify our single-threshold rule to
(5.17), where A is the transmitter index set corresponding to the capacity
region’s active sum-rate bound at the (non-corner) point of interest. Following
steps similar to the proof of (5.18) gives second-order term − lnN +O(1) for
those points as well. For corner points, more than one boundary is active1;
therefore, more than one threshold rule in (5.17) is needed at the decoder. In
this case, again for L = ∞, [72] proves an achievability bound with a second-
order term −O(

√
N). Whether this bound can be improved to − lnN +O(1)

as in (5.18) remains an open problem.

1The capacity region of a K-transmitter MAC is characterized by the region bounded
by 2K − 1 planes. By definition of a corner point, at least two inequalities corresponding to
these planes are active at a corner point.
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C h a p t e r 6

RAC CODES THAT EMPLOY STOP-FEEDBACK

6.1 Introduction

Access points like WiFi hot spots and cellular base stations are, for wireless
devices, the gateway to the network. Unfortunately, access points are also the
network’s most critical bottleneck. As more kinds of devices become network-
reliant, both the number of communicating devices and the diversity of their
communication needs grow. Little is known about how to code under high
variation in the number and variety of communicators.

As more kinds of devices become network-reliant, both the number of commu-
nicating devices and the diversity of their communication needs grow. Little
is known about how to code under high variation in the number and variety
of communicators.

Multiple-transmitter single-receiver channels are well understood in informa-
tion theory when the number and identities of transmitters are fixed and
known. Unfortunately, even in this known-transmitter regime, information-
theoretic solutions are too complex to implement. As a result, orthogonal-
ization methods, such as TDMA, FDMA, and orthogonal CDMA, are used
instead. Orthogonalization strategies simplify coding by allocating resources
(e.g., time slots, frequency) among the transmitters, but applying such meth-
ods to discrete memoryless MACs can at best attain a sum-rate equal to the
single-transmitter capacity of the channel, which is often significantly smaller
than the maximal multi-transmitter sum-rate.

Most random access protocols currently in use rely on collision avoidance,
which cannot surpass the single-transmitter capacity of the channel and may
be significantly worse since the unknown transmitter set makes it difficult to
schedule or coordinate among transmitters. Collision avoidance is achieved
through variations of the legacy (slotted) ALOHA and carrier sense multiple
access (CSMA) algorithms. ALOHA, which uses random transmission times
and back-off schedules, achieves only about 37% of the single-transmitter ca-
pacity of the channel [86]. In CSMA, each transmitter tries to avoid collisions
by verifying the absence of other traffic before starting a transmission over the
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shared channel; when collisions do occur, all transmissions are aborted, and a
jamming signal is sent to ensure that all transmitters are aware of the collision.
The procedure starts again at a random time, which again introduces ineffi-
ciencies. The state of the art in random access coding is “treating interference
as noise,” which is part of newer CDMA-based standards. While this strategy
can deal with random access better than ALOHA, it is still far inferior to the
theoretical limits. Even from a purely theoretical perspective, a satisfactory
solution to random access remains to be found.

Even from a purely theoretical perspective, a satisfactory solution to random
access remains to be found. The MAC model in which a fixed number, k, out
of the total available K transmitters are active was studied by D’yachkov and
Rykov [87] and Mathys [88] for zero-error coding on a noiseless adder MAC,
and by Bassalygo and Pinsker [89] for an asynchronous model in which the
information is considered erased if more than one transmitter is active at a
time. See [90] for a more detailed history. Two-layer MAC decoders, with
outer layer codes that work to remove channel noise and inner layer codes
that work to resolve conflicts, are proposed in [91], [92]. Like the codes in
[87]–[89], the codes in [90], [91] are designed for a predetermined number of
transmitters, k; it is not clear how robust they are to randomness in the
transmitters’ arrivals and departures. In [93], Minero et al. study a random
access model in which the receiver knows the transmitter activity pattern, and
the transmitters opportunistically send data at the highest possible rate. The
receiver recovers only a portion of the messages sent, depending on the current
level of activity in the channel.

This chapter poses the question of whether it is possible, in a scenario where
no one knows how many transmitters are active, for the receiver to almost
always recover the messages sent by all active transmitters. Surprisingly, we
find that not only is reliable decoding possible in this regime, but, for the class
of permutation-invariant channels considered in [90], our proposed RAC code
performs as well in its capacity and dispersion terms as the best-known code
for a MAC with the transmitter activity known a priori [19]–[22]. Since the
capacity region of a MAC varies with the number of transmitters, it is tempting
to believe that the transmitters of a random access system must somehow vary
their codebook size in order to match their transmission rate to the capacity
region of the MAC in operation. Instead, we here allow the decoder to vary its
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decoding time depending on the observed channel output—thereby adjusting
the rate at which each transmitter communicates by changing not the size but
the blocklength of each transmitter’s codebook.

We view the RAC as a collection of all possible MACs that might arise as a
result of the transmitter activity pattern. Barring the intricacies of multiuser
decoding, the model that views an unknown channel as a collection of possible
channels without assigning an a priori probability to each is known as the
compound channel model [94]. In the context of single-transmitter compound
channels, it is known that if the decoding time is fixed, the transmission rate
cannot exceed the capacity of the weakest channel from the collection [94],
though the dispersion may be better (smaller) [95]. With feedback and a
variable decoding time, one can do much better [96]–[99].

In [90], Polyanskiy argues for removing the transmitter identification task from
the physical layer encoding and decoding procedures of a MAC. As he points
out, such a scenario was previously discussed by Berger [100] in the context of
conflict resolution. Polyanskiy further suggests studying MACs whose condi-
tional channel output distributions are insensitive to input permutations. For
such channels, if all transmitters use the same codebook, then the receiver can
at best hope to recover the messages sent without recovering who transmitted
which message (the transmitter identity). In some networks the transmitter
identification task can be insignificant. For example, in some sensor networks,
we might be interested in the collected measurements but indifferent to the
identities of the collecting sensors. In scenarios where transmitter identity is
required, it can be included in the payload.

In Section 6.4, we propose a code for a random access communication channel
model built from a family of permutation-invariant MACs. Our code em-
ploys identical encoders at all transmitters and identity-blind decoding at the
receiver. Although not critical for the feasibility of our approach, these as-
sumptions lead to a number of pleasing simplifications of both our scheme and
its analysis. For example, using identical encoders at all transmitters simpli-
fies design and implementation. Further, the collection of MACs comprising
our compound RAC model can be parameterized by the number of active
transmitters rather than by the full transmitter activity pattern.

We provide a second-order analysis of the rate universally achieved by our
multiuser scheme over all transmitter activity patterns, taking into account
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the possibility that the decoder may misdetect the current activity pattern
and decode for the wrong channel. Leveraging our observation that for a
symmetric MAC, the fair rate point is not a corner point of the capacity
region, we are able to show that a single-threshold decoding rule attains the
fair rate point. This differs significantly from traditional MAC analyses, which
use 2k−1 simultaneous threshold rules. In the context of a MAC with a known
number of transmitters, second-order analyses of multiple-threshold decoding
rules are given in [19]–[22] (finite alphabet MAC) and in [24] (Gaussian MAC).
A non-asymptotic analysis of variable-length coding with “single-bit" feedback
over a (known) Gaussian MAC appears in [101].

The sparse recovery problem is identical to a special case of the RAC problem
in which each transmitter sends only its “signature" to the receiver. Here, the
decoder’s only task is to determine who is active. Active transmitters in this
variant of the RAC problem may correspond to defective items or positive test
outcomes in the sparse recovery problem, and successful decoding is identified
with successfully detecting the set of defective or confirmed-positive elements.
A group testing problem in which an unknown subset of k defective items
out of K items total is observed through an OR MAC, is studied in [11],
[102]–[105]; this problem is a special case of the sparse recovery problem. In
these works, the decoder reaches a conclusion about tested items at a fixed
blocklength n. Atia and Saligrama [104] consider a noiseless group testing
scenario in which the number of transmitted elements, k, does not grow with
the total number of elements, K, showing that the smallest possible number
of measurements needed to detect the defective items is O(k log K

k
). In in

[11], Scarlett and Cevher extend this result to the scenario where k scales as
O(Kθ) for θ ∈ (0, 1). In [105], Scarlett and Cevher derive the information-
theoretic limits of the exact and partial support recovery problems for general
probabilistic models, where exact recovery refers to detecting all k defective
items, and partial recovery refers to detecting at least s out of k defective items.
While we consider a nonvanishing average error probability and operate in the
central limit theorem regime, [11], [102]–[105] assume vanishing average error
probability and operate in the large deviations regime. The main difference
between the decoder designs in [11], [102]–[105] and our decoder design is
that [11], [102]–[105] use 2k − 1 simultaneous information density threshold
tests at a single blocklength n, while our decoder uses a single information
density threshold test at multiple decoding times, allowing successful detection
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with a computationally less complex decoder even when the number of active
transmitters to be detected is unknown.

Chapter Organization

Our system model and proposed communication strategy are laid out in Sec-
tion 6.2. The main result, showing that for a nontrivial class of channels our
proposed RAC code performs as well in terms of capacity and dispersion as the
best-known code for a MAC with the transmitter activity known a priori, is
presented in Section 6.3. The proofs are presented in Section 6.4. Section 6.4.4
includes discussions of the effect of using maximum likelihood decoding, the
choice of an input distribution in the random code design, the difficulties in
proving a converse, an extension of our strategy that enables transmitter iden-
tity decoding, and performance bounds under the per-user error probability
criterion. Interestingly, the problem of decoding for k ≥ 1 unknown transmit-
ters is substantially different from the problem of detecting whether there are
any active transmitters at all. In Section 6.5, we employ universal hypothesis
testing to solve the latter problem. Section 6.7 concludes the chapter with a
discussion of our results and their implications.

6.2 Problem Setup

Definition 6.2.1. A stationary, memoryless, symmetric, random access chan-
nel (henceforth called simply a RAC) is a memoryless channel with one receiver
and an unknown number of transmitters. It is described by a family of station-
ary, memoryless MACs{(

X k, PYk|X[k]
(yk|x[k]),Yk

)}K

k=0
, (6.1)

each indexed by a number of transmitters, k; the maximal number of transmit-
ters is K ≤ ∞. When k = 0, no transmitters are active; we discuss this case
separately below. For k ≥ 1, the k-transmitter MAC has input alphabet X k,
output alphabet Yk, and conditional distribution PYk|X[k]

. When k transmitters
are active, the RAC output is Y = Yk. The input and output alphabets X and
Yk can be abstract.

6.2.1 Assumptions on the Channel

We assume that the impact of a channel input on the channel output is in-
dependent of the transmitter from which it comes; therefore, each channel in
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(6.1) is assumed to be permutation-invariant [90], giving

PYk|X[k]
(yk|x[k]) = PYk|X[k]

(yk|x̂[k]) (6.2)

for all x̂[k]
π
= x[k] and yk ∈ Yk, k ∈ [K]. We further assume that for any

s < k, an s-transmitter MAC is physically identical to a k-transmitter MAC
operated with s active and k − s silent transmitters. At each time step of
the communication period, each silent transmitter transmits a silence symbol,
here denoted by 0 ∈ X . This reducibility constraint gives

PYs|X[s]
(y|x[s]) = PYk|X[k]

(y|x[s], 0k−s) (6.3)

for all s < k, x[s] ∈ X[s], and y ∈ Ys. An immediate consequence of reducibility
is that Ys ⊆ Yk for any s < k. Another consequence is that when there are no
active transmitters, the MAC

(
X 0, PY0|X[0]

(y|x[0]),Y0

)
satisfies X 0 = {0} and

PY0|X[0]
(y|x[0]) = PYk|X[k]

(y|0k) for all k.

6.2.2 RAC Communication Strategy

We here propose a new RAC communication strategy. In the proposed strat-
egy, communication occurs in epochs, with each epoch beginning in the time
step following the previous epoch’s end. Each epoch ends when the receiver’s
scheduled broadcast to all transmitters indicates a decoding event, signaling
that the prior transmission can stop and a new transmission can begin. At
this point, each transmitter decides whether to be active or silent in the new
epoch; the decision is binding for the length of the epoch, meaning that a
transmitter must either actively transmit for all time steps in the epoch or re-
main silent for the same period. Thus, while the total number of transmitters,
K, is potentially unlimited and can change arbitrarily from one epoch to the
next, the number of active transmitters, k, remains constant throughout each
epoch.

Each active transmitter uses the epoch to describe a message W from the
alphabet [M ]. When the active transmitters are [k], the messages are W[k] ∈
[M ]k, where the messages W1, . . . ,Wk of different transmitters are independent
and uniformly distributed. The proposed strategy fixes the potential decoding
times n0 < n1 < · · · < nK .1 The receiver chooses to end the epoch (without

1We focus the exposition on the scenario where the decoding blocklengths are ordered
both for simplicity and because a particular choice of ordered blocklengths emerges as op-
timal within our architecture (see (6.67) in Section 6.4.3, below).
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decoding) at time n0 if it believes at time n0 that no transmitters are active
and chooses to end the epoch and decode at time nt if it believes at time nt

that the number of active transmitters is t. The transmitters are informed of
the decoder’s decision through a single-bit feedback Zs at each time ns with
s ∈ {0, 1, . . . , t}; here Zs = 0 for all s < t and Zt = 1, with “1” signaling
the end of one epoch and the beginning of the next. Since the blocklength
for a given epoch is the decoding time chosen by the receiver, the result is a
rateless code. As we show in Section 6.4 below, with an appropriately designed
decoding rule, correct decoding is performed at time nk with high probability.

It is important to stress that in this domain each transmitter knows noth-
ing about the set of active transmitters A ⊂ N beyond its own membership
and what it learns from the receiver’s feedback, and the receiver knows noth-
ing about A beyond what it learns from the channel output Y ; we call this
agnostic random access. In addition, since designing a different encoder for
each transmitter is expensive from the perspective of both code design and
code operation, as in [90], we assume through most of this chapter that every
transmitter employs the same encoder; we call this identical encoding. Un-
der the assumptions of permutation-invariance and identical encoding, what
the transmitters and receiver can learn about A is quite limited. Together,
these properties imply that the decoder can at best distinguish which messages
were transmitted rather than by whom they were sent. In practice, transmitter
identity could be included in the header of each logM -bit message or at some
other layer of the stack; transmitter identity is not, however, handled by the
RAC code. Instead, since the channel output statistics depend on the dimen-
sion of the channel input but not the identity of the active transmitters, the
receiver’s task is to decode the messages transmitted but not the identities of
their senders. We therefore assume without loss of generality that |A|= k im-
plies A = [k]. Thus the family of k-transmitter MACs in (6.2) fully describes
the behavior of a RAC.2

6.2.3 Code Definition

The following definition formalizes our code.

Definition 6.2.2. For any number of messages M , ordered blocklengths n0 <

n1 < · · · < nK, and error probabilities ϵ0, . . . , ϵK, an (M, {(nk, ϵk)}Kk=0) RAC
2Section 6.4.4 treats a variant of our RAC communication strategy that enables decoding

of transmitter identity. Mathematically, the variants are quite similar.
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code comprises a (rateless) encoding function

f: U × [M ] → X nK (6.4)

and a collection of decoding functions

gk: U × Ynk
k → [M ]k ∪ {e}, k = 0, 1, . . . , K, (6.5)

where e denotes the erasure symbol, which is the decoder’s output when it is
not ready to decode. At the start of each epoch, a common randomness random
variable U ∈ U , with U ∼ PU , is generated independently of the transmitter
activity and revealed to the transmitters and the receiver, thereby initializing
the encoders and the decoder. If k transmitters are active, then with probability
at least 1− ϵk, the k messages are correctly decoded at time nk. That is,3

1

Mk

∑
w[k]∈[M ]k

P

[{
gk(U, Y

nk
k )

π

̸= w[k]

}⋃
{

k−1⋃
t=0

{gt(U, Y nt
k ) ̸= e}

}∣∣∣∣∣W[k] = w[k]

]
≤ ϵk, (6.6)

where W[k] are the independent and equiprobable messages of transmitters [k],
and the given probability is calculated using the conditional distribution PY

nk
k |Xnk

[k]
=

P nk

Yk|X[k]
; here Xnk

i = f(U,Wi)
nk , i = 1, . . . , k. At time ns, the decoder outputs

the erasure symbol “e" if it decides that the number of active transmitters is
not s. If k = 0 transmitters are active, the unique message “0", denoted
[M ]0 ≜ {0} to simplify the notation, is decoded at time n0 with probability at
least 1− ϵ0. That is,

P
[
g0(U, Y

n0
0 ) ̸= 0|W[0] = 0

]
≤ ϵ0. (6.7)

In Definition 6.2.2, we index the family of possible codes by the elements of
some set U and include u ∈ U as an argument for both the RAC encoder
and the RAC decoder. We then represent encoding as the application of a
code indexed by some random variable U ∈ U chosen independently for each
new epoch. Deterministic codes are represented under this code definition
by setting the distribution on U as P [U = u0] = 1 for some u0 ∈ U . In
practice, we can implement a RAC code with random code choice U using

3Recall that π
= and

π

̸= denote equality and inequality up to a permutation.
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common randomness. Common randomness available to the transmitters and
the receiver allows all nodes to choose the same random variable U to specify a
new codebook in each epoch. Operationally, this common randomness can be
implemented by allowing the receiver to choose random instance U at the start
of each epoch and to broadcast that value to the transmitters just after the
feedback bit that ends the previous epoch. Alternatively, all communicators
can use synchronized pseudo-random number generators. Broadcasting the
value of U increases the epoch-ending feedback from 1 bit to ⌈log|U|⌉ + 1

bits; Theorem E.4.1 shows that |U|≤ K + 1 suffices to achieve the optimal
performance.

In Section 6.4, we employ a general random coding argument to show that a
given error vector (ϵ0, . . . , ϵK) is achievable when averaged over the ensemble
of codes. Unfortunately, this traditional approach does not show the existence
of a deterministic RAC code (i.e., a code with |U|= 1) that achieves the given
error vector (ϵ0, . . . , ϵK). The challenge here is that our proof showing that
the random code’s expected error probability meets each of the K + 1 error
constraints does not suffice to show that any of the codes in the ensemble meets
all of our error constraints simultaneously. A similar issue arises in [18], [58].
For example, in [18], a variable-length feedback code is designed with the aim
of achieving average error probability no greater than ϵ and expected decoding
time no greater than ℓ. To design a single code satisfying both constraints,
[18] relies on common randomness. Similarly, [58] describes a variable-length
feedback code designed to satisfy an error exponent criterion for every channel
in a continuum of binary symmetric or Z channels. Their proof that a single,
deterministic code can simultaneously satisfy this continuum of constraints
exploits the ordering among the channels in the given family. While channel
symmetry can sometimes be leveraged to show the existence of a deterministic
code [18, eq. (29)], the symmetries in a RAC are quite different from those
in point-to-point channels. We leave the question of whether a single-code
solution exists for the RAC to future work.

The code model introduced in Definition 6.2.2 employs identical encoding in
addition to common randomness. Under identical encoding, each transmitter
uses the same encoder, f, to form a codeword of length nK . That codeword
is fed into the channel symbol by symbol. According to Definition 6.2.2, if
k transmitters are active, then with probability at least 1 − ϵk, the decoder



91

recovers the transmitted messages correctly after observing the first nk channel
outputs. As noted previously, the decoder gk does not attempt to recover
transmitter identity; successful decoding means that the list of messages in
the decoder output coincides with the list of messages sent. The error event
defined in Definition 6.2.2 differs from the one in [90]. Our definition (6.6)
requires that all transmitted messages are decoded correctly. In contrast, [90]
bounds a per-user probability of error (PUPE), which measures the fraction of
transmitted messages that are missing from the list of decoded messages. In
Section 6.4.4, we discuss the error probability for our code under the PUPE
criterion.

6.2.4 Assumptions on the Input Distribution

To ensure the existence of codes satisfying the error constraints in Defini-
tion 6.2.2, we assume that there exists a PX such that when X1, X2, . . . , XK

are distributed i.i.d. PX , then the conditions in (6.8)–(6.13) below are satisfied.

The friendliness assumption states that for all s ≤ k ≤ K,

Ik(X[s];Yk|X[s+1:k] = 0k−s) ≥ Ik(X[s];Yk|X[s+1:k]). (6.8)

Friendliness implies that by remaining silent, inactive transmitters enable com-
munication by the active transmitters at rates at least as large as those achiev-
able if the inactive transmitters had actively participated and their codewords
were known to the receiver.

The interference assumption states that for any s and t, X[s] and X[s+1:t] are
conditionally dependent given Yk, giving

PX[t]|Yk
̸= PX[s]|Yk

PX[s+1:t]|Yk
∀ 1 ≤ s < t ≤ k, ∀k. (6.9)

Assumption (6.9) eliminates trivial RACs in which transmitters do not inter-
fere.

In order for the decoder to be able to distinguish the time-n0 output Y n0
0

that results when no transmitters are active from the time-n0 output Y n0
k that

results when k ≥ 1 transmitters are active, we assume that there exists a
δ0 > 0 such that the output distributions satisfy

sup
y∈YK

|Fk(y)− F0(y)| ≥ δ0 for all k ∈ [K], (6.10)
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where Fk(y) denotes the cdf of PYk
for k ∈ {0, . . . , K}.4 The measure of

discrepancy between distributions on the left-hand side of (6.10) is known as
the Kolmogorov-Smirnov distance. The assumption in (6.10) is only needed to
detect the scenario when no transmitters are active; the remainder of the code
functions proceed unhampered when (6.10) fails. When K is finite, (6.10) is
equivalent to PY0 ̸= PYk

for all k ∈ [K].

Finally, the moment assumptions

Var
[
ık(X[k];Yk)

]
> 0 (6.11)

E[|ık(X[k];Yk)− Ik(X[k];Yk)|3] <∞ (6.12)

enable the second-order analysis presented in Theorem 6.3.1, below. In the
case when ıt(X[s];Yk) > −∞ almost surely, we also require

Var
[
ıt(X[s];Yk)

]
<∞ ∀s ≤ t ≤ k. (6.13)

Moment assumptions like (6.11)–(6.13) are common in the finite-blocklength
literature, e.g., [5], [21].

In the discussion that follows, we say that a channel satisfies our channel
assumptions ((6.2), (6.3), (6.8)–(6.13)) if there exists an input distribution PX

under which those conditions are satisfied. All discrete memoryless channels
(DMCs) satisfy finite second- and third-moment assumptions (6.12)–(6.13) [5,
Lemma 46], as do Gaussian noise channels. Common channel models from
the literature typically satisfy a non-zero second-moment assumption (6.11)
as well. Example channels that meet our channel assumptions ((6.2), (6.3),
and (6.8)–(6.13)) include the Gaussian RAC,

Yk =
k∑

i=1

Xi + Z, (6.14)

where each Xi ∈ R operates under power constraint P and Z ∼ N (0, N) for
some N > 0, and the adder-erasure RAC [92],

Yk =


∑k

i=1Xi, w.p. 1− δ

e w.p. δ,
(6.15)

4Although the cdf is defined for real-valued random variables, i.e., Yk ⊆ YK ⊆ R is
required, it can be generalized to abstract alphabets by introducing a partial order ≤ on
the set YK . Then Fk(y) ≜ P [Yk ≤ y].
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where Xi ∈ {0, 1} and Yk ∈ {0, . . . , k} ∪ {e}. In [92], the adder-erasure
RAC (6.15) is used to model a scenario where a digital encoder and decoder
communicate over an analog channel using a modulator and demodulator. The
modulator converts the bits into analog signals; the channel output equals the
sum of the transmitted signals plus random noise; the demodulator quantizes
that output, declaring an erasure, e, if reliable quantization is not possible due
to high noise. Thus, one can view the adder-erasure RAC as a discretization
of the Gaussian RAC.

For the Gaussian RAC, ıt(X[s];Yk) > −∞ almost surely, and (6.13) is satisfied.
For the adder-erasure RAC, ıt(X[s];Yk) = −∞ for some channel realizations
and user activity patterns, and (6.13) is not required.

We conclude this section with a series of lemmas that describe the natural or-
derings possessed by RACs that satisfy our permutation-invariance, reducibil-
ity, friendliness, and interference constraints ((6.2), (6.3), (6.8), and (6.9)).
These properties are key to the feasibility of the approach proposed in our
achievability argument in Section 6.3. Proofs are relegated to Appendix E.1.

The first lemma shows that the quality of the channel for each active trans-
mitter deteriorates as the number of active transmitters grows (even though
the sum capacity may increase).

Lemma 6.2.1. Let X1, X2, . . . , Xk ∼ i.i.d. PX . Under permutation-invariance
(6.2), reducibility (6.3), friendliness (6.8), and interference (6.9),

Ik
k
<
Is
s

for k > s ≥ 1. (6.16)

The second lemma shows that a similar relationship holds even when the
number of transmitters is fixed.

Lemma 6.2.2. Let X1, X2, . . . , Xk ∼ i.i.d. PX . Under permutation-invariance
(6.2), reducibility (6.3) and interference (6.9),

1

k
Ik(X[k];Yk) <

1

s
Ik(X[s];Yk|X[s+1:k]) for k > s ≥ 1. (6.17)

Lemma 6.2.2 ensures that the equal-rate point of the k-MAC lies on the sum-
rate boundary and away from all the corner points of the rate region achieved
with PX . In their work on the group testing problem [103, Th. 3], Malyu-
tov and Mateev prove a non-strict version of (6.17) for permutation-invariant
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channels (6.2). They use this non-strict version of (6.17) to conclude that
their achievability and converse results in [103, Th. 1 and 2] coincide for
permutation-invariant channels. Adding the reducibility (6.3) and interference
(6.9) assumptions to the permutation-invariance assumption (6.2) enables us
to prove the strict inequality in Lemma 6.2.2, which in turn enables the use of
a single threshold rule at the decoder, as discussed in Section 6.4.

Lemma 6.2.3 compares the expected values of the information densities for
different channels.

Lemma 6.2.3. Let X1, X2, . . . , Xk ∼ i.i.d. PX . If a RAC is permutation-
invariant (6.2), reducible (6.3), friendly (6.8), and exhibits interference (6.9),
then for any 1 ≤ s ≤ t < k,

E[ıt(X[s];Yk)] ≤ Ik(X[s];Yk) < It(X[s];Yt). (6.18)

The orderings in Lemma 6.2.1–6.2.3 are used in bounding the performance of
our agnostic random access code.

6.3 An Asymptotic Achievability Result

Our main result is the following bound on achievable rates for the RAC.

Theorem 6.3.1. (Achievability) For any RAC{(
X k, PYk|X[k]

(yk|x[k]),Yk

)}K

k=0

satisfying (6.2) and (6.3), any K < ∞, and any fixed PX satisfying (6.8)–
(6.13), there exists an (M, {(nk, ϵk)}Kk=0) code provided that

k logM ≤ nkIk −
√
nkVkQ

−1(ϵk)−
1

2
log nk +O(1) (6.19)

for all k ∈ [K], and

n0 ≥ c0 log n1 + o(log n1), (6.20)

where c0 is a known positive constant. The O(1) term in (6.19) is constant
with respect to n1; it depends on the number of active transmitters, k, but not
on the total number of transmitters, K.

The code in Theorem 6.3.1 assigns equal rates R[k] = (R, . . . , R), R = logM
nk

, to

all active transmitters. The sum-rate kR converges as O
(

1√
nk

)
to Ik(X[k];Yk)
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for some input distribution PX[k]
(x[k]) =

∏k
i=1 PX(xi) for all k. Note that PX

is independent of the number of active transmitters, k. If the RAC is discrete
and memoryless and a single PX maximizes Ik(X[k];Yk) for every k, then the
achievable rate in (6.19) not only converges to the symmetrical rate point on
the capacity region of the MAC in operation but also achieves the best-known
second-order term [19]–[22]5 (see Section 6.3.1 for details.)

To better understand Theorem 6.3.1, consider a channel satisfying (6.8)–(6.13)
for which the same distribution PX maximizes Ik for all k. For example, for
the adder-erasure RAC in (6.15), setting PX to be Bernoulli(1/2) maximizes Ik
for all k. By Lemma 6.2.1, for M large enough and any ϵ1, ϵ2, . . . , ϵK , one can
pick n1 < n2 < · · · < nK so that equality holds in (6.19) for all k. Therefore,
Theorem 6.3.1 certifies that for some channels, rateless codes with encoders
that are, until feedback, agnostic to the transmitter activity pattern perform
as well in both first- and second-order terms as the best-known scheme [19]–
[22] designed with complete knowledge of transmitter activity. Moreover for
any fixed 0 < ϵ0 < 1, the probability that at time n0 ≥ c0 log n1 + o(log n1)

the decoder correctly detects the scenario where no transmitters are active is
no smaller than 1 − ϵ0. Thus, a new epoch can begin very quickly when no
transmitters are active in the current epoch.

The constant c0 in (6.20) depends on the output distributions PYk
, k =

0, . . . , K, and on the hypothesis test chosen in Section 6.5 but not on the
target probability of error ϵ0. In contrast, the o(log n1) term in (6.20) de-
pends on ϵ0. See Section 6.5 (eq. (6.146)) for an example where we bound the
dependence of the o(log n1) term on ϵ0 under the log-likelihood ratio test.

Our achievability result in Theorem 6.3.1 assumes that the total number of
transmitters, K, is constant. The asymptotic regime in which K grows with
the decoding times, n1, n2, . . . , nK , seeks to characterize scenarios with massive
numbers of communicators [11], [90], [108]. Understanding the fundamental
limits of random access communications in that regime presents an interesting
challenge for future work.

5Note that we are comparing the RAC achievable rate with rate-0 feedback to the MAC
capacity without feedback. Wagner et al. [106] show that if a discrete, memoryless, point-
to-point channel has at least two capacity-achieving input distributions and their dispersions
V1 (5.5) are distinct, then using one-bit feedback improves the achievable second-order term.
Although rate-0 feedback does not change the capacity region of a discrete memoryless MAC
[107], in light of [106] it is plausible that even one-bit feedback can improve the achievable
second-order term for some MACs.
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6.3.1 Comparison With the Existing Achievability Results

Discrete Memoryless RACs

Our achievable region (Theorem 6.3.1) is consistent with the achievability re-
sults for the 2-transmitter MACs given in [19]–[22]. The proofs in [19]–[21] use
i.i.d. random code design, an approach that we follow in Theorem 6.3.1. In
[22], Scarlett et al. use constant-composition codes. In [19]–[21], the achievable
rate region of a discrete memoryless MAC is expressed as a three-dimensional
vector inequality that relies on a 3 × 3 dispersion matrix V2 defined in [21,
eq. (48)]; the entry of V2 at location (3, 3) is V2 (5.5) for some input distribu-
tion (PX1 , PX2). For rate pairs approaching interior (i.e., non-corner) points
on the sum-rate boundary for (PX∗

1
, PX∗

2
), i.e., rate pairs satisfying

(R1, R2) ∈ {(r1 + o(1), r2 + o(1)):

r1 < I2(X
∗
1 ;Y

∗
2 |X∗

2 ), r2 < I2(X
∗
2 ;Y

∗
2 |X∗

1 ), r1 + r2 = I2(X
∗
1 , X

∗
2 ;Y

∗
2 )},
(6.21)

the achievable region in [19]–[21] reduces to the scalar inequality

R1 +R2 ≤ I∗2 −
√
V ∗
2

n
Q−1(ϵ) +O

(
log n

n

)
, (6.22)

where

I∗2 ≜ I2(X
∗
1 , X

∗
2 ;Y

∗
2 ) (6.23)

is the sum-rate capacity and V ∗
2 is the dispersion V2 (5.5) evaluated using

(PX∗
1
, PX∗

2
). The bound in (6.22) implies that the only component of V2 em-

ployed in the second-order characterization of the region (6.21) is V ∗
2 . The

result in (6.22) is proved in [109, Prop. 4 case ii)].

In [22, Th. 1], Scarlett et al. use constant-composition codes to show that the
dispersion matrix V2 in the second-order achievable region can be improved
to Ṽ2, defined in [22, eq. (13)]. Further, they show that Ṽ2 ⪯ V2, where ⪯
designates positive semidefinite order. Therefore, the second-order rate region
that is obtained using constant-composition codes includes that achieved with
i.i.d. random coding when the target error probability satisfies ϵ < 1

2
. Scarlett

et al. [22] present two examples for which Ṽ2 ≺ V2, demonstrating that the
inclusion can be strict. The (3, 3) component of Ṽ2 is

Ṽ ∗
2 = V ∗

2 − Var [E [ı2(X
∗
1 , X

∗
2 ;Y

∗
2 )|X∗

1 ]]− Var [E [ı2(X
∗
1 , X

∗
2 ;Y

∗
2 )|X∗

2 ]] , (6.24)
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where PX∗
1
PX∗

2
PY ∗

2 |X∗
1 ,X

∗
2
= PX∗

1
PX∗

2
PY2|X1,X2 . The right side of (6.22) is achiev-

able with V ∗
2 replaced by Ṽ ∗

2 . In Lemma 6.3.1, below, we derive a saddle point
condition for general MACs without cost constraints. Lemma 6.3.1 implies
that

Ṽ ∗
2 = V ∗

2 . (6.25)

This means that while constant-composition code design can yield achievability
results with second-order terms superior to those derived through i.i.d. code
design, on the sum-rate boundary that superior performance is observed only
at corner points. For any rate point approaching an interior point on the sum-
rate boundary, the i.i.d. random code design employed in this chapter achieves
first- and second-order performance identical to that achieved by constant-
composition code design.

Lemma 6.3.1. Let PY2|X1,X2 be a 2-transmitter MAC with finite sum-rate
capacity. Assume that the σ-algebra on the abstract input alphabets Xi includes
all singletons on Xi, i = 1, 2. Let (X∗

1 , X
∗
2 , Y

∗
2 ) ∼ PX∗

1
PX∗

2
PY2|X1,X2, where

(PX∗
1
, PX∗

2
) is a sum-rate capacity achieving input distribution, i.e.,

I∗2 ≜ I2(X
∗
1 , X

∗
2 ;Y

∗
2 ) = sup

PX1
PX2

I2(X1, X2;Y2) <∞. (6.26)

Then, for i = 1, 2,

E [ı2(X
∗
1 , X

∗
2 ;Y

∗
2 )|X∗

i ] = I∗2 , (6.27)

where (6.27) holds PX∗
i
-almost surely.

Proof: See Appendix E.2.

A version of Lemma 6.3.1 for discrete memoryless MACs appears in [110,
Prop. 1]. The result is proved by verifying that (6.27) satisfies the Karush-
Kuhn-Tucker (KKT) conditions for the maximization problem in (6.26) (Al-
though the maximization problem in (6.26) is not convex, it satisfies a regu-
larity condition ensuring the necessity of the KKT conditions for optimality
[110].) We extend [110, Prop. 1] to general MACs by demonstrating a saddle
point condition for MACs. The saddle point condition is more general in the
sense that it applies to abstract alphabets.

From (6.27), we deduce that

Var [E [ı2(X
∗
1 , X

∗
2 ;Y

∗
2 )|X∗

i ]] = 0, i = 1, 2. (6.28)
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Substituting (6.28) into (6.24), we obtain (6.25).

The result in (6.26)–(6.27) extends the following well-known properties of
point-to-point DMCs to MACs. In [8, Th. 4.5.1], the KKT conditions in
(6.26)–(6.27) for point-to-point DMCs are

I∗1 ≜ max
PX1

I1(X1;Y1) (6.29)

E [ı1(X
∗
1 ;Y

∗
1 )|X∗

1 ] = I∗1 if PX∗
1
(x1) > 0 (6.30)

E [ı1(X
∗
1 ;Y

∗
1 )|X∗

1 = x1] ≤ I∗1 if PX∗
1
(x1) = 0; (6.31)

these conditions are necessary and sufficient for optimality. As noted in [5,
Lemma 62], (6.30)–(6.31) indicate that for a capacity-achieving input distri-
bution PX∗

1
,

Var [E [ı1(X
∗
1 ;Y

∗
1 )|X∗

1 ]] = 0. (6.32)

From (6.32) and the law of total variance, it follows that the unconditional
and conditional variances of ı1(X∗

1 ;Y
∗
1 ) given X∗

1 are equal, i.e.,

V1 = E [Var [ı1(X
∗
1 ;Y

∗
1 )|X∗

1 ]] . (6.33)

For point-to-point DMCs, Moulin [111] shows that the second-order term Ṽ1

achievable using constant-composition coding equals the right-hand side of
(6.33), meaning that i.i.d. random code design and constant-composition ran-
dom code design achieve the same fundamental limits for point-to-point DMCs.

The Gaussian RAC

While the RAC code definition (Definition 6.2.2) does not impose cost con-
straints on the codewords, cost constraints can be added where needed. In the
case of the Gaussian RAC defined in (6.14), the maximal power constraint P
on the codewords requires that

∥f(u,w)nk∥22 ≤ nkP (6.34)

for all u ∈ U , w ∈ [M ], and k ∈ [K], where ∥·∥2 denotes the Euclidean norm.
If any encoder attempts to transmit a codeword that does not satisfy (6.34),
we count that event as an error. Hence, the maximal power constraints add
the term

P

[
k⋃

j=1

k⋃
i=1

{∥∥Xnj

i

∥∥2
2
> njP

}]
(6.35)
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to the error terms in (6.6).

For the Gaussian k-MAC under maximal power constraints, drawing code-
words i.i.d. according to distribution PX ∼ N (0, P − δnk

) for any δnk
→ 0

as nk → ∞ yields a worse second-order performance bound than the one
achieved by drawing codewords uniformly at random from the nk-dimensional
power sphere [24], [112]. MolavianJazi and Laneman [24] and Scarlett et al.
[22] derive the improved second-order term for the Gaussian MAC by drawing
codewords uniformly at random over an nk-dimensional power sphere and by
combining constant-composition code design with a quantization argument,
respectively. The improved achievability bounds on the Gaussian MAC and
RAC by employing non-i.i.d. inputs are presented in Chapter 7, below.

6.3.2 An Example RAC

The following example investigates rates achievable for the adder-erasure RAC
in (6.15).

Example 6.3.1. For the adder-erasure RAC, the capacity achieving distribu-
tion is the equiprobable (Bernoulli(1/2)) distribution for all k. (See the proof
of Theorem E.3.1 in Appendix E.3.) For this channel, one can exactly calcu-
late Ik and Vk for this channel for every k (labelled “True” in Fig. 6.1). The
approximating characterizations

Ik = (1− δ)

(
1

2
log

πek

2
− log e

12k2

)
+O(k−3) (6.36)

Vk = (1− δ)

[
δ

4
log2

πek

2
+

log2 e

2
− log2 e

2k

−

(
log e

2
+
δ log πek

2

12

)
log e

k2

]
+O

(
log k

k3

)
, (6.37)

which capture the first- and second-order behavior of Ik and Vk for each k, are,
nonetheless, useful since they highlight how each depends on k and δ. These
values, without the O(·) terms in (6.36)–(6.37), are labelled “Approximation"
in Fig. 6.1. The approximations are quite tight even for small k. Both Ik

and
√
Vk are of order O(log k), indicating that as k grows, the sum-rate ca-

pacity grows, albeit slowly, while the per-user rate vanishes as O
(
log k
k

)
. The

dispersion Vk also grows, and the speed of approach to the sum-rate capacity
is slower. Interestingly, the dispersion behavior is different for the pure adder
RAC (δ = 0), in which case Vk = log2 e

2
+O

(
1
k

)
is almost constant as a function
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of k. The derivation of (6.36) and (6.37) relies on an approximation for the
probability mass function of the (k, 1/2) Binomial distribution using a higher
order Stirling’s approximation (Appendix E.3).

Fig. 6.2 shows the approximate rate per transmitter, Rk = logM
nk

(neglecting
the O(1) term in (6.19)), achieved by the proposed scheme as a function of
the number of active transmitters, k, and the choice of blocklength n1 for a
fixed error probability ϵk = 10−6 for all k. Fixing n1 and ϵk fixes the maximum
achievable message size, M , according to (6.19). The remaining nk for k ≥ 2

are found by choosing the smallest nk that satisfies (6.19) using the given M

and ϵk. Each curve illustrates how the rate per transmitter (Rk) decreases
as the number of active users k increases. The curves differ in their choice
of blocklength n1 and the resulting changes in M and n0, n2, . . . , nK . Here
n1 is fixed to 20, 100, 500 and 2500. For a fixed k, the points on the same
vertical line demonstrate how the gap between the per-user capacity and the
finite-blocklength achievable rate decreases as blocklength increases.

6.3.3 A Non-asymptotic Achievability Result

Theorem 6.3.1 follows from Theorem 6.3.2, stated next, which bounds the error
probability of the RAC code defined in Section 6.4. When k transmitters are
active, the error probability ϵk captures both errors in the estimate t of k and
errors in the reproduction Ŵ[t] of W[k] when t = k. Theorem 6.3.2 is formulated
for an arbitrary choice of a statistic h:Yn0 7→ R used to decide whether any
transmitters are active. Possible choices for h(·) appear in (6.121) and (6.128)
in Section 6.5, below.

Theorem 6.3.2. Fix constants γ0, λks,t ≥ 0, and γt > 0 for all 1 ≤ s ≤ t ≤ k.
For any RAC {(

X k, PYk|X[k]
(yk|x[k]),Yk

)}K

k=0

satisfying (6.2) and (6.3), any K ≤ ∞6, and any fixed input distribution PX ,
there exists an (M, {(nk, ϵk)}Kk=0) code such that

ϵ0 ≤ P [h(Y n0
0 ) > γ0] , (6.38)

and for all k ≥ 1,

ϵk ≤ P[ık(Xnk

[k] ;Y
nk
k ) ≤ log γk] (6.39a)

6Note that while Theorem 6.3.1 requires K < ∞, Theorem 6.3.2 allows K = ∞. For
K = ∞, (6.39) holds for every finite k since the bound on ϵk depends only on the RAC with
at most k active transmitters.
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Figure 6.1: (a) Sum-rate capacity Ik (in bits) and (b) dispersion Vk (in bits2)
for the adder-erasure RAC with δ = 0.2.
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Figure 6.2: Capacity and approximate achievable rates (in bits per user) for
the adder-erasure RAC with erasure probability δ = 0.2 are given for the
target error probability ϵk = 10−6 for all k. For each curve, the message size
M is fixed so that the rates {Rk} are achievable with n1 set to 20, 100, 500,
and 2500, respectively.

+P [h(Y n0
k ) ≤ γ0] (6.39b)

+
k(k − 1)

2M
(6.39c)

+
k−1∑
t=1

(
k

t

)
P[ıt(Xnt

[t] ;Y
nt
k ) > log γt] (6.39d)

+
k∑

t=1

t−1∑
s=1

(
k

t− s

)
P
[
ıt(X

nt

[s+1:t];Y
nt
k )

> ntE[ıt(X[s+1:t];Yk)] + λks,t

]
(6.39e)

+
k∑

t=1

t∑
s=1

(
k

t− s

)(
M − k

s

)
P
[
ıt(X

nt

[s];Y
nt
k |Xnt

[s+1:t])

> log γt − ntE[ıt(X[s+1:t];Yk)]− λks,t

]
, (6.39f)
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where for any n, (Xn
[k], X

n

[k], Y
n
k ) is a random sequence drawn i.i.d. from

PX[k]X[k]Yk
(x[k], x[k], yk) =

(
k∏

i=1

PX(xi)PX(xi)

)
PYk|X[k]

(yk|x[k]). (6.40)

The operational regime of interest is when ϵ0, . . . , ϵk are constant; that is,
ϵk does not vanish as nk grows. For k = 0, the error term in (6.38) is the
probability that the decoder does not correctly determine that the number
of active transmitters is 0 at time n0. For k > 0, (6.39a) is the probability
that the true codeword set produces a low information density. This is the
dominating term in the regime of interest. All remaining terms are negligible,
as shown in the refined asymptotic analysis of the bound in Theorem 6.3.2 (see
Section 6.4.3, below.) The remaining terms bound the probability that the
decoder incorrectly estimates the number of active transmitters as 0 (6.39b),
the probability that two or more transmitters send the same message (6.39c),7

the probability that the decoder estimates the number of active transmitters
as t for some 1 ≤ t < k and decodes those t messages correctly (6.39d), and
the probability that the decoder estimates the number of active transmitters
as t for some 1 ≤ t ≤ k and decodes to s messages that were not transmitted
and t− s messages that were transmitted (6.39e)–(6.39f).

For k = 1, 2, the expression in (6.39) particularizes to

ϵ1 ≤ P[ı1(Xn1
1 ;Y n1

1 ) ≤ log γ1] + P [h(Y n0
1 ) ≤ γ0]

+ (M − 1)P[ı1(X
n1

1 ;Y n1
1 ) > log γ1 − λ11,1] (6.41)

ϵ2 ≤ P[ı2(Xn2

[2] ;Y
n2
2 ) ≤ log γ2] + P [h(Y n0

2 ) ≤ γ0]

+
1

M
+ 2P[ı1(Xn1

1 ;Y n1
2 ) > log γ1]

+ 2P[ı2(Xn2
2 ;Y n2

2 ) ≥ n2I2(X2;Y2) + λ21,2]

+ (M − 1)P[ı1(X
n1

1 ;Y n1
2 ) > log γ1 − λ21,1]

+ 2(M − 2)P[ı2(X
n2

1 ;Y n2
2 |Xn2

2 ) > log γ2 − n2I2(X2;Y2)− λ21,2]

+
(M − 2)(M − 3)

2
P[ı2(X

n2

[2];Y
n2
2 ) > log γ2 − λ22,2]. (6.42)

For the MAC with K transmitters, i.e., the scenario where K transmitters
are always active, the only decoding time is nK . The error terms associated

7Given the use of identical encoders, multiple encoders sending the same message can
be beneficial or harmful, depending on the channel. To simplify the analysis, we treat this
(exponentially rare) event as an error.



104

with incorrect decoding times are no longer needed in this case, and the error
probability bound in (6.39) becomes

ϵK ≤ P[ıK(XnK

[K] ;Y
nK
K ) ≤ log γK ] +

K(K − 1)

2M
(6.43)

+
K−1∑
s=1

(
K

K − s

)
P
[
ıK(X

nK

[s+1:K];Y
nK
K ) > nKE[ıK(X[s+1:K];YK)] + λKs,K

]
(6.44)

+
K∑
s=1

(
K

K − s

)(
M −K

s

)
P
[
ıK(X

nK

[s] ;Y
nK
K |XnK

[s+1:K])

> log γK − nKE[ıK(X[s+1:K];YK)]− λKs,K

]
. (6.45)

A description of the proposed RAC code and the proofs of Theorems 6.3.1 and
6.3.2 appear in Section 6.4.

6.4 RAC Code and Its Performance

6.4.1 Code Design

We construct the RAC code used in the proofs of Theorems 6.3.1 and 6.3.2 as
follows.

Encoder Design: The common randomness random variable
U = (U(1), . . . , U(M)) has distribution

PU ≜ PU(1) × · · · × PU(M), (6.46)

where PU(w) = P nK
X , w = 1, . . . ,M , and PX is a fixed distribution on al-

phabet X . Each realization of U defines a codebook with M i.i.d. vectors
U(1), . . . , U(M) of dimension nK (the codewords). Note that the cardinal-
ity of the alphabet U is |X |MnK . In [18, Th. 19], Polyanskiy et al. use
Carathéodory’s Theorem to show that the common randomness U can be
replaced with common randomness U ′ with cardinality at most K + 2. We
reduce this alphabet size to K + 1 in Appendix E.4. As described in Defi-
nition 6.2.2, an (M, {(nk, ϵk)}Kk=0) RAC code with identical encoders employs
the same encoder f(·) at every transmitter. The encoder f(U, ·) depends on U
as

f(U,w) = U(w) for w = 1, . . . ,M. (6.47)

For brevity, we omit U in the encoding and decoding functions and write
f(U,w) = f(w) for w = 1, . . . ,M , and gk(U, y

nk) = gk(y
nk) for ynk ∈ Ynk

K , k ∈
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{0, . . . , K}. Recall that f(w) is a nK-dimensional vector. We use f(w)nk to
denote the first nk coordinates of vector f(w). For any collection of messages
w[k] ∈ [M ]k, we use f

(
w[k]

)
≜ (f(w1), . . . , f(wk)) to denote the collection of

encoded descriptions produced by the encoders.

Decoder Design: Upon receiving the first n0 samples of the channel output
Y , the decoder runs the following composite hypothesis test

g0(y
n0) =

{
0 if h(yn0) ≤ γ0

e otherwise
(6.48)

to decide whether there are any active transmitters. Decoder output 0 signifies
that the decoder decides that all transmitters are silent, sending a feedback bit
‘1’ to all transmitters to start a new coding epoch. Decoder output e indicates
that the receiver believes that there are active transmitters; the decoder trans-
mits feedback bit ‘0’ to the transmitters, telling them that it is not ready to
decode, and therefore that transmissions must continue. Statistic h: Yn0 7→ R
is used to decide whether any transmitters are active.

For each k ≥ 1, decoder gk observes output ynk and employs a single threshold
rule

gk(y
nk) =

w[k] if ık(f
(
w[k]

)nk ; ynk) > log γk and wi < wj ∀ i < j

e otherwise

(6.49)

for some constant γk chosen before the transmission starts. Under permutation-
invariance (6.2) and identical encoding (6.4), all permutations of the message
vector w[k] give the same information density. We use the ordered permutation
specified in (6.49) as a representative of the equivalence class with respect to
the binary relation π

=. The choice of a representative is immaterial since decod-
ing is identity-blind. When there is more than one ordered w[k] that satisfies
the threshold condition, decoder gk chooses among these options arbitrarily.
All such events are counted as errors in the analysis in Section 6.4.2, below. If
the decoder output is a message vector w[k], then the decoder sends feedback
bit ‘1’, telling them to stop transmission. Otherwise, the decoder sends feed-
back bit ‘0’, and the epoch continues. For k ≥ 1, the decoder gk(ynk) depends
on U through its dependence on the encoding function f

(
w[k]

)
; for k = 0,

g0(y
n0) does not depend on U .
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The proof of Theorem 6.3.2, below, bounds the error probability for the pro-
posed code.

6.4.2 Proof of Theorem 6.3.2

In the discussion that follows, we bound the error probability of the code
(f, {gk}Kk=0) defined above. For k = 0, the only error event is that the received
vector at time n0, Y n0

0 , fails to pass the test

ϵ0 ≤ P [g0(Y
n0
0 ) ̸= 0|W0 = 0] (6.50)

given in (6.48). For k > 0, the analysis relies on the independence of codewords
f(Wi) and f(Wj) from distinct transmitters i and j. Given identical encoders
and i.i.d. codeword design, this assumption is valid provided that Wi ̸= Wj;
we therefore count events of the form Wi = Wj as errors. Let Prep denote the
probability of such a repetition; the union bound gives

Prep ≤ k(k − 1)

2M
. (6.51)

The discussion that follows uses w∗
[k] = (1, 2, . . . , k) as an example instance of

a message vector w[k] in which wi ̸= wj for all i ̸= j. The set W̃[s] describes
all ordered message vectors that do not share any messages in common with
w∗

[k], i.e.,

W̃[s] ≜ {w̃[s] ∈ [M ]s: w̃1 > k, w̃i < w̃j ∀i < j}. (6.52)

Let the components of the vectors (Xnk

[k] , X
nk

[k], Y
nk
k ) be i.i.d. with joint distri-

bution

PX[k]X[k]Yk
(x[k], x[k], yk) = PX[k]

(x[k])PX[k]
(x[k])PYk|X[k]

(yk|x[k]). (6.53)

Recall that the information density ıt(xnt

[t] ; y
nt
t ) in (5.1) is defined with respect

to (Xnt

[t] , Y
nt
t ), not with respect to (X

nt

[t] , Y
nt
t ). The resulting error bound pro-

ceeds as shown in (6.54)–(6.59), below,

ϵk =
1

Mk

∑
w[k]∈[M ]k

P[{g0(Y n0
k ) ̸= e} ∪ {∪k−1

t=1 gt(Y
nt
k ) ̸= e}

∪ {gk(Y nk
k )

π

̸= w[k]}|W[k] = w[k]] (6.54)
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≤ Prep + (1− Prep)P[{g0(Y n0
k ) ̸= e}

∪ {∪k−1
t=1 gt(Y

nt
k ) ̸= e} ∪ {gk(Y nk

k )
π

̸= w∗
[k]}|W[k] = w∗

[k]] (6.55)

≤ Prep + P[g0(Y n0
k ) ̸= e|W[k] = w∗

[k]]+
k−1∑
t=1

(
k

t

)
P[gt(Y nt

k )
π
= w∗

[t]|W[k] = w∗
[k]]

(6.56)

+
k∑

t=1

t∑
s=1

(
k

t− s

)
P[∪w̃[s]∈W̃[s]

{gt(Y nt
k )

π
= (w̃[s], w

∗
[s+1:t])}|W[k] = w∗

[k]]

+ P[gk(Y nk
k ) = e|W[k] = w∗

[k]] (6.57)

≤ k(k − 1)

2M
+ P [h(Y n0

k ) ≤ γ0] +
k−1∑
t=1

(
k

t

)
P[ıt(Xnt

[t] ;Y
nt
k ) > log γt] (6.58)

+
k∑

t=1

t∑
s=1

(
k

t− s

)
P[∪w̃[s]∈W̃[s]

{ıt(X
nt

[s](w̃[s]), X
nt

[s+1:t];Y
nt
k ) > log γt}]

+ P[ık(Xnk

[k] ;Y
nk
k ) ≤ log γk]. (6.59)

Here X[k] is the vector of transmitted codewords, and X [s](w̃[s]) is an i.i.d. copy
of X [s], which represents the codeword for a collection of messages w̃[s] ∈ W̃[s]

that was not transmitted. Line (6.55) separates the case where at least one
message is repeated from the case where there are no repetitions. Lines (6.56)–
(6.57) enumerate the error events in the no-repetition case; these include all
cases where the transmitted codeword passes the binary hypothesis test (6.48)
for “no active transmitters" (6.56), all cases where a subset of the transmitted
codewords meets the threshold for some t < k (6.56), all cases where a code-
word that is incorrect in s dimensions and correct in t−s dimensions meets the
threshold for t ≤ k (6.57), and all cases where the transmitted codeword fails
to meet the threshold (6.57). We apply the union bound and the symmetry of
the code design to represent the probability of each case by the probability of
an example instance times the number of instances. Equations (6.58)-(6.59)
apply the bound in (6.51) and replace decoders by the threshold rules in their
definitions.

The delay in applying the union bound to the first probability in (6.59) is
deliberate. It allows us to exploit the symmetry assumptions on the channel
and to use a single threshold rule instead of 2k − 1 threshold rules as in [19]–
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[22]. Applying the bound

P

[ ⋃
w̃[s]∈W̃[s]

{ıt(X
nt

[s](w̃[s]), X
nt

[s+1:t];Y
nt
k ) > log γt}

]
(6.60)

= P

[ ⋃
w̃[s]∈W̃[s]

{ıt(X
nt

[s](w̃[s]), X
nt

[s+1:t];Y
nt
k ) > log γt}

⋂{
ıt(X

nt

[s+1:t];Y
nt
k ) > ntE[ıt(X[s+1:t];Yk)] + λks,t

}]

+ P

[ ⋃
w̃[s]∈W̃[s]

{ıt(X
nt

[s](w̃[s]), X
nt

[s+1:t];Y
nt
k ) > log γt}

⋂{
ıt(X

nt

[s+1:t];Y
nt
k ) ≤ ntE[ıt(X[s+1:t];Yk)] + λks,t

}]
≤ P

[
ıt(X

nt

[s+1:t];Y
nt
k ) > ntE[ıt(X[s+1:t];Yk)] + λks,t

]
+ P

[ ⋃
w̃[s]∈W̃[s]

{ıt(X
nt

[s](w̃[s]);Y
nt
k |Xnt

[s+1:t]) > log γt − ntE[ıt(X[s+1:t];Yk)]− λks,t}

]
(6.61)

before applying the union bound to the first probability in (6.59) yields a
tighter bound. Combining (6.59) and (6.61) and applying the union bound to
the second probability in (6.61) completes the proof.

6.4.3 Proof of Theorem 6.3.1

We fix PX , M , {ϵk}Kk=0, and we set the blocklengths {nk}Kk=1 as

nk = γ2k

( e
k
(M − k)

)−2k

, (6.62)

where

log γk ≜ nkIk − τk
√
nkVk (6.63)

τk ≜ Q−1

(
ϵk −

Bk + Ck√
nk

)
, (6.64)

Ck is a constant to be chosen in (6.93),

Bk ≜
0.56 Tk

V
3/2
k

(6.65)
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is the Berry-Esseen constant Theorem 2.3.1 (which is finite by the moment
assumptions (6.11) and (6.12)), and

Tk ≜ E
[
|ık(X[k];Yk)− Ik|3

]
. (6.66)

The choice of the threshold γk (6.63) follows the approach established for the
point-to-point channel in [5]. Solving (6.62) for M and applying the Taylor
series expansion to Q−1(·), we see that the size of the codebook admits the
following expansion

k logM = nkIk −
√
nkVkQ

−1 (ϵk)−
1

2
log nk +O(1) (6.67)

simultaneously for all k ∈ [K]. Note that the expansion in (6.67) is the best-
known performance up to the second-order term for MACs without random
access [19]–[22], and we have chosen our parameters with the goal of match-
ing that best prior performance. By Lemma 6.2.1, the resulting blocklengths
satisfy n1 < n2 < · · · < nK for M large enough.

We proceed to apply Theorem 6.3.2 to show that under the given parameter
choices, the probability of decoding error at time nk is bounded above by ϵk.
The constants

{
λks,t
}

used in the error probability bound (6.39e)–(6.39f) are
set as

λks,t =
nt

2

(
It(X[s];Yt|X[s+1:t])−

s

t
It

)
(6.68)

to ensure that λks,t > 0 when s < t (see Lemma 6.2.2) and that λks,t = 0 when
s = t. Next, we sequentially bound the terms in Theorem 6.3.2 using the
parameters chosen in (6.62), (6.63), and (6.68).

• (6.39a): As noted previously, this is the dominant term. Since ık(Xnk

[k] ;Y
nk
k )

is a sum of nk independent random variables, by the Berry-Esseen the-
orem [25, Chapter XVI.5 Th. 2] and (6.63)–(6.65),

P
[
ık(X

nk

[k] ;Y
nk
k ) ≤ log γk

]
≤ ϵk −

Ck√
nk

. (6.69)

• (6.39b): The test statistic h(·) and the threshold γ0 given in (6.48) are
chosen in Section 6.5 to satisfy

P [h(Y n0
k ) ≤ γ0] ≤

Ek√
nk

(6.70)
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P [h(Y n0
0 ) > γ0] ≤ ϵ0 (6.71)

for some constant Ek > 0. Lemma 6.4.1, below, bounds the type-II error
in (6.70) in terms of n0 when the type-I error in (6.71) is bounded by ϵ0.

Lemma 6.4.1. Fix ϵ0 ∈ (0, 1). Assume that (6.10) holds. Then there
exists a test function h(·) such that (6.71) is satisfied and

P [h(Y n0
k ) ≤ γ0] ≤ exp{−n0C

′ + o(n0)} (6.72)

for some C ′ > 0 depending on the output distributions PYi
for i =

0, . . . , K.

Proof: See Section 6.5.

From (6.67), nk = O (n1) for k ≥ 1. To make (6.72) behave as O
(

1√
nk

)
in Lemma 6.4.1, we pick n0 as in (6.20) with c0 = 1

2C′ .

• (6.39c): According to (6.62), the upper bound k(k−1)
2M

on Prep in (6.51)
decays exponentially with nk.

• (6.39d): Define p as

p ≜ P[ıt(X[t];Yk) > −∞]. (6.73)

We next analyze (6.39d) for the cases p = 1 and p < 1.

Case 1: p = 1. By Lemma 6.2.3 and moment assumption (6.13),

It − E
[
ıt(X[t];Yk)

]
− τt

√
Vt
nt

> 0 (6.74)

for sufficiently large nt. Chebyshev’s inequality gives

P[ıt(Xnt

[t] ;Y
nt
k ) > log γt]

≤
Var[ıt(X[t];Yk)]

nt

(
It − E

[
ıt(X[t];Yk)

]
− τt

√
Vt

nt

)2 . (6.75)

The right side of (6.75) behaves as O
(

1
nt

)
.

Case 2: p < 1. Here

P[ıt(Xnt

[t] ;Y
nt
k ) > log γt] ≤ P[ıt(Xnt

[t] ;Y
nt
k ) > −∞] (6.76)

= pnt , (6.77)
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where (6.77) holds because ıt(Xnt

[t] ;Y
nt
k ) is the sum of nt i.i.d. random

variables, and that sum is greater than −∞ if and only if all the sum-
mands satisfy the same inequality. From (6.75) and (6.77), (6.39d) con-
tributes O

(
1
nk

)
to our error bound.

• (6.39e): As in the analysis of (6.39d), we define

q ≜ P[ıt(X[s+1:t];Yk) > −∞], (6.78)

and treat the cases q = 1 and q < 1 separately. Observe that for q = 1,
Chebyshev’s inequality implies

P
[
ıt(X

nt

[s+1:t];Y
nt
k ) > ntE[ıt(X[s+1:t];Yk)] + λkt,s

]
≤

Var
[
ıt(X[s+1:t];Yk)

]
nt

(
1
2
(It(X[s];Yt|X[s+1:t])− s

t
It)
)2 , (6.79)

which is of orderO
(

1
nt

)
by the moment assumption (6.13) and Lemma 6.2.2.

For q < 1,

P
[
ıt(X

nt

[s+1:t];Y
nt
k ) > ntE[ıt(X[s+1:t];Yk)] + λkt,s

]
≤ qnt . (6.80)

Therefore (6.39e) contributes O
(

1
nk

)
to our error bound.

• (6.39f): First, consider the case where s < t ≤ k. By Lemma 6.2.3 and
Chernoff’s bound,

P[ıt(X
nt

[s];Y
nt
k |Xnt

[s+1:t]) > log γt − ntE[ıt(X[s+1:t];Yk)]− λks,t] (6.81)

≤ P[ıt(X
nt

[s];Y
nt
k |Xnt

[s+1:t]) > log γt − ntIt(X[s+1:t];Yt)− λks,t] (6.82)

≤ E
[
exp

{
ıt

(
X

nt

[s];Y
nt
k |Xnt

[s+1:t]

)}]
exp {−(log γt − ntIt(X[s+1:t];Yt)− λks,t)} (6.83)

= exp {−(log γt − ntIt(X[s+1:t];Yt)− λks,t)}. (6.84)

Using Stirling’s bound (
n

k

)
≤
(en
k

)k
, (6.85)

we find that for all s ≤ t ≤ k

log

(
M − k

s

)
≤ s log

(
e(M − k)

s

)
(6.86)
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≤ s log

(
e(M − t)

t

)
+ s log

(
t

s

)
(6.87)

=
s

t

(
log γt −

1

2
log nt

)
+ s log

(
t

s

)
, (6.88)

where (6.88) follows from (6.62). From (6.63), (6.68), (6.84), and (6.88),
we have(

M − k

s

)
P[ıt(X

nt

[s];Y
nt
k |Xnt

[s+1:t]) > log γt − ntIt(X[s+1:t];Yt)− λks,t]

≤ exp

{
− nt

1

2

(
It(X[s];Yt|X[s+1:t])−

s

t
It

)
+
(
1− s

t

)
τt
√
ntVt −

s

2t
log nt + s log

(
t

s

)}
. (6.89)

Lemma 6.2.2 ensures that the exponent in (6.89) is negative for nt large
enough.

For s = t < k, from (6.84) and (6.88) with s = t, we get(
M − k

t

)
P[ıt(X

nt

[t] ;Y
nt
k ) > log γt] ≤

(
M−k

t

)
γt

≤ 1
√
nt

. (6.90)

For s = t = k, changing to the measure PX[k]
PYk|X[k]

, by (6.85) and the
parameter choice (6.62), we write(

M − k

k

)
P[ık(X

nk

[k];Y
nk
k ) > log γk]

≤
( e
k
(M − k)

)k
E
[
exp{−ık(Xnk

[k] ;Y
nk
k )} 1{ık(Xnk

[k] ;Y
nk
k ) > log γk}

]
≤ Dk

nk

, (6.91)

where

Dk ≜ 2

(
log 2√
2πVk

+ 2Bk

)
(6.92)

and Bk is defined in (6.65). Inequality (6.92) follows from Lemma 2.5.1.
Combining the bounds for the three cases in (6.89), (6.90), and (6.91),
we conclude that (6.39f) contributes O

(
1√
nk

)
to the total error.

Finally, we set the constant Ck in (6.64) to ensure

(6.39b) + (6.39c) + (6.39d) + (6.39e) + (6.39f) ≤ Ck√
nk

. (6.93)
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The existence of such a constant is guaranteed by our analysis above
demonstrating that the terms (6.39b)–(6.39f) do not contribute more
than O

(
1√
nk

)
to the total.8

Due to (6.69) and (6.93), the total probability of making an error at time nk

is bounded by ϵk, and the proof of Theorem 6.3.1 is complete.

6.4.4 Discussion of the Main Result

Refining the Third-Order Term Using a Maximum Likelihood
Decoder

For a RAC that satisfies the conditions in Theorem 6.3.1 and the conditional
variance condition

E
[
Var

[
ık(X[k];Yk)|Yk

]]
> 0 ∀s ∈ [k], (6.94)

we can improve the achievable third-order performance in (6.19) from −1
2
log nk

to +1
2
log nk. Prior work showing the achievability of the +1

2
log n third-order

term includes [2, Th. 53] for point-to-point channels satisfying (6.94) with k =

1, [44, Th. 1] for the Gaussian point-to-point channel, [113, Th. 7], [114, Th. 14]
for discrete memoryless MACs satisfying (6.94). We will see in Chapter 7 that
it can also be achieved for the Gaussian MAC and RAC. We can achieve the
result here by replacing the threshold rule in (6.49) with a combination of a
hypothesis test and a maximum likelihood decoder, giving

gk(U, y
nk) =


argmax

w[k]

ık(f(w[k])
nk ; ynk) if hk(ynk) ≤ γk

e otherwise,
(6.95)

where the maximum is over the ordered message vectors w[k], and hk(·) is a
suitable test function that allows us to distinguish PYk

from any PYt with t ̸= k.
As in prior work, the analysis applies the random coding union bound from [5,
Th. 16]. As discussed in Section 6.5, suitable test functions hk(·) can be found
provided that PYk

̸= PYt for all t ̸= k. For instance, in Chapter 7, below, we
use hk(ynk) =

∣∣∣ 1
nk

∥ynk∥22 − (1 + kP )
∣∣∣ for the Gaussian RAC, where P is the

maximal power constraint. The result does not apply to channels such as the
adder-erasure RAC (6.15), which does not satisfy the condition in (6.94).

8Our bounds on (6.39b)–(6.39f) technically depend on γk and therefore on Ck. However,
it is easy to see that their dependence on Ck is weak, and for large enough nk, it can be
eliminated entirely. Thus the choice of Ck satisfying (6.93) is possible.
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Choosing the Input Distribution PX

Although there are RACs for which a single input distribution PX achieves
the capacity for all k-MACs, k ∈ [K], (e.g., the adder-erasure channel), the
permutation-invariance (6.2) and reducibility (6.3) assumptions do not imply
that such a distribution exists for all RACs. In the following, we discuss how
to choose the input distribution when the optimal input distribution varies
with k.

Given a permutation-invariant (6.2) and reducible (6.3) RAC,M , ϵ = (ϵ0, . . . , ϵK),
and any PX such that (6.8)–(6.13) are satisfied for the given RAC under input
distribution PX , let

R(M, ϵ, PX) = {(R0, . . . , RK): (6.19) and (6.20) hold} (6.96)

denote the achievable rate region under input distribution PX . Here

Rk =
logM

nk

for all k ∈ {0, . . . , K}. (6.97)

Let

R(M, ϵ) =
⋃

PX : (6.8)–(6.13) hold

R(M, ϵ, PX) (6.98)

denote the achievable rate region over all i.i.d. input distributions. A point
in this set is called dominant if no other points in the set are element-wise
greater than or equal to that point. To optimize the achievable rate vector
over the allowed input distributions, we must choose a distribution PX∗ that
achieves a dominant point for the set R(M, ϵ).

Note that for the dominant points of R(M, ϵ) corresponding to different values
of PX∗ , there is an O(1) difference between the left and right sides of the
inequalities in (6.19). If the achievable rate region R(M, ϵ) is not convex, it
can be improved to its convex hull using time sharing. For the modifications
to the coding strategy that enable us to incorporate time sharing, see [19],
[21], [22].

To illustrate what happens when different PX∗ values achieve different domi-
nant points of R(M, ϵ), we consider the following example.
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Example 6.4.1. Consider a RAC with K = 2, X = Y2 = {0, 1}, and transi-
tion probability matrix PY2|X1,X2

Y2 \X1X2 00 01 10 11

0 1− b b b 1− a

1 b 1− b 1− b a

(6.99)

where a, b ∈ [0, 1]. This RAC is permutation-invariant since the “01" and the
“10" columns are identical. When k = 1, the channel reduces to the binary
symmetric channel with crossover probability b. Fig. 6.3 illustrates the set
of achievable rate vectors R(M, ϵ) (neglecting the O(1) term in (6.19)) with
logM = 1000 and ϵ = 10−31 for two choices of parameters in the channel
in (6.99). In Fig. 6.3a, a = 0.7, b = 0.11, and in Fig. 6.3b, a = b = 0.11;
for each, the finite blocklength and capacity boundaries are demonstrated.
In Fig. 6.3a, the dominant points are highlighted. The input distribution
PX∗ = (0.65, 0.35) (i.e., the Bernoulli(0.35) distribution) achieves the domi-
nant point (R1, R2) = (0.400, 0.204); the corresponding region R(M, ϵ, PX∗) is
shown as the region bounded by the dashed lines. In Fig. 6.3b, the only domi-
nant point (0.437, 0.227) is achieved by the input distribution PX∗ = (0.5, 0.5)

(i.e., the Bernoulli(0.5) distribution.) Therefore, for the channel in Fig. 6.3b,
the achievable rate region R(M, ϵ) coincides with R(M, ϵ, PX∗), and we must
choose PX∗ as our input distribution. For this channel, PX∗ = (0.5, 0.5) simul-
taneously maximizes the mutual informations I1 and I2, and the maxima are
I1 = I2 = 0.5.

Discussion of the Converse

Even for MACs with only 2 transmitters, the capacity region for the MAC
remains incompletely understood. A brief summary of related results follows.
For any blocklength n and average error probability ϵ ∈ (0, 1), let

R(n, ϵ) =

{(
logM1

n
,
logM2

n

)
:∃ an (n,M1,M2, ϵ) code

}
(6.100)

denote the set of achievable rate pairs, where Mi is the message size for trans-
mitter i ∈ {1, 2}. The capacity region of the MAC [115], [116] is

C =
⋃

PQPX1|QPX2|Q

{(R1, R2):
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Figure 6.3: The achievable rate region from Theorem 6.3.1 (excluding the
O(1) term) applied to the channel in (6.99) with logM = 1000 and ϵk = 10−3

for k ∈ [2]. The results are shown for (a) a = 0.7 and b = 0.11 and blocklengths
(n1, n2) = (2501, 4904), and (b) for a = b = 0.11 and blocklengths (n1, n2) =
(2290, 4399).
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R1 ≤ I2(X1;Y2|X2, Q)

R2 ≤ I2(X2;Y2|X1, Q)

R1 +R2 ≤ I2(X1, X2;Y2|Q)}, (6.101)

where Q is the time sharing random variable. In [117], Dueck uses the blowing-
up lemma to derive the first strong converse for discrete memoryless MACs.
In [118], for discrete memoryless MACs, Ahlswede uses a wringing technique
to show

R(n, ϵ) ⊆ C +O

(
log n√
n

)
1, (6.102)

which improves Dueck’s result. The coefficients of the term O
(

logn√
n

)
1 in

(6.102) are bounded by a multiple of the product of input and output al-
phabet sizes |X1||X2||Y2|. In [119, Th. 1], Fong and Tan improve Ahlswede’s

second-order term O
(

logn√
n

)
1 to O

(√
logn
n

)
1 for the Gaussian MAC. They

derive this result by applying Ahlswede’s wringing technique [118] to quan-
tized channel inputs. In [23], Kosut further improves the second-order term
to O

(
1√
n

)
1. The second-order term in [23, Th. 7] has the same order and,

for some channels, the same sign as the best-known second-order achievable
term in [22]. Kosut’s result applies to all discrete memoryless MACs and to
the Gaussian MAC. To prove this converse, Kosut introduces a new measure
of dependence between two random variables called “wringing dependence." A
key aspect of the approach is to restrict the channel inputs so that the wringing
dependence between them is small. Note that Kosut’s converse result in [23]
applies to our RAC model since the code does not allow the encoding function
to depend on the feedback. Therefore, [23] establishes that the scaling of the
second-order term, O(

√
n), is tight.9

In [120], Moulin proposes a new converse technique for maximum-error capac-
ity. His approach relies on strong large deviations for binary hypothesis tests
and leads to a second-order term as in (6.19) when no time sharing is needed.
Since the capacity regions for the maximum and average error probability
can differ [121], Moulin’s result does not give a converse for the average-error
capacity. Whether it is possible to derive a converse for the average-error ca-
pacity with a second-order term matching the ones in [19]–[22], [24] remains
an open problem.

9One should still extend the result from K = 2 to any K transmitters.
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In the sparse recovery literature, where achievability proofs typically consider
the expected error probability evaluated under i.i.d. codebook design (see,
e.g., [11], [102]–[105]), converses derive lower bounds on the expected error
probability assuming i.i.d. code design. Although a lower bound on the ex-
pected error probability for our problem could be derived using tools from [11],
such a bound would yield a bound for the best i.i.d. random code rather than
a bound for all possible codes.

A RAC Code That Decodes Transmitter Identity

While the use of identical encoding at all transmitters has a number of practical
advantages, the techniques employed in this work are not limited to that case.

We next briefly explore the use of distinct encoders at each transmitter of a
RAC. Under permutation-invariance (6.2) and identical encoding, the decoder
cannot distinguish which transmitter sent each of the decoded messages. Main-
taining permutation-invariance but replacing identical encoders with a differ-
ent instance of the same random codebook for each encoder, we get a code
that achieves the same first- and second-order terms as in Theorem 6.3.1, with
a decoder that can also associate the corresponding transmitter identity to
each decoded message. The following definition formalizes the resulting RAC
codes.

Definition 6.4.1. An (M, {(nk, ϵk)}Kk=0) identity-preserving code comprises a
collection of encoding functions

fk: U × [M ] → X nK , k = 1, . . . , K, (6.103)

and a collection of decoding functions

gk: U × Ynk
k →

{
[M ]k ×

(
[K]

k

)}
∪ {e}, k = 0, 1, . . . , K, (6.104)

where erasure symbol e is the decoder’s output when the decoder is not ready to
decode. At the start of each epoch, a random variable U ∈ U , with U ∼ PU , is
generated independently of the transmitter activity, and revealed to the trans-
mitters and the receiver for use in initializing the encoders and the decoder.
If the set of active transmitters A ⊆ [K] satisfies |A|= k > 0, i.e., k trans-
mitters are active, then the messages of A and their corresponding transmitter
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identities are decoded correctly at time nk, with probability at least 1− ϵk, i.e.,

1

Mk

∑
wA∈[M ]k

P

[
{gk(U, Y nk

k ) ̸= (wA,A)}
⋃

{
k−1⋃
t=0

{gt(U, Y nt
k ) ̸= e}

}∣∣∣∣∣WA = wA

]
≤ ϵk, (6.105)

where WA are the independent and equiprobable messages of the transmitters
in A, and the given probability is calculated using the conditional distribution
PY

nk
k |Xnk

A
= P nk

Yk|XA
where Xnk

i = fi(U,Wi)
nk , i ∈ A. If A = ∅, then the

probability that at time n0 the receiver decodes to the unique message in set
[M ]0 = {0} is no smaller than 1− ϵ0. That is,

P
[
g0(U, Y

n0
0 ) ̸= 0|W[0] = 0

]
≤ ϵ0. (6.106)

If we continue to assume permutation-invariance (6.2) and to employ the same
input distribution PX at all encoders, then the channel output statistics again
depend on the dimension of the channel input but not on the identity of the
active transmitters. In this case, we can apply the proof from the identical-
encoding single-threshold-decoding argument in Section 6.4.1 to derive an
achievability result for the general case.10 In particular, consider a code with
KM (rather than M) messages. Replacing M by KM in Theorem 6.3.1 im-
plies that our RAC code with identical encoders gives a penalty of −k logK
on the right-hand side of the rate bound (6.19). Suppose that we use this
identical-encoding code to design a general code in which codewords indexed
from (t−1)M+1 to tM are used exclusively by transmitter t for t = 1, . . . , K.
Since each message belongs to a single transmitter, the list of decoded mes-
sages reveals the identities of the active transmitters. Under this allocation
of codewords, the repetition error Prep in (6.51) disappears since transmitters
send messages from distinct sets. The error probability from decoding the
wrong codeword values decreases since there are fewer legitimate codeword
combinations to consider. Therefore, in the case where K is a finite constant
and the receiver decodes both messages and transmitter identities, the first
three terms in (6.19) are preserved, and the penalty −k logK only affects the
constant term O(1) in (6.19).

When applied to a scenario with M = 1 and identity decoding, the bound in
Theorem 6.3.2, modified as described in the preceding paragraph, extends the

10This simple argument was suggested by Dr. Jonathan Scarlett.
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non-asymptotic achievability bound in the group testing problem [11, Th. 4]
to the scenario where an unknown number k out of a total of K items are
defective. In the scenario considered in [11], the number of defective items
k is known, and our MAC bound (6.43) with K replaced by k, M replaced
by KM = K, and the term K(K−1)

2M
removed applies. The resulting bound is

similar to [11, Th. 4]. The difference is that the bound in (6.43) uses a single
information density threshold rule, while [11, Th. 4] uses 2k − 1 simultaneous
information density threshold rules.

Per-user Probability of Error

We extend the definition of the PUPE from [90, Def. 1] to the RAC with
k ∈ [K] active transmitters as

ek ≜
1

Mk

∑
w[k]∈[M ]k

k∑
i=1

1

k
P
[
wi /∈ gT (U, Y

nT
k )|W[k] = w[k]

]
, (6.107)

where Y nT
k is the received output at time nT , and

T ≜ min{t ∈ {0} ∪ [K]: gt(U, Y
nt
k ) ̸= e} (6.108)

is the random variable describing the decoder’s estimate of the number of
active transmitters.11 We set T = K if gt(U, Y nt

k ) = e for all t ∈ {0} ∪ [K].
For k = 0, we define e0 ≜ P

[
g0(U, Y

n0
0 ) ̸= 0|W[0] = 0

]
as in (6.7).

For a RAC with a total of K transmitters and a MAC with K transmitters,
the following corollary to Theorem 6.3.2 gives non-asymptotic achievability
bounds under the PUPE criterion (6.107).

Corollary 6.4.1. Fix constants γ0, λks,t ≥ 0, and γt > 0 for all 1 ≤ s ≤
t ≤ k. For any k and n, let (Xn

[k], X
n

[k], Y
n
k ) be a random sequence drawn i.i.d.

∼ PX[k]X[k]Yk
(x[k], x[k], yk) =

(∏k
i=1 PX(xi)PX(xi)

)
PYk|X[k]

(yk|x[k]).

1. For any RAC
{(

X k, PYk|X[k]
(yk|x[k]),Yk

)}K

k=0
satisfying (6.2) and (6.3),

any K ≤ ∞, and any fixed input distribution PX , there exists an
11Note that the joint error probability in (6.6) can likewise be written as

1

Mk

∑
w[k]∈[M ]k

P
[
gT (U, Y

nT

k )
π

̸= w[k]

∣∣∣∣W[k] = w[k]

]
.
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(M, {(nk, ek)}Kk=0) RAC code under the PUPE criterion (6.107) such that

e0 ≤ P [h(Y n0
0 ) > γ0] , (6.109)

and for all k ≥ 1,

ek ≤ P[ık(Xnk

[k] ;Y
nk
k ) ≤ log γk] (6.110)

+ P [h(Y n0
k ) ≤ γ0] +

k(k − 1)

2M
(6.111)

+
k−1∑
t=1

(
k − 1

t

)
P[ıt(Xnt

[t] ;Y
nt
k ) > log γt] (6.112)

+
k∑

t=1

t−1∑
s=1

(
k − 1

t− s

)
P
[
ıt(X

nt

[s+1:t];Y
nt
k ) > ntE[ıt(X[s+1:t];Yk)] + λks,t

]
(6.113)

+
k∑

t=1

t∑
s=1

(
k − 1

t− s

)(
M − k

s

)
P
[
ıt(X

nt

[s];Y
nt
k |Xnt

[s+1:t]) > log γt − ntE[ıt(X[s+1:t];Yk)]− λks,t

]
.

(6.114)

2. For a MAC with K transmitters satisfying (6.2), there exists a MAC
code for M messages and decoding blocklength nK such that

eK ≤ P[ıK(XnK

[K] ;Y
nK
K ) ≤ log γK ] +

K(K − 1)

2M

+
K−1∑
s=1

(
K − 1

K − s

)
P
[
ıK(X

nK

[s+1:K];Y
nK
K ) > nKE[ıK(X[s+1:K];YK)] + λKs,K

]
+

K∑
s=1

(
K − 1

K − s

)(
M −K

s

)
P
[
ıK(X

nK

[s] ;Y
nK
K |XnK

[s+1:K]) > log γK − nKE[ıK(X[s+1:K];YK)]− λKs,K

]
.

(6.115)

Proof: Notice that in (6.110), the only modification from Theorem 6.3.2 is the
replacement of the coefficients

(
k
t

)
in (6.39d) and

(
k

t−s

)
in (6.39e)–(6.39f) by the

coefficients
(
k−1
t

)
and

(
k−1
t−s

)
, respectively. To see how Corollary 6.4.1 is derived

from Theorem 6.3.2, observe that the PUPE (6.107) measures the fraction of
transmitted messages missing from the list of decoded messages. Therefore, to
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bound the PUPE for the RAC, we can multiply the error probability bounds
in (6.39) that correspond to the case where t out of k messages are decoded
by k−(t−s)

k
, where s is the number of messages decoded incorrectly.

Similarly, under the PUPE, the coefficient
(

K
K−s

)
in the K-transmitter MAC

bound (6.43) is replaced by
(
K−1
K−s

)
in (6.115) since we can multiply the error

probability bounds in (6.44)–(6.45), corresponding to the case where s out of
K messages are decoded incorrectly, by s

K
.

From the proof of Theorem 6.3.1, the error probability bounds in (6.112)–
(6.114) behave as O

(
1√
nk

)
. This implies that under the PUPE criterion

(6.107), our encoding and decoding scheme described in Section 6.4.1 achieves
the same first three order terms as Theorem 6.3.1. Only the constant O(1)
term in (6.19) is affected by the change from the joint error probability to the
PUPE.

The PUPE criterion becomes critical in applications of the Gaussian RAC
with K → ∞, where the energy per bit ( nP

2 log2 M
) and the number of bits sent

by each transmitter (log2M) are fixed as the blocklength n grows, and all
K transmitters are active. In [90], Polyanskiy shows that in this regime, the
joint error probability goes to 1 as K → ∞. As we saw in (6.115), the PUPE
introduces scaling factors s

K
in front of the error terms corresponding to s out

of K messages decoded incorrectly, for s = 1, . . . , K. In the regime K → ∞,
the number of these terms is infinite, and the PUPE can be strictly less than
1 even as the joint error probability approaches 1. In [90], Polyanskiy shows
that the PUPE behaves nontrivially in this regime.

6.5 Tests for No Active Transmitters

In this section, we give an analysis of the error probabilities of the composite
binary hypothesis test that we use to decide between H0: “no active transmit-
ters," and H1: “k ∈ [K] active transmitters;" that is

H0 : Y
n0 ∼ P n0

Y0

H1 : Y
n0 ∼ P n0

Yk
for some 1 ≤ k ≤ K. (6.116)

In the context of Theorem 6.3.2, the maximal number of transmitters, K, can
be infinite. In that case, enumerating all alternative possibilities as in (6.116)
becomes infeasible, and a universal (goodness-of-fit) test

H0:Y
n ∼ P n

Y0
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H1:Y
n ≁ P n

Y0
(6.117)

is appropriate.

Following [122], a test statistic hn:Yn 7→ R is a function that maps the observed
sequence yn to a real number used to measure the correspondence between that
sequence and the null hypothesis. A (randomized) test corresponding to the
test statistic hn is a binary random variable that depends only on hn(Y n). The
test is deterministic if it outputs H0 if hn(yn) ≤ γ0 for some constant γ0, and
H1 otherwise.

Type-I and type-II errors corresponding to a deterministic test with the statis-
tic hn are defined as

α(hn) ≜ PY0 [hn(Y
n) > γ0] (6.118)

β(hn) ≜ Q[hn(Y
n) ≤ γ0], (6.119)

where Q is the unknown alternative distribution of Y , and γ0 is a constant
determined by the desired error criterion. Throughout the following discussion
and in our application of these results in Lemma 6.4.1, we employ deterministic
tests. For these deterministic tests, we choose γ0 to ensure that we meet
the zero-transmitter error bound α(hn) ≤ ϵ0, and then we show that β(hn)
decays exponentially with n for each Q in {PY1 , . . . , PYK

} to ensure (6.20) in
Theorem 6.3.1.

In Sections A and B, below, we consider Hoeffding’s test and the Kolmogorov-
Smirnov test as possible hypothesis tests for recognizing the zero-transmitter
scenario. Both tests are universal in the sense that the test statistic does not
vary with the alternative output distributions PY1 , . . . , PYK

. They both give
an exponentially decaying type-II error for a fixed type-I error ϵ0 ∈ (0, 1).
The disadvantage of Hoeffding’s test is that its traditional form requires the
channel output alphabet to be finite for every k (as in the adder-erasure RAC in
(6.15)); the advantage of Hoeffding’s test is that it achieves the same exponent
as the Neyman-Pearson Lemma, which is optimal for a given collection of
output distributions PY1 , . . . , PYK

, but is not universal, meaning that a different
test statistic is necessary for each collection {PYk

: k ∈ [K]}. In contrast to
Hoeffding’s test, the Kolmogorov-Smirnov test does not require Y to be finite;
however, when applied to a setting with finite Y , it achieves a type-II error
exponent that is inferior to that achieved by Hoeffding’s test. In Section 6.5.3,
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we compare the performances of these universal test statistics to that of the
log-likelihood ratio (LLR) threshold test, which is third-order optimal in terms
of the type-II error exponent for composite hypothesis testing [123] and relies
explicitly on alternative output distributions PY1 , . . . , PYK

.

6.5.1 Hoeffding’s Test

Denote the empirical distribution of an observed sequence y1, . . . , yn by

P̂yn(a) ≜
1

n

n∑
i=1

1{yi = a} ∀ a ∈ Y . (6.120)

Hoeffding’s test is based on the relative entropy, denoted by D(·∥·), between
P̂yn and PY0 , giving the test statistic

hHn (y
n) = D(P̂yn∥PY0). (6.121)

Note that if PY0 is a continuous distribution, hHn (yn) = +∞.

Theorem 6.5.1 (Hoeffding’s test[124]). Let Y be a finite set, and let Q be an
unknown alternative distribution for Y0. If PY0 is absolutely continuous with
respect to Q, and PY0 ̸= Q, then the type-I and type-II errors of Hoeffding’s
test satisfy

α(hHn ) ≤ exp{−nγ0 +O(log n)} (6.122)

β(hHn ) ≤ exp

{
−n inf

P :D(P∥PY0
)<γ0

D(P∥Q) +O(log n)

}
. (6.123)

In [124], a more restrictive assumption (PY0(y) > 0 and Q(y) > 0 for all y ∈ Y)
is used. Absolute continuity is sufficient according to the proofs given in [122]
and [125, Th. 2.3], which both rely on Sanov’s theorem. The error exponents of
Hoeffding’s test coincide with the exponents of the optimal (Neyman-Pearson
Lemma) binary hypothesis test. Therefore, Hoeffding’s test is asymptotically
universally most powerful.

Setting γ0 = |Y|logn
n

achieves type-I error ϵ0 → 0 as n→ ∞; therefore, the type-
I error condition is satisfied for any ϵ0 > 0 and sufficiently large n. Under this
choice, type-II error exp{−nD(PY0∥Q)+ o(n)} is achieved (see [125, Th. 2.3]).
Therefore, in (6.72), the maximum type-II error decays with exponent

C ′ = inf
k∈[K]

D(PY0∥PYk
) (6.124)
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≥ 2 inf
k∈[K]

{(
sup
x∈R

|Fk(x)− F0(x)|
)2

+
4

9

(
sup
x∈R

|Fk(x)− F0(x)|
)4
}

(6.125)

≥ 2δ20 +
4

9
δ40. (6.126)

The inequality in (6.125) is due to [126, eq. (5)-(6)] and Pinsker’s inequality
[127]. The inequality in (6.126) follows from (6.10).

In [122], Zeitouni and Gutman extend Hoeffding’s test to continuous distri-
butions. Their test, which also uses the empirical distribution, employs “δ-
smoothing" of the decision regions obtained by a relative entropy comparison.
The Zeitouni-Gutman test is optimal under a slightly weaker optimality crite-
rion than the standard first-order type-II error exponent criterion. Using [122,
Th. 2], it can be shown that the Zeitouni-Gutman test also yields the desired
exponentially decaying maximum type-II error.

6.5.2 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test smirnov1944, [128] relies on the empirical cdf

F̂ (n)(x|yn) ≜ 1

n

n∑
i=1

1{yi ≤ x} ∀x ∈ R (6.127)

of the observed sequence y1, . . . , yn ∈ R. The Kolmogorov-Smirnov test uses a
deterministic test

hKS
n (yn) = sup

x∈R
|F̂ (n)(x|yn)− F0(x)| (6.128)

to test whether the observed sequence yn is well-explained by PY0 with the cdf
F0.

The following theorem bounds the probability that the Kolmogorov-Smirnov
statistic exceeds a threshold γ0.

Theorem 6.5.2 (Dvoretzky-Kiefer-Wolfowitz [129], [130]). Let Y1, . . . , Yn be
drawn i.i.d. according to an arbitrary distribution PY0 with the cdf F0 on R.
For any n ∈ N and γ0 > 0, it holds that

α(hKS
n ) ≤ 2 exp{−2nγ20}. (6.129)

In [129], Dvoretzky et al. prove Theorem 6.5.2 with an unspecified multiplica-
tive constant C in front of the exponential on the right side of (6.129). In
[130], Massart establishes that C = 2.
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In our operational regime of interest, we set the type-I error to a given constant
ϵ0, which by Theorem 6.5.2 corresponds to setting the threshold γ0 to

γ0 =

√
log 2

ϵ0

2n
= O

(
1√
n

)
. (6.130)

We next bound the type-II errors for every k ∈ [K]. For each k ∈ {0, . . . , K},
let Fk denote the cdf of PYk

. The type-II error when k ≥ 1 transmitters are
active is bounded as

βk(h
KS
n ) = P

[
sup
x∈R

|F̂ (n)(x|Y n
k )− F0(x)|≤ γ0

]
(6.131)

≤ P
[
sup
x∈R

(
|Fk(x)− F0(x)|−|F̂ (n)(x|Y n

k )− Fk(x)|
)
≤ γ0

]
(6.132)

≤ P
[
sup
x∈R

|F̂ (n)(x|Y n
k )− Fk(x)|≥ sup

x∈R
|Fk(x)− F0(x)|−γ0

]
(6.133)

≤ 2 exp

{
− 2n

(
sup
x∈R

|Fk(x)− F0(x)|
)2

+O(
√
n)

}
, (6.134)

where (6.132) follows from triangle inequality |x + y|≥ |x|−|y|, and (6.134)
follows from Theorem 6.5.2 and (6.130). Applying (6.10) to (6.134), we con-
clude that the maximum type-II error in (6.72) decays exponentially with n,
with exponent

C ′ = 2 inf
k∈[K]

(
sup
x∈R

|Fk(x)− F0(x)|
)2

(6.135)

≥ 2δ20. (6.136)

Comparing (6.135) and (6.125), from (6.10), we see that the type-II error
exponent achieved by the Kolmogorov-Smirnov test is always inferior to that
achieved by Hoeffding’s test.

6.5.3 The Optimal Composite Hypothesis Test

From (6.126) and (6.136), we know that there exists a positive constant c0
such that

n0 ≥ c0 log n1 + o(log n1) (6.137)

suffices to meet the error requirements of the composite hypothesis test given
in (6.70) and (6.71). Since the proposed tests are universal, Theorem 6.3.2
allows us to decode any message set of k ≤ K active transmitters without
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knowing the total number of transmitters, K. In this section, we find the
smallest first three terms on the right side of (6.137) that we can achieve
when K is finite and we allow the composite hypothesis test to depend on the
distributions PY1 , . . . , PYK

.

Let βϵ0(PY0 , {PYk
}Kk=1) denote the minimax type-II error among the alternative

distributions PY1 , . . . , PYK
such that type-I error (under PY0) does not exceed

ϵ0; that is,

βϵ0(PY0 , {PYk
}Kk=1) ≜ min

hn:α(hn)≤ϵ0
max
k∈[K]

βk(hn), (6.138)

where the minimum is over all tests including deterministic and randomized
tests.

The LLR test statistic hLLRn : Yn 7→ RK is given by

hLLRn (yn) =
n∑

i=1

hLLR1 (yi), (6.139)

where

hLLR1 (y) ≜


log

PY0
(y)

PY1
(y)

log
PY0

(y)

PY2
(y)

...
log

PY0
(y)

PYK
(y)

 . (6.140)

Given a threshold vector τ ∈ RK , the corresponding LLR test outputs H0 if
hLLRn (yn) ≥ τ , and H1 otherwise.

The gap in the type-II error exponent (C ′ in (6.72)) between the general op-
timal tests and the LLR tests with the optimal threshold vector τ is O

(
1
n

)
[123]; therefore, we only consider minimizing over the LLR tests in (6.138) for
asymptotic optimality.

Denote by D and V the mean and covariance matrix of the random vector
hLLR1 (Y0), respectively. Define

Dmin ≜ min
k∈[K]

D(PY0∥PYk
) (6.141)

Imin ≜ {k ∈ [K]:D(PY0∥PYk
) = Dmin} (6.142)

Vmin ≜ Cov
[(
hLLR1 (Y0)

)
Imin

]
∈ R|Imin|×|Imin|. (6.143)

The following theorem gives the asymptotics of the minimax type-II error
defined in (6.138).
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Theorem 6.5.3. Assume that PY0 is absolutely continuous with respect to
PYk

, 0 < D(PY0∥PYk
) < ∞ for k = 1, . . . , K, V is positive definite, and

T = E[∥hLLR1 (Y0) − D∥32] < ∞. Then for any ϵ0 ∈ (0, 1), the asymptotic
minimax type-II error satisfies

βϵ0(PY0 , {PYk
}Kk=1) = exp

{
− nDmin +

√
nb

− 1

2
log n+O(1)

}
, (6.144)

where b is the solution to

P [Z ≤ b1] = 1− ϵ0, (6.145)

for Z ∼ N (0,Vmin) ∈ R|Imin|. Moreover, the minimax error in (6.144) is
achieved by a LLR test with some threshold vector τ .

Proof: See Appendix E.5.

Rewriting (6.144), defining b as given in (6.145), and using the condition in
(6.70) with any fixed Ek, we see that a decision about whether any of the
transmitters are active can be made at time

n0 =
1

2Dmin

log n1 +
b√

2D3
min

√
log n1 −

1

2Dmin

log log n1 +O(1) (6.146)

while guaranteeing both that the probability that we do not decode at time n0

when no transmitters are active does not exceed ϵ0 and that the probability
that we decode at time n0 when k > 0 transmitters are active does not exceed
Ek√
nk

. Note that Ek only affects the constant term O(1) in (6.146). Theo-
rem 6.5.3 implies that the coefficients in front of log n1,

√
log n1, and log log n1

in (6.146) are optimal. Juxtaposing (6.124) and (6.146), we see that Hoeffd-
ing’s test achieves the optimal first-order error exponent (that is, the optimal
coefficient in front of log n1).

6.6 VLSF Codes for the DM-RAC with at Most K Transmitters

The VLSF RAC code defined here combines the rateless communication strat-
egy that we introduce in Section 6.4 with the sparse feedback VLSF PPC and
MAC codes with optimized average decoding times in Chapters 4–5. Namely,
if the decoder concludes that k ̸= 0 transmitters are active, it can decode at
any of the L decoding times nk,1 < nk,2 < · · · < nk,L rather than just the
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single time nk used in Section 6.4. For every k ∈ [K], the locations of the L
decoding times are optimized to attain the minimum average decoding delay.

We formally define VLSF codes for the RAC as follows.

Definition 6.6.1. Fix ϵ ∈ (0, 1) and N0, . . . , NK ∈ (0,∞).
An ({Nk}Kk=0, L,M, {ϵk}Kk=0) VLSF code with identical encoders comprises

1. a set of integers N ≜ {n0} ∪ {nk,ℓ: k ∈ [K], ℓ ∈ [L]} (without loss of
generality, assume that nK,L is the largest available decoding time),

2. a common randomness random variable U on an alphabet U ,

3. a sequence of encoding functions fn:U × [M ] → X , n = 1, 2, . . . , nK,L,
defining M length-nK,L codewords,

4. KL+1 decoding functions gn0 :U×Yn0
0 → {∅}∪{e} and gnk,ℓ

:U×Ynk,ℓ

k →
[M ]k∪{e} for k ∈ [K] and ℓ ∈ [L], satisfying an average error probability
constraint

P
[
gτk(U, Y

τk
k )

π

̸= W[k]

]
≤ ϵk (6.147)

if k ∈ [K] messages W[k] = (W1, . . . ,Wk) are transmitted, where Wi’s
are independent and equiprobable on the set [M ]. If no transmitters are
active, the error probability constraint

P [gτ0(U, Y
τ0
0 ) ̸= ∅] ≤ ϵ0 (6.148)

is satisfied, and

5. K non-negative integer-valued random stopping times τk ∈ N for the
filtration generated by {U, Y n

k }n∈N , satisfying

E [τk] ≤ Nk (6.149)

if k ∈ {0} ∪ [K] transmitters are active.

In order to be able to detect the number of active transmitters using the
received symbols Y nk,ℓ but not the codewords themselves, we require that the
input distribution PX satisfies the distinguishability assumption

PYk1
̸= PYk2

∀ k1 ̸= k2 ∈ {0} ∪ [K], (6.150)
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where PYk
is the marginal output distribution under the DM-MAC with k

transmitters and the input distribution PX[k]
= (PX)

k.

The following theorem is a second-order achievability result for VLSF codes
for DM-RACs.

Theorem 6.6.1. Fix ϵ ∈ (0, 1), finite integers K ≥ 1 and L ≥ 2, and a distri-
bution PX satisfying (6.9) and (6.150). For any permutation-invariant (6.2)

and reducible (6.3) DM-RAC
{
(X k, PYk|X[k]

,Yk)
}K

k=0
, there exists an

({Nk}Kk=0, L,M, {ϵk}Kk=0) VLSF code provided that

k lnM ≤ NkIk
1− ϵk

−
√
Nk ln(L−1)(Nk)

Vk
1− ϵk

+O

(√
Nk

ln(L)(Nk)

)
(6.151)

for k ∈ [K], and

N0 ≥ c lnN1 + o(lnN1) (6.152)

for some c > 0.

Proof sketch: The coding strategy to prove Theorem 6.6.1 is as follows.
The decoder applies a (K + 1)-ary hypothesis test using the output sequence
Y n0 and decides an estimate k̂ of the number of active transmitters k ∈
{0, 1, . . . , K}. If the hypothesis test declares that k̂ = 0, then the receiver
stops the transmission at time n0, decoding no messages. If k̂ ̸= 0, then the
receiver decodes k messages at one of the times nk,1, . . . , nk,L using the VLSF
code in Theorem 5.3.1 for the DM-MAC with k transmitters and L decod-
ing times. If the receiver decodes at time nk,ℓ, then it sends feedback bit
‘0’ at all previous decoding times {n ∈ N :n < nk,ℓ} and feedback bit ‘1’ at
time nk,ℓ. Note that alternatively, the receiver can send its estimate k̂ using
⌈log2(K+1)⌉+L bits at time n0, informing the transmitters that the decoding
must lie in set {nk̂,1, . . . , nk̂,L}; in this case, the number of feedback bits is less
than the worst-case KL + 1 that results from the strategy described above.
The details of the proof appear in Appendix E.5.1.

6.7 Summary

We study the agnostic random access model, in which each transmitter knows
nothing about the set of active transmitters beyond what it learns from limited
scheduled feedback from the receiver, and the receiver knows nothing about the
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set of active transmitters beyond what it learns from the channel output. In
our proposed rateless coding strategy, the decoder attempts to decode only at
a fixed, finite collection of decoding times. At each decoding time nt, it sends a
single bit of feedback to all transmitters indicating whether or not its estimate
for the number of active transmitters is t. We prove non-asymptotic and
second-order achievability results for the equal rate point (R, . . . , R) under our
assumptions on the channel (permutation-invariance (6.2), reducibility (6.3),
friendliness (6.8), and interference (6.9)). For a nontrivial class of discrete,
memoryless RACs, our proposed RAC code performs as well in its capacity
and dispersion terms as the best-known code for the discrete memoryless MAC
in operation; that is, it performs as well as if the transmitter set were known
a priori. The assumptions of permutation-invariance (6.2), reducibility (6.3),
and interference (6.9) together with our use of identical encoding guarantee (by
Lemma 6.2.2) that the equal rate point always lies on the sum-rate boundary
rather than on one of the corner points. For example, for two users, the
capacity region is a symmetric pentagon. This ensures that our simplified,
single-threshold decoding rule results in no loss in the first- or second-order
achievable rate terms, making the codes far more practical than prior schemes
[19]–[22] in which decoders employ 2k − 1 simultaneous threshold-rules. In
Section 6.4.4, we show that as long as K <∞, there is no loss in the first two
terms even if the decoder is tasked with decoding transmitter identity.

We also provide a tight approximation for the capacity and dispersion of the
adder-erasure RAC (6.15), which is an example channel satisfying our symme-
try conditions.

In order to decide whether there are any active transmitters without enu-
merating all K alternative hypotheses, we analyze universal hypothesis tests.
Results are given both for the case where the channel output alphabet is
finite and the case where the channel output alphabet is countably or un-
countably infinite. Using existing literature, it is possible in both cases to ob-
tain exponentially decaying maximum type-II error under the condition that
supx∈R|Fk(x)− F0(x)|≥ δ0 > 0 for all k ∈ [K]. We also derive the best third-
order asymptotics of the minimax type-II error (Theorem 6.5.3).

We conclude the chapter by giving some directions for generalizations and
future work.
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• Achievability of unequal rate points : While identical encoding is appeal-
ing from a practical perspective, it is also possible to design codes with
different transmitters operating at different rates. Such codes would
employ non-identical encoding at the transmitters, and they could also
employ a decoding rule with multiple, simultaneous threshold rules. In
[131, Section VI], Chen et al. use a similar strategy to derive third-order
achievability and converse results for the random access source coding
problem where operation at both identical and distinct rates is allowed.

• Unordered decoding times: Example scenarios where unordered decoding
times can arise include channels that do not satisfy the assumptions
(6.8) or (6.9), applications characterized by small message sizes (e.g., in
the internet of things), and scenarios where the system designer chooses
unordered decoding times (e.g., when a quick error is preferable to a long
period of low individual data rates caused by unusually high traffic in the
network). It is easy to modify our nonasymptotic bound (Theorem 6.3.2)
to capture the case where n0, . . . , nK are unordered.

• Non-i.i.d. input distributions at the random encoders: Our random cod-
ing design generalizes to scenarios where an arbitrary input distribution
PXnK is employed instead of PX×· · ·×PX . More broadly, non-stationary
input distributions can arise in communication over RACs where no sin-
gle PX simultaneously maximizes all mutual informations Ik. While we
explore in Section 6.4.4 how to choose the “best” single-letter input dis-
tribution PX for this scenario, it is possible to employ different input
distributions for each of the sub-codewords n1, n2 − n1, . . . , nK − nK−1

to achieve higher rates. The special case of Gaussian RAC, where the
codewords are drawn from a restricted subset of the power sphere is the
topic of the next chapter.

• Fading channels : A rateless code design for quasi-static fading RACs
where the channel fading coefficients are unavailable either at the trans-
mitters or at the receiver would constitute one of the most practically
relevant extensions of this work. In the quasi-static fading channel model
with a fixed blocklength, the achievable rate is dictated by a quantity
called the outage probability [132]. If the fading coefficient is small in a
communication epoch, then the channel is declared to be in outage and
reliable communication is not achieved. However, using rateless codes, it
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is possible to maintain reliable communication at the expense of reduced
rates (i.e., larger decoding times) when the fading coefficient is small
while achieving larger rates when the fading coefficient is large. While
Kowshik et al. [133] derive achievability results for the quasi-static fading
RAC in the fixed blocklength regime under the PUPE (6.107) criterion,
rateless coding over fading RACs is yet to be fully explored.
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C h a p t e r 7

GAUSSIAN MULTIPLE AND RANDOM ACCESS CHANNELS

7.1 Introduction

We consider a communication scenario where K transmitters are communi-
cating with a single receiver through a Gaussian channel. We study two prob-
lems in this network: multiple access and random access communication. In
the multiple access problem, the identity of active transmitters is known to
all transmitters and to the receiver. In the random access problem, the set of
active transmitters is unknown to the transmitters and to the receiver.

For K = 1, Shannon’s 1948 paper [1] derives the capacity

C(P ) =
1

2
log(1 + P ) (7.1)

using codewords with symbols drawn independently and identically distributed
(i.i.d.) according to the Gaussian distribution with variance P − δ for a very
small value δ; here P is the maximal (per-codeword) power constraint, and the
noise variance is 1. In [6], Shannon shows the performance improvement in the
achievable reliability function using codewords drawn uniformly at random on
an n-dimensional sphere of radius

√
nP and a maximum likelihood decoder.

Tan and Tomamichel [44] use the same distribution and decoder to prove the
achievability of a maximal rate of

C(P )−
√
V (P )

n
Q−1(ϵ) +

1

2

log n

n
+O

(
1

n

)
(7.2)

at blocklength n, average error probability ϵ, and maximal power P , where

V (P ) =
P (P + 2)

2(1 + P )2
(7.3)

is the dispersion of the point-to-point Gaussian channel; Polyanskiy et al.
prove a matching converse in [5]. Under a maximal-error constraint, the first-
and second-order terms in (7.2) remain the same under both maximal- and
average-power constraints across codewords; under an average-error constraint,
average- and maximal-power constraints yield different first- and second-order
performance limits [2, Ch. 4]. In this chapter, we only consider average-error
and maximal-power constraints.
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MolavianJazi and Laneman [24] and Scarlett et al. [22] generalize the asymp-
totic expansion in (7.2) to the two-transmitter Gaussian MAC, bounding the
achievable rate as a function of the 3× 3 dispersion matrix V(P1, P2), an ana-
logue of V (P ) assuming transmitters with per-codeword power constraints P1

and P2. The bound in [24] uses codewords uniformly distributed on the power
sphere and threshold decoding based on the information density ; the bound
in [22] uses constant composition codes and a quantization argument for the
Gaussian channel. This chapter improves those bounds using codewords uni-
formly distributed on the power sphere and a maximum likelihood decoding
rule.

Motivated by the desire to build superior RAC codes for Gaussian channels,
we here propose a new code design for the Gaussian RAC. In the proposed
code design, random codewords are designed by concatenating K partial code-
words of blocklengths n1, n2 − n1, . . . , nK − nK−1, each drawn from a uniform
distribution on a sphere of radius

√
(ni − ni−1)P . When k transmitters are

active, the resulting codewords are uniformly distributed on a restricted subset
of the sphere of radius

√
nkP . The receiver uses output typicality to determine

the number of transmitters and then applies a maximum likelihood decoding
rule. Despite the restricted subset of codewords that result from our design,
we achieve the same first-, second-, and third-order performance as the MAC
code. While this chapter focuses on Gaussian channels with maximal-power
and average-error constraints, we note that the ideas developed here may be
useful beyond this example channel and communication scenario.

7.1.1 Chapter Organization

The organization of the chapter is as follows. The system model, main result,
and discussions for the Gaussian MAC and Gaussian RAC appear in Sections
7.2 and 7.3. The proofs of the achievability bounds for the two-transmitter
Gaussian MAC, the K-transmitter Gaussian MAC, and the Gaussian RAC
appear in Sections 7.4–7.7.

7.2 An RCU Bound and its Analysis for the Gaussian MAC

7.2.1 An RCU Bound for General MACs

We begin by defining a two-transmitter MAC code.

Definition 7.2.1. An (M1,M2, ϵ)-MAC code for the channel with transition
law PY2|X1X2 consists of two encoding functions f1: [M1] → X1 and f2: [M2] →
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X2 and a decoding function g:Y2 → [M1]× [M2] such that

1

M1M2

M1∑
m1=1

M2∑
m2=1

P[g(Y2) ̸= (m1,m2) | (X1, X2) = (f1(m1), f2(m2))] ≤ ϵ, (7.4)

where Y2 is the channel output under inputs X1 and X2, and ϵ is the average-
error constraint.

We define the information densities for a MAC with channel transition law
PY2|X1X2 as

ı1(x1; y|x2) ≜ log
PY2|X1X2(y|x1, x2)
PY2|X2(y|x2)

(7.5a)

ı2(x2; y|x1) ≜ log
PY2|X1X2(y|x1, x2)
PY2|X1(y|x1)

(7.5b)

ı1,2(x1, x2; y) ≜ log
PY2|X1X2(y|x1, x2)

PY2(y)
, (7.5c)

where PX1 and PX2 are the channel input distributions, and PX1PX2 → PY2|X1X2 →
PY2 . The information density random vector is defined as

ı2 ≜

 ı1(X1;Y2|X2)

ı2(X2;Y2|X1)

ı1,2(X1, X2;Y2)

 , (7.6)

where (X1, X2, Y2) is distributed according to PX1PX2PY2|X1X2 .

Theorem 7.2.1, below, generalizes Polyanskiy et al.’s random-coding union
(RCU) achievability bound [5, Th. 16] to the MAC. Theorem 7.2.1 is derived
by Liu and Effros [113] in their work on LDPC codes and is inspired by a
new RCU bound for the Slepian-Wolf setting [134, Th. 2]. Its proof combines
random code design and a maximum likelihood decoder, which decodes to
the message pair with the maximum information density ı1,2(X1, X2;Y2). Our
main result on the Gaussian MAC, Theorem 7.2.2, below, analyzes the RCU
bound with PX1 and PX2 uniform on the power spheres.

Theorem 7.2.1 (RCU bound for the MAC [113, Th. 6]). Fix input distribu-
tions PX1 and PX2. Let

PX1,X1,X2,X2,Y2
(x1, x1, x2, x2, y)

= PX1(x1)PX1(x1)PX2(x2)PX2(x2)PY2|X1X2(y|x1, x2). (7.7)
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There exists an (M1,M2, ϵ)-MAC code for PY2|X1X2 such that

ϵ ≤ E
[
min

{
1, (M1 − 1)P[ı1(X1;Y2|X2) ≥ ı1(X1;Y2|X2) | X1, X2, Y2]

+(M2 − 1)P[ı2(X2;Y2|X1) ≥ ı2(X2;Y2|X1) | X1, X2, Y2]

+(M1 − 1)(M2 − 1)P[ı1,2(X1, X2;Y2) ≥ ı1,2(X1, X2;Y2) |X1, X2, Y2]
}]
. (7.8)

Remark 7.2.1. As noted in [113], Theorem 7.2.1 generalizes to the K-transmitter
MAC. Define the conditional information densities for the K-transmitter MAC
as

ıS(xS ; y|xSc) ≜ log
PYK |X[K]

(y|x[K])

PYK |XSc (y|xSc)
, (7.9)

where S ⊂ [K], S ≠ ∅, and Sc = [K] \ S, and the unconditional information
density as

ı[K](x[K]; y) ≜ log
PYK |X[K]

(y|x[K])

PYK
(y)

. (7.10)

Following arguments identical to those in the proof of Theorem 7.2.1, inequality
(7.8) extends to the K-transmitter MAC as

ϵ ≤ E
[
min

{
1,

∑
S∈P([K])

(∏
s∈S

(Ms − 1)

)
P[ıS(XS ;YK |XSc)

≥ ıS(XS ;YK |XSc) | X[K], YK ]

}]
. (7.11)

7.2.2 A Third-order Achievability Bound for the Gaussian MAC

We begin by modifying our code definition to incorporate maximal-power con-
straints (P1, P2) on the channel inputs. Let (X1,X2) and Y2 be the MAC
inputs and output, respectively.

Definition 7.2.2. An (n,M1,M2, ϵ, P1, P2)-MAC code for a two-transmitter
MAC comprises encoding functions f1: [M1] → Rn and f2: [M2] → Rn, and a
decoding function g:Rn → [M1]× [M2] such that

∥fi(mi)∥22 ≤ nPi ∀i ∈ {1, 2}, mi ∈ [Mi]

1

M1M2

M1∑
m1=1

M2∑
m2=1

P [g(Y2) ̸= (m1,m2)|(X1,X2) = (f1(m1), f2(m2))] ≤ ϵ.

The following notation is used in presenting our achievability result for the
Gaussian MAC with k ≥ 1 transmitters. Over n channel uses, the channel has
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inputs X1, . . . ,Xk ∈ Rn, additive noise Z ∼ N (0, In), and output

Yk = X⟨[k]⟩ + Z. (7.12)

The channel transition law induced by (7.12) can be written as

PYk|X[k]
(y|x[k]) =

n∏
i=1

PYk|X[k]
(yi|x1i, . . . , xki), (7.13)

where

PYk|X[k]
(y|x[k]) =

1√
2π

exp

{
−
(
y − x⟨[k]⟩

)2
2

}
. (7.14)

When Z ∼ N (0,V), and V is a d × d positive semi-definite matrix, the mul-
tidimensional analogue of the inverse Q−1(·) of the complementary Gaussian
cumulative distribution is

Qinv(V, ϵ) ≜
{
z ∈ Rd : P [Z ≤ z] ≥ 1− ϵ

}
. (7.15)

For d = 1, we have Q−1(ϵ) = min{z: z ∈ Qinv(1, ϵ)}.

Recall that C(P ) is the capacity function (7.1). The capacity vector for the
two-transmitter Gaussian MAC is defined as

C(P1, P2) ≜

 C(P1)

C(P2)

C(P1 + P2)

 . (7.16)

The dispersion matrix [24, eq. (25)] for the two-transmitter Gaussian MAC is
defined as

V(P1, P2) ≜

 V (P1) V1,2(P1, P2) V1,12(P1, P2)

V1,2(P1, P2) V (P2) V2,12(P1, P2)

V1,12(P1, P2) V2,12(P1, P2) V12(P1, P2)

 , (7.17)

where V (P ) is the dispersion function (7.3), and

V1,2(P1, P2) =
1

2

P1P2

(1 + P1)(1 + P2)
(7.18)

Vi,12(P1, P2) =
1

2

Pi(2 + P1 + P2)

(1 + Pi)(1 + P1 + P2)
, i ∈ {1, 2} (7.19)

V12(P1, P2) = V (P1 + P2) +
P1P2

(1 + P1 + P2)2
. (7.20)

The following theorem is the main result of this section.
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Theorem 7.2.2. For any ϵ ∈ (0, 1) and any P1, P2 > 0, an (n,M1,M2, ϵ, P1, P2)-
MAC code for the two-transmitter Gaussian MAC exists provided that logM1

logM2

logM1M2

 ∈ nC(P1, P2)−
√
nQinv(V(P1, P2), ϵ) +

1

2
log n1+O(1)1.

(7.21)

Proof: See Section 7.4.

Theorem 7.2.2 extends to the general K-transmitter Gaussian MAC. The defi-
nition of an (n,M[K], ϵ, P[K])-MAC code for the K-transmitter Gaussian MAC
with message set sizes M1, . . . ,MK and power constraints P1, . . . , PK is a natu-
ral extension of Definition 7.2.2, which defines the two-transmitter MAC code.
The following theorem bounds the achievable region for the K-transmitter
Gaussian MAC.

Theorem 7.2.3. For any ϵ ∈ (0, 1), and Pi > 0, i ∈ [K], an (n,M[K], ϵ, P[K])-
MAC code for the K-transmitter Gaussian MAC exists provided that(∑

s∈S

logMs:S ∈ P([K])

)
∈ nC(P[K])

−
√
nQinv(V(P[K]), ϵ) +

1

2
log n1+O (1)1, (7.22)

where C(P[K]) is the capacity vector

C(P[K]) ≜
(
C(P⟨S⟩) : S ∈ P([K])

)
∈ R2K−1, (7.23)

and V(P[K]) is the
(
2K − 1

)
×
(
2K − 1

)
dispersion matrix with the elements

VS1,S2(P[K]), S1,S2 ∈ P([K]), given by

VS1,S2(P[K]) ≜
P⟨S1⟩P⟨S2⟩ + 2P⟨S1∩S2⟩ +

(
P⟨S1∩S2⟩

)2 − P 2
⟨S1∩S2⟩

2(1 + P⟨S1⟩)(1 + P⟨S2⟩)
. (7.24)

Proof: See Section 7.5.

Before concluding this section, we make several remarks about Theorems 7.2.2
and 7.2.3 above.

1. Theorems 7.2.2 and 7.2.3 apply the RCU bound (Theorem 7.2.1) with
independent inputs uniformly distributed on the n-dimensional origin-
centered spheres with radii

√
nPi, i ∈ [K]. Theorem 7.2.2 matches the
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first- and second-order terms of MolavianJazi and Laneman [24] and
Scarlett et al. [22], and improves the third-order term from O

(
n1/4

)
1

in [24] and O
(
n1/4 log n

)
1 in [22] to 1

2
log n1+O(1)1.

2. Our proof technique in Theorem 7.2.2 differs from the technique in [24]
in two key ways. First, we use a maximum likelihood decoder in place
of the set of simultaneous threshold rules based on unconditional and
conditional information densities from [24]; the change of the decoding
rule is essential for obtaining the third-order term 1

2
log n1 + O(1)1 in

Theorem 7.2.2. Second, we refine the analysis bounding the probability
that the information density random vector ı2 belongs to a set D ⊆ R3.
Our non-i.i.d. input distribution prevents direct application of the Berry-
Esseen theorem. However, given that the inner product of the inputs
⟨X1,X2⟩ equals a constant, the information density random vector ı2

can be written as a sum of independent random vectors. Therefore, we
apply the Berry-Esseen theorem after conditioning on the inner product
⟨X1,X2⟩ and then integrate the resulting probabilities over the range
of the inner product. In order to approximate the resulting probability
by the probability that a Gaussian vector belongs to the same set, we
use a result (Lemma 7.4.5 in Section 7.4.1, below) that approximates
the normalized inner product 1√

nP1P2
⟨X1,X2⟩ by a standard Gaussian

random variable. We then derive a bound (Lemma 7.4.4 in Section 7.4.1,
below) on the total variation distance between two Gaussian vectors.
This analysis appears in Section 7.4.6.

This approach contrasts with [24], which bounds the probability that
the information density random vector ı2 belongs to a set D. Writing ı2

as a vector-valued function of an average of i.i.d. Gaussian vectors, [24,
Prop. 1] applies a central limit theorem for functions of sums to prove
O
(

1
n1/4

)
convergence to normality. Our technique, described above, im-

proves the rate of convergence to normality to O
(

1√
n

)
, which is the

rate of convergence for i.i.d. sums. This improvement implies that the
threshold-based decoding rule in [24] achieves a third-order term O(1)1.

3. Our technique for proving Theorems 7.2.2 and 7.2.3 parallels those used
for non-singular discrete memoryless channels [2, Th. 53] and for the
point-to-point Gaussian channel [44]. In [2, Th. 53], Polyanskiy applies
the RCU bound using a refined large deviations result Lemma 2.5.1;
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the use of a non-i.i.d. input distribution for the Gaussian channel pre-
vents the direct application of Lemma 2.5.1. In [44, eq. (52)], Tan and
Tomamichel derive an alternative to Lemma 2.5.1 for the point-to-point
Gaussian channel in order to accommodate codewords drawn uniformly
on an n-dimensional sphere. While evaluating the RCU bound in this
chapter, we extend the bound in [44, eq. (52)] to the Gaussian MAC.

4. For the symmetric setting, where Pi = P and Mi = M for all i ∈ [K],
Theorem 7.2.3 reduces to the scalar inequality, below. This result refines
the result in [24, Th. 2] to the third-order term and generalizes it to the
K-transmitter MAC.

Corollary 7.2.1. For any ϵ ∈ (0, 1) and P > 0, an (n,M1, ϵ, P1)-MAC
code for the K-transmitter Gaussian MAC exists provided that

K logM ≤ nC(KP )

−
√
n(V (KP ) + Vcr(K,P ))Q

−1(ϵ) +
1

2
log n+O(1). (7.25)

Again, C(·) and V (·) are the capacity (7.1) and dispersion (7.3) func-
tions, respectively, and Vcr(K,P ) is the cross dispersion term

Vcr(K,P ) ≜
K(K − 1)P 2

2(1 +KP )2
. (7.26)

Proof: See Appendix F.1.

5. In [119], Fong and Tan derive a converse for the Gaussian MAC with a
second-order term O(

√
n log n)1. Kosut [23] improves the second-order

term in the converse to O (
√
n)1. The coefficients of the second-order

term in [23] do not match the second-order term in the achievability
bounds proven in Theorem 7.2.2. As discussed in Chapter 6, closing
the gap between the second-order terms of the MAC achievability and
converse results is a challenging open problem.

7.3 A Nonasymptotic Bound and its Analysis for the Gaussian
Random Access Channel

7.3.1 System Model

Channel model : Given an unknown set of active transmitters A, the Gaussian
channel (7.14) depends on A only through the number of active transmitters,
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|A|= k, that is, PYk|XA = PYk|X[k]
. Therefore, in order to capture the scenario

of a memoryless Gaussian channel with K possible transmitters, a single re-
ceiver, and an unknown activity pattern A ⊆ [K], we describe the Gaussian
RAC by a family of Gaussian MACs {PYk|X[k]

}Kk=0 (7.14), each indexed by the
number of active transmitters k ∈ {0, . . . , K}. Recall that this Gaussian RAC
model satisfies the assumptions in Section 6.2.4. As in Chapter 6, we choose
a compound channel model in order to avoid the need to assign probabilities
to each activity pattern A.

Communication strategy : We apply the epoch-based rateless communication
strategy that we proposed in Chapter 6. Each transmitter is either active or
silent during a whole epoch. At each of times n0, n1, . . . , the decoder broad-
casts to all transmitters a single bit — sending value 1 if it can decode and 0
otherwise. The transmission of 1 at time nt ends the current epoch and starts
the next, indicating that the decoder’s estimate of the number of transmitters
is t. As in Chapter 6, we employ identical encoding, with each active trans-
mitter i using the same encoding function to describe its message Wi ∈ [M ].
Identical encoding here requires Pi = P and Mi =M for all i. The task of the
decoder is to decode a list of messages sent by the active transmitters A but
not the identities of those transmitters. The messages in WA are independent
and uniformly distributed on alphabet [M ].

Since encoding is identical and the channel is invariant to permutation of
its inputs, we assume without loss of generality that |A|= k implies A =

[k]. Intuitively, given identical encoding and our Gaussian channel, one would
expect that interference increases with the number of active transmitters k,
and therefore that the decoding time nk increases with k. Since the capacity
per transmitter for the k-transmitter Gaussian MAC, 1

k
C(kP ), decreases with

k, we can choose n0 < · · · < nK for M large enough (see Lemma 6.2.1). As
a notational convenience, we use nK to represent the largest decoding time.
Unless it stops the encoders’ transmissions earlier, at time nK , the decoder
sees

Yk = X⟨[k]⟩ + Z ∈ RnK for k ∈ [K], (7.27)

where X1, . . . ,Xk are nK-dimensional channel inputs, Z ∼ N (0, InK
) is the

Gaussian noise, and Yk is the nK-dimensional output when k transmitters are
active. When no transmitters are active, X⟨[0]⟩ = 0 and Y0 = Z. At each
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time nt < nK , the decoder has access to the first nt components of vector Yk,
which is denoted by Y

[nt]
k .1

As in Chapter 6, we assume an agnostic random access model, where the
transmitters know nothing about the set A of active transmitters except their
own membership and the feedback from the receiver. The receiver knows
nothing about A except what it can learn from the channel output Yk. Beside
these, we require that every code must satisfy a power constraint for every
available decoding time.

Code definition: The following definition formalizes the rateless Gaussian RAC
code described above.

Definition 7.3.1. An
(
{nj, ϵj}Kj=0,M, P

)
-RAC code for the Gaussian RAC

with K transmitters consists of a single encoding function f:U × [M ] → RnK

and decoding functions gk:U × Rnk → [M ]k ∪ {e} for k = 0, . . . , K, where the
input u ∈ U to the encoder and decoders is common randomness shared by
all transmitters and the receiver.2 If it cannot decode at time nk, the decoder
outputs the erasure symbol “e" and broadcasts value 0 to the transmitters,
informing them that they should keep transmitting. If it can decode at time nk,
the decoder broadcasts value 1 to the transmitters, informing them that they
should stop transmitting. The codewords satisfy the maximal-power constraints∥∥f(u,m)[nj ]

∥∥2
2
≤ njP for m ∈ [M ], u ∈ U , j ∈ [K]. (7.28)

If k transmitters are active, then the average error probability in decoding k
messages at time nk is bounded as

1

Mk

∑
m[k]∈[M ]k

P
[{ ⋃

t:nt≤nk,t ̸=k

{
gt(U,Y

[nt]
k ) ̸= e

}}⋃
{
gk(U,Y

[nk]
k )

π

̸= m[k]

}∣∣∣∣X[nk]
[k] = f(U,m[k])

[nk]

]
≤ ϵk, (7.29)

where f(U,mi) is the codeword for the message mi ∈ [M ], U is the common
randomness random variable, and the output Yk is generated according to

1Y
[nt]
k is denoted by Y nt

k in Chapter 6; we here switch to Y
[nt]
k for notational consistency

with the remainder of the chapter.
2The realization u of the common randomness random variable U initializes the encoders

and the decoder. At the start of each communication epoch, u is shared by all transmitters
and the receiver. We show in Appendix E.4 that the alphabet size of U need never exceed
K + 1.
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(7.27). If no transmitters are active, then the decoder decodes to the unique
message [M ]0 ≜ {0} with probability of error bounded as

P
[
g0(U,Y

[n0]
0 ) ̸= 0

]
≤ ϵ0. (7.30)

7.3.2 A Third-order Achievability Result for the Gaussian RAC

The following theorem is the main result of this section.

Theorem 7.3.1. Fix K < ∞, ϵk ∈ (0, 1) for k ∈ {0} ∪ [K], and M . An(
{nj, ϵj}Kj=0,M, P

)
-RAC code exists for the Gaussian RAC with K possible

transmitters provided that

k logM ≤ nkC(kP )−
√
nk(V (kP ) + Vcr(k, P ))Q

−1(ϵk) +
1

2
log nk +O(1)

(7.31)

for k ∈ [K], and

n0 ≥
4(1 + P 2)

P 2
log n1 + o(log n1), (7.32)

where C(·), V (·), and Vcr(·, ·) are the capacity (7.1), dispersion (7.3), and cross
dispersion functions (7.26), respectively. All uses of O(·) and o(·) are taken
with respect to n1.

Remark 7.3.1. From (7.31), n1 → ∞ implies that n2, . . . , nK also grow with-
out bound. Since all target error values ϵk are assumed to be constants with
respect to n1, choosing decoding times n0, . . . , nK so that (7.31) and (7.32)
hold with equality results in nk = O(n1) for k ≥ 2, and n0 = O(log n1) (see
(7.35), below).

Proof: Theorem 7.3.1 follows from the non-asymptotic achievability bound
in Theorem 7.3.2, below, which bounds the average error probability of the
proposed Gaussian RAC code. See Section 7.7 for details.

Theorem 7.3.2. Fix constants λk > 0 for k ∈ {0} ∪ [K] and distribution PX

on RnK . Then, there exists an
(
{nj, ϵj}Kj=0,M, P

)
-RAC code with

ϵ0 ≤ P
[∣∣∣∥∥∥Y[n0]

0

∥∥∥2 − n0

∣∣∣ > n0λ0

]
(7.33)

ϵk ≤
k(k − 1)

2M
+ P

 k⋃
i=1

⋃
j:nj≤nk

j≥1

{∥∥∥X[nj ]
i

∥∥∥2
2
> njP

} (7.34a)
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+ P

[ ⋃
t:nt≤nk
t̸=k

{∣∣∣ ∥∥∥Y[nt]
k

∥∥∥2
2
− nt(1 + tP )

∣∣∣ ≤ ntλt

}
⋃{∣∣∣ ∥∥∥Y[nk]

k

∥∥∥2
2
− nk(1 + kP )

∣∣∣ > nkλk

}]
(7.34b)

+ E
[
min

{
1,

k∑
s=1

(
k

s

)(
M − k

s

)
P[ı[s](X

[nk]

[s] ;Y
[nk]
k |X[nk]

[s+1:k])ı[s](X
[nk]
[s] ;Y

[nk]
k |X[nk]

[s+1:k]) | X
[nk]
[k] ,Y

[nk]
k ]
}]

(7.34c)

for all k ∈ [K], where X[K],X[K],Yk ∈ RnK are distributed according to
PX[K],X[K],Yk

(x[K],x[K],yk) =
(∏

j∈[K] PX(xj)PX(xj)
)
PYk|X[k]

(yk|x[k]), and
PYk|X[k]

is given in (7.27).

Proof: The terms in (7.34a) capture the probability that at least two transmit-
ters send the same message and the probability of a power constraint violation,
respectively. We treat the event that at least two transmitters send the same
message as an error because the analysis relies on the codeword independence
across transmitters. The probability in (7.34b) captures the probability that
the decoder decodes at a wrong decoding time, and the expectation in (7.34c)
captures the probability that the decoder decodes an incorrect message list
at the correct decoding time nk for k active transmitters. See Section 7.6 for
details.

We conclude this section with some remarks concerning Theorems 7.3.1 and
7.3.2.

1. Theorem 7.3.1 shows that for the Gaussian RAC, our proposed rateless
code performs as well in the first-, second-, and third-order terms as
the best known MAC communication scheme without feedback (Corol-
lary 7.2.1). In other words, the first three terms on the right-hand side
of (7.31) for k active transmitters match the first three terms of the
largest achievable sum-rate in our achievability bound in (7.25) for the
k-transmitter MAC.

2. To prove Theorem 7.3.1, we particularize the distribution of the random
codewords, PX, in Theorem 7.3.2 as follows. The first n1 symbols are
drawn uniformly from Sn1(

√
n1P ). The sub-vector of symbols indexed

from nj−1+1 to nj is drawn uniformly from Snj−nj−1(
√
(nj − nj−1)P ) for
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j = 2, . . . , K. These K sub-codewords, each uniformly distributed on an
incremental power sphere, are independent. Under this PX, the maximal-
power constraint in (7.28) is satisfied with equality for each number
of active transmitters. Rather than using an encoding function that
depends on the feedback from the receiver to the transmitters, we use
an encoding function that is suitable for all possible transmitter activity
patterns and does not depend on the receiver’s feedback. Given that a
decision is made at time nk, the active transmitters have transmitted
only the first nk symbols of the codewords representing their messages
during that epoch, and the remaining nK −nk symbols of the codewords
are not transmitted.

3. As noted in [91], our achievability proofs leverage the fact that the num-
ber of active transmitters can be reliably estimated from the total re-
ceived power. This is possible because when k active transmitters send

k distinct messages, the average received power 1
nk
E
[∥∥∥Y[nk]

k

∥∥∥2
2

]
at time

nk, concentrates around its mean value, 1 + kP , and this mean is dis-
tinct for each k ∈ {0} ∪ [K]. The decoding function used at time nk

combines the maximum likelihood decoding rule for the k-transmitter
MAC with a typicality rule based on the power of the output. The typ-
icality rule decides to decode at time nk if the average received power
at time nk lies in the interval

[
1 + kP − P

2
, 1 + kP + P

2

]
for k ≥ 1 and[

1−O(n0
− 1

2 ), 1 +O(n0
− 1

2 )
]

for k = 0. In this case, the decoder de-
codes k messages at time nk by using the maximum likelihood decod-
ing rule. When at least two transmitters send the same message (e.g.,

X
[nk]
1 = X

[nk]
2 ), 1

nk
E
[∥∥∥Y[nk]

k

∥∥∥2
2

]
≥ 1+(k+2)P . In our decoder design, we

choose not to handle this scenario because the probability that at least
two transmitters send the same message is negligible as shown in (7.177)
in Section 7.6.2, below.

4. Theorem 7.3.2 applies without change to non-Gaussian RACs with power
constraints satisfying the conditions in Theorem 6.3.1; the tightness of
the bound depends on how well k can be estimated from the received
power.

5. The proof of Theorem 7.3.1 indicates that the constant term O(1) in
(7.31) depends on the number of active transmitters k, but not on the
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total number of transmitters K. Not requiring the decoder to determine
transmitter identity is crucial for this O(1) bound to hold.

6. By choosing n1, . . . , nK such that the inequalities in (7.31) are satisfied
with equality for each k, we can express each nk as a function of n1, ϵ1,
ϵk, k, and P , given by

nk = n1
kC1

Ck

+
√
n1

(
1

Ck

√
kC1Vk
Ck

Q−1(ϵk)−
k

Ck

√
V1Q

−1(ϵ1)

)
+
k − 1

2Ck

log n1 +O(1), (7.35)

where Ck = C(kP ) and Vk = V (kP ) + Vcr(k, P ). We derive (7.35) by
computing the Taylor series expansion of the equation for nk (7.31) in
terms of k, P, ϵk, and logM ; we then replace logM by (7.31) for k = 1.
Fig. 7.1 shows the approximate decoding times {nk}6k=1 (neglecting the
O(1) term in (7.35)), where P = 1, ϵk = 10−3 for all k, and the smallest
decoding time n1 ∈ [100, 1000].

7. Theorem 7.3.1 implies that the input distribution used for the Gaus-
sian RAC also achieves the performance in Theorem 7.2.3 for the K-
transmitter Gaussian MAC. As long as nj − nj−1 ≥ cnK holds for some
constant c > 0 for all j ∈ [K], requiring separate power constraints on
each sub-block of the codewords as∥∥fi(mi)

[nj ]
∥∥2
2
≤ njPi for mi ∈ [Mi], i ∈ [K], j ∈ [K] (7.36)

does not degrade our performance bound, which matches the first three
terms in the expansion in Theorem 7.2.3. The support of the distribution
from which the codewords are drawn for the Gaussian MAC and RAC
is illustrated in Fig. 7.2.

8. As described above, the number of active transmitters in an epoch is
estimated via a sequence of decodability tests. An alternative strategy
is to estimate the number of active transmitters in one shot from the
received power at time n0, and to inform the transmitters about the
estimate, t, of the number of active transmitters via a ⌈log(K + 1)⌉-
bit feedback at time n0. Given this knowledge, active transmitters can
employ an encoding function matched to t. We show in Appendix F.2
that this modified coding strategy affects our bound in (7.31) only in the
O(1) term.
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Figure 7.1: Let P = 1, ϵk = 10−3 for all k. The decoding times {nk}6k=1 are
given according to (7.35), where the O(1) term in (7.35) is ignored,

and n1 ∈ [100, 1000].

9. By using distinct codebooks for each transmitter, the decoder can asso-
ciate transmitter identities with the decoded messages. We show that
the first three terms of the expansion in (7.31) are still achievable in this
setting.

7.4 Proof of Theorem 7.2.2

7.4.1 Supporting Lemmas

We begin by presenting the lemmas that play a key role in the proof of The-
orem 7.2.2. The first two lemmas are used to bound the probability that the
squared norm of the output of the channel, Y2 = X1 +X2+Z, does not belong
to its typical interval around 1 + P1 + P2.

Lemma 7.4.1 from [24, Prop. 2] uniformly bounds the Radon-Nikodym deriva-
tive of the conditional and unconditional output distributions of the Gaussian
MAC (7.13) in response to the spherical inputs with respect to the output dis-
tributions that result under i.i.d. Gaussian inputs. The squared norm of the
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Figure 7.2: Let K = 2, n1 = 2, n2 = 3, and P1 = P2 = P = 1
3
. The support

of the input distribution for the Gaussian RAC is the Cartesian product of
Sn1(

√
n1P ) (here a circle with radius

√
2P ) and Sn2−n1(

√
(n2 − n1)P ) (here

the set {−
√
P ,

√
P}.) This set, shown above as a pair of circles, is a subset of

Sn2(
√
n2P ); the set Sn2(

√
n2P ) is the support of the input distribution used

in Theorem 7.2.3 for the Gaussian MAC.

output in response to the i.i.d. Gaussian inputs has a chi-squared distribution.

Lemma 7.4.1 (MolavianJazi and Laneman [24, Prop. 2]). 1. 2-Transmitter
MAC: Let X1 and X2 be independent, distributed uniformly on Sn(

√
nP1)

and Sn(
√
nP2), respectively. Let X̃i ∼ N (0, PiIn), i ∈ [2], be inde-

pendent of each other. Let PX1X2 → PY2|X1X2 → PY2, and PX̃1X̃2
→

PY2|X1X2 → PỸ2
, where PY2|X1X2 is the Gaussian MAC (7.13) with

k = 2 transmitters. Then there exists n0 ∈ N such that for all n ≥ n0,
∀ (x1,x2,y) ∈ Rn⊗3, it holds that

PY2|X2(y|x2)

PỸ2|X̃2
(y|x2)

≤ κ1(P1) = 27

√
π

8

1 + P1√
1 + 2P1

(7.37)
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PY2(y)

PỸ2
(y)

≤ κ2(P1, P2) =
9

2π
√
2

P1 + P2√
P1P2

. (7.38)

If there is no additive noise Z in (7.12), (7.38) continues to hold. In-
equalities (7.37)–(7.38) are generalized to the K-transmitter Gaussian
MAC as follows.

2. K-Transmitter MAC: Let X1, . . . ,XK be independent, and for each i ∈
[K], let Xi be distributed uniformly on Sn(

√
nPi). Let X̃i ∼ N (0, PiIn)

for i ∈ [K], where Xi are independent of each other. Let PX[K]
→

PYK |X[K]
→ PYK

, and PX̃[K]
→ PYK |X[K]

→ PỸK
, where PYK |X[K]

is the
Gaussian MAC in (7.13) with K transmitters. Then there exists nK ∈ N
such that for all n ≥ nK, for any x[K] ∈ Rn⊗K, y ∈ Rn, and non-empty
S ∈ P([K]), it holds that

PYK |XSc (y|xSc)

PỸK |X̃Sc
(y|xSc)

≤ κ|S|(Ps : s ∈ S), (7.39)

where κ|S|(Ps : s ∈ S) is a constant depending only on the power values
(Ps : s ∈ S).

The proof of (7.39), which is given in [135, eq. (5.138)], relies on a recursive
formula for the distribution of YK .

Lemma 7.4.2, stated next, bounds the tail probabilities of the chi-squared
distribution from above.

Lemma 7.4.2 (Laurent and Massart laurent2000Chi). Let χ2
n be a random

variable with a chi-squared distribution and n degrees of freedom. Then for
t > 0,

P
[
χ2
n − n ≥ 2

√
nt+ 2t

]
≤ exp{−t} (7.40)

P
[
χ2
n − n ≤ −2

√
nt
]
≤ exp{−t}. (7.41)

Lemma 7.4.3, stated next, is used as the main tool to obtain large deviation
bounds on the information density random variables that arise when we apply
the RCU bound.

Lemma 7.4.3 (Tan and Tomamichel [44, eq. (52)]). Let Z = (Z1, . . . , Zn) ∼
N (0, In), x = (

√
nP , 0, . . . , 0), and let s > 0 and P > 0 be constants. Then
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for any a ∈ R, µ > 0, and n large enough,

P
[
Z1 ∈

[
a√
nP

,
a+ µ√
nP

]∣∣∣∣∥x+ Z∥22 = ns

]
≤ L(P, s)µ√

n
, (7.42)

where

L(P, s) ≜
8(Ps)3/2√

2π

√
1 + 4Ps−

√
1 + 4Ps

(
√
1 + 4Ps− 1)5

. (7.43)

We state the multidimensional Berry-Esseen theorem for sums of independent
but not necessarily identical random vectors. The theorem is used as the main
tool to bound the probability that the information density random vector
belongs to a given set.

Theorem 7.4.1 (Bentkus [136]). Let U1, . . . ,Un be zero mean, independent
random vectors in Rd, and let Z ∼ N (0, Id). Denote S =

∑n
i=1Ui, and

T =
∑n

i=1 E [∥Ui∥3]. Assume that Cov [S] = Id. Then, there exists a constant
c > 0 such that

sup
A∈Cd

|P [S ∈ A]− P[Z ∈ A]| ≤ cd1/4T , (7.44)

where Cd is the set of all convex, Borel measurable subsets of Rd.

Raič [137, Th. 1.1] establishes that the constant cd1/4 in (7.44) can be re-
placed by 42d1/4 + 16. Tan and Kosut [21] provide the following corollary to
Theorem 7.4.1 for the case of a general nonsingular Cov [S].

Corollary 7.4.1 (Tan and Kosut [21, Corollary 8]). For the setup in Theo-
rem 7.4.1, assume that Cov [S] = nV, where λmin(V) > 0 denotes the minimum
eigenvalue of V, and T = 1

n

∑n
i=1 E [∥Ui∥3]. Let Z ∼ N (0,V). Then, there

exists a constant c > 0 such that

sup
A∈Cd

∣∣∣∣P [ 1√
n
S ∈ A

]
− P[Z ∈ A]

∣∣∣∣ ≤ cd1/4T√
nλmin(V)3/2

. (7.45)

Lemmas 7.4.4 and 7.4.5, below, are used to bound the probability that the in-
formation density random vector belongs to a set. The total variation distance
between the measures PX and PY on Rd is defined as

TV(PX , PY ) ≜ sup
D∈Rd

|P [X ∈ D]− P [Y ∈ D]|
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=
1

2

∫
x∈Rd

|dPX(x)− dPY (x)| . (7.46)

Lemma 7.4.4, stated next, bounds the total variation distance between two
Gaussian vectors.

Lemma 7.4.4. Let Σ1 and Σ2 be two positive definite d× d matrices, and let
µ1,µ2 ∈ Rd be two constant vectors. Then,

TV(N (µ1,Σ1),N (µ2,Σ2))

≤ 2 +
√
6

4

∥∥∥Σ−1/2
1 Σ2Σ

−1/2
1 − Id

∥∥∥
F
+

1

2

√
(µ1 − µ2)TΣ

−1
1 (µ1 − µ2),(7.47)

where ∥·∥F denotes the Frobenius norm.

Proof: See Appendix F.3.

A weaker version of the bound in Lemma 7.4.4 by Devroye et al. appears in
[138, Th. 1.1]. Like our proof, the proof of [138, Th. 1.1] relies on Pinsker’s
inequality. We improve the factor in front of the Frobenius norm from 1.5 in
[138, Th 1.1] to 2+

√
6

4
≈ 1.113 by using the result in [139, Th. 1.1] to lower

bound the logdeterminant of the matrix Σ
−1/2
1 Σ2Σ

−1/2
1 − Id in (7.47).

Lemma 7.4.5, stated next, gives an upper bound on the total variation distance
between the marginal distribution of the first k dimensions of a random vari-
able distributed uniformly on Sn(

√
n) and the k-dimensional standard Gaus-

sian random vector.

Lemma 7.4.5 (Stam [140, Th. 2]). Let X = (X1, . . . , Xn) be distributed
uniformly on Sn(

√
n). Let X[k] = (X1, . . . , Xk) contain the first k coordinates

of X. Then,

TV(PX[k] ,N (0, Ik)) ≤ n
1
2
k(n− k − 2)−

1
2
k − 1 (7.48)

for n > k + 2.

We use Lemma 7.4.5 with k = 1 to approximate the inner product ⟨X1,X2⟩
by a Gaussian random variable, which facilitates an application of the Berry-
Esseen theorem in Section 7.4.6.

The proof of Theorem 7.2.2 relies on a random coding argument and Theo-
rem 7.2.1. The asymptotic analysis of the RCU bound (Theorem 7.2.1) bor-
rows some techniques from the point-to-point case [44].
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7.4.2 Encoding and Decoding for the MAC

We select the distributions of the independent inputs X1 and X2 as the uniform
distributions on Sn(

√
nP1) and Sn(

√
nP2), which are the n-dimensional spheres

centered at the origin with radii
√
nP1 and

√
nP2, respectively. The resulting

distribution is

PX1(x1)PX2(x2) =
δ(∥x1∥22 − nP1)

Sn(
√
nP1)

δ(∥x2∥22 − nP2)

Sn(
√
nP2)

, (7.49)

where δ(·) is the Dirac delta function, and

Sn(r) ≜
2πn/2

Γ(n/2)
rn−1 (7.50)

is the surface area of an n-dimensional sphere Sn(r) with radius r. We draw
M1 codewords i.i.d. from PX1 and M2 codewords i.i.d. from PX2 , respectively.
We denote these by fi(mi) for mi ∈ [Mi], i ∈ {1, 2}.

In order to use Theorem 7.2.1, the channel PY2|X1X2 is particularized to the
two-transmitter Gaussian MAC in (7.13). Upon receiving the output sequence
y, the decoder employs a maximum likelihood decoding rule, given by

g(y) =


(m1,m2) if ı1,2(f1(m1), f2(m2);y) > ı1,2(f1(m

′
1), f2(m

′
2);y)

for all (m′
1,m

′
2) ̸= (m1,m2), (m

′
1,m

′
2) ∈ [M1]× [M2]

error otherwise.

(7.51)

We treat all ties in (7.51) as errors because the probability that two codewords
result in exactly the same information density is negligible due to the continuity
of the noise. Substituting the transition law of the Gaussian MAC (7.13) and
the uniform input distributions on the power spheres (7.49) into (7.5a)–(7.5c),
we compute for any (x1,x2,y) ∈ Rn⊗3

ı1(x1;y|x2) =
n

2
log

1

2π
+ ⟨y − x2,x1⟩ −

∥y − x2∥22
2

−nP1

2
− logPY2|X2(y|x2) (7.52)

ı2(x2;y|x1) =
n

2
log

1

2π
+ ⟨y − x1,x2⟩ −

∥y − x1∥22
2

−nP2

2
− logPY2|X1(y|x1) (7.53)

ı1,2(x1,x2;y) =
n

2
log

1

2π
+ ⟨y,x1 + x2⟩ −

∥y∥22
2
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−∥x1 + x2∥22
2

− logPY2(y). (7.54)

Observe that for each x2 and y, ı1(x1;y|x2) depends on x1 only through the
inner product ⟨y − x2,x1⟩, and for each y, ı1,2(x1,x2;y) depends on (x1,x2)

only through ⟨y,x1 + x2⟩ − ⟨x1,x2⟩. By the input-output relation in (7.12),
the conditional information density for two transmitters, ı1(x1;y|x2), can be
reduced to the unconditional information density for a single transmitter as

ı1(x1;y|x2) = ı1(x1;y − x2) ≜ log
PY1|X1(y − x2|x1)

PY1(y − x2)
, (7.55)

where Y1 = X1 + Z is the output of the channel with a single transmitter.

7.4.3 Typical Set for the MAC

For the rest of the proof, Z ∼ N (0, In) denotes the Gaussian noise, which is
independent of the channel inputs X1 and X2. Note that the expectations of
the squared norms of X1 + Z,X2 + Z and Y2 are n(1 + P1), n(1 + P2), and
n(1 + P1 + P2), respectively. We define a typical set for vector (X1 + Z,X2 +

Z,Y2) by

F ≜ ×
S∈P([2])

F(S) ⊆ Rn⊗3, (7.56)

where

F(S) ≜
{
x⟨S⟩ + z ∈ Rn:

1

n

∥∥x⟨S⟩ + z
∥∥2
2
∈ I(S)

}
(7.57)

I(S) ≜ [1 + P⟨S⟩ − n−1/3, 1 + P⟨S⟩ + n−1/3]. (7.58)

We next show that for n large enough,

P [(X1 + Z,X2 + Z,Y2) /∈ F ] ≤ exp{−c2n1/3}, (7.59)

where c2 > 0 is a constant.

To bound the probability that the triplet (X1+Z,X2+Z,Y2) does not belong
to the typical set F , we use Lemma 7.4.1 to approximate the squared norms
∥X1 + Z∥22, ∥X2 + Z∥22, and ∥Y2∥22 by multiples of chi-squared distributed
random variables with n degrees of freedom. We then use Lemma 7.4.2 to
bound the two-sided tail probability of these chi-squared distributed ran-
dom variables. Weakening the upper bound (7.40) in Lemma 7.4.2 using
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2
√
2nt ≥ 2

√
nt + 2t for 0 < t ≤ n

8
≤ (3 − 2

√
2)n, we get the following

concentration inequalities for the squared norms of the random vectors X1+Z

and Y2

P
[∣∣∥X1 + Z∥22 − n(1 + P1)

∣∣ > nt1
]
≤ 2κ1(P1) exp

{
− nt21
8(1 + P1)2

}
(7.60)

P
[∣∣∥Y2∥22 − n(1 + P1 + P2)

∣∣ > nt2
]
≤ 2κ2(P1, P2) exp

{
− nt22
8(1 + P1 + P2)2

}
(7.61)

for t1 ∈ (0, 1 + P1), and t2 ∈ (0, 1 + P1 + P2), where κ1(P1) and κ2(P1, P2) are
constants defined in Lemma 7.4.1. We deduce (7.59) by the union bound and
setting t1 = t2 = n−1/3 in (7.60)–(7.61).

7.4.4 A Large Deviation Bound on the Mutual Information Ran-
dom Variables

We introduce the following functions that are analogous to the one used in the
point-to-point channel in [44, eq. (27)]

g1(t;y,x2) ≜ P
[
ı1(X1;Y2|X2) ≥ t | X2 = x2,Y2 = y

]
(7.62)

g2(t;y,x1) ≜ P
[
ı2(X2;Y2|X1) ≥ t | X1 = x1,Y2 = y

]
(7.63)

g1,2(t;y) ≜ P
[
ı1,2(X1,X2;Y2) ≥ t | Y2 = y

]
, (7.64)

where

PX1X2X1X2Y2
(x1,x2,x1,x2,y)

= PX1(x1)PX2(x2)PX1(x1)PX2(x2)PY2|X1X2(y|x1,x2).

The following lemma, which generalizes [44, eq. (53)] to the Gaussian MAC,
gives upper bounds on these functions. We use Lemma 7.4.6 in the evaluation
of the RCU bound.

Lemma 7.4.6. Let (y − x2,y − x1,y) ∈ F , where the set F is defined in
(7.56). Then, for n large enough,

g1(t;y,x2) ≤
G1 exp {−t}√

n
(7.65a)

g2(t;y,x1) ≤
G2 exp {−t}√

n
(7.65b)

g1,2(t;y) ≤
G1,2 exp {−t}√

n
, (7.65c)
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where G1, G2, and G1,2 are positive constants depending only on P1, P2, and
(P1, P2), respectively.

Proof: The bounds in (7.65a) and (7.65b) follow from the equivalence (stated
in (7.55)) between the conditional information density for two transmitters
and the unconditional information density for a single transmitter combined
with the analysis in [44, Sec. IV-E]. The constants in (7.65a) and (7.65b) are

Gi = (3 log 2)L(Pi, 1 + Pi), i ∈ {1, 2}, (7.66)

where L(·, ·) is the function defined in (7.43).

Bounding the function g1,2(t;y) is more challenging. While ∥X1∥22 is a constant
under the uniform distribution on a power sphere, ∥X1 +X2∥22 is not. The
proof of (7.65c) follows steps similar to [44, Sec. IV-E]. First, we change the
measure from PX1PX2PY2 to PX1PX2PY2|X1X2 to get

g1,2(t;y) = E[exp{−ı1,2(X1,X2;Y2)}1{ı1,2(X1,X2;Y2) ≥ t} | Y2 = y].(7.67)

To bound (7.67), we define function h1,2(y; a, µ) for constants a ∈ R and µ > 0

as

h1,2(y; a, µ)

≜ P
[
ı1,2(X1,X2;Y2) ∈ [a, a+ µ]

∣∣∣Y2 = y
]

(7.68)

= P
[
⟨X1 +X2,Y2⟩ −

∥X1 +X2∥22
2

∈ [a′, a′ + µ]

∣∣∣∣Y2 = y

]
, (7.69)

where a′ is shifted from a by some amount depending on y, and (7.69) follows
from (7.54). By spherical symmetry of the distribution of Y2, (7.69) depends
on y only through its norm ∥y∥2. We have

h1,2(s; a, µ) ≜ h1,2(y; a, µ)

= P
[
⟨X1 +X2,Y2⟩ −

∥X1 +X2∥22
2

∈ [a′, a′ + µ]

∣∣∣∣ ∥Y2∥22 = ns

]
,

(7.70)

where ∥y∥22 = ns, and s ∈ I([2]), and I(S) is defined in (7.58). Recall that
the support of the norm ∥X1 +X2∥22 is [n(

√
P1 −

√
P2)

2, n(
√
P1 +

√
P2)

2]. To
avoid the cases where ∥X1 +X2∥22 is too small, we separate the probability
term (7.70) according to whether or not the event

B =
{
∥X1 +X2∥22 < n(P1 + P2 −

√
P1P2)

}
(7.71)
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occurs under the condition that ∥Y2∥22 = ns. Here, the choice
√
P1P2 is

arbitrary and can be replaced by any constant in (0, 2
√
P1P2).

In (7.70), conditioning on the event B and then bounding the corresponding
probability terms by 1 gives

h1,2(s; a, µ) ≤ P
[
B
∣∣ ∥Y2∥22 = ns

]
+ P

[
⟨X1 +X2,Y2⟩ −

∥X1 +X2∥22
2

∈ [a′, a′ + µ]

∣∣∣∣ ∥Y2∥22 = ns,Bc

]
.

(7.72)

For n large enough, we bound the first term on the right-hand side of (7.72)
by

P
[
B
∣∣ ∥X1 +X2 + Z∥22 = ns

]
≤ exp{−nC}, (7.73)

where C > 0 is a constant. The proof of (7.73) appears in Appendix F.4.

By spherical symmetry, the distribution of ⟨X1 +X2,X1 +X2 + Z⟩ depends
on X1 +X2 only through the norm ∥X1 +X2∥2. Therefore, fixing X1 +X2 to
x = (

√
nu, 0, . . . , 0), we find that for any u ∈ [P1+P2−

√
P1P2, (

√
P1+

√
P2)

2],
s ∈ I([2]), and n large enough,

P
[
⟨X1 +X2,X1 +X2 + Z⟩ − nu

2
∈ [a′, a′ + µ]∣∣∣ ∥X1 +X2 + Z∥22 = ns, ∥X1 +X2∥22 = nu

]
= P

[
Z1 +

√
nu

2
∈
[
a′√
nu
,
a′ + µ√
nu

] ∣∣∣∣ ∥x+ Z∥22 = ns

]
(7.74)

≤ L(u, s)µ√
n

(7.75)

≤ 3

2

L(u, 1 + P1 + P2)µ√
n

, (7.76)

where (7.75) follows by Lemma 7.4.3, and (7.76) holds for n large enough by
the continuity of the map s 7→ L(u, s) since s ∈ I([2]). Using (7.76), we bound
the second term in (7.72) as

P
[
⟨X1 +X2,Y2⟩ −

∥X1 +X2∥22
2

∈ [a′, a′ + µ]∣∣∣ ∥X1 +X2 + Z∥22 = ns,Bc
]

≤ max
u∈[P1+P2−

√
P1P2,(

√
P1+

√
P2)2]

3µL(u, 1 + P1 + P2)

2
√
n

. (7.77)
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By (7.72), (7.73), (7.77), and because L(u, 1 + P1 + P2) is bounded above for
u ∈ [P1 + P2 −

√
P1P2, (

√
P1 +

√
P2)

2], there exists a constant K2(P1, P2) > 0

such that

h1,2(s; a, µ) ≤ K2(P1, P2)
µ√
n

(7.78)

for n large enough. By following the same steps as [44, eq. (55)-(57)], we
conclude that

g1,2(t;y) ≤
G1,2 exp {−t}√

n
, (7.79)

where G1,2 = (2 log 2)K2(P1, P2).

7.4.5 Evaluating the RCU Bound for the MAC

We here bound the right-hand side of (7.8) in Theorem 7.2.1. The information
density random vector is defined as

ı2 ≜

 ı1(X1;Y2|X2)

ı2(X2;Y2|X1)

ı1,2(X1, X2;Y2)

 , (7.80)

where X1 and X2 are distributed according to (7.49), and PX1PX2 → PY2|X1+X2 →
PY2 .

Define the typical events

E(S) ≜
{
X⟨S⟩ + Z ∈ F(S)

}
(7.81)

E ≜
⋂

S∈P([2])

E(S) (7.82)

A ≜

ı2 ≥ log

 M1(G1)
2α1

M2(G2)
2α1

M1M2(G1,2)
2α2

− 1

2
log n1

 , (7.83)

where G1, G2 and G1,2 are the constants given in (7.65), F(S) is defined in
(7.57), and

αs ≜ 2

(
2

s

)
, s = 1, 2. (7.84)

Denote for brevity

g1 ≜ g1(ı1(X1;Y2|X2);Y2,X2) (7.85a)
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g2 ≜ g2(ı2(X2;Y2|X1);Y2,X1) (7.85b)

g1,2 ≜ g1,2(ı1,2(X1,X2;Y2);Y2), (7.85c)

where g1(·), g2(·), and g1,2(·), are defined in (7.62)–(7.64).

The right-hand side of (7.8) is bounded in (7.86)–(7.90) at the top of the
next page. Here, c2 is the positive constant defined in (7.59). Equality
(7.86) follows from the definitions of the functions g1(t;y,x2) and g1,2(t;y) and
splitting the expectation into two cases according to whether the event {Ac ∪
Ec} occurs or not. Inequality (7.87) follows by bounding the minimum inside
the first expectation in (7.86) by 1; bounding the minimum inside the second
expectation in (7.86) by its second argument; writing the indicator function
1 {A ∩ E} as a multiplication of 3 indicator functions using the definitions in
(7.82) and (7.83) and distributing that multiplication over the summation.
Inequality (7.88) follows from Lemma 7.4.6 and by bounding the probability
terms by 1. Inequality (7.89) is obtained by applying the union bound to
P [Ac ∪ Ec] and by using Lemma 7.4.6 with t = log M1(G1)2α1√

n
, t = log M2(G2)2α1√

n
,

and t = log M1M2(G1,2)2α2√
n

to bound the three remaining terms, respectively.
Inequality (7.90) follows from (7.59).

7.4.6 A Multidimensional Berry-Esseen Type Inequality

To complete the proof of Theorem 7.2.2, it remains only to evaluate the proba-
bility P [Ac] in (7.90). If the operational rate pair

(
logM1

n
, logM2

n

)
does not lie at

a corner point of the achievable capacity region, applying the union bound to
P [Ac] gives a tight achievability bound since two of the three probability terms
that appear after applying the union bound to P [Ac] are O

(
1√
n

)
. However, for

the corner points, P [Ac] needs to be bounded without using the union bound
in order to obtain a tighter achievability bound (see [135, Sec. 5.1.1]). In this
section, we bound P [Ac] jointly by deriving a multidimensional Berry-Esseen
type inequality.

Due to the non-i.i.d. input distribution, the random vector ı2 cannot be sep-
arated into a sum of n random vectors. Therefore, to approximate ı2, we
define the modified conditional and unconditional information densities whose
denominators have Gaussian distributions corresponding to

ı̃1(x1;y|x2) ≜
n∑

i=1

log
PY2|X1X2(yi|x1i, x2i)

PỸ2|X̃2
(yi|x2i)

(7.91a)
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E
[
min

{
1, (M1 − 1)P

[
ı1(X1;Y2|X2) ≥ ı1(X1;Y2|X2) | X1,X2,Y2

]
+ (M2 − 1)P

[
ı2(X2;Y2|X1) ≥ ı2(X2;Y2|X1) | X1,X2,Y2

]
+ (M1 − 1)(M2 − 1)P

[
ı1,2(X1,X2;Y2) ≥ ı1,2(X1,X2;Y2) | X1,X2,Y2

] }]
= E

[
min

{
1, (M1 − 1)g1 + (M2 − 1)g2 + (M1 − 1)(M2 − 1)g1,2

}
1 {Ac ∪ Ec}

]
+ E

[
min

{
1, (M1 − 1)g1 + (M2 − 1)g2 + (M1 − 1)(M2 − 1)g1,2

}
1 {A ∩ E}

]
(7.86)

≤ P [Ac ∪ Ec]

+ P [E({1})] M1 E
[
g11

{
ı1(X1;Y2|X2) ≥ log

M1(G1)
2α1√

n

} ∣∣∣∣ E({1})]
+ P [E({2})] M2 E

[
g21

{
ı2(X2;Y2|X1) ≥ log

M2(G2)
2α1√

n

} ∣∣∣∣ E({2})]
+ P [E({1, 2})] M1M2

· E
[
g1,21

{
ı1,2(X1,X2;Y2) ≥ log

M1M2(G1,2)
2α2√

n

} ∣∣∣∣ E({1, 2})] (7.87)

≤ P [Ac ∪ Ec] +
M1G1√

n
E
[
exp{−ı1(X1;Y2|X2)}

1

{
ı1(X1;Y2|X2) ≥ log

M1(G1)
2α1√

n

} ∣∣∣∣ E({1})]
+
M2G2√

n
E
[
exp{−ı2(X2;Y2|X1)}

1

{
ı2(X2;Y2|X1) ≥ log

M2(G2)
2α1√

n

} ∣∣∣∣ E({2})]
+
M1M2G1,2√

n
E
[
exp{−ı1,2(X1,X2;Y2)}

1

{
ı1,2(X1,X2;Y2) ≥ log

M1M2(G1,2)
2α2√

n

]}
|E({1, 2})

]
(7.88)

≤ P [Ac] + P [Ec] +
2
α1

+ 1
α2√
n

(7.89)

≤ P [Ac] + exp
{
−c2n1/3

}
+

1√
n

(7.90)

ı̃2(x2;y|x1) ≜
n∑

i=1

log
PY2|X1X2(yi|x1i, x2i)

PỸ2|X̃1
(yi|x1i)

(7.91b)

ı̃1,2(x1,x2;y) ≜
n∑

i=1

log
PY2|X1X2(yi|x1i, x2i)

PỸ2
(yi)

, (7.91c)
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where X̃i ∼ N (0, Pi), i ∈ [2], and PX̃1
PX̃2

→ PY2|X1X2 → PỸ2
= N (0, 1 + P1 +

P2). Denote the modified and centered information density random vector by

ı̃2 ≜
1√
n


 ı̃1(X1;Y2|X2)

ı̃2(X2;Y2|X1)

ı̃1,2(X1,X2;Y2)

− nC(P1, P2)

 , (7.92)

where C(P1, P2) =
1
n
E [ı2] is the capacity vector defined in (7.16). Define the

threshold vector

τ ≜ log

 M1(G1)
2κ1(P1)α1

M2(G2)
2κ1(P2)α1

M1M2(G1,2)
2κ2(P1, P2)α2

− 1

2
log n1− nC(P1, P2). (7.93)

Our method to bound the probability P [Ac] involves 5 steps.

Step 1: We first replace ı2 by ı̃2. Unlike ı2, ı̃2 can be written as a sum
of n dependent random vectors. Prior uses of this approach include [44, eq.
(65)] for the point-to-point channel and [24, eq. (2)] for the MAC. We then
bound P [Ac] in terms of the modified information density random vector ı̃2.
By (7.83) and Lemma 7.4.1,

P [Ac] = 1− P

ı2 − E [ı2] ≥

τ − log

 κ1(P1)

κ1(P2)

κ2(P1, P2)



 (7.94)

≤ 1− P
[
ı̃2 ≥

1√
n
τ

]
. (7.95)

From (7.91a)–(7.91c), we see that

ı̃2 ∼
1√
n


(n−∥Z∥22)P1+2⟨X1,Z⟩

2(1+P1)
(n−∥Z∥22)P2+2⟨X2,Z⟩

2(1+P2)
(n−∥Z∥22)(P1+P2)+2⟨X1,X2⟩+2⟨Z,X1+X2⟩

2(1+P1+P2)

 . (7.96)

Although the right-hand side of (7.96) is not a sum of n independent ran-
dom vectors, the conditional distribution of ı̃2 given (X1,X2) is such a sum.
Therefore, the multidimensional Berry-Esseen theorem is applicable to the cor-
responding conditional probability. In the remainder of Step 1, we detail the
distribution of ı̃2.

By spherical symmetry, the conditional distribution of ı̃2 given (X1,X2) =

(x1,x2) depends on (x1,x2) only through the inner product ⟨x1,x2⟩ given
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that each squared norm satisfies ∥xi∥22 = nPi, i ∈ [2]. Define the normalized
inner product random variable

H ≜
⟨X1,X2⟩√
nP1P2

, (7.97)

and set

x1 = (
√
nP1, 0, . . . , 0) (7.98)

x2 = (h
√
P2,
√

(n− h2)P2, 0, . . . , 0) (7.99)

for some h ∈ [−
√
n,

√
n], which satisfy

⟨x1,x2⟩√
nP1P2

= h. (7.100)

Putting (7.98)–(7.99) into (7.96) gives that the conditional distribution of ı̃2
givenH = h equals the conditional distribution of ı̃2 given (X1,X2) = (x1,x2),
which equals the conditional distribution of the random variable

µ(h) +
1√
n

n∑
i=1

Ji(h), (7.101)

where

µ(h) ≜ E [̃ı2|H = h] = h

 0

0
√
P1P2

1+P1+P2

 (7.102)

Ji(h) ≜


(1−Z2

i )P1+2x1iZi

2(1+P1)
(1−Z2

i )P2+2x2iZi

2(1+P2)
(1−Z2

i )(P1+P2)+2(x1i+x2i)Zi

2(1+P1+P2)

 , i ∈ [n]. (7.103)

Here, Ji(h) depends on h through the vectors x1 and x2 given in (7.98)–(7.99).
Conditioned on the event that H = h, the modified information density ran-
dom vector ı̃2 behaves as a sum of conditionally independent but not identical
random vectors 1

n
µ(h) + 1√

n
Ji(h) in (7.101).

We next find the distribution of H. By spherical symmetry, the distribution
of H does not depend on X1. Therefore, we can set X1 = x1 and get

H ∼ X21√
P2

, (7.104)
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where X21 denotes the first coordinate of X2. Therefore, H is distributed
according to the marginal distribution of the first coordinate of a random
vector distributed uniformly on Sn(

√
n). The distribution of H is computed

as (e.g., [140, Th. 1])

PH(h) =
Γ(n

2
)

√
πnΓ(n−1

2
)

(
1− h2

n

)n−3
2

+

, (7.105)

where Γ(·) denotes the Gamma function, and x+ ≜ max {0, x} for all x ∈ R.
The support of H is [−

√
n,

√
n]. From (7.105), we compute

E [H] = 0, Var [H] = 1. (7.106)

By Stirling’s approximation, H → N (0, 1) in distribution as n → ∞ (e.g.,
[140, Th. 1]). Recall that an upper bound on the total variation distance
between PH and N (0, 1) is given in Lemma 7.4.5.

From (7.101), we find the conditional covariance matrix of the modified infor-
mation density random vector as

Σ(h) ≜ Cov [̃ı2|H = h] (7.107)

= Cov

[
1√
n

n∑
i=1

Ji(h)

]
(7.108)

= Σ+
h√
n
B, (7.109)

where

Σ ≜

 V (P1) V1,2(P1, P2) V1,12(P1, P2)

V1,2(P1, P2) V (P2) V2,12(P1, P2),

V1,12(P1, P2) V2,12(P1, P2) V (P1 + P2)

 (7.110)

B ≜

√
P1P2

(1 + P1)(1 + P2)(1 + P1 + P2)

·

 0 1 + P1 + P2 1 + P2

1 + P1 + P2 0 1 + P1

1 + P2 1 + P1
(1+P1)(1+P2)
(1+P1+P2)

 , (7.111)

and V (P ), V1,2(P1, P2), and Vi,12(P1, P2), i ∈ [2], are given in (7.3), (7.18), and
(7.19), respectively. Note that Σ and B depend only on P1 and P2. Using
(7.102), (7.106), (7.109), by the law of total expectation and variance, we
compute

E [̃ı2] = 0 (7.112)
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Cov [̃ı2] = V(P1, P2), (7.113)

where V(P1, P2) is the dispersion matrix defined in (7.17).

Step 2: We next approximate the distribution of ı̃2 by a Gaussian. Toward
that end, we consider some auxiliary random variables. Based on our obser-
vation in (7.101), we express the probability on the right-hand side of (7.95)
by conditioning on H and taking the expectation with respect to PH . Define
the probability measure PH̃ , and the transition probability kernels PV|H and
PW|H as

PH̃ ≜ N (0, 1) (7.114)

PV|H=h ≜

N (µ(h),Σ(h)) if |h|≤
√
n

N (µ(h),Σ) if |h|>
√
n

(7.115)

PW|H=h ≜ N (µ(h),Σ) for h ∈ (−∞,∞). (7.116)

As with PV|H , we extend the definition of the kernel Pı̃2|H given in (7.101) for
|H|>

√
n by choosing Pı̃2|H=h = N (µ(h),Σ) for |h|>

√
n in order for the joint

distribution PH̃Pı̃2|H to be valid. Recall that H̃ is a Gaussian random variable
with the same mean and variance as H, and the mean and covariance matrix
according to PV|H=h are the same as those for Pı̃2|H=h. The Gaussian kernel
PW|H is obtained from PV|H by replacing its covariance matrix Σ(H) by the
mean value of Σ(H), Σ.

We define the joint distributions PH ı̃2 , PH̃ ı∗2
, PH̃ V and PH̃ W as

PH ı̃2 = PHPı̃2|H (7.117a)

PH̃ ı∗2
= PH̃Pı̃2|H (7.117b)

PH̃ V = PH̃PV|H (7.117c)

PH̃ W = PH̃PW|H , (7.117d)

where

W ∼ N (0,V(P1, P2)), (7.118)

which has the desired Gaussian distribution in our Berry-Esseen type bound.

Let D be any convex, Borel-measurable subset of R3. Then,

|P [̃ı2 ∈ D]− P [W ∈ D]| (7.119a)
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≤ |P [̃ı2 ∈ D]− P [ı∗2 ∈ D]| (7.119b)

+ |P [ı∗2 ∈ D]− P [V ∈ D]| (7.119c)

+ |P [V ∈ D]− P [W ∈ D]| , (7.119d)

where the inequality in (7.119b) follows from the triangle inequality. The
absolute differences in (7.119b), (7.119c), and (7.119d) reflect the change of
the input measure from PH to PH̃ , the change of the transition probability
kernel from Pı̃2|H to PV|H , and the change of the transition probability kernel
from PV|H to PW|H , respectively. We next bound (7.119a) by showing that
the absolute difference in each of (7.119b)–(7.119d) is O

(
1√
n

)
. In the next

three steps, we bound each of these absolute differences in turn.

Step 3: We bound the absolute difference in the right-hand side of (7.119b)
as

|P [̃ı2 ∈ D]− P [ı∗2 ∈ D]|

=

∣∣∣∣∫ ∞

−∞
P [̃ı2 ∈ D|H = h] (PH(h)− PH̃(h)) dh

∣∣∣∣ (7.120)

≤
∫ ∞

−∞
|PH(h)− PH̃(h)| dh (7.121)

= 2TV(PH , PH̃) (7.122)

≤ 2

√
n√

n− 3
− 2 (7.123)

≤ CH

n
, (7.124)

where CH = 8. Inequality (7.121) follows by moving the absolute value to the
inside of the integral and bounding the conditional probability by 1 for all h,
and (7.123) holds for any n ≥ 4 by Lemma 7.4.5. Inequality (7.124) holds
for n ≥ 4. We conclude that (7.124) holds for any n since (7.120) is trivially
bounded by 1.

Step 4: We bound the absolute difference due to changing the transition
probability kernel from Pı̃2|H to the Gaussian kernel PV|H as

|P [ı∗2 ∈ D]− P [V ∈ D]| =
∣∣∣E [P [ı∗2 ∈ D

∣∣∣H̃]− P
[
V ∈ D

∣∣∣H̃]]∣∣∣ (7.125)

≤ E
[∣∣∣P [ı∗2 ∈ D

∣∣∣H̃]− P
[
V ∈ D

∣∣∣H̃]∣∣∣ 1{∣∣∣H̃∣∣∣ ≤ √
n

2

}]
+P
[∣∣∣H̃∣∣∣ > √

n

2

]
(7.126)
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≤ max
h∈

[
−

√
n
2

,
√

n
2

] C(h)√
n

+ P
[∣∣∣H̃∣∣∣ > √

n

2

]
(7.127)

≤ CBE√
n

+ 2 exp
{
−n
8

}
(7.128)

≤ CBE + CCh√
n

, (7.129)

where

T (h) ≜
1

n

n∑
i=1

E
[
∥Ji(h)∥32

]
(7.130)

C(h) ≜
c 31/4T (h)

λmin(Σ(h))3/2
(7.131)

CBE ≜ max
h∈

[
−

√
n
2

,
√
n
2

]C(h) (7.132)

CCh ≜ 4 exp

{
−1

2

}
, (7.133)

each Ji(h) is defined in (7.103), and c is the Berry-Esseen constant given in
Theorem 7.4.1. Here, (7.126) moves the absolute value in (7.125) to the inside
of the expectation. We then separate the expectation into two cases in order
to guarantee that we apply the Berry-Esseen theorem for values of h such
that Σ(h) is positive-definite. Inequality (7.127) follows from Corollary 7.4.1,
and (7.128) follows from the Chernoff bound applied to a Gaussian random
variable. Inequality (7.129) holds for any n. For every h ∈

[
−

√
n
2
,
√
n
2

]
, Σ(h) is

a non-degenerate covariance matrix, and T (h) < ∞. Therefore, we conclude
that CBE <∞.

Step 5: We next bound the probability in (7.119d), which is the absolute
difference due to changing the covariance matrix of the Gaussian kernel from
Σ(h) to Σ, using Lemma 7.4.4, which bounds the total variation distance
between two Gaussian vectors. Denote the spectral radius of a d×d symmetric
matrix M by

ρ(M) ≜ max
i∈[d]

|λi(M)| , (7.134)

where λi(·) is the i-th largest eigenvalue of its matrix argument. Let

A ≜ Σ−1/2BΣ−1/2, (7.135)

where matrices Σ and B are defined in (7.110)–(7.111). Then

|P [V ∈ D]− P [W ∈ D]|
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=
∣∣∣E [P [V ∈ D

∣∣∣H̃]− P
[
W ∈ D

∣∣∣H̃]]∣∣∣ (7.136)

≤ E
[∣∣∣P [V ∈ D

∣∣∣H̃]− P
[
W ∈ D

∣∣∣H̃]∣∣∣] (7.137)

≤ E
[
TV(N (µ(H̃),Σ),N (µ(H̃),Σ(H̃)))

]
(7.138)

≤ 2 +
√
6

4
∥A∥F

E
[∣∣∣H̃∣∣∣]
√
n

, (7.139)

where (7.137) follows by moving the absolute value inside the expectation in
(7.136), µ(·) and Σ(·) are defined in (7.102) and (7.107), respectively, and
(7.139) follows from Lemma 7.4.4.

The matrices Σ, Σ + B, and Σ − B are all positive semidefinite as they are
special cases of Cov [̃ı2|H = h] in (7.107) with h equal to 0,

√
n, and −

√
n,

respectively. Hence Σ−1/2(Σ+B)Σ−1/2 and Σ−1/2(Σ−B)Σ−1/2 are also positive
semidefinite. Since their eigenvalues are respectively given by 1 + λi(A) and
1 − λi(A), it follows then that −1 ≤ λi(A) ≤ 1 for i ∈ [d], giving ρ(A) ≤ 1.3

Using the fact that ∥M∥F ≤
√
dρ(M) for any d× d symmetric matrix M, and

employing the value of the expectation in (7.139), we conclude that

|P [V ∈ D]− P [W ∈ D]| ≤ CG√
n
, (7.140)

where CG = 2
√
6+6

4
√
π

.

Combining the bounds in (7.124), (7.129), and (7.140), we have the following
Berry-Esseen-type inequality

|P [̃ı2 ∈ D]− P [W ∈ D]| ≤ CH + CBE + CCh + CG√
n

(7.141)

for the modified information density random vector.

7.4.7 Completion of the Proof of Theorem 7.2.2

We employ the set D =
{
x ∈ R3 : x ≥ 1√

n
τ
}

in (7.141), where τ is given in
(7.93). Combining (7.95) and (7.141), we conclude that the probability P [Ac]

in (7.90) satisfies

P [Ac] ≤ 1− P
[
W ≥ 1√

n
τ

]
+
CH + CBE + CCh + CG√

n
(7.142)

3Actually, ρ(A) = 1. Indeed, for h =
√
n, the random variables in the first and the

second index of the vectors in (7.103) are identical. Therefore, both Σ(
√
n) = Σ + B and

Σ−1/2(Σ+ B)Σ−1/2 have an eigenvalue 0, and A has an eigenvalue −1.
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= 1− P
[
W ≤ − 1√

n
τ

]
+
COut√
n
, (7.143)

where W ∼ N (0,V(P1, P2)) and

COut ≜ CH + CBE + CCh + CG. (7.144)

Equality (7.143) follows since W ∼ −W. Suppose that τ satisfies

− 1√
n
τ ∈ Qinv (V(P1, P2), ϵ− γn) (7.145)

γn ≜ exp
{
−c2n1/3

}
+

1 + COut√
n

, (7.146)

where the constant c2 is as in (7.90). Then, the right-hand side of (7.90)
is bounded by ϵ. From the Taylor series expansion of Qinv(V, ·) (e.g., [134,
Lemma 13]), we conclude that (7.145) is equivalent to the inequality in (7.21),
which completes the proof.

7.5 Proof of Theorem 7.2.3

In this section, we sketch the proof of Theorem 7.2.3 by detailing the modifi-
cations to generalize the proof of Theorem 7.2.2 from 2 to K ≥ 2 transmitters.
Assume that S ∈ P([K]). Define the information densities as

ıS(xS ;y|xSc) ≜ log
PYK |X[K]

(y|x[K])

PYK |XSc (y|xSc)
, (7.147)

where Sc = [K]\S. The information density random vector for K transmitters
is

ıK ≜ (ıS(XS ;YK |XSc):S ∈ P([K])) ∈ R2K−1, (7.148)

where Xk is distributed uniformly on Sn(
√
nPk) for k ∈ [K], Z ∼ N (0, In),

X1, . . . ,XK and Z are independent, and YK = X⟨[K]⟩ + Z.

Below, we use Lemma 7.4.1 and the generalization of Lemma 7.4.6 given in
(7.152). The following lemma, which generalizes Lemma 7.4.5 to K transmit-
ters, is the critical part of the proof of Theorem 7.2.3.

Lemma 7.5.1. Let Xi = (Xi1, . . . , Xin), i = 1, . . . , K, be K independent
random vectors, distributed uniformly on Sn(1). Let Hij =

√
n⟨Xi,Xj⟩ for

1 ≤ i < j ≤ K, and H = (Hij: 1 ≤ i < j ≤ K). Then

TV
(
PH,N

(
0, IK(K−1)

2

))
≤ CK√

n
(7.149)

for some constant CK depending only on K.
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Proof: See Appendix F.5.

The modifications in Section 7.4 are as follows.

1. The two-transmitter maximum likelihood decoder given in (7.51) is re-
placed by a K-transmitter maximum likelihood decoder, which chooses
the message vector m[K] = (m1, . . . ,mK) corresponding to the maximal
information density ı[K](f[K](m[K]);y).

2. The typical set F defined in (7.56) is replaced by

FK ≜ ×
S∈P([K])

F(S) ⊆ Rn⊗(2K−1), (7.150)

where F(S) is defined in (7.57). Inequality (7.59) extends to FK by
Lemma 7.4.1.

3. The functions given in (7.62)–(7.64) are extended as

gS(t;y,xSc) ≜ P[ıS(XS ;YK |XSc) ≥ t | XSc = xSc ,YK = y]. (7.151)

In the proof of Lemma 7.4.6, we replace P1 + P2 by P⟨S⟩, and P1P2 by∑
i,j∈[K]
i<j

PiPj. Inequality (7.73) generalizes to the K-transmitter MAC

by applying its proof from Appendix F.4 with Lemma 7.4.1 from Sec-
tion 7.4.1. Hence, Lemma 7.4.6 generalizes as

gS(t;y,xSc) ≤ G(S) exp {−t}√
n

, (7.152)

where G(S) is a constant depending only on the powers (Ps : s ∈ S).

4. The high probability events given in (7.82) and (7.83) are replaced by

EK ≜
⋂

S∈P([K])

E(S), (7.153)

AK ≜

{
ıK ≥

(
log

((∏
s∈S

Ms

)
(G(S)2)α|S|,K

)
:S ∈ P([K])

)
− 1

2
log n1

}
, (7.154)

where

αs,K ≜ K

(
K

s

)
, s = 1, . . . , K. (7.155)
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Using the extension of the RCU bound for K transmitters given in Re-
mark 7.2.1 and following the same steps as Section 7.4.5, we replace the
right-hand side of the inequality in (7.90) by

P [Ac
K ] + exp

{
−cKn1/3

}
+

1√
n
, (7.156)

where cK is a constant.

5. To understand the differences between bounding P [Ac
K ] and P [Ac], we

first extend the definition of the modified and centered information den-
sity random vector to K transmitters by defining

ı̃S(xS ;yK |xSc) ≜
n∑

i=1

log
PYK |X[K]

(yi|x[K]i)

PỸK |X̃Sc
(yi|xSci)

(7.157)

ı̃K ≜
1√
n
[
(
ı̃S(XS ;YK |XSc):S ∈ P([K])

)
− nC(P[K])], (7.158)

where C(P[K]) is the capacity vector defined in (7.23), X̃k ∼ N (0, Pk)

for k ∈ [K], and
∏K

k=1 PX̃k
→ PYK |X[K]

→ PỸK
= N (0, 1 + P[K]).

We replace the threshold value in (7.93) by

τ ≜ log

((∏
s∈S Ms

)
(G(S))2κ|S|(PS)α|S|,K√

n
:

S ∈ P([K])

)
− nC(P[K]), (7.159)

where κ|S|(PS) is the constant (which depends only on PS) in (7.39).
Using the joint distribution of (X[K],YK), we get

ı̃K ∼ 1√
n

(
(n− ∥Z∥22)P⟨S⟩

2(1 + P⟨S⟩)

+

∑
i,j∈S
i<j

⟨Xi,Xj⟩+ ⟨Z,X⟨S⟩⟩

1 + P⟨S⟩
:S ∈ P([K])

)
. (7.160)

Define the random vector

H ≜ (Hij: 1 ≤ i < j ≤ K) ∈ R(
K
2 ), (7.161)

where Hij =
⟨Xi,Xj⟩√

nPiPj
denotes the normalized inner product of Xi and Xj.

The inner product random vector H replaces H in (7.104). Observe that
for all different (i1, j1) and (i2, j2) pairs, Hi1j1 and Hi2j2 are independent
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of each other, which follows by independence of X1, . . . ,XK . However, H
does not have a product distribution due to the fact that any triplets in
H are not jointly independent.4 While PH is not a product distribution,
Lemma 7.5.1 implies that PH converges to the distribution of

(
K
2

)
i.i.d.

standard Gaussian random variables in total variation, allowing us to use
the Berry-Esseen theorem just as we did for the two-transmitter MAC.

As for the two-transmitter MAC, the distribution in (7.160) depends on
X[K] only through the inner product random vector H. The conditional
distribution of ı̃K given H = h is the same as the conditional distribution
of

µ(h) +
1√
n

n∑
i=1

Ji(h), (7.162)

where

µ(h) ≜ E [ıK |H = h]

=
∑

i,j∈[K]
i<j

hij

( √PiPj

1 + P⟨S⟩
1 {i, j ∈ S} :S ∈ P([K])

)
(7.163)

Ji(h) ≜
((1− Z2

i )P⟨S⟩ + 2
∑

s∈S xsiZi

2(1 + P⟨S⟩)
:S ∈ P([K])

)
(7.164)

for i ∈ [n], and x[K] are vectors on the n-dimensional power spheres,
satisfying ⟨xi,xj⟩√

nPiPj
= hij for all i < j ∈ [K]. The conditional covariance

matrix given in (7.109) is extended to K transmitters as

Σ(h) = Cov [ı̃K |H = h] = ΣK +
∑

i,j∈[K],i<j

hij√
n
Bij, (7.165)

where the
(
R2K−1

)
×
(
R2K−1

)
matrices ΣK and Bij have elements

ΣS1S2 =
PS1PS2 + 2PS1∩S2

2(1 + PS1)(1 + PS2)

(7.166)

bS1S2 =

√
PiPj

(1 + PS1)(1 + PS2)
·1 {{i ∈ S1, j ∈ S2} ∪ {i ∈ S2, j ∈ S1}} (7.167)

for S1,S2 ∈ P([K]). These formulas generalize the formulas for the
two-transmitter MAC given in (7.110) and (7.111). By (7.163), (7.165),

4Given that H12 = H13 =
√
n, we have that X1 = X2 = X3. Therefore, H23 is

necessarily equal to
√
n under this condition, and H12, H13, H23 are not jointly independent.
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and the pairwise independence of Hi1j1 , Hi2j2 for all different (i1, j1) and
(i2, j2) pairs, using the law of total expectation and variance, we find
that

E [ı̃K ] = 0 (7.168)

Cov [ı̃K ] = V(P[K]), (7.169)

where the covariance matrix V(P[K]) is defined in (7.24).

The rest of the proof follows the proof in Section 7.4.6, where we replace
H by H, H̃ by the

(
K
2

)
-dimensional standard Gaussian random vector H̃,

Pı̃2|H by Pı̃K |H, PV|H by PV|H, and PW|H by PW|H. For the probability
transition kernels PV|H and PW|H, we replace µ(h) by µ(h), Σ by ΣK ,
and Σ(h) by Σ(h). We replace all conditions in the form |h|≤ t by
|h|≤ t1.

The only critical modification is that the bound on the total variation
distance TV(PH , PH̃) in (7.123) is replaced by the bound on the total
variation distance TV(PH, PH̃), which is O

(
1√
n

)
by Lemma 7.5.1. We

conclude that

|P [ı̃K ∈ D]− P [W ∈ D]| ≤ CK√
n

(7.170)

for some constant CK > 0, where W ∼ N (0,V(P[K])).

By combining (7.156) and (7.170) as in Section 7.4.7, we complete the
proof of Theorem 7.2.3.

7.6 Proof of Theorem 7.3.2

The main difference between the coding strategies for the Gaussian MAC
and RAC is that for the Gaussian RAC, an output typicality condition is
added to the decoding function in order to reliably detect the number of active
transmitters.

7.6.1 Encoding and Decoding

Encoding: Recall that nK is the largest decoding time. In our encoding
strategy, rather than adapting the codebook to the estimate of the number
of active transmitters at the receiver, we generate codewords with length nK .
Each active transmitter transmits one symbol of its message codeword at each
time step until the decoder signals at time nk ∈ {n0, . . . , nK} that it is able
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to decode. If decoding happens at time nk, only the initial sub-codeword of
length nk is used.

The common randomness random variable U ∈ RMnK has the distribution

PU = PU(1) × PU(2) × · · · × PU(M)︸ ︷︷ ︸
Mtimes

, (7.171)

where PU(m) = PX for m ∈ [M ]. The realization of U defines M length-nK

i.i.d. codewords. In other words, the encoding function is given by

f(U,m) = U(m), m ∈ [M ]. (7.172)

As discussed in Chapter 6, the need for using common randomness in encoding
is due to the requirement that a single code must satisfy multiple constraints,
i.e., the error probability constraints in (7.29).

Decoding: Unlike the MAC, for the Gaussian RAC, we require the decoder
to determine the time nk ∈ {n0, . . . , nK} at which to decode. Therefore, we
couple the maximum likelihood decoder given in (7.51) with a threshold rule,
used to estimate the number of transmitters and a single bit of feedback at
each time ni up to and including the time nk at which the decoder decides
to decode. The maximum likelihood decoder is applied only if the threshold
test is satisfied. Here, the role of the threshold rule is to reliably determine
the true channel in the communication epoch. We use a threshold rule to
determine the number of active transmitters because for any P > 0, under
an input distribution PX such that the expected input power meets the power
constraint in (7.28) with equality (i.e., 1

nk
E
[∥∥X[nk]

∥∥2
2

]
= P ), for each k, the

normalized squared norm of the output Y
[nk]
k concentrates around its mean.

That mean is different for each k ∈ {0, 1, . . . , K}; specifically

1

nk

E
[∥∥∥Y[nk]

k

∥∥∥2
2

]
= 1 + kP, ∀k ∈ {0} ∪ [K]. (7.173)

Upon receiving the first n0 symbols of the output, y[n0], the decoder computes
the following function

g0(U,y
[n0]) =

0 if
∣∣∣ 1
n0

∥∥y[n0]
∥∥2
2
− 1
∣∣∣ ≤ λ0

e otherwise
(7.174)
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to decide whether there are any active transmitters; here λ0 is a parameter
that is determined by the error criterion ϵ0. At time n0, if g0(U,y[n0]) = 0, the
receiver broadcasts a bit value 1 to all transmitters, signaling that the receiver
estimates “no active transmitters" and the epoch ends. Otherwise the receiver
broadcasts a bit value 0 and the epoch continues.

For k ≥ 1, the decoder applies the following function to make a decision at
each subsequent time nk ≤ nK

gk(U,y
[nk]) =



m[k] if ı[k](f(U,m[k])
[nk];y[nk])

> ı[k](f(U,m
′
[k])

[nk];y[nk])

for all m′
[k]

π

̸= m[k],

m1 ≤ . . . ≤ mk,∣∣∣ 1
nk

∥∥y[nk]
∥∥2
2
− (1 + kP )

∣∣∣ ≤ λk

e otherwise,

(7.175)

where λk is a parameter chosen to satisfy the error criterion ϵk. At time nk, if
gk(U,y

[nk]) ̸= e or k = K, then the receiver broadcasts the bit value 1 to all
transmitters, signaling the end of epoch and the start of next one. Otherwise,
the receiver sends feedback 0 and the epoch continues.

By the permutation-invariance of the channel in terms of the inputs X[k] and
the identical encoding in (7.172), all permutations of the messages m[k] give
the same information density. Therefore, without loss of generality, the output
of our decoder is always the ordered message vector in (7.175). The condition∣∣∣ 1
nk

∥∥y[nk]
∥∥2
2
− (1 + kP )

∣∣∣ ≤ λk, which does not depend on the randomly gener-
ated codebook, allows us with high probability to decode at time nk when the
number of active transmitters is k, rather than decoding earlier or failing to
decode at the time nk intended for the k-transmitter scenario.

7.6.2 Error Analysis

In this section, we bound the probability of error for the random access code
in Definition 7.3.1.

No active transmitters : For k = 0, the only error event is that the squared
norm of the output Y

[n0]
0 is away from its mean:

ϵ0 ≤ P
[∣∣∣∣ 1n0

∥∥∥Y[n0]
0

∥∥∥2
2
− 1

∣∣∣∣ > λ0

]
. (7.176)
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k ≥ 1 active transmitters : When there is at least one active transmitter, the
encoding function (7.172) and decoding rule (7.175) yield an error if and only
if at least one of the following events occurs:

• Ecodeword: At least one of the k codewords associated with the sent mes-
sages m[k] violates the power constraint in (7.28) in the first nk symbols.
In this case, an error occurs since it is forbidden to transmit those code-
words. We do not need to include the power constraint violation beyond
the nk-th symbol since that event is captured by the event of decoding
time error, stated next.

• Etime: A list of messages is decoded at a wrong decoding time nt ̸= nk,
or no messages is decoded during the entire epoch.

• Emessage: A list of messages m′
[k] ̸= m[k] is decoded at time nk.

In the following discussion, we bound the probability of these events separately,
and apply the union bound to combine them.

Since we are employing identical encoders at all encoders, we simplify the
analysis by treating the event Erep = {Wi = Wj for some i ̸= j} that at least
one message among transmitted messages is repeated as an error. While this
case is actually advantageous to decoding, it requires special treatment since
it violates the assumption of codeword independence employed in our analysis.

By the union bound,

P [Erep] ≤
k(k − 1)

2M
. (7.177)

Applying the union bound, we bound the error probability as

ϵk =
1

Mk

∑
m[k]∈[M ]k

P
[ ⋃
t:nt≤nk,t ̸=k

{
gt(U,Y

[nt]
k ) ̸= e

}
⋃{

gk(U,Y
[nk]
k )

π

̸= m[k]

} ∣∣∣ W[k] = m[k]

]
(7.178)

≤ P [Erep] + P
[
Ec

rep

] (
P
[
Ecodeword

∣∣Ec
rep

]
(7.179)

+P
[
Etime

∣∣Ec
rep

]
+ P

[
Emessage

∣∣Ec
rep

] )
(7.180)

≤ P [Erep] + P
[
Ecodeword

∣∣Ec
rep

]
+P
[
Etime

∣∣Ec
rep

]
+ P

[
Emessage

∣∣Ec
rep

]
. (7.181)
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Power constraint violation: The probability that a power constraint violation
occurs in the first nk symbols for at least one of the k distinct messages is

P
[
Ecodeword

∣∣Ec
rep

]
= P

 k⋃
i=1

⋃
j:nj≤nk

j≥1

{
1

nj

∥∥∥X[nj ]
i

∥∥∥2
2
> P

} . (7.182)

Wrong decoding time: According to the decoding rule in (7.175), decoding
occurs at time nk if and only if the output typicality criterion is not satisfied
for any t with nt ≤ nk and t ̸= k (that is

∣∣∣ 1nt

∥∥y[nt]
∥∥2
2
− (1 + tP )

∣∣∣ > λt), and is

satisfied for k (that is
∣∣∣ 1
nk

∥∥y[nk]
∥∥2
2
− (1 + kP )

∣∣∣ ≤ λk). Note that it is possible
that no message set is decoded during an entire epoch. This would happen if∣∣∣ 1nt

∥∥y[nt]
∥∥2
2
− (1 + tP )

∣∣∣ > λt for t ∈ {0, . . . , K}. The probability P
[
Etime

∣∣Ec
rep

]
is computed as

P
[
Etime

∣∣Ec
rep

]
= P

[ ⋃
t:nt≤nk
t̸=k

{∣∣∣∣ 1nt

∥∥∥Y[nt]
k

∥∥∥2
2
− (1 + tP )

∣∣∣∣ ≤ λt

}
⋃{∣∣∣∣ 1nk

∥∥∥Y[nk]
k

∥∥∥2
2
− (1 + kP )

∣∣∣∣ > λk

}]
. (7.183)

Wrong message: By using the RCU bound in Remark 7.2.1 and the permutation-
invariance of the information density, we bound P

[
Emessage

∣∣Ec
rep

]
as

P
[
Emessage

∣∣Ec
rep

]
≤ E

[
min

{
1,

k∑
s=1

(
k

s

)(
M − k

s

)

P
[
ı[s](X

[nk]

[s] ;Y
[nk]
k |X[nk]

[s+1:k]) ≥ ı[s](X
[nk]
[s] ;Y

[nk]
k |X[nk]

[s+1:k])
∣∣∣ X[nk]

[k] ,Y
[nk]
k

]}]
.(7.184)

Combining (7.176), (7.177) and (7.181)–(7.184) completes the proof. Note
that compared to the achievability proof of the Gaussian MAC in (7.11), the
multiplicative constant in (7.184) is

(
M−k

s

)
instead of (M − 1)s since we are

given that the transmitted messages are distinct.

7.7 Proof of Theorem 7.3.1

In this section, we analyze the achievability bound in Theorem 7.3.2 by par-
ticularizing the input distribution, PX in Theorem 7.3.2, choosing the free
parameters λk, decoding times n0, n1, . . . , nK , and bounding the probability
and expectation terms in (7.34). In the rest of the proof, we assume that the
decoding times satisfy n0 < n1 < · · · < nK , which we make explicit in (7.211).
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7.7.1 Particularizing PX

We modify the input distribution used in Theorem 7.2.2 for the Gaussian MAC
so that the randomly generated codewords meet the power constraints with
probability 1.

A random codeword distributed according to PX has length nK and consists
of K independent sub-codewords. The j-th sub-codeword has length |N (j)|,
where

N (j) ≜

[n1] if j = 1

{nj−1 + 1, nj−1 + 2, . . . , nj} if 2 ≤ j ≤ K
(7.185)

for j ∈ [K] is the index set for the j-th block in our code design. Thus, the
input distribution PX in Theorem 7.3.2 is

PX(x) =
K∏
j=1

PXN (j)

(
xN (j)

)
, (7.186)

where

PXN (j)

(
xN (j)

)
=
δ
(∥∥xN (j)

∥∥2
2
− |N (j)|P

)
S|N (j)|(

√
|N (j)|P )

, (7.187)

that is, XN (j) ∼ Uniform
(
S|N (j)|(

√
|N (j)|P )

)
, and XN (1), . . . ,XN (K) are in-

dependent.

Codewords chosen according to (7.186) satisfy the power constraints in (7.28)
with equality, giving

P

[
k⋃

i=1

k⋃
j=1

{
1

nj

∥∥∥X[nj ]
i

∥∥∥2
2
> P

}]
= 0. (7.188)

7.7.2 Error Analysis

We separate the analysis into 3 steps: deriving an output typicality bound,
evaluation of the RCU bound, and evaluation of a Berry-Esseen type inequal-
ity.

Step 1: In this step, we bound the probability that the output Y[nk]
k does not

satisfy the condition∣∣∣∣ 1
nk

∥∥∥Y[nk]
k

∥∥∥2
2
− (1 + kP )

∣∣∣∣ ≤ λk given in the decoding rule (7.175). Since for
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k ≥ 1, YN (1)
k ,Y

N (2)
k , . . . ,Y

N (K)
k are independent due to the input distribution

in (7.186), Lemma 7.4.1 and Lemma 7.4.2 imply

P
[∣∣∣∣∥∥∥Y[nk]

k

∥∥∥2
2
− nk(1 + kP )

∣∣∣∣ > nkλk

]
≤ 2 (κk(P1))

k exp

{
− nkλ

2
k

8(1 + kP )2

}
(7.189)

for λk ∈ (0, 1 + kP ), where κj(P1) is the constant defined in Lemma 7.4.1.
For k = 0, we have

P
[∣∣∣∣∥∥∥Y[n0]

0

∥∥∥2
2
− n0

∣∣∣∣ > n0λ0

]
≤ 2 exp

{
−n0λ

2
0

8

}
(7.190)

for λ0 ∈ (0, 1). We pick

λ0 =

√
−8 log ϵ0

2

n0

(7.191)

to ensure that the right-hand side of (7.190) is bounded above by ϵ0. By
setting λt = P

2
for t ≥ 1, using (7.189) and (7.190), and applying the union

bound, we bound the probability of decoding time error in (7.34b) by

B ≜ 2κ1(P ) exp

{
−
n0((k − λ0

P
)P )2

8(1 + kP )2

}

+ 2
k∑

t=1

(κk(P1))
t exp

{
−
nt((k − t− 1

2
)P )2

8(1 + kP )2

}
. (7.192)

Step 2: To bound the expectation in (7.34c), we first modify the definition of
the typical output set F(S) in (7.57) as

F(S)RAC ≜
{
y[nk] ∈ Rnk :

1

|N (j)|
∥∥yN (j)

∥∥2
2
∈ I(j,S) for j ∈ [k]

}
. (7.193)

I(j,S) ≜ [1 + |S|P − |N (j)|−1/3, 1 + |S|P + |N (j)|−1/3]. (7.194)

We then show that Lemma 7.4.6 holds under input distribution (7.186) with
typical output set (7.193). That is, for every 0 < s ≤ k, and y[nk] and x

[nk]
[k]\[s]

such that y[nk] − x
[nk]
⟨[k]\[s]⟩ ∈ F([s])RAC, we prove that

g[s](t;y
[nk],x

[nk]
[k]\[s])

≜ P
[
ı[s](X

[nk]

[s] ;Y
[nk]
k |X[nk]

[k]\[s]) ≥ t
∣∣∣ X[nk]

[k]\[s] = x
[nk]
[k]\[s],Y

[nk]
k = y[nk]

]
(7.195)
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≤
G′

s,k exp {−t}√
nk

, (7.196)

where G′
s,k is a positive constant depending on s, k and P .

The derivation of the bound in (7.196) follows the analysis in Section 7.4.4. The
critical goal is to verify steps (7.74)–(7.76) for the modified input distribution
in (7.186). This requires showing that

P

[
⟨X[nk]

⟨[s]⟩,X
[nk]
⟨[s]⟩ + Z[nk]⟩ −

k∑
j=1

|N (j)|uj
2

∈ [a, a+ µ]

∣∣∣∣∣E
]
≤ O

(
1

√
nk

)
,

(7.197)

where

E =
{∥∥∥XN (j)

⟨[s]⟩ + ZN (j)
∥∥∥2
2
= |N (j)|sj,

∥∥∥XN (j)
⟨[s]⟩

∥∥∥2
2
= |N (j)|uj for j ∈ [k]

}
,

(7.198)

sj ∈ I(j, [s]), and uj > 0. The proof of (7.197) is similar to the one in [44,
Appendix A] for parallel Gaussian channels since we can consider K indepen-
dent sub-codewords with lengths |N (j)|, j ∈ [K], as K parallel channels, each
having blocklength |N (j)|, j ∈ [K].

Taking an arbitrary t ∈ [k], we get

P

[
⟨X[nk]

⟨[s]⟩,X
[nk]
⟨[s]⟩ + Z[nk]⟩ −

k∑
j=1

|N (j)|uj
2

∈ [a, a+ µ]

∣∣∣∣∣E
]

=

∫
Rk−1

P
[
Znt−1+1 +

√
|N (j)|
2

∈
[

a′√
|N (j)|

,
a′ + µ√
|N (j)|

]
∣∣∣∣ E ,{Znj−1+1 = zj, j ∈ [k] \ {t}

}]( ∏
j∈[k]
j ̸=t

fZnj−1+1|E(zj)dzj

)
(7.199)

≤ L(ut, st)µ√
|N (t)|

(7.200)

≤ 3

2

L(ut, 1 + sP )µ√
|N (t)|

(7.201)

≤ 3

2

maxj∈[k] L(uj, 1 + sP )µ√
|N (t)|

, (7.202)

where a′ is related to a by a constant shift, and (7.199) follows by setting
X

N (j)
⟨[s]⟩ = (

√
|N (j)|uj, 0, . . . , 0), and conditioning on the event that {Znj−1+1 =
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zj for j ̸= t}. Since t is arbitrary in (7.199), we have

P

[
⟨X[nk]

⟨[s]⟩,X
[nk]
⟨[s]⟩ + Z[nk]⟩ −

k∑
j=1

|N (j)|uj
2

∈ [a, a+ µ]

∣∣∣∣∣E
]

≤ 3

2

maxj∈[k] L(uj, 1 + sP )µ√
maxt∈[k] |N (t)|

(7.203)

≤ 3

2

√
kmaxj∈[k] L(uj, 1 + sP )µ

√
nk

, (7.204)

which implies (7.197), and (7.196) follows.

In the following discussion, we modify the analysis in Section 7.4.5 according
to the input distribution in (7.186). Define the information density random
vector ık and the typical events analogous to (7.81)–(7.83) as

ık ≜ (ıS(X
[nk]
S ;Y

[nk]
k |X[nk]

Sc ):S ∈ P([k])) (7.205)

E(S)RAC ≜
{
X

[nk]
⟨S⟩ + Z[nk] ∈ F(S)RAC

}
(7.206)

ERAC ≜
⋂

S∈P([k])

E(S)RAC (7.207)

Ak ≜

{
ık ≥

(
log

((
M − k

|S|

)
(G′

|S|,k)
2α|S|,k

)
:S ∈ P([k])

)
− 1

2
log nk1

}
,

(7.208)

where αs,k is given in (7.155). By Lemma 7.4.2 and the union bound, we have

P [Ec
RAC] ≤

k∑
j=1

exp
{
−ck|N (j)|1/3

}
, (7.209)

where ck is a positive constant. Combining (7.196) and (7.209) and following
the analysis in Section 7.4.5, we bound the expectation in (7.34c) by

P [Ac
k] +

k∑
j=1

exp
{
−ck|N (j)|1/3

}
+

1
√
nk

. (7.210)

Step 3: Given M and {ϵk}Kk=0, we set the decoding times n1, . . . , nK according
to the equalities

k logM = nkC(kP )−
√
nk(V (kP ) + Vcr(k, P ))Q

−1

(
ϵk −

Dk√
nk

)
+

1

2
log nk + ηk − k log κk(P1) (7.211)
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for all k ∈ [K], where Dk is a positive constant to be chosen later in (7.225),
and ηk ≜ −2 logG′

k,k + (k − 1) log k − k. Since 1
s
C(sP ) > 1

k
C(kP ) for s < k

and (7.211), we reach a sequence of conclusions.

1. There exists a constant c0 > 0 such that minj∈[k]|N (j)|≥ c0nk for large
enough M . In other words, |N (j)| is of the same order as nk for all
j ∈ [k].

2. The bound on the probability of message repetition, k(k−1)
2M

, decays ex-
ponentially with nk.

3. In order to bound the expression in (7.192) as B ≤ O
(

1√
nk

)
, we choose

n0 ≥ 4(1+P 2)
P 2 log n1 + o(log n1).

4. By the union bound, Chebyshev’s inequality, αk,k = k in (7.155), and
the fact that (

M

k

)
≤
(
eM

k

)k

, (7.212)

we get

P [Ac
k] ≤

Ek

nk

+ P
[
ı[k](X

[nk]
[k] ;Y

[nk]
k ) < k logM − 1

2
log nk − ηk

]
(7.213)

for some positive constant Ek.

Therefore, it remains only to evaluate the probability term in (7.213). Define
the modified and centered information density random variable

ı̃k ≜
1

√
nk

(
nk∑
i=1

log
PYk|X[k]

(Yi|X[k],i)

PỸk
(Yi)

− nkC(kP )

)
, (7.214)

where Ỹk ∼ N (0, 1 + kP ). By Lemma 7.4.1 and (7.211), we get

P
[
ı[k](X

[nk]
[k] ;Y

[nk]
k ) < k logM − 1

2
log nk − ηk

]
≤ P

[
ı̃k < −

√
V (kP ) + Vcr(k, P )Q

−1

(
ϵk −

Dk√
nk

)]
. (7.215)

The conditional distribution of ı̃k given X
[nk]
[k] = x

[nk]
[k] is the same as the condi-

tional distribution of ı̃k given H = h, where

H = (Hij: i, j ∈ [k], i < j) ∈ R(
k
2), (7.216)



182

and Hij =
⟨X[nk]

i ,X
[nk]

j ⟩√
nkP 2

. To bound the right-hand side of (7.215), in a manner

similar to the arguments in Section 7.5, we only need to verify that

TV(PH, PH̃) ≤
ψk√
nk

(7.217)

for some constant ψk, where H̃ ∼ N
(
0, I(k2)

)
. To show (7.217), we define

H(t) ≜ (H
(t)
ij : i, j ∈ [k], i < j) ∈ R(

k
2), (7.218)

where H(t)
ij =

⟨XN (t)
i ,X

N (t)
j ⟩√

|N (t)|P 2
, then write

H =
k∑

t=1

√
|N (t)|
√
nk

H(t). (7.219)

By the data processing inequality of the total variation distance and the inde-
pendence of H(t), t ∈ [k], we get

TV(PH, PH̃) ≤ TV

(
k∏

t=1

PH(t) , P k
H̃

)
(7.220)

≤
k∑

t=1

TV(PH(t) , PH̃) (7.221)

≤
k∑

t=1

Fk√
|N (t)|

(7.222)

≤ kFk√
c0nk

, (7.223)

where (7.221) applies [141, eq. (4.5)], which bounds the total variation dis-
tance between two product measures P k and Qk by k times the total variation
distances between P and Q. The bound in [141, eq. (4.5)] is extended to arbi-
trary product measures

∏k
i=1 Pi and

∏k
i=1Qi in [142, Lemma 2.1]. Inequality

(7.222) follows from Lemma 7.5.1, Fk is the constant from Lemma 7.5.1, and
(7.223) follows from (7.211), which proves (7.217).

By (7.223), and following arguments similar to those in Section 7.5, we con-
clude that

P
[
ı̃k < −

√
V (kP ) + Vcr(k, P )Q

−1

(
ϵk −

Dk√
nk

)]
≤ ϵk −

Dk√
nk

+
Ck√
nk

, (7.224)
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where Ck is a Berry-Esseen constant. We choose the constant Dk such that

Dk√
nk

≤ k(k − 1)

2M
+B +

Ck√
nk

+
Ek

nk

+k exp
{
−ck(c0nk)

1/3
}
+

1
√
nk

, (7.225)

where B is in (7.192). For large enough nk, such a constant exists by the
enumerated consequences of (7.211), above. From Theorem 7.3.2 and the
inequalities (7.188), (7.210)–(7.213), (7.215), (7.224) and (7.225), we conclude
that the probability of error is bounded by ϵk. By the Taylor series expansion
of the function Q−1(·) in (7.211), we complete the proof.

7.8 Summary

This chapter studies the Gaussian multi-access channels in the finite-blocklength
regime for two communication scenarios. In the first scenario, called the Gaus-
sian MAC, K active transmitters are fixed and known to the transmitters and
the receiver; in the second scenario, called the Gaussian RAC, an unknown
subset ofK transmitters is active, and neither the transmitters nor the receiver
knows the set of active transmitter.

For the Gaussian MAC problem, we build on the RCU bound (Theorem 7.2.1)
for general MACs to prove a third-order achievability result (Theorem 7.2.2).
Our random encoder design chooses codewords distributed independently and
uniformly on the n-dimensional sphere. At the receiver, we employ a maximum
likelihood decoder. Compared to the result of MolavianJazi and Laneman
[24], our coding scheme improves the achievable third-order term to 1

2
log n1+

O(1)1. Theorem 7.2.3 extends our result for the Gaussian MAC with two
transmitters to the K-transmitter Gaussian MAC.

We generalize the rateless coding strategy in Chapter 6 for the permutation-
invariant random access channels by allowing non-i.i.d. input distributions at
the random encoding function. For the Gaussian RAC, our strategy uses con-
catenated codewords such that each sub-codeword is uniformly distributed on
a power sphere and independent of the other sub-codewords. In our proposed
coding strategy, the decoding occurs at finitely many time instants n0, . . . , nK ,
with the choice of nk indicating that the decoder’s estimate of the number of
active transmitters is k. The receiver broadcasts a single bit to all transmit-
ters at each decoding time, indicating whether or not it is ready to decode.
The decoding rule combines a threshold rule based on the total received power
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and a maximum likelihood decoder. Building upon our result on the Gaussian
MAC, we show in Theorem 7.3.1 that our rateless Gaussian RAC code achieves
the same performance up to the third-order term as the best known code for
the Gaussian MAC in operation (Corollary 7.2.1). Furthermore, by forcing
decoding at time nK our feedback RAC code in Theorem 7.3.1 can be used
with a K-transmitter MAC without feedback. While this can only reduce
the error probability determined in Theorem 7.3.2 by eliminating the error
events that result from deciding upon an incorrect number of active transmit-
ters, that reduction is negligible in our asymptotic regime (see the proof of
Theorem 7.3.1). Thus, Theorem 7.3.1 also describes the performance of the
length-nK codebook of the RAC code when used with a K-transmitter MAC
without feedback. That means that although the length-nK codebook of the
RAC code is supported on only a subset of the power sphere (see Fig. 7.2),
it achieves the same first three order terms on a K-transmitter MAC as the
more traditional code in Corollary 7.2.1 that uses the entire power sphere.
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C h a p t e r 8

CONCLUSION, FUTURE WORK, AND OPEN PROBLEMS

8.1 Conclusion

With stringent latency and reliability constraints of ultra-reliable, low-latency
communication, non-asymptotic analyses of channel coding problems have be-
come more and more important for code design and understanding the fun-
damental limits. This thesis analyzes PPC codes without feedback, variable-
length sparse stop-feedback codes over PPCs and MACs, and rateless RAC
codes with non-asymptotic tightness in mind.

Ultra-reliable low-latency communication applications demand codes with er-
ror probability around 10−8–10−6 and latency around 1 millisecond, which
corresponds to a few hundreds in blocklength; Polyanskiy et al.’s CLT ap-
proximation from [5] becomes inaccurate for such applications (see Fig. 3.1).
In Chapter 3, we investigate the third-order asymptotics of the logarithm
of the maximum achievable message set size for nonsingular DM-PPCs and
the Gaussian PPC in the MD regime. Our asymptotic approximations in
Theorem 3.3.1 and Theorem 3.3.2 that involve the channel skewness are the
most accurate among the state-of-the-art expansions from the literature in the
ultra-reliable low-latency communication regime. Using similar techniques,
in Theorem 3.3.5, we also derive a refined approximation for the minimum
achievable type-II error of BHTs. Our results show that in the low-error and
high-reliability regime, the channel skewness is very crucial to obtain tight
approximations.

Chapters 4–5 investigate the maximum achievable message set size for VLSF
codes that have only a small number of feedback instances over PPCs and
MACs. The central results in Theorem 4.3.1 and Theorem 5.3.1 show the
achievability of VLSF codes, where the values of L decoding times n1, . . . , nL

are optimized. In sparse VLSF codes, the optimization of n1, . . . , nL is par-
ticularly important for this class of codes since to achieve the same perfor-
mance as L = O(1) optimized decoding times (Theorem 4.3.1), one needs
Ω
(√

N
ln(L−1)(N)

)
uniformly-spaced decoding times (Theorem 4.3.3).

Chapters 6–7 investigate the RAC codes over general permutation-invariant
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RACs and the Gaussian RAC, respectively. In RAC codes, we utilize the
stop-feedback to synchronize the transmitters and the receiver in a channel
model where neither the transmitters nor the receiver knows the number of
active transmitters. Our code uses a single information density threshold rules,
while codes such as in [19], [112] use 2k − 1 simultaneous threshold-rules for
k-MAC. Our central result in Theorem 6.3.1 shows that as long as the total
number of transmitters satisfies K <∞, there is no loss in the first two terms
in the maximum achievable message set size even if the decoder is tasked with
decoding transmitter identity. Chapter 7 extends this result to the Gaussian
RAC by designing codewords that concatenate K sub-codewords of block-
lengths n1, n2−n1, . . . , nK −nK−1, each drawn from a uniform distribution on
a sphere of radius

√
(ni − ni−1)P . While the codes in Chapter 6 employ i.i.d.

random codewords, Chapter 7 contributes to develop tools and techniques to
analyze codes that do not employ i.i.d. random codewords.

Below, we discuss the future research directions, some of which are already
discussed throughout the thesis.

8.2 On the Third-Order Analysis of DM-PPCs

For DM-PPCs, the state-of-the-art error analyses in the CLT and LD regimes
([35] and [33], respectively) both start from the RCU bound in [5, Th. 16], then
weaken it in different ways, and then bound the probabilities in the weakened
bound using appropriate probability theorems from Chapter 2. Namely, in
[33], which considers the LD regime, the information density ı(x; y) used in
the proof is replaced by

log
PY |X(y|x)
QY (y)

(8.1)

where

QY (y) ≜ c

(∑
x∈X

PX(x)PY |X(y|x)1/1+ρ

)1+ρ

, y ∈ Y . (8.2)

where c is a normalizing constant, and ρ ∈ [0, 1] is a parameter to be optimized.
Note that since the ρ = 0 case reduces to the information density, the LD
approach can only improve the resulting bound from the CLT (information
density) approach. In Chapter 3, we choose to use the same approach in the
CLT regime, i.e., ρ = 0 since allowing an arbitrary ρ makes the analysis more
cumbersome in the MD regime.
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This difference in the proof techniques brings the question whether one can
unify the weakening methods used in the CLT, MD, and LD regimes so that
the resulting asymptotic expansion for the maximum achievable message set
size is the tightest in all three regimes. The implications of such a possible
unification are beyond “the proof technique” because it would also imply that
the information density is not the right metric in threshold decoders when the
error probability is small enough.

When we turn to the Gaussian PPC, we observe that such a unification is
indeed possible. In Chapter 3, following Shannon’s weakening [6] of the RCU
bound rather than the standard information-density based weakening results
in a better lower bound on the channel skewness, which matches the upper
bound.

8.3 Different Directions in Limiting the Feedback in VLSF Codes

In Chapters 4–5, we focus on the sparse, stop-feedback codes. The other
direction of the limited feedback spectrum that we discuss in Section 1.2 (e.g.,
sparse with full feedback) is also practically and theoretically interesting since
there might be scenarios where bursty feedback is sparsely available. Moreover,
we can also consider the scenario where the feedback is limited by Rfb bits. In
this case, one strategy is to design a variable-length code so that the receiver
requests a shorter or a longer codeword from the transmitter depending on how
reliable its current estimated message is, and informs the transmitter about
this codeword length using Rfb bits available. We leave this research direction
as future work.

8.4 Converse for VLSF Codes with L Decoding Times

One of the most desirable results that would enhance our findings is a converse
with a second-order term matching that in Theorem 4.3.1. Towards this goal,
we can use the meta-converse that we derive in Theorem C.4.1, which converts
the problem into finding the fundamental limits of sequential hypothesis test-
ing. However, this new problem is still difficult. In the case where all times
up to a fixed nL are available for decision-making, [83, Th. 3.2.3] characterizes
the optimal two-sided test, where the lower and upper thresholds are defined
implicitly. Despite being challenging, the investigation of what these thresh-
olds would be if L out of nL times are available can give us a solution to our
converse problem.
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8.5 Converse for the RAC

Whether the second-order term achieved in Theorem 6.3.1 is tight is one of
the most important questions that this thesis unfortunately does not answer.
We first note that any converse result on a fixed-length, no-feedback MAC
code gives a converse for our RAC model because the encoding function in
our RAC code definition does not use depend on the feedback, and because
introducing uncertainty in the number of active transmitter cannot increase the
maximum achievable rate. Even after this observation, the task of deriving a
tight converse in the second-order term remarkably remains a very difficult one.
Between Ahlswede’s result [118] in 1982 and Kosut’s result [23] in 2022, there
had been no improvement on the converse bounds for MACs. Yet, Kosut’s
result in [23] only shows that the second-order term in Theorem 6.3.1 is order-
optimal, i.e., it is O(

√
n), but it does not answer whether the dispersion Vk is

optimal. We leave this question as an open problem.
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A p p e n d i x A

APPENDIX FOR CHAPTER 2

A.1 Proof of Lemma 2.4.1

Lemma 2.4.1 reduces to the Cornish-Fisher theorem if y = O(1); therefore, we
focus on the case y → ∞ or y → −∞ with y ∈ o(

√
n). We here prove the case

where y → ∞. The case y → −∞ follows similarly using (2.30). From (2.31),
we have

Fn(−x) = Q(x) exp

{
− a0

x3√
n
+ a1

x4

n
−O

(
x5

n3/2

)
+O

(
x√
n

)}
. (A.1)

Let x = y + δ where δ/y → 0. Substituting Fn(−x) = Q(y) into (A.1), we get

Q(y + δ)

Q(y)
= exp

{
a0
x3√
n
− a1

x4

n
+O

(
y5

n3/2

)
+O

(
y√
n

)}
. (A.2)

As y → ∞, we have the asymptotic expansion [143, eq. 26.2.12]

Q(y) =
1√
2π

exp

{
−y

2

2

}
1

y

(
1− 1

y2
+

3

y4
−O

(
1

y6

))
. (A.3)

Substituting (A.3) into the left-hand side of (A.2) and taking the logarithm
of both sides of (A.2), we get

−δy − δ2

2
− δ

y
+O

(
δ2

y2

)
= a0

y3√
n
+ a0

3y2δ√
n

+ a0
3yδ2√
n

+ a0
δ3√
n
− a1

y4

n

+O

(
y5

n3/2

)
+O

(
y3δ

n

)
+O

(
y√
n

)
. (A.4)

Equating the coefficients of y3√
n

and y4

n
of both sides of (A.4), we get

b0 = a0 (A.5)

b1 =
5

2
a20 + a1, (A.6)

which completes the proof.
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A p p e n d i x B

APPENDIX FOR CHAPTER 3

B.1 Proof of (3.119)

From (3.100) and (3.112), we get an → (I(PX), 0) as n→ ∞. To evaluate the
gradient and the Hessian of Λ(an), we start from the equation in condition
(ND)

∇κ(sn) = an. (B.1)

Viewing an as a vector-valued function of sn and differentiating both sides of
(B.1) with respect to sn, we get

Jsn(an) = ∇2κ(sn), (B.2)

where Jsn(an) ≜

[
∂an,1

∂sn,1

∂an,1

∂sn,2

∂an,2

∂sn,1

∂an,2

∂sn,2

]
is the Jacobian of an with respect to sn.

Differentiating the equation Λ(an) = ⟨sn,∇κ(sn)⟩ − κ(sn) with respect to sn,
we get a 2-dimensional row vector

Jsn(Λ(an)) = s⊤n∇2κ(sn). (B.3)

Applying the function inversion theorem and using (B.2), we reach

Jan(Λ(an)) = Jsn(Λ(an))Jan(sn) (B.4)

= s⊤n∇2κ(sn)(∇2κ)−1(sn) (B.5)

= s⊤n , (B.6)

equivalently

∇Λ(an) = sn. (B.7)

Differentiating (B.7) with respect to an, we get

∇2Λ(an) = ∇(∇Λ(an)) (B.8)

= Jan(sn) (B.9)

= (∇2κ)−1(sn). (B.10)
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We would like to obtain the Taylor series expansion of Λ(·) around a =

(I(PX), 0). By direct computation, we get

Λ(a) = I(PX) (B.11)

∇Λ(a) = (1, 1) (B.12)

∇κ((1, 1)) = a, (B.13)

giving sn → s ≜ (1, 1), which verifies condition (ND). Define

T ≜ (T1, T2) (B.14)

T1 ≜ log
PY |X(Y |X)

PY (Y )
(B.15)

T2 ≜ log
PY |X(Y |X)

PY |X(Y |X)
, (B.16)

where PX,X,Y (x, x, y) = PX(x)PX(x)PY |X(y|x). We have

∇2κ(s) = Cov(T̃)−1, (B.17)

where T̃ is distributed according to the tilted distribution

PT̃ = exp{⟨s,T⟩}PT =
PY |X(Y |X)

PY (Y )
PT, (B.18)

and PT denotes the distribution of T. We compute the inverse of the covariance
matrix of T̃ as

Cov(T̃)−1 =

[
2

1+η(PX)
1

1+η(PX)
1

1+η(PX)
1

1−η(PX)2

]
1

Vu(PX)
. (B.19)

From (B.11), (B.12), and (B.19), we get

Λ(an) = I(PX) + (an,1 − I(PX))

+
1

2
(an,1 − I(PX))

2Cov(T̃)−1
1,1 +O(|an,1 − I(PX)|3) (B.20)

= an,1 +
1

n

Q−1(ϵn)
2

1 + η(PX)
+O

(
Q−1(ϵn)

3

n3/2

)
+O

(
1

n

)
. (B.21)

B.2 Proof of (3.127)

We solve the convex optimization problem in (3.126) by writing the Lagrangian

L(g, λ) = g⊤h− 1

2
g⊤Jg − λg⊤1. (B.22)
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The Karush-Kuhn-Tucker condition ∇L(g, λ) = 0 gives

Jg = h− λ1 (B.23)

g⊤1 = 0, (B.24)

where J is given in (3.45). The equation (B.23) has a solution since both h

and 1 are in the row space of J, which is equal to the column space since J is
symmetric. Solving the system of equations in (B.23) and (B.24), we get the
dual variable

λ∗ =
1⊤J+h

1⊤J+1
. (B.25)

Plugging (B.25) in (B.24), we get

g∗ = J̃h (B.26)

= −Q
−1(ϵn)

2
√
nV

J̃v(P ∗
X), (B.27)

where J̃ and v are given in (3.49) and (3.50). An equivalent characterization
of (B.27) in terms of the eigenvalue decomposition of J is given in [35, Lemma
1 (v)]. The value of the supremum in (3.126) is 1

2
g∗⊤J̃g∗ = A0(P

∗
X)Q

−1(ϵn)
2,

where A0(·) is given in (3.53).

B.3 Proof of Lemma 3.4.2

We compute the first 3 central moments of the random variable
∑n

i=1 log
PY |X(Yi|xi)

QY (Yi)
,

where Y ∼ PY|X=x, which is the sum of n independent, but not necessarily
identically distributed random variables. We have

1

n
E

[
n∑

i=1

log
PY |X(Yi|xi)
QY (Yi)

]

=
∑
y∈Y

∑
x̃∈X

P̂x(x̃)PY |X(y|x̃) log
PY |X(y|x̃)
QY (y)

(B.28)

= Dx. (B.29)

Similarly, it follows that

1

n
Var

[
n∑

i=1

log
PY |X(Yi|xi)
QY (Yi)

]
= Vx (B.30)

E

( 1

n

n∑
i=1

log
PY |X(Yi|xi)
QY (Yi)

−Dx

)3
 = Tx. (B.31)
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Note that Cramér’s condition in Theorem 2.4.1 is satisfied since log
PY |X(Yi|xi)

QY (Yi)

is a discrete random variable for all i ∈ [n]. Applying Lemma 2.4.1 by setting
Xi to log

PY |X(Yi|xi)

QY (Yi)
gives (3.129).

1

n
E

[
n∑

i=1

log
PY |X(Yi|xi)
QY (Yi)

]

=
∑
y∈Y

∑
x̃∈X

P̂x(x̃)PY |X(y|x̃) log
PY |X(y|x̃)
QY (y)

(B.32)

= Dx. (B.33)

Similarly, it follows that

1

n
Var

[
n∑

i=1

log
PY |X(Yi|xi)
QY (Yi)

]
= Vx (B.34)

E

( 1

n

n∑
i=1

log
PY |X(Yi|xi)
QY (Yi)

−Dx

)3
 = Tx. (B.35)

Note that Cramér’s condition in Theorem 2.4.1 is satisfied since log
PY |X(Yi|xi)

QY (Yi)

is a discrete random variable for all i ∈ [n]. Applying Lemma 2.4.1 by setting
Xi to log

PY |X(Yi|xi)

QY (Yi)
gives (3.129).

B.4 Proof of Theorem 3.3.5

Assume that
∑n

i=1 Zi is lattice with span h > 0. Let γ and γ satisfy

P

[
n∑

i=1

Zi ≥ γ

]
= 1− ϵn ≥ 1− ϵn (B.36)

P

[
n∑

i=1

Zi ≥ γ

]
= 1− ϵn ≤ 1− ϵn, (B.37)

where γ and γ are in the range of
∑n

i=1 Zi, γ − γ = h, and ϵn ≤ ϵn ≤ ϵn. Let
λ ∈ [0, 1] satisfy

P

[
n∑

i=1

Zi ≥ γ

]
λ+ P

[
n∑

i=1

Zi ≥ γ

]
(1− λ) = 1− ϵn. (B.38)

By the Neyman-Pearson Lemma (see [5, eq. (101)]),

β1−ϵn(P
(n), Q(n))

= P

[
n∑

i=1

Zi ≥ γ

]
λ+ P

[
n∑

i=1

Zi ≥ γ

]
(1− λ). (B.39)
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Define the asymptotic expansion

χ(ϵ) ≜ D −
√
V

n
Q−1(ϵ) +

Sk
√
V

6n
Q−1(ϵ)2

− 3(µ4 − 3V 2)V − 4µ2
3

72V 5/2

Q−1(ϵ)3

n3/2

+O

(
Q−1(ϵ)4

n2

)
+O

(
1

n

)
. (B.40)

By conditions (A) and (B) of Theorem 3.3.5, the conditions of Theorem 2.4.1
are satisfied for the sum

∑n
i=1 Zi. We apply Lemma 2.4.1 to (B.36)–(B.37),

and get the asymptotic expansions

γ = nχ(ϵn) (B.41)

γ = nχ(ϵn). (B.42)

From the Taylor series expansion of χ(·) around ϵn, (B.41)–(B.42), and γ−γ =

O(1), it holds that

γ = nχ(ϵn) +O(1) (B.43)

γ = nχ(ϵn) +O(1). (B.44)

The arguments above hold in the non-lattice case with γ = γ.

Next, we evaluate the probability P
[∑n

i=1 Zi ≥ γ
]

in (B.39) separately in the
lattice and non-lattice cases.

B.4.1 Lattice Case

We will apply Theorem 2.5.3 to evaluate the probability of interest. By [35,
Appendix D],

κ(1) = 0 (B.45)

κ′(1) = D (B.46)

κ′′(1) = V (B.47)

κ′′′(1) = µ3. (B.48)

From (B.43), we have 1
n
γ = D+ o(1). Therefore, by (B.46), condition (ND) of

Theorem 2.5.2 is satisfied with s = 1+o(1). Condition (S) of Theorem 2.5.2 is
satisfied by condition (C) of Theorem 3.3.5. Therefore, it only remains to verify
condition (L) of Theorem 2.5.3 in the one-dimensional case. Since

∑n
i=1 Zi is
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lattice with span h, each of Zi is also lattice whose span is a multiple of h. By
[30, p. 1687], we have

sup
δ<|t|≤π

h

∣∣∣∣ϕi(s+ it)

ϕi(s)

∣∣∣∣ ≤ c1 < 1, i ∈ [n] (B.49)

for every 0 < δ ≤ π
h
, where ϕi(·) is the mgf of Zi. Since Z1, . . . , Zn are i.i.d.,

the mgf ϕ(·) of
∑n

i=1 Zi satisfies

sup
δ<|t|≤π

h

∣∣∣∣ϕ(s+ it)

ϕ(s)

∣∣∣∣ = sup
δ<|t|≤π

h

∣∣∣∣∣
n∏

i=1

ϕi(s+ it)

ϕi(s)

∣∣∣∣∣ (B.50)

≤ cn1 = o(n−1/2). (B.51)

Therefore, condition (L) of Theorem 2.5.3 is satisfied. Applying Theorem 2.5.3
to P

[∑n
i=1 Zi ≥ γ

]
, we have

P

[
n∑

i=1

Zi ≥ γ

]
= exp

{
−nΛ(an)−

1

2
log n+O(1)

}
, (B.52)

where

Λ(an) = sup
t∈R

{tan − κ(t)} (B.53)

an = χ(ϵn) +O

(
1

n

)
. (B.54)

We expand the Taylor series of Λ(·) around D as

Λ(an) = Λ(D) + (an −D)Λ′(D) +
(an −D)2

2
Λ′′(D)

+
(an −D)3

6
Λ′′′(D) +O(|an −D|4). (B.55)

By [35, Appendix D],

Λ(D) = D (B.56)

Λ′(D) = 1 (B.57)

Λ′′(D) =
1

V
(B.58)

Λ′′′(D) = − µ3

V 3
. (B.59)

Combining (B.52) and (B.56)–(B.59), we get

Λ(an) = an +
Q−1(ϵn)

2

2n
+O

(
Q−1(ϵn)

4

n2

)
+O

(
1

n

)
. (B.60)

By (B.43)–(B.44), the asymptotic expansion on the right-hand side of (B.52)
holds for the probability P

[∑n
i=1 Zi ≥ γ

]
too. Combining (B.39), (B.52), and

(B.60) completes the proof for the lattice case.
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B.4.2 Non-lattice Case

The proof for the non-lattice case is identical to the proof for the lattice case
except the verification of condition (NL) in Theorem 2.5.2. Denote

S̃j ≜
∑
i∈Ij

Zi, j ∈ [wn], (B.61)

which are non-lattice by condition (D) of Theorem 3.3.5. By [30, p. 1687],

sup
j∈[wn]

sup
δ<|t|≤λ

∣∣∣∣∣ ϕ̃j(s+ it)

ϕ̃j(s)

∣∣∣∣∣ ≤ c2 < 1 (B.62)

for every 0 < δ < λ, where ϕ̃j denotes the mgf of S̃j. Since Z1, . . . , Zn are
i.i.d., we have

sup
δ<|t|≤λ

∣∣∣∣ϕ(s+ it)

ϕ(s)

∣∣∣∣ = sup
δ<|t|≤λ

∣∣∣∣∣
wn∏
j=1

ϕ̃j(s+ it)

ϕ̃j(s)

∣∣∣∣∣ · 1 (B.63)

≤ cwn
2 (B.64)

= o(n−1/2), (B.65)

where (B.63) follows since ϕ̃j(s+it)

ϕ̃j(s)
is a characteristic function of a non-lattice

random variable [30], (B.64) follows from (B.62), and (B.65) follows from con-
dition (D) and c2 < 1. This verifies condition (NL) of Theorem 2.5.2. Applying
Theorem 2.5.2 similarly to (B.52) completes the proof.

B.5 Proof of Theorem 3.3.3

Proof of the achievability: To prove the achievability, we derive the coefficient
of O

(
Q−1(ϵn)3√

n

)
in Lemma 3.4.1, and invoke the refined Lemma 3.4.1 with

PX = P ∗
X . For this purpose, we need to modify the proof of Lemma 3.4.1 at

two steps. First, using Lemma 2.4.1, the expansion for tn in (3.111) is refined
as

tn = Q−1(ϵn)−
SkuQ

−1(ϵn)
2

6
√
n

+
3(µ4 − 3V 2)V − 4µ2

3

72V 3

Q−1(ϵn)
3

n

+O

(
Q−1(ϵn)

4

n3/2

)
+O

(
1√
n

)
. (B.66)

Second, we refine the expansion in (3.119) by computing the third-order gra-
dient ∇3Λ(an). Taking the gradient of (B.10), we get

∇3Λ(an)i,j,k = −
∑

(a,b,c)∈[2]3
∇3κ(sn)a,b,c(∇2κ)−1(sn)a,i
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·(∇2κ)−1(sn)b,j(∇2κ)−1(sn)c,k, (i, j, k) ∈ [2]3. (B.67)

In the case η(P ∗
X) = 0, the inverse of the Hessian (∇2κ)−1(s) in (B.17) becomes

(∇2κ)−1(s) =

[
2 1

1 1

]
1

V
, (B.68)

and we compute

∇3κ(s)1,1,1 = µ3 (B.69)

∇3κ(s)1,1,2 = −µ3 (B.70)

∇3κ(s)1,2,2 = µ3 (B.71)

∇3κ(s)2,2,2 = 0. (B.72)

Note that (B.69)–(B.72) is sufficient to determine ∇3κ(s) since it is a symmet-
ric order-3 tensor. From (B.67)–(B.72), we compute

∇3Λ(a)1,1,1 = −2µ3

V 3
. (B.73)

Using (B.68) and (B.73), we refine (3.119) as

Λ(an) = an,1 +
(an,1 − I(P ∗

X))
2

V
− 1

6
(an,1 − I(P ∗

X))
32µ3

V 3

+O(|an,1 − I(P ∗
X)|4) (B.74)

= an +
Q−1(ϵn)

2

n
+O

(
Q−1(ϵn)

4

n2

)
+O

(
1

n

)
. (B.75)

Following the steps in the proof Lemma 3.4.1 and using (B.66) and (B.75)
completes the proof.

Proof of the converse: Set Q(n)
Y = (Q∗

Y )
n, where Q∗

Y is the equiprobable
capacity-achieving output distribution. Since Cover-Thomas symmetric chan-
nels have rows that are permutation of each other, we have that β1−ϵn(PY|X=x, Q

(n)
Y )

is independent of x ∈ X n. By [5, Th. 28], we have

logM∗(n, ϵn) ≤ − log β1−ϵn(PY|X=x, Q
(n)
Y ), (B.76)

where x = (x0, . . . , x0) for some x0 ∈ X . Applying Theorem 3.3.5 to the
right-hand side of (B.76) completes the proof.
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B.6 Proof of Theorem 3.3.4

We begin by presenting the preliminary definitions about the subsets of a n-
dimensional sphere. A centered, unit sphere embedded on Rn (the manifold
dimension is n− 1) is defined as

Sn−1 ≜ {x ∈ Rn: ∥x∥ = 1}. (B.77)

A centered, unit-radius spherical cap embedded in Rn is defined as

cap(x, a) ≜ {y ∈ Rn: ⟨x,y⟩ ≥ a, ∥y∥2 = 1}, (B.78)

where x ∈ Sn−1 is the center point of the cap, and a ∈ [−1, 1] defines the
size of the cap, which is equal to the cosine of the half-angle of the cap. For
example, cap(x,−1) = Sn−1 and cap(x, 0) is a half-sphere. We use Area(·) to
denote the surface area of an (n − 1)-dimensional manifold embedded in Rn.
For example, the surface area of a unit sphere is

Area(Sn−1) =
2π

n
2

Γ(n
2
)
, (B.79)

where Γ(·) denotes the Gamma function. Below, we use X̂ ≜ X
∥X∥2

to denote
the projection of X onto Sn−1.

B.6.1 Shannon’s Random Coding Bound

Shannon’s random coding bound from [6] is also a relaxation of the RCU bound
(3.102), but differently than the one in (3.103). We generate M independent
codewords uniformly distributed on the power sphere

√
nPSn−1. Since all

codewords lie on the power sphere and since the maximum likelihood decod-
ing rule is equal to the minimum distance decoder for the Gaussian channel,
(3.102) is equivalent to

ϵ ≤ P
[
∪M

m=2{⟨X̂(m), Ŷ⟩ ≥ ⟨X̂(1), Ŷ⟩}|W = 1
]
. (B.80)

We bound the right-hand side of (B.80) by

P
[
⟨X̂, Ŷ⟩ < a

]
+MP

[
⟨X̂, Ŷ⟩ ≥ ⟨X̂, Ŷ⟩ ≥ a

]
(B.81)

for some a ∈ [−1, 1] to be determined later. Here, X is uniformly distributed
on

√
nPSn−1, Y = X + Z, where Z ∼ N (0, In), independent of X, and X is

distributed identically to X, and is independent of X and Y. The bound in
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(B.81) is exactly equal to [6, eq. (19)] and [41, eq. (61)]. Both of [6] and [41]
set the threshold a to satisfy

P
[
⟨X̂, Ŷ⟩ ≥ a

]
=

1

M
(B.82)

to analyze the bound in the LD regime. We here set a slightly differently for
the CLT regime, namely, as

P
[
⟨X̂, Ŷ⟩ < a

]
= ϵ̃ = ϵ− 1√

2πnV (P )
exp

{
−Q

−1(ϵ)2

2

}
, (B.83)

which is the same choice that we make in (3.106).

Using the same steps as [6, eq. (16)-(17)] and [41, Appendix G], we express
the probability (B.83) in terms of a cdf of a noncentral t-distribution with
noncentrality parameter

√
nP and n− 1 degrees of freedom as1

P
[
⟨X̂, Ŷ⟩ < a

]
= P

[
ρ <

√
n− 1

a√
1− a2

]
, (B.84)

where ρ ∼ noncentral−t(n− 1,
√
nP ), which is defined as

A1 +
√
nP√

1
n−1

∑n
i=2A

2
i

, (B.85)

where A1, . . . , An are i.i.d. N (0, 1).

Due to spherical symmetry, ⟨X̂, Ŷ⟩ is independent of ⟨X̂, Ŷ⟩, and from [6,
Sec. IV],

P
[
⟨X̂, Ŷ⟩ ≥ b

]
=

Area(cap(x0, b))

Area(Sn−1)
for b ∈ (−1, 1), (B.86)

where x0 is any point on the unit-sphere. Shannon proves the following asymp-
totic expansion of (B.86)

vn(b) ≜
1

n
log

Area(cap(x0, b))

Area(Sn−1)
(B.87)

=
1

2
log(1− b2)

− 1

2n
log n− 1

2n
log(2πb2(1− b2)) +O

(
1

n2

)
. (B.88)

1To see this, set X to (
√
nP , 0, . . . , 0) and use spherical symmetry.
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To find the value of a in (B.83) as a function of ϵ, we first derive a Cornish-
Fisher expansion of the random variable ρ. Fisher and Cornish [144] extend
the Cornish-Fisher expansion of the random variables with known cumulants
that do not need to be sum of independent random variables; they give the ex-
pansions for t and chi-squared distributions as examples. Van Eeden [145] uses
the same technique for the noncentral t-distribution, where the noncentrality
parameter is fixed and the number of degrees of freedom approaches infinity.
In our application, ρ has a noncentrality parameter

√
nP growing to infinity.

Below, we will use [144] to extend [145] to the case where the noncentrality
parameter also grows.

For the expansion in [144] that uses cumulants up to order s to hold, the
random variable needs to be continuous and its first s + 1 cumulants need to
satisfy κj = O

(
1

n
j
2−1

)
, j ≤ s + 1. From [29], [144], the quantile t of ρ at the

value ϵ̃ admits the expansion

ϵ̃ = P [ρ < t] (B.89)

t = κ1 −
√
κ2(Q

−1(ϵ̃)− Sk

6
(Q−1(ϵ̃)2 − 1)) +O

(
1

n

)
, (B.90)

where κ1 = E [ρ], κ2 = Var [ρ], and Sk =
E[(ρ−κ1)3]

κ
3/2
2

is the skewness.

From the moments of noncentral t-distribution [146] and Taylor series expan-
sions, we calculate the asymptotic expansions for κ1, κ2, and Sk as

κ1 =
√
nP +

3

4

√
P

n
+O

(
n−3/2

)
(B.91)

κ2 =

(
1 +

P

2

)
+

2 + 19P
8

n
+O

(
n−3/2

)
(B.92)

Sk =
12
√
P + 5P 3/2

√
2n (2 + P )3/2

+O
(
n−3/2

)
, (B.93)

and check that the fourth cumulant satisfies κ4 = O(n−1). Applying the Taylor
series expansion to Q−1(ϵ̃), we get

Q−1(ϵ̃) = Q−1(ϵ) +
1√

nV (P )
+O

(
1

n

)
. (B.94)

Juxtaposing (B.84) and (B.89), we note

a =

t√
n−1√

1 + t2

n−1

. (B.95)
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Substituting (B.91)–(B.94) into (B.90), and the latter into (B.95), we get

a =

√
P√

1 + P
− 1√

n

√
2 + PQ−1(ϵ)√
2(1 + P )3/2

+
1

n

18
√
P + 28P 3/2 + 10P 5/2

12(1 + P )5/2(2 + P )

− Q−1(ϵ)2

n

24
√
P + 19P 3/2 + 4P 5/2

12(1 + P )5/2(2 + P )

− 1

n

√
2 + P√

2(1 + P )3/2
√
V (P )

. (B.96)

It only remains to find the asymptotic expansion of the probability
P
[
⟨X̂, Ŷ⟩ ≥ ⟨X̂, Ŷ⟩ ≥ a

]
. Note that this probability is in the LD regime.

Using the analysis in [41, Sec. V-B], we find the density of ⟨X̂, Ŷ⟩ as

f⟨X̂,Ŷ⟩(a) = exp{nun(a)} (B.97)

un(a) = u0(a) +
log n

2n
− u1(a)

2n
+O(n−2) (B.98)

u0(a) =
1

2
log(1− a2)− 2α2 + (αa)2 + αa

√
1 + (αa)2

+ log(αa+
√
1 + (αa)2) (B.99)

u1(a) = log(1 + (αa)2 + αa
√

1 + (αa)2)

+ 3 log(1− a2) + log(2π), (B.100)

where α ≜
√

P
4
.

In [41], the asymptotic expansion to the probability P
[
⟨X̂, Ŷ⟩ ≥ ⟨X̂, Ŷ⟩ ≥ a

]
is derived using the Laplace integration method as

P
[
⟨X̂, Ŷ⟩ ≥ ⟨X̂, Ŷ⟩ ≥ a

]
=

∫ 1

a

f⟨X̂,Ŷ⟩(b)
Area(cap(x0, b))

Area(Sn−1)
db (B.101)

=

∫ 1

a

exp{ngn(b)}db (B.102)

= exp{ngn(a)}
(

1

−ng′n(a)
+O(n−2)

)
, (B.103)

where gn(b) = un(b)+ vn(b) and g′n(a) is the derivative of gn(·) evaluated at a.

Finally, equating the second term in (B.81) to 1√
2πnV (P )

exp
{
−Q−1(ϵ)2

2

}
, i.e.,

M exp{ngn(a)}
1

−ng′n(a)
=

1√
2πnV (P )

exp

{
−Q

−1(ϵ)2

2

}
, (B.104)
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and using (B.96)–(B.100) along with necessary Taylor series expansions, we
complete the proof for the lower bound (3.73).

B.6.2 Shannon’s Sphere-Packing Converse

In [6, eq. (15)], Shannon derives a converse bound for the Gaussian channel
with an equal power constraint using a sphere-packing idea. Being equal to
Polyanskiy’s minimax bound in [5, Th. 28], Shannon’s converse bound is still
the tightest for any error probability to this date. We here analyze [6, eq. (15)]
in the CLT regime.

Shannon’s sphere-packing converse for the equal-power case is given by

ϵ ≥ P
[
⟨X̂, Ŷ⟩ < a∗

]
, (B.105)

where a∗ satisfies

1

M
=

Area(cap(x0, a
∗))

Area(Sn−1)
. (B.106)

To evaluate (B.105), we express a∗ in terms of ϵ using the Cornish-Fisher
expansion in (B.90). Then, we plug the value of a∗ in (B.106). Using the
asymptotic expansion in (B.88), necessary Taylor series expansions, and the
bound on the right-hand side of (3.79), we obtain the upper bound in (3.74).
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A p p e n d i x C

APPENDIX FOR CHAPTER 4

C.1 A General SHT-based Achievability Bound

In this section, we derive an achievability bound based on a general SHT,
which we use to prove Theorems 4.3.1–4.3.2.

C.1.1 SHT: Definitions

We begin by formally defining a SHT. Let {Zi}∞i=1 be the observed sequence.
Consider two hypotheses for the distribution of Z∞

H0:Z
∞ ∼ P

(∞)
0 (C.1)

H1:Z
∞ ∼ P

(∞)
1 , (C.2)

where P (∞)
0 and P (∞)

1 are distributions on a common alphabet Z∞. Let N ⊆
{0, 1, 2, . . . } be a set of non-negative integers. Let F(X) denote the σ-algebra
generated by the random variable X, and let τ be a stopping time adapted to
the filtration {F(Xn)}n∈N . Let δ be a {0, 1}-valued, F(τ)-measurable func-
tion. An SHT is a triple (δ, τ,N ), where δ is called the decision rule, τ is
called the stopping time, and N is the set of available decision times. Type-I
and type-II error probabilities are defined as

α ≜ P [δ = 1|H0] (C.3)

β ≜ P [δ = 0|H1] . (C.4)

Below, we derive an achievability using a general SHT.

C.1.2 Achievability Bound

Given some input distribution PXnL , define the common randomness random
variable U on RMnL with the distribution

PU = PXnL × PXnL × · · · × PXnL︸ ︷︷ ︸
Mtimes

. (C.5)

The realization of U definesM length-nL codewordsXnL(1), XnL(2), . . . , XnL(M).
Denote the set of available decodeing times by

N ≜ {n1, . . . , nL}. (C.6)
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Let {(δm, τ̃m,N )}Mm=1 be M copies of an SHT that distinguishes between the
hypotheses

H0: (X
nL , Y nL) ∼ PXnL × P nL

Y |X (C.7)

H1: (X
nL , Y nL) ∼ PXnL × PY nL (C.8)

for each message m ∈ [M ], where the type-I and type-II error probabilities are
α and β, respectively. Define for m ∈ [M ] and j ∈ {0, 1},

τ jm ≜

τ̃m if δm = j

∞ otherwise.
(C.9)

To simplify the notation later in the analysis, we denote

τm ≜ τ 0m, (C.10)

i.e., τm = ∞ if and only if H1 is decided for m, or, equivalently, δm = 1.

Theorem C.1.1. Fix L ≤ ∞, integers M > 0 and 0 ≤ n1 < n2 < · · · < nL ≤
∞, a distribution PXnL as in (C.5), and M copies of an SHT {(δm, τ̃m, {n1, . . . nL})}Mm=1

as in (C.7)–(C.9). There exists an (N,L,M, ϵ) VLSF code for the DM-PPC
(X , PY |X ,Y) with

ϵ ≤ α + (M − 1)β (C.11)

N ≤ E
[
min

{
min
m∈[M ]

{
τ 0m
}
, max
m∈[M ]

{
τ 1m
}}]

. (C.12)

Proof: We generate M i.i.d. codewords according to (C.5). For each of M
messages, we run the hypothesis test given in (C.7)–(C.8). We decode at the
earliest time that one of the following events happens

• H0 is declared for some message m ∈ [M ],

• H1 is declared for all m ∈ [M ].

The decoding output is m if H0 is declared for m; if there exist more than one
such m or if there exists no such m, the decoder declares an error.

Mathematically, the average decoding time of this code is expressed as

τ ∗ = min

{
min
m∈[M ]

{
τ 0m
}
, max
m∈[M ]

{
τ 1m
}}

. (C.13)
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The average decoding time bound in (C.12) immediately follows from (C.13).
The decoder output is

Ŵ ≜

m if ∃! m ∈ [M ] s. t. τ ∗ = τ 0m

error otherwise.
(C.14)

Since the messages are equiprobable, without loss of generality, assume that
message m = 1 is transmitted. An error occurs if and only if H1 is decided for
m = 1 or if H0 is decided for some m ̸= 1, giving

ϵ = P

[
{δ1 = 1} ∪

{
M⋃

m=2

{δm = 0}

}]
. (C.15)

Applying the union bound to (C.15) shows (C.11).

C.2 Proof of Theorem 4.3.2

Theorem 4.3.2 particularizes the SHTs in Theorem C.1.1 as an information
density threshold rule, which constitutes the decision rule used at times {n2, . . . , nL}
in the proof sketch of Theorem 4.3.1.

In addition to the random code design in (C.5), let PXnL satisfy (4.19). We
here specify the stopping rule τm and the decision rule δm for the SHT in
(C.7)–(C.8).

Define the information density for message m and decoding time nℓ as

Sm,nℓ
≜ ı(Xnℓ(m);Y nℓ) for m ∈ [M ], ℓ ∈ [L]. (C.16)

Note that Sm,nℓ
is the log-likelihood ratio between the distributions in hy-

potheses H0 and H1. We fix a threshold γ ∈ R and construct the SHTs

τm = inf{nℓ ∈ N :Sm,nℓ
≥ γ} (C.17)

τ̃m = min{τm, nL} (C.18)

δm =

0 if Sm,τ̃m ≥ γ

1 if Sm,τ̃m < γ
(C.19)

for all m ∈ [M ], that is, we decide H0 for message m at the first time nℓ that
Sm,nℓ

passes γ; if this never happens for nℓ ∈ {n1, . . . , nL}, then we decide H1

for m.

The optimal SHT for the problem in (C.7)–(C.8) with L decision times is a
two-sided information density threshold rule with some finite lower and upper
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thresholds −a1(nℓ) and a0(nℓ), ℓ ∈ [L], that are determined according to
the constraints on the test [83]. The SHT given in (C.18)–(C.19) sets the
upper threshold as a0(nℓ) = γ for all ℓ ∈ [L] and the lower threshold as
−a1(nℓ) = −∞ for ℓ ∈ [L− 1], and −a1(nL) = γ.

Bounding (C.12) from above, we get

N ≤ E [min{τ1, nL}] (C.20)

=
∞∑
n=0

P [min{τ1, nL} > n] (C.21)

= n1 +
L−1∑
ℓ=1

(nℓ+1 − nℓ)P [τ1 > nℓ] . (C.22)

The probability P [τ1 > nℓ] is further bounded as

P [τ1 > nℓ] = P

[
ℓ⋂

j=1

{ı(Xnj(1);Y nj) < γ}

]
(C.23)

≤ P [ı(Xnℓ(1);Y nℓ) < γ] . (C.24)

Combining (C.22) and (C.24) proves (4.18).

We bound the type-I error probability of the given SHT as

α ≜ P [δ1 = 1] (C.25)

= P [τ1 = ∞] (C.26)

= P

[
L⋂

j=1

{ı(Xnj(1);Y nj) < γ}

]
(C.27)

≤ P [ı(XnL(1);Y nL) < γ] , (C.28)

where (C.27) uses the definition of the decision rule (C.19). The type-II error
probability is bounded as

β ≜ P [δ2 = 0] (C.29)

≤ P [τ2 <∞] (C.30)

= E [exp{−ı(XnL(1);Y nL)}1{τ1 <∞}] (C.31)

= E [exp{−ı(Xτ (1);Y τ )}1{τ1 <∞}] (C.32)

≤ exp{−γ}, (C.33)

where (C.31) follows from changing measure from PXnL (2)Y nL = PXnLPY nL

to PXnL (1),Y nL = PXnLP
nL

Y |X . Equality (C.32) uses the same arguments as in
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[18, eq. (111)-(118)] and the fact that {exp{−ı(Xnℓ(1);Y nℓ)}:nℓ ∈ N} is a
martingale due to the product distribution in (4.19). Inequality (C.33) follows
from the definition of τ1 in (C.17). Applying (C.11) together with (C.28) and
(C.33) proves (4.17).

In his analysis of the error exponent regime, Forney [17] uses a slightly different
threshold rule than the one in (C.17). Specifically, he uses a maximum a
posteriori threshold rule, which can also be written as

log
PY nℓ |Xnℓ (Y nℓ |Xnℓ(m))

1
M

∑M
j=1 PY nℓ |Xnℓ (Y nℓ |Xnℓ(j))

≥ γ, (C.34)

whose denominator is the output distribution induced by the code rather than
by the random codeword distribution P nℓ

X .

C.3 Proof of Theorem 4.3.1

We here particularize Theorem C.1.1 to the sub-optimal SHTs that are de-
scribed in the proof sketch of Theorem 4.3.1.

For message m ∈ [M ], let δ′m and τ ′m denote δm and τm in (C.10) conditioned
on the event {τ ∗ ̸= 0}, i.e., transmission has not stopped at time 0. Following
the proof sketch, with this notation, (C.12) is rewritten as

N ≤ p · 0 + (1− p)E
[
min

{
min
m∈[M ]

{τ ′m} , nL

}]
, (C.35)

where we use the fact that τ ∗ = 0 occurs with probability p. The error
probability (C.15) is rewritten as

ϵ ≤ p · 1 + (1− p)

(
P

[
{δ′1 = 1} ∪

M⋃
m=2

{δ′m = 0}

])
. (C.36)

By (C.12) and (C.15),

N ′ ≜ E
[
min

{
min
m∈[M ]

{τ ′m} , nL

}]
(C.37)

ϵ′N ≜ P

[
{δ′1 = 1} ∪

M⋃
m=2

{δ′m = 0}

]
(C.38)

are the average decoding time and average error probability of an SHT-based
VLSF code that is restricted to decoding times {n2, . . . , nL}.

Recall the choice of parameters ϵ′N and p from (4.14)–(4.15) and the resulting
average decoding time in (4.16). This choice achieves the best second-order
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term within our code construction (see Appendix C.7, below), Inverting (4.16),
we get

N ′ =
N

1− ϵ

(
1 +O

(
1√

N logN

))
. (C.39)

We particularize the decision rules in the SHT at times n2, . . . , nL to the
information density threshold rule. Lemma C.3.1, below, is an achievability
bound for an

(
N,L,M, 1√

N logN

)
VLSF code that employs this decoder with

the optimized decoding times.

Lemma C.3.1. Fix an integer L = O(1) ≥ 1. For the DM-PPC with V > 0,
the maximum message set size (4.7) achievable by

(
N,L,M, 1√

N logN

)
VLSF

codes satisfies

logM∗
(
N,L,

1√
N logN

)
≥ NC −

√
N log(L)(N)V

+O

(√
N

log(L)(N)

)
. (C.40)

The decoding times n1, . . . , nL that achieve (C.40) satisfy the equations

logM = nℓC −
√
nℓ log(L−ℓ+1)(nℓ)V − log nℓ +O(1) (C.41)

for ℓ ∈ [L].

Proof: Lemma C.3.1 analyzes Theorem 4.3.2. See Appendix C.5, below.

We use the average decoding time N and average error probability ϵ of a
VLSF code in Lemma C.3.1 in the places of N ′ and ϵ′N in (C.37)–(C.38). By
Lemma C.3.1, there exists an (N ′, L− 1,M, ϵ′N) VLSF code with

logM = N ′C −
√
N ′ log(L−1)(N

′)V +O

(√
N ′

log(L−1)(N
′)

)
. (C.42)

Plugging (C.39) into (C.42) and applying the necessary Taylor series expan-
sions complete the proof.

Lemma C.3.1 is an achievability bound in the moderate deviations regime
since the error probability 1√

N logN
decays sub-exponentially to zero. The

fixed-length scenario in Lemma C.3.1, i.e., L = 1, is recovered by [45], which
investigates the moderate deviations regime in channel coding. A comparison
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between the right-hand side of (C.40) and [45, Th. 2] highlights the benefit
of using VLSF codes in the moderate deviations regime. The second-order
rate achieved by a VLSF code with L ≥ 2 decoding times, average decoding
time N , and error probability 1√

N logN
is achieved by a fixed-length code with

blocklength N and error probability 1√
log(L−1)(N) log(L)(N)

.

C.4 Proof of Theorem 4.3.3

Let P0 and P1 be two distributions. Let Z ≜ log dP0

dP1
be the log-likelihood ratio,

and let

Sn =
n∑

i=1

Zi, (C.43)

where Zi’s are i.i.d. and have the same distribution as Z. For i ∈ {0, 1}, we
denote the probability measures and expectations under distribution Pi by Pi

and Ei, respectively. Given a threshold a0 ∈ R, define the stopping time

T ≜ inf{n ≥ 1:Sn ≥ a0} (C.44)

and the overshoot

ξ0 = ST − a0. (C.45)

The following lemma from [83], which gives the refined asymptotics for the
stopping time T , is the main tool to prove our bounds.

Lemma C.4.1 ([83, Cor. 2.3.1, Th. 2.3.3, Th. 2.5.3, Lemma 3.1.1]). Suppose
that E0[(Z

+
1 )

2] <∞, and Z1 is non-arithmetic. Then, it holds that

E0[T ] =
1

D(P0∥P1)
(a0 + E0[ξ]) (C.46)

=
1

D(P0∥P1)

(
a0 +

E0[Z
2
1 ]

2D(P0∥P1)

−
∞∑
n=1

1

n
E0[S

−
n ] + o(1)

)
, (C.47)

and

P0[T <∞] = 1 (C.48)

P1[T <∞] = e−a0E0[e
−ξ0 ] (C.49)

E0[e
−λξ0 ] =

1

λD(P0∥P1)
exp

{
−

∞∑
n=1

1

n
E0[e

−λS+
n ]

}
. (C.50)



223

C.4.1 Achievability Proof

Let PX be a capacity-achieving distribution of the DM-PPC. Define the hy-
potheses

H0: (X
dN , Y dN )∞ ∼ P∞

0 = ((PX × PY |X)
dN )∞ (C.51)

H1: (X
dN , Y dN )∞ ∼ P∞

1 = ((PX × PY )
dN )∞, (C.52)

and the random variables

Wi ≜
1

dN
log

dP0

dP1

(
X(i−1)dN+1:idN , Y (i−1)dN+1:idN

)
(C.53)

for i = 1, 2, . . . . Note that under P0,

Wi =
1

dN
ı(X(i−1)dN+1:idN ;Y (i−1)dN+1:idN ), (C.54)

and E [Wi] = C. Define

Sn ≜
n∑

i=1

Wi, (C.55)

and

τ ≜ inf{k ≥ 1:Sk ≥ a0/dN} (C.56)

T ≜ dN τ. (C.57)

We employ the sub-optimal SHT strategy described in the proof sketch of
Theorem 4.3.1 with ϵ′N = 1

E0[T ]
and the information density threshold rule

(C.16)–(C.19) from the proof of Theorem 4.3.2, where the threshold γ is set
to a0. Here, T is as in (C.44). We set M and a0 so that

MP1[T <∞] ≤Me−a0 = ϵ′N =
1

E0[T ]
, (C.58)

where the inequality follows from (C.49). Following steps identical to (C.35)–
(C.36) and (C.39), and noting that P0[T = ∞] = 0, we get

N = (1− ϵ)E0[T ] +O(1), (C.59)

and the average error probability of the code is bounded by ϵ.

To evaluate E0[T ], we use Lemma C.4.1 with Wi in place of Zi. A straightfor-
ward calculation yields

E0[W
2
1 ] = C2 +O

(
1

dN

)
. (C.60)
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Next, we have that

E0[S
−
n ] = −ndNE

[
1

ndN
Sn1

{
1

ndN
Sn ≤ 0

}]
, (C.61)

where Sn =
∑ndN

j=1 ı(Xj;Yj). Applying the saddlepoint approximation (e.g.,
[34, eq. (1.2)]) to 1

ndN
Sn, we get

E0[S
−
n ] = −ndN

∫ 0

−∞
c(x)

√
ndNe

−ndNg(x)+log xdx, (C.62)

where c(x) and g(x) are bounded below a positive constant for all x ∈ (−∞, 0].
Applying the Laplace’s integral [34, eq. (2.5)] to (C.62), we get

E0[S
−
n ] = −e−ndN cn+o(ndN ) (C.63)

for all n ∈ Z+, where each cn is a positive constant depending on n. Putting
(C.60) and (C.63) into (C.47) and (C.57), we get

E0[T ] =
a0
C

+
dN
2

+ o(dN). (C.64)

From (C.58)–(C.59), we get

E0[T ] =
N

1− ϵ
+O (1) (C.65)

logM = a0 − logN. (C.66)

Putting (C.64)–(C.66) together completes the proof of (4.20).

C.4.2 Converse Proof

Recall the definition of an SHT (δ, τ,N ) from Appendix C.1.1 that tests the
hypotheses

H0:Z
∞ ∼ P

(∞)
0 (C.67)

H1:Z
∞ ∼ P

(∞)
1 , (C.68)

where P (∞)
0 and P (∞)

1 are distributions on a common alphabet Z∞. We define
the minimum achievable type-II error probability, subject to a type-I error
probability bound and a maximal expected decoding time constraint, with
decision times restricted to the set N as

β(ϵ,N,N )(P
(∞)
0 , P

(∞)
1 ) ≜ min

(δ,τ,N ):P0[δ=1]≤ϵ,
max{E0[τ ],E1[τ ]}≤N

P1[δ = 0], (C.69)
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which is the SHT version of the βα-function defined for the fixed-length binary
hypothesis test [5].

The following theorem extends the meta-converse bound [5, Th. 27], which is
a fundamental theorem used to show converse results in fixed-length channel
coding without feedback and many other applications (e.g., [50], [52], [53]).

Theorem C.4.1. Fix any set N ⊆ Z+, a real number N > 0, and a DM-PPC
PY |X . Then, it holds that

logM∗(N, |N |, ϵ,N )

≤ sup
PX∞

inf
QY ∞

− log β(ϵ,N,N )(PX∞ × P∞
Y |X , PX∞ ×QY ∞). (C.70)

Proof: The proof is similar to that in [5]. LetW denote a message equiprobably
distributed on [M ], and let Ŵ be its reconstruction. Given any VLSF code
with the set of available decoding times N , average decoding time N , error
probability ϵ, and codebook size M , let P̂X∞ denote the input distribution
induced by the code’s codebook. The code operation creates a Markov chain
W → X∞ → Y ∞ → Ŵ . As full-feedback breaks this Markov chain, stop-
feedback does not since the channel inputs are conditionally independent of
the channel outputs given the messageW . Fix an arbitrary output distribution
QY ∞ , and consider the SHT

H0: (X
∞, Y ∞) ∼ P̂X∞ × P∞

Y |X (C.71)

H1: (X
∞, Y ∞) ∼ P̂X∞ ×QY ∞ (C.72)

with a test δ = 1{Ŵ ̸= W}, where (W, Ŵ ) are generated by the (potentially
random) encoder-decoder pair of the VLSF code. The type-I and type-II error
probabilities of this code-induced SHT are

α = P0[δ = 1] = P
[
Ŵ ̸= W

]
≤ ϵ (C.73)

β = P1[δ = 0] =
1

M
, (C.74)

where (C.74) follows since the sequence Y ∞ is independent of X∞ under H1.
The stopping time of this SHT under H0 or H1 is bounded by N by the defi-
nition of a VLSF code. Since the error probabilities in (C.73)–(C.74) cannot
be better than that of the optimal SHT, it holds that

logM
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≤ − log β(ϵ,N,N )(P̂X∞ × P∞
Y |X , P̂X∞ ×QY ∞) (C.75)

≤ inf
QY ∞

− log β(ϵ,N,N )(P̂X∞ × P∞
Y |X , P̂X∞ ×QY ∞) (C.76)

≤ sup
PX∞

inf
QY ∞

− log β(ϵ,N,N )(PX∞ × P∞
Y |X , PX∞ ×QY ∞), (C.77)

where (C.76) follows since the choice QY ∞ is arbitrary.

To prove (4.21), we apply Theorem C.4.1 and get

logM ≤ − log β(ϵ,N,N )(P
∞
Y |X , P

∞
Y ), (C.78)

where PY is the capacity-achieving output distribution, and N = {0, dN , 2dN , . . . }.
The reduction from Theorem C.4.1 to (C.78) follows since log

PY |X(Y |x)
PY (Y )

has the
same distribution for all x ∈ X for Cover-Thomas symmetric channels [48,
p. 190]. In the remainder of the proof, we derive an upper bound for the
right-hand side of (C.78).

Consider any SHT (δ, τ,N ) with E0[τ ] ≤ N and E1[τ ] ≤ N . Our definition in
(C.69) is slightly different than the classical SHT definition from [147] since
our definition allows one to make a decision at time 0. Notice that at time
0, any test has three choices: decide H0, decide H1, or decide to start taking
samples. When the test decides to start taking samples, the remainder of the
procedure becomes a classical SHT. From this observation, any test satisfies

ϵ ≥ α = ϵ0 + (1− ϵ0 − ϵ1)α
′ ≥ ϵ0 (C.79)

β = ϵ1 + (1− ϵ0 − ϵ1)β
′ ≥ (1− ϵ0)β

′, (C.80)

where at time 0, the test decides Hi with probability ϵ1−i, and α′ and β′ are
the type-I and type-II error probabilities conditioned on the event that the test
decides to take samples at time 0, which occurs with probability 1− ϵ0 − ϵ1.

Let τ ′ denote the average stopping time of the test with error probabilities
(α′, β′). We have

E0[τ ] = (1− ϵ0 − ϵ1)E0[τ
′] (C.81)

= (1− ϵ0)(E0[τ
′] + e−O(N)) ≤ N (C.82)

E1[τ ] = (1− ϵ0 − ϵ1)E1[τ
′] (C.83)

= (1− ϵ0)(E1[τ
′] + e−O(N)) ≤ N (C.84)

since β decays exponentially with E0[τ ].
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The following argument is similar to that in [68, Sec. V-C]. Set an arbitrary
ν > 0 and the thresholds

ã0 = C

(
N

1− ϵ0
− dN

2
− o(dN) + ν

)
(C.85)

ã1 = D(PY ∥PY |X=x)

(
N

1− ϵ0
− dN

2
− o(dN) + ν

)
, (C.86)

where x ∈ X is arbitrary, and let (δ̃, τ̃ ,N ) be the SPRT associated with the
thresholds (−ã1, ã0), and type-I and type-II error probabilities α̃ and β̃.

Applying [83, eq. (3.56)] to (C.64), we get

E0[τ̃ ] =
ã0
C

+
dN
2

+ o(dN) (C.87)

E1[τ̃ ] =
ã1

D(PY ∥PY |X=x)
+
dN
2

+ o(dN). (C.88)

Combining (C.85)–(C.88) gives

E0[τ̃ ] ≥
N

1− ϵ0
+ ν (C.89)

E1[τ̃ ] ≥
N

1− ϵ0
+ ν. (C.90)

Letting ν = O
(

1
N

)
, it follows from (C.81)–(C.84) and (C.89)–(C.90) that

E0[τ̃ ] ≥ E0[τ
′] (C.91)

E1[τ̃ ] ≥ E1[τ
′] (C.92)

for a large enough N . Using Wald and Wolfowitz’s SPRT optimality result
[67], we get

α′ ≥ α̃ (C.93)

β′ ≥ β̃. (C.94)

Now it only remains to lower bound β̃. Applying [83, Th. 3.1.2, 3.1.3] and
(C.50) gives

β̃ = ζ̃e−ã0(1 + o(1)), (C.95)

where

ζ̃ =
1

dNC

(
exp

{
−

∞∑
n=1

1

n
P0[Sn < 0] + P1[Sn > 0]

})
, (C.96)
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and Sn is as in (C.55). Since Sn is a sum of ndN → ∞ i.i.d. random variables,
where the summands have a non-zero mean, the Chernoff bound implies that
each of the probabilities in (C.96) decays exponentially with dN . Thus,

ζ̃ =
1

dNC
(1 + o(1)). (C.97)

From (C.85) and (C.97), we get

− log β̃ = C

(
N

1− ϵ0
− dN

2
− o(dN) + o(log dN)

)
(C.98)

≤ C

(
N

1− ϵ
− dN

2
− o(dN) + o(log dN)

)
, (C.99)

where (C.99) follows from (C.79). Inequalities (C.80), (C.94), and (C.99) imply
(4.21).

C.5 Proof of Lemma C.3.1

We first present a lemma that is used in the proof of Lemma C.3.1 (step 1),
we then choose the distribution P nL

X of the random codewords (step 2) and
the parameters n1, . . . , nL, γ in Theorem 4.3.2 (step 3), and finally, we analyze
the bounds in Theorem 4.3.2 using the supporting lemmas (step 4).

Lemma C.5.1, below, gives the asymptotic expansion of the root of an equation.
We use Lemma C.5.1 to find the asymptotic expansion for the gap between
two consecutive decoding times nℓ and nℓ+1.

Lemma C.5.1. Let f(x) be a differentiable increasing function that satisfies
f ′(x) → 0 as x→ ∞. Suppose that

x+ f(x) = y. (C.100)

Then, as x→ ∞ it holds that

x = y − f(y) (1− o(1)) . (C.101)

Proof of Lemma C.5.1: Define the function F (x) ≜ x + f(x) − y. Applying
Newton’s method with the starting point x0 = y yields

x1 = x0 −
F (x0)

F ′(x0)
(C.102)

= y − f(y)

1 + f ′(y)
(C.103)
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= y − f(y)(1− f ′(y) +O(f ′(y)2). (C.104)

Recall that f ′(y) = o(1) by assumption. Equality (C.104) follows from the
Taylor series expansion of the function 1

1+x
around x = 0. Let

x⋆ = y − f(y)(1− o(1)). (C.105)

From Taylor’s theorem, it follows that

f(x⋆) = f(y)− f ′(y0)f(y)(1− o(1)), (C.106)

for some y0 ∈ [y − f(y)(1 − o(1)), y]. Therefore, f ′(y0) = o(1), and f(x⋆) =

f(y)(1−o(1)). Putting (C.105)–(C.106) in (C.100), we see that x⋆ is a solution
to the equality in (C.100).

Random encoder design

We set the distribution of the random codewords PXnL as the product of P ∗
X ’s,

where P ∗
X is the capacity-achieving distribution with minimum dispersion, i.e.,

PXnL = (P ∗
X)

nL (C.107)

P ∗
X = argmin

PX

{Var [ı(X;Y )] : I(X;Y ) = C}. (C.108)

Choosing the decoding times n1, . . . , nL

We choose γ, n1, . . . , nL so that the equalities

γ = nℓC −
√
nℓ log(L−ℓ+1)(nℓ)V (C.109)

hold for all ℓ ∈ [L]. This choice minimizes the upper bound (4.18) on the av-
erage decoding time up to the second-order term in the asymptotic expansion.
See Appendix C.7 for the proof. Applying Lemma C.5.1 with

x = nℓ+1 (C.110)

y = nℓ −
1

C

√
ni log(L−ℓ+1)(nℓ)V (C.111)

f(x) = − 1

C

√
nℓ+1 log(L−ℓ)(nℓ+1)V (C.112)

for ℓ ∈ {1, . . . , L− 1}, gives the following gaps between consecutive decoding
times

nℓ+1 − nℓ =
1

C

(√
nℓ log(L−ℓ)(nℓ)V

−
√
ni log(L−ℓ+1)(nℓ)V

)
(1 + o(1)). (C.113)
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Analyzing the bounds in Theorem 4.3.2

Cramér’s condition in Theorem 2.4.1 is satisfied for the information density
of a DM-PPC since ı(X;Y ) is a bounded random variable. For each ℓ ∈ [L],
applying Theorem 2.4.1 with γ, n1, . . . , nL satisfying (C.109) gives

P [ı(Xnℓ ;Y nℓ) < γ]

≤ Q
(√

log(L−ℓ+1)(nℓ)
)
exp

{
−(log(L−ℓ+1)(nℓ))

3/2µ3

6
√
nV 3/2

}

+O

(
1√
n
exp

{
−
log(L−ℓ+1)(nℓ)

2

})
(C.114)

≤ 1√
2π

1√
log(L−ℓ)(nℓ)

1√
log(L−ℓ+1)(nℓ)

(
1 +O

(
(log(L−ℓ+1)(nℓ))

(3/2)

√
nℓ

))
(C.115)

for ℓ < L, where

µ3 ≜ E
[
(ı(X;Y )− C)3

]
<∞, (C.116)

and (C.115) follows from the Taylor series expansion exp{x} = 1 + x+O(x2)

as x→ 0, and the well-known bound (e.g., [28, Ch. 8, eq. (2.46)])

Q(x) ≤ 1√
2π

1

x
exp

{
−x

2

2

}
for x > 0. (C.117)

For ℓ = L, Theorem 2.4.1 gives

P [ı(XnL ;Y nL) < γ] ≤ 1√
2π

1
√
nL

1√
log nL

(
1 +O

(
(log nL)

(3/2)

√
nL

))
. (C.118)

By Theorem 4.3.2, there exists a VLSF code with L decoding times n1 < n2 <

· · · < nL such that the expected decoding time is bounded as

N ≤ n1 +
L−1∑
ℓ=1

(nℓ+1 − nℓ)P [ı(Xnℓ ;Y nℓ) < γ] . (C.119)

By (C.113), we have

nℓ = n1(1 + o(1)) (C.120)

for ℓ ∈ [L]. Plugging (C.113), (C.115), and (C.120) into (C.119), we get

N ≤ n1 +

√
V√

2π C

√
n1√

log(L)(n1)
(1 + o(1)). (C.121)
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Applying Lemma C.5.1 to (C.121), we get

n1 ≥ N −
√
V

2C

√
N√

log(L)(N)
(C.122)

for n1 large enough. Comparing (C.122) and (C.113), we observe that for n1

large enough,

n1 < N < n2 < · · · < nL. (C.123)

Further, from (C.109) and (C.121), we have

nL = N

(
1 +O

(√
logN

N

))
. (C.124)

Finally, we set message set size M such that

logM = γ − logN. (C.125)

Plugging (C.118) and (C.125) into (4.17), we bound the error probability as

P
[
gτ∗(U, Y

τ∗) ̸= W
]

≤ P [ı(XnL ;Y nL) < γ] + (M − 1) exp{−γ} (C.126)

≤ 1

2

1
√
nL

1√
log nL

+
1

N
(C.127)

≤ 1

2

1√
N

1√
logN

+
1

N
, (C.128)

where (C.127) holds for nL large enough and (C.128) follows from (C.123).
Inequality (C.128) implies that the error probability is bounded by 1√

N logN

for N large enough. Plugging (C.122) and (C.125) into (C.109) with ℓ = 1,
we conclude that there exists an (N,L,M, 1√

N logN
) VLSF code with

logM ≥ NC −
√
N log(L)(N)V − 1

2

√
NV

log(L)(N)
− logN (C.129)

for N large enough, which completes the proof.

C.6 Proof of Theorem 4.4.1

The non-asymptotic achievability bound in Theorem 4.3.2 applies to the Gaus-
sian PPC with maximal power constraint P (4.22) with the modification that
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the error probability (4.17) has an additional term for the power violation
probability

P

[
L⋃

ℓ=1

{
∥Xnℓ∥22 > nℓP

}]
. (C.130)

The proof follows similarly to the proof of Theorem 4.3.1 as we employ the sup-
optimal SHT strategy in the proof sketch of Theorem 4.3.1. We Lemma C.3.1
to the Gaussian PPC, stating

logM∗
(
N,L,

1√
N logN

,P

)
≥ NC(P )−

√
N log(L)(N)V (P ) +O

(√
N

log(L)(N)

)
. (C.131)

The proof of (C.131) differs from the proof of Lemma C.3.1 in the input
distribution PXnL , the analysis on the probability P [ı(XnL ;Y nL) < γ], and
the threshold γ in (C.109). Below, we detail these differences.

The input distribution PXnL

We choose the distribution of the random codewords, PXnL , in Theorem 4.3.2
as follows. Set n0 = 0. For each codeword, we independently draw sub-
codewords Xnj

nj−1+1, j ∈ [L] from the uniform distribution on the (nj − nj−1)-
dimensional sphere of radius

√
(nj − nj−1)P . Let PXnL denote the distribution

of the length-nL random codewords described above. Codewords chosen un-
der PXnL never violate the power constraint (4.22), thus the power violation
probability in (C.130) is 0.

Bounding the probability of the information density random
variable

For each ℓ ∈ [L], we here bound the probability

P [ı(Xnℓ ;Y nℓ) < γ] (C.132)

that appears in Theorem 4.3.2 under the input distribution described above.
Note that the random variable ı(Xnℓ ;Y nℓ) is not a sum of nℓ i.i.d. random
variables. We wish to apply the moderate deviations result in Theorem 2.4.1.
To do this, we first introduce the following lemma that uniformly bounds the
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Radon-Nikodym derivative of the channel output distribution in response to
the uniform distribution on a sphere compared to the channel output distri-
bution in response to i.i.d. Gaussian distribution.

Lemma C.6.1 (MolavianJazi and Laneman [24, Prop. 2]). Let Xn be dis-
tributed uniformly over the n-dimensional sphere of radius

√
nP . Let X̃n ∼

N (0, P In). Let PY n and PỸ n denote the channel output distributions in re-
sponse to PXn and PX̃n, respectively, where PY n|Xn is the point-to-point Gaus-
sian channel (3.68). Then there exists an n0 ∈ N such that for all n ≥ n0 and
yn ∈ Rn, it holds that

dPY n(yn)

dPỸ n(yn)
≤ J(P ) ≜ 27

√
π

8

1 + P√
1 + 2P

. (C.133)

Let P nℓ

Ỹ
be N (0, (1 + P )Inℓ

). By Lemma C.6.1, we bound (C.132) as

P [ı(Xnℓ ;Y nℓ) < γ]

= P
[
log

dPY nℓ |Xnℓ (Y nℓ |Xnℓ)

dPỸ nℓ (Y nℓ)
< γ + log

dPY nℓ (Y nℓ)

dPỸ nℓ (Y nℓ)

]
(C.134)

≤ P
[
log

dPY nℓ |Xnℓ (Y nℓ |Xnℓ)

dPỸ nℓ (Y nℓ)
< γ + ℓ log J(P )

]
, (C.135)

where J(P ) is the constant given in (C.133), and (C.135) follows from the fact
that PY nℓ is product of ℓ output distributions with dimensions nj−nj−1, j ∈ [ℓ],
each induced by a uniform distribution over a sphere with the corresponding
radius. As argued in [5], [24], [44], by spherical symmetry, the distribution of
the random variable

log
dPY nℓ |Xnℓ (Y nℓ |Xnℓ)

dPỸ nℓ (Y nℓ)
(C.136)

depends on Xnℓ only through its norm ∥Xnℓ∥2. Since ∥Xnℓ∥22 = nℓP with
probability 1, any choice of xnℓ such that ∥xni∥22 = niP for i ∈ [ℓ] gives

P
[
log

dPY nℓ |Xnℓ (Y nℓ |Xnℓ)

dPỸ nℓ (Y nℓ)
< γ + ℓ log J(P )

]
= P

[
log

dPY nℓ |Xnℓ (Y nℓ |Xnℓ)

dPỸ nℓ (Y nℓ)
< γ + ℓ log J(P )

∣∣∣∣Xnℓ = xnℓ

]
(C.137)

We set xnℓ = (
√
P ,

√
P , . . . ,

√
P ) =

√
P1 to obtain an i.i.d. sum in (C.137).

Given Xnℓ =
√
P1, the distribution of (C.136) is the same as the distribution

of the sum
nℓ∑
i=1

Ai (C.138)
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of nℓ i.i.d. random variables

Ai = C(P ) +
P

2(1 + P )

(
1− Z2

i +
2√
P
Zi

)
, i ∈ [nℓ], (C.139)

where Z1, . . . , Znℓ
are drawn independently from N (0, 1) (see e.g., [5, eq. (205)]).

The mean and variance of A1 are

E [A1] = C(P ) (C.140)

Var [A1] = V (P ). (C.141)

From (C.135)–(C.138), we get

P [ı(Xnℓ ;Y nℓ) < γ] ≤ P

[
nℓ∑
i=1

Ai < γ + ℓ log J(P )

]
. (C.142)

To verify that Theorem 2.4.1 is applicable to the right-hand side of (C.142), it
only remains to show that E [(A1 − C(P ))3] is finite, and A1 − C(P ) satisfies
Cramér’s condition, that is, there exists some t0 > 0 such that
E [exp{t(A1 − C(P ))}] < ∞ for all |t|< t0. From (C.139), (A1 − C(P ))3 is
distributed the same as a 6-degree polynomial of the Gaussian random variable
Z ∼ N (0, 1). This polynomial has a finite mean since all moments of Z are
finite. Let c ≜ P

2(1+P )
, f ≜ 2√

P
, and t′ ≜ tc. To show that Cramér’s condition

holds, we compute

E [exp{t(A1 − C(P ))}]

= E
[
exp{t′(1− Z2 + fZ)}

]
(C.143)

=

∫ ∞

−∞

1√
2π

exp

{
−x

2

2
+ t′(1− x2 + fx)

}
dx (C.144)

=
1√

1 + 2t′
exp

{
t′ +

t′f

2(1 + 2t′)

}
. (C.145)

Thus, E [exp{t(A1 − C(P ))}] < ∞ for t′ > −1
2
, and t0 = 1

2c
> 0 satisfies

Cramér’s condition.

The threshold γ

We set γ, n1, . . . , nL so that the equalities

γ = nℓC(P )−
√
nℓ log(L−ℓ+1)(nℓ)V (P )− ℓ log J(P ) (C.146)

hold for all ℓ ∈ [L].
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The rest of the proof follows identically to (C.114)–(C.129) with C and V

replaced by C(P ) and V (P ), respectively, giving

logM ≥ NC(P )−
√
N log(L)(N)V (P )− 1

2

√
NV (P )

log(L)(N)

− logN − L log J(P ). (C.147)

From Shannon’s work in [6], it is well-known that for the Gaussian channel
with a maximal power constraint, drawing i.i.d. Gaussian codewords yields
a performance inferior to that achieved by the uniform distribution on the
power sphere. As a result, almost all tight achievability bounds for the Gaus-
sian channel in the fixed-length regime under a variety of settings (e.g., all
four combinations of the maximal/average power constraint and feedback/no
feedback [44], [62], [84], [148] in Table I) employ random codewords drawn uni-
formly on the power sphere. A notable exception is Truong and Tan’s result
in (4.26) [71, Th. 1] for VLSF codes with an average power constraint; that
result employs i.i.d. Gaussian inputs. The Gaussian distribution works in this
scenario because when L = ∞, the usually dominant term P [ı(XnL ;Y nL) < γ]

in (4.17) disappears. The second term (M − 1) exp{−γ} in (4.17) is not af-
fected by the input distribution. Unfortunately, the approach from [71, Th. 1]
does not work here since drawing codewords i.i.d. N (0, P ) satisfies the av-
erage power constraint (4.23) but not the maximal power constraint (4.22).
When L = O(1) and the probability P [ı(XnL ;Y nL) < γ] dominates, using
i.i.d. N (0, P ) inputs achieves a worse second-order term in the asymptotic
expansion (4.28) of the maximum achievable message set size. This implies
that when L = O(1), using our uniform distribution on a subset of the power
sphere is superior to choosing codewords i.i.d. N (0, P ) even under the av-
erage power constraint. In particular, i.i.d. N (0, P ) inputs achieve (4.12),
where the dispersion V (P ) is replaced by the variance Ṽ (P ) = P

1+P
of ı(X;Y )

when X ∼ N (0, P ); here Ṽ (P ) is greater than the dispersion V (P ) for all
P > 0 (see [135, eq. (2.56)]). Whether our input distribution is optimal in the
second-order term remains an open question.
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C.7 Second-order optimality of the decoding times in Theorem 4.3.1

From the code construction in Appendix C.3 and Theorem 4.3.2, the average
decoding time is

N(n2, . . . , nL, γ) = N ′(1− ϵ)
1

1− ϵ′N
, (C.148)

where

N ′ = n2 +
L−1∑
i=2

(ni+1 − ni)P [ı(Xni ;Y ni) < γ] (C.149)

ϵ′N = P [ı(XnL ;Y nL) < γ] +M exp{−γ}. (C.150)

We here show that given a fixed M , the parameters n2, n3, . . . , nL, γ chosen
according to (C.109) and (C.125) (and also the error value ϵ′N chosen in (4.14)
since ϵ′N is a function of (nL, γ)) minimize the average decoding time in (C.148)
in the sense that the second-order expansion of logM in terms of N is max-
imum. That is, our parameter choice optimizes our bound on our code con-
struction.

C.7.1 Optimality of n2, . . . , nL−1

We first set nL and γ to satisfy the equations

1√
nL log nL

= P [ı(XnL ;Y nL) < γ] + (M − 1) exp{−γ} (C.151)

logM = γ − log nL, (C.152)

and optimize the values of n2, . . . , nL−1 under (C.151)–(C.152). Section C.7.2
proves the optimality of the choices in (C.151)–(C.152).

Under (C.151)–(C.152), the optimization problem in (C.148)–(C.150) reduces
to

min N ′(n2, . . . , nL−1)

= n2 +
L−1∑
i=2

(ni+1 − ni)P [ı(Xni ;Y ni) < γ]

s.t.
1√

nL log nL

= P [ı(XnL ;Y nL) < γ]

+ (M − 1) exp{−γ}.

(C.153)

Next, we define the functions

g(n) ≜
nC − γ√

nV
(C.154)
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F (n) ≜ Q(−g(n)) = 1−Q(g(n)) (C.155)

f(n) ≜ F ′(n) =
1√
2π

exp

{
−g(n)

2

2

}
g′(n). (C.156)

Assume that γ = γn is such that g(n) = O(n1/6), and lim
n→∞

g(n) = ∞. Then
by Theorem 2.4.1, P [ı(Xn;Y n) < γ], which is a step-wise constant function of
n, is approximated by differentiable function 1− F (n) as

P [ı(Xn;Y n) < γ] = (1− F (n))(1 + o(1)). (C.157)

Taylor series expansions give

1− F (n) =
1

g(n)

1√
2π

exp

{
−g(n)

2

2

}
(1 + o(1)) (C.158)

f(n) = (1− F (n))g(n)g′(n)(1 + o(1)) (C.159)

g′(n) =
C√
nV

(1 + o(1)). (C.160)

Let n∗ = (n∗
2, . . . , n

∗
L−1) denote the solution to the optimization problem in

(C.153) with P [ı(Xn;Y n) < γ] replaced by (1− F (n)). Then n∗ must satisfy
the Karush-Kuhn-Tucker conditions ∇N ′(n∗) = 0, giving

∂N ′

∂n2

∣∣∣∣
n=n∗

= F (n∗
2)− (n∗

3 − n∗
2)f(n

∗
2) = 0 (C.161)

∂N ′

∂nℓ

∣∣∣∣
n=n∗

= F (n∗
ℓ)− F (n∗

L−1)− (n∗
ℓ+1 − n∗

ℓ)f(n
∗
ℓ) = 0 (C.162)

for ℓ = 3, . . . , L− 1.

Let ñ = (ñ2, . . . , ñL−1) be the decoding times chosen in (C.109). We evaluate

g(ñi) =
√
log(L−i+1)(ñi)(1 + o(1)) (C.163)

1− F (g(ñi)) =
1√
2π

1

g(ñi+1)g(ñi)
(1 + o(1)) (C.164)

f(g(ñi)) =
1√
2π

g′(ñi)

g(ñi+1)
(C.165)

ñi+1 − ñi =
g(ñi+1)

g′(ñi)
(1 + o(1)) (C.166)

for i = 2, . . . , L− 1, and

∇N ′(ñ) =

(
1− 1√

2π
,− 1√

2π
,− 1√

2π
, . . . ,− 1√

2π

)
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(1 + o(1)). (C.167)

Our goal is to find a vector ∆n = (∆n2, . . . ,∆nL−1) such that

∇N ′(ñ+∆n) = 0, (C.168)

Assume that ∆n = O(
√
n). By plugging n + ∆n into (C.158)–(C.160) and

using the Taylor series expansion of g(n+∆n), we get

1− F (n+∆n) = (1− F (n))

· exp{−∆ng(n)g′(n)}(1 + o(1)) (C.169)

f(n+∆n) = f(n) exp{−∆ng(n)g′(n)}(1 + o(1)). (C.170)

Using (C.169)–(C.170), and putting ñ + ∆n in (C.161)–(C.162), we solve
(C.168) as

∆n2 = − log
√
2π

g(ñ2)g′(ñ2)
(1 + o(1)) (C.171)

= −
√
V log

√
2π

C

√
ñ2√

log(L−1)(ñ2)
(1 + o(1)) (C.172)

∆ni =
1

2

g(ñi−1)
2

g(ñi)g′(ñi)
= o(∆n2)(1 + o(1)) (C.173)

for i = 3, . . . , L − 1. Hence, ñ + ∆n satisfies the optimality criterion, and
n∗ = ñ+∆n.

It remains only to evaluate the gap N ′(n∗)−N ′(ñ). We have

N ′(n∗)−N ′(ñ)

=

(
∆n2 +

L−1∑
i=2

(ñi+1 − ñi)Q(g(ñi))

· (exp{−∆nig(ñi)g
′(ñi)} − 1)

)
(1 + o(1)) (C.174)

=

(
∆n2 +

(
1− 1√

2π

)
1

g(ñ1)g′(ñi)
−

L−1∑
i=3

∆ni

)
· (1 + o(1)) (C.175)

= −B
√
ñ2√

log(L−1)(ñ2)
(1 + o(1)), (C.176)
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where B =
(
log

√
2π + 1√

2π
− 1
) √

V
C

is a positive constant. From the relation-
ship between nℓ and n2 in (C.120) and the equality (C.176), we get

N ′(ñ) = N ′(n∗) +B

√
N ′(n∗)√

log(L−1)(N
′(n∗))

(1 + o(1)). (C.177)

Plugging (C.177) into our VLSF achievability bound (C.129) gives

logM ≥ N ′(n∗)C −
√
N ′(n∗) log(L−1)(N

′(n∗))V

−O

(√
N ′(n∗)

log(L−1)(N
′(n∗))

)
. (C.178)

Comparing (C.178) and (C.129), note that the decoding times chosen in (C.109)
have the optimal second-order term in the asymptotic expansion of the max-
imum achievable message set size within our code construction. Moreover,
the order of the third-order term in (C.178) is the same as the order of the
third-order term in (C.129).

Remark C.7.1. The method of approximating the probability P [ı(Xn;Y n) ≥ γ],
which is an upper bound for P [τ ≤ n] (see (C.22)), by a differentiable function
F (n) is introduced in [77, Sec. III] for the optimization problem in (C.153).
In [77], Vakilinia et al. approximate the distribution of the random stopping
time τ by the Gaussian distribution, where E [τ ] and Var [τ ] are found empir-
ically. They derive the Karush-Kuhn-Tucker conditions in (C.161)–(C.162),
which is known as the SDO algorithm. A similar analysis appears in [79] for
the binary erasure channel. The analyses in [77], [79] use the SDO algorithm
to numerically solve the equations (C.161)–(C.162) for a fixed L, M , and ϵ.
Unlike [77], [79], we find the analytic solution to (C.161)–(C.162) as decod-
ing times n2, . . . , nL approach infinity, and we derive the achievable rate in
Theorem 4.3.1 as a function of L.

C.7.2 Optimality of nL and γ

Let (n∗, γ∗) = (n∗
2, . . . , n

∗
L, γ

∗) be the solution to ∇N(n∗, γ∗) = 0 in (C.148).
Section A finds the values of n∗

2, n
∗
3, . . . , n

∗
L−1 that minimize N ′. Minimizing

N ′ also minimizes N in (C.148) since ϵ′N depends only on nL and γ, and ϵ is a
constant. Therefore, to minimize N , it only remains to find (n∗

L, γ
∗) such that

∂N

∂nL

∣∣∣∣
(n,γ)=(n∗,γ∗)

= 0 (C.179)
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∂N

∂γ

∣∣∣∣
(n,γ)=(n∗,γ∗)

= 0. (C.180)

Consider the case where L > 2. Solving (C.179) and (C.180) using (C.161)–
(C.166) gives

g(n∗
L) =

√
log n∗

L + log(2)(n
∗
L) + log(3) (n

∗
L) +O(1) (C.181)

0 = c0 +N ′
(

1√
2πn∗

L

exp

{
−g(n

∗
L)

2

2

}
(1 + o(1))

−M exp{−γ∗}
)
, (C.182)

where c0 is a positive constant. Solving (C.181)–(C.182) simultaneously, we
obtain

logM = γ∗ − log n∗
L +O(1). (C.183)

Plugging (C.181) and (C.183) into (C.150), we get

ϵN ′
∗ =

c1√
n∗
L log(2)(n

∗
L) log n

∗
L

(1 + o(1)), (C.184)

where c1 is a constant. Let (ñ, γ̃) = (ñ2, . . . , ñK , γ̃) be the parameters chosen
in (C.109) and (C.125). Note that ϵ′N

∗ is order-wise different than ϵ′N in (4.14).
Following steps similar to (C.174)–(C.176), we compute

N(n∗, γ∗)−N(ñ, γ̃) = −O

(√
n∗
L

log n∗
L

)
. (C.185)

Plugging (C.185) into (4.12) gives

logM =
N(n∗, γ∗)C

1− ϵ

−
√
N(n∗, γ∗) log(L−1)(N(n∗, γ∗))

V

1− ϵ

+O

(√
N(n∗, γ∗)

log(L−1)(N(n∗, γ∗))

)
. (C.186)

Comparing (4.12) and (C.186), we see that although (4.14) and (C.184) are
different, the parameters (ñ, γ̃) chosen in (C.109) and (C.125) have the same
second-order term in the asymptotic expansion of the maximum achievable
message set size as the parameters (n∗, γ∗) that minimize the average decoding
time in the achievability bound in Theorem 4.3.2.
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For L = 2, the summation term in (C.149) disappears; in this case, the solution
to (C.179) gives

ϵN ′
∗ =

c2√
n∗
L log n

∗
L

(1 + o(1)) (C.187)

for some constant c2. Following the steps in (C.185)–(C.186), we conclude
that the parameter choices in (C.109) and (C.125) are second-order optimal
for L = 2 as well.
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A p p e n d i x D

APPENDIX FOR CHAPTER 5

In this section, we prove our main results for the DM-MAC, beginning with
Theorem 5.3.2, which is used to prove Theorem 5.3.1.

D.1 Proof of Theorem 5.3.2

For each transmitter k, k ∈ [K], we generate Mk nL-dimensional codewords
i.i.d. from P nL

Xk
. Codewords for distinct transmitters are drawn independently

of each other. Denote the codeword for transmitter k and message mk by
XnL

k (mk) for k ∈ [K] and mk ∈ [Mk]. The proof extends the DM-PPC achiev-
ability bound in Theorem 4.3.2 that is based on a sub-optimal SHT to the
DM-MAC. Below, we explain the differences.

Without loss of generality, assume that m[K] = \1 is transmitted. The hy-
pothesis test in (C.7)–(C.8) is replaced by

H0: (X
nL

[K], Y
nL
K ) ∼

(
K∏
k=1

P nL
Xk

)
× P nL

YK |X[K]
(D.1)

H1: (X
nL

[K], Y
nL
K ) ∼

(
K∏
k=1

P nL
Xk

)
× P nL

YK
, (D.2)

which is run for every message tuple m[K] ∈
K∏
k=1

[Mk]. The information density

(C.16), the stopping times (C.17)–(C.18), and the decision rule (C.19) are
extended to the DM-MAC as

Sn
m[K]

≜ ıK(X
n
[K](m[K]);Y

n
K) (D.3)

τm[K]
≜ inf{nℓ ∈ N :Sm[K],nℓ

≥ γ} (D.4)

τ̃m[K]
≜ min{τm[K]

, nL} (D.5)

δm[K]
≜

0 if Sm[K],nℓ
≥ γ

1 if Sm[K],nℓ
< γ

(D.6)

for every message tuple m[K]. For brevity, define the random variables

τ ≜ inf{nℓ ∈ N : ıK(X
nℓ

[K];Y
nℓ
K ) ≥ γ} (D.7)
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τ̄ ≜ inf{nℓ ∈ N : ıK(X̄[K];Y
nℓ
K ) ≥ γ}, (D.8)

where the components of (Xnℓ

[K], Y
nℓ
K , X̄nℓ

[K]) are drawn i.i.d. according to the
joint distribution

PX[K],YK ,X̄[K]
(x[K], y, x̄[K])

= PYK |X[K]
(y|x[K])

K∏
k=1

PXk
(xk)PXk

(x̄k). (D.9)

Expected decoding time analysis: Following steps identical to (C.20)–(C.22),
we get (5.16).

Error probability analysis: The following error analysis extends the PPC bounds
in (C.15) and (C.25)–(C.33) to the DM-MAC.

In the analysis below, for brevity, we write mA ̸= 1 to denote that mi ̸= 1 for
i ∈ A. The error probability is bounded as

ϵ ≤ P
[ ⋃

m[K] ̸=1

{τm[K]
≤ τ1 <∞}

⋃
{τ1 = ∞}

]
(D.10)

≤ P [τ1 = ∞] + P

 ⋃
m[K] ̸=1

{τm[K]
<∞}

 (D.11)

+ P

 ⋃
m[K] ̸=1:∃ i∈[K]

mi=1

{τm[K]
<∞}

 , (D.12)

where (D.11)–(D.12) apply the union bound to separate the probabilities of
the following error events:

1. the information density of the true message tuple does not satisfy the
threshold test for any available decoding time;

2. the information density of a message tuple in which all messages are
incorrect satisfies the threshold test for some decoding time;

3. the information density of a message tuple in which the messages from
some transmitters are correct and the messages from the other transmit-
ters are incorrect satisfies the threshold test for some decoding time.
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The terms in (D.11) are bounded using steps identical to (C.25)–(C.33) as

P [τ1 = ∞] ≤ P
[
ıK(X

nL

[K];Y
nL
K ) < γ

]
(D.13)

P

 ⋃
m[K] ̸=1

{τm[K]
<∞}

 ≤
K∏
k=1

(Mk − 1) exp{−γ}. (D.14)

For the cases where at least one message is decoded correctly, we delay the
application of the union bound. Let A ∈ P([K]) be the set of transmitters
whose messages are decoded correctly. Define

M(A) ≜ {m[K] ∈ [M ]K :mk = 1 for k ∈ A,

mk ̸= 1 for k ∈ Ac} (D.15)

M̃(A) ≜ {mA ∈ [M ]|A|:mk ̸= 1 for k ∈ A}. (D.16)

We first bound the probability term in (D.12) by applying the union bound
according to which subset A of the transmitter set [K] is decoded correctly,
and get

P

 ⋃
m[K] ̸=1:∃ i∈[K]

mi=1

{τm[K]
<∞}


≤

∑
A∈P([K])

P

 ⋃
m[K]∈M(A)

{τm[K]
<∞}

 (D.17)

=
∑

A∈P([K])

P

 ⋃
mAc∈M̃(Ac)

nℓ∈N

{
ıK(X̄

nℓ
Ac(mAc), Xnℓ

A ;Y nℓ
K ) ≥ γ

} , (D.18)

where X̄nℓ
Ac(mAc) refers to the random sample from the codebooks of transmit-

ter set Ac, independent from the codewords Xnℓ
Ac transmitted by the transmit-

ters Ac and the received output Y nℓ .

We bound the right-hand side of (D.18) using the same method as in [85,
eq. (65)–(66)]. This step is crucial in enabling the single-threshold rule for the
rate vectors approaching a point on the sum-rate boundary. Set an arbitrary
λ(A) > 0. Define two events

E(A) ≜
⋃

nℓ∈N

{
ıK(X

nℓ
A ;Y nℓ

K ) > NIK(XA;YK) +Nλ(A)
}

(D.19)
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F(A) ≜
⋃

mAc∈M̃(Ac)

nℓ∈N

{
ıK(X̄

nℓ
Ac(mAc), Xnℓ

A ;Y nℓ
K ) ≥ γ

}
. (D.20)

Define the threshold

γ̄(A) ≜ γ −NIK(XA;YK)−Nλ(A). (D.21)

We have

P [F(A)]

= P [F(A) ∩ E(A)] + P [F(A) ∩ E(A)c] (D.22)

≤ P [E(A)]

+ P

[ ⋃
mAc∈M̃(Ac)

nℓ∈N

{
ıK(X̄

nℓ
Ac(mAc);Y nℓ

K |Xnℓ
A ) ≥ γ̄(A)

} ]
(D.23)

≤
∑
nℓ∈N

P
[
ıK(X

nℓ
A ;Y nℓ

K ) > NIK(XA;YK) +Nλ(A)
]

+
∏
k∈Ac

(Mk − 1)P

[ ⋃
nℓ∈N

{
ıK(X̄

nℓ
Ac ;Y

nℓ
K |Xnℓ

A ) ≥ γ̄(A)
}]

(D.24)

≤
∑
nℓ∈N

P
[
ıK(X

nℓ
A ;Y nℓ

K ) > NIK(XA;YK) +Nλ(A)
]

+
∏
k∈Ac

(Mk − 1) exp{−γ̄(A)}, (D.25)

where inequality (D.23) uses the chain rule for mutual information, (D.24)
applies the union bound, and (D.25) follows from [72, eq. (88)].

Applying the bound in (D.25) to each of the probabilities in (D.18) and plug-
ging (D.13), (D.14), and (D.18) into (D.11)–(D.12), we complete the proof of
Theorem 5.3.2.

D.2 Proof of Theorem 5.3.1

We employ the sub-optimal SHT strategy in the proof sketch of Theorem 4.3.1
with ϵ′N = 1√

N ′ logN ′ . Therefore, we first show that there exists an (N,L,M[K], 1/
√
N logN)

VLSF code satisfying

K∑
k=1

logMk = NIK −
√
N log(L)(N)VK

+O

(√
NVK

log(L)(N)

)
. (D.26)



246

We set the parameters

γ = nℓIK −
√
nℓ log(L−ℓ+1)(nℓ)VK ∀ ℓ ∈ [L] (D.27)

=
K∑
k=1

logMk + logN (D.28)

λ(A) =
NIK(XAc ;YK |XA)−

∑
k∈Ac logMk

2N
, A ∈ P([K]). (D.29)

Recall that λ(A)’s are bounded below by a positive constant since the rate
point lies on the sum-rate boundary (5.11).

By Theorem 5.3.2, there exists a VLSF code with L decoding times n1 < n2 <

· · · < nL such that the average decoding time is bounded as

N ≤ n1 +
L−1∑
ℓ=1

(nℓ+1 − nℓ)P
[
ıK(X

nℓ

[K];Y
nℓ
K ) < γ

]
. (D.30)

Following the analysis in (C.121)–(C.124), we conclude that

nℓ = N(1 + o(1)) (D.31)

for all ℓ ∈ [L]. Applying the Chernoff bound to the probability terms in
(5.14)–(5.15) using (D.27) and (D.31), we get that the sum of the terms in
(5.14)–(5.15) is bounded by exp{−NE} for some E > 0.

Applying Theorem 2.4.1 to the probability in (5.12) with (D.27) gives

P
[
ıK(X

nL

[K];Y
nL
K ) < γ

]
≤ 1√

2π

1
√
nL

1√
log nL

·
(
1 +O

(
(log nL)

(3/2)

√
nL

))
. (D.32)

Applying Theorem 5.3.2 with (D.28), (D.32), and the exponential bound on
the sum of the terms in (5.14)–(5.15), we bound the error probability as

P
[
gτ∗(U, Y

τ∗) ̸= W[K]

]
≤ 1√

2π

1√
N

1√
logN

·
(
1 +O

(
(logN)(3/2)√

N

))
+

1

N
+ exp{−NE}, (D.33)

which is further bounded by 1√
N logN

for N large enough. Following steps
identical to (C.121)–(C.129), we prove the existence of a VLSF code that



247

satisfies (D.26) for the DM-MAC with L decoding times and error probability
1√

N logN
.

Finally, invoking (D.26) with L replaced by L − 1 and the sub-optimal SHT
strategy in the proof sketch of Theorem 4.3.1 with ϵ′N = 1√

N ′ logN ′ , we complete
the proof of Theorem 5.3.1.

D.2.1 Proof of (5.18)

The proof of (5.18) and the proof of Theorem 5.3.1 differ in several ways.
(5.18),

1. In (5.18), we choose cN + 1 decoding times as ni = i − 1 for i =

1, . . . , cN + 1 for a sufficiently large constant c > 1, while in the proof
of Theorem 5.3.1, L = O(1) decoding times where the gaps between
consecutive decoding times are not the same.

2. We set the parameter γ differently than (D.27) and (D.28). Specifically,
we set

γ = NIK − a (D.34)

=
K∑
k=1

logMk + logN + b, (D.35)

where a is an upper bound on the information density ıK(X[K];YK),
and b is a positive constant to be determined later. Since the number of
decoding times L grows linearly with N and c > 1, applying the Chernoff
bound gives

(5.12) + (5.14) + (5.15) ≤ exp{−NE} (D.36)

for some E > 0 and N large enough. Hence, the error probability ϵ in
Theorem 5.3.2 is bounded by exp{−b}

N
+exp{−NE}, which can be further

bounded by 1
N

by appropriately choosing the constant b.

3. We bound the average decoding time E [τ ∗] as

E [τ ∗] ≤ γ + a

IK
= N (D.37)

using Doob’s optional stopping theorem as used in[18, eq. (106)-(107)]
while E [τ ∗] in the proof of Theorem 5.3.1 is bounded by bounding the
tail probability of information density.
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The steps above show the achievability of an (N, cN,M[K], 1/N) code
with

K∑
k=1

logMk = NIK − logN +O(1). (D.38)

4. Lastly, we invoke the sub-optimal SHT strategy from the proof sketch of
Theorem 4.3.1 with ϵ′N = 1

N ′ , which is used with ϵ′N = 1√
N ′ logN ′ ,
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A p p e n d i x E

APPENDIX FOR CHAPTER 6

E.1 Proofs of Lemmas 6.2.1–6.2.3

We first state and prove Lemma E.1.1, which we then use to prove Lem-
mas 6.2.2, 6.2.1, and 6.2.3 (in that order).

Lemma E.1.1. Let X1, X2, . . . , Xk be i.i.d., and let the interference (6.9),
permutation-invariance (6.2), and reducibility (6.3) assumptions hold. Then
Ik(Xi;Yk|X[i−1]) is strictly increasing in i, i.e., for all i < j ≤ k,

Ik(Xi;Yk|X[i−1]) < Ik(Xj;Yk|X[j−1]). (E.1.1)

Proof of Lemma E.1.1: By permutation-invariance (6.9) and the i.i.d. distri-
bution of X1, . . . , Xk, we have

Ik(Xi;Yk|X[i−1]) = Ik(Xj;Yk|X[i−1]). (E.1.2)

Let (U, V, T ) be mutually independent random variables. Then I(U ;V ) =

I(U ;T, V ) = 0. Since I(U ;T, Y ) ≤ I(U ;T, V, Y ), the chain rule implies that

I(U ;Y |T ) ≤ I(U ;Y |T, V ). (E.1.3)

Setting U to Xj, Y to Yk, T to X[i−1], and V to X[i:j−1] in (E.1.3) and then
applying (E.1.2) gives (E.1.1) with < replaced by ≤. Equality in (E.1.3) is
attained if and only if U and V are conditionally independent given (Y, T ). As
a result, equality in our modified form of (E.1.1) occurs if and only if Xj and
X[i:j−1] are conditionally independent given (Yk, X[i−1]). We proceed to show
that this is not possible using a proof by contradiction.

Assume that Xj and X[i:j−1] are conditionally independent given (Yk, X[i−1]),
i.e.,

PX[i:j]|Yk,X[i−1]
= PX[i:j−1]|Yk,X[i−1]

PXj |Yk,X[i−1]
. (E.1.4)

Set X[i−1] = 0i−1 and use Bayes’ rule to show

PX[i:j]|Yk,X[i−1]=0i−1 = PX[j−(i−1)]|Yk−(i−1)
(E.1.5)
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PX[i:j−1]|Yk,X[i−1]=0i−1 = PX[2:j−(i−1)]|Yk−(i−1)
(E.1.6)

PXj |Yk,X[i−1]=0i−1 = PX1|Yk−(i−1)
(E.1.7)

due to reducibility (6.2), permutation-invariance (6.3), and the i.i.d. distri-
bution of X1, . . . , Xk. Therefore, (E.1.4) implies that X1 and X[2:j−(i−1)] are
conditionally independent given Yk−(i−1), which is not possible by interference
assumption (6.9).

Proof of Lemma 6.2.2: We wish to show that
1

k
Ik(X[k];Yk) <

1

s
Ik(X[s];Yk|X[s+1:k]). (E.1.8)

By the chain rule for mutual information, the left-hand side of (E.1.8) equals
the average of k terms

1

k
Ik(X[k];Yk) =

1

k

k∑
i=1

Ik(Xi;Yk|X[i−1]). (E.1.9)

By permutation-invariance (6.2) and the chain rule, the right-hand side of
(E.1.8) equals the average of the last s of those k terms

1

s
Ik(X[s];Yk|X[s+1:k]) =

1

s
Ik(X[k−s+1:k];Yk|X[k−s]) (E.1.10)

=
1

s

k∑
i=k−s+1

Ik(Xi;Yk|X[i−1]). (E.1.11)

Since the terms in these averages are strictly increasing in i by Lemma E.1.1,
we have the desired result.

Proof of Lemma 6.2.1: We wish to show that 1
s
Is >

1
k
Ik. We proceed by

representing Is in terms of Ik as
1

s
Is =

1

s
Ik(X[s];Yk|X[s+1:k] = 0k−s) (E.1.12)

≥ 1

s
Ik(X[s];Yk|X[s+1:k]) (E.1.13)

>
1

k
Ik, (E.1.14)

where (E.1.12) follows from reducibility (6.3), (E.1.13) follows from friendliness
(6.8), and (E.1.14) follows from Lemma 6.2.2.

Proof of Lemma 6.2.3: To derive the bound E[ıt(X[s];Yk)] ≤ Ik(X[s];Yk) <

It(X[s];Yt), we write

E[ıt(X[s];Yk)] = E
[
log

PYt|X[s]
(Yk|X[s])

PYt(Yk)

]
(E.1.15)
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= −D(PX[s]
PYk|X[s]

∥PX[s]
PYt|X[s]

) +D(PYk
∥PYt)

+D(PX[s]
PYk|X[s]

∥PX[s]
PYk

) (E.1.16)

= −D(PX[s]
PYk|X[s]

∥PX[s]
PYt|X[s]

) +D(PYk
∥PYt)

+Ik(X[s];Yk) (E.1.17)

≤ Ik(X[s];Yk) (E.1.18)

=
s∑

i=1

Ik(Xi;Yk|X[i−1]) (E.1.19)

<
s∑

i=1

Ik(Xi;Yk|X[i−1], X[s+1:s+k−t]) (E.1.20)

= Ik(X[s];Yk|X[t+1:k]) (E.1.21)

≤ Ik(X[s];Yk|X[t+1:k] = 0k−t) (E.1.22)

= It(X[s];Yt), (E.1.23)

where (E.1.18) follows from data processing inequality of relative entropy
(e.g., [57, Th. 2.2.5]), (E.1.19) follows from the chain rule, (E.1.20) follows
from permutation-invariance (6.2) and Lemma E.1.1, (E.1.21) follows from
permutation-invariance (6.2) and the chain rule, and (E.1.22) and (E.1.23)
follow from friendliness (6.8) and reducibility (6.3), respectively.

E.2 Proof of Lemma 6.3.1

To prove Lemma 6.3.1, we first derive the saddle point condition for the MAC.

Theorem E.2.1 (Saddle point condition for the MAC). Let P1 and P2 be
convex set of distributions on alphabets X1 and X2, respectively. Suppose that
there exists a product distribution PX∗

1
PX∗

2
such that

sup
PX1

PX2
PX1

∈P1,PX2
∈P2

I2(X1, X2;Y2) = I2(X
∗
1 , X

∗
2 ;Y

∗
2 ) = I∗2 , (E.2.1)

where PY ∗
2 |X∗

1 ,X
∗
2
= PY2|X1,X2. Then, for all PX1 ∈ P1 and for all QY2, it holds

that

D(PX1PX∗
2
PY2|X1,X2∥PX1PX∗

2
PY ∗

2
) ≤ I∗2 (E.2.2)

≤ D(PX∗
1
PX∗

2
PY2|X1,X2∥PX∗

1
PX∗

2
QY2).

(E.2.3)
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Proof of Lemma 6.3.1: Lemma 6.3.1 follows by an application of Theo-
rem E.2.1 to the setting where P1 includes the set of all distributions with a
singleton on X1 having probability 1, i.e., {δx1 :x1 ∈ X1} ⊆ P1, and I∗2 < ∞.
Particularizing PX1 in (E.2.2) to any PX1 = δx1 with x1 ∈ X1 yields

D(PX∗
2
PY2|X1=x1,X2∥PX∗

2
PY ∗

2
) ≤ I∗2 (E.2.4)

for all x1 ∈ X1. Since the left-hand side of (E.2.4) is equal to the conditional
expectation of ı2(X∗

1 , X
∗
2 ;Y

∗
2 ) given X∗

1 = x1, (6.27) follows with less than or
equal to. The equality in (6.27) follows since otherwise (E.2.4) would give the
contradiction I2(X∗

1 , X
∗
2 ;Y

∗
2 ) < I∗2 .

Proof of Theorem E.2.1: The proof of Theorem E.2.1 is similar to the proof
of the saddle point condition for point-to-point channels in [57, Th. 4.4] and
extends [57, Th. 4.4] to the MAC. Although the optimization in (E.2.1) is not
convex in general [110], the optimization

sup
PX1

∈P1

I2(X1, X
∗
2 ;Y2), (E.2.5)

where PX1X∗
2Y2 = PX1PX∗

2
PY2|X1,X2 is convex.

Inequality (E.2.3) follows from the golden formula (e.g., [57, Th. 3.3])

I∗2 = D(PX∗
1
PX∗

2
PY2|X1,X2∥PX∗

1
PX∗

2
PY ∗

2
) (E.2.6)

= D(PX∗
1
PX∗

2
PY2|X1,X2∥PX∗

1
PX∗

2
QY2)−D(PY ∗

2
∥QY2) (E.2.7)

and the nonnegativity of the relative entropy. Notice that for I∗2 = ∞, (E.2.2)
is trivial. Assume that I∗2 <∞. Fix any PX1 ∈ P1. Let λ ∈ (0, 1). Set

PX1λ
= λPX1 + (1− λ)PX∗

1
∈ P1. (E.2.8)

Let θ ∼ Bernoulli(λ), so that PX1λ|θ=0 = PX∗
1

and PX1λ|θ=1 = PX1 , and let

PX1λX
∗
2Y2λ

= PX1λ
PX∗

2
PY2|X1,X2 . (E.2.9)

Then

I∗2 ≥ I2(X1λ, X
∗
2 ;Y2λ) (E.2.10)

= D(PX1λ
PX∗

2
PY2|X1,X2∥PX1λ

PX∗
2
PY2λ

) (E.2.11)

= λD(PX1PX∗
2
PY2|X1,X2∥PX1PX∗

2
PY2λ

)

+(1− λ)D(PX∗
1
PX∗

2
PY2|X1,X2∥PX∗

1
PX∗

2
PY2λ

) (E.2.12)
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≥ λD(PX1PX∗
2
PY2|X1,X2∥PX1PX∗

2
PY2λ

)

+(1− λ)I∗2 , (E.2.13)

where (E.2.13) follows from (E.2.3). By subtracting (1− λ)I∗2 from both sides
of (E.2.13) and dividing by λ, we get

I∗2 ≥ D(PX1PX∗
2
PY2|X1,X2∥PX1PX∗

2
PY2λ

). (E.2.14)

By taking lim infλ→0 in (E.2.14) and applying the lower semicontinuity of the
relative entropy (e.g., [57, Th. 3.6]), (E.2.2) is proved.

Note that (PX∗
1
, PX∗

2
) does not have to be unique for Theorem E.2.1 and

Lemma 6.3.1 to hold.

E.3 Adder-erasure RAC

Here, we approximate the sum-capacity and dispersion of the adder-erasure
RAC for a large number of transmitters (k).

Theorem E.3.1. The optimal input distribution for the adder-erasure RAC
defined in (6.15) is the Bernoulli(1/2) distribution at all encoders. That input
distribution achieves the sum-rate capacity, and

Ik = (1− δ)

(
1

2
log

πek

2
− log e

12k2

)
+O(k−3) (E.3.1)

Vk = (1− δ)

[
δ

4
log2

πek

2
+

log2 e

2
− log2 e

2k

−

(
log e

2
+
δ log πek

2

12

)
log e

k2

]
+O

(
log k

k3

)
. (E.3.2)

The calculation leading to Theorem E.3.1 is presented in Lemmas E.3.1–E.3.2,
which rely on Stirling’s approximation and the Taylor series expansion.

Consider a binomial random variable X ∼ Binom(n, 1/2). Lemma E.3.1,
below, shows that the probability mass that this Binomial distribution puts
at k is well approximated by

P̃X(k) ≜
1√
πn
2

e
− (k−n

2 )2

n
2

(
1 +

f(k)

n
+
g(k)

n2

)
, (E.3.3)

where

f(x) ≜ − 1

12

(2x− n)4

n2
+

1

2

(2x− n)2

n
− 1

4
(E.3.4)
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g(x) ≜
1

288

(2x− n)8

n4
− 3

40

(2x− n)6

n3
+

19

48

(2x− n)4

n2

− 11

24

(2x− n)2

n
+

1

32
. (E.3.5)

Define the interval

K ≜

[
n

2
− A

2

√
n log n,

n

2
+
A

2

√
n log n

]
(E.3.6)

for some constant A > 0.

Lemma E.3.1. Let X ∼ Binom(n, 1/2). Then for any k ∈ K,

PX(k) =

(
n

k

)
2−n = P̃X(k)

(
1 +O

(
log6 n

n3

))
. (E.3.7)

Proof of Lemma E.3.1: We apply Stirling’s approximation [143, eq. (6.1.37)]

n! =
√
2πnn+ 1

2 e−n

(
1 +

1

12n
+

1

288n2
+O(n−3)

)
, (E.3.8)

and a Taylor series expansion of
(
n
k

)
around x = 0, where

k =
n

2
+
x

2

√
n log n, (E.3.9)

to PX(k) =
(
n
k

)
2−n, to derive (E.3.7).

Let V (X)

V (X) = Var

[
log

1

PX(X)

]
. (E.3.10)

denote the varentropy of X.

Lemma E.3.2 (Entropy and varentropy of Binom (n, 1/2)). For X ∼ Binom (n, 1/2),

H(X) =
1

2
log

πen

2
− log e

12n2
+O(n−3) (E.3.11)

V (X) =
log2 e

2
− log2 e

2n
− log2 e

2n2
+O(n−3). (E.3.12)

Proof of Lemma E.3.2: Let T̃ (k) denote the first 3 terms of the Taylor series
expansion of log 1

P̃X(k)
around n

2
evaluated at k, giving

T̃ (k) ≜
1

2
log

πn

2
+ log e

(
(k − n

2
)2

n
2
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− f(k)

n
+

−g(k) + f2(k)
2

n2

)
. (E.3.13)

Recall the definition of interval K from (E.3.6). Then we can write the entropy
H(X) as

H(X) =
n∑

k=0

(
n
k

)
2n

log

(
2n(
n
k

)) (E.3.14)

= E
[
T̃ (X)

]
+E

[(
log

1

PX(X)
− T̃ (X)

)
1{X ∈ K}

]
+E

[(
log

1

PX(X)
− T̃ (X)

)
1{X /∈ K}

]
. (E.3.15)

Using the moments of Binom (n, 1/2) (e.g., [143, eq. (26.1.20)]), the first term
in (E.3.15) is

E
[
T̃ (X)

]
=

1

2
log

πen

2
− log e

12n2
. (E.3.16)

By Lemma E.3.1, the second term in (E.3.15) is

E
[(

log
1

PX(X)
− T̃ (X)

)
1{X ∈ K}

]
= O

(
log6 n

n3

)
. (E.3.17)

By Hoeffding’s inequality,

P [X /∈ K] ≤ 2n−A2 log e
2 , (E.3.18)

where A is the constant in (E.3.6). Since the minimum of PX(k) over k is
achieved at k = n, using (E.3.18), we get

E
[
log

1

PX(X)
1{X /∈ K}

]
= O

(
log6 n

n3

)
(E.3.19)

for A ≥ 3√
log e

. Similarly, by taking the derivative of T̃ (k), one can show that
T̃ (k) ≤ T̃ (n) ≤ n for all k ∈ [0, n], which gives

E
[
T̃ (X)1{X /∈ K}

]
= O

(
log6 n

n3

)
. (E.3.20)

Combining (E.3.15)–(E.3.17), (E.3.19)–(E.3.20) gives

H(X) =
1

2
log

πen

2
− log e

12n2
+O

(
log6 n

n3

)
. (E.3.21)
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Via an argument similar to (E.3.19) and (E.3.20), we can show that for A ≥
4√
log e

, the contribution of k /∈ K to the varentropy is O
(

log6 n
n3

)
. Therefore,

using the moments of Binom(n, 1/2) and Lemma E.3.1, we can approximate
the varentropy V (X) as

V (X) = E
[
log2

1

PX(X)

]
− (H(X))2 (E.3.22)

= E
[
(T̃ (X))2

]
− (H(X))2 +O

(
log6 n

n3

)
(E.3.23)

= log2 e

(
1

2
− 1

2n
− 1

2n2

)
+O

(
log6 n

n3

)
. (E.3.24)

The above analyses use the first 3 terms of the Stirling series (E.3.8) to obtain
the remainder O

(
log6 n
n3

)
. Applying the same analyses with 4 terms of the

Stirling series improves the remainder to O(n−3), as claimed in (E.3.11) and
(E.3.12) in the statement of Lemma E.3.2.

We are now equipped to prove Theorem E.3.1.

Proof of Theorem E.3.1: Define

E ≜ 1{Y = e}. (E.3.25)

By the chain rule for entropy, we have for the adder-erasure RAC

Ik(X[k];Yk) = H(Yk)−H(Yk|X[k]) (E.3.26)

= H(Yk, E)−H(E) (E.3.27)

= H(Yk|E) (E.3.28)

= (1− δ)H(Yk|E = 0). (E.3.29)

Given the independent inputs Xi ∼ Bernoulli(pi) for i ∈ [k], H(Yk|E = 0) is
equal to the entropy of the sum of k independent Bernoulli random variables
with parameters (p1, . . . , pk), which is maximized when pi = 1/2 for all i
[149]. Therefore, for any δ ∈ [0, 1], the equiprobable input distribution at all
encoders, X∗

i ∼ Bernoulli(1/2), maximizes the mutual information Ik(X[k];Yk)

for all k. Let (X∗
[k]Y

∗
k ) ∼ PX∗

[k]
PYk|X[k]

. Then

Ik(X
∗
[k];Y

∗
k ) = (1− δ)H(Z), (E.3.30)
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where Z ∼ Binom(k, 1/2), and (E.3.1) follows from Lemma E.3.2. Further-
more,

ık(X
∗
[k];Y

∗
k ) =

0 w.p. δ

log 2k

(ki)
w.p. (1− δ)

(ki)
2k
, 0 ≤ i ≤ k,

(E.3.31)

which gives

Vk = Var
[
ık(X

∗
[k];Y

∗
k )
]
= (1− δ)

[
V (Z) + δ(H(Z))2

]
, (E.3.32)

and (E.3.2) follows from Lemma E.3.2.

E.4 Bound on the Cardinality |U|
While the analysis in Section 6.4.2 employs common randomness U with |U|=
|X |MnK , [18, Th. 19] shows that |U|≤ K + 2 suffices to achieve the optimal
performance. Theorem E.4.1, stated next, improves the cardinality bound on
|U| from K + 2 [18, Th. 19] to K + 1 by using the connectedness of the set of
achievable error vectors defined in (E.4.1).

Theorem E.4.1. If an (M, {(nk, ϵk)}Kk=0) RAC code exists, then there exists
an (M, {(nk, ϵk)}Kk=0) RAC code with |U|≤ K + 1.

Proof of Theorem E.4.1: For fixed M,n0, . . . , nK , let Gu denote the set
of achievable error vectors compatible with message size M , blocklengths
n0, . . . , nK , and cardinality |U|≤ u; that is,

Gu = {(ϵ′0, . . . , ϵ′K) : ∃(M, {(nk, ϵ
′
k)}Kk=0) code with

|U|≤ u}. (E.4.1)

Let G denote the set of achievable error vectors compatible with message size
M and blocklengths n0, . . . , nK ; that is,

G = {(ϵ′0, . . . , ϵ′K) : ∃(M, {(nk, ϵ
′
k)}Kk=0) code}. (E.4.2)

As observed in [18, Proof of Th. 19], G = G|X |MnK is the convex hull of G1.
Indeed, every vector (ϵ′0, . . . , ϵ

′
K) in G is a convex combination of vectors in

G1, and the coefficients of the convex combination are determined by the
distribution of the common randomness random variable U .

Furthermore, G1 is a connected set. To see this, take any ϵ1, ϵ2 ∈ G1. For any
ϵ′ ≥ ϵ with ϵ ∈ G1, the line segments Li = {λϵi+(1−λ)1:λ ∈ [0, 1]}, i = 1, 2,
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also belong to G1, and the path L1 ∪ L2 connects ϵ1 and ϵ2. Therefore, G1 is
a connected set.

Since G = conv(G1) ⊂ RK+1, and G1 is a connected set, by Fenchel-Eggleston-
Carathéodory’s theorem [150, Th. 18 (ii)], G = GK+1 holds. Therefore,
(ϵ0, . . . , ϵK) ∈ G implies that (ϵ0, . . . , ϵK) ∈ GK+1.

E.5 Composite Hypothesis Testing

We begin with a lemma that is used in the proof of Theorem 6.5.3. See Fig. E.1
for an illustration of Lemma E.5.1.

Lemma E.5.1. Let f :Rd → R be a continuous function that satisfies coordinate-
wise partial ordering, i.e., f(x) ≤ f(y) for any x,y ∈ Rd with x ≤ y. Then
for any a in the image of f (denoted a ∈ Imf), it holds that

b⋆ = min
b∈Rd:f(b)≥a

max
1≤j≤d

bj = min
x∈R:f(x1)≥a

x. (E.5.1)

Proof: Since a ∈ Imf , there exists some b ∈ Rd such that f(b) = a. Denote
by bmin and bmax the minimum and maximum components of b, respectively.
Since f is nondecreasing,

f(bmin1) ≤ a = f(b) ≤ f(bmax1). (E.5.2)

Therefore, since the function mapping b to f(b1) is continuous and nonde-
creasing, by the intermediate value theorem there exists some b ≤ bmax such
that f(b1) = a. Equation (E.5.1) follows.

Let Z ∼ N (0,V). Define the multidimensional counterpart of the function
Q−1(·) as

Qinv(V, ϵ) ≜
{
z ∈ RK : P [Z ≤ z] ≥ 1− ϵ

}
. (E.5.3)

Proof of Theorem 6.5.3: For any ϵ0 ∈ (0, 1), consider all composite hypothesis
tests in the form given in (6.116) that achieve type-I error no greater than ϵ0.
Let

Eϵ0(PY0 , {PYk
}Kk=1) ≜

{
(e1, . . . , eK) : ∃ a (randomized) test

such that

P [Decide H1|H0] ≤ ϵ0,
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Figure E.1: An example to illustrate Lemma E.5.1. Here f(b) = FZ(b) is the
CDF of Z ∼ N (0,V), where V = [ 1 0.4

0.4 0.5 ]. The shaded region illustrates the
set {b ∈ R2 : f(b) ≥ a = 0.95}. Lemma E.5.1 shows that the minimax on
this set is achieved at a point described by a scalar multiple of 1. For this
example, the optimizer is b⋆ = (1.69, 1.69).

P [Decide H0|H1] = ek, 1 ≤ k ≤ K
}

(E.5.4)

denote the set of type-II errors achievable by these tests. Huang and Moulin
[123, Th. 1]1 show that the asymptotic form of the error region defined in
(E.5.4) is given by

Eϵ0(PY0 , {PYk
}Kk=1)

= exp

{
−nD+

√
nQinv(V, ϵ0)−

1

2
log n1+O(1)1

}
. (E.5.5)

1In the converse part of the proof of [123, Th. 1], Huang and Moulin show that for
any LLR test (6.139) with threshold vector τ such that the type-I error is bounded by
ϵ0, it holds that τ = nD −

√
nb + O(1)1 for some b ∈ Qinv(V, ϵ0). Then, it is assumed

that b = O(1)1, and [123, Lemma 2] is applied. However, according to the definition of
Qinv(V, ϵ0) in (E.5.3), b can have coordinates growing with n, which violates this assumption.
In [131, Th. 11], Chen et al. confirm that the asymptotic expansion in (E.5.5) holds. They
prove the converse part of the expansion (E.5.5) by evaluating a converse bound that they
derive in [131, Lemma 9] for the composite hypothesis testing.



260

By the definition of the minimax error (6.138) and the characterization of the
achievable error region asymptotics in (E.5.5), we have

βϵ0(PY0 , {PYk
}Kk=1)

= min
z∈exp{−nD+

√
nQinv(V,ϵ0)− 1

2
logn1+O(1)1}

max
1≤k≤K

zk. (E.5.6)

Applying Lemma E.5.1 with f(z) = P [−nD+
√
nZ ≤ z] and a = 1−ϵ0, where

Z ∼ N (0,V), we obtain

βϵ0(PY0 , {PYk
}Kk=1)

= min
z∈R:f(z1)≥1−ϵ0

exp

{
z − 1

2
log n+O(1)

}
. (E.5.7)

Since f(z1) is nondecreasing and continuous in z,

f(z⋆1) = 1− ϵ0 (E.5.8)

holds, where z⋆ is the argument that achieves the minimum on the right-hand
side of (E.5.7). Recall the definitions of Dmin and Imin from (6.141)–(6.142).
By Chernoff’s bound on f(z), for any z = nE+o(n) with E > −Dmin, we have
f(z1) = 1− o(1). Similarly, for E < −Dmin, we have f(z1) = o(1), giving

z⋆ = −nDmin + o(n). (E.5.9)

We proceed to show that the minimum on the right-hand side of (E.5.7) is
achieved at

z⋆ = −nDmin +
√
nb+O (1) , (E.5.10)

where b is defined in (6.145). Here

P
[
−nDmin1+

√
nZImin

≤ z⋆1
]

= P
[
−nD+

√
nZ ≤ z⋆1

]
+ P

[
{−nDmin1+

√
nZImin

≤ z⋆1}
⋂{

−nDIc
min

+
√
nZIc

min
≰ z⋆1

} ]
(E.5.11)

= 1− ϵ0 +O

(
1

n

)
, (E.5.12)

where (E.5.12) follows from (E.5.8), (E.5.9), and the union bound and Cheby-
shev’s inequality on P

[
−nDIc

min
+ ZIc

min
≰ z⋆1

]
. By the Taylor series expan-

sion of Qinv(V, ·), we conclude that

P
[
ZImin

≤ 1√
n
(z⋆ + nDmin)1+O

(
1

n

)]
= 1− ϵ0, (E.5.13)
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which implies (E.5.10). Combining (E.5.7) and (E.5.10) completes the proof.

E.5.1 Proof of Theorem 6.6.1

The main difference between the proofs of Theorem 6.6.1 and Theorem 5.3.1 is
that for the DM-RAC, we employ multiple hypothesis testing to estimate the
number of active transmitters at time n0 that is smaller than or equal to any of
the decoding times. If the test decides that the number of active transmitters
is k̂ = 0, then the decoder declares no active transmitters at time n0 and stops
the transmission at that time. If the estimated number of active transmitters
is k̂ ̸= 0, then the decoder decides to decode at one of the available times nk,1,
. . . , nk,L using the MAC decoder with k transmitters.

Encoding and decoding

Encoding: As in the DM-PPC and DM-MAC cases, the codewords are gen-
erated i.i.d. from the distribution P nK,L

X .

Decoding: The decoder combines a (K + 1)-ary hypothesis test and the
threshold test that is used for the DM-MAC.

Multiple hypothesis test : Given distributions PYk
, k ∈ {0, . . . , K} where YK is

the common alphabet, we test the hypotheses

Hk:Y
n0 ∼ P n0

Yk
, k ∈ {0, . . . , K}. (E.5.14)

The error probability constraints of our test are

P [Decide Hs where s ̸= 0|H0] ≤ ϵ0 (E.5.15)

P [Decide Hs where s ̸= k|Hk] ≤ exp{−n0E + o(n0)} (E.5.16)

for k ∈ [K], where E > 0 is a constant.

Due to the asymmetry in (E.5.15)–(E.5.16), we employ a composite hypothesis
testing to decide whether H0 is true; that is, the test declares H0 if

ln
P n0
Y0
(yn0)

P n0
Ys
(yn0)

≥ τs (E.5.17)

for all s ∈ [K], where the threshold values τs, s ∈ [K], are determined ac-
cording to (E.5.15). If the condition in (E.5.17) is not satisfied, then the test
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applies the maximum likelihood decoding rule, i.e., it outputs Hs, where

s = argmax
s∈[K]

P n0
Ys
(yn0). (E.5.18)

From the asymptotics of the composite hypothesis testing in Theorem 6.5.3,
the maximum type-II error of the composite hypothesis test is bounded as

max
k∈[K]

P [Decide H0|Hk]

≤ exp

{
−n0 min

k∈[K]
D(PY0∥PYk

) +O(
√
n0)

}
. (E.5.19)

If PY0 is not absolutely continuous with respect to PYk
, (E.5.19) still remains

valid with D(PY0∥PYk
) = ∞ since we can achieve arbitrarily large type-II error

probability exponent in that case (see [5, Lemmas 57-58].

From [151], the maximum likelihood test yields

max
(k,s)∈[K]2

P [Decide Hs|Hk] ≤ exp{−nEC + o(n)}, (E.5.20)

where

EC = min
k,s

min
λ∈(0,1)

ln
∑
y∈YK

PYk
(y)1−λPYs(y)

λ (E.5.21)

is the minimum Chernoff distance between the pairs (PYk
, PYs), k ̸= s ∈ [K].

Combining (E.5.19) and (E.5.21), the conditions in (E.5.15)–(E.5.16) are sat-
isfied with

E = min

{
min
k∈[K]

D(PY0∥PYk
), EC

}
> 0. (E.5.22)

If the hypothesis test declares the hypothesis Hk̂, k̂ ̸= 0, then the receiver
decides to decode k̂ messages at one of the decoding times in {nk̂,1, . . . , nk̂,L}
using the VLSF code in Section D for the k̂-MAC, where nk̂,1 is set to n0.

E.5.2 Error analysis

In this section, we bound the probability of error for the random access code
in Definition 6.6.1.

No active transmitters : For k = 0, the only error event is that the composite
hypothesis test at time n0 does not declare H0 given that H0 is true. By
(E.5.15), the probability of this event is bounded by ϵ0.
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k ≥ 1 active transmitters : When there is at least one active transmitter, the
encoding function and decoding rule yield an error if and only if at least one
of the following events occurs:

• Enumber: The number of active transmitters is estimated incorrectly at
time n0, i.e., k̂ ̸= k, which results in decoding of k̂ messages instead of k
messages.

• Emessage: A list of messages m′
[k] ̸= m[k] is decoded at one of the times in

{nk,1, . . . , nk,L}.

In the following discussion, we bound the probability of these events separately,
and apply the union bound to combine them.

Since the encoders are identical, treating the event Erep = {Wi = Wj for some i ̸=
j} that at least one message among transmitted messages is repeated as an
error simplifies the analysis.

By the union bound, we have

P [Erep] ≤
k(k − 1)

2M
. (E.5.23)

Applying the union bound, we bound the error probability as

ϵk ≤ P [Erep] + P
[
Ec

rep

]
P
[
Enumber ∪ Emessage

∣∣Ec
rep

]
≤ P [Erep] + P

[
Enumber

∣∣Ec
rep

]
+ P

[
Emessage

∣∣Ec
rep ∩ Ec

number

]
. (E.5.24)

By (E.5.16), the probability P
[
Enumber

∣∣Ec
rep

]
is bounded as

P
[
Enumber

∣∣Ec
rep

]
≤ exp{−n0E + o(n0)}. (E.5.25)

Since the number of active transmitters k is not available at the decoder at
time 0, we here slightly modify the sub-optimal SHT strategy from the proof
sketch of Theorem 4.3.1. We set the smallest decoding time nj,1 to n0 ̸= 0 for all
j ∈ [K]. Given that k̂ is the estimate of the true number of active transmitters
k, we employ the sub-optimal SHT strategy with the triple (N ′, ϵ, ϵ′N) replaced
by (N ′

k̂
, ϵk̂, ϵN ′

k̂
).

Let Estop denote the event that the decoder chooses to stop at time nk,1 = n0 to
decode an arbitrary message vector. We further bound P

[
Emessage

∣∣Ec
rep ∩ Ec

number

]
as

P
[
Emessage

∣∣Ec
rep ∩ Ec

number

]
≤ P

[
Estop|Ec

rep ∩ Ec
number

]
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+ P
[
Ec

stop|Ec
rep ∩ Ec

number

]
P
[
Emessage

∣∣Ec
rep ∩ Ec

number ∩ Ec
stop

]
. (E.5.26)

Extending Theorem 5.3.2 by letting the RAC decoder at time nk,ℓ decode a
list of k messages from [M ], we get

P
[
Emessage

∣∣Ec
rep ∩ Ec

number ∩ Ec
stop

]
(E.5.27)

≤ P
[
ık(X

nk,L

[k] ;Y
nk,L

k ) < γk

]
(E.5.28)

+

(
M − k

k

)
exp{−γk} (E.5.29)

+
L∑

ℓ=2

∑
A∈P([k])

P
[
ık(X

nk,ℓ

A ;Y
nk,ℓ

k ) > N ′
kIk(XA;Yk) +N ′

kλ
(k,A)

]
(E.5.30)

+
∑

A∈P([k])

(
M − k

|A|

)
exp{−γ +N ′

kIk(XA;Yk) +Nkλ
(k,A)}, (E.5.31)

where N ′
k is the average decoding time given Ec

stop, and γk and λ(k,A) are con-
stants that satisfy the equations

γk = nk,ℓIk −
√
nk,ℓ ln(L−ℓ+1)(nk,ℓ)Vk (E.5.32)

= k lnM + lnN ′
k +O(1) (E.5.33)

for all ℓ ∈ {2, . . . , L}, and

λ(k,A) =
N ′

kIk(XAc ;Yk|XA)− |Ac|lnM
2N ′

k

, A ∈ P([k]). (E.5.34)

The fact that λ(k,A)’s are bounded below by a positive constant follows from
(E.5.33), Lemma 6.2.1, and the symmetry assumptions on the RAC.

Following the analysis in Appendix D.2, we conclude that

k lnM = N ′
kIk −

√
N ′

k ln(L−1)(N ′
k)Vk

+O

(√
N ′

kVk
ln(L−1)(N ′

k)

)
(E.5.35)

P
[
Emessage

∣∣Ec
rep ∩ Ec

number ∩ Ec
stop

]
≤ 1√

N ′
k lnN

′
k

. (E.5.36)
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Note that by (E.5.23) and (E.5.35), P [Erep] is bounded exponentially with Nk.
A consequence of (E.5.32) and (E.5.35) is that

N ′
k = nk,ℓ(1 + o(1)) (E.5.37)

for all ℓ ≥ 2 and k ∈ [K].

Note that from (E.5.35), the right-hand side of (E.5.23) is bounded by 1
N ′

k
for

N ′
k large enough. We set the time n0 so that the right-hand side of (E.5.25)

is bounded by 1

4
√

N ′
k lnN ′

k

for all k ∈ [K]. This condition is satisfied if

n0 ≥
1

2E
lnN ′

k + o(lnN ′
k). (E.5.38)

The above arguments imply that

P [Erep] + P
[
Enumber

∣∣Ec
rep

]
≤ 1

2
√
N ′

k lnN
′
k

(E.5.39)

for N ′
k large enough. As in the DM-MAC case, we set

p ≜ P
[
Estop|Ec

rep ∩ Ec
number

]
=
ϵ′k − 1√

N ′
k lnN ′

k

1− 1√
N ′

k lnN ′
k

(E.5.40)

where

ϵ′k = ϵk −
1

2
√
N ′

k lnN
′
k

. (E.5.41)

Combining (E.5.24), (E.5.26), (E.5.36), and (E.5.39)–(E.5.40), the error prob-
ability of the RAC code is bounded by

P [Erep] + P
[
Enumber

∣∣Ec
rep

]
+ P

[
Estop|Ec

rep ∩ Ec
number

]
+ P

[
Ec

stop|Ec
rep ∩ Ec

number

]
P
[
Emessage

∣∣Ec
rep ∩ Ec

number ∩ Ec
stop

]
(E.5.42)

≤ 1

2
√
N ′

k lnN
′
k

+ p+ (1− p)
1√

N ′
k lnN

′
k

(E.5.43)

= ϵk. (E.5.44)

The average decoding time of the code is bounded as

Nk ≤ E [τ ∗k |Enumber ∪ Erep]P [Enumber ∪ Erep]

+ E
[
τ ∗k |Ec

number ∩ Ec
rep

]
P [Ec

number ∩ Ec
number] (E.5.45)



266

≤ NK,L

2
√
N ′

k lnN
′
k

+ n0p+N ′
k(1− p). (E.5.46)

From (E.5.37), (E.5.40)–(E.5.41), we get

N ′
k =

Nk

1− ϵ′k

(
1 +O

(
1√

Nk lnNk

))
. (E.5.47)

Plugging (E.5.47) in (E.5.35) completes the proof.
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A p p e n d i x F

APPENDIX FOR CHAPTER 7

F.1 Proof of Corollary 7.2.1

In order to prove Corollary 7.2.1, we show that for any M that satisfies the
inequality (7.25), it holds that

(|S|logM :S) ∈ P([K]) ∈ nC(P1)−
√
nQinv(V(P1), ϵ)

+
1

2
log n1+O (1)1. (F.1.1)

Let Z = (Z(S) : S ∈ P([K])) ∼ N (0,V(P1), ϵ)). Take M such that the
asymptotic expansion in (7.25) holds, implying that

P
[
Z([K]) >

√
n

(
C(KP )− K logM

n

)
+

1

2

log n√
n

+O

(
1√
n

)]
≤ ϵ. (F.1.2)

Consider any S ∈ P([K]) with |S|< K. Then

P
[
Z(S) >

√
n

(
C(|S|P )− |S|logM

n

)
+

1

2

log n√
n

+O

(
1√
n

)]
≤ O

(
1

n

)
,

(F.1.3)

which follows from Chebyshev’s inequality since C(sP ) − s
K
C(KP ) > 0 for

s < K.

By the union bound, (F.1.2) and (F.1.3), we get

P

[ ⋃
S∈P([K])

{
Z(S) >

√
n

(
C(|S|P )− |S|logM

n

)
+

1

2

log n√
n

+O

(
1√
n

)}]

≤ ϵ+O

(
1

n

)
, (F.1.4)

which, by the definition (7.15), is equivalent to(
|S|logM :S ∈ P([K])

)
∈ nC(P1)

−
√
nQinv

(
V(P1), ϵ+O

(
1

n

))
+

1

2
log n1+O (1)1. (F.1.5)

Applying the Taylor series expansion to Qinv(V(P1), ·) completes the proof.
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F.2 Adopting the Codebooks Based on the Channel Estimate at
Time n0

In our encoder and decoder design, we use the fact that the received output
power concentrates around its mean value. In the proof of Theorem 7.2.2, we
show that n0 = O(log n1) symbols are sufficient to ensure that the probability
that the decision is made at the correct decoding time, i.e., nk when k trans-
mitters are active, decays with O

(
1√
nk

)
. In our strategy, we make a binary

decision at each decoding time n0, . . . , nK of whether or not to decode. An
alternative to this strategy would be to decide the number of active transmit-
ters at time n0, which is much smaller than the rest of the decoding times, and
to inform the transmitters about the decoding time in the epoch at time n0.
This alternative allows for a code design that depends on the feedback from
the receiver to the transmitters at time n0. Using its knowledge of the typical

interval, in which the squared norm of the output, 1
n0

∥∥∥Y[n0]
k

∥∥∥2, lies for each
k ≤ K, the decoder estimates the number of active transmitters. We denote
this value by t. The decoder could then transmit t to all transmitters, so that
all parties understand that the communication epoch is going to end at time
nt. This strategy requires ⌈log(K + 1)⌉ bits of feedback from the receiver to
transmitters at time n0; in contrast, the strategy in the proof of Theorem 7.3.1
requires a number of bits of feedback that varies with the decoder’s estimate
of the number of active transmitters with a maximum of K + 1 bits. Let
the decoder choose t as the nearest integer to 1

P

(
1
n0

∥∥y[n0]
∥∥2 − 1

)
. Then, the

bound in (7.192) on the probability that the decoder errs in determining the
number of active transmitters can be bounded as

P
[
Etime

∣∣Ec
rep

]
≤ 2

(
k∏

j=1

κj(P1)

)
exp

{
−

n0(
P
2
)2

8(1 + kP )2

}
(F.2.6)

in the case when the decision is made at time n0. Like (7.192), this bound
decays exponentially with n0. Here, however, the exponential rate is smaller
than (7.192). Hence, this modification in the strategy increases the constant
c in (7.32), and affects the achievable O(1) term in (7.31).

As the encoders learn the estimate of the number of active transmitters at
an earlier time, an encoding function that depends on the feedback from the
receiver could be employed as follows. Recall from (7.28) that the maximal-
power constraints apply to the decoding times n1, . . . , nK , but not to n0. Given
the estimate t of the number of active transmitters k, length-nt codewords
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are drawn such that the first n1 symbols are uniformly distributed on n1-
dimensional sphere with radius

√
n1P , and the symbols indexed from n1+1 to

nt are distributed on (nt − n1)-dimensional sphere with radius
√
(nt − n1)P ,

i.e., instead of K independent spherical sub-codewords, we use two indepen-
dent sub-codewords. The length of the second sub-codeword depends on the
estimate t. The effect of this modification on the error analysis is that under
this input distribution, the total variation bound in (7.223) can be improved
to

TV(PH, PH̃) ≤
Fk√
n1

+
Fk√

nk − n1

, (F.2.7)

which decays with the same asymptotic rate as (7.223). Therefore, this modi-
fication affects only the O(1) term in (7.31), meaning that the same expansion
as Theorem 7.3.1 is achieved.

F.3 Proof of Lemma 7.4.4

Pinsker’s inequality (e.g., [57, Th. 6.5]) states that for any distributions P
and Q,

TV(P,Q) ≤
√

1

2
D(P∥Q). (F.3.8)

Let tr(·) denote trace of its matrix argument. The relative entropy between
two d-dimensional Gaussian distributions with positive covariance matrices is
given (e.g., [57, eq. (1.18)]) by

D(N (µ1,Σ1)∥N (µ2,Σ2))

=
1

2

(
tr(Σ

−1/2
1 Σ2Σ

−1/2
1 − Id) + (µ1 − µ2)

TΣ−1
1 (µ1 − µ2)

− log det(Σ
−1/2
1 Σ2Σ

−1/2
1 )

)
. (F.3.9)

Define

G ≜ Σ
−1/2
1 Σ2Σ

−1/2
1 − Id (F.3.10)

a ≜
1

2

√
(µ1 − µ2)TΣ

−1
1 (µ1 − µ2). (F.3.11)

Combining (F.3.8) and (F.3.9) and using the inequality
√
x+ y ≤

√
x +

√
y,

we get

TV(N (µ1,Σ1),N (µ2,Σ2))
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≤ a+
1

2

√
tr(G)− log det(Id + G). (F.3.12)

To bound the logdeterminant term in (F.3.12) from below, we use the follow-
ing result from [139, Th. 1.1]. Let ρ(·) denote the spectral radius, i.e., the
maximum absolute eigenvalue, and let ∥·∥F denote the Frobenius norm. If
ρ(G) < 1, then

exp

{
tr(G)− ∥G∥2F

2(1− ρ(G))

}
≤ det(Id + G). (F.3.13)

For ρ(G) < 1, we apply (F.3.13) to (F.3.12) and get

TV(N (µ1,Σ1),N (µ2,Σ2)) ≤
1

2
√
2

∥G∥F√
1− ρ(G)

+ a. (F.3.14)

In addition, trivially, we have that

TV(N (µ1,Σ1),N (µ2,Σ2)) ≤ 1 (F.3.15)

≤ ∥G∥F
ρ(G)

+ a, (F.3.16)

where in (F.3.16), we use the fact that Frobenius norm is an upper bound to
the spectral radius. Taking the tighter bound among (F.3.14) and (F.3.16),
we conclude that for ρ(G) < 1,

TV(N (µ1,Σ1),N (µ2,Σ2))

≤ min

{
1

2
√
2

1√
1− ρ(G)

,
1

ρ(G)

}
∥G∥F + a (F.3.17)

≤ 2 +
√
6

4
∥G∥F + a. (F.3.18)

Inequality (F.3.18) follows since the maximum of the minimum term in (F.3.17)
is achieved by ρ(G) = 2

√
6−4 ≈ 0.899 and that maximum value is 2+

√
6

4
. Since

the coefficient 2+
√
6

4
> 1 ≥ 1

ρ(G)
for ρ(G) ≥ 1, we conclude that (F.3.18) holds

for any ρ(G).

F.4 Proof of (7.73)

We show a more general result. Fix any constant u < P1+P2. We prove below
that for n large enough,

g(y) ≜ P
[
∥X1 +X2∥2 ≤ nu

∣∣∥X1 +X2 + Z∥2 = y
]

(F.4.19)

≤ exp {−nC} (F.4.20)
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for all y ∈ I, where

I ≜ [n(1 + P1 + P2 − ϵ), n(1 + P1 + P2 + ϵ)] (F.4.21)

ϵ ≜ n−1/3, (F.4.22)

and C is a positive constant depending on u. Taking u = P1 + P2 −
√
P1P2 in

(F.4.19) then proves the desired inequality (7.73).

We proceed to prove (F.4.20). Since the support of ∥X1 +X2∥2 is

S = [n(
√
P1 −

√
P2)

2, n(
√
P1 +

√
P2)

2], (F.4.23)

inequality (F.4.20) is trivially satisfied for u < (
√
P1−

√
P2)

2. To show (F.4.20)
for (

√
P1 −

√
P2)

2 ≤ u < P1 + P2, we show two concentration results. First,
we show that

g(y) = g(n(1 + P1 + P2)) exp{O(nϵ)} (F.4.24)

for all y ∈ I; second, we show that for n large enough,

p ≜ P
[
∥X1 +X2∥2 ≤ nu

∣∣A] (F.4.25)

≤ exp{−nC ′} (F.4.26)

for some C ′ > 0, where the event A is defined as

A ≜
{
∥X1 +X2 + Z∥2 ∈ I

}
. (F.4.27)

Using (F.4.24) and (F.4.26), we show (F.4.20) as follows. By conditioning the
probability in (F.4.25) on each value of ∥X1 +X2 + Z∥2, we express p as

p =

∫
I
g(y)f∥X1+X2+Z∥2|A(y)dy (F.4.28)

= g(n(1 + P1 + P2)) exp{O(nϵ)} (F.4.29)

≤ exp{−nC ′}, (F.4.30)

where (F.4.29) follows from (F.4.24) and

min
y∈I

g(y) ≤
∫
I
g(y)f∥X1+X2+Z∥2|A(y)dy ≤ max

y∈I
g(y). (F.4.31)

Inequality (F.4.30) follows from (F.4.26). Inequalities (F.4.24) and (F.4.30)
imply that since O(nϵ) = o(n), there exists a constant C > 0 such that for n
large enough, (F.4.20) holds for all y ∈ I.
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We proceed to show (F.4.26). By Bayes’ rule, we have

p =
P
[
∥X1 +X2∥2 ≤ nu

]
P
[
A
∣∣ ∥X1 +X2∥2 ≤ nu

]
P [A]

. (F.4.32)

Changing measure from PX1+X2PZ to PŨPZ, where Ũ ∼ N (0, (P1 + P2)In),
and then applying Lemma 7.4.1, we get

p ≤
κ2(P1, P2)P

[∥∥∥Ũ∥∥∥2 ≤ nu

]
· 1

1− κ2(P1, P2)P
[∣∣∣∣∥∥∥Ũ+ Z

∥∥∥2 − n(1 + P1 + P2)

∣∣∣∣ > nϵ

] (F.4.33)

≤ κ2(P1, P2)
exp

{
−n(P1+P2−u)2

4(P1+P2)2

}
1− 2κ2(P1, P2) exp{ −nϵ2

8(1+P1+P2)2
}

(F.4.34)

≤ 2κ2(P1, P2) exp

{
−n(P1 + P2 − u)2

4(P1 + P2)2

}
(F.4.35)

≤ exp{−nC ′} (F.4.36)

for all n large enough, where κ2(P1, P2) is the constant defined in (7.38), and
C ′ is a positive constant. Inequality (F.4.34) follows from the tail bounds on
the chi-squared distribution in Lemma 7.4.2, and (F.4.35) follows since the
denominator on the right-hand side of (F.4.34) is greater than 1

2
for n large

enough. Inequality (F.4.36) holds since u < P1 + P2.

We proceed to prove (F.4.24). Define the events B ≜ {∥X1 +X2∥2 ≤ nu} and
B(λ) ≜ {∥X1 +X2∥2 = λ} for any λ ∈ S. By Bayes’ rule, we can express g(y)
as

g(y) =
P [B] f∥X1+X2+Z∥2|B(y)

f∥X1+X2+Z∥2(y)
. (F.4.37)

By the spherical symmetry of the distribution of X1 +X2, the conditional
distribution of ∥X1 +X2 + Z∥2 given B(λ) does not depend on u when we
fix X1 +X2 to any u such that ∥u∥2 = λ ∈ S. Therefore, the conditional
distribution of ∥X1 +X2 + Z∥2 given B(λ) equals the distribution of

n∑
i=1

∥∥∥∥∥Zi +

√
λ√
n

∥∥∥∥∥
2

, (F.4.38)

which has non-central chi-squared distribution with n degrees of freedom and
non-centrality parameter λ. That is, the probability density function is

f(x;n, λ) =
1

2
exp

{
−(x+ λ)

2

}(x
λ

)n
4
− 1

2
In

2
−1(

√
λx), (F.4.39)
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where Iν(x) denotes the modified Bessel function of the first kind with order
ν. Fix some λ > 0, x1 = nb, and x2 = n(b + δ), where 0 < δ ≤ ϵ and b > 0.
Consider the ratio

f(x1;n, λ)

f(x2;n, λ)
= exp{x2 − x1}

(
x1
x2

)n
4
− 1

2 In
2
−1(

√
λx1)

In
2
−1(

√
λx2)

. (F.4.40)

Paris [152] bounds Iν(x)/Iν(y) as

exp {x− y}
(
x

y

)ν

<
Iν(x)

Iν(y)
<

(
x

y

)ν

(F.4.41)

for any 0 < x < y and ν > −1/2. Using (F.4.41), we bound (F.4.40) as

exp{nδ}
(
1− δ

b+ δ

)n
2
−1

exp
{
−
√
nλ
(√

b+ δ −
√
b
)}

≤ f(x1;n, λ)

f(x2;n, λ)
(F.4.42)

≤ exp{nδ}
(
1− δ

b+ δ

)n
2
−1

. (F.4.43)

Applying the Taylor series expansion at δ = 0 gives

log

(
1− δ

b+ δ

)
= −δ

b
+O(δ2) (F.4.44)

−
√
nλ
(√

b+ δ −
√
b
)
= −

√
nλ

(
δ

2
√
b
+O(δ2)

)
. (F.4.45)

Substituting (F.4.44) and (F.4.45) in (F.4.42) and (F.4.43), we get

f(x1;n, λ)

f(x2;n, λ)
= exp{O(nδ)}. (F.4.46)

We can also verify the validity of (F.4.46) for λ = 0 by using the probability
density function of chi-squared distribution with n degrees of freedom instead
of (F.4.39). Particularizing (F.4.46) to b = 1 + P1 + P2, we get for all λ ∈ S
that

f∥X1+X2+Z∥2|B(λ)(y)

= f∥X1+X2+Z∥2|B(λ)(n(1 + P1 + P2)) exp{O(nϵ)}, (F.4.47)

which together with (F.4.37) implies (F.4.24).
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F.5 Proof of Lemma 7.5.1

We use the induction technique from [140, Th. 4] to prove this lemma, showing
that the total variation distance in (7.149) diminishes as n goes to infinity. We
here prove that the convergence rate is O

(
1√
n

)
. Since the distribution of H

is invariant to rotation, we fix

X1 = (1, 0, 0, . . . , 0). (F.5.48)

Then H1j =
√
nXj1 for 2 ≤ j ≤ K. Define the vectors

H1 ≜ (H1j : 2 ≤ j ≤ K) (F.5.49)

H2 ≜ (Hij : 2 ≤ i < j ≤ K), (F.5.50)

which consist of all the inner product random variables including X1, and not
including X1, respectively. Hence H = (H1,H2). Notice that H1 is a product
distribution since Xj1’s are independent.

Note that we have for 2 ≤ i < j ≤ K

Hij =
√
nXi1Xj1 +

√
n√

n− 1
(1−X2

i1)
1
2 (1−X2

j1)
1
2Vij (F.5.51)

Vij =
√
n− 1⟨Yi,Yj⟩, (F.5.52)

where Yi = (1−X2
i1)

− 1
2 (Xi2, . . . , Xin) ∈ Rn−1 for i = 2, . . . , K. Denote by p(n)K

the distribution of the
(
K
2

)
-dimensional random vector (

√
n⟨Zi,Zj⟩: 1 ≤ i <

j ≤ K), where the Zi, i ∈ [K], are distributed independently and uniformly
on Sn(1).

Since Yi, i ∈ {2, . . . , K}, are distributed independently and uniformly on
Sn−1(1), the joint distribution of V = (Vij : 2 ≤ i < j ≤ K) is p(n−1)

K−1 . By
(F.5.51), the conditional distribution of Hij given H1 = h1 is the same as the
distribution of

h1ih1j√
n

+

√
n√

n− 1

(
1− h21i

n

) 1
2
(
1−

h21j
n

) 1
2

Vij (F.5.53)

for 2 ≤ i < j ≤ K. We define the random vector H∗
2 = (H∗

ij: 2 ≤ i < j ≤ K)

through H1 as follows. The conditional distribution of H∗
ij given H1 = q1 is

the same as the distribution of

h1ih1j√
n

+

√
n√

n− 1

(
1− h21i

n

) 1
2
(
1−

h21j
n

) 1
2

Zij (F.5.54)
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for 2 ≤ i < j ≤ K, where Zij ∼ N (0, 1), and H∗
ij, 2 ≤ i < j ≤ K, are condi-

tionally independent given H1. Now, we are ready to apply the mathematical
induction.

Base case: For K = 2, we have

TV(p
(n)
2 ,N (0, 1)) ≤ 4

n
(F.5.55)

by Lemma 7.4.5 with k = 1.

Inductive step: For K > 2, assume that for any n,

TV
(
p
(n)
K−1,N

(
0, I 1

2
(K−1)(K−2)

))
≤ CK−1√

n
(F.5.56)

for some constant CK−1. Let PH̃1
= N (0, IK−1) and PH̃2

= N
(
0, I(K−1

2 )

)
.

Since the total variation distance is ℓ1 norm, applying the triangle inequality
gives

TV
(
p
(n)
K ,N

(
0, I(K2 )

))
= TV

(
PH1PH2|H1 , PH̃1

PH̃2

)
(F.5.57)

≤ TV
(
PH1PH2|H1 , PH̃1

PH2|H1

)
(F.5.58)

+TV
(
PH̃1

PH2|H1 , PH̃1
PH∗

2|H1

)
(F.5.59)

+TV
(
PH̃1

PH∗
2|H1 , PH̃1

PH̃2

)
. (F.5.60)

Here, (F.5.58) approximates the input measure PH1 with the corresponding
i.i.d. Gaussian measure PH̃1

, (F.5.59) approximates the inner product ran-
dom variables Vij in the definition of the probability transition kernel given in
(F.5.53) with i.i.d. standard Gaussian random variables, and (F.5.60) approx-
imates the mean in (F.5.54) by 0 and the variance by 1. We next bound the
right-hand sides of (F.5.58)–(F.5.60) in that order. We have

TV
(
PH1PH2|H1 , PH̃1

PH2|H1

)
= TV

(
PH1 , PH̃1

)
(F.5.61)

≤ (K − 1)TV (PH12 ,N (0, 1)) (F.5.62)

≤ 4(K − 1)

n
, (F.5.63)

where (F.5.62) follows from [142, Lemma 2.1] since PH1 = (PH12)
K−1 and

PH̃1
= (N (0, 1))K−1 are both product distributions, and (F.5.63) follows from

Lemma 7.4.5. The total variation distance in (F.5.59) is bounded as

TV
(
PH̃1

PH2|H1 , PH̃1
PH∗

2|H1

)
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= E
[
TV

(
PH2|H1=H̃1

, PH∗
2|H1=H̃1

)∣∣∣H̃1

]
(F.5.64)

= TV
(
p
(n−1)
K−1 ,N

(
0, I(K−1

2 )

))
(F.5.65)

≤ CK−1√
n− 1

, (F.5.66)

where (F.5.65) follows from the definitions (F.5.53) and (F.5.54) since the
total variation distance is shift and scale invariant and (F.5.66) follows from
the inductive assumption (F.5.56). The total variation distance in (F.5.60) is
bounded as

TV
(
PH̃1

PH∗
2|H1 , PH̃1

PH̃2

)
= E

[
TV

(
PH∗

2|H1=H̃1
, PH̃2

)∣∣∣H̃1

]
(F.5.67)

≤ E

[ ∑
2≤i<j≤K

TV
(
PH∗

ij |H1=H̃1
,N (0, 1)

)∣∣∣∣∣H̃1

]
(F.5.68)

=

(
K − 1

2

)
E
[
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(
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(
H̃12H̃13√

n
,

n

n− 1

(
1− H̃2

12

n

)
(
1− H̃2

13

n

))
,N (0, 1)

)]
(F.5.69)

≤
(
K − 1

2

){
1

2

E
[∣∣∣H̃12

∣∣∣]2
√
n

+
2 +

√
6

4

∣∣∣∣∣∣ n

n− 1

(
E

[
1− H̃2

12
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])2

− 1
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}

(F.5.70)

=

(
K − 1

2

)(
1

π
√
n
+

2 +
√
6

4n

)
, (F.5.71)

where (F.5.68) follows from [142, Lemma 2.1] since the conditional distribution
of H∗

2 given H1 = h1 is a product distribution and PH̃2
is an i.i.d. standard

Gaussian. Equality (F.5.69) follows since the conditional distribution of H∗
ij

given H1 = h1 is identically distributed for 2 ≤ i < j ≤ K. Inequality (F.5.70)
follows from Lemma 7.4.4 with d = 1 using the i.i.d. distribution of H̃12 and
H̃13. Combining (F.5.63), (F.5.66), (F.5.71), and the inequality in (F.5.58)
completes the proof by induction.

We note that the convergence rate of the total variation distance of interest is
O
(

1√
n

)
for K > 2, while it is faster

(
O
(
1
n

))
for K = 2.
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