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ABSTRACT

This dissertation contains three essays, two which contribute to the study of social
learning (Chapters 1 and 2) and one which contributes to the study of social choice
(Chapter 3).

In Chapter 1, I introduce a fully rational model of social learning on networks with
endogenous action timing. I show that the structure of the network can play an
important role in the aggregation of information. When the social network contains
high-degree vertices, agents can be arbitrarily likely to make good choices. In
contrast, when the social network is linear, there is a bound on how likely agents
are to make good choices which holds regardless of how patient they are. The main
contribution of this chapter is the identification of a novel mechanism through which
strategic behavior can substantially impede the flow of information through a social
network.

In Chapter 2, co-authored with Vadim Martynov and Omer Tamuz, we study the
asymptotic rate at which the probability of taking the correct action converges to 1
in the classical sequential learning model with unbounded signals. We provide a
characterization of the asymptotic law of motion of the public belief, and we use
this characterization to show that convergence occurs more slowly than when agents
directly observe private signals, and that the expected time until the last incorrect
action can be finite or infinite.

In Chapter 3, co-authored with Laurent Bartholdi, Maya Josyula, Omer Tamuz, and
Leeat Yariv, we introduce equitability as a less stringent alternative to symmetry for
modeling egalitarianism in voting rules. We then use techniques from group theory
to show that equitable voting rules can have minimal winning coalitions comprising
a vanishing fraction of the population, but they cannot be smaller than the square
root of the population size.
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INTRODUCTION

Societal outcomes are determined both organically, through the multitude of choices
people make in their daily lives, and more intentionally, through political mecha-
nisms designed to elicit input from the members of a society and coordinate behavior
on the basis of that input. In both cases, outcomes are a function of a large amount
of dispersed, private information. The nature and desirability of these outcomes
typically depend on how, and how well, that information is aggregated.

For example, whether a macroeconomic policy will have its intended effect depends
on information that is spread across many individuals; whether the intended effect
of the policy is a socially good one depends on the preferences of the many in-
dividuals it will impact; and whether the choice of policy is responsive to those
preferences depends on the system used for selecting a policy. How we learn from
each other about individual decision-making and the institutions we use to do col-
lective decision-making are at the heart of the complex processes that shape the
society we live in.

This dissertation contains three essays. Chapters 1 and 2 provide contributions to
the study of social learning, and Chapter 3 provides a contribution to the study
of social choice. Chapter 1 studies a model of social learning on networks with
endogenous action timing. Chapter 2, co-authored with Vadim Martynov and Omer
Tamuz, studies the rate of information aggregation in the classical sequential learning
model when signals are unbounded and learning occurs. Chapter 3, co-authored
with Laurent Bartholdi, Maya Josyula, Omer Tamuz, and Leeat Yariv, introduces
and studies a novel notion of equitability for voting rules over two alternatives.

In Chapter 1, which is based on Hann-Caruthers (2022), I introduce a fully rational
model of social learning on networks with endogenous action timing. Agents receive
private signals about the state of the world, which is either high or low. In the high
state, agents would prefer to make a one-time irreversible investment as soon as
possible, and in the low state, agents would prefer to never make the investment. At
the beginning of each period 𝑡 = 0, 1, . . . , agents decide whether to invest or defer
investment, and at the end of each period they observe the decisions made by their
neighbors in that period.

I show that the structure of the network can play an important role in the aggregation
of information. When the social network contains high-degree vertices, agents can
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be arbitrarily likely to make good choices. In contrast, when the social network
is linear, there is a bound on how likely agents are to make good choices which
holds regardless of how patient they are. The main contribution of this chapter
is the identification of a novel mechanism through which strategic behavior can
substantially impede the flow of information through a social network.

In Chapter 2, we study the asymptotic rate at which the probability of taking
the correct action converges to 1 in the classical sequential learning model with
unbounded signals. We show that this convergence occurs more slowly than when
agents directly observe private signals. However, we also show that the associated
speed of learning can be arbitrarily close to the speed of learning from signals, and
that the expected time until the last incorrect action can be finite or infinite. The main
contribution of this chapter is a characterization of the asymptotic law of motion of
the public belief and the use of this law of motion to analyze asymptotic properties
of information aggregation in the canonical observational learning model.

In Chapter 3, we introduce equitability as a less stringent alternative to symmetry for
modeling egalitarianism in voting rules. A voting rule is equitable if all voters have
the same “role” in the rule, in the sense that voters are indistinguishable in terms of
the way their votes affect the final outcome. Formally, a voting rule is equitable if its
group of symmetries acts transitively on the set of voters. We show that equitable
voting rules can have minimal winning coalitions comprising a vanishing fraction
of the population, but they cannot be smaller than the square root of the population
size. The main contribution of this chapter is to introduce techniques from group
theory and demonstrate their usefulness for the analysis of questions in social choice.
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C h a p t e r 1

THE ROLE OF NETWORK STRUCTURE IN THE DIFFUSION
OF INVESTMENT DECISIONS

1.1 Introduction
Social networks play an important role in shaping the decisions people make. We
ask friends for advice and take cues from the decisions they make, and we also
understand that our friends interact with their friends in the same manner, as do our
friends’ friends, and so on. In recent years, there has been a large and active body
of research devoted to understanding how the structure of the social network affects
large-scale patterns of decision-making (for a recent survey, see, e.g., Golub and
Sadler, 2017). The models used generally assume that the timing of agents’ actions
is determined exogenously, and so the work in this direction applies only insofar as
the assumption of exogenous action timing is plausible. On the other hand, extant
studies of endogenous action timing generally assume that agents all observe each
other or observe some kind of summary statistic of the choices made so far, and
so do not provide insights into the potential effects of network structure (see, e.g.,
Chamley, 2004a).

We study settings with both endogenous timing and social networks. For example,
when deciding whether to see a new movie or read a new book, we often wait to see
whether our friends do, and when deciding whether to make a costly investment,
like putting solar panels on our home, we wait to see whether people who live
near us or who we interact with regularly do so before making a decision for
ourselves. Decisions like these, which concern whether to take an action which
involves making some kind of irreversible investment (of time, money, etc.) but
for which there is relatively little cost to deferring, are not modeled well by the
assumption of exogenous timing and are often made on the basis of observations
of only a subset of the population. For such decisions, the ability to defer in
order to acquire information by observing others’ choices naturally endogenizes
action timing (see, e.g., Chamley, 2004a) and the structure of these observational
interactions is intimately tied to the underlying social network.

In this paper, we demonstrate that the structure of the underlying social network
can play a key role in determining the nature and quality of aggregate outcomes in
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a natural model of observational learning with endogenous action timing, one in
which rational agents face these kinds of irreversible investment decisions. As we
show, when the social network contains high-degree vertices, as when people live in
a city and regularly observe choices made by many others, agents can be very likely
to make good choices. In contrast, we show that when the social network is linear,
as when people live along a highway in a low-population area, there is a bound on
how likely agents are to make good choices, a bound which holds regardless of how
patient the agents are.

This inability to efficiently aggregate information is driven by that fact that in linear
networks, there are few channels for the flow of information, and rational behavior
renders these channels fragile. Agents serve not only as information sources for
other agents but also as information conduits, and the inefficiency is generated by
their failure to internalize the impact their choices have on the communication of
information through the network.

The importance of rational behavior in making the information channels fragile is
underscored by the fact that this is an equilibrium phenomenon. As we show, it is
possible on the line, out of equilibrium, for all agents simultaneously to be arbitrarily
likely to make the right decision in the long run.

Related literature
A sizeable literature has studied learning on social networks when there is no
endogeneity in action timing. When each agent acts once at an exogenously specified
time, Bikhchandani et al. (1992) show that when agents see the actions of all of their
predecessors, society acts suboptimally with positive probability, and similar results
have been shown when the observational network is random (see, e.g., Acemoglu
et al., 2011, Arieli and Mueller-Frank, 2019, Lobel and Sadler, 2015). Bala and
Goyal (1998) show that when myopic agents that exhibit a certain kind of bounded
rationality act repeatedly, bounded (out-)degree (together with an appropriate spread
of priors) leads to learning, and Mossel et al. (2015) show that when rational
agents act repeatedly, a kind of structural “egalitarianism” is sufficient for society
to eventually make good decisions. Note that the line network in egalitarian, but
does not allow aggregation of information in my model. Molavi et al. (2018) study
long-run outcomes in models of social learning on networks across a broad class of
non-Bayesian updating rules.

There has also been work on learning in settings with endogenous action timing
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in which the agents all observe each others’ actions. The closest work to ours in
this setting is Chamley (2004a), who studies a very similar base game. The author
provides a characterization of symmetric equilibria in this setting and provides a nice
comparison to the results in Bikhchandani et al. (1992). Several papers also explore
sudden shared behavior that occurs in models of heterogeneous signal precision just
after the most informed agent acts (see, e.g., Grenadier, 1999, Zhang, 1997).

1.2 Model
We consider a set of agents, 𝑁 , which may be finite or countably infinite. There
is a state 𝜔, unknown to the agents, which is equally likely to be high (𝐻) or low
(𝐿). Each agent 𝑖 receives a private signal 𝑠𝑖 about the state. We assume that the
agents’ signals are i.i.d. conditional on the state, and that they induce continuous and
bounded beliefs; that is, we assume the induced posterior belief 𝑝𝑖 = P(𝜔 = 𝐻 | 𝑠𝑖)
has a density supported on [𝑎, 𝑏] for some 0 < 𝑎 < 𝑏 < 1.

There are infinitely many discrete periods 𝑡 = 0, 1, . . . , and agents can make an
irreversible investment in at most one period. Equivalently, agent 𝑖 has to choose
a time 𝜏𝑖 ∈ N ∪ {∞} to make an investment, with 𝜏𝑖 = ∞ corresponding to no
investment. When the state is high, agents would prefer to irreversibly invest, and
when the state is low, agents would prefer to never invest. Moreover, when the
state is high, agents would prefer to make the investment sooner rather than later.
Concretely, there is a common discount factor 𝛿 ∈ (0, 1), and agent 𝑖’s utility is 𝛿𝜏𝑖

if the state is high, −𝛿𝜏𝑖 if the state is low, and 0 if 𝜏𝑖 = ∞, i.e., if she never invests.

There is a social network 𝐺 describing the relationships between the agents. We
assume that𝐺 is bi-directional (i.e., 𝑖 is 𝑗’s neighbor if and only if 𝑗 is 𝑖’s neighbor),
finite degree (i.e., each agent has only finitely many neighbors), and connected (i.e.,
for any agents 𝑖 and 𝑗 , either 𝑗 is 𝑖’s neighbor, or 𝑗 is a neighbor of one of 𝑖’s
neighbors, or 𝑗 is a neighbor of a neighbor of one of 𝑖’s neighbors, etc.). In our
main application, 𝐺 will be the bi-infinite line, which can be thought of as the
“one-dimensional” social network where there is one agent at each integer location,
and each agent’s neighbors are the two agents who are at a distance one from her.
Another prototypical example to have in mind is the complete network, which is the
social network in which every agent is neighbors with every other agent. Each agent
observes the investment decisions of her neighbors at each time period.

A strategy for an agent is an investment decision (invest or do not invest) for each
period 𝑡 based on her private signal and the history ℎ𝑡 of investment decisions made
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by her neighbors, subject to the constraint that she can invest at most once. We
assume that agents are expected utility maximizers. We will study Bayes-Nash
Equilibria of this game.

Diffusion
It takes time for information to diffuse through the social network. In order for many
agents to invest when the state is high and few to invest when the state is low on a
general social network, it must be the case that many agents wait a long time before
investing. Accordingly, we focus on what decisions agents have made after a long
time. We will say that agent 𝑖 makes the right investment decision in the long run
if 𝜏𝑖 < ∞ and 𝜔 = 𝐻, or if 𝜏𝑖 = ∞ and 𝜔 = 𝐿. That is, agent 𝑖 makes the right
investment decision in the long run if she eventually invests in the high state and
never invests in the low state.

On a finite social network, there is a trivial bound on how likely any agent is to make
the right investment decision in the long run, simply because the agents’ decisions
are made on the basis of finitely many private signals. However, for social networks
that do not have some kind of structural impediment to the flow of information, it
should be possible, when the population is large and agents are patient, for agents to
be arbitrarily likely to make the right investment decision in the long run. We would
like to understand when such structural impediments do exist. Accordingly, we will
say that a family of finite networks (𝐺𝑛) obstructs diffusion if there is a 𝑝 < 1 such
that every agent’s probability of making the right investment decision in the long
run in every equilibrium on every 𝐺𝑛 for every value of the discount factor 𝛿 is at
most 𝑝.

On an infinite social network, it is in principle possible for an agent to be arbitrarily
likely to make the right investment decision in the long run, and so it is reasonable
to apply this criterion directly to a single network in this case: we will say that
an infinite social network 𝐺 obstructs diffusion if there is a 𝑝 < 1 such that every
agent’s probability of making the right investment decision in the long run in every
equilibrium on 𝐺 for every value of the discount factor 𝛿 is at most 𝑝.

1.3 Results
Say that a family of finite networks is of unbounded degree (𝐺𝑛) if for every degree
𝑑, there is at least one agent in at least one network𝐺𝑛 who has at least 𝑑 neighbors.
Our first result is that families of unbounded degree do not obstruct diffusion.
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Theorem 1. If (𝐺𝑛) is a family of finite networks of unbounded degree, then (𝐺𝑛)
does not obstruct diffusion.

Chamley (2004a) proves this for the family of complete networks (𝐾𝑛). Following
the conventions used in that paper, denote by �̄� the highest possible belief induced by
a private signal, and denote by 𝜇∗∗ the belief at which an agent would be indifferent
between investing in period 0 and deferring, assuming that the state will be perfectly
revealed to her between periods 0 and 1.

Chamley shows that for values of 𝛿 such that 𝜇∗∗ < �̄�, the first period symmetric
equilibrium strategy is unique for large enough 𝑛 and information is asymptotically
perfect at the end of period 0. It follows that when 𝜇∗∗ is less than but very close to
�̄�, each agent is very likely to defer in period 0. Nevertheless, observing the number
of agents that do invest yields a very informative signal about the state. Then, with
high probability, agents invest in period 1 if and only if the state is high.

We extend this result to general families of finite networks of unbounded degree
(𝐺𝑛). In the same spirit, consider values of 𝛿 so that 𝜇∗∗ is less than but very close
to �̄�. In equilibrium, agents will always invest in period 0 if their belief is above 𝜇∗∗

and will never invest in period 0 if their belief is below 1
2 , so each agent’s period 0

decision is informative.

Now, let (𝐺𝑛 𝑗 ) be a sequence of networks and let (𝑖 𝑗 ) be a sequence of agents of
growing degree, so that the number of neighbors agent 𝑖 𝑗 has in 𝐺𝑛 𝑗 approaches
infinity as 𝑗 approaches infinity. Taken together, the period 0 decisions of agent
𝑖 𝑗 ’s neighbors become arbitrarily informative as 𝑗 grows, so 𝑖 𝑗 ’s information is
asymptotically perfect at the end of period 0. Moreover, 𝑖 𝑗 ’s probability of investing
in period 0 becomes vanishingly small as 𝑗 tends to infinity, and as we vary 𝛿 to
make 𝜇∗∗ approach �̄�.

Thus, for any 𝜖 > 0, it is possible to find an agent 𝑖 𝑗 , a 𝛿 < 1 and an equilibrium
on 𝐺𝑛 𝑗 so that with probability at least 1 − 𝜖 , 𝑖 𝑗 defers in period 0, then invests in
period 1 if the state is high and never invests if the state is low. This implies, in
particular, that there is no universal bound on the probability of agents making the
right investment decision (eventually invest in the high state, never invest in the low
state) in the long run in equilibrium.

Our main result is that, in contrast to families of unbounded degree, such a universal
bound does exist for equilibria on the line. Recall that the line is the social network
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where the agents are identified with the set of integers Z, and two agents 𝑖 and 𝑗 are
neighbors if and only if they are one apart, |𝑖 − 𝑗 | = 1.

Theorem 2. The line obstructs diffusion.

At the heart of Theorem 2 is the fact that agents serve not only as sources of
information for other agents, but also as media for the flow of information. They
do not take into account the impact of their decisions on the information channels
they are a part of, and because there are very few information channels, they create
blockages which cannot be circumvented. In many classical learning models, the
problem is that only a small amount of information enters the system through the
agents’ actions. In contrast, in this model, a hypothetical outside observer, who
could see the decisions made by all of the agents, would learn the state by observing
just the actions taken in period 0. As we explore in the next section, the problem is
how well this information is communicated across the network.

1.4 Equilibria on the line
To give a proper account of forces underpinning Theorem 2, it is important to have
a sense of the structure of equilibria on the line. Concisely, from the perspective
of an outside observer who sees only the decisions the agents make, equilibrium
outcomes look very much like outcomes in standard infection or diffusion models:
some agents invest immediately (are initially infected), then the decision to invest (the
infection) “spreads” some distance in either direction from the immediate investors
until reaching agents who do not invest (until transmission fails).

Note that these dynamics are not assumed; they necessarily arise endogenously
in equilibrium. To see why outcomes take this form, observe that agents face an
optimal stopping problem in which they prefer to invest sooner rather than later in
the high state and to never invest in the low state, and so will be more inclined to
invest in any period the higher their belief is, all else equal. Consequently, agents
use threshold rules in equilibrium: at each history where she is considering whether
to invest, agent 𝑖 has a threshold belief such that she invests at that history if and
only if her belief is above that threshold. So in each period, agents who have not
yet invested do so if they are optimistic enough about the prospects of investing and
defer in order to gather more information if they are not so optimistic.

Intuitively, one would expect that an agent who has decided to postpone would
not, after a period of seeing no investment activity from her neighbors who also
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postponed, suddenly determine that it is worth investing–her neighbors’ continued
lack of investment should only make her more pessimistic about the prospects of
investing. On the line, this intuition is correct:1 in equilibrium, agents do not invest
in any period that immediately follows a period of inactivity from their neighbors.
More concretely, if none of an agent’s neighbors invests in period 𝑡, then she does
not invest in period 𝑡 + 1.2 This entails the infection-style outcomes described
above: some agents who receive encouraging private signals, invest in period 0, the
neighbors of the period 0 investors who did not invest in period 0 but who received
sufficiently encouraging private signals, then adopt in period 1, and so on.

Clogging the information channels
With this picture in mind, consider the choice facing agent 𝑖 in period 𝑡, assuming
she did not invest until then. Suppose neither of her neighbors invested in periods
0, . . . , 𝑡 − 2 and exactly one of her neighbors, say agent 𝑖 − 1, invested in period
𝑡 − 1. From agent 𝑖 − 1’s investment choice, agent 𝑖 infers that agent 𝑖 − 𝑡 invested
in period 0, agent 𝑖 − (𝑡 − 1) invested in period 1, and so on.

If agent 𝑖 decides to invest, she effectively passes on this information to agent 𝑖 + 1,
along with some information about her own private signal. When this happens, the
information 𝑖 + 1 receives from agent 𝑖 bears some resemblance to the information
an agent receives in the classical sequential learning model, with agents 𝑖− 𝑡 through
𝑖 playing the role of agent 𝑖 + 1’s predecessors.

However, if she chooses not to invest, she passes very little of this information to
agent 𝑖 + 1, and the similarity to the classical sequential learning model becomes
weaker. In this case, agent 𝑖 + 1 learns relatively little from observing that agent 𝑖
chooses not to invest in period 𝑡.

Now, it is possible that in such a scenario, agent 𝑖 chooses not to invest in period
𝑡 because she is genuinely pessimistic about the prospects of investing. In an
analogous observational learning model where agents act once at an exogenously
determined time, this would in fact be the only reason an agent would not invest.

However, agent 𝑖’s decision about whether to invest at this point is driven not only by
her belief, but also by her expectations about the information that will be available

1In fact, this intuition is correct whenever the social network is a tree. We conjecture that it is
also correct on a general social network, but the methods we use do not immediately apply when the
network is not a tree.

2This does not mean that an agent necessarily invests in period 𝑡 + 1 if some of her neighbors
invest in period 𝑡.
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to her in the future. In particular, it is possible that agent 𝑖 is reasonably confident
that the state is high, but that she nevertheless defers because she expects that by
observing agent 𝑖+1’s future decisions, she will get strong enough information soon
enough and will then be able to make a more informed decision.

This means that the stronger an information source agent 𝑖 + 1 is for agent 𝑖, the
stronger the incentive is for agent 𝑖 to defer investment, and the weaker her proclivity
to take actions that are informative for agent 𝑖 + 1. Put another way, the more
conducive agent 𝑖 + 1’s behavior is to the flow of information, the stronger the
inducement is to agent 𝑖 to obstruct this flow. Hence, there is a limit on how well
the agents perform in the long run.

Physical impediments to the flow of information
Even without the equilibrium pressure to clog the information channels, one might
suspect that Theorem 2 is a consequence of the fact that communication channels
on the line are already very fragile–as soon as an agent invests or decides she will
never invest, she cuts off the flow of information between the agents on either side of
her. However, as the following result illustrates, Theorem 2 is not the consequence
of some kind of “physical” obstruction. It is the strategic aspects of the model
that prevent agents on the line from getting and making use of a large amount of
information.

Proposition 1. For any 𝜖 > 0, there is a symmetric strategy profile on the line such
that every agent’s probability of making the right investment decision in the long
run is at least 1 − 𝜖 .

In fact, something similar holds for any large or infinite network. The key observation
underlying this result is that, because agents can choose not only whether to invest
but also a time at which to invest, there is no bound on how much information can be
communicated between neighbors. For example, if agent 𝑖 wanted to communicate
a very good approximation of her belief to agent 𝑖 + 1, the agents could in principle
agree on a protocol for when agent 𝑖 should invest depending on her signal.

If one imagines such a protocol for aggregating the signals of agents 1 through 𝑘 ,
all agents 𝑗 > 𝑘 could make the same investment decision on the basis of this same
information, and if 𝑘 is large, they would all make the right decision in the long
run with very high probability. The symmetric strategy profile in Proposition 1
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essentially combines this protocol with a randomization for each agent about what
role they play they in the protocol.

One implication of Proposition 1 is that, for patient agents, it is possible to ap-
proximate the first-best welfare outcome. Note that under any strategy profile, each
agent’s expected payoff is at most 1

2 , since each agent can get a payoff of at most 0
in the low state and 1 in the high state. Under the strategy profile in Proposition 1,
the expected payoff to every agent nearly achieves this upper bound.

Corollary 1. For any 𝜖 > 0, there is a 𝛿 < 1 and a symmetric strategy profile on
the line under which every agent’s expected payoff is at least 1

2 − 𝜖 .

1.5 Conclusion
In this paper, we have shown that the network structure can have a profound in-
fluence on aggregate outcomes when timing is endogenous. In particular, in some
networks the agents’ strategic behavior leads them to obstruct the flow of informa-
tion, which results in limited information aggregation, while in others there is no
such obstruction.

The model studied in this paper is rich, and we expect that we have only scratched
the surface. Studying the influence of particular features of the network on strategic
behavior has the potential to yield insights about the relationship between rational
behavior and diffusion processes that are not within the scope of other models of
social learning on networks.

For example, we conjecture that the three-regular tree, the infinite tree network in
which every agent has three neighbors, does not obstruct diffusion. Such a network
is far from having unbounded degree, but still has the potential to give rise to good
outcomes in the long run because it has many information channels.

In a different direction, it would be especially interesting to find sufficient structural
conditions for when a family of finite networks obstructs diffusion. For example,
our proof for obstruction on the infinite line applies to finite lines, but not to finite
cycles, for which additional ideas will be needed.

1.6 Setting up the optimal stopping rule problem
For analysis, it will be useful to take the space of private signals for agent 𝑖 to be
[0, 1] and to take the signal 𝑠𝑖 to be the induced posterior, i.e., 𝑠𝑖 = P(𝜔 = 𝐻 | 𝑠𝑖).
This is without loss of generality, because this belief is a sufficient statistic for 𝜔
given the signal. It will be likewise useful to think of 𝜏𝑖, the strategy of agent 𝑖, as
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a stopping rule with respect to her private signal 𝑠𝑖 and her neighbors’ investment
times. That is, we will think of agent 𝑖’s strategy as a function 𝜏𝑖 taking values in
N∪ {∞} such that 1(𝜏𝑖 = 𝑡) can depend only on whether the investment times of 𝑖’s
neighbors are less than 𝑡 and the particular values of those investment times for the
neighbors whose investment times are less than 𝑡.

Observe that, given the strategies of the other agents, agent 𝑖’s problem is to find an
optimal stopping rule 𝜏𝑖. If agent 𝑖 adopts at time 𝑡, it means that she observed how
her neighbors behaved in periods 0 through 𝑡 − 1 in response to her not investing
in those periods; in particular, it means that any actions her neighbors take after
she invests do not factor into any of her decisions. Hence, agent 𝑖’s problem is to
find an optimal stopping rule with respect to the stream of signals produced by her
neighbors’ actions contingent on her not investing.

Given a strategy profile 𝜏 = (𝜏𝑖), denote by ℎ𝑖𝑡 the history of actions taken in periods
0 through 𝑡 − 1 by 𝑖’s neighbors. Denote by ℎ̃𝑖𝑡 the history of actions taken by 𝑖’s
neighbors under the strategy profile (𝜎𝑖, 𝜏−𝑖) where 𝜎𝑖 is the strategy under which 𝑖
never invests. Since 𝑖 effectively exits the game once she invests, given her private
signal 𝑠𝑖, 𝑖’s problem is to find an optimal stopping rule with respect to the signal
stream ( ℎ̃𝑖1, ℎ̃

𝑖
2, . . .).

1.7 Optimal stopping rules are always threshold strategies
Given any history ℎ𝑖𝑡 and any signal 𝑠𝑖, either agent 𝑖 has already invested by time
𝑡, or agent 𝑖 is determining whether she should invest in period 𝑡 or defer. In the
latter case, she is deciding whether stopping immediately (investing in period 𝑡) is
an optimal stopping rule, given the information she has so far. For any stopping
time 𝜏, define

𝑉 (𝜏, 𝑡; 𝜔, ℎ𝑖𝑡) := E(𝛿𝑡 − 𝛿𝜏 |𝜔, ℎ𝑖𝑡).

Then we have:

Lemma 1. It is optimal for agent 𝑖 to invest at the history ℎ𝑖𝑡 given her signal 𝑠𝑖 if
and only if

P(𝜔 = 𝐻 | ℎ𝑖𝑡 , 𝑠𝑖) · 𝑉 (𝜏, 𝑡; 𝐻, ℎ𝑖𝑡) ≥ P(𝜔 = 𝐿 | ℎ𝑖𝑡 , 𝑠𝑖) · 𝑉 (𝜏, 𝑡; 𝐿, ℎ𝑖𝑡)

for all stopping times 𝜏 with respect to ( ℎ̃𝑖
𝑡+1, ℎ̃

𝑖
𝑡+2, . . . ) given the history ℎ𝑖𝑡 .

We will say that agent 𝑖 is using a threshold strategy if for any history ℎ𝑖𝑡 , there is
some 𝑠 such that given ℎ𝑖𝑡 , 𝜏𝑖 ≤ 𝑡 if and only if 𝑠𝑖 ≥ 𝑠.
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Proposition 2. Best responses are always almost surely threshold strategies on path.

Proof. If not, there would be some history where a threshold strategy is not used.
But by the lemma, this would mean that the behavior is suboptimal with nonzero
probability, contradiction. □

1.8 Families of unbounded degree

Proof of Theorem 1. Let �̄� be the highest possible belief induced by a private signal,
and for any discount factor 𝛿, let 𝜇∗∗(𝛿) be defined by

1 · 𝜇∗∗(𝛿) + −1 · (1 − 𝜇∗∗(𝛿)) = 𝛿(1 · 𝜇∗∗(𝛿) + 0 · (1 − 𝜇∗∗(𝛿))).

Note that 𝜇∗∗(𝛿) → 1
2 as 𝛿 → 0 and 𝜇∗∗(𝛿) → 1 as 𝛿 → 1.

Note that if 𝑠𝑖 ≥ 𝜇∗∗(𝛿), investing immediately is strictly dominant for agent 𝑖, and
if 𝑠𝑖 < 1

2 , deferring in period 0 is strictly dominant.

So when the discount factor is 𝛿, in any equilibrium on any network, every agent’s
threshold for investing in period 0 must be between 1

2 and 𝜇∗∗(𝛿). There is a lower
bound 𝑒 > 1

2 on the probability of correctly identifying the state on the basis of
1(𝑠𝑖 ≥ 𝑠) that holds for all 1

2 ≤ 𝑠 ≤ 𝜇∗∗(𝛿). It follows that 𝑒 is also a lower bound
on the probability of correctly identifying the state on the basis of any single agent’s
period 0 decision. Hence, because the agents’ period 0 decisions are independent
conditional on the state, the probability of correctly identifying the state on the basis
of the period 0 decisions of any 𝑘 agents approaches 1 as 𝑘 → ∞.

Denote by 𝛿 the solution to 𝜇∗∗(𝛿) = �̄�. Consider the strategy of deferring in period
0, investing in period 1 if her belief is above 1

2 , and never investing otherwise.
It follows that the expected payoff from using this strategy approaches 1

2𝛿 as the
number of neighbors an agent has grows and 𝛿 approaches 𝛿.

It follows that for any 𝜖 > 0 and any agent 𝑖 with a large enough number of neighbors
in some 𝐺𝑛, there is a 𝛿 so that 𝑖’s expected payoff in any equilibrium is at least
1
2𝛿 − 𝜖 . This is only possible if the probability that the agent invests in period 1 in
the high state approaches 1 and the probability that the agent eventually invests in
the low state approaches 0. □

1.9 No spontaneous investment on trees
We will say that a strategy 𝜎𝑖 for agent 𝑖 satisfies no spontaneous investment if
for every 𝑡 ≥ 1 and every history ℎ𝑖𝑡 in which none of her neighbors invests in
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period 𝑡 −1, agent 𝑖 does not invest in period 𝑡, and we will say that a strategy profile
satisfies no spontaneous investment if every agent’s strategy satisfies no spontaneous
investment.

Proposition 3. If 𝐺 is a tree, then every equilibrium satisfies no spontaneous
investment.

A simple but useful observation is that agents never invest when they believe that
the state is more likely to be low than high.

Lemma 2. In any equilibrium, if P(𝜔 = 𝐻 | ℎ𝑖𝑡 , 𝑠𝑖) < P(𝜔 = 𝐿 | ℎ𝑖𝑡 , 𝑠𝑖), then agent 𝑖
does not invest in period 𝑡.

Another useful fact is that if 𝐺 is a tree, then seeing a neighbor invest is always
evidence that the state is high.

Lemma 3. Suppose 𝐺 is a tree and we have an equilibrium. For any 𝑖 and 𝑗 , let 𝜏𝑖
𝑗

be the investment time for agent 𝑗 under the strategy profile where all agents except
𝑖 keep the same strategy and agent 𝑖 uses the never invest strategy. If 𝑖 and 𝑗 are
neighbors, then

P(𝜏𝑖𝑗 = 𝑡 |𝜔 = 𝐻) ≥ P(𝜏𝑖𝑗 = 𝑡 |𝜔 = 𝐿).

An important corollary is that when 𝐺 is a tree, seeing more neighbors invest is
always stronger evidence that the state is high.

Lemma 4. Suppose 𝐺 is a tree and we have an equilibrium. Let 𝑠𝑖 be a private
signal and ℎ𝑖

𝑡+1 and ℎ𝑖
𝑡+1

′ histories such that 𝑖 does not invest before 𝑡 + 1 under
either history, such that ℎ𝑖𝑡 = ℎ𝑖𝑡

′, and such that the set of 𝑖’s neighbors who invest
in period 𝑡 in ℎ𝑖

𝑡+1 is a subset of the set of neighbors who invest in period 𝑡 in ℎ𝑖
𝑡+1

′.
Then

P(𝜔 = 𝐻 | ℎ𝑖𝑡+1
′
, 𝑠𝑖) ≥ P(𝜔 = 𝐻 | ℎ𝑖𝑡+1, 𝑠𝑖).
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Proof. Let 𝑆 be the set of 𝑖’s neighbors who invest at 𝑡 in ℎ𝑖
𝑡+1

′ but not ℎ𝑖
𝑡+1. Then

P(𝜔 = 𝐻 | ℎ𝑖
𝑡+1

′
, 𝑠𝑖)/P(𝜔 = 𝐿 | ℎ𝑖

𝑡+1
′
, 𝑠𝑖)

P(𝜔 = 𝐻 | ℎ𝑖
𝑡+1, 𝑠𝑖)/P(𝜔 = 𝐿 | ℎ𝑖

𝑡+1, 𝑠𝑖)

=
∏
𝑗∈𝑆

P(𝜏𝑖
𝑗
= 𝑡 |𝜔 = 𝐻)/P(𝜏𝑖

𝑗
= 𝑡 |𝜔 = 𝐿)

P(𝜏𝑖
𝑗
> 𝑡 |𝜔 = 𝐻)/P(𝜏𝑖

𝑗
> 𝑡 |𝜔 = 𝐿)

=
∏
𝑗∈𝑆

P(𝜏𝑖
𝑗
= 𝑡 |𝜔 = 𝐻)

P(𝜏𝑖
𝑗
= 𝑡 |𝜔 = 𝐿)

·
P(𝜏𝑖

𝑗
> 𝑡 |𝜔 = 𝐿)

P(𝜏𝑖
𝑗
> 𝑡 |𝜔 = 𝐻)

≥ 1.

□

Proof of Proposition 3. Suppose not. Then there is some history ℎ𝑖
𝑡+1 where none

of agent 𝑖’s neighbors invests in period 𝑡 but 𝑖 invests in period 𝑡 + 1.

First, note that if given ℎ𝑖𝑡 , agent 𝑖 adopts in period 𝑡 + 1 regardless of the actions her
neighbors take in period 𝑡, then by Lemma 2 she must find the high state at least as
likely as the low state in all of these cases, and so she must find the high state at least as
likely in the low state at the history ℎ𝑖𝑡 . That is, P(𝜔 = 𝐻 | ℎ𝑖𝑡 , 𝑠𝑖) ≥ P(𝜔 = 𝐿 | ℎ𝑖𝑡 , 𝑠𝑖).
But then her expected utility given ℎ𝑖𝑡 is

𝛿𝑡+1(P(𝜔 = 𝐻 | ℎ𝑖𝑡 , 𝑠𝑖) − P(𝜔 = 𝐿 | ℎ𝑖𝑡 , 𝑠𝑖)).

On the other hand, if she invests at ℎ𝑖𝑡 , her expected utility given ℎ𝑖𝑡 is

𝛿𝑡 (P(𝜔 = 𝐻 | ℎ𝑖𝑡 , 𝑠𝑖) − P(𝜔 = 𝐿 | ℎ𝑖𝑡 , 𝑠𝑖)),

which is greater.

Thus, it must be that there is some subset 𝑆 of her neighbors such that, given ℎ𝑖𝑡 , if
all (and only) agents in 𝑆 invest in period 𝑡, then 𝑖 does not invest in period 𝑡 + 1.
Denote by ℎ𝑖

𝑡+1
′ this history. By Lemma 1, there is some 𝜏 such that

P(𝜔 = 𝐻 | ℎ𝑖𝑡+1
′
, 𝑠𝑖) · 𝑉 (𝜏, 𝑡; 𝐻, ℎ𝑖𝑡+1

′) < P(𝜔 = 𝐿 | ℎ𝑖𝑡+1
′
, 𝑠𝑖) · 𝑉 (𝜏, 𝑡; 𝐿, ℎ𝑖𝑡+1

′).

Note that 𝜏 depends only on the investment decisions of the neighbors of 𝑖who are not
in 𝑆 and who do not invest before 𝑡 under ℎ𝑖𝑡 . Thus, 𝜏 is also a well-defined stopping
time starting from ℎ𝑖

𝑡+1. Moreover, because 𝐺 is a tree, the investment decisions
of these agents are independent of the history of investment decisions of 𝑖’s other
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neighbors given that 𝑖 has not invested, so 𝑉 (𝜏, 𝑡; 𝐻, ℎ𝑖
𝑡+1

′) = 𝑉 (𝜏, 𝑡; 𝐻, ℎ𝑖
𝑡+1). By

Lemma 4, P(𝜔 = 𝐻 | ℎ𝑖𝑡 , 𝑠𝑖) ≤ P(𝜔 = 𝐻 | ℎ𝑖
𝑡+1

′
, 𝑠𝑖). Hence,

P(𝜔 = 𝐻 | ℎ𝑖𝑡+1, 𝑠𝑖) · 𝑉 (𝜏, 𝑡; 𝐻, ℎ
𝑖
𝑡+1) < P(𝜔 = 𝐿 | ℎ𝑖𝑡+1, 𝑠𝑖) · 𝑉 (𝜏, 𝑡; 𝐿, ℎ

𝑖
𝑡+1),

so by Lemma 1, investing at ℎ𝑖
𝑡+1 is strictly suboptimal, contradiction. □

1.10 Making the right investment decision at infinity as a spectator
Define agent 𝑖’s probability of making the right investment decision at infinity as a
spectator 𝑝∞

𝑖
to be the probability that the agent would make the right investment

decision given 𝑠𝑖 and 𝜏𝑖
𝑗

for 𝑗 ∈ 𝑁𝐺 (𝑖). It follows easily from the definition that 𝑖’s
probability of making the right investment decision in the long run is bounded above
by her probability of making the right investment decision at infinity as a spectator,
since at infinity she can mimic her strategy (that is, invest at infinity if 𝜏𝑖 < ∞ and
do not invest at infinity if 𝜏𝑖 = ∞).

Correspondingly, define agent 𝑖’s spectator belief at infinity

𝜋∞𝑖 = P(𝜔 = 𝐻 | 𝑠𝑖, (𝜏𝑖𝑗 ) 𝑗∈𝑁𝐺 (𝑖)).

In order for agent 𝑖 to be very likely to make the right investment decision, it must
be that information she has available is very strong. In particular, it must be that 𝜋∞

𝑖

is almost always very close to 1 in the high state. This yields a sufficient condition
for a network to obstruct diffusion:

Proposition 4. If there exist 𝑝 > 0 and 𝑥 < 1 such that

P(𝜋∞𝑖 ≤ 𝑥 |𝜔 = 𝐻) ≥ 𝑝

for every agent 𝑖 under every equilibrium on 𝐺, then 𝐺 obstructs diffusion.

Proof. Without loss of generality, we can assume 𝑥 > 1
2 . First, note that

P
(

1
2 < 𝜋

∞
𝑖

≤ 𝑥 |𝜔 = 𝐿

)
P
(

1
2 < 𝜋

∞
𝑖

≤ 𝑥 |𝜔 = 𝐻

) =

P
(
𝜔 = 𝐿 | 1

2 < 𝜋
∞
𝑖

≤ 𝑥
)

P
(
𝜔 = 𝐻 | 1

2 < 𝜋
∞
𝑖

≤ 𝑥
) > 1 − 𝑥

𝑥
·
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Hence

1 − 𝑝∞𝑖 = P(𝜔 = 𝐿) · P
(
𝜋∞𝑖 >

1
2
|𝜔 = 𝐿

)
+ 1

2
P

(
𝜋∞𝑖 =

1
2

)
+ P(𝜔 = 𝐻) · P

(
𝜋∞𝑖 <

1
2
|𝜔 = 𝐻

)
≥ 1

2
· P

(
1
2
< 𝜋∞𝑖 ≤ 𝑥 |𝜔 = 𝐿

)
+ 1

2
P

(
𝜋∞𝑖 =

1
2

)
+ 1

2
· P

(
𝜋∞𝑖 <

1
2
|𝜔 = 𝐻

)
≥ 1

2
· 1 − 𝑥

𝑥
· P

(
1
2
< 𝜋∞𝑖 ≤ 𝑥 |𝜔 = 𝐻

)
+ 1

2
P

(
𝜋∞𝑖 =

1
2

)
+ 1

2
· P

(
𝜋∞𝑖 <

1
2
|𝜔 = 𝐻

)
≥ 1

2
· 1 − 𝑥

𝑥
· P(𝜋∞𝑖 ≤ 𝑥 |𝜔 = 𝐻)

≥ 1
2
· 1 − 𝑥

𝑥
· 𝑝,

so the probability that agent 𝑖 makes the right investment decision in the long run is
at most 1 − 1

2 · 1−𝑥
𝑥

· 𝑝. □

1.11 Dynamics on the line
As a reminder, the agents’ private signals induce bounded beliefs. In particular,
there is some 𝛼 > 1 such that

1
𝛼

≤ 𝑠𝑖

1 − 𝑠𝑖
≤ 𝛼

almost surely.

We will need the following fact.

Lemma 5. Let 𝐴, 𝐵 ⊆ [0, 1], with P(𝑠𝑖 ∈ 𝐴 ∩ 𝐵 |𝜔 = 𝐻) > 0. If P(𝑠𝑖 ∈ 𝐴 | 𝑠𝑖 ∈
𝐵, 𝜔 = 𝐻) ≥ 1

2 , then

P(𝑠𝑖 ∈ 𝐴 | 𝑠𝑖 ∈ 𝐵, 𝜔 = 𝐿) ≥ P(𝑠𝑖 ∈ 𝐴 | 𝑠𝑖 ∈ 𝐵, 𝜔 = 𝐻)2𝛼2
.

In particular, we will need the following corollary.

Lemma 6. Let 𝑆 ⊆ 𝑁 be a finite set of agents, and let 𝐴𝑖, 𝐵𝑖 ⊆ [0, 1] for each 𝑖 ∈ 𝑆.
Let 𝐴 be the event that 𝑠𝑖 ∈ 𝐴𝑖 for all 𝑖 ∈ 𝑆, and let 𝐵 be the event that 𝑠𝑖 ∈ 𝐵𝑖 for
all 𝑖 ∈ 𝑆. Suppose that P(𝐴 ∩ 𝐵 |𝜔 = 𝐻) > 0. If P(𝐴 | 𝐵, 𝜔 = 𝐻) ≥ 1

2 , then

P(𝐴 | 𝐵, 𝜔 = 𝐿) ≥
(
1
2

)2𝛼2

.

Now, let 𝐶𝑖,𝑡 be the event that agents 𝑖 + 1, . . . , 𝑖 + 𝑡 do not invest in period 0 and
agent 𝑖 + 𝑡 + 1 does.
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Lemma 7. If P(𝜏𝑖
𝑖+1 = 𝑡 |𝐶𝑖,𝑡 , 𝜔 = 𝐻) ≥ 1

2 , then P(𝜏𝑖
𝑖+1 = 𝑡 |𝐶𝑖,𝑡 , 𝜔 = 𝐿) ≥

(
1
2

)2𝛼2

.

We have the following useful fact:

Proposition 5. There is a 𝜅 > 0 such that for any infinite 𝐺, any 𝛿, and any
equilibrium with respect to 𝛿 that satisfies no spontaneous investment,

P(𝜏𝑗 > 0 for all 𝑗 ∈ 𝐵𝐺 (𝑖, 𝑟)) ≤ 𝛿𝜅𝑟

for all sufficiently large 𝑟 for every 𝑖 ∈ 𝑁 .

It follows that
∑
𝑡≥0 P(𝐶𝑖,𝑡) = 1.

We are now ready to show that agent 𝑖 + 1’s decisions cannot be arbitrarily likely to
be arbitrarily informative for agent 𝑖.

Proposition 6. There is a 𝑝 > 0 and an 𝑥 < 1 such that for any equilibrium on the
line,

P(P(𝜔 = 𝐻 | 𝜏𝑖𝑖+1) ≤ 𝑥 |𝜔 = 𝐻) ≥ 𝑝.

Proof. Let 𝑥 = 𝛼22𝛼2

1+𝛼22𝛼2 and 𝑝 = 1
2 . Let 𝑍 = {𝑡 : P(𝜏𝑖

𝑖+1 = 𝑡 |𝐶𝑖,𝑡 , 𝜔 = 𝐻) ≥ 1
2 }.

For any 𝑡 ∈ 𝑍 ,

P(𝜔 = 𝐻 | 𝜏𝑖
𝑖+1 = 𝑡)

P(𝜔 = 𝐿 | 𝜏𝑖
𝑖+1 = 𝑡)

=
P(𝜏𝑖

𝑖+1 = 𝑡 |𝜔 = 𝐻)
P(𝜏𝑖

𝑖+1 = 𝑡 |𝜔 = 𝐿)

=
P(𝜏𝑖

𝑖+1 = 𝑡 |𝐶𝑖,𝑡 , 𝜔 = 𝐻)P(𝐶𝑖,𝑡 |𝜔 = 𝐻)
P(𝜏𝑖

𝑖+1 = 𝑡 |𝐶𝑖,𝑡 , 𝜔 = 𝐿)P(𝐶𝑖,𝑡 |𝜔 = 𝐿)

≤ 22𝛼2 P(𝐶𝑖,𝑡 |𝜔 = 𝐻)
P(𝐶𝑖,𝑡 |𝜔 = 𝐿) .

Now, since agents use threshold strategies, they are more likely to invest immediately
in the high state, so

P(𝐶𝑖,𝑡 |𝜔 = 𝐻)
P(𝐶𝑖,𝑡 |𝜔 = 𝐿) ≤ P(𝜏𝑖+𝑡+1 = 0 |𝜔 = 𝐻)

P(𝜏𝑖+𝑡+1 = 0 |𝜔 = 𝐿) ≤ 𝛼.

Thus,

P(𝜔 = 𝐻 | 𝜏𝑖
𝑖+1 = 𝑡)

P(𝜔 = 𝐿 | 𝜏𝑖
𝑖+1 = 𝑡)

≤ 𝛼22𝛼2
,
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so

P(𝜔 = 𝐻 | 𝜏𝑖𝑖+1 = 𝑡) ≤ 𝛼22𝛼2

1 + 𝛼22𝛼2 = 𝑥.

Further, it follows from another lemma way earlier that

P(𝜔 = 𝐻 | 𝜏𝑖
𝑖+1 = ∞)

P(𝜔 = 𝐿 | 𝜏𝑖
𝑖+1 = ∞)

=
P(𝜏𝑖

𝑖+1 = ∞ |𝜔 = 𝐻)
P(𝜏𝑖

𝑖+1 = ∞ |𝜔 = 𝐿)
≤ 1 < 𝑥.

Hence, P(𝜔 = 𝐻 | 𝜏𝑖
𝑖+1 = 𝑡) > 𝑥 implies 𝑡 ∉ 𝑍 , so

P(P(𝜔 = 𝐻 | 𝜏𝑖𝑖+1) > 𝑥 |𝜔 = 𝐻) =
∑︁
𝑡

P(P(𝜔 = 𝐻 | 𝜏𝑖𝑖+1) > 𝑥 |𝐶𝑖,𝑡 , 𝜔 = 𝐻)P(𝐶𝑖,𝑡 |𝜔 = 𝐻)

≤
∑︁
𝑡∉𝑍

P(𝜏𝑖𝑖+1 = 𝑡 |𝐶𝑖,𝑡 , 𝜔 = 𝐻)P(𝐶𝑖,𝑡 |𝜔 = 𝐻)

<
∑︁
𝑡∉𝑍

1
2
P(𝐶𝑖,𝑡 |𝜔 = 𝐻)

<
1
2
.

Thus, P(P(𝜔 = 𝐻 | 𝜏𝑖
𝑖+1) ≤ 𝑥 |𝜔 = 𝐻) ≥ 𝑝. □

By completely symmetric arguments, it also holds that agent 𝑖−1’s decisions cannot
be arbitrarily likely to be arbitrarily informative for agent 𝑖.

We are now ready to prove our main theorem.

Theorem 3. The line obstructs diffusion.

Proof. Let 𝑝 and 𝑥 be as in the previous proposition. Then

P(𝜔 = 𝐻 | 𝜏𝑖
𝑖−1, 𝜏

𝑖
𝑖+1, 𝑠𝑖)

P(𝜔 = 𝐿 | 𝜏𝑖
𝑖−1, 𝜏

𝑖
𝑖+1, 𝑠𝑖)

=
P(𝜏𝑖

𝑖−1, 𝜏
𝑖
𝑖+1, 𝑠𝑖 |𝜔 = 𝐻)

P(𝜏𝑖
𝑖−1, 𝜏

𝑖
𝑖+1, 𝑠𝑖 |𝜔 = 𝐿)

=
P(𝜏𝑖

𝑖−1 |𝜔 = 𝐻)
P(𝜏𝑖

𝑖−1 |𝜔 = 𝐿)
P(𝜏𝑖

𝑖+1 |𝜔 = 𝐻)
P(𝜏𝑖

𝑖+1 |𝜔 = 𝐿)
P(𝑠𝑖 |𝜔 = 𝐻)
P(𝑠𝑖 |𝜔 = 𝐿) ,

so P(𝜏𝑖
𝑖−1 |𝜔 = 𝐻) ≤ 𝑥 and P(𝜏𝑖

𝑖+1 |𝜔 = 𝐻) ≤ 𝑥 implies 𝜋∞
𝑖

1−𝜋∞
𝑖
≤ 𝛼

(
𝑥

1−𝑥
)2.

Hence,

P(𝜋∞𝑖 ≤ 𝛼𝑥2

𝛼𝑥2 + (1 − 𝑥)2 |𝜔 = 𝐻) ≥ P(P(𝜏𝑖𝑖−1 |𝜔 = 𝐻) ≤ 𝑥, P(𝜏𝑖𝑖+1 |𝜔 = 𝐻) ≤ 𝑥 |𝜔 = 𝐻) ≥ 𝑝2.

The result then follows from that other proposition. □
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1.12 Outside observer learns from period 0 decisions

Proposition 7. Let 𝑝𝑂 be the belief of an outside observer after seeing the agents’
period 0 decisions. For any equilibrium for any value of 𝛿 on the line, P(𝑝𝑂 =

1 |𝜔 = 𝐻) = 1 and P(𝑝𝑂 = 0 |𝜔 = 𝐿) = 1.

Proof. By Proposition 5, there is an 𝑟 such that in any ball of radius 𝑟, the probability
that at least one agent invests in period 0 is at least 1

2 . Since there is a lower bound
on the ratio of how likely this is in the high state versus the low state, there is a
corresponding lower bound on the divergence of the distribution of the period 0
decisions in any ball of radius 𝑟 in the high state from the distribution in the low
state, it follows that the state is identified perfectly from the outcomes in infinitely
many mutually disjoint balls of radius 𝑟. □

1.13 No physical impediments on the line

Proof of Proposition 1. Let 𝑠 > 1
2 be such that P(𝑠𝑖 > 𝑠 |𝜔 = 𝐻) > 0.

Define 𝑥𝑖 to be 0 if 𝑠𝑖 < 1
2 , 1 if 1

2 ≤ 𝑠𝑖 ≤ 𝑠, and 2 if 𝑠𝑖 > 𝑠.

Define 𝑞(𝜔) = P(𝑥𝑖=1 |𝜔)
P(𝑥𝑖=0 |𝜔)+P(𝑥𝑖=1 |𝜔) .

Fix 𝑘 ∈ N, and define a corresponding strategy as follows. If 𝑥𝑖 = 2, invest in period
0. If 𝑥𝑖 ≠ 2 and agent 𝑖 − 1 invests in period 𝑚(𝑘 + 1) + 𝑗 , where 𝑚, 𝑗 ≤ 𝑘 , invest
in period (𝑚 + 1) (𝑘 + 1) + 𝑗 if 𝑥𝑖 = 0 and invest in period (𝑚 + 1) (𝑘 + 1) + 𝑗 + 1 if
𝑥𝑖 = 1. If agent 𝑖 − 1 invests in period (𝑘 + 1)2 + 𝑗 , invest in period (𝑘 + 2) (𝑘 + 1) if(

𝑞(𝐻)
𝑞(𝐿)

) 𝑗
·
(
1 − 𝑞(𝐻)
1 − 𝑞(𝐿)

) 𝑘− 𝑗
≥ 1

2
·

If agent 𝑖 − 1 invests in any period 𝑡 ≥ (𝑘 + 2) (𝑘 + 1), invest in period 𝑡 + 1. In all
other cases, never invest.

Take P(𝑠𝑖 > 𝑠 |𝜔 = 𝐻) → 0 and 𝑘 → ∞ in such a way that P(𝑠𝑖 ≤ 𝑠 |𝜔 = 𝐻)𝑘 → 1.
Then probability that agent 𝑖 makes her decision on the basis of 𝑘 independent draws
of an informative signal approaches 1, and the probability that she makes the right
decision on the basis of these signals approaches 1. Hence, the probability that she
makes the right decision in the long run approaches 1. □

1.14 Proofs of lemmas

Proof of Lemma 1. The expected payoff from any admissible stopping time 𝜏 is

E(1(𝜔 = 𝐻)𝛿𝜏 − 1(𝜔 = 𝐿)𝛿𝜏 | ℎ𝑖𝑡 , 𝑠𝑖).
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Hence, stopping immediately is optimal if and only if

E(1(𝜔 = 𝐻) [𝛿𝑡 − 𝛿𝜏] | ℎ𝑖𝑡 , 𝑠𝑖) ≥ E(1(𝜔 = 𝐿) [𝛿𝑡 − 𝛿𝜏] | ℎ𝑖𝑡 , 𝑠𝑖)

for all admissible 𝜏. Since 𝜏 is independent of 𝑠𝑖 given 𝜔,

E(1(𝜔) [𝛿𝑡 − 𝛿𝜏] | ℎ𝑖𝑡 , 𝑠𝑖) = P(𝜔 | ℎ𝑖𝑡 , 𝑠𝑖) · 𝑉 (𝜏, 𝑡; 𝜔, ℎ𝑖𝑡).

Since 𝑉 (𝜏, 𝑡; 𝜔, ℎ𝑖𝑡) ≥ 0, the claim follows. □

Proof of Lemma 2. Let 𝜏 ≡ ∞. Then 𝑉 (𝜏, 𝑡; 𝜔, ℎ𝑖𝑡) = 𝛿𝑡 , and since

P(𝜔 = 𝐻 | ℎ𝑖𝑡 , 𝑠𝑖)𝛿𝑡 < P(𝜔 = 𝐿 | ℎ𝑖𝑡 , 𝑠𝑖)𝛿𝑡 ,

it follows from Lemma 1 that it is not optimal for 𝑖 to invest at ℎ𝑖𝑡 . □

Proof of Lemma 3. If 𝑡 = 0, this follows from Lemma 2, since every agent is at least
as likely to invest in period 0 in the high state as in the low state.

Assume the claim holds for all 𝑡′ < 𝑡, and suppose that for some signal 𝑠 𝑗 , agent 𝑗
invests at a history ℎ𝑡 in which agent 𝑖 does not invest before 𝑡. Then by Lemma 2,

P(𝜔 = 𝐻 | ℎ 𝑗𝑡 , 𝑠 𝑗 ) ≥ P(𝜔 = 𝐿 | ℎ 𝑗𝑡 , 𝑠 𝑗 )

under the equilibrium profile. Since 𝑗 does not invest before 𝑡, this implies that

P(𝜔 = 𝐻 | (𝜏 𝑗
𝑘
|𝑡), 𝑠 𝑗 ) ≥ P(𝜔 = 𝐿 | (𝜏 𝑗

𝑘
|𝑡), 𝑠 𝑗 ),

where 𝑘 ranges across 𝑗’s neighbors, and hence

P((𝜏 𝑗
𝑘
|𝑡), 𝑠 𝑗 |𝜔 = 𝐻) ≥ P((𝜏 𝑗

𝑘
|𝑡), 𝑠 𝑗 |𝜔 = 𝐿).

It follows from the assumption that

P(𝜏 𝑗
𝑖
≥ 𝑡 |𝜔 = 𝐻) ≤ P(𝜏 𝑗

𝑖
≥ 𝑡 |𝜔 = 𝐿),

and thus, since the 𝜏 𝑗
𝑘
|𝑡 are conditionally independent because 𝐺 is a tree,

P((𝜏 𝑗
𝑘
|𝑡)𝑘≠𝑖, 𝑠 𝑗 |𝜔 = 𝐻) ≥ P((𝜏 𝑗

𝑘
|𝑡)𝑘≠𝑖, 𝑠 𝑗 |𝜔 = 𝐿).

Adding across all such histories then gives

P(𝜏𝑖𝑗 = 𝑡 |𝜔 = 𝐻) ≥ P(𝜏𝑖𝑗 = 𝑡 |𝜔 = 𝐿).

□
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Proof of Lemma 5. Define 𝐶 = 𝐴 ∩ 𝐵 and 𝐷 = 𝐵 \ 𝐴. If P(𝑠𝑖 ∈ 𝐷 |𝜔 = 𝐻) = 0
then the result is immediate, so assume P(𝑠𝑖 ∈ 𝐷 |𝜔 = 𝐻) = 0. Then

P(𝑠𝑖 ∈ 𝐴 | 𝑠𝑖 ∈ 𝐵, 𝜔 = 𝐻) = P(𝑠𝑖 ∈ 𝐶 |𝜔 = 𝐻)
P(𝑠𝑖 ∈ 𝐶 |𝜔 = 𝐻) + P(𝑠𝑖 ∈ 𝐷 |𝜔 = 𝐻) .

Now,

P(𝑠𝑖 ∈ 𝐷 |𝜔 = 𝐿)
P(𝑠𝑖 ∈ 𝐶 |𝜔 = 𝐿) ≤ 𝛼2P(𝑠𝑖 ∈ 𝐷 |𝜔 = 𝐻)

P(𝑠𝑖 ∈ 𝐶 |𝜔 = 𝐻) ,

so

log( P(𝑠𝑖∈𝐶 |𝜔=𝐿)
P(𝑠𝑖∈𝐶 |𝜔=𝐿)+P(𝑠𝑖∈𝐷 |𝜔=𝐿) )

log( P(𝑠𝑖∈𝐶 |𝜔=𝐻)
P(𝑠𝑖∈𝐶 |𝜔=𝐻)+P(𝑠𝑖∈𝐷 |𝜔=𝐻) )

=
log(1 + P(𝑠𝑖∈𝐷 |𝜔=𝐿)

P(𝑠𝑖∈𝐶 |𝜔=𝐿) )

log(1 + P(𝑠𝑖∈𝐷 |𝜔=𝐻)
P(𝑠𝑖∈𝐶 |𝜔=𝐻) )

≤
log(1 + 𝛼2 P(𝑠𝑖∈𝐷 |𝜔=𝐻)

P(𝑠𝑖∈𝐶 |𝜔=𝐻) )

log(1 + P(𝑠𝑖∈𝐷 |𝜔=𝐻)
P(𝑠𝑖∈𝐶 |𝜔=𝐻) )

.

Now, for any 𝑥 ∈ (0, 1], log(1 + 𝛼2𝑥) ≤ 𝛼2𝑥 and log(1 + 𝑥) ≥ 𝑥/2, so

log(1 + 𝛼2𝑥)
log(1 + 𝑥) ≤ 2𝛼2.

Since P(𝑠𝑖 ∈ 𝐴 | 𝑠𝑖 ∈ 𝐵, 𝜔 = 𝐻) ≥ 1/2, it follows that P(𝑠𝑖∈𝐷 |𝜔=𝐻)
P(𝑠𝑖∈𝐶 |𝜔=𝐻) ≤ 1, so

log( P(𝑠𝑖∈𝐶 |𝜔=𝐿)
P(𝑠𝑖∈𝐶 |𝜔=𝐿)+P(𝑠𝑖∈𝐷 |𝜔=𝐿) )

log( P(𝑠𝑖∈𝐶 |𝜔=𝐻)
P(𝑠𝑖∈𝐶 |𝜔=𝐻)+P(𝑠𝑖∈𝐷 |𝜔=𝐻) )

≤ 2𝛼2

and hence

log( P(𝑠𝑖 ∈ 𝐶 |𝜔 = 𝐿)
P(𝑠𝑖 ∈ 𝐶 |𝜔 = 𝐿) + P(𝑠𝑖 ∈ 𝐷 |𝜔 = 𝐿) ) ≥ 2𝛼2 log( P(𝑠𝑖 ∈ 𝐶 |𝜔 = 𝐻)

P(𝑠𝑖 ∈ 𝐶 |𝜔 = 𝐻) + P(𝑠𝑖 ∈ 𝐷 |𝜔 = 𝐻) ).

so

P(𝑠𝑖 ∈ 𝐴 | 𝑠𝑖 ∈ 𝐵, 𝜔 = 𝐿) = P(𝑠𝑖 ∈ 𝐶 |𝜔 = 𝐿)
P(𝑠𝑖 ∈ 𝐶 |𝜔 = 𝐿) + P(𝑠𝑖 ∈ 𝐷 |𝜔 = 𝐿)

≥
(

P(𝑠𝑖 ∈ 𝐶 |𝜔 = 𝐻)
P(𝑠𝑖 ∈ 𝐶 |𝜔 = 𝐻) + P(𝑠𝑖 ∈ 𝐷 |𝜔 = 𝐻)

)2𝛼2

= P(𝑠𝑖 ∈ 𝐴 | 𝑠𝑖 ∈ 𝐵, 𝜔 = 𝐻)2𝛼2
.

□

Proof of Lemma 6. Since the 𝑠𝑖 are conditionally independent,

P(𝐴 | 𝐵, 𝜔 = 𝐿) =
∏
𝑖∈𝑆
P(𝑠𝑖 ∈ 𝐴𝑖 | 𝑠𝑖 ∈ 𝐵𝑖, 𝜔 = 𝐿)
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and

P(𝐴 | 𝐵, 𝜔 = 𝐻) =
∏
𝑖∈𝑆
P(𝑠𝑖 ∈ 𝐴𝑖 | 𝑠𝑖 ∈ 𝐵𝑖, 𝜔 = 𝐻).

Since P(𝐴 | 𝐵, 𝜔 = 𝐻) ≥ 1
2 , it follows that P(𝑠𝑖 ∈ 𝐴𝑖 | 𝐵𝑖, 𝜔 = 𝐻) ≥ 1

2 for each 𝑖 ∈ 𝑆,
and hence by the previous lemma,

P(𝑠𝑖 ∈ 𝐴𝑖 | 𝐵𝑖, 𝜔 = 𝐿) ≥ P(𝑠𝑖 ∈ 𝐴𝑖 | 𝐵𝑖, 𝜔 = 𝐻)2𝛼2

for each 𝑖 ∈ 𝑆. Thus,

P(𝐴 | 𝐵, 𝜔 = 𝐿) ≥ P(𝐴 | 𝐵, 𝜔 = 𝐻)2𝛼2 ≥
(
1
2

)2𝛼2

.

□

Proof of Lemma 7. By no spontaneous investment, 𝜏𝑖
𝑖+1 = 𝑡 if and only if 𝜏𝑖

𝑖+1+ 𝑗 =

𝑡 − 𝑗 for 𝑗 = 0, . . . , 𝑡.

For 𝑗 = 0, . . . , 𝑡, let 𝐵 𝑗 ⊆ [0, 1] be the set of signals such that agent 𝑖 + (𝑡 + 1) − 𝑗

invests in period 0 if and only if 𝑠𝑖+(𝑡+1)− 𝑗 ∉ 𝐵 𝑗 , and for 𝑗 = 1, . . . , 𝑡, let 𝐴 𝑗 ⊆ [0, 1]
be the set of signals such that agent 𝑖+ (𝑡+1) − 𝑗 invests in period 𝑗 if 𝑠𝑖+(𝑡+1)− 𝑗 ∈ 𝐴 𝑗 ,
agent 𝑖 + (𝑡 + 1) − 𝑗 + 1 invests in period 𝑗 − 1, and agent 𝑖 + (𝑡 + 1) − 𝑗 + 1 does not
invest before period 𝑗 . Let 𝐴 be the event that 𝑠𝑖+(𝑡+1)− 𝑗 ∈ 𝐴 𝑗 for 𝑗 = 1, . . . , 𝑡, and
let 𝐵 be the event that 𝑠𝑖+(𝑡+1)− 𝑗 ∈ 𝐵 𝑗 for 𝑗 = 1, . . . , 𝑡.

Then

P(𝜏𝑖𝑖+1 = 𝑡 |𝐶𝑖,𝑡 , 𝜔) = P(𝐴 | 𝐵, 𝑠𝑖+(𝑡+1) ∉ 𝐵0, 𝜔) = P(𝐴 | 𝐵, 𝜔).

Hence, if P(𝜏𝑖
𝑖+1 = 𝑡 |𝐶𝑖,𝑡 , 𝜔 = 𝐻) ≥ 1

2 , then P(𝐴 | 𝐵, 𝜔 = 𝐻) ≥ 1
2 , so by the lemma,

P(𝜏𝑖𝑖+1 = 𝑡 |𝐶𝑖,𝑡 , 𝜔 = 𝐿) = P(𝐴 | 𝐵, 𝜔 = 𝐿) ≥
(
1
2

)2𝛼2

.

□
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C h a p t e r 2

THE SPEED OF SEQUENTIAL ASYMPTOTIC LEARNING

2.1 Introduction
When making decisions, we often rely on the decisions that others before us have
made. Sequential learning models have been used to understand different phenom-
ena that occur when many individuals make decisions based on the observed actions
of others. These include herd behavior (cf. Banerjee (1992)), where many agents
make the same choice, as well as informational cascades (e.g., Bikhchandani et al.
(1992)), where the actions of the first few agents provide such compelling evidence
that later agents no longer have incentive to consider their own private information.

Such results on how information aggregation can fail are complemented by results
which demonstrate that when private signals are arbitrarily strong, learning is robust
to this kind of collapse Smith and Sorensen (2000). In particular, in a process called
asymptotic learning (see, e.g., Acemoglu et al. (2011)), agents will eventually choose
the correct action and their beliefs will converge to the truth. A question that has not
been answered in the literature is: how quickly does this happen? And how does the
speed of learning compare to a setting in which agents observe signals rather than
actions?

We consider the classical setting of a binary state of nature and binary actions, where
each of the two actions is optimal at one of the states. The agents receive private
signals that are independent conditioned on the state. These signals are unbounded,
in the sense that an agent’s posterior belief regarding the state can be arbitrarily
close to both 0 and 1. The agents are exogenously ordered, and, at each time period,
a single agent takes an action, after observing the actions of her predecessors.

We measure the speed of learning by studying how the public belief evolves as more
and more agents act. Consider an outside observer who observes the actions of the
sequence of agents. The public belief is the posterior belief that such an outside
observer assigns to the correct state of nature. It provides a measure of how well
the population has learned the state. Since signals are unbounded, the public belief
tends to 1 over time Smith and Sorensen (2000); equivalently, the corresponding
log-likelihood ratio tends to infinity. As the outside observer may also be interested
in learning the state, it is natural to ask how quickly she converges to the correct
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belief, and, in particular, to understand her asymptotic speed of learning when
observing actions. Asymptotic rates of convergence are an important tool in the
study of inference processes in statistical theory, and have also been studied in social
learning models in the Economics literature (e.g., Duffie and Manso (2007), Duffie
et al. (2009), Vives (1993)).

When agents observe the signals (rather than actions) of all of their predecessors,
this log-likelihood ratio is asymptotically linear. Thus, it cannot grow faster than
linearly when the agents observe actions. Our first main finding is that when
observing actions, the log-likelihood ratio always grows sub-linearly. Equivalently,
the public belief converges sub-exponentially to 1. Our second main finding is that,
depending on the choice of private signal distributions, the log-likelihood ratio can
grow at a rate that is arbitrarily close to linear.

We next analyze the specific canonical case of Gaussian private signals. Here we
calculate precisely the asymptotic behavior of the log-likelihood ratio of the public
belief. We show that learning from actions is significantly slower than learning from
signals: the log-likelihood ratio behaves asymptotically as

√︁
log 𝑡. To calculate this

we develop a technique that allows, much more generally, for the long-term evolution
of the public belief to be calculated for a large class of signal distributions.

Since, in our setting of unbounded signals, agents eventually take the correct action,
an additional, natural measure of the speed of learning is the expected time at which
this happens: how long does it take until no more mistakes are made? We call this
the time to learn.

We show that the expected time to learn depends crucially on the signal distributions.
For distributions, such as the Gaussian, in which strong signals occur with very small
probability, we show that the expected time to learn is infinite.1 However, when
strong signals are less rare, this expectation is finite.2 Intuitively, when strong
signals are rare, agents are more likely to emulate their predecessors, and so it may
take a long time for a mistake to be corrected.

Finally, in the Gaussian case, we study another measure of the speed of learning.
Namely, we consider directly how the probability of choosing the incorrect action
varies as agents see more and more of the other agents’ decisions before making
their own. We find that this probability is asymptotically no less than 1/𝑡1+𝜀 for any

1In the benchmark case of observed signals this time is finite, for any signal distribution.
2This result disproves a conjecture of Sorensen Sorensen (1996) (page 36).
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𝜀 > 0. In contrast, when agents can observe the private signals of their predecessors,
the probability of mistake decays exponentially, and so also in this sense learning
from signals is much faster than learning from actions.

Related literature
Several previous studies have considered the same question. Chamley Chamley
(2004b) gives an estimate for the evolution of the public belief for a class of private
signal distributions with fat tails. He also studies the speed of convergence in the
Gaussian case using a computer simulation. Sorensen (Sorensen, 1996, Lemma
1.9) has published a claim related to our Theorem 4, with an unfinished proof. Also
in Sorensen (1996), Sorensen shows that the expected time to learn is infinite for
some signal distributions, and conjectures that it is always infinite, which we show to
not be true. In Smith and Sorensen (1996), an early version of Smith and Sorensen
(2000), the question of the time to learn is also addressed, and an example is given
in which the time to learn is infinite, but is finite conditioned on one of the states.
A concurrent paper by Rosenberg and Vieille Rosenberg and Vieille (2017) studies
related questions. In particular they study the time until the first correct action, as
well as the number of incorrect actions—which are related to our time to learn—and
characterize when they have finite expectations.

A related model is studied by Lobel, Acemoglu, Dahleh and Ozdaglar Lobel et al.
(2009), who consider agents who also act sequentially, but do not observe all of their
predecessors’ actions. They study how the speed of learning varies with the network
structure. Vives Vives (1993), in a paper with a very similar spirit to ours, studies the
speed of sequential learning in a model with actions chosen from a continuum, and
where agents observe a noisy signal about their predecessors’ actions. He similarly
shows that learning is significantly slower than in the benchmark case. An overview
of this literature is given by Vives in his book (Vives, 2010, Chapter 6).
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2.2 Model
Let 𝜃 ∈ {−1, +1} be the true state of the world, with each state a priori equally likely3.
Each rational agent 𝑡 ∈ {1, 2, . . .} receives a private signal 𝑠𝑡 . The signals are i.i.d.
conditioned on 𝜃: if 𝜃 = +1 they have cumulative distribution function (CDF) 𝐹+ and
if 𝜃 = −1 they have CDF 𝐹−.4 We assume that 𝐹+ and 𝐹− are absolutely continuous
with respect to each other, so that private signals never completely reveal the state.

Let
𝐿𝑡 = log

P(𝜃 = +1|𝑠𝑡)
P(𝜃 = −1|𝑠𝑡)

be the log-likelihood ratio of the belief induced by the agent’s private signal. We
assume that private signals are unbounded, in the sense that 𝐿𝑡 is unbounded: for
every 𝑀 ∈ R the probability that 𝐿𝑡 > 𝑀 is positive, as is the probability that
𝐿𝑡 < −𝑀 . We denote by 𝐺+ and 𝐺− the conditional CDFs of 𝐿𝑡 .

The agents act sequentially, with agent 𝑡 acting after observing the actions of agents
{1, . . . , 𝑡 − 1}. The utility of the action 𝑎𝑡 ∈ {−1, +1} is 1 if 𝑎𝑡 = 𝜃 and 0 otherwise.

Denote the public belief by

𝜇𝑡 = P(𝜃 = +1|𝑎1, . . . , 𝑎𝑡−1).

This is the posterior held by an outside observer after recording the actions of the
first 𝑡 − 1 agents. We denote by ℓ𝑡 the log-likelihood ratio of the public belief:

ℓ𝑡 = log
𝜇𝑡

1 − 𝜇𝑡
·

In equilibrium, agent 𝑡 chooses 𝑎𝑡 = +1 iff5

log
P(𝜃 = +1|𝑎1, . . . , 𝑎𝑡−1, 𝑠𝑡)
P(𝜃 = −1|𝑎1, . . . , 𝑎𝑡−1, 𝑠𝑡)

> 0.

A simple calculation shows that this occurs iff

ℓ𝑡 + 𝐿𝑡 > 0.

Now, another straightforward calculation shows that when 𝑎𝑡 = +1,

ℓ𝑡+1 = ℓ𝑡 + 𝐷+(ℓ𝑡), (2.1)

3We make this simplification of a (1/2,1/2) prior to reduce the complexity of the presentation,
but all results hold for general priors.

4One could consider signals that take values in a general measurable space (rather than R),
but the choice of R is in fact without loss of generality, since all standard measurable spaces are
isomorphic.

5For simplicity, we assume that agents choose action −1 when indifferent. This will have no
impact on our results.
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where

𝐷+(𝑥) = log
1 − 𝐺+(−𝑥)
1 − 𝐺−(−𝑥)

·

Likewise, when 𝑎𝑡 = −1,
ℓ𝑡+1 = ℓ𝑡 + 𝐷−(ℓ𝑡),

where

𝐷−(𝑥) = log
𝐺+(−𝑥)
𝐺−(−𝑥)

·

We can interpret 𝐷+(ℓ𝑡) and 𝐷−(ℓ𝑡) as the contributions of agent 𝑡’s action to the
public belief.

2.3 The evolution of public belief
Consider a baseline model, in which each agent observes the private signals of all
of her predecessors. In this case the public log-likelihood ratio ℓ̃𝑡 would equal the
sum

ℓ̃𝑡 =

𝑡∑︁
𝜏=1

𝐿𝜏 .

Conditioned on the state this is the sum of i.i.d. random variables, and so by the
law of large numbers we have that the limit lim𝑡 ℓ̃𝑡/𝑡 would—conditioned on (say)
𝜃 = +1—equal the conditional expectation of 𝐿𝑡 , which is positive.6

Sub-linear public beliefs
Our first main result shows that when agents observe actions rather than signals,
the public log-likelihood ratio grows sub-linearly, and so learning from actions is
always slower than learning from signals.

Theorem 4. It holds with probability 1 that lim𝑡 ℓ𝑡/𝑡 = 0.

Our second main result shows that, depending on the choice of private signal
distributions, ℓ𝑡 can grow at a rate that is arbitrarily close to linear: given any sub-
linear function 𝑟𝑡 , it is possible to find private signal distributions so that ℓ𝑡 grows
as fast as 𝑟𝑡 .

6In fact, E(𝐿𝑡 |𝜃 = +1) is equal to the Kullback-Leibler divergence between 𝐹+ and 𝐹− , which is
positive as long as the two distributions are different.
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Theorem 5. For any 𝑟 : N → R>0 such that lim𝑡 𝑟𝑡/𝑡 = 0 there exists a choice of
CDFs 𝐹− and 𝐹+ such that

lim inf
𝑡→∞

|ℓ𝑡 |
𝑟𝑡

> 0

with probability 1.

For example, for some choice of private signal distributions, ℓ𝑡 grows asymptotically
at least as fast as 𝑡/log 𝑡, which is sub-linear but (perhaps) close to linear.

Long-term behavior of public beliefs
We next turn to estimating more precisely the long-term behavior of the public
log-likelihood ratio ℓ𝑡 . Since signals are unbounded, agents learn the state, so that
ℓ𝑡 tends to +∞ if 𝜃 = +1, and to −∞ if 𝜃 = −1. In particular ℓ𝑡 stops changing sign
from some 𝑡 on, with probability 1; all later agents choose the correct action.

We consider without loss of generality the case that 𝜃 = +1, so that ℓ𝑡 is positive
from some 𝑡 on. Thus, recalling (2.1), we have that from some 𝑡 on,

ℓ𝑡+1 = ℓ𝑡 + 𝐷+(ℓ𝑡).

This is the recurrence relation that we need to solve in order to understand the
long term evolution of ℓ𝑡 . To this end, we consider the corresponding differential
equation:

d 𝑓
d𝑡

(𝑡) = 𝐷+( 𝑓 (𝑡)).

Recall that 𝐺− is the CDF of the private log-likelihood ratio 𝐿𝑡 , conditioned on
𝜃 = −1. We show (Lemma 8) that 𝐷+(𝑥) is well approximated by 𝐺−(−𝑥) for high
𝑥, in the sense that

lim
𝑥→∞

𝐷+(𝑥)
𝐺−(−𝑥)

= 1.

In some applications (including the Gaussian one, which we consider below), the
expression for 𝐺− is simpler than that for 𝐷+, and so one can instead consider the
differential equation

d 𝑓
d𝑡

(𝑡) = 𝐺−(− 𝑓 (𝑡)). (2.2)

This equation can be solved analytically in many cases in which 𝐺− has a simple
form. For example, if 𝐺−(−𝑥) = e−𝑥 then 𝑓 (𝑡) = log(𝑡 + 𝑐), and if 𝐺−(−𝑥) = 𝑥−𝑘

then 𝑓 (𝑡) = ((𝑘 + 1) · 𝑡 + 𝑐)1/(𝑘+1) .
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We show that solutions to this equation have the same long term behavior as ℓ𝑡 ,
given that 𝐺− satisfies some regularity conditions.

Theorem 6. Suppose that 𝐺− and 𝐺+ are continuous, and that the left tail of 𝐺− is
convex and differentiable. Suppose also that 𝑓 : R>0 → R>0 satisfies

d 𝑓
d𝑡

(𝑡) = 𝐺−(− 𝑓 (𝑡)) (2.3)

for all sufficiently large 𝑡. Then conditional on 𝜃 = +1,

lim
𝑡→∞

ℓ𝑡

𝑓 (𝑡) = 1

with probability 1.

The condition7 on 𝐺− is satisfied when the random variables 𝐿𝑡 (i.e., the log-
likelihood ratios associated with the private signals), conditioned on 𝜃 = −1, have a
distribution with a probability density function that is monotone decreasing for all
𝑥 less than some 𝑥0. This is the case for the normal distribution, and for practically
every non-atomic distribution one may encounter in the standard probability and
statistics literatures.

Gaussian signals

In the Gaussian case, 𝐹+ is Normal with mean +1 and variance 𝜎2, and 𝐹− is Normal
with mean −1 and the same variance. A simple calculation shows that 𝐺− is the
Gaussian cumulative distribution function, and so we cannot solve the differential
equation (2.2) analytically. However, we can bound 𝐺−(𝑥) from above and from
below by functions of the form e−𝑐·𝑥2/𝑥. For these functions the solution to (2.2) is
of the form 𝑓 (𝑡) =

√︁
log 𝑡, and so we can use Theorem 6 to deduce the following.

Theorem 7. When private signals are Gaussian, then conditioned on 𝜃 = +1,

lim
𝑡→∞

ℓ𝑡

(2
√

2/𝜎) ·
√︁

log 𝑡
= 1

with probability 1.

Recall, that when private signals are observed, the public log-likelihood ratio ℓ𝑡 is
asymptotically linear. Thus, learning from actions is far slower than learning from
signals in the Gaussian case.

7By “the left tail of 𝐺− is convex and differentiable” we mean that there is some 𝑥0 such that,
restricted to (−∞, 𝑥0), 𝐺− is convex and differentiable.
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The expected time to learn
When private signals are unbounded then with probability 1 the agents eventually
all choose the correct action 𝑎𝑡 = 𝜃. A natural question is: how long does it take for
that to happen? Formally, we define the time to learn

𝑇𝐿 = min{𝑡 : 𝑎𝜏 = 𝜃 for all 𝜏 ≥ 𝑡},

and study its expectation. Note that in the baseline case of observed signals 𝑇𝐿 has
finite expectation, since the probability of a mistake at time 𝑡 decays exponentially
with 𝑡.

We first study the expectation of 𝑇𝐿 in the case of Gaussian signals. To this end we
define the time of first mistake by

𝑇1 = min{𝑡 : 𝑎𝑡 ≠ 𝜃}

if 𝑎𝑡 ≠ 𝜃 for some 𝑡, and by 𝑇1 = 0 otherwise. We calculate a lower bound for the
distribution of 𝑇1, showing that it decays at most as fast as 1/𝑡.

Theorem 8. When private signals are Gaussian then for every 𝜀 > 0 there exists a
𝑘 > 0 such that for all 𝑡

P(𝑇1 = 𝑡) ≥ 𝑘

𝑡1+𝜀
·

Thus 𝑇1 has a very thick tail, decaying far slower than the exponential decay of the
baseline case. In particular, 𝑇1 has infinite expectation, and so, since 𝑇𝐿 > 𝑇1, the
expectation of the time to learn 𝑇𝐿 is also infinite.

In contrast, we show that when private signals have thick tails—that is, when the
probability of a strong signal vanishes slowly enough—then the time to learn has
finite expectation. In particular, we show this when the left tail of 𝐺− and the right
tail of 𝐺+ are polynomial.8

Theorem 9. Assume that 𝐺−(−𝑥) = 𝑐 · 𝑥−𝑘 and that 𝐺+(𝑥) = 1 − 𝑐 · 𝑥−𝑘 for some
𝑐 > 0 and 𝑘 > 0, and for all 𝑥 greater than some 𝑥0. Then E(𝑇𝐿) < ∞.

8Recall that 𝐺− is the conditional cumulative distribution function of the private log-likelihood
ratios 𝐿𝑡 .
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An example of private signal distributions 𝐹+ and 𝐹− for which𝐺− and𝐺+ have this
form is given by the probability density functions

𝑓−(𝑥) =


𝑐 · e−𝑥𝑥−𝑘−1 when 1 ≤ 𝑥

0 when − 1 < 𝑥 < 1

𝑐 · (−𝑥)−𝑘−1 when 𝑥 ≤ −1.

and 𝑓+(𝑥) = 𝑓−(−𝑥), for an appropriate choice of normalizing constant 𝑐 > 0. In
this case 𝐺−(−𝑥) = 1 − 𝐺+(𝑥) = 𝑐

𝑘
𝑥−𝑘 for all 𝑥 > 1.9

The proof of Theorem 9 is rather technically involved, and we provide here a rough
sketch of the ideas behind it.

We say that there is an upset at time 𝑡 if 𝑎𝑡−1 ≠ 𝑎𝑡 . We denote by Ξ the random
variable which assigns to each outcome the total number of upsets

Ξ = |{𝑡 : 𝑎𝑡−1 ≠ 𝑎𝑡}|.

We say that there is a run of length 𝑚 from time 𝑡 if 𝑎𝑡 = 𝑎𝑡+1 = · · · = 𝑎𝑡+𝑚−1. As
we will condition on 𝜃 = +1 in our analysis, we say that a run from time 𝑡 is good if
𝑎𝑡 = 1 and bad otherwise. A trivial but important observation is that the number of
maximal finite runs is equal to the number of upsets, and so, if Ξ = 𝑛, and if 𝑇𝐿 = 𝑡,
then there is at least one run of length 𝑡/𝑛 before time 𝑡. Qualitatively, this implies
that if the number of upsets is small, and if the time to learn is large, then there is at
least one long run before the time to learn.

We show that it is indeed unlikely that Ξ is large: the distribution of Ξ has an
exponential tail. Incidentally, this holds for any private signal distribution:

Proposition 8. For every private signal distribution there exist 𝑐 > 0 and 0 < 𝛾 < 1
such that for all 𝑛 > 0

P(Ξ ≥ 𝑛) ≤ 𝑐𝛾𝑛.

Intuitively, this holds because whenever an agent takes the correct action, there is
a non-vanishing probability that all subsequent agents will also do so, and no more
upsets will occur.

9Theorem 9 can be proved for other thick-tailed private signal distributions: for example, one
could take different values of 𝑐 and 𝑘 for 𝐺− and 𝐺+, or one could replace their thick polynomial
tails by even thicker logarithmic tails. For the sake of readability we choose to focus on this case.



33

Thus, it is very unlikely that the number of upsets Ξ is large. As we observe above,
when Ξ is small then the time to learn 𝑇𝐿 can only be large if at least one of the runs
is long. When 𝐺− has a thin tail then this is possible; indeed, Theorem 8 shows that
the first finite run has infinite expected length when private signals are Gaussian.
However, when 𝐺− has a thick, polynomial left tail of order 𝑥−𝑘 , we show that it is
very unlikely for any run to be long: the probability that there is a run of length 𝑛
decays at least as fast as exp(−𝑛𝑘/(𝑘+1)), and in particular runs have finite expected
length. Intuitively, when strong signals are rare then runs tend to be long, as agents
are likely to emulate their predecessor. Conversely, when strong signals are more
likely then agents are more likely to break a run, and so runs tend to be shorter.

Putting together these insights, we conclude that it is unlikely that there are many
runs, and, in the polynomial signal case, it is unlikely that runs are long. Thus 𝑇𝐿
has finite expectation.

Probability of taking the wrong action
Yet another natural metric of the speed of learning is the probability of mistake

𝑝𝑡 = P(𝑎𝑡 ≠ 𝜃).

Calculating the asymptotic behavior of 𝑝𝑡 seems harder to tackle.

For the Gaussian case, while we cannot estimate 𝑝𝑡 precisely, Theorem 8 immedi-
ately implies a lower bound: 𝑝𝑡 is at least 𝑘/𝑡1+𝜀, for every 𝜀 > 0 and 𝑘 that depends
on 𝜀. This is much larger than the exponentially vanishing probability of mistake in
the revealed signal baseline case.

More generally, we can use Theorem 4 to show that 𝑝𝑡 vanishes sub-exponentially
for any signal distribution, in the sense that

lim
𝑡→∞

1
𝑡

log 𝑝𝑡 = 0.

To see this, note that the probability of mistake at time 𝑡 − 1, conditioned on the
observed actions, is exactly equal to

min{𝜇𝑡 , 1 − 𝜇𝑡};

where we recall that

𝜇𝑡 = P(𝜃 = +1|𝑎1, . . . , 𝑎𝑡−1) =
eℓ𝑡

eℓ𝑡 + 1
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is the public belief. This is due to the fact that if the outside observer, who holds
belief 𝜇𝑡 , had to choose an action, she would choose 𝑎𝑡−1, the action of the last
player she observed, a player who has strictly more information than her. Thus

𝑝𝑡 = E(min{𝜇𝑡 , 1 − 𝜇𝑡}) = E
(

1
e|ℓ𝑡 | + 1

)
,

and since, by Theorem 4, |ℓ𝑡 | is sub-linear, it follows that 𝑝𝑡 is sub-exponential.

2.4 Conclusion
In this paper we consider a classical setting of sequential asymptotic learning from
actions of others. We show that learning from actions is slow, as compared to the
speed of learning when observing others’ private signals, in the sense that the public
log-likelihood ratio tends more slowly to infinity. However, it is possible to approach
the linear rate of learning from signals and achieve any sub-linear rate.

We calculate the speed of learning precisely in the case of Normal private signals
(among a large class of private signal distributions) and show that learning is very
slow. We also show that in the Gaussian case the expected time to learn is infinite,
as opposed to cases of more thick-tailed distributions, in which it is finite.

For the Gaussian case we also provide a lower bound for the probability of mistake.
Finding a matching upper bound seems beyond our reach at the moment, and
provides a compelling open problem for further research.

2.5 Sub-linear learning
Before proving our main theorems we make the observation (which has appeared
before, e.g., Chamley (2004b)) that the log-likelihood ratio of the log-likelihood ratio
is the log-likelihood ratio. Formally, if 𝜈+ and 𝜈− are the conditional distributions
of the private log-likelihood ratio 𝐿𝑡 (i.e., have CDFs 𝐺+ and 𝐺−), then

log
d𝜈+
d𝜈−

(𝑥) = 𝑥.

It follows that

𝐺+(𝑥) =
∫ 𝑥

−∞
d𝜈+(𝜁) =

∫ 𝑥

−∞
e𝜁 d𝜈−(𝜁). (2.4)

Our first lemma shows that asymptotically, 𝐷+ behaves like the left tail of 𝐺−, and
𝐷− behaves like the right tail of 𝐺+.



35

Lemma 8.

lim
𝑥→∞

𝐷+(𝑥)
𝐺−(−𝑥)

= 1 and lim
𝑥→−∞

𝐷−(𝑥)
𝐺+(−𝑥) − 1

= 1.

Proof. By definition,

𝐷+(𝑥) = log
1 − 𝐺+(−𝑥)
1 − 𝐺−(−𝑥)

.

Since log(1 − 𝑧) = −𝑧 +𝑂 (𝑧2), it holds for all 𝑥 large enough that

𝐷+(𝑥) > 𝐺−(−𝑥) − 2 · 𝐺+(−𝑥).

Applying (2.4) yields

𝐷+(𝑥) >
∫ −𝑥

−∞
(1 − 2e𝜁 ) d𝜈−(𝜁),

and so for any 𝜀 and all 𝑥 large enough,

𝐷+(𝑥) > (1 − 𝜖) ·
∫ −𝑥

−∞
d𝜈−(𝜁) = (1 − 𝜖)𝐺−(−𝑥).

Using the same approximation of the logarithm, we have that

𝐷+(𝑥) < (1 + 𝜖)𝐺−(−𝑥) − 𝐺+(−𝑥) < (1 + 𝜖)𝐺−(−𝑥).

The statement for 𝐷+ now follows by taking 𝜀 to zero. The corresponding bounds
on 𝐷− follow by identical arguments. □

Proof of Theorem 4. Condition on 𝜃 = +1. Then ℓ𝑡 is with probability 1 positive
from some point on, and all agents take action +1 from this point on. Hence, for all
𝑡 large enough,

ℓ𝑡+1 = ℓ𝑡 + 𝐷+(ℓ𝑡).

By Lemma 8, we know that lim𝑥 𝐷+(𝑥) = 0. Hence for every 𝜖 > 0 and all 𝑡 large
enough, |ℓ𝑡+1 − ℓ𝑡 | < 𝜖 . It follows that the limit lim𝑡 ℓ𝑡/𝑡 = 0. The analysis of the
case 𝜃 = −1 is identical. □

Proof of Theorem 5. Given 𝑟𝑡 , we will construct private signal distributions such
that lim inf𝑡 |ℓ𝑡 |/𝑟𝑡 > 0 with probability one. These distributions will furthermore
have the property that 𝐷+(𝑥) = −𝐷−(−𝑥). As a consequence we have that regardless
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of the action chosen by the agent, as long as the sign of the action is equal to that of
ℓ𝑡 (which happens from some point on w.p. 1),

|ℓ𝑡+1 | = |ℓ𝑡 | + 𝐷+( |ℓ𝑡 |).

Intuitively, if we can choose private signal distributions that make 𝐷+(𝑥) decay very
slowly, then ℓ𝑡 will be very close to being linear.

Formally, and by elementary considerations, the theorem will follow if, for every
𝑄 : R→ R>0 with lim𝑥→∞𝑄(𝑥) = 0, we can find CDFs such that𝐷+(𝑥) = −𝐷−(−𝑥)
and lim inf𝑥→∞ 𝐷+(𝑥)/𝑄(𝑥) > 0.

Fix any 𝑄 such that lim𝑥→∞𝑄(𝑥) = 0, but assume without loss of generality that
𝑄(𝑥) is monotone decreasing.10 Define a finite measure 𝜈 on the integers by

𝜈(𝑛) = 𝑄(𝑛 − 1) −𝑄(𝑛)
e𝑛

and

𝜈(−𝑛) = 𝑄(𝑛 − 1) −𝑄(𝑛)

for all 𝑛 ≥ 0. Note that 𝜈 is indeed finite since

𝐶 :=
∞∑︁

𝑛=−∞
𝜈(𝑛) ≤ 2𝑄(−1).

Note also that
∞∑︁

𝑛=−∞
𝜈(𝑛) · e𝑛

is likewise equal to 𝐶.

Let the private signal distributions be given by

P(𝑠𝑡 = 𝑛|𝜃 = +1) = 𝐶−1𝜈(𝑛)e𝑛

and

P(𝑠𝑡 = 𝑛|𝜃 = −1) = 𝐶−1𝜈(𝑛).

Then

𝐿𝑡 = log
P(𝑠𝑡 |𝜃 = +1)
P(𝑠𝑡 |𝜃 = −1) = 𝑠𝑡 ,

10If 𝑄 is not monotone decreasing then consider instead 𝑄′ (𝑥) = sup𝑦≥𝑥 𝑄(𝑦).
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the distribution of 𝐿𝑡 is identical to that of 𝑠𝑡 , and so 𝐺+ = 𝐹+ and 𝐺− = 𝐹−. By our
definition of 𝐹−, we have that for 𝑥 > 0

𝐺−(−𝑥) = 𝐶−1 · 𝑄(⌈𝑥⌉ − 1). (2.5)

Now, by Lemma 8, we know that

(1 − 𝜖) · 𝐺−(−𝑥) < 𝐷+(𝑥) < (1 + 𝜖) · 𝐺−(−𝑥),

for any 𝜖 > 0 and all 𝑥 large enough. It follows that

lim inf
𝑥→∞

𝐷+(𝑥)
𝑄(𝑥) = lim inf

𝑥→∞
𝐺−(−𝑥)
𝑄(𝑥) ,

which, by (2.5) equals

lim inf
𝑥→∞

𝐶−1𝑄(⌈𝑥⌉ − 1)
𝑄(𝑥) ≥ 𝐶−1.

□

2.6 Long-term behavior of public belief
The primary goal of this section is to prove Theorem 6, which states that public
belief is asymptotically given by the solution to the differential equation (2.3). The
proof of this theorem uses two general lemmas regarding recurrence relations. We
state these lemmas now and prove them later. The first lemma states that two similar
recurrence relations yield similar solutions. The second shows that the solution to
a recurrence relation (of the type we are interested in) is well approximated by the
solution to the corresponding differential equation.

Lemma 9. Let 𝐴, 𝐵 : R>0 → R>0 be continuous, eventually monotone decreasing,
and tending to zero.

Let (𝑎𝑡) and (𝑏𝑡) be sequences satisfying the recurrence relations

𝑎𝑡+1 = 𝑎𝑡 + 𝐴(𝑎𝑡)
𝑏𝑡+1 = 𝑏𝑡 + 𝐵(𝑏𝑡).

Suppose

lim
𝑥→∞

𝐴(𝑥)
𝐵(𝑥) = 1.

Then

lim
𝑡→∞

𝑎𝑡

𝑏𝑡
= 1.
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Lemma 10. Assume that 𝐴 : R>0 → R>0 is a continuous function with a convex
differentiable tail, and that 𝐴(𝑥) goes to 0 as 𝑥 goes to ∞. Let (𝑎𝑡) be any sequence
satisfying the recurrence equation 𝑎𝑡+1 = 𝑎𝑡 + 𝐴(𝑎𝑡), and suppose there is a function
𝑓 : R>0 → R>0 with 𝑓 ′(𝑡) = 𝐴( 𝑓 (𝑡)) for all sufficiently large 𝑡. Then

lim
𝑡→∞

𝑓 (𝑡)
𝑎𝑡

= 1.

Given these lemmas, we are ready to prove our theorem.

Proof of Theorem 6. Let (𝑎𝑡) be any sequence in R>0 satisfying:

𝑎𝑡+1 = 𝑎𝑡 + 𝐺−(−𝑎𝑡).

Then by Lemma 10, the sequence (𝑎𝑡) is well approximated by 𝑓 (𝑡), the solution to
the corresponding differential equation:

lim
𝑡→∞

𝑎𝑡

𝑓 (𝑡) = 1.

Now, conditional on 𝜃 = +1, all agents take action +1 from some point on with
probability 1. Thus, with probability 1,

ℓ𝑡+1 = ℓ𝑡 + 𝐷+(ℓ𝑡)

for all sufficiently large 𝑡. Further, by Lemma 8,

lim
𝑥→∞

𝐷+(𝑥)
𝐺−(−𝑥)

= 1.

So by Lemma 9,

lim
𝑡→∞

ℓ𝑡

𝑎𝑡
= 1

with probability 1. Thus, we have

lim
𝑡→∞

ℓ𝑡

𝑓 (𝑡) = lim
𝑡→∞

ℓ𝑡

𝑎𝑡
· 𝑎𝑡

𝑓 (𝑡) = 1

with probability 1. □
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Proofs of Lemmas 9 and 10

Proof of Lemma 9. We prove the claim in two steps. First, we show that for every
𝜀 > 0 there are infinitely many times 𝑡 such that

(1 − 𝜀)𝑎𝑡 ≤ 𝑏𝑡 ≤ (1 + 𝜀)𝑎𝑡 . (2.6)

Second, we show that if (2.6) holds for some 𝑡 large enough, then it holds for all
𝑡′ > 𝑡, proving the claim.

We start with step 1. Assume without loss of generality that 𝑎𝑡 ≤ 𝑏𝑡 for infinitely
many values of 𝑡. Fix 𝜀 > 0. To show that (1 − 𝜀)𝑎𝑡 ≤ 𝑏𝑡 ≤ (1 + 𝜀)𝑎𝑡 holds for
infinitely many values of 𝑡, let 𝑥0 > 1 be such that for all 𝑥 > 𝑥0 it holds that 𝐴 and
𝐵 are monotone decreasing,

𝐴(𝑥), 𝐵(𝑥) < 𝜀 < 1

and

(1 − 𝜀/2)𝐴(𝑥) < 𝐵(𝑥) < (1 + 𝜀/2)𝐴(𝑥). (2.7)

Assume that 𝑎𝑡 , 𝑏𝑡 > 𝑥0; this will indeed be the case for 𝑡 large enough, since 𝐴 and
𝐵 are positive and continuous, and so both 𝑎𝑡 and 𝑏𝑡 are monotone increasing and
tend to infinity. So

𝐵(𝑏𝑡) < (1 + 𝜀/2)𝐴(𝑏𝑡) ≤ (1 + 𝜀/2)𝐴(𝑎𝑡),

where the first inequality follows from (2.7), and the second follows from the fact
that 𝐴 is monotone decreasing and 𝑎𝑡 < 𝑏𝑡 . Since 𝐵(𝑏(𝑡)) = 𝑏𝑡+1 − 𝑏(𝑡) and
𝐴(𝑎𝑡) = 𝑎𝑡+1 − 𝑎(𝑡) we have shown that

𝑏𝑡+1 − 𝑏𝑡 < (1 + 𝜀/2) (𝑎𝑡+1 − 𝑎𝑡),

and so eventually 𝑏𝑡 ≤ (1 + 𝜀)𝑎𝑡 . Also, notice that the first time this obtains, we
also have that the left inequality in (2.6) holds at the same moment:

𝑏𝑡 > 𝑏𝑡−1 > 𝑎𝑡−1 = 𝑎𝑡 − (𝑎𝑡 − 𝑎𝑡−1) > 𝑎𝑡 − 𝜀 > 𝑎𝑡 − 𝜀𝑎𝑡 = (1 − 𝜀)𝑎𝑡 .

This completes the first step. Now we go to step 2. Here we show that if (2.6) holds
for large enough 𝑡 then it holds for all 𝑡′ > 𝑡.
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Fix 𝜀 > 0, and let 𝑥0 be defined as above. Suppose that (1 − 𝜀)𝑎𝑡 < 𝑏𝑡 < (1 + 𝜀)𝑎𝑡 ,
with 𝑎𝑡 , 𝑏𝑡 > 𝑥0. Assume without loss of generality that 𝑏𝑡 ≥ 𝑎𝑡 . Then our
assumptions and (2.7) imply

𝑏𝑡+1 = 𝑏𝑡 + 𝐵(𝑏𝑡)
< (1 + 𝜀)𝑎𝑡 + (1 + 𝜀)𝐴(𝑏𝑡).

Because 𝑎𝑡 ≤ 𝑏𝑡 and 𝐴 is decreasing we have

𝑏𝑡+1 < (1 + 𝜀)𝑎𝑡 + (1 + 𝜀)𝐴(𝑎𝑡)
= (1 + 𝜀)𝑎𝑡+1.

For the other direction, note first that

𝑏𝑡+1 > 𝑏𝑡 ≥ 𝑎𝑡 ,

by assumption. We can write 𝑎𝑡 = (1 − 𝜀)𝑎𝑡 + 𝜀𝑎𝑡 , and since 𝑎𝑡 > 𝑥0 > 1,
𝜀𝑎𝑡 > (1 − 𝜀)𝜀, and so

𝑏𝑡+1 > (1 − 𝜀)𝑎𝑡 + (1 − 𝜀)𝜀.

Now, 𝜀 > 𝐴(𝑎𝑡) since 𝑎𝑡 > 𝑥0, and so

𝑏𝑡+1 > (1 − 𝜀)𝑎𝑡 + (1 − 𝜀)𝐴(𝑎𝑡)
= (1 − 𝜀)𝑎𝑡+1.

Thus

(1 − 𝜀)𝑎𝑡+1 < 𝑏𝑡+1 < (1 + 𝜀)𝑎𝑡+1, (2.8)

as required.

□

Proof of Lemma 10. We restrict the domain of 𝑓 to the interval (𝑡0,∞) such that for
𝑡 > 𝑡0 it already holds that 𝑓 ′(𝑡) = 𝐴( 𝑓 (𝑡)). Since 𝐴 is continuous, lim𝑡→∞ 𝑓 (𝑡) =
∞, and so we can also assume that in the interval ( 𝑓 (𝑡0),∞) it holds that 𝐴 is convex
and differentiable.

Since 𝑓 is strictly increasing in (𝑡0,∞), it has an inverse 𝑓 −1. For 𝑥 large enough
define 𝐵(𝑥) = 𝑓 ( 𝑓 −1(𝑥) + 1) − 𝑥.
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Now, let (𝑏𝑡) be any sequence satisfying the recurrence relation

𝑏𝑡+1 = 𝑏𝑡 + 𝐵(𝑏𝑡).

In order to apply Lemma 9, we will first show that

lim
𝑥→∞

𝐵(𝑥)
𝐴(𝑥) = 1.

Let 𝑡 = 𝑓 −1(𝑥). Such a 𝑡 exists and is unique for all sufficiently large 𝑥, because 𝑓
is monotone. Notice that by the definitions of 𝐵(𝑥) and 𝑓 ′(𝑥)

𝐵(𝑥) = 𝑓 ( 𝑓 −1(𝑥) + 1) − 𝑥
= 𝑓 ( 𝑓 −1(𝑥) + 1) − 𝑥 − 𝑓 ′( 𝑓 −1(𝑥)) + 𝑓 ′( 𝑓 −1(𝑥))
= 𝑓 (𝑡 + 1) − 𝑓 (𝑡) − 𝑓 ′(𝑡) + 𝐴( 𝑓 (𝑡)),

where in the last equality we substitute 𝑡 = 𝑓 −1(𝑥). Because 𝑓 ′ is positive and
decreasing ( 𝑓 is concave) then 𝑓 (𝑡 + 1) − 𝑓 (𝑡) ≥ 𝑓 ′(𝑡 + 1), and so

𝐵(𝑥) ≥ 𝑓 ′(𝑡 + 1) − 𝑓 ′(𝑡) + 𝐴( 𝑓 (𝑡)).

By the definition of 𝑓 , 𝑓 ′(𝑡) = 𝐴( 𝑓 (𝑡)), and so

𝐵(𝑥) ≥ 𝐴( 𝑓 (𝑡 + 1)) − 𝐴( 𝑓 (𝑡)) + 𝐴( 𝑓 (𝑡)) = 𝐴( 𝑓 (𝑡 + 1)).

Again, due to concavity of 𝑓 we have 𝑓 (𝑡 + 1) ≤ 𝑓 (𝑡) + 𝑓 ′(𝑡) and as 𝐴 is decreasing
and convex we get

𝐵(𝑥) ≥ 𝐴( 𝑓 (𝑡) + 𝑓 ′(𝑡))
≥ 𝐴′( 𝑓 (𝑡)) 𝑓 ′(𝑡) + 𝐴( 𝑓 (𝑡))
= 𝐴′( 𝑓 (𝑡))𝐴( 𝑓 (𝑡)) + 𝐴( 𝑓 (𝑡)).

We now substitute back 𝑥 = 𝑓 (𝑡):

𝐵(𝑥) ≥ 𝐴′(𝑥)𝐴(𝑥) + 𝐴(𝑥)
= 𝐴(𝑥) (𝐴′(𝑥) + 1)

so in particular, since 𝐴′(𝑥) → 0 as 𝑥 → ∞,

lim inf
𝑥→∞

𝐵(𝑥)
𝐴(𝑥) ≥ 1.
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Now we are going to show that lim sup𝑥→∞
𝐵(𝑥)
𝐴(𝑥) ≤ 1 which will conclude the proof.

By the definitions of 𝑓 −1(𝑥) and 𝐵(𝑥)

𝐵(𝑥) = 𝐵( 𝑓 (𝑡)) = 𝑓 (𝑡 + 1) − 𝑓 (𝑡) =
∫ 𝑡+1

𝑡

𝑓 ′(𝜁) d𝜁 .

As 𝑓 ′ is decreasing it follows that

𝐵(𝑥) ≤
∫ 𝑡+1

𝑡

𝑓 ′(𝑡) d𝜁 = 𝑓 ′(𝑡) = 𝐴( 𝑓 (𝑡)) = 𝐴(𝑥).

Therefore,

lim sup
𝑥→∞

𝐵(𝑥)
𝐴(𝑥) ≤ 1.

Hence, from these two inequalities we get that

lim
𝑥→∞

𝐵(𝑥)
𝐴(𝑥) = 1.

Now notice that, by construction, 𝑓 (𝑡 + 1) = 𝑓 (𝑡) + 𝐵( 𝑓 (𝑡)). Thus, by Lemma 9,

lim
𝑛→∞

𝑓 (𝑡)
𝑎𝑡

= 1.

□

Monotonicity of solutions to a differential equation
We now prove a general lemma regarding differential equations of the form 𝑎′(𝑡) =
𝐴(𝑎(𝑡)). It shows that the solutions to this equation are monotone in 𝐴. This is
useful for calculating approximate analytic solutions whenever it is impossible to
find analytic exact solutions, as is the case of Gaussian signals, in which we use this
lemma.

Lemma 11. Let 𝐴, 𝐵 : R>0 → R>0 be continuous, and let 𝑎, 𝑏 : R>0 → R>0 satisfy
𝑎′(𝑡) = 𝐴(𝑎(𝑡)) and 𝑏′(𝑡) = 𝐵(𝑏(𝑡)) for all sufficiently large 𝑡.

Suppose that

lim inf
𝑥→∞

𝐴(𝑥)
𝐵(𝑥) > 1.

Then 𝑎(𝑡) > 𝑏(𝑡) for all sufficiently large 𝑡.
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Proof. Notice that 𝑎(𝑡) and 𝑏(𝑡) are eventually monotone increasing and tend to
infinity as 𝑡 tends to infinity. Thus for all 𝑥 greater than some 𝑥0 > 0 large enough,
𝑎 and 𝑏 have inverses that satisfy the following differential equations:

d
d𝑥
𝑎−1(𝑥) = 1

𝐴(𝑥)
d
d𝑥
𝑏−1(𝑥) = 1

𝐵(𝑥) ·

Since lim inf𝑥 𝐴(𝑥)/𝐵(𝑥) > 1, we can furthermore choose 𝑥0 so that for all 𝑥 ≥ 𝑥0,
𝐴(𝑥) > (1 + 𝜀)𝐵(𝑥) for some 𝜀 > 0. Thus, for 𝑥 > 𝑥0

𝑎−1(𝑥) = 𝑎−1(𝑥0) +
∫ 𝑥

𝑥0

1
𝐴(𝑥) d𝑥

𝑏−1(𝑥) = 𝑏−1(𝑥0) +
∫ 𝑥

𝑥0

1
𝐵(𝑥) d𝑥

and so

𝑎−1(𝑥) < 𝑎−1(𝑥0) +
1

1 + 𝜀

∫ 𝑥

𝑥0

1
𝐵(𝑥) d𝑥

= 𝑎−1(𝑥0) +
1

1 + 𝜀 (𝑏
−1(𝑥) − 𝑏−1(𝑥0))

and thus

𝑎−1(𝑥) − 𝑏−1(𝑥) < − 𝜀

1 + 𝜀 𝑏
−1(𝑥) +

[
𝑎−1(𝑥0) −

1
1 + 𝜀 𝑏

−1(𝑥0)
]
.

Since 𝑏−1(𝑥) tends to infinity as 𝑥 tends to infinity, it follows that for all sufficiently
large 𝑥, 𝑎−1(𝑥) < 𝑏−1(𝑥). Thus, for all sufficiently large 𝑡

𝑡 = 𝑎−1(𝑎(𝑡)) < 𝑏−1(𝑎(𝑡)),

and so, since 𝑏(𝑡) is monotone increasing,

𝑏(𝑡) < 𝑎(𝑡).

□

Eventual monotonicity of public belief update
We end this section with a lemma that shows that under some technical conditions
on the left tail of 𝐺−, the function 𝑢+(𝑥) = 𝑥 + 𝐷+(𝑥) (i.e., the function that
determines how the public log-likelihood ratio is updated when the action +1 is
taken) is eventually monotone increasing.
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Lemma 12. Suppose 𝐺− has a convex and differentiable left tail. Then the map
𝑢+(𝑥) = 𝑥 + 𝐷+(𝑥) is monotone increasing for all sufficiently large 𝑥.

Proof. Recall that

𝐷+(𝑥) = log
1 − 𝐺+(−𝑥)
1 − 𝐺−(−𝑥)

·

Since 𝐺− has a differentiable left tail, it has a derivative 𝑔−(−𝑥) for all 𝑥 large
enough. It then follows from (2.4) that 𝐺+ also has a derivative in this domain, and

𝑢′+(𝑥) = 1 + 𝑔+(−𝑥)
1 − 𝐺+(−𝑥)

− 𝑔−(−𝑥)
1 − 𝐺−(−𝑥)

= 1 + e−𝑥𝑔−(−𝑥)
1 − 𝐺+(−𝑥)

− 𝑔−(−𝑥)
1 − 𝐺−(−𝑥)

·

Since 1 − 𝐺−(−𝑥) and 1 − 𝐺+(−𝑥) tend to 1 as 𝑥 tends to infinity,

lim
𝑥→∞

𝑢′+(𝑥) = lim
𝑥→∞

1 + e−𝑥𝑔−(−𝑥) − 𝑔−(−𝑥).

Since 𝐺− is eventually convex, 𝑔−(−𝑥) tends to zero, and therefore

lim
𝑥→∞

𝑢′+(𝑥) = 1.

In particular, 𝑢′+(𝑥) is positive for 𝑥 large enough, and hence 𝑢+(𝑥) is eventually
monotone increasing. □

2.7 Gaussian private signals
Preliminaries
We say that private signals are Gaussian when 𝐹− is the normal distribution with
mean −1 and variance 𝜎2, and 𝐹+ is the normal distribution with mean +1 and
variance 𝜎2. To calculate the evolution of ℓ𝑡 , we need to calculate 𝐺+ and 𝐺−, the
conditional distributions of the private log-likelihood ratio 𝐿𝑡 . Notice that in this
case

𝐿𝑡 = log
e−(𝑠𝑡−1)2/2𝜎2

e−(𝑠𝑡−(−1))2/2𝜎2 = 2𝑠𝑡/𝜎2,

so that 𝐿𝑡 is simply proportional to the signal 𝑠𝑡 . It follows that 𝐿𝑡 is also nor-
mally distributed, conditioned on the state 𝜃, and that 𝐺+ and 𝐺− are cumulative
distribution functions of Gaussians, with variance 4/𝜎2.
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Notation

In this section and those that follow, we denote by ℓ∗𝑡 the public log-likelihood ratio
when all agents before agent 𝑡 take the correct action. Formally,

ℓ∗𝑡 = log
P(𝜃 = +1 | 𝑎1 = · · · = 𝑎𝑡−1 = +1)
P(𝜃 = −1 | 𝑎1 = · · · = 𝑎𝑡−1 = +1) ·

For convenience, we will also use the notation P+(·) as shorthand for P(· | 𝜃 = +1).

The evolution of public belief

Proof of Theorem 7. Let 𝑓 : R>0 → R>0 be any function such that 𝑓 ′(𝑡) = 𝐺−(− 𝑓 (𝑡))
for all sufficiently large 𝑡. Then by Theorem 6,

lim
𝑡→∞

ℓ𝑡

𝑓 (𝑡) = 1

with probability 1.

Recall from above that 𝐿𝑡 is distributed normally, and 𝐺−(−𝑥) is the CDF of a
normal distribution with variance 𝜏2 = 4/𝜎2.

For 1 > 𝜂 ≥ 0, define

𝐹𝜂 (𝑥) =
e−

1−𝜂

2𝜏2 𝑥
2

𝑥

𝑓𝜂 (𝑡) =
√

2𝜏√︁
1 − 𝜂

√︂
log(𝑡) + log

(1 − 𝜂)2

2𝜏2 ·

By a routine application of L’Hospital’s rule, 𝐹0 and 𝐹𝜂 are lower and upper bounds
for 𝐺−, in the sense that

lim
𝑥→∞

𝐺−(−𝑥)
𝐹0(𝑥)

= ∞

lim
𝑥→∞

𝐹𝜂 (𝑥)
𝐺−(−𝑥)

= ∞, 𝜂 > 0.

Since 𝑓 ′𝜂 (𝑡) = 𝐹𝜂 ( 𝑓𝜂 (𝑡)) for all sufficiently large 𝑡, we have by Lemma 11 that for
any 𝜂 > 0,

𝑓0(𝑡) < 𝑓 (𝑡) < 𝑓𝜂 (𝑡)

for all sufficiently large 𝑡. So

lim inf
𝑡→∞

𝑓 (𝑡)
√

2𝜏
√︁

log 𝑡
= lim inf

𝑡→∞
𝑓 (𝑡)
𝑓0(𝑡)

≥ 1
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and for any 𝜂 > 0,

lim sup
𝑡→∞

𝑓 (𝑡)
√

2𝜏
√︁

log 𝑡
=

1√︁
1 − 𝜂

· lim sup
𝑡→∞

𝑓 (𝑡)
𝑓𝜂 (𝑡)

≤ 1√︁
1 − 𝜂

·

Thus,

lim
𝑡→∞

𝑓 (𝑡)
√

2𝜏
√︁

log 𝑡
= lim
𝑡→∞

𝑓 (𝑡)
(2
√

2/𝜎)
√︁

log 𝑡
= 1

so with probability 1,

lim
𝑡→∞

ℓ𝑡

(2
√

2/𝜎)
√︁

log 𝑡
= lim
𝑡→∞

ℓ𝑡

𝑓 (𝑡) ·
𝑓 (𝑡)

(2
√

2/𝜎)
√︁

log 𝑡
= 1.

□

To prove Theorem 8, we will need two lemmas. The first is general, and will be used
several times in the sequel, while the second deals exclusively with the Gaussian
case.

Denote by 𝐸𝑡 the event that 𝑎𝜏 = +1 for all 𝜏 ≥ 𝑡; that is, that there are no more
mistakes after time 𝑡. The next lemma provides a uniform bound for the probability
of 𝐸𝑡 , conditioned on the public belief. It implies, in particular, that the probability
of 𝐸1 is positive, which we will use in the proof of Theorem 8.

Lemma 13. Suppose 𝐺− and 𝐺+ are continuous, and 𝐺− has a convex and differ-
entiable left tail. Then for every 𝐿 ∈ R, there is some 𝑚𝐿 > 0 such that for any 𝑡,
𝑥 ≥ 𝐿 implies P+(𝐸𝑡 | ℓ𝑡 = 𝑥) ≥ 𝑚𝐿 .

Proof. Recall the definition of the public belief 𝜇𝑡 = P(𝜃 = +1|𝑎1, . . . , 𝑎𝑡−1).
The process (𝜇1, 𝜇2, . . .) is a bounded martingale, and therefore, by a standard
argument on bounded martingales, if we condition on 𝜇𝑡 = 𝑞, then the probability
that 𝜇𝜏 ≤ 1/2 for some 𝜏 > 𝑡 is at most 2(1 − 𝑞).11 This event is precisely the
complement of 𝐸𝑡 , and therefore we have that P(𝐸𝑡 | 𝜇𝑡 = 𝑞) is at least 2𝑞 − 1.
Hence, conditioning on 𝜃 = +1, we have that P+(𝐸𝑡 | 𝜇𝑡 = 1 − 𝑞) ≥ (2𝑞 − 1)/𝑞,
which is positive for all 𝑞 > 1/2.

Since 𝜇𝑡 = 𝑞 is equivalent to ℓ𝑡 = log 𝑞/(1 − 𝑞), what we have shown implies that
there is an 𝜀 > 0 such that for all 𝑥 ≥ 1 (here the choice of 1 is arbitrary and can be

11Intuitively, if I assign high belief now to the event 𝜃 = +1, then the probability that I assign this
event low belief in the future must be small.
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replaced with any positive number)

P+(𝐸𝑡 | ℓ𝑡 = 𝑥) > 𝜀.

Now, for any 𝐿 < 1, the compactness of the interval [𝐿, 1], together with the
continuity of𝐺− and𝐺+, implies that there is an 𝑛𝐿 such that if ℓ𝑡 ≥ 𝐿, and if agents
𝑡 through 𝑡 + 𝑛𝐿 − 1 take action +1, then ℓ𝑡+𝑛𝐿 > 1. Further, since the probability of
agents 𝑡 through 𝑡 + 𝑛𝐿 − 1 all taking action +1 conditional on ℓ𝑡 = 𝑥 is continuous
in 𝑥, there is a 𝑝𝐿 > 0 such that

P+(𝐸𝑡 | ℓ𝑡 = 𝑥) ≥ 𝑝𝐿 · 𝜀

since with probability at least 𝑝𝐿 there are no mistakes up to time 𝑡 + 𝑛𝐿 , and thence
there are no mistakes with probability at least 𝜀.

□
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Lemma 14. Assume private signals are Gaussian. For every 𝜀 > 0 there exists
some 𝑘 > 0 such that for all 𝑡,

P+(𝑎𝑡 = −1 | 𝑎𝜏 = +1 for all 𝜏 < 𝑡) > 𝑘

𝑡1+𝜀
·

Proof. By the definitions of ℓ∗𝑡 and 𝐺+,

P+(𝑎𝑡 = −1 | 𝑎𝜏 = +1 for all 𝜏 < 𝑡) = P+(𝑎𝑡 = −1 | ℓ𝑡 = ℓ∗𝑡 )
= 𝐺+(−ℓ∗𝑡 ).

Now, by Theorem 7, for every 𝛽 > 0, ℓ∗𝑡 < (1 + 𝛽) 2
√

2
𝜎

√︁
log 𝑡 for all sufficiently

large 𝑡. Further, it follows from a routine application of L’Hopital’s rule (or from
the standard asymptotic expansion for the CDF of a normal distribution) that for all
sufficiently large 𝑥,

𝐺+(−𝑥) >
e−(𝜎2/8)𝑥2

𝑥
·

Let 𝜀 > 0, and take 𝛽 <
√

1 + 𝜀 − 1. Then by monotonicity of 𝐺+(−𝑥) and a
straightforward calculation,

𝐺+(−ℓ∗𝑡 ) > 𝐺+(−(1 + 𝛽)2
√

2
𝜎

√︁
log 𝑡)

>

[
1

(1 + 𝛽) 2
√

2
𝜎

]
· 𝑡

(1+𝜀)−(1+𝛽)2√︁
log 𝑡

· 1
𝑡1+𝜀

>
1
𝑡1+𝜀

for all sufficiently large 𝑡. From this, the claim follows immediately.

□

Proof of Theorem 8. Denote by 𝐶𝑡 be the event that 𝑎𝜏 = +1 for all 𝜏 < 𝑡, and note
that the event 𝑇1 = 𝑡 is simply the intersection of 𝐶𝑡 with the event that 𝑎𝑡 = −1.

Let 𝜀 > 0. By Lemma 14 there is some 𝑘′ > 0 such that for all 𝑡,

P+(𝑎𝑡 = −1 |𝐶𝑡) >
𝑘′

𝑡1+𝜀
·

Now, put 𝛾 = P+(𝑎𝜏 = +1 for all 𝜏 ≥ 1), the probability that all agents take the
correct action. By Lemma 13, 𝛾 > 0, so this provides a lower bound on the
probability of the first 𝑡 − 1 agents taking the correct action. Formally,

P+(𝐶𝑡) ≥ P+(𝑎𝜏 = +1 for all 𝜏 ≥ 1) = 𝛾.
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Thus,

P+(𝑇1 = 𝑡) = P+(𝑎𝑡 = −1, 𝐶𝑡)
= P+(𝑎𝑡 = −1 |𝐶𝑡) · P+(𝐶𝑡)

≥ 𝛾𝑘′

𝑡1+𝜀

for all 𝑡.

□

2.8 Upsets and runs
We recall a few definitions from Section 2.3. We say that there is an upset at time
𝑡 if 𝑎𝑡−1 ≠ 𝑎𝑡 . We denote by Ξ the random variable which assigns to each outcome
the total number of upsets, and by Ξ𝑡 the total number of upsets at times up to and
including 𝑡. We say that there is a run of length𝑚 from 𝑡 if 𝑎𝑡 = 𝑎𝑡+1 = · · · = 𝑎𝑡+𝑚−1.
Note that this definition does not preclude a run from being part of a longer run; we
will refer to a run of finite length which is not strictly contained in any other run as
maximal. We say that a run from 𝑡 is good if 𝑎𝑡 = +1 and bad otherwise.

Notice that the number of maximal runs is exactly equal to the number of upsets.
We use this observation now to show that the probability of having many maximal
runs is very small, so that most of the probability is concentrated in the outcomes
with few maximal runs.

Proof of Proposition 8. Denote byΥ the random variable which assigns to each out-
come the number of finite maximal good runs it contains; note that with probability
1, Υ is finite.

By Lemma 13, there is a 𝛽 > 0 such that for any 𝑥 ≥ 0, if ℓ𝑡 = 𝑥, then the probability
that all agents from 𝑡 on take the correct action is at least 𝛽. Formally,12

P+(𝑎𝜏 = +1 for all 𝜏 ≥ 𝑡 | ℓ𝑡 = 𝑥) ≥ 𝛽.

Thus, whenever 𝑎𝑡−1 = −1 and 𝑎𝑡 = +1 (or 𝑡 = 1), the probability that there is
exactly one more maximal good run is at most 1 − 𝛽. It follows that for 𝑛 ≥ 0,

P+(Υ = 𝑛 + 1) ≤ (1 − 𝛽)P+(Υ = 𝑛)

12We remind the reader that P+ (·) is shorthand for P(· | 𝜃 = +1).
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and thus, for any 𝑛 ≥ 0,

P+(Υ = 𝑛) ≤ (1 − 𝛽)𝑛P+(Υ = 0)

and so

P+(Υ ≥ 𝑛) ≤ P+(Υ = 0)
𝛽

· (1 − 𝛽)𝑛.

Finally, since Υ = ⌊Ξ/2⌋, we have for any 𝑛:

P+(Ξ ≥ 𝑛) ≤ P+(Υ ≥ ⌊𝑛/2⌋) ≤ 𝑐 · 𝛾𝑛

where 𝑐 = P+(Υ = 0)/𝛽 and 𝛾 = (1 − 𝛽) 1
3 .

□

Whenever asymptotic learning occurs (that is, whenever the probability that all
agents take the correct action from some point on is equal to 1), the total number of
upsets is almost surely finite. In particular, the probability that Ξ𝑡 is logarithmic in
𝑡 tends to zero as 𝑡 tends to infinity. Using Proposition 8, we can show that in fact
this probability tends to 0 quickly:

Corollary 2. Let 𝑐, 𝛾 be as in Proposition 8. Then

P(Ξ𝑡 ≥ − 2.1
log 𝛾

log 𝑡) ≤ 𝑐 · 1
𝑡2.1

·

Proof.

P(Ξ𝑡 ≥ − 2.1
log 𝛾

log 𝑡) ≤ P(Ξ ≥ − 2.1
log 𝛾

log 𝑡)

≤ 𝑐 · 𝛾−
2.1

log 𝛾
log 𝑡

= 𝑐 · 1
𝑡2.1

·

□

In fact, it is equally easy to show the same statement for exponents larger than 2.1,
but this will suffice for our purposes.

One important consequence of Corollary 2 is that with high probability, there is at
least one maximal run before time 𝑡 which is long relative to 𝑡. Thus, much of the
dynamics is controlled by what happens during long runs.
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We previously analyzed only long runs that start at time 1, when the public log-
likelihood ratio is equal to 0. If a long run starts at some public belief ℓ𝑡 ≠ 0 then
its evolution is different from the former case. However, if the run is long enough
then the analysis above can still be applied. The following lemma states that if a run
starts at some ℓ𝑡 > 0 then we can bound the future public belief from below using
ℓ∗.

Lemma 15. Suppose that 𝐺− has a convex and differentiable left tail. Then there
exists a 𝑧 > 0 such that, if there is a good run of length 𝑠 from 𝑡, then ℓ𝑡+𝑠 ≥ ℓ∗𝑠−𝑧.

Proof. Let 𝑢+(𝑥) = 𝑥 + 𝐷+(𝑥). Then by (2.1), whenever agent 𝑡 takes action +1,
ℓ𝑡+1 = 𝑢+(ℓ𝑡).

Since 𝐺− is eventually convex and differentiable, 𝑢+(𝑥) is monotone increasing for
sufficiently large 𝑥, by Lemma 12. Take

𝑧 = min {𝑡 ∈ N : 𝑢+(𝑥) is monotone on (ℓ∗𝑡 − 1,∞)}.

Now, let 𝜇 = inf𝑥∈[0,ℓ∗𝑧] 𝐷+(𝑥). By continuity of 𝐷+(𝑥) and compactness of [0, ℓ∗𝑧 ],
𝜇 > 0, since 𝐷+(𝑥) > 0 for all 𝑥. Put 𝑁 = ⌈ ℓ

∗
𝑧

𝜇
⌉. Then for all 𝑥 ∈ [0, ℓ∗𝑧 ],

𝑢𝑁+ (𝑥) ≥ 𝜇 · 𝑁 ≥ ℓ∗𝑧 . Further, since 𝑢+(𝑥) > 𝑥 for all 𝑥, it follows that whenever
there is a run of length 𝑁 from 𝑡, ℓ𝑡+𝑁 > ℓ∗𝑧 .

This implies that if there is a good run from 𝑡 of length 𝑠 ≥ 𝑁 , then ℓ𝑡+𝑠 ≥ ℓ∗𝑠−𝑧.

□

2.9 Distributions with polynomial tails
In this appendix we prove Theorem 9, showing that for private log-likelihood dis-
tributions with polynomial tails, the expected time to learn is finite.

As in the setting of Theorem 9, assume that the conditional distributions of the
private log-likelihood ratio satisfy

𝐺+(𝑥) = 1 − 𝑐

𝑥𝑘
for all 𝑥 > 𝑥0 (2.9)

𝐺−(𝑥) =
𝑐

(−𝑥)𝑘
for all 𝑥 < −𝑥0 (2.10)

for some 𝑥0 > 0.

We remind the reader that we denote by ℓ∗𝑡 the log-likelihood ratio of the public belief
that results when the first 𝑡 − 1 agents take action +1. It follows from Theorem 6
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that in this setting, ℓ∗𝑡 behaves asymptotically as 𝑡1/(𝑘+1) . Notice also that, by the
symmetry of the model, the log-likelihood ratio of the public belief that results when
the first 𝑡 − 1 agents take action −1 is −ℓ∗𝑡 .

We begin with the simple observation that a strong enough bound on the probability
of mistake is sufficient to show that the expected time to learn is finite. Formally,
we have the following lemma. We remind the reader that P+(·) is shorthand for
P(· | 𝜃 = +1).

Lemma 16. Suppose there exist 𝑘 , 𝜀 > 0 such that for all 𝑡 ≥ 1, P+(𝑎𝑡 = −1) <
𝑘 · 1

𝑡2+𝜀
. Then E+(𝑇𝐿) is finite.

Proof. Since 𝑇𝐿 = 𝑡 only if 𝑎𝑡−1 = −1, P+(𝑇𝐿 = 𝑡) ≤ P+(𝑎𝑡−1 = −1). Thus

E+(𝑇𝐿) =
∞∑︁
𝑡=1

𝑡 · P+(𝑇𝐿 = 𝑡)

≤ P+(𝑇𝐿 = 1) +
∞∑︁
𝑡=2

𝑡 · P+(𝑎𝑡−1 = −1)

≤ 1 + 𝑘
∞∑︁
𝑖=2

𝑡

(𝑡 − 1)2+𝜀

< ∞.

□

Accordingly, this section will be primarily devoted to studying the rate of decay of
the probability of mistake, P+(𝑎𝑡 = −1). In order to bound this probability, we will
need to make use of the following lemmas, which give some control over how the
public belief is updated following an upset.

Lemma 17. For 𝐺+ and 𝐺− as in (2.9) and (2.10), |ℓ𝑡+1 | ≤ |ℓ𝑡 | whenever |ℓ𝑡 | is
sufficiently large and 𝑎𝑡 ≠ 𝑎𝑡+1.

Proof. Assume without loss of generality that 𝑎𝑡 = +1 and 𝑎𝑡+1 = −1, so that

ℓ𝑡+1 = ℓ𝑡 + 𝐷−(ℓ𝑡).

Thus, to prove the claim we compute a bound for 𝐷−. To do so we first obtain a
bound for the left tail of 𝐺+. By assumption, for 𝑥 > 𝑥0 (with 𝑥0 as in (2.9) and
(2.10)),

𝑔−(−𝑥) = 𝐺′
−(−𝑥) =

𝑐𝑘

𝑥𝑘+1
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and so by (2.4),

𝑔+(−𝑥) = e−𝑥𝑔−(−𝑥) = 𝑐𝑘
e−𝑥

𝑥𝑘+1 .

Hence,

𝐺+(−𝑥) =
∫ −𝑥

−∞
𝑔+(𝜁) d𝜁 =

∫ −𝑥

−∞
𝑐𝑘

e𝜁

(−𝜁)𝑘+1 d𝜁 = 𝑐𝑘

∫ ∞

𝑥

𝜁−𝑘−1e−𝜁 d𝜁 .

For 𝜁 sufficiently large, 𝜁−𝑘−1 is at least, say, e−.1𝜁 . Thus, for 𝑥 sufficiently large,

𝐺+(−𝑥) ≥ 𝑐𝑘
∫ ∞

𝑥

e−1.1𝜁 d𝜁 =
𝑐𝑘

1.1
e−1.1𝑥 .

It follows that for 𝑥 sufficiently large,

𝐷−(𝑥) = log
𝐺+(−𝑥)
𝐺−(−𝑥)

≥ log
𝑐𝑘

1.1
− 1.1𝑥 + 𝑘 log 𝑥 ≥ −1.2𝑥.

Thus, for ℓ𝑡 sufficiently large,

ℓ𝑡+1 = ℓ𝑡 + 𝐷−(ℓ𝑡) = ℓ𝑡 + log
𝐺+(−ℓ𝑡)
𝐺−(−ℓ𝑡)

≥ ℓ𝑡 + 1.2(−ℓ𝑡) = −.2ℓ𝑡

so in particular, |ℓ𝑡+1 | < |ℓ𝑡 |.

□

We will make use of the following lemma, which bounds the range of possible values
that ℓ𝑡 can take.

Lemma 18. For 𝐺+ and 𝐺− as in (2.9) and (2.10), there exists an 𝑀 > 0 such that
for all 𝑡 ≥ 0, |ℓ𝑠 | ≤ 𝑀 · ℓ∗𝑡 for all 𝑠 ≤ 𝑡.

Proof. For each 𝜏 ≥ 0, define

𝑀𝜏 = max
|ℓ𝜏 |
ℓ∗𝜏

where the maximum is taken over all outcomes. Note that there are at most 2𝜏

possible values for this expression, so 𝑀𝜏 is well-defined and finite. Put

𝑀 = sup
𝜏≥0

𝑀𝜏 .

To establish the claim, we must show that 𝑀 is finite. To do this, it suffices to show
that for 𝜏 sufficiently large, 𝑀𝜏+1 ≤ 𝑀𝜏.
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Now, let 𝑢+(𝑥) = 𝑥 + 𝐷+(𝑥) and 𝑢−(𝑥) = 𝑥 + 𝐷−(𝑥). Then as shown in the section
about the model, whenever agent 𝜏 takes action +1, ℓ𝜏+1 = 𝑢+(ℓ𝜏), and whenever
agent 𝜏 takes action −1, ℓ𝜏+1 = 𝑢−(ℓ𝜏).

By Lemma 12, 𝑢+ and 𝑢− are eventually monotonic. Thus, there exists 𝑥0 > 0
such that 𝑢+ is monotone increasing on (𝑥0,∞) and 𝑢− is monotone decreasing on
(−∞,−𝑥0).

For 𝜏 sufficiently large, ℓ∗𝜏 > 𝑥0. Further, it follows from Lemma 17 that for 𝜏
sufficiently large, |ℓ𝜏+1 | < |ℓ𝜏 | whenever 𝑎𝜏 ≠ 𝑎𝜏+1 and |ℓ𝜏 | > |ℓ∗𝜏 |. Let (𝑎𝜏) be any
sequence of actions with |ℓ𝜏+1 |

ℓ∗
𝜏+1

= 𝑀𝜏+1. If 𝑎𝜏 ≠ 𝑎𝜏+1

𝑀𝜏+1 =
|ℓ𝜏+1 |
ℓ∗
𝜏+1

≤ |ℓ𝜏 |
ℓ∗𝜏

≤ 𝑀𝜏 .

If 𝑎𝜏 = 𝑎𝜏+1, then either 𝑀𝜏+1 = 1, in which case 𝑀𝜏+1 ≤ 𝑀𝜏, or 𝑀𝜏+1 > 1. If
𝑀𝜏+1 > 1, then since |𝐷+ | and |𝐷− | are decreasing on (𝑥0,∞) and (−∞,−𝑥0),
respectively, |ℓ𝜏+1 − ℓ𝜏 |/|ℓ𝜏 | ≤ |ℓ∗

𝜏+1 − ℓ
∗
𝜏 |/|ℓ∗𝜏 |. So

𝑀𝜏+1 =
|ℓ𝜏+1 |
ℓ∗
𝜏+1

=
|ℓ𝜏 | + |ℓ𝜏+1 − ℓ𝜏 |
ℓ∗𝜏 + |ℓ∗

𝜏+1 − ℓ
∗
𝜏 |

where the second equality follows from the fact that ℓ𝜏 and ℓ𝜏+1 have the same sign.
Finally,

𝑀𝜏+1 =
|ℓ𝜏 |
ℓ∗𝜏

· 1 + |ℓ𝜏+1 − ℓ𝜏 |/|ℓ𝜏 |
1 + |ℓ∗

𝜏+1 − ℓ
∗
𝜏 |/ℓ∗𝜏

≤ |ℓ𝜏 |
ℓ∗𝜏

≤ 𝑀𝜏 .

Thus, for all sufficiently large 𝜏, 𝑀𝜏+1 ≤ 𝑀𝜏.

□

Proposition 9. There exists 𝜅 > 0 such that P+(𝑎𝑡 = −1) < 𝜅𝑡−2.1 for all 𝑡 > 0.

Proof. Let 𝛽 = −2.1/log 𝛾, where 𝛾 is as in Proposition 8. To carry out our analysis,
we will divide the event that 𝑎𝑡 = −1 into three disjoint events and bound each of
them separately:

𝐴 = (𝑎𝑡 = −1) and (Ξ𝑡 > 𝛽 log 𝑡)

𝐵1 = (𝑎𝑡 = −1) and (Ξ𝑡 ≤ 𝛽 log 𝑡) and ( |{𝑠 : 𝑠 < 𝑡, 𝑎𝑠 = +1}| ≥ 1
2
𝑡)

𝐵2 = (𝑎𝑡 = −1) and (Ξ𝑡 ≤ 𝛽 log 𝑡) and ( |{𝑠 : 𝑠 < 𝑡, 𝑎𝑠 = +1}| < 1
2
𝑡).
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First, by Corollary 2 we have a bound for P+(𝐴)

P+(𝐴) ≤ 𝑐 ·
1
𝑡2.1

.

Next, we bound P+(𝐵1). This is the event that the number of upsets so far is small
and the majority of agents so far have taken the correct action.

Since there are at most 𝛽 log 𝑡 upsets, there are at most 1
2 𝛽 log 𝑡 maximal good runs.

Since, furthermore, there are at least 1
2 𝑡 agents who take action +1, there is at least

one maximal good run of length at least 𝑡/(𝛽 log 𝑡).

Thus, P+(𝐵1) is bounded from above by the probability that there are some 𝑠1 <

𝑠2 < 𝑡 such that there is a good run of length 𝑠2 − 𝑠1 ≥ 𝑡/(𝛽 log 𝑡) from 𝑠1 and
𝑎𝑠2 = −1.

For fixed 𝑠1, 𝑠2, denote by 𝐸𝑠1,𝑠2 the event that there is a good run of length 𝑠2 − 𝑠1

from 𝑠1. Denote by Γ𝑠1,𝑠2 the event (𝐸𝑠1,𝑠2 , 𝑎𝑠2 = −1). Then

P+(Γ𝑠1,𝑠2) = P+(𝑎𝑠2 = −1|𝐸𝑠1,𝑠2) · P+(𝐸𝑠1,𝑠2)
≤ P+(𝑎𝑠2 = −1|𝐸𝑠1,𝑠2).

By Lemma 15, there exists a 𝑧 > 0 such that 𝐸𝑠1,𝑠2 implies that ℓ𝑠2 ≥ ℓ∗𝑠2−𝑠1−𝑧.
Therefore,

P+(Γ𝑠1,𝑠2) ≤ 𝐺+(−ℓ∗𝑠2−𝑠1−𝑧).

Since for 𝑡 sufficiently large ℓ∗𝑡 > 𝑡
1

𝑘+2 and since 𝐺+(−𝑥) ≤ e−𝑥 by (2.4),

P+(Γ𝑠1,𝑠2) ≤ e−𝛼(𝑠2−𝑠1−𝑧)
1

𝑘+2 ≤ e−𝛼(𝑡/(𝛽 log 𝑡)−𝑧)
1

𝑘+2
.

To simplify, we further bound this last expression to arrive at, for some 𝑐 > 0,

P+(Γ𝑠1,𝑠2) ≤ 𝑐e−𝑡
1

𝑘+3

for all 𝑡. Since 𝐵1 is covered by fewer than 𝑡2 events of the form Γ𝑠1,𝑠2 (as 𝑠1 and 𝑠2

are less than 𝑡), it follows that

P+(𝐵1) < 𝑐𝑡2e−𝑡
1

𝑘+3
<

1
𝑡2.1

for all 𝑡 large enough.

Finally we bound P+(𝐵2). This is the event that the number of upsets so far is small
and the majority of agents so far have taken the wrong action. As in 𝐵1, there is a
maximal bad run of length at least 𝑡/(𝛽 log(𝑡)).
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Denote by 𝑅 the event that there is at least one bad run of length 𝑡/(𝛽 log(𝑡)) before
time 𝑡 and by 𝑅𝑠 the event that agents 𝑠 through 𝑠 + 𝑡/(𝛽 log 𝑡) − 1 take action −1.
Since 𝐵2 is contained in 𝑅, and since 𝑅 is contained in the union ∪𝑡

𝑠=1𝑅𝑠, we have
that

P+(𝐵2) ≤ P+(𝑅) ≤
𝑡∑︁
𝑠=1
P+(𝑅𝑠).

Taking the maximum of all the addends in the right hand side, we can further bound
the probability of 𝐵2:

P+(𝐵2) ≤ 𝑡 · max
1≤𝑠≤𝑡

P+(𝑅𝑠).

Conditioned on ℓ𝑠, the probability of 𝑅𝑠 is

P+(𝑅𝑠 | ℓ𝑠) =
𝑠+𝑡/(𝛽 log 𝑡)−1∏

𝑟=𝑠

𝐺+(−ℓ𝑟).

By Lemma 18, there exists 𝑀 > 0 such that |ℓ𝑟 | ≤ 𝑀ℓ∗𝑡 , for all 𝑟 ≤ 𝑡. Therefore,
since 𝐺+ is monotone,

P+(𝑅𝑠) ≤ 𝐺+(𝑀ℓ∗𝑡 )𝑡/(𝛽 log 𝑡) .

It follows that

P+(𝐵2) ≤ 𝑡 · 𝐺+(𝑀ℓ∗𝑡 )𝑡/(𝛽 log 𝑡) .

Since 𝐺+(𝑥) = 1 − 𝑐 · 𝑥−𝑘 for 𝑥 large enough, and since ℓ∗𝑡 is asymptotically at most
𝑡1/(𝑘+0.5) , we have that

log𝐺+(𝑀ℓ∗𝑡 ) ≤ −𝑐𝑀−𝑘 · 𝑡−𝑘/(𝑘+0.5) .

Thus

P+(𝐵2) ≤ 𝑡 · exp
(
−𝑐𝑀−𝑘 · 𝑡1/(2𝑘+1)/(𝛽 log 𝑡)

)
≤ 𝑡−2.1,

for all 𝑡 large enough. This concludes the proof, because P+(𝑎𝑡 = −1) = P+(𝐴) +
P+(𝐵1) + P+(𝐵2) ≤ 𝜅 1

𝑡2.1
for some constant 𝜅.

□

Given this bound on the probability of mistakes, the proof of the main theorem of
this section follows easily from Lemma 16.
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Proof of Theorem 9. By Proposition 9, there exists 𝜅 > 0 such that P(𝑎𝑡 = −1 | 𝜃 =
+1) < 𝜅 1

𝑡2.1
for all 𝑡 ≥ 1. Hence, by Lemma 16 E(𝑇𝐿 | 𝜃 = +1) < ∞. By a symmetric

argument the same holds conditioned on 𝜃 = −1. Thus, the expected time to learn
is finite. □
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C h a p t e r 3

EQUITABLE VOTING RULES

3.1 Introduction
Literally translated to “power of the people,” democracy is commonly associated
with two fundamental tenets: equity among individuals and responsiveness to their
choices. May’s celebrated theorem provides foundation for voting systems satisfying
these two restrictions May (1952). Focusing on two-candidate elections, May
illustrated that majority rule is unique among voting rules that treat candidates
identically and guarantee symmetry and responsiveness.

Extensions of May’s original results are bountiful.1 However, what we view as a
procedural equity restriction in his original treatment—often termed anonymity or
symmetry—has remained largely unquestioned.2 This restriction requires that no
two individuals can affect the collective outcome by swapping their votes. Motivated
by various real-world voting systems, this paper focuses on a particular weakening
of this restriction. While still capturing the idea that no voter carries a special role,
our equity notion allows for a large spectrum of voting rules, some of which are
used in practice, and some of which we introduce. We analyze winning coalitions
of such equitable voting rules and show that they can comprise a vanishing fraction
of the population, but not less than the square root of its size. Methodologically,
we demonstrate how techniques from group theory can be useful for the analysis of
fundamental questions in social choice.

To illustrate our motivation, consider the stylized example of a representative democ-
racy rule: 𝑚 counties each have 𝑘 residents. Each county selects, using majority rule,
one of two representatives. Then, again using majority rule, the 𝑚 representatives
select one of two policies (see Figure 3.1 for the case 𝑚 = 𝑘 = 3).

This rule does not satisfy May’s original symmetry restriction: individuals could
swap their votes and change the outcome. In Figure 3.1, for example, suppose voters
{1, 2, 3, 4, 5} vote for representatives supporting policy A, while voters {6, 7, 8, 9}

1See, e.g., Cantillon and Rangel (2002), Fey (2004), Goodin and List (2006), and references
therein.

2An exception is Packel (1980), who relaxes the symmetry restriction and adds two additional
restrictions to generate a different characterization of majority rule than May’s.
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1 32 7 984 5 6

Figure 3.1: A representative democracy voting rule. Voters are grouped into three
counties: {1, 2, 3}, {4, 5, 6} and {7, 8, 9}. Each county elects a representative by
majority rule, and the election is decided by majority rule of the representatives.

vote for representatives supporting policy B. With the original votes, policy A would
win; but swapping voters 5 and 9 would cause policy B to win.

Even though representative democracy rules do not satisfy May’s symmetry assump-
tion, there certainly is an intuitive sense in which their fundamental characteristics
“appear” equitable. Indeed, variations of these rules were chosen in good faith by
many designers of modern democracies. Such rules are currently in use in France,
India, the United Kingdom, and the United States, among others.

Is there a formal sense in which a representative democracy rule is more equitable
than a dictatorship? More generally, what makes a voting rule equitable? We suggest
the following definition. In an equitable voting rule, for any two voters 𝑣 and 𝑤,
there is some permutation of the full set of voters such that: (i) the permutation
sends 𝑣 to 𝑤, and (ii) applying this permutation to any voting profile leaves the
election result unchanged.

In §3.2, we formalize the notion of “roles” in a voting body. For instance, in
university committees there are often two distinct roles: a chair and a standard
committee member; likewise, in juries, there is often a foreperson, who carries a
special role, and several jury members, who all have the same role. We show that
our notion of equity is tantamount to all agents in the electorate having the same
role.

Under our equity definition, representative democracy rules are indeed equitable,
but dictatorships are not. For instance, in the case depicted in Figure 3.1, voters 1
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Figure 3.2: Cross-committee consensus voting rule. The union of a row and a
column is a winning coalition.

and 2 play the same role, since the permutation that swaps them leaves any election
result unchanged. But 1 and 4 also play the same role: the permutation that swaps
the first county with the second county also leaves outcomes unchanged.

There is a large variety of equitable rules that are not representative democracy rules.
An example is what we call Cross Committee Consensus (CCC) rules. In these, each
voter is assigned to two committees: a “row committee” and a “column committee”
(see Figure 3.2). If any row committee and any column committee both exhibit
consensus, then their choice is adopted. Otherwise, majority rule is followed. For
instance, suppose a university is divided into equally-sized departments, and each
faculty member sits on one university-wide committee. CCC corresponds to a policy
being accepted if there is a strong unanimous lobby from a department and from a
university-wide committee, with majority rule governing decisions otherwise. This
rule is equitable since each voter is a member of precisely one committee of each
type, and all row (column) committees are interchangeable.

We provide a number of further examples of equitable voting rules, showing the
richness of this class and its versatility in allowing different segments of society—
counties, university departments, etc.—to express their preferences.
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In order to characterize more generally the class of equitable voting rules, we focus
on their winning coalitions, the sets of voters that decide the election when in
agreement Reiker (1962). In majority rule, all winning coalitions include at least
half of the population. We analyze how small winning coalitions can be in equitable
voting rules.

Under representative democracy, winning coalitions have to comprise at least a
quarter of the population.3 Much smaller winning coalitions are possible in what
we call generalized representative democracy (GRD) voting rules, where voters are
hierarchically divided into sets that are, in turn, divided into subsets, and so on. For
each set, the outcome is given by majority rule over the decisions of the subsets.4
We show that equitable GRD rules for 𝑛 voters can have winning coalitions as small
as 𝑛log3 2, or about 𝑛0.63, which is a vanishingly small fraction of the population.5

When the number of voters 𝑛 is a perfect square, and when committee sizes are taken
to be

√
𝑛, the CCC rule has a winning coalition of size 2

√
𝑛− 1. This is significantly

smaller than 𝑛log3 2, for 𝑛 large enough.

Our main result is that, for any 𝑛, there always exist simple equitable voting rules
that have winning coalitions of size ≈ 2

√
𝑛. Conversely, we show that no equitable

voting rule can have winning coalitions of size less than
√
𝑛. Methodologically, the

proof utilizes techniques from group theory and suggests the potential usefulness of
such tools for the analysis of collective choice.

While
√
𝑛 accounts for a vanishing fraction of the voter population, we stress that it

can be viewed as “large” in many contexts. While in a department of 100 faculty,
10 members would need to coordinate to sway a decision one way or the other, in
a presidential election with, say, 140 million voters, coordination between nearly
12, 000 voters would be necessary to impact outcomes.6

3A winning coalition under representative democracy must include support from half the coun-
ties, which translates to half of the population in those counties, or one quarter of the entire population.

4These rules have been studied under the name recursive majority in the probability literature
(see, e.g., Mossel and O’Donnell, 1998).

5For an example of a non-equitable GRD with a small winning coalition, consider vot-
ers {1, . . . , 1000} and assume three counties divide the population into three sets of voters:
{{1}, {2}, {3, . . . , 1000}. Then {1, 2} is a winning coalition. The value log3 2 ≈ 0.63 is the
Hausdorff dimension of the Cantor set. As it turns out, there is a connection between equitable
GRD’s that achieve the smallest winning coalitions and the Cantor set.

6Interestingly, rules that give decisive power to minorities of size
√
𝑛 appear in other contexts

of collective choice and have been proposed for apportioning representation in the United Nations
Parliamentary Assembly, and for voting in the Council of the European Union, see Zyczkowski and
Slomczynski (2014). These proposed rules relied on the Penrose Method Penrose (1946), which
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For instance, even under majority rule, if each voter is equally likely to vote for
either of two alternatives, the Central Limit Theorem suggests that a coalition of
order

√
𝑛 can control the vote with high probability.

Certainly, beyond equity, another important aspect of voting rules is their suscepti-
bility to manipulation. For instance, with information on voters’ preferences, rep-
resentative democracy rules are sensitive to gerrymandering McGann et al. (2016).
We view the question of manipulability as distinct from that of equity. It would
be interesting to formulate a notion of non-manipulability, independent of equity,
and to understand how these notions interact. The breadth of equitable voting rules
allows for further consideration of various objectives, such as non-manipulability,
when designing institutions.

In the next part of the paper, we explore a stronger notion of equity. We consider 𝑘-
equitable voting rules in which every coalition of 𝑘 voters plays the same role. These
are increasingly stringent conditions that interpolate between our equity notion,
when 𝑘 = 1, and May’s symmetry, when 𝑘 = 𝑛. The analysis of 𝑘-equitable rules
is delicate, due to group- and number-theoretical phenomena. There do exist, for
arbitrarily large population sizes 𝑛, voting rules that are 2- and 3-equitable, and have
winning coalitions as small as

√
𝑛. However, for “most” sufficiently large values of

𝑛, and for any 𝑘 ≥ 2, the only 𝑘-equitable, neutral, and responsive voting rule is
majority. Thus, while equity across individuals allows for a broad spectrum of voting
rules, equity among arbitrary fixed-size coalitions usually places the restrictions May
had suggested. While 𝑘-equity is arguably a strong restriction, it is still far weaker
than May’s original symmetry requirement. In that respect, our results here provide
a strengthening of May’s conclusions.

suggests the vote weight of any representative should be the square root of the size of the population
she represents, when majority rule governs decisions. Penrose argued that this rule assures equal
voting powers among individuals.
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3.2 The model
Voting rules
Let 𝑉 be a finite set of voters. We denote 𝑉 = {1, . . . , 𝑛} so that 𝑛 is the number
of voters. Each voter has preferences over alternatives in the set 𝑌 = {−1, 1}. We
identify the possible preferences over 𝑌 with elements of 𝑋 = {−1, 0, 1}, where −1
represents a strict preference for −1 over 1, 1 represents a strict preference for 1 over
−1, and 0 represents indifference between −1 and 1. We denote by Φ = 𝑋𝑉 the set
of voting profiles; that is, Φ is the set of all functions from the set of voters 𝑉 to the
set of possible preferences 𝑋 . A voting rule is a function 𝑓 : Φ → 𝑋 .

An important example is the majority voting rule m : Φ → 𝑋 , which is given by

m(𝜙) =


1 if |𝜙−1(1) | > |𝜙−1(−1) |

−1 if |𝜙−1(1) | < |𝜙−1(−1) |

0 otherwise.

A vote of 0 can be interpreted as abstention or indifference.

May’s Theorem
We now define several properties of voting rules. Following May (1952), we say
that a voting rule 𝑓 is neutral if 𝑓 (−𝜙) = − 𝑓 (𝜙). Neutrality implies that both
alternatives −1 and 1 are treated symmetrically: if each individual flips her vote, the
final outcome is also flipped.

Again following May (1952), we say that a voting rule 𝑓 is positively responsive if
increased support for one alternative makes it more likely to be selected. Formally,
𝑓 is positively responsive if 𝑓 (𝜙) = 1 whenever there exists a voting profile 𝜙′

satisfying the following:

1. 𝑓 (𝜙′) = 0 or 1.

2. 𝜙(𝑣) ≥ 𝜙′(𝑣) for all 𝑣 ∈ 𝑉 .

3. 𝜙(𝑣0) > 𝜙′(𝑣0) for some 𝑣0 ∈ 𝑉 .

Thus, 𝑓 (𝜙) ≥ 𝑓 (𝜙′) if 𝜙 ≥ 𝜙′ coordinate-wise, and if 𝑓 (𝜙) = 0 then any change of
𝜙 breaks the tie.

We now turn to the symmetry between voters. Several group-theoretic concepts will
prove useful for the description and comparison of May’s and our notions. Denote
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by 𝑆𝑛 the set of permutations of the 𝑛 voters. Any permutation of the voters can be
associated with a permutation of the set of voting profiles Φ: given a permutation
𝜎 ∈ 𝑆𝑛, the associated permutation on the voting profiles maps 𝜙 to 𝜙𝜎, which is
given by 𝜙𝜎 (𝑣) = 𝜙(𝜎−1𝑣). The automorphism group of the voting rule 𝑓 is given
by

Aut 𝑓 = {𝜎 ∈ 𝑆𝑛 | ∀𝜙 ∈ Φ, 𝑓 (𝜙𝜎) = 𝑓 (𝜙)}.

That is, Aut 𝑓 is the set of permutations of the voters that leave election results
unchanged, for every voting profile.

We can interpret a permutation 𝜎 as a scheme in which each voter 𝑣, instead of
casting her own vote, gets to decide how some other voter 𝑤 = 𝜎(𝑣) will vote. A
permutation 𝜎 is in Aut 𝑓 if applying this scheme never changes the outcome: when
each 𝑤 = 𝜎(𝑣) votes as 𝑣 would have, the result is the same as when each player 𝑣
votes for herself.

The automorphism group Aut 𝑓 has natural implications for pivotality, or the Shapley-
Shubik and Banzhaf indices of players in simple games, see Dubey and Shapley
(1979). Consider a setting in which all voters choose their votes identically and
independently at random. Given such a distribution, we can consider the probability
𝜂𝑣 that a voter 𝑣 is pivotal.7 It is easy to see that if there is some 𝜎 ∈ Aut 𝑓 that maps
𝑣 to 𝑤, then 𝜂𝑣 = 𝜂𝑤, implying that 𝑣 and 𝑤 have the same Banzhaf index. In fact,
when there exists 𝜎 ∈ Aut 𝑓 that maps 𝑣 to 𝑤, any statistic associated with a voter
that treats other voters identically—the probability the outcome coincides with voter
𝑣’s vote, the probability that voter 𝑣 and another voter are pivotal, etc.—would be
the same for voters 𝑣 and 𝑤. Hence, in an equitable rule, all the voters’ Banzhaf
indices will be equal.8

May (1952)’s notion of equity, often termed symmetry or anonymity, requires that
swapping the votes of any two voters will not affect the collective outcome. It can
be succinctly stated as Aut 𝑓 = 𝑆𝑛.

May’s Theorem. Majority rule is the unique symmetric, neutral, and positively
responsive voting rule.

7A voter 𝑣 is pivotal at a particular voting profile if a change in her vote can affect the outcome
under 𝑓 .

8In a recent follow-up paper to this paper, Bhatnagar (2020) shows that the converse does not
hold: there are rules that are not equitable, but for which the same holds.



65

Perhaps surprisingly, the requirement of symmetry is stronger than what is needed for
May’s conclusions. As it turns out, a weaker requirement that Aut 𝑓 be restricted to
only even permutations would suffice for his results, see Lemma 21 in the appendix.9
In Theorem 14 below we show that, in fact, a far weaker requirement suffices.

Equitable Voting Rules
As we have already seen, the requirement that Aut 𝑓 includes all permutations, or all
even permutations, precludes many examples of voting rules that “appear” equitable.
What makes a voting rule appear equitable? Our view is that, in an equitable voting
rule, ex-ante, all voters carry the same “role.” We propose the following definition
and discuss in the next section the sense in which it formalizes this view.

Definition 1. A voting rule 𝑓 is equitable if for every 𝑣, 𝑤 ∈ 𝑉 there is a 𝜎 ∈ Aut 𝑓
such that 𝜎(𝑣) = 𝑤.

In words, a voting rule is equitable if, for any two voters 𝑣 and 𝑤, there is some
permutation of the population that relabels 𝑣 as 𝑤 such that, regardless of voters’
preferences, the outcome is unchanged relative to the original voter labeling.

In group-theoretic terms, 𝑓 is equitable if and only if the group Aut 𝑓 acts transitively
on the voters.10 Insights from group theory related to the characteristics of transitive
groups are therefore at the heart of our main results. Appendix 3.7 contains a short
primer on the basic group theoretical background that is needed for our analysis. 11

Equity as Role Equivalence
May noted the strong link between anonymity and equality, stating that “This con-
dition might well be termed anonymity... A more usual label is equality” (May,
1952, page 681). Are anonymity and equality inherently one and the same? In
this section, we formalize this question in terms of roles. This allows for a natural
distinction between May’s symmetry or anonymity condition and our equity notion.

9A permutation 𝜎 is even if the number of pairs (𝑣, 𝑤) such that 𝑣 < 𝑤 and 𝜎(𝑣) > 𝜎(𝑤) is
even. Put another way, define a transposition to be a permutation that only switches two elements,
leaving the rest unchanged. A permutation is even if it is the composition of an even number of
transpositions.

10It turns out our equity restriction is effectively the definition of transitivity. The notion of
transitive groups is not directly related to transitivity of relations often considered in Economics.

11Isbell (1960) studied a notion equivalent to our equity notion and considered its implications,
combined with rule neutrality, in a setting in which preferences must be strict, so that tie breaking
must also be equitable. When 𝑛 is odd, majority is equitable and neutral. Isbell showed that for some
even 𝑛 such rules exist, while for other even 𝑛 they do not.
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In particular, we formalize our motivating idea that equity corresponds to all voters
carrying the same role.

Even though we defined voting rules with respect to a given set of voters, the design
of voting rules is often carried out without a particular group of people in mind;
rather, collective institutions are often designed in the abstract. For example, hiring
protocols in university departments might be specified prior to any specific search.
One such protocol might be that a committee chair decides dictatorially whom to
hire, unless indifferent, in which case the committee decides by majority rule. Under
such an abstract rule, the dictatorial privilege is not assigned to a particular Prof.
X, but to an abstract role called “chair.” Later, when a committee is formed, the
role of chair is assigned to some particular faculty member. The same applies, at
least in aspiration, to countries’ election rules, jury decision protocols, etc. Indeed,
historical cases in which laws were written with particular individuals specified or
implied are often not benevolent examples of institution building.

To capture this idea, we introduce abstract voting rules. Recall that we define (non-
abstract) voting rules as functions from 𝑋𝑉 to 𝑋 in the context of a particular voter
set 𝑉 . An abstract voting rule is a map 𝑓 : 𝑋𝑅 → 𝑋 for a set of roles 𝑅. Of course,
mathematically, these objects are identical, and so we can speak of abstract voting
rules as being anonymous, equitable, etc. In the above example of the committee,
the set of roles would be 𝑅 = {𝐶, 𝑀2, . . . , 𝑀𝑛}, where 𝐶 stands for “chair” and 𝑀𝑖

is member 𝑖.

The conceptual difference between voters and roles is that voters have preferences
and vote, whereas roles do not. Therefore, for a vote to take place, voters need to
be assigned to roles. Accordingly, given a group of voters 𝑉 equal in size to 𝑅,
we call a bĳection 𝑎 : 𝑉 → 𝑅 a role assignment. Given an abstract voting rule
𝑓 : 𝑋𝑅 → 𝑋 , a role assignment 𝑎 defines a (non-abstract) voting rule 𝑓𝑎 : 𝑋𝑉 → 𝑋

in the obvious way, via 𝑓𝑎 (𝜙) = 𝑓 (𝜙 ◦𝑎−1). In our university committee example, if
𝑉 = {Alex,Bailey, . . .}, an assignment 𝑎 that satisfies 𝑎(Alex) = 𝐶 and 𝑎(Bailey) =
𝑀7 assigns Alex the role of chair, and Bailey the role of member 7. Hence, the
voting rule 𝑓𝑎 is a dictatorship of Alex. A different assignment 𝑏 with 𝑏(Bailey) = 𝐶
and 𝑏(Alex) = 𝑀7 results in the voting rule 𝑓𝑏 in which Bailey is the dictator. Note
that any assignment 𝑐 that also assigns 𝑐(Bailey) = 𝐶 results in the same voting
rule as 𝑏, even if, say, 𝑐(Alex) = 𝑀8: 𝑓𝑏 (𝜙) = 𝑓𝑐 (𝜙) for any voting profile 𝜙. In the
context of an abstract voting rule 𝑓 , we say that two assignments are equivalent if
they lead to the same voting rule: 𝑎 and 𝑏 are equivalent under 𝑓 if 𝑓𝑎 = 𝑓𝑏.
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The next proposition captures a sense in which symmetry is a form of equality:

Proposition 1A. An abstract voting rule 𝑓 : 𝑋𝑅 → 𝑋 is symmetric if and only if all
assignments are equivalent under 𝑓 .

Thus, symmetry means that assignments do not matter, or that voters are completely
indifferent between assignments: given any voting profile 𝜙 and given 𝑓 , each voter
would be indifferent if given a choice between assignments. Voters do not care
which role they have; moreover, voters do not care which roles other voters have.

We now turn to the interpretation of our equity notion in terms of roles. In the
university committee example, certainly “chair” is a distinguished role. Likewise,
it is clear that if we view the representative democracy example of Figure 3.1
as an abstract voting rule, no role is distinguished. Of course, once we assign
roles to voters with particular preferences, some voters may be disadvantaged, and
prefer a different assignment ex-post. In that respect, in the abstract representative
democracy rule, all roles are ex-ante identical.

We say that roles 𝑟1, 𝑟2 ∈ 𝑅 are equivalent under an abstract voting rule 𝑓 : 𝑋𝑅 → 𝑋

if, for any voter 𝑣 and assignment 𝑎 such that 𝑎(𝑣) = 𝑟1, there is an assignment 𝑏
with 𝑏(𝑣) = 𝑟2 such that 𝑓𝑎 = 𝑓𝑏. That is, roles 𝑟1 and 𝑟2 are equivalent if, for any
voter, it is impossible to determine whether they are assigned the role of 𝑟1 or 𝑟2

from the entire mapping from vote profiles to chosen alternatives. In the university
committee example, 𝑀𝑖 and 𝑀 𝑗 are equivalent, but 𝐶 is not equivalent to any other
role. If 𝑎(𝑣) = 𝐶, then clearly this can be determined from 𝑓𝑎, but not if 𝑎(𝑣) ≠ 𝐶;
in the latter case one can find an assignment 𝑏 such that 𝑏(𝑣) ≠ 𝑎(𝑣), but 𝑓𝑎 = 𝑓𝑏,
since it is impossible to tell whether a voter has role 𝑀𝑖 or 𝑀 𝑗 . In the representative
democracy example of Figure 3.1, it is impossible to determine from 𝑓𝑎 the role of
any given voter 𝑣.

Given this definition of equivalent roles, the next proposition is a sharp characteri-
zation of equity.

Proposition 1B. An abstract voting rule 𝑓 : 𝑋𝑅 → 𝑋 is equitable if and only if all
roles are equivalent under 𝑓 .

Therefore, while symmetry means that voters are indifferent between assignments,
equity implies that voters are indifferent between roles. Indeed, Proposition 1B
implies that, given an abstract voting rule 𝑓 , and given any two roles 𝑟1, 𝑟2, if a
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voter had to choose between (i) any assignment in which she had role 𝑟1, or (ii) any
assignment in which she had role 𝑟2, she would be indifferent. Both would allow her
to select the same voting rule 𝑓𝑎. Likewise, if the voter had to choose between roles
𝑟1 and 𝑟2 knowing that an adversary would get to choose the rest of the assignment,
she would be indifferent.

The following highlights the idea that equity captures indifference between roles.

Proposition 2A. An abstract voting rule 𝑓 : 𝑋𝑅 → 𝑋 is equitable iff there is a set
of assignments 𝐴 such that

1. 𝑓𝑎 = 𝑓𝑏 for all 𝑎, 𝑏 ∈ 𝐴, and

2. for each role 𝑟 ∈ 𝑅 and voter 𝑣 ∈ 𝑉 there is an 𝑎 ∈ 𝐴 with 𝑎(𝑣) = 𝑟.

Thus, there is a menu of assignments that all induce the same voting rule, but allow
𝑣 to choose any role.

Winning Coalitions
One way to describe a voting rule is through its winning coalitions: the sets of
individuals whose consensual vote determines the alternative chosen. Formally, we
say that a subset 𝑆 ⊆ 𝑉 is a winning coalition with respect to the voting rule 𝑓 if,
for every voting profile 𝜙 and 𝑥 ∈ {−1, 1}, 𝜙(𝑣) = 𝑥 for all 𝑣 ∈ 𝑆 implies 𝑓 (𝜙) = 𝑥.

Note that no two winning coalitions of 𝑓 can be disjoint. Indeed, suppose that
𝑀, 𝑀′ ⊆ 𝑉 are two disjoint winning coalitions. We can then have a profile under
which members of 𝑀 vote unanimously for −1 and members of 𝑀′ vote for 1. In
such cases, 𝑓 would not be well defined. The following lemma illustrates a version
of the converse.

Lemma 19. Let W be a collection of subsets of 𝑉 such that every pair of subsets
in W has a nonempty intersection. Then there is a neutral, positively responsive
voting rule for 𝑉 for which every set in W is a winning coalition.

Intuitively, the construction underlying Lemma 19 is as follows. First, for any vote
profile in which a subset 𝑊 ∈ W votes for 1 (or −1) in consensus, we specify the
voting rule to also take the value of 1 (or −1). For any profile in which no𝑊 ∈ W
votes in consensus, we define the voting rule to follow majority rule. By definition,
the winning coalitions of this voting rule contain the sets in W. As we show, it is
also neutral and positively responsive.
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This lemma will allow us to discuss neutral and positive-responsive equitable voting
rules through the restrictions they impose on winning coalitions.

3.3 Winning coalitions for equitable voting rules
In this section, we provide bounds on the size of winning coalitions in general
equitable voting rules. We then restrict attention to the special class of equitable
voting rules that generalize representative democracy rules and characterize the size
of winning coalitions for those.

Winning Coalitions of Order
√

n
We first show that for any population size, there always exist equitable voting rules
that have winning coalitions that are of order

√
𝑛.

Theorem 10. For every 𝑛 there exists a neutral, positively responsive equitable
voting rule with winning coalitions of size 2⌈

√
𝑛 ⌉ − 1.

An important implication of this theorem is that, under an equitable voting rule,
winning coalitions can account for a vanishing fraction of the population. Never-
theless,

√
𝑛 is arguably a large number of voters in some contexts. For example,

in a majority vote, suppose all voters vote for each of {−1, 1} independently with
probability one half. A manipulator who wants to guarantee an outcome with high
probability would need to control an order of

√
𝑛 of the votes. This is a consequence

of the fact that the standard deviation of the number of voters who vote 1 is of order
√
𝑛.

The cross committee consensus rule described in the introduction is an example of
an equitable voting rule in which winning coalitions are𝑂 (

√
𝑛). Nevertheless, there

is an algebraic subtlety—the construction of that rule relies on 𝑛 being an integer
squared. Certainly, an analogous construction can be made for any 𝑛 that can be
described as 𝑛 = 𝑘 · 𝑚 for some integers 𝑘 and 𝑚 by considering some committees
to be of size 𝑘 and others to be of size 𝑚. Such constructions, however, would not
necessarily generate voting rules with winning coalitions of size close to

√
𝑛. We

prove Theorem 10 by constructing a simple, related rule that applies to every 𝑛,
called the longest-run rule.12

Identify the set of voters with {0, 1, . . . , 𝑛 − 1}, and place them along a cycle, as
in Figure 3.3. Given a voting profile 𝜙, a run is a contiguous block of voters

12We thank Elchanan Mossel for suggesting this improvement to a previous construction.
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Figure 3.3: The longest-run voting rule. The set depicted in blue is a winning
coalition of size ≈ 2

√
𝑛.

voting identically for either −1 or 1. Formally, a set of voters 𝑊 ⊆ 𝑉 is a run if
𝜙(𝑤) = 𝜙(𝑤′) ∈ {−1, 1} for all 𝑤, 𝑤′ ∈ 𝑊 , and if 𝑊 = {𝑖, 𝑖 + 1, . . . , 𝑖 + 𝑘} modulo
𝑛.

Given a voting profile 𝜙, we say that𝑊 is the longest-run if it is a run that is strictly
longer than all other runs. The longest-run voting rule ℓ is defined as follows: if
there is a longest-run in 𝜙, then ℓ(𝜙) is the vote cast by the members of this run.
Otherwise, ℓ(𝜙) = m(𝜙), where m is the majority rule.

The longest-run rule is equitable, since the group of rotations maps any voter to any
voter. Furthermore, it admits winning coalitions of size ≈ 2

√
𝑛: these include a run

of length
√
𝑛, together with

√
𝑛 agents spaced

√
𝑛 apart, thus preventing the creation

of longer runs. See Figure 3.3.

We now offer a counterpart for Theorem 10 that provides a lower bound on the size
of minimal coalitions in equitable voting rules.

Theorem 11. Every winning coalition of an equitable voting rule has size at least
√
𝑛.

The proof of Theorem 11 relies on group-theoretic results described in Appendix 3.7.
To gain some intuition for the bound, suppose, as in the longest-run voting rule above,
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that voters are located on a circle and that Aut 𝑓 includes all rotations. These are the
permutations of the form 𝜎(𝑖) = 𝑖 + 𝑘 mod 𝑛. We know that two winning coalitions
cannot be disjoint. Take, then, any winning coalition 𝑆 and denote by 𝑆 + 𝑘 the
winning coalition that is derived by adding 𝑘 (again, modulo 𝑛) to the label of each
member. It follows that 𝑆 and 𝑆 + 𝑘 must have a non-empty intersection, or that
there are some 𝑖, 𝑗 ∈ 𝑆 with 𝑖 − 𝑗 = 𝑘 . Therefore, if we look at all the differences
between two elements of 𝑆 (i.e., expressions of the form 𝑖 − 𝑗 , where 𝑖, 𝑗 ∈ 𝑆), they
encompass all 𝑛 rotations. In particular, the cardinality of these differences is 𝑛. On
the other hand, the number of such differences is certainly bounded by the number
of ordered pairs of members in 𝑆, which is |𝑆 |2. It follows that |𝑆 |2 ≥ 𝑛, generating
our bound.

Generalized Representative Democracy Rules
As already discussed, voting rules mimicking representative democracy are equi-
table, if not symmetric à la May (1952). We now consider a class of equitable
voting rules that generalize representative democracy rules. These capture the fla-
vor of various hierarchical voting structures that contain more than two layers. For
example, voters may belong to counties, which comprise states, which constitute a
country. As we show, these sorts of hierarchical decision rules are associated with
far smaller winning coalitions than 𝑛/2, but still substantially larger than

√
𝑛.

A voting rule 𝑓 : Φ → 𝑋 is a generalized representative democracy (GRD) if the
following hold.

• If 𝑉 = {𝑣} is a singleton, then 𝑓 (𝜙) = 𝜙(𝑣).

• If 𝑉 is not a singleton, there exists a partition {𝑉1, . . . , 𝑉𝑑} of 𝑉 into 𝑑 sets
such that

𝑓 (𝜙) = m( 𝑓1(𝜙 |𝑉1), 𝑓2(𝜙 |𝑉2), . . . , 𝑓𝑑 (𝜙 |𝑉𝑑 )),

where each 𝑓𝑖 : 𝑋𝑉𝑖 → 𝑋 is some generalized representative democracy rule,
𝜙 |𝑉𝑖 is 𝜙 restricted to 𝑉𝑖, and m is the majority rule.

Any GRD rule is associated with a rooted tree that captures voters’ hierarchical
structure (as in Figure 3.4 for the case of 𝑑 = 3). A GRD voting rule is equitable if,
in the induced tree, the vertices in each level have the same degree.13

13Intuitively, the permutations required to shift one voter’s role into another require the shift
of that voter’s entire “county” into the target role’s “county,” which can be done only when their
numbers coincide.
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The following result characterizes the size of winning coalitions in GRD voting
rules.

Theorem 12. If 𝑓 is an equitable generalized representative democracy rule for
𝑛 voters, then a winning coalition must have size at least 𝑛log3 2. Conversely, for
arbitrarily large 𝑛, there exist equitable generalized representative democracy voting
rules with winning coalitions of size 𝑛log3 2.

There is an intriguing connection between this characterization and the so-called
Hausdorff dimension of the Cantor set, which is log3 2 ≈ 0.63.14 The connection
arises from the fact that GRD rules with the smallest winning coalitions are those in
which, at each level, the subdivision is into three groups. In such rules, to construct
a winning coalition, two of the three top “representatives” need to agree. Then,
two of the voters of these representatives need to agree, and so on recursively. This
precisely mimics the classical construction of the Cantor set.

Figure 3.4: Generalized representative democracy voting rule. The leafs of the tree
(at the bottom) represent the voters. At each intermediate node the results of the
three nodes below are aggregated by majority.

3.4 k-equitable voting rules
So far, we have focused on voting rules in which individuals are indifferent between
roles. Naturally, one could extend the notion and contemplate rules that are robust
to larger coalitions of voters changing their roles in the population. This section

14The Cantor set can be constructed by starting from, say, the unit interval and iteratively deleting
the open middle third of any sub-interval remaining. That is, in the first iteration we are left with
[0, 1/3]∪[2/3, 1], in the second iteration we are left with [0, 1/9]∪[2/9, 1/3]∪[2/3, 7/9]∪[8/9, 1],
etc. The fractal or Hausdorff dimension is a measure of “roughness” of a set. See Peitgen et al.
(1993) and references therein.
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analyzes such rules for arbitrary size 𝑘 of coalitions. With these harsher restrictions
on collective-choice procedures, results similar to May’s reemerge, although with
important caveats.

Definition 2. A voting rule is 𝑘-equitable for 𝑘 ≥ 1 if, for every pair of ordered
𝑘-tuples (𝑣1, . . . , 𝑣𝑘 ) and (𝑤1, . . . , 𝑤𝑘 ) (with 𝑣𝑖 ≠ 𝑣 𝑗 and 𝑤𝑖 ≠ 𝑤 𝑗 for all 𝑖 ≠ 𝑗),
there is a permutation 𝜎 ∈ Aut 𝑓 such that 𝜎(𝑣𝑖) = 𝑤𝑖 for 𝑖 = 1, . . . , 𝑘 .

Intuitively, 𝑘-equitable voting rules are ones in which every group of 𝑘 voters has
the same “joint role” in the election. This restriction is certainly harsher than that
imposed for equitable rules. Indeed, consider the representative democracy example
of Figure 3.1. Suppose Alex is assigned the role of 1, while Bailey is assigned the
role of 2.The implication of 2-equity is that the pair (Alex, Bailey) could potentially
be associated with any pair (𝑖, 𝑗). But this is clearly not true here, since Alex and
Bailey are in the same county, and thus it is impossible to associate them with, e.g.,
the roles of 1 and 4.15

In terms of roles and abstract voting rules, 𝑘-equity admits the following general-
ization of Proposition 2A.

Proposition 2B. An abstract voting rule 𝑓 : 𝑋𝑅 → 𝑋 is 𝑘-equitable iff there is a set
of assignments 𝐴 such that

1. 𝑓𝑎 = 𝑓𝑏 for all 𝑎, 𝑏 ∈ 𝐴.

2. For each set of 𝑘 roles {𝑟1, . . . , 𝑟𝑘 } ⊆ 𝑅 and 𝑘 voters {𝑣1, . . . , 𝑣𝑘 } ⊂ 𝑉 there
is an 𝑎 ∈ 𝐴 with 𝑎(𝑣𝑖) = 𝑟𝑖 for 𝑖 ∈ {1, . . . , 𝑘}.

Thus, there is a menu of assignments that all yield the same rule, but that places
no restrictions on which roles a coalition of 𝑘 voters takes. A perhaps illuminating
analogy would be to think of equity as corresponding to strategy-proofness, and
to think of 𝑘-equity as corresponding to strategy-proofness for coalitions of size
𝑘 . Alternatively, 𝑘-equity is reminiscent of group-envy-freeness notions considered
in allocation problems (see, e.g., Varian, 1974). In a sense, 𝑘 is a parameter
that interpolates between equity, corresponding to 𝑘 = 1, and May’s symmetry,
corresponding to 𝑘 = 𝑛.

15In group-theoretic terms, 𝑓 is 𝑘-equitable if and only if the group Aut 𝑓 is 𝑘-transitive.
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We begin by examining 2-equitable rules. Certainly, majority rule is 2-equitable.
As can be easily verified, none of the voting rule examples mentioned so far, other
than majority, is 2-equitable. As it turns out, for most population sizes, winning
coalitions of size at least 𝑛/2 are endemic to 2-equitable voting rules.

We say that almost every natural number satisfies a property 𝑃 if the subset 𝑁𝑃 ⊆ N
of the natural numbers that have property 𝑃 satisfies

lim
𝑛→∞

|𝑁𝑃 ∩ {1, . . . , 𝑛}|
𝑛

= 1.

Theorem 13. For almost every natural number 𝑛, every 2-equitable voting rule for
𝑛 voters has no winning coalitions of size less than 𝑛/2. In particular, for almost all
𝑛, the only 2-equitable, neutral, positively responsive voting rule is majority.

Thus, for almost all 𝑛, the assumption of symmetry in May’s Theorem can be
substituted with the much weaker assumption of 2-equity.

The proof of Theorem 13 relies on modern group-theoretical results that were not
available when May’s Theorem was introduced Cameron et al. (1982). As it turns
out, there is a vanishing share of integers for which there exist 2-transitive groups
that are neither the set of all permutations nor the set of even permutations. We
show in Lemma 21 in the appendix that those latter groups yield winning coalitions
of size at least 𝑛/2, implying the result.

Theorem 13 states that for most population sizes, 2-equitable rules imply large win-
ning coalitions. This notably does not hold for all population sizes. In Appendix 3.9,
we construct 2-equitable and 3-equitable voting rules with small winning coalitions,
which apply to arbitrarily large population sizes.

When considering more stringent equity restrictions, results are much starker and
conclusions hold for all population sizes.

Theorem 14. Every 6-equitable voting rule has no winning coalitions of size less
than 𝑛/2. In particular, the only 6-equitable, neutral, positively responsive voting
rule is majority.16

The proof of Theorem 14 relies on discoveries from the 1980’s and 1990’s that
showed that, for any 𝑛, the only 6-transitive groups are the group of all permutations

16Furthermore, if 𝑛 > 24, the same conclusions follow from the weaker assumption of 4-equity.
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and the group of even permutations. These results are a consequence of the suc-
cessful completion of a large project, involving thousands of papers and hundreds
of authors, called the Classification of Finite Simple Groups, see Aschbacher et al.
(2011).

We stress that 𝑘-equity is a strong restriction. Nonetheless, for any fixed 𝑘 , 𝑘-equity
is a far weaker restriction than May’s symmetry. In that respect, Theorem 14, like
Theorem 13, offers a strengthening of May’s original result.

3.5 Towards a characterization of equitable voting rules
As our examples throughout illustrate, the set of equitable voting rules is broad and
does not admit a simple universal procedural description. Their full characterization
would be as complex as the full classification of finite simple groups alluded to above,
and hence is beyond the scope of this paper.

We start here by classifying the equitable voting rules for electorate sizes of the
form 𝑛 = 𝑝 and 𝑛 = 𝑝2 with 𝑝 a prime. We do so for two reasons. First, these cases
are easier to handle, while still illustrating some of the complexities entailed in the
general characterization of equitable voting rules. To gain some intuition for why
these cases are easier, consider the representative democracy rule. When 𝑛 = 𝑝, the
only representative democracy rule is majority, since there is no way to divide the
voters into non-singleton counties of equal size. In particular, the class of equitable
rules for 𝑛 = 𝑝 is drastically restricted. The second reason we focus on these cases
is that it allows us to contemplate general voting rules that can be applied for all
electorate sizes 𝑛.

For our classification, it will be useful to define cyclic voting rules and 2-cyclic
voting rules.

A voting rule 𝑓 for 𝑛 voters is said to be cyclic if one can identify the voters with the set
{0, . . . , 𝑛−1} in such a way that the permutation𝜎 : {0, . . . , 𝑛−1} → {0, . . . , 𝑛−1}
given by 𝜎(𝑖) = 𝑖 + 1 mod 𝑛 is an automorphism of 𝑓 . Intuitively, a voting rule
is cyclic if the voters can be arranged on a circle in such a way that rotating, or
shifting all voters one space to the right—tantamount to an application of 𝜎—does
not affect the outcome. An example of a cyclic voting rule is the longest-run rule
described in §3.3. A perhaps less obvious example is that of the representative
democracy rule; the arrangement on the cycle entails positioning members of the
same county equidistantly along the cycle. In the example of Figure 3.4 in which
voters {1, 2, . . . , 9} are arranged in counties {{1, 2, 3}, {4, 5, 6, }, {7, 8, 9}}, if we
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arrange the voters along the cycle by the order (1, 4, 7, 2, 5, 8, 3, 6, 9), then applying
𝜎, results in the order (4, 7, 2, 5, 8, 3, 6, 9, 1), and so the first county is mapped to
the second, the second is mapped to the third, and the third back to the first. Thus,
the voting rule is unchanged by 𝜎, and hence it is cyclic.

A voting rule 𝑓 for 𝑛 = 𝑛1 × 𝑛2 voters is said to be 2-cyclic if one can identify
the voters with the set {0, . . . , 𝑛1 − 1} × {0, . . . , 𝑛2 − 1} in such a way that the
permutations 𝜎1 and 𝜎2 given by

𝜎1(𝑖1, 𝑖2) = (𝑖1 + 1 mod 𝑛1, 𝑖2)
𝜎2(𝑖1, 𝑖2) = (𝑖1, 𝑖2 + 1 mod 𝑛2)

are automorphisms of 𝑓 . Intuitively, a voting rule is 2-cyclic if one can arrange the
voters on an 𝑛1 × 𝑛2 grid such that shifting all voters to the right (and wrapping
the rightmost ones back to the left) or shifting all voters up (again wrapping the
topmost ones to the bottom) does not affect the outcome. It is easy to see that the
cross committee consensus rule is an example of such a rule, as is the representative
democracy rule.

Proposition 3. Let 𝑓 : 𝑋𝑉 → 𝑋 be an equitable voting rule, and let 𝑝 be prime. If
𝑛 = 𝑝, then 𝑓 is cyclic. If 𝑛 = 𝑝2, then 𝑓 is either cyclic, or 2-cyclic, or both.

The generalization to 𝑛 = 𝑝𝑑 for 𝑑 > 2 is more intricate, and is not a straightforward
extension to higher dimensional 𝑑-cyclic rules. See our discussion in §3.8.

This proposition has an important implication to the design of simple, equitable
voting rules that are not tailored to particular electorate sizes. Majority rule is one
such rule—one only needs to tally the votes and consider the difference between the
number of supporters of one alternative relative to the other. The longest-run voting
rule is another such example. In fact, any such rule must also work for electorates
comprised of a prime number of voters, and in particular must be cyclic. It would be
interesting to understand whether a far larger class of rules than cyclic voting rules
can work for almost all electorate sizes.

3.6 Conclusions
In this paper we study equity, a notion of procedural fairness that captures equality
between different voters’ roles.

The voting rules that satisfy May’s symmetry axiom admit a simple description: a
voting rule is symmetric, or anonymous, if and only if the outcome depends only
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on the number of voters who choose each possible vote. In contrast, the set of
equitable voting rules is much richer, and its complexity is intimately linked to
frontier problems in mathematics; in particular, the classification of finite simple
groups. This paper includes a number of diverse examples, including generalized
representative democracy, cross committee consensus, and a number of additional
constructions that appear in the appendix, but the class of all equitable rules is larger
yet. Understanding which equitable rules satisfy different desirable conditions—
non-malleability, inclusiveness, etc.—could be an interesting avenue for future re-
search.

We believe the approach taken here could potentially be useful for various other
contexts. For example, symmetric games are often thought of as ones in which any
permutation of players’ identities does not affect individual payoffs (e.g., Dasgupta
and Maskin, 1986, page 18). As is well known, such finite games have symmetric
equilibria. Interestingly, in his original treatise on games, Nash took an approach
to symmetry that is similar to ours, studying the automorphism group of the game.
He showed that equity, analogously defined for games, suffices for the existence of
symmetric equilibria: that is, it suffices that for every two players 𝑣 and 𝑤 there is an
automorphism of the game that maps 𝑣 to 𝑤 (Nash, 1951, page 289).17 It would be
interesting to explore further the consequences of equity so defined in more general
strategic interactions.

3.7 A primer on finite groups
This section contains what is essentially a condensed first chapter of a book on finite
groups (see, e.g., Rotman, 2012), and is provided for the benefit of readers who are
not familiar with the topic. The terms and results covered here suffice to prove the
main results of this paper.

Denote by 𝑁 = {1, . . . , 𝑛}. A permutation of 𝑁 is a bĳection 𝑔 : 𝑁 → 𝑁 . The
inverse of a permutation 𝑔 is denoted by 𝑔−1 (so 𝑔−1(𝑔(𝑖)) = 𝑖), and the composition
of two permutations 𝑔 and ℎ is simply 𝑔ℎ; i.e., if 𝑘 = 𝑔ℎ then 𝑘 (𝑖) = 𝑔(ℎ(𝑖)).

A group—for our purposes—will be a non-empty set of permutations that (1)
contains 𝑔−1 whenever it contains 𝑔, and (2) contains 𝑔ℎ whenever it contains both

17Theorem 2 in Nash (1951) states that “Any finite game has a symmetric equilibrium point.”
Now, Nash’s definition of a symmetric equilibrium is a strategy profile 𝔰 such that 𝔰𝑖 = 𝔰 𝑗 whenever
there is an automorphism 𝜒 of the game with 𝜒(𝑖) = 𝑗 . In particular, for there to be a symmetric
strategy in the sense we usually consider, where all players use the same strategy, it suffices for there
to be a transitive automorphism group, i.e., one in which for every 𝑖, 𝑗 there is an automorphism 𝜒

with 𝜒(𝑖) = 𝑗 .
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𝑔 and ℎ. It follows from this definition that every group must include the trivial,
identity permutation 𝑒 that satisfies 𝑒(𝑖) = 𝑖 for all 𝑖.

Groups often appear as sets of permutations that preserve some invariant. In our
case, Aut 𝑓 is the group of permutations of the voters that preserves every outcome
of 𝑓 . It is easy to see that Aut 𝑓 is indeed a group.

A subgroup 𝐻 of 𝐺 is simply a subset of 𝐺 that is also a group. Given 𝑔 ∈ 𝐺, we
denote

𝑔𝐻 = {𝑔ℎ ∈ 𝐺 : ℎ ∈ 𝐻}.

The sets 𝑔𝐻 are in general not subgroups, and are called the left cosets of 𝐻 (the
right cosets are of the form 𝐻𝑔). It is easy to verify that all left cosets are disjoint,
and that each has the same size as 𝐻. It follows that the size of 𝐺 is divisible by the
size of 𝐻.

Given an element 𝑖 ∈ 𝑁 , we denote by 𝐺𝑖 the set of permutations that fix 𝑖. That is,
𝑔 ∈ 𝐺𝑖 if 𝑔(𝑖) = 𝑖. 𝐺𝑖 is a subgroup of 𝐺. It is called the stabilizer of 𝑖.

The 𝐺-orbit of 𝑖 ∈ 𝑁 is the set of 𝑗 ∈ 𝑁 such that 𝑗 = 𝑔(𝑖) for some 𝑔 ∈ 𝐺, and is
denoted by 𝐺𝑖. As it turns out, if 𝑗 is in the orbit of 𝑖 then the set of 𝑔 ∈ 𝐺 such that
𝑔(𝑖) = 𝑗 is a coset of the stabilizer 𝐺𝑖. It follows that there is a bĳection between
the orbit 𝐺𝑖 and the cosets of 𝐺𝑖. This is called the Orbit-Stabilizer Theorem.

Recall that 𝐺 is transitive if for all 𝑖, 𝑗 there is a 𝑔 ∈ 𝐺 such that 𝑔(𝑖) = 𝑗 . This
is equivalent to there existing only a single 𝐺-orbit, or that 𝑗 is in the orbit of 𝑖 for
every 𝑖, 𝑗 . Therefore, if 𝐺 is transitive, the orbit 𝐺𝑖 is of size 𝑛, and since we can
identify this orbit with the cosets of 𝐺𝑖, there are 𝑛 such cosets. Since they are all
the same size as 𝐺𝑖, and since they form a partition of 𝐺, each coset of 𝐺𝑖 must be
of size |𝐺 |/𝑛. We will use this fact in the proof of Theorem 11.

3.8 Proofs
Proofs of Propositions 1A, 1B, 2A, and 2B

Proof of Proposition 1A. We begin by showing that if 𝑓 is anonymous, then all
assignments are equivalent under 𝑓 .

Assume that 𝑓 is symmetric, and let 𝑎 and 𝑏 be two assignments. Define𝜎 = 𝑏◦𝑎−1.
Then, by definition of symmetry, for every 𝜙 ∈ 𝑋𝑉 ,

𝑓 (𝜙 ◦ 𝑎−1 ◦ 𝜎−1) = 𝑓 ((𝜙 ◦ 𝑎−1)𝜎) = 𝑓 (𝜙 ◦ 𝑎−1).
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Since 𝑏−1 = 𝑎−1 ◦ 𝜎−1, it follows that 𝑓 (𝜙 ◦ 𝑎−1) = 𝑓 (𝜙 ◦ 𝑏−1) and hence that
𝑓𝑎 (𝜙) = 𝑓𝑏 (𝜙), so 𝑎 and 𝑏 are equivalent. Since 𝑎 and 𝑏 were arbitrary, it follows
that all assignments are equivalent under 𝑓 .

Conversely, suppose that all assignments are equivalent under 𝑓 . We need to show
that for any 𝜎 ∈ 𝑆(𝑅) and any 𝜙 ∈ 𝑋𝑅, 𝑓 (𝜙) = 𝑓 (𝜙𝜎). Fix 𝜎 and 𝜙, let 𝑎 be any
assignment, and let 𝑏 = 𝜎 ◦ 𝑎. Then since 𝑎 and 𝑏 are equivalent,

𝑓 (𝜙) = 𝑓 ((𝜙 ◦ 𝑎) ◦ 𝑎−1) = 𝑓𝑎 (𝜙 ◦ 𝑎) = 𝑓𝑏 (𝜙 ◦ 𝑎) = 𝑓 (𝜙 ◦ (𝑎 ◦ 𝑏−1)) = 𝑓 (𝜙 ◦ 𝜎−1) = 𝑓 (𝜙𝜎).

Since 𝜎 and 𝜙 were arbitrary, it follows that 𝑓 is symmetric. □

In analogy with the notion of equivalence of roles given in Section 3.2, say that two
𝑘-tuples of roles r and s are equivalent if there is a 𝑘-tuple v of voters and a pair of
assignments 𝑎 and 𝑏 such that 𝑓𝑎 = 𝑓𝑏, 𝑎(v) = r, and 𝑏(v) = s. Proposition 1B then
follows from the next proposition by setting 𝑘 to 1:

Proposition 3. An abstract voting rule 𝑓 : 𝑋𝑅 → 𝑋 is 𝑘-equitable if and only if all
𝑘-tuples of roles are equivalent under 𝑓 .

Proof. Fix an assignment 𝑎. The rule 𝑓 is 𝑘-equitable if and only if 𝑓𝑎 is 𝑘-equitable,
which holds if and only if for every pair of 𝑘-tuples (𝑣1, . . . , 𝑣𝑘 ) and (𝑤1, . . . , 𝑤𝑘 )
of voters there is a 𝜎 ∈ 𝑆(𝑉) such that 𝜎((𝑣1, . . . , 𝑣𝑘 )) = (𝑤1, . . . , 𝑤𝑘 ) and for all
𝜙 ∈ 𝑋𝑉 , 𝑓𝑎 (𝜙) = 𝑓𝑎 (𝜙𝜎). Since

𝑓𝑎 (𝜙𝜎) = 𝑓 ((𝜙 ◦ 𝜎−1) ◦ 𝑎−1)
= 𝑓 (𝜙 ◦ (𝑎 ◦ 𝜎)−1)
= 𝑓𝑎◦𝜎 (𝜙),

it follows that 𝑓 is 𝑘-equitable if and only if for every pair of 𝑘-tuples (𝑣1, . . . , 𝑣𝑘 ) and
(𝑤1, . . . , 𝑤𝑘 ) of voters there is a𝜎 ∈ 𝑆(𝑉) such that𝜎((𝑣1, . . . , 𝑣𝑘 )) = (𝑤1, . . . , 𝑤𝑘 )
and 𝑓𝑎 = 𝑓𝑎◦𝜎.

Now, this holds if and only if for every pair of 𝑘-tuples (𝑟1, . . . , 𝑟𝑘 ) and (𝑠1, . . . , 𝑠𝑘 )
of roles there is a 𝜎 ∈ 𝑆(𝑉) such that 𝜎(𝑎−1(𝑟1, . . . , 𝑟𝑘 )) = 𝑎−1(𝑠1, . . . , 𝑠𝑘 ) and
𝑓𝑎 = 𝑓𝑎◦𝜎. But this holds if and only if for every such pair of 𝑘-tuples of roles,
there is a 𝜎 ∈ 𝑆(𝑉) and a 𝑘-tuple of voters (𝑣1, . . . , 𝑣𝑘 ) such that 𝑓𝑎 = 𝑓𝑎◦𝜎,
𝑎((𝑣1, . . . , 𝑣𝑘 )) = (𝑟1, . . . , 𝑟𝑘 ), (𝑎 ◦𝜎) ((𝑣1, . . . , 𝑣𝑘 )) = (𝑠1, . . . , 𝑠𝑘 ), which holds if
and only if every pair of 𝑘-tuples of roles is equivalent under 𝑓 . □
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We now prove Proposition 2B. Proposition 2A then follows directly by setting 𝑘 to
1.

Proof of Proposition 2B. We first show that if 𝑓 is 𝑘-equitable, then there is a set 𝐴
as above.

Assume 𝑓 is 𝑘-equitable. Fix an assignment 𝑎, and let

𝐴 = {𝑏 an assignment s.t. 𝑓𝑎 = 𝑓𝑏}.

(1) is immediate from the definition of 𝐴. To see that (2) holds, note that for any
𝑘-tuple of roles (𝑟1, . . . , 𝑟𝑘 ) and any 𝑘-tuple of voters (𝑣1, . . . , 𝑣𝑘 ), it follows from a
result analogous to Proposition 3 that since 𝑓 is 𝑘-equitable, there are assignments 𝑐
and 𝑑 such that 𝑐((𝑣1, . . . , 𝑣𝑘 )) = (𝑟1, . . . , 𝑟𝑘 ), 𝑑 ((𝑣1, . . . , 𝑣𝑘 )) = 𝑎((𝑣1, . . . , 𝑣𝑘 )),
and 𝑓𝑐 = 𝑓𝑑 . Now, 𝑓𝑐 = 𝑓𝑑 implies that for all 𝜙 ∈ 𝑋𝑉 , 𝑓𝑐 (𝜙) = 𝑓𝑑 (𝜙), which
implies that for all 𝜙 ∈ 𝑋𝑉 , 𝑓𝑐 (𝜙 ◦ (𝑎−1 ◦ 𝑑)) = 𝑓𝑑 (𝜙 ◦ (𝑎−1 ◦ 𝑑)). It follows that,
for all 𝜙 ∈ 𝑋𝑉 ,

𝑓𝑐◦𝑑−1◦𝑎 (𝜙) = 𝑓 (𝜙 ◦ (𝑐 ◦ 𝑑−1 ◦ 𝑎)−1)
= 𝑓 ((𝜙 ◦ (𝑎−1 ◦ 𝑑)) ◦ 𝑐−1)
= 𝑓𝑐 (𝜙 ◦ (𝑎−1 ◦ 𝑑))
= 𝑓𝑑 (𝜙 ◦ (𝑎−1 ◦ 𝑑))
= 𝑓 ((𝜙 ◦ (𝑎−1 ◦ 𝑑)) ◦ 𝑑−1)
= 𝑓 (𝜙 ◦ 𝑎−1)
= 𝑓𝑎 (𝜙),

and hence 𝑓𝑐◦𝑑−1◦𝑎 = 𝑓𝑎. But this implies that 𝑐 ◦ 𝑑−1 ◦ 𝑎 ∈ 𝐴. Since (𝑐 ◦ 𝑑−1 ◦
𝑎) ((𝑣1, . . . , 𝑣𝑘 )) = 𝑐(𝑑−1(𝑎((𝑣1, . . . , 𝑣𝑘 )))) = 𝑐((𝑣1, . . . , 𝑣𝑘 )) = (𝑟1, . . . , 𝑟𝑘 ), (2)
then follows.

We now show that if there is a set 𝐴 as above, then 𝑓 is 𝑘-equitable.

Assume there is such an 𝐴. By a result analogous to Proposition 3, it is sufficient to
show that all 𝑘-tuples of roles are equivalent under 𝑓 . But this follows immediately
from (2) and the definition of equivalence of 𝑘-tuples of roles. □

Proof of Lemma 19

Proof of Lemma 19. Let 𝑓 be the voting rule defined as follows. For a voting profile
𝜙, if there is a set 𝑊 ∈ W such that 𝜙(𝑤) = 1 for all 𝑤 ∈ 𝑊 , then 𝑓 (𝜙) = 1,
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and similarly, if there is a set 𝑊 ∈ W such that 𝜙(𝑤) = −1 for all 𝑤 ∈ 𝑊 , then
𝑓 (𝜙) = −1. This is well-defined, since if there are two such sets 𝑊 , they must
agree because they intersect. If there are no such sets, then 𝑓 (𝜙) is determined by
majority.

That 𝑓 is neutral follows immediately from the symmetry in the definition of 𝑓 when
some 𝑊 ∈ W agrees on either 1 or −1 and the fact that majority is neutral. To
see that 𝑓 is positively responsive, suppose that 𝑓 (𝜙) ∈ {0, 1}, 𝜙′(𝑥) ≥ 𝜙(𝑥) for all
𝑥 ∈ 𝑉 , and 𝜙′(𝑦) > 𝜙(𝑦) for some 𝑦 ∈ 𝑉 . Since 𝑓 (𝜙) ≠ −1, there is no set𝑊 ∈ W
such that 𝜙(𝑥) = −1 for all 𝑥 ∈ 𝑊 , hence the same is true for 𝜙′. If there is some set
𝑊 ∈ W such that 𝜙′(𝑥) = 1 for all 𝑥 ∈ 𝑊 , then 𝑓 (𝜙′) = 1. If not, then the same is
true of 𝜙, and hence by positive responsiveness of majority, 𝑓 (𝜙′) = 1.

Finally, it is immediate from the definition of 𝑓 that every 𝑊 ∈ W is a winning
coalition. □

Proof of Theorem 10
Proof of Theorem 10. The longest-run voting rule is equitable, since any rotation of
the cycle is an automorphism. That is, for every 𝑘 , the map 𝜎 : 𝑉 → 𝑉 defined by
𝜎(𝑖) = 𝑖 + 𝑘 mod 𝑛 leaves the outcome unchanged. Furthermore, for every pair of
voters 𝑖, 𝑗 , if we set 𝑘 = 𝑖 − 𝑗 , then 𝜎(𝑖) = 𝑗 .

For every 𝑉 of size 𝑛, we claim that the longest-run rule ℓ : 𝑋𝑉 → 𝑋 has winning
coalitions of size 2⌈

√
𝑛 ⌉ − 1.

Let
𝑊 = {0, . . . , ⌈

√
𝑛 ⌉ − 1} ∪ {𝑤 : 𝑤 mod ⌈

√
𝑛 ⌉ = 0}.

Any run that is disjoint from𝑊 is of length at most ⌈
√
𝑛 ⌉ −1 since the second set in

the definition of𝑊 is comprised of voters who are at most ⌈
√
𝑛 ⌉ apart. However, the

first set is a contiguous block of length ⌈
√
𝑛 ⌉. Hence, if all 𝑤 ∈ 𝑊 vote identically

in {−1, 1}, the longest run will be a subset of 𝑤, and hence the outcome will be the
vote cast by all members of𝑊 . It then follows that𝑊 is a winning coalition.

Finally,

|𝑊 | = |{0, . . . , ⌈
√
𝑛 ⌉ − 1}| + |{𝑤 : 𝑤 mod ⌈

√
𝑛 ⌉ = 0}| − |{0}|

= ⌈
√
𝑛 ⌉ + |{𝑤 : 𝑤 mod ⌈

√
𝑛 ⌉ = 0}| − 1

≤ 2⌈
√
𝑛 ⌉ − 1.
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Since every superset of a winning coalition is again a winning coalition, the result
follows. □

Proof of Theorem 11
Readers who are not familiar with the theory of finite groups are encouraged to read
§3.7 before reading this proof.

Recall that the group of all permutations of a set of size 𝑛 is denoted by 𝑆𝑛.

The next lemma shows that if a group 𝐺 acts transitively on {1, . . . , 𝑛}, then any
set 𝑆 that intersects all of its translates (i.e., sets of the form 𝑔𝑆 for 𝑔 ∈ 𝐺) must be
of size at least

√
𝑛. The proof of the theorem will apply this lemma to a winning

coalition 𝑆.

Lemma 20. Let 𝐺 ⊂ 𝑆𝑛 be transitive, and suppose that 𝑆 ⊆ 𝑉 is such that for all
𝑔 ∈ 𝐺, 𝑔𝑆 ∩ 𝑆 ≠ ∅. Then |𝑆 | ≥

√
𝑛.

Proof. For any 𝑣, 𝑤 ∈ 𝑉 , define Γ𝑣,𝑤 = {𝑔 ∈ 𝐺 : 𝑔(𝑣) = 𝑤}. Then Γ𝑣,𝑤 is a left
coset of the stabilizer of 𝑣. Hence, and since the action is transitive, it follows from
the Orbit-Stabilizer Theorem that |Γ𝑣,𝑤 | = |𝐺 |

𝑛
. If 𝑔𝑆 ∩ 𝑆 ≠ ∅ for all 𝑔 ∈ 𝐺, then for

any 𝑔 ∈ 𝐺, there exists 𝑣, 𝑤 ∈ 𝑆 such that 𝑔(𝑣) = 𝑤, hence⋃
𝑣,𝑤∈𝑆

Γ𝑣,𝑤 = 𝐺.

So

|𝐺 | =
�����⋃
𝑣,𝑤

Γ𝑣,𝑤

����� ≤ ∑︁
𝑣,𝑤

|Γ𝑣,𝑤 | = |𝑆 |2 |𝐺 |
𝑛
,

and we conclude that |𝑆 | ≥
√
𝑛. □

Our lower bound (Theorem 11) is an immediate corollary of this claim.

Proof of Theorem 11. Let 𝑓 be an equitable voting rule for the voter set𝑉 . Suppose
that 𝑊 ⊆ 𝑉 is a winning coalition for 𝑓 . Then, for every 𝜎 ∈ Aut 𝑓 , it must be
the case that 𝜎(𝑊) ∩𝑊 ≠ ∅ (otherwise, 𝑓 would not be well-defined). Hence, it
follows from Lemma 20 that |𝑊 | ≥

√
𝑛. □
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Proof of Theorem 12

Proof of Theorem 12. Define 𝐶 (𝑛) to be the smallest size of any winning coalition
in any generalized representative democracy rule for 𝑛 voters. We want to show that
𝐶 (𝑛) ≥ 𝑛log3 2.

If 𝑛 = 1, a winning coalition must be of size 1, which is ≥ 1log3 2.

If 𝑛 > 1, any generalized voting rule 𝑓 is of the form 𝑓 (𝜙) = m( 𝑓1(𝜙 |𝑉1), 𝑓2(𝜙 |𝑉2), . . . , 𝑓𝑑 (𝜙 |𝑉𝑑 )).
Because the voting rule is equitable, the functions 𝑓𝑖 are all isomorphic, and so have
minimal winning coalitions of the same size. A minimal winning coalition for 𝑓
would then need to include a strict majority of these, which is of size at least 𝑑+1

2 .
Therefore,18

𝐶 (𝑛) ≥ min
𝑑 |𝑛

𝑑 + 1
2

· 𝐶 (𝑛/𝑑) . (3.1)

Assume by induction that 𝐶 (𝑚) ≥ 𝑚log3 2 for all 𝑚 < 𝑛. Then for 𝑑 |𝑛,
𝑑 + 1

2
· 𝐶 (𝑛/𝑑) ≥ 𝑑 + 1

2
·
( 𝑛
𝑑

) log3 2
= 𝑛log3 2 · 𝑑 + 1

2
· 𝑑− log3 2.

Denote ℎ(𝑑) = 𝑑+1
2 · 𝑑− log3 2, so that

𝑑 + 1
2

𝐶 (𝑛/𝑑) ≥ 𝑛log3 2ℎ(𝑑).

Note that ℎ(𝑑) ≥ 1. To see this, observe that ℎ(3) = 1, and

ℎ′(𝑑) =
𝑑− log 6/log 3(𝑑 log 3

2 − log 2)
2 log 3

> 0

for 𝑑 ≥ 3, and so ℎ(𝑑) ≥ 1 for 𝑑 ≥ 3.

We have thus shown that
𝑑 + 1

2
𝐶 (𝑛/𝑑) ≥ 𝑛log3 2,

and so by (3.1), 𝐶 (𝑛) ≥ 𝑛log3 2.

To see that 𝐶 (𝑛) = 𝑛log3 2 for arbitrarily large 𝑛, consider the following GRD rule
(see Figure 3.4). Take 𝑛 to be a power of 3, and let 𝑓 be defined recursively
by partitioning at each level into three sets {𝑉1, 𝑉2, 𝑉3} of equal size. A simple
calculation shows that the winning coalition recursively consisting of the winning
coalitions of any two of {𝑉1, 𝑉2, 𝑉3} (e.g., 𝑉1 and 𝑉3, as in Figure 3.4), is of size
𝑛log3 2. □

The construction of small winning coalitions in the last part of the proof mimics the
construction of the Cantor set.

18Here and below 𝑑 |𝑛 denotes that 𝑑 is a divisor of 𝑛.
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Proof of Theorems 13 and 14
The group of all even permutations is called the alternating group and is denoted
𝐴𝑛.

Lemma 21. Let 𝑓 be a voting rule for 𝑛 voters. If Aut 𝑓 is either 𝑆𝑛 or 𝐴𝑛, then
every winning coalition for 𝑓 has size at least 𝑛/2.

Proof. Suppose𝑊 ⊆ 𝑉 is a winning coalition for 𝑓 with |𝑊 | = 𝑘 < 𝑛/2. Label the
voters𝑉 with labels 1, . . . , 𝑛 such that𝑊 = {1, . . . , 𝑘}, and let 𝜋 be the permutation
of 𝑉 given by 𝜋(𝑖) = 𝑛 + 1 − 𝑖 for 𝑖 = 1, . . . , 𝑛. If ⌊𝑛/2⌋ is odd, let 𝜋 be the map
above composed with the map that exchanges 1 and 2. It follows that 𝜋 is in the
alternating group, and hence 𝜋 ∈ Aut 𝑓 . However, 𝜋(𝑊) ∩𝑊 = ∅ since 𝑘 < 𝑛+1− 𝑘 ,
contradicting the assumption𝑊 is a winning coalition. □

Proof of Theorem 13. Denote by 𝜂(𝑛) the number of positive integers 𝑚 ≤ 𝑛 for
which there is no 2-transitive group action on a set of 𝑚 elements except for 𝑆𝑚 and
𝐴𝑚. It follows from the main theorem in Cameron et al. (1982) that 𝑛 − 𝜂(𝑛) is at
most 3𝑛/log(𝑛) for all 𝑛 large enough. Since

lim
𝑛→∞

3𝑛/log(𝑛)
𝑛

= 0,

it follows that

lim
𝑛→∞

𝜂(𝑛)
𝑛

= lim
𝑛→∞

1 − 𝑛 − 𝜂(𝑛)
𝑛

= 1,

and so the claim follows from Lemma 21. □

Proof of Theorem 14. The only 4- or 5-transitive finite groups aside from the alter-
nating and symmetric groups are the Mathieu groups, with the largest action on a set
of size 24 (Dixon and Mortimer, 1996). Hence, for 𝑛 > 24, every 4- or 5-transitive
voting rule must have either 𝑆𝑛 or 𝐴𝑛 as an automorphism group. Furthermore,
the only 6-transitive groups are 𝑆𝑛 or 𝐴𝑛 (again, see Dixon and Mortimer, 1996).
Hence, the result follows immediately from Lemma 21. □

Proof of Proposition 3
This proposition’s proof follows directly from group theory results that are classical,
but that are not covered in our primer in §3.7, and which we now review briefly.

Let 𝐺 be a group. The order of 𝐺 is simply its size. The order of 𝑔 ∈ 𝐺 is the
smallest 𝑛 such that 𝑔𝑛 is the identity. Given a prime 𝑝, we say that a group 𝑃 is a
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𝑝-group if the orders of all of its elements are equal to powers of 𝑝. We assume for
the remainder of this section that 𝑝 is prime.

Let 𝐺 be a finite group with |𝐺 | = 𝑝𝑑 ·𝑚, where 𝑑 ≥ 1, and 𝑚 is not divisible by 𝑝.
Sylow (1872) proved that, in this case,𝐺 has a subgroup 𝑃 that is a 𝑝-group of order
𝑝𝑑 . Such groups are called Sylow 𝑝-groups in his honor. The following lemma
states an important and well-known fact (see, e.g., Wielandt, 2014, Theorem 3.4’)
regarding Sylow 𝑝-groups.

Lemma 22. Let 𝐺 act transitively on a set 𝑉 of size 𝑛 = 𝑝𝑑 for some 𝑑 ≥ 1. Any
Sylow 𝑝-subgroup of 𝐺 acts transitively on 𝑉 .

Proof. Since the order of 𝐺 is divisible by the size of 𝑉 , |𝐺 | = 𝑝𝑑+ℓ · 𝑚 for some
ℓ ≥ 0 and 𝑚 not divisible by 𝑝. Let 𝑃 be a Sylow 𝑝-subgroup, so that |𝑃 | = 𝑝𝑑+ℓ.

For any 𝑖 ∈ 𝑉 , the size of the 𝑃-orbit 𝑃𝑖 divides |𝑃 | = 𝑝𝑑+ℓ, and so is equal to 𝑝𝑑−𝑎

for some 𝑎 ≥ 0. Now, the size of the stabilizers 𝑃𝑖 and 𝐺𝑖 is |𝑃𝑖 | = |𝑃 |/|𝑃𝑖 | = 𝑝ℓ+𝑎

and |𝐺𝑖 | = 𝑝ℓ · 𝑚. Since 𝑃𝑖 is a subgroup of 𝐺𝑖, |𝑃𝑖 | divides |𝐺𝑖 |, and so 𝑎 = 0,
|𝑃𝑖 | = 𝑝𝑑 = 𝑛, and 𝑃 acts transitively on 𝑉 . □

The center of a group is the collection of all of its elements that commute with all
the group elements: {𝑔 ∈ 𝐺 : 𝑔ℎ = ℎ𝑔 for all ℎ ∈ 𝐺}. This is easily seen to also
be a subgroup of 𝐺.

Lemma 23. Every non-trivial 𝑝-group has a non-trivial center.

For a proof, see Theorem 6.5 in Lang (2002). Here and below, a non-trivial group
is a group of order larger than 1.

Let 𝐺 be a group that acts transitively on a set 𝑉 , and let 𝑍 be the center of 𝐺.
Denote by 𝐺/𝑍 the set of left cosets of 𝑍 , and let �̂� be the set of 𝑍-orbits of 𝑉 . If
𝑣, 𝑤 ∈ 𝑉 are in the same 𝑍-orbit, then 𝑔(𝑣) and 𝑔(𝑤) are also in the same 𝑍-orbit,
since if 𝑧(𝑣) = 𝑤 then 𝑧(𝑔(𝑣)) = 𝑔(𝑧(𝑣)) = 𝑔(𝑤). Hence, each 𝑔 ∈ 𝐺 induces
a permutation on �̂� . Note that 𝑔, ℎ ∈ 𝐺 induce the same permutation on �̂� if
they are in the same element of 𝐺/𝑍 . Hence, we can think of 𝐺/𝑍 as a group of
permutations of �̂� . This group must act transitively on �̂� since 𝐺 acts transitively
on 𝑉 . Furthermore, if a subgroup of 𝐺/𝑍 acts transitively on �̂� , then the union of
the cosets it includes is a subgroup of 𝐺 that acts transitively on 𝑉 .



86

Lemma 24. Let 𝐺 be a group acting transitively on a set 𝑉 of size 𝑝𝑑 , for some
𝑑 ≥ 1. There exists a 𝑝-subgroup 𝑅 of 𝐺 of size 𝑝𝑑 acting transitively on 𝑉 with
trivial stabilizers.

Proof. Let 𝑃 denote a Sylow 𝑝-subgroup of 𝐺. By Lemma 22, the action of 𝑃 on
𝑉 is also transitive.

Let 𝑍 denote the center of 𝑃. Since 𝑃 is non-trivial, by Lemma 23, 𝑍 is non-trivial.
We claim that the 𝑍 action on 𝑉 has trivial stabilizers. To see this, assume that
ℎ(𝑣) = 𝑣 for some 𝑣, and choose any 𝑤 ∈ 𝑉 . Since 𝑃 acts transitively, there is some
𝑔 ∈ 𝑃 such that 𝑔(𝑣) = 𝑤. Since ℎ commutes with 𝑔,

ℎ(𝑤) = ℎ(𝑔(𝑣)) = 𝑔(ℎ(𝑣)) = 𝑔(𝑣) = 𝑤,

and so, since 𝑤 was arbitrary, ℎ is the identity. Hence, 𝑍𝑣 = {𝑒} for every 𝑣 ∈ 𝑉 .
Note that by the Orbit-Stabilizer Theorem, this implies that each 𝑍 orbit is equal in
size to 𝑍 .

If the action of 𝑍 is also transitive, we are done, since we can take 𝑅 = 𝑍 .

Finally, consider the case that 𝑍 does not act transitively.

In this case 𝑃′ = 𝑃/𝑍 acts transitively on �̂� , the set of the 𝑍-orbits of 𝑉 . By
induction, 𝑃′ has a subgroup 𝑍′ which acts transitively with trivial stabilizers on �̂� ,
and hence has size |�̂� |. Note that since the action of 𝑍 has trivial stabilizers, every
𝑍-orbit has size |𝑍 |, and so |�̂� | = |𝑉 |/|𝑍 | = 𝑝𝑑/|𝑍 |. Thus, taking 𝑅 to be the union
of the cosets in 𝑃/𝑍 that comprise 𝑍′, 𝑅 acts transitively on 𝑉 . Finally, since this
subgroup has size |𝑍′| · |𝑍 | = 𝑝𝑑 = |𝑉 |, it follows that the action of 𝑅 has trivial
stabilizers.

□

A group is said to be abelian if all of its elements commute: 𝑔ℎ = ℎ𝑔 for all
𝑔, ℎ ∈ 𝐺. Note that the center of every group is abelian by definition. The structure
of abelian groups is simple and well understood: Kronecker’s Theorem (Kronecker,
1870, Stillwell, 2012, Theorem 5.2.2) states that every abelian group is a product
of cycles of prime powers. That is, if 𝐺 is an abelian group of permutations of a
set 𝑉—and assuming without loss of generality that no element of 𝑉 is fixed by all
elements of 𝐺—then there is a way to identify 𝑉 with

∏𝑚
𝑖=1{0, . . . , 𝑛𝑖 − 1}, with
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each 𝑛𝑖 a prime power, so that 𝐺 is generated by permutations19 of the form

𝜎𝑘 (𝑖1, . . . , 𝑖𝑚) = (𝑖1, . . . , 𝑖𝑘−1, 𝑖𝑘 + 1 mod 𝑛𝑘 , 𝑖𝑘+1, . . . , 𝑖𝑚).

As is also well known, every group of order 𝑝 or 𝑝2 is abelian (Netto, 1892, page
148). From these facts follows the next lemma.

Lemma 25. Let 𝑅 be a group of order 𝑝 or 𝑝2, acting transitively on a set 𝑉 . In the
former case, we can identify 𝑉 with {0, . . . , 𝑝 − 1} so that 𝑅 is generated by

𝜎(𝑖) = 𝑖 + 1 mod 𝑝.

In the latter case, we can either identify𝑉 with {0, . . . , 𝑝2−1} so that 𝑅 is generated
by

𝜎(𝑖) = 𝑖 + 1 mod 𝑝2,

or else we can identify 𝑉 with {0, . . . , 𝑝 − 1}2, so that 𝑅 is generated by

𝜎1(𝑖1, 𝑖2) = (𝑖1 + 1 mod 𝑝, 𝑖2)
𝜎1(𝑖1, 𝑖2) = (𝑖1, 𝑖2 + 1 mod 𝑝).

Hence, if 𝑅 is a subgroup of the automorphism group of a voting rule 𝑓 , then this
rule is cyclic if 𝑛 = 𝑝, and is either cyclic, 2-cyclic or both if 𝑛 = 𝑝2.

Proof of Proposition 3. By Lemma 24, Aut 𝑓 has a 𝑝-subgroup 𝑅 of order 𝑛 that
acts transitively on 𝑉 . The claim now follows immediately from Lemma 25. □

When 𝑛 = 𝑝𝑑 , with 𝑑 > 2, this proof fails since the group 𝑅 is no longer necessarily
abelian. Non-abelian groups do not have cyclic structure, and thus voting rules for
which this group 𝑅 is not abelian will not be cyclic, 2-cyclic, or higher-dimensional
cyclic. We conjecture that such equitable voting rules do indeed exist.

3.9 2-equitable and 3-equitable rules
In this section we construct 2-equitable and 3-equitable rules with small winning
coalitions that apply to arbitrarily large population sizes. This construction is rather
technically involved and uses finite vector spaces. To glean some intuition, we
first explain an analogous construction using standard vector spaces and assuming
a continuum of voters.

19A group is said to be generated by a set 𝑆 of permutations if it includes precisely those
permutations that can be constructed by composing permutations in 𝑆.
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Suppose voters are identified with the set of one-dimensional subspaces of R3: i.e.,
each voter is identified with a line that passes through the origin. Now suppose
winning coalitions are the two-dimensional subspaces: if all voters on a plane
agree, that is the election outcome, otherwise the election is undecided.20 Clearly,
the winning coalitions are much smaller than the electorate (or indeed of “half of
the voters”) in the sense that they have a smaller dimension.

Invertible linear transformations of R3 permute the one-dimensional subspaces, and
the two-dimensional subspaces, and so constitute automorphisms of this voting
rule. Equity follows since for any two non-zero vectors 𝑣 and 𝑢, we can find some
invertible linear transformation that maps 𝑣 to 𝑢. Moreover, the voting rule is also
2-equitable—given a pair of distinct voters (𝑣1, 𝑣2), and given another such pair
(𝑢1, 𝑢2), we can find some invertible linear transformation that maps the former to
the latter. Thus, every pair of voters plays the same role.

In Theorem 15 below we construct 2-equitable voting rules for finite sets of voters,
using finite vector spaces instead of R3. Figure 3.5 shows a 2-equitable voting rule
constructed in this way, for 7 voters. In the figure, every three co-linear nodes form
a winning coalition, as well as the three nodes on the circle.21 In this construction,
the size of the winning coalition is exactly

√
𝑛 (rounded up to the nearest integer),

which matches the lower bound of
√
𝑛 in Theorem 11.

Theorem 15. Let the set of voters be of size 𝑛 = 𝑞2 + 𝑞 + 1, for prime 𝑞. Then there
is a 2-equitable voting rule with a winning coalition of size exactly equal to

√
𝑛,

rounded up to the nearest integer.

More generally, a similar statement holds when 𝑛 = 𝑞2 + 𝑞 + 1 and 𝑞 = 𝑝𝑘 for some
𝑘 ≥ 1 and 𝑝 prime. The example in Figure 3.5 corresponds to the case 𝑞 = 2.

Proof. Let F𝑞 denote the finite field with 𝑞 elements.22

Given a positive integer 𝑚, F𝑚𝑞 is a vector space, where the scalars take values in F𝑞:
it satisfies all the axioms that (say) R3 satisfies, but for scalars that are in F𝑞 instead

20This rule is well defined since every pair of two-dimensional subspaces intersects, so no two
winning coalitions are disjoint.

21Figure 3.5 depicts what is commonly referred to as a Fano plane in finite geometry. It is the
finite projective plane of order 2.

22F𝑞 is the set {0, 1, . . . , 𝑞 − 1}, equipped with the operations of addition and multiplication
modulo 𝑞. The primality of 𝑞 is required to make multiplication invertible.
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Figure 3.5: Every three co-linear points form a winning coalition, as well as the
three points on the circle (marked in blue). This voting rule is 2-equitable.

of R. Indeed, much of the standard theory of linear algebra of R𝑚 applies in this
finite setting, and we will make use of it here.

In particular, we will make use of𝐺𝐿 (𝑚, 𝑞), the group of invertible, 𝑚×𝑚 matrices
with entries in F𝑞. Here, again, the product of two matrices is calculated as usual,
but addition and multiplication are taken modulo 𝑞. Since F𝑚𝑞 is finite, each matrix
in 𝐺𝐿 (𝑚, 𝑞) corresponds to a permutation of F𝑚𝑞 . As in the case of matrix multi-
plication on R𝑚, these permutations preserve the 1-dimensional and 2-dimensional
subspaces. Moreover, this group acts 2-transitively on the 1-dimensional subspaces,
as any two non-colinear vectors (𝑢, 𝑣) can be completed to a basis of F𝑚𝑞 , and like-
wise starting from (𝑢′, 𝑣′); then any basis can be carried by an invertible matrix to
any other basis.

With this established, we are ready to identify our set of voters with the set of
1-dimensional subspaces of F3

𝑞. For each 2-dimensional subspace 𝑈 of F3
𝑞, define

the set 𝑆𝑈 of 1-dimensional subspaces (i.e., voters) contained in 𝑈. Let W be
the collection of all such sets 𝑆𝑈 , and define, using Lemma 19, a voting rule 𝑓 in
which the sets 𝑆𝑈 are winning coalitions. We need to verify that any two winning
coalitions 𝑆𝑈 and 𝑆𝑈′ are non-disjoint. This simply follows from the fact that every
pair of 2-dimensional subspaces intersects in some 1-dimensional subspace, and so
it follows that each pair of such winning coalitions will have exactly one voter in
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common.23

A simple calculation shows that the winning coalitions are of size 𝑞 + 1. Since
√
𝑛 ≤ 𝑞 + 1 ≤

√
𝑛 + 1, the claim follows. □

To construct 3-equitable rules we will need the following lemma. It allows us to
show, using the probabilistic method, that for small automorphism groups we can
construct voting rules with small winning coalitions. This is useful for proving that
there exist 3-equitable voting rules with small winning coalitions.

Lemma 26. Let 𝐺 be a group of 𝑚 permutations of {1, . . . , 𝑛}. Then there is a
neutral and positively responsive voting rule 𝑓 such that 𝐺 is a subgroup of Aut 𝑓 ,
and 𝑓 has winning coalitions of size at most 2

√
𝑛 log𝑚 + 2.

We use this lemma to prove our theorem illustrating the existence of 3-equitable
rules with small winning coalitions for arbitrarily large voter populations. We then
return to prove the lemma.

Theorem 16. For 𝑛 such that 𝑛 − 1 is a prime power, there is a 3-equitable voting
rule with a winning coalition of size at most 6

√
𝑛 log 𝑛.

Proof. For 𝑛 such that 𝑛− 1 is the power of some prime there is a 3-transitive group
of permutations of {1, . . . , 𝑛} that is of size 𝑚 < 𝑛3.24 Hence, by Lemma 26, there
is a 3-equitable voting rule for 𝑛 (i.e., a rule with a 3-transitive automorphism group)
with a winning coalition of size at most 2

√
𝑛 log(𝑛3) = 6

√
𝑛 log 𝑛. □

It is natural to conjecture that this probabilistic construction is not optimal, and that
there exist 3-equitable rules with winning coalitions of size 𝑂 (

√
𝑛).

The heart of Lemma 26 is the following group-theoretic claim, which states that
when𝐺 is small then we can find a small set 𝑆 such that 𝑔𝑆 and 𝑆 are non-disjoint for
every 𝑔 ∈ 𝐺. These sets 𝑔𝑆 will be the winning coalitions used to prove Lemma 26.
The proof of this proposition uses the probabilistic method: we choose 𝑆 at random
from some distribution, and show that, with positive probability, it has the desired
property. This proves that there exists a deterministic 𝑆 with the desired property.

23This is the reason that the winning coalitions of this rule are so small and proving a tight match
to the lower bound.

24The group 𝑃𝐺𝐿 (2, 𝑛 − 1) acts 3-transitively on the projective line over the field F𝑛−1, and is of
size 𝑛(𝑛 − 1) (𝑛 − 2) < 𝑛3.
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Proposition 4. Let a group 𝐺 of 𝑚 > 2 permutations of {1, . . . , 𝑛}. Then there
exists a set 𝑆 ⊆ {1, . . . , 𝑛} with |𝑆 | ≤ 2

√
𝑛 log𝑚 + 2 such that ∀𝑔 ∈ 𝐺 we have

𝑔𝑆 ∩ 𝑆 ≠ ∅.

Proof. To prove this, we will choose 𝑆 at random, and prove that it has the desired
properties with positive probability. Let ℓ = ⌈

√
𝑛 log |𝐺 |⌉. Let 𝑆 = 𝑆1 ∪ 𝑆2,

where 𝑆1 is any subset of 𝑋 of size ℓ, and 𝑆2 is the union of ℓ elements of 𝑋 ,
chosen independently from the uniform distribution. Hence 𝑆 includes at most
2ℓ ≤ 2

√
𝑛 log |𝐺 | + 2 elements.

We now show that P(∀𝑔 ∈ 𝐺 : 𝑔𝑆 ∩ 𝑆 ≠ ∅) > 0, and hence there is some set 𝑆 with
the desired property. Note that for any particular 𝑔 ∈ 𝐺, the distribution of 𝑔𝑆2 is
identical to the distribution of 𝑆2. Hence

P(𝑔𝑆 ∩ 𝑆 = ∅) ≤ P(𝑔𝑆2 ∩ 𝑆1 = ∅)
= P(𝑆2 ∩ 𝑆1 = ∅)

=

(
𝑛 − ℓ
𝑛

)ℓ
≤ 𝑒−ℓ2/𝑛

≤ 𝑒−(log𝑚)2
.

Thus, the probability that there is some 𝑔 ∈ 𝐺 for which 𝑔𝑆 ∩ 𝑆 = ∅ is, by taking a
union bound, at most

𝑚𝑒−(log |𝐺 |)2
,

which is strictly less than 1 for 𝑚 > 2. □

We are finally ready to prove Lemma 26.

Proof of Lemma 26. Let 𝑆 be the subset of {1, . . . , 𝑛} given by Proposition 4. Let
W be the collection of sets of the form 𝑔𝑆, where 𝑔 ∈ 𝐺. This is a collection of
pairwise non-disjoint sets, since if 𝑔𝑆 and ℎ𝑆 intersect then so do ℎ−1𝑔𝑆 and 𝑆,
which is impossible by the defining property of 𝑆. Since |𝑆 | = 2

√
𝑛 log𝑚 + 2 the

claim follows from Lemma 19. □
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